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ABSTRACT

Thermal Comfort indicates human interpretation of comfort level of an environment. Pre-

dicting Thermal Comfort for a certain future date can have several applications. Predictive

Mean Vote (PMV) is one of the most used measure to express thermal comfort index, both

indoor and outdoor. Many of the parameters involved are needed to be synthesized which

adds to the complexity of it. Many techniques and algorithms to estimate it using only

some of the parameters involved have been proposed till date aiming to improve the ac-

curacy. Fuzzy Neural Network (FNN)s have been particularly successful in this scenario

generating suitable sets of rules. Improving the accuracy a step further while choosing

optimized number of parameters contribute to smoother and expanded applications. Con-

volutional Neural Network (CNN) is an essential Deep Neural Network (DNN) technique.

It is primarily used shrink or convolve large data into smaller versions by keeping essential

details intact. These smaller versions are used to classify (or in some case estimate using

regression) using softmax layers or ReLU layers. In this work, focus was on combining

modified FNN with suitable layers of CNN and/or traditional neural network to estimate

PMV by regression with greater accuracy.
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Chapter 1

INTRODUCTION

Thermal comfort of any region, indoor and outdoor is a matter of interest for travelers,

residents, business-people, workers etc. If possible, a prediction of certain area or indoor

system, could have several applications such as: travel suitability prediction, thermal stress

prediction for resident and workers to help them decide their working hours. Even in indoor

one could tune ventillations or Air-conditioning according to predictions.

The prime difference between naturally ventilated (NV) and HVAC buildings is that NV

systems are unable to be tuned as per occupant feeling (indoor heat exchange are shown in

Fig. 1.1).

Figure 1.1: Indoor Heat Exchange in Human Body [1]
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1. INTRODUCTION

Being a semi-closed system, NV buildings’ environment tends to get affected by change

in air-velocity, air temperature, relative humidity, etc. Comfort level in the context of hu-

man body is often associated with thermal comfort felt by individuals. Thermal comfort

is referred to as the condition of mind that expresses satisfaction with the thermal environ-

ment (depicted in Fig. 1.2). However, this thermal comfort level is also greatly associated

Figure 1.2: General Heat exchange in Human Body [2]

with relative humidity, air-velocity, mean radiant temperature, metabolic rate, clothing fac-

tor along with air temperature [5]. As a choice of comfort index, PMV is a widely used

one and uses all the six parameters mentioned previously along with some synthesized vari-

ables. It is often very difficult to estimate PMV in real time because of the complexity, but

from meteorological data, it is easy to retrieve only some of the parameters mentioned.

Approaches have been developed to estimate the PMV value from few of the parame-

ters. This work aims at solving the estimation problem with a novel architecture comprised

of fuzzy system and Deep Neural Network (DNN) along with analysis of the system. Our

choice of DNN is Convolutional Neural Network (CNN) used primarily for regression on
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1. INTRODUCTION

the output of fuzzy neural network to estimate PMV. Although CNNs are proved to shrink

large data chunk into small one and then classify, this work observes its’ ability in regres-

sion using its’ convolving and pooling property.

1.1 Motivation and Objective

CNN is primarily used for classification using deep layer techniques, converting large data

to smaller, significant data-chunks. On the other hand, in order to extend the use of PMV

prediction as comfort index both indoor and outdoor, interest lied in finding a different

technique of estimating PMV and/or possibly with better results. Li et al. [6] and Yifan et

al. [7] was able to achieve significant accuracy (RMSE 0.2 and RMSE 0.045, respectively)

using fuzzy sets and neural networks. One of the purposes of this work was to establish the

fact that deep architectures like CNN could as well be used to perform regression-like tasks

and possibly find better results in estimating PMV.

In this work, attempt was made to use CNN for regression along with fuzzy sets for

PMV estimation. This work, if successful would be able to produce nearly accurate PMV

values for any date given meteorological parameters such as Air Temperature, Relative

Humidity, Air Velocity, Metabolic rate, Clothing Factor and Mean Radiant Temperature

obtained from remote sources. For this purpose a more open-source data has been consid-

ered. Along with the final outcome, focus was put on choice of parameters and behavior of

various aspects of neural network architecture with the result.

1.2 Contribution of the Dissertation

This dissertation presents a novel architecture which uses CNN in regression problem in

order to estimate PMV. Traditional ANFIS model is modified using fuzzy-set values and

expanded in a particular way to be used here. A particular combination and sequence of

convolve and pooling layers were appended to ANFIS model to perform this regression of

PMV. As we are restricted to the choice of input parameters for applying this in real-world

scenario, this work demonstrates suitable optimized choice of parameters for best result

and their inter-dependency. As we were interested in extending scope of this work to both

indoor and outdoor, both NV and HVAC building data were considered from a open-source

3



1. INTRODUCTION

platform. This approach also improves the error of estimating PMV compared to works

done previously.

1.3 Organization of Dissertation

This dissertation has been divided in chapters.

• Chapter 1 provides introduction of Predicted Mean Vote (PMV) along with its’ ex-

tended scope of applications in various fields and why prediction of it is an important

aspect. It also discusses about CNN, Fuzzy-Neural Networks and how these can be

used to do the same.

• Chapter 2 describes analysis of various thermal comfort indexes and their relative

applicability comparison. Further it gives necessary background on Adaptive Fuzzy

Neuro Fuzzy-Systems (ANFIS) and basics of CNN.

• Chapter 3 presents some of the most effective PMV estimation algorithms till date

using combinations of fuzzy-sets and neural networks. This section also discusses

about some works attempting regression using CNN.

• Chapter 4 presented the proposed Fuzzy-CNN architecture along with few variations

in both implementation and input system.

• Chapter 5 provides the simulation results of work presented in this dissertation along

with

• Chapter 6 provide concludes the dissertation and presents the future scope in this

scenario.
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Chapter 2

BASIC PRELIMINARIES

As this work will be using Adaptive-Network- Based Fuzzy Inference System (ANFIS)

model along with CNN layer in the end to estimate PMV, some basics about them are

presented.

2.1 Predicted Mean Vote (PMV)

PMV was developed by Fanger [8] to scale human sensation of thermal comfort, which is

backed by ASHRAE. PMV was defined as a function of six parameters: Air-temperature

(Ta), Relative Humidity (RH), Mean radiant air-temperature (TR), Air-velocity (Vair), metabolic

rate (Met), clothing factor (Clo). This quantification of thermal comfort of a group of per-

sons is defined in a scale of -3 to +3, described in Table 1.

The PMV equation is defined as:

(0.303e−0.036Met +0.028)[(Met−W )−3.05

×10−5× [5733−6.99(Met−W )−Pa]

−0.42[(Met−W )−58.15]−1.7×10−5Met(5867−Pa)−0.0014×Met(34−Ta)

−3.96×10−8 fc× [(Tcl +273)4− (TR +273)4]− fclhc(Tcl−Ta)] (2.1)

where Met is human metabolic rate and W is external work done in W/m2, Pa is water

vapor pressure in Pa, Ta and TR are in ◦C. Tcl is the surface temperature of clothing, hc is

convective heat transfer coefficient (both in ◦C), the ratio of clothed body surface area to

5



2. BASIC PRELIMINARIES

naked body surface area is fcl .

Table 2.1: PMV Labels

PMV Index −3 −2 −1 0 1 2 3

Label cold cool less cool neutral less

warm

warm hot

Some of these parameters are defined by some complex equations as:

Tcl = 35.7−0.028(Met−W )− Icl[3.96×10−8 fcl

× [(Tcl +273)4− (TR +273)4]+ fclhc(Tcl−Ta)] (2.2)

hc =

12.1
√

Vair if 2.38(Tcl−Ta)
1/4 < 12.1

√
Vair.

2.38(Tcl−Ta)
1/4, if 2.38(Tcl−Ta)

1/4 > 12.1
√

Vair.

(2.3)

fcl =

1.00+0.2Icl if Icl ≤ 0.5 Clo .

1.05+0.1Icl, otherwise .

(2.4)

where Icl is thermal resistance of clothing (Clo) in W/m2, Pa is calculated as:

Pa =
PsRH
100

(2.5)

Ps is saturated vapor pressure at specific temperature (◦C). As seen, PMV is expected

to have non-linear behavior and unrealistic to solve in real-time, which is the reason behind

establishing such models to estimate its’ value using choice of parameters.

As discussed, in order to estimate PMV, our work deals with fuzzy-neuro systems with

certain deep layer addition. Following sub-sections are dedicated for some useful basics.

2.2 ANFIS Model

Adaptive-Network-Based Fuzzy Inference System (ANFIS) was developed by Jang et al.

[9] using Takagi-Sugeno fuzzy model [10] to leverage fuzzy-rule strength and estimate

outputs. For a rule i:

wi = µi
1(x1)×µi

2(x2)...×µi
p(xp) (2.6)

6



2. BASIC PRELIMINARIES

where wi is rule strength, µi
j is membership function for input x j and rule i. After that the

rule strengths are normalized (w̄i) and put into linear combination with input values in order

to get output, where a j is called consequent parameter:

y = ∑
i

w̄i(a0 +a1x1 +a2x2 + ...+anxn) (2.7)

2.3 Convolutional Neural Network (CNN)

CNNs are similar to normal feed-forward Artificial Neural Networks (ANN) except that

they are specifically used to shrink or “convolve” the input into a more less dimensional or

sized data-form to work upon. They generally work well on images (classification, com-

pression, etc.). The hidden layers of CNN typically consist of 3 type of layers: convolu-

tional layer, pooling layer and fully connected layer.

• Convolutional Layer: This basically converts a sub-section of input into a smaller

size (mostly by performing dot product). A window of randomly initialized values is

applied to convolve part of input data having identical dimension; while the window

is slid by some pre-defined value. This is presented in Fig. 2.1.

Figure 2.1: Convolutional Layer Funcitioning [3]

• Pooling Layer: Pooling layer performs downsampling i.e. transforms region of input

into singular value. This is generally done by taking maximum (max-pool, presented

in Fig. 2.2), minimum (min-pool) or average (average-pool).

7



2. BASIC PRELIMINARIES

Figure 2.2: Pooling (Max) Layer Funcitioning [4]

• Fully Connected Layer: Here every neuron in previous layer is connected to every

neuron in next layer. This layer is generally applied after convolving and/or pooling

in order to get classification or regression value.

The relative positioning and deciding number of layers is specific to problem scenarios.

8



Chapter 3

LITERATURE SURVEY

The purpose of developing a model to estimate Thermal Comfort for future days using few

of the available parameters from meteorological data, was that it can be used in applications

like: travel safety check for a certain region, generating time-series comfort index trend for

a region for study purpose, choosing an area for living etc. This thermal comfort index was

not limited to PMV, in fact there were various other ways developed for estimating Thermal

Comfort before and after PMV was developed. Some of them are presented below.

3.1 Various Thermal Comfort Indexes

Before PMV was developed by Fanger et al. [8], other comfort indexes like PET, SPMV,

SET were proposed. Even after PMV was proposed PPD and UTCI came into picture.

3.1.1 Physiological Equivalent Temperature (PET)

Höppe et al. [11] defined PET as the physiological equivalent temperature at given place

(indoors or outdoors) and is equivalent to the air temperature at which, in a indoor setting,

the heat balance of the human body (work metabolism 80 W of light activity, added to basic

metabolism; heat resistance of clothing 0.9 clo) is maintained with core and skin tempera-

tures equal to those under the conditions being assessed. The assumptions that were made

for indoor climate references are: Mean Radiant Temperature equals Air Temperature, Air

Velocity is set to 0.1 m/s, water Vapour Pressure is set to 12 hPa (approximately equivalent

9



3. LITERATURE SURVEY

to a relative humidity of 50% at Air Temp. = 20°C).

3.1.2 Standardized PMV (SPMV)

Gagge et al. [12] in 1986 proposed SPMV as:

PMV = α[Hsk−h
′
(Tsk−To)−Edi f f −Ecom f ] (3.1)

where Edi f f is the evaporative heat loss caused by diffusion of moisture through the skin,

Ecom f is zero and increases with activity when metabolic rate is greater than 58.2, h
′

is

transfer coefficient, To is the operative temperature of the environment, Tsk is skin temper-

ature, Hsk is heat exchange at the skin surface with environment. α is a sensitivity factor,

decreased rapidly from 0.06 during rest to a relatively constant level of 0.03 after resting

metabolic rate doubles.

3.1.3 Standard Equivalent Temperature (SET)

ASHRAE defined Standard Effective Temperature (SET*) Index, defined as the equivalent

dry bulb temperature of an i sothermal environment at 50% RH in which a subject, while

wearing clothing standardized for activity concerned, would have the same heat stress (skin

temperature Tsk).

3.1.4 Predicted Percentage Dissatisfied (PPD)

Predicted Percentage of Dissatisfied (PPD) predicts the percentage of occupants that will be

dissatisfied with the thermal conditions. It is a function of PMV, given that as PMV moves

further from 0, or neutral, PPD increases. The maximum number of people dissatisfied

with their comfort conditions is 100% and, as you can never please all of the people all of

the time, the recommended acceptable PPD range for thermal comfort from ASHRAE 55

is less than 10% persons dissatisfied for an interior space. The equation for PPD is given

as:

PPD = 100−95e[− (0.3353PMV 4 +0.2179PMV 2)] (3.2)

10



3. LITERATURE SURVEY

3.1.5 Universal Thermal Climate Index (UTCI)

Defined by International Society of Biometeorology [13] as an Equivalent Temperature

(ET) of an actual thermal condition is the air temperature of the reference condition causing

the same dynamic physiological response. The references considered are: relative humid-

ity: 50%, Air Velocity 0 m/s, full shade. The temperature range defined as:

Table 3.1: UTCI Temperature Range

Temp.

Range

>

46°C

38 to

46°C

32 to

38°C

26 to

32°C

9 to

26°C

0 to

9°C

−13

to

0°C

−27

to

−13°C

−27

to

−40°C

<

−40°C

Label Extreme

Heat

Stress

V.

Strong

Heat

Stress

Strong

Heat

Stress

Mod.

Heat

Stress

No

Ther-

mal

Stress

Slight

Cold

Stress

Mod.

Cold

Stress

Strong

Cold

Stress

V.

Strong

Cold

Stress

Extreme

Cold

Stress

3.2 Works on Estimating PMV

3.2.1 Neural Network

Ferreira et al. [14] applied Radial Basis Function neural network (RBF-NN) in a model-

predictive HVAC system considering all the six parameters. The training was done using

Levenberg-Marquardt (LM) algorithm. Using 23000 training dataset, maximum and aver-

age absolute error turned up to be 0.011 and 0.0025 with 100 testing points.

Chengli et al. [15] used traditional neural network with BP to find training MSE around

0.0008.

3.2.2 Vector Machine

Megri er al. [16] used Support Vector Machine with linear kernel and variants of polynomial

kernel to estimate PMV considering all the six parameters required. The cost function used

11



3. LITERATURE SURVEY

by them was:

L(x) =

|PMV −g(x)− ε, |PMV −g(x)| ≥ ε.

0, otherwise.
(3.3)

where decision function g(x) is

g(x) =
l

∑
i=1

(αi−α
∗
i )K(x,si)+b (3.4)

where l is the number of support vectors (si), and the coefficients α∗ and b are determined

by quadratic programming. K(..) of the inner product of the nonlinear feature is called

kernel function.

3.2.3 Genetic Algorithm

Bingxin et al. [17] considered all the six parameters mentioned previously for describing

PMV to apply Genetic Algorithm for training. Three AM-101 environment analyzer were

used to get indoor and outdoor data. They used back propagation with the fitness function

as :

f (X) =
1

∑
n
i=1 (ti−mi)2 (3.5)

where n is sample number, ti is sample value, mi is sample average value.

The Mean Squared Error (MSE) converged to 10−5. They also observed that, Air Tem-

perature had a positive while Air Velocity had a negative correlation with PMV.

3.2.4 Fuzzy Set

Li et al. [6] used Type-2 fuzzy sets neural networks combined with back propagation for

error adjustment and Least Square Estimate (LSE) for estimating. They considered only

Air Temperature and Relative Humidity, distributed each of them into five T2FS, before

applying them to a hidden layer and then LSE. The references for other parameters were:

Metabolic Rate: 69.78 W/m2

Clothing Factor: 0.7 Clo

Mean Radiant Air Temperature: Same as Air Temperature

Air Velocity: 0.2 m/s

12



3. LITERATURE SURVEY

They tuned the parameters’ value by BP and observed a RMSE value of around 0.2 for

567 training data samples.

Later Yifan et al. [7] proposed a modified ANFIS model combined with multivariate

linear regression for estimating PMV in 2000. Each parameter was distributed into various

sets.Specific set of knowledge was incorporated for adding more rules (5 experience based

and 33 generated rules) and MATLAB was used to simulate these. They also gave justifica-

tion of choosing more number of parameters. In one of the variants of their work, without

considering human variables, they achieved a RMSE value of 0.065. Considering human

variables RMSE value came down to 0.046 for 3200 training data and 600 testing data.

While turning our focus into deep learning modules, there were very few works com-

bining Fuzzy sets and CNN or CNN’s application in regression. Although none of them

were targeted in estimating PMV.

3.3 Works Using CNN as Regression and/or With

Fuzzy Models

3.3.1 Fuzzy-CNN for Handwritten Digit Recognition

Popko et al. [18] combined fuzzy rules with CNN for cases where CNN modules fail to

complex written numbers. They had generated a rule database before applying 2 layers of

convolutional layer and one hidden fully-connected layer. The output neural values Y l
n(x,y)

of the n-th feature map of the convolutional layer l was calculated as:

Y l
n(x,y) = f

(
∑
m

k−1

∑
i=0

k−1

∑
j=0

ω
l
mn(i, j).Y l−1

m (x+ i,y+ i)+bl
m
)

(3.6)

where x, y are coordinates of a neuron inside the feature map;M is the set of feature maps

of the previous layer l−1 that are associated with the n-th feature map of the layer l; ωl
mn

is the matrix of synaptic coefficients (the convolution kernel); K is the size of the receptive

field of the neurons of the l-th layer; bl
m being the bias term for the n-th feature map of the

l-th layer.

13



3. LITERATURE SURVEY

Recognition accuracy for the test set reached 99.23% for MNIST dataset.

3.3.2 Fuzzy-CNN for Depth Weighting

Moreno et al. [19] used CNN to classify depth of an image by initially fuzzifying its’ depth

variations and then applying CNN to it. Coupling of convolve layer and max-pooling layer

were used 3 times before applying fully connected layers and softmax function. This saw

90.2% accuracy.

3.3.3 CNN for Regression

Zhou et al. [20] combined Recurrent Neural Network (RNN) with CNN to estimate pain

intensity from a person’s face in a video frame. Given vector sequences of AAM-warped

facial images, they used sliding window to obtain fixed-sized input samples for RNN. The

best MSE they obtained lied around 1.12.

14



Chapter 4

FUZZY-CNN ARCHITECTURE

In this work, ANFIS approach is adopted (without any prior knowledge of rules) while the

estimation of consequent parameters (a j) as mentioned in Section 3 is left to CNN layers.

Regression using neural networks is a widely practiced approach. In order to estimate the

PMV, the five parameters which are considered are: Air Temperature (Ta), Relative Hu-

midity (RH), Air Velocity (Vair), Metabolic Rate (Met) and Clothing Factor (Clo). Another

comparison study involved Mean Radiant Temperature (TR) also.

4.1 Pre-Processing

The five parameters and TR are distributed into multiple fuzzy sets using standard Gaussian

Distribution Function as shown in Equation 8:

µ j
i (xi) = exp[−

(xi−a j
i )

2

2(b j
i )

2
] (4.1)

where µ j
i is membership function for input xi and rule j; while a and b are corresponding

mean and Standard Distribution (s.d) respectively.

• Air Temperature: Data is distributed into three fuzzy sets: cold, normal (with more

standard deviation i.e. flat/spread curve for the two extreme sets), hot; while hot and

cold having moderate s.d. (depicted in Fig. 4.1)

• Relative Humidity: Gaussian functions used to split into 3 sets: humid, normal, dry.
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4. FUZZY-CNN ARCHITECTURE
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Figure 4.1: Initial Fuzzy Distribution of Air Temperature.
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Figure 4.2: Initial Fuzzy Distribution of Relative Humidity.

Very low s.d applied to the two extreme sets while flat curve was maintained for

normal one (depicted in Fig. 4.2).

• Air Velocity: Similar gaussian distribution is used to divide into three sets: stormy,

moderate air flow, almost still air with moderate s.d in two extreme and high s.d in

median set (depicted in Fig. 4.3).

• Mean Radiant Temperature: TR is distributed in same way as Ta.

• Metabolic Rate: Metabolic Rate is divided into three sets: slow, moderate, active

giving moderate set a high variance.
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4. FUZZY-CNN ARCHITECTURE
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Figure 4.3: Initial Fuzzy Distribution of Air Velocity.

• Clothing Factor: Finally clothing rate is divided into three sets heavily clothed, nor-

mal and minimal clothing. Heavily clothing was given low variance while moderately

clothing set was given high variance.

4.2 Layer Architecture

Initially we have all the five parameters each divided into three fuzzy sets i.e. a total of 15

values. The Fuzzy-CNN architecture consists of five layers as described below and in Fig.

4.4.

• Layer 1: Using the pre-processed fuzzified values rule combinations are generated.

Each rule is considered to be a tuple of five values (ans six values for the variation

where TR is used) where each value is is corresponding to one parameter’s particular

fuzzy-set value. Hence we have a total of 243 (729 in case of six-variable) rules. One

sample rule j will be:

If x1 is µ j
1(x1) AND x2 is µ j

2(x2) ... AND xp is µ j
p(xp)

Then output is y

where xi are input parameters (total p), µ is membership function. The input vari-

ables considered sequentially are: air-temperature, relative humidity, air-velocity,

metabolic rate, clothing factor. Combinations are generated in following way: if

there are two sets A = [a1,a2] and B = [b1,b2] there ordered combinations will be =
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4. FUZZY-CNN ARCHITECTURE
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Figure 4.4: Overall Architecture of Fuzzy-CNN.

[(a1,b1), (a1,b2), (a2,b1), (a2,b2)]

• Layer 2: Each rule values are intra-multiplied in order to get rule-strength (w j) based

on Equation 2.6.

• Layer 3: Each rule strength value is normalized (w̄i).

w̄ j =
w j

∑ j w j
(4.2)

• Layer 4: The output of layer 3 is multiplied with corresponding input data (which

was passed as input into Layer 1) embedded with the average of five parameters and

1. This embedding can be regarded as bias term a0 as in Equation 2.7.

• Layer 5 (CNN): In order to get the parameters or to estimate y in Equation 7, deep

networks are incorporated. First, generic 3 layer neural network with RMSProp op-

timizer and learning rate around 0.0005 is used to find y from 243 x 7= 1701 param-

eters (729 x 8= 5832 for six-variable). Later, it was compared to deep architecture

consisting of a 7 x 1 (8 x 1 for other case) convolve layer with one channel and stride
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4. FUZZY-CNN ARCHITECTURE

Figure 4.5: Internal Architecture of Layer 5.

of 7 (8 for other case) units, followed by a 3 x 1 max-pool layer and stride of 3 units

which is again passed through convolve layer of size 1 x 1, 3 channels and unit stride

followed by max-pool same as last one. This was followed by 3 fully-connected lay-

ers with 500, 250 and 50 neurons respectively. This entire architecture of layer 5 for

5 variable is in Fig. 4.5.

4.3 Choice of Variables

The Mean Radiant Temperature (MRT) is related to air-temperature according to ISO 7726

standard [21]. Considering MRT as one of input parameters number of rules would grow

significantly large (729) and number of consequent parameters reached 729 x 8 = 5832,

which is a three-fold increase in terms of parameter estimation. The comparison of results

for both 5 and 6 variable cases are revealed in Section . Metabolic rate [22] and cloth-

ing factors [23] are un-avoidable as shown by Yifan et al. [7]. Air-temperature, relative

humidity and air-velocity are maintained as key parameters.
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4. FUZZY-CNN ARCHITECTURE

4.4 Input System

For experimenting and analysis, RP-884 was used as reference. The datasets for one NV

building by Dear et al. [24] and 22 HVAC buildings by Cena et al. [25] were combined

as entire dataset to be used. The former one was obtained from wet equatorial climate of

Singapore, in the year 1991. The latter one was from hot arid region of Kalgoorlie-Boulder,

Australia for both winter and summer seasons in 1998. The Singapore and Australian win-

ter and summer datasets had 584, 625 and 589 samples respectively, totaling 1798 samples;

out of which around 1400 samples were used for training and 400 for testing randomly at

runtime.

The parameters used in experiment were in range as follows:

Air Temperature: 16.7 ◦C to 36.1 ◦C.

Relative Humidity: 24.54 % to 97.82 %.

Air Velocity: 0.043 m/s to 1.567 m/s.

Mean Radiant Air-Temperature: 16.82 ◦C to 32.81 ◦C.

Metabolic Rate: 0.772 Met to 2.58 Met. (1Met = 58W/m2)

Clothing Factor: 0.045 to 1.57
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Chapter 5

SIMULATION RESULTS AND

ANALYSIS

As setup, Python 3.2 and tensorflow, numpy were used. Before considering neural network

linear regression and polynomial regression (degree 3) were applied for 5 parameter ver-

sion. Root Mean-Squared Error (RMSE) value reached around 0.08 and 0.04, respectively.

Initially, considering only 3 fully connected traditional neural networks appended to layer

4 of our ANFIS model, the best Root Mean-Squared Error (RMSE) value reached around

0.8 with train and test data set in similar way. Fuzzy-CNN model separated into train and

test set as discussed, it reached a good RMSE value of around 0.018 for 5 parameters and

around 0.08 considering TR on the testing data, considering no prior knowledge were used

in both cases. ANFIS with no prior knowledge with multivariate regression reached best

RMSE of 0.04.

The error plot showed in Fig. 5.1 shows relative error between actual and predicted

values of PMV with respect to Air Temperature for first 100 test samples.

Table 5.1: Error Analysis

Approach RMSE

Fuzzy-CNN with 5 parame-

ters

0.02

Fuzzy-CNN with 6 parame-

ters

0.08

ANFIS with Prior Knowledge 0.04
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5. SIMULATION RESULTS AND ANALYSIS

Fig. 5.2 represents amount of error of each of samples predicted for both the approaches in

this work and ANFIS with prior knowledge. This comparison is depicted in Table 5.1.

The consideration of Mean Radiant Air Temperature reduces the accuracy by a large

extent. It is observed that RMSProp was able to converge slowly but more efficiently (global

minima ≤ 0.019) for both 5 and 6 parameter versions while Gradient Descent converged

quickly but with higher global minima (≥ 0.021). Learning rate was maintained as 0.0005
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Figure 5.3: RMSProp and GD Optimizer Comparison for 5 Parameter Case

and batch size was maintained as 5, increasing the batch size did not have significant effect

on global minima except, it converged more slowly.

As seen from Fig. 5.3 and 5.4 the RMSE values have a specific trend with respect to

iterations for both the five and six parameter case. Also, without the last pooling layer, the

best RMSE value did not reach below 0.04 for 5 variable case. Fig. 5.3 and 5.4 shows how

the RMSE converges against iterations for our approaches with both optimizers while Fig.

5.5 , 5.6 and 5.7 shows finally tuned fuzzy set value for three parameters.

5.1 Discussions

As discussed in Chapter 4, convolutional layer performs dot product and hence results in

downsampling of input. In our 5 variable case, input dimension is 1701× 1× 1× 1 (height
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Figure 5.4: RMSProp and GD Optimizer Comparison for 6 Parameter Case
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Figure 5.5: Tuned Fuzzy Distribution of Air Temperature.

x width x depth x channels). After convolving with 7 x 1 sized filter with stride of 7 x 1

x 1 x 1 we are reducing each expanded rule value into the a singular value meaning, we

now deal with 243 parameters. Similar to this, the six-parameter version would reduce to

729 values. This value can be considered related to the normalized rule strength from layer

3. This reduction is similar to layer 4 to 3 (backward) but in a different way. Max-pooling

with window size 3 x 1 x 1 x 1 downsamples every 3 consecutive value into a singular

one (maximum one). Before normalizing in layer 3, in layer 2, every 3 consecutive rule
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Figure 5.6: Initial Fuzzy Distribution of Relative Humidity.
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Figure 5.7: Tuned Fuzzy Distribution of Air Velocity.

strength differed only in terms of clothing rate (Clo) membership function values. This

pooling step is kept max, not average, as optimizing would be less complex. Now we are

reduced to 81 values and 243 for six-variable case. The next convolve layer performs dot

product with each value obtained in last step but adds 3 channels to it making it 81 x 3 sized

data. Reshaping it we get 243 x 1 shape again. Again max-pooling reduces it to 81 values

(243 for other case) which imply getting rid of effect of the clothing factor parameter. One

more layer of max pooling of similar dimension and stride reduces it to 27 values, this can

be considered as neutralizing metabolic rate’s (Met). Adding layers after it affected results

and time to train. The second convolve layer was added to make an increase in number of

parameters to optimize and pass different value to second pooling layer.
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5. SIMULATION RESULTS AND ANALYSIS

Few fully-connected layers that are added to it as discussed start with having neurons

almost 20-fold the number of parameters (27 x 19 ≈ 500). Weights and biases of these FC

layers are initialized as random normal values.
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Chapter 6

CONCLUSIONS AND FUTURE

SCOPE

The consideration of mean radiant temperature (TR) reduces the estimation accuracy; also

TR is related to Air Temperature (Ta) which might effect in re-consideration of same pa-

rameter. One can conclude that CNN efficiently deduces the inter-dependencies of the

parameters and their impact in estimating the final PMV values. As PMV is a widely used

comfort index metric, CNN does a good work in choosing parameters and estimating it.

This work could as well be extended by considering Boltzmann Machine, RBF Net-

works or suitable deep learning framework in combination with ANFIS or as a standalone

system. This requires sufficient and extensive experimentation and analysis.
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