
A FRAMEWORK
for

MULTI-ROBOT COORDINATION

A DISSERTATION

Submitted in partial fulfilment of the

requirements for the award of the degree

of

INTEGRATED DUAL DEGREE

in

COMPUTER SCIENCE AND ENGINEERING

BY

ARUN A R

Department of Computer Science and Engineering

Indian Institute of Technology Roorkee

Roorkee- 247667, India

MAY, 2018

A FRAMEWORK
for

MULTI-ROBOT COORDINATION

A DISSERTATION

Submitted in partial fulfilment of the

requirement for the award of the degree of

INTEGRATED DUAL DEGREE

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by

ARUN A R

Enrolment No: 11211004

under the supervision of

Dr. RAJDEEP NIYOGI

(Associate Professor)

Department of Computer Science and Engineering

Indian Institute of Technology Roorkee

Roorkee- 247667, India

MAY, 2018

AUTHOR’S DECLARATION

I declare that the work presented in this dissertation with title, A framework

for Multi-Robot Coordination towards the fulfillment of the requirements for

award of the degree of Integrated Dual Degree in Computer Science &

Engineering, submitted to the Department of Computer Science & Engineering,

Indian Institute of Technology Roorkee, India, is an authentic record of

my own work carried out during the period from June 2017 to May 2018 under

the guidance of Dr.Rajdeep Niyogi, Associate Professor, Department of

Computer Science and Engineering, Indian Institute of Technology, Roorkee.

Neither this thesis nor any part of it has been submitted for any degree or

academic award elsewhere.

Date :

Place : IIT Roorkee

Arun A R (11211004)

IDD, C.S.E,

Indian Institute of Technology, Roorkee.

CERTIFICATE

This is to certify that the statement made by the candidate in the declaration

is correct to the best of my knowledge and belief.

Date :

Place : Roorkee

Dr. Rajdeep Niyogi

(Supervisor)

Associate Professor

Department of Computer Science & Engineering

Indian Institute of Technology Roorkee

ACKNOWLEDGMENT

First of all, I bow my head in humility to the Almighty, most graceful and

loving, the creator of the universe, for providing me with this opportunity to work

with the intelligentsia and enabling me to reach far beyond my own, restricted

ambit of thought and action it is my great pleasure to express my sincere and

profound thanks to my learned supervisor Dr. Rajdeep Niyogi, Associate professor

- Department of Computer Science and Engineering, IIT Roorkee, who has given

me enormous support, guidance and encouragement. He has provided me many

useful suggestion and guidance during the study. His observations and comments

helped me to establish the overall direction to the research and to move forward with

investigation in depth. He has helped me greatly and been a source of knowledge.

I am very much indebted to my supervisor, for his continuous encouragement

and support. He is always ready to help with a smile. I am also thankful to all

the professors at the department for all their patience and support during difficult

times in my studies.

Secondly, I would like to thank my father Ravanan A and my mother Manime-

halai M for their unwavering support and help throughout the years. I would

specially like to thank my friend Mr. Amar Nath Dhebla whose technical expertise

and moral support helped me to push my own goals further. I would like to thank

administrative, technical and non-technical staff members of the Department who

have been kind enough to help in their respective roles.

AR Arun

Er. No. 11211004

ABBREVIATIONS

ARGoS Autonomous Robots Go Swarming

MAP Multi Agent Planning

MRS Multi Robot System

API Application Program Interface

OpenGl Open Graphics Library

rab range and bearing

GUI Graphic User Interphase

POV-ray Persistence Of Vision Ray-tracer

CDPS Cooperative Distributed Problem Solving

ABSTRACT

This report is a study of multi-robot systems. The advantage multi-robot

systems pose over single-robot systems both in terms of environmental presence,

cost, robustness and redundancy. This report also discusses the importance of

coordination in multi-robot system among the robots. Both heterogeneous and

homogeneous multi-robot systems are discussed and a homogeneous multi-robot

system is also implemented and discussed in detail.

The types of coordination and their incredible importance to improve the per-

formance of multi-robot systems is also discussed. The additional over head of

messaging in case of explicit coordination and sensing other robots in addition

to environment in case of implicit coordination are meager when compared to

improved performance or the ability to perform tasks impossible by single agent

systems to do.

An effort has been put to learn more about multi-robot systems by trying to

actually program their action from small single-robot systems to heterogeneous

multi-agent systems with explicit coordination. ARGoS simulator has been used

to evaluate our programs correctness and effectiveness.

Keywords: Coordination and Cooperation, Multi Agent System, Multi-robot sys-

tem, Joint Action, Multi Agent Planning, ARGoS simulator,Implicit communica-

tion, Explicit communication.

6

Contents

1 Introduction . 11

2 Related Work . 11

3 Multi-Robot Systems . 12

3.1 Categories of Multi-robot System 14

3.2 Coordination Strategies for Robots in Multi-Robot System . 14

3.3 Static Coordination . 15

3.4 Dynamic Coordination . 15

3.4.1 Explicit Coordination 15

3.4.2 Implicit Coordination 16

3.5 Multi-Robot Environment: Cooperative Versus Competitive 16

3.5.1 Cooperation Behaviour 16

3.5.2 Competition Behavior 17

3.6 Communication for Coordination 17

4 Problem Definition . 18

5 ARGoS Simulator . 18

5.1 Extensibility . 20

5.1.1 Modular Architecture of ARGoS 20

5.1.2 Sensors of ARGoS 20

5.1.3 Actuators . 20

5.1.4 Additional Modules 21

5.1.5 Simulated Space 22

5.1.6 Entity . 22

5.2 Scalability . 22

5.2.1 Scatter gather . 22

5.2.2 h-dispatch . 23

5.3 Running the simulation in ARGoS 23

5.4 Configuration file . 23

5.5 Controller file . 24

5.6 Loop function . 24

6 Implentation of Grid-World Box Pushing 24

6.1 Setting up the simulation 27

6.1.1 Framework . 27

6.1.2 Controller . 29

7

6.1.3 Arena . 30

6.1.4 Physics Engines . 33

6.1.5 Media . 33

6.1.6 Visualization . 33

6.2 Controller . 34

6.2.1 Init . 34

6.2.2 Step . 35

6.2.3 Search . 36

6.2.4 Communication in ARGoS 40

6.2.5 Reaching to specific location 41

6.2.6 Grabbing Blocks 43

6.2.7 Navigate . 45

6.2.8 Goal . 45

7 Results . 46

8 Conclusion . 48

8

List of Figures

1 Types of robot systems . 14

2 Coordination strategies in multi-robot systems 15

3 Coordination scenrio in multi-robot systems 16

4 Coordination strategies in multi-robot systems 17

5 Grid world box pushing domain . 18

6 The main devices of the foot-bot robot supported by ARGoS [20] . 19

7 The files required to run ARGoS . 23

8 The environment for grid-world domain in ARGoS 25

9 The grid-world domain with boxes and robot in ARGoS 25

10 light and heavy boxes . 26

11 State diagram for the experiment 28

12 Proximity Sensors . 39

13 Range and bearing actuator and sensor functioning 41

14 Finding threshold height for range and bearing sensor and actuator 42

15 Overcoming obstacles in Rab sensor with relay node 42

16 Overcoming obstacles in Rab sensor with relay node 43

17 The grid world domain map for navigation 45

18 Motor Ground Sensor . 46

19 Robots removing light weight blocker from the grid block environment 46

20 Team formation to remove heavy block 47

21 Removing Heavy block . 48

9

List of Tables

1 The list of important sensors having by ARGoS 20

2 The list of important actators having by ARGoS 21

3 Message Format . 33

4 States of the Robots in course of the experiment 35

10

1 Introduction

Agent can be thought of as a computer-program, electronic device, electrical de-

vice, mechanical device, and even human being which is authorized to perform

some specified tasks in place of another. A Multi Agent System (MAS) is a sys-

tem in which multiple agents that cooperate and coordinate with each other to

provide the solution to one or more tasks.

An agent may have so many extra abilities, such as interaction protocol, coor-

dination and cooperation among agents. Agents need to communicate with other

agents to maintain the self-reliance among them, and obtain whether a direct or

indirect data-exchange. In order to jointly perform a required task or to fulfill a

particular goal in multi agent system agent-interaction basically is commanded by

different obligation, i.e., cooperation, competition or coexistence. In this work, a

robot is considered to realize the agent of the Multi-agent system.

Robots are becoming common occurrence in day today life in many common

fields like manufacturing, construction, house maintenance search and rescue, fire

fighting, port and warehouse maintenance and also in serious research subjects

like planetary exploration etc. Similar to humans when more than one robot as a

team work on a complex task by coordinating among each other they may be able

to accomplish task impossible for a single robot to accomplish or finish the task

in a more efficient manner.

Thus, when a group of robots try to accomplish complex tasks with coordi-

nation then the robustness of the solution (due to redundancy) may increase and

rate of completion of tasks may also decrease. Such a system of multiple robots

working together by coordinating among themselves is a multi-robot system. This

coordination in between robots in multi-robot system brings its own set of chal-

lenges to effective coordination, such as dynamic events, changing task demands,

resource failures, the presence of adversaries, and limited time, energy, computa-

tion, communication, sensing, and mobility. Therefore, coordinating a multi-robot

team requires overcoming many formidable research challenges.

Furthermore, we simulate multi-robot system using ARGoS (Autonomous Robots

Go Swarming) simulator and experience these challenges first hand and attempt

to solve some of the problems.

2 Related Work

In this section we have presented the related work. A market-based approach

is proposed in [1] for multi-robot task allocation problem for the police force

agents. Nonetheless, the authors in [1] have not considered how to deal with heavy

blockers. The authors assumed that each task is finished by the single robot. But,

in a real circumstance, it isn’t the situation and some of the obstacle/road-blockers

11

(object scattered on road) may be heavy. Thus, we need to guarantee how to clear

the road if a heavy obstacle is presented on the road in the rescue environment. In

this way managing heavy object becomes essential to deal with. Managing heavy

articles is challenging and it requires robot coordination and task allocation to

deal with it. The robotic urban search and rescue, i.e., RoboCupRescue simulation

environment, type of agents and their responsibilities are discussed in [1–5].

The work presented in [1–5] assumes single task performed by single robot.

Task allocation for multi-robot system is an important and challenging problem

due to the unpredictable nature of robot environments, sensor failure, robot failure,

and dynamically changing task requirements [7–11, 13, 15, 18]. Most of the task

allocation solutions propose an auction-based approach wherein robots bid for

tasks based on cost functions for performing a task.

Multi-robot coalition formation has been studied by [7], where each robot

has some capabilities and a coalition has to perform some task for which some

capabilities are required. The authors consider the problem of coalition formation

such that there is no coalition imbalance, which happens when a large part of

resources is ascribed to any robot in a coalition. A balance coefficient is thus

defined and it is used to form a suitable coalition for a given task. In our algorithm,

we have assumed that agents have same capabilities to execute a joint action. Thus

the notion of imbalance does not arise in our case. Moreover, our algorithm is fully

distributed which is not the case with [7].

The work [9] discuss a general task allocation [18] system to intelligently coor-

dinate the group of robots. The main focus of the paper [9] for task allocation is

to minimize the three aspects of the system: resource usage, task completion, and

communication overhead. In [16] a task allocation algorithm via coalition forma-

tion for cooperative distributed problem solving (CDPS) environment is suggested.

This algorithm limits the coalition sizes and uses a greedy heuristic to yield a coali-

tion structure that is probably within a bound of the best solution given the limit

on the number of agents.

The work [17] discuss a task allocation approach for swarm robotics and sim-

ulated the same using ARGoS. The work has considered a transportation task in

which the robots transport the specified objects from one place to another. A

central auctioneer announces the task identified through surveillance. In our ap-

proach, any agent who found the task can be the auctioneer (initiator of coalition

formation). In this work we have extended the work dome in [12].

3 Multi-Robot Systems

Multi-robot systems (MRS) in this report consists of multiple mobile robot sys-

tems, in which robots work together to accomplish a given task by moving around

in the given environment. With the proliferate development of distributed au-

12

tonomous robot system, in many situations robots are being used to ease the

human life, i.e., planetary exploration,manufacturing and construction, medical

assistance, search and rescue, and port and warehouse automation. Generally

speaking, an MRS can be characterized as a set of robots operating in the same

environment. The single as well as multi robot systems have their own advan-

tage and disadvantages. Despite of high capability of individual robots (RHINO,

ASIMO, MER-A,BigDog, NAO and PR2 [14], multi robot system have poten-

tial advantages over a single robot system, i.e. better special distribution, better

overall performance, less time to complete the task, system become more robust

with MRS, lower cost of robot in MRS, MRS can exhibit better system reliability,

flexibility, scalability and versatility.

A single-robot system has one individual robot that is able to model itself,

the environment and their interaction. The robot in a single-robot system is

usually designed to deal with a task on its own account. Such robots usually have

multiple sensors, which themselves need a complex mechanism and an advanced

intelligent control system. Although a single-robot system has a relatively strong

performance, some tasks may be inherently too complex or even impossible for it

to perform, such as spatially separate tasks. Hence, an inherent restriction to the

single-robot system is that it is spatially limited.

A multi-robot system can be either a group of homogeneous(identical) robots

or heterogeneous robots that act up on the same environment simultaneously.

Some of the advantages of multi-robot system over single-robot system are as

follows. A multi-robot system at any given time reads information more about

the environment due its presence more places than a single-robot system. Multi-

robot system could have better performance than a single-robot system both in

time required to complete a task and in energy consumed to do the same. As more

robots are introduced robustness and fault-tolerance are introduced and then in

a multi-robot system that is not probable in single-robot system. Most of the

robots involved in multi-robot systems are simple robots with simple sensors and

actuators thus reducing cost of building complex and costly robots involved in

single-robot system. As simple robots are involved in multi-robot system many

robots can be easily added thus giving scalability.

If robots jointly perform the activity, a team of agents must form before start-

ing the task. Mostly, it is assumed that the entire set of agents is available for

task completion. However, these assumptions always may not hold. Hence, an

algorithm is needed to form a team of robots.

Multi-agent system and distributed artificial intelligence are two similar fields

which are often confused with multi-robot systems. Multi-agent systems usually

represent our traditional distributed computer system which are mostly not robots.

Distributed artificial intelligence refers to mainly software agents. Robots today

are mainly of three types manipulators, mobile robots and humanoid robots.

13

3.1 Categories of Multi-robot System

Depending on the capabilities and behavior, robots can be categorized into differ-

ent categories. Homogeneous robots in a multi-agent system represents that all

robots involved in the multi-robot system has the same capabilities (same sense

of actuators and sensors) not necessarily same physical structures.

Heterogeneous robots in multi-robot system includes robots with different ca-

pabilities involved in the set up. Here a particular robot may be specialized for

doing a particular part of the task. In general when heterogeneous robots are

involved planning becomes more complex. A detail of robot types is depicted in

Figure 1

Figure 1: Types of robot systems

3.2 Coordination Strategies for Robots in Multi-Robot Sys-

tem

When there is a bunch of homogeneous or heterogeneous robots in a given environ-

ment then in order to take part in a task some form of coordination is necessary

between the robots to take advantage of their numbers. To coordinate the robots

a simple robust communication with each other. But, communication is over-

14

head and taxing. So minimalistic communication is required between robots. A

classification of coordination strategies is shown in Figure 2

Figure 2: Coordination strategies in multi-robot systems

3.3 Static Coordination

Static coordination also called deliberate coordination or off-line coordination. It

usually refers to the rules the a robot in a multi-robot system abides by before

even starting the task that helps in better function and coordination in completion

of the said task. Say a robot following keep left in path following reduces a lot of

path blocking in a path following experiment.

3.4 Dynamic Coordination

Dynamic coordination also called as reactive coordination or on-line coordination

is a coordination process that occurs among multi-robot system during the exe-

cution of task. Dynamic coordination can be further classified in to explicit and

implicit coordination discussed below.

3.4.1 Explicit Coordination

Communication that uses message passing to transfer information or state using

uni-cast or broadcast usually using a communication module. Most of the existing

coordination are based on explicit coordination.

15

3.4.2 Implicit Coordination

Implicit coordination is usually associated with implicit communication, which

requires the robot to perceive, model and reason other robots’ behaviour. Implicit

communication refers to the way in which a robot gets its information about other

robots in the system. This is usually be achieved by embedding different kinds of

sensors in the robot.

3.5 Multi-Robot Environment: Cooperative Versus Com-

petitive

Like human society, there is collective behavior in multi-robot environments. col-

lective behavior is behavior that occurs in response to a common influence or

stimulus in relatively spontaneous, unpredictable, unstructured and unstable sit-

uations.

The collective behavior includes cooperative and competitive behavior. In

other words, multi-robot environments can be cooperative or competitive.

3.5.1 Cooperation Behaviour

Cooperation refers to a situation whereby multiple robots need to interact together

in order to complete a task while increasing the total utility of the system. Alter-

natively, cooperation is the interaction between the robots, which work towards a

common interest or reward. A scenrio is shown in Figure 3.

Figure 3: Coordination scenrio in multi-robot systems

The cooperative robots have a joint goal, which gives rise to various sub-

goals, eg., multi-robot search and rescue, multi-robot transportation, multi-robot

exploration

16

3.5.2 Competition Behavior

Competition refers to a situation whereby robots compete against each other to

best fulfill their own self-interest. Alternatively, robots with conflicting utility

functions are in competition with each other. The competitive behavior is the

opposite of cooperative behavior. Typical examples of multi-robot competition

are two player zero-sum games such as chess, shown in Figure 4.

Figure 4: Coordination strategies in multi-robot systems

A multi-robot environment, cooperative or competitive, will need some sort of

consensus (a communication mechanism). Robots might be selfish from the socio-

logical point of view, because a single robot tends to make decisions motivated by

self-preservation. For instance, consider two robots moving in opposite directions

and wanting to cross a narrow passage, but where only one may cross at a time. If

the two robots move simultaneously, a congestion or collision will occur. The coop-

eration can overcome group-think and individual cognitive bias, and this requires

some form of coordination. Such coordination can be achieved by communication,

which is often used as a rational behavior in multi-robot environments.

3.6 Communication for Coordination

Communication is important for a MRS because it can help robots to be coopera-

tive by learning information that is observed or inferred by others. Explicit com-

munication (another means is implicit communication) must use communication

media. However, the communication media cannot always be shared, therefore

it is necessary for the robots to obtain exclusive access to them. The problem

of communication media sharing is often associated with bandwidth limitation.

In Multi-robot system basically, two types of communication is used, i.e, implicit

communication and explicit communication. In explicit communication direct

17

message s are sent among robots while in implicit robots made some change in the

environment and via those changes robot receives the signal from the robots.

4 Problem Definition

As a case study to understand the coordination among robots in multi-robot

setting, Box Pushing Domain is considered, which is studied in paper [6]. The

coordination is achieved via direct asynchronous communication, i.,e., explicit.

The case study is shown in Figure 5.

Figure 5: Grid world box pushing domain

In this domain the goal is to move heavy boxes from one location to another by

two robot having the same capability. The algorithm for multi-robot coordination

is used as proposed by [6]. We implemented the algorithm in ARGoS and apart

from the implementation of multi-robot coordination algorithm in a multi-robot

simulator, i.e., ARGoS [19], different aspect of the ARGoS’s robot are carried out.

5 ARGoS Simulator

Simulation is a cost effective and an efficient way of testing single-robot and multi-

robot scenarios. Robotic simulators allow us to create and check the efficiency of

algorithm and also causes no loss in case of failure. Many modern simulators in-

clude all components required to simulate both robot and environment by using

graphic API used for 2d or 3d rendering and precise physics engine to simulate

the environment. There are many simulators that are suitable to run a multi-

agent simulation like Gazebo/Stage Simulator (Player project), USARSim (Urban

Search And Rescue Simulator), WeBots etc . We use a simple simulator called

18

ARGoS (Autonomous Robots Go Swarming) as it is less computationally demand-

ing and has a modular architecture that allows us to design our robots and being

designed as a swarm robot simulator has no problem in creating a large number

of robots.

Autonomous Robots Go Swarming(ARGoS) is a multi-robot simulator de-

signed primarily to simulate large scale robotic swarms. Thus it can be used

to generate large number of heterogeneous robots. Any multi-robot simulator has

two major problems to address namely extensibility (ability to simulate diverse

robots) and scalability (ability to simulate numerous robots). By employing a

modular architecture and multi-threaded approach to ARGoS solves the above

mentioned problems respectively.

The main devices of the foot-bot robot supported by ARGoS are given in

Figure 6. One of the most interesting features of the ARGoS simulator is that it

allows a user to modify every aspect of a simulation. Because of this flexibility

users can select the most suitable modules for the experiment under study. The

modular architecture of ARGoS enables addition of new features, such as new

robot models, sensors, or actuators, promoting exchange and cooperation among

researchers. A unique feature of ARGoS is the possibility to divide the simulated

space into non-overlapping sub-spaces, each governed by a separate physics engine.

The rules implemented in each physics engine can be customized to optimize the

run-time of an experiment. These features make ARGoS suitable for testing the

proposed framework.

Figure 6: The main devices of the foot-bot robot supported by ARGoS [20]

19

5.1 Extensibility

The ability to support different types of robots with different sensors and actu-

ators is necessary for a simulator to support heterogeneous multi-robot system.

ARGoS Takes care of this by using modular architecture. The modular architec-

ture allows ARGoS to simulate diverse type of robots with sensors and actuators

of our choosing.

5.1.1 Modular Architecture of ARGoS

ARGoS is designed as a bunch of modules with essential and optional modules.

say in the below picture visualizations is an optional module but other than that

all are essential modules. Each module has numerous configurations which work

flawless with any configuration in other modules thus giving us the possibility to

define any scenario we need. ARGoS uses a set of interfaces and a global simulated

space to successfully build and run the simulation.

5.1.2 Sensors of ARGoS

ARGoS consists of the inbuilt multiple sensors present as shown in Table. We

can add the sensors we need for every robot we need in the simulation from the

available sensors. If we need new sensors we can also design and add them too.

The list of important sensors having by ARGoS is shown in Table 1.

Table 1: The list of important sensors having by ARGoS

Sensors Function

colored blob omnidirectional camera (rot z only) A generic omnidirectional camera sensor to detect colored blobs

colored blob perspective camera (default A generic perspective camera sensor to detect color

differential steering (default) A generic differential steering sensor

eyebot light (rot z only) The eye-bot light sensor (optimized for 2D)

eyebot proximity (default) The eye-bot proximity sensor

footbot base ground (rot z only) The foot-bot base ground sensor

footbot distance scanner (rot z only) The foot-bot distance scanner sensor

footbot light (rot z only) The foot-bot light sensor (optimized for 2D)

footbot motor ground (rot z only) The foot-bot motor ground sensor

footbot proximity (default) The foot-bot proximity sensor

footbot turret encoder (default) The foot-bot turret encoder sensor

ground (rot z only) A generic ground sensor

light (default) A generic light sensor

positioning (default) A generic positioning sensor

proximity (default) A generic proximity sensor

range and bearing (medium) The range-and-bearing sensor

5.1.3 Actuators

There are many built in actuators in ARGoS that can be integrated to the available

robots and new actuators can be designed and added. The available actuators are

20

mentioned in the Table 2.

Table 2: The list of important actators having by ARGoS

Actuators Function

differential steering (default) The actuator that controls wheel speeds

foot-bot distance scanner (default) The foot-bot distance scanner actuator

foot-bot gripper (default) The foot-bot gripper actuator

foot-bot turret (default) The foot-bot turret actuator

foot-bot turret (default) The turret actuator

gripper (default) The gripper actuator

leds (default) The LEDs actuator

quadrotor position (default) The quadrotor position actuator

quadrotor speed (default) The quadrotor actuator

range and bearing (default) The range and bearing actuator

5.1.4 Additional Modules

Physics Engines

While we decide how the robot acts at different scenarios by detection using the

sensors and using its actuators its the physics engines that accounts for the impact

the robots have on the environment and the environment have on the robot. A

good and accurate physics is very important in any simulator. A multi-physics

engine approach is adopted in ARGoS for the development of the simulator. In this

approach, multiple engines run in parallel, controlling different aspects/entities of

the environment, thus taking advantage of modern multi-core architectures.

ARGoS allows users to run more than one physics engine at the same time

with different engines responsible for different region in the simulated space. A

robot can be in only one physical engine at a given time but can switch physics

engines after a certain task or after a certain time. Simpler physics engines can

be used in regions were simpler tasks need to be done and complex engines where

complex tasks need to be done.

Media

Media refers to the medium the robots use to communicate with each other. Even

noise can be simulated in these communications. The two communication methods

used are leds and range and bearing (broadcast messages in line of sight with

actuators and sensors)

Visualization

ARGoS uses open source graphic APIs (application programming interface) like

OpenGL (Open Graphics Library) and POV-Ray (Persistence of Vision Ray-

tracer) to show the users the simulations.

21

5.1.5 Simulated Space

That space is where every entity exists. Its also responsible for storing their posi-

tion, orientation (i.e. physics related information) as well as any other information

not related to physics, as for instance visualization information. Simulated space

is like a global repository. It has a global view on the en- tire system. Sensors read

information from the simulated space according to the permissions they possess.

Actuators make changes to the simulated space according to the permissions they

possess and physics engines don’t allow actuators to make changes that are against

the rules of physics. Thus, all data related to the simulation is stored in simulated

space.

5.1.6 Entity

Entity refers to robots and obstacles both movable and immovable defined in the

simulation. Entities have the following properties. Entities(robots) can belong to

only one physics engine at a time. Their interactions are limited to entities on

the same physics engine as them. Immovable entities have an exception from the

above properties and can belong to multiple engines to ensure consistency of the

environment. The entities in ARGoS are box, cylinder, foot-bot, eye-bot, spiri,

e-puck etc...

5.2 Scalability

Any simulator that attempts to simulate a swarm of robots must have the capa-

bility to support hundreds of robots. Multi-threading allows ARGoS to rise up

to the challenge of scalability. Even the implementation of multi- threading in

ARGoS is very simple. We needn’t mention anything other than the number of

threads we want the simulation to use. The simulator core separates threads into

master and slave, with the master thread responsible for distributing the tasks to

the slave threads.

ARGoS in order to split the task among the number of threads specified uses

the following two task splitting algorithms Scatter gather(homogeneous swarm of

robots) and h-dispatch(heterogeneous or diverse swarm of robots)

5.2.1 Scatter gather

This is the default algorithm used usually when homogeneous robots are present in

the algorithm. As in such scenarios every single robot is going to behave according

to similar rules. Each robot is given a thread. Task assignment is simple and is

calculated before the beginning of the experiment i.e.. each thread taking care

of equal number of robots. There is no need for any dynamic calculation unless

robots are added or removed during the run-time of the simulation.

22

5.2.2 h-dispatch

This method is used when there are diverse robots in the simulation. Here the

computational costs will be different for different robots. So, in this method tasks

are distributed among the available threads dynamically and each thread gets a

new task as soon as it becomes idle. There are two types of thread in this allocation

algorithm. A master thread responsible for task allocation across multiple threads

(slave threads).

Since the thread allocation is implemented in the core of ARGoS the user

does’nt have to change his implementation in order to take advantage of multi-

threaded execution but he can mention the which task allocation algorithm to use

and the number of threads to be used in the simulation. By default, scatter gather

method is used and number threads used by default is one.

5.3 Running the simulation in ARGoS

As a user three files are needed to run an ARGoS simulation out of which two are

mandatory. In the Figure 7, the two files, the controller and and the configuration

file are mandatory to run the simulation while the loop function is optional.

Figure 7: The files required to run ARGoS

5.4 Configuration file

ARGoS uses an xml type file with .argos extension to define the entire simulation.

ARGoS’s modular architecture allows us to define size of the environment, movable

and immovable obstacles their position, orientation, size weight(in case of movable

obstacles). Robots their sensors and actuators and their location is also defined in

this file. The duration up to which the experiment has to run, no of threads the

experiment will use and the manner in which task allocation happens. Everything

is defined in the configuration file.

23

5.5 Controller file

The robot controller file determines every action of the robots that uses the con-

troller tag that has the said file linked in its param tag. The controller file can

either be written in c++ or lua with extension .cpp or .lua respectively. A con-

troller can be used to control any number of robots but a robot can use only one

controller function. Any controller must have the following four functions. An

init function which is executed every time execute button is pressed and a reset

function and destroy function that are executed when reset button is pressed and

when a robot is removed from the simulation respectively. The most important

function is the step function that is executed to decide the action of the robot it

controls at every single step.

5.6 Loop function

The robot controller file determines every action of the robots that uses the con-

troller tag that has the said file linked in its param tag. A controller can be used

to control any number of robots but a robot can use only one controller. Any con-

troller must have the following four functions. An init function which is executed

every time execute button is pressed and a reset function and destroy function

that are executed when reset button is pressed and when a robot is removed from

the simulation respectively. The most important function is the step function that

is executed to decide the action of the robot it controls at every single step.

6 Implentation of Grid-World Box Pushing

To implement the case study discussed above, we have to create a grid-world

domain in ARGoS first. The first created a grid-world is shown in Figure 8. In

this domain centre region which is shown in Gray colour is blocked area and robot

cannot enter into this region while roaming in the grid-world. The goal position

is black in colour. The goal of the robots is to shift all the boxes at black place

(goal position).

The domain initially has 4 heavy and 4 light boxes placed at different location

of the grid as shown in Figure 9

The boxes are spread throughout the grid that has to be swept by robots in

order to clear the the grid. Depending on the size of the waste barrel or in this

case radius of the cylinder one or more robots move the box from the area to be

cleaned (white) to the area where waste must be dumped(black). The boxes heavy

and light are shown in Figure 10.

Two types of robots are employed to do the above-mentioned task. Spotters

that roam around in the white area to search for the waste barrels. Once a spotter

has found the waste barrel depending on the size

24

Figure 8: The environment for grid-world domain in ARGoS

Figure 9: The grid-world domain with boxes and robot in ARGoS

We define the area of the entire arena 10,10,2 with center at 0,0,1. We create

the difference between area where waste can be dumped and the area that needed

to be cleared of by linking corners.png file to the floor section. Thus, the border

region (black region) acts as dump and in addition we define a border with green

25

Figure 10: light and heavy boxes

light in a square of side 8.5 separating dump area from the central white area

that needs to be cleared. The two types of robots are spotters and helpers are

distributed uniformly in the central area that needs to be cleaned and the dump

area respectively. The robots have this following sensors and actuators.

Sensors

• Differential steering

• Footbot turret

• Footbot gripper

• leds

• Range and bearing

Actuators

• Positioning

• Colored blob omnidirectional camera

• Footbot motor ground

• Differential steering

• Footbot proximity

• Range and bearing

Now the two sets of robots coordinate and cooperate with each other to clear

the area. But to do both we need good communication capabilities. Communi-

cation is possible in ARGoS by using its range and bearing sensor and actuator.

The bandwidth and range of the sensor can be configured for each robot in the

configuration file. We use a three-byte bandwidth message with a range of 15

26

meters in this experiment for both spotters and helpers. The disadvantage of rab

(range and bearing) sensor in ARGoS is the line of sight communication. That is

any obstacle which is taller than 0.1 meter either movable/immovable obstacle or

a robot will block the communication and every communication is a broadcast.

In order to overcome the two shortcomings we use always obstacles that are

of height less than or equal to 0.1 meters and we do not address the problem

of robots blocking communication as usually the robots are constantly moving

they don’t block signals for-ever. Though even this problem can be avoided by

using an eye-bot (quadcoptor) to relay all messages thus overcoming any line-of-

sight communication problems. We don’t use it in this experiment. The second

shortcoming being that every transmission a broadcast. We cant develop a router

like solution to overcome this problem within the experiment we can develop a

solution to address which device the message is meant to be i.e. attaching the

receiver and sender address to every packet of information. Every robot in the

simulation has an unique string robot.id as an identifier. We use this unique

identifier and hash in the interval of 1 to 252.

We follow the state diagram given in Figure 11 to do the intended job.

6.1 Setting up the simulation

In this section the setting up of the grid world box pushing scenario using ARGoS

is explained in detail.The experiment is setup using a configuration file with .argos

extension.

The configuration file is an xml syntax code in which all necessary configuration

for the simulation, the scenario which we want to simulate and the capabilities

and position of initialization of robots is mentioned.

As any xml file it is composed of tags necessary and optional tags. The im-

portant tags of the configuration file are given below.

1. Framework

2. Controllers

3. Arena

4. Physics Engines

5. Media

6. Visualization

6.1.1 Framework

27

Figure 11: State diagram for the experiment

<framework>

<system threads="3" />

<experiment length="0" ticks_per_second="10" random_seed="0" />

</framework>

This section is used to fine tune the basic parameters that ARGoS needs to

start the simulation like the no of threads, duration of the experiment etc..

The subtag system accepts two attributes threads indicating number of threads

and method h-dispatch or scatter the simulation needs to create while running

the experiment. By default ARGoS is executed as a single threaded program.

But in this experiment as we are using multiple homogeneous robots the threads

attribute is assigned value equal to the number of robots participating in the

28

simulation here three. By default ARGoS executes parallelization using scatter

gather method which is conducive for homogeneous robot giving us reason to

ignore the attribute.

Experiment, an essential subtag with attributes such as the duration of the

simulation, random seed and number of executions per second. The attribute

length refers to number of seconds the experiment will run. Here length tag is zero

meaning experiment will keep running till terminated by ctrl+c. Ticks per second

attribute refers the number of times the simulation step will be executed in a

second. Here it is kept at 10. Random seed is the seed value used to create random

numbers by ARGoS simulation which are used for random placement of robots

and obstacles within mentioned area. If random seed attribute is given a specific

value then same random numbers are generated thus helping to run simulation

repeatedly thus helping to corroborate results. But here we need to check if the

experiment is successful in box pushing at many different initial settings of boxes

in the grid. So we keep the random seed value as zero thus using the system

time as random seed to create different initialization setting every time we run a

program.

6.1.2 Controller

<controllers>

<lua_controller id="spot_contr">

<actuators>

<differential_steering implementation="default" />

<footbot_turret implementation="default" />

<footbot_gripper implementation="default" />

<leds implementation="default" medium="leds" />

<range_and_bearing implementation="default" />

</actuators>

<sensors>

<positioning implementation="default" />

<colored_blob_omnidirectional_camera implementation="rot_z_only"

medium="leds" show_rays="true" />

<footbot_motor_ground implementation="rot_z_only" />

<differential_steering implementation="default" />

<footbot_proximity implementation="default" show_rays="false" />

<range_and_bearing implementation="medium" medium="rab"

show_rays="true" />

</sensors>

<params script="generic.lua" />

</lua_controller>

</controllers>

29

Controller is a very important tag in ARGoS. It determines the number of

types of robot that can exist in the scenario. The number of lua controller subtags

present in the controller gives us the number of types of robots that can be present

in the simulation. Each controller defines the different types of actuators and

sensors that can be added to the robot and bind the controller function (.lua file)

to each controller via the param subtag. These controller function can be similar

to different lua controllers or they can be the same. These controller functions

determine every action of every robot added to the controller function throughout

the simulation.

This experiment of box pushing is a homogeneous system thus we have only

one lua controller. We add the following sensors to our robot in our simulation to

do the below mentioned tasks; an omni directional camera to detect the obstacles,

motor ground to read the color of the floor to know if we have reached the goal,

differential steering to know the wheel velocity positioning to detect the current

location of the robot, proximity sensor to detect obstacles around them and range

and bearing sensor to receive messages from other robots.

The following actuators are also needed in the below mentioned manner to con-

trol the experiment. A differential steering to control the wheel velocity through-

out the experiment, leds to turn on and off the colored leds around the robot, a

gripper to grab the obstacles is mounted on a turret that helps to rotate the grip-

per around the robot and a range and bearing sensor to send messages to other

robots.

6.1.3 Arena

1 <arena size="5, 5, 2" center="0, 0, 1">

2 <!--Floor design-->

3 <floor id="f" source="image" path="drawing.png" />

4 <!-- central big block-->

5 <box id="bigbox" size="2.5,2.5,0.1" movable="false">

6 <body position="0,0,0" orientation="0,0,0" />

7 <leds medium="leds">

8 <led offset = "-1.25,-1.25,0" anchor = "origin" color = "green" />

9 ...

10 <led offset = "-1.25,-2.5,0" anchor = "origin" color = "green" />

11 </leds>

12 </box>

13

14 <!--Adding borders-->

15 <box id="bn" size="0.1, 5, 0.2" movable="false">

16 <body position="2.5,0,0" orientation="0,0,0" />

17 </box>

18 <box id="bs" size="0.1, 5, 0.2" movable="false">

30

19 <body position="-2.5,0,0" orientation="0,0,0" />

20 </box>

21 <box id="be" size="5, 0.1, 0.2" movable="false">

22 <body position="0,-2.5,0" orientation="0,0,0" />

23 </box>

24 <box id="bw" size="5, 0.1, 0.2" movable="false">

25 <body position="0,2.5,0" orientation="0,0,0" />

26 </box>

27

28

29 <!--Robots -->

30 <distribute>

31 <position method="uniform" min="-2.5,-1,0" max="2.5,2.5,0" />

32 <orientation method="uniform" min="0,0,0" max="360,0,0" />

33 <entity quantity="3" max_trials="100">

34 <foot-bot id="spotter-fb" rab_range="15" rab_data_size="3">

35 <controller config="spot_contr" />

36 </foot-bot>

37 </entity>

38 </distribute>

39

40

41 <!-- Big Obstacles -->

42 <distribute>

43 <position method="uniform" min="-2.5,-1,0" max="2.5,2.5,0" />

44 <orientation method="uniform" min="0,0,0" max="0,0,0" />

45 <entity quantity="2" max_trials="100">

46 <cylinder id="cyl1" radius="0.2" height="0.1" movable="true"

mass="2.5">

47 <leds medium="leds">

48 <led offset=" 0,0,0.1" anchor="origin" color="blue" />

49 </leds>

50 </cylinder>

51 </entity>

52 </distribute>

53

54 <!-- small Obstacles -->

55 <distribute>

56 <position method="uniform" min="-2.5,-1,0" max="2.5,2.5,0" />

57 <orientation method="uniform" min="0,0,0" max="0,0,0" />

58 <entity quantity="4" max_trials="100">

59 <cylinder id="cyl2" radius="0.1" height="0.1" movable="true"

mass="2.5">

60 <leds medium="leds">

31

61 <led offset=" 0,0,0.1" anchor="origin" color="red" />

62 </leds>

63 </cylinder>

64 </entity>

65 </distribute>

66 </arena>

Arena is the part where single entity that is going to take part in the experiment

is defined and placed. In the size attribute of the arena tag the size of the scenario

is mentioned in Cartesian format with scale 1 unit = 1 meter. Thus our scenario

becomes a 5 meter square.

The simulation stops abruptly if the robot or obstacles are moved out of this

25 sq. meter defined by the size attribute. To avoid this we use four walls,i.e,

unmovable boxes as mentioned in the lines 15, 18, 21 and 24 placed at the edge

of the simulation by setting movable tag = 0.

The goal is described by adding a black patch to the floor using an image with

black square of side 1.25 meter in floor tag as in line 3 of the above code snippet.

A central large square obstacle whose side is 2.5 meter is place in the center of

the arena as in line 6. In addition to the black patch which can be detected by the

motor ground sensor of the robots, lights are also placed around the goal area to

be detected by colored blob omni directional camera sensor of the robot by usin

leds subtag as in line 7. The medium tag is filled with value of media defined in

media tag which is discussed below.

We need to place the robots and blocks randomly around available space except

in the goal area. To achieve this we use distribute tag. We use the tag distribute

both small and large blocks and robots in this simulation in non goal regions as in

lines 54, 41 and 29 respectively. Both position and orientation can be distributed

in this tag. We use uniform distribution here. Both position and orientation of

robots(along z axis) is done. As rotating a cylinder around z axis is ineffective,

cylinders are distributed only along position. Small blocks are designed as cylin-

ders with radii 0.1 m while large blocks are designed as cylinder with radii 0.2

m.

The lua controller id from the previous section is bound to the robots which

are distributed. rab range and rab data size are also defined in the foot-bot tag.

Rab range determines the range upto which the robot can receive and broadcast

message. Here we define it as 15 m. Rab data size denotes the bandwidth of

every message that is broadcast by the robot. Here we define the rab data size is

3 bytes. The messages are of the format given in Table 3

32

Table 3: Message Format

From Address To Address Message

8 bits 8 bits 8 bits

6.1.4 Physics Engines

<physics_engines>

<dynamics2d id="dyn2d" />

</physics_engines>

Though multiple physics engines can be used. Here we need a simple two

dimensional physics engine. As our grid block pushing problem requires only 2d

actions, a dynamics2d engine is initialized.

6.1.5 Media

<media>

<led id="leds" />

</media>

Media is used to implement implicit communications among robots say indi-

cating it is busy or not. While message passing is used for explicit communication

media as an implicit communication tool is indispensable.

6.1.6 Visualization

<visualization>

<qt-opengl lua_editor ="true">

<camera>

<placement idx="1" position="-0.5,0,0.5" look_at="0,0,0"

lens_focal_length="20">

<placement idx="2" position="0,0,2" look_at="0,0,0"

lens_focal_length="20" />

</camera>

</qt-opengl>

</visualization>

</argos-configuration>

Visualization is an optional tag. If we want to see the experiment in GUI

as graphic then we need visualization. We can avoid using this tab and get out

results in terminal too. We use OpenGl to see the graphics.

33

6.2 Controller

Every controller controls every action of all the robots that use it. Controller

can either be a .lua or a .cpp which was mentioned in the param tag in the

configuration file. As generic.lua was mentioned as the controller file. We design

a lua controller to control our robots in this experiment.

Any controller requires four main functions to control any robot throughout

the simulation. they are listed below.

• function init(): This function is executed once before starting the simulation.

Global values can be initiated in this function.

• function step(): This function is executed in continuous loop throughout the

running of the simulation.

• function reset(): This function is run once while the reset button is pressed.

This global values initiated in init can be reset to initial values.

• function destroy() :This function is executed once before the simulation is

stopped. We can use this function to print results.

We are running a simulation with infinite time. We manually terminate the

function using SIGKILL once all blocks have been pushed to goal. Thus, leaving

the functions reset and destroy unnecessary. So these two functions are left empty.

6.2.1 Init

function init()

self_addr = addr(robot.id)

log(robot.id," = ",id)

state = "search"

prev_state = "dummy"

int_state = "listening"

prev_int_state = "dummy"

robot.colored_blob_omnidirectional_camera.enable()

robot.turret.set_position_control_mode()

end

As mentioned earlier init is run once before the simulation is started. We need

to initialize the some stuff which we need to set-up before start the experiment.

self addr is an unique address we assign to every robot. This is calculated by

converting to unique robot.id string to a number between 1 to 252 using the below

given formula by the function addr. Collision avoidance of the address is taken

care by the formula as it is a simple hash formula.

34

Table 4: States of the Robots in course of the experiment

S.no State Internal State

1 Search Listening

2 Choose Listening

3 Approach Listening

4 Grab Listening

5 Navigate Listening

6 Call Listening

7 Specific Call Listening

8 Waiting for final ack Listening

9 waiting Listening

10 Search Responding to broadcast

11 Search waiting for final Ack

12 Search Give final ack

13 Search Orient

14 Search Approach caller

15 Search Grab the obstacle

16 Search Navigate

address = {
∑n

i=1ASCII(robot.id[i]) ∗ 2i}mod251 + 1

We use states to mimic a FSA(Finite State Automata) to control the actions

to be taken in various states and the event that causes to change states. We use

two dimensional states in this simulation to achieve our goal. All possible states

are shown in Table 4. In init function we set state as Search and Internal State

as Listening

6.2.2 Step

The step function is the most important part of the controller. It calls the required

function with respect to the state of the robot. It also prints the change in state

of the robot if it occurs. The manner in which the step function works is displayed

below.

function step()

if state ~= prev_state then

log(self_addr,"=",state)

end

prev_state = state

if state == "search" then

robot.leds.set_all_colors(0,0,0)

search()

elseif state == "choose" then

35

robot.leds.set_all_colors("green")

choose()

----other states are also added similiarly

elseif state == "navigate" then

robot.leds.set_all_colors("green")

navigate()

elseif state == "home" then

robot.leds.set_all_colors("green")

home()

end

end

6.2.3 Search

The function search becomes very important in this simulation as here we control

the internal state of the robot in similar manner to step function does the state

value. In addition the robot keeps listening for call of help from other robots for

pushing heavy blocks and keeps searching for blocks. The functions of the search

function are listed below

1. Searching

2. Collision avoidance

3. Waiting for call

4. Changing state

1 function search()

2 if int_state ~= prev_int_state then

3 log(self_addr,"=",int_state)

4 end

5 prev_int_state = int_state

6 if int_state == "listening" then

7 sensingLeft = robot.proximity[3].value +

8 robot.proximity[4].value +

9 robot.proximity[5].value +

10 robot.proximity[6].value +

11 robot.proximity[2].value +

12 robot.proximity[1].value

13

14 sensingRight = robot.proximity[19].value +

15 robot.proximity[20].value +

36

16 robot.proximity[21].value +

17 robot.proximity[22].value +

18 robot.proximity[24].value +

19 robot.proximity[23].value

20 --This ensures that we are not trying to lift already moved boxes--

21 if #robot.colored_blob_omnidirectional_camera >= 1 then

22 check = 0

23 for i = 1, #robot.colored_blob_omnidirectional_camera do

24 if robot.colored_blob_omnidirectional_camera[i].color.green > check

then

25 check = robot.colored_blob_omnidirectional_camera[i].color.green

26 end

27 end

28 if check == 0 then

29 state = "choose"

30 end

31 end

32 --Obstacle avoidance navigation--

33 if sensingLeft ~= 0 then

34 robot.wheels.set_velocity(7,3)

35 elseif sensingRight ~= 0 then

36 robot.wheels.set_velocity(3,7)

37 else

38 robot.wheels.set_velocity(10,10)

39 end

40

41 --listening part--

42 calls = {}

43 if #robot.range_and_bearing > 0 then

44 for i = 1,#robot.range_and_bearing do

45 if robot.range_and_bearing[i].data[2] == 255 then

46 table.insert(calls, robot.range_and_bearing[i])

47 end

48 end

49 end

50 if #calls > 0 then

51 distance = 10000

52 caller = 0

53 for i = 1, #calls do

54 if calls[i].range < distance then

55 distance = calls[i].range

56 caller = calls[i]

57 end

58 end

37

59 end

60 if #calls > 0 and caller ~= 0 then

61 log(self_addr,"received ", msg[caller.data[3]]," from ",

caller.data[1])

62 int_state = "responding_to_braodcast"

63 end

64

65 elseif int_state == "responding_to_braodcast" then

66 responding_to_braodcast()

67 elseif int_state == "waiting_for_final_call" then

68 waiting_for_final_call()

69 elseif int_state == "give_final_ack" then

70 give_final_ack()

71 elseif int_state == "orient" then

72 orient()

73 elseif int_state == "approach_caller" then

74 approach_caller()

75 elseif int_state == "grab_robot" then

76 grab_robot()

77 elseif int_state == "navigate" then

78 navigate()

79 elseif int_state == "home" then

80 home()

81 end

82 end

Searching is done using omnidirectional camera. The blocks are marked by a sin-

gle red or blue color led light. We read all values of colored blob omni directional camera

sensor. If green light is also detected along with red or blue light, it implicitly tells

the robot in search state that either the block is in goal state or there is another

robot interacting with the block(this is the reason for switching all lights in a

robot on when not in search state) These two parts constitute searching from line

20 - 31. A change in state to choose represents than a block which needs to be

shifted to goal has been found.

Collision Avoidance with other robots or with the central obstacle is important

and challenging problem in multi-robot system. In this simulation, proximity

sensors of the foot-bot have been used for collision avoidance. The foot-bot has

total of 24 number of proximity sensor that help in collecting the data of the object

which are nearer to robot as shown in Figure 12. When no obstacle is detected

the value of one sensor is zero. When an obstacle is detected then the value of the

sensor raises up-to one depending on the closeness of the obstacle. Depending on

38

the number of the proximity sensor whose value spikes we can know which side the

obstacle we are facing. Thus in every step we calculate the value of sensors present

in first and fourth quadrant and sum them up as in line 7 and 14. If the values

in first quadrant spike then the obstacle is in left side of the robot and the robot

turns right else if the obstacle is in the right side of the values in fourth quadrant

spike and the robot turns left. If all the proximity sensors read zero then there are

no obstacles on the path of the robot and the robot keeps moving straight. This

is done between lines 32 -39. The positioning of the proximity sensors on robot

are shown in Figure 12.

Figure 12: Proximity Sensors

Waiting for call

When the robot is in search state and it’s internal state remains listening. So

the robot keeps reading it’s RAB sensor in this state for broadcast asking for

help.When asked the internal state is switched to replying to broadcast. This is

done in lines 42 -59. In addition to replying to broadcast we also use the range

part of the message to detect the message that has reached to us from the closest

robot and stores that particular message as caller.

Changing State Similiar to step function we use the search function to call

39

different function with respect to their internal state as shown in lines 65 -81 To

control the speed of robot and to stop at near to some object, we use the formula

given in equation 1.

6.2.4 Communication in ARGoS

As shown in the state diagram of our experiment Figure 11. We use in total six

types of messages to communicate and coordinate with each other. To compose

these messages we use function compose which takes as input to address and

message. The messages have the following meaning.

Range and bearing sensor and actuator of the foot-bots is used in this experi-

ment to communicate among themselves. Rab actuator allows a robot to broadcast

a message of a defined size to all robots within a certain range and in line of sight

using the same rab network as the the robot itself. A rab receiver allows a robot

to receive messages sent by robots within the same rab network. In addition to

the sent message rab sensor allows us to detect the direction and the distance from

which the message is being sent.

The rab actuator allows only broadcast the address of sender and that of the

receiver needs to be specified in every message

msg = {}

msg[1] = "Help"

msg[2] = "Willing"

msg[3] = "ACK_initiator"

msg[4] = "ACK_non-initator"

msg[5] = "beacon"

msg[6] = "grabbed road-blocker"

We use function compose to To send the message following code is used.

robot.range and bearing.set data(composed msg)

The rab actuator allows a robot to broadcast a message of a defined size to all

other robots within a certain range and in line of sight using the same rab network

as the robot itself. In the experiment, all robots use the same rab network and

message are of the size 3 bytes (24bits) with a range of 15 meters. A rab receiver

allows a robot to receive messages sent by robots within the same rab network. In

addition to the sent message rab sensor allows us to detect the direction and the

distance from which the message is being sent. As the rab actuator allows only

broadcast the address of sender and that of the receiver needs to be specified in

every message. Every robot in the simulation has a unique string robot.id. This

string is used to decide address of every robot using the formula discussed in init

function.

Thus, address of any robot varies from 1 to 252 and the function is chosen in

40

such a manner that any collision is avoided in number of robots we use in our

experiment (usually 20 to 25). A message format in our experiment contains 8 bit

for sending address, 8 bit for receiving address and 8 bit for message content

Figure 13: Range and bearing actuator and sensor functioning

As rab is a line of sight communication device. So in order to work with it we

need to know its limitations too. At what height an block blocks a line of sight

between two robots. So we add obstacles of various height in between the above

mentioned two robots and try to find the threshold height till which line of sight is

not affected. We find that obstacles upto a height of 0.1 meter will not affect the

range and bearing sensor. But if the obstacles are above the height of 0.1 meter

then we use the eye bot a quadcoptor robot as a relay accomplish this task. This

is shown in Figure 14.

How to make possible communication when line of sight not possible.

6.2.5 Reaching to specific location

Obstacle avoidance can be done using proximity sensors. But reaching for a block

after spotting it or reaching for a block after being called to help is a task in itself.

Thus we establish two distinct scenarios.

• Reaching Spotted Block

• Reaching to callee Location

41

Figure 14: Finding threshold height for range and bearing sensor and actuator

Figure 15: Overcoming obstacles in Rab sensor with relay node

Reaching Spotted Block

When a block is spotted by a robot using omni directional camera. The sensors

also detects the distance and the angle the light is from itself. We first turn the

42

robot in it’s own axis to reduce the angle the light source makes from the front

of the robot to a margin less than 20 degrees. Angles measured in radians by

the omni directional camera sensors as positive in anti-clockwise direction and

negative in clockwise direction as shown in Figure 16.

Therefore while traversing toward the block a robot must turn slightly towards

right if the angle measured is negative and slightly towards left if the measured

angle is positive. And we have to slow down if we near the block.

Figure 16: Overcoming obstacles in Rab sensor with relay node

To slow down as we near the obstacle we use the proximity sensor readings

according to the below command

robot.wheels.set velocity((1− x) ∗ 10, (1− x) ∗ 10) (1)

where x is the maximum value recorded among the 24 proximity sensors located

around the robot.

Reaching to caller Location

When a robot wants to reach and help another while being called to help. The

calling robot sets a beacon message while waiting for the called robot to reach

it. The robot which want to go and help reads the range and horizontal bearing

of the message. Thus learning the distance and the angle of the message sending

robot respectively using its rab sensor. Then using similar technique discussed

in the previous approach the robot approaches the called robot. But here as the

distance between robot and block can far too much obstacle avoidance is given

priority over approach. If we face obstacle or any other called block we do avoid

it and then continue the approach toward the called robot.

Once we near the robot closer than 50 cm. We use the omni directional camera

sensor to detect the block which has to be moved and approach it as discussed in

the previous technique

6.2.6 Grabbing Blocks

While pushing a small block by a single robot or a large block by more than one

robot, we have one thing in common i.e we have to grab the blocks. To grab the

43

block we require two actuators namely turret and gripper. Gripper is mounted on

turret. Objective is to rotate the turret toward the block and activate the gripper.
In order to achieve it the robot uses its proximity sensors and detects the sensor

which records the maximum value. As the robot knows the sensor orientations.
It turns the turret toward the said orientation and then activates the gripper as
described in the code snippet below.

1 function grab()

2 grip_ang = 200

3 x = robot.proximity[1]

4 x.value = 0

5 pos = 0

6 for i = 1,24 do

7 if robot.proximity[i].value >= x.value then

8 x = robot.proximity[i]

9 pos = i

10 end

11 end

12 if x.value == 1 then

13 grip_ang = x.angle

14 elseif pos >= 1 and pos <= 12 then

15 robot.wheels.set_velocity(0,0.75)

16 elseif pos >= 13 and pos <= 24 then

17 robot.wheels.set_velocity(0.75,0)

18 end

19 if grip_ang ~= 200 then

20

21 robot.wheels.set_velocity(0,0)

22 robot.turret.set_rotation(grip_ang)

23 robot.gripper.lock_negative()

24 count_time = count_time + 1

25 end

26 if count_time == 50 then

27 robot.gripper.lock_negative()

28 robot.turret.set_passive_mode()

29 count_time = 0

30 if closest.color.blue == 255 then

31 state = "call"

32 elseif closest.color.red == 255 then

33 state = "navigate"

34 end

35 end

36 end

44

6.2.7 Navigate

Once the robot has grabbed the obstacle it uses its positioning sensor to know its
location and its orientation with respect to the main axis.

x_axis = robot.positioning.position.x

y_axis = robot.positioning.position.y

angle = robot.positioning.orientation.angle

sign = robot.positioning.orientation.axis.z

Angle is measure in radians and sign gives if the angle is measured in clockwise

or anti-clockwise direction along z axis. A value of +1 represents anti-clockwise

measurement. A value of -1 represents clockwise measurement. The robot divides

the simulated space into four quadrants as shown in Figure 17. If the robot is

present in location two or four it turns toward south and starts to move. If it is

present in one or three. It turns toward right and starts moving.

Figure 17: The grid world domain map for navigation

6.2.8 Goal

When it reached the goal state. It detects using its four motor ground sensors

located as shown in the Figure 18. Which read zero whenever the floor is black in

45

color. Thus detecting the reaching the goal. The robot drops the grabbed block in

goal state and change the state to search and continue to search for other blocks.

Figure 18: Motor Ground Sensor

7 Results

(a) Robot finds the light block (b) Robot drops the block in the goal area

Figure 19: Robots removing light weight blocker from the grid block environment

46

(a) Robot finds a heavy block (b) Robot calls another robot for help

(c) The helping robot avoids central ob-

stacle
(d) Robot reaches the heavy block to help

Figure 20: Team formation to remove heavy block

47

(a) Both robots had formed a team (b) Moving toward goal

(c) Entering the Goal (d) Droping the Heavy block

Figure 21: Removing Heavy block

8 Conclusion

In this work homogeneous multi-robot system with explicit communication has

been explored and discussed. We implemented the distributed algorithm designed

for multi-robot coordination in box pushing domain. Challenges like obstacle

avoidance and shortest path finding with obstacle avoidance using A* has been

implemented. In explicit communication also three-way handshake has been used

for team formation for coordinated movement.

Furthermore, we want to extend the work toward mine-sweeping application

and room navigation using heterogeneous multi-robot system

48

References

[1] Sedaghat, M. N., Nejad, L. P., Iravanian, S., & Rafiee, E. (2005, July). Task

allocation for the police force agents in robocuprescue simulation. In Robot

Soccer World Cup (pp. 656-664). Springer, Berlin, Heidelberg.

[2] Kitano, H., & Tadokoro, S. (2001). Robocup rescue: A grand challenge for

multiagent and intelligent systems. AI magazine, 22(1), 39.

[3] Visser, A., Ito, N., & Kleiner, A. (2014, July). Robocup rescue simulation in-

novation strategy. In Robot Soccer World Cup (pp. 661-672). Springer, Cham.

[4] Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro,

S., ... & Kawatsuma, S. (2013). Emergency response to the nuclear accident

at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots.

Journal of Field Robotics, 30(1), pp. 44-63.

[5] Liu, Y., & Nejat, G. (2013). Robotic urban search and rescue: A survey from

the control perspective. Journal of Intelligent & Robotic Systems, 72(2), pp.

147-165.

[6] Nath, A., & Niyogi, R. (2015, August). An extension of FMAP for joint actions.

In Contemporary Computing (IC3), 2015 Eighth International Conference on

(pp. 487-492). IEEE.

[7] Vig, L., & Adams, J. A. (2006). Market-based multi-robot coalition formation.

In Distributed Autonomous Robotic Systems 7 (pp. 227-236). Springer, Tokyo.

[8] Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive taxonomy for

multi-robot task allocation. The International Journal of Robotics Research,

32(12), 1495-1512.

[9] Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of

task allocation in multi-robot systems. The International Journal of Robotics

Research, 23(9), 939-954.

[10] Khamis, A., Hussein, A., & Elmogy, A. (2015). Multi-robot task allocation:

A review of the state-of-the-art. In Cooperative Robots and Sensor Networks

2015 (pp. 31-51). Springer, Cham.

49

[11] Lerman, K., Jones, C., Galstyan, A., & Matarić, M. J. (2006). Analysis of

dynamic task allocation in multi-robot systems. The International Journal of

Robotics Research, 25(3), pp. 225-241.

[12] Nath, A., & Niyogi, R. (2017, September). Design and verification of a collab-

orative task execution procedure using bpmn modeler. In Advances in Com-

puting, Communications and Informatics (ICACCI), 2017 International Con-

ference on (pp. 103-109). IEEE.

[13] Matarić, M. J., Sukhatme, G. S., & θstergaard, E. H. (2003). Multi-robot

task allocation in uncertain environments. Autonomous Robots, 14(2-3), pp.

255-263.

[14] Yan, Z., Jouandeau, N., & Cherif, A. A. (2013). A survey and analysis of

multi-robot coordination. International Journal of Advanced Robotic Systems,

10(12), 399.

[15] Tolmidis, A. T., & Petrou, L. (2013). Multi-objective optimization for dy-

namic task allocation in a multi-robot system. Engineering Applications of

Artificial Intelligence, 26(5-6), pp. 1458-1468.

[16] Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coali-

tion formation. Artificial intelligence, 101(1-2), 165-200.

[17] Shenoy, M. V., & Anupama, K. R. (2017). DTTA-Distributed, Time-division

Multiple Access based Task Allocation Framework for Swarm Robots. Defence

Science Journal, 67(3), 316.

[18] Das, G. P., McGinnity, T. M., Coleman, S. A., & Behera, L. (2015). A dis-

tributed task allocation algorithm for a multi-robot system in healthcare facil-

ities. Journal of Intelligent & Robotic Systems, 80(1), pp. 33-58.

[19] ARGoS:- Multi-robot simulator. http://www.argos-sim.info/core.php

[20] Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,

... & Birattari, M. (2012). ARGoS: a modular, parallel, multi-engine simulator

for multi-robot systems. Swarm intelligence, 6(4), pp. 271-295.

50

http://www.argos-sim.info/core.php

	Introduction
	Related Work
	Multi-Robot Systems
	Categories of Multi-robot System
	Coordination Strategies for Robots in Multi-Robot System
	Static Coordination
	Dynamic Coordination
	Explicit Coordination
	Implicit Coordination

	Multi-Robot Environment: Cooperative Versus Competitive
	Cooperation Behaviour
	Competition Behavior

	Communication for Coordination

	Problem Definition
	ARGoS Simulator
	Extensibility
	Modular Architecture of ARGoS
	Sensors of ARGoS
	Actuators
	Additional Modules
	Simulated Space
	Entity

	Scalability
	Scatter gather
	h-dispatch

	Running the simulation in ARGoS
	Configuration file
	Controller file
	Loop function

	Implentation of Grid-World Box Pushing
	Setting up the simulation
	Framework
	Controller
	Arena
	Physics Engines
	Media
	Visualization

	Controller
	Init
	Step
	Search
	Communication in ARGoS
	Reaching to specific location
	Grabbing Blocks
	Navigate
	Goal

	Results
	Conclusion

