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ABSTRACT 

Since its public availability in 1994, RC4 has been extensively used for data – security measures. 

The specialty of RC4 lies within its formation – it is very easy to implement compared to other 

stream ciphers while providing excellent security. However, extensive research on the matter for 

more than two decades has exposed many frailties that lie within RC4 and how these frailties can 

be used to breach RC4. This has led to many modifications of the cipher along with the creation 

of various variants too. This dissertation focuses on analyzing the best of the heaps of research that 

has been done on RC4 since its birth and also to look into its computational efficiency compared 

to more modern versions of the cipher. 

 

 

 

 

 

 

 

 



1 
 

 

 

 

 

 

 

 

 

Chapter 1 

 

INTRODUCTION 

 

 

 

 

 

 

 



2 
 

1. INTRODUCTION  

Information security is becoming more and more important in our daily lives as technology 

becomes increasingly entangled in all aspects of our lives. From day to day conversations between 

friends to highly sensitive military data, everything is being passed around and this has created an 

ever-increasing necessity to keep this passage of data secured from unauthorized access to varying 

degrees. As a consequence, Cryptology, being an ancient study, is at its peak importance in our 

current society. 

The science behind the application of information security is called Cryptology. In a more modern 

context, it is the study of safe keeping of data for the purpose of storage and/or transmission such 

that any unauthorized access to the data is blocked (or made extremely difficult). To do so, it is 

required to construct complex mathematical protocols which prevent third parties the access to the 

information unless they are able to meet certain strict criterion. The science of Cryptology is 

comprised of two studies namely, Cryptography – the study of creating ciphers and Cryptanalysis 

– the study of breaking ciphers. 

Use of Cryptology has seeped into many corners – instant messaging, internet banking, using 

ATMs, satellite TVs, keyless access to cars, smart ID cards and many more. More sensitive use of 

cryptology is in modern military where it is used to protect strategical data such as guidance of 

missile, control systems of fighter jets, etc. It is also used for digital rights management and 

copyright infringement of digital media. 

There are various cryptographic algorithms that are being used for different kinds of Information 

security, such as product ciphers developed by Claude Shannon[1], feistel network based DES 

developed by Horst feistel[2] and many others - one of which is RC4 which is very popular and is 

currently in use in various forms of security. This work focuses on understanding the popular 

stream cipher RC4 and applying cryptanalysis on it to check for frailties within its functions which 

can be used to breach RC4 by extracting information on its internal states giving away its mask of 

randomness enabling the attackers to differ an RC4 output stream from a genuine random stream. 

The computation prowess of RC4 is also evaluated compared to recent variants of the algorithm. 
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1.1 History of RC4 

RC4 is the first known use of a dynamic permutation in stream cipher design, created by Ron 

Rivest in 1987, which is now a well-known cipher from the RSA Data Security, Inc. The algorithm 

was proprietary at the beginning but was leaked to an Internet mailing list in 1994 and since then 

people who knew about the real implementations of RC4 have passed it as authentic. Common use 

for the algorithm is in communications protocols like TLS (predecessor - SSL) and WEP, the IEEE 

802.11 wireless networking security standard. 

In general, RC4 can be described as a binary additive stream cipher which uses secret keys of 

varying sizes, usually 8 bits, in keystream. Its primary claim to fame being the elegantly simple 

way it works, allowing practical implementations be hassle free and less prone to mistakes 

compared to other ciphers of comparable security, such as DES [16]. Its use in the Wired 

Equivalent Privacy (WEP) protocol is well known, along with its use in Oracle, SSL (Secure 

Sockets Layer), TLS (transport Layer Security), SQL and Cellular Digital Packet Data 

specification among others [20]. However, it is also vulnerable to different security attacks where 

attacker’s main goal is to find biases in the pseudo-random output keystream that it generates or 

in its internal state. 

During the time when RC4 was developed, research on Stream ciphers were mostly focused on 

LFSRs – Linear Feedback Shift Registers [16]. From a mathematical standpoint, LFSRs are rather 

simple to study which made its security analysis a popular subject for research. However, LFSRs 

are rather inefficient and slow for the use of software implementation due to the use of numerous 

bit operations. 

 

1.2 History of Other Stream Ciphers 

RC4 has been a very popular cipher since its inception but it does come with a whole host of 

vulnerabilities. As research is getting more intensive on the topic, further biases and weaknesses 

are popping out. So, it would suffice to look into few other stream ciphers which are not as popular 

but have a good prospect of being used in various security measures if needed.  
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1.2.1 Salsa20 and ChaCha 

Salsa20 is a stream cipher developed in 2005 by Daniel J. Bernstein who then submitted it to 

eSTREAM. Later, in 2008, he came up with a modification to Salsa20 which he called ChaCha. 

Both the ciphers share various similarities however ChaCha improves on it by increasing diffusion 

and performing better is some architectures [21].  

Both Salsa20 and ChaCha are assembled on a pseudorandom function based on ARX (Add, Rotate, 

XOR) operations. The function consists of 32-bit addition, bitwise addition (XOR) and rotate 

operations. Its central function is to map a 256-bit key, a 64-bit nonce, and a 64-bit counter to a 

512-bit keystream block. This core functionality gives both these ciphers an excellent advantage 

over most – the user is able to effectively and swiftly seek any position in the keystream and that 

too in constant time. On x86 processors, Salsa20 clock in around 4 to 14 cycles per byte [22] with 

good hardware performance. With Bernstein’s belief in “Open Source”, neither of the ciphers are 

patented and the developer himself has worked on various public domain applications which are 

adjusted for various mutual architectures. 

1.2.2 SOSEMANUK 

Another stream cipher with promise is SOSEMANUK which was developed by Berbain C. et al. 

in 2008 [23]. It is, along with Salsa20, Rabbit, HC – 128, one of the final four Profile 1 ciphers 

chosen for the eSTREAM portfolio. 

The name translates to “Snow Snake” in Cree Indian language as it was based on the stream cipher 

SNOW and the block cipher Serpent. Compared to the cipher SNOW, SOSEMANUK performs 

better due to having a more efficient initialization phase – using a 128-bit initialization vector. For 

this cipher, the key length may range from 128 to 256 bits, however, it only guarantees security if 

the length is 128 bits. It is worth mentioning that when this cipher was being evaluated in 

eSTREAM phase 1, it was found that an attack with 2224 cost can be applied on it, but it does not 

contradict SOSEMANUK’s security claim which it guarantees up to 128bits [23]. This cipher is 

also free to be used by anyone. 
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1.2.3 PANAMA 

Panama was developed by J. Daemen and C. Clapp in 1998 presented in the paper “Fast Hashing 

and Stream Encryption with PANAMA”. It is a cryptographic primitive that can be used as a hash 

function as well as a stream cipher. However, with time, its hash function functionality has been 

cracked and now it does not serve any practical value. It can still be used as stream cipher which 

uses a 256-bit key and accomplishes impressive performance by reaching 2 cycles per byte [24]. 

1.2.4 Chameleon 

Chameleon was developed by Matthew E. McKague in 2004 at the University of Regina for the 

purpose of creating a game cipher that uses a card deck as its sole apparatus while being able to 

compete with computerized ciphers in terms of security. After the development of Chameleon, it 

was found that it has a striking resemblance to the core functionality of RC4. This was purely 

coincidental and even so Chameleon does differ in various ways from RC4 like the use of a 

“Mutating S-Box” – A new cryptographic primitive. Also, it is not a random key generator but 

rather an autokey cipher [25]. 

 

1.3 Thesis Outline 

The thesis is organized as follows:  

▪ Chapter 1 Discussion on the history of RC4, other stream ciphers and stream ciphers in general. 

▪ Chapter 2 Detailed dive in the description of RC4 

▪ Chapter 3 Studying the previous attacks on RC4 

▪ Chapter 4 Studying different variants of RC4 

▪ Chapter 5 Implementation of RC4 

▪ Chapter 6 Conclusion 
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2. A Deeper Look Into RC4 

The design of RC4 is very simple compared to other stream ciphers and it is incredibly small which 

has made it such a popular choice from security since its birth. What is even more impressive is 

that even after years of intense analysis it is still secure enough for most applications. This chapter 

is completely dedicated to the meticulous study of the inner structures of the RC4 algorithm and 

breakdown of the functions of these structures. 

2.1 The RC4 Algorithm 

To start off, we shall describe the entire RC4 algorithm in general before getting in to the details 

of its internal structures and functions. Here, we will take two n-bit arguments, i and j, and an 

array, S[ ], of size N = 2n where the n-bit words are indexed to 0 through N – 1. Any summation 

required are worked with respect to modulo N. 

The opening stage of the algorithm is called the “Key Scheduling Algorithm” which takes a key 

k[ ] that consists of l n-bit words as described in Figure 2.1. Afterwards, the second algorithm – 

“Round Algorithm”, also known as the “Pseudo Random Generator Algorithm”, is executed one 

time for each word output. This is shown in Figure 2.2. 

For most practical use cases of RC4, the value of n is kept at 8 which strikes the best balance 

between speed of processing and complexity. 

2.2 General Description 

Among the stream ciphers, RC4 is rather exceptional in regards to the internal structure, specially, 

the internal state of RC4 makes it unique. It can be described as a finite state machine which 

contains information about the internal state, a state change function that is subject to change with 

respect to the current state and an internal state dependent output function. When it is run, it firstly 

performs the state change function after that the output function. In general, this outline of 

functions can be used to describe any stream ciphers.   
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Figure 2.1: KSA - “Key Schedule Algorithm” 

Figure 2.2: PRGA – “Pseudo Random Generator Algorithm” 

. 

2.3 The Internal State 

RC4 is a binary additive stream cipher that operates on binary words of length n. It produces output 

simultaneously, one word each time, each of which can be any of N = 2n values. The pseudo-

random arrangement of these N values makes up the internal state. This collection of pseudo 

random values is denoted as S and can be thought of in several ways, but in the case of RC4 it is 

usually an array or a look-up table. This collection of random values, S, needs to be applied to a 

word and then be multiplied by a transposition. The internal state of RC4 only houses in S and the 

variables i and j. For complexities sake, the internal state space is a vital issue as it provides the 

Input – Internal State S, i, j 

i) i = i + 1 mod N 

ii) j = j + S[i] mod N 

iii) Swap - S[i] and S[j] 

iv) Output - S[S[i] + S[j] mod N] 

Input - Key k of l words  

i) for i = 0 through N – 1, 

S[i] = i; 

ii) j = 0; 

iii) for i = 0 through N – 1, 

a) j = j + S[i] + k[i mod l] mod N; 

b) Swap - S[i] and S[j]; 

iv) i = j = 0; 

Output - i, j, S 
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ceiling to a brute force attack effectiveness. If the internal state is huge, possible number of states 

may be 2(2n)(N!) which results in log2N!+2n bits of data. That means, for example, if n = 8, it results 

in about 1700 bits which makes is practically impossible to apply brute force to determine the 

internal state. Furthermore, the magnitude of the internal state also puts a ceiling on cycle length 

(number of unique outputs before it starts to repeat). The limit is that the cycle length cannot extend 

the possible number of states. Again, it shows the positives of having a huge internal state. The 

internal state also houses the variables i and j which are essential mechanics to manage the state 

change and output function by working as indicators in the table S. 

2.4 The State Change Function 

When the state change function works, it modifies both the variables i and j and also the table S. 

This occurs during the first three steps of the round algorithm mentioned earlier. Step 1, variable i 

is incremented simultaneously for N rounds, so it indicates each element of the table S once. So, 

when the swap function occurs, after N rounds, all elements of S are scrambled. The variable i is 

set as a constant in the beginning and is not tied to S, but, in step 2, the variable j is added with 

S[i] and is not independent and private. So, if S is a function that is pseudo random, j is a variable 

that is pseudo random that “randomly” indicates to different elements of S. Step 3 can be 

considered as the most important step of the function where S[i] and S[j] are swapped which is 

like shuffling the table S with two elements at a time. By the time all the elements are traversed, 

the whole of table S is completely randomized. The output sequence and the traversal of variable 

j are both tied to the table S which makes the output sequence erratic too, in turn making it 

extremely difficult to practically predict the output stream. 

It is worth mentioning that the state change function is reversible, i.e., preceding states of the 

function are not lost and can be retrieved using the current state and the state change function. This 

attribute is useful to create longer cycle lengths as reversibility means all possible states of the 

function are available, which creates higher entropy in the output sequence. As the output stream 

can only use the information that are available, lack of reversibility would result in lost states 

causing an overall decrease in information and making the output sequence more predictable. 

Mathematically, the average cycle length is 
2𝑚

2
 for m bits of data in a randomly chosen state change 

function. If the function is reversible however, that cycle length averages at 2𝑚 − 1 [7]. 
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2.5 Output Function 

The table S is not truly random, which is why the two variables i and j are used to find two pseudo 

random numbers S[i] and S[j]. These numbers are added together and mixed with S once more to 

complete the procedure. These layers of operations do serve a purpose – as S is not truly random, 

it harbors biases which are made discreet by the multi-level use of S. Also, as the variable i is 

known publicly, it can be used to garner information about the table S which is why both variables 

i and j are used. Finally, an addition operation is performed that blends the whole words. 

2.6 KSA – The Key Schedule Algorithm 

As the PRGA, Pseudo Random Generator Algorithm, has no dependencies on a key, it leads to 

inconveniences that can be solved by an algorithm that can create an initial state which is 

dependent on a key. This is done by the Key Schedule Algorithm – by initializing the identity 

permutation to the function S and setting j to zero. Here, the contents of S are scrambled in a 

similar way to the state change function. The incrementation of the variable j is different though 

as a key byte is added to it at each round which cycles around the key length. Using this process, 

key lengths can be varied wildly. The key schedule function ends by setting both i and j as zero 

which is only a convention as any value from 0 through N – 1 would be acceptable.  
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3. Attacks and Weaknesses 

There has been significant amount of research done on RC4 since its inception all intrigued by its 

high level of security provided its simplicity of functions. As such, many new weaknesses and 

attacks have been discovered throughout the years and researchers have also come up with 

potential modifications to counter some of these. In this chapter the most prominent attacks on 

RC4 are discussed.  

 

3.1 Attack Categories and Types of Weaknesses 

Being a stream cipher, the primary objective of RC4 is to generate an output keystream which is 

random. However, practical constraints make it so that the keystream is only pseudo-random. So, 

if an attack is able to find patterns in the RC4 keystream it is considered to be a weakness. Also, 

some attacks may be able to reveal data on the key used, partial or complete, is a weakness. 

However, these attacks are more of theoretical purpose as they are only possible if the key used is 

small, which is not the case in practical situations. In this chapter the described attacks have been 

thoroughly analyzed and are computationally feasible for practical use. The types of attacks 

described are:  

i) Key Schedule Biases  

ii) Predictive States 

iii) State Recovery Attacks 

iv) Initialization Vector Weakness 

v) Other Attacks 
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3.2 Key Schedule Biases 

Even a cipher with adequate security can be attacked by analyzing its key shuffling functions for 

related or weak keys. These attacks can be divided into multiple categories: 

i) Weak keys – A specific class of keys of the RC4 cipher leaves certain “traces” in the 

internal state space or the output keystream bytes during key scheduling. Among the 

keys in this class, a few of them generates very distinct patterns in the internal state or 

the output stream which are called the weak keys.  

ii) Related Key Attacks - If there are two keys which have a certain public connection 

between them, the resulting outputs from using those keys should not share any known 

connection. As the known information on the outputs may lead to brute force attacks 

as it leads to a lesser number of keys to search, thus decreasing the computation time 

for the key search. These attacks in general are known as related key attacks. 

iii) Key Collisions –During the key scheduling algorithm, it is possible that two different 

keys produce a similar state which will also result in output of similar streams. These 

key pairs are known to be “related key pairs” or Key Collisions. The attacker’s motive 

here is to produce such key collisions. 

iv) Key Recovery from the State – The round algorithm or PRGA (Pseudo Random 

Generator Algorithm) is reversible by design and is also one to one which grants it the 

ability to revert back to the initial state from any other state of the PRGA. But, as the 

KSA is not reversible and one to one, reversing its state to figure out the secret key is 

not simple. However, if this can be done efficiently, a state recovery attack can be 

transformed into a key recovery attack from state. 

v) Key Recovery from the Keystream – Biases in the output stream of RC4 can easily 

lead to discovery of its secret key. These biases are exploited in WEP and WPA. 
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3.2.1 Roos’ Class of Weak Keys 

Andrew Roos first publicly reported on a RC4 weakness on weak keys back in 1995 where he 

found multiple sets of weak keys which had very distinct patterns which resulted in specific 

weaknesses like biased output stream and output streams that leaked information about the used 

keys [3]. Roos analyzed the key scheduling algorithm to find a strong bias in the initial state that 

caused the the initial few output bytes to also be heavily biased. He computed his analysis 

considering n = 8 where the bias was evident for about 
1

256
 of the keys which were the class of the 

weak keys. 

The root of the bias is that there is a certain element in the state, which is indexed by the variable 

j during the KSA, has a probability of (1 −
255

256
)

256

= 0.63, considering the values of the variable 

j are uniformly distributed. What this proves is that there is a single state element (index i) that has 

been swapped only a single time with the probability at 0.37. Roos showed that the probability 

decreases from 0.37 for values from values of i increasing from zero, however, compared to the 

uniform probability of only 0.004, these values show a huge bias. The solution to this weakness is 

to discard the first few output bytes. 

3.2.2 Wagner’ Class of Weak Keys 

Inspired by Roos’ work on weak keys, Wagner made his own research on the matter and extended 

the work by analyzing Roos’ work and also discovering new weaks keys in 1995, the same year 

Roos’ discovered the first weak keys [4]. Wagner used Roos’ observation of one element i in a 

state table having 37% probability that it depends only on the elements of the key. Given the key 

K[0], K[1]…K[255], there is one element i which is solely dependent on the key with a probablilty 

of 0.37. Wagner proposed a new problem – An attacker has public knowledge of the first 10 bytes, 

K[0]. K[1], …, K[9], of a key with 16 bytes. Is it possible for said attacker to guess the remaining 

bytes? Wagner’s research showed that the knowledge of the first three bytes of the key, 

K[0],K1],K[2],  enables the attacker to know about K[10],K[11],K[12] with a very high rate of 

success. After which, the attacker can use brute force to recover the rest of the elements of the key 

with complexity now significantly down. However, this research if mostly of theoretical interest 

as the specific conditions for the test makes it improbable in real life. 
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3.2.3 Key Schedule Invariance 

There has been more sophisticated work done on weak keys by Fluhrer et. Al. [14]. For this work 

they have modified the key schedule algorithm slightly. The figure below denotes the modified 

algorithm. This weakness is dependent on the transformation of the variable j in the algorithm. 

Input - Key k (length = l) 

I. i = j = 0; 

II. Loop – N times 

a) i = i + 1 mod N 

b) j = j + S[i] + k[i mod l] mod N 

c) swap – S[i] and S[j] 

Figure 3.1: Modified KSA 

The only difference with the modified algorithm to the original key schedule algorithm is that the 

variables i and j are not equal. This is repaired using a different key described by Fluhrer et al.  as, 

“Let l and b be integers and let k be a key of length l. If k[0] = 1, the most significant bit of k[1] 

is 1, and k[i] ≡ i (mod b) for all i ≠ 0, then k is called a special b-exact key.” [14]. 

Using their method, they predicted outputs that were highly correlated with the real output for the 

initial bytes. They further tested the precision of the predicted outputs compared to the actual one 

for varying values of b. For b = 2, they predicted 20 bits of output with a probability of 2-4.2 which 

is significantly higher than the usual 2-20. With b as 16, they predicted 40 bits of output with a 

probability of 2-2.3 compared to the usual 2-40. 

 

3.2.4 Weak Keys and Related Key Attacks 

Fluhrer et. Al. [14] also worked on a related key attack based on a very specific problem. The 

problem states that if we are to implement RC4 in a black box which stores a secret key ks and it 

allows for only two operations. Operation 1: Requests the following word of the output stream. 

Operation 2: Reset machine with new key kn where kn = ks + Δ, where Δ denotes the input. The goal 

is to attack in a way to extract information about the secret key. Fluhrer et. Al. [14] were able to 
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develop an attack like that which only required 240 operations compared to 2256 for a brute force 

attack.  

Given the test case, this attack is mostly of theoretical value as a practical situation like that is not 

likely to occur. Nonetheless, the weakness can be cured substantially by discarding the initial few 

output bytes. 

3.2.5 Grosul and Wallach Related Key Pairs 

The first discovery of key collisions was done by Grosul and Wallach in their paper “A Related 

Key Cryptanalysis of RC4” in 2000 where it was observed that when RC4 is initiated with a single 

2048 bit key, there exists related keys pairs for which the output streams of the first hundred bytes 

are well correlated after which they deviate. However, when they tried their experiment with 

keypairs of 256 bytes, the attack was not useful which made them conclude that their attack is of 

only theoretical significance as usage of a practical key length in RC4 makes the attack moot. 

3.2.6 Matsui Key Collisions 

Matsui [12] was the first to propose a RC4 key collision which had practical implications in 2009, 

unlike preceding works of Grosul and Wallach [11] and others. In his method, the selected keys 

had a difference of a single byte which made the opening disparity in the internal state vanish by 

the end of the key schedule. He calculated the “key-pair distance” which is the byte difference 

between two states in a given round of the key schedule algorithm. Then an algorithm was designed 

to track the “key-pair distance” throughout the run time of the Key scheduling process and 

simultaneously build related key pairs such that the “key-pair distance” does not exceed two at any 

round of the KSA. Following this process, he was able to generate practical key collisions with the 

colliding key pairs had lengths of 24, 43 and 64 bytes.   

3.2.7 Paul and Maitra Equation Solving Method 

The concept of key recovery from state has been a relatively new topic and research on it was not 

considered for a long time after the inception of RC4. Paul and Maitra [13], in 2007, kickstarted 

the research interest in this area when they started working on key recovery by solving system 

modular equations. This study was built upon the work done by Roos [3] where the associations 

between key bytes and the bytes in the initial phase of the Round algorithm are shown. The results 
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found by Paul and Mitra [13] create an arrangement of integrated equations which are able to relate 

summations of successive key-bytes to each individual byte of the initial state of the Round 

algorithm. However, the results of Roos’s work are probabilistic in nature which makes it so that 

the accuracy of the results for the bytes in the secret key have probabilistic dependency on the 

accuracy of the selected equations. Their work differs in this area as it does not depend on majority 

of the chosen equations being correct. They claim, based on results, that enough correct equations 

are obtained in most cases to find the correct key. 

3.2.8 Attacks on WEP 

At the beginning, the IEEE 802.11 standard used the WEP protocol which was based on RC4. As 

such, there has been thorough analysis on the topic which has inevitably exposed some weaknesses 

in the protocol. 

The WEP protocol is designed to be resilient against packet loss during transmission so it encrypts 

each packet discretely. As the RC4 cipher does not support the use of an Initialization Vector (IV), 

for the WEP protocol to use it, it requires a 3-byte IV along with secret key to generate session 

keys of 64 to 128 bits for every packet. As a large percentage of the plaintext in the WEP protocol 

is constant and public along with various predictable bytes, a lot of plaintext-ciphertext pairs are 

available for a potential attacker. So, the most popular attack on WEP is to recover the secret key 

through the information obtained from the plaintext-ciphertext pairs. 

In 2001, Fluhrer et. Al. [14] first conceived the idea of a related key attack on WEP. Their work 

was theoretical where they described that a success rate for WEP secret key recovery of 0.5 can 

be achieved working with around 4 million packets. However, this is based on the incremental 

Initialization Vector for consecutive packets. Later, a practical test was made on the topic was 

made by Stubblefield et. Al. [26] where they discovered the number of packets required was closer 

to 6 million. 

3.2.9 Attacks on WPA 

After the discovery of multiple weaknesses in WEP protocol, the IEEE802.11 standard switched 

to WPA protocol. In general, it is an embellishment on top of WEP as it has more elaborate key 

mixing features. To guard against the first attack on WEP by Fluhrer et. Al. [14], WPA was 
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equipped with key hashing function along with the old WEP design. It also avoids key reusage by 

using a “message integrity” feature alongside a scheme for key management. A temporal key is 

taken as input along with a transmitter address and a 48-bit IV which outputs the original RC4 key 

that does not repeat for 248
 packets. So, when this session key is obtained, the WEP algorithm is 

put in effect. This modification has made WPA lot more robust to the weaknesses of WEP. 

Sepehrdad et. Al. and Vuagnoux [15, 16] worked on finding the first practical attack on WPA to 

find the secret key in 2011. They were successful by finding distinguishers with complexity of 243 

for WPA with a packet complexity of 240 along with a probability of success of 50%. After which, 

they used a partial key recovery method to recover the complete temporal key used by WPA in the 

beginning using only 238 packets. They calculated the time complexity to be around 296 [15,16]. 

3.3 Predictive States and Distinguishers 

The primary function of the RC4 cipher is to generate a random output keystream, however, 

practical constraints only allow for the cipher to generate “Pseudo-random” bytes of output 

keystreams only. As such, the output bytes often have patterns which can be detected with feasible 

computation prowess, and such patterns become the core weakness of the cipher as they can be 

used to significantly breach its security leaking important information.  

Sometimes, the biases found in RC4 cipher is completely based on the keystream bytes which are 

known as distinguishers. The purpose of the attacks on this bias is to distinguish the RC4 generated 

“Pseudo-random” output keystream from a random keystream. R. J. Jenkins [5] found out that the 

output streams created by RC4 are slightly biased right after RC4 was publicly available in 1994. 

Mister and Tavares [6] later devised a gap length test in 1999 testing 230 elements of RC4 

keystream where they also found biases.    

More interesting and substantial work on the field was done by Mantin and Shamir in [10] and 

Fluhrer and McGrew in [8] where they have found new classes of streams that contain immutable 

biases in the output keystream. Their work area can be divided in two parts: 

i) Single key – Attacker is only aware of a single output keystream 

ii) Multiple key – The attackers knows the bytes in a fixed position for multiple 

keystreams 
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Working on single key distinguishers, J. Golic [7], in 1997, found the length of the keystream 

required to identify RC4 from a random keystream is about 240 bytes. Later, Fluhrer and McGrew 

[8] improved on it by devising a method that requires only 233.6 bytes of keystream to differentiate 

RC4 from a random sequence. 

Mironov [9] worked on multiple key distinguishers in his paper “(Not so) Random Shuffles of 

RC4” where he calculated that if the attacked is aware of the first byte of multiple keystreams, it 

would require 1700 bytes to tell RC4 from a true random sequence. Mantin and Shamir [10] 

focused their work on the second byte position where they calculated that the value zero occurs 

twice as frequently that usual. Using that pattern, they devised a method which only required 200 

bytes to be known in the second byte position to separate RC4 output from a random sequence of 

bytes. 

Before describing their work, some technical definitions about RC4 predictive states coined by 

Mantin and Shamir [10], 

Defintion 1: “An a-state is a partially specified state that includes values for i, j, and a-values in 

‘S’ where values of ‘S’ does not need to be consecutive.” 

Defintion 2: “If all states consistent with a given a-state cause the same output to be produced in 

the rth position then the a-state is said to predict the rth output.” 

Defintion 3: “Let A be an a state. If there exists some r1,……,rb  such that A predicts the outputs 

of rounds r1,……,rb, then A is called b-predictive.” 

So, it can be said that when the b outputs are correctly projected using only a values in the state, it 

can said it is a b-predictive a-state. It does not require the b values to be consecutive or follow a- 

values for this hypothesis to be true. However, it only works when b ≤ a. 

3.3.1 Predictive State Applications 

When state a and b are in close proximity, they cause biases to occur in the output. If RC4 is 

unbiased (which it is not) b outputs should occur with N-b probability in necessary positions. 

However, it is known that the states compatible with a-state produces the same result. There are 

(a + 2) constraints in a-state which accounts for N-a-2 of total states. 
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In their influential work, “A Practical Attack on Broadcast RC4”, Mantin and Shamir [10] 

describes “fortuitous attacks” as a subclass of predictive states. These attacks predict the first a-

outputs and are known as a-predictive a-states. They assessed that given n = 8, the time needed 

for the attack to complete is around 2755.2 compared to the original attack time of 2779 which was 

predicted by Knudsen et al [18]. 

This attack was further analyzed and honed by Paul and Preneel [27], in 2003, where they were 

able to prove that the “Fortuitous States” account for most of the predictive states. For instance, 

given n = 8 there will be 297 3-predictive 3-states of which 290 will be fortuitous which is why 

modifying the attack to comply general predictive states would not result in noteworthy 

enhancement in the running time. 

3.3.2 Distinguisher Using Digraphs 

In 2000, Fluhrer and McGrew [8] developed a distinguisher based on biases in consecutive pairs 

of bytes called digraphs. They did so by calculating amount of consistent states with specific 

digraphs. This test was only possible if the value of N is small, but the results indicated biases that 

are independent of N. They found 12 digraphs that continue till the end whose probabilities differ 

from the usual probability. These digraphs occur irrespective of N. Of the 12 digraphs found, 2 

were predicted by partial states which had dependencies on i and j and had 3 specified values in S 

and were 2-predictive 3-state. Further 8 digraphs were found to have a positive bias which 

belonged to class 2-predictive 2-state and were also shown to have dependency on i and j. The 

final 2 digraphs occur with less frequently and so are not considered predictive states but rather 

they belong to a general pattern which produces a particular output. 

Using a similar technique, Golic [7] was able to calculate the output stream length to be known to 

successfully distinguish RC4 output from a random sequence to be around 244.7 for n = 8. Fluhrer 

and McGrew [8] were able to decrease that complexity to around 230.6output bytes for n = 8. They 

tried to further improve this value but results based on smaller values of n suggest that the 

improvements would be insignificant. For instance, with n valued at 5, it would require 218.76 

keystream bytes using only the 12 digraphs which improves to 218.62 by using all the digraphs. 

They also contemplated on working with trigraphs but the huge computational load made it 

impractical at the time.  
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3.3.3 Broadcast Attack Using Second Byte Bias 

One of the most influential work on RC4 distinguishers has been done by Mantin and Shamir [10] 

in their paper “A Practical Attack on Broadcast RC4” in 2001. Here they found the strong bias of 

having almost double the occurrence of zero in the second position (Z2) of the output stream. This 

bias is simple in nature but the observation required elegance and after its discovery it has led to a 

new dimension in the analysis of security of RC4.Using this bias, RC4 output stream can be told 

apart from a random sequence with a very competent complexity of O(N). 

Before explaining the bias in detail, a description of Theorem 1 in the words of Mantin and Shamir 

would suffice: 

Theorem 1: “(Bias in second output word). If the initial state of RC4 satisfies S[2] = 0 and 

 S[1] ≠ 1, then the second output word will be 0. ” 

From the theorem, it is obvious the bias described is not a predictive state as the state S[1] is not 

specified as a value but rather just a constraint on which value it cannot be. The bias on S[2] can 

be calculated as there is only a single restriction on the state. So, for 
1

𝑁
 states, the output is 0 and 

for the other 1 −
1

𝑁
 states, the output will be zero with a probability of 

1

𝑁
. Combining the 

probabilities, it can be seen that it accumulates to 
2

𝑁
 which is double than the usual occurrence 

chances.  

Using this bias initial state information can be extracted by guessing predictive states with an of 

accuracy of 
1

2
. In this way, about n bits of data can be collected which is not the most effective 

attack but can be used in conjunction with Knudsen’s attack [18] to speed it up. 

It has a far more effective usage as a “strong distinguisher” where Mantin and Shamir [10] claims 

that by analyzing the second byte for about 200bytes of the output stream, they are able to reliably 

separate RC4 output from a random sequence which is leaps ahead Fluhrer and McGrew’s [8] 

complexity of 230.6 in the first byte position. 

This bias enabled Mantin and Shamir to attack RC4 on a broadcast level. The exact plaintext was 

broadcasted to multiple receivers using various random keys for encryption. During this, the 

second byte of the plaintext was correctly retrieved with the knowledge of only Ω(N) ciphertexts.  
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This attack has practical implications, like email broadcasting, where encryption of the same exact 

message may be done with multiple keys. 

3.4 State Recovery Attacks 

When considering a brute force attack on RC4, it is wise to consider that the state space of RC4 is 

about N! × N2. N! is the N Byte S array permutation space and N2 is the all possible pairs of values. 

So, if for instance, N = 256, the state space of RC4 becomes 256! × 2562 which is equal to 21700. 

This incredible size requires incredible amount of computation power, far out of the reach of 

practical computational power currently and this is the reason state recovery attacks are a very 

challenging task. 

3.4.1 Knudsen’s Attack 

Knudsen et al [18] developed an algorithm that that significantly decreases the required time to 

predict the internal state of RC4. This algorithm is based on two observations. 

Observation 1: In RC4’s internal state S, which contains N bytes, indices i and j are fixed at zero. 

The index i indicates to all the elements of the internal state in the first N outputs which makes the 

output reliant on each of the elements of the internal state. As such, this attribute can be used to 

devise a method to recover the internal state given there are N words of output. 

Observation 2: The pseudo random generator algorithm of RC4 does not use complete knowledge 

of the internal state at any one point. At max, in any given round, it is able to use only three 

elements of the internal state – S[i], S[j] and S[S[i]+S[j]]. So, it is not required to process the 

complete internal state at once for any given output. 

The algorithm developed is a branch and bound type which, with partial or no information about 

the internal state, guesses the remaining elements of the state until the values correspond with the 

output stream. It uses an output stream, ct, as its input. 
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Input – Partial output stream c0, c1, c2 

I. Initialize elements of S as unassigned 

II. i = j = z = 0; 

III. Loop 

a. i = i + 1; 

b. If, S[i] = not assigned –  

i. do, branch all values of S[i] 

c. j = j + S[i]; 

d. If, S[j] = not assigned –  

i. do, branch all values of S[j] 

e. Swap: S[i] & S[j]; 

f. t = S[i] + S[j]; 

g. If, S[t] = not assigned & cz is = not assigned in S 

i. set S[t] = cz; 

h. If, S[t] ≠ cz, (Contradiction) 

i. Close branch; 

i. z = z + 1; 

j. If, z = ouput length; 

i. Terminate operation 

ii. Output S 

 

Figure 3.2: RC4 Branch and Bound attack 

Using this method, Knudsen et al.[18] were able to recover the internal state (for n = 8) in around 

2779 steps. The typical brute force method would require 21684 steps.  

It is worth mentioning that Mister and Tavares [28] also developed a very similar model for the 

same purpose of recovering the internal state of RC4 during the same time but independently. They 

added kind of state tracker in their model which used the cycle structure of RC4. This structure 

worked better for smaller versions of RC4, say, for instance, when N = 32 it would recover the 

entire internal state in 242 steps. 
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3.5 IV weaknesses 

A special class of key schedule weaknesses in RC4 are known as IV (Initialization Vector) 

weakness. These are known information strings which can be used to extract a session key from a 

secret key. A session key makes it so that a keystream is not used twice. This weakness has led to 

various practical attacks on RC4 and is the only weakness that allows for the secret key to be 

extracted when n is set at 8. 

There are many ways to connect two information strings to gain another string some of which 

expose relation between the session and secret keys. One of the ways is to concatenate the 

initialization vector (IV) with the secret key. Alternative way is to XOR the information strings 

with each other. These key relations require strong key schedule application for information no 

not be leaked, but, the RC4 key schedule is not up to the mark for this task. This weakness in the 

Key schedule in RC4 is used by Fluhrer et al. [14] to extract the secret key in their paper 

“Weaknesses in the key scheduling algorithm of RC4”. As such, a better method to keep the key 

relations from extracting information is to use cryptographic hash functions, also suggested by 

Fluhrer et al. [14] who worked out that using this technique leads to complete immunity from 

information leakage.  

3.6 Other Attacks 

Few other prominent attacks on RC4 are described in this section. 

3.6.1 Mironov’s Analysis 

After Mantin and Shamir’s [10] broadcast attack on RC4 on the second byte bias, it has become 

common practice to discard the initial few output bytes. In the paper, “(Not so) Random Shuffles 

of RC4”, Mironov [9] analyses exactly how much data need to be dropped for RC4 to be not 

vulnerable against broadcast attacks. 

For the analysis, Mironov uses the usual key schedule setup for RC4 that contains an exchange 

shuffle which can be used to generate a random permutation if a random source of information is 

present. It works almost like a normal KSA only difference being with the element in the second 

byte position, which is actively chosen based on the key and the current state.  

He describes two distinguishers using this “exchange shuffle”. 
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Distinguisher 1: Uses a concept called “Sign of a permutation” which is described as, “The parity 

of the number of transpositions in a representation of the permutation as a product of 

transpositions” by Mironov. In the exchange swap, each swap is transposition unless two indices 

are the same, chances of which are next to nothing. This creates a bias that can be quite significant 

reaching a probability of 0.05 for N=256. However, for this to work the complete information on 

the permutation is required beforehand which makes it difficult to use. 

Distinguisher 2: A more useful weakness, to figure it out, Mironov first found that the chances of 

a specified value popping up in a specific place is not consistent for the “exchange shuffle” as it 

should be if it were truly random. This bias is calculated to be accurate to 60% for P256. Mironov 

uses this bias to prove the bias in the first byte position of the output stream of RC4. The chances 

that a word is actually part of the output depends on S[S[1] + S[S[1]]] being that word. This value 

is biased due to positional biases in the initial state which results in this distinguisher. For N = 256, 

this distinguisher can differentiate RC4 output from a random sequence by using the first 1600 

bytes of the output stream in the first position. Based on this calculation, Mironov suggests the 

initial 3N bytes should be discarded from the output stream to avoid this weakness. 

3.6.2 RC4’s Special States – The Finney States 

Immediately after the public disclosure of RC4 in 1994, Finney [29] worked out a special class of 

states in his work titled, “An RC4 cycle that can’t happen”. Generally, RC4 has a huge internal 

state which corresponds to it having large cycle lengths as well. The Finney states are special 

because a bunch of short cycles are attached with them.  

If a partial state is defined by, i = a, j = a + 1 and S[a + 1] = 1, the next state after one round would 

be i = a + 1, j = a + 2 and S[a+2] = 1. So, it can be seen that if the progression is allowed naturally, 

all the following states would be of same arrangement. For each subsequent round, all values are 

incremented except the S[a+1] which becomes S[a]. As such, after N – 1 operations, all the entries 

return to their original positions, which creates a short cycle recurring after N(N – 1) rounds. 

3.6.3 Golic’s Distinguishers 

Golic [7] published a different kind of attack on RC4 early in its life. This technique uses linear 

analysis which says that it was not built for RC4 specifically but rather for attacking LFSRs and 
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block ciphers. The attack is based the attribute of RC4 that its S permutation progresses gradually 

where each new step of S is closely approximated by S immediately before the swap. Golic uses 

linear equation to predict the most insignificant bit of S. These two processes tie in to relate the 

least significant bit of an output byte and the successive byte. Using the bias, Golic requires to 

know 240 bytes of the output sequence to differentiate RC4 output from a random byte sequence.  

3.6.4 Paul and Preneel’s Distinguishers 

Influenced by the Mantin and Shamir on the second byte bias [10], Paul and Preneel [27] analyzed 

the digraph frequencies of the first two bytes of RC4 output streams. They identified a bias against 

equal bytes. The premise of the bias is that if in the initial state S[1] is equal to 2, then the first two 

output bytes are never same. So, the first 2 bytes of the output stream cannot be equal for 
1

𝑁
 of the 

time and not equal the rest of the time. So, it can be calculated that the probability is about  
(1− 

1

𝑁
)

𝑁
, 

less than the usual probability of 
1

𝑁
. The authors found that to detect the bias, it takes around 224 

streams. 
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4. RC4 Enhancements 

In this chapter various new variants of RC4 are discussed which are produced by researchers over 

the years with enhancements for specific weaknesses. 

4.1 RC4A 

S. Paul and B. Preneel described a new variant of RC4 in 2004 called RC4A in their paper “A New 

Weakness in the RC4 Keystream Generator and an Approach to Improve the Security of the 

Cipher”. They studied the weaknesses of RC4 cipher and to augment the security, they proposed 

the use of two S-boxes, S1 and S2, instead of one, and called the new model – RC4A [30]. 

In RC4A, the key scheduling algorithm is as in the usual RC4 cipher except that the use of two S-

boxes now requires the use of two separate secret keys. In the pseudo random generator algorithm, 

the variables j1 and j2 are used to update S1 and S2 respectively, throughout the shuffle exchanges. 

The alterations done is in the index S1[i] + S1[j] where it is evaluated on S1 but generates output 

from S2, and vice-versa. 

Input 1 – S1 [0 – (N – 1)] key-dependent scrambled permutation 1 

Input 2 – S2 [0 – (N – 1)] key-dependent scrambled permutation 2 

I. i = j1 = j2 = 0;  

II. i = i + 1; 

III. j1 = j1 + S1 [i]; 

IV. Swap (S1 [i1], S1 [j1]); 

V. t1 = S1[i] + S1 [j1]; 

VI. Output = S2 [t1]; 

VII. j2 = j2 + S2 [i]; 

VIII. Swap (S2 [i], S2 [j2]); 

IX. t2 = S2[i] + S2 [j2]; 

X. Output = S1 [t2]; 

Figure 4.1: RC4A PRGA 

RC4A improves on RC4 by requiring less CPU cycles to generate the output as it only needs to 

increment the index i once to produce two successive output bytes. 
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Distinguishing attacks have been produced for RC4A by A. Maximov [31] which requires to know 

258 output keystream bytes to be able to tell RC4 output from a random string. This was 

subsequently improved on by Y. Tsunoo et al. [32] who were able to decrease the length needed 

to decipher RC4 to 223 bytes only. 

4.2 RC4B 

Developed by M. E. McKague in his master’s thesis “Design and Analysis of RC4-like Stream 

Ciphers” in 2005 to increase the overall security of RC4 and called it RC4B. The concept is to 

replace one of the input streams of RC4 and change it to something else. For RC4B, McKague 

used and N-cycle to replace the variable i. It constituted an algorithm which had a state change 

function that it dependent on the key which makes it more secure as it is now able to hide every 

information on its internal state. 

With the change in input, RC4B requires a modified Key schedule algorithm as to RC4. The 

algorithm is given in the below figure. The algorithm was modified not only to be able to adjust 

for the change in input, but also to be more secure. The inter state in the new KSA is shuffled two 

times to decrease chances of creating “Fortuitous States" as described by Mironov [9]. 

Input 1 - Key k (Length l1) 

Input 2 - IV v (Length l2 = l1  − 1) 

I. for, i = 0 through N – 1, 

a. S[i] = i; 

II. j = 0; 

III. for, i = 0 through N – 1, 

a. j = j + S[i] + k[i mod l1 ] mod N 

b. Swap (S[i] & S[j]); 

IV. t = S[0]; 

V. for, i = 1 through N – 1, 

a. K[t] = S[i]; 

b. t = S[i]; 

VI. K[t] = S[0]; 

VII. j0 = S[j]; 
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VIII. for, i = 0 through N – 1, 

a. j0 = S[j]; 

b. j = j + S[j0 ] + v[i mod l2] mod N; 

c. Swap S[j0 ] & S[j]; 

IX. i = S[j]; 

Figure 4.2: RC4B KSA 

The second function used in RC4B is almost identical to RC4 with the difference being the change 

of incrementing i to incrementing N-cycle K in its place. 

I.  i = K[i]; 

II. j = j + S[i] mod N 

III. Swap (S[i] & S[j]) 

IV. Output S[S[i] + S[j] mod N] 

Figure 4.3: RC4B PRGA 

4.3 VMPC  

The VMPC cipher, which can be described a generalization of RC4, was developed by Zoltak [34] 

at FSE in 2004 at the same time as RC4A. In general, it changes the output function and the j 

update to essentially increase security. The name VMPC comes from “Variably Modified 

Permutation Composition”. The KSA of VMPC converts a secret key into a permutation of S and 

initializes a variable j. The VMPC function used for the cipher can be defined as:  

S[S[S[x] + 1]]. 

Input 1 – Array of Secret key, K[0...(l − 1)] 

Input 2 – Initialization Vector Array, IV[0...(l − 1)] 

I. for i = 0 through N – 1 

a. do, 

b. S[i] = i; 

c. j = 0; 

II. end; 

//Key Scrambling Phase 
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III. for m = 0 through 3N – 1 

a. do, 

b. i = m mod N; 

c. S[j + S[i] + K[m mod l]]; 

d. Swap (S[i], S[j]); 

IV. End; 

// Scrambling with IV 

V. for m = 0 through 3N – 1 

a. do, 

b. i = m mod N; 

c. j = S[j + S[i] + IV[m mod l′ ]]; 

d. Swap (S[i], S[j]); 

VI. End; 

Figure 4.4: VMPC Key Scheduling Algorithm 

This function is used in VMPC PRGA to output keystreams and update S. The goal here is to 

restrict information leakage of the internal state S. The way the algorithm is set up creates 

interruptions in the exchange cycles forcing attackers to predict every state of the internal state in 

order to extract information. 

Input 1 - S[0... (N – 1)] // A key-dependent scrambled permutation 

Input 2 – Variable j //Key Dependent 

I. i = 0; 

II. Loop //output key generation 

a. j = S[j + S[i]]; 

b. t = S[i] + S[j]; 

III. Output z = S[S[S[j]] + 1]; 

IV. Swap(S[i], S[j]); 

V. i = i + 1; 

Figure 4.5: VMPC PRGA 

VMPC is resilient to first byte bias and digraph frequencies. However, distinguisher attacks are 

possible and was tested by Maximov [31], who calculated it requires 254 known keystreams of 
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output to properly identify VMPC output from a random sequence. Later, Tsunoo et al. [32] 

devised a more proficient distinguisher attack that only needed 238 known keystreams to decipher 

VMPC from a random stream. 

4.4 NGG 

NGG, named after the initials of the creators, was developed to build RC4 to 32 or 64 bits while 

making the state space much smaller than 232 or 264 [35]. At first, the algorithm was known as 

RC4(n,m) where N is the size of the state array and is 2n and m is the word size in bits. NGG and 

RC4 internal functions, KSA and PRGA, has similarities such as the increment process of the 

variables i and j. The difference in KSA being the internal state S is initialized to a preprocessed 

array a which is random. Later, S[i] and S[j] are swapped and the sum of these elements are 

assigned to S[i]. 

Input 1 – Array of Secret key, K[0...(N − 1)] 

Input 2 – Random Permutated Array, a[0...(N − 1)] 

I. for i = 0 through N – 1 

a. do, 

b. S[i] = ai; 

c. j = 0; 

II. end; 

//Key Scrambling Phase 

III. for i = 0 through N – 1 

a. do, 

b. j = (j + S[i] + K[i]) mod N; 

c. Swap (S[i], S[j]); 

d. S[i] = (S[i] + S[j]) mod M]]; 

IV. End; 

 Figure 4.6: NGG KSA 

There are differences in PRGA of both ciphers as well. In the NGG PRGA, a pseudo random 

element is sent to the output and then it is modified by the summation of two other elements of the 

internal state S. 
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Input 1 - S[0... (N – 1)] // A key-dependent scrambled permutation 

I. i = j = 0; 

II. Loop //output key generation 

a. i = (i + 1) mod N; 

b. j = (j + S[i]) mod N; 

III. Swap(S[i], S[j]); 

IV. Output z = S[(S[i] + S[j]) mod M) mod N]; 

V. S [((S[i] + S[j]) mod M) mod N] = (S[i] + S[j]) mod M; 

 Figure 4.7: NGG PRGA 

 

4.5 GGHN 

GGHN, which is also named after the initials of its creators, is another version of the previously 

described NGG cipher. The main difference between them being an added index, denoted by k, is 

used to enhance the security levels. This new index is initialized in the key schedule function of 

the algorithm which is also made to be key dependent. The key schedule function loops a certain 

number of time which is denoted by r which is dependent of certain parameters (n,m). So, for 

instance, if n is 16 and m is 64, then r would be 48. 
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Input 1 – Array of Secret key, K[0...(N − 1)] 

Input 2 – Random Permutated Array, a[0...(N − 1)] 

Output 1 – A scrambled array S[0…(N – 1)] 

Output 2 – A secret variable k which is key dependent 

I. for i = 0 through N – 1 

a. do, 

b. S[i] = ai 

c. j = k = 0 

II. End 

// Scrambling the key 

III. Repeat 

a. for i = 0 through N – 1 

i. do, 

ii. j = (j + S[i] + κ[i mod l]) mod N; 

iii. Swap(S[i], S[j]); 

iv. S[i] = (S[i] + S[j]) mod M; 

v. k = (k + S[i]) mod M; 

b. End 

IV. Repeat for r iterations. 

Figure 4.8: GGHN KSA 
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The PRGA is used identically as like NGG cipher – to update the internal state S and to disguise 

the output.  

Input 1 - S[0... (N – 1)] // A key-dependent scrambled permutation 

Input 2 – A secret variable k which is key dependent 

Output – Variable z; //Pseudo-random keystream bytes 

I. i = j = 0; 

II. Loop // Output Keystream Generator 

a. i = (i + 1) mod N; 

b. j = (j + S[i]) mod N; 

c. k = (k + S[j]) mod M; 

d. Output z = S [(S[i] + S[j]) mod N + k)] mod M; 

e. S [(S[i] + S[j]) mod N] = (k + S[i]) mod M; 

Figure 4.9: GGHN PRGA 

H. Wu, in his work, “Cryptanalysis of a 32-bit RC4-like Stream Cipher”, devised a distinguisher 

attack on GGHN cipher which only required the information on 100 initial keystream words [37]. 

Y. Tsunoo et al. also devised a distinguisher attack on GGHN based on biases in the first- and 

second-byte positions, which required the information of around 230 keystream bytes [32]. 
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5. Implementation 

In this chapter we show some implementations on the RC4 cipher and its variants. A general 

implementation of the basic RC4 code and how its encryption and decryption works is shown in 

the beginning, followed by a comparison study between RC4 and a modified version of it is shown.  

5.1 RC4 

5.1.1 Basic Encryption 

Given below is a basic encryption function using RC4. Here the key K used is “secretkey” and the 

plaintext P is “rocky”. Using these two inputs, the algorithm is able to generate a ciphertext 

“\xd7\xc7\xbfw5”.  

 

Figure 5.1: A Secret key and plaintext merged to create a ciphertext 

For this implementation, the word size n is set at 8. This results in an internal state space of 2n, i.e, 

256. So, the S-box array S[ ] is set at 256 state spaces – S[0], S[1], S[2],…., S[253], S[254], S[255]. 

By tradition, the S-box array is initialized with S[n] = n, so S[13] = 13, S[253] = 253 and as such. 

Then the plaintext and secret key are transformed in to ASCII form and if the length of secret key 

is less than the state space, then the key is padded by repeating itself until it is of length 256 bytes. 

 

index 0 1 2 3 4 

plaintext r o c k y 

ASCII 114 111 101 107 121 

Table 5.1: Plaintext ASCII conversion 
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Index 0 1 2 3 4 5 6 7 8 

key s e c r e t k e y 

ASCII 115 101 99 114 101 116 107 101 121 

Table 5.2: Key ASCII conversion 

index 0 1 2 3 4 5 6 7 8 9 10 11 12.. 

key s e c r e t k e y s e c r.. 

ASCII 115 101 99 114 101 116 107 101 121 115 101 99 114.. 

Table 5.3: Repeating key patterns to fill 256 state spaces 

After the S-boxes are initialized and the key is converted and padded, the permutation part of the 

algorithm takes over. The key first goes through the Key Scheduling Algorithm for the first set of 

swapping. Then it goes in to the Pseudo Random Generator Algorithm where it is permutated again 

and then generated as a pseudo random keystream. 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Pseudo 

Random 

key 

“ Ć e o } z o g Ć y r o w o 

ASCII 126 127 101 111 125 122 111 103 127 121 114 111 119 111 

Table 5.4: Keystream generated after input key is permuted through KSA and PRGA 

For this test, the output stream length was set to 14, so the plaintext had to be padded too. 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Padded 

plaintext 

r o c k y r o c k y r o c k 

ASCII 114 111 101 107 121 114 111 101 107 121 114 111 101 107 

Table 5.5: Padded plaintext with pattern repetition to fill 14 bytes. 

After the pseudo random keystream is generated, the ASCII Codes of the keystream and padded 

plaintext are generated. These ASCII codes are then binarized. Then the binary values of the 

plaintext and keystream are XORed to find the ciphertext as a binary value. That binary value is 

transformed into decimal to find the ASCII Code of the ciphertext. Then gathering the 

corresponding symbols of the decimal values from the ASCII table generates the Ciphertext. 
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Index Plaintext ASCII Binary 

 0 r 114 01110010 

1 o 111 01101111 

2 c 101 01100101 

3 k 107 01101011 

4 y 121 01111001 

5 r 114 01110010 

6 o 111 01101111 

7 c 101 01100101 

8 k 107 01101011 

9 y 121 01111001 

10 r 114 01110010 

11 o 111 01101111 

12 c 101 01100101 

13 k 107 01101011 

Table 5.6: The padded plaintext is converted to ASCII code first and then binarized. 

Index Pseudo-

Random 

Keystream 

ASCII Binary 

0 “ 126 01111110 

1 ć 127 01111111 

2 e 101 01100101 

3 o 111 01101111 

4 } 125 01111101 

5 z 122 01111010 

6 o 111 01101111 

7 g 103 01100111 

8 ć 127 01111111 

9 y 121 01111001 

10 r 114 01110010 

11 o 111 01101111 

12 w 119 01110111 

13 o 111 01101111 

Table 5.7: The pseudo random keystream is converted to ASCII code first and then binarized. 
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Plaintext 

(Binary) 

XOR Pseudo Random 

Keystream (Binary) 

Ciphertext 

(Binary) 

Ciphertext 

(ASCII-

decimal) 

Ciphertext  

01110010  01111110 01011000 92 \ 

01101111  01111111 01111000 120 x 

01100101  01100101 01100100 100 d 

01101011  01101111 00000111 7 7 

01111001  01111101 01011100 92 \ 

01110010  01111010 01111000 120 x 

01101111  01101111 01100011 99 c 

01100101  01100111 00000111 7 7 

01101011  01111111 01011100 92 \ 

01111001  01111001 01111000 120 x 

01110010  01110010 01100010 98 b 

01101111  01101111 01100110 102 f 

01100101  01110111 01110111 119 w 

01101011  01101111 00000101 5 5 

Table 5.8: Forming the final ciphertext. 

This is a simple encryption function in RC4 and the decryption function can be done by XORing 

the ciphertext with the keystream. 

5.1.2 Processing Time on Varying Key Lengths 

The RC4 cipher’s primary function is the randomization of its secret key. The two internal 

functions both serve this purpose. The secret key goes through KSA for the sole purpose of being 

scrambled. Then, the scrambled value goes to PRGA where it goes through another level of 

randomization before the pseudo random keystream is generated. So, this processing of the secret 

key takes the highest level of computation power for RC4. So, this test was devised to check the 

difference in processing times for increasing key sizes.  
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Test Secret Key Length Processing Time (Seconds) 

1 5 0.6987 

2 10 0.7003 

3 15 0.7080 

4 20 0.7067 

5 30 0.7131 

6 40 0.7192 

7 50 0.7281 

8 60 0.7359 

9 70 0.7431 

10 80 0.7498 

11 100 0.7612 

12 120 0.7758 

13 160 0.7913 

14 200 0.8133 

15 256 0.8338 

Table 5.9: The change in processing time based on increasing Secret Key Length 

 

Figure 5.2: Processing time versus increasing secret key length. 
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Figure 5.3: Encryption using the maximum sized secret key – 256 bytes.  

5.2 RC4 vs RC4 – Fact 

As previously described in this thesis, there have been many researches done on RC4 to figure out 

its weaknesses and many people have found many weaknesses and corresponding attacks for it. 

As a consequence, there have been various modifications done on it as well, which have also been 

described previously. One of the more recent modifications done on RC4 was by A. M. Sagheer 

et al. [38] which is more subtle than others. Published on December 2016, the new model adds 

factorial functions in both KSA and PRGA to increase complexity by enhancing key 

randomization but also decreases computation time compared to RC4.  

5.2.1 Algorithm Modifications 

Here, the modified KSA and PRGA of RC4 – Fact with the factorial functions are shown. 
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INPUT – variable x //Key  

I. For x = 0 through 255, 

a. S[x] = x; 

II. For x = 255 through 0, 

a. For c = 1 through x, 

i. S_Fact[x] = (S_Fact[x] *c) mod 256 

b. y = 0; 

III. For x = 0 through 255, 

a. y = (S_Fact[x] + S[x] + Key[x mod l]) mod 256 

b. Swap (S[x], S[y]) 

IV. Output: S[x] 

Figure 5.4: Modified KSA for RC4 – Fact 

INPUT 1 - S[x] 

INPUT 2 – x 

I. x = y = 0; 

II. Loop //Output generation 

a. x = (x + 1) mod 256 

b. y = (S [(y + S[x]) mod 256]) mod 256 

c. Swap(S[x], (S-Fact [y] mod 256)) 

d. Z = (S[(x + y) mod 256] + S[(y + S[S[x]]) mod 256]) mod 256 

e. Key sequence = S [Z] 

III. Output: Key sequence 

Figure 5.5: Modified PRGA for RC4 – Fact 
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5.2.2 Comparison Between RC4 and RC4 – Fact 

The test devised is to check for the computation time required for both the algorithms to perform 

a complete encryption cycle with varying key lengths. 

Test Secret Key Length Processing Time (Seconds) 

1 5 0.7087 

2 20 0.7203 

3 40 0.7380 

4 70 0.7467 

5 100 0.7531 

6 130 0.7692 

7 160 0.7781 

8 190 0.7959 

9 220 0.8331 

10 256 0.8598 

Table 5.10: RC4 runtime with varying key sizes 

Test Secret Key Length Processing Time (Seconds) 

1 5 0.6298 

2 20 0.6409 

3 40 0.6577 

4 70 0.6656 

5 100 0.6847 

6 130 0.6984 

7 160 0.7198 

8 190 0.7277 

9 220 0.7356 

10 256 0.7467 

Table 5.11: RC4 – Fact runtime with varying key sizes 
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Figure 5.6: Comparison of processing time for a complete encryption cycle between RC4 and 

RC4 – Fact. 

The results show a consistent decrease in the runtime of RC4 – Fact compared to RC4 over 

increasing key sizes indicating a more efficient model. 
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6. Conclusion and Future Work 

RC4 has been in use for a long time and it is a testament to its accessibility and corresponding 

security. However, with time and ever-increasing devotion from researchers, multiple leaks have 

been found and the number seems to be increasing. As a result, there have been many modifications 

and variants proposed and produced till now. It is essential to keep up the cat and mouse game of 

finding weaknesses and its subsequent adjustment, as continuing this cycle would lead to more 

and more secure ciphers while keeping the elegantly simple core of RC4 alive. 

However, something new is arising from the horizon of the field of computation that not only 

threatens RC4 but modern data security as a whole – Quantum Computing. This enables never 

before seen computation power which blows our current model of computing completely out of 

the water. Theoretical work has been going on for a while with recent researchers have found 

applied success as well, though superficial. So, it seems inevitable that the cryptographic model 

has to be revamped according to the conventions of quantum computing – the sooner the better. 
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