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Abstract
In the past few years, many object classification techniques have been devel-
oped. However, these techniques do not perform very well when categorizing
objects belonging to fine-grained categories. It is easier to differentiate between
objects belonging to different broader categories as they have different higher-
level features or parts, like differentiating a dog from a car is an easy task. But
when it comes to distinguishing between objects belonging to same category, it
can be a challenging task as there is very little variance among their parts, like
distinguishing between dogs belonging to different breeds. The task is not only
to find parts of an object, but to find discriminative parts that help us categorize
objects correctly. Recently part-based techniques have shown promising results
in fine-grained categorization.

Keywords: Fine-grained classification, Part-based object classification, Re-
gion proposals, Pattern mining
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Chapter 1

Introduction

Fine-grained object classification refers to the task of classifying objects into
their sub-categories within a category. For example, consider the task of clas-
sifying birds according to their species or classifying dogs according to their
breeds. These tasks are often difficult for human brains to perform themselves.
This is due to the problem that there exists only subtle differences between ob-
jects of different sub-categories. As shown in figure 1.1, the overall shape of the
birds of two different categories is same. There is a large intra-class variance
due to viewpoint and the background. However, there are only subtle differ-
ences between birds of different species ,e.g., the color of the belly. In order to
distinguish between them, we need to find which parts are discriminative and
also where are they located. We as humans can locate the part by pointing out
and checking the difference. The challenge for the machine is to decide which
are the discriminative parts and where are they located.

Fine-grained classification is required to accurately categorize objects. It can
be useful in the areas of Artificial Intelligence that deal with the navigation of
robotic systems through the environment. The system needs to have a detailed
understanding about the environment. With fine-grained classification tech-
niques, the robotic system will be better able to understand the objects in it’s
surrounding through it’s visual sensors. Also, many image recognition apps
have been developed in the recent years such as Google Goggles, Blippar, Mi-
crosoft’s Bing Vision that scan images and provide information relating to it.
Fine-grained classification can be useful in such apps to provide more detailed
and accurate information about the objects. The machine can be trained at fine-
grained level to categorize similar looking objects which can be helpful in fil-
ter results on e-commerce websites. Fine-grained classification can be used to
identify different species of the animal kingdom, track them, maintain detailed
information about them so as to preserve them.

Most of the classification techniques focus on detecting the objects accurately
in an image by extracting high-level features. These high level features only



Chapter 1. Introduction 2

a) Acadian Flycatcher

b) Great Crested Flycatcher

FIGURE 1.1: Two different species of Flycatcher from the Caltech-
UCSD Birds 200 dataset [1].

track the superficial differences between the objects that can only categorize the
objects into their broader categories. However, they fail to recognize the fea-
tures that can actually help in distinguishing objects from different fine-grained
classes. Distinguishing features can be related to different parts of an object, it’s
peculiar shape or color or the pattern formed over it. For example, parts of bird
like the head, beak, or eyes can be the distinguishing factor. Finding these mid-
level parts can help us find these distinguishing factors for fine-grained clas-
sification. It can help by explicitly showing the subtle appearance differences
associated with a particular object part. Also, locating object parts is important
for establishing similarities between objects of same fine-grained class despite
the pose variation and camera view position.

Mid-level discriminative parts are basically a set of image patches derived
from a dataset where we know the image label but the parts are not annotated.
According to Li, Liu, Shen, et al. [2], these parts need to satisfy two require-
ments - 1.Representativeness i.e the part should frequently occur in images of
the target class. 2.Discriminativeness i.e the part should rarely occur in images
of other classes. Association rule mining is a pattern mining technique which
helps find frequent patterns within a database. Li, Liu, Shen, et al. [3] shows
how association rule mining can be used to find frequently occurring parts in
the target category of a image dataset. Representation of these parts is one of
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the most important task at hand. Li, Liu, Shen, et al. [3] shows how CNN ac-
tivations for these object parts can be appropriate to use with association rule
mining algorithm.

In this work, we aim to show how finding different significant parts of an
image can play a crucial role while performing the task of fine-grained classi-
fication. We will incorporate the association rule mining techniques into our
classification task by finding frequent patterns that represent a class within the
dataset. We will try to overcome the challenges faced with using association
rule mining techniques but at the same time try to derive meaningful patterns
or parts from the dataset. Lastly, we will thoroughly train our model to detect
the significant frequent patterns in the images and correctly classify the image
into one of the fine-grained classes.
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Chapter 2

Related Work

Traditional methods used for image classification involved extracting features
from the images and then applying learning algorithms like the Support Vec-
tor Machines(SVMs) over these features to generate classifiers. Various feature
descriptors were popular such as Scale-Invariant Feature Transformation(SIFT)
by Lowe [4], Histogram of Oriented Gradients(HoG) by Dalal and Triggs [5]
and Speeded Up Robust Features(SURF) by Bay, Tuytelaars, Van Gool, et al. [6].
Bag-of-Visual-Words(BoVW) by Yang [7] which was based on the Bag-of-Words
technique used for document classification was a famous choice for feature rep-
resentation. Other feature representation techniques that gained popularity af-
ter BoVW were Fisher kernel by Perronnin and Dance [8] and Vector of Locally
Aggregated Descriptors(VLAD) by Jégou, Douze, Schmid, et al. [9] The perfor-
mance of these classification techniques depended on the features used. So to
better these techniques, better set of features were required. Such techniques in-
volved two steps: 1) Feature Extraction algorithm 2) Learning algorithm. Both
of these steps were independent of each other.

The deep learning based techniques for image classification were introduced
in ILSVRC Russakovsky, Deng, Su, et al. [10] competition in 2012. In this compe-
tition, AlexNet [11] was introduced which is a deep convolutional neural net-
work(CNN) with the top-5 test error rate of 15.3% as compared to 26.2% rate
of the next best entry.AlexNet is a simple network made up of 5 convolutional
layers, dropout layers, max pooling layers, 3 fully-connected layers and uses
11x11 sized filters in the first layer. The fully-connected layers produce a 4096
dimension activations that can be used to represent the image. In subsequent
years, many variations of the CNN were designed out of which ZFNet by Zeiler
and Fergus [12], VGG Net in ILSVRC 2014 by Simonyan and Zisserman [13],
GoogLeNet by Szegedy, Liu, Jia, et al. [14] gained popularity. VGG Net was in-
troduced in ILSVRC 2014 by Simonyan and Zisserman [13] and had a top-5 test
error rate of 7.3%. VGG-16 has 13 convolutional layers along with three fully
connected layers whereas VGG-19 has three additional convolutional layers.It
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FIGURE 2.1: Architecture of AlexNet [11]

has a filter size of 3x3. The reason for using such small filter size is that two
3x3 layers have an effective receptive field of one 5x5 layer while three back-to-
back 3x3 layers will have effective receptive field of 7x7. The model is able to
simulate benefits of large filters while keeping the original filter size small and
increasing the depth.

CNNs use the traditional sliding window approach where the stride param-
eter is specified which incurs an overhead. To overcome this, region proposal or
object proposal method was presented which is nothing but detection of regions
that are most likely to contain objects. The region proposal algorithms output
large number of image patches at multiple scales that may probably contain ob-
jects. Selective Search by Uijlings, Van De Sande, Gevers, et al. [15] is one such
region proposal algorithm. Object detection process is split in two steps : the
region proposal step and classification step. Region-based CNN(R-CNN) by
Girshick, Donahue, Darrell, et al. [16] makes use of Selective Search for region
proposals. Selective search generates about 2000 region proposals per image.
These proposals are then warped to a specific image size and fed to a trained
CNN for generating fixed-size feature vector for each region. Then the vector
is given as input to set of class-specific linear SVMs that output a class label
for that region.The vector is also given as input to a bounding box regressor
to output most accurate co-ordinates. Fast-RCNN - developed by Girshick [17]
increase the speed by sharing computations of the layers between different pro-
posals. The image is first fed through a CNN to obtain a feature map. The
features of the regions are derived from this feature map. Faster R-CNN was
introduced by Ren, He, Girshick, et al. [18] overcomes the complex pipeline in
the previous two techniques. A Region Proposal Network(RPN) is inserted af-
ter the last conv layer. The RPN produces region proposals with object bounds
and objectness score from the feature map of last conv layer. In our approach,
we will be using this RPN to generate the region proposals.
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The part-based approaches for fine-grained image classification follow a gen-
eral approach - first the parts of objects are localized, then alignment of parts
is done to overcome pose variations and then classification is done based on
features extracted over the parts. In Part-based RCNN proposed by Zhang,
Donahue, Girshick, et al. [19] whole-object and part detectors are learned. Test
images have both objects and parts annotated. First, several region proposals
are made using selective search and both object and part detectors are trained
using deep convolutional features. At test time, all proposals are scored by all
detectors and geometric constraints are applied to re-score the proposals in or-
der to choose the best object and part detections. Drawback of this technique
is having images in the dataset to be part annotated which involves a lot of
work. There are other part-based techniques proposed that do not require part-
annotations. One such technique is proposed by Krause, Gebru, Deng, et al.
[20] which focuses on learning expressive appearance descriptors and localiz-
ing discriminative parts. It provides us with a representation of an image called
Ensemble of Localized Learned Features(ELLF) which is nothing but collection
of part appearances learned through CNN. Part discovery is fully unsupervised
in this method. Another method by Krause, Jin, Yang, et al. [21] makes use of the
concept alignment by segmentation for generating parts and R-CNN for feature
extraction and classification. Juneja, Vedaldi, Jawahar, et al. [22] addresses the
problem of discovering discriminative parts by an incremental part learning
process starting from single part occurrence using Exemplar SVM and intro-
duces entropy-rank concept to determine usefulness of a part. Expanded Parts
Model(EPM) proposed by Sharma, Jurie, and Schmid [23] automatically mines
parts and learns corresponding discriminative template along with their respec-
tive locations. The part-based method proposed by Mettes, Gemert, and Snoek
[24] says that parts are naturally shared among image categories and should be
modeled as such. Part selection is not done separately for each class but instead
shared and optimized over all categories.

Pattern mining was primarily used to find frequent patterns in normal database.
In recent years, pattern mining techniques have been used for computer vision
tasks such as image classification and action recognition. Li, Liu, Shen, et al.
[2] proposes the Mid-level Deep Pattern Mining Algorithm which focuses on
mid-level visual element discovery. It makes use of the CNN to extract fea-
tures from the image patches and then apply association rule mining to get
category-specific patterns. The patterns are then mapped onto patches to get
the mid-level visual elements. Ensemble merging is performed to merge simi-
lar visual elements and finally a set of visual elements along with their detectors
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is obtained.Li, Liu, Shen, et al. [3] also proposes two feature encoding methods.
The first method suggests Bag-of-Patterns representation based on the Bag-of-
Visual-Words representation. The second method merges the visual elements
and trains detectors, followed by construction of Bag-of-Elements representa-
tion.
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Chapter 3

Problem Definition

Consider a training set T containing N images T = {X1, X2, . . . , XN} with each
image containing an object belonging to one of the categories in set C. Given an
image X with a label Y such that Y ∈ C, we decompose the image into several
part proposals. Let a function F(X) map the image X into k part proposals
F(X) = {p1, p2, p3 . . . , pk}. For each of the part pi, we have a corresponding
feature representation xi such that xi ∈ Rd. We perform the mapping for all
training images in set T and collect all parts in a set P = ∪X∈TF(X). In our
approach, we use RPN [18] to get part proposals from an image and and 4096-
dimensional CNN activation represents the feature xi for a part pi.

Now, our problem is to find a suitable encoding technique to convert the fea-
ture representation xi into itemset and apply association rule mining using these
itemsets and setting proper parameters to generate frequent patterns. These fre-
quent patterns would then be used as an representation of a particular class. We
can then train a classifier such as SVM over these frequent proposals which can
then be used to get a prediction function h : X → Y to predict label Y for image
X.
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Chapter 4

Proposed Solution

Following from the idea in [3], we will first extract part proposals from the im-
ages in the training set using the Region Proposal Network of Faster-RCNN
[18]. Each of these proposals will have CNN feature of 4096 dimension as-
sociated with it. We then convert these feature dimensions into a transaction
dataset to be used by the pattern mining algorithm - Apriori [25] to generate
frequent patterns. These frequent patterns are nothing but the representative of
the different parts of an object. To reduce the number of frequent patterns and
to combine similar patterns into one, we apply KModes Clustering algorithm
[26] and obtain a refined set of frequent patterns. We then use these frequent
patterns to represent an image using the Bag of Patterns(BoP) representation
[3]. After encoding all the images in the training set, we then train SVM classi-
fier for multi-class classification. To classify a test image, we first transform it
to the BoP representation and then apply the classifier to predict it’s class. The
detailed explanation of the steps is as follows:

4.1 Proposals and Features Extraction

4.1.1 Proposals from RPN

Our proposed approach makes use of Region Proposal Network(RPN) from the
Faster-RCNN [18] to produce region proposals for an image. The reason for
choosing this technique is that RPN helps us extract only those image patches
that are more likely to contain the object within them rather than just the trivial
patches containing the background. Also, the marginal cost of computing pro-
posals is merely 10ms per image as compared to Selective Search which take 2
seconds per image.

RPN takes an image as input and generates a set of object proposals and
their corresponding objectness score. As shown in Figure 4.1(a), the image is
first passed through convolutional layers to generate a convolutional feature
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a) Faster R-CNN b) Region Proposal Network

FIGURE 4.1: Faster R-CNN architecture with the RPN module and
the RPN operation [18]

map. The region proposals are generated by sliding a small network over the
feature map(shown in Figure 4.1(b). The network takes a n× n spatial window
from the feature map. Each such window is mapped to a lower dimensional
feature and this feature is given as input to two fully connected layers - box-
regression layer(reg) and box-classification layer(cls). Multiple region propos-
als are made simultaneously at each sliding window location. The maximum
number of proposals at each location can be k. The reg layer produces 4k out-
puts corresponding to the coordinates of k boxes and the cls layer produces 2k
outputs corresponding to the scores that estimate the probability of object or
not object for each proposal.The k proposals are generated relative to the k ref-
erence boxes called anchors. Each anchor is centered at the sliding window and
has a specific scale and aspect ratio. If the size of the feature map is W × H then
there will be a total of WHk anchors. The anchors are assign binary class label of
being an object or not by considering their overlapping with the ground-truth
box. The RPN is trained to minimize the loss function and get region proposals.
Finally, RoI pooling is done to get feature map corresponding to each region
proposal.

[3] takes 128×128 patches with a stride of 32 pixels from every image in the
dataset. Using RPN will help generate useful and lesser number of proposals
as compared to this sliding window approach. Also, RPN gives proposals of
different scales and dimensions. However, we need to look at the time taken
by RPN to generate proposals as compared to the sliding window approach.
The number of proposals t generated matter a lot as they will correspond to the
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number of transactions formed that will be fed to the association rule mining
algorithm. And such algorithms run slowly as the number of transactions in-
creases. So we need to get only really useful proposals so as to keep the number
of transactions optimal.

4.1.2 CNN features

For each of the proposal extracted, we need to get it’s feature representation.
Every layer of the CNN produces some output which is given as an input to
the next layer. The final layers in the CNN model are the fully connected layers
that have full connections to all the activations in the previous layer. The out-
put of the fully connected layer f c6 in faster RCNN is a [1× 1× 4096] vector.
This output can be used to represent the proposal. To reduce the number of
dimensions, we only retain dimensions with K largest non-negative values. As
shown in [3], these K largest dimensions are also equally representative of the
image proposal as the original 4096 dimension without any significant loss of
information.

4.2 Transactions creation

Creating a set of transactions is a very crucial task while working with pattern
mining algorithms. It is mandatory for the transactions to fulfill certain require-
ments as noted in [3]:

1. Each transaction can only have a small number of items, as the potential
search space grows exponentially with the number of items in each trans-
action.

2. What is recorded in a transaction must be a set of integers(which are typi-
cally the indices of items).

CNN features can help to fulfill these conditions based on it’s properties dis-
cussed in the previous section. We need to design some encoding scheme so
that the CNN feature representation of the proposed parts can be transformed
into itemsets to create a transaction. We obtain a set of transaction with each
transaction corresponding to a part proposal. To indicate whether this part be-
longs to the required object, we assign an additional item - pos or neg to the
itemset. So now the itemset for each transaction will contain the feature encod-
ing along with a pos or neg.
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The proposals are represented by 4096 dimension CNN features with each
dimension having a certain magnitude. So we take each 4096 dimensions of the
CNN feature as items. We choose the top n features with largest magnitude to
represent the proposal. We create the itemset taking the dimension indices (0-
4095) of these top n features. We train the dataset using the one vs all technique
i.e. for a certain class, we take all proposals from the images of that class as
positive and the rest of the proposals as negative. To denote positive proposals,
we append 4096 to the itemset of that proposals and for negative proposals,
we append 4097. So the length of each complete transaction will be n + 1. For
example, if n = 3 and the dimension indices of the three largest magnitude
CNN feature of a part proposal belonging to target category is [4, 253, 1190],
then the final transaction set would be [4, 253, 1190, 4096]. In this way, we create
the transaction database D for a particular class.

4.3 Frequent patterns generation

We perform association rule mining [25] , to find frequent patterns. Let us con-
sider a set of K items A = {a1, a2, . . . , aK}, a transaction database D containing
N transactions D = {T1, T2, . . . , TN}. Each transaction T is a collection of items
in A such that T ⊆ A. Given a set P which is subset of A, we need to find frac-
tion of transactions in D which contain P. This is known as the support value of
P.

supp(P) =
|{T|T ∈ D, P ⊆ T}|

N
(1)

If this value is greater than a certain threshold minsupp, we call P as frequent
itemset.
The confidence of an association rule P→ i tells us how likely it is that item i is
present in transactions which contain P within D.

con f (P→ i) =
supp(P ∪ {i})

supp(P)

=
|{T|T ∈ D, (P ∪ {i}) ⊆ T}|
|{T|T ∈ D, P ⊆ T}| (2)

For a pattern P to be called a frequent pattern, it must satisfy these two criteria:

supp(P) > min_supp (3)

con f (P→ pos) > min_con f (4)
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[3] demonstrates how association rule mining implicitly satisfies the two re-
quirements of essential parts discovered, i.e., representativeness and discrimi-
nativeness. Using the, Eq. (3) and Eq. (4), we can rewrite Eq. (2) as follows
:

supp(P ∪ {i}) = supp(P)× con f (P→ i)

> min_supp×min _con f (5)

where supp(P ∪ {i}) measures the fraction of pattern P found in transac-
tions of the target category among all the transactions where i represents pos-
itive dimension. Therefore, having values of supp(P) and con f (P → i) larger
than their thresholds ensure that pattern P is found frequently in the target cat-
egory,which shows representativeness. A high value of min_con f also ensures
that pattern P is more likely to be found in the target category rather than any
other class thus fulfilling the discriminativeness requirement. The output of this
step is a collection of patterns P obtained for every class in the dataset.

4.4 Patterns Aggregation

The number of frequent patterns discovered by pattern mining algorithm can be
very huge, with some patterns being highly correlated. This problem is known
as pattern explosion. To overcome this, we need to combine the highly corre-
lated patterns and only keep the major discriminative patterns that can help
us with the classification task. For aggregating the patterns into a smaller set
of discriminative patterns we use K-Modes clustering Huang [26]. K-Modes
clustering algorithm is a variation of the well-known K-Means clustering algo-
rithm that is adapted to suit categorical variable data. The function used to find
dissimilarity between two objects calculates the total mismatches of the corre-
sponding attribute categories of the two objects. The smaller the number of
mismatches is, the more similar the two objects. To represent each cluster, it
uses a frequency based method, where each attribute of the cluster center is cal-
culated as the maximum occurring attribute among the cluster members that is
nothing but the mode of that attribute.
Let X, Y be two categorical objects described by m categorical attributes. The
dissimilarity measure between X and Y can be defined by the total mismatches
of the corresponding attribute categories of the two objects. The smaller the
number of mismatches is, the more similar the two objects. This measure is
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often referred to as simple matching.

dist(X, Y) =
m

∑
i=1

δ(xi, yi) (6)

where

δ(xi, yi) =

{
0 xi = yi

1 xi 6= yi

The mode of a set is defined as follows:
Let X be set of categorical objects described by categorical attributes A1, A2, . . . Am.
Amode of X = X1, X2 . . . Xn is a vector Q = [q1, q2 . . . qm] that minimizes

D(X, Q) =
n

∑
i=1

dist(Xi, Q) (7)

The K-Modes algorithm works as follows : Initially, random k modes are se-
lected, one for each cluster. Allocate an object to cluster whose mode is nearest
to it according to equation (6). Update the mode of the cluster after each alloca-
tion. After all the objects have been allocated to the clusters, retest the dissimi-
larity of the objects against the current modes. If an object is found such that its
nearest mode belongs to another cluster rather than its current one, reallocate
the object to that cluster and update the modes of both clusters.This is repeated
until no object has changed its cluster in the cycle.

In our proposed approach, we have the set of frequent patterns P generated
from the Apriori algorithm. We now represent each of the pattern in this set
as a binary vector of 4096 dimension with only those bits set whose indices are
present in the pattern. We run the K-Modes algorithm over the binarized pat-
terns and obtain a set of cluster centroids as output. These cluster centroids can
then be our final set of refined patterns P′. Choosing the parameter of number
of cluster centroids is an important task. If the number of cluster centroids is
too small, then the patterns won’t be discriminative and if the number of clus-
ter centroids is too large, it would increase the computational time in the next
training step.
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4.5 Image representation

To represent an image using a set of refined patterns P′, we run RPN over the
image to generate proposals at multiple scales and locations, and get their CNN
activations. For each 4096-dimensional CNN activation vector of an image pro-
posal, after finding Ci, the set of indices of dimensions that have non-zero val-
ues, we check for each selected pattern Pk ∈ P′ whether Pk ⊆ Ci. Thus, our
Bag-of-Patterns representation fBoP ∈ RX×Y is a histogram encoding of the set
of local CNN activations, satisfying [ fBoP]k = |i|Pk ∈ Ci|. Our Bag-of-Patterns
representation is similar to the well-known Bag-of-Visual-Words (BoW) repre-
sentation [7] if one thinks of a pattern P ∈ P′ as one visual word. The difference
is that in the BoW model one feature descriptor is assigned to one visual word,
whereas in our BoP representation, one CNN feature can belong to multiple
patterns.

4.6 Training and Classification

For training of the obtained data, an optimal choice of learning method would
be Support Vector Machine (SVM) because SVM is effective in high dimensional
spaces and it uses a subset of training points in the decision function (called
support vectors), so it is also memory efficient. SVM works by finding a sepa-
rating hyperplane to distinguish between objects belonging to two classes. For
multi- class classification, "one-against-one" approach can be used. If n_class is
the number of classes, then n_class× (n_class− 1)/2 classifiers are constructed
and each one trains data from two classes. The results from these classifiers are
then aggregated to give the final output label.

Using the image representation discussed above, we encode all the images
in the training set to create a mega histogram. In the mega histogram, each row
represents an train image and each column represents the refined patterns ob-
tained in the previous step. We feed this mega histogram along with the training
labels for each sample to SVM. We hypertune the parameters C and gamma and
try different kernel functions such as - linear, polynomial, radial basis function
so as to maximize the accuracy of the model. The parameter C, common to all
SVM kernels, trades off misclassification of training examples against simplic-
ity of the decision surface. A low C makes the decision surface smooth, while
a high C aims at classifying all training examples correctly. gamma defines how
much influence a single training example has. The larger gamma is, the closer
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other examples must be to be affected. Proper choice of C and gamma is critical
to the SVM’s performance.

To test the model, we first extract the part proposals using either the sliding
window approach or the RPN. We get the CNN features for the parts. We then
encode image as an histogram mapping the features to the found centroids and
give it as an input to the model generated. The model then outputs a specific
class label for that test image.
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Chapter 5

Implementation

5.1 The Dataset

For experiments, we use Leeds Butterfly dataset [27]. It has 832 images of 10 dif-
ferent species(categories) of butterflies with 55-100 images per category. From
the figure, we can see how the butterflies of different categories are visually
similar looking. So, to distinguish between them, the machine needs to look at
the various parts of the butterflies such as the shape of the wing, the pattern
over the wings and so on. Our approach is likely to derive these unique part
features from the images and train the classifier to distinguish among those.

Danaus plexippus Heliconius charitonius

Heliconius erato Papilio cresphontes

FIGURE 5.1: Different butterfly species from Leeds Butterfly
dataset
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5.2 Extracting proposals and their CNN features

In this step, we first resize the image such that it’s smaller dimension is 256 and
the aspect ratio of the original image is maintained. We extract part proposals
from the images in two ways. First way is the sliding window approach used
in the [3]. We extract 128× 128 size with a stride of 32 from every image. On an
average, 37 proposals are extracted from each image. The second way is to run
the RPN over these images to get region proposals. We use the Python imple-
mentation of Faster RCNN [18]. We keep the number of proposals generated
from each image t as 37. The figure shows the proposals generated with both
ways.

a) Without RPN

b) With RPN

FIGURE 5.2: Two different techniques for extracting part propos-
als from images
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To extract CNN features from the image proposals, we use the state-of-the-
art CNN models pre-trained on the ImageNet dataset [28]. For the sliding win-
dow approach, we use the BVLC Reference Ca f f eNet [29] with five convolu-
tion layers followed by two 4096-dimensional and one 1000-dimensional fully-
connected layers. This architecture is similar to AlexNet [11]. For the RPN,
we use the pre-trained VGG − VD model which has 19 layers [13]. We use
the features from the output of layer f c6 of 4096 dimension in both the cases.
The tradeoff here is that sliding window approach is faster than the RPN, but
the proposals extracted by RPN focus more on the object rather than the back-
ground.

5.3 Applying Apriori Algorithm

For the CNN features extracted for each part proposal, we select the top-10 fea-
ture indices with largest values. To create the transaction database D for a par-
ticular class, we append 4096(positive) to proposals belonging to images of that
class and 4097(negative) to all the others. We then run the Apriori Algorithm
implementation from [30] over the transactions in database D while setting
minimum support(min_supp) to 0.01% and minimum confidence(min_con f ) to
80%. We derive the rules from the algorithm such item 4096 is in the consequent
as 4096 represents positive proposals for that class. In the figure 5.3, the values
in the bracket denote the support and con f idence for that rule respectively. We
then retain only the antecedent part of the association rules as our set P of fre-
quent patterns for the class.

Transactions

Apriori Rules

FIGURE 5.3: Input and output format of the association rule min-
ing Apriori Algorithm
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5.4 Applying K-Modes Clustering Algorithm

To aggregate the frequent patterns set P created by Apriori algorithm, we use
the K-Modes clustering implementation from [26]. We take the frequent pat-
terns generated for a class and give it as input to the K-Modes algorithm. We
set the number of clusters to be generated as 50 and set the n_init variable in K-
Modes to 5. The n_init variable specifies that the algorithm with initialize with
random cluster centroids this many times and output the best clustering among
them. So, for every class we get 50 refined patterns and the combined patterns
from all 10 classes will 50× 10 = 500. We try to map these refined patterns to
the part proposals. As we can see in figure 5.4 and 5.5, the proposals from dif-
ferent images which contain the same pattern are visually similar. These set of
proposals containing a certain pattern are called mid-level visual elements [3].

FIGURE 5.4: Mapping the obtained refined patterns to the part
proposals (without RPN)
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FIGURE 5.5: Mapping the obtained refined patterns to the part
proposals (with RPN)

5.5 Bag of Patterns representation

As discussed in the previous section, we create BoP representation for every
image in the training dataset and create a mega histogram for training purpose.
The figure 5.6 shows BoP representation for image from every class.
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FIGURE 5.6: Bag of Patterns representation

5.6 SVM training and classification

For training purposes, we make use of the python scikit− learn module’s SVM -
C− SupportVectorClassi f ication(SVC). The parameters C and gamma are very
crucial for optimal training. Deciding on these parameters can be done by us-
ing the GridSearchCV function of the scikit− learn module. GridSearchCV per-
forms an exhaustive search over the specified parameters range for the estima-
tor using the estimator’s scoring function to decide the best estimator parame-
ters.
We first get the mega histogram and the corresponding training labels for every
row in the mega histogram. We then split the data into train and test images.
We standardize the training data by removing the mean and scaling to unit
variance. We apply the same transformation on the test data before testing it as
well. We specify a range of values in logspace 10 for both C and gamma. We
also supply a cross-validation function with 5 folds to the GridSearchCV object.
The output of the GridSearchCV is the best estimator which we then run on the
test data to find the accuracy of the model.
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The accuracy of the model is calculated as the number of images correctly clas-
sified according to their classes out of the total number of test images. For,
multi-class classification in SVM, a better measure of the model is the per class
accuracy. The per class accuracy is calculated as follows -
TP = Truepositive i.e. the number of images whose predicted label and true
label is same for the given class
FP = Falsepositive i.e. the number of images whose predicted label is the given
class but the true label is some other class.
P = TP + FP Total number of images classified as belonging to this class i.e.
their predicted label is the given class.

Accuracyperclass =
TP

TP + FP
The model obtained with the sliding window approach has C: 13.11, gamma

: 0.00025 and the model accuracy of 0.54. The model obtained with the sliding
window approach has C: 100.0, gamma : 0.001 and the model accuracy of 0.82.
The table shows the per class accuracy for both the models.

Accuracy
Class
1

Class
2

Class
3

Class
4

Class
5

Class
6

Class
7

Class
8

Class
9

Class
10

Without
RPN

0.88 0.60 0.27 0.81 0.32 0.62 0.44 0.71 0.33 0.44

With
RPN

0.95 0.67 0.79 1.00 0.87 0.79 0.94 0.92 0.71 0.68
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a) Without RPN

b) With RPN

FIGURE 5.7: Confusion matrix for the SVM models
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Chapter 6

Conclusion

Part-based techniques for fine-grained classification seem to be a promising ap-
proach. Moreover, parts are what distinguish objects belonging to same broader
category but different fine-grained categories. Using RPN for part proposals
which is the fastest technique available as of now for region proposals, we can
expect our approach to be time-efficient. However, deciding on the optimal
number of proposals to be generated from each image is crucial so as to main-
tain an optimal number of transactions for the association rule mining algo-
rithm as the time taken by the algorithm increases proportionally to the size of
the transaction database. As can be seen from the accuracy of the models gen-
erated from the sliding window approach and the RPN approach, clearly the
RPN approach has an edge over the other technique thus promising us better
results.
Using association rule mining also seems promising. One of the challenges
faced while using the pattern mining approach in the classification task is the
designing an optimal feature encoding for encoding part representations as
itemset because as the number of items in a transaction increase, the complex-
ity of the algorithm increases exponentially. CNN features seem to be an apt
choice for this purpose as they clearly define the part proposals using just the
4096 features. Other tasks at hand while working with association rule mining
techniques is deciding upon the parameters such as the minimum support for
the itemsets to be called frequent and the minimum confidence to get strong
association rules.
Application of K-Modes algorithm for aggregating the association rules gener-
ated by the association rule mining algorithm seems a very crucial task as it
helps to combine the highly correlated rules and give us a refined set of rules
thereby reducing the computational time in the training step.
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Chapter 7

Future Work

Application of pattern mining approach to the image classification task seems
give promising results. This can be further extended to be used on videos to
detect the fine-grained categories of objects within them. Weighted Association
Rule Mining by Tao, Murtagh, and Farid [31] is a modification over the tradi-
tional algorithms in association rule mining that allows a certain weight to be
assigned to every item in the transaction database. We can use this weighted al-
gorithm and assign higher weights to items corresponding to features present in
positive proposals and then derive more significant rules. Currently, we are us-
ing the K-Modes clustering technique to aggregate the rules and create a smaller
set of rules. We can experiment to find better algorithms to reduce the size of
the patterns set. For training purposes, we have used SVM for multi-class clas-
sification. We can find if a better alternative exists to train our dataset and create
a stronger classifier.
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