

 IMPROVING SOFTWARE FAULT PREDICTION BY

HANDLING NOISY DATA

 A DISSERTATION

 Submitted in partial fulfillment of the

 requirements for the award of the degree

 of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

by

HIMANSHI

(17535007)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247667 (INDIA)

MAY, 2019

ii

 DECLARATION

I declare that the work presented in this dissertation with title, “IMPROVING SOFTWARE

FAULT PREDICTION BY HANDLING NOISY DATA”, towards the fulfillment of the

requirements for award of the degree of Master of Technology in Computer Science & Engineering,

submitted to the Department of Computer Science and Engineering, Indian Institute of Technology

Roorkee, India is an authentic record of my own work carried out during the period from May 2018

to May 2019 under the guidance of Dr. Sandeep Kumar, Associate Professor, Department of

Computer Science and Engineering, Indian Institute of Technology, Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of any

other degree of this or any other institute.

 (HIMANSHI)

 CERTIFICATE

This is to certify that the statement made by the candidate in the declaration is correct to the

best of my knowledge .

Date: ……………….. Signed: ………………..

Place: Roorkee Dr. Sandeep Kumar

 (Associate Professor)

 Indian Institute of Technology

 Roorkee

iii

ABSTRACT

Software fault prediction is the procedure to foresee whether a module in software is faulty or not by

utilizing the past information and some learning models. From the previous version of the software

past information is collected. The performance of a classifier depends upon various factors and

quality of dataset is one among them. Real world datasets often contains noise which degrades the

classifier’s performance. So, to remove the noise in dataset we propose a two stage pre-processing,

which combines rough set theory followed by oversampling and denoising auto encoder to extract the

noise robust version of original dataset. In first stage we collect the certain instances from dataset

using rough set theory followed by oversampling for handling class imbalance. In second stage, we

extract the robust to noise version of original dataset with the help of denoising auto encoder. The

proposed approach is being evaluated on NASA MDP dataset and Eclipse dataset in order to show

the effectiveness of proposed approach. Further this work tries to study various denoising techniques

present in literature.

iv

ACKNOWLEDGMENT

Dedicated to my family and friends, for standing by me through thick and thin, without whom I

would not have gotten this far. I would like to express my sincere gratitude to my advisor Dr.

Sandeep Kumar for the continuous support of my study and research, for his patience, motivation,

enthusiasm and immense knowledge. His guidance helped me in all time of research and writing of

this thesis. I could not have imagined having a better advisor and mentor for my study.

I am also grateful to the Department of Computer Science and Engineering and Information Security

Lab, IIT Roorkee for providing valuable resources to aid my research.

HIMANSHI

v

TABLE OF CONTENTS

 ABSTRACT ii

1. INTRODUCTION 1

 1.1 Software Fault Prediction 1

 1.2 Software Fault Prediction Methodology 1

 1.3 Noise in Dataset 2

 1.4 Denoising Techniques 3

 1.4.1 Noise filters 3

 1.4.2 Denoising Auto encoder 3

 1.5 Rough Set Theory 4

 1.5.1 Information table 4

 1.5.2 Decision table 4

 1.5.3 Indiscernibility 5

 1.5.4 Lower approximation 5

 1.6 Organization of thesis 5

2 LITERATURE REVIEW 6

 2.1 Removal of class label noise in software fault prediction 6

 2.2 Removal of class label noise in fields apart from software fault prediction 6

 2.3 Removal of attribute noise in other software fault prediction 7

 2.4 Removal of attribute noise in fields apart from software fault prediction 7

 2.5 Handling class imbalance in software fault prediction 7

 2.6 Tabular representation 8

 2.7 Research gaps 9

 2.8 Motivation and objective 9

 2.8.1 Problem description 9

3 PROPOSED WORK 10

 3.1 Methodology 10

 3.1.1 Lower approximation based instance selection 11

 3.1.2 Denoising auto encoder based metrics generation 11

4 EMPIRICAL STUDY OF EXISTING TECHNIQUES 13

 4.1 Dataset creation 13

 4.2 Machine learning techniques used 13

 4.3 Performance Evaluation Measures used 13

vi

 4.4 Results and Discussion 14

5 EXPERIMENTS AND RESULTS 19

 5.1 Experiments and results on Intra release datasets 19

 5.2 Experiments and results on Inter release datasets 22

 5.3 Intermediate results for various datasets 24

 5.4 Experiments and results on existing techniques 24

 5.5 Results analysis 25

6 CONCLUSION AND FUTURE WORK 26

7 References 27

vii

LIST OF FIGURES

Figure 1.1 Training phase in Software Fault Prediction……………………………………. 2

Figure 1.2 Testing phase in Software Fault Prediction……………………………………... 2

Figure 3.1 Framework of proposed approach for noise robust dataset generation…………. 10

Figure 3.2 An example of denoising auto encoder………………………………………….. 12

Figure 3.3 Representation of denoising auto encoder used…………………………………. 12

viii

LIST OF TABLES

Table 1.1 Information table 4

Table 1.2 Decision table 4

Table 2.1 A comparative study of related work 8

Table 4.1 Datasets used for experiments 13

Table 4.2 Accuracy and precision for various machine learning techniques on Eclipse 2.0

dataset under different noise level

 15

Table 4.3 Recall and F-measure for various machine learning techniques on Eclipse 2.0

dataset under different noise level

 15

Table 4.4 Accuracy and precision for various machine learning techniques on Eclipse 2.1

dataset under different noise level

 16

Table 4.5 Recall and F-measure for various machine learning techniques on Eclipse 2.1

dataset under different noise level

 16

Table 4.6 Accuracy and precision for various machine learning techniques on Eclipse 3

dataset under different noise level

 17

Table 4.7 Recall and F-measure for various machine learning techniques on Eclipse 3

dataset under different noise level

 17

Table 5.1 Accuracy and precision for various machine learning techniques with denoised

dataset on Eclipse 2.0 dataset under different noise level

 19

Table 5.2 Recall and F-measure for various machine learning techniques with denoised

dataset on Eclipse 2.0 dataset under different noise level

 20

Table 5.3 Accuracy and precision for various machine learning techniques with denoised

dataset on Eclipse 2.1 dataset under different noise level

 20

Table 5.4 Recall and F-measure for various machine learning techniques with denoised

dataset on Eclipse 2.1 dataset under different noise level

 21

Table 5.5 Accuracy and precision for various machine learning techniques with denoised

dataset on Eclipse 3.0 dataset under different noise level

 21

Table 5.6 Recall and F-measure for various machine learning techniques with denoised

dataset on Eclipse 3.0 dataset under different noise level

 22

Table 5.7 Datasets used for inter release experiments 22

Table 5.8 Accuracy for various machine learning techniques with denoised dataset on 22

ix

Eclipse 2.0 dataset and tested on Eclipse 2.1 under different noise level

Table 5.9 Accuracy for various machine learning techniques with denoised dataset trained

on Eclipse 2.0 and tested on Eclipse 3 dataset under different noise level

 23

Table 5.10 Accuracy and precision for various machine learning techniques with denoised

dataset trained on Eclipse 2.1 and tested on Eclipse 3 dataset under different

noise level

 23

Table 5.11 AUC of logistic regression with different datasets constructed during proposed

approach

 24

Table 5.12 Comparison of AUC of proposed approach with bagged DECISION TREE on

eclipse datasets with 20% of noise

 24

Table 5.13 Comparison of AUC of proposed approach with Software defect prediction using

stacked denoising auto encoders and two-stage ensemble learning

 25

CHAPTER 1

 INTRODUCTION

Software Fault Prediction is the mechanism to predict whether in a software the modules are going to

be faulty or non faulty, before even applying the testing mechanism. In other words, Fault Prediction

in Software is a way to find the fault proneness of the software module during the earlier stages of

development life cycle process. This prediction has a great role to play in improving the quality of

the software as well as reducing the time and efforts needed in the testing phase of the development

life cycle of the software. This chapter describes the basic terminologies and brief about topics that

are needed for understanding of this work.

1.1 Software Fault Prediction

Now days with the increase in technology there is great development happening in the field of

software fault prediction. Software now a days are used widely in a variety of areas out of which

many are used in real time applications which are associated with a lot of financial, economical and

even human life risks. Thus there need of some mechanisms to reduce the rate of software failures to

avoid the associated risks involved with them. Here comes Software Fault Prediction [16]. Software

fault or default prediction is the prediction whether a module in software is faulty or not by using the

previous data and some learning models. The previous data is available from the previous versions of

the software. Thus software fault prediction makes use of the data of previous versions of the

software to find out the probability of faults in the upcoming versions of that software based on some

characteristics known as metrics, by applying some learning model. More testing efforts are made in

the module which is predicted as faulty as compared to the one predicted as non faulty [17].

 1.2 Software Fault Prediction Methodology

Software Fault prediction process involves two steps, i.e. training and testing. A prediction

model is developed using the data and metrics form previous versions of the software during training

phase and this model is used to predict the presence of faulty modules in the new versions of the

software during testing phase [18]. The data from the previous version of the software (inter release

experiments) or from some other software belonging to the related domain (cross project software

fault prediction) is used to train the prediction model. A suitable classifier is trained using this data.

This trained prediction model is now fed with some new data over which testing mechanism is to be

2

performed. In case of binary classification of the Software Fault Prediction, the prediction model

gives output in the terms of module being faulty or non faulty.

 Figure 1.1 Training phase in Software fault Prediction

Learning model Previous data

Fault Prediction Model

Training

1.3 Noise in dataset

Real-world datasets can be affected by many reasons. Among them the presence of noise is

mostly found. Noise can be introduced in either data collection or in data preparation processes.

Noise can have two sources: implicit errors [2] which can be introduced by measuring tools eg.

 Figure 1.2 Testing phase in Software fault Prediction

Fault Prediction model New data

Fault Prediction

(Faulty or non faulty)

Testing

3

sensors and random errors [2] which can be introduced while gathering the data by an expert. The

performance of the classifiers depends heavily on the quality of the dataset provided to it and also on

its robustness against noise. The noise can prove to be an unavoidable problem. If the performance of

prediction model is to be maximized, then it has to be trained with a dataset which is not affected by

noise. There can be two types of noise present in the dataset class noise and attribute noise [8].

Class noise [9] refers to the condition when for the same set of attributes we have contradictory class

labels or mislabelled examples. Attribute noise [9] refers to the condition when there is erroneous

values, missing values or do not care values.

1.4 Denoising Techniques

In the literature, there are two types of methods provided to reduce the amount of noise

present in the dataset. First one is to use the Noise Filters and second one is to modify some pre-

existing classification techniques to reduce the effect of noise on its decision making.

1.4.1 Noise Filters

Iterative filter [11]: In this approach, first the dataset is divided into n equal parts. Then a base

classifier is built from each of partitions of data. Then testing is performed on the whole dataset.

Removal of noisy instances is decided by majority or consensus voting. Finally, a proportion of noisy

instances are removed whose label disagrees with the judgment of classifiers.

Multiple partitioning filters [11]: Combines m different base classifier built on different splits of

training data. Multiple partitioning filter identifies an instance as noisy if it is misclassified by at least

α models, where α is filtering level.

1.4.2 Denoising Auto encoder

An auto encoder is a type of artificial neural network used to learn efficient data coding in

an unsupervised manner [3]. Auto encoder performs data compression algorithm which is learned

automatically from the input features rather than done by the humans. Autoencoding includes

compression and decompression functions which are data specific and are lossy [3]. Being data

specific, autoencoders can only compress similar kind of data on which they have been trained. Auto

encoders are widely used for denoising and data compression. In denoising auto encoder, some

amount of noise is added to the training set and then the neural network is made to minimize the loss

between the actual training set and noise induced training set. The auto encoder while performing

compression and decompression is made to denoise the data.

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Unsupervised_learning

4

1.5 Rough Set Theory

Rough set theory is a new mathematical approach to imperfect knowledge. Rough set theory

provides efficient algorithms for finding hidden patterns in data, finds minimal sets of data (data

reduction), evaluates significance of data, generates sets of decision rules from data and etc [19]. The

Rough Set Theory has an advantage over other data analysis techniques i.e. it does not require any

prior information about data − like probability in statistics. Some of the basic concepts of rough set

theory include Information table, decision table, lower approximation, reduct, core and etc.

1.5.1 Information Table

Data represented as a table, in which each row can represents an event or simply an object.

The columns represents attributes (a property or a variable) that can be measured for each instance

of dataset. The attribute value can be human engineered or can be taken from some measuring

device. This is called an information table.

EXAMPLE : An example of information system is given below having two instances x1,x2 and two

attributes Age and Sex.

Objects Age Sex

x1 55 F

x2 78 M

 Table 1.1 Information table

1.5.2 Decision Table

A decision system is any information system having additional decision attribute. The

elements of decision table are called conditional attributes or simply conditions [19].

EXAMPLE :

Objects Age Sex Walk

x1 5 F No

x2 78 M Yes

Table 1.2 Decision Table

5

1.5.3 Indiscernibility

Let I= (U,A) be an information system, where U is a non-empty, finite set of objects (the universe)

and A is a non-empty, finite set of attributes.

With any there is an associated equivalence relation

1.5.4 Lower approximation

The lower approximation [19] of target set X is set of all observation which can be classified

with certainty as member of X with respect to equivalence classes induced by R.

 (1.2)

Were is equivalence class of x induced by R

1.6 Organization of thesis

 This report is divided into 6 chapters. First chapter concluded the preliminaries and basic

concept knowledge that will be needed for understanding this thesis. Second chapter is literature

review which includes papers from software fault prediction domain as well as from other domains

using denoising techniques. This chapter highlights the research gaps found in literature and presents

the tabular representation for the same. Third chapter contains detailed objective of this thesis

including proposed architecture. Fourth chapter shows the experimental result of existing techniques

as well as of proposed architecture. Fifth chapter concludes the entire work including the analysis of

results and future work that can be done.

 (1.1)

6

CHAPTER 2

LITERATURE REVIEW

Several works has been done till now in for removing noisy data from software prediction

dataset using different techniques like noise filter, changing working of algorithm and for various

types of noise. A lot of work and empirical analysis has been done in other fields apart from software

fault prediction for removing noisy instances.

2.1 Removal of class label noise in software fault prediction

 Khoshgoftaar [11] presented two noise filtering techniques namely iterative filter and multiple

partitioning. In iterative filter, noisy instances were removed in multiple iterations using

classification filter. Multiple partitioning filter was based on the fact that single base learner can

become biased. To remove this condition, different base learner were used on same partitions of

training set and majority voters of learned base learners were used to classify test instance as noisy or

clean. Riaz et al [4] proposed two-stage data pre-processing technique, which used rough set theory

as a pre-processing technique to eliminate noisy examples from the datasets. Both feature selection

and rough set-based K nearest neighbour rule (KNN) noise filter was used before executing easy

ensemble for classification. Noisy samples from both the minority and the majority class were

removed from the boundary regions by checking K-nearest neighbour of that point and then deciding

its class label. If the predicted label does not match with the actual label then that instance is

removed.

2.2 Removal of class label noise in fields apart from software fault prediction

Gamberger et al [10] first introduced the concept of noise filtering scheme in medical domain.

They introduced classification filter which proved to be a very basic yet efficient technique for noisy

instances removal. In classification filter, one base learner is trained on k-1folds of dataset and kth

fold is used for testing and instances identified as noisy in this dataset are removed. Seaz et al [20]

implemented a noise filter which is combination of three techniques namely Ensemble learning,

Iterative partitioning techniques and metric based partitioning. The first two strategies (use of

multiple classifiers and iterative filtering) are used to get better judgment about noisy instances,

whereas the last one helps to controls the amount of noisy instances used. a noise score which is

calculated using KNN on entire set of noisy instances is used to classify instance as noisy or not.

7

2.3 Removal of attribute noise in other software fault prediction

Tong et al [5] proposed a two-phase Software Defect Prediction model, which is built by

using stacked denoising auto encoders and ensemble learning. Author proposed the use of deep

representation of software metrics extracted by stacked denoising auto encoders instead of using

traditional software metrics. In second stage, a proposed two stage ensemble learning method is used

in order to tackle the problem of over fitting in existing models. David et al [31] and Petric et al [30]

questioned the quality of datasets of NASA MDP datasets as they are generated from closed source.

Gray et al [29] found significant amount of erroneous data points which even contained impossible

metrics values.

2.4 Removal of attribute noise in fields apart from software fault prediction

 Vincent et al [21] used stacked denoising auto encoder in order to get noise free

representation of mnist dataset. Their main aim was to undo the effect of noise in mnist dataset so

that images can be robust to small amount of noise. Seaz at el [9] analyzed if the predictive power

and robustness of a classifier can be increased by implementing it in a Multiple Classifier Systems in

presence of noise. First noisy datasets have been created by introducing attribute, class level,

Gaussian as well as uniform noise. Then different MCS techniques were have been compared against

the single classification algorithm respectively. Algorithms tested in this paper include C4.5, SVM,

KNN with different k value settings. The results obtained have shown that the improvement by

MCSs is highly dependent upon individual components classifiers and their ability to be less affected

by noise. Authors have shown that BagC4.5 works well with both attribute as well as class label

noise. C4.5 in bagging setup has proven to be more robust in noisy environment than its single

classifier C4.5.

2.5 Handling class imbalance in software fault prediction

Under-sampling is a method to solve the class imbalance which removes the instances from the

majority class of the dataset. Oversampling is a method to solve the class imbalance problem which

adds instances to the minority class by either duplicating minority class instances or adding fake data

in the dataset. Random under-sampling and oversampling techniques have been widely

used [27], [22]. However, they are affected by data distribution and the algorithm considered for the

classification [27]. Barandela et al. [26] showed that in highly imbalanced datasets, instead of using

under sampling of majority class oversampling of the minority class should be performed for better

results. Wang and Yao [27] presented a comparative study between five class imbalance learners

8

including, SMOTE Boost (which is a combination of the random oversampling technique plus

Adaptive Boost , Threshold Moving (which applies a cost-sensitive method directly on the data,

Random Under-sampling of both classes, Random Under-sampling of the majority [27].

2.6 Tabular representation

S.NO Paper Key points Technique/Tool

used

Contribution Negative points

1 [10] Introduced classification

filter

- Noise instance removal should

be performed before hypothesis

formulation so that formulated

hypothesis is not affected

Only single classifier is

used

2 [11] Introduced iterative filter and

multiple partitioning filter

Weka Multiple classifiers with

majority voting is better than

using single classifer for

multiple iteration

No balance between amount

of noisy instances removed

and retained for training

3 [20] Used noise scoring technique

to remove noisy instances

KEEL data-

mining software

tool

Incorporated best part of three

noise filtering technique into

one

Used accuracy as a

performance measure

4 [5] Used deep representation,

Combined stacked denoising

auto encoder and ensemble

learning

MATLAB 2018a,

Weka

Usage of deep representation

extracted by stacked denoising

auto encoder in software fault

prediction domain

Ensemble of three strong

learners were used in order

to deal with class imbalance

5 [9] Ensemble of classifiers used

for handling noise in dataset

KEEL data-

mining software

tool

Wide range of experiments

being performed for different

levels as well as type of noise

No comparison with other

existing techniques, Less

focus on future scope for

better denoising technique

6 [4] Rough set theory to delete

noisy instances, Easy

ensemble technique for

handling imbalance in

dataset

MATLAB

2018a,Weka

Algorithm for removing noisy

instance using rough set theory

is proposed

Experiments are not well

defined,

Experiments not performed

on different level of noise

setting

7 [21] Used stacked denoising auto

encoder to intermediate

representation of images

- Intermediate representation can

be much more suited for

supervised learning

-

[8] [26] Comparative study between

under sampling and over

sampling

- In case of severe imbalance

over sampling technique should

be applied

No experiment on multi

class datasets

[9] [22] Introduced SMOTE To overcome over fitting

caused by oversampling,

synthetic examples of minority

class are added in place o exact

replicas

Does not take into

consideration neighbouring

examples from other classes

Table 2.1 A comparative study of related work

9

2.7 Research gaps

In the field of software fault prediction a lot of denoising techniques have been applied ranging from

iterative filter [11], classification filter [10] and ensemble-partitioning filter [13] but all of those work

are based on the class label noise and only few experiments have been performed for removal

attribute noise. Hanon tong et al [5] used deep representation learned from the entire dataset which

may have noise instances in it. David et al [31] and Petric et al [30] questioned the quality of datasets

of NASA MDP datasets and has suggested different cleaning techniques should be applied before

using these datasets. Gray et al [29] found significant amount of erroneous data points in NASA

MDP dataset which even contained impossible metrics values. So it can be said that the dataset from

which they are learning might be corrupted.

2.8 Motivation and objective

 As mentioned in above paragraph only a few studies have been performed for removal of

attribute noise in software fault prediction domain. As introduced by Riaz et al[4] rough set theory

can be used to perform denoising in dataset as it is a tool which can be used to remove vagueness in

the dataset. Rough set theory can be used to extract significant data from the entire dataset. As given

by Haonan Tong et al [5], deep representation of dataset can perform better than the traditional

software metrics in most of the noise cases. So, Objective of this thesis is to provide machine

learning model with dataset from which it can learn most and reflect the same during testing. So, to

extract the noise robust dataset from any software fault prediction dataset an approach involving

usage of rough set theory followed by oversampling and denoising auto encoder has been proposed.

2.8.1 Problem Description

Implementing denoising auto encoder as denoising technique with rough set theory and

oversampling for pre-processing in order to handle noise in dataset which can further be used in

software fault prediction.

Following objectives will be explored

 Usage of rough set theory for the extraction of clean or confident instances from the dataset

 Comparison of usage of deep representation extracted after proposed method with the

traditional datasets

 Comparison proposed approach with existing techniques

10

 CHAPTER 3

 PROPOSED WORK

3.1 Methodology

In this report, handling the noise in dataset with denoising auto encoder has been proposed for

software fault prediction. Figure 3.1 shows the framework of our proposed approach. This approach

consists of two parts 1) Lower approximation based instance selection 2) denoising auto encoder

based dataset generation which takes minority class oversampled lower approximation of datasets as

input. Then it corrupts attributes values on purpose and reconstructs the correct values from the

corrupted attribute value by optimizing the loss between correct dataset and corrupted dataset.

Pre-processing

Deep learning

phase

Software Fault prediction Dataset

Lower approximation based instance

selection

Training dataset Testing dataset

Noise adding phase

Training Data after adding noise

Deep learning

Reconstructed training data

Oversampling

Deep learning

Reconstructed testing

data

Trained model

11

Figure 3.1: The framework of proposed approach for noise robust dataset generation

3.1.1 Lower approximation based instance selection

The main goal of the rough set theory is handling the uncertainty and overlapping

dataset. Lower approximation is utilized to get the certain instances from the dataset. The lower

approximation [19] of target set X is set of all observation which can be classified with certainty as

member of X with respect to equivalence classes induced by R.

 (3.1)

were is equivalence class of x induced by R

On the basis of Rough set theory, two-ways decision can be made: immediate acceptance (lower

approximation) and may acceptance (upper approximation). On the basis of these possibilities, we

consider checking the possibility of correct and data free from noise in the lower approximation

region. As all three of these datasets are highly imbalanced, we have used SMOTE [21] for

oversampling as it out performances random oversampling. SMOTE [21] stands for Synthetic

minority oversampling technique. It synthesizes new minority instances between existing minority

instances. It synthesizes new minority instances with the help of K- nearest neighbour points of

existing instances.

3.1.2 Denoising auto encoder based noise robust dataset generation

Denoising auto encoder is special type of auto encoder in which noise is deliberately added in

order to corrupt attributes of datasets. And then by using encoding and decoding process of auto

encoder, the robust or free from noise representation of dataset is generated. Suppose y is an output

vector and ȳ is the corrupted input to auto encoder, then the auto encoder learns the noise free

representation of data by minimizing the reconstruction error between z and y which can be

measured in many ways, depending on the distributional assumptions of the input.

12

L(y,z)

h (mapped representation)

f (mapping

function)

ȳ (corrupted input) y (original input) z (final output)

Loss function

 Figure 3.2: An example of denoising auto encoder, the original input y is corrupted to ȳ, ȳ is

mapped to h and then representation z tries to reconstruct y. The reconstruction error is

denoted by L(y, z).

Then to get the train dataset from denoising auto encoder, decoder is used to predict reconstructed

training data from corrupted noisy data. In this experimentation for eclipse datasets, a 3 layered

encoder and 2 layered decoder has been used. There are 50, 25, 20 neurons in the three encoding

layers respectively. The decoder contains 25, 50 neurons in its two layers respectively.

Figure 3.3 Representation of Denoising Auto encoder used

Encoder Decoder

X
X’

Corrupted

Input

Reconstructed

Input Original

Input

Ideally they are same

13

CHAPTER 4

 EMPIRICAL STUDY OF EXISTING TECHNIQUES

4.1 Dataset

The software metrics and quality data used in this thesis are from publicly available ECLIPSE [7]

program and NASA MDP [27]. All the datasets are obtained from the PROMISE software

engineering repository [7]. All datasets are imbalanced. ECLIPSE 3 has the missing values. To obtain

the noisy dataset and to study the effect of noise on different classifiers, different levels of attribute

noise is being produced in each of these datasets. New datasets included 2%, 5%, 10%, and 20% of

noisy instances in each of these datasets. Noise was introduced by adding guassian noise in selected

row values in the range of that attribute. 5 fold cross validation is used and to get average values of

performance evaluation metrics, each experiment has been performed 5 times.

S.NO Dataset %instances non

faulty

% instances faulty

1 Eclipse 2.0 [7] 85.51 14.49

2 Eclipse 2.1 [7] 89.17 10.82

3 Eclipse 3 [7] 85.19 14.80

4 CM1 [27] 90.16 9.83

5 KC1 [27] 84.54 15.45

6 JM1 [27] 80.65 19.35

 Table 4.1: Datasets used for experiments

4.2 Machine learning techniques used

Four machine learning techniques used are Naïve Bayes[25], logistic regression [5], decision

tree[24], and k nearest neighbor[32]. Apart from that as proposed by Jose et al [9] bagging performs

best in the case of attribute noise i.e. we have included bagged decision tree [24] classifier also for

result comparison.

4.3 Performance evaluation measures used

Four different performance evaluation techniques has been used as discussed below:

14

Accuracy [14]: It denotes the percentage of correctly classified instances to the total number of

instances.

Precision [14]: It denotes number of correctly classified faulty instances among the total number of

instances classified as faulty.

Recall [15]: It denotes the number of correctly classified faulty instances amongst the total number

of instances which are faulty.

F-measure [15]: It denotes harmonic mean of precision and recall values

Where denotes True Positive, denotes False Positive, denotes True Negative and

denotes False Negative.

AUC (Area under the curve) [23]: It is equal to the probability that a classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks

higher than 'negative').

4.4 Results and Discussion

Below are the comparative analysis of various classifiers along with the datasets and different

amount of noise present in them. The datasets are partitioned into 5 equal parts called folds, each fold

having almost equal number of faulty and non faulty instances. 4 out of 5 folds are used for training

15

and testing is done on the 5
th

 fold. Each experiment is performed five times and average of

performances evaluation metrics is taken. The performance of various classifiers with respect to

different evaluation metrics are as follows:

Table 4.2 Accuracy and precision for various machine learning techniques on Eclipse 2.0 dataset

under different noise level

Table 4.3: Recall and F-measure for various machine learning techniques on Eclipse 2.0 dataset

under different noise level

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 87.81 87.71 87.45 86.94 86.23 0.735 0.742 0.753 0.752 0.779

Naïve bayes 83.98 84.60 28.71 78.80 14.60 0.447 0.467 0.166 0.355 0.145

K nearest neighbor 88.57 88.07 88.07 88.23 87.86 0.690 0.662 0.667 0.681 0.649

Decision tree 84.32 83.79 84.14 84.01 83.47 0.460 0.444 0.453 0.449 0.432

Bagged decision tree 88.40 88.52 88.50 88.18 88.14 0.669 0.679 0.693 0.674 0.687

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.251 0.234 0.202 0.148 0.070 0.373 0.355 0.317 0.247 0.129

Naïve bayes 0.438 0.426 0.967 0.543 1.000 0.442 0.445 0.283 0.425 0.254

K nearest neighbor 0.385 0.361 0.358 0.354 0.354 0.494 0.467 0.465 0.466 0.457

Decision tree 0.460 0.458 0.451 0.446 0.437 0.460 0.450 0.452 0.447 0.434

Bagged decision tree 89.61 89.62 89.45 89.45 89.64 0.553 0.558 0.537 0.539 0.566

16

Table 4.4: Accuracy and precision for various machine learning techniques on Eclipse 2.1 dataset

under different noise level

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.134 0.120 0.088 0.063 0.023 0.224 0.203 0.155 0.116 0.044

Naïve bayes 0.359 0.295 0.945 0.100 0.935 0.344 0.317 0.212 0.170 0.221

K nearest neighbor 0.214 0.208 0.207 0.205 0.192 0.305 0.298 0.296 0.294 0.280

Decision tree 0.304 0.305 0.297 0.303 0.296 0.307 0.302 0.297 0.304 0.307

Bagged decision tree 0.212 0.198 0.185 0.177 0.182 0.306 0.291 0.274 0.265 0.275

Table 4.5: Recall and F-measure for various machine learning techniques on Eclipse 2.1 dataset

under different noise level

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 89.96 89.83 89.63 89.51 89.29 0.688 0.669 0.662 0.671 0.661

Naïve bayes 85.23 86.31 22.42 89.43 24.25 0.332 0.350 0.120 0.564 0.127

K nearest neighbor 89.47 89.41 89.38 89.36 89.30 0.534 0.527 0.524 0.524 0.516

Decision tree 85.21 84.78 84.82 84.99 85.62 0.312 0.300 0.298 0.305 0.321

Bagged decision tree 89.32 89.71 89.51 89.67 89.54 0.515 0.571 0.548 0.577 0.555

17

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 87.21 87.11 86.38 86.00 85.68 0.743 0.749 0.718 0.714 0.787

Naïve bayes 83.37 84.37 85.45 67.94 73.26 0.428 0.457 0.536 0.407 0.573

K nearest neighbor 85.92 86.07 86.14 86.21 86.03 0.550 0.559 0.567 0.571 0.562

Decision tree 82.83 82.80 82.36 82.17 82.79 0.416 0.416 0.402 0.395 0.414

Bagged decision tree 87.21 87.12 87.15 86.90 87.03 0.628 0.624 0.630 0.621 0.632

Table 4.6: Accuracy and precision for various machine learning techniques on Eclipse 3 dataset

under different noise level

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.207 0.193 0.131 0.091 0.044 0.324 0.307 0.221 0.161 0.083

Naïve bayes 0.368 0.274 0.167 0.481 0.245 0.395 0.338 0.248 0.280 0.136

K nearest neighbor 0.266 0.278 0.269 0.275 0.255 0.358 0.371 0.364 0.370 0.350

Decision tree 0.399 0.402 0.393 0.387 0.387 0.407 0.409 0.397 0.391 0.400

Bagged decision tree 0.332 0.325 0.319 0.295 0.296 0.434 0.427 0.423 0.400 0.403

Table 4.7: Recall and F-measure for various machine learning techniques on Eclipse 3 dataset

From the analysis of the above results following conclusions can be drawn:

1. Results suggests that the accuracy for the machine learning techniques used are high (>0.85

and generally >0.7)

18

2. As all three datasets are highly imbalanced in this case accuracy measure of classifier is

misleading as it is getting over fit with majority class.

3. A more stable performance measure such as f1 score or AUC should be used for the classifier

used in the case of imbalanced datasets.

4. Amount of noisy instances present in dataset affects classifiers differently.

5. Amount of noise added degrades performance of classifier.

6. Highest effect of noise is observed in naïve bayes

7. Generally, the machine learning procedures have low F-measure

8. For all the combinations of datasets, the f1 score of Bagged decision tree has turned out to be

most stable in presence of noise

9. Other performance measures are also degraded by presence of noise.

19

CHAPTER 5

 EXPERIMENTS AND RESULTS

5.1 Experiments and results on Intra release datasets

In the proposed approach datasets listed in chapter 4 were used to get noise free representation

produced by denoising auto encoder after taking lower approximation and oversampling minority

class of each datasets .The datasets is partitioned into 5 equal parts called folds, each fold having

almost equal number of faulty and non faulty instances. 4 out of 5 olds are used for training and

testing is done on the 5
th

 fold. Each experiment is performed five times and average of performances

evaluation metrics is taken. The following are the values of different performance measures observed

for different datasets.

Table 5.1 Accuracy and precision for various machine learning techniques with denoised dataset on

Eclipse 2.0 dataset under different noise level

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 73.79 73.89 74.21 73.68 73.73 0.736 0.738 0.737 0.732 0.728

Naïve bayes 72.19 73.67 72.26 73.20 70.11 0.793 0.747 0.796 0.749 0.815

K nearest neighbor 82.49 81.95 82.04 82.15 81.34 0.780 0.776 0.776 0.777 0.774

Decision tree 74.24 74.11 74.29 74.67 73.74 0.751 0.738 0.786 0.774 0.776

Bagged decision tree 84.79 85.14 84.53 84.64 83.61 0.842 0.846 0.849 0.844 0.824

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.741 0.742 0.754 0.747 0.760 0.739 0.740 0.745 0.739 0.743

Naïve bayes 0.601 0.717 0.600 0.701 0.521 0.683 0.731 0.683 0.723 0.635

20

Table 5.2 Recall and F-measure for various machine learning techniques with denoised dataset on

Eclipse 2.0 dataset under different noise level

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 72.40 72.57 72.48 72.03 71.98 0.761 0.761 0.758 0.751 0.746

Naïve bayes 68.36 68.26 67.25 67.10 64.33 0.803 0.798 0.818 0.815 0.825

K nearest neighbor 81.53 81.79 81.56 80.89 80.37 0.762 0.765 0.763 0.759 0.755

Decision tree 74.05 74.03 74.22 74.25 74.24 0.767 0.761 0.766 0.760 0.761

Bagged decision tree 83.81 83.78 83.16 83.18 82.47 0.825 0.829 0.820 0.820 0.814

Table 5.3 Accuracy and precision for various machine learning techniques with denoised dataset on

Eclipse 2.1 dataset under different noise level

K nearest neighbor 0.905 0.900 0.901 0.901 0.886 0.838 0.833 0.834 0.835 0.826

Decision tree 0.737 0.763 0.678 0.711 0.687 0.739 0.745 0.722 0.735 0.721

Bagged decision tree 84.79 85.14 84.53 84.64 83.61 0.842 0.846 0.849 0.844 0.824

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.653 0.658 0.660 0.659 0.666 0.703 0.706 0.706 0.702 0.704

Naïve bayes 0.486 0.489 0.444 0.443 0.364 0.606 0.606 0.575 0.574 0.505

21

Table 5.4 Recall and F-measure for various machine learning techniques with denoised dataset on

Eclipse 2.1 dataset under different noise level

 Accuracy Precision

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 74.40 74.27 74.07 73.71 72.62 0.754 0.753 0.750 0.743 0.722

Naïve bayes 68.49 68.66 68.46 68.75 68.85 0.774 0.776 0.773 0.779 0.769

K nearest neighbor 80.20 80.36 80.23 79.66 78.80 0.756 0.758 0.756 0.752 0.745

Decision tree- 70.76 71.01 70.99 71.20 70.30 0.814 0.798 0.797 0.810 0.811

Bagged decision tree- 82.91 82.66 82.74 82.30 81.86 0.830 0.823 0.826 0.823 0.817

Table 5.5 Accuracy and precision for various machine learning techniques with denoised dataset on

Eclipse 3.0 dataset under different noise level

K nearest neighbor 0.916 0.919 0.916 0.905 0.899 0.832 0.835 0.832 0.826 0.821

Decision tree 0.691 0.702 0.702 0.712 0.708 0.727 0.730 0.731 0.734 0.733

Bagged decision tree 0.858 0.852 0.849 0.851 0.842 0.841 0.840 0.835 0.835 0.828

 Recall F-measure

Noise %

 Classifier

0% 2% 5% 10% 20% 0% 2% 5% 10% 20%

Logistic regression 0.724 0.722 0.722 0.724 0.736 0.739 0.737 0.736 0.734 0.729

Naïve bayes 0.523 0.525 0.522 0.523 0.539 0.624 0.626 0.623 0.626 0.634

22

Table 5.6 Recall and F-measure for various machine learning techniques with denoised dataset on

Eclipse 3.0 dataset under different noise level

5.2 Experiments and results on inter release datasets

The earlier release of a dataset is used for training purpose to predict the fault proneness for

the later release that is used as testing dataset. There are 3 pairs of training-testing datasets in our

experiments. Table 5.7 provides details of the used datasets.

 Table 5.7 Datasets used for inter release experiments

The following are the values of different performance measures observed for different datasets.

Accuracy

Noise %

 Classifier

0% 10% 20%

Logistic regression 88.64 87.20 86.80

Naïve bayes 83.92 76.97 70.34

K nearest neighbor 83.96 83.36 82.51

Decision tree 86.92 86.76 86.96

Table 5.8 Accuracy for various machine learning techniques with denoised dataset on Eclipse 2.0

dataset and tested on Eclipse 2.1 under different noise level

K nearest neighbor 0.892 0.893 0.894 0.886 0.875 0.818 0.820 0.819 0.813 0.805

Decision tree 0.550 0.570 0.572 0.561 0.534 0.650 0.661 0.661 0.659 0.642

Bagged decision tree 0.827 0.832 0.829 0.824 0.821 0.829 0.828 0.828 0.823 0.819

Serial

number

Training dataset Testing dataset

1 Eclipse 2.0 Eclipse 2.1

2 Eclipse 2.0 Eclipse 3.0

3 Eclipse 2.1 Eclipse 3.0

23

Table 5.9 Accuracy for various machine learning techniques with denoised dataset trained on Eclipse

2.0 and tested on Eclipse 3 dataset under different noise level

Table 5.10 Accuracy and precision for various machine learning techniques with denoised dataset

trained on Eclipse 2.1 and tested on Eclipse 3 dataset under different noise level

Accuracy

Noise %

 Classifier

0% 10% 20%

Logistic regression 86.92 84.42 83.06

Naïve bayes 82.55 76.21 73.61

K nearest neighbor 82.82 82.21 81.28

Decision tree 85.80 85.49 84.92

Accuracy

Noise %

 Classifier

0% 10% 20%

Logistic regression 86.09 84.37 83.45

Naïve bayes 83.34 82.08 72.65

K nearest neighbor 82.20 81.30 81.25

Decision tree 85.54 85.05 85.28

24

5.3 Intermediate results for various datasets

 This section includes the step by step results of techniques used in this work. Original dataset

corresponds to traditional software fault prediction dataset. Dataset after lower approximation

columns corresponds to results obtain after performing lower approximation on original dataset

followed by column for Dataset obtained by applying denoising auto encoder on dataset obtained

after lower approximation and SMOTE[22] .

Table 5.11 AUC when logistic regression is applied with different datasets constructed during

proposed approach

5.4 Experiments and results on existing techniques

Table 5.12 Comparison of AUC of proposed approach with bagged decision tree on eclipse datasets

with 20% of noise

Noise Stacked denoising auto encoder

with ensemble learning[5]

Proposed approach with

logistic regression

Cm1 0.8373 [5] 0.7884

Serial

number

Dataset name Original

dataset

Dataset after lower

approximation

Dataset after Proposed

approach

1 CM1 0.5319 0.5089 0.7884

2 JM1 0.5514 0.5416 0.8314

3 KC1 0.6003 0.6257 0.7457

Noise Bagged Decision tree Proposed approach

Eclipse 2.0 0.682

0.851

Eclipse 2.1 0.596

0.838

Eclipse 3.0 0.634

0.829

25

Jm1 0.7731 [5] 0.8134

Kc1 0.7426 [5] 0.7457

Table 5.13 Comparison of AUC of proposed approach with Software defect prediction using

stacked denoising auto encoders and two-stage ensemble learning.

5.5 Results analysis

 From the results obtained in above section it is observed that performance of every classifier

when applied with traditional software dataset has increased with a huge margin when the classifier

used the dataset generated by proposed approach. With the traditional dataset the AUC score was in

the range (0.13-0.57) and with the dataset generate by proposed approach the AUC score elevated to

range (0.6-0.91). Measures such as recall and f1-score were also increased for every classifier

denoting the stable classification. It can also be observed that when in the presence of noise,

classifiers such as naïve bayes and k nearest neighbour were highly affected even with the slightest

(2%-10%) noise , whereas when the proposed approach is used for dataset generation even with the

noise level (10%-20%) performance of classifiers were not affected. If we compare the proposed

approach with approach used in [5], proposed approach has outperformed it for all datasets. When

compared with other approaches such as bagged decision tree used for handling class imbalance and

attribute noise, proposed approach has outperformed it for all the three Eclipse datasets [7].

26

CHAPTER 6

 CONCLUSION AND FUTURE WORK

In this thesis, we have applied decision tree, k nearest neighbour, Logistic classifier and Naïve bayes,

bagged decision for the purpose of software fault prediction. We have also applied different amount

of attribute noise to study its effect on classifier’s performance. The study was performed on the

Eclipse dataset available in PROMISE software engineering repository [7] and NASA MDP datasets

[28]. By taking lower approximation we eliminated the presence of uncertain instances from both

classes i.e. faulty and non faulty of the dataset. So that auto encoder can learn from a representation

which is free from outliers. The denoising auto encoder was applied to extract the attribute noise

robust dataset. From the experimental analysis; it was observed that all of the studied learning models

have benefitted from using dataset reconstructed by the use of lower approximation, SMOTE and

denoising auto encoder. Performance of classifiers is not degraded by the presence of noise up to

20% in them by using dataset reconstructed by proposed approach. And further, performance of

classifiers when using noise robust dataset remains the same for most of the combination of noise.

Weak learners such as naive bayes and k nearest neighbor improved significantly when used with

reconstructed datasets. Noise robust dataset have performed best under all the noise conditions as

compared to when the classifiers use raw metrics. To state the validity of our approach, we compared

our approach with existing techniques used in software fault prediction domain and got better results

in all of the datasets.The future work can include extending this work to more datasets on which this

work can be replicated to check the consistency of the results. Apart from five machine learning

technique used in this work, some other advanced machine learning techniques can be used to see the

effect of noise of these techniques. Some other advanced variations of SMOTE are also present in

literature which can be used to increase the predictive power of proposed approach. Further, this

work can also extend to incorporate the multiclass prediction problem in software fault prediction.

27

REFERENCES

[1] "Noise reduction," Wikipedia, 20-Feb-2019. [Online]. Available:

https://en.wikipedia.org/wiki/Noise_reduction. [Accessed: 19-May-2019].

[2] "Soft Computing and Intelligent Information Systems," Noisy Data in Data Mining | Soft

Computing and Intelligent Information Systems. [Online]. Available:

https://sci2s.ugr.es/noisydata. [Accessed: 19-May-2019].

[3] "The Keras Blog, " The Keras Blog ATOM. [Online]. Available: https://blog.keras.io/building-

autoencoders-in-keras.html. [Accessed: 19-May-2019].

[4] S. Riaz, A. Arshad and L. Jiao, "Rough Noise-Filtered Easy Ensemble for Software Fault

Prediction," in IEEE Access, vol. 6, pp. 46886-46899, 2018.

[5] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked denoising

autoencoders and two-stage ensemble learning,” Information and Software Technology, vol.

96, pp. 94–111, Apr. 2018.

[6] J. A. Sáez, J. Luengo, and F. Herrera, “Evaluating the classifier behavior with noisy data

considering performance and robustness: The Equalized Loss of Accuracy measure,”

Neurocomputing, vol. 176, pp. 26–35, Feb. 2016.

[7] "Software Defect Prediction Data," SEIP Lab. [Online]. Available:

http://www.seiplab.riteh.uniri.hr/?page_id=834&lang=en. [Accessed: 20-May-2019].

[8] X. Zhu and X. Wu, “Class Noise vs. Attribute Noise: A Quantitative Study,” Artificial

Intelligence Review, vol. 22, no. 3, pp. 177–210, Nov. 2004.

[9]

J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “Tackling the problem of classification with

noisy data using Multiple Classifier Systems: Analysis of the performance and robustness,”

Information Sciences, vol. 247, pp. 1–20, Oct. 2013.

[10] D. Gamberger, N. Lavrac, C. Groselj, "Experiments with noise filtering in a medical domain"

In Proceedings of the Sixteenth International Conference on Machine Learning (ICML '99),.

San Francisco (USA, 1999), Ivan Bratko and Saso Dzeroski (Eds.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 143-151

[11] T. M. Khoshgoftaar and P. Rebours, “Noise elimination with partitioning filter for software

quality estimation,” International Journal of Computer Applications in Technology, vol. 27,

no. 4, p. 246, 2006.

[12] K. Herzig, S. Just, and A. Zeller, "It’s not a bug, it’s a feature: How misclassification impacts

bug prediction, " in Proceedings of the International Conference on Software Engineering,

2013, pp. 392–401.

28

[13] T. M. Khoshgoftaar and P. Rebours, "Generating multiple noise elimination filters with the

ensemble-partitioning filter," Proceedings of the 2004 IEEE International Conference on

Information Reuse and Integration, 2004. IRI 2004., Las Vegas, NV, 2004, pp. 369-375.

[14] "ISO 5725-1:1994," ISO, 24-Jul-2018. [Online]. Available:

https://www.iso.org/standard/11833.html. [Accessed: 19-May-2019].

[15] D. L. Olson and D. Delen, "Data Mining Process, " Advanced Data Mining Techniques, pp. 9–

35.

[16] C.Catal and B.Diri, "A fault detection strategy for software projects, " Technical Journal,2013,

pp. 1-7.

[17] G. Abaei and A. Selamat, “A survey on software fault detection based on different prediction

approaches,” Vietnam Journal of Computer Science, vol. 1, no. 2, pp. 79–95, Nov. 2013.

[18] C.Catal, "Performance Evaluation Metrics for Software Fault Prediction Studies, " Acta

Polytechnica Hungarica,2012,vol. 9,pp 9-22.

[19] Q. Zhang, Q. Xie, and G. Wang, “A survey on rough set theory and its applications,” CAAI

Transactions on Intelligence Technology, vol. 1, no. 4, pp. 323–333, Oct. 2016.

[20] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “INFFC: An iterative class noise filter based

on the fusion of classifiers with noise sensitivity control,” Information Fusion, vol. 27, pp. 19–

32, Jan. 2016.

[21] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust

features with denoising autoencoders,” in Proceedings of the 25th international conference on

Machine learning - ICML ’08, 2008.

[22] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic

Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.

321–357, Jun. 2002.

[23] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp.

861–874, Jun. 2006.

[24] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, Mar.

1986.

[25] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other

kernel-based learning methods. Cambridge university press ,2000.

[26] R. Barandela, R. M. Valdovinos, J. S. Sánchez, F. J. Ferri, "The imbalanced training sample

problem: Under or over sampling?, " In Joint IAPR international workshops on statistical

techniques in pattern recognition (SPR) and structural and syntactic pattern recognition

29

(SSPR), Berlin: Springer,2004. pp. 806-814

[27] S. Wang and X. Yao, "Multiclass Imbalance Problems: Analysis and Potential Solutions,"

in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4,

pp. 1119-1130, Aug. 2012.

[28] PROMISE DATASETS PAGE. [Online]. Available:

http://promise.site.uottawa.ca/SERepository/datasets-page.html. [Accessed: 19-May-2019].

[29] M. Shepperd, Q. Song, Z. Sun and C. Mair, "Data Quality: Some Comments on the NASA

Software Defect Datasets," in IEEE Transactions on Software Engineering, vol. 39, no. 9, pp.

1208-1215, Sept. 2013.

[30] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “The jinx on the NASA software

defect data sets,” in Proceedings of the 20th International Conference on Evaluation and

Assessment in Software Engineering - EASE ’16, 2016

[31] D. Gray, D. Bowes, N. Davey, Y. Sun and B. Christianson, "The misuse of the NASA metrics

data program data sets for automated software defect prediction," 15th Annual Conference on

Evaluation & Assessment in Software Engineering (EASE 2011), Durham, 2011, pp. 96-103.

