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ABSTRACT

Internet of Things (IoT) is the interconnection of Internet-enabled devices that can share in-

formation with each other or to Cloud servers. The communication between the delivering

nodes and the Cloud server is vulnerable to link failures. In real time scenarios, this con-

nection loss might hinder the decision making at the Cloud due to non-reception of needed

data at the right time. Eventually, affecting the reliability of the IoT systems. Edge servers,

placed near to the IoT node on the edge of the core network, will have limited computing

and storage resources that can address the reliability of the systems. They will collect data

from the IoT node and forward data to the Cloud. In this way even if the connection to

the Cloud is lost, the Edge server would still be able to process and analyze sensed data to

produce meaningful results similar to Cloud. Yet another challenge is the failure of links

between IoT nodes and the Edge servers. This research work is aimed at making the data

processing and alarm generation as reliable as possible so that even if the connection is lost

between the IoT node and Edge server or Cloud server, the data could still be processed and

results are obtained. The work in this thesis is expected to produce a reliable data processing

system which can be used for real-time response. The proposed mechanism has been im-

plemented on the laboratory setup to prove that, though there might occur transmission and

processing delays during switching of the system, after all, is reliable. The proposed model

is tested for Landslide Early Warning System (LEWS) where connection failure between

the IoT node and Cloud can be catastrophic and cause danger to human lives.
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Introduction 1
I n the IoT paradigm, many of the objects around us are on the network in one form or

another. IoT is the connection of internet enabled devices which generate huge data

volumes. This data needs to be stored, processed and presented in an efficient and fairly

understandable form [1]. Cloud computing provides the infrastructure for shared pool of

online resources which can be accessed from anywhere,anytime. IoT-Cloud integration is

surely one among many exceptional technologies trending in today’s world. Various facil-

ities and products like Smart homes, Smart City, eHealth etc are trending for well-being,

luxury and welfare of public. These are the result of in- tegration of IoT and Cloud. IoT is

expanding its reach in different domains like Banking, finance, Agriculture, Entertainment,

disaster management and what not. While some of them are merely for the recreation and

comfort of public, other systems are designed to have life saving applications.

1.1 Motivation

In applications like Health monitoring, Autonomous vehicles where the sensors generate

huge data volumes which need to be processed immediately are very sensitive to End-to-

End delay. In Health monitoring, if there is any delay in processing body sensors’ data or

the server is not available for a long time then the patient’s health condition would not be

studied. It can have adverse impact on patient’s life in case of emergency. Similarly, in the

application of autonomous vehicles, the delay in processing the data of sensors embedded

in the vehicle, which control the vehicle to move in right direction can result in serious ac-

cidents. Hence, the Cloud’s availability is essential at all the time in these type of real-time

systems.These kind of systems are very sensitive to the transmission and processing delay.

The application must be tolerant to any kind of unforeseen events like failure of underlying

services as well as faults that are related to internetxinfrastructure, broken communication

1



Chapter 1. Introduction 2

links or physical hardware failure when dealing with realtime services[2]. Hence, there is

a need to develop a reliable infrastructure that operates normally despite failure at cloud

level. One of the ways to achieve fault tolerance would be to use redundancy in the sys-

tem. Typical methods to introduce redundancy can be duplicating servers, controllers, I/O,

and networks[2]. A distributed fault tolerant algorithm, [3] is designed that is run on all

redundant controllers asynchronously. This is done to maintain reliability in the system.

1.2 Problem Statement

In the wake of importance of Reliability and Fault tolerance in real world applications, a

system is proposed here to enhance the reliability of the IoT-Cloud system. The reliability

of data processing should be ensured at every level of hierarchy in the system. One such

application where fault tolerance and reliability are the key concerns is Landslide Early

Warning System(LEWS). LEWS is a system which records and analyzes the landslide’s

changing characteristics and is able to predict the occurrence of landslides with various

warning levels in real-time. Landslides cause huge destruction to the mankind, landscapes

and ecosystem. Although, it is very difficult to prevent a natural hazard but we can surely

take some measures to reduce the harm and misery caused by them. If the administration is

alerted sometime prior to the landslide then some plan of action can be followed to evacuate

people from the area. In this way, although the area might be destroyed but human lives

could be saved. The sensors deployed on the landslide, determining the characteristics

of the slope and soil are continuously sending data to the Cloud where rigorous machine

learning algorithms are running to predict the event of landslide. In the event of non avail-

ability of computing resources, the system might not predict accurately and the system

would fail. So here, we need to have computing resources up and running all the time.

1.3 Objective

The objective of this thesis work can be briefly summarised with following points :

• The foremost motive is to provide a back-end device working instead of Cloud in

case of any situation of Cloud failure.
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• The second objective is to maintain reliability even at the intermediate layer of the

architecture. If one of the nodes is not reachable then information should be diverted

to some other node at the intermediate level and hence to the cloud.

• The designed system is to be checked and tested against LEWS. The system would

predict the occurrence of landslide in a certain region.

1.4 Contribution

For making the IoT system reliable to overcome possible failures in the network and Cloud,

the proposed solution employs Edge computing in the system. Edge Computing is nothing

but bringing the store and compute resources closer to the edge of the IoT node. Due to long

distance and wireless connection between IoT node and Cloud, the connection is vulnerable

to failures. The objective here is to introduce an edge server at the edge of IoT node which

would work as a fallback service to mask the failure. Data processing could still be carried

out on the edge servers and appropriate responses are generated until the connection is

regained.

The data for a particular region would be forwarded to edge server. In case the edge node

for a region is not active, an arrangement is made to maintain the reliability at the edge

level by switching connection from one edge node to another edge node. Hence, one edge

node would be able to receive data from more than one region. The model is tested with the

laboratory setup and results and analysis is done.

1.5 Organization of Dissertation Report

Rest of the dissertation is organized as :

In Chapter 2, we discuss about the background of the dissertation work. We discussed

about the IoT and Cloud applications and integration. Introduction to Edge computing and

its promising features are discussed. Also, we talk about Landslides and Landslide Early

Warning System(LEWS) application. We discussed about the related work done by other
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authors and discuss their contributions. Also, we discussed about the research gaps based

on which we proposed the model to overcome these research challenges

In Chapter 3, the architecture design of proposed system is illustrated. Each module of the

design is further discussed. Also, we proposed the model for reliable IoT-Cloud system.

Various scenarios have been addressed separately giving a more clear understanding.

In Chapter 4, we presented the Experimental setup for testing the proposed design and

discussed different tools used for the test bed. We discussed about algorithm designed

for LEWS. We presented the results based on the experiment performed based on various

parameters.

In Chapter 5, we concluded the dissertation report and the future work.



Literature Work 2
I OT is a field of computer science andxnetworking in which there is a network of smart

devices which share and exchange information with one another. This information

sharing can happen through any communication technology like WIFI, Blue-tooth etc. The

market of IoT is getting larger day by day. Sometimes, it is as playful as a child’s toy

and might be as serious as the wearable devices for security of masses. More than the hu-

mans, things are connecting nowadays. There was an estimate that around 8.4 million IoT

devicesxwere in use in 2017. This technology has been in use in almost all area of life

like -Smart Home, Smart City, Smart Agriculture, Wearables for safety, Smart grid, Smart

In- frastructure, Smart Poultry, Smart Transportation and what not. IoT allows people and

business to be more connected to the world which help them do some meaningful high-

level work. IoT might be the network of various sensors which canxsense anythingxfrom

biological parameters to motility parameters. For smooth functioning, control and merg-

ing of various heterogeneous inputs,micro-controllers are used to which outputs of various

sensors are fed. Micro-controllers are coded to perform desired function.

2.1 Background

2.1.1 IoT and Cloud

Hugexamount of data generated byxthese IoT devices need to be stored, maintained and

processed for analysis and future reference. So,maintaining this huge data in in-house sys-

tem is’nt practical anymore. The cost of maintaining, upgrading the system is too high
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which might not be afforded by some small companies. Hence, commercially as well as

effectively it is beneficial to use Cloud for Storage and processing. Various cloud providers

provide built in IoT services like Amazon web services, Google Cloud, IBM Watson IOT

platform, Oracle, Salesforce, Bosch, Azure IoT suite, Cisco IoT Cloud Connect, SAP and

many more.

FIGURE 2.1: Cloud Computing

The cloud provider should be chosen according to our business requirement. Cloud pro-

vides good performance, high productivity, excellent speed,cost reduction, and reliability.

There are mainly 3 types of cloud services :

1. Private Cloud Service, which run on organi- zation’s own infrastructure and is not avail-

able to the general public.

2. Public Cloud Services provide cloud to multiple users through internet.

3. Hybrid Clouds combine public and private clouds, bound together by technology that

allows data and applications to be shared between them.

Mostly,cloud services fall into three major categories : Infrastructure as a service (Iaas) :

In this kind of service,we can rent IT infrastructure- servers and virtual machines (VMs),
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storage, networks, operating systems from a cloud provider on a pay-as-you-go basis. Plat-

form as a service (Paas) : PaaS refers to on-demand environment for developing, testing,

delivering and managing software applications. It makes it simpler for the developers to

quickly create web or mobile apps, without having to worry about setting up or managing

the underlying infrastructure. Software as a service (Saas) : SaaS is a method for deliv-

ering software applications over the Internet, on demand and typically on a subscription

basis. Cloud providers host the software applications and infrastructure. In our study, we

exploit the cloud services in order to run various data analysis applications and store large

data gathered from various sensors. Data gathered from the sensors is taken by micro con-

trollers which export the data to the clouds using various communication technologies like,

Wifi, Ethernet.

2.1.2 Edge Computing

Pushing intelligence to the edge of the network is generally called as Edge computing.

Back in the old days, all the main computational power was done by the main power and

the clients were just a dumb screen. Then came client-server architecture where some

intelligence was added to the client but still, most computing power was there in the main

server. In the modern times, where we have the world of Internet of Things, there are

thousands of millions of billions of devices. If we allow all these devices to send all of

their data to main server for computation, then there might be a big problem. There may

not be enough bandwidth for these devices to constantly communicate with the server. The

servers themselves would get overloaded with immense data. So, a number of years ago

there was this idea of pushing intelligence to the edge, so instead of sending all the data

to the main server, why don’t these edge devices process the data partially and send just

the result to the server. For instance, Surveillance Cameras are the perfect target for edge

computing. Earlier, these cameras were dumb, they just constantly sent data back to the

DVR main video recorder server. So, 24*7, there was video streaming on the server and it

used to decide what to do with the video. In the old days, this architecture was fine because

cameras were less in number but now, as we have surveillance cameras everywhere, it is a

overhead to stream video to the server 24*7. Connections are very inexpensive and there

would be gigabytes of data transmission per second. To the top of that, if these cameras

send high-definition videos then it would completely saturate the bandwidth. Hence, the
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idea was introduced to add some processing power to the cameras so that they only send

data when they detect some motion. There are various other applications which showcase

substantial improvement when introduced with Edge computing.

FIGURE 2.2: Edge Computing

2.1.3 LEWS

Landslides are one of the most dangerous and destructive natural hazards that cause sig-

nificant damage to economic objects and human lives. The movement rate of landslides

varies from the slow movement of material in millimetres or centimetres range per year to

a sudden avalanche of a large quantity of debris. There are many examples of the nega-

tive manifestations of landslides in various regions of India. Listing from the year 2000,

Amboori lanslide – Kerala, Kedarnath landslide – Uttarakhand, Malin landslide – Maha-

rashtra are among the most destructive ones where thousands of people lost their life and

some also got missing. Latest being the landslide in chamoli district of Uttarakhand causing

huge discomfort and lose. Uttarakhand state has 24 areas spread in 344 locations including

Bhagirathi valley and Kedarnath township which fall under very unstable zones. Here, re-

current landslide problem has been witnessed over the years. There are mainly two causes

for a disaster – Natural(inevitable) causes which are beyond human control and order. Hu-

man triggered landslides caused by increasing pressure on the environment in the form of

construction work, unlawful mining, heavy machine vibrations in ground and hill-cutting.

All these mentioned activities can cause unstability of the soil and slope surface which is
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the reason behind slope movement and displacement. Earthquakes, heavy rainfall, ground

water dis-balance, soil erosion are few factors which effect the stability of slope naturally.

Landslides might often lead to another natural calamities like floods to further worsen the

living conditions. One of the main causes of emergencies and negative manifestations of

landslides is the lack of a unified monitoring system for the prediction and early warning

of the landslide. Landslide monitoring is generally not practiced in India and an effective

warning system is required to help the people get evacuated in such conditions.

Keeping in view the societal and strategic relevance of landslide disasters, there is a need

to deploy monitoring and warning system in such areas. Several technologies and systems

have already been proposed and designed for monitoring landslides. The prevalent sys-

tems differ in the technologies or protocols used for data streaming, analysis algorithms,

offline-online prediction, wireless technologies used for data transfer, operating cost in-

volved and various other factors. LEWS is the Warning System designed for Landslides

which monitors the prone locations, collects the data related to soil and rainfall character-

istics, processes that data into meaningful information, applies machine learning algorithm

for rigorous analysis of the data to predict the occurrence of landslides beforehand. This will

help the respective State Disaster Management authorities in the landslide risk reduction.

It will help the administration to prepare emergency services in advance. In few systems,

there are no prediction algorithms running. Warnings are just issued on the basis of thresh-

old level on the basis of IF-ELSE paradigm. In the system designed by Chaturvedi, P. et

al. [4], the field sensors usedxat the Tangni Landslide site are in-place inclinometers (IPI),

vibrating wire piezometers, tipping bucket rain gauge and extensometers. The data is trans-

mitted automatically using GSM Modems, stored, processed and visualized on a DTRL

base-station computer. IPIs consist of string of MEMS sensors installedxin casing withinxa

borehole. Multiple IPI’s are linked together by Gauge tubes. Each IPI is connected toxthe

data loggerxwhich is power source of sensors. In some systems, manual expertise and in-

tervention is also there which does not make the system fully automatic. Also, none of the

systems has used Edge computing for improving the latency and increasing the reliability

of the system.



Chapter 2. Literature Work 10

FIGURE 2.3: Design for LEWS

2.2 Related Work

A lot of research and work has been going on in the field of Edge and Cloud. This section

talks about the previous work that has been done in the Edge and Cloud areas. The motive

is to prove and ensure that Edge computing adds to the various advantages provided by the

cloud. IoT-Edge-Cloud integration has been studied and worked upon by the researchers

and technologists in various applications. Paul et al. [6] talks about Edge computing in

Healthcare monitoring system. Due to privacy and security concerns, the hospitals would

not like to have their patient’s data stored outside and hence, in this domain simple sensor-

to-cloud architecture is not viable. The authors also emphasize that there can always be the

bleak case of a network failure or data center failure which can put their patient’s health at

risk. Hence, they propose to extend the centralized cloud computing architecture to a dis-

tributed one. This distributed architecture serves the purpose for both security and overhead

time taken for data to ho back and forth from the cloud to devices.

Cao et al. [7] have proposed a system to detect the fall in real time. They have named

it as U-Fall. The system distributes the analytic throughout the network by dividing the

detection task between the edge devices (e.g., smart phones attached to the user) and the

server (e.g., servers in the cloud). They have devised new algorithms for front-end run and

back-end run. They put forward that such system designs not only provides low response
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time but also consumes as low battery power as possible on smartphone. Edge computing

can not only be used with static networks but also can be exploited in mobile devices. Liu et

al. [8] employs edge computing in the field of Augmented Reality(AR). AR requires speedy

and accurate detection and understanding of physical ecosystem so that virtual contents can

synch with the real world. The image processing algorithms like SSD,YOLO and Faster

R-CNN are too complex to be run on the mobile devices to detect the objects. Neither can

a mobile device perform any advanced computer vision the edge-based MAR system., au-

thors have desinged a DARE (dynamic adaptive AR over the edge) protocolxthat enables

the edge-basedxMAR system to dynamically change ARxconfigurations and computation

resource allocations according to wireless channel conditions and available computation re-

sources on the edge server. Via this adaption, the DARE protocol trades offxthe quality of

augmentation (QoA) against the service latency.

Zamora-Izquierdo et al.[9] design axthree-tier open source software platform at local, edge

and cloud planes. At thexlocal plane, Cyber-Physical Systems (CPS)xinteract with crop

devices to collect data and perform real-time atomic control actions. The edge layer of the

platform isxin charge of monitoring andxmanaging main tasks near the access network to

increase reliability of the system against network failures. The cloud platform gathers live

and historic records and conducts data analytics modules in a FIWARE deploy-Edge Com-

puting. Distribution of application in hybrid Edge-Cloud architecture can be performed in

number of ways. Ashouri [10] studies the various parameters on the basis of which ap-

plication should be distributed between edge and Cloud. These parameters are Response

time ,accuracy, availablity, energy consumption, security, privacy, cost, elasticity, scalabilty.

The network disconnectivity in highly dynamic and volatile environments has been dis-

cussed in [11]. In these type of environment, the architecture should be highly resilient

to the failure caused by network disconnections. The authors have presented a novel

edge computing system architecture that delivers failure-resistant and efficient applica-

tions by dynamically adapting to handle failures. All computing nodes, including the edge

serverxand the available mobile devices, are connectedxusing peer-to-peer communication

interfaces, the main and the backup ones. When the edge server is inaccessible, the backup

mechanism makes the mobile devices to interact with each other directly, with a cluster of

mobile devices providing the edge services. The authors [12] talk about the ultra-reliable
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low latency communications (uRLLC) in the fifth generation mobile communication sys-

tem. The tradeoffxbetween the latency and reliability in task offloading to MEC is studied.

The task is partitioned into sub-tasks and offloaded to the multiple edge nodes. Three

algorithms namely, based on heuristic search, reformulationxlinearization technique and

semi-definite relaxation, respectively are designed to to solve the problem of optimizing

edge node candidates selection, offloading ordering and task allocation.

IoT-Edge-Cloud combination is highly useful in autonomous vehicles (AVs) in smart cities.

The integration can be used to enhance the reliability of the Vehicle-to-infrastructure net-

work. A novel algorithm [13] based on Matching Theory is proposed to jointly optimize

AVs-to-SBSs(small base stations) association and bandwidth allocation to maximize the

reliability of the Vehicle-to-infrastructure network.Because of varying task types and ran-

dom wireless channel variations, it is very important to optimize the end-to end quality-of-

service in V2I networks. The proposed framework uses tools from Labor Matching Markets

to effectively perform distributed association of AVs to SBSs, while considering the latency

needs of AVs along with the limited bandwidth and computational resources of SBSs. The

proposed algorithm is proved to converge to a core allocation between AVs and SBSs, thus

ensuring the stability of the V2I network when using distributed implementations. Javed

et al. [14] propose a fault-tolerant architecture, CEFIoT for Edge and Cloud which solves

the purpose of having similar software stack at both the edge and cloud for managing and

moving data processing between edge and cloud. CEFIoT framework is composed of small

cluster of embedded Linux devices together with Kubernetes and Apache Kafka to imple-

ment the fault tolerance capabilities. The Kafka publish/subscribex(pub/sub) platform is

used as unified high performance dataxreplication solution for both edge and cloud.

2.3 Research Gaps

The research work proposed above talk about the enhanced efficiency of the system in

terms of reduced latency and ultra reliability by introducing Edge Computing. They ex-

plained how Edge can work as a backup when the Cloud server is unaccessible. The system

should be able to survive failure at any layer of architecture. People have proposed Edge

Computing in controlled environment. Implementing Edge Computing in remote areas,

rough terrains, hilly areas is something not explored or talked about till now. The proposed
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system introduces Edge technology to IoT-Cloud infrastructure in remote areas to construct

a reliable system which can sustain Cloud failure. This proposed solution also aims at re-

liability at the Edge level which means that it also has the mechanism to switch to another

Edge server when one Edge fails. Edge Computing has not been explored in the area of

Landslide detection. So, the proposed system can be extended to be part of the LEWS and

maintain the reliability of the application.

2.4 Summary

This Chapter of the thesis report is focused on two aspects. Firstly, I have talked about the

background technologies, IoT and Edge Computing, that are the core part of the proposed

model. Here, the application, LEWS, against which the model would be tested is also

explained. We have talked about Landslides in general and what LEWS is. Secondly,

this section talks about the previous work done in the field of edge computing and reliable

IoT systems. It is focussed on the various use cases where edge computing has been used

to address the issues like security, privacy, latency sensitivity, reliability etc. Further, the

discovered research gap is also explained in section 2.3.



Proposed Model 3

3.1 Architecture of the Proposed System

In order to maintain the reliability of the IoT system, the concept of Edge computing has

been introduced in the framework. The Edge server would work as a complement to the

cloud server and would provide uninterrupted service. The system architecture is composed

of following three layers :

1. Data collection layer

2. Edge Server

3. Cloud Server

1. Data Collection Layer

This section majorly deals with the hardware. In this particular section of the proposed

system, data gathering devices are being used. These devices can be sensors, Cluster head

or any other electronic equipment. A device which produces any output by observing the

changes in quantities or events can be defined as a sensor. Depending on the Application to

be designed, the desired sensors are chosen. Adhering to the understanding of the project,

the number of required devices and their placement in the area is evaluated. The devices

14
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might be or might not be Internet enabled. Since, we are designing an IoT system here,

so the devices are capable of sending collected data via the internet to another end. The

frequency at which these sensors should record and supply the data can be set. This net-

work of sensors is called as Wireless Sensor Network(WSN). There are various protocols

and message passing algorithms for transferring data from one end to another in WSN. A

suitable technology should be chosen according to the features of application like Trans-

mission delay, security, reliabilty etc.

FIGURE 3.1: Architecture Design of the system

2. Edge Server

The data consumed from the sensors has to be stored and processed at a safe location.

Cloud is a shared pool of resources and services which are leveraged in a very feasible and

manageable manner. Cloud may be at a far off place from the data sources . In real time

scenarios, end-to-end latency and physical proximity play a key role in the efficiency of the

system. It is more functional and effective to place the computing device in close proxim-

ity to the sensors, end users and the site under study. This lead to the emergence of edge

Computing which is nothing but providing the services as close as possible to the edge of

the network. Edge server leverages the infrastructure of cloud computing by placing the

computing resources(cloudlets) at the Internet edge. The cloudlets have limited processing

and storage resources. Edge Server can be deployed at any device, for instance, mobile of
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the user, cell tower, vehicle, laptops etc. Cloudlets have a limited processing power which

can be harnessed according to the application. The Edge Server collects data from the Data

Collection layer, and forwards it to the main server. Hence, it acts as an intermediate node

between first and third layer.

3. Cloud Server

The Cloud Server is the remote powerful machine, which maintains the database, regulates

data analysis algorithms and provides user interface. Server collects and accumulates sensor

data in the database. It receives data values from the edge server. Cloud can communicate

with the Edge via various protocols. Server has a substantial memory and pool of resources.

It runs efficient algorithms for analyzing the data, find hidden patterns and generates the

results.

3.2 Proposed Model

The proposed system enrolls Edge Computing paradigm in its architecture to support the

reliability requirement of the IoT-Cloud system. The sensors’ data would be transmitted to

Cloud server from the IoT node via an Edge Server in the middle. In the proposed system,

we would be dealing with different hardware and communication protocols. The choice

of sensors would be according to the application under development. In this thesis work,

application considered is Landslide Prediction. The IoT node could be any device enabled

with Internet like an IoT sensor, cluster head, Arduino module, Raspberry pi,, PC, mobile

etc. The edge node can be realized as a simple Raspberry Pi module or a full fledged PC.

The edge server can be placed at any location near to the IoT source node which is safe and

less prone to network and connection issues. There is a generic assumption that the Edge

node has enough memory and processing resources to execute small algorithms.
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FIGURE 3.2: Proposed Edge-Cloud model for reliability of system

3.3 Methodology of Proposed Solution to various scenar-

ios

3.3.1 Addressing connection loss to Cloud

FIGURE 3.3: Scenario when the link to cloud fails or cloud layoffs
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When the link between the edge server and Cloud server breaks due to network failure then

this edge server works as the proxy and completes the processing needs on Cloud server’s

behalf. Although Edge server has its storage and compute resources, they are not at par

with the resources available at the Cloud. The machine learning or complex algorithms

running on the Cloud cannot run on the edge server due to its resource constraints. The

Cloud runs the training and testing procedure on the dataset it receives. During the training

step of machine learning algorithm at the cloud, a model file would be generated which is

basically the trained model.The saving of model is called Serializaion, while restoring the

model is called Deserialization. When we need the same trained data in some other device

or at some later time, to avoid the wastage of the training time, we can store trained model.

Even though we can run small algorithms or tasks on the edge server, we cant perform the

training phase here because of its limited database and compute service. Cloud can store

data of about 10 years but edge server can only sustain data of few days. Training phase

incurs a lot of resource consumption.

The work here is to make the Cloud send that model file back to the edge server peri-

odically, so that edge server can process the incoming sensor data using some basic code

with the model file. In this way, whenever the Cloud goes down or the connection breaks,

the edge server would utilize the latest model file to process the incoming data from the IoT

node. If after processing, the edge finds any anomaly,it would raise the alarm and further

actions can be taken. The edge server would be equipped with actuators to generate alarm

or responses. In this way, even if we cant access services from Cloud, we would still have

our edge server up and running our desired computations.

3.3.2 Addressing connection failure between IoT node and Edge

The next issue to worry about is what would happen when the edge server is itself down

or link to the edge gets broken. To ensure the reliability at even edge level, the concept of

connection switching is introduced in the system. As illustrated in the proposed architec-

ture, there would be an edge server for each zone(Coordinator node) which will collect the

data from the IoT source node. When the IoT node cannot connect to its dedicated edge
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anymore or the link breaks during the data transmission, connection switching will take

place.IoT node would scan for other edge node in its range and attempt to make connection

with other available Edge. If successful, the new edge which it is connected to now would

then forward the sensor data of this new IoT node along with the data from old IoT node of

its own zone. Fig 5.3 illustrates this connection switching. In this manner, the main server

would still receive the data of that zone but from another edge server, and hence data loss is

prevented. This method illustrates edge switching.

FIGURE 3.4: Connection Switching to other edge server

3.3.3 Addressing Cloud and Edge Failure

In line with the second failure in the system discussed above, there is a possibility that

connection to Cloud is also lost, as shown in Fig 3.5. In that case, this second edge works

as the proxy server, both for its particular zone and another edge’s zone. As this Edge is

now receiving data from more than one IoT node, it would test incoming data of both the

IoT nodes with the model files of the respective zones. So with this approach, if any edge

starts getting data of another zone(another edge) and there is a loss of connection from this

edge to cloud then this edge would be analysing the data both for itself and another edge’s

here only and predict the results for both. As soon as the connection is rebuilt to the cloud,

the transmission is resumed.
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FIGURE 3.5: Edge server processing data for more than one zone

3.4 Summary

This section showcases the generic architecture of the proposed system. The different mod-

ules of the model have been talked about and various scenarios have been addressed sepa-

rately and illustrated with the help of figures.



Experiments and Results 4
4.1 LEWS

For this application, an algorithm is designed which analyzes the rainfall intensity and pre-

dicts whether there is a condition for landslide or not. Here the prediction of landslide is

determined solely on the basis of rainfall data. The data set has been downloaded from

TRMM website which gives the daily mean precipitation values from year 2003 to 2019.

Also, the data of 67 landslides from period 2003 to 2019 is downloaded. Rain data is pro-

cessed and antecedent rainfall analysis mechanism is being used [15]. Antecedent rainfall

value of last 30 days is being calculated. This processed rain data is fed to the logistic re-

gression model. If the antecedent rainfall value of last 10 days crosses 80 mm or of last 15

days crosses 180 mm, it would predict the landslide event. So, if the system is working in

a conventional manner then the main server would learn from the rainfall data after every

fixed time interval and test every data value using machine learning model. But when the

Edge machine is not able to connect to main server for any reason, the system does not

fail, infact, the edge tests the rain data coming with the model file sent by the server. If it

suspects landslide occurrence, then it generates the output accordingly.

To understand the working of the proposed design and to evaluate the results, we devel-

oped LEWS. The laboratory setup for testing the proposed system is constructed with the

following equipments :

• Coordinator Node : ESP8266 NodeMCU

21
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• Edge Server : Raspberry Pi 3

• Cloud Server : Linux Machine

• Database : PostgreSQL

• Messaging protocol for WSN : MQTT

• Messaging protocol for Edge-Cloud : TCP Sockets

4.2 Experimental Setup

4.2.1 Hardware Setup

1. ESP8266 NodeMCU

ESP8266 is a low cost Wifi chip with a full Tcp/Ip stack. We can upload any program in its

MCU to control GPIO pins. This is quiet popular for its small size and low cost in electronic

and IoT projects. It works easily with Arduino IDE. It can collect different sensors’ values

by connecting them to the GPIO board. For our experiment, we are generating random

floating point number for the rainfall intensity.

The reason for opting ESP8266 among other available devices is that it is way cheaper than

other Arduino modules and other Wifi shields.

FIGURE 4.1: ESP8266(NodeMCU) [16]
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2. Raspberry pi

Raspberry Pi is the cheapest and smallest computer out there. It is a credit card sized

computer. It has a quad-core arm CPU that does not support all the same instructions as

Desktop or laptop x86 CPU. It generally posseses aroung 1 GB of RAM, 4 USB ports, one

HDMI port, one ethernet jack, one micro-SD card slot, built in buletooth and Wifi modules.

What makes the Pi interesting is 40 GPIO pins that we cannot to evrything from sensors to

weather stations to robots. This functionality was built into the pi to teach computer science

to relatively young students. It is quiet popular for home projects.

The model used in this project is Raspberry Pi 3. It is loaded with Raspbian(Stretch) Oper-

ating system which is very similar to Linux distributions.

FIGURE 4.2: Raspberry Pi [17]

4.2.2 Software Setup

1. MQTT

Message Queuing Telemetry Transfer(MQTT) protocol is a simple messaging protocol, de-

signed for constrained devices with low-bandwidth. Hence, it’s the apt solution for Internet

of Things applications. MQTT permits us to send commands to control outputs, read and

publishxdata from sensor nodes and much more.

There are four components/concepts of MQTT protocol :
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1. The first one is the publish and subscribe system. In such type of system, a device

can publish a message on a topic, or it can be subscribed to a particular topic to receive

messages.

2. Messages are the data values that you want to exchange between your devices.

3. We can register interest for the messages we want to receive or we can specify where

you want to publish the message using Topics.

4. The broker is primarily responsible for receiving all messages, filtering the messages and

then publishing the message to all subscribed clients.

FIGURE 4.3: MQTT Pub-Sub Model

2. TCP Sockets

Tcp sockets are the virtual addresses that identify the network endpoints. These virtual

addresses are the combination of Ip address and port number. They are implemented on

the Client-Server architecture where client socket is created on the client system and server

socket is created on the server system. The server socket waits on a particular port for the

client system to make connection request. The client and server can transmit and receive the

information using these sockets asynchronously. Sockets allow a single computer to serve

many different clients at once, as well as to serve many different types of information. In

our system design, client socket program is run on the edge system which is raspberry pi

while the server socket is created on the main server. A multi-threaded server program is
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coded which can accept connections from multiple clients(edges).

3. PostgreSQL

PostgreSQL is a powerful, free and open source object-relational database system that uses

and extends the SQL language combined with many features that safely store and scale

the most complicated data workloads. PostgreSQL has made its strong hold for its proven

architecture, reliability, data integrity, robust feature set, extensibility. PostgreSQL can

run on all major operating systems and is ACID-compliant. This database allows us to

define your own data types, build out custom functions, even write code from different

programming languages without recompiling the database.

4.3 Results

In order to send rain data to raspberry pi, the IoT node, ESP8266 here, first makes wifi con-

nection with raspberry pi. Raspberry Pi has been formed as a wifi access point. It possesses

a unique ssid and password which is required to connect to its Wifi. Every nodeMCU has

been set with the essentials of the edge server it should connect to. Each edge server also

hosts MQTT broker which listens at port 1883. After establishing wifi connection with the

raspberry pi, nodeMCU attempts mqtt connection with the broker created at raspberry pi.

After this successful connection establishment, nodeMCU starts sharing the rain data at a

certain frequency. As soon as raspberry pi gets the data, it sends this rain data to the main

server using socket connection. Cloud server runs prediction model for all the edge it is

receiving data from.

FIGURE 4.4: Communication protocols between 3 level of system
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As depicted in fig 3.3, when the nodeMCU detects the connection failure with the raspberry

pi, it looks out for other available raspberry pi. It starts scanning the wifi networks in the

range and gets connected to the wifi network of nearest raspberry pi. After forming the wifi

connection, it forms mqtt connection with the same raspberry pi. As soon as it finishes the

re-connection, rain data of this nodeMCU starts getting delivered to the new raspberry pi.

So, now this raspberry pi receives rain data from two nodeMCUs. So, it sends rain data of

both the nodeMCUs to the main server.

4.3.1 Recovery Time

When the nodeMCU looses connectivity with the raspberry pi, it takes some time to connect

to other raspberry pi. This time delay can be called as Recovery Time. It subjects to the

availability of atleast one working edge server in the region. This switching time includes

time to detect connection loss, time to scan available wifi networks, time to connect to wifi

network of raspberry pi and time to make mqtt connection. It takes approximately 2.5 to

make a wifi connection. After many trial runs, it was observed that on average 14 sec are

taken to switch connection from one raspberry pi to another.

4.3.2 Comparative Analysis between Edge and Server

4.3.2.1 Prediction Time

To test the rainfall data, prediction algorithm described above is being run on the rainfall

intensity values. As the machine learning algorithms consume substantial system resources,

depending on the architecture of the underlying system, execution time depends. As the

Raspberry Pi has limited resources and power, and has slower processor then the main

server, it takes more time to predict the outcome compared to main server. The results are

being shown in table 4.2

4.3.2.2 CPU Workload while running prediction algorithm

Running any operation on the computer system involves utilization of CPU. For a certain

number of time slices, the cpu is busy, other times it is not. Adhering to the architecture of
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TABLE 4.1: Time taken to connect to NodeMCU to Raspberry Pi

Type of Connection Average Time
taken

Normal connection
establishment from
NodeMCU to Pi

2.5 sec

Recovery Time to con-
nect to other Pi

14 sec

TABLE 4.2: Average time to run prediction algorithm

Device Average Time
taken

Cloud 1.3sec
Edge 9.1sec

TABLE 4.3: Average CPU workload while running prediction algorithm

Device Average CPU percent-
age in testing

Average CPU percent-
age in training

Cloud 11% 51%
Edge 34% N.A

the system, and the application to be run, the percentage of cpu utilization varies. Running

machine learning algorithm is highly resources extensive operation. It is observed that it

takes around 51% of cpu workload to train and test the LEWS prediction model on the main

server. As raspberry pi is not as powerful as a proper linux machine, we cannot run training

operation on raspberry pi as it may result in crashing of the system. So, we instead train

the model on main server only and just test the data values on the trained model file sent by

the main server. Doing this, it just takes on average 34% of cpu utilization to run the model

on raspberry pi on a data value. Hence, we saved the cost of running training operation on

raspberry pi.
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4.3.3 Increase in the CPU Workload on the edge server on increase in the number of

connections

For addressing the situation expressed in section 3.2.2, nodeMCU searches for other avail-

able raspberry pi in the neighbouring region. It can connect to any of the rpi randomly. In

case when a particular raspberry pi starts receiving data of more than one region i.e more

than one nodeMCU, it has to process the rain data of all the regions when it suffers from

loss to the cloud server. Depending on the number of connections, there would be increase

in the CPU workload for the rpi. The graph in Fig 4.5 depicts this increase in the CPU

workload against the increase in number of connections upto 3 to a particular edge.

FIGURE 4.5: CPU workload comparison in Cloud and Edge

4.3.4 Impact of frequency at which data is sent from NodeMCU to Rpi

Addressing section 3.2.1, When there occurs connection break from edge to server, pre-

diction algorithm starts running on the edge server on the data coming from nodeMCU. It
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takes some time to run the prediction algorithm on rpi. As the data is not being stored in

the edge server, the data is processed in real time. So, depending upon the frequency at

which the data is shooted to the edge server, we observe some missed data packets. Taking

the average processing time of 9.1 sec, we observe the following trend of packet miss. So,

it can be seen that as we decrease the frequency, there is a decrease in the percentage of

missed data packets.

FIGURE 4.6: Packet Drop percentage against Frequency

4.3.5 Impact of disconnection on the accuracy of the ML model on Cloud server

When the link between the edge server and main server is not recovered for a long time,

cloud server is unable to receive the rainfall data. This prevents it to store the data of

that time interval. Hence, every time there is a disconnection, there is a penalty of data

loss which affects the training module of machine learning model. It is an incremental

machine learning model, so training is done after every fixed interval and model file is

updated. As the ML model uses antecedent rainfall analysis, so when the connection will

be regained, there would be no record of the period when there was no connection. The

model is dependent on antecedent rainfall value of last 30 days. So when new data comes

after reconnection, missing data somewhat effects the accuracy of the model and hence

prediction.
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4.3.6 Overhead of transferring Model file to the Edge server

As we explained in our proposed system, server trains the machine learning model with the

rainfall data and tests the incoming values using the trained model. This training activity

is run after every fixed interval and then the model file is sent to the edge servers. Each

edge server receives the trained model file specific to its zone. With the use of that trained

model file, edge servers test the rain data and predicts landslide. Hence, in order to make

the edge smart and do some processing, it takes a little overhead of sending the model file

to the edge servers.

4.3.7 SCREENSHOTS

The snapshots of various scenarios have been presented in this section :

FIGURE 4.7: Connecting NodeMCU to Raspberry Pi

4.4 Summary

This Chapter talks about the laboratory setup to demonstrate the working proposed model.

It lists the hardware devices along with the communication protocols that have been
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FIGURE 4.8: Antecedent Rainfall Calculation

FIGURE 4.9: Prediction on data values

used for the experimental purpose in the lab. This section also explains the machine learn-

ing algorithm that has been developed for predicting landslides. Further, various parameters

have been talked about : Recovery time, impact on accuracy of ML algorithm due to dis-

connections. Also main server and Edge server are compared on the basis of Execution
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FIGURE 4.10: Connection switch to other Raspi in case of loss to edge server

FIGURE 4.11: Server collecting rainfall data from one of the edge
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FIGURE 4.12: Raspberry Pi subscribing to the Nodemcu and forwarding data to server

FIGURE 4.13: Edge 1 receiving data from Edge 2 after connection switching and hence
giving uninterrupted transmission
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time and CPU workload. Statistical analysis of CPU workload and Packet drop percentage

has been made. Further, screenshots are attached to support the work done.

FIGURE 4.14: Prediction Algorithm being run on the edge in case of connection loss to
server



Conclusions 5
5.1 Conclusion

The proposed system is expected to make the IoT – cloud architecture as reliable as possible.

Even if the connection to main server would be down for a while , the edge server would

be readily available for processing the current incoming data from the IoT node and raise

warning alarms in case of discrepancy. The system is also expected to handle the situation

where the particular Edge server is not accessible by switching the connection to another

available edge in the range. In this manner, we can give uninterrupted service at the edge

level. So, data analysis can happen both at the Cloud server and Edge server according

to the circumstances and hence increase the system’s reliability. The proposed system can

be implemented with any other real-time IoT based systems which demand high service

reliability and delay intolerance.

5.2 Future Work

This work is a prototype developed under NMHS project to make the LEWS system as

reliable as possible by introducing the concept of Edge. For experimental purpose, the

equipment used in the project are cost friendly. As an alternative to nodeMCU and raspberry

pi, more powerful devices can be used adhering to the overall project budget which can

further optimize the network range, accuracy and efficiency of the designed system. Hence,

the developed model can be expanded further to implement it for real time scenario.
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