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Abstract

The success behind Deep Learning have mostly relied on Convolutional Neural

Network. Convolutional Neural Networks became popular because of their effi-

cient ability to exploit significant statistical properties of images, audio and video

data which allows depicting long range interactions in the form of smaller, local-

ized interactions. In Machine Learning, localized feature in the regular domain

boosted the use of Convolutional Neural Network, with great advancement in the

image processing and classification. But there exist some domains such as social

networks, bio-informatics data which lack few or all of these fundamental statis-

tical properties and considered as the high-dimensional irregular domain. Being

non-trivial in the design and convolution of a kernel filter there arises an issue

with the use of Convolution Neural Network within irregular spatial domain. So-

lution to this problem can be in two direction, where one is to represent these high

dimensional irregular domains using graph and then use graph signal processing

methods and theorems to execute convolution on graph structure of irregular do-

main to extract features maps to learnt filters. So, graph convolution and pooling

operators like those for regular domain can be a solution to this problem. Other

solution to this problem can go in a direction where by calculating gradients on the

data input and spectral filter, can achieve deep learning of a problem of irregular

spatial domain. Here we will focus on general query of how to build deep net-

works on non-Euclidean domains in context of spectral theory over graphs with

small complexity in its learning. Importantly, the suggested method will offer

almost the same constant learning and computational complexity as offered by

standard CNNs and extended to any graph structures. The experiments carried

on MNIST and Pascal VOC 2012 datasets depict the ability and efficiency of the

proposed deep network to learn the statistical and compositional features of these

high-dimensional irregular domains as represented through graphs.
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Chapter 1

Introduction

In recent times, for classification problems the computer vision and machine learn-

ing community has seen a revival in the practice of deep learning and neural

network. The neural network models have efficiently been applied to a wide va-

riety of work ranging from pattern recognition, computer vision and modeling to

NLP(Natural Language Processing). The foundation of their success and research

lies on an important assumption on the properties of data, the properties like ”

stationarity” and ”compositionality ” by using local statistics present in images,

audio and video data. Since the properties are within regular domain and fully

connected neural network are used efficiently in [17, 20] to extract the local features

present across the domain of signal. ConvNets[30], analogous to deep network ar-

chitecture has greatly decreased the count of parameters without compromising

the capacity to extract descriptive statistics from the input data. Convolutional

Neural Network [24] gave an efficient way to extract features with the help of ker-

nel filter convolution across the spatial domain of input data. CNNs played a great

role in pattern and image recognition, such as face detection[22], text analysis etc.

Convolutional Neural Networks (CNNs) have been proved an extremely efficient

architecture for those problems in machine learning where to represent the data

the coordinates have a grid like structure and the data has translational invari-

ance or equi-variance. The example of such data can be imagined as defining

signals on a low dimensional grid. Images [20, 21], Speech[17] and video [37] are

examples which resides under this category. Translational operator on the grid de-

fines the stationarity, metric of grid defines the locality and multi-resolution and

down-sampling property of the grid defines compositionality. Yet there are many
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Introduction 2

examples of datasets are there that lack these low-dimensional grid properties and

hence make it difficult for the convolutional neural network to classify such high-

dimensional grid. Computer vision and audio being the major research area of

deep learning only depicts the special type of data described on an absolutely low

dimensional graph. The complex graph which we encounters in the other domains

might be of higher dimension and their fundamental statistical properties might

lack stationarity, locality and compositionality.

Convolutional Neural Networks acknowledges the local features over a data do-

main by extracting the stationarity property of the given input signals locally.

Localized convolutional kernels which are learned from the input data identifies

these identical features independent of their locations spatially because they are

shift-invariant kernels. User data lying on social networks, genetic data, text docu-

ments on word embeddings, or data logs on telecommunication networks are some

of the important examples of datasets residing in the non-Euclidean domain or

irregular domains and these datasets can be structured using graphs.

The idea of ConvNets brought up the hidden convolutional layers and pooling

layers to analyze structurally localized feature maps in kernel form using set of

receptive fields [12]. The input data once fed to the convolutional layer then the

operator convolves kernel filters in the structural domain of the input data along

with the user specified parameters such as stride and padding. In response to

these filters, the convolutional layer will return the feature maps. If the input is

given through multiple channels then the resulting feature map can be obtained

as summation of convolution with each filters for separate channels. In pooling

layer in CNN, operator is used to reduce the resolution of responses to each kernels

(feature maps) in the structural dimension of input data without altering the count

of feature maps. With the help of pooling, the network is able to generalize the

feature map by resolution reduction and handles the increasing count of the feature

maps. Average and max of cells in the input feature map are basic operations in

the pooling layer[3].

So far the use of convolutions was for extracting feature maps with an assumption

that the input data provide some structural locality. In many implementation

of CNNs, the convolutions on the spatial domain is well presented, but problem

arises when we shift to irregular domains. Defining a kernel filter for an irregular

domain is non-trivial, hence identifying a way to translate such a kernel filter in

the spatial domain is difficult[30].
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Graphs are the common form of data representation for defining geometry of data

in various applications, considering social, sensor and artificial neural networks.

The edge between vertices having some weight defines how similar they are. In

recent advancements in the image processing, graph -based approaches that con-

struct graphs to connect the pixels of an image based not only on how close they

are physically but also on image’s noisy version[5]. There are many question that

are required to be answered like- How we can process the data on irregular do-

mains? How to extract feature maps using convolutional neural network over an

irregular spatial domain? These are the questions that highlights the branch of

graph signal processing. Both a discrete-time signal with V samples and a signal

residing on graph with V vertices can be shown as vectors in RV . If the processing

of graph signal is carried in similar way like the discrete-time signal, it avoids the

primary dependencies stemming from the irregular spatial domain[39].

Therefore, the major challenges in graph signal processing are

1. The graph is not directly given to us by the application problem and making

it difficult to decide how to construct an undirected weighted graph that can

preserve the geometric structure of the latent data domain.

2. Including graph structure in the localized transforming methods.

3. Applying the priceless insights from researches of graph signal processing in

regular domain to irregular domain.

4. Implementation of these localized transform, to extract feature maps from

graph signals on irregular input data domain.

To solve the above challenges, graph signal processing [36] combines concepts from

both spectral graph and algebraic concepts with harmonic analysis. The spectral

graph theory has been proved as a tool to describe the frequency spectrum and the

foundation of graph Fourier transform[4]. The spectral construction of graph is

based on the fundamental characteristics of convolution over the Fourier transform.

In RV , convolutions are like linear operations which are diagonalized with the

Fourier basis exponent. Due to this the convolution can be widened to common

type of graphs by evaluating their respective ”Fourier” basis. Graph Laplacian[28],

which give a harmonic analysis provided this correspondence in the graph spectral

domain and it requires O(V ) parameters per feature maps . It also allow a highly
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efficient forward propagation and using Laplacian spectrum[16] for mining feature

maps during gradient descent provide derivative for backward propagation of the

errors.

Although the graph Fourier transform aids the working over graph signals, the

computational cost required in convolutional layer for the eigenvalue decomposi-

tion and storing the Fourier basis can be prevented as per our proposed model.

The idea of generalizing convolutional neural networks is not simple because the

convolution and pooling operators are only described for the regular domain grids.

The concept of extending it for the irregular domains makes it challenging in both

the way theoretically and practically. Defining localized graph filters responsible

for the evaluation and learning are proved to be the major obstacle in this general-

ization.Convolution being an expensive task for irregular domain problems, there

is research going on the graph convolution and pooling with data as an arbitrary

graph[28].

Particularly, the proposed work will constitute the following:

1. Spectral Formulation: Using established tools defined in graph signal process-

ing, a spectral theoretical formulation of CNN’s is established on graphs.

2. Highly localized filters: The spectral filters proposed using enhancement, found

to be localized strictly within a radius around the vertex.

3. Better computational complexity: Our filters performs linearly w.r.t to its

input size. Generally, most of the graphs in real scenarios are highly sparse,

resulting in linear complexity w.r.t input data size. In addition, this method do not

require Fourier basis for its computation, thus avoiding the expensive eigenvalue

decomposition used to evaluate it, and the space used for storing the basis. This

is really fruitful while working with limited GPU memory. Along with the data,

the proposed method needs the storage of Laplacian matrix, which is sparse in

nature.

4. Efficient pooling: Like pooling of one-dimensional signals, we are applying an

efficient pooling method on graph by rearranging the vertices as a binary tree

structure.

5. Experimental results: Experiments proves the model as useful and computation-

ally better and efficient both in accuracy and complexity to the earlier spectral
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graph CNNs introduced in [5]. It also shows that the network model performs

analogous to a standard CNNs on MNIST and Pascal VOC 2012.

Before the input data fed to our model, it requires some preprocessing as our

datasets is in form of images(.png), but our Graph CNN requires input data to

be in form graph which can be well presented using the adjacency matrix. To

obtain an adjacency matrix from an image, a segmentation algorithm will be used

followed by another algorithm making the adjacency matrix from the segmented

images.

Figure 1.1: Preprocessing of an image to a graph with vertices as superpixels

In Figure 1.1, it is presenting the preprocessing required for the proposed methods.

The image is first segmented using SLIC algorithm where we get the image with

100 segments consisting of super pixels and then the graph is constructed with

the obtained super pixels over the image using RAG(Region Adjacency Matrix)

which is suitable and as required by our proposed model.

In this method, using graph signal processing in irregular domain for CNNs we

will be analyzing two different graph pooling operators and will give the impact of

interpolation for recognizing local filters in the graph spectral domain[39]. These

calculations are proved to be consistent with the earlier methods, hence beneficial

for the network. Results are evaluated on the Pascal VOC2012 and MNIST dataset

on irregular grid.



Chapter 2

Related Work

2.1 Literature review

Most of the real-world important datasets appear in an arrangement like a graph

or network [25] like WWW, molecule interaction and social network etc. Yet till

now, only a slight interest has been shown to the generalization of Convolution

neural network model to such type of datasets.

In recent times, few researchers highlighted the issue of generalizing convolution

networks to work on an arbitrary and irregular structured graphs and few of them

are coming with better results in the spectral domain of graphs[5]. Some re-

searchers are utilizing graph convolutions popular from the spectral theory of

graphs to give description of filters that are applied in a neural network model

[36, 38].

Now-a-days, most of the work is being done in a direction to fulfill the rift between

slow and fast heuristics spectral methods. Deferred et al.(NIPS 2016) used the

Chebyshev polynomials with parameters that are being learnt in a model like

neural network to approximate filters in the graph spectral domain and attained

promising output on MNIST dataset(regular domain), close enough to those of a

simple two-dimensional convolutional neural network model. It is important to

mention that the present neural network models faces some sort of issues when

applied to regular graphs like chains or grid etc. Deffered et al. (NIPS 2016) gave

a solution but a local spectral reduces to rotational symmetric filters and can never

perform operations the same way a simple 2D CNNs on regular graphs. Also in

6
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the similar way, the Weisfeiler-Lehman algorithm also contradict when applied to

regular domain .

Therefore, while coming for a solution for irregular domain it is necessary that

it should be applicable to regular domain problem in the same way as simple 2D

CNNs on regular grid [16]. Hence, a universal solution should be brought up which

applicable for both regular and irregular spatial domain. In this work [30] they

proposed a model for leaning CNNs for any random graphs. As in the image based

classification problem the convolutional networks were relying on the regions that

are connected locally in the input images but this work focus on the networks that

are based on the regions that are connected locally from the graphs. Basically this

works resides on the two reciprocal methods, firstly choosing a sequence of the

vertices or nodes that cover up the larger part of the input graph and secondly,

producing local normalized representation of the neighborhood for each node in

the obtained sequence. It proves to be competitive with the classical graph signals

but does not consider the stationarity property of the input data to construct the

convolutional filters.

The authors of [5] generalizes the convolutional neural network to signals defined

on the high dimensional data domain without using the translational operations.

They brought forward two main frameworks where one is based on the clustering of

domains in an hierarchical way and another uses graph laplacian spectrum. They

built an efficient deep network which learn convolution with a count of parameters

without depending on the input size.

Further, [16] improves over the [5] by including a graph estimation method as

extension to the spectral network and tested the improvement on a large classifi-

cation problems, finding that it matches and enhancing over the dropout Networks

with the use of very few parameters for the estimation. But this work faces high

cost of computation in matrices, both in forward and backward propagation.

The Graph based CNNs[12] introduces the graph convolution and the pooling

operators over graph like the two over the regular domain. They calculated the

gradients over the filters and input data, resulting in the generalization of the Con-

volutional Neural Network over the non-Euclidean irregular domain of input data.

Their proposed graph CNNs when experimented over MNIST dataset, produced

almost same result as obtained from the standard CNNs in the regular domain of

input data. But this model demands expensive forward and inverse graph Fourier
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transform and requires some optimization over the model, encouraging for the

future scope.

Recently, in [10] proposed the base of an efficient generalization of CNNs math-

ematically and computationally using the tools and techniques from the graph

signal processing. They modeled an efficient architecture that extract feature by

exploiting both the local and stationarity properties of the input data through

graph convolutional layer. This work is more efficient as it avoids the specific us

of Fourier basis over graph and hence gives better accuracy.

2.2 Graph Signal Processing

The arising field of graph signal processing draws the focus at filling up the gap

residing in between the spectral theory of graph and signal processing[2, 7, 26] by

combining the graph theory and the harmonic analysis. The main focus is to ex-

tend the basic analysis operations applied on the signals from the low dimensional

regular grids to high dimensional irregular grids represented through graphs.

The classical operations, like convolution, filtering, down sampling and translation

which are designed according to grid like structures are not directly applicable

for the graphs and it requires modification in the mathematical definitions of

these operation keeping the original concept in mind. In this framework, many

researchers of[13, 15, 29] regained the knowledge about the formulation of wavelet

operation on graphs and the methods to perform the multi-scale pyramid transform

on graph the were depicted in [35]. After that the work of [31] reformed the

uncertainty principle on graph and represented that some perceptive notion may

be depreciated, but derives modified and effective localization principle.

2.3 CNNs on the Non-Euclidean Domains

Earlier, this concept arises from the Graph Neural Network(GNN) model[33] which

further made simpler as Gated Graph Sequence Neural Network in [23]. This

model was produced to enclose each vertex in an Euclidean space with a Recurrent

Neural Network and further it utilizes these mappings as features used for the

classification of the graph. It uses simple diffusion with a recursive relation to
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set the transition function f rather than using neural network. Hence their state

vector will be s = f(x) = Wx and the output function gθ will be set as x̂= gθ(s, x)=θ

Lx+x . With the help of K layer of GNN it can obtain the Chebyshev polynomial

of degree K, further followed by a layer which is non-linear and the applying graph

pooling. Hence this model can be elucidated as multi-layers of diffusions and local

operations.

There after the author of [9, 14] came up with an idea of designing receptive fields

locally to decrease the count of the parameters learned. The concept behind this

is that on the basis of similarity measures grouping the features together mak-

ing possible to choose only small number of connections between two consecutive

layers. So far this model made a significant remark in reducing the count of pa-

rameters by utilizing the locality assumption but it did nothing to make use of

any stationarity property, in short no weight sharing method. Then the authors of

[5] utilized this concept for the spatial construction of graph based CNNs. Taking

the benefit of stationarity property they utilized weighted graph to describe the

local neighborhood and for pooling they calculated the multi-scale clustering of

the graph. But the involvement of the weight sharing graph in the spatial formu-

lation proved to be very challenging because it demands the ordering and selection

of the neighborhood when the ordering (spatial or temporal) is missing as per the

problem specifies to be.

The work of [27] introduces the generalization of CNNs to a smooth low dimen-

sional and irregular domain, called the 3D-meshes. The deep learning architecture

designed in this work defines the convolution operation on the mess patches us-

ing geodesic polar coordinates and produced the state-of-art outputs for the three

dimensional shape classification. The first proposal of spectral construction of a

graph CNN in [5], describes a filter or kernel. This concept of[16] although did a

remarkable work but unable to scale up because it is based on the graph Fourier

basis U which demands huge multiplication. Not only the cost of evaluating the

matrix which needs eigenvalue decomposition on the Laplacian matrix of graph,

the major contribution to the cost is that it need to multiply the input data

with the same matrix twice both for the forward and the backward pass. For the

smoothness in this domain their work depends on the spline parameters to exploit

the locality of the data, but their model lacks control on the local support of their

filter, which is required to learn the localized filters.



Chapter 3

Problem Formulation

3.1 Problem Definition

The well-known architecture of a convolutional neural network include an input

layer, a group of convolutions and pooling layers and then a fully connected layer of

neural network and an output layer for prediction of classes. But this architecture

faces a major problem in the spatial domain with irregular structure of data. So,

if the graph signal processing tools used along with the deep learning architecture

then the solution for classification and regression in the irregular domain can be

found. Hence to overcome this problem through graph signal processing methods it

uses the multiplication in the spectral domain and extract features in the spatial

domain by applying convolution for the irregular spaced domain, still features

related spatially.

The problem definition states that we will be building a deep neural network which

can be applied to data residing in an irregular or non-euclidean domain. The input

will be in form of images and our model will recognize that image correctly as to

which class it belongs. So firstly, we are working on the preprocessing of data

to make it suitable for our network and feeding this preprocessed form of image

to the convolutional neural network followed by the classifier which performs the

image recognition task.

Figure 3.1 briefly describes the components of the Convolution neural network for

graphs which resembles with the well-known standard CNNs and the convolution

10
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Figure 3.1: Graph based Convolutional Neural Network components

are learned based on the randomly initialized multipliers in the spectral domain

and pooling layer based on graph coarsening[12] . The forward pass in the above

network will be training of input data to get outputs and the back-propagation

of the loss generated in the feed-forward pass during training updates the weights

which were initialized randomly earlier.

The primary issue that comes to light while generalizing Convolutional Neural

Networks to graphs, an irregular structured data is how to define the localized

filters over graph. Therefore, the proposed neural model will handle all this issues

and produced better result for both the regular and irregular structured data.

A graph G, undirected and connected, for a signal f:V → R forms a carrier where

the signal resides on the vertices of graph and fj depicts the function value of

signal f ∈ RV at the jth node or vertex in the graph. Graph signal processing

allows various general operations like wavelet, translations, Fourier Transform and

convolution on the signal f through G as the graph constitute the background

knowledge regarding the spatial relationship between the nodes or vertices very

well. It is possible to represent the problem domain in form of graph and hence

possible to apply signal processing operations on the data in form of graph signal

[15]. The important operator used for the analysis in the spectral domain is the

graph laplacian.
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Thus, this problem definition couples together deep learning architecture with

the graph signal processing and helps in learning within the domains that are

irregular, yet spatially related features and over which it is difficult for the stan-

dard Convolutional Neural Network to convolve using the regular kernel. So this

problem statements highlight the fact that for making our CNN to convolve over

irregular domain, the preprocessing over the input is required, and considering the

preprocessed input data the convolution layer, pooling layer is defined.



Chapter 4

Proposed Approach

4.1 Methods

Processing on graph signal as shown in Figure 1.1 along with deep learning can

make it possible to learn in the spatial domain with irregularly structured data

over which the general well-known CNNs is unable to convolve [39]. The proposed

approach will help in a direction where using deep learning in pattern or image

recognition domain its possible to convolve across domain with irregularity but

features are spatially related[15, 39]. The generalization of Convolutional Neural

Network to graph structured data demands three basic steps: (i) the convolutional

filters localized and designed over graph signals, (ii) graph coarsening method that

can associate together vertices on the basis of some similarity and (iii) a pooling

method for graph which attempt to reduce the input feature map’s resolution and

generalizes the identified features well.

4.1.1 Graph Convolution

Majority of real-datasets are unstructured and can be structured with graphs be-

cause graph can easily model the heterogeneous relationships between the vertices

and can encode even the complex geometric structured data domains.

To define the convolution filters over graph there are two approaches, that are

spatial and spectral approach. Through spatial approach the localization property

can be satisfied as it provide the filter localization through the finite size of the

13
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filters. Though graph convolution in the spatial domain is quite reasonable but

it has to face the challenges to match the neighborhood locally, highlighted in

[5]. Along-with this issue, the spatial domain lacks the exclusive definition of

translation over graph under mathematical terms. While the spectral as the second

approach brings well defined localized convolutional filter in the spectral domain

which are linear operators diagonalizing in the Fourier basis. But, because of

multiplication in the Fourier basis , the convolution and the translation in this

domain are very costly. These issue with both the approaches can be resolved

using filter parametrization.

Graph Fourier Transform

In signal processing, where the signal characterized over undirected and connected

graph G={V,E,W}, where V is the set of vertices such that |V | = N , E is the set

constituting all the edges and W ∈ RN∗N is an adjacency matrix having weight

entries with respect to vertices ui and uj if there is non-negative, undirected and

non-self-looping edge between them. In spectral graph theory, the graph Laplacian

L matrix being an important operator in the analysis can be illustrated as L =

D −W ∈ RN∗N , where D ∈ RN∗N the diagonal matrix where the entry dj,j =∑N
i=1Wj,i is the degree of vertex vj. Laplacian matrix fundamentally tells how

smooth the function over graph is, that is the value of function remains almost

constant for the connected vertex.

The data signal f ∈ RN lies on the graph G, where the value of jth component

of vectorf is fj which resembles with the amplitude of the signal at the vj . The

normalized form of Laplacian matrix L = In − D−1/2WD1/2 and here In is an

Identity matrix. Because the Laplacian matrix is a real symmetric ans positive

semidefinite matrix, it’s set of orthonormal eigenvector are defined as the Fourier

Modes and the co-related ordered positive eigenvalues, determined as frequencies

of the graph signal. To generalize the convolutions to random and more general

graph it is necessary to find the respective ”Fourier” basis and in the spectral

graph theory this correspondence is given by the Laplacian Matrix. So, Laplacian

L is actually diagonalized through the Fourier basis and in the Euclidean space,

the graph Fourier transform will authorize the construction of basic operation such

as filtering.
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Convolution Layer

The CNN architecture shown in the Figure 4.1 has three main operations that are

graph pooling, coarsening and convolution. The Convolution layer extract features

present in the input image. In the graph CNN we can perform convolution like

in standard CNN by applying convolution theorem in the regular domain as a

multiplication in the frequency domain.

Figure 4.1: Graph based Convolutional Neural Network Architecture

Now, to map the signal on graph to the frequency domain the matrix L is needed

to be broken up into eigenvectors matrix X = {xj=1.....N} ,where the xj is the

orthonormal vector with eigenvalues λj=1...N . For a given data signal the Graph

Fourier Transform[4] is as

f̃j =
∑N

i=1 λif
T
j xj and using matrix X, f̃j = XTf

and its inverse is fj =
∑N

i=1 λif̃jxj is same as f = Xf̃

In the forward pass, the multiplication of Laplacian operator in the Fourier domain

space will be the convolution operator. Using Graph spectral domain’s [8] concept,

the convolved signal as output will be spectral multiplication as z = Xf̃k where

the f̃ and k are the spectral graph signal and multiplier respectively. If the input is

given through multiple channels then there will be multiple output feature maps:

zs,o = X
∑I

j=1X
Tfs,j � kj,o
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Here, I is the total count of input channels for signal f and o is the correspond-

ing output feature for input j signal and s is the particular batch sample. For

the graph CNNs, the vertex localization in the spatial domain is provided by

smoothness within the spectral region. Hence to extract the local features in the

regular domain the spectral multipliers involved in the convolution are recognized

by following sampled set of filter weights k̂j,o, k ∈ R<N which then goes under

interpolation till it become the complete filter through smoothing kernel Φ like

cubic splines: kj,o = Φk̂j,o [12, 28]. This operation have both advantage and disad-

vantage, disadvantage as it adds couple of extra operations in the interpolation to

full filter for multiplication and advantage as reduced the count of tracking weights

resulting in less tuning parameter and therefore, learns sharper feature maps.

4.1.2 Graph Coarsening

In pooling similar vertices need to be clustered together, which in turn requires

some similarity between the neighboring vertices. If the same is applied for the

multiple layers, it resembles the concept of multi-scale clustering of graphs main-

taining the local geometrical structure. Being an NP hard problem Graph clus-

tering requires approximation. Many clustering techniques are available, but we

are more concerned over multi-level clustering techniques where a coarser graph

is produced at each level corresponding to the data domain, if viewed at different

resolution.

For better understanding of graph coarsening consider a graph G = {V,W} and

it is coarsened to a graph Ĝ = {V̂ , Ŵ} where the |V̂ | < |V | and also those edges

connecting the removed vertices are also removed. Graph coarsening [6] results

in a sparse graph by constructing V̂ by either selecting only a subset of V or

generating new set of V̂ by aggregating related vertices in V . A better solution

to select V̂ is to select the maximum eigenvalue λN and dividing the rest of the

vertices in V according to the sign of eigenvector XN [32].

Using any clustering methods that can decrease the graph size by half at each

level provides better control on the size of coarsening and pooling. We are using

Graclus multilevel clustering algorithm for coarsening of graph, which has been

found to be highly effective for clustering wide range of graphs. Figure 4.2 explains

the working of graph coarsening and pooling.
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Figure 4.2: Graph Coarsening and Pooling

Graclus[11], formed on Metis [18], consequently computes coarser version for a

graph using the greedy approach and has the capability to optimize various com-

mon objectives of spectral clustering, out of which normalized cut [34] is used in

this proposed work. Greedy approach mentioned above selects an unvisited node

i and matches it with other unvisited neighboring node j such that normalized

cut Wij(1/di + 1/dj) is maximized locally. It marks the two matching vertices as

visited and their sum of weights will be the coarsened weight. The same proce-

dure repeats until all vertices have been visited. It reduces the number of nodes

to almost half proceeding from one level to another, making this algorithm highly

efficient and computationally fast.

4.1.3 Graph Pooling

After Convolution layer the, the other component of the convolution neural net-

work is the pooling layer which is responsible for decreasing the resolution of the

feature maps in order to generalize the features extracted after the convolution in

the spatial domain of input data and to handle the space complexity while using

the various filters [32]. As we know that the convolution of graph involves the

multiplication of RN filters with almost same number of signals and hence there

is no reduction in the size of graph from input signal till output features.

Therefore, the pooling layer comes into picture in the graph convolutional neural

network to handle the space complexity by applying an algorithm which can cache

single instance of the graph and its eigenvector matrix X having size O(N2). In
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graph CNNs [6], to pool the features together the coarsening of graph must be

applied and then map the input features in the original domain of input data to

the new graph with reduced size.

Figure 4.3: Pooling method(max pooling and average pooling)

In Figure 4.3 and 4.2 shows the graph pool methods used in our architecture. In

the max pooling method, the maximum value in the sub-sampled grid is taken as

the pooled value while in average pooling, the pooled value will be the average

value of the respective sub-sampled grid in the feature maps.

In this proposed model, the pooling operation is applied many times, thus need

to be effective. After the graph is coarsened, the produced vertices from the

input graph are not systematically arranged. If we apply the pooling layer to

the coarsened graph directly, it will require an extra storage to store the matched

vertices or the coarsened vertices. This implementation will not be efficient in

terms of both memory and computation, as it is difficult to run it parallely.

However by arranging the vertices will make the pooling operation as effective

as linear pooling. It comprises two steps to be followed sequentially. Firstly,

a balanced binary tree is created, and then the vertices are rearranged in the

second step. When the graph is coarsened, every vertex in the resulting graph

will either have two children, if there is a finer match, else it will have one child.

Dummy nodes, or disconnected node are added to pair up with the singleton node,

providing each node two children, resulting in the balanced binary tree.
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In this resulted binary tree, regular nodes will be having either both children as

regular nodes, or a pair of dummy and singleton as children. But the dummy node

will always have dummy nodes as children.

The input signal lying over the graph will initially have neutral value for these

dummy nodes, which remains unaffected during filtering, while using a ReLU ac-

tivation layer with max pooling layer as they are disconnected. Although, addition

of dummy nodes result in increased dimensionality and thus increases the compu-

tational cost. But, in practical scenario, the count of singleton nodes is very less

using Graclus coarsening technique.

Figure 4.4: Graph Coarsening Method and Pooling

A random arrangement of nodes done at coarsest level, and forwarding the same

towards the finest levels, results in a regular ordering at the finest level. Here

regular ordering refers to the hierarchical merging of neighboring nodes at the

finest level. Pooling operation over such graphs is similar to that of pooling a 1D

signal. The whole process is illustrated in Figure 4.4. Regular ordering increases

the efficiency of pooling operation and enables parallelization making it work fast

as memory accesses are spatial in nature, since fetching of matched nodes are not

required.

Figure 4.4 shows an example of Graph Coarsening and Pooling. Here, let the graph

G0 is given as input which is the finest graph and x ∈ R8 be a signal residing on

the graph G0. The graph G0 having 8 vertices |V0| = n0 = 8 which are arranged

in an arbitrary manner. And apply a pooling operation of size 4 or two pooling,

each of size 2 on x. The coarsening algorithm used, Graclus provides the coarsest

graph G1 and G2 of size n1 = |V1| = 5 and n2 = |V2| = 3 respectively. Thus few

dummy nodes are added to both graph G1 and G2 to couple with the singleton
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nodes, so that every node has both the child nodes. This set the size of graph G0,

G1 and G2 to n0 = 12, n1 = 6 and n2 = 3.

Then the vertices in V2 are arranged arbitrarily and vertices in V1 and V0 are

arranged in the same manner in consequent way. The order of vertices in V0

allows a regular 1D pooling on x ∈ R12 at this particular moment, so z =

[max(x0, x1),max(x4, x5, x6),max(x8, x9, x10)] ∈ R3.The value of x2, x3,x7, x11

are assigned a neutral value as these are signal component that are added as the

dummy nodes.

4.1.4 Back-propagation on graphs

Initially the weights in the graph are randomly initialized, therefore when the

errors are propagated in the network from the output to input layer these randomly

initialized weights and bias are updated to achieve target function along with

gradient descent. Back-propagation of loss or errors play a central role in the deep

learning[16].

For back-propagation of errors the derivatives with respect to weights and input

is needed to get output, in graph CNNs the gradients are framed keeping in mind

the graph signal f and the multiplier k [16]. For particular channel , the input

feature map gradient fs,j is the convolution of output gradient and the spectral

multiplier given batch of S graph signals through:

∆fs,j = X
∑O

o=1X
T∆zs,o � kj,o

For full set of multipliers which are interpolated, the gradient is convolution of

output gradient and input signal for given batch sample s through:

∆kj,o =
∑N

s=1X
T∆zs,o �XTfs,j

All the filters are nothing but the multipliers, so it is not required to propagate back

via graph Fourier transform. The smooth multiplier ∆k can be back-propagated

by multiplying with the inversed smooth kernel through ∆k̃j,o = ΦT∆kj,o.



Chapter 5

Experimentation and Results

5.1 Data-set

The graph CNNs [16] are basically postulated to irregular structure domain issues

more; like sensor networks, social networks, human activity graphs, molecule in-

teraction graphs, etc., but it is non-trivial to characterize kernel filters used for

convolution in this domain. Hence, the proposed graph CNNs architecture will

be evaluated on the standard 2D matrix of both regular and irregular input data

domain.

The 2D matrix is a graph representation which carries information of relationships

between pixels of an image. Graph G on an image, each vertex is denoted by a

pixel and the corresponding intensity of each pixel at each vertex for a graph signal

f . The weights between the edges in the adjacency matrix is calculated as the

euclidean distance between the vertices . Our proposed model has been evaluated

on two dataset- MNIST and PASCAL VOC2012.

MNIST

The MNIST is the collection of handwritten digits, which is a subset of bigger

dataset accessible form NIST. The digits present in this dataset are normalized

with respect to the size and centered in an image of fixed size. To evaluate this

architecture [12] on 2D matrix we will be using MNIST dataset containing 60,000

training and 10,000 testing example of hand-written digits in 28 × 28 matrix of

21
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gray-scale pixels. The edge weights are the euclidean distance between the vertices

in the graph with f ∈ R784.

As our main focus is to evaluate performance of the graph based CNNs on the

irregular domain, so by sub-sampling the above grid by removing random vertices

from graph and their corresponding edges we can obtain an irregular spatial do-

main such that now f ∈ R700. The irregular spatial graph can be fed to the Graph

CNN to get convolved output feature maps.

PASCAL VOC2012

Pascal VOC2012 dataset containing 20 classes and the training and validation data

has approximately 11,500 images having around 27,400 ROI annotated objects

and almost 6,900 segmentations. The new development made over the previous

version pascal VOC datasets is that the size of segmentation dataset has increased

considerably. For classification problems, detection and person layout the dataset

is same as VOC2011.

For training and validation purpose, the 50% dataset has been used while rest

used for the testing purpose. Among the train set, validation set and test set the

dispersion of the images and the object by the class are made uniform, for better

efficiency of the model.

5.2 Implementation

The network implemented using Tensor Flow with GPU enabled operators is

trained for 1,500 iteration on MNIST dataset and 50,000 iterations on the PAS-

CAL VOC2012 dataset to test the samples in test data at each iteration to note

the efficiency of the model. The upcoming section will give better insight of each

stage of the prosed approach.

Segmentation

As our dataset is collection of images, and our graph CNN model require the input

in the form of graph, well represented with an adjacency matrix. To acquire this
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adjacency matrix from the image some preprocessing over the image is required.

Firstly, we cannot generate the graph from the image directly by taking all the pixel

as vertices, because it will be inefficient both in terms of memory and computation.

So, an efficient approach of segmentation is needed.

Figure 5.1: SLIC based superpixel segmentation

Simple Linear Iterative Clustering (SLIC) [1] is the most popular algorithm used

to segment an image in super pixels, as it is computationally efficient. Superpixels,

are better explained as the group of pixels which share some common properties.

In short, SLIC clusters pixels in a 5-D space to effectively produce the compact,

and almost uniform superpixels. Another advantage associated with this technique

is that it encapsulates both the pixel as well as grey-scale image. In figure 5.1 on

the basis of similarity in color and proximity among the pixels they are clustered

in a 5-D space [labxy] where [lab] is a pixel color vector in CIELAB color space.

Here (a) in figure is the input image over SLIC is used to get 100 segments or

superpixels and (b) is the resultant image with 100 segments.

SLIC offers many advantage over the other proposed approaches, low complexity

O(N) where N, is the number of pixels present in the image, a precise control

over number of superpixels and compactness among the superpixels required as

per need of the user. After retrieving the superpixels, an adjacency matrix is

maintained to feed the network.
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Graph CNN Model

Figure 5.2, shows the architecture of our model which comprises of the input

adjacency matrix fed to the convolution layer 1, i.e gcnn 1 which produce feature

maps through 64 output channels and which further fed to second convolutional

layer gcnn 2 producing through same number of output channels as in the first

layer. Then a Max pool layer,i.e maxpool 1 is applied with pool size=4 then

the pooled features are fed to the next two convolution layer gcnn 3 and gcnn 4

consecutively followed by a max pooling layer and then an average pooling layer.

The pooled feature maps are then fed to the fully connected layer fc 1. The

gradient and accuracy is calculated side by side.

Adam [19] is an algorithm which is utilized for the optimization of first order

gradients- based objective function. The algorithm is easy to implement as it is

computationally fast, requires small space and unaffected with the rescaling of

gradients diagonally. This is very useful for those problems which are focusing

on the large range of dataset.The entire model is implemented using tensorflow

implementation.

Figure 5.2: The graph CNN Architecture
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The model is trained over both the dataset MNIST and PASCAL VOC2012 with

a learning rate=0.001 and batch size=64. Softmax cross entropy loss is used to

calculate the error over the softmax layer used as the activation layer.

5.3 Results

The graph based CNN was evaluated using both the dataset on their irregular ma-

trix .The table1 will show comparatively the performance of standard CNN and

graph based CNN on both the datasets[12]. The efficiency of the model while per-

forming the testing on the samples which were not observed earlier is very hopeful

to work in this field as it provides better output features as compared to standard

CNN if irregular domain is considered. The efficiency of the classification on both

Figure 5.3: Result showing test set accuracy of the network

the dataset is detailed in the Table 5.3 and presented in the Figure 5.8 shows the

comparison between standard CNN and graph CNN. The proposed graph CNN

model achieves 96.25% accuracy on MNIST dataset and 65.174% on Pascal VOC

dataset. Although the accuracy achieved is less as compared to the standard CNN

architecture but it is acceptable as the proposed model will be applicable for both

the domain that is regular and irregular domain while the standard CNN was

applicable to only regular spatial domain.
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Figure 5.4: Bar-Graph presenting performance of the both Graph CNN and
standard CNN

MNIST

Figure 5.5: Training Accuracy curve over MNIST

Figure 5.6: Training Loss curve over MNIST
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Figure 5.7: Validation Accuracy curve over MNIST

Figure 5.8: Validation Loss curve over MNIST

Figure 5.9: Weight of Fully connected layer
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Figure 5.10: Bias of Convolution
layer 1

Figure 5.11: Bias of Convolution
layer 2

Figure 5.12: Bias of Convo-
lution Layer 3

Figure 5.13: Bias of Convo-
lution Layer 4

Figure 5.14: Weights of Con-
vLayer 1

Figure 5.15: Weights of Conv
Layer 2
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Figure 5.16: Weights of Con-
vLayer 3 Figure 5.17: Weights of Con-

vLayer 4

Pascal VOC2012

Figure 5.18: Train Accuracy Curve over Pascal VOC2012

Figure 5.19: Training Loss Curve over Pascal VOC2012



Conclusion and Future Scope

The idea introduces a new approach of performing convolution on both regular

and irregular graph by combining graph signal processing methods and neural

networks based on the back-propagation. It meets the requirement of learning

convolution on the graph Laplacian matrix and extract the features even after the

non triviality of the kernel design for the irregular domain. Results are given for

the performance of graph CNN on the irregular graph input domain and in the

future, there is more scope of work on irregular graph based on real dataset from

social networks and improvement in the performance over this domain. Graph

pooling method is given to reduce the size of the graph so that it can be easy to

handle the space complexity of the graph and to generalize the feature maps. As on

the regular graph, standard CNN is giving better result than the proposed method

but standard CNN is applicable to only regular graph and the proposed method

will be applicable to both the domain. Also the graph CNN involves Fourier

transform and inverse Fourier Transform which are very costly operations, so it

carries a future scope to enhance the methods of pooling and graph construction

to improve the performance of the graph CNN in regular domain with respect

to standard CNN as well as make it efficient for irregular graphs. Also a further

scope of the problem involves study the same graph CNN method for directed

or relational graphs as till now the whole discussion was for undirected and non-

negative graphs.
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