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Abstract

Last few decades have seen the rapid advances and diffusion of technologies in science, engineer-
ing, robotics, biomedical, economics and other fields. Diverse technologies are incorporated in
industrial processes to increase the efficiency, which in turn alleviated the complexity of the sys-
tems. Highly specialized skills and expert knowledge are required to design, develop, operate,
and control such complex systems. Along with this, the uncertainties caused by inaccurate mod-
eling, external disturbances, and variations of working conditions influence the system perfor-
mance. Eventually, design and development of robust control system with intelligent computa-
tional tools is essentially required to get desired performance in efficient manner. In recent years,
the concept of soft computing based intelligent control has emerged as an efficient tool to en-
hance the existing non-linear, optimal, adaptive, and stochastic control methods. The intelligent
control can be achieved through the involvement of various artificial intelligence (AI) and soft
computing approaches utilized for closed-loop feedback control to improve system performance,
reliability, and efficiency. The major soft computing techniques are fuzzy logic system, meta-
heuristic algorithms (MAs), chaos theory, neurocomputing, and probabilistic reasoning. Various
soft computing techniques and their fusions are commonly used to enhance the intelligent control
tools by incorporating human expert knowledge in computing processes.

The field of soft computing is always growing by contributions from the large community of
researchers and provides an exceptional opportunity to advance its methodology and applications.
Consequently, there is a great scope and motivation to ameliorate, design, hybridize, and apply
these techniques. This fact motivates us to present some significant improvements and novel
contributions to major components of soft computing like fuzzy logic system and MAs. The
main aim of the overall work presented in this thesis is to enhance the soft computing techniques
to improve the performance of the control system design. The complete work in this thesis is
distinguished by four research objectives, given as (a) Design efficient optimization algorithm
for enhancing the performance of complex systems, (b) Performance analysis of the proposed
algorithm for optimization of different controller design problems, (c) Design of interval type-2
fuzzy precompensated PID (IT2FP-PID) controller applied to 2-link robotic manipulator with
variable payload, and (d) Constrained multi-objective optimization (MOO) approach for robust
controller design and performance analysis.

The tuning of controllers is considered as a high-dimensional, complex, multimodal numer-
ical optimization problem, as many locally optimal solutions can be obtained for different com-
binations of the parameter values. Thus, it is always a challenging task for designers to get the
optimal tuning parameters. MAs are extensively considered for solving such control system de-
sign problems to get the best performance and robust response. Some common deficiencies faced
by the majority of population-based MAs are lack of exploration ability, slow and premature
convergence behaviour, and stagnation to local optima. Considering the above-stated problems,



important features of two well established MAs, grey wolf optimizer (GWO) and artificial bee
colony algorithm (ABC), are hybridized to develop an improved GWO-ABC algorithm as the
first objective of the thesis. In GWO-ABC algorithm, information sharing property of employed
bees in ABC is adopted with conventional GWO algorithm to comprehend the benefits of both
the algorithms. A new population initialization strategy is introduced to get widespread range
solutions. These strategies are incorporated to overcome the shortcomings of the conventional
GWO algorithm by improving exploration capability, convergence rate, and reduce the chances
of entrapment at local optima. The performance of the GWO-ABC algorithm is validated through
extensive experimental analysis of 27 benchmark functions and comparisons with 5 other stan-
dard intelligent algorithms.

After successfully substantiating that GWO-ABC algorithm is an efficient algorithm for solv-
ing complex test functions, it is applied to control system design problem for linear and non-linear
test bench process plants. Here, the GWO-ABC algorithm is applied to minimize the objective
function so that optimal time-domain specifications could be achieved. All the design require-
ments like low overshoot, better rise time, faster settling time, minimum steady-state error, and
performance index are evaluated and compared to other state-of-the-art algorithms. Further, the
conventional GWO algorithm is improved by incorporating the communication signalling strat-
egy used in cooperative foraging of wolves. The leadership hierarchy approach and communi-
cating behaviours are merged to present improved cooperative foraging based GWO (CFGWO)
algorithm. New acceleration coefficient is proposed to balance the exploration and exploitation
behaviour throughout the iterations. The proposed algorithm is examined on a real-world op-
timization problem of controller designing for trajectory tracking problems of a 2-link robotic
manipulator with payload at tip. The comparative graphs of trajectory tracking performance, the
path traced by the end-effector, and X and Y coordinate versus time variations against their de-
sired reference curves are plotted. Also, the plots of position errors and controller output for both
the links are also presented.

As mentioned earlier, many of the real-world industrial processes are influenced by large
amounts of uncertainties due to dynamic unstructured environments. The type-2 fuzzy logic
controllers with type-2 fuzzy sets are highly recognized to deliver a satisfactory performance in
the face of uncertainty and imprecision than their type-1 counterparts. In order to establish its
applicability, an efficient IT2FP-PID controller is presented for trajectory tracking of a 2-link
robotic manipulator with variable payload. The controller is comprised of unique features of in-
terval type-2 fuzzy precompensated controller cascaded with a conventional PID controller. The
fuzzy logic controller (FLC) based precompensator is incorporated to regulate the control signal
to compensate the undershoots and overshoots in the system output when the system has un-
known non-linearities. Tuning of control parameters and the antecedent MF structures emerged
as a complex, high-dimensional, and constrained optimization problem. Hence, a systematic
strategy for optimizing the controller parameters along with scaling factors and the antecedent
MF parameters for minimization of performance metric integral time absolute error (ITAE) is
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presented. The structures of MFs are also optimized to get maximum benefits of footprint of
uncertainty (FOU) in type-2 FLC. Prominently, GWO-ABC algorithm is utilized for solving this
high-dimensional constrained optimization problem. In order to witness effectiveness, the perfor-
mance is compared with type-1 fuzzy precompensated PID (T1FP-PID), fuzzy PID (FPID), and
conventional PID controllers. The efficacy of the proposed controller is also validated through
exhaustive robustness analysis in presence of distinct non-linear dynamics such as (i) payload
variations, (ii) model uncertainties, (iii) disturbance in signals, and (iv) random noise at feedback
path. After experimental outcome, it is inferred that IT2FP-PID controller outperforms others
and can be adopted as a viable alternative for controlling non-linear complex systems with higher
uncertainties. As a whole, the work in this objective manifests that (a) additional tuning pa-
rameters provide extra degree of freedom (DOF) to get better performance in optimal controller
design, (b) in case of IT2-FLC, the systematic strategy to optimize the shapes of MFs derive max-
imum benefit of FOU to handle uncertainty (c) the proposed IT2FP-PID controller revealed as
viable alternative to control complex non-linear systems with high uncertainties, (d) GWO-ABC
algorithm can efficiently solve the low- and high-dimensional constrained optimization problems.

The last part of the thesis is dedicated to investigate the applicability of MOO approach for
tuning of controller parameters for multi-variable, constrained, and complex control systems.
In the control system design, minimization of performance error indices for set-point and dis-
turbance are considered as conflicting objective functions with various constraints. A simple
design and parameter tuning strategy for 2-DOF fractional order PID (2-DOF-FOPID) controller
is presented using MOO approach. A fast and elitist non-dominated sorting genetic algorithm
(NSGA-II) with constraint handling methodology is utilized and the sensitivity function is used
as a constraint. The major robustness investigations are carried for minimization of integrated ab-
solute error (IAE) for both set-point tracking and external disturbance rejection. The comparative
performance evaluation is assessed against equivalent counterparts and found that the proposed
2-DOF-FOPID controller performs with superior results.

ix
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Chapter 1

Introduction

Control system design has become an essential and fundamental domain of today’s modern in-
dustrial automation system. Control requirements and designs are typically based on the config-
uration, specifications, identification of system under control, and the desired system goals. The
control goals include faster and stable response that is able to retain acceptable performance lev-
els under major unexpected uncertainties. However, most of the real-world systems are complex,
non-linear, ill-structured, and have excessive parameter variations. As the precise mathematical
models of such systems are not available, designing a proper controller for such systems is a chal-
lenging task and requires modern techniques, highly specialized skills, and expert knowledge. In
previous years, classical control theory and conventional proportional-integral-derivative (PID)
controller schemes were applied to control the systems. However, it has been observed in many
studies that classical control strategies generally do not work well for high-order complex sys-
tems [1].

In last few decades, remarkable progress has been made in both the theory and application
of all important areas of control systems. Recently, intelligent control has emerged as one of the
efficient tools to deal with the increasing complexity of various processes in variety of engineer-
ing and other applications. Intelligent control can be achieved through proper understanding of
system under control and involvement of various soft computing approaches. The principal con-
stituents of soft computing are fuzzy logic, evolutionary optimization algorithms, chaos theory,
neurocomputing, and probabilistic reasoning [2]. Soft computing constituents and their hybrid
techniques are commonly used to incorporate human expert knowledge in computing processes
for intelligent control. Knowing the potential of these strategies, many researchers proposed var-
ious model-based intelligent control strategies using different soft computing techniques. These
design approaches involve various phases such as modeling, analysis, simulation, implementa-
tion and verification. Many of these conventional and model-based methods have found their way
into practice and provide satisfactory and robust solutions to the spectrum of complex systems
under various uncertainties. These techniques render a greater degree of autonomy to uncertain
complex systems than the available usual control schemes. Thus, intelligent controllers play an
important role in robotic systems, aerospace, chemical industry, and power plants.
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This chapter further explains the general structure of the control system and associated chal-
lenges in its design. Various soft computing techniques used in control system design are dis-
cussed in Section 1.3. Motivation for overall work is presented in Section 1.4. The thesis contri-
bution is briefed in Section 1.5 followed by organization of thesis in last section.

1.1 Basics of Control System Design

The performance of control system is evaluated by its ability to determine (a) process response
reasonably close to desired values without strong demands on specifications, (b) proper regu-
lation of external noise and disturbances, (c) realistic actuator signal that computes the control
action, and (d) robustness against various uncertainties. These properties are established using
a variety of control techniques that capture the essential dynamics of the system and permit the
exploration of possible behaviors in the presence of uncertainty. The system performance can
be influenced externally by noise in sensing and actuation subsystems, dynamic non-linearity,
external disturbances, ambiguity and vagueness in systems structural and governing parameters.
These factors affect the underlying system operation and intensify the complexity of control sys-
tem design procedure. Hence, meticulous cyclic efforts of modeling, design, simulation, testing,
and implementation of control system are required to obtain the optimal parameters for proper
controller design [1].

1.1.1 Structure of Control System

The general block diagram of control system is represented in Fig. 1.1 which depicts the essential
modules like system, controller, and tuning strategy. Along with this, the sources of uncertainties
like disturbance, feedback noise, and model uncertainty are demonstrated. The main principle
of working of this system depends upon the proper selection of controller parameters to generate
the control law so that to get the desired performance. Here, the controller output is manipulated
and applied to the system to produce the desired output response. In order to achieve this, the
proper tuning of control parameters is a fundamental goal.

Controller 

Tuning 

 Strategy 

 + 
Desired  

Response 
 - 

Performance 

Metric 

Actual 

Response 𝒆𝒓𝒓𝒐𝒓 

Disturbance Model Uncertainty 

 + 

System 

Noise 

 + 

Fig. 1.1: General structure of control system.
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The main aim of controller tuning is to search for optimal controller parameters to satisfy a set
of specifications and design objectives. In order to derive a successful controller, characteristics
like load disturbance rejection/attenuation, measurement noise immunity/attenuation, set point
follow-up, robustness to model uncertainties are mainly considered [3]. Different time-domain
and frequency-domain performance metrics are used as per requirement of desired specifications.

1.1.2 Challenges in Controller Design

The controller design procedure has certain issues and challenges other than external disturbance,
model uncertainty, and noise which are shown in the Fig. 1.1. In the following paragraphs, we
describe the major challenges that are considered in the controller design procedure.

Robustness : Last few decades have witnessed the rapid advances and diffusion of technolo-
gies in science, engineering, robotics, biomedical, economics and other fields [4]. Therefore,
the complexity of such systems has increased and require highly specialized skills and knowl-
edge to manufacture, operate, and control such complex systems. Along with other problems,
uncertainties in overall system models arise frequently in number of different forms and affect
decision-making [5]. The information deficiency and imperfection of knowledge - due to im-
precise, contradictory, incomplete, vague, etc. or some other varying data - are considered as the
main cause of the uncertainty [6]. Uncertainty is divided as a) Model uncertainty: due to the vari-
ations in system structure parameters, b) Measurement uncertainty: due to the error on observed
quantities, and c) Linguistic uncertainty: due to vagueness in fuzzy rules modelling and informa-
tion transfer. Plant uncertainties are also classified as structured (parametric uncertainties) and
unstructured uncertainties. These uncertainties may severely degrade the performance and lead
to system instability. In control theory, robust control is an approach to design controller that ex-
plicitly deals with such uncertainties. It is necessary to design robust controllers to handle such
uncertain non-linear systems. Recently, many approaches including soft computing techniques
are used to design robust controllers [7].

Formulation of Objective Function : The proper selection and formulation of objective func-
tion play an important role in controller design procedure. Generally, the control system perfor-
mance is assessed by several time-domain and frequency-domain performance measures. Thus,
the composition of overall objective function should be done in accordance with the required
performance measures. Various time-domain performance indices, as defined in Section 2.3, are
utilized, and the effectiveness of the different controllers are evaluated. Every performance index
has certain specifications which define the response quality of the system.

One or more objective functions may be considered for particular control system design prob-
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lem. The generalized equation of the objective function for optimization problem is given as

Minimize / Maximize F(x) = ( f1(x), . . . , fm(x), . . . , fM(x))T (1.1)

Subject to


g j(x)≥ 0 j = 1,2, ...,J;
hk(x) = 0, k = 1,2, ...,K;
xL

i ≤ xi ≤ xU
i i = 1,2, ...,n.

 (1.2)

here m = 1,2, . . . ,M indicates the number of objectives. A solution of this problem can be ob-
tained from a decision vector x = (x1,x2, . . . ,xn)

T defined in the n dimensional decision space.
Each decision variable xi is constrained between lower bound xL

i and as upper bound xU
i . The

g j(x) and hk(x) are inequalities and equality constraints, respectively.

The above equations (Eqs. (1.1) and (1.2)) define the optimization problem with equality,
inequality, and side constraints. For M = 1, the problem is known as single objective optimization
(SOO) problem. While, for M = 2 or 3, the problem is known as a multi-objective optimization
(MOO) problem. Further, the problem with M > 3 are known as a many objective optimization
problem. In few cases, the weighted sum of different objectives in MOO problem is considered to
convert it to SOO problem. The objective functions for controller tuning problem are selected on
the basis of specifications delivering set-point following, load disturbance rejection attenuation,
robustness to model uncertainties, and measurement noise immunity attenuation.

Constraints : The control goals may have certain constraints in terms of limits of performance
measures and bounds of controller parameters. The minimum - maximum limits on the param-
eters are considered as a side bounds and defined by lower bound xL

i and as upper bound xU
i in

Eq. (1.2). In most of the systems, the maximum sensitivity function Ms is used for an effective
robustness analysis, its acceptable value is in between 1.4 to 2 [3]. These limitations in control
system design are formulated as constraints of the optimization problem. Several equality and
inequality constraints are required to satisfy during the design procedure [8]. Though different
constraint handling techniques have been suggested by researchers in literature, penalty function
based constrained optimization is widely applied. In penalty function method, the penalty is as-
signed to variables according to the depth of violation of feasibility defined by constraints. In
this way, penalized function is considered as new objective function to maintain feasibility of the
solutions [9].

Tuning Methodology : As discussed earlier, the procedure for tuning of controllers is exe-
cuted to obtain a optimal solution at the end of the optimization process. The process is executed
to satisfy some design objectives that are required for enhancing controllers performance and
capabilities. This is achieved through tuning of various controller parameters for minimum val-
ues of performance indices. As the conventional controllers are amended with several advance
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strategies, the tunable parameters have been largely increased. Therefore, the controller design
problems developed as high dimensional optimization problems to provide higher flexibility to
the designer. The tuning of controllers is an iterative process which finds the optimized parameter
values by converging the performance indices toward optimal values [10]. Though many famous
classical tuning techniques are available [3], they are not found suitable for these advance control
strategies with several parameters. The formulation of proper objective function from perfor-
mance indices is very crucial in such design problems. The selection of an appropriate tuning
strategy is also required to obtain optimal parameters in lower computational time [11]. It is
important to note here that, the high level knowledge of system dynamics is always required by
control system designer for tuning with either SOO or MOO algorithms.

1.2 Soft Computing Techniques in Control System Design

Prof. L. Zadeh introduced the concept of soft computing as the emergence of various computing
paradigms to incorporate human decision-making behaviour [12]. Mainly, the emphasis is given
to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness at low
solutions cost. Distinct soft computing methods such as fuzzy logic system, evolutionary com-
putation, neurocomputing, artificial neural network [13] and chaos theory, etc., are employed to
produce powerful hybrid intelligent systems.

Over the past decades, developments in soft computing methods have attracted considerable
research interest in control, automation, signal processing, system modeling, and other emerging
fields. Although the field of soft computing is continuously enhanced by contributions from the
large community of researchers, it always provides an exceptional opportunity to advance the
methodology and applications. In the similar spirit, the overall work presented in this thesis pro-
vides some important advancements and novel contributions to a growing area of soft computing
based control system design.

1.2.1 Fuzzy Logic based Control System

The field of control system is always developing and various control strategies and controller
structures have been suggested in past few decades to enhance the performance of systems under
control [14, 15]. Earlier studies reported the application of conventional proportional- integral-
derivative (PID) controllers in industrial applications because of their elementary design, easy
implementation, and low cost [16, 17]. On the other hand, recent studies in this field did not find
PID controllers suitable for complicated systems with uncertainty and non-linearity [18].

The incorporation of fuzzy logic systems (FLS) in control theory has enhanced the flexibil-
ity of controller design and increased its applicability to control the complex, non-linear, ill-
structured, and uncertain systems [19, 20]. The fuzzy logic controllers (FLC) (also called as
type-1 fuzzy logic controllers (T1-FLC)) have received considerable interest and widely used
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than their conventional counterparts for control applications. The T1- FLC have unique charac-
teristics such as (a) incorporation of knowledge based on human expertize, (b) no exact dynamic
model of system is required hence useful when precise mathematical formulation are infeasible,
(c) low development and maintenance cost, and importantly, (d) the ability of general framework
of T1-FLC to handle uncertainty, etc [6].

The working of conventional FLS is based on fuzzy logic sets ( also known as type-1 fuzzy
sets (T1-FS)) which are intended to represent the vagueness, ambiguity, and uncertainty in the
information using linguistic variables [21]. A fuzzy controller can be designed to emulate human
deductive thinking to infer conclusions from the past experience. To satisfy the control objec-
tive, the decision making process of the controller is designed on the basis of fuzzy rule base
where both situation and action have suitable fuzzy representation. It suits the control problems
which are complex and mathematically ill-defined [22]. In literature, a number of researchers
have proposed various designs and strategies of T1-FLC and investigated them for numerous
applications [23–25] including robotic control [11, 26].

The type-1 FLS are further upgraded to interval type-2 FLS (IT2-FLS) by incorporating
footprint of uncertainty (FOU) in the membership functions to form interval type-2 fuzzy sets
(referred as IT2-FS, hereafter). The concept of IT2-FLS is widely employed to design robust
controllers and interval type-2 fuzzy logic controllers (IT2-FLC) are proposed [27, 28]. As a
result, new variants of theoretical operations, membership grades, formulae for the type-2 rela-
tions are developed [29]. The IT2-FLC have emerged as an interesting generalization of T1-FLC
with the enhanced uncertainty handling skills provided by incorporating the FOU. Several re-
searchers have demonstrated IT2-FLC for various applications such as flexible robot manipula-
tor, autonomous mobile robot, inverted pendulum system, aerospace applications, liquid level
process, power system applications, image edge detection, and congestion control for video
streaming across internet protocol (IP) network, etc. In last few years, a considerable amount
of interest has been seen in research on the strategies to obtain the optimal right structures of the
IT2-FS to make the best of FOU provided by them. These design problems have framed as a
high-dimensional optimization problem with constraints.

1.2.2 Metaheuristic Algorithms (MAs)

Over the last decades, distinct natural selections, food foraging patterns, animals group move-
ments, physical laws, and other natural paradigms have attracted the researchers from various
disciplines. Having inspired by such beautiful natural phenomena, researchers have proposed
various optimization algorithms, also termed as Metaheuristic Algorithms (MAs), to enrich the
field of computational intelligence, soft computing and optimization at large [30]. The previous
and on-going research is attempting to solve cumbersome optimization problems from basic re-
search to a huge number of real-world applications in science, engineering, industry, business,
economics [31, 32]. These algorithms are found to be more effective in finding the optimal so-
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lution than deterministic algorithms. Therefore, recent optimization trends are approaching to
apply MAs for solving real life optimization problems [33]. The prominent features of MAs are:
(a) unlike deterministic method, they are derivative free and are easy to implement with basic
calculation of fitness function, (b) applicable to the wide range of problems domain as no prior
knowledge of problem as well as the domain of the problem is required, (c) contrary to determin-
istic methods, they employ multiple solutions which are refined over course of iterations. Also,
they explore and exploit search space faster by evolving the population using search strategies.
Finally, population based nature benefit MAs in escaping from the potential dangerous situa-
tions, such as local optima stagnation and premature convergence [28]. Thus, the MAs have a
clear edge over deterministic algorithms [11].

1.3 Motivation

As discussed earlier, the field of soft computing and its constituents always provide an exceptional
opportunity to enhance the performance of real-life problems with imprecision and uncertainty.
Consequently, there is a great scope and motivation to ameliorate, design, hybridize, and apply
various soft computing techniques to solve complex problems. The work presented in this thesis
provides some important enhancements and novel contributions to growing area of soft com-
puting based control system design. To elaborate further, specific motives for different research
objectives are discussed below.

Some common deficiencies faced by the majority of population-based optimization algo-
rithms are lack of exploration ability, slow and premature convergence behaviour, and stagnation
to local optima [33–35]. Nevertheless, Wolpert and Macready [36] stated in No free lunch the-
orem that there is no single MA which is best suited to solve all type of optimization problems.
With reference to this, researchers in this field found a scope as well as challenge to design an
efficient and state-of-the-art optimization algorithm that can alleviate the deficiencies [37]. In
point of fact, this theorem forms the basis of development and encourages researchers to propose
new MAs, now and then [28, 38]. This fact challenges and motivates us to design an efficient
and up-to-date optimization algorithm that can handle all these deficiencies [37]. In this line of
research, several new strategies are incorporated in existing algorithms, and new modified ver-
sions of the existing algorithms are proposed [39–41]. The strategies like chaotic mapping and
opposition-based learning (OBL) are used for the modifications in the algorithms.

The tuning of controllers is considered as a high-dimensional, complex, multimodal numer-
ical optimization problem, having several sub-optimal solution sets [42, 43]. Consequently, it
is always a challenging task for designers to get the optimal controller parameter values. MAs
are always preferred for obtaining the optimal parameters to get the best performance and robust
response. Along these lines, we get motivation to investigate the efficacy of proposed MAs for
control system design problems to get the desired design requirements.

Though, IT2-FLC has developed as an efficient tool to solve the complex problems with high
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uncertainty and non-linearity, optimizing the controller parameters and the antecedent MF struc-
tures emerged as a time consuming, difficult, high-dimensional, and constrained optimization
problem [5]. Hence, a very few researchers have addressed this problem of optimizing the con-
troller along with its FOU. Particularly, this issue rendered the inspiration and motivated us to
propose the new controller and present the systematic optimization strategy using appropriate
optimization algorithm.

In control system design, minimization of error index for set-point and disturbance are two
different objective functions which are somehow in conflict with each other. The problem of
dealing with both the objectives simultaneously is considered as multi-objective optimization
problem. So to solve this MOO problem, we investigate the applicability of well known MOO
technique called NSGA-II.

As discussed above, the robot manipulators are extremely non-linear, MIMO, highly cou-
pled, and complex systems wherein the parameter uncertainties, external disturbance, and ran-
dom noise adversely affect the performances of these systems. Essentially, this fact creates a
rational motive behind using robotic manipulator as a complex system for performance analysis
of proposed EA and controllers.

1.4 Research Objectives and Thesis Contributions

The aforementioned potential and prospect of soft computing techniques motivated us to work on
various soft computing techniques to improve the performance of controller design. The main ob-
jective of this thesis is to improve the performance of the different soft computing techniques and
use them to design high performance intelligent controllers. In this regard, we have enhanced few
components of soft computing techniques such as evolutionary algorithm and type-2 fuzzy logic
system. The major contributions of this work are elaborated in following research objectives.

• Design Efficient Optimization Algorithm for Enhancing the Performance of Complex
Systems. Two well established SI based algorithms - Grey wolf optimizer (GWO) and ar-
tificial bee colony algorithm (ABC) - are hybridized to propose new improved GWO-ABC
hybrid algorithm. In this work, information sharing property of employed bees in ABC
is adopted with conventional GWO to comprehend benefits of both the algorithms. The
elitism based population initialization scheme is presented incorporating chaotic mapping
and OBL strategy to start with widespread range of solutions. These strategies have been
incorporated to overcome the shortcomings of the conventional GWO by improving explo-
ration capability, convergence rate and reduce the chances of entrapment at local optima.
The performance of GWO-ABC is tested on a test bed of 27 synthesis benchmark functions
of different properties and the result are compared with 5 other MAs. Various performance
measures such as exploitation and exploration analysis, convergence rate analysis, ranking,
and non-parametric Wilcoxon rank sum test are carried out.
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• Performance Analysis of the Proposed Algorithm for Optimization of Different Con-
troller Design Problems. Here, the efficacy of the proposed GWO-ABC algorithm is
examined for controller design problem for variety of linear and non-linear test bench pro-
cess plants, with and without time delay. All the design requirements like low overshoot,
better rise time, faster settling time, minimum steady-state error, and performance index
are evaluated and compared to other counterparts. Further, the communication signaling
strategy used in cooperative foraging is incorporated in conventional GWO with continuing
its leadership hierarchy approach to present improved CFGWO algorithm. Moreover, for
testing the performance of the proposed CFGWO for real-world applications, the proposed
algorithm is examined for optimal tuning of controller parameters for trajectory tracking
problems of a 2-link robotic manipulator. The comparative graphs of trajectory tracking
performance, the path traced by the end-effector, and X and Y coordinate versus time vari-
ations against their desired reference curves are illustrated. Also, plots of position errors
and controller output for both the links are also presented and conclusions are drawn.

• Design of Interval Type-2 Fuzzy Precompensated PID Controller. A novel concept
of an efficient interval type-2 fuzzy precompensated PID (IT2FP-PID) controller is pre-
sented for trajectory tracking of 2-link robotic manipulator with variable payload. Mainly,
the controller is comprised with unique features of interval type-2 fuzzy precompensated
controller cascaded with conventional PID controller. Along with this, the structure of an-
tecedent MFs of IT2-FLC is optimized to acquire maximum benefit of FOU. A systematic
strategy for optimizing the controller parameters along with scaling factors and the an-
tecedent MF parameters for minimization of performance metric integral time absolute er-
ror (ITAE) is presented. The GWO-ABC algorithm is utilized and the results are compared
to type-1 fuzzy precompensated PID (T1FP-PID), fuzzy PID (FPID), and conventional PID
controllers. More significantly, exhaustive robustness analysis is carried out in presence of
distinct non-linear dynamics such as (i) payload variations, (ii) model uncertainties, (iii)
disturbance in signals, and (iv) random noise at feedback path.

• Constrained Multi-Objective Optimization Approach for Robust Controller Design
and Performance Analysis. In this objective, we demonstrate the applicability of MOO
methodology for tuning of controller parameters for multi-variable, constrained and com-
plex control systems. We proposed a simple design and parameters tuning approach using
MOO of two-degree of freedom fractional order proportional-integral-derivative (2-DOF-
FOPID) controller applied to magnetic levitation system (MLS). The major robustness in-
vestigations are carried out by applying variable input and external disturbance. Minimiza-
tion of performance index integrated absolute error (IAE) for both the set-point tracking
and the external disturbance rejection is considered as two conflicting objective functions.
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1.5 Organization of the Thesis

The rest of this thesis, subsequent to the introduction (in current chapter), is organized in the
following chapters.

Chapter - 2 begins with the basics and literature review of different soft computing tech-
niques and their applications in the field of control system design. Then comparative features
of T1-FLS, IT2-FLS, fractional order system are elaborated. The mathematical concepts and
basic fundamentals of the relevant methodologies of controller design, optimization algorithms,
optimization criteria, and system models used in this thesis are also described.

Chapter - 3 presents the details of the new hybrid GWO-ABC optimization algorithm and
its application to complex systems. Initially, the overview of original GWO and ABC algorithms
is presented. Then, the proposed algorithm is systematically explained with flowchart, pseudo-
codes, and algorithms. Algorithm for new population initialization scheme is also presented. The
GWO-ABC is investigated on 27 synthesis benchmark unconstrained test functions of distinct
characteristics and results are compared with other prominent algorithms for various analysis
metrics. The performance is substantiated through obtained empirical results on exploration and
exploitation analysis, convergence behaviour, rank, and statistical test results.

Chapter - 4 is organized with performance analysis of the proposed algorithms for opti-
mization of different controller design problems. Initially, the GWO-ABC algorithm is applied
on four test bench process plants to obtain the optimal time-domain specifications. Results with
all the design requirements like low overshoot, better rise time, faster settling time, minimum
steady-state error, and performance index are evaluated and compared to other counterparts. Fur-
ther, improved CFGWO algorithm is presented and examined for optimal tuning of controller
parameters for trajectory tracking problems of a 2-link robotic manipulator.

Chapter - 5 proposed the design procedure of novel interval type-2 fuzzy precompensated
PID controller for trajectory tracking problem of 2-link robotic manipulator with the variable
payload. In this, the strategy to tune the various controller parameters, scaling factors, and an-
tecedent MF parameters of IT2FP-PID is presented. Later, the exhaustive robustness analysis in
presence of distinct non-linear dynamics such as (i) payload variations, (ii) model uncertainties,
(iii) disturbance in signals, and (iv) random noise at feedback path is reported.

Chapter - 6 establishes the multi-objective control system design problem and identifies the
constraints on the basis of sensitivity function. Then, non-dominated sorting genetic algorithm
(NSGA-II) is employed for solving this constrained multi-objective optimization problem. The
comparative performance analysis of the proposed 2-DOF-FOPID controller against classical
PID, FOPID, and 2-DOF-PID controllers is carried out and results are reported.

Chapter - 7 comprises conclusions of the entire work and discusses the recommended direc-
tions for future applications and studies.

Furthermore, appendices are also included to give detailed mathematical modelling of robotic
manipulator and test function suite used for experimental studies.
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Chapter 2

Literature Survey and Preliminaries

This chapter presents the review of the literature related to the soft computing techniques and
different control methods followed by an overview of mathematical background of IT2-FLC and
other methodologies studied in this thesis.

2.1 Enhanced Techniques in Controller Design

The control system design has been significantly enhanced by the advancements in various con-
trol theories and practices [44]. In this section, a comprehensive review of the developments in
control strategies is presented. Furthermore, a detailed description of major techniques like FLC
and fractional order calculus is also provided.

2.1.1 Evolution of Control Strategies

During earlier research work, the conventional proportional- integral- derivative (PID) controllers
have been widely used in industrial applications because of their elementary design, easy imple-
mentation, and low cost [3]. Thereafter, several P/ PI/ PD/ PID controllers have been proposed in
the literature and achieved a widespread acceptance in the control industry [45]. As the param-
eters of physical system deviate with time and operating conditions, appropriate tuning strategy
is required to generate a moderate control signal [46]. Several classical tuning techniques like
Ziegler-Nichols method, Tyreus-Luyben method, Cohen and Coon method, etc., have been de-
veloped and utilized to tune the controller parameters [3]. Recent studies in this field found that
these classical PID controllers and tuning methodologies are inefficacious for complicated sys-
tems with uncertainty and non-linearity [47, 48]. Subsequently, various control strategies and
controller structures such as fuzzy logic [16, 49], fractional order calculus [18, 50], sliding mode
control [51], cascade control [52], feed forward control [53], neural network [54], etc. have been
incorporated with modified PID structures to enhance the performance of system under control.

In this line of research, Er and Sun [55] proposed a fuzzy PI+D controller and optimize the
control parameters by Genetic algorithm (GA) for the robotic system. Meza et al. [56] proposed
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a self-tuning fuzzy PID semiglobal regulator based on Lyapunov theory. They investigated the
proposed PID regulator on robotic manipulators and claimed that it is better than classical PID
due to the utilization of variable gain matrices. Recently, Kumar and Kumar [23, 24] suggested
IT2-FPID controllers for the 5-DOF robotic manipulator. They optimized the parameters of
underlying controller using hybrid ABC-GA algorithm; and by extensive experimental study
they claimed that the proposed controller has a clear edge over its conventional counterparts while
dealing with trajectory tracking problems. Alavandar et al. [57] experimented the effectiveness
of FP-PID controller for a flexible robot manipulator using bacterial foraging based optimization
and reported the better performance in respect of transient and steady-state response along with
robustness in the presence of varying load conditions. Further in this direction, various MAs
namely GA [42], chaotic PSO [58], CSA optimization [59], Big Bang-Big Crunch optimization
[60], BFO [61], cuckoo search [62] and Tabu Search [63] have been applied for tuning of the
enhanced fuzzy controllers and finding the optimal parameters for diverse applications.

A considerable amount of interest in the research on the strategies to obtain the optimal right
structures of the IT2-FS for making the best of FOU, has been seen in last few years [60, 62].
These design problems are formulated as a high-dimensional optimization problem with con-
straints.

Due to the complex nature of the problem without the a feasible mathematical model, MAs
have emerged as an efficient tool for finding optimal solutions [64]. In literature, there have been
made many serious attempts to optimize the IT2-FLC using MAs [24, 64, 65], over the past few
decades. In [5], Oscar and Patricia reviewed the usefulness of IT2-FLC in intelligent control and
discussed the viability of various MAs to obtain the appropriate parameters of controllers. Con-
ceptually, the type-2 fuzzy set theory(referred to as IT2-FS, hereafter) was introduced by Zadeh
as an extension of the concept of an ordinary type-1 fuzzy sets (T1-FS) [66]. Subsequently, re-
search community contributed in terms of theoretic operations, properties of membership grades,
and defines formulae for the composition of type-2 relations [23, 29]. Karnik and Mendel estab-
lished general formula for the extended sup-star composition of type-2 relations and presented
a complete type-2 FLS theory [67]. The T1-FLC is upgraded to IT2-FLC by incorporating the
type-2 fuzzy sets with uncertainty about their MFs. The IT2-FLC has emerged as an interesting
generalization of T1-FLC with the supplementary variables provided by incorporating the FOU
in IT2-FS. Specifically, IT2-FLC is built with rules integrating antecedents or consequents with
uncertainty therein [65, 68].

T1-FLCs act upon type-1 fuzzy sets (T1-FSs) which determine the uncertainty by number in
the range of [0, 1], are also sufficient to handle low level of uncertainties. On the other hand,
most of the control applications exhibit a higher degree of uncertainty as a consequence of dis-
turbances in the system and noise in feedback path due to environmental changes during signal
acquisition and transmission. Several studies have concluded that T1-FLCs is not well suited
for controlling such problems and recommended IT2-FLC as viable alternative to provide su-
perior performance [4, 5, 65]. The main challenge in IT2-FLC design is to tune its parameters
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Fig. 2.1: Structure of (a) T1-FLS, (b) T1-FS, (c) Membership functions used in T1-FLS.

and MFs structure to suitable values to get optimal results [69]. It has been observed that, if
the conventional PID control scheme is applied to the system with non-linearities, it will result
in response with significant undershoots and overshoots. To overcome this behaviour, the fuzzy
logic based precompensator PID (FP-PID) controller is proposed in [70,71] for the dc servomotor
with uncertainties in variable load conditions. This advanced FLC based precompensation PID
controller designed by adding fuzzy precompensator PD to traditional PID controllers. The FLC
inference is designed to regulate the control signal which compensate the undershoots and over-
shoots in the system output when the system has unknown non-linearities. The significance of
FLC for effectively improving the performance and robustness of conventional control methods
is demonstrated and claimed.

Although, IT2-FLC has been developed as an efficient tool to solve the complex problems
with high uncertainty and non-linearity, optimizing the controller parameters and the antecedent
MF structures emerged as a time consuming difficult high-dimensional constrained optimization
problem [5]. Thereby, a very few researchers have addressed this problem of optimizing the con-
troller along with its FOU. In fact, this issue has rendered the inspiration to develop optimization
strategies using appropriate optimization algorithm, to solve the problem.

2.1.2 Type-1 Fuzzy Logic Systems

The interval type-2 fuzzy logic system (IT2-FLS) is modified upgraded version of type-1 fuzzy
logic system (T1-FLS). So, we first discuss the basic structure of T1-FLS whose schematic di-
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Fig. 2.2: Structure of (a) IT2-FLS, (b) IT2-FS, (c) Membership functions used in IT2-FLS.

agram is presented in Fig. 2.1 (a). As shown in Fig. 2.1 (a), T1-FLS consists of four units,
fuzzifier, fuzzy rules, inference engine, and defuzzifier. The first unit fuzzifier is used to convert
the input crisp signal to fuzzy sets (T1-FS) (as depicted in Fig. 2.1 (b)). Here, triangular MF is
used which has single MF value ( µ ′) at any point ( x′). One or more MFs, as shown in Fig. 2.1
(c), are used to define the complete range of input variation. These inputs are further applied to
inference mechanism which takes decision based on the fuzzy rules. The fuzzy rules are defined
using expert knowledge to emulate human-like decision making in FLS. Generally, rule base is
defined in the form of If-then rules and specified according to the design requirements. In most
of the experiments here, Takagi-Sugeno fuzzy model is used where the nature of output singleton
is as demonstrated in Fig. 2.3. The rule bases and their corresponding surface plots are described
in further chapters. After fuzzy logic processing, the result is also obtained in the form of output
fuzzy sets. Further, the defuzzifier is utilized to convert the final result into crisp output signal.

2.1.3 Type-2 Fuzzy Logic Systems

The design of an interval type-2 fuzzy logic system (IT2-FLS) is presented in Fig. 2.2 (a).
The IT2-FLS is an extension of conventional T1-FLS, with additional unit of ‘type reducer’.
Therefore, it consists of five units - fuzzifier, fuzzy rules, inference engine, type-reducer and
defuzzifier - to specify complete processing from ‘Crisp Inputs: x ’ to ‘Crisp Outputs: Y ’. The
IT2-FLS can be viewed as a fuzzy operational mapping expressed quantitatively as Y = f (x).

14



In IT2-FLS, the crisp inputs to fuzzifier may be uncertain (e.g., noisy signal) or certain (e.g.,
perfect signal) which are converted to IT2-FS as shown in Fig. 2.2 (b). The main feature of
IT2-FS is that it consists of a finite region defined as footprint of uncertainty (FOU) to represent
the uncertainty. Let us consider any IT2-FS, represented as Ã and defined by type-2 MF µÃ(x,u),
as shown in Fig. 2.2 (b).

The upper membership function (UMF) and lower membership function (LMF) of Ã define
the bounds of the FOU (Ã) in terms of two T1-MFs. In fuzzy theory, LMF and UMF defining
FOU(Ã) are symbolized as µ

Ã
(x),∀x ∈ X and µ Ã(x),∀x ∈ X , respectively. Here the universe of

discourse is represented as X ∈ [0,1]. Actually, the IT2-FS shown in Fig. 2.2 (b) is a vertical slice
of the T2-FS where amplitude of secondary MF equal to unity and the shaded region represents
the FOU.

Fuzzifier: To start with, the ‘fuzzifier’ maps a crisp point x = (x1, . . . ,xm)
T ∈ X1×X2 · · ·×

Xr ≡ X into a type-2 fuzzy set Ãx in X . These signals then activate the inference engine and
the rule base to produce output IT2-FSs. Further, these signals are converted to type reduced
T1-FS using TR unit and defuzzifier is used to produce crisp output. There are many TR and
defuzzification methods available in literature [29, 72, 73]. Karnik–Mendel (KM) algorithm is
used in this work. The working principle and rule base of IT2-FLS is mostly equivalent to the
T1-FLS with additional output processing TR unit.

IT2-FS : To understand IT2-FS reasoning mathematically [65, 74, 75], let us consider any
T2-FS, represented as Ã and defined by type-2 MF µÃ(x,u). Where x is primary variable.

We can state the above equation in another way as

Ã = {((x,u),µÃ(x,u)) ∀x ∈ X , ∀u ∈ Jx ⊆ [0,1]} (2.1)

where 0 ≤ µÃ(x,u) ≤ 1, X is the primary domain, and Jx is the secondary domain. Similarly, Ã

can also be defined over all permissible range of x and µ as

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x,u)/(x,u) Jx ⊆ [0,1] (2.2)

here ‘
∫ ∫

’ represents the union operation [65]. Other terms are (i) primary variable: x in the
domain of primary MF: X , (ii) secondary variable µ in the domain of secondary MF: Jx (also
known as primary membership grade), and (iii) secondary membership grade: µÃ(x,u)/(x,u)

(also known as amplitude of secondary MF).

According to definitions [65], with µÃ(x,u) = 1 the T2-FS Ã is converted to IT2-FS expressed
as

Ã =
∫

x∈X

∫
u∈Jx⊆[0,1]

1/(x,u) =
∫

x∈X

[∫
u∈Jx⊆[0,1]

1/u
]
/x (2.3)

The IT2-FS are computationally simple form of T2-FS after reducing one dimension by fixing
it to unity, i. e. the secondary membership grade µÃ(x,u) = 1.

Rule base : The open source toolbox [72] provides intuitive execution of Takagi-Sugeno-
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Kang (TSK) type IT2-FLS, whose generic rule structure for any n ∈ N rule is defined by as :

Rn : IF x1 is X̃n
1 and . . . xm is X̃n

m, then y is Ỹ n, (2.4)

here X̃n
j ( j = 1, . . . ,m) represents antecedent MFs and consequent MFs are expressed by Ỹ n,n =

1, . . . ,N. This implies the multi-input single-output (MISO) operation.

Output Processing : According to IT2-FLS shown in Fig. 2.3 (a), the output processing unit
processes both TR and defuzzification and the overall output calculation procedures is explained
in the steps given below [65, 72, 75]:

1. Initially, the fuzzifier determines IT2-FSs in terms of [µ
X̃n

j
(x′j),µ X̃n

j
(x′j)], where j = 1, . . . ,m,

n = 1, . . . ,N, and x′ = (x′1, . . . ,x
′
j, . . . ,x

′
m) is crisp input vector to IT2-FLS.

2. In agreement with rule base and inference mechanism, the firing interval Fn(x′), n ∈ N for
the nth rule is calculated as

Fn(x′) =
[

f n, f n]
,n ∈ [N] (2.5)

where
f n = (µ

X̃n
1
(x′1)×·· ·×µ

X̃n
m
(x′m))

f n
= (µ X̃n

1
(x′1)×·· ·×µ X̃n

m
(x′m)) (2.6)

here ‘×’ denotes a product operation.

3. Next, a widely used center - of - sets (COS) TR method is performed to combine above
firing intervals and the corresponding rule consequent as

Ycos(x′) =
⋃

f n ∈ Fn(x′)
yn ∈ Y n

∑
N
n=1 yn f n

∑
N
n=1 f n

= [yl,yr] (2.7)

yl =
∑

L
n=1 yn f n

+∑
N
n=L+1 yn f n

∑
L
n=1 f n

+∑
N
n=L+1 f n (2.8)

yr =
∑

R
n=1 yn f n +∑

N
n=R+1 yn f n

∑
R
n=1 f n +∑

N
n=R+1 f n (2.9)

here iterative KM method is used to obtain the switching points L and R [29].

4. Finally, TR output sets are converted to crisp value by mean operation calculated as

y =
yl + yr

2
(2.10)
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Fig. 2.3: Illustrations of the general framework of consequent MF used in this study.

2.1.4 Fractional Order System

The fractional order calculus was introduced much earlier and subsequently developed by re-
searcher’s community for various applications [24]. The theory of fractional calculus has been
significantly contributed by various mathematicians like Liouville, Riemann, Weyl, Grünwald,
and Letnikov [76]. Fraction order is considered as a generalized form of classical integer or-
der integro-differentiation which avails accurate understanding of complex systems and provides
an extra degree of freedom to designers [77]. Considerable amount of literature claimed that
fractional order methods can precisely model the real objects and systems compared to classical
integer methods [42, 61]. In last few decades, the non-integer orders in derivative and integrator
operators have become an ongoing topic. Recently, the researches on fractional order modelling
and fraction order controllers have been increased rapidly. Incorporation of fractional calculus
in controller design has widely increased to take the benefits of additional flexibility to meet the
controller’s design specification. Thereby, the design of fractional order controllers and fractional
orders processes has emerged as a new field for control system applications [22, 78]. Initially,
the fraction calculus is integrated with PID to propose Fractional Order PID (FOPID) controller,
which provides extra freedom to designers through two new tuning parameters, i.e. fractional
orders of integro-differential terms (λ and µ). Various fractional order controllers are employed
in this thesis to get benefits of this. The basic equation of FOPID controller is given in equation
(4.1). The effect of fractional values λ and µ on FOPID controller can be seen in Fig. 2.4, where
the shaded region represents the non-integer values defining FOPID controller. The integer values
of λ and/or µ specify the P, PI, PD, or PID controllers.

Several studies have been reported that FOPID outperforms conventional PID controllers,
in terms of robustness, over wide range of applications including robotics [79, 80]. Automatic
voltage regulator (AVR) system is controlled by optimized FOPID controller [81]. Pan et al.

[82] proposed the design of FOPID controller for AVR using chaotic MOO method to handle
the conflicting objectives. Several other researchers have examined the implementation of the
FOPID controllers for various plant models such as electric power and energy system [77], robot
manipulator [26, 83] etc. Along with this, the fuzzy logic is incorporated with FOPID to use
artificial intelligence in the design process. Also, the high dimensional optimization problems
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are defined and the controller parameters have been optimally tuned using MAs. Das et al. [42]
proposed fuzzy based FOPID and optimized the parameters with genetic algorithm. Optimal
FOPID design procedure using tabu search and GWO is presented in [63] and [50], respectively.
Chaotic PSO is proposed to control the hybrid power system with renewable energy using fuzzy
and FO based controller [58]. In recent years, several types of FOPID controllers are suggested
for controlling various industrial processes. In [20], the 2-DOF-FOPID controller is presented
for robotic manipulator with payload. In this research work, Cuckoo search algorithm (CSA)
is applied for parameter tuning and enhancing the robustness of controller towards trajectory
tracking, parameter variation, and disturbance rejection.

Definitions of Fractional Order Calculus

The fundamental operator representing the fractional i.e., non-integer order of integro-differential
terms is represented as aDα

t , where α ∈ R is the order of the differentiation or integration and a

and t are the bounds of the operation. The basic fractional order integral and differential operators
can be stated as below:

aDα
t =


dα

dtα α > 0

1 α = 0∫ t
a(dτ)−α α < 0

(2.11)

where constant a is related to initial conditions and α is fractional order operator. α is usually a
real number ( α ∈ R) but it can also be a complex number, where R stands for Real.

Cauchy’s Definition

For the implementation of fractional order operators, multiple definitions are available in the
literature such as Grünwaldv-Letnikov, Riemann-Liouville, Caputo definition, Cauchy integral
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formula, and others. The definition of Cauchy integral formula used in this study is a general
extension of the integer-order Cauchy formula and given as

Dα f (t) =
Γ (α +1)

2π j

∮ f (τ)
(t− τ)1+α

dτ (2.12)

where circle on
∫

is the smooth curve encircling the single-valued function f (t), Γ (.) is the
Euler’s Gamma function, and 0 < α < 1 is order of operator.

FO Approximation:

Among other competitive methods, Oustaloup’s recursive approximation method [84] is applied
in this work for implementation of fractional order operators ( µ and λ ). This method is based
on a recursive distribution of poles and zeros in the form of an approximating transfer function.

sλ = K f

k=N

∏
k=−N

s+ωzr

s+ωpr
(2.13)

here λ is the order of fractional integro-defferentiator and 2N + 1 represents the order of the
approximation (filter). The zeros ( ωzr), poles ( ωpr), and the gain of filter ( K f ) are represented
by following equations.

ωzr = ωb

(
ωh

ωb

)K+N+ 1
2 (1−λ )

2N+1

, ωpr = ωb

(
ωh

ωb

)K+N+ 1
2 (1+λ )

2N+1

, and K f = ω
λ
h (2.14)

where k ∈ [−N,N] and ωb,ωh are the ranges of frequency. This rational approximation method is
preferred over other methods as it can easily exhibit the possibilities of implementing in higher-
order digital and analog filters hardware design [22, 81]. The frequency range is taken as ω =

(10−3,103) rad/s, also, the 5th order Oustaloupas approximation with (N = 2) is applied for the
fractional order operator design.

2.2 Techniques to Enhance MAs

The MAs are classified in three major categories: evolutionary, swarm intelligence (SI) based,
and physical law based algorithms. Along with this categorization, some researchers have tried
their hands on human-related techniques to propose new algorithms. Until last decade, evolution-
ary algorithms like genetic algorithm (GA) [85] and differential evolution (DE) [86] had received
much attention in the literature. In recent years, there is rapid growth in the use of SI based
optimizers like particle swarm optimization (PSO) [87, 88], grey wolf optimizer (GWO) [89],
artificial bee colony (ABC) [90], ant lion optimizer ALO [91], cuckoo search CS [92–94], and
firefly algorithm (FA) [95], krill herd (KH) algorithm [96], etc.. Basically, the catch behind
the success of SI based algorithms is that the intelligence of swarm lies on the collective be-
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haviour of swarms, mainly, (a) adoptive self-organization, and (b) decentralization using division
of labour [34]. The swarm organization is the way of organizing the swarm in a particular manner
without any external force or input. While, division of labour corresponds to the way of distribut-
ing the task among swarm candidates. Many other optimizers like central force optimization
(CFO) [97], gravitational search algorithm (GSA) [98], and harmony search (HS) [99] are moti-
vated by physical laws. Recently proposed teaching learning-based optimization (TLBO) [100]
and League championship algorithm (LCA) [101] are motivated from human behaviour.

MAs have emerged as an important methodology among many researchers for solving com-
plex problem in the field of computational intelligence. As noted in Section 1.2.2, the MAs
outperform other classical techniques in many key features like collective learning process, self-
adaptation, and robustness. Therefore, MAs are widely accepted for solving various complex
practical applications in business, science, engineering, commerce, and other fields.

MAs are population based optimization algorithms and follow three steps in every iteration
to guide their search process towards global optima. These steps are: (a) self-adoption - each
member in population learns from its environment and advances toward optimal solution, (b)
cooperation - members share information by collaborating with each other, and (c) competition
- members undergo selection on the basis of their fitness to proceed to next iteration operation.
Usually, these algorithms are stochastic and adopt different ways to realize these steps [34]. New
techniques for executing these steps are always proposed and the field of MA is continuously
developing by many researchers by incorporating various techniques. As one objective of this
work is to design and propose a new MA, some enhancement techniques, which are incorporated
in this work, are elaborated in this section.

2.2.1 Hybridization

As discussed above, several MAs are developed recently and their behavior is determined by
trade-off between the exploitation and exploration relationship. It is reported in many empiri-
cal studies that most of these MAs are better in either of one behaviour and lacking in others.
The current research trend is shifting towards the hybridization which is done by combining two
or more algorithms. Therefore, the hybridized algorithm accrues the benefits of more than one
algorithm. Some of the modifications are done by (a) incorporating two or more conventional
algorithms [37], (b) enhancing the randomness in initialization, selection, and mutation proce-
dures using chaotic theory [102–104], random walk [38], levy flight [105], or Cauchy operator,
(c) adopting other concepts like OBL, orthogonal learning, different crossover, and mutation
strategies [106,107], and (d) applying fuzzy logic and neural network based adoptive parameters.
Thus, hybridization of algorithms is done to design a new algorithm to handle several real-world
problems involving complexity, noisy environment, imprecision, uncertainty, and vagueness. In
sum, the advantages of hybridized algorithms over a canonical one are as follows.

• Better balance in exploration and exploitation properties,
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• Fast convergence rate,

• Better avoidance of stagnation at local optima,

• well suited for solving noisy multimodal optimization problems.

2.2.2 Chaotic Mapping

The chaotic evolution function is an iterative non-linear dynamical equation evaluated to generate
fractals exhibiting chaotic behaviour. Generally, in stochastic MA, random-based techniques
are superseded by chaotic variables to avail benefits of randomness of chaos, non-repetition,
and ergodicity to enhance speed of search strategies and avoid the stagnation at local optima.
Wang et al. [104] investigated 12 different chaotic maps by combining them with cuckoo search
algorithm to tune the step size of cuckoos and reported that combination of Sinusoidal map
gives comparatively better performance. In literature [102, 103], authors incorporated GWO
with various types of chaotic mechanisms and reported considerable improvements in results,
however, no clear-cut rule for selection of any specific chaotic map is suggested. In this thesis,
chaotic mapping is incorporated in initialization and communication strategy of search agents
to improve the performance of proposed algorithms. The equation of logistic chaotic evolution
function, used in this work, is given as

ch(k+1) = 4∗ ch(k)∗ (1− ch(k)) (2.15)

here k is number of iterations, fixed to 300, and initial value ch(0) ∈ [0,1] is randomly selected.

2.2.3 Opposition-based Learning

In the realm of the metaheuristic optimization, the concept of opposition-based learning plays an
important role for providing a better start to the underlying optimization algorithm. The prime
concept behind OBL is to simultaneously consider an estimated solution and its corresponding
opposite estimate to cover the larger portion of the search space in order to improve the diversity
in the search regions [108]. Geometrically, as shown in Fig. 2.5, the solution X is transferred to
geometrically opposite position X∗ in given n-dimensional bounded search space. The movement
of points after OBL in 1D, 2D, and 3D space is demonstrated in Fig. 2.5 (a), (b), and (c),
respectively for clear understanding. The mathematical description of OBL is given below.

Consider a solution Xi = (x1,x2, . . . ,x j, . . . ,xn), where i ∈ N and N represents the size of
population under consideration. Let for each decision variable j ∈ [n] (n is the number of decision
variable or dimension) and Ub j and Lb j denote the upper and lower bounds, respectively. Then,
for each decision variable, its opposite candidate is generated as

x∗j = Lb j +Ub j− x j (2.16)
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Fig. 2.5: Illustrations of point X and its corresponding opposite X∗ according to OBL.

It is reported by several researchers that the probability of initialization of MA with fitter
solutions, covering larger search space area, is enhanced by simultaneously probing original
guess solutions along with their opposite counterparts [109]. In the proposed work OBL strategy
is utilized in population initialization and to decide the opposite position for search agents in
cooperative signalling.

2.3 Time-domain Performance Indices

In pursuance of implementing the optimization algorithms, the proper selection of objective func-
tion (Ob j f un) (also called cost function) is very crucial step. Mostly, error based time-domain
performance measures are employed to achieve desired performance in controller designing. In
literature, various indices like, IAE - integral absolute error, ISE - integral square error, and IT SE

- integral time square error have been employed in different control design studies. Mathemati-
cally, these indices are formulated as

IAE =
∫

∞

0
|e(t)|dt

ISE =
∫

∞

0
e(t)2dt

IT SE =
∫

∞

0
te(t)2dt

ITAE =
∫

∞

0
t|e(t)|dt (2.17)

here t indicates time and e(t) = y(t)− r(t) is a difference between current output y(t) and refer-
ence desired output r(t).

The whole work in this thesis utilized minimization of ITAE - integral time absolute error for
having the edge over other indices. Some important features of ITAE are
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• The absolute error minimizes the percent overshoot (Mp%),

• The time multiplication term minimizes the oscillations in further response and effectively
reduces settling time (ts).

The minimized value of ITAE signifies the negligible peak overshoots and smaller rise time (tr).
It also indicates the settling time (ts) taken by the response to reach to nil steady-state error Ess.
The ITAE based objective function is expressed as

Ob j f un = ITAE =
∫

t|e(t)|dt (2.18)

When there are multiple subsystems to be controlled under a complete control system design
problem, the final objective function for the overall system with M subsystems is defined by the
weighted sum of individual functions and given as

Ob j f un = w1×Ob j f un1 +w2×Ob j f un2 + · · ·+wM×Ob j f unM

Ob j f un =
M

∑
j=1

w j ∗Ob j f un j (2.19)

here w1,w2, . . . ,wM are weights of M objective functions. The weights are selected by the design-
ers as per requirements and set to unity in this thesis. The above equation is also used when the
MOO problem is considered as a SOO problem. Furthermore, the objective functions for MOO
are also considered as performance indices for different conditions. They are discussed in detail
in Chapter 6.

2.4 Problems under Study

The enhanced soft computing techniques proposed in this work has been investigated against
existing techniques for different systems under control. Here, a brief overview the variety of
systems considered in this work is provided. Most of the systems are complex and non-linear,
and their performance has been tested for distinct disturbances and noises.

2.4.1 Robotic Manipulator

In this era of automation, robotic manipulators are evolved by many researches with a desire
to synthesize some aspects of human function by the use of mechanisms, instrumentation, and
computers. After inception of robotics, the robotic manipulators are widely used as a promising
device in the automated industrial applications in diverse engineering and science fields. These
manipulators are incorporated to enhance flexibility, productivity, and accuracy considering re-
duced working cost and increased human working conditions. These systems are widely applied
areas where repetitive and hazardous works are executed [110, 111].
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Fig. 2.6: Model of 2-link robotic manipulator with payload at tip.

The basic model of 2-link robotic manipulator is shown in Fig. 2.6. The details of mathemat-
ical modelling and definition of desired path trajectory are relegated to the appendix in Section
A.1. The description of all the parameters is given in Table A.1. As the 2-link-joints provide
2-DOF angular motion, this model is also termed as 2-DOF robotic manipulator in some studies.
In general, robotic manipulators are multi-input multi-output (MIMO), coupled, and highly com-
plex non-linear systems. The motion of the manipulator and end-effector is manipulated by the
efficient actuators connected to individual link-joints. In order to deal with overall complexities,
these systems require an efficient and robust controller for accurate positioning of the end-effector
which is a challenging task for control system designers.

From the literature survey, it is observed that conventional robot control methods require
highly accurate mathematical modeling, analysis, and synthesis, yet these methods are not suit-
able for controlling robots in structured and unstructured uncertain environment. In this thesis,
the different robotic models used for experimentation are as follows:

1. 2-link robotic manipulator with fixed payload.

2. 2-link robotic manipulator with variable payload.
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2.4.2 Linear and Non-linear Benchmark Plants.

In conventional process control applications, controller designing for higher-order plants is con-
sidered as a difficult procedure. In literature, equivalent reduced-order models are used to rep-
resent higher-order plants. Some conventional controllers are applied to these systems using
classical tuning rules [10, 78]. The model order reduction techniques are employed to higher-
order plants for representing them by lower-order linear transfer functions. Some lower-order
plants like first-order plus time delay (FOPTD) and second-order plus time delay (SOPTD) are
used in [64] to validate the controller performance. In general, most of the practical processes
under automatic control are non-linear higher-order systems and may have considerable dead
time. For performance analysis, non-linear systems are approximated to linear systems with an
approximate linear mathematical model of the non-linear system. In this way, the higher-order
transfer functions are converted into generalized FOPTD and SOPTD systems using model order
reduction techniques. In this study, some of the standard linear and non-linear benchmark plants
are also used to verify the performance of the proposed algorithm.

2.4.3 Magnetic Levitation System.

The Magnetic levitation (MAGLEV) technology is applied in various fields like magnetic levi-
tation vehicle, non-contact actuators, satellite launching, and precision engineering, etc. Being
non-contact frictionless technology, maintenance cost of MAGLEV based systems is reduced and
energy efficiency is increased. It is observed that, the behavior of MAGLEV is highly non-linear
and unstable. Therefore, a robust controller design for MAGLEV system is very challenging task
for control engineers. The controller designing for magnetic levitation system (MLS) provides
platform for the research on MAGLEV technology [112]. In literature, various control schemes
are suggested for MLS control, some are, optimized PID [113], fuzzy logic based digital con-
troller [114], [115], adaptive robust output feedback control [116] and fuzzy PID [115]. The
model, structural parameters, and mathematical modelling of the MLS is described in Chapter 6.

2.5 Concluding Remarks

This chapter describes the literature review and provides insight to the major techniques used in
this complete work. A brief introduction on T1-FLS and IT2-FLS is presented with mathematical
modelling of IT2-FS. In addition, the fractional order theory with definitions and Oustaloup’s
Recursive approximation is presented. The chaotic mapping and OBL methods are discussed
with illustrations. Finally, the performance indices and system used in this study are discussed.
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Chapter 3

Novel Hybrid GWO-ABC Algorithm for
Complex Systems

This chapter presents the novel hybrid GWO-ABC algorithm and verifies its efficacy by several
standard performance metrics. The original publication [11] is thoroughly described in different
sections organized as follows. Basic introduction and motivation is discussed in Section 1. Fol-
lowing, Section 2 presents the brief overview of GWO and ABC algorithms. The architecture
of the proposed GWO-ABC algorithm is described in Section 3. Subsequently, the GWO-ABC
is substantiated using 27 test functions and the statistical and convergence curve analysis are
discussed in section 4. Finally, the conclusions are drawn in Section 5.

3.1 Introduction

The group foraging and hunting behaviour of various species always provide the inspiration to
develop various SI based algorithms. As discussed earlier, the catch behind the success of SI
based algorithms is that each member of the swarm follows (a) self-organization, and (b) division
of labour. Thus, swarm is organized in particular manner and distribute the task among swarm
candidates. Recently, Mrijalili et al. [89] proposed SI based GWO algorithm widely utilized in
several studies [117, 118]. The GWO algorithm is based on democratic social behaviour of the
group of grey wolves demonstrated during chasing and hunting the prey. In last few years, GWO
is mostly used by researchers for solving various engineering optimization problems [119–121].
At the same time, several attempts have been made to modify and hybridize GWO. Recently,
in [105], authors incorporated levy flight- based pattern for hunting mechanism of wolves and
greedy selection strategy. The algorithm is investigated on various test functions as well as real-
world problems, and its performance is proved to be better than GWO. Similarly, in [38], authors

The work outlined in this chapter has been disseminated in the following publication:
• P. J. Gaidhane and M. J. Nigam, “A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing
the performance of complex systems,”Journal of Computational Science, vol. 27, pp. 284-302, Jul 2018.
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incorporated random walk mechanism in GWO to optimize the search ability of GWO. A new
hybrid algorithm is introduced in [122] by incorporating GA in the GWO algorithm. It is used to
minimize a simplified model of the energy function of the molecule. PM2.5 prediction model is
combined with GWO [106] to improve the accuracy of the results. In [107], the basic GWO is
hybridized with crossover and mutation operators to solve the economic dispatch problems.

As we discussed earlier, most of the population based algorithms suffer from the problem of
either exploration or exploitation. GWO is also not isolated from some of these lacunas. Re-
cently, Kishor and Singh [123] conducted a comprehensive study and reported some strengths
and drawbacks of GWO over wide range of problems. In order to overcome the drawbacks of
GWO, we proposed a new hybridized GWO called GWO-ABC. In this algorithm, the random
initialization is replaced by a new initialization strategy, and to improve the exploration capabil-
ity of GWO, information sharing methodology of ABC is adopted. In GWO-ABC algorithm,
wolves adopt the information sharing strategy of bees to promote their exploration ability while
keeping their original hunting strategy to retain exploitation ability. Moreover, a new method
based on chaotic mapping and OBL is proposed to initialize the population. As discussed in Sec-
tion 2.2.3, OBL is one of the initialization mechanism that is used to cover the larger portion of
search space [108]. Similarly, in stochastic optimization field, random-based methodologies can
be replaced by chaotic variables to avail benefits of chaos, non-repetition and ergodicity. Incor-
porating chaotic mapping in MAs improves their search performance and enhance the capability
of jumping out of local optima. The aim for this new initialization method is to generate an
initial population with already better individuals to set a solid ground for rest of the GWO-ABC
algorithm to execute. The sole motivation behind incorporating changes in GWO is to help the
algorithm to evade premature convergence and to steer the search towards the optimal region
in faster manner. To assess the performance of the GWO-ABC, it is tested on a test bed of 27
synthesis benchmark functions of different properties and the result are compared with 5 exist-
ing state-of-the-art algorithms. From the analysis of the numerical results, it is apparent that the
projected changes in the GWO ameliorate its overall performance and efficacy especially while
dealing with noisy (problem with many sub-optima) problems.

3.2 Overview of Conventional GWO and ABC Algorithms

In this section we present a brief introduction of conventional GWO and ABC. For details of
these algorithms, readers are encouraged to refer [89] and [90].

3.2.1 An Overview of GWO Algorithm

The GWO algorithm [89] mimics the democratic social behaviour of the group of grey wolves
demonstrated during chasing and hunting the prey. Mostly, the grey wolves live in a pack of 5-12
members and follow strict dominant hierarchy based on leading qualities of wolves. The group is
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Algorithm 1 Pseudo Code for GWO.
Input : Population of search agents N, dimension of solutions n, upper and lower bounds of
solutions [Ub1, ...,Ubn,Lb1, . . . ,Lbn], Max iteration
Output : The best search agent

−→
Xα

1: Initialize the grey wolf population
−→
Xi = (x1,x2, . . . ,xn) where (i ∈ [N]) and x j ∈ [Ub j,Lb j]

|∀ j ∈ [n]

2: Initialize a,
−→
A ,
−→
C , and t = 1.

3: Calculate the fitness of each search agent f (Xi), where (i ∈ [N])

4:
−→
Xα= the best search agent

5:
−→
Xβ = the second best search agent

6:
−→
Xδ = the third best search agent

7: while (t < Max iterations) do
8: for each search agent do
9: Update the position of the current search agents by Eq. (3.5)

10: end for
11: Update a,

−→
A , and

−→
C

12: Calculate the fitness of all search agents

13: Update
−→
Xα ,
−→
Xβ and

−→
Xδ

14: t = t +1

15: end while
16: return

−→
Xα

generally led by most prominent wolf, termed as alpha (α) wolf. Following, the second and third
level of leading wolves are named as beta (β ) and delta (δ ) wolves in GWO. These second and
third rank of subordinate wolves assist the alpha wolf in decision making for hunting the prey. All
other following wolves are noted as omega (ω) wolves and they follow these high rank wolves for
chasing and approaching the prey. The step-wise pseudo-code of original GWO [89] is presented
in an Algorithm 1. Please note that here wolves are analogous to the potential solutions (solution
agent) of the problem.

Mathematical Modelling of GWO : The mathematical model of social hierarchy of grey
wolves and their strategy for encircling, hunting, and attacking of prey is described below :

Social hierarchy : Search is initialized with fixed number of wolves (solutions) randomly
positioned in search space. The first three best solutions are obtained and named as alpha (α),
beta (β ) and delta (δ ) wolves. The optimization procedure in GWO is mainly guided by these
three wolves.

Encircling prey : The strategy of encircling of prey is adopted for the hunting. The mathe-
matical model for this strategy is expressed for iteration t is as follows:
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−→
D = |−→C ·−→Xp(t)−

−→
X (t)| (3.1)

−→
X (t +1) =

−→
Xp(t)−

−→
A ·−→D (3.2)

where
−→
A and

−→
C are coefficient vectors, defined as

−→
A = 2−→a ·−→r1 −−→a and

−→
C = 2·−→r2 .

Here the random vectors r1,r2 ∈ [0,1] and−→a = a1(1−t/max iter) decreases linearly from a1

to 0. The value of a1 was set to 2 in original GWO. Also, here max iter is the maximum iterations.

Hunting : The hunting process in GWO is led by α,β , and δ . Therefore, the positions of
these three leading solutions are saved in the pack and the remaining omega wolves update their
positions according to them. This position update approach can be modelled mathematically as
follows:

−→
Dα = |−→C1·

−→
Xα(t)−

−→
X |,−→Dβ = |−→C2·

−→
Xβ (t)−

−→
X |,−→Dδ = |−→C3·

−→
Xδ (t)−

−→
X | (3.3)

−→
X1 =

−→
Xα(t)−

−→
A1 · (
−→
Dα),

−→
X2 =

−→
Xβ (t)−

−→
A1 · (
−→
Dβ ),

−→
X3 =

−→
Xδ (t)−

−→
A1 · (
−→
Dδ ) (3.4)

−→
X (t +1) =

−→
X1 +

−→
X2 +

−→
X2

3
(3.5)

Attacking prey (Exploitation) : This phase of the GWO is controlled by parameter a, which
gradually decreases in accordance with increasing iterations. Along with this, other two param-
eters

−→
A and

−→
C controls the search for the prey.

−→
A is adjusted to vary between −2a to 2a, and

when |A|< 1 the wolves attack the prey.

Search for prey (exploration) : The exploration rate of GWO is controlled by parameter A

and the search is more diverge if |A|> 1.

As discussed above, the exploration rate is controlled by parameters
−→
A and

−→
C , which is

reduced in later generations. This fact purveys lack of knowledge of candidate solutions from
search space as limited information is shared among the solutions in the pack. Consequen-
tially, many studies [103,105,123] have reported poor exploration capability as a major limitation
of GWO. Therefore, this work aims to overcome this weakness by modifying the conventional
GWO.

3.2.2 An Overview of ABC Algorithm

The ABC algorithm [90], proposed by Karaboga and Basturk, is inspired by foraging behaviour
of honey bees’ swarm and executed in three phases, namely, employed bee phase, onlooker
bee phase, and scout bee phase. In ABC algorithm a food source position represents a single
candidate solution and the amount of nectar in each food source is considered as fitness. The
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number of employed bees and the onlooker bees are equal and half of the overall population size
(colony size). An employed bee updates her current source position in her memory and shares
the information about the new source with onlooker bee. Based on the information, an onlooker
bee explores her new neighbourhood position. In ABC, the search strategy for both employed
bees and onlooker bees is directed by updating a random element in solution vector with other
solution vector according to the following Eq. (3.6).

vi j = xi j +φi j(xi j− xk j) (3.6)

where vi j is the upgraded decision variable at jth dimension of ith solution. Here the in-
formation is exchanged by jth decision variable of ith solution with jth decision variable of kth

neighbouring solution. The term φi j is a random number between [−1,1].

Although this update strategy of ABC provides better exploration, it lacks in utilizing the
information of the best solution. It is observed that in the functioning of the ABC algorithm
proceeds different from other population based algorithms like GWO and PSO as it does not
take advantage of the best solutions to lead the search process. This may result in decline of the
convergence rate of the algorithm. It has been seen that the best solution information plays an
important role to improving the convergence performance.

3.2.3 Chaotic Mapping and OBL Strategy.

The chaotic mapping and OBL strategies are also employed in the initialization phase of the
proposed GWO-ABC algorithm. The chaotic mapping is described in Section 2.2.2 and the OBL
strategy is explained in Section 2.2.3 of the previous chapter 2.

3.3 Proposed Hybrid GWO-ABC Algorithm

In literature, many researchers have conducted empirical studies on the performance of GWO
and modified the algorithm to get balance between exploitation and exploration. Kishor and
Singh [123], reported an authentic observations over performance of conventional GWO for dif-
ferent populations on diverse set of standard test functions. In this work, they specified some
strengths and weaknesses of the GWO algorithm. In case of multimodal problems with many lo-
cal optima, the algorithm may converge prematurely into some locally optimal solution avoiding
further exploration. Along with this, it is observed that the GWO lacks in information sharing in
the pack as the ω wolves only acts as a followers to first three best solutions and do not play role
of an important individual in the pack. These limitations encourage us to adopt some strategies
to modify exploration ability of algorithm.
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Fig. 3.1: Flowchart of the proposed GWO-ABC algorithm.
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3.3.1 Motivation for Hybridization

Fundamentally, in conventional GWO, the adaptive values of parameters of −→a and
−→
A decide the

transition between exploitation and exploration. Therefore, the candidate solutions’ diverge from
or converge towards the prey depends upon the values if |−→A | > 1 or |−→A | < 1, respectively. It is
observed that, the convergence speed is reduced in the final iterations of the runs as it favours
exploration in the early iterations and latter iterations are committed to exploitation only [123].
Further the primary observation in GWO is that, as it strictly follows dominant hierarchy based
on leading wolves, hence, instead of sharing of information among all the individual candidate
solutions, only three leading wolves (alpha, beta, and delta) decide and forward this information
to all other individuals in the pack for further progress. In this manner, these best leading agents
increase the convergence pressure and steer the search quickly in the vicinity of sub-optimal
solution by loosing its diversity that leads to premature convergence. In other words, the GWO
lacks diversity as it is directed by the three best leading search agents only. Primarily, it is
reported in [123] that in case of unimodal test functions, initially the search advances rapidly
towards the optimal solution but later relaxes because of the diversity problem. Consequentially,
mostly in the case of multimodal problems, (where the search space possess many locally optimal
solutions, prone to mislead the search) it gets stuck into vicinity of any such local sub-optima,
losses diversity and faces up the problem of premature convergence.

Ultimately, this insight led us to suggest a modified and hybrid optimizer GWO-ABC, by
introducing novel strategy which improves the information sharing among the pack of candidate
solutions with each other, throughout all iterations.

3.3.2 Structure of the Proposed GWO-ABC Algorithm

The step-wise flowchart of the proposed GWO-ABC algorithm is presented in Fig. 3.1. As
depicted in flowchart, all the steps in the GWO-ABC are same as the conventional GWO except
that some extra strategies are included for population initialization and information sharing in
the algorithm. To start the search process, initial parameters like population size N, dimension
of solution space n, maximum allowed function evaluations (FE), which is also used as stopping
criteria, are defined and other parameters like a,A,and C are calculated. After defining initial
parameters, the proposed algorithm is executed in three phases, namely : Population initialization
phase, GWO phase, and ABC phase as per their execution. The working principle of these three
phases are explained below.

Population Initialization Phase : In the proposed algorithm, population initialization is
implemented through chaotic mapping and OBL methodology to generate fitter initial candidate
solutions from wider search space. The strategy adopted for population initialization is explained
in Algorithm 2. As defined in steps 1 and 2, initial population X ∈ |N| is obtained using random
variable ch(k) produced by Logistic chaotic map, within variable space defined by given bounds.
The equation of logistic chaotic evolution function, used in this work, is as defined in Eq. (2.15).
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Algorithm 2 Procedure for population initialization based on OBL and chaotic mapping.
Input : Population size of search agents N, dimension of solutions j ∈ [n], upper and lower
bounds of solutions x j ∈ [Ub1, ...,Ubn,Lb1, . . . ,Lbn], k = 300
Output : Initial population of size N

1: Initialize the population of size N using chaotic mapping in n dimensional space, ch(k) is

obtained using Eq. (2.15)

2: Thus, Xi = (x1,x2, . . . ,xn), where i ∈ N and x j ∈ [Ub j,Lb j]∀ j ∈ [n] is defined by x j = Lb j +

ch(k)∗ (Ub j−Lb j)

3: Obtain another set of population of size N using OBL

4: Such that, X∗i = (x∗1,x
∗
2, . . . ,x

∗
n), where i ∈ [N] and each new opposite solution is defined by

x∗j = Lb j +Ub j− x j ∀ j ∈ [n]

5: Combine both as X = (Xi∪X∗i ), |X |= 2N

6: Calculate fitness f (X) = ( f (Xi)∪ f (X∗i )) and sort accordingly

7: Select N fittest solutions.

Here also, the value of k is set to 300.

Further, another set of opposite population X∗ is derived through OBL methodology using
equations in step 4. The details of OBL is given in Section 2.2.3 in previous chapter. Thus, both
the sets are combined as X = (Xi∪X∗i ) ∈ |2N| solutions and their fitness f (X) is calculated. In
next step, according to elitism principle, the fitness vector is sorted and first N fitter solutions
are selected for further generations. Fig. 3.2 depicts the comparison between initial population
generated by random distribution method used in GWO and the proposed population initializa-
tion scheme described in Algorithm 2. Here, the population size of N = 100 is generated for
f9 function with dimension n = 3 by both the methods. It can be observed that the initial pop-
ulation of candidate solutions, generated by the proposed scheme, is well distributed over the
search space ensuing exploration capability. Further, the investigation of the statistical measure
of diversity of the initial population is carried out for a test function f1 with 10 dimension and
20 population size. The average of standard deviation (SD) for the values of each dimension is
calculated and noted for different initialization schemes. The SD values for Chaotic initializa-
tion is 66.63906, Random initialization is 57.33381, Opposition Based Learning (OBL) based
initialization is 67.99783, and Proposed Initialization Scheme is 73.84750. As the average value
of SD for proposed population initialization scheme is highest among all initialization schemes.
It shows that the diversity of the initial population generated by proposed scheme is more than
other schemes and the initial seeds are widely spread.

GWO Phase : Once the initial population is generated, algorithm proceeds according to the
conventional GWO and updates its parameters and current positions of search agents using Eqs.
(3.1) to (3.5).

ABC phase : As discussed above, bees ( both employed and onlooker) in ABC share infor-
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Fig. 3.2: Comparative illustrations of initial population by the proposed population initialization
scheme against random distribution scheme.

mation among the candidate solutions in the pack and modify old solutions using Eq. (3.6). To
elevate the randomness and non-repetition, logistic chaotic mapping defined in Eq. (2.15), is used
instead of uniform random generator for defining φ in Eq. (3.6).

This gives better exploration opportunity by selecting arbitrary neighbouring solutions and
location for information exchange.

The whole procedure, i.e., GWO Phase and ABC phase, is carried out for defined number of
FE and then the best solution is returned as a result. By the search equation of ABC, i.e., Eq. (3.6)
in GWO, the global search ability is ameliorated since every member of the pack gets opportu-
nity to share information with other member. Thus, it helps to maintain necessary exploration,
exploitation, and alleviates the problem of diversity and elude from premature convergence.

3.4 Simulation Results and Discussion

In this section, the performance of GWO-ABC is evaluated on various performance metrics,
such as : ranking, statistical test, exploitation and exploration analysis, and convergence curve
behaviour.

3.4.1 Performance Evaluation on Test Functions

The performance of the proposed GWO-ABC algorithm has been investigated on a test bed of
21 classical benchmark functions [89] and 6 composite functions (CEC 2014 [124]), extensively
utilized by many researchers in their recent studies [33, 105, 125]. All these functions are mini-
mization functions. This test bed is comprised of 7 unimodal ( f1 to f7), 6 multimodal ( f8 to f13),
and 8 fixed-dimension multimodal benchmark functions ( f14 to f21), and a detailed description
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Fig. 3.3: 3D plots of some benchmark functions.

of these are given in appendix Tables A.3 and A.4. For further experimentation, 6 composite
functions from CEC2014 test bed ( f22 to f27), as given in Table A.2 are also investigated. The
3D plots of some of the benchmark functions are demonstrated in Fig. 3.3. Here, we can observe
that there are multiple suboptimal points and single optimal solution in the case of multimodal
functions. Hence there are chances of stagnation at any suboptimal point.

For significant analysis, the average of best results (mean) and standard deviation (SD) of
GWO-ABC and other algorithms for 100 independent runs are obtained and reported in Tables
3.3, 3.4, 3.5, and 3.6 for unimodal, multimodal, fixed-dimension multimodal, and composite test
functions, respectively. The results of every function obtained by corresponding algorithms are
sorted according to their mean values and ranks are assigned in accordance with the comparison
of results. Further, the average rank of particular algorithm is calculated and overall rank is
decided on the basis of average rank. Finally, Wilcoxon rank-sum test [126] with 1% significance
level is also employed for performing the statistical analysis. The parameter settings used for
experimental setup is explained below.
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Table 3.1: Parameter settings of different algorithms used in this study.

Algorithm Description of parameters Population Maximum FE

PSO [87] c1,c2 = 2,wmax = 0.9,wmin = 0.2 30 30000

GWO [89] a1 = 2 30 30000

ABC [90] limit = (N×n)/2 30 30000

GSA [98] α = 20, G0 = 100 30 30000

ALO [91] – 30 30000

GWO-ABC a1 = 2 30 30000

for Composite functions 50 50000

3.4.2 Parameter Settings

The GWO-ABC algorithm is executed for 100 independent runs over test functions. For f1 to f21,
the population of each algorithm is fixed to 30. The dimension size of unimodal and multimodal
benchmark functions is fixed to 30. The maximum number of allowed FE are 30000, which acts
as a stopping criteria for all the algorithms. For composite functions f22 to f27, the population size
is fixed to 50. For these functions, the allowed FE are 50000. The other significant parameters
for all algorithms used for comparison are same as their original articles and are listed in Table
3.1.

3.4.3 Statistical Analysis (Wilcoxon Rank Sum Test)

For comprehensive study, statistical tests are entailed [126] to quantify the performance in terms
of statistical significant difference between results obtained by different algorithms. The statis-
tical analysis of GWO-ABC against original GWO and other algorithms is done with Wilcoxon
rank-sum test [126] with 1% significance level. As considered by many researchers, the samples
are taken from final objective function values obtained by every algorithm. It tests the null hy-
pothesis based on p –values calculated using Wilcoxon rank-sum method. The following symbols
are used to represent the grading (ranking) of algorithms.

1. (+) :- If p –value < 0.01 then statistical difference is very significant and the performance
of GWO-ABC is superior to the performance of the other algorithms.

2. (≈):- If p –value ≈ 0.01 then statistical difference is negligible and the performance of
GWO-ABC is similar to the performance of the other algorithms.

3. (−) :- If p –value > 0.01 then statistical difference is not significant and the performance
of GWO-ABC is inferior to the performance of the other algorithms.
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Table 3.2: p–values and grades obtained by statistical Wilcoxon rank-sum test with 1%
significance level.

GWO PSO ABC GSA ALO

f ↓ p–value grade p–value grade p–value grade p–value grade p–value grade

f1 0.00970 + 0.00658 + 0.00451 + 2.80E−05 + 0.00026 +

f2 0.00456 + 0.00269 + 4.51E−06 + 1.41E−06 + 0.00083 +

f3 0.00498 + 3.84E−05 + 4.33E−10 + 7.11E−07 + 1.86E−05 +

f4 0.01152 ≈ 3.45E−05 + 1.82E−08 + 0.00710 + 2.92E−05 +

f5 0.00369 + 0.12916 − 6.50E−07 + 0.01080 ≈ 0.03920 −
f6 0.27945 − 0.01344 ≈ 0.00018 + 0.00019 + 0.00018 +

f7 0.01103 ≈ 2.36E−05 + 3.04E−06 + 4.92E−19 + 1.06E−05 +

f8 0.00115 + 7.40E−10 + 1.11E−09 + 2.32E−03 + 0.16641 −
f9 0.00361 + 9.80E−07 + 0.00053 + 6.10E−07 + 1.49E−09 +

f10 0.00033 + 3.02E−24 + 5.60E−06 + 6.47E−10 + 0.00016 +

f11 0.01051 ≈ 0.00546 + 2.50E−27 + 5.69E−07 + 0.00232 +

f12 0.01015 ≈ 0.01127 ≈ 0.00022 + 0.01171 ≈ 3.42E−06 +

f13 0.00301 + 2.01E−06 + 1.14E−06 + 1.47E−06 + 0.18640 −
f14 0.00416 + 3.21E−28 + 0.17171 − 0.00331 + 0.10393 −
f15 0.01136 ≈ 4.25E−08 + 2.40E−06 + 2.95E−07 + 0.01188 ≈
f16 0.00942 + 0.01312 ≈ 0.13910 − 3.12E−06 + 8.30E−14 +

f17 0.00015 + 2.12E−08 + 1.11E−05 + 2.23E−10 + 3.58E−08 +

f18 0.00123 + 0.04025 − 0.00734 + 0.00402 + 1.02E−03 +

f19 0.01012 ≈ 0.00333 + 7.99E−07 + 0.00250 + 0.00096 +

f20 0.00172 + 0.09231 − 0.00331 + 0.0001 + 0.04231 −
f21 0.00017 + 0.16341 − 0.01456 ≈ 0.00391 + 0.00012 +

f22 0.00376 + 0.01014 ≈ 0.00056 + 0.00331 + 0.05234 −
f23 0.00331 + 0.01342 ≈ 0.01155 ≈ 0.00881 + 9.56E−07 +

f24 0.00071 + 0.00016 + 3.22E−05 + 0.00224 + 0.00098 +

f25 5.56E−05 + 0.02134 − 0.01248 ≈ 2.16E−04 + 0.00012 +

f26 0.01245 ≈ 0.04546 − 0.01223 ≈ 0.00934 + 1.24E−07 +

f27 0.003845 + 0.076413 − 0.00206 + 0.032291 − 2.77E−04 +
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The p –values and their grades are represented in Table 3.2. Also, the summary of this
statistical analysis is reflected in Tables 3.3, 3.4, 3.5, and 3.6 in terms of above symbols and
grades for each algorithm. The final statistical performance of each algorithm is presented in last
row of every table. From this, it is easy to make the quantitative decision about the performance
of the proposed GWO-ABC algorithm. The detailed statistical analysis of all the functions is
explained in three ensuing sections.

Table 3.3: Comparison of results obtained for the unimodal benchmark functions.

f GWO PSO ABC GSA ALO GWO-ABC

f1 Mean 2.25E−57 1.06E−08 5.83E−11 1.13E−16 8.41E−06 3.65E−81
SD 2.13E−56 4.75E−09 5.33E−11 5.02E−17 5.06E−06 6.23E−78
Rank(Grade) 2(+) 5(+) 4(+) 3(+) 6(+) 1

f2 Mean 8.35E−36 2.36E−04 2.14E−07 5.5E−08 48.95 2.98E−46
SD 7.23E−35 2.36E−04 4.01E−06 1.66E−08 52.76 2.20E−45
Rank(Grade) 2(+) 5(+) 4(+) 3(+) 6(+) 1

f3 Mean 7.13E−15 14.194 1.25E +04 5.15E−02 1.18E +03 1.24E−24
SD 1.44E−14 6.224 2.35E +03 145.26 498.32 4.69E−23
Rank(Grade) 2(+) 4(+) 6(+) 3(+) 5(+) 1

f4 Mean 1.23E−10 1.5647 23.11456 1.04778 10.5229 1.37E−21
SD 2.15E−09 0.2351 3.5689 1.09421 4.7058 1.66E−22
Rank(Grade) 2(≈) 4(+) 6(+) 3(+) 5(+) 1

f5 Mean 26.0127 49.5689 3.98754 6.49E−07 83.1839 24.126
SD 0.001998 65.8352 5.1153 8.69E−11 90.68 1.0042
Rank(Grade) 4(+) 5(−) 2(+) 1(≈) 6(−) 3

f6 Mean 0.96456 1.57E−08 3.12E−03 1.15E−06 7.99E−06 0.34556
SD 0.112456 2.15E−08 1.54E−03 3.15E−17 5.02E−06 0.012441
Rank(Grade) 6(−) 1(≈) 4(+) 2(+) 3(+) 5

f7 Mean 0.00056 0.05466 0.23418 2.7883 0.08601 3.12E−5
SD 0.0014 0.03124 0.01234 0.03406 0.03379 1.23E−4
Rank(Grade) 2(≈) 3(+) 5(+) 6(+) 4(+) 1

Average Rank 2.85 3.86 4.42 3.0 5.0 1.85
Overall Rank 2 4 5 3 6 1
Grades +/≈ /- 4/2/1 5/1/1 7/0/0 6/1/0 6/0/1 28/4/3

The “best results” are indicated by bold values.

3.4.4 Exploitation Analysis (Results for Unimodal Test Functions)

As given in Table A.3, the functions f1 to f7 are unimodal functions having only one optima i.
e. global optima, therefore, these functions are used to test the exploitation capability of an al-
gorithm. Hence, the overall exploitation behaviour of the proposed algorithm can be investigated
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Table 3.4: Comparison of results obtained for the multimodal benchmark functions.

f GWO PSO ABC GSA ALO GWO-ABC

f8 Mean −6102.33 −4671.12 −7105.93 −4456.02 −5779.93 −8146.67
SD 855.2340 234.1245 162.2757 1652.223 1076.820 460.1560
Rank(Grade) 3(+) 5(+) 2(+) 6(+) 4(−) 1

f9 Mean 1.12E−16 49.07340 1.452810 25.57040 82.58130 0
SD 1.23E−12 15.11290 0.584178 7.113900 11.50790 0
Rank(Grade) 2(+) 5(+) 3(+) 4(+) 6(+) 1

f10 Mean 2.56E−12 19.12590 2.34E−04 8.04E−09 1.647401 1.16E−17
SD 1.62E−15 0.068790 8.23E−05 1.02E−09 0.931450 2.45E−15
Rank(Grade) 2(+) 6(+) 4(+) 3(+) 5(+) 1

f11 Mean 0.002145 0.012173 2966344 8.416200 0.009890 0
SD 0.003567 0.025648 4347.167 2.322601 0.008870 0
Rank(Grade) 2(≈) 4(+) 6(+) 5(+) 3(+) 1

f12 Mean 0.051321 0.042115 7.14E−12 0.012440 11.55400 0.021096
SD 0.012101 0.0110213 1.56E−11 0.012147 3.634900 0.011345
Rank(Grade) 5(≈) 4(≈) 1(+) 2(≈) 6(+) 3

f13 Mean 0.645225 0.003336 3.10E−09 0.003290 3.885000 0.124562
SD 0.123454 0.004207 3.22E−10 0.005300 12.19740 0.002340
Rank(Grade) 5(+) 3(+) 1(+) 2(+) 6(−) 4

Average Rank 3.16 4.5 2.83 3.67 5.0 1.83
Overall Rank 3 5 2 4 6 1
Grades +/≈/- 4/2/0 5/1/0 6/0/0 5/1/0 4/0/2 24/4/2

The “best results” are indicated by bold values.

from the mean and SD values obtained by algorithms are reported in Table 3.3. It can be observed
that, for f1 to f7, the proposed GWO-ABC outperforms the conventional GWO. Similarly, the
results by GWO-ABC are superior to that of PSO, ABC, GSA, and ALO in the 5 out of 7 test
functions ( f1, f2, f3, f4, and f7). Also, the low SD values indicate the stability and robustness
of the proposed algorithm. Thus, It can be inferred that the adopted modifications in GWO-ABC
have enriched the exploitation behaviour of conventional GWO.

The ranks are assigned in accordance with mean values obtained over each function. It can be
clearly perceived from Table 3.3 that, GWO-ABC is ranked one in 5 out of 7 functions and there-
fore overall ranking is best (rank 1) among all algorithms. Thus, the overall rank of GWO-ABC
indicates that the proposed algorithm outperforms conventional GWO, PSO, ABC, GSA, and
ALO algorithms. According to the last row of Table 3.3, GWO-ABC is statistically superior to
other algorithms in 28 cases (91% ) and similar in 4 cases. By incorporating information sharing
strategy in the pack features the advantage of recognizing newly explored candidate solutions in
new area of search space. This provides the solutions from promising regions of the search space
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faster and enhance the exploitation to nearby newly explored solutions. Eventually, it can be ob-
served that the proposed modifications in conventional GWO have ameliorated the exploitation
capability in dealing with unimodal function.

3.4.5 Exploration Analysis (Results on Multimodal Test Functions)

Multimodal test functions ( f8 to f21 ) are opted to validate the exploration capability of an opti-
mization algorithm, as these test functions have many optima which include many local optima
and single global optima. The average (mean) and standard deviation (STD) results over 100
independent runs of GWO-ABC and other methods for multimodal ( f8 to f13 ) and fixed dimen-
sion multimodal ( f14 to f21 ) test functions are noted in Tables 3.4 and 3.5, respectively. It can
be observed from Tables 3.4 and 3.5 that GWO-ABC obtains the superior results compared to
GWO, PSO, ABC, GSA, and ALO algorithms for f9, f10, f11, f15, f16, f17, f18, f19, f20, and f21.
As per expectation, it is worth to notice that GWO-ABC outperforms conventional GWO in all
multimodal ( f8 to f21 ) functions. It can also be seen that the proposed GWO-ABC is ranked one
in 11 out of 14 multimodal functions. Hence, the overall ranking of the GWO-ABC is superior
to all other algorithms. Based on SD index, it can be claimed that GWO-ABC provides better
accuracy in comparison to others.

In summary, it can be concluded that the exploration ability of conventional GWO is enhanced
by introducing information sharing strategy of ABC. The chaotic random selection of neighbour-
ing solutions intensifies the exploratory behaviour of GWO. In this manner, the new strategies
applied in proposed algorithm have assisted GWO in maintaining a significant balance between
local and global search inclinations. The enhanced exploration behaviour intensifies the capabil-
ity of GWO to escape from local optima in case of multimodal test functions. Remarkably, the
statistical test results, in last row of Tables 3.4 and 3.5, also indicate that the GWO-ABC is supe-
rior to other methods in approximately 88% of evaluations. This proves that there is significant
statistical difference in the results obtained by GWO-ABC and other algorithms.

3.4.6 Convergence Analysis

The convergence behaviour of a proposed GWO-ABC algorithm is analyzed by convergence
graph for some functions in Figs. 3.4 and 3.5. The mean objective function value profile (in
logarithmic scale) over 100 independent runs for each function is plotted on Y-axis against in-
creasing number of FEs on X-axis. For comparative analysis, the convergence graph of proposed
algorithm is exhibited with GWO, PSO, ABC, GSA, and ALO.

Fig. 3.4 shows the convergence graphs of algorithms for five unimodal functions ( f1, f2,
f3, f4, and f7). It can be clearly seen that the proposed GWO-ABC shows better convergence
behaviour from the initial iterations itself and improves further with increase in iterations. This
behaviour is attributed to the fact that information sharing strategy adopted in GWO-ANBC es-
calates the convergence speed.
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Likewise, the convergence graphs of three multimodal functions ( f9, f10, and f11) along with
three fixed dimensional multimodal functions ( f15, f18, and f21) are demonstrated in Fig. 3.5.
The multimodal functions have many local optimal points, hence there are more chances of stag-
nation at any local optimal point. Therefore, the algorithm should possess a strategy to explore
search space efficiently to avoid entrapment in these local optimal regions. As discussed above,
the proposed algorithm adopts the strategies to enhance the search ability and achieve global
optimal point with better convergence rate. Therefore, in most of the functions we can realize
the accelerated trends in convergence curves of GWO-ABC compared to conventional GWO and
other algorithms.

3.4.7 Results for Composite Test Functions

The investigation results on Composite test functions for 10 dimension are demonstrated in Table
3.6. These functions are taken from the CEC’14 benchmark test suits [124] to evince the efficacy
of the proposed GWO-ABC. Among these, for function f30, the GWO-ABC shows poor result
than PSO, but it outperform GWO and other algorithms. The lower SD values show that GWO-
ABC has smooth distribution than the conventional GWO. Also, for Most of the functions like f22

to f29, the proposed algorithm indicates efficient improvements in results than other algorithms.
The challenging task in case of optimizing composite functions is to overcome stagnation at
local optima, the information sharing strategy adopted in GWO-ABC efficiently handle this by
balancing the exploitation and exploration. The overall ranking (1st) and statistical simulation
grade manifest the performance of GWO-ABC. The performance of GWO-ABC, in 25 out of
30 (83%) functions, is better than or commensurable to the performance of other algorithms.
To observe the convergence behaviour of GWO-ABC, we investigate f24 i. e. CF3 and plot
the convergence curves in Fig. 3.4 (f). It is clearly visible that the convergence behaviour of
GWO-ABC is much faster than all other algorithms.

Thus, in most of the functions, it is clearly visible that GWO-ABC outperforms GWO, PSO,
ABC, GSA, and ALO algorithms in terms of in convergence speed, which reflects the impact of
adoption of search strategy of bees in GWO.
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Table 3.5: Comparison of results obtained for the fixed-dimension multimodal benchmark
functions.

f GWO PSO ABC GSA ALO GWO-ABC

f14 Mean 5.458330 22.09483 0.998004 3.024601 1.295820 0.998001
SD 5.422380 0.001200 1.30E−16 1.819220 0.669810 0.836571
Rank(Grade) 4(+) 5(+) 1(−) 3(+) 2(−) 1

f15 Mean 0.000390 0.000791 0.000690 0.002040 0.002780 0.000301
SD 5.15E−07 8.16E−05 0.000217 0.000445 0.006180 2.44E−08
Rank(Grade) 2(≈) 4(+) 3(+) 5(+) 6(≈) 1

f16 Mean −1.03162 −1.03162 −1.03162 −1.03161 −1.01160 −1.03160
SD 1.12E−10 1.23E−15 0 0 8.31E−14 0
Rank(Grade) 1(+) 1(≈) 1(−) 1(+) 1(+) 1

f17 Mean 0.397839 0.397012 0.397901 0.397012 0.397901 0.397801
SD 1.45E−05 0 0.004500 1.45E−05 0 0
Rank(Grade) 2(+) 3,(+) 2(+) 3,(+) 2(+) 1

f18 Mean 3.539001 3.000000 3.002356 3.000000 3.000100 3.000000
SD 39.83322 4.11E−17 0.006215 4.12E−15 0.040200 8.29E−08
Rank(Grade) 3(+) 1(−) 2(+) 1(+) 1(+) 1

f19 Mean −9.647 −6.75649 −10.15317 −9.7119 −6.11400 −10.1510
SD 0.023145 3.321304 0.000100 3.824420 2.949000 0.000146
Rank(Grade) 3(≈) 4(+) 2(+) 3(+) 5(+) 1

f20 Mean −9.76150 −9.222455 −10.40317 −8.243 −8.53567 −10.4028
SD 2.554682 1.256470 0.002309 0.001230 3.029300 0.008945
Rank(Grade) 3(+) 2(−) 1(+) 4(+) 5(−) 1

f21 Mean −9.998451 −9.756483 −9.965840 −10.5360 −5.69750 −10.5311
SD 1.542310 3.221450 0.037870 0.000070 2.623400 0.000259
Rank(Grade) 3(+) 4,(−) 3(≈) 2,(+) 5(+) 1

Average Rank 2.62 3.0 1.87 2.75 3.37 1
Overall Rank 3 5 2 4 6 1
Grades +/≈/- 6/2/0 4/1/3 5/1/2 8/0/0 5/1/2 28/5/7

The “best results” are indicated by bold values.
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Table 3.6: Comparison of results obtained for the composite benchmark functions

f GWO PSO ABC GSA ALO GWO-ABC

f22 Mean 2692.011 2690.181 2690.936 4456.021 2689.012 2681.925
CF1 SD 22.06500 27.56001 162.2750 1652.223 243.5560 7.766001

Rank(Grade) 4(+) 3(≈) 3(+) 5(+) 2(−) 1
f23 Mean 2796.813 2760.140 2768.956 2896.321 2789.889 2710.135
CF2 SD 24.90010 0.073710 0.584178 7.113900 0.010900 29.96000

Rank(Grade) 5(+) 2(≈) 3(≈) 6(+) 4(+) 1
f24 Mean 2990.400 2974.200 2981.920 3059.108 3018.976 2959.108
CF3 SD 161.3200 140.8010 144.2610 189.6650 144.2350 73.94400

Rank(Grade) 4(+) 2(+) 3(+) 6(+) 5(+) 1
f25 Mean 3265.809 3360.890 3456.670 3390.213 3296.768 3257.192
CF4 SD 69.22000 79.39000 64.09600 72.32200 292.1050 78.85100

Rank(Grade) 2(+) 4(−) 6(≈) 5(+) 3(+) 1
f26 Mean 4.78E +05 2.54E +05 9.30E +05 7.63E +06 8.03E +08 3675.897
CF5 SD 8.63E +05 9.39E +05 1.70E +06 6.23E +06 1.52E +06 1067.211

Rank(Grade) 3(≈) 2(−) 4(≈) 5(+) 6(+) 1
f27 Mean 3957.947 3899.831 3969.550 4356.178 4428.688 3950.060
CF6 SD 329.5320 399.9910 443.9710 564.2350 1433.256 244.4200

Rank(Grade) 3(+) 1(−) 4(+) 5(−) 6(+) 2
Average Rank 3.5 2.33 3.83 5.33 4.33 1.16
Overall Rank 3 2 4 6 5 1
Grades +/≈/- 5/1/0 1/2/3 3/3/0 5/0/1 5/0/1 19/6/5

The “best results” are indicated by bold values.
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Fig. 3.4: Comparison of convergence curves of proposed GWO-ABC and other algorithms
obtained for some of the unimodal and composite function.
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Fig. 3.5: Comparison of convergence curves of proposed GWO-ABC and other algorithms
obtained for some of the multimodal and fixed-dimension multimodal functions.
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3.5 Concluding Remarks

The accomplishment of proposed GWO-ABC has been substantiated through exploitation and ex-
ploration capability analysis, convergence rate analysis, and non-parametric Wilcoxon rank-sum
test. The statistical analysis and evolution convergence curves exhibit the outstanding perfor-
mance of proposed algorithm to other counterparts within competitive computational complex-
ity. Finally, from results and discussions in previous section, following decisive comments can
be concluded as prime attributes of GWO-ABC.

• The GWO-ABC can still manifest the prime features of original GWO with improved
exploitation and exploration tendencies.

• The elitism based population initialization, incorporating chaotic mapping and OBL strat-
egy, generates well diverse (i.e. guess and its opposite guess) fitter starting candidate solu-
tions.

• Hybridizing with employed bee’s upgrading strategy from ABC elevates the information
sharing ability among the members of the pack. It intensifies exploration tendency and
boost the participation of all candidate solutions in the pack without affecting the leadership
hierarchy approach of conventional GWO.

• As no extra FE are required in the proposed GWO-ABC algorithm, the performance is
enhanced in similar computational time as in conventional GWO.

For the future work, the proposed modified algorithm can be validated for interdisciplinary and
multi domain complex engineering and science optimization problems.
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Chapter 4

Optimization of Different Controller
Design Problems

This chapter is aimed to test the performance of proposed algorithms for optimization of different
controller design problems. Initially, Section 4.1 briefs the qualification of MAs for control de-
sign problems. In Section 4.2, the proposed GWO-ABC algorithm is applied on four test bench
process plants to obtain the optimal time-domain specifications. Further, improved CFGWO al-
gorithm is presented in Section 4.3 and examined for optimal tuning of controller parameters for
trajectory tracking problems of a 2-link robotic manipulator in Section 4.4. Finally, the conclu-
sions are drawn.

4.1 Introduction

The tuning of controllers is considered as a high-dimensional, complex, multimodal numerical
optimization problem, as many locally optimal solutions can be obtained for different combina-
tions of the parameter values [42, 43]. Thus, it is always a challenging task for designers to get
the global optimal value. Recently, MAs are widely used for obtaining the optimal tuning pa-
rameters of controllers to get the best performance and robust response [31, 32]. In view of this,
this chapter is dedicated to reveal the efficacy of MAs over control system design problems for
various linear and non-linear test bench process plants with and without time delay, for unit step
response. Initially, the GWO-ABC algorithm, proposed in previous chapter, is applied to activate
the optimal time-domain specifications. All the design requirements like low overshoot, better
rise time, faster settling time, minimum steady-state error, and performance index are evaluated
and compared to other counterparts.

The work outlined in this chapter has been disseminated in the following publications:
• P. J. Gaidhane and M. J. Nigam, “A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing
the performance of complex systems,”Journal of Computational Science, vol. 27, pp. 284-302, Jul 2018.
• P. J. Gaidhane and M. J. Nigam, “ A rational cooperative foraging based grey wolf optimizer and its application
to optimize complex systems”, Applied Soft Computing, 2018. (Under review)

49



Further, the communication signalling strategy used in cooperative foraging is incorporated
in conventional GWO with continuing its leadership hierarchy approach to present improved
CFGWO algorithm. Moreover, for testing the performance of the proposed CFGWO for real
world applications, the proposed CFGWO algorithm is examined for optimal tuning of controller
parameters for trajectory tracking problems of a 2-link robotic manipulator. The comparative
graphs of trajectory tracking performance, the path traced by the end-effector, and X and Y
coordinate versus time variations against their desired reference curves are illustrated. Also,
plots of position errors and controller output for both the links are presented.

4.2 Implementation of GWO-ABC on Test-bench Process Plants

Several studies have been reported that FOPID outperforms conventional PID controllers in terms
of robustness over wide range of applications including robotics in recent years [79, 80]. The
fractional operators are recommended for the availability of additional freedom to the design-
ers. On the other hand, every added parameter increases the complexity of tuning methodology
used for designing. The suitable optimization algorithms with high convergence rate and good
exploration behaviour are utilized in such problems. The inherent complexity of control design
problems led us to select the proposed GWO-ABC algorithm for tuning the control parameters.
Here, optimization procedure is performed to achieve the optimal time-domain specifications by
minimizing underlying objective function. FOPID control parameters are tuned to get minimum
overshoot Mp, lower rise time tr, faster settling time ts. and null steady state error Ess.

4.2.1 FOPID Controller

The FOPID controller used in this study is demonstrated in Fig. 4.1. In this design, the fractional
order integro-differential operators are incorporated with classical PID controllers to enhance the
dynamic response and to reduce the steady-state error. The definition and approximation method
for the fractional order are detailed in Section 2.1.4. The FOPID transfer function used in this
experimentation is represented as

τ(s) = (KP +KI/sλ +KDsµ)e(s) (4.1)

where KP, KI , and KD represent the proportional gain, integral and derivative gain con-
stants, respectively. e is the error between desired and actual response of the system. The
output of the controller τ is applied to the system under control as actuator signal. The terms
λ and µ are the fractional orders of integral and derivative terms, respectively. The designing
of an optimal FOPID controller is determined through finding the optimal values of the vector
K = (KP,KI,KD,λ ,µ) for minimizing the performance index. In this study, the minimization is
performed by the proposed GWO-ABC algorithm and the results are compared with five other
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Fig. 4.1: Design scheme of FOPID controller applied to system G(s).

standard optimization algorithms GWO, PSO, ABC, GSA, and ALO.

4.2.2 Problem Definition

In this section, the performance of GWO-ABC is evaluated by determining the optimal parame-
ters of FOPID controller for performance index ITAE. As reported in Section 2.3, there are other
performance indices like IAE, ISE, IT SE are also used by different studies. ITAE is preferred
in this study for its effective performance characteristics. The time multiplication term in error
index ITAE minimizes the chances of oscillations at later stages, therefore, the settling time (ts)
of the closed loop system is effectively reduced and the absolute value of error minimizes the per-
cent overshoot (Mp%). In case of adding square terms in indices like IT SE, oscillations damns
faster but sudden change in set point may cause larger controller output. Thus, the rationale
behind selecting ITAE, as a objective function in this study, is that it reduces percent overshoot
(Mp%) and rise time (tr) and ensures faster settling time (ts) with null steady-state error Ess. It has
also been mentioned in various studies that minimum value of ITAE objective function provides
better system response. Mathematically, the objective function based on ITAE as given in (2.17)
is

Jo = ITAE =
∫

t|e(t)|dt

where t is time and e(t) is an error between actual and desired response.

4.2.3 Performance Evaluation on Test-bench Process Plants

It has been observed that, in conventional control applications, processes with higher-order mod-
els are approximated using first or second order systems with time delay [26]. Therefore, in order
to verify the efficacy of the proposed algorithm for tuning of controllers comparative experiments
are carried out over variety of complex test-bench process plants which are widely referred in the
literature [3, 7, 26].

(a) First-order system with time delay [3] : The system in following generalized form is
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considered.
Ga(s) =

K
T s+1

e−Ls (4.2)

where K is process gain, T is time constant, and L is dead time. For the simulation in this work,
these values are taken as; K = 1, T = 1, and L = 0.5.

(b) Non-linear system with time delay [7] :

Gb(s) =
d2y
dt2 +

dy
dt

+0.25y2 = u(t−L) (4.3)

here time delay L is assigned as 0.5.

(c) Second-order stable linear system with time delay [26] : This second order system is
considered with system-gain K = 1, the natural frequency ωn = 0.45, damping factor ζ = 1.125
and L is the time delay, fixed as L = 0.2.

Gc(s) =
K

s2 +2ζ ωns+ω2
n

e−Ls (4.4)

(d) Non-minimum phase system [7] :

Gd(s) =
1−0.5s
(s+1)3 (4.5)

As shown in Fig. 4.1, the FOPID controller is applied to each of the above systems and controller
parameters are tuned for step response.

4.2.4 Simulation Results and Discussion

The performance of the proposed GWO-ABC is compared with the conventional GWO, PSO,
ABC, GSA, and ALO algorithms. All the parameters required to implement these algorithms are
given in Table 3.1. For all the experiments, the population size is set as 30 and maximum number
of function evaluations (for stopping criteria) is fixed to 3000. In order to attain the optimal
parameters for FOPID controller, best of the results obtained from 20 runs are presented here. The
suitable ranges assumed for different control parameters are as follows: Kp ∈ [0,10], KI ∈ [0,10],
KD ∈ [0,10], λ ∈ [0,2], and µ ∈ [0,2]. The step responses of all above systems with optimally
tuned FOPID controllers are shown in Figs. 4.2, 4.3, 4.4, and 4.5. The comparative results of
optimal controller parameters and resulted time-domain specifications for all the above systems
Ga(s), Gb(s), Gc(s), and Gd(s) are summarized in Tables 4.1, 4.2, 4.3, and 4.4, respectively.
From figures and tables, it can be observed that proposed GWO-ABC tuned FOPID controllers
outperform the controllers tuned by GWO, PSO, ABC, GSA, and ALO algorithms in terms of
minimum percent overshoot (Mp%), lower rise time (tr), and achieve null steady-state error (Ess)
in faster settling time (ts), in most of the cases. On the other hand, although in case of Ga(s)
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Fig. 4.2: Step response of first-order system with time delay.

Table 4.1: Optimal controller parameters and comparative results for the first-order system with
time delay.

Optimal Parameters Time-domain Specifications

Algorithm↓ KP KD KI µ λ Mp(%) tr(s) ts(s) Ess J0

GWO 1.0011 0.0064 1.0012 0.0011 0.999 3.4823 0.9055 2.6321 0.0001 0.6843
PSO 1.1870 0.0012 1.0990 0.0208 1.0020 7.6044 0.7708 2.6301 0.0001 0.8930
ABC 1.3473 0.0001 1.1176 0.0031 1.0078 9.2012 0.6730 3.7010 0.0002 1.0207
GSA 2.1456 0.0450 1.9695 0.0841 0.8896 0.9020 0.7012 5.1241 0.0002 1.0127
ALO 3.0012 0.0664 2.1450 0.0641 0.2456 2.5691 1.0152 6.3210 0.0003 1.1021
GWO-ABC 1.0170 0.0902 1.0011 0.2977 0.9983 0.9012 0.8957 1.7540 0.0000 0.4566

The “best results” are indicated by bold values.
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Fig. 4.3: Step response of non-linear system with time delay.

Table 4.2: Optimal controller parameters and comparative results for the non-liner system with
time delay.

Optimal Parameters Time-domain Specifications

Algorithm ↓ KP KD KI µ λ Mp(%) tr(s) ts(s) Ess J0

GWO 0.4225 0.9701 0.2669 0.7270 0.9653 4.9212 1.1978 3.4711 0.0001 2.6998
PSO 0.8467 1.0011 0.0313 0.9488 1.0000 0.5031 1.8536 6.7212 0.0001 2.4523
ABC 0.4755 0.8874 0.2918 0.7790 0.8703 1.4011 1.5131 5.0911 0.0004 1.2146
GSA 0.6689 1.256 1.0254 0.5681 0.6541 2.5342 1.0815 5.3412 0.0003 2.8345
ALO 1.0123 2.1451 0.8654 0.6741 0.7546 4.8322 1.1893 6.0420 0.0004 2.2151
GWO-ABC 0.8140 0.9423 0.3224 0.9639 0.9965 0.1001 1.0814 2.2991 0.0000 1.0280

The “best results” are indicated by bold values.
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Fig. 4.4: Step response of second-order stable linear system with time delay.

Table 4.3: Optimal controller parameters and comparative results for the second-order stable
linear system with time delay.

Optimal Parameters Time-domain Specifications

Algorithm ↓ KP KD KI µ λ Mp(%) tr(s) ts(s) Ess J0

GWO 0.8608 0.8798 0.2168 0.7187 0.9301 1.4023 1.2921 4.657 0.0004 2.4599
PSO 0.9722 0.9628 0.2809 0.7610 1.000 3.7051 1.1709 3.1210 0.0001 1.1348
ABC 0.1413 0.9730 0.2533 0.3988 0.8798 2.6180 1.6029 3.7361 0.0003 2.7291
GSA 3.4233 0.8879 1.0024 0.4501 0.8643 2.6210 18712 4.2311 0.0003 2.8134
ALO 1.0273 0.8475 2.0156 0.0315 0.5618 8.5301 0.7802 3.9050 0.0004 3.1024
GWO-ABC 0.9879 0.9762 0.3163 0.8759 0.9888 0.7002 1.3019 2.2491 0.0001 1.0776

The “best results” are indicated by bold values.
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Table 4.4: Optimal controller parameters and comparative results for the non-minimum phase
system.

Optimal Parameters Time-domain Specifications

Algorithm ↓ KP KD KI µ λ Mp(%) tr(s) ts(s) Ess J0

GWO 0.9926 0.7540 0.4591 0.8537 0.9896 2.6042 2.0320 8.1221 0.0005 2.834
PSO 0.6580 0.7624 0.4620 0.4978 0.9842 4.8011 2.1461 9.1450 0.0002 4.8718
ABC 0.9797 0.6950 0.4467 0.8560 0.9952 1.3034 2.3440 4.2041 0.0001 3.0214
GSA 0.8964 0.4567 0.5896 0.7731 0.9812 4.1243 2.0123 4.3541 0.0003 4.0311
ALO 07698 0.8891 0.1176 0.6921 0.8978 1.5961 3.7602 13.230 0.0004 3.5019
GWO-ABC 0.9998 0.9988 0.5439 0.7910 0.9617 0.9023 1.9919 3.645 0.0000 2.1724

The “best results” are indicated by bold values.
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and Gc(s), the rise time of GWO-ABC tuned controller is marginally higher than that of some
other algorithms, all other specifications like Mp%, ts, and Ess by GWO-ABC tuned controller
are superior in case of all. The last column of each table presents the values of performance
index Jo = ITAE, which is also depicted in Fig. 4.6 for better comparative analysis. From all
illustrations and tables, it is manifested that the proposed GWO-ABC algorithm can be a better
option for multimodal controller tuning problems of complex systems.
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4.3 Proposed CFGWO Algorithm

In this section, new cooperative foraging based GWO (CFGWO) is proposed by interpreting
the motivations from the cooperative forging behaviour of animals (including grey wolves). The
mathematical amendments are proposed in original GWO to incorporate cooperative foraging be-
haviour. Further, new acceleration coefficient is introduced and systematic structure of proposed
CFGWO is presented.

4.3.1 Animal’s Behaviour in Cooperative Foraging

Colin J. Torney, et al., in [127] reported that the animals in cooperative foraging are able to
acquire more knowledge about their environments than if they were to forage alone. This con-
sequently enhances their ability to read environmental cues, and hence ameliorate their search
efficiency. Authors also notified that sharing of information among conspecifics reduces the risk
associated with unsuccessful foraging attempts (stagnation at local sub-optima) when conditions
are unpredictable (such as stochastic MA). Similarly, in review paper [128], Ida Bailey et al.,
provide evidences of different levels of hunt organisation and cooperation in carnivorans and
stated that cooperative foraging associated with more advanced communication skills may im-
prove hunt coordination than would otherwise be possible in some contexts. In [128], authors
also specified in context of cooperative hunting that cooperation can simply means two or more
individuals increasing their fitness (success as predator and, therefore, their chance of survival)
by acting together (communicate). Thus, effective and honest communication in these situations
would clearly enhance foraging efficiency of pack since it provides an additional level of reliable
information to individuals [127]. Many studies on animal behaviour, including [129] by J. Ruch
et al., suggested the division of labour among the pack as main feature of cooperative foraging.
It involves participation of each team member to adopt specialized roles to perform a subtask.

According to [128,130], with in family of wolves communication helps in maintaining social
stability. Specially, wolves communicate through (a) range of vocalization or (b) body language.
Fig. 4.7 (b) illustrates these communication signalling among the members of the pack of wolves.
These communications are used for gathering, hunting, and mourning for a lost pack mate or
announcing territorial or mating intentions. It is observed that, during foraging and hunting, high
level of communication strategy and information sharing is required in the pack until good prey
is obtained. During chase, wolves may howl to motivate others to join a hunt and perform body
movements like raising ears, and tail tips to give visual cues and signals to neighbours. But, once
the global optimum region (around biggest prey) is obtained, whole pack is busy in exploiting
it [127].
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Howling wolves  

Body cues to neighbour 

by ear and tail postures  
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(b)

Fig. 4.7: Cooperative foraging and hunting behaviour of grey wolves by (a) Leadership based
hunting approach, and (b) Cooperative signalling behaviour in the pack through (i) Vocalisation

and (ii) Body language (Credit: National Park Service) [128].
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4.3.2 Motivation from Cooperative Foraging

As discussed earlier, conventional GWO algorithm is the only population based algorithm which
is based on leadership hierarchy where remaining low rank members of pack upgrade their po-
sitions based on the moves of three leading wolves, as depicted in Fig. 4.7 (a). In their original
research paper [89], S.Mirjalili et al., defined these remaining low ranking wolves as scapegoat
and consider them as not so important individuals in the pack. Therefore, it would be plausible to
claim that this algorithm follows dominance structure and poorly benefited by cooperative forag-
ing strategy. Also, as discussed above, the adaptive values of parameters of −→a and

−→
A decide the

transition by favouring exploration at the first half of the iterations and exploitation at the later
half of the iterations. Mostly, these features make GWO incompetent in handling multimodal and
complex problems in efficient manner.

Ultimately, these insights persuade us to model communication signalling of wolves to trans-
fer information amongst individuals in the pack to aid all-inclusive cooperative foraging. The
limitations also encourage us to introduce new acceleration coefficient to modify exploration
ability of algorithm throughout iterations.

4.3.3 New Acceleration Coefficient

New acceleration coefficient ‘ ε ∈ [1,0.1]’ is introduced in the algorithm to control the rate of
communication for information sharing between the search agents. The coefficient is decreasing
with respect to increasing iterations as defined by following equation.

ε(t) = 1− t× 0.9
max iter

(4.6)

here ‘t’ represents current iteration value and ‘max iter’ is the maximum number of iterations.
The variation of ε for max iter = 1000 is illustrated in Fig. 4.8. It can be observed from figure
that the algorithm starts with higher value of ε i.e., 1, however, with lapse of iterations it decreases
linearly.

It is intended to initialize the algorithm with better communication signalling and reduce it in
later iterations. This behaviour is supported by the fact that in later iterations search agents find
better prey and converge to optimal region around it. Therefore, most of the search agents have
similar information of prey and there is no point of sharing it among each-other.

4.3.4 Structure of the Proposed CFGWO Algorithm

In this section, the details of newly proposed CFGWO algorithm is presented. The step-wise
flowchart of CFGWO algorithm is demonstrated in Fig. 4.9. The idea of cooperative foraging
using learning, communication signalling, and cognitive processing are framed and implemented
in this proposed algorithm. As delineated in flowchart, the steps in the CFGWO algorithm are
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Fig. 4.8: Behaviour of new acceleration coefficient and parameter a against iterations.

similar to conventional GWO algorithm with upgraded initialization scheme and additional com-
munication signalling strategy. For better reasoning, following description of CFGWO is divided
in three main phases (i) initialization, (ii) learning by leadership hierarchy based GWO, and (iii)
communication signalling to exchange the information among each-other.

Initially, swarm size N, search space with n dimension, maximum iterations max iter are
fixed and other parameters a,A, and C are evaluated.

Chaotic and OBL based population initialization: In [11], authors proposed an elitism based
swarm initialization scheme by incorporating chaotic mapping and OBL strategy. In this work,
we adopted the same scheme to initiate with widespread range of solutions. The step-wise detail
of the scheme is given in Algorithm 2. Initially, set of solution candidates X ∈ N is obtained
through chaotic mapping, the equation of logistic chaotic map is given in Eq. (2.15), later, OBL
methodology is used to generate X∗ as given in step 4 in Algorithm 2. Both the sets are merged
as X = (Xi ∪X∗i ) ∈ 2N and the fitness is evaluated. Finally, all candidate solutions are sorted
according to their fitness values and first N solutions are selected as initial population for further
generations. The prime goal of this scheme is to get benefits of both chaotic mapping and OBL
methodology, to get widespread solutions to initiate with fitter population.

Learning by leadership hierarchy: After generating initial population, algorithm proceeds
according to the conventional GWO. In this phase, all individual search agents learn about the
position of prey from three leading wolves and upgrade themselves. It follows the Eqs. (3.1)
to (3.5), to update its parameters and current positions of search agents based on leadership
hierarchy. Consequently, every search agent undergoes through learning about the prey position
by following three leading wolves.

Communication signalling: The most striking aspect of the proposed CFGWO is coopera-
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Fig. 4.9: Flowchart of the proposed CFGWO algorithm.
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Algorithm 3 Procedure for communication signalling (information transfer) strategy among
search agents.
Input : Updated search agents from GWO X ∈ N, dimension n, bounds
[Ub1, . . . ,Ubn,Lb1, . . . ,Lbn], current iteration t
Output : Advance search agents after information transfer X = X̂

1: for each search agent Xi = (xi1,xi2, . . . ,xil, . . . ,xim, . . .xin), where ∀i ∈ [N] do
2: Randomly select two numbers l,m ∈ [n], where l 6= m

3: Randomly select neighbour of i, k ∈ [N], where k 6= i

4: Obtain ch using Eq. (2.15) and ε(t) using Eq. (4.6) ( random number and new acceler-

ation coefficient)

5: (i) x̂il = ch×xil+ε(t)×(xil−xkl)×(ch−0.5)×2 ( Information transfer with neighbour)

6: (ii) x̂im = ch×xim+ε(t)×(xim−(Ubm+Lbm−xim)×(ch−0.5)×2 ( Information trans-

fer using OBL)

7: Update X̂i = (xi1,xi2, . . . , x̂il, . . . , x̂im, . . .xin)

8: end for

tive foraging by communication through signalling and information transfer among the search
agents. The detailed procedure for cooperative signalling is presented in Algorithm 3. Initially,
two random separate positions l,m ∈ [n] and neighbouring search agent k ∈ [N] are selected for
information exchange. As formulated in Eq. (i) in step 5, the variable at l is evaluated with
respect to another randomly selected neighbouring search agents variable at k. Then, the OBL
based move is incorporated in Eq. (ii) in step 6, to upgrade the variable at position m for ex-
ploring other side of search space. This formulation will enhance the exploration ability which is
estimated by coefficient ε in proportionate manner to balance with exploitation.

These two communication schemes are amended to model the distinct signalling behaviours
of wolves [130,131]. Correspondingly, (a) visual body signals to neighbour wolves is represented
by Eq. (i) in step 5, and (b) vocalisation signalling, like howls of wolves, for communication
with other members present elsewhere is emulated by Eq. (ii) in step 6 of Algorithm 3. The
gradually decreasing acceleration coefficient ε is presented to vary this communication signalling
from higher to lower value. The importance of ε is elaborated in detail in previous Subsection
4.3.3. Moreover, logistic chaotic mapping is employed to elevate the non-repetition, arbitrary
selection, and randomness. The entire procedure of CFGWO is repeated until stopping criteria
(max iter) is met. Finally the best solution of last iteration

−→
Xα is returned as optimal solution.

Thus, cooperative signalling ameliorates global search ability of all individuals in the pack by
bestowing them opportunity to share information with other members.
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4.3.5 Performance Evaluation on Test Functions

The performance of the proposed CFGWO algorithm has been investigated on some of the test
functions from appendix Tables A.3, A.4 and A.2. As discussed in previous chapter, different
performance evaluations are carried out on the basis of Rank based analysis, statistical analysis,
convergence curves, exploration and exploitation analysis. The results are compared with GWO,
PSO, ABC, GSA, and recently proposed GWO-ABC [11] and LGWO [105] algorithms. The
parameter settings for this analysis is similar to Table 3.1 and the grade notations defined in
Section 3.4.3 for Statistical Analysis (Wilcoxon Rank Sum Test) are used in this investigation. In
this study, 2 unimodal ( f1 and f2), 2 multimodal ( f8 and f9), and 2 fixed-dimension multimodal
benchmark functions ( f14 and f15), and 2 composite functions from CEC2014 test bed ( f24 and
f25) are investigated. The statistical analysis is given in Table 4.6. The convergence curves of
the some of the functions are demonstrated in Fig. 4.10 which show the fast convergence trends
by CFGWO than other algorithms. From the the overall ranking and results in Table 4.5, we can
conclude that the cooperative foraging behaviour in Grey wolf improves the performance of the
CFGWO than other algorithms. According to the last row of Table 4.5, CFGWO is statistically
superior to other algorithms in 36 cases (75% ) and similar in 9 cases (19% ).

Table 4.5: Comparison of results obtained for some benchmark functions.

F ↓ Algorithm 7→ GWO PSO ABC GSA GWO-ABC LGWO CFGWO

f1 Mean 5.14E−58 2.47E−09 5.93E−11 1.13E−16 2.63E−82 2.11E−71 2.34E−122
SD 5.60E−58 5.08E−09 5.40E−11 5.02E−17 1.46E−76 2.11E−19 3.39E−122
Rank(Test) 4(+) 7(−) 6(+) 5(+) 2(+) 3(+) 1

f2 Mean 6.82E−35 2.06E−04 1.42E−06 5.49E−08 3.56E−45 6.73E−37 5.41E−70
SD 6.94E−35 2.02E−04 5.01E−07 1.69E−08 3.06E−05 1.23E−03 5.60E−70
Rank (Test) 4(+) 7,(+) 6(+) 5(+) 2(+) 3(+) 1

f8 Mean −6488.69 −6363.61 −7105.93 −5123.23 −8155.67 −6658.25 −8750.71
SD ‘ 615.5570 1403.804 162.2757 125.6531 345.6641 212.3540 122.1860
Rank (Test) 5(+) 6(+) 3(−) 7(+) 2(+) 4(≈) 1

f9 Mean 1.13E−14 43.77850 1.022845 25.60100 1.13E−69 0.004501 0
SD 2.39E−14 9.520100 0.684078 7.112000 5.54E−16 19.56420 0
Rank (Test) 3(−) 7(+) 5(+) 6(+) 2(+) 4(+) 1

f14 Mean 4.911902 4.053910 0.998100 3.024600 0.990100 1.120342 1.002100
SD 4.588900 2.641901 2.43E−15 1.819201 0.044640 0.001210 0.011110
Rank (Test) 6(+) 5(+) 2(−) 4(+) 2(+) 3(+) 1

f15 Mean 0.00833 0.000858 0.0007 0.002043 0.00032 2.36E−06 0.000301
SD 0.01035 0.000157 0.000127 0.000443 0.000127 6.06E−05 1.76E−05
Rank (Test) 7(+) 5(+) 4(+) 6(+) 2(≈) 3(−) 1

f24 Mean 2623.651 2616.012 2648.276 2601.034 2541.300 2539.465 2513.956
SD 0.986542 0.011205 0.005124 0.775424 0.062214 0.754860 0.001564
Rank (Test) 6(+) 5,(+) 7(−) 4(+) 3,(−) 2(−) 1

f25 Mean 2661.842 2693.554 2703.221 2710.341 2641.300 2626.125 2621.022
SD 0.004570 12.88545 0.061452 1.325410 0.070012 0.001332 0.000995
Rank (Test) 4(+) 5,(≈) 6(−) 7(+) 3,(+) 2(+) 1

Average Rank 4.875 5.875 4.874 5.625 2.250 3.000 1
Overall Rank 4 7 4 6 2 3 1
+/-/ ≈ 7/1/0 6/1/1 4/4/0 8/0/0 6/1/1 5/2/1 36/9/4

The “best results” are indicated by bold values.
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Table 4.6: p–values and grades obtained by statistical Wilcoxon rank-sum test with 1%
significance level.

F ↓ GWO PSO ABC GSA GWO-ABC LGWO

f1 4.51E−03 (+) 6.58E−02 (−) 9.60E−03 (+) 1.92E−03 (+) 2.81E−07 (+) 1.82E−06 (+)

f2 3.21E−04 (+) 1.20E−05 (+) 1.42E−05 (+) 7.92E−03 (+) 3.34E−04 (+) 1.24E−04 (+)

f8 2.55E−08 (+) 5.36E−04 (+) 8.44E−01 (−) 5.64E−03 (+) 7.93E−04 (+) 1.10E−02 (≈)
f9 6.89E−01 (−) 2.45E−03 (+) 1.47E−10 (+) 4.66E−06 (+) 6.44E−05 (+) 6.52E−03 (+)

f14 8.32E−06 (+) 6.12E−03 (+) 9.21E−02 (−) 1.04E−03 (+) 2.32E−04 (+) 6.14E−04 (+)

f15 2.21E−03 (+) 6.32E−04 (+) 4.81E−07 (+) 2.01E−03 (+) 1.03E−02 (≈) 6.28E−02 (−)
f24 6.28E−05 (+) 6.54E−04 (+) 5.23E−02 (−) 2.10E−03 (+) 8.64E−01 (−) 9.22E−01 (−)
f25 6.44E−04 (+) 1.09E−02 (≈) 9.33E−02 (−) 1.02E−03 (+) 5.67E−04 (+) 9.11E−05 (+)
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Fig. 4.10: Comparison of convergence curves of proposed CFGWO and other algorithms
obtained for some of the test functions.
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4.4 Implementation of CFGWO for Controller Tuning Prob-
lem

As discussed in Chapter 2, robotic manipulators are multi input multi output (MIMO), coupled,
and highly complex non-linear system, hence their controller designing is crucial and challenging
task. This problem can be considered as a multimodal complex problem with many local optima
having nearly equivalent values. In literature [20, 23, 24], several works have been proposed
to manifest the efficiency of MA to solve these complex tuning problems for precise trajectory
tracking by robotic arms. With the aim to prevail coherent approach, this section investigates
the efficacy of CFGWO for tuning of controller parameters. This experimentation gives us op-
portunity to validate CFGWO as efficient optimization tool for intelligent controller design. The
fractional order fuzzy logic PID (FO-FPID) controller is explained in the following section.

4.4.1 FO-FPID Controller

As discussed earlier, many studies [26] had revealed the limitations of PID to handle complex
systems. This fact always encourages researchers to amend additional tuning parameters in con-
troller design to get extra DOF. Many researchers improve the decision making by using fuzzy
logic based techniques. Along with this, the fractional parameters are integrated with fuzzy-PID
controller to inherit the advantages of both the methodologies to improve the dynamic response
and to eliminate the steady-state error. In this section, the structure and the mathematical mod-
elling of FO-FPID controller is discussed, followed by brief introduction of FO-approximation
and FLC implementation. The basic mathematical modelling of FOPID controller, shown in Fig.
4.1 in Section 4.2, is further explained as

u(t) = KP e(t)+KI
d−λ

dt−λ
e(t)+KD

dµ

dtµ
e(t), 0≤ µ,λ ≤ 2 (4.7)

Here the KP,KI,KD are proportional, integral and derivative gains, respectively. The error is
represented as e(t) and λ and µ are integral and derivative fractional orders.

The above FOPID controller is integrated with two-input type-1 FLS, as shown in Fig. 2.1
(a), to improve the decision making using fuzzy inference mechanism. The new structure of FO-
FPID controller structure is demonstrated in Fig. 4.11. Basically, it is designed as parallel struc-
tures of FO-FPD and FO-FPI. The introduction of FLC in controller has significantly enhanced
the performance and applicability of controllers, as they can be designed with proper rules and
membership functions (MF) without knowledge of exact dynamic model of system. Hence, their
application, with human expert knowledge, has increased over conventional controller to control
complex and non-linear systems.

As shown in Fig. 4.11, the two inputs to the FLC are the scaled values of error e(t) and
the its fractional derivative dµ e(t)

dtµ and output is U(t). The GE and GCE are respective input
scaling factors. Though, FLC is non-linear controller, for simplicity, its linear approximation is
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Fig. 4.11: Design scheme of FO-FPID controller applied to system G(s).

considered as
U(t) = GEe(t)+GCE

dµe(t)
dtµ

(4.8)

ultimately, the overall control law u(t) is formulated as

u(t) = GPDU(t)+GPI
d−λU(t)

dt−λ
(4.9)

later, putting the values of U(t) from Eq. (4.8) and simplifying, we get

u(t) = [GPDGE ]e(t)+ [GPDGCE ]
dµe(t)

dtµ
+[GPIGE ]

d−λ e(t)
dt−λ

+[GPIGCE ]
dµ−λ e(t)

dtµ−λ
(4.10)

Comparing above Eq. (4.10) with basic equation of FOPID controller defined in Eq. (4.7), the
controller parameters in terms of scaling factors are equivalent in the following way.

for µ < λ Kp = GPDGE , KD = GPDGCE , KI = GPIGE +GPIGCE

for µ = λ Kp = GPDGE +GPIGCE , KD = GPDGCE , KI = GPIGE

for µ > λ Kp = GPDGE , KD = GPDGCE +GPIGCE , KI = GPIGE

It can be perceived that the scaling factors of FO-FPID controller are analogous to terms of the
FOPID controller expressed in Eq. (4.7). The parameters GE ,GPI,GPD, and GCE along with µ

and λ are tuned for generating proper control law u(t), to get desired output y(t) as seen in Fig.
4.11.

Design of FLC

The fuzzy logic theory is assimilated in FO-FPID controller to adopt the designer’s knowledge
and provide flexibility via inference mechanism. The basic blocks in FLC are fuzzifier, inference
engine based on rule base, and defuzifier as shown in Fig. 2.1 (a). The pre-processing and post-
processing blocks are involved for scaling the input and output variables. The input variables
are normalized to map the universe of discourse in [−1,1] range. Further, the output variable is
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Table 4.7: Rule base for FO-FPID controller.

E ⇓ / dµ E
dtµ ⇒ NB NM Z PM PB

NB NB NB NB NM Z
NM NB NB NM Z PM
Z NB NM Z PM PB

PM NM Z PM PB PB
PB Z PM PB PB PB
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Fig. 4.12: Illustration of consequent MF used for FO-FPID controller.

multiplied with denormalization factor to convert it to actual range.
As shown in Fig. 4.11, their are two inputs: error ei(t) and its fractional derivative dµiei(t)

dtµi ,
where i represents the links of robotic arm. Each input is characterised by five triangular MFs rep-
resented as: ‘Positive Big (PB)’, ‘Positive Medium (PM)’, ‘Zero (Z)’, ‘Negative Medium (PM)’,
and ‘Negative Big (NB)’. Generally, triangular MFs are preferred for their ease of implementa-
tion in hardware as depicted in Fig. 4.12, [24]. The output MFs are also defined with similar
number of crisp singletons as: NB =−1, NM =−0.8, Z = 0, PM = 0.8, and PB= 1, [24] as shown
in Fig. 2.3. Rule base is the core part of FLC and defined on the basis of expertise knowledge,
process dynamics, and nature of the response. The 5×5 rule base is designed and implemented
in this work as represented in Table 4.7 and their non-linear surface plot is depicted in Fig. 4.13.
For the presented work, Sugeno inference mechanism is used and all design and simulations are
carried out in Fuzzy Logic Toolbox in MATLAB. The inference output is defuzzified to crisp
value through the center of gravity procedure.

4.4.2 Problem Definition

In this work, the problem is framed to analyze the performance of CFGWO for real-world tra-
jectory tracking problem. Fig. 4.14 represents the schematic diagram of FO-FPID controller for
individual links of 2-link robotic manipulator. The main objective is to tune the controller param-
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Fig. 4.13: Surface plot for rule base defined in Table 4.7.

eters to manipulate the torque applied to link joints, so that, the objective function is minimized.
In order to apply optimization algorithms, the selection of proper objective function plays vital
role to succeed. Mostly, in controller designing time-domain performance indices are manipu-
lated to achieve desired performance. Hence, to determine the optimal parameters of FO-FPID
controller, minimization of index ITAE is opted as the objective function. For simulation, the
trajectory is tracked for 4 sec with the sampling time of 1 ms.
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Fig. 4.14: Design scheme of FO-FPID controller applied to 2-link of robotic manipulator.

The main control objective is defined in terms of weighted sum of ITAE of individual links
as defined in Eq. (4.13). The el1 and el2 in Eqs. (4.11) and (4.12) represent the errors between
desired and actual trajectories of individual links.

Jl1 = ITAE1 =
∫

t|el1(t)|dt (4.11)

Jl2 = ITAE2 =
∫

t|el2(t)|dt (4.12)

J0 = w1× Jl1 +w2× Jl2 (4.13)
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Table 4.8: Optimal controller parameters and comparative results of the FO-FPID controller.

Algorithm⇒ GWO LGWO GWO-ABC CFGWO

Parameter ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

GE 383.281 0.05712 211.812 374.355 186.000 458.803 494.242 498.391

GCE 0.62053 77.0216 43.2122 29.7172 144.651 220.146 0.01250 0.36991

GPD 300.000 265.380 151.968 110.403 39.7851 37.8610 499.303 470.916

GPI 0.23442 82.6271 6.87710 90.2482 15.7800 499.031 120.472 88.1880

µ 1.24810 0.16530 0.42930 0.09620 0.19070 0.39890 0.35130 0.98980

λ 0.16821 1.28410 0.75621 0.79330 0.70671 1.39771 0.95521 1.43810

ITAE 1.99E−03 2.19E−03 1.32E−03 9.71E−03 3.32E−03 5.90E−3 5.25E−05 9.79E−05
SD 0.02123 0.03512 3.22145 0.06614 0.01056 8.44E−03 1.28E−04 6.84E−07

The “best results” are indicated by bold values.

where w1 and w2 are the weights assigned to Jl1 and Jl2, respectively. In this work, both w1 and
w2 are equal to 1.

4.4.3 Simulation Results and Discussion

As, problem definition demands to control trajectory of two-link manipulator with payload, two
separate controllers are applied for each link as shown in Fig. 4.14. Accordingly, there are twelve
tuning parameters, given as, GE1, GCE1, GPD1, GPI1, λ1, and µ1 for Link1 and GE2, GCE2, GPD2,
GPI2, λ2, and µ2 for Link2. The experimental settings for the CFGWO and other optimizaers are
as follows: The swarm population size is fixed to 30 for 100 iterations and results are noted from
best of 20 independent runs. Multi-dimensional search space is defined to get optimal solutions
with the wide range (Lb,Ub) of these parameters, specified as, GEi ∈ [0,500], GCEi ∈ [0,500],
GPDi ∈ [0,500], GPIi ∈ [0,500], λi ∈ [0,2], and µi,∈ [0,2], where i = 1,2. The performance of the
proposed CFGWO performance is compared with conventional GWO, and its recent upgraded
versions GWO-ABC and LGWO. Here, it is important to note that other algorithms namely:-
PSO, ABC, and GSA are not considered for comparative analysis because of their lower overall
ranks in GWO-ABC in Chapter 3. The parameter settings used in these evaluations are similar to
values defined in Table 3.1.

The optimal parameters resulted after stopping criteria are reported in Table 4.8. The ITAE

values by CFGWO for Link1 and Link2 are 5.25× 10−05 and 9.79× 10−05, respectively. This
signifies the exact tracking of desired trajectory by robotic arm. To substantiate the excellence,
ITAE values for both the links resulted from rest of the algorithms are also represented in Fig.
4.15. It is interesting to observe that the ITAE values by CFGWO are much smaller than rest
of the optimizers. Fig. 4.16 depicts the convergence behaviour of all four algorithms The plots
clearly infer the ability of CFGWO to reach the optimum solution in faster time. Ultimately, the
findings suggest that the FO-FPID controller parameter tuned by the proposed CFGWO algorithm
are exceptionally optimized than other counterparts. The SD values obtained over results from
20 independent runs indicate the repeatability and robustness of CFGWO than GWO and others.
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Fig. 4.15: Comparative illustrations of variation in ITAE for 2-link robotic manipulator applied
with FOPID controllers optimized by different algorithms.
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Fig. 4.16: Comparison of convergence curves of CFGWO and other algorithms obtained for
FO-FPID controllers.
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(b) Path tracked by end-effector
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(c) X and Y versus time variation
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Fig. 4.17: Various comparative illustrations demonstrating different performances of 2-link
robotic manipulator with payload obtained by optimal FO-FPID controller.
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To elucidate the performance of CFGWO, the graphs of trajectory tracking performance,
path traced by end-effector, and X and Y coordinate versus time variations against their desired
reference curves are depicted in Figs. 4.17 (a), (b), and (c), respectively. It can be clearly per-
ceived from the plots (and enlarged sub-plots, therein) that the CFGWO obtained accurate results
demonstrating precise overlapping on desired trajectories. Significantly, these plots provide in-
disputable evidences about superiority of CFGWO over other optimizers. Along with this, Fig.
4.17 (d) demonstrates the plots of position errors for both the links. Here, we can clearly de-
pict that CFGWO optimizes the controller performance with low position errors and effective
controller output. Ultimately, it can be inferred that the proposed modifications recommended
in CFGWO ameliorate the conventional GWO to enhance the overall performance in controller
design applications for complex systems. It gives better accuracy and precision in trajectory
tracking problem.

4.5 Concluding Remarks

This chapter reported the experimental analysis to evince the performance of proposed algorithms
for designing different controllers. Initially, FOPID controller is applied to four complex test
bench process plants and have been optimized through GWO-ABC algorithm proposed in last
chapter. Several time-domain specifications like low overshoot, better rise time, faster settling
time, minimum steady-state error, and performance index are evaluated and tested against other
equivalent counterparts. The results show that GWO-ABC outperform other algorithms and give
optimal tuning parameters.

Eventually, the new optimizer CFGWO is presented by incorporating two communication
signalling methods and new acceleration coefficient is introduced to manage the impact of sig-
nalling throughout iterations. CFGWO is also investigated for real-world optimization problem
of tuning of FO-FPID controller parameters for robotic manipulator with payload at tip. Several
trajectory tracking plots are demonstrated and compared among four best ranked algorithms. All
the illustrations elucidate how the CFGWO surpass other algorithms while handling highly non-
linear, complex, and uncertain system. In this way, CFGWO incorporates fundamental in-depth
behaviour of wolves as a methodological change and confirms its efficacy from an application
point of view. Ultimately, CFGWO can also be established as a viable, simple, and fast alter-
native optimizer for complex control system design problems in real world applications via AI
tools. Remarkably, CFGWO also processed in same computational time as it does not require
extra fitness evaluations compared to conventional GWO.
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Chapter 5

Design of Interval Type-2 Fuzzy
Precompensated PID Controller

This chapter outlines the design procedure of novel interval type-2 fuzzy precompensated PID
controller for trajectory tracking problem of 2-link robotic manipulator with the variable payload.
After introduction in Section 5.1, the design procedure of IT2FP-PID controller and strategy to
tune the various controller parameters are presented in Section 5.2. Later in Sections 5.3 and
5.4, the exhaustive experimental analysis and simulation results are reported. Finally, concluding
remarks are drawn in last section.

5.1 Introduction

Various studies in the field of fuzzy control have manifested that the interval type-2 fuzzy logic
controller (IT2-FLC), with footprint of uncertainty (FOU) in membership functions (MF), has
increasingly recognized for controlling uncertainties and non-linearities. However, design of
IT2-FLC based controllers and optimizing its overall parameters emerged as a time consuming,
complex, high-dimensional, and constrained optimization problem. The prime contribution of the
work in this chapter is to extend current knowledge of IT2-FLC to propose an advanced IT2FP-
PID controller for a 2-link robotic manipulator for trajectory tracking problem and optimize it
through tuning of several parameters including antecedent MFs. The overall control system de-
sign strategy addressed in this chapter is illustrated clearly in Fig. 1.1. It can be observed from
the figure that the selection of suitable controller and appropriate tuning strategy plays an impor-
tant role in control system design procedure. Within this framework, this chapter presents design
of new IT2FP-PID controller and provides the systematic tuning strategy. In short, the major
contributions of the work in this chapter are summarized in subsequent points.

The work outlined in this chapter has been disseminated in the following publication:
• P. J. Gaidhane, M. J. Nigam, A. Kumar, and P. M. Pradhan, “Design of interval type-2 fuzzy precompensated PID
controller applied to two-DOF robotic manipulator with variable payload”, ISA Transactions, Dec. 2018. (In press)
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• Design of novel IT2FP-PID controller is presented for trajectory tracking problem of 2-link
robotic manipulator with variable payload.

• The systematic strategy to tune the various controller parameters, scaling factors, and an-
tecedent MF parameters of IT2FP-PID controller is presented to get optimized results and
to make the most of FOU.

• The proposed GWO-ABC algorithm is effectively used to solve this high-dimensional con-
strained optimization problem.

• The comprehensive trajectory tracking analysis in terms of performance index ITAE of
the optimized IT2FP-PID controller is carried out and compared to optimized T1FP-PID,
FPID, and classical PID controllers.

• The efficacy of the proposed controller is also validated through exhaustive robustness
analysis in presence of distinct non-linear dynamics such as (i) payload variations, (ii)
model uncertainties, (iii) disturbance in signals, and (iv) random noise at feedback path.

5.2 Design and Optimization of IT2FP-PID Controller

In this section, the design of the proposed novel IT2FP-PID controller is presented. Later, elu-
cidation of their MF structures is provided and the strategy of MF tuning used in this work is
explained. Finally, implementation of optimization algorithm is presented.

5.2.1 Proposed IT2FP-PID Controller

The structural design of the proposed IT2FP-PID controller is illustrated in Fig. 5.1. Basically, it
consists of two modules connected in cascade as seen in figure.

The initial module comprises of interval type-2 FLC based precompensated controller and
the sole purpose of it is to change the control signal to compensate overshoots and undershoots
in the transient response. It reduces the steady-state error and meliorates the output performance
to counteract on disturbed parametric and external disturbances. It is mostly pertained when the
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Fig. 5.1: Design scheme of the proposed IT2FP-PID controller applied to system G(s).
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system possesses unknown non-linearities which can result in significant overshoots and under-
shoots. FLC is incorporated for flexibility in decision making provided by defining the rules on
the basis of problem [56].

As demonstrated in Fig. 5.1, the IT2-FLC is provided with two inputs normalized error e(t)

and rate of change of error ∆e(t). Both the input signals are normalized to E and CE using
the scaling factors KE and KCE , respectively. This normalization is formulated by the following
equations.

E(t) = KEe(t) = KE(Yd(t)−Y (t)) (5.1)

CE(t) = KCE
de(t)

dt
= KCE∆e(t) (5.2)

where e(t) is the difference between desired Yd(t) and the actual trajectory Y (t). The IT2-FLC
generates output U , which is also normalized using scaling factor KU to obtain the compensation
or correction term u(t), given as

u(t) = KU IT 2FLC (E(t),CE(t)) (5.3)

here the IT 2FLC (E,CE) is considered as the non-linear function of E and CE based on inference
of IT2-FLC.

For the initial module, the compensated desired output is modified as

Ymod(t) = u(t)+Yd(t) (5.4)

The modified error e′(t) is calculated as the conflict between modified output response Ymod(t)

and present response Y (t).

e′(t) = Ymod(t)−Y(t) (5.5)

e′(t) is applied as the input to next module i.e. PID controller. Eventually, the regulated control
law or torque τ j(t) that actuates the link position of manipulator, is defined as

u′(t) = KPe′(t)+KD
de′(t)

dt
+KI

∫
e′(t)dt (5.6)

5.2.2 Proposed Optimization Strategy

The optimization strategy of IT2FP-PID controller is presented in this section. Both type-1 and
type-2 FLCs are considered in this study and their parameters are optimized for comparative
analysis.

As shown in Fig. 5.1, there are two inputs, error e(t) and its derivative ∆e(t), applied to
FLC. Each input is characterized by three triangular MFs denoted by linguistic labels as: ‘Pos-
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Fig. 5.2: General structures of antecedent MFs for the inputs of (a) T1-FLC and (b) IT2-FLC
applied to both the links.

itive (P)’, ‘Zero (Z)’, ‘Negative (N)’. Generally, triangular MFs are preferred for their ease of
implementation in hardware as depicted in Fig. 2.1 (c) and Fig. 2.2 (c) for type-1 and type-2
FLCs, respectively. On the other hand, the output consequent MFs are represented in five crisp
singletons as: ‘Positive Big (PB = 1)’, ‘Positive Medium (PM = 0.8)’, ‘Zero( Z = 0)’, ‘Negative
Medium (NM =−0.8)’, and ‘Negative Big (NB =−1)’, as depicted in Fig. 2.3.

Rule base defines the prime functioning of FLC inference mechanism. The rules are defined in
accordance with the expertise knowledge, process dynamics, and nature of the response. The 3×
3 rule base is designed and implemented in this work, for type-1 and type-2 FLCs, as represented
in Table 5.3. Their non-linear surface plot is depicted in Fig. 5.7. Sugeno inference mechanism
is used in this work and all design and simulations are carried out in Fuzzy Logic Toolbox in
MATLAB.

The antecedent T1-FS is labelled by three parameters (lim,cim,rim; i= 1,2, . . . and m= 1,2,3. . . .).
The present work considers two inputs i = 2 for each link and three triangular MFs m = 3 are
used to define each input, as shown in Fig. 5.2 (a).

Similarly, the antecedent of IT2-FS is defined with four parameters (lim,cim,rim,him; i =
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Fig. 5.3: Illustration of payload variations at the tip.

1,2, . . . and m = 1,2,3. . . .). Similar to T1-FS, here also, two inputs are considered i = 2 and
each input is defined by three MFs m = 3, as shown in Fig. 5.2 (b). As discussed above, the out-
puts MFs variables for all FLCs used in this work are five crisp singleton consequent as shown in
Fig. 2.3, to do fair comparison.

In this design strategy, following constraints have to be fulfilled by T1-FS and IT2-FS while
optimizing the shape of the antecedent MFs.

ci1 < ci2 < ci3

li1 < ci1 < ri1

li2 < ci2 < ri2

li3 < ci3 < ri3 (5.7)

The additional constrain for IT2-FS is to maintain the height of LMF, such that

0 < him < 1 (5.8)

All above parameters can be identified from Figs.5.2 (a) and (b).

5.2.3 Implementation of IT2FP-PID Controller on Robotic Manipulator

It is clear from the above discussion and modelling in Appendix A that the robotic arm is highly
non-linear and coupled MIMO machine. Here, the additional complexity is introduced in the
system model by applying variable payload at the tip. The pattern of variations in payload at
end-effector is shown in Fig. 5.3. The required controller for 2-link robotic manipulator have 2
link positions (θ1,θ2) as inputs and the 2 torques (τ1,τ2) as outputs. In proposed work, control of
independent joint design is considered separately as SISO models. Consequently, two individual
controllers are independently employed to control both the links as shown in Figs.5.5 and 5.6.
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Fig. 5.4: Constrained handling scheme proposed for (a) T1-FLC and (b) IT2-FLC.

As we compared the performance of IT2FP-PID with PID and FPID controllers, brief dis-
cussion of their parameters is presented here. The PID controller implemented in this study is
similar to the next module of IT2FP-PID controller as shown in Fig. 5.1. It does not have any
fuzzy module and each link have only 3 parameters KP,KI,KD as given in Table 5.2. Thus, 6
parameters are optimized for both the links.

The overall structure of FPID controller used for comparison is demonstrated in Fig. 5.5. It
compromized of 4 parameters for each link given as KE1,KCE1,KP1,KI1 for Link1 and KE2,KCE2 ,KP2,

KI2 for Link2. Intentionally, general T1-MFs as shown in Fig. 2.1 (c) and rule base as defined in
Table 5.3 are used and all 8 parameters are optimized.

As shown in figure, the various scaling parameters and MF parameters are required to opti-
mize for desired response. Distinctly, different fuzzy sets, as depicted in Fig. 5.2 (a) and (b) are
considered in the case of TIFP-PID and IT2FP-PID. Consequently, different numbers of tuning
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Table 5.1: Initial upper and lower limits of antecedent MF parameters used in IT2-FLC.

Controllers⇒ left centre right height

Parameter ⇓ LB UB LB UB LB UB LB UB

MF1U −1.000 −0.667 −0.666 −0.333 −0.332 0.000 1.000 1.000
MF1L −1.000 −0.667 −0.666 −0.333 −0.332 0.000 0.150 0.980
MF2U −0.500 −0.167 −0.1666 0.1666 0.5000 1.000 1.000 1.000
MF2L −0.500 −0.167 −0.1666 0.1666 0.5000 1.000 0.150 0.980
MF3U 0.0000 0.3333 0.3334 0.6666 0.6667 1.000 1.000 1.000
MF3L 0.0000 0.3333 0.3334 0.6666 0.6667 1.000 0.150 0.980
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Fig. 5.5: Design scheme of FPID controller applied to 2-link robotic manipulator.

variables are required to optimize for both the controllers as discussed below.

The T1FP-PID controller is applied with two inputs (E,CE) defined by 3 MFs, ‘N’, ‘Z’,
and ‘P’, each. MFs for first input are designed with parameters (l11,c11,r11), (l12,c12,r12), and
(l13,c13,r13), as shown in Fig. 5.4 (a). Similarly, second input MFs are designed with parameters
(l21,c21,r21), (l22,c22,r22) and (l23,c23,r23). As the controller have 2 inputs with 3 MFs each,
and each MF have 3 parameters. There are total 18 MF parameters for each link. Additional 6
scaling factors (KE ,KCE ,KU ,KP,KI, and KD) make the total 24 tuning variables per link. The
same number of variables for second link makes the overall count of parameters to 48. These
details are listed in Table 5.2.

The IT2-FLC in the proposed IT2FP-PID controller have two IT2-FS inputs (E,CE) with 3
MFs each (‘N’, ‘Z’, and ‘P’). MFs for first input E are designed with (l11,c11,r11,h11), (l12,c12,r12,

h12) and (l13,c13,r13,h13), as shown in Fig. 5.2 (b). Similarly, MFs for the second input CE are
designed with (l21,c21,r21,h21), (l22,c22,r22,h22) and (l23,c23,r23,h23). Thus, 2 inputs × 3 MFs
× 4 variables per MF = 24 parameters are requred to define the MFs to each link. Additional
6 scaling factors (KE ,KCE ,KU ,KP,KI, and KD) make the total to 30 tuning parameters for each
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Fig. 5.6: Design scheme of T1FP-PID and the proposed IT2FP-PID controllers applied to
robotic manipulator.

Table 5.2: Overall tuning parameters of PID, FPID, T1FP-PID, and IT2FP-PID controllers.

Controllers Links Antecedent MF parameters Scaling factors Total

PID
Link1 – KP1 ,KI1 ,KD1 3
Link2 – KP2 ,KI2 ,KD2 3

FPID
Link1-I1/I2

Fixed Triangular MFs as shown in Fig. 2.3 (a)
KE1 ,KCE1 ,KP1 ,KI1 4

Link2-I1/I2 KE2 ,KCE2 ,KP2 ,KI2 4

T1FP-PID

Link1-I1 l111 ,c111 ,r111 , l121 ,c121 ,r121 , l131 ,c131 ,r131 KE1 ,KCE1 ,KU1 ,KP1 ,KI1 ,KD1 24
Link1-I2 l211 ,c211 ,r211 , l221 ,c221 ,r221 , l231 ,c231 ,r231

Link2-I1 l112 ,c112 ,r112 , l122 ,c122 ,r122 , l132 ,c132 ,r132 KE2 ,KCE2 ,KU2 ,KP2 ,KI2 ,KD2 24
Link2-I2 l212 ,c212 ,r212 , l222 ,c222 ,r222 , l232 ,c232 ,r232

IT2FP-PID

Link1-I1 l111 ,c111 ,r111 ,h111 , l121 ,c121 ,r121 ,h121 , l131 ,c131 ,r131 ,h131 KE1 ,KCE1 ,KU1 ,KP1 ,KI1 ,KD1 30
Link1-I2 l211 ,c211 ,r211 ,h211 , l221 ,c221 ,r221 ,h221 , l231 ,c231 ,r231 ,h231

Link2-I1 l112 ,c112 ,r112 ,h112 , l122 ,c122 ,r122 ,h122 , l132 ,c132 ,r132 ,h132 KE2 ,KCE2 ,KU2 ,KP2 ,KI2 ,KD2 30
Link2-I2 l212 ,c212 ,r212 ,h212 , l222 ,c222 ,r222 ,h222 , l232 ,c232 ,r232 ,h232

I1:- Input1‘e(t)’, I2:- Input2 ‘∆e(t)’

link. The similar parameters for two links make total 30× 2 = 60 tuning variables for whole
control system applied to robotic manipulator. Thus, it is clear that the structure of IT2FP-PID
controllers has 12 additional tuning parameters than the structure of T1FP-PID controllers. Thus,
designers get extra freedom to tune, optimize, and handle the uncertainty in the problem. All the
variables are tuned while fulfilling the constraints given in Eqs. (5.7) and (5.8).

In this design strategy, the proposed GWO-ABC algorithm is applied to tune overall param-
eters. It is important to mention here that the output consequent MFs are not optimized in all
the FLCs presented in this study and will be kept same for the T1-FLC, and IT2-FLC structures
as shown in Fig. 2.3 (c). Though, the optimization problems for T1FP-PID and IT2FP-PID
controllers emerged as high-dimensional problems with constraints, the GWO-ABC is efficiently
applied. Also, as the number of tuning parameters of IT2FP-PID is highest, it provides better
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DOF to design and results in better results.

The hardware implementation of the controller is a prominent research area in itself and some
work using computers, microcontrollers, processors, Field Programmable Gate Array (FPGAs),
etc., has been reported in several studies [132–135]. Similarly, in [136], authors reviewed and
reported the different hardware implementations of fuzzy and neuro-fuzzy systems for various
applications. As robotic model used in this study is having stationary base, computer interfaced
controllers with suitable software are preferred. In case of mobile autonomous robots [74, 137],
re-programmable embedded processors dedicated for particular application are utilized.

Table 5.3: Rule base for all FLC used in this study.

E ⇓ / CE⇒ N Z P

N NL NM Z
Z NM Z PM
P Z PM PL

5.3 Simulation Results and Discussion

In this work, we evaluated the performance of proposed IT2FP-PID controller against the PID,
FPID, and T1FP-PID controllers for 2-link robotic manipulator after optimizing the various pa-
rameters using GWO-ABC algorithm. As problem definition demands to control trajectory of
2-link manipulator with variable payload, two separate controllers are applied for each link as
shown in Figs. 5.5 and 5.6.
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5.3.1 Problem Definition

In pursuance of implementing the optimization algorithms, proper selection of objective func-
tion (Ob j f un) is mainly required. As discussed earlier in Section 2.3, time-domain performance
measures are employed to achieve desired performance in controller designing. This work prefers
minimization of ITAE - integral time absolute error for having the edge over other indices. Ac-
cordingly, the minimized value of ITAE signifies the negligible peak overshoots, smaller rise
time (tr), and also indicates the ability of the response to reach the zero steady-state error Ess

within faster settling time (ts). The main objective function is defined by the overall weighted
sum as

Ob j f un = w1×
∫

t|el1(t)|dt +w2×
∫

t|el2(t)|dt (5.9)

here t indicates time and e(t) is an error between current output and reference output. w1 and
w2 are respective weights notified to Ob j f unl1 and Ob j f unl2, which are considered as unity in
this work.

As the robotic manipulator is controlled by two individual IT2FP-PID controllers for each
link, the objective function is consolidated by separate ITAE for Link1 Ob j f unl1 and Link2
Ob j f unl2 defined in previous chapter.

5.3.2 Parameter Settings

The parameter settings for conducting the optimization procedure of all the controllers are kept
similar for fair comparison. In GWO-ABC algorithm, population of 30 search agents is taken
and maximum iterations are fixed to 100. The final count of iteration also acts as a stopping cri-
terion. The optimization procedure is executed for 20 independent runs for all the controllers and
optimal results are reported. To render wider high-dimensional search space, all the parameters
are bounded in the range (Lb,Ub) of these parameters, specified as, KEi ∈ [0,500], KCE i ∈ [0,500],
KUi ∈ [0,500], and KPi,KIi,KDi ∈ [0,500], where i = 1,2.

The complete system model is designed in MATLAB Simulink environment and the opti-
mization procedure is carried out in MATLAB version 2014b. Simultaneously, Fuzzy Logic
Toolbox by MATLAB for T1-FLS and modified open source Type-2 Fuzzy Toolbox [72] for
IT2-FLS are employed for corresponding simulations.

5.3.3 Results and Discussion

The optimized scaling parameters and accomplished performance index values are reported in
Table 5.4. The general structures of MFs for different inputs in FPID and T1FP-PID controllers
are shown in Fig. 5.2 (a). Similarly, the general MF structures applied to IT2FP-PID controller
are shown in Fig. 5.2 (b). After optimization of T1FP-PID and IT2FP-PID controllers, the
optimized MF structures are obtained as shown in Figs. 5.8 and 5.9, respectively.
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Table 5.4: Optimal controller parameters and comparative results of the IT2FP-PID controller
and others.

Controllers⇒ PID FPID T1FP-PID IT2FP-PID

Parameter ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

KP 469.12 490.34 134.91 20.574 423.28 494.27 19.268 192.12
KI 99.767 1.0952 13.081 0.0067 81.996 45.037 458.62 9.7808
KD 249.50 486.21 – – 0.0642 0.3725 0.0015 0.0023
KE – – 26.599 15.574 65.862 474.51 486.41 226.37
KCE – – 0.1815 1.0008 0.0001 0.0019 0.0621 0.0031
KU – – – – 98.527 2.9975 72.780 23.9291
ITAE 0.09120 0.02140 0.01937 0.01314 0.003572 0.000159 0.00000241 0.00000577

The “best results” are indicated by bold values.

We can observe that the ITAE values by IT2FP-PID controller after completion of stopping
criterion of GWO-ABC algorithm for Link1 and Link2 are 2.41× 10−06 and 5.76× 10−06, re-
spectively. To substantiate the excellence of IT2FP-PID controller, ITAE values by all other
controllers for both the links are demonstrated in Fig. 5.11. It is appreciated that the values
of ITAE for both the links by IT2FP-PID controller are much smaller compared to values pro-
duced by other controllers. These minimal values clearly evince the accurate tracking of desired
trajectories by the end-effector of robotic arm.

Ultimately, the most remarkable observation to emerge from the data is that the scaling factors
and MF parameters of IT2FP-PID controllers are excellently tuned to optimal values using the
proposed GWO-ABC algorithm to accomplish the best values of performance metric, and hence,
meticulous tracking of defined desired path is achieved.

To provide further evidence of superior performance of IT2FP-PID controller, the plots of
desired trajectory tracking by the links, X and Y coordinate versus time variations, and path
traced by manipulators end-effector against the predefined desired reference path are displayed
in Figs. 5.10 (a), (b), and (c), respectively. It can be apparently convinced from the plots and
enlarged illustrations therein that the IT2FP-PID controller produces superior results than other
counterparts. Additionally, in support to above findings, Fig. 5.10 (d) demonstrates the plot
of position errors for both the links. Here, we can clearly depict that IT2FP-PID controller
effectively minimizes the position errors from start of the process. Ultimately, it can be stated
that the incorporation of IT2-FLC based precompensator in the proposed controller effectively
eradicates the overshoots and undershoots and accordingly enhance the performance.

In sum, all these plots provide indisputable evidences about superiority of IT2FP-PID con-
troller over other controllers and conforms the exceptional agreement between the IT2-FLC and
precompensator. Also, the overall illustrations and results led us to confirm the efficacy of GWO-
ABC algorithm in solving complex high-dimensional optimization problems.
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Fig. 5.8: Illustration of optimized antecedent MFs applied to T1FP-PID controller.
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Fig. 5.9: Illustration of optimized antecedent MFs applied to IT2FP-PID controller.
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Fig. 5.10: Comparative illustrations of different performances of 2-link robotic manipulator
with variable payload.
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5.4 Robustness Analysis

In control system design, robustness analysis of systems under consideration is absolutely es-
sential under unusual circumstances. If various parameters in the system are highly uncertain,
control decisions must be staged accordingly. Although, the relevance of IT2FP-PID controller
to minimize ITAE is clearly supported by the above findings, the effectiveness of IT2FP-PID con-
troller is further validated by robustness analysis for model uncertainties, external disturbances,
and random noise in the system.

5.4.1 Impact of Model Uncertainties

The variation in physical parameters of robotic manipulator may influence its orderly working
and affect the performance thereupon. All rotating mechanisms are affected by static and dy-
namic frictional forces. Some of the friction coefficients are reflected in the robotic mathematical
model in Appendix A. These frictions, including Viscous and Coulomb friction, vary with joint
lubricants and other effects [111]. The other physical parameters like mass and length may also
vary with the environmental changes. Consequently, the employed controller needs to be robust
against such physical model variations and uncertainties.

In virtue of this, the proposed IT2FP-PID controller is investigated for four crucial parame-
ter variations. The different parameters are varied as (a) masses m1,m2 are varied by ±5%, (b)
lengths l1, l2 are varied by ±5%, (c) coefficients of viscous friction v1,v2 are varied by ±20%,
and (d) coefficients of dynamic friction d1,d2 are varied by ±20%. These parameters are indi-
vidually and collectively regulated alternately by increasing or decreasing their values and the
performance index ITAE is observed and reported in Table 5.5. Finally, the overall average
percentage variation with respect to original ITAE values are calculated and noted in last row.
From the Table 5.5, it is observed that the variations in IT2FP-PID controller results are having
negligible change ( 1.25%). Whereas, other controller performances like PID (6.778%), FPID
(5.124%), and T1FP-PID (4.796%) are varied by considerably larger values which affect their
robustness against the physical parameter variations. Ipso facto, the overall findings clarify the
superiority of IT2FP-PID controller over others and authenticate the impression of FOU in MFs
to ensure the boundedness of the position tracking error.

5.4.2 Rejection of External Disturbances

The industrial process control system and the equipment, instruments, devices, and machines
therein always suffer from the influences of external disturbances. In this section, the perfor-
mance of proposed IT2FP-PID controller is examined for the disturbances incorporated at control
output of Link1, Link2, and both as illustrated in Figs. 5.5 and 5.6.

Distinct disturbance signals of the nature ‘A sin(ωt)’ N-m were applied for the entire 4s and
the values of ITAE for IT2FP-PID, T1FP-PID, FPID, and PID controllers are noted. The results
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Table 5.5: Comparative ITAE values obtained by different controllers for variations in
modelling parameters.

Controllers⇒ PID FPID T1FP-PID IT2FP-PID

Parameter ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Optimum ITAE 0.09120 0.02140 0.01937 0.01314 0.00357 0.000159 0.00000241 0.00000577

m1 (−5%) 0.08610 0.02031 0.01801 0.01242 0.00369 0.000172 0.00000241 0.00000576
m2(−5%) 0.08620 0.02053 0.01811 0.01201 0.00329 0.000161 0.00000240 0.00000571
m1 +m2 (−5%) 0.08630 0.02041 0.01836 0.01205 0.00366 0.000171 0.00000238 0.00000571
l1 (−5%) 0.08779 0.02393 0.01795 0.01357 0.00381 0.000162 0.00000238 0.00000575
l2 (−5%) 0.08785 0.02318 0.01803 0.01219 0.00380 0.000161 0.00000237 0.00000574
l1 + l2 (−5%) 0.08789 0.02218 0.01875 0.01394 0.00371 0.000158 0.00000239 0.00000599
All m and l (−5%) 0.08316 0.02037 0.01777 0.01251 0.00365 0.000169 0.00000242 0.00000601
v1 + v2 (−20%) 0.09124 0.02158 0.01936 0.01326 0.00363 0.000155 0.00000235 0.00000568
d1 +d2 (−20%) 0.09134 0.02155 0.01939 0.01324 0.00357 0.000154 0.00000233 0.00000567
All d and v (−20%) 0.09137 0.02175 0.01930 0.01337 0.00373 0.000182 0.00000235 0.00000566
All above 0.08332 0.02075 0.01779 0.01274 0.00369 0.000175 0.00000242 0.00000601

m1 (+5%) 0.09611 0.02233 0.01810 0.01211 0.00381 0.000161 0.00000240 0.00000576
m2 (+5%) 0.09614 0.02237 0.01790 0.01269 0.00381 0.000158 0.00000241 0.00000575
m1 +m2 (+5%) 0.09613 0.02236 0.01836 0.01252 0.00377 0.000158 0.00000237 0.00000570
l1 (+5%) 0.09445 0.02236 0.02010 0.01380 0.00381 0.000189 0.00000242 0.00000577
l2 (+5%) 0.09450 0.02217 0.02102 0.01357 0.00391 0.000185 0.00000245 0.00000576
l1 + l2 (+5%) 0.09451 0.02343 0.02002 0.01355 0.00374 0.000156 0.00000237 0.00000565
All m and l (+5%) 0.09261 0.02238 0.02106 0.01376 0.00374 0.000168 0.00000242 0.00000571
v1 + v2 (+20%) 0.09180 0.02119 0.01936 0.01303 0.00366 0.000156 0.00000233 0.00000576
d1 +d2 (+20%) 0.09108 0.02122 0.01935 0.01305 0.00364 0.000163 0.00000237 0.00000576
All v and d (+20%) 0.09105 0.02105 0.01935 0.01294 0.00364 0.000166 0.00000233 0.00000577
All above 0.09946 0.02204 0.02104 0.01357 0.00373 0.000158 0.00000244 0.00000581

Overall % variation 6.778% 5.124% 4.796% 1.25%

All variables are as per Table A.1 for respective links. The “best result” is indicated by bold.

are reported in Table 5.6. The variation in ITAE for all four controllers is observed by SD
values mentioned separately for each link. We can clearly observed that the SD values obtained
for IT2FP-PID controllers are much smaller than that of others, and so, shows the performance
stability against disturbance variations. Thus, IT2FP-PID controller exhibits superiority over
others in terms of variations due to disturbances. To elaborate further details, the graphs of
desired trajectory tracking by the links, X and Y coordinate versus time variations, path traced,
and position errors - for disturbance of 2 sin (50t) N-m at both the links - are illustrated in Figs.
5.13 (a), (b), (c), and (d), respectively. Taken together, the SD values in Table 5.6 and the plots in
Fig. 5.13 provide important insights to evidence the superiority of IT2FP-PID controller for the
disturbance rejection.
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Table 5.6: Comparative ITAE values obtained by different controllers for variable disturbance.

Controllers⇒ PID FPID T1FP-PID IT2FP-PID

Disturbance ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Link1

1 sin (50t) 0.09123 0.02138 0.01936 0.01314 0.00361 0.000177 0.00000325 0.00000570
1.5 sin (50t) 0.09124 0.02138 0.01936 0.01340 0.00369 0.000181 0.00000347 0.00000571
2 sin (50t) 0.09226 0.02338 0.02035 0.01404 0.00363 0.000164 0.00000330 0.00000571
1 sin (25t) 0.09125 0.02138 0.01934 0.01314 0.00367 0.000177 0.00000358 0.00000569
1.5 sin (25t) 0.09125 0.02138 0.01933 0.01324 0.00364 0.000162 0.00000332 0.00000575
2 sin (25t) 0.09221 0.02218 0.02134 0.01391 0.00363 0.000161 0.00000331 0.00000572
SD 4.68E-4 7.45E-4 7.62E-4 3.64E-4 2.69E-5 8.16E-6 1.15E-07 1.89E-08

Link2

1 sin (50t) 0.09121 0.02137 0.01937 0.01314 0.00366 0.000196 0.00000252 0.00000648
1.5 sin (50t) 0.09121 0.02137 0.01937 0.01314 0.00353 0.000198 0.00000244 0.00000689
2 sin (50t) 0.09121 0.02137 0.01997 0.01314 0.00356 0.000208 0.00000239 0.00000633
1 sin (25t) 0.09121 0.02137 0.01937 0.01315 0.00363 0.000197 0.00000240 0.00000637
1.5 sin (25t) 0.09121 0.02144 0.01937 0.01316 0.00373 0.000200 0.00000238 0.00000680
2 sin (25t) 0.09123 0.02444 0.01936 0.01312 0.00371 0.000201 0.00000231 0.00000678
SD 7.45E-6 1.14E-3 2.24E-4 1.21E-5 7.30E-5 3.96E-6 6.37E-08 2.22E-07

Both

1 sin (50t) 0.09123 0.02237 0.01936 0.01314 0.00365 0.000198 0.00000308 0.00000647
1.5 sin (50t) 0.09125 0.02037 0.01943 0.01334 0.00360 0.000199 0.00000331 0.00000646
2 sin (50t) 0.09186 0.02014 0.01935 0.01399 0.00364 0.000204 0.00000332 0.00000634
1 sin (25t) 0.09125 0.02038 0.01934 0.01315 0.00373 0.000197 0.00000337 0.00000643
1.5 sin (25t) 0.09124 0.02008 0.01953 0.01315 0.00363 0.000194 0.00000333 0.00000649
2 sin (25t) 0.09224 0.02214 0.01913 0.01443 0.00362 0.000191 0.00000333 0.00000658
SD 3.96E-4 9.57E-4 1.21E-4 5.00E-4 4.11E-5 4.06E-6 9.57E-08 7.15E-08

The “best results” are indicated by bold values.

5.4.3 Suppression of Random Noise

Sensors used in feedback path of control system used to add high frequency random noise with
the measured signals. The source of this feedback noise signal is also illustrated in Figs. 5.5
and 5.6. The feedback noise induces some repercussions in overall control system and have to
be eliminated by controllers. Here, we investigated the robustness of proposed IT2FP-PID con-
troller for random noise. The low amplitude noise profile used in this study is shown in Fig. 5.12.
The random noise is added in feedback path of Link1, Link2, and both links and performance
index ITAE is measured. Thus, the values of ITAE for IT2FP-PID, T1FP-PID, FPID, and PID
controllers in presence of random noise are summarized in Table 5.7. For comprehensive analy-
sis, the illustrations showing desired trajectory tracking by the links, X and Y coordinate versus
time variations, path traced, and position errors in presence of random noise in both the links are
demonstrated in Figs. 5.14 (a), (b), (c), and (d), respectively. Ultimately, the results in Table 5.7
and plots in Fig. 5.14 lead us to conclude that the IT2FP-PID controller with optimized IT2-FS
structures have succeeded in suppressing the added noise efficiently than other counterparts.

Significantly, the modified structures of IT2-MFs, as depicted in Fig. 5.9, utilized benefits of
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optimized FOU to restrain various uncertainties in the input signals. Even though the optimized
shapes of T1-MFs are also applied through tuning of MF parameters for T1FP-PID controller as
demonstrated in Fig. 5.8, it could not handle the uncertainty in equally efficient manner due to
absence of FOU. As inferred, the performance of classical PID and FPID controllers with uniform
MFs are rather disappointing and found unsuited for the complex systems with uncertainties.

Table 5.7: Comparative ITAE values obtained by different controllers in presence of random
noise.

Controllers⇒ PID FPID T1FP-PID IT2FP-PID

Random noise at ⇓ Link1 Link2 Link1 Link2 Link1 Link2 Link1 Link2

Link1 0.1241 0.03994 0.04895 0.01034 0.00415 0.006123 0.0004956 0.0004346
Link2 0.1045 0.04229 0.05134 0.01004 0.00409 0.006121 0.0005121 0.0004345

Both links 0.11373 0.04771 0.05782 0.01241 0.00422 0.006245 0.0005071 0.0004476
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Fig. 5.13: Comparative illustrations of different performances of 2-link robotic manipulator
with disturbance 2 sin (50t) in both the links.
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Fig. 5.14: Comparative illustrations of different performances of 2-link robotic manipulator
with noise in both the links.
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5.5 Concluding Remarks

The main aim of this chapter is to design controller benefited by attributes of the IT2-FLC and
FOU. Hence, we propose an efficient IT2FP-PID controller and present a systematic strategy
for optimizing the controller parameters. It is clearly observed that IT2FP-PID controller effec-
tively minimizes the performance index from start of the process. Ultimately, it can be stated
that the incorporation of IT2-FLC based precompensator in the proposed controller effectively
eradicates the overshoots and undershoots. The FLC based precompensator exhibits exceptional
agreement between the IT2-FLC and precompensator and regulates the control signal to enhance
the performance when the system has unknown uncertainties.

All illustrations and result analysis provide indisputable evidences about superiority of IT2FP-
PID controller over other controllers. The efficacy of GWO-ABC algorithm for solving the com-
plex high-dimensional optimization problems is demonstrated. The comparative illustrations are
showing exact trajectory tracking by IT2FP-PID controller with minimum position errors. The
exhaustive robustness analysis in presence of distinct non-linear dynamics evinces the superiority
of IT2FP-PID controller in terms of robustness for (i) payload variations, (ii) model uncertain-
ties, (iii) disturbance in signals, and (iv) random noise at feedback path. The overall illustrations
and results confirm that optimized structures of antecedent MFs utilized benefits of FOU to re-
strain various uncertainties in the input signals. Even though the optimized shapes of T1-MFs are
also applied through tuning of MF parameters for T1FP-PID controller, it could not handle the
uncertainty in equally efficient manner due to absence of FOU. As inferred, the performance of
classical PID and FPID controllers with uniform MFs are rather disappointing and found unsuited
for the complex systems with uncertainties.

As a whole, it can be claimed that (a) additional tuning parameters provide extra degree
of freedom to get better performance in optimal controller design, (b) in case of IT2-FLC, the
systematic strategy to optimize the shapes of MFs derive maximum benefits of FOU to han-
dle uncertainty (c) the proposed IT2FP-PID controller revealed as viable alternative to control
complex non-linear systems with high uncertainties, (d) the proposed GWO-ABC algorithm can
efficiently solve the low-dimensional and high-dimensional constrained optimization problems.
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Chapter 6

Constrained Multi-objective Optimization
Approach for Control System Design

The enhanced soft computing techniques proposed in previous chapters consider the optimization
problems with single objective function. This chapter establishes the multi-objective problem
based on two conflicting objective functions of control system and use the sensitivity function
to determine the robustness. After introductory comments in Section 6.1, the MOO approach
is discussed in Sections 6.2. Later, Section 6.3 explained the MLS and problem is specified in
Section 6.4. Finally, the results and comparative performance analysis is reported in Section 6.5.

6.1 Introduction

In last two decades, many multi-objective evolutionary algorithms (MOEAs) were suggested
and successfully applied to solve various optimization problems in engineering, computer sci-
ence, industry, economics and operation research. Most of the MOEAs are developed to solve
the optimization problems having two or three objective functions [138, 139]. Recently, many-
objective optimization algorithms are presented to solve the problems with four or more objec-
tives [140, 141]. While the optimization approaches using SOO methods give single optimal
solution, MOO based approaches generate number of optimal solutions in the form of Pareto-
optimal front [8, 142]. As discussed in previous chapters, the most of the control problems are
single objective problems and SOO algorithms are successfully applied to solve them. If there are
multiple objectives, weighted sum of different objectives is calculated to obtain single objective

The work outlined in this chapter has been disseminated in the following publications:
• P. J. Gaidhane, A. Kumar, and M. J. Nigam, “Tuning of two-DOF-FOPID controller for magnetic levitation sys-
tem: A multi-objective optimization approach”, in Proceedings of Computer Application In Electrical Engineering
- Recent Advances (CERA), pp. 479-484, 2017.
• P. J. Gaidhane and M.J. Nigam, “Multi-Objective robust design and performance analysis of two-DOF-FOPID
controller for magnetic levitation system,” in the Proceedings of 14th IEEE India Council International Conference
(INDICON), pp. 1-6, 2017.
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Fig. 6.1: Schematic of multi-objective optimization procedure.

function using Eq. (2.19) [143, 144]. In this chapter, two conflicting objectives are considered
separately and MOO algorithm is employed.

The main aim of this chapter is to present a simple design and controller parameter tuning
scheme using MOO approach. Initially, the multi-objective control system design problem is
established with the constraints based on limits of sensitivity function. The performance index
IAE for set-point tracking and external disturbance are considered as two conflicting objective
functions. The NSGA-II algorithm is employed to tune the 2-DOF-FOPID controller parameters
for MLS and the Pareto-optimal front is obtained. Finally, the comparative performance anal-
ysis of 2-DOF-FOPID controller is carried out against classical PID, FOPID, and 2-DOF-PID
controllers.

6.2 Multi-Objective Optimization

In MOO, the diverse solutions may produce trade-off (conflicting scenario) between different
objectives. In this condition, decision on single best solution requires a compromise in other
objectives. The principles of an ideal multi-objective optimization procedure can be seen in
schematic given in Fig. 6.1

Fundamentally, the MOO problem with conflicting objectives produces many optimal solu-
tions satisfying one or many objectives. Since number of optimal solutions are obtained, it is
always challenging to conclude the single best solution with respect to all the objectives. Many
approaches have been suggested using higher level information for finding the set of trade-off
optimal solutions. Generally, the MOO procedure is defined in following steps.

1. Find a set of optimal solutions in the form of Pareto-optimal front.
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Fig. 6.2: A multi-objective optimization design procedure for control system problems.

2. Choose single optimal solutions using higher-level information.

The MOEAs are widely applied to find the set of optimal solutions. Thus, the step 1 in Fig. 6.1 is
executed to generate the Pareto-optimal solution set. This set is demonstrated as Pareto-optimal
front in the objective space. In MOO procedure, the obtained Pareto-optimal solution set should
show (a) convergence - solutions are close to the actual Pareto-optimal front and (b) divergence
- solution set is spread equally over Pareto-optimal front. A MOO design procedure for control
systems problems is demonstrated in Fig. 6.2. The constraints have to be defined meticulously
in such problems to obtain the feasible optimal solutions [145]. The MOO problem is defined
using two conflicting objective functions. In this study, the constraint handling scheme based on
penalty function is adopted to solve these problems [146].

6.3 Mathematical Model of Magnetic Levitation System

The MLS is shown in Fig. 6.3 where the steal ball is levitated in air with the help of electro-
magnets. The magnetic force is balanced with gravitational force mg. The position of the ball is
sensed and passed as feedback signal for closed loop control. Mostly, light sensors are used to
detect the distance variations and control current is used as controller output.

Mathematical model of MLS can be obtained from the ball kinematics and electrodynamics
equations [9, 147]. The balancing equation between applied magnetic force F and gravitational
force acting on the ball is expressed as

m
d2x
dt2 = F(i,x)+mg (6.1)

where x is the distance between magnet and center of the ball, m is mass of steel ball, i is current
to electromagnet, and g is acceleration of gravity.

The electromagnetic force generated by controlling current signal is given by

F(i,x) = k(
i
x
)2 (6.2)

where k is constant proportional to physical parameters.
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As seen above, air gap x and the current i are non-linearly related, hence, first the system have
to be linearized at equilibrium point (i0,x0). Using Tylor’s expansion and ignoring higher-order
terms, (6.2) becomes

F(i,x) = F(i0,x0)+Fi(i0,x0)(i− i0)+Fx(i0,x0)(x− x0) (6.3)

In this, F(i0,x0) represents the magnetic force required to balance the ball gravitational force,
when the current is i0 and air gap is x0.

F(i0,x0) = mg (6.4)

Ki = Fi(i0,x0) =
δF(i,x)

δ i
|(ii0,x=x0) =

2Ki0

x2
0

(6.5)

Kx = Fx(i0,x0) =
δF(i,x)

δx
|ii0,x=x0 =−

2K2
i0

x3
0

(6.6)

here ki is stiffness coefficient of the magnetic force to current and kx represents stiffness coeffi-
cient due to air gap obtained at the equilibrium point. Therefore, the equation of whole system
can be represented as

F(i,x) = Kii+Kxx+F(i0,x0) (6.7)
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m
d2x
dt2 = Ki(i− i0)+Kx(x− x0) (6.8)

The voltage equation of electromagnetic coil can be written as

U(t) = Ri(t)+L(
di
dt
) (6.9)

here L represents the static inductance between magnetic field and ball.

All above equations are used to define state variable model of the MLS.[
ẋ1

ẋ2

]
=

[
0 1
2g
x0

0

][
x1

x2

]
+

[
0

−2gKS
Ka

]
uin (6.10)

y =
[
1 0

][x1

x2

]
= x1 (6.11)

The dimensions and other parameters of the MLS model used in this study are given as [148],
mass of steel ball m = 0.22(kg), radius of ball r = 0.0125(m), Ka = 5.8929, Ks = 458.7204, and
g = 9.8(m/s2).

Also, it is found that, at equilibrium point i0 = 0.6105(A) and x0 = 0.03(m). Putting these
system parameter values in (6.10) and (6.11), we obtained[

ẋ1

ẋ2

]
=

[
0 1

980.0 0

][
x1

x2

]
+

[
0

2499.1

]
uin

y = x1

Applying state variable to transfer function conversion, finally we have

G(s) =
77.8421

0.0311s2−30.5250
(6.12)

The above equation clearly shows that their is an open loop pole at right side plane, which makes
the MLS essentially unstable system.

6.4 Implementation of Multi-Objective Algorithm

In recent years, several types of FOPID controllers were suggested for controlling various in-
dustrial processes. In [80], the 2-DOF-FOPID controller is presented for robotic manipulator
with payload. Cuckoo search algorithm (CSA) is applied for parameter tuning and the enhance-
ment of robustness of controller towards trajectory tracking, parameter variation, and disturbance
rejection is claimed. This section explains the same structure of 2-DOF-FOPID controller and
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proposed its implementation to MLS system. The basic structure of 2-DOF-controller applied to
MLS system is shown in Fig. 6.4.
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Fig. 6.4: Design scheme of 2-DOF FOPID controller applied to magnetic levitation system.

In general, the output control signal of single-DOF-FOPID controller is given as

U1(s) = (Kp +Ki
1
sλ

+Kdsµ)Ei(s) (6.13)

where Kp, Ki, and Kd are proportional gain, integral gain, and derivative gain, respectively; µ

is the fractional derivative value; λ represents fractional integral value; and e is the error signal
between desired set point and actual output.

It can be observed that, two-closed loop transfer functions are introduced in the 2-DOF-
FOPID controller to provide effective simultaneous control for both set point tracking and ex-
ternal disturbance rejection. In the proposed controller, two parameters α and β are assigned
for differentiating the desired signal from actual output and N is derivative filter coefficient. The
equation for overall control output of the 2-DOF-FOPID controller can be expressed as [77]

U2(s) = Kp(αR(s)−Y (s))+
Ki

sλ
(e(s))+

Kdsµ(βR(s)−Y (s))

1+ Kdsµ

KpN

(6.14)

where U2(s) is controller output of 2-DOF-FOPID controller; R(s) is desired set point and
Y (s) is actual output; and e(s) = R(s)−Y (s). The controller have eight tunable parameters, given
as [Kc,Ki,Kd,N,α,β ,λ ,µ]. Different controller structures can be designed by proper selection
of these parameters [146]. The PID, 2-DOF-PID, and FOPID controllers, used for performance
comparison, are formed by assigning the following values to the parameters. The remaining
parameters are tuned by MOO technique for getting optimal performance index and the results
are compared.
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PID:⇒U(s) = [Kc,Ki,Kd], α = β = 1,
1
N

= 0, λ = µ = 1.

2-DOF-PID:⇒U(s) = [Kc,Ki,Kd,N,α,β ], λ = µ = 1.

FOPID:⇒U(s) = [Kc,Ki,Kd,λ ,µ], α = β = 1,
1
N

= 0.

6.4.1 Non-dominated Sorting Genetic Algorithm-II

Though, several MOEA were proposed in last two decades, a fast and elitist NSGA-II [8] algo-
rithm is widely studied and used in several applications. In this algorithm innovative fast non-
dominated sorting approach, an elitist-preserving approach, crowding distance mechanism,and a
parameter-less niching operator are used for better convergence and diversity of solutions. Brief
stepwise explanation of NSGA-II algorithm is given below and readers are encouraged to refer [8]
for detailed description.

• Initially, a random parent population P0 is created for variables x = (x1,x2, ..,xn)
T between

respective lower bound lb and upper ub bound, using
xi j = lb j + rand(0,1)∗ (lu j − lb j).
Where i = 1,2, ..N (size of populations) and j = 1,2, ..n (number of variables).

• Each solution is sorted based on non-dominated sorting and rank is assigned to them. The
lowest rank is considered as the best fitness.

• The GA is applied to produce the offspring population Q0 of size N. In GA only re-
production and mutation operators are used. These Q0 is also assigned the fitness using
non-dominated sorting.

• The elitism is adopted by combining the parent and offspring populations as : Rt = Pt ∪Qt ,
where t indicates the iteration count and its size is 2N. Then, sort Rt using non-dominated
sorting to identify relevant fronts: Fi = 1,2, ..,etc.

• To create new population P(t+1) of size N for next generation, solution of low ranked fronts
(better) are selected first until the size is less than or equal to N. If after adopting some
fronts, still the size is less than N, the next front solutions are selected based on their higher
crowding distance.

• Again, use GA operators to produce new offspring solutions Q(t+1) from P(t+1). Repeat the
same process for defined number of iterations or up to exit criteria.

6.4.2 Problem Definition

Several specifications and requirements are to be accomplished in design of control engineering
problems. As different conflicting objective functions are considered simultaneously in con-
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Fig. 6.5: Illustration of maximum sensitivity function Ms, phase margin φm, and gain margin Am.

trol system design, the optimization problem is defined as multi-objective problem [146]. The
MOEAs provide better approach to solve such problems and give a set of Pareto-optimal solu-
tions. In this proposed work, minimization of IAE for set point and the load disturbance step
response are considered as two conflicting objective functions, [149].

The objective function when only set-point step response is considered, is given by

Ob j f un1(xi) = IAEsp =
∫

∞

0
| e(t) | dt, d = 0 (6.15)

The objective function when only load disturbance step response is considered, is given by

Ob j f un2(xi) = IAEld =
∫

∞

0
| e(t) | dt, r = 0 (6.16)

here, i = 1,2, . . . ,N represents the number of parameters that are to be optimized.

The robustness is a primary concern in controller design problem to avoid uncertainties cre-
ated by system parameter variations. The maximum sensitivity function Ms is used to ensure the
robustness of the system. The maximum sensitivity function is given by

Ms = max
ω∈(0,+∞)

∣∣∣∣ 1
1+C(s)G(s)

∣∣∣∣
s= jω

(6.17)

The illustration of sensitivity function and stability is demonstrated in Fig. 6.5. We can observe
that Ms value is equivalent to the reciprocal of the smallest distance of the Nyquist plot from
point (-1, 0). Therefore, this value indicates the system robustness in terms of how far the system
is from verge to instability. For appropriate relative stability this function is bounded between
1.4 and 2.0 [3]. In case of 2-DOF controllers extra parameters are included to differentiate refer-
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Table 6.1: Optimal parameters for different controllers.

Parameters PID FOPID 2-DOF-PID 2-DOF-FOPID

Kp 46.5892 49.8074 15.0251 16.4258
Ki 199.54 198.47 199.94 199.95
Kd 0.2489 0.7928 0.2672 0.3027
µ - 0.9975 - 0.9112
λ - 0.8076 - 0.9937
α - - 0.7461 0.9553
β - - 0.4198 0.3720
N - - 33.6925 64.9509

ence input from output signal, therefore the closed loop transfer function of 1-DOF and 2-DOF
controllers are different. It is important to note here that, both the 1-DOF and 2-DOF controllers
model to same open loop transfer function C(s)G(s) (after breaking the loop at either side of sys-
tem G(S)) [112]. Therefore, the same value of maximum sensitivity function Ms is considered in
both the controllers with similar set of variables. It is claimed in [112] that the 1-DOF controller
exhibits more overshoots and poor response due to extra zeros in transfer function. These zeros
are expelled by 2-DOF structure to show better results.

For practical implementation, NSGA-II is applied in a constrained optimization mode and
penalty function constraint handling technique is used. If the value of Ms goes beyond the spec-
ified range, it will create a penalty equivalent to its depth of violation. The NSGA-II algorithm
will superintend the solutions towards Pareto-optimal front with satisfactory constraints. In the
final stage, most reasonable solution is to be find out from obtained acceptable Pareto optimal
solution set. Although various methods are suggested for this decision making, the Nash solution
criteria [150] is used in this work for its ease of implementation.

6.5 Simulation Results and Discussion

In this section, performance analysis of 2-DOF-FOPID controller is illustrated with PID, FOPID
and 2-DIF-PID controllers. Multi-objective NSGA-II algorithm with constraint handling ap-
proach is applied to these controllers for 50 iterations and 50 population size for 10 runs each.
Among them the best results are demonstrated in this section. All the simulations and results are
obtained in MATLAB version R2014b. The ranges for all the designed variables are kept same
for each of the controllers and other parameters are set as: Mutation probability = 0.01, Crossover
Probability = 0.9. The numbers of variables optimized for PID, FOPID, 2-DOF-PID, and 2-DOF
FOPID controllers are 3, 5, 6, and 8 respectively. Considering the structure of MLS and ball
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Fig. 6.6: Pareto-optimal front obtained by MOO for 1-DOF-FOPID controller applied to MLS.

Fig. 6.7: Pareto-optimal front obtained by MOO for 2-DOF-FOPID controller applied to MLS.

position, the system is applied with step input of r = 0.2 amplitude. As represented in (6.15) and
(6.16), minimization of integrated absolute error for set point and disturbance are considered as
objective functions, however, the fitness of function and its feasibility is checked by the value
of Ms in (6.17). The optimal controller parameters obtained for different controllers are listed in
Table 6.1. All the results in this work are generated using this set of parameter values. The set of
optimal solutions are obtained after completion of final iteration. After completion of final itera-
tion, the set of best solutions are obtained as Pareto optimal fronts. Figs. 6.6 and 6.7 demonstrate
the Pareto-optimal fronts obtained by these sets of optimal solutions for 1-DOF-FOPID, and 2-
DOF-FOPID controllers, respectively. It can be seen that, in case of 2-DOF-FOPID controller
the Pareto front obtained for lower values of both IAEsp and IAEld than the FOPID controller and
others. As many competitive solutions form a Pareto-optimal front, therefore, NASH solution
approach is applied for finding single most prominent solution in this work.
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Fig. 6.8: Comparative illustration of step response.

Fig. 6.9: Comparative illustration of step disturbance response.

The final values of IAE are listed in Table 6.2. Various experimental analysis are carried out
and the values of IAE are reported for set point input (r = 0.2 at t = 0 s), load disturbance input
(d = 0.1 at t = 0 s) and both (r = 0.2 at t = 0 s and d = −0.1 at t = 1 s) for different type of
controllers.

The step response for the different controllers applied to MLS is shown in Fig. 6.8. From this
comparative illustration, it can be observed that the 2-DOF-FOPID controller has low settling
time with minimum overshoot and smoother response. All the other controllers execute oscilla-
tory or overdamped behaviour. As MOO optimization is applied with the aim to minimize IAE

for both set point and disturbance, the optimal tuning of parameters gives the desired results.

To evaluate the disturbance rejection of controllers, only disturbance signal d = 0.1 at t = 0
is applied to the controllers. From Fig. 6.9 and Table 6.2 we can conclude that the proposed
2-DOF-FOPID controller exhibits better disturbance rejection.

To witness the performance of 2-DOF-FOPID controller applied to MLS system for variable
set point tracking, the response of system is presented in Fig. 6.10. Here, the system is applied
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Fig. 6.10: Comparative illustration of response for variable input signal.

Fig. 6.11: Comparative illustration of step response for disturbance d =−0.1 at t = 1 s.

through variable set point signal and the response is obtained with same optimal parameters.
The zoomed view at the signal variation shows that 2-DOF-FOPID controller exhibits lower
oscillatory behavior and settles at set point faster than other controllers. It can be observed
that, PID controller tracks the set point signal well but exhibits a steady-state error. It can be
investigated form the overall values that the 2-DOF-FOPID controller outperforms other and
shows more robust and effective behavior.

The comparative illustration of step response for disturbance d =−0.1 at t = 1s is presented in
Fig. 6.11. Here, it is seen that, the 2-DOF-FOPID controller provides better external disturbance
rejection along with set point following.
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Table 6.2: IAE values of controllers.

Input mode Set point Load disturbance Step + Disturbance

PID 8.55×10−3 9.1×10−4 2.82×10−3

FOPID 2.35×10−3 9.7×10−4 3.33×10−3

2-DOF-PID 3.55×10−3 5.1×10−4 2.78×10−3

2-DOF-FOPID 6.04×10−4 2.55×10−4 1.34×10−3

6.6 Concluding Remarks

The chapter presents multi-objective robust design procedure of 2-DOF-FOPID controller and
investigates its performance for MLS. The sensitivity function is used as a constraint to ensure
robust design and minimization of IAE for set-point and disturbance are defined as two conflictive
objective functions. It is evinced from the results that 2-DOF-FOPID controller exhibits promi-
nent set point tracking and external disturbance rejection. It can be observed from the illustrations
and tables that the extra flexibility in parameter tuning is provided through incorporation of 2-
DOF structure with fractional order operators. Consequentially, robustness towards the external
disturbances and desired set point tracking are improved. It can be concluded from the results
that the 2-DOF-FOPID controllers are more robust, fast and effective to eliminate steady-state
error. Furthermore, this work also manifests the applicability of MOO methodology for tuning
of controller parameters for multi-variable and complex control systems.
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Chapter 7

Conclusion and Future Scope

Previous chapters have reported the entire work carried out in this thesis. This chapter finally
summarizes the conclusions that are drawn from comprehensive result analysis and observations.
Also, it recommends the directions for future applications and studies.

7.1 Conclusion

The work presented in this thesis mainly focuses on the enhancement of various soft comput-
ing techniques, such as metaheuristic algorithm and type-2 fuzzy logic system, and incorporate
them to design high performance intelligent controllers. An effort has been made to propose
modifications and new developments in different soft computing techniques and apply them for
controller design problems. The controllers are implemented on different complex systems and
comprehensive experimental analysis is carried out.

The following conclusions are drawn from the overall work in this thesis:

• As a preliminary objective, a hybrid GWO-ABC algorithm is proposed by hybridizing
conventional GWO algorithm with information sharing property of employed bees in ABC
algorithm to comprehend benefits of both the algorithms. The new population initialization
scheme, based on chaotic mapping and OBL techniques, is employed to give a better start
with fitter initial candidate solutions. The amalgamation of these strategies overcome the
shortcomings of the conventional GWO algorithm by improving exploration capability and
convergence rate. It also reduces the chances of entrapment at local optima. The perfor-
mance of the GWO-ABC algorithm is substantiated through exploitation and exploration
analysis, convergence rate analysis, and non-parametric Wilcoxon rank-sum test over well
established test bed. The statistical analysis and convergence curves reveal the outstanding
performance of proposed algorithm over other state-of-the-art algorithms. It is exception-
ally noted that no additional function evaluations are required in proposed GWO-ABC,
hence, the algorithm is enhanced with similar computational complexity of GWO. Overall,
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it is observed that the proposed GWO-ABC algorithm manifests improved exploitation and
exploration tendencies with maintaining the prime features of original GWO.

• The tuning of controllers is considered as a high-dimensional, complex, multimodal numer-
ical optimization problem, as many locally optimal solutions can be obtained for different
combinations of the parameter values. The proposed GWO-ABC algorithm is employed to
solve distinct controller tuning problems. A variety of linear and non-linear systems, with
and without delay, are applied with FOPID controller and the parameters are optimized to
get optimum performance index. From experimental analysis, it is observed that proposed
GWO-ABC tuned FOPID controllers outperform the controllers tuned by other well estab-
lished algorithms in terms of minimum percent overshoot (Mp%), lower rise time (tr), and
achieve null steady-state error (Ess) in faster settling time (ts). Thus, it is manifested that
the proposed GWO-ABC algorithm succeeded as a better option for multimodal controller
tuning problems of complex control systems.

• Further, the cooperative foraging strategy of animals is incorporated in the conventional
GWO to develop CFGWO algorithm. Two communication signalling schemes, based on
chaotic mapping and OBL strategy, are amended to model the distinct signalling behaviours
of wolves. These schemes ameliorate global search ability of all individual search-agents
by bestowing them opportunity to share information with other search-agents and enhance
the exploration ability. The gradually decreasing acceleration coefficient balances the ex-
ploration and exploitation behaviours throughout the iterations. The proposed CFGWO
algorithm is used to design the fuzzy-based FOPID controller for the trajectory tracking
problem of 2-link robotic manipulator. The trajectory tracking plots clarify the superior-
ity of CFGWO algorithm over the conventional GWO and its recent upgraded versions
like GWO-ABC and LGWO. It can be clearly perceived from the plots that the CFGWO
obtained accurate results demonstrating precise overlapping on desired trajectories and op-
timized the controller performance with low position errors and effective controller output.
Ultimately, it can be inferred that the proposed modifications recommended in CFGWO
ameliorate the conventional GWO to enhance the overall performance in controller design
applications for complex systems.

• An efficient IT2FP-PID controller for 2-link robotic manipulator is proposed with a system-
atic strategy for optimizing the controller parameters and MF structures. The incorporation
of IT2-FLC based precompensator in the proposed controller eradicates the overshoots
and undershoots in system response. The FLC based precompensator exhibits exceptional
agreement between the IT2-FLC and precompensator and regulates the control signal to en-
hance the performance when the system has unknown uncertainties. Various experimental
analysis provide evidences of exact trajectory tracking of 2-link robotic manipulator with
minimum position errors by the proposed IT2FP-PID controller. The exhaustive robustness
analysis in presence of distinct non-linear dynamics evinces the superiority of IT2FP-PID
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controller in terms of robustness for (i) payload variations, (ii) model uncertainties, (iii)
disturbance in signals, and (iv) random noise at feedback path. The overall illustrations
and results confirm that optimized structures of antecedent MF utilized benefits of FOU
to restrain various uncertainties in the input signals. Even though the optimized shapes of
T1-MF are also applied through tuning of MF parameters for T1FP-PID controller, it could
not handle the uncertainty in equally efficient manner due to absence of fuzziness in T1-
MF. As inferred, the performance of classical PID and FPID controllers with uniform MF
are rather disappointing and found unsuited for the complex systems with uncertainties.
To sum up, it can be claimed that (a) additional tuning parameters provide extra degree
of freedom to get better performance in optimal controller design,(b) in case of IT2-FLC,
the systematic strategy to optimize the shapes of MF derive maximum benefits of FOU to
handle uncertainty (c) the proposed IT2FP-PID controller revealed as viable alternative to
control complex non-linear systems with high uncertainties, (d) the proposed GWO-ABC
algorithm can efficiently solve the low-dimensional and high-dimensional constrained op-
timization problems.

• The last chapter presented multi-objective robust design procedure of 2-DOF-FOPID con-
troller and investigated its performance for MLS. The sensitivity function is used as a con-
straint to ensure robust design and minimization of IAE for set-point and disturbance are
defined as two conflicting objective functions. The controller parameters are tuned using
multi-objective NSGA-II algorithm with constraint handling methodology. The major ro-
bustness investigations are carried out by applying variable input and external disturbance
and observed that the 2-DOF-FOPID controller exhibits prominent set point tracking and
external disturbance rejection. Also, it can be concluded from the results that the 2-DOF-
FOPID controller is more robust, fast, and effective to eliminate steady-state error. In most
of the cases, the 2-DOF-FOPID controller exhibits lower oscillatory behavior and settles at
set point faster than other controllers. Finally, this work justifies the applicability of MOO
methodology for tuning of controller parameters for multi-variable and complex control
systems design problems.
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7.2 Future Scope

Research and developments in various soft computing techniques always provide better prospects
for designing intelligent systems. The researchers from different fields are motivated to design
and implement various soft computing techniques to broad range of applications in engineering
and science fields.

With regards to the overall work presented in this thesis, following suggestions are identified
for future developments.

• The proposed GWO-ABC algorithm can be validated for interdisciplinary and multi-domain
complex engineering and science optimization problems. It can also be utilized for high-
dimensional, constrained, optimization problems.

• Further advance strategies can be suggested using chaos theory, random walk, levy flight,
Cauchy operator, and OBL based methods to design improved optimization algorithms.
The fuzzy logic based adoptive parameter tuning approach can be incorporated to balance
the exploration and exploitation behaviour.

• The IT2-FLC overcomes the limitations of T1-FLCs in highly uncertain environments. As
most of the real-world applications are influenced with high uncertainties, there is great
scope to investigate the proposed IT2-FLC based control schemes for real-world applica-
tions. Experimental investigations can be carried out to estimate the efficacy of IT2FP-PID
for controlling other complex engineering problems with higher uncertainties.

• The hardware design, development, and implementation of proposed IT2FP-PID provides
an interesting opportunity for further research. The control schemes can be developed and
implemented through real-time hardware applications in robotics and process industry.

• In theoretical research approach, a new type-reduction technique can be developed to re-
duce the computation time of IT2-FLS. Analytical methods can be developed to study the
relationship between robustness and FOU.

• The MOO approach has marked superiority over SOO to solve the optimization problem
with conflicting objectives. Hence, the MOO approach for control system design problems
with different constraints can be developed.

• The multi-objective algorithm based on CFGWO or GWO-ABC can be designed and ap-
plied to solve different optimization problems.

• In nutshell, the results reported in this thesis outlined a research direction for application of
enhanced soft computing techniques to improve the performance of control system design
required for complex systems.
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Appendix A

Robotic Manipulator and Benchmark
Functions

A.1 2-link Robotic Manipulator with Payload at Tip

The schematic diagram of 2-link robotic manipulator with variable payload at the end-effector
(on the tip of the second link) is illustrated in Fig. 2.6 [80, 83]. The details of robotic parameters
considered in this thesis are reported in Table A.1. The mass of a payload mpl applied at the
end-effector is varied arbitrarily from 0.5kg to 0.2kg in the duration of 4s as illustrated in Fig.
5.3. Following specifications are used to carry out all the simulations and experimental analysis
in this thesis.

Table A.1: Description and values of different robot parameters used in this study.

Variables (unit) Description Link 1 Link 2

m1,m2 (kg) Mass of link 1 1
l1, l2 (m) Length of link 1 1
I1, I2 (kgm2) Lengthwise centroid inertia of link 0.2 0.2
v1,v2 Coefficient of viscous friction 0.1 0.1
d1,d2 Coefficient of dynamic friction 0.1 0.1
g (m/s2) Acceleration due to gravity 9.81 9.81
lc1, lc2 (m) Distance between joint of link and center of gravity 0.5 0.5
mpl (kg) The payload mass at the end of Link 2 −− 0.5 at t = 0

Mathematical Modelling : The modelling of torque (τ1,τ2) applied to each link and corre-
sponding link positions (θ1,θ2) can be expressed mathematically as[

M11 M12

M21 M22

][
θ̈1

θ̈2

]
+

[
−bθ̇2 −b(θ̇1 + θ̇2)

bθ̇1 0

][
θ̇1

θ̇2

]
+

[
G1

G2

]
+

[
v1θ̇1

v2θ̇2

]
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+

[
d1sgn(θ̇1)

d2sgn(θ̇2)

]
=

[
τ1

τ2

]
(A.1)

where

M11 = I1 + I2 +m1l2
c1 +m2(l2

1 + l2
c2 +2l1lc2c2)+mpl(l2

1 + l2
2 +2l1l2c2)

M12 = I2 +m2(l2
c2 +2l1lc2c2)+mpl(l2

1 + l1l2c2)

M21 = M12

M22 = I2 +m2l2
c2 +mpll2

2

b = m2l1lc2s2

G1 = m1lc1gc1 +m2g(lc2C12 + l1c1)

G2 = m2lc2gc12

In above equations, θ1 and θ2 symbolize the positions of the links. Other parameters are c1 =

cosθ1, c2 = cosθ2, s1 = sinθ1, s2 = sinθ2, c12 = cos(θ1 + θ2). The specification of remaining
parameters can be seen in Table A.1.

The Desired Trajectories : The main aim in robotic control system is to design a controller to
determine proper actuator signal providing motion to the manipulator links and the end-effector.
The desired motion of a manipulator in a multidimensional space is defined in terms of trajectory
or path. It is essential to know the details of trajectory for desired goal position and orientation
of end-effector. In this thesis, the trajectory equations defined in form of cubic polynomial are
used [23, 80]. The trajectory is defined as

θdi(tsp) = b0 +b1(tsp)+b2(tsp)
2 +b3(tsp)

3 (A.2)

along with this, the equations have to satisfy following constraints

θ̇di(tsp) = b1 +2b2(tsp)+3b3(tsp)
2 (A.3)

θ̈di(tsp) = 2b2 +6b3(tsp) (A.4)

here θdi (i = 1, 2) states the prescribed reference positions for respective links.
In this work, the positions of the links for defining the trajectory path are given below in terms

of the desired via points at particular time and velocities.
Desired Trajectory for manipulator used in Chapter 4, Section 4.4. :

(i) at tsp = 2s⇒ θd1(tsp) = 1 rad, θd2(tsp) = 2 rad, θ̇di(tsp) = 0
(ii) at tsp = 4s⇒ θd1(tsp) = 0.5 rad, θd2(tsp) = 4 rad, θ̇di(tsp) = 0
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Desired Trajectory for manipulator used in Chapter 5, Sections 5.3 and 5.4. :
(i) at tsp = 2s⇒ θd1(tsp) = 1 rad, θd2(tsp) = 3 rad, θ̇di(tsp) = 0
(ii) at tsp = 4s⇒ θd1(tsp) = 0.5 rad, θd2(tsp) = 5 rad, θ̇di(tsp) = 0

A.2 Benchmark Test Functions

The performance of new algorithm is validated through several performance metrics evaluated on
standard test bed functions against other state-of-the-art algorithms. This test bed is comprised
of 7 unimodal ( f1 to f7), 6 multimodal ( f8 to f13), and 8 fixed dimension multimodal benchmark
functions ( f14 to f21), and a detailed description of these are given in appendix Tables A.3 and
A.4. For further experimentation, 6 composite functions from CEC 2014 [124] test bed ( f22

to f27), as given in Table A.2 are also investigated. All these functions are to be minimized
and corresponding optimal solutions are given in tables. The function specifications such as
mathematical formula, dimension (n), upper and lower limits of variables (Range [Lb,Ub]), and
optimum solution (fmin) are detailed in following tables.

Table A.2: Descriptions of the composite benchmark functions.

Function Dimension (n) Range [Lb,Ub] fmin

Composite functions

f24(x) CF1 10 [−100,100] 2300

f25(x) CF2 10 [−100,100] 2400

f26(x) CF3 10 [−100,100] 2500

f27(x) CF4 10 [−100,100] 2600

f28(x) CF5 10 [−100,100] 2700

f29(x) CF6 10 [−100,100] 2800

f30(x) CF7 10 [−100,100] 2900

f31(x) CF8 10 [−100,100] 3000
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