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Abstract  

Imaging is a potential way to preserve accurate information of a sense at a particular time for repetitive 

observation and analysis in future. Clinical brain imaging captures the information about actual 

condition of brain and presents it in pictorial form for observation. Brain hemorrhage is a common 

disorder with high death toll.  As per Indian Head Injury Foundation report, every year 100000 lives 

have come to an end due to brain hemorrhage. An effective medical support system is, thus, in high 

demand to gain clinical control over hemorrhage by reducing the death rate and the pain of survivors 

with disabilities. In developing countries like India, Computed Tomography (CT) imaging is the 

majorly used scanning modality because of its cost and speed. Though different mathematical models 

are reportedly established for automatic or semi-automatic computation for hemorrhage detection and 

classification using CT images, better works are still in demand for commercialization. A commercially 

available Computer Aided Diagnosis (CAD), if used in different hospitals, will create homogeneous 

reports which will be easy to exchange and compare.  

This research work is focused to support medical system by designing a CAD for hemorrhage 

detection and classification of Epidural Hemorrhage (EDH) and Subdural Hemorrhage (SDH). To make 

the CAD useful and acceptable, our objectives are as follows:  

(1) Developing a simple but highly accurate system. 

(2) Making the system affordable i.e. the implementation cost must be low. 

(3) Designing fully automatic system, so that it can be used for  

(a) Mass screening during emergency,  

(b) In absence of practitioners for initial diagnosis,  

(c) To get lower subjectivity and no tiredness. 

(4) Sensitivity of the system must be high enough to make the decisions of machine 

acceptable.  

(5) Designed CAD must offer reliable and dependable performance. 

Outline of the entire research work is presented as follows. The analysis of images involves 

segmentation, feature extraction and classification. Segmentation is done in two steps. In the first step 

the region of interest (ROI) which is the brain area encapsulated within skull is extracted from head scan 

images. In the second step, hemorrhage is segmented from diseased affected ROIs. As different 

hemorrhage has different shape, using the shape features hemorrhages are classified. Results of each 

step are discussed and compared with recently reported potential research outcomes.  

Image analysis depends on features which are extracted from descriptors of the target image. 

Commonly used image features are color, shape and texture features. For easy and quick information 

extraction, a single threshold based binary descriptor is proposed. From this descriptor, three major 
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binary image features called Information Packing Factor (IPF), Compactness (C) and Porousness (P), 

and two auxiliary features Scatterness (S) and total pore area (w) are calculated to handle multi-slice 

brain image dataset. These features describe the availability and spared of foreground information of an 

image and are useful for the purpose of brain CT image indexing. These are used in different steps of 

the research to improve CAD performance.  

To narrow down hemorrhage search area, the brain region is segmented from head scan image. 

In the pre-processing stage dataset cleaning and arranging in anatomical order are done. Dataset 

cleaning is done by removing images having no significant brain information. Pore count and IPF 

feature have efficiently handled this requirement. Using stereo matching the cleaned dataset is arranged 

in expected anatomical order.  Image with maximum brain area in the pre-processed dataset is selected 

as master image to create mask for brain segmentation. Two masks are created by automatic seed point 

finding and region growing method. One covers only the intracranial area of master image and another 

includes its skull area too. The larger mask is used as global mask for the dataset, but the smaller one 

propagates as adaptive mask. First, it segments the brains of the adjacent images of master image; then 

it is redefined by adjacent area search and used to segment the next adjacent images. This method 

efficiently segments the brain image dataset with 98.17% accuracy and 100% sensitivity.  

The extracted brain images are considered as input for hemorrhage segmentation process. To 

locate the threshold intensity for the hemorrhage, brain image histogram and expected histogram are 

considered. The expected histogram is the intensity distribution which is calculated from actual 

histogram history. Threshold intensity of an image is found by locating the crossover point, addressed as 

‘upset point’ in this thesis, between actual histogram and expected histogram. The threshold intensity 

search is kept limited in the region beyond the maximum intensity of brain histogram. Normal dataset 

are removed to reduce load on system. Segmented images of a dataset are fused linearly to locate 

highest potential area which is then converted into a mask for hemorrhage segmentation. Proposed 

method has reported average accuracy as 93.19%, average sensitivity as 93.47% and dice coefficient as 

92.05% which are much higher than other popular methods. The potential of this method is its speed, 

accuracy and sensitivity. The higher dice co-efficient of end result has proved that the upset point 

separates hemorrhage from brain matter without much loss.  

Segmented hemorrhages are classified in two steps using decision tree classifier. Initially the 

target classes are separated from other hemorrhages. Target class is then classified into EDH and SDH. 

For better performance of classifier secondary shape features are calculated from primary features and, 

to reduce input load on classifier, feature selection is done using their separability index. Target classes 

are separated from other hemorrhage types with 100% accuracy. EDH and SDH dataset are also 

classified with 100% accuracy. Each image of a dataset is classified. The class which contains more 

images is considered as the class of that dataset. The important observations of the described 

classification technique are listed below.   
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(1) Target hemorrhage classes stay in the immediate vicinity of brain boundary. This single 

feature is strong enough to separate them from other classes 

(2) Secondary shape features have more potential than primary shape features for 

classification because of their higher dependency on object shape.   

(3) IPF and compactness have demonstrated noticeable strength in classification of EDH 

and SDH. 

The proposed CAD has significantly high accuracy in segmentation and classification. No false 

negative result is reported in any step of the entire process. This feature has made the system highly 

sensitive and dependable for commercial use. The proposed CAD can handle any size of dataset for 

hemorrhage inspection and classification, even when the scanned images are not in the expected 

anatomical order. The research target has achieved successfully and the journey has offered some useful 

bi-products which can also be used for other brain disease detection. The significant bi-products are the 

master image selection technique, arranging CT images in anatomical order and upset point finding. 
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Chapter 1 

Introduction 

Overview 

This chapter  lays the foundation of the research work which has been 

conducted for the degree of doctor of philosophy in the field of medical image 

analysis. “Brain hemorrhage”, which is a common problem with a high death 

toll, is my research object here. To classify by frequency and severity, epidural 

and subdural hemorrhages are considered as the target classes for 

classification in this work. In order to support medical practitioners, several 

methods for computer based detection and classification of brain 

hemorrhages are reported by different research groups in the last two 

decades. Potential and popular research works are reviewed to understand 

current trends of the research potentials. Different features of gray image 

with equations are also discussed in this chapter. Result evaluation approach 

used in this thesis are briefed with equations. The objective of the research 

work and information about the data used in this research are included in this 

chapter.  The chapter is finally concluded with research methodology 

discussion and thesis organisation.   



2 
 

  



3 
 

1.1. Preface  

Medical images offer technical support to the medical practitioners in 
diagnosis and treatment. Different imaging techniques are successfully 
established by researchers and engineers to make diagnosis easy, fast and more 
accurate. Image data is considered as more reliable because of its advantage of 
visual interpretation over descriptive narrations or signal information. Each and 
every human has his/her own explanation style, interpretation capability and 
imagination power. Same disease is described in different ways by different 
patients. Same description creates a different interpretation in different 
practitioners. In case of an image, the information available in pictorial format is 
replica of actual physical condition of the disease stage. It reduces the ambiguity. 
Other advantages of imaging are easy and fast understanding of the information. 
A long elaborated description of few pages can be presented in a standard postcard 

size image which is much easier to read, understand, handle and exchange. These 

are the reasons for which imaging has gained high importance in medical practice. 
Medical images are technically different from normal images. Normal images use 

visible lights to capture photo, whereas medical images are captured using 

invisible range of electro-magnetic frequencies. It is an advanced stage of 
photography.  

In general, the image is a pictorial presentation of any sight and a 
combination of shades which can be gray or colorful. It can be a painting drawn by 

an artist or a photograph captured by camera. Potential of imaging technique lies 
in preservation of a scene or sight in analogue or digital format, exchangeability 
with others and use of captured scene for information analysis. Painting is a very 
old technique which has been modified and advanced with human evolution. The 
oldest image, still found, is the cave painting in El Castillo cave in Spain[1]. As per 
scientists‟ prediction, those paintings were made around 40,000 years ago. 
Capturing of sights as photo is quite new with respect to painting. The first photo 

which was captured using a camera was taken by Nicephore Niepce in 1822 [2]. 
That earliest known surviving photograph was taken by exposing the photographic 

plate to light for around eight hours. Due to fast development of technology, 
present day‟s photography has reached some other dimension. Digital photographs 
are now the most common form of photos.  
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1.1.1. Importance of medical imaging 

In medical imaging, using modern techniques, photography of inner body 
structures which are not visible in bare eyes is possible. Such information is very 
important for better treatment and accurate diagnosis. In medical science, doctors 
are taught to understand different symptoms some of which are visible in normal 
eyes, rest are described by patients in term of different levels of discomforts. 
Depending on those symptoms, doctors suggest test(s) if required for better 
diagnosis. Previously there was no option of imaging of internal parts of body. 
Depending on doctors‟ knowledge and pathological tests diagnosis took place. After 
invention of X-Ray technique the scenario has been changed. Then gradually 
different other imaging technologies emerged and established their potential 
through successful contributions in medical science. Now a wide range of medical 
imaging modalities are available to image the anatomy, physiology or functionality 

of different parts of human body. 

Using different imaging technologies like analog x-ray, digital x-ray, 
Computed Tomography (CT) scanning, nuclear imaging, Magnetic Resonance (MR) 

imaging or ultrasonography (USG) imaging inner structures, muscles, blood flow, 
vessels can be imaged. Though x-ray dominates the medical imaging segment [3], 

each imaging modality has its own advantages and limitations. Experts‟ eyes can 

identify the abnormalities from images and thus a better diagnosis can be offered. 
Even early stages of different diseases can be detected by proper analysis of 

medical images. Medical imaging technology can be considered as the third eye of 

doctors which help them in deeper understanding.    
Practitioners detect a disease and its severity by analyzing patients‟ 

described symptoms, pathological reports and medical image information. This 
process is pictorially simplified in figure 1.1. The practice of this process is called 
diagnosis. Treatment to heal or control a disease completely depends on proper 
diagnosis.  

Figure 1.1: Diagnosis practices 
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knowledge 
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Researches are carried out for the advancement of imaging techniques as 
well as of analysis process to extract more useful and valuable information. Digital 
images which are either acquired digitally or converted from analogue are used for 

research purpose. A digital image is a collection of pixels which are the smallest 
detectable unit of a digital display. A three dimensional scenario is stored in 
sequential rectangular two dimensional spaces, pixels of which contain equivalent 
color and intensity information of their respective location in the three 
dimensional space. For computation, each two dimensional digital image is 
converted into a two-dimensional numerical array, elements of which correspond 
the color and intensity information of respective pixels. Total Number of pixels in 
an image varies with the size and resolution of that image. A large size, high 
resolution image requires higher number of pixels to store all the information. 
During analysis these pixel information which are stored in an array can be 

computed mathematically to extract different features of the image. Medical 

images are mostly gray scale images. Each pixel of a gray scale image contains the 
intensity information of the respective location in terms of numeric value ranging 

0 to 255.  

1.1.2. Neuroimaging 

Medical images are captured through scanning. When any body part is 

scanned, area under projection is saved as image. With movement of scanner, 
several layers are recorded one after another. When brain which is spherical in 
shape, is imaged the result offers complex pattern. Along with traditional scanning 
systems, some hybrid imaging techniques are also proposed by researchers for 
more information, specially for brain [4, 5]. To capture the complete brain, several 
cross-sectional images are taken in sequence at a predefined gap. Nasal bones and 
orbits get scanned at base level of skull where the pattern of information 
distribution is quite complex. As brain contains soft tissues, CT scan, instead of 
traditional x-ray, and MRI offer very good imaging results. Each modality has 

some benefits over another. Choice of the modality depends on different 
parameters. It has been discussed in details later in this chapter.  

Neuroimaging can be of two types – structural imaging, functional 

imaging. In structural imaging anatomical details of brain are captured. The 
diagnosis of brain injury, trauma, strokes etc. is supported by structural images. 



6 

In functional imaging the functionality of a target area is scanned. It can be blood 
flow, metabolism, local chemical reaction etc. To record functionality normally 
contrast agents are injected. Contrast agents are radioactive substrates which are 

transmitted through blood purposefully to enhance image contrast at target area. 
fMRI needs no external agents and so less harmful than other methods.  

 (a)                                   (b)                              (c)  
Figure 1.2: Imaging planes (a) axial, (b) coronal and (c) sagittal 

Brain can be scanned in three different planes – axial or transverse plane, 
coronal plane and sagittal plane as shown in figure1.2. Scanner moves from start 

to end of a particular plane to capture images of different layers. A conventional 

CT scanner scans brain mainly in axial plane and other planes are reconstructed 
from recorded axial images. It come with digital recording system in which 

received information is stored as image. CT has sufficiently high resolution to 

examine extent of trauma, find its location and type of tumors.  

1.2. Motivation 

A discussion with practitioners about different diseases reveals that brain 
hemorrhage, a common and fatal problem with high death toll, is still suffering 
from diagnosis difficulties. An automatic diagnosis support system can help to 
improve the situation by escalating the treatment.  

1.2.1. Brain hemorrhage 

Hemorrhage is a Greek word which is adopted in English dictionary.  It is 
actually a combination of two words - 'hamia' (blood) and 'rhegnunai' (burst). A 
clinical condition when due to rupture in one or more blood vessels blood is 
accumulated within local vicinity is referred as hemorrhage [6]. An intracranial 
bleeding is clinically identified as brain hemorrhage. The word 'intracranial' itself 
signifies physical location of the hemorrhage. Intra means 'within' and cranial 
means related to cranium i.e. 'skull'. 
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Intracranial Hemorrhage (ICH) is an unfortunate incident. Each year, 
brain injuries, the main reason for hemorrhage, account for thousands of deaths 
and a significant number of people suffer temporary and permanent disability [7]. 
The rate of head injury in India is very high and as per Indian Head Injury 
Foundation, it is the highest in the world [8]. Here, more than 100000 dies every 
year and over 1 million suffer from serious issues due to head injuries. Human 
intracranial content consists of 80% brain, 10% blood and 10% cerebrospinal fluid. 
The mean intracranial pressure in a normal human is 10 mmHg. Because of 
leakage, blood takes up space and increases intracranial pressure. Among several 
reasons, the most common reason for 'brain injury' is 'head injury' due to 
accidents, though every head injury is not necessarily a brain injury. Statistics 
says that, in India, more than 50% brain traumatic injuries are caused by road 
accidents [9]. In accidental cases, bleeding in the brain usually occurs at the time 
of injury. However, symptoms such as headaches, nausea, vomiting may develop 
immediately or progress gradually over time depending on the severity of the 
impact. People lacks normal neuronal potential for response as brain injury affects 
the communication network [10]. Symptoms of general hemorrhage cases can arise 
anytime and do not last for long in preliminary stages, but with time get worse. 
Immediate medical care should be sought for the patients not fully awake after an 
injury. Some hemorrhages can be treated by medication, some may require 
neurosurgery to remove blood clots and relieve pressure on the brain to save lives.  

In India, 1 out of 6 trauma patients dies, whereas in the United States the 
proportion is only 1 out of 200 [11]. Radiologist per hospital sometimes is not 
sufficient to attend all the cases on time. In remote areas, availability of 
radiologist during emergencies is questionable. On contrary, accurate 

measurement and flawless detection of hemorrhage are not easy for non-specialist 
radiologists and practitioners [11]. We also cannot neglect the human error factors 

due to fatigue, rush or some other reasons. To overcome those difficulties a fast, 

easy to use, sufficiently accurate and fully automatic method for detection of 
hemorrhage is proposed in this thesis. Using this method a commercial Computer 
Aided Diagnosis (CAD) system can be developed to support clinical diagnosis 
system. The advantages of CAD can be listed as - 

1. Mass screening, instead of one by one screening, will be possible if
multiple numbers of systems remain available in a hospital. It will be very helpful 
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for any unfortunate incident like bus or train accident or major natural calamities 
like earthquake, landslide etc.  

2. Fast detection with increased accuracy and reduced subjectivity will

be possible as everything will be done automatically by the machine after scanning 
the subject.  

3. Mass effect i.e. displacement within brain due to hemorrhage is now
implicit by visual understanding of radiologist. This can be improved and 
standardized by the use of a CAD.  

4. Hospitals using same CAD will have homogeneous reports.
5. Hospitals with CT machine but no field expert will be able to offer

initial diagnosis to accelerate treatment. 

1.2.2. Computed Tomography (CT) 

“Tomo” and “graphia” are Greek prefix and suffix. Tomo means “slice” 

and graphia means writing or describing.  

Our brain is composed of different layers of tissues. The entire target is 
considered as a combination of several thin slices as shown in figure 1.2. Each slice 

contains different layers, each of which has different attenuation coefficient for x-
ray. During scan, every slice is examined from different angles to gather maximum 

information. The captured information of each slice is then converted into a two 

dimensional image by inbuilt mathematical model of the scanner. Multi-slice 
scanner can scan multiple slices at a time. Gap between two slices is called pitch. 

Intensity distribution and understanding of non-contrast CT images are discussed 

in details in chapter 3.  
In detection and diagnosis of hemorrhage, CT imaging modality plays  very 

important role because of its speed, low cost [12] and capability of capturing 
reasonably good contrast images for precise investigation [13]. This painless 
imaging offers information about soft tissues, blood vessels, CerebroSpinal Fluid 
(CSF) as well as bone with clear distinguishable boundaries. CT imaging is less 

sensitive to movements [13] and widely available in hospitals, even in rural areas. 
It has advantages over MRI for the patients having ferromagnetic or electrical 

implants or claustrophobia. MRI also suffers from thermal noise and long 
scanning time [14]. Hemorrhage patches are captured as bright distinguishable 
homogeneous areas within the brain in a CT image. No other disease offers similar 
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artifacts creating any confusion in observation. These benefits of CT scanning 
make the choice of imaging modality easier [15-18]. Considering these practical 
advantages, our work remains limited to CT brain image only. 

Figure 1.3: Computed tomography 

1.3. Image computation 

For mathematical computation of an image, array operations are 
performed on the equivalent array of an image under test. Any image contains two 

significant types of data – background and foreground. Foreground data contains 

information about the target object, whereas background represents the base on 
which the image is displayed.  For any analysis the foreground part is important; 

but background also supports the computation process indirectly.  

1.3.1. Feature extraction 

To understand an image systematically, different description values are 

calculated from image body. These descriptive parameters are called features. 
Features help to distinguish one image from another depending on dissimilarity. 

Commonly used features for brain CT image analysis are texture features and 

shape features. Texture epitomizes the intensity distribution pattern of the image 
surface. Direct evaluation of image pixel intensity results into primary texture 

features like mean, standard deviation, kurtosis, skewness etc. A deeper analysis 
for better understanding is conducted to evaluate higher order texture features. 
Relative intensity value of an image pixel is considered for higher order 
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calculation. These relative values explore the intensity changing pattern of the 
field of distribution. Gray Level Co-Occurrence Matrix (GLCM) [19] and Gray 
Level Run Length Matrix (GLRLM) [20] are some popularly used derived matrix 

for higher order feature extraction. Few of the commonly used features in medical 
image analysis and the associated mathematical formulae are collated in table 1.1.  

Features extracted from periphery of an image are identified as boundary 
features. Different edge detection techniques are used to extract boundary features 
[21-23]. Encapsulation pattern of an image is exclusively extracted by boundary 
features. Similar images with different backgrounds can be classified based on 
their boundary features. Shape parameters describe the spread of an image. 
Features like major axis, minor axis, best fit circle, equivalent circle etc. measure 
the geometrical pattern of target. These features are discussed in details in 
chapter 5 of the thesis.  

Primary Features 

Mean  
 

  
∑∑       

 

   

 

   

 

Variance    
 

      
∑∑           

 

   

 

   

Standard deviation   

Skewness 
 

  
∑∑

           

  

 

   

 

   

Kurtosis 
 

  
∑∑

           

  

 

   

 

   

Energy 
 

  
∑∑         

 

   

 

   

M*N is the image array size, i, j are two variables denotes image pixel position at any instant. 

Secondary features 

GLCM 

Entropy  ∑ ∑                    

    

   

    

   



11 

Dissimilarity ∑∑|  |      

  

   

  

   

Contrast ∑   

{
 
 

 
 

∑∑      

  

   

  

   ⏟        
|   |  }

 
 

 
     

   

Homogeneity ∑∑
      

  |  |

  

   

  

   

Correlation ∑ ∑
     (   )        

    

    

   

    

   

Autocorrelation ∑∑           

  

   

  

   

Sum Entropy  ∑                      

   

   

Ng represents number of available gray levels. µx , µy and  x ,  y represents mean and variance of px and 
py. 

GLRLM 

SRE (short run emphasis) 
 

  
∑∑

      

  

 

   

 

   

LRE (long run emphasis) 
 

  
∑∑         

 

   

 

   

GLN (Gray-level 
nonuniformity) 

 

  
∑(∑      

 

   

)

 
 

   

RLN (Run-length non-

uniformity)

 

  
∑(∑      

 

   

)

  

   

RP (Run percentage) 
  

  

P(i, j) is (i, j)th entry in gray level run length matrix, nr is total number of runs and   is the total number of
pixels 

Table 1.1: Image features  

1.3.2. Result analysis 

The result obtained through any proposed method should be evaluated to 

understand the system‟s performance. Validation is done by quantitative measure 
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of success of a system. Four major parameters which can define a system‟s 
acceptability are sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV). A simple observation table is used to demonstrate 
easy evaluation of these parameters. This table is called confusion matrix or error 
matrix. This matrix contains basic information of system performance from which 
validation parameters are computed. Input and output information of a system are 
divided into two parts. One part is the target and another is non-target. The input 
that presents the target part is called Positive information, rest is identified as 
Negative information.  At output, part of result which satisfies the ground truth is 
marked as 'True' outcome and rest are as 'False' outcome. This concept is 
presented in matrix form in figure 1.4. Derived features to evaluate system 
performance are also presented in the extended wings with mathematical 
equations.  
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Figure 1.4: Confusion matrix and derived parameters 

1.4. Literature review 

In the process of identification and classification of hemorrhage from CT 

brain images, major challenge is accurate segmentation of target from head image 
dataset. Segmentation method involves two major steps. First step identifies the 
intracranial part in an image as Region Of Interest (ROI). In the second step, the 

hemorrhage is identified within the ROI and segmented for classification. A brain 
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CT image contains information about soft tissue, blood vessels, cerebrospinal fluid, 
skull, soft tissue edema (if any), air and sometimes the headrest too. Skull and 
headrest show highest intensity of pixels whereas CSF and air show lowest 

intensity of pixels. Blood vessels, soft tissue, skin etc. have an overlapping 
intensity of pixels and are not easily distinguishable. For accurate, errorless 
computation through a computer, removal of objects having no clinical information 
is very important. Higher intensity skull and headrest are also removed to reduce 
computational complexity and thus increase efficiency. The literature survey is 
reported in an organized way. First, I have summarized the research articles 
about intracranial part segmentation. Reported articles about hemorrhage 
segmentation are considered separately and followed by the articles about 
hemorrhage classification to understand the status of research in the present 
scenario.  

1.4.1. Reported works 

Several computer aided diagnosis systems for brain image analysis and 
hemorrhage diagnosis are designed and presented in different research articles for 

decades. Though brain CT images are very important clinically, number of 
reported works on segmentation of  brain from CT images is not very large [24, 

25]. Majorly MR images are evaluated for analysis and segmentation of different 

brain diseases [26]. Though limited, but in some research works, brain CT images 
are segmented into different objects [27] and then analysis of each object is carried 

out by feature extraction [17] to identify the target. Skull and brain matter 

extraction from CT images, is reported in a number of articles as a part of image 
pre-processing for disease identification [28-30] or disease patch segmentation [24, 

31-34]. From CT images, extraction of brain area which is affected by target 
disease, using thresholding, region growing, Mid-Sagittal Plane (MSP) finding, 
supervised and unsupervised methods - are reported by different research groups 
during different times as discussed below. During survey it has been noticed that, 

shape guided segmentation methods are not much explored for brain disease 
extraction from CT images [35]. 

Thresholding and region growing methods are old, easy, simple but fast 

methods. It is not a very potential one for segmentation of complex regions with 
overlapping or very close intensity level. Thresholding can be done to segment 
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entire image into two segments, one is above the threshold and the other is below 
the threshold. The pixels having the threshold value can be combined with any of 
the segments. A modification can be done by multi-thresholding [36] approach, in 

which more than two segments can be extracted. The threshold can be user 
defined [28, 31] or automatically adapted from the image [24].  

Region growing method offers good accuracy for abnormalities like 
hemorrhage which have significant intensity difference from surroundings. 
Satisfactory results are reported in different CT segmentation works using region 
growing technique [37-39]. Region based hemorrhage segmentation with good 
accuracy has been reported by few researchers, [31, 40-43] in the last few decades. 
This technique works based on pixel intensity or edge information. The major 
disadvantage of this method, in case of automation, is the requirement of expert's 
interaction for seed point definition. 

Most of the MSP finding techniques depend on brain symmetry [44-47]. It 

suffers from non-negligible error in case of the midline (the bright line in CT image 
to segment brain into two hemispheres) shifting due to disease severity. This 

method requires user interpretation and the computation time is also large [48]. 

Liu et al. and few others proposed a hemispheric symmetry detection approach to 
detect brain lesions [28, 49-52]. In some literature, midline  shift is considered as a 

positive indicator for hemorrhage [28, 50]. On contrary, EL Yuh et al. calculated 

that midline shifting is a supportive finding to establish the existence of 
hemorrhage [53]. This method checks the symmetry for each slice and any 
abnormal region at one side referred as hemorrhage.  

Supervised techniques are popularly implemented for segmentation of 
target region using area based classification. Supervised methods require training 
data preparation by domain experts. Large and versatile database is required 
during training, to avoid overfitting problem of the system [54].  This training 
process and data requirement makes supervised methods slow and difficult [55]. 

Paying the cost of the complex algorithm, unsupervised segmentation techniques 
like k-mean segmentation [56], expectation maximization [57], fuzzy C-means 

algorithms [58] can be used. For unsupervised method, parameter initialization 
overwrites the requirement of training data set.  

Hemorrhage finding is mostly done by locating threshold on the histogram. 
Threshold identification is done automatically through artificial intelligence using 
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different algorithms like fuzzy C-means [18, 59], Hopfield neural network [60, 61], 
2D entropy [18], fuzzy maximal likelihood estimation [43], probabilistic neural 
network [59], genetic algorithm [41]. To detect hemorrhage few more approaches 

like - knowledge based detection [32], histogram-based K-means clustering [62], 
wavelet-based texture analysis [63] are also proposed in the literatures. 
Comparatively less number of researches have reported unsupervised clustering 
and backtracking tree search method [64, 65]. As hemorrhage is detected by 
searching hyperdense region within the image [62], no image registration is 
required; but still, one research paper has presented image registration between 
two hemispheres [28]. Pre-processing of images using morphological operation 
[28], and median filter [18, 42] have included in few research works to enhance 
accuracy in the final outcome.  

In recent time, deep learning methods are also in use for abnormality 

segmentation [66-69]. Most of them are supervised techniques which require a 

large dataset. This requirement itself is a disadvantage of these methods [55, 70]. 
Different deep learning techniques are also outperformed by the traditional k-

means method used in an unsupervised system which involves a limited data [71]. 

Due to higher similarity in intensity dependent surface information of 
different types of hemorrhage, impact of texture features in brain hemorrhage 

classification is not useful. On the contrary, shape features have shown good 

potential because of physical form and size difference between classes. Several 
researchers have reported success in classification of brain hemorrhage, 
segmented from CT image, with high accuracy using shape features as classifier 
input [24, 40, 57, 72]. For hemorrhage classification, different studies are reported 
the use of decision tree [72, 73], Support Vector Machine (SVM) [74, 75], Multi-
Layer Perceptron (MLP) [76], K- Nearest Neighbour (KNN) [77], K-means and 
Expectation Maximization (EM) [57] methods. 

To understand the underlying difficulties and to bridge the gaps between 

expectations and achievements, in hemorrhage segmentation and classification, 
the most relevant works reported in the last decade are analyzed. Study of state-

of-the-art creates a strong foundation for the research by identifying the available 
techniques, difficulties in this field and the shortcomings. Work reported by 
Tianxia Gong et al. [40], classified normal images from diseased with good 

accuracy, but the accuracy of hemorrhage classification is not much impressive. 
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They proposed preprocessing of images before segmentation and classification.  
Skull area was removed during preprocessing of images taking a fixed value as 
threshold. Brain area was segmented using two fixed threshold values - upper and 

lower threshold, and taking skull as the boundary. The abnormality was detected 
by suppressing intensities, which are less than and equal to the intensity of the 
highest peak in the histogram, to zero.  Median of the resulted image was 
considered to detect hemorrhage. The classification was done with the help of 
shape features. Quantitative analysis of segmentation is not reported. Bardera et 
al. [31], proposed a semi-automated method, in which seed point for region grow 
was selected manually.  In this article, an experimentally fixed value was used as 
stop criteria of growing region with an option of alteration depending on user 
satisfaction. They had attempted to segment hemorrhage directly from the brain 
image without any preprocessing. Though the reported results were promising, the 

method lacked automation and suffered from hard thresholds. Bhadauria et al. 

[78] introduced a hybrid approach for hemorrhage segmentation. They utilized the 
advantages of both FCM and active contour methods. Using FCM, they segmented 

brain images to extract hemorrhagic area. Segmented candidates were used for 

initializing the level set function. A modified data fitting function was proposed 
incorporating fuzzy membership matrix. Their method was able to break the 

limitations of conventional active contour method by adaptively estimating the 

controlling parameters. This work had demonstrated a significant improvement in 
performance with respect to region growing and fuzzy clustering technique. In a 
more recent work, Bahareh et al. [24] used a modified level set method, Distance 
Regularized Level Set Evolution, which needed no reinitialization. Before 
implementing the level set function, images were preprocessed to remove skull, 
ventricle, and soft tissue edema. To remove skull, threshold value is adjusted by 
trial and error method. For classification, shape features were considered. The 
work claimed a significant improvement in accuracy over conventional process.  

1.4.2. Research gaps 

Some research works reported direct segmentation of hemorrhage from 

dataset. but extraction of the brain region in the preprocessing stage of 
hemorrhage segmentation is important to reduce the noise and improve the 
efficiency of the CAD [79]. The method of segmentation varies keeping the central 
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focus on the fact that it is a homogeneous and bright part in CT images. The 
deficiencies observed in the available methods are listed as follows; 

i. Most of the reported works handle a single 2D CT image at a time,

for analysis. The execution steps are repeated for each image of the
multi-slice head scan dataset. This process is time consuming.

ii. Handling nasal images from the base of skull is a challenging task.
The underlying reason is the porous structure of the skull which
includes several large compartments and contains brain information
in one or multiple segments. The degree of difficulty has enforced
avoidance of the discussion of lesion segmentation from such images,
in most of the articles. The connections of intracranial matter with
the skull outside soft tissues through paranasal sinuses, suppress
the capacity of the skull to isolate the brain from outside. Only in

limited number of articles, nasal images are inspected for

hemorrhage, using separate analysis process for those images.
iii. Even after advancement of technology, no reliable, low cost CAD

system is available for medical support in hemorrhage detection and

classification.
We have tried to overcome these gaps in our designed CAD for hemorrhage 

segmentation and classification.  

1.5. Objectives 

Hemorrhage can be of several types depending on its location in brain. The 

major two classes are intra-axial and extra-axial hemorrhage and these are 
further divided into different subclasses. After discussing with radiologists and 

studying several papers it was concluded that among all types of hemorrhages, 
Subdural hemorrhage (SDH), Epidural hemorrhage (EDH) and Intracranial 
hemorrhage (ICH) are the most common cases received in hospitals [80]. Subdural 
and Epidural hemorrhage are the major subclasses of extra-axial hemorrhage. 

Among all types of hemorrhages, these two are very common in accident cases and 
fatal too. They demand fast, reliable and automatic screening for treatment 

initialization during emergency. To satisfy this requirement, these two types of 
hemorrhage have been considered as the research target to develop an automatic 
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Computer Aided Diagnosis system for detection and classification of the same. The 
distinct steps followed during research to achieve the goal were as follows:-  

(1) Acquiring domain knowledge to understand the brain hemorrhage in CT 

images. 
(2) Brain boundary identification and brain segmentation 
(3) Segmentation of hemorrhage  
(4) Feature extraction, feature selection and classification. 

We put our efforts to develop an advanced methodology to address the gaps 
in this field. Images from a dataset can be analyzed separately as multiple 2D 
images or can be handled as a 3D volume. Volumetric analysis, as voxels are 
considered instead of area, involves higher computational complexity and longer 
execution time. Consideration of relations between neighbor images in a dataset 
promotes the potential of 3D analysis in the 2D domain. Our objective is designing 

a less complex method which will execute the 2D brain images in the dataset and 

offers results comparable with 3D image analysis results to collapse the 
heterogeneity between 2D and 3D domains.  

Nasal images become unavoidable for volumetric analysis. Independent 

evaluation of each nasal image also deviate us from our objective. The wish of 
simultaneous evaluation of nasal images triggers the requirement of intellectual 

preprocessing of the dataset.  Lossless extraction of the brain with less inclusion of 

non-intracranial area from the base of skull is one of the challenging objectives of 
this research. Our objective, in short, is to design a highly accurate dependable 
method, for hemorrhage segmentation and classification, which will bridge the 
gaps mentioned in section 1.4.2.  

1.6. Database 

Multiple slice head CT scan of different subjects, both diseased and 
normal, collected from Postgraduate Institute of Medical Education and Research, 

Chandigarh, are included in the database. Total 27 patients‟ dataset and 16 

normal dataset are considered for hemorrhage segmentation and classification. 
For training purpose separate isolated images are used. Each of EDH and SDH 
case has 50 images, SAH has 31 images and intra-axial hemorrhage case has 

another 31 images. The number of images of a dataset, under test, varies from 12 
to 34 for different subjects depending on practitioner‟s decision and machine 
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capability. Some online dataset [81-83] are used in different stages for brain image 
pattern analysis and training of neural network. Advance CT machines store 
images in Digital Imaging and Communication in Medicine (DICOM) format 
which is an international standard for medical images [84]. DICOM images are 
converted into 8-bit gray scale Tag Image File Format (TIFF) and stored in local 
computer hard disk for further analysis. Algorithms are developed for complete 
automation. In this thesis, the word 'dataset' indicates the collection of images of a 
patient acquired by CT machine during one full length scan. And the entire 
collection of data used in this work is referred as 'database'. For computation, each 
two dimensional (2D) CT scan slice of a dataset is considered as a 2D image array, 
elements of which contain value between 0 and 255.  

1.7. Thesis outline 

We have pre-processed each dataset to prepare it for actual analysis. All 

images are converted to array of 512X512. The noise reduction is made by 

eliminating skull and all extra-cranial objects. The resultant brain matter is taken 
as ROI for hemorrhage segmentation. Hemorrhage segmentation is done by 

histogram thresholding and morphological operation. Segmented hemorrhages are 

classified based on their shape features in two steps. In the first step decision tree 
removes the non-target hemorrhages to narrow down input volume. In final stage 

artificial neural network classifier is used to classify target group into EDH and 
SDH. The flow of proposed method is depicted in figure 1.5.  

The actual research work is composed and presented in four main 
chapters. Total six chapters and necessary appendixes are written to complete the 
thesis for partial fulfillment of doctoral degree. A brief of each chapter is given 
below.  

Chapter 1: this is the introductory chapter with brief discussion about 
motivation, image computation techniques, objective of the work and outline of the 

thesis. 

Chapter 2: three binary features, information packing factor, compactness 
and porousness, are proposed in this chapter.  Features are defined, 
mathematically described, computed and applied on brain CT image data to 

examine the potential.  
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Chapter 3: the process of skull encapsulated brain extraction as ROI is 
explained. Region grow approach with an automatic seed point finding is proposed. 
Multiple slice dataset is evaluated by two steps masking. One of the masks 

changes its definition adaptively with progress.  
 Chapter 4: hemorrhage is segmented from respective ROI by histogram 

thresholding. The threshold value is computed by comparing actual histogram and 
expected histogram value from moving average of past. Morphological operation 
and fusion is used to finalize the hemorrhage location.  

Chapter 5: this chapter contains details about derivation of second order 
shape features from segmented hemorrhage. These features are more relevant to 
the class of a hemorrhage than primary features. With the help of shape features, 
decision tree and neural networks classify the database into EDH, SDH and rest of 
the segmented hemorrhages are tagged as „other‟. 

Chapter 6: reported work is summarized and concluded here. Limitations 

are discussed to foresight possible extension of this research in future.  

1.8. Conclusion 

Motivation, necessity and objective of this research work are discussed as 

foundation of the thesis.  Information is briefed about CT brain images, image 
analysis techniques and database used in this research. Literature survey is done 

to understand the present status of researches in this field. Thesis organization is 
given at the end of this chapter as a quick reference. In the next chapter, three 

potential but easy to compute binary images are proposed and discussed.  
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(a) 

(b) 

Figure 1.5: (a) Research work flow, (b) Segmentation steps visualized  
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Chapter 2 
 

 

 

Binary image features  

 

Overview  

This chapter presents three fast and easy computable image features to improve 

computer vision by offering more human-like vision power. These features are 

neither based on image pixels’ absolute or relative intensity informationnor based 

on shape or color. These are based on the existance and spread of foreground 

information. To calculate different features, computer needs to scan an image pixel 

by pixel. It is like seeing an image with maximum zoom. This kind of reading is 

done by human only when a higher level of details of an image is required. 

Normally, first we look at an image for overall idea to understand whether it 

deserves further investigation or not. This capacity of getting an overall idea ‘at a 

glance’ is analysed and three basic features are introduced to facilitate computer 

vision similar capacity with low computational load. Features are proposed and 

described usning regular images and satellite images. To test and establish the 

potential and versatility of proposed features in medical imaging domain, different 

brain image datasets are examined. performance of the features in classification of 

datasets is compared with reported work. It demonstrates possibilities and 

potential of the proposed features in image processing to enhance computer vision 

capacity.  
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2.1. Motivation 

In this research, our target data are brain scan images which are acquired 
using computed tomography (CT) technique. With advancement in technology, CT 

machines become capable to acquire large number of slices during scanning. It can 
be 4, 8, 16, 32 or 64 slices. Even 128, 256 and 320 slice CT machines are also 
available; but for higher cost they are mainly used for critical diagnosis and 

research purposes. Normally 32 and 64 slices CT machines are used in hospitals. 
For detection of hemorrhage, the use of entire dataset of a multiple slice scan is 
advantageous than inspecting each slice separately.  Normally, CT scan is done 

sequentially from bottom to top of the head. In some cases it is done in reverse 
order too. So, the resulting images have sufficient correlation in information 
distribution with adjacent slices. This is a potential feature to improve accuracy in 

end result of hemorrhage detection.  
Though in normal practice, CT scanning is done in a sequence, sometimes 

re-scanning of certain part is required due to technical faults or practitioners’ 
interest. In such cases, sequence of the saved image may be out of order [63]. 
Looking at a dataset, a human can easily predict whether it is in order or not. And 
if it is not in order, out of order images can be identified by visual inspection. 
Sequential scan also includes complex nasal area images in which brain part gets 
connected with non-intracranial parts through paranasal sinuses. Intensity and 
texture features of those parts are very similar with brain part of the image. 
Sometimes, during sequential CT scan, terminal head part having no brain or 
having only scalp get scanned and saved in the dataset. Human intelligence 
automatically can identify these issues and take proper actions to reduce error in 
further analysis. To do the same pre-processing tasks, a computer needs to 
calculate several higher order features from each image slice. Only after 
computing that information it can decide the status of the dataset and classify 
slices accordingly [85]. The simple task, thus, becomes complex for a computer 
because of computational load and time consumption. But why computer vision 
has this problem? In reality, there are several gaps between human and computer 
vision which need to be addressed [86].   

           To offer computer a more human like vision, first we need to understand 
human vision system. Instead of discussing the biological details in depth, a rough 
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outline of human vision system is given here. Human eyes take image information 
from surrounding and interpret it to make a sense about the scene. Eyes work like 
convex lens through which rays pass and create inverted image in focus plane [87]. 
Our brain nerves then analyze this image and help us to understand. So, basically 
human eyes read an image of a scene from a distance. Distance varies depending 
on the type of the scene. During reading of books, newspapers or leaflets distance 
will be more or less within 1.5 to 2 feet. For landscape it can be anywhere from few 
feet to infinity (for sky, stars, sun, moon etc.). In all the cases, the inverted images 
are created in the focus plane of eyes.  When we look into any scene, we gather an 
overall idea about the scenario first, and then observe the details in depth 
depending on our requirements and interests [88, 89]. On the contrary, a computer 
always reads an image like reading a datasheet. It reads out each and every pixel 
sequentially like a scanning machine to gather complete details at first. Required 
information is extracted later from collected details.   

This difference in observation style sometimes put an unwanted 

computational load on computer during image processing and analysis. Machine 
vision also lacks the feature of human vision called ‘glance’. In this chapter, rather 
than focusing on fine details of well-known image features like color, brightness, 

size, shape, boundary and texture, three image features and their computation 
from a binary descriptor are proposed to empower computer vision with the 
capacity of extraction of some quick initial facts from an image with low 

computation load. These features will help to gather overall average information 
about information distribution within an image.  

2.2. Available Image features 

Most prominent characteristic of an image is its color [90, 91]. Based on 
the color of an image, it can be categorized as one of the four major types, binary 
image, gray image, color image and multispectral image [92]. Binary, gray and 
color images are visible in bare eyes and easy to understand. Multispectral images 
are captured through electromagnetic spectrums beyond our perceptual range or 
using SONAR (SOund Navigation And Ranging) system. The captured information 
is then mapped into the visible spectrum to enable inspection by human. All 
medical images fall in this category. Digital color world has several color spaces 
like RGB (red, green and blue), CIE (International commission on illumination), 
HSV (hue, 
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HSV (hue, saturation and brightness) [90, 93] etc. Multispectral images are 
mapped into any of these color spaces. During mapping loss of information happen 
if the actual image contains higher number of spectral bands than the destination 
space.   Other than color, texture and shape are two major properties which are 
useful to understand, analysis and classify an image [86, 94-97]. Several valuable 
features are extracted from all three above mentioned properties of an image to 
enhance digital vision of a computer or robot.  

All available image features can be classified as low level features and high 
level features based on the type of mathematical models used for feature 
extraction [98]. Features, directly calculated from image array, using array 
elements’ values, are classified as low level features. High level features are 
calculated from low level features or from a secondary array computed from the 
image array. Another popular way of feature classification is based on the target 
area of an image which is used in extraction process. Here, features are classified 
in three different categories - pixel level features, local features and global 
features [98]. Pixel level features are calculated directly from the independent 
value of image array elements. It can be intensity, color information, location etc. 
Local features are extracted from region of interest i.e. from keypoints of an image, 
whereas, for calculation of global features, entire image is taken into account [99, 
100].  Some well-known local feature descriptors are Scale Invariant Feature 
Transform (SIFT) [101], Speeded Up Robust Features (SURF) [102], Local Binary 
Patterns ( LBP) [103, 104], Binary Robust Invariant Scalable Keypoints (BRISK)  
[105], Maximally stable extremal regions (MSER) [106], Fast Retina Keypoint 
(FREAK) [107], local derivative pattern (LDT) [108], newly introduced Local Tetra 
Patterns (LTrP) [109]. Commonly used global features are image mean, image 
moments, image histogram, texture histogram [110] etc. These features become 
local when extracted only from target location of an image for survey purpose like 
object detection, image matching, image stitching etc. Features like histogram 
[111, 112], moments [113-115], color coherence vector (CCV) [116], color 
correlogram [117], Gray level co-occurrence matrix (GLCM) [19], gray level run 
length matrix (GLRLM) [20], modified color motif co-occurrence matrix (MCMCM) 
[118] etc. have significant contribution in color and gray image processing.  
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Shape features offer an idea about the shape and size of image or object 
[119, 120]. Two different types of shape features can be calculated. One is contour 
based, using which boundary features can be calculated, and another one is region 
based. In region based technique, the pixels within that shape area are considered 
for extraction of different features [120].  

Tactile qualities of image surface are depicted by texture features of an 
image [121]. Depending on extraction technique, a texture feature can be 
structural, statistical, model based or transform feature [122]. Though these 
features are equally potential for all kinds of images, a significant use of texture 
features are observed in gray image analysis and classification. In medical 
imaging field, non-contrast multispectral images are majorly mapped into gray 
scale images and their texture features are extracted for further analysis and 
disease detection [123]. Texture and shape features play an important role for 
disease classification too; because, in maximum cases, the target object i.e. the 
disease patch in the image changes its shape and size with progress of disease. 
Statistical texture features are further classified into three categories based on 
their computation processes, first order, second order and higher order [124, 125]. 
Higher order texture features offer more details about an image like relative pixel 
intensity, patterns etc. but first order features are good for basic idea about the 
image.  

Image segmentation and classification are critically depended on efficient 
feature extraction [126]. Large numbers of features are available for in depth 
analysis of an image. Simple to complex mathematical calculations are involved in 
extraction of all these features. For content based image retrieval (CBIR) binary 
image descriptors are widely used for its computational simplicity and speed [127]. 
Pixel based features and local features offer better information about part of an 
image, whereas global features offer an overall idea about the entire image under 
test. Still the ‘glimpse’ capacity of digital vision is missing even after some 
significant efforts which are made towards this direction by finding object 
boundary, coarseness and different spatial relationship features[88,89,99,100,128].  

With advancement of AI, expectations have increased. We expect computer 
to reflect human perception more accurately in its vision. Human brain analyses 
an image first by overall condition of the image [88]. The facts observed are mainly 
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the amount of useful information in an image, image quality and the information 
distribution. Color, contrast, brightness, identification of objects etc. are being 
noticed subsequently. It is also observed that global features are very good in 
scene perception [100]. For example, an image can have information arranged 
closely or distributed in an unorganized way or arranged in a pattern as shown in 
figure 2.1(a) to (c) respectively. An idea about image information distribution can 
be assessed by calculating and combining different higher order texture features 
like contrast, correlation, energy, entropy etc. But a direct measurement of 
distribution of information will offer a better human like fast observation power to 
computer vision. 

In the following sections of the chapter, three features are discussed to 
provide computer a fast ‘over all’ idea of an image. For simplicity of understanding, 

color images are not considered in the discussion of this chapter. Only gray scale 
images having intensity ranging from 0 to 255 are considered here. So, numerical 
value of array elements will remain bounded between 0 and 255. After discussing 

the basic concepts of proposed features, methods for extraction of these features 
from an image are elaborated and followed by the application, mainly in medical 
image analysis. Qualitative analysis of the results and potential of the features are 

demonstrated through confusion matrix evolution. In the discussion section, 
characteristics of each feature are investigated. Details like definitions with 
formula, range of feature values, programing algorithms for implementation of 

these features to develop CAD are given in the appendices A and B at the end of 
the thesis. These features are used to improve CAD performance in different 
stages of our research. Its potential in enhancement of computer vision, related to 

our work, is discussed in the subsequent chapters.   

2.3. Proposed Features 

Any image, technically, has two parts-foreground and background. The 
foreground contains image information which is useful for further analysis.  Rest 

of the information collectively contributes in formation of image background. 
Foreground can be continuous as shown in figure 2.1(a) or distributed over the 
area as shown in figure 2.1(c). Generally image analysis is done by extracting 

intensity information of each pixel. In this chapter, instead of each pixel, the 
groups of pixels are considered for feature extraction. The entire image is 
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converted into two groups of pixels, foreground and background, using a suitable 
threshold value. Three major features namely information packing factor (IPF), 
compactness (C), porousness (P), and two minor features namely scatterness (S), 

total pore area (w), are proposed to get a quick idea about the image under test. In 
this research, these features are mostly used to pre-process dataset before analysis 
and increase accuracy of proposed method in different steps.  

2.3.1. Information Packing Factor (IPF): 

The measure of available foreground information in an image. 
In crystallography, there is a term called atomic packing 

factor (APF) which defines the fraction of volume of a crystal that is occupied by 
atoms [129]. Using the same concept, information packing factor is proposed here 
to describe the foreground image information density with respect to the total 
image size. For a (nXm) image where n is number of rows and m is number of 
columns of the image array, if total u number of pixels belong to foreground and z 
number of pixels belong to background, then  

Information Packing Factor (IPF) = u / (n X m) 

And    n X m= u + z 

So, IPF = u/(u+z) 

=1/(1+z/u)        (2.1)  

When u=0, IPF=0. It means image contains no information. When z=0, 

IPF=1 i.e. there is no background in the image. When z=u, IPF=0.5 as per 
equation 2.1. With increase in z, the value of IPF decreases as per the above 
equations. This simple observation will offer an overall idea about the amount of 

available foreground information in an image.  

2.3.2. Information Compactness (C): 

Measurement of tightness in distribution of foreground information in an 
image.  

Another quick observation of human eyes is the spread of foreground 
within the total available area of image. Images without and with gaps in 
information distribution are shown in figure 2.1. Figure 2.1(a) has high- compact 

information. No significant gap is there in the image information distribution. 
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Such arrangements offer higher compactness value. Figure 2.1(b)-(c) have one or 
multiple area(s) where there is (are) gap(s) between information. With increase in 
gaps, compactness value decreases. If all foreground information is placed side by 

side without any gap, it can be considered as completely compact. The highest 
compactness value should be 1. If u number of foreground pixels are there in a 
(nXm) image, and y number of background pixels are placed within the foreground 

information distribution, then compactness is the ratio of image information to 
total area covered by foreground information along with in-between background 
pixels.  

Compactness (C) = u/(u+y)  (2.2) 

As y increases with constant u, the numerical value of compactness 
decreases. With no gap between information i.e. y=0, compactness becomes 1.  

 (a)                                                   (b)  (c) 
Figure 2.1: (a) & (b) Compact information, (c) Scattered information [130]  

The opposite characteristic introduced by the background pixels which are 
placed within foreground, can be measured by deducting compactness value from 

unity which is the maximum possible compactness or by directly taking ratio of in-
between background pixels to the total area covered by the same and foreground 
information pixels. This characteristic is addressed as scatterness in this chapter. 

Scatterness (S)=  ̅ 

=1 – C 

       = 1- [u / (u + y)] 

= y/(u+y)         (2.3) 

When y=0, equation 2.3 evaluates the value of S as 0. In other words, if 

compactness is 1, there will be 0 scatterness.   

 C 
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2.3.3. Image Porousness (P): 

Measure of background information completely confined within foreground 
information of an image.  

Porousness can be created due to several reasons. It can be due to the 
nature of the image, due to presence of some information having very close 
intensity value to background. Generally such non-informative homogeneous parts 

trapped within foreground are filled by background intensity value which is most 
commonly 0 or 255 in case of gray images.  Each separate confined area is denoted 
as pore in our work.  

It is apparently difficult to differentiate porousness from scatterness. 
In both the cases, there are background pixels between foreground pixels.  

In case of scatterness the gaps are created due to unattached spread of 

foreground information. Porousness can be identified as the non-peripheral part of 
scatterness. Pores should have no link with background of the image. It should be 
completely confined within foreground. To explain, an example of an image of 
islands in a sea, shown in figure 2.2(a), is taken. In this image, lands are not 
connected to each other but they are complete on their own. If sea is considered as 
background then the gaps between islands, due to sea, lower the compactness of 
the image. This situation offers high scatterness and low compactness measure. 
Let’s zoom into an image of a single island. If we find an unexpected gap in the 
image of the land, that gap may belong to porousness because a land itself is 
expected to be continuous. As shown in figure 2.2(b) due to volcanic crater there is 
an unexpected low intensity area in the land image. Such a view is not normally 
expected for any landscape or island. This artifact contributes in the measure of 
porousness.  

Porousness is measured as the ratio of background pixels which belong to 
pore to the total of foreground information pixels and pore pixels. 

Porousness (P) = w/(u+w),      w≤y≤z. 

= 1/(1+u/w)        (2.4) 

Where, w is the total number of pixels belonging to pores or total pore area 

of the image. Equation 2.4 demonstrates that for no pore the porousness will be 
zero.  
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2.3.3.1. Advanced analysis of porousness 

As discussed above, pores remain confined within the image foreground 
area without having any link to the image background. The count of such pores 
offers the number of porous parts. When w>1, the total porous area can be divided 
into one or several pores. Each pore contributes to the porous area of an image. 
Using any established connected area labeling method [131, 132], pore count and 
volume measurement of each pore can be done.  

For an example, if there are q pores in an image which has u numbers of 

foreground pixel, and pixel count of the pores are w1, w2, ….. wq respectively, then 

Sometimes, very fine gaps in compact images also offer porousness.  
Volume of such pores normally remains very low. This fact has been discussed 
later in this chapter.  

2.4. Methodology 

2.4.1. Pre-processing of images 

In all above mentioned features, images are considered as a combination of 
two levels – foreground and background. This assumption leads to binarization of 
an image. One level contains background information and second level contains 
foreground information. For a gray scale image, in most of the cases, background 
color remains black or white. Otherwise, it can be user defined. And any other 
intensity level, beyond background intensity range, is considered as foreground 
information.  

This binarization can be done by user defined threshold value. Depending 
on user's understanding, a particular intensity value or a range of intensity values 
can be selected to divide the image into two pixel groups for further analysis. To do 
thresholding automatically, any established binary thresholding method [36, 133] 
can also be used. In this chapter, Otsu bi-level thresholding is used to convert the 

 iTotal pore area w = ∑  
q
   

Pore count (np )= q 

And, porousness contribution Pi of ith pore is 

    i    ∑                     

  i        

So, P = ∑Pi and the range of Pi is same as P.   
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gray images to binary images. The threshold calculated by software, is mentioned 
for each case.  

(a)                      (b) 
Figure 2.2: (a) Sea, land and islands [134] (b) Land with volcanic crater [135] 

2.4.2. Information extraction 

For computation, a binary image is mathematically represented by an 
array of two elements.  To keep it simple we have considered 0 and 1 as array 

elements. 0 presents the background and 1 represents the foreground elements.  A 
binary image array (I) is considered to describe the feature calculation process. 
The pictorial demonstration is shown in figure 2.3(a). In this array, all 0s are 

representing background information (BI) location and 1s are presenting 
foreground information (FI) location.  Total length of foreground information 
spread (L) for each row is calculated from the image array and presented in 

‘foreground information length’ array. Similarly, count of available foreground 
information per row and background pixels within that are calculated and 
presented in ‘foreground information count’ and ‘scatterness count’ array. From 

scatterness count array, pore pixels are extracted. The scattered pixels having no 
background pixel as neighbor are considered as pore pixels. For pore pixel 
selection 8-connected neighborhood search is taken into account. The details of 

extraction are highlighted for row3 (R3) of image array. The scattered pixels of R5 
and R6 are not contributing in pores. 2nd scattered pixel of R6 has a background 
neighbor. This particular scattered pixel is neighbor of another scattered pixel of 

R6 and the scattered pixel of R5. So, none of these three have any contribution in 
porousness.  
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(a) 

(b) 
Figure 2.3: (a) Information extraction process, (b) Feature tabulation chart 

A tabulation chart can be formed from image array for easy calculation of 
the features. The formation of tabulation chart is presented in figure 2.3(b). This 
chart provides all information required to calculate the values of IPF, C, S and P.  

Images, given in figure 2.1(a)-(c) and 2.2(b), are converted into binary 
images as shown in figure 2.4(a)-(d) respectively before further analysis. Display 
images have black (intensity 0) background and foreground is presented in white 
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(intensity 255). Foreground information intensity value is selected as 255 for 
presentation purpose only, as 0 and 1 offer no visible significance in digital gray 
images. Binarization is done by Otsu thresholding. Threshold values selected by 

Otsu method are 86, 80, 72, 148 for figure 2.4(a) to (d), respectively.  

(a) (b) (c) 

            (d)        
Figure 2.4: (a)-(b) Binary image of 2.1 (a)-(b) - the Compact information, (c) Binary image of 2.1 (c) - the 
Scattered information (d) Binary image of 2.2 (b) - the Porous information 

Image

Image 

size 

nXm

Info. Size 

p

Scatter 

size q

Total pore 

area w

Pore 

count np
IPF C P

Fig.2.4(a) 786432 197719 27484 3038 29 0.2514 0.8780 0.0151 

Fig.2.4(b) 786432 274513 46127 5871 77 0.3491 0.8561 0.0209 

Fig.2.4(c) 122500 36697 17364 8 4 0.2996 0.6788 0.0002 

Fig.2.4(e) 26015 20041 5895 5463 114 0.7704 0.7727 0.2142 

Table 2.1: IPF, compactness and porousness measure 

Table 2.1 shows the IPF, C and P calculation of figure 2.4(a)-(d). Human 
visual perception at a glance is reflected in this calculation. As per human vision, 
figure 2.1(b) has highest density of information among first three images. This fact 

is satisfied as the calculated value of IPF is maximum for 2.4(b). Human 
perception regarding figure 2.1(a) and 2.1(c) as highly compact and highly 
scattered respectively, is also reflecting in calculated values of proposed feature 

shown in table 2.1. Porousness is maximum for figure 2.2(b) among all, and figure 
2.1(c) has almost no porousness. Thus all the calculated features are completely 
satisfying human visual perception.     
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Area and porousness of each pore can be calculated for every single image. 
In table 2.2, results for figure 2.4(a) to (d) are presented in descending order. 
Except for figure 2.4 (c), only highest 11 pores are presented. Rest parts are 
avoided due to the presence of huge number of very small pores.  

The result shows that fine gaps in foreground in a compact image or small 
gaps due to scatterness sometimes unexpectedly contribute in porousness 
measurement. But those volumes are too low to be considered as shown in table 
2.2. Here, only figure 2.4(d) has a significant pore which is emphasized by bold 
font in table.  The threshold for considerable pore volume must be application 
specific and can be determined by end users. 

2.5. Performance Analysis 

Using these features, primary classification of a set of images can be done 

to reduce complexity and computational load on advanced steps of analysis. IPF 
presents volume of available information in an image. This is very basic but a 
required feature. Classification based on information size can be powered by IPF. 

Compactness (also scatterness) and porousness illustrate distribution of 
foreground information within an image. Porousness pixels are also counted in 
scatter counting, whereas all scattered pixels are not necessarily considered 

during porousness calculation. All these features are extracted from the level of 
individual pixel intensity with respect to threshold, keeping the computation fast 
and light weight.  

In several applications like medical image processing, satellite image 
analysis, remote sensing, robotic vision, document processing, automatic 
inspection etc. feature extraction is required for image analysis, processing and 

decision making. Knowledge about information density and its distribution will 
help in almost all the cases to understand images in a better way.  

In case of brain diseases like dementia - Alzheimer brain size starts 
shrinking over time. In a longitudinal brain scan, brain size changes from slice to 
slice. Using impact of this change, scanned slices can be classified primarily by 
IPF. In a transverse multi-slice brain scan, brain area in different slice is 
different. At the base of skull, nasal bones and orbits get scanned and the actual 
brain area becomes low in the image. Scanning, generally, starts from this level 
and gradually moves towards the top of the head. Approximately at the middle of 
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the scanning range, lateral ventricle level of brain is scanned. Scanned slices are 
automatically saved in the scanning order by computer. Close observation shows 
that this order of scans offers a particular pattern to IPF, compactness and 
porousness volumes. Two healthy brain transverse MR scan dataset are collected 
from open-source internet database [81, 82] to perform a test. Background 
threshold values are selected by Otsu method. One scan image and its binary 
equivalent are shown in figure 2.5(a) and 2.5(b) respectively. The variation of IPF, 
C and w of a MR dataset are shown in figure 2.6(a)-(d) and the same of another in 
figure 2.6(e)-(h).  
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Fig.2.4(a) 29 

2011 

385 

317 

141 

36 

32 

21 

19 

15 

14 

5 

1.0020 

0.1918 

0.1579 

0.0702 

0.0179 

0.0159 

0.0105 

0.0095 

0.0075 

0.0070 

0.0025 

Fig.2.4(c) 4 

3 

2 

2 

1 

0.0082 

0.0054 

0.0054 

0.0027 

Fig.2.4(b) 77 

1473 

1137 

827 

527 

500 

320 

304 

180 

159 

95 

83 

0.5254 

0.4055 

0.295 

0.188 

0.1783 

0.1141 

0.1084 

0.0642 

0.05671 

0.03388 

0.0296 

Fig.2.4(d) 114 

5190 

27 

20 

15 

7 

7 

6 

6 

6 

6 

6 

20.35 

0.1059 

0.07842 

0.05881 

0.02745 

0.02745 

0.02353 

0.02353 

0.02353 

0.02353 

0.02353 
Table 2.2: In-depth calculation of porousness for each pore 
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    (a)                              (b)   
Figure 2.5: (a) Brain MR scan image [81]  and (b) its binary equivalent image , threshold value is 70

Another dataset of 32 slice brain CT of normal subject, collected from 
internet archive site [83], has been used for further investigation. The collected 
dataset is pre-processed to remove the skull. The image of one skull removed CT 
scan and its binary equivalent are shown in figure 2.7(a)-(b). Removed skull image, 
shown in 2.7 (c), is the by-product of this process. Skull removed images are taken 
to extract IPF, compactness, porousness and pore area. Extracted values are 
plotted and shown in figure 2.8(a)-(d). The main difference in MR and skull 
removed CT images, is that the intensity value for lateral ventricle is high for MR 
but fall in the range of background for CT.  

IPF and compactness remain always higher for ventricle level brain slices 
where largest area of brain is captured during scanning. Porousness is high for 
slices at the base of the skull where eyes are included in scan and lower for the 

rest. In this CT dataset, the last slice displayed in figure 2.9(a), is showing very 
high porousness. The binary equivalent of skull removed image of figure 2.9(a) has 
no brain but background trapped within a circular brain like patch as shown in 

figure 2.9(b). This CT image contains no brain information in reality. For further 
analysis of porousness, average pore area of CT dataset is calculated by using the 
formula stated in equation 2.5. The plot of the same is shown in figure 2.8(e). 

Error is significantly amplified in this plot and very easily recognizable.  

Average pore area = wavg = w/np (2.5) 

To explore the potential of the proposed features, classification of brain CT 
scan dataset is performed using IPF, compactness (C) and porousness (P). Total 
729 CT scan slices in which 226 slices are of nasal area i.e. have brain as well as 
eyes in scan, 441 slices have brain only and 62 slices have no brain in head scan as 
shown in figure 2.9(a) have been used. The dataset is collected from free online 
data source [83]. Complete set is classified using Neural Network Pattern 
Recognition (nprtool) toolbox of Matlab. A subset of 55% of entire dataset is 
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utilized to train the network and testing is performed on 35% of dataset volume. 
The combined classification accuracy presented by all confusion matrix of figure 
2.10, is 94.2%.  

     (a)   (b) 

(c)      (d) 

      (e)  (f) 

(g)                   (h) 
Figure 2.6:  (a)-(c) Features plot for MR dataset 1 and (d)-(f) Features plot for MR dataset 2 
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(a)   (b)     (c) 
Figure 2.7:  (a) Skull removed brain CT scan [83], (b) its equivalent image and (c) Skull image 

(a)    (b) 

(c) (d) 

(e) 
Figure 2.8: Features plot for CT dataset, in each graph, x-axis is presenting the images and y-axis is 
presenting the value of respective feature 

The classification accuracy increases when porousness values of skull 

removed images are replaced by corresponding porousness value of skull images. 
The classifier performance for this input combination is presented in figure 2.11. 
The overall accuracy has increased to 95.9%. 
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       (a)           (b) 
Figure 2.9: (a) Faulty brain scan [83] (b) Skull removed image  

To classify this database in the above mentioned three classes, more 
features can be included in different combination to observe the change in 

classification accuracy. Along with IPF, C and P, pore count np and porous area w 
are also included in input. The input feature combinations used to check 
classification potential are as follows:-  

Combination 1 [C1]: IPF, C, w 
Combination 2 [C2]: IPF, C, w, np 
Combination 3 [C3]: IPF, C, w, P 

Combination 4 [C4]: IPF, C, w, np, P 
Every time, randomly a subset of 55% of complete dataset has been used 

for training and 35% of dataset has been left for testing of trained neural network. 

For each combination, 10 test results are collated in table 2.3. The standard 
deviation offers an approximate overview of classification potential of each neural 

Figure 2.10: Confusion matrix of classification 
using features extracted from skull removed 
images 

Figure 2.11: Confusion matrix of classification 
using mixed features from both skull removed and 
skull images 
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network. When the neural network classifies all subsets with almost equal 
potential, the standard deviation remains low. The performance observations of 
different networks for different combinations are as follows: 

• C1 has demonstrated poor performance in classification with respect
to other three combinations, though smallest standard deviation is
achieved.

• C2 also offers reasonably low standard deviation between
classification accuracies in more than one cases.

• C3 and C4 demonstrated very similar performance with good

classification potential.
• Maximum accuracy obtained in training set classification is 100% by

C4. The same network offers 96.5% overall accuracy but a poor

standard deviation.
• Maximum accuracy obtained in overall classification is 97.9% by C3

with reasonably low standard deviation.

C3 and C4 can be considered as powerful combinations as per the 
observation table. 

A large number of input combinations are possible from these 5 features. 

Any feature set can be replaced by its corresponding feature set obtained from 
skull images. End users can determine the best suitable combination for their 
specific applications. The best performing network obtained from those 

combinations can be saved for further use.  
The performance of this work, reported in figure 2.11, is evaluated and 

presented in table 2.4. It shows significant improvement in brain CT image 
classification with respect to the most similar work reported by Liu et al. [85]. 
Using shape and other features, Liu et al. had proposed a method of indexing. This 
method suffers from the mathematical burden of complex feature extraction and 
rotation correction. To evaluate their proposed method they used 80 CT image 
dataset which had 446 nasal slices, 802 brain slices and 311 top slices. The 
comparison result is collated in table 2.5. A significant improvement in 
classification is noted.   



44 

C1 C2 C3 C4 
T

ra
in

in
g

 

T
e

s
t 

A
ll 

S
td

. 
D

e
v
. 

T
ra

in
in

g
 

T
e

s
t 

A
ll 

S
td

. 
D

e
v
. 

T
ra

in
in

g
 

T
e

s
t 

A
ll 

S
td

. 
D

e
v
. 

T
ra

in
in

g
 

T
e

s
t 

A
ll 

S
td

. 
D

e
v
. 

1 94.9 90 93 2.02 87.2 92 87.3 2.24 97.4 98 97.9 0.26 97.4 96 97.2 0.62 

2 87.2 68 80.3 7.94 93.6 88 91.5 2.31 69.2 70 68.3 0.69 100 94 96.5 2.46 

3 89.7 78 85.9 4.87 92.3 82 89.4 4.34 93.6 96 95.1 0.99 94.9 86 92.3 3.74 

4 85.9 80 81 2.58 74.4 76 74.6 0.71 94.9 86 91.5 3.67 89.7 84 88.7 2.49 

5 66.7 60 63.4 2.74 73.1 68 72.5 2.28 98.7 92 96.5 2.79 69.2 70 69 0.43 

6 96.2 96 95.8 0.16 74.4 66 72.5 3.60 70.5 60 66.9 4.36 96.2 92 95.1 1.78 

7 78.2 70 75.4 3.40 92.3 88 90.8 1.78 94.9 96 95.8 0.48 89.7 82 87.3 3.22 

8 84.6 82 83.8 1.09 97.4 86 93 4.69 92.3 90 91.5 0.95 62.8 72 67.6 3.76 

9 94.9 96 91.5 1.92 89.7 90 90.1 0.17 91 76 83.8 6.13 96.2 92 93.7 1.72 

1
0 

91 72 84.5 7.88 97.4 80 91.5 7.23 94.9 96 95.8 0.48 97.4 94 95.8 1.39 

Table 2.3: % accuracy of different confusion matrices of different feature combinations 

Index Precision % Sensitivity % Specificity % Accuracy % F-score % 

1 94.67 92.21 97.75 96.08 93.42 
2 96.13 97.39 94.12 96.08 96.75 
3 100 100 100 100 100 
Avg. 96.07 96.08 95.79 96.46 96.07 

Table 2.4: Performance analysis 

Method Precision % Sensitivity % Accuracy % F-score % 

Liu et al. [85] 79.73 81.42 86.58 80.22 
Proposed 
method 96.07 96.08 96.46 96.07 

Table 2.5: Performance potential comparison 

2.6. Discussion  

Images with usable information are processed by users to extract required 
data. In this chapter 'usable' information is identified as 'foreground' information 
after image binarization. If an image has no such usable information, user needs 

not to process it. So, practically an image under process must have some 
foreground information i.e. u>0; though theoretically it can be zero. In appendix A, 
the theoretical and practical ranges of all proposed features along with their 
definitions and calculations are summarized.   

To calculate the features, entire image is converted into two levels based 
on the value of absolute intensity of each pixel in the image. Pixel having intensity 
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equal to or higher than the threshold value, receive membership of ‘foreground’ 
level and labeled as ‘high’. Rest are assigned to ‘background’ and labeled as ‘low’. 
After conversion, pixel intensity values are not used for further calculation. To 

keep the system simple and fast only the membership labels are considered. Image 
features are standardized as first order, second order or higher order depending on 
their extraction methods. First order features are calculated from absolute pixel 

intensity values. Second and higher order features are extracted from relative 
intensity values of pixels. Proposed methods are calculated from binary image 
where absolute intensity values are not directly considered for calculation. Binary 

levels are used for feature extraction. So, these features can be categorized as 
‘binary features’ or following the already used standard nomenclature pattern can 
be addressed as ‘zero order features’.  The coding steps to write a program for 

feature extraction from a binary image are discussed in appendix B.  
Let us observe the effects of rotation of an image on the proposed features. 

IPF and porousness features are image orientation independent. Rotation of image 

has no effect in these feature values. Let us rotate the image array shown in figure 
2.3(a) by 90 degree.   The new image array I’ is shown in figure 2.12. L, u, z, y and 
w from I’ are extracted and compared with the respective values of I. The results 

presented in the figure are demonstrating no change in u, z and w. But a 
significant change in L and y are observed.  

Figure 2.12: Comparison of features after 90° rotation of image 
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By proposed definition, IPF = u/(u+z)  where u+z = image size. 
So, we can say, IPF α u. Image size retains same even after rotation. As u 

is not affected by rotation, IPF remains unchanged after rotation. Porousness P is 
a function of u and w and both of these values remain unaffected by rotation. 

Hence, P also remains unaltered after rotation.  
Compactness depends on u and y where y changes after rotation of image. 

So, compactness as well as scatterness is image orientation dependent features. 

But if the image is just flipped i.e. the total rotation is 180 degree, no features 
proposed in this chapter will be affected.  

Hence, the key facts of proposed features can be listed as  

• Images under process must have some usable information.
• Proposed features can be addressed as 0th order features.
• Rotation of image will not affect IPF and porousness values.

• Compactness and scatterness are image orientation dependent features
until and unless the rotation angle is multiple of 180 degree.
Features, except IPF, are calculated with respect to the target area, 

majorly covered by foreground information. Entire image i.e. image including 
background area, is not taken into account. So, it can be concluded that IPF is a 
global feature and rest are local features.  

2.7. Conclusion 

Three major quickly computable image features, IPF, compactness and 
porousness, are proposed in this work. These features seem to have impressive 

applicability in different types of image data. Proposed features are extracted from 
both CT and MR image of brain for result analysis. Initial outcomes are promising. 
Degree of accuracy can be increased by using these features in combination with 
higher order texture features at a cost of computational load. Depending on 

requirement, that can be decided by user. It has been observed that without doing 
detail pixel by pixel intensity evaluation, fast sorting of CT brain images 
depending on its foreground volume and information spread is possible. Unusual 

information gap in an image can be identified quickly by porousness feature. All 
these results can provide guidance for further in depth analysis of an image or 
image dataset. These features are promising for identification, initial selection, 

indexing or classification of images. The enhancement of computer vision lies in 
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the quick initial selection capacity which is intuitive in human beings.  These 
features will help to grab the ‘overview first’ to make a basic understanding of an 
image.  

In this chapter, image descriptor is created from gray image. To extract the 
same features from color images additional investigations are necessary. 
Mathematical model needs to be modified to convert the color image into its 

equivalent binary.  
In the next chapter, extraction of skull encapsulated part of brain which is 

the target ROI for hemorrhage segmentation is discussed. These proposed features 

are used in different steps of segmentation to enhance accuracy of the CAD system 
described in the following chapters. These features also have significant 
contribution in hemorrhage classification, discussed in chapter 5.  
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Chapter 3 

Brain Segmentation 

Overview 

Brain hemorrhages, irrespective of its type, physically remain confined within the 

skull. This knowledge helps us to narrow down hemorrhage search area and 

reduces computational load. In this presented research work, intracranial section 

of a head image is considered as region of interest (ROI) for hemorrhage 

segmentation. In this chapter an automatic and robust brain segmentation method 

is proposed to segment the intracranial part from CT scan dataset as a part of the 

final CAD system for hemorrhage segmentation and classification.  Adaptive 

thresholding, automatic seed point finding, knowledge driven region growing and 

multilevel masking are key potentials of this method. For mask definition, best 

suitable brain image of a dataset is selected as master image. Two types of masks 

are created from this master image. One mask is used to segment brain matter and 

another one to restrict inclusion of the non-intracranial area of nasal images. This 

second mask is a global reference mask and is designed for all images in a dataset. 

Brain matter mask is implemented on adjacent images of master image and is 

automatically updated for the next image. This mask propagates independently in 

two different directions keeping master image at center. Segmentation result 

shows highest sensitivity and reasonably good accuracy in all cases. Performance of 

proposed method is compared with other popular brain segmentation methods. 
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3.1. Introduction 

As already discussed in previous chapters, any image array contains two 
significant types of data – background and foreground. For medical analysis the 
foreground part is important, but background also supports the computation 
process indirectly. Scan images often contain some unwanted external information 
which can introduce errors during computation and analysis through a computer. 
To reduce such noises in final analysis, images are pre-processed during which 
external parts along with non-contributing parts are removed from an image.  

There are some reported works on interactive or adaptive brain 
segmentation. Prominent works have been discussed in literature review section of 
chapter 1. In most of the cases, there is always a requirement of radiology expert 
to initiate the process. Work reported by Chan, 2007 [28], proposed removing non-
intracranial part by deleting everything not connected with largest brain part. 
This method tends to introduce error in nasal images by deleting parts of the brain 
not connected to largest segment and considering non-intracranial parts which are 
connected to the brain through paranasal sinuses. Bardera et al. (2009) [31] 
proposed segmentation by interactive region growing technique. Their proposed 
Computer Aided Diagnosis (CAD) needs manual feeding of seed point, threshold 
and tuning to improve segmentation accuracy. Threshold finding from histogram  
is proposed by Liao et al., 2010 [80]; though the automation algorithm is not 
proposed. In this proposal, segmentation is done separately on each two 
dimensional (2D) image following the concept of Chan, 2007 [28]. The negativities 
of this method are high computational load and lower accuracy in the 
segmentation of nasal images. It has been observed that region growing technique 
is mostly used because of its ease and accuracy, but automatic seed point finding is 
a challenge. To define the boundary of the growing region, thresholds are either 
given interactively or adapted computationally from the histogram, with some 
user defined constant cost factor [24,79]. Segmentation of nasal images, is 
addressed in a very limited number of works and the establishment of the 
potential of algorithms is missing. Before proposing a method the key challenges 
in this area are listed:- (1)  Automatic seed point finding for region grow technique 

(2) Effective segmentation of nasal images 
(3) Handling complete dataset at a time 
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The method proposed here is designed to address above mentioned 
challenges to roll out completely automatic, highly accurate brain matter 
segmentation system. The segmented brain can also be used for clinical assistance 

to diagnose and treat brain disorders other than hemorrhage. This method is 
comparatively more robust and faster. It is capable of carrying out batch 
processing of the multi-slice head CT dataset of a patient. One master image is 

selected automatically for mask creation. A modified thresholding and region 
growing technique is proposed to create the mask. Instead of creating separate 
mask for each and every image, mask propagation is used that reduces the 

computational load. Any information outside the skull and the skull itself is 
removed completely to get final segmented image. Proposed modified region 
growing technique is completely automatic. There is no need of seed point or 

Region of Interest (ROI) selection by the end-user.  
In the succeeding part of this chapter, details methodology is described, 

followed by results and its analysis. The proposed method is applied on several 

datasets and the results are presented with graph and images. Analysis of 
achievement is calculated and potential of the work is discussed at the end.  

3.2. Database and CAD outline 

Multiple slice head CT scan of different subjects are taken for 
segmentation of brain matter. A model is designed for complete automation. 
Extracted brain images are named after their original name and saved 

automatically in a new folder in the same location of the source folder.  
The CAD system’s sequential operational steps are described in the 

flowchart given in figure 3.1. An entire dataset of multiple 2D images is read and 

processed for pre-processing steps like thresholding, master image selection, 
arranging images in anatomical sequence and computation of masks definition. 
Masking is done in two stages, having an in-between step where the complete 
dataset is split into two parts with respect to master image which is selected 

automatically by CAD.  
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Figure 3.1 : Process flowchart for segmentation of brain from head CT scan dataset  

3.3. Methodology 

For each dataset, one image, which has been referred as the master image 
in this chapter is selected from that dataset only. This master image is used as a 
reference to define the mask for that dataset. Use of single global reference image 
for all datasets is avoided to make the system tolerant to artifacts like ring 
artifacts, noise, motion artifacts, varying brain shape etc. It will also help to 
neutralize the error due to patient’s alignment [136]. Rather than a manual 
selection of reference image [79], an automatic selection method is designed. For 
automation, intensity distribution in a head CT scan is thoroughly studied.     
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3.3.1. CT image intensity distribution 

CT images are acquired using x-ray exposure. Absorption amount of x-ray 
is different for different tissues. The complete range i.e. from no absorption to 

complete absorption is presented using Hounsfield Unit (HU) scale where air is 
presented by -1000 HU, water as 0 HU and bone has the highest value from 
several hundred to +3000 HU. 

This HU scale is designed using linear transformation of actual 
attenuation coefficient. The transformation computation is performed by following 
equation,  

         

where    presents attenuation coefficient of matter called X, µair and      

are attenuation coefficient of air and water. Matter with attenuation coefficient 

less than water will return negative Hounsfield unit. 

HU is mapped to the intensity range [0,255] to display gray scale image 
digitally. Depending on practitioners’ requirement a range of HU is emphasized 

and rest is suppressed to the nearest boundary value. This method is called 
windowing, where a window is defined using two parameters window width (ww) 
and window level (wl). Window width is the complete length of HU which is 

considered to be mapped into gray level. Window level is the mid-HU value of that 
width.  

All types of hemorrhage introduce bright homogeneous spots in the head 
CT image. Depending on the amount of collected blood, the brightness slightly 
varies. Denser layers offer brighter spot in image. On the other hand, the 
brightness of hemorrhage is always significantly lower than that of bone or skull, 
but higher than brain matter. To detect hemorrhage, brain window scanning mode 
is used. In this mode, default wl value is 40 HU [137]. Value of ww is different (100 
or 400) for different datasets in use.  

Figure 3.2(a) presents the gradual change in brain image pixels’ intensity 
i.e. HU values [138, 139] with the change in density of different parts of brain. The 
example of a head CT image is shown in figure 3.2(b). The skull and headrest are 
presented by the brightest part of the image. As observed, hemorrhage patches are 
significantly brighter than the surrounding, but have satisfactorily lower intensity 
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than skull. The transition from one part to another part offers gradual change in 
pixel intensity making the boarder less significant.

(a) (b) 
Figure 3.2: (a) Intensity varies with density in CT image (b) CT image 

3.3.2. Pre-processing of data 

Before segmentation, pre-processing of CT images is important to increase 
sensitivity and accuracy of a CAD system. As discussed in previous chapter, any 
inclusion of unwanted terminal images having only skull or scalp needs to be 
removed. For any CT image, the background and skull which offers no clinical 
information are respectively the darkest and brightest part of the image. The 
intensity value remains mostly zero for background. Skull as a whole, different 
external parts like headrest and disorder like calcification offer very high intensity 
region in the image. These areas contain no information about hemorrhage. Any 
presence of soft tissue oedema outside the skull gets imaged during scan. These 
parts introduce noise in segmentation and thresholding process due to its 
matching intensity level with brain matters and sometimes with hemorrhage. 
Removal of all these non-relevant parts from image is required before processing 
the data for hemorrhage segmentation.  

As already discussed, each digital image is basically a 2D numeric array 

which can readily be used for mathematical computation. Removal of high volume 
background and high intensity skull reduces load in further data computation. For 
each image, designed CAD dynamically selects threshold for skull from its 

intensity population curve. Histogram shown in figure 3.3(a) has a large peak at 
lower intensity level which represents the large number of low intensity 
information i.e. background and another large peak near maximum available 

intensity representing the skull. None of these two areas contains any disease 
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relevant information. The 3rd highest peak in histogram represents the population 
of brain matter. 

3.3.2.1. Skull thresholding 

Each image is read separately as an independent image. To remove the 
skull from it, threshold intensity value is calculated from image histogram. In 

clinical CT, skull lays in very high-intensity level where no disease other than 
calcification is present and the maximum available intensity is guaranteed to 
belong to the skull. In the histogram, shown in figure 3.3 (b), the highest peak 

belongs to the skull and the second highest peak represents the brain when the 
background population of figure 3.2(b) is neglected. An easy but effective method is 
proposed to locate the cut-off intensity automatically between these two peaks.  

The method is a knowledge driven thresholding method. Observation of 
histograms of large number of head CT scan data yields two important facts,  

i) The population of intensity becomes almost even before high volume skull 
intensity and 

ii) In any 8-bit gray CT image, major skull information is confined within the 
highest 1/3rd intensity span of available intensity range of the image. 

Using these two known information, a thresholding algorithm is developed. 
Maximum and minimum available intensity in a dataset is considered to find the 
target span. This span is used as a global reference for all images in the respective 

dataset.  
In the population curve, absolute slope of each intensity level with respect 

to the next level is calculated. The most even part nearest to the high volume skull 

is considered as the boundary between brain and skull. Intensity value that offers 
minimum value of function f(x), described in equation 3.1, denotes the threshold 
for skull. f(x) is a function of slope weighted by a distance cost factor, d, where the 

distance is the difference between the highest available intensity and intensity of 
corresponding slope. 

 ( )   
  

  
                                                                                              (   ) 

∂P and ∂i presents deviation in population and intensity respectively at the 
point of measurement;  
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at ith instant,    |       |        |       | 

The resulted threshold value along with span is plotted on the graph 
shown in figure 3.3(c). Threshold point is calculated for each image of a dataset 
separately. Image without skull and the removed skull image of original image 

shown in figure 3.2(b) are shown in figure 3.3(d)-(e). The flowchart of automatic 
threshold selection process is presented in figure 3.4. 

    (a) (b) 

   (c)  

    (d)                           (e)      
Figure 3.3: (a) Intensity histogram, (b) Background neglected histogram, (c) Histogram with upper 1/3rd span 
and skull threshold, (d) Skull removed image, (e) Removed skull part (binary image)  

3.3.2.1. Dataset cleaning 

After removing skull from the image dataset, a cleaning operation is 

performed to optimise the dataset. Skull image of each image data is generated as 
a by-product in the previous step of thresholding. Brain is an encapsulated portion 
within the skull. It can’t be present without a skull; neither can be present in an 
image where skull offers no vacancy within it. Those images need no inspection for 

hemorrhage and hence are removed from the dataset. In the skull images, images 
with no skull information are identified and removed first. Image data without 
skull is shown in figure 3.5 (a). 

The pores are then counted in the skull images. If any image returns no 
pore, that image is also removed from dataset. Head images without any pore are 
shown in figure 3.5 (b) to (d).  

Upper  1/3  intensity 

  range  cutoff 

Skull  threshold 

Cut-off intensity 
between two peaks 
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Figure 3.4: Skull threshold finding flowchart   

3.3.3. Master image selection 

Skull images have great potential in master image identification. These 

images mainly contain the skull part surrounding the brain matter along with 
some low volume higher intensity information located outside the brain. To create 
a mask for segmentation, the objective is selecting the image with maximum brain 

area as the master image. Anatomically brain matter is the highly compact largest 
connected part in a head image. In a multi-slice dataset, produced by end to end 
head scan, nasal information gets included in some images where brain area is low 
and divided into lobes. To select master image the image having largest compact 

brain area in the dataset needs to be identified.  
Skull images created from an end to end head scan are considered to study 

the brain matter availability pattern in CT images. At ventricle level, CT images 
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offer largest continuous brain area for inspection. Skull pattern changes 
significantly, from base of skull i.e. nasal area to ventricle level. Around nasal 
area, bony structures other than the skull are also imaged during scan. Those 

bones create several porous regions in the image dividing the brain into more than 
one part as shown in figure 3.6. The total brain area is also low here. On the 
contrary, a single large brain area is available inside the elliptical skull near brain 

ventricular region. A query runs to find largest pore area from each image. The 
image having highest value of largest pore area is selected as master image of the 
dataset under test.   

        (a)                     (b)                  (c)                  (d) 
Figure 3.5: Head images with no brain information 

Figure 3.6: Skull after thresholding a nasal image  

3.3.4. Arranging images 

The sequence of images in the dataset under test is unknown. For an end 
to end sequential scan, information pattern in images, changes gradually from low 
to high and back to low. Prior knowledge of this pattern is very helpful for high 
accuracy segmentation. But, as already discussed in introduction section of 
chapter 2, many datasets includes one or more images which are rescanned after 
the end to end sequential scan to satisfy diagnosis requirement [63]. Sometimes 
one region of head is scanned first and then adjacent areas are scanned for more 
investigation. So the saved images may or may not be present in order of their 
changing information pattern. On the other hand, the method proposed in this 
thesis, offers the best result when the images in a dataset are in the expected scan 
sequence. To overcome this problem of unexpected scan sequence, all the images 
are rearranged automatically in the anatomical order using stereo matching. 
Stereo matching is popularly used to identify moving objects within an image 
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frame [140]. A sequentially arranged head CT dataset can be conceptualized as a 
collection of footprints of an image, some components of which have travelled a 
distance gradually. Hence, each image can be considered as a frame of the video 
formed by the entire dataset. Lowest disparity presents minimum transition i.e. 
nearest image.  The test is performed on skull removed dataset and the image 
with lowest IPF from the dataset is selected as seed image. The image from the 
dataset having highest stereo match with seed image is then selected as the next 
image. Now the newly selected image is considered as seed image for the next 
search. This checking procedure runs for each image until all the images are 
arranged.  The program flow is demonstrated in figure 3.7.  Out of order dataset is 
processed using this method and the result is discussed with image in result 
section.  

Figure 3.7: Arranging images in expected sequence 

3.3.5. Automatic Seed point definition 

The selected master image is taken as the reference to create the mask for 

brain segmentation. As it has the largest area encapsulated by skull, significantly 
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large portion of the non-zero pixels’ area is occupied by brain matter in original 
image. For simplification of operation, a binary equivalent of master image is 
created from skull image. Two distinct levels of the resultant binary image are – 

below skull threshold and equal to or above the skull threshold. All pixels having 
intensity below the threshold were already suppressed to 0 during skull 
extraction. These pixels create level 0 of the binary image. Rest of the pixels are 

promoted to 255 to create level 1. Figure 3.8 is showing that brain is completely 
encircled by the white thick boundary represented by the skull of the original 
image. Region growing technique with a seed point anywhere within the skull 

boundary can accurately identify the area required to create the mask for brain 
segmentation.  

To make the proposed system completely automatic, instead of 
interactive seed point selection, a computational seed point finding method 
is used. An algorithm is developed to locate the center of non-zero pixel 
distribution of the master image by identifying distribution midlines across 
rows (i) and columns (j). The crossing point of two midlines is considered as 
seed point when it has non-zero intensity level in original image. Otherwise, the 
closest non-zero pixel location is considered as the seed point.  
Coordinates of Seed point S(i,j) are  

Figure 3.8: Binary images of different reference images 

3.3.6. Mask Area Definition 

Region growing technique is applied on binary equivalent image to define 

the mask. High pixel intensity i.e. 255 is taken as stop criterion. To define the 
mask, the complete image must be divided into two regions – brain and the rest. 
Two different algorithms are attempted to grow the region around seed point. In 
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one algorithm, all similar intensity neighbors of seed point are located and 
selected. Then for each selected point the search repeats. The algorithm offers 
100% accuracy in segmentation at a cost of long execution time.  

Figure 3.9: Splitting an image into 4 sub-images and seed point of each sub-image for region growing 
technique  

In the second algorithm, a complete image is divided into four sub-images 
keeping seed point as the origin of splitting axes, as shown in figure 3.9. Region 

growing is done in each sub-image separately and the resultant images are merged 
back into one image. When the image is divided into four, each one is treated as an 
independent image by the software. To implement region growing technique, local 

seed points are required for each sub-images. A non-zero pixel which is nearest to 
the global seed point is selected through the algorithm to act as a local seed point. 
The seed point location details is given in appendix C. Search query starts from 

local seed point, moves towards the extreme end and terminates upon meeting 
stop criterion. In this algorithm, the query runs in only one direction at a time. It 
selects all same intensity level pixels, until stop criteria satisfied. After region 

growing, sub-images are merged and converted into the mask. This ‘split and grow’ 
algorithm works much faster than the above-discussed neighbor search algorithm. 
Created mask is considered as the inner mask (IM) because it defines the area 

inside the skull. 
Though inner mask defines largest brain matter in the dataset, if it is used 

as the global mask for segmentation of entire dataset, in many images, unwanted 

information will be segmented as brain matter, as shown in figure 3.10 (a) and (b). 
Images having complex pattern due to the inclusion of nasal area, sinuses, eye, 
optical canal etc. offer poor segmentation result by including out of the skull low 

intensity areas. Figure 3.10(b) is a terminal CT image taken from top of the head. 
It has very low brain area with respect to inner mask. Direct application of inner 
mask thus included unwanted non-intracranial information in segmented image. 

From nasal level to ventricle level, brain shape and size changes fast in a non-
uniform pattern. As discussed in previous section, brain in a CT scan image of 
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nasal area gets divided into lobes and then gradually becomes very small. From 
ventricle level to top of the head, not the brain shape but the size changes 
significantly. So, it has been observed that inner mask works accurately only on 

images having brain of almost same size and shape of the mask as shown in figure 
3.10 (c) and (d).To get rid of this shape and size problem, the segmentation 
algorithm is enhanced and modified. 

The arranged dataset is now divided into two parts keeping master image 
at the center. Two adjacent images of master image, one from preceding part and 
another from following part, are segmented using the inner mask definition. After 

segmentation, a search runs to find and include the additional connected area of 
the similar intensity level. The final segmented area of one image is considered as 
inner mask definition for next adjacent image of that segmented image. This mask 

propagation technique offers significant improvement in segmentation result.  
Independent use of inner mask with propagation technique increases 

inaccuracy in the nasal images by including all connected non-intracranial sinus 

areas as shown in figure 3.10 (e).  
To put some restrictions over such inclusion another mask is proposed. In 

this mask definition, the skull area of the master image is included. Skull around 

inner mask is considered to get larger mask which is referred as the outer mask 
(UM) in this thesis. Mathematically it is presented below,

Outer mask= inner mask + skull              

This mask is defined used as global mask for all images of corresponding 
dataset. Final masking is proposed using two steps. Outer mask is applied on each 

skull removed image of the dataset to remove any information located outside the 
skull location of the master image. It reduces the area of the non-intracranial part 
of complex nasal images as shown in figure 3.10 (f). Resultant images are used for 

further segmentation by inner mask propagation.  

       (a)                          (b)                          (c)             (d)       (e)        (f) 
Figure 3.10:  Brain segmented by inner masking only   
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3.4. Result 

Proposed algorithms are coded using LabVIEW (Laboratory Virtual 
Instrumentation Engineering Workbench) programming platform and tested on 

entire database of head CT scan. In this complete collection, 16 datasets are of 
normal subjects, 27 are having hemorrhage and one dataset has very low scan 
area. The results of proposed segmentation method are discussed here step by step 

following the sequence of the program as shown in the flowchart in figure 3.1. 
Results of complete analysis of all dataset and two dataset without cleaning are 
collated for presentation.  

3.4.1 Skull thresholding and dataset cleaning 

The threshold value is calculated separately for each image of a dataset by 
CAD to remove skull. Some thresholded images of different dataset are shown in 

figure 3.11. The result depicts that brain mostly remains unaffected by this 
thresholding. Only calcification is removed in figure 3.11 (b) and in some 
hemorrhage affected images, small sprinkled holes are introduced in hemorrhage 

part as shown in figure 3.11(c) and (d).  
Following the skull thresholding, dataset is cleaned by removing images 

without skull and skull without pore. Images with no brain information are 
removed at this stage and cleaned dataset is processed for further analysis. 
Removed images of a dataset which is shown in figure 3.12 (a) are shown in figure 
3.12 (b).  

             (a)                  (b)            (c)       (d) 
Figure 3.11: CT scan after skull thresholding 
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 (a) (b)  

(c)                    (d) 
Figure 3.12: (a) Image dataset with master image, (b) Removed images during cleaning (c) Dataset after 
arranging the images with master image, (d) The graph of change in size before and after arranging the 
images 

3.4.2 Master image selection 

From the skull removed images, master image is selected by computing the 

highest rank of largest available pore area in the images of the dataset. Proposed 
CAD has successfully selected master image irrespective of its location and 
sequence in the dataset. One result is presented in figure 3.12 (a). Selected master 

image is highlighted by a boarder in the figure.  
Though normally head CT scanning is done in sequence from one end to 

another end of the head, this dataset has images in abnormal sequence. The 
selection of middle image as the master image  [141] is not wise here as the middle 
image i.e. 12th image has no brain information. Proposed method offers an effective 
solution to this problem and also removes such unwanted images from dataset. 
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3.4.3 Arranging images 

Images, shown in figure 3.12(a), are not in the expected order. The first 
image, as well as the last one, is presenting ventricle level images of a head scan 

dataset. The change in brain is gradual negative in 1st thirteen images and then 
gradual positive for the rest. But the change between 12th and 13th image has no 
similarity. The master image selected by CAD is the 3rd last in the series. If 

masking is done in this sequence, no brain will be extracted from first 11 images 
as the 12th image has no brain. Successive propagation will turn the inner mask 
area to zero at 12th image.  

After arranging images, using proposed algorithm, images are placed in 
expected order as shown in figure 3.12(c). The change in size of images before and 
after arranging is compared in the graph shown in figure 3.12(d). The master 

image is also at expected location in the arranged dataset. 

    (a)                                    (b)         
  Figure 3.13: Seed point location marked by ' ' 

(a)       (b)     (c)      (d) 

 Figure 3.14:  (a)-(b) Inner mask and outer mask of figure 13(a), (c)-(d) Inner mask and outer mask of figure 
13(b) respectively         
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Figure 3.15: Segmented brain for figure 12(a) dataset 

  Figure 3.16:  (a) Holes created during skull removal, (b) Restoration result 

3.4.4 Seed point & Mask 

Center of splitting axes i.e. the seed point is the median of row and column 

of the master image. In figure 3.13, seed points are marked as ‘black cross marks’ 
on reference images of two different datasets. In every case, it is successfully 
placed within the intracranial location. The success rate is 100% for all datasets 
under examination. 

The binary image is formed from the reference image by converting any 
value below the threshold to zero and rest of the values to 255. Then the binary 
image is split into four sub-images by the perpendicular axes originated from seed 

point (Δn, Δm). First, the image is divided into two parts by x-axis at x=Δn i.e. one 
part contains 0 to Δn rows, another from (Δn+1) to n and then each part divided 
again by y-axis at Δm, splitting each from 0 to Δm and (Δm+1) to m when the 

complete image size is nXm. Region growing technique by pixel matching works 
accurately to define intracranial area (IM) and skull included intracranial area 
(UM). Created inner mask and outer mask from master images which are shown 

in figure 3.13 (a)-(b) are presented respectively in figure 3.14 (a)-(d). 
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3.4.5 Segmentation 

Figure 3.15 presents segmented brains, after two level masking and doing 
adjacent area search, of the dataset shown in figure 3.12(a). Complete segmented 

dataset presents the method’s performance quality. All those images which have 
majorly brain parts, offer very clean segmentation. Images beyond any null brain 
image are also segmented accurately. Some nasal images are offering larger area 

than actual brain area as lower intensity areas around the skull and facial bones 
get included. The inclusion of such unwanted parts happens during an adjacent 
area search. These areas get included due to their connectivity with brain through 

paranasal sinus. 
After segmentation, information restoration within brain can be done as 

shown in figure 3.16. The holes created within hemorrhage during segmentation 

process can be filled with original information automatically by CAD. Location 
information of the holes are extracted using the algorithm described in section C of 
Appendix B. A mask is created to retrieve the intensity information from the 

respective locations of the original image. Collected information is added to the 
segmented image. The drawback of restoration is the chance of inclusion of 
calcification, if any. So, for hemorrhage segmentation we have avoided this 

restoration process.  

3.5. Result analysis 

Each image in a dataset is segmented to remove most of the unwanted 
information from it. Performance analysis of the proposed method is done in terms 

of accuracy, sensitivity, specificity, error, PPV (positive predictive value), NPV 
(negative predictive value) using the values of true positive (TP), false positive 
(FP), false negative (FN), true negative (TN). TP and TN present correct 

segmentation (CS) as per clinical ground truth. When an image with brain 
information returns brain in segmentation and an image without brain returns 
null segmentation the segmentation results are considered as true positive and 

true negative respectively. TN in a dataset is the count of images which contains 
no intracranial information. Such images are effectively removed during cleaning 
operation. The inclusion of external tissue parts in the nasal area contributes in 

FP. Non-zero segmented values for original images having no intracranial 
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information is also addressed as FP. In first case, segmented images having nasal 
tissue area also contribute to TP count because of having segmented brain into it. 
Such images thus get membership of two classes, FP and TP and create confusion 

in result analysis. Hence, another term absolute FP (AbsFP) is introduced to 
identify segmented images having non-brain non-zero values only. No actual brain 
will be available in such images. The segmented images containing actual brain 

information will be classified as TP even when non-brain peripheral information is 
included. The conceptual presentation of TP, AbsFP, TN and FN is shown 
pictorially in table 3.1. The overall segmentation performance is calculated with 

respect to the volume of a dataset i.e. the total number of images.  
Image  with  

brain 

Image  without    

brain 

Segmentation  

have  brain 
TP AbsFP 

Segmentation  

without  brain 
FN TN 

Table 3.1: Pictorial presentation of TP, AbsFP, FN, TN 
For a dataset of n number of images the analysis parameters of confusion 

matrix are extracted using the equations stated in chapter 1. The term FP is 
replaced by AbsFP as follows:  

              

       
        

 
      

            
  

        

                          
  

        

The proposed method has offered an average accuracy of 98.17%. No false 
negative (FN) in segmentation turns the sensitivity into 1 for this method. For the 
dataset having no image without brain, TN turns into zero. The specificity and 
NPV are not calculated for such dataset. The analysis results of 27 hemorrhage 

dataset and one additional abnormally scanned dataset are presented in table 3.2 
(a) and the same of 16 normal image dataset are presented in table 3.2 (b). 
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(number of images) 

1 22 0 0 2 24 24 1 1 1 1 0 100 

2 28 0 1 5 34 33 1 0.833 0.966 1 2.941 97.059 

3 28 0 0 0 28 28 1 -- 1 -- 0 100 

4 21 0 1 6 28 27 1 0.857 0.955 1 3.571 96.429 

5 32 0 0 0 32 32 1 -- 1 -- 0 100 

6 25 0 0 0 25 25 1 -- 1 -- 0 100 

7 23 0 0 3 26 26 1 1 1 1 0 100 

8 21 0 1 4 26 25 1 0.8 0.955 1 3.846 96.154 

9 19 0 1 6 26 25 1 0.857 0.95 1 3.846 96.154 

10 24 0 0 2 26 26 1 1 1 1 0 100 

11 23 0 1 2 26 25 1 0.667 0.958 1 3.846 96.154 

12 21 0 1 3 25 24 1 0.75 0.955 1 4 96 

13 25 0 0 0 25 25 1 -- 1 -- 0 100 

14 24 0 1 1 26 25 1 0.5 0.96 1 3.846 96.154 

15 24 0 1 1 26 25 1 0.5 0.96 1 3.846 96.154 

16 23 0 1 2 26 25 1 0.667 0.958 1 3.846 96.154 

17 19 0 1 3 23 22 1 0.75 0.95 1 4.348 95.652 

18 24 0 0 0 24 24 1 -- 1 -- 0 100 

19 23 0 0 3 26 26 1 1 1 1 0 100 

20 26 0 0 0 26 26 1 -- 1 -- 0 100 

21 26 0 0 0 26 26 1 -- 1 -- 0 100 

22 26 0 0 0 26 26 1 -- 1 -- 0 100 

23 23 0 0 0 23 23 1 -- 1 -- 0 100 

24 26 0 0 0 26 26 1 -- 1 -- 0 100 

25 26 0 0 0 26 26 1 -- 1 -- 0 100 

26 26 0 0 0 26 26 1 -- 1 -- 0 100 

27-a 2 0 3 7 12 9 1 0.7 0.4 1 25 75 

27-b 2 0 0 10 12 12 1 1 1 1 0 100 

28-a 24 0 2 0 26 24 1 -- 0.923 -- 7.692 92.308 

28-b 24 0 0 2 26 26 1 1 1 1 0 100 

Table 3.2 (a):  Analysis of segmentation performance of proposed method on patients’ dataset  
The effect of cleaning is analysed by repeating segmentation of two dataset 

without performing cleaning operation. Serial no. 27-a is showing very poor 
performance due to presence of abnormal scan images in the dataset shown in 

figure 3.17(a). In 27-b, the segmentation of same dataset is presented with 
cleaning. The performance changes drastically. 
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(number of images) 

1 23 0 1 1 25 24 1 0.5 0.958 1 4 96 

2 22 0 2 2 26 24 1 0.5 0.917 1 7.692 92.308 

3 20 0 1 5 26 25 1 0.833 0.952 1 3.846 96.154 

4 22 0 0 4 26 26 1 1 1 1 0 100 

5 22 0 2 2 26 24 1 0.500 0.917 1 7.692 92.308 

6 22 0 2 2 26 24 1 0.500 0.917 1 7.692 92.308 

7 20 0 1 5 26 25 1 0.833 0.952 1 3.846 96.154 

8 22 0 0 4 26 26 1 1 1 1 0 100 

9 24 0 0 0 24 24 1 -- 1 -- 0 100 

10 26 0 0 0 26 26 1 -- 1 -- 0 100 

11 26 0 0 0 26 26 1 -- 1 -- 0 100 

12 21 0 1 4 26 25 1 0.800 0.955 1 3.846 96.154 

13 23 0 2 1 26 24 1 0.333 0.920 1 7.692 92.308 

14 26 0 0 0 26 26 1 -- 1 -- 0 100 

15 26 0 0 0 26 26 1 -- 1 -- 0 100 

16 26 0 0 0 26 26 1 -- 1 -- 0 100 

Table 3.2 (b):  Analysis of segmentation performance of proposed method on normal dataset 

Serial 
no. Work of Automation Masking 

technique Sensitivity 

1 Hu, Q [79] Full Inner mask 
propagation <1 [2.03% FN] 

2 Chan, T [28] Full 
Largest area 

selection 

Not Reported 
[test performed on our 
database; sensitivity 

<1; average sensitivity 
is approx. 0.94] 3 Shahangian, B [24] Full 

4 Reported work Full 
Outer mask + 

inner mask 
propagation 

1 

Table 3.3: Comparison of segmentation sensitivity 
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(a) 

(b) 
Figure 3.17:  Dataset used to test potential of cleaning operation  

Original 

image 

Skulll 

removed 

Methods 

Inner mask 
propagation 

Largest area 

mask method 

Proposed 

method 
Ground truth 

Figure 3.18: Segmented brain images from different method 

Dataset 28, presented in figure 3.17(b), is showing comparatively lower 

accuracy due to higher AbsFP value contributed by soft tissues in no-intracranial 



73 

images. The result analysis is presented in 28-a of table 3.2 (a). When those 
images get removed from dataset by cleaning operation, the proposed method 
turns the accuracy into 100% as shown in 28-b in the table.   

Segmentation results are investigated by practitioners for feedback. It has 
been confirmed that the segmentation results of proposed method are clinically 
acceptable because of its higher sensitivity. The sensitivity of this work is also 

compared with some previously reported potential works to understand its 
strength. The comparison is shown in table 3.3. For sl. no. 2 and 3, the sensitivity 
drops due to wrong area selection mainly in nasal area scan images as shown in 

figure 3.18. 

3.6. Conclusion 

The proposed method is fast, reliable and robust. It can segment any given 
dataset of CT images automatically with no false negative. In contrast to manual 
selection [31], an automatic seed point selection method is proposed.  Fast and 
simple region growing technique is used for segmentation to keep the CAD fast. 
Largest pore area search methodology offers the creation of a most suitable mask 
in any dataset. Arranging the images in the expected order significantly increases 
the accuracy of CAD. Proposed continuous propagation and modification method of 
an inner mask, results into an adaptive masking of higher efficiency. The outer 
mask helps to eliminate headrest, embedded patient information and some 
peripheral parts from nasal images. 

During speed test, a complete dataset of 34 images got segmented in less 
than 11 seconds in a computer having a 64-bit operating system, 8 GB RAM and 
processor of Intel® Core™ i7-3770 CPU @ 3.40GHz. Because of having guaranteed 
‘0’ FN, there is 0% chance of missing brain in any image. During segmentation 
enhancement, averaging and noise reduction operations which can modify pixel 
values of an image are avoided intentionally to keep the segmented output 
unaltered with respect to the original images, to offer no change or removal of 
diagnostic information. 

Along with hemorrhage, other brain diseases which offer visible intensity 
change in head CT scan can be detected from these segmented brains as the 

complete intracranial matter is segmented successfully. The only issue is the 
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inclusion of non-intracranial information in few nasal images. This will have less 
effect during hemorrhage detection when the entire dataset will be considered. 
Once hemorrhage location will be identified in an image, a query based on disease 

location and other characteristic information will run through adjacent images. It 
will narrow down the search area and will not be much affected by the inclusion of 
small non-intracranial parts during brain segmentation. This hemorrhage 

segmentation technique is discussed in details in the next chapter.  
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Chapter 4 

Hemorrhage Segmentation 

Overview 

This chapter proposes an intelligent knowledge driven method to segment 

hemorrhage from already segmented brain matter images, using the information 

of pixel intensity population and distribution. A mathematical model is designed 

to identify the unexpected variation in pixel intensity population in a brain CT 

image having hemorrhage. Complete batch of multi-slice CT scan images is taken 

as the input. Fusion of brain anatomy knowledge with the intensity distribution 

information of CT brain image, results in an unique solution for hemorrhage 

segmentation. To test the robustness, segmentation of different type of 

hemorrhage of different patients, is done using the proposed method. The results 

are accepted and validated by radiology experts. A fully automatic and fast CAD is 

designed, using the proposed method, to segment hemorrhage automatically in 

the absence of an expert, to assist the practioners for further inspection of 

hemorrhage. Competence of the CAD is tested against most used established 

clustering methods to demonstrate its potential. 
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4.1. Introduction 

As per radiology, 'hemorrhage' in brain CT images, is an unexpected 
bright patch which is made of local collection of high intensity pixels within an 
average intensity brain matter region. Pathologically, inclusion of hemorrhage 
patch happens due to local blood collection in central nervous system or within 
meninges below the skull. In case of rupture in blood vessels, blood comes out of 
the vessel and accumulates in the local tissue area.  With increase in the volume, 
leaked blood creates space in the neighborhood region and spreads gradually. 
Blood has higher x-ray absorption capacity than soft tissues. The accumulated 
blood, hence, absorbs higher amount of incident rays, than surrounding tissues 
when subjected under x-ray CT scan. As a result, in the CT image, a brighter spot 
is seen within the gray region as depicted in figure 4.1. This difference in pixel 
intensity is considered as principal feature to locate hemorrhage in a brain CT 
image.   

Figure 4.1: Brain hemorrhage from pathology to radiology 

As already discussed in chapter 2, CT machine can capture large 

number of images during head scan. Manual identification of images which are 
affected by hemorrhage is hectic and time consuming for the practitioner.   

Hemorrhage identification must be preceded by identification of 
dataset - as normal or hemorrhage, to minimise unnecessary time investment. 
Only the hemorrhage affected dataset will be considered for diagnosis and 
treatment. Researchers proposed different methods to classify the diseased images 
from the dataset automatically using computer‟s artificial intelligence and 
computational power. S. A. Kabara et al [142] extracted and compared three 
texture features, variance, correlation and sum average from the normalized 
image

Scanning Brain 

Hemorrhage 

Pathology 

X-ray 

Brain 
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 image slices. Using set of values of these three features, they classified most of the 
image as normal or abnormal, but few slices left with no clear decision. The use of 
tree classification has made this process simple, fast, robust and efficient. M. 
Chawla [16] approach starts with image enhancement, detection of mid-line and 
separation of symmetric halves of the brain through mid-line. Absolute feature 
values are not considered for classification in this work. Comparative status is 
used to take decision of classification. Histograms of both the halves are compared 
for primary stage classification. Further modification in classes is done by 
comparing corresponding energy values, after five levels wavelet decomposition of 
histogram of each half. This process has demonstrated a good accuracy. A simple 
but effective modification in normal and diseased slice classification is proposed by 
A. R. Fallahi [143]. Before doing classification using texture features, a 
morphological operation is applied on each slice. It offers a smoothing along with 
filling of small holes and removal of tiny unwanted isolated regions. M. M. Kyaw 
[144] proposed a method where detection accuracy is improved through 
elimination of non-diseased part of the image. After removing artifacts and skull, 
each image slice is divided into four parts. Mean and standard deviation of each 
part is calculated and compared for easy elimination of the normal parts. In a 
more recent paper, A. H. Ali et al [145] has demonstrated the power of first order 
texture features for identification of abnormal images. Each feature is compared 
and its relative value for abnormal images is discussed. 

We have proposed a simple texture feature based classifier, for labeling 
data as normal or identify as a hemorrhage, before searching and finalizing the 
location of hemorrhage. Texture feature extraction is done from segmented brain 

images. The method is discussed in details in the respective section of this chapter. 
There are few CAD systems already reported for hemorrhage segmentation 

as discussed in chapter 1. But room for more research is still open [73] due to lack 
of accuracy in the segmentation of reported systems, complex coding, difficulties in 
integration with real-time machines, less user-friendliness etc.

In this chapter, a simple, fast and robust CAD is proposed for hemorrhage 

segmentation from intracranial brain region. Outline of CAD process is presented 
in figure 4.2. The intensity and density of the hemorrhage pixels within brain CT 
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images are explored to locate and segment out hemorrhage for further diagnostic 
requirements. 

Figure 4.2: CAD process flow 

4.2. Methodology 

Already processed datasets of multi-slice brain CT images are taken for 
hemorrhage detection. This dataset has large number of pixels at background 
intensity level because of conversion of all non-intracranial information to 

background. The population curve of image shown in figure 4.3(b) is plotted in 
figure 4.3(a). 1st peak which is the largest one in this population curve represents 
the background. This peak is detected by CAD. In all clinical brain CT images, 

there is a sudden change in population after this peak. This change offers a very 
high slope. In between 1st highest peak and 2nd highest peak, the highest 
population deviation with respect to 1st peak is calculated and used to determine 

the background intensity threshold as shown in figure 4.3(c). The resultant image 
output is shown in figure 4.3(d). In short, the threshold value is the intensity at 
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which the intensity population deviation from the highest peak, created by 
background, is maximum. This value must lie between two highest population 
peaks of intensity histogram of a skull removed brain image. It has been 

considered that all intensity values other than the background carry clinical brain 
information. In the proposed work, hemorrhage is detected from these background 
removed pre-processed dataset by image analysis. 

 (a)  (b) 

     (c)           (d)  

Figure 4.3(a): Population of intensity with and without background (b) Image under test (c) Background 
threshold (d) Background removed image 

4.2.1. Segmentation of hemorrhage by population histogram 

To segment hemorrhage from brain CT images, thresholding technique is 
used to find the target pixel cluster. We have considered two clusters – brain and 

hemorrhage. Cut-off between these two clusters i.e. threshold for hemorrhage is 
computed from image intensity population i.e. histogram analysis. 

Pixel distribution of CT brain image is analyzed, based on count of pixels 

at different intensity level. Figure 4.4 is presenting histogram of three normal 
brain CT images after removing skull and background. These brain images are 
acquired from three different subjects. Depending upon the actual size of a CT 

image, amplitude and position of maximum population can vary; but the pattern of 
population distribution remains unaltered. The maximum population due to brain 
matter happens near the middle of the complete intensity range. At higher 

Population 

Threshold 

Population without 

background 
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intensity range the population reduces gradually and becomes very low near the 
end. Similar plots of patients‟ data are shown in figure 4.5. It has unchanged 
pattern for the initial part till the decreasing slope of highest peak, but a small 

bell shaped new peak is introduced due to hemorrhage which increases population 
in high intensity range. Threshold for hemorrhage lies near the end of downward 
slope of highest population peak and before the upward slope of newly introduced 

population peak. This work has proposed dynamic threshold finding to identify 
hemorrhage.  

Expected population (eP) of an instance, is the statistically calculated 

population prediction from past population values. The value is calculated by 
taking moving average of available past, i.e. the lower intensity levels‟ frequency 
information for each instance as described in equation 4.1. Wide change in 

population pattern occurs twice, creating greater slopes around the highest 
population peak. These changes differ significantly from the expected population 
change, depicted from the history of population of previous intensities.  

Expected population 

       
∑    
 

 (   )

where value for (i+1)th intensity level is calculated from all n past intensity 
level [0 to i] values. 

The actual population and the expected population are compared in figure 

4.6 (a) for CT image shown in figure 4.5(2). Actual population reaches the highest 
peak due to large no of pixels of brain matter. The expected curve does not follow 
the actual curve towards that peak. It increases its value slowly and reaches 
highest value at an intensity which is higher than the intensity at which actual 

population reaches highest value. After that intensity value, expected population 
decreases constantly but with very poor slope. It then meets the actual population 
value and offers zero deviation. The value of expected population remains higher 

than actual population beyond the zero deviation point, due to very high peak 
value of actual population.  
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Figure 4.4: Intensity population distribution of image 1, 2, 3 

Figure 4.5: Intensity population for images with hemorrhage  

  (a) 

 (b)          (c)  
Figure 4.6: (a) PDR and threshold (b) Segmented image (c) After morphological operation 

A deviation curve, calculated using equation 4.2, is plotted to present the 
difference between actual and expected population. It is shown as a dotted line in 

figure 4.6 (a). Deviation reduces to minimum value as actual value approaches to 

1 2 3 

1 
2 

Threshold 

Actual population  
PDR curve 

Expected population  

Population deviation  
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expected population. Beyond that intensity, deviation increases due to continuous 
fall of actual population and very low change in expected population.  
              |      |                                                                                                                    (   )

This calculated deviation curve presents the overflow or vacancy in pixel 

availability in actual population with respect to the predicted or expected 
population. Higher actual population symbolizes overflow, due to higher pixel 
availability than expected population, and the reverse represents vacancy due to 

deficiency in pixel population. The intensity value at which actual population 
meets expected population is the saturation point. Here the pixel availability of 
actual population is satisfied with the expected value. The situation becomes 

critical where deviation becomes higher than actual population. This happens due 
to very low strength of actual population with respect to expected population. That 
switching point on population graph is mentioned as upset point in this work. This 

upset point intensity is considered as threshold for hemorrhage in a brain CT scan. 
Mathematically that threshold intensity value is calculated by taking 

Population to Deviation Ratio (PDR) stated in equation 4.3. Actual population, P, 

is divided by deviation, D, which is the difference between actual population value 
and its respective expected population value. At the upset point, PDR becomes less 
than 1, as the available frequency is lower than the calculated deviation.  

Population to deviation ratio, 

Where P presents the population or histogram data and D presents the 

deviation curve. Deviation curve D can be calculated as follows –  

       |    | 

   |      | 

The nature of    is dominated by the factor                   

         ,            ,            . As absolute of denominator is taken, 

PDR will remain positive non-zero for any other conditions than eP=P. 

At upset point, PDR will switch from PDR ≥1 to PDR<1 as D > P at that 
point. For PDR<1 the equation can be written as  

P
D

PDR ൌ 	 																																																																																									ሺ4.3ሻ 

          D ൌ |P െ eP| 
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So the threshold for hemorrhage in a brain CT image is that intensity at 
which expected population becomes higher than twice of its actual population.  

As per anatomy, hemorrhage intensity is always higher than brain matter 
intensity. So, to reduce computational load and to avoid any unexpected error, the 
threshold search is limited in the intensity region higher than the highest - peak 

in the background and skull removed histogram. After highest peak in the 
population curve, the 1st upset point intensity is taken as threshold for 
hemorrhage. PDR, along with the actual population, expected population and 

deviation curves are shown in figure 4.6 (a) for figure 4.5 (2). The upset point or 
threshold intensity for hemorrhage is shown here by a straight line. The 
segmented image with hemorrhage keeps all values above threshold and rest are 

converted to background as shown in figure 4.6 (b). 

 Figure 4.8: Vertically divided image       (a)                               (b)      
Figure 4.7: Thresholding result of normal brain image 

4.2.2. Removal of normal dataset 

This thresholding method introduces noise due to the presence of the 

residual skull part in an image irrespective of its disease status. The segmented 
image shown in figure 4.6 (b) contains hemorrhage as well as some non-
hemorrhage skull adjacent parts. To improve segmentation result, segmented 

image goes through single iteration erosion. This morphological operation shows 
high impact on deleting skull left out parts as shown in figure 4.6 (c). A normal 

1
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image without any hemorrhage also returns some non-hemorrhage parts as shown 
in figure 4.7 (a). Single iteration erosion of a normal image is shown in figure 4.7 
(b). Such images can introduce error in further analysis and reduce performance 

accuracy of the system.  
To identify an image as normal or diseased, classification is done using 

artificial neural network. Each image is first divided into 10 sub-images vertically 
as shown in figure 4.8. For each sub-image the value of IPF, along with the texture 
features, is extracted. For a single image, each feature results into an one 
dimensional array of 10 elements. A single value is derived from such array to 
represent the respective feature as the classifier input. This value is evaluated by 
clustering using mean shift algorithm [146]. 

(a)      (b) 

      (c) 
Figure 4.9: (a) Feature array to subsets, (b) Confusion matrix, (c) Selected hemorrhage 

The elements of the one dimensional array, are divided into two subsets 
depending on their Euclidian distance from initial seed points [147]. The highest 
gpand lowest values of the array are selected as initial seed points of two sets, say S1
and 
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and S2. Rest of the elements are assigned to a set whose seed point has lower 
distance from that element. Mean of each set is evaluated and assigned as seed 
point of corresponding set. All the values are rearranged as per their distance from 
new seed points. These two steps, calculating new seed points and rearranging 
data, are repeated until no change is noticed. This mean shift process results into 
two final sets as shown in figure 4.9 (a). Euclidian distance between the two seed 
points of final sets is taken as representative of the corresponding feature.   

IPF and three GLCM features, entropy, homogeneity and variance, are 
considered for classification. IPF predicts the number of foreground pixels, in this 

case the high intensity pixels, available in the thresholded images. Entropy varies 
with the increase in intensity span i.e. unevenness of image texture. The variance 
signifies higher intensity co-occurrence values. Homogeneity represents 

repetitiveness of the image texture. For hemorrhage affected images, difference 
between seed points are different than normal images. In case of normal images, 
only skull residues which are adhered to the boundary are present. The amount is 

significantly low. Final feature value remains low for normal images.  
Classification is done using neural network. To train and validate the 

neural network, 152 normal and 152 hemorrhage images have been used. These 

images are not part of the dataset under test. The neural network returns 100% 
accuracy as presented in confusion matrix of figure 4.9 (b). Using the trained 
network, the entire database of 27 hemorrhage dataset and 16 normal dataset is 

classified. When no image in a dataset is labeled as diseased, the patient is 
considered as normal. No further inspection is required for such dataset. Rests of 
the dataset are further evaluated to locate the hemorrhage. The trained classifier 

has misclassified 2 normal datasets as diseased. Hence the accuracy drops to 
95.35%, but sensitivity of classifier remains 100% because of no false negative 
selection.  

If the dataset is labeled as diseased, hemorrhage location search is 
initiated.  Largest connected part of an image, obtained from morphological 
operation, is identified as a hemorrhage. Any available non-zero information 

attached to that area in the pre-erosion image is reconsidered for reconstruction of 
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the hemorrhage. The segmentation result after reconstruction is shown in figure 
4.9 (c). 

(a)     (b)    (c)  
Figure 4.10: (a) Original image (hemorrhage is marked by circle) (b) Segmented image (c) Output after 
morphological operation. 

4.2.3. Fusion and Mask definition 

Sometimes in some images, due to other compact larger area of matching 
intensity, the actual hemorrhage does not get detected by the CAD as shown in 
figure 4.10. In figure 4.10 (a) hemorrhage is marked by a circle. In figure 4.10 (b), 
we can see only a few scattered pixels segmented form hemorrhage area. The 

largest connected area shown in figure 4.10 (c) is not a part of actual hemorrhage. 
To solve the problem, binarization of all segmented images of a dataset is done. 
Then the images are stacked up one after another and fused linearly. Correctly 

segmented images offer overlapping areas, whereas wrongly segmented images 
result into different scattered areas. After the linear fusion, the highest strength 
area is selected as hemorrhage zone. This hypothesis is elaborated by a 6X6 

matrix here.  
Say, dataset D has total 5 images, each of which is a 6X6 matrix. I1 to I5 are 

the images after segmentation and morphological operations, where 0 represents 

deleted brain, non-brain and background part. f represents high intensity brain 
part, h is the hemorrhage. 
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The largest part of each image is highlighted using bold font. Now, all the 

pixels in the largest part are converted to value 1 and rest to 0.These binary 
images are then added linearly and resultant image I becomes – 
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Where Ig presents segmented binary images. The strength of two areas is 
evaluated as Sh and Sf.  
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 = 11 

and similarly Sf = 3.  
For final hemorrhage segmentation, pixel locations of highest strength 

area are saved to create a mask. Each segmented slice is then tested against that 
mask to see if any information in that area or in adjacent area, is available. All 
positive response locations are selected as hemorrhage candidate for the respective 

image. The success of this backpropagation information collection is presented in 
figure 4.11 for the image shown in figure 4.10 (a). It shows that the largest area 
selected in figure 4.10 (c) is cancelled and the actual area marked in figure 4.10 (a) 
is selected as hemorrhage by mask.  

Figure 4.11: Segmented hemorrhage 
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4.3. Result 

The proposed CAD is unsupervised, fully automatic system. Efficiency of 
this proposed segmentation technique is tested against popular segmentation 
methods to establish its potential. In case of data sets segmentation, Liu et al., 
2009 [148] and Y.G.Jung et al., 2014 [149] have demonstrated the power of K-
means clustering method over Otsu and Expectation Minimization methods 
respectively. As discussed in chapter 1, Dundar et al., 2015 [71] has shown that 
unsupervised K-means technique outperforms several deep learning techniques 
when implemented on a small dataset. Fuzzy C-means method is an advancement 
of K-means method [150]. So, we have compared the performance of proposed 
method with K-means and fuzzy C-means segmentation. In figure 4.12 the 
segmentation results are shown with ground truth annotation.  

In result 2, hemorrhage segmentation annotation (blue line) is overlapped 
with ground truth and thus not visible. Non-hemorrhagic segmented areas are not 
marked but visible in the segmentation result. Two class segmentation offers poor 

distinguishability for both the techniques. With the increase in number of classes, 
the segmentation method increases its sensitivity. But even after segmenting for 
six classes the proposed method outcome remains ahead in the competition. 

As per the expert‟s opinion, hemorrhage patch detection using proposed 
CAD satisfies the ground truth for all the cases under test. It also has successfully 
collected hemorrhage information from dataset having low volume hemorrhage. 

Though initially in few images of some datasets, wrong areas are labeled as 
hemorrhage, after fusion and final selection those are nullified and the ground 
truth is satisfied. 

For further analysis, quantitative evaluation in term of sensitivity, 
accuracy and dice coefficient of proposed segmentation method is carried out.  The 
basic concept of dice coefficient is discussed in Appendix C. Results of 27 datasets 
of CT brain hemorrhage are presented. The dice coefficient shows that each 

dataset is segmented with enough similarity with ground truth marked by experts. 
Calculated average dice coefficient value is 0.9205. Evaluated results are collated 
in table 4.1. For proposed method sensitivity lies in between 70%-100%, with an 

average of 93.47%. Average error is 6.81% and average accuracy is 93.19%. 
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Accuracy, sensitivity and dice coefficient of proposed method are compared with 
that of K-means and fuzzy C-means methods for k=6. To do segmentation using K-
means and fuzzy C-means, the program flow described in figure 4.2 is kept 
unaltered; only 'hreshold finding' and 'binary segmentation' steps are replaced by 
respective method. Average accuracy and sensitivity for K-means is 80.74% and 
67.29%, for fuzzy C-means is 90.17% and 76.96% respectively. Comparison graphs 
shown in figure 4.13 to figure 4.16 demonstrate the power of proposed method over 
the other conventional two.  

Figure 4.12: Thresholded images are compared. The blue line is used to show the ground truth and pink line 
to show segmented area of hemorrhage.  

Regardless of this, no hemorrhage dataset is treated by CAD as normal 
dataset i.e. no false negative diagnosis by this CAD. This turns the CAD 

Result 1 

Original image 
with ground 

truth 

Proposed thresholding 
outcome 

Total no. of 
segmentation 

class 
2 3 4 5 6 

K-means 

Fuzzy C-means 

Result 2 

Original image 
with ground 

truth 

Proposed thresholding 
outcome 

Total no. of 
segmentation 

class 
2 3 4 5 6 

K-means 

Fuzzy C-means 
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sensitivity (true positive by CAD/true positive as per ground truth) to 100%. As 
per practitioners, higher sensitivity is most important requirement for any clinical 
support system to avoid risk of treatment delay or life loss due to wrong diagnosis. 

The proposed thresholding technique takes 4.79 seconds to segment a 36 
slices dataset when run in a computer having 4 GB RAM, Intel® Core(TM) i3 
processor running at 2 GHz speed and 64 bit Windows 10 OS platform. In the 

same system, segmentation of the same dataset by K-means and Fuzzy C-means 
take 4.9 seconds and 5.2 seconds respectively when each slice is segmented in two 
clusters. Required time increases with increase in number of clusters. 

Segmentation times are compared in figure 4.17. Time required for K-means and 
fuzzy c-means clustering for both k=2 and k=6 are compared with time required 
for proposed thresholding method. As per the result, proposed method has 

outperformed the other two methods. 
Dataset %Sensitivity %Accuracy %Dice coefficient 

1 90 96.43 91.81 
2 77.78 93.33 96.72 
3 100 92.86 95.37 
4 83.33 92.86 98.78 
5 100 95.65 89.35 
6 100 100.00 90.87 
7 100 88.00 91.06 
8 100 84.62 94.4 
9 90.91 92.31 92.44 
10 81.25 88.00 92.17 
11 100 76.92 93.78 
12 100 100.00 92.5 
13 80 80.77 92.83 
14 100 100 95.78 
15 92.31 97.06 95.58 
16 100 96.43 91.81 
17 87.5 96.43 96.62 
18 89.47 93.75 95.87 
19 100 100.00 98.58 
20 100 100.00 84.56 
21 94.44 96.43 92.72 
22 100 72.00 68.13 
23 92.86 96.43 93.12

24 88.89 96.43 91.01

25 100.00 100.00 92.13

26 75.00 89.47 87.47

27 100.00 100.00 89.97

Average 93.47 93.19 92.05 
Table 4.1: Sensitivity, accuracy and dice coefficient analysis of proposed method 
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Figure 4.13: Comparison of %sensitivity of three methods 

Figure 4.14: Comparison of %accuracy of three methods 

Figure 4.15: Comparison of dice coefficient of three methods 
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Figure 4.16: Comparison of average of %sensitivity, %accuracy and %Dice coefficient 

Figure 4.17: Comparison of segmentation time (in seconds) of three methods (k value varies for traditional 
methods, for proposed method it is 2 for both the cases.) 

There are different works already presented by researchers for 
hemorrhage segmentation as discussed in state of the art section. Two [78, 151] of 
such works have significant resemblance with the proposed work. Quantitative 
analysis of these two works is compared with our proposed work.  

Shahangian et al. have presented automatic hemorrhage segmentation 
from brain CT images with good accuracy. But three major deficiencies are noticed 
in this research - selection of initial thresholds, brain matter segmentation, and 

threshold value selection for hemorrhage segmentation.  
In the article, background and skull are removed by absolute threshold 

values 100 and 225 respectively. In many cases, parts of brain, as well as parts of 

hemorrhage, are removed by those fixed threshold values. No restoration method 
is proposed to recover such parts. An example of such case is shown in figure 4.18.  
Adaptive threshold selection process of the proposed method has proven 

advantages over method proposed by Shahangian et al. In the next step, they 
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proposed selection of brain by selecting the largest connected area. Disadvantages 
of this method are already discussed in the previous chapter with examples.   

Finally, there is no clue given in the article about threshold selection for 

hemorrhage. Rather it has been stated as “we define an appropriate threshold”, 
though the process is claimed to be automatic. This is the most important part, on 
which automatic hemorrhage segmentation and accuracy of the system is highly 

dependent. Hence the quantitative analysis presented in their paper remains 
questionable.  

An integrated process is proposed by Bhadauria et al. It offers better result 

than Chen and Vese method, region growing technique and fuzzy C means 
method. They have used active contour method, along with FCM to improve the 
performance of the process. The performance parameters of this method and 

Shahangian‟s method are assembled and compared with our proposed method in 
table 4.2.  

It has been observed that the potential of the proposed method is much 

higher in terms of sensitivity, dice similarity and specificity. Only Shahangian‟s 
method is claiming higher accuracy, justification of which is not found in their 
article and the reported dice coefficient is very poor. Another important advantage 

of the proposed method is its image handling capacity. It can segment hemorrhage 
from all affected images of a dataset in a single run of the program, whereas, other 
two methods can segment one image at a time. 

(a)        (b)   (c)   (d) 
Figure 4.18: (a) Original image (b) Skull removed by threshold 225 (c) Background removed by threshold 100 
(d) Adaptive thresholding for skull and background 
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Sensitivity Specificity Dice 
coefficient Accuracy 

Image 
handling 
capacity 

Shahangian 
[151] 85.27 96.05 83.69 93.80 Single image 

Bhadauria 
[78] 80.67 99.58 87.58 86.24 Single image 

Proposed 
method 93.95 100 92.35 92.45 

Multislice 
scanned 
data 

Advantage 
observed in 

Proposed 
method 

Proposed 
method 

Proposed 
method Shahangian Proposed 

method 
Table 4.2: Comparison chart of Shahangian, Bhadauria and proposed methods' results 

4.4. Discussion & Conclusion 

The objective of this chapter is to design a fast, efficient, easy to use and 
reliable methodology for hemorrhage segmentation from already segmented ROI 

images. The proposed system‟s potential lies in zero false negative in final 
decision. The segmentation results are reviewed and approved by doctors of 
radiology department, from PGIMER, Chandigarh, India. Proposed CAD is a 

threshold based technique. To find threshold automatically from intensity 
population, prior knowledge of brain anatomy and CT image intensity distribution 
for brain and hemorrhage have been used.  

The proposed unsupervised technique based CAD is expected to be helpful 
for critical situation like remote diagnosis support, absence of expert practitioner 
and bulk patient management due to an accidental emergency. This method 
requires no human interaction for segmentation; whereas K-means and fuzzy C-
means need human interpretation to find right cluster among multiple output 
clusters. For example, an expert is required to select a particular cluster 
containing hemorrhage for 'n' times when the complete dataset contains 'n' slices. 
So these methods are unable to fulfill our requirement of using the CAD in 
absence of a practitioner for hemorrhage segmentation. In the next chapter the 
segmented hemorrhage are further analyzed for classification.  



96 

 

 

  



97 

 

Chapter 5 
 

 

 

EDH & SDH Classification  

 

Overview  

Segmented hemorrhages are classified in this chapter. Relative location 

information of each hemorrhage with respect to the brain boundary is evaluated. 

This information potentially classifies the target candidates with 100% accuracy. 

This class is further classified into EDH and SDH. Shape features play a great role 

in this classification. Several shape features are extracted from hemorrhage shape 

and size. From the primary features, more relevant secondary information are 

computed. IPF and compactness are also evaluated. The entire set of features, is 

optimized to reduce the dimension of the classifier input. Features having higher 

degree of separability are selected for designing purpose. Neural network classifier 

is trained using optimized features to conduct final stage of classification. 

Proposed classifier offers highly accurate classification result.  
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5.1. Introduction 

Significance of classification of a disease lies in its importance in medical 

systems. It facilitates practitioners by providing fast and reliable information to 

take decision and initiate treatments. Same disease may have different impact on 

patients’ morbidity and mortality depending on its class. Classification of disease 

can be based on its topography, anatomy, physiology, pathology, etiology, 

epidemiology, statistics and juristic conditions. Each category has a specific angle 

to look at a disease, as discussed in table 5.1. A single disease can fall under one or 

more categories.  

Category Base concept 

Topographic The area affected by disease 

Anatomic The organ or tissue affected by the disease 

Physiological The effect of disease on physiological functions 

Pathological The nature of disease process 

Etiologic The general cause of the disease 

Epidemiological By the stage of the disease 

Juristic condition By speed of advent of death 

Statistical The statistical information of disease 

Table 5.1: disease category 

Brain hemorrhage is classified into several types depending on its location 

(topography) of occurrence. The major two classes are intra‐axial and extra‐axial 

hemorrhage. When blood is collected in the periphery of brain within the tissue 

layers just below skull, the type of hemorrhage is identified as extra-axial 

hemorrhage. Other blood accumulations which happen within the brain matter or 

ventricular area are known as intra-axial hemorrhage. These two classes are 

further divided into different subclasses as shown in the classification tree in 

figure 5.1 (a) [152]. As discussed in introduction section of chapter 4, blood gets 

accumulated around the leakage initially. With increase in volume, leaked blood 

puts pressure on surrounding tissues to create more space in neighbourhood 

region and starts spreading gradually. Hemorrhage blood spreading can be - 

uniform, one directional, bi-directional or irregular. In different areas of brain, 

bonding of tissues with its adjoining layers is different. This property of tissue 
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layers, controls the spreading direction of blood and the final shape of the 

hemorrhage patch.  

Like different categories, nomenclature of brain hemorrhage is also based 

on topographic information of leakage area. This has made the name auto-

descriptive as discussed below.  

(a) 

        (b)     (c)       (d)             (e)   (f) 

Figure 5.1: (a) Hemorrhage classes (b) EDH (c) SDH (d) SAH (e) IPH and (f) IVH  

Epidural hemorrhage (EDH):  

When due to rupture in the blood vessels, blood  accumulates between 

the skull and the dura matter of brain, then the type of hemorrhage is identified 

as Epidural hemorrhage in short EDH.  

Subdural hemorrhage (SDH):  

When the leaked blood accumulates between the dura matter and 

arachnoid matter, then the type of hemorrhage is identified as subdural 

hemorrhage in short SDH.  

Subarachnoid hemorrhage (SAH):  

Pia matter is the innermost member surrounding the central nervous 

system. When leaked blood accumates between the arachnoid and pia natter of the 

brain, then the type of hemorrhage is identified as subarachnoid hemorrhage in 

short SAH.  

Hemorrhage 

Extra axial 

Epidural 

Subdural 

Subarachnoid 

Intra axial 

Intraparenchymal 

Intraventricular  
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Intraparenchymal hemorrhage (IPH): 

Any blood accumulation within the brain parenchyma is referred to as 

intraparenchymal hemorrhage in short IPH.  

Intraventricular Hemorrhage (IVH):  

Cavities within the parenchyma, where cerebrospinal fluid is produced are 

known as ventricles. Any blood accumulation within this ventricular space is 

identified as Intraventricular hemorrhage in short IVH.  

Among all types of hemorrhages, Epidural hemorrhage (EDH), subdural 

hemorrhage (SDH) and intraparenchymal hemorrhage (IPH) are the most common 

cases received in hospitals [80]. After discussion with radiologists, Subdural and 

Epidural hemorrhage (SDH & EDH) classes have been considered as major 

research targets, and rest of the cases are labelled as ‘others’ which include SAH 

and intra-axial hemorrhage. All these types of hemorrhage listed in figure 5.1 are 

shown in figure 5.1 (b)-(f).  

Figure 5.2: Cranial meninges 

5.2. Image Features 

For easy presentation and data compression, images are presented as set 

of features [153]. Conceptual sketch of cranial meninges surrounding brain’s 

central nervous system is shown in figure 5.2. The location of different types of 

hemorrhage can be visualized easily as the name of each type of hemorrhage is 
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self-descriptive. If we start moving from the skull and trace the path towards the 

center of the brain, we gradually pass the layers associated with different types of 

hemorrhage, starting with EDH followed by SDH, SAH, ICH and IVH. 

Classification is a technique using which we can divide a large collection of 

subjects into smaller groups. Each group contains subjects which are similar with 

respect to some specific characteristic parameters. The parameters are selected as 

per the interest of end users. With the change in the parameters, the entitlement 

of an object to a subgroup can be changed depending on the correlation between 

the previous parameters and the newly selected parameters. If the new set is 

completely different from old set of parameters then the subjects will create 

completely different groups. With increasing similarity between the new and old 

parameter sets, the change in assigned class decreases. Characteristics parameter 

can be of three types for an image – color, texture and shape [154]. Set of features 

can be extracted from each of these three types of parameters. Some commonly 

used features are listed in the tree shown in figure 5.3. They can be used 

separately or in a combination, to increase accuracy in classification. Features 

extracted from local region of an image are considered as local features, whereas 

features extracted considering entire image as region of interest (ROI) are known 

as global features. Both types of features have its own significance in 

classification. Practically a large number of features can be extracted from 

available color, texture and shape information of an image [154]. For different 

target ROI same set of features can offer different values and show different 

potential in classification.  
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Figure 5.3: Image features 

Color features are the most prominent visual features of an image. Color 

value and color distribution both can offer distinguishable and potential 

information for image classification. Mean variance and standard deviation etc. 

are calculated from color histogram. Spatial coherence of color is presented by 

features like coherence vector, correlogram, etc.  

Texture features mathematically describe the visual pattern of image 

surface. A 3-dimentinal real world vision is presented in a 2-dimentional image by 

converting the surface information, like the pattern of roughness/smoothness and 

change in color/gray intensity etc., into proportional pixel intensity. Several 

statistical methods are used to extract information from the image. Information 

like mean, standard deviation, variance, kurtosis, skewness etc. which are 

extracted directly from pixel values, are called first order texture features. These 

features are mostly calculated from intensity histogram of the image. When 

relative pixel intensity information with respect to the neighborhood pixel 

intensity is evaluated, then the extracted features are called higher order texture 

features. If the immediate neighbors are considered for feature extraction, then 

the features are called 2nd order features. With the increase in distance between 

the target pixel and the neighbor, the order will increase. Different analyses 

methods like gray level co-occurrence matrix (GLCM) [19], gray level run length 

matrix (GLRLM) [20], gray level difference matrix (GLDM) [155] etc., are already 

proposed for higher order texture information extraction.  

Features 

Colour 

1. Colour histogram
2. Colour moment
3. Coherence

vector 
4. Correlogram etc

Texture 

1st order 

1. Mean
2. Standard deviation
3. Variance
4. kurtosis etc

Higher order 

1. GLCM
2. GLDM
3. GLRLM etc.

Shape 

1. Area
2. Ecentricity
3. Major axis
4. Minimum bounding

rectangle etc 
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Shape features describe the shape of the ROI. It is normally extracted from 

the part of image to understand the local area information. Total area, perimeter, 

longest axis, eccentricity, circularity, rectangularity, convexity and much more 

information are extracted from the shape of ROI.   

Figure 5.4: Performance of classifier 

Each feature contains some information about the subject. So though it 

seems that more number of features means more information, but in practice the 

fact is something different. All features are not always useful, nor contributory. 

Few features offer no prominent discrimination for target classes. Such features 

are called irrelevant features. Irrelevant features are unnecessary computational 

load on classifier and sometimes create noise in output. Few features are 

redundant. Such features do not contribute anything significant. It has been 

observed that with increase in the number of features, the classifier performance 

improves initially but then starts falling as shown in figure 5.4. This happens due 

to inclusion of irrelevant and redundant features which confuse the classifier. So 

to optimize the performance of a classifier noise reduction is must. Irrelevant 

Feature elimination can be done by feature selection.  

Elimination of less contributing features using search algorithms like 

optimum methods, heuristic methods or randomize methods - is called feature 

selection. These search algorithms use filtering or wrapping mechanism. The 

entire list of features is truncated to a lower dimension selecting top ranked or 

more contributing features. When a given set of features are projected to another 

plane of less dimensionality, the size of the newly extracted feature set gets 

reduced. The new features are then used as input of the classifier.  
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5.3. Hemorrhage features 

As already discussed, classification solely depends on the unique features 

of the subject under test. Irrespective of their types, each and every hemorrhage is 

pathologically a liquid body formed by accumulation of blood. The x-ray absorption 

capacity of any hemorrhage is same. CT numbers offered by different hemorrhage 

are thus almost equal. Hence, in a CT image, type of hemorrhage cannot be 

classified depending on its HU. In non-contrast CT, no color information is 

available. The texture is almost homogeneous having no significant textural 

differences between classes. On the contrary, the anatomical information and 

shape of each type of hemorrhage vary from each other significantly. Several 

works demonstrated satisfactory accuracy in hemorrhage classification using 

shape features [13,24,151,156]. In our research work, we have considered a 

combination of different types of features to design a highly accurate classifier. A 

set of second order shape features, along with information packing factor, 

compactness and skull vicinity of the target ROI, are used as input parameters of 

the classifier.  

5.3.1. Shape features 

A shape is described mathematically by several parameters which have 

qualitative values in different aspects. Shapes of different hemorrhage are shown 

in figure 5.1 (b)-(f). EDH and SDH both are prominent blood collection near the 

skull with different bounding shapes. EDH has bi-convex boundary whereas SDH 

has crescent shape. The adjacent layers to the skull, are convex for both types of 

hemorrhages. Other side is convex for EDH but concave for SDH. SDH can be 

more extensive than EDH because it can cross cranial sutures and spread over the 

hemispheres.  

SAH is another extra-axial hemorrhage. It is not as attached to the skull 

as EDH or SDH. A smaller part of subarachnoid hemorrhage body remains 

adjacent to the skull; rest gets spread in the subarachnoid space forming an 

irregular shape. Intaparenchymal and ventricular hemorrhage are formed by 

blood collections which are anatomically non-adjacent to the skull. The shape of 

IPH can be semi-circular or irregular with uneven boundary. IVH is formed within 
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the ventricle near the skull mid-line. Its shape changes with the increase in size in 

the shape of ventricle. A large IVH forms rounded edge crescent shape within the 

ventricle. Some commonly used primary shape features of the brain hemorrhage 

are collated in table 5.2 and pictorially described in figure 5.5.  

Shape feature 

[157] 
Description 

1 Area (A) 
Count of total number of pixels in the hemorrhage patch is the measure 

of hemorrhage area. 

2 Perimeter (P) 
Total length of boundary of the hemorrhage body is the perimeter of 

that hemorrhage. 

3 Major axis (M) 
The longest available span in the hemorrhage body is considered as 

major axis of that hemorrhage.   

4 Minor axis (m) 
Longest available span in the perpendicular direction of major axis is 

the minor axis of that hemorrhage.  

5 
Equivalent circle 

(Ec) 

The circle, area of which is equal to the area of hemorrhage, is denoted 

as equivalent circle. 

6 Best fit circle (C) The smallest circle which can envelope all pixels of the hemorrhage. 

7 
Best fit rectangle 

(R) 
The smallest rectangle which can wrap the entire hemorrhage body. 

8 Best fit ellipse (E) The smallest ellipse which can wrap the entire hemorrhage body. 

9 Inscribed circle The best possible circle which can fit within the hemorrhage body. 

10 Convex hull 
Count of total number of pixels of the best fit polygon of the 

hemorrhage. 

Table 5.2: Shape features 

5.3.2. Additional features 

Two primary features are modified to extract information about the 

continuity hemorrhage body along axes. As shown in the figure 5.5, major and 

minor axes are affected by rotation of the brain image. Inspection for these axes 

hence involves rotation correction or complex mathematics. To avoid this burden, 

in our research we have considered two alternative features, height (H) and width 

(W) of the hemorrhage. Maximum available length across x-axis and y-axis in the 

hemorrhage body are denoted as width and height, respectively. The concept is 

shown in figure 5.5 (a)-(b).  
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(a)          (b) 

 (c)  (d)        (e)           (f) 

Figure 5.5: Different hemorrhage shape features (a)-(b) Hemorrhage and ROI spans (c) Hemorrhage area (d) 

Best fit rectangle (e) Best fit circle (f) Convex hull  

Skull vicinity (V) is a measure of distance between the boundary elements 

of hemorrhage and the corresponding segmented brain image. Hemorrhage 

boundary candidates within five pixel distance from the brain boundary, are 

recorded as positive candidates [72]. Mathematical calculation is formulated as 

follows, 

 [           |     |         ⁄ ]      

where, Bi and Hi represent ith
 element of brain and the hemorrhage 

boundary candidate. For less than and equal to five pixels distance    picks up 

value 1, for rest of the cases it remains as 0. Summation of all positive occurrences 

presents how tightly or loosely the hemorrhage is connected to the skull.  The 

concept is described in figure 5.6. 

In a dataset, hemorrhage can be detected in one or more images. Each of 

the hemorrhage affected image is processed to extract different shape features, 
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IPF, compactness and skull vicinity values. From the extracted primary features, 

higher order correlative features are derived. 

Figure 5.6: Skull vicinity 

5.3.3. Derived shape features 

Correlative features which are calculated from above discussed primary 

features can be addressed as derived shape features. These derived features are 

more useful for classification. Primary features are static information which can be 

same for different shapes. When a derived feature is calculated from primary 

features, the relative impact of a particular shape is evaluated. This relation 

varies for varying shape, by enhancing difference between categories. Some 

potential derived shape features are discussed below.  

`

   (a)      (b) 

Figure 5.7: (a) Different hemorrhage area with same ROI size,  (b) Same hemorrhage area with different ROI 

size 
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24862 42606 0.5835 

24890 63754 0.3904 

24825 53040 0.4680 

24825 84328 0.2944 

Table 5.3: IPF of ROI calculation for figure 5.7 images 
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1. Local Information packing factor (local_IPF):

It is the ratio of the area of the hemorrhage to the area of the best fit 

rectangle. Mathematically it can be expressed as  

local_IPF = A/R. 

The fact is described with the help of eight vector diagrams shown in figure 

5.7. In figure 5.7(a), four hemorrhage patches of different shape and size are 

shown. Area of bounding rectangle of these hemorrhage are almost the same; but 

the ratio between hemorrhage area and best fit rectangle area are significantly 

different from each other depending on the size of the hemorrhage. Where the 

hemorrhage size is high, local_IPF is also high, as the area of best fit rectangle is 

constant in all the cases. In figure 5.7(b) all the hemorrhage patches have almost 

the same area; but area of the best fit rectangle differs from each other. Thus with 

lower area of rectangle, the IPF increases as hemorrhage area is fixed in this case. 

Hence, local_IPF contributes significantly in classification even when either the 

hemorrhage area or ROI area of different hemorrhage patches are almost equal. 

The tabulation and comparison for shown vector diagrams, are presented in table 

5.3 and figure 5.8 (a) and (b). 

The results are demonstrating the potential of derived shape features. 

When the primary feature value, here the area of a hemorrhage, cannot specify the 

class, then the ratio of hemorrhage area to the best fit rectangle, mimics the shape 

information of the target object. 

(a)   (b) 

 Figure 5.8: IPF varies with (a) constant ROI area (b) constant hemorrhage area 
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2. Span ratio (Sr):

It is the ratio of the maximum available spans of hemorrhage along x-axis and y-

axis and is used to understand the nature of the spread. If the x-axis span i.e. 

width is W and y-axis span i.e. height is H then span ratio is calculated as follows 

– 

 {
               
               

Where,  

W= maximum x-coordinate value available in hemorrhage – minimum x-

coordinate value available in hemorrhage
H= maximum y-coordinate value available in hemorrhage – minimum y-

coordinate value available in hemorrhage

The ratio varies with the change in shape. EDH, because of its convex-

convex shape, has high y-axis span and low x-axis span. SDH mimics this pattern 

with larger x-axis span. In SAH sometimes x-axis becomes larger than y-axis.  

3. Area to perimeter ratio (Ap):

It is the ratio between hemorrhage area A and perimeter of hemorrhage P. 

For same area if the shape of hemorrhage is circular the ratio value will be 

maximum. Ap decreases with increase in non-circularity in shape. EDH offers 

maximum Ap due to its elliptical nature.  

Ap= A/P,  when A is the hemorrhage area and P is its perimeter. 

4. Circular area ratio (Cr):

It is the ratio between hemorrhage area and best fit circle area. With the 

change in span the radius of circle varies. So for the same area with higher span, 

needs a circle having larger radius reducing the circular ratio value.  

Cr= A/C =A/( *r2),  when r is the radius of the best fit circle C. 

For constant A, Cr       i.e. with increase in radius the ratio decreases.  

5. Elliptical area ratio (Er):

It is the ratio between the hemorrhage area and the best fit ellipse area. A convex 

shape is better fitted inside an ellipse increasing the value of Er. Generally EDH 

offers higher Er than other hemorrhage patches.  
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6. Diameter ratio (∂):

It is the ratio of diameters of equivalent circle to best fit the circle. This is 

the circularity measurement of an image. When a shape changes from polygonal to 

circular its diameter ratio increases gradually. 

If the diameter of equivalent circle is d1 and diameter of best fit circle is d2 then ∂ 

can be calculated as 

  
  

  
⁄

It can be rewritten as, 

  
  

  
⁄  

  
  ⁄  √  

    
   √   

     
    √      √  

Hence,     

So, in practice this feature is redundant with circular area ratio and hence need 

not to be considered if the previous one is already considered in input.  

7. Maximum distribution ratios (Lx, Ly):

It is the ratio between maximum available hemorrhage span and ROI span 

in corresponding axis. If the maximum available spans of hemorrhage are W and 

H, and the same of ROI are x and y respectively, then the maximum distribution 

ratio across x axis is  

Lx = W/x

Similarly for y-axis, it is Ly = H/y.  

5.4. Feature optimization and classification 

Segmented hemorrhages are processed to extract features for 

classification. Other than patients’ dataset, 50 EDH, 50 SDH, 31 SAH and 31 

intra-axial hemorrhage data are used for training and testing purpose. The 

respective brain ROI images of each hemorrhage, generated during brain 

segmentation (described in chapter 3), are considered to find the boundary of the 

brain. Total information size i.e. hemorrhage area, compactness and perimeter of 

segmented hemorrhage, span across x and y  axis, equivalent circle, best fit circle, 

best fit rectangle and best fit ellipse are found from each hemorrhage. The vicinity 
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of the hemorrhage to the skull, which is important information for classification, is 

also calculated.  

Figure 5.9: Features are compared for different types of hemorrhage 
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From primary shape features, derived features are extracted 

mathematically. These derived feature values are more relevant to the 

hemorrhage shape and hence perform better as classification input parameter. 

Value of skull vicinity, local_IPF, circular area ratio, elliptical area ratio, 

maximum distribution ratios Lx & Ly, area to perimeter ratio and compactness 

features are plotted in the graph shown in figure 5.9. SAH is not included here in 

‘other’ group, in order to inspect its potential in creating noise in classification. 

Results show that for Ly, area to perimeter and compactness, SDH and SAH is not 

much distinguishable.  

Initial dimension reduction by new feature extraction is done by projecting 

primary features into the low dimension secondary feature plane. In this work, 

without considering the derived feature set merely, combined set is used to achieve 

the best performance of the classifier. Form the entire list of primary and derived 

features, dimension reduction is done by finding the most prospective features for 

classification. The potential of a feature in classification method depends on its 

separability power between the classes. Separability is measured by comparing the 

the spread of a feature around local mean i.e. within class mean and global mean.   

Within the class, spread is determined by computing local variance - 

  
  ∑

        
 

 

 
 

Here, μi presents the mean of a feature set x of ith class and n is the number of 

candidate images of the class. Similarly, the across class spread is found by 

computing global variance - 

  
  ∑

        
 

 

 
 

where, μ0 presents the overall mean. The separability S is calculated as - 

  
  

 

  
 

To gain a better insight of classification potential, the separability measure of 

different features are reported in Table 5.4 and graphically depicted in Figure 

5.10. The potential is examined into two steps. In the first step, features having 

great potential to separate the target classes from other are examined. In second 
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step, features with higher potential to classify the target class objects into their 

corresponding classes are selected.  

Primary features 

Separability 
Derived Features 

Separability 

Target 
versus 
Other 

EDH versus 
SDH 

Target 
versus 
Other 

EDH 
versus 

SDH 

perimeter 1.10 2.01 skull vicinity V 3.19 0.99 
Area 1.07 1.00 span  ratio Sr 1.28 1.03 
W 1.01 1.04 local_IPF 1.01 6.09 

H 1.46 1.03 circular area ratio Cr 1.45 1.39 
best fit circle 1.15 1.06 elliptical area ratio Er 1.06 4.79 

best fit ellipse 1.08 1.05 maximum distribution ratio Lx  1.03 4.61 

best fit rectangle 1.08 1.05 maximum distribution ratio Ly 1.02 2.07 
radius of equivalent 
circle 

1.12 1.02 area to perimeter ratio Ap 1.04 1.22 

compactness 1.03 3.40 

Table 5.4: Separability of different features  

Figure 5.10: Separability  
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Figure 5.11: Skull vicinity distribution  

Height from the primary feature set and the skull vicinity from derived 

feature set, standout with the highest potential to discriminate target class from 

others. Circular area ratio also demonstrates good potential for first step 

classification. In practical test, skull vicinity demonstrates the utmost strength 

and nullifies the requirement of any other features’ association. The potential of 

skull vicinity is depicted graphically in figure 5.11. If minimum 35% of the 

perimeter returns positive value i.e. remains within five pixels distance from the 

brain boundary then the hemorrhage is considered as skull adhered. A 2D linear 

classifier is designed to separate target class from the entire dataset. The equation 

below imposes the predictor line in the input space,  

        

Value 1 is assigned to rank ‘r’ for any positive data and 0 for rest. 

        

To evaluate a dataset of multislice CT scan, % value of V of all hemorrhage 

affected images are considered to set rank for respective dataset. The measure of 

average skull vicinity and assigned rank value of entire database, is collated in 

table 5.5. For V more than or equal to 50%, the rank is considered as 1. The result 

presents 100% accuracy in classification. 
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Serial 
no. 

Ground 
truth 

%V Rank ‘r’ 
Classification 

status 

1 EDH 61.43 1 Satisfied 

2 EDH 58.10 1 Satisfied  
3 IPH 9.72 0 Satisfied  
4 EDH 65.57 1 Satisfied 

5 SDH 77.53 1 Satisfied 

6 ICH 0.00 0 Satisfied 

7 SDH 83.85 1 Satisfied 

8 SAH 1.86 0 Satisfied 

9 SDH 74.84 1 Satisfied 

10 ICH 8.07 0 Satisfied 

11 IPH 9.73 0 Satisfied 

12 EDH 51.60 1 Satisfied 

13 IPH 8.72 0 Satisfied 

14 SDH 58.03 1 Satisfied 

15 SDH 50.00 1 Satisfied 

16 SAH 0.00 0 Satisfied 

17 EDH 64.97 1 Satisfied 

18 EDH 52.57 1 Satisfied 

19 IVH 0.00 0 Satisfied 

20 SDH 76.53 1 Satisfied 

21 ICH 5.74 0 Satisfied 

22 IVH 0.00 0 Satisfied 

23 SDH 70.09 1 Satisfied 

24 SAH 4.70 0 Satisfied 

25 EDH 51.44 1 Satisfied 

26 IPH 6.56 0 Satisfied 

27 SDH 68.37 1 Satisfied 
Table 5.5: Skull vicinity value of different dataset 

Target class is further divided into two classes – EDH and SDH. Both EDH 

and SDH hemorrhage are very close to skull than any other classes. Compactness 

from primary feature set, local_IPF, elliptical ratio and maximum distance ratio Lx 

from derived feature set, have projected good potential for EDH and SDH 

classification. Their potential is presented for visual interpretation in figure 5.12. 

Artificial neural network tool of Matlab is used to classify EDH and SDH. Input 

feature array is created using above mentioned potential features to train and 

validate the network.  

For training of the artificial neural network, features are extracted from 50 

EDH and 50 SDH hemorrhage images which are not part of the dataset under 

test. 70% data from the data (33 EDH, 37 SDH) are used for training, 15% (9 

EDH, 6 SDH) are for validation and rest are used for testing of classifier. Best 



117 

performance achieved by training and testing is reported as confusion matrix in 

figure 5.13. It has achieved 100% accuracy in its performance. This trained 

classifier is then used to classify patients’ dataset. For each dataset, there are 

multiple images having hemorrhage. The classifier predicts class for each image. 

The class having highest strength in a dataset is selected as the class of 

hemorrhage of that dataset. Using this method, entire database is classified with 

100% accuracy by this classifier.  

Figure 5.12: Distribution of potential features for EDH and SDH 

5.5. Conclusion 

Proposed classifier has segmented target group of hemorrhage successfully 

from database and sub-divided it into EDH and SDH accurately. Tree classifier is 

used to perform classification in two steps. It separates the non-target classes 

before final classification. A simple linear classifier performs the separation job 

with higher accuracy. Then the target group is classified into its respective classes. 

The initial elimination process increases classification accuracy significantly.  

An attempt was taken to classify the entire database directly into three 

classes in a single go. Skull vicinity, compactness, local_IPF, elliptical ratio and 

maximum distance ratio Lx were taken as classifier input features. A reduction in 
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the accuracy of classifier was experienced. The best possible performance, we were 

able to achieve is shown in figure 5.14. Though the classifier was trained with 0% 

error, accuracy of the classifier dropped to 95.8% during test. Skull vicinity which 

is a useful feature for classification of the target and non-target class has very low 

power in separating EDH from SDH as shown in figure 5.10. Similarly local_IPF, 

elliptical ratio and Lx are not potential features for classification of target class 

and non-target class. These input features are thus introducing noise in the 

classifier performance affecting the accuracy of classification result. 

The success of the proposed method will be a great support for medical 

system if implemented in practice. High accuracy and specificity are obtained in 

classification of EDH and SDH. With no false negative, the risk of delay in brain 

hemorrhage treatment due to machines’ misguidance in automatic detection, is 

lowered to zero. This is one of the most important requirements in disease 

diagnosis and is a critical parameter for any CAD system. 

Figure 5.13: Confusion matrix of EDH-SDH classifier 
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Figure 5.14: Confusion matrix of three class classifier 
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Chapter 6 

Conclusion 

Overview 

Proposed methods for hemorrhage segmentation and EDH, SDH classification are 

summarized in this chapter. The insights of different steps have been analyzed to 

understand the contribution of this work to the research world. Proposed binary 

features have shown significant impact in accuracy enhancement in different steps 

of the entire research. Method of arranging CT images in anatomical order is a 

useful technique for other brain researches too. Prospects and deficiencies of the 

entire work are discussed to propose further research for advanced version of the 

designed CAD with more facilities. A modification to make system more 

compatible with clinical process is proposed by using DICOM images directly as 

the input of the system.  
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6.1.  Introduction 

In this thesis - an automatic, fast and easy to implement methodology is 
proposed. This method has successfully segmented hemorrhage from CT images 

and has done classification of segmented hemorrhage in three classes – epidural 
hemorrhage, subdural hemorrhage and others. Both segmentation and 
classification have shown sufficient accuracy and sensitivity. This method was an 

attempt to support medical practitioners in their decision making process. The 
implementation of this automatic detection can save lives by accelerating 
diagnosis during emergency. 

Commercialization of proposed CAD will lower subjectivity in treatment 
with no tiredness. Use of this system in hospitals having CT machines but no field 
expert or radiologist will offer a quick initial diagnosis to initiate treatment. 

Different hospitals, using the same CAD, will have homogeneous exchangeable 
reports.  

6.2.  Research potential 

The entire research is divided into three major parts, and one additional 
part is added to introduce some binary features. This additional part is presented 
in chapter 2. Rest of the works was discussed sequentially in the consecutive 

chapters based on the process flow of the proposed CAD. Performance analysis at 
each step was done before moving to the next stage of the research.  

6.2.1. Proposed features 

Three easy to compute features are proposed in chapter 2.  These features 

are used in different stages of the research work to improve the performance of the 
proposed CAD. At preprocessing stage, data cleaning is done with the help of 
porousness and IPF information. Skull images, without any brain information 

within it, are identified by null or negligible pore count of respective images. These 
images need no attention in our process. The images, without skull, are also not of 
our concern for hemorrhage segmentation. Such no-skull images are identified by 

the IPF value. Elimination of these unwanted images, reduces the computational 
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cost as well as increases the performance accuracy of the proposed CAD - as 
demonstrated in chapter 3. Pore Information also helps to find the master image 
which works as the center image for bi-directionally propagated brain 

segmentation process. IPF value identifies the seed image in the dataset to initiate 
re-organization of CT images in anatomical order.  

In the classification of hemorrhage, IPF and compactness have a 

significant contribution. Both of these features return good separability value for 
classification of EDH and SDH. The overall classification accuracy drops to 98% if 
any of the two features, local_IPF and compactness, is removed. The confusion 

matrices of best performing neural networks, selected from 20 tests, are shown in 
figure 6.1.  

     (a)                                                                                     (b) 
Figure 6.1: Classifier performance (a) Without local_IPF feature, (b) Without compactness feature  

6.2.2. Image pre-processing 

Pre-processing of dataset before actual analysis of images is done to reduce 

noise. For hemorrhage segmentation, brain intracranial part is the ROI. The key 
achievements of this chapter are, arranging dataset in anatomical sequence, 
automatic seed point finding for mask definition, implementation of outer masks 

to increase segmentation accuracy in nasal area images, successive propagation of 
inner mask. This anatomical arrangement keeps the images of a dataset in the 
expected order. It is a useful technique for all kinds of brain CT inspection. The 
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concept of using double mask to restrict the segmentation search area, is 
introduced for the first time in brain CT image segmentation, as per our 
knowledge. The effectiveness is discussed in the result section of chapter 3. The 
successive propagation of inner mask had effectively included the brain areas, 
which are not included in the initial mask definition. It breaks the barrier of hard 
definition of a mask and makes it dynamic and adaptive. 

6.2.3. Hemorrhage segmentation 

In chapter 4, hemorrhage segmentation is done using simple histogram 

thresholding technique to keep the CAD simple and fast. The threshold is defined 
by newly introduced ‘upset point’. Clinical knowledge of the pattern of information 
intensity distribution and its alteration due to inclusion of hemorrhage is taken as 

domain knowledge to design this system. The speed and accuracy of proposed 
method has outperformed other established methods. This ‘upset point’ can be 
further explored for possible implementation in identification of other brain 

diseases. The concept of adding all thresholded images to find final location of 
hemorrhage returns good result. Other advantages of this method are the 
simplicity, ease and speed. 

6.2.4. Classification 

For classification, selection of optimum feature set is important to get rid 
of curse of dimensionality. Projecting the available set of features to a lower 
dimension feature plane is a common and effective technique used for dimension 

reduction. In this thesis, initially the primary features are projected to a low 
dimension secondary plane. Then, before final selection, all the features are 
combined. Filtering is done depending on the separability potential of the feature 

of that combined set. This process empowers us not to miss any potential feature 
irrespective of its type. Compactness, from primary feature set, is thus selected for 
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classification of EDH and SDH. The impact of this feature in classification is 
already discussed in the section 6.2.1.  

6.3. Limitations 

This work cannot detect multiple hemorrhages in a dataset. In case of 
Simultaneous Multiple Intracerebral Hemorrhages (SMICH), only the largest 
hemorrhage can be identified by this method. Though it is sufficient to trigger 

medical attention and the requirement of expert’s opinion, the report compiles 
incomplete information in diagnosis perspective. Proposed classifier also suffers 
from limited class classification issue. Hemorrhages other than EDH and SDH are 

grouped as ‘other’, not classified.  
In absence of sufficient volume of versatile data, it is difficult to overcome 

these above mentioned shortage. A standard benchmark database of brain CT 

hemorrhage needs to be created for better research in this field.  

6.4. Future works 

Further research can be done to propose modified algorithms which will 

identify all hemorrhages in an image. Other than selecting largest patch, an 
adaptive algorithm can be proposed to find all potential hemorrhage candidates in 
the segmented image. Research can be conducted to add more functions in the 

classifier, so that it can classify all the hemorrhages in their respective classes.  
To improve compatibility of the proposed method with medical support 

system, it can be modified to consider DICOM images as input to avoid image 
compression in pre-processing. From DICOM information file, HU scale and 
rescale factor can be accessed and used for intensity computation [158]. The 
hemorrhage patch size can be calculated using pixel spacing information to 
understand the severity of the disease.  

Use of powerful CAD will improve patient support and service by reducing 
death, rate of disability and other associated hazards. Cost is the most important 
factor which needs to be scaled to reach larger segment of population. The 

proposed CAD is designed using LabVIEW and Matlab, both of which are costly 
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platform. A low cost system can be designed by transforming the codes in low cost 
or free coding platform like Python.  

6.5. Closing note 

Brain image segmentation result presented in chapter 3 is useful for all 
kinds of brain artifacts detection, if restoration is implemented at end. Because of 
overlapping intensity range with skull, calcification information if any and some 

high intensity scattered pixels within brain are removed during thresholding of 
skull. Such areas introduce small holes in the extracted BM. For accurate lossless 
segmentation, such holes can be filled by actual intensity information. To avoid 

any nasal cavity inclusion, only holes have an area less than 0.1% of segmented 
image should be considered. These segmented images can be used for any brain 
disease diagnosis or further image analysis - as this restoration offers a lossless 

segmentation of brain images.  
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Appendix A  
[definition, formula, range] 

To understand practical ranges, the definitions and details formulae to 
evaluate IPF, C, S, P are discussed. 
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1. Information Packing Factor [IPF] 

Fraction of area of an image that is occupied by information which are 

useful for further analysis to extract data is proposed as Information Packing 

Factor [IPF] of the image.  

Consider an image I of size A which has u number of useful information 

and z number of non-useful or background information. IPF for that image can be 

calculated as  

                                 

Now the values of IPF vary depending on u and z.  

                                                            

                                   

                                 

So, the range of possible values of IPF can be written as  0≤IPF≤1 

In practice, u=0 is not possible. So, practically the range can be written as  

0<IPF≤1 

2. Compactness [C] 

Fraction of usable information spread area of an image that is actually 

occupied by foreground pixels is described as compactness [C] of the image.  

Compactness offers the idea that how closely the usable information is 

packed in the image. The measurement is local as only the spread area is counted 

not the area of whole image.  

Say, in the above mentioned image I, there are total y number of 

background pixels available within the usable information spread. Then 

                         

Now the values of C vary depending on u and y.  

                                                                     

                                 

                           

So, the range of possible values of C can be written as  0≤C≤1 

In practice, u=0 is not possible. So, practically the range can be written as  

0<C≤1 
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3. Scatterness [S] 

Fraction of usable information spread area of an image that is occupied by 

non-usable of background pixels is described as scatterness [S] of the image.  

Scatterness offers the idea that how loosely the usable information is 

placed in the image. This measurement is also local as only the spread area is 

counted not the area of whole image.  

So, compactness and scatterness are complement of each other. And the 

sum of both must be unity. We can calculate S if C is known by the following 

equation:  

                              

Now the values of S vary depending on u and y.  

                                

                               

                                                                               

 So, the range of possible values of S can be written as  0≤S≤1 

In practice, as u=0 is not possible practically the range can be written as 

0≤S<1 

The maximum value of y can be the value of z. So the range of y can be 

defined as 0≤y≤z. 

4. Porousness [P] 

Fraction of usable information spread area of an image that is occupied by 

non-usable information which has no link to background pixels as neighbor is 

described as porousness [P] of the image.  

Each such individual area creates a 'pore' in the image. 

Say, in image I, total area occupied by pores is w. Then 

                        

Now the values of P vary depending on u and w.  

                         

                                

                                                                 

So, the range of possible values of P can be written as 0≤P≤1 
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In practice, as u=0 is not possible practically the range can be written as 

0≤P<1. 

The maximum value of w can be y and maximum value of y can be z. So 

the range for w can be written as 0≤w≤y≤z.  

There can be one or multiple pores in an image. Now if the no of pores in 

image i is np and the area of the pores are p1, p2, ….. pn, then porousness 

contributed by any pore pi is 

                            

       

And so,     . Thus the range of Pi is same as P. 
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Appendix B 

[algorithm] 

Algorithms are described in details to generate code of IPF, C, S, P.  
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The image contains foreground part (F), background (B), porousness parts 

(D) and scattered gaps (G). This can be presented by Venn diagram as shown in 

figure B.1.  

 

Figure B.1: conceptual presentation of image pixel intensity distribution 

 

Information and background are disjoint sets, whereas porousness is a 

subset of scattered gap and gap is a subset of background.  

Logically it can be presented as  

                         

                                                 

                                        

The algorithms for extraction of the proposed features are described below. 

Let say, the image is I. The size of image is nXm, when image array has ‘n’ 

number of rows and ‘m’ number of columns. 

Total span of intensity in the image is i0 to ix. 

Foreground intensity range is ik to il.  

                    {
                 
                  

   

 

1. IPF measurement  

Mathematically IPF is evaluated using the formula as follows,  

     
   

     ⁄  =  
   

 
⁄       

where A=nXm=total area of the image 

 

To compute it automatically the code should be created following the algorithm 

given here.  

 

 

 

D 
G         

         

             

B 

F  
 

B 
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Ib <-- image 

th = threshold  

u=0 
for i=0 to (n-1) 

 

for j= 0 to (m-1) 

 
  if Ib[ ,j] ≥ th  

 
    Ib[i,j] = 1 

 
  else  

 
    Ib[i,j] = 0 

u= Ib 

IPF=u/(n*m) 
 

2. Compactness measure 

For compactness, total foreground pixel and all the gaps between foreground 

pixels need to be counted. The algorithm used is given below. Scatterness can 

be calculated easily by taking complement of compactness.  

ib ←       

  sp=0 //**total span of foreground  
f=0 //**foreground count 

for i=0 to (n-1) 
  

 

k1=-1 
k2=-1 
n=0 
for j= 0 to (m-1) 

 

 
  if ib[i,j]=1  

 
  

 

If n=0 

 
  

 

 
k1=j 
n= 1 

f=f+1  

 

for j= (m-1) to 0 

 
  if ib[i,j]=1  

 
  

 

k2=j 
break 

 
if k1 > -1 

  sp= sp+k2-k1+1 

C= f/sp **//compactness 

S=1-C **//scatterness  

b=sp-f **//background within foreground : secondary information 
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Scatterness (S) is calculated directly as     ̅          

It also cab ne calculated directly using formula         ⁄  

3. Porousness measurement  

To count porousness (P), all gap pixels having any link to background pixel as 

neighbour should be removed from sp.  

A border frame is appended to the image before operation. In case of no 

background around the foreground of the image which is under test, this added 

background will act as image background. The border frame is nothing but two 

extra rows and columns which are added at both ends of rows and columns of 

the image respectively as shown in figure B.2. Elements of these rows and 

column must be equal to background intensity value. Here it is considered as 0. 

To locate pixels contributing in porousness, non-porous pixels from scatter pixel 

cloud will be removed.   

 

FigureB.2: image with append frame  

 

//**porousness should not have overlapping boundary with foreground 

//**to confirm it, an extra layer is padded at each of the four sides of the image 
//**this is required for images having no background surrounding foreground 
 

Ib <-- image 

     I <-- Null image of {(n+2)*(m+2)} 

for i=0 to n 

    

 
for j= 0 to m 

  

  

I[i+1,j+1]=Ib[i,j] 

 
//**replace background outside foreground by 2 

//** step 1: (0,0) position pixel is considered as seed for flood 

I[0,0]=2 

    //** step 2: flood fill search  

repeat for k>0 
   

 
k=0 

    

 

for i=0 to n 

   

  
for j= 0 to m 

  

Image Frame  
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  if I[i,j]=2 

  

  
    for p=i-1 to i+1 

  
      for q= j-1 to j+1 

  
        if I[p,q]=0 

  
          I[p,q]=2 

  
          k=k+1 

//** convert to negative binary image 
for i=0 to n 

    

 
for j= 0 to m 

  
 

  if I[i,j]>0 
   

 
    I[i,j]=0 

  
 

  if I[i,j]=0 
   

 
    I[i,j]=1 

  
Parea=  I 

    
P= Parea/(u+Parea) 
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Appendix C 
[Ellaboration and illustration] 

Discussion on some necessary information 
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1. Chapter 3: Seed point

Local seed points and query end points of four sub-images are listed in 

table C.1. The search directions of query starting from seed point to end point is 

illustrated below pictorially in figure C.1. 

Sub-image Size 
Seed 

point 

Query end 

point 

Im11 n1Xm1 n1-1,m1-1 0,0 

Im12 n2Xm2 n1-1,m1 0,m 

Im21 n3Xm3 n1,m1-1 n,0 

Im22 n4Xm4 n1,m1 n,m 

Table C.1: seed point of sub-images 

 

Figure C.1: Sub-images with seed point and extreme point

0, 0 

m1-1 

Im12

Im21

Im22

0, m 

m1
End point 

Seed point Seed point 

n, 0 

Pixel  
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End point End point 

m/2 = m1

End point 

n/2 =  n1 

Im11

n, m 

Seed point

Im11 Im12

Im21 Im22

Row n1
 

Column m1 

Column m1-1 

Row (n1-1)
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2. Chapter 4: Dice Coefficient

Dice coefficient is the measure of accuracy in segmentation result by 

comparing segmented area with the ground truth. It is the measure of overlap 

index.  

                t     
        

|  |  |  |
    

Where, Ig and Is are ground truth image and segmented image respectively. The 

value of DC varies from 0 to 100%. With increase in overlapping pixels between 

these two images, the value of DC increases.  

Figure C.2: Illustration of dice coefficient 

The equation can be rewritten as follows to make it easy derivable from the 

confusion matrix,  

                t     
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