
i

Dissertation Report

On

Analysis of Some Computational Intelligence Approaches for

Software Reliability Prediction

Submitted by

Dola Spandana

Enrollment No: 16535010

Under the guidance of

Dr. Sandeep Kumar

Assistant professor

Department of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Roorkee – 247667

May, 2018

ii

ABSTRACT:

Software engineering is partial without Software reliability prediction. “For characterizing any

software product quality quantitatively during phase of testing, the most important factor is

software reliability assessment. Traditional models are mainly based on assumptions and

approximations. But it is needed for developing such a single model which can be applicable for

a relatively better prediction in all conditions and situations. For this the Neural Network (NN)

model approach is introduced. In this thesis report the applicability of the models based on NN

for better reliability prediction in a real environment is described and a method of assessment of

growth of software reliability using NN model is presented. Mainly three types of NNs are used

here. One is feed forward neural network, second is generalized regression neural network and

third is radial basis function network. For modeling FFNN, back propagation learning algorithm

is implemented and the related network architecture issues, data representation methods and

some unreal assumptions associated with software reliability models are discussed. Different

datasets containing software failures are applied to the proposed models. These datasets are

obtained from several software projects. Then it is observed that the results obtained indicate a

significant improvement in performance by using neural network models over conventional

statistical models based on non homogeneous Poisson process.”

iii

AUTHOR’S DECLARATION

I, hereby declare that the work presented in this dissertation Analysis of Some Computational

Intelligence Approaches For Software Reliability Prediction towards the fulfillment of the

requirements for the award of the degree of Master of Technology in Computer Science and

Engineering, submitted to the Department of Computer Science and Engineering, Indian

Institute of Technology Roorkee, India, is an authentic record of my own work carried out

during May 2017 to May 2018, under the guidance of Dr. Sandeep Kumar, Assistant Professor,

Department of Computer Science and Engineering, Indian Institute of Technology Roorkee,

India.

The content presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other institute.

Date:

Place:

 Dola Spandana

 M.Tech, C.S.E.,

 Indian Institute of Technology, Roorkee

CERTIFICATE

This is to certify that the statement made by the author in the above declaration is correct

to the best of my knowledge and belief.

Date:

Place:

 Dr. Sandeep Kumar

 Assistant Professor, C.S.E.,

 Indian Institute of Technology, Roorkee

iv

Acknowledgements

I would first like to thank my supervisor Dr. Sandeep Kumar, Assistant Professor, Department of

Computer Science and Engineering, Indian Institute of Technology Roorkee, for his thoughtful

encouragement and careful supervision during my research work. His enthusiasm for Software

Engineering kept me constantly engaged with my research work and his personal generosity

helped make my time at I.I.T. Roorkee enjoyable.

I sincerely thank my family and friends for directly or indirectly helping me and giving

me moral support that motivated me during the course of the work. I am also thankful to all the

staff members of the Department of Computer Science and Engineering for their support.

v

Table of Contents:

Title Page No.

 Abstract ii

 Acknowledgements iii

 List of Figures vii

 List of Tables ix

1. Introduction 1

1.1 Reliability 1

 1.2 Software Reliability 2

1.3 Commonly Used Techniques 3

1.4 Growth Models 3

1.5 Objective 4

1.6 Organization of Thesis 5

2. Literature Review 6

3. Proposed Work 8

 3.1 Motivation 8

3.2 Proposed Approach 8

 3.2.1 Neural Networks 10

 3.2.2 Back Propagation Learning Algorithm 12

3.2.3 Radial Basis Function Network 13

3.2.4 Generalized Regression Neural Networks 15

4. Experimental Setup 17

4.1 Datasets 17

 4.2 Approach for Feed Forward Neural Network 17

 4.3 Different Performance Measures 19

 4.4 Graphs and Screenshots 20

 4.4.1 Initial Stage 20

 4.4.2 Feed Forward Neural Network with Back Propagation 25

 4.4.3 Generalized Regression Neural Network 31

 4.4.4 Radial Basis Function Network 36

vi

4.5 Results and Discussion 42

5. Conclusion and Future Work 44

6. References 45

vii

List of Figures:

 Title Page no.

3.1: Feed Forward Neural Network Architecture (FFNN)

10

3.2: Flow chart description for Back propagation Algorithm

12

3.3: Radial Basis Function Architecture

13

3.4: Generalized Neural Network

15

4.1: Approach of FFNN with back propagation

19

4.2: Error without Back Propagation Algorithm

22

4.3: Actual and predicted data accuracy during Training and

 validation for Musa DB1

23

4.4: Actual and predicted data accuracy during Training and

 validation for Musa DB2

24

4.5: Interpretation of FFNN for dataset CSR1

25

4.6: Network plot for CSR1

26

4.7: Interpretation of FFNN for dataset1

26

4.8: Interpretation of FFNN for dataset2

27

4.9: Interpretation of FFNN for dataset3

27

4.10: Interpretation of FFNN for dataset4

28

4.11: Interpretation of FFNN for dataset5

28

4.12: Interpretation of FFNN for dataset Main

29

4.13: Interpretation of FFNN for dataset Musa DB1

29

4.14: Interpretation of FFNN for dataset Musa DB2

30

4.15: Interpretation of FFNN for dataset DATA7 30

4.16: Interpretation of GRNN for dataset CSR1

31

viii

4.17: Interpretation of GRNN for dataset1

32

4.18: Interpretation of GRNN for DATA7

32

4.19: Interpretation of GRNN for dataset2

33

4.20: Interpretation of GRNN for dataset3

33

4.21: Interpretation of GRNN for dataset4

34

4.22: Interpretation of GRNN for dataset5

34

4.23: Interpretation of GRNN for dataset Main

35

4.24: Interpretation of GRNN for dataset Musa DB1

35

4.25: Interpretation of GRNN for dataset Musa DB2

36

4.26: Interpretation of RBFN for dataset CSR1

36

4.27: Interpretation of RBFN for dataset1

37

4.28: Interpretation of RBFN for dataset2

37

4.29: Interpretation of RBFN for dataset3

38

4.30: Interpretation of RBFN for dataset4

38

4.31: Interpretation of RBFN for dataset5

39

4.32: Interpretation of RBFN for dataset Main

39

4.33: Interpretation of RBFN for dataset Musa DB1

40

4.34: Interpretation of RBFN for dataset Musa DB2

40

4.35: Interpretation of RBFN for DATA7

41

4.36: Comparison among proposed models

 43

ix

List of Tables

Title

Page no.

Table1: Datasets and their details

17

Table2: Comparison with Analytical models

42

Table3: Comparison of Errors among proposed models with different

datasets

43

1

CHAPTER 1

INTRODUCTION

Many of our daily activities are done with the help of computers and embedded systems.

These systems are administered by its own built in software. Thus we need our software to be

reliable. The more reliable software provides more robust computer systems. Thus we need to

predict the reliability of various software before it is ready to ship. [1]

The productiveness of a system is recognized to convey acceptability of that system for

achievement of many deliberated tasks and productivity of using it. The suitability of executing

intended tasks is firstly resolved by reliability and quality of many systems.

1.1 Reliability

The probability of a unit in a provided time period with the absence of failures is termed

as reliability. Most accurate definition is: “Reliability of a unit or section is the probability that

the unit perform its deliberate function appropriately for a particular period of time under stated

operating conditions or environment.” Through a single section it can signify an element, a

system or a part of that system. Reliability definition majorly focuses on four elements:

1. Probability

2. Definite functions

3. Period, and

4. Manageable conditions

If T defines time until the specified part has occurrence of failure, then probability that

failure will not happen in a specified period before time t is

This shows that reliability is termed as function of time. It mostly relay on environmental

set-ups that vary irrespective of time. Since it is probability, mathematically its numerical

number ranges from 0 to 1, and R(t) is a non increasing function in this range of limits.

2

1.2 Software Reliability

“As defined by IEEE, an error is a human action that results in a fault. Encountering a

fault during system operation can cause a failure. A bug is synonymous with fault, and a defect is

very similar. The words defect and bug are used to mean code that does not satisfy the user

requirements, either because a requirement is incorrectly designed or implemented (the vast

majority) or was not implemented. A failure is what a customer or tester encountered that caused

them to report the defect.” [2]

Reliability approximations of any software are managed in various different points, among

them:

- To predict reliability of entire system

- To assign all the available resources at time of development and maintenance phase

- To analyze all maintenance costs.

The option of reliability-measures is helpful in consideration of whether the important

penalty of the system failures depends on

1. The integral time span of system failures, or

2. The frequency of system failures.

If complete time span of failures is superior, then we can have the suitable measure associated to

the availability of system. Otherwise, if frequency of system failures is crucial, then the suitable

measure will be coupled to the system’s mean up-time or down-time.”

 Consider an example; A system with a defined period of 1000 days in which it may fail

twice and also inactive for five days every time, providing system availability of value 0.99. In

other case the system mostly fail five times in similar time span and may be inactive for two days

every time, which also generates availability score as 0.99. Thus the meantime to the first system

failure can be a significant metric which specify the quantity of time the system can occupy with

maximum capacity before initial total system failure. [3]”

3

1.3 Commonly Used Techniques:

Software and its quality are served as most important factors for evaluating the global

competitive status of any type of software product. To insist the nature, and to evaluate the

performance of these software products, we have lots of software reliability prediction models

proposed a few decades ago. Although we have nearly 200 traditional or standard software

reliability prediction models among these most of them are mainly based on approximation of

probabilities. Mostly these approximations may not supply the targeted accuracy for the

evaluation of defects and also for ready to release time. Thus this can be obtained through

artificial neural networks (ANN) where they give parametric estimation values without any

assumptions. This also supports the parallel distributed approach of a given system. Still a vast

range of research is progressing on the prediction of system reliability in order to magnify the

productivity and quality of software developed.

1.4 Growth Models

Software Reliability and its Measures

 Failure Rate: failure occurrence rate. Also constitute total failures count in definite time

span.

 Mean Time Between Failures (MTBF): Time between failures and their average. The

total number of hours required to process prior to failure occurrence. MTBF is like

inverse of failure rate.

 Reliability: The probabilities that object accomplish an essential function lacking its

failure existence under defined context for a defined duration of time is called reliability.

It considers mission time.

 Availability: The probability that an object in working condition at any provided time is

called availability. Repairs and down time are taken into consideration.

The Software Reliability Growth Models (SRGM) comprise of two types. They are:

 The Parametric models

 The Nonparametric models

4

Parametric models are built on non homogeneous Poisson process. Non parametric model as

neural network and is constructed on statistical failure data. Nonparametric models are more

flexible. Various Reliability Measures:

 Next time to failure

 Time between failures

 Detected Cumulative failures

1.5 Objective

“The prominent purpose of proposed thesis work is to execute distinct connection

oriented models with discrete activation functions. A collection of disparate datasets having

software failures are implemented to the models used. Different datasets are gathered from

various software related projects. The variety of issues related to the method of data

representation, some type of unrealistic premises integrated with the software reliability models,

and architecture of network is examined.”

We have implemented the feed forward neural network (FFNN) architecture initially with

learning method called back propagation for reliability prediction. We can extend FFNN like

optimizing the functions to see the variation with different types of datasets. General regression

neural network and radial basis function are used to enhance and compare the error among the

models. Following are prominent points of our execution.

 The Neural Network without back propagation

 Feed Forward Neural Network required hidden layers along with back propagation

learning method

 Radial basis function Neural Network

 General Regression Neural Network

 Analysis of efficiency of above mentioned proposed models by applying distinct

fulfillment criterion.

5

1.6 Organization of Thesis

 Chapter 1 gives the brief view of all the basic terms of thesis. Remaining chapters are

going to explain the following. Chapter 2 gives the overview of earlier works done on software

reliability prediction techniques and observed gaps. Chapter 3 explains existing methods used

and their approaches. It also describes some theoretical concepts of neural networks, back

propagation algorithm and function optimization methods. Chapter 4 provides implementation

details of project work their experimental results and implementation results. In Chapter 5 we

have conclusions of thesis work with achievable future works.

6

CHAPTER 2

LITERATURE REVIEW

Almost all the papers main intention is to have efficient and accurate reliability prediction

of software at its design phase itself. Early defect prediction is very effective in order to improve

the availability of any software product. This can enhance the estimation cost and time at which

software is ready for shipment. In this work the approach of neural network methods for fine

reliability prediction in majority of the real environments are traversed practically and an

evaluation method of extension for software reliability using artificial neural network (ANN)

mode is introduced. [1]

 Artificial Neural Network (ANN) is a strong approach for Software Reliability

Prediction (SRP).

Werbos [19] explained that back propagation learning algorithm as an alternative for

regression method where it is effective to recognize the origin of prediction in uncertainty

applied at latest gas market model. This paper finally infers that NN models are extremely

effective in forecasting the uncertainty of any data.

Shadmehr et al. [11] model parameters of pharmacokinetics system are approximated

using FFNN multi layered. Noise present in the provided data is also predicted. The result with

this method was compared to be better than Bayesian estimator.

ANN approaches and FFNN with back propagation learning are implemented both

software reliability and quality estimation. [7,12,13]. Authors in this paper developed

connectionist models and processed with a software failure dataset as input which generates

reliability as output. The datasets and their depiction, architecture of model networks are

discussed.

Karunanithi et al. [14] designed FFNN and recurrent networks for the prediction of

software reliability. They considered 14 varied datasets of literature related software and

differentiated among them. Through observations they suggested NN gives efficient predictive

accuracy compared to existing analytical models.

7

Sitte [8] they analyzed two approaches for better reliability prediction. They are: neural

networks and parametric recalibration methods. In terms of software reliability estimation these

models are compared and deduced that NN are easy and superior predictors.

Tian et al. [15] recurrent neural network is used for SRP. The network is trained with

Bayesian regularization approach. They concluded that their proposed model generates very

minimum average relative error compared to most of the proposed prediction procedures.

RajKiran et al. [16] introduced wavelet neural networks for efficient prediction of

software reliability. We can see implementation of two types of wavelets. They are: activation

functions as Morlet wavelet and Gaussian wavelet. They have a comparison analysis among

different methods like MLR, MARS, BPNN, TANN, PSN, and GRNN hence concluded that

proposed model is more effective than these models.

Lo [17] proposed a model for SRP with the help of artificial neural networks (ANN).

This proposed method inspects most of conventional reliability of software projects and their

extension methods without supposing some practical things.

In this paper fuzzy wavelet neural network model (FWNN) is implemented [18]. The

proposed method architecture is fabricated simply with the help of various failure datasets of

software as input.

8

CHAPTER 3

PROPOSED WORK

3.1 Motivation

 In this fast running computerized world, software products play a key role in every aspect

of human life. Thus we can see a tough competition among all software related industries in

order to acquire top position on delivering more reliable software products. Due to this rapid

growth of software technology, producers are very keen to quickly plan, execute, check and

sustain the compound systems in order to satisfy the existing customer’s requests. It became very

challenging job to those software delivering companies to serve a promising quality and flawless

software at perfect tenure. It’s very crucial to verify the effects due to system failures which may

lead to critical situations like financial loss, unpleasant situations and risk to human life and so

on. Hence it became mandatory to check for the reliability of every software product before its

delivery. Based on its reliability we can assume the sustainability of delivered products in real

world.

 Several different researches have been taken place for accurate prediction of reliability.

Many scientists worked through variety of models among which neural network is most

suggested one. They observed that these neural networks give superior performance when

compared to earlier traditional analytical models. These models come under computational

intelligence [21] where they have learning capability through data observation unlike analytical

models which rely on approximations and assumptions. Computational Intelligence (CI) includes

some of famous techniques namely: fuzzy logics, artificial neural networks and genetic

algorithms. Neural networks play a superior role in software reliability prediction.

3.2 Proposed Approach

 We have implemented a basic level feed forward neural network (FFNN) with and

without back propagation learning algorithm. Later we replaced back propagation algorithm with

other techniques. General Regression Neural network (GRNN) is implemented to check the

performance variation and speed of calculation. Radial Basis Function Network (RBFN) is also

introduced for having noise control in the input and enhances the optimization. The following is

description about methods used and implemented:

9

Analysis of Analytical

methods and their

limitations

Standard Average relative error of

traditional models for comparison

Collection of various software failure datasets. In total we

have 35 different software systems and their failure data

gathered from variety of standard papers and resources.

Among these datasets we mainly performed experiments on 10 selected standard

datasets as described in section 4.1(about these datasets). In order to have clear view of

error variation we restricted to a few decent datasets.

After dataset is processed by all the three methods differently we will have the error

value calculation with the trained or outputted data.

Check the plots obtained in R studio against actual and predicted data, which shows the

difference of error among trained and tested data. These values are compared with the

traditional models. Optimized error produced model is highlighted.

Ends with a less error

valued model among all

three approaches

10

3.2.1 Neural Networks

A network in which irregular neurons are interrelated among themselves is named as

neural network. Neural network is a motivation from biological neuron system. The working

of NN is to generate an output sequence when put up with an input sequence. Neural network

basically defined as Artificial Neural Network (ANN) consists of collateral-diffusion

architecture with huge number of neurons and their interconnection. ANN basically built

with three primary components as shown bellow: [7]

- Nodes or neurons

- Network architecture

- Learning algorithm

Figure 3.1: Feed Forward Neural Network (FFNN) Architecture [21]

The output of neural network using above three components is:

Y= f(A) and

Where, P is number of input elements

F () is an activation function

Ʃ is summation function addition of inputs and weights

11

Wj is input weights

Y is neural network output [5]

1) Transfer Function with Hyperbolic Tangent:

 Y differs from -1 to +1.

2) Transfer function with Log Sigmoid:

 Y differs from 0 to +1.

The nature of above mentioned transfer functions is continuous for both hyperbolic and

log sigmoid. For simplicity we have used log sigmoid as transfer function during experiments.

 Neural network resembles the working of human brain. It has in built learning

mechanisms that are designed within it for designing the dependability.

 This neural network consists of elementary processing elements called as neurons.

Numerous nodes (neurons) constitute neural network (ANN). Neurons present in this

network are fastened among each other straightly through transmission links correlated

with few random weights.

 Sequence of selected input is trained in NN. For a pre defined time span, the all possible

outcomes are compared with the predictable sequence of output. This whole procedure is

carried out by supervised learning.

 Until we are provided with the expected and satisfying outcomes by our network the

training procedure will be carry forwarded. The neurons are organized level by level. The

interconnection designs and their structure within neurons and among levels will

assemble the architecture of network.

12

3.2.2 Back Propagation Learning Algorithm

“Steps for Algorithm:

1. Weights are initialized

2. Repetition

3. Every training scheme

4. Train that scheme

5. Every training scheme error is noted and mean square error for all schemes

6. Calculate error level by level backward and reform the connecting weights everytime.

7. End

8. until error is admissibly low.”

Figure 3.2: Flow chart description for Back propagation Algorithm [19]

13

3.2.3 Radial Basis Function Neural Network

In the context of mathematical modeling the radial basis function neural network is

similar to artificial neural network with radial basis function as an activation function. The

output pattern is termed as a definite integration of input radial basis functions and neuron

parameters. The advantages on using radial basis function network are many. Few among them

are function approximation, classification of data, time series related predictions and system

control etc.

Figure 3.3: Radial Basis Function Architecture [24]

Input Vector:

It is an n-dimensional vector which is used for classification. The complete input vector

is provided to every RBF neuron present in network. [9]

14

RBF Neurons

A prototype vector is reserved in each RBF neuron which is sample vectors from the

training set. There will be an analogy among input vector and its prototype which provides an

output value from 0 to 1 that resembles the similarity measure. For example, if input is equal to

the stored prototype, then output value of that RBF neuron will be 1. If distance measure

increases between input and its prototype, the output response decreases exponentially towards 0.

Mathematically we can term the response of RBF neuron’s as bell curve based on some

illustrations. The response of neurons is coined as activation value. The stored prototype vector

is named as neuron’s center, based on its value at the center of bell curve. [24]

Output Nodes

The network output include a set of nodes that are categorized one per each which are

attempting to classify. Every output node calculates the classify score for the related category.

The highest scored category is assigned with input based on which the classification conclusion

is decided.

An activation value from every RBF neurons is collected and their weighted sum is used

to compute the score. Weighted sum signify that a multiplication between weight value of output

node that bounds with each RBF neuron and neuron’s activation. Output weight value is first

used in weighted sum calculation before adding it to total response.

Activation Function

The main motive of this activation function is to compute the similarity measure between

the input sample and its prototype vector that is selected from the training set. The most similar

input vectors will return value near to 1. We are provided with many popular similarity functions

but Gaussian is very well favoured method among all. Here we can see Gaussian equation with

one-dimensional input.

Where x represents input, mu is for mean value, and sigma gives standard deviation.

15

3.2.4 Generalized Regression Neural Networks

“ GRNN is also neural networks that build with function estimation and function

approximation algorithm. We finally have the prediction of output with the provided input data.

This follows the basic principle of NN thus there is a necessity of training data to train itself. The

presence of input-output mapping is mandatory in training data. [9]

Thus the network is now trained with the training dataset and provided with latest testing

dataset; it will appropriately deliver you the expected output or predicts the response for

provided input data. Weights are deliberated by applying Euclidean distance between earlier

training data sample and testing sample. Hence the output is predicted by weighted average of

training dataset and their outputs. If the weight or distance is large then the weight will be very

less and if the distance is small it will put more weight to the output. [21]

Figure 3.4: Generalized Neural Network [23]

16

Generalized neural network design contains four primary layers. They are described as

follows:

Input layer

Input layer provides input sample to the following layer.

Pattern layer

Its main functionality is to calculate Euclidean distance and produces the activation

function needed.

Summation layer

This layer has two main parts namely numerator and denominator. The summation of

generated multiplication of activation function and training output data is handled by numerator

part. The final summation of all activation functions is placed in denominator part. Both the parts

values are provided by summation layer to next output layer. [23]

Output layer

In this layer consists of single neuron. This calculates the required output by dividing

summation layer sub parts.

Where

The terms are: x as input, as training pattern. Output is generated with input . Euclidean

distance
 from the x and . Activation function used is

 . [22]

Through observations the value of
 clarifies the amount of training sample contribution in the

test sample. Based on this
 value we can conclude that bigger the value smaller the

contribution to output and vise versa. This parameter

 shows the amount of weight the

training sample will finally contribute overall.

17

CHAPTER 4

EXPERIMENTAL SETUP

4.1 Datasets

 Project Code Project Name Number of

 Failures

 Development

 Phases

Database1 Control System 136 Testing Operations

Database2 Control System 54 Testing Operations

Database3 Control System 38 Testing Operations

Database4 Control System 53 Testing Operations

Database5 Control System 73 Subsystem Test

Main Cumulative Failures 136 Testing

Musa Dataset1 Control System 136 Testing Operations

Musa Dataset2 Iyer and Lee (1996) 191 System Test

CSR1 Time Between failures data 391 System Test

DATA7 A real-time control

application consisting of

870,000 lines of code

109 Cumulative test

time

Table 1: Datasets and their details

4.2 Feed Forward Neural Network and its process

a. Back propagation learning algorithm is used to this FFNN.

b. The entire basic FFNN architecture used here consists of two steps.

 1) Develop the basic feed forward neural network

18

 2) Apply back propagation learning algorithm to this FFNN

c. From the weighted layer the input vector in generated. FFNN is composed of two layered

plot network.

Y(n) = A(B(x(n))

d. Here we use the back propagation and its learning techniques to revise the weights of the

defined network (A and B). This how training is processed for FFNN. [17]

e. ‘x’ as an input sample is generated with a layer corresponding weight W illustrated in the

below equations. [10]

Where p as input nodes count,

 termed as bias lastly A as activation function.

d. Finally the desired output is mathematically calculated using hidden states and output

related weight v.

Where, m as count of state or hidden nodes in network.

 used as bias function

 B is another activation function. For this function sigmoid function is used for

further calculations. [9]

”

19

Figure 4.1: Approach of FFNN with back propagation

4.3 Various Performance meters

Below mentioned are different performance calculations used for verifying the models used in

this work:

- Relative Error percent (%): R = (|()/ |)* 100

- Average Relative error (%): 1/n

- Root Mean Squared Error (RMSE) =

- Mean Absolute Error (MAR): [

]/n

- Mean Error : [

]/n

Where,

 = expected or predicted value

 = absolute or actual value

N = entire count of observations or patterns [4]

20

Basic overall view of FFNN model and is working, [7]

 Input is provided by datasets in the form of cumulative execution time.

 Output is defined by number of cumulative failures given by datasets

 Later these input and output terms are normalized in the range of 0 to 1.

 Then it is trained and tested which is represented by a plot against cumulative execution

time on abscissas and number of cumulative failures on ordinates.

4.4 Graphs and Screenshots

4.4.1 Initial Stage:

Dataset2 Dataset1

21

The graphs in section 4.4.1 are plots between number of epochs and error rate during

training. For FFNN the mean square error rate gradually decreases with number of epochs.

Dataset4 Dataset3

Musa dataset2 Musa dataset1

22

FFNN Model is tested with different failure datasets. After running with all different types of

datasets we can have the observation of variation of error without back propagation algorithm.

These results are obtained from MATLAB environment. Datasets 1 and 3 have shown best

performances at large epoch values where as datasets 2 and 4 showed best performance at

smaller epoch values 2 and 1 from where we have constant decrease in error. Musa dataset 1 and

2 also have best validation performance at nearest epochs like 8 and 9 before which the error is

having drastic changes.

From the plot figure 6, we have observed the epochs variation along with RMS value.

This is FFNN without back propagation learning algorithm. Though we have a decrease in

epochs with RMS during training we can see more error rate among training and testing data. At

epoch 2 this shows best performance after this point of epoch the error value tend to decrease

continuously.

Figure 4.2: Error without Back Propagation Algorithm

23

Figure 4.3: Actual and predicted data accuracy during Training and validation for Musa DB1

24

Figure 4.4: Actual and predicted data accuracy during Training and validation for Musa DB2

25

From figures 7 and 8 we can observe the regression defined value at various stages like

training, testing and validation phases. We can see the variation of data among target and

expected output. Also we can have the function curve fit for the provided output elements. The

standard datasets like Musa dataset 1 and 2 are observed for proper function fit and error

variation. Musa dataset 2 is having linear plot fitting and less error rate compared to musa dataset

2 function fitting plot which is little non linear.

4.4.1 Feed Forward Neural Network with Back propagation:

Figure 4.5: Interpretation of FFNN for dataset CSR1

Figure 9 shows the prediction results of FFNN with back propagation. It is a plot against

normalized execution time and cumulative no. of failures. This CSR1 dataset shows the error

between actual and predicted data. Red color represents predicted data and blue color represents

actual data. Figure 10 shows the network of model FFNN with neurons and their weights.

26

Figure 4.6: Network plot for CSR1

Figure 4.7: Interpretation of FFNN for dataset1

Dataset1 shows more error rate among actual and predicted data due to more noise in the dataset.

Dataset 2 also shows more error rate with trained and tested data. Among these datasets we

observed more relative error due to prediction of varied noisy actual data.

27

Figure 4.8: Interpretation of FFNN for dataset2

Figure 4.9: Interpretation of FFNN for dataset3

Dataset 3 and 4 shows its performance with FFNN back propagation model. The blue colored

line depicts actual data which is having little more error rate. Error difference is observed based

on the plot of red colored line of predicted data.

28

Figure 4.10: Interpretation of FFNN for dataset4

Figure 4.11: Interpretation of FFNN for dataset5

We can see clear difference among the datasets- dataset 5 and Main. Among these two Main

dataset is giving best performance by giving less error rate. As there is a close overlapped plot

among actual and predicted lines which shows less error rate compared to earlier datasets.

29

Figure 4.12: Interpretation of FFNN for dataset Main

Figure 4.13: Interpretation of FFNN for dataset Musa DB1

Musa DB1 is the standard dataset which has best validation performance which clearly visible

through figure 17. This plot has less difference among actual and predicted data. Same

performance is observed in datasets musa DB2 and DATA7 also.

30

Figure 4.14: Interpretation of FFNN for dataset Musa DB2

Figure 4.15: Interpretation of FFNN for dataset DATA7

The above given plots show the different datasets performance using FFNN with back

propagation learning algorithm. The graphs are plotted against normalized execution time and

normalized cumulative number of failures. The red colored spots represent predicted data and

31

blue colored dots represent actual data. Through the graph we can observe the error among actual

and predicted data.

We used 10 datasets as mentioned in section 4.1. We observed the error variation among all the

datasets with FFNN technique. This result is compared with other methods used and

observations are noted.

4.4.3 Generalized Regression Neural Network:

Figure 4.16: Interpretation of GRNN for dataset CSR1

Here the same 10 datasets mentioned in section 4.1 is again tested for GRNN model to see the

performance variation of all datasets compared to FFNN and error enhancement is observed.

For the dataset CSR1 GRNN is having better prediction data than FFNN. Due to the optimization

function activation we can have the error rate reduction. And the input data is trained in fraction

of time when compared to FFNN.

Datasets CSR1 and dataset 1 both have same error prediction results for the model GRNN with

relatively less error rate than FFNN.

32

Figure 4.17: Interpretation of GRNN for dataset1

Figure 4.18: Interpretation of GRNN for DATA7

Data 7 performance is shown in figure 22. This plot shows the similarity among actual and

predicted data which means very less error rate. Coming to dataset2 in figure 23, the separation

of actual and predicted data is more which leads to more error rate i.e., difference of training and

testing data. Data 7 gives improved performance than dataset2.

33

Figure 4.19: Interpretation of GRNN for dataset2

Figure 4.20: Interpretation of GRNN for dataset3

Dataset3 in figure 24 is similar to dataset2. Both have almost same error rate which is more

compared to DATA7. Dataset 4 from figure 25 is again producing error rate more than DATA 7

performance results. We can have fast formation of training data irrespective of data type.

34

Figure 4.21: Interpretation of GRNN for dataset4

Figure 4.22: Interpretation of GRNN for dataset5

Dataset5 plot in figure 26 has a parallel move of both red and blue colored lines. This clearly

shows the partial error reduction compared to earlier datasets in model GRNN.

35

Figure 4.23: Interpretation of GRNN for dataset Main

Figure 4.24: Interpretation of GRNN for dataset Musa DB1

Main dataset in figure 27, Musa DB1 in figure 28 and Musa DB2 in figure 29 has the best

performance among rest of the datasets. Where, the difference between actual and predicted data

gives very less error rate with best validation prediction results.

36

Figure 4.25: Interpretation of GRNN for dataset Musa DB2

4.4.4 Radial Basis Function Network:

Figure 4.26: Interpretation of RBFN for dataset CSR1

CSR1 is showing better noise controlled prediction results in RBFN. This also displays relatively

less error rate when observed with other two models discussed earlier.

37

Figure 4.27: Interpretation of RBFN for dataset1

Figure 4.28: Interpretation of RBFN for dataset2

In both figures 31 and 32 the datasets performance is mostly similar and produces little more

error rate when compared to FFNN, GRNN.

38

Figure 4.29: Interpretation of RBFN for dataset3

Figure 4.30: Interpretation of RBFN for dataset4

Figures 33 and 34 have prediction results of dataset3, dataset4. Among them dataset3 is having

more error rate than dataset4. RBFN gave best performance results for dataset1 to dataset5,

where these are the more noisy datasets among the rest. FFNN, GRNN gave high error rate for

these datasets. Thus RBFN has optimized activation function for these better results.

39

Figure 4.31: Interpretation of RBFN for dataset5

Figure 4.32: Interpretation of RBFN for dataset Main

Main dataset in figure 36 is having similar performance just like in FFNN and GRNN. Musa

DB1 and DB2 also have nearest error rates among all three models. DATA7 comes in same way

that has comparative prediction results

40

Figure 4.33: Interpretation of RBFN for dataset Musa DB1

Figure 4.34: Interpretation of RBFN for dataset Musa DB2

41

Figure 4.35: Interpretation of RBFN for DATA7

The graphs shown under FFNN are plots between normalized cumulative number of

failures and normalized execution time. This shows the accuracy or closeness of actual data (blue

in color) and predicted data (red in color). With basic 10 datasets we have the performance

calculation. This shows more accuracy than traditional methods. According to error also there is

better performance in FFNN compared to analytical methods.

GRNN with function optimization to FFNN has the plots between normalized cumulative

number of failures and normalized execution time. We can observe the closeness of actual and

predicted data provided in the plots. This model shows optimization and accuracy without back

propagation learning algorithm. This will work more efficient with small datasets.

RBFN non-linear classifier is also tested with variety of datasets to see the accuracy level

among the neural networks. The plots are between normalized input and normalized output. This

model clears the noise in the input data and makes better accuracy among actual and predicted

data. It shows efficient results with small datasets.

42

Out of these results we observe that neural network varies with the type of input dataset

and the relation between input and output. Accordingly we have to design the network

architecture by modifying the activation function and increasing the hidden neurons count.

4.5 Results and Discussion

Analytical Models Average Relative Error

Logarithmic [8] 16.23

Exponential 17.93

Inverse Polynomial 18.45

Power 26.42

Delayed S-shape 25.61

Table 2: Comparison with Analytical models [6]

The above table shows the error value of standard analytical traditional models. These

values are compared with the three methods. The error variation is observed among all the

models. With the use of neural networks we have lots of error reduction when compared to

traditional models. Table 2 shows the comparison among FFNN, GRNN and RBFN models. We

can observe that there is a slight variation in error value and optimization can be achieved.

Among all the models RBFN shows the better error reduction due to its ability to reduce noise in

input data and function optimization nature.

The graph shows the performance variation of three models with 10 different datasets.

From table 3 we can clearly see the average relative error rate among three proposed models.

Based on these values we have a plot which displays the better performance model among all the

three models.

43

Table 3: Comparison of Errors among proposed models with different datasets

Figure 4.36: Comparison among proposed models

0

2

4

6

8

10

12

14

16

18

20

RBFN

GRNN

FFNN

Datasets FFNN Average

Relative Error

GRNN Average

Relative Error

RBFN Average

Relative Error

CSR1 4.7137 3.8103 2.8126

DATA7 0.7668 0.3623 0.5014

Main 0.9131 0.8004 1.2204

Musadataset1 1.4342 0.3326 0.5048

Musadataset2 0.8837 0.2014 0.2394

DB1 7.8229 6.7563 2.3809

DB2 6.9438 6.3405 2.8639

DB3 8.4658 6.9671 2.3516

DB4 6.0469 5.8719 1.9340

DB5 6.2307 4.9549 3.0551

44

CHAPTER 5

CONCLUSION AND FUTURE WORK

We have observed positive results with the execution o feed forward with back

propagation learning algorithm, generalized regression neural network and radial basis function

network. From the results section we can have clarity that NN accomplish superior results in

terms of minimum error value during prediction in contrast to traditional analytical models. Thus

we can finalize that neural networks will be the best option for prediction of software reliability.

Through the plots provided in earlier sections we can easily observe the variation between

existing models and NN methods. In the connectionism networks we have arbitrarily initialized

the weights to communication links. Due to this nature we have varied interpretations and variety

of responses with same dataset; hence network behavior also changes accordingly. This final

concludes that the functionality of NN models is mostly influenced by the essence or complexion

of datasets provided. Larger the datasets better the performance of NN models. All the three

models proposed here are certainly well suited with various regularized datasets.

In the other models without back propagation the input data noise is reduced and

accuracy is established. Among all the FFNN with back propagation is more accurate though

others are fast in execution time. All these methods are a step enhancements in the basic feed

forward neural network for better and efficient accuracy in reliability prediction compared to all

analytical models.

We can also have the combination of various artificial neural networks like fuzzy logic

[20]. With real time critical systems we can have base model Markov chain and Petri net design

to enhance the neural performance accuracy. The further work will be based on the replacement

of neural hidden layers and extension of NN with Petri nets and fuzzy logics.

45

CHAPTER 6

REFERENCES

[1] A.Wood, “Software Reliability Growth Models”, Tandem Computers 10300, Tandem

Technical Report 96.1, Part Number 130056, ©Tandem Computers, 1996.

[2] J. D. Musa, “Software Reliability Data,” Data & Analysis Centre for Software, January

1980.

[3] R. Iyer and I. Lee, “Measurement-based analysis of software reliability,” Handbook of

Software Reliability Engineering, McGraw-Hill, pp. 303 – 358, 1996.

[4] J. D. Musa and K. Okumoto, “A Logarithmic Poisson Execution Time Model for

Software Reliability Measurement,” in ICSE, EEE Press Piscataway. NJ, USA:

Proceedings of the 7th International Conference on software Engineering, pp. 230–238,

1984.

[5] N. Karunanithi et al, “Prediction of Software Reliability Using Neural Networks,” in

Proceedings IEEE International Symposium on Software Reliability Engineering. Austin,

TX: IEEE, pp. 124–130, May 1991.

[6] T. M. Khoshgoftaar et al, “A Neural Network Approach for Predicting Software

Development Faults.” Research Triangle Park, NC: Proceedings of Third International

Symposium on Software Reliability Engineering, pp. 83–89, October 1992.

[7] Y. Singh and P. Kumar, “Prediction of Software Reliability Using Feed Forward Neural

Networks”, in Computational Intelligence and Software Engineering (CiSE), I.

Conference, Ed. IEEE, pp. 1–5, 2010.

[8] R. Sitte, “Comparison of software-reliability-growth predictions: neural networks vs.

parametric-recalibration”, Reliability, IEEE Transactions, vol. 48, no. 3, pp. 285–291,

September 1999.

[9] M. K. Bhuyan et al, “Software Reliability Assessment using Neural Networks of

Computational Intelligence Based on Software Failure Data”, Baltic J. Modern

Computing, Vol. 4 No. 4, pp. 1016–1037, 2016.

[10] S. Ramasamy and I. Lakshmanan, “Application of Artificial Neural Network for

Software Reliability Growth Modeling with Testing Effort”, Indian Journal of Science

and Technology, Vol 9(29), DOI: 10.17485/ijst/2016/v9i29/90093, August 2016.

46

[11] R. Shadmehr and D. Z. DSArgenio, “A Comparison of a Neural Network Based

Estimator and Two Statistical Estimators in a Sparse and Noisy Data Environment”, in

IJCNN, vol. 1, Washington D.C, pp. 289–292, June 1990.

[12] T. M. Khoshgoftaar et al, “A Neural Network Approach For Predicting Software

Development Faults.”, Research Triangle Park, NC: Proceedings of Third International

Symposium on Software Reliability Engineering, pp. 83–89, October 1992.

[13] M. M. T. Thwin and T. S. Quah, Eds., “Application of Neural Network for Predicting

Software Development Faults using Object-Oriented Design Metrics”, vol. 5.

Proceedings of the 9th International Conference on Neural Information Processing

(ICONIP’02), November 2002.

[14] N. Karunanithi and D. Whitley, “Prediction of Software Reliability Using Feed forward

and Recurrent Neural Nets”, in Neural Networks, 1992. IJCNN, vol. 1. Baltimore, MD:

IEEE, pp. 800–805, June 1992.

[15] L. Tian and A. Noore, “Software Reliability Prediction Using Recurrent Neural Network

with Bayesian Regularization”, International Journal of Neural Systems, vol. 14, no. 3,

pp. 165–174, June 2004.

[16] N. RajKiran and V. Ravi, “Software Reliability Prediction using Wavelet Neural

Networks”, in International Conference on Computational Intelligence and Multimedia

Applications, vol. 1. Sivakasi, Tamil Nadu: IEEE, pp. 195 – 199, December 2007.

[17] J. H. Lo, “The Implementation of Artificial Neural Networks Applying to Software

Reliability Modeling”, Control and Decision Conference, 2009. CCDC '09, Chinese, pp.

4349 – 4354, June 2009.

[18] L. Zhao et al, “Software reliability growth model based on fuzzy wavelet neural

network”, in 2nd International Conference on Future Computer and Communication

(ICFCC), vol. 1. Wuhan: IEEE, pp. 664– 668, May 2010.

[19] P. Werbos, “Generalization of Back propagation with Application to Recurrent Gas

Market Model”, Neural Network, vol. 1, pp. 339–356, 1988.

[20] R. G. Al gargoor and N. N. Saleem, “Software Reliability Prediction Using Artificial

Techniques”, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4,

No 2, July 2013.

47

[21] M. K. Bhuyan et al, “A Survey of Computational Intelligence Approaches for Software

Reliability Prediction”, ACM SIGSOFT Software Engineering Notes, Vol. 39, No 2,

March 2014.

[22] D. F. Specht, “A General Regression Neural Network”, IEEE TRANSACTIONS ON

NEURAL NETWORKS. VOL. 2. NO. 6. NOVEMBER 1991.

[23] https://minds.wisconsin.edu/bitstream/handle/1793/7779/ch2.pdf?sequence=14, General

Regression Neural Network

[24] http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/, Radial

basis function network.

https://minds.wisconsin.edu/bitstream/handle/1793/7779/ch2.pdf?sequence=14
http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

