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ABSTRACT 

With increasing applications of software, quality assurance becomes an important phase 

of software life cycle which makes Software Fault Prediction an essential research topic. 

Software fault prediction uses existing software metrics, faulty and non-faulty data to 

predict fault-prone modules. Learning algorithm used for classifying software module 

plays a vital role hence it also makes the process dependent and vulnerable on single 

algorithm. To overcome this more than one learning algorithm is being used. This 

collection of models is called as ensemble. In recent years, many studies have explored 

different ensemble methods for software fault prediction and it results in significant 

improvement over individual model. Input space division algorithm for these ensemble 

techniques are data independent, which certainly affects the model as spatial 

information could be lost. Training model would perform better if data will be separated 

depending on the input data. Mixture of Experts (ME) ensemble is a technique which 

uses soft splitting of the data to train base learners, had been used in various fields such 

as speech recognition and object detection. 

The objective of this study is evaluate the performance of ME with different base 

learners for Software Fault Prediction. 41 publicly available software project datasets 

from NASA PROMISE and MDP repositories along with Eclipse project data, are used 

for simulation. ME with decision tree and multi-layer perceptron as base learners are 

evaluated along with using Gaussian Mixture Model, an unsupervised technique as a 

gating function. Performance is measured in terms of accuracy, f1-score, precision and 

recall.  Wilcoxon’s statistical test is also performed to evaluate the significant difference 

of ME. To compare the performance bagging is implemented and results are also 

compared with individual base model. Results show that while using decision trees as 

base learners, ME showed improvement in performance and it also performs as good as 

bagging. When multi-layer perceptron is used as base learner in ME, on average, it 

shows 7% and 6% improvement in accuracy from individual and bagging model, 

respectively. Wilcoxon statistical test indicates the significant difference between ME 

and bagging model for both base learning algorithms. 
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CHAPTER 1 INTRODUCTION 

Software Fault Prediction is the mechanism to predict whether in a software the modules 

are going to be faulty or non-faulty, before even applying the testing mechanism. In other 

words, Fault Prediction in Software is a way to find the fault proneness of the software 

module during the earlier stages of development life cycle process [1]. This prediction 

has a great role to play in improving the quality of the software as well as reducing the 

time and efforts needed in the testing phase of the development life cycle of the software. 

This chapter describes the basic terminologies and brief about Software Fault Prediction 

mechanism. 

1.1 GENERAL CONCEPTS 

1.1.1 Software Fault Prediction 

The requirement of high quality and maintainable software have increased with the 

growing complexity and dependency of the software. Software fault prediction is a 

method for improving the software quality [5]. Fault prediction helps in reducing the 

efforts for maintenance by giving the prediction of buggy modules beforehand. There are 

several software metrics proposed in literature for measuring the performance of 

prediction models [25]. Software fault prediction process is very important in software 

development and the accurate prediction of faults and the recognition of the area which 

is most prone to fault occurrence can directly help in reducing the development cost, 

testing efforts and improves the overall quality of the software. Software a fault is the 

main concern to be dealt with that affects overall software reliability and correctness. The 

accurate predictions of the faults empower the software developers to evaluate the overall 

reliability of the software during the development process. Moreover, the prediction of 

the accurate location of faults can boost the testing process and allows the developers to 

focus on the critical modules that may account for the maximum number of faults. 

Software fault prediction is the prediction whether a software module is faulty or not by 

using the previous data and some learning models. Thus software fault prediction makes 

use of the data of previous versions of the software to find out the probability of faults in 

the upcoming versions of that software based on some characteristics known as metrics, 

by applying some learning model [2]. 
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As the complexity of the software system are growing continuously, the rate of software 

failure is also increasing resulting in undesirable behaviour of the system along with poor 

services and sometimes complete outages. Dealing with software faults is very important 

task. Faulty modules present in software deteriorates the quality of the software and also 

increases the overall cost of the software system [31]. Several techniques and processes 

for providing a high quality software product are included in software quality engineering. 

Employment of data mining techniques on the software metrics collected during 

development process, for identifying the potential fault-prone program modules, proved 

to be an efficient method for improving software quality [11]. 

Advantages and needs of software fault prediction are listed as follows [1]:  

● Delivering a highly dependable system. 

●  Predicting buggy modules beforehand helps in improving the testing process. 

●  Improving quality by improving test process. 

Software fault prediction becomes important for some software which need much more 

care regarding testing and cannot afford any type of faults (e.g. medical science, banking, 

astronomy and finance etc.). 

1.1.2 Mixture of Experts 

Experts in this ML model is referred to an individual learner model which is expert in its 

particular section of input space. This model was originally proposed by Jacobs et al. [3] 

in 1991 as “Adaptive mixture of local experts” which suggested the idea of dividing the 

input space and use different learners for different input space. ME model relies on the 

principle of divide and conquer, having three major components [4]: 

i Experts which can be either classifiers or regression functions. 

ii A gate that provides soft boundaries for input space and introduces those regions where 

the individual expert results are dependable. 

iii A probabilistic model to incorporate the experts and the gate. 

 

Mixture of Experts architecture can be used for solving classification and regression 

problems of real world applications with some modifications in the architecture these 

changes are discussed below.  
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Classification with ME 

In the ME architecture, a gate and a set of experts collaborate with each other to break a 

nonlinear supervised learning problem into smaller linear problems, by separating the 

input space into a nested set of regions. Whole input space is softly split by gate, and the 

experts learn the simple parameterized surfaces in these partitions of the regions. There 

are several methods using which ME model can learn the parameters of both gate and 

experts surface [4]. 

Regression with ME 

Mixture of experts can also be used to solve the complex regression problem by assigning 

weights to the result of various regression learners. In the past 20 years, there are various 

statistical and experimental analyses which had been done on Mixture of Experts model, 

and numerous amount of researches have been done in the fusion, regression and 

classification area which shows the suitability of ME in those fields. ME models have 

shown a better results and found useful in combination with many current classification 

and regression algorithms because of its flexible and modular structure [4]. 

1.2 ORGANIZATION OF THESIS 

 This report is divided into 5 chapters. First chapter concluded the preliminaries 

and basic concept knowledge that will be needed for understanding this thesis. Second 

chapter is literature review which includes papers from software fault prediction domain. 

This chapter highlights the research gaps found in literature and presents the tabular 

representation for the same. Third chapter contains details about proposed architecture. 

Fourth chapter shows the experimental result of existing techniques as well as of proposed 

architecture. Fifth chapter concludes the entire work including the analysis of results and 

future work that can be done.    
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CHAPTER 2 LITERATURE REVIEW 

Several works have been done till now in predicting whether the software module is faulty 

or non-faulty, using different classifiers on different datasets. The performances vary on 

using different classifiers on different set of datasets 

2.1 BACKGROUND STUDY 

2.1.1 Data Preprocessing 

Unavailability of training data and class imbalance problem are most common in dataset 

of software projects [3] [1] [21] [16]. There are several technique and their combination 

used in recent past year to tackle these problem. Study [3] presents an iterative approach 

to overcome the problem of unavailability of data. [3] uses Fuzzy Inference System (FIS) 

at initial stage of software development when data is unlabeled. Prediction for later 

versions of software project will be made using FIS model and Artificial Neural Network 

(ANN). [23], [14] investigates and explore various as well as proposed class sampling 

techniques in software fault prediction. 

2.1.2 Binary class classification 

[5] [9] and [5] studies explore the scope of semi-supervised and unsupervised learning 

techniques in prediction of software faults and suggested that their approach’s applicable 

depending on the software project metric and performance measure. None of the model 

is generalized for every software project fault data presented publicly. [6] investigates 

different ML models on different metrics and suggested that multi-layer perceptron 

results better for all metrics.    

2.1.3 Ensemble classifiers 

Review papers [1] [28] [29] suggest that ensemble method are improves the performance 

and produce a reliable prediction framework for software fault prediction. [6] proposes a 

unique approach of using different set of metrics on different type of base learning 

algorithm. A conclusion from studies [6], [7], [17], [21] and [11] is that pre-processing 

data for learning an ensemble model is very important as these studies points out the 

difference in performance of ensemble approach on using pre-processing techniques. 
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2.2 TABULAR COMPARISON AND RESEARCH GAPS 

This section contains the summary of various researches performed in recent years. 

Study Key Points Methodology Advantages Disadvantages 

Data pre-processing 

[7] 

A iterative 
prediction 
model that 

begins  with no 
data 

ANFIS 
(Proposed) a 

combination of 
ANN and FIS 

Also 
implemented 

proposed 
methodology as 

a tool 

Expert is need to 
gather initial fault 

information 

[8] 
A novel active 

semi-supervised 
method 

DT, LR, NB, 
CoForest  

Proposed 
approach shows 

the effective  
results 

Empirical study 
not exhaustive. 

No pre-processing 
technique used 

[13] 

Investigate the 
significance of 
data sampling 

SFP 

DT, 3-layer NN, 
SVM, RF, KNN 

AUC was not 
influenced with 

sampling but 
other metrics 
shows better 

results 

No comparison 
with existing 

studies 

[14] 

Explores various 
class imbalance 

learning 
methods for SFP 

NB RF, 
AdaBoost 

Tabular 
representation of 

Optimal 
Parameters for 

imbalance 
learning 
methods 

Validation 
through more 
case studies is 

required 

[15] 

Proposes to use 
number of faults 
to oversample 
minority class. 

NB, Bayes 
Network, K-NN 

(k=1,5) 

Presented a 
novel approach 

for handling 
class imbalance 

problem 

For acceptance 
and generality of 
approach, more 

studies is required 

Binary class classification 

[25] 

Semi-supervised 
learning based 

on label 
propagation 

FTF, ROCUS, 
LDS, CMN, 

GSKLP 
(proposed) 

GSKLP benefits 
with LS 

sampling to 
improve results 

Datasets of 
different domains 

required to 
validate proposed 

approach 

Table 1 Tabular representation of past researches 
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Study Key Points Methodology Advantages Disadvantages 

[9] 

Unsupervised 
Learning using 
Scaled Dirichlet 

Distribution 

Clustering 

Suggests that 
clustering 

algorithm needs 
to be explored 

for SFP  

Conclusions are 
based on 

synthetic data 

[5] 

Connectivity 
based 

Unsupervised 
Classification 

RF, LR, SC, 
LMT, NB 

Comparative 
study is 

thorough 

Pre-processing 
step is not clear 

[27] 

Evaluate 
different ML 

models on 
different metrics 

LR, NB, MLP 
MLP shows 

better result with 
all metrics 

Pre-processing 
step is not clear 

[10] 

Comprehensive 
evaluation of 

Bayesian 
Network (BN) 

Classifiers 

15 different NB 
classifiers 

Augmented NB 
classifiers and 
RF produces 
better results 

Proposed H-
measure needs to 
be evaluated on 

more case studies 

[11] 
Evaluate high-
performance 

fault predictors 

SVM, 
Probabilistic 

Neural Network 
(PNN) 

PNN provided 
best 

performance for 
large datasets 

Comparative 
analysis is not 

complete 

[12] 

Attempts to 
improve  

performance 
with existing 
techniques 

RF, MLP, NB 

Feature selected 
using BA 
increases 

accuracy of 
ensemble 
methods 

Effect of BA on  
various ensemble 
methods needs to 

be explored 

Ensemble methods  

[13] 

Prediction 
model on multi-

metric and 
multi-type 

learning models 

 
DT, MLP, NB 

 

New direction 
for ensemble 
classifiers in 

SFP 

More metric sets 
are available on 
which approach 
was not tested  

 Table 1 continued 
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Study Key Points Methodology Advantages Disadvantages 

[14] 
Examine the 

effects of FS on 
ELA 

Bagging and 
AdaBoost with 

DT 

Study conclude 
that FS and DS 

affects 
performance 

positively 

Parameters for 
ELA (i.e., 
number of 

predictors) are 
not discussed 

[15] 

Just-In-Time 
Cross-Project 

prediction 
model 

Voting, Bagging 
and Joining of 

traditional 
models 

Encounters 
several research 
questions with 
sufficient proof 

Selection of 
base learning 

algorithm is not 
clear 

[16] 

Investigate 
algorithms to 

overcome lack 
of training data 

7 composite 
algorithm to 

ensemble 
traditional 
methods 

Results showed 
that CODEP of 
LR effectively 

handle data 
unavailability 

More empirical 
validations 
needed for 
generality. 

[17] 

Proposes a two-
stage three-way 
decision based 

classifier 

RF, NB 
Results show the 

efficiency of 
proposed model 

Other ensemble 
technique such 

as boosting, 
stacking, etc. 

should be used 
for validation 

[29] 

Ensemble model 
which considers 
class imbalance 

problem 

RF 

Proposed a novel 
approach of 
ensemble 

oversampled 
methods 

Evaluation is 
performed only 
using RF, hence 
results cannot be 

generalized 

[18] 

Proposed a 
clustering 
ensemble 

framework 

K-Means, EM, 
Particle Swarn 
Optimization 

PSO with 
Manhattan 
Similarity 

measure performs 
better 

Evaluation have 
been done on 

only one 
measure 

[21] 

New approach 
to select the best 
combination of 

features 

SVM, BP-NN, 
GMCRF 

(proposed) 

Proposed 
framework shows 

reliable results 
with low error 

rates 

Comparative 
study is limited 
to few models 

[19] 

Combine 
multiple kernel 
and ensemble 

learning 

SVM, 
AdaBoost, RF, 

MEKL 
(proposed) 

Proposed 
ensemble method 

(MEKL) 
produced recall 
greater in most 

cases 

Under sampling 
leads to 

information loss 

 Table 1 continued 
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Overall research gaps found during literature survey related to fault prediction in software 

module are mentioned below. Some of research gaps mentioned were found in those 

studies. 

 In most of the studies, there was a lack in number of software projects used to evaluate 

to the performance of proposed algorithm, which is a necessary requirement for 

generalizing the results of proposed method. Also limited performance measure were 

used for the study. 

 Absence of statistical tests and comparative study with past researches puts a question 

mark on validity of results. Different studies use different performance measure 

therefore comparing them becomes inconvenient. Also the parameters of proposed 

approach which were set for generation of results, are not clearly mentioned that leads 

confusion while following the approach. 

 Data splitting technique for ensemble methods used in studies for SFP is not data 

dependent which is a research gap for future work. Mixture of Experts is a type of 

ensemble method which uses data dependent technique for splitting data. 

2.3 PROBLEM STATEMENT AND OBJECTIVE 

To explore the use of Mixture of Experts for Software Fault Prediction. 

Objectives of this study are- 

 Apply Mixture of Experts, an ensemble method in software fault prediction, with an 

unsupervised learning algorithm (Gaussian Mixture Model) as gating algorithm and 

compare DT and MLP learning technique when used as base learners. 

 Evaluate the proposed approach on 41 public available datasets collected from 

standard software engineering repository. And collect the results of four popularly 

used performance measures. 

 To compare the performance results, implement individual model and bagging 

ensemble method for all datasets. Perform statistical test to note the significance and 

also compare with previous studies.  
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CHAPTER 3 PROPOSED APPROACH 

In this chapter, the framework of Gaussian Based Mixture of Experts for binary 

classification of software modules is discussed. Figure 1 shows the architecture of 

proposed Software Fault Prediction (SFP) model. Model building procedure consists of 

two parts: 1) Training Gaussian Mixture (GM) Model over unlabelled training data; 2) 

Building an ensemble of classifiers based on GM model. The main objective is to 

accurately categorize software modules and reduce the dependency of software project 

for selecting suitable SFP model. Above figure shows the framework of proposed system. 

This section contains the details about the flow of data in the framework and shows how 

each component is working together to achieve final objective i.e. binary classification of 

software modules as faulty or non-faulty.  

 

Figure 1 Framework for GME 

Data which is at the initial phase is considered to be pre-processed. Pre-processing 

involves handling missing values, data standardization and class balancing. Details of 

these methods are discussed later in next chapters. In the proposed system data is firstly 

give as an input to train Gaussian Mixture (GM) model which is an unsupervised learning 

technique, that does not need labels of training data. Remaining train data will again be 

given as input to GM model and output will be a matrix of probabilities. Second step is 

to train ensemble of classifiers. Remaining train data which has not been given to GM 

model be used to train the ensemble of classifiers. Probability matrix obtained in the last 

step will be used to distribute instances to train different classifiers. This distribution of 

instances is based on the threshold, if the probability of an instance to fall in classifier’s 

subspace is greater than threshold then it will be included for training that classifier. Last 
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step is to make prediction for a new instance. In this stage probability array of an instance 

will be used to combine the predicted results.  

3.1 GAUSSIAN BASED MIXTURE OF EXPERTS 

In the first step of the proposed solution for SFP model building, the objective of training 

GM model is to assign the probability with which each software module belongs to a 

particular classifier. These assigned probabilities are used, in later stage, to construct 

training dataset for each expert or classifier. The intention behind using the unsupervised 

probabilistic classification model rather than strict classification model, is to soft split 

data among different classifiers. 

STEP 1: Training Gaussian Mixture Model 

A GM model is a probabilistic mixture model which presumes that all the data points are 

triggered from a mixture of a finite number of Gaussian distribution with unknown 

parameters and it has consistently produced state-of-the-art performance in various field 

of classification, recognition, prediction, etc. [12]. In the first stage of the proposed 

solution for SFP model building, the objective of training GM model is to assign the 

probability with which each software module belongs to a particular classifier. These 

assigned probabilities are used, in later stage, to construct training dataset for each expert 

or classifier. The intention behind using the unsupervised probabilistic classification 

model rather than strict classification model, is to soft split data among different 

classifiers. In training stage, GM model tries to predict unknown parameters of each 

Gaussian distribution. Since it considers that data points are generated from some 

Gaussian distribution. 

Input: Set of instances without class label X = { x1, x2,…xn} where n is the number of 

instances in X and number of components k . 

Output: 2D Matrix of probability G having n rows and k columns. 

Here in X, xi is a row vector of size m and m is the number of attributes in dataset, k in 

GME will be set equal to the number of classifiers used to ensemble. Each element in G, 

gi,j will represent the probability of an instance i to fall into the subspace of classifier k. 
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The parameters of GM model are updated using multiple iterations of Expectation 

Maximization (EM) algorithm. In each iteration, EM algorithm updates parameter to 

maximises the likelihood. GM algorithm is known to a fastest algorithm for learning 

mixture models. A simple experiment over 2D-blob cluster datasets have been done to 

understand the working of GM model. 

GM model is trained on 2D data points shown in figure 2a. In figure 2b, circle shows the 

cluster spread after training GM model. Darker circle of each cluster show that density of 

points in that region is higher that the outer light color circle. Red points in figure 2b 

shows the testing point. Results are shown in terms of probabilty in table 2. Values which 

are approximately equal to zero are not shown.  

Point P1 which lies on the edge of S1 and S2 

have probabilty 58% and 41% respectively, 

which are approximately equal. Point P2 

which lies at the intersection of clusters S1, S3 

and S4 but is very near to high probability 

zone (dark circle) of S4, hence probabilities 

assigned to it are 27%, 29% and 54%. P3 is in 

the dark region of S4 but also lies fairly in S4. 

Here probabilty of point P3 to lie fall in S4 is 

much larger than S3. Outlier P5 which should not be in any cluster, have fairly large 

probability of lying in cluster S4. 

Table 2: Results from experiments as 
probability of points (P) for lying in a 

subspace(S) 

 S1 S2 S3 S4 

P1 58% - - 41% 

P2 27% - 29% 51% 

P3 - - 12% 85% 

P4 - 41% 54% - 

P5 16% 12% - 71% 

(b) 

Figure 2 Visualization of data points used in experiment GM model (a) Initial points             
(b) Trained GM model with testing points 

(a) 
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Another simulation have been done with different shaped 2D cluster data to check the 

efficiency of GM model.  

Observations about GM model that are made from above experiments are- 

 GM model also uses density information to form clusters. 

 Probabilty difference is very large when a point lies in dark region (P3 in Figure 2b). 

 Outlier point might get higher probability than a point lying on a cluster (P5). 

 Clusters of GM model adopts the shape according to data. 

 Number of clusters also affects the cluster shape and effectiveness of GM model. Figure 

3b and figure 3c shows the difference in cluster shape on changing number of clusters. 

 

Figure 3 GM Model cluster on different data shape with different n_components value 

Figure 3(a) Stretched data clusters 
n_components = 4 

Figure 3(b) Moon shape data clusters 
n_components = 2 

Figure 3(c) Moon shape data clusters 
n_components = 16 
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STEP 2: Training and testing of Experts 

After distribution of instances among different cluster subspaces, machine learning 

models need be trained. Architecture of training proposed approach (GME) is described 

using figure 4. It shows the flow for 3 experts with the consideration that GM model has 

already been trained. Algorithm 1 shows the training procedure for GME. In few words, 

training algorithm uses output of GM model to soft split the data into subspaces which 

will be used for training each expert independently. In this step data split using GM model 

will make sure that no two subspaces will be totally same and hence model trained on two 

different subspace of data will also be trained differently. 

Algorithm 1 Training classifiers of GME 

Input: The remaining dataset X’={x1, x2,…xT,…,xn}, corresponding output labels   

Y’={y1, y2,…yT,…, yn}, here yi ∈ {F, NF} denotes class label, data selection threshold 

_DS, number of experts k and trained GM model (G). 

Output: Trained experts  

1. BEGIN 

For T = 1 to n do 

2. Input xT  to G and store the output in gT={gT,1, gT,2,…gT,k}. 

For j = 1 to k do 

3. check gT,j >_DS 

         Add xT and yT to training subspace of expert j, Sj. 

End For 

End For 

For i = 1 to k do 

4. Train expert i using training subspace Si. 

End For 

5. END 

 

Algorithm 2 also uses trained GM model not for splitting but to collect the decision of 

each expert. Integer value zero is sometimes used in place of class label non-faulty and 

integer value one for faulty. In most of the cases, X is used to indicate the attributes value 

of each instance and Y is used to represent a set of corresponding class labels. Figure 4 is 

drawn to make the data flow and terminology used in algorithms easy to understand.  
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Figure 4 Architecture of GME 

 

 

Algorithm 2 Testing GME 

Input: The query or test dataset X”={x1, x2,…xQ,…,xz}, label prediction threshold 

(_LP), number of experts k, trained experts (E) and trained GM model (G). 

Output: Predicted class labels, YP (|YP| = z).  

1. BEGIN 

For Q = 1 to z do 

2. Initialize temporary variable (t) with 0 

3. Input xQ  to G and store the output in gQ={gQ,1, gQ,2,…gQ,k}. 

For j = 1 to k do 

4. Input xQ to Ej and store its output in yQ,j. 

5. Update t, t = t + (yQ,j × gQ,j). 

End For 

6. Check t >_LP 

           Add class label faulty (F) to YP. 

7. Otherwise 

           Add class label non-faulty (NF) to YP. 

End For 

8. END 
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3.2 MIXTURE OF LEARNERS 

 

Figure 5 Framework of Mixture of Learners 

Mixture of Learner is an ensemble method which uses different learning model at level 1 

and these models will perform regression on fault dataset. Note that this technique is a 

variant of an ensemble method called stacking. In stacking different types of learning 

models are used at level 1 and meta learner at level 2 will use the results of level 1 models 

for training. Novelty in approach of Mixture of Learners is, along with results of level 1 

models, selected features from input data will also be used to train the meta classifier. 

This will help meta classifier to make a correlation with input data. 

As from the datasets for SFP, it is observed that data is collected on various metrics and 

these metrics directly impacts the performance of prediction model. So for applying 

proposed approach, different sets of metrics cane be used for training. At level 1 of 

proposed approach, regression models are used on classification dataset. At level 1 

Gaussian mixture model with n_components as 2 can be used to assign probability to each 

software module. 

Working of proposed approach will start with the training of level 1 regression models 

on some portion of train dataset and remaining of train dataset and features extracted 

using technique which have performed best in recent studies, will be used to train level 2 

learning algorithm which is a classification algorithm. Model selection for ensemble is an 

important and essential step in this approach. Level 1 models which uses very different 

learning strategy like (k-Nearest Neighbours and neural network) should be used. Many 

application of stacking have used more than 50 models at level 1 which makes a better 

model but also increases the time complexity.  

Feature Selection 

Meta learner 
(Classifier) 

Predicted 
Faulty 

Predicted 
Non -
Faulty 

Data
Type 2 

Regression model 

Type n 
Regression model 

Type 1 
Regression model 
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CHAPTER 4 EXPERIMENTAL DESIGN 

To evaluate the effectiveness of proposed approach which is a combination of 

unsupervised learning (Gaussian Mixture Model) based ensemble of classifiers, the 

following discussed simulation experiments are performed. This section is organized as, 

first subsection introduces the benchmark datasets, which are collected from real-world 

Software projects and are publicly available for research work. Second subsection 

discusses the performance measures for evaluating the conducted experiments. Later 

parts contain introduction of classification models and details of experiments. The 

experiment results are collected based on the performance of 5-fold cross validation. 

All the experiments are implemented using libraries of Python programming language on 

64-bit Windows operating system over 4GB RAM and Intel i5 processor machine having 

clock speed @1.75GHz. 

4.1 DATA PREPARATION 

For obtaining the effectiveness and feasibleness of proposed GME architecture in binary 

fault classification, total 41 datasets from NASA Metrics Data Program (MDP), NASA 

PROMISE and Eclipse software engineering repository are used for evaluation. Link are 

in the reference [20] [21] [22]. These datasets are commonly used for prediction of 

software modules in many studies discussed in chapter 2. Using those datasets is helpful 

for the comparative analysis of performance results. In chapter 5, proposed model have 

been compared with the results of previous studies.  

Table 5 contains the overview of datasets used for the simulation. Datasets having very 

few instances (< 200) are excluded which gives total 41 datasets. In dataset if any class is 

having lesser number of instances, it is said to be a minority class. From table 5 it can be 

observed that percentage of minority class in dataset are < 20%, except few datasets (e.g., 

Equinox, KC2, MC2, etc.). This value is even <10% for some datasets (e.g., camel-1.0, 

CM1, ivy-2.0, etc.), which shows that it is highly imbalance [2]. On this note, software 

fault datasets can be said to be imbalance and there is a need of solution to this problem. 

Because if a model is trained on imbalance data, it is likely to get instances of majority 

class only on random splitting and will be trained to give the label of majority class to 

every module, which is not correct but the accuracy of such model will be greater than 

80% due to right predictions of majority class.  
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Name Instances Attributes 
Missing 
values 

Fault 
Instances 

Minority 
class % 

Instances 
After 

Sampling 
ant-1.7 745 20 0 93 12.48 1304 

camel-1.2 608 20 0 99 16.28 1018 
camel-1.4 872 20 0 71 8.14 1602 
camel-1.6 965 20 0 101 10.47 1728 

CM1 498 21 0 49 9.84 898 
eclipse-2.0 6729 199 0 1278 18.99 10902 
eclipse-2.1 7888 199 0 1131 14.34 13514 
eclipse-3.0 10593 199 0 1579 14.91 18028 
Equinox 324 17 0 80 24.69 488 
ivy-2.0 352 20 0 28 7.95 648 

JDT_Core 997 17 0 138 13.84 1718 
jedit-4.3 492 20 0 10 2.03 964 

JM1 10880 21 25 2103 19.33 17554 
KC1 2109 21 0 326 15.46 3566 
KC2 522 21 0 107 20.5 830 
KC3 200 40 258 36 18 328 

Lucene 691 17 0 51 7.38 1280 
MC1 9466 39 0 68 0.72 18796 
MC2 127 40 34 44 34.65 166 
MW1 264 40 139 27 10.23 474 
mylyn 1862 17 0 186 9.99 3352 
PC1 1109 21 0 77 6.94 2064 
PC2 1585 40 4004 16 1.01 3138 
PC3 1125 40 438 140 12.44 1970 
PC4 1458 40 0 178 12.21 2560 
PC5 17186 39 0 516 3 33340 

PDE_UI 1497 17 0 143 9.55 2708 
poi-3.0 442 20 0 201 45.48 482 
prop-1 18471 21 0 1714 9.28 33514 
prop-2 23014 20 0 1677 7.29 42674 
prop-3 10274 20 0 923 8.98 18702 
prop-4 8718 20 0 577 6.62 16282 
prop-5 8516 20 0 939 11.03 15154 
prop-6 660 20 0 55 8.33 1210 

synapse-1.2 256 20 0 52 20.31 408 
velocity-1.6 229 20 0 34 14.85 390 

xalan-2.4 723 20 0 79 10.93 1288 
xalan-2.5 803 20 0 297 36.99 1012 
xalan-2.6 885 20 0 271 30.62 1228 
xalan-2.7 909 20 0 660 72.61 1320 
xerces-1.4 588 20 0 181 30.78 814 

Table 3 Details of selected datasets 
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With this discussion two things can be concluded. First, class imbalance is problem and 

needs to be handed in pre-processing step to avoid the incorrect training of model. 

Second, better accuracy model can sometimes be wrongly trained. So model must be 

evaluated on more than accuracy. Later section of this chapter discuss the various 

performance measures used for the evaluation of proposed approach. 

In simulation of GME, for handling the class imbalance problem, Synthetic Minority 

Over-Sampling TEchnique (SMOTE) [1] is used as a step in data preprocessing. SMOTE 

generates the “synthetic” samples of minority class. In backend, SMOTE uses k-NN to 

determine “synthetic” samples. Along with data sampling, data cleaning and data 

standardization are also performed. Data cleaning handle the missing value by either 

removing all values of instance or by replacing the value with average of that feature. 

Removing all the values of an instance leads to information loss and when dataset is small 

(number of instances is less than 200), losing that instance’s information will be costly. 

In that case missing value is replaced with the average value of the attribute. 

4.2 CLASSIFICATION MODELS 

For comparative analysis and effectiveness of results, two base learning algorithm (DT 

and MLP) have been applied individually and on two different ensemble methods 

(Bagging and GME). Results are stored for 4 performance measures (Accuracy, F1-Score, 

Precision, Recall), as shown in chapter 5. This section contains introduction of various 

applied classification models with their ensemble technique.  

4.2.1 Decision Tree (DT) 

First step of classification is to divide the dataset or sample space into two or more 

homogeneous data sets (or sub-sample sets) based on most significant classifier / 

differentiator provided implicitly in input variables [12]. It works well with both the 

discrete, categorical and continuous input and output variables. 

In Decision Tree classifier, concept of weighted tree is used, where the internal nodes are 

marked with featured used for classification and edges of the tree created are marked as 

trial with dataset weight. Tree leaves are named by categorization. By this way, whole 

document can be categorized from root till the leaf node is reached, moving through the 

branches. Learning in decision tree adopts a decision tree classifier, which maps 

information of an item to conclusions of that items expected value [12]. 
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4.2.2 Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) or neural network (NN) is a machine learning algorithm 

that works on the principle of biological neural network. It consists of series of processing 

layers interconnected, with each connection possessing some weight. During training, 

based on the knowledge of domain, it develops a representation that maps input space to 

output space. MLP uses supervised learning technique called back-propagation to train 

the network [10].  

The working of MLP can be described as follows: For each iteration, the training data are 

iteratively fed into the neural network and the output obtained is compared with the 

desired output and error is calculated, which is used to update the hidden layer weights 

and re-feed the network. The updation is done ensuring that error decreases after each 

iteration and the output obtained is closer to the desired output. 

 

Figure 6 Different schemes for Experimental Analysis 

 

4.2.3 Ensemble Method 

With the combination of two base learner and three ensemble method, total six 

classification technique is generated. DT and MLP on proposed ensemble technique 

(GME) is compared with the performance from bagging ensemble method and individual 

model [12].  
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Individual model implements the single learning technique. The objective of the 

experimental study is to find the improvement in performance on individual model and 

from existing ensemble technique, bagging [12]. Individual ensemble method implements 

single learner model for prediction. Figure 6 shows that DT and MLP will be used as 

individual model. 

Bootstrap aggregating, also called bagging, is a meta-learning ensemble technique in 

machine learning which was designed to enhance the stability and accuracy of individual 

machine learning model used for classification and regression. Bagging also decreases 

the variance of individual model and prevent the model from overfitting. 

4.3 DIFFERENCE BETWEEN BAGGING AND GME 

Bagging is described as, for a given training set X of size n, bagging generates k new 

training sets Xi. Here k is the number of base learners used to ensemble. Each training set 

Xi will be of size m and it is generated with sampling from X uniformly and with 

replacement. Some instances may be repeated in each dataset Xi because of using 

sampling with replacement. Features of X can also be sampled to generate Xi. Hence, 

number of instance and dimensions of Xi will be less than X. Each Xi represents the X but 

none of the subset of data Xi will be similar, even when two instances are same, they could 

have different set of features. These subsets will be used to train k base models 

independently and for testing this model, query point will be given to each k trained model 

with sampled features. Next, the result of each model will be combined using voting to 

provide the final result. 

In proposed GME approach for meta learning ensemble technique, the training dataset X 

will be used to train an unsupervised model (here Gaussian Mixture Model) for k 

components. This model is termed in ME approach as a gating model. GM model is a 

probabilistic clustering approach which assigns probability to each data point of falling 

in a particular cluster. If the probability of lying in a subspace for any data point is greater 

than threshold value (here, _DS), then it will be considered to be the part of that subspace 

Xi. Each instance may lie in multiple Xi; hence dataset is known to be softly splitted. 

These subsets of data will be given as an input to k base leaners to train them 

independently. For testing of this model, query instance will be given to each base 

learning model and GM model which output an array of k size. Each element of array 
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Figure 7 Blob data split for bagging 

Figure 7 Difference between sampling instances by (a) Bagging and (b) GME on cluster 
data for 3 classifiers. Different samples are shown by different point type 

(a)  (b)  

(a)  (b)  

will be a probability for query point of lying in the cluster of that model. This probability 

is used to combine the results of each base learners. 

 

 

 

 

 

 

 

 

 

Figures represents the sampling of instances done in the case of bagging and GME. Figure 

1 shows the well separated cluster of data which has been messed up in the case of 

bagging. GME even for the random spread of data, gives a well formed subset of dataset. 

Conclusion which can be made on above figure is that, in bagging data is randomly 

separated which leads to loss of spatial information and subset of data represents the 

whole dataset, so there can be a case in which model trained on these will be very similar 

whereas in GME it uses the spatial property of the data for creating the subspace hence 

model trained on these subspaces will be different from each other. Outlier might affect 

the training of every base model of bagging but in the case of GME, it is certain that 

outlier will not affect every model even in the worst case. 

Figure 8 Difference between sampling instances by (a) Bagging and (b) GME on random 
data for 3 classifiers. Different samples are shown by different point type 
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(b)  (b)  

4.4 PERFORMANCE EVALUTION MEASURES 

Prediction model gives the predicted class as an output and it is difficult to store this array 

for comparison from other models. Hence there is a need for some standard performance 

evaluation measure on which different machine learning techniques can be tested [2]. 

There are many measures proposed in the theory and some of them are being widely for 

measuring and comparing the performance of an algorithm. Performance measure column 

of table 1 shows that accuracy, 

f1-score, precision and recall 

have been used in most of the 

studies.  

Above mentioned performance 

measures will be calculated 

using confusion matrix. Table 

shows the confusion matrix and contain basic terminology used to define performance 

measure. Following discussed measures are as described in table 4. 

Accuracy denotes the percentage of correctly classified instances to the total number of 

instances. Precision denotes number of correctly classified faulty instances among the 

total number of instances classified as faulty. Recall indicates the number of correctly 

classified faulty instances amongst the total number of instances which are faulty. F1-

Score is the harmonic mean of precision and recall values [2]. 

      

Table 4 Confusion matrix for Software Fault Prediction 

 Predicted  
Faulty 

Predicted  
Non-Faulty 

Faulty  
Modules 

Number of True 
Positive (TP) 

Number of False 
Negative (FN) 

Non-Faulty 
Modules 

Number of False 
Positive (FP) 

Number of True 
Negative (TN) 

Figure 9 Difference between sampling instances by (a) Bagging and (b) GME on moon 
shaped data for 3 classifiers. Different samples are shown by different point type 
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F1-score considers both FP and FN, so it is not as easy as accuracy to understand. But f1-

score is more useful than accuracy especially if there is uneven distribution of class. A 

learning scheme is known to be better if accuracy, f1-score, precision and recall values 

are higher.  

 To validate the significance of proposed approach and its ranking with respect to other 

ensemble technique, Wilcoxon’s non-parametric test have been applied. It is a statistical 

hypothesis test which is widely popular and used to compare two related columns (i.e. 

ensemble methods or learning algorithms) [23]. And second statistical test, Friedman’s 

rank test which is also a non-parametric test is applied to check whether the ranking of 

multiple columns (i.e. ensemble methods or learning algorithms) is consistent across the 

dataset [24]. 

4.5 PARAMETER SETTING 

Libraries of python are used in the simulation experiments. Following are details about 

parameters on which models had been tested. 

 SMOTE method of class over_sampling in package imblearn, is used for sampling with 

5 neighbours to generate synthetic samples.  

Cross-Validation: 5-fold cross validation is implemented using KFold method of sklearn 

library with shuffle set as true that means data will be shuffled before splitting into 

batches. 

Decision Tree: Implemented function DecisionTreeClassifier of library sklearn is used 

with parameters, splitting criteria as gini index and tree will be extended up to the height 

until all leaves are pure. 

Multilayer Perceptron: Implemented method MLPClassifier of library sklearn is used 

with initial parameters. 

Bagging: BaggingClassifier function of sklearn library is applied. Number of estimators 

(base learners) is set as 10. Maximum number of samples and features to be drawn from 

original data is set as 0.7. That shows 70% of total instances and 70% of all features will 

be used to construct the subset for every model. Bootstrap is set to be true for both samples 

and features that indicates, an instance or feature will be included in more than one 

training subset. 
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GME: Number of experts or estimators is set as same as bagging, 10 for simplicity. The 

purpose is to evaluate the performance of GME and compare it with individual model and 

bagging ensemble. So same number of base models are used to ensemble in bagging and 

GME. Data selection threshold (_DS) and Label Prediction threshold (_LP) is set as 0.2 

and 0.6 respectively. These values are concluded from figure 11. 

Figure 11 shows that there is minimum deviation in models when _DS and _LS are set as 

0.2 and 0.6 respectively. For getting the standard deviation vs data selection threshold 

graph for different values of label prediction threshold graph, following experiment is 

conducted.  

First, 10 datasets are selected at random and among them, on 5 datasets DT is used as 

base model and for remaining MLP is used as base model. Second, GME model with 

number of experts as 10, for different values of _DS and _LP is applied, with 5-fold cross 

validation. Third, accuracy score of each dataset for every combination of _DS and _LP 

values is collected. Lastly, calculate standard deviation (SD) of collected accuracy of 10 

datasets for every pair of _DS and _LP values. SD is low for _LP=0.6 for almost every 

value of _DS. And it is minimum when _DS=0.2.  
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CHAPTER 5 RESULTS AND ANALYSIS 

In this section, table 5, 6, 7 and 8, show performance results of classification in terms of 

accuracy, f1-score, precision and recall respectively, when base learning schemes are DT 

and MLP applied over different aggregation schemes. Every table consists of two sections 

which contain the result of base expert and for each base expert, there are three 

subsections that represents the aggregation type. Every result in bagging and GME 

subsection of DT and MLP is the maximum value obtained by varying the number of 

experts from 2 to 30, which is the average of 5-fold cross validation. Bold values are the 

best performances in each row of the tables. Later parts contain discussion about the 

results and statistical tests which have been performed on the results to evaluate the 

significance and ranking of model. 

5.1 PERFORMANCE COMPARISON 

This subsection contains comparison of models on the basis of performance measures. 

Result of models grouped on the basis of accuracy, f1-score, precision and recall is 

present in table 5, 6, 7 and 8. Objective of collecting results on different measure is to 

analyse the model performance independent of other performance measure. Each table 

contain the results of a performance measure recorded for three different ensemble 

technique with two different base learner models on 41 datasets. Values which are best 

for a dataset is highlighted with the bold font. 

At the end of each table, to provide the comparative overview of all learning algorithms 

on different performance measures, average of 41 values for all datasets is mentioned. 

This helps in concluding the results of that table. For all four performance measure, 

average value of Multilayer-Perceptron (MLP) when applied as a base model for 

proposed ensemble approach (GME), is always high. Second conclusion that can be made 

from the average values present in table 5, 6, 7 and 8 are bagging outperforms individual 

model when Decision Tree is used as base learner but this is not same for the MLP. GME 

always perform better than individual model and bagging ensemble model on all four 

performance measures with both base classifiers. The suffix G in MLP-G and DT-G 

indicates that proposed Gaussian Mixture approach is used to ensemble those models. 
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Dataset 
DT MLP 

Individual Bagging GME Individual Bagging GME 

ant-1.7 0.8562 0.8931 0.8685 0.8631 0.8554 0.9285 

camel-1.2 0.6936 0.7222 0.8542 0.8236 0.8118 0.9054 

camel-1.4 0.7967 0.8356 0.9122 0.9247 0.9153 0.9567 

camel-1.6 0.8819 0.9167 0.8808 0.8866 0.8860 0.9271 

CM1 0.9002 0.8936 0.9211 0.8717 0.8553 0.9473 

eclipse-2.0 0.6571 0.7712 0.7322 0.7760 0.7884 0.7871 

eclipse-2.1 0.7172 0.8358 0.7897 0.8515 0.8509 0.8574 

eclipse-3.0 0.6917 0.7722 0.8202 0.826 0.8308 0.8360 

Equinox 0.8917 0.9247 0.7967 0.7459 0.7093 0.8497 

ivy-2.0 0.7968 0.8230 0.9447 0.9247 0.9018 0.9601 

JDT 0.8771 0.9170 0.8334 0.7527 0.7584 0.9092 

jedit-4.3 0.8652 0.8995 0.9835 0.9752 0.9680 0.9773 

JM1 0.9721 0.9762 0.8334 0.7130 0.7113 0.7384 

KC1 0.8312 0.8275 0.8794 0.7649 0.7582 0.8212 

KC2 0.8769 0.8777 0.8675 0.8072 0.8048 0.8494 

KC3 0.7643 0.7772 0.8600 0.8756 0.8182 0.9108 

Lucene 0.8229 0.8699 0.9243 0.8970 0.8548 0.9571 

MC1 0.8639 0.8725 0.9831 0.9901 0.9862 0.9911 

MC2 0.6041 0.6170 0.7854 0.7467 0.7269 0.8185 

MW1 0.8090 0.8090 0.8944 0.9303 0.9191 0.9551 

mylyn 0.8876 0.9360 0.8993 0.8243 0.8159 0.9047 

PC1 0.8745 0.8978 0.9423 0.8920 0.8987 0.9608 

PC2 0.9212 0.9212 0.9787 0.9851 0.9801 0.9858 

PC3 0.8169 0.8308 0.8867 0.9135 0.9055 0.9372 

PC4 0.8580 0.8686 0.9230 0.9502 0.9364 0.9650 

PC5 0.7485 0.7572 0.8044 0.7850 0.7774 0.8388 

PDE 0.9375 0.9477 0.8946 0.8028 0.7922 0.8990 

poi-3.0 0.6894 0.7158 0.7336 0.6852 0.6807 0.7533 

prop-1 0.9188 0.8906 0.9196 0.8406 0.8439 0.8726 

prop-2 0.7412 0.7450 0.9312 0.8899 0.8909 0.9211 

prop-3 0.6993 0.7029 0.8391 0.7832 0.7839 0.8637 

prop-4 0.7080 0.7130 0.8551 0.8108 0.8086 0.8322 

prop-5 0.7804 0.7969 0.9323 0.8782 0.8723 0.9176 

prop-6 0.9242 0.9203 0.9845 0.9845 0.9776 0.9884 

synapse-1.2 0.7918 0.8196 0.8496 0.8296 0.8120 0.8970 

velocity-1.6 0.8501 0.9097 0.9161 0.9018 0.8606 0.9302 

xalan-2.7 0.8145 0.8565 0.8321 0.8260 0.7954 0.8802 

xerces-1.4 0.8115 0.8540 0.8351 0.8493 0.8328 0.8787 

xalan-2.4 0.8961 0.9041 0.9697 0.9798 0.9697 0.9814 

xalan-2.5 0.7760 0.7908 0.8933 0.9060 0.8735 0.9413 

xalan-2.6 0.7945 0.7952 0.8875 0.8829 0.8856 0.9331 

Average 0.8149 0.8392 0.8798 0.8572 0.8465 0.9016 

Table 5 Accuracy values 
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Dataset 
DT MLP 

Individual Bagging GME Individual Bagging GME 

ant-1.7 0.8588 0.8938 0.8679 0.8685 0.8633 0.9312 
camel-1.2 0.7004 0.7404 0.8591 0.8318 0.8192 0.9137 
camel-1.4 0.8031 0.8348 0.9145 0.9282 0.9189 0.9579 
camel-1.6 0.8848 0.9163 0.8822 0.8906 0.8916 0.9298 

CM1 0.9039 0.8989 0.9227 0.8786 0.8639 0.9501 
eclipse-2.0 0.6591 0.7813 0.7415 0.7905 0.8002 0.7991 
eclipse-2.1 0.7294 0.8373 0.7920 0.8571 0.8573 0.8624 
eclipse-3.0 0.6505 0.7762 0.8159 0.8315 0.8366 0.8419 
Equinox 0.8937 0.9260 0.8028 0.7581 0.7165 0.8565 

ivy-2.0 0.8054 0.8344 0.9444 0.9289 0.9051 0.9608 
JDT 0.8818 0.9198 0.8398 0.7642 0.7623 0.9150 

jedit-4.3 0.8702 0.9026 0.9841 0.9756 0.9690 0.9778 
JM1 0.9723 0.9769 0.8398 0.7209 0.7209 0.7438 

KC1 0.8378 0.8347 0.8798 0.7763 0.7654 0.8216 

KC2 0.8769 0.8825 0.8689 0.8029 0.8058 0.8527 

KC3 0.7383 0.7569 0.8641 0.8809 0.8183 0.9168 
Lucene 0.8206 0.8704 0.9257 0.9011 0.8603 0.9587 
MC1 0.8782 0.8853 0.9834 0.9902 0.9864 0.9912 
MC2 0.6159 0.6101 0.7812 0.7495 0.7286 0.8212 
MW1 0.8114 0.8043 0.8980 0.9337 0.9230 0.9568 
mylyn 0.8910 0.9368 0.9010 0.8266 0.8197 0.9071 

PC1 0.8756 0.8992 0.9431 0.8941 0.9018 0.9618 
PC2 0.9262 0.9243 0.9790 0.9854 0.9802 0.9863 
PC3 0.8237 0.8453 0.8913 0.9187 0.9098 0.9405 
PC4 0.8691 0.8784 0.9236 0.9510 0.9378 0.9654 
PC5 0.7568 0.7675 0.8151 0.7940 0.7916 0.8450 
PDE 0.9377 0.9485 0.8974 0.8121 0.7999 0.9038 

poi-3.0 0.6779 0.6956 0.6999 0.6556 0.6429 0.7361 
prop-1 0.9181 0.8891 0.9188 0.8381 0.8426 0.8716 

prop-2 0.7562 0.7599 0.9316 0.8910 0.8914 0.9219 
prop-3 0.7147 0.7181 0.8434 0.7928 0.7942 0.8622 
prop-4 0.6879 0.7000 0.8529 0.8055 0.8058 0.8295 
prop-5 0.7741 0.7916 0.9323 0.8779 0.8729 0.9190 

prop-6 0.9274 0.9214 0.9846 0.9849 0.9781 0.9883 
synapse-1.2 0.7848 0.8170 0.8311 0.8270 0.8055 0.8977 
velocity-1.6 0.8486 0.9015 0.9115 0.9057 0.8662 0.9338 

xalan-2.7 0.8114 0.8501 0.8279 0.8268 0.7937 0.8763 
xerces-1.4 0.8219 0.8652 0.8425 0.8625 0.8455 0.8881 
xalan-2.4 0.8974 0.9053 0.9703 0.9803 0.9706 0.9842 
xalan-2.5 0.7522 0.7841 0.8967 0.9084 0.8775 0.9431 
xalan-2.6 0.8029 0.8004 0.8892 0.8839 0.8880 0.9351 

Average 0.8158 0.8410 0.8803 0.8605 0.8495 0.9038 
Table 6 F1-Score values 
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Figure 12 shows the line graph for accuracy of DT-G and MLP-G on all datasets. It can 

be easily observed that MLP-G is performing better in almost every case. There are few 

cases when DT-G accuracy is greater than MLP-G that are JM1, KC1, KC2, prop-1, prop-

4, prop-5. All these datasets were collected from NASA repository and have different set 

of metrics from other datasets. And also their minority class % is very low. Hence it can 

be concluded that software metrics and minority class % of datasets affects the 

performance of GME approach and DT-G performs better than when the minority class 

% is very low.  

Figure 11 Accuracy graph between DT-G and MLP-G 

Graph for F1-Score between DT-G and MLP-G is almost similar and datasets on which 

DT-G was outperforming MLP-G are same when it comes for f1-score. So same 

conclusion can be drawn and explanation for underperforming is the same for f1-score as 

accuracy.    
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Figure 12 F1-Score graph between DT-G and MLP-G 
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Dataset 
DT MLP 

Individual Bagging GME Individual Bagging GME 

ant-1.7 0.8441 0.8767 0.8537 0.8326 0.8190 0.8945 
camel-1.2 0.7244 0.7148 0.8605 0.8181 0.8154 0.8837 
camel-1.4 0.7715 0.8368 0.8936 0.8869 0.8809 0.9280 
camel-1.6 0.8640 0.9148 0.8729 0.8551 0.8527 0.8998 

CM1 0.8822 0.8681 0.9093 0.8431 0.8235 0.9164 
eclipse-2.0 0.6769 0.7711 0.7387 0.7639 0.7798 0.7791 
eclipse-2.1 0.7029 0.8352 0.7883 0.8308 0.8268 0.8381 
eclipse-3.0 0.7560 0.7649 0.8388 0.8089 0.8112 0.8150 

Equinox 0.8829 0.9147 0.7849 0.7299 0.7065 0.8161 

ivy-2.0 0.7829 0.7888 0.8999 0.8860 0.8719 0.9438 
JDT 0.8523 0.8915 0.8411 0.7447 0.7607 0.8794 

jedit-4.3 0.8545 0.8926 0.9687 0.9525 0.9400 0.9570 
JM1 0.9520 0.9586 0.8411 0.7266 0.7225 0.7556 

KC1 0.8350 0.8294 0.8869 0.7484 0.7510 0.8322 

KC2 0.8863 0.8573 0.8718 0.8145 0.7961 0.8440 

KC3 0.7961 0.8109 0.8617 0.8495 0.7797 0.8663 
Lucene 0.8320 0.8622 0.8949 0.8651 0.8203 0.9235 
MC1 0.7948 0.8069 0.9713 0.9805 0.9731 0.9826 
MC2 0.5590 0.6039 0.7340 0.7151 0.6953 0.7825 
MW1 0.7952 0.8262 0.8673 0.8766 0.8753 0.9178 
mylyn 0.8648 0.9254 0.8914 0.8144 0.8018 0.8826 

PC1 0.8636 0.8845 0.9337 0.8748 0.8715 0.9358 
PC2 0.8682 0.8868 0.9590 0.9714 0.9612 0.9730 
PC3 0.8016 0.7818 0.8636 0.8774 0.8748 0.9014 
PC4 0.7994 0.8100 0.9020 0.9294 0.9100 0.9433 
PC5 0.7462 0.7501 0.7920 0.7736 0.7571 0.8285 
PDE 0.9305 0.9250 0.8885 0.7794 0.7748 0.8690 

poi-3.0 0.6624 0.7616 0.6986 0.6740 0.6659 0.7366 

prop-1 0.9150 0.8901 0.9173 0.8409 0.8395 0.8680 

prop-2 0.7154 0.7182 0.9281 0.8828 0.8879 0.9142 
prop-3 0.6780 0.6822 0.8214 0.7578 0.7567 0.8604 
prop-4 0.7387 0.7332 0.8662 0.8279 0.8175 0.8487 
prop-5 0.7943 0.8096 0.9273 0.8766 0.8661 0.9119 

prop-6 0.8809 0.9065 0.9829 0.9705 0.9574 0.9770 

synapse-1.2 0.7850 0.8145 0.8391 0.8151 0.7892 0.8687 
velocity-1.6 0.8518 0.9034 0.9084 0.8702 0.8293 0.8947 

xalan-2.7 0.8331 0.8966 0.8564 0.8275 0.8028 0.9113 
xerces-1.4 0.8085 0.8289 0.8367 0.8214 0.8068 0.8521 
xalan-2.4 0.8853 0.8994 0.9450 0.9618 0.9456 0.9690 
xalan-2.5 0.8305 0.8055 0.8701 0.8785 0.8453 0.9101 
xalan-2.6 0.7804 0.7808 0.8780 0.8705 0.8722 0.9129 

Average 0.8068 0.8297 0.8704 0.8396 0.8277 0.8835 
Table 7 Precision values 
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Dataset 
DT MLP 

Individual Bagging GME Individual Bagging GME 
ant-1.7 0.8785 0.9131 0.8970 0.9083 0.9149 0.9770 

camel-1.2 0.7146 0.7689 0.8759 0.8477 0.8262 0.9589 
camel-1.4 0.8391 0.8339 0.9399 0.9736 0.9610 0.9900 
camel-1.6 0.9077 0.9189 0.9136 0.9296 0.9348 0.9652 

CM1 0.9275 0.9338 0.9419 0.9187 0.9104 0.9960 
eclipse-2.0 0.6432 0.7917 0.7445 0.8191 0.8219 0.8205 
eclipse-2.1 0.7618 0.8394 0.7959 0.8852 0.8903 0.8882 

eclipse-3.0 0.5742 0.7944 0.7879 0.8562 0.8637 0.8707 
Equinox 0.9052 0.9378 0.8296 0.7902 0.7340 0.9084 

ivy-2.0 0.8393 0.8892 0.9729 0.9767 0.9422 0.9971 
JDT 0.9140 0.9524 0.8419 0.7858 0.7654 0.9690 

jedit-4.3 0.8879 0.9138 1.0000 1.0000 1.0000 1.0000 
JM1 0.9935 0.9963 0.8419 0.7157 0.7197 0.7520 

KC1 0.8406 0.8402 0.8781 0.8081 0.7810 0.8187 

KC2 0.8683 0.9095 0.8774 0.7936 0.8163 0.8693 

KC3 0.6911 0.7151 0.9225 0.9174 0.8665 0.9825 
Lucene 0.8121 0.8801 0.9574 0.9410 0.9065 1.0000 
MC1 0.9813 0.9812 0.9979 1.0000 1.0000 1.0000 
MC2 0.7060 0.6350 0.8590 0.7982 0.776 0.9229 
MW1 0.8442 0.7940 0.9640 1.0000 0.9780 1.0000 
mylyn 0.9192 0.9489 0.9192 0.8398 0.8385 0.9335 

PC1 0.8883 0.9148 0.9628 0.9152 0.9346 0.9893 
PC2 0.9928 0.9661 1.0000 1.0000 1.0000 1.0000 
PC3 0.8505 0.9218 0.9296 0.9649 0.949 0.9884 
PC4 0.9533 0.9597 0.9542 0.9741 0.9677 0.9906 
PC5 0.7678 0.7869 0.8505 0.8162 0.8304 0.8689 
PDE 0.9454 0.9735 0.9173 0.8483 0.8274 0.9517 

poi-3.0 0.7023 0.6514 0.7240 0.6453 0.6232 0.7474 
prop-1 0.9212 0.8881 0.9207 0.8356 0.8459 0.8800 

prop-2 0.8021 0.8071 0.9464 0.8995 0.8951 0.9323 
prop-3 0.7558 0.7584 0.8725 0.8318 0.8361 0.8642 

prop-4 0.6463 0.6699 0.8420 0.7847 0.7945 0.8217 
prop-5 0.7551 0.7752 0.9405 0.8797 0.8803 0.9375 

prop-6 0.9796 0.9380 0.9905 1.0000 1.0000 1.0000 
synapse-1.2 0.7961 0.8334 0.9067 0.8409 0.8258 0.9533 
velocity-1.6 0.8482 0.9020 0.9237 0.9451 0.9087 0.9850 

xalan-2.7 0.7937 0.8113 0.8142 0.8279 0.7855 0.8516 
xerces-1.4 0.8369 0.9068 0.8634 0.9096 0.8910 0.9283 
xalan-2.4 0.9103 0.9114 0.9971 1.0000 0.9972 1.0000 
xalan-2.5 0.6880 0.7725 0.9347 0.9422 0.9140 0.9807 
xalan-2.6 0.8288 0.8232 0.9013 0.8993 0.9046 0.9651 

Average 0.8320 0.8575 0.9012 0.8845 0.8746 0.9331 
Table 8 Recall values 
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Precision value of MLP-G on two datasets is improved and all datasets which were having 

better accuracy, also have high precision value except eclipse-3.0. Graphs of accuracy, 

f1-score and precision seems to be very similar. Graph of recall values for MLP-G and 

DT-G is given in FIG. Recall obtained by MLP-G on various datasets are very high and 

the difference from recall values of DT-G is very huge. In many cases recall value is one, 

which means there are no faulty attributes which are labelled as non-faulty. This is a 

desirable property for a software fault prediction module because faulty modules which 

goes unattended by software testing teams will increase the time and efforts for removing 

faulty modules [1]. 

Figure 13 Precision graph between DT-G and MLP-G 

Figure 14 Recall graph between DT-G and MLP-G 
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5.2 STATISTICAL TEST RESULTS 

Here are the results of Wilcoxon’s statistical test for α=0.5 performed to analyse and 

compare the effectiveness of Gaussian based Mixture of Experts (GME) and impact 

analysis of GME when combine with Decision Tree (DT-G) and Multi Layered 

Perceptron (MLP-G). The proposed approach (GME) is also compared with individual 

model and bagging ensemble of that model, in terms of four performance measure, results 

are stored in table 9, 10. And table 11 contain the statistical test’s result of both DT and 

MLP when applied with GME.  

In statistical results table, second column (Draw) specify the number of equal results 

cases. Third column (R+) and fourth column (R-) represents the sum of ranks. Pwilcoxon 

indicates the p-value of Wilcoxon’s test. If Pwilcoxon < 0.05(α), it means that the comparison 

is significant different [13]. Pwilcoxon values which shows significant difference is 

highlighted in bold font. 

The performance results for individual model and GME approach are shown in table 5, 

6, 7 and 8. The best performances on each performance measure are highlighted. GME 

approach obtains better performance measures if compared to individual model, for both 

base models (DT and MLP). TAB shows the Wilcoxon’s test result for the comparison of 

GME verses individual model in terms of all 4 performance measures with both base 

learning algorithms.  

 

Methods 
Performance 

Measure 
Draw R+ R- Pwilcoxon 

DT-G Vs DT Accuracy 0 777 84 3.67E-06 

MLP-G Vs MLP Accuracy 0 861 0 1.26E-08 

DT-G Vs DT F1-Score 0 775.5 85.5 4.02E-06 

MLP-G Vs MLP F1-Score 0 861 0 1.26E-08 

DT-G Vs DT Precision 0 781 80 2.87E-06 

MLP-G Vs MLP Precision 0 861 0 1.26E-08 

DT-G Vs DT Recall 1 737 83 5.7E-06 

MLP-G Vs MLP Recall 7 595 0 1.91E-07 

Table 9 Wilcoxon's test results for the comparison of GME (R+) versus individual model 
(R-) 
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Table 10 evaluate the performance of GME over individual model. Pwilcoxon value is less 

than 0.05 in each case that means that comparison is significantly different. According to 

the rank values, MLP-G is performing much better than individual model on accuracy, 

precision and f1-score. Statistical test’s results shown in table 10 indicates that GME 

shows improvement than bagging when MLP is used as a base learner. 

Table 11 consists results of statistical tests on each performance measure when DT and 

MLP models are used for GME. For accuracy score, MLP-G outperforms DT-G and 

Pwilcoxon value indicates the significant difference among both models. F1-score and 

precision also shows better result with remarkable difference with Pwilcoxon value less than 

0.05. For recall values the sum of ranks for DT is least even after two draw cases that 

shows, MLP-G is showing huge improvement than DT-G in recall values.   

Methods 
Performance 

Measure 
Draw R+ R- Pwilcoxon 

DT-G Vs DT-B Accuracy 0 679 182 0.000655 

MLP-G Vs MLP-B Accuracy 0 860 1 1.36E-08 

DT-G Vs DT-B F1-Score 0 670 191 0.000977 

MLP-G Vs MLP-B F1-Score 0 860 1 1.36E-08 

DT-G Vs DT-B Precision 0 679 182 0.000655 

MLP-G Vs MLP-B Precision 0 860 1 1.36E-08 

DT-G Vs DT-B Recall 0 658 203 0.001633 

MLP-G Vs MLP-B Recall 4 700 3 7.6E-08 

Table 10 Wilcoxon's test results for the comparison of GME (R+) versus bagging (R-) 

Methods 
Performance 

Measure 
Draw R+ R- Pwilcoxon 

MLP-G Vs DT-G Accuracy 0 707 154 0.000174 

MLP-G Vs DT-G F1-Score 0 715 146 0.000117 

MLP-G Vs DT-G Precision 0 639.5 221.5 0.003448 

MLP-G Vs DT-G Recall 2 670 110 4.8E-05 

Table 11 Wilcoxon's test results for the comparison of MLP (R+) versus DT (R-) with 
GME 
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 5.3 COMPARISON WITH PREVIOUS STUDIES 

This section is focused to evaluate the proposed algorithm (GME) with studies in recent 

past which are mentioned in chapter 2. There are various performance measures on which 

model can be compared but as mentioned in chapter 4, performance of GME is measured 

in terms of accuracy, precision, recall and f1-score. Study which are made in recent years 

also used different measures. Tables present in this section uses them to compare with 

GME. Most of the studies used in this section have used some existing or proposed meta-

learning classification technique for binary classification of software modules. 

Dataset MLP-G DT-G [13] [14] [9] [6] [17] [17] [11] [18] [21] 

CM1 0.95 0.92 0.87 - - - - 0.78 0.90 0.90 0.86 
eclipse-2.0 0.79 0.73 - - - 0.78 0.67 - - - - 

eclipse-2.1 0.86 0.79 - - - 0.82 0.77 - - - - 
eclipse-3.0 0.84 0.82 - - - 0.82 0.77 - - - - 

JM1 0.74 0.83 0.82 0.82 0.74 - - 0.79 0.81 - - 
KC1 0.82 0.88 0.83 - - - - 0.83 0.87 0.77 0.88 

KC2 0.85 0.87 - 0.82 - - - 0.78 0.84 0.80 - 
KC3 0.91 0.86 - - - - - - - - 0.88 

MC1 0.99 0.98 - 0.98 - - - - - - 0.88 
MC2 0.82 0.79 0.74 - - - - - - - 0.86 
MW1 0.96 0.89 0.89 0.89 - - - 0.81 - - 0.87 
PC1 0.96 0.94 0.92 - 0.84 - - 0.93 0.95 - 0.86 

PC2 0.99 0.98 - - - - - 0.13 - - 0.90 
PC3 0.94 0.89 0.90 0.87 - - - 0.84 - - 0.86 

PC4 0.97 0.92 0.90 0.89 - - - 0.91 - - 0.90 
PC5 0.84 0.80 - - - - - 0.97 - - 0.87 

Table 12 Comparison of accuracy values with previous studies 

Table 12 show that accuracy of GME model is higher in 14 out of 16 cases. For MC2 and 

PC5, [21] and [7] are performing better respectively. TAB contain the comparative results 

of f1-score. There were not many studies found which used f1-score for performance 

measure. Among the studies found, MLP-G is performing better in every case. 

 

  

Dataset MLP-G DT-G [8] [17] 

eclipse-2.0 0.80 0.74 0.61 0.79 

eclipse-2.1 0.86 0.79 - 0.86 

eclipse-3.0 0.84 0.82 0.83 0.84 

JDT_Core 0.92 0.84 0.79 - 

Lucene 0.96 0.93 0.85 - 

xalan-2.7 0.94 0.90 0.70 - 

Table 13 Comparison of f1-score values with previous studies 
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Dataset MLP-G DT-G [8] [9] [6] [17] 

CM1 1.00 0.94 - - - 0.27 
eclipse-2.0 0.82 0.74 0.59 - 0.58 - 
eclipse-2.1 0.89 0.80 - - 0.50 - 
eclipse-3.0 0.87 0.79 0.87 - 0.52 - 
JDT_Core 0.97 0.84 0.80 - - - 

JM1 0.75 0.84 - 0.16 - 0.38 
KC1 0.82 0.88 - - - 0.52 
KC2 0.87 0.88 - - - 0.66 

Lucene 1.00 0.96 0.86 - - - 
MW1 1.00 0.96 - - - 0.36 
PC1 0.99 0.96 - 0.12 - 0.39 
PC2 1.00 1.00 - - - 0.88 
PC3 0.99 0.93 - - - 0.42 
PC4 0.99 0.95 - - - 0.68 
PC5 0.87 0.85 - - - 0.66 

xalan-2.7 0.98 0.93 0.68 - - - 

Table 15 Comparison of recall values with previous studies 

MLP-G trains a much precise model. This conclusion can be made from table 14 which 

shows comparison with two studies and have good lead over them. In terms of recall 

value, no other study outperforms MLP-G model. [8] gives equal recall results for eclipse-

3.0 dataset. Also [21] which was outperforming proposed approach in accuracy, have 

lesser recall value. With the comparison of each performance measure from previous 

study it can be said that MLP-G shows significant improvement in results in terms all 

four performance measures used.  

Dataset MLP-G DT-G [8] [9] 

eclipse-2.0 0.78 0.73 0.63 - 

eclipse-2.1 0.84 0.78 - - 

eclipse-3.0 0.81 0.84 0.80 - 

JDT_Core 0.88 0.84 0.79 - 

jedit-4.3 0.98 0.97 - - 

JM1 0.76 0.84 - 0.24 

Lucene 0.93 0.89 0.83 - 

PC1 0.94 0.93 - 0.76 

xalan-2.7 0.91 0.87 0.72 - 
Table 14 Comparison of precision values with previous studies 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

 The objective of this work was to evaluate the performance of Mixture of Experts (ME) 

with Gaussian Mixture Model (GM) as a gating function, in binary classification of 

software modules. Decision tree and multi-layer perceptron which are most popular 

algorithm in fault prediction, are used as base learners and results of proposed approach 

are compared with individual model and bagging ensemble model, in terms of accuracy, 

f1-score, precision and recall. 

For simulation 41 publicly available datasets of real-world software projects are collected 

from standard software engineering repository, that are, Eclipse, NASA PROMISE and 

MDP. Python programming language is used to conduct this study and results are stored 

in terms of four mentioned performance measure. Analysis of collected results and 

Wilcoxon’s statistical test results indicates that ME with gating function as GM (GME) 

is significantly improving performance from individual model and bagging ensemble 

technique for both base learning technique (DT and MLP). This statement can be 

generalized for all performance measures. In later subsection of chapter 5, comparison of 

performance measure with past studies have been done and it is concluded that GME have 

shown a remarkable improvement in performance. 

Wilcoxon test is performed on DT and ML when combined with GME and it is observed 

that MLP is more effective than DT when used as base learner in GME. Difference on 

the recall performance is substantial when MLP is used with GME. 

Following are some points which needs to be covered in future work for comprehensive 

evaluation of performance of GME. 

 Extend the experiments for tuning of number of experts or base learners used in GME. 

This study explores only DT and MLP as experts, more machine learning algorithms is 

to be inspected in future work. 

 Graph shown in FIG suggests that set of metric used in dataset affects the performance of 

GME and also this study is done without taking feature selection in account, so 

investigation of appropriate feature selection technique in data pre-processing step of 

GME is a scope for future work. 
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 This study proposes a variation of ensemble technique (stacking) in chapter 3, named as 

Mixture of Learners (MoL). This idea has only theoretically presented, and its 

applicability in classification or regression problem of software modules is still to be 

evaluated. 
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