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ABSTRACT 

Heart diseases, such as coronary heart disease, congestive heart failure, and congenital heart 

disease, are the leading cause of deaths for men and women all over the world. The 

continuous monitoring for twenty-four-hour is necessary to detect heart abnormalities for 

the critical cardiac patient. Therefore, recent developments in Electrocardiogram (ECG) 

signal processing, information technology and communication has brought a new 

dimension to the medical world. ECG is a quasi-periodic and non-stationary signal that is 

generated by the action of depolarization and repolarization of the cardiac cells. The 

analysis of ECG signal is very significant for feature extraction and interpretation of heart 

diseases. Timely diagnosis is an important factor in the treatment of cardiac 

abnormalities; however, it is not possible for every cardiac patient. Therefore, 

incorporation of wireless communication technology in the field of telemedicine, 

especially tele-cardiological systems has played an incredible role in the timely 

monitoring of a heart patient. However, these technologies are resource-constrained 

applications with limited bandwidth and power. Transmission /transfer of large amount of 

physiological data to healthcare /e-healthcare centers is very expensive. Therefore, these 

systems require efficient data reduction before transmission.  

In many cases, cardiologists need observation of the continuous heart activity of the 

patient after release from the hospital. In these cases, ambulatory monitoring or Holter 

monitoring system plays an important role. In these systems, data recording and storing is 

done for twenty-four-hour. For effective data storing, data size must be as less as 

possible. Therefore, ECG data compression is an essential part of these types of devices. 

As a result, ECG data compression is an important area of research for the last few 

decades. Data compression is the process of converting the bits structure of data in such a 

way that it consumes less space on disk. The major aim of every data compression 

method is to accomplish maximum data volume reduction while preserving the important 

features of the signal morphology during reconstruction.  

Data compression techniques can be divided into four major types, direct data 

compression (DDC), transform based data compression, feature extraction based data 

compression, and two dimensional (2D) data compression. In DDC techniques, data is 

compressed in time domain, therefore, these methods do not provide efficient results in 

terms of compression ratio (CR) and signal reconstruction quality. In feature extraction 
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based data compression techniques, useful features are extracted and used for 

reconstructing the signal. These methods provide a good CR; however, the signal 

reconstruction quality is very poor. In 2D data compression techniques first, 1D ECG 

signal is converted into 2D, then 2D data compression techniques such as joint 

photographic experts group (JPEG) and set partitioning in the hierarchical trees (SPHIT) 

are employed for data reduction. These techniques provide good results in terms of CR 

and signal reconstruction quality both. However, conversion of signal from 1D to 2D is a 

time taking and complex process for the non-stationary signals such as ECG, and hence 

these techniques cannot be used for real-time processing. Therefore, for the last two 

decades, several studies have been carried out to compress the ECG rhythms, in which 

researchers have used transform based techniques. are generally used to compress the 

data compression of ECG rhythms. In these techniques, data is transformed from time 

domain to frequency domain. Among all transform based techniques, wavelet and filter 

bank based techniques are preferred, because of multi-resolution property of them. 

Therefore, the aim of this thesis is to develop an ECG signal compression algorithm that 

has a high compression ratio while guaranteeing signal quality.  

A wavelet filter bank is a tree-structured filter bank that decomposes the signal into sub-

bands, and the power of time and frequency based parallel signal processing is exploited. 

Modulated filter banks (MFBs) is a cost-effective way to design and implement filter 

banks. Amongst all modulated filter banks, cosine modulated filter banks (CMFBs) 

provide the best results in terms of computational efficiency with small number of 

optimization parameters. Computational efficiency can be improved further by using 

computationally efficient prototype filter. An interpolated finite impulse response (IFIR) 

filter is a highly efficient filter in terms of computational complexity. Hence, in the 

present research work, the mammoth task of signal compression has been accomplished 

using computationally efficient CMFB, which also provides low implementation cost, 

higher compression ratio, and good signal reconstruction quality. 

Noise elimination is the first step of this work, because feature extraction and comparison 

is utilized here to examine the data decompression performance, and presence of noise 

may lead to false feature extraction. Therefore, in this work, elimination of noise is 

carried out using IFIR and frequency response masking (FRM) techniques. This filtering 

technique provides linear phase, inherently stable output with low computational 

complexity, which are the important factors for any signal processing.   
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The design of nearly perfect reconstructed 4, 8, 16 and 32 channel uniform and 3, 4 and 5 

channel non-uniform cosine modulated filter banks are done. A nearly perfect filter bank 

suffers from three types of distortions; a) amplitude distortion, b) aliasing distortion and 

c) phase distortion. Phase distortion can be eliminated completely using linear phase 

filters (FIR or IFIR), aliasing distortion and amplitude distortion can be minimized by 

suitable optimization technique. Here, for designing the filter banks, three approaches are 

used such as: a) a simple and proficient linear iterative technique, b) Schittkowski 

algorithm, and c) passband edge iteration to minimize the cost function. In technique (a), 

the cut-off frequency of the model filter is optimized to satisfy the perfect reconstruction 

condition in CMFB. Different fixed (Blackman, rectangular, Bartlett, Hanning and 

hamming) and adjustable (Kaiser, Dolph-Chebyshev, Saramaki, ultraspherical, symmetric 

exponential, symmetric hyperbolic cosine, symmetric Nuttall, extended Norton-beer, 

modified Kaiser, Gaussian and Taylor) window functions are used for designing the 

linear phase IFIR prototype filter for the CMFB. 8-channel uniform and 5 channel non-

uniform filter bank are used for feature extraction and data compression, respectively. 

The non-uniform CMFB /QMF /WT is used for ECG data compression by decomposing 

the ECG signal into various frequency bands. Subsequently, thresholding is applied for 

truncating the insignificant coefficients. The estimation of threshold value is performed 

by examining the significant energy of each band. Encodings (RLE /Huffman /LZW) are 

utilized for the compression. In this work, performance is measured in terms of CR and 

signal reconstruction quality (peak mean square difference (PRD), signal to noise ratio 

(SNR), mean square error (MSE), mean error (ME), peak mean square difference 

normalized (PRDN) and quality score (QS). And also signal reconstruction quality is 

measured by extracting and comparing the features of both signals (original signal before 

the compression and reconstructed signal after decompression). R-peak extraction 

through wavelet transforms using bi-orthogonal mother wavelet and 8-channel uniform 

CMFB is done. The extraction of other features, viz., Q waves, S waves, P waves, T 

waves, P wave onset & offset points, T wave onset & offset points, QRS onset and offset 

points are identified using rule-based algorithms developed for the study. In this work, 

weighted diagnostic distortion (WDD) a measure of signal reconstruction quality and 

accuracy, has been used.  

In addition to eighteen, two new features (number of P waves and ventricular late 

potential) are used to compute the value of WDD. The tabular results show that the filter 
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banks provide better results as compared to other related work (in terms of computational 

complexity) without affecting the other fidelity parameters. The data compression 

performance of the method based on CMFB provides efficient results in terms of CR and 

preserving diagnostic information (WDD).   

Finally, it can be stated that the work contributes significantly to the area of ECG data 

compression techniques. The developed methods are very much useful for telemedicine, 

especially in telecardiology. The overall work done in this thesis may be considered a 

positive and significant contribution for effective healthcare services to remotely located 

patients. In the current open society and with the growth of human rights, people are more 

concerned about the privacy of their information and other important data. Water marking 

and compression of ECG data can protect the individual identification and information. 

An ECG signal cannot be only used to analyse disease, but also to provide biometric 

information for identification and authentication. Integrating ECG water marking and 

compression approach can be taken as an area for future study, as ECG water marking 

can ensure the confidentiality and reliability of users’ data while reducing the amount of 

data.  
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CHAPTER 1 

INTRODUCTION 

 

1.1. Overview  

Biomedical signal has characteristics of changing with respect to time. Signals can be 

classified into different types, viz., a) continuous, discrete and digital signals, b) random 

and deterministic signals, c) even and odd signals, d) periodic and aperiodic signals, e) 

energy and power signals and e) real and imaginary signals, etc., [1]. A signal is 

categorized as a biomedical signal, if it is recorded from a living system. The biomedical 

signals convey information about the state or behavior of the human being [2]. Some of 

the biomedical signals represent the collective electrical information accomplished from 

an organ, signifying a physical variable of interest, and can be expressed with respect to 

time /amplitude /frequency /phase. Different types of signals are generated from a living 

system. An electrocardiogram (ECG) signal is one of the most vital and important 

biomedical signals, which represents electrical activity of the heart. It is the measure of 

bioelectrical information produced at the surface of human body due to the action of 

polarisation and depolarization of different parts of the heart. It depicts the cardiac 

condition of a human being [3]. 

The incorporation of wireless communication technology in the field of telemedicine 

especially tele-cardiological system has played a very important role in the timely 

monitoring of a biomedical signal. However, these technologies are resource-constrained 

applications with limited bandwidth and power. Transmission /transfer of large amount 

of physiological data to healthcare /e-healthcare centers is also very expensive. 

Therefore, these systems require efficient data reduction before transmission. As a result, 

ECG data compression has become an important area of research for the last few decades 

[4,5].  

Multirate signal processing is needed in some specific types of signal and image 

processing such as; ECG signal, the speech signal, wireless communication, etc,. The 

Wavelet transform (WT) and filter banks based technique are more preferable to process 

a non-stationary signal than other signal processing technique, because of multi-
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resolution property. Several authors have used wavelet-based techniques for noise 

elimination, data compression and feature extraction of ECG signal [6].   

In this chapter, human heart, ECG signal and cosine modulated filter bank is described 

briefly. It also presents a literature survey on ECG data compression, ECG noise 

elimination, feature extraction, and filter bank design techniques developed so far. In 

addition this chapter also contains a brief discussion about the overall thesis work 

including the research objectives. 

1.2. The Heart  

The heart is a hollow muscular organ that pumps blood through a network of blood 

vessels. It consists of four chambers; a) right atrium, b) left atrium, c) right ventricle, and 

d) left ventricle. These chambers are separated by four valves. The two valves between 

the atria and ventricles are called the atrioventricular valves. The valve between the left 

atrium and the left ventricle is also known as the mitral valve, and valve between the right 

atrium and right ventricle is named as tricuspid valve. Other two valves, i.e, 

aortic and pulmonic valves are located between the ventricles and major blood vessels. 

These parts are depicted in Fig. 1.1. The roles of these parts are very important in 

circulation of blood in the body i.e., cardiovascular system is described in the next section 

[7].  

1.2.1. Cardiovascular System  

The cardiovascular system is also known as circulatory or vascular system. The complete 

cycle of blood circulation of the human body takes place through this system. This system 

is also involved in the purification of blood i.e., the addition of oxygen and elimination of 

carbon dioxide in the blood. It consists of heart, blood, two lungs and a closed system of 

blood vessels known as arteries, veins, and capillaries. Impure blood is collected from 

different parts of the body and goes to the right atrium. Impure blood passes to the right 

atrium through superior and inferior vena cava. Superior vena cava is a large vein that 

receives impure blood from upper parts of the body, such as head, neck, thorax, and arms. 

Inferior vena cava takes de-oxygenated blood from lower and middle parts of the body. 

This impure blood enters into the right ventricle when right atrioventricular or tricuspid 

valve is opened. Then, the blood is pumped to both the lungs for purification (i.e, oxygen 

is added and carbon dioxide is removed) using pulmonary artery. After that the pure 

blood is pumped to left part of the heart (i.e, left atrium) using pulmonary veins. The wall  



CHAPTER 1 Introduction  

 

3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 The heart [2]. 
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Fig. 1.2 Flow diagram of circulatory system [7]. 
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Fig. 1.4 Flow diagram of impulse conduction system                                    
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of left atrium is thicker than the right atrium. Sub-sequentially blood enters into the left 

ventricle by the opening of the mitral/bicuspid valve. Further, oxygenated blood goes to 

several parts of the body. It is the aorta (largest artery of the body), which originates from 

the left ventricle and extended down to the abdomen and it distributes oxygenated blood 

to several parts of the body. Fig. 1.2 and Fig. 1.3 show cardiovascular system of the 

human. In these diagrams, the blue part depicts the impure blood flow and oxygenated 

blood flow is shown by red color [8]. 

1.2.2. Impulse Conduction System 

The electrical conduction system of the heart is the phenomenon of transmitting the 

impulses, which are generated by contraction of the muscles. The generation of these 

signals is initiated from the node that is located on the junction of superior vena cava and 

right atrium. This node is called the sinoatrial (SA) node. It is also called as natural 

pacemaker. Generated signals are propagated from the SA node along the surface of both 

atria in all direction and move towards the atrioventricular (AV) node. AV node is the 

junction of atria and ventricles. Here the little amount of delay is produced to provide 

proper timing for the pumping action between the atria and ventricles. After AV nodes, 

these impulses are transmitted to the bundle of hiss and divided into two branches (left 

bundle branch (LBB) and right bundle branch (RBB)). From these bundle branches, the 

signals fan out into Purkinje fibers, which are the widely distributed network of 

conducting fibers. And finally, propagates over both ventricles that causes the ventricles 

to contract. This phenomenon is depicted in Fig. 1.4 and Fig. 1.5 [9].  

1.2.3. ECG Signal  

A normal ECG signal is a quasi-periodic and non-stationary signal, which is illustrated in 

Fig. 1.6. Here, P wave, QRS complex and T wave indicate the depolarization of atria, 

-peak 

Complex Wave Wave 

Fig.1.6 Normal ECG signal [54]. 
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depolarization of ventricles and repolarization of ventricles, respectively. The PR segment 

begins from the offset point of P wave and ends at the onset point of QRS complex. It 

denotes the electrical conduction period of electrical impulses from AV node to LBB, 

RBB and Purkinje fibers. Under the normal conditions, this segment is an isoelectric line. 

ST segment starts from the offset point of S wave and ends to the onset point of T wave. 

It represents the time to relax atria and ventricles after contraction. It is also an isoelectric 

line in normal circumstances. ISO segment is also called as TP segment, and commences 

at the end of T wave and ends to the onset point of P wave. It is used as the baseline for 

reference when assessing the other segments. The duration between the onset points of 

two consecutive P waves is the one beat duration. However, the duration of two 

consecutive R peak points is considered as the one beat duration, because it is easy to 

detect. Any change in these components (i.e., amplitude, duration, and shape) can indicate 

an arrhythmia (abnormal cardiac condition). Heart rate is the number of heart beats in one 

minute. The heart rate between the 60 to 100 beats per minute is considered as normal 

heart rate or normal sinus rhythm (NSR). However, the heart rate of fewer than 60 beats 

per minute is called bradycardia and when it is greater than 100 beats per minute, it is 

known as tachycardia [10].  

Different kinds of noises are also presented in this signal. For analysis of ECG signals, 

the first step is to remove these noises, because the noise present in the signal can lead to 

an inaccurate diagnosis. Power line interference, baseline wander, motion artifacts, 

muscle contractions, electrode contact noise and instrumentation noise generated by the 

electronic circuit are various noises present in the ECG signal [11]. 

1.2.3.1. Application of ECG Signal 

ECG is very important for the clinical diagnosis of a heart patient. Since different systems 

of the human body are interconnected each other, sometimes it is also important in the 

diagnosis of other diseases (other than cardiac patients). As a result, it has a significant 

role for engineers to be conscious of the kinds of abnormalities and their 

biomedical/biochemical/physical characteristics, which are of clinical interest [12]. 

Cardiac disease can be classified into two major categories; such as based on changes in 

QRS morphology (contour) and based on the variation in rhythm i.e., heart rate variability 

(HRV) [11]. Changes arising from abnormalities as a result of cardiac generator and 

volume conductor can be imminent.  By performing a statistical analysis of the normal 

ECGs data, the normal and abnormal conditions can be identified. It can be assumed that 
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the clinical abnormalities are reflected by the electrical abnormalities (amplitude, time 

and shape) of ECG signal. On the contrast, if the objective criteria for abnormal ECGs are 

present, clinical interpretation is less definite. The clinical judgment, experience, and 

surety of biomedical data are very important in cardiac diagnosis, for human 

identification [10, 13,14]. 

1.2.3.2. Cardiac Vectors and Lead Systems  

A cardiac vector represents electromotive forces (EMF) of the heart cycle. The 

magnitude, direction, and polarity of a cardiac vector can be identified. At any given 

instant, when the process of repolarization and depolarization takes place, the 

bioelectrical potentials are propagated in different directions in the space. These 

bioelectric potentials are canceled out by the opposing forces; therefore, only 20% of the 

signal can be recorded. The recorded potential can be represented by an instantaneous 

vector for a given instant [2]. An average vector of a given portion of the cardiac cycle 

denotes the direction, polarity and average magnitude for that period (QRS period). 

Polarization and depolarization of atria and ventricles can be depicted by a vector. To 

receive bioelectric potential, electrodes are used, which are called bioelectrodes. These 

electrodes are connected directly to a device (amplifier /resistive networks), which 

amplifies the potential. The recording of these potentials is done in different manners that 

is called lead system [14].  

The lead system was introduced by Einthoven. Limb leads are classified into three 

categories; a) lead I, lead II, and lead III. These leads include the configurations of left 

arm (LA), right arm (RA), left leg (LL) and right leg (RL). Lead I is the configuration of 

RA with negative polarity and LA with positive polarity. In lead II, RA and LL are 

connected with negative and positive polarities, respectively; and in lead III, LA with 

negative polarity and LL with positive polarity are used. In the limp lead system, RL is 

used as a common point in all the configurations. Another combination of electrodes 

proposed by Goldberger is called augmented leads. Augmented leads are also classified 

into 3 types; a) aVR, b) aVL and c) aVF [2].  These are the unipolar leads. When positive 

electrodes for these leads are positioned on the right arm, left arm, and left leg, the 

configuration is to be said (aVR), (aVL) and (aVR), respectively. Another class of leads 

given by Wilson are called unipolar chest leads, which originate potentials from six 

different chest locations (V1,V2, V3, V4,V5 and V6). In this system, a reference input is 
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used to the amplifier in these cases known as the Wilson central terminal. It is formed by 

a resistive network that pays equally weighted signals from each of the three limb 

electrodes (LA, RA, LL). For acquisition of ECG signal from a human being, 12 lead 

system is used (limp, augmented and chest leads). Patient monitoring can be done by one 

lead ECG signal. Generally, Lead II is used for monitoring purpose. In Fig. 1.7, 12 lead 

system is depicted [2,14].  

1.2.3.3. MIT-BIH Database 

In this database, several ECG recordings are included, extended over 200 hours. Each 

recording includes one, two or three signals. The range of these signals is from 20 

seconds to nearly 24 hours in length. Majority of the dataset has two signals of about 30 

minutes long.  Annotated beat-by-beat is given for most of the signals. This database is 

classified into the following types; 

a) MIT-BIH Normal Sinus Rhythm Database 

b) MIT-BIH Polysomnographic Database 

c) MIT-BIH Arrhythmia Database.   

d) MIT-BIH ST Change Database 

e) MIT-BIH Atrial Fibrillation Database 

f) MIT-BIH ECG Compression Test Database 

g) MIT-BIH Long-Term Database 

h) MIT-BIH Malignant Ventricular Arrhythmia Database 

i) MIT-BIH Supraventricular Arrhythmia Database 

j) MIT-BIH P-wave Annotations 

In this work, MIT-BIH Arrhythmia database is used to evalute the performance of 

proposed methodologies for data compression, noise elimination, and feature detection. 

The details of the database are given below. This database has two series (series 100 and 

series 200). Series 100 included record numbers; 100 101 102 103 104 105 106 107 108 

109 111 112 113 114 115 116 117 118 119 121 122 123 124. And series 200 included 

record numbers: 200 201 202 203 205 207 208 209 210 212 213 214 215 217 219 220 

221 222 223 228 230 231 232 233 234.This database has 48 annotated records, acquired 

from 47 persons, and studied during 1975 and 1979 in the Arrhythmia Laboratory of Beth 

Israel Hospital in Boston. 60% of the records were obtained from the patients who lived 

in the hospital while under treatment. The number of 200 series records were chosen in 

detail, because of QRS morphology and other features of the rhythm. The signals of this 
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database are 30 minutes in length and the sampling frequency is 360 Hz. The information 

about the leads (i.e, I, II, V1, V2, V3, V4, V5 and V6), the patient's sex, age, and 

medications are included in the header files [15,16]. 

1.3. ECG Data Compression 

The process of encoding, modifying or converting the construction of a given signal /data 

in such a manner that it takes less memory or space on a disk is called signal /data 

compression. Techniques used to extract the reliable and important information from a 

signal or data, and also remove the irrelevant data are known as data compression 

techniques [17]. 

1.3.1. The Need for ECG Signal Compression  

Data compression is very important in the following areas; a) Telemedicine and e-

healthcare system, b) Holter monitor systems and c) Reducing the storage requirements. 

1.3.1.1. Telemedicine and e-healthcare System 

The field of telemedicine has changed drastically from its inception. Originally, 

telemedicine is initiated from the telecommunications technology, in which the 

information is sent in the form of electromagnetic signals over a distance. In the early 

20th century, various technologies were developed in the field of medicine. In 

telemedicine and e-healthcare systems, information of the physiological parameters is 

obtained in one location and the interpretation of disease is done in another location. It 

has many advantages, such as; patient convenience (w.r.t., time and travel), it plays an 

important role in rural areas, it reduces the problem of a low ratio of doctor /patient, it is 

important for the treatment of a number of critically ill patients due to factors like floods, 

tsunami, earthquake etc., it is helpful in a quick and timely follow-up of patients 

discharged after palliative care and it also plays an important role in continuing education 

or training through video conferencing periodically etc,. In these systems, the acquisition 

of physiological data is performed at the patient site and this data is transferred to doctor 

site using a suitable transmitting channel. For efficient data transmission, data size should 

be less; therefore, data compression is very important prior to data transmission [18]. In 

Fig. 1.8, telemedicine /e-healthcare system is depicted. [18,19].  
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Fig. 1.7 12-lead system [2]. 
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Fig.1.8 Telemedicine /e-health care system. 

Fig.1.9 Holter monitor system [48]. 
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1.3.1.2. Holter Monitor Systems 

A Holter monitor (HM) is a battery-powered, small, medical device. It is used to measure 

the activity of heart, such as heart rate and rhythm. HM records hearts activity 

continuously for 24 hours. It is also known as ambulatory electrocardiography. It contains 

two parts; a) electrodes used to record the signal from the skin and b) recording unit, in 

this unit, recorded signal is stored. For efficient data storage, data compression is needed 

in this system. In Fig.1.9, HM system is depicted. It is very helpful for the patient who is 

suffering from a heart attack. In this case, the doctor needs to observe the continuous 

heart activity after release from the hospital also [28,29].   

1.3.1.3.Reducing the Storage Requirements 

The digital ECG data is needed for:  

a) Future diagnosis of patients  

b) In research and development in the field of healthcare 

c) In educational institutes. 

The human body is composed of several closed systems such as; respiratory system, 

nervous system digestion system, and the cardiological system. These systems are 

interconnected to each other. The physiological parameter of one system may represent 

the conditions of other systems. Therefore, stored data can also help in another disease 

diagnosis. Healthcare system is one of the most important areas of research from the last 

few decades. In research, physiological data is needed to perform different experiments. 

However, the recording of new data is not possible everywhere. Therefore, recorded data 

can be used in several research areas by storing and transmitting to several places [20].  

Form the above discussion, it can be seen that ECG signal analysis is the essential part in 

diagnosis of a cardiac patient. Before the analysis of an ECG signal, noise reduction is 

mandatory. In several situations, timely diagnosis of a cardiac patient can be achieved by  

 

 

 

1 

 𝑯(𝒆𝒋𝝎)  

𝜔𝑐  
0  

 

Fig.1.10 Ideal low pass filter response [1].  
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telemedicine system, where data compression is always needed. These operations can be 

achieved by applying suitable digital signal processing (DSP) methodology. Digital filter 

is basic unit of the DSP. Therefore, in the next section digital, filter is described in brief. 

1.4.  Digital Filters 

Digital filters are the systems that boost or reduce certain features of a discrete time signal 

using a mathematical operation. The fundamental function of a filter is to reject a range of 

frequency. Filters are an essential part of the signal processing. Digital filters are 

classified into four categories, viz., low pass, high pass, band pass, and band reject filter. 

Digital filters have applications in a large number of areas such as; image processing, data 

communications, noise elimination in the biomedical signal, beat detection in ECG signal,  

digital video processing and analysis, and in voice communications. Digital filters are 

mainly classified into two categories; a) finite impulse response (FIR) filters and b) 

infinite impulse response (IIR) filters. FIR filters have finite length of impulse response 

i.e., the coefficients of FIR filters are set to zero value at the finite time, these are 

recursive in nature. In case of IIR filter, length of the impulse response is infinite [1]. 

Selection of these filters is based on the applications. FIR filter can be designed using the 

IIR filter by truncating some coefficients of IIR filter. In Fig. 1.10, the ideal magnitude 

response of low pass filter is depicted and the mathematical expressed in Eqn. (1.1) of 

this filter is given in Here,   

                                                 
1

( )
0 otherwise. 

cjH e 
   




                                  (1.1) 

where, 
c  is the cut off edge frequency and ( )jH e   is the magnitude response [3].  

1.4.1. IFIR Filter 

Linear phase and stable nature are the main advantages of the FIR filters. Therefore, 

instead of using IIR filters, FIR filters are preferred. However, in case of FIR filters, 

computational complexity is more due to a large number of adders and multipliers. 

Therefore, Neuvo et al., introduced the interpolated finite impulse response (IFIR) filters 

for narrowband and sharp transition band, which have linear phase, stable nature and low 

computational complexity [21]. In IFIR filters, two FIR filters (modal and interpolator 

filter) are connected in the cascading form. The orders of these filters are very less in 



CHAPTER 1 Introduction  

 

14 
 

comparison to desired FIR filter. The basic structure of IFIR filter is shown in Fig. 1.11 

and can be defined in Eqn. (1.2) [21]; 

                                                         
        LH F Iz z z

                                                          
 (1.2) 

where,  x(n) is the input signal, y(n) is the output signal, F(z) is the modal filter, which is 

up-sampled by up-sampling factor L and I(z) is the interpolator filter. The maximum 

value of L can be evaluated using Eqn. (1.3) 

                                                            
max

2

  ( (  –   )s p s p

L


    



 
                                 (1.3) 

where, 
sω  and pω  are the stopband and passband edge frequencies respectively of the 

desired FIR filter ( ( )H z ). 

IFIR filters reduce the computational complexity significantly. The complexity can be 

reduced further by using multistage IFIR filter, where, two or more up-sampling factors 

are used. In two stages IFIR filter, two up-sampling factors are used. In Fig. 1.12, two-

stage IFIR filter is depicted, here instead of two, three filters are used. In Eqn. (1.4), two-

stage IFIR filter is defined.  

                                                       1

1 2( ) ( ) ( ) ( )LLH z F z I z I z                                         (1.4)            

where, 1( )I z  is used as a model filter for ( )I z  that is up-sampled by 1L  and 2 ( )I z  is an 

image suppression filter. The maximum value of 1L  is also calculated using Eqn. (1.3) by 

replacing 
s  by stopband edge frequency of ( )I z [22]. 
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Fig. 1.11 IFIR structure [22]. 
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Fig. 1.12 Two stages IFIR structure [24]. 
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1.4.2.  Filter Bank 

Signal processing is divided into two types on the basis of sampling frequency; single rate 

signal processing and multirate signal processing (MSP). In MSP, the sampling rate is 

different throughout the system. Multirate signal processing has several advantages over  

single rate signal processing, such as higher bit rate, less memory requirement and less 

computational cost for the specific application. The filter bank is one of the important 

tools of (MSP).  

It divides the input signal into the number of frequency bands using bandpass filters and 

down-sampling factors. A filter bank consists of two sections; analysis and synthesis 

section. Analysis section includes down-sampling and filters (low, high or band pass) to 

decompose the input signal, and the synthesis section consists of up-sampling and filers 

for recombining the output signal [23].  

Filter bank can be classified into two types on the basis of signal decomposition, viz,. 

Two-channel filter bank and M-channel /Multi-channel filter bank. In two-channel filter 

bank, the signal is decomposed into two frequency bands, and in M-channel filter bank 

input signal is divided into M number of frequency bands. M-channel filter banks are 

further classified into two types; uniform filter banks (UFBs) and non-uniform filter 

banks (NUFBs). In UFBs, the input signal is uniformly distributed into M number of 

frequency bands. However, in case of NUFBs, the input signal is decomposed into M 

number of frequency bands with different bandwidth [24].  

1.5. Literature Review  

In this section, the literature survey of data compression, feature extraction, noise 

elimination, and multirate filter bank is presented.     

1.5.1. Data Compression  

In the past five to six decades, several methodologies have been proposed for the ECG 

signal compression [20]. Compression ratio is the main factor used to show the 

performance of compression. Value of compression ratio is based on the number of 

original and compressed samples. Therefore, this does not depend on factors such as 

sampling frequency, bandwidth, reconstruction error threshold, lead selection, and noise 

level, etc., [25]. This section includes the literature review of data compression 

techniques. 
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1.5.1.1. Direct Data Compression  

Initially, direct data compression techniques are developed to compress the ECG signal. 

Cox et al., developed the amplitude zone time epoch coding (AZTEC) algorithm for 

preprocessing the real-time ECG signal analysis. This is a very popular data compression 

method used for the reduction of ECG data. In this technique, the low amplitude signal is 

suppressed to reduce the data. It reduces the data about ten times. It also involves coding 

of the resultant signal into a convenient form, which helps in the analysis [26]. However, 

this technique is not acceptable to the cardiologist due to discontinuities and distortion 

presented in the reconstructed signal. This problem is reduced by utilizing a smoothing 

parabolic filter, which reduces the discontinuities significantly [27]. Furht & Perez have 

modified the AZTEC algorithm, by using an error threshold. This algorithm is an 

adaptive real-time algorithm, which can be used for on-line transmission and compression 

of the ECG signal [28]. In another study, discontinuities in the reconstructed signal is 

alleviated to remove the problem of AZTEC algorithm [29]. Another approach i.e., 

turning point (TP) is proposed for reducing the sampling frequency of ECG signal. In this 

algorithm, the sampling frequency is reduced to 100 Hz from 200 Hz, without affecting 

the amplitude of QRS complexes [30]. The saved points of this algorithm are not having 

equally spaced time intervals, which is the main drawback of this algorithm. It gives a 

fixed compression ratio, i.e., 2:1.   

A hybrid combination of AZTEC and TP algorithm is called a coordinate reduction time 

encoding system (CORTES) [31]. It incorporates the advantages of AZTEC and TP by 

applying both algorithms parallelly to the incoming samples. Implementation and 

reconstruction procedure of CORTES algorithm has been described in detail by 

Tompikns and Webster [32]. Gardenhire developed another algorithm of ECG signal 

compression known as fan and scan along polygonal approximation (SAPA) algorithm 

[33,34]. This algorithm involves first order interpolation with two degree of freedom. 

Three new algorithms are introduced by Ishijima et al., for compression of ECG signal 

[35]. These algorithms are based on SAPA, and provide efficient performance in terms of 

computational complexity [35].  

An efficient methodology has been developed for compression of ECG data. Here, basic 

concept of modified AZTEC technique has used and named as improved modified 

AZTEC [36]. Wolf et al., and Bertrand et al., have proposed and implemented an ECG 
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delta coding system, respectively [37,38]. Stewart et al., have modified delta coding by 

applying thresholding for the data reduction of three leads ECG signal [39]. Delta pulse 

code modulation (DPCM) is also used for ECG signal compassion, which is more 

complex and employs the linear predictor of different orders [40,41].  

 Huffman coding is one of the most popular coding system used to compress a signal. As 

a result, Huffman and variable coding have been used for compression of ECG signal by 

several researchers [42-44]. However, in variable code length coding, serious decoding 

error possibility is presented due to the transmission. This problem is minimized by data 

block  coding with  known  error  control  techniques  [45]. A  new  algorithm  “SLOPE”  is 

presented by Tai [46]. It is a real-time algorithm, which considers some adjacent 

coefficients as an information vector. Later the same author has proposed the CORNER 

algorithm for real-time ECG data compression [47]. This algorithm locates the relevant 

coefficients, and encodes using linear interpolation simultaneously which provide linear 

segmentation. Therefore, this technique codes the data more accurately.  

Another high-performance technique “cycle-to-cycle (CTC)” has been used to compress 

ECG rhythms by Holterm [48]. In the CTC technique, QRS complex detection is 

required. Improvement in the performance of CTC technique can be done by combining it 

with FAN or SAPA. The combination of CTC and SAPA is called as SAPA-CTC [49]. 

Kulkarni et al., has presented a study, which shows the effect of sampling frequency on 

the performance of compression done by direct data compression techniques. The resulted 

data shows that by increasing the sampling frequency, the percentage root mean square 

difference decreases and the compression ratio increases [50]. Another technique of direct 

data compression has been given by Saxena et al., [51]. In this technique, compression is 

achieved by down-sampling and non-redundant template (NRT). Here, data compression 

is done by applying down-sampling and store the data in data array as NRT and for the 

reconstruction of data, the interpolation process is performed. This  technique is called 

NRT-DDC. Zigel et al. proposed a new algorithm of ECG data compression called 

analysis by synthesis ECG compressor (ASEC). In this algorithm, long and short-term 

predictors, beat codebook, an adaptive residual quantizer is utilized [52]. A new idea to 

evaluate the performance of data decompression is weighted diagnostic distortion (WDD) 

proposed in [53]. In WDD, features of the original and reconstructed signal are used to 

check the quality of reconstruction.  
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1.5.1.2. Transformation Compression Techniques  

Another class of data compression techniques is transformation compression techniques, 

which involves linear orthogonal transformation and encoding. For signal reconstruction, 

decoding and inverse transformation are used. In this method, irrelevant information is 

removed to improve the performance of compression, however, these methods do not 

reconstruct signal exactly same as the original input signal [20]. Several studies have been 

done to compress the ECG data using transformation techniques [54]. Examples of 

transformation compression techniques are Fourier transform (FT), orthonormal 

exponentials, Karhunen-Loeve transform (KLT), cosine transform (CT), Walsh transform 

and Haar transform (HT) [20]. Vectorcardiogram data compression has been done using 

discrete Karhunen-Loeve expansion by Womble et al., [55]. Researchers have used 1000 

data files having sampling frequency 250 Hz. Compression performance of this method is 

high with an acceptable range of error.  In a study, the discussion of real-time data 

compression based on microprocessor processing using fast Walsh transform has been 

done [56]. This work investigates the reconstruction quality of the signal using linear 

filter. Fourier descriptors (FDs) have been used for ECG signal compression by Reddy & 

Murthy [57]. In this work, two lead ECG database have been taken. Here, firstly, the data 

is segmented into QRS complex and S-T segment by L point forward FFT with FD, and 

then for obtaining the reconstructed data, L point inverse FFT is applied. This method is 

simple and very resistant to noisy signals. Multilead ECG rhythm compression using a 

linear transform has been addressed by Cetin et al., [58]. In this work, researchers first 

linearly transformed the highly correlated standard ECG lead signals, then after various 

coding methods are applied to the resulted signals to reduce the data size. This method 

providess a high compression ratio and better reconstruction quality. In another work, 

high degree polynomial based ECG data compression has been introduced [59]. This 

method is also known as polynomial transform (PT). This method provides better results 

than the discrete cosine transform (DCT).  

A new adaptive compression technique is developed in [60]. In this technique, the 

representation of R-R interval using an optimally time warped polynomial is done. The 

performance of this work is superior to other techniques, such as DCT and DLT.  Jane et 

al.,  have proposed a technique based on orthogonal transform on Hermite function for 

ECG signal compression. Here, authors have used four windows viz., for p wave, QRS 

complex, ST segment, and T wave. The differences between the automatic measures in 
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the original signal and in the reconstructed signals has been compared that showed good 

results for compression [61].  

Wavelet transform (WT) is the most important tool of data compression from last 3 decades. 

Several researchers have used WT for a signal compression and analysis [20]. In a study, WT 

is used to compress ECG data along with vector quantization (VQ). VQ is applied to wavelet 

coefficients to achieve the compression by choosing scales of long durations low dynamic 

range retains the features integrity of the ECG with a very low bit per sample rate [62]. 

Another study is done by  Ramakrishnan & Saha for ECG data compression by utilization of 

WT. Here, authors first did beat normalization using multirate signal processing, and then WT 

is applied to each beat. Then after, residual sequence achieved by linear prediction of the 

significant wavelet coefficients. And then resultant coefficients are transmitted to decoder to 

increase the compression ratio [63]. In another work, wavelet based hybrid method used to 

compress the ECG data [64]. Wavelet packet (WP) algorithm is also a powerful tool for signal 

processing and analysis. Single lead ECG data compression is performed using WP by Bradie 

[65]. WP is used, because of its high efficiency and flexibility.  

In a study, detection of R peaks, R-R interval and ECG data compression is done using 

discrete wavelet transform (DWT). Here, researchers have developed a methodology based on 

orthogonal WT and adaptive quantization. This work provides a high compression ratio and 

low implementation complexity [66]. Subsequentially, DCT is used for ECG signal 

compression. In this work, researcher has used the MIT-BIH database to test the developed 

algorithm. 2-D DCT is used to compress the ECG signal, because it probides better results 

than single 1D. Here, two types of redundancies i.e., a) between the adjacent sample and b) 

adjacent beats are removed in this work [67]. ECG data compression by wavelet code on the 

set partitioning in hierarchical trees (SPIHT) has been done by Lu et al., [68].  Here, the 

researchers have achieved the exact bit rate control and created a bit stream progressive in 

quality. Further in another study, wavelet choise to compress the rhythms of ECG is given[69]. 

Two other methods i.e.,  a) optimal zonal wavelet coding (OZWC) and b) wavelet transform 

higher order statistics based coding (WHOSC) have been proposed by Istepanian et al., [70]. 

An efficient coding has been proposed by Rajoub [71]. First, the author has used WT to 

decompose the signal into a number of frequency bands, and then applied a new efficient 

coding. This method provides better performance than other methods in terms of CR and PRD. 

Kulkarni et al., have discussed the diagnostic acceptability of FFT based ECG signal 

compression. Here, two important parameters (CR and PRD) have been used to examine the 
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performance of compression besides visual comparison [72]. Fast Walsh transform is used for 

ECG data compression in order to study the clinical acceptability of reconstructed peaks 

amplitude and locations [73].  Another new algorithm for compression of ECG rhythms has 

been given by Chagas et al., [74]. The main aim of this methodology is to reduce the bit rate 

without affecting the reconstruction quality of the signal. The methodology is based on the 

compression of linearly predicted residuals of the coefficients of wavelet. Compression of the 

signal also involves two coding methods, such as; modified run-length and Huffman coding. 

Another method based on wavelet and iterative thresholding are given by Benzid et al., [75]. 

After application of thresholding, all the coefficients are coded using Huffman coding. This 

work also shows that the compression ratio is increased, significantly. Hwang et al., have 

proposed a novel method for compression of biomedical data. The name of this algorithm is 

layered set partitioning in the hierarchical trees (LSPIHT) [76]. The 3-D integer wavelet 

transform is used to study the lossy to lossless medical data compression by Xiang et al., [77]. 

First, the 3-D integer packet transform is designed; after this the designed methodology is 

applied to the signal, and then arithmetic coding is utilized to achieve better compression 

performance. In another work, use of wavelet transform for data compression with vector 

quantization is done. Here, authors have investigated and fixed the coding inefficiency 

problem in lossless compression i.e., overall, a new and unified coding framework is designed. 

Additionally, a novel coding strategy is proposed to enhance the coding efficiency of SPIHT 

at the less significant bit representation of the WT coefficients [78]. Subsequently, in another 

work, 2-D wavelet technique is used to compress the ECG signal. In this work, the researchers 

have used the modified SPIHT. The methodology is tested by using several records of MIT-

BIH arrhythmia database [79]. Other researchers have also used SPIHT and subband energy 

compression methodology for data compression of ECG signal. They have utilized 2-D ECG 

data, in which each row of the array indicates one or more period and amplitude of normalized 

ECG beats. The overall method is superior than the 1D ECG signal compression [80]. A joint 

use of different fidelity parameters, in order to examine the performance of coding and 

decoding for ECG signal, has been done in [81]. The aim of this study is to improve the 

performance of CR value without the expense of quality of the reconstructed signal. Another 

work has been reported by Moazami-Goudarzi & Moradi, in which multiwavelet transform is 

used for the compression of ECG signal. Here, authors have investigated the optimum wavelet 

to perform ECG data compression. Different parameters have been used to examine the 

performance of data compression and decompression such as; CR, percent root difference 

(PRD), distortion (D), root mean square error (RMSE) and cross-correlation (CC) [82].  
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A novel method for compression of ECG rhythms has been reported by Manikandn & 

Dandapat using discrete sinc interpolation (DSI) technique. Here, the realization of DSI is 

done by an efficient discrete Fourier transform (DFT). The performance of this methodology 

is compared with the performance of other widely used ECG data compression methodologies, 

vis., FAN, AZTEC, Hilton and Djohan technique. Authors have observed that in case of DSI 

based method, higher CR is achieved with a relatively lower percentage of RMS and PRD 

value. Here, diagnostic distortion is also computed in terms of average absolute error (AAE), 

which is lower than the other methods (FAN and AZTEC) [83]. A new wavelet-based quality 

measure is introduced by Al-Fahoum. This approach is based on the division of interest 

segment in the repeated band, where a score is given based on dynamic range and diagnostic 

significance. Quantitative and qualitative measurement of the performance is done, which 

shows that given approach is insensitive to error variation, and provides an accurate 

comparison in original and reconstructed diagnostic features [84]. A low-delay ECG 

compression algorithm for continuous ECG transmission is done in a research work. Here, 

wavelet partitioning and adaptive frame size adjustment based methodology is employed to 

attain the low delay. Another novel approach used to compress the ECG data is reported by 

Ku et al., This methodology uses the full wavelet coefficients with mean value in the 

termination. Here, the reversible round-off non-recursive 1-D discrete periodized wavelet 

transform (NRDPWT) is utilized to resist the truncation error propagation. Further, 

quantization is used to compress the data using octave coefficients [84]. A hybrid approach 

based on wavelet, uniform scalar zero zone quantizer (USZZQ) and Huffman coding on 

differencing significance map (DSM) is done for compression of ECG signal. Here, the 

thresholding value selection is done using the energy packing efficiency (EPE) of each 

subband; after this, the quantization process is utilized. Then after storing process of the 

indices of significant coefficients is done by creating a significance map. Finally, the Huffman 

coding is used to encode the map [86]. Another approach of ECG signal compression is done 

based on the modified embedded zero-tree wavelet (MEZW). Two different thresholding 

values are applied to decomposed coefficients to improve the values of CR and PRD [87]. A 

methodology for the compression of biomedical signals, such as ECG, electromyogram, 

electroencephalogram, etc., is done with mother wavelet optimization and best-basis WP 

selection. Here, the researchers have used the discreet WP for decomposing the ECG 

waveform. The optimization process is involved to acquire the optimum wavelet 

decomposition [88]. 
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An improved wavelet-based 2-D algorithm is proposed for the compression of ECG data, 

which employs a double stage compression. In the first stage, SPIHT algorithm is utilized to 

compress the 2-D data ECG data, and in the second stage, VQ is used to the residual image 

gained from the preceding stage. This methodology uses both inter-beat and inter-sample 

redundancies present in the data [89]. Arnavut has developed a methodology for compression 

of ECG data using Burrows-Wheeler transformation and inversion ranks of linear prediction. 

The methodology yields better compression gain in terms of weighted average bit per sample 

than several existing methods [90]. A constrained ECG compression algorithm using the 

block-based DCT is given by Benzid et al., This algorithm controls quality criterion in terms 

of PRD [91]. SPIHT algorithm is modified to provide better performance of compression 

called enhanced set partitioning in hierarchical trees (ESPIHT). This method is faster than the 

conventional SPIHT. This method also reduces the number of bits in a bit stream. The 

ESPIHT is applied to the multichannel ECG data [92]. Another wavelet-based method is used 

for ECG signal compression, in which first, the DWT is applied to the digitized ECG signal; 

and then, uniform scalar dead-zone quantizer is applied to the DWT coefficients. After this, 

these coefficients are decomposed into four symbol streams, representing a binary significance 

stream, the signs, the positions of the most significant bits, and the residual bits. An adaptive 

arithmetic coder with several different context models is employed for the entropy coding of 

these symbol streams [93]. Lee & Lee have introduced an algorithm to compress the ECG 

signal for holter monitoring. This algorithm involves different steps, such as; ECG signal 

differentiation, R-R interval division and classification, DCT application, window filtering, 

signal assembling, and Huffman coding. This algorithm provides a good value of CR and PRD 

[94]. Another work has been reported, in which a new 2-D wavelet-based ECG signal 

compression algorithm is introduced [95]. An ECG signal (1-D) is first segmented and aligned 

to a 2-D signal (array), consequently, the two types of correlation of heartbeat signals can be 

fully utilized. Then after, 2-D WT is applied to the created 2-D ECG data array. After this, a 

modified VQ is applied to the resultant coefficients of previous stage. DCT and Laplacian 

pyramid based compression method for ECG signal is proposed in [96], where first, the 

transformation is done using DCT algorithm, then after, a thresholding is applied based on 

bisection algorithm. Then after, the binary lookup table is formulated for storing the position 

map. In another work, a new modified SPIHT algorithm is used to code the coefficients of 

ECG after WT decomposition [97]. In another study, ECG data compression is done using 

DCT based discrete orthogonal Stockwell transform [98]. 
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A new cyber-physical measurement process model is proposed with applying compressive 

sensing, where the packet loss in a wireless link is modeled as a random sampling process 

[99]. In a comparative study, transform based methods, viz., FFT, DCT, and WT are analyzed 

for ECG data compression. Researchers have observed that the DCT based method increases 

CR by 58.97% than FFT. And WT methods further improve the value of CR by 31% than 

DCT with low PRD value [100].  Bendifallah et al., have introduced an algorithm in which 

improvement in the DCT method is done first; and then, the improved DCT algorithm is 

applied to the ECG signal. DCT coefficients are then quantized using a uniform scalar dead 

zone quantizer. After this, quantized coefficients are coded using arithmetic encoding method 

[101]. A new approach based on compressive sensing (CS) is formulated for data compression 

of ECG signal [102]. Lee et al., have developed a real-time signal compression technique for 

e-healthcare terminals. This methodology includes five procedures, such as; downsampling, 

classification of one rhythmic period, DCT, filtering using the windowing method and coding 

using Huffman coding [103]. Another work is presented by Sharma et al., for data 

compression of multichannel ECG signal. Here, researchers have used the wavelet transform 

to decompose all channel coefficients, and then multichannel principle component analysis is 

used. Multichannel compression is implemented using uniform quantizer and entropy coding 

of principal component analysis (PCA) coefficients [104]. Kumar et al., have used optimized 

wavelet filter bank based methodology for the compression of ECG rhythms. Authors first, 

designed the wavelet filter bank using a Kaiser window function, which is optimized using the 

linear iterative algorithm. Then applied it to ECG signal for frequency division. Further, they 

have used RLE technique to encode the wavelet coefficients [105]. An improved wavelet-

based technique is proposed by Huang et al., for data compression of ECG signal. Here, first, 

DWT is applied to the ECG signal, which provides tree structure decomposition. Then, the 

quantization of the decomposed coefficients is done using vector-scalar quantizer. And then, 

the context modeling arithmetic coding is applied to quantized coefficients [106].  Another 

approach of ECG data compression is given by Kumar et al., by using WT. Here, researchers 

have used beta wavelet and lossless coding. The threshold value estimation is done in such a 

way that the low PRD value can be achieved [107]. 

A new scheme based on wavelet is proposed in [108]. In this work, wavelet coefficients 

quantization is done, for which the evolution program (EP) is proposed, which can formulate a 

check stationary relationship between the quantization scales of multi-resolution levels. 

Researchers have tested the proposed method by using the MIT-BIH and PTB database. A 

novel methodology is designed for the compression of ECG signal for telemedicine and e-



CHAPTER 1 Introduction  

 

24 
 

healthcare application. Here, researchers have used the adaptive Fourier decomposition (AFD) 

and symbol substitution (SS) based hybrid technique. This Methodology of compression 

includes two stages such as; a) AFD is executed for efficient lossy compression with high 

fidelity and b) SS is performed for the lossless compression, which enhances the compression 

performance and encrypts the built-in data [109]. Padhy et al., have introduced data 

compression of multi-lead ECG signals. Here, singular value decomposition in the wavelet 

domain is performed. A new technique for estimating the suitable value of thresholding is also 

given in this work, which is based on multiscale root fractional energy contribution [110]. 

Another hybrid technique based A hybrid ECG compression technique based on DWT and 

removal of interbeats and intrabeats correlations is introduced for the ECG signal compression 

[111].  Wavelet and coding based other methods are also used for ECG signal compression 

[112]. WT is used for data compression and decompression of audio and ECG Signals in 

[113]. 

1.5.1.3. Parameter Extraction Compression  

In parameter extraction compression techniques, extraction of a set of parameters from the 

original signal is done, and these extracted parameters are used to reconstruct the signal. The 

process is used to quantize a small set of extracted diagnostic features; sufficiently enough to 

reduce the data size, and provides almost invisible distortion. In the peak peaking compression 

techniques, the data reduction is based on the sampling of the continuous signal at all the 

significant peaks [114]. ECG data reduction using peak peaking method is done in [115,116]. 

Here, data reconstruction is done using a spline function. The ECG signal compression is 

presented by utilizing the predictionary interpolation and entropy coding by Ruttimann & 

Pipberger [117]. The main objective of this work is to attain the data by application of 

stationary time series analysis. This algorithm has economic implementation by using the 

available hardware. However, the study has contained the basic problems of DSP, for 

example, interpolation, linear prediction coding (LPC), least square estimation, estimation of 

the auto-regressive coefficient, etc. [118,119,120]. 

In a research work, ambulatory ECG data is compressed using the methodology, which 

includes the average beat subtraction and first differentiation of residual data [121]. Another 

algorithm is proposed by Nave & Cohen to compress the ECG signal, which is based on a 

long-term prediction (LTP) model [122]. Subsequently, Cohen & Zigel have presented the 

multichannel ECG data compression using multichannel LTP [123]. Barlas & Skodalkis have 

proposed an innovative class of data compression methodologies called a cycle pool based 
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compression (CPBC) algorithm [124]. These methodologies have been designed for exploiting 

the redundancy of 1-D semi periodical biological signals, which have the cyclic nature, for 

example, ECG signal. Another method is given by Hamilton et al., in which beat division is 

performed after QRS complexes identification. Here, researchers have used the artificial 

neural network (ANN). This work has presented an improvement in the compression 

methodology based on ANN [125,126]. Another method is proposed for data compression of 

ECG rhythms, which is more suitable than the average beat subtraction algorithm [127]. A 

detailed study of training different topologies of errorback propagation (EBP) ANN w.r.t 

variation in a number of hidden layers is given by Saxena et al., [128]. This work shows the 

best topology for ECG data compression. It deals with a composite and efficient method for 

signal retrieval, data compression and feature extraction. Non-linear quantizer based ECG 

signal compression method is developed by Cassen & English [129]. This method is a 

computationally efficient method, in which the compressed data is presented in form of codes 

or numerals. Other methods are also used for ECG data compression [130-147]. 

1.5.2. Noise Elimination  

For the analysis of ECG signals, the first step is to remove the noises, because noises can 

lead to an inaccurate diagnosis. An efficient method to clean the ECG signal has been 

presented by Ahlstrom & Tompkins [148], in which a set of real-time digital filters to 

denoise ECG waveform is proposed. Hanning filter is used to remove the 60Hz power 

line interference. After removing 60Hz frequency, the high pass filter is designed to 

remove dc offset. These researchers also used bandpass filter for the detection of QRS 

complex.  Linear phase filters to remove the baseline drift during the exercise designed 

by Alsti et al., work in real time ECG signal processing [149]. Impulsive noise is 

removed, using a morphological operator [150]. In this study, researchers have used the 

basic morphological operator such as erosion and dilation for removing impulsive noise, 

and removed the baseline drift by applying opening operation followed by closing 

operation. Further, background normalization has been carried out using drifting and 

subtraction.  

Adaptive filtering is also used to reduce the noise in a biomedical signal. The technique 

[151], is used for baseline wander drift elimination. Also, these researchers employed the 

adaptive recurrent filters for noise cancellation of ambulatory ECG data, which includes 

environmental noise, power line noise, radio frequency noise, and other noises. After 
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cleaning the signal, arrhythmia detection was done, accomplished with the specialty of 

QRS-T complexes and ectopic beat detection, P-wave and atrial fibrillation detection. 

Cascaded structure of adaptive filter has been used to remove the baseline wander [152]. 

A new technique employing IIR notch filter that not only suppresses the transient state(s) 

in the output, but also improves the performance in noise reduction as compared to other 

methods is proposed by Pei et al., [153]. Hamilton has compared the adaptive and non-

adaptive filtering methods to remove noise in the ECG signal, and has applied adaptive 

and non-adaptive notch filter to remove 60Hz signal and concluded that the adaptive 

filtering technique is less complex [154]. In a study, the interval based wavelet denoising 

method for denoising the ECG signals are used [155]. WT is very often used to denoise 

the ECG signals, since the past 2 decades. In the same context, Tikkenen used wavelet 

transform to denoise the ECG signal using a new wavelet packet based algorithm [156]. 

The research involved the quantitative comparative study of several denoising approaches 

by means of visual inspection and optimized error measures and the error signal of the 

denoised ECG data.   

Statistical threshold estimator is used to completely eliminate the noise from ECG signal 

by Agante [157]. Motion artifact in stress is removed from ECG signals by Raya et al. by 

using adaptive noise cancellation [158], the stress being created by the accelerometer. 

Modified morphological function (MMF) is used for conditioning the ECG signal [159], 

where the aim of the research is to improve the performance of signal conditioning to 

achieve reliable ECG signal analysis in terms of low computational burden, low distortion 

ratio and good signal to noise ratio. In another study, 60Hz noise is reduced using a notch 

filter [160]. Authors first, designed the FIR filter using Parks-McClellan method, and then 

compared the different notch filter results. A new approach to remove baseline wander is 

proposed by Zhang [161]. DWT is used to remove the baseline wander noise, and the 

high-frequency noise component is eliminated using the wavelet shrinking method. In 

another approach, the nonlinear filter bank is used to remove noise components from the 

ECG signal [162]. Nonlinear filtering improves the performance in terms of less 

distortion and less computational complexity. In yet another study, researcher employed 

the elliptical filter for elimination of noise [163]. Blanco-Velasco et al., proposed a new 

method to enhance the diagnostic value of ECG signal. This method is based on empirical 

mode decomposition (EMD) to remove baseline wander and high-frequency noise [164]. 
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A novel method to suppress noise, based on unbiased and normalized adaptive noise 

reduction (UNANR), has been proposed by Wu et al., [165]. The performance of this 

method is better in terms of SNR in the range of 5–20 dB over the 48 ambulatory ECG 

recordings tested, and analyzed using standard MIT-BIH arrhythmia database. 

Independent component analysis (ICA) and principal component analysis (PCA) are 

investigated to denoise ECG signal in [166]. The author has applied 8- channel PCA & 

ICA to eliminate the unwanted signal. Chand & Lu have proposed an algorithm that is an 

improvement of EMD algorithm to remove Gaussian white noise [167]. The authors also 

used FIR Wiener filter for performing the task. A hybrid scheme consisting of Genetic 

algorithm and wavelet transform has been used by El-Dahshan for ECG signal denoising 

[168]. The performance of this hybrid scheme is evaluated in terms of SNR and 

percentage root mean squire difference method (PRD). In another study [169], 

researchers have presented and compared different technique, viz., IIR high pass filter, 

IIR zero phase, FIR filter, moving average, wavelet, polynomial filter etc. for removal of 

baseline wander from the noisy ECG data.  

A hybrid method is introduced by Kabir & Shahnaz to denoise ECG data [170]. Authors 

combine two mass valuable algorithms that are wavelet transform and EMD to improve 

the processing of ECG signal. Comparative analysis is made in terms of PRD and SNR. In 

another technique, authors improved the principal component regression (PCR) approach 

for processing maternal ECG [171]. The aim of this work was to remove maternal ECG 

signal from the abdomen signal with high accuracy. The non-stationary nature of noise 

contaminating the ECG signal and the spectral overlapping of noise with diagnostic ECG 

wave complexes prompted the researchers to undertake another study [172] based on an 

adaptive filtering approach taking into account two major techniques, viz., discrete wavelet 

transform and artificial neural network (ANN). Authors developed a new combination of 

multiresolution property of wavelet decomposition with the rationale of adaptive learning 

ability of ANNs. The study could provide significant SNR improvement as compared to 

another algorithm that is capable of only removing a fewer number of noises. Another 

comparatively simple, effective and computationally undemanding method has been 

proposed that performs noise reduction to increase the accuracy of ECG interpretation 

[173]. In this work, the researchers have computed the discrete Fourier series of sampled 

ECG data and calculated the Fourier coefficients for the segmented signal. Eventually, the 

coefficient corresponding to the noise frequency is eliminated and by using an inverse 
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operation the processed coefficients are transformed back to time-domain to retrieve the 

original ECG signal, noiseless and reliable for the analysis and interpretation. The method 

yielded suitable SNR improvement for high-frequency noise. Liu & Luan proposed a 

novel integrated adaptive algorithm to separate the fECG (fetal ECG) from the maternal 

ECG data [174]. The adaptive integrated algorithm is based on ensemble empirical mode 

decomposition (EEMD), independent component analysis (ICA) and wavelet shrinkage 

(WS) denoising criteria, denoted by the authors as ICA-EEMD-WS technique for noise 

elimination and fECG separation. Researchers concluded that the integrated adaptive 

algorithm gives better result in terms of high SNR, R wave amplitude and smaller mean 

square error values as compared to conventional algorithm in signal denoising. 

A new methodology is proposed by Mirza et al., to suppress impulsive noise [175]. In this 

work, an enhanced adaptive impulsive noise cancellation technique is proposed. This 

technique is based on State Space Recursive Least Square (SSRLS) algorithm and used to 

eliminate the impulsive noise that causes catastrophic effects in electrocardiography. The 

method exhibits better results, as regards impulsive noise cancellation in ECG signal, in 

comparison to Recursive Least Square (RLS) and Normalized Least Mean Square 

(NLMS) techniques. The proposed scheme not only demonstrates the fastest convergence, 

but also excellent tracking characteristics leading to desired and effective results  

In another study, by Goel et al., [176], white noise has been removed for obtaining the 

diagnostic information in the ECG signal acquired from MIT-BIH database. The authors 

used Welch and Blackman Nuttall window functions to design low pass FIR filters. The 

performance of the two windows based FIR filters are compared by computing Total 

Harmonic Distortion (THD) and energy levels of the signal. Finally, the authors 

concluded that Blackman Nuttall window performed better. Another efficient technique, 

based on VHDL (VHSIC hardware description language) implementation, is introduced 

by Belchandan et al., [177]. In this research work, researchers used FIR filter and IIR 

filter for reducing artifacts in ECG data 

1.5.3. Feature Extraction  

A number of studies have been done for the last six decades for accurate features 

extraction of ECG signal, especially the QRS segment. QRS complex detection 

techniques are classified into four groups, viz., (a) transformative approach, (b) syntactic 

approach, (c) non-syntactic approach and (d) combined or hybrid approach. Several 

researchers have detected QRS complex, because it is a fiducial point and can be 
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extracted easily [178-182]. The studies of feature extraction of ECG signal involves 

different processes, viz., squaring, filtering and differentiation, by applying the decision 

rules like amplitude and time thresholds, zero crossings, sharp consecutive peaks (P, R, Q 

point), QRS complex duration, and R-R interval duration [183]. However, several 

techniques face difficulties in extracting exact features due to a number of dissimilarities 

in cardiovascular activities, these similerties are reflected in time durations, amplitudes, 

and slopes of the different parts of ECG wave. Therefore, it is very difficult to extract 

features of an ECG signal.  

In the syntactic approach, pattern recognition is done for QRS complex estimation. Here, 

the input wave of ECG is segmented into a set of small patterns, viz., durations, slopes 

peaks, and other interwave parts, after that rule-based steps are applied. The signal is 

shown as a combined unit of durations, slopes, peaks, and interwave segments. The 

patterns are utilized to determine the QRS complexes. However, these techniques are 

consuming more time and require inference grammar in each step of execution for the 

estimation of QRS complex [184-186]. A bottom-up method is used for the recognition of 

ECG waveforms [187]. This method is based on the assumption that ECG waveforms are 

the overall units that can be broken into other simple units, and in other simple ones, and 

so on, up to the peak pattern and segment pattern. 

Non-syntactic ECG feature detection techniques are most widely used for the detection of 

features. These types of techniques involve time duration, slope, amplitude, and threshold 

values by using different, model, mathematical functions and filters. In a study, the five-

step digital filter has been used to detect the QRS complex of ECG signal [188]. Thakor 

et al., have done a study, in which the power spectral analysis of ECG signal is carried 

out along with the separate QRS complexes and episodes of noise and artifacts [189].  

A real-time algorithm has been proposed by Pan & Tompkins for detection of QRS 

complex of ECG signal [190]. This algorithm is a reliable technique, because it is based 

on the digital analysis of width, amplitude, and slope of the segments of the signal. In 

another work, the standard database (MIT-BIH arrhythmia database) is used to perform 

the quantitative effects of a number of common elements of rules of QRS complex [191]. 

Laguna et al., have proposed an automatic technique for determination of onsets and 

offsets points of P, QRS, and T waves. Researchers have used multi-lead ECG signals 

from the CSE DS-3 database [192]. Another wavelet-based machine learning techniques 
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for detection of features of ECG signal is done in [193]. A fast expert system is design for 

electrocardiogram arrhythmia detection [194]. Here, also researchers have used MIT-BIH 

ECG datasets for analyzing the performance of given method. A method based on mid 

prediction (MIDP) has been used to extract the spikes of a biomedical signal [195]. 

Multirate digital signal processing based ECG signal analysis is done by Afonso et al., 

[196]. In this method, authors have designed the filter bank, then decomposed the ECG 

signal into uniformly distributed sub-bands. Several mathematical approaches are also 

used to determine the features of ECG signal, viz., mathematical models, averaging 

techniques, mathematical morphology, mixed mathematical basis functions, and spatial 

velocity function. 

Another study includes a new mathematical model, which is used to extract the QRS 

segment. Here, the researchers have considered that the QRS segment of ECG signal as a 

pulse-like structure and the number of P-peaks, amplitudes, arrival time and width [197]. 

The mixed mathematical functions like exponential, Gaussian and straight line have been 

also utilized to show the amalgamated ECG waveform. A mathematical model has been 

considered for the occurrence of pulse-shaped waveforms corrupted with colored 

Gaussian noise [198]. In this work, QRS wave is also determined using the thresholding. 

A new method, to denoise weak ECG signal based on fuzzy thresholding and wavelet 

packet analysis is given by Üstündağ  et al., [199]. In the first method, the diverse 

mathematical functions are used, and in the second method, a spline function is utilized to 

extract the QRS complex. Researchers have also identified the  P and T waves. Another 

method is suggested by Trahnias, based on the morphology of QRS complex detection 

[200]. In this work, a morphological operator is used for peak-valley extractor. A new 

method based on spatial velocity is suggested by Maheshwari et al., for detection of QRS 

complexes, P and T waves [201]. Several new techniques have been proposed for 

detection of QRS complex based on fuzzy logic (FL), ANN and genetic algorithms (GA) 

[202]. However, the accuracy of these methods depends upon the type of used training 

set. In another study, ANN based methodology is employed to detect the QRS complex in 

ECG [203]. 

The artificial neural network (ANN) based method developed by Vijaya et al., works on 

high prediction error to indicate the occurrence of QRS complexes [202]. A number of 

studies have been done to improve the performance of QRS detection by using adaptive 

techniques QRS detection [203-208]. Application of higher order cumulate is utilized for 
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features extraction and cardiac health diagnosis using ECG signals [209]. Here, the linear 

matched filter is used to detect high frequency QRS complex energy. Two types of 

problem are found for this method, a)  in the detection of QRS complex of a different 

subject, different passband is required, this problem may come for the same subject in the 

detection of QRS complex of a different beat and (b) sometimes QRS complex and noise 

are overlapped. Laguna et al.,  have presented a method for on-line beat-to-beat extraction 

known as Adaptive Hermite Model Estimation System (AHMES) [210].  

The hybrid methods are the combination of syntactic and non-syntactic approaches used 

to estimate the QRS segment, and the transformative methods involve transformation of 

the signal from time domain to other. The examples of these techniques are Fourier 

transform, sine transform, cosine transform, differentiator transform pole-zero transform, 

Hilbert transform and wavelet transform. Several studies have been done in which authors 

have used transformable method to detect the QRS complex [211-220]. In a study, a 

solution to the basic problem occurring in analyzing the ECG signal has given, for 

example, the delineation of the signal into its component [221]. Here, the researchers used 

a pole-zero methodology to analyze the ECG waveform. From the last two decades, the 

use of WT in QRS estimation has shown the upper edge, because it provides good 

accuracy in less preprocessing requirement and also easy to implement. [222].  

DWT and PCA based method is given by Martis et al., for the detection of Feature 

Extraction of ECG signal [223]. The main advantage of the method based on DWT is that 

no assumptions are required for ECG signal analysis. Multiresolution analysis of ECG 

signal based on Maxima of WT is given by Sahambi et al., [224]. A method based on WT 

is used for the detection of QRS complex by zero crossings [225]. This method is robust 

to time-varying QRS complex morphology and noise.  

1.5.4. IFIR Filter and Filter Bank  

IFIR filter is developed by Neuvo et al., to reduce the complexity in linear filtering [21]. 

A structure, with flat passband and equiripple stopband attenuation using Remez 

exchange algorithm has been developed by Vaidyanathan [126]. Another methodology, 

based on iterative method, has been used for designing computationally efficient IFIR 

filters [227]. Subsequently, Pawel & Chau have further improved the IFIR filter response 

in terms of computational complexity [228]. In this study, a delta cosine signed-digit code 

(CSD) truncation method for designing of IFIR filter has been used to obtain a simple 
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structure for improving the response in passband region. In another study, frequency-

response masking (FRM) technique was used for efficiently improving the filter response 

[229]. A new procedure for implementing fully adaptive IFIR filter has been presented in 

[230]. In this method, the border effects have been removed with an improvement in 

mean square error (MSE). Since then, further improvements in the response of passband 

region of IFIR filters have been made by several researchers [231-234]. 

In the design of IFIR filter, up-sampling factor ( L ) is a dominant parameter of IFIR filter 

as all other specifications of the sub-filters (model and interpolator filter) are directly 

derived from L . Thus, the selection of L  is an essential step in designing an IFIR filter. 

So far, the value of L has been expressed as the reciprocal of stopband frequency of 

original desired FIR filter. For further reducing the computational complexity, researchers 

have introduced techniques for obtaining suitable values of L . For instance, Richard has 

suggested an optimum value of L  on the basis of the relation between the complexity 

reduction cost (CRC) and transition width (TW) [235]. In another study, a mathematical 

relation for obtaining an optimum value of L is proposed by Mahernia & Willison [236] 

that improves CR significantly. 

In a recent study, a new filter design approach is presented based on interpolation 

function. Here, researchers have designed close form linear phase filter using convolution 

window spectrum interpolation that improves the transfer function characteristics. The 

proposed filter is having a good response in terms of ripples, large stopband attenuation 

and high efficiency [237]. Mehrnia & Willson have proposed a new design method for 

constructing FIR filters which are significantly superior to other methods of 

implementations in terms of hardware realization. In this study, optimally factored IFIR 

filters are formulated, which are also easily pipelined, thereby allowing the operation at 

higher data-rates [238]. Other works are also presented for improving the performance of 

IFIR filter [239-242] 

A new design method based on interpolation function is introduced for designing narrow-

band sparse FIR filters. The proposed filter is superior than the conventional IFIR filter, 

because it generates sparser solutions [243]. Another approach is introduced to design a 

low complexity reconfigurable IFIR filter for software defined radio channelizers. Here, 

the researchers have used farrow structure to implement the IFIR filter [244]. A simple 

design technique of a baseband filter for inter-symbol interference (ISI) cancellation is 

obtained by using a structure based on the IFIR approach. Unlike the classical IFIR 
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scheme, in this filter, the interpolator is designed first as; simple multiplier less filter 

composed by cascaded subfilters with unitary coefficients [245].  

For additional improvement in the computational complexity, the concept of multistage 

IFIR filter has been used. As a result of low computational complexity, IFIR filter is more 

preferable than FIR filter for narrowband and sharp transition width. Therefore, it has 

many applications in various fields such as image processing, communication systems, 

radar systems, multirate signal processing, biomedical signal processing and speech 

processing [246-256]. In designing of a digital filter, following two points are important 

a) passband of the filter should have approximate a constant amplitude, in the manner of 

equiripple, namely, the maximum deviation from a constant is minimized; and b) the 

amplitude of stop-band, should approximate zero in the manner of equiripple, namely, the 

maximum deviation from zero is minimized [257]. 

The filter bank is one of the most important tools of multirate signal processing. Among 

different types of filter banks, cosine modulated filter banks (CMFBs) are the most 

important.  Koilpilai & Vaidyanathen have given perfect reconstruction (PR) condition 

for CMFB [258]. In this work, PR condition is obtained using power complementary 

condition. However, practically PR condition cannot be achieved due to the ideal filter 

requirement due to high computational complexity. Therefore, Nguyen has introduced a 

new perfect reconstruction condition called as, nearly perfect condition [259]. Here, the 

filter bank suffers from three types of distortion, which can be removed by considering 

some point. Here, the authors have used optimization of several parameters to reduce the 

reconstruction error. However, this approach is complicated, because of large number of 

iterations. This problem is removed by Creusere & Mitra, by using optimization of single 

parameter instead of multiparameter [260]. Here, authors linearly change the passband 

edge frequency to optimize the response of prototype filter. Prototype filter designed by 

window function can remove the error present in the stop band. However, the window 

function method generates ripples in the passband and stopband [261-265]. Minimization 

of ripple length has been done by using the weighted least square method for designing 

the prototype filter [266]. Here, researchers have considered a factor known as error ratio, 

it is the ratio of passband energy to stopband energy. Authors have used different values 

of roll of factor for different error ratio value to get efficient results. A close-form 

technique is applied to design an optimum prototype filter for cosine modulated filter 
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bank [267,268]. In this method, the authors have removed the optimization by eliminating 

the iteration process which reduces the computational time.  

In a study, a near-perfect reconstructed trans-multiplexer is designed [269]. Here, the 

researchers have used the windowing method for the design of linear phase prototype 

filter, and different modulation techniques have been exploited for designing a suitable 

transmultiplexer. Sharma et al., have been designed a multiplier-less near perfect 

reconstruction CMFB [270]. In this work, adjustable window functions have been used to 

design a prototype filter, and cuckoo search (CS) optimization technique is applied to 

obtain the magnitude response of 0.707 at frequency ω=π /2M. Recently, Shaeen and 

Elias have done a study of literature of several techniques of CMFB and their 

performance comparisons [271]. Authors have also prosed FRM based technique for 

designing a computationally efficient filter bank.  In another work, M-channel 

multiplierless CMFB has been designed by utilizing sub-expression technique (CSE) 

[272]. In this work, a hybrid method is also used to obtain the optimum response of filter 

using roll- off factor and AS. Sharma & Sharma have designed CMFB for spectrum 

sensing application in Cognitive Radio [273]. In this work, windowing method has been 

used by the researchers. Kaiser window function is used to design the prototype filter. 

Instead of optimization method, here authors have used closed form method. Baderia et 

al., have proposed an efficient Multi-channel MFB [274]. Here, the researchers have 

optimized the prototype filter by utilizing the polyphase components. For this purpose, 

CS, modified cuckoo search (MCS) and swarm optimization techniques (SOTs) based 

algorithms are used to improve the performance of FB. A multiplier-less tree-structured 

NPR FB is proposed by Bindiya & Elias [275]. The aliasing distortion generated between 

the adjacent bands is reduced by using a sharp transition band filter. For this purpose, 

FRM technique is used which provides the low computational complexity, linear phase 

and sharp transition width. The authors have also compared the performance of proposed 

filter bank with several existing FBs, and concluded that the proposed FB is better in 

terms of number of multipliers.  

In another work, discrete Fourier transform (MDFT) filter bank is proposed using canonic 

signed digit space-based methodology [276].  Here, FRM technique is used to obtain 

sharp transition width and less computational complexity. Further, the performance of 

designed FB has been increased using modified meta-heuristic algorithms. Prema & 

Dasgupta have proposed a method for optimizing a prototype filter for designing the 
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CMFB [277]. In this methodology, NPR CMFB is designed, which have low distortion 

(amplitude and aliasing). Low value of these distortions is obtaining by coshing an 

objective function. The designed approach is systematic and self-controlled. Kalathil & 

Elias have presented a new methodology to design an NPR CMFB [278]. In this study, 

CSD coefficients methodology has been used to design an efficient CMFB. Further the 

authors have designed the non-uniform FB by merging the bands of uniform FB. Here 

three methodologies are used to design the prototype filter i.e., weighted Chebyshev 

approximation, window method and weighted constrained least square approximation 

[279]. Further, authors have given another study of designing VMFB. Here, the authors 

have designed the hybrid methodology, which has combined the qualities of two meta-

heuristic algorithms. A novel methodology of recombination of filter bank for obtaining 

the NUFB has been given by Kalathil [280]. Here the researcher first designed the 

uniform FB and transmultipexer by applying cosine modulating technique. The nature-

inspired optimization algorithm is used to achieve multiplier free FB in CSD, and the 

overall CMF has less computational complexity.  

Another hybrid methodology is given by Kuldeep et al., to design an m-channel CMFB 

[281]. Here, the researchers have used a combination of Lagrange multiplier method and 

cuckoo search optimization. Verma & Singh have recently proposed a methodology to 

design a multi-channel CMFB [282]. Here, authors have used bacterial foraging 

optimization (BFO) and CSD technique to minimize error in the response of the filter. 

This approach has reduced up-to 22% of time of completion. Another recent approach for 

the design of a CMFB is given by  Ozdemir  & Karaboga [283]. Artificial bee colony 

(ABC) algorithm has been used by the researcher to optimize the filter response.  

Since the filter bank has a variety of applications in various fields. The research is 

continued from the last two decades to design efficient multirate filter bank, and the non–

uniform filter bank is more remarkable than uniform FB, because it is suitable for 

complex applications. A non-uniform filter bank can be used for the audio system and 

biomedical systems [284,285]. A substantial amount of research has been done to design 

non-uniform filter bank and detailed by different authors. [286-295]. for reducing the 

computational complexity of prototype filter, Zijing & Yun have used IFIR filter instead 

of FIR filter. This method gives a significant reduction in computational complexity. 

Authors have designed non-uniform cosine modulated filter bank. Parks-McClellan has 

used an algorithm for designing model and interpolated filter [296]. Soni et al., [297] 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Gokcen%20Ozdemir.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nurhan%20Karaboga.QT.&newsearch=true
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have designed the prototype filter with IFIR by using the windowing technique. Kaiser 

window function has been used to design uniform CMFB and optimization of prototype 

filter has been done using linear gradient optimization technique [298]. Authors [299] 

have designed a trans-multiplexer by using IFIR filter. In this work, minimization of 

parameters has been done by applying a single variable bisection type optimization 

technique. The improvement of the response of prototype filter has been done by different 

algorithms. Others researchers have also presented the design of digital filter and filter 

bank [300, 303].  

1.6. Author’s contribution 

The Author has developed an algorithm for designing computational linear phase filters. 

In coefficient reduction method, the numbers of unwanted coefficient have been removed 

by using suitable mathematical relations between filter tap of IFIR and FIR. Several filter 

design method are used to design model and interpolated filter, which shows that the 

methodology used in this work can be applicable for all type of filter design technique 

and provide efficient results in terms of computational cost and filter response. And these 

filters can be used to denoise any signal without phase distortion and complexity. Another 

advantage of the designed method is it provides less delay in comparison to conventional 

IFIR and FIR filter.   

M-channel filter bank has been designed by using single stage and two staged IFIR filter, 

which reduces the computational complexity. Further, the computational cost is reduced 

by apply cosine modulation technique. The perfect reconstruction condition has been 

achieved using linear optimization of cut off frequency of model filter by calculating the 

filter coefficients at 3dB cut-off frequency. The designed filter bank can be used in 

several signal compression, signal analysis and signal processing.  

The designed uniform filter bank is used to compress the ECG data along with encoding 

methodology. Here, the author has been used several combinations of filter bank and encoding to 

obtained performance comparisons of these combinations in different terms, viz., compression 

ratio and signal reconstruction quality parameters. The designed methodologies can be used for 

the real time ECG signal compression.  

Designed non-uniform filter bank is used for the R-peak detection. Other features are also 

obtained using some rule based techniques. These features are important in the diagnosis 

of a cardiac patient. the performance of data decompression is obtained by extracting the 
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diagnostic features from the denoised original and reconstructed data and performing the 

comparative analysis of these features. The comparative analysis shows that the 

methodology can reconstruct the compressed data, with diagnostic information loss. 

Therefore, design methodology can play an important role in the diagnosis of patient 

using telemedicine and holter monitor systems, which are very important in several 

emergency cases.  
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1.7. Research Objectives 

Several techniques have been developed for compression of ECG rhythms. Amongst all 

filter bank based data compression methods are more popular, because they provide better 

performance in terms of compression ratio (CR) and signal reconstruction quality (peak 

mean square difference (PRD), signal to noise ratio (SNR), mean square error (MSE), 

mean error (ME), peak mean square difference normalized (PRDN) and quality score 

(QS). In these methods, signal is transformed from time domain to frequency domain, and 

then irrelevant components are removed using suitable thresholding to achieve 

compression.  

The performance of data compression and decompression is measured using different 

parameters. However, in order to justify diagnostic relevance, the performance of data 

decompression of a biomedical signal should be examined by the comparative analysis of 

features of both signals, i.e., original input signal before compression, and reconstructed 

signal after decompression. Also, a new performance parameter; WDD has been 

introduced by researchers for measuring the performance of data reconstruction. WDD 

utilizes the features of the both signals.   

 The computational complexity of an IFIR filter is very low in comparison to FIR filter. 

IFIR filters are designed using FIR filters that provide inherent stability and linear phase, 

rendering them preference in most of the signal processing applications.   

After an exhaustive literature survey carried out in the present study, the following 

challenges were encountered that motivated for pursuing the present research work; a) 

data compression of biomedical signals, specially the ECG signal is highly sensitive, 

significant and cumbersome task that is very helpful in telemedicine, e-healthcare and 

holter monitor systems. b) among all data compression methods, filterbank based 

methods are more suitable for ECG signal compression, c) hybrid combination of 

transform based methods and lossless coding can improve the data compression and 

reconstruction performance, d) selection of thresholding is a very important part of data 

compression, e) for a biomedical signal, data decompression, performance should be 

evaluated by comparing the features of both the signals, f) IFIR filters are 

computationally efficient, these are linear phase filters having stable characteristics, g) 

among all the categories of filter banks, CMFBs are computationally efficient and simple 

to design, h) computational complexity of CMFBs can be further reduced by using single 

stage and two stage IFIR prototype filters and i) for reducing the reconstruction error, the 
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optimization of prototype filter is very important, Therefore, the following objectives are 

addressed in this work:  

Objective 1: To design a ripple free IFIR filter, which has an identical filter response to 

the FIR filter, to acquire less computational complexity, stable nature and linear phase.  

Objective 2: Design and development of computationally efficient CMFB using suitable 

prototype filter which would provide optimum performance by applying suitable 

optimization technique.  

Objective 3: To compress ECG rhythms using efficient filter bank(s) and if necessary, 

other compatible compression technique(s) in addition, to enhance the performance w.r.t. 

WDD and other respective indices.  

Objective 4: To extract features from denoised original ECG signal and decompressed 

ECG signal, and then perform the comparative analysis of extracted features in both the 

original and decompressed data.     
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1.8. Organization of Thesis  

The work carried out in this thesis can be broadly classified into two sections. The first 

section mainly deals with the implementation of filter and filter banks using cosine 

modulated filter bank. And in the second part, implementation of ECG data compression 

using the designed filterbank and their performance evaluations is given. In the first 

chapter, the introduction of the heart, generation of ECG signal, 12-lead system used to 

record the ECG data from a human body, MIT-BIH databases, IFIR filter, and filter bank 

is presented. The major part of this chapter is the literature review of the methods of ECG 

data compression, noise elimination from ECG signal, feature extraction, IFIR filter, and 

filter bank design. In the second chapter, several techniques for noise elimination from an 

ECG signal are described in detailed. Chapter three includes the noise elimination from 

MIT/BIH database using different methods. This chapter also has the implementation of 

IFIR filter and noise elimination using IFIR filter. In the fourth Chapter, different 

methods of data compression in general and lastly for ECG data particularly are described 

in detail. In chapter five, data compression of ECG rhythms is done using wavelet 

transform, wavelet packet, QMF filter bank, and empirical wavelet transform. The 

developed algorithms are evaluated using the MIT/BIH databases. Chapter six deals with 

the implementation of uniform and non uniform CMFBs design using IFIR prototype 

filter. Further, designed filter banks are applied to MIT/BIH database for compression and 

decompression. In Chapter seven, the performance of data compression using features 

comparison is done. The conclusions of the overall work, the findings and the guidelines 

for the future work are given in the last chapter. 
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CHAPTER 2 

ECG SIGNAL NOISE REDUCTION TECHNIQUES 

 

2.1. Overview 

Biomedical signal processing is one of the most important branch of biomedical 

engineering. The main objective of biomedical signal processing is to extract significant 

information from the biomedical signals. For a bio-medical engineer and doctor, the first 

and the foremost part is to acquire signal from the human body [2]. However, acquiring a 

signal from a living being without noise contamination is almost impossible task. A 

human body generates different signals, viz., electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG), electro-dermal activity (EDA) 

signals, etc. The detailed information about the ECG signal is presented in Chapter 1. The 

normal frequency range of this signal is 0.05–100 Hz. Similar to other biomedical signal, 

this signal is also contaminated with several types of noises, such as; high frequency 

noise, power line interference (PLI) 50/60Hz, EMG noise (<10 KHz), baseline wander 

(<1 Hz), channel noise generated due to poor channel conditions, motion artifacts, etc. 

Elimination of these noises must be done before the analysis to obtain accurate 

interpretation of the disease. In general, the noise is consisted of chaotic processes [170]; 

and hence, accurate prediction of dynamic as well as other characteristics of the noise is 

impossible. Therefore, estimation of noise is not an easy task especially for a non-

stationary signal such as ECG signal. This is due to two reasons, a) properties of 

deceptive noise, and b) subtle and fine characteristics of the ECG signal. Several 

researchers have developed techniques to eliminate these noises without affecting the 

cardiac information. These techniques are classified into a) linear filtering, b) nonlinear 

filtering, c) adaptive filtering, d) time-frequency resolution methodologies and e) artificial 

intelligent based methodologies [160-165]. In this chapter, noise elimination techniques 

are discussed in details.  
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2.2. Filtering 

Filtering is a process of removing of un-useful information from a signal. In digital signal 

processing, digital filters are used to perform the filtering operation. Digital filters are 

mainly divided into two categories; infinite impulse response filters (IIR) and finite 

impulse response filters (FIR) [1]. Digital filters are used in a number of areas, such as 

communication system, power system, image processing, radar system, biomedical 

system, etc. In this section, several filter design methodologies are described.  

2.2.1. Infinite Impulse Response Filter 

Infinite Impulse Response (IIR) filters are having impulse response for the infinite 

duration. IIR filters perform better in comparison to FIR filters under the same set of 

design specifications. These types of filters have a feedback connection and also known 

as recursive digital filters. Due to recursive property, these filters provide good frequency 

response at low filter order. The transfer function of an IIR filter includes both zeros as 

well as poles, which are depicted in Eqn. (2.1) [24]. 
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                                                (2.1)  

where, ka , kb  M  and N are the feedback filter coefficients, feed forward fitter 

coefficients, feed forward filter order and feedback filter order, respectively.   

Butterworth, Bessel, and Chebyshev filters are the main examples of IIR filters. IIR filters 

are mainly used in the systems, in which linear phase and stability is not needed. 

Therefore, applications of these filters are in audio processing such as speakers and for 

sound processing applications, biomedical signal processing, radar signal processing, etc., 

[153]. 

IIR filters are used to remove the stationary power line interference (PLI). The notch filter 

provides a noble performance at higher attenuation level, in removing the PLI. However, 

there are three major difficulties encountered in case of IIR filter design such as; a) non-

convex optimization problem, due poles position, b) non-linear phase, and c) stability 

constraint [177].      
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2.2.2. Finite Impulse Response Filter 

FIR filters are the filters, which have the impulse response of finite duration i.e., they 

settle to zero in the finite time. An FIR filter has N+1 sample. The transfer function of an 

FIR filter includes only zeros. It is based on a feed-forward difference equation (DE) as 

shown in Eqn. (2.2).  

                                            
1

( ) ( [ 1] [ ] [ 1])
3

y n x n x n x n                                           (2.2) 

where, ( )x n  and ( )y n  are the input and output signal, respectively. 

The lowpass practical FIR filter response is illustrated in Fig. 2.1. For designing a filter 

design important specifications are required, viz., stopband edge frequency ( s ), 

passband edge frequency ( p ), stopband ripple ( s ) and passband ripple ( p ). In some 

methods, cut off edge frequency ( c ) is used, which is calculated as: 

                                                           
2

s p

c

 





                                                        (2.3) 

In general, FIR filters are more desirable in comparison to IIR filters due to linear phase 

and inherent stable nature [226]. The transfer function (TF) of FIR filter is given in Eqn. 

(2.4) [1]  

                                                        
1
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( ) ( )
N

n

n

H z h n z






                                                  (2.4) 

This function includes only zeros, here, N is the order of filter, which is calculated as:  

Fig. 2.1 Lowpass filter response [24].   
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7.95

14.36

sA
N







                                                         (2.5) 

where,  is the transition width, which can be estimated as:  

                                                       
1

2
s p                                                          (2.6) 

An FIR filter can be designed using several methodologies such as: windowing, weighted 

least squares, Parks-Mc-Clellan, spline method, etc., [4,176]. In this section, these 

methodologies are described.   

2.2.2.1. Windowing Method  

Selection of methodology to design an FIR filter is done according to the requirement of 

filtering, for example, a windowing technique is superior to other filter design techniques 

in terms of time taken and simplicity. In this method, a function known as window 

function is used to obtain the desired filter response. Here, the coefficients of ideal filter 

are truncated using window function. A window function tapers smoothly to zero at both 

ends. In this method, Eqn. (2.7) is used to obtain filter response. 

                                                         ( ) ( ) ( )idh n h n w n                                                   (2.7) 

here, ( )idh n  represents the ideal impulse response of the filter that can be computed as: 

                                                    
sin( ( / 2))

( )
( / 2)

c
id

n N
h n

n N









                                          (2.8)  

and ( )w n  is the window function.  

Window functions are mainly classified into two types: a) fixed window functions and b) 

adjustable window functions [1-3].  

2.2.2.1.1. Fixed Windowing Function  

The fixed window function is a window function that uses only one controlling factor to 

adjust the side lobe and main lobe (width and height) shape. Several types of fixed 

window functions have been used for designing the FIR filters. One of the commonly 

used fixed window function is the Blackman window function.   

2.2.2.1.1.1. Blackman Window Function  

Blackman window reduces the effects of secondary lobes using two cosine terms. The 

mathematical expression of this function is given in Eqn. (2.9) [176].    
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2 4
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2 1 2 1

n n
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    
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          

(2.9)   

where, M is the length of the window function. 

2.2.2.1.1.2. Rectangular Window Function 

A very simple window function is the Rectangular window function that has unit 

magnitude for the specified length and has zero magnitude for rest of the length. The 

rectangular window gives a smaller main lobe width than other fixed type windows and 

provides fixed ripple ratio i.e., 13.1 dB. The mathematical expression of the rectangular 

window function is given below [137]:  
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                              (2.10) 

2.2.2.1.1.3. Bartlett Window Function  

Bartlett has introduced a new window function that removes the problem of ripple 

presented in the rectangular window, i.e., nearer to the band edges of the designed filters. 

This window function is also known as a triangular window function, because the shape 

of this window function is triangular. It gives a wider main lobe width than the 

rectangular window and provides better ripple ratio i.e., 26.5 dB [1]. The mathematical 

expression of the Bartlett window function is depicted in Eqn. (2.11)  
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                                     (2.11) 

2.2.2.1.1.4. Hanning Window Function 

Hanning window is also known as a raised cosine window or Hann window. This window 

has the same main lobe width as the Bartlett window (8π/ (M+1)). It gives more 

attenuated side-lobes with ripple ratio equal to 31.5 dB [5].  

                                     ( ) 0.5 1 cos 2 ,    0
n

w n n M
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
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                              (2.12) 
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2.2.2.1.1.5. Hamming Window Function   

Hamming window is obtained by linear combination of rectangular and Hanning window. 

This window function is used for minimizing the maximum side lobe amplitude. The 

main lobe width of this window is larger than the rectangular window, and the ratio of the 

amplitude of main lobe to secondary lobes is much larger than the rectangular window. 

This window provides batter stopband attenuation in comparison to Rectangular, Bartlett 

and Hanning window, i.e., 42.7 dB [5]. In Eqn. (2.13), mathematical expression of 

Hamming window is given.  

                           

( ) 0.54 0.46cos 2 ,    0
n

w n n M
M


 

    
 

                     (2.13) 

2.2.2.1.1.6. Blackman-Harris Window Function   

This window functions is the modified version of Blackman window function. In this 

window, more than one shifted sinc functions are added to minimize the side lobe levels. 

The mathematical expression of this window function is: 
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             (2.14) 

where, 0a  , 1a , 2a  and 3a are the constant and have magnitude of 0.35875, 0.48829, 

0.14128 and 0.01168, respectively. 

2.2.2.1.1.7. Flat Top Window Function   

A flat top window has a wide main lobe, minimal scalloping loss in the frequency 

domain, and positive and partial negative amplitude. For designing a flat top window 

function, either low-pass filter design methods or cosine-sum methodologies are used. 

Cosine-sum function used to define this window function is presented in Eqn. (2.15). 

                    0 1 2 3 4
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     (2.15) 

In this Eqn., values of 0a , 1a , 2a , 3a  and 4a  are 0.21557895, 0.41663158, 0.277263158, 

0.083578947 and 0.006947368, respectively 
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2.2.2.1.1.8. Modified Bartlett-Hann Window Function 

Modified Bartlett-Hann Window is a linear combination of Hanning and Bartlett window. 

The near sidelobes of this window are lower than the near sidelobes of Bartlett or 

Hanning window. In this window, the mainlobe width is not increased as compared to 

mainlobes of Bartlett or Hanning window. The mathematical function of this window is 

given in the following equation. 

                                ( ) 0.62 0.48 0.5 0.38cos 2 0.5
n n

w n
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                (2.16) 

where, window length is 1L M   and 0 n M  . 

2.2.2.1.1.9. Nuttall Window Function 

Nuttall window is also a fixed window, which is the combination of more than one cosine 

terms. The mathematical expression of this window is: 
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where, mb  are the coefficients of window, L is the length of the window and M is the 

number of terms used.  

2.2.2.1.1.10.  Parzen Window Function 

This window is also known as the 4
th

 order B-spline window that can be defined as: 
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and  1L M  . 

Comparison of normalized magnitude responses and frequency responses of different 

fixed window functions is shown in Fig. 2.2 and Fig. 2.3, respectively. 
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2.2.2.1.2. Adjustable Window Functions  

Another class of window functions is the adjustable window functions. These type of 

window functions have more than one parameters for controlling the ripple ratio. Kaiser 

and Dolph–Chebyshev window are famous examples of the adjustable window function.  

2.2.2.1.2.1. Kaiser Window Function 

Kaiser Window function uses two controlling parameters. It can be defined by using Eqn. 

(2.20) to Eqn. (2.22) [105];   
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where, N and  are two controlling parameters used to control the length and shape of 

window, respectively. The term 0[.]I  is the modified zeroth-order Bessel function. The 

Kaiser window function is also modified by using one more shape controlling parameter (

 ). The Expression of this modified Kaiser window is given as: 
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where,  is the additional shape adjusting parameter.  

2.2.2.1.2.2. Dolph-Chebyshev Window Function 

Dolph-Chebyshev window function is used to produces equeripple frequency response of 

a filter. It has a minimum main-lobe width for a given side-lobe attenuation. Since, the 
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height of all side-lobes are equal [3].  

Mathematically, it is defined by Eqn. (2.24) to Eqn. (2.27). 
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where, 
0x  is obtained by using expression given below:  
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and r is the ripple ratio that can be obtained as:  
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2.2.2.1.2.3. Saramaki Window Function  

Dolph-Chebyshev window does not provide a decent side-lobe roll-off ratio. Saramaki 

has introduced another adjustable window function that is known as Saramaki window. 

When Saramaki window is compared to Kaiser window, it is observed that both have 

identical performance in the time and frequency domain. There is no need of power series 

expansion for estimating window coefficient in both the cases. In Eqns. (2.28) to (2.32), 

Saramaki window function is presented [291]. 
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where, ( )kv n  can be calculated using the following recursion relation:  
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Fig. 2.2 Comparison of Shape of Different Fixed Windows. 
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Therefore, ( )kv n  can be estimated as; 
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here, the value of γ is measured by the following expression; 
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2.2.2.1.2.4. Roark’s Transitional Window Function 

In FIR filter designing, for a given stopband attenuation and filter order, any adjustable 

window such as Kaiser, Saramaki and Dolph-Chebyshev gives minimum transition width 

in the window spectrum. However, it gives large amplitude error in passband. Three 

response criterions: minimum transition width, high stopband attenuation, and passband 

flatness cannot be attained concurrently through any adjustable window function. 

Therefore, Roark’s transitional window function is designed using a B-spline function in 

the transition region. This window has more degree of freedom through, which 

compromise three parameters easily. Roark’s transitional window is also known as a 

maximally flat window [284].  

In digital filter design, transitional window gives better smoothness than all above 

windows in passband and stopband region both. 
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            (2.33) 

2.2.2.1.2.5. Ultraspherical Polynomials Window Function 

Ultraspherical Window is also known as Gegenbauer window. The mathematical 

expression of this window is based on the Gegenbauer/ultraspherical orthogonal 

polynomials. The mathematical function of this window is depicted in Eqn. (2.34). 
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( 1)/2

1 0 1 0

1

1 2
( ) ( ) ( cos cos( )

M

M M

i

i n i
w n C x C x

M M M

   

 



 
  

 


                    

(2.34) 

In this expression, 0x  is the side-lobe controlling parameters and ( )NC x  is the 
thM  

degree ultraspherical polynomial, which can be obtained using recursion relationship as 

depicted in Eqn. (2.35) .  

                              1 2

1
( ) 2( 1) ( ) ( 2 2) ( )N N NC x N xC x N C x

N

    
                    (2.35) 

Here, 0 1C  , 1 2C x  ,  and 2

2 2 (1 )C x       . 

2.2.2.1.2.6. Exponential or Poisson window Function 

This window function involves exponential terms. In comparison to ultraspherical 

window function, this window provides better ripple ratio by utilizing the fixed length of 

window, side lobe roll-off ratio and mainlobe width. The mathematical expression of this 

window function is: 

                                  

2[ 1 (1 (2 /( 1))) ]

( )
n M

e
w n

e





  

  ,   for 0 1n M                               (2.36) 

where,   (window shape parameter) is used to control the ripple ratio, which can be 

calculated as: 

             5 3 3 21.552 10 2.923 10 0.3211 3.763           , for 13.25         (2.37)   

2.2.2.1.2.7. Gaussian Window Function 

One of the important properties of a Gaussian function is that, when it transform into the 

Fourier domain the resulted function is also has Gaussian form. This property can be 

utilized to design a window for the filter design purpose. The Gaussian window function 

is depicted in Eqn. (2.38). 

                    

2

2 2

1

2 ( 1)/2 /2[ ]

n

L nw n e e




 
  

     ,     for ( 1) / 2 ( 1) / 2L n L                  (2.38) 

where,   is slandered deviation, which is computed as: 

                                                ( 1) / 2L                                        (2.39) 

 and  is the width factor.  
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Fig. 2.4 Comparison of the shape of different adjustable windows.  
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Fig. 2.5 Comparison of normalized magnitude spectrum of different adjustable windows. 
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2.2.2.1.2.8. Tapered Cosine Window Function 

Tapered Cosine Window is also named as Tukey window, which is a rectangular window 

with the first and last r/2 present of the samples equal to parts of a cosine. The 

mathematical function of this window is presented in Eqn. (2.40) [292].   

               

0
21 2

1 cos 1    
2

1( )
2 2

1 2 2
1 cos 1     M 1

2 2

M
n

n

MM
n Mw n

n
n M

M




 




 


     

     
            


      

           
     

                      (2.40) 

where,   is the shape parameter, when the value of it =0 then shape will be rectangular 

and when it is =1, then shape will be the same as shape of Hanning window.  

2.2.2.1.2.9. Hyperbolic Cosine Window Function 

This window function is the modified form of Kaiser window, where cosine hyperbolic 

term is used, instead of Bessel function. The hyperbolic function is expressed as [292]:  

                                                cosh( )
2

x xe e
s


                                                         (2.41) 

Therefore, the cosh window function can be written as: 

                             

2
2

cosh 1
1 1

( ) | |,       2cosh

   0                               otherwise

c

c

n

M M
w n n





  
     

   
  





                    (2.42) 

where, c  is the shape parameter that can be computed as:         

               

0.4

0,                                                             for 13

0.4611( 13.26) 0.1165( 13.26),    for -50 13.26

0.1469 0.1461,                                      for -120 5

s

c s s s

s s

A

A A A

A A



 

       

    0







 (2.43) 

Comparison of normalized magnitude responses and frequency responses of different 

adjustable window functions is shown in Fig. 2.4 and Fig. 2.5, respectively. Filter design 

using windowing technique is an easy and reliable task with an insignificant amount of 

computation cost. In this technique, only three parameters are needed as a design 

specification. However, it also has some drawback such as: design filters are suboptimal, 
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for explicit specifications requirement, large value of filter order is needed; therefore, 

complexity is increased, and also slow process and less efficient for real-time applications 

[292]. 

2.2.2.2. Weighted Least Squares Method 

Weighted least squares (WLS) regression method is widely used technique for filter 

design. It is useful for assessing the parameters of model filter. Here, the predictive values 

are varied on the basis of reaction values. In this method, an objective function is 

minimized, which is given in Eqn. (2.44) [266]   

                       
2 1( ) ( ( ) ) / [ ( )] [ ( )] 0

m
T

i i ii

i m

p x z h x R z h x R z h x



                           (2.44)  
  

For the least value, the first-order optimality conditions have to fulfill the compact form, 

which is expressed as: 

                                       

1( )
( ) ( ) [ ( )] 0Tp x

g x H x R z h x
x


    


                              (2.45) 

Taylor series expansion of g(x) around xk  will be: 

                                               ( ) ( ) ( )( ) ... 0k kg x g x G x x xk                                         (2.46) 

 therefore, the solution will be: 

                                                       
1

1 [ ( )] ( )k k k kx x G x g x

                                                 (2.47) 

where, k  and xk are the iteration index and solution vector respectively.                                                   

                                     
1( )

( ) ( ) ( )T Tk
k k k

g x
G x H x R H x

x


 


                                      (2.48) 

WLS method is a robust method that provides suitable filter response; however, this 

method cannot capture the time-history of data, and only considers one set of 

measurements. 

2.2.2.3. Parks-McClellan Filter 

Another efficient method of digital filter design is given by McClellan. In this method, a 

maximal ripple algorithm is formulated. It imposes a flashing error by the interpolation 

condition. Rather than reducing the worst case error, the maximum ripple algorithm 

solves a set of equations that had to satisfy the alternative solution, which is given in the 

following expression: 
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0

( ) ( 1) cos( )
M

i

i k i

k

D a k 


                                       (2.49) 

where,   and D is the Chebyshev error and desired filter response, respectively.  

The factor ( 1)i  forces 
 
to alternate on the range of frequencies ( i ) (i.e., 0 to π). ak are 

the M number of coefficients that are estimated by finding the solution of a group of 

simultaneous linear equations. The error value can be measured by using expression 

given below [302];  

                                                 
0

( ) ( ) cos( )
M

k kk
E D a  


                                    (2.50) 

here, the order of filter must be odd and can be computed using Eqn. 

(2.51).  

                                                                  2 1N M                                                   (2.51) 

where, the filter length is N, which must be odd for this form to hold. In this method, the 

frequency adjustment is required, if the actual maximum error exceeds the desired 

maximum error. This can be done by iterating the error value until a suitable value is 

obtained [302].  

2.2.3. IFIR Filters 

A brief introduction of IFIR filter is given in Chapter 1. IFIR filter consists of two or 

more FIR filters connected in a cascade form. As a consequence of the interpolation 

process and characteristics of FIR filter, these type of filters are known as interpolated 

FIR filters. IFIR filters are categorized into two types: a) single stage IFIR filter, where 

only one up-sampling factor is used and b) multistage IFIR filter, which involves two or 

more up-sampling factors. In single stage IFIR filter, two FIR filters (model filter, which 

is up-sampled by L  and interpolator filter) are connected in a cascade form as shown in 

Fig. 2.6 and defined by Eqn. (2.52). The order of these filters are very less as compared to 

those of FIR filter with the same design specifications [254]. 

                                                          ( ) ( ) ( )LH z G z I z                                               (2.52) 

 

 

 

 

 Fig. 2.6 IFIR structure [3].  
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where, ( )H z is desired FIR filter, ( )G z  and ( )I z  are the model and interpolator/image 

suppression filter in z-domain.  

The design specifications of ( )G z and ( )I z  are derived from the design specifications of 

the ( )H z  [246].                                            

                                                     
( )

0

( ) ( )
mN

n

n

G z g n z 



                                        (2.53) 

where, ( )g n  and 
mN  are the impulse response and order of model filter, respectively. 

The design specifications of the model filter can be calculated using Eqns. (2.54), and 

(2.55) [3]: 

(i) Stopband edge frequency   .( )sm sL                                          

(2.54) 

(ii) Passband edge frequency    .( )pm pL                                         (2.55)                                                                   

In Eqns. (2.54) and (2.55), 
sω  and pω  are the stopband and passband edge frequencies of

( )H z . ( )I z  is defined as [6]: 

                                                       
( )( ) ( )

iN
n

o

I z i n z                                                   (2.56) 

where, i(n) and Ni  are the impulse response and order of the interpolator filter, 

respectively. The stopband and passband edge frequencies of this filter are computed as 

[240]: 

(i) Stopband edge frequency
2

( )si s
L


                                         (2.57)                                                          

(ii) Passband edge frequency ( )pi p                                               (2.58) 

and the up-sampling factor L is calculated using Eqn. (2.59). [241]; 

                                 
max

2

 ( (  –  )s p s p

L


    



 
                                       (2.59) 

In case of a very narrow band filter design, the value of L  becomes large and 

computational complexity reduction is also accomplished, because the order of model 

filter is very small. However, large ordered interpolator filter is required to remove 1L  

unwanted images. In such a case, the computational complexity can be reduced further by 

using a multistage IFIR filter, in which two or more up-sampling factors are required 

[235]. The structure of two- 
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stage IFIR filter is illustrated in Fig. 2.7. Eqn. (2.60) represents the mathematical 

expression for this IFIR filter [236].  

                                             1

1 2( ) ( ) ( ) ( )LLH z G z I z I z                                                (2.60)                                                     

where, 
1( )I z  is used as a model filter for ( )I z  that is up-sampled by 

1L  and 
2 ( )I z  is an 

image suppression filter, and the value of 
1L  is also calculated using Eqn. (2.59) by 

replacing 
s  by 

si ; where, 
si  is the stopband frequency of 

1( )I z . The following steps 

are to be undertaken while designing the IFIR filter [2-7]:   

Step 1: The design specifications of ( )H z  is selected as; 
s , p  stopband attenuation (

s
A )  and passband attenuation ( pA ). Stopband ripple (

sδ ) and passband ripple ( pδ ) are 

calculated using Eqns. (2.61) and (2.62), respectively. 

                                            
0.05

10 sA

sδ


                                                            (2.61) 

                                                      
0.05 0.05

10 1 10 1p pA A

pδ
 

                                      (2.62) 

Step 2: Up-sampling factor L  is calculated using Eqn. (2.59). 

Step 3: Next, 
sm , pm , 

si  and pi  are computed.  

Step 4: In this step, 
mN  and 

iN  are calculated. 

Step 5: Impulse responses of the model and interpolator filters are obtained.  

Step 6: In this step, the model filter is up-sampled by L . 

Step 7: Here, the up-sampled model filter is convolved with the interpolator filter. 

The above steps are illustrated in Fig. 2.8. Fig. 2.8(a) shows the response of desired FIR 

filter ( )H z , while Fig. 2.8(b) depicts the response of model filter. In this case, 4L  , As 

a result, three undesirable images are generated that cause distortion in the process of 

filtering as illustrated in Fig. 2.8(c). To remove these images, the image suppression filter 

is connected to up-sampled model filter. The Response of image suppression filter is 

displayed in Fig. 2.8(d) and in Fig. 2.8(e), the final response of IFIR filter is presented, 

which is identical to the desired original FIR filter (Fig. 2.8(a)). The main drawback of 

IFIR filters is that these types of filters are not designed to wideband filtering. Therefore, 

frequency-response masking (FRM) technique based filters are proposed for wideband 

filtering and low complexity. 
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Fig. 2.8 Frequency response of (a) FIR filter, (b) Model filter, (c) Modal filter after Up-sampling, 

(d) Interpolator/Image suppression filter and (e) Final response of IFIR filter [228]. 
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The FRM technique yields a filter network, which includes more than a few sub-filters 

with very sparse coefficient values. It is an efficient technique for designing a linear 

phase filter with sharp transition width. Similar to IFIR filter, the realization of this filter 

is also efficient, and hence the number of multiplier and adders are very less than an FIR 

filter. In Fig. 2.9, realization structure of FRM filter is depicted and mathematically 

defined in Eqn. (2.63) [21]. 

                         

( 1)/2
( ) ( ) ( ) ( )[ ( )]aM NM M

Ma a Mc aH z H z H z H z z H z
 

                         (2.63)

  
where, MaH ,  aH  , and aH are FIR filters with very low valued filter order. The 

specifications of these filters are obtained using specifications of H(z) given in [22] 

2.2.4. Adaptive Filters   

Adaptive filtering is also utilized to remove the noise from a biomedical signal. In 

adaptive filtering, adaptive filters are used, which are the computational devices and use 

an iterative method to model the relationship between two signals in real-time. These 

filters perform filtering in two manners, i.e., a) by the realization on an arithmetic 

processing device such as microprocessor /microcontroller using a set of programs, and b) 

by using very large scale integration (VLSI) or field-programmable gate array (FPGA) 

device by performing set of logic operations. To define an adaptive filter, the following 

point must be considered; a) properties of signals should be known, b) the structure of 

filter should be defined that can process an operation to obtain output signal from the 

input signal, c) the important parameters must be initialized, that change their values 

iteratively to alter the filter’s input-output relationship and d) the adaptive algorithms are 

performed, that are used to define how the parameters are tuned from time to time. These 

filters have the ability to adjust filter response according to the signal. Fig. 2.10 shows the 

basic block diagram of the adaptive filter. 

where, ( )e n  and ( )d n  are error and desired response of the filter, respectively.  

Adaptive digital filters have applications in numerous areas, such as: bio-signal de-

noising, system identification, sonar signal processing, channel equalization for 

communications, acoustic echo cancellation, clutter rejection in radars, and networking 

systems interference [158]. 
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2.3. Multirate Signal Processing 

On the basis of sampling frequency utilization, the signal processing is classified into two 

types a) single rate signal processing (SRSP) and b) multirate signal processing (MSP). In 

signal rate signal processing, the sampling rate is the same at all significant nodes of the 

system; and in MSP systems, more than one sampling rates are used. In some 

applications, to process a signal, MSP is preferred over single rate signal processing, 

because it has some advantages over SRSP, viz., higher bit rate, less memory requirement, 

and less computational cost. In MSP systems, the sampling rate is changed using two 

basic operations such as: a) down-sampling and b) up-sampling. Down-sampling is done 

using decimator and up-sampling is done by using up-sampler [1]. 

2.3.1. M-fold Decimator 

The down-sampling process decreases the sampling rate by using decimator. In Fig. 2.11, 

M-fold decimator is depicted. Here, the sampling rate is decreased by M times, M is 

called as  down-sampling factor. In Eqn. (2.64), a time domain expression of the down-

sampling operation is depicted [24]:                                       

                                               ( ) ( )y n x nm ,                                                   (2.64) 

in z-domain,  

                                   

1
1

0

1
( ) ( )

M
M k

M

k

y n X z W
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



   ,                                           (2.65)   

and frequency domain 
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





                                       (2.66) 

The frequency domain spectrum of the signal ( )x n  and its decimated output are given in  

x(n) 

(n) 

y(n) 

d(n) 

Fig. 2.10 Block diagram of an adaptive filter [158]. 
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Fig. 2.12 Down-sampling in frequency domain [23]. 
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Fig. 2.13 L-fold expender [23].  

Fig. 2.14 (a) Input signal and (b) Up-sampled signal [24]. 
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Fig. 2.11 M-fold decimator [23]. 
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Fig. 2.12(a) and 2.12(b), respectively. In this operation, overlapping between two 

consecutive bands is generated, due to which the information can be lost. This effect is 

known as aliasing effect. In this diagram, x(n) is down-sampled by factor 2 (i.e., 2M  ). 

Here, the shaded area shows the overlapping between two bands. It can be removed by 

connecting a low pass filter known as anti-aliasing filter before the down-sampling [191].   

2.3.2. L-fold Expender  

L-fold expender is used for increasing the sampling rate L times. It is also known as 

interpolator, up-sampler and sampling rate expander. L is called the up-sampling factor. 

Fig 2.13 shows the block diagram the L-fold expender. The mathematical output of this 

block diagram are expressed in Eqns. (2.67), (2.68) and (2.69) in the time domain, z-

domain and frequency domain, respectively [24].  

                      

( ),            if  is a multiple of   
( )

0,                      otherwise                  

x n L n L
y n


 


                         (2.67) 

                                      ( ) ( )LY z X z                                                              (2.68) 

                                   ( ) ( )j jLY e X e                                                           (2.69) 

While performing an interpolation process, 1L  unwanted images are generated in the 

frequency domain, which must be removed. To avoid these images, a low pass filter is 

connected after the up-sampling block. This filter is known as anti-imaging filter. The 

process of up-sampling is presented in Fig. 2.14 in the frequency domain. In this case, 

2;L   therefore, one image is generated due to the imaging effect which is presented in 

Fig. 3.14(b) [303].   

 

2.3.3. Multirate Filter Bank 

Subband coding (SBC) is the process of decomposition of the frequencies of a signal. 

Filter bank (FB) is one of the important tools of MSP used to perform SBC. In SBC, ( )x n

is divided into different frequency signals. It consists of down-sampling, filtering, up-

sampling, and summing process. In Fig 2.15, filter bank structure is depicted. A filter 

bank has two sections a) analysis section and b) synthesis section. Analysis section 

consists of down-sampling and filtering elements. This section divides the signal into the 

number of frequency bands to process each band separately, while the synthesis section 

consists of up-sampling and filtering elements for reconstruction of input signal [283].    
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Fig. 2.15 M-channel filter bank [259]. 
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2.3.3.1. Types of Multirate Filter Bank 

Filter banks (FBs) can be classified into different groups as depicted in Fig. 2.16. Here, it 

is shown that a filter bank is mainly classified into two categories a) two-channel filter 

bank and b) M-channel filter bank. In this section, the division of the FBs is described.  

2.3.3.1.1. Two-channel Filter Bank 

The two-channel filter bank is used to decompose the input signal into two equal 

frequency bands using low pass and high pass filters. In Fig. 2.17, the block schematic of 

two-channel filter bank is presented. Here, ( )x n is the input signal, which is divided into 

two signals: 
0 ( )v n  & 

1( )v n , and followed by down-sampling by factor 2. This portion is 

called as analysis bank. The signals obtained by down-sampling stage are 
0( )u n  

and 

1( )u n . Then after, 
0( )u n and 

1( )u n
 
are up-sampled by factor 2 and pass to low pass and 

high pass filter, and finally, obtained signals are recombined to reconstruct the signal. The 

frequency response of this bank is presented in Fig. 2.18. A two-channel filter bank, 

which provides reconstructed output exactly the replica of input signal, without applying 

any channel coding is known as perfect reconstruction (PR) two-channel FB. When exact 

replica of the input signal is not obtained, then this type of FB is known as nearly perfect 

reconstruction (NPR) two-channel FB. PR two-channel FBs are further divided into two 

categories PR orthogonal and PR bi-orthogonal FB. In PR orthogonal FBs, regularities of 

the analysis and synthesis part are equal, while in case of bi-orthogonal FBs, regularities 

of the analysis part depend on lowpass analysis filter and the regularities of synthesis part 

depend on the lowpass synthesis filter. Another class of FBs is linear and non-linear 

phase FBs, when a FB is designed by using filters that have linear phase property then it 

is called linear phase FB, whereas when non-linear phase filters are used to design a FB, 

it is known as non-linear phase FB [294].  

2.3.3.1.2. M-channel Filter Bank 

In a FB, if the input signal is decomposed into more than 2 frequency bands then it is 

known as M-channel or multichannel filter bank. Here, M represents the number of signal 

divisions. The value of M is always greater than 2. In this type of FB, M-number of 

analysis and synthesis filters (lowpass, highpass, and bandpass) are used.  
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Fig. 2.18 Two-Channel filter bank response [265]. 
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Fig. 2.17 Two-channel filter bank [264]. 
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Fig. 2.19 Block diagram of M-channel FB [254]. 
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2.3.3.1.2.1. Uniform M-channel Filter Bank   

Uniform M-channel filter bank (UMFB) is used to divide a signal into M number of 

uniformly distributed frequency bands. In Fig. 2.19, the parallel structure of UMFB is 

depicted. Here, ( )x n  and ( )y n  are input and output signal, respectively. 

   0 1,..., Mp n p n , 
   0 1,..., Mq n q n  and    0 1,..., Mr n r n  

are the signals achieved by 

intermediate operations such as; filtering, down-sampling and up-sampling process [30]. 

When there is no processing unit applied after down-sampling, the ( )y n  must be same as 

( )x n  with delay.  

The output of FB can be obtained by performing the stepwise analysis. The first step is: 

input signal is applied to filters, therefore the resultant signals are after filtering [281]:   
                                                         

                                                      
     k kz  z z   P X H                                            (2.70) 

These signals are then down-sampled by M, at this stage the obtained outputs ( )kq n  are:  

                                           

1 11

0

1
( ) ( ) ( )

M
l lM M

k k

l

Q z H z W X z W
M





 
          

                       (2.71) 

When there is no channel coding /processing unit, as shown in Fig. 2.19, ( )kq n  are pass 

to up-sample by the up-sampling factor M. The obtaining signals at this node are ( ( )kr n ):                                                                           

                                              

1

0

1
( ) ( ) ( )

M
l l

k k

l

R z H zW X zW
M





 
                         

           (2.72) 

The final output can be obtained by summing the previous stage output signals ( ( )kr n ):   

                                           

1 1

0 0

1
( ) ( ) ( ) ( )

M M
l l

k k

l k

Y z X zW H zW F z
M

 
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             (2.73) 
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              (2.74)        
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Y z A z X zW
M





  ,   0 1l M                         (2.75) 

here, ( )lX zW  is the aliasing term and ( )lA z  is gain for aliasing term [279]. For 

cancelation of aliasing effect, ( )lA z should be = 0. 
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2.3.3.1.2.2. Non-uniform M-channel Filter Bank   

The non-uniform M-channel filter banks (NUMFBs) are more suitable filter banks in 

some applications due to better portioning of bands. Similar to UMFBs, these filter banks 

are also classified into three groups, a) parallel structured filter bank, b) tree structured 

bank and c) modulated filter bank. In Figs. 2.20 and 2.21, tree-structured NUFB and 

parallel-structured NUFB are presented, respectively. A parallel structured non-uniform 

filter bank can be designed using non-linear optimization with significant number of 

factors, and a tree-structured FB is designed  by connecting two and more two-channel 

QMF banks [296]. 

2.3.3.1.3. Cosine Modulated Filter Bank   

In a modulated FB, a specific modulation technique is used to design the FB. Among all 

modulation techniques, the cosine modulation technique (CMT) is the most popular and 

widely used technique. Cosine modulation filter banks (CMFBs) are designed using 

CMT. In this type of filter banks, CMT is used to design the analysis and synthesis filter 

bank. The expressions of deriving analysis and synthesis filters are given in Eqns. (2.76) 

and (2.77), respectively. The procedure includes steps; a) prototype filter design, b) 

optimization is applied on prototype filter and c) analysis and synthesis filter banks 

design. This types of FBs are superior to other types of FBs in terms of computational 

complexity and easy optimization [291].  

                            

1
( ) 2 ( )cos ( 1)

2 2 2
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i

M
h z h n k n

M

    
       

                  
            (2.76) 
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f z h n k n
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    
       

   
                            (2.77) 

2.3.3.2. Wavelet Transform 

The wavelet transform (WT) has emerged as an important mathematical tool in the area of 

non-stationary signal analysis, because it examines the signal structures at different 

scales. The fundamental principle of WT is: it divides a signal into different functions by 

using the property of translation and dilation of mother wavelet ( ( )φ t ), which acts as a 

prototype function, and can be defined as [63,69]: 

                                          
1 2

( )            ,ab

t b
φ t a φ a b R

a

  
  

 
                                 (2.78) 
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where, a and b are the dilation and translation function, respectively. When the 

parameters a and b are restricted to discrete values such as: /22ma  , 2 mb n  , then, a 

new family of discrete wavelets is formulated, which is expressed as [125]: 

                                                       
2( ) 2 (2 ),m mt n

mnφ t φ                                              (2.79) 

In this expression, φ  must satisfy the condition given below: 

                                                               
( ) 0φ t dtR 

                                                      (2.80) 

WT is classified into two types: continuous wavelet transform (CWT) and discrete 

wavelet transform (DWT). CWT can be expressed as [19]: 

                                         
1 2( , ) | | ( ) *f

t b
W b a a f t φ dt

a







 
  

 
                                   (2.81) 

In the above expression, the symbol ‘*’ represents a complex conjugate and 

multiplication of 1 2| |a , and it is used for stabilizing the transformed signal with the same 

energy at every scale. Adaptive nature and multiresolution property of WT makes 

analysis easy and effective. In case of CWT, the values of a and b are continuous over the 

real number (R), which increases the computational complexity. Therefore, DWT is used 

as a more efficient transform to analyze a signal. DWT is represented by Eqn. (2.82) [78]. 

                 
/2

, 0 0 0( , ) ( ) ( ) ( , ) ( ) ( )m m

m nWx m n x t φ t dt Wx m n a x t φ a t nb dt
 

 

 
          (2.82) 

This expression is achieved by choosing the values: 0

ma a  and 0 0

mb nb a  for different 

values of m and n, (i.e., m=n 0, 1,...,    ). For both types of wavelet transforms, 

condition given in Eqn. (2.83) should be satisfied [20] : 

                                                                ( )φ t dt                                                          (2.83) 

When, 
0 2a   and 

0 1b  , a new discrete wavelet can be constructed, which is given in 

Eqn. (2.84). This wavelet consists of an orthogonal basis for  2L R . 

                                                 
2

, ( ) 2 (2 )m m

m nφ t φ t n                                               (2.84)  
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Fig. 2.21 Parallel structured NUFB [285]. 
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Fig. 2.20 Tree Structured NUFB [285]. 
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In DWT, the input signal is decomposed on different scales by the following expression 

[81]:         

                                    
, ,

1

( ) ( ) ( ) ( ) ( )
K

j j k k K k

j k

x t d k φ t a k ψ t
 

  

                                (2.85) 

where, ( )jd k , , ( )j kφ t  and , ( )K kψ t  are detailed signals, discrete analysis wavelets, and 

discrete scaling functions, respectively. Wavelet decomposition tree is depicted in Fig. 

2.21, and the implementation of DW FB can be done using Eqns. (2.86) and (2.87) [81] . 

                                                 
1

( ) ( ), (2 )
2

h n ψ t ψ t n                                               (2.86) 

                                   
1

( ) ( ), (2 ) ( 1) (1 )
2

ng n φ t ψ t n h n                                     (2.87) 

The value of function ( )jd k  at level j can be estimated by using the mathematical 

function, i.e., convolution function with the signal ( )f n  at 1j   [82]. 

2.3.3.3. Maximal Overlap Discrete Wavelet Transform 

Maximal overlap discrete wavelet transform (MODWT) is a variant of DWT. It also 

performs linear filtering. The function of MODWT is similar to DWT as it produces a set 

of the time-dependent wavelet, scaling coefficients. Similar to conventional WT, 

MODWT also appropriates to process a non-stationary signal. The MODWT is a highly 

redundant, non-orthogonal transform and also keeps down-sampled values at each level 

of the decomposition. It is superior to DWT, because it has the capability to enable a 

ready comparison between the series and its decomposition. MODWT decompose an 

infinite sequence into 
0j  numbers of levels, which involves 

0j  numbers of pair of low 

pass and high pass filters. It can be done using the expression (2.88) and (2.89) [20]. 
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                                                (2.88) 

where, ,j tW  are the wavelet coefficients, ,j lh  is high pass filter 
tX  is an infinite 

sequence, ..., 1,0,1,...t    and j indicates the level of decomposition. 

                                                        

1
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j t t lj l
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V f X


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                                                   (2.89) 

In this equation, ,j tV  calculates the scaling coefficients and 
,j l

f  is the low pass filter 

[20]. 
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In this work, two factors are taken to measure the performance of noise reduction 

methodology. 

a)  Signal-to-noise ratio (SNR) 

                                              

1
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1
2

0
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( )
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L

t

y t

SNR

n t













                                                   (2.90) 

where, y(n) is the obtained signal after the noise elimination signal [11]. 

b) Correlation coefficient (γxy) 

                                   𝛾  =
∑ ( ( )  ̅( ))

 

   
( ( )  ̅( ))

√∑ ( ( )  ̅( )) ( ( )  ̅( ))  

   

                                 (2.91)        

where, 𝑥̅(𝑛) and 𝑦̅(𝑛) are the mean values of  input signal [1]. 

Correlation coefficient represents the average cross-correlation, which is a measure of 

how much received signal resembles the target signal at the location. 

2.4. Summary  

In this chapter, different types of noise elimination techniques are reviewed which 

includes the basic need of filtering and objectives of signal processing. First, the overview 

of IIR and FIR filter is done in brief. Then, methods of filter designing such as: 

windowing, Parks-McClennan, WLS methods are discussed. Adaptive filtering is also 

described in this chapter.  After this, the introduction of MSP including decimation and 

interpolation are given. These techniques are linear time-varying operations. Then after, 

FB and types of FB are described, which is a powerful tool of MSP and provides very 

efficient results in some applications, such as ECG signal processing data compression, 

image compression, optical communication speech signal processing, etc. This chapter 

also includes the background of WT, which is also a very important part of signal 

processing especially to remove the noise from a non-stationary signal. In the last, 

MODWT, the variant of DWT is discussed.  



 

 

CHAPTER 3 

NOISE REDUCTION OF ECG SIGNAL 

 

3.1. Overview 

The ECG signal is one of the essential biological signals that represent the electrical 

activity of cardiovascular system. Most of the physicians and cardiologists need good 

quality ECG data for interpretation and identification of cardiac disease. However, it is 

almost impossible to extract physiological parameter without noise. As discussed in 

previous chapter that there are several methods that are used to eliminate the noise present 

in the signal. This noise can be either cardiac or extra-cardiac. For example, reduction 

/disappearance of the interval of isoelectric, extended repolarization and atrial flutter are 

accountable for the cardiac noise. The examples of extra-cardiac noise include changes of 

electrode-position, breathing, muscle contraction, and power line interference [147]. The 

elimination of these noises is mandatory, because the existing noises may lead to wrong 

interpretation of the signal. For example, present of muscle contraction noise can interrupt 

the R-peak location and amplitude, which is a very important feature used as the fiducial 

parameter of a signal [153].  

In this chapter, noise elimination using the computationally efficient filter (IFIR and FRM 

filter), MOSDWT, and ripple free IFIR filter is presented. Results have been tested using 

the MIT-BIH arrhythmia database and MIT-BIH noise stress test database. For 

performance evaluation, signal to noise ratio (SNR) and correlation coefficient (CC) has 

been used.  

3.2. Noise Reduction using IFIR Filter  

In this thesis, noise is eliminated before the compression, because original data and 

decompressed data is compared by extracted features. Sometimes due to noise, signal 

reconstruction is also affected, and in several data-compression methods, during the 

process of compression and decompression, noise is  generated due to several factors 

[151].  
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As discussed in the previous chapters, several types of noise can contaminate in an ECG 

signal, such as baseline wander, high-frequency noise, power line interference, etc. in this 

chapter, baseline wander, high frequency noise and power line wander are eliminated. For 

elimination of noises, computationally efficient filters are designed using IFIR and FRM 

techniques. MOSWT is also used to remove the high frequency noise. 

3.2.1. Baseline Wander Noise Reduction  

Baseline wander is a low-frequency (0-0.8Hz) noise. Presence of this noise can show 

wrong amplitudes of different features of the ECG signal. An ECG signal can have 

baseline wander of different morphologies, viz., linear, sinusoidal, linear with sinusoidal, 

etc. In this work, linear and sinusoidal baseline wander is removed by using the FRM 

based FIR filters. First, lowpass FRM filter structure is designed using steps given in 

Chapter 2. All sub-filters of this structure are designed using WLS method. It is observed 

that, in comparison to FIR filter, this filter is computationally very efficient for the same 

design specification. And then the highpass filter is derived using lowpass FRM filter, 

which can block the frequencies below 0.7Hz. After this, the convolution of ECG signal 

with designed highpass filter is performed. For evaluation of the performance of this 

method, MIT-BIH data is taken. In this work, first the noise is generated, and then 

contaminated with the original ECG signal using Eqn. (3.1) [156]. 

                                                               ( ) ( )s t ECG n t                                                         (3.1) 

where, ( )n t  is the noisy signal, that can be real or synthetic. 

To investigate the performance of noise reduction method, the following points are 

considered: a) two sets of tests are performed over synthetic noise, where both 

quantitative and qualitative investigations are given and b) examining the real noise cases. 

The quantitative evaluation is assessed by the signal-to-noise ratio (SNR) and correlation 

coefficients, the mathematical expressions used for this purpose are given in Chapter 2.  

FRM based filters exhibit high computational efficiency. In this type of filter, very low 

order filters are combined (Fig. 2.9) to make linear filter with very sharp transition width. 

Therefore, the multiplier and adders are reduced which reduces the designing cost [227]. 

For example: at pω  =0.55π sω  =.58 π sA  =100; M=6; In this case filter orders are 41, 

161, 161 the total, filter multiplier used in this case = 41+161+161= 363, and in case of 

FIR filter the filter order will be 484, therefore using FRM filter design technique, 123 

multipliers and adders can be reduce.  
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Fig. 3.2 (a) Baseline wander is introduced in the original signal (linearly decremented) and (b) 

Baseline wander is removed. 

Fig. 3.3 (a) Baseline wander is introduced in the original signal (sine wave 0.57 Hz) and (b) Baseline 

wander is removed.  

 

Fig. 3.1 (a) Noise-free original ECG (record MIT-BIH 100) signal, (b) Baseline wander is introduced in 

the original signal (linearly incremented), (c) Baseline wander is removed completely. 
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          Table 3.1 Measured values of correlation coefficient (original and signal after noise elimination). 

 

Table 3.2 Computational complexity cost reduction measurement for different design specification. 

s  p  sA  N L mN  iN  CRC% ( d ) 

0.189 0π 0.0353π 100 84 2 42 17 29.76 0.0769 

0.179 0π 0.1530π 100 494 3 165 38 58.90 0.0130 

0.0890 π 0.0530π 100 357 4 89 36 64.98 0.0180 

0.0395 π 0.0053π 100 375 5 75 36 70.40 0.0171 

0.0355 π 0.0113π 100 531 6 88 45 74.95 0.0121 

0.0355 π 0.0213π 100 904 7 129 56 79.53 0.0071 

0.0255 π 0.0113π 100 904 8 113 60 80.86 0.0071 

0.0395 π 0.0323π 100 1784 9 198 85 84.13 0.0036 

0.059 π 0.0570π 100 6421 10 642 153 87.61 0.0010 

0.0389 π 0.0353π 100 3567 11 324 119 87.58 0.0018 

0.039 π 0.0370π 100 6421 13 494 494 89.73 0.0010 

0.0155π 0.0113π 100 3058 14 218 111 89.24 0.0021 

 

 

Sl. no  Dataset  Noise  Correlation 

coefficient 

1. MIT-BIH record no. 100 Baseline wander(linear decreasing ) 0.8727 

  Baseline wander(linear increasing ) 0.8707 

  Baseline wander (sine) 0.7315 

  High-frequency noise 0.9855 

  Multiple frequency noise  0.9617 

2. MIT-BIH record no. 101 Baseline wander(linear decreasing ) 0.9188 

  Baseline wander(linear increasing ) 0.8593 

  Baseline wander(sine) 0.8734 

  High-frequency noise 0.9667 

  Multiple frequency noise  0.9741 

3 MIT-BIH record no. 102 Baseline wander(linear decreasing ) 0.9217 

  Baseline wander(linear increasing ) 0.9624 

  Baseline wander(sine) 0.8271 

  High-frequency noise 0.9993 

  Multiple frequency noise  0.9993 

4 MIT-BIH record no. 103 Baseline wander(linear decreasing ) 0.9419 

  Baseline wander(linear increasing ) 0.9435 

  Baseline wander(sine) 0.9435 

  High-frequency noise 0.9807 

  Multiple frequency noise  0.9863 

5 MIT-BIH record no. 105 Baseline wander(linear decreasing ) 0.9224 

  Baseline wander(linear increasing ) 0.9458 

  Baseline wander(sine) 0.8658 

  High-frequency noise 0.9970 

  Multiple frequency noise  0.9980 

6 MIT-BIH record no. 106 Baseline wander(linear decreasing ) 0.9172 

  Baseline wander(linear increasing ) 0.9205 

  Baseline wander (sine) 0.8387 

  High-frequency noise 0.9814 

  Multiple frequency noise  0.9862 
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Here, three types of baseline wander are added to the original ECG signal, such as a) 

linear incremented random signal, b) linear decremented random signal and d) low-

frequency sinusoidal signal.   

The graphical representation of the minimization of these noises is given in Figs. 3.1, 3.2 

and 3.3. Here, the sinusoidal noise (0.57Hz), linear signal of having s1(n)=n/p+0.06n are 

added, and linear signal having s2(n)=n/p-0.06n are added. In Fig. 3.1(a), original MIT-

BIH record no 100 is depicted. In Figs. 3.1(b), 3.2(a) and 3.3(a), baseline wander with 

noise with signal s1(n), noise with signal s1(n) and sinusoidal noise are presented, 

respectively. In Figs. 3.1(c), 3.2(b) and 3.3(b) signals after denoising using FRM based 

filter are presented. After elimination of noise, the correlation measurement between the 

original signal and signal obtained after denoising is done using Eqn. (2.90) given in 

Chapter 2. In Table. 3.1, the measured values of CC are presented. Tabular and graphical 

results show that the baseline wander noise is minimized significantly. 

3.2.1. High-Frequency Noise Reduction  

In this section, high-frequency noise is removed from the ECG signal using IFIR filter. 

First of all, IFIR filter is designed using Park-McClellan method, which is described in 

Chapter 2. The performance of IFIR filter is done using the parameter given below:  

A. Computational complexity reduction ( %CRC ) [15]: 

                                   % 100FIR IFIR

FIR

Multi Multi
CRC

Multi


                                    (3.2) 

     where, FIRMulti  and IFIRMulti  are the multiplier of FIR and IFIR filter.  

This parameters show how much complexity is reduced
. 
In Fig. 3.4, the structure of 5 tap 

direct form FIR filter is given, here it is seen that 5 multipliers, 4 adders 4 delay elements 

are needed for realization [40]. A multiplier usually has the highest implementation or 

computational cost, and thus it is desired to reduce the number of multipliers in different 

systems, if possible. Branches with directions and nodes are also very important to realize 

a filter. The number of multipliers, adders and delay are directly dependent to the filter 

order, usually; the number of the multiplier is equal to the number of filter tap: and hence, 

equal to filter order. The number of adders and delay elements are less than 1. In case of 

IFIR filter, two or more filters are connected in cascade form. The order of model filter is 

L times lesser than an order of FIR filter and order of interpolator filter is very less, since 

it can be designed by a large transition width (filter order is inversely dependent on 
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transition width). Therefore, the number of multipliers, adders, and delay elements 

required to implement an IFIR filter are very less than those required in classical FIR 

filter. For example: s = 0.0001π and p = 0.200π therefore,  64FIRN  , 32MN  and 

16iN  , hence, the number of multipliers for FIR filter = 64, adders = 63, delay 

elements = 63 and in the case of IFIR number of multipliers = 32+16 = 48, adders = 

31+15 = 46, delay elements = 46, hence power dissipation in the case of an IFIR filter is 

better than an FIR filter. 

  

 

 

 

 

 

 

 

 
  

B. Transition width (TW ) [148]: 

                                                         
1

2
s pTW                                                       (3.3)    

The high-frequency noise is removed from the ECG waveform using IFIR filter.
 
An ECG 

signal is contained wave components of different frequencies. ECG signal has useful 

diagnostic information within frequency 1 to 100 Hz [170]. However, it is contaminated 

EMG signal (50-150Hz), other high frequency noise of the range (100 to 400 Hz) in case 

of telemedicine and telecommunication system other high frequencies are also presented 

which can current the signal (2,500 to 3,000 Hz) [172, 176, 179]. For this purpose, the 

high-frequency signal (450 to 1050 Hz) is added in the MIT-BIH database as depicted in 

Fig. 3.5(b).  

The noisy signal is generated by using the expression given below: 

                                                         1 2 3( ) ( ) ( ) ( )...n t n t n t n t                                           (3.4) 

In this Eqn, ( )in t  are sine function having different amplitude and different frequencies 

and i= 1, 2, 3, 5… n.    

 For this purpose, the high-frequency signal (450 to 1050 Hz) is added in the MIT-BIH 

database as depicted in Fig. 3.5(b). Since, an ECG signal has all significant frequencies 

within 100Hz, therefore for removing high-frequency noise, a low-pass filter is used 

which can reject frequency above 100Hz. Here also, the WLS technique is used to design 

Fig. 3.4 FIR filter structure of 5 tap. 
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the sub-filters of IFIR structure given in Chapter 2. Then after, IFIR filter is used to 

discard the high-frequency components by applying it on the noisy ECG signal. The 

resulted data, i.e., a noise-free signal is presented in Fig. 3.5(c). In this work, multi-

amplitude and multi-frequency signals are also removed which is shown in Fig. 3.6(a). In 

this figure, MIT-BIH record no. 106 is depicted. This signal is contaminated with noise, 

which is generated by adding multiple signals having different amplitudes and frequency 

as depicted in Fig. 3.6(b). This noise is eliminated in Fig. 3.6(c). Other signals are also 

used to remove the noise; the quantitative results of this work are depicted in Tables. 3.1 

and 3.3.  

The values of cross correlation and SNR are calculated for the signal before and after the 

filtration. Table 3.1 shows that the original signal (ECG) without addition of noise and the 

signal after removing noise (generated and contaminated is the signal) are having average 

value of correlation 0 = 0.9, that shows the IFIR filter can be used to remove Baseline 

wander, High-frequency noise and Multiple frequency noise. Here, IFIR filter is used to 

obtain linear filtering, which is important in real time applications. However, the linear 

filtering methods are not efficient in terms of computational cast, therefore IFIR filter is 

used. The performance of IFIR filter is obtained in terms of computational complexity 

reduction cost, which is evaluated by Eqn. (3.2). This table demonstrates that, for the 

same design specifications, complexity can be reduced by 89.24% without affecting other 

parameters.  
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Table 3.3 Computed values of SNR and CC using IFIR filter. 

Sl 

no. 
Dataset Noise 

SNR (in 

dB) 
CC 

1 MIT-BIH dataset record no. 118e00 Baseline wander record (bwm 75.21 0.8816 

  muscle (EMG) artifact (mam) 91.39 0.9771 

  electrode motion artifact (emm) 63.5085 0.8461 

2 MIT-BIH dataset record no. 118e06 Baseline wander record (bwm) 75.2140 0.8816 

  muscle (EMG) artifact (mam) 91.3977 0.9771 

  electrode motion artifact (emm) -30.8505 0.8480 

3 MIT-BIH dataset record no. 118e12 Baseline wander record (bwm) 75.21 0.8816 

  muscle (EMG) artifact (mam) 91.3977 0.9771 

  electrode motion artifact (emm) 63.5085 0.8461 

4 MIT-BIH dataset record no. 119e00 Baseline wander record (bwm) 71.7635 0.7848 

  muscle (EMG) artifact (mam) 90.8208 0.9888 

  electrode motion artifact (emm) -31.8556 0.9124 

5 MIT-BIH dataset record no. 119e06 Baseline wander record (bwm) 71.7635 0.7848 

  muscle (EMG) artifact (mam) 90.8208 0.9888 

  electrode motion artifact (emm) 62.9316 0.9107 

6 MIT-BIH dataset record no. 119e12 Baseline wander record (bwm) 71.7635 0.7848 

  muscle (EMG) artifact (mam) 90.8208 0.9888 

  electrode motion artifact (emm) 62.9316 0.9107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 (a) Original signal (MIT-BIH dataset record no. 103), (b) High-frequency noise (450 to 1000 Hz) is 

present in the signal and (c) Noise is removed.  

 



CHAPTER 3 Noise reduction of ECG signal 

 

81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 (a) Original signal (MIT-BIH dataset record no. 106), (b) Multiple frequencies with multiple 

amplitude noise (450 to 1000 Hz) is present in the signal and (c) Noise is removed. 

x(n) 

Lowpass 
IFIR Filter 

Highpass  

FRM  Filteer 

 

(a) 

y(n) 

(b) 

Fig. 3.7 (a) Notch filter structure, (b) Response of notch filter using IFIR technique (c) Power line 

interferences present in ECG signal (MIT-BIH arrhythmia record no. 121) and (d) Noise is eliminated using 

notch filter. 
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3.2.3. Powerline Interference Minimization 

For minimization of power line interferences, the notch filter is always preferred. Here 

also, the 50/60 Hz noise is eliminated using the notch filter. For designing notch filter; 

first, the lowpass filter is designed using IFIR filter, then highpass is derived using FRM 

technique. These filters are then added to form the notch filtering. The structure of this 

filter is shown in Fig. 3.7(a). The specifications of these filters are taken in a way so that 

the signal of frequency 50/60 Hz can be remove completely. The frequency response of 

the notch filter is given in Fig 3.7(b). After designing notch filter, it is used to remove the 

power line interference from the ECG signal. In Fig. 3.7(c), MIT-BIH arrhythmia record 

no. 121is presented which contaminated by power line interference. This noise is 

removed using designed notch filter. The PLI free signal is presented in Fig. 3.7(d). 

3.3. Proposed IFIR Filter 

The designing of an IFIR filter involves up-sampling and convolution of two sub-filters. 

Because of up-sampling, 1L  images are generated which are removed using the 

interpolator filter. Interpolator filter and up-sampled model filter are convolved to obtain 

IFIR filter. As a result, large ripples are generated in stop band in the frequency domain at 

the location of unwanted images as depicted in Fig. 3.8 (convolution of Fig. 3.8(c) with 

Fig. 3.8(d), generates ripples in stop band that is depicted in Fig. 3.8(e)). To suppress 

these ripples, the time domain coefficients of IFIR filter are analyzed and some of these 

eventually removed. 

3.3.1. Analysis of The Time Domain Coefficients of FIR and IFIR Filters 

The number of coefficients of FIR filter equals the order of filter i.e., N . It can be 

calculated using Eqns. (2.5) and (2.6). The number of coefficients of model filter is equal 

to mN .  Hence, the number of coefficients of model filter is L  times less than the 

coefficients of FIR filter ( )h n . After up-sampling, these coefficients are increased by the 

factor L  (i.e., coefficients of ( )LG z  become N ). The number of coefficients of the 

interpolator filter is equal to Ni, therefore after convolution of the up-sampled model filter 

with interpolation filter ( ( ) ( ) ( )LH z G z I z  ) the total coefficients become [306]:                                               

Similarly, in the case of two-stage IFIR filter, the total number of coefficients are [306]: 

                                         2 1 2IFIR i iN N N N                                                    (3.5) 
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where, 2IFIRN  is the total number of coefficients of two-stage IFIR filter (

1

1 2( ) ( ) ( ) ( )LLH z G z I z I z ), 1iN and 2iN  are the orders of 1( )I z  and 2 ( )I z , respectively.  

If the time domain filter coefficients of FIR and IFIR filters are compared, then it is 

observed that many extra zero-valued coefficients are generated in case of IFIR filter that 

cause ripples in the stopband region. During the analysis of IFIR filter coefficients, it is 

observed that the locations of these zero-valued coefficients are at the starting and ending 

of filter taps as illustrated in two experiments carried out. In study one, the results being 

shown in Table 3.4, filter coefficients of IFIR (1)h to (10)h and (90)h  to (99)h  are 

having zero value, while in case of FIR only (1)h  to (3)h and (82)h  to (84)h  are having 

zero value. In another experiment, a similar behavior of filter coefficients can be observed 

in Fig. 3.9(a), where IFIR filter has the larger number of coefficients with same shape 

locations of extra zero values, depicted here once again at the starting and ending filter 

tap values. It is important to mention here that the selected design specifications of filters 

in experiment 1, are as follows:  

FIR filter: 0.27sω π , 0.17pω π  and 100sA  .    

IFIR filter: L=2 and other specifications are calculated using Eqns. (2.54) to (2.59). 

While the selected design specifications of filters in experiment 2, Fig. 3.9(a) are as 

follows; 

FIR filter: 0.127sω π , 0.056pω π  and 100sA  . 

IFIR filter: here computed value of 4L  :  

The ripples in the stopband of IFIR filter create distortion that can be minimized by 

discarding the unwanted zero-valued coefficients. For elimination of these coefficients, a 

new technique has been proposed. The following steps have been carried out to execute 

the elimination of zero-valued coefficients, the methodology being the contribution of the 

present work. 

Step 1.  The total number of coefficients of IFIR filter ( IFIRN ) are calculated using Eqn. 

(3.6): 

                                                IFIR m iN L M N                                                (3.6) 

Step 2. Number of extra zero-valued coefficients are calculated 

 Since FIRN N
 
is the length of FIR filter, the minimum number of coefficients (

zerosM ) required to be discarded is equal to [306] ; 

                                                       zeros IFIRM N N                                           (3.7) 
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Table 3.4 Coefficients representation of FIR and IFIR filter. 

Sq. No Filter Tap (IFIR ) Coefficients of 

IFIR filter 

Filter Tap (FIR) Coefficients 

of FIR filter 

1.  h(1)=h(99) 0 - - 

2.  h(2)=h(98) 0 - - 

3.  h(3)=h(97) 0 - - 

4.  h(4)=h(96) 0 - - 

5.  h(5)=h(95) 0 - - 

6.  h(6)=h(94) 0 - - 

7.  h(7)=h(93) 0 - - 

8.  h(8)=h(92) 0 - - 

9.  h(9)=h(91) 0 h(1)=h(84) 0 

10.  h(10)=h(90) 0 h(2)=h(82) 0 

11.  h(11)=h(89) 0.0001 h(3)=h(82) 0 

12.  h(12)=h(88) 0.0001 h(4)=h(81) 0.0001 

13.  h(13)=h(87) 0.0001 h(5)=h(80) 0.0001 

14.  h(14)=h(86) 0.0001 h(6)=h(79) 0.0001 

15.  h(15)=h(85) 0 h(7)=h(78) 0.0001 

16.  h(16)=h(84) -0.0001 h(8)=h(77) 0 

17.  h(17)=h(83) -0.0002 h(9)=h(76) -0.0001 

18.  h(18)=h(82) -0.0004 h(10)=h(75) -0.0003 

19.  h(19)=h(81) -0.0006 h(11)=h(74) -0.0005 

20.  h(20)=h(80) -0.0008 h(12)=h(73) -0.0007 

21.  h(21)=h(79) -0.0009 h(13)=h(72) -0.0009 

22.  h(22)=h(78) -0.0009 h(14)=h(71) -0.0009 

23.  h(23)=h(77) -0.0006 h(15)=h(70) -0.0008 

24.  h(24)=h(76) 0 h(16)=h(69) -0.0004 

25.  h(25)=h(75) 0.0008 h(17)=h(68) 0.0003 

26.  h(26)=h(74) 0.0019 h(18)=h(67) 0.0013 

27.  h(27)=h(73) 0.003 h(19)=h(66) 0.0024 

28.  h(28)=h(72) 0.004 h(20)=h(65) 0.0035 

29.  h(29)=h(71) 0.0046 h(21)=h(64) 0.0043 

30.  h(30)=h(70) 0.0046 h(22)=h(63) 0.0047 

31.  h(31)=h(69) 0.0037 h(23)=h(62) 0.0043 

32.  h(32)=h(68) 0.0018 h(24)=h(61) 0.0029 

33.  h(33)=h(53) -0.0011 h(25)=h(60) 0.0005 

34.  h(34)=h(67) -0.0048 h(26)=h(59) -0.0028 

35.  h(35)=h(66) -0.009 h(27)=h(58) -0.0068 

36.  h(36)=h(65) -0.0129 h(28)=h(57) -0.0109 

37.  h(37)=h(64) -0.016 h(29)=h(56) -0.0146 

38.  h(38)=h(63) -0.0172 h(30)=h(55) -0.0168 

39.  h(39)=h(62) -0.0159 h(31)=h(54) -0.0169 

40.  h(40)=h(61) -0.0115 h(32)=h(53) -0.0141 

41.  h(41)=h(60) -0.0034 h(33)=h(52) -0.0079 

42.  h(42)=h(59) 0.0082 h(34)=h(51) 0.0019 

43.  h(43)=h(58) 0.0229 h(35)=h(50) 0.0151 

44.  h(44)=h(57) 0.04 h(36)=h(49) 0.0312 

45.  h(45)=h(56) 0.0581 h(37)=h(48) 0.0489 

46.  h(46)=h(55) 0.0759 h(38)=h(47) 0.0671 

47.  h(47)=h(54) 0.0918 h(39)=h(46) 0.0842 

48.  h(48)=h(53) 0.1044 h(40)=h(45) 0.0986 

49.  h(49)=h(52) 0.1125 h(41)=h(44) 0.1091 

50.  h(50)=h(51) 0.1153 h(42)=h(43) 0.1146 
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Fig. 3.9 Coefficient plots of FIR and IFIR, using (a) Conventional method and (b) Proposed method. 

Fig. 3.8 Design of IFIR filter using conventional approach As = 100 dB, ωss = 0:0555π and ωp= 0:0413 π. 

Magnitude response: (a) FIR model filter, (b) modal filter, (c) up-sampled model G(z
L
), (d) Interpolator filter, (e) 

IFIR filter and (f) Comparison of FIR and IFIR filter. 
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Step 3. For elimination of zerosM  suitable locations /filter tap value will be selected by 

two means [306]: 

a) If   zerosM  is even:                        

 For starting the filter tap value:  

                                                    1 to 2zerosM                                                     (3.8) 

 For ending location of filter tap value: 

                                                ( ) 2IFIR zerosN M  to IFIRN                                   (3.9) 

b) If   zerosM  is odd 

 For starting the filter tap/indices value: 

                                                    1 to 0.5zerosM                                               (3.10) 

 For ending filter tap value: 

                                            1 2IFIR zerosN M   to IFIRN                                              (3.11) 

Step 4. In this step, the coefficients elimination is performed from the extracted locations. 

Similarly, in case of two-stage IFIR filter, the following points are used: 

The total number of coefficients of two staged IFIR filter for finding zerosM  are computed 

by using Eqn. (3.12) is used [306]: 

                                         2zeros IFIRM N N                                                     (3.12) 

where,  2IFIRN  is the number of coefficients of two staged IFIR filter and calculated as: 

                                     2 1 1 2IFIR m i iN L M L N N                                         (3.13) 

In this case also, coefficients are removed from the filter tap location by following ways 

[306]: 

a) For even value of zerosM  

 For starting filter tap value: 

                                                          1 to 2zerosM                                             (3.14) 

 For ending filter tap value: 

                                                  2( ) 2IFIR zerosN M  to 2IFIRN                             

(3.15) 

b) If  zerosM  is odd:  

 For starting filter tap value; 

                                             1 to 0.5zerosM                                                      (3.16) 
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 For ending filter tap value: 

 and                          2( ) 0.5IFIR zerosN M   to 2IFIRN                                         (3.17) 

After removing the zerosM , the proposed filter response is compared with that of the 

conventional IFIR filter described in the next section.  

3.3.2. Performance Evaluation of the Proposed Technique  

In this section, the modified filter for minimization of ripples in the stopband region is 

given for designing IFIR filters. The performance of proposed algorithm is evaluated in 

terms of following significant parameter given below: 

Distortion in the frequency domain ( DFD ) 

                                  max ( )
π

s

k ω

DFD A p k


                                                 (3.18)                              

where, ( )p k  represents the frequency domain coefficient of the filter in dB.  

Example of Proposed Single Stage IFIR Filter Design:  

In this segment, the single stage IFIR filter is designed. Park-Mcclellan algorithm is used 

for designing of sub filters (model and interpolator filter), because it gives equiripple 

response. The design specifications of ( )H z  are: stopband attenuation ( ) 100sA dB , 

passband edge frequency ( ) 0.0413pω π , and stopband edge frequency ( ) 0.0555sω π . 

The calculated value of L  is 6. In this case, computational complexity reduction is 

77.32% . The experimental results are shown in Fig. 3.8. Fig. 3.8(a) shows the frequency 

response of the desired FIR filter ( )H z  and in Fig. 3.8(b) response of the model filter is 

shown. Since 6L  , 5 unwanted images are generated, which are depicted in Fig. 3.8(c). 

For removing these images, the interpolator filter ( )I z  has been used, that is shown in 

Fig. 3.7(d). The magnitude response of the final IFIR filter is depicted in Fig. 3.7(e). The 

comparative analysis of the response of FIR and IFIR filter is shown in Fig. 3.8(f). From 

this figure, it can be observed that both filters have identical passband. However, in case 

of IFIR filter, there are large ripples in the stopband region (100-280 dB). In Fig. 3.10, 

relations: %CR , N and TW   with L  are presented. Form this figure, it is observed that 

value of L  should be high for achieving high CR . The frequency response of the 

proposed IFIR filter is given in Fig. 3.11(a) and comparative analysis of FIR, 

conventional IFIR and proposed IFIR filter is given in Fig. 3.11(b). The comparison of 

DFD  of FIR, conventional IFIR and proposed IFIR filter is given in Fig. 3.11(c).  
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Fig. 3.10 Relationship plot between (a) Up-sampling factor and transition width, (b) Transition width and 

filter orders of FIR and IFIR filter and (c) Up-sampling factor and computational complexity reduction. 

 

Fig. 3.11 (a) Response of proposed IFIR filter, (b) Comparison of responses of FIR, conventional IFIR and 

proposed IFIR filter and (c) Comparison of DFD of FIR, conventional IFIR and proposed IFIR filter. 
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Fig. 3.12  (a) Response of proposed two-stage IFIR filter, (b) Comparison of responses of FIR, conventional 

two-stage IFIR and proposed two-stage IFIR filter and (c) Comparison of DFD of FIR, conventional two-stage 

IFIR and proposed two stage IFIR filter. 

Fig. 3.13 (a) Noisy ECG signal (MIT-BIH-118e00) and (b) Noise is removed using proposed IFIR filter. 
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Example of Proposed Two Staged IFIR Filter 

In this case, the two-stage IFIR filter is designed. Here also, the Park-Mcclellan algorithm 

is used for designing of sub-filters (i.e., ( )G z , 1( )I z  and 2 ( )I z ). The design specifications 

of ( )H z  are: 100sA dB , 0.030pω π , and sω  is 0.0450π. Here, 80.14 % of CR is 

achieved and the calculated values of up-sampling factors are: 7L   and 1 2L  . In this 

case, the number of coefficients of FIR filter is 856, number of coefficients of two stage 

IFIR filter is 930, thus 74zerosM  . The response of proposed IFIR is given in Fig. 3.12(a), 

comparative analysis of FIR and proposed IFIR filters is depicted in Fig. 3.12(b) and 

DFD comparison of proposed two-stage IFIR filter, conventional two-stage IFIR filter, 

and FIR filter is given in Fig. 3.11(c). Different other examples are taken to evaluate the 

performance of the proposed methodology, which are given in Table 3.5. From Figs. 

3.11(b), 3.11(c), 3.12(b), 3.12(c) and Table 3.5, it can be seen that the response of 

proposed IFIR (single and two-stage) filters are better than the conventional IFIR filters 

in terms of stopband ripples without affecting any other parameters. 

3.4. Noise Elimination using Proposed Filters 

IFIR filter can be used for removing the high-frequency noise with less computational 

complexity. The high-frequency noise is removed using the proposed single stage IFIR 

filter from an ECG signal. Signal presented in Fig. 3.13(a) represents MIT-BIH record no. 

118e00, which is contaminated by high-frequency noise. The noise is removed using the 

proposed IFIR filter, which is shown in Fig. 3.13(b). PLI and baseline wander are also 

eliminated using the proposed filter is given in Figs. 3.14 and 3.15, respectively. For 

minimizing the PLI MIT-BIH record no. 123 is taken and for baseline wander, MIT-BIH 

record no. 224 is used.  From these figures, it can be demonstrated that the proposed filter 

can remove noise from an ECG signal without affecting the diagnostic information. Other 

parameters are also used to measure the performance of overall noise reduction 

methodology. These parameters are presented in Table 3.6. From this table, it is observed 

that the overall coefficients of the proposed filter are reduced, the delay in filtering is also 

reduced. Therefore, the method is efficient for both (i.e., designing cost of filter and in 

filtering). 
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Table 3.6 Delayed coefficients and SNR measurement using designed IFIR filters. 

Sq. 

No 
Dataset 

FIR IFIR Proposed IFIR Proposed IFIR2 

SNR 
Delayed 

coefficients 
SNR 

Delayed 

coefficients 
SNR 

Delayed 

coefficients 
SNR 

Delayed 

coefficients 

1.  118e24 22.51 = N 23.54 N+Ni 23.86 < N 24.51 < N 

2.  118e18 20.74 = N 18.97 N+Ni 20.71 < N 22.78 < N 

3.  118e12 13.08 = N 14.08 N+Ni 13.08 < N 13.08 < N 

4.  118e06 8.00 = N 8.23 N+Ni 8.42 < N 12.31 < N 

5.  118e00 0.04 = N 0.91 N+Ni 1.74 < N 5.00 < N 

6.  118e_6 -2.46 = N 5.43 N+Ni 5.32 < N 10.23 < N 

Fig. 3.14 50 Hz noise reduction from MIT-BIH record no. 123 using notch filter designed by proposed.  

 

Fig. 3.15 (a) MIT-BIH record no. 224 with Baseline wander reduction and (b) Baseline wander is removed 

using IFIR filter. 
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Table 3.5. Comparative analysis of FIR, proposed single stage IFIR and Two-Stage IFIR using different fidelity parameters. 
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3.5. Noise Reduction using WT  

Wavelet transform has been discussed in Chapter 2. Multi-resolution property of the WT 

is important for signal processing. WT is also used as an iterative processing tool of 

signal processing, in which a signal /image is fragmented into finer resolution signals in 

time and frequency. The first step of WT processing is: designing of two symmetric 

filters from a mother wavelet and a scaling function. These functions provide an 

orthogonal basis to decompose the signal in two equal parts in an iterative way. Each 

level of decomposition included the down-sampling process to reduce the sampling 

frequency.  

3.5.1. High-Frequency Noise Minimization  

In this segment, linear filtering is done by MODWT along with universal thresholding. 

MODWT is good for real-time application, because the computation of noisy coefficients 

is faster than other filtering approaches [28]. Here, the first step is; decomposition of the 

signal into different frequency band using MODWT, then after removed of noisy 

coefficients using universal thresholding. In Fig. 3.16(a), MIT-BIH arrhythmia database 

(record-232) is presented, which also has high-frequency noise and in Fig. 3.15(b), the 

noise is minimized. 

3.5.2. Baseline Wander Removing  

In an ECG signal, the low-frequency components are the source of baseline shifting. 

Here, baseline wander is removed using deferent mother wavelets (db6 to db8) by 

decomposing the signal, Therefore, to remove or minimize the BW, the approximation 

found is needed to be a narrow spectrum to make the interferences pure sinusoids. 

Further, the variance of resulting signal should be as low as possible, since the 

approximation must not have high-frequency components (R waves); and therefore, the 

resulting signal must be moderately flat. As soon as the level is acquired, the wavelet 

approximation is computed, then after, it is deducted from the original signal. 

Subsequently, the BW of given signal is significantly eliminated. In Fig. 3.17(a), MIT-

BIH noise stress test database record no. 118e24m is depicted, in which the baseline 

wander is presented, and this is removed using wavelet transform and depicted in Fig. 

3.17(b). 
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Fig. 3.16 (a) Noise present in the ECG signal (MIT-BIH arrhythmia record no. 232) and (b) Noise is 

eliminated using MODWT. 
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Fig. 3.17 (a) 60 seconds ECG signal (MIT-BIH noise stress test database record no.118e24m) with 

baseline wander and (b) Signal after baseline wander removal. 
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3.6. Discussion  

In this Chapter, linear filtering is carried out to minimize the noise presented in the ECG 

signal. In [152] the researchers have used adaptive filtering to minimize baseline wonder. 

Adaptive filtering is used to minimize the mean square error and can be utilized for real 

time processing. However, this provides estimated point and also the mean square error is 

not relevant in all cases. In [159], a modified morphological filtering (MMF) technique is 

used for signal conditioning in order to accomplish baseline wander correction and noise 

suppression with minimum signal distortion. By using structuring element pair in closing 

and opening operations, signal distortion rate in ECG signal can be decreased. However 

the noise suppression rate will be affecting by using this type of methodology. In 177, the 

researchers have used FIR and IIR filters to reduce the noise from the ECG signal. IIR 

filter based filter can provide good results in terms of computational efficiency however; 

phase distortion may disturb the component of the ECG wave form, especially in real 

time processing. And FIR filters are not computationally efficient. In 163, the researchers 

have used Digital Elliptic Filter  for noise elimination from the ECG signal the method 

provide good results; better than Butterworth, chebyshev type I & type II. However, the 

work does not claim the noise elimination improving parameter. The tabular results of 

present study i.e., Table 3.1 and 3.2 show that method provides good results in terms of 

SNR. Table 3.6 shows that the method given in this Chapter, provided better results in 

terms of delay.  

3.7. Summary  

In this Chapter, noise elimination of ECG signal is presented. First, baseline wander, high 

frequency and power line interference noises are removed using a computationally 

efficient linear phase filter. Then after, new (single and two-stage) IFIR filters are 

proposed. The experimental results of various examples and comparative analysis clearly 

indicate that the proposed algorithm demonstrates outstanding performance in terms of 

stopband ripples and maximum computational complexity reduction. The comparative 

results show that the IFIR filter response designed by using the proposed algorithm has 

the same passband and stopband regions as the desired FIR filter. Proposed mathematical 

relations used to evaluate the zero-valued coefficients are simple and easy to implement 

for discarding zero-valued coefficients giving an excellent response. The method would 

render landmark results in telemedicine, audio and image data compression and other 

areas of signal processing, where power loss /consumption and ease of computational 
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burden are the major issues.. The technique would find immense applications in the areas 

like noise removal in bioelectrical signals, viz., the ECG, where any loss of diagnostic 

information would be highly inappropriate; high-speed transmission of bioelectrical 

signals, where data compression is an important process during which the power losses 

incurred would lead to false diagnosis. Several design examples are included to illustrate 

the performance of proposed method along with its improved response over other existing 

methods. Designed filters are also used to remove the noise from the MIT-BIH noise 

stress test database, indicating that the proposed filters can successfully eliminate noise to 

a great extent with low computational complexity and a lesser amount of delay. 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

ECG DATA COMPRESSION TECHNIQUES 

 

4.1. Overview   

In this chapter, the essential aspects of biomedical signal compression techniques are 

described. Data compression is one of the important fields of research from the last five 

decades. Two most important applications of data compression are: storage requirement 

reduction and transmission cost reduction. This chapter presents the techniques of 

compression of ECG signals. The need for ECG data compression is already discussed in 

Chapter 1. In general, Data compression is mainly classified into two types: lossless data 

compression (LLDC) and lossy data compression (LDC) [17]. In the LLDC schemes, 

original data can be recovered exactly, however low compression ratio (CR) is achieved. 

This type of compression is generally applied in the areas, where any difference between 

the original and reconstructed data cannot be tolerated; for example, text compression and 

bank records. Huffman and run-length coding are famous examples of LLDC. In contrast, 

the high compression ratio can be achieved using LDC methods by eliminating the 

irrelevant coefficients. In numerous data compression applications, exact reconstruction is 

not mandatory, for example in speech communication or telecommunication and video 

transmission [29].  

In most of the ECG data compression applications, viz., telemedicine and e-healthcare, 

Holter monitor systems and in reducing the storage requirement, the lossless data 

compression does not provide sufficient value CR; therefore, LDC techniques are more 

preferred for data compression of ECG rhythms over l LLDC techniques. However, 

algorithms used for ECG signal compression must be provided with the acceptable 

fidelity. 1-D ECG data compression methods are classified into three types: a) direct data 

compression method, b) transformational data compression methods and c) parameter 

extraction based data compression methods [25].  

In direct data compression techniques, estimation of redundancies of the original signal 

samples is done by direct analysis [36].  
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Lossy data compression  Lossless data compression  

Fig. 4.1 Broad classification of data compression [36]. 
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Direct data 
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Fig. 4.2 Classification of data compression techniques.. 
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4.2. Direct Data Compression Techniques 

In the direct data compression methods, the compression is done by estimation of 

irrelevant information on direct analysis of samples of the signal. Several direct data 

compression methods have been used to reduce the data size of ECG signal. This section 

illustrates the theory of these algorithms [49]. 

4.2.1. Amplitude Zone Time Epoch Coding (AZTEC)  

The amplitude zone time epoch coding (AZTEC) technique, involves the decomposition 

of input data into horizontal lines and slopes [26]. The horizontal lines are made on the 

principle of zero order interpolation (ZOI), and the information is put in storage in form 

of magnitude and sample values. A slope is designated, whenever the number of samples 

needed to form a horizontal line is less than three. A slope is stored as its duration (the 

number of samples) and advancement of preceding point. Reconstruction of signal is 

accomplished by expanding first the horizontal line data and slope into the sets of discrete 

points. In this case, the reconstructed signal is having significant discontinuities and 

distortions. Furht and Perez have further modified this method in 1988 named as modified 

AZTEC [28]. Further improvement has been done in modified AZTEC, where results are 

validated, and the technique is named as improved modified AZTEC [50].   

4.2.2. Turning Point (TP) 

The turning point (TP) algorithm was proposed to reduce the sampling frequency of an 

ECG signal. In this method, the sampling frequency is reduced without shrinking the 

advancement in the amplitude of QRS segment [30]. Here firstly, the analysis of sampled 

points is done, and then a single sample of each pair of consecutive points is stored. The 

term "turning point" derives from the fact that this method preserves turning points of the 

data (points at which sign of the signal slope changes or turns). Here, three data points 

(one reference point ( 0X ) and two consecutive data points ( 1X  and 2X ) are processed at 

a time. It is dependent on the point, which preserves the slope of original three points. In 

the turning point algorithm, either X1 or X2 is to be retained according to the conditions 

given in Eqns. (4.1) and (4.2) [31].  

                                             2 1 1 0 0 1 ( )( ) 0         if X X X X X X                                (4.1) 

                                             2 1 1 0 0 2 ( )( ) 0         if X X X X X X                                (4.2) 
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The turning point algorithm produces a fixed compression ratio of 2:1. It has some 

advantages, viz., it is easy to implement, very fast algorithm and important for real-time 

processing. This algorithm yields an image that approximately similar to that, to which a 

physician is familiarized for observing. The major disadvantage of this method is that the 

saved points do not symbolize equally spaced time interval. Although there is no long-

term distortion; however, there is exist short-term distortion [31]. 

 4.2.3. Co-ordinate Reduction Time Encoding System (CORTES)  

The co-ordinate reduction time encoding system (CORTES) is the technique of data 

compression that utilizes the combination of AZTEC and TP methodologies. This 

technique takes the advantages of strength of both techniques while sidestepping their 

weakness. In this technique, the AZTEC and TP are applied to isoelectric regions, and 

clinically significant high-frequency regions of the input signal are processed in a parallel 

way. Here, for every AZTEC generation, a decision based on the length of line is used to 

verify that the AZTEC/TP data is saved or not. It is decided by the length of line for 

example; if it is shorter than the threshold (which is determined empirically), the TP data 

are saved, otherwise the AZTEC line is saved. The determination of probationary and 

permanent data is done by two points. The identification of transition between the 

AZTEC and TP data is done by utilizing a marker. Here, the signal reconstruction can be 

accomplished by expanding the AZTEC plateaus into discrete data points and 

interpolating the TP data [32]. 

4.2.4. Fan Algorithm 

Fan algorithm is also a direct data compression method. In this technique, the 

implementation of first-order interpolation with two degrees of freedom is exploited. 

Here, storage requirement of all the actual data samples as well as the present data point 

throughout the execution of the program is not needed. Furthermore, for keeping all the 

intermediate data points within the defined error tolerance; the longest possible line is 

drawn, started from the first sample to the last sample. This method is named as fan, 

because the slope stretched from original specimen to future sample, from a set of radial 

lines is analogous to a fan [36]. 
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4.2.5. Scan Along Polygonal Approximation (SAPA) 

The scan along polygonal approximation (SAPA) technique is an admirable 

approximation technique used to reduce the data. It is based on the principle of first-order 

interpolation with two degrees of freedom (FOI-2DF). This technique is accessible from 

the piecewise linear segments inside the corridor formed by two functions. These 

functions are less in size than the certain waveform, by a threshold value. Similar to the 

fan algorithm, here also a straight line sketching is done between the current and last 

saved sample for maintaining the intermediate data within a specified tolerance of the 

interpolated value. Storage of each line segment is done in form of data as well as the 

starting and ending points. Here, the final point is used as the beginning point for the next 

segment [35,36].  

4.2.6. Encoding Methodologies  

Encoding methodologies are always needed to improve the data compression efficiency 

in the reduction of an ECG signal. Three types of encoding methodologies are utilized in 

this work such as: Run-length,  Huffman and LZW encoding. Therse are discussed below. 

4.2.6.1. Run-Length Encoding (RLE)  

Run-length encoding schemes later employed in the transmission of television signals. It 

is a simple and lossless data compression technique, in which the data is compressed by 

representing the consecutive runs of the same value in data as the value followed by the 

count. For example: aaaabbccccccrrrrrrffff can be represented as 4a2b6c6r4f. It is a fast 

scheme, however the compression efficiency of this method depends on the data type. It 

can also be expressed in multiple ways to put up data properties and additional 

compression methods. RLE is also very useful in image compression [107].  

4.2.6.2. Huffman Coding 

Huffman coding allocates the variable length code words to a fixed length input 

data/characters based on their frequencies. The allocation is done in such a manner so that 

the more repeated characters are allocated by smaller code words, and the less repeated 

characters are allocated by larger code words. Here, cade digits are assigned to all edges 

along the path to a character. A tree structure is formed in this compression scheme, in 

that zero is used for the left side and one for the right side. The leaves contain a letter and 

its frequency count. In all other nodes, instead of one character, a zero, and the count of 

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Huffman_coding
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its frequency and its descendants will be eligible. For instance, consider the 

string ABRACADABRA. There are a total of characters in the string. This number should 

match the count in the ultimately determined root of the tree. Our frequencies are and. 

The two smallest frequencies are for and, both equal to, so it creates a tree with them. The 

root node will contain the sum of the counts of its descendants, in this case. The left node 

will be the first character encountered, and the right will contain [86].  

4.2.6.3. LZW Encoding  

Lempel ZivWelch (LZW) is also a lossless compression method. This method is a general 

purpose method, which has some advantages over other coding methodologies such as 

simplicity and versatility. Generally, this method can compress data using coding way in 

which the resultant file becomes one-half of the original size. The LZW method provides 

very good results in terms of compression ratio in some applications such as: tabulated 

numbers, computer source code, and acquired signals [25].  

LZW compression uses a code table, as illustrated in Fig. 4.3. A common choice is to 

provide 4096 entries in the table. In this case, the LZW encoded data consists of entirely 

of 12-bit codes, each referring to one of the entries in the code table. The decompression 

is achieved by taking each code from the compressed file and translates it through the 

code table to find what character or characters it represents. Codes 0-255 in the code table 

are always assigned to represent single bytes from the input file. For example, if only 

these first 256 codes were used, each byte in the original file would be converted into 12 

bits in the LZW encoded file, resulting in a 50% larger file size. During the 

decompression, each 12-bit code would be translated via the code table back into the 

single bytes [307].  

4.3. Transform Based Techniques 

Signal processing is one of the fast emergent areas from the last few decades. Different 

signal processors have been established for implementing the theoretical facts efficiently. 

Currently, these processors are often utilized in several areas, such as: radio-frequency 

analysis, transportation system, medicine and production, biomedical engineering, 

communication systems, etc. The most important and widely used methodologies of 

signal processing are the transform-based techniques. In these techniques, analysis of a 

signal is done by converting the signal from one domain to another domain. Different 

transform techniques are used in the field of signal processing; viz., Hilbert transform 
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(HT), Fourier transform (FT), discrete cosine transform, empirical mode decomposition 

(EMD), wavelet transform, short time Fourier transform (STFT), etc., [25]. 
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Fig. 4.3 LZW encoding algorithm [307].  
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4.3.1. Hilbert Transform (HT) 

The HT is a linear operative task, which utilizes a function (f(t)) of a real variable and 

yields another function of a real variable, i.e., H(u)(t). In this method, the f(t) and its HT 

(i.e., ( )f t ) are correlative and produce strong analytic data. Here, the produced data is a 

signal, which can be written in form of magnitude (amplitude) and phase. For estimation 

of phase derivative, instantaneous frequencies are used. If FT is applied to strong analytic 

signal, a one-sided spectrum is obtained in the frequency domain, and if HT is applied to 

a function it gives orthogonal relation between the function and its HT. However, due to 

numerical calculations and truncations, orthogonality is not realized in applications. The 

energy of a function and its HT are always same; hence, it can be utilized to quantify the 

accuracy of approximated HT [216].  

In the time domain, HT can be defined in the form of convolution of Hilbert transform 

(i.e., 1
( )t

 ) and the function f(t), and mathematically can be expressed as [119]: 

                                                          
1 ( )

( )
f

f t p d
t




 






                                            (4.3) 

where, the P is the front of integral symbolized by the Cauchy’s principal. 

Generally, the calculation of HT is not possible as an ordinary improper integral due to 

the pole presents at t   [20]. 

4.3.2. Fourier Transform 

The FT is an essential part of the signal processing, which converts a time domain 

signal into the number of frequencies. It can be defined as [1]: 

                                                        ( ) ( ) i tF f t e dt





                                              (4.4) 

where, ( )F   is the Fourier transform of the function f(t). This definition makes sense 

that
1( )f L  . Signal recovery from the FT is needed in several applications. This 

operation is known as the inverse Fourier transform, which is defined in Eqn. (4.5) [173]. 

                                                        
1

( ) ( )
2

i tf t F e d 



                                           (4.5) 

If f and its transform belong to 
1( )L  , then f(t) is bounded and continuous for the 

complete set of real t and as a consequence, ( ) ( )f t f t ; therefore, Eqn. (4.5) can be 

written as: 
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1

( ) ( )
2

i tf t F e d 



                                               (4.6) 

This expression represents a form of Fourier inversion theorem. According to other 

variants of the inversion theorem, it can be written as [20]: 

                                                  
1

( ) lim ( )
2

T
i t

TT
f t F e d 

 
                                        (4.7) 

Here, the condition is changed that is: if f belongs to
1( )L  , then f  is of bounded variation 

in a neighborhood of t and is also continuous at entire range of t.  

Eqn. (4.7) is to be described as a form of Cauchy principal value. According to another 

theory, i.e., when
2( )f L   the Fourier transform is defined as [100]: 

                                                 ( ) lim ( )
N

i t

NN
F f t e dt 


                                               (4.8) 

or 

                                                         ( ) lim ( )N
N

F F 


                                                 (4.9) 

Therefore, the interpretation of this expression can be done as:   

                                                        
2

lim ( ) ( ) 0N
N

F F 


                                        (4.10) 

and the inverse Fourier transform for 
2 ( )F L   can be stated as: 

                                                            
1

( ) lim ( )
2

N
i t

NN
f t F e d 

 
                                      (4.11) 

In many cases, the Fourier transform of a signal is needed to consider as it neither belongs 

to 
1( )f L   nor to 

2 ( )L   , for example, delta function [1].  

4.3.3. Discrete Cosine Transform 

Discrete Cosine Transform (DCT) is used to convert a finite sequence of data points into 

the summation of a series of cosine functions oscillating at different frequencies. DCTs 

are simpler to calculate. The applications of DCT are mainly in the areas such as: image 

processing, audio signal processing, seismic signal processing, biomedical signal 

compression, etc. DCT is analogous to FT; however, it involves the use of just cosine 

functions and real coefficients, while in case of FT, sine term, cosine term, and complex 

numbers are involved. Similar to FT, DCT converts data from a spatial-domain into 

a frequency-domain, and signal can be reconstructed using inverse functions [91].  
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             (4.12) 
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where, N is the real numbers, which denotes the number of sequences, i.e., x0, ..., xN-1 and 

kX represents the transformed sequence [96].  

4.3.4. Empirical Mode Decomposition (EMD) 

EMD is the method of decomposing the signal into a specific mode. It is a completely 

different approach of signal processing, which is self-adapting according to the input 

signal. In this method, decomposition of the input signal is done as a finite sum of M+1 

functions, which are also known as intrinsic mode function (IMF). This method satisfies 

two conditions, (a) the input signal has the difference of number of extrema, and the 

number of zero crossings should be either equal to zero or at most by one and (b) the 

mean value of envelope is defined by the local maxima and the envelope is defined by the 

local minima and the zero crossing, at any point. It is amplitude modulated- frequency 

function and can be defined as [164]:        

                                               



0

( ) ( )
M

k
k

f t f t                                                     (4.13)                                                                                              

where,                                               ( ) cos( ( ))k k kf t F t                                                 (4.14) 

In this equation, ( )kF t  behaves as a harmonic comment and > 0, t and ' ( )k t  are slower 

and also > 0 t . 

Mathematically, the following are the steps used in EMD methods [167]. 

Step 1: Identification of all extrema of the original input signal ( )f t  

Step 2: Interpolation between the minima “envelope” 

Step 3: Computation of minima and maxima average. 

Step 4: Calculation of difference between signal and average of the signal. 

Step 5: Residual iteration of the average 

Here, the first four steps are the shifting steps and the fifth step is an iteration operation. 

A very important fact of this method is that it is highly adaptable and able to extract 

features of the non-stationary signal, which is a challenging task. However, 

mathematically it is difficult to model this algorithm. To overcome this problem, 

Ensemble EMD is used, in which, computation of several EMD decomposing of the input 

signal is done by artificial noise [157].  
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4.3.5. Discrete Wavelet Transform (DWT) 

The wavelet transform is one of the most popular mathematical tools used to analyze a 

signal. It is superior to other transform methods of data compression, because of its 

multiresolution ability. i.e., a signal can be analyzed by different scale or resolutions 

using the WT, which makes WT more popular and large number of applications in 

different areas. It is mainly classified into two types such as continuous wavelet transform 

(CWT) and discrete wavelet transform (DWT). A very important property of WT is that it 

can be used as a filter bank. In Fig. 2.21, wavelet filter bank structure is shown, where the 

input signal ( ( )X n ) is divided into two frequency bands using lowpass G and highpass 

filter H, these signals are down-sampled by 2. Further, the low pass band is divided into 

two bands using lowpass and highpass filter, and then after again down-sampled by 2, d1, 

d2, and d3 are three decomposition levels. This structure is called the tree-structured filter 

bank. It is done by a single prototype filter. From this prototype filter, all the analysis 

filters can be defined mathematically as [10]:  

                                                        ,

1
( )a b

t b
h t h

aa

 
  

 
                                           (4.15) 

where, a and b ϵ R.       

The continuous time WT can be defined for a signal x(t) 

                                         
1

( , ) ( ) * ( )W

t b
X a b x t h x t dt

aa





 
  

 
                                 (4.16)                 

where, the * is used for complex conjugate. A discrete wavelet transform is more compact 

and only required wavelet coefficients. DWT of a signal x(t) can be defined as [137]: 

                                             
*

( , )( , ) ( ) ( )h m nDWT x m n x t h t dt





                                        (4.17)      

where, 
*

( , ) 2 (2 )m m

m nh h t n  , m and n are the positive set of integers (Z), and a and b are 

coefficients that can be calculated using equations given below: 

                                                             2 ma                                                               (4.18)                                                            

                                                            2 mb n                                                             (4.19) 

scaling function ( , ( )m n t ) is used for a finite number of coefficients, which can be 

obtained as: 

                                                        , ( ) 2 (2 )m m

m n t t n                                            (4.20)              
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DWT decomposes input sequence into two new sequences using lowpass 1( )h n  and 

highpass filter 1( )g n  at each level of decomposition. [10] 

                                                        ( ) ( ) (2 )
k

t h k t k                                            (4.21) 

4.3.6. Empirical Wavelet Transform (EWT) 

Empirical wavelet can be defined as the set of bandpass filters on each belongs to n . 

Empirical wavelet is important for non- stationary signal analysis, because it has 

adaptability property. It is superior to another adaptable method in terms of less 

complexity and good mathematical corroboration, which can perform a consistent 

decomposition of a non-stationary signal. In EWT, Fourier point of view is taken for the 

bandpass filters. Here, IMF functions are used, because these are compact support and 

concerned with the spectrum of information. Here, the empirical wavelet function is 

considered which is shown in Eqn. (4.22) [34].  
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(4.22) 

where, ( )β x  is the function of   0,1kC and defined in Eqn. (4.23).  

                                
 0  0  ( ) (1 ) 1 0,1

( )
1  1

if x and β x β x x
β x

if x

     
 


                    (4.23) 

and empirical wavelet can be expressed as: 
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Fig. 4.4  EWT decomposition representation using low pass and band pass filters [18]. 
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(4.24)                                

There are several options possible to choose nτ . In this work, nτ  proportional to nω  i.e., 

0 1 γ , thus 0 n . On putting these values in Eqns. (4.23) and (4.24): 
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The most important part of the signal processing is the segmentation of a signal. In WT 

method, the segmentation of a signal is done, to separate different part of the signal in the 

frequency domain. EWT is an adaptive wavelet transform capable of extracting individual 

instantaneous frequencies of a signal. Fig. 4.4 shows the EWT decomposition with 

lowpass and highpass filters. Here, 1 2,  .......... n  
 
are different cutoff frequencies for 

these filters. Mathematically, EWT is defined in Eqns. (4.27) to (4.31) [136]. 

                                           
       ( , ) , ( ) ( )f n nW n t f f t d                                   (4.27) 

here, ( , )fW n t

 
is EWT,  

                                                
       1 1(0, ) , ( ) ( )fW t f f t d                                 (4.28)                     

                                       
     1( ) (0, ) ( ) ( , ) ( )f f nf t W t t W n t t                                   (4.29)      
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Consequently, empirical mode kf , can be written as 

                                                            0 1( ) (0, ) ( )ε

ff t w t φ t                                         (4.30)                                                         

                                                        ( ) ( , ) ( )ε

k f kf t w k t φ t                                            (4.31)                                                        

4.4. Parameter Extraction Techniques 

Another class of compression techniques is parameter extraction compression (PEC) 

techniques. By utilization of these techniques, high compression can be achieved; 

however, these methods are irreversible. In these techniques, specific characteristics 

/features (i.e., amplitude and time index/duration) of a signal are extracted, and then 

extracted features are employed for classification, based on the basis of prior knowledge 

of the signal features. Extraction of features can be done using any feature extraction 

technique, viz., artificial neural network, WT, peak detection, slop detection method, etc. 

For reconstruction of the signal, extracted features are used. The main aim of this type of 

data compression is to quantize a small set of extracted features of the signal, excellently 

enough to render a precisely unnoticeable distortion. Methods, viz., peak-peaking 

methods, cycle-pool-base compression (CPBC) algorithm, linear prediction methods, and 

neural network methods are basically utilized for this type of compression [14].  

In peak-peaking compression techniques, the sampling rate of continuous data at the 

peaks (amplitude and location) and other significant points are extracted. This method 

involves all significant feature extraction of the original signal that can express most of 

the signal information. Here, the features are: peaks value, zero-crossing intervals, slope 

changes, and on-set and offset points of the signal. The original signal is replaced by the 

extracted features. The reconstruction of signal can be done by using a suitable fitting 

method for example: polynomial fitting techniques, straight lines or parabolic function. In 

some studies, spline functions are also used for reconstruction of the signal [85]. In CPBC 

technique, a template-matching algorithm is used. This method is analogous to average 

beat subtraction and residual differencing (ABSRD) method of compression, in which 

two distinct template banks are utilized. It is subjected to fiducial point occurrence [66]. 

Conceptually, CPBC is developed for text compression i.e., analogous to dictionary-based 

coding.  
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4.5. 2-Dimensional Compression Techniques 

In 1D data compression techniques, sample-to-sample (intra-beat) correlation is employed 

for compression of the signal. In case of ECG signal, both intra-beat, as well as beat-to-

beat (inter-beat) correlations can be used for the compression. Therefore, a 2D 

representation of ECG data may yield better performance in terms of compression. In 

several studies, ECG compression is done by considering 1D ECG signal as a 2D image, 

where exploiting of inter and intra-beat correlations is used by utilizing the suitable 

encoder technique [84]. In these techniques, preprocessing, QRS detection, ECG 

segmentation, and transformation are done. The “cut and align beats approach and 2D 

DCT” and “period normalization and truncated SVD algorithm” are available 

preprocessing methodologies to acquire the better performance of compression [79,89]. 

Similar to JPEG2000 preprocessing, these methodologies are also often associated with 

the use of state-of-the-art image encoders. In a study, 2D ECG signal compression by 

converting 1D ECG into an image is done, where the researchers have used inter and 

intra-beat dependencies for compressing irregular ECG signals. And for preprocessing, 

period sorting technique is used. Given technique is based on the theory that periods with 

comparable lengths tend to be highly correlated [97]. Another technique of preprocessing 

consisting of period length normalization, period preprocessing, QRS detector and image 

transform is also used for 2D ECG compression. The primary aim of the technique is to 

preprocess the data by minimizing the vertical high-frequency content. The smoothing of 

t image is accomplished by minimizing the sharp discontinuities along the vertical 

direction with variance based complexity sorting methodology [134]. 

4.6. Performance Parameters 

This section includes the parameters which are used for estimating the performance data 

compression and reconstruction [104,105,107]. 

 Compression ratio (CR) [17]: 

                                                        x

s v

N
CR

H N N


 
                                                (4.32) 

         In this equation, Nx is the number of bits in x(n), Nv is the number of bits used to 

code the significant coefficients, Ns represents the number of bits in the compressed 

implication map and H is a 64-bit header [32]. 

 Percent root mean square difference (PRD) 
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                                       𝑃𝑅𝐷 = (
                           

                       
)
   

× 100                     (4.33)     

 Percent root mean square difference normalized (PRDN) [], 

                                         𝑃𝑅𝐷𝑁(%) = 100 × √
∑ ( ( )  ( )) 
 

   

∑ ( ( )   ̅
 

   
( )) 

                             (4.34) 

           where, 𝑥̅(𝑛) is the mean value of  input signal. 

 Correlation coefficient (γxy) [50]. 

                                       𝛾  =
∑ ( ( )  ̅( ))
 

   
( ( )  ̅( ))

√∑ ( ( )  ̅( )) ( ( )  ̅( )) 
 

   

                             (4.35)        

where, 𝑦̅(𝑛) is the mean value of  input signal.      

 Signal to noise ratio (SNR) [107] 

                                              𝑆𝑁𝑅 = 100𝑙𝑜𝑔  {
∑  ( )

∑  ( )  ( )  
}                                   (4.36) 

 Mean Square error (MSE)[136]  

                                          MSE = 
 

 
∑ 𝑥(𝑛) − 𝑦(𝑛)                                     (4.37) 

 Maximum error (ME) [143] 

                                                        max | ( ) ( ) |
n

ME x n y n                                        (4.38) 

 Quality Score (QS) [107] 

                                                             
CR

QS
PRD

                                                       (4.39) 

4.7. Summary  

In this chapter, data compression techniques used for ECG signal compression are 

discussed. Most of the techniques are belongs to the lossy compression technique. These 

techniques provide high compression performance, which is always needed for high 

transmission within a limited channel capacity. ECG data compression techniques are 

broadly classified DDC, transformation compression PEC. However, the 2D data 

compression technique is also used to compress the ECG data. From the last two decades 

transformational compression techniques are more preferred than other data compression 

technique for compression of ECG data. Hybrid methodologies are also used to compress 

the data compression of ECG rhythms. The choice of algorithms for the compression of 

ECG rhythms must have tradeoff between the data compression and information content 

of the signal i.e., the reconstructed data must be within the acceptable fidelity limits. 



 

CHAPTER 5 

DATA COMPRESSION OF ECG SIGNAL USING WAVELET 

FILTER BANK 

 

5.1. Overview 

The electrocardiogram (ECG) is one of the most important physiological signals that 

illustrates the electromechanical activity of human heart. Compression of an ECG signal 

has given much consideration to researchers, since the ECG's computer-aided analysis 

has come into being. In some critical cases, viz., astronauts, a person under cardiac 

surveillance and ambulatory patients, continuous ECG data recording and transmitting it 

from one location to other location is required. However, the size of recorded data 

becomes so voluminous. Therefore, transmission of data becomes practically impossible. 

Hence, the compression of ECG data is important before transmission. In several cases, 

ECG data is used to store for later use, for example: in research in the area of health care. 

As discussed in Chapters 1 and 3, several data compression schemes are used for ECG 

signal compression. These schemes are broadly classified into three groups, such as a) 

direct data compression b) transformation compression, and c) parameter extraction based 

compression. The primary objective of any ECG data compression scheme is to acquire 

maximum data reduction without loss of diagnostic information [72]. Theoretically, data 

compression is the procedure of extracting and removing the unnecessary /redundancy 

/un-useful information from the data. In direct data compression methods, samples of the 

signal are directly handled to provide the compression. Parameter extraction based 

compression provides admirable performance in terms of compression ratio, however 

exact signal reconstruction is not possible. In transformation compression methods, data 

is transformed in other domain, and then compress by applying, thresholding 

/quantization /encoding. These methods are generally preferred for the compression of 

ECG rhythms over other methods, because of easy implementation and small 

computational time requirement. In this chapter, ECG data compression using 
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transformation-based techniques are presented, such that; a) wavelet packet algorithm 

with RLE, b) quadrature mirror filter (QMF) bank with RLE based, c) wavelet with 

Huffman encoding, d) wavelet and LZW and e) empirical wavelet transform and RLE. In 

this work, results have been tested using MIT/BIH (Massachusetts Institute of 

Technology/Beth Israel Hospital) arrhythmia databases [15]. The performance of these 

methodologies is examined by quantitative and qualitative manner. For quantitative 

analysis different fidelity parameters are used which are given in Eqns. (4.32) to (4.39). 

5.2. Data Compression using Wavelet Packet Decomposition and RLE     

In this section, the wavelet packet (WP) based compression methodology is presented to 

compress the ECG signals. This mythology employs the WP, level thresholding along 

with RLE by executing the steps as follows;  

Step 1: Acquisition of ECG data 

In this work, MIT-BIH arrhythmia database has been chosen for examining the 

performance of proposed method.  

Step 2: Signal decomposition  

Wavelet packet decomposition is done to divide the ECG signal into number of frequency 

bands. Here, level 3/4 decomposition is done. For example, if the total frequency of a 

signal is 100Hz, by applying 3 level decomposition using WP, produce 8 signals, viz., 

Aaa (0-12.5Hz), Aad (above 12.50-25Hz), Ada (above 25-37.5Hz), Add (above 37.5-

50Hz), Daa (above 50-62.5Hz), Dad (above 62.5-75Hz), Dda (above 75-87.5Hz), and 

Ddd (above 87.5-100Hz). The lowest frequency signal (Add) is also known as 

approximation subband and reaming signals are known as detail subbands.  

Step 3: Application of thresholding  

Level thresholding is applied to all decomposed signal, except the lowest frequency 

signal (Add). Here, all the coefficients, which have magnitude less than the threshold 

value are replaced by zero.  

Step 4: Vector ‘v’ formation  

After obtaining the thresholded coefficients of all bands, these are placed in a vector (v), 

which is illustrated in Eqn. (5.1).   

                                 v= [Aaa thr7 thr6 thr5 thr4 thr3 thr2 thr1]                                  (5.1) 

where, thr1 to thr7 are the signals obtained after applying thresholding, as depicted in 

Table 5.1.   

Step 5: Application of modified run-length encoding 
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Fig. 5.2 ECG data compression methodology. 

Fig. 5.1 Modified RLE. 
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In this step, RLE is applied to v. RLE is a lossless compression method, therefore it 

increases the performance of compression without loss of information. In this work, 

modified RLE is deployed in which, two-stage RLE is used. Therefore, the output of 

modified RLE is in the form of three vectors (v10, v110, and v111). The modified RLE is 

presented in Fig. 5.1.  

Reconstruction of data is done by following steps: 

Step a: Application of run-length decoding 

Run-length decoding (RLD) is applied two times i.e., firstly to the vectors v110 and v111, 

which gives one output vector “v11”, again RLD is applied to v11 and v10, and it provides 

reconstructed coefficients of vector v.  

Step b: Coefficient distribution of v 

The coefficients of v are divided into eight groups to reconstruct signals, such as: Aaa, 

thr7, thr6, thr5, thr4, thr3, thr2 and thr1.    

Step c: Inverse transform 

The inverse transform is used to reconstruct the signal. These steps are depicted in the 

block diagram given in Fig. 5.2. 

In this section, experimental results of WP and RLE based compression method are 

described. Here, parameters for evaluating the performance are considered which are 

given in Chapter 4 Section 4.6. The experiments are done by using different mother 

wavelets, such as: biorthogonal, Daubechies, symlet and Fejér-Korovkin. And the 

3/4level of decomposition is taken. The tabular results of these experiments are presented 

in Tabls 5.2 (a), (b), (c), (d) and (e). 

The methodology illustrated in Fig. 5.2 is based on decomposition of the signal into 

frequency signals. Here, the signal is decomposed into a number of frequency bands 

using wavelet packet based algorithm. In Figs. 5.3 and 5.4, decomposed signals are 

depicted. Next, compression is achieved by truncating the unwanted coefficients by 

applying level thresholding. To achieve compression without affecting the diagnostic 

information, RLE is applied in modified form. The compression performance is measured 

by computing the CR. The highest value of CR is 10. For recovering the signal, RLD is 

applied and signal is reconstructed using the inverse transform. It is found that the 

reconstructed signal is exact replica of the original signal. Both original and reconstructed 

signals are depicted in Fig. 5.5. The performance of data decompression method is also 

evaluated by comparing diagnostic information of both signals (original and reconstructed 

signal). 
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Table 5.1. Signals naming before and after thresholding 

 

 

Table 5.2. (a) Fidelity parameters of proposed data compression technique (using bior2.8) 

Level Signal CR PRD SNR CC QS 

L=3 

D1=0 

MIT-BIH-100 5.6774 0.3621 48.8246 0.9942 15.67909 

MIT-BIH-101 6.2301 0.3214 49.8579 0.9965 19.38426 

MIT-BIH-102 4.3909 0.2989 50.4907 0.9999 14.6902 

MIT-BIH-103 5.6021 0.4245 47.4431 0.9979 13.19694 

MIT-BIH-104 5.2932 0.2079 53.6426 0.9989 25.46032 

MIT-BIH-105 5.0286 0.1605 55.8910 0.9997 31.33084 

MIT-BIH-106 5.8830 0.4715 46.5295 0.9979 12.4772 

MIT-BIH-107 4.6829 0.3824 48.3486 0.9997 12.24608 

MIT-BIH-108 3.4010 0.1085 59.2892 0.9994 31.34562 

MIT-BIH-109 4.4277 0.1938 54.2527 0.9997 22.84675 

L=4 

D1=0, Ad=0 

MIT-BIH-100 7.000 0.4815 46.3484 0.9897 14.5379 

MIT-BIH-101 7.000 0.3804 48.3950 0.9951 18.40168 

MIT-BIH-102 5.4768 0.4446 47.0414 0.9998 12.31849 

MIT-BIH-103 6.6469 0.6784 43.3699 0.9945 9.797907 

MIT-BIH-104 7.000 0.2653 51.5252 0.9982 26.38522 

MIT-BIH-105 6.4000 0.2992 50.4813 0.9989 21.39037 

MIT-BIH-106 6.1202 0.5517 45.1657 0.9971 11.09335 

MIT-BIH-107 5.7143 0.5349 45.4348 0.9995 10.68293 

MIT-BIH-108 5.0564 0.1801 54.8895 0.9984 28.07551 

MIT-BIH-109 5.5309 0.4079 47.7883 0.9987 13.55945 

L=4 

D1=0 

MIT-BIH-100 8.4528 0.5117 45.8200 0.9883 16.51905 

MIT-BIH-101 8.0866 0.4133 47.6742 0.9943 19.56593 

MIT-BIH-102 6.4928 0.6935 43.1787 0.9996 9.362365 

MIT-BIH-103 8.3895 0.7136 42.9313 0.9939 11.75659 

MIT-BIH-104 7.1565 0.4116 47.7097 0.9955 17.38703 

MIT-BIH-105 6.9565 0.4081 47.7838 0.9980 17.04607 

MIT-BIH-106 7.0662 0.5796 44.7375 0.9968 12.19151 

MIT-BIH-107 6.8085 0.6372 43.9149 43.9149 10.68503 

MIT-BIH-108 5.5309 0.2675 51.4540 0.9965 20.67626 

MIT-BIH-109 7.0000 0.5641 44.9721 0.9975 12.40915 

 

Table 5.2 (b) Fidelity parameters of proposed data compression technique (using bior1.5) 

Level Signal CR PRD SNR CC QS 

L=3 

D1=0 

MIT-BIH-100 5.5568 0.8460 41.4531 0.9691 6.5687 

MIT-BIH-101 5.8743 0.7846 42.1069 0.9797 7.4869 

MIT-BIH-102 3.8216 1.0871 39.2743 0.9989 3.5153 

MIT-BIH-103 4.5286 1.2883 37.7994 0.9807 3.5151 

MIT-BIH-104 4.0314 0.4452 47.0286 0.9948 9.0549 

MIT-BIH-105 4.5689 0.7517 42.4793 0.9934 6.0782 

MIT-BIH-106 3.5633 1.0191 39.8359 0.9903 3.4966 

MIT-BIH-107 3.5085 1.2267 38.2249 0.9974 2.8600 

MIT-BIH-108 3.3215 0.2663 51.4923 0.9966 12.4723 

MIT-BIH-109 3.2480 0.5909 44.5691 0.9973 5.4963 

L=4 

D1=0, Ad=0 

MIT-BIH-100 6.2041 2.6543 31.5209 0.6975 2.3373 

MIT-BIH-101 5.7826 2.4567 32.1929 0.8016 2.3538 

MIT-BIH-102 4.4895 4.5388 26.8611 0.9815 0.9891 

MIT-BIH-103 5.2673 4.3616 27.2071 0.7795 1.2077 

MIT-BIH-104 6.1503 1.3528 37.3756 0.9523 4.5465 

MIT-BIH-105 5.4845 2.6798 31.4378 0.9161 2.0466 

MIT-BIH-106 4.7713 4.3176 27.2951 0.8275 1.1051 

MIT-BIH-107 5.1401 4.4471 27.0384 0.9660 1.1558 

MIT-BIH-108 5.1776 0.9673 40.2889 0.9548 5.3527 

MIT-BIH-109 5.3200 2.2966 32.7782 0.9596 2.3164 

L=4 

D1=0 

MIT-BIH-100 7.5730 2.6818 31.4316 0.6924 2.8239 

MIT-BIH-101 6.2222 2.4605 32.1795 0.8012 2.5288 

MIT-BIH-102 4.9145 4.5566 26.8272 0.9814 1.0786 

MIT-BIH-103 6.0974 4.3658 27.1987 0.7795 1.3966 

MIT-BIH-104 7.1171 1.4414 36.8244 0.9463 4.9377 

MIT-BIH-105 5.6446 2.6867 31.4156 0.9157 2.1009 

MIT-BIH-106 5.6000 4.3519 27.2265 0.8254 1.2868 

MIT-BIH-107 5.5707 4.4892 26.9567 0.9654 1.2409 

MIT-BIH-108 5.8947 1.0095 39.9178 0.9510 5.8392 

MIT-BIH-109 5.8301 2.4420 32.2451 0.9543 2.3874 

Before thresholding Aaa Aad Ada Add Daa Dad Dda Ddd 

After thresholding - thr7 thr6 thr5 thr4 thr3 thr2 thr1 
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Table 5.2 (c) Fidelity parameters of proposed data compression technique (using bior3.5) 

Level Signal CR PRD SNR CC QS 

L=3 

D1=0  

MIT-BIH-100 5.8039 0.2659 51.5054 0.9969 21.82738 

MIT-BIH-101 6.6624 0.2119 53.4758 0.9985 31.44125 

MIT-BIH-102 5.7080 0.2393 52.4223 0.9999 23.8529 

MIT-BIH-103 6.4750 0.2507 52.0183 0.9993 25.82768 

MIT-BIH-104 6.1667 0.2290 52.8043 0.9986 26.92882 

MIT-BIH-105 5.1160 0.1134 58.9098 0.9998 45.11464 

MIT-BIH-106 6.6410 0.3324 49.5678 0.9990 19.97894 

MIT-BIH-107 5.8039 0.3310 49.6028 0.9998 17.53444 

MIT-BIH-108 3.7000 0.1138 58.8769 0.9994 32.51318 

MIT-BIH-109 4.8411 0.1829 54.7540 0.9997 26.46856 

L=4 

D1=0, Ad=0 yes 

MIT-BIH-100 8.8163 0.5418 45.3232 0.9869 16.27224 

MIT-BIH-101 8.5714 0.4788 46.3976 0.9923 17.90184 

MIT-BIH-102 7.8261 0.5611 45.0199 0.9997 13.94778 

MIT-BIH-103 9.1525 0.8756 41.1538 0.9909 10.45283 

MIT-BIH-104 8.5714 0.4730 46.5032 0.9941 18.12135 

MIT-BIH-105 8.1509 0.3074 50.2449 0.9989 26.51561 

MIT-BIH-106 8.4375 0.8490 41.4222 0.9932 9.938163 

MIT-BIH-107 8.2443 0.9272 40.6566 0.9985 8.891609 

MIT-BIH-108 6.9903 0.2413 52.3499 0.9972 28.96933 

MIT-BIH-109 8.8889 0.5605 45.0289 0.9976 15.85888 

L=4 

D1=0 yes 

MIT-BIH-100 9.0011 0.6644 43.5510 0.9810 13.54606 

MIT-BIH-101 8.9256 0.5241 45.6110 0.9907 17.03034 

MIT-BIH-102 8.3077 1.1152 39.0533 0.9989 7.449516 

MIT-BIH-103 9.2704 0.8915 40.9971 0.9905 10.39865 

MIT-BIH-104 9.9083 0.7536 42.4569 0.9850 13.14796 

MIT-BIH-105 8.5039 0.3826 48.3442 0.9983 22.22661 

MIT-BIH-106 9.1915 0.9075 40.8427 0.9922 10.12837 

MIT-BIH-107 8.3398 1.0231 39.8020 0.9982 8.1515 

MIT-BIH-108 8.0297 0.3547 49.0034 0.9939 22.638 

MIT-BIH-109 9.7297 0.8164 41.7625 0.9949 11.91781 

Table 5.2 (d) Fidelity parameters of proposed data compression technique (using bior6.8) 

Level Signal CR PRD SNR CC QS 

L=4 

D1=0 

MIT-BIH-100 9.2562 0.7149 42.9154 0.9770 12.94755 

MIT-BIH-101 8.7843 0.5851 44.6559 0.9884 15.01333 

MIT-BIH-102 7.6976 0.5924 44.5481 0.9997 12.99392 

MIT-BIH-103 8.5824 0.7271 42.7680 0.9937 11.8036 

MIT-BIH-104 7.6190 0.4276 47.3785 0.9952 17.81805 

MIT-BIH-105 9.2181 0.7501 42.4976 0.9933 12.28916 

MIT-BIH-106 8.4528 0.4696 46.5655 0.9979 18 

MIT-BIH-107 7.2492 0.9921 40.0686 0.9983 7.306925 

MIT-BIH-108 6.4368 0.2641 51.5646 0.9966 24.37259 

MIT-BIH-109 7.9715 0.5807 44.7213 0.9974 13.7274 

L=4 

D1=0 yes 

MIT-BIH-100 9.2946 0.7551 42.4398 0.9744 12.3091 

MIT-BIH-101 8.9600 0.9569 40.3831 0.9687 9.36357 

MIT-BIH-102 8.4528 0.9126 40.7941 0.9993 9.262327 

MIT-BIH-103 5.6281 0.7440 42.5687 0.9934 7.564651 

MIT-BIH-104 9.4515 0.7015 43.0789 0.9870 13.47327 

MIT-BIH-105 9.4118 1.0000 40.0002 0.9881 9.4118 

MIT-BIH-106 8.9960 0.5751 44.8055 0.9969 15.6425 

MIT-BIH-107 8.1752 1.3453 37.4238 0.9969 6.07686 

MIT-BIH-108 7.2258 0.4372 47.1861 0.9907 16.52745 

MIT-BIH-109 8.6154 0.8892 41.0196 0.9939 9.688934 
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Table 5.2 (e) Fidelity parameters of proposed data compression technique (sym) 

Level Signal CR PRD SNR CC QS 

Sym2 

L=4 

D1=0 yes 

MIT-BIH-100 8.3967 0.7039 43.0493 0.9777 11.9281 

MIT-BIH-101 8.4667 0.6279 44.0420 0.9867 13.4838 

MIT-BIH-102 5.7892 0.9102 40.8174 0.9993 6.3604 

MIT-BIH-103 6.7508 0.9079 40.8390 0.9901 7.4354 

MIT-BIH-104 6.5338 0.4516 46.9046 0.9946 14.4675 

MIT-BIH-105 7.0311 0.7173 42.8855 0.9939 9.8017 

MIT-BIH-106 6.5128 0.7388 42.6295 0.9948 8.8154 

MIT-BIH-107 6.2331 0.9062 40.8556 0.9986 6.8784 

MIT-BIH-108 5.6602 0.3217 49.8507 0.9950 17.5941 

MIT-BIH-109 5.7401 0.5443 45.2838 0.9977 10.5465 

Fk4 L=4 

D1=0 yes 

MIT-BIH-100 9.0131 2.1807 33.2283 0.7979 4.1332 

MIT-BIH-101 9.6449 2.1446 33.3731 0.8466 4.4973 

MIT-BIH-102 5.5335 3.3561 29.483 0.9898 1.6488 

MIT-BIH-103 6.8344 3.2072 29.8775 0.8808 2.1310 

MIT-BIH-104 7.7594 1.2705 37.9206 0.9579 6.1074 

MIT-BIH-105 9.3818 2.1601 33.3106 0.9444 4.3433 

MIT-BIH-106 8.1905 3.2210 29.8401 0.9035 2.5428 

MIT-BIH-107 4.8112 3.3675 29.4538 0.9809 1.4287 

MIT-BIH-108 9.0526 0.8991 40.9242 0.9606 10.0690 

MIT-BIH-109 7.6729 1.8788 34.5224 0.9731 4.0839 

Db10 

L=4 

D1=0 yes 

MIT-BIH-100 7.4492 0.6154 44.2168 0.9830 12.1045 

MIT-BIH-101 7.9164 0.5339 45.4509 0.9904 14.8276 

MIT-BIH-102 6.7219 0.4458 47.0179 0.9998 15.0796 

MIT-BIH-103 6.2590 0.4030 47.8939 0.9981 15.5309 

MIT-BIH-104 6.2762 0.3488 49.1473 0.9968 17.9914 

MIT-BIH-105 7.2821 0.5685 44.9056 0.9962 12.8096 

MIT-BIH-106 8.1434 0.5622 45.0021 0.9970 14.4847 

MIT-BIH-107 7.0779 0.8569 41.3416 0.9987 8.2601 

MIT-BIH-108 5.0265 0.2073 53.6673 0.9979 24.2458 

MIT-BIH-109 5.3585 0.4765 46.4386 0.9983 11.2453 
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Fig. 5.3 Signal decomposition of lower frequency bands. 
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Fig. 5.4 Signal decomposition of higher frequency. 

band 

Fig. 5.5 (a) Original signal, (b) Reconstructed signal after decompression, (c) Beat detection in the original 

signal and d) Beat detection in the reconstructed signal. 
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The beat detection is accomplished by applying amplitude and time thresholding, and 

extracting the maxima for R peak, which is depicted in Fig. 5.5 (c) and (d). It has been 

demonstrated that beats of the original and reconstructed signal are identical. 

5.3. Data Compression using Two-Channel Filter Bank 

In this section, data compression is carried out using a two-channel QMF filter bank and 

RLE. The data compression is done by using the following steps; 

Step 1: ECG signal acquisition  

Here also, the ECG signal is taken from physionet (MIT-BIH database lead II data).  

Step 2: Noise elimination 

Noise elimination is done using the methodology given in chapter 3 

Step 3: Decomposition of Signal 

ECG signal is decomposed into five frequency bands (four level decomposition) using 

analysis QMF bank. QMF bank is designed using FIR filter. Here, first analysis lowpass 

filter ( 0( )H z ) is designed, and then other filters are drieved using the following 

expressions; 

                                                           1 0( ) ( )H z H z   ,                                                      (5.2) 

                                                       0 0( ) ( )F z H z                                                           (5.3) 

 and,                                                1 1( ) ( )F z H z                                                          (5.4)      

Step 4: Thresholding 

Thresholding is used to truncate the irrelevant coefficients. Here, adaptive thresholding is 

done by using Stein's principle given in [304].  

Step 5: Coefficients vector formation  

                                                   v = [A5 thr4 thr3 thr2]                                           (5.5) 

Coefficients of D1 are not considered, because this signal is having high-frequency low 

amplitude signal. 

Step 6: Run-length encoding 

Here, also modified RLE is used.  

Data reconstruction is done using the following steps; 

Step a: Run-length decoding 

Step b: Coefficient partition   

After Step a, vector “v” is reconstructed, in Step b, the coefficients of v are divided into 

four signals: A5 thr4 thr3 thr2 
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QMF analysis bank 

A4 D4 D3 D2 D1 

Thresholding  Thresholding  Thresholding  

Vector ( v= [A5 Thr4 Thr3 Thr2]) 

Run-length encoding 

Vector1 Vector 2 

Run-length encoding 

Vector 22 Vector 21 

ECG signal 

Fig. 5.6 Proposed data compression technique. 
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Vector 21 Vector 21 

Run-length decoding 
Vector1 

Run-length decoding 

Signal parting  

A4’ D4’ D3’ D2’ 

QMF synthesis bank 

Reconstructed signal 

Fig. 5.7 Signal reconstruction steps. 

 

Normalized Frequency 

Fig. 5.8 (a) Analysis filter bank response and (b) Synthesis filter bank. 
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Step c: Reconstruction of signal 

Reconstruction of the signal is done to recombine the signals using synthesis filter bank.  

The process of compression and reconstruction is given in Figs. 5.6 and 5.7, respectively.  

The linear phase FIR filter is designed using Parks-McClellan method. The design 

specifications of FIR filter are: p = 0.395π, sω = 0.605 π, As = 60 and calculated value 

of filter order is, N =35. After designing of prototype filter, analysis and synthesis bank is 

designed using Eqns. 5.2 to 5.4. The response of analysis and synthesis filter bank is 

depicted in Fig. 5.8 respectively. The ECG signal is applied to analysis bank to 

decompose it into a number of frequency bands. Here four level decomposition is carried 

out, therefore five frequency bands are formed. These signals are presented in Fig. 5.9. 

Further, RLE is applied to improve compression. This method yields up to 10.0 CR. The 

reconstructed signal is obtained by applying RLD followed by synthesis bank of QMF 

bank. Different fidelity parameters are measured which are presented in Table 5.3.  

The reconstructed and original input signals are compared in Fig. 5.10, which shows that 

both the signals are identical. Further, the R-peaks of both the signals (locations and 

amplitudes) are also compared, which are depicted in Fig. 5.11. Tabular results (Table 

5.4) demonstrate that these signals have some diagnostic information. The performance of 

proposed ECG data compression method is compared with other existing methods in 

Table 5.5, which demonstrates that the proposed method provides better CR and PRD, 

ultimately the QS. 
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Fig. 5.10 Original and reconstructed signal. 
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Fig. 5.9 Decomposition of signal. 
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Table 5.3 Various performance indices of the QMF and RLE based method 

Signal CR PRD SNR CC QS 

MIT-BIH-100 8.8419 0.98149 20.1600 0.9934 9.008650 

MIT-BIH-101 9.6233 0.81518 21.7750 0.9957 11.80512 

MIT-BIH-102 6.5268 0.33544 29.4878 0.9994 19.45743 

MIT-BIH-103 8.9567 0.70157 23.0786 0.9969 12.76665 

MIT-BIH-104 8.0194 0.61077 24.2824 0.9925 13.12998 

MIT-BIH-105 8.5144 0.50883 25.8685 0.9983 16.73329 

MIT-BIH-106 10.449 0.85875 21.3226 0.9946 12.16827 

MIT-BIH-107 7.5788 0.48738 26.2427 0.9988 15.55008 

MIT-BIH-108 7.4693 0.72539 22.7886 0.9955 10.29694 

MIT-BIH-109 6.8738 0.50989 25.8505 0.9986 13.48095 

MIT-BIH-111 9.1145 0.49891 26.0396 0.9960 18.26883 

MIT-BIH-112 8.3765 0.26756 31.4517 0.9972 31.30700 

MIT-BIH-113 10.345 0.79353 22.0087 0.9964 13.03668 

MIT-BIH-114 9.6233 0.45911 26.7617 0.9961 20.96077 

MIT-BIH.115 9.3198 0.74824 22.5192 0.9970 12.45563 

MIT-BIH.116 8.8043 0.55214 25.1590 0.9971 15.94577 

MIT-BIH.117 9.5787 0.35196 29.0701 0.9975 27.21531 

MIT-BIH.118 7.6066 0.37884 28.4309 0.9974 20.07866 

MIT-BIH.119 9.4045 0.42128 27.5086 0.9983 22.32363 

MIT-BIH.121 8.4106 0.28099 31.0261 0.9986 29.93203 

MIT-BIH.122 8.1137 0.44019 27.1271 0.9979 18.43227 

MIT-BIH.123 10.0927 0.44273 27.0772 0.9967 22.79651 

MIT-BIH.124 10.2935 0.40103 27.9365 0.9987 25.66766 

MIT-BIH.200 8.2760 0.50963 25.8549 25.854 16.23923 

MIT-BIH.201 8.3765 0.48663 26.2560 0.9970 17.21328 

MIT-BIH.202 9.8057 0.33031 29.6215 0.9970 29.68636 

MIT-BIH.203 7.6066 0.4785 26.4023 0.9987 15.89676 

MIT-BIH.205 8.9957 0.79162 22.029 0.9968 11.36366 

MIT-BIH.207 9.1956 0.43275 27.2752 0.9987 21.24922 

MIT-BIH.208 8.3765 0.49278 26.1469 0.9984 16.99846 

MIT-BIH.209 7.8371 0.77604 22.2023 0.9932 10.09884 

MIT-BIH.210 7.5511 0.42394 27.4540 0.9978 17.81172 

MIT-BIH.212 8.3765 0.59091 24.5696 0.9968 14.17559 

MIT-BIH.213 7.8669 0.54836 25.2186 0.9985 14.34623 

MIT-BIH.214 8.4106 0.42823 27.3664  0.9987 19.64038 

MIT-BIH.215 7.5236 0.69826 23.1197 0.9940 10.77478 

MIT-BIH.217 7.8371 0.51189 25.8164 0.9982 15.31013 

MIT-BIH.219 8.9567 0.62733 24.0501 0.9977 14.27749 

MIT-BIH.220 9.1145 0.74955 22.5040 0.9960 12.15996 

MIT-BIH.221 8.2760 0.46431 26.6639 0.9981 17.82430 

MIT-BIH.222 8.5851 0.54642 25.2495 0.9894 15.71154 

MIT-BIH.223 8.4449 0.48564 26.2736 0.9987 17.38922 

MIT-BIH.228 7.5236 0.76155 22.3660 0.9946 9.879325 

MIT-BIH.230 8.4106 0.63255 23.9781 0.9978 13.29634 

MIT-BIH.231 9.4908 0.54994 25.1936 0.9970 17.25788 

MIT-BIH.232 7.9577 0.55247 25.1539 0.9927 14.40386 

MIT-BIH.233 8.1137 0.40428 27.8664 0.9990 20.06951 

MIT-BIH.234 8.2760 0.38974 28.1846 0.9976 21.23467 
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Table 5.4 Comparison of diagnostic features of original and reconstruction signal 

Dataset P (mA) R (mA) T (mA) R-R interval HR 

100 Original 0.19 1.29 -0.21 0.82 78 

Reconstructed 0.17 1.25 -0.21 0.79 78 

106 Original 0.46 2.42 0.94 1.02 61 

Reconstructed 0.43 2.39 0.90 1.07 61 

116 Original 0.45 3.45 0.95 0.76 84 

Reconstructed 0.45 3.47 0.93 0.75 84 

117 Original 0.12 0.95 0.06 1.22 54 

Reconstructed 0.15 0.95 0.05 1.21 54 

118 Original 0.095 1.4 -0.17 0.83 72 

Reconstructed 0.094 1.1 -0.19 0.80 72 

209 Original 0.15 1.4 0.43 0.62 90 

Reconstructed 0.13 1.7 0.45 0.67 90 

215 Original 0.12 0.91 0.49 0.52 108 

Original 0.15 0.97 0.49 0.57 108 

 
Table 5.5 Various ECG compression methods and their reported performance 

Methods Signal CR PRD 

 MIT-BIH arrhythmia database (using QMF) 10.09 4.4273 

Proposed method MIT-BIH arrhythmia database (using QMF) 10.29 4.0103 

 MIT-BIH arrhythmia database (using WP) 8.4528 0.5117 

Method [107] (2013) MIT-BIH arrhythmia database 5.73 0. 321 

Method [8](2015) MIT-BIH arrhythmia database 8.4 0.84 

Method [137](2009) MIT-BIH arrhythmia database 15.02 0.23 

Method [ 78](2005) MIT-BIH arrhythmia database. 7.18 25.5 

Method [28](1988) MIT-BIH arrhythmia database. 2.9 9.25 

 

Table 5.6 WT decomposition  
Level 3 decomposition   Level 4 decmposition Level 5 decomposition 

a3 a4 a5 

d3 d4 d5 

d2 d3 d4 

d1 d2 d3 

- d1 d2 

- - d1 

 

Fig. 5.11 R-peaks detection in the original and reconstructed signal. 
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Table 5.7 Performance of compression ratio using wavelet transform and RLE 

 

 

 

 

 

 

 

 

 

 

 

 

Level Signal CR PRD SNR CC QS 

Sym2 

L=4 

 

MIT-BIH-100 11.0385 1.3839 37.1779 0.9110 7.9764 

MIT-BIH-101 11.4800 1.2916 37.7776 0.9422 8.8884 

MIT-BIH-102 9.9950 1.4794 36.5986 0.9980 6.7564 

MIT-BIH-103 8.9289 2.1442 33.3745 0.9437 4.1641 

MIT-BIH-104 10.4635 0.7161 42.9010 0.9865 14.6126 

MIT-BIH-105 10.6862 1.1601 38.7104 0.9839 9.2118 

MIT-BIH-106 8.4059 1.9279 34.2981 0.9642 4.3600 

MIT-BIH-107 9.3442 1.7280 35.2491 0.9949 5.4075 

MIT-BIH-108 10.0450 0.4728 46.5066 0.9891 21.246 

MIT-BIH-109 9.7053 0.8682 41.2281 0.9942 11.1792 

Bior5.5 

D1=0 yes 

MIT-BIH-100 11.0978 1.4563 36.7352 0.9009 7.6208 

MIT-BIH-101 11.1585 1.0190 39.8368 0.9645 10.9507 

MIT-BIH-102 9.7238 0.7237      42.8089 0.9995 13.4363 

MIT-BIH-103 10.1089 2.0955 33.5741 0.9464 4.8240 

MIT-BIH-104 10.1089 0.5875 44.6198 0.9909 17.2066 

MIT-BIH-105 10.3655 0.9412 40.5263 0.9894 11.0130 

MIT-BIH-106 10.2613   1.4954 36.5049 0.9786 6.8619 

MIT-BIH-107 9.6777 1.5067 36.4396 0.9961 6.4232 

MIT-BIH-108 9.5421 0.3472 49.1887 0.9941 27.4839 

MIT-BIH-109 9.2398 0.5858 44.644 0.997 15.7728 

Db10 L=4 

D1=0 yes 

MIT-BIH-100 10.1122 1.3842 37.1758 0.9110 7.3052 

MIT-BIH-101 10.5765 1.0481 39.5920 0.9623 10.0912 

MIT-BIH-102 8.9740 0.7281 42.7567 0.9995 0.9995 

MIT-BIH-103 8.8970 1.9778 34.0763 0.9523 4.4984 

MIT-BIH-104 8.6375 0.5858 44.645 0.9910 14.7450 

MIT-BIH-105 9.3801 0.8197 41.7265 0.9920 11.4427 

MIT-BIH-106 10.3650 1.6260 35.7775 0.9747 6.3745 

MIT-BIH-107 9.8714 1.4617 36.7029 0.9963 6.7534 

MIT-BIH-108 9.0130 0.2979 50.5187 0.9957 30.2558 

MIT-BIH-109 8.9740 0.6277 44.0443 0.9970 14.2956 

Noise free 

signal  

RLE 

Wavelet 

transform  

Adaptive 

threshold  

RLD 
Inverse 

transform  
Reconstructed 

signal 

Vector 

“v”  

Bands 

recovery  

Fig. 5.12 ECG compression using wavelet and RLE. 
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5.4. ECG Data Compression using Wavelet Transform and RLE 

ECG compression based on wavelet transform and RLE is presented. The steps used to 

compress the signal are depicted in Fig. 5.12. Here, first the wavelet transform 

decomposition is done, that splits the signal into different frequency bands (level 4 is used 

to decompose the signal into approximation (a) and detail bands (d)). This distribution is 

presented in Table 5.6. Then after the resultant coefficients are subjected by threshold 

(Adaptive threshold) using the principle of Stein's unbiased risk estimate. The coefficients 

below the threshold value are replaced by zero, while remaining coefficients are having 

the same magnitude. These coefficients are kept in vector “v”. Next, the RLE is applied 

which is a lossless coding. The performance of this method is given in Table 5.7.   

5.5. ECG Data Compression using Wavelet Transform and Huffman Coding  

In this section, ECG compression based on wavelet transform and Huffman’s coding is 

presented. The steps used to compress the signal are depicted in Fig. 5.13. Here, also the 

first step is the decomposition of signal into different frequency bands (level 4). Then, 

vector quantization is performed to the coefficient of vector “v”. The steps of the 

quantization are evaluated using Eqn. given below: 

                                         
log( / min)

log( / )

v v
step floor N

vMax vMin

 
  

 
                                    (5.6) 

 Next, the Huffman’s coding is applied. The performance of this method is given in Table 

5.8.   

5.6. ECG Data Compression using Wavelet Transform and LZW 

In this section, ECG data compression is done using WT and LZW coding. LZW is 

lossless “dictionary-based” compression algorithm [51]. LZW encoding is chosen as the 

entropy encoder for simplicity. The steps taken to compress ECG signal are given in Fig. 

5.14. These steps are same as in the previous methodologies except coding method. The 

quantitative results of this methodology are presented in Table 5.9. Here, symlet, bi-

orthogonal, Daubechies and Fejér-Korovkin wavelet filters are used, and 5-level 

decomposition is done.  
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Table 5.8 Performance comparison of different wavelet and Huffman’s coding base algorithm.  

 

 

 

 

 

 

Level Signal CR PRD SNR CC QS 

Sym2 

L=4 

D1=0 yes 

MIT-BIH-100 13.1062 0.0765 56.3084 0.9990 171.3666 

MIT-BIH-101 12.8970 0.0665 57.5235 0.9994 193.9524 

MIT-BIH-102 10.9058 0.0575 58.7797  1.0000 189.5283 

MIT-BIH-103 11.7271 0.1063 53.4491 0.9995 110.0065 

MIT-BIH-104 12.4788 0.0432 61.2679 0.9998 288.798 

MIT-BIH-105 11.9350 0.0429 61.3291 0.9999 278.1698 

MIT-BIH-106 12.8662 0.1084 53.2791 0.9996 118.0277 

MIT-BIH-107 9.8297 0.0805 55.8680 1.0000 122.1716 

MIT-BIH-108 13.3223 0.0220 67.1402 0.9999 606.2051 

MIT-BIH-109 11.0609 0.0352 63.0368 1.0000 313.8049 

Fk4 L=4 

D1=0 yes 

MIT-BIH-100 12.9695 0.1683 49.4595 0.9950 77.07760 

MIT-BIH-101 12.8356 0.1532 50.2764 0.9968 83.80430 

MIT-BIH-102 10.5208 0.2598 51.4491 0.9998 40.49590 

MIT-BIH-103 11.4854 0.2655 45.4972 0.9966 43.25530 

MIT-BIH-104 12.5857 0.0882 55.0661 0.9992 142.6309 

MIT-BIH-105 11.6510 0.1544 50.2044 0.9989 75.44270 

MIT-BIH-106 13.0980 0.2643 45.5361 0.9974 49.54920 

MIT-BIH-107 9.2607 0.2592 45.7068 0.9995 35.72860 

MIT-BIH-108 13.2242 0.0580 58.7163 0.9993 228.1475 

MIT-BIH-109 10.9115 0.1312 51.6198 0.9995 83.15870 

Db10 L=4 

D1=0 yes 

MIT-BIH-100 11.3563 0.0020 88.0265 1.0000 5.7226e+03 

MIT-BIH-101 11.3007 0.0018 88.6740 1.0000 6.1353e+03 

MIT-BIH-102 10.4724 0.0034 83.4032 1.0000 3.0991e+03 

MIT-BIH-103 9.9020 0.0019 88.1814 1.0000 5.0795e+03 

MIT-BIH-104 11.4529 0.0034 83.4378 1.0000 3.4028e+03 

MIT-BIH-105 10.3457 0.0016 89.7840 1.0000    6.3825e+03 

MIT-BIH-106 11.6315 0.0039 82.1375 1.0000 2.9754e+03 

MIT-BIH-107 8.6742 0.0040 81.9599 1.0000 2.1705e+03 

MIT-BIH-108 8.6742 0.0019 88.4014 1.0000 6.2610e+03 

MIT-BIH-109 10.3723 0.00468 80.7925 1.0000 2.2726e+03 

Noise free 

signal  

Huffman’s coding 

Wavelet 

transform  

Vector 

Quantization   

Huffman’s 

decoding 

Inverse 

transform  
Reconstructed 

signal 

Vector 

“v”  

Bands 

recovery  

Fig. 5.13 ECG compression using wavelet and Huffman’s coding. 
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Table. 5.9 Performance of compression ratio using wavelet transform and LZW encoding. 

Level Signal CR PRD SNR CC QS 

Sym6 

L=5 

D1=0 yes 

MIT-BIH-100 27.8974 0.6331 43.9705 0.9838 44.0646 

MIT-BIH-101 25.9048 0.7368 42.6535 0.9826 35.1606 

MIT-BIH-102 20.5283 0.7657 42.3192 0.9995 26.8109 

MIT-BIH-103 21.9798 0.5572 45.0799 0.9965 39.4476 

MIT-BIH-104 23.6522 0.7141 42.9247 0.9869 33.1211 

MIT-BIH-105 23.3978 0.7231 42.8160 0.9939 32.3576 

MIT-BIH-106 23.6522 0.8150 41.7767 0.9940 29.0204 

MIT-BIH-107 18.2857 1.0776 39.3510 0.9981 16.9693 

MIT-BIH-108 25.9048 0.4919 46.1624 0.9884 52.6625 

MIT-BIH-109 18.9217 0.6491 43.7533 0.9968 29.1493 

Fk4 L=5 

D1=0 yes 

MIT-BIH-100 30.8060 1.7270 29.2335 0.9036 17.8378 

MIT-BIH-101 25.1707 1.5992 29.9015 0.9692 15.7398 

MIT-BIH-102 19.6571 2.8617 24.8470 0.9704 6.86910 

MIT-BIH-103 22.4348 2.7785 25.1032 0.8461 8.07440 

MIT-BIH-104 23.4545 0.925 34.6490 0.9110 25.3341 

MIT-BIH-105 22.9333 1.6685 29.5328 0.8691 13.7448 

MIT-BIH-106 22.4348 2.7697 25.1306 0.8187 8.10000 

MIT-BIH-107 18.2655 2.8114 25.0008 0.9467 6.49690 

MIT-BIH-108 25.1707 0.6542 37.6648 0.9177 38.4740 

Db22 L=5 

D1=0 yes 

MIT-BIH-100 25.0566 0.7750 42.2144 0.9806  32.0304 

MIT-BIH-101 32.0304 0.7750 42.2144 0.9806  32.0304 

MIT-BIH-102 19.6741 0.8170 41.7551 0.9994 24.0795 

MIT-BIH-103 20.7500 1.2514 38.0519 0.9820 16.5810 

MIT-BIH-104 23.5044 0.7499 42.4995 0.9855 31.3418 

MIT-BIH-105 24.1455 0.7214 42.8364 0.9939 33.4700 

MIT-BIH-106 22.3193 0.7557 42.4335 0.9948 29.5363 

MIT-BIH-107 16.9172 0.9964 40.0316 0.9983 16.9789 

MIT-BIH-108 23.7143 0.4756 46.4560 0.9891 49.8666 

MIT-BIH-109 19.9699 0.5797 44.7361 0.9975 34.4493 

L=5 

Bior3.5 

MIT-BIH-100 24.4494 0.5490 45.2080 0.9877 44.5314 

MIT-BIH-101 24.1778 0.5043 45.9460 0.9919 47.9419 

MIT-BIH-102 19.0877 0.7403 42.6117 0.9995 25.7833 

MIT-BIH-103 21.3333 0.6648 43.5459 0.9950 32.0888 

MIT-BIH-104 23.3978 0.7020 43.0729 0.9873 33.3287 

MIT-BIH-105 22.2041 0.5148 45.7671 0.9969 43.1310 

MIT-BIH-106 22.4330 0.8178 41.7470 0.9939 27.4307 

MIT-BIH-107 17.5484 0.8073 41.8598 0.9989 21.7385 

MIT-BIH-108 24.7273 0.4079 47.7891 0.9921 60.6218 

MIT-BIH-109 18.4407 0.5285 45.5386 0.9979 34.8905 
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Fig. 5.14 ECG compression using wavelet and LZW encoding. 
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Fig. 5.15 Steps used in data compression methodology.   

Fig. 5.16 Threshold value measurement. 
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5.7. ECG Data Compression using Empirical Wavelet Transform  

In this section, ECG signal compression is done using EWT and RLE. The methodology 

of data compression is done by using the steps given in the flow chart of Fig. 5.15 and 

described as follows: 

Step 1: ECG signal acquisition 

Step 2: Signal decomposition 

EWT divides the ECG signal into three modes (frequency modes). Three mode 

decomposition is chosen, to divide frequency efficiently. Two modes signals (such as 

mode2 and mode3 are selected, because most of the significant information is presented 

in these modes) are decomposed into different bands using DWT. Selection of 

decomposition level must be done in such a way so that all the relevant frequency 

components are separated from the most irrelevant frequency components, and signal 

reconstruction can be done efficiently at the synthesis section. Therefore, in this work, 5 

levels of decomposition are applied. 

Step 4: Thresholding 

In this method, the selection of thresholding is done by the evaluation of energy packing 

efficiency (EPE) of the decomposed signals. EPE is defined in Eqn. (5.7). 

                                                               

100%i
Di

i

ECD
EPE

ECD
                                                          (5.7) 

where,    ̅̅ ̅̅ ̅̅
i and ECDi are representing the total energy in the detail bands after and 

before applying the threshold value, respectively. Selection of thresholding values should 

be done in such a way so that maximum energy remains the same. Since, most of the 

energy is presented in the approximation band (99.9%) and lower detail band, therefore 

coefficients of approximation band are not truncated. While the coefficients of lowest 

detail band (d5) are truncated in such a way so that the energy remains (99-97%). For the 

remaining detail bands, energy will be 85 to 99%. The steps used for detection of 

thresholding values are depicted in Fig. 5.16. After measuring the threshold values, 

thresholding is done to all bands. Then, significant coefficients of all the bands are used 

to form two vectors, such as;  

                                             vector1 = [a51 b51 b41 b31 b21 b11]                                       (5.4) 

                                             vector2 = [a52 b52 b42 b32 b22 b12]                                       (5.5) 

Here, a represents the approximation band and b detailed band. 

Step 5: Modified RLE application 
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Modified RLE (given in Fig. 5.1) is applied. Here, vector coefficient values are used up to 

3 decimal points. In this work, 5-bit representation is used to represent the data: first bit is 

used to sign, and remaining four for the magnitude representation. At the receiver end, 

signal is reconstructed using the following steps: 

Step i: Application of Run-length decoding 

Step ii: Reconstruction of signal 

The signal reconstruction is done using inverse transforms. First, the vector coefficients 

are divided into 5 signals, and then recombine all by taking inverse transform. 

The noise-free signal is divided into 3 modes (Mode1, Mode2, and Mode3) using EWT, 

which is depicted in Fig. 5.17. Mode3 and Mode2 signals are applied to wavelet 

decomposition of the signal. In this work, bi-orthogonal (bior6.8) wavelet is used to 

decompose Mode2 and Mode3 signal into five frequency bands.  

In this work, for approximation band (a5) EPE is taken 99.99% and for lowest detail band 

(d5), if is 95% to compute the threshold value. The threshold value is estimated by using 

steps given in Fig. 5.16. The value of CR and PRD for different EPE are shown in Fig. 

5.18 and 5.19, respectively. In Fig. 5.19 (a) and (b), original input and reconstructed 

signal are presented. In this case, the measured values of performance parameters are: CR 

29.9, PRD is = 0.78, SNR = 31.45 and RE = 99.96. The performance of this method is 

presented in Table 5.10, and the comparative analysis of the performance of proposed 

method with other existing methods is depicted in Table 5.11, from this table, it can be 

observed that the proposed algorithm provides better results as compared to other 

methods in terms of CR and PRD both, i.e., overall QS is improved.  

5.8. Discussion  

In this chapter, transformation-based methodologies are used to compress the ECG 

rhythms. Here, the noise elimination is done before compression, i.e., as given in Chapter 

3. Methodologies such as; a) wavelet packet algorithm, b) QMF filter bank, c) wavelet 

transform and d) EWT are employed for ECG data compression. In these methods, the 

thresholding /quantization and coding is used after decomposition of the signal. Here, the 

level and adaptive thresholding is applied, to truncate irrelevant coefficients of the signal. 

Then coding, such as: modified RLE/Huffman’s/ LZW coding are used to compress the 

data. The compression performance is examined by calculating the compression ratio, and 

signal reconstruction analysis is done using different fidelity parameters and the visual 

depiction of comparison of beats present in both the signals. 
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Fig. 5.18 Compression ratio on different detailed energy packing efficiencies. 
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Fig. 5.19 PRD on different detailed energy packing efficiencies. 
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Table 5.10 Fidelity assessment parameters in the EWT and RLE based method 

Signal CR PRD QS SNR RE 

MIT-BIH-100 29.2 0.254 114 31.44 99.76 

MIT-BIH-101 28.7 0.184 155 28.99 99.94 

MIT-BIH-102 29.1 0.178 163 41.23 99.95 

MIT-BIH-103 28.9 0.282 102 21.45 99.96 

MIT-BIH-104 29.7 0.121 245 23.76 99.98 

MIT-BIH-105 31.1 0.075 414 23.76 99.89 

MIT-BIH-106 30.3 0.178 170 34.90 99.49 

MIT-BIH-107 30.4 0.277 109 41.43 99.88 

MIT-BIH-108 29.0 0.083 349 47.23 99.94 

MIT-BIH-109 30.9 0.058 532 21.70 99.92 

MIT-BIH-111 28.4 0.191 148 22.24 99.67 

MIT-BIH-112 30.8 0.259 118 34.76 99.83 

MIT-BIH-113 29.3 0.198 147 24.84 99.75 

MIT-BIH-114 28.9 0.193 149 20.82 99.56 

MIT-BIH-115 28.3 0.078 362 39.26 99.65 

  
 

 Table 5.11 Comparative analysis of the performance of the proposed method with other methods 

Methods Sign

al 

CR PRD 

Proposed method 100 

103 

105 

29.2 

28.9 

31.1 

0.254 

0.282 

0.075 

Beta wavelet based and lossless encoding (Kumar et al., 2013) 100 5.73 3.210 

Uniform scalar dead-zone quantization & entropy coding. (Chen et al., 2008) 100 14.29 2.980 

EWT and RLE (Kumar and Saini, 2014)  100 34 2.1 

Singular value decomposition and embedded zero tree wavelet (Kumar et al., 2016) 100 16.87 1.000 

Daubechies mother wavelet (Motinath et al., 2016) 100 19.76 0.220 

Mother wavelet parameterization (Abo-Zahhad et al., 2013) 117 23.0 1.600 

EP-based wavelet coecient quantization (Hung et al., 2014) 100 22.94 - 

ontext modeling Arithmetic coding with dynamic learning VSQ (Huang et al., 2013) 119 25.0 2.260 

Quad level vector (Kim et al., 2010) 231 16.9 0.640 

Fig. 5.20 (a) Original and (b) Reconstructed signal.  

 

Fig. 5.19 a) Original and b) Reconstructed signal  
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Tabular results (Table 5.2 (a), (b), (c), (d), (e)) show that methodologies provide good 

performance of signal compression and reconstruction. In Table 5.3, these parameters are 

evaluated using QMF and RLE technique. In Tables 5.7, 7.8 and 5.9, the performances of 

wavelet and encoding based methodologies are given. The data compression is also done 

by the highly adaptable technique “EWT”. The performance of algorithm is depicted in 

Table 5.10. Different fidelity parameters are used to evaluate the performance of 

proposed method. Simulated results demonstrate that this algorithm can be used to 

reconstruct the compressed signal without loss of diagnostic information. Table 5.10 

shows that proposed method gives up to 31.1 of CR and 0.075 PRD, which is highly 

recommended. Figs. 5.5, 5.10, 5.11 and 5.20 show that both the signals have some visual 

and beats (location and amplitude). Tabular comparison given in Table 5.4 and 5.11, 

indicate that the methodologies used in this work are superior to several existing methods. 

Therefore, it can be observed that the limited bandwidth problem can be overcome by 

minimizing the number of bits in transmission of compressed ECG data. The applications 

of these methodologies include the real-time hospital environment that is estimated to 

give proficient solutions to ECG data storage and transmission difficulties. 

5.9. Summary 

In this chapter, data compression of ECG signal is presented. Presented data compression 

algorithms provide higher compression performance with low signal quality degradation 

at the decomposition than several other algorithms. Another advantage of these methods 

is that all the information of the signal is hidden, because the signal is encoded. 

Therefore, these methodologies can be used at the transmission. These are protected, 

because transmitted data are encoded with decomposed coefficients. Hence, the method is 

applicable to 1-D signal compression with more security. Several signals taken from the 

MIT-BIH database are used to obtain the results of the methodologies. From the tabular 

and graphical results, it can be observed that these compression algorithms are capable of 

achieving good compression ratio values and good reconstruction quality. These methods 

can be used to compress all kinds of ECG rhythms in an efficient way. Using these 

methodologies, truncation of a bit stream at any point can be done, and a good quality of 

reconstruction can be obtained.  

 



CHAPTER 6 

DATA COMPRESSION OF ECG SIGNAL USING COSINE 

MODULATED FILTER BANK 

 

6.1. Overview  

Filter bank (FB) is one of the most significant tools of multirate signal processing (MSP), 

which is used to divide a signal into a number of frequency bands to process each band 

independently [259]. Initially, the two-channel quadrature mirror filter (QMF) bank was 

designed, which divides an input signal into two bands: successively, it was extended to 

multi-channel/M-channel filter banks (MFBs), where the input signal is decomposed into 

M number of frequency bands. M-channel filter banks are also classified into two types: 

a) uniform filter banks (UFBs) and b) non-uniform filter banks (NUFBs). UFBs 

decompose an input signal into M  number of uniformly distributed frequency bands. On 

the contrary, in the case of NUFBs, signal decomposition is performed in M number of 

unequally distributed frequency bands [264]. A NUFB is extensively used in various 

signal processing applications as a consequence of its flexibility in dividing subbands 

[252]. 

Nearly perfect reconstruction (NPR) filter banks suffer from three types of distortions, i) 

aliasing distortion, ii) phase distortion and iii) amplitude distortion. These distortions can 

be minimized or completely eliminated by considering the following points; a) filters 

used to design a filter bank should have linear phase (i.e. finite impulse response (FIR)) to 

remove the phase distortion, b) aliasing distortion function should be equal to zero, to 

remove aliasing distortion and c) amplitude distortion is minimized by using suitable 

computer-aided technique [265]. For narrowband filtering and sharp transition width, 

filter order of an FIR filter is high. Therefore, a large number of multipliers and adders 

are required, and computational complexity become high [21].  

In this chapter, the design of nearly perfect reconstructed uniform M-channel cosine 

modulated filter bank using three approaches a) a simple and proficient linear iterative 

technique b) Schittkowski algorithm and c) passband edge iteration to minimize the cost 

function. In technique (a), the cut-off frequency of the model filter is optimized to satisfy 
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the perfect reconstruction condition in CMFB. Different fixed /adjustable window 

functions are used for designing the linear phase IFIR prototype filter for the CMFB. In 

approach (b), the prototype filter is constrained to be a linear-phase spectral-factor of a 

2Mth band filter and in (c), linear iteration process is done to optimum filter response by 

changing the value of passband edge frequency of model filter. In a CMFB, all the 

analysis and synthesis filters are implemented by applying the cosine modulation 

technique on the prototype filter. Here, several examples have been taken using various 

methodologies for filter design, filter optimization and for different channel filter bank 

design. This study is made to examine, weather the IFIR filter based filter bank design is 

possible or not using these techniques, and also to verify the performance of the designed 

filter bank. The tabular results demonstrates that the IFIR  filter based filter bank provides 

improved  results in terms of %CRC, and in some cases other performance indices are 

also improved. 

Here, CMFB is also used for ECG data compression. The non-uniform CMFB is used for 

ECG data compression by decomposing ECG signal into various frequency bands. 

Subsequently, thresholding is applied for truncating the insignificant coefficients. The 

estimation of threshold value is done by examining the significant energy of each band. 

RLE is utilized for the compression. Here also, the MIT-BIH arrhythmia database is taken 

for performance analysis of the proposed work. The experimental observations 

demonstrate that the proposed method has accomplished a high compression ratio with 

the admirable quality of signal reconstruction with low percentage root mean square 

difference.  

6.2. Near-Perfect-Reconstruction Pseudo-QMF Banks using IFIR Filter  

Perfect-Reconstruction reconstruction filter banks are very important in numerous 

applications, for example: designing of wavelet. Nevertheless, in most of the applications, 

a near perfect reconstruction (NPR) is sufficient [297]. In this section, an approach to 

design the Multi-channel filter banks using IFIR prototype is presented. In this section, 

filter design is done by using the Parks–McClellan algorithm. Here, the prototype filter is 

constrained to be a linear-phase spectral-factor of a 2Mth band filter. Therefore, the 

overall transfer function of the filter bank system is a delay. The PR cosine-modulated 

filter banks widely used as the analysis and synthesis filters are modulated versions of a 

prototype filter. In these types of filter banks, overlapping between the nonadjacent filters 

is negligible for the reason that the desired analysis and synthesis filters have narrow 

http://www.thesaurus.com/browse/insignificant
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transition bands and high stopband attenuation. Designing a filter bank with small 

aliasing (ea-100 dB), high stopband attenuation (~-100 dB) and small overall distortion is 

a difficult task. It can be solved using the given method with low computational 

complexity. 

For high stopband attenuation and low computational complexity, the IFIR filter is used 

as the prototype filter. In this method, minimization of the weighted objective function is 

done, which consists of stopband attenuation and total magnitude distortion. The analysis 

and synthesis banks design is performed by applying the modulation term given in Eqns. 

(2.76) and (2.77).  

Furthermore, the aliasing terms are also canceled. Subsequently, the aliasing level at the 

output is analogous to stopband attenuation of the prototype filter. Therefore, it can be 

observed that only aliasing error is generated in this FB at the output of analysis-synthesis 

system, which is at the level of stopband attenuation. This type of optimization problem 

can be solved very accurately by the nonlinearity constrained minimization algorithm of 

Schittkowski. 

For evaluation of the performance of filter, the following parameters are used are used 

Step 1: Specify the number of bands (M), m, 
1m , 

s  and p   

Step 2: Compute the value of N using Eqn. 6.1 

                               
12( )N mM m     for Even N                                                       (6.1a) 

                               
12( )N mM m  +1    for odd N                                                    (6.1b) 

                                            where, 
10 1m M    

Step 3: Compute the specifications of model and interpolation filter using Eqns. (2.54) to 

(2.59) 

Step 4: Design the prototype filter. Initialization of low-pass filter ( ( )H z ) is done using 

steps given in Section 2.2.3. Here, Parks–McClellan algorithm is used to design model 

and interpolation prototype filter. 

Step 5: Compute the quadratic condition. In this step, the computation of quadratic 

condition and their gradients is done using mathematical expressions given in Eqns. (6.2) 

to (6.8).  
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here,  1(0)  (1)  ...   ( 1)
t

h h h h mM m   and 
nS  is the constant matrixes, which have the 

elements of magnitude either 0 or 1 that can be calculated using the expressions given 

below: 

                                              

 
,

1,          
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n k l

k l n
S
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

                                               (6.3) 

J is also the matrix given in Eqn. (6.4). 
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where,                                                  
1

0

1
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2

mM mI

V

 
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 
 
 

                                               (6.6) 

Step 6: Calculate the stopband error 

Stopband error is calculated using the following Eqn. 

                                                       
2

( )
s

j tH e d h Ph





                                              (6.7) 

where, 
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i

i

K

k l i

i

P k l N k l d
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                                                                                                                                        (6.8)                          

in this Eqn. 
i , represents the relative weights and 

 ,1i  & ,2i  are the band edges 

frequencies of the stopbands. 

Step 7: Minimize the quadratic constrained problem, i.e., find h that minimizes h
t
Ph and 

satisfies (6.5) 

Step 8: Derive all the analysis and synthesis filters using Eqns. (2.76) and (2.77).   

For evaluation of the performance of the filter bank, the following parameters are used 

are used 

 Amplitude distortion ( ame ) 

                                                   0max 1 j

ame T e                                            (6.9) 

 The worst case aliasing distortion ( ae ) 

                                         max  for 0, ,  1 1j

a le T e l M                    (6.10) 

 Computational reduction cost (% CRC). 

                                     

( ( ) ( ))
%( ) 100

( )

Multi FIR Mult
CRC

Multi FIR

i IFIR
                   (6.11) 

where, Multi(FIR) and Multi(IFIR) represent the multiplier of FIR and IFIR filter, 

respectively. 

 Peak reconstruction error (PRE) 

                                     
1 12 2

0 0

max min
M M

j j

k k

k k

PRE H e H e 
 

 

   
    

   
             (6.12) 

 Computational time (CPU time) 

The CPU time is the time required to execute the program for designing the 

CMFBs.    

Example 6.1. In this example, four channel FB is designed using the steps given above, 

Here, the value of M=4, m=13, K = 1, i  = 1, 0.675 /(2M) s  and 0.35 /(2M) p  . 

The uniform CMFB is designed by using a single stage IFIR prototype filter. Parks–

McClellan algorithm is used to design F(z) and I(z). The stopband attenuation (As) = 

100dB. Fidelity parameters have magnitude: PRE =3.7322e-06, ame = 9.5479e-15 and ae

=100dB. In Fig. 6.1(a), the response of analysis bank is depicted, and the peak 

reconstruction error plot is shown in Fig. 6.1(b). 
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Example 6.2. In this case, an 8-channel pseudo-QMF bank is designed using the same 

methodology. Here, M=8, m=13 K =1, 
i  = 1, 0.675 /(2M) s  and 0.35 /(2M) p  . 

Here also, the uniform CMFB is designed by using the single stage IFIR prototype filter. 

Parks–McClellan algorithm is used to design F(z) and I(z). In this case, the aliasing error 

is also about -142dB. PRE =5.8025×10
-5

, 
ame = 4.129×10

-5
. The responses of the the 

analysis bank and reconstruction error are given in Fig. 6.2(a) and 6.2(b) respectively. 

 

6.3. CMFB Design using Window Function 

The researchers have developed methodologies, based on direct minimization of error 

function either in the time or frequency domain [284]. However, for the larger filter bank, 

these methodologies are not suitable due to the high degree of nonlinearity. CMFB have 

emerged as an attractive choice of filter banks with respect to implementation cost and 

design saving. Numerous algorithms [261-285] have been proposed for designing CMFB. 

However, these approaches need more iterations, as a result, a large computation time is 

required. Consequently, an efficient algorithm is used which can minimize the 

reconstruction error, aliasing error, computational time, and the number of iterations. 

Therefore, this chapter presents a simple and computationally efficient iterative algorithm 

for the design of NPR -uniform and non-uniform CMFB.  

This methodology uses different window functions for designing the prototype filter for 

NPR banks. The techniques also employed for optimizing the cut off edge frequency to 

improve the performance of filter banks comparative to other existing algorithms. 

Optimization is very important to reduce the reconstructed noise. One of the major 

advantages of CMFBs is: if the prototype filter is optimized, then remaining all the filters 

get optimized, because all filters are derived from the single prototype filter only. 

In this section, IFIR (single stage and two stages) filters are used as a prototype filter for 

CMFBs. Here, the coefficients of prototype filter are optimized using linear iterative 

algorithm given in [268]. Here, the cutoff edge frequency of model filter is varied to 

satisfy the nearly perfect condition.  

PR filter banks produce the reconstructed signal, which is exact replica of the input signal 

without any distortion, i.e., the reconstructed signal is a delayed version of the input 

signal. The PR filter bank must satisfy Eqn. (6.14) [260]. 

                           
2 2

( )

0 0( ) ( ) 1          0jω j ω π MH e H e for ω π M                           (6.13) 
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This condition changes at ω π M , and the new PR condition becomes [265]: 

                                                  
2

0 ( ) 0.707jω MH e                                                       (6.14)     
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Fig. 6.2 (a) Frequency response of analysis filters and (b) Reconstruction error in dB. 
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Fig. 6.1 (a) Frequency response of analysis filters and (b) Reconstruction error in dB. 
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In this work, this condition is utilized to get an optimized prototype filter. To obtain this 

condition, cutoff edge frequency is changed iteratively using the steps given below. 

Step 1.  Specifications of H(z), such as; /p  , /s   and 
sA  are identified  

Step 2.  Step size (step), tolerance value (Tol =± 0.0001), counter (C= 0) and ideal 

magnitude response (MR=0.707) are specified.  

Step 3. The value of  L is estimated using Eqn. (2. 42) 

Step 4. Specifications of F(z) and I(z) are computed.  

Step 5.  I(z) is designed using the windowing method. A windowing method uses filter 

order, cutoff edge frequency, and stopband attenuation to design the filter 

response. The cutoff frequency is measured. 

Step 6.  F(z) is designed. 

Step 7. Up-sampling of F(z) by L is done,  (i.e.  F(z
L
)) 

Step 8. Convolution of up-sampled model filter and interpolator filter is done ((i.e.  

F(z
L
)I(z)). 

Step 9. Calculation of magnitude response (MRD) of the prototype filter at    2M
   

and Err (Err=MRD -   MR) is done.       

Step 10. Err value is verified:  

Err must be within the Tol value. In this work, the Tol=0.0001. If  the Err is not in 

the Tol level, then linear iteration is started by changing the value of cm  in two 

ways:   

                        1) If MR is greater than MRD, cm  is increased using cm cm   + step 

and go to Step 11  

                        2) Otherwise, cm  is decreased using cm cm    - step and go to Step 11 

Step 11. The counter value is increased by 1 and step=step /2. 

Step 12. Redesigning of F(z) using new cm
 
is done with the same filter order and 

follow Step 7 till the tolerance level is achieved.  

The same steps are used for optimizing the two-stage IFIR prototype filter, the only 

difference is in designing of I(z) (Step 5), i.e., first I1(z) and I2(z) are designed, then after 

up-sampling of I1(z) is done by factor L1, and then convolution of 
1( )LiI z  and 2 ( )I z is also 

done. 
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If no 

If yes 

If yes 

If no 

Redesign F(z) is done by using by new ωcm 

ωcm is decreased 

ωcm is 

increased 

MR>MRD 

is verified. 

 

  Iteration process is terminated 

|Err|< = Tol 

is verified. 

I(z) and  F(z)  are designed 

 The specifications of H(z) are specified 

Initialization of C, Step and Tol and MR is done 

L, specifications of F(z) and I(z) are calculated
 

Fig. 6.3 Block diagram of optimization of prototype filter. 

MRD  at ω=π/2M and Err are computed 

Step = step/2 and C = C+1 

Up-sampling of F(z) is done  

F(z
L
) and I(z) are convolved 
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After the optimization of prototype filter, cosine modulated technique is used to derive all 

the analysis and synthesis filters using cosine modulated expressions given in Chapter 2. 

This methodology is employed to design 4, 8, 16 and 32 bands filter banks using single 

and two-stage IFIR prototype filters. Further, the NUFB is also derived using 

methodology given in [254]. Here, 3-channel, 4-channel, and 5-channel NUFBs are 

designed using 4-channel, 8-channel, 16-channel, and 32-channel UFB. 

Several design examples have been included to illustrate the proposed algorithm and its 

improved performances over other existing methods. The proposed methodology has 

been extended for designing M-channel cosine-modulated filter banks. Finally, the 

application of these methodologies is considered in the area of subband coding of the 

ECG signals. 

6.3.1. CMFB Design using Fixed Window Function 

In a fixed window function, only one controlling factor is used to adjust the side lobe and 

main lobe (width and height). In this section, Blackman, rectangular, Bartlett, Hanning,  

and Hamming window functions are used for designing of model and interpolator filter.  

Example 6.3: 8-channel uniform CMFB is designed using single stage IFIR prototype 

filter. Blackman window function is utilized to design F(z) and I(z). The design 

specifications of prototype filter are: s = 0.125π, p  = 0.0312π and As = 80dB. 

Designing of the prototype filter is done by following steps given in Fig. 6.3. After 

obtaining the optimized prototype filter, other analysis and synthesis filters are derived 

using cosine modulated functions.  

The frequency responses of prototype filter, analysis filter bank and reconstruction error 

are given in Fig. 6.4. This methodology is applied to obtain 8 and 16 channel filter bank 

using different fixed window functions given in Chapter 2. The performances of these 

fixed window functions are presented in Table 6.1.  

 

 

 

 



CHAPTER 6 Data compression of ECG signal using cosine modulated filter bank 

 

149 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M
ag

n
it

u
d

e 
--

--
 >

 
M

ag
n

it
u
d

e 
--

--
 >

 
M

ag
n

it
u
d

e 
--

--
 >

 

Normalized frequency 
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Fig. 6.4 (a) Magnitude response of prototype filter,  (b) Analysis filters response,  and  (c) Reconstruction error 

in dB using the iterative algorithm by utilizing fixed window function. 

(a) 

 

(b) 

 



CHAPTER 6 Data compression of ECG signal using cosine modulated filter bank 

 

150 
 

 

 

 

 

 

 

 

 

Table 6.1. Performance measurement of cosine modulated filter bank using fixed window function. 

Window 

function 
Filter eam ea PRE CPU Time Noe %CRC 

Blackman 

FIR(M=8) 0.0021 4.2093e-05 0.0103 0.706230 21 - 

IFIR (M=8) 0.0040 3.5317e-05 0.0072 0.614688 10 57.2165 

IFIR2(M=8) 0.0017 1.5637e-05 0.0041 0.675604 15 67.4058 

IFIR (M=16) 0.0011 1.0707e-04 0.0098 0.875355 17 68.7339 

IFIR2(M=16) 2.2743e-04 5.2455e-06 0.0020 0.788495 19 77.0308 

Rectangular 

FIR(M=8) 0.2747 0.0091 1.0271 0.659506 23 - 

IFIR(M=8) 0.3365 0.0221 2.5228 0.557402 12 57.2165 

IFIR2(M=8) 0.3792 0.0026 2.3592 0.557402 19 67.4058 

 IFIR (M=16) 0.1332 0.0131 1.0863 0.959513 21 68.7339 

 IFIR2(M=16) 0.0014 0.0235 0.0122 0.588910 17 77.0308 

Bartlett window 

FIR(M=8) 0.0483 0.0178 0.0057 0.627344 19 - 

IFIR(M=8) 0.0585 0.0116 0.0421 0.688154 11 57.2165 

IFIR2(M=8) 0.2836 2.1608e-04 1.0998 0.588910 14 67.4058 

 IFIR (M=16) 0.1332 0.0131 1.0863 0.959513 21 68.7339 

 IFIR2(M=16) 0.0014 0.0235 0.0122 0.588910 17 77.0308 

Hanning window 

FIR(M=8) 0.0246 5.4605e-05 0.1865 0.694581 21 - 

IFIR(M=8) 0.0245 1.6817e-04 0.1761 0.442073 11 57.2165 

IFIR2(M=8) 0.0248 4.1301e-05 0.1372 0.429859 17 67.4058 

IFIR (M=16) 0.0197 9.4879e-05 0.1698 1.000708 20 68.7339 

IFIR2(M=16) 0.0234 7.2255e-04 0.2008 0.734366 17 77.0308 

Hamming 

window 

FIR(M=8) 0.0041 2.4379e-04 0.0755 0.931441 22 - 

IFIR(M=8) 0.0158 0.00014 0.1073 0.788471 11 57.2165 

IFIR2(M=8) 0.0170 4.9486e-04 0.1068 0.555456 15 67.4058 

IFIR2(M=16) 0.00007 0.0012 5.5371e-05 0.882155 17 77.0308 
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6.3.2. CMFB Design using Adjustable Window Function  

By utilizing the fixed window function, controlling of the main lobe width is achieved 

using only one independent parameter i.e., length of the window function. However, in 

some multirate signal processing applications, such as speech signal processing and ECG 

signal processing, additional spectral parameter, called side lobe roll-off ratio is needed. 

Consequently, numerous window functions have been developed to improve the spectral 

characteristics, which have one or more additional controlling parameters. Kaiser, 

Modified Kaiser-Bessel window, Dolph-Chebyshev, Saramaki, ultraspherical, symmetric 

hyperbolic cosine window, exponential, symmetric Nuttall window, extended Norton-

Beer window, Gaussian window and Taylor window are used in this work to design the 

filters (mathematical description of these windows is presented in Chapter 2).  

Example 6.4: In this example, 4-channel uniform CMFB is designed using a single stage 

IFIR prototype filter. Kaiser window is used to design F(z) and I(z). The design 

specifications of prototype filter are: s  =0.195 π, p  =0.0628π and As = 100dB. In this 

case, the calculated value of L = 3, therefore, calculated passband and stopband edge 

frequency of model filter are ( ) 0.188pm  , and ( ) 0.585sm  , respectively and 

passband and stopband edge frequency of interpolator filter are ( pi ) = 0.0628π and

0.471si  .  

After designing of prototype filter, a filter bank is designed. In this case, 8 iterations are 

used to optimize the cutoff frequency at 3 dB. After obtaining the optimum prototype 

filter, cosine modulation technique is applied to obtain the analysis and synthesis filter 

banks, using Eqns. (2.76) and (2.77), respectively. Performance of the proposed filter 

bank is evaluated using parameters given in Eqns.  (6.9) to (6.12). 

The quantitative values of resulted parameters of CMFB are: eam =4.1×10
-3

, ea = 3.1×10
-

6
, PRE=5.1×10

-3
, NOE = 8, CPU Time=4.06×10

2
, this and CRC= 57.21%. In Fig. 6.5(a), 

the response of the prototype filter is represented. Fig. 6.5(b) shows the analysis bank of 

CMFB and in Fig 6.5(c), the reconstruction noise is depicted. 
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Table 6.2. Performance of cosine modulated filter bank using adjustable window functions 

Window Filter eam ea PRE Noe 

Kaiser 

FIR 0.0025 5.4112e-06 0.0102 18 

IFIR 0.0034 3.3808e-07 0.0043 11 

IFIR2 0.0037 3.1351e-07 4.9338e-04 13 

Dolph-Chebyshev 

Window 

FIR 0.0053 1.7916e-07 2.8840e-04 19 

IFIR 0.0058 4.9751e-07 0.0103 11 

IFIR2 0.0051 1.9120e-06 1.6666e-04 17 

Saramaki window 

function 

FIR 0.0028 4.0773e-05 0.0195 21 

IFIR 0.0078 2.3179e-05 0.0559 11 

IFIR2 0.0051 1.9120e-06 1.6666e-04 17 

Ultraspherical 

polynomials 

 

FIR 0.0090 1.3349e-04 0.0028 11 

IFIR 0.0089 8.5300e-08 3.6507e-05 11 

IFIR2 0.0077 5.5410e-08 2.8347e-05 12 

Symmetric exponential 

window 

FIR 0.0028 1.6112e-05 0.0160 18 

IFIR 0.0019 1.4341e-05 0.0139 9 

IFIR2 0.0051 1.9120e-06 1.6666e-04 17 

Symmetric hyperbolic 

cosine window 

FIR 0.0029 1.8692e-05 0.0161 22 

IFIR 0.0150 1.3412e-05 0.1308 11 

IFIR2 0.0140 5.5201e-08 0.1182 17 

Symmetric Nuttall 

window 

FIR 0.0055 4.2298e-07 1.6626e-04 20 

IFIR 0.0060 8.5186e-07 1.4468e-04 11 

IFIR2 0.0053 1.6304e-06 2.0734e-04 15 

Extended Norton-Beer 

window 

FIR 0.0174 5.2121e-04 0.1432 22 

IFIR 0.0251 8.2668e-04 0.2114 12 

IFIR2 0.0181 1.5329e-04 0.1530 18 

Modified Kaiser-Bessel 

window 

FIR 0.0055 4.9169e-06 1.5090e-04 22 

IFIR 0.0072 7.9773e-08 0.0079 10 

IFIR2 0.0067 4.2238e-07 7.3928e-07 17 

Gaussian window 

FIR 0.0138 5.8067e-05 2.3759e-04 14 

IFIR 0.0138 2.4703e-06 0.0010 9 

IFIR2 0.0140 5.1257e-06 4.5905e-10 15 

Taylor window 

FIR 0.0039 1.4846e-05 0.0034 21 

IFIR 0.0047 4.8153e-05 0.0165 10 

IFIR2 0.0037 5.3420e-05 2.8647e-05 16 
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Fig. 6.5 Response of (a) Prototype low pass filter, (b) 4-band analysis filter bank and (c) Reconstruction. 
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Example 6.5: In this example, 8-channel uniform CMFB is designed using design 

specifications; s = 0.0595π, p  = 0.0262π and As = 100dB.  Similar to Example 6.4, 

here also filters are designed by windowing method. The resulted parameters of CMFB 

using single stage IFIR filter are: L=5, eam= 5.1×10
3
 ea= 1.5×10

6
, PRE=5.4×10

3
, NOE 

=11, CPU Time = 7.99×10
3
 ms, and CRC = 74.34% and using two-stage IFIR prototype 

filter; L= 5, L1=2, eam=3.6×10
3
, ea = 1.05×10

6
, PRE=5.3×10

4
, NOE =18, CPU Time 

=8.237×10
3
ms and CRC = 79.09%. The resultant response of prototype filter, analysis 

bank, and reconstruction noise are shown in Fig. 6.6. These results are obtained using a 

two-stage IFIR filter. Other window functions are also used to design CMFB using single 

and two-stages IFIR filters. The performance using fidelity parameters are presented in 

Table 6.2 for 8-channel FBs. The same procedure is followed to design the 16 and 32-

channel filter banks using different design specifications. Obtained fidelity parameters of 

these examples are given in Table 6.3. 

Further, NUFB is also derived using the methodology given in [23]. Here, 3-channel, 4-

channel, and 5-channel NUFBs are designed using 4-channel, 8-channel, 16-channel, and 

32-channel UFB,  

Example 6.6: The non-uniform CMFBs are designed using design specifications of the 

prototype filter; s =0.0625ℼ,v p =0.0312ℼ and sA = 100dB. First, 16-channel UFB is 

designed, then after 3 and 5-channel NUFBs are derived by merging bands of UFB in 

such a way: 

For 3-channel non-uniform CMFB, B1= b1, B2= b2 + b3+ b4 and B3 =b5+b6+b7+ b8.  

For 5–channel non-uniform CMFBs, B1= b1, B2= b2, B3 =b3+b4, B4= b5, B5= b6+ b7+ b8. 

In this case, L=4, L1= 2, eam=3.70×10
3
, ea =1.70×10

6
, PRE=4.20×10

3
, NOE =16, CPU 

Time =3.070×10
3
 msec and CR = 83.01% are obtained. The prototype filter response and 

analysis bank are presented in Fig. 6.7(a) and(b), respectively. Several other examples are 

also used to examine the performance of NUFBs using single stage and two stage IFIR 

prototype filter, which are depicted in Table 6.4. Performance of designed uniform and 

non-uniform NPR filter banks are compared with the performance of several other filter 

banks which is depicted in Table 6.5. This table shows that the proposed work has 

reduced the computational complexity significantly. 
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Table 6.3 Performance parameters of IFIRs filter for UFBs. 

M Filter ωs/π ωp/π N Nm Ni N1i Ni2 eam ea PRE CPU Time Noe 
CRC 

(%) 

4 
FIR 0.250 0.083 100 - - - - 0.0037 7.58×10-6 0.0030 137.37 10 - 

IFIR 0.125 0.083 - 80 23 - - 0.0036 2.92×10-7 0.0030 116.855 14 60.05 

8 

FIR 0.062 0.031 416 - - - - 0.0024 1.03×10-6 0.0093 3.07×102 18 - 

IFIR 0.062 0.031 - 105 32 - - 0.0039 1.30×10-6 2.87×10-4 3.06×102 10 69.62 

IFIR2 0.062 0.031 - 102 - 25 12 0.0031 8.25×10-7 5.36×10-4 1.42×102 16 70.29 

16 

FIR 0.031 0.015 288 - - - - 0.0020 5.24×10-6 0.0020 3.61×102 19 - 

IFIR 0.065 0.015 - 89 32 - - 0.0024 5.73×10-6 0.0024 4.76×102 17 68.73 

IFIR2 0.062 0.015 - 56 - 25 29 0.0027 1.08×10-6 0.0027 4.765×102 17 77.03 

32 

FIR 0.031 0.007 576 - - - - 0.0011 5.05×10-6 0.0011 6.53×102 20 - 

IFIR 0.031 0.007 - 85 52 - - 1.65×10-6 3.16×10-6 1.65×10-4 6.33×102 17 78.79 

IFIR2 0.031 0.007 - 73 - 28 18 0.0023 1.02×10-6 0.0023 7.32×102 17 83.01 

 

 

Fig. 6.6 Response of (a) Prototype low pass filter, (b) 8-band analysis filter bank and (c) Reconstruction error. 
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Fig. 6.7 Response of (a) Prototype low pass filter, (b) 5-band non-uniform analysis filter. 
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Table 6.4. Performance parameters of IFIRs filter for NUFBs 

 

Table 6.5. Comparisons of proposed work with other methods 

Approach Filter eam As ea PRE %CRC 

LP-NPR [297] Parks-McClellan 

algorithm 

7.803×10
-

3
 

110 1.013×10
-3

 - - 

NUFB [290] constrained  equiripple  

FIR technique 

- 80 - 3.72 × 

10
−3

 

- 

CMFB [281] CS optimized 

fractional 

 derivative constraints 

1.4 × 

10−3 

30 8.08 × 

10−8 

2.2 × 10
−3

 - 

Uniform CMFB [305] IFIR filter - 85 5.43e-07 0.0069 43.03 

Two stage IFIR filter - 85 1.15e-06 0.0099 60.30 

CMFB. [299] Parks McClellan 

Algorithm 

- 45 2.62 × 

10−4 

4.35 × 

10
−3

 

22 

Proposed uniform 

CMFB 

IFIR filter 0.0039 100 1.3013e-06 2.8750e-

04 

69.62 

Two stage IFIR 0.0314 100 8.2502e-07 5.3622e-

04 

70.29 

Proposed non-uniform 

CMFB 

IFIR filter 0.0035 100 4.6909e-06 0.0027 72 

Two stage IFIR 0.0038 100 1.2814e-06 0.0023 84 

 

 

 

 

 

M Filter ωs/π ωp/π N Nm Ni N1i N2i eam ea PRE 
CPU 

Time 
Noe %CRC 

3 

FIR 0.1250 0.0833 312 - - - - 0.0036 
1.62×10

-

7
 

0.0028 8.91×10
3
 14 - 

IFIR 0.0625 0.0312 - 102 33 - - 0.0036 
2.92×10

-

7
 

0.0030 8.92×10
3
 14 60.05 

4 

FIR 0.0892 0.0290 384 - - - - 0.0026 
1.18×10

-

5
 

0.0112 9.17×10
3
 18 - 

IFIR 0.0625 0.0156 - 89 32 - - 0.0024 
5.73×10

-

6
 

0.0024 4.76×10
3
 17 68.73 

IFIR2 0.0625 0.0156 - 56 - 25 29 0.0027 
1.08×10

-

5
 

0.0027 4.76×10
3
 17 77.03 

 

 

5 

FIR 0.0694 0.0304 400 - - - - 0.0025 
1.89×10

-

7
 

0.0011 9.02×10
3
 20 - 

IFIR 0.0694 0.0304 - 108 26 - - 0.0035 
4.69×10

-

6
 

0.0027 6.33×10
3
 11 78.79 

IFIR2 0.0694 0.0304 -  - 28 18 0.0038 
1.28×10

-

7
 

0.0023 7.32×10
3
 17 67.90 
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6.3.3. CMFB Design using Other Optimum Convex Method of Equiripple Filter 

In this Section, designing the IFIR prototype filters essential is presented to contrivance 

the M-band pseudo QMF banks. In this method, optimization of a single parameter on a 

convex error surface is done, consistently delivering the best equiripple filter possible 

while minimizing the overlapped passband distortion using Eqn, (6.15). Steps used to 

design the prototype filter are given below [260].  

                                

2

2
max ( ) ,    0H H

M M


 
   

   
       

   

                    (6.15) 

Step 1. Specifications of H(z), such as: /p  , /s   and stopband ripple and passband 

are defined.  

Step 2.  Initial values of some parameters such as: step size (step), tolerance value 

(Tol=±0.000001), Err = 10 and counter (C= 0) are specified. 

Step 3. The value of L is estimated.  

Step 4. Specifications of F(z) and I(z) are computed.  

Step 5.  I(z) is designed.  

Step 6.  F(z) is designed. 

Step 7. Up-sampling of F(z)  

Step 8. Convolution of up-sampled model filter and interpolator filter is done.  

Step 9. Calculation of Err is done using Eqn. (6.15).  

Step 10.  Tolerance range is value is verified using Eqn. (6.16) 

                                     Err previous Err tol                                               (6.16) 

a) If tolerance range is achieved then Step 11 is executed.  

b) If tolerance range is not achieved then greater than value pm  is changed 

according to  Err previous Err  value i.e.,  

I).  The pm  is increased using pm pm   + step and go to Step 11 

II). Otherwise, the value of pm  is decreased using pm pm    - 

step and go to Step 11 

Step 11. The counter value is increased by 1 and step=step /2. 

Step 12. Redesigning of F(z) using new pm
 
is done with the same filter order and 

follow Step 7 till the tolerance level is achieved.  
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The same steps are used for optimizing the two-stage IFIR prototype filter. The only 

difference is in designing of I(z) (Step 5), i.e., first I1(z) and I2(z) are designed, then after 

up-sampling of I1(z) is done by factor L1. After that the convolution of 
1( )LiI z  and 

2 ( )I z is 

also done. 

Example 6.7: In this example, 16-channel uniform CMFB is designed using design 

specifications; s = 0.0625π, p  = 0.0156π and As = 100dB using methodology given 

above.  Here, for model and interpolator filter design Parks–McClellan algorithm is used. 

The resulted parameters of CMFB using single stage IFIR filter are: L=2 eam= 5.1×10
3
 

ea= 1.5×10
6
, PRE=5.4×10

3
, NOE =11, CPU Time = 7.99×10

3
 ms, and CRC = 74.34% 

and using two-stage IFIR prototype filter; L= 5, L1=2, eam=1.0×10
3
, ea = 2.9287×10

6
, 

PRE=8.4×10
3
, NOE = 98, CPU Time = 0.295594 sec and CRC = 49.19%. The resultant 

response of prototype filter, analysis bank, and reconstruction noise are shown in Fig. 6.8. 

The performance of this method with other optimization methods, are presented in Table 

6.6 for 8-channel FBs. In this table, FIR, single staged IFIR and two-staged IFIR filter’s 

fidelity parameters are presented.  
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(c) 

Normalized frequency 

Fig. 6.8 Response of a) Prototype low pass filter, b) 8-band analysis filter bank and c) Reconstruction 

error. 

Table 6.6. Performance of cosine modulated filter bank other optimum method 
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Table 6.6. Performance of cosine modulated filter bank with other optimization 

 

 

Approaches Filter eam ea PRE Noe 

Parks–McClellan algorithm, 

FIR 0.0020 2.4084e-06 0.0088 60 

IFIR 0.0026 3.4765e-06 0.0057 206 

IFIR2 0.0031 9.7823e-08 0.0134 98 

Complex and nonlinear-phase 

equiripple FIR filter design 

FIR 0.0055 2.4024e-09 0.0240 45 

IFIR 0.0026 3.4812e-06 0.0057 60 

IFIR2 0.0031 9.9306e-08 0.0135 102 

Constrained-least-squares FIR 

multiband filter design 

FIR 0.0320 7.9828e-05 0.1365 50 

IFIR 0.0339 9.1136e-05 0.0729 71 

IFIR2 0.0428 5.9976e-05 0.2854 71 

Constrained-least-squares linear-

phase FIR lowpass 

FIR 0.0832 3.8292e-06 0.3522 57 

IFIR 0.0732 3.0956e-06 0.1561 91 

IFIR2 0.2784 9.5383e-06 1.7263 70 

Least-squares linear-phase FIR 

filter design 

FIR 0.0012 3.2134e-07 0.0052 42 

IFIR 0.0031 3.8566e-06 0.0059 38 

IFIR2 0.0035 2.4843e-07 0.0152 135 

(a) 

x1(n)  

0-6.25Hz 

 

x2(n)  

above 6.25to 12.50Hz 

 

Signal x(n) 

100Hz 

x16(n)  

above 93.75to 100Hz 

 

(c) 

(b) 

Fig. 6.9  a) Uniformly distribution of the signal, b) 16-channel UFB and c) 5-channel NUFB.  
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6.4. Compression of ECG Rhythms using CMFB 

This section includes data compression and data decompression methodologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acquisition of ECG signal Database 

Pre-processing  

Signal decomposition using analysis bank of NUFB 

Thresholding value measurement for each band 

Application of heard thresholding to truncate 

the irrelevant coefficients  

Run-length encoding  

Vector “V” formation 

Run-length encoding  

 

Beat 

detection 

(a) 

Compressed data  

Run-length decoding   

Run-length decoding to obtain vector “V`=V” 

Signal recombine using synthesis bank  

Reconstructed 

signal 

Beat 

detection 

Compressed ECG data 

Splitting the coefficients of vector  

Fig. 6.10 Steps of (a) Proposed data compression technique and (b) Data reconstruction.  

(b) 
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6.4. Compression of ECG Rhythms using CMFB and RLE 

The data compression methodology is described as follows: 

Step 1: Acquisition of the ECG signal 

   Here, the ECG database is taken from physionet. MIT-BIH arrhythmia database 

(lead MLII/V1/V2 and V5) is chosen to examine the performance of proposed 

method.  

Step 2: Decomposition of the signal  

Computationally efficient NUFB is used for the decomposition of signal. First, the 

16-channel uniform filter bank is designed using the steps given in Section 6.3. 

Each band of this FB has 6.25% frequency of total frequency, as depicted in Fig. 

6.9(a). Then after, 5-channel NUFB is designed from 16-channel UFB by merging 

the bands, such as; B1= b1, B2= b2+ b3, B3 = b4+b5+b6+ b7, B4=b8+b9+ b10 and B5=  

b11+ b12+  b13 +b14+ b15+ b16 , here, B and b represent bands of non-uniform and 

uniform CMFBs, respectively, it is shown in Fig 6.9(b) and (c). Therefore, the 

derived FB decomposes the signal into 5 bands, i.e., one approximation band (A5, 0 

to 6.25Hz) and four dilation bands (D4 (above 6.25 to18.75 Hz), D3 (above 18.75 to 

43.75 Hz), D2  (above 18.75 to 62.5 Hz) and D1 (above 62.5to 100 Hz)).  

Step 3: Estimation of the threshold value. 

          Selection of threshold value is a very important part of ECG signal compression. It 

should be done in such a way so that the maximum insignificant coefficient is 

removed without affecting the diagnostic information. More coefficients truncation 

will provide better compression ratio; however, a large value of threshold may 

affect the reconstruction quality of signal. Therefore, this study uses the following 

steps to estimate the value of threshold level. This method utilizes the most 

significant energy content in the signal. The energy distribution is represented in 

Table 6.7. Most of the significant energy is presented in A5 (i.e., 99%). Up to 0.8-1 

% of energy is presented in D4 and D3. Remaining bands are having insignificant 

energy. Therefore, coefficients of D2 and D0 are not considered in this work. To 

estimate the value of thresholding for A5, D4 and D3 following steps are used. To 

find the thresholding value, iteration methodology (Fig. 5.16) is used given below.   
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Table 6.7. Energy distribution in the bands of MIT-BIH record no- 100 
 

 

 

 

         Step i: Coefficients are arranged in the ascending order 

            Step ii: The value of k =1, En=0 and desired energy Ed are specified (0.9978% of 

total energy for A5, 0.0978 of total energy for D4 and 0.0378 of total energy for D3). 

              Step iii: The threshold value =|X(k)| is applied in the signal, and the energy   

                         En=En+|X(k)|
2
  is measured. The same steps are taken for obtaining, the  

                         threshold value for band D4 and D3.  

Step 4: Computed threshold values are applied to their respective bands.  

             In this step, the extracted values of threshold (obtained by following Step 3) are 

applied to the respective signals. As a result, the coefficients that have a 

magnitude equal or less then the threshold value are replaced by zero. 

Step 5: Vector formation    

            After application of thresholding, all the coefficients of signals A5 D4 and D3 are 

put in a vector, such as: 

                                                  V = [A5 D4 D3]                                                            (6.17) 

Step 6: Run-length encoding is applied to V 

Step 7: Run-length encoding  

            Further, the improvement in compression performance is obtained by applying 

run-length encoding on the vector, which has values of run-length coefficients. 

Data reconstruction 

At the receiver site, reconstruction of the signal is done using the following steps. 

Step i: Compressed ECG signal is taken  

            Application of RLE compressed signal is given in three vectors, one is consisting 

of actual coefficients signal value and the other two are consisting of the run-length 

digits.   

Step ii: Run-length decoding is applied 

            Run-length decoding is applied to two vectors, it converts the output into one 

vector.  

Step iii: Further Run-length decoding is applied  

Band Energy present Percentage 

Total 28.337 100% 

A5 28.055 99.0050% 

D4 0.250 0.8842% 

D3 0.009 0.0341% 

D2 0.007 0.0279% 

D1 0.013 0.0089% 
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           Run-length decoding is applied to two vectors; i.e., one is obtained from the output 

of previous step (run-length decoding) and another consists of the original 

coefficient value (i.e, an output of Step 7). After this step, all the coefficients are 

kept in one vector V`.   

Step iv: Dividing the coefficients of vector V` is performed. 

 Divide the coefficients of vector V’ to obtain the coefficients of three groups, 

such as   A5, D4, and D3.    

Step v: Reconstruction of the signal is done by using the synthesis filter bank. 

            Signal reconstruction steps are given in Fig. 6.10(b).  

Example 6.8: MIT-BIH database record no. 103 is chosen for the compression. First, the 

decomposition of this signal is done by using 5-channel CMFB. Most of the informational 

energy is presented in A5, D4, and D3 and remaining bands have approximate irrelevant 

coefficients. Thresholding values for each band are measured by following the steps 

given in Section 6.4, Step 3. The obtained values of threshold for band A5, D4, and D3 are 

0.102mv, 0.03mv and 0.02mv, respectively. Extracted threshold values are applied to 

corresponding signals. And then coefficients are truncated. Then after using these 

coefficients, a vector V is formed as given in Step 5. After this, RLE is applied to V, for 

improving the results in terms of CR. It provides two vectors one for information valued 

coefficients and other for frequency of the information valued coefficients. The second 

vector is again decomposed into two vectors for further improvement in the compression. 

The compression ratio is measured by using expression given in Eqn. (4.32).  

6.4.1. Data Reconstruction 

Signal reconstruction is obtained by following the steps given in Fig. 6.10(b). Here, also 

MIT-BIH database record no. 103 is chosen. The compressed signal is obtained after run-

length encoding (last step of Fig 6.10(a)). Vector V` is obtained by applying the run-

length decoding two times. Coefficients of vector V`= coefficients of V. After obtaining 

these coefficients, distribution of these coefficients is done for extracting A5, D4, and D3. 

Then after, these signals are applied to the synthesis bank of CMFB to recombine the 

result. Finally, the reconstructed signal is obtained. Fidelity parameters of reconstruction 

signal analysis can be obtained by using Eqns. (4.33) to (4.39). The resultant values of 

these parameters are: PRD=1.2744%, PRDN=1.3062%, CC=99, SNR=37.89, MSE = 

0.0325 and ME=0.0234. The graphical comparison of original and reconstructed signal is 
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illustrated in Fig. 6.11, which depicts that the reconstructed signal is a delayed version of 

the input signal. This methodology is applied to both the database of MIT-BIH 

arrhythmia database for all 48 records. The performance indices for other signals are 

given in Table 6.8 and Table 6.9. 

Form the above experimental consequences, it can be seen that the proposed method can 

be used for biomedical signals in terms of signal compression. It has been examined on 

the MIT-BIH arrhythmia database. Table 6.8 and 6.9 illustrate the resulting values of CR 

and PRD, PRDN, CC SNR, MSE, ME and QS performance measures for the considered 

compression methods. Fig. 13 depicts the visual comparison of the original and 

reconstructed signal. The average value of CR is 23.99 for a dataset I and for dataset II, it 

is 23.73. For the same signals, this method provides excellent performance in terms of 

CR, such as; record no 100, 203 and 207 of the dataset I and record no 107, 116 and 220 

of dataset II. The average value of PRD is 1.308 for a dataset I and for dataset II, it is 

1.503. In Table 6.10, performance comparison of the proposed work with several existing 

methods is done which shows that the proposed work compresses ECG signals better than 

the existing methods.  
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Table 6.8 Performance parameters of compression using MIT-BIH arrhythmia dataset I 

Sl.no Signal CR PRD PRDN CC SNR MSE ME QS 

1. 100 30.35 2.4701 2.5748 0.9997 32.14 0.0346 0.5730 12.28695 

2. 101 29.19 2.1089 2.1964 0.9998 33.51 0.0344 0.0198 13.84134 

3. 102 21.30 0.4838 0.5070 1 46.30 0.0674 0.0570 44.02646 

4. 103 27.30 1.2744 1.3062 0.9999 37.89 0.0325 0.0234 21.42185 

5. 104 21.65 1.6745 3.0150 0.9995 35.52 0.0840 0.1385 12.92923 

6. 105 27.22 1.3022 1.4004 0.9999 37.70 0.0320 0.0643 20.90309 

7. 106 25.94 1.5888 1.7605 0.9998 35.97 0.0831 0.0848 16.32679 

8. 107 22.38 1.1148 1.1174 0.9999 39.05 0.1673 0.4308 20.07535 

9. 108 22.38 1.1148 1.1174 0.9999 39.05 0.1673 0.4308 20.07535 

10. 109 27.81 2.7790 2.9411 0.9996 31.12 0.0412 0.0834 10.00720 

11. 111 24.06 1.5668 2.3600 0.9997 36.09 0.0384 0.0862 15.35614 

12. 112 21.88 0.7870 2.1816 0.9998 42.08 0.0353 0.0984 27.80178 

13. 113 25.71 1.6913 1.7568 0.9998 35.43 0.0989 0.1205 15.20132 

14. 114 21.39 0.9124 1.6296 0.9999 40.79 0.0393 0.0993 23.44367 

15. 115 24.98 1.4842 1.5866 0.9999 36.57 0.0401 0.0541 16.83062 

16. 116 21.40 1.0421 1.4768 0.9999 39.64 0.1416 0.1312 20.53546 

17. 117 22.27 1.0970 2.4995 0.9997 39.19 0.0606 0.1414 20.30082 

18. 118 21.19 0.8361 1.7210 0.9999 41.55 0.0664 0.1613 25.34386 

19. 119 21.76 0.9404 1.3311 0.9999 40.53 0.0735 0.1610 23.13909 

20. 121 17.96 1.1599 2.3428 0.9997 38.71 0.0495 0.1553 15.48409 

21. 122 21.73 1.0315 1.6811 0.9999 39.73 0.0621 0.1592 21.06641 

22. 123 22.97 0.9220 1.8195 0.9998 40.70 0.0499 0.1121 24.91323 

23. 124 22.93 0.9901 1.4866 0.9999 40.08 0.0548 0.1613 23.15928 

24. 200 22.98 1.2001 1.3507 0.9999 38.41 0.0645 0.1890 19.14840 

25. 201 25.17 1.2689 1.7460 0.9998 37.93 0.0214 0.0348 19.83608 

26. 202 21.88 1.1012 2.1335 0.9998 39.16 0.0421 0.0947 19.86923 

27. 203 33.42 0.9126 0.9657 1.0000 40.79 0.0466 0.0491 37.05895 

28. 205 21.09 1.9729 1.9729 0.9998 34.09 0.0239 0.0392 10.68985 

29. 207 32.42 1.2654 1.4347 0.9999 37.95 0.0340 0.0614 25.62036 

30. 208 23.69 1.4365 1.5973 0.9999 36.85 0.1278 0.3867 16.49147 

31. 209 22.77 1.4921 2.0933 0.9998 36.52 0.0459 0.0899 15.26037 

32. 210 23.86 1.2886 1.8363 0.9998 37.79 0.0353 0.0776 18.51622 

33. 212 23.38 1.2175 1.4371 0.9999 38.29 0.0409 0.0926 19.20329 

34. 213 23.32 1.2657 1.2819 0.9999 37.95 0.0940 0.3184 18.42459 

35. 214 23.27 0.8783 1.0039 1.0000 41.12 0.0415 0.0703 26.49436 

36. 215 23.69 1.7116 2.3699 0.9997 35.33 0.0553 0.1515 13.84085 

37. 217 23.17 0.8950 0.9653 1.0000 40.96 0.0584 0.1210 25.88827 

38. 219 21.75 0.8112 0.9222 1.0000 41.81 0.0327 0.0835 26.81213 

39. 220 22.07 1.6687 2.0574 0.9998 35.55 0.0740 0.0819 13.22586 

40. 221 23.80 1.2960 1.5842 0.9999 33.40 0.0402 0.0543 18.36420 

41. 222 22.88 1.6578 3.1543 0.9995 35.60 0.0425 0.0844 13.80142 

42. 223 22.57 1.1371 1.2686 0.9999 38.88 0.0448 0.1443 19.84874 

43. 228 26.25 2.3370 2.7636 0.9996 32.62 0.0438 0.0541 11.23235 

44. 230 28.65 1.0960 1.1230 0.9999 39.20 0.0299 0.0373 26.14051 

45. 231 22.44 1.0340 1.4309 0.9999 39.70 0.0309 0.0691 21.70213 

46. 232 23.61 1.8287 3.2990 0.9995 34.75 0.0270 0.0380 12.91081 

47. 233 23.72 0.6915 0.7096 1.0000 43.20 0.0323 0.0752 34.30224 

48. 234 23.82 0.9797 1.3510 0.9999 40.17 0.0297 0.0743 24.31357 
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Table 6.9 Performance parameters of compression using MIT/ BIH arrhythmia dataset II 

Sl no. Signal CR PRD PRDN CC SNR MSE ME QS 

1.         100 22.82 2.1438 3.621 0.9993 33.37 0.0354 0.0785 10.6446 

2.         101 21.88 1.8428 9.648 0.9953 34.69 0.0307 0.0693 11.8732 

3.         102 25.27 1.8840 2.568 0.9997 34.49 0.0365 0.0429 13.4129 

4.         103 21.92 1.2673 2.140 0.9998 37.94 0.0419 0.1082 17.2966 

5.         104 21.53 1.2728 2.622 0.9997 37.9 0.0832 0.1446 16.9154 

6.         105 21.90 1.1218 5.141 0.9987 39.00 0.0564 0.1623 19.5222 

7.         106 21.59 1.1955 9.408 0.9956 38.44 0.051 0.1452 18.0593 

8.         107 31.65 1.0599 1.176 0.9999 39.49 0.0995 0.2283 29.8613 

9.         108 22.28 0.6576 0.907 1.0000 43.64 0.0365 0.1044 33.8807 

10.       109 23.76 1.2557 1.380 0.9999 38.02 0.0797 0.2576 18.9217 

11.       111 22.02 1.0163 2.050 0.9998 39.85 0.0549 0.1763 21.6668 

12.       112 22.05 1.5151 6.183 0.9981 36.39 0.0332 0.0639 14.5534 

13.       113 21.73 0.9294 2.256 0.9997 40.63 0.0516 0.1401 23.3806 

14.       114 23.30 2.3242 4.572 0.9990 32.67 0.0416 0.0844 10.0249 

15.       115 26.03 2.8224 4.904 0.9988 30.98 0.0306 0.0513 9.22264 

16.       116 35.84 2.4352 3.347 0.9994 32.26 0.0860 0.2248 14.7174 

17.       117 23.25 1.7626 1.964 0.9998 35.07 0.0549 0.0303 13.1907 

18.       118 23.14 1.5690 2.247 0.9997 36.08 0.0577 0.0764 14.7482 

19.       119 23.14 1.5690 2.247 0.9997 36.08 0.0577 0.0764 14.7482 

20.       121 27.55 1.8127 1.934 0.9998 34.83 0.0552 0.0613 15.1983 

21.       122 22.21 1.3336 2.360 0.9997 37.49 0.0314 0.0712 16.6541 

22.       123 17.39 2.4444 4.193 0.9991 32.23 0.0600 0.0929 7.11422 

23.       124 24.14 1.5687 2.629 0.9997 36.08 0.0350 0.0800 15.3885 

24.       200 21.75 1.2092 14.46 0.9895 38.34 0.0592 0.1189 17.9871 

25.       201 23.31 2.0761 2.939 0.9996 33.65 0.0273 0.0419 11.2277 

26.       202 21.88 1.0677 3.399 0.9994 39.43 0.0461 0.1278 20.4926 

27.       203 21.68 1.2916 2.823 0.9996 37.77 0.0543 0.1107 16.7853 

28.       205 26.60 3.0190 7.367 0.9973 30.40 0.0263 0.0446 8.81086 

29.       207 22.00 0.8597 1.047 0.9999 41.31 0.0418 0.1186 25.5903 

30.       208 22.10 0.9659 1.625 0.9999 40.30 0.0551 0.1444 22.8802 

31.       209 21.52 1.1776 7.235 0.9974 38.57 0.0541 0.1364 18.2744 

32.       210 21.82 1.1404 4.787 0.9989 38.85 0.0465 0.1288 19.1336 

33.       212 22.56 0.8244 1.209 0.9999 41.67 0.0504 0.1077 27.36536 

34.       213 25.06 1.8192 2.077 0.9998 34.8 0.2402 0.5888 13.77529 

35.       214 22.06 0.8452 1.158 0.9999 41.46 0.0573 0.1156 26.10033 

36.       215 21.6 1.0764 2.765 0.9996 39.36 0.0589 0.1434 20.06689 

37.       217 21.63 0.8334 1.065 0.9999 41.58 0.0421 0.1012 25.95392 

38.       219 26.78 1.5827 1.643 0.9999 36.01 0.0469 0.1504 16.92045 

39.       220 32.27 4.0672 4.074 0.9992 27.81 0.0374 0.0208 7.934205 

40.       221 21.72 0.9392 2.421 0.9997 40.54 0.0435 0.1081 23.12606 

41.       222 35.82 2.2937 2.684 0.9996 32.78 0.0341 0.0635 15.61669 

42.       223 27.55 1.7336 1.734 0.9998 35.22 0.0349 0.0544 15.89179 

43.       228 21.06 1.1434 1.269 0.9999 38.83 0.0715 0.1004 18.41875 

44.       230 24.22 1.3032 1.776 0.9998 37.69 0.0344 0.0703 18.58502 

45.       231 21.84 0.9819 2.901 0.9996 40.15 0.0468 0.1319 22.24259 

46.       232 21.88 1.0473 3.929 0.9992 39.59 0.0576 0.1489 20.89182 

47.       233 22.22 0.9109 1.147 0.9999 40.81 0.0495 0.1523 24.39346 

48.       234 21.78 1.1412 4.407 0.999 38.85 0.0454 0.1295 19.08517 
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Table 6.10 Performance comparison of proposed data compression method with several existing methods 

Approach Year Dataset PRD CR 

Proposed 2018 

MIT/ BIH arrhythmia dataset I  100 2.4701 30.35 

MIT/ BIH arrhythmia dataset I 207 1.2654 32.42 

MIT/ BIH arrhythmia dataset II 107 1.059 31.65 

MIT/ BIH arrhythmia dataset II 116 2.4352 35.84 

MIT/ BIH arrhythmia dataset I  average  1.308 23.99 

MIT/ BIH arrhythmia dataset II average 1.503 23.73 

[135] 2017 

Recorded case #1 4.30 5.12 

Recorded case #2 5.66 5.50 

Recorded case #3 4.93 5.10 

[126] 2016 
MIT/ BIH arrhythmia dataset 100 1.00 16.83 

MIT/ BIH arrhythmia dataset 207 1.03 31.12 

[136] 2014 MITBIH record no.215, M 81 1.07 31.39 

[156] 2002 
MIT/ BIH arrhythmia dataset 117 1.06 22.19 

MIT/ BIH arrhythmia dataset 119 1.98 23.1 

[138] 2013 
MIT/ BIH arrhythmia dataset 124 1.11 6.06 

MIT/ BIH arrhythmia dataset 117 2.5 5.95 

[132] 2015 
MIT/ BIH arrhythmia dataset 117 0.31 7.24 

MIT/ BIH arrhythmia dataset 117 1.05 19.44 

[182] 2017 MIT/ BIH dataset average  3.43 11.49 
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Fig. 6.11 (a) Original and (b) reconstruction signal. 
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Thresholding  Thresholding  Thresholding  

Vector v= [A5 Thr4 Thr3 Thr2] 

Run-length encoding 

Vector1 Vector 2 

Run-length encoding 

Vector 22 Vector 21 

ECG signal 

Delta coding 

LZW encoding 

Fig. 6.12 Data compression technique using LZW and RLE. 
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6.4.2. Compression of ECG Rhythms using CMFB and LZW Encoding 

In this section, data compression is performed by utilizing CMFB with RLE and LZW 

based hybrid coding. The steps of this methodology are presented in Fig. 6.12. Here, the 

CMFB is designed using Remez exchange algorithm: illustrated in Section 6.3.3. In this 

methodology, two steps are added in the previous methodology, i.e. coefficients of vector 

v1 are delta encoded, and then preceded by LZW coding. LZW coding is used to increase 

the compression performance without affecting the reconstruction quality. The LZW 

coding is a “dictionary-based” lossless compression method, which looks for repetitive 

sequences of data that are used to build a dictionary. The reconstruction of ECG signal 

from its compressed version begins with the LZW. Remaining steps are same as the prior 

methodologies. The reconstruction steps are shown in Fig. 6.13. The original and 

reconstructed signals are depicted in Fig. 6.14, which shows that the reconstructed signal 

is the delayed form of original signal. The comparison of CRs obtained by different 

coding and CMFB based methodologies is presented in Table 6.10 and Fig. 6.15. 

CMFBs are popular among all other types of FB due to ease and efficient 

implementation.  Several approaches have been used to design this type of CMFBs as 

discussed in the introduction section. Linear search optimization techniques are used to 

optimize the coefficients of the filter because it is simple and easy in implementing. 

Window technique is used to design the prototype filter, because it provides high 

stopband attenuation with low computational complexity. IFIR filter has been used, 

because it provides very less computational complexity in order to reduce the filter order. 

Further, improvement in reduction in computational complexity is done using multistage 

IFIR prototype filter.  From Table 6.1, 6.2, 6.3, 6.3, 6.4 and 6.5, it can be ascertained that 

IFIR prototype based CMFBs are more efficient than the FIR for both the cases (i.e., 

uniform and non-uniform filter bank). In order to authenticate the effectiveness of 

proposed FBs for ECG signal compression application, it is tested for numerous ECG 

signal (MIT/BIH arrhythmia database dataset I and II) available in the Physionet. ECG 

signal is a non-stationary signal, therefore to process this type of signals; time–frequency 

signal processing is always desired. 
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Fig. 6.13 Signal Reconstruction Steps. 
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Table 6.11 Performance comparison of proposed data compression method with several existing methods 

Dataset 
CR 

(RLE) 

CR 

(RLE+RLE) 

CR 

(lzw) 

CR 

(lzw+RLE) 

CR 

(RLE +RLE) 

With iterative 

thresholding 

CR 

(Huffman 

coding ) 

With 

quantization 

100 12.6205 15.1746 16.341 18.7053 30.35 17.9682 

101 10.3073 11.9500 16.272 16.5117 29.19 17.2756 

102 6.7324 11.7121 10.036 14.6389 21.3 11.46821 

103 8.4508 9.7613 14.3221 15.2742 27.3 15.39626 

104 7.1947 12.6101 10.7416 18.6602 21.65 12.01415 

105 10.9101 14.4986 12.7255 15.3956 27.22 13.98963 

106 12.6833 17.6018 12.6413 15.3043 25.94 13.78793 

107 10.7718 16.6261 11.4663 13.2830 22.38 12.6044 

108 8.1797 12.6518 11.3810 16.8348 22.38 12.38205 

109 9.2479 13.6938 10.0105 14.0290 27.81 10.97948 

 

 

 

 

 

 

 

Fig. 6.15 Data compression performance of different encoding with CMFB. 
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Fig. 6.14 Original and reconstructed MIT/BIH record. 
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Filter bank based approaches are always preferred than other methods, because these 

types of methods provide better localization of the signal components in time–frequency 

space unlike other methods, viz., Fourier transform and short-time Fourier transform. 

From Tables. 6.8 and 6.9, it is observed that the proposed methodology provides a very 

good performance in terms of CR, PRD and several parameters. The proposed 

methodology provides better results in comparison to numerous existing methods of data 

compression of ECG signal as shown in Table. 6.10.  

6.4. Summary 

In this chapter, computationally efficient uniform and non-uniform CMBs have been 

designed using different filter design techniques. The performance of the proposed filter 

banks is better than the performance of other filter banks in terms of computational 

complexity, as depicted in Table 6.5. Proposed NUFB is used to compress the ECG signal 

by decomposing it into different bands. Threshold values for each band are obtained using 

the iterative method based on energy coefficients. Different coding methods, viz., 

RLE/modified RLE/LZW/ LZW+RLE have been used to improve the performance of 

compression. Several results show that the proposed data compression method is superior 

to several existing methods in terms of CR and PRD (Table 6.10). Therefore, it is 

concluded that the proposed method can be used very effectively and efficiently for data 

compression of ECG signals. The proposed CMFBs can also be used to compress the 

multi-lead ECG dataset and to detect other features of ECG signal. 

 



CHAPTER 7 

PERFORMANCE EVALUATION 

 

7.1. Overview 

The main objective of data compression of ECG signal is to eliminate the irrelevant 

information (i.e., diagnostic information remains same). However, achieving high 

compression without affecting the diagnostic information is a difficult task. Therefore, 

numerous studies are given for the data compression of ECG signal for last 3-4 decades, 

in which different methodologies are used [18]. In most of the studies, the data 

reconstruction performance is estimated using mathematical parameter i.e., percentage 

root mean square difference (PRD). In some studies, performance is evaluated using, 

correlation coefficient (CC), percentage root mean square difference normalized (PRDN), 

and several other parameters given in Chapter 4. However, for measurement of signal 

reconstruction quality of a biological data, such measurement parameters are almost 

irrelevant. According to the physiologists, original and reconstructed data must have the 

same diagnostic information. Thus, the data reconstruction quality must be examined by 

analyzing both signals (i.e., feature to feature comparison). Therefore, the weighted 

diagnostic distortion (WDD) parameter is introduced, which show the feature to the 

comparison of both signals. In this chapter, feature extraction using wavelet and CMFB is 

done. The extraction of other features, viz., Q waves, S waves, P waves, T waves, P wave 

onset & offset points, T wave onset & offset points, QRS onset and offset points are 

identified using some rule-based algorithms. The performance of data compression and 

decompression is measured using a comparison of extracted features. In this chapter, 

WDD is also used to measure the performance of signal reconstruction. Two new features 

are used to measure the WDD.     

7.2. Beat Detection using WT 

The WT provides the depiction of signal in time-frequency scale, allowing the illustration 

of time-based features of a non-stationary signal at various resolutions. Hence, it is an 

appropriate mathematical tool to examine an ECG signal [70]. Several researchers have 
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proposed techniques based on wavelet transform for beat detection, arrhythmia 

classification and ECG data compression [273]. In this section, R-peaks are detected 

using WT, for which Bi-orthogonal wavelet is used, because it is more flexible and allows 

more degree of freedom.  

The following steps are used for R-peak detection: 

Step 1: Acquisition of EGG signals: In this study, the MIT-BIH arrhythmia database is 

taken as the input signal. 

Step 2: Elimination of different kinds of noise: Elimination of noise is done using 

MODWT (described in Sections 2.3.3.3 and 3.5.1) and universal thresholding. The 

expression used to find the thresholding is presented by Eqn. (7.1) for n number of signal 

coefficients. 

                                                    ˆ2 logTuv nσ                                                         

(7.1) 

where, σ̂  is an estimate of the noise level [29]. 

Step 3: Decomposition of signal: Decomposition of the signal into number of frequency 

bands is done by using DWT. Bi-orthogonal wavelet is used for decomposition, and 3 

levels of decomposition is done. 

Step 4: Peaks detection: Peak detection is done using thresholding. 

Step 5: R-peak detection: R-peaks detection is performed using Eqn. (7.2). 

                                                         2 j

i iR P                                                             (7.2) 

where, iR  is the 
thi  R-peak location, iP , 

thi  peak location detected by Step 4,

1,2,...,i K  and K is the total number of peaks present in the signal of 30 minutes 

duration. Actual R-peak location is obtained by detecting the peak location of signal 

between the samples from 16  16i iR to R  . This window segment of 33 samples has 

been decided on the basis of extensive testing and detailed observation of the MIT-BIH 

dataset. After detection of R-peaks, R-R intervals and heart rate are measured. 

Detection of heart rate is not the complete study of an ECG signal. A normal heart rate 

signal may include different abnormal rhythms or arrhythmias. These arrhythmias are 

classified as: supra-ventricular arrhythmias, atrial fibrillation, atrial utter, paroxysmal 

supraventricular tachycardia, ventricular arrhythmias, ventricular tachycardia, ventricular 

fibrillation, etc. These arrhythmias are analyzed by observing all the components of ECG 

signal (a complete study includes the amplitude and duration of ECG wave components). 
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Therefore, estimating ECG rhythms as normal or abnormal, extraction of other features 

besides the heart rate is equally important. This work presents the extraction of all such 

diagnostic features using different algorithms. 

7.3. R-Peaks Detection using CMFB 

In this section, R-peaks detection is done using uniform CMFB and thresholding by 

following the steps given below: 

Step 1: ECG signal acquisition  

Step 2: Signal decomposition 

            Signal decomposition is done using the 8-channel uniform analysis bank of 

CMFB. Here, computationally efficient CMFB is used, which is given in Chapter 

6.       

Step 3: Detection of the peak points 

            Detection of these peaks can be done using time and amplitude thresholding.   

Step 4: Detection of R-peaks in the original signal.  

         Since, 8-band decomposition followed by the down-sampling factor 8 is done, 

therefore in the original signal, R-peaks come at Ri=8×ri sample locations. Here, R 

is the approximate R-peaks location in original signal and ri is the peak locations on 

decomposed signal and i=1,2,3,………………n, n is the number of R-peaks present 

in the signal. Actual R-peak locations are determined by extraction of peak 

amplitude, location between the sample’s value Ri-4 to Ri+4. Detection of R-peaks 

is done for both the signals (original and reconstructed signal). After detecting R-

peaks, a comparative study is done for the detected R peaks locations and amplitude 

of original and reconstructed. 

7.4. Feature Extraction 

In this section, feature detection techniques are described. 

 Q and S-Waves Detection 

Detection of Q-waves includes the following steps 

Step 1: Take ECG signal: for detection of Q wave, also 3
rd

 level decomposed ECG signal 

is chosen (achieved by wavelet decomposition). 

Step 2: Define a counter: it is assumed that the number of R-waves is equal to the number 

of Q waves, thus set the counter equal to the total number of R-waves, also set 1b  . 
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Step 3: Select the time interval: Q-wave occurs just before the R wave, so the time 

interval is 0.2 seconds before the corresponding R wave. So, for detection of Q-wave, the 

time interval is chosen = 0.025 sec i.e., 9 samples of 3
rd

 level decomposed signal before 

the respective peak. 

Step 4: Find the minimum amplitude location: Q-wave is the minimum amplitude point 

before R-wave, so by finding minima of the selected interval, Q wave can be detected. 

Step 5: Increment the value of b by 1 

Step 6: Repeat for all R-waves: Detect all minima locations by repeating Step 3 to Step 5 

until the value of b becomes equal to the value of total number of R-peaks. 

Step 7: Evaluate actual Q-waves: Actual Q wave can be evaluated by using Eqn. (7.3) 

                                                          2 j

i iQ q                                                              (7.3)  

where, iQ  is the 
thi  Q wave location, iq , 

thi  minima, which is detected by Step 4. Steps 

of detecting S waves are same as steps of detection of Q wave, and the only difference is 

the selection of time interval i.e. Step 2. In detection of S wave, the time interval is taken 

from R-peak to 0.2 seconds after the corresponding R waves.                                              

Onset Points of QRS Complex 

The following steps are used to extract onset points of the QRS complex: 

Step 1: Take ECG signal: Similar to Q, R and S-wave detection, for onset points of QRS 

complex detection, 3
rd

 level decomposed signal is taken. 

Step 2: Set counter value: Equal to the number of R-waves/peaks and set 1i  . 

Step 3: Choose the time interval: The time interval is of 0.2 second duration after the P-

peak (for decomposed signal only five samples is taken before Q-wave) 

Step 4: Calculate moving slope of a selected portion of the signal: The slope of ECG 

signal changes on different parts of the signal. From onset point to Q wave/peak, it is 

negative and before that, it is 0 or approximately 0. Thus, the point at which the slope is 

changed is the onset point of QRS complex. 

Step 5: Calculate the onset point of 
thi  QRS complex using Eqn. (7.4) 

                                                        2 j

oni oniQ q                                                         (7.4) 

where, oniQ  is the 
thi  onset point of QRS complex and 

oniq , 
thi  onset point of QRS 

complex location of the decomposed signal detected by Step 4. 

Step 6: Increment in the value of i by 1 
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Step 7: Repeat Step 3 to Step 7 for the detection of all onset points of the QRS complexes 

wave, until i = counter. 

 Offset Points of QRS Complex 

For detection of offset points of QRS complexes, the following steps are used: 

Step 1: Take ECG signal 

Step 2: Define counter, 1i   and the threshold value 

Step 3: Select the time interval: Select five samples after S-wave of the decomposed 

signal 

Step 4: Calculate the moving slope of a selected portion of the signal and identify points 

at which the slope changes from positive to 0 or approximately 0 

Step 5: Calculate offset point of 
thi  QRS complex using Eqn. (7.5) 

                                                          2 j

offi offiQ q                                                       (7.5) 

where, offiQ  is the 
thi  offset point of QRS complex, offiq , 

thi  onset point of QRS complex 

location of the decomposed signal detected by Step 4. 

Step 6: Increment the value of i by 1. 

Step 7: Detect all the offset points of QRS complex by repeating Step 2 to Step 4, i.e., 

until i= C.  

P and T-Waves/peaks Detection 

Steps of detection of P-waves/peaks are: 

Step 1: Take ECG signal. 

Step 2: Set a counter value, 1i   and threshold value: 

Step 3: Define the time interval: P-waves/peaks occur before the Q-waves/peaks, so the 

time interval is of 0.3 seconds starting from before the Q-wave/peak. 

Step 4: Find the maxima of the selected portion of the signal to find maximum amplitude 

of the P-wave. 

Step 5: Increment the value of i by 1 

Step 6: Repeat for all P-waves: Detect all P-waves/peaks by repeating Step 3 to 5,

cou ri nte  

Steps for detecting the T-waves are same as the steps of detection of P-wave except Step 

2. Here, the time interval is taken from S-point to 0.1 seconds after it. 
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Onset Points of P-Wave 

The following are the steps for detecting the onset points of P-wave. 

Step 1: Take ECG signal. 

Step 2: Set counter = number of R-waves/peaks and 1b   

Step 3: Choose the time interval: 0.1sec interval is chosen i.e., started before the P-peak 

to the P-peak. 

Step 4: Estimate the moving slope of selected portion of the signal: Changing point in 

slope from 0 to some positive value is the onset point of P-wave. 

Step 5: Increment in the value of b by 1 

Step 6: Repeat for all the P-waves/peaks 

Offset Points of P Wave 

Here, extraction of offset points of P-wave is done by following the steps: 

Step 1: Take ECG signal 

Step 2: Define counter 

Step 3: Choose the time interval: 0.3 sec after the P-peak point 

Step 4: Calculate moving slope of selected portion of the signal: Changing point in slope 

from negative to approximate zero is the onset point of the corresponding P-wave. 

Step 5: Decrement the counter value by 1. 

Step 6: Repeat Steps 3, 4 and 5 for obtaining all offset points of the P-waves. 

Onset and Offset Points of T Wave 

The extraction of onset and offset points of T-waves is the same as the steps carried out 

for detecting onset and offset points of P-waves. The only difference is the selection of 

time duration, i.e., Step 3. For extraction of onset point of T-waves, the selected time 

interval is started from the offset point of QRS complex to T-peak. The time interval for 

extracting offset of T-wave is 0.3 sec duration started from the T-peak. Other features 

(shown in Fig. 1.6) are also calculated, that are given below:  

PR segment = Duration started from the offset point of P-wave to the onset point of the 

QRS complex.  

ST segment = Duration started from the offset point of the S-wave to the onset point of  

T-wave. 
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ISO segment = Duration initiated from offset point of T-wave to onset point of the 

consecutive P-wave. 

After extracting these features, these are then grouped into normal or abnormal ranges. If 

these features are not inthe normal range, then this leads to arrhythmias.  

7.5. Experiments and Results  

The performance evaluation of beat detection is done by measuring the following 

parameters [215]: 

Sensitivity ( eS ) 

                                                             e

TP
S

TF FN



                                                    (7.6) 

where, FN is false negative and TP is True positive. 

Positive Predictivity (+P) 

                                                        
TP

P
TP FP

 


                                                       (7.7) 

here, FP is false positive 

Error (
rE ) 

                                                        r

FP FN
E

TB


                                                       (7.8) 

where, TB is the total number of beats present in the signal as indicated in MIT-BIH 

datasets. 

Summarizing the results of this study, the first step of this work is to remove different 

kinds of noises, which are presented in the signal to accomplish accurate feature 

extraction. Elimination of noise is presented in Chapters 2 and 3. The second step is R-

peaks detection as illustrated in Section 7.2. For detection of R-peaks, bi-orthogonal 

wavelet is used along with amplitude and time thresholding. For this also, MIT-BIH 

arrhythmia database is used, since for lead II, R-wave has the maximum amplitude in the 

signal. ECG signal is decomposed into three frequency bands. A 0.08 mV amplitude and 

time thresholding are applied for peak detection, which is represented in Fig. 7.1. Fig. 

7.1(a) represents the noise free ECG signal, Figs. 7.1(b) and 7.1(c) include the first level 

decomposed signals. In Figs. 7.1(d) and 7.1(e), second level decomposed signals are 

depicted, Figs. 7.1(f) and 7.1(g) present the 3
rd

 level decomposed signals and in Fig. 

7.1(h), peaks are detected in 3
rd

 level decomposed signal. (Estimated R-peak locations are 

determined using Eqn. 7.2).  
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Table 7.1 Tabular results of beat detection using bi-orthogonal WT 
Sq. No Dataset TB TP FP FN +P Se Er 

1.  100 2273 2273 0 0 100.00 100.00 00.00 

2.  101 1865 1865 0 0 100.00 100.00 00.00 

3.  102 2187 2187 0 0 100.00 100.00 00.00 

4.  103 2084 2081 0 3 100.00 99.85 0.0014 

5.  104 2230 2230 0 0 100.00 100.00 0.00 

6.  105 2572 2572 0 0 100.00 100.00 0.00 

7.  106 2027 2029 2 0 99.90 100.00 0.009 

8.  107 2037 2039 2 0 99.90 100.00 0.0009 

9.  108 1763 1770 8 1 99.55 99.94 0.0051 

10.  109 2532 2531 0 1 100.00 99.96 0.0003 

11.  111 2124 2124 0 0 100.00 100.00 0.00 

12.  112 2539 2538 0 1 100.00 99.96 0.0003 

13.  113 1795 1795 1 1 99.94 99.94 0.0011 

14.  114 1879 1879 0 0 100.00 100.00 0.00 

15.  115 1953 1953 0 0 100.00 100.00 0.00 

16.  116 2412 2412 0 0 100.00 100.00 0.00 

17.  117 1535 1535 0 0 100.00 100.00 0.00 

18.  118 2275 2275 0 0 100.00 100.00 0.00 

19.  119 1987 1989 2 0 99.89 100.00 0.0010 

20.  121 1863 1863 0 0 100.00 100.00 0.00 

21.  122 2476 2476 0 0 100.00 100.00 0.00 

22.  123 1518 1518 0 0 100. 00 100.00 0.00 

23.  124 1619 1619 0 0 100.00 100.00 0.00 

24.  200 2601 2601 0 0 100.00 100.00 0.00 

25.  201 1963 1960 0 0 100.00 100.00 0.00 

26.  202 2136 2136 0 0 100.00 100.00 0.00 

27.  203 2982 2979 0 3 100.00 99.89 0.0010 

28.  205 2656 2656 0 0 100.00 100.00 0.00 

29.  207 1862 1862 0 0 100.00 100.00 0.00 

30.  208 2956 2956 0 1 100.00 99.96 0.0003 

31.  209 3004 3004 0 0 100.00 100.00 0.00 

32.  210 2647 2647 0 0 100.00 100.00 0.00 

33.  212 2748 2748 0 0 100.00 100.00 0.00 

34.  213 3251 3251 2 2 99.93 99.93 0.0012 

35.  214 2262 2262 0 0 100.00 100.00 0.00 

36.  215 3363 3363 0 0 100.00 100.00 0.00 

37.  217 2208 2208 0 0 100.00 100.00 0.00 

38.  219 2154 2154 0 0 100.00 100.00 0.00 

39.  220 2048 2048 0 0 100.00 100.00 0.00 

40.  221 2427 2427 0 0 100.00 100.00 0.00 

41.  222 2484 2484 0 0 100.00 100.00 0.00 

42.  223 2605 2605 0 0 100.00 100.00 0.00 

43.  228 2053 2056 4 1 99.80 99.95 0.0024 

44.  230 2256 2256 0 0 100.00 100.00 0.00 

45.  231 1886 1886 0 0 100.00 100.00 0.00 

46.  232 1780 1783 4 1 99.77 99.94 0.0028 

47.  233 3079 3079 0 0 100.00 100.00 0.00 

48.  234 2753 2753 0 0 100.00 100.00 0.00 
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(h)      Sample  

Fig. 7.1 Wavelet decomposition of MIT-BIH record no. 100. 
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In this work, 33 samples are used to detect R-peak. Locations of these samples are: Ri-16 

to Ri+16, here Ri is the location of R-peak. For example: while determining the R-peak 

location of signal (MIT-BIH record no. 222), extracted peak locations, as sample 

numbers, of decomposed signal are: 37, 72, 109, 143, 180, 211, 253, 293, 331, 367, 405, 

437…, and the sample locations in respective original signal are: 242, 522, 818, 1090, 

1386, 1634, 1970, 2290, 2594, 2882, 3186, 3442,..,. For finding actual R-peak location of 

respective R1=242, selected 33 samples are: from 226 to 258. A peak of this segment 

(constituted by 33 samples) is 0.5050mV at the location of 233 sample number. 

Therefore, R-peak amplitude (original signal) of 0.505mV at the time instant 0.64sec is 

verified. The performance of beat detection is presented in Table 7.1. Referring to this 

table, it can be demonstrated that this work is very effective in detecting R-peaks. After 

R-peak detection, full beat detection is performed. 

The performance of proposed beat detection method has been compared with other 

existing methods and results are given in Table 7.2. This table shows that the proposed 

method is superior to other methods. After R-peak detection, other features are also 

detected. The average R-R interval is measured by detected R peaks using Eqn. (7.9). 

                                                

1

11
int

( )
N

i ii
R R

R R
N






 


                                            (7.9) 

where, N is the total number of R waves /peaks and R is the time index at R-peak.  

Heart rate is the total number of heartbeats present in one minute. All the other features 

are detected using the given steps. The results of these algorithms are presented in Table 

7.3, where, P (amp) is the average of highest amplitudes of P waves, T amp is average of 

highest amplitudes of T waves, Pdur  is average P-wave durations calculated by Eqn. 

(7.10), Tdur  the average is T-wave duration calculated using Eqn. (7.11) and QRSdur  is 

the average of QRS complexes calculated by Eqn. (7.12). 

                                                  

1

( ) ( )1
( )

N

off i on ii
P P

Pdur
N









                                       (7.10) 

where, offP  is the offset point of P-wave and onP  is the onset point of P-wave: 
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                                             (7.11) 

where, offT is the offset point of T wave and onT  is the onset point of T wave. 
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where, offQRS is the offset point of QRS complex and 
onQRS  is the onset point of QRS 

complex.  

The results of these algorithms are depicted in Fig 7.2. Here, in Fig. 7.2(a), (b), (c) and 

(d), input signal, beat detection, P-wave detection and T-wave detection are presented, 

respectively. For an ECG rhythm to be NSR, the addition of all segments of ECG signal 

should be equal to corresponding R-R interval i.e.,  

   Pdur PR segment QRSdur ST segment Tdur ISO segment R R       interval. 

Two examples are used to illustrate the performance of this work for arrhythmia detection 

that would lead to identifying the methodology as a potential diagnostic tool. In Table 

7.3, different features of ECG signal is presented.    

Example 2: In this case, MIT-BIH record no. 232 is analyzed to extract the features.  The 

extracted values of features are: R-peak point = 0.512mv, average R-R interval = 1.23sec, 

heart rate (HR) = 48 b/m, P-peak value for first R-peak =0.131mv and T-peak point =0.42 

mv. It can be observed that if only HR is considered, then the signal is not an NSR 

rhythm, but a condition called bradycardia is indicated. 

7.6. Performance Measurement of Data Decompression  

In this section, signal reconstruction performance is measured. For measurement of signal 

reconstruction performance, features of the original and reconstructed signal are extracted 

using the methodology given in this chapter (Section 7.4). After feature extraction, a 

comparative analysis of these features is done, that is depicted in Tables 7.4(a) and 7.4(b). 

The R-peaks comparison of both the signals is presented in Fig. 7.3. From, tabular and 

graphical results, it can be concluded that both the signals have the same diagnostic 

information.       

Example 1: In this example, MIT-BIH record no. 212 is analyzed by extracting the R-

peaks using the proposed methodology given in in this work. The measured value of heart 

rate is 110 beats/ min, which indicates that tachycardia is present in the signal. 
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Table 7.2 Beat detection performance comparison with other methods. 

Approach  (Reference) 

 
TB TP FP FN 

Error 

(avg%) 

Se 

(avg%) 

+P 

(avg%) 

Proposed 109709 109717 25 15 0.05 99.98 99.97 

CWT  110159 109837 322 120 - 99.91 99.72 

Hilbert transform  - - - - 0.39 99.88 99.73 

Bandpass filter, derivative Shannon energy 

and Smoothing  
- - 140 79 - 99.93 99.86 

Least square support vector machine  - - - - - 99.17 96.66 

K-Nearest Neighbor algorithm (KNN)   109,759 151 207 99.81 99.81 - 

Haar wavelet transform  109,494 109,101 193 393 0.54 99.64 99.82 

Wavelet-based beat-detection mechanism  104363 - 223 208 0.41 - - 

Hilbert and Wavelet Transforms based 

hybrid method  
109,495 108,568 856 928 1.69 99.15 99.18 

Wavelet bases and adaptive threshold 

technique  
109494 107808 1073 1686 2.57 98.47 98.96 

 

 

Table 7.3 Tabular results of feature detection. 

Data 
R 

(amp) 

R-R 

(interval) 
HR 

P 

(amp) 
Pdur  

T 

(amp) 
Tdur  

QRSdur

 

PR 

segment 

ST 

segment 

ISO 

segment 

101 1.50 0.86 71 0.15 0.06 0.25 0.16 0.06 0.06 0.16 0.32 

103 1.50 0.88 70 0.05 0.01 0.40 0.16 0.51 0.04 0.02 0.36 

105 1.40 0.76 88 0.02 0.06 0.10 0.10 0.06 0.08 0.12 0.25 

106 2.25 0.97 66 0.25 0.05 1.40 0.18 1.04 0.03 0.03 0.42 

111 1.00 0.82 72 0.05 0.10 0.25 0.16 0.12 0.08 0.08 0.23 

113 2.35 1.04 60 0.02 0.04 1.25 0.21 0.06 0.03 0.06 0.44 

114 2.20 1.12 55 0.05 0.04 0.25 0.64 0.05 0.06 0.21 0.34 

115 2.10 0.99 63 1.53 0.06 1.50 1.21 0.12 0.04 0.14 0.24 

116 2.60 0.75 78 0.25 0.06 0.85 0.24 0.61 0.03 0.05 0.23 

117 0.80 1.17 50 1.35 1.20 0.60 0.23 0.06 0.08 0.08 0.56 
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Fig. 7.2 Feature detection in ECG signal. 
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Sample  

Fig. 7.3 (a) Peak detection of decomposed ECG signal (MIT-BIH record no. 222) and (b) 

Actual R peak detection of signal. 
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Is Table 7.4 (a) Performance measurement of data decompression using features comparison  

Rec

ord 

no. 

R ori.  

amp 

R 

recon. 

Deviatio

n 

Q original  

amp 

Q 

reconstructed 

amp 

deviation S original  

amp 

S recon. 

amp 

No. 

of 
QRS 

ori. 

No 

QRS 

recon

. 

100 0.818 0.818 0.000 -0.5804 -0.5818 0.0014 -8.420×10-4 -4.37×10-6 73 73 

101 0.896 0.896 0.000 -0.3375 -0.3379 0.0004 00 00 71 71 

102 0.725 0.725 0.000 -0.3375 -0.3391 0.0016 -0.0052 -0.0052 67 67 

103 0.951 0.951 0.0001 -5.163×10-4 -2.245 ×10-4 2.247 -8.420×10-4 -7.518×10-4 81 61 

104 0.489 0.489 0.0001 -6.049×10-5 -0.263×10-5 0.2629 -0.000 -0.0015 92 92 

105 0.739 0.739 0.000 -2.347×10-4 -1.025 ×10-4 1.020 -9.700×10-4 -9.800×10-4 83 83 

106 0.962 0.962 0.000 -2.861×10-4 -1.244 ×10-4 1.243801 -9.771×10-4 -7.577×10-4 67 67 

107 0.888 0.888 0.000 0.0014 6.086×10-4 6.085557 -0.0039 -0.0039 70 70 

108 0.560 0.560 0.0001 -4.015×10-4 -1.745 ×10-4 -1.745×10-4 -6.698×10-4 -7.188×10-4 114 114 

109 0.840 0.840 0.000 -9.310×10-4 -4.047×10-4 4.046895 -0.0025 -0.0025 91 91 

111 0.857 0.857 0.000 -6.599×10-4 -2.869 ×10-4 2.868557 -7.692×10-4 -7.706×10-4 68 68 

112 0.884 0.884 0.000 -5.533×10-4 -0.240 ×10-4 0.24054 6.084×10-4 6.527×10-4 85 85 

113 0.905 0.905 0.000 -4.799×10-4 -2.086 ×10-4 2.085564 -6.084×10-4 -6.837×10-4 58 58 

114 0.952 0.952 0.000 -3.431×10-4 -1.491 ×10-4 1.491526 -4.792×10-4 -4.865×10-4 14 14 

115 0.841 0.837 0.000 -2.402×10-4 -1.044 ×10-4 1.044108 -6.885×10-4 -6.897×10-4 63 63 

116 0.854 0.854 0.000 -1.2431 -1.2431 0.000- - -8.855×10-4 79 79 

117 0.925 0.925 0.000 -1.108×10-4 -0.482×10-4 0.481889 -0.0010 -0.0010 50 50 

118 0.824 0.820 0.004 -5.887×10-4 -2.559 ×10-4 2.559194 -9.969×10-4 -0.0011 73 73 

 

 

 

 

 

 

Table 7.4 (b) Performance measurement of data decompression using features comparison 

Record 

no. 

Pon 

original  

amp and 

sample 

Pon 

reconstructed 

amp and sample 

Deviation Ton 

original  

amp and 

sample 

Ton 

reconstructed 

amp and sample 

deviation 

101 - - 0 0.1625 - 0.1625 

103 -0.0183 -0.0079 0.0104 0.2393 0.2378 0.0015 

105 -0.1126 -0.107 0.0056 0.2687 0.2003 0.0684 

106 -0.0173 -0.0169 0.0004 0.3543 0.3542 1E-04 

111 -0.1645 -0.1629 0.0016 0.293 0.2947 0.0017 

113 -0.2682 -0.2745 0.0063 0.932 0.9326 0.0006 

114 0.0329 0.0324 0.0005 0.1616 0.1622 0.0006 

115 -0.5358 -0.5395 0.0037 0.1373 0.1377 0.0004 

116 -1.0783 -1.0767 0.0016 0.5531 0.5548 0.0017 

117 -0.7421 -0.7344 0.0077 - - 0 

121 -0.2682 -0.2745 0.0063 0.932 0.9326 0.0006 

122 0.0329 0.0324 0.0005 0.1616 0.1622 0.0006 

123 -0.5358 -0.5395 0.0037 0.1373 0.1377 0.0004 
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Table 7.5 Diagnostic parameters for WDD measurement 
Feature’s indices Symbol Description Unit 

1.  R-Rint The time duration between two consecutive R 

peaks 

msec 

2.   QRS dur  Time duration between the onset and QRS 
offset point 

msec 

3.  QTint The time duration between QRS onset and 

Toffset point 

msec 

4.  QTPint The time duration between onset point of P-
wave and peak point of T wave 

msec 

5.  Pdur The time duration between onset and offset 

point of P wave 

msec 

6.  PRint The time duration between onset point of P-
wave and onset point of QRS complex 

msec 

7.  QRS-peaks The number of peaks and notches in the QRS 

complex 

(≥1) 

8.  QRS sign The sign of the first peak in the QRS complex (1 or -1) 

9.  ∆wave The existence of the delta wave 0 or 1 

10.  Tshape Morphology of the T wave  

11.  P shape Morphology of the T wave  

12.  ST shape Shape of ST segment  

13.  QRS+ amp The maxima of QRS complex mm 

14.  QRS- amp The minima of the QRS complex mm 

15.  Pamp The amplitude of P wave mm 

16.  Tamp The amplitude of T wave mm 

17.  STelevation The ST elevation mm 

18.  STslop The slop of ST element mm/sec 

19.  Ppeaks The total number of peaks ≥1 

20.  VLP presented Ventricular late potential present 0 or 1 
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7.6.1. Performance Evaluation using Function WDD. 

In this section, the WDD parameter is described in detail. This parameter is based on 

PQRST complex comparison. For example: features of both the signal (the original ECG 

signal and reconstructed one), viz., QRS complex, QRS complex morphology, P-wave 

shape, P-wave amplitude, P-wave duration, QT duration, T-wave shape, ST elevation, 

etc., are compared. The mathematical expressions used to measure the WDD are 

presented in Eqn. (7.13) to Eqn. (7.19). 

                                                    
Λˆ( , ) Δ . .Δ 100
[Λ]

TWDD β β β β
tr

                                          (7.13) 

where, term β , β̂ , Δβ  and Λ are original features signal vector, reconstructed signal 

features vector, normalized difference vector and diagonal matrix of weights, 

respectively. These terms are defined in Eqns. (7.14), (7.15), (7.16) and (7.17), 

respectively. 

                                                                   1 2[ , ,..., ]T

pβ β β β                                                           (7.14) 

                                                                   1 2
ˆ ˆ ˆ ˆ[ , ,..., ]T

pβ β β β                                                           (7.15) 

                                                                  1 2Δ [Δ ,Δ ,...,Δ ]T

pβ β β β                                                 (7.16) 

                     Λ diag[2  1  1  1  1  1  1  0.25  0.25  1  1  1  2  2  1  1  1  1]                        (7.17)         

Every scalar in vector Δβ  provides distance between the original signal feature and 

reconstructed signal feature. For amplitude and duration features, for example, P-peak, 

PR segment, QRS complex, etc., it can be computed as: 

                                                      

 

ˆ

Δ
ˆmax | |,| |
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i i

β β
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β β


                                          (7.18) 

and for shape features, such as: Pshape, Tshape, these vectors are determined by fixed penalty 

matrices (  ˆ,i i

i i

β β
W w  ) given in [132]: 
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Table 7.6 Morphologies of features for WDD extraction 

code 

Shape 

feature 

1 2 3 4 6 7 8 9 

Pshape Biphasic 

II 

 

Notch 

negative 

Negative 

 

Flat Positive pulmonale 

positive 

 

 

 

 

Notch 

Positive 

Biphasic 

I 

 

Tshape Negative 

 

Flat Positive      

STshape Straight 

positive 

 

concave Flat convex Straight 

positive 
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Fig. 7.4 (a) Original data and (b) Reconstruction signal. 

A
m

p
li

tu
d

e 



CHAPTER 7 Performance evaluation 
 

192 
 

 

 

 

 

 

 

 

 

 

Table.7.7 Measured values of WDDs 

Recor

d no. 

WDD1 WDD2 WDD3 WDD4 WDD5 WDD6 WDD6 WDD8 WDD9 WDD10 

100 1.862 2.935 1.585 1.053 2.748 1.932 0.216 2.051 2.583 3.226 

101 2.619 2.663 1.760 3.683 1.877 0.998 1.399 1.559 1.419 4.327 

102 1.992 1.649 2.451 1.8507 1.853 1.444 1.395 1.151 1.438 2.414 

103 3.107 3.619 1.010 3.394 0.445 0.648 1.048 1.759 0.444 2.211 

104 1.814 1.949 2.150 2.461 0.527 2.364 2.092 2.602 3.100 2.613 

105 0.878 1.187 0.134 1.836 0.238 1.547 0.835 0.483 2.175 1.472 

106 2.245 1.561 1.621 3.182 0.455 2.783 0.373 1.931 3.003 3.241 

107 3.561 2.858 0.758 3.082 1.544 3.237 1.476 2.782 3.511 1.842 

108 0.803 2.195 1.047 1.988 0.085 3.077 1.659 0.579 0.862 0.626 

109 1.757 2.888 1.982 3.395 3.946 1.965 0.982 2.669 2.643 2.870 

111 3.004 2.069 0.574 3.881 2.439 1.496 1.996 2.683 1.987 0.431 

112 0.079 4.486 0.711 2.034 0.367 0.775 0.318 1.117 2.914 0.155 

113 2.625 0.334 0.184 1.844 0.545 2.118 0.125 0.495 3.107 2.288 

114 2.752 1.584 0.528 2.504 1.592 2.959 1.872 2.433 2.820 1.049 

115 2.213 1.915 1.548 2.451 0.012 1.659 1.721 2.808 1.182 1.089 

116 1.229 2.089 2.862 2.907 1.240 1.826 0.208 2.578 1.873 1.838 

117 1.992 3.456 1.518 1.844 2.791 2.616 0.946 2.762 2.264 1.511 

118 2.093 2.219 1.466 2.815 1.536 2.863 2.209 0.817 5.158 1.777 

 

 

The following steps are used to calculate the value of WDD; 

Step 1. Denoised ECG signal is taken. 

In this case also MIT-BIH arhhythmia database is taken. The noise is removed 

using methodologies given in Chapter 3. 

Step 2. Feature extraction. 

All the features mentioned in Table 7.5 and Table 7.6. are extracted from the 

denoised ECG data (i.e., data obtained in Step 1). 

Step 3. Compression.  

Denoised signal obtained in Step 1 is compressed using steps given in Section 6.4.   

Step 4. Decompression. 

Compressed signal is decompressed by following steps given in 6.4.1. 

Step 5. Feature extraction.  
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All the features mentioned in Table 7.5 and Table 7.6. are extracted from the 

decompressed ECG data obtained after Step 4. 

Step 6. Vector 
Tβ  formation.  

Formation of vector β  is done using extracted features given in Table 7.5 and 

Eqn. (7.14).   

Step 7. Vector 
Tβ   formation. 

Formation of vector β  is done using extracted features given in Table 7.5 and 

Eqn. (7.15). 

Step 8. Δ Tβ vector is computed by using Eqn. 7.15  

Step 9. WDD is calculated using Eqns. 7.13 and 7.17.  

In [132], 18 features are considered to measure the WDD. In this work, two more 

parameters are used to calculate the value of WDD, i.e, number of multiple P-wave and 

ventricle late potential.  All the 20 features are listed in Table 7.5 and 7.6. These features 

are important in disease identification, for example, number of P-waves becomes more in 

case of atrial fibrillation arrhythmia.  

Example 7.3. In this example, the MIT/BIH record no.103 is taken. The signal is first 

compressed and then decompressed using the methodology given in Chapter 6.  

Here, the distortion values for this signal having 10-sec duration. 10 beats are considered 

to the values for the WDD for different beats are presented in Table 7.7.    

7.7. Discussions 

Wavelet is a powerful tool to analyze the non-stationary signal due to its multiresolution 

property. Therefore, in this work, WT and CMFB based filter bank is used to detect the 

R-peak locations. The beat detection performance of the proposed method is examined by 

Se, +P and Er, using the MIT-BIH arrhythmia database. The performance of the proposed 

rule based algorithms is evaluated using Matlab 2016b. Table 7.1 & Table 7.2 and Fig. 

7.2 demonstrate that the algorithm can detect features of ECG significantly. The 

comparative study of Table 7.2 shows that the proposed work provides better 

performance in terms of Se, +P, and Er than several other existing methods. Example 1 

and 2 clearly demonstrate that this work is very impactful in cardiac disorders’ 

interpretation.  
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In this work, different features of ECG signal have been extracted in frequency and time 

domain. All other useful diagnostic features are extracted using some rule based 

algorithms. The resulting waveforms and tabular results demonstrate that the proposed 

method successfully extracts the features from ECG signals. Hence, this work can be used 

for employing the extracted diagnostic features, in the time domain, to interpret different 

cardiac problems and providing a potential diagnostic tool in future studies. The 

methodology provides a technique that is well understood and appreciated by 

cardiologists who accept only time domain data. Extracted features are used to determine 

the performance of data compression. WDD is also evaluating the performance of data 

compression, in which two more features are added, that are important for the diagnosis 

of a cardiac patient. On observing Tables 7.4(a), 7.4(b) and (7.7), it is seen that the data 

compression method present in this work can reconstruct the signal, which has almost the 

same diagnostic information.   

7.8. Summary 

In this chapter, different features of the ECG signal have been extracted in the frequency 

and time domain. First, R waves have been detected using bi-orthogonal wavelet 

transform. In another case CMFB is utilized to detect the R waves locations. After that, 

all the useful diagnostic features are extracted using some rule-based algorithms. The 

resulting waveforms and tabular results demonstrate that the proposed method 

successfully extracts features from ECG signals. After extracting features, these are used 

to evaluate the performance of reconstructed of the ECG signal. These features are also 

utilized to measure the WDD. On the basis of the results reported in this work, it is 

concluded that the WDD based measure is considerably more appropriate for evaluating 

the ECG reconstructed signals than the popular PRD measure. Tables 7.3(a), 7.3(b) and 

(7.6) show that the methodology given in this thesis can reconstruct a signal with some 

diagnostic information as it is presented in the original signal.   

 



CHAPTER 8 

CONCLUSIONS AND FUTURE SCOPE  

 

8.1. Overview 

This study provides an efficient design of the digital systems, which is used for noise 

elimination, data compression and feature extraction of the ECG rhythms. Time-

frequency analysis preserves time and frequency information for non-stationary signals. 

This growth was driven by the wide range of applications in telemedicine and e-health 

care system, Holter monitor system and reducing the storage requirements. Due to the 

increasing number of applications involving digital filter banks digital filtering, the 

variety of requirements that have to be met by the digital filter banks has increased as 

well. Thus, there is a strong need for flexible methods that can design the filter banks 

satisfying the sophisticated specifications. 

8.2. Main Findings  

This work includes two major parts, viz., filter and filter bank design and data 

compression. These are discribed in the next section briefly.   

8.2.1.  Methodologies used for the Design of Filter and Filter Bank 

a)  Linear-phase IFIR lowpass filter is designed. 

b)  Linear-phase FRM filters are designed. 

c)  The notch filter is formulated using a combination of IFIR and FRM technique. 

d) For obtaining equiripple nature of the filter, coefficient reduction method is used 

for single and two staged IFIR filters. After designing of filters, these are utilized for 

noise reducuion from the ECG signals. In the following way; 

I). For removing the baseline wander, high pass FRM filter is used. 

II). For removing the high-frequency noise, IFIR lowpass filter is used. 

III). For eliminating the power line interfacing, notch filter is used. 
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For efficient decomposition and to minimize the computational complexity, some 

methodologies are proposed to design a filterbank using cosine modulation technique.  

The following methods are proposed to design the filterbank.  

a) An iterative method for the design of M-channel linear-phase uniform CMFB 

modulated based on optimum cut-off frequency of model filter of IFIR filter. 

b) An iterative scheme for M-channel uniform CMFB to reduce the objective 

function of stopband error minimization, optimum passband edge frequency of 

model filter of IFIR filter.  

c) Schittkowski algorithm is used to obtain the optimum filter bank response. 

d) Non-uniform filter banks are derived using band merger method.  

The following conclusions are made from the filter and filter design methodologies. 

 The designing of ripple free single and two staged IFIR filters is done, which has 

an identical filter response to the FIR filter, which provides less computational 

complexity, stable nature and linear phase.  

 Design and development of computationally efficient uniform and non-uniform 

CMFBs using single and two staged IFIR filter are done, which would provide 

optimum performance in terms of computational complexity, aliasing error and 

peak reconstruction error. To minimize the amplitude error, linear iteration 

optimization technique is utilized. 

 

8.2.2. ECG Data Compression  

ECG data compression is done by the decomposition of signal into the number of 

frequency bands, which is a primary work of the data compression. Here, decomposition 

of the signal is done by the following filterbank;  

a) QMF with Park-McClellen 

b) Wavelet packet filter bank 

c) Wavelet transform filter bank 

d) Empirical  wavelet transform filter bank 

e) Non-uniform CMFB 

After the decomposition process, thresholding /quantitation is applied to compress the 

signal. To gain a high compression ratio without affecting the diagnostic information, 
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lossless methods are used. In this work, for encoding the decomposed signals, the 

following methods have been used: 

a) Run-length encoding  

b) Huffman encoding  

c) LZW encoding with delta coding 

The features are extracted using WT /CMFB with rule base methodologies. The 

extracted features are used to measure the performance of data reconstruction. 

The following conclusions are made from data compression methodologies: 

 Compression of ECG rhythms using efficient filter bank(s) is done along with 

encoding (RLE, modified RLE/Huffman coding/Lempel–Ziv–Welch). The 

methodologies provide efficient results in terms of computional complexity, 

compression ratio with out loss of diagnostic information. 

 Features are extracted from the denoised original ECG signal and decompressed 

ECG signal, and then the comparative analysis is performed. WDD is measured to 

examine the performance of data reconstruction quality. Evaluated values of 

WDD and comparative analysis shows that both the signals have same diagnostic 

information  

8.3. Future Scope   

The methodology used here for data compression can be utilized to multi-lead ECG Data 

simultaneously. Hybrid methodologies can improve the performance of data compression 

and decompression, while preserving the diagnostic information. The method developed 

in this work can be implemented in the DSP processor, chip design that would benchmark 

the high-speed and efficiency of ECG rhythm compression. Application of this work can 

be carried out in several e-health-care organizations. 
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