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Abstract

Each generation of wireless communication systems is evolving to provide higher data rates

with more services and accommodate more users within a limited radio-frequency (RF)

spectrum. The wireless technologies, such as worldwide interoperability for microwave

(WiMAX), Long Term Evolution (LTE), and Long Term Evolution-advanced (LTE-A) are

being used to provide higher data rate wireless services. However, this places very challeng-

ing requirements for RF front-end specifications in terms of power efficiency and bandwidth

for both base stations and hand-held devices. As the RF spectrum nowadays is shared by

many users. Therefore, spectral efficient complex modulation schemes, such as orthogonal

frequency-division multiplexing (OFDM), have to be used. In order to access these various

schemes and services, the multi-band/multi-standard transceiver designs are used and get-

ting enhanced in order to reduce power consumption, physical size and cost. The RF power

amplifier (PA) is the main power consuming device in the multi-band and multi-input-multi-

output (MIMO) transceivers and generates unwanted nonlinear distortion while operating

close to the saturation region. The most optimum PA linearization technique is Digital Pre-

distortion (DPD). The complexity and numerical stability of the DPD model is still a huge

challenge.

The thesis investigates the issue of implementation complexity, numerical stability and

feasibility of DPD model adaptation for low cost FPGAs for single band, multi-band and

multi-channel transmission. Principal Component Analysis (PCA) based DPD technique

is investigated as a solution to the numerical stability problem arising in lower-bits fixed-

point digital signal processor/FPGA. It is reported with measurement results that PCA based

model provides better linearization performance than memory polynomial (MP), orthogonal

memory polynomial (OMP), and generalized memory polynomial (GMP) models in 16-bit

fixed-point DSP operation.

Further, to enhance numerical stability of the state-of-the-art models, Independent Com-
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Abstract

ponent Analysis (ICA) as a novel algorithm level solution is proposed for different carrier ag-

gregated (intra-band contiguous, intra-band non-contiguous and inter-band noncontiguous)

LTE signals. ICA technique is proposed for 12-bit fixed-point digital signal processor/FPGA

implementation of DPD for intra-band and inter-band CA signals. The application of the

ICA technique upon MP model reduces model complexity and improves numerical stabil-

ity of the DPD model for CA LTE signals. The proposed MP-ICA requires lesser memory

requirement as compared to the state-of-the-art low complexity models such as MP model,

OMP model and PCA-based memory polynomial (MP-PCA) model for CA LTE signals.

A novel two-dimensional curtailed harmonic memory polynomial (2D-CHMP) model to

capture harmonic interferences, cross-modulation distortions (CMDs) and intermodulation

distortions (IMDs) in concurrent dual-band PA operating at harmonic frequencies is further

purposed to reduce the complexity of the state-of-the art models. The 2D-CHMP model is

constructed by simplifying the envelope terms of the state-of-the-art two-dimensional har-

monic memory polynomial (2D-HMP) model. The model complexity and memory require-

ment of 2D-CHMP are very less as compared to the 2D-HMP model. In addition, the novel

DPD models is proposed for linearization of a previously uninvestigated case of concurrent

tri-band PA at harmonic frequencies. This work analyzes the IMD terms which are pro-

ducing harmonic distortions and proposes three-dimensional harmonic memory polynomial

(3D-HMP) and harmonic Volterra spline (3D-HVS) models for mitigation of in-band inter-

ferences, CMDs, and IMDs.

As an integral solution to compensate for crosstalk, PA nonlinearity, I/Q imbalance and

dc offset imperfections simultaneously in MIMO transmitters, a neural network (NN)-based

DPD models has been investigated. The proposed NN DPD model provides a single-model

digital mitigation solution to multi-branches of MIMO transmitters, which is suitable for

higher order MIMO operation. A less complex, novel polynomial-based DPD model is also

proposed for linearizing higher dimension MIMO transmitters along with its characterization

procedure. The proposed model performs comparably to the state-of-art DPD model parallel

Hammerstein (PH) with lower number of coefficients and floating point operations (flops).
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless and mobile communication is evolving to offer newer services and higher data rates

to more number of users within a limited radio-frequency (RF) spectrum. In order to meet

the requirements, transceivers should support multi-standards, multiple bands and multiple-

input multiple-output (MIMO) topology [1, 2]. Nowadays, complex modulation schemes,

such as orthogonal frequency-division multiplexing (OFDM) is used in Long-Term evolu-

tion (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) wireless tech-

nologies. These modulation schemes are spectrally efficient, but have a high peak-to-average

power ratio (PAPR). The multi-carrier and carrier aggregation (CA) techniques are used to

increase overall network capacity, data rates and achieve an allocation of the fragmented

spectrum [3]. CA consists of combining various component carriers (CCs). In Long Term

Evolution-Advanced (LTE-A), CA of up to five CCs, each of up to 20 MHz is possible [4].

This places very challenging requirements for radio frequency (RF) front-end specifications

in terms of power efficiency for base stations. When base station connects to user equipments

(UEs) in downlink operation, it requires high power and this requirement is met using Power

Amplifier (PA) [5–19]. PA should operate near saturation region to satisfy the exacting re-

quirements on power efficiency. However, PA behaves nonlinearly in saturation region and

produces distortions. This undesirable effect due to non-linearity of the PA can be overcome

by digital predistortion (DPD), which is also the most popular technique for linearization

of PA [20–37, 48]. The DPD comprises of nonlinear digital model which pre-distorts the

incoming signal, which in turn cancels the distortion generated by PA. Several behavioral
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models consider static nonlinearities only [38, 39] but due to a poor decoupling in FET gate

and drain as well as poor decoupling in BJT base and collector, electrical memory effects are

present in PAs. The thermal memory effect is also present in PA due to junction temperature.

Many behavioral methods such as Volterra [22] and Memory Polynomial (MP) [23,24] have

been widely used to account for these memory effects. Several variations of MP and Volterra

models such as generalized memory polynomial (GMP) [27] and Modified Volterra Series or

dynamic Volterra series [28, 29] were proposed. However, when a wideband signal is used,

more number of coefficients are required in their DPD models due to prominent memory

effects [32].

Therefore, DPD techniques with lower complexity are required to linearize the RF PA

output especially for multi-channel communication systems such as multi-band and MIMO

signal transmitters.

1.2 Thesis Objectives

1. Polynomial based solution proposed in single-band and concurrent dual-band DPD till

now are either rigid in their performance or are very complex due to high number of

coefficients and multiples of high order polynomials. Although these models provide

adequate outcome for proof-of-concept, their real time implementation is still limited

by their complexity. Thus the first objective is to reduce model complexity while

maintaining linearization performance of DPD for single-band, concurrent multi-band

transmission and MIMO transmission.

2. Currently proposed single-band and concurrent dual-band DPD models have high con-

dition number of observation (predistorter) matrix which leads to numerically unstable

solutions. Moreover, with fixed point implementation in Field-Programmable Gate Ar-

ray (FPGA), model performance diverts drastically from its calculated output leading

to inefficient implementation. Thus the second objective is to improve the numerical

stability of digital models for successful implementation of DPD in single-band and

concurrent multi-band transmission.

3. Recently, research in PA design is moving towards ultra-wideband application [11],

which, in turn raises concern of interference from harmonics. These harmonic com-

ponent might fall within the working range of ultra-wideband power. Generally bulky
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Chapter 1. Introduction

filter-banks are used to filter out the harmonic signals, however if these filter-banks

can be avoided using digital cancellation schemes, this will result in significant reduc-

tion in transmitter size. Keeping this innovative trend in mind, there had been very

few recent attempts to model PA harmonics [40]. Harmonic cancellation feedforward

techniques are proposed in [41] by injecting an uncorrelated signal at harmonic fre-

quency, whereas [42] proposes a 2D-Harmonic Memory Polynomial and Harmonic

3-D Volterra (H3D-V) model for modeling and DPD when one of the harmonics of the

signal interferes with the upper band and cannot be removed using RF filters, however

proposed schemes are extremely bulky in nature and impractical to implement. Thus

the third objective is to enhance the performance and to reduce the implementation

cost of the existing Harmonic DPD schemes for concurrent dual-band and tri-band

transmission.

4. Most of the researchers focus on the SISO transmitter behavioral modeling and in

the case of MIMO transmitters, the most investigated case is of 2×2 MIMO. In the

coming year higher-dimension MIMO is going to be incorporated in 5G, but research

is limited up to 2×2 MIMO DPD design. Thus one of the objective of the thesis is to

design efficient DPD technique for higher-dimension MIMO topologies to support the

need for proposed massive MIMO schemes in 5G and beyond systems.

1.3 Thesis Contributions

1.3.1 Principal Component Analysis based effective DPD technique for

low-cost FPGA implementation

This work investigates the issue of low-cost DPD implementation in fixed-point FPGA/digital

signal processor by considering the bit-resolution along with lower number of coefficients.

The impact of principal component analysis (PCA) on bit-resolution of DPD solution is in-

vestigated within the context of established DPD models. Unlike previously proposed PCA

based solutions, it is established by simulation and measurement that the numerical stability

problem associated with popular models such as MP can be alleviated when PCA is applied

to the observation (predistorter) data matrix. It is reported that the PCA based model pro-

vides better linearization performance with the lesser memory size requirement and number
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of LUTs in 16-bit fixed-point FPGA/digital signal processor operation than MP, orthogonal

memory polynomial (OMP) and GMP models. The performance of the proposed model is

evaluated in terms of normalized mean square error (NMSE), adjacent channel error power

ratio (ACEPR), matrix condition number and dispersion coefficient for continuous Class-AB

and ZX60-V63+ PAs using wide code-division multiple access signal (WCDMA) and LTE

signal with PAPR around 9.895 dB and 11.92 dB respectively.

1.3.2 DPD technique for low resource consumption using Carrier Ag-

gregated 4G/5G Signals

CA is an essential part of LTE signals for 4G/5G wireless communication. However, CA LTE

signals place stringent conditions on the RF PAs. The multi-band operation, wider bandwidth

and related hardware cost are few of the DPD implementation limitations identified for the

multi-band PAs. In this work, we present novel Independent Component Analysis (ICA)

method for the DPD models which is suitable for all three cases (intraband contiguous, intra-

band non-contiguous and inter-band non-contiguous) of CA. Salient point is that this method

provides numerical stability to the coefficient vector by whitening process irrespective of the

digital model. It has been established that the memory requirement of ICA-based memory

polynomial (MP-ICA) model implementation is much lesser as compared to the state-of-

the-art low complexity models such as MP model, OMP model and PCA-based memory

polynomial (MP-PCA) model for CA LTE signals. The proof-of-concept is provided with

two different measurement setups for establishing its versatility.

1.3.3 Digital Predistortion for concurrent multi-band transmission at

harmonic frequencies

Multi-band transmitter systems are evolving to support the smooth transition from 4G to 5G

communication systems. Moreover, recent developments of multi-band and ultra-wideband

PAs have led to a novel scenario where the second carrier signal is transmitted at the har-

monic frequency of the first carrier signal. This results in harmonic interference from the first

carrier signal as well as additional cross-modulation distortion (CMD) and intermodulation

distortion (IMD) components, which cannot be filtered out. The computational and memory

requirements for DPD in such scenario increase drastically to include all the interference
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terms. This work presents a novel two-dimensional curtailed harmonic memory polynomial

(2D-CHMP) model to capture harmonic interferences, CMDs and IMDs. The model com-

plexity and memory requirement of 2D-CHMP are very less as compared to the state-of-the-

art 2D-HMP model. For proof-of-concept, it is shown with two different measurement setups

that the proposed 2D-CHMP DPD provides similar linearization performances as compared

to the 2D-HMP DPD with lesser number of coefficients and computational complexity.

In the second part of this work, we investigate and present the novel DPD models for

linearization of a previously uninvestigated case of concurrent tri-band PA at harmonic fre-

quencies. This work analyzes the intermodulation (IMD) terms, which are producing har-

monic distortions and proposes three-dimensional harmonic memory polynomial (3D-HMP)

and harmonic Volterra spline (3D-HVS) models for mitigation of in-band harmonic, CMDs

and IMDs.

1.3.4 DPD Model for mitigation of imperfections in MIMO Transmit-

ters

Multi-input multi-output (MIMO) is anticipated to be a prominent technique proposed in

the wireless communications to improve the system capacity and data rates of wireless net-

works. However, the MIMO transmitter suffers from imperfections like crosstalk, PA non-

linearity, in-phase and quadrature (I/Q) imbalance and dc offset. Investigating these effects,

this work proposes neural network (NN)-based DPD as an integral solution to compensate

for crosstalk, PA nonlinearity, I/Q imbalance and dc offset imperfections simultaneously in

MIMO transmitters. The proposed NN DPD model provides a one-step single-model dig-

ital mitigation solution to multi-branches of MIMO transmitters. With the increase in the

dimensions of MIMO transmitter, the proposed NN-based DPD model provides better com-

pensation for transmitter imperfections and also reduces the complexity as compared to the

state-of-the-art DPD methods. The proof-of-concept is provided with the 2×2 and 3×3

MIMO transmitters in the presence of strong PA nonlinearity, crosstalk, I/Q imbalance and

dc offset for homodyne as well as heterodyne transmitters’ cases.

This work also proposes a less complex, novel polynomial-based model for DPD for lin-

earizing MIMO transmitters along with its characterization procedure. The proof-of-concept

is provided with the 4×4 MIMO transmitters in the presence of nonlinear crosstalk, linear

crosstalk and strong PA nonlinearity. The proposed model performs comparably to the state-
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of-art DPD model parallel Hammerstein (PH) with lower number of coefficients and floating

point operations (flops).

1.4 Outline of the Thesis

The summary of the work presented in each chapter is briefly outlined as follows:

Chapter 2: This chapter provides a detailed literature review of the work done by various

researchers in the field of DPD. The mathematical formulation of various DPD models are

discussed.

Chapter 3: This chapter investigates the issue of DPD implementation in low-bit fixed-

point arithmetic and proposes PCA as a solution for established DPD models.

Chapter 4: This chapter presents a novel ICA method for the DPD models for CA LTE

signals. In this chapter, the memory requirement by MP-ICA DPD model is compared to the

state-of-the-art low complexity models such as MP model, OMP model and MP-PCA model

for CA LTE signals.

Chapter 5: This chapter presents novel 2D-CHMP model to capture harmonic interfer-

ences, CMDs and IMDs in concurrent dual-band transmitter at harmonic frequencies. This

chapter also presents a novel DPD models for linearization of concurrent tri-band transmitter

at harmonic frequencies.

Chapter 6: In this chapter, we present a neural network (NN)-based DPD as an integral

solution to compensate for crosstalk, PA nonlinearity, I/Q imbalance and DC offset imperfec-

tions simultaneously in MIMO transmitters. This chapter also presents a novel polynomial-

based DPD model for the mitigation of imperfections like crosstalk and PA nonlinearity in

MIMO transmitters.

Chapter 7: This chapter concludes the present study and compares the results obtained.

Further, recommended research directions for future investigations are also discussed.
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Chapter 2

Behavioral Models for Digital

Predistortion Techniques: Survey

2.1 Introduction

With the goal of being more energy efficient, PAs should operate in the highly nonlinear

region close to the saturation. However, when they operate in that region, PAs produce high

level of out-of-band and in-band distortion. The preditortion can be performed on baseband,

intermediate frequency (IF) or RF signals. For baseband level predistortion, a baseband

signal should be passed through DPD linearizer implemented into Digital Signal Processing

(DSP) that, in an ideal case, is the PA’s inverse transfer function (Figure 2.1) [36]. The

resultant transfer function of DPD+PA system is a linear function.

Figure 2.1: The fundamental concept of DPD [36].
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2.2 Device under Test (DUT) Model Extraction

DPD consists of the digital predistorter block cascaded with a PA [36]. Digital predistorter

is complementary non-linearity upstream of the PA. Behavioral modeling is performed to

estimate the non-linearity and memory effects of the PA and the transmitter in general. Ac-

cording to indirect learning scheme of DPD implementation, the Predistortion function is

equivalent to the behavioral modeling of the PA’s inverse transfer function obtained by inter-

changing the input and output signals with appropriate small-signal (linear) gain normaliza-

tion [36].

Figure 2.2: Behavioral model extraction procedure [36].

The behavioral modeling procedure is shown in Figure 2.2. It can be separated into two

main parts: the characterization and the model extraction.

• The characterization corresponds to the experimental acquisition of the input and out-

put PA signals, delay estimation, delay compensation and estimation of AM/AM and

AM/PM characteristics [36].

• The model extraction refers to the choice of an appropriate mathematical function

that defines all the substantial interaction between the input and output PA signals, its

identification and validation [36].
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2.3 Single-Band Digital Predistortion

Some of the frequently used models (formulations) in single-band are Look-Up-Table (LUT)

based models, volterra based models and its variation. The LUT based models are mem-

moryless LUT, wiener, hammerstein and nested LUT models [20, 21, 36]. Several variations

of the volterra based models are MP, envelope memory polynomial, orthogonal polynomial,

generalized memory polynomial (GMP) and Modified Volterra Series or dynamic Volterra

series [22–29]. The overview of these models is as follows:

2.3.1 Look-Up-Table (LUT) Model

The look-up-table model is the behavioural model used for the memoryless nonlinearities

[20]. Two look-up tables are used to store complex gain of the DUT. The output signal of

the model is given as:

xout(n) = G(|xin(n)|)xin(n) (2.1)

where xin(n) is the baseband input signal and G(|xin(n)|) is the instantaneous complex gain

of the DUT.

2.3.2 Wiener Model

The Wiener model consists of a linear finite impulse response (FIR) filter block cascaded by

a memoryless nonlinear function [36]. The output signal is given by

x1(n) =
M∑
j=0

h(j)xin(n− j) (2.2)

and

xout(n) = G(|x1(n)|)x1(n) (2.3)

where M , h(j), x1(n) and G are the memory depth, coefficients of the FIR filter impulse

response, the output of the FIR filter and the memoryless instantaneous gain function applied

in the look-up table model respectively.

The memoryless nonlinearity can be represented by a LUT or memmoryless polynomial

model.
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2.3 Single-Band Digital Predistortion

Figure 2.3: Wiener Model [36].

Figure 2.4: Hammerstien Model [36].

2.3.3 Hammerstein Model

The Hammerstein Model model is a two-box model composed of a memoryless nonlinear

function followed by a linear FIR filter [36]. The output signal of the model is

x1(n) = G(|xin(n)|)xin(n) (2.4)

and

xout(n) =
M∑
j=0

h(j)x1(n− j) (2.5)

where M , G(|xin(n)|), h(j) and x1(n) are the memory depth, the instantaneous gain of the

look-up table model, coefficients of the FIR filter impulse response and the output of the first

box (look-up table model) respectively.

2.3.4 Nested Look-Up-Table Model

The nested look-up-table model for RF PAs exhibiting memory effects was proposed in [21],

where look-up-table-based model was augmented to include memory effects. In this model,

the instantaneous gain of the DUT is a function of the actual input sample xin(n) and the

M -1 preceding samples [xin(n − 1), xin(n − 2),.....,xin(n − M)]. Therefore, the size of

look-up table is KM+1, where K is the number of bins required for the memoryless look-up

table model.

The output signal of the model is

xout(n) = G(|Xin(n)|)xin(n) (2.6)

whereG(|Xin(n)|) is the instantaneous complex gain of the DUT,Xin(n)) is the input vector

10
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including the present and the M preceding samples given as

Xin(n) = [xin(n− 1)xin(n− 2), ....., xin(n−M)] (2.7)

2.3.5 Volterra Model

The Volterra Model is best suited for dynamic nonlinear system [22]. The output signal of

the model is given as:

y(n) =
K∑
k=1

M∑
i1=0

....

M∑
ip=0

hp(i1, i2...., ip)
k∏
j=1

x(n− ij) (2.8)

whereM ,K and hp(i1, i2...., ip) are the memory depth, nonlinearity order and the parameters

of the volterra model respectively.

2.3.6 Memory Polynomial Model

The MP model has been extensively used to account for the memory effects present in PAs.

MP model is a simplified variant of Volterra series, in which only diagonal elements are

retained. [23, 24]. The output signal is given by

y(n) =
K−1∑
k=0

M∑
m=0

akm · x(n−m) |x(n−m)|k (2.9)

whereM ,K and ak,m are the memory depth, nonlinearity order and coefficients of the model

respectively.

2.3.7 Orthogonal Polynomial model

The Orthogonal Polynomial model utilizes the properties of orthogonal polynomial basis

function to reduce the condition number, which is order of magnitudes smaller than the

conventional polynomial function [25]. For the uniformly distributed |x|, the kth order or-

thogonal polynomial basis function is

ψk(x) =
k∑

u=1

(−1)u+k (k + u)!

(u− 1)!(u+ 1)!(k − u)!
|x|u−1 x (2.10)

The Output is

y =
K∑
k=1

k∑
u=1

bk(−1)u+k (k + u)!

(u− 1)!(u+ 1)!(k − u)!
|x|u−1 x (2.11)

where K and bk are the non-linearity order and coefficients of the model respectively.
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2.4 Multi-Band Digital Predistortion

2.3.8 Envelope-Memory Polynomial Model

The compact envelope-memory polynomial based model was presented in [26]. It can be

generalized as a integration between the nested look-up model and memory polynomial [24].

The output of this model is

y(n) =
M∑
m=0

K−1∑
k=0

ak,mx(n) |x(n−m)|k (2.12)

whereM ,K and ak,m are the memory depth, nonlinearity order and coefficients respectively.

As only the magnitude of memory terms [x(n − 1)x(n − 2), ....., x(n − M)] is required

and their complex values are not required. Thus the DPD implementation for this model is

simple.

2.3.9 Generalized Memory Polynomial Model

In this model, cross-terms are introduced using the different Volterra basis [27]. Taking

delayed variations of equation (2.9) using both negative and positive crossterm time shifts

and combining with equation (2.9) results in the GMP model

y(n) =
Ka−1∑
k=0

La−1∑
l=0

aklx(n− l) |x(n− l)|k +

Kb−1∑
k=0

Lb−1∑
l=0

Mb∑
m=1

bklmx(n− l) |x(n− l −m)|k

+
Kc−1∑
k=0

Lc−1∑
l=0

Mc∑
m=1

cklmx(n− l) |x(n− l +m)|k

(2.13)

whereKa,Kb andKc are the non-linearity orders, andLa, Lb,Mb, Lc andMc are the memory

depths respectively.

There are various DPD models further proposed like modified Volterra series or dynamic

reduced, rational basis and spline-based models [28–31].

2.4 Multi-Band Digital Predistortion

The 5th Generation (5G) network system and services requires the transceiver to simulta-

neously support the different frequency bands. To satisfy the multi-standard, multi-band

requirements of the modern radio base stations, recent advancement in PA design have given

12



Chapter 2. Behavioral Models for Digital Predistortion Techniques: Survey

Figure 2.5: Multi-Band RF transmitter architecture [43].

the provision to concurrently drive it with a signal consisting of widely separated bands, per-

mitting to cover multi-band operation with only one amplification stage. Figure 2.5 demon-

strates the Multi-Band RF transmitter architecture.

However, when bands are far apart, together they form a wideband signal, which requires

impractical high-sampling rate in digital-to-analog converters (DACs) and analog-to-digital

converters (ADCs). Therefore multi-band DPD are preferred, where the carrier signals in

each band are processed individually. The individual multi-band processing allow utiliza-

tion of the low-speed ADCs and DACs in each path, such processing is independent of the

frequency separation between the bands, which will require lower sampling rates than those

used by wideband DPDs. The overview of a few of the DPD models is as follows:

2.4.1 Dual-Band Digital Predistortion (2-D DPD)

The two-dimensional memory polynomial (2D-MP) DPD technique is proposed to linearize

the dual-band PA distortions, while using a frequency-selective algorithm with the inclusion

of time-selective memory effects [43]. In this technique, each frequency band is processed

individually. In concurrent dual-band scenario, two baseband modulated input signals x1 and

x2 are transmitted at carrier frequencies ω1 and ω2 respectively. These carrier frequencies lie

in different frequency bands. The outputs of the model is given as

yr (n)=
M∑
m=0

K−1∑
k=0

k∑
i=0

c
(r)
m,k,i ·xr (n−m)·|xr (n−m)|k−i · |xs(n−m)|i (2.14)

where r, s ∈ {1, 2} and r 6= s, M is the memory depth, c(r)
m,k,i are the coefficients and K is

the nonlinearity order of the 2D-MP model.
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2.4 Multi-Band Digital Predistortion

2.4.2 Dual-Band Orthogonal Memory Polynomial (2D-OMP)

In [44, 45], 2D-OMP model is proposed. The output of this model is given as

yr (n)=
M∑
m=0

K∑
k=1

k−1∑
i=0

c
(r)
m,k,i · γk,i(xr (n−m) , xs(n−m)) (2.15)

where γk,i (xr, xs)=λk−i (xr)× ψi (xs) and

λk (xr)=
k∑

u=1

(−1)u+k (k+u)!
(u−1)!(u+1)!(k−u)!

xr · |xr|u−1

ψi(xs)=
i∑

u=0

(−1)u+i (i+u)!

(u!)2(i−u)!
|xs|u

(2.16)

In [45], it is shown that 2D-OMP model has low condition number for known signal

probability density functions (PDFs) such as uniform, truncated exponential and rayleigh

distributions.

2.4.3 Low-Complexity 2-D DPD

In order to simplify 2D-MP model, the approach named 2-D Modified Memory Polynomial

model was developed by Y.-Jiang Liu et al. in [46]. The outputs of low-complexity 2D

model are mathematically expressed as :

y1(n) =
M∑
m=0

K−1∑
k=0

h
(1)
kmx1(n−m)fk+1(|x1(n−m), x2(n−m))| (2.17)

y2(n) =
M∑
m=0

K−1∑
k=0

h
(2)
kmx2(n−m)fk+1(|x2(n−m), x1(n−m))| (2.18)

whereK,M and h(1)
km & h

(2)
km are the nonlinearity order, memory depth and model coefficients

of each band respectively. fk+1(|x1(n−m), x2(n−m))| is derived for odd-order terms (odd

numbers of k + 1) and has the following equation

fk+1(|xr| , |xs|) =



1 , k = 0

|xr|2 + 2|xs|2 , k = 2

|xr|4 + 6|xr|2|xs|2 + 3|xs|4 , k = 4

|xr|6 + 12|xr|4|xs|2 + 18|xr|2|xs|4 + 4|xs|6 , k = 6

(2.19)

Similarly fk+1(|x1(n−m), x2(n−m))| for even-order terms can be written as

fk+1(|xr| , |xs|) = ||xr|+ j |xs||k, k = 1, 3, 5.. (2.20)

14



Chapter 2. Behavioral Models for Digital Predistortion Techniques: Survey

where r, s ∈ {1, 2} and r 6= s. This model can be also identified using least square al-

gorithm. In comparison with the previously described 2D-MP model, this model uses two

summations. The total number of coefficients is decreased from (M + 1)(K)(K + 1) to

2(M + 1)(K).

There are various dual-band DPD models further proposed such as 2D-rational function

based model, 2-D DPD is implemented using combinations of 1-D lookup tables (LUTs) and

2-D cubic splines model [47–49].

2.5 Concurrent Dual-Band DPD Models at Harmonics Fre-

quencies

2.5.1 2D Harmonic Memory Polynomial (2D-HMP) Model

Let us consider two modulated complex baseband input signals x1 and x2 being transmitted

at carrier frequencies ω1=αω and ω2=βω respectively, where α, β ∈ Z+ and α 6= β. As

illustrated in [42, 50], the 2D-MP model is not sufficient to capture harmonic interferences

terms of ultra-wideband PA. For this scenario, the 2D-HMP model is proposed in [42] to

capture the harmonic interferences and model the PA output. The outputs of this model are

given as:

y1(n) =
M∑
m=0

V 1,1
m,0(n−m) · x1(n−m)

+
Ml∑
m=0

Ql∑
q=1

V 1,2
m,q(n−m) · xαq2 (n−m) · x∗(βq−1)

1 (n−m)

+
Mu∑
m=0

Qu∑
q=1

V 1,3
m,q(n−m) · xβq+1

1 (n−m) · x∗αq2 (n−m)

(2.21)

and

y2(n) =
M∑
m=0

V 2,1
m,0(n−m) · x2(n−m)

+
Ml∑
m=0

Ql∑
q=1

V 2,2
m,q(n−m) · xαq+1

2 (n−m) · x∗βq1 (n−m)

+
Mu∑
m=0

Qu∑
q=1

V 2,3
m,q(n−m) · xβq1 (n−m) · x∗(αq−1)

2 (n−m)

(2.22)

where V r,p
m,q(n) = V r,p

m,q(|xr(n)| , |xs(n)|), r, s ∈ {1, 2} and r 6= s and V r,p
m,q(|xr(n)| , |xs(n)|)

can be expressed as:

V r,p
m,q(|xr(n)| , |xs(n)|) =

K−1∑
k=0

k∑
i=0

cr,pm,q,k,i · |xr(n)|k−i · |xs(n)|i (2.23)
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where K is the nonlinearity order, Ml and Mu are the memory depths, Ql and Qu are the

intermodulation product orders, cr,pm,q,k,i are the coefficients of the lower (r=1) and upper band

(r=2). Details of deriving equations (2.21), (2.22) and (2.23) can be found in [42].

The number of coefficients in each band of 2D-HMP model is

[(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] ·K (K + 1) /2.

2.5.2 Harmonic 3-D Volterra (H3D-V) model

As a reduced complexity version of 2D-HMP model, the harmonic 3-D volterra (H3D-V)

model is proposed to capture the IMD2 and IMD3 terms using spline [42]. This model is

expressed as:

y1(n) =
Ml∑
m=0

V m
1,1(n−m) · x1(n−m) + V m

1,2(n−m) · x∗1(n−m) · x2(n−m) (2.24)

y2(n) =
Mu∑
m=0

V m
2,1(n−m) · x2(n−m) + V m

2,2(n−m) · x2
1(n−m) (2.25)

where, V m
b,p(n) = V m

b,p(|x1(n)| , |x2(n)| , θ12(n)) with θ12(n) = ∠{x2
1(n)x∗2(n)} is evaluated

using spline.

2.6 DPD models for MIMO

Figure 2.6 shows the block diagram of a MIMO transmitters. In MIMO transmitters, signals

are transmitted at the same carrier frequency in different transmitters’ paths from antennas

[51–53]. Therefore, if transmitters are not calibrated individually, the effect of multi-branch

crosstalk magnifies, when the signal is distorted due to PA nonlinearity. The overview of a

few of the DPD models is as follows:

2.6.1 Crossover Memory Polynomial Model (COMPM)

The cross-over memory polynomial model (COMPM) has been proposed to linearize the PA

nonlinearities and to mitigate crosstalk [54]. In this model, the output of each transmitter’s

path is a linear sum of single-input memory polynomial functions. The output of the first

transmitter in 2×2 MIMO using this model is

y1 (n) =
M∑
m=0

K−1∑
k=0

c
(1)
m,k · x1 (n−m) · |x1 (n−m)|k

+
M∑
m=0

K−1∑
k=0

d
(1)
m,k · x2 (n−m) · |x2 (n−m)|k

(2.26)
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Figure 2.6: Block Diagram of MIMO transmitters.

where M is the memory depth, x1 (n) and x2 (n) are the baseband modulated input signals

for the two transmitters, c(1)
m,k and d(1)

m,k are the coefficients and K is the nonlinearity order of

the COMP model. The second output of the 2×2 MIMO transmitters can be obtained easily

using a similar expression as in equation (2.26).

2.6.2 Parallel Hammerstein (PH) Model

The Parallel Hammerstein (PH) model provides the output of each transmitter’s path as a

linear sum of multiple-input memory polynomial functions [55]. The output of the first

transmitter in 2×2 MIMO using this model is

y1 (n) = f (x1(n), x2(n))

=
M∑
m=0

K−1∑
k=0

k∑
i=0

c
(1)
m,k,ix1 (n−m) · |x1 (n−m)|k−i · |x2 (n−m)|i

+
M∑
m=0

K−1∑
k=0

k∑
i=0

d
(1)
m,k,ix2 (n−m) · |x1 (n−m)|k−i · |x2 (n−m)|i

(2.27)

where c(1)
m,k,i and d(1)

m,k,i are the coefficients of PH model.

There have been a few more models presented for compensation of crosstalk and PA

nonlinearities in MIMO transmitters [56–61].
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2.7 Conclusions

2.7 Conclusions

In this chapter, an overview of the state-of-art DPD models for single-band, multi-band, and

MIMO transmitters has been presented.

The single-band DPD models like volterra, MP, OMP and GMP models are complex and

rigid in their performance due to high condition number. Similarly dual-band concurrent

DPD models are highly complex and have high condition number.

The complexity of COMPM and PH models for MIMO transmitters increases exponen-

tially with the increase of number of branches of MIMO transmitters.

In next chapters, systematic methodologies to design novel DPD algorithms for single-

band, multi-band, and MIMO transmitters are presented. The DPD performance, model

complexity and numerical stability of these proposed models have been carried out to vali-

date the proposed theories presented in the thesis.
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Chapter 3

PCA based effective DPD Technique for

Low-Cost FPGA Implementation

3.1 Introduction

As established in the previous chapter, many behavioral methods such as Volterra [22] and

MP [23, 24] have been widely used to account for the memory effects present in PA. How-

ever, when a wideband signal is used, more number of coefficients are required in their DPD

models due to prominent memory effects [32]. As a result, size of ill-conditioned observa-

tion (predistorter) data matrix of DPD models increases and have high condition number and

dispersion of coefficient leading to numerically unstable solutions. The OMP [25] model is

a popular model to improve numerical stability. In [25], OMP model was implemented in

32-bit and 64-bit floating-point processors and the results show that it has better lineariza-

tion performance than a MP model for lower-bit precision implementation. However, OMP

model has two undesirable properties. One, the basis of orthogonality model does not con-

sider memory effects and performance deteriorates when PA memory is taken into account.

Second, the stability of the numerical solution is achieved by multiplying the orthogonal

matrix to observation matrix, leading to higher computational complexity. Moreover, with

the fixed-point arithmetic in lower bits FPGA, model performance diverts drastically from

its floating-point based calculated output leading to inefficient implementation. In [62], the

Volterra series based model was implemented using the lookup table (LUT) assisted gain in-

dexing and time-division multiplexing for multiplier sharing to save memory size in FPGA.

In [63], to reduce the complexity, least square (LS) based model extraction for less training
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samples is obtained using a 1-bit ridge regression (1-bit RR) method and errors between the

real transmit signal and the training data are reduced by a root mean square (RMS) based

coefficients weighing and an averaging. In [64], a theoretical comparison between polyno-

mials and the spline interpolation was presented. It is shown that Lagrange polynomial basis

are similar to spline basis and both models can be used interchangeably and be united.

Keeping with the theme of reducing the complexity of DPD model implementation

in [62–64], this chapter utilizes PCA as a solution to the numerical stability problem arising

in lower bits FPGA. PCA projects correlated high-dimensional observation data matrix to un-

correlated low-dimensional observation data matrix [65]. In [66], the number of coefficients

of DPD model was reduced using only larger eigen values. In [67], direct learning approach

was used in the MP DPD technique and PCA was applied to reduce the order of observa-

tion (predistorter) matrix which was used to update the DPD coefficients. In [68, 69], PCA

was implemented in DPD of concurrent dual band envelope tracking PA to reduce the order.

In [70], PCA was combined with mesh-selecting method to reduce the order of observation

(predistorter) data matrix dimension and reduced the cost of PA using under-sampled ADC.

However all the earlier published work utilizing PCA [66–70] focuses only on reduction in

matrix dimension which indicates a lower number of coefficients. However, the total FPGA

memory size requirement depends on matrix size as well as bit-resolution [45]. This chapter

reports the application of PCA for minimizing the FPGA memory size requirement [71].

The relevant metrics are taken as condition number and dispersion of coefficient which have

a direct impact on lower bits FPGA implementation. In this chapter, an indirect learning

approach is used in MP DPD technique with PCA implementation and it improves their con-

dition number and dispersion coefficient while reducing the order of DPD matrix and keep

maintaining the performance of the behavioral model in terms of NMSE and ACEPR.

This chapter is organized as follows: Section 3.2 describes the conventional PA model-

ing. Section 3.3 describes the PCA implementation in PA behavioral modeling. Section 3.4

describes the measurement setup used for the data extraction and DPD. Section 3.5 describes

the MP-PCA modeling performance. Section 3.6 describes the experimental results of DPD,

followed by a conclusion.
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Figure 3.1: Indirect Learning Architecture.

3.2 Conventional PA Modeling

Figure 3.1 shows the indirect learning approach, which is a well established method for the

DPD [24]. In Indirect learning architecture, the predistortion function is equivalent to the

behavioral model of the PA’s inverse transfer function obtained by swapping the input signal

by output signal with appropriate small-signal (linear) gain normalization [36]. The input

signal x(n) is predistorted by the DPD block and this predistorted signal u(n) is transmitted

through the PA. The Output of PA, y(n) normalized by small-signal (linear) gain (G) is

provided to the DPD (coefficient estimator) block to generate û(n).

The MP model is extensively used for behavioral modeling and inverse modeling for

DPD of PAs/transmitters showing memory effects. Equation (2.9) representing the MP

model can be written in matrix form as follows:

y = UA (3.1)

where

• y = [y(n), y(n+ 1), . . . , y(n+ L− 1)]T is a L× 1 vector representing the L samples

of the output signal.

• A = [a00, a01, . . . , a0K , . . . , aM0, aM1, . . . , aMK ]T is a (M + 1)(K)× 1 vector of MP

model coefficients.

• x = [x(n), x(n+ 1), . . . , x(n+ L− 1)]T is a L×1 vector representing the L samples

of the input signal.
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3.3 Proposed PCA implementation in PA Modeling

• U is a L × (M + 1)(K) observation (predistorter) data matrix shown as in Equa-

tion (3.2)

U =

x(n) · · · x(n)|x(n)|K−1 · · · x(n−M) · · · x(n−M)|x(n−M)|K−1

x(n+1) · · · x(n+1)|x(n+1)|K−1 · · · x(n+1−M) · · · x(n+1−M)|x(n+1−M)|K−1

x(n+2) · · · x(n+2)|x(n+2)|K−1 · · · x(n+2−M) · · · x(n+2−M)|x(n+2−M)|K−1

· · · · · · · · · · · · · · · · · · · · ·

x(n+L−1) · · · x(n+L−1)|x(n+L−1)|K−1 · · · x(n+L−1−M) · · · x(n+L−1−M)|x(n+L−1−M)|K−1


(3.2)

U is a vandermonde matrix containing the input signal with memory effects in a geomet-

ric progression. Least Square (LS) method [72, 73] is used to extract MP model coefficient

vector A. Pseudo-inverse method is used to implement LS extraction as follows:

A = (UHU)−1UHy (3.3)

3.3 Proposed PCA implementation in PA Modeling

The observed dimensionality of the data matrix is often a lot higher than the true dimen-

sionality [65]. This means we estimate a larger number of parameters (coefficients) than

required. PCA reduces the dimensionality of the observation data matrix by projecting the

data along the directions, which have the largest variance. These directions are the eigen

vectors of the covariance matrix of the observation data matrix. The corresponding eigen

value measures the variance of the data along an eigen vector.

For example, if U is a L× (M + 1)(K) observation data matrix

R = UHU is its (M + 1)(K)× (M + 1)(K) covariance matrix

Using eigen value decomposition, R = QΛQH

where q1, q2, . . . , q(M+1)(K) are the eigen vectors to the corresponding eigen values λ1, λ2, . . . ,

λ(M+1)(K) of the covariance matrix R such that λ1 ≥ λ2 ≥ . . . ≥ λ(M+1)(K).

Q = [q1, q2, . . . , q(M+1)(K)] is a (M + 1)(K) × (M + 1)(K) matrix consisting of eigen

vectors.

Λ = diag(λ1, λ2, ..., λ(M+1)(K)) is a (M + 1)(K) × (M + 1)(K) diagonal matrix con-

sisting of eigen values.

Dimensions of the new observation data matrix can be decided from the weight of eigen

values e.g. determining how many dimensions are necessary to capture 99.99999999% of
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the total data variance. This cumulative percentage of variation for first S Eigen values is

known as Threshold T . T is mathematically expressed as

T =
λ1 + λ2 + .....+ λS

λ1 + λ2 + .....+ λ(M+1)(K)

× 100 (3.4)

Threshold T can be chosen to find a new dimension S. Eigen vectors to the corresponding

larger eigen values will be the principal components (new dimensions of data). Principal

Components P would be defined as

P = [q1, q2, . . . , qS] (3.5)

Data are projected to a new low-dimensional space by doing an inner product of U with

principal components P. New observation data matrix V = UP and V is not a vandermonde

matrix.

The dimensions of the new observation data matrix V is reduced from L× (M + 1)(K)

to L× S. Thus coefficients are also reduced from (M + 1)(K) to S.

Now

y = VB (3.6)

where B = [b0, b1, . . . , bs]
T is a S × 1 vector of MP-PCA coefficients and can be calculated

using pseudo-inverse method. PCA implementation in MP model is termed as MP-PCA

model.

3.4 Measurement Setup

Figure 3.2(a) and Figure 3.2(b) shows the block diagram and the photograph of measure-

ment setup used for PA characterization respectively. The Measurement setup consists of a

dual channel transmitter (TSW30SH84), Altera Arria V GT FPGA, transmitter observation

receiver (TSW1266), ZN2PD2-50-S+ power splitter/combiner from Mini-Circuits, local os-

cillator (TSW3065), ZX60-V63+ PA from Mini-Circuits, 15-W continuous Class-AB PA,

10-W driver, and attenuators. Altera Arria V GT kit contains two 5AGTFD7K3 FPGAs and

these FPGAs are programmed using Quartus Software. Altera Arria V GT kit is connected

to the transmitter and data is transmitted from the FPGA to the transmitter at a sampling rate

of 307.2 Msps. The dual channel transmitter TSW30SH84 from Texas Instruments (TI) con-

tains 1.5 GSPS, 16-bit, digital-to-analog converter (DAC) DAC34SH84 and two complex RF
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3.4 Measurement Setup

(a) (b)

(c) (d)

Figure 3.2: Block Diagram of Measurement Setup, (b) Photograph of Measurement Setup,

(c) AM/AM characteristics of continuous Class-AB PA and (d) AM/PM characteristics of

continuous Class-AB PA.

modulators TRF3705, with output frequency ranging from 300 MHz to 4 GHz. The data are

interpolated by a factor of 4 in DAC to a sampling frequency of 1228.8 Msps. The TRF3705

up-converts the signal to RF using a Local oscillator (LO) (TSW3065) and sent to PA. At

the receiving end, TSW1266 receiver down-converts the signal at a sampling frequency of

614.4 Msps. A 10 MHz reference clock from LO (TSW3065) synchronizes transmitter and

receiver.

3.4.1 Devices and Signals Under Test

A 15-W continuous Class-AB PA is used for establishing the proof of concept. It is driven by

ZX60-V63+ PA and 10-W driver. Class-AB PA is a 15 W gallium nitride (GaN) based PA,

biased at a drain voltage of 28 V and drain current of 100 mA. ZX60-V63+ PA operates from

0.05 to 6 GHz frequency range and 17.8 dBm output at 1 dB gain compression. The ZX60-

V63+ PA can be used in wide variety of applications like base station infrastructure, portable
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Table 3.1: Effect of Threshold T on MP-PCA inverse modeling performance

WCDMA Signal LTE Signal

Threshold T % 99 99.99 99.9999 99.999999 99.99999999 99 99.99 99.9999 99.999999 99.99999999

NMSE (dB) -26.79 -46.06 -46.38 -48.28 -49.28 -19.63 -43.37 -45.09 -47.67 -48.92

ACEPR (dBc) -43.53 -46.88 -47.42 -50.60 -53.18 -46.79 -47.31 -48.50 -51.79 -53.50

No. of Coeff. 2 4 7 12 18 2 5 10 15 22

Cond. No. 7.52 44.21 544.42 1.08×104 1.54×105 8.93 68.88 1.23×103 1.28×104 1.18×105

Disp. Coeff. 9.56 13.19 15.84 56.90 427.65 4.78 6.60 6.94 36.63 291.33

wireless, CATV, DBS, MMDS, wireless LAN, LTE , SATCOM and radar requiring moderate

power output, low distortion and 50 ohm matched input/output ports. The practical RF PA

performs amplification in three stages. The primary (ZX60-V63+ PA) and driving (10-W

PA) stages actually amplify the signal RF power and provide greater than one gains, where

as the third (15-W Class-AB PA) stage is used to transfer the signal after amplification and

matching with antenna impedance.

The two different signals used for experimentation are 5 MHz WCDMA and 10 MHz

LTE signals with PAPR of 9.895 dB and 11.92 dB respectively at 2190 MHz (2140 MHz

LO + 50 MHz IF shift). The Amplitude Modulation/Amplitude Modulation (AM/AM) and

Amplitude Modulation/Phase Modulation (AM/PM) characteristics of continuous Class-AB

PA are shown in Figure 3.2(c) and Figure 3.2(d) respectively. The Class-AB PA has a 3.4 dB

gain compression and phase scatter of 3.3◦.

3.4.2 Time Alignment

Before sending data in FPGA, it is normalized by its maximum value and changed to hex-

adecimal format. At the receiver, data is converted from hexadecimal to decimal format and

then normalized. The frequency domain cross-correlation method as defined in [40] is used

to time align the transmitted and received data.
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3.5 Inverse Modeling Performance

3.5.1 Matrix conditioning and Numerical Stability

Ill-conditioned observation data matrix in MP models results in numerical stability. A

poorly conditioned matrix makes the pseudo-inverse calculation very sensitive to slight dis-

turbances. The condition number is defined as a ratio of maximum eigen value to the mini-

mum eigen value of observation data matrix [74]. It is expressed as

Condition Number =
λmax

λmin

(3.7)

where λmax and λmin are maximum eigen value and minimum eigen value of observation

data matrix respectively.

It is a measure of the transfer of error from the matrix to the LS solutions. At least n digits

of precision can be lost in solving the system y = UA, if a condition number is 10n [75].

For example, the numerical precision is around 10−6 for a single-precision floating-point

calculation. Any condition number greater than 103 leads to an approximate precision of

10−3. The observation data matrix U of MP model is badly conditioned Vandermonde matrix

with high conditioning number [76,77]. Its pseudo-inverse calculation is very sensitive to the

slight disturbances in FPGA setup which may lead to inaccurate results when finite precision

calculation is used. But the MP-PCA model observation data matrix V is not Vandermonde

matrix. Thus its condition number is not high as compared to the condition number of MP

model.

The OMP model (discussed in chapter-2) has better numerical stability and matrix con-

ditioning than the MP model. However, the basis of orthogonality model does not consider

memory effects. So MP-PCA model can perform better than OMP model when memory

effect occurs by considering the appropriate value of threshold T such that the ratio of max-

imum and minimum eigen values can be reduced.

Table 3.1 shows the effect of threshold T % on MP-PCA inverse PA modeling perfor-

mance parameters for M=4 and K=7. In MP model, NMSE=-49.38 dB and ACEPR=-53.29

dBc are achieved for WCDMA signal. Similarly, NMSE=-49.01 dB and ACEPR=-53.60

dBc are achieved for LTE signal. It is to be noted that for T=99%, NMSE and ACEPR val-

ues of MP-PCA model are poor as compared to NMSE and ACEPR values of MP model. For

T=99.99999999%, NMSE and ACEPR value of MP-PCA model are nearest to the NMSE

and ACEPR value of MP model. Thus we choose T=99.99999999% for our MP-PCA model.
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(a) (b)

Figure 3.3: Condition Number for continuous Class-AB PA inverse modeling: (a) WCDMA

signal and (b) LTE signal.

(a) (b)

Figure 3.4: Dispersion Coefficient for continuous Class-AB PA inverse modeling: (a)

WCDMA signal and (b) LTE signal.

Figure 3.3(a) and Figure 3.3(b) shows the condition number of observation data matrix of

MP model, OMP model and MP-PCA model for continuous Class-AB PA inverse modeling

driven by 5 MHz WCDMA and 10 MHz LTE signals respectively. The x-axis of the graph

represents nonlinearity order K. As shown in the graph, when nonlinearity order K and
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(a) (b)

Figure 3.5: NMSE performances of continuous Class-AB PA inverse modeling: (a)

WCDMA signal and (b) LTE signal.

memory depth M are increasing, then condition number is increasing exponentially for both

MP model and OMP model. Whereas the condition number of MP-PCA model is converging

to maximum 105 and it is less than MP model by order of 106-108 and less than OMP model

by order of 7×102-105 for both the signals. This large difference in condition number is

due to the large difference between maximum eigen value and minimum eigen value. In

MP-PCA model, this difference is reduced by considering only first S eigen values and

discarding the remaining smaller eigen values i.e. λS+1 to λ(M+1)(K) by choosing threshold

T=99.99999999%.

Dispersion Coefficient is another factor to represent numerical stability and it represents

the need for a higher number of bits required to cover the whole domain of coefficients in the

digital signal processor. It is defined as a ratio of maximum to minimum absolute coefficient

value [78]. It is expressed mathematically as

Dispersion Coefficient =
max(|amk|)
min(|amk|)

(3.8)

where amk are the coefficients. The precision level of coefficients in lower-bit fixed-point

DSP is compromised, when the coefficients are much dispersed. For example, if dispersion

coefficient is 2n then it will require at least 2n bit-resolution without losing any precision.

As shown in the Figure 3.4, when nonlinearity order K and memory depth M are in-

creasing then dispersion coefficient is increasing exponentially for both MP model and OMP
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(a) (b)

Figure 3.6: ACEPR performances of continuous Class-AB PA inverse modeling: (a)

WCDMA signal and (b) LTE signal.

model. The dispersion coefficient of MP-PCA model for WCDMA signal is converging to

maximum 800 approximately and it is less than MP model by order of 103 and less than

OMP model by order of 10-102. Similarly dispersion coefficient of MP-PCA model for LTE

signal is converging to maximum 800 approximately and it is less than MP model by order

of 104 and less than OMP model by order of 10-102.

3.5.2 In-Band and Out-of-Band Modeling Performance

Error Performance of a behavioral model is shown by metrics like NMSE and ACEPR.

The In-band distortion present in a signal can measured by normalized mean square error

(NMSE). NMSE is used in time-domain modeling [79] and it is given by

NMSE (dB) = 10log10


L∑
n=1

|e(n)|2

L∑
n=1

|ymeas(n)|2

 (3.9)

where L is the total number of samples and e(n) = ymeas(n) − yest(n) is the error between

measured output ymeas(n) and the estimated model output yest(n) for any sample n.

Figure 3.5 shows that NMSE results are nearly same for MP model, OMP model and

MP-PCA model for memory depth of M=1 to M=4 and nonlinearity order of K=2 to K=13

respectively.
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(a) (b)

Figure 3.7: Number of Coefficients required for continuous Class-AB PA inverse modeling:

(a) WCDMA signal and (b) LTE signal.

ACEPR is metric for out-of-band modeling performance in frequency domain. It is de-

fined as a ratio of error power in a bandwidth adjacent (left or right or both) to the main

channel power [79]. It is given as follows:

ACEPR =
1

2


fc−∆f+ BW

2∫
fc−∆f−BW

2

|E(f)|2df +
fc+∆f+ BW

2∫
fc+∆f−BW

2

|E(f)|2df

fc+ BW
2∫

fc−BW
2

|Ymeas(f)|2df

 (3.10)

where fc is the carrier frequency, BW is the bandwidth, ∆f is the frequency offset from the

carrier frequency, E(f) is the discrete fourier transform of error e(n) and Ymeas(f) is the

discrete fourier transform of measured output ymeas(n).

Figure 3.6 shows that ACEPR (dBc) results are nearly same for all three models for

memory depth of M=1 to M=4 and nonlinearity order of K=2 to K=13 respectively.

3.5.3 Computational Complexity

In MP model and OMP model, the number of coefficients increases linearly with an incre-

ment in nonlinearity order K and memory depth M . The Number of coefficients in MP

model and OMP model are (M + 1)(K) [23–25]. Figure 3.7 shows that the number of

coefficients are reduced in MP-PCA model with respect to MP model and OMP model for
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(a) (b)

Figure 3.8: NMSE performances for 16-bit fixed-point calculation of continuous Class-AB

PA inverse modeling: (a) WCDMA signal and (b) LTE signal.

(a) (b)

Figure 3.9: ACEPR performances for 16-bit fixed-point calculation of continuous Class-AB

PA inverse modeling: (a) WCDMA signal and (b) LTE signal.

memory depth of M=1 to M=4 and nonlinearity order of K=2 to K=13 respectively. These

results are for T=99.99999999%. As the number of coefficients decreases, it would result in

a decrease in the size of observation matrix and thus decrease in computation complexity for

coefficient extraction.
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(a) (b)

Figure 3.10: (a) NMSE and (b) ACEPR performances for 16-bit fixed-point calculation of

ZX60-V63+ PA inverse modeling for WCDMA signal.

3.5.4 Effect of Fixed-Point Arithmetic at different bit-resolutions

In FPGA, the number of required LUTs depends on the memory size. Memory size required

by a model depends on the size of observation (predistorter) matrix and bit resolution [45].

Memory Size = Matrix Size×Bit Resolution (3.11)

Earlier in section 3.5.2, MP, OMP and MP-PCA modeling are performed in 64-bit double

floating-point DSP. NMSE and ACEPR performances are nearly same for all the three mod-

els. In this section, inverse PA modeling performance at different fixed-point bit resolutions

is investigated.

When MP, OMP and MP-PCA modeling is performed in 16-bit word length fixed-point

DSP. MP-PCA model showed superiority over the MP model and OMP model. Figure 3.8(a)

and Figure 3.8(b) shows the NMSE (dB) results for Continuous Class-AB PA inverse mod-

eling of WCDMA signal and LTE signal, when 16-bit fixed-point calculation is performed.

In MP-PCA model, NMSE (dB) is decreasing as nonlinearity order K is increasing for both

signals. Whereas in MP model and OMP model, NMSE starts increasing sharply as K is

increasing from K=7 to K=13 for both the signals.

Figure 3.9(a) and Figure 3.9(b) shows the ACEPR (dBc) results for Continuous Class-AB

PA inverse modeling of WCDMA signal and LTE signal when 16-bit fixed-point calculation
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Table 3.2: Inverse PA Modeling performances for M=4 and K=7

Model

WCDMA Signal LTE Signal

NMSE (dB) ACEPR (dBc) NMSE (dB) ACEPR (dBc)

64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit

MP -49.38 -17.05 -53.29 -36.10 -49.01 -14.65 -53.60 -40.26

OMP -49.38 -28.68 -53.29 -38.98 -49.01 -42.23 -53.60 -48.39

GMP -49.68 19.88 -53.82 -7.71 -49.38 32.58 -54.23 -1.17

MP-PCA -49.28 -48.84 -53.18 -52.96 -48.92 -48.35 -53.50 -52.43

OMP-PCA -49.30 -49.29 -53.17 -53.17 -48.98 -48.46 -53.63 -52.85

GMP-PCA -49.34 -43.92 -53.34 -52.91 -48.85 -48.09 -53.35 -52.45

Table 3.3: Comparison of FPGA’s Memory Resource Utilization

WCDMA Signal LTE Signal

MP
MP-

PCA
OMP

OMP-

PCA
GMP

GMP-

PCA
MP

MP-

PCA
OMP

OMP-

PCA
GMP

GMP-

PCA

No. of

Coeff.
35 18 35 25 175 31 35 22 35 29 175 45

Matrix

Size

2.29

×106

1.18

×106

2.29

×106

1.64

×106

11.47

×106

2.03

×106

2.29

×106

1.44

×106

2.29

×106

1.90

×106

11.47

×106

2.95

×106

Bit-

Res.
24 16 24 16 32 16 24 16 24 16 32 16

Memory

Size (MB)
6.88 2.36 6.88 3.28 45.88 4.06 6.88 2.88 6.88 3.80 45.88 5.90

is performed. In MP-PCA model, ACEPR (dBc) is decreasing as nonlinearity order K is

increasing for both the signals. Whereas in MP model and OMP model, ACEPR starts

increasing sharply as K is increasing from K=7 to K=13 for both the signals.

To demonstrate the effect of fixed-point calculation at different PAs, we have also used

ZX60-V63+ PA. Figure 3.10(a) and Figure 3.10(b) shows the NMSE (dB) and ACEPR (dBc)

results for ZX60-V63+ PA inverse modeling of WCDMA signal when 16-bit fixed-point

calculation is performed. In MP-PCA model, NMSE (dB) and ACEPR (dBc) are decreasing

as nonlinearity order K is increasing for WCDMA signal, whereas in MP model and OMP

model, both NMSE and ACEPR starts increasing sharply as K is increasing from K=7 to

K=13 for WCDMA signal.
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Table 3.2 compares the performance of MP model, OMP model, GMP model and PCA

models in 64-bit double floating point with 16-bit fixed point calculation for continuous

Class-AB PA (M=4 and K=7). In MP-PCA model, 64-bit double floating point and 16-bit

fixed point calculation have nearly same NMSE and ACEPR values. While in the cases of

MP model, OMP model and GMP model; NMSE and ACEPR values are degraded when the

16-bit fixed-point calculation is performed.

Figure 3.11(a) and Figure 3.11(b) shows the NMSE (dB) and ACEPR (dBc) results for

different bit (16, 24, 32, 64) resolutions of continuous Class-AB PA inverse modeling of

WCDMA signal for M=4 and K=7. MP-PCA and OMP-PCA models have similar perfor-

mance at 16-bit resolution, however OMP-PCA model requires more number of mathemati-

cal operations (such as addition and multiplication) than the MP-PCA model. OMP and MP

models performance converge to MP-PCA performance at 24-bit whereas GMP model per-

formances converge at 32-bit. Similarly, Figure 3.11(c) and Figure 3.11(d) shows the NMSE

(dB) and ACEPR (dBc) results for different bit resolutions of continuous Class-AB PA in-

verse modeling of LTE signal for M=4 and K=7. Again, MP-PCA and OMP-PCA models

have similar performance at 16-bit resolution. OMP and MP models performance converge

to MP-PCA performance at 24-bit whereas GMP model performances converge at 32-bit.

Table 3.3 shows the comparison of FPGA’s memory resource utilization for continu-

ous Class-AB PA inverse modeling of WCDMA signal and LTE signal (M=4, K=7, and

L=65536). MP-PCA model shows good linearization performance at 16-bit with lesser

number of coefficients than all other models, therefore memory size and number of LUTs

required by the MP-PCA model are lesser.

Figure 3.12(a) and Figure 3.12(b) shows Power Spectrum Density (PSD) of measured

output (PA output), and error e(n) of MP model, OMP model and MP-PCA model for M=4

and K=7 of continuous Class-AB PA when 16-bit fixed-point calculation and 64-bit double

floating-point is performed. As evident from the graph MP-PCA model’s error performance

is similar to MP model and OMP model’s error performances in the 64-bit double floating-

point calculation, whereas MP-PCA model’s error performance is better than MP model

and OMP model’s error performances in 16-bit fixed-point calculation. Based on modeling

performances, according to indirect DPD method, it is anticipated that the effect will be

visible in predistortion performance too.
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(a) (b)

(c) (d)

Figure 3.11: Performances for different bit resolutions of continuous Class-AB PA inverse

modeling: (a) NMSE performances for WCDMA signal, (b) ACEPR performances for

WCDMA signal, (c) NMSE performances for LTE signal and (d) ACEPR performances

for LTE signal.

3.6 Digital Predistortion Results

Linearization performance of DPD technique is measured in terms of Adjacent Channel

Power Ratio (ACPR) and NMSE. NMSE is the normalized mean square error between the

transmitted and received signals [30]. It is measured for an in-band transmission error be-

cause the square of a signal provides higher deviation and hence higher correction for high

power data. As useful signal is within band, correction is applied mostly on in-band data. It

also provides error deviation for both negative and positive error. Also the square of an error
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(a) (b)

(c) (d)

Figure 3.12: PSD of MP model, OMP model and MP-PCA model errors and DPD: (a)

Error Spectra for 16-bit fixed-point and 64-bit double floating-point calculation of WCDMA

Signal, (b) Error Spectra for 16-bit-fixed-point and 64-bit double floating-point calculation

of LTE signal, (c) DPD Spectra for 16-bit fixed-point calculation of WCDMA signal and (d)

DPD Spectra for 16-bit fixed-point calculation of LTE signal.

Table 3.4: MP DPD, OMP DPD and MP-PCA DPD performances for 16-bit fixed point

calculation

WCDMA Signal LTE Signal

Without

DPD

MP

DPD

OMP

DPD

MP-PCA

DPD

Without

DPD

MP

DPD

OMP

DPD

MP-PCA

DPD

NMSE (dB) -11.51 -18.33 -26.27 -37.11 -11.22 -21.54 -34.08 -36.90

ACPR (dBc) -30.59 -32.12 -38.46 -53.27 -27.26 -31.23 -47.74 -52.14
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have one global minima. It is given by

NMSE (dB) = 10log10


L∑
n=1

|ymeas(n)− x(n)|2

L∑
n=1

|x(n)|2

 (3.12)

where x(n) is the complex baseband input signal and ymeas(n) is the measured baseband

output.

ACPR is defined as a ratio of adjacent channel power (left or right or mean of both) to

the main channel power in the frequency domain [30]. It is measurable for an out-of-band

transmission error and spectral regrowth. It is given as follows:

ACPR =
1

2


fc−∆f+BW

2∫
fc−∆f−BW

2

|Y (f)|2df +
fc+∆f+BW

2∫
fc+∆f−BW

2

|Y (f)|2df

fc+BW
2∫

fc−BW
2

|Y (f)|2df

 (3.13)

where ∆f is the frequency offset from the carrier frequency, BW is the bandwidth, fc is the

carrier frequency, and Y (f) is the discrete fourier transform of measured baseband output

ymeas(n).

Figure 3.12(c) and Figure 3.12(d) shows PSD of MP model, OMP model and MP-PCA

model DPD for M=4 and K=7 of continuous Class-AB PA when the 16-bit fixed-point

calculation is performed. It is clear from the graph, MP-PCA model DPD performance is

better than MP model and OMP model DPD performances.

Table 3.4 shows the DPD performances of the models in terms of ACPR and NMSE

for M=4 and K=7 of continuous Class-AB PA when the 16-bit fixed-point calculation is

performed. In MP-PCA DPD, the NMSE improves from -11.51 dB to -37.11 dB and -11.22

dB to -36.90 dB for WCDMA and LTE signals respectively i.e. improvement of 25.6 dB

and 25.68 dB. In MP DPD, the NMSE improves by 6.82 dB and 10.32 dB for WCDMA and

LTE signals respectively. In OMP DPD, the NMSE improves by 14.76 dB and 22.86 dB for

WCDMA and LTE signals respectively.

In MP-PCA DPD, the ACPR improves by 22.68 dBc and 24.88 dBc WCDMA and

LTE signals respectively. In MP DPD, the ACPR improves by 1.53 dBc and 3.97 dBc for

WCDMA and LTE signals respectively. In OMP DPD, the ACPR improves by 7.87 dBc and

20.48 dBc for WCDMA and LTE signals respectively.
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3.7 Conclusion

It is evident that with 16-bit fixed-point calculation, MP and OMP DPD does not perform

as good as MP-PCA DPD.

3.7 Conclusion

In this chapter, benefits of using PCA on the single-band MP model observation (predis-

torter) data matrix as opposed to various polynomial based models are investigated. The

results show that the proposed MP-PCA requires lesser memory size and number of LUTs in

FPGA. MP-PCA has comparable linearization performance in terms of NMSE and ACEPR

in high precision (64-bit) double floating-point calculation but with a reduced number of

coefficients, condition number and dispersion coefficient with the conventional MP model

and OMP model. Inverse modeling performances in terms of NMSE and ACEPR were bet-

ter in PCA based model when the 16-bit fixed-point calculation was performed. Also the

linearization performances in terms of NMSE and ACPR were better in PCA based model

when the 16-bit fixed-point calculation was performed. Thus the proposed model utilizing

PCA allows implementation of digital predistortion scheme in low-cost FPGA as compared

to MP model, OMP model, and GMP models.

The next chapter deals with the the complexity and numerical stability of DPD nodels for

CA signals. A novel DPD technique is presented for intra-band and inter-band CA signals.
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Chapter 4

DPD technique for low resource

consumption using Carrier Aggregated

4G/5G Signals

4.1 Introduction

In the last 2 decades, DPD technique had emerged as an effective technique for lineariza-

tion of PA using already available FPGA or digital signal processor in the base-station. The

major challenges in the implementation of DPD are wider bandwidth support, multi-band

operation, power consumption and hardware cost of digital signal processor or FPGA. Wide

bandwidth signals tend to stimulate the memory effects within the PA requiring memory

correction to be included in the DPD [66]. However, if in the pursuit of additional memory

correction the number of basis waveforms used is over-specified relative to the measurable

output signal bandwidth, the estimation of the memory coefficients will be ill-conditioned.

There are non-linear DPD models available for both single-band and concurrent dual-band

PA linearization. The better conditioning of these DPD models would result in lower-bit

FPGA implementation. Moreover, a lower-bit FPGA would eventually reduce the imple-

mentation cost.

In the previous chapter, PCA is proposed for 16-bit fixed-point FPGA implementation of

DPD for single-carrier LTE and WCDMA signals [71]. This chapter proposes use of ICA

for enhacing the numerical stability of the state-of-the-art DPD models for intra-band and

inter-band CA signals [86, 87]. Figure 4.1 shows that the ultra-wideband [80–82] and multi-
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4.1 Introduction

Figure 4.1: CA of signals for efficient utilization of spectrum.

band [83,84] PAs are needed to meet CA’s high bandwidth and complex digital modulation’s

PAPR requirements. The high PAPR of CA signal and multi-band operation gives rise to

nonlinear distortions like CMDs and IMDs in PA’s output.

PCA is generally used for up to second-order statistics while ICA can be used for higher-

order statistics [85]. ICA technique is used to separate different signals. When data becomes

very noisy due to the non-linear mixing of signals then ICA technique is preferred over

PCA. This situation is similar to the non-linear distortions generated by PA for intra-band

and inter-band CA signals.

ICA technique is proposed for 12-bit fixed-point FPGA implementation of DPD for intra-

band and inter-band CA signals. The application of ICA technique upon MP model reduces

model complexity and improves numerical stability of the DPD model for CA signals. Thus

proposed MP-ICA requires least FPGA’s memory size, reduced coefficient extraction burden

and reduced complexity.

The rest of the chapter is organized as follows: Section 4.2 proposes the application of

ICA to any model where coefficients are linear with respect to the basis function without

loss of generality e.g. MP model. Section 4.3 describes the measurement testbeds used for

DPD of intra-band and inter-band CA signals respectively. Section 4.4 provides the results

of inverse modeling and DPD of the models, effect of lower-bit fixed-point arithmetic and

efficiency. Section 4.5 presents the conclusion of the chapter.

40



Chapter 4. DPD technique for low resource consumption using Carrier Aggregated 4G/5G
Signals

4.2 Proposed Independent Component Analysis (ICA)

method for DPD

The non-linear distortions generated by PA for intra-band and inter-band CA signals results

in intermixing of in-band carrier components (CC) of CA signal as well as in-band IMDs.

The output of PA becomes very noisy and it does not follow second-order statistics like a

gaussian distribution [88]. The steps followed by fast ICA technique are as follows [85]:

1. Let U is a (M+1)(K)×L observation data matrix

where, L is number of input samples.

2. Center the data matrix U around its mean value

U← U−E {U}

3. Whiten the data U matrix

W = QΛ−1/2QHU

where, QΛQH = E
{
UUH

}
4. Initialize a random matrix p whose dimension is S×(M+1)(K) and p is such that

‖p‖ = 1

5. Update p

a. p← E {Wf (pW)}−E {f ′ (pW)}p

where, f (y) = y3

b. p← p/ ‖p‖

6. The independent component matrix

V = (pW)T

7. y = VD

where D = [d0, d1, · · · , ds]T is a S×1 vector of ICA-based coefficients and can be

calculated using the pseudo-inverse method.

8. Using the pseudo-inverse method D̂ is extracted as

D̂=
(
VHV

)−1
VHy=V+y
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Figure 4.2: Measurement Testbed I.

After extracting the coefficients, the inverse modeling performance is evaluated in terms

of NMSE and ACEPR [79].

For the case of MP model, the dimensions of the observation matrix V of MP-ICA model

is reduced from theL×(M+1)(K) toL×S. The pruning percentage (1−S/((M+1)(K)))×100

of MP-ICA is selected such that MP-ICA’s inverse modeling performance NMSE must be

nearly equal to MP’s NMSE performance.

It is to be noted that the proposed method is significantly different from the PCA method.

PCA projects the data along the eigen vectors, which have the highest variance. The eigen

value of the covariance matrix of the observation matrix measures the variance of the data

along an eigen vector. The steps followed by PCA technique are already defined in previous

chapter. It is applied upon MP and 2D-MP model and termed as MP-PCA and 2D-MP-

PCA. The pruning percentage of MP-PCA is selected such that MP-PCA’s inverse modeling

performance NMSE must be nearly equal to MP’s NMSE performance.

PCA technique uses covariance i.e. it is based on second-order statistics/Gaussian dis-

tribution. While Fast-ICA uses fourth-order statistics i.e. it identifies components for non-

gaussian signals too. Therefore, PCA technique is inadequate and ICA can be applied to

identify the independent components of intermixed CA noisy signals. The observation ma-

trix V of MP-ICA does not have nonlinear geometric terms thus its condition number would

be reduced leading to numerical stability of the solution.

4.3 Measurement Testbed

We have used two measurement testbed. First measurement testbed is used for intra-band

contiguous and intra-band non-contiguous CA LTE signals. It consists of vector signal gen-

erator (VSG), PAs, and vector signal analyzer (VSA). Second measurement testbed is used
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Figure 4.3: Measurement Testbed II.

for inter-band non-contiguous CA LTE signals. It is a FPGA-based transceiver.

4.3.1 Measurement Testbed for Intra-Band CA

Figure 4.2 shows the first measurement testbed. It consists of a Keysight “MXG N5182B”

VSG), Keysight “MXA N9020B” VSA, two mini-circuit PAs and attenuators.

In intra-band contiguous case, 111 CA LTE signal contains CCs of 3 MHz, 5 MHz, and

10 MHz. 111 CA LTE signal has a bandwidth of 18 MHz, PAPR of 11.27 dB and it is

transmitted at 2 GHz with a sampling rate of 92.16 Msps.

In intra-band non-contiguous case, 1101 CA LTE signal contains CCs of 3 MHz, 5 MHz

and 10 MHz. There is a spacing of 20 MHz between second and third CCs. 1101 CA LTE

signal has a bandwidth of 38 MHz, PAPR of 11.39 dB and it is transmitted at 2 GHz with a

sampling rate of 184.32 Msps.

The RF signal generated by VSG are passed through two mini-circuit PAs in cascade.

These two PAs are ZX60-V63+ and ZX60-V82+. ZX60-V63+ PA and ZX60-V82+ PA have

17.8 dBm and 20 dBm output power respectively at 1 dB gain compression. ZX60-V63+ PA

and ZX60-V82+ PA have output frequency ranging from 0.05 to 6 GHz and 0.02 to 6 GHz

respectively. The output of PA is attenuated and then captured at VSA. VSA is synchronized

with VSG using triggering. The output signal captured at VSA is down-converted into a
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baseband signal. The baseband output signal is then processed using the Matlab software.

4.3.2 Measurement Testbed for Inter-Band CA

Figure 4.3 shows the second measurement testbed. This concurrent dual-band setup is used

for inter-band non-contiguous CA LTE signals. The measurement testbed II consists of

an Altera Arria V GT FPGA, dual channel transmitter (TSW30SH84), RF switch matrix,

transmitter observation receiver (TSW1266), ZX60-2411BM-S+ and ZX60-V62+ PAs from

Mini-Circuits, 15–W driver PA, 25–W class AB PA, local oscillators (LO) (TSW3065),

ZN2PD2-50-S+ RF power combiner/splitter from Mini-Circuits and attenuators.

The pre-programmed Altera Arria V GT FPGA transmits the data to the dual-channel

transmitter (TSW30SH84) at a sampling frequency of 307.2 MHz. The DAC further inter-

polates the data by a factor of 4 to a sampling rate of 1228.8 MHz. The TRF3705 up-converts

the output signal from DAC to RF using LO (TSW3065). From the first RF channel output

of transmitter, 11 CA (3 MHz, 5 MHz) LTE signal of bandwidth 8 MHz and PAPR of 9.61

dB is transmitted at 1.75 GHz (lower band or LB). From the second RF channel output of

transmitter, single carrier LTE signal of bandwidth 10 MHz and PAPR of 11.15 dB is trans-

mitted at 2.05 GHz (upper band or UB). These two RF signals are combined using a RF

power combiner and passed through PAs.

ZX60-2411BM-S+, ZX60-V62+ and 15–W PAs are used as driver PAs to 25–W class

AB PA. ZX60-2411BM-S+ PA and ZX60-V62+ PA have 24 dBm and 19 dBm output power

respectively at 1 dB gain compression. ZX60-2411BM-S+ PA and ZX60-V62+ PA have

output frequency ranging from 0.8 to 2.4 GHz and 0.05 to 6 GHz respectively. 15–W driver-

PA is biased at a drain voltage of 28 V and drain current of 90 mA. 25–W Class-AB is a

gallium nitride (GaN) based PA, biased at a drain voltage of 28 V and drain current of 134

mA.

RF switch matrix is used for proper selection of band (LB or UB) and its corresponding

LO. The selected RF output and LO are then provided to the receiver (TSW1266) from the

RF switch matrix. The output signal captured at receiver is down-converted into a baseband

signal by ADC at a sampling frequency of 614.4 MHz. A 10 MHz reference clock is provided

by LO to synchronize both transmitter and receiver.
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Table 4.1: Numerical Stability metrics for Intra-Band

Case MP OMP MP-PCA MP-ICA

Contiguous

Cond. No. (dB) 80.76 63.08 49.63 3.64

Disp. Coeff. (dB) 52.74 35.74 28.11 24.41

No. of Coeff. 45 45 32 32

Non-Contiguous

Cond. No. (dB) 80.49 60.93 48.98 3.60

Disp. Coeff. (dB) 56.12 38.57 29.55 25.90

No. of Coeff. 45 45 32 32

4.4 Results

4.4.1 Inverse Modeling Results

Table 4.1 shows the metrics for numerical stability of different inverse models for both intra-

band contiguous and intra-band non-contiguous CA LTE signals. The MP-ICA model has

least condition number and dispersion coefficient with respect to other models. This indicates

that MP-ICA model is more numerically stable than other non-linear inverse models. The

pruning percentage of coefficients for ICA and PCA is 30%.

Figure 4.4(a) and Figure 4.4(b) shows the I andQ value of coefficients of MP-ICA model

and MP-PCA model of Intra-band contiguous CA LTE signal and Intra-band non-contiguous

CA LTE signal respectively. As shown in Figure 4.4, the I and Q values of coefficients of

MP-PCA model are much dispersed as compared to the I and Q values of coefficients of

MP-ICA model, that’s why in the figure coefficients of MP-ICA are seen to be around zero.

For better visualization, the absolute of coefficients are also plotted in semi logarithmic scale

in Figure 4.4(c) and Figure 4.4(d).

In this section, the coefficient extraction is performed in 64-bit double floating-point DSP.

Figure 4.5 and Figure 4.6 shows the inverse modeling performance of MP-ICA model for CA

signals with respect to change in memory depth M and nonlinearity order K. M is varied

from 1 to 4 and K is varied from 3 to 13. It can be observed from the above Figure 4.5 that

for two different test signals, although convergence curves shape may differ slightly, final

convergence values of K and M values are similar, i.e. K=9 and M=4. Therefore, once K

and M values are found iteratively, they define order and memory depth of the PA and are
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Figure 4.4: (a) I and Q coefficients of MP-ICA model and MP-PCA model of Intra-band

contiguous CA LTE signal, (b) I and Q of coefficients of MP-ICA model and MP-PCA

model of Intra-band non-contiguous CA LTE signal, (c) Absolute value of coefficients

of MP-ICA model and MP-PCA model of Intra-band contiguous CA LTE signal and (d)

Absolute value of coefficients of MP-ICA model and MP-PCA model of Intra-band non-

contiguous CA LTE signal.

kept constant. However while topology of model is fixed, coefficients are updated to keep

track of small fluctuations.

Table 4.2 shows inverse modeling performance for intra-band contiguous and intra-band

non-contiguous CA LTE signals (L= 184320, K=9 and M=4) of all the DPD models. From

Table 4.2, it is clear that all the models have nearly same NMSE and ACEPR values at 64-bit

double floating-point DSP.

Table 4.3 shows the metrics for numerical stability of different inverse models for inter-

band non-contiguous CA LTE signals. The 2D-MP-ICA inverse model has least condition
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(a) (b)

Figure 4.5: Effect of Memory Depth (M ) and Nonlinearity Order (K) on inverse modeling

for (a) Intra-band contiguous CA LTE signal and (b) Intra-band non-contiguous CA LTE

signal.

(a) (b)

Figure 4.6: Effect of Memory Depth (M ) and Nonlinearity Order (K) on inverse model-

ing for (a) LB of Inter-band non-contiguous CA LTE signal and (b) UB of Inter-band non-

contiguous CA LTE signal.

number and dispersion coefficient with respect to other dual-band inverse models. The prun-

ing percentage of coefficients for dual-band ICA and PCA is 30%. Table 4.4 shows that

inverse modeling performance for inter-band non-contiguous CA LTE signals (L= 131072,

K=9 and M=4). From Table 4.4, concurrent dual-band inverse models have nearly same

NMSE and ACEPR values for their respective bands (LB or UB) at 64-bit double floating-

point DSP.
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Table 4.2: Effect of different bit-resolutions on Inverse Modeling Performances for Intra-

Band

Model
Bit-

Res.

Contiguous Non-Contiguous

NMSE (dB) ACEPR (dBc) NMSE (dB) ACEPR (dBc)

MP

12

16

24

32

64

2.38

-4.69

-40.38

-40.51

-40.64

-11.12

-16.77

-53.26

-56.85

-57.66

2.42

-4.58

-38.61

-39.08

-39.25

-11.12

-13.94

-50.85

-54.15

-54.27

OMP

12

16

24

32

64

-6.61

-10.28

-40.24

-40.56

-40.64

-18.64

-23.66

-57.06

-57.17

-57.66

-8.22

-11.25

-38.47

-39.14

-39.25

-18.18

-21.25

-53.67

-53.82

-54.27

MP-PCA

12

16

24

32

64

-33.87

-40.19

-40.33

-40.58

-40.63

-48.25

-54.23

-56.53

-56.63

-57.07

-28.80

-38.23

-38.43

-38.81

-39.24

-43.41

-52.85

-53.52

-53.94

-54.24

MP-ICA

12

16

24

32

64

-40.43

-40.45

-40.52

-40.62

-40.64

-57.18

-57.40

-57.61

-57.67

-57.66

-39.05

-39.07

-39.17

-39.22

-39.25

-53.02

-52.95

-54.13

-54.21

-54.27

4.4.2 Inverse Modeling Results in lower-bit fixed-point arithmetic

In this section, the coefficient extraction is performed in various different lower-bit fixed-

point DSP. When condition number of observation (predistorter) matrix and dispersion of

coefficient are large, then applying lower-bit fixed-point arithmetic upon observation matrix

and coefficients, would result in numerically unstable solutions.

Table 4.2 also shows inverse modeling performance in 12, 16, 24 and 32 bits for both
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Table 4.3: Numerical Stability metric for Inter-Band Non-Contiguous

Model
LB UB

Cond.

No. (dB)

Disp.

Coeff. (dB)

No. of

Coeff.

Cond.

No. (dB)

Disp.

Coeff. (dB)

No. of

Coeff.

2D-MP 116.40 52.28 225 115.56 57.69 225

2D-OMP 98.12 37.11 225 102.58 41.52 225

2D-MP-PCA 53.86 38.60 156 53.98 33.95 156

2D-MP-ICA 39.44 33.62 156 39.46 32.07 156

intra-band contiguous and intra-band non-contiguous CA LTE signals. MP-ICA has good

NMSE and ACEPR performances even at 12-bit fixed-point resolution due to its low con-

dition number and dispersion coefficient. MP-PCA has unsatisfactory NMSE and ACEPR

values at 12-bit fixed-point resolution and converges to MP-ICA performance at 16-bit fixed-

point resolution.

Both MP and OMP models have unsatisfactory NMSE and ACEPR values at 12-bit and

16-bit resolutions and converge to MP-ICA performance at 24-bit fixed-point resolution.

Table 4.4 also shows inverse modeling performance in 12, 16, 24 and 32 bits for inter-

band non-contiguous CA LTE signals. 2D-MP-ICA has good NMSE and ACEPR values

even at 12-bit fixed-point resolution for both the bands due to its low condition number and

dispersion coefficient. 2D-MP-PCA has unsatisfactory NMSE and ACEPR values at 12-

bit fixed-point resolution and converges to 2D-MP-ICA performance at 16-bit fixed-point

resolution.

Both 2D-MP and 2D-OMP models have unsatisfactory NMSE and ACEPR values at

12-bit, 16-bit and 24-bit resolutions and converge to 2D-MP ICA performance at 32-bit

fixed-point resolution.

4.4.3 Digital Predistortion Results

The different predistorted signals are generated using coefficients extracted in earlier sec-

tion 4.4.1 for different models. Table 4.5 shows the DPD results of intra-band contiguous

and intra-band non-contiguous case for the predistorted signals generated at 64-bit double

floating-point DSP (L=184320, K=9 and M=4). As seen from the Table 4.5, the lineariza-
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Table 4.4: Effect of different bit-resolutions on Inverse Modeling Performances for Inter-

Band Non-Contiguous

Model
Bit-

Res.

LB UB

NMSE (dB) ACEPR (dBc) NMSE (dB) ACEPR (dBc)

2D-MP

12

16

24

32

64

-0.12

-5.48

-16.30

-49.52

-49.77

-14.69

-26.67

-35.33

-54.25

-54.31

-2.26

-6.84

-4.01

-44.76

-47.59

-23.54

-26.69

-35.64

-52.52

-52.51

2D-OMP

12

16

24

32

64

-7.14

-9.39

-38.83

-49.11

-49.14

-27.73

-28.27

-46.77

-53.28

-53.40

-5.69

-7.55

-40.51

-47.17

-47.29

-24.65

-28.23

-46.80

-51.95

-52.09

2D-MP-PCA

12

16

24

32

64

-22.52

-42.43

-47.06

-47.18

-47.33

-43.46

-48.88

-50.85

-51.04

-51.17

-25.14

-43.24

-45.65

-45.84

-45.97

-44.62

-48.62

-50.07

-50.04

-50.10

2D-MP-ICA

12

16

24

32

64

-47.68

-48.79

-49.53

-49.71

-49.79

-53.13

-54.21

-54.24

-54.29

-54.32

-46.00

-46.97

-47.45

-47.55

-47.59

-51.44

-52.38

-52.40

-52.44

-52.51

tion performance in terms of NMSE and ACPR for all the DPD models are nearly equal at

64-bit double floating-point DSP.

Table 4.6 shows the DPD results of inter-band non-contiguous case for the predistorted

signals generated at 64-bit double floating-point DSP (L=131072, K=9 and M=4). As seen

from the Table 4.6, the linearization performance in terms of NMSE and ACPR for all the

DPD models are nearly equal for both bands respectively at 64-bit double floating-point DSP.
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Table 4.5: Effect of different bit-resolutions on DPD Performances for Intra-Band

Model
Bit-

Res.

Contiguous Non-Contiguous

NMSE (dB) ACPR (dBc) NMSE (dB) ACPR (dBc)

W/O DPD N/A -6.44 -33.35 -6.13 -31.59

MP DPD

12

16

24

32

64

-2.49

-8.19

-38.52

-38.57

-38.60

-10.44

-30.49

-50.38

-50.47

-53.08

-2.62

-8.14

-36.32

-36.26

-36.19

-15.85

-29.40

-52.58

-52.46

-51.85

OMP DPD

12

16

24

32

64

-9.30

-12.33

-38.39

-38.41

-38.64

-32.96

-34.29

-51.79

-51.24

-54.46

-9.04

-14.13

-36.12

-36.11

-36.15

-31.44

-35.52

-51.60

-51.64

-51.85

MP-PCA DPD

12

16

24

32

64

-31.88

-38.24

-38.26

-38.28

-38.63

-48.95

-49.98

-50.14

-50.24

-54.28

-26.10

-36.13

-36.12

-36.14

-36.16

-47.77

-51.35

-51.18

-51.42

-51.50

MP-ICA DPD

12

16

24

32

64

-38.42

-38.46

-38.43

-38.38

-38.64

-52.93

-52.92

-52.28

-52.72

-54.49

-36.20

-36.14

-36.17

-36.21

-36.24

-52.30

-52.05

-51.90

-51.98

-52.38

4.4.4 Digital Predistortion Results in lower-bit fixed-point arithmetic

In this section, the different predistorted signals are generated using coefficients extracted

earlier in section 4.4.2 for different models at different lower-bit fixed-point resolutions. Ta-

ble 4.5 also shows the DPD results of intra-band contiguous and intra-band non-contiguous

case at 12, 16, 24 and 32 bits fixed-point DSP. As seen from the Table 4.5, the MP-ICA

DPD has good NMSE and ACPR performances even at 12-bit fixed-point resolution. It is

51



4.4 Results

Table 4.6: Effect of different bit-resolutions on DPD Performances for Inter-Band Non-

Contiguous

Model
Bit-

Res.

LB UB

NMSE (dB) ACPR (dBc) NMSE (dB) ACPR (dBc)

W/O DPD N/A -17.17 -33.32 -11.76 -31.80

2D-MP

DPD

12

16

24

32

64

-1.06

-19.54

-32.79

-41.48

-41.49

-14.85

-35.76

-44.32

-51.30

-52.31

-3.21

-18.84

-29.93

-38.27

-38.30

-12.34

-36.17

-42.69

-50.62

-50.71

2D-OMP

DPD

12

16

24

32

64

-14.01

-20.39

-31.78

-41.36

-41.48

-26.94

-36.51

-39.00

-51.19

-52.17

-16.51

-21.46

-31.32

-38.33

-38.29

-35.13

-37.54

-38.89

-50.60

-50.57

2D-MP-PCA

DPD

12

16

24

32

64

-32.85

-39.46

-40.04

-40.11

-40.15

-45.27

-50.06

-50.09

-49.95

-50.12

-23.85

-37.29

-37.28

-37.29

-37.27

-43.43

-50.64

-50.57

-50.39

-50.56

2D-MP-ICA

DPD

12

16

24

32

64

-41.18

-41.31

-41.42

-41.45

-41.47

-51.80

-51.33

-51.31

-51.28

-52.24

-38.22

-38.25

-38.29

-38.30

-38.32

-48.89

-50.52

-50.70

-50.59

-50.78

due to fact that the effect of inverse modeling will be visible in linearization performance

(NMSE and ACPR) of DPD results. MP-PCA DPD has unsatisfactory performance at 12-

bit fixed-point resolution and converges to MP-ICA DPD performance at 16-bit fixed-point

resolution.

Both MP and OMP DPD models have unsatisfactory NMSE and ACPR values at 12-
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(a) (b)

(c) (d)

Figure 4.7: Frequency Power Spectra of various DPD model at (a) 64-bit floating-point for

intra-band contiguous CA LTE signal, (b) 12-bit fixed-point DSPs for intra-band contiguous

CA LTE signal, (c) 64-bit floating-point for intra-band non-contiguous CA LTE signal and

(d) 12-bit fixed-point DSPs for intra-band non-contiguous CA LTE signal.

Table 4.7: Comparison of FPGA’s Memory Resource for Intra-Band

Model
Contiguous Non-Contiguous

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

MP 8.29 24 24.88 8.29 24 24.88

OMP 8.29 24 24.88 8.29 24 24.88

MP-PCA 5.90 16 11.80 5.90 16 11.80

MP-ICA 5.90 12 8.85 5.90 12 8.85
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Table 4.8: Comparison of FPGA’s Memory Resource for Inter-Band Non-Contiguous

Model
LB UB

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

2D-MP 29.49 32 117.96 29.49 32 117.96

2D-OMP 29.49 32 117.96 29.49 32 117.96

2D-MP-PCA 20.45 16 40.89 20.45 16 40.89

2D-MP-ICA 20.45 12 30.67 20.45 12 30.67

bit and 16-bit resolutions and converge to MP-ICA DPD performance at 24-bit fixed-point

resolution.

Figure 4.7(a) and Figure 4.7(b) shows the normalized power spectral density (PSD) of

intra-band contiguous CA LTE signal at 64-bit floating-point and 12-bit fixed-point DSPs.

Similarly, Figure 4.7(c) and Figure 4.7(d) shows the frequency power spectra of intra-band

non-contiguous CA LTE signal at 64-bit floating-point and 12-bit fixed-point DSPs. From

the graphs, it is clear that ACPR’s performance of MP-ICA DPD model is better than other

DPD model at 12-bit fixed-point DSP.

Table 4.6 also shows the DPD results of inter-band non-contiguous case at 12, 16, 24 and

32 bits fixed-point DSP. As seen from the Table 4.6, the 2D-MP-ICA DPD has good NMSE

and ACPR performances even at 12-bit fixed-point resolution for both the bands. 2D-MP-

PCA DPD has unsatisfactory performance at 12-bit fixed point resolution and converges to

2D-MP-ICA DPD performance at 16-bit fixed point resolution.

Both 2D-MP and 2D-OMP models have unsatisfactory NMSE and ACPR values at 12-

bit, 16-bit and 24-bit resolutions and converge to 2D-MP-ICA DPD performance at 32-bit

fixed-point resolution.

Figure 4.8(a) and Figure 4.8(b) shows the frequency power spectra of LB at 64-bit

floating-point and 12-bit fixed-point DSP. Similarly, Figure 4.9(a) and Figure 4.9(b) shows

the frequency power spectra of UB at 64-bit floating-point and 12-bit fixed-point DSP. From

the graphs, it is clear that ACPR’s performance of 2D-MP-ICA DPD model is better than

other DPD model at 12-bit fixed-point DSP.

The bit-resolution of each sample and size of observation (predistorter) matrix determines
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(a) (b)

Figure 4.8: Frequency Power Spectra of various DPD model at (a) 64-bit floating-point for

LB of inter-band non-contiguous CA LTE signal, and (b) 12-bit fixed-point DSPs for LB of

inter-band non-contiguous CA LTE signal.

(a) (b)

Figure 4.9: Frequency Power Spectra of various DPD model at (a) 64-bit floating-point for

UB of inter-band non-contiguous CA LTE signal, and (b) 12-bit fixed-point DSPs for UB of

inter-band non-contiguous CA LTE signal.

the FPGA’s memory size required by a DPD model [45, 71].

As ICA technique shows good linearization performance at 12-bit resolution. Table 4.7

and Table 4.8 show ICA based DPD model requires least memory size (Mega Byte or MB)

for intra-band and inter-band CA respectively.

4.4.5 Digital Predistortion and Efficiency

Figure. 4.10 shows the measured ACPR, average output power and corresponding power

added eficiency (PAE) of without DPD signal and MP-ICA DPD signal for all CA cases
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Figure 4.10: Measured ACPR, average output power and PAE for (a) Intra-band contigu-

ous CA LTE signal, (b) Intra-band non-contiguous CA LTE signal and (c) Inter-band non-

contiguous CA LTE signal.

to demonstrate the proposed DPD’s performance. The same measurement DUT (PA) is

used for Intra-band contiguous CA and Intra-band non-contiguous CA case as mentioned

in section 4.3.1. Whereas the DUT (PA) mentioned in section 4.3.2 is used for inter-band

non-contiguous CA.

The acceptable ACPR performance of -45 dBc is used as a threshold. From Figure. 4.10(a),

when ACPR'-45 dBc, the average output power of without DPD signal is 15.27 dBm and

MP-ICA DPD signal is 18.34 dBm for intra-band contiguous CA case. The PAE is increased

from 6.67% to 13.27% for ACPR'-45 dBc.

From Figure. 4.10(b), when ACPR'-45 dBc, the average output power of without DPD

signal is 15.43 dBm and MP-ICA DPD signal is 18.17 dBm for intra-band non-contiguous

CA case. The PAE is increased from 6.92% to 12.79%.

From Figure. 4.10(c), when ACPR'-45 dBc, the average output power of without DPD
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signal is 35.18 dBm and 2D-MP-ICA DPD signal is 39.8 dBm for inter-band non-contiguous

CA case. The PAE is increased from 22.70% to 33.47%.

With the proposed ICA algorithm, these performance are achieved even for 12 bit fixed-

point DSPs, where state-of-the-art DPD models provide it for 64-bit DSPs.

4.5 Conclusion

This chapter presents ICA based non-linear polynomial DPD model for linearization of

multi-band PA using CA signals. The proposed ICA based DPD model is implemented

in 12-bit fixed point DSP and shows good linearization results. Due to that, the ICA based

DPD model has least memory resource utilization with reduced coefficient extraction bur-

den. This is beneficial for 5G wireless communication where the resources might be shared

between many hardware devices.

In this chapter, the ICA based DPD model is presented for concurrent dual-band oper-

ation at uncorrelated carrier frequencies. The next chapter deals with the concurrent multi-

band DPD models operating at harmonic frequencies. In the next chapter, novel DPD models

are presented to compensate the additional IMDs and CMDs generated when carrier frequen-

cies are at harmonic frequencies.
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Chapter 5

Digital Predistortion for concurrent

multi-band transmission at harmonic

frequencies

5.1 Introduction

Recently research in PA design focuses towards ultra-wideband application [80–82] and

while supporting various generation signals, harmonics of one carrier signal may interfere

with the frequency range of another carrier signal. This is shown in Figure 5.1(b), when the

second carrier signal is transmitted at the harmonic frequency of the first carrier signal and

cannot be filtered out. Different scenarios of frequencies allocations by 3GPP standard will

be used to better illustrate the problem and the need to mitigate the problem of inter-band

distortion as well as its impact on the quality of the downlink (DL) signal and /or uplink

(UL) signal at the input of or output of the RF front-end. For example, in inter-band car-

rier aggregation (CA), the harmonics generated from E-UTRA Band 29 DL (717–728 MHz)

may interfere with band 4 DL (2110–2155 MHz) over the North American region [93]. Sim-

ilarly, the harmonics generated from E-UTRA Band 28 UL (703–748 MHz) may interfere

with band 21 UL (1447.9–1462.9) and band 11 UL (1427.9–1447.9 MHz) over the Asian

region [94]. Similarly, the harmonics generated from E-UTRA Band 8 DL (925–960 MHz)

may interfere with band 3 DL (1805–1880 MHz) over the European region. In the forth-

coming 5G communication system, the frequency bands operation would extend from 3.5

GHz to 6 GHz in sub-6 GHz radio frequency or possibly to 30–100 GHz in millimeter-
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(a)

(b)

Figure 5.1: Scenarios in Concurrent dual-band transmitters (a) When two carrier frequen-

cies are separated by 100-500 MHz and (b) When second carrier signal is transmitted at a

harmonic frequency of the first carrier signal.

wave frequency band. This might result in further increase in harmonic interference. In this

scenario, these models [43, 47–49, 95] are insufficient to capture the harmonic interference.

In [96], the third-order harmonics of the envelope-tracking PA is canceled using non-linear

kernels. In [42], the 2D-HMP model is proposed for behavioral modeling and DPD of the

interference from harmonics in concurrent dual-band transmitters. The 2D-HMP model was

able to linearize the ultra-wideband PA and remove the non-linear distortions such as in-

band IMDs, harmonic interferences and CMDS in concurrent dual-band transmitters. Since

there are four summations in each band of 2D-HMP model, a large number of coefficients

are required. This led to increase in the computational complexity, the coefficient extraction

burden and the cost of FPGA’s memory resource in real-time applications.

This chapter presents the less complex 2D-CHMP model for efficient DPD implemen-

tation [97]. The 2D-CHMP model is constructed by simplifying the envelope terms of 2D-

HMP models. In the proposed 2D-CHMP model, there are three summations in each band,

thus the number of coefficients required and size of observation (predistorter) matrix are de-

creased. It also processes each band and therefore sampling rate requirements for ADCs and
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(a)

(b)

Figure 5.2: (a) Generally studied scenario, when three carrier frequencies are uncorrelated

i.e. not at harmonic frequencies and (b) Scenario when three carrier frequencies are at har-

monic frequencies.

DACs are reduced. As it also considers in-band IMDs, harmonic interferences and CMDs,

thus it has similar linearization performance as the 2D-HMP model. The application of PCA

upon 2D-CHMP, results in further reduction in matrix size with lower-bit (16-bit) fixed-point

FPGA implementation. Thus proposed method reduces computational complexity, the coef-

ficient extraction burden and the FPGA’s memory resource.

In this chapter, the analysis of harmonic distortions is further extended to concurrent tri-

band transmitter. In concurrent tri-band transmitter, three-dimensional memory polynomial

(3D-MP) was proposed to linearize for the scenario as shown in Figure 5.2(a) [98]. This

model was modified to 3D Phase aligned Pruned Volterra Model (3D-PAV) in [99] for bet-

ter linearization of PA. There are few more DPD models proposed to linearize concurrent

tri-band transmitter [100–102]. However, in these papers [98–102], carrier signals are not

transmitted at the harmonic frequencies in the concurrent tri-band transmitter as shown in

Figure 5.2(a). In that scenario, out-of-band IMDs and harmonic terms can be filtered out. If

carrier signals are transmitted at harmonic frequencies as shown in Figure 5.2(b), in addition

to in-band CMDs and IMDs, inband harmonic distortions would also be present at the output

of tri-band PA. This chapter further presents novel 3D-HMP and 3D-HVS DPD models for

behavioral modeling and linearization of a concurrent tri-band transmitter operating at har-
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monic frequencies [103]. The proposed models include the IMD terms which are generating

the harmonic distortions in the concurrent tri-band transmitter. These proposed models aim

to linearize PA in presence of in-band IMDs, CMDs and harmonic distortions.

This chapter is organized as follows: Section 5.2.1 describes the 2D-HMP model. Sec-

tion 5.2.2 proposes the 2D-CHMP model. Section 5.2.3 describes the steps involved in

the determination and performance of the 2D-CHMP model. Section 5.2.4 compares com-

plexity between 2D-CHMP and 2D-HMP models. Section 5.2.5 describes the measurement

testbeds used for dual-band/ultra-wideband PA characterization, data extraction and DPD

respectively. Section 5.2.6 reports the results of inverse modeling performances of the dual-

band DPD models and effect of lower-bit fixed-point arithmetic. Section 5.2.7 reports the

measured results of DPD. Section 5.3.1 describes the state-of-the-art Tri-Band DPD Models.

Section 5.3.2 provides analysis of the harmonic distortions in concurrent tri-band transmitter.

Section 5.3.3 defines the 3D-HMP and 3D-HVS DPD models. Section 5.3.4 describes the

measurement testbed used for tri-band PA characterization and DPD respectively. Section

5.3.5 reports the results of behavioral modeling and DPD performances of different models.

Section 5.4 gives the conclusion of the chapter.

5.2 Concurrent Dual-Band DPD Models at Harmonics Fre-

quencies

5.2.1 Proposed 2D Curtailed Harmonic Memory Polynomial Model

Let us consider a single-band conventional MP model [24]

y(n) =
M∑
m=0

K−1∑
k=0

cm,k · x(n−m) · |x(n−m)|k (5.1)

whereM ,K and cm,k are the memory depth, nonlinearity order and coefficients of the model

respectively.

To analyze the PA output, let us simplify only odd-order memoryless non-linearities up

to the seventh term:

y(n) = c0,0x+ c0,2x|x|2 + c0,4x|x|4 + c0,6x|x|6 (5.2)

Considering the case of harmonics interference, the modulated input signal is given as

x = x1e
jω1nT + x2e

jω2nT = x1e
αjωnT + x2e

βjωnT (5.3)

62



Chapter 5. Digital Predistortion for concurrent multi-band transmission at harmonic
frequencies

where x1 and x2 are the two modulated complex baseband input signals being transmitted at

carrier frequencies ω1=αω and ω2=βω respectively, where α, β ∈ Z+ and α 6= β.

By substituting equation (5.3) in equation (5.2), we get

y(n) = (c0,0x1 + c0,2x1|x1|2 + 2c0,2x1|x2|2 + c0,4x1|x1|4

+6c0,4x1|x1|2|x2|2 + 3c0,4x1|x2|4 + c0,6x1|x1|6

+12c0,6x1|x1|4|x2|2 + 18c0,6x1|x1|2|x2|4 + 4c0,6x1|x2|6)eαjωnT

+(c0,0x2 + c0,2x2|x2|2 + 2c0,2x2|x1|2 + c0,4x2|x2|4

+6c0,4x2|x2|2|x1|2 + 3c0,4x2|x1|4 + c0,6x2|x2|6

+12c0,6x2|x2|4|x1|2 + 18c0,6x2|x2|2|x1|4 + 4c0,6x2|x1|6)eβjωnT

+(c0,2x
2
1x
∗
2 + 2c0,4x

2
1x
∗
2|x1|2 + 3c0,4x

2
1x
∗
2|x2|2

+3c0,6x
2
1x
∗
2|x1|2|x2|2 + 3c0,6x

2
1x
∗
2|x2|4)e(2α−β)jωnT

+(c0,2x
2
2x
∗
1 + 2c0,4x

2
2x
∗
1|x2|2 + 3c0,4x

2
2x
∗
1|x1|2

+3c0,6x
2
2x
∗
1|x2|2|x1|2 + 3c0,6x

2
2x
∗
1|x1|4)e(2β−α)jωnT

+(c0,4x
3
1x
∗2
2 + 3c0,6x

3
1x
∗2
2 |x1|2 + 4c0,6x

3
1x
∗2
2 |x2|2)e(3α−2β)jωnT

+(c0,4x
3
2x
∗2
1 + 3c0,6x

3
2x
∗2
1 |x2|2 + 4c0,6x

3
2x
∗2
1 |x1|2)e(3β−2α)jωnT

+(c0,6x
4
1x
∗3
2 )e(4α−3β)jwnT + (c0,6x

4
2x
∗3
1 )e(4β−3α)jωnT

(5.4)

These terms 2α− β, 2β −α, 3α− 2β, 3β − 2α , 4α− 3β and 4β − 3α are neither equal

to α and nor equal to β when α 6= β. Therefore the out-of-band IMD terms at (2α− β)ω,

(2β − α)ω, (3α− 2β)ω, (3β − 2α)ω, (4α− 3β)ω and (4β − 3α)ω can be filtered out and

thus the output signals at αω and βω are given as

y1(n) = c0,0x1 + c0,2x1(|x1|2 + 2|x2|2) + c0,4x1(|x1|4 + 6|x1|2|x2|2

+3|x2|4) + c0,6x1(|x1|6 + 12|x1|4|x2|2 + 18|x1|2|x2|4 + 4|x2|6)
(5.5)

and
y2(n) = c0,0x2 + c0,2x2(|x2|2 + 2|x1|2) + c0,4x2(|x2|4 + 6|x2|2|x1|2

+3|x1|4) + c0,6x2(|x2|6 + 12|x2|4|x1|2 + 18|x2|2|x1|4 + 4|x1|6)
(5.6)

Equations (5.5) and (5.6) considers only odd-order memoryless non-linearities. To fur-

ther include even-order memoryless non-linearities to the output of model, even-order mem-

oryless non-linearities also need to be simplified. Even-order memoryless non-linearities

can be written in terms of odd-order memoryless non-linearities and further simplified as

equation (5.2). These are even-order memoryless non-linearities:

c0,1x|x|+ c0,3x|x|3 + c0,5x|x|5 + c0,7x|x|7

=
(
c0,1x+ c0,3x|x|2 + c0,5x|x|4 + c0,6x|x|6

)
· |x|

(5.7)
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The terms inside the first parenthesis of equation (5.7) can be simplified similarly as

equation (5.2). The term |x| can be replaced by a generalized term
∣∣|xr|+ jdrg |xs|

∣∣ where drg

(r ∈ {1, 2}) is the real-valued generalized coefficients for lower band (LB) and upper band

(UB) respectively.

By combining even-order terms with odd-order terms from equations (5.5) and (5.6) and

also considering memory terms, results in generalized 2D-Curtailed HMP (2D-CHMP) [97]

model whose output signals are

y1(n) =
M∑
m=0

K−1∑
k=0

c1,1
m,0,k · x1(n−m) ·G1

k(n−m)

+
Ml∑
m=0

Ql∑
q=1

K−1∑
k=0

c1,2
m,q,k · x

q
2(n−m) · x∗(2q−1)

1 (n−m) ·G1
k(n−m)

+
Mu∑
m=0

Qu∑
q=1

K−1∑
k=0

c1,3
m,q,k · x

2q+1
1 (n−m) · x∗q2 (n−m) ·G1

k(n−m)

(5.8)

and

y2(n) =
M∑
m=0

K−1∑
k=0

c2,1
m,0,k · x2(n−m) ·G2

k(n−m)

+
Ml∑
m=0

Ql∑
q=1

K−1∑
k=0

c2,2
m,q,k · x

q+1
2 (n−m) · x∗2q1 (n−m) ·G2

k(n−m)

+
Mu∑
m=0

Qu∑
q=1

K−1∑
k=0

c2,3
m,q,k · x

2q
1 (n−m) · x∗(q−1)

2 (n−m) ·G2
k(n−m)

(5.9)

where Gr
k(n) = Gr

k(|xr(n)| , |xs(n)|), r, s ∈ {1, 2} and r 6= s and Gr
k(|xr(n)| , |xs(n)|) can

be expressed as:

Gr
k(|xr| , |xs|) =



1 , k = 0∣∣|xr|+ jdrg |xs|
∣∣ , k = 1

|xr|2 + 2|xs|2 , k = 2(
|xr|2 + 2|xs|2

)
·
(∣∣|xr|+ jdrg |xs|

∣∣) , k = 3

|xr|4 + 6|xr|2|xs|2 + 3|xs|4 , k = 4(
|xr|4 + 6|xr|2|xs|2 + 3|xs|4

)
·
(∣∣|xr|+ jdrg |xs|

∣∣) , k = 5

|xr|6 + 12|xr|4|xs|2 + 18|xr|2|xs|4 + 4|xs|6 , k = 6(
|xr|6 + 12|xr|4|xs|2 + 18|xr|2|xs|4 + 4|xs|6

)
·

×
(∣∣|xr|+ jdrg |xs|

∣∣) , k = 7

(5.10)

Using inductive reasoning, Gr
k(|xr(n)| , |xs(n)|) can be mathematically expressed as:

Gr
k(|xr| , |xs|) =



k/2∑
i=0

(
k/2+1
i

)(
k/2
i

)
|xr|k−2i|xs|2i , k is even(

(k−1)/2∑
i=0

(
(k−1)/2+1

i

)(
(k−1)/2

i

)
|xr|k−1−2i|xs|2i

)
·

×
(∣∣|xr|+ jdrg |xs|

∣∣) , k is odd
(5.11)
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where
(
k
i

)
= k!

i!(k−i)! .

5.2.2 Determination of 2D-CHMP Model parameters

Indirect learning approach is a well-established method for the DPD [24]. In the Indirect

learning architecture (ILA), DPD requires inverse modeling of PA. The determination of the

2D-CHMP model follows two steps: First, set the value of drg from the range 0 to 2 and then

using LS method to extract the model coefficients cr,pm,q,k.

After determination, the performance of inverse modeling of the proposed model is eval-

uated in terms of metrics like ACEPR and NMSE. NMSE and ACEPR are considered as a

measure of in-band and out-of-band modeling performance respectively [79].

In determination, employing the general sweep of drg for a constant step size of ∆drg=0.25

over the range 0 to 2 and then using minimum NMSE as criteria to choose the drg, increases

the computational complexity. Instead, binary search algorithm [104] can be used to find the

value of drg for each band which gives the minimum value of NMSE (dB). The steps followed

in the binary search algorithm are as follows:

1. Start

2. Set drleft = 0, drright = 2,

∆drg = (drright − drleft)/2 = 1,

drmiddle = (drright + drleft)/2 = 1

3. Set drg = drmiddle, extract the model coefficients cr,pm,q,k and calculate NMSErmiddle

4. Set ∆drg = ∆drg/2,

drleft = drmiddle −∆drg,

drright = drmiddle + ∆drg

5. Set drg = drleft, extract the model coefficients cr,pm,q,k and calculate NMSErleft

6. Set drg = drright, extract the model coefficients cr,pm,q,k and calculate NMSErright

7. Compare NMSErleft, NMSErmiddle & NMSErright, assign minimum NMSE as NMSErmin

and assign corresponding value of drg as drg−min

8. Set NMSErmiddle = NMSErmin,

drmiddle = drg−min
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Table 5.1: Comparison of the number of coefficients in a band

Model Number of Coefficients in a Band

2D-HMP [(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] ·K (K + 1) /2

2D-CHMP [(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] ·K

9. If ∆drg ≤ 0.25 then:

NMSErmin = NMSErmiddle,

drg = drmiddle

Else: Go to Step 4

10. Stop

We have set the condition ∆drg ≤ ∆drg−min (∆drg−min=0.25) to exit from this algorithm,

i.e. step size should not be less than 0.25. It is shown later in Section 5.2.5, that further

decreasing the minimum step size ∆drg−min from 0.25 does not improve the minimum value

of NMSE.

5.2.3 Computational Complexity comparison between 2D-HMP and

2D-CHMP Models

Table 5.1 shows the comparison of the number of coefficients in a band (LB or UB), where

the proposed 2D-CHMP model has complexity O(n3) as compared to O(n4) of the 2D-

HMP model in terms of coefficients. The number of coefficients in the 2D-CHMP model is

(K + 1) /2 times less than the number of coefficients in the 2D-HMP model.

In the Indirect learning architecture of DPD, generally at least 2 or 3 LS iterations are

needed to converge to the best DPD performance. To implement LS extraction, the pseudo-

inverse method is used for matrix inversion. Taking an example of 2 LS iterations, 4 matrix

pseudo inversions are required for the 2D-HMP model (2 for LB and 2 for UB) and the

matrix size is L × {[(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] · K (K + 1) /2}, where L is

the number of input samples. According to the binary search algorithm in the 2D-CHMP

model, there are 5 matrix pseudo inversions in a band until the condition ∆drg ≤ 0.25

is satisfied. Once drg is calculated in the first iteration, then there is no need for binary

search algorithm in the second iteration. Thus, it only needs one more matrix pseudo in-
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Figure 5.3: Measurement Setup Testbed II.

version for each band in a second LS iteration. In total, the 2D-CHMP model requires

12 matrix inversions (5+1 for LB and 5+1 for UB), but the matrix size is much lower

L × {[(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] · K}. The total computational complexity

in the model’s determination can be assessed as a product of the matrix size and number of

the matrix pseudo inversion [95]. Generally at least nonlinearity order K ≥ 5 is required,

we have

12L× {[(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] ·K} ≤

4L× {[(M + 1) + (Ml + 1)Ql + (Mu + 1)Qu] ·K (K + 1) /2}
(5.12)

Thus the total computational complexity when determining the proposed 2D-CHMP

model is lesser or equal to the 2D-HMP model. The total complexity of the proposed 2D-

CHMP model is reduced by a factor of (4/12)× (K + 1) /2=(K + 1) /6.

If 3 LS iterations are required in DPD, the 6 matrix pseudo inversions are required for

the 2D-HMP model (3 for LB and 3 for UB). The 2D-CHMP model requires 14 matrix

inversions (5+1+1 for LB and 5+1+1 for UB). Thus the total complexity of the proposed

2D-CHMP model is reduced by a factor of (6/14)× (K + 1) /2 = 3 (K + 1) /14.

5.2.4 Measurement Testbed for Concurrent Dual-Band DPD

We have used two measurement testbed. First measurement testbed is a FPGA-based transceiver

and second measurement testbed consists of VSGs and VSA, which are conventionally used

in earlier published literature [43].
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(a) (b)

(c) (d)

Figure 5.4: AM/AM and AM/PM characteristics of (a) ZX60-14012L+ PA at LB, (b) ZX60-

14012L+ PA at UB, (c) CLF1G0060-10 PA at LB and (d) CLF1G0060-10 PA at UB

5.2.4.1 Measurement Testbed I

The transceiver of first measurement testbed is same as shown in Figure 4.3 in previous

chapter. The measurement testbed consists of an Altera Arria V GT FPGA, dual channel

transmitter (TSW30SH84), transmitter observation receiver (TSW1266), ZX60-14012L+

ultra-wideband PA from Mini-Circuits, CLF1G0060-10 ultra-wideband PA from NXP, lo-

cal oscillator (TSW3065), RF switch matrix, ZN2PD2-50-S+ power combiner/splitter from

Mini-Circuits and attenuators. The FPGA transmits the data to the transmitter at a sam-

pling frequency of 307.2 Msps. The DAC further interpolates the data by a factor of 4 to

a sampling rate of 1228.8 Msps. The signal is up-converted to RF by TRF3705 using local

oscillators (LO) (TSW3065) and sent to a PA.

Two different ultra-wideband PAs are used in the first measurement setup: 1) ZX60-

14012L+ is an ultra-wideband PA whose frequency range from 300 kHz to 14 GHz and 11.5

dBm output power at 1 dB gain compression; 2) CLF1G0060-10 is a 10 W GaN HEMT

based ultra-wideband PA whose frequency range is from DC to 6 GHz and 36 dBm output

power at 1 dB gain compression.

10 MHz LTE signal with a PAPR of 11.95 dB at 1956.8 MHz (LO2=1880 MHz + IF2

shift=76.8 MHz) and 5 MHz WCDMA signal with a PAPR of 10.05 dB at 978.4 MHz

(LO1=940 MHz + IF1 shift=38.4 MHz) are used to drive the PA. Figure 5.4 shows Amplitude

Modulation/Amplitude Modulation (AM/AM) and Amplitude Modulation/Phase Modula-
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(a) (b)

Figure 5.5: Inverse Modeling performance for different values of generalized coefficient drg

at LB and UB for (a) ZX60-14012L+ PA and (b) CLF1G0060-10 PA.

(a) (b)

Figure 5.6: NMSErmin and ACEPRr
min values obtained using binary search algorithm for

different values of min. step size ∆drg−min at LB and UB for (a) ZX60-14012L+ PA and (b)

CLF1G0060-10 PA.

tion (AM/PM) characteristics of ZX60-14012L+ PA and CLF1G0060-10 PA at LB and UB

respectively. As from graphs, it can be seen that there is severe distortion in the output signal

at both the bands. Actually, these distortions result from the IMD and harmonic interference

which falls at frequencies αω and βω. The non-linear IMD terms like xαq2 (n) · x∗(βq−1)
1 (n)

and xβq+1
1 (n) · x∗αq2 (n) lie at αω and interfere with x1(n). Similarly, the non-linear IMD

terms like xαq+1
2 (n) · x∗βq1 (n) and xβq1 (n) · x∗(αq−1)

2 (n) lie at βω and interfere with x2(n).

At the receiver (TSW1266), proper selection of one frequency band (harmonic or fun-

damental frequency band) and its corresponding LO is required. For that purpose, switch

matrix is used. The received signal is then down-converted by ADC at a sampling frequency

69



5.2 Concurrent Dual-Band DPD Models at Harmonics Frequencies

Table 5.2: Inverse Modeling Performances for different PAs

PA Model
LB UB

NMSE

(dB)

ACEPR

(dBc)

No. of

Coeff.

NMSE

(dB)

ACEPR

(dBc)

No. of

Coeff.

I

2D-HMP -48.11 -56.09 540 -49.24 -57.89 540

2D-HMP-PCA -47.73 -55.83 215 -48.78 -57.62 222

2D-CHMP -47.58 -55.62 120 -48.44 -57.47 120

2D-CHMP-PCA -47.47 -55.50 80 -48.35 -57.33 84

II

2D-HMP -39.12 -46.22 540 -43.33 -51.35 540

2D-HMP-PCA -38.67 -45.81 247 -42.98 -51.08 249

2D-CHMP -38.03 -44.97 120 -41.62 -49.80 120

2D-CHMP-PCA -37.87 -44.69 85 -41.56 -49.66 86

of 614.4 Msps. A 10 MHz reference clock is provided by LO (TSW3065) to synchronize the

transmitter and receiver. The received signal is then stored in FPGA’s memory which can be

further processed using Matlab.

5.2.4.2 Measurement Testbed II

Figure 5.3 shows the second measurement testbed. It consists of two VSGs (Keysight

MXG “N5182B”), VSA (Keysight MXA “N9020B”), two ZX60-V63+ PAs, RF power com-

biner/splitter from Mini-Circuits and attenuators. These two VSGs are time synchronized

with each other and also synchronized with VSA. 10 MHz LTE-OFDM signal with a PAPR

of 10.7 dB and 20 MHz LTE-OFDM signal with a PAPR of 10.82 dB are transmitted at 1.2

GHz and 2.4 GHz respectively. These two RF signals are combined together using ZN2PD2-

50-S+ power combiner and passed through two ZX60-V63+ PAs in cascade. ZX60-V63+

PA has an operating frequency range from 0.05 to 6 GHz and 17.8 dBm output power at 1

dB gain compression. The output of PA is attenuated and then captured at VSA.

5.2.5 Inverse Modeling Performance

Figure 5.5(a) and Figure 5.5(b) shows the inverse modeling performance of the 2D-CHMP

model in terms of NMSE and ACEPR for different values of generalized coefficient drg at
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LB (978.4 MHz) and UB (1956.8 MHz) for ZX60-14012L+ and CLF1G0060-10 PA (K=8,

Ql=Qu=Q=1 and Ml=Mu=M=4) respectively.

Figure 5.6(a) shows the NMSErmin and ACEPRr
min values obtained using binary search

algorithm as explained earlier in Section 5.2.2 for different values of minimum step size

∆drg−min at LB and UB for ZX60-14012L+ PA. Figure 5.6(b) is for CLF1G0060-10 PA

(K=8, Ql=Qu=Q=1, and Ml=Mu=M=4). Figure 5.6 shows that NMSErmin and ACEPRr
min

are varying when ∆drg−min is varying from 0.5 to 0.25. While NMSErmin and ACEPRr
min are

not much improving when ∆drg−min is decreasing from 0.25. Therefore, the optimum value

of ∆drg−min can be chosen as 0.25 for both PAs inverse modeling.

Using a Binary search algorithm with the condition ∆drg ≤ 0.25 (∆drg−min=0.25), drg is

determined for a minimum value of NMSE. For ZX60-14012L+ PA, the results are d1
g=0.75,

NMSE1
min=-47.58 dB, ACEPR1

min=-55.62 dBc, d2
g=0.5, NMSE2

min=-48.44 dB, ACEPR2
min=

-57.47 dBc. For CLF1G0060-10 PA, the results are d1
g=1.25, NMSE1

min=-38.03 dB, ACEPR1
min

=-44.97 dBc, d2
g=0.5, NMSE2

min=-41.62 dB, ACEPR2
min=-49.80 dBc.

5.2.5.1 PCA implementation for further complexity reduction and improving Numer-

ical Stability

To further reduce the matrix size, PCA as defined in [50] is applied on both the 2D-HMP and

2D-CHMP models, and termed as 2D-HMP-PCA and 2D-CHMP-PCA. PCA also improves

the numerical stability of the model.

The numerical instability of a model results from ill-conditioned observation (predis-

torter) matrix and dispersion of coefficients.

Table 5.2 compares the inverse modeling performance for ZX60-14012L+ PA (I) and

CLF1G0060-10 PA (II) of first measurement set-up. The results are for K=8, Ql=Qu=Q=1

and Ml=Mu=M=4. While applying PCA, threshold T=99.99999999% is chosen for which

NMSE and ACEPR values of the proposed 2D-CHMP-PCA model has similar performances

as compared to the 2D-HMP model with reduced complexity. The number of coefficients is

reduced for both PAs in both bands (LB or UB).

Figure 5.7(a) shows Power Spectrum Density (PSD) of measured output (PA output)

ymeas(n) and various model’s error at LB (978.4 MHz) and UB (1956.8 MHz) respec-

tively for ZX60-14012L+ PA (K=8, Ql=Qu=Q=1 and Ml=Mu=M=4). Figure 5.7(b) is for

CLF1G0060-10 PA. From the graph and Table 5.2, it is clear that the ACEPR performance of
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(a)

(b)

Figure 5.7: Power Spectrum Density (PSD) of various model’s error for (a) ZX60-14012L+

PA at LB and UB respectively, (b) CLF1G0060-10 PA at LB and UB respectively

the proposed 2D-CHMP-PCA model is almost similar to the 2D-HMP model for both PAs.

Table 5.3 compares the condition number and dispersion coefficient of all the models for

ZX60-14012L+ PA (I) and CLF1G0060-10 PA (II) of first measurement set-up. 2D-HMP-

PCA and 2D-CHMP-PCA models are numerically stable with reduced condition number and

dispersion coefficients.

5.2.5.2 Effect of lower-bit Fixed-Point Arithmetic

Earlier in Section 5.2.5.1, the inverse modeling is performed in 64-bit double floating-

point DSP. In this section, the inverse modeling is performed at different fixed-point bit-

resolutions. As seen from the table 5.3, 2D-HMP and 2D-CHMP models have high con-

dition number and dispersion coefficient. The combination of high condition number and

dispersion coefficient will results in large truncation error while extracting coefficients in
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Table 5.3: Comparison of Numerical Stability for different Models

PA Model
LB UB

Cond. No.

(dB)

Disp. Coeff.

(dB)

Cond. No.

(dB)

Disp. Coeff.

(dB)

I

2D-HMP 112.76 60.83 112.41 55.84

2D-HMP-PCA 55.93 41.85 55.31 32.83

2D-CHMP 80.53 30.09 77.58 34.91

2D-CHMP-PCA 51.79 27.99 51.96 30.29

II

2D-HMP 109.26 60.49 108.04 56.79

2D-HMP-PCA 55.65 33.37 55.67 29.92

2D-CHMP 79.40 28.14 75.55 35.82

2D-CHMP-PCA 51.46 32.48 52.28 27.57

the lower-bit fixed-point environment. These effects can be seen in Figure 5.8(a) and Fig-

ure 5.8(b). Figure 5.8(a) and Figure 5.8(b) shows the inverse modeling performance in terms

of NMSE and ACEPR for different fixed-point bit (16, 24, and 32) resolutions at LB (978.4

MHz) and UB (1956.8 MHz) for ZX60-14012L+ PA and CLF1G0060-10 PA respectively

of first measurement set-up. 2D-HMP-PCA and 2D-CHMP-PCA models have good perfor-

mance at 16-bit resolution, however 2D-HMP-PCA model requires more number of coeffi-

cients than the 2D-CHMP-PCA model. 2D-CHMP model has poor performance at 16-bit

resolution and converges to 2D-CHMP-PCA performance at 24-bit resolution. 2D-HMP

model performance converges at 32-bit resolution. The PCA-based model shows good per-

formance at 16-bit due to lower condition number and dispersion coefficients.

5.2.6 DPD Results

Linearization performance of DPD technique is measured in terms of ACPR and NMSE

[30]. The inverse modeling performance can be seen in DPD as well. The coefficients

extracted while performing inverse modeling for different models in Section 5.2.5.1 are used

to generate predistorted signal for different models. These predistorted signals are passed

through PA to produce linearized outputs. Table 5.4 shows the DPD performances performed

in 64-bit double floating-point DSP for ZX60-14012L+ PA of first measurement set-up. 2D-
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(a)

(b)

Figure 5.8: Effect of different bit-resolutions on Inverse Modeling Performance of (a) ZX60-

14012L+ PA at LB and UB respectively (b) CLF1G0060-10 PA at LB and UB respectively

Table 5.4: DPD Performances in both bands for ZX60-14012L+ PA

Model
LB UB

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff.

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff.

W/O DPD -15.24 -28.58 N/A -16.69 -32.74 N/A

2D-HMP DPD -40.95 -52.68 540 -41.70 -53.53 540

2D-HMP-PCA DPD -40.61 -52.41 215 -40.38 -53.09 222

2D-CHMP DPD -40.44 -52.04 120 -40.25 -53.20 120

2D-CHMP-PCA DPD -40.10 -51.89 80 -39.96 -53.03 84
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(a) (b)

Figure 5.9: PSD of various model’s DPD for ZX60-14012L+ PA at (a) LB and (b) UB.

Table 5.5: DPD Performances in both bands for ZX60-V63+ PA

Model
LB UB

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff.

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff.

W/O DPD -16.53 -28.21 N/A -18.21 -30.59 N/A

2D-HMP DPD -36.23 -48.89 540 -39.68 -50.92 540

2D-HMP-PCA DPD -35.86 -48.67 215 -39.49 -50.81 222

2D-CHMP DPD -35.41 -48.38 120 -39.02 -50.47 120

2D-CHMP-PCA DPD -35.26 -48.08 80 -38.89 -50.08 84

HMP DPD improves the NMSE from -15.24 dB to -40.95 dB and -16.69 dB to -41.70 dB

for LB and UB respectively i.e. improvement of 25.71 dB and 25.01 dB. In 2D-CHMP-PCA

DPD, the NMSE improves by 24.86 dB and 23.27 dB for LB and UB respectively.

In 2D-HMP DPD, ACPR improves by 24.10 dBc and 20.79 dBc. In 2D-CHMP-PCA

DPD, the ACPR improves by 23.31 dBc and 20.29 dBc for LB and UB respectively.

It is to be noted here that these results are forL=65536,K=8,Ql=Qu=Q=1,Ml=Mu=M=4

and three LS iterations are taken in performing DPD. Thus total computational complexity

is reduced by a factor of 3 (K + 1) /14 = 1.93 by using the proposed 2D-CHMP DPD tech-

nique with almost same linearization accuracy. Also, the total number of coefficients of the

2D-CHMP model is (K + 1) /2 = 4.5 times lesser than the 2D-HMP model.

Figure 5.9(a) and Figure 5.9(b) shows PSD of measured output without DPD, 2D-HMP
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Table 5.6: Effect of different bit-resolutions on DPD Performance

Set-

Up
Model

Bit-

Res.

LB UB

NMSE (dB) ACPR (dBc) NMSE (dB) ACPR (dBc)

I

2D-HMP

16

24

32

-5.47

-24.48

-40.94

-21.34

-40.38

-52.64

-7.21

-28.31

-41.51

-27.25

-44.99

-53.46

2D-HMP-PCA

16

24

32

-40.42

-40.53

-40.60

-52.27

-52.38

-52.41

-40.13

-40.35

-40.37

-53.01

-53.04

-53.06

2D-CHMP

16

24

32

-16.87

-40.34

-40.44

-32.95

-51.97

-52.01

-25.44

-40.21

-40.23

-43.33

-53.14

-53.16

2D-CHMP-PCA

16

24

32

-40.05

-40.08

-40.10

-51.82

-51.84

-51.87

-39.68

-39.92

-39.95

-52.95

-53.01

-53.03

II

2D-HMP

16

24

32

-10.53

-21.48

-36.23

-21.91

-37.35

-48.87

-11.32

-29.72

-39.58

-25.76

-39.09

-50.88

2D-HMP-PCA

16

24

32

-35.71

-35.83

-35.84

-48.52

-48.61

-48.66

-39.25

-39.42

-39.47

-50.45

-50.67

-50.77

2D-CHMP

16

24

32

-14.87

-35.36

-35.41

-26.35

-48.35

-48.38

-20.30

-38.93

-38.97

-32.34

-50.21

-50.46

2D-CHMP-PCA

16

24

32

-35.15

-35.24

-35.26

-47.97

-48.02

-48.08

-38.64

-38.81

-38.86

-49.86

-50.04

-50.08

DPD, 2D-HMP-PCA DPD, 2D-CHMP-PCA DPD, and 2D-CHMP-PCA DPD at LB (978.4

MHz) and UB (1956.8 MHz) respectively, for ZX60-14012L+ PA performed in 64-bit double

floating-point DSP. ACPR linearization performance of the proposed 2D-CHMP-PCA DPD
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Table 5.7: Comparison of FPGA’s Memory Resource

Model
LB UB

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

Matrix

Size (×106)

Bit-

Res.

Memory

Size (MB)

2D-HMP 35.39 32 141.56 35.39 32 141.56

2D-HMP-PCA 14.09 16 28.18 14.55 16 29.10

2D-CHMP 7.86 24 23.59 7.86 24 23.59

2D-CHMP-PCA 5.24 16 10.49 5.51 16 11.01

is almost similar to the 2D-HMP DPD.

Table 5.5 shows the DPD performances performed in 64-bit double floating-point DSP

for ZX60-V63+ PA of second measurement set-up. Again, 2D-HMP DPD and 2D-CHMP-

PCA DPD have almost similar linearization performance.

The coefficients extracted while performing inverse modeling for different models in

Section 5.2.5.2 at different fixed-point bit-resolutions are used to generate predistorted sig-

nal for different models. Table 5.6 shows the DPD performances performed at different

fixed-point bit (16, 24, and 32) resolutions for both measurement set-ups. 2D-HMP-PCA

and 2D-CHMP-PCA DPD have good performance at 16-bit resolution, however 2D-HMP-

PCA model requires more number of coefficients than the 2D-CHMP-PCA model. 2D-

CHMP DPD performance converges to 2D-CHMP-PCA DPD performance at 24-bit resolu-

tion whereas 2D-HMP DPD performance converges at 32-bit resolution.

The FPGA’s memory size required by a model depends on the size of observation (pre-

distorter) matrix and bit-resolution of each sample [45, 71].

As 2D-CHMP-PCA model requires least coefficient i.e. least matrix size and has good

linearization performance at 16-bit resolution. Therefore it can be seen in Table 5.7 that the

proposed 2D-CHMP-PCA model required least memory size.
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Figure 5.10: Block Diagram of Concurrent Tri-band Transmitter.

5.3 Concurrent Tri-Band DPD Models at Harmonics Fre-

quencies

Figure 5.10 shows the block diagram of the concurrent tri-band transmitter. In the concur-

rent tri-band transmitter, three different carrier signals are modulated and up-converted at

different frequencies. After that, they are combined by a RF power combiner and fed to a

multi-band or ultra-wideband PA.

5.3.1 State-of-the-art Tri-Band Digital Predistortion Models

In [98], three-dimensional memory polynomial (3D-MP) was proposed to linearize concur-

rent tri-band transmitter. In the 3D-MP model [98], the output of a lower-band (LB) is

y1 (n) =
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

c
(1)
m,k,j,ix1 (n−m) |x1 (n−m)|k−j

×|x2 (n−m)|j−i|x3 (n−m)|i
(5.13)

where M is the memory depth, c(1)
m,k,j,i are the coefficients, x1 (n), x2 (n) and x3 (n) are

the baseband modulated input signals, y1 (n) is the baseband modulated output of the LB

using 3D-MP model and K is the nonlinearity order. The outputs of middle-band (MB) and

upper-band (UB) can be easily obtained using a similar expression as in equation (5.13).

The 3D-MP model was modified to 3D Phase aligned Pruned Volterra Model (3D-PAV)

in [99] for better linearization of PA. In the 3D-PAV [99], the baseband bi-dimensional model

was constructed considering only the input carrier signals and the IMD components that fall
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(a) (b)

Figure 5.11: (a) Output of PA when three carrier signals are transmitted at Harmonic Fre-

quencies and (b) Output of PA when first and third carrier signals are shifted from their

Harmonic Frequencies.

within the three fundamental frequency bands. The output of a lower-band (LB) is

y1 (n) =
K−1∑
k=0

k∑
j=0

j∑
i=0

c
(1)
k,j,i,0x1 (n) |x1 (n)|k−j|x2 (n)|j−i|x3 (n)|i

+
K−1∑
k=0

k∑
j=0

j∑
i=0

M1∑
m1=0

M2∑
m2=0

c
(1)
k,j,i,1x

2
1

(n−m1)x∗1 (n−m2)

×|x1 (n−m1)|k−j|x2 (n−m1)|j−i|x3 (n−m1)|i

+
K−1∑
k=0

k∑
j=0

j∑
i=0

M1∑
m1=0

M2∑
m2=0

c
(1)
k,j,i,2x1 (n−m1)x∗2 (n−m2)x2 (n−m1)

×|x1 (n−m1)|k−j|x2 (n−m1)|j−i|x3 (n−m1)|i

+
K−1∑
k=0

k∑
j=0

j∑
i=0

M1∑
m1=0

M2∑
m2=0

c
(1)
k,j,i,3x1 (n−m1)x∗3 (n−m2)x3 (n−m1)

×|x1 (n−m1)|k−j|x2 (n−m1)|j−i|x3 (n−m1)|i

(5.14)

where M1 and M2 are the memory depths and c
(1)
k,j,i,1 are the coefficients of the 3D-PAV

model.

However, in these literatures [98, 99], carrier signals are not transmitted at the harmonic

frequencies as shown in Figure 5.2.

5.3.2 Analysis of Harmonic Distortions

Figure 5.11(a) shows the output of a PA where three modulated complex input signals x1,

x2, x3 are transmitted at carrier frequencies f1=f=1.2 GHz, f2=2f=2.4 GHz and f3=3f=3.6

GHz. The distortions fall at the harmonic frequencies. In order to analyze these distor-

tions, we have shifted first and third carrier signals to be able to observe and quantify the
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Table 5.8: IMDs terms in Concurrent Tri-Band Transmitter

Freq.

(GHz)
IMD Terms

Freq.

(GHz)
IMD Terms

0.9 x3 (n)x∗21 (n) ej(ω3−2ω1)nT 2.7 x1 (n)x3 (n)x∗2 (n) ej(ω1+ω3−ω2)nT

1 x2 (n)x∗1 (n) ej(ω2−ω1)nT 2.8 x2
1 (n) ej(2ω1)nT

1.1 x2
2 (n)x∗3 (n) ej(2ω2−ω3)nT 3.4 x2

2 (n)x∗1 (n) ej(2ω2−ω1)nT

1.3 x3 (n)x∗2 (n) ej(ω3−ω2)nT 3.5 x3
2 (n)x∗3 (n) ej(3ω2−ω3)nT

2.3 x3 (n)x∗1 (n) ej(ω3−ω1)nT 3.8 x1 (n)x2 (n) ej(ω1+ω2)nT

2.6 x2
3 (n)x∗22 (n) ej(2ω3−2ω2)nT 4.2 x3

1 (n) ej(3ω1)nT

harmonic distortions. This frequency shift is kept small compared to carrier frequency

i.e. ∆ � f for better observation. Now, three modulated complex input signals x1, x2,

x3 are transmitted at carrier frequencies f1=f+∆1=1.2+0.2=1.4 GHz, f2=2f=2.4 GHz and

f1=3f+∆2=3.6+0.1=3.7 GHz respectively. Figure 5.11(b) shows the IMDs generated around

these carrier signals. The IMDs are at 0.9, 1, 1.1, 1.3, 2.3, 2.6, 2.7, 2.8, 3.4, 3.5, 3.8 and 4.2

GHz. Table 5.8 shows the IMDs corresponding to these frequencies.

In practical scenarios of harmonic CA modulated signals, some of the IMDs and CMDs

generated by the PA would fall within or nearby the bands of the carriers of the input signals.

To illustrate the above, the IMD terms ω3− 2ω1, ω2−ω1, 2ω2−ω3 and ω3−ω2 fall close by

ω1. Similarly, these IMD terms ω3 − ω1, 2ω3 − 2ω2, ω1 + ω3 − ω2 and 2ω1 fall close by ω2.

Similarly, these IMD terms 2ω2 − ω1, 3ω2 − ω3, ω1 + ω2 and 3ω1 fall close by ω3. When the

shift from first and third harmonic is 0, i.e. ω1=ω , ω2=2ω , ω3=3ω , then these IMD terms

fall directly on ω, 2ω and 3ω frequencies.

5.3.3 Proposed 3D Harmonic Memory Polynomial (3D-HMP) and Volterra

Spline (3D-HVS) Models for Harmonic Distortions

The 3D-MP and 3D-PAV models do not contain these IMD terms and thus would be insuf-

ficient to capture harmonic distortions when the three modulated complex input signals are

transmitted at harmonic frequencies ω1=ω , ω2=2ω and ω3=3ω.
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By including the above IMD terms in the model, the outputs of the transmitter would be

y1 (n) =
M∑
m=0

x1 (n−m)H
(1)
0 (n−m) +

M∑
m=0

x3 (n−m)x∗2 (n−m)H
(1)
1 (n−m)

+
M∑
m=0

x2 (n−m)x∗1 (n−m)H
(1)
2 (n−m) +

M∑
m=0

x3 (n−m)x∗21 (n−m)H
(1)
3 (n−m)

+
M∑
m=0

x2
2 (n−m)x∗3 (n−m)H

(1)
4 (n−m)

(5.15)

y2 (n) =
M∑
m=0

x2 (n−m)H
(2)
0 (n−m) +

M∑
m=0

x3 (n−m)x∗1 (n−m)H
(2)
1 (n−m)

+
M∑
m=0

x2
3 (n−m)x∗22 (n−m)H

(2)
2 (n−m) +

M∑
m=0

x2
1 (n−m)H

(2)
3 (n−m)

+
M∑
m=0

x1 (n−m)x3 (n−m)x∗2 (n−m)H
(2)
4 (n−m)

(5.16)

y3 (n) =
M∑
m=0

x3 (n−m)H
(3)
0 (n−m) +

M∑
m=0

x1 (n−m)x2 (n−m)H
(3)
1 (n−m)

+
M∑
m=0

x2
2 (n−m)x∗1 (n−m)H

(3)
2 (n−m) +

M∑
m=0

x3
1 (n−m)H

(3)
3 (n−m)

+
M∑
m=0

x3
2 (n−m)x∗3 (n−m)H

(3)
4 (n−m)

(5.17)

where H(r)
p (n−m)=H(r)

p (|x1 (n−m)| , |x2 (n−m)| , |x3 (n−m)|) , p denotes the IMD

term, r ∈ {1, 2, 3} denotes the LB, MB and UB.

For the proposed 3D-HMP model,

H(r)
p (n−m) =

K−1∑
k=0

k∑
j=0

j∑
i=0

d
(r)
m,k,j,i,p|x1 (n−m)|k−j|x2 (n−m)|j−i|x3 (n−m)|i (5.18)

where d(r)
m,k,j,i,p are the coefficients for the pth IMD term of rth band of the 3D-HMP model.

To model the nonlinearity, instead of polynomial, cubic splines can also be used, which

is notified as 3D-HVS model

H(r)
p (n−m) =

KS∑
k=0

KS∑
j=0

KS∑
i=0

d
(r)
m,k,j,i,pϕkji (|x1 (n−m)| , |x2 (n−m)| , |x3 (n−m)|)

(5.19)

where

ϕkji (|x1 (n)| , |x2 (n)| , |x3 (n)|) =
3∑

u=0

3∑
v=0

3∑
w=0

(|x1 (n)| − |x1,k (n)|)u

×(|x2 (n)| − |x2,j (n)|)v(|x3 (n)| − |x3,i (n)|)w
(5.20)

where x1,k (n) is the value of x1 (n) at the knot k, x2,j (n) is the value of x2 (n) at the knot j

and x3,i (n) is the value of x3 (n) at the knot i. Ks denotes the number of splines [49].
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(a) (b)

Figure 5.12: (a) Block Diagram and (b) Photograph of Measurement and Control setup.

Table 5.9: Behavioral Modeling Results for different models

Model
LB MB UB

NMSE

(dB)

ACEPR

(dBc)

NMSE

(dB)

ACEPR

(dBc)

NMSE

(dB)

ACEPR

(dBc)

3D-MP -23.35 -42.04/-35.53 -24.04 -35.42/-35.92 -28.23 -46.24/-41.33

3D-PAV -26.12 -43.63/-38.43 -27.83 -38.95/-38.87 -30.24 -47.76/-44.23

3D-HVS -41.62 -54.75/-54.47 -42.83 -55.21/-54.94 -40.81 -54.57/-55.07

3D-HMP -41.69 -55.62/-55.36 -42.92 -55.84/-55.61 -40.95 -55.42/-55.93

Table 5.10: Coefficients comparison between models

Model
Total Number of Coefficients

General case Test Case

3D-MP (M + 1)K (K + 1) (K + 2) /2 672

3D-PAV K (K + 1) (K + 2) /2 + 3(M1 + 1)(M2 + 1) (K − 2) (K − 1)K/2 2328

3D-HVS 15(M + 1)(KS + 1)3 3840

3D-HMP 5(M + 1)K (K + 1) (K + 2) /2 3360

5.3.4 Measurement Testbed for Concurrent Tri-Band DPD

Figure 5.12 shows the measurement setup used for the concurrent tri-band transmitter. It

consists of NI transmitter (PXIe-1075), RF power combiner, ZHL-42 RF PA, attenuators
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Table 5.11: DPD Results for different models

Model
LB MB UB

NMSE

(dB)

ACEPR

(dBc)

NMSE

(dB)

ACEPR

(dBc)

NMSE

(dB)

ACEPR

(dBc)

W/O DPD -14.47
-36.33/

-31.58
-15.36

-29.79/

-29.97
-16.32

-34.88/

-32.40

3D-MP DPD -21.54
-40.41/

-34.67
-23.48

-34.25/

-34.48
-26.12

-44.36/

-39.93

3D-PAV DPD -24.26
-42.15/

-36.86
-26.75

-37.49/

-37.47
-28.63

-46.68/

-42.71

3D-HVS DPD -40.18
-52.41/

-52.22
-41.29

-54.32/

-53.80
-39.12

-53.75/

-54.62

3D-HMP DPD -40.32
-53.53/

-53.19
-41.37

-55.27/

-55.01
-39.43

-54.99/

-55.59

and R&S FSW spectrum analyzer as a transmitter observation receiver. Three different LTE

signals of bandwidth 30 MHz, 20 MHz and 15 MHz with PAPR of 12.86 dB, 13.02 dB

and 12.98 dB respectively are used. NI transmitter (PXIe-1075) have three RF channel out-

puts (NI-5793). These three RF channels are phase synchronized by reference clock of the

transmitter. 30 MHz 101 LTE signal is transmitted at 1.2 GHz, 20 MHz 1001 LTE signal is

transmitted at 2.4 GHz and 15 MHz 101 LTE signal is transmitted at 3.6 GHz. These three

RF signals are combined by a RF power combiner and are used to drive ZHL-42 RF PA.

ZHL-42 PA has 28 dBm output power at 1 dB gain compression and operating frequency

range from 0.7 GHz to 4.2 GHz. The output RF signal of PA is attenuated and then cap-

tured by R&S FSW spectrum analyzer at 1.2 GHz, 2.4 GHz and 3.6 GHz respectively. The

reference clock from the transmitter is provided to the receiver for synchronization. R&S

FSW spectrum analyzer down converts the RF signals to baseband. The output and input

baseband signal of each frequency band are time aligned in Matlab software. The signal is

further processed by Matlab software to perform DPD.
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(a) (b)

(c)

Figure 5.13: Frequency Power Spectra of various DPD model’s outputs at (a) LB, (b) MB

and (c) UB.

5.3.5 Results

5.3.5.1 Behavioral Modeling Results

Table 5.9 shows the behavioral modeling results for different models in terms of NMSE and

ACEPR. From Table 5.9, the 3D-HMP and 3D-HVS have better NMSE and ACEPR per-

formance as compared to state-of-the-art models, approximately 10–15 dB improvement in

NMSE from 3D-PAV model, which is expected as the state-of-the-art models do not contain

harmonic terms shown in section 5.3.2. It is to be noted that 3D-MP model constitutes an

only first term of equations (5.15), (5.16) and (5.17). These results are for M=3, M1=3,

M2=2, K=6, and KS=3. Table 5.10 shows the coefficients comparison between different

models and it can be observed that inclusion of harmonic terms leads to higher number of

coefficients with much better behavioral modeling performance.
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5.3.5.2 DPD Results

Table 5.11 shows the linearization results for different models in terms of NMSE and ACPR.

From Table 5.11, the 3D-PAV DPD model has better NMSE and ACPR performance than

3D-MP DPD model. However, the 3D-PAV DPD’s NMSE performance is much lesser than

the acceptable performance of -35 dB. The proposed 3D-HMP and 3D-HVS DPD models

have better NMSE and ACPR performance as compared to 3D-MP and 3D-PAV DPD mod-

els. The NSME and ACPR have improved approximately by 11–16 dB and 10–18 dBc from

3D-PAV DPD model. Figure 5.13 shows the frequency power spectra of various DPD mod-

els’ outputs at the LB, MB, and UB. As it can be seen from the Figure 5.13, the proposed

3D-HMP and 3D-HVS DPD models have better ACPR performance.

5.4 Conclusion

In the first part of this chapter, we proposed the 2D-CHMP model to linearize the non-

linearity of concurrent dual-band transmitters in ultra-wideband applications where the sec-

ond signal band lies at the harmonic frequency band of the first signal band with reduced

complexity as compared to the state-of-the-art 2D-HMP model. The proposed 2D-CHMP

model is constructed by simplifying the envelope terms of the 2D-HMP model. The to-

tal number of coefficients of the 2D-CHMP model is (K+1)/2 times lesser than the 2D-

HMP model. Also, the computational complexity of 2D-CHMP DPD is (K+1)/6 and

3(K+1)/14 times lesser than 2D-HMP DPD for two and three LS iterations respectively.

The proposed 2D-CHMP-PCA model required least FPGA’s memory resource, thus making

it suitable for low-cost FPGA implementation.

In the second part of this chapter, the 3D-HMP and 3D-HVS DPD models have been

presented and experimentally verified to mitigate the in-band harmonic distortions, CMDs

and IMDs generated by ultra-wideband PA when carrier signals are transmitted at harmonic

frequencies in the concurrent tri-band transmitter. To establish the need of this DPD model,

it is compared with the state-of-the-art DPD models. It has been experimentally verified that

the state-of-the-art DPD models are not able to capture in-band harmonic distortions and

their NMSE and ACPR’s performance are not meeting the acceptable performance. Whereas

the NMSE and ACPR’s performance of proposed DPD models are improved approximately

by 23–26 dB and 18–20 dBc respectively over without DPD signal. The complexity of the
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proposed DPD models can be reduced by pruning techniques like PCA.

The next chapter deals with the DPD models for the mitigation of imperfections present

in MIMO transmitters.
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Chapter 6

DPD Model for mitigation of

imperfections in MIMO Transmitters

6.1 Introduction

In order to meet the ambitious requirements of improved capacity and increased data rate

[105], MIMO topology based transceivers are being perceived as a viable solution [106,107].

MIMO streams can increase the data rate or system capacity as many times as the number

of branches of MIMO transceivers [108–110]. However, at the transmitter side, crosstalk

may occur between the RF branches, when they are placed on the same chip [111]. This

adds to the signal distortion, which is already generated by the nonlinearity of the RF PAs.

In addition, there may be distortion components such as impairments due to local oscillator

(LO) leakage and in-phase and quadrature (I/Q) imbalance in quadrature modulators within

a practical MIMO transmitter. These nonlinearities and impairments need to be compensated

for distortion-free signal transmission.

There are various DPD models such as Volterra-Series [22], MP [24] and GMP [27]

available for linearization of PA nonlinearities in single-input single-output (SISO) transmit-

ter. There are few DPD models proposed in [112–118] to jointly compensate I/Q imbalance

and PA nonlinearities in SISO transmitters. In case of MIMO transmitters, these models are

proposed for compensation of crosstalk and PA nonlinearities [54–61]. Recently in [119],

a DPD model is presented for joint mitigation of I/Q imbalance, dc offset, crosstalk and

PA nonlinearity in the MIMO transmitters. The drawbacks of such DPD model is that it

requires extraction of coefficients and inverse modeling of each transmitter paths i.e. for
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P × P MIMO, the coefficient extraction and inverse modeling are performed P times. As

this model requires high number of coefficients, extracting coefficients P times in massive

MIMO would result in a high coefficients extraction burden. Therefore, complexity is one

of the main concerns in DPD solutions for MIMO transmitters.

This chapter proposes a Neural Network (NN)-based DPD model, which can perform

inverse modeling for P transmitters of MIMO with a single DPD block [120]. NN-based

DPD model will provide ease of adaptability for multi-dimensions of MIMO transmitters

e.g. a single NN can work for 2×2 MIMO as well as for P ×P MIMO instead of P different

DPD blocks.

This chapter also proposes an efficient polynomial-based DPD model for 4×4 MIMO

transmitters while considering the decay effect of crosstalk level between the transmitting

branches. This model is constructed by accounting that the crosstalk would be weaker in

strength as compared to the actual carrier input signal in a given branch of a MIMO trans-

mitter. The constructed DPD model will require less number of mathematical operations, less

number of coefficients and consequently less coefficient’s extraction burden on a digital sig-

nal processor using least square (LS) method as compared to the conventional DPD models.

As the effects of crosstalk between branches of MIMO transmitters will decay significantly

beyond the second adjacent branches with respect to a given branch of MIMO transmitter,

the proposed model can be extended to large-scale MIMO transmitters as a cluster of 4×4

transmitters.

This chapter is organized as follows: Section 6.2 describes the impairments present in

MIMO transmitters and existing DPD algorithms for MIMO transmitters. Section 6.3 pro-

poses the NN-based DPD model and presents its measurement results. Section 6.4 proposes

the polynomial-based DPD model and presents its measurement results. Section 6.5 presents

the conclusion.
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Figure 6.1: 4×4 MIMO transmitters with nonlinear crosstalk and linear crosstalk.

6.2 MIMO Transmitter

Direct-conversion transmitter is known to suffer ill-effects of gain imbalance, phase imbal-

ance and LO leakage on the transmitted signal. In MIMO transmitters, signals are transmit-

ted at the same carrier frequency in different transmitters’ paths as shown in Figure 2.6 in

chapter 2. Hence, the effect of above-mentioned impairments magnifies, when the signal is

distorted due to PA nonlinearity and multi-branch crosstalk.

6.2.1 Crosstalk

Crosstalk is induced due to the coupling effects between different transmitters’ paths or leak-

age through the common LO. Crosstalk can be categorized as linear and nonlinear. Linear

crosstalk occurs after the PA and can be removed at the receiver. Figure 6.1 shows the 4×4

MIMO transmitters with nonlinear crosstalk and linear crosstalk. In Figure 6.1, coupling fac-

tors α12, α13, α14,... α41,... and α43 denotes the effects of nonlinear crosstalk. In Figure 6.1,

coupling factors β12, β13, β14,... β41,... and β43 denotes the effects of linear crosstalk. Gen-

erally, MIMO crosstalk has a coupling factor between -15 dB to -30 dB [57].
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6.2.2 I/Q Imbalance

In a MIMO transmitter, I/Q imbalance occurs due to a mismatch between the in-phase (I)

and quadrature-phase (Q) signal paths in the modulator. For P × P MIMO transmitters, let

xp (n) denote the pth transmitter path baseband input signal, where p = 1, 2, · · ·P . Due to

I/Q imbalance, signal at the output of quadrature modulator is

x̂p (n) = apxp (n) + bpx
∗
p (n) (6.1)

where

ap = cos (θp/2) + jεp sin (θp/2) (6.2)

bp = εp cos (θp/2) + j sin (θp/2) (6.3)

In equations (6.2) and (6.3), εp and θp represents the pth transmitter path’s gain imbalance

and phase imbalance respectively. For a balanced modulator, εp=1 and θp=0◦. I/Q imbalance

can be represented by a metric known as image rejection ratio (IRR) [119]. It is defined as

Γp (dB) = 20log10 (bp/ap) (6.4)

Generally, IRR in RF transmitters ranges from -20 dB to -40 dB [119].

6.2.3 Existing DPD Models for MIMO Transmitter

6.2.3.1 Crossover Memory Polynomial Model (COMPM)

In [54], the output of this model is given for 2×2 MIMO as shown in equation (2.26). This

model can be straightforward mathematically derived for higher order of MIMO transmitters

using the equation (2.26). The output of a first transmitter’s path in 3×3 MIMO using this

model is

y1 (n) =
M∑
m=0

K−1∑
k=0

c
(1)
m,k · x1 (n−m) · |x1 (n−m)|k

+
M∑
m=0

K−1∑
k=0

d
(1)
m,k · x2 (n−m) · |x2 (n−m)|k

+
M∑
m=0

K−1∑
k=0

e
(1)
m,k · x3 (n−m) · |x3 (n−m)|k

(6.5)

where M is the memory depth, x1 (n), x2 (n) and x3 (n) are the baseband modulated input

signals of different transmitter’s path, c(1)
m,k, d

(1)
m,k and e(1)

m,k are the coefficients and K is the

nonlinearity order of the COMP model. The second and third outputs of the 3×3 MIMO

transmitters can be obtained easily using a similar expression as in equation (6.5).
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6.2.3.2 Parallel Hammerstein (PH) Model

In [55], the output of this model is given for 2×2 MIMO as shown in equation (2.27). This

model can be straightforward mathematically derived for higher order of MIMO transmitters

using the equation (2.27). The output of a first transmitter’s path in 3×3 MIMO using this

model is

y1 (n) = f (x1(n), x2(n), x3(n))

=
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

c
(1)
m,k,j,i · x1 (n−m) · |x1 (n−m)|k−j|x2 (n−m)|j−i|x3 (n−m)|i

+
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

d
(1)
m,k,j,i · x2 (n−m) · |x1 (n−m)|k−j|x2 (n−m)|j−i|x3 (n−m)|i

+
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

e
(1)
m,k,j,i · x3 (n−m) · |x1 (n−m)|k−j|x2 (n−m)|j−i|x3 (n−m)|i

(6.6)

where c(1)
m,k,j,i, d

(1)
m,k,j,i and e(1)

m,k,j,i are the coefficients of PH model.

The PH model has been shown to have better linearization performance than COMP

model in presence of crosstalk, but requires a large of coefficients [57].

COMP and PH models linearize PA and remove crosstalk. However, both these models

are insufficient to mitigate the transmitter imperfections due to I/Q imbalance and dc offset.

6.2.3.3 Augmented Complex Conjugate Parallel Hammerstein (ACC-PH) Model

In [115], complex conjugate function and a dc term were added to compensate for the I/Q

imbalance and dc offset in SISO. Similarly, the complex conjugate function of PH model

and a dc term can be added to PH model to compensate for the I/Q imbalance and dc offset

in addition to the PA nonlinearity and crosstalk. The output of this model for the first branch

of the MIMO transmitter is as follows:

y1 (n) = f (x1(n), x2(n), x3(n)) + f (x∗1(n), x∗2(n), x∗3(n)) + c′ (6.7)

where f (x1(n), x2(n), x3(n)) is a function as defined in equation (6.6). This model lin-

earizes PA and mitigates crosstalk, I/Q imbalance, and dc offset. The drawback of this

model is that it requires extraction of coefficients and inverse modeling of each transmitter

paths, i.e. for P ×P MIMO, the coefficient extraction and inverse modeling is performed P

times. This model requires high number of coefficients and extracting coefficients P times

in massive MIMO would result in high coefficients extraction burden.
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Figure 6.2: Real-valued time-delay feedforward backpropagation-based Neural Network.

6.3 Proposed Neural Network based DPD Model

Figure 6.2 shows the real-valued time-delay NN [121–125]. The input vector contains

present and past values of I and Q. The input vector is defined as

X = [I1 (n) , · · · , I1 (n−m) , Q1 (n) , · · · , Q1 (n−m) ,

I2 (n) , · · · , I2 (n−m) , Q2 (n) , · · · , Q2 (n−m) ,

· · · , IP (n) , · · · , IP (n−m) , QP (n) , · · · , QP (n−m)]

(6.8)

where IP (n), QP (n) are the I and Q components of baseband input signal of P th trans-

mitter branch at nth time instant. z−1 represents the unit delay operator. The feedforward

backpropagation neural network is used.

6.3.1 Feedforward Propagation

During feedforward computation, data propagates from neurons of a lower layer to upper

layer. As shown in Figure 6.2, two hidden layers are used in this neural network. The net

input in layer l+1is given by

netl+1
j =

q∑
i=1

wl+1
ji o

l
i + bl+1

j (6.9)

where wl+1
ji represents the synaptic weight between the ith input from the previous layer to

the jth neuron of the present layer. Initially, weights are set in the interval of [-0.8, 0.8] and
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during backward propagation, weights are adjusted to reduce the error. q represents the total

number of neurons in the previous layer and bl+1
j denotes bias of the jth neuron in the l+ 1th

layer. The output of neuron j at l + 1th layer is

ol+1
j = f

(
netl+1

j

)
(6.10)

The hidden layers have the hyperbolic tangent function, as the activation function, f . It

maps the nonlinearity between -1 and 1. The output of any layer works as an input to the

next layer. The outputs of hidden neurons are linearly summed up at the output layer.

6.3.2 Backward Propagation

During backward propagation, the performance index for the NN is calculated as

V = 1
2N

N∑
n=1

[
Iout1 (n)− Îout1 (n)

]2

+
[
Qout1 (n)− Q̂out1 (n)

]2

+ 1
2N

N∑
n=1

[
Iout2 (n)− Îout2 (n)

]2

+
[
Qout2 (n)− Q̂out2 (n)

]2

· · · + 1
2N

N∑
n=1

[
IoutP (n)− ÎoutP (n)

]2

+
[
QoutP (n)− Q̂outP (n)

]2

= 1
2

N∑
n=1

{
eTnen

}
(6.11)

where e is the error, IoutP (n) and QoutP (n) are the I and Q components of the actual base-

band outputs of P th transmitter branch of MIMO, ÎoutP (n) and Q̂outP (n) are the I and Q

components of the outputs from output-layer neurons of the NN model.

Then the Levenberg-Marquardt algorithm [122] is used, which is an approximation to

Gauss-Newtons method. According to this algorithm, the parameter V is minimized with

respect to a parameter u which depends on synaptic weights and biases. During backward

propagation u is updated as

uk+1 = uk −
[
JTJ + µI

]−1
JTe (6.12)

where

u =
[
w1

11 · · ·w1
q.2P (M+1)b

1
1 · · · b1

qw
2
11 · · ·w2

rqb
2
1 · · · b2

rw
3
11 · · ·w3

2Prb
3
1 · · · b3

2P

]
(6.13)

where J is the Jacobian matrix calculated over error matrix e with respect to u. q and r are

the numbers of neurons of two hidden layers. M and P are the memory depth and number

of transmitter’s branches in MIMO. Whenever V increases, µ is multiplied by some factor β.

93



6.3 Proposed Neural Network based DPD Model

Whenever V decreases, µ is divided by some factor β. Initially µ and β are set equal to 0.01

and 10 respectively. The whole procedure is iterated until the good performance is achieved

by NN.

The calculation of Jacobian Matrix J is shown in the appendix A.

6.3.3 Coefficient Complexity comparison between DPD models

In conventional DPD models like COMPM, PH and ACC-PH models, the least square (LS)

algorithm is applied to the observation (predistorter) matrix for calculation of the model’s

coefficients. To implement least square extraction, pseudo-inverse method is used. Let

y = XA (6.14)

where y is a N×1 vector representing the N samples of the output signal, A is a vector

of coefficients, X is an observation (predistorter) matrix and its size is N × (No of Coeff.).

Then using pseudo inverse method, A is calculated as

A =
(
XHX

)−1
XHy (6.15)

In NN, Levenberg-Marquardt algorithm [122] also uses LS algorithm to the batch train-

ing of multi-layer perceptrons. According to this algorithm, u is updated as in equation

(6.12). The size of Jacobian matrix depends on N × (No of Weights and Biases). It is de-

fined as

J =



∂e(1)
∂w11

∂e(1)
∂w12

· · · ∂e(1)
∂b2P

∂e(2)
∂w11

∂e(2)
∂w12

· · · ∂e(2)
∂b2P

...
... · · · ...

∂e(N)
∂w11

∂e(N)
∂w12

· · · ∂e(N)
∂b2P

 (6.16)

In conventional DPD models, inverse of XHX is calculated, whereas in NN model in-

verse of JTJ + µI is calculated. Thus the complexity of model extraction depends directly

on the size of matrix X and J i.e. number of coefficients/number of weights and biases.

Table 6.1 shows the comparison between the number of weights and biases/number of

coefficients of different DPD models. The Number of weights in a neural network is 2P (M+

1)q + rq + 2Pr, where P is the number of MIMO’s transmitter branches. The number of

biases in a neural network is q + r + 2P . The total number of weights and biases in a NN

are 2P (M + 1)q + rq + 2Pr + q + r + 2P . The number of coefficients required by COMP
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Table 6.1: Complexity comparison between different DPD Models in MIMO Transmitters

Total No. of Coefficients/Number of Weights and Biases

Models 2×2 MIMO 3×3 MIMO

COMPM DPD 4(M + 1)K 9(M + 1)K

PH DPD 4(M + 1)K(K + 1)/2 9(M + 1)K(K + 1)(K + 2)/6

ACC-PH DPD 4(M + 1)K(K + 1) + 2 3(M + 1)K(K + 1)(K + 2) + 3

NN DPD 4(M + 1)q + rq + 4r + q + r + 4 6(M + 1)q + rq + 6r + q + r + 6

model for a single transmitter branch in P × P MIMO is P (M + 1)K. Thus, the total

number of coefficients required by COMP model in P × P MIMO is P 2(M + 1)K. The

number of coefficients required by PH model for a single transmitter branch in 2×2 MIMO

is 2(M+1)K(K+1)/2. Thus, the total number of coefficients required by PH model in 2×2

MIMO is 4(M+1)K(K+1)/2. Similarly, the number of coefficients required by PH model

for a single transmitter branch in 3×3 MIMO is 3(M+1)K(K+1)(K+2)/6. Thus, the total

number of coefficients required by PH model in 3×3 MIMO is 9(M+1)K(K+1)(K+2)/6.

ACC-PH model requires nearly twice the number of coefficients as compared to PH model

The total number of coefficients required by ACC-PH model in 2×2 MIMO and 3×3 MIMO

are 4(M + 1)K(K + 1) + 2 and 3(M + 1)K(K + 1)(K + 2) + 3 respectively.

6.3.4 Measurement Setup

Figure 6.3 shows the measurement setup for MIMO transmitter. The measurement setup

consists of NI transmitter (PXIe-1075), couplers, different 101 LTE signals, ZHL-42 RF PAs,

attenuators and FSW spectrum analyzer as a transmitter observation receiver. Three different

30 MHz 101 LTE signals are used and each consisted of 122880 samples at a sampling rate

of 122.88 Msps. Three different 15 MHz 101 LTE signals are used and each set consisted

of 184320 samples at a sampling rate of 92.16 Msps. NI transmitter (PXIe-1075) consists of

two or three RF channel outputs (NI-5793). For 2×2 MIMO, the two different RF signals

are generated by NI-5793s at a carrier frequency of 2.14 GHz. Similarly, for 3×3 MIMO,

the three different RF signals are generated by NI-5793s at a carrier frequency of 2.14 GHz.

These RF signals are passed through couplers of -15 dB coupling factor. After that these RF

signals are used to drive ZHL-42 RF PAs. ZHL-42 PA has operating frequency range from
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(a)

(b)

Figure 6.3: (a) Block Diagram and (b) Photograph of Measurement and Control Setup used

for MIMO Transmitter.

700 to 4200 MHz and 29.28 dBm output power at 1 dB gain compression. The outputs of

these PAs are passed through couplers of -15 dB coupling factor. The outputs of couplers are

then passed through attenuators and then through a switch to be captured by FSW spectrum

analyzer of Rohde & Schwarz.

6.3.5 Measurement Results

The DPD is performed for 2×2 and 3×3 MIMO transmitters. The training of NN is per-

formed offline. To showcase the usefulness of utilizing the NN, two scenarios are considered

in each MIMO transmitters.

6.3.5.1 Scenario I: PA and MIMO Crosstalk without Modulator Imperfection

In the first scenario, the linear crosstalk of -15 dB coupling factor and nonlinear crosstalk

of -15 dB coupling factor are present in MIMO transmitters. Table 6.2 shows the inverse

modeling results for scenario I, when 40000 samples of 15 MHz 101 LTE signal is used for

training of NN and NN model is validated for different length of samples of 15 MHz 101

LTE signal using different random generator seeds. As from Table 6.2, varying the samples

from 40000 to 184320 does not affect the inverse modeling performance much. Therefore
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(a) (b)

(c) (d)

Figure 6.4: Frequency Power Spectra of various DPD models in the presence of linear

crosstalk and nonlinear crosstalk for (a) 15 MHz LTE signal in 2×2, (b) 30 MHz LTE sig-

nal in 2×2, (c) 15 MHz LTE signal in 3×3, and (d) 30 MHz LTE signal in 3×3 MIMO

Transmitters.

for performing DPD, 40000 samples of 15 MHz 101 LTE signal is used for training of NN

i.e. model identification. After that NN model is validated for 184320 samples of 15 MHz

101 LTE signal. For 30 MHz 101 LTE signal, 40000 samples of 30 MHz 101 LTE signal is

used for training of NN. After that NN model is validated for 122880 samples of 30 MHz

LTE signal. Figure 6.4(a) and 6.4(b) shows the frequency power spectra of various DPD

models for the scenario I in 2×2 MIMO transmitters of 15 MHz and 30 MHz LTE signals

respectively. Figure 6.4(c) and 6.4(d) shows the frequency power spectra of various DPD

models for the scenario I in 3×3 MIMO transmitters of 15 MHz and 30 MHz LTE signals

respectively. As it can be seen from the Figure 6.4, the proposed NN-based DPD model have

better ACPR.

Table 6.3 and Table 6.4 show the performance of various DPD models in presence of
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Table 6.2: Inverse Modeling performances in presence of PA Nonlinearity and Crosstalk in

2×2 MIMO Transmitters for LTE 101 (15 MHz)

No. of Samples for validation NMSE (dB) ACEPR (dBc)

40000 -40.75 -56.78/-57.13

80000 -40.30 -56.45/-56.81

120000 -39.81 -55.99/-56.41

160000 -39.78 -55.95/-56.36

184320 -39.76 -55.92/-56.34

Table 6.3: DPD performances in presence of PA Nonlinearity and Crosstalk in 2×2 MIMO

Transmitters

Signal LTE 101 (15 MHz) LTE 101 (30 MHz)

Models
NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

Without DPD -10.88 -35.87/-37.20 N/A -9.57 -33.64/-36.18 N/A

COMPM DPD -35.96 -49.64/-50.06 120 -34.68 -46.76/-47.15 120

PH DPD -37.83 -52.86/-53.47 420 -36.59 -49.80/-50.09 420

NN DPD -39.62 -55.72/-56.19 431 -38.83 -52.76/-53.39 431

linear and nonlinear crosstalk for 2×2 and 3×3 MIMO. The COMP and PH DPD models

are performed for M=4 and K=6. The number of neurons in two hidden layers of NN-based

DPD model are q=14 and r=7 respectively. NN converges to its best performance in 10

iterations. From the table, it is clear that the proposed NN-based DPD model have better

NMSE.

The proposed NN-based DPD model not only outperforms other DPD models in presence

of crosstalk but also requires less number of coefficients (weights and biases) for large size

MIMO transmitters as illustrated by the results obtained and shown in Table 6.4 for 3×3

MIMO transmitters.

Figure 6.5 shows the crosstalk in an antenna array. The antennas which are nearer would
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Table 6.4: DPD performances in presence of PA Nonlinearity and Crosstalk in 3×3 MIMO

Transmitters

Signal LTE 101 (15 MHz) LTE 101 (30 MHz)

Models
NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

Without DPD -8.58 -34.38/-35.76 N/A -9.27 -34.22/-36.52 N/A

COMPM DPD -34.45 -48.21/-49.82 270 -32.46 -46.70/-46.79 270

PH DPD -36.19 -50.32/-51.72 2520 -35.47 -49.27/-49.74 2520

NN DPD -38.71 -54.95/-55.90 587 -37.96 -52.29/-52.85 587

Figure 6.5: Antenna Array showing crosstalk.

impose stronger crosstalk as compared to antennas which are farther [126–128]. We have

earlier chosen stronger crosstalk of equal coupling factor of -15 dB because if NN works for

that, then it should work in other cases like unequal coupling factor.

To showcase that NN DPD model would also work for unequal crosstalk, Table 6.5 shows

the performance of various DPD models in presence of PA nonlinearity, unequal nonlinear

crosstalk (coupling factor of -15 dB from branch 2 to branch 1 and -20 dB from branch 3 to

branch 1) and unequal linear crosstalk (coupling factor of -15 dB from branch 2 to branch 1

and -20 dB from branch 3 to branch 1) in 3×3 MIMO Transmitters.
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Table 6.5: DPD performances in presence of PA Nonlinearity and Unequal Crosstalk in 3×3

MIMO Transmitters

Signal LTE 101 (30 MHz)

Models NMSE (dB) ACPR (dBc) No. of Coeff./Weights & Biases

Without DPD -10.39 -34.68/-36.75 N/A

COMPM DPD -33.72 -46.86/-46.95 270

PH DPD -37.14 -49.46/-49.82 2520

NN DPD -39.07 -52.42/-52.76 587

6.3.5.2 Scenario II: PA and MIMO Crosstalk with Modulator Imperfection

In the second scenario, the linear and equal crosstalk of -15 dB coupling factor, nonlinear and

equal crosstalk of -15 dB coupling factor, I/Q imbalance of -20 dB IRR, phase imbalance θp=

4
◦ and dc offset of -20 dB with respect to the main signal are present in MIMO transmitters.

Figure 6.6 shows the effect of the increase of number of MIMO transmitter’s branches

on the inverse modeling performance and complexity as compared to other DPD models in

scenario II for M=4, K=6, q=14 and r=7. With the increase in order of MIMO, the number

of coefficients required by PH and ACC-PH models increases exponentially. Whereas with

the increase of MIMO order, the NN model requires less number of weights and biases

as compared to number of coefficients required by PH and ACC-PH models. The inverse

modeling performance in terms of NMSE (dB) of NN model is better than other models.

The DPD is done for both 2×2 and 3×3 MIMO transmitters with 10 MHz and 30 MHz

LTE signals. The 10 MHz LTE signal is shown for heterodyne case by using the IF-shift

of 7 MHz to show the effects of I/Q imbalance in the frequency domain. For 10 MHz (IF

shifted) LTE signal, 40000 samples of 10 MHz LTE signal is used for training of NN. After

that NN model is validated for 184320 samples of 10 MHz (IF shifted) LTE signal. Table 6.6

and Table 6.7 show the performance of various DPD models. As seen from the tables, the

performance of COMPM and PH model degrades due to the presence of I/Q imbalance and

dc offset. Again, the proposed NN-based DPD model outperforms other DPD models and

also requires less number of coefficients (weights and biases) as shown in Table 6.7 for 3×3

MIMO transmitters. Also, it performs inverse modeling of different transmitter’s branches

in one step.
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Figure 6.6: Effect of increase of number of MIMO transmitter’s branches on the inverse

modeling performance and number of coefficients/weights and biases in scenario II.

Table 6.6: DPD performances in presence of PA Nonlinearity, Crosstalk, I/Q Imbalance and

dc offset in 2×2 MIMO Transmitters

Signal LTE 1 (10 MHz-IF shifted) LTE 101 (30 MHz)

Models
NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

Without DPD -13.81 -36.58 N/A -10.14 -34.44/-34.62 N/A

COMPM DPD -21.88 -46.12 120 -18.36 -43.53/-44.07 120

PH DPD -25.67 -48.08 420 -22.56 -47.17/-47.53 420

ACC-PH DPD -36.37 -50.68 842 -36.47 -50.29/-51.41 842

NN DPD -39.48 -54.04 431 -38.81 -53.04/-53.50 431

Figure 6.7(a) and Figure 6.7(c) show the frequency power spectra of various outputs of

DPD models for scenario II in 2×2 MIMO transmitters and 3×3 MIMO transmitters for

10 MHz LTE signal IF-shifted by 7 MHz. There is an image present in the output of with-

out DPD signal having IRR of -20 dB due to I/Q imbalance. COMPM DPD and PH DPD

outputs also have images and thus they are unable to mitigate the effects of I/Q imbalance.

Table 6.8 shows the IRR (dB) values of DPD outputs for scenario II in 2×2 MIMO trans-

mitters and 3×3 MIMO transmitters for 10 MHz LTE signal IF-shifted by 7 MHz. The
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Table 6.7: DPD performances in presence of PA Nonlinearity, Crosstalk, I/Q Imbalance and

dc offset in 3×3 MIMO Transmitters

Signal LTE 1 (10 MHz-IF shifted) LTE 101 (30 MHz)

Models
NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

NMSE

(dB)

ACPR

(dBc)

No. of

Coeff./

Weights

& Biases

Without DPD -12.54 -36.20 N/A -9.57 -34.17/-34.84 N/A

COMPM DPD -20.63 -45.43 270 -17.28 -42.21/-42.56 270

PH DPD -23.65 -46.15 2520 -21.19 -45.38/-45.56 2520

ACC-PH DPD -34.32 -50.44 5043 -35.33 -48.86/-49.88 5043

NN DPD -38.96 -53.85 587 -38.09 -51.62/-52.44 587

NN-based DPD model output has least IRR. Figure 6.7(b) and Figure 6.7(d) show the fre-

quency power spectra of various outputs of DPD models and its error (e.g. COMPM error=

ymeas−COMPM(n)−x(n)) for scenario II in 2×2 MIMO transmitters and 3×3 MIMO trans-

mitters for 30 MHz LTE signal. COMPM and PH errors plots show in-band errors which

are due to the presence of I/Q imbalance. Actually, there is an image due to I/Q imbalance,

which is hiding under signal, appears as an error during transmission in Figure 6.7(b) and

6.7(d) for IF shift=0 case. From the graph, it is clear that the proposed NN DPD model has

better ACPR and IRR performance as compared to other DPD model and requires the less

number of coefficients (weights and biases) in 3×3 MIMO transmitters.

Earlier results show the DPD performance of different LTE signals for two scenarios of

only one output of 2×2 MIMO and 3×3 MIMO transmitters. Table 6.9 shows the proposed

NN DPD performances for both scenarios for all the branches in 3×3 MIMO transmitters

for 30 MHz LTE 101 signals. NN performs DPD of different branches in one step with good

linearization results.

6.3.5.3 Batch-Mode NN DPD Resource Consumption Estimation

NN is an iterative method; therefore, its main advantage is in terms of DPD application and

adaptation. Figure 6.8 shows the proposed intermittent updating process, where NN training

is performed offline (SD card) and the weights are updated in predistorter (FPGA or digital
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(a) (b)

(c) (d)

Figure 6.7: Frequency Power Spectra of various DPD models in the presence of crosstalk,

I/Q imbalance and dc offset for (a) 10 MHz in 2×2, (b) 30 MHz in 2×2, (c) 10 MHz in 3×3

and (d) 30 MHz in 3×3 MIMO Transmitters.

Table 6.8: DPD performances in terms of IRR for Scenario II in 2×2 and 3×3 MIMO

Transmitters for 10 MHz LTE Signal IF-Shifted

Transmitter 2×2 3×3

Models IRR (dB) IRR (dB)

Without DPD -20 dB -20 dB

COMPM DPD -24.88 -24.86

PH DPD -27.11 -27.33

ACC-PH DPD -55.72 -55.32

NN DPD -57.10 -56.60

signal processor) after a fixed interval of time.

It is to be noted that the DPD application is a continuous process, as all data passes
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Table 6.9: DPD performances for both Scenarios for all the branches in 3×3 MIMO Trans-

mitters for 30 MHz LTE 101 Signals

Performance
Scenario I Scenario II

Branch 1 Branch 2 Branch 3 Branch 1 Branch 2 Branch 3

NMSE (dB) -37.96 -37.91 -37.67 -38.09 -38.48 -38.03

ACPR (dBc)
-52.29/

-52.85

-52.37/

-52.54

-52.08/

-52.63

-51.62/

-52.44

-51.12/

-51.03

-51.47/

-51.21

Figure 6.8: Proposed intermittent updating process for NN DPD.

through DPD application block. While, DPD training is done intermittently for a predefined

length of training data after a fixed time interval, or whenever ACPR drops below a given

interval, therefore processing complexity of DPD application is more prominent which is

dependent on number of coefficients.

For training, it is anticipated that after the first application of trained NN, the training

converge of the NN network to an acceptable solution will be faster and the model tends to

be more appropriate for batch mode based adaptive DPD where the training of the network

for each iteration will be based on the previous iteration network parameter’s value.

Furthermore, it is anticipated that for P × P MIMO system, the rate of increase of

complexity of NN DPD in terms of number of model coefficients is less than the PH, ACC-

PH and COMPM models. Indeed, the increase of numbers of coefficients in PH and ACC-PH

is proportional to P 2×KP , whereas in COMPM it is proportional to P 2, however, in contrast,

the neural network might require the addition of few supplementary neurons to reach to an

acceptable modeling performance and it is proportional to 2P .
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6.4 Proposed Polynomial based DPD Model

Usually, the crosstalk from another branch to the main branch is less as compared to the

strength of the original signal of the main branch i.e. |x1 (n)| > |α21x2 (n)|, |x1 (n)| >

|α31x3 (n)|, |x1 (n)| > |α41x4 (n)|, |v1 (n)| > |β21v2 (n)|, |v1 (n)| > |β31v3 (n)| and |v1 (n)| >

|β41v4 (n)|. These coupling factors are defined in section 6.2.1 and Figure 6.1. The coupling

factor varies from -15 dB to -30 dB for typical levels of crosstalk [57]. As a result, PA

driven by |α21x2 (n)| provides less nonlinearity in comparison to |x1 (n)| driven PA in first

transmitter path.

The output PA signal of first transmitter path in case of nonlinear crosstalk can be math-

ematically expressed as

v1 (n) =
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

i∑
h=0

x1 (n−m) l (n−m)

+
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

i∑
h=0

x2 (n−m) l (n−m)

+
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

i∑
h=0

x3 (n−m) l (n−m)

+
M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

i∑
h=0

x4 (n−m) l (n−m)

(6.17)

where
l (n) = l (|x1 (n)| , |x2 (n)| , |x3 (n)| , |x4 (n)|)

=
(
|x1 (n)|k−j|α21x2 (n)|j−i|α31x3 (n)|i−h|α41x4 (n)|h

) (6.18)

For a MIMO transmitter having coupling factor of -10 dB between branches i.e α21 =

α31 = α41 = (10)−10/20 = 1/(10)1/2, one can write that

l (n) =

|x1 (n)|k−j
∣∣∣∣∣ x2 (n)(

101/2
)∣∣∣∣∣
j−i∣∣∣∣∣ x3 (n)(

101/2
)∣∣∣∣∣
i−h∣∣∣∣∣ x4 (n)(

101/2
)∣∣∣∣∣
h
 (6.19)

The typical high nonlinearity order K of PAs would make these terms∣∣x2/
(
101/2

)∣∣j−i∣∣x3/
(
101/2

)∣∣i−h∣∣x4/
(
101/2

)∣∣h tend to be negligible and the contribution of

l(n) function to the overall output of the system will decay with the order of the nonlinearity

K. Therefore this would result in a model with a reduced nonlinearity order when compared

to the nonlinearity order of the model where the system is driven only with actual carrier

signal without leaking crosstalk signals.

The expansion and simplification of first term of equation (6.17) is shown in Appendix

B. Correspondingly, rearranging rest three terms of equation (6.17) using the equation (B.2),
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the output of a transmitter path in case of nonlinear crosstalk can be mathematically modeled

as

y1 (n) =
M∑

m=0

K−1∑
k=0

c
(1)
m,k,1 · x1 (n−m) · |x1 (n−m)|k

+
M∑

m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,1 · x1 (n−m) |x1 (n−m)|k−j |x2 (n−m)|j−i|x3 (n−m)|i−h|x4 (n−m)|h

+
M∑

m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,2 · x2 (n−m) |x1 (n−m)|k−j |x2 (n−m)|j−i|x3 (n−m)|i−h|x4 (n−m)|h

+
M∑

m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,3 · x3 (n−m) |x1 (n−m)|k−j |x2 (n−m)|j−i|x3 (n−m)|i−h|x4 (n−m)|h

+
M∑

m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,4 · x4 (n−m) |x1 (n−m)|k−j |x2 (n−m)|j−i|x3 (n−m)|i−h|x4 (n−m)|h

(6.20)

where c(1)
m,k,j,i,h,1 are the coefficients and

f (n−m) = f (|x1 (n−m)| , |x2 (n−m)| , |x3 (n−m)| , |x4 (n−m)|)

= |x1 (n−m)|k−j|x2 (n−m)|j−i|x3 (n−m)|i−h|x4 (n−m)|h
(6.21)

In case of linear crosstalk, the PA output would be a linear transfer function of cross-over

single-input nonlinear memory polynomial functions. Again its nonlinearity order is much

lesser than the nonlinearity due to the actual carrier input signal. Thus the output of the

proposed model including both linear and nonlinear crosstalk can be expressed as

y1 (n) =
M∑
m=0

K−1∑
k=0

c
(1)
m,k,1 · x1 (n−m) · |x1 (n−m)|k

+
M∑
m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,1 · x1 (n−m) · f (n−m)

+
M∑
m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,2 · x2 (n−m) · f (n−m)

+
M∑
m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,3 · x3 (n−m) · f (n−m)

+
M∑
m=0

K/2∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,4 · x4 (n−m) · f (n−m)

+
M∑
m=0

K/2−1∑
k=0

c
(1)
m,k,2 · x2 (n−m) · |x2 (n−m)|k

+
M∑
m=0

K/2−1∑
k=0

c
(1)
m,k,3 · x3 (n−m) · |x3 (n−m)|k

+
M∑
m=0

K/2−1∑
k=0

c
(1)
m,k,4 · x4 (n−m) · |x4 (n−m)|k

(6.22)

Indirect learning approach is used to perform the DPD [22]. In this approach, while

performing inverse modeling of PA, the complex baseband normalized input signal and nor-

malized output signal are replaced with each other.
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The matrix form of equation (6.22) is represented as

y=Vc (6.23)

where c is a vector of coefficients to be extracted, V is the observation (predistorter) matrix

containing the terms of DPD input/PA feedback output and y is a vector of output of model.

Then using the Least-Squares (LS) solution, ĉ is extracted as

ĉ=
(
VHV

)−1
VHy=V+y (6.24)

where VH denotes hermitian transpose of V and V+ is called the pseudo-inverse.

6.4.1 Complexity comparison between DPD models

The running complexity of a DPD model is the number of mathematical operations done

for each sample. In digital signal processor, it is measured in terms of floating point oper-

ations (FLOPs). The complex-complex addition and complex-complex multiplication op-

eration require 2 and 6 flops respectively [30]. Table 6.10 shows the comparison between

the numbers of coefficients and flops of the different DPD models. The number of coeffi-

cients required by COMP model from equation (6.5) for a single transmitter branch in 4×4

MIMO is 4(M + 1)K. It requires 4(M + 1)K complex-complex multiplication operations

and 4(M + 1)K-1 complex-complex addition operations. The total number of flops re-

quired by COMP model for a single transmitter branch in 4×4 MIMO is 8× 4(M + 1)K-2.

Thus, the total number of coefficients and flops required by COMP model in 4×4 MIMO are

16(M + 1)K and 128(M + 1)K-8 respectively.

The number of coefficients required by PH model from equation (6.6) for a single trans-

mitter branch in 4×4 MIMO is 4(M + 1)K(K + 1)(K + 2)(K + 3)/24. The total num-

ber of flops required by PH model for a single transmitter branch in 4×4 MIMO is 8 ×

4(M + 1)K(K + 1)(K + 2)(K + 3)/24-2. Thus, the total number of coefficients and

flops required by PH model in 4×4 MIMO is 2(M + 1)K(K + 1)(K + 2)(K + 3)/3 and

16(M + 1)K(K + 1)(K + 2)(K + 3)/3-8 respectively.

The number of coefficients required by proposed model from equation (6.22) for a single

transmitter branch in 4×4 MIMO is (M+1)K+3(M+1)×g(K)+4(M+1)×g(K)(g(K)+

1)(g(K) + 2)(g(K) + 3)/24, where g(K) is a floor function and g(K) = floor(K/2). The

total number of flops required by proposed model for a single transmitter branch in 4×4
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Table 6.10: Complexity comparison between different DPD Models in 4×4 MIMO Trans-

mitters

Models Total No. of Coef. in 4×4 MIMO Total No. of Flops in 4×4 MIMO

COMPM DPD 16(M + 1)K 128(M + 1)K-8

PH DPD 2(M + 1)K(K + 1)(K + 2)(K + 3)/3 16(M + 1)K(K + 1)(K + 2)(K + 3)/3-8

Proposed DPD 4(M+1)[K+3g(K)+g(K)(g(K)+1)(g(K)+2)(g(K)+3)/6] 32(M+1)[K+3g(K)+g(K)(g(K)+1)(g(K)+2)(g(K)+3)/6]-8

Figure 6.9: Total number of coefficients and flops of different models as a function of non-

linearity order K and fixed memory depth M=4.

MIMO is 8(M + 1)[K + 3g(K) + g(K)(g(K) + 1)(g(K) + 2)(g(K) + 3)/6]-2. Thus,

the total number of coefficients and flops required by the proposed model in 4×4 MIMO is

4(M + 1)[K + 3g(K) + g(K)(g(K) + 1)(g(K) + 2)(g(K) + 3)/6] and 32(M + 1)[K +

3g(K) + g(K)(g(K) + 1)(g(K) + 2)(g(K) + 3)/6]-8 respectively.

ACO-MP Model has been derived only for 2×2 MIMO transmitters [57] and there is

no straightforward mathematical derivation of this model for higher dimension of MIMO

transmitters; for this reason it is not included in Table 6.10 as well as in the comparison of

the performance of the different models in section 6.4.3.

Figure 6.9 shows the total number of coefficients and number of flops of different DPD

models for a fixed memory depth M=4 and nonlinearity order K from 4 to 8. As from the

figure, the proposed DPD model has less number of coefficients and flops than PH model.

6.4.2 Measurement Setup

Figure 6.10 shows the measurement setup for MIMO transmitter. The measurement setup

consists of a Tektronix transmitter (AWG5200), couplers, different LTE signals, RF PAs, at-
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(a)

(b)

Figure 6.10: (a) Block Diagram and (b) Photograph of Measurement Setup used for MIMO

Transmitter.

Figure 6.11: Effect of the nonlinear crosstalk on the behavioral modeling of the different

models in 4×4 MIMO.

tenuators and VSA (MXA N9020B) as a transmitter observation receiver. AWG5200 trans-

mitter has four RF output channels which samples signals at 200 Msps. Four different LTE

signals of 40 MHz bandwidth are transmitted at a carrier frequency of 4 GHz from AWG and

these RF signals are passed through 4×4 coupling network. The outputs of these couplers
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Table 6.11: Behavioral modeling results for different models in 4×4 MIMO Transmitters of

LTE 40 MHz Signal

Case I Case II

Models
NMSE

(dB)

ACEPR

(dBc)

Total No. of

Coef./Flops

NMSE

(dB)

ACEPR

(dBc)

Total No. of

Coef./Flops

COMPM -37.72 -49.92 480/3832 -36.26 -47.04 480/3832

PH -41.32 -54.82 10080/80632 -39.45 -52.51 10080/80632

Proposed -41.15 -54.30 1500/11992 -39.36 -52.20 1500/11992

Table 6.12: Behavioral modeling results for different models in 4×4 MIMO Transmitters of

LTE 111 30 MHz Signal

Case I Case II

Models
NMSE

(dB)

ACEPR

(dBc)

Total No. of

Coef./ Flops

NMSE

(dB)

ACEPR

(dBc)

Total No. of

Coef./ Flops

COMPM -38.97 -48.58 480/3832 -37.24 -48.05 480/3832

PH -42.34 -56.50 10080/80632 -41.12 -54.71 10080/80632

Proposed -42.25 -56.54 1500/11992 -41.01 -54.68 1500/11992

are passed through the four similar PAs (model: ZX60-V63+). The ZX60-V63+ PA has 15

dBm output power at 1 dB gain compression and output frequency ranging from 0.05 to 6

GHz. The outputs of PAs are then passed through 4×4 coupling network and then through a

switch to be selectively captured by the VSA. A 10 MHz reference is provided from AWG

to VSA for phase synchronization. The measurements are also done for four different LTE

carriers aggregated (CA) 111 signals of 30 MHz bandwidth each. 30 MHz LTE RF sig-

nals are generated by AWG at a carrier frequency of 1.9 GHz. These RF signals are passed

through 4×4 coupling networks to induce the nonlinear crosstalk and then passed through

four amplifiers; each is constituted by a driver PA (model: ZX60-2411BM-S+) and a 15–W

class AB PA. ZX60-2411BM-S+ PA has 24 dBm output power respectively at 1 dB gain

compression and output frequency ranging from 0.8 to 2.4 GHz. The 15–W Class-AB is a

gallium nitride (GaN) based PA, biased at a drain voltage of 28 V and drain current of 90

mA. The outputs of PAs are then passed through 4×4 coupling network and then through
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Table 6.13: DPD results for different models in 4×4 MIMO Transmitters of LTE 40 MHz

Signal

Case I Case II

Models
NMSE

(dB)

ACPR

(dBc)

Total No. of

Coef./Flops

NMSE

(dB)

ACPR

(dBc)

Total No. of

Coef./Flops

W/O

DPD
-9.47 -39.31 N/A -7.71 -37.38 N/A

COMPM

DPD
-36.67 -49.51 480/3832 -34.04 -47.11 480/3832

PH

DPD
-40.94 -54.56 10080/80632 -38.93 -52.29 10080/80632

Proposed

DPD
-40.75 -54.13 1500/11992 -38.86 -52.04 1500/11992

a switch to be selectively captured by the VSA for signal acquisition, downconversion and

demodulation purposes.

6.4.3 Measurement Results

6.4.3.1 Behavioral Modeling Results

The behavioral modeling performance is measured in terms of metrics like ACEPR and

NMSE.

Figure 6.11 shows the effect of nonlinear crosstalk on the behavioral modeling of dif-

ferent models. The behavioral modeling is performed for nonlinearity order K=6, memory

depth M=4 in 4×4 MIMO for 40 MHz LTE signal. PH and proposed models have nearly

same NMSE and ACEPR performance. For stronger nonlinear crosstalk (-10 dB, -15 dB),

NMSE performance of the proposed model is better than COMP model by 4 dB. For weaker

nonlinear crosstalk (-25 dB), NMSE performance of the proposed model is still better than

COMP model by 2 dB.

The behavioral modeling is also performed for 4×4 MIMO transmitters for two different

cases and different LTE signals. In Case I, -15 dB nonlinear crosstalks are introduced in

all branches of MIMO transmitters. In Case II, -15 dB nonlinear crosstalks and -15 dB
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Table 6.14: DPD results for different models in 4×4 MIMO Transmitters of LTE 111 30

MHz Signal

Case I Case II

Models
NMSE

(dB)

ACPR

(dBc)

Total No. of

Coef./Flops

NMSE

(dB)

ACPR

(dBc)

Total No. of

Coef./Flops

W/O

DPD
-8.22 -39.86 N/A -6.46 -39.22 N/A

COMPM

DPD
-37.48 -48.47 480/3832 -35.92 -47.82 480/3832

PH

DPD
-41.24 -56.33 10080/80632 -40.45 -54.86 10080/80632

Proposed

DPD
-41.05 -56.04 1500/11992 -40.18 -54.39 1500/11992

linear crosstalks are introduced in all branches of MIMO transmitter. Table 6.11 shows the

behavioral modeling performance of different models for 40 MHz LTE signal for the above

two cases at K=6 and M=4. In both cases, the proposed model has nearly same NMSE and

ACEPR with less number of coefficients and flops as compared to PH model. The proposed

model has better NMSE and ACEPR as compared to COMP model. Table 6.12 shows the

behavioral modeling performance of different models for 30 MHz LTE 111 signal for both

cases at K=6 and M=4. Again, in both cases, the proposed model has nearly same NMSE

and ACEPR with much less number of coefficients and flops as compared to PH model.

6.4.3.2 DPD Results

The linearization performance of the DPD model is measured in terms of metrics like ACPR

and NMSE.

DPD is also performed for 4×4 MIMO transmitters for the above two cases having dif-

ferent LTE signals. Table 6.13 shows the DPD results of different models for 40 MHz LTE

signals for the above two cases at K=6, and M=4. In both cases, the proposed model has

nearly same NMSE and ACPR with less number of coefficients and flops as compared to

PH model. The Proposed model has better NMSE and ACPR as compared to COMP model.

Table 6.14 shows the DPD results of different models for 30 MHz LTE 111 signals for both
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(a) (b)

(c) (d)

Figure 6.12: Frequency Power Spectra of various DPD model for (a) 40 MHz LTE signal

for case I in 4×4 MIMO, (b) 40 MHz LTE signal for case II in 4×4 MIMO, (c) 30 MHz

LTE signal for case I in 4×4 MIMO and (d) 30 MHz LTE signal for case II in 4×4 MIMO

Transmitters.

cases at K=6 and M=4. Again, in both cases, the proposed model has nearly same NMSE

and ACPR with less number of coefficients and flops as compared to PH model.

Figure 6.12 shows the frequency power spectra of various DPD models. It is clear from

the figures that the ACPR of the proposed model is nearly same as PH model. ACPR of the

proposed model is better than COMP model.

Figure 6.13 shows the constellation plot of the output of PA without DPD and proposed

DPD output. This constellation plot is for 64-QAM of 40 MHz LTE signal. As from Fig-

ure 6.13, constellation plot of the output of PA without DPD is much distorted and has

error vector magnitude (EVM)=7.31%. The Proposed DPD output is linearized and has

EVM=1.08%.
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Figure 6.13: Constellation diagram of PA output without DPD and Proposed DPD output.

6.5 Conclusion

In the first part of this chapter, we present a one-step digital solution for linearization and

compensation of transmitter’s impairment in MIMO topology. The proposed NN-based DPD

model is implemented in 2×2 and 3×3 MIMO transmitters having impairments like PA non-

linearity, crosstalk, I/Q imbalance and dc offset. The proposed NN-based DPD model shows

good results as compared to other DPD models with less number of coefficients (weights and

biases) as the order of MIMO transmitters increases. This proposed model could be extended

for linearization and compensation of impairments present in massive MIMO for 5G wire-

less communication. It is to be noted that the neural network based methods are generally

considered complex over its polynomial counterpart. However, in the case of MIMO, due to

use of the single DPD block, this complexity is justified.

In the second part of this chapter, we present a novel, less complex DPD model for

linearization of MIMO transmitters by considering that the crosstalk would be weaker in

strength as compared to the actual carrier input signal in a given branch of a MIMO trans-

mitter. The proposed DPD model is implemented in 4×4 MIMO transmitters having impair-

ments like PA nonlinearity, nonlinear crosstalk and linear crosstalk. The results show that

nonlinearity due to crosstalk can be modeled by half of the nonlinearity order as compared

to the nonlinearity order of the main branch. This reduces the model complexity, number

of mathematical operations and coefficient extraction burden of DPD. The proposed model

could be extended for linearization and compensation of impairments present in large scale

or massive MIMO for 5G wireless communications. This can be anticipated since, in partic-
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ular situations, the effects of crosstalk between branches of MIMO transmitters will decay

significantly beyond the second adjacent branches with respect to a given branch of massive

MIMO transmitter. Therefore the proposed model can be extended to large-scale MIMO

transmitters that can be considered as a cluster of 4×4 transmitters.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The focus of this thesis is to reduce model complexity and improve numerical stability of

DPD model, while maintaining linearization performance of DPD for distortions due to ana-

log imperfections such as PA nonlinearity, I/Q imbalance, cross-band inter modulation and

cross-branch interference for concurrent multi-band and multi-channel transmission. The

attainments of this thesis are concluded as follows:

1. The MP-PCA DPD model is proposed. The main advantages of this model are:

• The proposed MP-PCA model has comparable performance in terms of NMSE

and ACEPR in 64-bit double floating point calculation but with a reduced number

of coefficients, condition number and dispersion coefficient as compared with the

conventional MP model and OMP model.

• NMSE and ACEPR performances are better in MP-PCA model as compared to

MP model and OMP model for the 16-bit fixed point DSP.

2. The novel Independent Component Analysis (ICA) method for the DPD models is

proposed, which is suitable for all three cases (intraband contiguous, intra-band non-

contiguous and inter-band non-contiguous) of CA. The main advantages of this model

are:

• MP-ICA has least condition number and dispersion coefficient as compared with

the MP, OMP and MP-PCA model in intra-band and inter-band carrier aggrega-

tion.
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• The proposed ICA based DPD model is implemented in 12-bit fixed point DSP

and shows good linearization results.

3. The 2D-CHMP model is proposed for linearization in concurrent dual-band transmit-

ters operating at harmonic frequencies. The main advantages of this model are:

• The proposed 2D-CHMP model is constructed by simplifying the envelope terms

of the 2D-HMP model.

• The total number of coefficients of the 2D-CHMP model is (K + 1)/2 times

lesser than the 2D-HMP model.

• Also, the computational complexity of 2D-CHMP DPD is (K + 1)/6 and 3(K +

1)/14 times lesser than 2D-HMP DPD for two and three LS iterations respec-

tively.

4. The 3D-HMP and 3D-HVS DPD models are proposed to mitigate the in-band har-

monic distortions, CMDs and IMDs generated by ultra-wideband PA when carrier

signals are transmitted at harmonic frequencies in the concurrent tri-band transmitter.

5. A one-step digital solution for linearization and compensation of transmitters’ impair-

ments in MIMO topology is proposed. The main advantages of this model are:

• The proposed NN-based DPD model is implemented in 2×2 and 3×3 MIMO

transmitters having impairments like PA nonlinearity, crosstalk, I/Q imbalance

and dc offset.

• The proposed NN-based DPD model shows good results as compared to other

DPD models with less number of coefficients (weights and biases) as the order

of MIMO transmitters increases.

6. A less complex polynomial-based DPD model is also proposed for linearization of

MIMO transmitters by considering that nonlinearity introduced due to crosstalk would

be less severe than the PA nonlinearity already present in the branches of MIMO trans-

mitters. The main advantages of this model are:

• The proposed polynomial-based DPD model is implemented in 4×4 MIMO trans-

mitters having impairments like PA nonlinearity, nonlinear crosstalk and linear

crosstalk.
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• The results show that nonlinearity due to crosstalk can be modeled by half of the

nonlinearity order as compared to the nonlinearity order of the main branch. This

reduces the model complexity and coefficient extraction burden of DPD.

7.2 Future Work

Some of the potential future directions are listed as follows:

• The complexity of 3D-HMP and 3D-HVS models presented for DPD of concurrent tri-

band transmitter operating at harmonics frequencies are very high. One of the direction

for the future work would be to reduce model complexity of 3D-HMP and 3D-HVS

models. The pruning techniques like PCA, ICA and compressed sampling (CS) can be

used further to reduce model complexity.

• The proposed polynomial-based DPD model is presented for 4×4 MIMO transmitters.

Another area of suggested future work would be extension of this polynomial-based

DPD model for Massive MIMO transmitters. It can further include investigation of

complexity reduction on behavioral modeling performance.

• The DPD technique can be used as spectrum and power efficient technique in high

speed train communications, IOTs, D2D communications and other future commu-

nication applications. Power consumption and RF interference control are the key

requirements of any efficient transceiver system. The nonlinearity produced by the

RF PAs in transceiver devices should be addressed because it not only decreases the

transmission quality, but also increases the interference among channels.

• With in a complete transceiver system an investigation regarding the challenges for

implementing DPD in frequency hopping systems such as Wi-Fi can be done on how

the implemented DPD designs can allow faster frequency hopping. To exclude the

need of manual adjustment an automatic calibration can be added to fine tune the

system.

• Another area of suggested future work is to investigate the performance and limita-

tions of existent DPD models for latest 5G signals such as Filter Bank Multi-Carrier

(FBMC), Generalized Frequency Division Multiplexing (GFDM), Universal Filtered
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Multi-Carrier (UFMC), Filtered-OFDM (F-OFDM), Biorthogonal Frequency Division

Multiplexing (BFDM) signal etc. This investigation will involve the effect of different

bandwidths of these signals on performance of behavioral modeling and DPD.
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Appendix A

Evaluation of elements of Jacobian

Matrix J

The elements of jacobian matrix equation (6.16) are calculated using backpropagation algo-

rithm. In this algorithm, the error of the outer layer is calculated as

δl+1 = f ′
(
netl+1

)
(A.1)

After that error of the previous layer is calculated as

δl = f ′
(
netl

) (
Wl+1

)T
δl+1 (A.2)

Then, partial derivative with respect to weight is calculated as

∂V

∂wlji
= δljo

l−1
i (A.3)

and partial derivative with respect to bias is calculated as

∂V

∂blj
= δlj (A.4)

The partial derivatives of inner layers can be found by repeating the above procedure ((A.1)–

(A.4)). These partial derivatives with respect to weight and with respect to bias are the

elements of the Jacobian matrix.
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Appendix B

Simplification of Parallel Hammerstein

Model

The expansion and simplification of first term of equation (6.17) is as follows

M∑
m=0

K−1∑
k=0

k∑
j=0

j∑
i=0

i∑
h=0

x1 (n−m) ·

(
|x1 (n−m)|k−j

∣∣∣∣x2(n−m)

(101/2)

∣∣∣∣j−i∣∣∣∣x3(n−m)

(101/2)

∣∣∣∣i−h∣∣∣∣x4(n−m)

(101/2)

∣∣∣∣h
)

=
M∑
m=0

K−1∑
k=0

x1 (n−m) · |x1 (n−m)|k

+
M∑
m=0

K/2−1∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

x1 (n−m) ·

(
|x1 (n−m)|k−j

∣∣∣∣x2(n−m)

(101/2)

∣∣∣∣j−i∣∣∣∣x3(n−m)

(101/2)

∣∣∣∣i−h∣∣∣∣x4(n−m)

(101/2)

∣∣∣∣h
)

+
M∑
m=0

K−1∑
k=K/2

k∑
j=1

j∑
i=1

i∑
h=1

x1 (n−m) ·

(
|x1 (n−m)|k−j

∣∣∣∣x2(n−m)

(101/2)

∣∣∣∣j−i∣∣∣∣x3(n−m)

(101/2)

∣∣∣∣i−h∣∣∣∣x4(n−m)

(101/2)

∣∣∣∣h
)

(B.1)

Due to the fact that the high order terms have a week contribution as mentioned above

in section 6.4, one can simplify equation (B.1) by neglecting the third term dedicated to

the nonlinearity order of K/2 to K-1 and replacing the coupling factors of second term by

coefficient c(1)
m,k,j,i,h,1. The first term of equation (B.1) is the crosstalk-free response of the

first branch of the 4×4 transmitter.

Considering the above, the first term of equation (6.17) simplifies as

M∑
m=0

K−1∑
k=0

x1 (n−m) · |x1 (n)|k

+
M∑
m=0

K/2−1∑
k=1

k∑
j=1

j∑
i=1

i∑
h=1

c
(1)
m,k,j,i,h,1x1 (n−m) · |x1 (n)|k−j|x2 (n)|j−i|x3 (n)|i−h|x4 (n)|h

(B.2)
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[55] S. Amin, P. N. Landin, P. Händel, and D. Rönnow, “Behavioral modeling and lin-

earization of crosstalk and memory effects in RF MIMO transmitters,” IEEE Trans.

Microw. Theory Techn., vol. 62, no. 4, pp. 810–823, Apr. 2014.

[56] D. Saffar, N. Boulejfen, F. Ghannouchi, A. Gharsallah, and M. Helaoui, “Behavioral

modeling of MIMO nonlinear systems with multivariable polynomials,” IEEE Trans.

Microw. Theory Techn., vol. 59, no. 11, pp. 2994–3003, Nov. 2011.

[57] A. Abdelhafiz, L. Behjat, F. M. Ghannouchi, M. Helaoui and O. Hammi, “A High-

Performance Complexity Reduced Behavioral Model and Digital Predistorter for

130



BIBLIOGRAPHY

MIMO Systems With Crosstalk,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1996–

2004, May 2016.

[58] H. Qian, X. Cheng, X. Luo and W. Feng, “Calibration of Nonlinear Crosstalk in

MIMO Transmitter,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3739–3748, May

2017.

[59] M. Alizadeh, S. Amin and D. Rönnow, “Measurement and Analysis of Frequency-

Domain Volterra Kernels of Nonlinear Dynamic 3×3 MIMO Systems,” IEEE Trans.

Instrum. Meas., vol. 66, no. 7, pp. 1893–1905, Jul. 2017.

[60] E. Zenteno and D. Rönnow, “MIMO Subband Volterra Digital Predistortion for Con-

current Aggregated Carrier Communications,” IEEE Trans. Microw. Theory Techn.,

vol. 65, no. 3, pp. 967–979, March 2017.

[61] A. Vaezi, A. Abdipour, A. Mohammadi and F. M. Ghannouchi, “On the Modeling

and Compensation of Backward Crosstalk in MIMO Transmitters,” IEEE Microw.

Wireless Compon. Lett., vol. 27, no. 9, pp. 842–844, Sept. 2017.

[62] L. Guan, and A. Zhu, “Low-Cost FPGA Implementation of Volterra Series-Based

Digital Predistorter for RF Power Amplifiers,” IEEE Trans. Microw. Theory Techn.,

vol. 58, no. 4, pp. 866–872, Apr. 2010.

[63] L. Guan, and A. Zhu, “Optimized Low-Complexity Implementation of Least Squares

Based Model Extraction for Digital Predistortion of RF Power Amplifiers,” IEEE

Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 594–603, Mar. 2012.

[64] F. M. Barradas, T. R. Cunha, P. M. Lavrador, and J. C. Pedro, “Polynomials and

LUTs in PA Behavioral Modeling: A Fair Theoretical Comparison,” IEEE Trans.

Microw. Theory Techn., vol. 62, no. 12, pp. 3274–3285, Dec. 2014.

[65] I.T. Jolliffe, “Principal Component Analysis,” Springer-Verlag, 2002.

[66] R. Neil Braithwaite, “Wide bandwidth adaptive digital predistortion of power am-

plifiers using reduced order memory correction,” in IEEE MTT-S Int. Microw. Symp.

Dig., Jun. 2008, pp. 1517–1520.

131



BIBLIOGRAPHY

[67] P. L. Gilabert et al., “Order reduction of wideband digital predistorters using prin-

cipal component analysis,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA,

USA, Jun. 2013, pp. 1–4.

[68] P. L. Gilabert and G. Montoro, “3-D Distributed Memory Polynomial Behavioral

Model for Concurrent Dual-Band Envelope Tracking Power Amplifier Lineariza-

tion,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 638–648, Feb. 2015.

[69] Y. Lin, C. Quindroit, H. Jang, and P. Roblin, “3-D Fourier Series Based Digital Pre-

distortion Technique for Concurrent Dual-Band Envelope Tracking With Reduced

Envelope Bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2764–

2775, Sep. 2015.

[70] T. Wang, P. L. Gilabert, and G. Montoro, “Under-sampling effects and computational

cost reduction in RF power amplifier behavioral modeling,” in Proc. European Mi-

crowave Integrated Circuits Conf., Sep. 2015, pp. 57–60.

[71] P. Jaraut, and M. Rawat, “Application of principal component analysis based ef-

fective digital predistortion technique for low-cost FPGA implementation,” Int. J.

RF and Microw. Comput.-Aided Eng., vol. 27, no. 6, pp. 1–15, Aug. 2017, DOI:

10.1002/mmce.21095.

[72] S. S. Lokesh, A. Kumar, and M. Agrawal, “On the hierarchical least-squares algo-

rithm,” IEEE Commun. Lett., vol. 6, no. 4, pp. 153–155, Apr. 2002.

[73] S. S. Lokesh, A. Kumar, and M. Agrawal, “Structure of an Optimum Linear Precoder

and its Application to ML Equalizer,” IEEE Trans. Signal Processing, vol. 56, no. 8,

pp. 3690–3701, Aug. 2008.

[74] G. H. Golub, and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD,

USA: The Johns Hopkins Univ. Press, 1996, ch. 2, p. 81.

[75] E. W. Cheney, and D. Kincaid, Numerical Mathematics and Computing, 7th ed. Pa-

cific Grove, CA, USA: Brooks/Cole, 2008, ch. 8, p. 321.

[76] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, U.K.: Claredon Press,

1995, p. 374.

132



BIBLIOGRAPHY

[77] B. Beckermann, “The condition number of real Vandermonde, Krylov and positive

definite Hankel matrices,” Numer. Math., vol. 85, no. 4, pp. 553–577, Apr. 2000.

[78] M. Rawat, F. M. Ghannouchi, and K. Rawat, “Three-layered biased memory poly-

nomial for modeling and predistortion of transmitters with memory,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 768–777, Mar. 2013.
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