
Investigating the Effect of Software Metrics Aggregation

on Software Fault Prediction

A Dissertation

Submitted for the partial fulfilment of the

requirements for the award of the degree

of

Master of Technology

in

Computer Science and Engineering

Submitted By

Deepanshu Dixit

M.Tech CSE

Enrolment No. 16535009

Department of Computer Science and Engineering,

Indian Institute of Technology, Roorkee,

Roorkee- 247667, India.

May, 2018

i

ABSTRACT

In inter-releases software fault prediction, the data from the previous version of the software

that is used for training the classifier might not always be of same granularity as that of the

testing data. The same scenario may also happen in the cross project software fault prediction.

So, one major issue in it can be the difference in granularity ,i.e., training and testing datasets

may not have the metrics at the same level. Thus, there is a need to bring the metrics at the

same level. In this work, eight different aggregation techniques are explored. In addition to

Median and Summation aggregation techniques that have been used earlier in Software Fault

Prediction, three other aggregation techniques ,i.e., Average Absolute Deviation (AAD), Median

Absolute Deviation (MAD) and Interquartile Range (IQR) that have not been used in Software

Fault Prediction so far are also explored in this work. Three novel aggregation techniques ,i.e.,

Average of Quarter Medians (QM_AVG), Median of Quarter Medians (QM_MED) and Sum of

Quarter Medians (QM_SUM) are also explored in this work.

ii

AUTHOR’S DECLARATION

I, hereby declare that the work presented in this dissertation Investigating the Effect of Software

Metrics Aggregation on Software Fault Prediction towards the fulfilment of the requirements

for the award of the degree of Master of Technology in Computer Science and Engineering,

submitted to the Department of Computer Science and Engineering, Indian Institute of Technol-

ogy Roorkee, India, is an authentic record of my own work carried out during May 2017 to May

2018, under the guidance of Dr. Sandeep Kumar, Assistant Professor, Department of Computer

Science and Engineering, Indian Institute of Technology Roorkee, India.

The content presented in this dissertation has not been submitted by me for the award of any

other degree of this or any other institute.

Date:

Place:

Deepanshu Dixit

M.Tech, C.S.E.,

Indian Institute of Technology, Roorkee

CERTIFICATE

This is to certify that the statement made by the author in the above declaration is correct

to the best of my knowledge and belief.

Date:

Place:

Dr. Sandeep Kumar

Assistant Professor, C.S.E.,

Indian Institute of Technology, Roorkee

iii

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Dr. Sandeep Kumar, Assistant Professor, Depart-

ment of Computer Science and Engineering, Indian Institute of Technology Roorkee, for his

thoughtful encouragement and careful supervision during my research work. His enthusiasm

for Software Engineering kept me constantly engaged with my research work and his personal

generosity helped make my time at I.I.T. Roorkee enjoyable.

I sincerely thank my family and friends for directly or indirectly helping me and giving me

moral support that motivated me during the course of the work. I am also thankful to all the staff

members of the Department of Computer Science and Engineering for their support.

iv

CONTENTS

ABSTRACT ii

1 INTRODUCTION 1

1.1 SOFTWARE FAULT PREDICTION . 1

1.2 NEED FOR SOFTWARE FAULT PREDICTION 2

1.3 SOFTWARE FAULT PREDICTION METHODOLOGY 2

1.4 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION . . . 4

1.5 PREDICTING THE NUMBER OF FAULTS IN SOFTWARE FAULT PRE-

DICTION . 4

1.6 INTER RELEASE SOFTWARE FAULT PREDICTION 5

1.7 INTRA RELEASE SOFTWARE FAULT PREDICTION 5

1.8 CROSS PROJECT SOFTWARE FAULT PREDICTION 6

1.9 SOFTWARE METRICS AGGREGATION 7

1.10 NEED FOR SOFTWARE METRICS AGGREGATION 7

1.11 CONCLUSION . 8

2 LITERATURE SURVEY 9

2.1 AGGREGATION TECHNIQUES IN SOFTWARE FAULT PREDICTION 9

2.2 AGGREGATION TECHNIQUES IN OTHER FIELDS OF SOFTWARE

ENGINEERING . 11

2.3 CONCLUSION . 13

3 METHODOLOGY 14

3.1 APPROACH OF FAULT PREDICTION MECHANISM 14

3.2 AGGREGATION PROCESS USED . 16

v

3.3 WITHOUT AGGREGATION METHOD OF SOFTWARE FAULT PRE-

DICTION . 17

3.4 CONCLUSION . 17

4 EMPIRICAL STUDY OF EXISTING AGGREGATION TECHNIQUES 18

4.1 INTRODUCTION . 18

4.2 RELATED WORKS . 19

4.2.1 Aggregation used in the field of Software Fault Prediction 19

4.2.2 Aggregation used in other fields . 20

4.3 AGGREGATION TECHNIQUES USED 21

4.4 DATASETS USED . 23

4.4.1 Inter-release experiments . 23

4.4.2 Intra-release experiments . 24

4.5 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION . . . 24

4.5.1 Machine Learning Techniques used 24

4.5.2 Performance Evaluation Measures used 24

4.6 NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION 25

4.6.1 Machine Learning Techniques used 26

4.6.2 Performance Evaluation Measures used 26

4.7 EXPERIMENTAL RESULTS AND ANALYSIS 27

4.7.1 Inter-release Binary Classification 27

4.7.2 Intra-release Binary Classification 31

4.7.3 Inter-release experiments for Number of Faults Prediction 33

4.7.4 Intra-release experiments for Number of Faults Prediction 35

4.8 OBSERVATIONS . 37

4.8.1 Inter-release Binary Classification 37

4.8.2 Intra-release Binary Classification 38

4.8.3 Inter-release experiments for Number of Faults Prediction 39

4.8.4 Intra-release experiments for Number of Faults Prediction 39

4.9 CONCLUSION . 40

5 PROPOSED AGGREGATION TECHNIQUES 41

5.1 INTRODUCTION . 41

vi

5.2 RELATED WORKS AND MOTIVATION 42

5.3 PROPOSED AGGREGATION TECHNIQUES 43

5.4 DATASETS USED . 44

5.4.1 Inter-release experiments . 45

5.4.2 Intra-release experiments . 45

5.5 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION . . . 46

5.5.1 Machine Learning Techniques used 46

5.5.2 Performance Evaluation Measures used 46

5.6 NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION 47

5.6.1 Machine Learning Techniques used 47

5.6.2 Performance Evaluation Measures used 47

5.7 EXPERIMENTAL RESULTS AND ANALYSIS 49

5.7.1 Inter-release Binary Classification 49

5.7.2 Intra-release Binary Classification 53

5.7.3 Inter-release experiments for Number of Faults Prediction 55

5.7.4 Intra-release experiments for Number of Faults Prediction 57

5.8 OBSERVATIONS . 59

5.8.1 Inter-release Binary Classification 59

5.8.2 Intra-release Binary Classification 62

5.8.3 Inter-release experiments for Number of Faults Prediction 63

5.8.4 Intra-release experiments for Number of Faults Prediction 64

5.9 CONCLUSION . 66

6 CONCLUSIONS AND FUTURE WORK 67

6.1 CONCLUSIONS . 67

6.2 FUTURE WORK . 68

REFERENCES 69

vii

LIST OF TABLES

4.1 List of the existing Aggregation Techniques used. 22

4.2 Training-Testing datasets used for Inter-release experiments. 23

4.3 Datasets used for Intra-release experiments. 24

4.4 Performance of Decision Tree in terms of Accuracy % and Precision. 28

4.5 Performance of Decision Tree in terms of Recall and F-measure. 28

4.6 Performance of Logistic Regression in terms of Accuracy % and Precision. . . 29

4.7 Performance of Logistic Regression in terms of Recall and F-measure. 29

4.8 Performance of Naive Bayes in terms of Accuracy % and Precision. 30

4.9 Performance of Naive Bayes in terms of Recall and F-measure. 30

4.10 Performance of Random Forest in terms of Accuracy % and Precision. 31

4.11 Performance of Random Forest in terms of Recall and F-measure. 32

4.12 Performance of Support Vector Machine in terms of Accuracy % and Precision. 32

4.13 Performance of Support Vector Machine in terms of Recall and F-measure. . . 33

4.14 Performance of Linear Regression in terms of AAE and ARE. 34

4.15 Performance of Linear Regression in terms of Pred(l) and Measure of Completeness. 34

4.16 Performance of Decision Tree Regression in terms of AAE and ARE. 35

4.17 Performance of Decision Tree Regression in terms of Pred(l) and Measure of

Completeness. 36

4.18 Performance of Multilayer Perceptron in terms of AAE and ARE. 36

4.19 Performance of Multilayer Perceptron in terms of Pred(l) and Measure of Com-

pleteness. 37

5.1 List of the Proposed Aggregation Techniques. 44

5.2 Training-Testing datasets used for Inter-release experiments. 45

5.3 Datasets used for Intra-release experiments. 45

viii

5.4 Performance of Decision Tree in terms of Accuracy % and Precision. 50

5.5 Performance of Decision Tree in terms of Recall and F-measure. 50

5.6 Performance of Logistic Regression in terms of Accuracy % and Precision. . . 51

5.7 Performance of Logistic Regression in terms of Recall and F-measure. 51

5.8 Performance of Naive Bayes in terms of Accuracy % and Precision. 52

5.9 Performance of Naive Bayes in terms of Recall and F-measure. 52

5.10 Performance of Random Forest in terms of Accuracy % and Precision. 53

5.11 Performance of Random Forest in terms of Recall and F-measure. 54

5.12 Performance of Support Vector Machine in terms of Accuracy % and Precision. 54

5.13 Performance of Support Vector Machine in terms of Recall and F-measure. . . 55

5.14 Performance of Linear Regression in terms of AAE and ARE. 56

5.15 Performance of Linear Regression in terms of Pred(l) and Measure of Completeness. 56

5.16 Performance of Decision Tree Regression in terms of AAE and ARE. 57

5.17 Performance of Decision Tree Regression in terms of Pred(l) and Measure of

Completeness. 58

5.18 Performance of Multilayer Perceptron in terms of AAE and ARE. 58

5.19 Performance of Multilayer Perceptron in terms of Pred(l) and Measure of Com-

pleteness. 59

ix

LIST OF FIGURES

1.1 Training Phase in Software Fault Prediction 3

1.2 Testing Phase in Software Fault Prediction . 3

1.3 Inter-Release Software Fault Prediction . 5

1.4 Intra-Release Software Fault Prediction . 6

1.5 Cross Project Software Fault Prediction . 7

3.1 Approach of fault prediction mechanism used in this work. 15

3.2 Details of Aggregation process used in this work. 16

5.1 Comparative analysis using SVM in Binary classification in Inter-Release Exper-

iments . 60

5.2 Comparative analysis using RF in Binary classification in Inter-Release Experiments 61

5.3 Comparative analysis using NB in Binary classification in Intra-Release Experi-

ments . 62

5.4 Comparative analysis using MLP in Inter-Release Experiments in predicting

number of faults . 64

5.5 Comparative analysis using MLP in Intra-Release Experiments in predicting

number of faults . 65

x

CHAPTER 1

INTRODUCTION

Software Fault Prediction is the mechanism to predict whether in a software the modules are

going to be faulty or non faulty, before even applying the testing mechanism. In other words,

Software Fault Prediction is a way to find the fault proneness of the software modules during

the early stages of software development life cycle process. This prediction has a great role to

play in improving the quality of the software as well as reducing the time and efforts needed in

the testing phase of the development life cycle of the software. This chapter describes the basic

terminologies and briefs about the Software Fault Prediction mechanism.

1.1 SOFTWARE FAULT PREDICTION

Now a days software are being used in almost every field and they play an important role in our

lives. The software testing is an important as well as a costly task, both in terms of time and

efforts. Maintaining the quality of the software is now a days of prime importance and so the

testing phase is paid much more attention. As the software testing phase is a costly task, it is

better to have an estimate about the fault proneness of the software modules before applying

the testing efforts. This can heavily reduce the efforts required in testing the software modules.

Software fault prediction mechanism predicts whether the software module is faulty or not before

applying the testing mechanism. More testing efforts are made in a module which is predicted as

faulty as compared to the one predicted as non faulty [1]. In many software systems like banking,

financial systems, medical systems, satellite systems, etc., if any bug is left undetected then

severe damages can be caused. Hence, testing is indeed very important phase in the development

of such software systems [2].

1

1.2 NEED FOR SOFTWARE FAULT PREDICTION

Performing high end testing of all the modules is a costly task hence software fault prediction

techniques help in predicting whether the modules are faulty or not. This saves time as all

modules are not evenly faulty and now it is known which modules are more fault prone hence

more focus can be given only to those modules. Software fault prediction techniques help in

capturing the faulty modules even before the testing phase (during early phases of software

development cycle). Many prediction models, which describe the relationship between different

software metrics and software defects, have been proposed [3], but till now, no such metric can

be used all-alone for correctly predicting the modules. Studies are still going on to find the best

metric which would predict correctly the fault proneness of software modules.

1.3 SOFTWARE FAULT PREDICTION METHODOLOGY

Software Fault Prediction process involves two steps ,i.e., training and testing. A prediction

model is developed using the data and metrics from previous versions of software during training

phase and this model is used to predict the presence of faulty modules in the new versions of the

software during testing phase.

The data from the previous version of the software (inter-release experiments) or from some

other software belonging to the related domain (cross project software fault prediction) is used to

train the prediction model. A suitable classifier is trained using this data. This trained prediction

model is now fed with some new data over which testing mechanism is to be performed. In case

of a binary classification of software fault prediction, the prediction model gives the output in

terms of module being faulty or non faulty. In case of predicting the number of faults in software

fault prediction, the prediction model predicts the number of faults that are likely to be present

in that software module. Depending upon the fault proneness of a software module, the testing

efforts are made to remove the faults in the software modules. Higher the fault proneness, more

the efforts needed and lower the fault proneness, lesser are the efforts required in the testing

phase. Hence, this prediction mechanism helps in determining the amount of efforts required in

testing of a particular software module and reduces the unnecessary testing efforts and resources

in testing the modules that are non faulty or likely to be non faulty.

2

Figure 1.1: Training Phase in Software Fault Prediction

Figure 1.2: Testing Phase in Software Fault Prediction

At present there exists no software metric and no learning model that always performs

accurately for all types of data sets. For varying data sets the efficiency shown by different

learning models using different software metrics varies. The aim is to find software metrics that

could perform well for most of the data sets in general.

3

1.4 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION

In software fault prediction, prediction is to be made about the module under consideration

whether it is going to be faulty module or non faulty module, even when testing mechanism is not

applied. The prediction outcome of this mechanism gives information about the fault proneness

of the software module. Binary classification in software fault prediction means that either the

module under consideration will be labeled as faulty or non faulty. There are only two outcomes

possible for this type of prediction.

In binary classification of software fault prediction, if the faults are more than a particular

threshold value then that module is labeled as faulty and if the faults are less than the particular

threshold then that module is labeled as non faulty. Choosing the correct threshold is of prime

importance in such prediction mechanism. If the threshold value is too high, most of the modules

will be forced to be labeled as non faulty module, while if the value of the threshold is too low the

most of the modules will be forced to be labeled as faulty modules. Hence, a balanced threshold

values is required for a particular module under consideration to be labeled either as faulty or

non faulty module.

1.5 PREDICTING THE NUMBER OF FAULTS IN SOFTWARE FAULT

PREDICTION

In software fault prediction mechanism, the fault proneness of the module is predicted using

some classifier. This fault proneness can be in terms of binary classification or in terms of the

number of faults present in the module. Finding the number of faults in a module gives more

accurate information about the fault proneness of the given module. It is better than just having

the information whether a module is faulty or non faulty. Binary classification of fault proneness

does not give the exact information about how less or more the module is fault prone. Thus,

finding the number of faults in a software module rather than just finding it being faulty or non

faulty is more helpful in reducing the testing efforts. On the other hand, finding number of faults

is more complex and difficult as compared to finding whether a module is faulty or not.

4

1.6 INTER RELEASE SOFTWARE FAULT PREDICTION

In inter release software fault prediction, the previous version of software is used for the training

of the prediction model. This trained model is then used for testing the later version of the same

software. Thus the same software, but different releases of it are used for applying the software

fault prediction mechanism. It is expected that the later release of a software will continue to

have the characteristics of the previous version of the same software. Thus, the previous version

of the software serves as a good training data and will train the classifier well. The prediction

model then makes prediction on the later releases of that software.

Figure 1.3: Inter-Release Software Fault Prediction

1.7 INTRA RELEASE SOFTWARE FAULT PREDICTION

In intra-release software fault prediction, the same dataset is used for training as well as for the

testing purpose. K-fold cross validation experiment is performed in intra-release software fault

prediction.The dataset is divided into K partitions. These partitions are known as the folds and

the partition of the dataset is done in such a manner that the size of each fold is the same. (K-1)

folds are used to train the classifier while the remaining 1 fold is used for the testing purpose. In

order to avoid any biasing, the experiment is repeated K times. Each time a new fold is chosen as

5

the testing set and rest (K-1) folds are used to train the classifier. The final predicted value is

obtained by taking the average of all the values obtained in performing the experiments K times.

Figure 1.4: Intra-Release Software Fault Prediction

1.8 CROSS PROJECT SOFTWARE FAULT PREDICTION

Many times the data of the previous version of the software is not available, either due to

unavailability of the data of the previous version of the software or the previous version of the

software does not exist. In such cases a different software of same domain is chosen to train the

classifier. Thus, the training and the testing datasets belong to different softwares. The software

fault prediction mechanism conducted on different training-testing datasets is known as the cross

project software fault prediction.

6

Figure 1.5: Cross Project Software Fault Prediction

1.9 SOFTWARE METRICS AGGREGATION

In cases of inter-releases software fault prediction, the data from the previous version of the

software that is used for training the classifier might not always be of same granularity as that of

the testing data, which can be a major issue. The same scenario may also happen in the cross

project fault prediction. Thus, there is a need to bring the metrics at the same level. In this work,

the software metrics available at the class and file level are aggregated to package level by using

eight different aggregation techniques i.e AAD, MAD, IQR, MED, SUM, QM_AVG, QM_MED

and QM_SUM .

1.10 NEED FOR SOFTWARE METRICS AGGREGATION

Following are some of the reasons why there can arise a need to aggregate the software metrics

form one level to some other higher level for software fault prediction mechanism:

a) In inter-releases software fault prediction, the granularity level at which the metrics of the

training dataset is available might not be same as that of the metrics of the testing dataset. Hence

before applying fault prediction mechanism, it is required to bring the metrics of training and

testing datasets at same level of granularity. Metrics aggregation can be helpful in such scenario.

7

b) The same scenario may happen in case of Cross project software fault prediction where the

training and testing datasets are from different projects. Hence they might not have the metrics

available at the same level of granularity. Before applying the fault prediction mechanism, the

metrics of the training and testing datasets will have to be brought at the same level. Metrics

aggregation will be helpful in doing so.

c) Generally the modules in a software program are small in size. The statistical measures

like Lines of Code etc. which depend upon the size of a module show little variations. As the

number of small modules is comparatively larger than the number of large modules, the classifiers

become biased and they are not able to significantly distinguish between small defective and

non defective modules. Thus the classifiers mistakenly predict small defective modules also as

non defective modules because the number of non defective modules is more than the number of

small defective modules. Software metric aggregation techniques help in aggregation the metrics

of smaller modules to a large module [4].

d) There are certain metrics that can be calculated at a particular aggregated level only e.g.

class cohesion and inheritance are meaningful only at the class level and not below it. If the

customer reviews are needed then the complete aggregated software is needed for the customer to

present the reviews and it cannot be done at any lower level. Thus metrics aggregation is needed

in such cases to bring the metrics form a lower level to some higher level where it is meaningful

for certain phenomena [5].

1.11 CONCLUSION

Software fault prediction is a mechanism to predict whether a module is going to be faulty or

non faulty. The performance of the prediction model depends upon many factors such as the

datasets used, classifiers used, performance evaluation measures used etc. At present there exists

no software metric and no learning model that always performs accurately for all types of data

sets. For varying data sets the efficiency shown by different learning models using different

software metrics varies. The aim is to find software metrics that could perform well for most of

the data sets in general. This prediction can be done in binary form or in the form of predicting

the number of faults, either as inter-release or intra-release experiments.

8

CHAPTER 2

LITERATURE SURVEY

Several works have been done till now in predicting whether the software module is faulty or

non faulty, using different classifiers on different datasets. The performances vary on using

different classifiers on different datasets. Till now, there is no particular prediction model that

uses a specific classifier on a specific set of metrics that performs well on every dataset in general.

The aim is to build some prediction model that could be used as an universal model for every

kind of dataset. A lot of work and empirical analysis has been done in the field of software fault

prediction also , in analysing different metrics and classifiers on different datasets.

2.1 AGGREGATION TECHNIQUES IN SOFTWARE FAULT PREDIC-

TION

Following are some of the works in which different aggregation techniques have been used in the

field of software engineering to predict fault proneness of the modules.

Zhang et al. [6] addressed the problem of difference in granularity ,i.e., the difference in

the levels at which software metrics are collected. They aggregated the data metrics from

method level to file level. They analyzed eleven aggregation techniques on 255 open source

projects. Experiments were conducted using ten-fold cross validation technique. In ten fold

cross validation process, the entire dataset under consideration was partitioned into ten equal

parts known as the folds. Nine out of the ten folds were used to train the classifier while the

tenth fold was used for the testing purpose. This process was repeated several times and the

final resultant value was obtained by taking average of all the experimental values. Four defect

prediction models were dealt with: defect proneness model, in which random forest was used

9

and all schemes gave best results; defect rank model, in which logistic regression was used and

all schemes gave best results; defect count model, in which logistic regression was used and

summation scheme for aggregation was found to be the best and effort aware model, in which

again logistic regression was used and median technique of metric aggregation was found to give

the best results among all used aggregation schemes.

Zimmermann et al. [7] worked on three releases of publicly available eclipse datasets and

mapped the packages and classes to the number of bugs that were reported before and after the

release. Post release bugs are the actual ones that matter for the users of the software program.

They used version archives and bug tracking systems to find the failed modules in the system.

The keywords like bug, fixed etc. were captured in the version archives to locate the bugs. They

computed the metrics at method, class and file level and aggregated them to higher levels ,i.e., file

and package level. The aggregation techniques used were average, total and maximum values of

the metrics. Logistic regression was used as the machine learning technique. Binary classification

of software fault prediction was dealt with. A module was considered faulty even if it contained

a single bug and was considered non faulty if it contained no bug.

Herzig [8] used test execution metrics and studied their effectiveness in building the models

for predicting pre-release defects and post-release defects. He conducted experiments and

found that the test execution metrics give promising results in terms of precision and recall

performance evaluation measures in predicting the pre-release and post-release defects in a

software. Summation, median, mean and maximum value were used as the metric aggregation

techniques in software fault prediction mechanism in this work.

Posnett et al. [5] used summation aggregation technique to aggregate the metrics from the

file level to package level. AUC ROC (Area Under Curve Receiver Operating Characteristic) and

AUC CE (Area Under Curve Cost Effectiveness) were used in this work as performance evaluation

measures. The aggregation was performed for fault prediction process. In this work, the effect of

changes in a particular phenomenon was studied at aggregated as well as at disaggregated level.

There are certain process and phenomenon that are valid only at some particular level. Similarly,

there are certain metrics that can be calculated at a particular aggregated level only e.g. class

cohesion and inheritance are meaningful only at the class level and not below it. If the customer

reviews are needed then the complete aggregated software is needed for the customer to present

the reviews and it cannot be done at any lower level. According to this work, metrics aggregation

is needed in such cases to bring the metrics form a lower level to some higher level where it is

10

meaningful for certain phenomena.

Koru and Liu [4] used minimum, maximum, summation and average for the aggregation of

metrics in software fault prediction in their work. Aggregation was done from method to class

level. F-measure was used as the performance evaluation measure. Generally, the modules in

a software program are small in size. The statistical measures like Lines of Code etc. which

depend upon the size of a module show little variations. As the number of small modules is

comparatively larger than the number of large modules, the classifiers become biased and they

are not able to significantly distinguish between small defective and non defective modules. Thus

the classifiers mistakenly predict small defective modules also as non defective modules because

the number of non defective modules is more than the number of small defective modules. In this

work, software metric aggregation techniques are considered helpful in aggregating the metrics

of smaller modules to a larger module.

2.2 AGGREGATION TECHNIQUES IN OTHER FIELDS OF SOFT-

WARE ENGINEERING

According to Vasilescu et al. [9], the software metrics are generally collected at the micro

level such as method, class and package level but in order to have a view from the macro level

,i.e., system level, these metrics have to be aggregated. There are mainly two categories of

the aggregation techniques: traditional and econometrics aggregation techniques. Traditional

techniques of aggregation consist of mean, median and summation techniques. Econometrics

techniques of aggregation consist of Gini, Theil, Kolm, Atkinson and Hoover inequality indices.

In their work, the traditional and econometrics aggregation techniques were studied to analyze

the correlations amongst them. SLOC metric was aggregated from class to package level. They

concluded that Gini, Theil, Atkinson and Hoover aggregation techniques show high correlation

amongst them, correlation between mean and Kolm aggregation technique was very high, and

median showed high correlation with the mean technique.

Serebrenik and van den Brand [10] were the first to apply a famous econometric measure

of inequality, Theil index, in the field of software metric aggregation. There are several other

techniques for aggregation of metrics from lower to higher level but have some or the other

shortcomings in them. Mean technique of aggregation smoothens the values and does not give

an insight of the large variations in the values. Gini coefficient has a shortcoming that it is not

11

decomposable while on the other hand Theil index is decomposable.

According to Manet et al. [11], the software metrics are calculated individually for every

software module and they do not give enough information from higher level perspective. Hence

the software metrics need to be aggregated from lower to higher level to give enough information

at the system level. Metrics such as SLOC, cyclomatic complexity, inheritance depth etc. was

used for aggregation. Simple and weighted average technique of aggregation have shortcomings

as they dilute the bad values and do not provide enough information about the extreme or the bad

values present in the set. In this paper, Manet et al. gave an empirical model for continuous and

weighted metric aggregation termed as Squale quality model which ensures that the computed

metrics at higher level are grounded by concrete repeatable measures to give fairly good enough

overview of the system quality.

Walter et al. [12] used mean, standard deviation, Gini index, Theil index, Atkinson index,

Kolm index, Hoover index and mean logarithmic deviation in software quality model. The data

was first normalised to a range of 0-1 before applying the aggregation process. It was analysed

that mean value is not sufficient to represent all the metric values as an aggregated value. Mean

of a set of value normalises the variations in the values present in that set.

Ivan et al. [13] used summation and product for metric aggregation in software quality model.

Weights were used to develop an aggregate indicator to study the effect on quality of software

modules. The importance of these weights and changes in the performances on using different

techniques were also studied in this work.

Sanz-Rodriguez et al. [14] used weighted mean, the Choquet integral and multiple linear

regression for the aggregation of metrics to analyze the effect of aggregation in selecting the

reusable educational materials from repositories on the web. The different aggregation techniques

were analysed to study the changes in the significance in determining the reusability.

Vasa et al. [15] applied Gini index as the aggregation technique to study the effect on the

information the metrics give about the software system. In this work, Gini index was applied on

several projects that were object oriented in nature, developed using Java and C# programming

languages. Gini index is widely used statistic in the field of economics to analyse the wealth

distribution.

12

2.3 CONCLUSION

Most of these available works present sum, mean, median, maximum, standard deviation, Gini

index, Theil index, Atkinson index and Hoover index as the aggregation methods and only a few

of them have used aggregation in software fault prediction. The effects of Sum and Median and

three other aggregation techniques AAD, MAD and IQR are studied in our work. To the best

of our knowledge, AAD ,MAD and IQR aggregation methods have not been explored so far

for software fault prediction, but have been used in other fields [16], [17], [18], [19], [20], [21].

Three novel techniques ,i.e.,QM_AVG, QM_MED and QM_SUM that have not been used so far

in any of the fields, are also explored in our work. These three novel techniques try to overcome

the limitations of summation, median and average methods of aggregation.

13

CHAPTER 3

METHODOLOGY

In software metrics, there are various granularities such as method level, class level, file level,

package level, etc. [7] [22]. In this work, the metrics in the dataset are aggregated from the class

(or file level) to package level. Class to package level aggregation is done for all sixteen datasets

of PROMISE data repository, one apache dataset ,i.e., lucene and four other publicly available

eclipse projects ,i.e., eclipse JDT CORE, eclipse PDE UI, equinox framework and mylyn. File to

package level aggregation is done for the three releases of eclipse dataset ,i.e., eclipse 2.0, eclipse

2.1 and eclipse 3.0.

3.1 APPROACH OF FAULT PREDICTION MECHANISM

Figure 3.1 shows the work flow of activities in the approach proposed in this paper. Following

steps are followed in the proposed approach:

Step1: For all the classes (or files) that belong to the same package, the metric values are

aggregated using an aggregation technique. Class to package level aggregation is done for all

sixteen datasets of PROMISE data repository, one apache dataset ,i.e., lucene and four other

publicly available eclipse projects ,i.e., eclipse JDT CORE, eclipse PDE UI, equinox framework

and mylyn. File to package level aggregation is done for the three releases of eclipse dataset ,i.e.,

eclipse 2.0, eclipse 2.1 and eclipse 3.0.

Step2: Generally, in every software system, the number of faulty modules is lesser than the

number of non faulty modules. This creates an imbalance in the dataset, having more number of

instances with non faulty label as compared to instances with faulty label. The classifier training

becomes biased when the training dataset is facing the problem of class imbalance, leading to

14

Figure 3.1: Approach of fault prediction mechanism used in this work.

inaccurate fault prediction. Inorder to remove class imbalance problem, SMOTE (Synthetic

Minority Over-sampling Technique [23]) is used in this work. Synthetic instances are created

using this technique to have almost equal number of non faulty and faulty modules in the dataset.

Step3: Earlier version of the dataset is used for training and the later version is used for

testing in inter-release experiments. K-fold Cross validation is done in case of intra-release

experiments. Sixteen releases of eight datasets form publicly available PROMISE data repository

and three releases of publicly available Eclipse dataset is used in our work for inter-release

experimentation. Three releases of Eclipse and five other publicly available datasets are used for

intra-release experimentation.

Step4: Perform fault prediction mechanism using the training and testing datasets, generated

in previous step. In case of binary classification of software fault prediction, five different

classifiers are used: Decision Tree, Logistic Regression, Naive Bayes, Random Forest and

Support Vector Machine. For predicting the number of faults, three different classifiers are used:

Linear Regression,Decision Tree Regression and Multilayer Perceptron.

All the implementation is performed using R programming language version 3.4.0. It is a

15

widely used programming language for data analysis and software fault predictions.

3.2 AGGREGATION PROCESS USED

The fundamentals of this work lies in "what to aggregate" and "how to aggregate". Here, for

each of the metric value, aggregation is done from class (or file) level to package level. All the

metric values of the classes (or files) belonging to the same package are aggregated using one of

the aggregation technique and brought to the package level. Figure 3.2 shows the aggregation

process used in this work in detail, considering datasets of PROMISE data repository as an

example for inter-release experiment.

Figure 3.2: Details of Aggregation process used in this work.

16

For the PROMISE data repository, the aggregation is done from the class level to the package

level. 20 metrics are used in the aggregation process. The classes which belong to the same

package are aggregated together. For every distinct package in a dataset,for all the 20 metrics, the

metrics values of all the classes are aggregated together. For all the 20 metrics, the aggregation

technique is applied individually. For every distinct package there will be 20 aggregated values

and if there are "S"(let) distinct packages in a certain dataset then there will be S*20 values. Let

this be the training dataset, thus S*20 values will be used for training the learning model. Similar

work is done for the testing dataset also. For every distinct package in a dataset,for all the 20

metrics, the metrics values of all the classes are aggregated together. For all the 20 metrics, the

aggregation technique is applied individually. Let there be "T" distinct packages in the testing

dataset, then there will be a total of T*20 vales for testing.

3.3 WITHOUT AGGREGATION METHOD OF SOFTWARE FAULT

PREDICTION

In this work, eight different aggregation techniques are analysed to study their effects on the

performance of software fault prediction. The metric values are aggregated from class (or file)

level to package level and then the training and testing of the classifier is done. The performances

of these aggregation techniques in fault prediction mechanism are also compared with the

performance of the fault prediction mechanism when no aggregation technique is used. In

"without aggregation method", the metric values are not aggregated. The original metric values

of the dataset is used for training and testing the classifier.

3.4 CONCLUSION

The aggregation process is performed to bring together all the classes (or files) that belong to

the same package. In this work eight different aggregation techniques ,i.e. AAD, IQR, MAD,

MED, SUM, QM_AVG, QM_MED and QM_SUM are used to aggregate the classes (or files)

which belong to the same package, turn by turn for analysing their effect on fault prediction

mechanism. Inter-release and intra-release experiments are performed in binary classification

software fault prediction and also in predicting the number of faults in software fault prediction.

The performance of the aggregation techniques are compared with the performance of "without

aggregation method" also.

17

CHAPTER 4

EMPIRICAL STUDY OF EXISTING

AGGREGATION TECHNIQUES

Aggregation means to combine several values together into a single value. Aggregation of

metric values means to combine several metric values together based on some criteria, and

bring them from some lower level of granularity to some higher level of granularity. In this

chapter, an empirical study of the five used existing aggregation techniques is done and their

performances are compared with "without aggregation method" of software fault prediction.

The five existing aggregation techniques used in this work are Average Absolute Deviation

(AAD), Median Absolute Deviation (MAD), Interquartile Range (IQR), Median (MED) and

Summation (SUM). The performances of these five techniques are also compared with each

other. Inter-release and intra-release experiments are performed using binary classification and

predicting number of faults in software fault prediction.

4.1 INTRODUCTION

Software Fault Prediction is the mechanism to predict whether in a software the modules are

going to be faulty or non faulty, before even applying the testing mechanism. In cases of inter-

releases software fault prediction, the data from the previous version of the software that is

used for training the classifier might not always be of same granularity as that of the testing

data, which can be a major issue. The same scenario may also happen in the cross project fault

prediction. Thus, there is a need to bring the metrics at the same level before applying the

prediction mechanism. Aggregation of metrics is helpful in such scenarios where the metric

18

values are to be combined together to bring them from some lower level to some higher level of

granularity. In this work, the software metrics available at the class and file level are aggregated

to package level by using different aggregation techniques.

4.2 RELATED WORKS

The cases where the training and testing datasets are not having the metrics at the same level of

granularity, aggregation of metrics is needed to bring them to the same level of granularity. Till

now, several works have been done in the filed of software fault prediction but there has not been

much work in using the aggregation techniques in the field of software fault prediction.

4.2.1 Aggregation used in the field of Software Fault Prediction

Following are the some of the works done in software fault prediction related to aggregation

techniques.

Zhang et al. [6] addressed the problem of difference in granularity ,i.e., the difference in

the levels at which software metrics are collected. They aggregated the data metrics from

method level to file level. They analyzed eleven aggregation techniques on 255 open source

projects. Experiments were conducted using ten-fold cross validation technique. Four defect

prediction models were dealt with: defect proneness model, in which random forest was used

and all schemes gave best results; defect rank model, in which logistic regression was used and

all schemes gave best results; defect count model, in which logistic regression was used and

summation scheme for aggregation was found to be the best and effort aware model, in which

again logistic regression was used and median technique of metric aggregation was found to give

the best results among all used aggregation schemes.

Zimmermann et al. [7] worked on three releases of publicly available eclipse datasets and

mapped the packages and classes to the number of bugs that were reported before and after the

release. Post release bugs are the actual ones that matter for the users of the software program.

They used version archives and bug tracking systems to find the failed modules in the system.

The keywords like bug, fixed etc. were captured in the version archives to locate the bugs. They

computed the metrics at method, class and file level and aggregated them to higher levels ,i.e.,

file and package level. The aggregation techniques used were average, total and maximum values

of the metrics. Logistic regression was used as the machine learning technique. A module was

19

considered faulty even if it contained a single bug.

Herzig [8] used summation, median, mean and maximum value as the metric aggregation

techniques in software fault prediction mechanism in his work. Posnett et al. [5] used summation

while Koru and Liu [4] used minimum, maximum, summation and average for the aggregation of

metrics in software fault prediction in their works.

4.2.2 Aggregation used in other fields

Aggregation of metrics have also been used in other fields of software engineering other than

software fault prediction such as aggregation of metrics in software quality models.

According to Vasilescu et al. [9], the software metrics are generally collected at the micro

level such as method, class and package level but in order to have a view from the macro level

,i.e., system level, these metrics have to be aggregated. There are mainly two categories of

the aggregation techniques: traditional and econometrics aggregation techniques. Traditional

techniques of aggregation consist of mean, median and summation techniques. Econometrics

techniques of aggregation consist of Gini, Theil, Kolm, Atkinson and Hoover inequality indices.

In their work, the traditional and econometrics aggregation techniques were studied to analyze

the correlations amongst them. SLOC metric was aggregated from class to package level. They

concluded that Gini, Theil, Atkinson and Hoover aggregation techniques show high correlation

amongst them, correlation between mean and Kolm aggregation technique was very high, and

median showed high correlation with the mean technique.

Serebrenik and van den Brand [10] were the first to apply a famous econometric measure

of inequality, Theil index, in the field of software metric aggregation. There are several other

techniques for aggregation of metrics from lower to higher level but have some or the other

shortcomings in them. Mean technique of aggregation smoothens the values and does not give

an insight of the large variations in the values. Gini coefficient has a shortcoming that it is not

decomposable while on the other hand Theil index is decomposable.

According to Manet et al. [11], the software metrics are calculated individually for every

software module and they do not give enough information from higher level perspective. Hence

the software metrics need to be aggregated from lower to higher level to give enough information

at the system level. Metrics such as SLOC, cyclomatic complexity, inheritance depth etc. was

used for aggregation. Simple and weighted average technique of aggregation have shortcomings

as they dilute the bad values and do not provide enough information about the extreme or the bad

20

values present in the set. In this paper, Manet et al. gave an empirical model for continuous and

weighted metric aggregation termed as Squale quality model which ensures that the computed

metrics at higher level are grounded by concrete repeatable measures to give fairly good enough

overview of the system quality.

Walter et al., [12] used mean, standard deviation, Gini index, Theil index, Atkinson index,

Kolm index, Hoover index and mean logarithmic deviation while Ivan et al. [13] used summation

and product for metric aggregation in software quality model. Sanz-Rodriguez et al. [14] used

weighted mean, the Choquet integral and multiple linear regression for the aggregation of

metrics to analyze the effect of aggregation in selecting the reusable educational materials from

repositories on the web. Vasa et al. [15] applied Gini index as the aggregation technique to study

the effect on the information the metrics give about the software system.

Most of these available works present sum, mean, median, maximum, standard deviation,

Gini index, Theil index, Atkinson index and Hoover index as the aggregation methods and only

a few of them have used aggregation in software fault prediction. However, to the best of our

knowledge, AAD ,MAD and IQR aggregation methods have not been explored so far for software

fault prediction, but have been used in other fields [16], [17], [18], [19], [20], [21].

4.3 AGGREGATION TECHNIQUES USED

In the inter-releases prediction and cross project fault prediction, the granularity of training and

testing dataset metrics might not always be the same and when they are needed to be brought at

the same level, then aggregation of the metrics can be used. In a particular package there exist

several classes (or files). The metric values of all those classes (or files) which belong to the

same package are combined together by using aggregation technique to give one value per metric

for every package. It needs to be done for all the classes (or files) and packages. In this work, the

existing aggregation techniques ,as listed in Table 4.1, are used for analyzing their effect on the

software fault prediction performance:

a) Summation: It is one of the simplest way of finding the cumulative value of a given set

of values. A module obtained after summation aggregation will contain larger metric value as

compared to the smaller modules which are aggregated which is in accordance with the fact that

as the size of the module increases the chances of it being faulty also increases. Summation has

been used in many of the works related to software fault prediction e.g. [6], [7], [8], [5], [4].

21

SUM =
n

∑
i=1

xi (4.1)

Where "n" is the number of values to be summed up.

S.No. Aggregation Technique Formula
1 Summation ∑

n
i=1 Xi

2 Median X(n+1)/2; n is odd
1
2(X(n)/2 +X(n+2)/2); otherwise

3 Average Absolute Deviation 1
n ∑

n
i=1 |Xi−mean(X)|

4 Median Absolute Deviation median(|Xi−median(X)|)
5 Interquartile Range Q3−Q1

Table 4.1: List of the existing Aggregation Techniques used.
n: number of classes, Xi:value of ith module metric Q3:third quartile,Q1:first quartile.

b) Median: It is one of the mostly used measures of central tendency which gives an

accumulative effect of the values present in a distribution. Median is calculated by finding the

middle value in the sorted list of the given set of values which separates the first half from the

second half of the given values. Median has been used in other works also (e.g. [6], [9]]). It is

one of the traditional and easiest techniques to use.

MEDIAN =

x(n+1)/2, if "n" is odd

1
2(xn/2 + x(n+2)/2), otherwise

(4.2)

Where "n" is the number of values whose median is to be calculated.

c) Average Absolute Deviation: AAD depicts the average value of the absolute deviations

of a given set of values {x1,x2,xn} from a central point. The central point is the average of the

given set of values [16].

AAD =
1
n

n

∑
i=1
|xi−A(X)| (4.3)

Where A(X) is the average of the set of values {x1,x2,xn}.

d) Median Average Deviation: MAD depicts the median value of the absolute deviations of

a given set of values {x1,x2,xn} from a central point. The central point is the median of the

22

given set of values [17], [18], [19].

MAD = Median(|xi−Median(X)|) (4.4)

Where Median(X) is the median of the set of values {x1,x2,xn}.

e) Interquartile Range: IQR is a measure of statistical dispersion, which is the difference

between the third and the first quartile, for a given set of values [19], [20], [21].

IQR = Q3−Q1 (4.5)

Where Q3 is the third quartile and Q1 is the first quartile.

4.4 DATASETS USED

Sixteen releases of datasets from the PROMISE data repository, three releases of publicly

available eclipse dataset, one apache dataset and four other publicly available eclipse datasets

have been used for experimentation [7], [24].

4.4.1 Inter-release experiments

The earlier release of a dataset is used for training purpose to predict the fault proneness for the

later release that is used as testing dataset. There are eight pairs of training-testing datasets in our

experiments. Table 4.2 provides the details of the used datasets.

S.No. Training Dataset Testing Dataset
1 ant 1.6 ant 1.7
2 camel 1.4 camel 1.6
3 ivy 1.4 ivy 2.0
4 poi 2.5 poi 3.0
5 synapse 1.1 synapse 1.2
6 velocity 1.5 velocity 1.6
7 xalan 2.5 xalan 2.6
8 xerces 1.3 xerces 1.4
9 eclipse 2.0 eclipse 2.1

10 eclipse 2.0 eclipse 3.0
11 eclipse 2.1 eclipse 3.0

Table 4.2: Training-Testing datasets used for Inter-release experiments.

23

4.4.2 Intra-release experiments

Table 4.3 shows the list of datasets used for performing the intra-release experiment. 10 fold

cross validation techniques is used . The datasets is partitioned into 10 equal parts called folds,

each fold having almost equal number of faulty and non faulty instances. Thus each fold is free

from class imbalance problem. 9 out of 10 folds are used to train the classifier and testing is done

on the 10th fold. This is repeated for ten times, making every fold as the testing data once.

S.No. Dataset
1 eclipse JDT CORE
2 eclipse PDE UI
3 equinox framework
4 lucene
5 mylyn
6 eclipse 2.0
7 eclipse 2.1
8 eclipse 3.0

Table 4.3: Datasets used for Intra-release experiments.

4.5 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION

Binary classification in software fault prediction means that either the module under consideration

will be labeled as faulty or non faulty. There are only two labels possible for prediction. In binary

classification of fault prediction, if in a package even a single faulty class (or file) is present then

that package is declared to be faulty otherwise non faulty [6], [7], [25].

4.5.1 Machine Learning Techniques used

Five machine learning techniques used are naive bayes (Yang et al., 2017), (Turhan et al., 2013),

logistic regression (Arar and Ayan, 2016), (Zhao et al., 2017), support vector machine (Erturk and

Sezer, 2015), decision tree (Ghotra et al., 2015) and random forest (Kamei and Shihab, 2016).

4.5.2 Performance Evaluation Measures used

In binary classification of fault prediction, if in a package, even a single faulty class (or file)

is present then that package is declared to be faulty otherwise non faulty [26], [7], [25]. This

24

concept is used for calculation of values of performance measures. Four different performance

evaluation measures have been used as discussed below:

Accuracy: It denotes the percentage of correctly classified instances to the total number of

instances.

Accuracy =
T P+T N

T P+T N +FP+FN
∗100 (4.6)

Precision: It denotes the number of correctly classified faulty instances amongst the total

number of instances classified as faulty.

Precision =
T P

T P+FP
(4.7)

Recall: It denotes the number of correctly classified faulty instances amongst the total number

of instances which are faulty.

Recall =
T P

T P+FN
(4.8)

F-measure: It denotes the harmonic mean of the precision and recall values.

F−measure =
2∗ precision∗ recall

precision+ recall
(4.9)

Where TP represents True Positive, FP represents False Positive, TN represents True Negative

and FN represents False Negative.

4.6 NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION

In software fault prediction mechanism, the fault proneness of the module is predicted using

some classifier. This fault proneness can be in terms of binary classification or in terms of the

number of faults present in the module. Finding the number of faults in a module gives more

accurate information about the fault proneness of the given module. It is better than just having

the information whether a module is faulty or non faulty. Binary classification of fault proneness

does not give the exact information about how less or more the module is fault prone.

25

4.6.1 Machine Learning Techniques used

Three machine learning techniques are used in the experimentations for predicting the number of

faults in software fault prediction. These techniques are linear regression , multilayer perceptron

and decision tree regression [1], [27], [28], [29].

4.6.2 Performance Evaluation Measures used

Following are the performance evaluation measures used in finding the number of faults in

software fault prediction:

Average Absolute Error: It calculates the difference in the predicted and actual values and

takes the average value considering all the instances. Its value ranges from 0 to 1. Lower the

AAE better is the prediction.

AAE =
n

∑
i=1
|Xi−Yi| (4.10)

Here n is the number of instances, Xi is the predicted value and Yi is the actual value of an

instance.

Average Relative Error: It calculates the ratio of the difference in the predicted and actual

values to the actual value of an instance and then finds the average value for all the instances. Its

value ranges from 0 to 1. Lower the ARE better is the prediction.

ARE =
n

∑
i=1

(|Xi−Yi|/Yi +1) (4.11)

Here n is the number of instances, Xi is the predicted value and Yi is the actual value of an

instance. Sometimes the value of Yi can be 0, making the fraction undefined. In order to avoid

such situations an additional 1 is added in the denominator value [30].

Prediction at level ’l’: It calculates the number of predictions having the predicted value

within l% of the actual value. It calculates the number of predictions which have the ARE value

under a certain predefined threshold value, generally taken to be 30%. Thus it calculates the

percentage of the number of predictions whose ARE value is lesser than or equal to 0.3 [31].

Pred(l) = k/n (4.12)

Here n is the total number of modules while k is the number of those modules which have the

predicted value less than or equal to ’l’.

26

Measure of Completeness: It depicts the ratio of the number of faults predicted to the actual

number of faults present in the overall modules. It is a measure to find how complete a model is

in finding the number of faults as compared to the actual number of faults present.

MOC =
Predicted number of faults

Actual number of faults present
(4.13)

4.7 EXPERIMENTAL RESULTS AND ANALYSIS

Table 4.4- Table 4.13 show the experimental results obtained for binary classification of software

fault prediction. Five classifiers used are Decision Tree, Logistic Regression, Naive Bayes,

Random Forest and Support Vector Machine. Performance evaluation measure used are Accuracy,

Precision, Recall and F-measure. Following observations can be made from these tables.

4.7.1 Inter-release Binary Classification

For Promise datasets, it can be observed from Table 4.4- Table 4.13 that AAD performs the best

for Naive Bayes and Random Forest classifiers while Summation performs the best for Decision

Tree and Logistic Regression classifiers, for all four performance evaluation measures used ,i.e.,

Accuracy, Precision, Recall and F-measure.

For Eclipse datasets, it can be observed from Table 4.4- Table 4.13 that none of the aggregation

technique could outperform "without aggregation method" in terms of Accuracy. Summation

gives the best results for all five classifiers used in terms of Precision. Median gives the best results

in terms of Recall for Decision Tree, Logistic Regression and Naive Bayes while Summation

gives the best results for Logistic Regression, Random Forest and Support Vector Machine

classifiers.

Thus, AAD and Summation outperform other aggregation techniques for inter-release binary

classification of software fault prediction for above mentioned scenarios.

27

Table 4.4: Performance of Decision Tree in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 75.168 67.164 62.687 49.254 52.239 64.179 0.453 0.636 0.625 0.452 0.491 0.578
camel1.4-camel1.6 77.927 81.6 84.8 83.2 84 78.4 0.429 0.649 0.727 0.724 0.667 0.585

ivy1.4-ivy2.0 82.67 59.615 61.538 55.769 63.462 73.077 0.2 0.417 0.462 0.389 0.5 0.667
poi-2.5-poi3.0 41.403 80 90 85 75 85 0.612 0.882 1 1 0.929 1

synapse1.1-synapse1.2 69.531 54.545 54.545 63.636 69.697 63.636 0.557 0.611 0.625 0.889 0.8 0.769
velocity1.5-velocity1.6 57.205 88 80 84 80 76 0.429 0.833 0.812 0.824 0.812 0.737

xalan2.5-xalan2.6 57.853 83.333 80.952 80.952 78.571 85.714 0.541 0.919 0.917 0.917 0.914 0.921
xerces1.3-xerces1.4 39.456 68.421 76.316 76.316 68.421 78.947 0.872 1 1 1 1 1
eclipse2.0-eclipse2.1 80.325 70.492 65.369 64.754 57.992 69.672 0.247 0.639 0.568 0.567 0.506 0.627
eclipse2.0-eclipse3.0 78.524 67.258 64.939 64.256 56.889 68.486 0.312 0.665 0.6 0.6 0.528 0.674
eclipse2.1-eclipse3.0 79.911 66.166 62.619 64.802 59.209 61.528 0.291 0.65 0.681 0.664 0.578 0.828

Intra

eclipse JDT CORE 94.861 97.157 94.412 94.412 97.157 96.569 0.981 0.971 0.933 0.958 0.98 0.962
eclipse PDE UI 92.385 94 77 86.333 69.667 84.667 0.967 0.983 0.735 0.94 0.942 0.966

equinox framework 81.067 93.833 92.667 87.667 96.833 97.667 0.759 0.971 0.975 0.933 0.971 1
lucene 95.585 97.5 95.667 95.833 94 99.167 0.971 0.971 0.986 0.943 0.944 0.986
mylyn 93.435 91.003 83.882 85.725 81.07 77.046 0.966 0.984 0.85 0.941 0.784 0.852

eclipse2.0 92.939 76.121 74.871 77.076 73.371 82.72 0.973 0.815 0.746 0.796 0.74 0.814
eclipse2.1 94.198 71.16 71.277 76.706 71.489 68.342 0.979 0.684 0.828 0.781 0.696 0.775
eclipse3.0 91.49 71.932 67.862 69.763 68.145 74.047 0.982 0.737 0.619 0.647 0.678 0.711

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.5: Performance of Decision Tree in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.554 0.677 0.484 0.452 0.839 0.839 0.499 0.656 0.545 0.452 0.619 0.684
camel1.4-camel1.6 0.404 0.706 0.706 0.618 0.824 0.706 0.416 0.676 0.716 0.667 0.737 0.64

ivy1.4-ivy2.0 0.175 0.263 0.316 0.368 0.421 0.526 0.187 0.323 0.375 0.378 0.457 0.588
poi-2.5-poi3.0 0.214 0.882 0.882 0.824 0.765 0.824 0.317 0.882 0.938 0.903 0.839 0.903

synapse1.1-synapse1.2 0.453 0.579 0.526 0.421 0.632 0.526 0.5 0.595 0.571 0.571 0.706 0.625
velocity1.5-velocity1.6 0.769 1 0.867 0.933 0.867 0.933 0.55 0.909 0.839 0.875 0.839 0.824

xalan2.5-xalan2.6 0.611 0.895 0.868 0.868 0.842 0.921 0.574 0.907 0.892 0.892 0.877 0.921
xerces1.3-xerces1.4 0.217 0.613 0.71 0.71 0.613 0.742 0.348 0.76 0.83 0.83 0.76 0.852
eclipse2.0-eclipse2.1 0.399 0.713 0.804 0.751 0.804 0.722 0.305 0.674 0.665 0.646 0.621 0.671
eclipse2.0-eclipse3.0 0.376 0.606 0.749 0.708 0.749 0.633 0.341 0.634 0.667 0.65 0.619 0.653
eclipse2.1-eclipse3.0 0.249 0.601 0.379 0.501 0.475 0.224 0.269 0.624 0.487 0.571 0.522 0.353

Intra

eclipse JDT CORE 0.919 0.967 0.967 0.933 0.947 0.967 0.948 0.963 0.942 0.937 0.96 0.957
eclipse PDE UI 0.884 0.9 0.86 0.786 0.423 0.726 0.923 0.933 0.786 0.852 0.562 0.821

equinox framework 0.941 0.912 0.892 0.838 0.975 0.958 0.837 0.935 0.923 0.878 0.971 0.977
lucene 0.941 0.983 0.933 0.983 0.95 1 0.956 0.976 0.956 0.96 0.943 0.992
mylyn 0.903 0.841 0.845 0.771 0.873 0.634 0.933 0.905 0.843 0.845 0.825 0.714

eclipse2.0 0.885 0.669 0.748 0.702 0.721 0.834 0.927 0.728 0.742 0.743 0.719 0.821
eclipse2.1 0.908 0.708 0.499 0.699 0.728 0.47 0.942 0.687 0.608 0.724 0.693 0.576
eclipse3.0 0.848 0.633 0.863 0.827 0.645 0.778 0.91 0.68 0.718 0.724 0.659 0.738

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

28

Table 4.6: Performance of Logistic Regression in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 73.154 50.746 53.731 55.224 47.761 65.672 0.432 0.462 0.5 0.517 0.45 0.667
camel1.4-camel1.6 60.622 85.6 80.8 88.8 72.8 80.8 0.253 0.69 0.632 0.812 0.5 0.614

ivy1.4-ivy2.0 77.273 73.077 57.692 61.538 55.769 73.077 0.065 0.619 0.421 0.476 0.429 0.727
poi-2.5-poi3.0 66.29 80 50 55 90 45 0.758 1 1 1 1 1

synapse1.1-synapse1.2 62.891 57.576 39.394 39.394 66.667 75.758 0.455 0.667 0.462 0.462 0.75 0.867
velocity1.5-velocity1.6 61.135 60 68 64 76 80 0.456 0.778 0.889 0.75 0.8 0.857

xalan2.5-xalan2.6 56.384 69.048 61.905 78.571 54.762 85.714 0.537 0.931 0.958 0.939 0.913 0.9
xerces1.3-xerces1.4 47.619 60.526 63.158 50 63.158 44.737 0.901 1 1 0.929 1 0.917
eclipse2.0-eclipse2.1 75.228 67.418 63.934 65.164 61.68 70.082 0.24 0.632 0.594 0.597 0.541 0.668
eclipse2.0-eclipse3.0 75.767 64.529 62.892 63.165 61.937 70.668 0.32 0.648 0.643 0.625 0.578 0.776
eclipse2.1-eclipse3.0 75.333 63.029 61.937 61.255 60.982 68.895 0.316 0.662 0.665 0.651 0.635 0.798

Intra

eclipse JDT CORE 77.542 98.824 86.078 89.412 73.725 99.412 0.848 0.971 0.883 0.933 0.75 0.983
eclipse PDE UI 69.061 71.667 77 75.667 70 84.667 0.754 0.746 0.79 0.806 0.76 0.904

equinox framework 71.527 89.667 94.5 88.833 94.667 93 0.75 0.921 1 0.938 0.969 0.983
lucene 66.775 78 78.167 81 83 93.333 0.764 0.821 0.85 0.872 0.879 0.952
mylyn 68.761 72.629 75.786 71.24 65.61 73.293 0.775 0.787 0.818 0.801 0.744 0.805

eclipse2.0 69.256 68.674 66.667 67.326 65.621 75.265 0.792 0.73 0.705 0.702 0.632 0.798
eclipse2.1 66.441 68.351 62.558 64.472 62.307 70.234 0.768 0.738 0.678 0.761 0.693 0.773
eclipse3.0 66.518 66.106 63.753 64.019 63.211 72.42 0.771 0.692 0.682 0.673 0.645 0.797

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.7: Performance of Logistic Regression in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.651 0.387 0.548 0.484 0.581 0.516 0.519 0.421 0.523 0.5 0.507 0.582
camel1.4-camel1.6 0.521 0.853 0.706 0.765 0.706 0.794 0.34 0.763 0.667 0.788 0.585 0.692

ivy1.4-ivy2.0 0.075 0.684 0.421 0.526 0.632 0.421 0.07 0.65 0.421 0.5 0.511 0.533
poi-2.5-poi3.0 0.69 0.765 0.412 0.471 0.882 0.353 0.723 0.867 0.583 0.64 0.938 0.522

synapse1.1-synapse1.2 0.523 0.526 0.316 0.316 0.632 0.684 0.486 0.588 0.375 0.375 0.686 0.765
velocity1.5-velocity1.6 0.731 0.467 0.533 0.6 0.8 0.8 0.562 0.583 0.667 0.667 0.8 0.828

xalan2.5-xalan2.6 0.438 0.711 0.605 0.816 0.553 0.947 0.483 0.806 0.742 0.873 0.689 0.923
xerces1.3-xerces1.4 0.332 0.516 0.548 0.419 0.548 0.355 0.485 0.681 0.708 0.578 0.708 0.512
eclipse2.0-eclipse2.1 0.594 0.574 0.498 0.574 0.699 0.598 0.342 0.602 0.542 0.585 0.61 0.631
eclipse2.0-eclipse3.0 0.568 0.531 0.466 0.531 0.688 0.525 0.409 0.583 0.541 0.574 0.628 0.626
eclipse2.1-eclipse3.0 0.573 0.429 0.376 0.37 0.391 0.449 0.408 0.52 0.48 0.472 0.484 0.575

Intra

eclipse JDT CORE 0.681 1 0.867 0.867 0.747 1 0.754 0.983 0.859 0.882 0.73 0.991
eclipse PDE UI 0.607 0.706 0.78 0.737 0.657 0.791 0.67 0.714 0.773 0.749 0.68 0.829

equinox framework 0.698 0.879 0.9 0.842 0.929 0.892 0.716 0.89 0.942 0.884 0.946 0.931
lucene 0.496 0.717 0.717 0.733 0.8 0.917 0.601 0.752 0.763 0.79 0.828 0.932
mylyn 0.548 0.666 0.698 0.592 0.51 0.623 0.641 0.712 0.749 0.674 0.599 0.694

eclipse2.0 0.529 0.575 0.538 0.575 0.703 0.653 0.634 0.632 0.607 0.63 0.662 0.714
eclipse2.1 0.503 0.483 0.379 0.359 0.369 0.507 0.607 0.578 0.476 0.463 0.467 0.605
eclipse3.0 0.487 0.514 0.464 0.486 0.53 0.561 0.596 0.588 0.545 0.562 0.575 0.655

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

29

Table 4.8: Performance of Naive Bayes in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 77.718 61.194 49.254 47.761 46.269 67.164 0.5 0.576 0.474 0.466 0.459 0.846
camel1.4-camel1.6 73.575 84 82.4 38.4 53.6 78.4 0.321 0.733 0.7 0.295 0.312 0.733

ivy1.4-ivy2.0 82.955 76.923 69.231 40.385 40.385 78.846 0.321 0.64 0.588 0.342 0.333 0.9
poi-2.5-poi3.0 47.964 70 85 70 45 60 0.823 1 1 1 0.875 1

synapse1.1-synapse1.2 66.406 69.697 54.545 54.545 54.545 69.697 0.5 0.909 0.6 0.577 0.577 0.909
velocity1.5-velocity1.6 67.686 88 88 76 76 84 0.534 0.833 0.833 0.846 0.765 0.867

xalan2.5-xalan2.6 61.921 76.19 66.667 50 30.952 76.19 0.708 0.912 0.9 0.87 0.846 0.967
xerces1.3-xerces1.4 40.476 84.211 84.211 84.211 71.053 57.895 0.958 1 1 0.963 1 1
eclipse2.0-eclipse2.1 85.028 64.754 65.164 64.139 53.689 67.623 0.312 0.667 0.651 0.576 0.478 0.726
eclipse2.0-eclipse3.0 83.65 60.437 61.801 63.574 55.662 65.075 0.427 0.675 0.668 0.612 0.516 0.809
eclipse2.1-eclipse3.0 84.32 61.392 62.892 59.618 54.161 64.256 0.446 0.683 0.654 0.634 0.506 0.829

Intra

eclipse JDT CORE 63.864 88.824 83.725 68.824 62.451 89.412 0.865 0.955 0.842 0.967 0.579 1
eclipse PDE UI 61.362 62.667 59.333 66 55 69 0.745 0.767 0.558 0.86 0.717 0.842

equinox framework 66.484 87.167 88.667 83 89 89.5 0.829 0.893 0.937 0.838 0.939 0.975
lucene 58.918 67.667 77.167 62.667 61.333 83.833 0.743 0.866 0.865 0.582 0.573 0.899
mylyn 60.845 69.885 66.267 64.81 67.554 66.551 0.785 0.735 0.766 0.78 0.691 0.848

eclipse2.0 62.316 60.068 59.962 65.477 60.205 64.47 0.833 0.704 0.674 0.682 0.557 0.811
eclipse2.1 58.632 67.636 64.156 59.619 53.139 63.26 0.819 0.703 0.658 0.709 0.5 0.723
eclipse3.0 59.802 59.332 59.819 62.825 54.058 66.418 0.819 0.678 0.696 0.68 0.513 0.827

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.9: Performance of Naive Bayes in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.59 0.613 0.871 0.871 0.903 0.355 0.541 0.594 0.614 0.607 0.609 0.5
camel1.4-camel1.6 0.319 0.647 0.618 0.912 0.588 0.324 0.32 0.688 0.656 0.446 0.408 0.449

ivy1.4-ivy2.0 0.45 0.842 0.526 0.684 0.632 0.474 0.375 0.727 0.556 0.456 0.436 0.621
poi-2.5-poi3.0 0.231 0.647 0.824 0.647 0.412 0.529 0.361 0.786 0.903 0.786 0.56 0.692

synapse1.1-synapse1.2 0.593 0.526 0.632 0.789 0.789 0.526 0.543 0.667 0.615 0.667 0.667 0.667
velocity1.5-velocity1.6 0.397 1 1 0.733 0.867 0.867 0.456 0.909 0.909 0.786 0.812 0.867

xalan2.5-xalan2.6 0.307 0.816 0.711 0.526 0.289 0.763 0.428 0.861 0.794 0.656 0.431 0.853
xerces1.3-xerces1.4 0.208 0.806 0.806 0.839 0.645 0.484 0.342 0.893 0.893 0.897 0.784 0.652
eclipse2.0-eclipse2.1 0.317 0.354 0.402 0.617 0.885 0.392 0.315 0.462 0.497 0.596 0.621 0.509
eclipse2.0-eclipse3.0 0.305 0.297 0.364 0.603 0.851 0.332 0.356 0.413 0.472 0.608 0.642 0.471
eclipse2.1-eclipse3.0 0.247 0.327 0.44 0.324 0.834 0.297 0.318 0.442 0.526 0.429 0.63 0.438

Intra

eclipse JDT CORE 0.341 0.813 0.847 0.393 0.827 0.78 0.488 0.856 0.831 0.472 0.676 0.829
eclipse PDE UI 0.389 0.389 0.96 0.437 0.169 0.457 0.51 0.497 0.703 0.527 0.259 0.569

equinox framework 0.467 0.846 0.85 0.85 0.85 0.821 0.591 0.865 0.878 0.835 0.888 0.888
lucene 0.28 0.483 0.667 1 0.967 0.767 0.403 0.593 0.726 0.734 0.718 0.821
mylyn 0.32 0.655 0.532 0.45 0.692 0.424 0.454 0.691 0.619 0.562 0.688 0.555

eclipse2.0 0.316 0.34 0.341 0.564 0.901 0.345 0.458 0.45 0.449 0.608 0.686 0.481
eclipse2.1 0.254 0.507 0.484 0.457 0.862 0.325 0.387 0.582 0.547 0.492 0.624 0.442
eclipse3.0 0.27 0.283 0.281 0.431 0.86 0.372 0.405 0.395 0.396 0.523 0.64 0.51

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

30

4.7.2 Intra-release Binary Classification

For Eclipse datasets, it can be observed from Table 4.4- Table 4.13 that Summation gives the best

results in general, for Logistic Regression and Random Forest classifiers, in terms of all the four

performance measures used.

For remaining four Eclipse and one Apache datasets, it can be observed from Table 4.4- Table

4.13 that Summation gives the best results in general, for all the five used classifiers in terms of

Accuracy and Precision. Summation also gives the best results in terms of Recall and F-measure

for Decision Tree and Logistic Regression classifiers. IQR gives the best results in general, in

terms of Recall and F-measure for Naive Bayes, Random Forest and Support Vector Machine

classifiers.

Thus, Summation outperforms all other techniques for intra-release binary classification of

software fault prediction for above mentioned scenarios.

Table 4.10: Performance of Random Forest in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 77.852 59.701 67.164 59.701 50.746 67.164 0.503 0.548 0.615 0.545 0.478 0.629
camel1.4-camel1.6 79.689 89.6 86.4 85.6 89.6 88.8 0.475 0.839 0.774 0.808 0.862 0.833

ivy1.4-ivy2.0 86.364 80.769 75 67.308 71.154 75 0.3 0.8 0.714 0.6 0.667 0.714
poi-2.5-poi3.0 62.67 90 90 85 85 85 0.734 1 1 1 0.938 0.938

synapse1.1-synapse1.2 69.531 54.545 45.455 54.545 63.636 63.636 0.574 0.625 0.533 0.643 0.733 0.769
velocity1.5-velocity1.6 59.825 88 84 92 88 88 0.453 0.833 0.824 0.882 0.833 0.833

xalan2.5-xalan2.6 67.91 85.714 85.714 85.714 85.714 85.714 0.64 0.921 0.921 0.921 0.921 0.921
xerces1.3-xerces1.4 40.136 73.684 73.684 78.947 78.947 68.421 0.947 1 1 1 1 1
eclipse2.0-eclipse2.1 83.253 72.336 71.721 68.648 67.418 72.951 0.297 0.649 0.658 0.61 0.602 0.661
eclipse2.0-eclipse3.0 81.242 67.804 65.484 65.621 60.709 70.532 0.367 0.656 0.629 0.623 0.573 0.685
eclipse2.1-eclipse3.0 82.3 68.213 67.121 63.574 61.664 68.486 0.355 0.702 0.689 0.635 0.617 0.711

Intra

eclipse JDT CORE 97.687 98.824 97.745 97.745 97.745 99.412 1 0.971 0.958 0.958 0.958 0.983
eclipse PDE UI 97.278 95 98.333 96 96 97.333 1 0.958 0.988 0.963 0.963 1

equinox framework 97.605 95.5 94.833 92.167 98.833 99.667 1 1 1 1 1 1
lucene 97.799 99 100 100 98.167 98.333 1 1 1 1 1 1
mylyn 96.474 95.969 95.169 93.991 93.78 94.478 0.991 1 1 1 1 1

eclipse2.0 96.722 96.598 96.841 95.894 96.189 96.894 0.999 0.962 0.964 0.967 0.956 0.96
eclipse2.1 94.88 95.372 95.974 94.329 94.42 97.255 0.991 0.961 0.972 0.963 0.958 0.967
eclipse3.0 94.588 94.991 94.863 92.556 93.714 96.168 0.998 0.968 0.968 0.961 0.957 0.968

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

31

Table 4.11: Performance of Random Forest in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.572 0.742 0.774 0.774 0.71 0.71 0.535 0.63 0.686 0.64 0.571 0.667
camel1.4-camel1.6 0.404 0.765 0.706 0.618 0.735 0.735 0.437 0.8 0.738 0.7 0.794 0.781

ivy1.4-ivy2.0 0.15 0.632 0.526 0.316 0.421 0.526 0.2 0.706 0.606 0.414 0.516 0.606
poi-2.5-poi3.0 0.648 0.882 0.882 0.824 0.882 0.882 0.688 0.938 0.938 0.903 0.909 0.909

synapse1.1-synapse1.2 0.36 0.526 0.421 0.474 0.579 0.526 0.443 0.571 0.471 0.545 0.647 0.625
velocity1.5-velocity1.6 0.872 1 0.933 1 1 1 0.596 0.909 0.875 0.938 0.909 0.909

xalan2.5-xalan2.6 0.708 0.921 0.921 0.921 0.921 0.921 0.672 0.921 0.921 0.921 0.921 0.921
xerces1.3-xerces1.4 0.206 0.677 0.677 0.742 0.742 0.613 0.338 0.808 0.808 0.852 0.852 0.76
eclipse2.0-eclipse2.1 0.399 0.77 0.708 0.742 0.703 0.756 0.34 0.705 0.682 0.67 0.649 0.705
eclipse2.0-eclipse3.0 0.367 0.656 0.638 0.671 0.633 0.685 0.367 0.656 0.634 0.646 0.601 0.685
eclipse2.1-eclipse3.0 0.24 0.557 0.542 0.522 0.478 0.551 0.287 0.621 0.607 0.573 0.539 0.621

Intra

eclipse JDT CORE 0.955 1 1 1 1 1 0.977 0.983 0.977 0.977 0.977 0.991
eclipse PDE UI 0.949 0.94 0.98 0.96 0.951 0.946 0.973 0.946 0.982 0.96 0.957 0.97

equinox framework 0.957 0.912 0.904 0.858 0.979 0.996 0.978 0.951 0.944 0.914 0.989 0.998
lucene 0.957 0.983 1 1 0.967 0.967 0.978 0.991 1 1 0.982 0.982
mylyn 0.94 0.925 0.91 0.884 0.882 0.891 0.965 0.96 0.951 0.937 0.936 0.941

eclipse2.0 0.936 0.97 0.966 0.947 0.961 0.976 0.966 0.965 0.965 0.955 0.958 0.967
eclipse2.1 0.91 0.918 0.933 0.889 0.909 0.966 0.949 0.938 0.951 0.924 0.93 0.966
eclipse3.0 0.895 0.922 0.921 0.878 0.904 0.945 0.944 0.944 0.944 0.917 0.929 0.956

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.12: Performance of Support Vector Machine in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 73.691 70.149 64.179 44.776 50.746 65.672 0.442 0.634 0.581 0.406 0.483 0.682
camel1.4-camel1.6 70.57 87.2 88 83.2 80 78.4 0.336 0.737 0.744 0.76 0.592 0.606

ivy1.4-ivy2.0 77.557 61.538 71.154 65.385 61.538 71.154 0.132 0.455 0.75 0.529 0.471 0.75
poi-2.5-poi3.0 62.896 70 90 95 90 55 0.739 0.867 1 1 0.941 1

synapse1.1-synapse1.2 63.281 57.576 60.606 66.667 63.636 69.697 0.452 0.632 0.667 0.833 0.769 0.909
velocity1.5-velocity1.6 55.895 84 92 92 48 84 0.421 0.824 0.882 0.882 0.667 0.867

xalan2.5-xalan2.6 67.797 73.81 69.048 69.048 76.19 73.81 0.646 0.909 0.931 0.903 0.889 1
xerces1.3-xerces1.4 50.34 73.684 76.316 73.684 76.316 52.632 0.919 1 1 1 1 1
eclipse2.0-eclipse2.1 70.449 67.828 63.525 63.32 61.68 70.902 0.214 0.613 0.562 0.558 0.542 0.654
eclipse2.0-eclipse3.0 72.161 66.576 64.666 64.393 61.937 69.577 0.301 0.644 0.617 0.61 0.584 0.704
eclipse2.1-eclipse3.0 72.406 67.394 63.847 65.484 58.799 67.258 0.3 0.724 0.684 0.692 0.618 0.767

Intra

eclipse JDT CORE 81.225 92.745 88.235 84.412 89.412 83.235 0.868 0.958 0.933 0.892 0.892 0.867
eclipse PDE UI 75.529 75.333 77 76.333 71.333 76.333 0.798 0.773 0.814 0.873 0.767 0.863

equinox framework 73.704 89.333 90.667 85.5 96.833 87.5 0.741 0.927 0.938 0.918 0.965 0.98
lucene 78.759 86.333 90.667 86.333 81.833 90 0.826 0.908 0.98 0.932 0.922 0.907
mylyn 74.725 77.215 80.474 79.539 76.863 76.972 0.804 0.849 0.865 0.842 0.87 0.811

eclipse2.0 72.011 72.621 68.924 74.023 71.22 73.818 0.774 0.737 0.679 0.716 0.684 0.754
eclipse2.1 69.099 71.537 65.45 71.264 63.623 71.537 0.746 0.753 0.721 0.774 0.765 0.783
eclipse3.0 70.067 71.767 71.437 68.201 67.549 71.078 0.741 0.725 0.707 0.692 0.681 0.773

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

32

Table 4.13: Performance of Support Vector Machine in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.687 0.839 0.806 0.419 0.903 0.484 0.538 0.722 0.676 0.413 0.629 0.566
camel1.4-camel1.6 0.521 0.824 0.853 0.559 0.853 0.588 0.408 0.778 0.795 0.644 0.699 0.597

ivy1.4-ivy2.0 0.175 0.263 0.316 0.474 0.421 0.316 0.151 0.333 0.444 0.5 0.444 0.444
poi-2.5-poi3.0 0.644 0.765 0.882 0.941 0.941 0.471 0.688 0.812 0.938 0.97 0.941 0.64

synapse1.1-synapse1.2 0.442 0.632 0.632 0.526 0.526 0.526 0.447 0.632 0.649 0.645 0.625 0.667
velocity1.5-velocity1.6 0.782 0.933 1 1 0.267 0.867 0.547 0.875 0.938 0.938 0.381 0.867

xalan2.5-xalan2.6 0.679 0.789 0.711 0.737 0.842 0.711 0.662 0.845 0.806 0.812 0.865 0.831
xerces1.3-xerces1.4 0.364 0.677 0.71 0.677 0.71 0.419 0.521 0.808 0.83 0.808 0.83 0.591
eclipse2.0-eclipse2.1 0.648 0.675 0.675 0.689 0.679 0.679 0.322 0.642 0.613 0.617 0.603 0.667
eclipse2.0-eclipse3.0 0.668 0.638 0.644 0.662 0.647 0.603 0.415 0.641 0.631 0.635 0.614 0.65
eclipse2.1-eclipse3.0 0.647 0.49 0.423 0.472 0.312 0.431 0.41 0.584 0.523 0.562 0.415 0.552

Intra

eclipse JDT CORE 0.745 0.9 0.813 0.8 0.9 0.713 0.801 0.907 0.859 0.82 0.89 0.763
eclipse PDE UI 0.709 0.717 0.746 0.657 0.623 0.631 0.749 0.737 0.762 0.71 0.676 0.714

equinox framework 0.794 0.858 0.888 0.792 0.979 0.779 0.761 0.886 0.905 0.847 0.971 0.862
lucene 0.736 0.817 0.833 0.8 0.733 0.9 0.778 0.855 0.898 0.854 0.79 0.899
mylyn 0.667 0.684 0.759 0.749 0.654 0.727 0.729 0.753 0.8 0.79 0.74 0.762

eclipse2.0 0.628 0.704 0.683 0.774 0.768 0.687 0.693 0.709 0.677 0.742 0.719 0.713
eclipse2.1 0.61 0.574 0.432 0.526 0.35 0.521 0.67 0.645 0.53 0.607 0.459 0.621
eclipse3.0 0.632 0.659 0.694 0.598 0.618 0.56 0.682 0.689 0.696 0.64 0.644 0.644

* w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.14 - Table 4.19 show the experimental results obtained for number of faults of software

fault prediction. Three classifiers used are Linear Regression, Decision Tree Regression and

Multilayer Perceptron. Performance evaluation measure used are Average Absolute Error (AAE),

Average Relative Error (ARE), Prediction at level "l" (pred(l)) and Measure of Completeness

(MOC). Following observations can be made from these tables.

4.7.3 Inter-release experiments for Number of Faults Prediction

For Promise datasets, it can be observed from Table 4.14 - Table 4.19 that MAD outperforms

the other techniques of aggregation in general, in terms of AAE, ARE and Pred(l) while Median

outperforms the other techniques of aggregation in terms of MOC, for all three classifiers used.

For Eclipse datasets, it can be observed from Table 4.14 - Table 4.19 that AAD outperforms

the other techniques of aggregation in general, in terms of AAE, ARE and pred(l) for Linear

Regression and Multilayer Perceptron classifiers. MAD gives the best results in terms of MOC

for Linear Regression and Decision Tree Regression classifiers.

Thus, MAD aggregation technique gives the best results in the above mentioned scenarios for

inter-release experiments, for predicting number of faults.

33

Table 4.14: Performance of Linear Regression in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.622 0.897 1.268 0.494 0.417 7.924 0.473 0.707 1.026 0.469 0.388 3.253
camel1.4-camel1.6 1.038 0.355 0.508 0.313 0.595 6.399 0.776 0.266 0.414 0.299 0.565 3.618

ivy1.4-ivy2.0 0.422 0.309 0.243 0.019 0.418 1.905 0.336 0.23 0.191 0.013 0.405 0.794
poi-2.5-poi3.0 0.857 0.889 0.807 0.538 0.714 15.848 0.43 0.461 0.384 0.4 0.424 0.823

synapse1.1-synapse1.2 0.746 0.464 0.888 0.386 0.735 3.706 0.503 0.333 0.628 0.301 0.567 1.156
velocity1.5-velocity1.6 1.046 1.892 1.735 11.389 0.853 18.121 0.748 1.041 0.915 9.956 0.695 2.167

xalan2.5-xalan2.6 0.667 0.242 0.636 0.402 0.699 15.537 0.43 0.158 0.348 0.269 0.448 0.643
xerces1.3-xerces1.4 2.339 2.098 2.647 1.06 2.897 47.098 0.533 0.588 0.74 0.349 0.778 1.453
eclipse2.0-eclipse2.1 0.621 0.234 0.514 0.362 0.502 3.923 0.569 0.203 0.48 0.355 0.476 1.852
eclipse2.0-eclipse3.0 0.634 0.276 0.526 0.359 0.478 4.002 0.538 0.215 0.46 0.344 0.441 1.461
eclipse2.1-eclipse3.0 0.617 0.234 0.4 0.327 0.496 3.236 0.517 0.168 0.331 0.312 0.459 0.843

Intra

eclipse JDT CORE 0.645 5.076 3.163 4.659 5.058 1.614 0.362 2.334 1.205 2.039 2.351 0.699
eclipse PDE UI 0.602 0.186 0.419 0.341 0.289 2.099 0.382 0.151 0.287 0.255 0.207 1.071

equinox framework 0.615 0.091 0.146 0.091 0.265 0.729 0.349 0.065 0.086 0.066 0.178 0.328
lucene 0.597 3.019 3.094 2.073 2.391 0.725 0.378 1.435 1.973 0.805 0.98 0.428
mylyn 0.551 0.17 0.275 0.214 0.351 1.243 0.353 0.136 0.205 0.168 0.257 0.594

eclipse2.0 0.681 0.274 0.515 0.344 0.491 4.052 0.392 0.191 0.321 0.244 0.325 1.559
eclipse2.1 0.603 0.173 0.353 0.303 0.469 2.602 0.38 0.135 0.25 0.216 0.33 1.085
eclipse3.0 0.718 0.225 0.44 0.383 0.488 4.186 0.415 0.167 0.297 0.269 0.336 1.888

* AAE=Average Absolute Error, ARE=Average Relative Error, w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation,

IQR=Interquartile Range,SUM=Summation, MED=Median.

Table 4.15: Performance of Linear Regression in terms of Pred(l) and Measure of Completeness.
Dataset Pred(l) Measure of Completeness

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 46.174 34.328 28.358 47.761 61.194 7.463 153.776 -28.785 49.935 -185.615 166.344 63.562
camel1.4-camel1.6 28.083 70.4 53.6 64.8 32.8 15.2 186.747 99.667 171.227 201.862 383.479 71.827

ivy1.4-ivy2.0 46.307 78.846 80.769 96.154 55.769 23.077 153.248 -4.658 51.1 0 595.417 12.62
poi-2.5-poi3.0 52.262 30 50 50 40 25 91.785 43.598 67.96 -51.185 128.165 76.31

synapse1.1-synapse1.2 33.594 69.697 42.424 60.606 42.424 24.242 118.085 27.446 59.116 3.938 119.303 129.053
velocity1.5-velocity1.6 29.694 36 40 36 36 8 154.957 202.24 152.138 1450.916 196.804 205.428

xalan2.5-xalan2.6 33.672 92.857 50 64.286 42.857 23.81 95.776 69.824 36.808 65.11 103.27 58.457
xerces1.3-xerces1.4 32.313 36.842 28.947 60.526 34.211 7.895 31.297 -9.095 -1.32 15.954 -2.943 2.15
eclipse2.0-eclipse2.1 22.896 81.557 38.73 50.615 21.516 19.672 440.173 179.615 537.193 1693.88 631.71 173.195
eclipse2.0-eclipse3.0 25.979 78.035 44.065 53.752 25.375 20.873 260.38 116.049 294.314 767.731 434.319 101.629
eclipse2.1-eclipse3.0 10.649 88.54 51.432 68.759 21.828 32.742 235.6 85.763 202.37 610.691 438.533 58.849

Intra

eclipse JDT CORE 51.384 14.51 17.843 15.588 14.281 42.941 95.201 117.383 119.453 149.343 192.252 97.902
eclipse PDE UI 45.934 91.333 65.205 71.595 74.5 24.667 95.844 107.655 96.166 111.208 98.181 118.599

equinox framework 56.199 98.571 92.857 95.625 88.571 67 97.798 99.941 100.242 96.877 98.437 101.48
lucene 40.718 19.667 23.561 38.167 26.833 55.667 93.93 104 115.248 115.481 99.067 103.578
mylyn 43.117 92.678 77.071 88.234 66.888 44.722 92.484 104.844 96.113 87.76 93.651 127.817

eclipse2.0 42.788 81.932 59.91 68.768 48.612 22.318 93.081 118.29 92.281 91.142 92.524 108.983
eclipse2.1 45.305 93.071 69.017 82.663 51.849 27.615 93.618 101.804 90.799 93.411 87.976 110.852
eclipse3.0 42.007 86.561 60.386 66.576 50.188 14.346 92.934 104.556 92.105 97.846 95.796 104.538

* Pred(l)=Prediction at level "l",w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation,

MED=Median.

34

4.7.4 Intra-release experiments for Number of Faults Prediction

For Eclipse datasets, it can be observed from Table 4.14 - Table 4.19 that AAD aggregation

technique outperforms all other techniques in terms of all the four performance evaluation

measures used, for all the three used classifiers.

For remaining four Eclipse and one Apache datasets, it can be observed from Table 4.14 -

Table 4.19 that "without aggregation" method and AAD technique give comparable performance

results and both outperform other aggregation techniques in terms of AAE, for Linear Regression

and Multilayer Perceptron classifiers. AAD gives the best results in terms of ARE and pred(l)

for Linear Regression and Multilayer Perceptron classifiers. Summation gives the best results in

terms of MOC, for all three classifiers used.

Thus, AAD aggregation technique gives the best results in case of the above mentioned

scenarios for intra-release experiments, for predicting number of faults.

Table 4.16: Performance of Decision Tree Regression in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.56 0.294 0.468 0.073 0.293 3.162 0.395 0.205 0.366 0.061 0.27 1.296
camel1.4-camel1.6 0.793 0.289 0.409 0.222 0.345 4.375 0.522 0.201 0.309 0.197 0.305 1.557

ivy1.4-ivy2.0 0.312 0.197 0.128 0.019 0.269 1.085 0.24 0.138 0.074 0.013 0.256 0.442
poi-2.5-poi3.0 0.828 0.345 0.666 0.251 0.502 13.046 0.396 0.164 0.316 0.156 0.351 1.283

synapse1.1-synapse1.2 0.734 0.353 0.543 0.256 0.434 2.49 0.495 0.234 0.361 0.158 0.315 0.64
velocity1.5-velocity1.6 1.061 0.496 0.545 0.454 0.809 8.706 0.76 0.312 0.343 0.421 0.693 2.134

xalan2.5-xalan2.6 0.664 0.269 0.471 0.236 0.628 14.358 0.428 0.173 0.264 0.159 0.403 0.539
xerces1.3-xerces1.4 2.413 1.351 1.783 1.16 1.896 37.299 0.495 0.372 0.43 0.318 0.41 1.028
eclipse2.0-eclipse2.1 0.5 0.234 0.479 0.205 0.345 3.393 0.444 0.202 0.437 0.196 0.314 1.493
eclipse2.0-eclipse3.0 0.529 0.27 0.494 0.21 0.357 3.522 0.421 0.208 0.418 0.189 0.307 1.106
eclipse2.1-eclipse3.0 0.442 0.224 0.33 0.166 0.317 3.188 0.319 0.156 0.256 0.146 0.27 0.852

Intra

eclipse JDT CORE 0.453 3.293 3.042 3.817 3.399 2.255 0.24 1.38 1.344 1.324 1.203 0.691
eclipse PDE UI 0.364 0.172 0.252 0.153 0.171 1.859 0.212 0.135 0.174 0.113 0.122 0.689

equinox framework 0.483 0.081 0.123 0.126 0.245 0.817 0.28 0.054 0.072 0.082 0.154 0.262
lucene 0.297 2.102 1.503 2.159 2.634 0.908 0.181 0.765 0.517 0.743 1.057 0.328
mylyn 0.294 0.12 0.157 0.078 0.19 1.155 0.176 0.095 0.117 0.061 0.133 0.605

eclipse2.0 0.659 0.27 0.314 0.156 0.497 3.107 0.379 0.187 0.196 0.11 0.329 1.072
eclipse2.1 0.339 0.175 0.186 0.134 0.221 2.516 0.197 0.137 0.126 0.086 0.149 1.025
eclipse3.0 0.508 0.202 0.352 0.14 0.246 2.854 0.27 0.151 0.237 0.096 0.162 1.034

* AAE=Average Absolute Error, ARE=Average Relative Error, w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation,

IQR=Interquartile Range,SUM=Summation, MED=Median.

35

Table 4.17: Performance of Decision Tree Regression in terms of Pred(l) and Measure of
Completeness.

Dataset Pred(l) Measure of Completeness
w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 53.02 79.104 61.194 92.537 79.104 23.881 135.099 91.384 154.458 111.667 255.568 111.767
camel1.4-camel1.6 47.047 72.8 60.8 78.4 64.8 34.4 126.583 96.268 146.276 207.461 249.339 96.738

ivy1.4-ivy2.0 68.75 86.538 88.462 96.154 78.846 34.615 140.683 30.46 13.964 0 444.457 52.118
poi-2.5-poi3.0 52.489 85 40 80 50 30 89.381 70.44 26.573 30.213 97.569 107.676

synapse1.1-synapse1.2 32.031 69.697 57.576 81.818 57.576 30.303 121.92 63.591 55.43 26.395 99.537 81.933
velocity1.5-velocity1.6 31.878 60 56 60 24 4 153.818 114.296 133.084 314.902 217.233 176.818

xalan2.5-xalan2.6 31.864 88.095 57.143 80.952 28.571 16.667 95.981 63.756 57.577 74.612 85.957 49.813
xerces1.3-xerces1.4 30.782 52.632 47.368 57.895 44.737 15.789 23.879 33.154 34.555 4.191 23.5 13.785
eclipse2.0-eclipse2.1 48.783 82.787 44.057 82.787 58.402 25 348.461 179.133 496.469 927.725 401.856 170.641
eclipse2.0-eclipse3.0 49.929 78.854 48.84 82.265 59.072 30.423 206.412 115.461 284.542 359.026 287.805 96.844
eclipse2.1-eclipse3.0 60.436 85.948 63.847 83.356 63.847 32.606 137.736 79.364 146.162 289.281 231.825 61.25

Intra

eclipse JDT CORE 73.698 24.608 26.176 18.431 24.491 41.863 96.234 115.943 119.802 150.745 219.796 97.176
eclipse PDE UI 76.787 92.667 84.035 94.024 92.667 33.667 93.439 103.754 98.573 100.436 96.756 118.258

equinox framework 65.347 97.857 95 91.349 85 70 97.96 99.745 103.424 93.206 99.644 106.021
lucene 81.85 47.333 56.136 35.667 13.5 65.833 92.541 104.565 99.831 104.544 95.355 102.645
mylyn 82.848 97.09 88.124 98.053 88.804 31.944 92.489 102.1 97.301 97.215 95.499 132.08

eclipse2.0 45.8 83.682 77.329 93.53 47.908 29.159 93.532 118.363 93.823 94.071 92.431 108.316
eclipse2.1 80.09 93.738 89.091 92.16 86.08 29.632 93.498 101.792 93.198 91.816 91.038 109.25
eclipse3.0 70.15 89.887 71.94 94.618 83.973 29.713 93.08 101.903 93.286 94.82 93.135 106.667

* Pred(l)=Prediction at level "l",w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation,

MED=Median.

Table 4.18: Performance of Multilayer Perceptron in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 0.639 0.36 0.536 0.213 0.296 3.968 0.449 0.279 0.435 0.203 0.269 1.812
camel1.4-camel1.6 0.945 0.389 0.652 0.155 0.513 4.771 0.666 0.3 0.574 0.132 0.473 2.375

ivy1.4-ivy2.0 0.358 0.216 0.215 0.019 0.204 1.091 0.282 0.153 0.163 0.013 0.184 0.519
poi-2.5-poi3.0 0.865 0.433 0.547 0.247 0.475 14.199 0.394 0.243 0.297 0.14 0.305 0.837

synapse1.1-synapse1.2 0.689 0.342 0.511 0.298 0.578 3.44 0.411 0.216 0.304 0.199 0.411 1.605
velocity1.5-velocity1.6 1.065 0.514 0.669 0.585 0.812 9.097 0.609 0.293 0.379 0.562 0.742 2.4

xalan2.5-xalan2.6 0.679 0.248 0.509 0.3 0.72 14.951 0.394 0.155 0.267 0.206 0.513 0.542
xerces1.3-xerces1.4 2.242 1.867 2.264 1.017 1.92 39.456 0.673 0.538 0.587 0.278 0.414 0.767
eclipse2.0-eclipse2.1 0.703 0.197 0.406 0.256 0.546 3.032 0.655 0.163 0.369 0.248 0.526 1.07
eclipse2.0-eclipse3.0 0.714 0.257 0.437 0.285 0.538 3.669 0.622 0.186 0.362 0.264 0.507 0.868
eclipse2.1-eclipse3.0 0.815 0.278 0.305 0.21 0.287 3.09 0.729 0.213 0.231 0.195 0.231 0.708

Intra

eclipse JDT CORE 0.915 5.076 3.163 4.659 5.058 1.614 0.673 2.334 1.205 2.039 2.351 0.699
eclipse PDE UI 0.589 0.186 0.419 0.341 0.289 2.099 0.388 0.151 0.287 0.255 0.207 1.071

equinox framework 0.636 0.091 0.146 0.091 0.265 0.729 0.419 0.065 0.086 0.066 0.178 0.328
lucene 0.673 3.019 3.094 2.073 2.391 0.725 0.503 1.435 1.973 0.805 0.98 0.428
mylyn 0.54 0.17 0.275 0.214 0.351 1.243 0.289 0.136 0.205 0.168 0.257 0.594

eclipse2.0 0.654 0.274 0.515 0.344 0.491 4.052 0.343 0.191 0.321 0.244 0.325 1.559
eclipse2.1 0.595 0.173 0.353 0.303 0.469 2.602 0.322 0.135 0.25 0.216 0.33 1.085
eclipse3.0 0.71 0.225 0.44 0.383 0.488 4.186 0.32 0.167 0.297 0.269 0.336 1.888

* AAE=Average Absolute Error, ARE=Average Relative Error, w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation,

IQR=Interquartile Range,SUM=Summation, MED=Median.

36

Table 4.19: Performance of Multilayer Perceptron in terms of Pred(l) and Measure of Complete-
ness.

Dataset Pred(l) Measure of Completeness
w/o agg AAD MAD IQR MED SUM w/o agg AAD MAD IQR MED SUM

Inter

ant1.6-ant1.7 43.221 62.687 49.254 77.612 73.134 16.418 86.926 142.37 160.998 41.679 265.702 126.396
camel1.4-camel1.6 42.487 52 47.2 85.6 55.2 10.4 147.635 50.914 249.33 127.479 410.202 110.329

ivy1.4-ivy2.0 65.057 82.692 82.692 96.154 76.923 36.538 144.034 29.482 -15.762 0 348.957 68.049
poi-2.5-poi3.0 47.964 65 50 75 55 10 86.791 61.842 52.738 19.144 91.814 100.474

synapse1.1-synapse1.2 50.781 66.667 63.636 75.758 51.515 24.242 68.812 35.905 98.55 -8.841 130.005 104.691
velocity1.5-velocity1.6 37.555 68 52 44 32 16 30.764 146.917 95.047 410.214 254.104 211.021

xalan2.5-xalan2.6 25.085 90.476 66.667 83.333 33.333 19.048 75.911 63.301 38.099 97.751 130.737 48.301
xerces1.3-xerces1.4 35.034 23.684 39.474 57.895 47.368 10.526 65.009 -1.689 10.677 17.888 19.285 6.3
eclipse2.0-eclipse2.1 8.608 83.811 56.148 68.033 18.443 18.033 503.29 97.874 348.022 -64.526 718.879 77.91
eclipse2.0-eclipse3.0 10.932 79.945 58.527 61.937 19.509 13.097 299.176 60.388 180.61 -117.705 513.675 28.41
eclipse2.1-eclipse3.0 10.299 89.632 72.033 84.72 81.446 14.734 338.3 114.328 129.516 428.247 107.303 49.021

Intra

eclipse JDT CORE 37.983 14.51 17.843 15.588 14.281 42.941 172.484 117.383 119.453 149.343 192.252 97.902
eclipse PDE UI 47.748 91.333 65.205 71.595 74.5 24.667 109.237 107.655 96.166 111.208 98.181 118.599

equinox framework 39.731 98.571 92.857 95.625 88.571 67 114.796 99.941 100.242 96.877 98.437 101.48
lucene 41.951 19.667 23.561 38.167 26.833 55.667 136.778 104 115.248 115.481 99.067 103.578
mylyn 54.802 92.678 77.071 88.234 66.888 44.722 47.72 104.844 96.113 87.76 93.651 127.817

eclipse2.0 47.624 81.932 59.91 68.768 48.612 22.318 73.145 118.29 92.281 91.142 92.524 108.983
eclipse2.1 49.513 93.071 69.017 82.663 51.849 27.615 60.032 101.804 90.799 93.411 87.976 110.852
eclipse3.0 51.539 86.561 60.386 66.576 50.188 14.346 48.363 104.556 92.105 97.846 95.796 104.538

* Pred(l)=Prediction at level "l",w/o agg.=Without Aggregation, AAD=Average Absolute Deviation, MAD=Median Absolute Deviation, IQR=Interquartile Range,SUM=Summation,

MED=Median.

4.8 OBSERVATIONS

Table 4.4- Table 4.13 show the experimental results obtained for binary classification of software

fault prediction. Five classifiers used are Decision Tree (DT), Logistic Regression (LR), Naive

Bayes (NB), Random Forest and Support Vector Machine. Performance evaluation measure used

are Accuracy, Precision, Recall and F-measure.

Table 4.14 - Table 4.19 show the experimental results obtained for number of faults of

software fault prediction. Three classifiers used are Linear Regression (LNR), Decision Tree

Regression (DTR) and Multilayer Perceptron (MLP). Performance evaluation measure used are

Average Absolute Error (AAE), Average Relative Error (ARE), Prediction at level "l" (pred(l))

and Measure of Completeness (MOC).

A comparative analysis of "without aggregation method" and five existing aggregation

techniques ,i.e., AAD, IQR, MAD, MED and SUM is done.

4.8.1 Inter-release Binary Classification

For Promise datasets, it can be observed from Table 4.4- Table 4.13 that AAD performs the best

for Naive Bayes (best in 38.46%, 30% and 41.66% cases in terms of accuracy, recall and F-

measure respectively) and Random Forest (best in 20%, 22.22% ,25% and 28.57% cases in terms

of accuracy, precision, recall and F-measure respectively) classifiers while Summation performs

37

the best for Decision Tree (best in 25%, 28.57%, 40% and 50% cases in terms of accuracy,

precision, recall and F-measure respectively) and Logistic Regression (best in 33.33%, 28.57%,

30% and 44.44% cases in terms of accuracy, precision, recall and F-measure respectively)

classifiers.

The accuracy value ranges from 40.13% to 92%, precision value ranges from 0.3 to 1, recall

ranges from 0.15 to 1 and F-measure ranges from 0.2 to 0.93 for Random Forest.

For Eclipse datasets, it can be observed from Table 4.4- Table 4.13 that none of the aggregation

technique could outperform "without aggregation method" in terms of Accuracy. Summation

gives the best results in 100% cases, for all five classifiers used in terms of Precision. Median

gives the best results in 60% cases in terms of Recall for Decision Tree, Logistic Regression

and Naive Bayes while Summation gives the best results in 60% cases, for Logistic Regression,

Random Forest and Support Vector Machine classifiers in terms of F-measure.

The accuracy value ranges from 60.7% to 83.25%, precision value ranges from 0.29 to 0.71,

recall ranges from 0.24 to 0.77 and F-measure ranges from 0.28 to 0.7 for Random Forest.

4.8.2 Intra-release Binary Classification

For Eclipse datasets, it can be observed from Table 4.4- Table 4.13 that Summation gives the best

results in general, for Logistic Regression (best in 100%, 100% ,66.66% and 66.66% cases in

terms of accuracy, precision, recall and F-measure respectively) and Random Forest classifier

(best in 100%, 100% and 100% cases in terms of accuracy, recall and F-measure respectively).

The accuracy value ranges from 92.55% to 97.25%, precision value ranges from 0.95 to 0.99,

recall ranges from 0.87 to 0.97 and F-measure ranges from 0.91 to 0.96 for Random Forest.

For remaining four Eclipse and one Apache datasets, it can be observed from Table 4.4- Table

4.13 that Summation gives the best results in general, for all the five used classifiers in terms of

Accuracy and Precision in 60% cases. Summation also gives the best results in terms of Recall

(50% cases) and F-measure (60% cases) for Logistic Regression classifier . IQR gives the best

results in general, in 60% cases in terms of Recall and F-measure for Naive Bayes, Random

Forest and Support Vector Machine classifiers.

The accuracy value ranges from 92.16% to 100%, precision value ranges from 0.95 to 1,

recall ranges from 0.85 to 1 and F-measure ranges from 0.91 to 0.1 for Random Forest.

38

4.8.3 Inter-release experiments for Number of Faults Prediction

For Promise datasets, it can be observed from Table 4.14 - Table 4.19 that MAD outperforms the

other techniques of aggregation in general, in terms of AAE, ARE and Pred(l) in 100% cases

while Median outperforms the other techniques of aggregation in terms of MOC in 100% cases,

for all three classifiers used. The AAE value ranges from 0.01 to 47 , ARE value ranges from

0.01 to 9.9, pred(l) ranges from 7.4 to 96.15 and MOC ranges from -185.6 to 1450 for Linear

Regression.

For Eclipse datasets, it can be observed from Table 4.14 - Table 4.19 that AAD outperforms

the other techniques of aggregation in general, in terms of AAE, ARE and pred(l) for Linear

Regression and Multilayer Perceptron classifiers in 77.78% cases. MAD gives the best results in

terms of MOC for Linear Regression and Decision Tree Regression classifiers in 66.66% cases.

The AAE value ranges from 0.23 to 4 , ARE value ranges from 0.16 to 1.85, pred(l) ranges from

10.64 to 88.54 and MOC ranges from 58.84 to 1693 for Linear Regression.

4.8.4 Intra-release experiments for Number of Faults Prediction

For Eclipse datasets, it can be observed from Table 4.14 - Table 4.19 that AAD aggregation

technique outperforms all other techniques in 100% cases, in terms of all the four performance

evaluation measures used, for all the three used classifiers. The AAE value ranges from 0.17 to

4.18 , ARE value ranges from 0.13 to 1.88, pred(l) ranges from 14.34 to 93.07 and MOC ranges

from 87.97 to 118.2 for Linear Regression.

For remaining four Eclipse and one Apache datasets, it can be observed from Table 4.14 -

Table 4.19 that "without aggregation" method and AAD technique give comparable performance

results and both outperform other aggregation techniques in 100% cases in terms of AAE, for

Linear Regression and Multilayer Perceptron classifiers. AAD gives the best results in terms of

ARE and pred(l) for Linear Regression and Multilayer Perceptron classifiers in 66.66% cases.

Summation gives the best results in 75% cases in terms of MOC, for all three classifiers used.

The AAE value ranges from 0.09 to 5.07 , ARE value ranges from 0.06 to 2.35, pred(l) ranges

from 14.28 to 98.57 and MOC ranges from 87.75 to 192 for Linear Regression.

39

4.9 CONCLUSION

For binary classification in software fault prediction, AAD and Summation aggregation tech-

niques outperform "without aggregation" and other aggregation techniques in the scenarios

mentioned. Five classifiers used are Decision Tree (DT), Logistic Regression (LR), Naive Bayes

(NB), Random Forest and Support Vector Machine. Performance evaluation measure used are

Accuracy, Precision, Recall and F-measure. For predicting number of faults in software fault

prediction, MAD and Summation aggregation techniques outperform "without aggregation"

and other aggregation techniques in the scenarios mentioned. Three classifiers used are Linear

Regression (LNR), Decision Tree Regression (DTR) and Multilayer Perceptron (MLP). Per-

formance evaluation measure used are Average Absolute Error (AAE), Average Relative Error

(ARE), Prediction at level "l" (pred(l)) and Measure of Completeness (MOC).

40

CHAPTER 5

PROPOSED AGGREGATION

TECHNIQUES

Aggregation techniques are useful in aggregating the software metrics available at different levels

of granularity for training and testing datasets and thus bring the metrics at the same level of

granularity. In this chapter, three novel aggregation techniques ,i.e., Average of Quarter Medians

(QM_AVG), Median of Quarter Medians (QM_MED) and Summation of Quarter Medians

(QM_SUM) are proposed and their performances are explored in the field of software fault

prediction. The performances of these three techniques are also compared with the five existing

aggregation techniques used in previous chapter. Performance of "without aggregation method"

is also compared with the performances of these three techniques. Inter-release and intra-release

experiments are performed using binary classification and predicting number of faults in software

fault prediction.

5.1 INTRODUCTION

Software Fault Prediction is the mechanism to predict whether a software module is going to

be faulty or non faulty. This prediction mechanism is applied before the testing phase in the

development life cycle of the software. The prediction helps in deciding the amount of resources

required in the testing phase. If the module is predicted to be faulty, then more resources

are deployed for testing mechanism as compared to the resources deployed when a module is

predicted to be non faulty. In case of inter-releases software fault prediction, the data that is used

to train the classifier might not always be available at the same level of granularity as that of the

41

data used for testing. The same scenario may also happen in the cross project fault prediction.

Thus, there is a need to first bring the metrics at the same level of granularity and then apply

the prediction mechanism. Aggregation of metrics is helpful in such scenarios where the metric

values are to be combined together to bring them from some lower level to some higher level of

granularity. In this work, the software metrics available at the class and file level are aggregated

to package level by using different aggregation techniques.

5.2 RELATED WORKS AND MOTIVATION

Some of the works done on software metrics aggregation techniques in the filed of software fault

prediction are as follows.

Zimmermann et al. [7] worked on three releases of publicly available eclipse datasets and

mapped the packages and classes to the number of bugs that were reported before and after the

release. Post release bugs are the actual ones that matter for the users of the software program.

They used version archives and bug tracking systems to find the failed modules in the system.

The keywords like bug, fixed etc. were captured in the version archives to locate the bugs. They

computed the metrics at method, class and file level and aggregated them to higher levels ,i.e.,

file and package level. The aggregation techniques used were average, total and maximum values

of the metrics. Logistic regression was used as the machine learning technique. A module was

considered faulty even if it contained a single bug.

Herzig [8] used summation, median, mean and maximum value as the metric aggregation

techniques in software fault prediction mechanism in his work. Posnett et al. [5] used summation

while Koru and Liu [4] used minimum, maximum, summation and average for the aggregation of

metrics in software fault prediction in their works.

Other than software fault prediction, aggregation techniques have been used in other fields

also. There are mainly two categories of the aggregation techniques: traditional and econo-

metrics aggregation techniques. Traditional techniques of aggregation consist of mean, median

and summation techniques. Econometrics techniques of aggregation consist of Gini, Theil,

Kolm, Atkinson and Hoover inequality indices. Vasilescu et al. [9] studied the traditional and

econometrics aggregation techniques to analyze the correlations amongst them.

There exist several techniques for the aggregation of software metrics to bring them from

lower level to a higher level, in which the most commonly used ones are sum, median, mean

and maximum of the metric values. These techniques do not reveal much about the nature of

42

distribution of values. Summation technique gives the accumulative effect of the set of values,

revealing nothing about the range of values that exist in the set. Median just gives the central

value when the values are arranged in a sorted order, telling nothing about the distribution of

values that are present before and after it, in the sorted order of values. It just focuses on the

central value and ignores its neighbouring values. Mean of the set of values smoothens the

values [10]. It cannot differentiate between the two cases when all the values in the set are almost

equal and when there are different values present in the set such that their average value is the

same as that in the first case. Maximum value just gives one single value out of all the values

present in the set, giving no information about the rest of the values. In order to include not only

a specific point or a specific region in calculating the aggregated value but different regions in the

distribution of values in the set, three aggregation techniques have been proposed in this work.

In order to focus on the complete set of values instead of just a central point or a specific

region, the three aggregation techniques ,i.e., QM_AVG, QM_MED and QM_SUM are proposed.

In all of these techniques the complete set (in sorted order) is divided into four equal parts,

called quarters, and is then taken into consideration for calculating the final value. Thus, four

different regions are considered together in defining the aggregated value which takes care of the

distribution of values.

5.3 PROPOSED AGGREGATION TECHNIQUES

In the inter-releases prediction and cross project fault prediction, the granularity of training and

testing dataset metrics might not always be the same and when they are needed to be brought at

the same level, then aggregation of the metrics can be used. In a particular package there exist

several classes (or files). The metric values of all those classes (or files) which belong to the

same package are combined together by using aggregation technique to give one value per metric

for every package. It needs to be done for all the classes (or files) and packages. In this work,

three novel aggregation techniques ,as listed in Table 5.1, are used for analyzing their effect on

the software fault prediction performance:

a) Average of Quarter Medians (QM_AVG): The complete set of values in sorted order is

divided into four equal halves (quarters). QM_AVG is calculated by taking the average value of

the median values of the four quarters.

43

S.No. Aggregation Technique Formula
1 Average of Quarter Medians 1

4 ∗ (Med(QM1),Med(QM2),Med(QM3),Med(QM4))
2 Median of Quarter Medians Median(Med(QM1),Med(QM2),Med(QM3),Med(QM4))
3 Sum of Quarter Medians Med(QM1)+Med(QM2)+Med(QM3)+Med(QM4))

Table 5.1: List of the Proposed Aggregation Techniques.
Med:Median,QM:Quarter Median

QM_AV G =
1
4
∗ (Median(Q1),Median(Q2),Median(Q3),Median(Q4)) (5.1)

Where Q1= first quarter, Q2= second quarter, Q3= third quarter, Q4= fourth quarter of the

given set of values.

b) Median of Quarter Medians (QM_MED): The complete set of values in sorted order is

divided into four equal halves (quarters). QM_MED is calculated by taking the median of the

median values of the four quarters.

QM_MED = Median(Median(Q1),Median(Q2),Median(Q3),Median(Q4)) (5.2)

Where Q1= first quarter, Q2= second quarter, Q3= third quarter, Q4= fourth quarter of the given

set of values.

c) Sum of Quarter Medians (QM_SUM): The complete set of values in sorted order is

divided into four equal halves (quarters). QM_SUM is calculated by summing up the median

values of the four quarters.

QM_SUM = Median(Q1)+Median(Q2)+Median(Q3)+Median(Q4) (5.3)

Where Q1= first quarter, Q2= second quarter, Q3= third quarter, Q4= fourth quarter of the given

set of values.

5.4 DATASETS USED

Sixteen releases of datasets from the PROMISE data repository, three releases of publicly

available eclipse dataset, one apache dataset and four other publicly available eclipse datasets are

used for experimentation [7], [24].

44

5.4.1 Inter-release experiments

The earlier release of a dataset is used for training purpose to predict the fault proneness for the

later release that is used as testing dataset. There are eight pairs of training-testing datasets in our

experiments. Table 5.2 provides the details of the used datasets.

S.No. Training Dataset Testing Dataset
1 ant 1.6 ant 1.7
2 camel 1.4 camel 1.6
3 ivy 1.4 ivy 2.0
4 poi 2.5 poi 3.0
5 synapse 1.1 synapse 1.2
6 velocity 1.5 velocity 1.6
7 xalan 2.5 xalan 2.6
8 xerces 1.3 xerces 1.4
9 eclipse 2.0 eclipse 2.1

10 eclipse 2.0 eclipse 3.0
11 eclipse 2.1 eclipse 3.0

Table 5.2: Training-Testing datasets used for Inter-release experiments.

5.4.2 Intra-release experiments

Table 5.3 shows the list of datasets used for performing the intra-release experiment. 10 fold

cross validation techniques is used . The datasets is partitioned into 10 equal parts called folds,

each fold having almost equal number of faulty an non faulty instances. Thus, each fold is free

from class imbalance problem. 9 out of 10 folds are used to train the classifier and testing is done

on the 10th fold. This is repeated for ten times, making every fold as the testing data once.

S.No. Dataset
1 eclipse JDT CORE
2 eclipse PDE UI
3 equinox framework
4 lucene
5 mylyn
6 eclipse 2.0
7 eclipse 2.1
8 eclipse 3.0

Table 5.3: Datasets used for Intra-release experiments.

45

5.5 BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION

Binary classification in software fault prediction means that either the module under consideration

will be labeled as faulty or non faulty. There are only two labels possible for prediction. In binary

classification of fault prediction, if in a package even a single faulty class (or file) is present then

that package is declared to be faulty otherwise non faulty [6], [7], [25].

5.5.1 Machine Learning Techniques used

Five machine learning techniques used are naive bayes (Yang et al., 2017), (Turhan et al., 2013),

logistic regression (Arar and Ayan, 2016), (Zhao et al., 2017), support vector machine (Erturk and

Sezer, 2015), decision tree (Ghotra et al., 2015) and random forest (Kamei and Shihab, 2016).

5.5.2 Performance Evaluation Measures used

In binary classification of fault prediction, if in a package, even a single faulty class (or file)

is present then that package is declared to be faulty otherwise non faulty [26], [7], [25]. This

concept is used for calculation of values of performance measures. Four different performance

evaluation measures are used as discussed below:

Accuracy: It denotes the percentage of correctly classified instances to the total number of

instances.

Accuracy =
T P+T N

T P+T N +FP+FN
∗100 (5.4)

Precision: It denotes the number of correctly classified faulty instances amongst the total number

of instances classified as faulty.

Precision =
T P

T P+FP
(5.5)

Recall: It denotes the number of correctly classified faulty instances amongst the total number

of instances which are faulty.

Recall =
T P

T P+FN
(5.6)

46

F-measure: It denotes the harmonic mean of the precision and recall values.

F−measure =
2∗ precision∗ recall

precision+ recall
(5.7)

Where TP represents True Positive, FP represents False Positive, TN represents True Negative

and FN represents False Negative.

5.6 NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION

In software fault prediction mechanism, the fault proneness of the module is predicted using

some classifier. This fault proneness can be in terms of binary classification or in terms of the

number of faults present in the module. Finding the number of faults in a module gives more

accurate information about the fault proneness of the given module. It is better than just having

the information whether a module is faulty or non faulty. Binary classification of fault proneness

does not give the exact information about how less or more the module is fault prone.

5.6.1 Machine Learning Techniques used

Three machine learning techniques have been used experimentations for predicting the number of

faults in software fault prediction. These techniques are linear regression , multilayer perceptron

and decision tree regression [1], [27], [28], [29].

5.6.2 Performance Evaluation Measures used

Following are the performance evaluation measures used in finding the number of faults in

software fault prediction:

Average Absolute Error: It calculates the difference in the predicted and actual values and

takes the average value considering all the instances. Its value ranges from 0 to 1. Lower the

AAE better is the prediction.

AAE =
n

∑
i=1
|Xi−Yi| (5.8)

Here n is the number of instances,Xi is the predicted value and Yi is the actual value of an instance.

Average Relative Error: It calculates the ratio of the difference in the predicted and actual

values to the actual value of an instance and then finds the average value for all the instances. Its

47

value ranges from 0 to 1. Lower the ARE better is the prediction.

ARE =
n

∑
i=1

(|Xi−Yi|/Yi +1) (5.9)

Here n is the number of instances,Xi is the predicted value and Yi is the actual value of an instance.

Sometimes the value of Yi can be 0, making the fraction undefined. In order to avoid such

situations an additional 1 is added in the denominator value [30].

Prediction at level ’l’: It calculates the number of predictions having the predicted value

within l% of the actual value. It calculates the number of predictions which have the ARE value

under a certain predefined threshold value, generally taken to be 30%. Thus it calculates the

percentage of the number of predictions whose ARE value is lesser than or equal to 0.3 [31].

Pred(l) = k/n (5.10)

Here n is the total number of modules while k is the number of those modules which have the

predicted value less than or equal to ’l’.

Measure of Completeness: It depicts the ratio of the number of faults predicted to the actual

number of faults present in the overall modules. It is a measure to find how complete a model is

in finding the number of faults as compared to the actual number of faults present.

MOC =
Predicted number of faults

Actual number of faults present
(5.11)

48

5.7 EXPERIMENTAL RESULTS AND ANALYSIS

Table 5.4- Table 5.13 show the experimental results obtained for binary classification of software

fault prediction. Five classifiers used are Decision Tree, Logistic Regression, Naive Bayes,

Random Forest and Support Vector Machine. Performance evaluation measure used are Accuracy,

Precision, Recall and F-measure. "Without Aggregation method" is compared with all eight other

aggregation techniques in this section. Following observations can be made from these tables.

5.7.1 Inter-release Binary Classification

For Promise datasets, it can be observed from Table 5.4- Table 5.13 that QM_MED gives the

best results for Recall and F-measure when Logistic Regression and Support Vector Machine

classifiers are used. QM_AVG outperforms other techniques in terms of Accuracy, Recall and F-

measure when Random Forest is used. It also outperforms other techniques in terms of Accuracy

and F-measure when Support Vector Machine is used.

For Eclipse datasets, it can be observed from Table 5.4- Table 5.13 that no aggregation

techniques could outperform "without aggregation method" in terms of Accuracy. Summation

gives the best results for all the classifiers used in terms of all four performance evaluation

measures used. MED and QM_MED give comparable results and outperform all other techniques

when Naive Bayes classifier is used, in terms of Recall and F-measure.

Thus, QM_MED and QM_AVG outperform other techniques, in general in inter-release

binary classification of software fault prediction for above mentioned scenarios.

49

Table 5.4: Performance of Decision Tree in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 75.168 58.209 58.209 58.209 0.453 0.533 0.537 0.533
camel1.4-camel1.6 77.927 84 79.2 89.6 0.429 0.719 0.618 0.818

ivy1.4-ivy2.0 82.67 78.846 73.077 63.462 0.2 0.75 0.692 0.5
poi-2.5-poi3.0 41.403 90 90 90 0.612 0.941 0.941 0.941

synapse1.1-synapse1.2 69.531 66.667 66.667 66.667 0.557 0.786 0.786 0.75
velocity1.5-velocity1.6 57.205 76 80 76 0.429 0.8 0.812 0.8

xalan2.5-xalan2.6 57.853 80.952 78.571 80.952 0.541 0.917 0.914 0.917
xerces1.3-xerces1.4 39.456 68.421 65.789 60.526 0.872 1 1 1
eclipse2.0-eclipse2.1 80.325 66.189 62.09 66.189 0.247 0.589 0.543 0.589
eclipse2.0-eclipse3.0 78.524 63.165 60.3 63.165 0.312 0.592 0.562 0.592
eclipse2.1-eclipse3.0 79.911 64.666 65.075 64.666 0.291 0.66 0.657 0.66

Intra

eclipse JDT CORE 94.861 93.333 89.804 95 0.981 0.935 0.919 0.95
eclipse PDE UI 92.385 92.333 76 92.333 0.967 0.958 0.93 0.971

equinox framework 81.067 98.333 96.5 97.667 0.759 0.986 0.986 0.982
lucene 95.585 96.667 93.333 94.833 0.971 0.983 0.98 0.969
mylyn 93.435 90.901 91.592 87.846 0.966 0.945 0.931 0.908

eclipse2.0 92.939 78.879 70.053 79.326 0.973 0.77 0.658 0.766
eclipse2.1 94.198 74.052 67.238 73.61 0.979 0.885 0.652 0.893
eclipse3.0 91.49 78.283 71.161 79.872 0.982 0.745 0.79 0.77

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

Table 5.5: Performance of Decision Tree in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 0.554 0.774 0.71 0.774 0.499 0.632 0.611 0.632
camel1.4-camel1.6 0.404 0.676 0.618 0.794 0.416 0.697 0.618 0.806

ivy1.4-ivy2.0 0.175 0.632 0.474 0.474 0.187 0.686 0.562 0.486
poi-2.5-poi3.0 0.214 0.941 0.941 0.941 0.317 0.941 0.941 0.941

synapse1.1-synapse1.2 0.453 0.579 0.579 0.632 0.5 0.667 0.667 0.686
velocity1.5-velocity1.6 0.769 0.8 0.867 0.8 0.55 0.8 0.839 0.8

xalan2.5-xalan2.6 0.611 0.868 0.842 0.868 0.574 0.892 0.877 0.892
xerces1.3-xerces1.4 0.217 0.613 0.581 0.516 0.348 0.76 0.735 0.681
eclipse2.0-eclipse2.1 0.399 0.699 0.727 0.699 0.305 0.639 0.622 0.639
eclipse2.0-eclipse3.0 0.376 0.685 0.682 0.685 0.341 0.635 0.617 0.635
eclipse2.1-eclipse3.0 0.249 0.504 0.531 0.504 0.269 0.572 0.587 0.572

Intra

eclipse JDT CORE 0.919 0.967 0.88 0.967 0.948 0.941 0.883 0.951
eclipse PDE UI 0.884 0.886 0.574 0.886 0.923 0.917 0.684 0.917

equinox framework 0.941 0.983 0.954 0.979 0.837 0.983 0.967 0.979
lucene 0.941 0.95 0.883 0.933 0.956 0.965 0.925 0.948
mylyn 0.903 0.872 0.91 0.848 0.933 0.903 0.919 0.876

eclipse2.0 0.885 0.816 0.815 0.823 0.927 0.787 0.724 0.792
eclipse2.1 0.908 0.531 0.627 0.527 0.942 0.637 0.632 0.633
eclipse3.0 0.848 0.831 0.575 0.843 0.91 0.786 0.652 0.803

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

50

Table 5.6: Performance of Logistic Regression in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 73.154 52.239 59.701 52.239 0.432 0.483 0.548 0.483
camel1.4-camel1.6 60.622 76.8 70.4 77.6 0.253 0.553 0.469 0.568

ivy1.4-ivy2.0 77.273 61.538 50 61.538 0.065 0.476 0.316 0.471
poi-2.5-poi3.0 66.29 85 85 85 0.758 1 0.938 1

synapse1.1-synapse1.2 62.891 69.697 60.606 69.697 0.455 0.8 0.75 0.737
velocity1.5-velocity1.6 61.135 80 80 88 0.456 0.812 0.812 0.833

xalan2.5-xalan2.6 56.384 73.81 83.333 78.571 0.537 0.909 0.919 0.892
xerces1.3-xerces1.4 47.619 71.053 71.053 63.158 0.901 1 1 0.947
eclipse2.0-eclipse2.1 75.228 60.451 62.09 60.451 0.24 0.533 0.551 0.533
eclipse2.0-eclipse3.0 75.767 60.982 62.619 60.982 0.32 0.581 0.597 0.581
eclipse2.1-eclipse3.0 75.333 60.709 59.618 60.709 0.316 0.637 0.614 0.637

Intra

eclipse JDT CORE 77.542 82.647 75.98 82.157 0.848 0.85 0.744 0.823
eclipse PDE UI 69.061 80.667 80.333 81 0.754 0.839 0.836 0.834

equinox framework 71.527 93 91.667 94.333 0.75 0.969 0.94 1
lucene 66.775 81.5 81.333 79 0.764 0.872 0.856 0.855
mylyn 68.761 63.421 63.32 62.486 0.775 0.724 0.67 0.685

eclipse2.0 69.256 66.265 67.515 66.712 0.792 0.651 0.654 0.655
eclipse2.1 66.441 63.918 63.623 62.251 0.768 0.714 0.694 0.673
eclipse3.0 66.518 63.477 62.623 64.14 0.771 0.649 0.639 0.661

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

Table 5.7: Performance of Logistic Regression in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 0.651 0.452 0.742 0.452 0.519 0.467 0.63 0.467
camel1.4-camel1.6 0.521 0.765 0.676 0.735 0.34 0.642 0.554 0.641

ivy1.4-ivy2.0 0.075 0.526 0.316 0.421 0.07 0.5 0.316 0.444
poi-2.5-poi3.0 0.69 0.824 0.882 0.824 0.723 0.903 0.909 0.903

synapse1.1-synapse1.2 0.523 0.632 0.474 0.737 0.486 0.706 0.581 0.737
velocity1.5-velocity1.6 0.731 0.867 0.867 1 0.562 0.839 0.839 0.909

xalan2.5-xalan2.6 0.438 0.789 0.895 0.868 0.483 0.845 0.907 0.88
xerces1.3-xerces1.4 0.332 0.645 0.645 0.581 0.485 0.784 0.784 0.72
eclipse2.0-eclipse2.1 0.594 0.622 0.617 0.622 0.342 0.574 0.582 0.574
eclipse2.0-eclipse3.0 0.568 0.598 0.621 0.598 0.409 0.589 0.609 0.589
eclipse2.1-eclipse3.0 0.573 0.373 0.37 0.373 0.408 0.471 0.462 0.471

Intra

eclipse JDT CORE 0.681 0.813 0.813 0.847 0.754 0.815 0.755 0.825
eclipse PDE UI 0.607 0.786 0.771 0.791 0.67 0.794 0.788 0.803

equinox framework 0.698 0.896 0.912 0.892 0.716 0.922 0.921 0.941
lucene 0.496 0.767 0.783 0.733 0.601 0.811 0.81 0.779
mylyn 0.548 0.491 0.563 0.504 0.641 0.574 0.605 0.578

eclipse2.0 0.529 0.646 0.687 0.652 0.634 0.646 0.669 0.651
eclipse2.1 0.503 0.402 0.398 0.383 0.607 0.494 0.495 0.48
eclipse3.0 0.487 0.513 0.51 0.519 0.596 0.57 0.563 0.579

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

51

Table 5.8: Performance of Naive Bayes in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 77.718 62.687 62.687 62.687 0.5 0.594 0.583 0.594
camel1.4-camel1.6 73.575 77.6 65.6 76.8 0.321 0.65 0.371 0.609

ivy1.4-ivy2.0 82.955 78.846 73.077 76.923 0.321 0.786 0.619 0.769
poi-2.5-poi3.0 47.964 75 60 75 0.823 0.929 0.909 0.929

synapse1.1-synapse1.2 66.406 54.545 54.545 57.576 0.5 0.6 0.583 0.619
velocity1.5-velocity1.6 67.686 72 76 72 0.534 0.786 0.765 0.786

xalan2.5-xalan2.6 61.921 54.762 50 57.143 0.708 0.88 0.87 0.885
xerces1.3-xerces1.4 40.476 78.947 55.263 76.316 0.958 1 1 1
eclipse2.0-eclipse2.1 85.028 52.049 52.664 52.049 0.312 0.466 0.471 0.466
eclipse2.0-eclipse3.0 83.65 56.48 56.207 56.48 0.427 0.522 0.52 0.522
eclipse2.1-eclipse3.0 84.32 53.752 52.251 53.752 0.446 0.503 0.494 0.503

Intra

eclipse JDT CORE 63.864 72.157 67.549 74.902 0.865 0.842 0.76 0.867
eclipse PDE UI 61.362 67.667 63.667 67.667 0.745 0.757 0.635 0.767

equinox framework 66.484 86.333 88.167 88.667 0.829 0.887 0.875 0.933
lucene 58.918 75 71.167 73.833 0.743 0.74 0.78 0.72
mylyn 60.845 62.907 56.518 61.585 0.785 0.617 0.548 0.602

eclipse2.0 62.316 60.348 61.288 59.553 0.833 0.556 0.565 0.552
eclipse2.1 58.632 53.082 51.403 53.082 0.819 0.496 0.487 0.498
eclipse3.0 59.802 55.74 53.167 55.639 0.819 0.524 0.508 0.523

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

Table 5.9: Performance of Naive Bayes in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 0.59 0.613 0.677 0.613 0.541 0.603 0.627 0.603
camel1.4-camel1.6 0.319 0.382 0.382 0.412 0.32 0.481 0.377 0.491

ivy1.4-ivy2.0 0.45 0.579 0.684 0.526 0.375 0.667 0.65 0.625
poi-2.5-poi3.0 0.231 0.765 0.588 0.765 0.361 0.839 0.714 0.839

synapse1.1-synapse1.2 0.593 0.632 0.737 0.684 0.543 0.615 0.651 0.65
velocity1.5-velocity1.6 0.397 0.733 0.867 0.733 0.456 0.759 0.812 0.759

xalan2.5-xalan2.6 0.307 0.579 0.526 0.605 0.428 0.698 0.656 0.719
xerces1.3-xerces1.4 0.208 0.742 0.452 0.71 0.342 0.852 0.622 0.83
eclipse2.0-eclipse2.1 0.317 0.833 0.842 0.833 0.315 0.598 0.604 0.598
eclipse2.0-eclipse3.0 0.305 0.845 0.851 0.845 0.356 0.645 0.645 0.645
eclipse2.1-eclipse3.0 0.247 0.848 0.869 0.848 0.318 0.632 0.63 0.632

Intra

eclipse JDT CORE 0.341 0.593 0.573 0.573 0.488 0.657 0.608 0.644
eclipse PDE UI 0.389 0.563 0.643 0.569 0.51 0.626 0.63 0.628

equinox framework 0.467 0.829 0.921 0.858 0.591 0.845 0.892 0.886
lucene 0.28 0.833 0.633 0.867 0.403 0.775 0.689 0.775
mylyn 0.32 0.783 0.95 0.762 0.454 0.685 0.693 0.67

eclipse2.0 0.316 0.898 0.903 0.9 0.458 0.685 0.693 0.682
eclipse2.1 0.254 0.856 0.851 0.866 0.387 0.622 0.613 0.624
eclipse3.0 0.27 0.874 0.886 0.872 0.405 0.652 0.643 0.651

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

52

5.7.2 Intra-release Binary Classification

For Eclipse datasets, it can be observed from Table 5.4- Table 5.13 that QM_MED gives the best

results in terms of Recall and F-measure when Naive Bayes classifier is used.

For four Eclipse and one Apache dataset, it can be observed from Table 5.4- Table 5.13 that

QM_MED gives the best results in terms of Recall and F-measure when Naive Bayes classifier is

used. It also gives the best results in terms of Precision, Recall and F-measure when Support

Vector Machine classifier is used.

Thus, QM_MED outperforms other aggregation technique in the above mentioned scenarios

for intra-release binary classification of software fault prediction.

Table 5.10: Performance of Random Forest in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 77.852 61.194 58.209 61.194 0.503 0.558 0.535 0.558
camel1.4-camel1.6 79.689 90.4 86.4 89.6 0.475 0.893 0.793 0.862

ivy1.4-ivy2.0 86.364 78.846 73.077 76.923 0.3 0.786 0.632 0.818
poi-2.5-poi3.0 62.67 90 90 90 0.734 0.941 0.941 0.941

synapse1.1-synapse1.2 69.531 63.636 63.636 63.636 0.574 0.706 0.733 0.706
velocity1.5-velocity1.6 59.825 84 88 80 0.453 0.824 0.833 0.812

xalan2.5-xalan2.6 67.91 85.714 83.333 85.714 0.64 0.921 0.919 0.921
xerces1.3-xerces1.4 40.136 76.316 73.684 76.316 0.947 1 0.957 1
eclipse2.0-eclipse2.1 83.253 71.721 66.393 71.311 0.297 0.65 0.591 0.646
eclipse2.0-eclipse3.0 81.242 64.393 62.756 64.802 0.367 0.613 0.597 0.616
eclipse2.1-eclipse3.0 82.3 65.484 64.666 66.439 0.355 0.66 0.658 0.671

Intra

eclipse JDT CORE 97.687 98.333 98.235 98.333 1 0.975 0.962 0.975
eclipse PDE UI 97.278 97 94.333 97 1 0.983 0.98 0.983

equinox framework 97.605 100 99.333 99.667 1 1 1 1
lucene 97.799 98.333 99.167 98.333 1 1 1 1
mylyn 96.474 94.444 94.648 95.833 0.991 1 0.988 1

eclipse2.0 96.722 96.045 96.636 96.447 0.999 0.954 0.961 0.954
eclipse2.1 94.88 96.45 94.784 96.234 0.991 0.969 0.955 0.954
eclipse3.0 94.588 95.781 93.668 96.315 0.998 0.96 0.96 0.967

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

53

Table 5.11: Performance of Random Forest in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 0.572 0.774 0.742 0.774 0.535 0.649 0.622 0.649
camel1.4-camel1.6 0.404 0.735 0.676 0.735 0.437 0.806 0.73 0.794

ivy1.4-ivy2.0 0.15 0.579 0.632 0.474 0.2 0.667 0.632 0.6
poi-2.5-poi3.0 0.648 0.941 0.941 0.941 0.688 0.941 0.941 0.941

synapse1.1-synapse1.2 0.36 0.632 0.579 0.632 0.443 0.667 0.647 0.667
velocity1.5-velocity1.6 0.872 0.933 1 0.867 0.596 0.875 0.909 0.839

xalan2.5-xalan2.6 0.708 0.921 0.895 0.921 0.672 0.921 0.907 0.921
xerces1.3-xerces1.4 0.206 0.71 0.71 0.71 0.338 0.83 0.815 0.83
eclipse2.0-eclipse2.1 0.399 0.737 0.699 0.732 0.34 0.691 0.64 0.686
eclipse2.0-eclipse3.0 0.367 0.65 0.63 0.659 0.367 0.631 0.613 0.637
eclipse2.1-eclipse3.0 0.24 0.542 0.51 0.554 0.287 0.595 0.575 0.607

Intra

eclipse JDT CORE 0.955 1 1 1 0.977 0.986 0.977 0.986
eclipse PDE UI 0.949 0.96 0.906 0.96 0.973 0.969 0.939 0.969

equinox framework 0.957 1 0.992 0.996 0.978 1 0.996 0.998
lucene 0.957 0.967 0.983 0.967 0.978 0.982 0.991 0.982
mylyn 0.94 0.889 0.912 0.917 0.965 0.94 0.947 0.956

eclipse2.0 0.936 0.966 0.959 0.976 0.966 0.959 0.959 0.964
eclipse2.1 0.91 0.947 0.929 0.947 0.949 0.957 0.939 0.949
eclipse3.0 0.895 0.953 0.904 0.951 0.944 0.956 0.93 0.958

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

Table 5.12: Performance of Support Vector Machine in terms of Accuracy % and Precision.
Dataset Accuracy % Precision

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 73.691 53.731 52.239 53.731 0.442 0.5 0.492 0.5
camel1.4-camel1.6 70.57 83.2 72.8 86.4 0.336 0.686 0.5 0.73

ivy1.4-ivy2.0 77.557 76.923 67.308 78.846 0.132 0.667 0.538 0.722
poi-2.5-poi3.0 62.896 95 90 80 0.739 0.944 0.941 0.933

synapse1.1-synapse1.2 63.281 63.636 63.636 63.636 0.452 0.706 0.667 0.706
velocity1.5-velocity1.6 55.895 76 88 76 0.421 0.8 0.833 0.8

xalan2.5-xalan2.6 67.797 73.81 85.714 73.81 0.646 0.909 0.921 0.909
xerces1.3-xerces1.4 50.34 78.947 73.684 76.316 0.919 1 1 1
eclipse2.0-eclipse2.1 70.449 65.779 62.91 65.779 0.214 0.586 0.554 0.586
eclipse2.0-eclipse3.0 72.161 61.937 61.392 61.937 0.301 0.592 0.578 0.592
eclipse2.1-eclipse3.0 72.406 62.892 62.756 62.892 0.3 0.665 0.673 0.665

Intra

eclipse JDT CORE 81.225 89.902 86.569 89.412 0.868 0.892 0.962 0.91
eclipse PDE UI 75.529 77.667 93.667 77.667 0.798 0.87 1 0.867

equinox framework 73.704 95 94.833 95.167 0.741 0.938 0.943 0.957
lucene 78.759 87.333 87.167 87.333 0.826 0.923 0.907 0.907
mylyn 74.725 74.824 69.045 72.703 0.804 0.769 0.71 0.756

eclipse2.0 72.011 69.765 69.765 69.121 0.774 0.693 0.671 0.674
eclipse2.1 69.099 66.957 62.853 66.606 0.746 0.739 0.681 0.716
eclipse3.0 70.067 67.208 65.407 67.742 0.741 0.656 0.66 0.657

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

54

Table 5.13: Performance of Support Vector Machine in terms of Recall and F-measure.
Dataset Recall F-measure

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-1nt1.7 0.687 0.677 0.968 0.677 0.538 0.575 0.652 0.575
camel1.4-camel1.6 0.521 0.706 0.735 0.794 0.408 0.696 0.595 0.761

ivy1.4-ivy2.0 0.175 0.737 0.737 0.684 0.151 0.7 0.622 0.703
poi-2.5-poi3.0 0.644 1 0.941 0.824 0.688 0.971 0.941 0.875

synapse1.1-synapse1.2 0.442 0.632 0.737 0.632 0.447 0.667 0.7 0.667
velocity1.5-velocity1.6 0.782 0.8 1 0.8 0.547 0.8 0.909 0.8

xalan2.5-xalan2.6 0.679 0.789 0.921 0.789 0.662 0.845 0.921 0.845
xerces1.3-xerces1.4 0.364 0.742 0.677 0.71 0.521 0.852 0.808 0.83
eclipse2.0-eclipse2.1 0.648 0.684 0.689 0.684 0.322 0.631 0.614 0.631
eclipse2.0-eclipse3.0 0.668 0.598 0.647 0.598 0.415 0.595 0.611 0.595
eclipse2.1-eclipse3.0 0.647 0.417 0.397 0.417 0.41 0.513 0.499 0.513

Intra

eclipse JDT CORE 0.745 0.913 0.767 0.9 0.801 0.89 0.817 0.893
eclipse PDE UI 0.709 0.671 0.871 0.671 0.749 0.747 0.928 0.752

equinox framework 0.794 0.967 0.971 0.962 0.761 0.951 0.953 0.956
lucene 0.736 0.833 0.85 0.85 0.778 0.872 0.87 0.868
mylyn 0.667 0.723 0.695 0.695 0.729 0.744 0.695 0.719

eclipse2.0 0.628 0.7 0.727 0.7 0.693 0.689 0.696 0.686
eclipse2.1 0.61 0.479 0.388 0.479 0.67 0.568 0.482 0.563
eclipse3.0 0.632 0.669 0.591 0.675 0.682 0.659 0.619 0.664

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians.

Table 5.14 - Table 5.19 show the experimental results obtained for number of faults of software

fault prediction. Three classifiers used are Linear Regression, Decision Tree Regression and

Multilayer Perceptron. Performance evaluation measure used are Average Absolute Error (AAE),

Average Relative Error (ARE), Prediction at level "l" (pred(l)) and Measure of Completeness

(MOC). "Without Aggregation method" is compared with all eight other aggregation techniques

in this section. Following observations can be made from these tables.

5.7.3 Inter-release experiments for Number of Faults Prediction

For Promise datasets, it can be observed from Table 5.14- Table 5.19 that QM_MED gives best

results in terms of MOC when Linear Regression and Decision Tree Regression classifiers are

used.

For Eclipse dataset, it can be observed from Table 5.14- Table 5.19 that QM_AVG gives the

best results in terms of AAE, ARE and pred(l) while QM_MED gives the best results in terms of

MOC, when Multilayer Perceptron is used.

Thus, QM_MED outperforms other aggregation techniques in the above mentioned scenarios

for Inter-release experiments in predicting the number of faults in software fault prediction.

55

Table 5.14: Performance of Linear Regression in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 0.622 0.47 0.403 1.879 0.473 0.401 0.372 1.412
camel1.4-camel1.6 1.038 0.324 0.431 1.334 0.776 0.273 0.405 1.015

ivy1.4-ivy2.0 0.422 0.236 0.368 0.944 0.336 0.21 0.352 0.729
poi-2.5-poi3.0 0.857 1.348 1.421 5.392 0.43 0.895 0.993 1.948

synapse1.1-synapse1.2 0.746 0.786 0.965 3.119 0.503 0.579 0.773 1.761
velocity1.5-velocity1.6 1.046 1.112 1.628 4.436 0.748 0.779 1.111 2.076

xalan2.5-xalan2.6 0.667 0.658 0.511 2.615 0.43 0.354 0.31 0.768
xerces1.3-xerces1.4 2.339 2.581 1.584 10.287 0.533 0.699 0.464 1.184
eclipse2.0-eclipse2.1 0.621 0.248 0.378 0.979 0.569 0.216 0.355 0.757
eclipse2.0-eclipse3.0 0.634 0.237 0.358 0.931 0.538 0.191 0.329 0.641
eclipse2.1-eclipse3.0 0.617 0.255 0.434 1.033 0.517 0.209 0.406 0.747

Intra

eclipse JDT CORE 0.645 1.906 0.417 0.382 0.159 0.296 0.615 0.216
eclipse PDE UI 0.602 0.206 0.428 0.349 0.158 2.588 0.597 0.234

equinox framework 0.615 0.216 5.283 0.378 0.177 0.374 0.551 0.246
lucene 0.597 0.234 0.647 0.353 0.177 0.472 0.681 6.003
mylyn 0.551 0.246 1.019 0.392 2.496 1.473 0.603 0.206

eclipse2.0 0.681 6.003 2.776 0.38 0.162 0.483 0.718 0.251
eclipse2.1 0.603 0.206 0.79 0.415 0.171 0.472 5.791 3.558
eclipse3.0 0.718 0.251 0.835 2.872 1.739 0.554 0.162 0.296

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, AAE=Average Absolute

Error, ARE=Average Relative Error.

Table 5.15: Performance of Linear Regression in terms of Pred(l) and Measure of Completeness.
Dataset Pred(l) Measure of Completeness

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 46.174 59.701 68.657 25.373 153.776 177.277 253.5 177.277
camel1.4-camel1.6 28.083 63.2 54.4 20 186.747 149.667 330.684 153.3

ivy1.4-ivy2.0 46.307 75 61.538 40.385 153.248 25.242 33.153 25.357
poi-2.5-poi3.0 52.262 50 35 40 91.785 245.297 166.921 245.297

synapse1.1-synapse1.2 33.594 36.364 36.364 12.121 118.085 105.668 162.884 106.554
velocity1.5-velocity1.6 29.694 44 48 28 154.957 144.25 951.725 147.403

xalan2.5-xalan2.6 33.672 54.762 66.667 30.952 95.776 51.49 113.644 52.091
xerces1.3-xerces1.4 32.313 18.421 36.842 5.263 31.297 -5.514 12.285 -5.853
eclipse2.0-eclipse2.1 22.896 79.098 43.443 25 440.173 199.173 515.566 196.378
eclipse2.0-eclipse3.0 25.979 82.265 46.385 30.559 260.38 137.941 383.013 134.686
eclipse2.1-eclipse3.0 10.649 84.993 26.739 18.281 235.6 157.318 501.037 159.132

Intra

eclipse JDT CORE 51.384 23.667 53.111 95.844 99.203 94.815 56.199 88.106
eclipse PDE UI 45.934 86.381 51.894 97.798 98.781 140.256 40.718 85.814

equinox framework 56.199 88.106 21.176 93.93 103.557 90.212 43.117 84.588
lucene 40.718 85.814 59.868 92.484 99.359 98.607 42.788 10.465
mylyn 43.117 84.588 47.803 93.081 135.615 123.989 45.305 87.043

eclipse2.0 42.788 10.465 28 93.618 98.015 100.697 42.007 81.857
eclipse2.1 45.305 87.043 43.524 92.934 93.211 99.878 20.588 24.5
eclipse3.0 42.007 81.857 44.258 150.539 130.945 101.775 91.875 73.439

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, Pred(l)=Prediction at level

"l".

56

Table 5.16: Performance of Decision Tree Regression in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 0.56 0.325 0.269 1.299 0.395 0.26 0.25 0.867
camel1.4-camel1.6 0.793 0.234 0.277 1.011 0.522 0.177 0.242 0.631

ivy1.4-ivy2.0 0.312 0.144 0.117 0.588 0.24 0.125 0.101 0.449
poi-2.5-poi3.0 0.828 0.51 0.538 2.042 0.396 0.364 0.372 0.949

synapse1.1-synapse1.2 0.734 0.503 0.388 1.574 0.495 0.347 0.291 0.819
velocity1.5-velocity1.6 1.061 0.548 0.655 2.836 0.76 0.443 0.601 1.636

xalan2.5-xalan2.6 0.664 0.475 0.498 1.752 0.428 0.241 0.312 0.512
xerces1.3-xerces1.4 2.413 1.785 1.562 7.322 0.495 0.424 0.437 0.742
eclipse2.0-eclipse2.1 0.5 0.245 0.268 0.961 0.444 0.21 0.239 0.703
eclipse2.0-eclipse3.0 0.529 0.234 0.251 1.018 0.421 0.187 0.217 0.692
eclipse2.1-eclipse3.0 0.442 0.245 0.3 0.972 0.319 0.193 0.263 0.67

Intra

eclipse JDT CORE 0.453 1.254 0.212 0.212 0.087 0.138 0.483 0.161
eclipse PDE UI 0.364 0.114 0.204 0.28 0.116 1.738 0.297 0.228

equinox framework 0.483 0.161 3.954 0.181 0.174 0.291 0.294 0.188
lucene 0.297 0.228 0.534 0.176 0.136 0.284 0.659 4.002
mylyn 0.294 0.188 0.646 0.379 1.432 0.484 0.339 0.122

eclipse2.0 0.659 4.002 1.493 0.197 0.095 0.259 0.508 0.203
eclipse2.1 0.339 0.122 0.448 0.27 0.129 0.38 3.807 3.114
eclipse3.0 0.508 0.203 0.687 1.553 1.169 0.505 0.126 0.12

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, AAE=Average Absolute

Error, ARE=Average Relative Error.

5.7.4 Intra-release experiments for Number of Faults Prediction

For Eclipse datasets, it can be observed from Table 5.14- Table 5.19 that AAD gives the best

results in terms of all four performance evaluation measures used for Linear Regression and

Multilayer Perceptron classifiers.

For four Eclipse datasets and one Apache dataset, it can be observed from Table 5.14- Table

5.19 that AAD gives the best results in general, in terms of ARE and pred(l) when Linear

Regression and Multilayer Perceptron classifiers are used. Summation gives the best results in

terms of MOC, for all the three classifiers used.

Thus, AAD outperforms other techniques in the above mentioned scenarios, in intra-release

experiments for predicting the number of faults.

57

Table 5.17: Performance of Decision Tree Regression in terms of Pred(l) and Measure of
Completeness.

Dataset Pred(l) Measure of Completeness
w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 53.02 64.179 76.119 37.313 135.099 114.46 269.292 114.46
camel1.4-camel1.6 47.047 84 77.6 39.2 126.583 111.128 251.096 128.46

ivy1.4-ivy2.0 68.75 86.538 96.154 50 140.683 158.58 76.408 154.18
poi-2.5-poi3.0 52.489 60 50 45 89.381 103.668 99.055 104.079

synapse1.1-synapse1.2 32.031 51.515 63.636 45.455 121.92 79.43 94.024 97.264
velocity1.5-velocity1.6 31.878 32 28 16 153.818 218.403 486.341 249.898

xalan2.5-xalan2.6 31.864 71.429 47.619 45.238 95.981 65.722 77.603 66.506
xerces1.3-xerces1.4 30.782 36.842 39.474 5.263 23.879 19.892 17.949 19.277
eclipse2.0-eclipse2.1 48.783 80.328 68.852 38.525 348.461 185.614 322.903 183.274
eclipse2.0-eclipse3.0 49.929 84.584 73.124 39.154 206.412 135.108 250.574 141.228
eclipse2.1-eclipse3.0 60.436 76.808 66.985 26.739 137.736 126.46 300.134 138.882

Intra

eclipse JDT CORE 73.698 60.5 86.97 93.439 94.575 93.799 65.347 93.515
eclipse PDE UI 76.787 96.131 89.617 97.96 96.066 141.313 81.85 87.015

equinox framework 65.347 93.515 18.922 92.541 104.753 90.128 82.848 89.461
lucene 81.85 87.015 66.118 92.489 96.469 99.316 45.8 22.364
mylyn 82.848 89.461 83.561 93.532 139.044 108.528 80.09 96.9

eclipse2.0 45.8 22.364 58.333 93.498 101.55 97.602 70.15 87.571
eclipse2.1 80.09 96.9 72.357 93.08 95.172 101.996 18.431 30.167
eclipse3.0 70.15 87.571 57.045 120.768 121.361 101.863 97.5 96.004

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, Pred(l)=Prediction at level

"l".

Table 5.18: Performance of Multilayer Perceptron in terms of AAE and ARE.
Dataset Average Absolute Error Average Relative Error

w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 0.639 0.474 0.18 1.896 0.449 0.393 0.149 1.345
camel1.4-camel1.6 0.945 0.309 0.374 1.327 0.666 0.256 0.348 0.954

ivy1.4-ivy2.0 0.358 0.116 0.101 0.466 0.282 0.093 0.084 0.292
poi-2.5-poi3.0 0.865 0.692 0.61 3.195 0.394 0.436 0.441 1.081

synapse1.1-synapse1.2 0.689 0.447 0.538 2.049 0.411 0.297 0.421 0.911
velocity1.5-velocity1.6 1.065 0.623 0.815 2.68 0.609 0.516 0.711 1.778

xalan2.5-xalan2.6 0.679 0.565 0.494 2.356 0.394 0.31 0.318 0.733
xerces1.3-xerces1.4 2.242 1.877 1.837 7.358 0.673 0.446 0.564 0.607
eclipse2.0-eclipse2.1 0.703 0.192 0.468 0.769 0.655 0.155 0.448 0.51
eclipse2.0-eclipse3.0 0.714 0.208 0.445 0.837 0.622 0.155 0.42 0.489
eclipse2.1-eclipse3.0 0.815 0.277 0.693 1.094 0.729 0.231 0.673 0.812

Intra

eclipse JDT CORE 0.915 1.906 0.417 0.388 0.159 0.296 0.636 0.216
eclipse PDE UI 0.589 0.206 0.428 0.419 0.158 2.588 0.673 0.234

equinox framework 0.636 0.216 5.283 0.503 0.177 0.374 0.54 0.246
lucene 0.673 0.234 0.647 0.289 0.177 0.472 0.654 6.003
mylyn 0.54 0.246 1.019 0.343 2.496 1.473 0.595 0.206

eclipse2.0 0.654 6.003 2.776 0.322 0.162 0.483 0.71 0.251
eclipse2.1 0.595 0.206 0.79 0.32 0.171 0.472 5.791 3.558
eclipse3.0 0.71 0.251 0.835 2.872 1.739 0.554 0.162 0.296

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, AAE=Average Absolute

Error, ARE=Average Relative Error.

58

Table 5.19: Performance of Multilayer Perceptron in terms of Pred(l) and Measure of Complete-
ness.

Dataset Pred(l) Measure of Completeness
w/o agg QM_AVG QM_MED QM_SUM w/o agg QM_AVG QM_MED QM_SUM

Inter

ant1.6-ant1.7 43.221 64.179 82.09 17.91 86.926 206.069 119.361 206.069
camel1.4-camel1.6 42.487 74.4 56.8 23.2 147.635 127.742 405.26 147.731

ivy1.4-ivy2.0 65.057 92.308 88.462 67.308 144.034 36.911 200.559 103.821
poi-2.5-poi3.0 47.964 40 55 15 86.791 66.021 91.534 39.831

synapse1.1-synapse1.2 50.781 60.606 42.424 27.273 68.812 109.844 145.04 91.518
velocity1.5-velocity1.6 37.555 52 28 16 30.764 134.531 422.898 167.278

xalan2.5-xalan2.6 25.085 59.524 54.762 30.952 75.911 74.014 92.077 74.897
xerces1.3-xerces1.4 35.034 34.211 13.158 26.316 65.009 12.568 -9.956 13.976
eclipse2.0-eclipse2.1 8.608 88.73 29.713 37.705 503.29 84.393 700.386 83.313
eclipse2.0-eclipse3.0 10.932 88.404 36.153 35.88 299.176 51.164 538.412 48.502
eclipse2.1-eclipse3.0 10.299 93.724 16.508 21.692 338.3 176.61 873.412 173.544

Intra

eclipse JDT CORE 37.983 23.667 53.111 109.237 99.203 94.815 39.731 88.106
eclipse PDE UI 47.748 86.381 51.894 114.796 98.781 140.256 41.951 85.814

equinox framework 39.731 88.106 21.176 136.778 103.557 90.212 54.802 84.588
lucene 41.951 85.814 59.868 47.72 99.359 98.607 47.624 10.465
mylyn 54.802 84.588 47.803 73.145 135.615 123.989 49.513 87.043

eclipse2.0 47.624 10.465 28 60.032 98.015 100.697 51.539 81.857
eclipse2.1 49.513 87.043 43.524 48.363 93.211 99.878 20.588 24.5
eclipse3.0 51.539 81.857 44.258 150.539 130.945 101.775 91.875 73.439

* w/o agg.=Without Aggregation, QM_AVG =Average of Quarter Medians, QM_MED=Median of Quarter Medians, QM_SUM= Sum of Quarter Medians, Pred(l)=Prediction at level

"l".

5.8 OBSERVATIONS

Table 5.4- Table 5.13 show the experimental results obtained for binary classification of software

fault prediction. Five classifiers used are Decision Tree (DT), Logistic Regression (LR), Naive

Bayes (NB), Random Forest and Support Vector Machine. Performance evaluation measure used

are Accuracy, Precision, Recall and F-measure.

Table 5.14 - Table 5.19 show the experimental results obtained for number of faults of

software fault prediction. Three classifiers used are Linear Regression (LNR), Decision Tree

Regression (DTR) and Multilayer Perceptron (MLP). Performance evaluation measure used are

Average Absolute Error (AAE), Average Relative Error (ARE), Prediction at level "l" (pred(l))

and Measure of Completeness (MOC).

A comparative analysis of "without aggregation method" and all eight other aggregation

techniques ,i.e., AAD, IQR, MAD, MED, SUM, QM_AVG, QM_MED and QM_SUM is done.

5.8.1 Inter-release Binary Classification

For Promise datasets, it can be observed from Table 5.4- Table 5.13 that QM_MED gives the best

results for Recall (in 40% cases) and F-measure (in 40% cases) when Logistic Regression and

59

Support Vector Machine classifiers are used. QM_AVG outperforms other techniques in terms of

Accuracy (15% case), Recall (15.38% case) and F-measure (22.22% case) when Random Forest

is used. It also outperforms other techniques in terms of Accuracy (20% case) and F-measure

(22.22% case) when Support Vector Machine is used.

The range of accuracy is 44.77% to 95%, range of precision is 0.13 to 1, range of recall is

0.175 to 1 and range of F-measure is 0.15 to 0.97 for SVM.

For Eclipse datasets, it can be observed from Table 5.4- Table 5.13 that no aggregation

techniques could outperform "without aggregation method" in terms of Accuracy. Summation

gives the best results for all the classifiers used in terms of precision performance evaluation

measure in 100% cases. MED and QM_MED give comparable results and outperform all other

techniques when Naive Bayes classifier is used, in terms of Recall (50% cases) and F-measure

(25% cases).

The range of accuracy is 52.04% to 85.02%, range of precision is 0.31 to 0.82, range of recall

is 0.24 to 0.88 and range of F-measure is 0.31 to 0.64 for NB.

Figure 5.1: Comparative analysis of QM_AVG,QM_MED and QM_SUM with AAD using SVM

and Recall,for Binary classification in Inter-Release Experiments.

60

Comparative analysis of QM_AVG, QM_MED and QM_SUM using SVM and Recall, for

Binary classification in Inter-Release Experiments is done with the best technique amongst the

five existing aggregation techniques used ,i.e., AAD in Figure 5.1. It can be observed from

this figure that QM_MED aggregation technique shows the best performance amongst the other

techniques in comparison.

Figure 5.2: Comparative analysis of QM_AVG,QM_MED and QM_SUM with AAD using RF

and Recall,for Binary classification in Inter-Release Experiments.

Comparative analysis of QM_AVG, QM_MED and QM_SUM using RF and Recall, for

Binary classification in Inter-Release Experiments is done with the best technique amongst the

five existing aggregation techniques used ,i.e., AAD in Figure 5.2. It can be observed from

this figure that QM_AVG aggregation technique shows the best performance amongst the other

techniques in comparison.

61

5.8.2 Intra-release Binary Classification

For Eclipse datasets, it can be observed from Table 5.4- Table 5.13 that QM_MED gives the

best results in terms of Recall (66.66% cases) and F-measure (33.33% cases) when Naive Bayes

classifier is used. The range of accuracy is 51.4% to 67.63%, range of precision is 0.48 to 0.83,

range of recall is 0.25 to 0.90 and range of F-measure is 0.38 to 0.69 for NB.

Figure 5.3: Comparative analysis of QM_AVG,QM_MED and QM_SUM with SUM using NB

and Recall,for Binary classification of Intra-Release Experiments.

For four Eclipse and one Apache dataset, it can be observed from Table 5.4- Table 5.13 that

QM_MED gives the best results in terms of Recall (40% cases) and F-measure (40% cases) when

Naive Bayes classifier is used. It also gives the best results in terms of Precision (40% cases),

Recall (20% cases) and F-measure (20% cases) when Support Vector Machine classifier is used.

The range of accuracy is 55% to 89.5%, range of precision is 0.54 to 1, range of recall is 0.16 to

62

1 and range of F-measure is 0.25 to 0.89 for NB.

Comparative analysis of QM_AVG, QM_MED and QM_SUM using NB and Recall, for

Binary classification in Intra-Release Experiments is done with the best technique amongst the

five existing aggregation techniques used ,i.e., SUM in Figure 5.3. It can be observed from

this figure that QM_MED aggregation technique shows the best performance amongst the other

techniques in comparison.

5.8.3 Inter-release experiments for Number of Faults Prediction

For Promise datasets, it can be observed from Table 5.14- Table 5.19 that QM_MED gives best

results in terms of MOC when Linear Regression (in 33.3% cases) and Decision Tree Regression

(in 37.5% cases) classifiers are used. The range of AAE is 0.01 to 37.29, range of ARE is 0.01 to

2.13, range of pred(l) is 4 to 96.15 and range of MOC is 0 to 486.34 for DTR.

For Eclipse dataset, it can be observed from Table 5.14- Table 5.19 that QM_AVG gives the

best results in terms of AAE (66.66% cases), ARE (66.66% cases) and pred(l) (100% cases) while

QM_MED gives the best results in terms of MOC (66.66% cases), when Multilayer Perceptron

is used. The range of AAE is 0.19 to 3.66, range of ARE is 0.15 to 1.06, range of pred(l) is 8.6 to

93.72 and range of MOC is -117 to 873 for MLP.

Comparative analysis of QM_AVG, QM_MED and QM_SUM using MLP and AAE, for

predicting number of faults in Inter-Release Experiments is done with the best technique amongst

the five existing aggregation techniques used ,i.e., AAD in Figure 5.4. It can be observed from

this figure that QM_AVG aggregation technique shows the best performance amongst the other

techniques in comparison.

63

Figure 5.4: Comparative analysis of QM_AVG,QM_MED and QM_SUM with AAD using MLP

and AAE,for Inter-Release Experiments in predicting number of faults.

5.8.4 Intra-release experiments for Number of Faults Prediction

For Eclipse datasets, it can be observed from Table 5.14- Table 5.19 that AAD gives the best

results in terms of all four performance evaluation measures used in 100% cases for Linear

Regression and Multilayer Perceptron classifiers.

The range of AAE is 0.17 to 4.18, range of ARE is 0.13 to 1.88, range of pred(l) is 14.34 to

93.07 and range of MOC is 48.36 to 118 for MLP.

For four Eclipse datasets and one Apache dataset, it can be observed from Table 5.14- Table

5.19 that AAD gives the best results in general, in terms of ARE and pred(l) when Linear

Regression and Multilayer Perceptron classifiers are used (in 50% cases). Summation gives the

best results (in 75% cases) in terms of MOC, for all the three classifiers used.

64

The range of AAE is 0.09 to 6, range of ARE is 0.06 to 2.87, range of pred(l) is 10.46 to

98.57 and range of MOC is 47.71 to 192.25 for MLP.

Figure 5.5: Comparative analysis of QM_AVG,QM_MED and QM_SUM with AAD using MLP

and ARE,for Intra-Release Experiments in predicting number of faults.

Comparative analysis of QM_AVG, QM_MED and QM_SUM using MLP and ARE, for

predicting number of faults in Intra-Release Experiments is done with the best technique amongst

the five existing aggregation techniques used ,i.e., AAD in Figure 5.5. It can be observed from this

figure that AAD aggregation technique shows the best performance amongst the other techniques

in comparison.

65

5.9 CONCLUSION

For binary classification in software fault prediction, QM_MED and QM_AVG aggregation

techniques outperform "without aggregation" and other aggregation techniques in the scenarios

mentioned. Five classifiers used are Decision Tree (DT), Logistic Regression (LR), Naive Bayes

(NB), Random Forest and Support Vector Machine. Performance evaluation measure used are

Accuracy, Precision, Recall and F-measure. For predicting number of faults in software fault

prediction, QM_MED and AAD aggregation techniques outperform "without aggregation" and

other aggregation techniques in the scenarios mentioned. Three classifiers used are Linear Regres-

sion (LNR), Decision Tree Regression (DTR) and Multilayer Perceptron (MLP). Performance

evaluation measure used are Average Absolute Error (AAE), Average Relative Error (ARE),

Prediction at level "l" (pred(l)) and Measure of Completeness (MOC).

66

CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

Software fault prediction is the mechanism to predict the fault proneness of a module before

testing mechanism is applied. Software fault prediction can be either binary classification fault

prediction or can be prediction of the number of faults in the software.

For binary classification of software fault prediction, five classifiers used are Decision Tree

(DT), Logistic Regression (LR), Naive Bayes (NB), Random Forest and Support Vector Ma-

chine. Performance evaluation measure used are Accuracy, Precision, Recall and F-measure.

For predicting the number of faults in software fault prediction, three classifiers used are Linear

Regression (LNR), Decision Tree Regression (DTR) and Multilayer Perceptron (MLP). Per-

formance evaluation measure used are Average Absolute Error (AAE), Average Relative Error

(ARE), Prediction at level "l" (pred(l)) and Measure of Completeness (MOC). Publicly available

Promise datasets, Apache dataset and Eclipse datasets have been used. A comparative analysis of

"without aggregation method" and all eight other aggregation techniques ,i.e., AAD, IQR, MAD,

MED, SUM, QM_AVG, QM_MED and QM_SUM is done.

6.1 CONCLUSIONS

Aggregation may need to be performed in inter-releases and cross project prediction scenarios

where the granularity of the training dataset and the target testing dataset is of different level.

• Five existing aggregation techniques have been explored in this work ,i.e., (AAD), Median

Absolute Deviation (MAD), Interquartile Range (IQR), Median (MED) and Summation (SUM).

67

Out of these five techniques, AAD, IQR and MAD have not been used so far in the field of

software fault prediction. From the experimental analysis, it is observed that the performance of

software fault prediction is comparable with "without aggregation method" or even improved

after applying the aggregation of metrics. Considering "without aggregation method" and all the

five existing aggregation techniques used in this work, AAD and SUM gave better performances.

• In this work, Average of Quarter Medians (QM_AVG), Median of Quarter Medians

(QM_MED) and Sum of Quarter Medians (QM_SUM) are the three novel techniques explored

that have not been explored so far in any of the fields. Eight aggregation techniques ,i.e., Average

Absolute Deviation (AAD), Median Absolute Deviation (MAD), Interquartile Range (IQR),

Median (MED), Summation (SUM), Average of Quarter Medians (QM_AVG), Median of Quar-

ter Medians (QM_MED) and Sum of Quarter Medians (QM_SUM) are investigated for their

effect on the software fault prediction and "without aggregation technique" is also compared with

them. The performance of fault prediction mechanism using aggregation techniques have shown

comparable and even better performance as compared to the performance of fault prediction

mechanism when no aggregation method was used. QM_AVG and QM_MED gave better per-

formance amongst "without aggregation method" and all the eight other aggregation techniques

used in this work.

The performance of aggregation techniques vary on using different classifiers and different

datasets.

6.2 FUTURE WORK

Following are some of the possible areas where this work can be further explored.

• In future, more datasets can be used on which this work can be replicated to check the

consistency of the results obtained.

• Apart from the eight machine learning techniques used in this work, some other advanced

techniques could be used to see the difference in the performance of the fault prediction mecha-

nism.

• Some other existing or new aggregation techniques could be thought of to compare their

performances with the performance of the aggregation techniques used in this work.

• Ensemble of machine learning techniques could be explored to see what impact it will have

on the performance of the software fault prediction mechanism.

68

REFERENCES

[1] S. S. Rathore and S. Kumar, “Linear and non-linear heterogeneous ensemble methods to

predict the number of faults in software systems,” Knowledge-Based Systems, vol. 119, pp.

232–256, 2017.

[2] Ö. F. Arar and K. Ayan, “Deriving thresholds of software metrics to predict faults on open

source software: Replicated case studies,” Expert Systems with Applications, vol. 61, pp.

106–121, 2016.

[3] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and future challenges,” in

Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International

Conference on, vol. 5. IEEE, 2016, pp. 33–45.

[4] A. G. Koru and H. Liu, “Building effective defect-prediction models in practice,” IEEE

software, vol. 22, no. 6, pp. 23–29, 2005.

[5] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in empirical software engineer-

ing,” in Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering. IEEE Computer Society, 2011, pp. 362–371.

[6] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of summation to aggregate

software metrics hinders the performance of defect prediction models,” IEEE Transactions

on Software Engineering, vol. 43, no. 5, pp. 476–491, 2017.

[7] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in Proceedings

of the third international workshop on predictor models in software engineering. IEEE

Computer Society, 2007, p. 9.

69

[8] K. Herzig, “Using pre-release test failures to build early post-release defect prediction mod-

els,” in Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium

on. IEEE, 2014, pp. 300–311.

[9] B. Vasilescu, A. Serebrenik, and M. van den Brand, “You can’t control the unfamiliar: A

study on the relations between aggregation techniques for software metrics,” in Software

Maintenance (ICSM), 2011 27th IEEE International Conference on. IEEE, 2011, pp.

313–322.

[10] A. Serebrenik and M. van den Brand, “Theil index for aggregation of software metrics

values,” in Software Maintenance (ICSM), 2010 IEEE International Conference on. IEEE,

2010, pp. 1–9.

[11] K. Mordal-Manet, J. Laval, S. Ducasse, N. Anquetil, F. Balmas, F. Bellingard, L. Bouhier,

P. Vaillergues, and T. J. McCabe, “An empirical model for continuous and weighted metric

aggregation,” in Software Maintenance and Reengineering (CSMR), 2011 15th European

Conference on. IEEE, 2011, pp. 141–150.

[12] B. Walter, M. Wolski, P. Prominski, and S. Kupiński, “One metric to combine them all:

experimental comparison of metric aggregation approaches in software quality models,” in

Software Measurement and the International Conference on Software Process and Product

Measurement (IWSM-MENSURA), 2016 Joint Conference of the International Workshop

on. IEEE, 2016, pp. 159–163.

[13] I. Ivan, A. Zamfiroiu, M. Doinea, and M. L. Despa, “Assigning weights for quality software

metrics aggregation,” Procedia Computer Science, vol. 55, pp. 586–592, 2015.

[14] J. Sanz-Rodriguez, J. M. Dodero, and S. Sanchez-Alonso, “Metrics-based evaluation of

learning object reusability,” Software Quality Journal, vol. 19, no. 1, pp. 121–140, 2011.

[15] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis of evolving

software systems using the gini coefficient,” in Software Maintenance, 2009. ICSM 2009.

IEEE International Conference on. IEEE, 2009, pp. 179–188.

[16] X.-L. Sun, H.-L. Wang, Y.-G. Zhao, C. Zhang, and G.-L. Zhang, “Digital soil mapping

based on wavelet decomposed components of environmental covariates,” Geoderma, vol.

303, pp. 118–132, 2017.

70

[17] U. G. Sefercik and A. Atesoglu, “Three-dimensional forest stand height map production

utilizing airborne laser scanning dense point clouds and precise quality evaluation,” iForest-

Biogeosciences and Forestry, vol. 10, no. 2, p. 491, 2017.

[18] J. Jeong, E. Park, W. S. Han, K. Kim, S. Choung, and I. M. Chung, “Identifying outliers of

non-gaussian groundwater state data based on ensemble estimation for long-term trends,”

Journal of Hydrology, vol. 548, pp. 135–144, 2017.

[19] S. S. Ghannadpour and A. Hezarkhani, “Comparing u-statistic and nonstructural methods

for separating anomaly and generating geochemical anomaly maps of cu and mo in parkam

district, kerman, iran,” Carbonates and evaporites, vol. 32, no. 2, pp. 155–166, 2017.

[20] C. Pirlet, L. Pierard, V. Legrand, and O. Gach, “Ratio of high-sensitivity troponin to

creatine kinase-mb in takotsubo syndrome,” International journal of cardiology, vol. 243,

pp. 300–305, 2017.

[21] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility of cross-

project defect prediction,” Automated Software Engineering, vol. 19, no. 2, pp. 167–199,

2012.

[22] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect

prediction: a large scale experiment on data vs. domain vs. process,” in Proceedings of

the the 7th joint meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering. ACM, 2009, pp.

91–100.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority

over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357,

2002.

[24] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of empirical software

engineering data (2015),” 2015. [Online]. Available: http://openscience.us/repo

[25] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design metrics for predicting

high and low severity faults,” IEEE Transactions on software engineering, vol. 32, no. 10,

pp. 771–789, 2006.

71

http://openscience.us/repo

[26] Y. Zhao, Y. Yang, H. Lu, J. Liu, H. Leung, Y. Wu, Y. Zhou, and B. Xu, “Understanding the

value of considering client usage context in package cohesion for fault-proneness prediction,”

Automated Software Engineering, vol. 24, no. 2, pp. 393–453, 2017.

[27] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on

open source software for fault prediction,” IEEE Transactions on Software engineering,

vol. 31, no. 10, pp. 897–910, 2005.

[28] S. Wang and X. Yao, “Using class imbalance learning for software defect prediction,” IEEE

Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[29] S. S. Rathore and S. Kumar, “An empirical study of some software fault prediction tech-

niques for the number of faults prediction,” Soft Computing, vol. 21, no. 24, pp. 7417–7434,

2017.

[30] K. Gao and T. M. Khoshgoftaar, “A comprehensive empirical study of count models for

software fault prediction,” IEEE Transactions on Reliability, vol. 56, no. 2, pp. 223–236,

2007.

[31] S. G. MacDonell, “Establishing relationships between specification size and software

process effort in case environments,” Information and Software Technology, vol. 39, no. 1,

pp. 35–45, 1997.

72

	ABSTRACT
	INTRODUCTION
	SOFTWARE FAULT PREDICTION
	NEED FOR SOFTWARE FAULT PREDICTION
	SOFTWARE FAULT PREDICTION METHODOLOGY
	BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION
	PREDICTING THE NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION
	INTER RELEASE SOFTWARE FAULT PREDICTION
	INTRA RELEASE SOFTWARE FAULT PREDICTION
	CROSS PROJECT SOFTWARE FAULT PREDICTION
	SOFTWARE METRICS AGGREGATION
	NEED FOR SOFTWARE METRICS AGGREGATION
	CONCLUSION

	LITERATURE SURVEY
	AGGREGATION TECHNIQUES IN SOFTWARE FAULT PREDICTION
	AGGREGATION TECHNIQUES IN OTHER FIELDS OF SOFTWARE ENGINEERING
	CONCLUSION

	METHODOLOGY
	Approach of fault prediction mechanism
	Aggregation process used
	WITHOUT AGGREGATION METHOD OF SOFTWARE FAULT PREDICTION
	CONCLUSION

	EMPIRICAL STUDY OF EXISTING AGGREGATION TECHNIQUES
	INTRODUCTION
	RELATED WORKS
	Aggregation used in the field of Software Fault Prediction
	Aggregation used in other fields

	AGGREGATION TECHNIQUES USED
	DATASETS USED
	Inter-release experiments
	Intra-release experiments

	BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION
	Machine Learning Techniques used
	Performance Evaluation Measures used

	NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION
	Machine Learning Techniques used
	Performance Evaluation Measures used

	EXPERIMENTAL RESULTS AND ANALYSIS
	Inter-release Binary Classification
	Intra-release Binary Classification
	Inter-release experiments for Number of Faults Prediction
	Intra-release experiments for Number of Faults Prediction

	OBSERVATIONS
	Inter-release Binary Classification
	Intra-release Binary Classification
	Inter-release experiments for Number of Faults Prediction
	Intra-release experiments for Number of Faults Prediction

	CONCLUSION

	PROPOSED AGGREGATION TECHNIQUES
	INTRODUCTION
	RELATED WORKS AND MOTIVATION
	PROPOSED AGGREGATION TECHNIQUES
	DATASETS USED
	Inter-release experiments
	Intra-release experiments

	BINARY CLASSIFICATION IN SOFTWARE FAULT PREDICTION
	Machine Learning Techniques used
	Performance Evaluation Measures used

	NUMBER OF FAULTS IN SOFTWARE FAULT PREDICTION
	Machine Learning Techniques used
	Performance Evaluation Measures used

	EXPERIMENTAL RESULTS AND ANALYSIS
	Inter-release Binary Classification
	Intra-release Binary Classification
	Inter-release experiments for Number of Faults Prediction
	Intra-release experiments for Number of Faults Prediction

	OBSERVATIONS
	Inter-release Binary Classification
	Intra-release Binary Classification
	Inter-release experiments for Number of Faults Prediction
	Intra-release experiments for Number of Faults Prediction

	CONCLUSION

	CONCLUSIONS AND FUTURE WORK
	CONCLUSIONS
	FUTURE WORK

	REFERENCES

