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ABSTRACT

Nowadays, the neurological disorders such as Alzheimer, epilepsy, autism spectrum dis-

order, Parkinson’s disease, multiple sclerosis etc. has increased to an alarming level. Autism

Spectrum Disorder (ASD), in this series, is an umbrella term for multiple neurodevelopmen-

tal conditions characterized by repetitive or stereotyped behaviors and pervasive deficits in

social communications and interactions. The ASD is considered a lifelong disability which

has an impact on both the individual and the family, as well as being a cost to society in

general. Among these costs are additional health care, disability support in school and, in

some instances, the loss of a productive working life and the provision of social security. By

2017, estimates of the prevalence of autism by the world health organization were 1 per 160

children, more than a 30-fold increase from the first studies of autism prevalence. From the

perspective of social healthcare, it’s an utmost requirement to understand their etiology.

Functional integration of the brain networks on a macroscopic level is being analyzed

exhaustively to establish the biomarkers of neurological disorders. It is also termed as func-

tional network connectivity analysis. During the past decade, the disrupted connectivity the-

ory has generated considerable interest as a pathophysiological model for ASD. This theory

postulates that deficiencies in the way the brain coordinates and synchronizes activity among

different regions may account for the clinical symptoms of ASD. The most common version

of this hypothesis proposes that individuals with ASD have weak connections between distant

brain regions and increased connections within local regions.

The existing connectivity data in ASD are inconsistent and one possible explanation for

the variability is that although altered connectivity is a pathogenic mechanism, there are in-

sufficient specificity in existing hypotheses, insufficient precision in the techniques, excessive

sensitivity to confounds, or insufficient power in studies to correctly identify the supporting

evidence. The functional network connectivity in ASD significantly fluctuated in the research

works carried out in this field because of methodological and subject choice contrasts. Early

examinations regularly centered around locale differences in activation during tasks, with

more recent studies utilizing resting state functional MRI concentrated in seed-based tech-

niques and low-order ICA models. Developmental changes in functional connectivity have

received inadequate attention and the discrepancies between findings of autism related hypo-
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connectivity and hyper-connectivity might be reconciled by taking developmental changes

into account as per the age range of the persons.

The present work emphasizes to bridge the inconsistencies in the literature and tries to

establish a reliable biomarker which truly governs the signature manifestations of ASD pa-

tients. A resting-state examination is preferred rather a task-based one, because the imaging

protocol is typically faster and the collected data serves multiple mapping purposes, thus

fitting better into the usually limited patient scanning schedule. To accomplish this, the ob-

jectives of the present research work are formulated as: (1) comparing the ICA algorithms on

the basis of their abilities to decompose the fMRI images, (2) building standard 3D templates

for the naming of intrinsic connectivity networks, (3) age-stratified assessment of social and

cognitive dysfunction of ASD through functional network connectivity (FNC), and (4) age-

stratified functional network-based dynamic connectivity analysis in autism with higher order

ICA model.

A variety of existing ICA algorithms have been implemented so far for fMRI images.

With a view that algorithms that are overlooked may outperform the most opted, a compara-

tive study is taken up in the first objective to analyze their abilities for the purpose of decom-

position of fMRI images. In this work, ten independent component algorithms: Fast ICA,

INFOMAX, SIMBEC, JADE, ERICA, EVD, RADICAL, ICA-EBM, ERBM, and COMBI

are compared. Their separation abilities are adjudged on both, synthetic and real fMRI im-

ages. Performance to decompose synthetic fMRI images is being monitored on the basis of

spatial correlation coefficients, time elapsed to extract independent components and the vi-

sual appearance of independent components. Ranking of their performances on task-based

real fMRI images are based on the closeness of time courses of identified independent com-

ponents with model time course and the closeness of spatial maps of components with spatial

templates while their competencies for resting state fMRI data are analyzed by examining

how distinctly they decompose the data into the most consistent resting state networks. Sum

of mutual information between all the permutations of decomposed components of resting

state fMRI data is also calculated. Based on all the acquired results, it is deduced that ER-

ICA, EVD, and SIMBEC are not suitable algorithms for decomposition of fMRI images.

Aggregate observations reveal that it is not worthwhile to use ERBM or ICA-EBM sepa-
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rately but their combination is a better choice to use for fMRI decomposition. RADICAL is

exceptionally sluggish and thus it is not a good choice. Among the overlooked algorithms

and most opted algorithms, COMBI is a better choice for fMRI decomposition. The COMBI

is fastest as well as it decomposes components quite distinctively.

The ICA finds the autonomous components of fMRI signal that represent a mix of ’true’

brain networks and artifactual components from various sources such as cerebrospinal fluid,

white matter, blood vessels and head motion. The separation of decomposed components into

these two groups currently remains a semi-manual process, determined by quantitative met-

rics but reliant on the experience of the neuro-physicians. The labeling of RSN is being done

either by utilizing the spatial correlation between the given 2D layout and component images

or in light of the premise of ROIs effectively reported as the captivating anatomical part of

those in past literary works. Splitting of components due to model order ambiguity, moder-

ate advance in computer vision, higher likelihood of confusion of segments those are spread

over more than one projection of the brain and repeating ROIs for different RSNs are the

significant obstacles in utilizing 2D RSN layouts for the marking reason. To overcome this

inadequacy, 3D templates are proposed in the second objective with the end goal of making

RSN recognition automated. Proposed 3D templates are a superior substitute being free from

these shortcomings. The use of volumetric overlap of decomposed RSN with 3D templates

instead of the spatial correlation between RSN and 2D templates is expected to give more

accurate results. These templates are developed by overlaying the manually labeled RSNs on

3D glass brain. These are selected from 100 decomposed components. The anatomic posi-

tions of them are based on the results of Talairach client where the toolbox was commanded

to search in a cube of +/- 2mm. Images of manually labeled RSN are co-registered to sam-

ple image of multi-image analysis GUI (MANGO) toolbox (http://ric.uthscsa.edu/mango/)

followed by the surface rendering. They are rendered on 3D glass brain for the purpose of

better visibility. These 3D templates can be used as the standard for the labeling of RSN

and are perfectly suitable for RsfMRI studies employing lower/higher order ICA model. Any

RSN will get the name of the parent template which encompasses it and the quantification

can be done based on the similarity indexes that measures the volumetric overlap viz., Dice

coefficient or Jaccard coefficient.
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Static functional network connectivity (sFNC) assessment to explore the limited cogni-

tive ability of autistic subjects is executed in the third objective. The sFNC among six cogni-

tive brain networks, viz. anterior default mode network, posterior default mode network, two

frontoparietal networks (LFPN and RFPN), basal ganglia network (BG) and salience network

(SN) have been examined. To understand the developmental trajectory of ASD, functional

magnetic resonance imaging (fMRI) dataset of autistic children, adolescents and adults are

considered. Constrained maximal lag correlation between each pair of networks of interest

by calculating Pearsons correlation and constraining the lag between the time courses. The

number of possible pair-wise combinations to examine between-network connectivity is 15

with six networks of interest. Subject-specific time-courses were detrended and despiked,

then filtered using a fifth-order Butterworth low-pass filter with a cutoff frequency of 0.15

Hz. The SN manifest aberrant patterns of brain connectivity in the various stages of develop-

mental trajectory. Attention allocation to stimuli, salient to the individual, is a conventional

responsibility of the SN and atypical development of the SN may lessen interest in social in-

teraction which is a signature characteristic of ASD. For the underlying two formative stages,

the two frontoparietal networks are not connected and thus no availability of connectivity be-

tween them for the atypical population. This may be one of the reasons behind their hallmark

behavioral characteristics.

The fourth objective of this study is to explore a whole brain dynamic functional network

connectivity differences in a developmental trajectory. The dynamic FNC are evaluated uti-

lizing a sliding window approach instantiated in the dFNC toolbox in GIFT toolbox. First, the

time-courses were detrended and despiked using 3D despike in the AFNI software followed

by filtering using a fifth-order Butterworth low-pass filter with a cutoff frequency of 0.15 Hz.

Then, FNC covariance matrices were calculated between all pairwise RSNs for each sub-

ject using the correlations derived from previously done ICA analysis by moving a Gaussian

window in 1 TR (time of repetition) increments across the subject time-courses. Successive

FNC matrices for each window were then concatenated to form an array [number of RSNs x

number of RSNs x (number of window units)] representing a state transition vector, or how

the FNC state changed through time for each subject. Subsequently, a clustering analysis is

done to examine the structure and frequency of FNC patterns that recurred in the state transi-
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tion vectors. The k-means clustering algorithm was applied to the individual arrays of FNC

covariance matrices using the City method and the algorithm iterated a maximum of 200

times before convergence. The results of this objective are dissimilar to the speculations that

hyper-connectivity of brain networks are prevalent in young children with ASD, while hypo-

connectivity are more common in young people and adults with the disorder when compared

to typically developing cohorts. The statistically significant functional network connectivity

differences (fdr<= 0.05) are sparse in the group of children and adults and even the signifi-

cant intra-connectivity differences do not influence over the interconnectivity differences in

the children’s group of ASD.

v





ACKNOWLEDGEMENTS

First and foremost, I would like to thank God Almighty for giving me the strength, knowl-

edge, ability and opportunity to undertake this research study and to persevere and complete

it satisfactorily. Without his blessings, this achievement would not have been possible.

I express my sincere gratitude to Dr. R.S.Anand, Professor, Department of Electrical

Engineering, Indian Institute of Technology Roorkee, Roorkee for his valuable guidance

throughout my research work. His technical and clinical discussions, everlasting moral sup-

port and faith played a vital role in the completion of my thesis work. Apart from the this, his

immense concern during tough and good times of my Ph.D. is indeed very memorable and

highly appreciable.

I extend my sincere thanks to the members of student research committee Dr. Manoj

Tripathi, Dr. M. V. Kartikeyan and Dr. Barjeev Tyagi for their valuable suggestions and

assistance during my study period at IIT Roorkee. I would also like to thank the Head of the

Department and other faculty members of Electrical Engineering Department, IITR for their

moral support and providing the excellent laboratory facilities during this research work at

Indian Institute of Technology Roorkee.

I am quite blessed and lucky to be working with a wonderful team of research scholars at

IIT, Roorkee. I acknowledge the help rendered by my fellow researchers Dr. Nagashettapa

Biradar, Dr Arvind R. Yadav, Mr. Jayendra Kumar, Dr. Arun Balodi, Dr. Deep Gupta,

Dr. Sunil Sharma, Dr. Shashank Saini, Dr. Amol Sarkate, Dr. Bhavik Patel, Mr. Swapnil

Jaiswal, Mr. Haresh Sabhadiya, Mr. Krishna Murari, Mr. Tushar Tyagi, Mr. Surender Hans,

Mr. Gaurav Shukla, Mr. Shivam, Mr. Rinku, Mr. Ashish Rohilla, and Dr. Nabab Alam who

never hesitated in lending a helping hand and made my stay at IIT Roorkee most memorable

one. I extend my thanks to all whom I have missed mentioning.

I extend my thanks to office superintendent Mr. Mohan Singh, and other staff members

particularly Mr. Rishab Verma, Mr. Shushil Kumar, Mr. Amir Ahmed, and all others who

were quite helpful during my stay at IIT, Roorkee. I also wish to thank Mr. Jogeshwar Prasad,

Mr.Rajiv Gupta, Mr. Dinesh Kumar, and Mr. Veer Chand, staff of Applied Instrumentation

(AI) lab and Instrumentation and signal processing (ISP) Lab.

vii



I express my sincere gratitude to Dr. Vince Calhoun for making the Group ICA for fMRI

toolbox available for research purpose. I am obliged to the founders of the Human Connec-

tome Project, Particularly the Autism Brain Data Exchange for giving me the opportunity to

work on such a sophisticated data for my research work. I extend my sincere thanks to Dr.

Yingying Wang, Dr. Andrew Jahn, Dr. Jason S. Nomi, and Mr. Srinivas Rachakonda who

always tried to shed light on my doubts.

Last, but not least by any measures I am highly indebted to my beloved parents, siblings,

and Ms. Seema Rajput for their unconditional support. I also thank the entire Biomedical

Department of SGSITS, Indore for their supporting attitude.

(Yogesh Kumar Sariya)

viii



CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS vii

LIST OF FIGURES xiii

LIST OF TABLE xv

Acronyms xvii

1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Autism Spectrum Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Physiology of the signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . 3

1.3.1.1 Source of the signal . . . . . . . . . . . . . . . . . . . . . 3

1.3.1.2 Measured signal . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1.3 Image generation . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1.4 Image contrast . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Univariate Analysis of fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Limitations of univariate analysis . . . . . . . . . . . . . . . . . . . 7

1.5 Multivariate Analysis of fMRI . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Principle Component Analysis (PCA) . . . . . . . . . . . . . . . . . 9

1.5.2 Independent Component Analysis (ICA) . . . . . . . . . . . . . . . . 10

1.6 Task based fMRI and Resting state fMRI . . . . . . . . . . . . . . . . . . . . 12

1.7 Functional Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7.1 Brain Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.9 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



1.10 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 COMPARISON OF SEPARATION PERFORMANCE OF ICA ALGORITHMS

FOR fMRI IMAGES 25

2.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Phantom Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 fMRI Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 BSS Algorithms considered . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.1 INFOMAX . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.2 FastICA . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.3 JADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.4 SIMBEC . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.5 ERICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3.6 EVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.7 COMBI . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.8 RADICAL . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.9 ICA-EBM . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3.10 ICA-ERBM . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Software and Hardware details . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Results of ICA Comparisions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 3D TEMPLATES FOR LABELING OF RSN 47

3.1 Components of ICA based FNC Analysis . . . . . . . . . . . . . . . . . . . 47

3.1.1 Identification of RSN . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 RSN Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Making of 3D templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



4 AGE-STRATIFIED STATIC FUNCTIONAL NETWORK CONNECTIVITY ANAL-

YSIS OF ASD AND TYPICALLY DEVELOPING SUBJECTS 67

4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Baseline of Static Functional Network Connectivity . . . . . . . . . . 68

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Image preprocessing and independent component analysis . . . . . . 69

4.2.3 Functional network connectivity . . . . . . . . . . . . . . . . . . . . 69

4.3 Static Connectivity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 AGE STRATIFIED FUNCTIONAL NETWORK BASED DYNAMIC FUNC-

TIONAL NETWORK CONNECTIVITY ANALYSIS IN AUTISM 77

5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Sliding-Window dFNC . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Methodology for Dynamic Functional Network Connectivity Analysis . . . . 80

5.2.1 Resting-state fMRI Images . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Image Processing and Independent Component Analysis . . . . . . . 80

5.2.3 Dynamic Functional Network Connectivity . . . . . . . . . . . . . . 81

5.3 The dFNC Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 CONCLUSION AND FUTURE SCOPE 95

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Future Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Using A Larger Dataset . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 FNC Analysis With A Dataset Without Global Signal Regression . . 96

6.2.3 Other Pattern Recognition Algorithm . . . . . . . . . . . . . . . . . 97

6.2.4 Same dFNC States Among All The Developmental Stages . . . . . . 97

xi



6.2.5 Fusion of EEG and fMRI . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.6 Comapring FNC patterns of Other Neurological Disorders Having

Same Manifestations as ASD . . . . . . . . . . . . . . . . . . . . . 97

6.2.7 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . 97

Publications from the research work 99

Bibliography 100

xii



LIST OF FIGURES

1.1 Functional neuroimaging methods and their temporal and spatial resolution. . 2

1.2 Hemodynamic response function. . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Illustration of ICA for fMRI data analysis. . . . . . . . . . . . . . . . . . . . 10

1.4 Modes of connectivities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 SimTb template of the 30 default spatial maps. . . . . . . . . . . . . . . . . 28

2.2 Selected components from the SimTb template. . . . . . . . . . . . . . . . . 29

2.3 Decomposition of synthetic fMRI images for CNR = 0.5. . . . . . . . . . . . 35

2.4 Decomposition of synthetic fMRI images for CNR = 1. . . . . . . . . . . . . 36

2.5 Decomposition of synthetic fMRI images for CNR = 2. . . . . . . . . . . . . 37

2.6 Temporal Sorting Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Decomposition of synthetic fMRI images for CNR = 2. . . . . . . . . . . . . 40

2.8 Resting State networks decomposed from resting state data by (a) FastICA,

(b) INFOMAX and (c) SIMBEC. . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Resting State networks decomposed from resting state data by (d) JADE, (e)

ERICA and (f) EVD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Resting State networks decomposed from resting state data by (g) RADICAL

and (h) ICA-EBM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Resting state networks decomposed by (i) ERBM and (j) COMBI. . . . . . . 44

3.1 2D template for RSN identification. . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Six principle views of RSNs . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Wrongly labelled RSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Cognitive RSNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Static FC among Cognitive RSNs. . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Static FC Connectogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 All the 7 group of RSNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 dFNC States STANFORD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiii



5.3 dFNC States LEUVEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 dFNC States CMU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Two Sample t test Leuven . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Two Sample t test Stanford . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Two Sample t test CMU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Bar Graphs of 2 sample t test . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xiv



LIST OF TABLES

1.1 Research articles furnishing macroscopic justification of manifestations of

ASD. Author’s name, seed regions and the corresponding FC results are em-

bodied in this table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Spatial correlation between decomposed components of interest of synthetic

images and spatial templates. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Temporal and spatial sorting scores of the two task-related components ex-

tracted by all algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Time consumed (in seconds) by ICA algorithms while extracting components

from RsfMRI data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 The sum of mutual information between all the permutations of decomposed

components for all the ten ICA algorithms. . . . . . . . . . . . . . . . . . . . 39

3.1 Anatomical information of independent components rendered on the 3D glass

brain to make the three dimensional templates. . . . . . . . . . . . . . . . . . 53

5.1 Participants demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Two sample t-test of mean dwell time (MDT), number of states, change be-

tween states, state span, and total distance between groups, HC and ASD. . . 91

xv



xvi



Acronyms

2D Two Dimensional

3D Three Dimensional

ABIDE Autism Brain Imaging Data Exchange

ASD Autism Spectrum Disorder

AUD Auditory Network

BGN Basal Ganglia Network

BOLD Blood Oxygenated Level Dependent

CBF Cerebral Blood Flow

CCN Cognitive Control Network

CCS Connectome Computation System

CNR Contrast to Noise Ratio

DCS Direct Cotical Stimulus

dFNC Dynamic Functional Network Connectivity

DMN Default Mode Network

DTI Diffusion Tensor Imaging

EEG Electroencephelograph

ERBM Entropy Rate Bound Minimization

ERICA Equivalent Robust ICA

ERP Event related potential

EVD Eigenvalue Decomposition

FC Functional Connectivity

FDR False Discovery Rate

fMRI Functional Magnetic Resonance Imaging

FNC Functional Network Connectivity

FP Frontoparietal

FWER Family-Wise Error Rate

GIFT Group ICA for fMRI Toolbox

HC Healthy Control

xvii



HRF Hemodynamic Response Function

ICA Independent Component Analysis

ICA-EBM ICA by Entropy Bound Minimization

ICN Intrinsic Connectivity Network

INDI International Neuroimaging Data-sharing Initiative

JADE Joint Approximate Diagonalization Of Eigenmatrices

MANGO Multi-image Analysis GUI

MEG Magnetoencephelography

MNI Montreal Neurological Institute

MRI Magnetic Resonance Imaging

PET Positron Emission Tomography

PCA Principle Component Analysis

PCP Preprocessed Connectome Projest

PLS Partial Least Square

RADICAL Robust, Accurate, Direct ICA aLgorithm

RsfMRI Resting State Functional Magnetic Resonance Imaging

RSN Resting State Network

SPM Statistical Parametric Mapping

TPN Task Positive Network

TNN Task Negative Network

TMS Transcranial Magnetic Stimulation

xviii



CHAPTER 1

INTRODUCTION
The investigations of the etiology of autism spectrum disorder has profited from the expanding

conceptualization of behavior and cognition as stemming from atypicality of brain networks.

Despite the fact that ASD is related with changed patterns of over-and under-connectivity,

specifics are yet an issue of open deliberation. This chapter presents an prologue to ASD,

fMRI and state of the art techniques. Thesis organization is mentioned at the end.

1.1 Motivation

The quest of probing the brain has always fascinated the research community. Historically

correlating brain injury and behaviour was one of the only methods to infer the task of

brain regions [1]. Today, neuroscientists can select from a wide range of brain imaging

techniques viz., event related potential (ERP), magnetoencephalography (MEG), functional

magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon

emission computerized tomography (SPECT) and transcranial magnetic stimulation (TMS).

These techniques can be evaluated on the basis of spatial resolution, temporal resolution,

mode (whether the technique measures activation or interferes with the region’s function)

and cost. The fMRI is non-invasive, gives a good spatial resolution (Fig 1.1) and doesn’t

require any exogenous contrast agent thus became the preferable technique. Since its incep-

tion, the fMRI has been applied for functional segregation of the human brain viz., sensation,

perception and attention to cognition, language and emotion in healthy and atypically devel-

oping population as well [2, 3]. Today, interest has shifted slightly towards identifying that

how the brain regions are connected functionally as well as anatomically. Functional connec-

tivity (FC) analysis can shed light on the root of neurodegenerative and neurodevelopmental

disorders. Functional connectivity examines temporal statistical dependencies among distant

brain regions by means of seed-based analysis or independent component analysis (ICA).

Preponderance of people diagnosed with autism spectrum disorder has drawn attention of

researchers around the globe to probe the neurobiology of this complex neurodevelopmental

disorder. Neuroimaging and posthumous studies gives the testimony of atypical functional
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Fig. 1.1: Functional neuroimaging methods and their temporal and spatial res-

olution. Magnetoencephalography (MEG) and electroencephalography (EEG)

image the electromagnetic effects of neuronal (assembly) action; their tempo-

ral resolution can be on the order of milliseconds whereas their spatial resolu-

tion tends to be less than that of fMRI, which images blood flow or oxygena-

tion effects of neuronal activation, and PET, which uses radioisotopes to label

molecules in the brain. fMRI and PET, in turn, are limited in their temporal

resolution to several 100 ms (for fMRI) and minutes (for PET). Figure courtesy

of (Andreas Meyer, 2010)

integration and structural connectivity of brain regions of individuals with ASD [4]. Author

have proposed corrections in intermediate stages of functional network connectivity analysis

(FNC) and thereafter explored the FNC patterns of ASD population.

1.2 Autism Spectrum Disorder

Autism is a neurodevelopmental disorder which was once a rarely found disease. USA’s Cen-

ter for Disease Control and Prevention recently released a data, quoting that the prevalence

of autism at an alarming level of one in 68 children in March 2014, which was once at one

in 88 in 2012. India has about 10 million people diagnosed with autism. It is an incurable

disease, but early diagnosis and treatment have helped more and more people to reach their

full potential. Understanding the severity of the disease, a USA based organization "Autism

Speaks" invested $2.3 million for the research on autism. Since the persons diagnosed with
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autism exhibit a range of symptoms, it is referred as autism spectrum disorder (ASD). People

impaired by ASD may display obsessive tendencies, outrageous tangible affectability, hin-

drance to change in routine and repeated body movements. The ASD has turned into the

most usually diagnosed childhood disorder. [5,6]. Autism can affect anyone, and is not based

on ethnic, racial, or social backgrounds.

The analysis of ASD at a beginning period is pivotal for better evaluation and examination

of this perplexing disorder. There has been a considerable endeavors to analyze ASD utilizing

distinctive methodologies, for example, neuroimaging techniques, hereditary strategies, and

behavior reports. Neuroimaging techniques have been widely used for ASD diagnosis in

clinical/research applications, and a standout amongst the best ones is magnetic resonance

imaging (MRI), where it has indicated guarantee of the ASD related variations from the

norm specifically. The MRI modalities have risen as capable means that provide non-invasive

clinical diagnostics of various diseases and abnormalities since their initiation in the 1980s.

After the advent of the nineteen-eighties, MRI soon became one of the most promising non-

invasive modality for visualization and diagnostics of ASD-related abnormalities. Along with

its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent

advances in MRI modalities have notably increased diagnostic certainty. Numerous MRI

modalities, for example, different types of structural MRI (sMRI) that inspects anatomical

changes, and functional MRI (fMRI) that gives proxy measurement of neuronal activity by

checking cerebral blood flow changes, have been utilized to investigate aspects of ASD with

end goal to better comprehend this perplexing disorder.

1.3 Physiology of the signal

1.3.1 Functional Magnetic Resonance Imaging

The origin and the primary attributes of the fMRI signals are briefly introduced here in this

subsection for the basic acquaintance of the reader.

1.3.1.1 Source of the signal

The end goal of this subsection is to comprehend the characteristics of the functional coun-

terpart of magnetic resonance imaging signals and it can be achieved by covering both, its

association with the neuronal activity and the physics that captures this action. The fMRI is a
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measurement of back end neuronal firing. [7–12]. The brain activity can actuate the cerebral

blood flow and the fMRI signal is actually the proxy of neuronal activity in terms of this

haemodynamic reaction to the neuronal electrification. Neuronal firing denote the utilization

of oxygen and lead to uproot of molecules responsible for vasoactive signaling and thereby

regulate the mechanism of vasoconstriction and dilation. This effect is known as Blood Oxy-

gen Level Dependent (BOLD) response. The BOLD response results thus strictly related to

neuronal activity, yet, it is characteristically influenced by other components, for example,

the anatomy of capillary, vessels and veins distribution. Temporal resolution of the BOLD

fMRI signals is relatively low by virtue of the neuronal activity. Since, it depends on haemo-

dynamic response (HRF) (Fig. 1.2), it is of the order of 5-10 seconds which is much lower

than the temporal resolution of neuronal firing as it vanishes within milliseconds.

Fig. 1.2: Hemodynamic response function (HRF). The HRF typically demon-

strates a small initial dip, followed by a tall peak, and then a variable

post-stimulus undershoot. Figure courtesy of (http://mriquestions.com/does-

boldbrain-activity.html)
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1.3.1.2 Measured signal

The whole fMRI strategy depends on those matters whose characteristics are in cooperation

with magnetic fields. At the point when putting in an magnetic field, protons (in this case

protons of hydrogen) tend to align to the magnetic field itself, generating a magnetization

vector whose magnitude is proportional to the magnetic field strength. With a specific end

goal to disturb the magnetization vector a specific extent of energy need to be provided, and it

can happen at a specific frequency, termed as Larmor frequency, which depends on the nature

of protons and on the value of the magnetic field. This means that the energy transmitting

system and the protons must be in resonance. Once perturbed protons tend to realign with

the magnetic field emitting a signal which can be finally measured and exploited. The BOLD

related deoxyhaemoglobin works as an endogenous contrast agent within blood flow and

volume, whose magnetic properties bring forth the deliberate fMRI signal.

1.3.1.3 Image generation

As expressed over, a disturbed hydrogen nuclei emits a signal during its reorientation with

hotelier external magnetic field whose acquisition can be materialized to figure out the local-

ity of the nuclei. Some mechanism is required to encode the spatial information in order to

create an image. Gradient coils of MRI machine serve this encoding purpose and total three

gradient coils are used. These coils adjust resonance frequency with the goal that specific

position in a 2D axial slice of the brain can be portrayed by different phase and frequency

values. By doing so its possible to attain a higher spatial resolution in the reconstructed brain

images and even it is done noninvasively, which has made it a well-received neuroimaging

modality that is suitable to answer neuroscientific questions.

1.3.1.4 Image contrast

As per the explanation given in the previous subsection various matters and tissues are por-

trayed by various resonance frequencies. Subsequently by gauging the transient orthogonal

transverse and longitudinal components it is feasible to capture the signals radiated by dif-

ferent tissues. Where lower T ∗2 reflect lower concentration of deoxygenated hemoglobin and

the reverse in higher T ∗2 . Consequently the activated brain region appears brighter in fMRI

images.
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1.4 Univariate Analysis of fMRI

1.4.1 General Overview

One very intuitive way to design the fMRI and PET experiments is to advise the volunteers

to execute both test and control assignments in succession [13–15]. The resultant haemody-

namic response at each individual voxel might get affected by different distributive processes

and they might not be of interest too viz., physiological (breathing and pumping of the heart),

head motion, machine artifacts etc. and consequently a blend of informations of varying fre-

quencies might constitute the signals gathered from those voxels. The regional differences

between the brain images in most of the PET examinations till 1980s were characterized by

researchers utilizing the manually drawn region of interests [16]. This approach abbreviated

huge number of voxels to a modest bunch of ROI examination, in a fairly uncertain anatom-

ical manner. The prevalence of univariate analysis at that time was solely governed by the

undeniable need of voxelwise deductions regarding brain reactions in the absence of any a

priori hypothesis regarding anatomical mapping of those responses.

The univariate analysis is a common statistical approach for neuroimaging analysis and it

identifies voxelwise signal changes reliably. This is carried out by first creating an identical

design matrix (for each voxel) whose columns correspond to the effects that have been built

into the experiment or may confound the results [17, 18]. These are alluded to as regressors

and are made by convolving onsets of each state of the experimental task with a fixed model

of the HRF. A general linear model is conducted after the creation of design matrix and for

the further statistical parametric mapping [SPMs; [19]] it aids parameter estimation as well as

a wide range of hypothesis testing. Statistical parametric mapping alludes to the construction

of spatially expanded statistical processes (usually derived under parametric assumptions)

to test the null hypothesis about specific effect in a voxel-by-voxel manner. Put simply, if

one applies t/F tests for every voxel variable, an image of t or F statistics, called the t or F

statistical parametric map, is obtained. Voxels crossing some defined threshold are labeled as

active voxels.
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1.4.2 Limitations of univariate analysis

Despite the fact that an univariate investigation approach is fairly simple in effective com-

putation, it has some inherent shortcomings. Most importantly, it goes with the assumption

that all voxels or group of voxels under investigation are independent variables [20] but the

correlation among voxels is inevitable [21]. Furthermore, such an approach regularly over-

looks cooperations between brain regions (i.e. functional integration) by just endeavoring to

recognize a brain region(s) with a particular capacity (i.e. functional segregation).

Being a hypothesis driven method is a second major issue with univariate analysis and

it implies that there should be a model a priori which mimic the changes in fMRI signals

in reaction to the experimental events. This approach is not compatible when reactions to

the experimental paradigm is either unknown or heterogeneous among voxels. Typically

univariate analysis is able to capture those activations whose signal changes mimic canonical

HRF. A reliable activation can not be attained when the changes in signal deviates from the

HRF.

Third, since in univariate analysis signal changes are identified voxelwise, null hypothesis

needs to be executed out for each region, across tens of thousands of voxels. Consequently,

correction for multiple comparisons is a basic concern. Probability of false discovery (i.e.

falsely declaring a voxel active when it is not) increases with the increase in the number of

statistical tests conducted. One potential fix, to overcome the multiple comparisons problem

is to limit the number of false positives, or to control for family-wise error rate (FWER),

for instance by using a Bonferroni correction. This is achieved by lowering an acceptable

false positive rate (i.e. alpha value) in extent to the number of independent statistical tests.

Bonferroni correction successfully diminishes false positives, it increases false negatives (i.e.

type II errors, failing to identify voxels with actual arousal). Along these lines, it can be

deduced that the absence of a gold standard method for the multiple comparisons problem

has been a genuine problem.

Fourth, it is usual in univariate analysis to investigate indicators of task differences (using

ANOVA or t- test), while indicators for likeness are mostly depreciated which implies that

in a run of a typical univariate voxelwise technique (e.g. SPM), subtraction paradigm has

been used to a great extent to investigate differences between tasks instead of looking at both
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differences and similarities.

Given the previously mentioned methodological caveats of univariate analyses, a basic

inquiry is whether there is a complementary statistical framework that can mitigate the short-

comings. Multivariate analysis is presented as a potential complementary approach to the

univariate analysis in the next section.

1.5 Multivariate Analysis of fMRI

The univariate analysis was introduced in previous section as the most well known way to

deal with the investigation of fMRI data. Despite the fact that this technique has represented

the real piece of the development of fMRI over the previous decade, it may not be an appro-

priate framework in connection with various possibly vital research objectives. For example,

univariate analysis is not a good choice to seek for systematically intrinsic variations in the

fMRI data due to the absence of a model. Such exploratory queries in regard to the fMRI

data can be addressed by multivariate approaches which are data driven techniques. These

methodologies parse the 4D fMRI time-series into a set of components (i.e. common fea-

tures), that comprise of a bunch of voxels and their temporal profile. Each component is

either task-related or task-unrelated (e.g. noise, movement artifacts) and accounts for certain

amounts of variation in fMRI data.

Although multivariate techniques are not subjected to the inherent problems of hypothe-

sis driven univariate framework viz., avoiding functional integration, imprecise models and

variability in HRF but they do suffer with interpretative challenges. It is highly dependent

on algorithms used to decompose the fMRI time series and the selection criteria for mean-

ingful component. Independent component analysis is one such multivariate approach which

is a clan of blind sourse separation (BSS) and is totally model free. Partial least square

(PLS) is another example of multivariate analysis which slightly depend on the experimental

paradigm to shape a component. Principle component analysis is also a model free multivari-

ate approach.

Next, principal component analysis (PCA) and independent component analysis (ICA)

are introduced briefly as two examples of completely model-free multivariate approaches.
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1.5.1 Principle Component Analysis (PCA)

This is a statistical tool usually applied for dimension reduction of a big data, it rationally

chops the data relatively in a simple manner while keeping the dimensions with most vari-

ances. The components are sorted from highest to lowest variance. Based on the requirement

the variance window is set and obviously this window starts from the highest variance. As

each component is estimated from the remaining portion of the variance that was not captured

by the former component(s), the components are orthogonal to each other. Every component

hold an eigenimage portraying spatial patterns of activation across voxels. Eigenvector con-

tains the temporal profile of eigenimage and the associated eigenvalue gives the amount of

variance of it thus the component with highest eigenvalue has the most variance of the data.

Although there is no thumb rule mentioning how many components should be held, but

there are some usual practices and one such option is to retain all those components having

eigenvalue at least one [22]. Another way is to apply elbow criteria in which number of com-

ponents are estimated using the plot of eigenvalues. Given that each subsequent component

represents a lessening of variance in the data in relation to the former component, the plot

resembles a decreasing exponential function. The number of components to be retained can

be estimated from the point where the curve begins to flatten out.

Friston and colleagues [23] first introduced an application of PCA to a verbal fluency

task based PET study. They recruited two components that accounted for the most vari-

ance in data, and those components were claimed as the network of interest responsible for

verbal fluency and attentional bias, respectively. Recently, Ecker and colleagues [24] have

supplemented their univariate findings in visual cortex with PCA to explore the functional

connectivity within those regions identified by the univariate approach. Moreover, PCA has

been utilized to distinguish an average pattern of response in regions of interest [25–27] and

for noise reduction in fMRI time series [28].

Despite the fact that PCA is by all account a valuable method to recognize the partitioned

nature of a brain function, this possesses few pitfalls. Foremost it is a variance based disinte-

gration technique and proposes to keep those components who contribute the most variation

of the data and thereby it may produce imprecise results if the change in signal of interest

account for a little piece of total variance. Moreover, the identified components are sometime
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hard to interpret. Additionally, no thumb rule exist to examine the statistical significance of

the decomposed components.

1.5.2 Independent Component Analysis (ICA)

The signal to noise ratio of fMRI signals are by default very poor as a consequence a big share

of the total variance of the data are of non-task related components viz., physiological noises,

head motion and machine artifacts. Along these lines, variance based examinations such

as PCA might prompt one sided identification of components of interest which implies that

the initial few decomposed components might be all noisy thus the subsequent components

get affected by the previous noisy components due to the orthogonality condition of PCA.

A contemporary data driven approach known as ICA was introduced few years back to the

inception of fMRI and it is free from the noted pitfalls of PCA because it decomposes the

data using a more robust criteria i.e. statistical independence. Orthogonality among the

decomposed components is an essential criteria in PCA whereas ICA bank upon a higher

order statistics i.e. independence (two orthogonal components are linearly independent but

the reverse is not necessarily true). Pictorial Illustration of ICA for fMRI data analysis is

given in Fig. 1.3

Fig. 1.3: Illustration of ICA for fMRI data analysis Figure courtesy of

(http://users.ics.aalto.fi/whyj/publications/thesis/thesis_node8.html)

The components decomposed by ICA would be independent in either dimension (i.e.

space or time) and the comparison between their superiority is under constant debate as far

back as the first occasion that fMRI data was dealt with ICA [29], there has been a debate

regarding the choice of spatial or temporal ICA. Despite the fact that spatial ICA has over-
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whelmed the functional imaging literature, probably because of higher spatial than temporal

dimensions, in this way being more affordable computationally, tICA has also been applied

to fMRI studies. It is a genuine expectation to get the same results by applying any of the

two protocols of ICA in the case of uncorrelatedness among the components but if there are

correlations among them either spatially or temporally this choice matters a lot [30].

The framework of ICA looks unfit for group based studies and it is due to the fact that the

time courses for all the volunteers might not be the same, thus does not seem to be naturally

suitable for drawing group level inferences. This is because different individuals may have

different time courses, and these time courses might be sorted differently. Despite this fact

there are many group-level ICA investigations [30–32]. In the majority of those studies group

data was concatenated first either spatially or temporally and then ICA was directly applied

on that concatenated data. In connection with it, creation of subject specific maps were drawn

and were used to infer group differences [a more rigorous description can be found in [32]].

Particularly for group-based fMRI investigations, ICA has been the most preferred mul-

tivariate framework [30–37] and its data driven nature can be understood very nicely in [35]

which is a study conducted by Calhoun and colleagues. A complex experimental design was

constructed in that investigation which had three blocks of fixation, acting simulated driving

and watching simulated driving. From the decopmosed components they recruited six who

were representing the dynamics with regard to the simulated drive. Without an a priori model

it is not feasible to parameterize these naturalistic task with univariate analysis. Along with

such unimodel problem the ICA is also capable to deal with multimodel queries such as to

find out whether one modality (e.g. sMRI, DTI) is governing the change in the other (e.g.

fMRI). One such question was addressed by Calhoun and colleagues for an oddball detection

task and the objective was to find whether the differences in gray matter volume between the

schizophrenia and typically developing population has to do anything with their functional

capabilities. A direct correlation between the gray matter volume and the cognitive abilities

was found in that investigation.

To map the decomposed component with the underlying physical phenomenon is a big

challenge because irrespective of the experimental paradigm it simply extract the compo-

nents. This issue can be resolved simply by including any relevant hypothesis driven statistics
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i.e. ICA can be followed by a multiple regression to look for task-related components. De-

spite the aforementioned limitation, ICA, and most of the multivariate approaches, provide

valuable insights into fMRI data.

1.6 Task based fMRI and Resting state fMRI

A conventional but potential protocol with the fMRI modality is the task-based protocol

which has been utilized to map the brain regions associated to the execution of a particular

task [38, 39]. However in comparison with the direct cortical stimulus (DCS), the specificity

and sensitivity of task-based fMRI is modest [40].

A relatively newer counter protocol is the resting-state fMRI (RsfMRI) which is named

so due to the fact that while scanning the functional images the volunteers do not perform any

task. The RsfMRI scans manifest BOLD signal fluctuations in the lower range of frequency

(<0.1 Hz) [41–43]. Many resting-state networks also known as intrinsic networks has been

extracted from the RsfMRI data viz., default mode networks, somatosensory, cognitive con-

trol [31]. Decomposed components with similar time profile are bunched together and are

considered as intrinsic networks [44, 45]. Preliminary results show that resting-state fMRI

can also identify the language network [46–48].

The RsfMRI convention has many benefits over the traditional task-based protocol. Al-

though the ratio of BOLD signals for two conditions is relatively tiny in this contemporary

protocol but the SNR is almost three times to that achieved with the conventional method [43].

No task is the another crucial benefit of RsfMRI convention and it is logical to expect bet-

ter execution of a task from healthy controls but not justified with the population suffering

from some neurological disorder [49–51]. Measurement using RsfMRI protocols usually do

not contain activity confounds because in the absence of the task, probability of occurrence

of any auxiliary activity is relatively lower (in a language based experimental paradigm vi-

sual activity is often complementary) [43]. On the top of these mentioned superiorities the

RsfMRI protocol is faster too as well as the data collected in such manner is fit for functional

segregation [52], thus fitting better in to the usually limited patient scanning schedule.
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1.7 Functional Connectivity

A large portion of the recent fMRI studies are framed to explore the brain activity pattern

responsible for the phenomena of interest. These patterns are often termed as the neural basis.

These studies are sought to test the functional integration hypothesis. In such studies any kind

of interrelationships are evaluated among those voxels who are significantly related to the

experimental task. It can be achieved by measuring the similarity/dissimilarity between their

time courses. Though it does not provide any information about the relations or dependencies

among the brain regions that those voxels delineate.

Because fMRI data are collected over time and have a temporal structure, several methods

utilize the information about the coherence of activity over time to identify functional connec-

tivity, which represents the pattern of functional relations among brain regions, independent

of a particular task-induced activation. This class of methods includes cross-correlation [53],

partial least squares [20], and data driven methods such as flat [54] and hierarchical cluster-

ing [55], principal component analysis [19], multidimensional scaling [19], and independent

component analysis [29].

1.7.1 Brain Connectivity

There are two complementary theories with regard to the organization of human brain, con-

sequently two distinctive approaches to explain it’s functions [56]. Functional segregation

is the first approach where brain functions are mapped to specific brain areas. The principle

of modularity is the sole of segregation approach. It professes that the brain can be split

into bunches of innate neurons having particular functionalities. Although this modularity

approach is an eminent concept but it is not able to clarify the functions of brain to the full

extent. Functional integration approach is the other concept with the notion that brain regions

either adjacent or distant interact with each other to execute a function. Nowadays this dis-

tributed information processing concept is on the anvil and it is called functional connectivity

(FC). By this newer approach researchers are trying to decode " transferred and transformed

effects within the segregated regions " [56].

Brain connectivity term covers several facets of the brain configuration viz., functional

connectivity, structural and effective connectivity (Fig. 1.4) [57, 58]. Structural connectivity
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basically deals with the architectural studies of the brain and several time structural atro-

phies are declared to be responsible for the aberrant manifestations of subjects affected by

neurological disorders. Another perspective to probe the brain organization is to look for

the FC among the brain regions. In this functional category of brain connectivity the simul-

taneous activation or deactivation of various brain regions are explored irrespective of any

anatomical connection between those regions and it can be measured using either spectral

coherence [20] or covariance [19]. Both the categories explained above do not take into the

account the causal effects between the events. Effective Connectivity is the third category of

brain connectivity which does explores this causality and it is often considered as the inter-

section of the other two connectivity approaches. Effective connectivity requires some model

a priori which involve anatomical parameters and connections of interest [59].

Fig. 1.4: The fiber pathway structural connectivity, the functional connectiv-

ity (correlations), and effective connectivity (information flow) between brain

regions. Figure courtesy of (Daniele Poli and colleagues, 2015)

1.8 Literature Survey

In order to understand the etiology of the ASD, author surveyed the fMRI modality based

literature and particularly those which follows resting-state protocol as it is well suited to scan

the population with limited ability. The very first research article on resting-state functional

connectivity analysis goes in the credit of Cherkassky and group which got published in the

year 2006. The author have tabularised the literature survey in table 1.1 for the purpose

of better understanding. It contains the author’s name and year of publishing of the article

followed by the seed region taken into account along with findings of their FC.
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Table 1.1: Research articles furnishing macroscopic justification of manifesta-

tions of ASD. Author’s name, seed regions and the corresponding FC results are

embodied in this table.

Cherkassky etal. (2006) [60]

Numerous General underconnectivity

Anterior cingulate cortex Reduced connectivity to posterior cingulate cortex

L parahippocampal gyrus Reduced connectivity with multiple ROIs

Kennedy &Courchesne (2008) [61]

- Connectivity within the task negative network compris-

ing of dorsal and ventromedial prefrontal cortex, pos-

terior cingulate cortex/precuneus, left and right angular

gyrus, right temporal pole, and right superior temporal

gyrus/superior temporal sulcus

Monk et al.(2009) [62]

Posterior cingulate cortex Reduced connectivity to right superior frontal gyrus

Posterior cingulate cortex Increased connectivity to right temporal lobe and right-

parahippocampal gyrus

Weng et al. (2010) [63]

Posterior cingulate cortex Reduced connectivity to most of the default mode network

nodes

Olivito et al. (2016) [64]

Dentate nucleus (DN) underconnectivity between the left cerebellar DN and

cerebral regions

Paakki et al.(2010) [65]

- Reduced regional activity coherence in right superior

temporalsulcus, right inferior frontal and middle frontal

gyrus, bilateral cerebellar crus I, right insula, and right

postcentral gyrus
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- Increased regional activity coherence in right thalamus,

left inferiorfrontal gyrus, left inferior, medial, and supe-

rioroccipital gyri and fusiform gyrus with optic radiation,

left middle cingulate cortex with corpus callosum, right

middle temporal gyrus

Assaf et al.(2010) [66]

- Reduced connectivity strength in precuneus

- Reduced connectivity strength in medial prefrontal cor-

tex/anteriorcingulate

Dinstein et al. (2011) [67]

Superior temporal gyrus and

Inferior frontal gyrus

Reduced strength and spread of inter-hemispheric corre-

lations

Di Martino et al.(2011) [68]

- Increased connectivity in striatal-cortical circuitry, includ-

ing the right superior temporal gyrus and insular cortex

- Striatal functional hyperconnectivity with the pons

- Broad patterns of hyperconnectivity of brainstem area,

with bilateral insular cortices

Anderson et al.(2011) [69]

- Reduced interhemispheric functional connectivity be-

tween homologous gray matter voxels (sensorimotor cor-

tex, frontal insular cortex, and superior parietal lobule ex-

tending from the parieto-occipital junction to the intra-

parietal sulcus)

Ebisch et al.(2011) [70]

R anterior insular cortex Lost connectivity to amygdala and thalamus

R anterior insular cortex Lost connectivity to dorsal postcentral gyrus

R posterior insular cortex Lost connectivity to dorsal postcentral gyrus
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L anterior insular cortex Lost connectivity to orbitofrontal cortex and posterior in-

sularcortex

R anterior insular cortex Reduced connectivity to right dorsal anterior cingulate

cortex

R anterior insular cortex Reduced connectivity to amygdala

R anterior insular cortex No significant difference in connectivity to dorsal anterior

cingulate cortex

Wiggins et al. (2011) [71]

R superior frontal gyrus Reduced connectivity to posterior superior frontal gyrus

Gotts et al.(2012) [72]

- Lower connectedness to other ROIs for social brain net-

work regions such as ventromedial prefrontal cortex, left

amygdala, left hippocampus, bilateral ventromedial ante-

rior temporal lobes, left temporoparietal junction, bilateral

postcentral gyrus, right lateral occipital cortex

- Lower connectedness to other ROIs for right anterior mid-

dle temporal gyrus/superior temporal gyrus, left inferior

and right posterior temporal gyrus, and left cerebellum

Posterior parahippocampal

gyrus

No change in connectivity to the rest of the brain

Rudie et al.(2012) [73]

- Reduced overall default mode network connectivity

Posterior cingulate cortex Reduced connectivity to medial prefrontal cortex in com-

bined genotyped groups

Posterior cingulate cortex Reduced connectivity to medial prefrontal cortex in the

MET- homozygous (risk) group, irrespective of ASD

Posterior cingulate cortex Reduced connectivity to medial prefrontal cortex within

ASDgroup (MET-homozygous < MET-heteromozygous <

nonrisk)
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Posterior cingulate cortex Reduced connectivity to medial prefrontal cortex (MET

CC ASD < MET CC typically developing, and MET CG

ASD< MET CG typically developing)

von dem Hagenet al. (2013) [74]

- Reduced correlation between the salience network and the

medial temporal lobe network

Medial prefrontal cortex Reduced connectivity to temporoparietal junc-

tion/posteriorsuperior temporal sulcus

Amygdala Reduced connectivity to left anterior insular cortex

Lynch et al.(2013) [75]

Posterior cingulate cortex Increased connectivity to inferior frontal and middle

frontal gyrus, dorsal medial prefrontal cortex, posterior

insular cortex, lingual gyrus, posterior parahippocampal

gyrus, temporal pole, posterior superior temporal sulcus,

and anterior supramarginal gyrus

Retrosplenial cortex Reduced connectivity to cuneus, caudate, and dorsal and

medial thalamic nuclei

Precuneus Reduced connectivity within default mode network nodes

and other functional networks

Washington et al. (2013) [76]

Various regions Reduced connectivity within default mode network nodes

and other functional networks

Dorsal anterior cingulatecor-

tex/Medial prefrontalcortex

Reduced connectivity to ventral anterior cingulate cortex

and medial prefrontal cortex

Tyszka et al.(2014) [77]

- No significant between group differences for networks

identified by independent component analysis

- No significant between group differences for ROI-based

analysis
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- Residual effect of subject motion was larger than the ef-

fect of diagnosis

Uddin et al.(2013) [78]

Anterior cingulate cortex Increased connectivity to superior frontal gyrus, thalamus,

and bilateral insular cortex

Precuneus Increased connectivity to posterior cingulate cortex and

left angular gyrus

Superior temporal gyrus Increased connectivity to middle temporal gyrus

Postcentral gyrus Increased connectivity to precentral gyrus, left posterior

insular cortex, and thalamus

L lateral occipital cortex Increased connectivity to intracalcarine cortex, and occip-

ital pole

Redcay et al.(2013) [79]

Medial prefrontal cortex Increased local connectivity within ROI

Anterior medial prefrontal

cortex

Increased long distance connectivity to right lateral pari-

etal region

R lateral parietal region Reduced connectivity to cerebellar tonsils

Neilsen et al. (2013) [80]

- Classification accuracy analysis; No connectivity changes

reported/studied

Maximo et al.(2013) [81]

- Increased local connectivity in right middle frontal gyrus,

bilateral striate and extrastriate cortices, parahippocampal

gyrus, middle temporal gyrus, and supramarginal gyri

- Reduced local connectivity in left superior frontal gyrus

andbilateral middle cingulate cortex/posterior cingulate

cortex,right paracentral cortex, left perisylvian and fron-

topolar regions (anterior prefrontal cortex), left insular

cortex, bilateral precuneus
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Starck et al.(2013) [82]

- No significant between group differences for local con-

nectivity

Medial prefrontal cortex Reduced connectivity to posterior subnetworks of default

mode network, dorsal (the central-posterior precuneus

andthe posterior cingulate cortex) subnetworks of default

modenetwork, and to ventral (retrosplenial cortex) subnet-

works of default mode network

DiMartino et al. (2013) [83]

Precuneus Decreased DC (i.e., number of direct connections to pre-

cuneus)

Increased DC for bilateral limbic areas including the su-

perficial and latero-basal amygdala, the adjacent parahip-

pocampus (posterior parahippocampal gyrus and fusifor-

mgyrus), planum temporale, and temporal cortex

DiMartino et al.(2013) [84]

- Corticocortical intrinsic functional connectivity across all

functional domains with paralimbic and unimodal asso-

ciation regions having the highest proportions of affected

connections

- Intrinsic functional connectivity for subcortical regions,

particularly between subcortical (thalamus and globus

pallidus) and primary parietal sensorimotor regions

L posterior insular cortex Reduced VMHC, ReHo and DC in cluster extending from

the left posterior insula to the central and parietal opercu-

lum

R superior frontal cortex Increased fALFF, ReHo and DC in cluster located in right

dorsal superior frontal cortex
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- Reduced in at least 2 of ReHo, VMHC, fALFF, or DC in

clusters in thalamus, posterior cingulate, bilateral middle-

insula, and left middle occipital gyrus

Abrams et al.(2013) [85]

Posterior superior temporal

sulcus

Reduced connectivity to components of reward pathways

such as bilateral ventral tegmental area, nucleus accum-

bens and putamen of the basal ganglia, ventromedial pre-

frontal cortex,as well as the left caudate, anterior insular

cortex, and orbitofrontal cortex

Mueller et al.(2013) [86]

- Lower connectivity for dorsal attention network to a clus-

ter including the right precentral gyrus, which reached

into theright parietal lobe, and right parietal and precuneal

cortex

Superior temporal gyrus Reduced connectivity to default mode network

Medial prefrontal cortex Reduced connectivity to left anterior cingulate cortex

Cardinale et al. (2013) [87]

- Significant rightward asymmetry in ASD for all compo-

nents

You et al.(2013) [88]

- Increased modularity of network

- No between group difference in global efficiency of net-

works

Alaerts et al.(2013) [89]

Posterior superior temporal

sulcus

Reduced connectivity with inferior parietal lobule, pre-

central gyrus, supramarginal gyrus, inferior frontal gyrus

(pars triangularis)

Posterior superior temporal

sulcus

Increased connectivity with lingual gyrus, calcarine

gyrus, fusiform gyrus
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Posterior superior temporal

sulcus

Reduced connectivity with right inferior parietal lobule,

left premotor area, fusiform gyrus and bilateral superior

occipital gyrus

Posterior superior temporal

sulcus

Increased connectivity with left thalamus and right infe-

rior frontal gyrus

Verly et al.(2014) [90]

Arcuate fasciculus No between group difference for connectivities observed

for bilateral arcuate fasciculus seed

L Broca’s area (part ofinferior

frontal gyrus)

Reduced connectivity to bilateral Wernicke’s area (supe-

rior temporal gyrus) in ASD group with only unilateral

arcuate fasciculus

- Reduced interhemispeheric connectivity (besides arcuate

fasciculus)

Nair et al.(2013) [91]

- Several clusters of underconnectivity in ASD, especially

for right prefrontal cortex, right parietal-occipital, and bi-

lateral motor and bilateral somatosensory seeds

R thalamus Increased connectivity to temporal seed

Thalamus Reduced connectivity to prefrontal, parietal-occipital, and

somatosensory cortical seeds

Keown et al.(2013) [92]

- Increased local connectivity in temporo-occipital regions

(including inferior temporal gyrus and middle tempo-

ral gyrus, temporal pole, middle and superior occipital

gyri, calcarine cortex, right parahippocampal gyrus, right

fusiform gyrus, and left cuneus) and right middle frontal

and superior frontal gyrus

Middle cingulate Small clusters of local underconnectivity

R inferior parietal sites Small clusters of local underconnectivity
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L lateral and bilateral polar

and medial frontal cortices

Low-severity ASD subgroup < typically developing

Posterior brain regions Higher-severity ASD subgroup > typically developing

(predominantly)

Alaerts et al. (2015) [93]

pSTS underconnectivity between the left pSTS and typical

dopaminergic areas

Doyle-Thomas et al. (2015) [94]

mPFC, ACC and MTG Both over and underconnectivity based on region.

1.9 Research Objectives

Generalizing the FNC patterns based on either narrow age group or selected seed regions

are the major research gaps found by the author. Additionally, dynamic counterpart of FNC

analysis is not much explored for the ASD and auto recognition and the naming of the RSN is

over the anvil but yet to establish. Based on these research gaps author have framed following

objectives.

1. Finding the best suitable ICA algorithm for the parceling of fMRI images: Accu-

racy of the FNC maps definitely depends on all the steps that constitute the baseline of

FNC analysis. In ICA based FNC studies the very first step is to decompose the fMRI

data where INFOMAX and FastICA have been applied preferably to do so. The first

objective is to conduct a comparative study of the ICA algorithm when the input to

decompose is a fMRI image.

2. Accurate and automatic labeling of RSN: Identifying which component is a resting

state network (RSN) and which component is not, is the second step of ICA based

FNC examinations and it is preceded by the marking of RSN. The traditional method

is cumbersome and indeed the automation is needed. A very usual way is to carry a

spatial correlation between existing 2D templates of various RSN and the one which

has been already identified as an RSN but not labeled yet. It will get the name of that

RSN with whose template it gets the highest spatial correlation score. Accuracy check
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of this procedure and establishment/confirmation of standard templates is the second

objective.

3. The FNC analysis of ASD population for the different developmental stages: As it

is mentioned above that the inclusion of a narrow range of participant’s age could be the

possible reason behind the discrepancies in the connectivity data of ASD, conducting

an FNC study for three different groups i.e. children, adolescents and adults, is the last

objective.

1.10 Organization of the thesis

The thesis contains six chapters, out of that, the first chapter deals with the introduction,

literature review and research objectives of the present study. The remaining part of the

thesis is structured as follows:

Chapter 2 presents the brief theoretical background of the state-of-the-art independent

component analysis techniques used for the decomposition of fMRI images. Further, the

effectiveness of the ICA techniques are evaluated in terms of the parcellation of fMRI images

done by them.

Chapter 3 raises the issue of the current use of two dimensional RSN templates for the

labeling of intrinsic connectivity networks and also presents the networks labeled wrongly by

conventional 2D spatial correlation. Alternative three dimensional templates are proposed in

this chapter.

Chapter 4 presents the conventional state-of-the-art static functional network connec-

tivity (sFNC) analysis. Further, the sFNC maps derived for ASD and typically developing

population are analyzed interpreted to highlight the connectivity differences between the two

population.

Chapter 5 presents the contemporary state-of-the-art dynamic functional network con-

nectivity (dFNC) analysis. Further, the dFNC states derived for ASD and typically develop-

ing population are analyzed interpreted to highlight the connectivity differences between the

two population.

Chapter 6 presents the aggregate conclusion of the present work and covers the scope

for future research in the field.
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CHAPTER 2

COMPARISON OF SEPARATION PERFORMANCE OF

ICA ALGORITHMS FOR FMRI IMAGES
There are numbers of independent component analysis algorithms available, but only a few

of them have been used frequently so far for fMRI images. With a view that algorithms that

are overlooked may outperform the commonly used algorithms, a comparative study is taken

up in this chapter to analyze their abilities for the purpose of synthesis of fMRI images. In

this chapter, ten independent component algorithms: Fast ICA, INFOMAX, SIMBEC, JADE,

ERICA, EVD, RADICAL, ICA-EBM, ERBM, and COMBI are compared. Their separation

abilities are adjudged on both, synthetic and real fMRI images. Performance to decompose

synthetic fMRI images is being monitored on the basis of spatial correlation coefficients,

time elapsed to extract independent components and the visual appearance of independent

components. Ranking of their performances on task-based real fMRI images are based on the

closeness of time courses of identified independent components with model time course and

the closeness of spatial maps of components with spatial templates. Their competencies for

resting state fMRI data are analyzed by examining how distinctly they decompose the data

into the most consistent resting state networks. Sum of mutual information between all the

combinations of decomposed components of resting state fMRI data are also calculated.

2.1 Background and Motivation

Independent component analysis is one of the most versatile exploratory methods which has

been frequently used for functional magnetic resonance imaging data analysis. The utility

of ICA in the fMRI studies spans over unmixing the underlying signal sources from physio-

logical artifacts, assessment of activations with unknown stimulus type, multivariate pattern

analysis and resting state functional connectivity [95]. The ICA is preferable over PCA, an-

other data-driven technique because it uses more robust criterion for the task of blind source

separation which is independence. However, the use of independence as a source separa-

tion norm for fMRI data is highly criticized and some other mathematical characteristic is

suggested by Daubechies et al. [96].
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Many ICA algorithms have been designed and applied fruitfully to analyze fMRI data.

They are either deterministic or iterative type. Their reliability checkup [97] in terms of

the consistency to produce the same independent components (ICs) and even comparison of

their performances [98,99] have been done by many researchers, but they compared few algo-

rithms. Although there are many algorithms, it is expected to pick up the one which is more

promising for fMRI data. In the above perspective, the present chapter aims at performing an

exhaustive study to evaluate the performances of various available ICA algorithms.

The fMRI can be used for studying both, functional segregation and functional integration

of the brain [100]. Biswal et al. (1995) observed that regions that are co-activated during

a task are also temporally correlated at rest [101, 102]. This temporal correlation among

the anatomically separated brain regions reflects a level of ongoing functional connectivity

among brain regions during rest [103, 104]. The fluctuations in the blood oxygenation level-

dependent signal during rest reflects the neuronal baseline activity (intrinsic activity) of the

brain . Resting state fMRI (RsfMRI) is a method to study this intrinsic activity.

In the last two decades, several RsfMRI studies have been done, looking for the func-

tionally relevant resting state networks. Although, these studies incorporate a different group

of subjects, methods and types of magnetic resonance (MR) acquisition protocols, they are

highly similar in their results supporting the robustness of RSN [105, 106]. Approximately,

eight RSN have been reported such as visual network, the motor network, two lateralized

networks consisting of superior frontal and superior parietal regions and the so-called de-

fault mode network (DMN) [106–108]. The DMN is reported in positron emission tomogra-

phy [109] and fMRI [103,110] study. It has been suggested that the activity and connectivity

of the DMN are involved in the integration of emotional and cognitive processing and moni-

toring the world around us [106].

To grade the performance of ICA algorithms phantom / synthetic images and real fMRI

images are utilized in this work. Three sets of simulated fMRI like components with different

contrast to noise ratios (CNR) are created using SimTB toolbox [111]. This toolbox was

developed in Medical Image Analysis Laboratory (MIALAB). Multi-site real fMRI data are

exploited here in this work.
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2.2 Materials and Methods

2.2.1 Phantom Image

To quantify the performances of ICA algorithms there is a need to generate fMRI like syn-

thetic images. A good understanding of the possible sources of BOLD fMRI images would

help to create phantom images. Sources whose reflection are the BOLD fMRI image may be

grouped into signals of concern and signals, not of concern [112]. The signals of concern

are task-related, transiently task-related and function-related whereas physiology-related,

scanner-related and motion-related are the signals who are not of concern [112, 113]. The

signal of concern are typically focal but the artifactual signals are more varied and thus,

their distributions are supergaussian and subgaussian, respectively [99]. Synthetic data are

simulated with SimTB, a MATLAB based toolbox, which is available freely for download

(http://mialab.mrn.org/software). The data generation model exploited in SimTB is invari-

able to the assumption of spatiotemporal separability which says that data is basically the

product of timecourses (TCs) and spatial maps (SMs). There is a flexibility to choose the

number of subjects, components, voxel size and CNR in SimTB. The data is simulated for

single subjects with four components of interests. Simulated images are of 148× 148 voxels,

TCs are 260 time points longer and the repetition time (TR) is kept 2 seconds. Three sets

of synthetic images with varying CNR (0.5, 1, 2) are simulated. Total 30 components which

altogether cover sinuses (component 6), white matter (components 16 and 17), cerebrospinal

fluid (components 14 and 15) and gray matter (rest components) are shown in Fig. 2.1 The

components of interest are shown in Fig. 2.2 Synthetic Images are made noisy by adding

Rician noise relative to a specified CNR [114]. The CNR is expressed as σ̂s/σ̂n where σ̂s is

the temporal standard deviation of true signal and σ̂n is the temporal standard deviation of

the noise.

2.2.2 fMRI Images

Medical Image Analysis Lab has made available Group ICA of fMRI toolbox (GIFT) along

with one example dataset. This dataset contains brain scans of three subjects generated

against visuomotor paradigm. More details can be had from [115]. The visual stimuli are

made up of presenting an 8 Hz reversing checkerboard pattern to the right and left visual
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Fig. 2.1: A template of the 30 default spatial maps (SMs), which are modelled

like the components usually seen in axial slices of real fMRI data. They are

labelled 1 to 30 and can be selected manually by the SimTb user to make the

synthetic images. Overall they represents all the four tissue types viz., SM6

sinus signal dropout, SM14,15 cerebrospinal fluid, SM16,17 white matter and

rest gray matter.

hemi-field sequentially. First, present the stimuli to right visual hemi-field for a duration of

15 seconds followed by an asterisk fixation of 5 seconds. Further, the stimuli are presented to

left visual hemi-field for 15 seconds but the asterisk fixation is now 20 seconds longer. This

set of events of 55 seconds duration is repeated four times. Volunteers had to touch their left

thumb to all of their fingers sequentially back and forth at a self-paced rate when the stimuli

are presented to left hemi-field and had to do the same with right thumb in another case.

The RsfMRI data used in the present work can be found at the autism brain imaging data

exchange (ABIDE I) website: http://fcon1000.projects.nitrc.org/indi/abide/abideI.html along

with complete phenotypic and scanning information. The ABIDE is a part of International

Neuroimaging Data-Sharing Initiative (INDI) and 1000 Functional Connectomes Project

(FCP: http://fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html). The INDI (INDI: http://fcon

1000.projects.nitrc.org/indi/pro/nki.html) is a collaboration of 16 international sites [84].

The Preprocessed Connectomes Project (PCP) allows open sharing of preprocessed ABIDEI

data. The data of 14 individuals suffering from autistic spectrum disorder (ASD) and of

13 neurotypical individuals, collected at Carnegie Mellon University and preprocessed using
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Fig. 2.2: Selected default spatial maps to make the synthetic images (b) the base-

line map obtained by assigning intensity levels (w) to spatial maps viz.,w6 =

0.3, w14,15 = 1.5, w16,17 = 07 and wrest = 1.

Connectome Computation System (CCS) protocol under PCP project, are opted here for a

comparison of segregation performance of ICA Algorithms. The preprocessing in the CCS

pipeline begins with leaving first four volumes followed by slice timing correction, motion

realignment and intensity normalization. This strategy includes band-pass filtering in the

frequency band of 0.01 - 0.1 Hz and global signal regression.

2.2.3 BSS Algorithms considered

Blind source separation (BSS) is basically an explorative tool established for the analysis of

images and sound. They extract sources from mixtures where mixing coefficients are not

known, hence called blind methods. The ICA is a clan of methods for BSS formed on some

statistical independence of the source signals. Here in this paper, the focus is on the spatial

ICA model [112].

Assume the ICA model as X = AS , Where A is the mixing matrix of M − by − N

dimension whose columns represent the time courses of respective sources. S = [s1......sN ]
T

is a N − by− V source matrix, where N is the number of sources, V is the number of voxels

and si is the ith source. The ICA determines the decomposing matrixW such that the burried

sources are extracted as Ŝ = WX with the assumption of statistical independence of spatial

components.
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A brief overview of the adopted ICA algorithms is given below. At a whole the adopted

algorithms incorporate all the major approaches for measuring the independence.

2.2.3.1 INFOMAX

[116] This is one of the most frequently used ICA algorithms. Infomax uses mutual in-

formation for independence measurement. It favors partition of super-Gaussian sources.

Since fMRI images contain subgaussian signals (physiological noises) also, Extended In-

fomax should be used instead of infomax.

2.2.3.2 FastICA

[117] This has been one of the obvious choices for fMRI applications. The negentropy

(higher order statistics approach) is the measurement of independence here because as ne-

gentropy increases non-Gaussianity also increases. Four nonlinearities tanh, pow3, skew,

and gauss are the contrast function of Fast ICA. If the convergence problem persists stabi-

lized version of the algorithm is advisable.

2.2.3.3 JADE

[118] Joint approximate diagonalization of eigenmatrices exploits fourth order cumulant to

separate the constituents of the mixture. It performs joint approximate diagonalization by

Jacobi technique on the fourth order cumulant.

2.2.3.4 SIMBEC

[119] Simultaneous blind extraction using cumulants is basically a deterministic algorithm

which makes use of natural gradient ascent in a stiefel manifold thereby extracting sources

with higher order cumulant as contrast function.

2.2.3.5 ERICA

[120] Equivalent robust ICA uses information theoretic approach for independence measure-

ment. It uses entropy as a cost function instead of a nonlinearity. The ERICA uses quasi -

Newton iteration to converge at a saddle point of the cumulant based differential entropy cost

function.
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2.2.3.6 EVD

[121] Eigenvalue decomposition separates sources by deploying both second-order statistics

and higher order correlation functions. It creates and sums a set of shifted cross variance

matrices, subsequently applies singular-value decomposition to achieve source separation.

This is fast and useful when the spectra of the components are different.

2.2.3.7 COMBI

[122] Algorithm COMBI offers a novel scheme for combining weights-adjusted second-

order blind identification (WASOBI) and efficient FastICA (EFICA), making use of the

strengths of both techniques. Realistic mixtures usually present both diverse time-structure

and non-Gaussianity and since WASOBI and EFICA are severely suboptimal for such mix-

tures, it is better to use the combination of these two.

2.2.3.8 RADICAL

[123] RADICAL is an acronym for Robust, Accurate, Direct Independent Components Anal-

ysis algorithm. This non-parametric method is based on spacing estimators of entropy, which

is computationally efficient, simple, and insensitive to outliers.

2.2.3.9 ICA-EBM

[124] The ICA by entropy bound minimization furnishes flexible density matching using

four measuring functions who are based on the maximum entropy principle. With multiple

measuring functions, it is possible to model super- and sub-Gaussian densities. The perfor-

mance of this method can be improved by adding some more measuring functions.

2.2.3.10 ICA-ERBM

[125] The ICA by entropy rate bound minimization utilizes both non-Gaussianity and sample

correlation by minimizing mutual information rate. It assumes that the sources are outputs

of linear systems and those systems are driven by independently and identically distributed

(i.i.d.) noise, thereby converting the entropy rate estimation to an entropy estimation problem

solved using EBM.
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2.3 Software and Hardware details

The whole simulation work was based on an in-house MATLAB implementation (MATLAB

2012) that exploits the code available with the group ICA of fMRI toolbox (GIFT) [126] tool-

box for image processing. The PC used to run the simulations was an INtel(R) Core(TM) i3-

4010 U CPU @ 1.70 GHz equipped with 4GB of RAM and running a Windows 8 32-bit OS.

The GIFT is a MATLAB based toolboxes that implement a number of efficient algorithms

for BSS and it furnishes execution time information along with the decomposed components

of fMRI data. In GIFT, there is a provision to sort the ICs temporally and spatially thereby

comparing the model’s time course and spatial templates with component’s time course and

spatial map.

2.4 Results of ICA Comparisions

All the ten ICA algorithms described above were applied to the three sets of synthetic im-

ages and the resultant decomposed components are shown in Figs 2.3, 2.4, 2.5. The spatial

correlations among the decomposed components and the templates are arranged in table 2.1.

Table 2.1: Spatial correlation between decomposed components of interest of

synthetic images and spatial templates.

Algorithm COMP 1 COMP 2 COMP 3 COMP 4 Required

Time

(seconds)

CNR = 0.5

FastICA 0.9873 0.9912 0.9951 0.9957 16.2787

INFOMAX 0.9901 0.9926 0.9949 0.9958 7.4843

SIMBEC 0.971 ——– ——– 0.9955 6.8406

JADE 0.9894 0.9909 0.9949 0.9957 7.6522

ERICA 0.9281 ——– ——– 0.9877 7.3857

EVD ——– ——– ——– ——– 6.8043
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RADICAL 0.9871 0.991 0.9947 0.9957 189.3987

ICA-

EBM

——– 0.9927 0.9918 ——– 8.3961

ERBM 0.9903 0.9921 ——– 0.9949 49.9969

COMBI 0.9888 0.9912 0.995 0.996 4.9388

CNR = 1

FastICA 0.9907 0.9939 0.9961 0.9963 10.3756

INFOMAX 0.9921 0.9954 0.9962 0.9963 7.7758

SIMBEC ——– ——– ——– ——— 6.7946

JADE 0.9902 0.9951 0.9962 0.9962 7.0135

ERICA ——– ——– ——– ——– 7.4633

EVD ——– ——– ——– 0.993 6.8961

RADICAL 0.991 0.9958 0.9962 0.9963 191.0547

ICA-

EBM

——– ——– 0.9929 0.9936 9.2952

ERBM ——– 0.9627 ——– 0.9932 33.7969

COMBI 0.9914 0.9948 0.9962 0.9963 5.3986

CNR = 2

FastICA 0.9907 0.9933 0.9961 0.9957 10.2979

INFOMAX 0.9926 0.9947 0.996 0.996 8.0558

SIMBEC ——– ——– ——– ——– 6.7824

JADE 0.9898 0.9948 0.9961 0.9957 7.054

ERICA ——– ——– ——– ——– 7.4225
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EVD ——– ——– 0.9929 ——– 6.66

RADICAL 0.9913 0.9955 0.9961 0.996 189.9249

ICA-

EBM

0.9634 ——– ——– 0.9922 9.305

ERBM ——– 0.9728 ——– 0.9936 44.9287

COMBI 0.9671 0.9954 0.9963 0.9959 5.2328

FastICA, INFOMAX, JADE, RADICAL and COMBI are the five algorithms accomplish-

ing the decomposition of fMRI images into the constituent components with tidiness irrespec-

tive of the noise level instilled into the images. The RADICAL seems an outlier among this

five in terms of time consumption, thus, although RADICAL decomposes components very

cleanly but it is not wise to opt it for fMRI data decomposition as it is sluggish.

After utility check for synthetic images, algorithms were tested on real fMRI data col-

lected with the visuomotor paradigm. The data was reduced using PCA. Results were scaled

to Z - scores and the threshold was set to Z = 2. Twenty independent components (ICs)

were found for each algorithm, further sorted temporally and spatially to get the two most

task-related components. For all ICs, time courses and spatial maps are generated. Tempo-

ral sorting is an approach to compare the time course of the model with the time course of

the component, whereas in spatial sorting the comparison would be among the spatial maps

obtained and the spatial templates. Spatial templates are available in the template library of

GIFT toolbox and the design matrix is available with the sample data.

Fig 2.6 shows the expanded view of TCs of the two task-related components decomposed

by INFOMAX along with their temporal sorting score. For the iterative type of algorithms,

ten runs are performed and due to the convergence issue stabilized version of Fast ICA is

used. Extracted components of ICA algorithms have both sources of interest and not of

interest. Regression values for the two most task-related components who represent left and

right visual cortex are given in table 2.2. Spatial maps of these two task-related components

are depicted in Fig 2.7.
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Fig. 2.3: Decomposition of synthetic fMRI images (CNR = 0.5) by all the ten

ICA algorithms considered for comparison. Decomposed components include

task-related components as well as the artifacts.
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Fig. 2.4: Decomposition of synthetic fMRI images (CNR = 1) by all the ten

ICA algorithms considered for comparison. Decomposed components include

task-related components as well as the artifacts.
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Fig. 2.5: Decomposition of synthetic fMRI images (CNR = 2) by all the ten

ICA algorithms considered for comparison. Decomposed components include

task-related components as well as the artifacts.
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The judgment of their decomposition capabilities on the basis of the tabulated sorting

scores go against ERICA, EVD, SIMBEC and ERBM but while comparing the overall per-

formance and taking into account the visual appearance and time consumption, ICA-EBM

and RADICAL also disappoint.

Table 2.2: Temporal and spatial sorting scores of the two task-related compo-

nents extracted by all algorithms.

S. No. Algorithm

Multiple Regression Multiple Regression Time

elapsed

(Temporal Sorting) (Spatial Sorting) (seconds)

left right left right

1 FAST

ICA

0.8655 0.6997 0.7218 0.7337 4.80149

2 INFOMAX 0.846 0.7862 0.7376 0.7348 6.71056

3 SIMBEC 0.7531 0.4584 0.6274 0.5957 2.38564

4 JADE 0.8674 0.7092 0.7279 0.6002 4.31545

5 ERICA 0.7807 0.4678 0.4755 0.366 2.44439

6 EVD 0.7678 0.5265 0.4427 0.255 2.45602

7 RADICAL 0.8195 0.7177 0.7339 0.7146 738.7942

8 ICA-

EBM

0.804 0.8367 0.7141 0.6954 17.81147

9 ERBM 0.6436 0.8976 0.5573 0.3002 171.2499

10 COMBI 0.8383 0.7826 0.7405 0.732 1.25181

Since many works have used ICA on RsfMRI data, the separation performance of ICA

algorithms are compared with resting state data too. The RsfMRI images of 14 individuals
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suffering from ASD and of 13 neurotypical individuals (mean age 24 years) was collected

from the ABIDEI website. Here, only the most consistent RSN are included [41] out of

the 30 components extracted and they were recognized by visual inspection. The RSNs

testimony were also cross-checked with the help of dynamic range and low frequency (LF)

to high frequency (HF) power ratio values [127, 128]. These RSNs extracted using the ten

algorithms are depicted in Fig 2.8,2.9,2.10,2.11.

All the consistent RSNs depicted here are centered at the peak of their distribution. The

peak coordinates of the RSNs extracted by INFOMAX and COMBI are exactly same and

the coordinates of those who were extracted using ERBM, RADICAL and ICA-EBM are

almost same to INFOMAX. On the other side SIMBEC, ERICA and EVD were not able

to disintegrate all the consistent RSNs. Time consumed by these algorithms are enlisted

in the table 2.3. Sum of mutual information between all the permutations of decomposed

components of RsfMRI data are calculated for the ten ICA algorithms which are tabulated in

table 2.4.

Table 2.3: Time consumed (in seconds) by ICA algorithms while extracting

components from RsfMRI data.

FastICA 109.67 EVD 105.54

INFOMAX 107.20 RADICAL 2496.50

SIMBEC 105.19 ICA-EBM 163.19

JADE 111.42 ERBM 516.63

ERICA 106.58 COMBI 75.61

Table 2.4: The sum of mutual information between all the permutations of de-

composed components for all the ten ICA algorithms.

FastICA 197.36 EVD 203.91

INFOMAX 198.31 RADICAL 198.94

SIMBEC 205.21 ICA-EBM 200.99

JADE 198.38 ERBM 192.52

ERICA 201.91 COMBI 199.26
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Fig. 2.6: Time courses of the two task-related components decomposed by IN-

FOMAX. Temporal sorting scores is done by regressing these time courses with

model time courses and the resultant values are also given in the figure.

Fig. 2.7: Spatial maps of the two most task-related components decomposed

by all the ten ICA algorithms. These maps are rendered on the human brain.

Components decomposed by ERICA, EVD, ICA-EBM and ERBM are not dis-

tinctive.
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Fig. 2.8: Resting State networks decomposed from resting state data by (a)

FastICA, (b) INFOMAX and (c) SIMBEC. Screening left to right in (a) and (b),

these networks are visual occipital, visual medial, DMN I, DMN II, auditory,

sensorimotor, left fronto-parietal and right-frontoparietal. Only two of the eight

could be decomposed by SIMBEC.
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Fig. 2.9: Resting State networks decomposed from resting state data by (d)

JADE, (e) ERICA and (f) EVD. Screening left to right in (d) these networks

are visual occipital, visual medial, DMN I, DMN II, auditory, sensorimotor,

left fronto-parietal and right-frontoparietal. The ERICA and EVD could not

decompose all the eight resting state networks. ERICA could recover only vi-

sual medial and DMNI, whereas EVD couldn’t decompose auditory and the two

fronto-parietal networks.
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Fig. 2.10: Resting State networks decomposed from resting state data by (g)

RADICAL and (h) ICA-EBM. Screening left to right these networks are visual

occipital, visual medial, DMN I, DMN II, auditory, sensorimotor, left fronto-

parietal and right-frontoparietal.
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Fig. 2.11: Resting state networks decomposed by (i) ERBM and (j) COMBI.

Screening left to right these networks are visual occipital, visual medial, DMN

I, DMN II, auditory, sensorimotor, left fronto-parietal and right-frontoparietal.
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2.5 Summary

The fMRI has gained tremendous attention by the researchers who are probing the brain and

the ICA is one of the preferable explorative methods for the analysis of fMRI data. The ICA

is elder than fMRI and many ICA algorithms are already framed, but FastICA, INFOMAX,

and JADE have been applied repeatedly on fMRI data. It was a great opportunity to compare

the performances of most opted ICA algorithm and those who were overlooked. Ten ICA

algorithms are covered in this paper which encompasses nearly all the major approaches to

measuring the independence. Their performances are quantified for synthetic and real fMRI

images. Based on all the results obtained it can be deduced that ERICA, EVD and SIMBEC

are not suitable algorithms for decomposition of fMRI images. Cumulative observations

reveals that it’s not fruitful to use ERBM or ICA-EBM separately but their combination is

a better choice to use for fMRI decomposition. RADICAL is very sluggish and thus not

a good choice. Among the overlooked algorithms and most opted algorithms COMBI is a

better choice for fMRI decomposition. The COMBI is fastest as well as it’s decomposed

components are quite distinct.
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CHAPTER 3

3D TEMPLATES FOR LABELING OF RSN
The Functional Magnetic Resonance Imaging, together with the interdisciplinary method-

ologies including computer science, mathematics, and physics, are cultivating interesting

outcomes from computational neuroscience. Over the most recent two decades, several Rest-

ing state fMRI studies have been done, searching for the practically significant resting state

networks. The naming of RSN are being done either by utilizing spatial correlation between’s

the given 2D layout and component images or in light of the premise of ROIs effectively re-

ported as the captivating anatomical part of those RSN in past literary works. Because of

nonexistence of any standard convention for ICA model order selection, 2D RSN templates

cannot be used as standard layout for examination, moreover ROIs combinations are not

unique for RSN. To overcome this inadequacy, 3D templates are proposed in this chapter

with the end goal of RSN recognition.

3.1 Components of ICA based FNC Analysis

Brain study has entered into an era of grey box testing with advanced neuroimaging tech-

niques. Noninvasive neuroimaging techniques have provided commendable insight into the

architecture and functioning of the brain. The functional magnetic resonance imaging is pro-

gressively gaining attention because of its higher spatial resolution, but, as hemodynamic

response is the proxy of neuronal response, its temporal resolution is relatively poor [129].

In the starting phase of its application fMRI was exploited to map the individual function

of brain regions. Within the two decades it has gained confidence and now its clinical and

real time applications are being explored such as biomarker identification of neurological

disorders viz. schizophrenia, autism, epilepsy etc. [130–135].

To get to the bottom of brain functions, task based fMRI experimental paradigms used

to be designed till the ground breaking finding of Biswal (1995). He observed that regions

that are co-activated during a task are also temporally correlated at rest [101, 102]. This

temporal correlation among the anatomically separated regions reflects a level of ongoing FC

among brain regions during rest [104, 136]. The fluctuations in the BOLD signal during rest
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reflect the neuronal baseline activity (intrinsic activity) of the brain. Resting state fMRI is a

method to study this intrinsic activity. The utilization of resting state fMRI for the assessment

of unconstrained changes in the BOLD signal has a few advantages over conventional task

based fMRI [137,138]. One vital favorable benefit of this technique is that it can be performed

notwithstanding when the patient can’t perform the task. This will empower us to perform

fMRI mapping on numerous populaces already avoided from customary assignment based

systems, for example, youthful kids, patients with psychological impedances, and patients

that are deadened, aphasic, or in need of a hearing aid. Spontaneous fluctuations have been

appeared to hold on under states of rest and diverse levels of anesthesia [139], in this manner

a moment preferred standpoint of this procedure is that it can be performed in disturbed

patients and in youthful kids under sedation. A third favorable position of this technique is

that one data acquisition can be utilized to concentrate a wide range of brain networks, in this

manner perhaps decreasing the procurement time when numerous frameworks are assessed.

The fMRI information has been broke down by the two opposing techniques, theory

driven and information driven methodologies. Among the information driven methodolo-

gies, Independent Component Analysis has been appeared to give an effective technique to

the exploratory investigation of fMRI data [140, 141]. The ICA empowers recuperation of

underlying signals, or independent components (ICs) from linear data mixtures. Along these

lines, it is an incredible technique to be connected for the spatial localisation and transient

portrayal of sources of BOLD activation. Spatial ICA has overwhelmed so far in fMRI appli-

cations on the grounds that the spatial measurement is considerably bigger than the temporal

measurement in fMRI [138].

3.1.1 Identification of RSN

The ICA can disentangle intrinsically connected brain regions known as resting state network

(RSN). The ICs can be categorised into RSNs and physiological components by utilizing their

temporal features. Contrasts in the frequency structure of RSN and physiological components

prompt two features as the basis for classification. These have been marked "Dynamic Range"

- the difference in power between the maximum and the minimum of the distribution, and

"Low to High Power Ratio" - the ratio of the integral of power in the region of the spectrum
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below 0.02 Hz to the total spectra [128]. Nearly 10 RSNs have been recognized yet and they

are over and over recreated at various research facilities.

3.1.2 RSN Labeling

Oftentimes experienced practitioners label the RSN as being of physiological origin. Neu-

roimaging is an interdisciplinary area where researchers from non-medical background also

participate. As neuroimaging research taking a strong move towards their clinical contribu-

tion, its utmost necessity to develop a protocol to label the RSNs automatically. As a first

attempt, and as a baseline reference, automated RSN identification was investigated with a

simple correlation classifier by calculating spatial correlation to a 2D template [103,130,142].

Demertzi et al. [143] addressed the methodological challenge when opting for multiple RSN

investigations in patients with severe brain damage. In particular, by using a single template-

matching goodness-of-fit procedure at a time, one runs the risk to erroneously identify a

component as the RSN of interest. For specific component labeling, [143] used ICA and a

univariate template matching method with an additional step of "neuronality" classification

to label RSN.

The work done by Vergun [144] combines two established methods, ICA, and machine

learning, to develop an automatic process of extracting and identifying (classifying) network

maps. With respect to the study by [143], this work adds the investigation of the perfor-

mance of different, complementary multivariate machine learning algorithms for IC spatial

map labeling and the evaluation of the labeling method. Chamberland et al. [145] in their

3D interactive tractography validated RSN using 3D overlap matrics viz. Dice coefficient

and Jaccard coefficient. These spatial matching approaches of labeling have some major

limitations and thus it may be misleading. First, different RSNs may have a same spatial

correlation with a template as shown in Fig 3.1, consequently, two different components may

get the same name and it is most probably with those components who extend to different

lobes i.e. fronto-parietal networks. Second, there is no standard order of ICA thusly decom-

posed RSN might be of various morphology based on ICA model order. The RSN splits with

increase into the ICA order. With this ambiguity, 2D overlap measurement is not a decent

decision to quantify the similarity between the component and the template because a low

49



value may result in wrong labeling.

Fig. 3.1: Axial slice in the left is a RSN template and the other two slices rep-

resent two different decomposed components. Naming of them can be done

by their spatial correlation values with the template but both will produce same

spatial correlation values with the 2D template.

Tomasi et al. identified 7 bilateral functional networks [146] and the labels of their

constituting regions are checked using Automated Anatomical Labelling (AAL) atlas [147]

and the Brodmann atlas. The RSNs have all the earmarks of being like the Task-Based

Networks (TBNs) that rise up out of the examination of substantial troupes of activation

studies gathered with various psychological undertakings found in vast functional imaging

databases [146, 148]. Pushed by this reality, Mesmoudi et al. [149] portrayed anatomo-

functional bunches of RSN in view of their cover with two reference sets [i.e.,Brodmann

Areas (BAs) and TBNs]. Rosazza el al. [150] hailed the brain areas where the reliably dis-

covered RSNs are identifiable in their survey paper . These definitions are altered in [151]

in light of the method of reasoning that associations inside RSNs ought to be one of a kind.

While quantifying the consistency of RSN, Damoiseaux et al. [41] mapped their occupancy

into Brodmann areas to label them. Labelling the RSNs has been carried out by observing

their overlap with Brodmann areas. In ICA based analyses, it’s a practice to find clusters of

individual RSN and locate and label them using some atlas, but the BAs and regions consti-

tuting them are not unique thusly becomes exhaustive and error-prone.

Here in this chapter 3D templates are proposed for the labeling of RSN. These templates

are developed by overlaying the manually labelled RSN on 3D glass brain. The manual

labelling of RSN are based on the results of Talairarch client where the toolbox was com-
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manded to search in a cube of +/- 2mm. These 3D templates are made for the standardization

of RSN labeling. Using the 2D overlap measurement to quantify the similarity of decom-

posed RSN with templates, one runs the risk to erroneously identify a component as the RSN

of interest. With the help of 3D templates, RSN labeling can be made automatic, accurate as

well as faster. Instead of 2D overlap measurement, one needs to identify the inhabitancy of

the RSN with templates. The RSN will essentially get the name of that 3D template which

will contain it irrespective of how much space RSN occupy.

3.2 Making of 3D templates

The RsfMRI images in use for the template making are gathered from the autism brain imag-

ing data exchange (ABIDE I) website alongside entire make up details and scanning details.

ABIDEI is a subset of International Neuroimaging Information Sharing Initiative (INDI) and

1000 Functional Connectomes Project. The RsfMRI data present in this repository are col-

lected from around 16 different laboratories.

The pre-processing is done as per the connectome computation system (CCS) protocol

which starts with skipping initial four volumes followed by slice timing correction, motion

realignment and intensity normalization. Confounding variables brought in either by scanner,

head motion, breathing or pulsation are regressed out after primary processing of images. The

global mean signal was incorporated with disturbance variable. The processed images were

decomposed by spatial ICA (SICA), using the Group ICA fMRI Toolbox [152]. A higher

model order i.e. 100 was selected for SICA. The COMBI algorithm was utilized to break

down the datasets [122]. At last, the parts were back remade utilizing the group ICA tool.

Spatial maps were guaranteed as RSN on the premise of the estimations of dynamic range

and the proportion of power at low frequency to higher frequency. The MNI coordinates of

the group maxima were changed to the Talairach stereotactic space. The brain areas were

marked by the Talairach daemon tuned to an inquiry scope of 2mm. Components were vi-

sually inspected and RSN are labelled on the basis of their spatial scope. Detailed anatomic

information of RSN network are tabulated in table 3.1.

Images of manually labelled RSN are coregistered to sample image of Multi-image Anal-

ysis GUI (MANGO) toolbox (http://ric.uthscsa.edu/mango/) followed by the surface render-
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ing. They are rendered on 3D glass brain for the purpose of better visibility. Images of all the

six sides are captured for better interpretation.

3.3 Results

The pre-processed data are decomposed into 100 independent components. The threshold for

qualification of these components as RSN is set to 2 (low to high frequency ratio). Detailed

anatomic information of RSN network, overlaid on 3D glass brain to make the 3D templates

are included in table3.1. Images of anterior, posterior, superior, inferior, left and right views

for the seven resting state networks are included in Fig 3.2. In the GIFT toolbox there is

a provision to label the RSNs based on the spatial correlation between RSNs and the 2D

templates. These templates are available online on the homepage of Functional Imaging in

Neuropsychiatric Disorders (FIND) Lab. Labeling of RSNs were also carried out using this

utility of GIFT toolbox and some of the wrongly labeled RSN are in Fig 3.3.

3.4 Discussion

The purpose of this work was to develop 3D RSN templates which has utility in clinical

RsfMRI mapping. One very obvious way to identify the RSN is to sort it spatially as it is

done in GIFT toolbox. Spatial sorting is an approach to compare the obtained spatial map

with the available spatial templates. To date, only 2D templates are available and this is the

first attempt to establish 3D RSN templates. RSN labelling by volumetric matching may by-

pass the dissimilarity as describes as its limitation in introduction. It can be understood by

examining the RSN who spread in more than one lobe i.e. fronto-parietal networks. Clus-

ters of intriguing functional parts for it are in two different lobes and those clusters can be

identified as two different RSN. The process of labelling with the help of 3D templates can

be made more intuitive by using the coordinates of the decomposed clusters. A component

lying in the occipital lobe should not undergo in the process of overlapping calculation with

templates which actually belong to some other lobe of the brain.

A noteworthy issue is with the ICA model order, that is, the number of components to be

decomposed. In particular, overestimation may prompt component splitting. The optimized

number of components to be separated is not known from the earlier. Underestimating the

model order may lead to information loss, while overestimating it might deliver spurious
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outcomes or the part of intriguing segments into more segments. The utilization of higher

model requests permitted discovery of intriguing neuroanatomical and functional parts. This

model order ambiguity makes the use of 2D RSN templates doubtful. The proposed 3D

templates are unaffected from this splitting of components as the surface rendering unite

them again on the 3D brain.

There is a difference between ROIs of the same RSN into different ICA based RsfMRI

studies. The contrast between ROIs incorporated into each RSN is obvious and makes disar-

ray with respect to interesting anatomical and functional parts of them. The reason might be

the contrast between the model order selection. Therefore it is difficult to think of a rundown

of ROIs constituting the RSNs.

Table 3.1: Anatomical information of independent components rendered on the

3D glass brain to make the three dimensional templates.

IC Talairach Coordinates
Hemi-

sphere
Lobe Gyrus

Tissue

Type

Brod-

mann

Area

Low to High

Frequency

power ratio

COGNITIVE CONTROL NETWORK

1 36 41 -14 Right Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

11 2.049911

2 50 35 14 Right Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

* 3.444046

8 -42 43 -8 Left Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

11 3.364123

18 53 20 -4 Right Cere-

brum

Frontal Lobe Inferior

Frontal

Gyrus

Gray

Matter

47 3.338171
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19 50 -52 50 Right Cere-

brum

Parietal

Lobe

Inferior Pari-

etal Lobule

Gray

Matter

40 7.541966

20 33 59 17 Right Cere-

brum

Frontal Lobe Superior

Frontal

Gyrus

Gray

Matter

10 3.243869

28 36 53 25 Right Cere-

brum

Frontal Lobe Superior

Frontal

Gyrus

Gray

Matter

10 3.55553

37 -51 16 29 Left Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

9 4.510992

42 48 -35 60 Right Cere-

brum

Parietal

Lobe

Inferior Pari-

etal Lobule

Gray

Matter

40 4.350592

49 54 17 33 Right Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

9 4.251517

53 38 22 -7 Right Cere-

brum

Frontal Lobe Inferior

Frontal

Gyrus

Gray

Matter

47 4.964348

54 33 59 -1 Right Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

* 3.953466

60 32 43 44 Right Cere-

brum

Frontal Lobe Superior

Frontal

Gyrus

Gray

Matter

8 2.489772

80 26 -67 53 Right Cere-

brum

Parietal

Lobe

Superior

Parietal

Lobule

Gray

Matter

7 4.256288
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SENSORIMOTOR NETWORK

10 60 -14 28 Right Cere-

brum

Parietal

Lobe

Postcentral

Gyrus

Gray

Matter

3 5.639205

11 -36 -21 61 Left Cere-

brum

Frontal Lobe Precentral

Gyrus

Gray

Matter

4 5.055152

46 30 -35 68 Right Cere-

brum

Parietal

Lobe

Postcentral

Gyrus

Gray

Matter

2 2.456195

48 0 9 65 Left Cere-

brum

Frontal Lobe Superior

Frontal

Gyrus

Gray

Matter

6 2.871596

70 54 -30 57 Right Cere-

brum

Parietal

Lobe

Postcentral

Gyrus

Gray

Matter

2 4.228714

73 0 -20 64 Left Cere-

brum

Frontal Lobe Medial

Frontal

Gyrus

Gray

Matter

6 2.992024

95 56 -4 25 Right Cere-

brum

Frontal Lobe Precentral

Gyrus

Gray

Matter

6 6.645517

AUDITORY NETWORK

17 50 -24 -1 Right Cere-

brum

Temporal

Lobe

Superior

Temporal

Gyrus

Gray

Matter

21 3.383204

34 62 3 6 Right Cere-

brum

Frontal Lobe Precentral

Gyrus

Gray

Matter

6 4.547463

51 -41 -31 13 Left Cere-

brum

Temporal

Lobe

Transverse

Temporal

Gyrus

Gray

Matter

41 2.527898
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52 -54 -57 27 Left Cere-

brum

Temporal

Lobe

Superior

Temporal

Gyrus

Gray

Matter

39 5.894107

DEFAULT MODE NETWORK

11 0 -56 38 Left Cere-

brum

Parietal

Lobe

Precuneus Gray

Matter

7 10.19038

23 15 -54 19 Right Cere-

brum

Parietal

Lobe

Precuneus Gray

Matter

31 6.643629

31 -21 -45 -7 Left Cere-

brum

Limbic Lobe Parahippo-

campal

Gyrus

Gray

Matter

37 4.125467

35 0 -4 39 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

24 2.503981

38 0 46 -4 Left Cere-

brum

Limbic Lobe Anterior

Cingulate

Gray

Matter

32 7.244612

39 0 25 30 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

32 5.60359

44 0 -38 38 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

31 7.426639

51 11 -47 5 Right Cere-

brum

Limbic Lobe Parahippo-

campal

Gyrus

Gray

Matter

30 4.385572

55 21 -21 -9 Right Cere-

brum

Limbic Lobe Parahippo-

campal

Gyrus

Gray

Matter

35 2.263749

58 20 -35 2 Right Cere-

brum

Limbic Lobe Parahippo-

campal

Gyrus

Gray

Matter

30 2.018515
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64 5 -42 -10 Right Cere-

bellum

Anterior

Lobe

Cerebellar

Lingual

Gray

Matter

* 2.346558

70 0 -4 30 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

24 3.348904

75 0 -49 14 Left Cere-

brum

Limbic Lobe Posterior

Cingulate

Gray

Matter

30 5.98791

78 0 -19 28 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

23 2.706604

80 0 -24 27 Left Cere-

brum

Limbic Lobe Cingulate

Gyrus

Gray

Matter

23 13.44533

83 0 59 25 Left Cere-

brum

Frontal Lobe Superior

Frontal

Gyrus

Gray

Matter

9 8.989119

FRONTO-PARIETAL NETWORK

9 53 -59 34 Right Cere-

brum

Parietal

Lobe

Angular

Gyrus

Gray

Matter

39 10.04026

25 -42 14 41 Left Cere-

brum

Frontal Lobe Middle

Frontal

Gyrus

Gray

Matter

8 8.499725

VISUAL NETWORK

22 3 -92 11 Right Cere-

brum

Occipital

Lobe

Cuneus Gray

Matter

18 5.96929

24 32 -70 39 Right Cere-

brum

Parietal

Lobe

Precuneus Gray

Matter

19 8.572919

27 11 -69 14 Right Cere-

brum

Occipital

Lobe

Cuneus Gray

Matter

18 3.981281

43 21 -71 -9 Right Cere-

brum

Occipital

Lobe

Lingual

Gyrus

Gray

Matter

18 4.875348
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56 0 -76 35 Left Cere-

brum

Occipital

Lobe

Cuneus Gray

Matter

19 7.242336

68 0 -82 -6 Left Cere-

brum

Occipital

Lobe

Lingual

Gyrus

Gray

Matter

18 3.770719

100 41 -61 -12 Right Cere-

brum

Temporal

Lobe

Fusiform

Gyrus

Gray

Matter

37 2.773226

BSASAL GANGLIA NETWORK

3 0 -13 -10 Left Brain-

stem

Midbrain * Gray

Matter

Mammi-

llary

Body

2.083156

10 0 0 0 Right Cere-

brum

Limbic Lobe Anterior

Cingulate

Gray

Matter

25 2.054156

29 0 -20 10 Left Cere-

brum

Sub-lobar Thalamus Gray

Matter

Medial

Dorsal

Nucleus

2.482992

30 -3 6 8 Left Cere-

brum

Sub-lobar Caudate Gray

Matter

Caudate

Body

3.035344

47 0 -23 -1 Left Brain-

stem

Midbrain * Gray

Matter

Red Nu-

cleus

2.067775

50 0 -26 5 Left Cere-

brum

Sub-lobar Thalamus Gray

Matter

* 2.383022

54 9 3 13 Right Cere-

brum

Sub-lobar Caudate Gray

Matter

Caudate

Body

3.274689

65 -24 0 -8 Left Cere-

brum

Sub-lobar Lentiform

Nucleus

Gray

Matter

Putamen 4.609092
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(a) Auditory Network

(b) Basal Ganglia Network
59



(c) Default Mode Network

(d) Cognitive Network
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(e) Sensorimotor Network

(f) Visual Network
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(g) Executive (fronto-parietal) Network

Fig. 3.2: Six principle views of RSNs, anterior, superior, Left side, Right side,

inferior, and posterior. (a) Auditory Network, (b) Basal Ganglia network, (c)

Default Mode network, (d) Cognitive network, (e) Sensorimotor network, (f)

Visual network, and (g) Executive or fronto-parietal network.

Machines fall extremely a long ways behind people in "understanding pictures" in the feeling of

producing rich semantic explanation. For instance, systems that endeavor to manage impediment,

context, and unforeseen courses of action, all of which are effectively taken care of by individuals,

regularly experience issues. Thus, there is no reason for planning an "opposition" between computer

vision and human vision. Researchers from non medicinal foundation often experience issues ac-

complishing a spatial comprehension of 3D brain anatomy from (2D) pictures and content. The 3D

layouts of RSN will profit such researchers to contribute in this interdisciplinary zone all the more

intelligently.
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(a)
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(b)

Fig. 3.3: Resting State Networks along with their naming identified using the

RSN labelling utility of GIFT toolbox. Labelling of RSN is done in this utility

by spatially correlating them with the resting state fMRI templates. Component

numbers are mentioned along with the labels and they can be cross checked with

the entries of Table 3 to get their right name.
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3.5 Summary

Splitting of components due to model order ambiguity, moderate advance in computer vision, higher

likelihood of confusion of segments who are spread over more than one projection of the brain and

repeating ROIs for different RSN are the significant obstacles in utilizing 2D RSN layouts for the

marking reason. Proposed 3D templates are a superior substitute which are free from these shortcom-

ings also well simple to acknowledge even by a researcher from non-medicinal foundation and having

just shallow information of brain anatomy.
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CHAPTER 4

AGE-STRATIFIED STATIC FUNCTIONAL NETWORK CON-

NECTIVITY ANALYSIS OF ASD AND TYPICALLY DE-

VELOPING SUBJECTS
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Obsessive tendencies, language

deficits, and social deficits are the hallmarks of ASD. Poor information integration across functional

networks of the brain may be the root cause of these deficiencies. Functional network connectivity

(FNC) assessment among six brain networks, viz. anterior default mode network, posterior default

mode network, two frontoparietal networks, basal ganglia network (BGN) and salience network (SN)

have been examined here in this chapter. To understand the development trajectory of ASD, func-

tional magnetic resonance imaging (fMRI) dataset of autistic children, adolescents and adults are

considered. The SN and BGN of participants with ASD had the most FNC differences with typically

developing cohorts. The SN had hyperconnectivity with the rest five networks for autistic children

while hypoconnectivity were observed for adolescents and adults. The two lateralized fronto-parietal

network had no connectivity for the two initial developmental stages however for adults with ASD they

had stronger functional connectivity.

4.1 Background and Motivation

To establish the functional network connectivity based biomarkers the fMRI has been used because of

it’s higher spatial resolution and reasonably good temporal resolution [153]. Distant brain regions are

connected functionally to each other and it is defined as functional connectivity (FC) [101]. Lots of

work has already been done on FC assessment of human brain and this technique has the potential to

be used for the identification of biomarkers for neurological disorders such as autism, schizophrenia

etc [78, 154–156]. ICA has the ability to unravel intrinsically connected networks (ICN) of RsfMRI

images.

Nearly 10 RSN have been identified yet [136,142] and they are repeatedly reproduced at different

laboratories. Some of these RSN gets activated while performing the task and hence known as task

positive networks (TPN) however task negative networks (TNN) also exist and they remain quiescent

while performing the task [154, 157]. Based on, within network connectivity and/or between network

connectivity, biomarkers for the neurological disorder have been reported [78,131]. Between network
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connectivity is called functional network connectivity (FNC) alternatively. Aberrant FNC may be

responsible for signature behavioral characteristics of the atypical population.

Here in this chapter authors have compared FNC differences of the autistic and neurotypical pop-

ulation in the longitudinal direction. The fMRI data of volunteers, developing typically and with

ASD, were taken from three different labs which are working in collaboration under International

Neuroimaging Data-Sharing Initiative. Although the resting state data were generated with different

MRI machines with different acquisition protocols, authors were able to decompose the data into same

RSNs and this reflects the robustness of the resting state networks. The FNC of resting state networks

associated with cognitive functions are determined here and these networks are anterior default mode

network (DMNI), posterior default mode network (DMNII), right fronto-parietal network (RFPN),

left fronto-parietal network (LFPN), salience network (SN) and basal ganglia network (BGN).

4.1.1 Baseline of Static Functional Network Connectivity

Spatial ICA disintegrates fMRI data into functional networks which is comprised of both the spatial

map and the respective timecourse. It is represented in the foloowing equation S(x, t) =
∑K

k=1Mk(x)Ak(t)

where K is the number of spatially independent components, Mk is the spatial map of component,

and Ak is the timecourse of component k. The ICA based correlation between network x1 and x2:

CICA(x1, x2) =
∑T

t=1(
∑K

k=1 Mk(x1)Ak(t)
∑K

l=1 Ml(x)Al(t))√∑T
t=1 S

2(x1,t)
∑T

t=1 S
2(x2,t)

arranging the terms k = l and k 6= l yields:

CICA(x1, x2) =
∑

k Mk(x1)Mk(x2)
∑T

t=1 A
2
kt√∑T

t=1 S
2(x1,t)

∑T
t=1 S

2(x2,t)
+

∑
k 6=l Mk(x1)Ml(x2)

∑T
t=1 Ak(t)Al(t)√∑T

t=1 S
2(x1,t)

∑T
t=1 S

2(x2,t)

where the first term is the representation of the sum over within network connectivities (total

WNC), and the second term is the sum over between network connectivities (total BNC). Hence, total

connectivity:

CICA(x1, x2) = TotalWNC + TotalBNC.

4.2 Materials and Methods

4.2.1 Data

To contrast the FNC profile of people with ASD from neurotypicals longitudinally, participants of

three developmental stages, viz., childhood, adolescence, and adulthood are considered. The RsFMRI
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data used in the present work is downloaded from the autism brain imaging data exchange (ABIDE

I) website [158] along with complete phenotypic and scanning information. ABIDEI is a part of

International Neuroimaging Data-Sharing Initiative (INDI) and 1000 Functional Connectomes Project

[159]. Data shared by Stanford University, Leuven University, and Carnegie Mellon University are

used here in the present work and, the volunteers participated at these universities belongs to different

age groups, children, adolescence, and adult respectively. The diagnosis of autistic disorder was

established either using the autism diagnostic interview-revised (ADI-R) [160] or according to the

diagnostic and statistical manual of mental disorders, fourth edition, Text Revision (DSM-IV-TR)

criteria. Typically developing controls had no history of neurological or psychiatric conditions nor a

current medical, developmental or psychiatric diagnosis. They did not report any language problems.

4.2.2 Image preprocessing and independent component analysis

The preprocessing is done in accordance with the connectome computation system (CCS) pipeline

which begins with leaving first four volumes followed by slice timing correction, motion realignment

and intensity normalization. Nuisance variable regression is carried out after basic preprocessing to

clean confounding variation due to physiological processes (heart beat and respiration), head motion,

and low-frequency scanner. The global mean signal was included with nuisance variable.

Further to decompose the preprocessed fMRI data, SICA was accomplished, using the Group

ICA fMRI Toolbox [126]. In group ICA method, images from all the subjects should be concatenated

prior to ICA. To reduce the computational burden the concatenated data were first reduced to 75

components, and then further reduced to 50 components. The trimmed dataset was decomposed using

the COMBI algorithm. Finally, the components were back reconstructed using the group ICA tool.

Spatial maps were claimed as RSN on the basis of the values of dynamic range and the ratio of

power at low frequency to higher frequency [127, 161]. Components were visually inspected and

networks underlying the default mode network, lateralized fronto-parietal networks, BGN, and SN

were interpreted on the basis of their spatial scope.

4.2.3 Functional network connectivity

The FNC analysis was executed, employing the FNC Toolbox (version 2.2), an add-on to the GIFT

software. The FNC toolbox was earlier utilized by Jafri et al. [131] to examine FNC in schizophre-

nia. The toolbox computes a constrained maximal lag correlation between each pair of networks of

interest by calculating Pearsons correlation and constraining the lag between the time courses. With

six networks of interest, the number of possible pair-wise combinations to examine between-network
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connectivity is 15. Subject specific timecourses were detrended and despiked, then filtered using a

fifth-order Butterworth low-pass filter with a high-frequency cutoff of 0.15 Hz.

4.3 Static Connectivity Results

Each fMRI dataset was decomposed into 50 independent components, of which around 20 components

were identified as resting state networks. Functional Network connectivity analysis was carried out

among six cognitive RSNs i.e. DMN I, DMN II, LFPN, FPN, SN, and BGN. These networks are

gathered in Fig.4.1, where orthogonal views of each of them are depicted for voxels with peak values.

Default mode networks and the rest task positive networks are connected functionally. The FNC

analysis was done for all the three groups of both cohorts separately. These correlation maps are

depicted in Fig. 4.2, where the maps in the left are for the typically developing population and maps

for the autistic patients are arranged to the right.

Cumulative observations are as follows 1) DMN I maintain negative correlations with anterior

salience, basal ganglia and left executive control networks. 2) Connectivity between basal ganglia and

the two executive control networks swings between the positive and negative correlation throughout

the development trajectory. This swinging nature can be observed between BGN and DMN II and

also between anterior salience and right frontparietal network. 3) Positive correlations have been

found among the rest pairs of networks in all the three stages.

Exploring the differences in the connectivity of cognitive networks of the two cohorts at each

developmental stage can shed light on the atypical functional integration of the networks that lead

to the functional deficiency of autistic population. Theses sFNC differences are depicted as a con-

nectogram for the three groups in Fig 4.3 Autistic children had FNC differences with the group of

typically developing children viz., anterior salience has higher connectivity with the rest cognitive

networks except with DMN II, FNC of DMN II with the rest of the networks are indifferent to the two

groups. The connectivity among the two default networks and between BGN and LFPN is weaker, the

two fronto-parietal networks had no connectivity while DMN I share a stronger functional connection

with BGN.

For adolescence, the second neurodevelopment stage considered here, FNC differences were also

found. At this stage, functional connectivity between nine pairs of networks of the autistic population

was different than the other group. The two fronto-parietal networks of autistic adolescents were also

functionally disconnected.
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Fig. 4.1: Cognitive RSNs (a) DMN I, (b) DMN II, (c) LFPN (d) RFPN, (e) SN,

and (f) BGN. The three orthogonal views, viz. saggital, coronal and axial of

each network alongwith the peak MNI coordinates are depicted. Multiple axial

slices of each network are kept for better visualization.
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Fig. 4.2: Mean correlations (Fisher’s Z scores) among six networks for neu-

rotypicals and atypicals of three age groups. For each group correlation map

in the left is for typically developing individuals and the map in right is for

individuals with ASD. The vertical bar shows the correlation values.
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The strength of four pairs of RSNs of atypically developing group was reversed from the previous

stage and they are a) anterior salience and BGN, b) anterior salience and RFPN, c) DMN I and DMN

II and d) DMN I and BGN. The DMN II shares stronger FC with BGN and LFPN while BGN and

RFPN shares weaker bonding. Correlation between DMN II and salience network has positive value

for typically developing adolescents but negative value for the autistic group.

The groups of neurotypical and atypical adults also have FNC differences . The LFPN and RFPN

networks of the adult autistic brain have stronger connectivity while for the two earlier stages they had

no connectivity. The FNC between the two default networks of the autistic brain was found weaker in

adulthood too. The SN has weaker connectivity with LFPN, RFPN and BGN although for the group

of autistic children it shares stronger functional bonding with them. The FNC of BGN and LFPN,

which was indifferent compared to adolescents group of neurotypical and was weaker than typically

developing cohorts for the group of children, is stronger for the adult autistic cohort. At this stage,

BGN and RFPN have no connectivity in the atypical group.

4.4 Discussion

In order to investigate the underlying atypical functional integration among the cognitive RSNs which

may lead to the behavioral manifestations of an autistic individual, a age-stratified study of between

network connectivity was executed in this chapter. With six resting state networks of interest, 15 pair-

wise combinations were possible to examine FNC. Mostly the connectivity of SN and BGN with each

other and with other cognitive RSNs differ for the two cohorts for all developmental stages considered

here. Hyperconnectivity of SN is found for autistic children and it matches with the previous findings

of Uddin et. al. [78], even they have proposed this distinguishable feature to use as a biomarker to

identify children suffering from ASD. Further, in advanced stages, SN shows hypoconnectivity with

other networks.

One of the earliest manifestations of autism is enlarged head circumference. Infants and toddlers

with ASD show signs of early brain overgrowth. Although the relationship between neuron density

and brain size is fuzzy, post-mortem studies of children with ASD indicate that they have excess num-

bers of neurons in the prefrontal cortex. Some of these differences vanish with development, such that

autistic and typically developing individuals are indifferent on measures of brain size. An overabun-

dance of neurons in the prefrontal cortex which is a part of salience network may be responsible for

the hyperconnectivity of SN while hypoconnectivity of it during the advanced stages may be the result

of vanishing of differences mentioned above.
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Fig. 4.3: The difference of functional network connectivity between the healthy

cohorts and folks suffering from ASD at three developmental stages (a) child-

hood, (b) teenage, and (c) adulthood. The red lines represent stronger func-

tional connectivity (FC) the green lines represent weaker FC. Anterior salience

network in children with ASD have strong FC with basal ganglia and the two

frontoparietal networks , while these functional connection gets weaker for the

next two developmental stages in patients. The two default mode networks of

ASD cohorts has weaker FC in first stage, stronger FC in intermediate stage and

no FC difference in the last stage. The FC between salience network and basal

ganglia in ASD cohorts is stronger in childhood, weaker in teenage and they

have no FC difference between the two adult groups.
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Lateralized fronto-parietal components have been associated with different functions, i.e., mem-

ory, language, attention and visual processes [150]. The absence of functional connectivity between

these two networks may be responsible for deficiency in one or more functionality of autistic children

and adolescents.

4.5 Summary

The SN manifest aberrant patterns of brain connectivity in the various stages of developmental trajec-

tory. Attention allocation to stimuli that is salient to the individual is the conventional responsibility

of the SN and atypical development of the salience network may lessen interest in social interac-

tion, a signature characteristic of ASD. No connectivity between LFPN and RFPN during childhood

and adolescence of atypical population may be one of the reasons behind their hallmark behavioral

characteristics.
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CHAPTER 5

AGE STRATIFIED FUNCTIONAL NETWORK BASED DY-

NAMIC FUNCTIONAL NETWORK CONNECTIVITY ANAL-

YSIS IN AUTISM
Biomarkers have been investigated for the entire gamut of autism. Past work seeking for connectivity

biomarkers responsible for signature manifestations of ASD had analyzed either toddlers, or mixed

groups of youngsters and teenagers, or aged folks in autonomous investigations. Diverging from most

examinations, authors explored entire functional organization and present the first age-stratified func-

tional network-based dynamic connectivity analysis in autism. Findings of this work are dissimilar

to the speculations that hyper-connectivity of brain networks are prevalent in young children with

ASD, while hypo-connectivity are more common in young people and adults with the disorder when

compared to typically developing cohorts. The statistically significant functional network connectivity

differences (fdr<= 0.05) are sparse in the group of children and adults and even the significant intra-

connectivity differences do not influence over the interconnectivity differences in the children’s group

of ASD.

5.1 Background and Motivation

Autism spectrum disorders (ASD) are symbolized by noteworthy social, pragmatics, and behavioral

disabilities. The expression "spectrum disorders" alludes to the way that in spite of the fact that in-

dividuals with ASD share some basic symptoms, ASD influence distinctive individuals in various

courses, with some encountering exceptionally gentle indications and others encountering extreme

manifestations. ASD incorporate autistic disorder and the by and large less serious structures, As-

perger’s syndrome and pervasive developmental disorder-not otherwise specified (PDD-NOS). Young-

sters with ASD may need enthusiasm for other individuals, experience difficulty appearing or dis-

cussing sentiments, and maintain a strategic distance from or oppose physical contact. A scope of

communication issues are found in youngsters with ASD: some talk exceptionally well, while numer-

ous kids with an ASD don’t talk by any means. Another trademark norm for ASDs is the exhibit of

prohibitive or fixated interests, for example, arranging toys, fluttering hands, shaking his or her body,

or turning in circles. ASD is hereditary to a great extent [162, 163] and exceptionally pervasive [164]

neurodevelopmental disorder.
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The exact idea of the neuropathology in ASD is not completely caught on. Anatomical ex-

aminations and autopsy have recognized cellular and volumetric abnormalities of various brain ar-

eas [165–167]. Functional neuroimaging examinations have been correspondingly conflicting, with

reports of atypical brain reaction in an assortment of regions. In any case, confirmation of aberrant

localization, intensity, and inconstancy of neural action in ASD proposes extensively disorganized

functional brain configuration [168, 169]. Conflicting reports of territorial brain atypicality from the

norm are not especially astonishing given the formative idea of ASD. It is a firmly hereditary disorder

set apart by early brain overgrowth [169, 170], irregular examples of white tissue advancement [170],

and disability in various psychological spaces by age three. Such early aggravations without a doubt

change formative directions for harrowed people in different and complex ways, and would subse-

quently not be anticipated to have surrounded neural impacts. Or maybe, impacts would be across

the board, mirroring the continuous interaction of pathology, ordinary maturational procedures, and

experience.

There is expanding conceptualization of conduct and discernment as being rising properties of

brain networks. According to this archetype, a network comprises of numerous areas or hubs (that

might be spatially inaccessible from each other) showing steady, systemized pattern of reproducible

co-initiation when brain work is measured. This patterned co-actuation between hubs inside a net-

work has been named Functional Connectivity (FC), and various methods might be utilized to look

for and characterize networks, including blind source separation (e.g., ICA), seed-based, graph and

clustering strategies. The impression is building of being many, stable networks in the human brain

exist crosswise over people that have been related with particular behavioral or intellectual capaci-

ties, for example, vision [171]. Networks are robust to conditions, and many have been recognized

amid assignment execution that relate to those found in the wakeful resting state [172], anesthesia and

rest [173], proposing resting state neurocognitive formats as a good alternative of task based stud-

ies [174]. These observations cumulatively propose these large scale networks might be hereditary in

human brain working, offering ascend to the moniker ’Intrinsic connectivity networks’ (ICNs) [175].

Coactivations between ICNs is termed as Functional Network Connectivity (FNC). The FNC is de-

rived between all the possible combinations of N networks, or [(NxN)- N]/2.

However these methodologies have utilized measures of brain connectivity averaged over sev-

eral minutes subsequently blurring dynamics of brain action. Dynamics are conceivably much more

conspicuous amid resting-state [45], amid which mental action is unconstrained, than in task based

studies. By not catching the basic changes in dynamics essential contrasts are clouded and our capac-
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ity to identify the practical brain changes that portray complex neuronal disorders is obscured. There is

late enthusiasm for this point as a few new examinations have concentrated on powerful FNC changes.

Concentrates in both animals and people showed that the unconstrained blood oxygen level dependent

(BOLD) signals measured amid rest display inborn spatiotemporal dynamic association [176–179]

This resting state fMRI (RsfMRI) investigation attempt to compare dynamics of whole-brain func-

tional network connectivity in ASD and typically developing (TD) individuals utilizing an entirely

information-driven approach. Authors investigated the characteristics and degree of functional con-

trasts both inside and between-networks when looking at ASD and TD people crosswise over three

age gatherings→ kids (under 11), teenagers (11→ 18), and adults (more than 18).

5.1.1 Sliding-Window dFNC

To comprehend the sliding window correlation it’s numerical representation is simplified here. Sliding-

window covariance for two time-series p and q with sampling period TR is defined as follows at scan

k.

Cpq[k] = cov(p[k −4, k +4], q[k −4, k +4])

=
TR

w

k+4∑
j=k−4

(pj − p̄k)(qj − q̄k)

where

w = (24+ 1)TR

p̄n =
TR

w

k+4∑
j=k−4

pj

After some elementary manipulations

Cpq[k] =
TR

w

k+4∑
j=k−4

pj(qj − q̄k)− TR
x̄

w

k+4∑
j=k−4

(qj − q̄k)

=
TR

w

k+4∑
j=k−4

pj(qj − q̄k)

=
TR

w

k+4∑
j=k−4

pjqj − q̄k
TR

w

k+4∑
j=k−4

pj

=
TR

w

k+4∑
j=k−4

pjqj − p̄kq̄k

The sliding window correlation:
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Corrpq[k] =
Cpq[k]√

Cpp[k]Cqq[k]

5.2 Methodology for Dynamic Functional Network Connectivity Analysis

5.2.1 Resting-state fMRI Images

The RsfMRI images in search for the functional connectivity based biomarker of ASD are gathered

from the autism brain imaging data exchange (ABIDE I) website [84] along with the entire make up

details and scanning details. ABIDEI is a subset of International Neuroimaging Information Sharing

Initiative (INDI) and 1000 Functional Connectomes Project [180]. The RsfMRI data present in this

repository are collected from around 16 different laboratories and the volunteers participated were

from different age groups. Authors utilized the images shared by Stanford University, Leuven Uni-

versity, and Carnegie Mellon University and the participants got scanned at those venues belongs to

different age groups, children, teenager, and adults respectively. Participants demographics are sum-

marized in table5.1

5.2.2 Image Processing and Independent Component Analysis

The pre-processing is done as per the connectome computation system (CCS) protocol which starts

with skipping initial four volumes followed by slice timing correction, motion realignment and in-

tensity normalization. Confounding variables brought in either by scanner, head motion, breathing or

pulsation are regressed out after primary processing of images. The global mean signal is incorporated

with disturbance variable. The processed images are decomposed by spatial ICA (SICA), using the

Group ICA for fMRI Toolbox [152]. A higher order model i.e. 100 is selected for SICA. The COMBI

algorithm is utilized to break down the datasets [122]. At last, the parts are back reconstucted utilizing

the group ICA tool. Spatial maps are guaranteed as ICN on the premise of the estimations of dynamic

range and the proportion of power at low frequency to higher frequency. The MNI coordinates of

the group maxima are changed to the Talairach stereotactic space. The brain areas are marked by the

Talairach daemon tuned to an inquiry scope of 2mm. Components were visually inspected and RSNs

are labelled on the basis of their spatial scope.
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Table 5.1: Participants demographics

ASD TD

Children

Mean age 9.96 9.95

Age range 7.5 —12.9 7.5 —12.9

Gender 16M/4F 16M/4F

FSIQ 78 —148 79 —136

Teenager

Mean age 14.34 13.92

Age range 12.1 —16.8 12.1 —16.9

Gender 12M/3F 17M/3F

FSIQ not available not available

adults

Mean age 26.35 26.84

Age range 19 —39 20 —40

Gender 11M/3F 10M/3F

FSIQ 95 —134 101 —129

5.2.3 Dynamic Functional Network Connectivity

The dynamic FNC are evaluated utilizing a sliding window approach instantiated in the dFNC toolbox

in GIFT. First, the time-courses were detrended and despiked using 3D despike in the AFNI software

then filtered using a fifth-order Butterworth low-pass filter with a high frequency cutoff of 0.15 Hz.

Then, FNC covariance matrices were calculated between all pairwise ICN for each subject using the

correlations derived from our ICA analysis by moving a Gaussian window in 1 TR increments across

the subject TCs. Successive FNC matrices for each window were then concatenated to form a [33

x 33 x (number of window units)] array representing a state transition vector, or how the FNC state

changed through time for each subject. Subsequently, a clustering analysis is done to examine the

structure and frequency of FNC patterns that recurred in the state transition vectors. The k-means

clustering algorithm was applied to the individual arrays of FNC covariance matrices using the City

method and the algorithm iterated a maximum of 200 times before convergence.
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5.3 The dFNC Results

The COMBI with a high order model was successfully used to decompose the fMRI images of typi-

cally developing (TD) subjects and patients with ASD. Spatial maps identified as ICN were bunched

based on their neurocognitive function, and some exemplars of each group is displayed in Fig 5.1.

These groups are cognitive control networks (CCN), default mode networks (DMN), auditory (AUD),

visual (VIS), basal ganglia (BG), sensorimotor (SM), and fronto-parietal networks (FP). In this devel-

opmental study three groups of both the cohorts are made i.e. children, teenagers, and adults. Unlike

conventional FNC analysis that averages the connectivity across the RsfMRI time courses, the dy-

namic approach can separate significant differences in patterns of abnormal connectivity and locate

these in individual states, providing a more granular picture of the structure of functional connectivity

in ASD. Here, the 6 state, 30 TR size window solution is displayed in Fig 5.25.35.4

Further the mean is computed for each cluster state of both the groups and they are displayed in

the Fig 5.55.65.7. Number of subjects with finite correlations are shown in these figures as well as

the pairs of resting state networks who qualify the two-sample t test are circled. The overall dFNC

differences can be divided into within network connectivity differences and between network connec-

tivity differences. Significant differences are sparse for the groups of children and adults. The VIS and

AUD networks have no significant within network connectivity differences in all the five states of the

children’s group, though they have in the other two groups. Within network connectivity differences

exist for SM, and BG networks but only in any single state.

The FP network is such an ICN who does not possess any statistically significant intra-connectivity

differences for even a single state for all the three developmental stages under consideration. All ICN

except FP have many between network connectivity differences for all the three groups. The pairs

of ICN those having significant differences may have positive correlation, negative correlation, or

opposite correlation for both the populations and it is summarized with bar graphs in Fig 5.8.

For all the states except state 2 of the two groups of children, opposite functional connections

(OFC) are higher. For these combinations of ICN in state 4 and 6 ASD subjects have a higher number

of positive functional connections (PFC), in state 2 HC have a higher number of PFC and in the

rest two states both the groups have nearly equal PFC. For the unanimous functional connections

(UFC) when both the populations show either positive correlation or negative correlations there are

differences between the strength of the functional connections. Except in state 2, ASD subjects show

stronger correlations and except in state 4 and state 5, they are strongly anti-correlated.
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Fig. 5.1: Sagittal, coronal and axial alices of the exemplars of the seven ICNs

viz., (a) CCN, (b) DMN, (c) FP, (d) SM, (e) BG, (f) VIS, and (g) AUD for peak

intensity activation.
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Fig. 5.2: Dynamic functional network connectivity states for the age group un-

der 11. These states show FNC among six ICNs viz., CCN, DMN, FP, SM, BG,

VIS, and AUD. The percentage of occurrence of states 1-6 are 11, 42, 3, 21, 11

and 13 respectively.
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Fig. 5.3: Dynamic functional network connectivity states for age group (11-18).

These states shows FNC among six ICNs viz., CCN, DMN, FP, SM, BG, VIS,

and AUD. The percentage of occurrence of states 1-6 are 3, 27, 50, 6, 11, and 3

respectively.
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Fig. 5.4: Dynamic functional network connectivity states for age group above

18. These states shows FNC among six ICNs viz., CCN, DMN, FP, SM, BG,

VIS, and AUD. The percentage of occurrence of states 1-6 for TD are 22, 3, 12,

26, 27 and 10 respectively.

The teenager’s groups of the two cohorts have nearly equal OFC and UFC. In state 3 ASD folks

have stronger anticorrelations. For the adult’s groups also, only state 4 has a higher number of OFC

and only in state 4 adult ASD folks has higher PFC. When the adult’s group of the two cohorts

are compared on the basis of UFC, only in the state 2 ASD folks have a higher number of strongly

correlated or anticorrelated connections. Two sample t-test of mean dwell time (MDT), number of

states, change between states, state span, and total distance between groups, HC and ASD, is also

performed and it is arranged in table 5.2.
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Fig. 5.5: Dynamic functional network connectivity states for ASD and TD co-

horts for adolescents group. These states shows FNC among six ICNs viz.,

CCN, DMN, FP, SM, BG, VIS, and AUD. The pairs of ICN having statistically

significant differences between the two group are circled.
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Fig. 5.6: Dynamic functional network connectivity states for ASD and TD co-

horts for toddlers to school going children group. These states shows FNC

among six ICNs viz., CCN, DMN, FP, SM, BG, VIS, and AUD. The pairs of

ICN having statistically significant differences between the two group are cir-

cled.
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Fig. 5.7: Dynamic functional network connectivity states for ASD and TD co-

horts for adult’s group. These states shows FNC among six ICNs viz., CCN,

DMN, FP, SM, BG, VIS, and AUD. The pairs of ICN having statistically sig-

nificant differences between the two group are circled.
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Fig. 5.8: Bar graph representation of the statistically significant dFNC differ-

ences between the three groups of ASD and HC cohorts in terms of direction

and strength. The bar chart at the top is for the adolescent’s group and in the

middle, is for teenager’s group and the bottom is for adult’s group. The PosCorr,

NegCorr, HC_pos, and HC_neg are the variables for unanimous functional con-

nection (UFC) whereas DiffCorr and HC_diff_pos are for opposite functional

connections (OFC). In the presence of UFC, the PosCorr and NegCorr repre-

sent the total number of RSN combinations those shows correlations and anti-

correlations respectively. The HC_pos and HC_negative show the number of

stronger correlation and stronger anticorrelation respectively manifested by HC

folks. In the presence of different functional connections (DFC), DiffCorr rep-

resents the number of RSN combinations those are correlated for one group and

anticorrelated for the other. The HC_diff_pos represents the number of RSN

combinations who are positively correlated for HC folks.
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Table 5.2: Two sample t-test of mean dwell time (MDT), number of states,

change between states, state span, and total distance between groups, HC and

ASD.

Children (MDT)

State p-value T-value

1 0.9141 0.1086

2 0.1601 -1.4326

3 0.3236 -1.0000

4 0.0056 2.9396

5 0.2836 -1.0876

6 0.6468 -0.4618

Method Num States Change Between States State Span

K-means Tval =0.3473, Tval =0.1946, Tval =-1.2319,

Pval =0.7303, Pval =0.8468, Pval =0.2256,

Mean of Group1

=12.5000,

Mean of Group1

=20.2000,

Mean of Group1 =4.9000,

Mean of Group2

=12.0500

Mean of Group2

=19.8500,

Mean of Group2 =5.4000

Teenager (MDT)

State p-value T-value

1 0.2541 -1.1606

2 0.1193 1.5991

3 0.5512 0.6022

4 0.0730 -1.8519

5 0.0505 2.0299

6 0.2541 -1.1606

K-means Tval =0.9310, Tval =0.4080, Tval =-1.9480,

Pval =0.3586, Pval =0.6859, Pval =0.0600,

Mean of Group1

=16.7500,

Mean of Group1

=31.2000,

Mean of Group1

=10.8500,
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Mean of Group2

=14.8667

Mean of Group2

=30.0667,

Mean of Group2

=13.0000

Adults (MDT)

State p-value T-value

1 0.7675 0.2989

2 0.3086 1.0393

3 0.1326 1.5547

4 0.2900 -1.0811

5 0.7780 0.2850

6 0.4766 0.7226

K-means Tval =-0.3028, Tval =0.3910, Tval =-0.5400,

Pval =0.7645, Pval =0.6991, Pval =0.5940,

Mean of Group1

=22.6923,

Mean of Group1

=33.6923,

Mean of Group1 =9.3077,

Mean of Group2

=23.5714

Mean of Group2

=32.4286,

Mean of Group2 =9.8571

The dynamic perspective of FNC results of this study completely reject the hypothesis that hyper-

connectivity of brain networks is prevalent in young children with ASD, while hypo-connectivity are

more common in young people and adults with the disorder when compared to typically developing

cohorts. Few findings of this study are also not in accord to the previous results presented in the

literature. Within network connectivity among the constituent ICNs of a modular organization is not

unidirectional as expected, rather some are anticorrelated. The DMN is not strictly anticorrelated with

task positive networks.

5.4 Discussion

Overall, the results demonstrate that children with ASD exhibit atypical within and between-network

functional connectivity. Importantly, these results are completely not in accord with the develop-

mental trajectory hypothesis proposed by [78] predicting hyper connectivity in young children with

ASD and hypo-connectivity in adults with ASD. Additionally, the current results are in accord with

previous ideas suggesting that increased within-network connectivity in children with ASD could

be responsible for reduced between-network connectivity as tighter coupling within networks could
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lead to reduced coupling between networks [78]. The justification for this hypothesis was based on

previous research which have shown that ASD is characterized by increased head circumference in

childhood [181] while in-vivo [182] and post-mortem studies [183] have shown increased neuronal

growth in children with ASD from 2_5 years and 2_16 years respectively.

One previously proposed explanation for the findings of changing functional connectivity across

development in ASD is that the pubertal period during adolescence is responsible for changes in

underlying brain organization, and that pubertal hormones may differentially affect developmental

trajectories in the disorder [184]. Hormonal changes during puberty have been linked with changes in

both gray and white matter [185]. However, there have been no cross-sectional or longitudinal studies

examining changes in functional connectivity that accompany the pubertal transition in humans, in

either typical or atypical development. Unfortunately, a large amount of ASD research is conducted on

adolescents and adults, probably due to the difficulty in acquiring artifact-free fMRI data from younger

children, especially young children with psychiatric disorders such as ASD [186]. The previous study

finding a lack of hypo-connectivity in adults [77] used only participants older than 18 years in a data-

driven ICA analysis. However, two other studies using ICA with participants over 18 have found

hypo-connectivity in ASD [86].

Although the ASD cohorts do possess statistically significant differences with TD patients in all

the three developmental stages considered in this study, but it is the cumulative result of the time

profiles of subnetworks of any ICN who establishes functional connections in various dynamic states.

In such a scenario a RSN whose FNC is less dynamic should be considered for a reliable biomarker

establishment. The biomarkers which contrast the FNC differences between the ASD and TD cohorts

should be explored either in the children’s group or in the adults group as the significant differences are

sparse in these two stages. The FP network does not have any significant within network connectivity

differences in all the three group. Besides this the significant interconnectivity differences of FP with

other networks are in one or two states only.

5.5 Summary

The FNCs in ASD significantly fluctuated in literary works as a result of methodological and subject

choice contrasts. Early examinations regularly centered around locale differences in activation during

tasks, with more recent studies utilizing RsfMRI concentrated in seed based techniques and low-order

ICA models. The current findings support adopting a developmental perspective to help reconcile

the heterogeneous findings of functional hypo- and hyper-connectivity observed in the RsfMRI lit-
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erature in ASD. The overall functional network connectivity differences between the two groups are

determined in this work. A careful examination of these dFNC maps shows that few ICN deserves a

separate exhaustive analysis of their time profile. By doing so concrete results can be drawn regarding

the signature manifestation of ASD patients.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

The current work was done in order to explore the functional network connectivity aspect of un-

derstanding the etiology of ASD. The workflow begins with the decomposition of the preprocessed

RsfMRI images into the autonomous components followed by the identification and labeling of ICN

and at the last correlating the time profiles of the pairs of ICN. The CCS protocol of preprocessing was

simply followed here to prepare the fMRI images for their use. These images were further decom-

posed by the ICA but instead of going with the most used algorithms (i.e. INFOMAX, FastICA) their

suitability for fMRI images was compared with eight other ICA algorithms. The phantom as well as

real fMRI images were used as the test images and the real images were based on both the task-based

and resting state protocols. The COMBI algorithm was found superior or equivalent to the frequently

used algorithms in terms of all the tests whether it was applied to decompose the real/synthetic fMRI

images distinctively or the time consumption or the aggregate score of mutual information of all the

combinations of autonomous components of the images. Further, throughout in this work, COMBI

had been used to disintegrate the RsfMRI images into the dedicated individual components.

The very next step after the decomposition was to identify the components of interest and label

them. For the purpose of their identification as an RSN, dynamic range and the ratio of low to high-

frequency power can be used but the problem is with their optimum value which is not yet standardized

and thus manual expertise is required for their recognition as the RSN/ICN. Some work on automatic

labeling of ICN had already been done and it relies on the spatial correlation values between the

2D templates and the ICN. The component gets the name of the template with which it gets the

highest score. The results of the above automatic labeling was found erroneous during the analysis in

the present work and the alternative is suggested here. With the help of proposed 3D templates, an

accurate programmed way can be built which relies on volumetric overlap matching rather than spot

overlapping in two dimensions.

After proposing these two corrective measures in the baseline of FNC analysis, further static and

dynamic FNC analysis were carried out longitudinally. The developmental changes in traditional static

FNC analysis of the two population was explored here. The results of this sFNC are in accordance
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with the hyper-hypo connectivity hypothesis of ASD cohorts. The SN and BGN of participants with

ASD had the most FNC differences with typically developing cohorts. The SN had hyper-connectivity

with the rest five networks for autistic children while hypoconnectivity were observed for adolescents

and adults. The two lateralized frontoparietal networks had no connectivity for the two initial devel-

opmental stages however for adults with ASD they had stronger functional connectivity. The dFNC

analysis was also performed here, but the results disagree with the hyper-hypo connectivity hypothe-

sis. In this dynamic counterpart of FNC authors have found that the significant differences are rather

sparse in the group of children and adults suffering from ASD. Instead of no connectivity differences

between the adult’s group of two groups, they do exist.

In nutshell, for determining the functional network connectivity-based biomarkers which can be

thought of responsible for the peculiarities of the ASD population, the present work revolves around

two hypotheses 1) The disrupted connectivity that postulates the deficiencies in the way the brain

coordinates and synchronizes activity among different regions may account for the clinical symptoms

of ASD. The most common version of this hypothesis proposes that individuals with ASD have weak

connections between distant brain regions and increased connections within local regions and these

abnormalities contribute to the social, cognitive, and behavioral phenotype. 2) Developmental changes

in functional connectivity have received inadequate attention and the discrepancies between findings of

autism-related hypo-connectivity and hyper-connectivity might be reconciled by taking developmental

changes with varying age into account.

6.2 Future Scopes

During synthesizing the thesis author found few corrective measures which are described further as

the possible avenues for future work.

6.2.1 Using A Larger Dataset

In the current work, 15-20 subjects are considered in each group of various developmental stages.

The results should be verified with a larger number of subjects in each group and consequently, the

statistical power will not be limited.

6.2.2 FNC Analysis With A Dataset Without Global Signal Regression

Effects of global regression of the signal on functional connectivity differences between typically

developing and autistic population can be explored.
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6.2.3 Other Pattern Recognition Algorithm

The K-means cannot converge even after the maximum preset iterations which are termed as the end

criteria, most likely because of broad commotion in dFNC. In this manner, the subsequent connectivity

states from K-means might be incorrect, which impacts the adequacy of the resulting biomarker.

6.2.4 Same dFNC States Among All The Developmental Stages

Any comparison is trustworthy when it is executed under the same circumstances and it was taken

care of while doing the comparison of the functional connections of the diseased and healthy controls

during individual developmental stages. Whenever it comes to the comparison of two or three de-

velopmental stages the differences were based on all the dynamic states i.e. they were not evaluated

individual dynamic state-wise.

6.2.5 Fusion of EEG and fMRI

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two frequently

used noninvasive medical imaging techniques to probe the brain. Also, because of a remarkable level

of complementarity between the two modalities, the blend of EEG and fMRI information has been

effectively looked for over the most recent two decades. The fusion of these two extremities can

definitely empower the brain explorers.

6.2.6 Comapring FNC patterns of Other Neurological Disorders Having Same Manifes-

tations as ASD

Both the disorders are neurodevelopmental and their trademark manifestations are language and social

deficiency. Genetic changes are not the prime patron of autism and schizophrenia development. Do

they share the same FNC patterns is still an open question?

6.2.7 Time-Frequency Analysis

Utilizing a window of fixed length is the major disadvantage of sliding-window examination. A time-

frequency analysis can dodge the need to choose a settled sliding-window estimate.
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