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ABSTRACT

The motivation behind the time-frequency analysis (TFA) is rooted in classical Fourier
analysis. In contrast to Fourier transform (FT), time-frequency transforms analyze signals
in both time and frequency domain simultaneously and provide time-frequency represen-
tation (TFR). The conventional methods for TFA can be categorized into two groups.
The first group includes linear time-frequency transforms which attempt to make FT time
dependent. The second group includes quadratic TFA techniques. Short time Fourier
transform (STFT), wavelet transform (WT) and S-transform (ST) are some well-known
transforms listed under the first category whereas Wigner-Ville distribution and Cohen
class of distribution are listed under the later.

ST is an advancement of the STFT and CWT. It has direct relationship with FT, and
retains the absolutely referenced phase property of STFT. It provides frequency invariant
amplitude response along with multi-resolution analysis. These properties of ST have
led to its wide usage in various fields such as geophysics, power system engineering,
biomedical engineering, biometric, etc. The conventional ST uses a Gaussian window
whose width varies as inversely proportional to the frequency. The long taper of the
Gaussian window and the scaling criterion provide very large window width for lower
frequencies, and very short window width for higher frequencies, and hence leads to un-
necessary deterioration in time and frequency resolution at lower and higher frequencies,
respectively.

In the first objective of this dissertation, two variants of ST, namely time-limited ST
(TST) and band-limited ST (BST) are proposed. TST and BST are based on optimally
concentrated discrete time-limited and band-limited windows of finite length. The pro-
posed TST has ability to precisely localize the signals in time domain while maximizing
the energy concentration in frequency domain. The proposed BST has ability to precisely
localize the signals in given band while maximizing the energy concentration in time
domain.

The second objective focuses on maximally achievable trade-off between time and
frequency domain energy concentrations for discrete time finite length sequences. The
problem of simultaneous maximization of time and frequency domain energy concen-
trations is formulated as the maximization of weighted linear combination of desired
concentration measures in time and frequency domains. A novel optimal window with
finite support (OWFS) is proposed based on discrete time continuous frequency scenario.
The proposed OWFS is extended to design an adaptive TFA method for reducing the in-
stantaneous frequency (IF) estimation error in case of multi-component signals in noisy
environment. For discrete time discrete frequency scenario, a novel optimally concen-
trated discrete window (OCDW) is proposed. OCDW is designed by solving a constraint



optimization problem of maximization of the product of time and frequency domain en-
ergy concentrations in given time and frequency intervals. Further, it is extended to design
an OCDW based ST (OST) for multi-resolution analysis. A new scaling criterion is also
proposed for OST which prevents unnecessary deterioration in frequency resolution at
higher frequencies, and time resolution at lower frequencies.

In the third objective, an asymmetrical modified Kaiser window (AMKW) based ST is
proposed for sharp detection of event’s onset. The multi-resolution analysis and frequency
dependent asymmetry are obtained by modifying the β parameter of first order Bessel
function of Kaiser window. The proposed scheme leads to sharp detection of events in
front direction while having minimum degradation in backward direction. This scheme
also results in minimum degradation in frequency resolution as compared to other existing
TFA techniques for event detection.

In the fourth objective of this dissertation, the reassignment method (RM) and syn-
chrosqueezing transform (SST) are deployed on the TFR of OST, and further investigated
for detecting multiple power quality disturbances. It is found that the OST combined with
RM and SST provides better visualization as compared to other counterparts of ST. Fur-
ther, a product-ST is proposed for better visualization by multiplying the TFRs of TST
and BST. The concepts of RM and SST are incorporated in the product-ST, and the re-
sulting TFR is found to provide better visualization and frequency detection accuracy as
compared to its OST counterpart.

In this dissertation, different techniques are proposed to enhance the energy concen-
tration in the ST. The performances of these techniques are demonstrated using synthetic
and real world examples from power system engineering, biomedical engineering and
geoscience.
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Chapter 1

Introduction

1.1 Background and Motivation

The analysis of the components of a signal plays an important role in the field of sig-
nal processing and its applications. The analysis of signal components rely on time or
frequency or time-frequency domain representation of the data. The energy or instan-
taneous power distribution of the signal is shown in time domain representation. Some
examples under time domain analysis include analysis of electrocardiogram (ECG) sig-
nals, signals having a single sinusoid, etc. Frequency domain representation is obtained
by computing the Fourier transform (FT) of the signal whose magnitude spectrum rep-
resents energy distribution of the signal over frequency. The information regarding how
fast or slow the heart rate is changing in an ECG signal or the frequency of the sinusoid
in an electrical signal can be obtained by frequency domain analysis [1]. The frequency
domain representation is obtained by integrating the time variable and vice versa. The
time and frequency domain representations of the signal are non-localized with respect
to the excluded frequency and time variable, respectively. Therefore, the time and fre-
quency domain representations are well suited for stationary signals having similar statis-
tical properties throughout the time.

However, most of the time series (speech, music, geophysical, medical signals, etc.)
are non-stationary in nature where information is retained in change in frequency with
time, and not in frequency itself. Hence, it is suitable to analyze such signals in both time
and frequency domain simultaneously [2–4]. For time-frequency representation (TFR) of
a signal, FT is made time dependent [2]. In a TFR, instead of being mutually exclusive,
both time and frequency variables are present together. Consequently, a TFR is localized
in both time and frequency domain simultaneously.

The conventional methods for time-frequency analysis (TFA) can be categorized into
two groups. The first group includes linear time-frequency transforms which attempt to
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make FT time dependent. The second group includes quadratic TFA techniques. Short
time Fourier transform (STFT) [5], Gabor transform, wavelet transform (WT) [5–8] and
S-transform (ST) [9–11] are some well-known time-frequency transforms listed under
the first category whereas Wigner-Ville distribution (WVD) [5, 12] and Cohen class of
distribution are listed under the later. The STFT was the first attempt to make classical
Fourier analysis time dependent. It uses a fixed length window to localize the signal in
time. After windowing, FT of the windowed segment is calculated. It produces a time
localized FT of the signal. Since, the STFT uses a fixed length window for analyzing all
frequencies, it leads to fixed resolution in the TFR. The WT is carried out by windowing
the signal using variable windows. Scaled versions of mother wavelet are translated along
the entire length of the signal. The WT incorporates the multi-resolution property, and is
well suited for analysis of signals having low frequency components for longer duration
and high frequency components for shorter duration. However, it provides local phase
information. WVD provides high energy concentration in the TFR. However, it suffers
from the cross term problems. ST is an advancement of the STFT and WT. It has direct
relationship with FT, and retains the absolutely referenced phase property of STFT. It
provides frequency invariant amplitude response along with multi-resolution property.
These properties of ST have led to its wide usage in various fields such as geophysics
[13–16], power system engineering [17–25], biomedical engineering [26–31], biometric
[32], etc.

In an ideal case, the TFR is expected to show the spectral information of the signal
at correct time instants without cross-information about adjacent instants [33]. The main
objective of TFA is to provide a highly concentrated TFR which can be as close as pos-
sible to an ideal TFR [34]. The conventional ST uses a Gaussian window (GW) whose
width varies as inversely proportional to the frequency. This scaling criterion provides
very large window width for lower frequencies, and very short window width for higher
frequencies, and hence leads to unnecessary deterioration in time and frequency resolu-
tion at lower and higher frequencies, respectively. To improve the energy concentration,
several variants of ST have been proposed in literature [35–38]. Frequency resolution of
ST has been improved at the cost of degradation in time resolution by multiplying the
window width by a constant scaling factor k [20]. Sejdić and Djurović [39] have intro-
duced a parameter p, (p < 1) as an exponent of analysis frequency. Unlike the linear
increment, the window width increases exponentially in frequency domain, and provides
better frequency resolution at higher frequencies as compared to modified linear scaling
[20] while retaining similar time resolution at lower frequencies as that of conventional
ST. The parameter p is chosen based on the concentration measure (CM) [40]. Multiple
parameters [13,19] have been introduced to improve the energy concentration in the TFR
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of ST. The optimum value of these parameters are chosen so as to maximize the CM of
the TFR. Three or more parameters based approaches are often very complex since there
is no closed form dependence of energy concentration on introduced parameters. Hence,
these approaches rely on brute force search over the parameter space. It results in evalua-
tion of huge number of TFRs. Thus, adding more parameters and optimizing those using
CMs or heuristic algorithms are very tedious and computationally complex tasks. Instead
of using a GW as kernel of ST, other window functions are also proposed in literature
for specific applications. The asymmetrical windows are used for accurate detection of
arrival and termination time of certain events [41,42]. An adaptive Dolph Chebyshev win-
dow based ST has been proposed by Yao et al. to improve TFR characteristics for certain
class of signals [43]. The aforementioned literature indicates that a suitable window needs
to be chosen depending on the application. Moreover, practical implementation needs a
discrete window with finite support. The existing approaches use sampled and truncated
version of continuous window which may no longer hold the desired properties, and often
lead to inconsistency in time and frequency domain computation of ST [44].

The classical TFA tools and their variants suffer from poor time-frequency resolution
due to Heisenberg uncertainty principle or unwanted cross terms. It may lead to unreliable
characterization of the nonlinear behavior of non-stationary signals. In order to achieve
near ideal TFR, some advanced post processing methods have been proposed in literature
such as reassignment method (RM) [45, 46] and synchrosqueezing transform (SST) [47,
48]. These tools have the ability to reassign or squeeze the time-frequency coefficients
obtained by classical TFA methods into the instantaneous frequency (IF) trajectory [49,
50]. Although the conventional linear TFRs along with RM and SST provide very narrow
ridges as compared to the conventional TFRs, their ability to separate out two signal
components still depend on the width of the window in time and frequency domains. For
SST and RM to properly resolve two modes in frequency, these modes must be separated
in frequency by at least the bandwidth of the used window. Similarly, to separate out two
signal components in time, the time separation of these components must be more than
the support of the window [51]. Resolving closely spaced signal components in both time
and frequency domain simultaneously using SST and RM techniques remains a challenge.

1.2 Research Objectives

The above discussion provides motivation for carrying out more research work on window
functions and scaling criterion to improve the energy concentration in the TFR of ST.
Consequently, the main objective of this thesis is to enhance the energy concentration in
the TFR of ST by using modified window and scaling criterion, and further by using post
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processing methods. To be more specific, the contributions of this thesis are elaborated in
the following research objectives.

ST based on Optimally Concentrated Time-limited and Band-
limited Windows

In order to improve the energy concentration in the TFR for analyzing time-limited and
band-limited signals, optimally concentrated time-limited and band-limited discrete win-
dows are proposed. The motivation behind the usage of time-limited windows for TFA
is to accurately localize a signal in a given time interval with minimum spreading in
frequency. The desired discrete window is designed to provide maximum energy concen-
tration in finite frequency interval while being strictly limited in finite time interval. This
approach can be potentially useful in precise detection of event initiation and termination,
and determination of total duration of signal such as duration of heart rate signals [52], p
and s wave arrival and termination in seismology [41, 42, 53, 54], etc. Similarly, the idea
behind the proposed band-limited window is to accurately localize a signal in a given band
with minimum spreading in time. These band-limited windows have wide applications,
such as analysis of band-limited electroencephalogram (EEG) signals [55], optimal basis
design for band-limited signal, etc. Based on the time-limited and band-limited windows,
two variants of ST are proposed, namely TST and BST. The efficacy of the proposed
TST is examined using seismic earthquake and reflection data. Similarly, the efficacy of
the proposed BST is examined using band-limited EEG data and signal having multiple
power quality disturbances.

Simultaneous Time and Frequency Domain Energy Con-
centration for Finite Length Sequences

This objective deals with the achievable optimal trade-off between time and frequency do-
main energy concentration for finite length sequences. Slepian and Pollak have proposed
optimal sequences to simultaneously maximize the time and frequency domain energy
concentrations for a given time interval and a frequency band for continuous time con-
tinuous frequency [56] and discrete time continuous frequency [57] scenarios. However,
these sequences are of infinite support.

For most of the practical applications where we often encounter with finite duration
signals, it is desired to have simultaneously concentrated discrete window with finite sup-
port. To this extent, this objective focuses on maximally achievable trade-off between
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time and frequency domain energy concentration in discrete time continuous frequency
and discrete time discrete frequency scenarios for discrete time finite length sequences. A
straight forward approach is to truncate the simultaneously concentrated discrete prolate
spheroidal sequences (DPSS) [57] to desired finite length, but the resulting window will
no longer guarantee to be optimal. Therefore, from practical standpoint and out of mathe-
matical curiosity, this objective aims at designing an optimal compact window with finite
support which can simultaneously maximize the energy concentration in finite time inter-
val and finite frequency band. The problem of simultaneous maximization of time and
frequency domain energy concentrations is formulated as the maximization of weighted
linear combination of desired energy CMs in time and frequency domains. The problem
is solved through eigenvalue decomposition to obtain Pareto-optimal solutions. Further,
upper bounds of achievable time and frequency domain energy concentration for finite
length sequences and associated properties are derived.

A novel optimally concentrated discrete window (OCDW) is designed by solving a
constraint optimization problem of maximization of the product of time and frequency
domain energy concentration in given time and frequency intervals. Further, it is ex-
tended to design an OCDW based ST (OST) for multi-resolution analysis. A new scaling
criterion is also proposed for OST which prevents unnecessary deterioration in frequency
resolution at higher frequencies, and time resolution at lower frequencies. The efficacy of
the proposed approach is examined using a synthetic signal having multiple power quality
disturbances.

Sharp Detection of Event’s Onset with Asymmetrical Kaiser
Window based ST

In various fields such as seismology, biomedical engineering, audio and speech signal pro-
cessing, etc. the main motivation behind signal analysis is event recognition [42, 58, 59].
Reliable detection and identification of seismic events are extremely important for accu-
rate estimation of magnitude and location of these events. Different time or frequency
domain methods for onset detection of events are discussed in literature [60–64]. These
time or frequency domain methods are suitable for analyzing signals having less noise
and randomness as these analyze the seismic traces either in time or in frequency domain.
However, the seismic traces are non-stationary in nature and mostly severely contam-
inated with noise. It is well suited to analyze these kind of signals in both time and
frequency domain simultaneously [65].

Many variants of ST have been proposed in literature using asymmetrical windows
for sharp detection of event’s onset. A bi-Gaussian window (BGW) based ST has been

5



Chapter 1. Introduction

proposed in literature for detection of various seismic events [53,59,66,67]. Similarly, an
asymmetrical hyperbolic window (HW) based ST has also been proposed in literature to
determine different events in noisy seismograph [42, 54] and power quality disturbances
[68, 69]. However to provide asymmetry, welding of two functions leads to discontinu-
ities.

In this objective, an asymmetrical modified Kaiser window (AMKW) based ST is pro-
posed for analyzing the time-frequency content of a broadband earthquake seismogram.
The multi-resolution analysis and frequency dependent asymmetry are obtained by mod-
ifying the β parameter of first order Bessel function. The proposed method is tested by
using synthetic seismic trace and real earthquake data.

Reassignment of Energy in the TFRs of OST and product-
ST

In order to exploit the sparsity in the signal as well as provide better visualization in the
TFR, post processing techniques are deployed to reassign the energy in the TFR closer to
prominent frequencies. In recent years, the post processing methods such as RM and SST
are widely used in various disciplines such as, earth sciences [70–72], biomedical engi-
neering [73], mechanical engineering [74], civil engineering [75–77], etc. However, the
efficiency of these post processing methods depends on separability of modes in time and
frequency domains. To counter this shortcoming, the SST and RM are deployed on the
TFR of OST, and further investigated for detecting multiple power quality disturbances.
It is found that the OST combined with RM and SST provides better visualization as
compared to other counterparts of ST.

Further, a product-ST is proposed for better visualization by multiplying the TFRs
of TST and BST. The concepts of RM and SST are incorporated in the product-ST. It is
found that the product-ST combined with RM and SST provides better visualization and
frequency detection accuracy as compared to its OST counterpart.

1.3 Organization of Thesis

The entire work is carried out to accomplish aforementioned four objectives, and system-
atically presented in this thesis through seven different chapters including this chapter. A
brief summary of remaining six chapters are presented below.

Chapter 2: This chapter begins with a detailed literature review of the work done
by various researchers in the field of maximization of energy concentration in time and
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frequency domain simultaneously. This chapter also describes the mathematical concepts
and basic fundamentals of the relevant methodologies of simultaneously concentrated
sequences, the generalized ST with different windows and different scaling criteria. The
working principle and the performance analysis of various TFA techniques are discussed.
The chapter is concluded with a brief summary of technical gaps which are addressed in
the thesis.

Chapter 3: This chapter presents optimally concentrated time-limited and band-
limited windows for the purpose of enhancing the energy concentration in the TFR of
ST. In the first part of this chapter, two optimally concentrated windows and their as-
sociated properties are presented and discussed. In the second part of this chapter, two
variants of ST, namely TST and BST are proposed. In addition, a modified scaling cri-
terion is proposed for TST and BST. The accuracy of the proposed approach is tested
through simulations.

Chapter 4: This chapter discusses the maximum achievable energy concentration
in both time and frequency domain simultaneously. A novel OCDW is proposed, and
further extended to design OST. A new scaling criterion is also proposed for OST to
prevent unnecessary deterioration in frequency resolution at higher frequencies, and time
resolution at lower frequencies. The efficacy of the proposed approach is examined for
detection of multiple disturbances in a synthetic power quality signal.

Chapter 5: This chapter proposes an AMKW based ST for sharp detection of event’s
onset. In first part, conventional Kaiser window is modified to provide frequency de-
pendent asymmetry. Further, the proposed window is extended to design AMKW based
ST. The efficacy of the proposed approach is examined for detection of various events in
synthetic seismic and real earthquake data.

Chapter 6: In this chapter, to provide better visualization in the TFR of OST, the
energy in the TFR is reassigned using RM and SST. The performance of the resulting
TFR is investigated for detecting multiple power quality disturbances. Further, a product-
ST is proposed for better visualization by multiplying the TFRs of TST and BST. The
concept of RM and SST is generalized for product-ST.

Chapter 7: This chapter concludes the present study, and summarizes the contribu-
tions discussed in chapters 3 to 6. Further, this chapter lays down the possible research
directions for future work.
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Chapter 2

Literature Survey

2.1 Fourier Transform

The FT [78] of a continuous signal x(t) can be defined as

X (f) =

∫ ∞
−∞

x (t) e−i2πftdt (2.1)

and conversely, the time domain signal can be reconstructed from X(f) by taking inverse
FT (IFT) as

x (t) =

∫ ∞
−∞

X (f) ei2πftdf (2.2)

The FT provides information about all frequency components of a time series.

The discrete FT (DFT) of a N -point time series with sampling time interval T is
defined as,

X

[
k

NT

]
=

1

N

N−1∑
n=0

x [nT ] e
−i2πkn
N (2.3)

where k, n = 0, 1, 2, . . . , N − 1. The inverse DFT of X[k/NT ] can be defined as,

x [nT ] =
N−1∑
k=0

X

[
k

NT

]
e
i2πkn
N (2.4)

2.2 Motivation for Time-Frequency Analysis

Time localization of frequencies is absent in Fourier amplitude spectrum. Therefore, the
FT is only suitable for analyzing the stationary signals. Fig. 2.1 shows the amplitude and
phase spectra of FT for increasing and decreasing chirp signals. The figure reveals that the
information about spectral components is hidden in the phase spectrum. The amplitude
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Fig. 2.1: (a) A increasing chirp signal; (b) A decreasing chirp signal; (c) Amplitude
spectrum of increasing chirp signal shown in (a); (d) Amplitude spectrum of decreasing
chirp signal shown in (b); (e) Phase spectrum of increasing chirp signal shown in (a);
Phase spectrum of decreasing chirp signal shown in (b)

spectra for both increasing and decreasing chirps are same i.e. Fourier amplitude spectra
can not differentiate the two chirps. However, their phase spectra are different which
consist of the hidden information that these two signals are different. Therefore, the
time localization of the spectral components is necessary in nonstationary signal analysis.
Hence, joint TFA is a possible solution to the aforementioned problem.

TFA studies signals in both time and frequency domain simultaneously, and provides
a TFR. TFA is extensively used in various applications because most of the signals in
practice are non-stationary. TFR reveals which frequency components are present at each
time instant in the signal. Some well known TFRs are STFT [5, 79–81], WVD [5, 82],
WT [5, 83, 84] and ST [9].

2.3 Short Time Fourier Transform (STFT)

In STFT [85], a non-stationary signal is segmented into narrow time intervals (narrow
enough) where it would be stationary. For example, the signal considered in Fig. 2.2(a)
is stationary for every 250 time intervals. This segmentation of the signal into narrow
intervals is carried out by performing windowing process. The width of the window is
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chosen in such a way that the windowed segments of the signal are stationary. Further,
FT of each windowed segment of the signal is computed. If a windowed segment is
stationary for that width of the window, then the corresponding STFT spectrum provides
correct representation of the frequency components in that segment. The whole process is
repeated by translating the window along the entire length of the signal. STFT of a signal
can be defined as

STFT (τ, f) =

∫ ∞
−∞

x (t) e−i2πft(w (t− τ))dt (2.5)

where τ is used as a translation parameter. w(t) represents the window function.

2.3.1 Limitation of STFT

The conventional STFT uses fixed length window function to analyze each frequency, and
hence leads to fixed time and frequency resolution. The Heisenberg uncertainty principle
states that it is not possible to know the exact spectral component at exact time instant.
The limitations of STFT are attributed to shape and width of the window function. The
window should be of appropriate size for getting good time and frequency resolutions.
In conventional STFT, the window width is fixed. As the window width decreases, time
resolution improves at a cost of degradation in frequency resolution.
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Fig. 2.2: Amplitude spectrum of the STFT of non-stationary signal: (a) The width of the
window is 0.1; (b) The width of the window is 0.05
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The signal considered in Fig. 2.2 is generate as

x(t) =



sin(2π100t) 0 ≤ t < 250

sin(2π200t) 250 ≤ t < 500

sin(2π300t) 500 ≤ t < 750

sin(2π400t) 750 ≤ t < 1000

(2.6)

The GW is used for windowing. It is clearly observed from Fig. 2.2(b) that if the window
width decreases in time domain, it leads to degradation in the frequency resolution.

If the time domain signal has well separated spectral components (as the above ex-
ample), then frequency resolution may be scarified upto certain extent for getting good
time resolution. However, in practical scenario, the signals do not generally have well
separated spectral components. Further, it is difficult to choose an appropriate window
size to get satisfactory time and frequency resolution.

Fig. 2.3(a) shows a time series consisting of a high frequency component for very
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Fig. 2.3: Illustration of the limitation of the STFT: (a) Synthetic test time series; (b)
Amplitude spectrum of the STFT. Test time series of 1000 samples consists of a low
frequency signal of 50 Hz for the first half of its duration, a high frequency signal of 150
Hz for the second half of the duration, and a high frequency burst from samples 20 to 30
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small duration along with low frequency components for long duration. The STFT can’t
resolve the high frequency component correctly until the window width is same as that of
the duration of the high frequency component. The frequency resolution of low frequency
components will be poor if the width of the window is too small. The GW having standard
deviation (SD) of 0.01, is used for windowing. It can be observed in Fig. 2.3(b) that the
short duration high frequency burst is not resolved properly. The frequency resolution is
same for all frequency components due to the fixed length window.

2.4 Hilbert-Huang Transform (HHT)

The Hilbert-Huang transform (HHT) [86] is used for analysis of nonlinear and nonsta-
tionary data. Instead of apriori selection of spectral components such as sinusoidal waves
or wavelets as the basis, HHT provides adaptive modes derived from the data. A signal
is decomposed into intrinsic mode functions (IMFs) using empirical mode decomposi-
tion (EMD) [87], and further finds IF using Hilbert transform (HT) [88]. The HHT is an
empirical approach comprising of two steps, EMD followed by HT.

2.4.1 Empirical Mode Decomposition

The EMD [86] decomposes a signal into a set of IMFs using sifting process. The IMFs
must satisfy the following two fundamental conditions:

• The number of extrema (maxima and minima) and the number of zero-crossings
should not exceed one

• The local mean obtained from upper and lower envelopes should be equal to zero

The sifting process for a signal x(t) can be described as follows:

1. All local extrema in the signal are found out and the envelope of extrema is approx-
imated with suitable spline.

2. The mean value m1 of the local extrema at each instance is calculated.

3. Difference of the mean m1 from x(t) is the first component, h1 = x(t)−m1

4. Ideally, h1 should be an IMF. However, due to overshoots and undershoots in the
signal, there are some redundant extrema. Therefore, the sifting process is repeated.
In next step of sifting process, h1 is considered as the signal, the mean of its local
extrema is calculated and the difference between h1 and the its meanm11 is the new
component, h11 = h1 −m11. After n sifts, the first IMF c1 = h1n = h1(n−1) −m1n

is obtained.
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5. The first IMF c1 contains the highest frequency component. After computing c1,
the rest of the data is then separated from the original signal, r1 = x(t)− c1

6. The whole process (steps 1 to 5) is repeated to obtain other IMFs by considering
residue r as the signal.

The sifting process is stopped when the component cn or the residue rn is very small or
when rn becomes monotonic. Therefore, the signal x(t) can be represented as

x(t) =
n∑
i=1

ci + rn (2.7)

2.4.2 Hilbert Transform

The Hilbert transform [88] of any signal x(t) can be denoted as,

y(t) = H[x(t)] =
1

π
PV

∫ ∞
−∞

x(τ)

t− τ
dτ (2.8)

where PV indicates the principal value of the singular integral. The analytic version of
x(t) can be denoted as

z(t) = x(t) + iy(t) = a(t)exp(iθ(t)); (2.9)

where,

a(t) =
√
x2(t) + y2(t), θ(t) = arctan

(
y(t)

x(t)

)
(2.10)

The instantaneous frequency is given as

f =
1

2π

dθ(t)

dt
(2.11)

2.4.3 Hilbert Spectrum

In order to find the IF, the HT is applied to each IMF component obtained from EMD
process. The different IMFs may have certain common frequencies. The amplitudes of
same frequency components of different IMFs at a particular time are added to get the
TFR of the signal which is known as Hilbert spectrum.

Fig. 2.4 shows the Hilbert Spectrum of the signal shown in Fig. 2.3(a). It can be
observed that time and frequency resolution for both low and mid frequency components
are good, and the high frequency burst is also clearly visible. However, at the transi-
tion instances, some extra frequencies are observed. This is due to the abrupt change in
frequencies or mode mixing in IMFs.
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2.4. Hilbert-Huang Transform (HHT)

Fig. 2.4: Hilbert spectrum for the test time series shown in Fig. 2.3(a)

2.4.4 Limitations of HHT

The main limitation of HHT is mode mixing in EMD process where a single IMF con-
tains multiple frequencies of different order or the same scale might be present in different
IMFs. To avoid mode mixing, a new approach was proposed called the Ensemble Empir-
ical Mode Decomposition (EEMD) [89]

2.4.5 Ensemble Empirical Mode Decomposition

The EEMD [89] uses white noise for analyzing the signal. The noise is added to the
signal, and thereafter IMFs are calculated. This process is iterated several times. The
ensemble of the IMF components obtained in several trials are considered as the final
IMF components. White noise provides additional extrema in all frequency components.
Therefore, an artificial scale is added that ensures that the frequencies in one IMF are
within the same range, and are not mixed any more. Since the mean of white noise is
zero, on taking the ensemble of IMFs of the same scale, the noise gets canceled out, and
only the signal components remain.

A novel adaptive decomposition method is also reported in literature know as vari-
ational mode decomposition (VMD) [90]. The VMD determines the relevant bands for
decomposition adaptively, and corresponding modes can be estimated concurrently. It
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perfectly balances errors by solving variational problems to obtain relevant IMFs for sep-
arating the different components of signals.

2.5 Continuous Wavelet Transform (CWT)

CWT [91] analyzes the signal based on the concept of multi-resolution analysis (MRA).
Unlike in STFT, where all spectral components are resolved equally, CWT analyses a
signal at different frequencies with different resolutions. MRA in CWT provides good
time resolution at high frequencies and good frequency resolution at lower frequencies.
The CWT of a continuous signal x(t) can be represented as

CWTψX(τ, s) =
1√
|s|

∫ ∞
−∞

x(t)ψ∗
(
t− τ
s

)
dt (2.12)

where ψ(t) represents the mother wavelet. The variables τ and s denote translation and
scale parameters, respectively. The term ‘wavelet’ refers to the wave’s oscillatory property
in compact form, and ‘mother’ implies that all the transforming window functions are
derived from this function. Scaling operation either dilates or compresses the mother
wavelet based on the value of the scale parameter. Larger scale value leads to dilation of
the mother wavelet, and small scale value leads to compression of the mother wavelet.

Fig. 2.5: Amplitude spectrum of CWT for the test time series shown in Fig. 2.3(a)

The TFR of CWT is shown in Fig. 2.5 for the signal considered in 2.3(a). The ‘morse’
wavelet is used as mother wavelet. Frequency resolution is better for lower frequencies,
and time resolution is better for high frequencies.
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2.5. Continuous Wavelet Transform (CWT)

2.5.1 Limitations of CWT

1. Frequency sampling in CWT: The discrete FT has uniform sampling of frequency
space. CWT has octave scaling where scale is related to frequency as, s = 1√

|f |
. Hence,

the lower frequencies are oversampled and higher frequencies are undersampled (relative
to FT).
2. Local phase information: Wavelet transform provides locally referenced phase infor-
mation. For a particular scale value, it has a varying phase profile for full range of phase
(−π, π) which is not similar to the phase of the signal.
3. Varying amplitude with varying frequency: Amplitude response of the CWT is
scale dependent. At higher scales (lower frequencies), window is wider, and normal-
ization factor 1√

|s|
=
√
f normalizes the transformed signal in appropriate proportion.

As scale decreases (frequency increases), width of window decreases, and normalization
factor can’t normalize the signal in appropriate proportion. Thus, amplitude spectrum of
CWT shows higher values of lower frequencies, and the amplitude decreases as frequency
increases.

2.5.2 Empirical Wavelet Transform

Empirical wavelet transform (EWT) [55] combines the merits of adaptive decomposi-
tion technique EMD and WT. Therefore, it is a signal dependent analysis technique that
doesn’t use predefined basis unlike WT. It uses wavelet filter banks which are adaptive
according to signal. The steps involved in EWT can be summarized as follows:

• Fourier spectrum of the signal is obtained in the frequency range [0, π] using FFT

• The Fourier spectrum is segmented into different modes using boundary selection
methods. If the boundary frequencies are denoted as Ωi=0,··· ,N , the Fourier segments
can be represented as [0,Ω1], [Ω1,Ω2], · · · , [ΩN−1, π] where Ω0 = 0 and ΩN = π

• Based on the idea of Littlewood-Paley and Meyer’s wavelets [92], empirical wavelet
based filter is generated for each Fourier segment.

The FT of empirical scaling and wavelet functions can be represented as

φi(Ω) =


1, |Ω| ≤ (1− λ)Ωi

cos
(
πβ(λ,Ωi)

2

)
, (1− λ)Ωi ≤ |Ω| ≤ (1 + λ)Ωi

0, otherwise

(2.13)

17



Chapter 2. Literature Survey

and

ψi(Ω) =


1, (1 + λ)Ωi ≤ |Ω| ≤ (1− λ)Ωi+1

cos
(
πβ(λ,Ωi+1)

2

)
, (1− λ)Ωi+1 ≤ |Ω| ≤ (1 + λ)Ωi+1

sin
(
πβ(λ,Ωi)

2

)
, (1− λ)Ωi ≤ |Ω| ≤ (1 + λ)Ωi

(2.14)

where
β(λ,Ωi) = α

(
|Ω| − (1− λ)Ωi

2λΩi

)
(2.15)

The parameter λ is chosen such that the empirical scaling and wavelet function form a
tight and can be represented as

λ ≤ mini

(
Ωi+1 − Ωi

Ωi+1 + Ωi

)
(2.16)

The function α(t) is an arbitrary function that can be represented as

α(t) =


0, t ≤ 0

1− α(1− t), ∀t ∈ [0, 1]

1, t ≥ 1

(2.17)

The HT is applied on filtered subband signal, and the Hilbert spectrum or TFR of EWT is
obtained.

A novel Fourier–Bessel series expansion (FBSE) based EWT is also reported in lit-
erature [93] in which a scale space based method is applied on FBSE based spectrum of
the signal for accurate estimation of boundary frequencies. FBSE based EWT provides
improved frequency resolution as compared to EWT.

Tunable-Q WT [94] (TQWT) is another efficient variant of WT in which Q-factor
(QF) can be tuned. By varying QF, number of oscillations in mother wavelet can be
varied. Hence, a suitable mother wavelet can be selected by varying QF according to
the signal. The TQWT is more computationally efficient, and has perfect reconstruction
property.

2.6 Chirplet Transform

The chirplet transform (CT) [95] can be considered as an extension of the STFT and WT.
In CT, the chirplet (piece of chirp) is used similarly as wavelet (piece of wave) is used
in WT and a constant-size portions of a wave (sinusoid) is used in STFT. These chirplets
are scaled, shifted, and their phase is also changed. The complex-valued chirplets are
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2.6. Chirplet Transform

generally used for avoiding the mirroring effect along zero frequency.
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Fig. 2.6: Amplitude spectrum of CT for the test time series shown in Fig. 2.3(a)

It can be observed in Fig. 2.6 that all the three frequency components are clearly
visible in chirplet transform. The frequency resolution for low frequency components is
poorer than that of STFT and CWT. The time and frequency resolution for both mid and
high frequency bursts are better than that of STFT and CWT.

Fig. 2.7: (a) Test time series; Amplitude spectrum of (b) STFT; (c) CWT; (d) CT
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The CT is more beneficial for analyzing the signals having chirps. A test signal having
two linearly increasing chirps is considered and shown in Fig. 2.7(a). It can be observed
in Figs. 2.7(b) and 2.7(c) that the TFRs of STFT and CWT, respectively are unable to
resolve the two chirps. The chirps can be resolved using CT which is evident in Fig.
2.7(d).

The novel recent higher dimensional generalization of WT is also reported in literature
which is known as Curvelet transform [96]. It is a multiscale directional transform that
allows an almost optimal nonadaptive sparse representation of objects with edges. It
represents images at different scales and different angles. It approximates the curved
singularities non-adaptively using very few coefficients. It also maintains its coherency
under the action of the wave equation in a smooth medium.

2.7 S-transform (ST)

ST [97] was developed by Stockwell in 1996. It retains the good features of STFT and
CWT with additional important properties which can overcome their limitations. It has
progressive resolution property which overcomes the resolution problem of the STFT.
It provides absolutely referenced phase information. It also provides amplitude response
which is not dependent on frequency, and hence overcomes the limitations of CWT. These
properties of ST have led to its wide usage in various disciplines such as power system
engineering [19, 98–101], biomedical engineering [102, 103], geophysics [13, 14], etc.

2.7.1 Derivation of ST from STFT

Consider a normalized GW
w(t) =

1

σ
√

2π
e
−t2
2σ2 (2.18)

Combining (2.5) and (2.18)

STFT (τ, f, σ) =
1

σ
√

2π

∫ ∞
−∞

x(t)e
−(t−τ)2

2σ2 e−i2πftdt (2.19)

In ST, a scalable (frequency dependent) GW is used, i.e. σ = 1
|f | . The ST can be repre-

sented as follows
S(τ, f) =

|f |√
2π

∫ ∞
−∞

x(t)e
−(t−τ)2f2

2 e−i2πftdt (2.20)

S(τ, fo) is termed as a voice (a single row of the TFR of ST) corresponding to a particular
frequency f0. It shows how amplitude and phase response are changing over time for that
particular frequency. Similarly, S(τo, f) is termed as the local spectrum at time τo.
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2.7. S-transform (ST)

2.7.2 Computation of ST in Frequency Domain

The ST can be considered as a convolution of two functions [104] as

S(τ, f) = a(τ, f) ∗ b(τ, f) (2.21)

or,

S(τ, f) =

∫ ∞
−∞

b(τ − t, f)a(t, f)dt (2.22)

where,
a(τ, f) = x(τ)e(−i2πfτ) (2.23)

and
b(τ, f) =

|f |√
2π
e
−τ2f2

2 (2.24)

Therefore,
K(α, f) = A(α, f)B(α, f) (2.25)

where K(α, f), A(α, f) and B(α, f) are the FT (τ → α) of S(τ, f), a(τ, f) and b(τ, f),
respectively. K(α, f) can be represented as

K(α, f) = X(α + f)e
−2π2α2

f2 (2.26)

S-transform can be derived by inverse FT of K(α, f) as

S(τ, f) =

∫ ∞
−∞

X(α + f)e
−2π2α2

f2 ei2πατdα (2.27)

2.7.3 Discrete ST

In frequency domain computation of discrete ST (DST), fast FT (FFT) and inverse FFT
(IFFT) can be applied which facilitate the computation. The equivalent frequency domain
definition of the DST (letting τ → lT and f → n

NT
, T : sampling time, N : length of the

discrete signal, X[ n
NT

]: FFT of time series x[mT ],m = −N/2, · · · , N/2− 1) is

S [l, n] =


∑N/2−1

k=−N/2X [k + n]W [k, n] e
i2πkl
N , n 6= 0

1
N

∑N/2−1
m=−N/2 x[mT ], n = 0

(2.28)

where l, n = 0, · · · , N−1. In DST, the window function is defined asW [k, n] = e
−2π2k2

n2 ,
where W [k, n] is the sampled and truncated version of FFT of w(τ, f) which leads to
inconsistency in time and frequency domain computation of ST.
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Fig. 2.8: Amplitude spectrum of the ST of sinusoidal time series as shown in Fig. 2.3(a)

Fig. 2.8 shows the amplitude spectrum of ST of the time series shown in Fig. 2.3(a).
It can be easily observed that the high frequency bursts are properly resolved. Thus, the
ST overcomes the drawbacks of STFT.

2.7.4 Limitations of ST

In an ideal case, the TFR should show the correct spectral information of a signal at correct
time instants without cross-information about adjacent instants [33]. The main objective
of TFA is to have a highly energy concentrated TFR as close as possible to an ideal TFR
[34]. The conventional ST uses a GW whose width varies inversely proportional to fre-
quency. This scaling criterion provides very large window width at lower frequencies and
very short window width at higher frequencies, and thus leads to unnecessary deteriora-
tion in time and frequency resolution at lower and higher frequencies, respectively. To
improve the energy concentration, several variants of ST have been proposed. The ex-
isting variants either modify the scaling criterion or use a window function other than a
GW.

2.8 Existing Scaling Criteria for ST

2.8.1 Conventional Linear Scaling

To provide MRA in DST, a scalable GW is used. The width of the GW is scaled by varying
the SD. For comparison purpose, the SD of the GW in time and frequency domains are
denoted as σT and σf , respectively. In conventional DST [9], the SD of the GW in time
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2.8. Existing Scaling Criteria for ST

domain is inversely proportional to frequency as

σT =
N

n
(2.29)

The time domain width (σT ) of the GW decreases monotonically with increase in fre-
quency (n). Thus, better time localization is obtained at higher frequencies, and better
frequency localization at lower frequencies. The SD of the GW in frequency domain is
directly proportional to frequency as

σF =
n

2π
(2.30)

The window width affects the time and frequency domain resolution. Narrower the win-
dow in time domain, better will be the time resolution.

The drawback of the conventional linear scaling (CLS) [9] defined in (2.29) and (2.30)
is that it provides an unfair trade-off between time and frequency domain width of the
window, and thus leads to unfair time and frequency resolution in the TFR. The frequency
domain window width linearly increases with increase in frequency, which leads to very
large window width at higher frequencies. Inversely, the window width in time domain
decreases hyperbolically, which leads to very wide windows at lower frequencies and
very narrow windows at higher frequencies. Thus, it can be inferred that the CLS is highly
biased, and leads to deterioration of frequency resolution for a broad range of frequencies,
and has very poor time resolution at low frequencies.

2.8.2 Modified Linear Scaling

To overcome the aforementioned problems, the SD of the GW is scaled by a factor k [20].
For k > 1, the kernel of DST includes more than one modulated sine and cosine cycle,
which leads to improved frequency resolution. In this scaling criterion, σT and σF are
selected as

σT =
kN

n
(2.31)

and
σF =

n

2πk
(2.32)

For k > 1, the σF is divided by the factor k at each frequency, and hence frequency
resolution improves as compared to CLS. However, σt is multiplied by the same factor k
which leads to more degradation in time resolution at lower frequencies. Similar to CLS,
the profile of σF in this approach is linear, but only divided by the factor k. Thus, for
convenience, this scaling approach is referred as modified linear scaling (MLS). Fig. 2.9
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Fig. 2.9: Comparison between CLS and MLS: SD of GW for length N = 512 in (a) Time
domain; (b) Frequency domain

shows the variation of σT and σF with frequency for CLS (k = 1) and MLS for k = 2

and k = 3. As compared to CLS, MLS improves frequency resolution but at the cost of
degradation of the time domain resolution at lower frequencies.

2.8.3 Power Scaling

A scaling criterion presented in [39] varies the width of the window exponentially by
introducing a parameter p, (p < 1) as an exponent of analysis frequency. σT and σF are
chosen as

σT = N/np (2.33)

and
σF = np/(2π) (2.34)

For p < 1, the frequency resolution improves as compared to CLS. σT follows an expo-
nential decay as compared to the hyperbolic decay in CLS. This leads to more deteriorated
time resolution at lower frequencies as compared to CLS. Fig. 2.10 shows the variation
of σT and σF for different values of p. In this scaling, the window width varies as a
power function of frequency, and thus it is referred as power scaling (PS) hereafter. As
compared to MLS, PS provides a small curvature in the σT profile as shown in Fig. 2.10.
However, the deterioration in frequency resolution at higher frequencies and time resolu-
tion at lower frequencies is approximately similar as that of the MLS due to approximately
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linear profile of σF and σT in these frequency regions, respectively.
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Fig. 2.10: Comparison between CLS and PS: SD of GW for length N = 512 in (a) Time
domain; (b) Frequency domain

2.8.4 Sigmoid Scaling

In [105], the window width profile is changed by varying the window width with fre-
quency as a sigmoid function. The sigmoid function causes saturation of the window
width after a certain frequency. The improved frequency localization is obtained by avoid-
ing unnecessary deterioration in frequency resolution at higher frequencies. However,
saturation of the window width causes two major drawbacks as in STFT. If the width
gets saturated to a large value, it provides poor frequency resolution for entire range of
frequencies starting from saturation point. If it gets saturated to a lower value, a high-
frequency burst can not be detected. The frequencies higher than the frequency at which
the widths of the window get saturated, can never get detected. This scaling is referred as
sigmoid scaling (SS). The window width in time and frequency domain are chosen as

σT =
1

a1 erf
(
b1r

N

) , σF =
N

2π
a1 erf

(
b1r

N

)
(2.35)

where erf(·) represents the Gaussian error function, and a1 and b1 are window width
parameters. The time and frequency domain window width profiles are shown in Fig.
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Fig. 2.11: Comparison between CLS and SS: SD of GW for length N = 512 in (a) Time
domain; (b) Frequency domain

2.11(a) and 2.11(b), respectively. The window width tends towards a saturated profile for
most of the frequencies with increasing value of a1 and decreasing value of b1.

For improving the time-frequency resolution in TFR, various combinations of MLS
and PS have also been introduced such as three parameter scaling (3PS) [106] and four
parameters scaling (4PS) [13]. The optimum value of these parameters are chosen so as
to maximize the over all CM of TFR. Three or more parameters based approaches are
often very complex since there is no closed form dependence of the energy concentration
of TFR on introduced parameters, hence rely on brute force search over parameter grid. It
results in evaluation of huge number of TFRs. Thus adding more parameters and optimiz-
ing those using CM or heuristic algorithms are very tedious and computationally complex
task.

2.9 Existing Windows for ST

2.9.1 Symmetrical Windows

Gaussian Window (GW)

The scalable GW used in conventional ST which can be represented as

w(t, f) =
1√

2πσ(f)
exp

(
−t2

2σ2(f)

)
(2.36)

26



2.9. Existing Windows for ST

where the scaling parameter σ(f) = 1/f .

Adaptive Dolph Chebyshev Window

Instead of using a GW as the kernel of ST, other window functions can also be used
depending on the application. An adaptive Dolph Chebyshev window based ST has been
proposed to improve TFR characteristics for certain class of signals [43]. The adaptive
Dolph Chebyshev window can be represented as

wDC(n, f) =
1

N

2

N/2∑
j=1

TN−1

(
k0 cos(iπ/N)

)
cos(i2nπ/N) +

1

r

 (2.37)

where
k0 = cosh

(
1

N
− cosh−1(1/r)

)
(2.38)

The function Tn(k) denotes Chebyshev polynomial of order k which can be represented
as

Tn(l) =

cos(n cos−1(l)), |l| < 1

cosh(n cos−1(l)), |l| ≥ 1
(2.39)

r(f) denotes the frequency dependent ripple ratio which can be represented as

r(f) =
kfp +m

η
(2.40)

where the parameters k, p, m and η are chosen so as to maximize the overall CM. In
adaptive Dolph Chebyshev window, the main lobe width can be decreased by increasing
r(f). This window has same height of the side lobes at each frequency.

2.9.2 Asymmetrical Windows

Bi-Gaussian Window (BGW)

The asymmetrical BGW is proposed for accurate detection of arrival and termination
times of seismic events [59, 107]. The two half GWs with different SDs are welded to
provide asymmetry. The asymmetrical BGW can be represented as

wBG(t, f) =
|f |√
2π

(
2

σBBG + σFBG

)
exp

(
−f 2t2

2(σ̃BG(t))2

)
(2.41)
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where

σ̃BG(t) =

σBBG, t ≥ 0

σFBG, t < 0

σBBG and σFBG represent front and back taper parameters of front and back half GWs,
respectively. If σFBF is replaced by σFBG + (σBG − σFBG)(f/fL), the frequency dependent
asymmetry can be achieved. σBG is analogous to total width parameter of BGW, and fL
represents the highest frequency being considered for computing the BGW based ST.

Hyperbolic Window (HW)

The HW is proposed for accurate identification of primary (p) and secondary (s) seismic
wave arrival in noisy seismogram [42]. The HW can be represented as

wHY (t, f) =
|f |√
2π

(
2

σBHY + σFHY

)
exp

(
−f 2X2(t, σFHY , σ

B
HY , λ

2
HY )

2

)
(2.42)

where

X(t, σFHY , σ
B
HY , λ

2
HY ) =

(
σBHY + σFHY
2σBHY σ

F
HY

)
(t− ξ) +

(
σBHY − σFHY
2σBHY σ

F
HY

)√
(t− ξ)2 + λ2

HY

(2.43)
where σFHY (0 < σFHY < σBHY ) denotes the forward taper parameter. The backward taper
parameter is represented by σBHY . λHY denotes the positive curvature parameter. ξ is
introduced to shift the peak of wHY at t = 0. The translation parameter ξ can be denoted
as

ξ =

√
(σBHY − σFHY )2λ2

HY

4σBHY σ
F
HY

(2.44)

2.10 Existing Post Processing Tools for ST

The classical TFA tools and their variants suffer from low time-frequency resolution due
to the Heisenberg uncertainty principle or unwanted cross terms. It may lead to unreliable
characterization of the nonlinear behavior of nonstationary signals. In recent years, some
advanced post processing methods have been proposed for TFA, such as the RM [45, 46]
and SST [47,48]. These tools have the ability to reassign or squeeze the TFR coefficients
obtained by classical TFA methods into the IF and time trajectory [50].
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2.10.1 ST combined with SST

The generalized form of ST (GST) of a continuous signal x(t) can be represented as
follows [9]

Sw(τ, f) =

∫ ∞
−∞

x(t)w(τ − t, f)e−i2πftdt (2.45)

The window satisfies a normalization condition∫ ∞
−∞

w(t, f)dτ = 1 (2.46)

Using the convolution property, the computation of GST in frequency domain is as
follows,

Sw(τ, f) =

∫ ∞
−∞

X (α + f)W (α, f) ei2πατdα (2.47)

where X (α) and W (α, f) represent FT of x(t) and w(t, f) respectively. In conventional
ST, w(t, f) represents a GW defined in (2.36).

The SST reassigns the TFR coefficients into IF trajectory. To derive the IF, let’s con-
sider a monocomponent (f̂ ) signal with fixed amplitude A as

x(t) = Aei2πf̂t (2.48)

The FT of the signal can be represented as

X(α) = A δ(α− f̂) (2.49)

where δ(·) represents dirac function. Using (2.49), (2.47) can be represented as

Sw(τ, f) = A W (f̂ − f, f)ei2π(f̂−f)τ (2.50)

To obtain the IF, it is suggested to calculate the derivative of the TFR with respect to time.
Let’s take the derivative of ST as

∂τ
(
Sw(τ, f)

)
= i2π(f̂ − f)Sw(τ, f) (2.51)

where ∂t(x) represents partial derivative of x with respect to t. Therefore,

f̂ = f − i
∂τ
(
Sw(τ, f)

)
2πSw(τ, f)

(2.52)
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Using (2.45), ∂τ
(
Sw(τ, f)

)
can be represented as

∂τ
(
Sw(τ, f)

)
= ∂τ

(∫ ∞
−∞

x(t)w(τ − t, f)e−i2πftdt

)
=

∫ ∞
−∞

x(t)∂τ (w(τ − t, f)) e−i2πftdt

= Sw
′
(τ, f) (2.53)

where Sw′(τ, f) represents the ST obtained using derivative of w(t, f). By using (2.53),
the IF in (2.52) can be redefined as

f̂ = f −=
(
Sw
′
(τ, f)

2πSw(τ, f)

)
(2.54)

where =(Z) represents the imaginary part of Z. The ST combined with SST at any
frequency (f0) can be represented as

SSST (τ, f0) =

∫ ∞
−∞

Sw(τ, f)δ(f0 − f̂)df (2.55)

2.10.2 ST combined with RM

The RM reassigns the TFR coefficients to the IF trajectory in both time and frequency
domain i.e. RM reassigns the TFR coefficients to the instantaneous time or group delay
(GD) along with IF. To derive GD, let’s consider a signal having one impulse as

x(t) = A δ(t− τ̂) (2.56)

By considering time domain computation of ST (2.45), Sw(τ, f) for this signal can be
represented as

Sw(τ, f) = A w(τ − τ̂ , f)e−i2πfτ̂ (2.57)

For GD, derivative of Sw(τ, f) with respect to frequency can be represented as

∂f
(
Sw(τ, f)

)
= Aw′(τ − τ̂ , f)e−i2πfτ̂ − (τ̂ i2π)Aw(τ − τ̂ , f)e−i2πfτ̂

= Sw
′
(τ, f)− (τ̂ i2π)Sw(τ, f) (2.58)

Therefore,

τ̂ =
Sw
′
(τ, f)

i2πSw(τ, f)
−
∂f
(
Sw(τ, f)

)
i2πSw(τ, f)

(2.59)
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Using (2.45), ∂f
(
S(τ, f)

)
can be represented as

∂f
(
Sw(τ, f)

)
= ∂f

(∫ ∞
−∞

x(t)e−i2πftw(τ − t, f)dt

)
=

∫ ∞
−∞

x(t)∂fe
−i2πft (w(τ − t, f)) dt

=

∫ ∞
−∞

x(t)∂f (w(τ − t, f)) e−i2πftdt− i2π
∫ ∞
−∞

x(t)tw(τ − t, f)e−i2πftdt

= Sw
′
(τ, f)− i2π

∫ ∞
−∞

x(t)(t− τ)w(τ − t, f)e−i2πftdt

− i2πτ
∫ ∞
−∞

x(t)w(τ − t, f)e−i2πftdt

= Sw
′
(τ, f)− i2πS(tw)(τ, f)− i2πτSw(τ, f) (2.60)

By using (2.60), GD in (2.59) can be redefined as

τ̂ = τ + <
(
Stw(τ, f)

Sw(τ, f)

)
(2.61)

RM reassigns the TFR coefficients to coordinate (τ̂ , f̂ ) rather than to the point (τ, f )
where it is computed. The value of the ST combined with RM at any point (τ0, f0) can be
represented as

RST (τ0, f0) =

∫ ∞
−∞

∫ ∞
−∞

Sw(τ, f)δ(τ0 − τ̂)δ(f0 − f̂)dτdf (2.62)

2.11 Concluding Remarks

This chapter provided an insight into the commonly used linear TFA tools. A brief in-
troduction on conventional ST followed by a description on its variants improving the
energy concentration in TFR has been presented. The ability of post processing tools,
namely RM and SST to squeeze the spread energy in TFR of ST and reassign it to IF
trajectory has been discussed.
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Chapter 3

ST based on Optimally Concentrated
Time-limited and Band-limited
Windows

3.1 Introduction

Improving the energy concentration in time-frequency domain remains a major challenge
in ST. Choosing a time-limited narrow window is beneficial for precisely resolving spec-
tral components in time. Similarly, a band-limited window can provide improved re-
solvability in frequency domain. However, limiting an arbitrary window in one domain
results in unwanted spreading in other domain. To this extent, two discrete time-limited
and band-limited optimal windows with minimum spreading in other respective domain
are designed in this chapter. By extending the concept of optimal windows, two variants
of ST, namely TST and BST are proposed. The proposed variants of ST are particularly
beneficial for the applications where a very precise resolution is desired in either time or
frequency domain. TST can potentially be helpful in precise detection of event initiation
and termination, and total duration of event such as duration of heart rate signals [52],
p and s wave arrival and termination in seismology [41, 42, 53, 54], etc. Similarly, BST
can also have wide applicability in many applications, such as optimal window design for
analysis of band-limited EEG signals [55], optimal basis design for band-limited signal
[108], etc.

Time-limited and band-limited windows with optimal concentration in other respec-
tive domain are well-studied under the family of prolate spheroidal wave functions (PSWFs)
[56, 109]. In particular, the zeroth order time-limited PSWF offers maximum frequency
domain energy concentration. The zeroth order band-limited PSWF provides maximum
time domain energy concentration [109]. Their discrete counterparts are addressed as
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time-limited and band-limited DPSSs [57] in discrete time continuous frequency domain,
and time-limited and band-limited periodic DPSS (PDPSS) in discrete time discrete fre-
quency domain [110,111]. In this chapter, for ease of understanding, zeroth order PDPSS
is derived using an optimization approach, and some of the associated properties are dis-
cussed.

3.2 Time-limited and Band-limited Windows

3.2.1 Problem Formulation for Time-limited Window

The aim is to design a window which is limited in time intervalM , and maximizes the en-
ergy concentration in frequency interval L. Consider a time-limited window w of length
M as

w =
(
w [−bM/2c] , w [−bM/2c+ 1] , · · · , w [dM/2e − 1]

)T
(3.1)

The N -point FFT of w can be represented in matrix form as

W [k] =
1√
N

wTd[k] (3.2)

where
d[k] =

(
e−

i2πk[−bM/2c]
N , e−

i2πk[−bM/2c+1]
N , · · · , e−

i2πk[bM/2c−1]
N

)T
(3.3)

The energy concentration in frequency domain (β2) in a given normalized frequency in-
terval L, where L < N , can be defined as

β2 =

∑dL/2e−1
k=−bL/2c |W [k]|2∑dN/2e−1
k=−bN/2c |W [k]|2

(3.4)

By using (3.2), the numerator in RHS of (3.4) can be rephrased as

dL/2e−1∑
k=−bL/2c

|W [k]|2 =
1

N

dL/2e−1∑
k=−bL/2c

∣∣wTd[k]
∣∣2

=
1

N
wHF(M,L)w (3.5)

where F(M,L) =
∑dL/2e−1

k=−bL/2c d
∗[k]dT [k] is an M ×M positive semi-definite matrix. The

superscript in d∗ represents complex conjugate of d. The (m,n)th element of the matrix
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F(M,L) is given by

[F(M,L)]m,n =

dL/2e−1∑
k=−bL/2c

e
−i2πk(−bM/2c+m−1)

N e
i2πk(−bM/2c+n−1)

N

=


1
N

(
e
i2π(m−n)

N (L2−bL2 c− 1
2)
)

sin((m−n)(Lπ/N))
sin((m−n)(π/N))

, m 6= n

L
N
, m = n

(3.6)

At L = N , F(M,L) becomes an identity matrix of dimension M × M . The frequency
concentration β2 can be represented as

β2 =
wHF(M,L)w

wHw
(3.7)

The problem of maximization of β2 can be defined as

max
w

wHF(M,L)w

subject to wHw = 1 (3.8)

The solution to the problem defined in (3.8) is the eigenvector of matrix F(M,L) corre-
sponding to highest eigenvalue. Thus, eigenvalue equation can be defined as

F(M,L)w
(M,L)
TL = λTLw

(M,L)
TL (3.9)

where w
(M,L)
TL is the eigenvector corresponding to highest eigenvalue λTL. The eigen-

vector, w
(M,L)
TL , is the desired time-limited window which is limited to M samples, and

maximizes the frequency domain energy concentration in L samples in frequency domain.

3.2.2 Problem Formulation for Band-limited Window

The aim is to design a window which is limited in frequency interval L, and maximizes
the energy concentration in time interval M . Consider a band-limited window of length
L as

W =
(
W [−bL/2c] ,W [−bL/2c+ 1] , · · · ,W [dL/2e − 1]

)T
(3.10)

The N -point IFFT of W can be represented in matrix form as

w[m] =
1√
N

WTb[m] (3.11)
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where
b[m] =

(
e
i2πm[−bL/2c]

N , e
i2πm[−bL/2c+1]

N , · · · , e
i2πm[dL/2e−1]

N

)T
(3.12)

The time domain energy concentration (α2) in a given time interval M , where M < N ,
can be defined as

α2 =

∑dM/2e−1
m=−bM/2c |w[m]|2∑dN/2e−1
m=−bN/2c |w[m]|2

(3.13)

By using (3.11), the numerator in RHS of (3.13) can be rephrased as

dM/2e−1∑
m=−bM/2c

|w[m]|2 =
1

N

dM/2e−1∑
m=−bM/2c

∣∣WTb[m]
∣∣2

=
1

N
WHQ(M,L)W (3.14)

where Q(M,L) =
∑dM/2e−1

m=−bM/2c b
∗[m]bT [m] is an L× L positive semi-definite matrix. The

(k, l)th element of the matrix Q(M,L) is given by

[Q(M,L)]k,l =

dM/2e−1∑
m=−bM/2c

e
i2πm[−bL/2c+k−1]

N e
−i2πm[−bL/2c+l−1]

N

=


1
N

(
e
i2π(k−l)

N (M2 −bM2 c− 1
2)
)

sin((k−l)(Mπ/N))
sin((k−l)(π/N))

, k 6= l

M
N
, k = l

(3.15)

At M = N , B(M,L) becomes an identity matrix of dimension L × L. The time domain
energy concentration α2 can be represented as

α2 =
WHQ(M,L)W

WHW
(3.16)

The problem of maximization of α2 can be defined as

max
W

WHQ(M,L)W

subject to WHW = 1 (3.17)

The solution to the problem defined in (3.17) is the eigenvector of matrix Q(M,L) corre-
sponding to highest eigenvalue. Thus, eigenvalue equation can be defined as

Q(M,L)W
(M,L)
BL = λBLW

(M,L)
BL (3.18)
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where W
(M,L)
BL is the eigenvector corresponding to highest eigenvalue λBL. The eigen-

vector, W
(M,L)
BL , is the desired band-limited window which is limited to L samples in

frequency domain, and maximizes the time domain energy concentration in M samples
in time domain.

3.3 Properties of Time-limited and Band-limited Windows

In this section, some characteristics of time-limited and band-limited windows are illus-
trated and discussed.

3.3.1 Characteristics of Time-limited window

Fig. 3.1 illustrates time-limited windows for different values of L and fixed M = 16. In
Fig. 3.1(a), windows are shown in time domain. The corresponding frequency domain
spectra are illustrated in Fig. 3.1(b). In Fig. 3.1(a), the windows are strictly limited to
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Fig. 3.1: Time-limited windows for N = 128, M = 16 and different values of L: (a)
Time-limited windows in time domain; (b) The frequency domain spectra of time-limited
windows
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Fig. 3.2: Time-limited windows for N = 128, L = 8 and different values of M : (a)
Time-limited windows in time domain; (b) The frequency domain spectra of time-limited
windows

M samples, and change shape according to L. It can be observed in Fig. 3.1(b) that as
L decreases, the main lobe becomes narrower at the cost of higher side lobes. Therefore,
higher energy concentration in a narrow frequency interval can be achieved by either
increasing M or decreasing L. The former approach results in wider window in time
domain which in turn affects the time resolution in TFR. The later approach leads to
higher side-lobes.

Fig. 3.2 shows time-limited windows of length N = 128 which are strictly confined
to time interval M . Windows are plotted for different values of M and fixed L = 8.
Windows in time domain and their corresponding frequency domain spectra are shown
in Fig. 3.2(a) and Fig. 3.2(b), respectively. It can be observed that as M increases, the
windows become wider in time domain, and correspondingly the energy concentration
increases in normalized frequency interval L.
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Fig. 3.3: Band-limited windows for N = 128, L = 8 and different values of M : (a)
Band-limited windows in time domain; (b) The frequency domain spectra of band-limited
windows

3.3.2 Characteristics of Band-limited Window

Fig. 3.3 illustrates the band-limited windows for different values of M and fixed L = 8.
In Fig. 3.3(a), windows are shown in time domain. The corresponding frequency domain
spectra are illustrated in Fig. 3.3(b). It can be observed in Fig. 3.3(b) that windows are
strictly limited to L = 8 samples, and change shape with change in the value ofM . AsM
increases, windows become narrower in frequency domain at the cost of higher side-lobes
in time domain which is evident in Fig. 3.3(a).

In Fig. 3.4, the band-limited windows are shown for M = 8 and different values of L.
In Fig. 3.4(a), windows are shown in time domain. The corresponding frequency domain
spectra are illustrated in Fig. 3.4(b). It can be observed in Fig. 3.4(b) that the spectrum
is strictly limited to L frequency samples. As L decreases, windows become narrower in
frequency domain at the cost of spreading in time domain.

It can be seen that limiting the window in one domain results in spreading in other
domain, and the shape of the window is characterized by L and M . Therefore, a desired
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Fig. 3.4: Band-limited windows for N = 128, M = 8 and different values of L: (a)
Band-limited windows in time domain; (b) The frequency domain spectra of band-limited
windows

window can be chosen depending on the application by selecting appropriate values of M
and L.

3.3.3 Relationship Between Time-limited and Band-limited Windows

W
(M,L)
BL can be obtained as the center L elements ofN -point FFT of w

(M,L)
TL , and similarly

w
(M,L)
TL can be considered as the center M elements of N -point IFFT of W

(M,L)
BL .

Proof: The matrix F(M,L) in (3.5) can also be written as

F(M,L) = EYHZTZYET (3.19)

where E = [0M×(N−M)/2 IM×M 0M×(N−M)/2] is a matrix of dimension M × N hav-
ing elements as zero for all M rows and first and last (N − M)/2 columns, and an
identity matrix for all M rows and middle M columns. 0p×q denotes a p × q ma-
trix having all zero elements. I denotes the identity matrix. Similarly, matrix Z =

[0L×(N−L)/2 IL×L 0L×(N−L)/2] is a matrix of dimension L × N having elements as
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zero for all L rows and first and last (N − L)/2 columns, and an identity matrix for all L
rows and middle L columns. The matrix Y is an (N × N) Fourier matrix. The (m,n)th

element of Y can be defined as Y = (e
−i2πmn

N )
N/2−1
(m,n)=−N/2. Using the matrix E, Y and Z,

the matrix Q(M,L) defined in (3.14) can also be written as

Q(M,L) = ZYETEYHZT (3.20)

Using (3.19) and (3.20), (3.9) and (3.18) can be rewritten as, respectively

GGTw
(M,L)
TL = λTLw

(M,L)
TL (3.21)

GTGW
(M,L)
BL = λBLW

(M,L)
BL (3.22)

where G = EYHZT . Since GGT and GTG are having same eigenvalues, therefore

λTL = λBL (3.23)

Pre-multiplying (3.21) by GT leads to

GTGGTw
(M,L)
TL = λTLGTw

(M,L)
TL (3.24)

Equating (3.22) and (3.24) and using (3.23) leads to

W
(M,L)
BL = GTw

(M,L)
TL = QYETw

(M,L)
TL (3.25)

Eq. (3.25) illustrates that W
(M,L)
BL is a band-limited version of w

(M,L)
TL i.e W

(M,L)
BL can be

obtained as the center L elements of N -point FFT of w
(M,L)
TL . Similarly, pre-multiplying

(3.22) by G, and comparing with (3.22), leads to

w
(M,L)
TL = GW

(M,L)
BL = EYHZTW

(M,L)
BL (3.26)

Eq. (3.26) illustrates that w
(M,L)
TL is a time-limited version of W

(M,L)
BL i.e. w

(M,L)
TL can be

obtained as the center M elements of N -point IFFT of W
(M,L)
BL .

3.4 Time-limited Window based ST (TST)

ST utilizes Gaussian window which is the minimizer of the Heisenberg uncertainty prin-
ciple. Therefore, one way to achieve the limited windows is to truncate the Gaussian
window in the desired time or frequency domain. However, it does not guarantee optimal
energy concentration in the other respective domain. In this section, fist the truncated
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Fig. 3.5: Comparison of proposed time-limited (dashed lines) and truncated Gaussian
window (solid lines) for N = 128, M = 16 and L = 16: (a) Windows in time domain;
(b) Frequency-domain spectra

Gaussian window in time domain is compared with the presented optimal time-limited
window. Afterwards, the optimal time-limited window based ST (TST) is proposed.

3.4.1 Comparison Between Time-limited Window and Truncated Gaus-
sian Window

Fig. 3.5 compares the characteristics of time-limited and truncated Gaussian window
for M = 16 and L = 16. The Gaussian window is truncated to M samples such that
the support of the window is [−2σ, 2σ]. Windows are shown in time domain in Fig.
3.5(a), and corresponding frequency domain spectra are illustrated in Fig. 3.5(b). It can
be observed that both the windows are limited to time interval of M = 16. However,
the frequency domain characteristics indicate that the time-limited window has narrower
main-lobe in frequency domain as compared to truncated Gaussian window. The time-
limited window is designed to have maximum energy concentration in given normalized
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Fig. 3.6: Achievable frequency domain energy concentrations of proposed time-limited
windows (dashed lines) and truncated Gaussian windows (solid lines) of length N = 128
for different values of M

frequency band L. However, the time-limited window has higher side-lobes as compared
to truncated Gaussian window. This could be ignored in applications where maximal
energy concentration in given time and frequency intervals is of primary concern.

In Fig. 3.6, the comparison between proposed time-limited window and truncated
Gaussian window is drawn in terms of achievable frequency domain energy concentration
(β2). For a fixed value ofM , β2 increases with increase inL for both time-limited window
and truncated Gaussian window. However, β2 of truncated Gaussian window is lesser than
that of the time-limited window, and the difference is greater for smaller time interval M .
Therefore, the time window is particularly beneficial when it is desirable to confine the
window in narrow time interval.

Further, to incorporate the optimal time-limited window in ST, frequency dependent
normalized time-limited window is used. The time-limited window can be denoted as

w
(M,L)
TL = (wTL(−bM/2c), wTL(−bM/2c+ 1), · · · , wTL(dM/2e − 1))T

The window is strictly limited to time interval of M samples, and maximizes the en-
ergy concentration in frequency interval of L samples. These intervals M and L are
equivalent to window widths in time and frequency domains, respectively. To provide
multi-resolution in TST, these intervals can be chosen as functions of frequency.
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The frequency dependent normalized time-limited window can be represented as

υTL[m,n] =
w

(Mn,Ln)
TL∑dM/2e−1

m=−bM/2cwTL[m]
(3.27)

where subscript n in Mn and Ln represents the dependency of time and frequency inter-
vals on frequency. The N -point FFT of (3.27) can be represented as

ζTL [k, n] =

dM/2e−1∑
m=−bM/2c

υTL[m,n]e−
i2πmk
N (3.28)

where k = −bN/2c , · · · , dN/2e − 1.

By using (3.28), the discrete TST can be represented as

SυTL [l, n] =

{∑dN/2e−1
k=−bN/2cX [k + n] ζTL[k, n]ei2π

k
N
l, n 6= 0

1
N

∑dN/2e−1
m=−bN/2c x[mT ], n = 0

(3.29)

where l, n = 0, · · · , N − 1.

3.4.2 Selection of Frequency Dependent Time and Frequency Inter-
vals in TST

The progressive resolution in the proposed TST can be obtained by either varying Ln

proportional to n or varing Mn inversely proportional to n. The primary concern of TST
is to provide precise resolution in time domain. Therefore, scaling in TST can be obtained
by varing Ln with fixed Mn as

Mn = k1, Ln = k2n, (3.30)

where k1 determines the time resolution at each voice. Lesser the k1, better will be the
time resolution. For a given k1, the proposed scaling in TST can precisely resolve two
components separated by k1 samples in time. The parameter k2 defines the mode of the
changing window width. For a voice n, the window maximizes the energy concentration
in k2n samples in frequency. The parameter k1 can be chosen to satisfy the minimum
desired time resolution depending on the application. The parameter k2 is selected so as
to maximize the overall concentration of TFR based on the CM [112].
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3.5 Band-limited Window based ST (BST)

The band-limited window can be represented as

W
(M,L)
BL = (WBL(−bL/2c),WBL(−bL/2c+ 1), · · · ,WBL(dL/2e − 1))T

The band-limited window is strictly limited in frequency interval M , and maximizes the
energy concentration in frequency interval L. Similar to TST, the time and frequency do-
main intervals can be chosen as functions of frequency to provide progressive resolution
in BST. The frequency dependent band-limited normalized window can be represented as

ζBL[k, n] =
W

(Mn,Ln)
BL∑dL/2e−1

k=−bL/2cWBL[k]
(3.31)

By using (3.31), the discrete BST can be represented as

SυBL [l, n] =

{∑dN/2e−1
k=−bN/2cX [k + n] ζBL[k, n]ei2π

k
N
l, n 6= 0

1
N

∑dN/2e−1
m=−bN/2c x[mT ], n = 0

(3.32)

where l, n = 0, · · · , N − 1.

3.5.1 Selection of Frequency Dependent Time and Frequency Inter-
vals in BST

The priority of BST is to precisely localize the signal components in frequency domain.
Therefore, the scaling for BST is proposed as

Ln = k3, Mn =
k4N

n
(3.33)

where the maximum spread in frequency is fixed for each voice and is limited to k3 sam-
ples in frequency. The scaling is obtained by varying Mn inversely proportional to n. The
value of k3 is selected to limit the maximum spread in frequency which guarantees the
resolution of two frequency components separated by k3 samples. The optimum value of
k4 can be selected to maximize the overall CM of TFR.

3.6 Simulation Results and Discussion

In this section, the performances of proposed TST and BST are evaluated using synthetic
and real signals, and compared with those of ST and its variants. ST is widely used for
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Fig. 3.7: Performance evaluation of proposed TST and BST: (a) Synthetic time series;
TFR of (b) conventional ST; (c) ST with MLS for k = 0.7; (d) ST with MLS for k = 2;
(e) 3PST [13]; (f) 4PST [19]; Amplitude of CM of (g) TST by varying k2 for different
values of k1; (h) BST by varying k4 for different values of k3; TFR of proposed TST for
(i) k1 = 25, k2 = 0.4454; (j) k1 = 45, k2 = 0.4364; TFR of proposed TST with modified
scaling with Lth = 5 for (k) k1 = 25, k2 = 0.4454; (l) k1 = 45, k2 = 0.4364; TFR of
proposed BST for (m) k3 = 50, k4 = 7; (j) k3 = 100, k4 = 6; TFR of proposed BST with
modified scaling with Mth = 5 for (o) k3 = 50, k4 = 7; (p) k3 = 100, k4 = 6

TFA in seismology (seismic signal analysis), biomedical (ECG, EEG signal analysis) and
electrical engineering (power quality disturbances analysis). The applicability of the pro-
posed TST is investigated in seismic signal for identifying subsurface properties due to
seismic wave propagation. The performance of the BST is evaluated using band-limited
EEG signals for brain computer interface (BCI) applications, and also by analyzing mul-
tiple power quality disturbances.

Case Study 1: TFA of Synthetic Example

In Fig. 3.7, the normalized amplitude spectrum of proposed TST and BST are illustrated,
and compared with normalized amplitude spectrum of ST and its variants using a test
time series of length N = 512 samples. The synthetic signal, shown in Fig. 3.7(a),
consists of two frequency components, 50 Hz and 150 Hz from samples 256 to 512 and
two impulses at 50 and 100 time instance. It can be observed in Fig. 3.7(b) that due to
its poor time resolution at lower frequencies, the conventional ST is unable to resolve
the two impulses at lower frequencies. Also, the frequency resolution is very poor for

46



3.6. Simulation Results and Discussion

150 Hz frequency component. The time resolution in ST can be improved with MLS by
decreasing k as shown in Fig. 3.7(c) for k = 0.7. However, it leads to more degradation
in frequency resolution. The frequency resolution can be improved by increasing k at
the cost of degraded time resolution as shown in Fig. 3.7(d) for k = 2. Fig. 3.7(e)
represents the TFR of three parameters based ST (3PST) [13]. It can be observed in Fig.
3.7(e) that the frequency resolution of TFR has improved than that of ST and ST with
MLS. However, the time resolution for lower frequencies has degraded. The impulses
get more smeared, and time resolution for 50 Hz component is also degraded. Fig. 3.7(f)
shows four parameters based ST (4PST) [19]. Both the time and frequency resolutions are
better than those of 3PST. However, the impulses are still not separable. In Fig. 3.7(g),
the CM of proposed TST by varying k2 for different values of k1 are plotted. In Fig.
3.7(h), the CM of proposed BST by varying k3 for different values of k4 are plotted. Figs.
3.7(i)-(l) illustrate the TFRs of the proposed TST. The proposed TST can resolve two
impulses for k1 < 50. In Fig 3.7(i), the TFR of the proposed TST is plotted for k1 = 25.
In order to maximize the overall CM of the TFR, the optimal value for parameter k2 is
found to be 0.4454. The proposed TST also provides good frequency domain energy
concentration as compared to ST and ST with MLS (k = 0.7). Side-lobe artefacts of
time-limited windows can also be observed at lower frequencies. These artefacts arise
due to unnecessary shortening of frequency intervals at lower frequencies. This can be
overcome by sacrificing time resolution (increasing k1). The TFR of the proposed TST is
shown in Fig. 3.7(j) for k1 = 45. The corresponding optimum value of the parameter k2

is found to be 0.4364. It provides better energy concentration in frequency domain, and
resolves the two impulses precisely in time. However, in applications like event initiation
and termination identification, it may not be desirable for the proposed TST to lose time
resolution. Therefore, the frequency interval Ln can be saturated at lower frequencies to
avoid very short frequency intervals. The modified scaling in TST is defined as follows

Mn = k1, Ln =

{
k2n for n > Lth/k2

Lth for n ≤ Lth/k2

(3.34)

where Lth determines the minimum desired frequency interval. Choice of suitable value
of Lth can effectively eliminate side-lobe artefacts at lower frequencies. In Figs. 3.7(k)
and 3.7(l), the TFRs of the proposed TST are shown with modified scaling for Lth = 5

while keeping k1 and k2 unchanged as used in Figs. 3.7(i) and (j), respectively.

The TFRs of the proposed BST are illustrated in Figs. 3.7(m)-(p). In order to precisely
resolve the two frequency components, 50 Hz and 150 Hz, the value of k3 must be less
than 100. It can be observed in Fig. 3.7(m) that the two frequency components are clearly
resolved using BST for k3 = 50. In order to maximize the overall CM of the TFR, the
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optimal value for parameter k4 is found to be 7. Moreover, the proposed BST provides
better time resolution as compared to conventional ST and ST with MLS for k = 2. Side-
lobe spreading in time can also be observed at higher frequencies. This is due to the
fact that, at higher frequencies, the time interval becomes very narrow due to progressive
scaling which leads to side-lobe artefacts. These artefacts can be reduced by increasing
the value of k3. The TFR of the proposed BST is shown in Fig. 3.7(n) for k3 = 100 and
k4 = 6. It provides better time resolution, and resolves the two frequency components
precisely. The side-lobe artefacts are also reduced. The time interval Mn can be saturated
at higher frequencies to avoid selection of very short time intervals. The modified scaling
in the proposed BST is defined as follows

Ln = k3, Mn =

{
k4N
n

for n < k4N/Mth

Mth for n ≥ k4N/Mth

(3.35)

where Mth denotes the desired minimum time interval. The suitable value of Mth can be
chosen to effectively eliminate side-lobe artefacts at higher frequencies. In Figs. 3.7(n)
and 3.7(o), the TFRs of the proposed BST are shown for Mth = 5 while keeping k3 and
k4 unchanged as considered in Figs. 3.7(m) and 3.7(n), respectively.

Table 3.1: Comparison of TFRs shown in Fig. 3.7 in terms of CM

ST ST (MLS, k=2) 3PST [13] 4PST
CM 0.048 0.063 0.08 0.077

TST TST TST TST
Fig. 3.7(i) Fig. 3.7(j) Fig. 3.7(k) Fig. 3.7(l)

CM 0.089 0.093 0.095 0.132
BST BST BST BST

Fig. 3.7(m) Fig. 3.7(n) Fig. 3.7(o) Fig. 3.7(p)
CM 0.11 0.094 0.121 0.131

The CM for each TFR shown in Fig. 3.7 is listed in Table 3.1. The ST with MLS
(k = 2), 3PST and 4PST concentrate more energy as compared to conventional ST, and
correspondingly show more CM than that of conventional ST. The proposed TST and BST
are able to concentrate more energy in given time and frequency intervals, respectively
and have higher values of CM than that of other counterparts of ST. Table 3.1 shows the
CM values obtained with proposed TST for different values of k1 and k2, and also with
modified scaling (MS). It can be observed in Table 3.1 that for larger values of k1 and k2

along with MS (Lth = 5), the TST can concentrate more energy and shows higher values
of CM as compared to TST with lower values of k1 and k2 and with linear conventional
scaling. The BST can also concentrate more energy for larger values of k3 and k4 along
with MS (Mth = 5), and has higher value of CM as compared to BST with lower values
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of k3 and k4 along with linear scaling.

Case Study 2: Applicability of TST in Multichannel Seismic Signals
Analysis

ST and its modified variants are widely used for analyzing multichannel poststack seismic
data to assist reservoir characterization [13], prediction of hydrocarbon reservoirs [53],
and better understanding of the subsurface structural information [65, 113].
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Fig. 3.8: Performance evaluation of proposed TST: (a) Synthetic seismic reflection data;
TFR of (b) conventional ST; (c) ST with MLS for k = 0.4; (d) 3PST [13]; (e) 4PST [19];
(f) Proposed TST for k1 = 2, k2 = 0.8 and Lth = 8

To evaluate the performance of the proposed TST for analyzing multichannel seismic
data, a synthetic seismic trace of length 1 second (s) is considered. The synthetic trace,
shown in Fig. 3.8(a), is obtained through convolution between a three pair reflectivity and
Ricker wavelet. The dominant frequency of the Ricker wavelet is 50 Hz. The first reflec-
tivity in trace has only one positive reflectivity of magnitude 0.3. The second reflection
set consists of two reflectivities of magnitude 0.3 of opposite sign. The third reflection
set consists of two positive reflectivities of magnitude 0.3. The time duration of second
and third reflectivity pairs are 0.003 s and 0.004 s, respectively. Figs. 3.8(b) and 3.8(c)
show normalized amplitude spectrum of the TFRs obtained with conventional ST and ST
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with MLS for k = 0.4, respectively. The TFR of ST is smeared in time and therefore,
second and third reflection pairs are not distinguishable. TFR of ST with MLS improves
the time resolution at the cost of degraded frequency resolution. The time resolution has
improved in Fig. 3.8(c) compared to that in Fig. 3.8(b), and the second and third reflec-
tivity pairs are almost distinguishable. However, reflectivities are smeared in frequency.
It can be observed in Fig. 3.8(d) that both time and frequency resolution have improved
in 3PST as compared to conventional ST. However, the second and third reflection sets
are not distinguishable. The 4PST further improves the frequency resolution as shown in
Fig. 3.8(e), however, it could not distinguish the second and third reflectivity pairs. The
TFR obtained with the proposed TST is shown in Fig. 3.8(e) for k1 = 2, k2 = 0.8 and
Lth = 8. The proposed TST clearly distinguishes the second and third reflectivity pairs
with better frequency resolution than that of other shown variants of ST. The synthetic
signal illustrates that the proposed TST is superior to the conventional and other shown
variants of ST in detecting thin beds.

Table 3.2: Comparison of TFRs shown in Fig. 3.8 in terms of CM

ST ST with MLS 3PST [13] 4PST Proposed TST
CM 0.091 0.094 0.11 0.125 0.16

The CM [112] for each TFR shown in Fig. 3.8 is listed in Table 3.2. It can be observed
that the proposed TST outperforms other variants of ST. The ability of the proposed TST
in concentrating the energy in given interval in time domain with minimum degradation
in frequency domain can be qualitatively observed in Fig. 3.8(f).

Fig. 3.9: Field Data [53]

The efficacy of the proposed TST is investigated further using a 2 dimensional (2D)
field data. The field data consists of 200 traces as shown in Fig. 3.9. This data is used
previously in [53, 65, 113–115]. The 100th trace of the 2D field data, shown in Fig.
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Fig. 3.10: Performance evaluation of proposed TST: (a) 100th trace of 2D field data; TFR
of (b) conventional ST; (c) ST with MLS for k = 0.7; (d) 3PST [13]; (e) 4PST [19]; (f)
Proposed TST for k1 = 2, k2 = 0.4 and Lth = 5

3.10(a), is analyzed. Figs. 3.10(b)-(f) show the TFR of ST, ST with MLS (k = 0.7),
3PST, 4PST and the proposed TST for k1 = 2, k2 = 0.4 and Lth = 5.

The strong anomalies of 45 Hz at 0.38 s and 52 Hz at 0.32 s can be observed in
each TFR. Moreover, the decreasing amplitudes of frequency components with time can
also be observed due to seismic attenuation during the seismic wave propagation. The
TFR of the ST provides poor time resolution, and the 45 Hz anomaly has merged with
52 Hz anomaly. The MLS provides better time resolution than that of the conventional
ST. However, the two anomalies are not clearly separable, and frequency resolution also
gets poorer. The two anomalies are almost separable using 3PST, however, the frequency
resolution is worst among all TFRs. The time resolution in 4PST is poorer than that of
all TFRs. The two anomalies are clearly separable in the TFR obtained by the proposed
TST. Moreover, the frequency resolution is also better than that of other shown variants of
ST. It can be observed that the proposed TST is beneficial to identify hidden subsurface
properties (mainly caused by the viscous elasticity beneath the ground) more precisely,
and facilitate better understanding of subsurface lithology properties.

The CM for each TFR shown in Fig. 3.10 is listed in Table 3.3. The ability of the
proposed TST in concentrating the energy in given intervals can be observed in Table 3.3.
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The TFRs of 4PST and proposed TST provide better CM as compared to other TFRs. The
CM of proposed TST is 61.44% larger than that of 4PST. Therefore, the proposed TST
outperforms other shown variants of ST.

Table 3.3: Comparison of TFRs shown in Fig. 3.10 in terms of CM

ST ST with MLS 3PST 4PST Proposed TST
CM 0.07 0.073 0.081 0.083 0.134

Case Study 3: Analysis of Band-limited EEG signals for BCI Applica-
tions using Proposed BST

EEG signals are non-stationary in nature. TFA of EEG signals is beneficial to analyze
different states of brain during different mental tasks. The ST and its modified variants are
widely used for EEG signal analysis [55,102,103]. Several brain computer interface (BCI)
systems depend on event-related desynchronization (ERD) [116]. During both planning
and execution of hand movements, the ERD can be detected for most of the subjects
within the band of µ-rhythm (6-14 Hz) [116].

The performance of the proposed BST is evaluated using real EEG data from BCI
Competition IV [117]. This work considers only hand movement imagery. Data is filtered
to 6-14 Hz band using 5th order Butter-worth filter for analyzing the µ-band only. To
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Fig. 3.11: Performance evaluation of proposed BST: (a) EEG signal [117]; TFR of (b)
conventional ST; (c) ST with MLS for k = 2.45; (d) 3PST; (e) 4PST; (f) Proposed BST
for k3 = 7, k4 = 4 and Mth = 7
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evaluate the efficacy of the proposed BST, single trial ERD pattern of right hand imagery
at C3 location of subject 3 is analyzed, which is also shown in Fig. 3.11(a). The single
trial ERD pattern can be detected as an energy decreasing phenomenon after the onset
of event as shown in Fig. 3.11. Since this ERD only exists before the movement onset,
this phenomenon is extremely sensitive to time delay. The ERD can be observed in 10-12
Hz band in all TFRs shown in Fig. 3.11. Figs. 3.11(b)-(f) show the TFRs obtained with
conventional ST with LS, ST with MLS, 3PST, 4PST and proposed BST, respectively.
Frequency resolution has improved by using MLS, but at the cost of degradation in time
resolution. It can be observed in Fig. 3.11(d) that the 3PST is unable to detect the real
time moter sensory ERD. The 4PST provides good frequency resolution than that of other
counterparts, however, the time resolution is worst. Since the detection is highly sensitive
to time delay, the performance of 4PST is not desirable. The TFR of proposed BST
provides better frequency resolution with least degradation in time resolution as shown
in Fig. 3.11(f). Some side-lobe spreading is also observed in Fig. 3.11(f) which can be
ignored for such applications.

Table 3.4: Comparison of TFRs shown in Fig. 3.11 in terms of CM

ST ST with MLS 3PST 4PST Proposed BST
CM 0.077 0.92 0.061 0.102 0.133

The CM for each TFR shown in Fig. 3.11 is listed in Table 3.4. The Table 3.4 quanti-
fies the performance of the proposed BST in concentrating the energy in given frequency
intervals with minimum degradation in time. In this example, the CM of proposed BST is
30.39% larger than that of 4PST. Therefore, the proposed BST outperforms other shown
variants of ST.

Case Study 4: Analysis of Power Quality Disturbances using Proposed
BST

The ST and its modified variants are widely used in literature for analyzing different
power quality disturbances [18, 19, 118, 119]. In this case study, the performance of the
proposed BST is evaluated for analysis of voltage harmonics present in power signals.
The considered synthetic signal contains odd harmonic components upto order 7 along
with voltage interruption and transients. The signal has a fundamental frequency compo-
nent of 50 Hz, and is sampled at a frequency of 3.2 KHz as per the institute of electrical
and electronics engineers (IEEE) 1159 standards [120]. The magnitude of fundamental
frequency component and third, fifth and seventh harmonic components are 1, 0.1, 0.1
and 0.099 pu, respectively. The duration of voltage interruption is from t = 0.06 s to t
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Fig. 3.12: Performance evaluation of proposed BST: (a) Signal having multiple power
quality disturbances; TFR of (b) conventional ST; (c) ST with MLS for k = 2; (d) 3PST;
(e) 4PST; (f) Proposed BST for k3 = 10, k4 = 3 and Mth = 2

= 0.12 s. The harmonics start just after the voltage interruption, and last for rest of the
duration. The signal is shown in Fig. 3.12(a). In Fig. 3.12(b), the contour plot of TFR of
conventional ST is shown. It can be observed that the fifth and seventh harmonics are not
clearly distinguishable. Due to very poor time resolution at lower frequencies, the voltage
interruption is not detectable. Moreover, due to very poor frequency resolution, the tran-
sient is completely smeared in frequency. The TFR of ST with MLS for k = 2 is shown in
Fig. 3.12(c). The frequency resolution has improved with MLS, however, time resolution
for voltage interruption has degraded. Fig. 3.12(d) and (e) show the TFRs using 3PST
and 4PST. The 3PST provides better time resolution for voltage interruption. However,
the 5th and 7th harmonic components are absent, and time resolution of transient has also
degraded. All three harmonic components are detected, and frequency resolution of tran-
sient has also improved using 4PST. However, the time resolution of voltage interruption
is worst. The efficacy of the proposed BST can be observed in Fig. 3.12(f). The TFR of
the proposed BST for k3 = 10, k4 = 3 and Mth = 2, provides better time and frequency
resolution for all disturbances. The voltage interruption and all three harmonic compo-
nents are accurately detected and distinguishable. The frequency resolution for transient
has also improved.

The CM for each TFR shown in Fig. 3.12 is listed in Table 3.5. In this case study, the
CM of proposed BST is 26.64% larger than that of 4PST. Therefore, the proposed BST
outperforms other shown variants of ST in case of detection of multiple power quality
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Table 3.5: Comparison of TFRs shown in Fig. 3.12 in terms of CM

ST ST with MLS 3PST 4PST Proposed BST
CM 0.098 0.104 0.1 0.1085 0.1374

disturbances.

3.7 Conclusion

In this chapter, the optimal time-limited and band-limited windows have been proposed to
precisely resolve the time-limited and band-limited signals in time and frequency, respec-
tively. The proposed time-limited window is strictly limited in a finite time interval, and
has maximum energy concentration in desired frequency interval. Similarly, the proposed
band-limited window is strictly limited in a given frequency interval while maximizing
the energy concentration in desired interval in time. Based on these windows, two vari-
ants of ST namely, TST and BST have been proposed. For progressive resolution in the
proposed TST and BST, the scaling criteria have also been suggested. The efficacy of the
proposed TST and BST has been tested on a set of synthetic and real field data, and com-
pared with conventional ST and its variants. Simulation results clearly illustrated that the
proposed BST can precisely resolve two closely spaced frequency components, whereas
the proposed TST can precisely localize a desired spectral component in time. There-
fore, the proposed techniques can be used in numerous applications where a very precise
resolution is desired in either time or frequency domain.
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Chapter 4

Simultaneous Time and Frequency
Domain Energy Concentration for
Finite Length Sequences

4.1 Introduction

The compact kernels which are confined in both time and frequency domains, are highly
desired for several applications in the field of signal processing [108] and communica-
tion [121] such as filter design [122, 123], spectral estimation [124, 125], time-frequency
analysis [126–128], windowing at the transmitter and receiver in wireless communication
system [129], windowed OFDM [129], etc. It is often required to design sharp spectral
roll-off filters which are simultaneously compact in time domain [130]. Choice of kernels
plays a crucial role in time-frequency analysis for localization of spectral contents in both
time and frequency domains [131].

From the theory of Fourier transform (FT), it is a well known fact that a signal and its
FT can not be simultaneously limited beyond certain extent. Therefore, there is a need to
develop compact window functions which are optimal in some sense or other. In literature,
compactness of a window is defined through different measures in literature such as notion
of entropy [132, 133], notion of spread [134, 135], notion of energy concentration [109,
136], etc.

The most familiar Heisenberg uncertainty principle [137] related to this phenomenon
states that, for any arbitrary signal f(t), minimum achievable time-bandwidth product is
1/2 i.e. TΩ ≥ 1/2 where T and Ω denote spread of signal in time and frequency domain,
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respectively. T 2 and Ω2 are defined as

T 2 =

∫∞
−∞(t− t0)2|f(t)|2dt∫∞

−∞ |f(t)|2dt
, Ω2 =

∫∞
−∞(w − w0)2|F (w)|2dw∫∞

−∞ |F (w)|2dw
(4.1)

where F (w) represents the FT of f(t). t0 and w0 denote mean of f(t) and F (w), re-
spectively. The continuous Gaussian function is the minimizer of this principle. This
phenomenon and related properties are well defined and extensively studied in literature
for continuous signals [138,139]. However, for discrete sequences, the Heisenberg uncer-
tainty bound is not achievable [140, 141]. Parhizkar et al. [141] have introduced the un-
certainty minimizers for discrete sequences and termed them as most compact sequences.

The seminal work of Slepian, Landau and Pollak [56, 109] define compactness based
on notion of energy concentrations in finite time and frequency intervals. Energy concen-
trations in time and frequency domains in a given finite time interval [−T, T ] and finite
frequency band [−Ω,Ω] are defined as

α2 =

∫ T/2
−T/2 |f(t)|2dt∫∞
−∞ |f(t)|2dt

, β2 =

∫ Ω

−Ω
|F (w)|2dw∫∞

−∞ |F (w)|2dw
(4.2)

Slepian and Pollak [56] have proposed optimal functions to simultaneously maximize
α2 and β2. A set of band limited functions limited in band (−Ω,Ω), namely PSWFs
are introduced [56], out of which the zero order PSWF [142–144] denoted by ψ0(t),
possesses interesting optimality property of achieving maximum energy concentration in
time interval (−T/2, T/2). The maximum achievable concentration denoted by λ0(TΩ)

is the maximum eigenvalue of the following associated eigenfunction equation

∫ T
2

−T
2

sin (Ω(t− s))
π(t− s)

ψi(s) ds = λiψi(t), i = 0, 1, 2, · · · (4.3)

ψ0(t) achieves α2 = λ0(TΩ) for β2 = 1. For given T and Ω, no other band limited
function can achieve α2 greater than λ0(TΩ) [56]. The time limited counterpart denoted
by ψ0(t), can be obtained by limiting ψ0(t) in the time interval (−T/2, T/2) [145, 146].
ψ0(t) achieves the maximum concentration in the given band (−Ω,Ω) i.e. β2 = λ0(TΩ)

for α2 = 1.

The aforementioned functions are either time limited or band limited with maximum
concentration in other respective domain. Therefore, the desired function is that which
can maximize β2 (or α2) for a desired α2 (or β2) or simultaneously maximize α2 and
β2. The problem is addressed in [109, 147], and an optimal function is introduced which
can be obtained by linear combination of ψ0(t) and ψ̄0(t). For a fixed TΩ, the maximum
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achievable α2 and β2 fall on an elliptical arc formed by [56]

α2 − 2αβ
√
λ0(TΩ) + β2 = 1− λ0(TΩ) (4.4)

Slepian [57] has proposed the optimal sequences to simultaneously maximize the time
and frequency domain energy concentrations for a given time interval (−M/2,M/2− 1)

and a normalized frequency band (−B,B). The time and frequency domain concentra-
tions for discrete sequence x[n] can be defined as [57]

α2 =

∑M/2−1
−M/2 |x[n]|2∑∞
−∞ |x[n]|2

, β2 =

∫ B
−B |X(f)|2df∫ 1/2

−1/2
|X(f)|2df

(4.5)

A set of band limited sequences limited in normalized frequency band (−B,B), namely
DPSSs are introduced in [57]. The usefulness of these sequences are discussed in [148–
150].

The zero order band limited DPSS denoted by ν∞[n], achieves maximum energy con-
centration in time samples of length M . The maximum achievable time domain energy
concentration is denoted by α2 = λ0(M,B) which is the maximum eigenvalue of the
following associated eigenfunction equation [57]

M/2−1∑
m=−M/2

sin(2πB[n−m])

π[n−m]
ν∞[m] = λ0(M,B)ν∞[n] (4.6)

where n = 0,±1,±2, · · · ,±∞. ν∞[n] is of infinite length in time domain. The time
limited counterpart denoted by νM [n], is a M -length sequence i.e. which maximizes β2

while α2 = 1 [57].

The minimizer of the uncertainty in this discrete time continuous frequency scenario
can be obtained by linear combination of ν∞[n] and νM [n]. The achievable α2 and β2 in
this case fall on an elliptical arc formed by [57]

α2 − 2αβ
√
λ0(M,B) + β2 = 1− λ0(M,B) (4.7)

for given values of M and B. For both simultaneously concentrated PSWF and DPSS,
maxima of the product α2β2 is obtained at α2 = β2.

In [125, 151], the authors have introduced a counterpart of band-limited DPSSs in fi-
nite dimensional space and named it as P-DPSSs. These P-DPSSs are band limited in the
interval (−L,L) while maximally energy concentrated in the time interval (−M/2,M/2−
1). Similar to PSWFs and DPSSs, P-DPSSs can be obtained by finding the eigenvector of
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associated eigenfunction equation [151]

M/2−1∑
m=−M/2

sin([n−m](2L+ 1)π/N)

Nsin([n−m]π/N)
φM [m] = λ(M,B)φM [n]

The associated properties of these sequences are studied in [110, 111, 125, 152, 153].

For most of the practical applications of digital signal processing where we often
encounter with finite duration signals, it is desired to have simultaneously concentrated
discrete window with finite support. To this extent, this objective focuses on discrete
time continuous frequency scenario which closely relates to DPSS. However, the optimal
simultaneously concentrated DPSS is of infinite length. A straight forward approach is to
truncate the simultaneously concentrated DPSS to desired finite length, but the resulting
window will no longer guarantee to be optimal. Therefore, from practical standpoint and
out of mathematical curiosity, this work aims at designing the optimal compact window
with finite support which can simultaneously maximize the energy concentration in finite
time interval and finite frequency band.

The problem of simultaneous maximization of two objective functions namely α2 and
β2 is formulated as the maximization of weighted linear combination of desired concen-
tration measures in time and frequency domains. The problem is solved through eigen-
value decomposition to give Pareto-optimal solutions. Further, upper bounds of achiev-
able α2 and β2 for finite length sequences is derived. The optimal sequence thus obtained
is termed as OWFS. This work derives several properties analytically illustrating the im-
pact of chosen weight on α2, β2 and α2β2.

The work theoretically derives the condition to maximize α2β2. It is shown that the
condition for maximum α2β2 may not necessarily align with α2 = β2 for finite length se-
quences. Moreover, the work analytically proves that as the support of the proposed win-
dow approaches infinity, the proposed achievable upper bound merges with the achievable
bound of simultaneously concentrated DPSS. To illustrate the efficacy of the proposed
OWFS, it is compared with simultaneously concentrated truncated DPSS as well as other
well-known window kernels.

This objective also briefly discusses the discrete time discrete frequency scenario
which is closely related to P-DPSS. The existing work on P-DPSS mainly focuses on
band limited sequences. To our knowledge, the simultaneously concentrated P-DPSS and
corresponding achievable upper-bounds of α2 and β2 are not explored in literature. In
this objective, another unique approach of multiobjective optimization similar to the one
followed in the discrete time continuous frequency case is adopted to obtain upper bound
of maximum achievable α2 and β2.
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4.2 Problem Formulation and Analysis

In this section, the simultaneous maximization of time and frequency domain energy con-
centrations for a finite length sequence of length N is formulated as a multiobjective op-
timization problem. The eigenvalue analysis of the corresponding cost function is carried
out.

Problem Formulation

Consider a window w of length N as

w =
(
w [−bN/2c] , w [−bN/2c+ 1] , · · · , w [dN/2e − 1]

)T
(4.8)

The discrete time FT of w is given by

W (f) =

dN/2e−1∑
n=−bN/2c

w [n] e−i2πfn = wTh(f) (4.9)

where
h(f) =

(
e−i2πf [−bN/2c], e−i2πf [−bN/2c+1], · · · , e−i2πf [dN/2e−1]

)T
The energy concentration in frequency domain in a given frequency interval (−B,B)

can be considered as

β2 =

∫ B
−B |W (f)|2 df∫ 1
2

− 1
2

|W (f)|2 df
(4.10)

By using (4.9), the numerator of (4.10) can be rewritten as∫ B

−B
|W (f)|2 df =

∫ B

−B

∣∣wTh(f)
∣∣2 df = wTA(B,N)w (4.11)

where A(B,N) =
∫ B
−B h(f)hH(f)df is an N × N positive semi-definite matrix. The

(m,n)th element of A(B,N) is denoted by

[
A(B,N)

]
m,n

=

∫ B

−B
e−i2πf [m−n]df

=


sin(2πB[m− n])

π[m− n]
m 6= n

2B, m = n

(4.12)

where m,n = 1, · · · , N . At B = 1
2
, A(B,N) becomes an identity matrix. Using (4.11)
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and (4.12), (4.10) can be redefined as

β2 =
wTA(B,N)w

wTw
(4.13)

The time domain energy concentration in a given time interval (−bM/2c , dM/2e − 1),
where M ≤ N , can be represented as

α2 =

∑dM/2e−1
n=−bM/2c

∣∣∣w[n]
∣∣∣2∑dN/2e−1

n=−bN/2c

∣∣∣w[n]
∣∣∣2 =

wTT(M,N)w

wTw
(4.14)

where T(M,N) represents an N ×N diagonal matrix with M ones and N −M zeros along
the main diagonal. The (m,n)th element of T(M,N) can be defined as

[
T(M,N)

]
m,n

=

1, m = n and 1 +
⌊
N
2

⌋
−
⌊
M
2

⌋
≤ m ≤

⌊
N
2

⌋
+
⌈
M
2

⌉
0, elsewhere

(4.15)

For maximum energy concentration in both time and frequency domains, the aim is to
maximize both α2 and β2 simultaneously. Scalarization is one of the standard techniques
to solve multiple objective problems where two or more objective functions are com-
bined into single objective function by weighted linear combinations of individual objec-
tives [154]. In particular, if all objective functions are convex then the solutions obtained
through scalarization leads to parteo optimal solutions i.e. from this solution one cannot
improve one objective without degrading other. The objective functions under consid-
eration i.e. α2 and β2 are convex (subject to wTw = 1) because their Hessian [154],
d2α2

dw2 = A(B,N) and d2β2

dw2 = T(M,N) are semidefinite matrices. The approach of scalar-
ization is adopted to simultaneously maximize both α2 and β2. The Pareto optimality of
solutions is proved in property 1 of subsequent section. The problem of simultaneous
maximization of α2 and β2 can be defined as follows

max
w, µ

µα2 + (1− µ)β2,

subject to wTw = 1, 0 < µ < 1 (4.16)

where the parameter µ acts as a relative weighing factor. The larger value of µ favors
maximization of energy concentration in the time interval (−M/2,M/2), whereas the
smaller value of µ tries to maximize the energy concentration in the given frequency
interval (−B,B). For a fixed value of µ ∈ (0, 1), using (4.13) and (4.14), (4.16) can be
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redefined as follows

max
w

wTPw,

subject to wTw = 1 (4.17)

where
P = (1− µ)A(B,N) + µT(M,N) (4.18)

P is a positive semi-definite matrix. For a fixed value of µ, the solution to the prob-
lem defined in (4.17) is an eigenvector, w0, of matrix P corresponding to the maximum
eigenvalue λ0. Thus, w0 and λ0 satisfy

(
(1− µ)A(B,N) + µT(M,N)

)
w0 = λ0w0 (4.19)

These Pareto-optimal solutions obtained by varying µ, ensure that α2 can not be further
improved without degrading β2 or vice-versa. Hence, the optimal solution gives Pareto-
optimal front or upper bound of uncertainty for a finite length sequence.

4.3 Properties of Time Domain (α2) and Frequency Do-
main (β2) Energy Concentrations

4.3.1 Property 1

The time domain energy concentration, α2 = wT
0 T(M,N)w0, and the frequency domain

energy concentration, β2 = wT
0 A(B,N)w0, are increasing and decreasing functions of µ,

respectively
Proof: The first derivative of α2 with respect to µ can be formulated as

dα2

dµ
= 2wT

0 T(M,N) dw0

dµ

=

(
2

1− µ

)
wT

0 T(M,N)D0
(
−P + T(M,N)

)
w0

(Using Lemma 2 (see Appendix) and (4.18)))

=

(
2

1− µ

)
Tr(wT

0 T(M,N)UR0UTT(M,N)w0)

(Using (7.2) and (7.4))
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dα2

dµ
=

(
2

1− µ

)
Tr
(
R0UTT(M,N)w0w

T
0 T(M,N)U

)
(Using cyclic property of trace)

=

(
2

1− µ

)N−1∑
i=1

(wT
i T(M,N)w0)2

(λ0 − λi)
(using (7.5)) (4.20)

Since, λ0 > λi for i = 1, · · · , N − 1, it can be concluded that dα2

dµ
≥ 0. Hence, α2 is an

increasing function of µ.

The first derivative of β2 with respect to µ can be formulated as

dβ2

dµ
= 2wT

0 A(B,N) dw0

dµ

=

(
2

µ

)
wT

0 A(B,N)D0
(
−A(B,N) + P

)
w0

(Using Lemma 2 (see Appendix) and (4.18))

= −
(

2

µ

)
Tr(wT

0 A(B,N)UR0UTA(B,N)w0)

(Using (7.2) and (7.4))

= −
(

2

µ

)N−1∑
i=1

(wT
i A(B,N)w0)2

(λ0 − λi)
(using (7.5)) (4.21)

Since, λ0 > λi for i = 1, · · · , N − 1, it can be concluded that dβ2

dµ
≤ 0. Hence, β2 is a

decreasing function of µ.

This also proves the Pareto optimality of solutions obtain from the problem (4.17)
because both α2 or β2 can not be increased further without decreasing the other.

4.3.2 Property 2

The product (α2β2) of time and frequency domain energy concentrations is a concave
function of µ.
Proof: The first derivative of α2β2 can be formulated as

d(α2β2)

dµ
= 2(wT

0 A(B,N)w0)wT
0 T(M,N) dw0

dµ
+ 2wT

0 A(B,N) dw0

dµ
(wT

0 T(M,N)w0) (4.22)

Using Property 1, (4.22) can be rewritten as

d(α2β2)

dµ
=

2wT
0 T(M,N)D0T(M,N)w0

(1− µ)2
f(µ) (4.23)
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or
d(α2β2)

dµ
=

2wT
0 A(B,N)D0A(B,N)w0

(µ)2
f(µ) (4.24)

where
f(µ) = (1− µ)wT

0 A(B,N)w0 − µwT
0 T(M,N)w0 (4.25)

Since wT
0 T(M,N)D0T(M,N)w0 and wT

0 A(B,N)D0A(B,N)w0 in (4.23) and (4.24) are al-
ways positive for µ ∈ (0, 1) (see Property 1),

d(α2β2)

dµ
= 0 for f(µ) = 0 (4.26)

Taking first derivative of f(µ),

d

dµ
f(µ) =−wT

0 A(B,N)w0 + (1− µ)2wT
0 A(B,N) dw0

dµ

−wT
0 T(M,N)w0 − µ2wT

0 T(M,N) dw0

dµ
< 0 (4.27)

Using Property 1 and (4.25), it can be concluded that

f(µ)
∣∣∣
µ→0

> 0 and f(µ)
∣∣∣
µ→1

< 0 (4.28)

Therefore, f(µ) is a monotonic decreasing function of µ. Hence, there is only one value
of µ for which f(µ) = 0, and this can be denoted as µopt. Using (4.24) and (4.28), it can
be concluded that the product (α2β2) is a concave function of µ. The maximum value
of α2β2 is achieved for µ = µopt where f(µopt) = 0. At µ = µopt, the solution to the
problem defined in (4.17) would be the desired OWFS.

The effect of µ on α2, β2 and α2β2 is demonstrated in Fig. 4.1 for B = 1/16 and
M = 4. It can be observed that α2 increases and β2 decreases with increase in µ, and α2β2

has only one maximum. The value of µ for which equal energy concentration (α2 = β2)
in both domains are achieved, has been denoted as µeq. In Fig. 4.1(a), the OWFS of
length N = 16 is considered, for which µopt and µeq are found to be 0.437 and 0.365,
respectively. For N = 128, the maximum value of α2β2 and equal concentration (α2 =

β2) are achieved for µopt = 0.499 and µeq = 0.497, respectively as shown in Fig. 4.1(b).
As the value of N increases, both µopt and µeq approach to µ = 0.5. Ideally, as N →∞,
both converge to µ = 0.5 (see Theorem 1 in APPENDIX).
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Fig. 4.1: Variation of α2, β2 and α2β2 with µ for (a) B = 1/16, M = 4 and N = 16 with
µopt = 0.437 and µeq = 0.365; (b) B = 1/16, M = 4 and N = 128 with µopt = 0.499
and µeq = 0.497

4.4 Upper Bound of Achievable α2 and β2 for Finite Length
Sequences

For given M and B, in case of simultaneously concentrated DPSS which is of infinite
length, the region of attainable α2 and β2 is given by the intersection of unit square
0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and elliptical arc (4.7) [57]. Unity concentration in one
domain is achieved at two intersection points given by (α, β) =

(
1,
√
λ0(M,B)

)
and(√

λ0(M,B), 1
)

.

In contrast to infinite length simultaneously concentrated DPSS, for finite length se-
quences, the achievable β2 need not necessarily be 1 for any α2 but rather depends on
window support N and frequency interval B. The maximum achievable β2 for a se-
quence of length N can be obtained by maximizing wTA(B,N)w subject to wTw = 1

without any constraint on α2. The optimal solution is the maximum eigenvector of matrix
A(B,N) and the maximum achievable β2 is equal to the maximum eigenvalue, λN0 . There-
fore, the upper bound of attainable α2 and β2 is represented by intersection of rectangle
0 ≤ α2 ≤ 1, 0 ≤ β2 ≤ λN0 and the Pareto-optimal front obtained by solving (4.16). The
intersection points of Pareto-optimal front and rectangle (0 ≤ α2 ≤ 1, 0 ≤ β2 ≤ λN0 )
corresponding to µ→ 0 and µ→ 1 are discussed as follows:

The trade-off between α2 and β2 operates between two extrema corresponding to
µ = 0 and µ = 1.
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As µ→ 0, (4.19) reduces to

A(B,N)w
(µ=0)
0 = λ

(µ=0)
0 w

(µ=0)
0 (4.29)

where w
(µ=0)
0 is the eigenvector of A(B,N) corresponding to maximum eigenvalue λ(µ=0)

0 .
w

(µ=0)
0 represents the time-limitedN -length DPSS with maximum achievable β2 = λ

(µ=0)
0 .

Theoretically, β2 = 1 can not be achieved in the given frequency interval for a finite length
window. However, for large values of N , β2 ≈ 1 (see Appendix).

As µ→ 1, (4.19) reduces to

T(M,N)w
(µ=1)
0 = λ

(µ=1)
0 w

(µ=1)
0 (4.30)

where w
(µ=1)
0 is the eigenvector of T(M,N) corresponding to maximum eigenvalue λ(µ=1)

0 .
Since the maximum eigenvalue of T(M,N) is λ(µ=1)

0 = 1, it can be inferred that

T(M,N)w
(µ=1)
0 = w

(µ=1)
0 where w

(µ=1)
0 =

0(N−M)/2

w
(M)
0

0(N−M)/2

 (4.31)

0(N−M)/2 represents a null vector of length (N−M)/2 and w
(M)
0 is aM -length vector that

represents M non-zero elements of vector w
(µ=1)
0 . Pre-multiplying (4.19) with T(M,N)

and rearranging the result, leads to

T(M,N)A(B,N)w0 =
λ0 − µ
1− µ

T(M,N)w0 (4.32)

As µ→ 1, (4.32) can be rearranged using (4.31) as

T(M,N)A(B,N)T(M,N)w
(µ=1)
0 =

λ
(µ=1)
0 − µ
1− µ

T(M,N)w
(µ=1)
0 (4.33)

Using (4.31) and (4.33), it can be inferred that

A(B,M)w
(M)
0 = λ

(M)
0 w

(M)
0 (4.34)

w
(M)
0 is aM length eigenvector of matrix A(B,M) corresponding to eigenvalue λ(M)

0 where
the matrix A(B,M) can be defined as a sub matrix of A(B,N) as

[
A(B,M)

]
p,q

=
[
A(B,N)

]
p+bN2 c−bM2 c,q+bN2 c+bM2 c−1
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Fig. 4.2: Upper bound of achievable time and frequency domain energy concentration for
finite length sequences for M = 4 and N = 20

for p, q = 1, 2, · · · ,M . This can also be verified as

λ
(M)
0 = λ

(µ=1)
0 −µ

1−µ

∣∣∣
µ→1

= 1− dλ
(µ=1)
0

dµ

∣∣∣
µ→1

(L’Hospital’s rule) (4.35)

Using (7.9) and (4.31), (4.35) can be rewritten as

λ
(M)
0 =

(
w

(µ=1)
0

)T
A(B,N)w

(µ=1)
0

=
(
w

(M)
0

)T
A(B,M)w

(M)
0 (4.36)

Thus, as µ → 1, the solution to the problem defined in (4.17) converges to a M -length
DPSS denoted by w

(M)
0 , with maximum achievable β2 = λ

(M)
0 .

In Fig. 4.2, the feasible region for time and frequency domain energy concentration
is shown. It can be obtained by intersection of rectangle 0 ≤ α2 ≤ 1, 0 ≤ β2 ≤ λN0 , and
the Pareto-optimal front obtained by solving (4.16). The Pareto-optimal front is obtained
for M = 4, B = 1/16 and N = 20. The two extrema of the Pareto-optimal front
corresponding to µ→ 0 and µ→ 1, shown in Fig 4.2, represent the energy concentrations
obtained with time limited DPSS of length N and M , respectively.

In Fig. 4.3(a), the upper bounds obtained with proposed OWFS are plotted forN = 20

and different values of M and B. It can be inferred from the figure that as M or B
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Fig. 4.3: Upper bound of achievable time and frequency domain energy concentration for
finite length sequences for (a) N = 20 and different values of M and B; (b) M = 4,
B = 1/16, and different values of N

increases, the achievable α2 (or β2) increases for a given value of β2 (or α2). Also,
the maximum achievable β2 increases with increase in B. In Fig. 4.3(b), the upper
bounds obtained with proposed OWFS are plotted for M = 4, B = 1/16 and different
values of N . The bounds are also compared with theoretical upper-bound obtained with
simultaneously concentrated DPSS in time interval (−M/2,M/2) and frequency interval
(−B,B). It can be inferred that as N increases, the proposed upper bound approaches
the theoretical bound. Ideally, as N →∞, the upper bound obtained with OWFS exactly
matches with the theoretical upper bound of DPSS (see Theorem 1 in Appendix).

4.5 Performance Analysis

In this section, the proposed OWFS is compared with truncated DPSS and several com-
monly used windows.

4.5.1 Comparison with Truncated DPSS

For comparative analysis, this subsection introduces truncated version of simultaneously
concentrated DPSS. The simultaneously concentrated DPSS can be obtained by linear
combination of time limited and band limited DPSSs as

x[n] = (1− p)ν∞[n] + pνM [n] (4.37)
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where p acts as a relative weighing factor. ν∞[n] represents zero order band limited DPSS.
The time limited counterpart of ν∞[n], termed as time limited DPSS νM [n], is the maxi-
mum eigenvector of the matrix ρ(M,B) defined as [57]

[
ρ(M,B)

]
m,n

=
sin(2πB[m− n])

π[m− n]
(4.38)

for m,n = 1, 2, · · · ,M . The truncated DPSS of length N denoted by xN [n], can be
obtained by index limiting the ν∞ to νN by solving the following equation [57]

M/2−1∑
m=−M/2

sin(2πB[n−m])

π[n−m]
ν∞[m] = λ0(M,B)ν∞[n] (4.39)

for n = −bN/2c,−bN/2c + 1, · · · , dN/2e − 1. xN(n) can be represented as xN [n] =

(1− p)νN [n] + pνM [n].

Fig. 4.4 compares the trade-off between α2 and β2 obtained from the proposed OWFS
and simultaneously concentrated truncated DPSS for M = 4, B = 1/16 and N = 20.
The achievable α2 and β2 for truncated DPSS is obtained by varying p from 0 to 1. It can
be observed that the trade-off obtained with proposed OWFS coincides with achievable
upper bound and covers all Pareto-optimal points. On the other hand, trade-off obtained
with truncated DPSS deviates from the upper bound especially for lower values of α2

(for α2 ≤ 0.6). However, it converges to proposed window as p approaches 1 (α2 → 1).
It is also clear from analytical expression that both the proposed OWFS at µ → 1 and
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Fig. 4.4: Comparison of trade-off between α2 and β2 obtained with proposed OWFS and
truncated DPSS
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truncated DPSS at p→ 1 converge to time-limited M -length DPSS.

4.5.2 Comparison with Existing Well-known Windows

Fig. 4.5(a) compares the proposed OWFS with well known window functions in terms of
maximum achievable α2 and β2 for M = 4 and B = 1/16. For windows having single
parameter such as Hamming, Hanning, Blackman and Bartlett windows, the trade-off be-
tween α2 and β2 are obtained by varying the length of the window. On the other hand, for
multi-parameter windows such as Gaussian, Dolph Chebyshev and Kaiser windows, the
maximum achievable α2 and β2 for given M and B are obtained by grid search over win-
dow’s parameter including window length. It can be observed that achievable trade-off
curves of all well-known windows are strictly compliant with the derived upper bound. It
is essentially justifying the capability of the proposed window to maximally concentrate
the energy in narrow intervals in comparison to other window kernels. Fig. 4.5(b) com-
pares all windows for M = 4 and B = 1/8. The achievable α2 and β2 for all kernels
increase as compared to that of the previous case with B = 1/16. The trade-off curves
shift closer to the upper bound. This is due to the fact that large time or frequency in-
tervals allow more space to concentrate more energy in desired intervals, and achievable
trade-off curves converge to rectangle (0 ≤ α2 ≤ 1, 0 ≤ β2 ≤ λN0 ).
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different windows for (a) B = 1/16; (b) B = 1/8
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4.6 Extension of Proposed Work to Discrete Frequency
Domain

The discrete FT (DFT) of the window w can be represented as wf =
(
wfk

)dN/2e−1

k=−bN/2c

where wfk = 1
N

(wTdk) and dk =
(
e−

j2πk(−bN/2c)
N , e−

j2πk(−bN/2c+1)
N , · · · , e−

j2πk(dN/2e−1)
N

)T
.

β2 in a frequency interval (−bL/2c , dL/2e − 1) can be defined as

β2 =

∑dL/2e−1
k=−bL/2c

∣∣∣wfk ∣∣∣2∑dN/2e−1
k=−bN/2c

∣∣∣wfk ∣∣∣2 (4.40)

The numerator of (4.40) can be rephrased as

dL/2e−1∑
k=−bL/2c

∣∣∣wfk ∣∣∣2 =
1

N
wHB(L,N)w (4.41)

where B(L,N) = 1
N

∑dL/2e−1
k=−bL/2c d

∗
kd

T
k is an N × N positive semi-definite matrix. The

(m,n)th element of the matrix B(L,N) is given by

[
B(L,N)

]
m,n

=
1

N

dL/2e−1∑
k=−bL/2c

e
j2πk(−bN/2c+m−1)

N e
−j2πk(−bN/2c+n−1)

N

=


1
N

(
e
j2π(m−n)

N (L2−bL2 c− 1
2)
)

sin((m−n)(Lπ/N))
sin((m−n)(π/N))

, m 6= n

L
N
, m = n

(4.42)

For L = N , B(L,N) becomes an identity matrix. Using (4.41) and (4.42), β2 can be
represented as

β2 =
wHB(L,N)w

wHw
(4.43)

The problem of simultaneous maximization of α2 (4.14) and β2 (4.43) can be defined
similarly as defined in (4.16) with β2 defined in (4.13). For a fixed value of µ, the solution
to the problem is an eigenvector, w(0,D), of matrix (1−µ)B(L,N)+µT(M,N) corresponding
to the maximum eigenvalue λ(0,D). Thus w(0,D) satisfies,

(
(1− µ)B(L,N) + µT(M,N)

)
w(0,D) = λ(0,D)w(0,D) (4.44)

Since B(L,N)B(L,N) = B(L,N) (see Lemma 3 in Appendix for proof), by using similar
steps as in Theorem 1 (see Appendix), it can be proved that the achievable energy con-
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centrations in this discrete time discrete frequency case fall on the elliptical arc

α2 + β2 − 2αβ
√
λ

(M)
(0,D) = 1− λ(M)

(0,D) (4.45)

where λ(M)
(0,D) is the maximum eigenvalue of M ×M matrix B(L,M) which can be defined

as a subset of the matrix B(L,N) as

[
B(L,M)

]
p,q

=
[
B(L,N)

]
p+bN2 c−bM2 c,q+bN2 c+bM2 c−1

for p, q = 1, 2, · · · ,M . λ(M)
(0,D) is upper bounded by the inequality [155]

(
λ

(M)
(0,D)

)2

≤ min
1≤m≤M

M∑
n=1

∣∣∣[B(L,M)
]
m,n

∣∣∣
≤
(

1

N

)
min
m

M∑
n=1

L =
ML

N
(4.46)

where ML ≤ N . From (4.46) it is understood that the achievable α2 and β2 are charac-
terized by λ(M)

(0,D). Hence, this upper bound provides a good intuitive understanding of the
impact of M,L and N on achievable α2 and β2. For a fixed value of N , decreasing the
value of M or L decreases the maximum achievable α2 and β2 which is illustrated in Fig.
4.6(a). The upper bounds for attainable α2 and β2 are plotted for N = 20 and different
values of M and L. It can be inferred that as M or L decreases the achievable α2 (or β2)
decreases for a given value of β2 (or α2). In the discrete time discrete frequency scenario
we can achieve β2 = 1 which is also evident from Fig. 4.6(a). In Fig. 4.6(b), the upper
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values of M and L; (b) M = 2, L = 2, and different values of N
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bounds for attainable α2 and β2 are plotted for M = 2, L = 2 and different values of N .
For a fixed value of M and L, the trade-off curves between α2 and β2 approach towards
linear line as N approaches infinity. It is also evident from the upper bound derived in
(4.46) that as N →∞, λ(M)

(0,D) approaches 0, and hence (4.45) reduces to α2 + β2 = 1.

4.7 Application of Optimally Concentrated Window with
Finite Support in Time-Frequency Analysis

In TFA, the IF estimation is a fundamental concept. It represents the instantaneous rate
of change of phase of the signal. IF estimation based on TFA involves finding the peaks
of the magnitude of TFR. Therefore, it is desired to design a highly concentrated TFR
which can follow signal IF law correctly. Hence, numerous recent researches are focused
on adaptive TFRs whose parameters are adapted according to signal. Adaptive STFT
(ASTFT) [156], adaptive ST [128], adaptive WVD [157], etc. are some well known
TFRs in this category.

Authors in [34], [156] and [158], have proposed variants of ASTFT which adapt the
window width based on the chirp rate of the signal (first derivative of the IF). First, a pre-
liminary TFR (PTFR) is constructed to make rough IF estimate by detecting the ridges of
the TFR, and thereafter the chirp rate, defined as the first derivative of the IF, is computed.
Finally, the chirp rate is used for adapting the window width, and thereby the final TFR is
obtained. In [156], WT is used as the PTFR and the difference operator is used for chirp
rate calculation. The window width is adapted at each time instant based on the chirp
rate. Herein, this approach is represented as ASTFT-t. The conventional ST [9] uses a
Gaussian window whose width varies inversely proportional to frequency. Many variants
of ST have been proposed in literature which modify the scaling criterion in conventional
ST [159]. In [128], the authors have suggested to remove any unnecessary constraint
on choosing the window width, and instead adapt the window width at each frequency
based on concentration measure (CM). This approach can also be considered as a form
of ASTFT with frequency dependent window. Herein, it is represented as ASTFT-f. It
is suggested in [34] that the WT used as PTFR in [156] is not signal dependent, and the
difference operator used for calculating the chirp rate is sensitive to IF estimation error.
Moreover, the window width is dependent only on time, and the relationship between
the window width and the chirp rate is not accurate enough. Therefore, authors in [34]
have modified the approach used in [156] by using a CM-based ASTFT as PTFR, and
further used principal component analysis (PCA) for chirp rate calculation. A more ac-
curate relationship between window width and chirp rate derived by Cohen is used to
adapt the window width at each TF point in the TFR. Herein, this variant is represented
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as ASTFT-tf. It is mentioned in [158] that in case of multicomponent signal and in noisy
environment, the CM-based methods favor the slow-varying frequency component com-
pared to the fast varying component. Therefore, to obtain the PTFR, the authors used
regular rate which is the ratio between the effective bandwidth and effective time duration
of the signal. IF estimates are smoothed by using simple moving average filter before
applying the conventional difference operator for estimating the chirp rate. However, the
accuracy of this process of chirp rate calculation is limited. The window width is adapted
in TF domain using chirp rate and statistics such as bias and variance of the IF estimation
error in noisy environment. Herein, this more generalized ASTFT approach is termed as
GASTFT-tf.

The proposed OWFS carries importance on its own, and has the potential to replace
other window functions where a high energy concentration is desired in narrow time and
frequency intervals which is also evident in Fig. 5. For simulation results, the perfor-
mances of ASTFT-t, ASTFT-f, ASTFT-tf and GASTFT-tf are compared with GASTFT-tf
using OWFS. Herein, GASTFT-tf using OWFS is termed as OASTFT-tf. For calculating
the chirp rate, PCA is used in ASTFT-t, GSTFT-tf and OASTFT-tf as it is less sensitive to
IF estimation error. In case of OASTFT-tf, the relationship between the regular rate and
window width parameters M and B can be represented as B

M
= ν0

2N
, where ν0 represents

regular rate [158] and N is the length of the signal. Through simulation, it is found that
more than 99% of energy is captured within a TF box of area BM = 2/N . Accordingly,
M and B are calculated, and the PTFR is obtained.

For simulation study, a multicomponent signal is considered in presence of additive
white Gaussian noise (AWGN) of 18 dB. The multicomponent signal consists of a fre-
quency modulated (FM) signal and a linear chirp. The noisy signal is shown in Fig.
4.7(a), and can be represented as

x(t) = cos(200πt+ 20 cos(4πt)) + cos(25πt+ 20πt2) + n(t)

where n(t) represents the AWGN. The TFRs of ASTFT-t, ASTFT-f, ASTFT-tf, GSTFT-tf
and OASTFT-tf are shown in Figs. 4.7(b), 4.7(c), 4.7(d), 4.7(e) and 4.7(f) respectively. It
can be observed in Fig. 4.7 that the GASTFT-tf provides more concentrated TFR for both
the components (linear chirp and FM) as compared to ASTFT-t, ASTFT-f and ASTFT-
tf. The energy concentration is further improved by replacing the Gaussian window by
OWFS as shown in the TFR of OASTFT-tf.

Instead of visual inspection, accuracy of IF estimate can provide more clarity on the
performance of the TFRs. The normalized mean square error (NMSE) curves for the five
TFRs illustrated in Fig. 4.7 are shown in Fig. 4.8. It can be concluded that OASTFT-tf
provides more accurate IF estimate than that of other counterparts, and the improvement
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in the IF estimate is more at low SNR.

76



4.8. Proposed Optimally Concentrated Discrete Window
(OCDW)

4.8 Proposed Optimally Concentrated Discrete Window
(OCDW)

In this section a novel OCDW is proposed based on a constraint optimization problem
of maximization of the product of time and frequency domain energy concentrations in
given discrete time discrete frequency intervals. Further, it is extended to design an OST
for multi-resolution analysis. A new scaling criterion is also presented for OST which
prevents unnecessary deterioration in frequency resolution at higher frequencies, and time
resolution at lower frequencies.

In order to maximize the product of time (4.14) and frequency (4.43) domain energy
concentrations i.e. α2β2, the desired optimization problem can be formulated as

max
w

(wHT(M,N)w)(wHB(L,N)w) (4.47)

subject to wHw = 1 (4.48)

Using Lagrangian method, the problem turns into

J(w, ξ) = (wHT(M,N)w)(wHB(L,N)w) + ξ(1−wHw)

where ξ denotes the Lagrangian multiplier. By putting ∂J(w,ξ)
∂w

= 0, the optimality condi-
tion is (

wHT(M,N)w
)
B(L,N)w +

(
wHB(L,N)w

)
T(M,N)w = ξw (4.49)

Since B(L,N)B(L,N) = B(L,N), premultiplying (4.49) by wHB(L,N) and wHT(M,N), re-
spectively leads to

wHT(M,N)w + wHB(L,N)T(M,N)w = ξ (4.50)

wHB(L,N)w + wHT(M,N)B(L,N)w = ξ (4.51)

Since wHB(L,N)T(M,N)w =
(
wHT(M,N)B(L,N)w

)∗,
wHT(M,N)w = wHB(L,N)w (4.52)

Using (4.52), (4.49) can be rewritten as

(
T(M,N) + B(L,N)

)
w = λw (4.53)

where λ = ξ/wHT(M,N)w = ξ/wHB(L,N)w. It can be inferred from (4.53) that the opti-
mal solution w0 is an eigenvector of matrix (T(M,N)+B(L,N)) corresponding to maximum
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eigenvalue λ0. w0 is the desired OCDW which satisfies α2β2 = γ2 and α2 = β2 = γ,
where γ = λ0/2. For OCDW, premultiplying (4.53) by T(M,N) and B(L,N), respectively
leads to

T(M,N)B(L,N)w0 = (λ0 − 1)T(M,N)w0 (4.54)

B(L,N)T(M,N)w0 = (λ0 − 1)B(L,N)w0 (4.55)

Using (4.55), (4.54) can be re-written as

T(M,N)B(L,N)T(M,N)w0 = (λ0 − 1)2T(M,N)w0 (4.56)

(λ0 − 1)2 is the eigenvalue of matrix B(L,M) where

[
B(L,M)

]
m,n

=


[
B(L,N)

]
m,n

, 1 +
⌊
N
2

⌋
−
⌊
M
2

⌋
≤ m,n ≤

⌊
N
2

⌋
+
⌈
M
2

⌉
0, elsewhere

An upper bound [155] on (λ0 − 1)2 can be found as

(λ0 − 1)2 ≤ min
1≤m≤M

M∑
n=1

∣∣∣[B(L,M)
]
m,n

∣∣∣ (4.57)

≤
(

1

N

)
min
m

M∑
n=1

L =
ML

N
(4.58)

where ML ≤ N . Using this inequality and γ = λ0/2, M and L can be chosen to satisfy

ML ≥ N(2γ − 1)2 (4.59)

where equality only holds for M = 1 or L = 1.

Fig. 4.9 shows the trade-off between minimum possible time and frequency intervals
(M,L) for various values of γ. M and L increase with increase in γ. Fig. 4.9 also verifies
the validity of theoretical lower bound defined in (4.59). For γ ≤ 0.9, the theoretical
bound closely matches with simulated curves. For γ > 0.9, simulated curves deviate
from theoretical bound. Therefore, for γ ≤ 0.9, (4.59) can be used for selecting desired
L and M .

The proposed OCDW is shown in time and frequency domain in Figs. 4.10(a) and
4.10(b), respectively, for M = 15 and different values of γ. Minimum value of L is cho-
sen for desired γ. Increasing the value of γ results in wider mainlobe in frequency domain.
It is because the OCDW requires larger L to accommodate higher energy concentration.
This additional parameter γ provides extra degree of freedom to optimize the concentra-
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Fig. 4.10: Proposed OCDW for M = 15 and different values of γ in (a) Time domain; (b)
Frequency domain

tion of TFR. To summarize, higher γ means wider mainlobe but lesser sidelobes, whereas
lower γ results in narrower mainlobe but higher sidelobes.

Table 4.1 compares the OCDW with Gaussian window (GW) and Dolph-Chebyshev
window (DCW) in terms of achievable α2β2 for givenM and L. In case of GW and DCW,
the window parameters are varied heuristically to determine maximum achievable α2β2.
It is observed that OCDW outperforms GW and DCW. The difference in performance is
larger for smaller intervals i.e. the OCDW is beneficial for concentrating energy in narrow
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Table 4.1: Comparison of windows in terms of α2β2

Parameters GW DCW OCDW
M = L = 8 0.2199 0.2169 0.4575
M = L = 16 0.6236 0.6128 0.7091
M = L = 32 0.9757 0.9631 0.9906

time and frequency intervals. The proposed OCDW could be extended to design the kernel
for any TFA techniques such as STFT, WT, ST, etc. As a case study, the proposed window
is extended to design a variant of ST.

4.8.1 Proposed OCDW based ST (OST)

By extending the proposed OCDW, w0 = (w0,k)
dN/2e−1
k=−bN/2c, the frequency dependent nor-

malized OCDW and the OCDW based ST (OST) can be represented as

ϕ[k, n] =
w

(Mn,Ln)
0,k∑dN/2e−1

k=−bN/2cw
(Mn,Ln)
0,k

Sϕ[j, n] =

dN/2e−1∑
m=−bN/2c

X [m+ n] Ψ[m,n]ei2π
m
N
j (4.60)

where subscript n in Mn and Ln represents the dependency of time and frequency inter-
vals on frequency as desired for multiresolution analysis. Ψ[m,n] represents the FT of
the normalized OCDW. For a desired value of γ, Mn and Ln can be selected as

Mn =

⌈
κN

n

⌉
, Ln =

⌈
N

Mn

(2γ − 1)2

⌉
(4.61)

where κ is the scaling parameter. The selection of Mn using (4.61) provides scaling
similar to conventional ST [9]. The other existing scaling criteria are also applicable for
the OCDW based ST.

4.8.2 Proposed Fair Scaling Criterion for OST

Existing scaling approaches are unable to provide a fair trade-off between time and fre-
quency domain resolution. Therefore, a new scaling criterion is proposed to maintain
fairness between time and frequency domain window widths in conventional ST. For
comparison purpose, the time and frequency domain widths of the Gaussian window in
conventional ST is denoted as σT and σF ), respectively. Further, the proposed scaling
criterion is adopted in OST.
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Fig. 4.11 illustrates the selection of σT and σF ) in proposed scaling. To achieve
desired fairness criteria, scaling parameters (σT , σF ) are chosen at the intersection of a
hyperbolic arc and straight lines as shown in Fig. 4.11. The hyperbolic arc denotes the
relationship between σT and σF of the Gaussian window which can mathematically be
represented as

Fig. 4.11: Proposed scaling: Approach for selecting time and frequency domain SD (σT )
and (σF ), respectively

σTσF = N/2π (4.62)

The straight lines in Fig. 4.11 can be expressed as

σF = σT tan(θn) (4.63)

To obtain desired fair scaling, θn is varied uniformly as

θn = θ1 +
θ2 − θ1

N/2− 1
(n− 1) (4.64)

where θ2 = π/2−θ1. By solving (4.63) and (4.64), the desired σT and σF are obtained. θ1

in (4.64) determines the time and frequency domain window width at minimum (n = 1)

and maximum (n = N/2) frequencies. A suitable value of θ1 can be chosen to con-
trol unnecessary time spreading at lower frequencies, and frequency spreading at higher
frequencies.
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Fig. 4.12: Proposed scaling: SD of GW for N = 512 in (a) Time domain; (b) Frequency
domain

The variation of σT and σF with frequency in time and frequency domain according to
proposed scaling criteria are illustrated in Fig. 4.12. A fair trade-off between σT and σF
can be observed. As σF increases with frequency, σT decreases with the same rate. Fig.
4.12 also shows the variation of σT and σF at different values of θ1. By varying θ1, the
window width at most of the mid-range frequencies is not varying. The major differences
are observed at lower and higher frequencies as θ1 determines the window width at low
and higher frequencies.
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Fig. 4.13: Comparison of scaling criteria: SD of GW for length N = 512 in (a) Time
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In Fig. 4.13, the proposed scaling criterion is compared with the other existing scaling
criteria. The proposed scaling provides a fair trade-off between time and frequency do-
main window width profile. The proposed scaling provides smaller windows for most of
the frequencies in the frequency domain as compared to other scaling criteria, which leads
to better frequency resolution for most of the frequencies and also avoids the unnecessary
deterioration in frequency resolution at higher frequencies. Compared to other scaling
criteria, the window width in the proposed approach is wider in the frequency domain for
lower frequencies, and hence provides better time resolution for lower frequencies.

To incorporate the proposed fair scaling (FS) criterion in the proposed OST, Mn and
Ln are chosen as

Mn =

⌈√
N(2γ − 1)√

tan(θn)

⌉
, Ln =

⌈√
N(2γ − 1)

√
tan(θn)

⌉
(4.65)

where
θn = tan−1

(
k25

N(2γ−1)2

)
+

(
4 tan−1((N/k25)(2γ−1)2)−π

N−2

)
(n− 1)

k5 is a parameter that determines M and L at minimum (n = 1) and maximum (n =

dN/2e) frequencies i.e. L1 = MdN/2e = k5. A suitable value of k5 can avoid unnecessary
spreading at lower frequencies and shortening at higher frequencies.

Fig. 4.14 compares the width of GW and OCDW using CLS. In case of GW, for
desired concentration γ, the equivalent Mn and Ln are chosen as

√
2T−1

(
1−γ

2

)
σt[n] and

Frequency (n)
0 50 100 150 200 250

L
n
an

d
M

n

0

20

40

60

80

100

L (CLS using Gaussian window)

M (CLS using Gaussian window)

L (CLS using OCDW)

M (CLS using OCDW)

L (Proposed FS using OCDW)

M (Proposed FS using OCDW)

Fig. 4.14: Comparison of scaling criteria used in GW based ST and proposed OST for
N = 512 and γ = 0.9
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√
2T−1

(
1−γ

2

)
σf [n], respectively. T−1(·) represents the inverseQ-function. For fair com-

parison, κ =
√

2T−1
(

1−γ
2

)
is chosen in (4.61) to ensure the same time domain intervals

for both OCDW and GW. The corresponding frequency intervals are narrower in OCDW
as compared to GW. Fig. 3 also illustrates the proposed FS given in (4.65) for k5 = 2κ.
It provides fair trade-off between time and frequency intervals unlike CLS. It also avoids
unnecessary window width shortening in time, and spreading in frequency for lower and
higher frequencies, respectively.

In order to evaluate the efficacy of the proposed OCDW and scaling criteria, a syn-
thetic signal with multiple power quality disturbances is considered in Fig. 4.15. The
signal is synthesized with sampling frequency of 3.2 KHz and duration of t = 0.2 sec as
per the IEEE 1159 standards [120]. The signal consists of voltage interruption, oscilla-
tory transient and odd harmonic components upto seventh order along with fundamental
frequency component of 50 Hz. The magnitudes of fundamental frequency component,
third, fifth and seventh harmonic components are 1, 0.9, 0.7 and 0.5 pu, respectively. The
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Fig. 4.15: Comparison of amplitude spectra of TFRs: (a) ST using CLS; (b) Proposed
OST using CLS for γ = 0.9 and κ = 2.3262; ST with (c) MLS [20] for k = 2; (d) PS
[39] for p = 0.85; (e) SS [105] for a = 0.2 and b = 6; (f) OST with proposed FS with
γ = 0.9 and k5 = 10
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4.9. Conclusion

Table 4.2: Comparison of TFRs shown in Fig. 4.15 in terms of CM

ST OST
CLS MLS PS SS CLS FS

CM 0.1341 0.14 0.143 0.1379 0.1423 0.1503

duration of voltage interruption is from t = 0.06 sec to t = 0.11 sec. The duration of tran-
sient is from t = 0.13 sec to t = 0.15 sec. TFR of ST using CLS shown in Fig. 4.15(a)
indicates that harmonic components are not distinguishable, especially fifth and seventh
harmonics are completely merged. The frequency resolution of oscillatory transient is
poor. Due to very poor time resolution for lower frequencies, the voltage interruption is
also not detectable. In the TFR of proposed OST using CLS (4.61) shown in Fig. 4.15(b),
all disturbances are clearly visible and distinguishable. In the TFR of ST using MLS [20]
shown in Fig. 4.15(c), the frequency resolution has improved as compared to CLS, but at
the cost of degradation in time resolution of voltage interruption. The fifth and seventh
harmonic components are still not clearly distinguishable. In the TFR of ST using PS [39]
shown in Fig. 4.15(d), the third and fifth harmonics are distinguishable, and frequency
resolution for transient has improved. However, the voltage interruption is not detectable.
In the TFR of ST using SS [105] shown in Fig. 4.15(e), the harmonics are not distin-
guishable, and the voltage interruption is also not detectable. Fig. 4.15(f) illustrates the
effectiveness of proposed FS in detecting all disturbances. The FS provides better time
resolution at lower frequencies, and better frequency resolution at higher frequencies.

The CM [112] for each TFR is listed in Table 4.2. It can be observed that OST
with CLS outperforms ST with CLS. Moreover, proposed OST with FS is superior than
existing scaling approaches. The ability of the proposed OCDW in concentrating the
energy in given intervals in both domain can be observed in Figs. 4.15(b) and 4.15(f)
and Table 4.2. The proposed FS along with OCDW provides a more reliable and highly
concentrated TFR as compared to other scaling criteria with GW.

4.9 Conclusion

The simultaneously concentrated DPSS has maximum energy concentrations in finite in-
tervals in both time and frequency domains. However, it is of infinite length. In this chap-
ter, a multi-objective optimization approach was adopted for simultaneous maximization
of time (α2) and frequency (β2) domain energy concentrations in finite intervals for fi-
nite length sequences. The optimal sequence thus obtained has been termed as OWFS.
It has been derived that the feasible region of α2 and β2 is an intersection of a rectangle
and Pareto-optimal front formed by the solutions of the aforementioned multi-objective
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optimization problem. It has been shown analytically and through simulations that, as
the support of proposed window approaches infinity, the feasible region merges to the
feasible region of simultaneously concentrated DPSS. The achievable concentrations of
various well known window kernels with finite support including truncated DPSS, have
been compared with that of the proposed OWFS. This chapter also briefly introduced the
simultaneously concentrated P-DPSS using the same approach as that of OWFS. A closed
form expression for achievable α2 and β2 for simultaneously concentrated P-DPSS has
been derived, and the impact of various window parameters has been discussed. A novel
OCDW has been developed by solving a constraint optimization problem of maximiza-
tion of the product α2β2 in given discrete time discrete frequency intervals. The efficacy
of the proposed OWFS has been presented by using it in TFA for IF estimation of mul-
ticomponent signal in noisy environment. The proposed OCDW was extended to design
OST. Further, a novel fair scaling criterion has also been proposed for MRA. The pro-
posed OCDW along with the novel scaling criterion provides higher energy concentration
and better trade-off between time and frequency resolutions in TFR of ST.
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Chapter 5

Sharp Detection of Event’s Onset with
Asymmetrical Modified Kaiser Window
based ST

5.1 Introduction

In various fields such as seismology, biomedical engineering, audio and speech process-
ing, etc. the main motive of signal analysis is event recognition. The example of some
finite duration events are start and end of QRS complex, the arrival time of p and h seismic
waves [42] and sudden changes of the spin rate of the Earth [59]. The correct localization
of the events in time is of prime importance.

Reliable detection and identification of seismic events are extremely important for
accurate estimation of magnitude and location of seismic events. Different methods for
onset detection of events are discussed in literature that include method based on corre-
lation coefficients from clusters of relevant adjacent traces [60], best fitted auto regres-
sive (AR) model [61], AR moving average models [61] and Akaike information criterion
(AIC) based model [62], and their combinations such as AR-AIC model [160], Machine
learning based approaches [161], short and long time average ratio based model [63, 64],
etc.

Since the aforementioned methods analyze the seismic traces either in time or fre-
quency domain, they are suitable for analysis of signals having less noise and random-
ness. However, the seismic traces are non-stationary in nature, and mostly severely con-
taminated with noise. It is well suited to analyze these kind of signals in both time and
frequency domains simultaneously [65].

The STFT and CWT coefficients are used for both identification and characterization
of clusters in seismic traces [162, 163]. The WVD with Rényi entropy measure is used
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for detection of seismic events [164,165]. The ST has been widely used in seismic signal
analysis [13, 53, 166, 167]. However, the long taper of the GW results in degraded time
resolution of event’s onset. In [168], the GST is presented which utilizes an asymmetrical
window for decomposition and analysis of vibrations of gearbox. The Gaussian nose is
welded to an exponential tail to provide asymmetry. The resulting time-frequency spec-
trum has better time resolution at onset of events. However, due to the long taper of the
exponential tail, the event signatures are smeared in time. The GST using BGW is pro-
posed for detection of various seismic events [59, 66]. The two half GW with different
SDs are welded to provide asymmetry. In [53], a different scaling criterion is suggested
for BGW based ST which can further improve the detection of event’s onset at the cost
of degraded frequency resolution. An another form of GST is also proposed which uti-
lizes asymmetrical HW to determine different events in a noisy seismograph [42, 54] and
power quality disturbances [68, 69]. The asymmetry in window provides asymmetry in
time-frequency spectrum which leads to better time resolution at event’s onset. The con-
ventional ST [9] using GW provides poor time resolution for lower frequencies and good
time resolution for higher frequencies. Hence, the asymmetry is preferably required at
lower frequencies. The frequency dependent asymmetry is introduced in [42, 59]. How-
ever to provide asymmetry, welding of two functions leads to discontinuities.

In this work, an AMKW based ST is proposed for analyzing the time-frequency con-
tent of a broadband earthquake seismogram. MRA and frequency dependent asymmetry
are obtained by modifying the β parameter of first order Bessel function. The basic form
of GST using BGW and HW are reviewed in brief, and then AMKW and its extension
in ST is proposed. Further, AMKW and AMKW based ST are proposed. The proposed
method is tested by using synthetic seismic trace and real seismic data.

5.2 Proposed Asymmetrical Modified Kaiser Window based
ST

The Kaiser window [169] approximates the first order discrete prolate spheroidal se-
quence, which is a finite length optimally concentrated function, and maximizes the en-
ergy concentration in main lobe. The conventional Kaiser window can be represented as
[169]

wK [h] =


I0
(
β
√

1−(h/N)2
)

∑N/2−1
−N/2 I0

(
β
√

1−(h/N)2
) , −N

2
≤ h ≤ N

2
− 1

0, elsewhere

where I0 is the zero order modified Bessel function of the first kind. N is the length
of the window. The parameter β controls the width of the window i.e. higher values of
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β result in narrow windows in time domain, and vice versa. The Kaiser window based
ST is presented in [170] where multi-resolution property is achieved by making β to be
frequency dependent.

This objective proposes a modified asymmetrical version of Kaiser window for sharp
detection of event’s onset. The idea is to make the parameter β a decreasing function of
time. It leads to narrower taper in forward direction due to high values of β, and longer
taper in back direction due to smaller values of β. The time dependent parameter β can
be defined as

β[h] = πσk1

(
σk2
σk1

)( hN +0.5)
(5.1)

where the parameters σk1 and σk2 control the characteristics of the modified Kaiser win-
dow. The width of the window is primarily characterized by the parameter σk1 , and the
asymmetry is characterized by σk2 with respect of σk1 . To obtain narrow front taper as
compared to back taper, σk1 is chosen to be greater than σk2 , and hence making (5.1) to
be an exponentially decreasing function of h. Smaller the value of σk2/σk1 , more will be
the asymmetry. At σk1 = σk2 , the function β[h] reduces to πσk1 , and hence results in
conventional symmetrical Kaiser window.

It is to note that, in contrast to conventional Kaiser window function, the peak of the
modified Kaiser window does not lie at t = 0. To account for that, a translation parameter
ξK is introduced which can be defined as

ξK =
N

2

 1

ln(σk2/σk1)
+

√
1 +

(
1

ln(σk2/σk1)

)2
 (5.2)

For multi-resolution analysis similar to conventional ST i.e. better frequency resolution
at lower frequencies and higher time resolution at higher frequencies, the parameters of
the proposed window can be chosen as

σk1 = kn, σk2 = σk1

(
2n

N

)
(5.3)

The scaling criterion (5.3) provides frequency dependent scaling as well as frequency
dependent asymmetry. As n increases, the time domain window becomes narrower due
to increase in σk1 . Also, σk2/σk1 increases with increase in n, hence making the window
more symmetrical. The perfect symmetry is achieved at Nyquist frequency n = N/2

where σk2 = σk1 . The additional scale parameter k is introduced to provide more flexibil-
ity in controlling the trade-off between time and frequency resolution. Increase in k leads
to improved time resolution at the cost of degraded frequency resolution. The proposed
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AMKW can be represented as

wMK [h, n] =



I0

(
β[h−ξK ]

√
1−
(
h−ξK
N

)2)
N/2−1∑
−N/2

I0

(
β[h−ξK ]

√
1−
(
h−ξK
N

)2) ,−
N
2
≤ h ≤ N

2
− 1

0, elsewhere

The modified asymmetrical Kaiser window based ST can be represented as

SK [l, n] =

N/2−1∑
m=−N/2

X [m+ n]WMK [m,n]ei2π
m
N
l (5.4)

WMK [m,n] represents the FT of the normalized wMK [l, n].
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Fig. 5.1: Proposed window of length N = 512 for different frequencies: (a) Windows in
time domain; (b) Corresponding frequency domain spectra

In Fig. 5.1, the proposed AMKW is illustrated in time domain for different frequencies
n, along with their corresponding spectra. The multi-resolution property and asymmetric
behaviour of the window can be observed in these figures. At lower frequency n = 25,
the window is more asymmetrical in time domain (Fig. 5.1(a)) as well as having shorter
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Fig. 5.2: (a) Comparison of HW, BGW and proposed AMKW of length N = 512: (a)
Windows in time domain; (b) Corresponding frequency domain spectra

main lobe in frequency domain (Fig. 5.1(b)). As frequency increases, windows become
more symmetrical. At Nyquist frequency n = 255, the window is symmetrical as well as
having shorter width in time domain.

Fig. 5.2 compares the proposed AMKW with BGW [53, 59] and HW [42, 69] at
frequency n = 30. Time domain windows and their spectra are shown in Fig. 5.2(a)
and Fig. 5.2(b), respectively. It can be observed in Fig. 5.2(a) that the proposed window
has steeper forward taper and faster roll-off in backward direction as compared to both
BGW and HW. However, it has a very small slowly decaying tail. In Fig. 5.2(b), it can be
observed that from 0 to 20 Hz, roll-off of all three windows are comparable. The proposed
window has steeper roll-off from 20 Hz to 50 Hz, and saturated side-lobes are observed
beyond 50 Hz.

5.3 Simulation Results

Case Study I:

The synthetic time series considered in this case study can be represented as [59]
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x(1 : 128) = 0

x(129 : 512) = exp(−4[0 : 388]/256)sin(2π[0 : 383]20.4/512)

x(157 : 512) = x(157 : 512) + exp(−5[0 : 355]/256)sin(2π[0 : 355]30.7/512)

x(269 : 512) = x(269 : 512) + exp(−4[0 : 243]/256)sin(2π[0 : 243]25.3/512)

x(397 : 512) = x(397 : 512) + exp(−4[0 : 115]/256)sin(2π[0 : 115]15.6/512)2

The sampling frequency is 4 Hz. The time series shown in Fig 5.3(a) contains distinct
changes at the 129th, 157th, 269th, and 397th sample points indicating four decaying

A
m

p
li
tu

d
e

-2

-1

0

1

2

F
re

q
u

e
n

c
y

0

0.2

0.4

0.6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
re

q
u

e
n

c
y

0

0.2

0.4

0.6

F
re

q
u

e
n

c
y

0

0.2

0.4

0.6

Time

0 50 100

F
re

q
u

e
n

c
y

0

0.2

0.4

0.6

Time

0 50 100

F
re

q
u

e
n

c
y

0

0.2

0.4

0.6

Time

0 50 100

(c)(b)

(d) (e) (f)

(g) (h) (i)

(a)

Fig. 5.3: Comparison of different symmetrical and asymmetrical window based STs: (a)
Synthetic time series; Amplitude spectrum of (b) Conventional ST [9]; (c) 3PST [13]; (d)
4PST [19]; (e) BGW based ST [59]; (f) Variant of BGW based ST [53]; (g) HW based
ST [69]; (h) Proposed AMKW based ST with k = 1; (i) Proposed AMKW based ST with
k = 1.5. The horizontal and vertical lines show the cross-sections used for Fig. 5.4
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sinusoidal events that overlap in time which leads to localized destructive interference.
TFR using conventional ST is shown in Fig. 5.3(b). Due to long taper of the GW, time
domain smearing of event’s onset can be easily observed in the TFR. TFRs obtained
using 3PST [13] 4PST [19] are shown in Fig. 5.3(c) and (d). The scaling parameters
in 3PST and 4PST are tuned such as to maximize the overall CM of the TFRs. The
improved time and frequency resolution can be observed in 5.3(c) and (d) as compared to
that of the conventional ST. However, sharp time resolution at initiation of the events is
missing in the three aforementioned symmetrical window based STs. Fig. 5.3(e) shows
the TFR obtained using BGW based ST with frequency dependent asymmetry [59]. The
asymmetry in window width profile leads to sharpness in forward direction with degraded
resolution in backward direction. Also, due to asymmetry, some degradation in frequency
resolution is observed as compared to the TFRs based on symmetrical windows. The
TFR obtained using a different scaling for BGW based ST with lesser forward variance
i.e. lFBG = 0.1 [53] is shown in Fig. 5.3(f). This modified scaling further improves the
time resolution in forward direction but at the cost of degradation in frequency resolution.
The TFR obtained using the HW based ST with frequency dependent asymmetry [69] is
shown in Fig. 5.3(g). It is having very similar TFR characteristics as that of the BGW
based ST. Fig. 5.3(h) shows the TFR obtained using proposed AMKW based ST with
k = 1 in (5.3). It reveals improved time resolution in forward direction, and also has
less smearing in backward direction with comparable frequency domain resolution. The
resolution of initiation time of the events can be further improved by increasing the value
of k at the cost of degraded frequency resolution as shown in Fig. 5.3(i) with k = 1.5.

To quantify the differences in the time and frequency resolution of different asymmet-
rical window based STs, Fig. 5.4 shows the amplitude of TFRs are along horizontal and
vertical cross-sections shown in Fig. 5.3. In each TFR shown in Fig. 5.3, the first hori-
zontal cross-section is shown at normalized frequency 20/128 Hz, from time 16 seconds
to 40 seconds. The second horizontal cross-section is shown at normalized frequency
25/128 Hz from 80 seconds to 90 seconds. The vertical cross-section is shown at time 72
seconds. Horizontal cross-sections capture the time of initiation of first event. Short rise
time indicates improved time resolution of event onset. It can be observed in Fig. 5.4(a)
that the rise time of proposed AMKW based ST is much shorter than that of conventional
ST. Moreover, the proposed AMKW based ST provides better event onset detection as
compared to BGW, variant of BGW and HW based STs. The impact of backward taper
on time resolution is illustrated in Fig. 5.4(b) which depicts the faster decay for proposed
AMKW based ST as compared to other asymmetrical window based STs. The conven-
tional ST, 3PST and 4PST have faster decay due to symmetric window characteristics.
The characteristics of windows shown in Fig. 5.4(c) reveals that higher values beyond 0.4
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Fig. 5.4: Amplitude spectra of the TFRs for the cross sections shown in Fig. 5.3: (a)
Along first horizontal cross-section; (b) Along second horizontal cross-section; (c) Along
vertical cross-section

Hz correspond to unwanted artifacts due to poor frequency resolution. It can be observed
that the asymmetrical window based STs have poor frequency resolution as compared
to symmetrical window based STs. However, the proposed AMKW based ST has lower
artifacts than that of the other three asymmetrical window based STs.

Table 5.1 compares the TFRs of ST, 3PST, 4PST, BGW based ST, HW based ST
and AMKW based ST shown in Fig. 5.3 in terms of accuracy in detecting event’s onset.
The signal considered in Fig. 5.3(a) includes four decaying sinusoidal events starting
at t = 32 second, t = 39 second, t = 67 second and t = 99 second. To quantify
the event’s arrival time, the amplitude variations in the TFR for the voice corresponding
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Table 5.1: Comparison of TFRs in terms of accuracy (in seconds) in detecting event’s
onset

Event Actual ST 3PST 4PST BGW HW AMKW
arrival based ST based ST based ST

I 32 27 29 28 31 31 31.75
II 39 36 37 37.25 38 38 38.75
III 67 64 65 64 66 66 66.75
VI 99 94 96 95 97 97 98.75

to each event is studied. After several tests, the 30% amplitude threshold criterion is
used to detect the arrival time of the event. It can be observed in Table 5.1 that due to
long tapering of the symmetrical GW, conventional ST, 3PST and 4PST fail to detect the
onset of the events accurately. As compared to the symmetrical window based STs, the
asymmetrical window based STs provide better event detection accuracy. Due to similar
window characteristics, the event detection accuracy of HW and BGW based STs are
equal. The proposed AMKW based ST provides the best estimates of arrival time for the
four events.

Case Study II:

Fig. 5.5 considers a 80-second segment of an earthquake seismogram recorded on 28 July
1995, at the GRFO seismic station (49.6919N, 11.2217E) in Graefenberg, Germany be-
ginning at 14:43:51 UT for the earthquake occurred in the Tonga Trench (21.1S, 175.5E).
The seismogram data can be downloaded from [171]. It is important to accurately deter-
mine the arrival times of different PKP phases for studying the anisotropy of the earth’s
inner core [172]. The seismogram is captured at the sampling rate of 20 Hz, and with
angle being 151 degrees between the earthquake epicenter and the seismic station with
respect to center of the earth. TFA is helpful in identifying several DF and BC phases of
the core PKP wave.

Fig. 5.5 compares the TFRs of different symmetrical and asymmetrical window based
STs. The first two visible events on each TFR, correspond to the arrival of the DF and BC
phases of the PKP wave [172]. TFR using conventional ST is shown in Fig. 5.5(b). Due to
long taper of the GW, time domain smearing of onset of DF and BC phases can be easily
observed in the TFR. TFRs obtained using 3PST and 4PST are shown in Fig. 5.5(c) and
(d). The scaling parameters in 3PST and 4PST are tuned such as to maximize the overall
CM of the TFRs. The 3PST and 4PST provide improved time and frequency resolution
as compared to that of the conventional ST which can also be observed in 5.5(c) and (d).
However, for sharp detection of event’s initiation, the time resolution at start of the events
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Fig. 5.5: Amplitude spectrum of different symmetrical and asymmetrical window based
STs: (a) Earthquake seismogram [171]; Amplitude spectrum of (b) Conventional ST [9];
(c) 3PST [13]; (d) 4PST [19]; (e) BGW based ST [59]; (f) Variant of BGW based ST [53];
(g) HW based ST [69]; (h) Proposed AMKW based ST with k = 1; (i) Proposed AMKW
based ST with k = 1.5

should be very precise which is missing in the three aforementioned symmetrical window
based STs. Fig. 5.5(e) shows the TFR obtained using BGW based ST with frequency
dependent asymmetry [59]. The asymmetry in window width profile leads to sharpness
in forward direction with degraded resolution in backward direction. The TFR obtained
using a different scaling for BGW based ST with lesser forward variance i.e. lFBG = 0.1

[53] is shown in Fig. 5.5(f). This modified scaling further improves the time resolution
in forward direction but at the cost of degradation in frequency resolution. The TFR
obtained using the HW based ST with frequency dependent asymmetry [69] is shown in
Fig. 5.5(g). It is having very similar TFR characteristics as that of the BGW based ST.
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Fig. 5.5(h) shows the TFR obtained using proposed AMKW based ST with k = 1 in
(5.3). It reveals improved time resolution in forward direction, and also has less smearing
in backward direction with comparable frequency domain resolution. The resolution of
initiation time of the events can be further improved by increasing the value of k at the cost
of degraded frequency resolution as shown in Fig. 5.3(i) with k = 1.5. Therefore, it can
be said that the resolution of event initiation time in the TFR of proposed AMKW based
ST is better than that of other counterparts. The leading edge of each event signature has
a more “vertical” profile in TFR of proposed AMKW based ST as compared to the three
asymmetrical window based TFRs. Moreover, the high-frequency artifacts are also lesser
in the TFR of proposed AMKW based ST.

Table 5.2: Comparison of TFRs in terms of accuracy in detecting event’s onset

Events Actual ST 3PST 4PST BGW HW AMKW
arrival based ST based ST based ST

I 303.7 301 301.6 301.4 302.8 302.4 303.5
II 311 308.1 308.5 308.4 309.6 309.9 310.7

Table 5.2 compares the TFRs of ST, 3PST, 4PST, BGW based ST, HW based ST and
AMKW based ST shown in Fig. 5.5 in terms of accuracy in detecting event’s onset. The
signal considered in Fig. 5.5(a) has two events which correspond to the arrival of the DF
and BC phases of the PKP wave. It is important to accurately detect the arrival time of
the events. The 30% amplitude threshold criterion is used to detect the arrival time of the
events. It can be observed in Table 5.2 that the the accuracy in detection of first event for
TFRs of BGW and AMKW based STs are 99.93% and 99.7%, respectively. The accuracy
in detection of second event for TFRs of HW and AMKW based STs are 99.64% and
99.9%, respectively. The TFR of proposed AMKW based ST provides the best estimates
of arrival time for both the events as compared to other TFRs.

5.4 Conclusion

Due to long taper of the GW, the conventional ST provides poor time resolution in TFR,
especially at lower frequencies. BGW and HW based STs provide better time resolution
in forward direction as compared to conventional ST, and hence can be used for sharp
detection of onset of events in seismic signals. However, the benefits are obtained at the
cost of poorer time resolution in backward direction which may affect the resolvability of
successive events. In this work, AMKW has been proposed which provides a sharp front
taper as well as faster decaying back taper as compared to BGW and HW. The window
parameters are chosen in such a way that it provides frequency dependent asymmetry.
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The inherent maximum energy concentration of Kaiser window along with frequency de-
pendent asymmetry help in eliminating the unwanted high frequency artifacts in the TFR.
The efficacy of the proposed approach has been tested using a synthetic time series as well
as a real noisy earthquake seismogram. The results show that the proposed AMKW based
ST is able to detect the events early as compared to other symmetrical and asymmetrical
window based STs.
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Chapter 6

Reassignment of Energy in the TFRs of
OST and Product-ST

6.1 Introduction

In order to achieve near ideal TFR, some advanced post processing methods have been
proposed in literature such as the RM [45, 46] and SST [47, 48]. These tools have the
ability to reassign or squeeze the time-frequency coefficients obtained by classical TFA
methods into the IF trajectory [49,50]. The RM reassigns the time-frequency coefficients
along both time and frequency axes in the TFR. The SST squeezes the time-frequency
coefficients into the IF trajectory only along the frequency axis. Also, the SST has the
ability to reconstruct the different modes of the signal. In recent years, RM and SST
has been widely used in various disciplines such as earth sciences [71, 72], biomedical
engineering [70, 73], mechanical engineering [74], civil engineering [75–77], etc.

Although the conventional linear TFRs along with RM and SST provide very narrow
ridges as compared to the conventional TFRs, their ability to separate out two signal
components still depend on the width of the window in time and frequency domains.
For SST and RM to properly resolve two modes in frequency domain, the minimum
separation between these two modes must be equivalent to the bandwidth of the used
window. Similarly, to separate out two signal components in time domain, the support of
the window in time must be shorter than that of signal components [51]. Resolving closely
spaced signal components in both time and frequency domain simultaneously using SST
and RM techniques remains a challenge.

The efficiency of the aforementioned post processing methods depends on the sepa-
rability of modes in time and frequency domains. To counter this shortcoming, the SST
and RM are deployed on the TFR of OST, and further investigated for detecting multiple
power quality disturbances. It is found that the OST combined with RM and SST provides
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better visualization as compared to OST. A concept of product-ST is also proposed to fur-
ther improve the visualization of TFR for very closely spaced signal components in time
and frequency. The TFR of product-ST is obtained by multiplying the TFRs of TST and
BST. The concepts of RM and SST are incorporated in the product-ST. It is found that
the product-ST combined with RM and SST provides better visualization and accurate
frequency detection as compared to its OST counterpart.

6.2 OST Combined with RM and SST

The RM and SST reassign the TFR coefficients of OST into IF, whose coordinates are
defined as

f̂ = f −=

(
Sϕ
′
(t, w)

Sϕ(τ, w)

)
(6.1)

τ̂ = τ + <
(
StϕOCDW (t, w)

SϕOCDW (τ, w)

)
(6.2)

where Sϕ
′

represents the TFR of OST obtained with derivative of the OCDW and Stϕ

represents the TFR of OST obtained with function tϕ(t, f).

The OST combined with RM at any point (τ0, f0) can be represented as

SSOCDW(τ0, f0) =

∫ ∫
Sϕ(τ, f)δ(τ0 − t̂)δ(f0 − f̂)dτdf

6.3 Proposed Product-ST

To further improve the time and frequency resolution in TFR of OST, the concept of
product-ST is discussed. The highly concentrated product-ST can be obtained by multi-
plying the TFRs of TST and BST. The frequency domain computation of TST and BST
of continuous signal x(t) can be represented as

SυTL(τ, f) =

∫ ∞
−∞

X (α + f) ζTL (α, f) ei2πατdα (6.3)

SυBL(τ, f) =

∫ ∞
−∞

X (α + f) ζBL (α, f) ei2πατdα (6.4)

whereX(α), ζTL(α) and ζBL(α) represent FT of x(t), optimally concentrated time-limited
window υTL(t) and optimally concentrated band-limited window υBL(t), respectively. The
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proposed product-ST can be represented as

P (υTL,υBL)(τ, f) = SυTL(τ, f)SυBL(τ, f) (6.5)

6.3.1 Product-ST Combined with SST

To obtain the IF, consider a monocomponent (f̂ ) signal with fixed amplitude A as

x(t) = Aei2πf̂t (6.6)

The FT of the signal can be represented as

X(α) = A δ(α− f̂) (6.7)

where δ(·) represents dirac function. Using (6.7), (6.3) and (6.4) can be represented as

SυTL(τ, f) = AζTL(f̂ − f, f)ei2π(f̂−f)τ (6.8)

SυBL(τ, f) = AζBL(f̂ − f, f)ei2π(f̂−f)τ (6.9)

To obtain the IF, it is suggested to calculate derivative of the TFR with respect to time.
The derivative of product-ST can be written as

∂τ
(
P (υTL,υBL)(τ, f)

)
= i4π(f̂ − f)P (υTL,υBL)(τ, f) (6.10)

Therefore, the IF can be estimated as

f̂ = f − i
∂τ
(
P (υTL,υBL)(τ, f)

)
4πP (υTL,υBL)(τ, f)

(6.11)

Using time domain computation of TST and BST, ∂τ
(
P (υTL,υBL)(τ, f)

)
can be represented

as

∂t
(
P (υTL,υBL)(τ, f)

)
= S∂t(υTL)(τ, f)SυBL(τ, f) + SυTL(τ, f)S∂t(υBL)(τ, f) (6.12)

where S∂t(υTL)(τ, f) and S∂t(υBL)(τ, f) represent the ST obtained using time derivative of
υTL and υBL as window functions, respectively.

By using (6.12), the IF in (6.11) can be redefined as

f̂ = f −=
(
S∂t(υTL)(τ, f)SυBL(τ, f) + SυTL(τ, f)S∂t(υBL)(τ, f)

4πP (υTL,υBL)(τ, f)

)
(6.13)
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where =(x) represents imaginary part of x. The SST reassigns the TFR coefficients along
IF trajectory. The value of the product-ST combined with SST at any frequency (f0) can
be represented as

SSPST (τ, f0) =

∫ ∞
−∞

P (υTL,υBL)(τ, f)δ(f0 − f̂)df (6.14)

6.3.2 Product-ST Combined with RM

To derive the GD, consider a signal having an impulse as

x(t) = A δ(t− τ̂) (6.15)

By considering time domain computation of TST and BST, SυTL(τ, f) and SυBL(τ, f) for
this signal can be represented as

SυTL(τ, f) = AυTL(τ − τ̂ , f)e−i2πfτ̂ (6.16)

SυBL(τ, f) = AυBL(τ − τ̂ , f)e−i2πfτ̂ (6.17)

For GD, derivative of P (υTL,υBL)(τ, f) with respect to frequency can be represented as

∂f
(
P (υTL,υBL)(τ, f)

)
= ∂f

(
SυTL(τ, f)

)
SυBL(τ, f) + ∂f

(
SυBL(τ, f)

)
SυTL(τ, f)

= S∂f (υTL)(τ, f)SυBL(τ, f) + SυTL(τ, f)S∂f (υBL)(τ, f)

− (τ̂ i4π)SυTL(τ, f)SυBL(τ, f) (6.18)

Therefore,

τ̂ =
S∂f (υTL)(τ, f)SυBL(τ, f) + SυTL(τ, f)S∂f (υBL)(τ, f)

i4πP (υTL,υBL)(τ, f)
−
∂f
(
P (υTL,υBL)(τ, f)

)
i4πP (υTL,υBL)(τ, f)

(6.19)

Similar to (6.12), ∂f
(
P (υTL,υBL)(τ, f)

)
can be represented as

∂f
(
P (υTL,υBL)(τ, f)

)
= S∂f (υTL)(τ, f)SυBL(τ, f) + SυTL(τ, f)S∂f (υBL)(τ, f)

−i2π
(
S(tυTL)(τ, f)SυBL(τ, f) + S(tυBL)(τ, f)SυTL(τ, f)

)
−i4πτP (υTL,υBL)(τ, f) (6.20)

By using (6.20), GD in (6.19) can be redefined as

τ̂ = τ + <
(
S(tυTL)(τ, f)SυBL(τ, f) + S(tυBL)(τ, f)SυTL(τ, f)

2P (υTL,υBL)(τ, f)

)
(6.21)
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Fig. 6.1: Comparison of amplitude spectrum of TFRs: (a) OST (b) OST combined with
SST; (c) OST combined with RM; (d) Proposed product-ST for k1 = 64, k2 = 0.42, k3 =
20, k4 = 100,Mth = 5 and Lth = 5; (e) Proposed product-ST combined with SST; (f)
Proposed product-ST combined with RM

where <(x) represents real part of x. RM reassign the TFR coefficients to (τ̂ , f̂ ) rather
than to (τ, f ) where it is computed. The value of the product-ST combined with RM at
any point (τ0, f0) can be represented as

RPST (τ0, f0) =

∫ ∞
−∞

∫ ∞
−∞

P (υTL,υBL)(τ, f)δ(τ0 − τ̂)δ(f0 − f̂)dτdf (6.22)

For a multicomponent signal having well separated distinct modes, (6.13) and (6.21) can
be used for estimating the IF and GD of each mode effectively [50, 173].

6.4 Simulation Results

6.4.1 Case Study 1: Detection of Multiple Power Quality Distur-
bances

In order to evaluate the performance of the OST and Product-ST combined with RM and
SST, a synthetic signal with multiple power quality disturbances is considered in Fig. 6.1.
The signal of duration 0.2 seconds is synthesized with sampling frequency of 3.2 KHz as
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per the IEEE 1159 standards [120]. The signal consists of voltage interruption, oscilla-
tory transient and odd harmonic components upto seventh order along with fundamental
frequency component of 50 Hz. The magnitude of fundamental frequency component,
third, fifth and seventh harmonic components are 1, 0.9, 0.7 and 0.5 pu, respectively. The
duration of voltage interruption is from t = 0.058 sec to t = 0.082 sec. The duration of
transient is from t = 0.082 sec to t = 0.105 sec. Fig. 6.1(a) shows the TFR of OST with
FS for γ = 0.99 and k5 = 10. It can be observed that due to very short duration, the inter-
ruption is not clearly distinguishable. Further, frequency resolution of fifth and seventh
harmonic components is poor. The TFRs of OST combined with SST and RM are shown
in Figs. 6.1(b) and 6.1(c), respectively. By using these post processing tools, the time
and frequency resolution of the frequency components in TFR have improved drastically.
However, due to very closely spaced interruption and harmonics, the TFR of OST fails
to provide clearly separable components in time and frequency. Therefore, the TFRs of
OST combined with RM and SST are also not able to provide very good resolvability in
components in time and frequency domain. The interruption is not clearly detectable.

The TFR of product-ST is shown in Fig. 6.1(d) for k1 = 64, k2 = 0.42, k3 = 20, k4 =

100,Mth = 5 and Lth = 5. It can be observed in Fig. 6.1(d) that as compared to
TFR of OST shown in Fig. 6.1(a), the TFR of product-ST provides very good time and
frequency resolution. All disturbances are clearly detectable and distinguishable. TFRs
of the product-ST combined with SST and RM are shown in Figs. 6.1(e) and 6.1(f),
respectively. The RM and SST further improves the time and frequency resolution. The
interruption and its duration in signal are detectable. The frequency resolution of fifth and
seventh harmonic components are better than their counterparts based on OST. Therefore,
the proposed product-ST combined with RM and SST provide better TFR resolution than
that of OST combined with RM and SST. Moreover, the product-ST combined with RM
and SST are very useful for TFA of very closely spaced signal components in time and
frequency.

6.4.2 Case Study 2: Analysis of San Fernando Earthquake Data

Recent advancement in seismology facilitates unprecedented investigation into the chang-
ing dynamic properties of structures during moderate and strong ground motions. Devel-
opment of seismic stations in structures such as buildings, bridges, dams, etc. provides
great insight into moderate or permanent change in dynamic properties of structures, and
is also useful for detection of onset and peak velocities of this event [75, 76].

Permanent damage caused by strong earthquake motion results in plastic deformation
or fracture due to permanently decreasing natural frequency of structures. This is due
to loss of system’s stiffness. Change in frequency is directly proportional to change in
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stiffness of the structure, f = 1
2π

√
k
m

where f, k andm are natural frequency, stiffness and
mass of the structure, respectively. The temporary decrease in natural frequency can cause
large and rapid destruction due to nonlinearity of the force-displacement relationship.
Therefore, it is important to investigate the changes in natural frequency of the structures
[77]. Fourier analysis can provide information regarding frequency content of the signal.
However, it is unable to localize the exact onset of changes and their shifting variation in
time [75], [77].

In this case study, the product-ST combined with RM and SST are used to analyze the
San Fernando earthquake data. The San Fernando earthquake (9 February 1971, Mag-
nitude= 6.6, distance approx. 31 kilometer), was recorded at Millikan Library east-west
roof located in the main campus of the California Institute of Technology in Pasadena.
This structure is a nine-storey reinforced concrete building built in 1966. In 1968, the
building was instrumented with two permanent triaxial Teledyne-Geotech RFT-250 ac-
celerometers located on the roof and basement. It is a well-inspected testbed building for
structural health monitoring [75]. The San Fernando earthquake caused severe damage
to the structure. The data was recorded by the accelerometer on top of the structure for
approximately 98.90 seconds where peak ground acceleration is 340.8 cm/s2. The p wave
arrival is at t = 3.06 second.

The data is considered upto 35 seconds for analysis as shown in Fig. 6.2(a). The
sampling frequency is 50 Hz. It has a constant frequency of 1.2 Hz from t = 5 second to
t = 7.5 second. At t = 7.5 second, the building starts losing its stiffness. The data has
an exponential decay in frequency from 1.2 Hz to 0.9 Hz starting from t = 7.5 second
to t = 16 second. A constant frequency pattern is observed after t = 16 seconds which
indicates a permanent loss of stiffness.

The TFR of conventional ST shown in Fig. 6.2(b) provides poor time and frequency
localization. Therefore, it is unable to interpret the exact frequency and event’s initia-
tion time such as start of loss of stiffness and exact time of permanent loss. The TFR of
3PST is shown in Fig. 6.2(c). It can be observed that the smearing is less as compared
to conventional ST. However, it is unable to precisely localize the frequency component
and its shifting pattern. The TFR of OST shown in Fig. 6.2(d) provides better time and
frequency resolution than that of conventional ST and 3PST. The TFR of OST combined
with SST and RM are shown in Figs. 6.2(e) and 6.2(f), respectively. The SST and RM
improves the time resolution in the TFR of OST. The TFR of product-ST is shown in Fig.
6.2(g). The window parameters in TST and BST are chosen so as to maximize over all
CM. It provides good time and frequency resolution as compared to other conventional
counterparts. The noise effect in accelerometer data is also less visible. The TFR of
product-ST combined with SST and RM shown in Figs. 6.2(h) and 6.2(i), respectively
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Fig. 6.2: Comparison of different TFA tools for San Fernando earthquake data (a) San
Fernando earthquake data: TFR of (b) Conventional ST; (c) 3PST; (d) OST; (e) OST
combined with SST; (f) OST combined with RM; (g) Proposed product-ST; (h) Proposed
product-ST combined with SST; (i) Proposed product-ST combined with SST

provide excellent visualization of shifting pattern of frequencies. The product-ST com-
bined with SST provides better frequency resolution than that of OST combined with
SST. The product-ST combined with RM provides better time and frequency resolution
as compared to other shown TFRs. This TFR can be considered as a close match of ideal
behaviour of frequency shifting pattern (from 1.3 Hz to 0.9 Hz during 5-16 seconds, and
a constant frequency of approx. 1 Hz from 16 to 34 seconds after losing its stiffness
permanently) during earthquake.

6.4.3 Case Study 3: Analysis of Northridge Earthquake Data

In this case study, the considered signal is Northridge earthquake data (17 January 1994,
Magnitude= 6.7, distance approx. 34 kilometer), recorded at Burbank ten-storey residen-
tial building roof center. This structure is a ten-storey residential building constructed in
1974. At the time of earthquake, the building was instrumented with 16 accelerometers,
on four levels (first, fourth, and eighth floors, and roof) in the building. Severe cracks have
been reported in the structure due to the Northridge earthquake. The data was recorded
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Fig. 6.3: Comparison of different TFA tools for Northridge earthquake data; (a)
Northridge earthquake data; TFR of (b) Conventional ST; (c) 3PST; (d) OST; (e) OST
combined with SST; (f) OST combined with RM; (g) Proposed product-ST; (h) Proposed
product-ST combined with SST; (i) Proposed product-ST combined with SST

by the accelerometer on the top of the structure for around 50 seconds. The peak ground
acceleration is 511.99 cm/s2. The p wave arrival is at t = 4 second.

The data is considered for t = 0 − 25 seconds for analysis as shown in Fig. 6.3(a).
The sampling frequency is 50 Hz. The frequency shifting pattern in Northridge data can
be interpreted in three different regions. A constant frequency of 1.75 Hz is observed at
t = 4 second. The data has an exponential decay in frequency from t = 4 seconds to
t = 11 seconds. A constant frequency pattern is observed after t = 11 seconds which
indicates a permanent loss of stiffness.

Fig. 6.3 compares different TFA tools used for analyzing frequency shifting pattern
at Burbank during Northridge earthquake. The TFR of ST shown in Fig. 6.3(b), pro-
vides poor time and frequency localization. Therefore, it is unable to interpret the exact
frequency and event’s initiation time. The TFR of 3PST is shown in Fig. 6.2(c). It can
be observed that the frequency domain smearing is less as compared to conventional ST.
However, it is unable to precisely localize the frequency component and its shifting pat-
tern. The TFR of OST shown in Figs. 6.3(d) provides better time and frequency resolution
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than that of conventional ST and 3PST. The TFR of OST combined with SST and RM,
shown in Fig. 6.3(e) and 6.3(f), respectively, further improves the time and frequency
resolution in the TFR of OST. The TFR of product-ST is shown in Fig. 6.3(g). The
window parameters in TST and BST are chosen so as to maximize CM. It provides good
time and frequency resolution as compared to other conventional counterparts. The noise
effect in accelerometer data is also decimated significantly. The TFR of product-ST com-
bined with SST and RM shown in Fig. 6.3(h) and 6.3(i), respectively provide significant
improvement as compared to its OST counterpart. The product-ST combined with RM
provides better time and frequency resolution as compared to other shown TFRs. This
TFR can be considered as a close match of ideal behaviour of frequency shifting pattern
(from 1.8 Hz to 1.3 Hz during t = 4 − 12 seconds and a constant frequency of approx.
1.65 Hz after losing its stiffness permanently) during Northridge earthquake.

6.5 Conclusion

In this chapter, a novel approach of OST combined with RM and SST, a highly con-
centrated product-ST and product-ST combined with RM and SST are proposed. The
product-ST is obtained by multiplying the two TFRs of proposed variant of ST in chapter
3, namely TST and BST. The TST has the ability to resolve two components precisely in
time while having optimal possible energy concentration in frequency. The BST is able
to resolve two frequency components precisely in frequency. Therefore, the product-TFR
is having excellent time and frequency resolvable capability. It also decimates the effect
of noise in the signal. One of the limitations of the proposed product-ST is that it looses
the reconstruction ability of ST as it is obtained through multiplying the two TFRs of ST
which results in phase distortion.

The post processing methods such as SST and RM improves the TFR resolution. The
concepts of SST and RM are also incorporated in product-ST. The performance of OST
and product-ST along with RM and SST is evaluated for detection of very closely spaced
power quality disturbances and frequency shifting pattern in structural buildings during
earthquake. It is found that, the product-ST combined with RM and SST outperform the
OST combined with RM and SST.
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Chapter 7

Conclusions and Future Scope

The research work discussed in this dissertation focuses on maximization of energy con-
centration in TFR of the ST. Previous chapters have reported the entire work carried out
in this dissertation. This chapter finally summarizes the conclusions that have been drawn
from comprehensive result analysis and observations. Also, it recommends the directions
for future studies.

7.1 Conclusions

As a preliminary task, two optimally concentrated time-limited and band-limited windows
have been proposed, and their associated properties have been illustrated. These proposed
windows have been extended to develop two variants of ST, namely TST and BST for
better analysis of the time-limited and band-limited signals, respectively. The proposed
TST has the ability to precisely localize the signals in time domain while maximizing the
energy concentration in frequency domain. The TST can potentially be helpful in precise
detection of event initiation and termination in signals such as heart rate signals, p and
s waves in seismology, etc. The proposed BST has the ability to precisely localize the
signals in a given band while maximizing the energy concentration in time domain. The
BST is helpful in analysis of band-limited EEG signals and detection of harmonics in
power quality disturbances.

In the second objective, the problem of maximally achievable energy concentration
simultaneously in both time and frequency domains has been formulated for discrete time
scenario. The maximum achievable trade-off between time and frequency domain energy
concentration has been deduced. The obtained trade-off provides flexibility in designing
the window according to required energy concentration in time and frequency domain.
An optimal window, named OCDW for discrete time continuous frequency scenario has
been proposed, and its application in IF estimation for multicomponent signal in noisy
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environment has been shown. Similarly, an OCDW for discrete time discrete frequency
scenario has also been proposed. The proposed OCDW has been extended to develop
OST. A novel fair scaling criterion has also been proposed for OST. The performance
of OST has been tested for detecting multiple power quality disturbances. The proposed
OCDW has the ability to maximize the energy concentration in narrow intervals in both
time and frequency domains. The proposed scaling criterion provides fair trade-off be-
tween time and frequency domain resolution.

The third objective of the thesis aims at designing asymmetrical window based ST for
sharp detection of onset of events in signals. An AMKW has been proposed. The width
parameter of conventional Kaiser window is modified to provide frequency dependent
asymmetry. The proposed AMKW has been extended to design AMKW based ST. The
performance of the proposed AMKW based ST has been shown in a case study for sharp
detection of onset of seismic events in seismic signals. The proposed AMKW based ST
provides sharp detection of events in front direction while having minimum degradation
in backward direction. In the proposed AMKW based ST, there is minimum degradation
in frequency resolution as compared to other existing asymmetrical window based STs
for event detection.

In chapter 6, the ability of RM and SST to squeeze the spreaded energy to true IF
coefficients has been discussed, and further incorporated in the OST. The reassigned and
synchrosqueezing OST provide very narrow ridges in the TFR as compared to the OST. A
novel concept of product-ST has also been proposed to improve the TFR visualization for
closely spaced components in time and frequency. The proposed product-ST is obtained
by multiplying the TFRs of TST and BST. The proposed product-ST has the ability to
resolve very closely spaced signal components in time and frequency. The concept of
RM and SST has also been introduced in the product-ST. The efficacy of the product-ST
along with RM and SST has been illustrated in analysis of signals having multiple power
quality disturbances. The proposed approach is able to detect closely spaced harmonics
as well as very short interruptions.

7.2 Future Scope

Maximization of the energy concentration in TFR of linear transforms specially ST can
lead to better analysis of practical signals of various disciplines. Accordingly, there is
always a possibility for improvement in this area of research. With regard to the overall
work presented in this thesis, following suggestions are stated for future investigations.

The proposed TST and BST in Chapter 3 are very effective variants of ST for analyz-
ing the time-limited and band-limited signals. However, the used scaling criterion is linear
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as used in conventional ST. New scaling criteria can be designed for further improving
the time-frequency resolution in TST and BST.

The proposed OCDW in Chapter 4 can replace existing windows where very precise
resolution is desired in both time and frequency domain. The window can be utilized in
various applications such as ECG and EEG signal analysis, seismic signal analysis, ma-
chine fault detection, etc. The proposed approach for energy concentration maximization
in time and frequency domain simultaneously can be extended to asymmetrical windows
to facilitate sharp detection of events in time series.

The proposed AMKW based ST in Chapter 5 has the ability to sharply detect the onset
of the events. The performance of AMKW based ST can be tested for detection of events’
arrival in multiple power quality disturbances such as islanding, interruption, etc.

The proposed product-ST along with RM and SST in Chapter 6 has the ability to
resolve very closely spaced signal components in time and frequency. The concept of
high-order synchrosqueezing and reassignment can be also be used in product-ST for
further improvement in time and frequency resolution.
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Lemma 1. Any eigenvector wi of the matrix P corresponding to eigenvalue λi, satisfies

Diwi = 0N (7.1)

and
DiPwi = 0N (7.2)

where Di = (λiIN −P)†. IN is an N ×N identity matrix and 0N is an N × 1 null vector.
Proof: The eigenvalue decomposition of P can be represented as

P = UΣUT (7.3)

where U is an orthogonal matrix such that U−1 = UT and UUT = UTU = IN . The
ith column of U denotes the eigenvector wi, and Σ is a diagonal matrix whose diagonal
elements represent the corresponding eigenvalues, i.e. [Σ]i,i = λi. Using (7.3), Di can be
represented as

Di = (λiIN −UΣUT )† = URiUT (7.4)

where Ri = (λiIN−Σ)† is a diagonal matrix whose diagonal elements can be represented
as

[Ri]jj =

{
1

λi−λj , i 6= j

0, i = j
(7.5)

Using (7.4), the LHS of (7.1) can be written as

Diwi = URiUTwi = URidi (7.6)

where di = UTwi is an N × 1 vector, defined as

[di]j =

1, i = j

0, elsewhere
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Since Ridi = 0N , (7.6) leads to (7.1). Similarly by using (7.3) and (7.4), LHS of
(7.2) can be written as

DiPwi = U(λiIN −Σ)†UTUΣUTwi = UCidi (7.7)

where Ci = (λiIN − Σ)†Σ is a diagonal matrix whose diagonal elements can be repre-
sented as

[Ci]j,j =

{
λj

λi−λj , i 6= j

0, i = j
(7.8)

Since Cidi = 0N , (7.7) leads to (7.2).

Lemma 2. The first derivative of the eigenvalue λi associated with eigenvector wi of the
matrix P can be obtained as

dλi
dµ

= wT
i

(
−A(B,N) + T(M,N)

)
wi (7.9)

and the first derivative of eigenvector wi can be obtained as

dwi

dµ
= Di

(
−A(B,N) + T(M,N)

)
wi (7.10)

Proof: The eigenvalue equation of P can be written as

Pwi = λiwi (7.11)

Taking the first derivative of (7.11) with respect to µ, we obtain

P

(
dwi

dµ

)
+

(
dP

dµ

)
wi = λi

(
dwi

dµ

)
+

(
dλi
dµ

)
wi (7.12)

Using the symmetric property of matrix P, (7.11) can be rewritten as

wT
i P = λiw

T
i (7.13)

Premultiplying (7.12) by wT
i and thereafter using (7.13), (7.12) leads to (7.9). Eq. (7.12)

can be rearranged as

(λiIN −P)

(
dwi

dµ

)
=

(
dP

dµ

)
wi −

(
dλi
dµ

)
wi (7.14)

Premultiplying (7.14) by Di, and thereafter using (7.1) leads to (7.10).
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Theorem 1. For large values of N (ideally N →∞), following properties hold true.

1. A(B,N)A(B,N) = A(B,N)

2. α2 +β2−2αβ

√
λ

(M)
0 = 1−λ(M)

0 , where λ(M)
0 is the maximum eigenvalue of matrix

A(B,M)

3. The maximum value of product (α2β2) is achieved at µ = 0.5, where α2 = β2

(µopt = µeq = 0.5).

Proof: The eigenvalue decomposition of matrix A(B,N) can be represented as A(B,N) =

ŪΣ̄ŪT where Ū is an orthonormal matrix such that ŪT Ū = IN , and Σ̄ is a diagonal
matrix containing eigenvalues of A(B,N) as diagonal elements. For large values of N ,
all eigenvalues of A(B,N) cluster around 0 or 1 [174]. It implies that Σ̄2 = Σ̄. Thus,
A(B,N)A(B,N) can be evaluated as

A(B,N)A(B,N) = ŪΣ̄ŪT ŪΣ̄ŪT = ŪΣ̄2ŪT = A(B,N)

Pre-multiplying (4.19) by T(M,N) leads to

(1− µ)T(M,N)A(B,N)w0 = (λ0 − µ)T(M,N)w0 (7.15)

Similarly, pre-multiplication of A(B,N) to (4.19) results in

µA(B,N)T(M,N)w0 = (λ0 − (1− µ)) A(B,N)w0 (7.16)

Using (4.19) and (7.16), we can obtain

T(M,N)A(B,N)T(M,N)w0 = λ
(M)
0 T(M,N)w0 (7.17)

where
λ

(M)
0 =

(λ0 − µ) (λ0 − (1− µ))

µ(1− µ)
(7.18)

denotes the maximum eigenvalue of matrix A(B,M). Pre-multiplying (4.19), (7.15) and
(7.16) with wT

0 , we obtain

(1− µ)β2 + µα2 = λ0 (7.19)

(1− µ)wT
0 T(M,N)A(B,N)w0 = (λ0 − µ)α2 (7.20)

µwT
0 A(B,N)T(M,N)w0 = (λ0 − (1− µ)) β2 (7.21)
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Since wT
0 T(M,N)A(B,N)w0 = wT

0 A(B,N)T(M,N)w0, from (7.20) and (7.21), we obtain

(λ0 − µ)

(1− µ)
α2 =

(λ0 − (1− µ))

µ
β2 (7.22)

Substituting (7.19) in (7.22), we get

µ =
β
√

1− β2

α
√

1− α2 + β
√

1− β2
(7.23)

Substituting (7.19) and (7.23) in (7.18), we obtain

α2 + β2 − 2αβ

√
λ

(M)
0 = 1− λ(M)

0 (7.24)

This represents the theoretical upper bound on simultaneously achievable energy con-
centrations [57]. Substituting (7.23) in (4.26), results in α2 = β2. Therefore, µ = 0.5

maximizes the product (α2β2) of time and frequency domain energy concentrations.

Lemma 3. B(L,N)B(L,N) = B(L,N)

Proof: The (m,n)th element of matrix B(L,N)B(L,N) can be represented as

[
B(L,N)B(L,N)

]
m,n

=
1

N2

N∑
p=1

L∑
a=−L

L∑
b=−L

e
j2πam
N e

−j2πap
N e

j2πbp
N e

−j2πbn
N

=
1

N2

L∑
a=−L

L∑
b=−L

e
j2πam
N e

−j2πbn
N (Nδ(a− b))

=
1

N

L∑
k=−L

e
j2πa[m−n]

N (using a = b = k)

=
[
BL,N

]
m,n

(7.25)

where δ(·) represents Kronecker delta function.

116



Bibliography

[1] S. Deb and S. Dandapat, “Fourier model based features for analysis and classifi-
cation of out-of-breath speech,” Speech Communication, vol. 90, pp. 1–14, June
2017.

[2] B. Boashash, Time-frequency signal analysis and processing: A comprehensive

reference. Academic Press, 2015.

[3] S. M. Mohammadi, S. Kouchaki, M. Ghavami, and S. Sanei, “Improving time-
frequency domain sleep EEG classification via singular spectrum analysis,” Jour-

nal of Neuroscience Methods, vol. 273, pp. 96 – 106, 2016.

[4] M. Azarbad, H. Azami, S. Sanei, and A. Ebrahimzadeh, “A time-frequency ap-
proach for EEG signal segmentation,” Journal of AI and Data Mining, vol. 2, no. 1,
pp. 63–71, 2014.

[5] F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency
signal representations,” IEEE Signal Processing Magazine, vol. 9, no. 2, pp. 21–67,
April 1992.

[6] Hae-Gil Hwang, Hyun-Ju Choi, Byoung-Doo Kang, Hye-Kyoung Yoon, Hee-
Cheol Kim, Sang-Kyoon Kim, and Heung-Kook Choi, “Classification of breast tis-
sue images based on wavelet transform using discriminant analysis, neural network
and SVM,” in 7th International Workshop on Enterprise networking and Comput-

ing in Healthcare Industry (HEALTHCOM), June 2005, pp. 345–349.

[7] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Investigation of vibration sig-
natures for multiple fault diagnosis in variable frequency drives using complex
wavelets,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 936–945,
Feb 2014.

[8] M. Sharma, A. Dhere, R. B. Pachori, and U. R. Acharya, “An automatic detec-
tion of focal EEG signals using new class of time-frequency localized orthogonal
wavelet filter banks,” Knowledge-Based Systems, vol. 118, pp. 217–227, 2017.

117



Bibliography

[9] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spec-
trum: The S-transform,” IEEE Transactions on Signal Processing, vol. 44, no. 4,
pp. 998–1001, Apr 1996.

[10] N. V. George, “S transform: Time frequency analysis & filtering,” Ph.D. disserta-
tion, 2009.

[11] P. K. Dash, B. K. Panigrahi, and G. Panda, “Power quality analysis using S-
transform,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 406–411,
April 2003.

[12] R. B. Pachori and P. Sircar, “A new technique to reduce cross terms in the Wigner
distribution,” Digital Signal Processing, vol. 17, no. 2, pp. 466–474, 2007.

[13] N. Liu, J. Gao, B. Zhang, F. Li, and Q. Wang, “Time-frequency analysis of seismic
data using a three parameters S-transform,” IEEE Geoscience and Remote Sensing

Letters, vol. 15, no. 1, pp. 142–146, Jan 2018.

[14] W. Xue, J. Zhu, X. Rong, Y. Huang, Y. Yang, and Y. Yu, “The analysis of ground
penetrating radar signal based on generalized S- transform with parameters opti-
mization,” Journal of Applied Geophysics, vol. 140, pp. 75 – 83, May 2017.

[15] N. V. George, K. F. Tiampo, S. S. Sahu, S. Mazzotti, L. Mansinha, and G. Panda,
“Identification of glacial isostatic adjustment in eastern Canada using S transform
filtering of GPS observations,” Pure and Applied Geophysics, vol. 169, no. 8, pp.
1507–1517, Aug 2012.

[16] N. V. George, S. S. Sahu, L. Mansinha, K. F. Tiampo, and G. Panda, “Time lo-
calised band filtering using modified S-transform,” in International Conference on

Signal Processing Systems, May 2009, pp. 42–46.

[17] S. Mishra, C. N. Bhende, and B. K. Panigrahi, “Detection and classification of
power quality disturbances using S-transform and probabilistic neural network,”
IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 280–287, Jan 2008.

[18] J. Li, Z. Teng, Q. Tang, and J. Song, “Detection and classification of power quality
disturbances using double resolution S-transform and DAG-SVMs,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 65, no. 10, pp. 2302–2312, Oct
2016.

[19] M. V. Reddy and R. Sodhi, “A modified S-transform and random forests-based
power quality assessment framework,” IEEE Transactions on Instrumentation and

Measurement, vol. 67, no. 99, pp. 78–89, Nov 2017.

118



Bibliography

[20] L. Mansinha, R. Stockwell, R. Lowe, M. Eramian, and R. Schincariol, “Local S-
spectrum analysis of 1-D and 2-D data,” Physics of the Earth and Planetary Inte-

riors, vol. 103, no. 3, pp. 329 – 336, Nov 1997.

[21] K. F. Tiampo, D. Assefa, J. Fernandez, L. Mansinha, and H. Rasmussen, “Post
seismic deformation following the 1994 Northridge earthquake identified using the
localized Hartley transform filter,” Pure and Applied Geophysics, vol. 165, no. 8,
pp. 1577–1602, 2008.

[22] P. K. Dash, B. K. Panigrahi, D. K. Sahoo, and G. Panda, “Power quality disturbance
data compression, detection, and classification using integrated spline wavelet and
S-transform,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 595–600,
April 2003.

[23] S. R. Samantaray, B. K. Panigrahi, P. K. Dash, and G. Panda, “Power transformer
protection using S-transform with complex window and pattern recognition ap-
proach,” IET Generation, Transmission Distribution, vol. 1, no. 2, pp. 278–286,
March 2007.

[24] S. R. Samantaray, A. Samui, and B. Chitti Babu, “S-transform based cumulative
sum detector (CUSUM ) for islanding detection in distributed generations,” in 2010

Joint International Conference on Power Electronics, Drives and Energy Systems

Power India, Dec 2010, pp. 1–6.

[25] S. R. Samantaray, A. Samui, and B. C. Babu, “Time-frequency transform-based
islanding detection in distributed generation,” IET Renewable Power Generation,
vol. 5, no. 6, pp. 431–438, November 2011.

[26] B. Biswal, “ECG signal analysis using modified S-transform,” Healthcare Tech-

nology Letters, vol. 4, no. 2, pp. 68–72, May 2017.

[27] J. R. Mitchell, T. C. Fong, B. G. Goodyear, and H. Zhu, “Filtering artifact from
fMRI data using the Stockwell transform,” Mar. 10 2009, uS Patent 7,502,526.

[28] J. R. Mitchell, T. C. Fong, R. Brown, and H. Zhu, “Distributed vector processing
of the S transform for medical applications,” Jul. 31 2007, uS Patent 7,251,379.

[29] B. G. Goodyear, H. Zhu, R. A. Brown, and J. R. Mitchell, “Removal of phase ar-
tifacts from fMRI data using a Stockwell transform filter improves brain activity
detection,” Magnetic Resonance in Medicine: An Official Journal of the Interna-

tional Society for Magnetic Resonance in Medicine, vol. 51, no. 1, pp. 16–21, 2004.

119



Bibliography

[30] S. Drabycz, R. G. Stockwell, and J. R. Mitchell, “Image texture characterization
using the discrete orthonormal S-transform,” Journal of Digital Imaging, vol. 22,
no. 6, p. 696, Aug 2008.

[31] K. Eftaxias and S. Sanei, “Discrimination of task-related EEG signals using diffu-
sion adaptation and S-transform coherency,” in 2014 IEEE International Workshop

on Machine Learning for Signal Processing (MLSP), Sep. 2014, pp. 1–6.

[32] A. Chatterjee, R. Fournier, A. Nait-Ali, and P. Siarry, “A postural information-
based biometric authentication system employing S-transform, radial basis func-
tion network, and extended Kalman filtering,” IEEE Transactions on Instrumenta-

tion and Measurement, vol. 59, no. 12, pp. 3131–3138, Dec 2010.
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[40] E. Sejdić, I. Djurović, and J. Jiang, “A window width optimized S-transform,”
EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1, pp. 1–13,
Dec 2007.

120



Bibliography

[41] C. R. Pinnegar and L. Mansinha, “The Bi-Gaussian S-transform,” SIAM J. Sci.

Comput., vol. 24, no. 5, pp. 1678–1692, May 2002.

[42] ——, “The S-transform with windows of arbitrary and varying shape,” Geophysics,
vol. 68, no. 1, pp. 381–385, 2003.

[43] W. Yao, Z. Teng, Q. Tang, and P. Zuo, “Adaptive dolph-chebyshev window-based
S-transform in time-frequency analysis,” IET Signal Processing, vol. 8, no. 9, pp.
927–937, Dec 2014.

[44] C. Simon, S. Ventosa, M. Schimmel, A. Heldring, J. J. Danobeitia, J. Gallart, and
A. Manuel, “The S-transform and its inverses: Side effects of discretizing and
filtering,” IEEE Transactions on Signal Processing, vol. 55, no. 10, pp. 4928–4937,
Oct 2007.

[45] F. Auger and P. Flandrin, “Improving the readability of time-frequency and time-
scale representations by the reassignment method,” IEEE Transactions on Signal

Processing, vol. 43, no. 5, pp. 1068–1089, 1995.

[46] F. Auger, P. Flandrin, Y. Lin, S. McLaughlin, S. Meignen, T. Oberlin, and H. Wu,
“Time-frequency reassignment and synchrosqueezing: An overview,” IEEE Signal

Processing Magazine, vol. 30, no. 6, pp. 32–41, Nov 2013.

[47] Q. Wang, J. Gao, N. Liu, and X. Jiang, “High-resolution seismic time-frequency
analysis using the synchrosqueezing generalized S-transform,” IEEE Geoscience

and Remote Sensing Letters, vol. 15, no. 3, pp. 374–378, March 2018.

[48] W. Liu, S. Cao, Z. Wang, K. Jiang, Q. Zhang, and Y. Chen, “A novel approach for
seismic time-frequency analysis based on high-order synchrosqueezing transform,”
IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 8, pp. 1159–1163, Aug
2018.

[49] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet transforms: An
empirical mode decomposition-like tool,” Applied and Computational Harmonic

Analysis, vol. 30, no. 2, pp. 243–261, 2011.
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Birkhäser. Springer, New York, London, 2013.

[147] Z. Khalid and R. A. Kennedy, “Maximal multiplicative spatial-spectral concentra-
tion on the sphere: Optimal basis,” in IEEE International Conference on Acoustics,

Speech and Signal Processing, Brisbane, QLD, Australia, April 2015, April, pp.
4160–4164.

[148] M. A. Davenport and M. B. Wakin, “Compressive sensing of analog signals us-
ing discrete prolate spheroidal sequences,” Applied and Computational Harmonic

Analysis, vol. 33, no. 3, pp. 438 – 472, 2012.

130



Bibliography

[149] Z. Zhu and M. B. Wakin, “Wall clutter mitigation and target detection using discrete
prolate spheroidal sequences,” in 3rd International Workshop on Compressed Sens-

ing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa),
Pisa, Italy, June 2015, June, pp. 41–45.

[150] K. Q. Lepage and S. Ching, “On the output of nonlinear systems excited by discrete
prolate spheroidal sequences,” IEEE Transactions on Automatic Control, vol. 62,
no. 11, pp. 5780–5787, Nov 2017.
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