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ABSTRACT 

Software fault prediction is the procedure to foresee whether a module in software is faulty or not by 

utilizing the past information and some learning models. From the previous version of the software 

past information is collected. The performance of a classifier depends upon various factors and 

quality of dataset is one among them. Real world datasets often contains noise which degrades the 

classifier’s performance.  So, to remove the noise in dataset we propose a two stage pre-processing, 

which combines rough set theory followed by oversampling and denoising auto encoder to extract the 

noise robust version of original dataset. In first stage we collect the certain instances from dataset 

using rough set theory followed by oversampling for handling class imbalance. In second stage, we 

extract the robust to noise version of original dataset with the help of denoising auto encoder. The 

proposed approach is being evaluated on NASA MDP dataset and Eclipse dataset in order to show 

the effectiveness of proposed approach. Further this work tries to study various denoising techniques 

present in literature.  
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CHAPTER 1 

     INTRODUCTION 

Software Fault Prediction is the mechanism to predict whether in a software the modules are going to 

be faulty or non faulty, before even applying the testing mechanism. In other words, Fault Prediction 

in Software is a way to find the fault proneness of the software module during the earlier stages of 

development life cycle process. This prediction has a great role to play in improving the quality of 

the software as well as reducing the time and efforts needed in the testing phase of the development 

life cycle of the software. This chapter describes the basic terminologies and brief about topics that 

are needed for understanding of this work. 

1.1   Software Fault Prediction 

Now days with the increase in technology there is great development happening in the field of 

software fault prediction. Software now a days are used widely in a variety of areas out of which 

many are used in real time applications which are associated with a lot of financial, economical and 

even human life risks. Thus there need of some mechanisms to reduce the rate of software failures to 

avoid the associated risks involved with them. Here comes Software Fault Prediction [16]. Software 

fault or default prediction is the prediction whether a module in software is faulty or not by using the 

previous data and some learning models. The previous data is available from the previous versions of 

the software. Thus software fault prediction makes use of the data of previous versions of the 

software to find out the probability of faults in the upcoming versions of that software based on some 

characteristics known as metrics, by applying some learning model. More testing efforts are made in 

the module which is predicted as faulty as compared to the one predicted as non faulty [17]. 

 1.2 Software Fault Prediction Methodology 

Software Fault prediction process involves two steps, i.e. training and testing. A prediction 

model is developed using the data and metrics form previous versions of the software during training 

phase and this model is used to predict the presence of faulty modules in the new versions of the 

software during testing phase [18]. The data from the previous version of the software (inter release 

experiments) or from some other software belonging to the related domain (cross project software 

fault prediction) is used to train the prediction model. A suitable classifier is trained using this data. 

This trained prediction model is now fed with some new data over which testing mechanism is to be 
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performed. In case of binary classification of the Software Fault Prediction, the prediction model 

gives output in the terms of module being faulty or non faulty.  
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1.3 Noise in dataset 

Real-world datasets can be affected by many reasons. Among them the presence of noise is 

mostly found. Noise can be introduced in either data collection or in data preparation processes. 

Noise can have two sources: implicit errors [2] which can be introduced by measuring tools eg. 
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sensors and random errors [2] which can be introduced while gathering the data by an expert. The 

performance of the classifiers depends heavily on the quality of the dataset provided to it and also on 

its robustness against noise. The noise can prove to be an unavoidable problem. If the performance of 

prediction model is to be maximized, then it has to be trained with a dataset which is not affected by 

noise. There can be two types of noise present in the dataset class noise and attribute noise [8].  

Class noise [9] refers to the condition when for the same set of attributes we have contradictory class 

labels or mislabelled examples. Attribute noise [9] refers to the condition when there is erroneous 

values, missing values or do not care values. 

1.4 Denoising Techniques 

In the literature, there are two types of methods provided to reduce the amount of noise 

present in the dataset. First one is to use the Noise Filters and second one is to modify some pre-

existing classification techniques to reduce the effect of noise on its decision making.   

1.4.1 Noise Filters 

Iterative filter [11]: In this approach, first the dataset is divided into n equal parts. Then a base 

classifier is built from each of partitions of data. Then testing is performed on the whole dataset. 

Removal of noisy instances is decided by majority or consensus voting. Finally, a proportion of noisy 

instances are removed whose label disagrees with the judgment of classifiers.  

Multiple partitioning filters [11]: Combines m different base classifier built on different splits of 

training data. Multiple partitioning filter identifies an instance as noisy if it is misclassified by at least 

α models, where α is filtering level. 

1.4.2  Denoising Auto encoder 

An auto encoder is a type of artificial neural network used to learn efficient data coding in 

an unsupervised manner [3]. Auto encoder performs data compression algorithm which is learned 

automatically from the input features rather than done by the humans. Autoencoding includes 

compression and decompression functions which are data specific and are lossy [3]. Being data 

specific, autoencoders can only compress similar kind of data on which they have been trained. Auto 

encoders are widely used for denoising and data compression. In denoising auto encoder, some 

amount of noise is added to the training set and then the neural network is made to minimize the loss 

between the actual training set and noise induced training set. The auto encoder while performing 

compression and decompression is made to denoise the data. 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
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1.5 Rough Set Theory 

 
Rough set theory is a new mathematical approach to imperfect knowledge. Rough set theory 

provides efficient algorithms for finding hidden patterns in data, finds minimal sets of data (data 

reduction), evaluates significance of data, generates sets of decision rules from data and etc [19]. The 

Rough Set Theory has an advantage over other data analysis techniques i.e. it does not require any 

prior information about data − like probability in statistics. Some of the basic concepts of rough set 

theory include Information table, decision table, lower approximation, reduct, core and etc. 

1.5.1 Information Table 

Data represented as a table, in which each row can represents an event or simply an object. 

The  columns represents attributes ( a property or a variable) that can be measured for each instance 

of dataset. The attribute value can be human engineered or can be taken from some measuring 

device. This is called an information table. 

EXAMPLE : An example of information system is given below having two instances x1,x2 and two 

attributes Age and Sex. 

Objects Age Sex 

x1 55 F 

x2 78 M 

                          

                                         Table 1.1 Information table 

1.5.2 Decision Table 

A decision system is any information system having additional decision attribute. The 

elements of decision table  are called conditional attributes or simply conditions [19]. 

EXAMPLE :  

Objects Age Sex Walk 

x1 5 F No 

x2 78 M Yes 

Table 1.2 Decision Table 
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1.5.3 Indiscernibility 

Let I= (U,A) be an information system, where U is a non-empty, finite set of objects (the universe) 

and A is a non-empty, finite set of attributes. 

With any     there is an associated equivalence relation        

1.5.4 Lower approximation 

The lower approximation [19] of target set X is set of all observation which can be classified 

with certainty as member of X with respect to equivalence classes induced by R.  

 

                     (1.2) 

 

Were         is equivalence class of x induced by R 

 

1.6 Organization of thesis 

 This report is divided into 6 chapters. First chapter concluded the preliminaries and basic 

concept knowledge that will be needed for understanding this thesis. Second chapter is literature 

review which includes papers from software fault prediction domain as well as from other domains 

using denoising techniques.  This chapter highlights the research gaps found in literature and presents 

the tabular representation for the same. Third chapter contains detailed objective of this thesis 

including proposed architecture. Fourth chapter shows the experimental result of existing techniques 

as well as of proposed architecture. Fifth chapter concludes the entire work including the analysis of 

results and future work that can be done.    

  

 

 

                                                        (1.1) 
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CHAPTER 2 

LITERATURE REVIEW 

Several works has been done till now in for removing noisy data from software prediction 

dataset using different techniques like noise filter, changing working of algorithm and for various 

types of noise. A lot of work and empirical analysis has been done in other fields apart from software 

fault prediction for removing noisy instances. 

2.1 Removal of class label noise in software fault prediction 

 Khoshgoftaar [11] presented two noise filtering techniques namely iterative filter and multiple 

partitioning. In iterative filter, noisy instances were removed in multiple iterations using 

classification filter. Multiple partitioning filter was based on the fact that single base learner can 

become biased. To remove this condition, different base learner were used on same partitions of 

training set and majority voters of learned base learners were used to classify test instance as noisy or 

clean. Riaz et al [4] proposed two-stage data pre-processing technique, which used rough set theory 

as a pre-processing technique to eliminate noisy examples from the datasets. Both feature selection 

and rough set-based K nearest neighbour rule (KNN) noise filter was used before executing easy 

ensemble for classification. Noisy samples from both the minority and the majority class were 

removed from the boundary regions by checking K-nearest neighbour of that point and then deciding 

its class label. If the predicted label does not match with the actual label then that instance is 

removed.  

2.2 Removal of class label noise in fields apart from software fault prediction 

Gamberger et al [10] first introduced the concept of noise filtering scheme in medical domain. 

They introduced classification filter which proved to be a very basic yet efficient technique for noisy 

instances removal. In classification filter, one base learner is trained on k-1folds of dataset and kth 

fold is used for testing and instances identified as noisy in this dataset are removed. Seaz et al [20] 

implemented a noise filter which is combination of three techniques namely Ensemble learning, 

Iterative partitioning techniques and metric based partitioning. The first two strategies (use of 

multiple classifiers and iterative filtering) are used to get better judgment about noisy instances, 

whereas the last one helps to controls the amount of noisy instances used.  a noise score which is 

calculated using KNN on entire set of noisy instances is used to classify instance as noisy or not. 
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2.3 Removal of attribute  noise in other software fault prediction 

Tong et al [5] proposed a two-phase Software Defect Prediction model, which is built by 

using stacked denoising auto encoders and ensemble learning. Author proposed the use of deep 

representation of software metrics extracted by stacked denoising auto encoders instead of using 

traditional software metrics. In second stage, a proposed two stage ensemble learning method is used 

in order to tackle the problem of over fitting in existing models. David et al [31] and Petric et al [30] 

questioned the quality of datasets of NASA MDP datasets as they are generated from closed source. 

Gray et al [29] found significant amount of erroneous data points which even contained impossible 

metrics values. 

2.4 Removal of attribute noise in fields apart from software fault prediction 

 Vincent et al [21] used stacked denoising auto encoder in order to get noise free 

representation of mnist dataset. Their main aim was to undo the effect of noise in mnist dataset so 

that images can be robust to small amount of noise. Seaz at el [9] analyzed if the predictive power 

and robustness of a classifier can be increased by implementing it in a Multiple Classifier Systems in 

presence of noise. First noisy datasets have been created by introducing attribute, class level, 

Gaussian as well as uniform noise. Then different MCS techniques were have been compared against 

the single classification algorithm respectively. Algorithms tested in this paper include C4.5, SVM, 

KNN with different k value settings. The results obtained have shown that the improvement by 

MCSs is highly dependent upon individual components classifiers and their ability to be less affected 

by noise. Authors have shown that BagC4.5 works well with both attribute as well as class label 

noise. C4.5 in bagging setup has proven to be more robust in noisy environment than its single 

classifier C4.5.  

2.5 Handling class imbalance in software fault prediction 

Under-sampling is a method to solve the class imbalance which removes the instances from the 

majority class of the dataset. Oversampling is a method to solve the class imbalance problem which 

adds instances to the minority class by either duplicating minority class instances or adding fake data 

in the dataset. Random under-sampling and oversampling techniques have been widely 

used [27], [22]. However, they are affected by data distribution and the algorithm considered for the 

classification [27].  Barandela et al. [26] showed that in highly imbalanced datasets, instead of using 

under sampling of majority class oversampling of the minority class should be performed for better 

results. Wang and Yao [27] presented a comparative study between five class imbalance learners 
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including, SMOTE Boost (which is a combination of the random oversampling technique plus 

Adaptive Boost , Threshold Moving (which applies a cost-sensitive method directly on the data, 

Random Under-sampling of both classes, Random Under-sampling of the majority [27].  

2.6 Tabular representation 

S.NO Paper Key points Technique/Tool 

used 

Contribution Negative points 

1 [10] Introduced classification 

filter 

- Noise instance removal should 

be performed before hypothesis 

formulation so that formulated 

hypothesis is not affected 

Only single classifier is 

used 

2 [11] Introduced iterative filter and 

multiple partitioning filter 

Weka Multiple classifiers with 

majority voting is better than 

using single classifer for 

multiple iteration 

No balance between amount 

of noisy instances removed 

and retained for training 

3 [20] Used noise scoring technique 

to remove noisy instances 

KEEL data-

mining software 

tool 

Incorporated best part of three 

noise filtering technique into 

one  

Used accuracy as a 

performance measure 

4 [5] Used deep representation,  

Combined stacked denoising 

auto encoder and ensemble 

learning  

MATLAB 2018a, 

Weka 

Usage of deep representation 

extracted by stacked denoising 

auto encoder in software fault 

prediction domain 

Ensemble of three strong 

learners were used in order 

to deal with class imbalance 

5 [9] Ensemble of classifiers used 

for handling noise in dataset 

KEEL data-

mining software 

tool 

Wide range of experiments 

being performed for different 

levels as well as type of noise 

No comparison with other 

existing techniques, Less 

focus on future scope for 

better denoising technique 

6 [4] Rough set theory to delete 

noisy instances, Easy 

ensemble technique for 

handling imbalance in 

dataset 

MATLAB 

2018a,Weka  

Algorithm for removing noisy 

instance using rough set theory 

is proposed 

Experiments are not well 

defined, 

Experiments not performed 

on different level of noise 

setting 

7 [21] Used stacked denoising auto 

encoder to intermediate 

representation of images 

- Intermediate representation can 

be much more suited for 

supervised learning 

- 

[8] [26] Comparative study between 

under sampling and over 

sampling 

- In case of severe imbalance 

over sampling technique should 

be applied 

No experiment on multi 

class datasets  

[9] [22] Introduced SMOTE  To overcome over fitting 

caused  by oversampling, 

synthetic examples of minority 

class are added in place o exact 

replicas 

Does not take into 

consideration neighbouring 

examples from other classes 

Table 2.1 A comparative study of related work 
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2.7 Research gaps 

In the field of software fault prediction a lot of denoising techniques have been applied ranging from 

iterative filter [11], classification filter [10] and ensemble-partitioning filter [13] but all of those work 

are based on the class label noise and only few experiments have been performed for removal 

attribute noise. Hanon tong et al [5] used deep representation learned from the entire dataset which 

may have noise instances in it. David et al [31] and Petric et al [30] questioned the quality of datasets 

of NASA MDP datasets and has suggested different cleaning techniques should be applied before 

using these datasets. Gray et al [29] found significant amount of erroneous data points in NASA 

MDP dataset which even contained impossible metrics values. So it can be said that the dataset from 

which they are learning might be corrupted.  

2.8 Motivation and objective 

 As mentioned  in above paragraph only a few studies have been performed for removal of 

attribute noise in software fault prediction domain. As introduced by Riaz et al[4] rough set theory 

can be used to perform denoising in dataset as it is a tool which can be used to remove vagueness in 

the dataset.  Rough set theory can be used to extract significant data from the entire dataset. As given 

by Haonan Tong et al [5], deep representation of dataset can perform better than the traditional 

software metrics in most of the noise cases. So, Objective of this thesis is to provide machine 

learning model with dataset from which it can learn most and reflect the same during testing. So, to 

extract the noise robust dataset from any software fault prediction dataset an approach involving 

usage of rough set theory followed by oversampling and denoising auto encoder has been proposed.  

2.8.1 Problem Description 

Implementing denoising auto encoder as denoising technique with rough set theory and 

oversampling for pre-processing in order to handle noise in dataset which can further be used in 

software fault prediction. 

Following objectives will be explored 

 Usage of rough set theory for the extraction of clean or confident instances from the dataset 

 Comparison of usage of deep representation extracted after proposed method with the 

traditional datasets 

 Comparison proposed approach with existing techniques  
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 CHAPTER 3 

             PROPOSED WORK 

3.1 Methodology 

In this report, handling the noise in dataset with denoising auto encoder has been proposed for 

software fault prediction. Figure 3.1 shows the framework of our proposed approach. This approach 

consists of two parts 1) Lower approximation based instance selection 2) denoising auto encoder 

based dataset generation which takes minority class oversampled lower approximation of datasets as 

input. Then it corrupts attributes values on purpose and reconstructs the correct values from the 

corrupted attribute value by optimizing the loss between correct dataset and corrupted dataset. 
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Figure 3.1: The framework of proposed approach for noise robust dataset generation 

3.1.1 Lower approximation based instance selection 

The main goal of the rough set theory is handling the uncertainty and overlapping 

dataset. Lower approximation is utilized to get the certain instances from the dataset. The lower 

approximation [19] of target set X is set of all observation which can be classified with certainty as 

member of X with respect to equivalence classes induced by R.  

 

                                                                                           (3.1) 

were         is equivalence class of x induced by R 

On the basis of Rough set theory, two-ways decision can be made: immediate acceptance (lower 

approximation) and may acceptance (upper approximation). On the basis of these possibilities, we 

consider checking the possibility of correct and data free from noise in the lower approximation 

region. As all three of these datasets are highly imbalanced, we have used SMOTE [21] for 

oversampling as it out performances random oversampling. SMOTE [21] stands for Synthetic 

minority oversampling technique. It synthesizes new minority instances between existing minority 

instances. It synthesizes new minority instances with the help of K- nearest neighbour points of 

existing instances. 

3.1.2 Denoising auto encoder based noise robust dataset generation 

Denoising auto encoder is special type of auto encoder in which noise is deliberately added in 

order to corrupt attributes of datasets. And then by using encoding and decoding process of auto 

encoder, the robust or free from noise representation of dataset is generated. Suppose y is an output 

vector and ȳ is the corrupted input to auto encoder, then the auto encoder learns the noise free 

representation of data by minimizing the reconstruction error between   z and y which can be 

measured in many ways, depending on the distributional assumptions of the input. 
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h (mapped representation ) 
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 Figure 3.2: An example of denoising auto encoder, the original input y is corrupted to   ȳ, ȳ is 

mapped to h and then representation z tries to reconstruct y. The reconstruction error is 

denoted by L(y, z). 

Then to get the train dataset from denoising auto encoder, decoder is used to predict reconstructed 

training data from corrupted noisy data. In this experimentation for eclipse datasets, a 3 layered 

encoder and 2 layered decoder has been used. There are 50, 25, 20 neurons in the three encoding 

layers respectively. The decoder contains 25, 50 neurons in its two layers respectively.   

 

 

                             

 

 

 

 

 

 

  

 

Figure 3.3 Representation of Denoising Auto encoder used  
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CHAPTER 4 

  EMPIRICAL STUDY OF EXISTING TECHNIQUES 

4.1  Dataset  

The software metrics and quality data used in this thesis are from publicly available ECLIPSE [7] 

program and NASA MDP [27]. All the datasets are obtained from the PROMISE software 

engineering repository [7]. All datasets are imbalanced. ECLIPSE 3 has the missing values. To obtain 

the noisy dataset and to study the effect of noise on different classifiers, different levels of attribute 

noise is being produced in each of these datasets. New datasets included 2%, 5%, 10%, and 20% of 

noisy instances in each of these datasets. Noise was introduced by adding guassian noise in selected 

row values in the range of that attribute. 5 fold cross validation is used and to get average values of 

performance evaluation metrics, each experiment has been performed 5 times.  

S.NO Dataset %instances non 

faulty 

% instances faulty 

1 Eclipse 2.0 [7] 85.51  14.49 

2 Eclipse 2.1 [7] 89.17  10.82 

3 Eclipse 3    [7] 85.19  14.80 

4 CM1   [27] 90.16  9.83 

5 KC1    [27] 84.54  15.45 

6 JM1     [27] 80.65  19.35 

        Table 4.1: Datasets used for experiments 

4.2  Machine learning techniques used 

Four machine learning techniques used are Naïve Bayes[25], logistic regression [5], decision 

tree[24], and k nearest neighbor[32]. Apart from that as proposed by Jose et al [9] bagging performs 

best in the case of attribute noise i.e. we have included bagged decision tree [24] classifier also for 

result comparison.     

4.3 Performance evaluation measures used 

Four different performance evaluation techniques has been used as discussed below: 
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Accuracy [14]: It denotes the percentage of correctly classified instances to the total number of 

instances. 

         
     

           
     

Precision [14]: It denotes number of correctly classified faulty instances among the total number of 

instances classified as faulty. 

   

          
  

     
 

Recall [15]: It denotes the number of correctly classified faulty instances amongst the total number 

of instances which are faulty. 

     

       
  

     
 

 

F-measure [15]: It denotes harmonic mean of precision and recall values 

      

          
                  

                
 

 

Where    denotes True Positive,    denotes False Positive,    denotes True Negative and    

denotes False Negative. 

AUC (Area under the curve) [23]: It is equal to the probability that a classifier will rank a randomly 

chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks 

higher than 'negative'). 

4.4 Results and Discussion 

Below are the comparative analysis of various classifiers along with the datasets and different 

amount of noise present in them. The datasets are partitioned into 5 equal parts called folds, each fold 

having almost equal number of faulty and non faulty instances. 4 out of 5 folds are used for training 
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and testing is done on the 5
th

 fold. Each experiment is performed five times and average of 

performances evaluation metrics is taken. The performance of various classifiers with respect to 

different evaluation metrics are as follows: 

 

 

 

 

 

 

 

 

Table 4.2 Accuracy and precision for various machine learning techniques on Eclipse 2.0 dataset 

under different noise level 

 

 

 

 

 

 

 

 

 

Table 4.3: Recall and F-measure for various machine learning techniques on Eclipse 2.0 dataset 

under different noise level 

                          Accuracy   Precision 

Noise % 

                Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 87.81 87.71 87.45 86.94 86.23 0.735 0.742 0.753 0.752 0.779 

Naïve bayes 83.98 84.60 28.71 78.80 14.60 0.447 0.467 0.166 0.355 0.145 

K nearest neighbor 88.57 88.07 88.07 88.23 87.86 0.690 0.662 0.667 0.681 0.649 

Decision tree 84.32 83.79 84.14 84.01 83.47 0.460 0.444 0.453 0.449 0.432 

Bagged decision tree 88.40 88.52 88.50 88.18 88.14 0.669 0.679 0.693 0.674 0.687 

                          Recall   F-measure 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.251 0.234 0.202 0.148 0.070 0.373 0.355 0.317 0.247 0.129 

Naïve bayes 0.438 0.426 0.967 0.543 1.000 0.442 0.445 0.283 0.425 0.254 

K nearest neighbor 0.385 0.361 0.358 0.354 0.354 0.494 0.467 0.465 0.466 0.457 

Decision tree 0.460 0.458 0.451 0.446 0.437 0.460 0.450 0.452 0.447 0.434 

Bagged decision tree 89.61 89.62 89.45 89.45 89.64 0.553 0.558 0.537 0.539 0.566 
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Table 4.4: Accuracy and precision for various machine learning techniques on Eclipse 2.1 dataset 

under different noise level 

 

                          Recall   F-measure 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.134 0.120 0.088 0.063 0.023 0.224 0.203 0.155 0.116 0.044 

Naïve bayes 0.359 0.295 0.945 0.100 0.935 0.344 0.317 0.212 0.170 0.221 

K nearest neighbor 0.214 0.208 0.207 0.205 0.192 0.305 0.298 0.296 0.294 0.280 

Decision tree 0.304 0.305 0.297 0.303 0.296 0.307 0.302 0.297 0.304 0.307 

Bagged decision tree 0.212 0.198 0.185 0.177 0.182 0.306 0.291 0.274 0.265 0.275 

Table 4.5: Recall and F-measure for various machine learning techniques on Eclipse 2.1 dataset 

under different noise level 

 

 

                          Accuracy   Precision 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 89.96 89.83 89.63 89.51 89.29 0.688 0.669 0.662 0.671 0.661 

Naïve bayes 85.23 86.31 22.42 89.43 24.25 0.332 0.350 0.120 0.564 0.127 

K nearest neighbor 89.47 89.41 89.38 89.36 89.30 0.534 0.527 0.524 0.524 0.516 

Decision tree 85.21 84.78 84.82 84.99 85.62 0.312 0.300 0.298 0.305 0.321 

Bagged decision tree 89.32 89.71 89.51 89.67 89.54 0.515 0.571 0.548 0.577 0.555 
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                          Accuracy   Precision 

Noise % 

                  Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 87.21 87.11 86.38 86.00 85.68 0.743 0.749 0.718 0.714 0.787 

Naïve bayes 83.37 84.37 85.45 67.94 73.26 0.428 0.457 0.536 0.407 0.573 

K nearest neighbor 85.92 86.07 86.14 86.21 86.03 0.550 0.559 0.567 0.571 0.562 

Decision tree 82.83 82.80 82.36 82.17 82.79 0.416 0.416 0.402 0.395 0.414 

Bagged decision tree 87.21 87.12 87.15 86.90 87.03 0.628 0.624 0.630 0.621 0.632 

Table 4.6: Accuracy and precision for various machine learning techniques on Eclipse 3 dataset 

under different noise level 

 

                          Recall   F-measure 

Noise % 

      

                  Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.207 0.193 0.131 0.091 0.044 0.324 0.307 0.221 0.161 0.083 

Naïve bayes 0.368 0.274 0.167 0.481 0.245 0.395 0.338 0.248 0.280 0.136 

K nearest neighbor 0.266 0.278 0.269 0.275 0.255 0.358 0.371 0.364 0.370 0.350 

Decision tree 0.399 0.402 0.393 0.387 0.387 0.407 0.409 0.397 0.391 0.400 

Bagged decision tree 0.332 0.325 0.319 0.295 0.296 0.434 0.427 0.423 0.400 0.403 

Table 4.7: Recall and F-measure for various machine learning techniques on Eclipse 3 dataset 

From the analysis of the above results following conclusions can be drawn: 

1. Results suggests that the accuracy for the machine learning techniques used are high (>0.85 

and  generally >0.7) 
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2. As all three datasets are highly imbalanced in this case accuracy measure of classifier is 

misleading as it is getting over fit with majority class. 

3. A more stable performance measure such as f1 score or AUC should be used for the classifier 

used in the case of imbalanced datasets. 

4. Amount of noisy instances present in dataset affects classifiers differently. 

5. Amount of noise added degrades performance of classifier. 

6. Highest effect of noise is observed in naïve bayes  

7. Generally, the machine learning procedures have low F-measure 

8. For all the combinations of datasets, the f1 score of Bagged decision tree has turned out to be 

most stable in presence of noise 

9. Other performance measures are also degraded by presence of noise.  
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CHAPTER 5 

            EXPERIMENTS AND RESULTS 

5.1 Experiments and results on Intra release datasets 

In the proposed approach datasets listed in chapter 4 were used to get noise free representation 

produced by denoising auto encoder after taking lower approximation and oversampling minority 

class of each datasets .The datasets is partitioned into 5 equal parts called folds, each fold having 

almost equal number of faulty and non faulty instances. 4 out of 5 olds are used for training and 

testing is done on the 5
th

 fold. Each experiment is performed five times and average of performances 

evaluation metrics is taken. The following are the values of different performance measures observed 

for different datasets. 

 

Table 5.1 Accuracy and precision for various machine learning techniques with denoised dataset on 

Eclipse 2.0 dataset under different noise level 

                          Accuracy   Precision 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 73.79 73.89 74.21 73.68 73.73 0.736 0.738 0.737 0.732 0.728 

Naïve bayes 72.19 73.67 72.26 73.20 70.11 0.793 0.747 0.796 0.749 0.815 

K nearest neighbor 82.49 81.95 82.04 82.15 81.34 0.780 0.776 0.776 0.777 0.774 

Decision tree 74.24 74.11 74.29 74.67 73.74 0.751 0.738 0.786 0.774 0.776 

Bagged decision tree 84.79 85.14 84.53 84.64 83.61 0.842 0.846 0.849 0.844 0.824 

                          Recall   F-measure 

Noise % 

                   Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.741 0.742 0.754 0.747 0.760 0.739 0.740 0.745 0.739 0.743 

Naïve bayes 0.601 0.717 0.600 0.701 0.521 0.683 0.731 0.683 0.723 0.635 
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Table 5.2 Recall and F-measure for various machine learning techniques with denoised dataset on 

Eclipse 2.0 dataset under different noise level 

 

                          Accuracy   Precision 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 72.40 72.57 72.48 72.03 71.98 0.761 0.761 0.758 0.751 0.746 

Naïve bayes 68.36 68.26 67.25 67.10 64.33 0.803 0.798 0.818 0.815 0.825 

K nearest neighbor 81.53 81.79 81.56 80.89 80.37 0.762 0.765 0.763 0.759 0.755 

Decision tree 74.05 74.03 74.22 74.25 74.24 0.767 0.761 0.766 0.760 0.761 

Bagged decision tree 83.81 83.78 83.16 83.18 82.47 0.825 0.829 0.820 0.820 0.814 

Table 5.3 Accuracy and precision for various machine learning techniques with denoised dataset on 

Eclipse 2.1 dataset under different noise level 

K nearest neighbor 0.905 0.900 0.901 0.901 0.886 0.838 0.833 0.834 0.835 0.826 

Decision tree 0.737 0.763 0.678 0.711 0.687 0.739 0.745 0.722 0.735 0.721 

Bagged decision tree 84.79 85.14 84.53 84.64 83.61 0.842 0.846 0.849 0.844 0.824 

                          Recall   F-measure 

Noise % 

             Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.653 0.658 0.660 0.659 0.666 0.703 0.706 0.706 0.702 0.704 

Naïve bayes 0.486 0.489 0.444 0.443 0.364 0.606 0.606 0.575 0.574 0.505 
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Table 5.4 Recall and F-measure for various machine learning techniques with denoised dataset on 

Eclipse 2.1 dataset under different noise level 

 

 

                          Accuracy   Precision 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 74.40 74.27 74.07 73.71 72.62 0.754 0.753 0.750 0.743 0.722 

Naïve bayes 68.49 68.66 68.46 68.75 68.85 0.774 0.776 0.773 0.779 0.769 

K nearest neighbor 80.20 80.36 80.23 79.66 78.80 0.756 0.758 0.756 0.752 0.745 

Decision tree- 70.76 71.01 70.99 71.20 70.30 0.814 0.798 0.797 0.810 0.811 

Bagged decision tree- 82.91 82.66 82.74 82.30 81.86 0.830 0.823 0.826 0.823 0.817 

Table 5.5 Accuracy and precision for various machine learning techniques with denoised dataset on 

Eclipse 3.0 dataset under different noise level 

K nearest neighbor 0.916 0.919 0.916 0.905 0.899 0.832 0.835 0.832 0.826 0.821 

Decision tree 0.691 0.702 0.702 0.712 0.708 0.727 0.730 0.731 0.734 0.733 

Bagged decision tree 0.858 0.852 0.849 0.851 0.842 0.841 0.840 0.835 0.835 0.828 

                          Recall   F-measure 

Noise % 

               Classifier 

0% 2% 5% 10% 20% 0% 2% 5% 10% 20% 

Logistic regression 0.724 0.722 0.722 0.724 0.736 0.739 0.737 0.736 0.734 0.729 

Naïve bayes 0.523 0.525 0.522 0.523 0.539 0.624 0.626 0.623 0.626 0.634 
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Table 5.6 Recall and F-measure for various machine learning techniques with denoised dataset on 

Eclipse 3.0 dataset under different noise level 

5.2 Experiments and results on inter release datasets 

The earlier release of a dataset is used for training purpose to predict the fault proneness for 

the later release that is used as testing dataset. There are 3 pairs of training-testing datasets in our 

experiments. Table 5.7 provides details of the used datasets. 

 

  Table 5.7 Datasets used for inter release experiments    

The following are the values of different performance measures observed for different datasets. 

Accuracy 

Noise % 

                      Classifier 

0% 10% 20% 

Logistic regression 88.64 87.20 86.80 

Naïve bayes 83.92 76.97 70.34 

K nearest neighbor 83.96 83.36 82.51 

Decision tree 86.92 86.76 86.96 

Table 5.8 Accuracy for various machine learning techniques with denoised dataset on Eclipse 2.0 

dataset and tested on Eclipse 2.1 under different noise level 

K nearest neighbor 0.892 0.893 0.894 0.886 0.875 0.818 0.820 0.819 0.813 0.805 

Decision tree 0.550 0.570 0.572 0.561 0.534 0.650 0.661 0.661 0.659 0.642 

Bagged decision tree 0.827 0.832 0.829 0.824 0.821 0.829 0.828 0.828 0.823 0.819 

Serial 

number 

Training dataset Testing dataset 

1 Eclipse 2.0 Eclipse 2.1 

2 Eclipse 2.0 Eclipse 3.0 

3 Eclipse 2.1 Eclipse 3.0 
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Table 5.9 Accuracy for various machine learning techniques with denoised dataset trained on Eclipse 

2.0 and tested on Eclipse 3 dataset under different noise level 

 

 

 

 

 

 

 

 

 

Table 5.10 Accuracy and precision for various machine learning techniques with denoised dataset 

trained on Eclipse 2.1 and tested on Eclipse 3 dataset under different noise level 

 

Accuracy 

Noise % 

                    Classifier 

0% 10% 20% 

Logistic regression 86.92 84.42 83.06 

Naïve bayes 82.55 76.21 73.61 

K nearest neighbor 82.82 82.21 81.28 

Decision tree 85.80 85.49 84.92 

Accuracy 

Noise % 

                    Classifier 

0% 10% 20% 

Logistic regression 86.09 84.37 83.45 

Naïve bayes 83.34 82.08 72.65 

K nearest neighbor 82.20 81.30 81.25 

Decision tree 85.54 85.05 85.28 
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5.3 Intermediate results for various datasets   

 This section includes the step by step results of techniques used in this work. Original dataset 

corresponds to traditional software fault prediction dataset. Dataset after lower approximation 

columns   corresponds to results obtain after performing lower approximation on original dataset 

followed by column for Dataset obtained by applying denoising auto encoder on dataset obtained 

after lower approximation and SMOTE[22] . 

 

 

 

 

Table 5.11 AUC when logistic regression is applied with different datasets constructed during 

proposed approach   

5.4 Experiments and results on existing techniques 

 

 

 

 

 

Table 5.12 Comparison of AUC of proposed approach with bagged decision tree on eclipse datasets 

with 20% of noise  

 

 

Noise Stacked denoising auto encoder 

with ensemble learning[5] 

Proposed approach with 

logistic regression 

Cm1 0.8373       [5] 0.7884 

Serial 

number 

Dataset name Original 

dataset 

Dataset after lower 

approximation 

Dataset after Proposed 

approach 

1 CM1 0.5319 0.5089 0.7884 

2 JM1 0.5514 0.5416 0.8314 

3 KC1 0.6003 0.6257 0.7457 

Noise Bagged Decision tree Proposed approach 

Eclipse 2.0 0.682 

 
0.851 

 

Eclipse 2.1 0.596 

 
0.838 

Eclipse 3.0 0.634 

 
0.829 
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Jm1 0.7731       [5] 0.8134 

Kc1 0.7426       [5] 0.7457 

Table 5.13 Comparison of AUC of proposed approach with Software defect prediction using   

stacked denoising auto encoders and two-stage ensemble learning.  

5.5 Results analysis 

 From the results obtained in above section it is observed that performance of every classifier 

when applied with traditional software dataset has increased with a huge margin when the classifier 

used the dataset generated by proposed approach. With the traditional dataset the AUC score was in 

the range (0.13-0.57) and with the dataset generate by proposed approach the AUC score elevated to 

range (0.6-0.91). Measures such as recall and f1-score were also increased for every classifier 

denoting the stable classification. It can also be observed that when in the presence of noise, 

classifiers such as naïve bayes and k nearest neighbour were highly affected even with the slightest 

(2%-10%) noise , whereas when the proposed approach is used for dataset generation even with the 

noise level (10%-20%) performance of classifiers were not affected. If we compare the proposed 

approach with approach used in [5], proposed approach has outperformed it for all datasets. When 

compared with other approaches such as bagged decision tree used for handling class imbalance and 

attribute noise, proposed approach has outperformed it for all the three Eclipse datasets [7].  
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CHAPTER 6 

  CONCLUSION AND FUTURE WORK 

In this thesis, we have applied decision tree, k nearest neighbour, Logistic classifier and Naïve bayes, 

bagged decision for the purpose of software fault prediction. We have also applied different amount 

of attribute noise to study its effect on classifier’s performance. The study was performed on the 

Eclipse dataset available in PROMISE software engineering repository [7] and NASA MDP datasets 

[28]. By taking lower approximation we eliminated the presence of uncertain instances from both 

classes i.e. faulty and non faulty of the dataset. So that auto encoder can learn from a representation 

which is free from outliers. The denoising auto encoder was applied to extract the attribute noise 

robust dataset. From the experimental analysis; it was observed that all of the studied learning models 

have benefitted from using dataset reconstructed by the use of lower approximation, SMOTE and 

denoising auto encoder. Performance of classifiers is not degraded by the presence of noise up to 

20% in them by using dataset reconstructed by proposed approach. And further, performance of 

classifiers when using noise robust dataset remains the same for most of the combination of noise. 

Weak learners such as naive bayes and k nearest neighbor improved significantly when used with 

reconstructed datasets. Noise robust dataset have performed best under all the noise conditions as 

compared to when the classifiers use raw metrics. To state the validity of our approach, we compared 

our approach with existing techniques used in software fault prediction domain and got better results 

in all of the datasets.The future work can include extending this work to more datasets on which this 

work can be replicated to check the consistency of the results. Apart from five machine learning 

technique used in this work, some other advanced machine learning techniques can be used to see the 

effect of noise of these techniques. Some other advanced variations of SMOTE are also present in 

literature which can be used to increase the predictive power of proposed approach. Further, this 

work can also extend to incorporate the multiclass prediction problem in software fault prediction.           
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