
SOFTWARE FAULT PREDICTION USING MIXTURE OF

EXPERTS

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

by

AMAN OMER

(17535003)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

May, 2019

i

CANDIDATE’S DECLARATION

I hereby declare that the work which is being presented in the dissertation entitled

“Software Fault Prediction using Mixture of Experts” towards the partial fulfilment

of the requirements for the award of the degree of Master of Technology in Computer

Science and Engineering submitted in the Department of Computer Science and

Engineering, Indian Institute of Technology Roorkee, Uttrakhand (India) is an authentic

record of my own work carried out during the period from July 2018 to May 2019 under

the guidance of Dr. Sandeep Kumar, Associate Professor, Department of Computer

Science and Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other institute.

Date: (Aman Omer)

Place: Roorkee Enroll. No- 17535003

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: (Dr. Sandeep Kumar)

Place: Roorkee Dissertation Supervisor

ii

ACKNOWLEDGEMENTS

I would never have been able to complete my dissertation without the guidance of my

supervisor, help from friends, and support from my family and loved ones.

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor

Dr. Sandeep Kumar, Associate Professor, Department of Computer Science and

Engineering, Indian Institute of Technology Roorkee, for his invaluable guidance, and

encouragement and for sharing his broad knowledge. His wisdom, knowledge and

commitment to the highest standards inspired and motivated me. He has been very

generous in providing the necessary resources to carry out my research. He is an

inspiring teacher, a great adviser, and most importantly a nice person. I would also like

to express my sincere appreciation and gratitude towards Dr. Santosh Singh Rathore for

his encouragement, consistent support and invaluable suggestions at the time I needed

the most.

I am also grateful to the Dept. of Computer Science and Engineering, IIT Roorkee for

providing valuable resources to aid my research. Finally, hearty thanks to my parents

and siblings, who encouraged me in good times, and motivated me in the bad times,

without which this dissertation would not have been possible.

AMAN OMER

iii

ABSTRACT

With increasing applications of software, quality assurance becomes an important phase

of software life cycle which makes Software Fault Prediction an essential research topic.

Software fault prediction uses existing software metrics, faulty and non-faulty data to

predict fault-prone modules. Learning algorithm used for classifying software module

plays a vital role hence it also makes the process dependent and vulnerable on single

algorithm. To overcome this more than one learning algorithm is being used. This

collection of models is called as ensemble. In recent years, many studies have explored

different ensemble methods for software fault prediction and it results in significant

improvement over individual model. Input space division algorithm for these ensemble

techniques are data independent, which certainly affects the model as spatial

information could be lost. Training model would perform better if data will be separated

depending on the input data. Mixture of Experts (ME) ensemble is a technique which

uses soft splitting of the data to train base learners, had been used in various fields such

as speech recognition and object detection.

The objective of this study is evaluate the performance of ME with different base

learners for Software Fault Prediction. 41 publicly available software project datasets

from NASA PROMISE and MDP repositories along with Eclipse project data, are used

for simulation. ME with decision tree and multi-layer perceptron as base learners are

evaluated along with using Gaussian Mixture Model, an unsupervised technique as a

gating function. Performance is measured in terms of accuracy, f1-score, precision and

recall. Wilcoxon’s statistical test is also performed to evaluate the significant difference

of ME. To compare the performance bagging is implemented and results are also

compared with individual base model. Results show that while using decision trees as

base learners, ME showed improvement in performance and it also performs as good as

bagging. When multi-layer perceptron is used as base learner in ME, on average, it

shows 7% and 6% improvement in accuracy from individual and bagging model,

respectively. Wilcoxon statistical test indicates the significant difference between ME

and bagging model for both base learning algorithms.

iv

CONTENTS

CANDIDATE’S DECLARATION .. i

CERTIFICATE ... i

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. iii

LIST OF TABLES .. vi

LIST OF FIGURES.. vii

CHAPTER 1 INTRODUCTION .. 1

 1.1 GENERAL CONCEPTS .. 1

 1.1.1 Software Fault Prediction ... 1

 1.1.2 Mixture of Experts ... 2

 1.2 ORGANIZATION OF THESIS ... 3

CHAPTER 2 LITERATURE REVIEW .. 4

 2.1 BACKGROUND STUDY ... 4

 2.1.1 Data Pre-processing ... 4

 2.1.2 Binary class classification .. 4

 2.1.3 Ensemble classifiers ... 4

 2.2 TABULAR COMPARISON AND RESEARCH GAPS 5

 2.3 PROBLEM STATEMENT AND OBJECTIVE ... 8

CHAPTER 3 PROPOSED APPROACH ...10

 3.1 GAUSSIAN BASED MIXTURE OF EXPERTS ..11

 STEP 1: Training Gaussian Mixture Model..11

 STEP 2: Training and testing of Experts ..14

 3.2 MIXTURE OF LEARNERS ...15

CHAPTER 4 EXPERIMENTAL DESIGN ..16

 4.1 DATA PREPARATION ...16

 4.2 CLASSIFICATION MODELS ...18

v

 4.2.1 Decision Tree (DT) ...18

 4.2.2 Multilayer Perceptron (MLP) ..19

 4.2.3 Ensemble Method ...19

 4.3 DIFFERENCE BETWEEN BAGGING AND GME20

 4.4 PERFORMANCE EVALUTION MEASURES ..22

 4.5 PARAMETER SETTING ...23

CHAPTER 5 RESULTS AND ANALYSIS ..25

 5.1 PERFORMANCE COMPARISON...25

 5.2 STATISTICAL TEST RESULTS ...32

 5.3 COMPARISON WITH PREVIOUS STUDIES ..35

CHAPTER 6 CONCLUSION AND FUTURE WORK ..36

References ...38

vi

LIST OF TABLES

Table 1 Tabular representation of past researches ... 5

Table 2: Results from experiments of GM model ...11

Table 3 Details of selected datasets ..17

Table 4 Confusion matrix for Software Fault Prediction ..22

Table 5 Accuracy values ..26

Table 6 F1-Score values ..27

Table 7 Precision values ..29

Table 8 Recall values ..30

Table 9 Wilcoxon's test results for the comparison of GME vs individual model 32

Table 10 Wilcoxon's test results for the comparison of GME vs bagging33

Table 11 Wilcoxon's test results for the comparison of MLP vs DT with GME33

Table 12 Comparison of accuracy values with previous studies34

Table 13 Comparison of f1-score values with previous studies34

Table 14 Comparison of precision values with previous studies35

Table 15 Comparison of recall values with previous studies35

vii

LIST OF FIGURES

Figure 1 Framework for GME .. 9

Figure 2 Visualization of data points used to experiment GM model11

Figure 3 GM Model cluster on different data shape ...12

Figure 4 Architecture of GME ...14

Figure 5 Framework of Mixture of Learners ..15

Figure 6 Different schemes for Experimental Analysis ..19

Figure 7 Difference between bagging and GME data split for clustered data21

Figure 8 Difference between bagging and GME data split for random data21

Figure 9 Difference between bagging and GME data split for moon shape data22

Figure 10 Graph for different values of _DS and _LP on 10 random datasets.............24

Figure 11 Accuracy graph between DT-G and MLP-G ..28

Figure 12 F1-Score graph between DT-G and MLP-G ...28

Figure 13 Precisiom graph between DT-G and MLP-G ...31

Figure 14 Recall graph between DT-G and MLP-G ...31

1

CHAPTER 1 INTRODUCTION

Software Fault Prediction is the mechanism to predict whether in a software the modules

are going to be faulty or non-faulty, before even applying the testing mechanism. In other

words, Fault Prediction in Software is a way to find the fault proneness of the software

module during the earlier stages of development life cycle process [1]. This prediction

has a great role to play in improving the quality of the software as well as reducing the

time and efforts needed in the testing phase of the development life cycle of the software.

This chapter describes the basic terminologies and brief about Software Fault Prediction

mechanism.

1.1 GENERAL CONCEPTS

1.1.1 Software Fault Prediction

The requirement of high quality and maintainable software have increased with the

growing complexity and dependency of the software. Software fault prediction is a

method for improving the software quality [5]. Fault prediction helps in reducing the

efforts for maintenance by giving the prediction of buggy modules beforehand. There are

several software metrics proposed in literature for measuring the performance of

prediction models [25]. Software fault prediction process is very important in software

development and the accurate prediction of faults and the recognition of the area which

is most prone to fault occurrence can directly help in reducing the development cost,

testing efforts and improves the overall quality of the software. Software a fault is the

main concern to be dealt with that affects overall software reliability and correctness. The

accurate predictions of the faults empower the software developers to evaluate the overall

reliability of the software during the development process. Moreover, the prediction of

the accurate location of faults can boost the testing process and allows the developers to

focus on the critical modules that may account for the maximum number of faults.

Software fault prediction is the prediction whether a software module is faulty or not by

using the previous data and some learning models. Thus software fault prediction makes

use of the data of previous versions of the software to find out the probability of faults in

the upcoming versions of that software based on some characteristics known as metrics,

by applying some learning model [2].

2

As the complexity of the software system are growing continuously, the rate of software

failure is also increasing resulting in undesirable behaviour of the system along with poor

services and sometimes complete outages. Dealing with software faults is very important

task. Faulty modules present in software deteriorates the quality of the software and also

increases the overall cost of the software system [31]. Several techniques and processes

for providing a high quality software product are included in software quality engineering.

Employment of data mining techniques on the software metrics collected during

development process, for identifying the potential fault-prone program modules, proved

to be an efficient method for improving software quality [11].

Advantages and needs of software fault prediction are listed as follows [1]:

● Delivering a highly dependable system.

● Predicting buggy modules beforehand helps in improving the testing process.

● Improving quality by improving test process.

Software fault prediction becomes important for some software which need much more

care regarding testing and cannot afford any type of faults (e.g. medical science, banking,

astronomy and finance etc.).

1.1.2 Mixture of Experts

Experts in this ML model is referred to an individual learner model which is expert in its

particular section of input space. This model was originally proposed by Jacobs et al. [3]

in 1991 as “Adaptive mixture of local experts” which suggested the idea of dividing the

input space and use different learners for different input space. ME model relies on the

principle of divide and conquer, having three major components [4]:

i Experts which can be either classifiers or regression functions.

ii A gate that provides soft boundaries for input space and introduces those regions where

the individual expert results are dependable.

iii A probabilistic model to incorporate the experts and the gate.

Mixture of Experts architecture can be used for solving classification and regression

problems of real world applications with some modifications in the architecture these

changes are discussed below.

3

Classification with ME

In the ME architecture, a gate and a set of experts collaborate with each other to break a

nonlinear supervised learning problem into smaller linear problems, by separating the

input space into a nested set of regions. Whole input space is softly split by gate, and the

experts learn the simple parameterized surfaces in these partitions of the regions. There

are several methods using which ME model can learn the parameters of both gate and

experts surface [4].

Regression with ME

Mixture of experts can also be used to solve the complex regression problem by assigning

weights to the result of various regression learners. In the past 20 years, there are various

statistical and experimental analyses which had been done on Mixture of Experts model,

and numerous amount of researches have been done in the fusion, regression and

classification area which shows the suitability of ME in those fields. ME models have

shown a better results and found useful in combination with many current classification

and regression algorithms because of its flexible and modular structure [4].

1.2 ORGANIZATION OF THESIS

 This report is divided into 5 chapters. First chapter concluded the preliminaries

and basic concept knowledge that will be needed for understanding this thesis. Second

chapter is literature review which includes papers from software fault prediction domain.

This chapter highlights the research gaps found in literature and presents the tabular

representation for the same. Third chapter contains details about proposed architecture.

Fourth chapter shows the experimental result of existing techniques as well as of proposed

architecture. Fifth chapter concludes the entire work including the analysis of results and

future work that can be done.

4

CHAPTER 2 LITERATURE REVIEW

Several works have been done till now in predicting whether the software module is faulty

or non-faulty, using different classifiers on different datasets. The performances vary on

using different classifiers on different set of datasets

2.1 BACKGROUND STUDY

2.1.1 Data Preprocessing

Unavailability of training data and class imbalance problem are most common in dataset

of software projects [3] [1] [21] [16]. There are several technique and their combination

used in recent past year to tackle these problem. Study [3] presents an iterative approach

to overcome the problem of unavailability of data. [3] uses Fuzzy Inference System (FIS)

at initial stage of software development when data is unlabeled. Prediction for later

versions of software project will be made using FIS model and Artificial Neural Network

(ANN). [23], [14] investigates and explore various as well as proposed class sampling

techniques in software fault prediction.

2.1.2 Binary class classification

[5] [9] and [5] studies explore the scope of semi-supervised and unsupervised learning

techniques in prediction of software faults and suggested that their approach’s applicable

depending on the software project metric and performance measure. None of the model

is generalized for every software project fault data presented publicly. [6] investigates

different ML models on different metrics and suggested that multi-layer perceptron

results better for all metrics.

2.1.3 Ensemble classifiers

Review papers [1] [28] [29] suggest that ensemble method are improves the performance

and produce a reliable prediction framework for software fault prediction. [6] proposes a

unique approach of using different set of metrics on different type of base learning

algorithm. A conclusion from studies [6], [7], [17], [21] and [11] is that pre-processing

data for learning an ensemble model is very important as these studies points out the

difference in performance of ensemble approach on using pre-processing techniques.

5

2.2 TABULAR COMPARISON AND RESEARCH GAPS

This section contains the summary of various researches performed in recent years.

Study Key Points Methodology Advantages Disadvantages

Data pre-processing

[7]

A iterative
prediction
model that

begins with no
data

ANFIS
(Proposed) a

combination of
ANN and FIS

Also
implemented

proposed
methodology as

a tool

Expert is need to
gather initial fault

information

[8]
A novel active

semi-supervised
method

DT, LR, NB,
CoForest

Proposed
approach shows

the effective
results

Empirical study
not exhaustive.

No pre-processing
technique used

[13]

Investigate the
significance of
data sampling

SFP

DT, 3-layer NN,
SVM, RF, KNN

AUC was not
influenced with

sampling but
other metrics
shows better

results

No comparison
with existing

studies

[14]

Explores various
class imbalance

learning
methods for SFP

NB RF,
AdaBoost

Tabular
representation of

Optimal
Parameters for

imbalance
learning
methods

Validation
through more
case studies is

required

[15]

Proposes to use
number of faults
to oversample
minority class.

NB, Bayes
Network, K-NN

(k=1,5)

Presented a
novel approach

for handling
class imbalance

problem

For acceptance
and generality of
approach, more

studies is required

Binary class classification

[25]

Semi-supervised
learning based

on label
propagation

FTF, ROCUS,
LDS, CMN,

GSKLP
(proposed)

GSKLP benefits
with LS

sampling to
improve results

Datasets of
different domains

required to
validate proposed

approach

Table 1 Tabular representation of past researches

6

Study Key Points Methodology Advantages Disadvantages

[9]

Unsupervised
Learning using
Scaled Dirichlet

Distribution

Clustering

Suggests that
clustering

algorithm needs
to be explored

for SFP

Conclusions are
based on

synthetic data

[5]

Connectivity
based

Unsupervised
Classification

RF, LR, SC,
LMT, NB

Comparative
study is

thorough

Pre-processing
step is not clear

[27]

Evaluate
different ML

models on
different metrics

LR, NB, MLP
MLP shows

better result with
all metrics

Pre-processing
step is not clear

[10]

Comprehensive
evaluation of

Bayesian
Network (BN)

Classifiers

15 different NB
classifiers

Augmented NB
classifiers and
RF produces
better results

Proposed H-
measure needs to
be evaluated on

more case studies

[11]
Evaluate high-
performance

fault predictors

SVM,
Probabilistic

Neural Network
(PNN)

PNN provided
best

performance for
large datasets

Comparative
analysis is not

complete

[12]

Attempts to
improve

performance
with existing
techniques

RF, MLP, NB

Feature selected
using BA
increases

accuracy of
ensemble
methods

Effect of BA on
various ensemble
methods needs to

be explored

Ensemble methods

[13]

Prediction
model on multi-

metric and
multi-type

learning models

DT, MLP, NB

New direction
for ensemble
classifiers in

SFP

More metric sets
are available on
which approach
was not tested

 Table 1 continued

7

Study Key Points Methodology Advantages Disadvantages

[14]
Examine the

effects of FS on
ELA

Bagging and
AdaBoost with

DT

Study conclude
that FS and DS

affects
performance

positively

Parameters for
ELA (i.e.,
number of

predictors) are
not discussed

[15]

Just-In-Time
Cross-Project

prediction
model

Voting, Bagging
and Joining of

traditional
models

Encounters
several research
questions with
sufficient proof

Selection of
base learning

algorithm is not
clear

[16]

Investigate
algorithms to

overcome lack
of training data

7 composite
algorithm to

ensemble
traditional
methods

Results showed
that CODEP of
LR effectively

handle data
unavailability

More empirical
validations
needed for
generality.

[17]

Proposes a two-
stage three-way
decision based

classifier

RF, NB
Results show the

efficiency of
proposed model

Other ensemble
technique such

as boosting,
stacking, etc.

should be used
for validation

[29]

Ensemble model
which considers
class imbalance

problem

RF

Proposed a novel
approach of
ensemble

oversampled
methods

Evaluation is
performed only
using RF, hence
results cannot be

generalized

[18]

Proposed a
clustering
ensemble

framework

K-Means, EM,
Particle Swarn
Optimization

PSO with
Manhattan
Similarity

measure performs
better

Evaluation have
been done on

only one
measure

[21]

New approach
to select the best
combination of

features

SVM, BP-NN,
GMCRF

(proposed)

Proposed
framework shows

reliable results
with low error

rates

Comparative
study is limited
to few models

[19]

Combine
multiple kernel
and ensemble

learning

SVM,
AdaBoost, RF,

MEKL
(proposed)

Proposed
ensemble method

(MEKL)
produced recall
greater in most

cases

Under sampling
leads to

information loss

 Table 1 continued

8

Overall research gaps found during literature survey related to fault prediction in software

module are mentioned below. Some of research gaps mentioned were found in those

studies.

 In most of the studies, there was a lack in number of software projects used to evaluate

to the performance of proposed algorithm, which is a necessary requirement for

generalizing the results of proposed method. Also limited performance measure were

used for the study.

 Absence of statistical tests and comparative study with past researches puts a question

mark on validity of results. Different studies use different performance measure

therefore comparing them becomes inconvenient. Also the parameters of proposed

approach which were set for generation of results, are not clearly mentioned that leads

confusion while following the approach.

 Data splitting technique for ensemble methods used in studies for SFP is not data

dependent which is a research gap for future work. Mixture of Experts is a type of

ensemble method which uses data dependent technique for splitting data.

2.3 PROBLEM STATEMENT AND OBJECTIVE

To explore the use of Mixture of Experts for Software Fault Prediction.

Objectives of this study are-

 Apply Mixture of Experts, an ensemble method in software fault prediction, with an

unsupervised learning algorithm (Gaussian Mixture Model) as gating algorithm and

compare DT and MLP learning technique when used as base learners.

 Evaluate the proposed approach on 41 public available datasets collected from

standard software engineering repository. And collect the results of four popularly

used performance measures.

 To compare the performance results, implement individual model and bagging

ensemble method for all datasets. Perform statistical test to note the significance and

also compare with previous studies.

9

CHAPTER 3 PROPOSED APPROACH

In this chapter, the framework of Gaussian Based Mixture of Experts for binary

classification of software modules is discussed. Figure 1 shows the architecture of

proposed Software Fault Prediction (SFP) model. Model building procedure consists of

two parts: 1) Training Gaussian Mixture (GM) Model over unlabelled training data; 2)

Building an ensemble of classifiers based on GM model. The main objective is to

accurately categorize software modules and reduce the dependency of software project

for selecting suitable SFP model. Above figure shows the framework of proposed system.

This section contains the details about the flow of data in the framework and shows how

each component is working together to achieve final objective i.e. binary classification of

software modules as faulty or non-faulty.

Figure 1 Framework for GME

Data which is at the initial phase is considered to be pre-processed. Pre-processing

involves handling missing values, data standardization and class balancing. Details of

these methods are discussed later in next chapters. In the proposed system data is firstly

give as an input to train Gaussian Mixture (GM) model which is an unsupervised learning

technique, that does not need labels of training data. Remaining train data will again be

given as input to GM model and output will be a matrix of probabilities. Second step is

to train ensemble of classifiers. Remaining train data which has not been given to GM

model be used to train the ensemble of classifiers. Probability matrix obtained in the last

step will be used to distribute instances to train different classifiers. This distribution of

instances is based on the threshold, if the probability of an instance to fall in classifier’s

subspace is greater than threshold then it will be included for training that classifier. Last

10

step is to make prediction for a new instance. In this stage probability array of an instance

will be used to combine the predicted results.

3.1 GAUSSIAN BASED MIXTURE OF EXPERTS

In the first step of the proposed solution for SFP model building, the objective of training

GM model is to assign the probability with which each software module belongs to a

particular classifier. These assigned probabilities are used, in later stage, to construct

training dataset for each expert or classifier. The intention behind using the unsupervised

probabilistic classification model rather than strict classification model, is to soft split

data among different classifiers.

STEP 1: Training Gaussian Mixture Model

A GM model is a probabilistic mixture model which presumes that all the data points are

triggered from a mixture of a finite number of Gaussian distribution with unknown

parameters and it has consistently produced state-of-the-art performance in various field

of classification, recognition, prediction, etc. [12]. In the first stage of the proposed

solution for SFP model building, the objective of training GM model is to assign the

probability with which each software module belongs to a particular classifier. These

assigned probabilities are used, in later stage, to construct training dataset for each expert

or classifier. The intention behind using the unsupervised probabilistic classification

model rather than strict classification model, is to soft split data among different

classifiers. In training stage, GM model tries to predict unknown parameters of each

Gaussian distribution. Since it considers that data points are generated from some

Gaussian distribution.

Input: Set of instances without class label X = { x1, x2,…xn} where n is the number of

instances in X and number of components k .

Output: 2D Matrix of probability G having n rows and k columns.

Here in X, xi is a row vector of size m and m is the number of attributes in dataset, k in

GME will be set equal to the number of classifiers used to ensemble. Each element in G,

gi,j will represent the probability of an instance i to fall into the subspace of classifier k.

11

The parameters of GM model are updated using multiple iterations of Expectation

Maximization (EM) algorithm. In each iteration, EM algorithm updates parameter to

maximises the likelihood. GM algorithm is known to a fastest algorithm for learning

mixture models. A simple experiment over 2D-blob cluster datasets have been done to

understand the working of GM model.

GM model is trained on 2D data points shown in figure 2a. In figure 2b, circle shows the

cluster spread after training GM model. Darker circle of each cluster show that density of

points in that region is higher that the outer light color circle. Red points in figure 2b

shows the testing point. Results are shown in terms of probabilty in table 2. Values which

are approximately equal to zero are not shown.

Point P1 which lies on the edge of S1 and S2

have probabilty 58% and 41% respectively,

which are approximately equal. Point P2

which lies at the intersection of clusters S1, S3

and S4 but is very near to high probability

zone (dark circle) of S4, hence probabilities

assigned to it are 27%, 29% and 54%. P3 is in

the dark region of S4 but also lies fairly in S4.

Here probabilty of point P3 to lie fall in S4 is

much larger than S3. Outlier P5 which should not be in any cluster, have fairly large

probability of lying in cluster S4.

Table 2: Results from experiments as
probability of points (P) for lying in a

subspace(S)

 S1 S2 S3 S4

P1 58% - - 41%

P2 27% - 29% 51%

P3 - - 12% 85%

P4 - 41% 54% -

P5 16% 12% - 71%

(b)

Figure 2 Visualization of data points used in experiment GM model (a) Initial points
(b) Trained GM model with testing points

(a)

12

Another simulation have been done with different shaped 2D cluster data to check the

efficiency of GM model.

Observations about GM model that are made from above experiments are-

 GM model also uses density information to form clusters.

 Probabilty difference is very large when a point lies in dark region (P3 in Figure 2b).

 Outlier point might get higher probability than a point lying on a cluster (P5).

 Clusters of GM model adopts the shape according to data.

 Number of clusters also affects the cluster shape and effectiveness of GM model. Figure

3b and figure 3c shows the difference in cluster shape on changing number of clusters.

Figure 3 GM Model cluster on different data shape with different n_components value

Figure 3(a) Stretched data clusters
n_components = 4

Figure 3(b) Moon shape data clusters
n_components = 2

Figure 3(c) Moon shape data clusters
n_components = 16

13

STEP 2: Training and testing of Experts

After distribution of instances among different cluster subspaces, machine learning

models need be trained. Architecture of training proposed approach (GME) is described

using figure 4. It shows the flow for 3 experts with the consideration that GM model has

already been trained. Algorithm 1 shows the training procedure for GME. In few words,

training algorithm uses output of GM model to soft split the data into subspaces which

will be used for training each expert independently. In this step data split using GM model

will make sure that no two subspaces will be totally same and hence model trained on two

different subspace of data will also be trained differently.

Algorithm 1 Training classifiers of GME

Input: The remaining dataset X’={x1, x2,…xT,…,xn}, corresponding output labels

Y’={y1, y2,…yT,…, yn}, here yi ∈ {F, NF} denotes class label, data selection threshold

_DS, number of experts k and trained GM model (G).

Output: Trained experts

1. BEGIN

For T = 1 to n do

2. Input xT to G and store the output in gT={gT,1, gT,2,…gT,k}.

For j = 1 to k do

3. check gT,j >_DS

 Add xT and yT to training subspace of expert j, Sj.

End For

End For

For i = 1 to k do

4. Train expert i using training subspace Si.

End For

5. END

Algorithm 2 also uses trained GM model not for splitting but to collect the decision of

each expert. Integer value zero is sometimes used in place of class label non-faulty and

integer value one for faulty. In most of the cases, X is used to indicate the attributes value

of each instance and Y is used to represent a set of corresponding class labels. Figure 4 is

drawn to make the data flow and terminology used in algorithms easy to understand.

14

Figure 4 Architecture of GME

Algorithm 2 Testing GME

Input: The query or test dataset X”={x1, x2,…xQ,…,xz}, label prediction threshold

(_LP), number of experts k, trained experts (E) and trained GM model (G).

Output: Predicted class labels, YP (|YP| = z).

1. BEGIN

For Q = 1 to z do

2. Initialize temporary variable (t) with 0

3. Input xQ to G and store the output in gQ={gQ,1, gQ,2,…gQ,k}.

For j = 1 to k do

4. Input xQ to Ej and store its output in yQ,j.

5. Update t, t = t + (yQ,j × gQ,j).

End For

6. Check t >_LP

 Add class label faulty (F) to YP.

7. Otherwise

 Add class label non-faulty (NF) to YP.

End For

8. END

15

3.2 MIXTURE OF LEARNERS

Figure 5 Framework of Mixture of Learners

Mixture of Learner is an ensemble method which uses different learning model at level 1

and these models will perform regression on fault dataset. Note that this technique is a

variant of an ensemble method called stacking. In stacking different types of learning

models are used at level 1 and meta learner at level 2 will use the results of level 1 models

for training. Novelty in approach of Mixture of Learners is, along with results of level 1

models, selected features from input data will also be used to train the meta classifier.

This will help meta classifier to make a correlation with input data.

As from the datasets for SFP, it is observed that data is collected on various metrics and

these metrics directly impacts the performance of prediction model. So for applying

proposed approach, different sets of metrics cane be used for training. At level 1 of

proposed approach, regression models are used on classification dataset. At level 1

Gaussian mixture model with n_components as 2 can be used to assign probability to each

software module.

Working of proposed approach will start with the training of level 1 regression models

on some portion of train dataset and remaining of train dataset and features extracted

using technique which have performed best in recent studies, will be used to train level 2

learning algorithm which is a classification algorithm. Model selection for ensemble is an

important and essential step in this approach. Level 1 models which uses very different

learning strategy like (k-Nearest Neighbours and neural network) should be used. Many

application of stacking have used more than 50 models at level 1 which makes a better

model but also increases the time complexity.

Feature Selection

Meta learner
(Classifier)

Predicted
Faulty

Predicted
Non -
Faulty

Data
Type 2

Regression model

Type n
Regression model

Type 1
Regression model

16

CHAPTER 4 EXPERIMENTAL DESIGN

To evaluate the effectiveness of proposed approach which is a combination of

unsupervised learning (Gaussian Mixture Model) based ensemble of classifiers, the

following discussed simulation experiments are performed. This section is organized as,

first subsection introduces the benchmark datasets, which are collected from real-world

Software projects and are publicly available for research work. Second subsection

discusses the performance measures for evaluating the conducted experiments. Later

parts contain introduction of classification models and details of experiments. The

experiment results are collected based on the performance of 5-fold cross validation.

All the experiments are implemented using libraries of Python programming language on

64-bit Windows operating system over 4GB RAM and Intel i5 processor machine having

clock speed @1.75GHz.

4.1 DATA PREPARATION

For obtaining the effectiveness and feasibleness of proposed GME architecture in binary

fault classification, total 41 datasets from NASA Metrics Data Program (MDP), NASA

PROMISE and Eclipse software engineering repository are used for evaluation. Link are

in the reference [20] [21] [22]. These datasets are commonly used for prediction of

software modules in many studies discussed in chapter 2. Using those datasets is helpful

for the comparative analysis of performance results. In chapter 5, proposed model have

been compared with the results of previous studies.

Table 5 contains the overview of datasets used for the simulation. Datasets having very

few instances (< 200) are excluded which gives total 41 datasets. In dataset if any class is

having lesser number of instances, it is said to be a minority class. From table 5 it can be

observed that percentage of minority class in dataset are < 20%, except few datasets (e.g.,

Equinox, KC2, MC2, etc.). This value is even <10% for some datasets (e.g., camel-1.0,

CM1, ivy-2.0, etc.), which shows that it is highly imbalance [2]. On this note, software

fault datasets can be said to be imbalance and there is a need of solution to this problem.

Because if a model is trained on imbalance data, it is likely to get instances of majority

class only on random splitting and will be trained to give the label of majority class to

every module, which is not correct but the accuracy of such model will be greater than

80% due to right predictions of majority class.

17

Name Instances Attributes
Missing
values

Fault
Instances

Minority
class %

Instances
After

Sampling
ant-1.7 745 20 0 93 12.48 1304

camel-1.2 608 20 0 99 16.28 1018
camel-1.4 872 20 0 71 8.14 1602
camel-1.6 965 20 0 101 10.47 1728

CM1 498 21 0 49 9.84 898
eclipse-2.0 6729 199 0 1278 18.99 10902
eclipse-2.1 7888 199 0 1131 14.34 13514
eclipse-3.0 10593 199 0 1579 14.91 18028
Equinox 324 17 0 80 24.69 488
ivy-2.0 352 20 0 28 7.95 648

JDT_Core 997 17 0 138 13.84 1718
jedit-4.3 492 20 0 10 2.03 964

JM1 10880 21 25 2103 19.33 17554
KC1 2109 21 0 326 15.46 3566
KC2 522 21 0 107 20.5 830
KC3 200 40 258 36 18 328

Lucene 691 17 0 51 7.38 1280
MC1 9466 39 0 68 0.72 18796
MC2 127 40 34 44 34.65 166
MW1 264 40 139 27 10.23 474
mylyn 1862 17 0 186 9.99 3352
PC1 1109 21 0 77 6.94 2064
PC2 1585 40 4004 16 1.01 3138
PC3 1125 40 438 140 12.44 1970
PC4 1458 40 0 178 12.21 2560
PC5 17186 39 0 516 3 33340

PDE_UI 1497 17 0 143 9.55 2708
poi-3.0 442 20 0 201 45.48 482
prop-1 18471 21 0 1714 9.28 33514
prop-2 23014 20 0 1677 7.29 42674
prop-3 10274 20 0 923 8.98 18702
prop-4 8718 20 0 577 6.62 16282
prop-5 8516 20 0 939 11.03 15154
prop-6 660 20 0 55 8.33 1210

synapse-1.2 256 20 0 52 20.31 408
velocity-1.6 229 20 0 34 14.85 390

xalan-2.4 723 20 0 79 10.93 1288
xalan-2.5 803 20 0 297 36.99 1012
xalan-2.6 885 20 0 271 30.62 1228
xalan-2.7 909 20 0 660 72.61 1320
xerces-1.4 588 20 0 181 30.78 814

Table 3 Details of selected datasets

18

With this discussion two things can be concluded. First, class imbalance is problem and

needs to be handed in pre-processing step to avoid the incorrect training of model.

Second, better accuracy model can sometimes be wrongly trained. So model must be

evaluated on more than accuracy. Later section of this chapter discuss the various

performance measures used for the evaluation of proposed approach.

In simulation of GME, for handling the class imbalance problem, Synthetic Minority

Over-Sampling TEchnique (SMOTE) [1] is used as a step in data preprocessing. SMOTE

generates the “synthetic” samples of minority class. In backend, SMOTE uses k-NN to

determine “synthetic” samples. Along with data sampling, data cleaning and data

standardization are also performed. Data cleaning handle the missing value by either

removing all values of instance or by replacing the value with average of that feature.

Removing all the values of an instance leads to information loss and when dataset is small

(number of instances is less than 200), losing that instance’s information will be costly.

In that case missing value is replaced with the average value of the attribute.

4.2 CLASSIFICATION MODELS

For comparative analysis and effectiveness of results, two base learning algorithm (DT

and MLP) have been applied individually and on two different ensemble methods

(Bagging and GME). Results are stored for 4 performance measures (Accuracy, F1-Score,

Precision, Recall), as shown in chapter 5. This section contains introduction of various

applied classification models with their ensemble technique.

4.2.1 Decision Tree (DT)

First step of classification is to divide the dataset or sample space into two or more

homogeneous data sets (or sub-sample sets) based on most significant classifier /

differentiator provided implicitly in input variables [12]. It works well with both the

discrete, categorical and continuous input and output variables.

In Decision Tree classifier, concept of weighted tree is used, where the internal nodes are

marked with featured used for classification and edges of the tree created are marked as

trial with dataset weight. Tree leaves are named by categorization. By this way, whole

document can be categorized from root till the leaf node is reached, moving through the

branches. Learning in decision tree adopts a decision tree classifier, which maps

information of an item to conclusions of that items expected value [12].

19

4.2.2 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) or neural network (NN) is a machine learning algorithm

that works on the principle of biological neural network. It consists of series of processing

layers interconnected, with each connection possessing some weight. During training,

based on the knowledge of domain, it develops a representation that maps input space to

output space. MLP uses supervised learning technique called back-propagation to train

the network [10].

The working of MLP can be described as follows: For each iteration, the training data are

iteratively fed into the neural network and the output obtained is compared with the

desired output and error is calculated, which is used to update the hidden layer weights

and re-feed the network. The updation is done ensuring that error decreases after each

iteration and the output obtained is closer to the desired output.

Figure 6 Different schemes for Experimental Analysis

4.2.3 Ensemble Method

With the combination of two base learner and three ensemble method, total six

classification technique is generated. DT and MLP on proposed ensemble technique

(GME) is compared with the performance from bagging ensemble method and individual

model [12].

20

Individual model implements the single learning technique. The objective of the

experimental study is to find the improvement in performance on individual model and

from existing ensemble technique, bagging [12]. Individual ensemble method implements

single learner model for prediction. Figure 6 shows that DT and MLP will be used as

individual model.

Bootstrap aggregating, also called bagging, is a meta-learning ensemble technique in

machine learning which was designed to enhance the stability and accuracy of individual

machine learning model used for classification and regression. Bagging also decreases

the variance of individual model and prevent the model from overfitting.

4.3 DIFFERENCE BETWEEN BAGGING AND GME

Bagging is described as, for a given training set X of size n, bagging generates k new

training sets Xi. Here k is the number of base learners used to ensemble. Each training set

Xi will be of size m and it is generated with sampling from X uniformly and with

replacement. Some instances may be repeated in each dataset Xi because of using

sampling with replacement. Features of X can also be sampled to generate Xi. Hence,

number of instance and dimensions of Xi will be less than X. Each Xi represents the X but

none of the subset of data Xi will be similar, even when two instances are same, they could

have different set of features. These subsets will be used to train k base models

independently and for testing this model, query point will be given to each k trained model

with sampled features. Next, the result of each model will be combined using voting to

provide the final result.

In proposed GME approach for meta learning ensemble technique, the training dataset X

will be used to train an unsupervised model (here Gaussian Mixture Model) for k

components. This model is termed in ME approach as a gating model. GM model is a

probabilistic clustering approach which assigns probability to each data point of falling

in a particular cluster. If the probability of lying in a subspace for any data point is greater

than threshold value (here, _DS), then it will be considered to be the part of that subspace

Xi. Each instance may lie in multiple Xi; hence dataset is known to be softly splitted.

These subsets of data will be given as an input to k base leaners to train them

independently. For testing of this model, query instance will be given to each base

learning model and GM model which output an array of k size. Each element of array

21

Figure 7 Blob data split for bagging

Figure 7 Difference between sampling instances by (a) Bagging and (b) GME on cluster
data for 3 classifiers. Different samples are shown by different point type

(a) (b)

(a) (b)

will be a probability for query point of lying in the cluster of that model. This probability

is used to combine the results of each base learners.

Figures represents the sampling of instances done in the case of bagging and GME. Figure

1 shows the well separated cluster of data which has been messed up in the case of

bagging. GME even for the random spread of data, gives a well formed subset of dataset.

Conclusion which can be made on above figure is that, in bagging data is randomly

separated which leads to loss of spatial information and subset of data represents the

whole dataset, so there can be a case in which model trained on these will be very similar

whereas in GME it uses the spatial property of the data for creating the subspace hence

model trained on these subspaces will be different from each other. Outlier might affect

the training of every base model of bagging but in the case of GME, it is certain that

outlier will not affect every model even in the worst case.

Figure 8 Difference between sampling instances by (a) Bagging and (b) GME on random
data for 3 classifiers. Different samples are shown by different point type

22

(b) (b)

4.4 PERFORMANCE EVALUTION MEASURES

Prediction model gives the predicted class as an output and it is difficult to store this array

for comparison from other models. Hence there is a need for some standard performance

evaluation measure on which different machine learning techniques can be tested [2].

There are many measures proposed in the theory and some of them are being widely for

measuring and comparing the performance of an algorithm. Performance measure column

of table 1 shows that accuracy,

f1-score, precision and recall

have been used in most of the

studies.

Above mentioned performance

measures will be calculated

using confusion matrix. Table

shows the confusion matrix and contain basic terminology used to define performance

measure. Following discussed measures are as described in table 4.

Accuracy denotes the percentage of correctly classified instances to the total number of

instances. Precision denotes number of correctly classified faulty instances among the

total number of instances classified as faulty. Recall indicates the number of correctly

classified faulty instances amongst the total number of instances which are faulty. F1-

Score is the harmonic mean of precision and recall values [2].

Table 4 Confusion matrix for Software Fault Prediction

 Predicted
Faulty

Predicted
Non-Faulty

Faulty
Modules

Number of True
Positive (TP)

Number of False
Negative (FN)

Non-Faulty
Modules

Number of False
Positive (FP)

Number of True
Negative (TN)

Figure 9 Difference between sampling instances by (a) Bagging and (b) GME on moon
shaped data for 3 classifiers. Different samples are shown by different point type

23

F1-score considers both FP and FN, so it is not as easy as accuracy to understand. But f1-

score is more useful than accuracy especially if there is uneven distribution of class. A

learning scheme is known to be better if accuracy, f1-score, precision and recall values

are higher.

 To validate the significance of proposed approach and its ranking with respect to other

ensemble technique, Wilcoxon’s non-parametric test have been applied. It is a statistical

hypothesis test which is widely popular and used to compare two related columns (i.e.

ensemble methods or learning algorithms) [23]. And second statistical test, Friedman’s

rank test which is also a non-parametric test is applied to check whether the ranking of

multiple columns (i.e. ensemble methods or learning algorithms) is consistent across the

dataset [24].

4.5 PARAMETER SETTING

Libraries of python are used in the simulation experiments. Following are details about

parameters on which models had been tested.

 SMOTE method of class over_sampling in package imblearn, is used for sampling with

5 neighbours to generate synthetic samples.

Cross-Validation: 5-fold cross validation is implemented using KFold method of sklearn

library with shuffle set as true that means data will be shuffled before splitting into

batches.

Decision Tree: Implemented function DecisionTreeClassifier of library sklearn is used

with parameters, splitting criteria as gini index and tree will be extended up to the height

until all leaves are pure.

Multilayer Perceptron: Implemented method MLPClassifier of library sklearn is used

with initial parameters.

Bagging: BaggingClassifier function of sklearn library is applied. Number of estimators

(base learners) is set as 10. Maximum number of samples and features to be drawn from

original data is set as 0.7. That shows 70% of total instances and 70% of all features will

be used to construct the subset for every model. Bootstrap is set to be true for both samples

and features that indicates, an instance or feature will be included in more than one

training subset.

24

GME: Number of experts or estimators is set as same as bagging, 10 for simplicity. The

purpose is to evaluate the performance of GME and compare it with individual model and

bagging ensemble. So same number of base models are used to ensemble in bagging and

GME. Data selection threshold (_DS) and Label Prediction threshold (_LP) is set as 0.2

and 0.6 respectively. These values are concluded from figure 11.

Figure 11 shows that there is minimum deviation in models when _DS and _LS are set as

0.2 and 0.6 respectively. For getting the standard deviation vs data selection threshold

graph for different values of label prediction threshold graph, following experiment is

conducted.

First, 10 datasets are selected at random and among them, on 5 datasets DT is used as

base model and for remaining MLP is used as base model. Second, GME model with

number of experts as 10, for different values of _DS and _LP is applied, with 5-fold cross

validation. Third, accuracy score of each dataset for every combination of _DS and _LP

values is collected. Lastly, calculate standard deviation (SD) of collected accuracy of 10

datasets for every pair of _DS and _LP values. SD is low for _LP=0.6 for almost every

value of _DS. And it is minimum when _DS=0.2.

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

ST
AN

D
AR

D
 D

EV
IA

TI
O

N
 (%

) I
N

AC

CU
RA

CY

DATA SELECTION THRESHOLD (_DS)

_LP=0.0

_LP=0.2

_LP=0.4

_LP=0.6

_LP=0.8

_LP=1.0

Figure 10 Graph for different values of _DS and _LP on 10 random datasets

25

CHAPTER 5 RESULTS AND ANALYSIS

In this section, table 5, 6, 7 and 8, show performance results of classification in terms of

accuracy, f1-score, precision and recall respectively, when base learning schemes are DT

and MLP applied over different aggregation schemes. Every table consists of two sections

which contain the result of base expert and for each base expert, there are three

subsections that represents the aggregation type. Every result in bagging and GME

subsection of DT and MLP is the maximum value obtained by varying the number of

experts from 2 to 30, which is the average of 5-fold cross validation. Bold values are the

best performances in each row of the tables. Later parts contain discussion about the

results and statistical tests which have been performed on the results to evaluate the

significance and ranking of model.

5.1 PERFORMANCE COMPARISON

This subsection contains comparison of models on the basis of performance measures.

Result of models grouped on the basis of accuracy, f1-score, precision and recall is

present in table 5, 6, 7 and 8. Objective of collecting results on different measure is to

analyse the model performance independent of other performance measure. Each table

contain the results of a performance measure recorded for three different ensemble

technique with two different base learner models on 41 datasets. Values which are best

for a dataset is highlighted with the bold font.

At the end of each table, to provide the comparative overview of all learning algorithms

on different performance measures, average of 41 values for all datasets is mentioned.

This helps in concluding the results of that table. For all four performance measure,

average value of Multilayer-Perceptron (MLP) when applied as a base model for

proposed ensemble approach (GME), is always high. Second conclusion that can be made

from the average values present in table 5, 6, 7 and 8 are bagging outperforms individual

model when Decision Tree is used as base learner but this is not same for the MLP. GME

always perform better than individual model and bagging ensemble model on all four

performance measures with both base classifiers. The suffix G in MLP-G and DT-G

indicates that proposed Gaussian Mixture approach is used to ensemble those models.

26

Dataset
DT MLP

Individual Bagging GME Individual Bagging GME

ant-1.7 0.8562 0.8931 0.8685 0.8631 0.8554 0.9285

camel-1.2 0.6936 0.7222 0.8542 0.8236 0.8118 0.9054

camel-1.4 0.7967 0.8356 0.9122 0.9247 0.9153 0.9567

camel-1.6 0.8819 0.9167 0.8808 0.8866 0.8860 0.9271

CM1 0.9002 0.8936 0.9211 0.8717 0.8553 0.9473

eclipse-2.0 0.6571 0.7712 0.7322 0.7760 0.7884 0.7871

eclipse-2.1 0.7172 0.8358 0.7897 0.8515 0.8509 0.8574

eclipse-3.0 0.6917 0.7722 0.8202 0.826 0.8308 0.8360

Equinox 0.8917 0.9247 0.7967 0.7459 0.7093 0.8497

ivy-2.0 0.7968 0.8230 0.9447 0.9247 0.9018 0.9601

JDT 0.8771 0.9170 0.8334 0.7527 0.7584 0.9092

jedit-4.3 0.8652 0.8995 0.9835 0.9752 0.9680 0.9773

JM1 0.9721 0.9762 0.8334 0.7130 0.7113 0.7384

KC1 0.8312 0.8275 0.8794 0.7649 0.7582 0.8212

KC2 0.8769 0.8777 0.8675 0.8072 0.8048 0.8494

KC3 0.7643 0.7772 0.8600 0.8756 0.8182 0.9108

Lucene 0.8229 0.8699 0.9243 0.8970 0.8548 0.9571

MC1 0.8639 0.8725 0.9831 0.9901 0.9862 0.9911

MC2 0.6041 0.6170 0.7854 0.7467 0.7269 0.8185

MW1 0.8090 0.8090 0.8944 0.9303 0.9191 0.9551

mylyn 0.8876 0.9360 0.8993 0.8243 0.8159 0.9047

PC1 0.8745 0.8978 0.9423 0.8920 0.8987 0.9608

PC2 0.9212 0.9212 0.9787 0.9851 0.9801 0.9858

PC3 0.8169 0.8308 0.8867 0.9135 0.9055 0.9372

PC4 0.8580 0.8686 0.9230 0.9502 0.9364 0.9650

PC5 0.7485 0.7572 0.8044 0.7850 0.7774 0.8388

PDE 0.9375 0.9477 0.8946 0.8028 0.7922 0.8990

poi-3.0 0.6894 0.7158 0.7336 0.6852 0.6807 0.7533

prop-1 0.9188 0.8906 0.9196 0.8406 0.8439 0.8726

prop-2 0.7412 0.7450 0.9312 0.8899 0.8909 0.9211

prop-3 0.6993 0.7029 0.8391 0.7832 0.7839 0.8637

prop-4 0.7080 0.7130 0.8551 0.8108 0.8086 0.8322

prop-5 0.7804 0.7969 0.9323 0.8782 0.8723 0.9176

prop-6 0.9242 0.9203 0.9845 0.9845 0.9776 0.9884

synapse-1.2 0.7918 0.8196 0.8496 0.8296 0.8120 0.8970

velocity-1.6 0.8501 0.9097 0.9161 0.9018 0.8606 0.9302

xalan-2.7 0.8145 0.8565 0.8321 0.8260 0.7954 0.8802

xerces-1.4 0.8115 0.8540 0.8351 0.8493 0.8328 0.8787

xalan-2.4 0.8961 0.9041 0.9697 0.9798 0.9697 0.9814

xalan-2.5 0.7760 0.7908 0.8933 0.9060 0.8735 0.9413

xalan-2.6 0.7945 0.7952 0.8875 0.8829 0.8856 0.9331

Average 0.8149 0.8392 0.8798 0.8572 0.8465 0.9016

Table 5 Accuracy values

27

Dataset
DT MLP

Individual Bagging GME Individual Bagging GME

ant-1.7 0.8588 0.8938 0.8679 0.8685 0.8633 0.9312
camel-1.2 0.7004 0.7404 0.8591 0.8318 0.8192 0.9137
camel-1.4 0.8031 0.8348 0.9145 0.9282 0.9189 0.9579
camel-1.6 0.8848 0.9163 0.8822 0.8906 0.8916 0.9298

CM1 0.9039 0.8989 0.9227 0.8786 0.8639 0.9501
eclipse-2.0 0.6591 0.7813 0.7415 0.7905 0.8002 0.7991
eclipse-2.1 0.7294 0.8373 0.7920 0.8571 0.8573 0.8624
eclipse-3.0 0.6505 0.7762 0.8159 0.8315 0.8366 0.8419
Equinox 0.8937 0.9260 0.8028 0.7581 0.7165 0.8565

ivy-2.0 0.8054 0.8344 0.9444 0.9289 0.9051 0.9608
JDT 0.8818 0.9198 0.8398 0.7642 0.7623 0.9150

jedit-4.3 0.8702 0.9026 0.9841 0.9756 0.9690 0.9778
JM1 0.9723 0.9769 0.8398 0.7209 0.7209 0.7438

KC1 0.8378 0.8347 0.8798 0.7763 0.7654 0.8216

KC2 0.8769 0.8825 0.8689 0.8029 0.8058 0.8527

KC3 0.7383 0.7569 0.8641 0.8809 0.8183 0.9168
Lucene 0.8206 0.8704 0.9257 0.9011 0.8603 0.9587
MC1 0.8782 0.8853 0.9834 0.9902 0.9864 0.9912
MC2 0.6159 0.6101 0.7812 0.7495 0.7286 0.8212
MW1 0.8114 0.8043 0.8980 0.9337 0.9230 0.9568
mylyn 0.8910 0.9368 0.9010 0.8266 0.8197 0.9071

PC1 0.8756 0.8992 0.9431 0.8941 0.9018 0.9618
PC2 0.9262 0.9243 0.9790 0.9854 0.9802 0.9863
PC3 0.8237 0.8453 0.8913 0.9187 0.9098 0.9405
PC4 0.8691 0.8784 0.9236 0.9510 0.9378 0.9654
PC5 0.7568 0.7675 0.8151 0.7940 0.7916 0.8450
PDE 0.9377 0.9485 0.8974 0.8121 0.7999 0.9038

poi-3.0 0.6779 0.6956 0.6999 0.6556 0.6429 0.7361
prop-1 0.9181 0.8891 0.9188 0.8381 0.8426 0.8716

prop-2 0.7562 0.7599 0.9316 0.8910 0.8914 0.9219
prop-3 0.7147 0.7181 0.8434 0.7928 0.7942 0.8622
prop-4 0.6879 0.7000 0.8529 0.8055 0.8058 0.8295
prop-5 0.7741 0.7916 0.9323 0.8779 0.8729 0.9190

prop-6 0.9274 0.9214 0.9846 0.9849 0.9781 0.9883
synapse-1.2 0.7848 0.8170 0.8311 0.8270 0.8055 0.8977
velocity-1.6 0.8486 0.9015 0.9115 0.9057 0.8662 0.9338

xalan-2.7 0.8114 0.8501 0.8279 0.8268 0.7937 0.8763
xerces-1.4 0.8219 0.8652 0.8425 0.8625 0.8455 0.8881
xalan-2.4 0.8974 0.9053 0.9703 0.9803 0.9706 0.9842
xalan-2.5 0.7522 0.7841 0.8967 0.9084 0.8775 0.9431
xalan-2.6 0.8029 0.8004 0.8892 0.8839 0.8880 0.9351

Average 0.8158 0.8410 0.8803 0.8605 0.8495 0.9038
Table 6 F1-Score values

28

Figure 12 shows the line graph for accuracy of DT-G and MLP-G on all datasets. It can

be easily observed that MLP-G is performing better in almost every case. There are few

cases when DT-G accuracy is greater than MLP-G that are JM1, KC1, KC2, prop-1, prop-

4, prop-5. All these datasets were collected from NASA repository and have different set

of metrics from other datasets. And also their minority class % is very low. Hence it can

be concluded that software metrics and minority class % of datasets affects the

performance of GME approach and DT-G performs better than when the minority class

% is very low.

Figure 11 Accuracy graph between DT-G and MLP-G

Graph for F1-Score between DT-G and MLP-G is almost similar and datasets on which

DT-G was outperforming MLP-G are same when it comes for f1-score. So same

conclusion can be drawn and explanation for underperforming is the same for f1-score as

accuracy.

0.5

0.6

0.7

0.8

0.9

1

1.1

DT-G MLP-G

0.5

0.6

0.7

0.8

0.9

1

1.1

DT-G MLP-G

Figure 12 F1-Score graph between DT-G and MLP-G

29

Dataset
DT MLP

Individual Bagging GME Individual Bagging GME

ant-1.7 0.8441 0.8767 0.8537 0.8326 0.8190 0.8945
camel-1.2 0.7244 0.7148 0.8605 0.8181 0.8154 0.8837
camel-1.4 0.7715 0.8368 0.8936 0.8869 0.8809 0.9280
camel-1.6 0.8640 0.9148 0.8729 0.8551 0.8527 0.8998

CM1 0.8822 0.8681 0.9093 0.8431 0.8235 0.9164
eclipse-2.0 0.6769 0.7711 0.7387 0.7639 0.7798 0.7791
eclipse-2.1 0.7029 0.8352 0.7883 0.8308 0.8268 0.8381
eclipse-3.0 0.7560 0.7649 0.8388 0.8089 0.8112 0.8150

Equinox 0.8829 0.9147 0.7849 0.7299 0.7065 0.8161

ivy-2.0 0.7829 0.7888 0.8999 0.8860 0.8719 0.9438
JDT 0.8523 0.8915 0.8411 0.7447 0.7607 0.8794

jedit-4.3 0.8545 0.8926 0.9687 0.9525 0.9400 0.9570
JM1 0.9520 0.9586 0.8411 0.7266 0.7225 0.7556

KC1 0.8350 0.8294 0.8869 0.7484 0.7510 0.8322

KC2 0.8863 0.8573 0.8718 0.8145 0.7961 0.8440

KC3 0.7961 0.8109 0.8617 0.8495 0.7797 0.8663
Lucene 0.8320 0.8622 0.8949 0.8651 0.8203 0.9235
MC1 0.7948 0.8069 0.9713 0.9805 0.9731 0.9826
MC2 0.5590 0.6039 0.7340 0.7151 0.6953 0.7825
MW1 0.7952 0.8262 0.8673 0.8766 0.8753 0.9178
mylyn 0.8648 0.9254 0.8914 0.8144 0.8018 0.8826

PC1 0.8636 0.8845 0.9337 0.8748 0.8715 0.9358
PC2 0.8682 0.8868 0.9590 0.9714 0.9612 0.9730
PC3 0.8016 0.7818 0.8636 0.8774 0.8748 0.9014
PC4 0.7994 0.8100 0.9020 0.9294 0.9100 0.9433
PC5 0.7462 0.7501 0.7920 0.7736 0.7571 0.8285
PDE 0.9305 0.9250 0.8885 0.7794 0.7748 0.8690

poi-3.0 0.6624 0.7616 0.6986 0.6740 0.6659 0.7366

prop-1 0.9150 0.8901 0.9173 0.8409 0.8395 0.8680

prop-2 0.7154 0.7182 0.9281 0.8828 0.8879 0.9142
prop-3 0.6780 0.6822 0.8214 0.7578 0.7567 0.8604
prop-4 0.7387 0.7332 0.8662 0.8279 0.8175 0.8487
prop-5 0.7943 0.8096 0.9273 0.8766 0.8661 0.9119

prop-6 0.8809 0.9065 0.9829 0.9705 0.9574 0.9770

synapse-1.2 0.7850 0.8145 0.8391 0.8151 0.7892 0.8687
velocity-1.6 0.8518 0.9034 0.9084 0.8702 0.8293 0.8947

xalan-2.7 0.8331 0.8966 0.8564 0.8275 0.8028 0.9113
xerces-1.4 0.8085 0.8289 0.8367 0.8214 0.8068 0.8521
xalan-2.4 0.8853 0.8994 0.9450 0.9618 0.9456 0.9690
xalan-2.5 0.8305 0.8055 0.8701 0.8785 0.8453 0.9101
xalan-2.6 0.7804 0.7808 0.8780 0.8705 0.8722 0.9129

Average 0.8068 0.8297 0.8704 0.8396 0.8277 0.8835
Table 7 Precision values

30

Dataset
DT MLP

Individual Bagging GME Individual Bagging GME
ant-1.7 0.8785 0.9131 0.8970 0.9083 0.9149 0.9770

camel-1.2 0.7146 0.7689 0.8759 0.8477 0.8262 0.9589
camel-1.4 0.8391 0.8339 0.9399 0.9736 0.9610 0.9900
camel-1.6 0.9077 0.9189 0.9136 0.9296 0.9348 0.9652

CM1 0.9275 0.9338 0.9419 0.9187 0.9104 0.9960
eclipse-2.0 0.6432 0.7917 0.7445 0.8191 0.8219 0.8205
eclipse-2.1 0.7618 0.8394 0.7959 0.8852 0.8903 0.8882

eclipse-3.0 0.5742 0.7944 0.7879 0.8562 0.8637 0.8707
Equinox 0.9052 0.9378 0.8296 0.7902 0.7340 0.9084

ivy-2.0 0.8393 0.8892 0.9729 0.9767 0.9422 0.9971
JDT 0.9140 0.9524 0.8419 0.7858 0.7654 0.9690

jedit-4.3 0.8879 0.9138 1.0000 1.0000 1.0000 1.0000
JM1 0.9935 0.9963 0.8419 0.7157 0.7197 0.7520

KC1 0.8406 0.8402 0.8781 0.8081 0.7810 0.8187

KC2 0.8683 0.9095 0.8774 0.7936 0.8163 0.8693

KC3 0.6911 0.7151 0.9225 0.9174 0.8665 0.9825
Lucene 0.8121 0.8801 0.9574 0.9410 0.9065 1.0000
MC1 0.9813 0.9812 0.9979 1.0000 1.0000 1.0000
MC2 0.7060 0.6350 0.8590 0.7982 0.776 0.9229
MW1 0.8442 0.7940 0.9640 1.0000 0.9780 1.0000
mylyn 0.9192 0.9489 0.9192 0.8398 0.8385 0.9335

PC1 0.8883 0.9148 0.9628 0.9152 0.9346 0.9893
PC2 0.9928 0.9661 1.0000 1.0000 1.0000 1.0000
PC3 0.8505 0.9218 0.9296 0.9649 0.949 0.9884
PC4 0.9533 0.9597 0.9542 0.9741 0.9677 0.9906
PC5 0.7678 0.7869 0.8505 0.8162 0.8304 0.8689
PDE 0.9454 0.9735 0.9173 0.8483 0.8274 0.9517

poi-3.0 0.7023 0.6514 0.7240 0.6453 0.6232 0.7474
prop-1 0.9212 0.8881 0.9207 0.8356 0.8459 0.8800

prop-2 0.8021 0.8071 0.9464 0.8995 0.8951 0.9323
prop-3 0.7558 0.7584 0.8725 0.8318 0.8361 0.8642

prop-4 0.6463 0.6699 0.8420 0.7847 0.7945 0.8217
prop-5 0.7551 0.7752 0.9405 0.8797 0.8803 0.9375

prop-6 0.9796 0.9380 0.9905 1.0000 1.0000 1.0000
synapse-1.2 0.7961 0.8334 0.9067 0.8409 0.8258 0.9533
velocity-1.6 0.8482 0.9020 0.9237 0.9451 0.9087 0.9850

xalan-2.7 0.7937 0.8113 0.8142 0.8279 0.7855 0.8516
xerces-1.4 0.8369 0.9068 0.8634 0.9096 0.8910 0.9283
xalan-2.4 0.9103 0.9114 0.9971 1.0000 0.9972 1.0000
xalan-2.5 0.6880 0.7725 0.9347 0.9422 0.9140 0.9807
xalan-2.6 0.8288 0.8232 0.9013 0.8993 0.9046 0.9651

Average 0.8320 0.8575 0.9012 0.8845 0.8746 0.9331
Table 8 Recall values

31

0.5

0.6

0.7

0.8

0.9

1

1.1

DT-G MLP-G

0.5

0.6

0.7

0.8

0.9

1

1.1

DT-G MLP-G

Precision value of MLP-G on two datasets is improved and all datasets which were having

better accuracy, also have high precision value except eclipse-3.0. Graphs of accuracy,

f1-score and precision seems to be very similar. Graph of recall values for MLP-G and

DT-G is given in FIG. Recall obtained by MLP-G on various datasets are very high and

the difference from recall values of DT-G is very huge. In many cases recall value is one,

which means there are no faulty attributes which are labelled as non-faulty. This is a

desirable property for a software fault prediction module because faulty modules which

goes unattended by software testing teams will increase the time and efforts for removing

faulty modules [1].

Figure 13 Precision graph between DT-G and MLP-G

Figure 14 Recall graph between DT-G and MLP-G

32

5.2 STATISTICAL TEST RESULTS

Here are the results of Wilcoxon’s statistical test for α=0.5 performed to analyse and

compare the effectiveness of Gaussian based Mixture of Experts (GME) and impact

analysis of GME when combine with Decision Tree (DT-G) and Multi Layered

Perceptron (MLP-G). The proposed approach (GME) is also compared with individual

model and bagging ensemble of that model, in terms of four performance measure, results

are stored in table 9, 10. And table 11 contain the statistical test’s result of both DT and

MLP when applied with GME.

In statistical results table, second column (Draw) specify the number of equal results

cases. Third column (R+) and fourth column (R-) represents the sum of ranks. Pwilcoxon

indicates the p-value of Wilcoxon’s test. If Pwilcoxon < 0.05(α), it means that the comparison

is significant different [13]. Pwilcoxon values which shows significant difference is

highlighted in bold font.

The performance results for individual model and GME approach are shown in table 5,

6, 7 and 8. The best performances on each performance measure are highlighted. GME

approach obtains better performance measures if compared to individual model, for both

base models (DT and MLP). TAB shows the Wilcoxon’s test result for the comparison of

GME verses individual model in terms of all 4 performance measures with both base

learning algorithms.

Methods
Performance

Measure
Draw R+ R- Pwilcoxon

DT-G Vs DT Accuracy 0 777 84 3.67E-06

MLP-G Vs MLP Accuracy 0 861 0 1.26E-08

DT-G Vs DT F1-Score 0 775.5 85.5 4.02E-06

MLP-G Vs MLP F1-Score 0 861 0 1.26E-08

DT-G Vs DT Precision 0 781 80 2.87E-06

MLP-G Vs MLP Precision 0 861 0 1.26E-08

DT-G Vs DT Recall 1 737 83 5.7E-06

MLP-G Vs MLP Recall 7 595 0 1.91E-07

Table 9 Wilcoxon's test results for the comparison of GME (R+) versus individual model
(R-)

33

Table 10 evaluate the performance of GME over individual model. Pwilcoxon value is less

than 0.05 in each case that means that comparison is significantly different. According to

the rank values, MLP-G is performing much better than individual model on accuracy,

precision and f1-score. Statistical test’s results shown in table 10 indicates that GME

shows improvement than bagging when MLP is used as a base learner.

Table 11 consists results of statistical tests on each performance measure when DT and

MLP models are used for GME. For accuracy score, MLP-G outperforms DT-G and

Pwilcoxon value indicates the significant difference among both models. F1-score and

precision also shows better result with remarkable difference with Pwilcoxon value less than

0.05. For recall values the sum of ranks for DT is least even after two draw cases that

shows, MLP-G is showing huge improvement than DT-G in recall values.

Methods
Performance

Measure
Draw R+ R- Pwilcoxon

DT-G Vs DT-B Accuracy 0 679 182 0.000655

MLP-G Vs MLP-B Accuracy 0 860 1 1.36E-08

DT-G Vs DT-B F1-Score 0 670 191 0.000977

MLP-G Vs MLP-B F1-Score 0 860 1 1.36E-08

DT-G Vs DT-B Precision 0 679 182 0.000655

MLP-G Vs MLP-B Precision 0 860 1 1.36E-08

DT-G Vs DT-B Recall 0 658 203 0.001633

MLP-G Vs MLP-B Recall 4 700 3 7.6E-08

Table 10 Wilcoxon's test results for the comparison of GME (R+) versus bagging (R-)

Methods
Performance

Measure
Draw R+ R- Pwilcoxon

MLP-G Vs DT-G Accuracy 0 707 154 0.000174

MLP-G Vs DT-G F1-Score 0 715 146 0.000117

MLP-G Vs DT-G Precision 0 639.5 221.5 0.003448

MLP-G Vs DT-G Recall 2 670 110 4.8E-05

Table 11 Wilcoxon's test results for the comparison of MLP (R+) versus DT (R-) with
GME

34

 5.3 COMPARISON WITH PREVIOUS STUDIES

This section is focused to evaluate the proposed algorithm (GME) with studies in recent

past which are mentioned in chapter 2. There are various performance measures on which

model can be compared but as mentioned in chapter 4, performance of GME is measured

in terms of accuracy, precision, recall and f1-score. Study which are made in recent years

also used different measures. Tables present in this section uses them to compare with

GME. Most of the studies used in this section have used some existing or proposed meta-

learning classification technique for binary classification of software modules.

Dataset MLP-G DT-G [13] [14] [9] [6] [17] [17] [11] [18] [21]

CM1 0.95 0.92 0.87 - - - - 0.78 0.90 0.90 0.86
eclipse-2.0 0.79 0.73 - - - 0.78 0.67 - - - -

eclipse-2.1 0.86 0.79 - - - 0.82 0.77 - - - -
eclipse-3.0 0.84 0.82 - - - 0.82 0.77 - - - -

JM1 0.74 0.83 0.82 0.82 0.74 - - 0.79 0.81 - -
KC1 0.82 0.88 0.83 - - - - 0.83 0.87 0.77 0.88

KC2 0.85 0.87 - 0.82 - - - 0.78 0.84 0.80 -
KC3 0.91 0.86 - - - - - - - - 0.88

MC1 0.99 0.98 - 0.98 - - - - - - 0.88
MC2 0.82 0.79 0.74 - - - - - - - 0.86
MW1 0.96 0.89 0.89 0.89 - - - 0.81 - - 0.87
PC1 0.96 0.94 0.92 - 0.84 - - 0.93 0.95 - 0.86

PC2 0.99 0.98 - - - - - 0.13 - - 0.90
PC3 0.94 0.89 0.90 0.87 - - - 0.84 - - 0.86

PC4 0.97 0.92 0.90 0.89 - - - 0.91 - - 0.90
PC5 0.84 0.80 - - - - - 0.97 - - 0.87

Table 12 Comparison of accuracy values with previous studies

Table 12 show that accuracy of GME model is higher in 14 out of 16 cases. For MC2 and

PC5, [21] and [7] are performing better respectively. TAB contain the comparative results

of f1-score. There were not many studies found which used f1-score for performance

measure. Among the studies found, MLP-G is performing better in every case.

Dataset MLP-G DT-G [8] [17]

eclipse-2.0 0.80 0.74 0.61 0.79

eclipse-2.1 0.86 0.79 - 0.86

eclipse-3.0 0.84 0.82 0.83 0.84

JDT_Core 0.92 0.84 0.79 -

Lucene 0.96 0.93 0.85 -

xalan-2.7 0.94 0.90 0.70 -

Table 13 Comparison of f1-score values with previous studies

35

Dataset MLP-G DT-G [8] [9] [6] [17]

CM1 1.00 0.94 - - - 0.27
eclipse-2.0 0.82 0.74 0.59 - 0.58 -
eclipse-2.1 0.89 0.80 - - 0.50 -
eclipse-3.0 0.87 0.79 0.87 - 0.52 -
JDT_Core 0.97 0.84 0.80 - - -

JM1 0.75 0.84 - 0.16 - 0.38
KC1 0.82 0.88 - - - 0.52
KC2 0.87 0.88 - - - 0.66

Lucene 1.00 0.96 0.86 - - -
MW1 1.00 0.96 - - - 0.36
PC1 0.99 0.96 - 0.12 - 0.39
PC2 1.00 1.00 - - - 0.88
PC3 0.99 0.93 - - - 0.42
PC4 0.99 0.95 - - - 0.68
PC5 0.87 0.85 - - - 0.66

xalan-2.7 0.98 0.93 0.68 - - -

Table 15 Comparison of recall values with previous studies

MLP-G trains a much precise model. This conclusion can be made from table 14 which

shows comparison with two studies and have good lead over them. In terms of recall

value, no other study outperforms MLP-G model. [8] gives equal recall results for eclipse-

3.0 dataset. Also [21] which was outperforming proposed approach in accuracy, have

lesser recall value. With the comparison of each performance measure from previous

study it can be said that MLP-G shows significant improvement in results in terms all

four performance measures used.

Dataset MLP-G DT-G [8] [9]

eclipse-2.0 0.78 0.73 0.63 -

eclipse-2.1 0.84 0.78 - -

eclipse-3.0 0.81 0.84 0.80 -

JDT_Core 0.88 0.84 0.79 -

jedit-4.3 0.98 0.97 - -

JM1 0.76 0.84 - 0.24

Lucene 0.93 0.89 0.83 -

PC1 0.94 0.93 - 0.76

xalan-2.7 0.91 0.87 0.72 -
Table 14 Comparison of precision values with previous studies

36

CHAPTER 6 CONCLUSION AND FUTURE WORK

 The objective of this work was to evaluate the performance of Mixture of Experts (ME)

with Gaussian Mixture Model (GM) as a gating function, in binary classification of

software modules. Decision tree and multi-layer perceptron which are most popular

algorithm in fault prediction, are used as base learners and results of proposed approach

are compared with individual model and bagging ensemble model, in terms of accuracy,

f1-score, precision and recall.

For simulation 41 publicly available datasets of real-world software projects are collected

from standard software engineering repository, that are, Eclipse, NASA PROMISE and

MDP. Python programming language is used to conduct this study and results are stored

in terms of four mentioned performance measure. Analysis of collected results and

Wilcoxon’s statistical test results indicates that ME with gating function as GM (GME)

is significantly improving performance from individual model and bagging ensemble

technique for both base learning technique (DT and MLP). This statement can be

generalized for all performance measures. In later subsection of chapter 5, comparison of

performance measure with past studies have been done and it is concluded that GME have

shown a remarkable improvement in performance.

Wilcoxon test is performed on DT and ML when combined with GME and it is observed

that MLP is more effective than DT when used as base learner in GME. Difference on

the recall performance is substantial when MLP is used with GME.

Following are some points which needs to be covered in future work for comprehensive

evaluation of performance of GME.

 Extend the experiments for tuning of number of experts or base learners used in GME.

This study explores only DT and MLP as experts, more machine learning algorithms is

to be inspected in future work.

 Graph shown in FIG suggests that set of metric used in dataset affects the performance of

GME and also this study is done without taking feature selection in account, so

investigation of appropriate feature selection technique in data pre-processing step of

GME is a scope for future work.

37

 This study proposes a variation of ensemble technique (stacking) in chapter 3, named as

Mixture of Learners (MoL). This idea has only theoretically presented, and its

applicability in classification or regression problem of software modules is still to be

evaluated.

38

References

[1] R. Malhotra, “A systematic review of machine learning techniques for software

fault prediction,” Applied Soft Computing, vol. 27, pp. 504-518, 2015.

[2] S. S. Rathore and S. Kumar, “A study on software fault prediction techniques,”

Artificial Intelligence Review, vol. 51, pp. 255-327, 2019.

[3] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton and others, “Adaptive

mixtures of local experts.,” Neural computation, vol. 3, pp. 79-87, 1991.

[4] S. E. Yuksel, J. N. Wilson and P. D. Gader, “Twenty years of mixture of experts,”

IEEE transactions on neural networks and learning systems, vol. 23, pp. 1177-

1193, 2012.

[5] F. Zhang, Q. Zheng, Y. Zou and A. E. Hassan, “Cross-project defect prediction

using a connectivity-based unsupervised classifier,” in Proceedings of the 38th

International Conference on Software Engineering, 2016.

[6] Y. A. Alshehri, K. Goseva-Popstojanova, D. G. Dzielski and T. Devine, “Applying

Machine Learning to Predict Software Fault Proneness Using Change Metrics,

Static Code Metrics, and a Combination of Them,” in SoutheastCon 2018, 2018.

[7] Erturk, “Iterative software fault prediction with a hybrid approach,” Applied Soft

Computing, vol. 49, pp. 1020--1033, 2016.

[8] M. Li, H. Zhang, R. Wu and Z.-H. Zhou, “Sample-based software defect prediction

with active and semi-supervised learning,” Automated Software Engineering, vol.

19, pp. 201-230, 2012.

[9] B. S. Oboh and N. Bouguila, “Unsupervised learning of finite mixtures using scaled

dirichlet distribution and its application to software modules categorization,” in

2017 IEEE International Conference on Industrial Technology (ICIT), 2017.

39

[10] K. Dejaeger, T. Verbraken and B. Baesens, “Toward comprehensible software fault

prediction models using bayesian network classifiers,” IEEE Transactions on

Software Engineering, vol. 39, pp. 237-257, 2012.

[11] H. A. Al-Jamimi and L. Ghouti, “Efficient prediction of software fault proneness

modules using support vector machines and probabilistic neural networks,” in 2011

Malaysian Conference in Software Engineering, 2011.

[12] D. R. Ibrahim, R. Ghnemat and A. Hudaib, “Software Defect Prediction using

Feature Selection and Random Forest Algorithm,” in 2017 International

Conference on New Trends in Computing Sciences (ICTCS), 2017.

[13] S. Wang, H. Ping, L. Zelin and others, “An enhanced software defect prediction

model with multiple metrics and learners,” International Journal of Industrial and

Systems Engineering, vol. 22, pp. 358-371, 2016.

[14] C. W. Yohannese, T. Li, M. Simfukwe and F. Khurshid, “Ensembles based

combined learning for improved software fault prediction: A comparative study,”

in 2017 12th International Conference on Intelligent Systems and Knowledge

Engineering (ISKE), 2017.

[15] Fukushima, “An empirical study of just-in-time defect prediction using cross-

project models,” 2014.

[16] Y. Zhang, D. Lo, X. Xia and J. Sun, “An empirical study of classifier combination

for cross-project defect prediction,” in 2015 IEEE 39th Annual Computer Software

and Applications Conference, 2015.

[17] S. Maheshwari and S. Agarwal, “Three-way decision based Defect Prediction for

Object Oriented Software,” in Proceedings of the International Conference on

Advances in Information Communication Technology & Computing, 2016.

[18] R. A. Coelho, F. RN Guimarães and A. A. A. Esmin, “Applying swarm ensemble

clustering technique for fault prediction using software metrics,” in 2014 13th

International Conference on Machine Learning and Applications, 2014.

40

[19] T. Wang, Z. Zhang, X. Jing and L. Zhang, “Multiple kernel ensemble learning for

software defect prediction,” Automated Software Engineering, vol. 23, pp. 569-590,

2016.

[20] “Bug prediction dataset,” [Online]. Available: http://bug.inf.usi.ch/index.php.

[Accessed Jan 2019].

[21] “Eclipse Bug Data,” [Online]. Available: https://www.st.cs.uni-

saarland.de/softevo/bug-data/eclipse/. [Accessed April 2019].

[22] “PROMISE Software Engineering Repository,” [Online]. Available:

http://promise.site.uottawa.ca/SERepository/. [Accessed Jan 2019].

[23] L. H. Son, N. Pritam, M. Khari, R. Kumar, P. T. M. Phuong, P. H. Thong and others,

“Empirical Study of Software Defect Prediction: A Systematic Mapping,”

Symmetry, vol. 11, p. 212, 2019.

[24] Y. Peng, G. Kou, G. Wang, W. Wu and Y. Shi, “Ensemble of software defect

predictors: an AHP-based evaluation method,” International Journal of Information

Technology & Decision Making, vol. 10, pp. 187-206, 2011.

[25] Z.-W. Zhang, X.-Y. Jing and T.-J. Wang, “Label propagation based semi-

supervised learning for software defect prediction,” Automated Software

Engineering, vol. 24, pp. 47-69, 2017.

[26] P. Singh, “Comprehensive model for software fault prediction,” in 2017

International Conference on Inventive Computing and Informatics (ICICI), 2017.

[27] D. A. Reynolds, T. F. Quatieri and R. B. Dunn, “Speaker verification using adapted

Gaussian mixture models,” Digital signal processing, vol. 10, pp. 19-41, 2000.

[28] L. Li, S. Lessmann and B. Baesens, “Evaluating software defect prediction

performance: an updated benchmarking study,” arXiv preprint arXiv:1901.01726,

2019.

[29] K. E. Bennin, J. Keung, A. Monden, P. Phannachitta and S. Mensah, “The

significant effects of data sampling approaches on software defect prioritization and

41

classification,” in Proceedings of the 11th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, 2017.

