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Abstract

Object motion trajectory classification is the important task, especially when we aim to detect abnor-

mal movement patterns in order to take appropriate actions for prohibiting unwanted events to occur.

Given a set of trajectories recorded over a period of time, they can be clustered for understanding

usual flow of movement or segmentation of unusual flows.

With the advancement in low-cost sensors object trajectories can be recorded efficiently with

ease. These sensors can be RGB video camera, depth camera like Kinect, and Global Positioning

System (GPS). With the use of GPS, the real world coordinates of objects along with other related

information are tracked and later processed for the real-time analysis of mass flow, crowd analysis,

and anomaly detection in the flow.

Video based trajectory analysis could be on-line or off-line. In on-line, objects are tracked in

the live videos and there motion is analyzed immediately to make the higher order decisions like

prohibiting the objects to enter restricted area, unstable areas like fire and floods, and situations

like violence. Video trajectory classification is also done off-line, where object trajectories are

first extracted from the recorded videos. Next, their motion is analyzed for off-line analysis by

classifying the trajectories into different classes.

In this thesis, we have focused on off-line analysis for the classification of object trajectories

using the publicly available datasets. Using the local information along with global information is

an efficient way to improve classification performance. To compute the local cues from trajectories,

models could be built by partitioning the trajectories into variable number of segments based on the

geometry of the trajectories.

A graph based method for trajectory classification has been proposed. Each trajectory has been

partitioned into varying number of segments based on its geometry. Complete Bipartite Graph

(CBG) is formed between each trajectory pair and there Dynamic Time Warping (DTW) distance

is used as the weight of the edge between them. Local costs are computed from the CBG and then

fused (using Particle Swarm Optimization (PSO)) with the global cost (global cost computed using

iii



the same full length trajectory-pair) to improve the classification performance.

We have also proposed a kernel transformation followed by trajectory classification framework

that make the use of information from local segments. The proposed kernel perform the shrinking of

trajectories in such a way they preserve their shape. Modified trajectories have been segmented with

the help of segmental HMM and their local responses have been recorded. These local responses

along with global responses (from full length trajectories) have been fused using genetic algorithm

to make the final decision.

A surveillance scene segmentation has been performed based on the results of trajectory clas-

sification using HMM. The scene layout is divided into 10 × 10 local non-overlapping grids and

majority voting based scheme is applied to assign each block a label showing the importance of

the blocks with the help of region association graph based features. Such off-line analysis helps to

understand the flow of motion within the viewing field of video camera.
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Chapter 1

Introduction

Trajectory analysis is the area that deals with the study of objects by analyzing their motion dynam-

ics. It involves the classification or clustering of motion patterns for the understanding of behavior

of objects to make higher order decisions such as scene segmentation, lane classification, traffic

analysis [1, 3, 4], autonomous driving [5–7], parkinglot system [8], and motion anomaly detec-

tion [9, 10]. Objects could be humans, robots, and vehicles. Before making the classification or

clustering, first, motion or the movements of the objects are recorded with the help of sensors like

Video camera, GPS, and vehicular adhoc networks. Next, trajectory information is tracked [11–16]

and extracted from it. Finally, models are built using the extracted trajectories which involve trajec-

tory pre-processing, feature extraction, model training followed by the final classification.

There exist methods to classify the data patterns in supervised fashion through classifiers as well

as in unsupervised fashion through clustering [17–20] that employ global or full length trajectories.

Such methods are adopted for the classification or clustering of trajectory data. The classifiers

such as Hidden Markov Model (HMM) [21], Neural Network [16, 22, 23], Support Vector Machine

(SVM) [24], K-NN [25] and clustering algorithm like k-means [27] have been used for images,

time series, and trajectory classification. Similarity measures like Dynamic Time Warping (DTW)

[28, 29, 32], Longest Common Sub-Sequence (LCSS) [17], adaptive dissimilarity index [36], link

structure [37] are widely used for sequence matching like signatures and are capable of matching

trajectories. Graph based methods [38, 39] have also been proposed for similarity matching and

rating prediction [39]. These classifiers, clustering algorithms, and similarity measures are keys for

building a classification system and can be used either directly or indirectly for trajectory analysis.

1
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In addition to these, kernels are defined [41,42] to project the trajectory points into another space

so that trajectories can be modified to accomplish the predefined objective. The objective could be

to reduce the intra-class variance, or to improve the classification performance. Such kernels use

trajectory information like positions, and speed. to make an update to the original trajectories to

generate new representation.

Also, the graph based methods can be exploited in several ways for trajectory classification.

Like, trajectories can be structured into graphs by considering trajectory points as graph nodes or

a trajectory itself can be considered as a single node of the graph and pair-wise similarity can be

computed using similarity matching algorithms like DTW [28,32]. In this case, few trajectories can

be chosen as template or reference for estimating the matching score of a test trajectory.

Though the global information i.e. use of full length trajectories as a whole is the straight

forward solution for trajectory modeling, local information [43] can also be exploited. The cues es-

timated globally can also be estimated over local segments. Later, the local and global responses can

be combined to optimize the performance. The optimization can be done using iterative algorithms

like Genetic Algorithm (GA) [44, 45], and Particle Swarm Optimization (PSO) algorithm [46, 47].

Such a way is a lead to improved models that can classify the trajectories with high classification

rate.

Typically, a trajectory T (∈ R2) of an object can be viewed as a sequence of position coordinates

that the object follows as given in Eq. 1.0.1. These coordinates either be image coordinates or they

may belong to the real world. Such a few samples of trajectories are depicted in Figure 1.1.

T = {(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)} (1.0.1)

Thus, given a set of trajectories, the aim is to correctly classify them to respective clusters. This

would help to understand the underlying motion.
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Figure 1.1: Few examples of trajectories (red, green, blue) plotted over a scene image. They repre-
sent the different movement pattern followed by some vehicles in the surveillance area in the field
of view of camera.

1.1 Motivation

Trajectory classification is an important problem as it helps in understanding the nature of move-

ments of the objects by analyzing their motion pattern. Here, nature may represent the class of a

trajectory it should belong to. Thus, trajectory modeling for the classification is the mapping from

motion pattern to corresponding class. Trajectory classification models analyze the motion patterns

and associate them to some classes. These classes are defined as per the application for which the

models are built e.g. lane detection and classification, finding usual motion patterns, and anomaly

detection. Such problems are very crucial in today’s world and need high attention for making

efficient systems like traffic analysis, security, scene understanding, and post event analysis.

Trajectory classification faces various challenges that make it difficult to correctly classify the

trajectories into corresponding clusters. First, any two trajectories may not be having identical

length in general even if they belong to same class or cluster. Similarly, two trajectories from

different classes may have identical length. This may happen due to the motion dynamics during

the tracking of the object in motion and obviously the tracking algorithm. Figure 1.2 shows two

trajectories from the same class plotted on the scene image. However, they differ in structure and

their lengths are also not same. This makes trajectory classification a tedious task.
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Figure 1.2: Samples of two trajectories associated with same class label. The shape and the length
of trajectories are different.

Secondly, given a set of labeled trajectories, it is quite possible that the number of trajectories

with a specific class may not match with the number of trajectories belong to the other class labels.

This situation is often seen in practice. This may create problem while building the classification

models. Let us take a scenario where we have two classes, say C1, and C2. Let us assume that the

number of trajectories associated with C1 be 15 and the number of trajectories associated with C2

be 100. In this particular case, the classification model may be biased towards class C2. This may

cause a high classification error. This is the another issue with trajectory classification.

Thirdly, it is usual with trajectories having overlapping i.e. trajectories from two different classes

may overlap with each other. Such classes may have high confusion in the classification results.

Figure 1.3 shows the samples of trajectories from two different classes plotted over the surveillance

scene image. It can be noticed that there is high overlapping among them.

1.2 Research Gaps

By doing a comprehensive literature survey, following are the research gaps we have come up with.

• There exist datasets on which the previous methods have lower classification rates. Kernel
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Figure 1.3: Example of trajectories from two classes (a) and (b) containing overlapping bound-
aries as depicted in (c). Note that, the classes show paths of trajectories from two different roads.
Different color represent different trajectory class.

transformations and combinations can be applied here. Hence, there is a need to improve

methodology so that higher classification rate can be achieved.

• Previous methods use full length trajectories, thus, cues from local segments can be incorpo-

rated to make a better classification system.

• Scene understanding plays a vital role in understanding the movement flow in the field of view

of camera which can further be used to predict the upcoming flow. As per our findings there

existing scene segmentation is based only on texture information of scene’s layout. There

is no significant work on scene segmentation based on movement patterns in the area under

coverage.

Based on the above mentioned discussion we define the research scope as given below.
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1.3 Problem Statement and Research Scope

To study various types of trajectories and then analyzing them for classifications/prediction from

recorded trajectories. The following objectives need to be addressed.

1. Improving trajectory classification using local information. Local information can be ex-

ploited by partitioning the trajectories into multiple segments.

2. Improving classification performance in standard trajectory datasets using the proposed kernel

and classifier combination. Defining a kernel transformation before trajectory classification.

3. Scene segmentation based on motion trajectory patterns in area under surveillance. Extracting

the graph based features for scene segmentation.

1.4 Specific Research Contributions

In this thesis, we have proposed local information based methods for trajectory classification using

surveillance trajectory datasets. Main contributions of the work are as follows.

• A graph based classification model has been proposed. A global cost is determined for each

trajectory pair considering full length. Next, each trajectory is partitioned into local segments.

The number of segments may not be same for a trajectory pair, in general. Using the seg-

ments, Complete Bipartite Graph (CBG) is formed and two local costs are determined from

CBG. The global and local costs are then combined in a linear fashion using Particle Swarm

Optimization (PSO). Finally, the classification results are computed from the combination.

• A new kernel along with segment-wise learning and combination based model has been pro-

posed. Segmental Hidden Markov Model base approach has been proposed in this study.

The new kernel uses trajectory positions, speed, end points, convex hull points, and douglas-

peucker points. HMM partitions the trajectories into fixed number of segments and learns

from individual segments along with full length trajectories. Genetic algorithm has been used

for the combination of individual scores.
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• Scene segmentation into local grids based on motion trajectory patterns in area under surveil-

lance has been proposed. In this work, the surveillance scene has been first divided into

10× 10 non-overlapping grids. Two features namely, block-label and node-number has been

extracted based on the work of [48]. Then the featured trajectories have been classified using

HMM followed by the scene segmentation using the classification results.

1.5 Organization of the Thesis

The thesis is divided into 6 Chapters. Each Chapter can be read independently without requiring

going back and forth. The content of each Chapter is described below.

Chapter 1: This Chapter gives the introduction of the proposed work. In particular, the Chapter

describes about: what is a trajectory, what is trajectory classification, How is it important, what is

the motivation behind it, what are the challenges, and what are the possible applications of trajectory

classification. This Chapter also covers the contribution of the work.

Chapter 2: In this Chapter, we present the review of the works related to trajectory classifi-

cation. How the researchers have tackled the problem of trajectory classification i.e. supervised

or unsupervised, similarity based, or classifier based. Based on the review, we found the scope of

research and contributed towards it.

Chapter 3: This Chapter presents a new method based on complete bipartite graph (CBG) and

PSO for trajectory classification. In this work, we fuse the global and the local costs (Local costs

computed from CBG) using PSO to improve the trajectory classification performance. Method is

tested using publicly available trajectory datasets.

Chapter 4: A new kernel and a new method based on the segmental HMM has been discussed

in this Chapter. The experimental results of the proposed method using public datasets have also

been presented. A detailed analysis of the results of this methods has also been discussed along with

the future possibilities of this work.

Chapter 5: A method for surveillance scene segmentation into local grids based on region

association graph and block importance using HMM is presented in this Chapter. The method has
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been compared with the existing work by implementation on public datasets.

Chapter 6: In this Chapter, we summarize our findings and the future directions that we plan to

focus on.



Chapter 2

Literature Survey

We organize the literature survey into Sections. In the first Section, we mention about the trajectory

classification and clustering approaches. In the second Section, we present the scene segmentation

related works. Graphs have also been used for trajectory modeling, such works have been discussed

in the third Section. The details are as follows.

2.1 Trajectory Modeling for Classification or Clustering

Spatio-temporal information of trajectories has widely been used in anomalous activity recognition

as proposed in [9, 10, 49] or detecting unusual movement patterns. In addition to that, moving

object trajectories have other applications including behavior analysis of the moving objects as given

in [50], traffic planning as in [1], movement pattern mining [51], scene segmentation or classification

as in [48]. In this Section, we present some of the existing research works that mainly focus on

pattern similarity measure and trajectory classification.

2.1.1 Pattern Similarity Measures

Finding similar patterns in object movement helps to understand the complex movement patterns

and localize objects with abnormal behavior. Researchers have used both supervised and unsuper-

9
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vised learning approaches for finding similarity score between trajectories. In unsupervised classi-

fication approaches, Dynamic Time Warping (DTW) [30–32] and Longest Common Sub-Sequence

(LCSS) have been successfully used for finding pairwise similarity among trajectories which are

then grouped into clusters using algorithms like K-means, Gaussian model [52] or similar clus-

tering algorithms [2, 53]. Authors of [28] proposed a path clustering method applicable to video

surveillance to identify suspicious behavior of moving objects using DTW. These similarity mea-

sures and classifiers have also been used in document processing [33–35] and are now being used

in trajectory clustering and classification. Authors of [17] proposed a three-stage hierarchical learn-

ing framework for analyzing object activities in surveillance system. This included node learning

or extraction of points of interest using Gaussian mixture modeling, spatial learning or routes be-

tween points of interest, and spatio-temporal learning for path activity using Hidden Markov Model

(HMM). The authors used LCSS distance measure for trajectory clustering using Fuzzy C-Means

algorithm.

Supervised classification algorithms adopt a different modeling technique with the help of

HMM [21, 54] or Neural Networks [22, 55] for finding similarity in trajectories or gestures. Au-

thors of [21] have proposed a human activity recognition system in video sequences as a two stage

process. Firstly, the authors estimated low-level models, i.e. mean translation and covariances using

Expectation Maximization (EM) algorithm. Next, the low-level models have been used to estimate

transition matrices for each activity class using HMM.

Authors of [56] have proposed a moving object detection and tracking system to detect abnormal

events in visual surveillance using Self Organizing Maps (SOM). Detection of moving objects has

been done using background modeling. The behavior recognition has been performed using two

Kohenen maps that distinguishes normal and abnormal activities based on the local motion and

global elliptic Fourier descriptors.

2.1.2 Trajectory Classification

Trajectory classification is a three-step process that includes trajectory estimation (tracking), feature

extraction, and grouping. However, majority of the existing methods primarily focus on detection

and tracking of objects before modeling their behavior. In [50], the authors have proposed dy-
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namic scene understanding methodology to identify the abnormal behavior of moving objects in

video surveillance. The trajectories have been represented as a sequence of symbols with features

including shapes, speed and crossed zones and are grouped into homogeneous clusters by using

a kernel based clustering algorithm. In [10], authors have proposed a hierarchical framework for

video anomaly detection in crowded scene by analyzing global and local spatio-temporal contexts.

The authors extracted 8-dimensional motion feature vector using histogram of optical flow which

has been used to discover atomic activity patterns using K-means clustering. However, their ap-

proach might report an abnormal activity as normal if the objects move slowly because of the low

magnitude of optical flow.

In [54], the authors proposed a trajectory pattern learning and an anomaly detection framework

applicable to traffic surveillance. The authors used Main Flow Direction (MFD) feature to group

trajectories using K-means algorithm for distinguishing outliers. The authors used HMM for route

pattern establishing in each cluster that helped in anomaly detection within a new trajectory based

on maximum likelihood threshold. The authors of [57] have proposed a model for trajectory anal-

ysis and semantic region retrieval using hierarchically linked HMM. Their framework retrieves the

semantic regions by modeling temporal dependencies between trajectories using shared transition

and emissions. An anomaly detection based framework [58] has been proposed using Hierarchi-

cal Dirichlet Process HMM (HDP-HMM). The framework models the human dynamics using GPS

trajectories to understand human motion area of dynamic traffic control. The model uses normal

trajectory data to detect contextual anomalies present in time series information of human motion

using latent states estimated using HDP-HMM.

A time series classification model using Hidden-Unit Logistic Model (HULM) has been pro-

posed in [59]. The model uses binary stochastic hidden units. Temporal dependencies are mod-

eled by connecting the hidden units in chains. The model works well on problems such as action

recognition, and character recognition. An online behavior classification framework has been pro-

posed in [60]. The authors use conformal predictor and multi-factor non-conformity measures us-

ing multidimensional trajectories. The framework has used multi-factor Hausdorff nearest neighbor

conformal classification to classify frequent behaviors. Their framework works as an early warn-

ing surveillance system in military and realistic civilian scenario. In [40], authors have proposed

a framework for modeling driver’s behavior in decision making during phase transition of signal

flashes using HMM. The framework observes the vehicles speed and acceleration (or deceleration)
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while the driver pass the signal or stops during signal flashing (3 flashes green, yellow and red).

Visual surveillance has grasped substantial attention of the computer vision research community.

A large number of research [61–65] have been reported on this topic over the last few years. In

many of these work, motion trajectories are first extracted from videos and further analyzed to

classify movement patterns on the basis of spatio-temporal relation. Classification can be applied

to anomalous activity recognition [9, 10, 49] or to filter out unusual patterns. Analysis of moving

object trajectories has several applications such as moving object behavior analysis [50, 66], traffic

planning [1], pattern mining [51], and scene classification [67].

Existing work can be categorized into two groups i.e. (a) pattern similarity measure and (b)

supervised classification. Pattern similarity measures may find similarity between two trajectories

using Dynamic Time Warping (DTW) [68], and Longest Common Sub-Sequence (LCSS) [69].

Trajectory classification can be done using K-means, and HMM [70, 71].

Similar movement patterns [52, 72–74] can be useful to understand inherent complex patterns

movements. Researchers have used supervised [52,72] as well as unsupervised [69,73–77] methods

for classification of trajectories. For unsupervised classification, DTW [68, 69] and LCSS [69, 78]

is popularly used to find out the pairwise similarity between trajectories and then group them into

clusters using K-means, Gaussian kernel based clustering [52] or other clustering approaches [53].

For supervised classification, researchers have often used Dynamic Bayesian Network (DBN) [79],

HMM [54], and Neural Networks [22, 55, 80, 81]. A semantic region modeling framework using

hierarchical Bayesian model called dual-Hierarchical Dirichlet Processes (dual-HDP) has been pro-

posed in [76]. In this paper, authors have focused mainly on distinguishing between normal and

abnormal trajectories where trajectories with low likelihood have been considered as abnormal.

In general, video-based trajectory classification comprises with three steps: (a) Trajectories are

first extracted from the videos (b) Feature extraction from raw trajectories (c) Building a model for

the classification of trajectories. Trajectory extraction involves tracking of moving objects. Majority

of the tracking approaches assume that the objects are first detected and tracked throughout the

sequence [61, 82] and the activities are then modeled as sequences of object movements. However,

some authors [83, 84] extract the trajectories by directly extracting motion and appearance based

features without relying on the use of a tracking module.
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Object size, velocity, mean and standard deviation of trajectory positions are low-level features

used to represent the trajectories [85]. Bag of Features (BoF) [86] is also used to find the key

point trajectories in classification. Corners and object color can be used as features for tracking

objects [87]. Classification can be applied on raw trajectories. Bashir et al. [70] have used HMM for

classification, where trajectories are first segmented based on curvature and represented by principal

components generated using Principal Component Analysis (PCA).

Nascimento et al. [21] have used Switched Dynamic HMM (SD-HMM). They have modeled

trajectories as the sequence of dynamic objects using EM and switching amongst models are realized

by HMM chains. A new approach for multivariate time series anomaly detection has been proposed

by transforming them into univariate series in [71]. Authors have used Fuzzy C-Means (FCM)

algorithm after z-score normalization and then used HMM for anomaly detection.

These work use full length trajectories for modeling. Thus, we have proposed a model that uses

both global and local trajectory scores to improve trajectory classification. The model could further

be extended for applications like anomaly detection.

2.2 Graph based Trajectory Modeling

Trajectory classification has been addressed by the researchers to solve different real world appli-

cations such as traffic analysis [88], scene analysis [89], anomalous activity understanding [10, 90],

scene segmentation [91]. It helps in predicting the class label of unknown trajectory based on its

path and features. A number of methods have been proposed in literature to model the behavior of

trajectories based on the spatial and temporal information. In [58], authors proposed an anomaly

detection in human dynamics from time-series gridded data. They used a hierarchical dirichlet

process hidden markov model based distribution to decide whether a time-series is anomalous or

normal. Thus, authors formulated anomaly detection as a two-class problem. Their method per-

formed decent in terms of precision (62%) and recall (95%), however, experiments were performed

using synthetic data.

Graph based matching has been efficiently used in document analysis [26]. However, graph

based trajectory classification is a novel research area where different video trajectories are grouped
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into regions. The construction of such regions can be done with the help of density or distance

based approaches which ultimately results into clusters with spatial information. A graph based si-

multaneous localization and mapping framework to model robot motion has been addressed in [92].

The authors have used least-square minimization for efficiently localizing trajectories to address the

problem of simultaneous localization and mapping. Authors of [90] proposed a vehicle inspection

framework to find abnormal activity using bipartite graphs. The modeling is done using vehicle’s

registration district and inspection stations as nodes of bipartite graph and number of vehicle regis-

tered making inspection as edge weights. Normalized scores have been used to coin abnormality in

vehicle inspection stations. The work has efficiently used bipartite graph, however focused only on

abnormality in inspection station.

Authors of [93] proposed a graph based method to find the relevant patterns from the GPS data.

The authors focused to reduce the points by finding representative points using graph partitioning.

Using delauney triangulation from constructed graphs the prominent regions were extracted. A

trajectory analysis and semantic region retrieval using Hierarchical Linked Infinite Hidden Markov

Model (HLI-HMM) based framework has been proposed in [57]. The authors have localized the

semantic regions using trajectory information. These regions include actual regions and not just

trajectory points. The framework works well in finding semantic regions, however, no spatial and

temporal dependencies have been modeled in their work.

Authors of [45] compared the performance of parallel genetic algorithm and PSO for the path

planning of unmanned aerial vehicles (UAV) in 3D environment. Similarly, in [94], authors have

proposed a trajectory optimization for motion planning of three-link robot manipulator using PSO.

normalized step cost was used as particles to optimize. Authors of [95] proposed a trajectory gen-

eration algorithm using constraint PSO for hypersonic reentry vehicles. Authors used PSO to find

the velocity-dependent bank angle profile for reentry of of these vehicles. [96] used PSO of the the

optimization of time-jerk trajectory planning for robot motion in 3 degree of freedom.

2.3 Motion Pattern based Scene Segmentation

There are many works on trajectory classification; still, ample scope is there on high-level or context

based scene segmentation. As camera based surveillance has reached almost every corner of our
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society, it has become necessary to automate such systems for tackling the surveillance task with

higher efficiency and lesser dependence on human observers. Thus, detection of uncommon move-

ments can be accomplished with computer based systems. To achieve this goal, installed systems

must have better understanding of surveillance scene which cannot be achieved without acceptable

scene segmentation. Majority of the existing scene segmentation techniques use low level features

such as location of the object center [67] or movement pattern learned through velocity or displace-

ment [48].

Unsupervised approach has its own benefits in abnormal activity detection. However, sometimes

it is beneficial to use supervised approach for scene understanding since such techniques first learn

from the scene and then investigate. In addition to that, supervised learning-based approaches are

likely to produce better results because of the availability of ground truths. For learning through

supervised approach, one requires training samples and it is desired to have samples within ap-

propriate feature space. It is cumbersome to take decision about the feature space and relevant

threshold. Though simple features like time-series representation of an object’s trajectory (xi, yi, ti)

can work in local pattern analysis, however, complex representation of the scene dynamic may not

be possible using such simple features. High level features, such as the block importance or label

of a block as proposed by Dogra et al. [48] can be used to represent semantic change in a trajectory

over its course of execution. For example, the RAG (Region Association Graph) based segmenta-

tion of a scene proposed in their method can be useful to represent the moving object’s path. Traces

of raw trajectories of two objects, τi and τj can be completely different even if they move in a simi-

lar fashion, therefore, making the classification process tricky. However, property exhibited by the

object trajectories moving in similar fashion can be exploited to distinguish the class they belong to.

2.4 Research Gaps

By doing a comprehensive literature survey, following research gaps have been found.

• There exist datasets on which the previous methods have lower classification rate. Kernel

transformations and combinations can be applied here. Hence, there is a need to improve

methodology so that higher classification rate can be achieved.
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• Previous methods use full length trajectories, thus, cues from local segments can be incorpo-

rated to make a better classification system.

• Scene understanding plays a vital role in understanding the movement flow in the field of view

of camera which can further be used to predict the upcoming flow. As per our findings the

existing scene segmentation techniques are based only on the texture information in the scene

layout. There is no significant work on scene segmentation based on movement patterns in

the area under coverage.
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Trajectory Classification using Graph
Algorithm

Graphs can be efficiently used for trajectory classification. We have formulated the trajectory clas-

sification problem into graph based similarity problem using Douglas-Peucker (DP) algorithm and

complete bipartite graphs. Local behavior of objects has been analyzed using their motion segments

and Dynamic Time Warping (DTW) has been used for finding similarity among motion trajectories.

Class-wise global and local costs have been computed using DTW and their fusion has been done

using Particle Swarm Optimization (PSO) to improve the classification rate.

3.1 Introduction

Graph based consideration of the road structure or the road network can be used as key to under-

stand underlying motion. Road network modeling [97] with GPS and RFID based data define road

networks as a graph structure modeling for finding frequent patterns of the data. Trajectories are

also analyzed using the mutual information and the sparse reconstruction [98] to facilitate trajectory

classification. Learned features from the trajectories are used to address the problem like behavior

analysis. From the learned feature representations driver’s behavior can be estimated for road lane

changing [99], abnormal movement detection [100], and route modeling [101].

Though, modeling global behavior using full length trajectories has its significance, incorpo-

rating local behavior can make classification more robust leading to improved performance. Local

17
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behavior can be modeled using trajectory segments. Trajectories can be partitioned into segments

with the help of curve simplification algorithm such as Douglas-Peucker (DP) [102–104]. Such

trajectory segments analyzed individually and their response can be fused in order to optimize clas-

sification rate. The optimization of global and local behavior is possible and can be achieved using

evolutionary algorithm like Particle Swarm Optimization (PSO) [47, 105]. PSO is the optimiza-

tion method that mimic the behavior of swarm intelligence to find the possible optima within the

search space. Thus, the PSO algorithm can be modeled in corresponds to the problem of trajectory

classification by combining individual responses of global and local trajectory segments.

In this work, we have proposed a trajectory classification framework that effectively uses the

DTW algorithm to capture global behavior using full length trajectories and segment-wise local be-

havior from the trajectory segments. Douglas-Peucker (DP), Complete Bipartite Graph (CBG), and

Minimum Spanning Tree (MST) have been used to model the local responses between trajectories.

Finally, fusion of global and local costs has been coded using Particle Swarm Optimization (PSO)

to efficiently improve the trajectory classification performance.

The main contributions of this work are as follows.

1. A trajectory classification approach that uses DTW based Global Cost (GC), and a Complete

Bipartite Graph (CBG) and Minimum Spanning Tree (MST) based local behavior of featured

trajectories in terms of Local Costs (LC and MSTC) has been proposed.

2. PSO has been implemented to combine global (GC) and local (LC and MSTC) costs for

improving the classification rates. Robustness of the proposed method has been tested on

publicly available trajectory datasets.

3.2 Proposed Work

A trajectory could be defined in general as an ordered series of object’s positions in the monitoring

area. Objects such as vehicles, robots, drones or humans can be traced with the help of sensors

such as video camera, satellite or proximity sensors. Video trajectories are extracted by tracking

objects in video frames, whereas satellite tracking gives the real world coordinates of the object
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Figure 3.1: Framework of proposed system. Global and local costs (GC, LC, & MSTC) are extracted
using DTW, CBG, and MST from featured trajectories and fused using PSO.

being tracked. In this way, a trajectory τ i can be defined using Eq. 3.2.1

τ i = {(xi1, yi1), (xi2, yi2), ...(xi|τ i|, yi|τ i|)} (3.2.1)

where (xit, y
i
t) represents the position of object at time t and |τ i| is the number of position

vectors (xit, y
i
t) in trajectory τ i. It is important to note that number of points |τ i| is not same for all

the trajectories not even in the case when trajectories belong to same class.

Given a set of such trajectories, we have proposed a trajectory classification based on DTW

using the fusion of global and local costs. Figure 3.1 shows the block diagram of proposed work.

First, trajectories are preprocessed and features are extracted. Pair-wise costs among full length

trajectories (referred to as Global Cost, GC) are computed using DTW. GC is then organized class-

wise by taking mean for each trajectory class as described in Section 3.2.2. Next, the local behavior

is modeled using trajectory segments and bipartite graph as described in Section 3.2.3. Local cost

based on minimum spanning tree (MSTC) is also computed from CBG. Finally, GC, LC, and MSTC

are fused using PSO to optimize the classification rate as described in Section 3.2.4. Algorithm 1

describe flow of the proposed system in detail.



20 3.2 Proposed Work

Algorithm 1 Steps of Proposed Framework
Input: Reference set S and Test set R.
Output: Final classification result (F).

% Global Cost (GC) estimation
1: Compute pair-wise DTW distance using full length trajectories from S and R using Eq. 3.2.3

and Eq. 3.2.4, respectively.
2: Compute ∆ as in Eq. 3.2.5
3: Compute Global Cost (GC) using Eq. 3.2.6

% Complete Bipartite Graph (CBG) formulation
4: Trajectory partitioning into local segments using DP.
5: Create CBG (G({U, V }, E) for each trajectory pair such that.

(a) Trajectory segments represents nodes of CBG.
(b) U is the set of nodes corresponding to one trajectory. Similarly, V corresponds to the other.
(c) There is no edge between ui, uj ∈ U , and vk, vl ∈ V .
(d) Define edge e(ul, vm between each pair of nodes ul ∈ U, vm ∈ V of CBG (G) as their DTW
distance as given in Eq. 3.2.7

% Local Cost (LC and cost of MST (MSTC) estimation from CBG
6: Define W as given in Eq. 3.2.8
7: Compute Ocol, Orow for the column and rows ofW using Eq. 3.2.9, and Eq. 3.2.10, respectively.

8: The pair-wise local cost is between two trajectories is computed using Eq. 3.2.11
9: Compute class-wise local cost LC using Eq. 3.2.13

10: Find the minimum spanning tree (MST) of CBG using Kruskal’s or Prim’s algorithm [106].
11: Compute the cost of MST termed as MSTC.
12: Combine GC, LC, and MSTC (Eq. 3.2.16 to find optimal α, β, and γ using PSO using

validation data.
13: Apply α, β, and γ to combine GC, LC, and MSTC computed using test data.
14: return F.
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3.2.1 Pre-processing and Feature Extraction

Given the set of trajectories, first, trajectories are normalized using z-score normalization. Next,

features are extracted from the normalized trajectories.

3.2.1.1 Cumulative Average Response (CAR)

Given a trajectory τ of finite length, CAR can be seen as average over a growing window. We define

CAR as given in Eq. 3.2.2

CAR(τ(k)) =
1

k

k∑
i=1

τ(i) (3.2.2)

3.2.1.2 Convex Hull (CH)

Given a set of points, Convex Hull (CH) may be defined as the smallest convex polygon containing

the points within the interior or on the boundary of the polygon. Thus, each trajectory may be

represented as a sequence of 6-dimensional feature vector i.e. < x, y, CAR,CH >.

3.2.2 Modeling Global Behavior using DTW

The pair-wise global cost is computed using DTW algorithm as defined below.

3.2.2.1 Dynamic Time Warping (DTW)

DTW [28, 107, 108] is used as a similarity measure to find the cost between two sequences P =

{p1, p2...p|P |} and Q = {q1, q2...q|Q|} of variable length. It gives the cost of optimal warping path

using Eq. 3.2.3

DTW (i, j) = η(pi, qj) +min


0 i = 0& j = 0

∞ i 6= 0& j = 0

∞ i = 0& j 6= 0

DTW (i− 1, j),

DTW (i, j − 1),

DTW (i− 1, j − 1) otherwise

(3.2.3)
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The algorithm returns DTW (|P |, |Q|) as final cost between P and Q, where |P | and |Q| rep-

resent the length of sequences P and Q, respectively. η(pi, qj) is defined as Euclidean distance

between points pi and qj .

3.2.2.2 Global Cost (GC) Computation

Given two disjoint trajectory sets R (Testing) and S (Training/Reference) such that R =

{r1, r2...r|R|} and S = {s1, s2...s|S|} (trajectories may belong to k classes) a pair-wise cost ma-

trix ∆ = [δij]|R|×|S| is computed using DTW algorithm where δij is the cost between full length

trajectories ri and sj . Next, the cost matrix ∆ is transformed into GC by taking mean of costs per

class as expressed in Eq. 3.2.6

δij = dtw(ri, sj) ri ∈ R, sj ∈ S (3.2.4)

∆ = [δij]|R|×|S| (3.2.5)

GC(a, b) =

∑
sb∈ class b(∆

a,b)∑
sb∈ class b(1)

(3.2.6)

3.2.3 Modeling Local Behavior

Local behavior is modeled using DP algorithm [103, 104], Complete Bipartite Graph (CBG), and

Minimum Spanning Tree (MST). The details are as follows.

3.2.3.1 Douglas-Peucker (DP)

To model the local behavior of trajectories, in the next phase, each trajectory is segmented into sub-

parts using DP algorithm. DP algorithm [102–104] or iterative end-point fit algorithm is the most

commonly used line simplification algorithm coined by David Douglas and Thomas Peucker [102].

The algorithm selects a set of fewer points that generates equivalent curve. It starts by initializing

output set with the two end points of the curve i.e. first point and the last point. Then the two end-

points are joined by an imaginary straight line. Now the point that is the farthest (from this line) is

considered. If the distance of the point from the line is less than a pre-specified threshold (ε) then

only the first and last points are included in the output set, rest of the points are discarded. If not,
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Figure 3.2: Example of DP algorithm. Trajectory is partitioning into segments using DP (1-6) .
Final break points are shown in the last (6).

the farthest point is included in the output set and the same procedure is applied on the two parts i.e

points between first point and the farthest point, and points between the farthest point and last point,

recursively. Finally, we get a reduced set of points that represent the curve. Using the reduced curve

each trajectory is split into segments. Figure 3.2 shows and example of DP algorithm with ε = 5.

3.2.3.2 Complete Bipartite Graph (CBG)

A CBG [109,110] is defined as G = (V̄ , Ē) where V̄ is the set of nodes and Ē is the set of edges in

G. The set V̄ is further defined as V̄ = (U, V ) with the constraints that U ∪V = V̄ and U ∩V = φ.

Also, there is no edge within the sets U and V . However, there exists an edge elm between each pair

of nodes ul ∈ U and vm ∈ V .

3.2.3.3 Local Cost (LC) Computation

For each pair of trajectories, a CBG is defined by considering their segments from DP as nodes

in it. An edge elm between nodes ul and vm is weighted using DTW distance between segments

corresponding to nodes ul and vm (Eq. 3.2.8 where ul belongs to one trajectory and vm belongs to
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the other.)

w(elm = dtw(ul, vm) (3.2.7)

W (τ i, τ j) = [w(elm)] (3.2.8)

where w represent the weight of the edge between nodes u and v and W is weight matrix of

CBG formed by the segments of trajectories τ i and τ j . Next, the costs from local segments (nodes)

for trajectories τ i and τ j are accumulated from CBG and an aggregated local cost O. Oij is defined

for each pair of trajectories as given in Eq. 3.2.11

mincol = min
c
W (:, c), Ocol = mean(mincol) (3.2.9)

minrow = min
r
W (r, :), Orow = mean(minrow) (3.2.10)

Oij =
Ocol + Orow

2
(3.2.11)

Finally, LC is defined for each pair of trajectories τ i ∈ R and τ j ∈ S as given in Eq. 3.2.13

O = [Oij]|R|×|S| (3.2.12)

LC(a, b) =

∑
sb∈ class b(O

a,b)∑
sb∈ class b(1)

(3.2.13)

The CBG formulation is depicted in Figure 3.3. Figure 3.3(a) shows two segmented trajectories

and corresponding CBG is shown in Figure 3.3(b). The aggregated cost matrix O is calculated as

shown in Figure 3.3(c) and Figure 3.3(d). The cost matrix O is similar to cost matrix ∆ as in Section

3.2.2.2 and has same size. Next, LC is computed by averaging costs per class as given in Eq. 3.2.13.

GC represents the pair-wise global cost computed from full length trajectories and LC represents

the pair-wise local cost computed using trajectory segments.

3.2.3.4 Minimum Spanning Tree (MST)

MST gives a optimal tree structure of a graph that traces the edges with the minimum possible

total cost by covering all the nodes of the graph. Thus, trajectory classification can be benefited

by considering the cost of MST structure. Typically, MST of a graph G = (V̄ , Ē) is a connected
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Figure 3.3: CBG formulation and cost computation. (a) Two segmented trajectories, (b) Corre-
sponding CBG, (c) Local cost within trajectory segments and (d) Aggregated cost (O) computation.

tree with minimum possible cost. It is a tree structure T = (V̄ , Ē
′
) contains all the nodes of

G connected through edges such that Ē ′ ∈ Ē and summation of weights of all the edges in T ,∑
w(Ē

′
) is minimum. MST can be estimated using Kruskal’s or Prim’s algorithm [106]. MST is

estimated from CBG and the average of the total weight of edges in MST is computed and termed

as MSTC.

GC is computed using full length trajectories for modeling global behavior of trajectories. LC

and MSTC are calculated using DP and CBG for modeling local segment-wise trajectory behavior.

Finally, the cost matrices GC, LC, and MSTC having identical size are fused using PSO.
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3.2.4 Fusion of GC, LC, and MSTC using PSO

In this phase, fusion is performed using PSO. The details are discussed as follows.

3.2.4.1 Particle swarm optimization (PSO)

PSO [47,105] is a biologically-inspired population-based metaheuristic. PSO simulates behavior of

bird swarming for solving optimization problems. Consider a flock of birds, searching for food in a

region, with food at only one position. The location of the food is not known, but the birds know how

far they are from food and the position of every other bird in the flock. Now, the movement of a bird

in the flock is influenced by the best location the bird has found so far and the best location anyone

in its neighbor has found. PSO follows the same strategy to find optima of non-linear continuous

function. PSO starts with a group of particles (known as swarm). The position of the particles are

randomly initialized. Optimization function is evaluated at each particle’s position (fitness value).

Velocity of a particle is updated considering two positions: the position where the particle has found

its best fitness value so far (personal best or pBest) and the location where the best fitness value is

achieved by its neighbor (neighborhood best or nBest). When the whole swarm is considered as

neighborhood then nBest is called global best or gBest. Let, Pi, Vi, pBesti, nBesti be position,

velocity, pBest position and nBest position of a particle, respectively in ith iteration and Vi−1 be

particle’s velocity at (i− 1)th iteration. So, the velocity Vi in ith iteration is given by Eq. 3.2.14

Vi = w × Vi−1 + c1 × r1 × (pBesti − Pi)

+c2 × r2 × (nBesti − Pi) (3.2.14)

w is a weighting factor. c1 and c2 are learning factors that influence contribution of pBest and

nBest determining particle’s new position, respectively. r1 and r2 are two independently generated

random values. Particle’s new position at (i+ 1)th iteration is updated by Eq. 3.2.15

Pi+1 = Pi + Vi (3.2.15)
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3.2.4.2 Linear Fusion

The global cost GC and local cost LC is linearly fused using Eq. 3.2.16

Cfusion = α×GC + β × LC + γ ×MSTC (3.2.16)

where α + β + γ = 10 (3.2.17)

The parameters α, β, and γ are learned with the help of PSO algorithm by using classification

error rate as objective function to optimize. The error rate is computed using fused cost matrix

Cfusion as given in Eq. 3.2.18. The test trajectory is assigned class labels associated with the least

cost in Cfusion. PSO over the iterations seeks to find minima of error rate by choosing the best

values of α, β, and γ using swarm theory.

%error = 100−%classification (3.2.18)

Thus, the proposed framework can be summarized using algorithm 1.

3.3 Experiments and Results

In this Section, we present the details of the experiments and the results using the proposed work.

3.3.1 Experimental Results

Here, we show the trajectory segmentation and classification results. We have used three pub-

lic datasets, namely T15, LabOmni, and CROSS (details are available in the appendix A.1). DP

algorithm has been used for partitioning of trajectories into local segments. Some examples of seg-

mented trajectories from all the datasets are shown in Figure 3.4. The number of trajectory segments

varies from 2 to 14 depending upon the curvature of trajectories. Here, samples shown are having 3

or more segments. The color changes when a new segment starts.

Experiments have been conducted by partitioning the data into train (50%), validation (25%),
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Figure 3.4: Examples of trajectory samples after segmentation. (a) T15 (b) LabOmni (c) CROSS.
Segments are plotted with different colors. For better visibility of colors please see the pdf version.

and test (25%) sets. The cost GC has been computed using full length trajectories, whereas LC,

and MSTC have been computed using segmented trajectories. The costs GC, LC, and MSTC have

been fused using PSO. Fusion weights learned from validation data have been applied to test set to

compute final classification results. Figure 3.5 shows the classification results using T15, LabOmni,

and CROSS datasets. Accuracies of 90.23 %, 91.67 %, and 98.74 % have been recorded when tested

using full length trajectories, whereas accuracies of LC(MSTC) have been recorded as 90.79(78.32)

%, 71.67(71.67) %, and 97.89(95.58) % on T15, LabOmni, and CROSS datasets, respectively. The

proposed method improves the performance with the classification rates of 92.95%, 95.38%, and

99.58% using T15, LabOmni, and CROSS datasets, respectively. We have noticed that different

values of α, β, and γ have been recorded for different datasets. The values of α = 2.7462, β =

6.9638, and γ = 0.2900 have been recorded on T15 dataset when tested using proposed method,

whereas the proposed method come up with the values of α = 6.7267, β = 2.1043, and γ = 1.1690

on LabOmni dataset. Values of α, β, and γ have been recorded as 1.2903, 8.4987, and 0.2110,

respectively when the proposed method was tested using CROSS dataset.
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Figure 3.5: Experimental results using proposed method. Fusion of GC, LC, and MSTC improves
the classification results for the datasets used in this study namely, T15, LabOmni, and CROSS.

3.3.1.1 Result Analysis

Here, we analyze the classification results obtained by the proposed work.

We notice from the results of the proposed method that there is an improvement of 2.72%,

6.79%, and 0.84% using T15, LabOmni, and CROSS datasets, respectively when compared the tra-

jectory classification results using full length trajectories. Some of the samples classified incorrectly

using full length trajectories are shown in the second column of Figure 3.6, whereas these samples

are correctly classified by the proposed method (shown in column 3).

First row of Figure 3.6 shows few such samples of the T15 dataset, where (a1) is the trajecto-

ries with ground truth (color represents ground truth classes) (b1) is the trajectories with predicted

classes (color represents predicted classes) using full length trajectories and (c1) is the prediction

by proposed method. It can be noticed from (a1) and (c1) that proposed method recognizes the

correct classes of trajectories while they are incorrectly classified to the other classes when full

length trajectories are used (shown in (b1)). Second and third rows depict the similar results for

LabOmni, and CROSS datasets, respectively. Here, column 1 is showing few samples (color is

depicting the ground truth classes), column 2 is showing the incorrect classification of trajectories
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Figure 3.6: Qualitative results of the proposed method. (a1), (a2), & (a3) Trajectories with ground
truth (b1), (b2), & (b3) Incorrectly classified using full length trajectories (c1), (c2), & (c3) Cor-
rected by proposed method. T15 (row 1) LabOmni (row 2) CROSS (row 3).

when full length trajectories are used, and column 3 is showing their correct classification result

using the proposed method for T15, LabOmni, and CROSS datasets, respectively.

Though the proposed method improves the performance by correctly identifying the true classes,

we have noticed that some of the trajectories have not been correctly classified into respective

classes. Figure 3.7 (column 3) shows few such trajectories that have been incorrectly classified into

other classes. Here, column 1 show the ground truth trajectories in color (color depicting ground
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Figure 3.7: Erroneous Trajectories. (a1), (a2), & (a3) Trajectories with ground truth (b1), (b2), &
(b3) Incorrectly classified using full length trajectories (c1), (c2), & (c3) Incorrectly classified by
proposed method. T15 (row 1) LabOmni (row 2) CROSS (row 3).

truth), column 2 & 3 show the prediction by full length trajectories and by the proposed method,

respectively. It can be noticed from column 2 & 3 that the trajectories have not been correctly clas-

sified into respective classes by both the methods i.e. by full length trajectories and by proposed

method. Such incorrect results are due to the similar shape of trajectories and the high overlapping

between their ground truth and predicted class.

We noticed that (Figure 3.5) the accuracy of LC and MSTC in case of LabOmni dataset are much
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Table 3.1: Computation time elapsed at different stages of proposed method in seconds (Sec)

Dataset
GC

(Sec)
DP

(Sec)
CBG+LC

(Sec)
MSTC
(Sec)

PSO
(Sec)

Total
(Sec)

T15 644.92 12.76 98.71 1765.54 617.74 3139.67
LabOmni 44.21 10.10 94.12 1123.72 149.25 1421.40
CROSS 760.61 18.56 127.16 2123.29 710.18 3739.80

lesser as compared to GC. This is due to very high deviation in the number of trajectories belong to

different classes of LabOmni dataset. Some to the classes only have 3-4 trajectories, whereas other

classes have more than 8 trajectories. However, the results of the proposed fusion is promising for

all the dataset used in this study.

3.3.1.2 Time Computation and Comparative Study

In this Section, we present the average running time per fold consumed in proposed system and

comparison to the other methods. The proposed work has been implemented using computer system

with 3rd generation Intel core i3 processor and 4 GB of RAM. The time consumption at different

stages of the proposed work is shown in Table 3.1. The average running time in the computation

of GC using DTW distances using full length trajectories have been recorded as 644.92, 44.21, and

760.61 seconds for T15, LabOmni, and CROSS datasets, respectively. The trajectory segmentation

using DP algorithm has consumed 12.76 seconds for T15, 10.1 seconds for LabOmni, and 18.56

seconds for CROSS datasets. The minimum and maximum number of segments using DP algorithm

has been recorded as 2 and 14, respectively. The total running times including GC, DP, CBG, LC,

MSTC, and PSO optimization have been recorded as 3139.67, 1421.4, and 3739.8 seconds for

T15, LabOmni, and CROSS datasets, respectively. We noticed that proposed system takes around 1

second to assign a class label for a test trajectory which can be optimize with the systems with higher

processing capabilities. Thus, the proposed framework could be used in modeling trajectories for

better classification performance in appreciable time.

The trajectory learning frameworks for clustering/classification have been proposed in [41,112].

Authors of [112] have compared various distance measures such as DTW, and LCSS for trajectory

clustering. The accuracies as high as 83.83% and 90.91% have been recorded using DTW and

LCSS, respectively. Authors of [41] have proposed a shrinking framework for trajectory clustering

and classification using multi-kernels. The framework came up with the accuracies of 84.45% using
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HMM and 87.60% using k-means algorithm. Table 3.2 shows the comparison with other methods.

The proposed method has better performance as compared to the methods mentioned in the Table.

Table 3.2: Classification accuracy comparison with other methods

T15 Dataset
Xu et al. [41] 87.60%

Proposed Work 92.05%
LabOmni Dataset

Morris and Trivedi [113] 93.84%
Proposed Work 98.46%

CROSS Dataset
Morris and Trivedi [113] 98.52%

Proposed Work 99.58%

The performance of proposed method has also been evaluated and compared with Ant Colony

Optimization (ACO) [114] and Genetic Algorithm (GA) [115] for all the datasets. ACO is an

optimization method that searches for an optimal path by mimicking the behavior of ants while ants

searching for food. Ants release a certain amount of pheromones as they explore. Gradually, the

pheromone concentration on the shortest path becomes higher and attracts more ants, thus forming

a positive feedback which leads to the discovery of the best path towards food in our case the

best possible values of α, β, and γ. Whereas, GA is the evolutionary algorithm that is inspired

from Darvin’s theory of survival of fittest. It involves the crossover and mutation of genes and

reproduction of new offsprings that are the possible solution to the search. Both ACO and GA

iteratively search for the best possible solution and stop when they meet the convergence criteria.

Figure 3.8 shows the comparative results of them. GA and PSO has performed better as compared

to ACO. However, results using PSO are promising for all the datasets.

3.4 Discussion

In this work, we have used complete bipartite graph to incorporate local behavior of trajectory using

DTW along with the global dynamics. The global dynamics has been captured using full length

trajectories, whereas DP algorithm has been used for segmentation before incorporating local dy-

namics. Global (GC) and local (LC) costs are computed using pair-wise DTW matching and MSTC

using MST of CBG. Finally, GC, LC, and MSTC have been fused linearly using PSO. The PSO op-

timization improves the classification rates of trajectory datasets used, namely T15, LabOmni, and
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Figure 3.8: Comparison of results of proposed method using ACO, GA, and PSO.

CROSS in this work. The proposed work shows accuracies as high as 92.95%, 98.46%, and 99.58%

using datasets T15, LabOmni, and CROSS, respectively. This Chapter emphasize that the graph

based methods have capability to improve the classification performance in trajectory data and the

same idea could be extended further. In future, the proposed work with robust features could be

used to improve the trajectory classification performance. In future, we will extend this work on

sign gestures and signature based recognition.
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A Segmental HMM based Trajectory
Classification using Genetic Algorithm

Trajectory classification techniques face various challenges due to varying length and lack of the

presence of clear boundaries among the trajectory classes. To overcome such challenges, a tra-

jectory shrinking framework using Adaptive Multi-Kernel based Shrinkage (AMKS) can be used.

However, such a strategy often results in over-shrinking of trajectories leading to poor classifica-

tion. To improve classification performance, we introduce two additional kernels that are based on

convex hull and Ramer-Douglas-Peucker (RDP) algorithm. Next, we present a supervised trajec-

tory classification approach using a combination of global and Segmental Hidden Markov Model

(HMM) based classifiers. In the first stage, HMM is used globally for classification of trajectory

to provide state-wise distribution of trajectory segments. In the second stage, state-wise trajectory

segments are classified and combined with global recognition performance to improve the classi-

fication results. Combination of Global HMM and Segmental HMM is performed using a genetic

algorithm (GA) based framework in the final stage.

4.1 Introduction

In static camera based video surveillance systems, the required actions can be taken on the basis

of the movements occurred in the camera’s field of view. For this purpose, trajectories are first

extracted [116] from the captured video which may contain various types of noises due to the lim-

itations of the underlying tracker. Moreover, the tracking results may incur confusion because of

35
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the speed and appearance of the objects. Therefore, tracking of nearby objects may be difficult.

Though a number of solutions [42, 43] exist, presence of noise in the trajectory sequences may not

be removed completely. This essentially leads to wrong classification. It happens because, most of

the existing algorithms [42, 43, 72, 117] do not focus adequately on the classification approaches.

In [41], authors have proposed shrinking of trajectories to improve the trajectory classification

performance. They have shown the classification results using Hidden Markov Model (HMM) as

well as of clustering using k-means algorithm. Trajectory shrinking [41] makes the classification

task easier and it can successfully group similar trajectories. Shrinking similar trajectories into one

class may help in understanding the activities or actions taken by moving objects such as humans or

vehicles. A portion of trajectory may be spatially close to a trajectory of different class. Moreover,

the start and end segments of a trajectory may significantly vary from the rest part which may create

confusion with other trajectories during the classification. Thus, inter-class boundaries may not be

prominent.

To minimize such errors in shrinking, we have introduced two popular kernels that are based

on convex hull (CH) [118] and Ramer-Douglas-Peucker (RDP) algorithm [102]. In our framework,

trajectories are first modified with the proposed multi-kernel framework as given in Eq. 4.2.4. Next

the modified trajectories are trained using a two-stage HMM classification framework using Global

HMM (GHMM) and Segmental HMM (SHMM). In the first stage, HMM is used globally for clas-

sification of trajectory to provide state-wise distribution of trajectory segments. In the second stage,

state-wise trajectory segments are classified and combined with global recognition performance to

improve the classification results. Later, these classification results from GHMM and SHMM are

combined using GA. GA optimizes the combination weightage and produces the final classification

results. Thus, key idea of proposed work is the combination of classification from both i.e. from

full length trajectories and from their segments where combination is performed using GA.

4.2 Proposed Framework on Trajectory Classification

In this Section, we present our proposed framework of trajectory classification. Our framework

comprises of trajectory shrinking, independent classification using conventional HMM and SHMM,

and finally a GA guided method for combination of GHMM and SHMM results. The flow-chart of
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Figure 4.1: A flow-chart of the framework used in the proposed trajectory classification.

the proposed framework is depicted in Figure 4.1. Given a set of trajectories, proposed shrinking

model produces compact trajectories that are referred to as shrunken trajectories. These trajectories

are then fed to a two-stage HMM classifier to find global classification and perform state-wise

trajectory separation. In the next step, a linear combination is obtained using GA to improve the

accuracy. Each of these steps are discussed in following sub-sections.

4.2.1 Kernel Formation

A trajectory may be defined as a spatio-temporal sequence representing an object’s instantaneous

position. This spatio-temporal sequence is represented by coordinates or points in d-dimensional

Euclidean space (Rd). Let T = {T1, T2, ...TN} be the set of N such trajectories, where each tra-

jectory is represented by Ti = {pi,1, pi,2, ...pi,M}, such that pi,t is the position of ith object at time

t.

The proposed kernel is inspired from AMKS kernel proposed by Xu et al. [41] due to its good

performance in various trajectory datasets. AMKS kernel is briefly explained below. Here, we

introduce two new kernels using CH and RDP algorithm [102] respectively and combine these

kernels with AMKS kernel to improve the performance.

4.2.1.1 AMKS Kernel

The AMKS kernel proposed by Xu et al. [41] involves the computation of new position as discussed

hereafter. For each point pi,t ∈ Ti, neighboring points {pk}Kk=1 are first searched within the neigh-

borhood. These neighbors can be part of other trajectories. The new estimates of position pi,t and
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speed vi,t can be defined as given respectively in Eq. 4.2.1 and Eq. 4.2.2

p̂i,t =

∑K
k=1 f(pi,t, pk)pk∑K
k=1 f(pi,t, pk)

(4.2.1)

v̂i,t =

∑K
k=1 f(pi,t, pk)pk∑K
k=1 f(pi,t, vk)

(4.2.2)

where vi,t = (pi,t+1 − pi,t)/δt and δt is the time step.

Let pm ∈ Ti and p′m ∈ Tj , then composite kernel f(:, :) is defined as given in Eq. 4.2.3

fAMKS(pm, p
′
m) = fp(pm, p

′
m) fs(pm, p

′
m) fa(pm, p

′
m) (4.2.3)

where fp(pm, p′m) = e(−‖pm−p
′
m‖22/(2α2)) is the position kernel which finds the consistency in

location. The points with similar positions are close to each others in the kernel space.

fs(pm, p
′
m) = e(−‖vm−v

′
m‖22/(2β2)) is the speed kernel that finds the consistency in speed. The

points with similar speed are close in the kernel space.

fa(pm, p
′
m) = e(−‖ai−aj‖

2
2/(2γ

2)) is the kernel for aim points (i.e. end points of trajectories) which

finds the consistency in aim, where ai = {pi,1, pi,M}.

Next, shrunken trajectory estimates are further optimized to generate final positions that preserve

the shape of the trajectories using a speed-regularization scheme [41].

4.2.1.2 Proposed Kernels

AMKS [41] finds the new shrunk positions of trajectories. We extend AMKS algorithm by adding

two new kernels using CH [118] and RDP [102]. It has been observed that, majority of regular
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trajectories belonging to one class have similar curvature or shape. This is quite useful in distin-

guishing the trajectories of different classes. Therefore, we select the key points from each trajectory

that derive the curvature. The task is accomplished using CH and RDP algorithm. Both algorithms

provide important key points on the trajectories. The nearby trajectories from different classes might

create problem in classification. However, the points from CH/RDP are likely to pertain the shape

of trajectories that could be distinct in this case. Thus, it could help to improve the system. It may

be verified from Figure 4.2 that CH and RDP come up with different set of points for a given trajec-

tory. Therefore, both algorithms have been used in kernel formation in this framework. Hence, the

proposed multi-kernel consists of five sub kernel as given in Eq. 4.2.4.

Convex Hull (CH) and Ramer-Douglas-Peucker Algorithm (RDP): CH of a given set of

points S in euclidean space can be defined as a minimal convex set. A convex set is the region such

that any straight line segment is fully contained within the region. CH is the smallest area convex

polygon that encloses all the points from S. CH has been used successfully in solving problems

such as character recognition [119] and roman numeral recognition [120]. Figure 4.2 shows a toy

example of CH, where the closed polygon in red color is a CH of all the points lying on green path.

RDP [102] tries to approximate a curve with fewer points. It keeps first and last point of the

curve and finds the farthest point (say, Pfarthest) from the line joining first and last points. If the

distance between the farthest point and the line segment is greater than a threshold ε then Pfarthest

is selected for processing and the search is then split in two parts, i.e. from first point to Pfarthest

and from Pfarthest to the last point. The process is carried out on both the parts separately. The

process is continued over the iterations and stops only when the end points of every segment have

no point(s) having distance greater than ε. The algorithms results in a similar curve with lesser

number of points. The blue line path in Figure 4.2 represents the RDP walk.

Note that, points given by RDP algorithm [102] may be different from convex-hull points, i.e.

points from RDP algorithm may not include all the hull points as shown in Figure 4.2. Hence, we

consider them separately in two different kernels. New modified kernel is given in Eq. 4.2.4

f(pm, p
′
m) = fAMKS(pm, p

′
m) fhull(pm, p

′
m) fRDP (pm, p

′
m) (4.2.4)
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Figure 4.2: Convex Hull and RDP sketch: CH in red and RDP in blue.

fhull(pm, p
′
m) = e(−‖hulli−hullj‖

2
2/(2θ

2)) is the CH kernel that are consistent with the hull points.

hulli represents the CH points for the ith trajectory.

fRDP (pm, p
′
m) = e(−‖RDPi−RDPj‖22/(2δ2)) is the kernel that are consistent with the RDP points.

RDPi represents the key points provided by RDP algorithm for the ith trajectory.

The parameters r, α, β, γ, θ and δ are configured as given in [41]. With the above mentioned

kernels, the trajectories are shrunk. Next, these shrunk trajectories are classified using HMM as

discussed in next Section.

4.2.2 Trajectory Classification using GHMM and SHMM

HMM [121] is a supervised classifier that has been successfully applied to model time series se-

quences [21, 54, 70]. In this study, we propose a two stage trajectory classification using HMM as

discussed in the following Section.

During GHMM based classification stage, if the difference between the top two classification

scores of a trajectory is high, it is considered as a true class. However, if the difference is low

between top two probability scores (∆p), we consider such trajectories for SHMM-based classi-

fication. Lower value of the probability difference is mainly due to high confusion between the

classes. For such sequences, a separate SHMM based classification strategy is used that is based on

the segmentation of sequences. It is to identify the state-wise segments in trajectory and improve
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Figure 4.3: SHMM: Sequence of frames are associated with HMM states.

Figure 4.4: Example of separation of a trajectory into 3 segments by SHMM (Note that the length
of the segments are not equal). Best viewed in color.

the overall classification using these trajectory-segment classifications. For this purpose, we have

considered SHMM [122–124] based approach for trajectory classification. SHMM differs from

conventional HMM. The conventional HMM associates the state with observation feature vector,

whereas SHMM associates the state with trajectory segments that belong to corresponding sequence

of frames as shown in Figure 4.3. The length of the trajectory segments for each states (say Si) may

differ. An example of segmented trajectory is shown in Figure 4.4.
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4.2.2.1 Combining GHMM and SHMM using GA

Now, the prediction scores obtained from GHMM and SHMM are linearly combined in an effi-

cient way. To optimize the weighted linear combination (Eq. 4.2.6) of GHMM and SHMM, we

use GA. GA has been used to put efforts to correctly classify the trajectories that have fallen into

incorrect class in top-1 choices however, their correct class is in top-2 choices. The weighted linear

combination using GA could help to accomplish this task.

Ĉi = (w0 ∗ CGlobal
i +

h∑
j=1

wj ∗ CSj
i ), given (4.2.5)

h∑
j=0

wj = 1 (4.2.6)

In Eq. 4.2.6, Ĉi is a row vector that consists of weighted score for testing sequence i for all test

classes. Finally, the class with highest weighted score is selected as final label as given in Eq. 4.2.7

ω̂i = arg max(Ĉi) (4.2.7)

After classification of each segment, a weighted scheme is used to combine the global classifica-

tion in the first stage and local classification results in the second stage. On the basis of this weighted

score, a final label is obtained. Weights are assigned using GA based optimization technique. The

process is explained in Figure 4.6.

4.2.2.2 Genetic algorithm (GA)

GA [125] is a method for solving both constrained and unconstrained optimization problems based

on a natural selection process that mimics biological evolution. The algorithm repeatedly modifies

a population of individual solutions. At each step, the algorithm randomly selects individuals from

the current population and uses them as parents to produce the children for the next generation. Over

successive generations, the population evolves toward an optimal solution. The process of GA starts
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Figure 4.5: Example of chromosome encoding. Here, each chromosome is having length (h+ 1).

with an initial population. The size of initial population may vary depending to the optimization

problem, however, it is usually taken randomly as hundreds or thousands. Then comes selection

of the proportion of population for evaluation of objective function. During each successive gen-

eration, a proportion of the existing population is selected to breed a new generation. Individual

solutions are selected through a fitness criteria (fitness function). The next step is to generate a

second generation population of solutions from those selected through a combination of genetic

operators: crossover, and mutation. Crossover refers to the process of combining pair of parents

to generate new population. Mutation generates children through random change in single parent.

New generation is again fed into selection step and the process continues until the termination cri-

teria is fulfilled. The termination condition may be based on the number of generation, time limit,

tolerance threshold, etc.

As in stage two, each trajectory is partitioned into h segments and it implies the linear combina-

tion of classification of GHMM and SHMM as shown in Eq. 4.2.6 which requires (h+ 1) variables

or weights. Hence, each chromosome in GA is having length (h+ 1). An example of chromosome

encoding is shown in Figure 4.5.

After encoding chromosomes, we then generate initial population of chromosomes randomly.

Over iterations, GA optimizes the weights wi (i = 0, 1, 2....h) using Eq. 4.2.6. Finally, trajectories

are labeled into its true class according to the weights obtained from the algorithm.

4.3 Experimental Result and Analysis

In this Section, we present the experiment results obtained using our framework on publicly avail-

able trajectory datasets. In our system, trajectories have been extracted from videos using an exist-

ing target detection and tracking algorithm proposed by [116]. The trajectories have been classified
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Figure 4.6: Proposed framework comprises trajectory shrinking, two stage HMM classification and
optimization using GA.
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Table 4.1: Performance of individual kernels

Kernel T15 (%) MIT (%)
AMKS [41] 84.40 94.25
AMKS + CH 84.40 94.55
AMKS + RDP 89.45 94.60
AMKS + CH + RDP 92.80 94.75

using our framework. The results are compared with Xu et al. [41]’s work and other existing ap-

proaches.

To test the robustness of our framework, we have tested two publicly available surveillance

datasets namely T15 and MIT car. The details are available in the appendix A.1.

4.3.1 Classification Improvement using the Proposed Kernel

We present experimental results on T15 and MIT datasets. We show some qualitative results using

proposed framework and compare AMKS kernels. The classification results are shown on shrunk

datasets plotted over respective surveillance scene.

AMKS [41] kernel shrunk the nearby trajectories together, though they belong to different

classes which mainly depend on position, speed and aim points, whereas the proposed kernel in-

cludes key points from CH and RDP algorithm that minimizes over shrinking. Table 4.1 shows the

performance of individual kernels on trajectory classification. Classification rate is highest when all

kernels are used together.

Figure 4.7 and Figure 4.8 depict a few wrongly classified trajectories of T15 and MIT datasets,

respectively. In Figure 4.7 and Figure 4.8, column 1 shows T15 and MIT Car datasets, respectively.

Here, trajectories are shown in colors to distinguish the classes and the trajectories with identical

color belong to the same class. Column 2 of Figure 4.7 and Figure 4.8 show two different classes

of T15 and MIT datasets, respectively. A single trajectory from corresponding the class is shown in

column 3. Column 4 of both the Figures show the trajectories modified by AMKS [41] kernel that

are incorrectly classified, whereas column 5 shows the modified trajectories using the new kernel.

The quantitative results in these datasets are shown in Table 4.2. Note that, the proposed multi-

kernel outperforms the AMKS approach. AMKS framework has an overall accuracy of 87.60%
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Figure 4.7: Classification Result on T15: First column (a1 & a2) shows the dataset where different
colors represent different classes. Column 2 (b1 & b2) shows two different classes and column 3 (c1
& c2) shows a single raw trajectory from the corresponding class shown in column 2. Column 4 (d1
& d2) and column 5 (e1 & e2) show the new trajectories (corresponding to trajectories in column
3) with their predicted class formed by AMKS and the proposed kernel, respectively. Proposed
framework correctly classifies these trajectories (column 5) as compared to AMKS (column 4).

Figure 4.8: Classification Result on MIT Car: First column (a1 & a2) shows the dataset where differ-
ent colors represent different classes. Column 2 (b1 & b2) shows two different classes and column
3 (c1 & c2) shows a single trajectory from the corresponding class depicted in column 2. Column 4
(d1 & d2) and column 5 (e1 & e2) show the new trajectories (corresponding to trajectories in column
3) with their predicted classes formed by AMKS and the proposed kernel, respectively. Proposed
framework correctly classifies these trajectories (column 5) as compared to AMKS (column 4).

using k-means algorithm and 84.40% using HMM on T15 and 94.25% on MIT dataset using tradi-

tional HMM-based classification. Our proposed method achieves accuracy of 94.80% and 96.75%

on T15 and MIT datasets, respectively. Here, in GA based optimization, population was taken in

double vector encoding and roulette wheel was used for selection. The crossover and mutation prob-

ability was set to 0.8 and 0.01, respectively and the objective function tolerance (difference between
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Table 4.2: Classification Result: First row shows the results using T15 dataset and second row
shows the results for MIT dataset.

Dataset Trajectories Per Class AMKS (%) Proposed
Work (%)

Name: T15
#Class=15

#Trajectories=1500

C1=57, C2=271, C3=141, C4=137,
C5=128, C6=53, C7=109, C8=59,

C9=127, C10=105, C11=53, C12=65,
C13=141, C14=35, C15=19

87.60 94.80

Name: MIT
#Class=6

#Trajectories=400

C1=173, C2=52, C3=19,
C4=87, C5=44, C6=25 94.25 96.75

two successive observation) was set to 1e-7.

In experimental setup, we have used four parameters, namely number of HMM states h, GMMs,

difference of top two target class probabilities ∆p and wi, (i = 0, 1, 2..h). In stage 2, the SHMM

requires the value of ’h’ to segment each trajectory and then to classify the samples. The value of h

in second stage is chosen as per the GHMM classification results in the first stage.

4.3.1.1 Results using GHMM:

Figure 4.9 shows the result of classification over T15 and MIT dataset using GHMM. Experiments

have been carried out by varying GMMs and number of HMM states. Figure 4.9(a) and Figure

4.9(b) show that GHMM provides the best performance with 92.80% accuracy on T15 dataset with

HMM states=3 and GMM=64 and accuracy of 94.75% for MIT dataset with HMM states=3 and

GMM=128. It is to be noted from Figure 4.9 that GHMM performs better with states h = 3. Thus,

the value of h is chosen to be 3 for SHMM.

4.3.1.2 Results using SHMM:

Figure 4.10 shows the result of classification for the sample passed into the second stage over T15

and MIT dataset using SHMM. Experiments have been carried out by varying GMMs and number

of HMM states. Figure 4.10.(a) and Figure 4.10.(b) depict that SHMM produces highest accuracy

of 71.88% on T15 dataset with HMM states=3 and GMM=64 and accuracy of 93.55% for MIT

dataset with HMM states=3 and GMM=128.
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Figure 4.9: HMM Classification over T15 and MIT dataset with varying GMMs and HMM states:
(a) Performance of GHMM with varying GMMs, (b) Performance of GHMM with varying HMM
states.

We have tested our framework by varying the difference of top-two target probabilities, ∆p.

Figure 4.11 shows that the highest accuracy is achieved at ∆p = 0.008, 0.009, 0.01 on T15 dataset

and ∆p = 0.008, 0.009 on MIT dataset.
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Figure 4.10: HMM Classification over T15 and MIT dataset with varying GMMs and HMM states:
(a) Performance of SHMM with varying GMMs, (b) Performance of SHMM with varying HMM
states.
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Figure 4.11: Performance with T15(HMM states=3 & GMM=64) and MIT(HMM states=3 &
GMM=128) datasets by varying the difference of top two target probabilities, ∆p.

4.3.2 Combination of GHMM and SHMM Results using GA

We have used GA for optimization of combination of GHMM and SHMM results and to find out

the values of weights ′wi, i = 0, 1, 2...h where
∑h

i=0wi = 1′. Here, roulette wheel selection has

been used for selection of chromosomes. The crossover rate has been set to 0.8 and the mutation

probability has been set as 0.01 in GA optimization. Over the iterations, GA optimizes the weights

and improves the classification. GA itself gives the optimal values of the weights. The optimized

values have been recorded as w0 = 0.5288, w1 = 0.0073, w2 = 0.2210, w3 = 0.2429 for T15

dataset and w0 = 0.5714, w1 = 0.1429, w2 = 0.143, w3 = 0.1427 for MIT dataset.

Figure 4.12(a) and Figure 4.12(b) show the comparison of classification of GHMM and combi-

nation of GHMM and SHMM with equal weight and the proposed work applied on T15 and MIT

datasets. In T15 dataset, GHMM achieves the accuracy of 92.80%, whereas performance degrades

to 91.60% when the classification from GHMM and SHMM is combined using equal weights. The

proposed framework with GA improves the classification accuracy to 94.80% on T15 dataset. In

MIT dataset, GHMM here achieves the accuracy of 94.75%, whereas the performance degrades

to 94% when the classifications from GHMM and SHMM are combined with equal weight. The

proposed framework improves the classification and we have recorded accuracy of 96.75% on MIT
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(a)

(b)

Figure 4.12: Classification Results using MIT and T15 datasets. Green bar shows the accuracy
of GHMM, The accuracy of combined classification of GHMM and SHMM results with equal
weightage is and is shown in Blue. Proposed framework improves the classification and is shown
in Red.

dataset.



52 4.3 Experimental Result and Analysis

Figure 4.13: Performance with T15(HMM states=3 & GMM=64) and MIT(HMM states=3 &
GMM=128) datasets by varying population size in GA.

4.3.2.1 Population size in GA

Figure 4.13 shows the performance of proposed framework by varying the population size. Highest

accuracy of 94.80% (HMM states=3 & GMM=64) and 96.75% (HMM states=3 & GMM=128) have

been recorded on T15 and MIT datasets, respectively. The highest accuracy has been recorded at

population size=40 and 50. It is probably because as the population size increases, performance

may degrade. At population size 100, performance decreases to 95.25% on MIT dataset.

4.3.3 Results with Added Gaussian Noise

Experiments have also been conducted to analyze the robustness of proposed framework by adding

Gaussian noise with mean=0 and standard deviation=0.5 × R, where R is the dynamic range of

the trajectories. A decrement of 1.62% and 1.05% have been recorded with accuracies of 93.18%

and 95.70% for T15 and MIT dataset, respectively. Figure 4.14 shows the results on T15 and MIT

datasets using the noisy data.
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Figure 4.14: Impact of noise on classification performance.

Table 4.3: Comparison of time computation between AMKS algorithm and proposed approach

T15 (minutes) MIT (minutes)
AMKS 21.25 5.66

Proposed Kernel 32.291 8.44

4.3.4 Time Computation and Comparative Study

Table 4.3 shows the computation time taken in generating shrunk trajectories. As we introduce two

more kernels, the running time is likely to be high. The shrinking time using the proposed kernel is

however reasonable.

Table 4.4 shows the comparative performance of state of the art methods. The proposed ap-

proach outperforms other methods and achieves accuracy of 94.80% and 96.75% on T15 and MIT

datasets, respectively.

A visual behavior framework to detect abnormality in trajectories has been proposed in [66]

using sparse reconstruction analysis. Authors have used Least-squares Cubic Spline Curves Ap-

proximation (LCSCA) to define trajectories as fixed number of control point representation. Sparse

reconstruction analysis has been performed using LCSCA represented trajectories and threshold

was decided to predict abnormal behavior of trajectories.
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Table 4.4: Performance comparison with other methods.

Method T15(%) MIT(%)
AMKS+HMM [41] 84.40 94.25
MS [127] 85.30 –
MBMS [42] 86.60 –
AMKS+K-means [41] 87.60 –
Visual Behavior [66] 93.26 95.44
Proposed approach 94.80 96.75

Table 4.5: Performance of proposed work using ACO and GA

T15 (%) MIT (%)
Proposed Approach + ACO 94.25 96.40
Proposed Approach + GA 94.80 96.75

4.3.4.1 Ant Colony Optimization (ACO)

The ACO is inspired from some species of ants. There are ants that follow the particular way while

they move. Ants deposit pheromone on the ground while moving. Ants do that to indicate some

favorable path that other ants follow. The similar idea is simulated to find the desired solution

for optimization problems. Artificial ants try to find optimal solution by exchanging information

via communication links. Every iteration ACO tries to optimize the given problem and come up

with the optimal solution once the convergence criteria is fulfilled. More details could be found

in [128, 129].

The combination of GHMM and SHMM has also been performed using ACO [128, 129]. Table

4.5 shows the performance of proposed framework having combination performed using ACO and

GA. The GA based combination performs well as compared to ACO.

4.3.5 Beyond Trajectory Classification: Signature Recognition

Signature is one of the most common biometric traits used for user authentication. It involves

identification of user by user’s signatures. Signatures could either be on-line or off-line. On-line

signatures [130] are usually recorded via stylus on an electronic pad that records stylus tip position,

pressure, azimuth and altitude angles. Whereas, off-line signatures [131] are usually drawn on paper

and their images are used to extract features for recognition purpose.
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We have tested SHMM using SVC2004 [132] on-line signature dataset for signature recognition.

It has been noted that SHMM works well for signatures.

4.3.5.1 SVC2004 Dataset Details

The dataset [132] consists of 1600 signatures of 40 different subjects. There are 40 instance of

signatures of each user. Out of 40 samples, 20 samples are genuine and rest are forged. Hence,

the total number of genuine samples are 800 (40× 20=800 ). Each signature is represented as

an ordered sequence of the points. Figure 4.15 shows signatures of two different subjects from

SVC2004 dataset, where three samples are shown as row-wise for subjects S1 and S2, respectively.

• X-coordinate - scaled cursor position along the x-axis

• Y-coordinate - scaled cursor position along the y-axis

• Time stamp - system time at which the event was posted

• Button status - current button status (0 for pen-up and 1 for pen-down)

• Azimuth - clockwise rotation of cursor about the z-axis

• Altitude - angle upward toward the positive z-axis

• Pressure - adjusted state of the normal pressure

4.3.5.2 Feature Extraction for Signatures

We have extracted two features from raw (x,y) signatures, i.e. velocity and curvature [133]. Velocity

is calculated as the difference of two consecutive points. Curvature based feature is calculated as

follows:

Curvature [133] of point P2 is calculated using two neighboring points P1 and P3 as shown in

Figure 4.16.
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Figure 4.15: Signature samples: First row shows three samples of subject S1. Similarly, second row
is of subject S2.

Figure 4.16: Computation of curvature feature using two neighbors P1 and P3.

A circle is fitted using three consecutive non-linear points of signature trajectories P1, P2 and

P3. It includes vectors
−→
CT ,

−→
CS, circle center

−→
C , angle α and radius R.

−→
C is calculated using Eq.

4.3.1
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−→
C =

Sin2P1

−→
P1 + Sin2P2

−→
P2 + Sin2P3

−→
P3

Sin2P1 + Sin2P2 + Sin2P3

(4.3.1)

4.3.5.3 Signature Recognition Results

Signatures have been classified using GHMM and SHMM, respectively. Figure 4.17(a) shows the

recognition rates when tested with 4 HMM states and with GMM components {16, 32, 64, 128, 256}.

Similarly, Figure 4.17(b) shows the accuracies by varying number of HMM states {3, 4, 5, 6, 7}with

GMM components as 32. The highest accuracy of 93.13% has been recorded with HMM state 4

and 32 GMMs.

Figure 4.17: GHMM classification performance over SVC2004 dataset. (a) With HMM states 4 and
varying GMM components. (b) With varying number of HMM states using GMM 32.

Next, state-wise separation of signatures has been carried out on 4 segments and classified using
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Figure 4.18: SVC2004 Results using GHMM and GA based combination.

SHMM. The genetic framework is used to combine recognition scores from GHMM and SHMM.

Hence, the chromosome length becomes 5 for the signatures. The size of initial population has been

set to 20. The optimized weights from GA have been recorded as w0 = 0.5192, w1 = 0.0410, w2 =

0.3258, w3 = 0.0088, and w4 = 0.1049. Figure 4.18 shows the classification results using GHMM

and GA based combination of GHMM and SHMM. An improvement of 1.37% is recorded with an

accuracy of 94.50% using GA.

4.4 Discussion

We propose a new approach for trajectory shrinking and classification, where shrinking is based

on the position, speed, starting/ending points, and CH/RDP algorithm, and the classification has

been done based on GHMM and local SHMM with a GA based optimization. A two stage HMM

classification is used in this work, where HMM is used for trajectory classification and GA is used

for weight optimization to improve the classification. The Accuracy of AMKS framework has

been recorded as 87.60% on T15 dataset and 94.25% on MIT dataset, whereas the accuracy of

our approach has been recorded as 94.80% and 96.75%, respectively on T15 and MIT dataset.

Experiments reveal that our approach produces better result as compared to AMKS framework.

The proposed kernel prevents over-shrinking by preserving the shape of the trajectories leading to

the better classification performance. Also, the idea is to learn from individual trajectory segments

and later combining their results. In this way, there is the scope of improvement in classification

performance using the fusion based techniques such as GA, and ACO. SHMM is not restricted
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to trajectory classification and it can be used for other machine learning tasks such as signature

recognition. We have shown the application of SHMM for signature recognition, where an accuracy

of 94.50% has been recorded. In future, we aim to use SHMM framework for action recognition in

RGB and 3D depth videos.
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Chapter 5

Scene Segmentation based on Motion
Trajectory Patterns

Trajectory classification is a precursor step towards scene segmentation, given a set of trajectories.

Scene segmentation is helpful for understanding the flow of motion in the different regions of area

under surveillance. It plays a vital role in the field of visual surveillance and security where we

aim to classify surveillance scenes based on two important information, namely scene’s layout and

activities or motions within the scene. In this work, we propose a supervised learning based method

to segment surveillance scenes with the help of high-level features extracted from object trajectories.

5.1 Introduction

Self regulating visual vigilance systems are highly dependent upon motion patterns of moving ob-

jects to find out distinct types of activities occurring within the range of sensor. Motion patterns of

the objects can be quite explanatory and often used for various assignments, such as scene semantic

analysis [82], highway traffic management [1], and atypical activity detection [134].

Computer vision aided object detection and tracking has advanced significantly during last two

decades. Hence, applications of object detection and tracking has increased in leaps and bounds.

For example, it is being used for foreground segmentation [91] semantics analysis [82, 137], scene

classification, segmentation [48, 67], and interest area localization [135], Region labeling [138].

61
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Camera based surveillance has reached almost every corner of our society. It is crucial to develop

systems that are capable of automatically taking care of the surveillance task efficiently without

external support from human observers. The goal can be achieved with the help of systems having

better understanding of surveillance scene that can be achieved with scene segmentation. Majority

of the existing scene segmentation techniques use low level features such as location of the object

center [67] or movement pattern learned through velocity or displacement [48].

The problem of abnormal activity detection can be exploited with supervised/unsupervised man-

ner given the trajectory features. Though simple features like time-series representation of an ob-

ject’s trajectory (xi, yi, ti) can work in local pattern analysis, however, high-level representation of

the scene dynamic may not be possible using such simple features. The work of Dogra et al. [48]

can be used to get a new representation using the RAG (Region Association Graph) and block im-

portance based features. For example, the RAG based segmentation of a scene proposed in their

method can be useful to represent the moving object’s path.

In this work, we have used two high-level features proposed in the work of [48], namely block

label and node-number to classify object trajectories. The modified representation of the trajec-

tories or paths with respect to RAG representation of the scene are then fed to an HMM classifier.

Next, a heuristic has been applied to assign the blocks to grow meaningful segments. We compared

our technique with the method proposed by Dogra et al. [48] using two datasets, namely IIT and

MIT car datasets. Our proposed method gives better results on scene segmentation as compared to

the method proposed in [48].

In the next Section, we present the proposed work of trajectory classification and scene segmen-

tation. In Section 5.3, experimental results obtained using two surveillance datasets are presented.

We conclude in the Section 5.4 by highlighting some of the possible extensions of the present work.

5.2 Trajectory Classification and Scene Segmentation

We have processed the raw trajectories to extract the high-level features using a methodology in-

troduced by the authors of [48]. Their method is fundamentally built upon a hypothesis introduced

by Dogra et al. [135]. They have assumed a novel theoretical model of object motion and tested
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their supposition with benchmark datasets. Their model shows that, the probabilistic importance

distribution of distinct localized areas or block of a given surveillance scene, follows a predefined

pattern. They have partitioned a surveillance scene into N × N rectangular blocks and calculated

the probabilistic importance or label of each block based on parameters such as, number of objects

visiting a block and the total time spent by all moving objects inside the block. Next, a weighted

graph referred to as RAG, has been constructed. They have used this for detection of suspicious or

anomalous movements.

In this work, we have used high-level features, namely label and node-number, to represent a

coarse trajectory. It has been verified that, these two features are important to decide the pattern of

movements inside a scene. In Figure 5.1, we show a sample RAG based segmentation map of the

surveillance scene taken from the IIT human trajectory dataset [48], wherein red regions represent

rarely or never visited blocks, blue areas represent moderately visited zones, and green segments

are frequently visited blocks. These blocks are encoded with decimal values, e.g. {4, 3, 2}, and a

region growing technique has been adopted to construct the RAG. Scene segmentation solely based

on movement patterns is discussed in this work without any texture based information.

Figure 5.1: RAG based segmentation map generated using the method proposed in [48] when ap-
plied on IIT dataset.

5.2.1 High-Level Feature Extraction

For the purpose of trajectory smoothing and removal of discontinuities or outliers, we have used

RANSAC based approach proposed by [136]. Outliers exist in the signal because of tracking error.

Therefore, we need to remove these outliers for better segmentation results. Dogra et al. [135] have
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extracted some high-level features, such as label of a block (b). In their approach, first they have

calculated average velocity of a target object from its uniformly sampled trajectory segment. In the

next step, they have calculated the total number of times a block is visited by various targets, which

is referred to as global count or σb. Using this count, they filtered-out some unimportant blocks.

Lastly, they have estimated block importance (τb) using Eq. 5.2.1 and Eq. 5.2.2, respectively.

ωb = ωb +
vti − vti
vti

(5.2.1)

where ωb represents the weight of the block b computed from average (vti) and instantaneous (vti)

velocities of a target object, ti.

τb =
ωb
σb

(5.2.2)

In this work, we have used the above block importance (τb) to construct a high-level feature

vector comprising with label together with the original (x, y) coordinate values of the trajectory,

and the node-number of a block as per the RAG proposed in [48]. Hence each point of a trajectory

of arbitrary length can be replaced by the four dimensional feature point as given in Eq. 5.2.3, where

x(i), y(i), i)b, and node−number(i)b, represent value of x coordinate, y coordinate, label of block

b, and node-number of block b at sequence number i of the time-series representation of the original

trajectory.

F (i) = [x(i), y(i), label(i)b, node− number(i)b] (5.2.3)

5.2.2 Supervised Classification using HMM

As HMM is a supervised approach, therefore, we first need to manually classify some of the trajec-

tories to prepare a training set and provide this set as input to the HMM. Classification of trajectories

highly depends upon the scene geometry as well as on movement patterns. In general, classification

criteria likely to change as the scene and motion patterns change. Based on this, the number of

classes may vary. Remaining set of trajectories are fed to the classifier to grouping. using these

grouped trajectories, we apply a heuristic to merge blocks of the image. Finally, we get the segmen-

tation of the scene. Segmentation is described in the following Section.
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5.2.3 Surveillance Scene Segmentation

The scene segmentation heuristic is described in this Section. As mentioned earlier, a surveillance

scene is first needs to be partitioned into non-overlapping local grids or blocks. Next, we apply

the following methodology to assign or group these blocks based on the number of trajectories

passing through these blocks. We may recall, our HMM based classification has already grouped

the trajectories into desired numbers of classes. Therefore, the whole scene is finally segmented

into regions depending upon the number of classes in the trajectories plus one. This extra region is

introduced because, there may be some blocks that have not visited by any target. The method of

segmentation is as follows.

Let Ti represents the ith trajectory of length n and bj denotes the jth block of the scene such that

B is the set of all blocks. We assume, there are k classes of trajectories, where ck represents the kth

class. Now, for every block, say bj ∈ B, we determine the set of trajectories λbj passing through

block bj . Now, we partition the trajectories from set λbj into respective classes. In the next step we

find the dominating class within that block having highest number of trajectory footfalls. Suppose

ck be the dominating class for the block bj , then we assign class ck to this block. An example of the

above block labeling is depicted in Figure 5.3. Finally, simple region growing algorithm has been

used to merge blocks having similar cluster assignment and connected through 8-connectivity rule.

Figure 5.2: An example demonstrating the process of association of a block to a particular segment
or region.
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5.3 Experimental Results

In this Section, we present the outcomes obtained by applying our method on public datasets and we

also show comparative performance evaluation carried out against the method proposed by authors

of [48]. We extracted trajectories using the target detection and tracking algorithm proposed by

Dinh et al. [116].

5.3.1 Datasets and Ground Truths

Through experiments, we have tested our methodology applied on IIT surveillance dataset made by

the authors of [48] and MIT car dataset [126]. The IIT dataset consists of a total of 191 distinct hu-

man trajectories and it was made for testing scene segmentation and anomaly detection algorithms.

Car dataset is huge in volume (≥ 40k trajectories), out of which we have randomly selected 400

trajectories to verify our algorithm. Dogra et al. [48] have shown that, the anomaly detection algo-

rithm proposed in their work performs satisfactorily on IIT dataset as well as other public datasets,

namely VISOR1 and CAVIAR2. However, these datasets are not suitable for our application because

of insufficient number of trajectories. Thus, we have not tested our method using these datasets.

We initiate our discussion on outcomes by showing original scenes of both IIT and MIT datasets

with trajectories plotted, as shown in Figure 5.3(a) and Figure 5.4(a). Corresponding label map,

node-number map, scene-segmentation map, and RAG representations are shown in subsequent

diagrams of the Figures.

5.3.2 HMM Classification Results

Trajectories were manually labeled and then used for training and testing. HMM was trained and

tested using high level features ’label’ and ’node-number’. Based on the HMM classification, we

segmented the surveillance scene of both datasets. We have trained and tested HMM with varying

number of classes. Finally, we have observed that, HMM based classification produces exciting

results for four classes when applied on MIT car dataset. We have classified the IIT dataset tra-

1http://www.openvisor.org
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

http://www.openvisor.org
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Figure 5.3: (a) The background scene of IIT dataset divided into 10 × 10 number of blocks with
overlayed trajectories (b) Labeling of the blocks using the method described in [48] (c) Construction
of the graph nodes using labels (d) Color-coded representation of the segmented scene, and (e) RAG
corresponding to the segmentation.

Figure 5.4: (a) The background scene of MIT dataset divided into 10 × 10 number of blocks with
overlayed trajectories (b) Labeling of the blocks using the method described in [48] (c) Construction
of the graph nodes using labels (d) Color-coded representation of the segmented scene, and (e) RAG
corresponding to the segmentation.

jectories into two classes. It has been observed that, for both datasets, trajectories of suspicious

or off-the-track nature have been classified with reasonably high accuracy. Figure 5.5 presents the
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HMM classification of both datasets.

Figure 5.5: HMM Classification (a) (k = 2) for IIT dataset (b) (k = 4) for MIT dataset

Figure 5.5 shows that, our proposed classification-based segmentation produces better scene

segmentation as compared to segmentation obtained by Dogra et al. [48]. Trajectories were pre-

processed by a method proposed in [136] to remove the effect of outliers. We mark the unvisited

blocks with black color after outlier removal. For IIT dataset, frequently visiting or regular blocks

are marked as green and suspicious bocks are marked as red. For MIT dataset, frequently visit-

ing nodes are marked as green, moderately visited nodes with sky blue color, rarely or abnormally

visited blocks with red color and rest of nodes are marked with purple color.

It can be easily verified from Figure 5.6 that, the approach of [48] identifies some blocks as

frequently visiting, however, in reality, these blocks have never been visited by any moving target.

On the other hand, our proposed segmentation algorithm does a better job. Ground truths and

classification results using IIT surveillance dataset and MIT car dataset are presented in Table 5.1

and Table 5.2, respectively.

Table 5.1: Results on IIT dataset (Training:50% and Testing: 50%), GT: Ground Truth

Dataset: IIT
Trajectory=191;
GT: C1=190;
GT: C2=10;
K=2;

C1 C2 Result

91 4
Accuracy=96.84%
Precision=75%
Recall=60%
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Figure 5.6: HMM Classification based Segmentation (a) (k = 2) Segmentation of IIT dataset us-
ing [48] (b) Segmentation of IIT dataset using our approach (c) (k = 4) Segmentation of MIT car
dataset using [48] (d) (k = 4) Segmentation of MIT car dataset with our approach

Table 5.2: Results using MIT car dataset (Training: 50% and Testing: 50%), GT: Ground Truth

Dataset: MIT car
Trajectory=400;
GT:C1=195;
GT:C2=103;
GT:C3=77;
GT:C4=25;
K=4;

C1 C2 C3 C4 Result

92 55 38 13

Accuracy=97.47%
Precision=
92.31%
Recall=100%

5.4 Discussion

In this work, surveillance scene segmentation with the help of trajectory classification using HMM,

is introduced. High-level features have been obtained from raw object trajectories and then trajecto-

ries were classified into normal and abnormal movements on MIT parking-lot and IIT Bhubanesh-

war datatsets. High-level features are obtained using a recently proposed unsupervised technique

to label segments of a given surveillance scene partitioned into non-overlapping blocks. The pro-

posed method produces better results (Figure 5.6) as compared to the method of [48]. The proposed
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method is a preliminary work towards the automatic scene segmentation where the grid size will be

selected automatically. The proposed trajectory classification and scene segmentation methodology

has many applications including traffic management, anomalous activity detection, and crowd flow

analysis.



Chapter 6

Conclusion and Future Work

In this thesis, we have worked on basically two types of trajectories i.e. the vehicle and human

trajectories recorded in surveillance area such as cross-road, and a lab environment. We have used

publicly available datasets in this thesis. A computer system with Intel i3 3rd generation processor

and 4 GB of RAM has been used to implement the work presented in this thesis. We believe that the

system performance will be better in terms of computation time with the use of high-end machines.

In the very first work presented in Chapter 3, the concepts of graph theory for trajectory clas-

sification. A global cost was determined using DTW algorithm between each pair of trajectories.

Next, each trajectory was partitioned into variable number of segments based on their geometry. A

complete bipartite graph was formulated between each pair of trajectories and two local costs were

determined from it. These global and local costs are combined using particle swarm optimization

to improve the classification rates.

In the second work presented in Chapter 4, we proposed a new kernel and a segmental HMM

based trajectory classification model. The kernel uses position vectors, speed, end points, convex

hull points and RDP points to shrink the trajectories. Next, segmental HMM breaks the trajectories

into fixed number of segments and individually learns from them. Finally, individual responses are

combined using genetic algorithm to improve the classification rates.

In the third work presented in Chapter 5, we used RAG based features for trajectory represen-

tation and used them to train HMM classifier. Using the HMM classifier results, we segmented the

surveillance scene into M × N local non-overlapping grids for analyzing the motion through each

71
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local grid followed by classification using the features extracted grid-wise. The grid size of 10× 10

has been opted from state of the art method to compare with. The model outperformed the state of

the art method.

The first work described in Chapter 3 has the capability to exploit other problems such as signa-

ture modeling for user identification and verification. This work can be extended with deep learning

based framework to analyze the local dynamics of trajectories and can be used to address the prob-

lems like action/activity recognition. The work presented in Chapter 4 may be suitable for modeling

online signatures, online gestures, dynamic sign language recognition with proper features extrac-

tion methods. As this work presents a segmental HMM based method, such strategy can be applied

to LSTMs for gesture and signature modeling. The work discussed in Chapter 5 uses motion tra-

jectories. The work can be extended be combining the texture based information for the scene

segmentation.

The work presented in this thesis has dealt with the classification of object trajectories using

the supervised approach. Thus, in future, we will focus on building the unsupervised or semi-

supervised version of the work discussed in this thesis because there might be situations where the

trajectory patterns may not be available with their ground truths i.e. the class labels. Also, we will

focus on building Generative Adversarial Network (GAN) based methods to improve the trajectory

classification performance. The work discussed in this thesis has very important applications like

traffic management, lane classification, scene segmentation, and anomaly detection.



Appendix A

Supplementary Material

A.1 Dataset Description

Here, we present the details of the datasets used in this thesis.

T15 Dataset: The trajectories of T15 dataset [111] are labeled into 15 different classes. It

consists of 1500 noisy trajectories that have been collected over a span of time. The size of each

class is not fixed and it varies from 19 to 278. The samples of T15 dataset are shown in Figure A.1.

Figure A.1: Samples of T15 trajectory datasets. Classes are represented by color. For better visibil-
ity of colors please see the pdf version.
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Figure A.2: Samples of LabOmni trajectory datasets. Classes are represented by color. For better
visibility of colors please see the pdf version.

LabOmni Dataset: LabOmni [112] dataset consists of human trajectories walking through a

lab captured using an omni-directional camera. The dataset consists of 209 trajectories from 15

classes. The number of trajectories in a class varies from 3 to 36. Trajectory points are the pixels of

captured video. Samples of LabOmni dataset are shown in Figure A.2.

CROSS Dataset: CROSS [112] dataset consists of a total number of 1900 trajectories from 19

different classes. Each class contains 100 trajectories. The length of trajectories vary from 5 to 23.

Figure A.3 shows the samples of CROSS dataset with trajectories from different classes are plotted

in color.

MIT Car Dataset: MIT car dataset [126]1 consists of 400 very noisy trajectories extracted

from videos. MIT car trajectories are labeled in six classes. Here, the number of trajectories in

each class is not fixed and varies from 19 to 173. MIT Car trajectories are shown in Figure A.4.(b).

MIT dataset contains several noisy trajectories and the length of trajectories vary not only among

different classes, but within the same class too.
1MIT dataset has many trajectory out of which many trajectories are very noisy and/or very short in length. So only

400 trajectories were selected for experiments.
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Figure A.3: Samples of CROSS trajectory datasets. Classes are represented by color. For better
visibility of colors please see the pdf version.

Figure A.4: MIT Dataset (number of classes=6). Color represent trajectory classes.

A.2 Hidden Markov Model (HMM)

HMM has been known for its capability to model the sequential dependencies. A HMM model

can be defined by using three tuples i.e. π, A, B where π defines the initial state probabilities,

π, A = [aij], i, j = 1, 2, . . . N is a state transition matrix which denotes the transition probability

aij from state i to state j and B denotes the observation probability bj(Ok) which is modeled with
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Figure A.5: Variants of HMM: (a) 3-state ergodic model (b) 3-state let-to-right model.

the continuous probability density function from state j and observing a symbol Ok. The density

function is represented by bj(x), where x denotes the k dimensional feature vector. For each state

of the model, a Gaussian Mixture Model (GMM) is defined separately and the output probability

density of state j can be defined using Eq. A.2.1

bj(x) =

Mj∑
k=1

cjkℵ(x, µjk,Σjk) (A.2.1)

where Mj denotes the number of Gaussian alloted to j, and ℵ(x, µ,Σ) denotes a Gaussian

with mean µ and co-variance matrix
∑

and cjk denotes weight coefficient of the Gaussian with

component k of state j. For a model λ, if O is an observation sequence O = (O1, O2, . . . OT ) and is

assumed to be generated by a state sequence Q = Q1, Q2, . . . QT of length T, we can calculate the

probability of observation or likelihood using Eq. A.2.2, where πq1 denotes the initial probability of

start state.

P (O,Q|λ) =
∑
Q

πq1bq1(O1)
∏
T

aqT−1qT bqT (OT ) (A.2.2)

Figure A.5 shows the two variants of HMM where (a) is a 3-state ergodic model, whereas (b) is

a 3-state left-to-right model. To train a model, the original label and corresponding feature vector

sequences are fed together in training phase. Baum-Welch algorithm has been used for re-estimation

of the initial output probability distributions of bi(O) for maximizing the likelihood of the training

set. Viterbi decoding algorithm is used for recognition purpose which finds the character sequence

having the best likelihood using a given feature vector sequence.
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A.3 Support Vector Machine (SVM)

SVM is a supervised learning based classifier and is widely used by the researchers to perform

classification of trajectories [142] using linear and non-linear kernels. The classifier maps the data

into a feature space where a hyperplane separates the classes [142]. The general solution is presented

in Eq. A.3.1, where k represents the kernel function that SVM uses to add both linear and non-linear

classification functionality.

f(x) =
∑
i

aiyik(xi, x) (A.3.1)

A.4 Random Forest (RF):

RF [143] is a supervised classifier that uses bootstrapping of Features into multiple training subsets.

Next, it builds classification trees for each training subset. The final classification is made by col-

lecting decisions from all the trees and choosing the final class having maximum votes. The voting

can be done by assigning equal shares to the decisions of all trees or a weighting scheme can be

adopted to assign unequal weights to the decisions of all trees. Figure A.6 shows the procedure of

the RF classifier to decide the final class through voting using decisions of M number of trees.

The selection of root nodes and splitting of features are done on the basis of information gain

(IG) and entropy of features. The nodes are split only if there is a positive IG. The IG of splitting

training data (S) into subsets (Sj) could be done using Eq. A.4.1.

IG = −
∑
j

|Sj|
|S|

E(Sj) (A.4.1)

where |Sj| and |S| are the size of the sets Sj and S, respectively. E(Sj) is the entropy of set Sj .
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Figure A.6: RF classification process.

A.5 Comparison with SVM and RF Classifiers

Trajectories are sequential in nature. Thus, to model the sequential dependencies of trajectories,

sequential classifier is required. The static classifiers like SVM, and RF only work on static data

i.e. position vectors in corresponding feature space. So, the performance of static classifiers may be

lesser than that of sequential classifiers. However, we have compared the performance of proposed

work (Chapter 3) with the SVM, and RF classifiers on T15, LabOmni, and CROSS datasets, respec-

tively in this thesis. For SVM, radial basis function kernel has been used. The feature like Convex

Hull, angular feature, and curvature [144–146] have been extracted and their mean is taken to feed

into these classifiers. Classification rates are mentioned in the Table A.1.

Table A.1: Comparison with SVM, and RF classifier

Dataset SVM(%) RF(%) Proposed(%)
T15 83.43 90.58 92.05
LabOmni 85.19 93.32 98.46
CROSS 90.37 95.30 99.58
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A.6 BLSTM-NN based Sequence Classification

BLSTM-NN is a popular sequence classification model and has been used in various hand-writing

[139] and gesture recognition problems [141]. BLSTM-NN has two hidden layers that process a

given input sequence in both directions [140]. One layer is used to process the sequence in forward

direction, whereas, the other processes the input in backward direction. Both hidden layers are

attached with the same output layer that has one node for each possible activity present in the input

sequence. A special node ε in the output layer is used to indicate ‘no − activity’ which refers

that no decision has been made at that position. Two different models can be trained using Cross

Entropy Error (CEE) based objective function and Connectionist Temporal Classification (CTC)

based objective function.

A.6.1 CTC based BLSTM-NN

The Connectionist Temporal Classification (CTC) objective function (O) is used as negative log

probability of correct labeling of the entire training set. If S is the given training set with a pair of

input and target sequence as (p, q), then the O can be described using Eq. A.6.1

O = − ln (
∏

(p,q)εS

p(q|p)) = −
∑

(p,q)εS

ln (p(q|p)). (A.6.1)

Here, O has the ability to model a label sequence with given inputs. In some cases, it has

been found that BLSTM-NN performs better than HMM classifier for handwriting recognition by

providing a long range of context accessible in both input directions. The model also resolves

the problem of vanishing gradient using Long Short-Term Memory (LSTM) hidden layers which

contains memory blocks to provide access to the information for longer time.

A.6.2 CEE based BLSTM-NN

Softmax function has been used in output layer in CEE based BLSTM-NN, which ensures that the

network outputs have been normalized between 0 and 1; and sums to 1. The network has K output
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units, one for each class of the gesture sequence [140]. CEE for K classes are defined in Eq. A.6.2

CEE = −
∑

(x,z)εT

K∑
i=1

zi ln yi (A.6.2)

where (x, z) is the input pair with x as the input sequence and z as the target sequence from the

training set T . The term y defines the probability such that the input belongs to a particular class

and it can be computed using Eq. A.6.3

p(z|x) =
K∏
i=1

yzii (A.6.3)

In future, we will model trajectories using LSTM based networks.
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