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Abstract

The physical system can be represented in mathematical models. The

mathematical procedure of system modelling often leads to a comprehensive

description of a process in the form of higher order ordinary differential equations

or partial differential equations which are difficult to use and sometimes necessary

to find the possibility of some equations of the same type but of lower order that

may adequately reflect all essential characteristics of the original system. Hence a

systematic approximation of the original model is required which results in a reduced

order model. The systematic procedure that leads to reduced order model is termed

as model order reduction (MOR), which tries to quickly capture the essential features

of an original system.

A large number of order reduction techniques have been suggested by several

authors in the literature. These are broadly categorized as time and frequency

domain reduction techniques. The frequency domain reduction methods also

utilized to reduce the order of interval systems based on Kharitonov’s theorem

and interval arithmetic operation (IAO). Furthermore, combined methods have been

developed by several authors in which denominator polynomials are determined by

one method and numerator terms are determined by another method. In spite of

many existing reduction techniques, there is always a scope of developing new

techniques. Therefore, the model order reduction of original higher order systems

is in demand in the field of system and control due to the various issues like good

time/frequency response matching, stability and realizability etc. So, it is of great

interest to investigate the efficacy of new algorithms.

The initial aim of this thesis is to highlight the frequency domain and interval

domain order reduction methods available in the literature. This lead to motivate

to develop some new algorithm for order reduction of linear time invariant single

input single output (SISO) and multi input multi output (MIMO) systems. The work

represented in this thesis involves the use of both conventional and interval approach

for order reduction of continuous and discrete time systems. In addition, the other

objective is to ensure the superiority of the new reduction methods by comparing
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with other well-known reduction methods available in the literature. Lastly, to solve

the problem of designing the controller both in direct and indirect approaches by

using proposed reduced order methods.

The introduction followed by importance and application of model order reduction

is presented, subsequently followed by the mathematical preliminaries, then the

concept of interval systems is introduced. Besides a brief overview of the

development that have taken place in the area of model order reduction, various

existing reduction methods and their associated qualities/ drawbacks are also

reflected. New composite reduction methods are developed for reduction of higher

order linear time invariant systems. Time moment matching method, factor division

algorithm, Pade approximation method and differentiation method are employed to

propose composite MOR methods. These methods are applicable to SISO/MIMO

systems taken from the literature and the results are compared with the some

available reduction models. The comparative analysis has been done on the basis

of their performance indices which justify the proposed methods.

New composite reduction methods are developed for reduction of higher-order

linear-time invariant (LTI) interval systems using differentiation method, stability

equation method and time moment matching method based on Kharitonov’s

theorem. Further, based on interval arithmetic operations new mixed methods have

also been proposed by using Pade approximation method, factor division algorithm

and differentiation method. To show the efficacy and powerfulness of the proposed

reduction methods the popular numerical examples available in the literature are

considered. Some of these methods are also extended to model reduction of discrete

time systems.

The controller is designed on the basis of approximate model matching,

with both the direct and indirect approaches, using the proposed reduction

methods. The desired performance specifications of the plant are translated into

a specification/reference model transfer function. In direct approach the original

higher order plant is reduced and the controller designed for reduced order model.

In indirect approach of controller design, a controller is designed for original plant

ii



transfer function and the higher order closed loop transfer function is obtained with

unity feedback. Then this higher order closed loop transfer function is reduced to

lower order model and performance is compared with that of the reference model.

The performance comparison of various models has been carried out using

MATLAB software package.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The large scale systems exists everywhere in different diverse fields such as

aeronautics, biomedical systems, complex chemical process, ecological systems,

economic systems, electric power systems, mechanical environment systems,

hydraulic pneumatic and thermal systems etc. A system is said to be large scale

when its order and dimensions are so high, such that classical techniques of

controller design, modelling, analysis, and computation fail to give accurate solutions

with reasonable computational efforts.

The model order reduction (MOR) is defined in several ways depends on the

context which one is preferred. Initially, the reduction methods were developed

in the area of control systems, which studies the characteristics and properties

of the dynamical systems to reduce their computational effort and complexity,

while preserving their input-output behavior as much as possible. Later, the

mathematicians has been taken up the field of MOR. Nowadays, MOR is a flourishing

and demanding field of research in many different fields such as numerical analysis,

systems and control theory etc. This has an encouraging and healthy effort towards

model order reduction as a whole, bringing different view points and different

techniques together, to push the MOR field forward rapidly.

The work presented in this thesis is focused on model order reduction of linear

time invariant conventional and interval systems. The second part of this comprises

of the application of reduced order modelling in control system design.

1.2 MODEL ORDER REDUCTION

In general, the available physical systems are complex and which contain very high

order in their transfer function. The analysis, simulation and controller design of

such systems becomes tedious and difficult. To deal with such systems, the order
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reduction methods plays an important role to reduce order of the original higher

order systems to the lower order models (LOM) by retaining dominant properties of

the original system.

Most of the real world processes are non-linear in nature, as a result the

mathematical models which are used for the modelling, analysis and controller

design of such systems become more cumbersome and rigid. Therefore, an

appropriate linear model is considered to represent the system, which provides

an easier way to analyze the complex processes. Further, the design of suitable

controller and observer to gain the knowledge about the real world system also

becomes difficult task even for linear model. Hence further simplification is required

to reduce the computational complexity involved in the analysis and design of the

system. This is achieved by mathematical procedures, known as model reduction

techniques.

A reduced order model (ROM) means a system which has fewer state variables

than the linear time invariant original higher order system. In recent development

the accuracy and computational speed has increased in a large extent in processor

design. The computational speed can be improved by providing high hardware

configurations. But still providing accurate results is a challenging task for real time

situations arising in nuclear reactors, control of chemical plants, process industries,

estimation and filtering. The implementation difficulties involved in the design of

controller and observer for higher order linear time invariant systems become more

simple with the help of reduced order models. A reduced order model is useful in the

design, analysis, and simulation of controller or compensator for stabilization of the

output response of the given system.

1.2.1 Need for Model Order Reduction

Every physical system can be converted into a respective mathematical model.

These mathematical model give a complete information about a physical system

in the form of higher order differential equations. It is important and sometimes

necessary to find a reduced order models which retain the dominant characteristics
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of the comprehensive model. The reasons for model order reduction are as follows

[1]:

• Quick and easy understanding of the system: A complex dynamic systems

possesses difficulties in its modelling, analysis and identification. An alternate

method to deal with such systems is MOR. The MOR methods tries to quickly

capture the essential properties of the original higher order system such as

damping ratio, time constant and natural frequency.

• Reduced computational burden: The higher order systems are

computationally heavy and time consuming. The model reduction methods are

simple and avoids the computational effort in simulation.

• Reduced hardware complexity: The controller design for reduced order

model is less costly, more reliable and easy to implement due to less hardware

complexity.

• Making feasible designs: The effectiveness of the MOR in controller design

is given bellow

– Model reference adaptive and parameterized control methods [2]

– Hierarchical control programme

– Suboptimal control systems

– Decentralized controllers

– Power system stability [3,4]

• Generalization: The reduced order model results are easily generalized to the

other comparable models.

1.3 MATHEMATICAL PRELIMINARIES

1.3.1 Model Order Reduction Problem Statement Representation

The mathematical models of higher order dynamic systems described in the state

space form is known as time domain representation and those in the transfer function
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form is known as frequency domain representation. The methods which reduce a

higher order state space model are called time domain order reduction methods

whereas those which reduce a transfer function or a transfer function matrix are

called frequency domain order reduction methods. The aim of the model order

reduction is to find a reduced system, which approximates the higher order system

in some sense and gives nearly same response for the same type of inputs.

In the time domain, let an nth order linear time invariant (LTI) system is expressed

in state space form as

ẋ (t) = Ax (t) +Bu (t)

y (t) = Cx (t) +Du (t)

 (1.1)

where, x ∈ Rn, u ∈ Rp, y ∈ Rq are state, input and output variable vectors; A,B,C

and D are constant matrices with dimensions n× n, n× q, q× n, q× q respectively.

The model order reduction problem is to find the appropriate kth (k < n) order

reduced model which reflects the dominant properties of the original high order

system eq. (1.1) be expressed as

ẋk (t) = Akxk (t) +Bku (t)

yk (t) = Ckxk (t) +Dku (t)

 (1.2)

such that original nth order system and the reduced kth order model are similar in

the important aspects of their characteristics where xk ∈ Rr, u ∈ Rp, yk ∈ Rq and

Ak, Bk, Ck, and Dk are constant matrices of reduced dimensions and yk should be

close approximation of y for given set of inputs.

The transfer function corresponding to eq. (1.1) may be written as:

G (s) = C(sI − A)−1B +D (1.3)

In the frequency domain, for single input single output (SISO) case,G (s) is the nth

order higher order system and R (s) is the reduced model of order k (k < n). While,

for multi input multi output (MIMO) case, [G (s)] is the nth order transfer function

matrix with p inputs and q outputs and [R (s)] is the kth order reduced transfer function

matrix with p inputs and q outputs.
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In the interval domain, for SISO case, G (s, a, b) represents the nth order interval

system and R (s, c, d) represents the reduced interval model of order k. While for

MIMO case, [G (s, eij, Dn)] is the nth order transfer function matrix with p inputs and

q outputs and [R (s, hij, dk)] is the kth order reduced transfer function matrix with p

inputs and q outputs.

1.3.2 Time Moments and Markov Parameters

Let the impulse response of high order asymptotically stable system be g (t) then

G (s) =
∞∫
0

g (t) e−stdt

=
∞∫
0

g (t)
[
1− st

1!
+ s2t2

2!
− s3t3

3!
+ · · ·

]
dt

=
∞∫
0

g (t) dt−s
∞∫
0

tg (t) dt+ s2
∞∫
0

t2

2!
g (t) dt · · ·

or

G (s) = c0 + c1s+ c2s
2 + · · · (1.4)

Where,

ci = (−1)i
i!

∞∫
0

tig (t) dt = (−1)i
i!
Ti, and Ti is defined to be the ith time moment of g (t),

it can be shown that

Ti = (−1)i
diG (s)

dsi

∣∣∣∣
s=0

Thus, the time moments [5] of the system are proportional to the coefficients of the

power series expansion of G (s) about s = 0 . Alternatively G (s) may be expanded

about s =∞, i.e.,

G (s) = M1s
−1 +M2s

−2 +M3s
−3 + · · · (1.5)

The coefficients Mi are called the Markov parameters of G (s)

1.3.3 The Interval Arithmetic Operations

The interval arithmetic operations (IAO) summarize as follows [6,7].

A real closed interval [m] , for computing on subsets of R. The closed intervals

of R are denoted by IR. It is defined by its lower bound m− and its upper bound

m+. For simplicity, we say that [m] = [m−,m+], we have m− ≤ m ≤ m+. Let the two
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intervals [m] = [m−,m+] and [n] = [n−, n+] the arithmetic rules are:

[m] + [n] =
[
m− + n−,m+ + n+

]
(1.6)

[m]− [n] =
[
m− − n+,m+ − n−

]
(1.7)

[m]× [n] = [Min {m−n−,m−n+,m+n−,m+n+} ,

Max {m−n−,m−n+,m+n−,m+n+}]
(1.8)

If we define,
1/[n] = φif [n] = [0, 0] ,

= [1/n+, 1/n−] if0 /∈ [n] ,

= [1/n+,∞] ifn− = 0andn+ > 0,

= [−∞, 1/n−] ifn− < 0andn+ = 0,

= [−∞,∞] ifn− < 0andn+ > 0.

then

[m]/[n] = [m]× (1/[n]) (1.9)

A non-empty interval [m] and a real number δ, then the interval is

δ [m] = [δm−, δm+] ifδ ≥ 0

= [δm+, δm−] ifδ< 0
(1.10)

The properties of the basic operators for intervals differs from their properties in R.

For instance, [m] − [m] is generally not equal to [0, 0]. This is because, [m] − [m] =

{m− n |m ∈ [m] , n ∈ [m]}, rather then {m−m|m ∈ [m]}. If m− = m+ = m, i.e. if

[m] consists only of the element m , then we identify the real number m with the

degenerate interval [m,m] keeping the real notation, i.e., m ≡ [m,m]. We have

[m] > [n] if m− > n+. The real interval [m] is positive if m− > 0. The interval numbers

[0, 0] = 0 and [1, 1] = 1 perform as additive and multiplicative identities, respectively.

The addition and multiplication of arithmetic interval is remain associative and

commutative, but multiplication is no longer distributive with respect to addition.

Instead a property known as subdistributivity holds for:

[m]× ([n] + [z]) ⊂ [m]× [n] + [m]× [z]
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Further, the cancelation holds for both addition and multiplication.

If [m] + [n] = [m] + [z] then [n] = [z]

If [m]× [n] = [m]× [z] then [n] = [z] ;0 /∈ [m]

We have the property:

[m] ⊆ [n]⇔ δ [m] ⊆ δ [n] (1.11)

where δ is real point number.

1.3.4 Kharitonov’s Theorem

Let us consider an interval polynomial of the form,

p (s, x) =
n∑
i=0

[
x−i , x

+
i

]
si (1.12)

Where
[
x−i , x

+
i

]
represents the lower and upper bound interval for the ith

component of uncertainty xi, In order to describe Kharitonov’s theorem [8, 9] for

robust stability, we first define four fixed Kharitonv polynomials associated with an

interval polynomial family eq. (1.12).

K−− (s) = x−0 + x−1 s+ x+2 s
2 + x+3 s

3 + x−4 s
4 + ...

K−+ (s) = x−0 + x+1 s+ x+2 s
2 + x−3 s

3 + x−4 s
4 + ...

K+− (s) = x+0 + x−1 s+ x−2 s
2 + x+3 s

3 + x+4 s
4 + ...

K++ (s) = x+0 + x+1 s+ x−2 s
2 + x−3 s

3 + x+4 s
4 + ..

(1.13)

According to Kharitonov’s theorem, it is sufficient to test the above four Kharitonov

polynomials to guarantee the robust stability of the given interval polynomial in order

to guarantee robust stability of the given interval polynomial eq. (1.12), This can be

achieved by using an algebraic stability criterion, e.g., the Routh-Hurwitz criterion.

The stability test for interval polynomials of degree:

K+− (s) , K++ (s) , K−+ (s) , K−− (s) For n > 5

K+− (s) , K++ (s) , K−+ (s) For n = 5

K+− (s) , K++ (s) For n = 4

K+− (s) For n = 3

(1.14)
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For n = 1 and 2, the necessary and sufficient condition for stability is positive

lower bounds of the interval coefficients.

1.3.5 Sixteen Plant Theorem

Let us consider an Interval plant transfer function as given below,

G (s, a, b) =
N (s, a)

D (s, b)
=

m∑
i=0

[
a−i , a

+
i

]
si

sn +
n−1∑
j=0

[
b−j , b

+
j

]
sj
, m < n (1.15)

Where
[
a−i , a

+
i

]
(0 ≤ i ≤ m) and

[
b−j , b

+
j

]
(0 ≤ j ≤ n − 1) are interval coefficients of

numerator and denominator polynomials respectively.

According to Kharitonov’s theorem, the interval transfer function eq. (1.15)

may represents into four numerator and denominator fixed coefficient Kharitonov

polynomials as follows,

For Numerator N (s, a),

N1 (s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + a−4 s
4 + · · ·

N2 (s) = a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + a−4 s
4 + · · ·

N3 (s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + a+4 s
4 + · · ·

N4 (s) = a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + a+4 s
4 + · · ·


(1.16)

and for Denominator D (s, b),

D1 (s) = b−0 + b−1 s+ b+2 s
2 + b+3 s

3 + b−4 s
4 + · · ·

D2 (s) = b−0 + b+1 s+ b+2 s
2 + b−3 s

3 + b−4 s
4 + · · ·

D3 (s) = b+0 + b−1 s+ b−2 s
2 + b+3 s

3 + b+4 s
4 + · · ·

D4 (s) = b+0 + b+1 s+ b−2 s
2 + b−3 s

3 + b+4 s
4 + · · ·


(1.17)

By taking all the combinations of the N i (s) , i = 1, 2, 3, 4 and Dk (s) , k = 1, 2, 3, 4, we

obtain the 16 Kharitonov plants [9,10] as,

Gik (s) =
N i (s)

Dk (s)
(1.18)

for i.k = 1, 2, 3, 4.
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1.4 OBJECTIVE OF THE THESIS

The objective of this thesis is to first critically examine some of the existing model

order reduction methods and to develop some new methods in conventional and

interval approach of model order reduction which are applicable to linear time

invariant continuous and discrete time systems. It has been observed that there are

some methods of order reduction in the literature having some drawbacks. These

drawbacks have been rectified and the modified version of these methods has been

presented. Secondly, to design a controller for the reduced system, obtained from

the proposed methods. The controller has been designed using both direct and

indirect approaches to check its suitability for the original system.

1.5 ORGANIZATION OF THE THESIS

The present thesis is organized into seven chapters and the work included in each

chapter is presented in the following sequence:

Chapter-1, the current chapter, gives an overview on modelling of large scale

systems and role of model order reduction. Further, it presents mathematical

preliminaries related to model order reduction and concepts of interval systems.

Finally, outlines the organization of the present thesis.

Chapter-2, presents, the brief literature review on various existing reduction

techniques in frequency domain, time domain and interval domain and their

associated qualities/ drawbacks.

Chapter-3 deals with the reduction of higher order linear time invariant systems

using proposed composite model reduction techniques. Some new combined

order reduction methods have been proposed by using frequency domain reduction

methods for linear dynamical systems. In these methods the reduced order

denominator coefficients are determined by one method and the reduced order

numerator coefficients are obtained by another method. This approach guarantees

the stability of ROM if the original higher-order system is stable. In the proposed

methods, the time moment matching method and differentiation methods have

been used to obtain reduced order denominator polynomial while the Pade
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approximation and factor division algorithm have been used to determine the

reduced order numerator polynomials. The results obtained from the proposed

reduction approaches are compared with well-known reduction methods. Further,

the application of these approaches are also extended to linear multivariable systems

also. The efficacy of the presented techniques are justified by comparison of time

and frequency responses and their associated performance indices.

Chapter -4 presents the MOR of continuous time interval systems. The

new mixed methods are proposed by using differentiation method, factor division

algorithm, and Pade approximation method based on interval arithmetic operations.

Further, the reduced order models are obtained by using frequency domain

reduction methods differentiation method, stability equation method and time

moment matching method these are being utilized along with Kharitonov’s theorem.

The obtained proposed model results are validated by comparing with some other

well-known reduction methods and recently published work in terms of performance

indices, step and bode responses.

Chapter -5 deals the MOR of the discrete time systems by extending the methods

proposed in the previous chapters. The reduced order models are obtained by using

linear transformation. The results are compared with recently published work in

terms of performance indices, step and impulse responses.

Chapter -6, the controller has been designed to ensure the suitability of the

proposed model order reduction methods. For controller design both the direct and

indirect approaches have been considered. Different examples are given to illustrate

the methods. The unit step response of closed loop transfer function obtained from

the original and reduced plant transfer function are compared with the unit step

response of the reference model.

Chapter -7 concludes the work presented in this thesis along with the scope for

the future work.
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CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

An ample variety of order reduction methods have been presented by several authors

since four decades. An extensive bibliography on the research area of model order

reduction can be seen in papers [11–14] and also some text books [15–19] have

been written on this area. The reduction methods are broadly classified as time

domain and frequency domain reduction methods. The reduced order models

obtained by individual techniques which are different from others; however, the

quality of reduced model is ultimately judged by the way it is utilized.

2.2 FREQUENCY DOMAIN ORDER REDUCTION METHODS

The frequency domain reduction techniques are categorized in the following three

groups:

2.2.1 Classical Approach

In this approach, reduction methods are based on the classical theories of pure

mathematics and algebraic in nature such as Pade approximation method [20], time

moment matching method [21] and continued fraction expansion method [22] etc.

The major drawback of reduction methods of this group is that the stable original

model may results in unstable reduced order model and vice versa [23–31]. Another

problem is that sometimes reduced order model, provides low accuracy in the mid

and high frequency range and exhibits non minimum phase behavior. Although there

are number of methods suggested by the authors which are available in the literature

but few vital methods are discussed as follows:

2.2.1.1 Pade Approximation Method

This method was originally put forward by Pade [20]. This method is simple

from the computational point of view, it fits steady state value and initial time
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moments of the ROM and the original model matches. To obtain rth order reduction

method, 2r − 1 coefficients of the power series expansion about s = 0 of ROM

are matched with the corresponding coefficients of the higher order system. The

drawback of this approximation technique is that, sometimes the reduced models

may be unstable (stable) even though the original higher order system is stable

(unstable). Also, this method may approximate non-dominant poles sometimes,

thus giving bad approximation. To overcome these disadvantages, several substitute

reduction methods have been implemented. An improvement in the Routh-Pade

method is suggested by Wilson et al. [32] where the stability issue of the Pade

approximation is dealt by Bandyopadhyay et al. [33, 34]. Furthermore, the method

has also been extended to multivariable systems by Bandyopadhyay et al. [35]. A

method has been further introduced by Shamash [36] based on retention of poles

of high order system in ROM and concept of Pade approximation about more than

one point. Bistritz [37] presented a mixed method for closed loop design and put

forward the concept of minimal Pade model reduction using second Cauer form

of continued fraction expansion. Bandyopadhyay [33, 38] gave method of stability

Pade approximation. Chen and Chang [39] proposed a mixed method by combining

the Pade approximation method and stability equation method for obtaining stable

ROM. Also, the Pade approximation method has been improved by Wan [40] with

the help of Mihailov stability criteria. In [41, 42], the original single point Pade

approximation about s = 0 has been extended to multi point Pade approximation.

Xiheng [42] presented a method and solved the Pade equations for expansion

about s = 0 and also about the points along the imaginary axis s = jw. Lepschy

and Viaro [43] presented a reduction method to guarantee the stability of reduced

order models using Routh-Pade approximation. Krajewski et al. [44] proposed a

reduction method to deal with continuous time MIMO systems by matching first

and second order information. Later Krajewski et al. [45] proposed approximation

method based on Markov and energy indices method. Lepschy and Viaro [46]

presented a simplification of transfer functions using modified Pade-type method.

Lucas [47] modified it to multipoint Pade approximants, where the expansion points
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can be mixture of multiple real, complex and purely imaginary points. In [48], further

the work was extended to expansion points at infinity and thus method became

generalized in nature. Aguirre [49, 50] introduced a least square Pade method as

a novel method of model order reduction and also the Pade approximation method

has been used by Lam [51] for time delay systems. Next, the Pade approximation

method has also used by Daly and Colebourn [52] for linear systems in state space

form. Prasad [53] and Prasad et al. [54] presented the methods of model order

reduction of LTI multivariable systems, which provided reduced order systems in

state space form irrespective of whether the original system is available in state

space form or in transfer function matrix form. The Pade approximation method has

also been extended to the model order reduction of the discrete time systems by

Hwang and Chow [55], Prasad and Devi [56].

2.2.1.2 Continued Fraction Expansion (CFE) Method

This method has been introduced by Chen and Shieh [22] for getting reduced order

model of linear SISO system. Initially, their is no requirement to get the knowledge

about Eigen vectors or Eigen values and dominant properties of the original HOS.

This method contains lots of helpful properties like computational ease, preservation

of steady state responses and fitting of time moments in reduced order models. The

convergence is also fast in this method. This method has proved so far to be a special

case of Pade approximation, for asymptotically stable state system which is identical

to the time moment matching method [23]. The disadvantage of this technique

is that the stability is not assured even though the given higher order system is

stable and it may not give good transient response matching. Further, to avoid

these disadvantages, a modified CFE method has been proposed by Chuang [25]

combined the expansions about s = 0 and s = ∞ alternatively to improve the initial

transient response of the ROMs at later times. This modified reduction method

has been named to as the modified Cauer continued fraction. Continued fraction

expansion method has further extended as first Cauer form, second Cauer form and

modified Cauer form. Later by combining the first and second Cauer methods the

13



third Cauer form has been proposed by Hwang [27]. In methods based on CFE, the

given transfer function is expanded into a particular kind of continued fraction and

truncated after few terms. The transfer function of ROM is determined by inverting

the truncated CFE.

Various extensions and modifications have been carried out by many authors.

CFE about a general point has been presented by Davidson and Lucas [26], while

extension of CFE to MIMO systems has been proposed by Chen [24]. Khatwani et

al. [30] suggested an algorithm for obtaining the ROM of LTI systems from its state

space model directly, without calculating corresponding transfer function. Later this

method has been mixed with other methods for model order reduction by authors

like John and Parthasarathy [57] combined it along with Routh approximation and

Chen et al. [58] combined it with stability equation method. Recently, Sambariya

and Gupta [59] proposed new modified Cauer form technique which overcome the

drawbacks of Cauer form by guaranteeing the stable reduced order models.

2.2.1.3 Time Moment Matching Method

This reduction approach of moment matching was first put forward by Paynter and

Takahashi [21]. In this technique, the reduced order model is achieved by matching

few lower order moments of the given HOS. The matching of initial time moments

gives better approximation at low frequencies while matching the initial Markov

parameters leads to good approximation at high frequencies. This method preserves

the low frequency response of the original system. The main drawback of this

method is that there is no guarantee of obtaining stable ROM even though the higher

order model is stable and also transient performance of ROM may not always be

satisfactory. Further, there exists a computational difficulty in this technique if large

numbers of constants are to be evaluated in ROM. To overcome these computational

difficulties, Lal and Mitra [60] proposed a computer oriented algorithm for evaluation

of the time moments.

This method has been used by Gibilaro and lees [61] for SISO system. Further,

this technique extended to MIMO system by shih and Shieh [62]. The application of
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moment matching for the reduction of multi-variable systems has been accomplished

by matching the coefficients of power series expansion about s = 0 and s = ∞,

where s is the Laplace transform variable. Taiwo and Krebs [63] proves the moment

matching technique is also suited to non-square continuous and discrete systems.

The moment matching techniques has been used for model order reduction of

multi rate linear system by Williamson et. al. [64]. Hwang and Shih [65] modified

this method for discrete systems. Hwang and Shih [65] modifies this method for

discrete systems. Hickin and Sinha [66] proposed a combination of aggregation and

moment matching for multivariable systems. Feng et al. [67] proposed a model order

reduction scheme in adaptive sense based on moment matching. Scarciotti and

Astolfi [68] presented a reduction technique by estimating the moments of linear and

nonlinear unknown parameters of the reduced model using time moments. Vasu

et al. [69] presented a reduction method to preserve the stability of the ROMs by

matching Markov parameters and time moments by minimizing the error. Sinha

et al. [70] has proposed a mixed method by combining Routh approximation and

moment matching method. Kumar et al., [71] proposed optimal multilevel Krylov

model order reduction technique to improve the finite element band width by using

moment matching criterion. Krajewski et. al. [72] obtained reduced order model by

matching time moments and impulse response energies.

2.2.1.4 Error Minimization Method

In this method, the time response comparison of original system and the ROM gives

the error function. Different error minimization criteria are ISE, integral absolute error

(IAE), integral time absolute error (ITAE) and integral time square error (ITSE) are

most frequently used criteria. The basic approach of most of the methods is to

minimize error between the unit responses of the original HOS and ROM using ISE.

Mishra and Wilson [73] used this method for model order reduction. Hwang and

Wang [74] combined Routh method with error minimization technique and applied it

to SISO system. In this approach they determined the denominator by Routh method

and numerator by error minimization technique. Mukherjee and Mishra [75, 76]
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combined the dominant pole retention method and error minimization technique and

applied it to both SISO and MIMO system. Lamba et al. [77] minimized time domain

error function. In this approach the numerator is obtained by minimizing the step

response error with a steady state constraint and then converting the error function

into the frequency domain for minima operation. Howitt and Luus [78] introduced

model order reduction for SISO LTI systems, in which both poles and zeros are

taken as free parameters to minimize the integral square error in impulse and step

responses. Puri and Lan [79] introduced a stable MOR technique which was based

on minimization of the impulse response error and stability equation approach along

with Pade approximation. Hwang et al. [80] proposed a combined time and frequency

domain method to reduce the order of discrete time systems in z-domain. Puri and

Lim [81] also introduced a method for discrete time systems. Reddy [82] obtained

the coefficients of the reduced order model by minimizing the integral squares of

the error between the corresponding real and imaginary part of original and reduced

order model. Ouyang et al. [83] presented a combined method for linear system

order reduction, in which the denominator was obtained by retaining the poles of

large dispersion based on the concept of power decomposition and numerator’s

parameters were obtained by using frequency matching technique, Method of model

order reduction for discrete time systems via frequency response matching was

proposed by Sahani and Nagar [84].

2.2.1.5 Truncation Method

This technique was proposed by Gustafson [85]. In this technique, the higher

order numerator and denominator terms are truncated to produce the ROM. This

method is very simple from computational point of view. Shamash [86] extended

this method for multivariable systems and by comparing this method with Pade and

Routh approximation method, and concluded that truncation method is as reliable as

these methods. Yeung [87] proved that the reduced system is stable if the poles of

the original system are well damped. Prasad et al. [88] gave the modified form of

truncation method.
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2.2.2 Stability Preserving Approach

Stability is one of the most important parameter of any system which would never be

sacrificed therefore the most imperative group of reduced order modelling is based

on stability preserving approach. In this approach the obtained reduced order model

is always stable. However, the main drawback of the methods under this group is

flexibility when the approximation produced by the reduced model is not good [89–

92]. The number of methods available in the literature based on stability preserving

approach; some of them are as follows:

2.2.2.1 Differentiation Method

This technique was presented by Gutman et al. [93]. The original system numerator

and denominator polynomial are first reciprocated and then differentiated many

times to yield the reduced order model coefficients. These reduced order model

is reciprocated back and normalized to obtain required ROM. This technique is quite

simple and is also applicable to both non minimum phase and unstable systems.

The main disadvantage of this technique is that, the original and ROM steady

state response may not match. Lucas [94] proved that this method [93] gives

better approximation in reduced order numerator and denominator polynomials by

giving equivalent successive ratios of multipoints. This helps the method to get

easy computation of the ROM by using formulation of the Routh array structure.

Lepschy and Viaro [95] mixed this method with Pade method to combine the

advantages of simple calculation and stability preservation. Manohar and Sambariya

[96] proposed a reduction technique for multivariable systems using differentiation

method. Further, Pal and Prasad [97] combined this method with continued fraction

expansion approach.

2.2.2.2 Dominant Pole Retention Method

This technique was introduced by Davison [98]. This method provides stable reduced

order models if the original system, matrix diagonalization, linear transformation,

computation of Eigen values and Eigen vectors are involved in the process of

reduction, which are computationally difficult and does not work when the system has
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widely separated Eigen values. Using this method, various authors have developed

their own model order reduction techniques for continuous and discrete time systems

in frequency domain. The dominant poles, nearer to imaginary axis, are retained in

ROM and poles which are far away from imaginary axis or insignificant poles are

neglected because their effect is comparatively less on the overall performance of

the system. The disadvantage of this technique is that it is difficult to distinguish

which pole is more dominant if many poles are very near to the imaginary axis. This

method was further extended to clustering technique [99]. Argoun [100] presented

model order reduction technique which is applicable to diagonally dominant systems.

2.2.2.3 Routh Approximation Method

Hutton and Friedland [90] have introduced this technique for reducing the order of

HOS to the ROMs. The reduced order denominator and numerator coefficients

are obtained by reciprocating the original system and by making α − β canonical

forms. α table is constructed by using denominator coefficients of original system

and β table is constructed by using numerator coefficients of original system in this

process elements of α table and successive elements of β table are also used.

There is no need of determining Eigen values in this method. Further, this technique

preserves system stability and the steady state value matches. It involves simple

algebraic calculations of finite number of steps. The drawback of this method

is that it has to proceed through reciprocal transformation twice before ROM is

obtained. To overcome this drawback, Krishnamurthy and Seshadri [91] proposed

a method in which the reciprocal transformations are avoided and named as direct

Routh approximation method. But, another drawback of this method is that it may

sometimes approximate non dominant poles of the system [101].

This method was extended by Rao et al. [102] to simplify unstable systems.

Stable biased ROM was given by Shamash [103]. Sastry and Krishnamurthy [104]

modified this method to determine ROM directly in state space form. For stable

reduced order models, multi frequency Routh approximation procedure was given

by Hwang et al. [105]. This technique was used by Bandyopadhyay et al. [106, 107]

18



and, Sastry and Mallikarjuna Rao [108] for reducing interval systems. Dolgin and

Zeheb [109] combined Routh approximation method with Pade method for order

reduction of linear discrete stable system in z-transfer function while Choo [110],

Hwang and Hsieh [111] extended this method to discrete time system via bilinear

transformation. Recently, Narwal and Prasad [112] has proposed a method in which

this method has been combined with evolutionary algorithm named Cuckoo Search.

2.2.2.4 Routh Hurwitz Array Method

The Routh Hurwitz array method [92] is proposed to obtain reduced order models

by constructing Routh array using original system numerator and denominator

polynomials. a reduced polynomial of (n− 1)th order can be composed by

considering second and third rows of the Routh array for nth order denominator

polynomial. Likely for (n− 2)th order system, the third and fourth row of the array

are utilized.The procedure is repeated in the same way for reducing the numerator

polynomial. A stable ROM is obtained from a stable full order model, but drawback

is that it is a non-unique procedure in which many other high order models may have

the same reduced model. This shortcoming was noticed by Shamash [101, 103].

Rao et al. [102] mixed this method with Routh approximation for simplification of

multivariable systems and also for suboptimal control [113].This method has also

extended to the reduction of discrete time systems [114–116]. Further, a simple

proof of the Routh test was proposed by Ferrante et al. [117].

2.2.2.5 Factor Division Method

Lucas [118] first introduced tis method . This method preserves the initial time

moments and also it retains the dominant properties of the original system in the

reduced order model. This method does not involve in the calculation of the time

moments [36, 119]. Lucas [120] extended this method to produce a biased reduced

order models by preserving the stability of ROMs, and retaining initial time moments

and the Markov parameters of the HOS. The ideas of Lucas [118, 120] were further

extended to obtain modified factor division approach [121]. Using this modified

approach, stable reduced order model is obtained for a stable system. Modified
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factor division approach gives families of ROMs of different orders by varying a

different parameter in the denominator.

2.2.2.6 Stability Equation Method

Chen et.al. [89] proposed this technique, the ROM is determined by separating the

both numerator and denominator into their even and odd parts. Then factored to find

the roots, from this the large magnitude terms are neglected to achieve required

ROM. This technique preserves the stability of the ROM. Further, this method

ensures the steady state response matching time response.

Pal [122] combined this method with Pade approximation technique to overcome

the disadvantage of Pade method. Later, Bistritz [123] proposed discrete stability

equation method. This technique also used by Therapos [124] for fast oscillating

systems. This method was combined with continued fraction method by Chen et

al. [58] to prove that this approach may be applied to non-minimum phase systems.

A tabular approach to this method was proposed by Lucas [125], which avoids the

problem of computing roots of stability equations. Further, Desai and Prasad [126]

presented a reduction technique by combining the stability equation method and big

bang big crunch optimization technique.

2.2.2.7 Mihailov Stability Criterion

This method was proposed by Wan [40]. In this method reduced order denominator

is obtained by using Mihailov criterion and reduced order numerator is determined

by using Pade approximation method. This technique does not include the

calculation of the Markov parameters and the initial time moments. This technique

is computationally easy and guarantees the stability if the ROM if original system is

stable. Rawat and Jha [127] presented application oriented reduction method which

automatically regulate the voltage using Mihailov criterion. Prasad et al. [128, 129]

proposed a method by combining the advantages of factor division method and

Mihailov method and also extended it for multivariable systems.
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2.2.2.8 Least Square Method

This technique was first proposed by Shoji et al. [130]. The reduced order model

is obtained by matching the least squares of the time moments of the HOS. The

advantage of this technique is that, it gives an extra degree of freedom in the reduced

order model design. Further, Lucas and Beat [131] proposed a reduction method by

modifying of this method. Later, Aguirre [49] extended this method to include the use

of Markov parameters. Smith and Lucas [132] obtained the numerator coefficients

by exact moment matching and denominator coefficients by least square method. In

[133], Aguirre developed an algorithm in which numerator coefficients of ROM were

determined by least square method while the denominator coefficients were method

while the denominator coefficients were method while the denominator coefficients

were method while the denominator coefficients were method while the denominator

coefficients were already determined by some method.

2.2.2.9 Eigen Spectrum Analysis

Initially this method was introduced by Mukherjee [134]. In this method, the original

system and the ROM system stiffness and the pole centroid are remain same. Also,

the response matching of the proposed reduced models with original system are

quite good but sometimes due to same stiffness the ROM may turn out to be non

minimum phase. Further, this method was used in combination of Cauer second

form [135] and factor division algorithm [136].

2.2.2.10 Clustering Technique

This method proposed by Sinha and Pal [99]. This method is an extension of the

dominant pole retention method [98]. In this method the cluster centers are obtained

by forming the clusters of the poles and zeros of the original system by using

inverse distance measure (IDM) criterion. This method is computationally simple

and preserves the stability of the reduced order model if the original HOS is stable.

Further, this technique is equally applicable for unstable systems. Later, Chen et

al. [22] has mixed this technique with the time moment matching method. In which

the reduced order denominator is determined by the pole clustering method and
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the reduced order numerator coefficients are determined by time moment matching

method.

2.2.2.11 Modified Pole Clustering Technique

Vishwakarma [137] and Komarasamy et al. [138] proposed a modified pole clustering

technique. These techniques generate much effective cluster centers than the

[99, 139]. In this technique only reduced order denominators are determined by

clustering technique and the numerator of ROM is determined by using any other

existing technique. These modified pole clustering techniques result more dominant

cluster centers and therefore, produce better ROM. Recently, Narwal and Prasad

[140] have proposed a method by improving the clustering technique, which produce

the better results than the methods [99, 137–139] and also, the proposed method

has been extended to order reduction of discrete time systems [140].

2.2.3 Composite Reduction Approach

The above discussed classical methods and stability preservation methods have

some drawbacks. To avoid these drawbacks composite or mixed methods were

implemented. This approach considers the advantages of both classical approach

and the stability preservation approach to obtain stable reduced order models.

The reduced order denominator coefficients are achieved by any method under

stability preservation approach and the reduced order numerator polynomials are

obtained by any method from classical approach. Some of the mixed methods

are [40,57,58,103,122,128,141–145].

2.3 TIME DOMAIN ORDER REDUCTION TECHNIQUES

Some well-known time domain order reduction techniques are briefly reviewed

below:

2.3.1 Modal Analysis

This method retains the dominant Eigen values of the original system in the reduced

order models. The response of ROM and the high order response to a given input are

approximately close. The methods developed by Davison [98], Marshall [146] and
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Aoki [147] all fall in this category. The first three methods considered as particular

case of aggregation method given by Aoki. The Method proposed by Davison

involves diagonalization of system matrix and neglecting non-dominant Eigen values.

Here, all Eigen values are assumed to be distinct and the step function is taken as

the input. Aoki gave a more generalized approach based on aggregation. Gruca

and Bertrand [148] minimized the quality index function of the output vector by

introducing a delay in the output vector of the aggregated model. This approach

led to the improvement in the equality of simplified aggregated model of the system

with no increase in the order of state differential equation. Inooka and Obinata [149]

developed a technique based on combining the aggregation method and the integral

square criterion.

2.3.2 Aggregation Method

This method was introduced by Aoki [147], in this the ROM is obtained by

aggregating the HOS state vector into the lower order vector. This technique is the

most general projective technique for MOR. Aoki also designed suboptimal controller

by using aggregation matrices. Hickin and Sinha [150] verified this method by proving

the aggregation method is a generalized method and also this method is compared

with singular perturbation method [151]. Hwang [152] invented a direct method to

obtain the aggregation matrix for ROM. In this, the modified CFE method is used.

This method retains the important properties (Eigen values) of the HOS in its ROM,

which are useful in deriving the state feedback suboptimal control and analyzing

system.

2.3.3 Hankel Norm Approximation

Adamjan et al. [153] proposed this method. Later this method extended by Kung and

Lin [154] to multivariable system. Keith [155] derived the frequency response error

bounds by characterizing all the optional solutions of Hankel norm approximation

of multivariable system. A program to solve L2 reduced order problem with fixed

denominator degree was given by Krajewski et al. [31]. Convergent algorithm for L2

model order reduction was proposed by Ferrante et al. [156]. Zhou [157] introduced
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a new frequency weighted L∞ norm and optimal Hankel norm model order reduction

technique. The problem of computing an H2 optimal lower order model was dealt by

Yan and Lam [158]. Gao et al. [159] analyzed the problem of L∞ model reduction

for linear discrete time systems with delay. Model reduction problem for singular

system was investigated by Wang et al. [160]. The main advantage of this method

is that, by using full order system’s Hankel singular values [157] the priori additive

approximation error can be obtained.

This method comes under the class of additive error MOR methods and this

method guarantees the stability of the error bounds of the ROMs. Hankel norm of a

stable SISO system lies between the more conventional L2 and L∞ norms [154].This

method was further extended to include some classes of frequency weights [161]

for scalar system. The presence of weights usually reflects the desire that the

approximation be more accurate at particular frequencies. This approach was further

extended to MIMO system [162].

2.3.4 Singular Perturbation Method

Kokotovic et al. [163] proposed this technique. This method is useful for separating

the time scales in controller design of a reduced order model. This method is used

for reducing the HOS having two scale property. Two scale properties are those

in which the Eigen values are separated into two groups, called ‘fast’ and slow

modes. The reduced model is obtained by neglecting the rapid phenomena and

then improving the approximation by re-introducing their effect as boundary layer.

Fernando and Nicholson [164] further examined this approach and concluded that

this method is capable of being used with the balanced realization. In [165] Fernando

et al. introduced singular perturbation approximation for discrete and continuous

time system in the vicinity of negative real axis in complex plane. This method

retains the dominant Eigen values of original system, but non availability of slow

and fast subsystems, limits its use on a general large scale system. Later, Hote

and Jha [166] presented new reduction method using Gerschgorin theorem and

singular perturbation technique, this method identify the position of dominant and
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non-dominant eigen values.

2.3.5 Balanced Realization Approach

This method was proposed by Moore [167], this method is based on similar

diagonalization of observability diagonalization of observability grammian (Wo)

and controllability grammian (Wc) matrices using the appropriate similarity

transformations. Wo and Wc are symmetric semi definite matrices which are derived

by solving the Lyapunov equations and are used to define measures of controllability

and observability. In this method, a ROM is determined by ignoring the insignificant

states whose contribution is negligible and by considering the dominant dominant

states of the controllable and observable parts of the system, is an way of obtaining

reduced order model.

Pernebo and Silverman [168] extended this work. Samar et. al. [169] explained

the retention of DC gain of balanced truncated model for minimal systems. Lam

[170] used this method for realization of the Pade approximants. Yang et al. [171]

used balanced realization for unstable systems while Sandberg and Rontzer [172]

used balanced realization for linear time varying systems. Lastman and Sinha

[173] compared aggregation method with balanced truncation method. Agathoklis

and Sreeram [174] proposed a frequency domain model order reduction method

which was based on impulse response grammian for reducing the linear continuous

system. AI-Saggaf and Franklin [175] introduced a method based on frequency

weighing technique for discrete and continuous time systems. AI-Saggaf [176]

proposed a method for model order reduction of unstable systems based on

generalized normal representations. Prakash and Rao [177] proposed an improved

balancing model order reduction method where lower order model is obtained by

the approximating the states of weak subsystem around zero frequency. M. Ha et

al. [178] presented a reduction method by comparing balanced truncation and modal

truncation techniques for linear state-space symmetric systems. Therapos [179]

gave an approach for obtaining an internally balanced state space representation

of discrete SISO system while Gugercin and Antoulas [180] gave a survey of model
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order reduction by balanced truncation. Yousefi and Lohmann [181] presented a

method for model order reduction of nonlinear time invariant high order systems.

Krajewski et al. [182] developed a method to match the properties of reduced order

model with original system through retention of first and second order information.

Ghosh and Senroy [183] extended the balanced truncation technique to reduce

the dynamics of the power system. Meyer [184] further extended this approach to

fractional balanced reduction. Perev and Shafai [185] used the method of balanced

realization for lower order reduction of singular systems. An algorithmic approach

for controller reduction using balanced realization has been given in [186] and

for system decomposition and balanced realized model has been given in [187].

Nagar and Singh [188] gave a twostep method for reducing discrete time system.

Krajewski et al. [189] proposed a reduction method to reproduce the asymptotic

response. Kenny and Hewer [190] proposed a reduction method for balancing

unstable multivariable systems by developing necessary and sufficient condition.

Therapos [191] proposed an algorithm for unstable non-minimal linear systems using

Low frequency approximation of balancing approach for unstable systems [192].

2.3.6 Minimal Realization Algorithm

This method deals with the construction of state variable model from a given transfer

functions. Various authors have represented the construction of state variable model

from a given transfer functions. Various authors have represented the minimal

realization method using Hankel matrices. Ho and Kalman [193] gave an algorithm

for the effective construction of minimal realization of a linear system. In this

algorithm, non-minimal realization is obtained in the form of block companion matrix

using Hankel matrix and then reduce it to make both observable and controllable.

Tether [194] proposed a method in which few initial Markov parameters of the

original system are retained. Only the initial transient response of the system is

approximated through this model. Lal and Singh [195] proposed method for minimal

realization of linear time varying systems. Kumar et al. [196] proposed a generalized

reduction method using Gramian technique. Therapos [197] presented a technique
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for the computation of an internally balanced minimal realization of given stable

SISO transfer function. Rozsa and Sinha [198] proposed an efficient algorithm for

obtaining the minimal order realization of a given rational transfer function matrix.

The algorithm was further extended in [199] for obtaining minimal realization of

transfer function matrix in a canonical form. Shamash [200] extended this method for

multivariable systems. Hickin and Sinha [201] introduced a new approach which was

based on the generation of successive partial realization of high order multivariable

system in state space form. A comparative study of different minimal realization

techniques is available in [202].

2.3.7 Optimal Order Reduction

This methods is based on determining a reduced model of specified order such that

its response matches with the original HOS response in an optimum manner and also

this method has no restriction on the location of the Eigen values. In this method,

the selected performance criterion (which is the error difference between the original

and reduced order model response) is minimized. Some numerical algorithms

or the necessary conditions of optimality are used to obtain the parameters of

ROM. Anderson [203] introduced a geometric method, which is obtained based on

orthogonal projection, from this, the ROM is achieved by minimizing the error in time

domain. Sinha and Pille [204] introduced a method in which matrix pseudo inverse

is used for a least square fit with the sample of response. Sinha and Bereznai [205]

suggested a method of model order reduction using the pattern search method

given by Hooke and Jeeves [206]. Bandler et al. [207] gave the method of optimal

order reduction using gradient method, which take less computational time but

evaluation of gradient of objective function is involved. Optional order reduction

was developed by Wilson and Mishra [208], in which the approximations have been

studied for unit step and impulse responses. Krajewski et al. [209] proposed a

L2-otimal pole retention method to obtain stable reduced order models. Fortuna

and Muscato [210] presented a model reduction technique by using balanced gains

and an optimal weighted L2- norm criterion. Langholz and Bistrltz [211], Elliott and
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Wolovich [212] proposed methods for obtaining the ROM in frequency domain. This

method has been explained in [213]. Further, the applications of the reduced order

models are proposed by Nabi [214–217] in the area of nonlinear systems, SVD and

Krylov-Subspace.

2.4 INTERVAL DOMAIN ORDER REDUCTION TECHNIQUES

The above discussed reduction methods are developed for fixed coefficient transfer

functions or state space models. It is fact that designing a controller based on

fixed coefficient transfer function or state space model is often unrealistic because

the practical system parameters vary within certain interval. The model reduction

techniques and design of interval systems given in [218]- [255] which have received

a great deal of attention. Bandyopadhyay et. al. [218] extended the fixed parameter

reduction methods to deal with interval systems. In this, the reduction method is

found by using Routh-Pade approximation technique to deal with interval systems.

The reduced order denominator polynomial is achieved by Routh approximation, and

the lower-order numerator coefficients are found by the power series expansions

of the interval systems. Later the concept of γ-δ Routh approximation has been

extended to continuous interval systems by Bandyopadhyay et al. [219]. The

following are the limitations of above two Routh based approximations claimed by

Hwang and Yang [220]: (1) Interval Routh extension formula may not provide the

successes in obtaining a full interval Routh array. (2) Sometimes the interval Routh

approximation method may give unstable ROMs, even if the higher order interval

system is stable. To reduce the computational effort, γ table formulation [221] has

been introduced, instead of γ-δ table formulation [219]. However, the limitation

of this method is that, the obtained ROM may be unstable for the stable higher

order interval system. Later, Dolgin and Zehab [222] have proved that generalized

Routh approximation for interval systems may give unstable ROM. To overcome

this problem, Dolgin and Zehab [222] modified the generalized Routh array and

claimed that this method could provide stable ROMs. Later, Yang [223] proved that

Dolgin and Zehab [222] method does not guarantee the stability of the reduced
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order interval system. To overcome this problem, Dolgin [224] has proposed a

modified method of Routh algorithm for obtaining stable reduced order models. It is

noted that there is a limitation in this method, that the interval arithmetic subtraction

rule has been changed to obtain stable reduced order models. To overcome the

limitation of the existing methods [218, 219, 222, 224, 225] Bandyopadhyay et al.

[226] introduced a new method based on stable gama-delta Routh approximation

of interval systems using Kharitonov polynomials, which guarantee the stability of

the reduced order systems. However, this method does not require any interval

arithmetic rules. Another alternative method has been proposed to overcome the

limitation of the gama-delta Routh approximation, which is based on stable Routh

Pade approximation [227]. Bandyopadhyay et al. [218] and Shingare [228] extended

some fixed model reduction techniques to interval systems. The above methods give

us motivation to propose new techniques for reduction of interval systems.

In recent years many researchers are focusing on mixed method techniques

of interval systems. Saraswathi et al. [229] proposed a method based on Eigen

spectrum analysis for the reduction of denominator coefficients and for numerator

reduction Pade approximation is used. The Eigen spectrum method provides

the Eigen values of the reduced order interval systems by preserving some of

the characteristics such as stiffness and centroid of the higher order interval

systems. While the reduced order numerator coefficients are obtained by using

Pade approximation, this method preserves some of the time moments and Markov

parameters. In this method the Eigen values are achieved by using [230]. Later,

Selvaganesan [231] introduced a mixed method. In which the reduced order

denominator is obtained by generalized Routh table and reduced order numerator

polynomial is obtained by factor division algorithm method and gain factor is used

for minimizing the steady state error. The main drawback of this method is that,

the generalized Routh table for obtaining reduced order denominator may fails to

produce stable ROMs. Recently, Saini and Prasad [232] applied genetic algorithm

technique to interval systems but the denominator reduction polynomial is reduced

by generalized Routh array, which fails to obtain stable reduced order models, proved
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by Dolgin abd Zeheb [222]. Later, Yan Zhe et al. [233] extended genetic algorithm for

reduction of MIMO interval systems. Further, Potturu and Prasad [234] proposed

stable mixed reduction methods by using differentiation method, factor division

algorithm and Pade approximation method based on interval arithmetic operations.

Recently , many stable reduction methods were developed for linear interval systems

using Kharitonov’s theorem are presented in [233,236–239] to obtain stable ROMs.

A number of order reduction methods are developed in the area of continuous

interval systems, but very limited number of reduction techniques are extended to

the discrete-time interval systems [240–246, 248]. O. Ismail et al. [241] proposed a

discrete interval reduction method using Pade approximation and dominant poles.

The reduced order denominator is obtained by using retention of dominant poles of

the original system, while the numerator is obtained by using Pade approximation

method by matching the time-moments. Later Choo et al. [243] proposed a model

reduction method for discrete-time interval systems. This method preserves desired

real dominant poles by overcoming the stability problems in [241]. Recently, Singh

and Chandra [244, 245] proposed a order reduction technique for discrete-time

interval systems, in which the reduced order denominator is determined by retaining

dominant poles while the numerator coefficients are determined by matching time

moments of the original HOS. Sastry et al. [221] proposed a simplified Routh

approximation method (SRAM) for order reduction of interval models by preserving

the initial time moments of the higher-order interval systems. Papa and Babu [246],

proposed model reduction of discrete interval systems by differentiation technique.

Choudhary and Nagar [247], proposed gamma-delta approximation for reduction of

discrete-time interval systems. Kiran and Sastry [248] applied least square method

to deal with discrete interval systems.

Classical control system design techniques are used for fixed plant transfer

functions which are well known for engineers. Since last few decades much attention

has been devoted to interval systems. The Kharitonov proposed a celebrated

theorem which deal with interval systems. This famous Kharitonov theorem [8, 10]

provided lot of scope to deal with interval systems and its robust stability. Later these

30



ideas have been extended to frequency response representations such as Bode and

Nyquist plots for interval plant transfer functions. Nowadays, much attention given

for formulation of P, PI and PID controllers to stabilize an interval plant [249]. Tan

and Atherton [250] discussed the robust stability and controller design of uncertain

systems with various forms of uncertain polynomial structures. Later, Smagina and

Brewer [251] proposed a technique to deal with multivariabe dynamic systems. In

which a P, PI regulator has been designed for the uncertain parameters in the state

space model. Huang and wang [252] developed a controller to stabilize the four

Kharitonov polynomials simultaneously. Here, the controller is designed by searching

the non-conservative Kharitonov regions in the controller parameters plane through

graphically and systematically. Later, Pujara and Roy [253] proposed technique

based on the ‘Polytype Algorithm’ to compute first order and higher order stabilizing

controller for SISO interval systems. Tan et al., [254] proposed a method based

on plotting stability boundary locus in the (Kp, Ki) plane and then computing the

stabilizing values of the parameters of PI controller. The advantage of this technique

is that, it does not require to swap over the parameters and also does not need linear

programing to solve set of inequalities. Irrespective of stabilization, this method shift

all poles to the left half plane, this guarantees the stability of the ROM. Babu and

pappa [255] presented a hybrid algorithm using Particle Swarm Bacterial Foraging

Optimization (PSO-BFO)to find optimum PID controller parameters Kp, Ki and Kd.

The best possible optimum PID controller values are obtained by ISE criterion. In

this, the controller parameters are obtained for ROM, after that, HOS has been

tested.

The analysis, stability and controller design for parametric uncertain systems

largely ignored till 1980’s. Due to fact that, there were no general theories

which could give information to analyze or design a control systems with uncertain

parameters. After that, Kharitonov [8] proposed a famous Kharitonov’s theorem to

deal with uncertain systems, this theorem filled huge gap in the area of uncertain

systems. This Kharitonov’s theorem gives robust stability information of the uncertain

systems by checking four Kharitonov polynomials. Later, Barmish [257] simplified

31



this method by giving simple proofs of the Kharitonov’s theorem for both continuous

and discrete interval systems [257]- [274]. An alternative method developed by

Anderson et al. [256], shown the simplified way to find the robust stability for interval

systems. If the order of the system is more then or equal to five then the four

Kharitonov polynomials must be checked other wise not required to check all four

polynomials. Later, Hote et al. [270] proved that Anderson et al. [256] method

cannot be applicable to relative stability analysis. This method gives the information

about the relative stability of gain margin and phase margin without using graphical

approach. Finally, graphical approach for investigation of robust stability for discrete

interval systems has been developed [271–274].

Different tool box is available for the analysis of interval systems [275–277]. Tan

and Atherton [275] developed a software package AISTK for analysis of the interval

systems. The INTLAB has been developed to deal with the interval arithmetic

operations. This software powerful tool to deal with uncertain systems, this package

also developed for MATLAB environment.
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CHAPTER 3

NEW COMPOSITE TECHNIQUES FOR REDUCED

ORDER MODELLING: CONVENTIONAL SYSTEMS

APPROACH

3.1 INTRODUCTION

In preceding chapter, various model order reduction techniques have been discussed

in frequency domain. It is observed that, all the reduction methods have their own

merits and demerits and can be best applied in a specific situation. A common

limitation of some of the model order reduction methods is that, even though the

original higher order system is stable the reduced order model turn out to be unstable

[19, 20, 25, 26]. The other drawback of the reduction methods is that they have

low accuracy in the mid and high frequency ranges and may exhibit non minimum

phase characteristics [36, 41]. Therefore, obtaining an approximate ROMs from the

original higher order systems is a major challenge in the field of control systems

due to various issues such as stability, large in system dimensionality, good time

and frequency response matching etc. In this chapter some new mixed reduction

methods have been proposed in the frequency domain for the linear continuous-time

invariant systems.

3.2 PROBLEM STATEMENT

3.2.1 Single Input Single Output (SISO) Systems

Let us consider an nth order higher-order system transfer function is represented as,

G (s) =
N (s)

D (s)
=
a0 + a1s+ a2s

2 + · · ·+ an−1s
n−1

b0 + b1s+ b2s2 + · · ·+ bnsn
(3.1)

Where a0, a1, · · · , an−1 and b0, b1, · · · , bn are the known numerator and

denominator coefficients of high order system (HOS). Our objective is to compute
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an kth (k < n) order reduced model transfer function as given below,

R (s) =
n (s)

d (s)
=
e0 + e1s+ e2s

2 + · · ·+ ek−1s
k−1

d0 + d1s+ d2s2 + · · ·+ dksk
(3.2)

Where e0, e1, · · · , ek−1 and d0, d1, · · · , dk are the unknown numerator and

denominator coefficients of reduced order model.

3.2.2 Multiple Input Multiple Output (MIMO) System

Consider an nth order transfer matrix represented as

[G (s)] =
1

Dn (s)


A11 (s) A12 (s) · · · A1n (s)

A21 (s) A22 (s) · · · A2n (s)
...

...
...

...

Am1 (s) Am2 (s) · · · Amn (s)

 (3.3)

Or [G (s)] = [gij (s)],

where gij (s) can be written as [gij (s)] = [Aij (s)]/Dn (s), where i =

1, 2, · · · ,m ; j = 1, 2, · · · , n.

The goal is to obtain lower kth order transfer matrix

[R (s)] =
1

Dk (s)


E11 (s) E12 (s) · · · E1p (s)

E21 (s) E22 (s) · · · E2p (s)
...

...
...

...

Eq1 (s) Eq2 (s) · · · Eqp (s)

 (3.4)

Or [R (s)] = [rij (s)]

where rij (s) can be written as [rij (s)] = [Eij (s)]/Dk (s), where i =

1, 2, · · · , q ; j = 1, 2, · · · , p.

3.3 MODEL REDUCTION USING MODIFIED TIME MOMENT

MATCHING METHOD

A new reduction technique is presented to obtain lower order models from

higher-order systems. The presented technique is based on combining the

time moment matching (TMM) [21, 60] method and straightforward mathematical

34



technique as explained in the proposed methodology. The lower order denominator

coefficients are achieved by TMM technique and the lower order numerator terms are

found by straightforward mathematical technique. This technique is computationally

simple and provides stable reduced order models. The proposed technique is

examined with popular numerical examples and compared with the help of error

indices such as ISE, IAE, ITSE and ITAE. The performance indices [75, 278] are

defined as follows,

ISE =

∞∫
0

[y (t)− yk (t)]2dt (3.5)

IAE =

∞∫
0

|y (t)− yk (t)| dt (3.6)

ITSE =

∞∫
0

t[y (t)− yk (t)]2dt (3.7)

ITAE =

∞∫
0

t |y (t)− yk (t)| dt (3.8)

Where y (t) and yk (t) are the original and ROM responses respectively.

The kth order ROM is achieved from the nth order original system by following the

below procedural steps:

Step 1: Procedure for obtaining lower order denominator,

Step 1.1: Equation (3.9) is obtained by dividing coefficients of numerator and

denominators of eq. (3.1) with b0

G (s) =
a0
b0

+ a1
b0
s+ a2

b0
s2 + · · ·+ an−1

b0
sn−1

1 + b1
b0
s+ b2

b0
s2 + · · ·+ bn

b0
sn

(3.9)

Equation (3.9) is rewritten as follows,

G (s) =
p21 + p22s+ p23s

2 + · · ·+ p2n−1s
n−1

1 + p12s+ p13s2 + · · ·+ p1nsn
(3.10)
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Step 1.2: Equation (3.10) is arranged in the array form as following

c0 =

c1 =

c2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p12 p13 · · ·

p21 p22 p23 · · ·

p31 p32 p33 · · ·

p41 p42 p43 · · ·
...

...
...

(3.11)

The first and second rows of eq. (3.11) are formed from the denominator and

numerator coefficients of eq. (3.10) and the remaining rows are constructed by using

eq. (3.12),

px,y = px−1,1p1,y+1 − px−1,y+1 (3.12)

where x = 3, 4, 5, · · · and y = 1, 2, 3, · · ·

Step 1.3: The time-moments are obtained by expanding G (s) as given below,

G (s) =
∞∑
i=0

cis
i (3.13)

where ci = (−1)ipj,1 for j = 2, 3, 4, 5 · · ·

From the below coefficient matrix eq. (3.14) the initial time moments are achieved

for reduced order models

c0

c1

c2
...

cm

cm+1

cm+2

...

cm+k



=



0 0 · · · 0 0 0 · · · 0

−c0 0 · · · 0 0 0 · · · 0

−c1 −c0 · · · 0 0 0 · · · 0
...

... . . . ...
...

... . . . ...

−cm−1 −cm−2 · · · 0 0 0 · · · 0

−cm −cm−1 · · · c0 · · · 0

−cm+1 −cm · · · −c1 −c0 · · · 0
... . . . ...

...

−c0 0 0

−cm+k−1 −cm+k−2 · · · −c1 −c0 0



×



q12

q13

q14
...

q1k

0

0
...

0



+



q21

q22

q23
...

q2,k−1

0

0
...

0


(3.14)
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The coefficient matrix eq. (3.14) is partitioned into submatrices and its dimensions

are, c11 = (m+ 1)× k; c12 = (m+ 1)× (m+ 1) ; c21 = k × k and c22 = k × (m+ 1) ĉ1

ĉ2

 =

 c11 c12

c21 c22

×
 q̂1

0

+

 q̂2

0

 (3.15)

Step 1.4: The reduced order denominator polynomial is obtained as follows,

[q̂1] = [c21]
−1 [ĉ2] = 1 + q12s+ q13s

2 + · · ·+ q1ks
k (3.16)

The required reduced order denominator is written as

d (s) = d0 + d1s+ d2s
2 + · · ·+ dks

k (3.17)

Step 2: The procedure for obtaining lower order numerator is,

Step 2.1: Equate both original system eq. (3.1) and the reduced order model eq.

(3.2) as follows,

a0 + a1s+ a2s
2 + · · ·+ an−1s

n−1

b0 + b1s+ b2s2 · · ·+ bnsn
=
e0 + e1s+ e2s

2 + · · ·+ ek−1s
k−1

d0 + d1s+ d2s2 · · ·+ dksk
(3.18)

Step 2.2: The k number of unknown numerator parameters are obtained by cross

multiplying eq. (3.18) and comparing like powers of s as given below

a0d0 = b0e0

a0d1 + a1d0 = b0e1 + b1e0

a0d2 + a1d1 + a2d2 = b0e2 + b1e1 + b2e0
...


(3.19)

By solving eq. (3.19) the required reduced order numerator coefficients are

obtained, the reduced numerator polynomial is,

n (s) = e0 + e1s+ e2s
2 + · · ·+ ek−1s

k−1 (3.20)

3.3.1 Numerical Examples and results

To show the effectiveness and powerfulness of the proposed reduction method we

considered standard SISO/MIMO systems which are available in the literature. The

first example is solved in detail, whereas in the remaining examples the reduced

order models are mentioned directly. The results are compared in terms of system

response and performance indices.
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3.3.1.1 Single Input Single Output Systems

Example 3.1: The 4th order original system represented in transfer function [279]

G (s) =
28s3 + 496s2 + 1800s+ 2400

2s4 + 36s3 + 204s2 + 360s+ 240
(3.21)

Step 1: By dividing numerator and denominators of eq. (3.21) with 240 we can

get the following transfer function,

G (s) =
0.1167s3 + 2.067s2 + 7.5s+ 10

0.008333s4 + 0.15s3 + 0.85s2 + 1.5s+ 1
(3.22)

Step 1.2: The time-moments are obtained by using eq. (3.10)-(3.13) as follows,

c0 = (−1)0a21 = 10; c1 = (−1)1a31 = −7.5; c2 = (−1)2a41 = 4.817; c3 =

(−1)3a51 = −2.2338

Step 1.3: The desired reduced order denominator is achieved by following eq.

(3.14)-(3.17),  d1

d2

 =

 −c1 −c0
−c2 −c1

−1  c2

c3

 =

 1.70618

0.79797


Therefore

Dr (s) = 1 + 1.70618s+ 0.79797s2 = s2 + 2.13815s+ 1.25317

Step 2: The required reduced order numerator polynomial is obtained by

following eq. (3.18)-(3.20),

Nr (s) = 11.9827s+ 12.5317

Finally, the desired reduced order model is obtained as,

R (s) =
11.9827s+ 12.5317

s2 + 2.13815s+ 1.25317

Figures 3.1 and 3.2 show the comparison of step and bode diagram responses

of original and reduced order models for Example 3.1. From this it is observed

that, the proposed reduced model gave close approximation with the original system

response. Further, the performance of the proposed method validated in terms of
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ISE, IAE, ITSE and ITAE values by comparing with other reduction methods which

are tabulated in Table 3.1. From this, it is noticed that, the proposed method exhibits

less error compared to other reduction techniques.

Example 3.2: The 8th order original system represented in transfer function as

[280]

G8 (s) =
40320 + 185760s+ 222088s2 + 122664s3 + 36380s4 + 5982s5 + 514s6 + 18s7

40320 + 109584s+ 118124s2 + 67284s3 + 22449s4 + 4536s5 + 546s6 + 36s7 + s8

The desired ROM is obtained by using proposed method,

R2 (s) =
15.08999s+ 4.81695

s2 + 5.9894s+ 4.81695

The time and frequency responses of proposed model is compared with original

model and other reduced order models Afzal [280] and Amit [281] which are shown in

Figures 3.3 and 3.4 for Example 3.2. From this it is clear that, the proposed method

provided close approximation with the original system response. Further, to show the

effectiveness of the proposed technique, error indices are measured and compared

with some other reduction methods and are displayed in Table 3.2. It is observed

that, the presented technique gave least error value.

Example 3.3: the 8th order original system represented in transfer function as [92]

G8 (s) =
35s7 + 1086s6 + 13285s5 + 82402s4 + 278376s3 + 511812s2 + 482964s+ 194480

s8 + 33s7 + 437s6 + 3017s5 + 11870s4 + 27470s3 + 37492s2 + 28880s+ 9600

The reduced order model obtained by proposed technique,

R (s) =
39.13413s+ 9.54126

s2 + 2.179005s+ 0.47098

The reduced order model obtained by Krishnamurthy [92]

R (s) =
334828.5s+ 194480

20123.7s2 + 18116.2s+ 9600

The time and frequency responses of proposed model is compared with original

model and Krishnamurthy method [92] for Example 3.3 are shown in Figure 3.5 and

3.6 respectively. From this it is observed that, the responses of the ROM obtained by

the proposed method gave much closer approximation with HOS compared to [92].

Further, the error indices values are also depicted in Table 3.3. It is observed that,

the presented technique exhibits the less error compared to [92].
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Fig. 3.1: Step response comparisons for Example 3.1.
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Fig. 3.2: Bode response comparisons for Example 3.1.
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Fig. 3.3: Time response comparisons for Example 3.2.
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Fig. 3.4: Frequency response comparisons for Example 3.2.
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Table 3.1: ISE, IAE, ITSE and ITAE comparison of ROMs for Example 3.1.

Reduction Methods Transfer Function ISE IAE ITSE ITAE

Proposed method R (s) = 11.9827s+12.5317
s2+2.13815s+1.25317

0.00137 0.0636 0.00506 0.511

B. Viswakarma [279] R (s) = 2.8863s+51.4892
s2+4.15032s+5.14892

0.3379 0.8598 1.016 1.724

T.N.Lucas [118] R (s) = 30s+40
3s2+6s+4

0.034 0.3147 0.1114 1.184

Narwal [140] R (s) = 9.6686s+28.9503
s2+3.1144s+2.8953

0.02001 0.2012 0.1012 0.832

Table 3.2: ISE, IAE and ITAE comparison of ROMs for Example 3.2.

Reduction Methods Transfer Function ISE IAE ITAE

Proposed model R (s) = 15.08999s+4.81695
s2+5.9894s+4.81695

1.967× 10−4 0.0223 0.0761

Afzal et al. [280] R (s) = 16.504s+5.462
s2+6.197s+5.462

1.390× 10−2 0.1971 0.384

S. Afzal [282] R (s) = 16.92s+5.263
s2+6.893s+5.262

7.2610× 10−4 0.0397 0.1842

S. Biradar et al. [283] R (s) = 3.1084s+1.0005
0.2075s2+1.2434s+1

3.8124× 10−4 0.0743 0.1643

Amit [281] R (s) = 15.6184s+5.0748
s2+6.0306s+5.0748

5.509× 10−4 0.0663 0.2038

Vishwakarma [284] R (s) = 16.51145s+5.45971
s2+6.19642s+5.45971

1.406× 10−2 0.2366 1.3471

Abu Al Nadi [285] R (s) = 17.0989s+5.0742
s2+6.9722s+5.1514

3.01× 10−3 0.0982 0.7192

Bansal et al. [286] R (s) = 17.387s+5.3743
s2+7.091s+5.3743

8.50× 10−4 0.0507 0.2057

Parmar et al. [136] R (s) = 24.11429s+8
s2+9s+8

4.8090× 10−2 0.1523 0.3891

Mukherjee et al. [287] R (s) = 11.3909s+4.4357
s2+4.2122s+4.4357

5.6897× 10−2 0.3359 0.9475

Mittal et al. [288] R (s) = 7.0908s+1.9906
s2+3s+2

0.2689 0.4743 1.21

Table 3.3: Performance indices comparison for Example 3.3.

Reduction method ISE IAE ITSE ITAE

Proposed method 0.587 1.23 1.81 2.658

Krishnamurthy [92] 16.92 5.65 73.9 40.1
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Fig. 3.5: Time response comparisons for Example 3.3.
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Fig. 3.6: Frequency response comparisons for Example 3.3.
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3.3.1.2 Multiple Input Multiple Output System

Example 3.4: Further, the proposed method is extended to MIMO systems by direct

application of SISO method on various elements of transfer function matrix of MIMO

system. The 6th order MIMO higher-order model [280] represented in transfer matrix

form is given as,

[G (s)] =

 2(s+5)
(s+1)(s+10)

(s+4)
(s+2)(s+5)

(s+10)
(s+1)(s+20)

(s+6)
(s+2)(s+3)


= 1

D6(s)

 h11 (s) h12 (s)

h21 (s) h22 (s)


Where

D6 (s) = (s+ 20) (s+ 10) (s+ 5) (s+ 3) (s+ 2) (s+ 1)

= 6000 + 13100s+ 10060s2 + 3491s3 + 571s4 + 41s5 + s6

and
h11 (s) = 6000 + 7700s+ 3610s2 + 762s3 + 70s4 + 2s5

h12 (s) = 2400 + 4160s+ 2182s2 + 459s3 + 38s4 + s5

h21 (s) = 3000 + 3700s+ 1650s2 + 331s3 + 30s4 + s5

h22 (s) = 6000 + 9100s+ 3660s2 + 601s3 + 42s4 + s5

The reduced second order models obtained by the proposed technique and other

methods are given in Table 3.4. The ISE values of second order model have been

compared with other reduction methods [112,140,280,282,283] which are displayed

in Table 3.4 for Example 3.4. From this it is observed that, the proposed technique

gave lowest ISE value compared to other well-known reduction methods. Further,

the accurate approximation of this method also shown in Figures 3.7 and 3.8 through

step and bode diagram responses.

Example 3.5: Consider a MIMO model with real and complex poles which is

Phillips-Heffron model of Single-Machine Infinite Bus Power System [289]. The 10th

order transfer matrix of practical power system is given as follows

[G (s)] =
1

D10 (s)

 H11 (s) H12 (s)

H21 (s) H22 (s)
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Fig. 3.7: Step response comparison of MIMO system (a) r11 (s) (b) r12 (s) (c)

r21 (s) (d) r22 (s) for Example 3.4.
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r12 (s) (c) r21 (s) (d) r22 (s) for Example 3.4.
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Where

D10 (s) = s10 + 64.21s9 + 1596s8 + 1.947× 104s7 + 1.268× 105s6 + 5.036× 105s5

+1.569× 106s4 + 3.24× 106s3 + 4.061× 106s2 + 2.905× 106s+ 2.531× 105

and
H11 (s) = −2298s5 − 9.845× 104s4 − 1.376× 106s3 − 6.838× 106s2

−6.101× 106s− 5.43× 105

H12 (s) = 29.09s8 + 1868s7 + 4.61× 104s6 + 5.459× 105s5 + 3.185× 106s4

+8.703× 106s3 + 1.206× 107s2 + 7.606× 106s+ 6.483× 105

H21 (s) = 85.23s7 + 3651s6 + 5.208× 104s5 + 2.98× 105s4 + 8.472× 105s3

+3.105× 106s2 + 2.752× 106s+ 2.45× 105

H22 (s) = −1.26s8 − 85.18s7 − 2089s6 − 2.568× 104s5 − 1.909× 105s4

−7.123× 105s3 − 1.084× 106s2 − 2.972× 105s− 1.942× 104

The reduced order models of the presented technique and other reduction methods

are presented in Table 3.5. Also to demonstration the competitiveness of the

proposed reduced model the ISE values are measured and compared with other

reduction methods GA [289] and IWO [290] which are displayed in Table 3.5 for

Example 3.5. It is observed that, the presented method gave least ISE values

compared to some other reduction methods. Further, the accurate approximation

of this method also shown in Figure 3.9 by comparison through time responses.
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Fig. 3.9: Time response comparison of MIMO system (a) r11 (s) (b) r12 (s) (c)

r21 (s) (d) r22 (s) for Example 3.5.
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Table 3.4: ISE comparison of ROMs for Example 3.4.

Reduction methods
R11 (s) R12 (s)

Transfer function ISE Transfer function ISE

Proposed method 2.055201s+10.61571
s2+11.60934s+10.61571

1.863× 10−9 1.0492s+6.1538
s2+9.54615s+15.3846

1.003× 10−8

A.Sikander et al. [280] 1.0546s+3.65079
s2+4.3374s+3.65079

2.02× 10−3 1.0778s+1.4603
s2+4.3374s+3.65079

1.097× 10−3

A.Narwal et al. [140] 1.3276s+3.0962
s2+4.0965s+3.0965

3.802× 10−5 1.0447s+1.2444
s2+4.0965s+3.0965

8.779× 10−6

A.Sikander et al. [282] 0.7938s+0.6181
s2+1.34952s+0.6181

0.00167 0.4272s+0.2471
s2+1.34952s+0.6181

9.5814× 10−3

Amit et al. [112] 0.8930s+0.6181
s2+1.3495s+0.6181

0.00112 0.4517s+0.2472
s2+1.3495s+0.6181

7.312× 10−3

S. Biradar et al. [283] 0.2023s+1
0.10224s2+1.10237s+1

7.9115× 10−7 0.10084s+0.4
0.10097s2+0.7021s+1

1.2766× 10−8

R21 (s) R22 (s)

Proposed method 0.7622s+5.3078
s2+11.6093s+10.6157

9.331× 10−9 1.0282s+5.5096
s2+4.7013s+5.5096

5.23× 10−8

A.Sikander et al. [280] 0.43458s+1.8253
s2+4.3374s+3.65079

4.27× 10−4 1.9035s+3.6507
s2+4.3374s+3.65079

6.107× 10−3

A.Narwal et al. [140] 0.6116s+1.5480
s2+4.0965s+3.0965

7.585× 10−6 1.7815s+3.0960
s2+4.0965s+3.0965

5.969× 10−4

A.Sikander et al. [282] 0.3795s+0.309
s2+1.34952s+0.6181

3.122× 10−3 0.9338s+0.6181
s2+1.34952s+0.6181

2.0033× 10−2

Amit et al. [112] 0.4314s+0.3091
s2+1.3495s+0.6181

1.942× 10−3 1.0579s+0.6181
s2+1.3495s+0.6181

1.117× 10−2

S. Biradar et al. [283] 0.05025s+0.5
0.05052s2+1.0505s+1

5.6205× 10−9 0.1676s+1
0.1673s2+0.8343s+1

8.4009× 10−8

Table 3.5: ISE comparison of reduced order models for Example 3.5.

Reduction method
R11 (s) R12 (s)

Transfer function ISE Transfer function ISE

Proposed method −7.556s2−21.48s−2.145
7.175s3+6.678s2+10.25s+1

1.395 12.89s2+26.94s+2.561
2.31s3+2.785s2+10.26s+1

2.53

GA [289] 7.4s2−24s−2.3
s3+0.5785s2+10.5690s+1.0532

21.52 0.6250s2+28.9013s+2.6745
s3+0.5785s2+10.5690s+1.0532

0.6402

IWO [290] 2.671s2+0.232s−8.939
s3+0.5789s2+10.57s+1.053

1065 −0.8361s2+11.45+9.147
s3+0.5789s2+10.57s+1.053

1032

R21 (s) R22 (s)

Proposed method 4.486s2+9.737s+0.968
6.647s3+7.718s2+10.3s+1

0.0572 −3.403s2−1.112s−0.07673
4.882s3+7.657s2+10.67s+1

0.0802

GA [289] −0.6161s2+7.95482s+1.03278
s3+0.5785s2+10.5690s+1.0532

2.93 −1.5073s2−2.9999s−0.0808
s3+0.5785s2+10.5690s+1.0532

0.2697

IWO [290] 2.643s2+2.773s−0.3753
s3+0.5789s2+10.57s+1.053

63.59 −1.883s2+7.123s+1.292
s3+0.5789s2+10.57s+1.053

56.48
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3.4 MODEL REDUCTION USING FACTOR DIVISION ALGORITHM

AND DIFFERENTIATION METHOD

In this section, new reduction technique is proposed for order reduction of large

scale systems. This method is based on combination of factor division algorithm

(FDA) [118] and differentiation method (DM) [93]. The denominator polynomial

of the ROM is obtained by using differentiation method while the reduced order

numerator polynomial is achieved by using factor division algorithm. The proposed

technique has been compared in terms of error indices (ISE, IAE, ITSE, and ITAE).

The proposed technique explained in two steps as follows.

Step 1: The denominator coefficients of reduced order model eq. (3.2) is

achieved by using DM

Dn−r (s) = Dn (s)− s

n
D′n (s) (3.23)

Where n is order of the denominator polynomial

Differentiate eq. (3.23) into (n − r) times to obtain the required reduced order

denominator as

d (s) = d0 + d1s+ d2s
2 + ...+ drs

r (3.24)

Step 2: The reduced order numerator polynomial eq. (3.2) is determined by

using FDA

The G (s) may be taken as,

Gn (s) =
N (s) d (s) /D (s)

D (s)
(3.25)

The numerator polynomial may be written as follows,

N (s) =
N (s) d (s)

D (s)
=
f0 + f1s+ f2s

2 + f3s
3 + ...

b0 + b1s+ b2s2 + b3s3 + ...
(3.26)

From eq. (3.26) the reduced order numerator is obtained by following Routh
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recurrence formula as given below,

e0 = f0
b0

〈 f0 f1 f2 f3 · · ·

b0 b1 b2 b3 · · ·

e1 = q0
b0

〈 q0 q1 q2 q3 · · ·

b0 b1 b2 b3 · · ·
...

er−2 = u0
b0

〈 u0 u1

b0 b1

er−1 = v0
b0

〈 v0

b0

(3.27)

where
qi = fi+1 − e0bi+1; i = 0, 1, 2, · · ·

ui = qi+1 − e1bi+1; i = 0, 1, 2, · · ·

· · ·

v0 = u1 − er−2b1

The required reduced order numerator polynomial is obtained as,

n (s) = e0 + e1s+ e2s
2 + · · ·+ er−1s

r−1 (3.28)

3.4.1 Numerical Examples and Results

To show the efficacy and powerfulness of the proposed reduction method we

considered some popular SISO/MIMO systems. The first example solved in detail,

whereas in the remaining examples the reduced order models are mentioned directly.

The results are compared in terms of system responses, and performance indices.
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3.4.1.1 Single Input Single Output Systems

Example 3.6: Consider the 3rd order system described by the transfer function [145]

G(s) =
N(s)

D(s)
=

8s2 + 6s+ 2

s3 + 4s2 + 5s+ 2

Step 1: The reduced order denominator is determined by following eq.

(3.23)-(3.24)

d(s) = 4s2 + 10s+ 6

Step 2: The numerator polynomial of reduced order model obtained by following

eq. (3.25)-(3.28)

n (s) = e0 + e1s = 6 + 13s

Finally, the required reduced order model is obtained as,

R2(s) =
13s+ 6

4s2 + 10s+ 6

The step and Nyquist responses of original system and reduced order models of

proposed method and other reduction methods for Example 3.6 are shown in Figures

3.10 and 3.11. Further, The ISE, IAE, ITSE and ITAE for different reduction method

comparisons are tabulated in Table 3.6. In Table 3.6, the proposed method exhibits

less error compared to other methods.

Table 3.6: Performance indices comparison of ROMs for Example 3.6

Reduction methods Transfer Function ISE IAE ITSE ITAE

Proposed Method R2(s) = 13s+6
4s2+10s+6

0.124 0.7998 0.4998 3.165

Chen [58] R2(s) = 6s+2
4s2+5s+2

0.264 1.199 1.25 5.676

Pal [145] R2(s) = 1.375s+0.5
s2+1.125s+0.5

0.3 1.248 1.407 5.779

Y.Shamash [86] R2(s) = 6s+2
4s2+5s+2

0.264 1.199 1.25 5.676
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Fig. 3.10: Step response comparison for Example 3.6.

Fig. 3.11: Nyquist response comparison for Example 3.6.
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Example 3.7: The 5th order original system described by transfer function [291]

G5 (s) =
s4 + 7s3 + 42s2 + 142s+ 156

s5 + 25s4 + 258s3 + 930s2 + 1441s+ 745

The desired ROM is achieved by using FDA and DM is

R2(s) =
1501.2357s+ 9359.7315

5580s2 + 49284s+ 44700

The comparison of step and bode Nyquist responses of original system and

reduced order models proposed technique and other reduction methods are shown

in Figures 3.12 and 3.13 for Example 3.7. The accuracy of the proposed method

measured in terms of ISE, IAE, ITSE and ITAE, and are depicted in Table 3.7.

From this, it is clearly observed that, the proposed method results in more accurate

approximation with the original system compared to other methods.

Table 3.7: Performance indices comparison of proposed and other reduction

methods for Example 3.7.

Reduction Methods Transfer function ISE IAE ITSE ITAE

Proposed method R(s) = 1501.2357s+9359.7315
5580s2+34584s+44700

0.0009023 0.04952 0.002753 0.136

Sikander [282] R(s) = 0.007s+156
909.5238s2+1441s+745

0.007363 0.1416 0.02254 0.3485

Gutman et al. [93] R(s) = 2130.041s+9360.18
5580s2+34584s+44700

0.001001 0.05189 0.003049 0.147

Krishnamurthy [92] R(s) = 133.0285s+156
770.2174s2+1197.6291s+745

0.00091 0.05591 0.002971 0.1753

3.4.1.2 Multiple Input Multiple Output System

Example 3.8: Consider a 6th order MIMO system as mentioned in Example 3.4 in

section 3.3.1.2 The reduced order transfer matrix is obtained by proposed method

given as,

R2 (s) =

 12000s+ 2160000 240000s+ 864000

11345s+ 1080000 132000s+ 2160000


241440s2 + 1572000s+ 2160000
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Fig. 3.12: Step response comparison for Example 3.7.

Fig. 3.13: Nyquist response comparison for Example 3.7.
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The reduced order model is obtained by Parmar et al. [136] is

R2 (s) =

 0.8503s+ 0.6171 0.4617s+ 0.2466

0.4093s+ 0.3086 0.9977s+ 0.6171


s2 + 1.34952s+ 0.6181

The reduced order model is obtained by Parmar et al. [292] is

R2 (s) =

 6.0429s+ 8.4707 3.9419s+ 3.3883

2.8097s+ 4.2354 8.0195s+ 8.4707


s2 + 13.6666s+ 8.4707

Figures 3.14 and 3.15 show the comparison of time and frequency responses

of original and reduced order models for Example 3.8. From this it is clear that the

proposed method gave better approximation with original system response. Further,

the proposed method is validated with ISE, IAE, ITSE and ITAE values by comparing

with other well-known reduction methods shown in Table 3.8. It is observed that, the

presented method gave quit comparable results with other reduction methods.

Table 3.8: Performance indices comparison of different reduction methods for

Example 3.8.

Reduction Method
ISE

R11 (s) R12 (s) R21 (s) R22 (s)

Proposed Method 0.01518 2.837× 10−8 0.003094 3.221× 10−5

Sikander [282] 0.01672 9.5814× 10−3 0.003122 2.1683× 10−2

Parmar et al. [136] 0.1471 0.0884 0.0258 0.1598

Parmar et al. [292] 0.225 0.0682 0.0613 0.678
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Fig. 3.14: Time response comparison of MIMO system (a) r11 (s) (b) r12 (s) (c)

r21 (s) (d) r22 (s) for Example 3.8.

Fig. 3.15: Frequency response comparison of MIMO system (a) r11 (s) (b) r12 (s)

(c) r21 (s) (d) r22 (s) for Example 3.8.
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3.5 MODEL REDUCTION USING PADE APPROXIMATION AND

DIFFERENTIATION METHOD

In this section, new model order reduction method is presented for order reduction

of original systems. This technique is based on combination of Pade approximation

(PA) [36, 40] and differentiation method (DM) [93]. The denominator coefficients

of the ROM is obtained by using differentiation method while the reduced order

numerator polynomial is determined by using Pade approximation. The presented

technique has been compared with error indices (ISE, IAE, ITSE, and ITAE). The

proposed technique explained in two steps as follows.

Step 1: The reduced order denominator polynomial in eq. (3.2) is obtained by

using DM

Dn−r (s) = Dn (s)− s

n
D′n (s) (3.29)

Where n is order of the denominator polynomial

Differentiate eq. (3.29) into (n − r) times to obtain the required reduced order

denominator as

d (s) = d0 + d1s+ d2s
2 + ...+ drs

r (3.30)

Step 2: The reduced order numerator polynomial in eq. (3.2) is determined by

using PA

Equation eq. (3.1) is written as,

N(s)

D(s)
=
a0 + a1s+ a2s

2 + ...+ an−1s
n−1

b0 + b1s+ b2s2 + ...+ bnsn
= c0 + c1s+ c2s

2 + ... (3.31)

We have the following set of linear simultaneous equations,

a0 = b0c0

a1 = b0c1 + b1c0

· · ·

an−1 = b0cn−1 + b1cn−2 + · · ·+ bn−1c0


(3.32)

The general form is as follows

ci =
1

b0
(ai −

i∑
j=1

bjci−1)i > 0(∴ ai = 0ifi > n− 1) (3.33)
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The required reduced order numerator polynomial is obtained as,

n (s) = e0 + e1s+ e2s
2 + · · ·+ er−1s

r−1 (3.34)

where
e0 = b0c0

e1 = b0c1 + b1c0

...

3.5.1 Numerical Examples and Results

To show the efficacy and powerfulness of the proposed reduction method we

considered some popular SISO/MIMO systems. The first example solved in detail,

whereas in the remaining examples the reduced systems are mentioned directly. The

results are compared in terms of system response, and performance indices .

3.5.1.1 Single Input Single Output Systems

Example 3.9: Consider the 4th order system described by the transfer function [279].

G (s) =
s3 + 7s2 + 24s+ 24

s4 + 10s3 + 35s2 + 50s+ 24
(3.35)

Step 1: The reduced order denominator is obtained by using eq. (3.29) and

(3.30)

d (s) = 70s2 + 310s+ 288

Step 2: The reduced order numerator is obtained by using eq. (3.31)-(3.34)

n (s) = 1.904s+ 288

Finally, the required reduced order model is obtained as,

R2(s) =
1.904s+ 288

70s2 + 310s+ 288

The comparison of step and Nyquist plot responses of original system and

reduced order models proposed technique and other reduction methods are shown

in Figures 3.16 and 3.17 for Example 3.9. The accuracy of the proposed method

measured in terms of ISE, IAE, ITSE and ITAE, and are depicted in Table 3.9.

From this, it is clearly observed that, the proposed method results in more accurate

approximation with the original system compared to other methods.
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Fig. 3.16: Step response comparison for Example 3.9.

Fig. 3.17: Nyquist response comparison for Example 3.9.
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Table 3.9: Performance indices comparison of different reduction methods for

Example 3.9.

Reduction methods Transfer function ISE IAE ITSE ITAE

Proposed method 1.904s+288
70s2+310s+288

0.000192 0.01764 0.00252 0.0124

Mukherjee [75] 0.8000003s+2
s2+3s+2

0.000914 0.02942 0.00524 0.1184

Lucas [118] 0.833s+2
s2+3s+2

0.001142 0.07421 0.01024 0.8741

B.W. Wan [40] 17.003s+24
34.3004s2+43.003s+24

0.000432 0.04191 0.00712 0.1347

Vishwakarma [279] −0.18976s+4.5713
s2+4.76187s+4.5713

0.000286 0.03128 0.00432 0.0627

Example 3.10: Consider the 3rd order system as mentioned in Example 3.6

in section 3.4.1.1. The following reduced order model is obtained by proposed

technique.

R2(s) =
14.5s+ 6

4s2 + 10s+ 6

The step and Nyquist responses of original system and reduced order models

of proposed method and other reduction methods for Example 3.10 are shown in

Figures 3.18 and 3.19. Further, The ISE, IAE, ITSE and ITAE values for different

reduction method comparisons are tabulated in Table 3.10. In Table 3.10, the

proposed method exhibits less error compared to other methods

Table 3.10: Performance indices comparison of ROMs for Example 3.10

Reduction methods Transfer Function ISE IAE ITSE ITAE

Proposed method R2(s) = 14.5s+6
4s2+10s+6

0.124 0.7998 0.4998 3.165

Chen [58] R2(s) = 6s+2
4s2+5s+2

0.264 1.199 1.25 5.676

Pal [145] R2(s) = 1.375s+0.5
s2+1.125s+0.5

0.3 1.248 1.407 5.779

Y.Shamash [86] R2(s) = 6s+2
4s2+5s+2

0.264 1.199 1.25 5.676
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Fig. 3.18: Step response comparison for Example 3.10.

Fig. 3.19: Nyquist response comparison for Example 3.10.
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3.5.1.2 Multiple Input Multiple Output System

Example 3.11: Consider a 6th order MIMO system as mentioned in Example 3.4

in section 3.3.1.2. The reduced order transfer matrix of MIMO systems obtained by

proposed technique is as follows,

R2 (s) =

 86000s+ 2160000 240000s+ 864000

19871s+ 1080000 133440s+ 2160000


241440s2 + 1572000s+ 2160000

The reduced order model is obtained by Parmar et al. [136] is

R2 (s) =

 0.9098s+ 0.7091 0.4916s+ 0.2836

0.4373s+ 0.3545 1.0753s+ 0.7091


s2 + 1.548s+ 0.709

The ROM is obtained by Parmar et al. [292] is

R2 (s) =

 6.0429s+ 8.4707 3.9419s+ 3.3883

2.8097s+ 4.2354 8.0195s+ 8.4707


s2 + 13.6666s+ 8.4707

Figures 3.20 and 3.21 show the comparison of time and frequency responses of

original and reduced order models for Example 3.11. From this it is clear that the

proposed method gave better approximation with original system response. Further,

the proposed method is validated with ISE, IAE, ITSE and ITAE values by comparing

with other well-known reduction methods shown in Table 3.11. It is observed that,

the presented method gave quit comparable results with other reduction methods.
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Fig. 3.20: Time response comparison of MIMO system (a) r11 (s) (b) r12 (s) (c)

r21 (s) (d) r22 (s) for Example 3.11.

Fig. 3.21: Frequency response comparison of MIMO system (a) r11 (s) (b) r12 (s)

(c) r21 (s) (d) r22 (s) for Example 3.11.
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Table 3.11: Performance indices comparison of ROMs for Example 3.11

Reduction method
ISE

R11 R12 R11 R11

Proposed method 0.01439 2.837× 10−8 0.003041 3.294× 10−5

Parmar [136] 0.1471 0.0884 0.0258 0.1598

Parmar [292] 0.225 0.0682 0.0613 0.678

Sikander [282] 0.01672 9.581× 10−3 0.003122 2.1683× 10−2

3.6 CONCLUSION

In this chapter, three new mixed reduction techniques are presented for reducing

the LTI higher order systems. First technique is based on modified time-moment

matching method while the second and third techniques are based on differentiation

method in combination with factor division algorithm and pade approximation. The

time and frequency responses of original and reduced order models are plotted. It is

observed that the ROMs obtained by these proposed techniques provided quit close

approximation with the original system. Further, the proposed techniques are also

extended for MIMO systems. Furthermore, to show the effectiveness and efficacy

of the proposed methods, the obtained results are compared with different reduction

methods in terms of ISE, IAE, ITSE and ITAE.
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CHAPTER 4

NEW COMPOSITE TECHNIQUES FOR REDUCED

ORDER MODELLING: INTERVAL SYSTEMS

APPROACH

4.1 INTRODUCTION

The Several reduction methods are developed for fixed coefficient transfer functions

or state space models [5, 60, 89, 90, 93, 280–283]. It is fact that designing a

controller based on fixed coefficient transfer function or state space model is often

unrealistic because the practical system parameters vary within certain interval.

Bandyopadhyay et al. [218] first extended the conventional reduction methods to

deal with interval systems. In this method, the reduction method is obtained by

using Routh-Pade approximation technique to deal with interval systems. Later

Hwang and Yang [220] said that, the Routh approximation method may loss its

stability preservation property due to irreversibility of interval arithmetic operation.

Later, Dolgin and Zeheb [222] and Yang [223] proposed modified Routh-Pade

approximation method to avoid the limitations of [220]. Later Sastry et al. [108]

presented reduced interval method by using modified Routh approximation method

to avoid the complexity of [218]. This method requires only γ table formation

to obtain stable reduced order interval model (ROIM). But still, this method has

some limitations i.e. this method always provides some steady state error. The

above discussed reduced order interval methods are obtained by using different

frequency domain reduction methods and interval arithmetic operations. The interval

arithmetic operations are complex and sometimes it may give unstable reduced

order models even though the original higher order system is stable. To avoid these

disadvantages, many interval reduction methods were developed for finding stable

and better approximation of ROIMs [235,240,293–295].
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4.2 PROBLEM STATEMENT OF INTERVAL SYSTEM

4.2.1 Single Input Single Output Systems

Let us consider a higher order interval transfer function is as follows,

G (s, a, b) =
N (s, a)

D (s, b)
=

[a−0 , a
+
0 ] + [a−1 , a

+
1 ]s+ · · ·+ [a−n−1, a

+
n−1]s

n−1

[b−0 , b
+
0 ] + [b−1 , b

+
1 ]s+ · · ·+ [b−n , b

+
n ]sn

(4.1)

Where
[
a−i , a

+
i

]
(i = 0, 1, 2, · · · , n− 1) and

[
b−j , b

+
j

]
(j = 0, 1, 2, · · · , n) are higher order

interval coefficients of numerator and denominator polynomials.

Let us consider a reduced order interval transfer function is,

R (s, c, d) =
n (s, c)

d (s, d)
=

[c−0 , c
+
0 ] + [c−1 , c

+
1 ]s+ · · ·+ [c−k−1, c

+
k−1]s

k−1

[d−0 , d
+
0 ] + [d−1 , d

+
1 ]s+ · · ·+ [d−k , d

+
k ]sk

(4.2)

Where
[
c−i , c

+
i

]
(i = 0, 1, 2, · · · , k− 1) and

[
d−j , d

+
j

]
(j = 0, 1, 2, · · · , k) are unknown

reduced order interval coefficients of numerator and denominator polynomials.

4.2.2 Multiple Input Multiple Output Systems

Let us consider a higher order multiple input multiple output interval transfer matrix

is as follows,

[G (s, eij, Dn)] =
1

Dn (s)


g11 (s) g12 (s) · · · g1p (s)

g21 (s) g22 (s) · · · g2p (s)
...

... . . . ...

gq1 (s) gq2 (s) · · · gqp (s)

 (4.3)

Where, Dn (s) is the higher-order denominator polynomial, represented as,

Dn (s) =
[
Q−0 , Q

+
0

]
+
[
Q−1 , Q

+
1

]
s+ ...+ [Q−n , Q

+
n ] sn

=
n∑

L=0

[
Q−L , Q

+
L

]
sL

and
gqp (s) =

[
E−qp, E

+
qp

]
+
[
E−qp, E

+
qp

]
s+ ...+

[
E−qp, E

+
qp

]
sn−1

=
n−1∑
L=0

[
E−qp, E

+
qp

]
sL

hence

Gqp (s) =

n−1∑
L=0

[
E−qp, E

+
qp

]
sL

n∑
L=0

[
Q−L , Q

+
L

]
sL

(4.4)
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where q = 1, 2, 3... and p = 1, 2, 3...

The objective is to calculate the reduced kth order multivariable interval transfer

matrix expressed as follows

[R (s, hij, dk)] = 1
dk(s)


h11 (s) h12 (s) · · · h1p (s)

h21 (s) h22 (s) · · · h2p (s)
...

... . . . ...

hq1 (s) hq2 (s) · · · hqp (s)


= hqp(s)

dk(s)

(4.5)

where

dk (s) =
[
q−0 , q

+
0

]
+
[
q−1 , q

+
1

]
s+ ...+

[
q−k , q

+
k

]
sk

and

hqp (s) =
[
e−qp, e

+
qp

]
+
[
e−qp, e

+
qp

]
s+ ...+

[
e−qp, e

+
qp

]
sk−1

Rqp (s) =

k−1∑
L=0

[
e−qp, e

+
qp

]
sL

k∑
L=0

[
q−L , q

+
L

]
sL

(4.6)

where q = 1, 2, 3... and p = 1, 2, 3...

4.3 MODEL REDUCTION USING MIXED METHODS AND INTERVAL

ARTHMETIC OPERATION

The three mixed methods are considered for reducing the linear dynamic interval

systems. These three mixed methods are obtained based on interval arithmetic

operations discussed in section 1.3.3, the denominator coefficients of the reduced

order models are obtained by differentiation method while the numerator coefficients

of the reduced order models are obtained by differentiation, factor division and Pade

approximation methods. In addition, the mixed methods are compared qualitatively

in terms ISE and IAE to know about the better reduction method among proposed

three mixed methods.

In these three proposed mixed methods each method explained in two steps as

follows
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Method 1: Differentiation method

Step 1: Determination of the kth order reduced interval denominator polynomial

as given in eq. (4.2) is obtained by differentiation method [93].

Dn−k (s, b) = Dn (s, b)− s

n
D′n (s, b) (4.7)

Where n is the order of original interval system denominator and k is the order of

required reduced model.

Differentiate the reciprocal polynomial of Eq. (4.7) into (n− k) times then

reciprocate back and normalize to obtain the required reduced order interval

coefficients of denominator polynomial.

d (s, d) =
[
d−0 , d

+
0

]
+
[
d−1 , d

+
1

]
s+

[
d−2 , d

+
2

]
s2 + ...+

[
d−k , d

+
k

]
sk (4.8)

This kth order reduced interval denominator polynomial is common for remaining

mixed methods.

Step 2: Determination of the (k − 1)th order reduced interval numerator

polynomial as given in Eq. (4.2) is obtained by using differentiation method [93]:

Nn−k (s, a) = Nn (s, a)− s

n
N ′n (s, a) (4.9)

Where n is the order of original interval system numerator and k is the order of

required reduced model.

Differentiate the reciprocal polynomial Eq. (4.9) into (n− k) times then

reciprocate back and normalized to obtain the required reduced order interval

numerator polynomial.

n (s, c) =
[
c−0 , c

+
0

]
+
[
c−1 , c

+
1

]
s+

[
c−2 , c

+
2

]
s2 + ...+

[
c−k , c

+
k

]
sk−1 (4.10)

Method 2: Factor division algorithm and differentiation method

Step 1: The kth order reduced interval coefficients of denominator polynomial

d (s) is already obtained in eq. (4.8).

Step 2: Determination of the kth order reduced interval numerator polynomial as

given in Eq. (4.2) is obtained by using factor division algorithm [118]
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The eq. (4.1) may written as,

Gn (s) =
N (s) d (s)

D (s) d (s)
=
N (s) d (s)/D (s)

d (s)
(4.11)

Therefore, the interval coefficients of numerator polynomial n (s) of the reduced

order model Rk (s) is obtained by using the series expansion

N (s) =
N (s) d (s)

D (s)
=

[
f−0 , f

+
0

]
+
[
f−1 , f

+
1

]
s+

[
f−2 , f

+
2

]
s2 + ...[

b−0 , b
+
0

]
+
[
b−1 , b

+
1

]
s+

[
b−2 , b

+
2

]
s2 + ...

(4.12)

This is done by using the recurrence formula given as follows,

[
c−0 , c

+
0

]
=

[f−0 ,f
+
0 ]

[b−0 ,b
+
0 ]

〈 [
f−0 , f

+
0

] [
f−1 , f

+
1

] [
f−2 , f

+
2

]
...

[
b−0 , b

+
0

] [
b−1 , b

+
1

] [
b−2 , b

+
2

]
...

[
c−1 , c

+
1

]
=

[q−0 ,q
+
0 ]

[b−0 ,b
+
0 ]

〈 [
q−0 , q

+
0

] [
q−1 , q

+
1

] [
q−2 , q

+
2

]
...

[
b−0 , b

+
0

] [
b−1 , b

+
1

] [
b−2 , b

+
2

]
...

· · ·

[
c−r−2, c

+
r−2
]

=
[u−0 ,u

+
0 ]

[b−0 ,b
+
0 ]

〈 [
u−0 , u

+
0

] [
u−1 , u

+
1

] [
u−2 , u

+
2

]
...

[
b−0 , b

+
0

] [
b−1 , b

+
1

] [
b−2 , b

+
2

]
...

[
c−r−1, c

+
r−1
]

=
[v−0 ,v

+
0 ]

[b−0 ,b
+
0 ]

〈 [
v−0 , v

+
0

]
[
b−0 , b

+
0

]

(4.13)

Where, [
q−i , q

+
i

]
=
[
f−i+1, f

+
i+1

]
−
[
c−0 , c

+
0

] [
b−i+1, b

+
i+1

]
i = 0, 1, 2, 3,...

...[
v−0 , v

+
0

]
=
[
u−1 , u

+
1

]
−
[
c−r−2, c

+
r−2
] [
b−1 , b

+
1

]
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The reduced order interval coefficients of numerator polynomial is

n (s, c) =
[
c−0 , c

+
0

]
+
[
c−1 , c

+
1

]
s+

[
c−2 , c

+
2

]
s2+...+

[
c−r−1, c

+
r−1
]
sr−1 (4.14)

Method 3: Pade approximation and differentiation method.

Step 1: The kth order reduced interval denominator polynomial d (s) is already

obtained in eq. (4.8).

Step 2: Determination of the kth order reduced interval numerator polynomial as

given in Eq. (4.2)is obtained by using pade approximation method [40]

The eq. (4.1) is written as,

N(s)
D(s)

=
[a−0 ,a

+
0 ]+[a−1 ,a

+
1 ]s+...+[a−n−1,a

+
n−1]sn−1

[b−0 ,b
+
0 ]+[b−1 ,b

+
1 ]s+...+[b−n ,b+n ]sn

=
[
e−0 , e

+
0

]
+
[
e−1 , e

+
1

]
s

+
[
e−2 , e

+
2

]
s2 + ...

(4.15)

We have the following set of linear simultaneous equations,[
a−0 , a

+
0

]
=
[
b−0 , b

+
0

] [
e−0 , e

+
0

][
a−1 , a

+
1

]
=
[
b−0 , b

+
0

] [
e−1 , e

+
1

]
+
[
b−1 , b

+
1

] [
e−0 , e

+
0

]
· · ·[

a−n−1, a
+
n−1
]

=
[
b−0 , b

+
0

] [
e−n−1, e

+
n−1
]

+
[
b−1 , b

+
1

] [
e−n−2, e

+
n−2
]

+ · · ·+
[
b−n−1, b

+
n−1
] [
e−0 , e

+
0

]
(4.16)

The reduced order interval coefficients of numerator polynomial is obtained by using

eq. 4.16

n (s, c) =
[
c−0 , c

+
0

]
+
[
c−1 , c

+
1

]
s+

[
c−2 , c

+
2

]
s2+...+

[
c−k−1, c

+
k−1
]
sk−1 (4.17)

where [
c−0 , c

+
0

]
=
[
d−0 , d

+
0

] [
e−0 , e

+
0

][
c−1 , c

+
1

]
=
[
d−0 , d

+
0

] [
e−1 , e

+
1

]
+
[
d−1 , d

+
1

] [
e−0 , e

+
0

]
· · ·
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4.3.1 Numerical Examples and Results

To show the efficacy of the proposed reduction methods we considered popular

SISO interval systems. The first example solved in detail whereas in the remaining

examples the reduced systems are mentioned directly. The results are compare in

terms of system response and performance indices.

4.3.1.1 Single Input Single Output Systems

Example 4.1: Consider a 3rd order interval transfer function [106] given as

G3 (s) =
[2, 3] s2 + [17.5, 18.5] s+ [15, 16]

[2, 3] s3 + [17, 18] s2 + [35, 36] s+ [20.5, 21.5]

Method 1: Differentiation method

The reduced order interval denominator polynomial is obtained by following eq.

(4.7) and (4.8)

d (s) =

(
1

3

)(
[15, 18] s2 + [69, 73] s+ [61.5, 64.5]

)
(4.18)

The reduced order interval numerator polynomial is achieved by following eq.

(4.9) and (4.10)

n (s) =

(
1

2

)
([16.5, 19.5] s+ [30, 32])

Finally, The required reduced order interval transfer function is obtained as

R2 (s) =
[24.75, 29.25] s+ [45, 48]

[15, 18] s2 + [69, 73] s+ [61.5, 64.5]

Method 2: Factor division algorithm and differentiation method.

The reduced order interval denominator polynomial is already obtained by using

differentiation method in eq. (4.18) as

d (s) = [15, 18] s2 + [69, 73] s+ [61.5, 64.5]

The reduced order interval numerator polynomial is obtained by following eq.

(4.11) and (4.14)

n (s) = [13.9051, 41.9273] s+ [42.9069, 50.3414]
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Finally, The reduced order interval model of a factor division algorithm and

differentiation method is as follows,

R2 (s) =
[13.9051, 41.9273] s+ [42.9069, 50.3414]

[15, 18] s2 + [69, 73] s+ [61.5, 64.5]

Method 3: Pade approximation and differentiation method

The reduced order interval denominator polynomial is already obtained by using

differentiation method in eq. (4.18) as

d (s) = [15, 18] s2 + [69, 73] s+ [61.5, 64.5]

The reduced order interval numerator polynomial is obtained by using Pade

approximation method eq. (4.11) and (4.14)

n (s) = [17.8334, 38.361] s+ [42.9024, 50.3358]

Finally, The reduced order interval model of a Pade approximation and differentiation

method is as follows,

R2 (s) =
[17.8334, 38.361] s+ [42.9024, 50.3358]

[15, 18] s2 + [69, 73] s+ [61.5, 64.5]

The comparison of step and bode responses of original interval system and

reduced order interval systems of three mixed methods for Example 4.1 are shown

in Figure 4.1 and 4.2. Further, ISE and IAE values for the three mixed methods are

tabulated in Table 4.1. From these comparisons, it is clear that, among three mixed

methods, the method 1 i.e. the differentiation method is giving better result.

Example 4.2: Consider a 3rd order system [218] described by the interval

Transfer function.

G3 (s) =
[3, 4] s2 + [25, 26] s+ [14, 15]

[7, 8] s3 + [54, 55] s2 + [90, 91] s+ [35, 36]

Method 1: The reduced order interval model is obtained by using differentiation

method

R2 (s) =
[36, 37.5] s+ [42, 45]

[52, 57] s2 + [179, 183] s+ [105, 108]
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Fig. 4.1: Step response comparison of interval models for Example 4.1.

Fig. 4.2: Bode diagram response comparison of interval models for Example 4.1.

73



Table 4.1: Qualitative comparison of reduced order interval models with ISE and

IAE for Example 4.1.

Reduction Methods
Lower Bound Upper Bound

ISE IAE ISE IAE

Method 1 0.002585 0.08396 0.002378 0.07216

Method 2 0.02418 0.2904 0.03248 0.2974

Method 3 0.01515 0.2295 0.02093 0.2424

Method 2: The reduced order interval model is obtained by using factor division

algorithm and differentiation method

R2 (s) =
[21.3673, 29.6822] s+ [13.611, 15.428]

[52, 57] s2 + [179, 183] s+ [105, 108]

Method 3: The reduced order interval model is obtained by using pade

approximation and differentiation method

R2 (s) =
[21.3155, 29.8207] s+ [13.58, 15.426]

[52, 57] s2 + [179, 183] s+ [105, 108]

The comparison of step and bode plot responses of original interval system and

reduced order interval systems of three mixed methods are shown in Figure 4.3 and

4.4 for Example 4.2. The accuracy of the mixed methods measured in terms of

ISE and IAE, and are depicted in Table 4.2. From this, it is clearly observed that,

the differentiation method results in more accurate approximation with the original

interval system among three mixed methods.

Example 4.3: Consider the 2nd order system [296] described by the interval

Transfer function

R2 (s) =
[2, 3] s+ [15, 16]

[2, 3] s2 + [12, 13] s+ [10, 11]

Method 1: The reduced order interval model is obtained by using differentiation

method

R1 (s) =
[30, 32]

[11, 14] s+ [20, 22]
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Fig. 4.3: Step response comparison of interval models for Example 4.2.

Fig. 4.4: Bode diagram response comparison of interval models for Example 4.2.
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Table 4.2: Qualitative comparison of reduced order interval models with ISE and

IAE for Example 4.2.

Reduction Methods
Lower Bound Upper Bound

ISE IAE ISE IAE

Method 1 0.000737 0.04905 0.000451 0.03899

Method 2 0.1813 0.7941 0.1652 0.7472

Method 3 0.1817 0.7952 0.1649 0.746

Method 2: The reduced order interval model is obtained by using factor division

algorithm and differentiation method

R1 (s) =
[27.27, 35.2]

[11, 14] s+ [20, 22]

Method 3: The reduced order interval model is obtained by using pade

approximation and differentiation method

R1 (s) =
[27.2, 35.2]

[11, 14] s+ [20, 22]

The step and bode plot responses of original interval system and reduced order

interval systems of three mixed methods for Example 4.3 are shown in Figures 4.5

and 4.6. Further, The ISE and IAE for three mixed method comparisons are tabulated

in Table 4.3. In Table 4.3, the differentiation method exhibits less error among three

mixed methods.
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Fig. 4.5: Step response comparison of interval models for Example 4.3.

Fig. 4.6: Bode diagram response comparison of interval models for Example 4.3.
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Table 4.3: Qualitative comparison of reduced order interval models with ISE and

IAE for Example 4.3.

Reduction Methods
Lower Bound Upper Bound

ISE IAE ISE IAE

Method 1 0.198 0.764 0.09693 0.516

Method 2 0.107 0.613 0.2968 1.151

Method 3 0.1067 0.616 0.2968 1.151

4.4 MODEL REDUCTION USING DIFFERENTIATION METHOD AND

KHARITONOV’S THEOREM

Kharitonov [8] proposed a pioneering technique to deal with interval systems. The

Kharitonov’s theorem is useful for finding the interval systems stability criterion

by separating the interval polynomial into its four Kharitonov fixed coefficient

polynomials, if these four Kharitonov polynomials meet the requirement of the

stability criterion then the interval system is said to be stable. Further, Kharitonov’s

theorem minimize the computational burden of interval operations by avoiding the

use of interval arithmetic operations.

In this section, a new reduction method is proposed to reduce the order of

higher-order interval system (HOIS). The proposed ROIM is achieved based on

differentiation method using Kharitonov’s theorem. This method is significant for

both SISO interval systems and MIMO interval systems. This technique is simple

in mathematical calculation and preserves the dominant properties of the original

interval system in its ROIM. To show the effectiveness of this technique, it is

illustrated with some benchmark problems. The results are compared in terms of

step and bode diagram responses along with their performance indices.

The procedural steps are given to describe the proposed technique as follows,

Step 1: According to Kharitonov’s theorem, the HOIS of eq. (4.1) are represented

into four fixed coefficient Kharitonov polynomials,
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Numerator,

N1 (s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + a−4 s
4 + · · ·

N2 (s) = a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + a−4 s
4 + · · ·

N3 (s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + a+4 s
4 + · · ·

N4 (s) = a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + a+4 s
4 + · · ·


(4.19)

Denominator,

D1 (s) = b−0 + b−1 s+ b+2 s
2 + b+3 s

3 + b−4 s
4 + · · ·

D2 (s) = b−0 + b+1 s+ b+2 s
2 + b−3 s

3 + b−4 s
4 + · · ·

D3 (s) = b+0 + b−1 s+ b−2 s
2 + b+3 s

3 + b+4 s
4 + · · ·

D4 (s) = b+0 + b+1 s+ b−2 s
2 + b−3 s

3 + b+4 s
4 + · · ·


(4.20)

Step 2: By using numerator and denominator Kharitonov polynomials of eq.

(4.19) and (4.20), the Kharitonov transfer functions are obtained as given below

G1 (s) = N1(s)
D1(s)

=
a−0 +a−1 s+a

+
2 s

2+a+3 s
3+···

b−0 +b−1 s+b
+
2 s

2+b+3 s
3+···

G2 (s) = N2(s)
D2(s)

=
a−0 +a+1 s+a

+
2 s

2+a−3 s
3+···

b−0 +b+1 s+b
+
2 s

2+b−3 s
3+···

G3 (s) = N3(s)
D3(s)

=
a+0 +a−1 s+a

−
2 s

2+a+3 s
3+···

b+0 +b−1 s+b
−
2 s

2+b+3 s
3+···

G4 (s) = N4(s)
D4(s)

=
a+0 +a+1 s+a

−
2 s

2+a−3 s
3+···

b+0 +b+1 s+b
−
2 s

2+b−3 s
3+···


(4.21)

Step 3: By using differentiation method, the higher-order Kharitonov transfer

functions given in eq. (4.21) are reduced to the lower order models as given below

1. The reciprocal of high-order transfer function G1(s) is,

Ḡ1(s) =
1

s
G1

(
1

s

)
=
a−0 s

n−1 + a−1 s
n−2 + a+2 s

n−3 + · · ·
b−0 s

n + b−1 s
n−1 + b+2 s

n−2 + · · ·
(4.22)

2. The ROM is obtained by differentiating eq. (4.22) (n− k) times, where n is the

order of HOS and k is the order of ROM.

R̄1 (s) =
c−0 s

k−1 + c−1 s
k−2 + · · ·

d−0 s
k + d−1 s

k−1 + d+2 s
k−2 + · · ·

(4.23)

3. Reciprocate eq. (4.23) once again to bring reduced order model into its earlier

form

R1 (s) =
c−0 + c−1 s+ · · ·

d−0 + d−1 s+ d+2 s
2 + · · ·

(4.24)
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4. Finally, the ROM is achieved by applying steady state correction k

R1 (s) =
n1 (s)

d1 (s)
= k

c−0 + c−1 s+ · · ·
d−0 + d−1 s+ d+2 s

2 + · · ·
(4.25)

Similarly, the reduced order models for G2 (s) , G3 (s) and G4 (s) are obtained

by following Equations eq. (4.21) and (4.25).

R2 (s) = n2(s)
d2(s)

= k
c−0 +c+1 s+···

d−0 +d+1 s+d
+
2 s

2+···

R3 (s) = n3(s)
d3(s)

= k
c+0 +c−1 s+···

d+0 +d−1 s+d
−
2 s

2+···

R4 (s) = n4(s)
d4(s)

= k
c+0 +c+1 s+···

d+0 +d+1 s+d
−
2 s

2+···

 (4.26)

Step 5: The four fixed parameter ROMs given in eq. (4.25) and (4.26) can be

written into sixteen combinations of ROIMs (one to each), by following sixteen plant

theorem [9,10], the general form is,

Ri,j (s) =
[ni (s) , nj (s)]

[di (s) , dj (s)]
(4.27)

For i, j = 1, 2, 3, 4.

Step 6: The required ROIM eq. (4.2) is obtained by choosing least error ROIM by

using ISE [75] comparison between step response of HOIS eq. (4.1) and the sixteen

combinations of ROIMs of eq. (4.27).

ISE =

∞∫
0

[
gn (t)− ri,j (t)

]2
dt (4.28)

Where gn is the HOIS and ri,j (t) is the ROIM.

4.4.1 Numerical Examples and Results

To show the efficacy and powerfulness of the presented reduction technique we

considered well-known SISO/MIMO interval systems. The first example solved

in detail whereas in the remaining examples the reduced systems are mentioned

directly. The results are compared in terms of system response and performance

indices.
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4.4.1.1 Single Input Single Output Systems

Example 4.4: The 7th order interval transfer function [293] is described as follows

G7(s) =

[1.9, 2.1]s6 + [24.7, 27.3]s5 + [157.7, 174.3]s4 + [542, 599]s3

+[930, 1028]s2 + [721.8, 797.8]s+ [187.1, 206.7]

[0.95, 1.05]s7 + [8.779, 9.703]s6 + [52.23, 57.73]s5 + [182.9, 202.1]s4

+[429, 474.2]s3 + [572.5, 632.7]s2 + [325.3, 359.5]s+ [57.35, 63.39]

The interval transfer function is converted to fixed parameter Kharitonov transfer

functions by following the eq. (4.19) and (4.21),

G1 (s) = 2.1s6+24.7s5+157.7s4+599s3+1028s2+721.8s+187.1
1.05s7+9.703s6+52.23s5+182.9s4+474.2s3+632.7s2+325.3s+57.35

G2 (s) = 2.1s6+27.3s5+157.7s4+542s3+1028s2+797.8s+187.1
0.95s7+9.703s6+57.73s5+182.9s4+429s3+632.7s2+359.5s+57.35

G3 (s) = 1.9s6+24.7s5+174.3s4+599s3+930s2+721.8s+206.7
1.05s7+8.779s6+52.23s5+202.1s4+474.2s3+572.5s2+325.3s+63.39

G4 (s) = 1.9s6+27.3s5+174.3s4+542s3+930s2+797.8s+206.7
0.95s7+8.779s6+57.73s5+202.1s4+429s3+572.5s2+359.5s+63.39

(4.29)

The higher-order systems given in eq. (4.29) are reduced to the LOMs by following

eq. (4.22)-(4.26).

R1(s) = 3.9928s+6.21
s2+3.0848s+1.9035

R2 (s) = 0.4413s+0.6210
s2+0.3409s+0.1903

R3 (s) = 4.4127s+7.582
s2+3.4092s+2.3252

R4 (s) = 4.8773s+7.5820
s2+3.7676s+2.3252

Finally, the required ROIM is obtained by using eq. (4.27) and (4.28), the second

order interval model is,

R2 (s) =
[3.9928, 4.8773] s+ [6.21, 7.5820]

[1, 1] s2 + [3.0848, 3.7676] s+ [1.9035, 2.3252]

The ROIM obtained by using Kranthi (FDA & DM) et at [297] is,

R (s) =
[128248.353, 735431.927] s+ [426566.748, 575742.576]

[68700, 75924] s2 + [234216, 258840] s+ [144522, 159742.8]

The ROIM obtained by using Kranthi (PA&DM) et at [297] is,

R (s) =
[124571.873, 735533.921] s+ [419496.962, 569447.975]

[68700, 75924] s2 + [234216, 258840] s+ [144522, 159742.8]
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The step and bode responses of original lower and upper bound interval systems

of proposed method and some other reduction methods [231,236,240,255,297,298]

of lower and upper bounds for Example 4.4 are compared and are shown in Figures

4.7 and 4.8. It is clear that proposed reduction method is closely matching with

original higher order response. Moreover, the ISE and IAE values of this method

and other reduction methods are shown in Table 4.4, which shows that the proposed

method gives much lower ISE and IAE values are compared with given different

reduction methods.

Table 4.4: Comparison of the ISE and IAE with proposed and other different

reduction techniques for Example 4.4.

Reduction Methods
ISE IAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 1.0058 0.9574 2.912 2.798

Bandyopadhyay [298] 2.259 5.954 4.758 7.735

Kranthi(FDA&DM) [297] 2.434 6.346 6.125 11.231

Kranthi(PA&DM) [297] 3.181 7.379 7.132 11.982

Selvaganesan [231] 4.305 7.301 8.804 12.372

N. V. Anand [236] 0.991 3.2979 3.425 4.536

T. Babu [255] 2.428 4.323 5.734 9.325

Siva Kumar et al [240] 0.9357 1.0915 2.972 3.043

Example 4.5: Consider the 3rd order interval system from Example 4.1 in section

4.3.1.1. Using proposed method, the required reduced order model is obtained as,

R2 (s) =
[1.4583, 1.6323] s+ [2.5, 2.8235]

[1, 1] s2 + [3.88, 4.2352] s+ [3.416, 3.7941]

The step and bode responses of original lower and upper bound interval systems

and the proposed and other reduction methods [106, 221, 297] of lower and upper

bounds for Example 4.5 are compared and are shown in Figures 4.9 and 4.10.

Clearly, proposed method gave close approximation with original system in both
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Fig. 4.7: Step response comparison of (a) Lower bound (b) Upper bounds for

Example 4.4.
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lower bound and upper bound. Moreover, the ISE values of reduction methods

are compared and are shown in Table 4.5, which shows that the proposed method

obtained comparable low ISE values.

Table 4.5: The ISE comparison with proposed and other reduction methods for

Example 4.5.

Reduced Methods
ISE

Lower Bound Upper Bound

Proposed Method 3.6511× 10−4 7.6452× 10−4

Bandyopadhyay [106] 0.0015 2.9590× 10−3

Kumar D Kranthi et al. [297] 0.0196 0.0248

G.V.K R. Sastry et al. [221] 0.117 0.0084

4.4.1.2 Multiple Input Multiple Output System

Example 4.6: Further, to show the powerfulness of the proposed method it is also

extended to the MIMO interval systems. Consider original multivariable interval

transfer function matrix [108] given as,

[G2(s)] =
1

D2(s)

 g11(s) g12(s)

g21(s) g22(s)


where

D2(s) = [0.537464, 1.537464] s2 + [1.379131, 2.379313] s+ [1, 2]

g11(s) = [0.622, 1.622] s+ [1.00721, 2.00721]

g12(s) = [462.6, 463.6] s+ [715.2653, 716.62653]

g21(s) = [3.563, 4.563] s+ [4.8589, 5.8589]

g22(s) = [610.435, 611.435] s+ [1000.5485, 1001.5485]

The desired ROM is obtained by proposed technique

[R1(s)] =
1

D1(s)

 [2.01442, 4.01442] [1430.5306, 1433.25306]

[9.7178, 11.7178] [2001.097, 2003.097]
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Fig. 4.9: Step response comparison of (a) Lower bound (b) Upper bounds for

Example 4.5.
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bounds for Example 4.5.
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where D1(s) = [1.379131, 2.379313] s+ [2, 4]

The ROM obtained by Sastry and Mallikarjuna Rao [108] is,

[R1(s)] =
1

D1(s)

 [0.2115, 2.9] [150.206, 1038.58]

[1.0204, 8.49] [210.12, 1452.24]


where D1(s) = [1, 1] s+ [0.2, 2.9]

The ROIM obtained by using Kranthi (FDA&DM) et at. [297] is,

[RFDA (s)] =
1

DFDA (s)

 [1.00721, 8.0288] [715.2653, 2866.5061]

[4.8589, 23.435] [1000.5485, 4006.194]


where DFDA (s) = [1.379131, 2.379313] s+ [2, 4]

The ROIM obtained by using Kranthi (PA&DM) et at. [297] is,

[RPA (s)] =
1

DPA (s)

 [1.00721, 8.0288] [715.2653, 2865.7021]

[4.8589, 23.4356] [1000.6192, 4006.194]


where DPA (s) = [1.379131, 2.379313] s+ [2, 4]

The step and bode response of original lower and upper bound interval systems

and the proposed and other reduction methods [108,297] of lower and upper bounds

for Example 4.6 are compared and are shown in Figures 4.11 - 4.14. Clearly,

proposed method gave close approximation with original system in both lower bound

and upper bounds. Moreover, the ISE values of reduction methods are compared

and are shown in Table 4.6, which shows that the proposed method provided least

ISE values.
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Fig. 4.11: Step response comparisons of lower bounds of (a)Gr11 (b) Gr12 (c)

Gr21 (d) Gr22 for Example 4.6.

Fig. 4.12: Step response comparisons of upper bounds of (a)Gr11 (b) Gr12 (c)

Gr21 (d) Gr22 for Example 4.6.
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Gr21 (d) Gr22 for Example 4.6.
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Fig. 4.14: Bode response comparisons of upper bounds of (a)Gr11 (b) Gr12 (c)

Gr21 (d) Gr22 for Example 4.6.
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Table 4.6: The ISE comparison with proposed and other reduction methods for

Example 4.6.

Reduction Method

ISE

Lower Bound Upper Bound

r11 r12 r21 r22 r11 r12 r21 r22

Proposed Method 0.0026 643.9382 0.0154 2.9457× 103 0.0293 3.1809× 103 0.2299 6.6898× 103

Kranthi (FDA&DM) [297] 1.2 6.13× 105 29.35 1.181× 106 4.278 5.67× 105 36.7 1.118× 106

Kranthi (PA&DM) [297] 1.2 6.13× 105 29.35 1.181× 106 4.278 5.67× 105 36.7 1.118× 106

Sastry [108] 1.4323 7.3625 × 105 35.9562 1.4065 × 106 0.0413 7.9431× 103 0.3666 1.7477× 104

4.5 MODEL REDUCTION USING STABILITY EQUATION METHOD

AND KHARITONOV’S THEOREM

A new hybrid order reduction technique is presented for reducing higher-order

continuous linear time invariant interval systems. The reduced order interval model

is obtained by using Kharitonov’s theorem, stability equation method and the sixteen

plant theorem [9,10].

The procedural steps are given to describe the proposed technique as follows,

Step 1: The Kharitonov fixed parameter transfer functions are obtained by

following eq. (4.19)-(4.21) in section 4.4

G1 (s) = N1(s)
D1(s)

=
a−0 +a−1 s+a

+
2 s

2+a+3 s
3+···

b−0 +b−1 s+b
+
2 s

2+b+3 s
3+···

G2 (s) = N2(s)
D2(s)

=
a−0 +a+1 s+a

+
2 s

2+a−3 s
3+···

b−0 +b+1 s+b
+
2 s

2+b−3 s
3+···

G3 (s) = N3(s)
D3(s)

=
a+0 +a−1 s+a

−
2 s

2+a+3 s
3+···

b+0 +b−1 s+b
−
2 s

2+b+3 s
3+···

G4 (s) = N4(s)
D4(s)

=
a+0 +a+1 s+a

−
2 s

2+a−3 s
3+···

b+0 +b+1 s+b
−
2 s

2+b−3 s
3+···


(4.30)

Step 2: The numerator N1 (s) and denominator D1 (s) of Kharitonov plant G1 (s)

of eq. (4.30) are separating into their even and odd parts

G1 (s) =
N1

even (s) +N1
odd (s)

D1
even (s) +D1

odd (s)
(4.31)

where
N1

even (s) =
m∑

i=0,2,4

ais
i = a0

m∏
i=2

(
1 + s2

α2
i

)
N1

odd (s) =
m∑

i=1,3,5

ais
i = a1s

m∏
i=3

(
1 + s2

β2
i

) (4.32)
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and
D1

even (s) =
n∑

i=0,2,4

bis
i = b0

n∏
i=2

(
1 + s2

α2
i

)
D1

odd (s) =
n∑

i=1,3,5

bis
i = b1s

n∏
i=3

(
1 + s2

β2
i

) (4.33)

where

m =

 m/2 if m is even

(m− 1)/2 if m is odd

n =

 n/2 if m is even

(n− 1)/2 if m is odd

Eq. (4.32) and (4.33) are called stability equations [89]. The αi and βi are the

roots of the even and odd parts of the numerator and denominators of the stability

equations.

α2
1 < α2

2 < α2
3 < · · ·

β2
1 < β2

2 < β2
3 < · · ·

(4.34)

Since smaller magnitude even or odd terms are more dominant than those of

larger magnitude even or odd terms. Then, by neglecting the even or odd terms

of numerator and denominators with larger magnitudes, the reduced order stability

equations are obtained.

R1 (s) =
n1

even (s) + n1
odd (s)

d1even (s) + d1odd (s)
(4.35)

where

n1
even (s) =

r−1∑
i=0,2,4

cis
i = c0

m′∏
i=1

(
1 + s2

α2
i

)
n1

odd (s) =
r−1∑

i=1,3,5

cis
i = c1s

m′∏
i=1

(
1 + s2

β2
i

) (4.36)

and

d1even (s) =
r∑

i=0,2,4

dis
i = d0

n′∏
i=1

(
1 + s2

α2
i

)
d1odd (s) =

r∑
i=1,3,5

dis
i = d1s

n′∏
i=1

(
1 + s2

β2
i

) (4.37)

Step 3: The reduced order model is obtained by combining the both numerator and

denominators of stability equations Eq. (4.36) and (4.37), and, normalized to obtain

the reduced order model as

R1 (s) =
n1 (s)

d1 (s)
=

c−0 + c−1 s+ · · ·
d−0 + d−1 s+ d+2 s

2 + · · ·
(4.38)
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Similarly, the lower order models of G2 (s) , G3 (s) and G4 (s) are obtained by

following above steps 1 – 3.

R2 (s) = n2(s)
d2(s)

=
c−0 +c+1 s+···

d−0 +d+1 s+d
+
2 s

2+···

R3 (s) = n3(s)
d3(s)

=
c+0 +c−1 s+···

d+0 +d−1 s+d
−
2 s

2+···

R4 (s) = n4(s)
d4(s)

=
c+0 +c+1 s+···

d+0 +d+1 s+d
−
2 s

2+···

 (4.39)

Step 4: From the above reduced order fixed parameter transfer functions Eq.

(4.38) and (4.39), the sixteen combinations of reduced order interval models can

be constructed by using sixteen plant theorem. The general form is,

Ri,j (s) =
[ni (s) , nj (s)]

[di (s) , dj (s)]
(4.40)

with i, j ∈ {1, 2, 3, 4}

Step 5: The required lower order interval model eq. (4.2) is obtained by

comparing ISE [75] between the transient parts of the unit step response of

higher-order interval system eq. (4.1) with the sixteen combinations of reduced order

interval models of eq. (4.40)

ISE =

∞∫
0

[
g (t)− ri,j (t)

]2
dt (4.41)

Where g (t) = gLorU(t) and ri,j (t) = ri,jLorU (t) are the original interval and

reduced order interval models of lower and upper bounds respectively.

4.5.1 Numerical Examples and Results

In this section, the superiority of the proposed technique is justified by solving popular

SISO/MIMO systems. The first example solved in detail whereas in the remaining

examples the reduced systems are mentioned directly. The results are compared in

terms of step and bode responses and performance indices viz. ISE, IAE, ITSE and

ITAE.
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4.5.1.1 Single Input Single Output Systems

Example 4.7: Consider a 6th order interval system transfer function [108] described

as follows.

G6(s) =

[1, 2] s5 + [30, 34] s4 + [330, 360] s3 + [1650, 1800] s2 + [3700, 4200] s

+ [3000, 3300]

[1, 2.5] s6 + [40, 46] s5 + [570, 620] s4 + [3500, 3800] s3 + [10060, 12000] s2

+ [13100, 15080] s+ [6000, 6600]

The higher-order fixed parameter transfer functions are obtained by using eq.

(4.19) and (4.21),

G1 (s) = s5+30s4+360s3+1800s2+3700s+3000
2.5s6+40s5+570s4+3800s3+12000s2+13100s+6000

G2 (s) = 2s5+30s4+330s3+1800s2+4200s+3000
2.5s6+46s5+570s4+3500s3+12000s2+15080s+6000

G3 (s) = s5+34s4+360s3+1650s2+3700s+3300
s6+40s5+620s4+3800s3+10060s2+13100s+6600

G4 (s) = 2s5+34s4+330s3+1650s2+4200s+3300
s6+46s5+620s4+3500s3+10060s2+15080s+6600

The higher-order fixed parameter numerator N1 (s) and denominator D1 (s) of

transfer function G1 (s) are separated into their even and odd parts,

The stability equations are,

Numerator,

N1
odd (s) = s5 + 360s3 + 3700s

= 3700s
(

1 + s2

10.5892

)(
1 + s2

349.4107

)
N1

even (s) = 30s4 + 1800s2 + 3000

= 3000
(

1 + s2

1.7157

)(
1 + s2

58.2842

)


(4.42)

Denominator,

D1
odd (s) = 40s5 + 3800s3 + 13100s

= 13100s
(

1 + s2

3.5824

)(
1 + s2

91.4175

)
D1

even (s) = 2.5s6 + 570s4 + 12000s2 + 6000

= 6000
(

1 + s2

204.5965

)(
1 + s2

0.1524

)(
1 + s2

22.8910

)


(4.43)

By neglecting the large magnitude factors of even and odd parts of eq. (4.42) and

(4.43) the reduced order models are obtained as follows,

R1(s) =
3700s+ 3000

11709.6018s2 + 13100s+ 6000
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Similarly, we can obtain the reduced order models for G2 (s) , G3 (s) and G4 (s) as

follows,
R2(s) = 4200s+3000

11709.6018s2+15080s+6000

R3(s) = 3700s+3300
9636.4432s2+13100s+6600

R4(s) = 4200s+3300
9636.4432s2+15080s+6600

The required lower order interval model is achieved by using eq. (4.40) and (4.41),

the second order interval model is,

R2 (s) =
[4200, 4200] s+ [3000, 3300]

[11709.6018, 9636.4432] s2 + [15080, 15080] s+ [6000, 6600]

The step and bode responses of original lower and upper bound interval systems

and the proposed and Sastry [108] reduction methods of lower and upper bounds

for Example 4.7 are compared and are shown in Figures 4.15 and 4.16. Clearly,

proposed method is quite comparable with original system in both lower bound and

upper bound. Further, the error indices (ISE, IAE, ITSE and ITAE) values of reduction

methods are compared and are shown in Table 4.7, which shows that the proposed

method obtained comparable low error values.

Table 4.7: The performance indices comparisons of proposed and other reduction

methods for Example 4.7.

Reduction Methods
Lower Bound Upper Bound

ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed Method 1.847 × 10−3 0.0893 6.12 × 10−3 0.3157 1.041× 10−4 0.02578 4.881× 10−4 0.118

Sastry [108] 0.01142 0.2841 0.0559 1.257 4.812× 10−4 0.0558 2.536× 10−3 0.3033
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Fig. 4.15: Step response comparisons of (a) Lower bound (b) Upper bounds for

Example 4.7.
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Fig. 4.16: Bode diagram response comparisons of (a) Lower bound (b) Upper

bounds for Example 4.7.

94



Example 4.8: Consider a 15th order interval system transfer function [299]

described as follows,

G (s) =

[1.1, 2.925] s14 + [71.5, 149.6] s13 + [1987, 3583] s12 + [31788, 52140] s11

+
[
3.3× 105, 5.084× 105

]
s10 +

[
2.368× 106, 3.49× 106

]
s9

+
[
1.217× 107, 1.738× 107

]
s8 +

[
4.562× 107, 6.368× 107

]
s7

+
[
1.253× 108, 1.722× 108

]
s6 +

[
2.504× 108, 3.406× 108

]
s5

+
[
3.576× 108, 4.83× 108

]
s4 +

[
3.532× 108, 4.747× 108

]
s3

+
[
2.28× 108, 3.051× 108

]
s2 +

[
8.616× 107, 11.48× 107

]
s

+
[
1.44× 107, 1.908× 107

]
[1, 2.88] s15 + [70, 142.1] s14 + [2100, 3482] s13 + [36132, 54070] s12

+ [401310, 572200] s11 +
[
3.064× 106, 4.265× 106

]
s10

+
[
1.668× 107, 2.29× 107

]
s9 +

[
6.616× 107, 8.991× 107

]
s8

+
[
1.934× 108, 2.605× 108

]
s7 +

[
4.174× 108, 5.582× 108

]
s6

+
[
6.614× 108, 8.793× 108

]
s5 +

[
7.571× 108, 10.02× 108

]
s4

+
[
6.071× 108, 8.012× 108

]
s3 +

[
3.226× 108, 4.253× 108

]
s2

+
[
1.018× 108, 1.343× 108

]
s+

[
1.44× 107, 1.908× 107

]
The required reduced order interval model is obtained by using proposed method,

R2 (s) =

[
8.616× 107, 11.48× 107

]
s+

[
1.908× 107, 1.908× 107

][
2.385× 108, 2.385× 108

]
s2 +

[
1.018× 108, 1.343× 108

]
s+

[
1.908× 107, 1.908× 107

]
The required reduced order interval model is obtained by using the method [299],

R (s) =
[0.309346, 35.637894] s+ [0.018173, 14.006786]

[1, 1] s2 + [0.333955, 50.850819] s+ [0.018173, 14.006786]

Figures 4.17 and 4.18 show the step and bode response comparisons of original

and reduced order interval models of lower and upper bounds for Example 4.8. From

these responses, it is observed that the presented technique is closely matching with

original interval system. Moreover, the error indices of proposed and other reduction

techniques are depicted in Table 4.8. It is clear that the proposed technique gives

much better result than the other reduction method.
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Fig. 4.17: Step response comparisons of (a) Lower bound (b) Upper bounds for

Example 4.8.
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Fig. 4.18: Bode diagram response comparisons of (a) Lower bound (b) Upper

bounds for Example 4.8.

4.5.1.2 Multiple Input Multiple Output System

Example 4.9: The proposed method further extended to the MIMO interval systems.

Considered a 6th order fixed coefficient MIMO system [283] and converted it to the

interval system by incorporating ±50% uncertainty is as given below

G6 (s) =
1

D6 (s)

 a11 (s) a12 (s)

a21 (s) a22 (s)
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Table 4.8: Performance indices comparison of reduction methods for Example

4.8.

Reduction Methods
Lower Bound Upper Bound

ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed Method 0.2617 1.805 1.63 13.98 0.1205 0.621 0.2375 3.657

K.K.Kumar [299] 0.4903 2.724 2.561 32 0.0783 0.7628 0.2586 4.792

where

d6 (s) = [0.5, 1.5] s6 + [20.5, 61.5] s5 + [285.5, 856.5] s4 + [1745.5, 5236.5] s3

+ [5030, 15090] s2 + [6550, 19650] s+ [3000, 9000]

and

a11 (s) = [1, 3] s5 + [35, 105] s4 + [381, 1143] s3 + [1805, 5415] s2 + [3850, 11550] s

+ [3000, 9000]

a12 (s) = [0.5, 1.5] s5 + [19, 57] s4 + [229.5, 688.5] s3 + [1091, 3273] s2 + [2080, 6240] s

+ [1200, 3600]

a21 (s) = [0.5, 1.5] s5 + [15, 45] s4 + [165.5, 496.5] s3 + [825, 2475] s2 + [1850, 5550] s

+ [1500, 4500]

a22 (s) = [0.5, 1.5] s5 + [21, 63] s4 + [300.5, 901.5] s3 + [1830, 5490] s2 + [4550, 13650] s

+ [3000, 9000]

The required reduced order interval model is obtained by using proposed technique,

R2 (s) =
1

d2 (s)

 c11 (s) c12 (s)

c21 (s) c22 (s)


where

d2 (s) = [15037.5037, 3057.6756] s2 + [19649.9812, 19649.9882] s

+ [2999.9821, 8999.9821]

and
c11 (s) = [11550, 11550] s+ [2999.9185, 8999.9752]

c12 (s) = [6239.9905, 6239.9905] s+ [1199.9351, 3599.9959]

c21 (s) = [5549.8291, 5549.8845] s+ [1499.9211, 4499.5367]

c22 (s) = [13649.9958, 13649.9958] s+ [2999.4781, 8999.9793]
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The step and bode diagram responses of original and reduced order interval models

of lower and upper bounds are compared and shown in Figures 4.19 - 4.22 for

Example 4.9. From this it is observed that the proposed method gave close

approximation with original interval system both lower and upper bounds, which show

the effectiveness of the proposed method.

Fig. 4.19: Step response comparisons of lower bounds of (a)Gr11 (b) Gr12 (c)

Gr21 and (d) Gr22 for Example 4.9.
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Fig. 4.20: Step response comparisons of upper bounds of (a)Gr11 (b) Gr12 (c)

Gr21 and (d) Gr22 for Example 4.9.
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Fig. 4.21: Bode response comparisons of lower bounds of (a)Gr11 (b) Gr12 (c)

Gr21 and (d) Gr22 for Example 4.9.
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Fig. 4.22: Bode response comparisons of upper bounds of (a)Gr11 (b) Gr12 (c)

Gr21 and (d) Gr22 for Example 4.9.

4.6 MODEL REDUCTION USING MODIFIED TIME MOMENT

MATCHING AND KHARITONOV’S THEOREM

A new reduction method is proposed to reduce the order of higher-order interval

system. The proposed reduced order interval model is achieved by using

modified time-moment matching method [283], simple mathematical technique and

Kharitonov’s theorem. The reduced order denominator is obtained by using time

moment matching method and the reduced order numerator is obtained by equating

both higher order and reduced order transfer functions. The procedural steps are

given to describe the proposed technique as follows,

Step 1: By using numerator and denominator Kharitonov polynomials of eq.
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(4.19) and (4.21), the Kharitonov transfer functions are obtained as given below

G1 (s) = N1(s)
D1(s)

=
a−0 +a−1 s+a

+
2 s

2+a+3 s
3+···

b−0 +b−1 s+b
+
2 s

2+b+3 s
3+···

G2 (s) = N2(s)
D2(s)

=
a−0 +a+1 s+a

+
2 s

2+a−3 s
3+···

b−0 +b+1 s+b
+
2 s

2+b−3 s
3+···

G3 (s) = N3(s)
D3(s)

=
a+0 +a−1 s+a

−
2 s

2+a+3 s
3+···

b+0 +b−1 s+b
−
2 s

2+b+3 s
3+···

G4 (s) = N4(s)
D4(s)

=
a+0 +a+1 s+a

−
2 s

2+a−3 s
3+···

b+0 +b+1 s+b
−
2 s

2+b−3 s
3+···


(4.44)

Step 2:The reduced order denominator and numerator polynomials of G1 (s) are

obtained by following step 1 and step 2 discussed in section 3.3.

Finally, the reduced order model is obtained as

R1 (s) =
n1 (s)

d1 (s)
=

c−0 + c−1 s+ · · ·
d−0 + d−1 s+ d+2 s

2 + · · ·
(4.45)

Similarly, we can obtain the reduced order models of G2 (s) , G3 (s) and G4 (s) as

given below

R2 (s) = n2(s)
d2(s)

=
c−0 +c+1 s+···

d−0 +d+1 s+d
+
2 s

2+···

R3 (s) = n3(s)
d3(s)

=
c+0 +c−1 s+···

d+0 +d−1 s+d
−
2 s

2+···

R4 (s) = n4(s)
d4(s)

=
c+0 +c+1 s+···

d+0 +d+1 s+d
−
2 s

2+···

 (4.46)

Step 3: The four fixed parameter ROMs given in eq. (4.45) and (4.46) can be

written into sixteen combinations of ROIMs (one to each), by following sixteen plant

theorem [9], the general form is,

Ri,j (s) =
[ni (s) , nj (s)]

[di (s) , dj (s)]
(4.47)

for i, j = 1, 2, 3, 4.

Step 4: The required ROIM is obtained by choosing least error ROIM by

using ISE comparison between step response of HOIS eq. (4.1) and the sixteen

combinations of ROIMs of eq. (4.47).

ISE =

∞∫
0

[
gn (t)− ri,j (t)

]2
dt (4.48)

Where gn (t) is the HOIS and ri,j (t) is the ROIM.
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4.6.1 Numerical Examples and Results

To show the efficacy and powerfulness of the proposed reduction method we

considered popular SISO/MIMO systems. The first example solved in detail whereas

in the remaining examples the reduced systems are mentioned directly. The results

are compared in terms of system response and performance indices.

4.6.1.1 Single Input Single Output Systems

Example 4.10: Consider the 7th order interval system from Example 4.4 in section

4.4.1.1.

G7(s) =

[1.9, 2.1]s6 + [24.7, 27.3]s5 + [157.7, 174.3]s4 + [542, 599]s3 + [930, 1028]s2

+[721.8, 797.8]s+ [187.1, 206.7]

[0.95, 1.05]s7 + [8.779, 9.703]s6 + [52.23, 57.73]s5 + [182.9, 202.1]s4+[429, 474.2]s3

+[572.5, 632.7]s2 + [325.3, 359.5]s+ [57.35, 63.39]

The interval transfer function is converted to fixed parameter Kharitonov transfer

functions by following eq. (4.19) - (4.21),

G1 (s) = 2.1s6+24.7s5+157.7s4+599s3+1028s2+721.8s+187.1
1.05s7+9.703s6+52.23s5+182.9s4+474.2s3+632.7s2+325.3s+57.35

G2 (s) = 2.1s6+27.3s5+157.7s4+542s3+1028s2+797.8s+187.1
0.95s7+9.703s6+57.73s5+182.9s4+429s3+632.7s2+359.5s+57.35

G3 (s) = 1.9s6+24.7s5+174.3s4+599s3+930s2+721.8s+206.7
1.05s7+8.779s6+52.23s5+202.1s4+474.2s3+572.5s2+325.3s+63.39

G4 (s) = 1.9s6+27.3s5+174.3s4+542s3+930s2+797.8s+206.7
0.95s7+8.779s6+57.73s5+202.1s4+429s3+572.5s2+359.5s+63.39

(4.49)

The higher-order systems given in eq. (4.49) are reduced to the LOMs by following

step 1 and step 2 discussed in section 4.6.

R1(s) = −3.1282s−6.1097
s2−4.3536s−1.8730

R2 (s) = 5.5395s+2.6011
s2+3.2967s+0.7974

R3 (s) = 5.39025s+4.67258
s2+4.00169s+1.43287

R4 (s) = 4.59042s+2.05531
s2+2.5486s+0.63027

Finally, the required ROIM is obtained by using eq. (4.47) and (4.48), the second

order interval model is,

R2 (s) =
[5.5395, 5.39025] s+ [2.6011, 4.67258]

[1, 1] s2 + [3.2967, 4.00169] s+ [0.7974, 1.43287]
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The unit step and bode response comparisons of original system and reduced

order interval models of lower and upper bounds are shown in Figures 4.23 and

4.24 for Example 4.10. Moreover, the ISE and IAE of proposed and other existing

methods [231, 236, 240, 255, 297, 298] are tabulated in Table 4.9. From which it is

clear that the proposed technique gives much closer approximation to the original

system then the other methods.

Fig. 4.23: Step response comparison of (a) lower bounds (b) upper bounds for

Example 4.10
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Fig. 4.24: Bode diagram response comparison of (a) lower bounds (b) upper

bounds for Example 4.10

Example 4.11: Consider the 3rd order interval system from Example 4.1 in

section 4.3.1.1. The required reduced order model is obtained by using proposed
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method,

R2 (s) =
[1.08902, 1.30976] s+ [3.0272, 0.9869]

[1, 1] s2 + [3.7252, 2.4464] s+ [4.1373, 1.32622]

Figures 4.25 and 4.26 shows the step and bode response comparison of original

and reduced order interval models of lower and upper bounds for Example 4.11.

From these responses, it is observed that the presented technique is closely matched

with original interval system response. Moreover, the ISE of proposed and other

reduction techniques are depicted in Table 4.10. It is clear that the proposed

technique gives much better result than the other reduction method.

Fig. 4.25: Step response comparisons of (a) lower bounds (b) upper bounds of

Example 4.11
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Fig. 4.26: Bode diagram response comparisons of (a) lower bounds (b) upper

bounds of Example 4.11
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Table 4.9: The ISE and IAE comparisons for original and other reduction methods

for Example 4.10

Reduction Methods
ISE IAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 0.0739 0.1053 0.6911 0.8016

N. V. Anand [236] 0.991 3.2979 3.425 4.536

T. Babu [255] 2.428 4.323 5.734 9.325

Siva Kumar et al [240] 0.9357 1.0915 2.972 3.043

Bandyopadhyay [298] 2.259 5.954 4.758 7.735

Kranthi(FDA&DM) [297] 2.434 6.346 6.125 11.231

Kranthi(PA&DM) [297] 3.181 7.379 7.132 11.982

Selvaganesan [231] 4.305 7.301 8.804 12.372

Table 4.10: Comparison of the ISE with proposed and different reduction methods

for Example 4.11.

Reduced Methods
ISE

Lower Bound Upper Bound

Proposed Method 1.552× 10−5 9.321× 10−5

Bandyopadhyay et al. [106] 0.0015 2.9590× 10−4

Kranthi et al [297] 0.0196 0.0248

G.V.K R. Sastry et al. [221] 0.117 0.0084
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Example 4.12: Consider an 8th order interval system [294] having the transfer

function

G8 (s) =

[2.67e2, 2.89e2] s7 + [4.66e5, 7.66e5] s6 + [4.03e8, 7.31e8] s5

+ [2.4e11, 3.3e11] s4 + [6.6e13, 8.1e13] s3 + [5.5e15, 9.0e15] s2

+ [1.28e17, 1.46e17] s+ [6.42e17, 7.85e17]

[1, 1] s8 + [2.45e3, 2.70e3] s7 + [2.16e6, 2.30e6] s6 + [8.1e8, 8.32e8] s5

+ [1.3e11, 1.39e11] s4 + [8.7e12, 9.41e12] s3 + [2.0e14, 2.32e14] s2

+ [1.89e15, 2.33e15] s+ [6.48e15, 7.88e15]

The required reduced order model is obtained by proposed method, as follows

R2 (s) =
[899.7623, 965.7280] s+ [4739.2229, 3115.7994]

[1, 1] s2 + [13.4965, 13.1252] s+ [47.8351, 31.2770]

Figures 4.27 and 4.28 shows the step and bode response comparisons of original

and reduced order interval models of lower and upper bounds for Example 4.12.

From these responses, it is observed that the presented technique is closely matched

with original interval system response. Moreover, the ISE, IAE and ITAE of proposed

and other reduction techniques are depicted in Table 4.11. It is clear that the

proposed technique gives much better result than the other reduction method.

Table 4.11: The performance indices comparison of different reduction methods

for Example 4.12.

Reduction methods
Lower bound Upper bound

ISE IAE ITAE ISE IAE ITAE

Proposed method 5.047× 10−8 3.177× 10−4 0.3422 1.392× 10−4 0.01668 0.3341

Bandopadhyay

[106]

9.865× 10−4 0.0444 7.453 4.378× 10−4 0.03541 0.6769

Vijay Anand [294] 78.6 16.65 51.6 0.02354 1.157 3.4521

106



Fig. 4.27: Step response comparison of (a) lower bounds and (b) upper bounds

of Example 4.12
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Fig. 4.28: Bode diagram response comparisons of (a) lower bounds and (b) upper

bounds of Example 4.12
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4.6.1.2 Multiple Input Multiple Output System

Example 4.13: The application of the proposed method further extended to MIMO

interval systems. Consider a 5th order MIMO interval transfer matrix [299]

G5 (s) =
1

D5 (s)

 N11

N21


where

D5 (s) = [1, 1.03] s5 + [24.6, 25.34] s4 + [136.14, 140.23] s3 + [282.72, 291.2] s2

+ [236.51, 243.61] s+ [66.34, 70.32]

and

N11 (s) = [3.83, 4.06] s4 + [118.0, 125.0] s3 + [339.6, 360.1] s2 + [275.50, 280.10] s

+ [66.34, 70.32]

N21 (s) = [3.78, 4.00] s4 + [95.8, 101.6] s3 + [267.86, 283.9] s2 + [233.53, 238.54] s

+ [66.34, 70.32]

The required reduced order interval model is obtained by using proposed technique,

R2 (s) =
1

d2 (s)

 c11

c21


where

d2 (s) = [1, 1] s2 + [3.3694, 3.8267] s+ [2.7162, 3.01959]

and
c11 (s) = [4.8754, 5.3936] s+ [2.7162, 3.0195]

c21 (s) = [3.4478, 3.9089] s+ [2.7161, 3.01959]

The reduced order interval model is obtained by using K. K. Kumar technique [299],

R2 (s) =
1

d2 (s)

 c11

c21


where

d2 (s) = [1, 1] s2 + [1.0428, 1.1584] s+ [0.2839, 0.3444]
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and
c11 (s) = [1.2147, 1.3319] s+ [0.2839, 0.3444]

c21 (s) = [1.03, 1.1343] s+ [0.2839, 0.3444]

The step and bode response of original lower and upper bound interval systems

of proposed and K.K. Kumar [299] reduction methods of lower and upper bounds for

Example 4.13 are compared and are shown in Figures 4.29 - 4.32. Clearly, proposed

method is closely matching with original system in both lower bound and upper

bounds. Moreover, the ISE values of reduction methods are shown in Table 4.12,

which shows that the proposed method obtained comparable lowest ISE values.

Fig. 4.29: Step response comparison of multivariable systems (a) Gr11 (s) (b)

Gr21 (s) of lower bounds for Example 4.13

Table 4.12: ISE comparison of reduced order models for Example 4.13.

Reduction methods

ISE

Lower Bound Upper Bound

r11 r21 r11 r21

Proposed method 6.091× 10−4 5.585× 10−3 2.569× 10−4 5.179× 10−3

K. Kumar [299] 0.1184 0.06108 0.1003 0.05419
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Fig. 4.30: Step response comparison of multivariable systems (a) Gr11 (s) (b)

Gr21 (s) of upper bounds for Example 4.13
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Fig. 4.31: Bode diagram response comparison of multivariable systems (a)

Gr11 (s) (b) Gr21 (s) of lower bounds for Example 4.13
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Fig. 4.32: Bode diagram response comparison of multivariable systems (a)

Gr11 (s) (b) Gr21 (s) of upper bounds for Example 4.13
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4.7 CONCLUSION

The new reduction methods are proposed for reducing the order of linear interval

systems. In this chapter, four new combined order reduction methods are proposed,

the first reduction technique is obtained by differentiation method, factor division

algorithm, and Pade approximation method based on interval arithmetic operations.

In this, the reduced order denominators are obtained by differentiation method and,

the reduced order numerators are obtained by either of differentiation method, factor

division algorithm, and Pade approximation method. The second, third and fourth

reduction methods are developed by using differentiation method, stability equation

method and modified time-moment matching method using Kharitonov’s theorem.

The proposed methods are justified by solving some benchmark numerical examples

of both SISO and MIMO interval systems. It is observed that the proposed methods

are computationally simple and applicable for MIMO systems also. Further, the time

and frequency responses plotted to show the close response matching of reduced

order models obtained by proposed methods with original systems. Furthermore, the

results obtained by the proposed methods are also compared with recently available

literature in terms of performance indices.
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CHAPTER 5

NEW COMPOSITE TECHNIQUES FOR REDUCED

ORDER MODELLING OF DISCRETE-TIME SYSTEMS

5.1 INTRODUCTION

Model reduction is an active area of research in control system engineering since

1960. The number of reduction methods were proposed for continuous time

systems [40, 53, 92, 135, 145, 284, 300–304], but very limited number of reduction

techniques are extended to the discrete-time systems [140, 281, 305–309]. Due to

fast development of microprocessor and micro-controller based design of control

systems, the importance of MOR for discrete-time systems is increasing day by day.

The reduced order denominator models are obtained by first converting z-domain

system to the w-domain by applying linear transformation z = (w + 1), after that,

this w-domain system is reduced by using proposed reduction technique. Finally,

required reduced order model is obtained by converting the w-domain ROM to the

z-domain ROM by applying inverse linear transformation w = (z − 1).

5.2 PROBLEM STATEMENT

5.2.1 Single Input Single Output Systems

Consider a linear dynamic high-order discrete-time system represented as,

G (z) =
N (z)

D (z)
=
b0 + b1z + · · ·+ bn−1z

n−1

a0 + a1z + · · ·+ anzn
(5.1)

Where b0, b1, · · · bn−1 and a0, a1, · · · an are the numerator and denominator

coefficients. Our objective is to compute an kth (k < n) order LOS transfer function

as given below,

R (z) =
n (z)

d (z)
=
d0 + d1z + · · ·+ dk−1z

k−1

e0 + e1z + · · ·+ ekzk
(5.2)

Where d0, d1, · · · dk−1 and e0, e1, · · · ek are the unknown numerator and denominator

coefficients.
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The reduced order model achieved by using linear transformation, where the

system given in z-domain is converted to w-domain by substituting z = (w + 1),

resulting

G (z) =
N (w)

D (w)
=
N (z)

D (z)

∣∣∣∣
z=(w+1)

=
b20 + b21w + · · ·+ b2n−2w

n−1

a20 + a21w + · · ·+ a2nwn
(5.3)

The above converted system in w-domain is then reduced by using the proposed

methods and then converted back to z-domain by substituting w = (z − 1) to achieve

the reduced order model in the form as given in eq. (5.2) and resulting

R (z) =
n (z)

d (z)
=
n (w)

d (w)

∣∣∣∣
w=(z−1)

=
d0 + d1z + · · ·+ dk−1z

k−1

e0 + e1z + · · ·+ ekzk
(5.4)

5.2.2 Multiple Input Multiple Output System

Consider an nth order transfer function matrix represented as

[G (z)] =
1

Dn (z)


A11 (z) A12 (z) · · · A1n (z)

A21 (z) A22 (z) · · · A2n (z)
...

...
...

...

Am1 (z) Am2 (z) · · · Amn (z)

 (5.5)

Or [G (z)] = [gij (z)], where gij (z) can be written as [gij (z)] =
[Aij(z)]

Dn(z)
, where i =

1, 2, · · · ,m; j = 1, 2, · · · , n.

The goal is to obtain lower kth order transfer function matrix

[R (z)] =
1

Dk (z)


E11 (z) E12 (z) · · · E1p (z)

E21 (z) E22 (z) · · · E2p (z)
...

...
...

...

Eq1 (z) Eq2 (z) · · · Eqp (z)

 (5.6)

Or [R (z)] = [rij (z)], where rij (z) can be written as [rij (z)] =
[Eij(z)]

Dk(z)
, where i =

1, 2, · · · , q; j = 1, 2, · · · , p.
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5.3 MODEL REDUCTION USING MODIFIED TIME MOMENT

MATCHING METHOD

The order reduction methods proposed in chapter 3 are valid for continuous time

systems represented in frequency domain. In this chapter, the method which

is discussed in section 3.3 is extended to discrete-time systems by using linear

transformation at initial and final stages to obtain ROMs. To demonstrate the

superiority and efficacy of the proposed techniques, various benchmark numerical

examples are considered from the literature. The results are compared in terms of

system responses and performance indices with other well-known methods.

Further, the performance of the proposed method is also evaluated by using

summation square error (SSE), summation absolute error (SAE) and summation

time absolute error (STAE) is as follows,

SAE =
n∑
h=0

|g (h)− r (h)| (5.7)

SSE =
n∑
h=0

[g (h)− r (h)]2 (5.8)

STAE =
n∑
h=0

t |g (h)− r (h)| (5.9)

n = number of sampling instances. Where g (h) and r (h) are the unit step responses

of original HOS and the reduced order model respectively.

5.3.1 Numerical Examples and Results

To show the powerfulness and efficacy of the proposed reduction method we

considered popular SISO/MIMO systems. The results are compared in terms of

step response, impulse response and performance indices.

5.3.1.1 Single Input Single Output Systems

Example 5.1: The 4th order original discrete-time model [310] represented in transfer

function

G4 (z) =
−0.216608 + 0.31926z − 0.40473z2 + 0.0547377z3

0.282145− 0.551205z + 0.875599z2 − 1.36078z3 + z4
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The desired lower order discrete model is achieved by using proposed method is as

follows

R2 (z) =
−0.0066z − 0.1539

z2 − 1.478z + 0.6377

The step and impulse responses of higher-order model is compared with

proposed and recent reduced models [140, 281] which are shown in Figures 5.1

and 5.2 for Example 5.1. From this, it is understood that, the proposed model gave

close response with the higher-order system than the other models. Further, the

performance of the proposed model is also evaluated in terms of SSE, SAE, and

STAE values with other existing methods which are shown in Table 5.1. It is noticed

that, the suggested technique produced less error than other different reduction

methods.

Fig. 5.1: Step response comparisons for Example 5.1.
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Fig. 5.2: Impulse response comparisons for Example 5.1.

Example 5.2: The 8th order transfer function of discrete-time system [140]

represented as

G8 (z) =
280.3z7 + 186z6 − 35z5 + 25.33z4 − 86z3 − 43.66z2 + 7.33z − 1

666.7z8 − 280.3z7 − 186z6 + 35z5 − 25.33z4 + 86z3 + 43.66z2 − 7.33z + 1

The required discrete lower order model is achieved by means of proposed method.

R2 (z) =
0.4714z − 0.3275

z2 − 1.528z + 0.6724

The step and impulse response of original model is compared with proposed and

other reduced order models [140, 310] which are shown in Figure 5.3 and 5.4

for Example 5.2. From these responses it is observed that, the proposed model

response is closely matching in both time and frequency domains compared to other

reduced order models. Further, the obtained model also verified with SSE, SAE,

and STAE by comparing with other lower order models which are displayed in Table

5.2. From this, it may be seen that, the presented technique produced very much

improved results as compared to the other famous reduction methods.
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Fig. 5.3: Step response comparisons for Example 5.2

Fig. 5.4: Impulse response comparisons for Example 5.2

118



Table 5.1: The SSE, SAE, and STAE comparison of different reduced order

models for Example 5.1.

Reduction method SSE SAE STAE

Proposed method 1.13× 10−6 1.063× 10−3 3.614× 10−2

A.Narwal [140] 1.961× 10−5 5.560× 10−3 0.187

Satakshi et al. [305] 3.7812× 10−3 0.5462 2.436

Hsieh [306] 1.650× 10−2 0.9741 3.234

Amit Narwal [281] 2.584× 10−4 6.043× 10−3 0.6055

Table 5.2: Different reduced models SSE, SAE, and STAE comparison for

Example 5.2.

Reduction methods SSE SAE STAE

Proposed method 1.537 × 10−5 3.92× 10−3 0.1333

A.Narwal et al. [140] 4.9582× 10−4 0.0183 1.237

Chung et al. [310] 0.2511 1.843 3.341

Satakshi et al. [305] 5.881× 10−3 0.3145 1.0547

5.3.1.2 Multiple Input Multiple Output System

Example 5.3: The application of the presented technique is also extended for

discrete time MIMO systems. The proposed SISO method is applied successfully

on each element of transfer matrix of MIMO system. The procedure is same as

discussed earlier in section 3.3. Consider an 8th order multivariable transfer function

matrix [311] given as,

[Gn (z)] =
1

Dn (z)

 A11 (z) A12 (z) A13 (z)

A21 (z) A22 (z) A23 (z)


where

D8 (z) = 8z8−5.046z7−3.348z6 + 0.63z5−0.456z4 + 1.548z3 + 0.786z2−0.132z+ 0.018
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and

A11 (z) = 1.3z7 + z6 − 0.02z5 + 0.042z4 − 0.181z3 − 0.007z2 + 0.024z − 0.0033

A12 (z) = 0.082z7 + 0.095z6 − 0.14z5 + 0.01z4 − 0.13z3 − 0.2z2 + 0.017z − 0.0015

A13 (z) = 0.3z7 + 0.021z6 − 0.05z5 − 0.1z4 − 0.205z3 − 0.055z2 + 0.003z − 0.0012

A21 (z) = 1.081z7 + 0.3z6 − 0.286z5 − 0.092z4 + 0.113z3 − 0.08z2 − 0.0354z − 0.004

A22 (z) = 0.3z7 + 0.621z6 − 0.253z5 − 0.116z4 + 0.247z3 − 0.26z2 − 0.212z − 0.004

A23 (z) = 1.05z7 + 0.13z6 + 0.27z5 − 0.043z4 + 0.071z3 − 0.17z2 + 0.085z − 0.003

The corresponding [Gn (w)] is obtained using linear transformation

[Gn (w)] =
1

Dn (w)

 A11 (w) A12 (w) A13 (w)

A21 (w) A22 (w) A23 (w)


where

Dn (w) = 8w8 + 58.95w7 + 185.3w6 + 322.6w5 + 335.9w4 + 210.5w3 + 76.81w2 + 16w+ 2

and

E11 (w) = 1.3w7 + 10.1w6 + 33.28w5 + 60.44w4 + 65.29w3 + 41.8w2 + 14.64w + 2.155

E12 (w) = 0.082w7 + 0.669w6 + 2.152w5 + 3.605w4 + 3.28w3 + 1.217w2 − 0.289w − 0.2675

E13 (w) = 0.3w7 + 2.121w6 + 6.376w5 + 10.47w4 + 9.815w3 + 4.845w2 + 0.854w − 0.0872

E21 (w) = 1.081w7 + 7.867w6 + 24.22w5 + 40.81w4 + 40.72w3 + 24.05w2 + 7.713w + 0.9966

E22 (w) = 0.3w7 + 2.721w6 + 9.773w5 + 18.43w4 + 20.17w3 + 12.87w2 + 4.106w + 0.323

E23 (w) = 1.05w7 + 7.48w6 + 23.1w5 + 40.01w4 + 41.95w3 + 26.48w2 + 9.096w + 1.22

The desired reduced order model is obtained by using proposed method,

[R2 (z)] =

 E11 (z) E12 (z) E13 (z)

E21 (z) E22 (z) E23 (z)


where

E11 (z) = 0.1646z−0.0833
z2−1.7561z+0.8316

E12 (z) = 0.03002z−0.0396
z2−1.7264z+0.7984

E13 (z) = 0.0447z−0.0478
z2−1.7486z+0.8204

E21 (z) = 0.1146z−0.0764
z2−1.7500z+0.8267

E22 (z) = 0.0826z−0.0731
z2−1.7634z+0.8217

E23 (z) = 0.1199z−0.0768
z2−1.7648z+0.8354
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The reduced order model is obtained by Desai [311]

[R2 (z)] =

 E11 (z) E12 (z) E13 (z)

E21 (z) E22 (z) E23 (z)



E11 (z) = 0.221z−0.164
z2−1.731z+0.784

E12 (z) = 0.0128z−0.0198
z2−1.731z+0.784

E12 (z) = 0.0291z−0.0314
z2−1.731z+0.784

E21 (z) = 0.127z−0.1008
z2−1.731z+0.784

E22 (z) = 0.0835z−0.075
z2−1.731z+0.784

E23 (z) = 0.146z−0.1139
z2−1.731z+0.784

The step and impulse responses of original system is compared with reduced order

models obtained by proposed technique and Desai [311] for Example 5.3, which are

shown in Figures 5.5 and 5.6. From this it is observed that, the ROM obtained by

the proposed technique gave close approximation with the original system compared

to [311]. Further, the SSE, SAE and STAE values are also calculated to show the

accurate approximation of the proposed method by comparing with [311], which are

displayed in Table 5.3 for Example 5.3. It is noticed that, the ROM obtained by

proposed technique provided least SSE, SAE and STAE values compared to other

reduction method.

Table 5.3: Different reduced models SSE, SAE and STAE comparison for

Example 5.3.

Reduction Methods PI r11 r12 r13 r21 r22 r23

Proposed method

SSE 1.082× 10−6 3.064× 10−7 1.126× 10−7 9.44× 10−7 1.08× 10−6 9.693× 10−7

SAE 0.00104 0.000553 0.000335 0.000971 0.001039 9.845× 10−4

STAE 0.06137 0.03819 0.02316 0.05732 0.08211 0.05809

Desai [311]

SSE 5.238× 10−5 2.485× 10−6 5.728× 10−8 3.882× 10−5 2.073× 10−6 5.55× 10−5

SAE 0.00723 0.001576 0.000239 0.00623 0.00144 0.00745

STAE 0.427 0.1088 0.01651 0.3676 0.1138 0.4395
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Fig. 5.5: Step response comparison of MIMO system for Example 5.3

Fig. 5.6: Impulse response comparison of MIMO system for Example 5.3
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5.4 INTERVAL SYSTEMS APPROACH IN DISCRETE DOMAIN

A number of reduction methods are developed in the area of continuous-time

interval systems [108, 218, 231, 297, 298, 312–315], but very few reduction methods

are extended to discrete-time interval systems. Ismail et al. [241] proposed

a discrete interval reduction technique using Pade approximation and dominant

poles. The lower order denominator is achieved by using retention of dominant

poles of the higher order system, while the numerator is achieved by using Pade

approximation method by matching the time-moments. Choo [243], proposed a

model reduction method for discrete-time interval systems. This method preserves

desired real dominant poles by overcoming the stability problems in [231]. Sastry and

Mallikarjuna Rao [108] proposed simplified Routh approximation method (SRAM)

for order reduction of interval models by preserving the initial time moments of

higher-order interval systems. Pappa and Babu [316], proposed model reduction

of discrete interval systems by differentiation method. Choudhary and Nagar [247],

proposed γ-δ approximation for reduction of discrete-time interval systems.

The order reduction methods proposed in chapter 4 are developed for continuous

time systems represented in frequency domain. In this chapter, some of the methods

from chapter 4 are extended for order reduction of discrete time systems using linear

transformation technique. To show the superiority, efficacy of the proposed technique

various benchmark numerical examples have been considered. The results are

compared in terms of step response, impulse response and performance indices

with other well-known methods and recently published work.

5.4.1 PROBLEM STATEMENT

5.4.1.1 Single Input Single Output System

Let us consider a discrete-time original interval system described as follows,

G (z, p, q) =
[p−0 , p

+
0 ] + [p−1 , p

+
1 ]z + · · ·+ [p−n−1, p

+
n−1]z

n−1

[q−0 , q
+
0 ] + [q−1 , q

+
1 ]z + · · ·+ [q−n , q

+
n ]zn

(5.10)
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Our essential task is to determine the kth(k < n) order discrete-time reduced interval

model as follows

R (z, u, v) =
[u−0 , u

+
0 ] + [u−1 , u

+
1 ]z + · · ·+ [u−k−1, u

+
k−1]z

k−1

[v−0 , v
+
0 ] + [v−1 , v

+
1 ]z + · · ·+ [v−k , v

+
k ]zk

(5.11)

5.5 MODEL REDUCTION USING DIFFERENTIATION METHOD AND

KHARITONOV’S THEOREM

The proposed technique is obtained by using differentiation method and Kharitonov’s

theorem. By using Kharitonov’s theorem the higher order discrete-time interval

systems are written into higher-order fixed parameter discrete-time systems. These

z-domain fixed parameter HOS are converted to w-domain systems by applying

linear transformation z = (w + 1). Then these w-domain HOS are reduced by

using differentiation method. These fixed parameter w-domain ROMs are converted

back to z-domain ROMs by applying inverse linear transformation w = (z − 1).

Then, these fixed parameter reduced order models are rearranged to form sixteen

combinations of reduced order interval models by using sixteen plant theorem.

Finally, the required reduced interval model is obtained by comparing sixteen

combinations of reduced order interval models with original interval system using

SSE. The procedural steps to be followed are similar as discussed in section 4.4.

5.5.1 Numerical Examples and Results

To show the powerfulness and efficacy of the presented technique we considered

popular SISO systems. The results are compared in terms of system response and

performance indices.

Example 5.4: The 3rd order original system [317] represented in discrete interval

transfer function

G (z) =
[1, 2] z2 + [3, 4] z + [8, 10]

[6, 6] z3 + [9, 9.5] z2 + [4.9, 5] z + [0.8, 0.85]

The desired ROIM is obtained by using proposed technique

R2 (z) =
[10.5, 12] z + [28.5, 30]

[27.5, 27.5] z2 + [28.8, 29] z + [7.3, 7.4]
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The step and impulse responses of original lower and upper bound interval

systems and the proposed method and some other reduction methods [317–322]

of lower and upper bounds for Example 5.4 are compared and are shown in Figures

5.7 and 5.8. It is clear that proposed reduction method is closely matching with

original higher order response. Moreover, the SSE and SAE values of this method

and other reduction methods are shown in Table 5.4, which shows that the proposed

method gives much lower SSE and SAE value compared to other different reduction

methods.

Table 5.4: The SSE and SAE comparison of different reduction methods for

Example 5.4.

Reduction Methods
SSE SAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 0.001089 2.294× 10−6 0.03301 0.00151

Aseem et al. [318] 0.0672 0.0043 0.236 0.0932

Neeraj et al. [319] 0.188 0.2678 1.892 1.937

AK.Choudhary(Algor1) [320] 0.009332 2.89× 10−4 0.0966 0.017

AK.Choudhary(Algor2) [320] 0.1703 0.3794 0.4127 0.6159

Ruchira [321] 0.0105 0.025 0.6645 0.1388

Manish [322] 0.0852 0.0377 0.2893 0.38

AK.Choudhary(case1) [317] 0.02984 0.01938 0.1728 0.1392

AK.Choudhary(case3) [317] 0.002174 0.256 0.04663 0.506
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Fig. 5.7: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.4

Fig. 5.8: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.4
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Example 5.5: The 5th order original system [323] described in discrete-time

interval transfer function

G (s) =
[2.3, 2.55] z4 + [2.45, 2.65] z3 + [3.25, 3.35] z2 + [2.5, 2.65] z + [1.8, 2.2]

[8.3, 8.35] z5 + [4.6, 4.8] z4 + [2.4, 2.5] z3 + [2, 2.2] z2 + [1.5, 1.8] z + [2.1, 2.15]

The desired discrete-time ROIM is obtained by proposed technique is,

R (z) =
[390, 400.5] z + [366, 385.5]

[721.8, 729] z2 + [315.2, 316.8] z + [199.8, 244.2]

Figures 5.9 and 5.10 shows the step and impulse response comparisons of

original and reduced order interval models of lower and upper bounds for Example

5.5. From these responses, it is observed that the presented technique is closely

matched with original interval system. Moreover, the SSE and SAE of proposed and

other reduction techniques are depicted in Table 5.5. It is clear that the proposed

technique gives much better result than the other reduction method.

Fig. 5.9: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.5
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Fig. 5.10: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.5

Table 5.5: The SSE and SAE comparison of different reduction methods for

Example 5.5.

Reduction Method
SSE SAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 2.782× 10−4 2.561 × 10−5 1.668× 10−2 5.06× 10−3

Manikanta [323] 4.126× 10−3 1.125× 10−4 6.424× 10−2 1.061× 10−2

K. Kranthi [324] 5.644× 10−3 4.697× 10−3 7.513× 10−2 2.167× 10−2

5.6 MODEL REDUCTION USING STABILITY EQUATION METHOD

AND KHARITONOV’S THEOREM

A new order reduction technique is proposed for reducing order of the higher-order

discrete-time interval systems. The reduced order interval model is obtained by

using Kharitonov’s theorem, stability equation method and sixteen plant theorem.

The Kharitonov’s theorem converts the higher order discrete-time interval system

into higher-order fixed parameter discrete-time systems. By applying linear

transformation the z-domain systems are converted into w-domain systems. These
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w-domain HOS are reduced by using stability equation method. Then, by applying

inverse linear transformation the w-domain reduced order models are converted back

to the z-domain fixed parameter reduced order models. Then, by using sixteen plant

theorem [9] these reduced order fixed parameter models are rearranged to form

sixteen combinations of reduced order discrete-time interval systems. The required

reduced order interval model is achieved by comparing SSE between the transient

parts of the HOIS and the ROIMs. The procedural steps to be followed are similar

as discussed in section 4.5.

5.6.1 Numerical Examples and Results

To show the powerfulness and efficacy of the proposed technique we considered

popular numerical examples. The results are compared in terms of step response,

impulse response and performance indices.

Example 5.6: Consider the 5th order discrete-time interval system from example

5.5 in section 5.5.1. The second order system is obtained by using proposed

technique is as following

R2 (z) =
[26.35, 26.7] z + [−13.75,−13.6]

[111.5, 112.6] z2 + [−149.8,−151.3] z + [59.44, 60.17]

Figures 5.11 and 5.12 shows the step and impulse response comparisons of

original and reduced order interval models of lower and upper bounds for Example

5.6. From these responses, it is observed that the presented technique is closely

matched with original interval system. Moreover, the SSE and SAE of proposed and

other reduction techniques are depicted in Table 5.6. It is clear that the proposed

technique gives much better result than the other reduction method.
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Fig. 5.11: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.6.

Fig. 5.12: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.6.
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Table 5.6: The SSE and SAE comparisons of different reduction methods for

Example 5.6.

Reduction Method
SSE SAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 9.611× 10−5 2.561 × 10−5 9.804× 10−3 4.52× 10−3

Manikanta [323] 4.126× 10−3 1.125× 10−4 6.424× 10−2 1.061× 10−2

K. Kranthi [324] 5.644× 10−3 4.697× 10−3 7.513× 10−2 2.167× 10−2

Example 5.7: The 8th order discrete-time interval system [322] described as

follows,

G8 (z) =

[1.6484, 1.7156] z7 + [1.0937, 1.1383] z6 + [−0.2142,−0.2058] z5

+ [0.1490, 0.1550] z4 + [−0.5263,−0.5057] z3 + [−0.2672,−0.2568] z2

+ [0.0431, 0.0449] z + [−0.0061,−0.0059]

[23.52, 24.48] z8 + [−1.7156,−1.6484] z7+ [−1.1383,−1.0937] z6

+ [0.2058, 0.2142] z5 + [−0.1550,−0.1490] z4 + [0.5057, 0.5263] z3

+ [0.2568, 0.2672] z2 + [−0.0449,−0.0431] z + [0.0059, 0.0061]

The required reduced order interval model is obtained by using proposed technique,

R2 (z) =
[16.11, 15.89] z + [−14.1,−13.9]

[572.3, 548.7] z2 + [−964.5,−925.4] z + [414.8, 398.2]

The reduced order model obtained by using Choudhary and Nagar [317] method is,

R2 (z) =
[2.27, 29.91] z2 + [41.4, 42.7] z + [12.14, 39.78]

[47.32, 62.95] z2 + [−30,−2] z + [9.05, 24.68]

The step and impulse response of original lower and upper bound interval

systems and the proposed and Choudhary [317] reduction methods of lower and

upper bounds for Example 5.7 are compared and are shown in Figures 5.13 and

5.14. Clearly, proposed method is quite comparable with original system in both

lower bound and upper bound. Moreover, the SSE and SAE values of reduction

methods are compared and are shown in Table 5.7, which shows that the proposed

method obtained comparable low SSE and SAE values.
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Fig. 5.13: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.7.

Fig. 5.14: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.7.
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Table 5.7: The performance indices comparison of reduced order models for

Example 5.7.

Reduction Method
Lower Bound Upper Bound

SSE SAE STAE SSE SAE STAE

Proposed Method 1.374× 10−6 1.172× 10−3 3.986× 10−2 3.417× 10−8 1.848× 10−4 6.285× 10−3

AK Choudhary

[317]

4.108 2.027 68.91 1.489 1.22 41.49

5.7 MODEL REDUCTION USING MODIFIED TIME MOMENT

MATCHING METHOD AND KHARITONOV’S THEOREM

A new order reduction technique is proposed for reducing order of the

higher-order discrete-time interval systems. The proposed technique is obtained

by using modified time-moment matching method and Kharitonov’s theorem. The

Kharitonov’s theorem converts the higher order discrete-time interval system

into higher-order fixed parameter discrete-time systems. These z-domain

fixed parameter HOS are converted to w-domain systems by applying linear

transformation z = (w + 1). Then these w-domain HOS are reduced by using

modified time-moment matching method. After that, these w-domain ROMs are

converted back to z-domain ROMs by applying inverse linear transformation w =

(z − 1). Then, these fixed parameter reduced order models are rearranged to

form sixteen combinations of reduced order interval models by using sixteen plant

theorem. Finally, the required reduced interval model is obtained by comparing

sixteen combinations of reduced interval models with original interval system using

summation square error. The procedural steps to be followed are similar as

discussed in section 4.6.

5.7.1 Numerical Examples and Results

To show the powerfulness and efficacy of the presented technique we considered

popular SISO systems. The results are compared in terms of step response, impulse

responses and performance indices.
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Example 5.8: Consider the 3rd order discrete-time interval system from example

5.4 in section 5.5.1. Using proposed method, the following second order system is

obtained

R2 (z) =
[0.252, 0.09128] z + [0.4276, 0.8665]

[1, 1] z2 + [0.0043, 0.2117] z + [0.1041, 0.1197]

The step and impulse responses of original lower and upper bound interval

systems and the proposed method and some other reduction methods [317–322]

of lower and upper bounds for Example 5.8 are compared and are shown in Figures

5.15 and 5.16. It is clear that proposed reduction method is closely matching with

original higher order response. Moreover, the SSE and SAE values of this method

and other reduction methods are shown in Table 5.8, which shows that the proposed

method gives much lower SSE and SAE values compared to other different reduction

methods.

Table 5.8: The SSE and SAE comparison of different reduction methods for

Example 5.8.

Reduction Methods
SSE SAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 0.001031 1.214× 10−6 0.02301 0.00115

Manish [322] 0.0852 0.0377 0.2893 0.38

Ruchira [321] 0.0105 0.025 0.6645 0.1388

AK.Choudhary(Algor1) [320] 0.009332 2.89× 10−4 0.0966 0.017

AK.Choudhary(Algor2) [320] 0.1703 0.3794 0.4127 0.6159

Neeraj et al. [319] 0.188 0.2678 1.892 1.937

Aseem et al. [318] 0.0672 0.0043 0.236 0.0932

AK.Choudhary(case1) [317] 0.02984 0.01938 0.1728 0.1392

AK.Choudhary(case3) [317] 0.002174 0.256 0.04663 0.506
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Fig. 5.15: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.8.

Fig. 5.16: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.8.
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Example 5.9: Consider the 5th order discrete-time interval system from example

5.5 in section 5.5.1. The required reduced order model is obtained by using proposed

technique.

R2 (z) =
[0.204582, 0.23630848] z + [0.1559464, 0.12482784]

[1, 1] z2 + [−0.8091218,−0.7990144] z + [0.4253237, 0.38259972]

Figures 5.17 and 5.18 shows the step and impulse response comparisons of

original and reduced order interval models of lower and upper bounds for Example

5.9. From these responses, it is observed that the presented technique is closely

matched with original interval system. Moreover, the SSE and SAE of proposed and

other reduction techniques [323, 324] are depicted in Table 5.9. It is clear that the

proposed technique gives much better result than the other reduction method.

Table 5.9: The SSE and SAE comparison of different reduction methods for

Example 5.9.

Reduction Method
SSE SAE

Lower Bound Upper Bound Lower Bound Upper Bound

Proposed Method 1.15× 10−5 1.741× 10−5 3.377× 10−3 4.172× 10−3

Manikanta [323] 4.126× 10−3 1.125× 10−4 6.424× 10−2 1.061× 10−2

Kranthi [324] 5.644× 10−3 4.697× 10−3 7.513× 10−2 2.167× 10−2
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Fig. 5.17: Step response comparison of (a) lower bound (b) upper bounds for

Example 5.9.

Fig. 5.18: Impulse response comparison of (a) lower bound (b) upper bounds for

Example 5.9.
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5.8 CONCLUSION

The new reduction methods proposed for reduced order modelling of continuous time

systems which are discussed in chapter 3 and 4. These continuous time systems are

extended for order reduction of discrete time systems. The first reduction technique

in discrete domain is obtained by extending the continuous time reduction technique

discussed in section 3.3. Remaining discrete-time reduction methods are obtained

by extending the continuous time reduction methods discussed in section 4.4, 4.5

and 4.6. The reduced order models are achieved by first converting the given

z-domain HOS to the w-domain systems using linear transformation and then the

transformed system is reduced. After that, the reduced system is again converted

back to the z-domain using inverse linear transformation. The step and impulse

responses of the original and reduced order interval models are plotted. Further, the

performance of the proposed methods evaluated in terms of performance indices.

From these results it is observed that, the proposed techniques provided quite

comparable results which are justified by solving benchmark numerical examples

from the literature.
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CHAPTER 6

CONTROLLER DESIGN

6.1 INTRODUCTION

In previous chapters several MOR techniques have been developed in

continuous-time domain which approximate certain characteristics or properties of

the original HOS. The quality of ROM is judged by the degree of its success in

representing the desired characteristics of the system [325] and the way it is utilized.

One of the main objective of MOR is to obtain low order controller to control the high

order systems effectively so that, the overall system is of low order, which is easy to

understand and analyze. It is thus important that the MOR methods should reduce

the high order controller to a low order controller without incurring too much error.

Model reduction is based on open loop considerations while closed loop stability

performance is main concern in controller reduction.

In this chapter, suitability of the proposed reduction methods are examined for

controller design. The problem is to design a controller GC (s) for an uncontrolled

plant Gp (s) such that the closed loop response with unity feedback is stable and has

suitable fast response. The design problem may be stated as: It is required to find

a controller GC (s) such that the time and frequency responses of the controlled

system closely match with those of the reference model even for poor dynamic

characteristics of the higher order plant Gp (s).

To design a controller there are two common approaches. First approach is

to design a controller for reduced order plant is called plant reduction [325] and

second approach is to design a controller for high order system then reduce the

closed loop higher order system is called controller reduction [326–329]. The

common problem with the plant reduction approach is that, due to early stage

reduction the error propagates in the design. While in controller reduction approach,

error does not propagate as process reduction is carried out in the final stage of
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the design [330, 331]. It is shown that the proposed mixed methods based on

Pade approximation and differentiation method, and Modified time-moment matching

methods are suitable for both the approaches of controller design. By using Pade

sense of approximate model matching the controller parameters are obtained. Figure

6.1 show the block diagram representation of direct and indirect controller design

approaches [332]. Figure 6.2 show the comparison of full order controller and

reduced order controller with reference model performance.

Higher order plant

Gp(s)

Higher order controller

Reduced order plant

Rp(s)

Reduced order controller

Rc(s)

Gc(s)

Higher order

controller design

Lower order

controller design

Plant

reduction

Controller

reduction

Fig. 6.1: Block diagram of direct and indirect controller design approaches

6.2 CHOICE OF REFERENCE MODEL

The choice of controller design and its complexity and structure depends on the kind

of reference model which is chosen as desired closed loop system. The stability

and the acceptable performance of the closed loop system must be ensured by the

reference model. The design specifications [333, 334] of the reference model may

chosen to meet as follows,

• The time domain specifications such as, settling time, rise time, steady state

error, Max. overshoot.

• The complex domain specifications such as, undamped natural frequency,

damping factor, damping ratio, and location of closed loop poles.
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E(s)R(s) U(s) C2(s)
Rp(s)Rc(s)

Mc(s)
R(s) C2(s)

E(s)R(s) U(s) C1(s)
Gp(s)Gc(s)

Fig. 6.2: Original and reduced order closed loop configuration with reference

model.

• The frequency domain specifications such as, gain margin, phase margin,

bandwidth and cut off rate.

The reference model can be constructed using the methods [335–337]. The

reference model is specified such that the closed loop response of the controlled

system should approximate the reference model.

6.3 PLANT REDUCTION AND CONTROLLER DESIGN: DIRECT

APPROACH

The procedural steps to design a controller is based on approximate model matching

in Pade sense as follows,

Step 1: Construct a reference model M (s) for the plant having a transfer function

Gp (s) on the basis of specification given in section 6.2, such that the closed loop

control system response approximates with reference model.
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Let the plant transfer function Gp (s) and the reference model M (s) are given by

Gp (s) =

m∑
i=0

ais
i

n∑
i=0

bisi
m ≤ n (6.1)

M (s) =

u∑
i=0

gis
i

v∑
i=0

hisi
(6.2)

Step 2: Determination of a corresponding open loop specification model M̃ (s).

The corresponding transfer function of open loop specification model for reference

model M (s) is determined as follows.

M̃ (s) =
M (s)

1−M (s)
(6.3)

Step 3: Controller structure specification

Let the controller structure GC (s) is given by

GC (s) =

k∑
i=0

pis
i

l∑
i=0

qisi
k ≤ l (6.4)

Step 4: For obtaining the unknown parameters of the controller, the response of

closed loop system is matched with the reference model as

GC (s)Gp (s) = M̃ (s) (6.5)

which leads to

GC (s) =
M̃ (s)

Gp (s)
=
∞∑
i=0

eis
i (6.6)

Where ei (o ≤ i ≤ ∞) are the power series expansion coefficients about s = 0.

The controller may be taken as

GC (s) =
k (1 + T1s)

s (1 + T2s)
T1 > T2 (6.7)
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Now the unknown controller parameters pi (o ≤ i ≤ k) & qi (0 ≤ i ≤ l) of the

controller are calculated by equating the eq. (6.6) and (6.4) in Pade sense.

p0 = q0e0

p1 = q0e1 + q1e0

p2 = q0e2 + q1e1 + q2e0

· · ·

pi = q0ei + q1ei−1 + q2ei−2 + · · ·+ qi−1ei + qie0

0 = q0ei+1 + q1ei + q2ei−1 + · · ·+ qie1 + qi+1e0

· · ·

0 = q0ei+j + q1ei+j−1 + q2ei+j−2 + · · ·+ qj−1ei+1 + qjei

(6.8)

By solving the above linear equations the desired structure of the controller is

obtained.

Step 5: The closed loop transfer function is obtained by using the plant and

controller transfer functions as follows,

GCL (s) =
GC (s)Gp (s)

1 +GC (s)Gp (s)
(6.9)

Step 6: The closed loop transfer function for the ROM is obtained by Reducing

the plant Gp (s) to Rp (s) using one of the reduction methods discussed earlier in the

chapters 3, and repeat the procedural steps of step 4 and 5 of section 6.3,

RCL (s) =
RC (s)Rp (s)

1 +RC (s)Rp (s)
(6.10)

6.3.1 Illustrative Examples and Results

Example 6.1: Consider a fuel control system taken from Aguirre [133] having transfer

function and reference model as

Gp (s) =
0.4299s2 + 0.6010s+ 0.1069

s3 + 0.7026s2 + 0.8746s+ 0.1107
(6.11)

Step 1: Specification of the reference model M (s) For this example, we specify the

model as follows [133]

M (s) =
0.16

s2 + s+ 0.16
(6.12)
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Step 2: Determination of an equivalent open loop specification M̃ (s) is obtained by

using eq. (6.3)

M̃ (s) =
0.16

s (1 + s)
(6.13)

Step 3: Specification of the structure of controller GC (s) is

GC (s) =
k (1 + T1s)

s (1 + T2s)
T1 > T2 (6.14)

Step 4: Determination of unknown controller parameters

Also the required controller is given by

GC (s) = M̃(s)
Gp(s)

= 0.017712+0.139936s+0.112416s2+0.16s3

s(0.1069+0.7079s+1.0309s2+0.4299s3)

= 1
s

 0.165688 + 0.211841s− 1.949049s2 + 11.694259s3

−59.496367s4 + · · ·

 (6.15)

Now by matching eq. (6.14) with the power series expansion eq. (6.15) in the Pade

sense, we get

k = 0.1657

kT1 = 0.2118 + 0.1657T2

0 = −1.9490 + 0.2118T2

Whose solution leads to,

k = 0.1657

T1 = 10.48028

T2 = 9.20207

Consequently the controller GC (s) is given by

Gc (s) =
0.165688 (1 + 10.479096s)

s (1 + 9.200540s)
(6.16)

Step 5: Determination of closed loop transfer function

The closed loop system GCL (s) is given by

GCL (s) = Gc(s)Gp(s)

1+Gc(s)Gp(s)

= 0.017712+0.285184s+1.114719s2+0.746416s3

0.017712+0.395884s+3.007819s2+9.495809s3+7.464299s4+9.200540s5

(6.17)

144



Now we reduce the original plant transfer function Gp (s) to its second order

reduced model Rp (s) by using the proposed method i.e., Pade approximation and

differentiation method, discussed in section 3.5 of chapter 3.

Rp (s) =
0.958439s+ 0.32069

0.7026s2 + 1.7492s+ 0.3321
(6.18)

Then, the reduced order controller is given by

RC (s) = M̃(s)
Rp(s)

= 0.1124s2+0.2799s+0.05314
0.9584s3+1.279s2+0.3207s

= 1
s

(0.1657 + 0.2119415s− 0.98996s2 + · · ·)
(6.19)

Now RC (s) is of the form

RC (s) =
k (1 + T1s)

s (1 + T2s)
T1 > T2 (6.20)

By matching eq. (6.20) with the power series expansion eq. (6.19) in the Pade

sense, to get

k = 0.1657, T1 = 5.949868, T2 = 4.6708013

Therefore,

RC (s) =
0.985893s+ 0.1657

4.6708013s2 + s
(6.21)

Now the reduced order closed loop transfer function RCL (s) is obtained by using

eq. (6.10)

RCL (s) =
0.945s2 + 0.475s+ 0.05314

3.282s4 + 8.873s3 + 4.2449s2 + 0.8071s+ 0.05314
(6.22)

The reduced order closed loop system obtained by using Narwal method [338] is

RCL (s) =
0.08835s2 + 0.31401s+ 0.143488

2.51706s4 + 2.514766s3 + 2.947449s2 + 1.21081s+ 0.143488
(6.23)

The step response comparisons of open loop original plant transfer function

Gp (s) and the reduced order plant models obtained by proposed technique and

A. Narwal [338] are shown in Figure 6.3. It may be seen from the figure that

the responses of the proposed reduced model gave close steady state matching

with the Gp (s) compared to other method. Also the step responses of closed

loop transfer function of original system GCL (s) and the reduced order closed loop
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systems (RCL (s)) of proposed model and A. Narwal model are compared with the

step response of the reference model M (s) which are shown in Figure 6.4. Further,

the qualitative comparison of original and reduced order closed loop systems are

compared with reference model in Table 6.1.

Fig. 6.3: Step response comparisons of original and reduced order plant for

Example 6.1

Table 6.1: Qualitative comparison of original and reduced order models with

reference model for Example 6.1

Systems Rise time Peak Overshoot Steady state

GCL (s) 12.2 0% 1

Reference model M(s) 11.6 0% 1

Proposed RCL (s) 11.8 0% 1

A. Narwal RCL (s) [338] 11.1 0% 1
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Fig. 6.4: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.1

PID controller:

Generally, it is considered that the plant which is to be controlled is completely

known to us, but in actual practice, it is not possible in each and every case.

The performance of the closed loop system can be improved by introducing a PID

(Proportional, integral and derivative) controller. The block diagram of the system

with PID controller is given in Figure 6.5.

The input to the plant consists of three components: (i) K1E, (ii) K2E/s and (iii)

K3sE . The first component K1E is proportional to the error, the second component

K2E/s is proportional to the integral of the error and the third component K3sE is

proportional to the derivative of the error. The first component K1E increases the

loop gain of the system which results in reduction of its sensitivity to plant parameter

variations whereas the second component K2E/s increases the order of the system

and reduces the steady state error and the third component K3sE helps in stabilizing

the system by introducing the derivative term [339].
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E(s)Set point u(s) Output
Gp(s)Kp + Ki

s
+Kds

Fig. 6.5: Block diagram of PID Controller

Example 6.2: Consider the regulator problem [340] having the plant transfer

function

Gp (s) =
s5 + 8s4 + 20s3 + 16s2 + 3s+ 2

s6 + 18.3s5 + 102.42s4 + 209.46s3 + 155.94s2 + 33.6s+ 2
(6.24)

The reference model

M (s) =
0.0121 + 0.023s

0.0121 + 0.21s+ s2
(6.25)

From eq. (6.3)

M̃ (s) =
0.0121 + 0.023s

s (0.187 + s)
(6.26)

and

M̃(s)
Gp(s)

=

0.0242 + 0.452560s+ 2.659674s2 + 6.121086s3 + 6.056862s4

+2.577090s5 + 0.433s6 + 0.023s7

s(0.374+2.561s+5.992s2+19.74s3+21.496s4+8.187s5+s6)

= 1
s

(0.064706 + 0.766974s+ 0.822824s2 − 4.971038s3 − 7.148807s4 + · · ·)
(6.27)

Let the PID controller GC (s) be

GC (s) = K1 +
K2

s
+K3s (6.28)

Comparing the coefficients of equation eq. (6.27) and (6.28), the parameters

K1, K2 & K3 of the controller GC (s) are obtained and we get the PID controller

as

GC (s) = 0.766974 +
0.064706

s
+ 0.822824s (6.29)
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The closed loop transfer function GCL (s) is given by

GCL (s) =

0.129412 + 1.728065s+ 4.981864s2 + 16.034172s3 + 29.022311s4

+22.656979s5 + 7.349567s6 + 0.822824s7

0.129412 + 3.728065s+ 38.581864s2 + 171.974172s3 + 238.482311s4

+125.076979s5 + 25.649567s6 + 1.822824s7

(6.30)

Now the given plant transfer function Gp (s) is reduced to its second order reduced

model Rp (s) by using the proposed method i.e., time moment matching method,

which is discussed in section 3.3 of chapter 3.

Rp (s) =
0.026543s+ 0.01266

s2 + 0.220241s+ 0.01266
(6.31)

The reduced order controller is obtained by using eq. (6.26) and (6.31)

RC (s) = M̃(s)
Rp(s)

= 0.023s3+0.01717s2+0.002956s+0.0001532
0.02654s3+0.01762s2+0.002367s

= 1
s

(0.064723 + 0.76703s+ 0.818359s2 − · · ·)
(6.32)

The reduced order controller is obtained as

RC (s)
0.76703s+ 0.064723 + 0.818359s2

s
(6.33)

Therefore, the closed loop reduced order model is

RCL (s) =
RCRp

1 +RCRp

=
0.02172s3 + 0.03072s2 + 0.01143s+ 0.0008194

1.02172s3 + 0.25092s2 + 0.02409s+ 0.0008194

The reduced order closed loop system obtained by using Narwal method [338] is

RCL (s) =
0.05187s3 + 0.04385s2 + 0.007202s+ 0.0006062

1.052s3 + 0.1875s2 + 0.01657s+ 0.0006062
(6.34)

The step responses of closed loop original and reduced order models of proposed

and Narwal [338] are compared with the step responses of the reference model

M (s) in Figure 6.6. It is observed that the response of proposed model gave

close response with M (s) than the other reduction model. Further, the qualitative

comparison of original and reduced order closed loop systems are compared with

reference model in Table 6.2
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Fig. 6.6: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.2

Table 6.2: Qualitative comparison of original and reduced order models with

reference model for Example 6.2

Systems Rise time Peak Overshoot Steady state

GCL (s) 22.2 0% 1

Reference model M(s) 28.1 0% 1

Proposed RCL (s) 28.3 0% 1

A. Narwal RCL (s) [338] 29.7 0.955% 1.019

6.4 INDIRECT APPROACH: PLANT REDUCTION AND

CONTROLLER DESIGN

In this approach, first a controller is designed for the higher order plant, from this

the high order closed loop transfer function with unity feedback is obtained by using

high order plant transfer function and controller transfer function. Then the high
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order closed loop transfer function is reduced to lower order closed loop transfer

function. The performance of the higher order closed loop transfer function GCL (s)

and the lower order closed loop transfer function RCL (s) are compared with that of

the reference model.

6.4.1 Illustrative Examples and Results

Example 6.3: Consider a plant transfer function taken from Prasad et. al. [341]

G (s) =
s3 + 12s2 + 54s+ 72

s4 + 18s3 + 97s2 + 180s+ 100

The design specifications are wn = 5.0, ζ = 0.707, using the method of Towil [337],

the reference model comes out to be

M (s) =
4.242s+ 25

s2 + 7.07s+ 25

The equivalent open loop transfer function is obtained using eq. (6.3)

M̃ (s) =
4.242s3 + 54.99s2 + 282.8s+ 625

s4 + 9.898s3 + 44.99s2 + 70.7s

The controller structure is given by

GC (s) =
k (1 + k1s)

s (1 + k2s)
(6.35)

In order to match the response of closed loop system GCL (s) exactly with that of the

reference model M (s) , the required controller is given by GC (s)Gp (s) = M̃ (s)

GC (s) = M̃(s)
Gp(s)

= 4.242s7+131.3s6+1684s5+11810s4+4.9e04s3+1.17e05s2+140780s+62500
s7+21.9s6+217.8s5+1217s4+3991s3+7057s2+5090s

= 1
s

(12.278 + 10.6337s− 1.3782s2 + 0.2654s3 + · · ·)
(6.36)

By matching controller structure eq. (6.35) with power series expansion eq. (6.36)

the coefficients of controller parameters are obtained as

k = 12.278

kk1 = 10.6337 + 12.278k2

0 = −1.3782 + 10.6337k2

therefore,

k = 12.278, k1 = 0.9957, k2 = 0.1296

151



Hence the controller is

GC (s) =
12.278 (1 + 0.9957s)

s (1 + 0.1296s)

The corresponding closed loop transfer function GCL (s) is

GCL (s) =
12.23s4 + 159s3 + 807.5s2 + 1543s+ 884

0.1296s6 + 3.333s5 + 42.8s4 + 279.3s3 + 1000s2 + 1643s+ 884

This high order closed loop transfer function is reduced to third order model using

proposed Factor division algorithm and differentiation method discussed in section

3.4 of chapter 3.

RCL (s) =
12551.58371s2 + 85770s+ 106080

2614.8s3 + 23000s2 + 98480s+ 106080

The reduced order closed loop system obtained by using Narwal method [338] is

RCL (s) =
4.7528s2 + 31.2135s+ 26.8022

s3 + 8.8282s2 + 34.2448s+ 26.8022

The step responses of the high order closed loop transfer function GCL (s) and

reduced order closed loop transfer functions of proposed and Narwal [338] are

compared with that of the reference model which are shown in Figure 6.7. It is

observed that the reduced order model responses are in close agreement with that

of the reference model. Further, the qualitative comparison of original and reduced

order closed loop systems are compared with reference model in Table 6.3

Table 6.3: Qualitative comparison of original and reduced order models with

reference model for Example 6.3

Systems Rise time Peak Overshoot Steady state

GCL (s) 0.206 9.05% 1

Reference model M(s) 0.282 8.33% 1

Proposed RCL (s) 0.263 7.12% 1

A. Narwal RCL (s) [338] 0.279 6.41% 1
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Fig. 6.7: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.3

Example 6.4: Consider a 6th order rational minimum phase practical system

Gp (s) taken by Prasad [333] which represents a typical open loop helicopter engine

including a fuel controller. The input and output variables of the system are speed

demand and propeller speed respectively. The step response of the system has

undesirable oscillations because of elasticity of the propeller shaft. A controller is

required to be designed so that the closed loop response of the system must follow

the response of the reference model M (s) which is given as

GP (s) =
248.05s4 + 1483.3s3 + 91931s2 + 468730s+ 634950

s6 + 26.24s5 + 1363.1s4 + 26803s3 + 326900s2 + 859170s+ 528050

The reference model is,

M (s) =
4

s2 + 4s+ 4
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then

GC (s) = M̃(s)
Gp(s)

=

4s8 + 121s7 + 5888s6 + 1.2943e05s5 + 1.7579e06s4 + 9.0956e06s3

+2.1091e07s2 + 2.22e07s+ 8.449e06

248.1s8 + 3468s7 + 1.088e05s6 + 1.2082e06s5 + 6.2473e06s4

+1.5933e07s3 + 2.02e07s2 + 1.016e07s

= 1
s

(0.8316 + 0.5313s− 0.2841s2 + 0.1159s3 + · · ·)

The structure of the controller is taken as

GC (s) =
k (1 + k1s)

s (1 + k2s)

The controller parameters are obtained by matching controller structure with power

series expansion coefficients,

k = 0.8316, k1 = 1.1735, k2 = 0.5347

Hence, the required controller is finally given as

GC (s) =
0.9758s+ 0.8316

0.5347s2 + s

Therefore, the closed loop transfer function with the controller is given as

GCL (s) =
Gc (s)Gp (s)

1 +Gc (s)Gp (s)
=

242.1s5 + 1654s4 + 9.095e04s3 + 5.338e05s2

+1.011e06s+ 5.281e05

0.5347s8 + 15.031s7 + 755.1s6 + 1.594e04s5 + 2.032e05s4

+8.772e05s3 + 1.6754e06s2 + 1.538e06s+ 5.281e05

The closed loop transfer functionGCL (s) is reduced to third order closed loop transfer

function RCL (s) by using the time moment matching method discussed in section 3.3

in chapter 3 is given as

RCL (s) =
0.0145267s+ 3.921791

s2 + 3.928149s+ 3.921791

The reduced order closed loop system obtained by using Vishwakarma method [342]

is

RCL (s) =
0.5339s2 + 1.00996s+ 0.52808

0.84305s3 + 1.6084s2 + 1.5285s+ 0.52808
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The step response of the original closed loop transfer function GCL (s) and the

reduced closed loop transfer functions of proposed and Vishwakarma [342] are

compared with the response of the reference model which is shown in Figure 6.8.

It is observed that, the reduced proposed controller is closely matching with the

reference model compared to other model. Further, the qualitative comparison of

original and reduced order closed loop systems are compared with reference model

in Table 6.4

Fig. 6.8: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.4

Example 6.5: Phase lead compensator design, let the plant model given by [334]

Gp (s) =
20 [1 + s/1.5]

s [1 + s/4.5] [1 + s/10] [1 + s/30]

The desired performance specifications are: Crossover frequency wc = 4.5;

Damping ratio ζ = 0.785; Velocity error constant kv = 20

The reference model is obtained by following the method of Chen and Shieh
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Table 6.4: Qualitative comparison of original and reduced order models with

reference model for Example 6.4

Systems Rise time Peak Overshoot Steady state

GCL (s) 1.76 0.289% 1

Reference model M(s) 1.68 0% 1

Proposed RCL (s) 1.68 0% 1

Vishwakarma RCL (s) [342] 1.91 1.97% 1.03

[343],

M (s) =
4.04265s+ 8.009

s2 + 4.4431s+ 8.009

The compensator to be designed is assumed as phase lead, given by

GC (s) =
K [s+ b]

[s+ a]

By applying the proposed direct design method, the unknown parameters of the

compensator are obtained as,

K = 0.106345; b = 2.261666; a = 0.262352

Therefore, the closed loop transfer function of the plant with the above designed

compensator is given by

GCL (s) =
1914.21s2 + 7200.618674s+ 6493.955511

s5 + 44.762352s4 + 491.674664s3 + 3390.13896s2 + 7554.79387s+ 6493.955511

Further, this GCL (s) is reduced by using proposed Pade approximation and

differentiation method discussed in section 3.5 in chapter 3, and the reduced order

closed loop control system is obtained as:

RCL (s) =
160064.541s+ 389637.3307

30340.83376s2 + 181315.053s+ 389637.3307

The reduced order closed loop system obtained by using Narwal method [338] is

RCL (s) =
0.486536s+ 37.731322

s2 + 6.538768s+ 37.731322
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The step response of GCL (s) , M (s) and RCL (s) of proposed and Narwal [338]

are compared in the below figure 6.9, from which it is clear that the response of

GCL (s) and RCL (s) are found to close approximate the desired one M (s). Further,

the qualitative comparison of original and reduced order closed loop systems are

compared with reference model in Table 6.5.

Fig. 6.9: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.5

Table 6.5: Qualitative comparison of original and reduced order models with

reference model for Example 6.5

Systems Rise time Peak Overshoot Steady state

GCL (s) 0.237 13.9% 1

Reference model M(s) 0.325 14.5% 1

Proposed RCL (s) 0.206 11.9% 1

A. Narwal RCL (s) [338] 0.276 13.9% 1
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Example 6.6: Phase Lead-Lag compensator design

Let the plant model be given by [334]:

Gp (s) =
20

s [1 + s/10] [1 + s/30]

The desired performance specifications are: Crossover frequency wc = 5;

Damping ratio ζ = 0.7; Velocity error constant kv = 20

The reference model is obtained by following the method of Chen and Shieh

[293],

M (s) =
4.35s+ 12.674

s2 + 4.984s+ 12.674

The compensator to be designed is assumed as phase lead-lag, given by

GC (s) =
s2 + cs+ d

s2 + as+ b

By applying the proposed direct design method, the unknown parameters of the

compensator are obtained as

a = 22.420965; b = 13.552926; c = 6.180847; d = 13.951391

Therefore, the closed loop transfer function of the plant with the above designed

compensator is given by

GCL (s) =
6000s2 + 37085.082s+ 83708.346

s5 + 62.420965s4 + 1210.391526s3 + 13268.40654s2 + 41150.9598s+ 83708.346

Further, this GCL (s) is reduced by Pade approximation and differentiation method

discussed in section 3.5 of chapter 3, and the reduced order closed loop control

system is obtained as

RCL (s) =
455489.3672s+ 5022500.76

89610.44424s2 + 847423.0352s+ 5022500.76

The reduced order closed loop system obtained by using Narwal method [338] is

RCL (s) =
1.181756s+ 68.028254

s2 + 9.466647s+ 68.028254

The step response of GCL (s) , M (s) and RCL (s) of proposed and Narwal [338]

are compared in the below Figure 6.10, from which it is clear that the response

of the proposed model is quite comparable with the desired model M (s). Further,

the qualitative comparison of original and reduced order closed loop systems are

compared with reference model in Table 6.6.
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Fig. 6.10: Step response comparisons of original and reduced order closed loop

models with reference model for Example 6.6

Table 6.6: Qualitative comparison of original and reduced order models with

reference model for Example 6.6

Systems Rise time Peak Overshoot Steady state

GCL (s) 0.199 15.5% 1

Reference model M(s) 0.278 16.1% 1

Proposed RCL (s) 0.207 8.35% 1

A. Narwal RCL (s) [338] 0.215 11.2% 1

6.5 CONCLUSION

In this chapter, the control systems are designed to ascertain the suitability of some

of the MOR methods developed in previous chapters. The proposed reduction

techniques discussed in chapter 3 have been used to design these control systems.

Both, direct and indirect approaches have been considered in the present work
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in which the desired performance specifications of the plant are translated in

to a specification/reference/model transfer function and then the linear algebraic

equations are solved to obtain the unknown parameters of the controller. The

methods are computer oriented, rugged and simple. The methods assure the

reasonably well unit step response matching. It can be seen in the illustrative

examples that the unit step responses of the overall control systems designed

for the original and reduced order plants are in close agreement with that of

the reference/specification model. Also, a qualitative comparison in terms of the

transient response parameters for original and reduced order plants of these closed

loop control systems is also shown in some examples, from which it is clear that the

proposed design methods, i.e. direct and indirect, give good and acceptable closed

loop performance.
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL

In this thesis the new techniques are developed for reduced order modelling of

continuous and discrete time systems in both conventional and interval domains.

The applicability of some of the proposed methods in the field of controller design for

both direct and indirect approach is also explored. This chapter concludes the main

contributions and results of each chapter. Furthermore, some important and useful

suggestions for future work in this area of research are discussed.

7.2 SUMMARY OF IMPORTANT FINDINGS

In this thesis, the reduced order modelling of linear systems are presented in

which the proposed techniques are developed for both conventional and interval

LTI systems. Several new composite techniques are developed to circumvent the

drawbacks of existing methods. Some of the model reduction techniques developed

herein are extended for order reduction of multivariable and discrete time systems.

Some benchmark numerical examples are chosen to demonstrate the efficacy of the

proposed methods. The results obtained by the proposed methods are compared

with other well-known reduction methods and recently published work in terms of

ISE, IAE, ITSE and ITAE, Nyquist plot, step, impulse and bode diagram responses.

Later, the applicability of the proposed methods in the field of controller design for

both direct and indirect approach is also proposed.

An overview on modelling of large scale systems and role of model order

reduction along with the mathematical preliminaries related to model order reduction

and concepts of interval systems has been presented in chapter 1. Further, it

included objectives and organization of the thesis also.

The brief literature review on various existing model reduction techniques in

frequency domain, time domain and interval domain and their associated qualities/
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drawbacks available in the literature has been included in chapter 2. It is observed

that model order reduction is in demand in various fields, such as biomedical

systems, transportation systems, complex chemical processes and systems and

control.

In chapter 3, new composite mixed method techniques are suggested for reduced

order modelling of linear dynamic continuous-time systems based on time moment

matching method, factor division algorithm, Pade approximation and differentiation

method. The first proposed technique utilized the benefits of time moment matching

method to determine the reduced order denominator polynomial whereas in the

second and third techniques the differentiation method employed to determine the

reduced order denominator. The reduced order numerator polynomial is determined

by equating higher-order and lower order models and by comparing like s terms

after cross multiplication for first method whereas the second and third proposed

methods employed factor division algorithm and Pade approximation method. Apart

from preserving the stability and other essential characteristics of the original system,

these methods also minimized the values of the error between original and reduced

order systems. Further, these techniques are extended for order reduction of multi

input multi output systems. The results obtained from proposed methods are found

quite comparable with some other existing well-known reduction methods.

In chapter 4, the new reduction methods are proposed for reducing the order of

continuous-time linear dynamic interval systems. In this chapter, four new order

reduction techniques are proposed, the first reduction technique is obtained by

differentiation method, factor division algorithm, and Pade approximation method

based on interval arithmetic operations. In this, the reduced order denominators

are obtained by differentiation method and, the reduced order numerators are

obtained by either of differentiation method, factor division algorithm, and Pade

approximation method. The second, third and fourth reduction methods are obtained

by using differentiation method, stability equation method and modified time-moment

matching method based on Kharitonov’s theorem. The proposed methods are

justified by solving some benchmark numerical examples of both SISO and MIMO
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interval systems. It is observed that the proposed methods are computationally

simple and applicable for MIMO systems also. The results are compared with some

other existing reduction techniques in terms of bode plot, step response and error

indices such as ISE, IAE and ITAE. It is observed that, the results are encouraging

and a vast improvement in the values of performance indices is achieved.

In chapter 5, some of the techniques developed in the previous chapters have

been extended for reduced order modelling of discrete time systems. The concept

of linear transformation is used during the initial and final stages, to convert the

discrete domain systems to continuous domain systems and vice versa to obtain the

reduced order models of proposed techniques. In this, the first technique has been

further extended for reduced order modeling of multivariable discrete time systems.

Here also, the proposed and some other order reduction techniques are compared

in terms of performance indices such as SSE, SAE and STAE between original

and reduced order systems by reducing the benchmark systems available in the

literature. The original and reduced order system step and impulse responses are

compared to show the close approximation of proposed reduced model response

with the original system response. It is observed that the results obtained by the

proposed techniques are comparable.

In chapter 6, the controllers are designed to ascertain the suitability of some

of the proposed order reduction methods. The proposed conventional techniques

which are time moment matching method, Pade approximation, factor division

algorithm and differentiation methods have been tested while designing the low order

controllers. Both the direct and indirect approaches have been considered in the

present work. The desired performance specifications of the plant are translated

into a specification/reference/model transfer function M (s) and then the linear

algebraic equations are solved to obtain the unknown parameters of the controller.

These design methods have been implemented in MATLAB environment. Illustrative

examples are given for both the approaches. It can be seen in the illustrative

examples that, the unit step responses of the overall control systems designed

for the original and reduced order plants are in close agreement with that of the
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reference/specification model and the proposed design direct and indirect methods.

The obtained results are quite encouraging in terms of closed loop performance.

7.3 SCOPE FOR FUTURE WORK

There is always a scope for further improvement in any research work. Therefore,

some suggestions are given for further research work in this area.

• In third chapter, some of the proposed mixed methods are based on

factor division algorithm & differentiation methods, and Pade approximation

& differentiation method these have been developed for linear continuous

systems only. These techniques may be extended to order reduction of discrete

time systems.

• The order reduction techniques in chapter three are proposed for the system

given in frequency domain only. However, the same techniques may be

explored for the system given in time domain directly.

• In fourth chapter, the proposed mixed interval technique based on interval

arithmetic operation have been used for SISO interval systems only. This

technique may be extended for continuous multivariable systems and discrete

time interval systems.

• In fifth chapter, the discrete time interval techniques are extended for

SISO systems only. These techniques may be extended for discrete time

multivariable interval systems.

• The z − w transformation and vice versa are used during the initial and

final stages of reduced order modelling of discrete time systems. However,

the reduced order discrete time system may be explored without using any

transformation.

• In sixth chapter, the proposed techniques discussed in third chapter are used

for controller design. In this chapter, the controller parameters can be found

using any other optimization technique like genetic algorithm (GA), particle
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swarm optimization (PSO), ant colony optimization (ACO), etc. or using soft

computing techniques like fuzzy controller design.

• The whole work presented in the thesis is for linear systems only. Therefore,

the proposed work may be extended for non-linear systems also.
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