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Abstract

A grid usually is two or more sets of parallel lines in 2D or planes in 3D that intersect one
another (called as grid points) at particular angle. It divides the plane or space into many con-
gruent polytopes. Most common grids are square (in 2D) and cubical (in 3D). Grid is used
in digital modeling of geometric objects. A digital model can be represented by a set of 2D
pixels or 3D voxels. The choice of shape of pixel or of voxel is very important in digital mod-
eling. Circular pixels and spherical voxels have this interesting property that all points on their
surface is equidistant from grid point which is not the case in square pixels or cubical voxels.
Spherical voxels are not stable on cubical grid. Stable self-alignment of spheres in 3D forms
a tetrahedron. A simplex is the generalization of tetrahedron and triangle to n dimensions. 2-
simplex grid is equivalent to triangular and 3-simplex grid is equivalent to tetrahedral grid. The
dual of triangular grid is hexagonal grid. The notion of simplex grid topologically simplifies
study of polytopes. Our aim is to analyze simplex grid and characterize basic geometric shapes
on it.

Keywords: simplex grid, triangle, tetrahedron, circular pixel, spherical voxel.
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1 Introduction

With the advancement of 3D computer graphics we see a noticeable progress towards digital
modeling of geometric objects. Digital Representation of geometric objects requires charac-
terization and discretization of geometric elements namely lines, circles and arcs. Geometric
objects are digitally represented on a grid. A grid usually is two or more sets of parallel lines
in 2D or planes in 3D that intersect one another at particular angle. These intersection points
are called as grid points. It divides the plane or space into many congruent polytopes. Most
common polytopes on grids are square (in 2D) and cube (in 3D). A grid can be represented by
Z2 in 2D or Z3 in 3D when we deal with this square or cubic grid. There are two type of grid
models to a represent grid, namely grid point model and grid cell model as defined in [9].

For the sake of simplicity we are explaining the notion of these models with respect to
square (and cubic in 3D) grids only. The basic concept is replicated to other grid shapes. In the
Grid point model, a 2D grid G is infinite grid Z2 or m×n sub array of Z2. Similarly a 3D grid
G is either Z3 or l×m×n sub array of Z3. Therefore, in 2D an m×n square grid is grid point
model can be given as

Gm,n =
{
(i, j) ∈ Z2 : (1 6 i 6 m)∧ (1 6 i 6 n

}
).

In the grid cell model, a grid vertex is called a 0-cell, a grid edge is a 1-cell, a grid face
is a 2-cell, and a grid cube is a 3-cell. A 2D grid G is either infinite 2-cell or m× n block
of 2-cells whose union

⋃
G is a rectangular region of euclidean space. Similarly, a 3D grid is

either infinite 3-cells or an l×m×n set of 3-cells whose union is a cuboid in Euclidean space.

1.1 Simplex Grid

In grid point model, each point is the center of a 2D pixels or a 3D voxels. Generally square
pixels are used on square grid and cubic voxels are used on cubic grid. All points in the surface
of a square pixel or cubic voxel are not equidistant from grid point. However this interesting
property exists when we consider the shape of pixels to be circular or voxels to spherical. The
choice of pixel and grid is important in digital modeling. Spherical voxels are not stable on
cubical grid. The most stable alignment of spheres forms a tetrahedron shape, the stability
occur due to self alignment of spheres. Tetrahedral grid issimplex grid in 3D. A simplex grid
is generalization of tetrahedral and triangle grid to n dimensions. For e.g. 2-simplex grid is
triangular and 3-simplex grid is tetrahedral. The dual of a grid can be formed by joining the
center of adjacent regions formed in the original grid. Hexagonal grid is the dual of triangular
grid. Dual relation between triangular grid and hexagonal grid is shown in Figure 1.1.

We have used grid point model to analyzes simplex grid in 3D with spherical voxels. Top
view of a sphere is circle (alternatively we refer to it as a cell). By top view we mean the view
from a line of sight which is orthogonal to the referenced plane. Top view of tetrahedral grid is
shown in Figure 1.2.
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Figure 1.1: Part of a triangular grid is shown in solid lines and its dual hexagonal grid in dashed
lines.

Figure 1.2: Top view of a tetrahedral grid and a layer of spherical voxels on it. Tetrahedron
which is represented in dotted blue have their 3 vertices on the same plane and the fourth
vertex is above that plane. Similarly, tetrahedron which is represented in dotted red have their
4th vertex below the plane.

Figure 1.3: Top view of tetrahedral packing of spheres. Spheres in the same plane are repre-
sented in solid black and spheres above the plane are represented in dotted blue and spheres
that are below the plane are represented in dotted red.
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It is clear from Figure 1.2 that adjacent tetrahedron which share an edge have opposite
orientation in the sense that fourth vertex is either below the plane or above the plane. Each
vertex of a tetrahedron is the center of a sphere. A tetrahedral packing of spheres is shown in
Figure 1.3. We can observe that a sphere touches six other spheres on the same plane. It also
touches three sphere above the plane and three below the plane. Two spheres are neighbors or
connected to each other if they touches each other. Therefore, each sphere can have at most
12 neighbors on tetrahedral grid. Top view of tetrahedral grid forms a regular triangular grid if
we restrict ourselves to some reference plane. Which coincides with one of the parallel planes
forming the tetrahedral grid. Therefore it is necessary to study triangular grid to understand
tetrahedral grid in details. We analyze triangular grid in section 3 for a possible future extension
of the analysis in tetrahedral grid.

1.2 Existing Work

Orthogonal regular grids such as square grid are explored very widely so far due to their natural
representation in Zn. Most graphics applications use square grid. Other regular grid in 2D are
triangular and hexagonal grid. Triangular grid is also called as isometric grid because set of
grid lines intersect one another at an angle of 60◦. Hexagonal grid are formed by joining many
regular hexagons by their edges. Triangular and hexagonal grid are not addressed in detail
because of their non-orthogonal nature. however they do have their own properties which can
be used in specific applications. In recent time, a considerable amount of work has been done
on triangular and hexagonal grid [1, 15, 16]. Recall that triangular and hexagonal grid are dual
of each other as shown in Figure 1.1. They can be interchangeably used based on grid model.

A grid cell model based approach is shown to represent optimal polygon to address isoperi-
metric problem in [15]. The method determines the geometric objects that have maximum area
among same perimeter objects and also makes sure the objects have minimum perimeter among
those that have least area. They have used 4 and 8-neighborhood properties of square grid to
introduce their previous results on square grid. The 3-coordinate system is used to represent
triangular grid with odd or even grid points due to two different orientations of triangles. They
have formulated the perimeter and area of optimal object with polygon side length as a param-
eter.

Euclidean circle approximation by neighborhood sequence on hexagonal grid (represented
by grid point model) is presented in [16]. A classification of digital circle is done based on
their digital distance. The digital distance is calculated by the neighboring sequence. Based on
this sequence, digital circles are characterized. Best approximations are used for small circles
and a greedy approach is given for larger circles which results in fast approximation. Three
types of neighbors are defined for a grid point. A state transition is presented with neighboring
sequence as input parameter and type of digital circle formed as states. The parameter and
area of approximated digital circle is formulated in term of side length of polygon formed.
Non-compactness ratio parameter is used to compare best approximation for small circles. 3-
coordinate system is used to represent point on grid, their relation to Cartesian 2-coordinate
system is required to calculate area and perimeter.
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Digital circle characterization on triangular grid for grid cell model is presented in [14]
by general neighborhood sequence that define digital circle with formation of waveform . The
neighborhood sequence represent a waveform which grows as we move away from the center
of the circle. The development of changing of waveform plays important role in representation
of digital circle. 3-coordinate system is used with three types of neighborhood. A hierar-
chical digital circle transition is shown as states with neighborhood sequence. Two or more
neighborhood sequences may grow into the same circle representation with different waveform
formation in their intermediate stage. Different type of waveform is presented with relation be-
tween them by neighborhood sequence. A relation to neighborhood sequence, waveform shape
and polygon formed by digital circle has been discussed.

Construction of minimum-area geometric cover of digital object is presented in [1] on
the triangular grid (represented by grid point model). It use the triangle cover of objects on
the grid. 3-coordinate system is used that divides the grid into six sextants. Grid points are
classified based on triangular cover around it. Determination of next direction plays important
role in algorithm to construct triangular cover. The complexity of the algorithm is given in
terms of grid size and pixel size that border a connected component. Experimental results are
shown for objects on different grid size. The algorithm presented constructs triangular cover
for digital object with multiple components and holes.

1.3 Our Contribution

While triangular and hexagonal grid are addressed considerably, simplex grid in general or in
3D is not address up to considerable level. In this report, we will try to explore simplex grid
by using triangular grid which is 2-simplex. This analysis is expected to assist us in our future
transition to tetrahedral grid which is 3-simplex. Most of the work uses neighborhood relation
of grid points. We will also exploit the neighborhood properties on simplex grid in a coherent
manner. A consistent 3-coordinate system is used to represent grid points on 2D plane which
motivates us to use the same system in our representation. We will restrict ourselves to integer
based approaches during analysis of geometric objects as it is efficient in terms of computation
and also leads to accurate results by avoiding round-off errors associated with floating point
operations.

The report has been organized as follows. We first introduce some theoretical framework
of our work in section 2. section 3 deals with our first contribution on Euclidean distance
formula for three coordinate system, cell type notation, the relation between cell type and
coordinate system, and geometric objects representation namely digital lines, digital circle, and
arcs on the triangular grid. In section 4, we have introduced the four coordinate system which
is an extension of three coordinate system described in section 3. section 5 deals with the
representation of geometric objects namely sphere, digital plane, and tetrahedron. We conclude
our work in section 6 by giving the application and advantages of our work.
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2 Theoretical Foundation

A regular simplex grid in 2D is a set of equilateral triangles that are connected by their common
edges or corners. Their corners are called grid points which are the center of circular pixels
(we refer circular pixels as cells from now on). A grid point is represented by coordinates in
Z2 or Z3. In the square grid, it is simple to represent a grid point by (x, y) coordinates in
which x- and y-axes divide the plane into four quadrants. A point (i, j) on square grid have
four neighbors given by (i±1, j) and (i, j±1). Two grid points are called as direct neighbors
if there exists a grid edge between them. The simplex grid is not uniform in the sense that two
different orientations of the triangles occur, Therefore so we need an integer based coordinate
system which is different from the square grid. A 2 coordinate system is introduced in [11]
in which odd-numbered rows of a Cartesian grid is shifted 1

2 unit distance to the right. That
is equivalent to working with an unsifted Cartesian grid, but treating a point (i, j) on an odd-
numbered row as having the six neighbors (i±1, j), (i, j±1) and (i+1, j±1), while a point
on an even-numbered row has the six neighbors (i±1, j), (i, j±1) and (i−1, j±1). which
leads to inconsistency with respect to the random grid point.

2.1 Regular Simplex Grid Representation

We have introduced the consistent coordinate system in the same way, as it was given in [4]. For
nodes of the triangular grid, the grid intersection point are considered as grid points and three
coordinate values are assigned to each of them. The following procedure helps in assigning the
coordinates.

A grid point is chosen as origin and assigned coordinate values as (0, 0, 0). Then we fix
three coordinate axes around it. The direction of the x−, y− and z−axes are taken as 0◦, 120◦

and 240◦, respectively [13] as shown in Figure 2.1. These axes divide the grid around origin
into 6 equal regions called as sextant and the x−, y−, z−axes are called as sextant axes. Other
grid points coordinate values are inductively assigned. If the coordinates of a random point
on the grid are (a1, a2, a3), then the coordinates of its neighbor in the positive x-direction
are (a1+1, a2, a3−1), and in the negative x-direction are (a1−1, a2, a3+1). Similarly,
in the positive y-direction, we get (a1−1, a2+1, a3), and in the negative y-direction we get
(a1+1, a2−1, a3). The coordinate values in the positive z-direction are (a1, a2−1, a3+1),
and in the negative z-direction are (a1, a2−1, a3+1).

Note that in this representation the sum of the coordinate values of every point is 0. Two
points are direct neighbors if any of their coordinate value is the same, and the differences of
the other two corresponding coordinate values are ±1. The grid can be divided into sextants
around a random point other than origin by following the same procedure as described above
considering the new chosen point as origin. This point is called as base point. The direct
neighbors in the 3-coordinate system are shown for a random base point in Figure 2.2. The
z−axis can be represented by equation x = 0 similarly y−axis by z = 0 and x−axis by y = 0 as
their respective values on the given axis is always zero.
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II
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Figure 2.1: 3-coordinate system for triangular grid showing neighbors of the grid point
(0, ,0 ,0) and the six sextants.

(a1,a2,a3)

(a1-1,a2+1,a3) (a1,a2+1,a3-1)

(a1+1,a2,a3-1)

(a1+1,a2-1,a3)(a1,a2-1,a3+1)

(a1-1,a2,a3+1)

Figure 2.2: Neighbors of a random point on a 3-coordinate system.

The properties of the the triangular grid are as follows.

1. Triangular grid has the higher degree of symmetry than the orthogonal grid.

2. Each point in the Triangular grid have six direct neighboring point each at unit distance
in 0◦, 60◦, 120◦, 180◦, 240◦, 300◦ direction respectively.

3. Hexagonal grid is dual of the triangular grid and can be interchangeably used based on
grid model.

The properties of the three coordinate system are as follows.

1. The triangular grid is divided into six sextants around a point.

2. Each sextant is divided into two symmetrical halves known as duo-decant.
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3. Each point (x, y, z) satisfy following equation [4].

x+ y+ z = 0.

4. Neighbors of a point (x, ,y ,z) are (x+ 1, y, z− 1, w), (x− 1, y, z+ 1, w), (x− 1, y+
1, z, w), (x, y+1, z−1, w), (x, y−1, z+1, w) and (x+1, y−1, z, w) [4].

5. Every point (x, ,y ,z) have twelve symmetric points including itself. These are (x, y, z),
(y, x, z), (−y, − z, − x), (−x, − z, − y), (z, x, y), (z, y, x), (−x, − y, − z), (−y, −
x, − z), (y, z, x), (x, z, y), (−z, − x, − y),(−z, − y, − x)[4] in each duo-decant.

6. Transformation such as rotation, translation, Reflection can be performed.

7. It can be extended to four coordinate system for tetrahedral grid.

Theorem 1. The sum of coordinate values of every point (x, y, z) is zero.

∀ points(x, y, z) x+ y+ z = 0.

Proof. It is trivially valid for origin (0, 0, 0). Now we consider the neighbors of origin as
(1, 0, − 1), (0, 1, − 1), (−1, 1, 0), (−1, 0, 1), (0, − 1, 1), (1, − 1, 0). Their sum of co-
ordinate value is also zero. Similarly, direct neighbors of these points also satisfy the equation
and so on.

Alternate proof. Proof by Induction. P(0): is true for (0, 0, 0).

P(1): is true for all direct neighbors of (0, 0, 0).

Let P(n) be true for (xn, yn, zn)

xn + yn + zn = 0.

direct neighbors of (xn, yn, zn) are (xn+1, yn, zn−1), (xn, yn+1, zn−1), (xn−1, yn+1, zn),
(xn−1, yn, zn+1), (0, yn−1, zn+1), (xn+1, yn−1, zn) also satisfy the equation. This shows
that P(n+1) is true. This concludes our inductive step.

Corollary 1. A point is a valid grid point if and only if the sum of its coordinate value is zero
and every coordinate value is an integer.
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3 Three Coordinate System on Triangular Grid

In this section, we will analyze the three coordinate system and represent geometric objects on
the triangular grid.

3.1 Euclidean Distance between Cells

By the formal definition, two circular cells are direct neighbors if they touch each other, In
terms of the grid point, two circular cells are direct neighbor if there exists a grid edge between
their center (grid points). Circular cells are simply referred as cells in our discussion. we can
easily prove that every cell has six direct neighbors. We call these direct neighbors as level-1
neighbors. Let us consider the size of the equilateral triangle that forms the regular simplex
grid is d, the diameter of the cell is also d. It is clear from Figure 2.2 that distance between
direct neighbors is d. Grid distance between two cells is defined as the minimum number of
steps required to reach from one cell to another along the direction of sextant axes. We define
level for a cell around a base cell as grid distance from the base cell. All cells which are at same
grid distance from a base cell at the same level. nth level neighbors for a cell is defined as the
direct neighbors of (n−1)th level in the outward direction from the base cell. In this way, we
can say level-2 cells are direct neighbors of the level-1 cell.

Consider a cell at random point. It has six direct neighbors at level-1. We are interested
in calculating the Euclidean distance for different levels. All cells at level 1 around base cell
form a hexagonal structure which can be observed for level 1 and level 2 in Figure 2.2. The
sextant axes divide the grid into 6 symmetric sextants. Therefore we only need to calculate the
Euclidean distance in one of the sextants. Let us consider n as the number of levels. Now we
need to calculate euclidean distance only in one of the sextants for nth level. for level-1, n = 1,
distance= d and total neighbors= 6. Furthermore, a sextant is dived into two symmetrical
halves around a base cell as shown by the dotted line in Figure 3.1.

We define a parameter t for a level n as the number of cells that do not lie at sextant axes
in a symmetrical half of a sextant. If a cell partially (half-cell) lies inside the symmetrical half,
it is counted as one complete cell.

t =

{
n
2 if n is even
n−1

2 if n is odd
(3.1)

It can be easily shown by induction that parameter t always satisfies the Equation 3.1. For n=1,
we get t=0, as there are no other neighbors other than six direct neighbors which are at integer
distance d. We have introduced a Notation Ti, j for cells where j represent the level of the cell
from the base cell and i is the number assigned to the cell in the following way. Cells at level
j around a base point in a symmetrical half are numbered from 0 to t−1 starting from the line
(that partition the sextant) toward sextant axes. The cell that lies at sextant axes is numbered as
t. Trivially T0,0 is base cell itself. Its direct neighbor is T0,1. We define D(Ti, j) as the euclidean

8



T0,0 T0,1 T1,2 T1,3 T2,4

T0,2
T0,3
T0,4
T1,4 T1,5

T0,5

T0,6

Figure 3.1: Type of cells.

T0,0

T0,0

T0,0

T0,0

T0,2 T0,3

T0,3

T1,4

T0,4

T1,4

T1,5

T0,5

T0,5

T1,5

Figure 3.2: Distance of cells at different levels.

distance of cell Ti, j from cell T0,0 (i.e base cell). Following relations always hold.

1. Cell Tt,n is always at integer distance as shown in Figure 3.1. D(Tt,n) = nd

2. Cell Ti,n may or may not be at integer distance and D(Ti,n)< D(Tt,n) where i = [0, t−1]

3. If n is even, number of cells of type T0,n in a sextant is 1. The dotted line passes through
them as shown in Figure 3.1 and for i = [1, t−1] number of cell of type Ti,n is two. one
in each symmetrical half.

4. If n is odd, number of cell of type Ti,n in a sextant is two for i = [0, t−1].

Next we aim to find the D(Ti,n) for i = [0, t−1], we know that,

D(T0,1) = d, D(T1,2) = 2d, D(T1,3) = 3d because D(Tt,n) = nd.

9



Similarly,

D(T2,4) = 4d, D(T2,5) = 5d, D(T3,6) = 6d, D(T3,7) = 7d.

Refer to Figure 3.2 for a visualization of these distances
For n = 2, t = 1, i = [0,0] = 0, we get

D(T0,2) =

√√√√(3d
2

)2

+

(√
3d
2

)2

=
√

3d.

For n = 3, t = 1, i = [0,0] = 0,

D(T0,3) =

√√√√(5d
2

)2

+

(√
3d
2

)2

=
√

7d.

For n = 4, t = 2, i = [0,1],

D(T0,4) =

√
(3d)2 +

(√
3d
)2

=
√

12d D(T1,4) =

√√√√(7d
2

)2

+

(√
3d
2

)2

=
√

13d.

For n = 5, t = 2, i = [0,1],

D(T0,5) =

√
(4d)2 +

(√
3d
)2

=
√

19d D(T1,5) =

√√√√(9d
2

)2

+

(√
3d
2

)2

=
√

21.

Similarly, For n = 6, t = 3, i = [0,2],

D(T0,6) =
√

27d, D(T1,6) =
√

28d, D(T2,6) =
√

31d.

For n = 7, t = 3, i = [0,2],

D(T0,7) =
√

37d, D(T1,7) =
√

39d, D(T2,7) =
√

43d.

For n = 8, t = 4, i = [0,3],

D(T0,8) =
√

48d, D(T1,8) =
√

49d = 7d, D(T2,8) =
√

52d, D(T3,8) =
√

57d.

For n = 9, t = 4, i = [0,3],

D(T0,9) =
√

61d, D(T1,9) =
√

63d, D(T2,9) =
√

67d, D(T3,9) =
√

73d.
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Table 3.1: Horizontal and vertical distance of a cell form base cell.

i h v
0 n− 1

2 (t) t
√

3
2

1 n− 1
2 (t−1) (t−1)

√
3

2
2 n− 1

2 (t−2) (t−2)
√

3
2

... ... ...
t-1 n− 1

2

√
3

2

For level n, t = bn
2c as defined in Equation 3.1. Therefore we get that D(Ti,n) = d

√
h2 + v2

where h,v are horizontal and vertical distance of cell Ti,n from base cell respectively as given in
Table 3.1 in terms of n, t and i.

This lead to generalization of D(Ti,n) as

D(Ti,n) = d

√√√√[n− 1
2
(t− i)

]2

+

[√
3

2
(t− i)

]2

(3.2)

Putting value of t in Equation 3.2 from Equation 3.1, we get

D(Ti,n) =

d
√

3
4n2 + i2 if n is even and 0≤ i≤ n

2

d
√

3
4n2 + i2 + i+ 1

4 if n is odd and 0≤ i≤ n−1
2

(3.3)

We have observed that for n = 8 and i = 1, D(T1,8) = 7d, which is the smallest possible
value of n and i for which D(Ti,n) is an integer.

3.2 Relation between 3-Coordinate System and Cell Types

A point p(a1, a2, a3) is in sextant-I with reference to origin (0, 0, 0) if and only if |a1+a2|=
|a3| and a3 < 0, similarly p is in sextant-IV if and only if |a1+ a2| = |a3| and a3 > 0 For a
point p(a1, a2, a3) sextant conditions are summarized in Table 3.2

Table 3.2: Sextant condition.

Sextant condition
I |a1+a2|= |a3| and a3 < 0
II |a1+a3|= |a2| and a2 > 0
III |a2+a3|= |a1| and a1 < 0
IV |a1+a2|= |a3| and a3 > 0
V |a1+a3|= |a2| and a2 < 0
VI |a2+a3|= |a1| and a1 > 0

11



A point p(a1, a2, a3) in sextant-I is the center of cell of type Ti, j where j = |a3| and

i =
|a1−a2|

2
if j is even i =

|a1−a2|−1
2

if j is odd

For example, point p(4, 2, −6) is the center of cell T1,6. i =
|4−2|

2
= 1, j = |−6|= 6

and point p(1, 4, −5) is the center of cell T1,5. i =
|1−4|−1

2
= 1, j = |−5|= 5.

Table 3.3: Determination of cell types and levels from cell coordinate (a1, a2, a3).

Sextant i (Type) j (Level)

I,IV

|a1−a2|
2

, if |a3| is even
|a1−a2|−1

2
, if |a3| is odd

|a3|

II,V

|a1−a3|
2

, if |a2| is even
|a1−a3|−1

2
, if |a2| is odd

|a2|

III,VI

|a2−a3|
2

, if |a1| is even
|a2−a3|−1

2
, if |a1| is odd

|a1|

Similarly, we can get the cell Ti, j, when its center point p(a1, a2, a3) is given. The value of i
and j can be determined by Table 3.3.

For a given cell Ti, j, its coordinates value can be determined from Table 3.4. The special case
when i= 0 and j is even, there is only one cell of type T0, j in each sextant whose coordinates can
be determined from Table 3.5 as it was counted twice in the definition of t for each symmetrical
half.

Table 3.5: Coordinates value from cell type when i = 0 and j (Level) is even.

Sextant Coordinates

I
(

j
2 ,

j
2 , − j

)
IV

(
− j

2 , −
j
2 , j
)

II
(
− j

2 , j, − j
2

)
V

(
j
2 , − j, j

2

)
III

(
− j, j

2 ,
j
2

)
VI

(
j, − j

2 , −
j
2

)
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Table 3.4: Coordinate values from cell type Ti, j.

Sextant j (level) Coordinates

I
if j is even

(
j+2i

2 , j−2i
2 , − j

)
,
(

j−2i
2 , j+2i

2 , − j
)

if j is odd
(

j+2i+1
2 , j−2i−1

2 , − j
)

,
(

j−2i−1
2 , j+2i+1

2 , − j
)

IV
if j is even

(
j+2i

2 , j−2i
2 , j

)
,
(

j−2i
2 , j+2i

2 , j
)

if j is odd
(

j+2i+1
2 , j−2i−1

2 , j
)

,
(

j−2i−1
2 , j+2i+1

2 , j
)

II
if j is even

(
j+2i

2 , j, j−2i
2

)
,
(

j−2i
2 , j, j+2i

2

)
if j is odd

(
j+2i+1

2 , j, j−2i−1
2

)
,
(

j−2i−1
2 , j, j+2i+1

2

)
V

if j is even
(

j+2i
2 , − j, j−2i

2

)
,
(

j−2i
2 , − j, j+2i

2

)
if j is odd

(
j+2i+1

2 , − j, j−2i−1
2

)
,
(

j−2i−1
2 , − j, j+2i+1

2

)
III

if j is even
(
− j, j+2i

2 , j−2i
2

)
,
(
− j, j−2i

2 , j+2i
2

)
if j is odd

(
− j, j+2i+1

2 , j−2i−1
2

)
,
(
− j, j−2i−1

2 , j+2i+1
2

)
VI

if j is even
(

j, j+2i
2 , j−2i

2

)
,
(

j, j−2i
2 , j+2i

2

)
if j is odd

(
j, j+2i+1

2 , j−2i−1
2

)
,
(

j, j−2i−1
2 , j+2i+1

2

)

3.3 Representation of Geometric Objects

In this section, we describe the basic geometric objects namely digital line, digital circle, and
digital arc on the simplex grid.

Digital Line

Digital lines in the simplex grid can be obtained by an algorithm. The algorithm is optimum
straight-line approximation with direction constrained as unit distance movement in any one
of the six possible directions. A modified Bresenham algorithm is presented in [2] for the 2-
coordinate system for a triangular grid. We have introduced the concept of cell type Ti, j for the
3-coordinate system and its relation to coordinate values. There is six possible unit distance
movement for a given cell. As we have shown in the previous section that a sextant can be
divided into two symmetrical halves. We call them left and the right symmetrical half around
a base point as given in Table 3.6. Similarly, for other sextants these conditions satisfy with
necessary changes in coordinate comparison, therefore so we can say that grid is divided into
12 symmetrical sectors around a base point. Our focus will be on one of those sectors. We
choose right symmetrical half in our discussion. We have proposed two ways to generate the
straight line for the 3-coordinate system.
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Table 3.6: Position of cell (x, y, z) in sextant I with respect to base cell.

condition position
x < y left symmetrical half
x > y right symmetrical half
x = y on the partition line

Given two point p1(x1, y1, z1) and p2(x2, y2, z2). One of the these points is chosen as
base point. Let p1 is selected as base point (xr, yr, zr) where (xr, yr, zr) = (x1, y1, z1), then
the other point will be (x2−xr, y2−yr, z2− zr) with respect to the base point. Point p1 will be
at origin with respect to base point (i.e. itself) and point p2 position in term of sextant will be
determined by Table 3.2. Let us assume that point p2 lies in right symmetrical half in sextant-I.
We can say that we have to find the shortest path from origin to point p2(x2−xr, y2−yr, z2−zr)
using the two possible direction movements. Value of |Z|=(|z2− zr|) is level or length of the
path, and in every step current cell C(x, y, z) have next possible cells A(x, y+ 1, z− 1) and
B(x+ 1, y, z− 1). The determination of next cell from current cell depends on the difference
between perpendicular distance from the center of next possible cells to line, as shown in Fig-
ure 3.3.For current cell C(x, y, z) in sextant-I,

If AP−QB < 0 cell A(x, y+1, z−1) is next cell,

If AP−QB≥ 0 cell B(x+1, y, z−1) is next cell.

The constraint is that we only know the cell coordinates and we restrict ourselves in inte-
ger domain to ensure the obvious advantages. The decision parameter value AP−QB precisely
determine the next cell. Challenge is to find the equivalent integer based parameters.

Other approach is based on partitioning of line into segments which heavily depends on the
partitioning method. As we know, |Z| gives the level in sextant I. We compare the value of
other two coordinate x and y and find out the minimum value, the coordinate value x gives
us the number of times direction changes to reach (x+ 1, y, z− 1) from (x, y, z) and simi-
larly coordinate value y gives number of times the direction changes to reach (x, y+1, z−1)
from (x, y, z). If we can determine those points where the direction changes (shown in dark in
Figure 3.4), we can partition the line into smaller segments which coincides with segments of
grid lines and can be easily drawn on the grid. Figure 3.4 shows the partitioning of a line into
segments.
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P

QA

BO C

Figure 3.3: Determination of next cell in sextant I by the sign of AP−QB, where A and B are
next possible cells from current cell C with respect to reference cell O. Perpendicular is drawn
on the line from cell A and B meet at P and Q respectively.

Figure 3.4: Partitioning of the line into Segments. Cells at which direction changes are shown
in dark.

Digital Circle

The algorithm to produce digital circle is presented in [17] for the 2-coordinate system which
is closely related to [2]. Our concern is to propose the similar approach in the 3-coordinate
system. As we know, the grid is divided into 12 symmetric sectors around a base cell. The
center of the digital circle is selected as base cell around which this partitioning is done. If we
calculate coordinate in any one of those sectors we can easily draw the circle by the symmetry
of cell points in other sectors. Given a center cell of p(x1, y1, z1) with radius r, we consider
the center cell as our base point. Partitioning of a circle into sectors is shown in Figure 3.5. The
symmetry of circle points is shown in Table 3.7.
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II
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V

VI

1

2
34

5

6

7

8

9 10
11

12

Figure 3.5: Partitioning of the circle into 12 sectors

Table 3.7: Symmetry of cell in 12 sectors of a digital circle.

sector cell coordinates
c1 (x, y, z)
c2 (y, x, z)
c3 (−y, − z, − x)
c4 (−x, − z, − y)
c5 (z, x, y)
c6 (z, y, x)
c7 (−x, − y, − z)
c8 (−y, − x, − z)
c9 (y, z, x)

c10 (x, z, y)
c11 (−z, − x, − y)
c12 (−z, − y, − x)

Grid Intersection Digitization Model

Digital lines and digital circles are obviously not appropriate to represent random arcs or curves.
We need some other representation for curves or arc. We will define grid-intersection digitiza-
tion in the same way as it was given in [9].

The grid-intersection digitization R(γ) of a planar curve or arc γ is the set of all grid points
(i, j, k) that are closest (in Euclidean distance) to the intersection points of γ with the grid
lines.
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0

12

3

4
5

P

Figure 3.6: Representation of an arc that Starts at p with directional chain as
5550000001...3550.

It is possible that an intersection point may have the same minimum distance to two dif-
ferent grid points, in that case, we choose the rightmost or lowermost point with respect to the
arc.

A traversal of R(γ) defines an ordered sequence (list) of grid points in R(γ). The ordered
sequence of cell points is called the digitized grid intersection sequence ρ(γ) of γ .

If a given R(γ) is tangent to two cells we list only the cell that is below or right of R(γ).
The ordered sequence of an arc is shown in Figure 3.6. It defines the chain of grid cell points.
The (geometric) length of ρ(γ) is the sum of the lengths of the steps. This digitization model
can be extended to 3D where we look for the intersection of R(γ) with spherical voxels. A
sample arc is shown in Figure 3.6 with start point and directional chain.
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4 Four Coordinate System on Tetrahedral Grid

We have represented a single layer of the tetrahedral grid by three coordinates. Similarly, we
can represent other layers by three coordinates with the addition of the fourth coordinate that
will represent the layer on the tetrahedral grid. We required to represent one of the voxels at
other layers with respect to the origin. Other voxels on a particular layer can be represented
in the same way as it was described for three coordinate system. Part of a tetrahedral grid is
shown in Figure 4.1.

1

4

2

5

3

6

Figure 4.1: Top view of part of a Tetrahedral Grid. Grid lines of the reference plane i.e. layer
0 are represented by black. The sphere at layer 0 is represented by circles of black color. Blue,
red and green colored circles respectively represent layer 1, 2 and 3 spheres.

Sphere at origin is shown as dark gray whose coordinates are (0, 0, 0, 0). There are 2
possibility of putting sphere above layer 0. You can either place spheres at position 1− 3
or 4− 6. We have chosen position 1− 3 for upper layer with respect to lower layer in our
representation. We can represent any one of the sphere at position 1− 3 above layer 0 by
(0, 0, 0, 1). We have chosen position 3 with respect to the origin (0, 0, 0, 0) for coordinate
value (0, 0, 0, 1). The fourth coordinate value represent the layer with respect to the reference
plane. Now we can represent other layer 1 voxels in the same way as it was described for
three coordinate with the addition of fourth coordinate which is always same for a given layer.
Similarly, we have put sphere at position 1− 3 on layer 2 with respect to layer 1 which is
represented by red colored circles. It is Important to note that we have explicitly represented
position 1− 6 with respect to layer 0. Position for the upper layer with respect to the lower
layer is directly represented by circles. Red colored circle which is filled by light gray at layer
2 is represented by coordinate value (0, 0, 0, 2).
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(0,0,0,0)

(0,0,0,1)

(0,0,0,2)

(1,0,-1,1)

(-1,0,1,0)

(-1,1,0,0) (0,1,-1,0)

(1,-1,0,0)

(0,-1,1,1)

(-2,2,0,0) (-1,2,-1,0) (0,2,-2,0)

(2,-2,0,0)(0,-2,2,0) (1,-2,1,0)

(-2,0,2,0) (2,0,-2,0)

(-2,1,1,0) (1,1,-2,0)

(-1,-1,2,0) (2,-1,-1,0)

(-1,1,0,1) (0,1,-1,1)

(0,-1,1,0)

(1,-1,0,1)

(-1,0,1,1)

(1,0,-1,0)

(-1,1,0,2) (0,1,-1,2)

(-1,0,1,2) (1,0,-1,2)

1/3*√3/2

2/3*√3/2

4/3*√3/2
5/3*√3/2

Figure 4.2: Four coordinates system representation. Layer 0, 1, 2 coordinates are represented
by black, blue, red color respectively. The distance of the centroid from a vertex is 2

3 of the

height. Centroid divides the perpendicular bisector in 2 : 1 ratio. Height of triangle is
√

3
2 unit.

(0,0,0,0)(-1,0,1,0)

(-1,1,0,0) (0,1,-1,0)

(1,-1,0,0)

(-2,2,0,0) (-1,2,-1,0) (0,2,-2,0)

(2,-2,0,0)(0,-2,2,0) (1,-2,1,0)

(-2,0,2,0) (2,0,-2,0)

(-2,1,1,0) (1,1,-2,0)

(-1,-1,2,0) (2,-1,-1,0)(0,-1,1,0)

(1,0,-1,0)

(0,0,0,-1)

(0,0,0,-2)

(0,-1,1,-2) (1,-1,0,-2)

(0,-1,1,-1) (1,-1,0,-1)

(1,0,-1,-1)

(1,0,-1,-2)

(-1,0,1,-1)

(-1,0,1,-2)

(-1,1,0,-1) (0,1,1,-1)

1/3*√3/2

2/3*√3/2

4/3*√3/2

5/3*√3/24/3*√3/2

Figure 4.3: Four coordinates system representation of layers below the reference plane. Layer
0, -1, -2 coordinates are represented by black, blue, red color respectively.
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Similarly layer 3 sphere which is represent by green colored circle which is filled by light
gray have coordinate value (0, 0, 0, 3). For a layer l we have coordinate value as (0, 0, 0, l).
An important observation is that all origin of all layers lies on one of the sides of a bigger
regular tetrahedron which has one of its faces on the reference plane. Similarly, spheres below
the reference plane are represented. One of the difference in representation of layers below the
reference plane is that we can only put sphere at position 4− 6 with position 6 is chosen as
origin for layer -1 with respect to the layer 0 whose coordinate value is given by (0, 0, 0, −1).
Origins of lower layers also lie on the side of a bigger tetrahedron if we shift the face that
lies on the reference plane to that layer with one of the vertexes of that face coincides with
(0, 0, 0, − l) where l is the layer below the reference plane. Another observation is layer 0
and layer 3 sphere have the same orientation in a sense that their top view coincides as shown
in Figure 4.1. We can now say that layer j and layer j±3 have the same orientation. All other
voxel coordinates at a particular layer can be inductively found by using three coordinates
representation with respect to the origin of that layer with the addition of the fourth coordinate
as shown in the Figure 4.2 and Figure 4.3.

A spherical voxel has twelve direct neighbors out of which six are on the same layer.
Three neighbors are above the layer and three below the layer. For a given voxel coordinate
(x, y, z, w) we can determine its direct neighbors.

• Six direct neighbors on same layer are (x + 1, y, z− 1, w), (x− 1, y, z+ 1, w), (x−
1, y+1, z, w), (x, y+1, z−1, w), (x, y−1, z+1, w) and (x+1, y−1, z, w).

• Three direct neighbors on layer above (x, y, z, w+ 1), (x− 1, y+ 1, z, w+ 1), (x, y+
1, z−1, w+1)

• Three direct neighbors on layer below (x, y, z, w− 1), (x, y− 1, z + 1, w− 1), (x +
1, y−1, z, w−1)

4.1 Euclidean Distance between Spherical Voxels

Lets consider the diameter of spherical voxels as one unit. Distance between two adjacent grid
points is also one unit.

side of tetrahedron = 1 unit.

Distance between two points (x1, y1, z1) and (x2, y2, z2) in Euclidean three coordinate system
is √

dx2 +dy2 +dz2. (4.1)

where dx = x2− x1, dy = y2− y1, dz = z2− z1. We need to establish a relationship between the
Euclidean distance between two points in four-coordinate. As we have shown the top view of
the tetrahedral grid is the triangular grid.

∴ side of triangle = 1 unit.

height of triangle =

√
3

2
unit.
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The difference between the height of two adjacent layers is equal to the height of tetrahedron.

height of tetrahedron =

√
2
3
∗ side of tetrahedron.

∴ height of tetrahedron =

√
2
3
∗1 =

√
2
3

unit.

Let’s consider the two points in our four coordinates system as (x1, y1, z1, w1) and (x2, y2, z2, w2).
We define parameter a, b, c, d as difference between x, y, z, w coordinate respectively.

a = x2− x1, b = y2− y1, c = z2− z1, d = w2−w1.

The relation that we can establish by careful observation of the tetrahedral grid. Note that
our coordinate axes are different from the axes in Euclidean space. It can be verified that x-
axis distance between two points always satisfies the following relation. When we move from
one point to another along x-axis or parallel to the x-axis in the same layer the y-coordinate
remains same. x- coordinate increment by one along positive x-axis direction at the same time
z-coordinate decrement by one. In opposite direction z increments by one and x decrement by
one.

dx =
a− c

2
(4.2)

Euclidean z-axis distance between two points.

dz =

√
2
3
∗d (4.3)

Now we need to determine the relation for dy.The distance dy for (0, 0, 0, 1) and (0, 0, 0, 2)
from (0, 0, 0, 0) are −2

3 ∗
√

3
2 and −4

3 ∗
√

3
2 respectively as shown in Figure 4.2. Similarly dy for

(0, 0, 0, −1) and (0, 0, 0, −2) are 2
3 ∗
√

3
2 and 4

3 ∗
√

3
2 respectively as shown in Figure 4.3.

For (0, 0, 0, wn) dy =
−2wn

3
∗
√

3
2

The dy between 2 points (x1, y1, z1, wn) and (x2, y2, z2, wn) on same layers is
√

3
2 ∗b where

b = y2− y1. The origin of other layers is shifted by 2
3 ∗ d ∗

√
3

2 from the origin of reference
plane (w = 0 is consider as reference plane) and other points on that layer have distance from
their origin as b ∗

√
3

2 resulting in total (b∗
√

3
2 −

2
3 ∗d ∗

√
3

2 ) shift and it can be verified from
Figure 4.2 and Figure 4.3.

dy =

(
b∗
√

3
2
− 2

3
∗d ∗

√
3

2

)
. (4.4)

|dy| =

∣∣∣∣∣b∗
√

3
2
− 2

3
∗d ∗

√
3

2

∣∣∣∣∣.
|dy| =

√
3

2
∗
∣∣∣∣b− 2

3
∗d
∣∣∣∣.

|dy| =

√
3

2
∗
∣∣∣∣3∗b−2∗d

3

∣∣∣∣.
∴ dy2 =

3
4
∗ (3∗b−2∗d)

9

2

.
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dy2 =
(3∗b−2∗d)2

12
. (4.5)

D[(x1, y1, z1, w1), (x2, y2, z2, w2)] =
√

dx2 +dy2 +dz2. (4.6)

where D is the Euclidean distance between two points (x1, y1, z1, w1) and (x2, y2, z2, w2)
First we need to determine value of parameter a, b, c, d as follows.

a = x2− x1, b = y2− y1, c = z2− z1, d = w2−w1. (4.7)

Using value of Equation 4.2, Equation 4.3, Equation 4.5 in Equation 4.6.

D =

√(
a− c

2

)2

+
(3∗b−2∗d)2

12
+

(√
2
3
∗d
)2

.

D =

√
(a2 + c2−2∗a∗ c)

2
+

(9∗b2 +4∗d2−12∗b∗d)
12

+
2∗d2

3
.

D =

√
a2

4
+

c2

4
− ac

2
+

3b2

4
+

d2

3
−b∗d +

2∗d2

3
.

D =

√
a2

4
+

c2

4
+d2 +

3b2

4
− ac

2
−b∗d. (4.8)

We have introduced 3 coordinate system in Section 2.1 in such a way that the sum of all three
coordinates is always zero for a given point. That relation still holds for 4 coordinate system
and can be verified.

x1 + y1 + z1 = 0 x2 + y2 + z2 = 0.

(x2 + y2 + z2)− (x1 + y1 + z1) = 0.

(x2− x1)+(y2− y1)+(z2− z1) = 0.

From Equation 4.7
a+b+ c = 0.

b =−a− c. (4.9)

Put value of b from Equation 4.9 in Equation 4.8.

D =

√
a2

4
+

c2

4
+d2 +

3(−a− c)2

4
− ac

2
− [(−a− c)∗d].

D =

√
a2

4
+

c2

4
+d2 +

3(a+ c)2

4
− ac

2
+(a+ c)∗d.

D =

√
a2

4
+

c2

4
+d2 +

3(a2 + c2 +2ac)
4

− ac
2
+(a+ c)∗d.

D =

√
a2

4
+

c2

4
+d2 +

3a2

4
+

3c2

4
+

3ac
2
− ac

2
+(a+ c)∗d.

D =
√

a2 + c2 +d2 +ac+(a+ c)∗d. (4.10)
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D=
√

(x2− x1)2 +(z2− z1)2 +(w2−w1)2 +(x2− x1)(z2− z1)+(x2− x1 + z2− z1)(w2−w1).

(4.11)
When two points belong to same layer i.e. w1 = w2, d = 0.

D =
√

a2 + c2 +ac. (4.12)

D =
√
(x2− x1)2 +(z2− z1)2 +(x2− x1)(z2− z1). (4.13)

It can be verified that square of D is always an integer. We will use D2 to compare distances so
that floating point operation can be avoided altogether.

4.2 Conversion from Proposed Coordinate System to Cartesian

A point (x, y, z) in three coordinate system can be represented as Cartesian coordinate (xc, yc)
by the following relation.

(x, y, z)→(xc, yc) where xc =
x−z

2 and yc =
√

3
2y.

Similarly, four coordinate system can be represented as a 3D point by the following relation.

(x, y, z, w)→(xc, yc, zc) where xc =
x−z

2 , yc =

(√
3

2 y− 2
3 ∗w∗

√
3

2

)
, and zc =

√
2
3w.
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5 Geometric Objects on Tetrahedral Grid

In this section, we will represent geometric objects on the tetrahedral grid.

5.1 Layering the Sphere

Spheres can be seen as two identical hemispheres joined together. We can layer hemisphere
one layer at a time. The base of hemisphere forms a circular disk. So our first step in layering
a sphere is to layer that circle so that other layers can be layered on top of that.

Layering the Circle

Consider the diameter of spherical voxels as one unit and a sphere of radius r units centered at
origin (0, 0, 0, ,0).

Radius of circle = r.

We can drop w-coordinate in our calculation as it is always same for a layer. Recall from
Section 3.3 that a circle has 12 symmetry. We only need to find the voxel coordinates in one
of the duo-decant (symmetrical half of a sextant). The voxels at sextant axis can be easily
plotted by plotting all symmetric voxel of (r, 0, −r). There are two possibilities of next voxels
from current position qc(x, y, z) namely q1(x− 1, y+ 1, z) and q2(x, y+ 1, z− 1). We will
computed their distance from the (0, 0, 0) by using Equation 4.11.

D2(q1) = (x−1)2 + z2 +(x−1)∗ z.

D2(q2) = x2 +(z−1)2 + x∗ (z−1).

It is evident from the Figure 5.1 D2(q1)< r2 and D2(q2)> r2

r2−D2(q1)> 0 and r2−D2(q2)< 0.

Our decision parameter p = r2−D2(q1)+ r2−D2(q2) compare the difference of the square of
distances. If it is less than zero then q1 is next voxel otherwise q2 is next voxel.

p = 2r2− [D2(q1)+D2(q2)].

p = 2r2− [(x−1)2 + z2 +(x−1)∗ z+ x2 +(z−1)2 + x∗ (z−1)].
p = 2r2− (x2−2x+1+ z2 + xz− z+ x2 + z2−2z+1+ xz− x).
p = 2r2− (2x2 +2z2 +2xz−3x−3z+2).

p = 2r2−2x2−2z2−2xz+3x+3z−2. (5.1)

Initial value of p at (r, 0, − r, w)

p = 2r2− (2r2 +2(−r)2 +2r(−r)−3r−3(−r)+2).
p = 2r2− (2r2 +2r2−2r2−3r+3r+2).
p = 2r2−2r2−2.
p = −2.
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qc

q1 q2

Figure 5.1: Plotting base of a hemisphere.

Value of p at current voxel

pcurrent = 2r2−2x2−2z2−2xz+3x+3z−2.

Value of p at (x−1, y+1, z, w)

p = 2r2− (2(x−1)2 +2z2 +2(x−1)z−3(x−1)−3z+2).
p = 2r2− (2(x2−2x+1)+2z2 +2xz−2z−3x+3−3z+2).
p = 2r2−2x2 +4x−2−2z2−2xz+2z+3x−3+3z−2.
p = (2r2−2x2−2z2−2xz+3x+3z−2)+4x−2+2z−3.

pnext = pcurrent +4x+2z−5.

Similarly Value of p at (x, y+1, z−1, w)

p = 2r2− (2x2 +2(z−1)2 +2x(z−1)−3x−3(z−1)+2).
p = 2r2− (2x2 +2(z2−2z+1)+2xz−2x−3x−3z+3+2).
p = 2r2−2x2−2z2 +4z−2−2xz+2x+3x+3z−3−2).
p = (2r2−2x2−2z2−2xz+3x+3z−2)+4z−2+2x−3.

pnext = pcurrent +2x+4z−5.

A circle of radius r centered at (xr, yr, zr) can be represent by the following equation.

(r− 1
2
)2 ≤ (x− xr)

2 +(z− zr)
2 +(x− xr)(z− zr)≤ (r+

1
2
)2.

r2− r+
1
4
≤ (x− xr)

2 +(z− zr)
2 +(x− xr)(z− zr)≤ r2 + r+

1
4
.
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(x,y,z)

(x,y-dz,z+dz)

(x+dx,y,z-dx)

(x+dy,y-dy,z)

Figure 5.2: Parallel axis distance of a point (x, y, z) from a circle of radius r.

It is clearly evident from Equation 4.10 and 4.11 that square of distance is always integer. We
can drop 1

4 from both side in our calculation as it does not effect the inequality of equation.

r2− r < (x− xr)
2 +(z− zr)

2 +(x− xr)(z− zr)≤ r2 + r. (5.2)

If it is centered at origin (0, 0, 0)

r2− r < x2 + z2 + xz≤ r2 + r. (5.3)

The Equation of Annular disk of inner radius r1 and outer radius r2

r2
1− r1 < (x− xr)

2 +(z− zr)
2 +(x− xr)(z− zr)≤ r2

2 + r2. (5.4)

if r1 = r2 then Equation 5.4 is same as Equation 5.2. For a Disk r1 = 0 Equation is

0≤ (x− xr)
2 +(z− zr)

2 +(x− xr)(z− zr)≤ r2 + r. (5.5)

Theorem 2. Isothetic Distance D‖(x,y,z,r) of a point (x, y, z) from the circle of radius r is the
minimum of axis parallel distance.

Proof. Consider a point p(x, y, z) and a radius r. let’s consider the parallel axis distance be-
tween the point and circle are dx, dy, and dz in the direction of x-axis, y-axis, and z-axis respec-
tively. The points on the circle are (x+dx, y, z−dx), (x+dy, y−dy, z), and (x, y+dz, z−dz)
in the direction of x-axis, y-axis, and z-axis respectively.

(x+dx)2 +(z−dx)2 +(x+dx)(z−dx) = r2.
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(x+dy)2 + z2 +(x+dy)z = r2.

x2 +(z−dz)2 + x(z−dz) = r2.

Simplifying these equations will give following equations

dx2 +(x− z)dx− r2 +(x2 + z2 + xz) = 0.
dy2 +(2x+ z)dy− r2 +(x2 + z2 + xz) = 0.

dz2 +(−2z− x)dz− r2 +(x2 + z2 + xz) = 0.

Positive root of these quadratic equations will give parallel axis distance. if these equations
have no real roots then value of dx, dy, and dz is taken as ∞.

D‖(x,y,z,r) = min(|dx|, |dy|, |dz|).

dx =

∞, 4r2−3x2−3z2−6xz < 0

min
(
−(x−z)+

√
4r2−3x2−3z2−6xz

2 , −(x−z)−
√

4r2−3x2−3z2−6xz
2

)
, otherwise.

dy =

∞, 4r2−3z2 < 0

min
(
−(2x+z)+

√
4r2−3z2

2 , −(2x+z)−
√

4r2−3z2

2

)
, otherwise.

dz =

∞, 4r2−3x2 < 0

min
(

(2z+x)+
√

4r2−3x2

2 , (2z+x)−
√

4r2−3x2

2

)
, otherwise.

D‖ Duo-decant value

dx
1 12

∣∣∣−(x−z)+
√

4r2−3x2−3z2−6xz
2

∣∣∣
6 7

∣∣∣−(x−z)−
√

4r2−3x2−3z2−6xz
2

∣∣∣
dy

4 5
∣∣∣−(2x+z)+

√
4r2−3z2

2

∣∣∣
10 11

∣∣∣−(2x+z)−
√

4r2−3z2

2

∣∣∣
dx

2 3
∣∣∣ (2z+x)+

√
4r2−3x2

2

∣∣∣
8 9

∣∣∣ (2z+x)−
√

4r2−3x2

2

∣∣∣
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Definition 5.1. Naive Circle Set of all point (x, y, z) for a given radius r which satisfy following
conditions

r2− r < x2 + z2 + xz≤ r2 + r

and

Duo-decant condition
1 12 6 7 4r2−4x2−4z2−4xz−2x+2z−1 < 0

4 5 10 11 4r2−4x2−4z2−4xz−4x−2z−1 < 0
2 3 8 9 4r2−4x2−4z2−4xz+2x+4z−1 < 0

Theorem 3. D‖(x,y,z,r) = min(|dx|, |dy|, |dz|) 6= 1
2

Proof. Proof by contradiction

Lets assume dx = −(x−z)±
√

4r2−3x2−3z2−6xz
2 =±1

2

−(x− z)±
√

4r2−3x2−3z2−6xz =±1.

±
√

4r2−3x2−3z2−6xz =±1+(x− z).

After squaring and simplifying both sides

4r2−4x2−4z2−4xz−2x+2z = 1.

2(2r2−2x2−2z2−2xz∓ x± z) = 1.

Since r, x, and z are integers. LHS is always even and RHS is odd, which contradicts our
assumption.

4r2−4x2−4z2−4xz∓2x±2z 6= 1.

Similarly we will proof for dy and dz

2(2r2−2x2−2z2−2xz−2x− z) 6= 1.

2(2r2−2x2−2z2−2xz+ x+2z) 6= 1.

Theorem 4. if para = 0 at (x, y, z), then isothetic distance of rightmost voxel (x, y+1, z−1)
is always less than 1

2 .

D‖(x, y+1, z−1)<
1
2
.

Proof. Since the center of voxel (x, y+ 1, z− 1) lies outside the circle, it will satisfy the fol-
lowing inequality.

D2 = x2 +(z−1)2 + x(z−1)> r2.

If the isothetic distance of (x, y + 1, z− 1) is less than 1
2 then it will satisfy the following

equation

D‖(x, y, z)<
1
2

if 4r2−4x2−4z2−4xz−2x+2z−1 < 0 (5.6)
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D‖(x, y, z)>
1
2

if 4r2−4x2−4z2−4xz−2x+2z−1 > 0.

para = 2r2−2x2−2z2−2xz+3x+3z−2 = 0.

4r2−4x2−4z2−4xz =−6x−6z+4 (5.7)

Checking isothetic condition for (x, y+1, z−1)

4r2−4x2−4(z−1)2−4x(z−1)−2x+2(z−1)−1 < 0.
4r2−4x2−4z2−4xz+2x−6z−7 < 0.

using Equation 5.7

−6x−6z+4+2x+10z−7 < 0.
−4x+4z−3 < 0.
−4(x− z)−3 < 0.

(x− z) is positive in duo-decant 1 and 12

−4(x− z) < 0.
−4(x− z)−3 < 0.

∴ D‖(x, y+1, z−1) <
1
2
.

Similarly, we can show that isothetic distance of (x−1, y+1, z) is greater than 1
2

4r2−4x2−4z2−4xz−2x+2z−1 > 0.
4r2−4(x−1)2−4z2−4(x−1)z−2(x−1)+2z−1 > 0.

4r2−4x2−4z2−4xz+6x+6z−3 > 0.

Using Equation 5.7

−6x−6z+4+6x+6z−3 > 0.
1 > 0.

D‖(x−1, y+1, z) >
1
2
.

In case of tie (para = 0), we will always select the rightmost voxel.
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The Algorithm to layer the base of the hemisphere is summarized as follows.

Algorithm 1 Circle Layering

1: procedure CIRCLE(xr, yr, zr, wr, r) . Circle of radius r centered at (xr, yr, zr, wr)
2: x← r+ xr y← yr z←−r+ zr
3: plot12(x, y, z, wr) . Plot voxel on the sextant axes
4: p←−2
5: while x−1 > y do
6: if p < 0 then
7: PLOT12(x−1, y+1, z, wr)
8: p← p+(x << 2)+(z << 1)−5 . p = p+4x+2z−5
9: x← x−1

10: else
11: PLOT12(x, y+1, z−1, wr)
12: p← p+(x << 1)+(z << 2)−5 . p = p+2x+4z−5
13: z← z−1
14: y← y+1
15: return All plotted voxels . All plotted voxels and their symmetric points
16: end procedure

17: procedure PLOT12(x, y, z, w)
18: PLOT(x, y, z, w)
19: PLOT(y, x, z, w)
20: PLOT(−y, − z, − x, w)
21: PLOT(−x, − z, − y, w)
22: PLOT(z, x, y, w)
23: PLOT(z, y, x, w)
24: PLOT(−x, − y, − z, w)
25: PLOT(−y, − x, − z, w)
26: PLOT(y, z, x, w)
27: PLOT(x, z, y, w)
28: PLOT(−z, − x, − y, w)
29: PLOT(−z, − y, − x, w)
30: end procedure

31: procedure PLOT(x, y, z, w)
32: plot voxel (x, y, z, w)
33: end procedure

The loop in line 5 terminates just before the voxel that is on the duo-decant boundary. For
even value of r voxel on the duo-decant boundary have x = y and for odd value of r it have
x−1 = y. These boundary voxels can be next possible voxel from current voxel which is just
before the boundary voxel. Experimental results shows that loop runs exactly d r

2e+d
r

12e times.
Circles plotted by Algorithm 1 for r = 15 and r = 16 are shown in 5.3.

30



(a) Circle of r = 15 (b) Circle of r = 16

Figure 5.3: Circle plotted for r = 15 and r = 16 by Algorithm 1

Theorem 5. Naive circle is minimal and connected.

Proof. The algorithm uses 12 symmetry. In duo-decant 1 for a given value of y, we are selecting
only one voxel from next possible voxels. This way minimality occurs in duo-decant 1. The 12
symmetry ensures the minimality in other duo-decant, thus making the circle minimal.

It is not harder to see that voxels inside a duo-decant are connected as we are moving to
direct neighbors from each voxel. We need to show that the voxels at duo-decant boundaries
will form a connected set. The last voxel in a duo-decant has this property.

x = y For even value of |z|.

x−1 = y For odd value of |z|.

For a sextant, the last voxel of two duo-decant will be connected. for the even value of r
voxel where x == y will be at the duo-decant boundary. Thus making voxel inside a sextant
connected. similarly, we can show that same argument is valid for other sextant duo-decant.
For odd value of r the last voxels have x− 1 = y in one duo-decant and x = y− 1 in other
duo-decant. It is clear that these two voxels are connected. These are direct neighbors of each
other.

Now we need to show that the voxel at sextant boundary will be connected. The last
voxel in sextant-I have coordinate (0, r, − r). Since the Initial value of para is −2, the voxel
(1, r, − r− 1) will be the first voxel in sextant-II. As we can see these two voxel are direct
neighbors of each other. Similar argument can be used for other sextant boundary.

Theorem 6. Separability D(d1,d2)≥
√

3

Proof. The voxels inside the circle must satisfy the following equation for a given value of r

D1
2 ≤ r2− r.
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Similarly voxels outside the circle must satisfy the following equation.

D2
2 > r2 + r.

where D1 and D2 is the square of distance from the origin (0, 0, 0).

D2
2−D1

2 > 2r.

Lets consider a voxel inside the circle as d1 and voxel outside the circle as d2. D(d1,d2) is
the euclidean distance between d1 and d2. if voxel (x, y, z) is part of a circle. d1 can be
(x− dx1, y− dy1, z− dz1) and d2 can be (x− dx2, y− dy2, z− dz2) where dx1, dx2, dy1,
dy2, dz1, dz2 are integers.

[D(d1,d2)]
2 = (dx2−dx1)2 +(dz2−dz1)2 +(dx2−dx1)(dz2−dz1).

maximum value of dx2− dx1 and dz2− dz1 can be ∞ minimum value of dx2− dx1 = 1 and
dz2−dz1 =−2 in sextant-I. It can be seen along the boundary between duo-decant 1 and 2.

[D(d1,d2)]
2 = 1+4−2.

[D(d1,d2)]
2 = 3.

[D(d1,d2)]≥
√

3.

Layering the Disk

Disk boundary is layered by Algorithm 1. The inner voxels of the disk can be layered. The
Equation of the Disk is given by Equation 5.5

0 < (x− xr)
2 +(z− zr)

2 +(x− xr)(z− zr)≤ r2 + r (5.8)

Running Algorithm 1 r+1 times from radius 0 to r will not given complete disk. Some voxels
may be missing as the circle layering does not satisfy the tiling property as shown in Figure 5.4.

Another approach that uses hexagon can be used for layering the disk. We only need to find
hexagon voxels in one duo-decant. The disk boundary is circumcircle of a hexagon H1 of side
h1, It is also incircle of hexagon H2 of side h2 as shown in Figure 5.5.

h1 < h2, h1 = r, h2 =
2r√

3
.

Similarly for a annular disk of inner radius r1 and outer radius r2 following relation holds

h1 < h2 < h3, h1 = r1, h2 = r2, h3 =
2r2√

3
.

It is obvious that all voxels inside H1 satisfy Equation 5.8. To layer remaining voxels of the
disk, we need to make sure voxels that are inside H2 which are not part of H1 must satisfy
Equation 5.8.
The Algorithm to layer the Disk can be summarized as follows. Voxels inside H1 can be found
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Figure 5.4: Layering circle from radius 0 to 20 results in missing voxels which shows that tiling
property does not hold.

H1

H2

(a) Disk

H1

H2

H3

(b) Annular Disk

Figure 5.5: Incircle and circumcircle of Hexagons in Disk and Annular Disk

out by line 3-7. Voxels that are inside H2 that are not part of H1 can be found out by line 8-13.
Line 11 ensures that voxels satisfy Equation 5.8.
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Algorithm 2 Disk layering

1: procedure DISK(xr, yr, zr, wr, r) . Disk of radius r centered at (xr, yr, zr, wr)
2: x← r+ xr y← yr z←−r+ zr w← wr
3: for i = 0; i≤ r; i++ do
4: x← i+ xr z←−i+ zr y← yr
5: for j = 0; j < b i+2

2 c; j++ do
6: PLOT12(x, y, z, w) . Procedure PLOT12 of Algorithm 1
7: x← x−1 y← y+1
8: for i = r+1; i≤ r+ b r

6c; i++ do
9: x← i+ xr z←−i+ zr y← yr

10: for j = 0; j < b i+2
2 c; j++ do

11: if r2 + r ≥ x2 + z2 + xz then . Equation 5.8
12: PLOT12(x, y, z, w) . Procedure PLOT12 of Algorithm 1
13: x← x−1 y← y+1
14: return All plotted voxels . All plotted voxels and their symmetric points
15: end procedure

Algorithm 3 Annular Disk
1: procedure ANNULAR DISK(xr, yr, zr, wr, r1, r2)
2: w← wr
3: for i = r1; i≤ r2; i++ do
4: x← i+ xr y← yr z←−i+ zr
5: for j = 0; j < b i+2

2 c; j++ do
6: if voxel V (x, y, z, w) satisfy Equation 5.4 then
7: PLOT12(x, y, z, w) . Procedure PLOT12 of Algorithm 1
8: x← x−1 y← y+1
9: for i = r2 +1; i≤ r2 + b r2

6 c; i++ do
10: x← i+ xr y← yr z←−i+ zr
11: for j = 0; j < b i+2

2 c; j++ do
12: if voxel V (x, y, z, w) satisfy Equation 5.4 then
13: PLOT12(x, y, z, w) . Procedure PLOT12 of Algorithm 1
14: x← x−1 y← y+1
15: return All plotted voxels . All plotted voxels and their symmetric points
16: end procedure
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(a) Disk of r = 40 (b) Annular disk of r1 = 20 and r2 = 40

Figure 5.6: Disk plotted by Algorithm 2 and 3

Figure 5.7: Parallel plane distance of a point (x, y, z, w) from a sphere of radius r.

Theorem 7. Isothetic distance D‖(x,y,z,w,r) of a point (x, y, z, w) for a sphere of radius r is
the minimum parallel plane distance from the sphere.

Proof. Consider a point p(x, y, z, w) and a radius r. lets consider the parallel plane distance
between the point and sphere are dx, dy, dz, dw in the direction of x-plane, y-plane, z-plane,
w-plane respectively. The points on the sphere are (x+dx, y, z−dx, w), (x+dy, y−dy, z, w),
(x, y+ dz, z− dz, w), (x, y, z, w+ dw) in the direction of x-plane, y-plane, z-plane, w-plane
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respectively.

(x+dx)2 +(z−dx)2 +(x+dx)(z−dx)+w2 +(x+dx+ z−dx)w = r2.

(x+dy)2 + z2 +(x+dy)z+w2 +(x+dy+ z)w = r2.

x2 +(z−dz)2 + x(z−dz)+w2 +(x+ z−dx)w = r2.

x2 + z2 + xz+(w+dw)2 +(x+ z)(w+dw) = r2.

Simplifying these equations will give following equations

dx2 +(x− z)dx− r2 +(x2 + z2 + xz+w2 +(x+ z)w) = 0.
dy2 +(2x+ z+w)dy− r2 +(x2 + z2 + xz+w2 +(x+ z)w) = 0.

dz2 +(−2z− x+w)dz− r2 +(x2 + z2 + xz+w2 +(x+ z)w) = 0.
dw2 +(x+ z+2w)dy− r2 +(x2 + z2 + xz+w2 +(x+ z)w) = 0.

Positive root of these quadratic equations will give parallel axis distance. if these equations
have no real roots then value of dx, dy, dz, dw is taken as ∞.

D‖(x,y,z,r) = min(|dx|, |dy|, |dz|, |dw|).

Due to asymmetric nature of w-axis isothetic distance for the sphere is not useful.

Symmetry in Sphere

A sphere have two points of symmetry in each hemisphere. For a voxel (x, y, z, w) in one
hemisphere we have voxel (−x, − y, − z, −w) in other hemisphere. There distance from the
origin (0, 0, 0, 0) is same. By using Equation 4.11

D =
√

(−x)2 +(−z)2 +(−w)2 +(−x)(−z)+(−x− z)(−w).

D =
√

x2 + z2 +w2 + xz+(x+ z)w.

which is equal to the distance of voxel (x, y, z, w) from the origin.

Layering the Hemisphere

A Hemisphere can be Layered one layer at a time. We have already layered 0th layer by Al-
gorithm 2. We will generate 1st layer by using the direct upper layer neighbors of layer 0.
Similarly, we will generate 2nd layer by direct upper layer neighbors of layer 1. Recall that
layer l and l+3 have the same orientation. We can establish a relation between them and layer
l + 3 can be directly found by layer l. Layer 0, 1, and 2 will form a set of three consecutive
layers. Similarly layer 3, 4, and 5 will form another set and so on. We need to find how many
such sets are there for a hemisphere of radius r. Let L be the number of sets. Euclidean z-axis
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Distance between two consecutive layer is
√

2
3 unit.

Total number of layers = 3L.

Height = (3L−1)∗
√

2
3

= r.

(3L−1)∗
√

2
3

= r.

(3L−1)2 ∗ 2
3

= r2.

(3L−1)2 =
3r2

2
.

(3L)2 >
3r2

2
.

L2 >
r2

6
.

L >

√
r2

6
L is an integer.

∴ L =

⌈√
r2

6

⌉
.

Consider 0th layer voxel as(x0, y0, z0, 0), 1st layer voxel as (x1, y1, z1, 1), 2nd layer voxel as
(x2, y2, z2, 2).

For i = 1 to L−1

Layer 3i voxel (x0− i, y0 +2i, z0− i, 3i) have same orientation as (x0, y0, z0, 0).

Layer 3i+1 voxel (x1− i, y1 +2i, z1− i, 3i+1) have same orientation as (x1, y1, z1, 1).

Layer 3i+2 voxel (x2− i, y2 +2i, z2− i, 3i+2) have same orientation as (x2, y2, z2, 2).
Equation 5.2 can be extended to Sphere of radius r centered at (xr, yr, zr, wr).

r2− r < (x−xr)
2+(z− zr)

2+(w−wr)
2+(x−xr)(z− zr)+(z− zr +x−xr)(w−wr)≤ r2+ r.

(5.9)
If center is at origin

r2− r < x2 + z2 +w2 + xz+(x+ z)w≤ r2 + r. (5.10)

If the Sphere is solid

0≤ (x− xr)
2 +(z− zr)

2 +(w−wr)
2 +(x− xr)(z− zr)+(z− zr + x− xr)(w−wr)≤ r2 + r.

(5.11)
A spherical shell of inner radius r1 and outer radius r2 have equation as follows where r1 < r2

r2
1−r1 < (x−xr)

2+(z−zr)
2+(w−wr)

2+(x−xr)(z−zr)+(z−zr+x−xr)(w−wr)≤ r2
2+r2.
(5.12)

Sphere is hollow if r1 = r2 and sphere is solid if r1 = 0.
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Algorithm 4 Hollow Hemisphere
1: procedure HOLLOW HEMISPHERE(xr, yr, zr, wr, r)
2: Layer 0, Layer 1, and Layer 2 be the empty list of voxels

3: L =

⌈√
r2

6

⌉
4: CIRCLE(xr, yr, zr, wr, r) . Algorithm 1
5: Layer 0←DISK(xr, yr, zr, wr, r) . Algorithm 2
6: Layer 1, Layer 2← LAYER 1 2(Layer 0)
7: for j = 1 to L−1 do
8: for Each voxel (x, y, z, w) ∈ Layer 3(j-1) do
9: if voxel (x− j, y+2 j, z− j, 3 j) satisfy Equation 5.11 then

10: Add voxel (x− j, y+2 j, z− j, 3 j) to Layer 3j
11: if voxel (x− j, y+2 j, z− j, 3 j) satisfy Equation 5.9 then
12: plot (x− j, y+2 j, z− j, 3 j)
13: for Each voxel (x, y, z, w) ∈ Layer 3(j-1)+1 do
14: if voxel (x− j, y+2 j, z− j, 3 j+1) satisfy Equation 5.11 then
15: Add voxel (x− j, y+2 j, z− j, 3 j+1) to Layer 3j+1
16: if voxel (x− j, y+2 j, z− j, 3 j+1) satisfy Equation 5.9 then
17: plot (x− j, y+2 j, z− j, 3 j+1)
18: for Each voxel (x, y, z, w) ∈ Layer 3(j-1)+2 do
19: if voxel (x− j, y+2 j, z− j, 3 j+2) satisfy Equation 5.11 then
20: Add voxel (x− j, y+2 j, z− j, 3 j+2) to Layer 3j+2
21: if voxel (x− j, y+2 j, z− j, 3 j+2) satisfy Equation 5.9 then
22: plot (x− j, y+2 j, z− j, 3 j+2)
23: end procedure

24: procedure LAYER 1 2(Layer 0)
25: for i = 0 to 1 do
26: for Each voxel (x, y, z, w) ∈ Layer i do
27: if Voxel U1(x, y, z, w+1)6∈Layer i+1 and U1 satisfy Equation 5.11 then
28: Add voxel U1(x, y, z, w+1) to Layer i+1
29: if U1 satisfy Equation 5.9 then
30: plot (x, y, z, w+1)
31: if Voxel U2(x− 1, y + 1, z, w + 1)6∈Layer i+1 and U2 satisfy Equation 5.11

then
32: Add voxel U2(x−1, y+1, z, w+1) to Layer i+1
33: if U2 satisfy Equation 5.9 then
34: plot (x−1, y+1, z, w+1)
35: if Voxel U3(x, y + 1, z− 1, w + 1)6∈Layer i+1 and U3 satisfy Equation 5.11

then
36: Add voxel U3(x, y+1, z−1, w+1) to Layer i+1
37: if U3 satisfy Equation 5.9 then
38: plot (x, y+1, z−1, w+1)
39: return Layer 1, Layer 2
40: end procedure
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(a) r = 5 (b) r = 10

(c) r = 15 (d) r = 20

Figure 5.8: Hollow spheres plotted by Algorithm 4. Using two symmetry of sphere complete
sphere is plotted. Layer 3i is shown as blue color voxels. similarly, layer 3i+1 and 3i+2 are
shown as red and green color voxels respectively. According to two symmetry layer, 3i and−3i
are of same color voxels. Similarly layer −3(i+ 1) and −3(i+ 2) are of same color as layer
3(i+1) and 3(i+2) respectively.

We have generated only one hemisphere by the Algorithm 4. Other hemisphere is plotted
by using two symmetry of the sphere. For a voxel (x, y, z, w), two voxel are plotted (x, y, z, w)
and (−x, − y, − z, −w). Results are shown in Figure 5.8 for smaller value of r. As the value
of r increase the spherical smoothness increases. The color encoding of layers in Figure 5.8
will be used in upcoming sections.
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Algorithm 5 Hemispherical Shell
1: procedure HEMISPHERICAL SHELL(xr, yr, zr, wr, r1, r2)
2: Layer 0, Layer 1, and Layer 2 be the empty list of voxels

3: L =

⌈√
r2

2
6

⌉
4: ANNULAR DISK(xr, yr, zr, wr, r1, r2) . Algorithm 3
5: Layer 0←DISK(xr, yr, zr, wr, r2) . Algorithm 2
6: Layer 1, Layer 2← SHELL LAYER 1 2(Layer 0)
7: for j = 1 to L−1 do
8: for Each voxel (x, y, z, w) ∈ Layer 3(j-1) do
9: if voxel (x− j, y+2 j, z− j, 3 j) satisfy Equation 5.11 then

10: Add voxel (x− j, y+2 j, z− j, 3 j) to Layer 3j
11: if voxel (x− j, y+2 j, z− j, 3 j) satisfy Equation 5.12 then
12: plot (x− j, y+2 j, z− j, 3 j)
13: for Each voxel (x, y, z, w) ∈ Layer 3(j-1)+1 do
14: if voxel (x− j, y+2 j, z− j, 3 j+1) satisfy Equation 5.11 then
15: Add voxel (x− j, y+2 j, z− j, 3 j+1) to Layer 3j+1
16: if voxel (x− j, y+2 j, z− j, 3 j+1) satisfy Equation 5.12 then
17: plot (x− j, y+2 j, z− j, 3 j+1)
18: for Each voxel (x, y, z, w) ∈ Layer 3(j-1)+2 do
19: if voxel (x− j, y+2 j, z− j, 3 j+2) satisfy Equation 5.11 then
20: Add voxel (x− j, y+2 j, z− j, 3 j+2) to Layer 3j+2
21: if voxel (x− j, y+2 j, z− j, 3 j+2) satisfy Equation 5.12 then
22: plot (x− j, y+2 j, z− j, 3 j+2)
23: end procedure

24: procedure SHELL LAYER 1 2(Layer 0)
25: for i = 0 to 1 do
26: for Each voxel (x, y, z, w) ∈ Layer i do
27: if Voxel U1(x, y, z, w+1)6∈Layer i+1 and U1 satisfy Equation 5.11 then
28: Add voxel U1(x, y, z, w+1) to Layer i+1
29: if U1 satisfy Equation 5.12 then
30: plot (x, y, z, w+1)
31: if Voxel U2(x− 1, y + 1, z, w + 1)6∈Layer i+1 and U2 satisfy Equation 5.11

then
32: Add voxel U2(x−1, y+1, z, w+1) to Layer i+1
33: if U2 satisfy Equation 5.12 then
34: plot (x−1, y+1, z, w+1)
35: if Voxel U3(x, y + 1, z− 1, w + 1)6∈Layer i+1 and U3 satisfy Equation 5.11

then
36: Add voxel U3(x, y+1, z−1, w+1) to Layer i+1
37: if U3 satisfy Equation 5.12 then
38: plot (x, y+1, z−1, w+1)
39: return Layer 1, Layer 2
40: end procedure
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(a) r = 5 (b) r = 10 (c) r = 15

Figure 5.9: Solid spheres plotted by Algorithm 5 using two symmetry of sphere. The color
encoding used in Figure 5.8 is used to represent layers. Inner radius is r1 = 0 and outer radius
is r2 = r for solid sphere.

(a) r1 = 19, r2 = 20 (b) r1 = 18, r2 = 20

(c) r1 = 15, r2 = 20

Figure 5.10: Hemispherical shells plotted by Algorithm 5 for r = 20 of thickness 1, 2, and 5. If
we consider thickness of hollow sphere as zero, Then thickness of spherical shell is r2− r1.
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5.2 Sphere Printing Algorithm

Consider a point (x, y, z, w). Square of distance from the origin (0, 0, 0, 0) is

p0 = D2 = x2 + z2 +w2 + xz+(x+ z)w

for (0, 0, 0, 0) p0 = 0. Direct neighbors of (x, y, z, w) are (x+1, y, z−1, w), (x, y+1, z−
1, w), (x−1, y+1, z, w), (x−1, y, z+1, w), (x, y−1, z+1, w) and (x+1, y−1, z, w) in
0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ direction respectively.

p1 = (x+1)2 +(z−1)2 +w2 +(x+1)(z−1)+(x+1+ z−1)w.
p2 = x2 +(z−1)2 +w2 + x(z−1)+(x+ z−1)w.
p3 = (x−1)2 + z2 +w2 +(x−1)z+(x−1+ z)w.
p4 = (x−1)2 +(z+1)2 +w2 +(x−1)(z+1)+(x−1+ z+1)w.
p5 = x2 +(z+1)2 +w2 + x(z+1)+(x+ z+1)w.
p6 = (x+1)2 + z2 +w2 +(x+1)z+(x+1+ z)w.

Solving these equation will give following equation.

p1 = p0 + x− z+1.
p2 = p0−2z− x−w+1.
p3 = p0−2x− z−w+1.
p4 = p0− x+ z+1.
p5 = p0 +2z+ x+w+1.
p6 = p0 +2x+ z+w+1.

Direct layer neighbors of (x, y, z, w) are U1(x−1, y+1, z, w+1), U2(x, y+1, z−1, w+1),
and U3(x, y, z, w+1). Distance of them can be written in term of p0.

pu1 = p0 +w− x+1.
pu2 = p0 +w− z+1.
pu3 = p0 +2w+ x+ z+1.

Our printer nozzle moves from one voxel to its immediate direct neighbor. We do not need to
calculate the square of the distance in every voxel. It can be seen from the above equations that
instead of calculating the square, we only required addition, subtraction, and multiplication by
two (which can be replaced by safe left shift operator). Thus saving a lot of clock cycle in terms
of computation.
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Theorem 8. Separability in sphere D2
2−D1

2 > 2r for hollow sphere of radius r

Proof. voxels inside the sphere must satisfy the following equation

D1
2 ≤ r2− r

voxels outside the sphere must satisfy the following equation

D2
2 > r2 + r

D2
2−D1

2 > 2r

Theorem 9 (Last voxel in a sphere). For a given value of l, if p > R2(r2
2 + r2) at the first voxel

for this layer l. Then it is the last voxel of the sphere.

Proof. First voxels at layer l have the coordinates (−i, 2i, − i, 3i+ j) where l = 3i+ j.

Given [D(−i, 2i, − i, 3i+ j)]2 > R2
first voxel at immediate upper layer l+1 will be (−i, 2i, − i, 3i+ j+1) where l+1 = 3b(l+
1)/3c+(l +1)%3 , i = b(l +1)/3c, and j = (l +1)%3.

[D(−i, 2i, − i, 3i+ j)]2 > R2.
i2 + i2− i2 +(3i+ j)2 +(−2i)(3i+ j) > R2.

6i2 + j2 +4i j > R2.
(5.13)

For the sake of calculation, we have used j+1 as j keeping i constant.

[D(−i, 2i, − i, 3i+ j+1)]2 > R2.
i2 + i2− i2 +(3i+ j+1)2 +(−2i)(3i+ j+1) > R2.

6i2 + j2 +4i j+6i+1 > R2.
(5.14)

Since i is Z+ and 6i2 + j2 +4i j > R2

[D(−i, 2i, − i, 3i+ j+1)]2 > R2.

There is no need to check for upper layer voxels.

Theorem 10 (Last Voxel for the even value of y). For a given even value of y at voxel(x,y,z,w)
if x = z and value of p > R2(r2

2 + r2), Then it is the last voxel for this value of y.

Proof. Lets consider x=z=a Given [D(a,y,a,w)]2 > R2

a2 +a2 +a2 +w2 +2aw > R2.
3a2 +w2 +2aw > R2.
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Direct neighbors of this voxel will be (a+1,y,a−1,w) and (a−1,y,a+1,w)

(D(a+1,y,a−1,w))2 = (a+1)2 +(a−1)2 +(a2−1)+w2 +2aw.
(D(a−1,y,a+1,w))2 = (a−1)2 +(a+1)2 +(a2−1)+w2 +2aw.
(D(a+1,y,a−1,w))2 = 3a2 +w2 +2aw+1 > R2.
(D(a−1,y,a+1,w))2 = 3a2 +w2 +2aw+1 > R2.
(D(a+1,y,a−1,w))2 > R2.
(D(a−1,y,a+1,w))2 > R2.

Then no need to check for other voxel for this value of y.

Theorem 11 (Last Voxel for the odd value of y). For a given odd value of y at voxel(x,y,z,w)
if x = z−1 and value of p > R2(r2

2 + r2), Then it is the last voxel for this value of y.

Proof. Lets consider x=z-1=a Given [D(a,y,a+1,w)]2 > R2

a2 +(a+1)2 +(a+1)a+w2 +(2a+1)w > R2.
3a2 +w2 +2aw+2a+w+2 > R2.

Direct neighbors of this voxel will be (a+1,y,a,w) and (a−1,y,a+2,w)

(D(a+1,y,a,w))2 = (a+1)2 +a2 +(a2 +1)+w2 +(2a+1)w.
(D(a−1,y,a+2,w))2 = (a−1)2 +(a+2)2 +(a−1)(a+2)+w2 +(2a+1)w.

(D(a+1,y,a,w))2 = 3a2 +w2 +2aw+2a+w+2 > R2.
(D(a−1,y,a+2,w))2 = 3a2 +w2 +2aw+2a+w+2+a+1 > R2.

(D(a+1,y,a,w))2 > R2.
(D(a−1,y,a+2,w))2 > R2.

Then no need to check for other voxel for this value of y.
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Algorithm 6 Sphere print(xr, yr, zr, wr, r1, r2)

1: l←
⌈√

r2

6

⌉
2: R1← r1

2− r2, R2← r2
2 + r2

3: if R1 == 0 then Plot Voxel (0, 0, 0, 0)
4: for i← 0 to l−1 do
5: p0 = 6i2, p = 0, v f 1 =false, v f 2 =false, h f 1 =false, h f 2 =false
6: for j← 0 to 2 do
7: p← p0+ j( j+4i), psave← p
8: if p > R2 then break . Theorem 9
9: x← 0, y← 0, z← 0, w← 3i+ j . Move to Voxel(-i,2i,-i,3i+j)

10: for y← 0 to r+ d r2
3 e do

11: h f 1 =false, h f 2 =false
12: if y%2==0 then
13: v f 1 =false, v f 2 =false
14: while |x| ≤ r+ d r2

3 e do
15: if p≤ R2 & p > R1 then
16: Plot Voxel (x− i, y+2∗ i, z− i, w) v f 1 =true, h f 1 =true
17: else
18: Move to Voxel (x− i, y+2i, z− i, w)
19: if v f 1 then v f 2 =true
20: h f 2 =true
21: if p > R2 & x == z then break . Theorem 10
22: if v f 1 & v f 2 & p > R2 then break
23: p← p− (x− i)+(z− i)+1
24: x← x−1, z← z+1
25: if p > R2 & x == z then break . Theorem 10
26: p← p−2(z− i)− (x− i)−w+1
27: z← z−1, y← y+1
28: else
29: v f 1 =false, v f 2 =false
30: while |z| ≤ r+ d r2

3 e do
31: if p≤ R2 & p > R1 then
32: Plot Voxel (x− i, y+2∗ i, z− i, w) v f 1 =true, h f 1 =true
33: else
34: Move to Voxel (x− i, y+2i, z− i, w)
35: if v f 1 then v f 2 =true
36: h f 2 =true
37: if p > R2 & x == z−1 then break . Theorem 11
38: if v f 1 & v f 2 & p > R2 then break
39: p← p+(x− i)− (z− i)+1
40: x← x+1, z← z−1
41: if p > R2 & x == z−1 then break . Theorem 11
42: p← p−2(x− i)− (z− i)−w+1
43: x← x−1, y← y+1
44: if !h f 1 & h f 2 then break 45



Algorithm 7 Sphere print(xr, yr, zr, wr, r1, r2)

45: l←
⌈√

r2

6

⌉
46: R1← r1

2− r2, R2← r2
2 + r2

47: for i← 0 to l−1 do
48: p0 = 6i2, p = 0, v f 1 =false, v f 2 =false, h f 1 =false, h f 2 =false
49: for j← 0 to 2 do
50: p← p0+ j( j+4i), psave← p
51: if p > R2 then break . Theorem 9
52: x← 0, y← 0, z← 0, w← 3i+ j . Move to Voxel(-i,2i,-i,3i+j)
53: while |y| ≤ r+ d r2

3 e do
54: h f 1 =false, h f 2 =false
55: if y%2==0 then
56: v f 1 =false, v f 2 =false
57: while |x| ≤ r+ d r2

3 e do
58: if p≤ R2 & p > R1 then
59: Plot Voxel (x− i, y+2∗ i, z− i, w) v f 1 =true, h f 1 =true
60: else
61: Move to Voxel (x− i, y+2i, z− i, w)
62: if v f 1 then v f 2 =true
63: h f 2 =true
64: if p > R2 & x == z then break . Theorem 10
65: if v f 1 & v f 2 & p > R2 then break
66: p← p+(x− i)− (z− i)+1
67: x← x+1, z← z−1
68: if p > R2 & x == z then break . Theorem 10
69: p← p+2(z− i)+(x− i)+w+1
70: z← z+1, y← y−1
71: else
72: v f 1 =false, v f 2 =false
73: while |z| ≤ r+ d r2

3 e do
74: if p≤ R2 & p > R1 then
75: Plot Voxel (x− i, y+2∗ i, z− i, w) v f 1 =true, h f 1 =true
76: else
77: Move to Voxel (x− i, y+2i, z− i, w)
78: if v f 1 then v f 2 =true
79: h f 2 =true
80: if p > R2 & x == z−1 then break . Theorem 11
81: if v f 1 & v f 2 & p > R2 then break
82: p← p− (x− i)+(z− i)+1
83: x← x−1, z← z+1
84: if p > R2 & x == z−1 then break . Theorem 11
85: p← p+2(x− i)+(z− i)+w+1
86: x← x+1, y← y−1
87: if !h f 1 & h f 2 then break
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5.3 Other Geometric Objects

In this subsection, we will represent other geometric objects namely digital planes and regular
tetrahedron on the tetrahedral grid.

Digital Planes

We have introduced our grid as Intersection of four sets of parallel planes. Each set of plane
is parallel to the face of the tetrahedron see Figure 5.11. Consider a tetrahedron ABCD whose
vertex are D(0, 0, 0, 0), A(1, − 1, 0, 0), B(0, − 1, 1, 0), C(0, 0, 0, 1). The Vertexes of
Tetrahedron are our grid points.

Figure 5.11: Four sets of planes on the tetrahedral grid. w = 0 is the plane which is parallel
to face ABD represented by black color. x = 0 is the plane which is parallel to face BCD
represented by red color. z = 0 is the plane which is parallel to face ACD represented by blue
color. y = w−1 is the plane which is parallel to face ABD represented by green color. y = w is
the plane parallel to y = w−1 which passes through point D represented by sky blue color.

Definition 5.2. A tetrahedral grid in 4-coordinate system is infinite intersection of 4 sets of
planes. These planes equation is given by x = t, z = t, w = t, y = w− t where t ∈ Z.

Definition 5.3. A grid point on tetrahedral grid in intersection of

x = t1, y = w− t2, z = t3 or

x = t1, y = w− t2, w = t4 or

x = t1, z = t3, w = t4 or

y = w− t2, z = t3, w = t4.

where t1,t2, t3, t4 are integer.
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General plane Equation can be given by Ax+By+Cz+Dw+E = 0 where A, B, C, D,
E are integers. It can not be guaranteed that all point on the plane is valid voxel coordinates.
When A = B =C, Dw+E = 0 is a plane parallel to w = 0 if E is a multiple of D. Recall that
x+ y+ z = 0 for all voxels.

Definition 5.4. Ax+By+Cz+Dw+E1 = 0 and Ax+By+Cz+Dw+E2 = 0 are parallel to
each other where A, B, C, D, E1, E2 are integers.

Layering a Tetrahedron

Obviously it is easier to represent tetrahedron in our grid because of nature of grid. To layer
a tetrahedron we require a point (usually of the base) and side length. In addition to that we
require relative position of other two points on the base of tetrahedron in term of sextant. Con-
sider a point in the base of tetrahedron as V1(x1, y1, z1, w1). Let the side of tetrahedron as t
unit and relative position of other two vertex of the base is sextant-V. Other vertex in the base
are V2(x1, y1−t, z1+t, w1) and V3(x1+t, y1−t, z1, w1). The algorithm to layer a tetrahedron
is given as follows.

Algorithm 8 Tetrahedron layering
1: procedure TETRAHEDRON(xt , yt , zt , wt , t)
2: x← xt y← yt z← zt w← wt
3: for i = t, i−−, while i≥ 0 do
4: for j = 0, j++, while j ≤ i do
5: x← xt y← yt− j z← zt + j w← wt + t− i
6: for k = 0, k++, while k ≤ j do
7: Plot Voxel (x, y, z, w)
8: x← x+1, z← z−1
9: end procedure

lemma 1. The number of voxel NV in a tetrahedron of side t is (t+1)(t+2)(t+3)
6 .

Proof. From Algorithm 8
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∑
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Figure 5.12: Regular Tetrahedron plotted by Algorithm 8 for t = 20
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6 Conclusion

We have initially put forward certain approaches to represent geometric objects namely line,
circle and arc (or curves) in the 3-coordinates system for the regular simplex grid in 2D. The use
of simplex grid has assisted in our transition from 2D to 3D. We have extended three coordinate
systems of the simplex grid into a consistent four coordinates system for the tetrahedral grid.
We have proposed algorithms for circle, disk, sphere, and tetrahedron. The circle and disk
plotting algorithm are efficient. We have given an algorithm for sphere printing for two nozzle
printer. These two nozzles can work in parallel.

Sphere packing in tetrahedral grid covers approximately 74% of the volume. Sphere pack-
ing in cubic grid covers approximately 52.4% of the volume. If we replace each sphere by
rhombic dodecahedron in the tetrahedral grid, then it will tessellation entire space [18].

A natural application of our study on geometric objects on the tetrahedral grid using spher-
ical voxels will be in 3D printing or rapid prototyping [3, 8, 12, 19–21]. Digital 3D printing is
evolving. Recently HP Labs and NVIDIA have worked together to overcome the challenges
of 3D printing using GVDB voxels [10]. Binding of the individual voxels in 3D printing is
a crucial factor for the stability of the printed objects. Due to the self-alignment property of
spheres, spherical voxels are proved to be an essential part in 3D printing [6]. Voxels play an
important role in 3D printing because voxels can represent complex connected micro structure
materials more easily than polygons [5, 7].

50



Bibliography

[1] B. Das, M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya. A combinatorial
technique for construction of triangular covers of digital objects. combinatorial image
analysis: 16th international workshop. pages 76–90, 2014.

[2] H. Freeman. Algorithm for generating a digital straight line on a triangular grid. IEEE
Transactions on Computers, C-28(2):150–152, 1979.

[3] H. Glessen, S. Thiele, S. Ristok, and A. Nerkommer. Microstructured optics by 3D print-
ing. In 2017 Conference on Lasers and Electro-Optics Europe European Quantum Elec-
tronics Conference (CLEO/Europe-EQEC), pages 1–1, June 2017.

[4] I. Her. Geometric transformations on the hexagonal grid. IEEE Transactions on Image
Processing, 4(9):1213–1222, Sep 1995.

[5] J. Hiller and H. Lipson. Methods of parallel voxel manipulation for 3D digital printing.
18th Annual International Solid Freeform Fabrication Symposium, SFF 2007, 2007.

[6] J. Hiller and H. Lipson. Design and analysis of digital materials for physical 3D voxel
printing. computer graphics and image processing, 15(2):137–149, 2008.

[7] J. Hiller and H. Lipson. Design automation for multi-material printing. 20th Annual
International Solid Freeform Fabrication Symposium, SFF 2009, pages 279–287, 2009.

[8] C. L. Huang, C. H. Wen, Y. S. Mao, and J. J. Chen. Applying 3D printing technique
to reconstruct cultural artifacts. In 2017 10th International Conference on Ubi-media
Computing and Workshops (Ubi-Media), pages 1–6, Aug 2017.

[9] R. Klette and A. Rosenfeld. Digital Geometry. Morgan Kaufmann, 500 Sansome Street,
Suite 400, San Francisco, CA 94111, 2004.

[10] T. Kontzer. How GPUs can kick 3D printing industry into high gear. https://blogs.

nvidia.com/blog/2017/06/06/3d-printing/. June 6, 2017.

[11] E. Luczak and A. Rosenfeld. Distance on a hexagonal grid. IEEE transactions of com-
puters, page 533, 1976.

[12] S. Mafeld, C. Nesbitt, J. McCaslin, A. Bagnall, P. Davey, P. Bose, and R. Williams. Three-
dimensional (3D) printed endovascular simulation models: a feasibility study. Annals of
Translational Medicine, 5(3), 2017.

51

https://blogs.nvidia.com/blog/2017/06/06/3d-printing/
https://blogs.nvidia.com/blog/2017/06/06/3d-printing/


[13] B. Nagy. Shortest paths in triangular grids with neighbourhood sequences. Journal of
Computing and Information Technology, CIT 11(2):113, 2003.

[14] B. Nagy. Characterization of digital circles in triangular grid. Pattern Recognition Letters,
25(11):1231 – 1242, 2004.

[15] B. Nagy and K. Barczi. Isoperimetrically Optimal Polygons in the Triangular Grid.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[16] B. Nagy and R. Strand. Approximating euclidean circles by neighbourhood sequences in
a hexagonal grid. Theoretical Computer Science, 412(15):1364 – 1377, 2011.

[17] K. Shimizu. Algorithm for generating a digital circle on a triangular grid. computer
graphics and image processing, 15:401–402, 1981.

[18] R. Strand, B. Nagy, and G. Borgefors. Digital distance functions on three-dimensional
grids. Theoretical Computer Science, 412(15):1350 – 1363, 2011. Theoretical Computer
Science Issues in Image Analysis and Processing.

[19] Y. Sun and Q. Li. The application of 3D printing in mathematics education. In 2017 12th
International Conference on Computer Science and Education (ICCSE), pages 47–50,
Aug 2017.

[20] M. Thiel, Y. Tanguy, N. Lindenmann, F. Niesler, M. Schmitten, and A. Quick. 3D printing
of polymer optics. In 2017 Conference on Lasers and Electro-Optics Europe European
Quantum Electronics Conference (CLEO/Europe-EQEC), pages 1–1, June 2017.

[21] R. K. Vinnakota and D. A. Genov. Self-consistent modeling of laser matter interactions in
laser-based 3D printing of metals and alloys. In 2017 Conference on Lasers and Electro-
Optics (CLEO), pages 1–2, May 2017.

52


	Introduction
	Simplex Grid
	Existing Work
	Our Contribution

	Theoretical Foundation
	Regular Simplex Grid Representation

	Three Coordinate System on Triangular Grid
	Euclidean Distance between Cells
	Relation between 3-Coordinate System and Cell Types
	Representation of Geometric Objects

	Four Coordinate System on Tetrahedral Grid
	Euclidean Distance between Spherical Voxels
	Conversion from Proposed Coordinate System to Cartesian 

	Geometric Objects on Tetrahedral Grid
	Layering the Sphere
	Sphere Printing Algorithm
	Other Geometric Objects

	Conclusion

