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Abstract

Linear Programming is a way of allocating resources in efficient manner so that

cost in allocation can be minimized and profit can be maximized. Linear Pro-

gramming is based on mathematical formulations .Transportation Problem is the

special case of Linear Programming in which we have to transport the goods from

one location to another location such that the needs of every arrival location are

fulfilled. However this problem can also be converted to another problems such

as job assignment problem. The transportation problem can be solved by using

method such as vogel’s approximation Northwest-Corner (NWC),Least-Cost (LC)

.We also focus on the optimization of solution of transportation problem.
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Chapter 1

Introduction

Transportation problem is very well known problem because it is been used widely.In

this problem we need to transport goods from certain set of sources to the other set

of destinations.There are certain constraints on supply and demand of the goods

.We have to minimize the transportation cost such that demand is fulfilled.The

solution of this problem consist of three parts.

1. Linear Programming formulation of the problem

2. Basic solution proposal

3. Optimization of the Basic Problem

This problem can be converted to another problem according to requirement.Initially

this problem is developed by Hitchcock [1, 3].Transportation problem can be solved

by several methods such as North west corner method .but such methods can be

optimized.The main objective is to optimize such methods.Initially Linear Pro-

gramming formulation of the problem is required.The Linear Programming Prob-

lem (LPP) representing the Transportation problem for m sources and n desti-

nations are generally given as: The quality of an Initial Basic Feasible Solution

of the Transportation Problem is measured by the computational efforts. These

are the certain methods for finding the Initial Basic Feasible Solution for the

Transportation Problems are North West Corner Method (NWCM), and Vogels

Approximation Method (VAM),Least Cost Method (LCM). There is no such kind

of unique method which can be claimed to be the best method for finding an

1
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Initial Basic Feasible Solution. We should also focus on the procedure for finding

an Initial Basic Feasible Solution along with finding the optimal solution. North

West Corner Method started with allocating at the most North West cell.Since

NWCM is based on position rather than transportation cost,this method usually

gives a higher transportation cost than optimal cost.



Chapter 2

Related Work

2.1 The North West Corner Rule

The North West corner rule is a method for computing a basic feasible solution of

a transportation problem, where the basic variables are selected from the North

West corner ( i.e., top left corner ).

The standard instructions for a transportation model are paraphrased below.

1. Select the upper left-hand corner cell of the transportation table and allocate

as many units as possible equal to the minimum between available supply

and demand, i.e., min(s1, d1).

2. Adjust the supply and demand numbers in the respective rows and columns.

3. If the demand for the first cell is satisfied, then move horizontally to the next

cell in the second column.

4. If the supply for the first row is exhausted, then move down to the first cell

in the second row.

5. If for any cell, supply equals demand, then the next allocation can be made

in cell either in the next row or column.

6. Continue the process until all supply and demand values are exhausted.

3
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The steps of NWCR are as follows: [2]

Figure 2.1: Step 1

Figure 2.2: Step 2

Figure 2.3: Step 3
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Figure 2.4: Step 4

2.2 Stepping Stone

This problem can be completed by using Stepping Stone.This method can be

performed if the following rules are considered. The following rules are used to

allocate the units based on product delivery path.The rule according to (Render,

2007) is AIJ The number of occupied routers (squares) must always be equal to

one less then the sum of the number of rows plus the number of columns. This

means occupied shipping routes (squares) = number of rows + number of columns

- 1 ”. The rules in the application of Stepping Stone method is that The amount of

the allocation of delivery routes must equal the number of rows plus the number

of columns minus one , in other words we can say that the allocated amount

of shipping routes = number of rows + number of columns - 1. To determine

whether the allocation of each cell is optimal, it is necessary optimality testing by

evaluating the cell are still empty or not (non basis variable) in order to find out

if it ever done sending a unit into an empty cell is whether to raise or lower the

total costs. This testing process is called Stepping Stone method. Stages of the

testing stepping stone method are as

1. Choose one of cells which are empty for the test.

2. Starting from these cells that are still blank,draw a line opposite with clock-

wise direction and return back to an empty cell was way past of the cells that

have been allocated to the units of the product based on shipping routes and

its movement is done with the help of horizontal or vertical lines.
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3. Start with the positive sign (+) from cells that are still vacant, and proceed

using minus sign to the next cell, then use back plus sign to the next cell

and continue back to the minus sign to the next cell, is intermittent until

returning to original cell was still empty.

4. Calculate the progress by adding all the unit costs contained in each cell

with plus sign and then reduce the cost of all units contained in each cell

with a minus sign.

5. Repeat the above steps until all the improvement index is obtained in all

cells that are still empty. If the results of all calculations improvement index

is equal to or greater than zero, then the optimal solution has been achieved.

If not, then it should be revised allocations of the cell that already contains

the allocation of delivery routes from the source of supply, with the goal to

minimize the total cost.

2.3 Vogel’s Approximation

In The Vogels Approximation Method (VAM) is an iterative procedure for com-

puting a basic feasible solution of a transportation problem. This method is better

than other two methods i.e. North West Corner Rule (NWC) because the basic

feasible solution obtained by this method is nearer to the optimal solution. The

algorithm for Vogels Approximation Method (VAM) is given below:

1. Identify the cell having minimum and next to minimum transportation cost

in each row and write the difference (Penalty) along the side of the table

against the corresponding row.

2. Identify the cell having minimum and next to minimum transportation cost

in each column and write the difference (Penalty) along the side of the table

against the corresponding column. If minimum cost appear in two or more

times in a row or column then select these same cost as a minimum and next

to minimum cost and penalty will be zero.

3. a. Identify the row and column with the largest penalty, breaking ties arbi-

trarily. Allocate as much as possible to the variable with the least cost in the

selected row or column. Adjust the supply and demand and cross out the
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satisfied row or column. If a row and column are satisfies simultaneously,

only one of them is crossed out and remaining row or column is assigned a

zero supply or demand.

b. If two or more penalty costs have same largest magnitude, then select

any one of them (or select most top row or extreme left column).

4. a. If exactly one row or one column with zero supply or demand remains

uncrossed out, Stop.

b. If only one row or column with positive supply ordemand remains un-

crossed out, determine the basic variables in the row or column by the Least-

Cost Method.

c. If all uncrossed out rows or column have (remaining) zero supply or

demand, determined the zero basic variables by the Least-Cost Method.

Stop.

d. Otherwise, go to Step-1.



Chapter 3

Problem Formulation

Suppose a company has m warehouses and n retail outlets. A single product is

to be shipped from the warehouses to the outlets. Each warehouse has a given

level of supply, and each outlet has a given level of demand. We are also given the

transportation costs between every pair of warehouse and outlet, and these costs

are assumed to be linear.More explicitly, the assumptions are : [4]

1. The total supply of the product from warehouse i is a i , where i = 1, 2, . .

., m.

2. The total demand for the product at outlet j is bj , where j = 1, 2, . . ., n.

3. The cost of sending one unit of the product from warehouse i to outlet j

is equal to cij , where i = 1, 2, . . ., m and j = 1, 2, . . ., n.

The total cost of a shipment is linear in the size of the shipment. The problem of

interest is to determine an optimal transportation scheme between the warehouses

and the outlets, subject to the specified supply and demand constraints. Graph-

ically, a transportation problem is often visualized as a network with m source

nodes, n sink nodes, and a set of m * n ”directed arcs.” We now proceed with a

linear-programming formulation of this problem.

3.1 The Decision Variables

A transportation scheme is a complete specification of how many units of the

product should be shipped from each warehouse to each outlet. Therefore, the

8
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decision variables are: xij = the size of the shipment from warehouse i to outlet j,

where i = 1, 2, . . ., m and j = 1, 2, . . ., n. This is a set of m * n variables.

3.2 The Objective Function

Consider the shipment from warehouse i to outlet j. For any i and any j, the

transportation cost per unit is c ij ; and the size of the shipment is x ij . Since we

assume that the cost function is linear, the total cost of this shipment is given by

cijxij. Summing over all i and all j now yields the overall transportation cost for

all warehouse-outlet combinations. That is, our objective function is: [4]

3.3 The Constraints

Consider warehouse i. The total outgoing shipment from this warehouse is the sum

x i1 + x i2 + . . . + x in . In summation notation, this is written as nj=1 xij .

Since the total supply from warehouse i is a i , the total outgoing shipment cannot

exceed a i . That is, we must require [4] This results in a set of m + n functional

constraints. Of course, as physical shipments, the xij s should be nonnegative.

3.4 LP Formulation

In summary, we have arrived at the following formulation: This is a linear program

with m * n decision variables, m + n functional constraints, and m * n non

negativity constraints. [4]
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3.5 A Numerical Example

In an actual instance of the transportation problem, we need to specify m and n,

and replace the ai s, the bjs, and the cij s with explicit numerical values. As a

simple example, suppose we are given: m = 3 and n = 2; a 1 = 45, a 2 = 60,

and a 3 = 35; b 1 = 50 and b 2 = 60; and finally, c 11 = 3, c 12 = 2, c 21 =

1, c 22 = 5, c 31 = 5, and c 32 = 4. Then, substitution of these values into the

above formulation leads to the following explicit problem: [47] For an example of

an explicit transportation scheme, let x11 = 20, x12 = 20, x21 = 20, x22 = 20, x31

= 10, and x32 = 20. It is easily seen that this proposed solution satisfies all of the

constraints, and hence it is feasible. In words, the solution calls for shipping 20

units from warehouse 1 to outlet 1, 20 units from warehouse 1 to outlet 2, 20 units

from warehouse 2 to outlet 1, . . ., and finally 20 units from warehouse 3 to outlet

2. The total transportation cost associated with this transportation scheme can

be computed as: 3 * 20 + 2 * 20 + 1 * 20 + 5 * 20 + 5 * 10 + 4 * 20 = 350. [4]
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3.6 An Equivalent Formulation

To derive an optimal transportation scheme for the above example, we can of

course apply the standard Simplex algorithm. This means that we will first intro-

duce 3 slack variables for constraints (1), (2), and

(3) and 2 surplus variables for constraints (4) and (5), to convert these inequalities

into equalities. On top of these, at the onset of Phase I, we also need to introduce

2 more artificial variables to serve as starting basic variables for constraints (4)

and (5). We would then go through Phase I and Phase II to arrive at an optimal

solution. This routine is standard fare, but the introduction of so many new

variables seems tedious. Can we do better? It turns out that we can. The first

observation is that for a given problem to have any feasible solution, the total

supply must not be less than the total demand. In this numerical example, we

have a total supply of 140 and a total demand of 110. Hence, feasible solutions

exist; and indeed, we constructed one with ease. The second observation is that

if the total supply happens to be equal to the total demand, then any feasible

solution must satisfy all of the inequality constraints as equalities. (For example,

this would be the case if a 1 , a 2 , and a 3 had been 40, 40, and 30, respectively.)

As a consequence, whenever the given total supply and total demand are the same,

we can replace all (functional) inequality constraints by equality constraints. Our

third, and final, observation is that after such replacements, there is no longer any

need for introducing slack or surplus variables. Certainly, we cannot expect every

problem to come with identical total supply and total

demand. However, notice that if the total supply is strictly greater than the

total demand, then one can artificially create a dummy to absorb the difference

between the two. Of course, in order to preserve the original cost structure, the

transportation cost for units sent to the dummy sink should be set to zero. Thus,

for this specific example, we can introduce a third outlet to serve as the dummy

sink; and let b 3 = 30 and c 13 = c 23 = c 33 = 0. This yields the following new

linear program: [4]
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It should be clear that by construction, this problem is equivalent to the original

one. With the above discussion, we can now assume without loss of generality that

every transportation problem comes with identical total supply and total demand.

This gives rise to what is called the standard form of the transportation problem.

Formally, under the assumption that sum of all a is is equal to sum of all b js.



Chapter 4

Implementation Details

Transportation problem can be solved by several method, namely Northwest-

Corner (NWC), Vogels Approximation Method (VAM) and Assignment Method.

The method is simply an early solution to the issue of transportation. To find the

optimal solution, there are method that can be used, the Stepping-Stone Method

and Simplex Method (MODI). Here we are comparing two method of solution of

transportation problems, the NWCR method and the stepping-stone method.Here

We have implemented the North West Corner Rule algorithm which is further been

optimized by Stepping Stone algorihtm.The Implementation is done in Java .The

Implementation of North West Corner Rule and Stepping Stone is as follows.
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We have also implemented Vogel’s approximation and also applied Stepping Stone

method on it .The implementation of Stepping Stone on Vogel’s approximation is

as follow.
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4.1 Result Comparison

Example 1:

No of Sources No of Destination

2 3

Supply 1 Supply 2

2 3

Demand 1 Demand 2 Demand 3

20 30 10

Source/ Destination d1 d2 d3

s1 3 5 7

s2 3 2 5

NWCL Solution
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20 5 -

- 25 10

Total costs: 185.0

NWCL followed by stepping stone solution

20 - 5

- 30 5

Total costs: 180.0

Vogel’s Approximation solution

20 - 5

- 30 5

Total costs: 180.0

Vogels approx and stepping stone

Example 1

20 - 5

- 30 5

Total costs: 180.0

Example 2:

No of Sources No of Destination

3 3

Supply1 Supply2 Supply3

12 40 33

Demand1 Demand2 Demand3

20 30 10
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Source/ Destination d1 d2 d3

s1 3 5 7

s2 2 4 6

s3 9 1 8

NWCL Solution

12 - - -

8 30 2 -

- - 8 25

Total costs: 248.0

NWCL followed by Stepping Stone solution

- - - 12

20 - 10 10

- 30 - 3

Total costs: 130.0

Vogel’s Approximation solution

- - - 12

20 - 7 13

- 30 3 -

Total costs: 136.0

Vogels approx and stepping stone

Example 2

- - - 12
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20 - 10 10

- 30 - 3

Total costs: 130.0

Example 3:

No of Sources No of Destination

10 12

Sup1 Sup2 Sup3 Sup4 Sup5 Sup6 Sup7 Sup8 Sup9 Sup10

25 35 23 24 22 34 32 23 45 56

Dm1 Dm2 Dm3 Dm4 Dm5 Dm6 Dm7 Dm8 Dm9 Dm10 Dem11 Dm12

45 32 12 14 24 13 34 23 12 23 24 63

Source/ Destination d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

s1 5 2 2 1 4 3 5 3 1 3 4 6

s2 4 2 2 4 4 1 4 3 2 3 2 3

s3 6 32 2 1 24 13 34 23 12 23 24 63

s4 5 3 12 14 24 13 34 23 12 23 24 63

s5 4 2 12 14 24 13 34 23 12 23 24 63

s6 4 2 12 14 24 13 34 23 12 23 24 63

s7 4 2 12 14 24 13 34 23 12 23 24 63

s8 5 3 12 23 24 13 34 23 12 3 24 63

s9 5 32 12 14 24 13 34 23 1 23 24 63

s10 45 32 12 14 24 13 34 23 1 23 2 63

NWCL Solution

25 - - - - - - - - - - -

20 15 - - - - - - - - - -

- 17 6 - - - - - - - - -

- - 6 14 4 - - - - - - -

- - - - 20 2 - - - - - -
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- - - - - 11 23 - - - - -

- - - - - - 11 21 - - - -

- - - - - - - 2 12 9 - -

- - - - - - - - - 14 24 7

- - - - - - - - - - - 56

Total costs: 8527.0

NWCL followed by stepping stone solution

Example 3

- - - - - - - - - - - 25

- - - - - - - - - - - 35

- - 9 14 - - - - - - - -

- - - - - - 12 12 - 0 - -

- 22 - - - - - - - - - -

24 10 - - - - - - - - - -

21 - - - - - - 11 - - - -

- - - - - - - - - 23 - -

- - 3 - 24 13 5 - - - - -

- - - - - - 17 - 12 - 24 3

Total costs: 3315.0

Vogel’s Approximation solution

- - - 14 - - - 11 - - - -

- - - - - - - - - - - 35

- - 12 - - 11 - - - - - -

- 24 - - - - - - - - - -
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12 8 - - - 2 - - - - - -

- - - - 24 - 10 - - - - -

- - - - - - 24 8 - - - -

- - - - - - - - - 23 - -

33 - - - - - - - 12 - - -

- - - - - - - 4 - - 24 28

Total costs: 4547.0

Vogels approx and stepping stone

Example 3

solution Example-3

- - - - - - - - - - - 25

- - - - - - - - - - - 35

- - 9 14 - - - - - - - -

- - - - 1 - 23 - - 0 - -

- 22 - - - - - - - - - -

24 10 - - - - - - - - - -

21 - - - - - 11 - - - - -

- - - - - - - - - 23 - -

- - 3 - 17 13 - - 12 - - -

- - - - 6 - - 23 - - 24 3

Total costs: 3315.0

Example 4

No of Sources No of Destination

3 3
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Supply1 Supply2 Supply3

12 40 33

Demand1 Demand2 Demand3

20 30 10

Source/ Destination d1 d2 d3

s1 3 5 7

s2 2 4 6

s3 9 1 8

NWCL Solution

Example 4

12 - - -

8 30 2 -

- - 8 25

Total costs: 248.0

NWCL followed by Stepping Stone solution

- - - 12

20 - 10 10

- 30 - 3

Total costs: 130.0

Vogel’s Approximation solution

- - - 12

20 - 7 13
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- 30 3 -

Total costs: 136.0

Vogels approx and stepping stone

Example 4

- - - 12

20 - 10 10

- 30 - 3

Total costs: 130.0

Example 5

No of Sources No of Destination

4 4

Supply1 Supply2 Supply3 Supply4

14 10 15 12

Demand1 Demand2 Demand3 Demand4

10 15 12 15

Source/ Destination d1 d2 d3 d4

s1 10 30 25 15

s2 20 15 20 10

s3 10 30 20 20

s4 30 40 35 45

NWCL Solution

Example 5

10 4 - -

- 10 - -
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- 1 12 2

- - - 12

- - - 1

Total costs: 1220.0

NWCL followed by stepping stone solution

- - - 14

- 9 - 1

10 - 5 -

- 5 7 -

- 1 - -

Total costs: 1000.0

Vogel’s Approximation solution

- - - 14

- 9 - 1

10 - 5 -

- 5 7 -

- 1 - -

Total costs: 1000.0

Vogels approx and stepping stone

Example 5

- - - 14

- 9 - 1
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10 - 5 -

- 5 7 -

- 1 - -

Total costs: 1000.0

Example 6

No of Sources No of Destination

4 4

Supply1 Supply2 Supply3 Supply4

15 10 15 12

Demand1 Demand2 Demand3 Demand4

10 15 12 15

Source/ Destination d1 d2 d3 d4

s1 10 30 25 15

s2 20 15 20 10

s3 10 30 20 20

s4 30 40 35 45

NWCL Solution

Example 6

10 5 - -

- 10 - -

- - 12 3

- - - 12

Total costs: 1240.0

NWCL followed by stepping stone solution
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0 - - 15

- 10 - -

10 - 5 -

- 5 7 -

Total costs: 1020.0

Vogel’s Approximation solution

- - - 15

- 10 - -

10 - 5 -

- 5 7 -

Total costs: 1020.0

Vogels approx and stepping stone

Example 6

0 - - 15

- 10 - -

10 - 5 -

- 5 7 -

Total costs: 1020.0 Example 7

No of Sources No of Destination

8 10

Supply1 Supply2 Supply3 Supply4 Supply5 Supply6 Supply7 Supply8

25 35 34 21 23 24 12 23

Dem1 Dem2 Dem3 Dem4 Dem5 Dem6 Dem7 Dem8 Dem9 Dem10

20 30 10 5 1 23 34 2 12 60
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Source/ Destination d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 3 5 7 3 4 2 4 2 1 4

s2 2 2 7 3 4 2 4 2 1 4

s3 2 3 3 6 4 3 4 2 1 4

s4 2 3 2 5 4 2 4 2 1 4

s5 4 3 1 4 4 2 4 2 1 4

s6 3 5 7 3 4 3 4 2 1 4

s7 2 2 7 2 4 2 4 2 1 4

s8 1 5 7 2 4 2 4 2 1 4

NWCL Solution

Example 7

20 5 - - - - - - - -

- 25 10 - - - - - - -

- - - 5 1 23 5 - - -

- - - - - - 21 - - -

- - - - - - 8 2 12 1

- - - - - - - - - 24

- - - - - - - - - 12

- - - - - - - - - 23

Total costs: 677.0

NWCL followed by Stepping Stone solution

- - - - 0 - - - 12 13

- 30 - - 1 2 - 2 - -

- - - - - 21 13 - - -

- - - - - - 21 - - -

- - 10 - - - - - - 13

- - - - - - - - - 24
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- - - 5 - - - - - 7

20 - - - - - - - - 3

Total costs: 542.0

Vogel’s Approximation solution

- - - - 1 23 1 - - -

- 30 - - - - 5 - - -

- - - - - - 28 2 4 -

- - - - - - - - 8 13

- - 10 - - - - - - 13

- - - - - - - - - 24

- - - 5 - - - - - 7

20 - - - - - - - - 3

Total costs: 542.0

Vogels approx and stepping stone

Example 7

- - - - 1 23 1 - - -

- 30 - - - - 5 - - -

- - - - - - 28 2 4 -

- - - - - - - - 8 13

- - 10 - - - - - - 13

- - - - - - - - - 24

- - - 5 - - - - - 7

20 - - - - - - - - 3

Total costs: 542.0
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Example 8

No of Sources No of Destination

4 5

Supply1 Supply2 Supply3 Supply4

100 80 70 90

Demand1 Demand2 Demand3 Demand4 Demand5

60 40 100 50 90

Source/ Destination d1 d2 d3 d4 d5

s1 10 8 9 5 13

s2 7 9 8 10 4

s3 9 3 7 10 6

s4 11 4 8 3 9

NWCL Solution

Example 8

60 40 - - -

- - 80 - -

- - 20 50 -

- - - - 90

Total costs: 3010.0

NWCL followed by Stepping Stone solution

60 - 40 - -

- - - - 80

- 0 60 - 10

- 40 - 50 -
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Total costs: 2070.0

Vogel’s Approximation solution

- - 100 - -

60 - - - 20

- - - - 70

- 40 - 50 -

Total costs: 2130.0

Vogels approx and stepping stone

Example 8

60 - 40 - -

- - - - 80

- 0 60 - 10

- 40 - 50 -

Total costs: 2070.0

Comparison

NWCL SS on NWCL Vogel’s approximation SS on Vogel’sapp

Ex-1 185 180 180 180

Ex-2 248 130 136 130

Ex-3 8527 3315 4547 3315

Ex-4 248 130 136 130

Ex-5 1220 1000 1000 1000

Ex-6 1240 1020 1020 1020

Ex-7 677 542 542 542

Ex-8 3010 2070 2130 2070

Table 4.1: Comparison of various solutions
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diff NWCL-optimal diff Vogel-optimal diff Vogel-NWCL

1 5 0 5

2 118 6 112

3 5212 1232 3980

4 118 6 112

5 220 0 220

6 220 0 220

7 125 0 135

8 940 60 880

Table 4.2: Differences of various solutions
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Conclusion

In todays highly competitive market, various organizations want to deliver prod-

ucts to the customers in a cost effective way, so that the market becomes competi-

tive. To meet this challenge, transportation model provides a powerful framework

to determine the best ways to deliver goods to the customer. In this article, we

compared different methods for finding an initial basic feasible solution of trans-

portation problems.We can see that vogel’s approximation always give better ini-

tial basic feasible solution and vogel’s approximation solution is near to optimal

solution or is itself is the optimal solution. This will help to achieve the goal to

those who want to maximize their profit by minimizing the transportation cost.
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