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ABSTRACT 

In the present scenario of industrialization, welding has become one of the 

prominent features for any development. Welding is defined as the process of joining the 

two materials so that the bonding exists between the materials. The welding process 

gives a permanent joint to the material which is joined together, but it also affects the 

properties of the constituents.  Any kind of deficiency in the welding process gives rise to 

weld defects. The process of welding generates many flaws such as gas cavity, lack of 

penetration, porosity, slag, crack, lack of fusion, worm hole, and undercut. 

Welded material should be inspected accurately in order to ensure the quality of the 

design and operation. Reliable welding guarantees safety and reliability. The weld defects 

are captured by the traditional X-ray imaging. Interpretation of the radiographic weld 

image is a tedious task and also, it is difficult to distinguish and calibrate a large number 

of defects. Hence, there exists a need for detection of welding flaws so that the defects 

can be eradicated and serious damage is averted. 

 Non – Destructive Inspection is one of the important aspects which are responsible 

for identifying the weld defects. It is widely used since it detects flaws without damaging 

the property of the objects. With the advent of computer technology, recent research 

exerts on finding a technological solution for accurate identification and classification of 

welding defects. The research for the development of an automatic or semi-automatic 

system for weld flaws (defects) classification using radiographic images of weld joints has 

grown considerably in the last decades. Image processing is one of the recent 

approaches which is being used for the identification and classification of weld defects. 

But, still there exists a need for an optimal algorithm that holds valid for the entire 

radiographic weld image database with better classification accuracy. In the present work, 

an algorithm has been designed to accurately classify weld defects.  

The first objective proposed was to develop a weld image database for multi flaws 

weld images. The second objective was to improve the quality of the radiographic weld 

images by using noise removal and other pre-processing techniques. Further, the images 

are segmented to get the information of the interest from the whole images, which was 

the third objective. The fourth and main objective was to extract the texture features using 

various basic texture feature extraction techniques, multi-resolution texture feature 
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extraction techniques and hybrid texture feature extraction techniques on segmented 

images for classifying them with the support vector machine (SVM) and artificial neural 

network (ANN) classifier into 9 different categories. 

For the purpose of development and validation of the algorithm, an image dataset is 

a primary requirement. In the present work, the image database has been created from 

Welding research laboratory, Department of Mechanical and Industrial Engineering, 

Indian Institute of Technology Roorkee, Roorkee. The images were radiographic in nature 

and were not in good quality. It is indeed a cumbersome process to analyze a 

radiographic image to identify the welding flaws. There were in all 79 radiographic images 

with 8 types of flaws and one without flaws. There were 08 images from gas cavity, lack 

of penetration consists of 20 images, 16 images have been captured from porosity, 16 

images of slag, crack had 11 images, lack of fusion consists of 07 images, wormhole 

consists of 02 images, and undercut consists of 03 images. Also, 05 images were 

considered having no defect. The radiographic films obtained from the laboratory were 

scanned with a high-resolution scanner to convert it in images. 

Pre-processing is the first phase of image analysis. The purpose of pre-processing 

is to improve the quality of the image being processed. Since the images are acquired by 

the scanner for digitizing so they are in RGB format. Further, they are converted from 

RGB to gray scale in order to reduce the computational time. All the images obtained 

were of different sizes. The images were resized according to their region of interest for 

further processing. Radiographic images have generally salt and pepper noise, impulse 

noise, random noise etc. caused by natural interventions and sometime during scanning 

process electronics noise is usually added in these images.  

In the present work, the median filter has been used to remove the noise in 

radiographic weld image and it removes the noise very efficiently here without affecting 

any relevant information. Afterward, the contrast enhancement has been done by 

Contrast-limited adaptive histogram equalization method. It enhances the dynamic range 

of the image-pixel gray level and enhances the contrast.  

For Image Segmentation which is a key step in image processing for image 

analysis, and is essential for the extraction of image features especially for geometrical 

features. Hence, for getting better accuracy for classification, after pre-processing the 

images were segmented with various segmentation techniques such as gray threshold, 
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edge detection, horizontal edge detection using an integral filter, contrast and horizontal 

response using an integral filter and multilevel thresholding. Thresholding is the simplest 

method of image segmentation. It was used for changing a gray scale image to binary 

images. Edge detection algorithms seek to detect and localize edges without any input or 

interference from humans.  

The proposed technique focuses to extract the texture features from the raw image 

and the segmented images to classify the database into 9 different categories of flaws. 

Feature extraction is a method of extracting information present in the images. It reduces 

the amount of resources required to define a large set of data accurately. Features have 

been extracted using gray level co-occurrence matrices, gray level run length matrices, 

local binary pattern, uniform local binary pattern, rotation invariant local binary pattern, 

rotation-invariant uniform local binary pattern, local binary pattern - histogram Fourier 

features, completed local binary pattern, adaptive local binary pattern, uniform adaptive 

local binary pattern, rotational invariant adaptive local binary pattern, rotational invariant 

uniform adaptive local binary pattern and binary Gabor pattern respectively. 

Feature extraction has been carried using full feature vector data of the above 

techniques and also reduced feature vector data. The LBP variants were used for the 

above purpose. In order to address the issue of image rotation effect, LBPri has been 

used. Also, LBPu2 is used to reduce the uniformity present in an image pattern. To 

overcome the disadvantages of the rotational invariant LBPri, the LBPriu2 is used. A 

detailed description of the result is presented in the chapter.  

Further to improve the classification accuracy of radiographic weld flaws DWT 

based feature extraction techniques have been proposed, where DWT decomposed sub-

images have been processed with LBP variants and BGP texture feature extraction to get 

the tentative features. As DWT has the property to emphasize the directional information 

of the images, the texture features obtained from these directional sub-images further 

help to the enrichment of feature vector data, which in turn help in better discrimination of 

the radiographic weld Images. Amongst, the proposed DWT based texture feature 

extraction techniques, DWTBGP has yielded the best classification accuracy using ANN 

with 92.40% using 70/30 ratio of randomly divided database. 

The classification accuracy of flaws present in radiographic weld Images, hybrid 

texture feature extraction techniques has also been proposed where, segmented images 
iii 

  



have been processed with GLCM, LBP, LBPu2, LBPri, LBPriu2 and their respective 

combinations. The proposed hybrid local binary pattern variant texture feature extraction 

techniques have fetched better classification results. 

Eventually, the thesis is concluded with a summary of the work presented in the 

thesis and also focuses on the scope of future work. An attempt has been made in the 

thesis to classify the weld images accurately with relatively higher classification accuracy. 
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CHAPTER 1: INTRODUCTION 

 This chapter presents the basics of the welding process, non-destructive testing, types of 

welding defects and the requirement to identify the different defects. At last, the objective 

of the presented work and organization of the thesis are outlined. 

1.1 Overview 

Welding is an efficient and economical process to join metals together which is 

achieved by adding some additional molten joining material on the melting part of the 

materials to be joined. It forms a strong bond when the molten material is cooled. In 

industries, It plays a major role for the purpose of construction, joining and repairing of 

steel beams, reinforcing rods in buildings, bridges, spacecraft, pipelines, nuclear 

containers, etc. During the process of welding, a number of different types of 

discontinuities can be present, which may arise due to material inconsistencies, the error 

produced by the operator, or other factors beyond the operators’ control. Irrespective of 

the source of error, the detection of discontinuities is critical. An unacceptable weld 

extremely reduces the bond between two materials and may cause failure. With the 

stress for use of X-ray images modality for examining structure-function relationships, 

many new challenges have come up, and to meet the same, the development of X-ray 

(radiographic) imaging has to accelerate even faster. This would be further driven by the 

fast development of digital computer technology, new methods of extracting in vivo 

functional and dimensional information, and the persistent approach in establishing 

localized flaws and development of defects in the weldment. 

The manual interpretation of radiographic NDE weld images depends upon the level 

of expertise of the specialist and is usually a time-consuming process as well as 

subjective. Image processing plays a vital role to interpret these images with an aim to 

spot the flaws in the weldment. A semi-automatic system can be introduced by employing 

different image processing techniques that would provide a consistent system when 

compared to classical methods. It would also be supportive in drawing a conclusion by 

employing the use of manipulating tools. The present work has been an effort in the 

direction of automating the inspection process. [1-7]. 

1 

 



 

1.2 Types of Welding 

There are various types of welding process out of which six welding processes [8] 

are discussed as given below  

1.2.1 Arc welding process 

Arc welding is the process in which the joining of the metal takes place by the arc 

developed between the base metal and the electrode. The base metal is connected to the 

power supply by one end and the other is connected to the electrode. The electrode may 

be consumable or non-consumable depending upon the weldment to be prepared. The 

arc usually produces a high temperature i.e. up to 30,000 degrees Celsius.  

The process uses a consumable electrode are like shielded metal arc welding, 

submerged arc welding, gas metal arc welding also known as MIG, electro gas welding 

and electro slag welding. 

The process does not require any consumable electrode or simply non-consumable 

electrode is tungsten arc welding (TIG), atomic hydrogen welding and plasma arc 

welding. 

1.2.2 Resistance welding process 

Resistance welding is the process in which the metal is joined by the heat produced 

due to the presence of resistance of the two metals being used. It is a type of pressure 

welding technique in which the pressure is applied between the metals so that its 

electrical resistance is changed that liberates the heat that is high enough to join the two 

metal pieces. It does not use any kind of filler metal. It is also of different types like 

resistance spot, seam welding, etc. 

1.2.3 Solid state welding process 

It is the process in which the joining of the metal takes place below the melting 

temperatures of the two metals to be joined. There is no need for the metal to be filled. 

The compression may or may not be applied for joining the metals. There is a various 

process that is included in it as ultrasonic, forge and hot pressure welding, diffusion 

bonding, and friction welding. They are widely used in mechanical industries like in 

aerospace and marine industries. 
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1.2.4 Radiant energy welding process 

It is the process in which the joining of the metal takes place due to the heat 

produced when a strong beam of electrons of electromagnetic radiations strikes at the 

base metal. It is carried out at low pressures or in vacuum pressure. It is two types, i.e., 

electron beam welding and laser beam welding techniques. It is utilized to produce a 

straight weld and there exists a high gap between the metals. It gives a clean weld after 

the completion process. 

1.2.5 Thermit welding process 

Thermit welding is the process in which the heat is liberated from an exothermic 

reaction that tends to take place between a metallic oxide and metallic reducing agents. 

The commonly used metallic oxides are aluminium oxide and iron oxide with a suitable 

reducing agent that can develop a temperature up to 2400 degrees Celsius which is 

helpful in the process of welding. It is also known as exothermic welding. It is basically 

used to join two dissimilar metals.. 

1.2.6 Oxy fuel gas welding process 

It is the type of welding procedure that involves the heat is produced by the reaction 

of oxygen gas with any fuel gas. There are various fuel gases, but the most common fuel 

gas is acetylene. So, this process is also known as the oxy-acetylene welding process. 

The heat generated is so high that the flame temperature reaches up to 3400 degrees 

Celsius which is high enough to melt the metal and joining of the metal to take place. 

In all the welding processes stated there is some type of flaw that takes place in the 

material. The flaw may arise due to various reasons maybe it is the mistake of the worker, 

dissimilar properties of the components to be joined, environmental factors, the heat may 

not be sufficient to join the metals. These all reasons tend to arise the flaws, or we can 

say defects in the welding. 

Also when the weld is completed, the base metal is very hotter at the point of the 

weld and subsequently along the length away from the point of fusion, the particles have 

different grain sizes and temperatures. These all properties create a temperature 

variation or simply a temperature gradient. In various cases, the gradient can result in 

various defects or we can say flaws. 
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1.3 Application of Welding 

• It is used in various industries like automobile, aeronautical industries for joining 

the parts of the materials.. 

• Different method of welding also has different implications like different fields of 

operation. 

1.4 Welding Defects or Flaws 

Instead of a smooth joint, sometimes, due to various reasons, during the process of 

welding, weldments are not joined properly. It results in producing different types of flaws 

in weldments. The principal welding defects or flaws may be classified as given in [7-8]. 

1.4.1 Gas cavity 

It is the cavity formed in the workpiece due to the entrapment of gases due to the 

shrinkage of the material at the time of solidification. 

1.4.2 Porosity 

These are the pores that are formed on the surface of the workpiece due to the trap 

of the gases. It is basically caused as the gas evolved during the welding process, which 

does not get enough time for the escape during the solidification process or simply the 

escape time for the gases is very short. 

 

Fig.1.1: Porosity 

1.4.3 Lack of fusion 

It is the lack of joining of the in the base metal and the weld metal. It is the lack of 

penetration of the weld metal into the base metal. It is mainly caused by a faulty welding 

technique, improper use of filler metal on the base metal. 
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Fig.1.2: Lack of fusion 

1.4.4 Lack of penetration 

It is the process in which the incomplete penetration of the metal occurs on the 

workpiece. This may result in the natural stress rising at the point of fusion of the two 

metals and may develop a crack afterward. 

 

 

 

Fig.1.3: Lack of penetration 

1.4.5 Wormhole 

It is the long tube-like cavities that are formed in the base metal due to the gas 

entrapped in the metals during the solidification or the cooling of the weld bead. It may be 

a single or multiple that depends upon the type of the base metal taken. It is caused 

basically by the irregular workpieces having varied holes on the surface. 
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1.4.6 Slag inclusion 

These are generally the oxides that are trapped in the weld zone. If the shielding 

during the welding process is not good, the environmental pollutants may also be a part 

of the slag. These can be prevented by using the correct amount of shielding gases, 

cleaning the weld surface after the welding process, proper designing of the joint in which 

the weld has to take place. 

 

 

Fig.1.4: slag inclusion 

1.4.7 Undercut 

An undercut is usually a groove formed near the two metals joining or near the weld 

and is due to the non-uniform feed of the filler metal.  

 

 

Fig.1.5: Undercut 
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1.4.8 Crack 

The crack is caused on the surface of the workpiece. The crack may be formed in 

the longitudinal or in the transverse direction. These are generally formed on the surface 

of the material at the time of the solidification process. These are mainly formed in the 

workpiece that has irregular grain structures. 

 

 

Fig.1.6: Crack 

 

1.5 Testing of Materials 

The materials can be basically tested by two types namely destructive and non- 

destructive testing which is summarized below: 

1.5.1 Destructive Testing of Materials 

In the destructive testing of material, the material is tested under the load till failure 

is traced out. The permanent deformation and rupture are caused by the material in it. It 

is used to test the materials performance and its ability under different loads and dynamic 

conditions. It is easier to carry out and large information is extracted from it. The test is 

carried on a large scale and a number of objects where the cost of destructing of material 

is negligible [9]. 

1.5.2 Non Destructive Testing of Materials (NDT) 

It is the testing of the material in which the material is tested without undergoing 

permanent damage or deformation. It is the most widely used technique in the industry as 

well as in research work. NDT has different methods like eddy current, radiographic, 
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liquid penetration, ultrasonic testing. It has applications in various fields like mechanical 

engineering, civil engineering, system engineering and medicine [10]. 

The testing of the materials helps to determine the various properties like strength, 

hardness, toughness, and various others. The properties mentioned have a significant 

impact on the usage of the material. So, the testing of the material plays an important role 

in determining the materials for the application purpose. 

1.6 Detecting Flaws Using NDT 

It is essential to inspect the manufactured components to detect the presence of 

any defects or degradation during production, post-production or in-service. Non-

destructive testing or evaluation (NDT or NDE) is carried out for protection, proper 

management, and grave management. It is usually achieved throughout the various 

phases of manufacture and in service. NDT examination has the advantages of improved 

speed during inspection and dependability, sensitivity to flaws of any orientation, suited to 

high operating temperatures. In the last two decades, NDT sciences have witnessed 

revolutionary progress in radiographical imaging and computerized ultrasonic image 

processing. 

As per the meaning, non - destructive examinations should be non - destructive and 

non–invasive. Several approaches, as well as techniques, have been established to 

substantial stages of complexity. They all require the process of apparatus and 

understanding of results by skilled, and qualified professionals. 

It permits the examination without interfering with the use of the final product. Also, 

an outstanding equilibrium is established among the quality control and finance is 

established. The term "NDI" comprises many approaches that can be summarized as 

follows: - 

1.    Notice internal or external inadequacies  

2.    Determination of structure, composition, or material properties  

3.    Evaluation of the degree of geometric characteristics  

4.    Measurement of the amount of flaw development. 

5.    Depiction of Severity of the flaws. 

It is used in any stage of design of the product's and making a procedure that 

comprises of a collection of materials, research and development, assembly, quality 
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control, and care. All kinds of difficulties and flaws can be observed in the expansion and 

use of mechanical devices, electrical equipment, hydraulic systems, etc. Several NDT 

methods are present to assist the researcher to inspect these dissimilar snags and 

various defects in an assortment of materials under varying circumstances [11 - 12]. 

Liquid penetrant (fluorescent inspection), magnetic particle inspection, eddy current 

testing, radiographic review, and ultrasonic inspection are the several non-destructive 

inspection methods that exist in the system today. 

A brief discussion of these methods is presented below: 

Expansions in image processing have widely extended the application and utility of 

NDI methods in the industry [13].  

 

 Penetrant Testing (PT) is also known as Dye Penetrant Inspection (DPI), or Liquid 

Penetrant Inspection (LPI) or Fluorescent Penetrant Inspection (FPI). Surface 

breaking flaws can be disclosed by pouring out a coloured or fluorescent dye from 

the defected region in this method. The capability of a liquid to be drawn into a 

‘clean’ surface breaking flaw by capillary action is the adopted technique for this 

testing. After a period of infiltration time, excessive surface infiltration is detached 

and a developer is applied. It results in the penetrant to reveal the flaw. 

 

 Eddy Current Testing (ET) or Electromagnetic Technique It is used on 

conductive materials. Crack detection to the rapid sorting of small components for 

flaws, size variations, or material variation can be evaluated by this method. 

Aerospace, automotive, marine and manufacturing industries are the various areas 

where its use can be found. Eddy currents are induced into the specimen by an 

energized coil which is brought near the surface of a metal component that tends to 

oppose the original magnetic field by the current’s setup magnetic field. The 

impedance of the coil in close nearness to the sample is affected by the introduction 

of the induced eddy currents in the specimen. When the eddy currents in the 

specimen change its pattern by the existence of the defector due to disparities in the 

materials, the impedance of the coil is changed. This alteration is measured and 

showed in such a way that specifies the type of flaws or state of the material. 
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 Magnetic testing also known as MPI (Magnetic Particle Inspection) is a 

technique that is used to find surface and near-surface flaws in steel and iron that 

belongs to ferromagnetic materials. The flaws are detected on the principle where 

magnetic lines of flux are distorted due to the existence of  flaws in such a way that 

reveals its presence. The ‘flux leakage’ is used to detect the flaws. It follows the 

employment of fine iron particles for the area under inspection. Magnetic particle 

inspection is mainly used to find surface breaking flaws. It can also be detected to 

detect sub-surface flaws, but its quality reduces with the rise in depth of flaws. 

 

Table 1.1: Real Images of Radiographs (Types of Weld Flaws in Cross-Section), 

British standard 1998 [14] 
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 Ultrasonic Testing (UT) - It helps in mapping the defects and characterizing the 

three-dimensional coordinates of the defects which is essential to carry out analysis 

of defect dimensions and hence take a decision for reject/rework/acceptance. UT is 

a very reliable methodology to establish repeatability and reliability of defects being 

descaled. 

 

 Radiography testing (RT) is the commonly used NDT method that notices the 

interior welding flaws. X-rays pass through metal and other substance that are 

opaque to ordinary light and thereby produces photographic records by the 

transmitted radiant energy [13]. Since dissimilar materials absorb X-ray to a different 

extent, penetrated rays indicate variations in intensity showing the internal structure 

of a weld. It records the varying degree of absorption of the radiation that penetrates 

the object on the conventional film radiography. This varying degree of absorption 

produces a latent image of the object that is inspected on a film that provides the 

internal details of the object (weldment, in this case). The amount of absorption 

depends on the thickness, density of the material as well as the absorbers’ atomic 

number. Detectors such as radiography film or a fluorescent screen are used to 

record the variation in the intensity of the evolving beam as visual images or signals. 

 

Industrial Radiography mainly focuses on recording images on film. Radiography 

consists of using the penetrations and differential absorption characteristics of radiation 

energy to examine materials for internet discontinuities. They are produced by high 

voltage x-ray machines, in which radioactive isotopes produce gamma rays such as 

Iridium 192 and Cobalt 60. These rays are placed near to the material to be reviewed and 

are made to pass through the material and are then taken on film. This film is then 

chemically treated a series of gray shades between black and white forms the end image. 

Thus, the obtained shadowed image of the object known as a radiograph.  

1.7 Literature Review 

A framework of classification is used to solve a multiclass problem. Information 

extraction from radiographic images is used for providing knowledge about it. It will 
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generate features as classes from the radiographic image, like length, breadth, dimension 

and so on. Information extraction results can be optimized well enough using multiple 

databases. The integration of spectral, spatial and structure parameters plays has a vital 

role in extraction.  

The technological developments in the field are presented in a chronological 

overview of radiographic weld inspection, segmentation and classification methods for 

information extraction is presented below: 

The application of image processing in the field of radiographic images has started 

from 1990 and still, it’s a challenging work for computer vision applications.  

In the beginning, Gayer A. et al. [15] developed a method for the automatic 

inspection of welding defects from real-time radiography which involved two-stage. First 

and foremost is a fast search, which locates faulty regions, and in the later stage, defects 

are located with more details. This has been attained by a consecutive similarity detection 

algorithm also known as the thresholding algorithm. Murakami K. [16] offered a simple 

algorithm that can automatically detect internal defects and classify them accordingly. 

The author has classified the types of flaws with the help of an expert system. Features 

have used the shape, position and intensity level of the defect pattern for the purpose of 

classification. However, the result attained from this technique is based on the types of 

defects. The system detects wormholes easily, but detecting cracks is difficult. At the 

same time, machine vision has been first applied for automatic inspection by Ker J. et al. 

[17].  Nockeman C. et al. [18] studied the reliability of radiographic weld detection using 

relative operating characteristics and show that it successfully differentiates between the 

inspection performance of various equipment or physical detection methods. Kato Y. et 

al. [19] proposed a computer-aided radiographic inspection expert system for recognizing 

different types of welding flaws. The identification rules were framed on the expert 

inspectors’ views. The knowledge employed for defect identification is basically of two 

types: i.e. knowledge gained from a film (in terms of features considered) as well as the 

knowledge gathered from other than radiographic films.  

Wu Z. et al. [20] have exploited histogram shape, object attribute or clustering 

behaviour, histogram entropy information, spatial context information and local adaptation 

for such purpose and developed a system using wavelet theory to detect multiscale 
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edges. A clarification system for automated visual inspection for quality evaluation of 

weldment was developed with the help of a pixel intensity scan by Cook G. E. et al. [21]. 

Hyatt R. et al. [22] has introduced a multistage method for flaw regions 

segmentation from the background radiographic images. The technique eliminates the 

overall background structure but preserves the details of weld defects. A double-threshold 

method for defects signature segregation was used for the filtered images. The author in 

[23] has introduced a concept for the extraction of welds from digitized radiographic 

images. The method was built on the opinion that the intensities of pixels in the weld area 

possess Gaussian distribution as compared with other areas in the image. This method 

held true only for segment linear welds. Later, in 1997, the author in [24] has used a 

multilayer perceptron (MLP) neural network-based process for the detection of a weld. It 

was applied for the purpose of segmenting both linear and curved welds. Further, the 

author in [25] has developed a technique that states that the welding flaws give rise to 

alterations in the overall line profile of a weld. The technique comprises of four parts such 

as pre-processing, curve fitting, profile-anomaly detection, and post-processing. The 

obtained result specifies that the technique is able to fetch fair detection and at the same 

time possess an acceptable false alarm rate. Liao et al. [26] proposed another approach 

using fuzzy clustering methods. Twenty-five features were selected for each line of the 

radiographic image. The results showed that fuzzy K-NN outperformed fuzzy c-means. 

Further, the authors in [27] have employed fuzzy classifiers, specifically fuzzy K-NN 

and fuzzy c-means, for classifying the weld patterns. It was used for the segmentation of 

curved welds and was capable of detecting varying weld flaws in one radiographic image. 

In the same year, Laggoune H. et al. [28] developed a system of image processing for the 

geometry characterization of fusion zone based on edge detection using the wavelet 

transform for multistate edge detection which is based on an algorithm using generalized 

Canny having good signal to noise ratio.  

        The author in [29] has developed a human visual inspection method that can 

identify 60-75% of the signification defects. It has inferred that human inspection of the 

gas pipeline is hard and problematic job when a great number of welds are involved and 

identified. Therefore, automation helps to lower the cost of the process and also improves 

the quality of the inspection. Elewa I. M. et al. [30] assessed the welding defects in 
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radiographs of the gas pipeline using computer vision and developed an algorithm to 

identify different types of welding defects in radiographic images.  

Mery D. et al. [31] used a texture feature for the automatic detection of welding 

defects. They segmented potential defects edges using Laplacian of Gaussian edge 

operator. The features of potential defects are extracted next. The features vectors 

provided by edge detection algorithm, in this case, were based on two features of texture 

i.e. occurrence matrix and 2D Gabor function.   

Siqueira M. H. S. et al. [32] used a radiographic test to evaluate the classification 

accuracy of the different types of weld defect such as undercut, lack of penetration, 

porosity, slag inclusion, crack or lack of fusion. For this, the authors have used non-linear 

pattern classifiers and have used neural networks. The results pointed to an estimated 

accuracy of around 80% for the classes of defects analyzed. Few filtering aspects were 

also used to improve the quality of radiographic image quality. Wang Xin et al. [33] 

compare adaptive wavelet thresholding achieved by using a median filter and it was 

found that adaptive wavelet thresholding can improve observation of defects better. Silva 

R. R. et al. used geometrical features for defect classification with nonlinear classifiers 

and prove that the quality of the features is more important than the quantity [34].  

The authors in [35] have introduced a flaw detection algorithm in radiographic weld 

images by incorporating morphological approach based on pixel characteristics. 

Valavanis I. et al. [14] proposed a technique for weld defect detection and classification. 

This uses texture measurements as well as the geometrical features which were given as 

inputs to the SVM, ANN, and k-NN classifier and found that the accuracy very much 

depends on the number of features extracted for classification. As reported, the accuracy 

is very low in the case of cracks, lack of fusion and non-defects. Here only six types of 

flaws were introduced. The author in [36] proposed a comparison based survey for the 

suitability of feature extraction methods employed for tungsten inclusion and hotspot 

detection from weld thermographs. Further, the authors have introduced a knowledge-

based model for image interpretation but still, the accuracy is not up to the mark. Jebarani 

Sargunar P. N. J. et al. [9] developed the Gaussian mixture model (GMM) classifier for 

weld defects. Vilar R. et al. [37] has defined a system for weld defects classification by 

using adaptive-network-based fuzzy inference system.  
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Zapata J. et al. [38] has developed a system to notice, recognize and classify 

welding defects in radiographic images. Further, the performance was evaluated for two 

neuro-classifiers based on an artificial neural network (ANN) and an adaptive-network-

based fuzzy inference system (ANFIS). The accuracy was 78.9% for the ANN and 82.6% 

for the ANFIS. This methodology was tested on 86 radiograph images that consist of 375 

defects having five types of flaws.  

In the above context, the present work has contributed in the direction for the 

application of image processing methods for extracting information in radiographic 

images. Till date, several research works are underway for detection, feature extraction, 

and classification of all the relevant information. The proposed work aims to improve the 

process of automated information extraction systems. 

Wang G. and Lion T.W. have used Fuzzy k-nearest neighbor, multi-layer perceptron 

neural network classifiers and bootstrap method for classifying 6 defect types by 

extracting 7 features [39] and 12 features. [40]. Also, Gray level Peak value was 

considered for trough and slant-concave fitted line profiles of weld images. For further 

increasing the classification accuracy using the sequential forward search strategy and 

the random search strategy approach. Also, Ant colony optimization (ACO)-based 

algorithms, nearest mean, k-nearest neighbor, fuzzy k-nearest neighbor, and center-

based nearest neighbor were employed [25] – [41]. Further, the author in [42] has 

employed the use of An adaptive-network-based fuzzy inference system (ANFIS) where 5 

defect types were identified by extracting reducing the features to 04. [37]. Further, 

Senthil Kumar et al. used CCD camera-based images for their defect classification. In this 

work, the Gray level value was considered for classifying four defect types. They 

employed the use of Artificial neural network (ANN) with back propagation (BP) [43] and 

also ANN with differential evolutionary algorithm (DEA) [44] separately thereby achieving 

accuracy of 90% - 95%.  

Further, the author in [45] has detected feature point index in weld defects by using 

Support vector machine (SVM) technique and Hough transform. Also, 04 features were 

extracted by using in the defect information such as area, perimeter, width and minimum 

bounding rectangle using the neighborhood boundary chain code (BCC) algorithm [46]. 

Acceptance decision algorithms (ADA) was developed by E.S Gadelmawla et al. in [47] to 

identify 11 defect types and 3 shape defects with only 03 features in gas pipeline weld 
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images. Also, Fuzzy pattern recognition EM and FCMI algorithms using the Average 

grayscale level and variance of the detected area [48 - 49]was developed.  

R.R. da Silva et al. [50-52] has used a Hierarchical and non-hierarchical linear 

classifier using a neural network technique for detecting 5 types of defects such as lack of 

fusion, undercuts, slag inclusion, porosity and lack of penetration using six different 

features. The authors have also used nonlinear pattern classifier with neural networks, 

statistical interference techniques with random selection data with (Bootstrap) and without 

repositioning for classifying 5 defects by extracting 4 and 5 features respectively.   

A multi-layer perceptron (MLP) neural network-based algorithm was fed to 25 

extracted features for identifying 6 weld defects in [53]. Several feature extraction 

techniques were employed by gathering the information about Local entropy, Joint 

entropy and Relative entropy using 2-D histogram and grey level histogram in [54]. 

Background Subtraction Method (BSM), and Region Growing Method (RGM) was used 

for weld defect identification in [55].  

With the advancement of technology and the use of several concepts, decision tree, 

and multi-layer perceptron’s for surface quality analysis was used in [56]. The decision 

tree and mixed fuzzy rule formation for defect detection of car body panel weld defects 

were done in [57 - 61]. Here, both neural network, Bayesian classifier [62] and SVM have 

been used as classifiers in order to increase accuracy. Pattern recognition using a vision 

system and neutral network using Shape matching properties for correction of defects 

have been extensively used in [63 - 65]. Signal processing transforms such as Hilbert 

Transform [66] and Cimmino’s and Simultaneous Algebraic Reconstruction Technique 

[67] have been used for identifying defects.  

1.8 Research Gap 

The following research gaps have been identified. 

1. Radiographic weld images are low contrast, dark and contain high noise. It 

becomes difficult to detect the defects properly with the noise in images. Hence, 

image enhancement is a noteworthy part of automated defects detection in weld 

images. As presented in the state of art, the transform-based filters are mostly 

used to remove the noise in weld images. It removes the impulse noise effectively. 
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However, it is less efficient to preserve the sharp transition of the defects and 

degrades the resolution. Also, it is not effective to remove other types of noises. 

2. Image features play a key role in the classification of weld flaws. Geometrical 

features are widely used for classification of weld flaws whereas, texture feature 

has not been much explored till now. There is a scope to extract texture features 

using various texture feature extraction techniques such as Gray level co-

occurrence matrix (GLCM), Local Binary Pattern (LBP) and its variants. 

3. There are less works reported in the literature, concentrated on weld flaws 

classification using ANN, SVM, and ANFIS. In a recent published paper, the 

accuracy has not been up to the mark and also not all types of weld defect have 

been addressed. The accuracy of weld flaws classification gets affected, 

especially between cracks and lack of fusion [14]. Hence, there is a scope to 

classify all possible weld defects flaws for the particular data set containing all 

types of flaws. 

1.9 Objectives of the Thesis 

Based on the research gaps, the following objectives were defined for carrying out 

the present research work.  

1. Create a weld image database for multi flaws weld images. 

2. Improving the quality of the radiographic weld images by noise removal and other 

preprocessing techniques 

3. Appropriate application of image segmentation techniques for proper Identification 

of the flaws. 

4. Extracting the various texture features of the images with and without 

segmentation and classifying them with the different classifiers in order to classify 

the different weld flaws present in radiographic images into 9 different categories 

as per the database with improved accuracy.. 

1.10 Organization of the Thesis 

The first chapter gives an introduction to welding.  A brief description has been 

presented. It also includes a brief description of the types of welding defects, NDT 

technology and the motivation for carrying out the present work. Also, a glance of the 
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literature reviewed for carrying out the research work is presented with research gaps and 

the research objectives for carrying out the research work. In the present work, the image 

database has been obtained from Welding Research and NDT laboratory, Department of 

Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee.  

In the subsequent chapter, pre-processing, and the contrast enhancement 

techniques have been carried out for improving the image quality for analysis. Further, 

feature extraction using Gray level co-occurrence matrices, Gray level run-length 

matrices, Local binary pattern, Uniform local binary pattern, Rotation invariant local binary 

pattern, Rotation Invariant Uniform Local Binary Pattern, Local binary pattern histogram 

Fourier features, Completed local binary pattern, Adaptive local binary pattern, Uniform 

Adaptive local binary pattern, Rotational Invariant Adaptive local binary pattern, 

Rotational Invariant Uniform Adaptive local binary pattern and Binary Gabor pattern 

respectively have been discussed. Feature extraction has also been carried using full 

feature vector data of the above techniques and reduced feature vector data using 

Principal Component Analysis.  

Further to improve the classification accuracy of radiographic weld flaws DWT 

based feature extraction techniques have been proposed: where DWT decomposed sub-

images have been processed with LBP variants and Binary Gabor Pattern to get the 

tentative features for classification has been discussed in chapter no 3.  

Chapter 4 deals with hybrid texture feature extraction techniques; where, 

segmented images have been processed with GLCM, LBP, LBPu2, LBPri, LBPriu2 and 

their respective combinations.  

Eventually, it is concluded with a summary of the work presented in the thesis and 

also focuses on the scope of future work. An attempt has been made in the thesis to 

classify the weld images accurately with relatively higher classification accuracy.  
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CHAPTER 2: TEXTURE FEATURE EXTRACTION TECHNIQUES 

This chapter explores the various texture features extraction techniques for the 

classification of flaws in radiographic weld images. It gives a concise description of the 

various existing feature extraction techniques for the proposed database. 

2.1 Texture Feature Extraction Techniques 

Texture features [68-76] plays a vital role in the classification of the image 

database. In the present work, some widely used texture feature descriptors [77, 68] are 

employed and their effectiveness for the classification of weld flaws images has been 

studied. The following are the texture feature extraction techniques discussed in this 

chapter.  

1. Gray level co-occurrence matrices (GLCM) 

2. Gray level run length matrices (GLRLM) 

3. Local binary pattern (LBP) 

4. Uniform local binary pattern (LBPu2) 

5. Rotation invariant local binary pattern (LBPri) 

6. Rotation Invariant Uniform Local Binary Pattern (LBPriu2) 

7. Local binary pattern histogram Fourier features (LBP-HF) 

8. Adaptive local binary pattern (ALBP) 

9. Completed local binary pattern (CLBP) 

10. Binary Gabor pattern (BGP) 

The brief description of each of the techniques is presented in the following 

subsections: 

2.1.1 Gray level Co-occurrence Matrix (GLCM) 

The GLCM was introduced by Haralick et al., [78] which has been extensively used 

to extract texture features of grayscale images. In this technique, a statistical descriptor, 

co-occurrence matrix is generated, which is a measure of how often a different 

combination of pixel gray values with specified distance and orientations occur in an 

image. The GLCM [79] based features offer an advantage compared to the texture 

information computed using the histogram, as they don’t carry any information about the 

relative position of the pixels with respect to each other. 
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Consider entry in ‘G’ represents the number of times a pixel with gray level ‘I’ is 

adjacent to a pixel with gray level ‘j’. The GLCM technique considers different spatial 

distance and 4 directions (i.e., 0°, 45°, 90°, and 135°) which is used to generate GLCM 

matrices. Thereafter, second-order statistical texture features are computed from the 

GLCM matrices. In total, 18 features of GLCM have been investigated here, which consist 

of 13 features proposed by Haralick et al. [78] and 5 features proposed by Soh and 

Tsatsoulis [80], and are listed in Table 2.1. The detailed mathematical description of each 

of the features is available in  [78, 80, 81]. 

A simple image below describes the GLCM feature extraction process in Fig. 2.1. 

 

Fig. 2.1: GLCM feature extraction process 

 

Table 2.1: Second-order statistical texture features calculated from GLCM. 

Sr.no. 

 

 

Features Sr.no. Features 

1 Angular second moment (f1) 10 Difference variance (f10) 

2 Contrast (f2) 11 Difference entropy (f11) 

3 Correlation (f3) 12 Information measure of correlation1 (f12) 

4 Sum of squares(variance) (f4) 13 Information measure of correlation2 (f13) 

5 Inverse difference moment (f5) 14 Autocorrelation 

6 Sum average (f6) 15 Dissimilarity 

7 Sum variance (f7) 16 Cluster shade 

8 Sum entropy (f8) 17 Cluster prominence 

9 Entropy (f9) 18 Maximum probability 
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2.1.2 Gray Level Run Length Matrix (GLRLM) 

A higher-order statistical texture feature measure technique known as Gray level 

run length matrices was proposed by Galloway [82]. It generates 2D matrices having 

elements, where ‘L’ is number of gray level; ‘R’ stands for the longest run. Each element 

of GLRLM matrices has information about number of times the original image has run of 

length ‘j’ of gray level intensity ‘i’ in the given direction. The statistical texture features of 

higher order computed from GLRLM matrices are listed in Table 2.2. 

 

Table 2.2: statistical texture features calculated from GLRLM. 

Authors Sr. No. Features 

Galloway 

1 Short runs emphasis (SRE) 

2 Long runs emphasis (LRE) 

3 Gray level non-uniformity (GLN) 

4 Run length non-uniformity (RLN) 

5 Run percentage (RP) 

Chu et al., 
6 Low gray level runs emphasis (LGRE) 

7 High gray level runs emphasis(HGRE) 

Albregtsen 

8 Short run low gray-level emphasis (SRLGE) 

9 Short run high gray-level emphasis (SRHGE) 

10 Long run low gray-level emphasis (LRLGE) 

11 Long run high gray-level emphasis (LRLGE) 

2.1.3 Local Binary Pattern (LBP) 

The LBP is an overwhelming texture descriptor strategy for image analysis because 

of its discriminative information representation capacity (Ojala et al., 1994 [83-84]). The 

application zones where LBP has appeared potential object identification, face 

recognition, demographic classification, and so on. It is viewed as a simple, yet 

computationally productive [84-87]. A circular neighborhood of variable size was 

proposed in [88] to conquer the deficiency of the original LBP operator of neighborhood 

measures that can't catch the predominant texture features in huge scale structures. 
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Fig. 2.2: The LBP computation process 

a) 3 3× local window image, (b) thresholding,(c) weight and d) new center pixel value (decimal). 

The LBP of an image with centre pixel coordinates (x, y) is given by [88]: 

( ) ( )
1

, 
0

, )2
P

p
P R p c

p

LBP x y s g g
−

=

= −∑  
 

where, cg  and pg , are the gray value of the centre pixel and its p neighbors, 

respectively. Also, ( ) 0,   0   
1,   0   

z
s z

z
< 

=  ≥ 
 it signifies a thresholding function.  

In , LBPP R , P represents a number of sampling points on the roundabout 

neighborhood, while R the resolution of the spatial goal of the area. Bilinear interpolation 

is connected to pixel values if the sampling points are not part of integer coordinates. The 

LBP operator produces a 256-dimensional texture descriptor for a given image. The 

pictorial representation of the calculation of new center pixel value for LBP is shown in fig 

2.2. 

2.1.4 Uniform Local Binary Pattern (LBPu2) 

The LBP designs are said to be uniform examples if at most 2-bit wise transition (1 

to 0 or 0 to 1) is accounted for in the circular binary pattern of LBP [88]. The histogram 

includes a separate bin for uniform patterns and just a single bin is assigned to all the 

non-uniform patterns. For a given pattern of P bits, P(P-1)+3 bits are generated. The 

decrease in the non-uniform pattern is because of the way that in com natural images the 

LBP patterns are generally uniform. Further, uniform patterns of texture represent about 

90% of the whole pattern with (8, 1) neighborhood and near 70% for (16, 2) neighborhood 

[89]. The   LBPu2 produces 59-dimensional surface descriptors. 
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2.1.5 Rotation Invariant Local Binary Pattern (LBPri) 

The rotation of an image results into various LBP codes. To address the issue of 

the image rotation impact, LBPri has been proposed [88, 90, 91]. In this way, to make 

every one of the adaptations of parallel codes the equivalent, the LBP codes are turned 

back to reference pixel position to invalidate the result of interpretation of a pixel location. 

The ,  LBPri
P R is created by circularly turning the fundamental LBP code and considering the 

pattern which has a base an incentive as given by [88, 90,91]: 

( ){ }, , LBP min , ri
P R P Ri

ROR LBP i=  
 

where, 0, 1 ,  2,  ,  1i P= … −  . The circular bit-by-bit right shift activity is performed 

on x  (a P-bit number) for i times by the function ( ),  ROR x i . The ,  LBPri
P R descriptor 

produces in general 36-bin histograms for each image due to 36 different, 8 bit rotation 

invariant codes [90, 91]. 

2.1.6 Rotation Invariant Uniform Local Binary Pattern (LBPriu2) 

The 2
, LBPriu

P R  was proposed to reduce the disadvantage of ,  LBPri
P R (poor performance 

because of crude quantization of angular space at 45°)  [90].  

A pattern is known as “uniform” if the uniformity value 2U ≤ , and defined as: 

( ) ( )( )
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=
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where, b stands for binary numbers. Given a binary number x, the circularly 

consecutive binary bits b are obtained by: 

( ) ( ) ( ), , 2 1b
bF x i ROR x i= ⋅ −  

 

 

 

 

 

 

 

 The logical operators "XOR" and "AND" are denoted by ' '⊕ and ' '⋅  (dot) operator, 

respectively and for a given bit sequence, i indicates the index of least significant bit 

(LSB). The rotation of uniform codes towards their minimum value generates ( )1P +

patterns. Merely counting the number of one's in the "uniform" patterns, binary number 

generates 2
, LBPriu

P R  pattern code. The other patterns are marked "miscellaneous" and 

grouped into a single value as given by: 
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The 2
, LBPriu

P R  produces 10-bin histograms. 

2.1.7 Local Binary Pattern Histogram Fourier features (LBP-HF) 

A rotation invariant LBP-HF protects the most discriminative qualities is obtained by 

taking the discrete Fourier transform (DFT) of [92, 93]. It is developed comprehensively 

for the whole image contrasted with other histogram-based invariant texture descriptor 

strategies which have standardization of rotation in the neighborhood region. The LBP-

HF's are invariant to cyclic moves along the rows of input histogram, and are said to be 

invariant to the rotational movement of an input image [92]. The DFT is utilized to build 

the features as given by [92, 93]: 

( ) ( )( )
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where, ( ),H n u  corresponds to the DFT of the nth row of 2LBPu  histogram 

( )( ),I Ph U n r . It produces 38-bin histograms for a given texture image.  

2.1.8 Adaptive Local Binary Pattern (ALBP) 

In the year 2010, an adaptive local binary pattern that enhances images 

classification efficiency by minimizing the variations of the oriented mean and standard 

deviation of absolute local difference c pg g− was introduced by Guo et al., [94]. A weight 

parameter ( )pw  given below is introduced to minimize the overall directional differences

*c p pg w g−  along diverse orientations. The objective function for ALBP [94]is 

expressed by: 

( ) ( ) 2

1 1

arg min , . ,
N M

p c p
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  = − 
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where, N and M are the number of rows and columns of the image, respectively. 

For each of the orientations 2 /p Pπ  of entire image, a weight factor pw  is approximated. 

The expression for ALBP is then given by  
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2.1.9 Complete Local Binary Pattern (CLBP) 

The completed local binary pattern (CLBP) enhances the significant texture feature 

extraction capability of LBP proposed by Guo et al. [95]. Fig 2.3(a) shows 3 3× block of an 

image having centre pixel value 34. The local difference, sign component and magnitude 

components are illustrated in Fig 2.3 (b), (c) and (d) respectively. 

 

 

Fig.2.3: CLBP computation process 

(a) 3 3× block of image, (b) local difference ( p cg g− ) (c) sign component, and (d) magnitude component. 

 

The structure of CLBP is depicted in Fig 2.4. In CLBP, two components namely 

local difference and centre gray level are obtained from the gray scale image. The sign 

(S) and magnitude (M) components of local difference is produced by employing local 

difference sign-magnitude transform (LDSMT) as given by [95]: 
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* ,  
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where, pm and
   1 , 0  

1, 0 
p

p
p

d
s

d

≥=  − <
are magnitude and sign of pd , respectively. The 

CLBP Sign (CLBP_S) and CLBP Magnitude (CLBP_M) operator portrays the 

complementary components of image's local structure. Also, the CLBP Centre (CLBP_C) 
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operator is created by altering centre pixel into binary code using global thresholding [93]. 

Here, CLBP_S, and CLBP_M operator are concatenated to shape the CLBP histogram.  

 

 

 

Fig.2.4: Structure of CLBP 

2.1.10 Binary Gabor Pattern (BGP) 

Binary Gabor pattern (BGP) is robust and efficient descriptors for texture 

classification [96]. The BGP employs J Gabor filters ( 0g to 1jg − ) with J different 

orientations. The texture image is convolved with these J Gabor filters. The radius of the 

filter mask is represented by R. For a circular image patch p having radius R is centred at 

location x on the image. Multiplying image patch p pixel-wise with J filters and later 

summing up all the elements produces a response vector { } : | 0,1, , 1jr r j J= = … − . A 

binary vector { } : | 0,1, , 1jb b j J= = … −  is produced by binarising ‘r’. The BGP is then 

expressed by: 

0

2
j

j
j

j

BGP b
=

= ⋅∑  
 

For a given 2J  binary patterns (b has J elements), the BGP operator generates 2J

output values. The rotation invariant binary Gabor pattern (BGPri ) is defined by: 

( ){ }BGP max , | 0,1, ,ri ROR BGP j j J= = …  
 

where, ( ),ROR x j  performs circular bitwise right shift operation on x (J-bit number) 

for j number of times. 
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2.2 Feature Dimensionality Reduction by Principal Component Analysis (PCA) 

With the high-dimensional features, the computational prerequisite of classifier rises 

and the characterization accuracy may not be enhanced because of high-dimensional 

features. Along these lines, a feature dimension reduction strategy [97, 98] is required to 

change the information from high-dimensional space to low-dimensional space. The 

undertaking of feature dimensionality decreases to hold the best subset of features of the 

full feature dataset [99,100]. The dimension of feature vector information can be 

decreased by PCA (include dimensionality decrease). 

PCA is one of the widely used linear transformation technique [101]. The PCA 

decreases data dimensions by registering a couple of symmetrical straight mixes of the 

first dataset features with maximal change. The PCA includes ascertaining the 

Eigenvalues and Eigenvectors of the covariance matrix of the original feature matrix. The 

Eigenvectors described by largest Eigenvalue are known as the first principal component 

(PC). The second PC is orthogonal to the first PC with the second largest difference, etc. 

The first several PC's have the most part of the variance, which is sufficient to represent 

the original  data without losing significant information of the data. 

2.3 Classifier 

Three classifiers, namely, Neural Network and two variants of SVM, viz., linear and 

radial basis function (RBF) kernel have been used here for weld flaws classification. 

These classifiers are briefly explained in the following subsections:  

2.3.1 Artificial Neural Network 

A neural network [90] is defined as the set of organized elements better known as 

neurons. Each connection has weight associated with it. It basically consists of three or 

more layers [102]. The first layer is the input layer which feds data into the network. The 

intermediate layer also knows as the hidden layer has the weights associated with it. The 

neurons in the hidden layer collect the weighted inputs and compute the outputs by the 

given transfer function hidden layer is fed to the subsequent layer until the desired output 

is achieved. In the present work, the Levenberg–Marquardt algorithm is employed. The 

network performance parameters mean square error “mse” was used for the purpose of 

classification and mean square error with regularization “msereg” was used for the 

purpose of location. 
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 In recent times artificial neural networks (ANNs) has become popular and helpful 

model for classification, clustering, pattern recognition and prediction in many disciplines. 

ANNs are one type of model for machine learning (ML) and has become relatively 

competitive to conventional regression and statistical models [77, 68].. It is an iterative 

technique that locates the minimum of a multivariate function which is given in the form of 

a sum of squares of non-linear real-valued functions [103]. The present work employs the 

use of Cascade Forward and Feedforward methods for the purpose of classification.   

Feed forward networks possess one or more hidden layers of sigmoid neurons 

followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn the relationship between input and output 

vectors which may be nonlinear and linear in nature. The previous network includes a 

weight connection from the input to each layer and from each layer to the successive 

layers and thus forms a cascade connection [104]. 

2.3.2 Support Vector Machine 

The SVM, an effective and robust supervised classifier, gives excellent 

generalization performance and has been fruitfully applied  to several pattern recognition 

problems in signal and image processing [105-112]. It was at first proposed as binary 

classifier [113,102]. Let ( ), i ix y  for  1,  2,  3,..., ,i l= represents a particular set of instance-

label pairs, 
n

ix R∈ , { } 1, 1iy ∈ + −
, then the SVM binary classifier predicts a label y, in iy  

for a given testing instance x. The optimization problem for binary classification is defined 

as follows [114]: 
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Subject to constraint, 

( ) 1 0,T
i iy w x b i+ − ≥ ∀

  

 where, ( ); ,i iw x yx
is a loss function capacity and C (nonnegative) is a 

punishment parameter (cost factor). The binary class SVM is stretched out for multiclass 

classification utilizing methodologies, for example, "one against one", "one against all", 

and "directed acyclic graph" [115]. Further, a multiclass SVM classifier proposed by 
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Crammer and Singer [116] includes taking care of single optimization issue as it were. 

The linear SVM and RBF kernel SVM (nonlinear) are quickly depicted here. 

(a) Linear SVM 

Nowadays, linear classifier is a prefessrd choice as it works directly on the given data 

space. The linear SVM classifier is ideal for a dataset having massive features and is 

sparse in nature. It is viewed as an effective and appreciates quicker training and 

testing technique [117, 118]. The multi-class SVM proposed by Crammer and Singer 

[116] has been used in linear SVM classifier, here. The decision function for p class is 

expressed by [114]: 

( ) ( )1,2, ,
T

p P p if x argmax w x= …=
  

(b) Radial Basis Function Kernel SVM 

At the point when the training set is indistinguishable in the original space, the original 

data ix  are mapped into a high dimensional space ( )Φ ix , in which mapped data are 

linearly divisible. The articulation for decision rule is given as [119]: 
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where, ( ),i jk x x  is a kernel function and  iα  imply the Lagrange multipliers (for dual 

optimization problems) which depicts the optimal isolating hyperplane. The radial basis 

function a standout amongst the most famous kernel function and is given by [119]: 
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γ
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where, γ  is the kernel parameter. 

2.4 Weld Flaws Image Database 

In order to accurately identify and classify the weld defects, an algorithm has been 

developed and tested on the database. The database of radiographic weld defects 

images is not available in the open domain for research purposes. Although, data sets 

used by researchers are very small in all the reported research work. Here, also the 

initiatives have taken for prepare of self-database of weld flaws for analysis, feature 

extraction, and classification purpose.  
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The image database has been prepared by researcher himself, after weld defects 

radiographic films prepared in the welding research laboratory of the department of 

Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee. For 

preparing the digitized images of the radiographic film of weld flaws, a high resolution, 

and high color depth HP Scanjet G3110 photo flatbed scanner has used here. This 

scanner is capable of inefficient scanning of the negative and radiographic film due to its 

high resolution and high color depth. Although, the images are radiographic in nature and 

are not in quality. It is indeed a cumbersome process to analyze a radiographic image to 

identify the welding flaws. Also, it should be kept in mind that the quality of images is one 

of the major criteria for obtaining accuracy in classification. 

There are in all 79 radiographic images with 8 types of the flaws and one without 

any flaw. Table 2.3 gives the detail description of the nature of the image and total no of 

images corresponding to each defect and in Fig 2.5, one image of each flaw from the 

database has been shown.                                                                                                                                                                                                

In the present work and in the consequent chapters’ effort has been made that the 

algorithm effectively works with the features extracted by different methods.  

Table 2.3: Description of Image Database 

S. No Nature of Image No. of. Images 

1 Gas Cavity 08 

2. Lack of Penetration 20 

3. Porosity 07 

4. Slag 16 

5. Crack 11 

6. Lack of Fusion 7 

7. Wormhole 2 

8. Undercut 3 

9. No Defect 5 

Total No. of Images      79 
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Lack of penetration(LOP) 
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Non defect(ND) 

 

Fig.2.5:  Digitize images of radiographic weld flaws. 

2.5 Methodology 

The methodology adopted for the present algorithm is explained below in detail:’ 

 

2.5.1 Procedural Steps 

Brief descriptions of these procedures are described below: 

1. The weld flaw images if available in RGB is converted to grayscale in order to reduce 

the computational time during feature extraction. The expression for RGB to grayscale 

conversion is given by 

luminanceG =0.2989 R + 0.5878 G + 0.1140 B× × ×  
where, luminanceG  represents grayscale image achieved by considering luminance 

information only and eliminating the hue and saturation information of colour image. The 

R, G and B signify red, green and blue components of colour image, respectively. 
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2. The grayscale images are then processed by the median filter of 3x3 mask size to 

remove the noise contents from the image. 

3. The state-of-the-art texture feature extraction techniques are utilized to extract the 

texture features of grayscale weld flaws images. 

4. The extracted features are then normalized in the range 0 to 1, before applying to the 

classifier as input. The normalization is done using the equation 

min( )F
max( ) min( )Norm

F F
F F

 −
=  − 

  

where, FNorm : normalized feature vector data, and F: original feature vector data. 

5. The normalized features data is given to different classifiers for classifying the images 

database into 9 categories.  

6. It can be verified form the classification accuracy that which combination of texture 

feature extraction technique and classifier is best. 

The above procedural steps in form of block diagram has been shown below in Fig. 2.6  

 

 
Fig.2.6: Weld flaw image classification using texture feature extraction technique. 
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2.5.2 Performance Evaluation of Feature Extraction Techniques 

The performance evaluation of the texture feature extraction techniques has been 

examined by dividing the data randomly to achieve the classification accuracy. The 

approach is discussed in the following subsections: 

Here, the extracted features dataset is divided randomly [105] into fixed training and 

testing subsets for each class. In the presented work, the examination has been carried 

out with two different proportions of training and testing datasets as given below: 

1. 80% data for training and 20% data for testing (80/20)  

2. 70% data for training and 30% data for testing (70/30)  

2.6 Experimental Results and Discussion 

The experimental work presented in this section investigates the efficacy of the 

various texture feature extraction techniques for the classification of radiographic images 

of the weld flaws database into 9 classes with the help of classifiers. The three classifiers 

used in this work are ANN, linear SVM, and RBF kernel SVM classifiers. 

2.6.1 Parameter Selection 

The GLCM technique generates 18 features in each direction for a given 

neighborhood distance. The neighborhood distance (d) in the range 1-10 has been 

investigated and d=2 has been selected as it yields the best result. Further, these 

features are calculated in four directions (0°, 45°, 90°, and 135°). 

The P and R parameter values are considered as 8 and 1, respectively, for all the 

variants of LBP (LBP, LBPu2, LBPri, LBPriu2, LBP-HF, CLBPu2, ALBPu2, ALBPri and 

ALBPriu2) because these values have yielded fast and accurate feature extraction as 

represented by [120]. Further, for texture images, uniform patterns account for 

approximately 90% of all patterns when using the (8, 1) neighborhood and these patterns 

account for around 70% in the (16, 2) neighborhood. The use of LBPriu2 having P = 8 and 

R = 1 has also reported the best result compared to (P, R) pair values of (16, 2) and (24, 

3) [88]. Furthermore, the R parameter is usually chosen small because the correlation 

between pixels decreases with distance, and a lot of the texture information can be 

obtained from local neighborhoods[121].  
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For linear SVM classifier, the optimum value of C has been selected by searching 

in the range (10-4, 10-3,…, 10+5), whereas the optimum value of C and gamma ( )γ has 

been selected by using grid search method in the range (10-4,10-3,…,10+5) for RBF kernel 

SVM classifier [122]. The tolerance of termination criteria ( )x  value has been tested in 

the range (0.1, 0.01, 0.001, and 0.0001) and found that x  = 0.001 gives the best trade-off 

between classification accuracy and computational time. Also, the bias (b) parameter 

value has been selected as 1 for SVM implementation.  

2.6.2 Experimental Results 

Table 2.4: Classification accuracy achieved by full feature vector data for different 

proportions of training and testing data of RDD using three classifiers. 

Texture feature 

extraction 

techniques 

% Classification accuracy achieved by classifiers for different 

proportions of training and testing data 

LSVM RBF kernel SVM          ANN 

80/20  70/30 80/20  70/30 80/20  70/30 

GLCM 59.49 58.22 59.49 56.96 86.07 86..07 

GLRLM 56.96 55.69 58.22 56.96 82.08 81.01 

LBP 54.43 54.33 60.76 59.49 83.54 82.28 

LBPu2 51.90 51.90 56.96 56.96 84.81 83.54 

LBPri 45.57 45.57 53.16 53.06 84.81 83.54 

LBPriu2 48.10 46.83 56.96 55.69 83.54 82.08 

LBP-HF 44.30 43.04 54.43 54.43 82.28 81.01 

CLBPu2 39.24 39.24 53.16 53.16 82.28 82.28 

ALBPu2 56.96 56.96 58.22 56.96 84.81 83.54 

ALBPri 49.36 49.36 56.96 55.69 83.54 83.54 

ALBPriu2 50.69 50.69 54.43 54.43 82.28 81.01 

BGP 59.49 56.96 64.55 63.29 91.14 89.87 

 

The classification accuracy of the various texture feature extraction techniques has 

been computed using the earlier discussed classifiers, who have been selected on the 

basis of their general performance for pattern recognition and classification task. The 
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classification accuracy has been computed for full feature vector data (FFVD) and PCA 

reduced feature vector data. To evaluate the performance of various texture feature 

extraction techniques randomly divided database (RDD) selection has been adapted 

here.  

2.6.3 Performance Evaluation of various Texture Feature Extraction Techniques 

The classification accuracy obtained for full feature vector data and PCA reduced 

dimension feature vector data is discussed in the below subsections. 

2.6.3.1   Full feature vector data (FFVD) 

The classification accuracy achieved by various well known texture feature extraction 

techniques for different ratios of training and testing data is listed in table 2.4 

 

Linear SVM classifier: Amongst the studied texture feature extraction techniques, full 

feature vector data (FFVD) of Binary Gabor pattern (BGP) technique and Gray level co-

occurrence matrix (GLCM) shows best classification accuracy of 59.49%, at 80/20, 

proportions of training and testing data of randomly divided database (RDD) where as 

their classification accuracy at 70/30 proportions of training and testing data of RDD are 

56.96% and 58.22% respectively. The Completed Local Binary Pattern (CLBPu2) 

technique has resulted in the lowest classification accuracy. The classification accuracy 

achieved by other texture feature extraction techniques is also listed in Table 2.4 for 

comparison purposes. However, the classification accuracy of the Linear SVM classifier 

using feature vector data produced by all the above techniques is in a very lower range.  

 

RBF kernel SVM classifier: The full feature vector data produced by Binary Gabor 

pattern (BGP) texture feature extraction technique has obtained the best classification 

accuracy of 64.55% and 63.29% for 80/20 and 70/30 proportions of training and testing 

data of RDD, respectively among all other techniques FFVD. Further, the feature vector 

data obtained by CLBPu2 texture feature extraction technique has given the worst 

classification accuracy of 53.16% for both 80/20 and 70/30 proportions of training and 

testing data of RDD. The classification accuracies achieved by other texture feature 

extraction techniques are also listed in Table 2.4. Here, it should be noted that the 
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classification accuracies of this classifier using all techniques FFVD are in between 

53.16% to 64.55%, which is not acceptable.  

ANN classifier: In the case of ANN classifier, again the BGP texture features with 216 

features have achieved the best classification accuracy of 91.14% and 89.87% for 80/20 

and 70/30 training and testing ratios of RDD. The second-best classification accuracy of 

86.07% for both 80/20 and 70/30 training and testing ratios of RDD has been performed 

by GLCM with 72 features. Whereas, the performance of LBP and its variants are 

average. The classification accuracy achieved by other texture feature extraction 

techniques using ANN classifier is also listed in Table 2.4. 

 

 

Fig.2.7: % Classification accuracy achieved by classifiers for 80/20 proportion of training 

and testing data of RDD. 

Among all three classifiers, the performance of the artificial neural network (ANN) 

classifier is superior with full feature vector data of all the above texture feature extraction 

techniques. 

2.6.3.2 The PCA dimensionality reduced feature vector data  

The classification accuracy results obtained by the PCA based reduced feature vector 

data by linear SVM, RBF kernel SVM, ANN has been listed in Table 2.5 to Table 2.7 

respectively. 
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Linear SVM classifier: Amongst the studied texture feature extraction techniques, 

full feature vector data (FFVD) of Binary Gabor pattern (BGP) technique and Gray level 

co-occurrence matrix (GLCM) shows best classification accuracy of 59.49%, at 80/20, 

proportions of training and testing data of random divided database (RDD) whereas their 

classification accuracy at 70/30 proportions of training and testing data of RDD are 

56.96% and 58.22% respectively. The Completed Local Binary Pattern (CLBPu2) 

technique has resulted in the lowest classification accuracy. The classification accuracy 

achieved by other texture feature extraction techniques is also listed in Table 2.5 for 

comparison purposes. However, the classification accuracy of Linear SVM classifier using 

feature vector data produced by all the above techniques is in very lower range.  

 

Table 2.5: % Classification accuracy achieved by PCA reduced feature vector data for 

different proportions of training and testing data of RDD using linear SVM classifier. 

Texture feature extraction 
techniques 

% Classification accuracy using linear SVM 

NoF 80/20(RDD) NoF 70/30(RDD)     

GLCM 50 59.49 55 58.22 

GLRLM 30 56.96 35 55.69 

LBP 140 54.43 150 54.33 

LBPu2 50 51.90 50 51.90 

LBPri 30 45.57 30 45.57 

LBPriu2 8 48.10 9 46.83 

LBP-HF 35 44.30 35 43.04 

CLBPu2 110 39.24 105 39.24 

ALBPu2 45 56.96 45 56.96 

ALBPri 25 49.36 25 49.36 

ALBPriu2 8 50.69 8 50.69 

BGP 140 59.49 145 56.96 
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Fig.2.8: % Classification Accuracy achieved by different feature extraction techniques 

using Linear SVM. 

 

Fig.2.9: % Classification Accuracy achieved by different feature extraction techniques 

using RBF Kernel SVM. 

 

38 

 



 

Table 2.6: % Classification accuracy achieved by PCA reduced feature vector data for 

different proportions of training and testing data of RDD using RBF kernel SVM. 

Texture feature 

extraction techniques  

% Classification accuracy using RBF kernel SVM 

NoF 80/20(RDD) NoF 70/30(RDD) 

GLCM 55 59.49 60 56.96 

GLRLM 35 58.22 35 56.96 

LBP 130 60.76 150 59.49 

LBPu2 40 56.96 50 56.96 

LBPri 25 53.16 25 53.06 

LBPriu2 9 56.96 9 55.69 

LBP-HF 30 54.43 35 54.43 

CLBPu2 100 53.16 105 53.16 

ALBPu2 40 58.22 45 56.96 

ALBPri 30 56.96 25 55.69 

ALBPriu2 10 54.43 10 54.43 

BGP 150 64.55 135 63.29 

RBF kernel SVM classifier: The PCA reduced feature vector data of BGP technique has 

produced the best classification accuracy of 64.55% (150 features), 63.29% (135 

features), for 80/20, and 70/30 training and testing ratios of RDD, respectively. Further, 

PCA reduced feature vector data of CLBPu2technique has achieved the worst 

classification accuracy of 53.16% (100 features), for same training and testing ratios of 

RDD. 

ANN classifier: The PCA reduced feature vector data of BGP technique has produced 

the best classification accuracy of 91.14% (120 features) for 80/20 and 89.87% for 70/30 

training and testing ratios of RDD respectively, whereas the second highest accuracy of 

86.07% obtained by ANN classifier for both 80/20 and 70/30 ratio of randomly divided 

data set. It is observed that ANN classifier produced better classification accuracy for all 

feature extraction techniques. The accuracy of classification for the ANN classifier is in 

between 81.01% to 91.14% for all feature extraction techniques.  
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Fig.2.10: % Classification Accuracy achieved by different feature extraction techniques 

using ANN classifier. 

Table 2.7: % Classification accuracy achieved by PCA reduced feature vector data for 

different proportions of training and testing data of RDD using ANN classifier. 

Texture feature extraction 
techniques 

% Classification accuracy using ANN 

NoF 80/20(RDD) NoF 70/30(RDD) 

GLCM 60 86.07  55 86.07 

GLRLM 35 82.08 35 81.01 

LBP 200 83.54 150 82.28 

LBPu2 50 84.81 55 83.54 

LBPri 30 84.81 25 83.54 

LBPriu2 10 83.54 9 82.08 

LBP-HF 35 82.28 35 81.01 

CLBPu2 100 82.28 105 82.28 

ALBPu2 50 84.81 40 83.54 

ALBPri 25 83.54 30 83.54 

ALBPriu2 10 82.28 10 81.01 

BGP 120 91.14 120 89.87 
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It is observed that in most of the cases, the PCA reduced feature vector data of the 

BGP technique yields best classification accuracy amongst all texture feature extraction 

techniques presented here. The PCA reduced feature vector data of the GLCM feature 

extraction technique closely follows the results produced by the BGP feature extraction 

technique. 

It is clearly visible from these figures that the PCA reduced feature vector data of 

the BGP texture feature extraction technique has established its superiority over other 

feature extraction techniques. It is worth noting that amongst all the three classifiers, the 

full feature vector data and the PCA reduced feature vector data both have given better 

performance with ANN for most of the texture feature extraction techniques considered in 

this discussion. However, RBF kernel SVM and linear SVM both give lower classification 

accuracy in comparison to ANN classifiers. Though PCA reduced feature vector data has 

achieved almost the same classification accuracy compared to full feature vector data, 

but these accuracies were obtained using a smaller number of feature vector data 

compared to full feature vector data, requiring less computation time in classification. 

2.7 Summary 

In this chapter, the effectiveness of the texture feature extraction techniques has 

been investigated for the successful classification of Radiographic weld Images into 09 

categories with the help of three different classifiers namely Linear SVM, RBF Kernel 

SVM, and ANN. The efficiency of the state-of-the-art texture feature extraction techniques 

has been tested using two different randomly divided databases. Further, in this method, 

02 cases are discussed (viz., FFVD and PCA reduced feature vector data). 

It is evident from the result that GLCM outperforms GLDM. GLDM features use first-

order statistics and are not very useful in weld defect flaw classification. GLCM captures 

second-order statistics so it enhanced the classifier performance. The features obtained 

from GLCM have the ability to locate more accurate classification boundaries due to 

combined features' ability to locate the classification boundaries more efficiently. 

BGP has the merits of high classification accuracy, small feature size, and fast 

classification speed. Even though BGP has a slightly larger feature size and works a little 

slower when compared with LBP, its classification accuracy is remarkably better. Due to 

its appreciable size and the running speed, it is more suitable in real applications. The 
41 

 



 

best classification accuracy of 91.14% has been achieved by FFVD data of BGP texture 

feature extraction techniques using the ANN Classifier. The PCA reduced feature vector 

data of the same technique have the same result for 80/20 RDD. It is also evident that the 

PCA reduced feature vector does not affect the accuracy in most of the cases. However, 

the advantage of PCA reduced database is that it takes less time for classification. Also, 

ANN is capable of locating nonlinear classification boundaries. The higher performance of 

ANN may be due to its ability to locate nonlinear classification boundaries. 
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CHAPTER 3: WAVELET  TRANSFORM  BASED  FEATURE  

EXTRACTION  TECHNIQUES  

This chapter explores the effectiveness of discrete wavelet transform (DWT) based 

local binary pattern (LBP) variants and binary Gabor pattern texture feature extraction 

techniques for classification of weld flaws using its radiographic images data base. The 

chapter starts with a concise description of the DWT, proposed DWT based texture 

feature extraction techniques for weld flaws classification and subsequent evaluation of 

the effectiveness of these techniques using ANN classifiers. 

3.1 Introduction 

The discrete wavelet transform (DWT) is nowadays established as a key operation 

in image processing. It is a multi-resolution analysis and it decomposes images into 

wavelet coefficients and scaling function. DWT has been utilized in a wide range of 

applications in signal and image processing like image analysis, object recognition [123], 

de-noising, segmentation, compression, biomedical imaging, fingerprint anti-spoofing 

[124] and texture feature extraction, etc. [125-135]. The DWT has gained popularity in 

image processing applications for efficiently providing spatial-frequency information [136-

145].  

The significant elements of 2D-DWT includes four critical elements, one scaling 

function ( ),x yϕ
, and three wavelet functions ( ( ) ,H x yy

, ( ) ,V x yy
and ( ) ,D x yy

), which are 

product of two one dimensional (1D) functions. The
Hy ,

Vy and 
Dy wavelets are useful in 

the measurement of gray level variations in the horizontal, vertical and diagonal 

directions, respectively. The scaledϕ  and translated y  basis functions are defined as 

follows [146]: 

( ) ( )/2
, ,  , 2 2 ,2j j j

j r c x y x r y cϕ ϕ= − −
  

( ) ( ) { } /2
, , ,  2 2 ,2 , , ,i j i j j

j r c x y x r y c i H V Dy y ϕ= − − =
  

The DWT expression to an image ( , )f x y of size M N× is given by: 
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In the above equation 0j is an arbitrary starting scale. The ( )0, ,W j r cϕ coefficients 

produce an approximation of image ( ),f x y
 at 0j  scale and 

( , , )iW j r cy coefficients 

provide diagonal, vertical and horizontal details at scale 0j j≥ .  

 

Fig. 3.1: 2D representation of the wavelet decomposition. 

 

To perform a 2D-DWT, initial a one-level, 1-D DWT is applied along the rows of the 

image. Second, a one-level, 1-D DWT is applied along with the segments of the changed 

image from the initial step. The effect of these two arrangements of tasks is a changed 

image with four particular groups: (I) LL, (ii) LH, (iii) HL and (iv) HH. Here, L represents 

low-pass separating, and H represents high-pass sifting. The LL band relates generally to 

a down-sampled (by a factor of two) rendition of the first image. The LH band will, in 

general, protect limited even features, while the HL band tends to isolate localized high-
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frequency point features in the image. At long last, the HH band will, in general, detach 

confined high-recurrence points includes in the picture. Additional levels of decomposition 

can extract lower frequency features include in the image; these extra dimensions are 

connected just to the LL band of the transformed image at the past dimension. A one-

level, 2D-DWT deterioration is delineated in Fig:3.1. 

A compactly supported orthogonal wavelet having a pre-allocated level of 

smoothness was structured by Ingrid Daubechies [147]. It has been utilized in several 

image processing applications [148]. Daubechies wavelet family is described by time 

invariance, delivers genuine number coefficients, deviated and has a sharp channel 

change band that is helpful in limiting the edge impacts between the recurrence groups. 

The fractal such as self-symmetry property encourages quick wavelet change in the 

calculation, likewise for a given help, it offers the most noteworthy number of vanishing 

minutes [147]. 

The necessity for the significant texture features depends on the accompanying 

realities. As the visual discernment assesses images on a different resolution in the 

meantime, the multi-resolution investigation capacity of DWT is useful in identifying 

features at a unique resolution, which is undetectable at any other resolution. Further, the 

LBP variations and BGP feature extraction techniques are notable for their capacity of 

removing substantial features of images. In this manner, the features acquired by 

consolidating DWT with LBP variations and BGP at a few dimensions of image 

decomposition separates unmistakable features. Moreover, joining these features 

together at a few dimensions of image decomposition enhances segregation ability of 

classifier for welding images. 

3.2 Proposed Methodology 

3.2.1 Procedural Steps 

The algorithmic steps for the classification of weld flaw images are shown in figure 

below. The four steps i.e., pre-processing, texture feature extraction, feature dimension 

reduction and classification are involved in the proposed approach.  
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Fig. 3.2: Block diagram of proposed DWT based LBP variants-based texture features for 

weld images classification. 

1. In the pre-processing step, the color (RGB) images are converted to the grayscale 

image to reduce the computation time and better performance as per earlier practice. 

 
2. The second step is the texture feature extraction. The Daubechies wavelet (db2) has 

been utilized to decompose these grayscales to five different levels/scales (L1 to L5). 

The transformation is carried out to obtain significant features of the image at a 

unique resolution that is unnoticeable at any other resolution. The decomposition 

process divides a grayscale image into four identical quarter-size sub-images. 

Subsequently, texture features are extracted from each of the sub images at different 

levels (L1 to L5) of image decomposition. Here, seven texture feature extraction 

techniques namely LBP, LBPu2, LBPri, LBPriu2, LBP-HF, CLBPu2, and BGP are 

used. Thus, on the basis of the combination of DWT with different variants of LBP 
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and BGP, following DWT based local binary pattern variants-based texture feature 

extraction techniques are proposed here and they are listed below. 

 

DWTLBP DWT based local binary pattern 

DWTLBPu2 DWT based uniform local binary pattern  

DWTLBPri DWT based rotation invariant local binary pattern  

DWTLBPriu2 DWT based rotation invariant uniform local binary pattern  

DWTLBP-HF DWT based local binary pattern histogram Fourier features  

DWTCLBPu2 DWT based uniform completed local binary pattern 

DWTBGP DWT based Binary Gabor pattern 

3. Further, these texture feature vectors containing numerous ranges of values and 

therefore normalized in the range of 0 to 1. The feature vector data is normalized 

using equation as already used in the earlier chapter 

min( )F
max( ) min( )Norm

F F
F F

 −
=  −   

 

where, FNorm : normalized feature vector data, and F: original feature vector data. 

4. The proposed texture descriptors deliver large complex features, which all may not 

be significant for discrimination of the weld images. Thus, for the reduction of feature 

vector size PCA is used in the third step.  

5. In the last step, ANN algorithms have been utilized to classify the given weld flaws 

image in different classes. Further, the efficiency of the proposed DWT based LBP 

variants and BGP texture feature extraction techniques has been commented on the 

basis of the classification accuracy acquired through the classifiers.  

 

The performance of the DWT based texture feature extraction techniques for 

classification of weld flaws images has been investigated employing randomly dividing 

the database with the training and testing ratio of 70/30 (i.e. 70% of data for testing, 15% 

for validation and 15 % for testing).  
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3.3 Experimental results and discussion 

The experimental work presented in this section investigates the efficiency of the 

DWTLBP variants-based texture feature extraction techniques for the classification 

radiographic images of the weld flaws database into 9 classes with the help of classifiers. 

The classifiers used for the investigation are ANN classifiers only because from previous 

chapters it is clear that only the ANN classifier gives a good result on all feature vector 

data extracted from the weld flaws image database since it has been able to detect the 

boundaries of all the images. 

3.3.1 Parameter selection 

The selections of parameters for efficient implementation of various feature extraction 

techniques and classifiers have been discussed in chapter 2. The classification accuracy 

obtained by the DWT (with LBP variants and BGP) based texture feature extraction 

techniques for radiographic images of weld flaws have been computed using ANN 

classifiers. The analysis of the results is presented in a similar manner but only for the 

ANN classifier, because SVM classifiers are not producing satisfactory results in all 

previous cases. So, further experiments have been performed using only the ANN 

classifier for both full feature vector data and PCA reduced feature vector data in order to 

achieve good classification accuracy.  

3.3.2    Performance Evaluation using Full Feature Vector Data (FFVD) 

The percentage classification accuracy attained by the DWT based texture feature 

extraction techniques for grayscale radiographic images of weld flaws database is 

presented in Table below. The classification accuracy obtained by the proposed texture 

feature extraction techniques using the best performer classifier ANN is discussed below. 

The ANN classifier performs far better in all the previous cases. 

 
From the below table, it is clear that in all the feature extraction techniques, it is noted that 

the percentage classification accuracy is maximum at the 3rd or 4th level of decomposition. 

When the images are further decomposed at a higher level, the accuracy reduces. So, it 

is clear indications of no further decomposition of images are required to achieve the 

goal. 
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Fig. 3.3: %age Classification achieved by ANN Classification different levels of DWT 

Decomposition 

 

The texture feature vector data of the DWTBGP feature extraction technique has given 

the best classification accuracy of 92.4% at third level of decomposition. In addition, the 

second-best classification accuracy of 87.34% has been achieved by texture feature 

vector data produced by the DWTLBPri texture feature extraction technique for third and 

fourth level of decomposition. The least classification accuracy of 81.01% has been 

achieved by using texture feature vector data produced by DWTLBPHF, among the 

proposed feature extraction techniques. All these classification accuracies are reported 

for texture feature vector data generated at the 3rd level or 4th Level of image 

decomposition. The same has been shown in figure 3.3. The detailed analysis is 

mentioned in Table 3.1 to 3.7. 
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Table 3.1:  Maximum Classification accuracy at each level of DWTLBP. 

Proposed 
techniques IDL 

Feature 
extraction time 

in seconds 
NoF % CA achieved 

by ANN classifier 

DWTLBP 

1 0.1630 1024 83.54 

2 0.2011 2048 84.81 

3 0.2168 3072 84.81 

4 0.2308 4096 84.81 

5 0.2433 5120 82.28 

 

From  table 3.1, it is evident that the combination of DWTLBP,  2nd, 3rd and 4th level image 

decomposition gives the classification accuracy of 84.81%.  

 

Table 3.2:  Maximum Classification accuracy at each level of DWTLBPu2 

Proposed technique IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved 
 by ANN classifier 

DWTLBPu2 

1 0.2569 236 84.81 

2 0.3038 472 84.81 

3 0.3275 708 86.07 

4 0.3402 944 86.07 

5 0.3494 1180 84.81 

 

From table 3.2, it is evident that the combination of DWTLBPu2 3rd and 4th level image 

decomposition gives the classification accuracy of 86.07%.  

 

Table 3.3:  Maximum Classification accuracy at each level of DWTLBPri 

Proposed technique IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved 
by ANN classifier 

DWTLBPri 

1 0.2615 144 83.54 

2 0.3149 288 83.54 

3 0.3400 432 87.34 
4 0.3595 576 87.34 

5 0.3758 720 86.07 
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From table 3.3, it is evident that the combination of DWTLBPri, 3rd and 4th level image 

decomposition gives the classification accuracy of 87.34%, thereby increasing the image 

classification accuracy. 

 

Table 3.4:  Maximum Classification accuracy at each level of DWTLBPriu2 

Proposed technique IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved by 
ANN classifier 

DWTLBPriu2 

1 0.2508 40 81.01 

2 0.2950 80 83.54 

3 0.3198 120 84.81 

4 0.3283 160 83.54 

5 0.3332 200 82.28 

 

From table 3.4, it is obvious that the combination of DWTLBPri 3rd level image 

decomposition gives the classification accuracy of 84.81%. The classification accuracy 

has reduced. 

 

Table 3.5:  Maximum Classification accuracy at each level of DWTLBP-HF 

Proposed techniques IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved by 
ANN classifier 

DWTLBP-HF 

1 0.2662 152 78.48 

2 0.3216 304 81.01 

3 0.3488 456 81.01 

4 0.3694 608 81.01 

5 0.3862 760 77.21 
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From table 3.5, it is evident that the combination of DWTLBP-HF2ndand 3rdlevel image 

decomposition gives the classification accuracy of 81.01%, which has further decreased 

the image classification accuracy. 

 

Table 3.6:  Maximum Classification accuracy at each level of DWTCLBPu2 

Proposed techniques IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved by 
ANN classifier 

DWTCLBPu2 

1 0.3037 472 81.01 

2 0.3724 944 82.28 

3 0.3947 1416 83.54 

4 0.4039 1888 83.54 

5 0.4257 2360 79.74 

 

From table 3.6, it is evident that the combination of DWTCLBPU2 3rd and 4th  level image 

decomposition gives the classification accuracy of 83.54%. 

 

Table 3.7:  Maximum Classification accuracy at each level of DWTBGP 

Proposed technique IDL 
Feature 

extraction time 
in seconds 

NoF % CA achieved by 
ANN classifier 

DWTBGP 

1 0.1980 864 87.34 

2 0.2261 1728 89.87 

3 0.2456 2592 92.40 

4 0.2689 3456 91.14 

5 0.2985 4320 88.60 

 

From table 3.7, it is evident that the combination of DWTBGP 3rd level image 

decomposition gives the maximum classification accuracy of 92.40%, which has further 

increased the image classification accuracy and has given the best result. 
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 Further, the time required by each of the above seven proposed DWT based 

texture feature extraction techniques for full feature vector data of a single image in the 

form of the bar chart is presented below in Fig. 3.4. The DWTBGP texture feature 

extraction technique has achieved best classification accuracy due to the merit of his 

feature of 92.4% at the third level of image decomposition, which required 0.2456 second 

of extraction time for individual images, which is much better than the time taken by other 

techniques except DWTLBP. The feature extraction time of DWTLBP is minimum (0.2011 

seconds at 2nd level) but accuracy is 84.81 % only. 

 

 

Fig. 3.4: Feature Extraction Time in Seconds for all the proposed feature extraction 

techniques. 

3.3.3 Performance Evaluation using PCA dimensionality reduced feature vector 

data 

In order to improve the classification accuracy of weld flaws using radiographic 

images of welding joints, PCA has been employed to reduce the dimensionality of full 

feature vector data. The performance of feature extraction techniques with PCA using 

different classifiers are listed in Tables below and have been succinctly discussed below. 

By employing PCA, results have been obtained with reduced features thereby, making 

the speed of operation and feature selection accurately. 
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Table 3.8:  Classification accuracy at each level of DWTLBP after applying PCA 

Proposed technique IDL 
Feature 
extraction time in 
seconds 

NoF 

% CA achieved by 
ANN classifier 

DWTLBP 

1 0.1630 300 83.54 

2 0.2011 250 84.81 

3 0.2168 300 84.81 

4 0.2308 400 84.81 

5 0.2433 250 82.28 

 

From table 3.8, it is evident that the combination of DWTLBP after applying PCA 2nd 

and 3rdand 4thlevel image decomposition gives the classification accuracy of 84.81% 

respectively which is the same as the FFVD result. The advantage of PCA is that it gives 

good results at less number of feature vector sizes.  

 

Table 3.9:  Classification accuracy at each level of DWTLBPu2 after applying PCA 

Proposed technique IDL 
Feature 
extraction time in 
seconds 

NoF 
% CA achieved by 

ANN classifier 

DWTLBPu2 

1 0.2569 200 84.81 

2 0.3038 400 84.81 

3 0.3275 350 86.07 

4 0.3402 450 86.07 

5 0.3494 400 84.81 

 

From table 3.9, it is evident that the combination of DWTLBPu2 after applying PCA 

at 3rd and 4th level image decomposition gives the classification accuracy of 86.07% 

respectively, which is again the same to FFVD result but at only 350 number of feature 

vector size instead of 708 feature.  
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Table 3.10:  Classification accuracy at each level of the DWTLBPri after applying PCA. 

Proposed technique IDL 
Feature 
extraction time in 
seconds 

NoF 
% CA achieved by 

ANN classifier 

DWTLBPri 

1 0.2615 50 83.54 

2 0.3149 150 83.54 

3 0.34 200 87.34 

4 0.3595 250 87.34 

5 0.3758 150 86.07 

 

From table 3.10, it is evident that the combination of the DWTLBPri after applying 

PCA at 3rd and 4th level image decomposition gives the classification accuracy of 87.34% 

respectively. 

 

Table 3.11:  Classification accuracy at each level of DWTLBPriu2 after applying PCA. 

 

 

From table 3.11, it is evident that the combination of DWTLBPriu2 after applying 

PCA at 3rd level image decomposition gives the classification accuracy of 84.81% 

respectively. 

From table 3.12, it is evident that the combination of DWTLBP - HF after applying 

PCA at 2nd, 3rd and 4th level image decomposition gives the classification accuracy of 

81.01% respectively which has decreased the classification accuracy.  

 

Proposed techniques IDL 
Feature 
extraction time in 
seconds 

NoF 
% CA achieved by 

ANN classifier 

DWTLBPriu2 

1 0.2508 30 81.01 

2 0.295 40 83.54 

3 0.3198 60 84.81 

4 0.3283 80 83.54 

5 0.3332 50 82.28 
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Table 3.12:  Classification accuracy at each level of DWTLBP-HF after applying PCA. 

Proposed techniques IDL 
Feature 
extraction time 
in seconds 

NoF % CA achieved 
by ANN classifier 

DWTLBP-HF 

1 0.2662 50 78.48 

2 0.3216 100 81.01 

3 0.3488 100 81.01 

4 0.3694 100 81.01 

5 0.3862 150 77.21 

 

Table 3.13:  Classification accuracy at each level of DWTCLBPu2 after applying PCA. 

Proposed techniques IDL 
Feature 
extraction time 
in seconds 

NoF % CA achieved 
by ANN classifier 

DWTCLBPu2 

1 0.3037 200 81.01 

2 0.3724 150 82.28 

3 0.3947 250 83.54 

4 0.4039 200 83.54 

5 0.4257 400 79.74 

 

From table 3.13, it is evident that the combination of DWTCLBPu2 after applying 

PCA at 3rdand 4thlevel image decomposition gives the classification accuracy of 83.54% 

respectively. 

 

Table 3.14:  Classification accuracy at each level of DWTBGP after applying PCA. 

Proposed techniques IDL 
Feature 
extraction time 
in seconds 

NoF % CA achieved 
by ANN classifier 

DWTBGP 

1 0.1980 300 87.34 

2 0.2261 550 89.87 

3 0.2456 600 92.40 

4 0.2689 550 91.14 

5 0.2985 350 88.60 
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From table 3.14, it is evident that the combination of DWTBGP after applying PCA 

at 3rd level image decomposition gives the classification accuracy of 92.40% respectively. 

It is quite obvious from the results that even after reducing the feature vector length after 

applying PCA that the classification accuracy is the same as before applying PCA. 

Hence, PCA reduces the time of operation. 

3.4 Summary 

In this chapter, the DWTLBP variants and DWTBGP texture feature extraction techniques 

have been proposed to enhance the classification accuracy of radiographic weld images. 

In the proposed techniques, the DWT has been employed to decompose the image up to 

5 different levels, followed by texture feature extraction with LBP variants and BGP. The 

resultant DWT sub-images coefficients obtained using the proposed methodology are 

distinct at each level and contain valuable information. Extracting texture features by 

variants of LBP from several level (L1 – L5) resolutions sub-images have increased the 

number of significant features. Combining the texture features of several levels (L1 – L5) 

generate significant feature vector useful in discrimination among the radiographic image 

of weld flaws. 

The best classification accuracy of 92.4% is obtained for DWTBGP texture features 

at the 3rd level of image decomposition using the ANN classifier. Further, reduction in 

feature vector dimensions is obtained using PCA and it is observed that the same result 

is obtained at a very less number of feature vector sizes after applying principal 

component analysis (PCA). In all the cases, the best result obtained at the third or fourth 

level of decomposition in both the cases i.e. with FFVD and PCA reduced vector data, 

and then after the result has been reduced for further decomposition level i.e. at fifth 

level. It should also be noted the application of PCA for feature reduction before applying 

classifier is beneficial because it very much reduces the time of execution. 
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CHAPTER 4: HYBRID FEATURE EXTRACTION TECHNIQUES 

This chapter explores the effectiveness of the hybridization of segmentation and 

feature extraction to enhance the classification accuracy of weld flaws. The segmentation 

of the weld image database has been proposed here with many effective segmentation 

techniques for weld images. Then these segmented images have been used for GLCM 

and LBP variants of feature extraction techniques and their combination in presented at 

such a manner that the quality of feature vector should be improved. After the feature 

vector extraction, these hybrid features have been used in the different architecture of the 

ANN classifier to achieve the better classification accuracy of weld flaws. 

4.1 Introduction 

In the present scenario of industrialization, welding has become one of the 

prominent features for any development. Welding [149] is defined as the process of 

joining two materials in such a manner that the bonding exists between the materials. 

Welding is effectively used in building aircraft, turbines, industries, pipelines, etc. But the 

welding needs a proper environment and it should be carried out in accordance with the 

characteristics of the material. But the failure gives rise to weld defects.  

In order to identify and classify the weld defects, there had been many researches. 

T. W. Liao, et al. [150] has proposed an automated radiographic NDT system for 

inspection of weld defects. The process involves two methods weld extraction i.e welds 

are extracted from radiographic images and an algorithm is developed to identify the 

flaws. This method was able to recognize only linear weld defects. Further, the author in 

[151] developed an algorithm for the identification of weld defects using curve fitting 

techniques. The database considered was only 24 images with 75 defects. S. V. Barai, 

Yoram Reich in [152] has used the concept of data mining namely insight and prediction 

for feature extraction of radiographic weld images. Also, he has proposed an idea to use 

these features to be fed to the neural network. The advantages of the concept were that 

better result was obtained due to the proper quality of the database.  

With the advent of time, feature extraction techniques along with neural networks 

have found to have its effect in Image processing. In this regard, Ying Yin and Gui Y. Tian 

in [153] has done the inspection and evaluation of radiographic weld images by 
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optimizing the features such as geometrical shape, edge chain code, and geometric 

moment invariants. The best features were extracted and fed to the feed-forward back-

propagation neural network for the classification of weld images. The author was 

successfully improving accuracy after feature optimization. Further, Rafael Vilar, Juan 

Zapata and Ramon Ruiz [42] introduced a system for the detection of weld defects using 

image processing, noise reduction, contrast enhancement, and thresholding for proper 

identification of the weld regions and appropriate classifications of weld defects. The 

geometrical features extracted were fed to an artificial neural network for classification. 86 

radiographic images were considered. Even though results obtained were promising but it 

included a complex computer requirement.  

The support vector machine has emerged as a proper classification tool. Ioannis 

Valavanis and Dimitrios Kosmopoulos [14] have developed a mechanism for the 

detection of flaws by extracting 43 texture and geometrical features. The features 

extracted were fed to Support Vector Machine, Neural Network, and k-NN classifiers. The 

computational time was significantly reduced but still, the accuracy was limited to 85.40%. 

Faiza Mekhalfa and Nafaa Nacereddine [154] proved the effective use of support vector 

machine over the traditional artificial neural network. The focus was on to develop an 

algorithm for successful weld image classification and which consumes less 

computational time. 344 images were considered with only 04 defects. The pixel size 

considered was 640 X 640.  

The authors used geometrical features and compared the result with the Support 

vector machine and multilayer perceptron. A. Azari Moghaddam and L. Rangarajan [155] 

have proposed an algorithm to classify the weld defects using k nearest neighbor and 

support vector machine classification. The image databases considered only three 

different types of weld defects. The proposed algorithm was specially meant for lengthy 

defects.  

In the present work, an attempt has been made to accurately identify and classify 

the weld defects. The image database has been pre-processed and segmented then the 

features have been extracted by GLCM, LBP, LBPri, LBPu2, LBPriu2, and combination of 

(LBP, LBPri, LBPu2, LBPriu2) and feed to the artificial neural network for classification. 
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4.2 Sample Image Database 
 

In order to accurately identify and classify the weld defects, an algorithm has been 

developed and tested on the database. The image database has been obtained from 

Weld Testing and NDT laboratory, Department of Mechanical and Industrial Engineering, 

Indian Institute of Technology Roorkee. The images are radiographic in nature and are in 

not quality. It is indeed a cumbersome process to analyze a radiographic image to identify 

the welding flaw. Also, it should be kept in mind that the quality of an image is one of the 

major criteria for obtaining accuracy in classification. Detailed information about the 

image database is presented in Chapter - 2. 

4.3 Image Pre-processing 

 In order to process the image for the purpose of testing of algorithm, all the raw 

digital imaged needs to be processed. For this purpose, following steps are involved: 

4.3.1 Noise Removal 

In the present work, the median filter has been used to obtain an efficient and 

reliable radiographic weld image. The electronics noise [157] is usually present in these 

images. The median filter is a non - linear method to de-noise the image. It removes 

noise by moving through the image pixel by pixel, replacing each value with the median 

value of the neighboring pixels. This pattern is known as “window” which slides, pixel by 

pixel over the entire image. The median is calculated by first sorting all the pixel values 

from the window into numerical order. Further, all the pixels are being replaced with the 

median value. It is useful as it removes relevant defects without decreasing image 

sharpness. 

4.3.2 Contrast Enhancement 

After the pre-processing technique, the contrast enhancement has been done by 

Contrast-limited adaptive histogram equalization method [158-159]. It enlarges the 

dynamic range of the image-pixel gray level and enhances the contrast. An enhancement 

function is applied over all neighborhood pixels from which transformation function is 

derived [159]. Fig.4.1 (a) shows the original radiographic image with gas cavity defect (b) 

shows the contrast-enhanced image and (c) reflects the histogram of the adaptive 

histogram equalization method. 
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Fig. 4.1: Contrast enhancement of the radiographic image of the gas cavity 

 

4.3.3 Image Segmentation 

Image segmentation is a key step from image processing [149] to image analysis 

[160]. Since a qualified segmentation is the prerequisite and base of the consequent 

processing such as object extraction, parameter measurement and object recognition 

[150]. 

After pre-processing the radiographic images, the segmentation process is 

essential for the extraction of image features, especially for geometrical features. Hence, 

for getting better accuracy for classification, after pre-processing the images are 

segmented with various segmentation techniques such as Gray Threshold, Edge 

Detection, Horizontal edge detection using Integral filter, Contrast and Horizontal 

Response using Integral Filter and Multilevel Thresholding.  

 

Gray Threshold is a straightforward and simple method. In this case, an optimal 

threshold is selected by the discriminant criterion, namely, so as to maximize the 

separability of the resultant classes in gray levels. The procedure is very simple, utilizing 

only the zeroth- and the first-order cumulative moments of the gray-level histogram.  

 

Edges in digital images are defined as sharp intensity transitions. Edge-detection 

algorithms seek to detect and localize edges without any input or interference from 

humans. These algorithms are typically application based and may not produce the same 

results for a given image. 
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Pre-processing is the first phase of image analysis. The purpose of pre-

processing is to improve the quality of the image being processed. It makes the 

subsequent phases of image processing like recognition of characters easier. 

Thresholding is the simplest method of image segmentation. It can be used for changing 

a grayscale image to binary images. Once computed a measure of edge strength 

(typically the gradient magnitude), the next stage is to apply a threshold to decide 

whether edges are present or not at an image point. The lower the threshold, the more 

edges will be detected and the result will be increasingly susceptible to noise and 

detecting edges of irrelevant features in the image. Conversely, a high threshold may 

miss subtle edges or result in fragmented edges.  

 

 

Fig. 4.2: Multilevel thresholding process 

 

Image acquisition 

Gradient of image x and y 

Gradient 

Multilevel thresholding 

Output edge  of image 
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The process of multi-level thresholding works in five steps shown in Fig. 4.2. First 

step for the image acquisition, it is a process to eliminate noise from received test image, 

second gradient calculation along the x and y-axis, third block for gradient, the value of 

gradient helps to separate two different thresholds, forth for multi-level thresholding, at 

this stage different threshold level 3 and level 4 are calculated and find the best one, then 

got the output edge of image. 

The reason for applying various segmentation threshold is because a particular 

segmentation technique gives the best result for particular types of weld flaws [158]. 

Hence, different types of combinations of segmentation techniques are applied to fetch 

better accuracy in classification. 

Since Segmentation is the process of partitioning of the image and further analyzing 

it. The segmentation deals in the division of the image in the subdivisions. This 

subdivision of the image continues until the region of the interest of the required defect in 

welding is not solved.  

It is not necessary that each segmentation technique fetch the best result for every 

type of defect. Each segmentation classifies the image differently and gives different 

results that are discussed in the next section. 

The flow charts below denote the steps carried out in the segmentation process: 

 

Fig. 4.3: Block diagram of Image Segmentation 
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There are various segmentation methods that are being followed as mentioned 

below: 

4.3.3.1 Thresholding 

It is the simplest and most commonly used segmentation technique in the image 

segmentation. It can be used to create a binary image. The threshold value or some 

specified value is given to the program below which all the pixels diminish and the higher 

value pixels are only shown, this is how thresholding technique works 

 

Nature of Flaw Original Image Segmented Image 

Wormhole 

  

Gas Cavity 

 

  

 

Fig. 4.4: Segmented image after applying thresholding 

4.3.3.2 Global Thresholding 

The global thresholding is similar to the thresholding, the only difference is that it 

uses the Otsu method for thresholding. 
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Nature of Flaw Original Image Segmented Image 

 

 

Gas Cavity 
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Fig. 4.5: Segmented image after applying Global thresholding 

 

4.3.3.3 Edge Detection 

An edge is a boundary that separates the two regions of differing intensities in an 

image. The different techniques are being used for the edge detection. Some of the edge 

detection techniques are as follows: 

Sobel: It finds the edges at those points where the gradient of the image is 

maximum. 

Laplacian of Gaussian: It finds the edges by looking for zero crossings after the 

filtration of the image. 

Roberts: It finds edges at those points where the gradient of the image is 

maximum. 

Prewitt: It finds edges at those points where the gradient of image is maximum as 

in Roberts. 

Canny:  It finds the edges by looking for the looking maxima of the gradient. It 

calculates the gradient using the derivative of Gaussian filter 
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Nature of Flaw Original Image Segmented Image 
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Fig. 4.6: Images showing different intensities 

4.3.3.4 Horizontal Edge Response 

After applying the edge detection segmentation technique, the following images are 

obtained which are used for further analysis. 

 

Nature of Flaw Original Image Segmented Image 
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Lack of Fusion 
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Fig. 4.7: Images obtained after applying edge detection segmentation technique 

4.3.3.5 Multi-Level thresholding 

It is the thresholding method that implies Otsu’s thresholding technique for 

segmentation purposes. 

 

Nature of Flaw Original Image Segmented Image 
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Fig. 4.8: Images obtained after applying multilevel thresholding technique 

 

4.4 Experiment – 1- (Image Segmentation + GLCM) 

The methodology adopted for the identification and classification of welding defects 

have been explained in the flowchart given below in Fig. 4.9. 
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Fig. 4.9: Block diagram of Image Classification by Experiment - 1 

 

The accuracy classification has been evaluated for both 8 and 64 level features 

extracted from GLCM and is shown in Table 4.1.  
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Table 4.1:  Classification accuracy (%) 

 

The features obtained from the images have been fed to a neural network. As 

already discussed, Levenberg-Marquardt has been used for training. In this cascade 

forward and feed-forward architecture has been selected for analysis. The results were 

calculated for a range of 100 neurons. The optimal neuron for getting the highest accuracy 

has been depicted in table 4.2. 

 

Table 4.2: % classification accuracy of GLCM (8 features) 

No. of 
GLCM 

Features 

Neural 
Network Segmentation Techniques Classification 

Accuracy (in %) 
No. of 

Neurons 

8 cf Gray Thresh 72.2 99 

8 cf Contrast Enhancement 81 75 

8 cf Edge Detection 77.2 96 

8 ff Horizontal Edge Responses 
Using Integral Filter 77.2 98 

8         ff 
Contrast enhancement + 
horizontal response using 
integral Filter 

78.5 95 

8 ff Multi-Level Thresholding 83.5 58 

 

In table 4.3 cascade forward architecture has been selected for analysis. The 

results were calculated for a range of 100 neurons. For contrast enhancement techniques, 

an accuracy of 88.6 % at 58 neurons is obtained. 

S. No. 
No. of 
GLCM 

Features 
Type of Neural Network Classification 

Accuracy (in %) 
No. of 

Neurons 

1 8 
Cascade Forward (cf) 81 75 

Feed Forward (ff) 79.7 64 

2 64 
Cascade Forward (cf) 88.6 58 

Feed Forward (ff) 87.3 60 
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Table 4.3: % classification accuracy of GLCM (64 features) 

No. of 
GLCM 
Features 

Network Segmentation Techniques Maximum 
Accuracy (in %) 

No. of 
Neurons 

64 Cf Gray Threshold 81 58 

64 Cf Contrast Enhancement 88.6 58 

64 Cf Edge Detection 79.7 58 

64 Cf 
Horizontal Edge Responses Using 

Integral Filter 
82.3 72 

64 Cf 
Contrast Enhancement+Horizontal 

Response Using Integral Filter 
83.5 92 

64 Cf Multi-Level Thresholding 84.8 89 

 

In table 4.4 feed-forward architecture has been selected for analysis. The results 

were calculated for a range of 100 neurons. Here also, for the contrast enhancement 

technique, we obtained the maximum accuracy of 87.3%. 

Table 4.4: % classification accuracy of GLCM (64 features) 

No. of 
GLCM 

Features 
Network Segmentation Techniques 

Maximum 
Accuracy     

(in %) 

No. of 
Neurons 

64 ff Gray Thresh 82.3 96 

64 ff Contrast Enhancement 87.3 60 

64 ff Edge Detection 82.3 82 

64 ff Horizontal Edge Responses 
Using Integral Filter 83.5 84 

64 ff 
Contrast Enhancement + 
Horizontal Response Using 
Integral Filter 

86.1 89 

64 ff Multi-Level Thresholding 82.3 51 
 

It is observed from the above table that for 8 features with 75 neurons, 81% 

accuracy was observed for cascade forward. While the only 79.7% accuracy was 

achieved at 64 neurons, for feed-forward. Similarly, for 64 features using cascade feature 

at 58 neurons the optimal classification accuracy of 88.6% was obtained which is very 

promising as compared to the work in [161], where the accuracy classification is 86.1%. It 

73 

 



 

might be due to the pre-processing of the image where noise has been removed and 

also, contrast enhancement has been done.  

 
Fig. 4.10: Individual Classification Accuracy of each flaw with GLCM 8 Features 

The individual classification accuracy of each type of flaws is shown in Fig. 4.10. It 

is observed that the Gas Cavity, Lack of penetration, porosity, wormhole, and no defect 

has been satisfactorily classified in Cascade Forward Neural Network. Also, the 

classification result in undercut defect is minimal with 66.7%. But one thing is acceptable 

that Cascade forward training is better than feed-forward training based on all the above 

result.  

Further, the results have further been introspected to have knowledge about which 

type of defect was misclassified. Fig. 4.10 depicts the individual classification accuracy of 

each weld flaws with GLCM 8 features for both feed-forward and cascade forward neural 

network architecture.   

 Fig. 4.11 depicts the classification accuracy with GLCM 64 level features for both 

Feed-forward and Cascade Forward network.  
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     Fig. 4.11: Individual Classification Accuracy of each flaw with GLCM 64 Features 

 

It has been observed in Fig. 4.11 that the classification results of GLCM 64 level 

features with training with cascade forward neural has found to be very promising. Almost 

all four types of flaws gas cavity, Lack of penetration, porosity, crack, wormholes, 

undercut has been classified at a better accuracy rate. The no defect types of images 

have been least classified. The slag defect has the least classification accuracy with 75% 

which is still better than feed-forward training and with 8 features of GLCM.  

Based on the above observations, it is recommended that 64 features with cascade 

forward neural network yield better results. 

4.5 Experiment – 2 (Image Segmentation + LBP Variants) 

 

In the present paper, an attempt has been made to accurately identify and classify 

the weld defects. The image database has been pre-processed and segmented after that 

the features have been extracted by LBP, LBPri, LBPu2 and LBPriu2 and their different 

combinations and feed to Artificial neural network classifier in order to achieve better 

classification accuracy.. 
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4.6 Algorithm 

The methodology adopted for the identification and classification of welding defects 

have been explained in the flowchart given below: 

 

 

Fig. 4.12: Block diagram of weld flaws Image Classification 

 

At first, from the different segmentation techniques, LBP features have been 

extracted to process the algorithm. 256 features of LBP have been considered. It is 

observed from Table 4.5 and Fig. 4.13, that Contrast Enhancement has the maximum 

accuracy of 86.1% at 72 neurons whereas by applying multilevel thresholding 83.5% 

accuracy is achieved. Edge Detection Method performs the least with 77.2% while gray 

Threshold gives 78.5%.  
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Table 4.5: % classification accuracy of LBP after segmentation 

No. of 
Features Segmentation Technique  

% 
Classification 

Accuracy 

No. of 
Neurons 

256 Edge Detection 77.2 85 

256 Contrast Enhancement 86.1 72 

256 Gray thresh 78.5 98 

256 Multi-Level Thresholding     83.5 58 

256 
Horizontal Edge Responses Using   

Integral Filter 
79.7 19 

 

 

Fig. 4.13:  classification accuracy of LBP after segmentation 

 Hence, it is observed that here contrast enhancement technique yields the 

maximum result and outperforms every technique with 86.1%. It is to be kept in mind that 

the experiment was carried out from 1 neuron to 100 neurons in order to analyze the 

effect for achieving better accuracy and the optimal neuron is presented in the table. 

Now, the next attempt has been made to extracts LBPri features from different 

segmentation techniques. 36 number of LBPri features have been extracted to process 

the algorithm. It is observed from the Table 4.6 and Fig.4.14, that the accuracy of 83.5% 

was achieved by applying contrast enhancement whereas 84.8% accuracy is achieved by 

multi-level thresholding and Horizontal Edge Responses using Integral Filter at 40 and 33 

neurons respectively. Edge Detection Method performs the least with 73.4% while gray 
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Threshold gives 79.7%. Hence, it is observed that multi-level thresholding and Horizontal 

Edge Responses using the Integral Filter technique yields the maximum result and 

outperforms every segmentation technique for LBPri feature extraction. The number of 

neurons gives the exact neuron in which the maximum accuracy was achieved. It is to be 

kept in mind that the experiment was carried out from 1 neuron to 100 neurons in order to 

analyze the effect for achieving better accuracy and the optimal neuron is presented in 

table 4.6. 

     Table 4.6: % classification accuracy of LBPri after segmentation 

No. Of 
Features Segmentation Techniques Classification 

Accuracy   (in %) 
No. of 

Neurons 

36 Edge Detection 73.4 67 

36 Contrast Enhancement 83.5 62 

36 Gray thresh 79.7 82 

36 Multi-Level Thresholding 84.8 40 

36 Horizontal Edge Responses Using  
Integral Filter 84.8 33 

 

 

Fig. 4.14: classification accuracy of LBPri after segmentation 
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Further, another attempt has been made to extracts LBPu2 features from different 

segmentation techniques. LBPu2 technique produces 59 feature has been extracted to 

process the algorithm. It is observed from the Table and figures no 4.14, that Contrast 

Enhancement has an accuracy of 87.5% at 88 neurons. Edge Detection Method performs 

the least with 79.7% while Gray Threshold gives better results at 82.1%. Hence, it is 

observed that multi-level thresholding and Horizontal Edge Responses Using the Integral 

Filter technique yields 84.8% and 83.5% respectively for the selected database. Hence, it 

is observed that Contrast Enhancement has a maximum accuracy of 87.5% at 88 

neurons. The number of neurons gives the exact neuron in which the maximum accuracy 

was achieved. It is to be kept in mind that the experiment was carried out from 1 neuron 

to 100 neurons in order to analyze the effect for achieving better accuracy and the 

optimal neuron is presented in table 4.7. 

 

Table 4.7: % classification accuracy of LBPu2 after segmentation 

No. of 
Features Segmentation Techniques 

% 
Classification 

Accuracy 

No. of 
Neurons 

59 Edge Detection 79.7 61 

59 Contrast Enhancement 87.3 88 

59 Gray thresh 82.1 80 

59 Multi-Level Thresholding 84.8 29 

59 
Horizontal Edge Responses Using  

Integral Filter 
83.5 4 
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Fig. 4.15: classification accuracy of LBPu2 after segmentation 

Further, an attempt has been made to extracts LBPriu2 features from different 

segmentation techniques. 10 LBPu2 features have been extracted to process the 

algorithm. It is observed from the Table and Fig. 4.16, that Contrast Enhancement has 

the accuracy of 89.9% at 56 neurons. Edge Detection Method performs the least with 

69.6% while Gray Threshold gives better results at 88.6%. Hence, it is observed that 

multi-level thresholding and Horizontal Edge Responses using Integral Filter gives an 

accuracy of 73.4% and 82.3% respectively for the created database. Hence, it is 

observed that has the maximum accuracy of 89.9% at 56 neurons is achieved by 

Contrast Enhancement. It is to be kept in mind that the experiment was carried out from 1 

neuron to 100 neurons in order to analyse the effect for achieving better accuracy and the 

optimal neuron is presented in table 4.8.  

           Table 4.8: % classification accuracy of LBPriu2 after segmentation 

No. of 
Features 

Segmentation Accuracy No. of 
Neurons 

10 Edge Detection 69.6 76 

10 Contrast Enhancement 89.9 56 

10 Gray Thresh 88.6 99 

10 Multi-Level Thresholding 73.4 88 

10 Horizontal Edge Responses Using Integral Filter 82.3 75 
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Fig. 4.16: classification accuracy of LBPriu2 after segmentation 

In subsequent experiment, an attempt has been made to combine above all three 

feature vector (LBPri + LBPu2 + LBPriu2) and add it such a way (overlap) on LBP 256 

features from the different segmentation techniques so that size of the final feature vector 

is 256 only. It is observed from Table 4.9 and Fig. 4.17, that Contrast Enhancement has 

the accuracy of 92.4% at 96 neurons. Edge Detection Method performs the least with 

79.7% while Gray Threshold gives better results at 87.3%. It is also observed that multi-

level thresholding and Horizontal Edge Responses using Integral Filter gives an accuracy 

of 82.3% and 84.8% respectively. The number of neurons gives the exact neuron in 

which the maximum accuracy was achieved. It is again to be kept in mind that the 

experiment was carried out from 1 neuron to 100 neurons in order to analyze the effect 

for achieving better accuracy and the optimal neuron is presented in table 4.9.  

From the above inference, it is found that the combination of (LBPri + LBPu2 + 

LBPriu2) with LBP have given the best result. Now, The detailed percentage-wise 

classification accuracy for the above combination is presented in table 4.9. From the 

above inference, it is found that the combination of (LBPri + LBPu2 + LBPriu2) with LBP 

have given the best result. Now, the detailed percentage wise classification accuracy for 

the above combination is presented below: 
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Table 4.9: % classification accuracy of  (LBPri + LBPu2 + LBPriu2) overlap on LBP 

No. of 
Features 

Segmentation Techniques Classification 
Accuracy   

(in %) 

No. of 
Neurons 

256 Edge Detection 79.7 86 

256 Contrast Enhancement 92.4 96 

256 Gray Thresh 87.3 95 

256 Multi Level Threshholding 82.3 94 

256 Horizontal Edge Responses  

using Integral Filter 

84.8 69 

 

 

Fig. 4.17: classification accuracy of  LBP(LBPri + LBPu2 + LBPriu2) feature 

  From the above experiment (experiment-2) it is concluded that the feature vector 

generated by the combination of (LBPri +LBPu2+ LBPriu2) and overlapped on LBP 

feature having a feature vector dimension of 256 gives the best feature for classification.  

In the below section the classification accuracy of individual flaws has been discussed for 

a combined feature and different segmentation techniques. 
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Table 4.10:  % accuracy of LBP(LBPri +LBPu2+ LBPriu2) Feature + Edge Detection 

S.No. Name of Defect Total 
No. of 

Images 

No. of 
Accurately 
Classified 

No. of 
Images 

Misclassified 

Classification 
Accuracy 

(in %) 
1 Gas Cavity 8 7 1 87.5 

2 Lack of 
Penetration 

20 20 0 100 

3 Porosity 7 5 2 71.4 

4 Slag 16 11 5 68.75 

5 Crack 11 9 2 81.81 

6 Lack of Fusion 7 5 2 71.42 

7 Wormhole 2 1 2 50 

8 Undercut 3 2 1 66.7 

9 No Defect 5 3 2 60 

 

 

Fig. 4.18:(LBPri +LBPu2+ LBPriu2) Feature + Edge Detection 

It is observed that except a lack of penetration, all other defects have not been 

successfully classified. It seems that the boundary edges haven’t been properly identified 

in this case. The results obtained are not at all promising.  
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Table 4.11:  % accuracy of LBP(LBPri +LBPu2+ LBPriu2) + contrast  enhancement 

S.No. Name of Defect Total 
No. of 

Images 

No. of images  
Accurately 
Classified 

No of 
Images 

Misclassified 

% 
Classification 

Accuracy 
1 Gas Cavity 8 7 1 87.5 

2 Lack of 
Penetration 

20 20 0 100 

3 Porosity 7 6 1 85.7 

4 Slag 16 14 2 87.5 

5 Crack 11 11 0 100 

6 Lack of Fusion 7 7 0 100 

7 Wormhole 2 2 0 100 

8 Undercut 3 3 0 100 

9 No Defect 5 3 2 100 

 

 

Fig. 4.19: (LBPri +LBPu2+ LBPriu2) Feature + Contrast Enhancement 

It is observed that except Gas Cavity, porosity and slag, all other defects have 

been 100 % classification accuracy. Hence, Contrast enhancement combination with the 

different LBP variants has fetched the best result. 
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Table 4.12:  % accuracy of LBP(LBPri +LBPu2+ LBPriu2) + Gray Scale Thresholding 

S.No. Name of Defect 
Total 
No. of 

Images 

No. of 
Accurately 
Classified 

No of Images 
Misclassified 

% 
Classification 

Accuracy 

1 Gas Cavity 8 7 1 87.5 

2 Lack of 
Penetration 20 19 1 95 

3 Porosity 7 6 1 85.7 

4 Slag 16 12 4 75 

5 Crack 11 11 0 100 

6 Lack of Fusion 7 5 2 71.4 

7 Wormhole 2 2 0 100 

8 Undercut 3 3 0 100 

9 No Defect 5 4 1 80 

 

 

Fig. 4.20:(LBPri +LBPu2+ LBPriu2) Feature + Gray Scale Thresholding 

It is observed that except crack, wormhole and undercut, all other defects have 

not been successfully classified. It seems that the boundary edges haven’t been properly 

identified in grayscale thresholding. 
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 Table 4.13: % accuracy of LBP(LBPri +LBPu2+ LBPriu2) + Multi-Level 

Thresholding 

S. No. Name of Defect Total 
No. of 

Images 

No. of 
Accurately 
Classified 

No of 
Images 

Misclassified 

% 
Classification 

Accuracy 
1 Gas Cavity 8 8 0 100 

2 Lack of 
Penetration 

20 18 2 90 

3 Porosity 7 5 2 71.4 

4 Slag 16 10 6 62.5 

5 Crack 11 11 0 100 

6 Lack of Fusion 7 5 2 71.4 

7 Wormhole 2 2 0 100 

8 Undercut 3 3 0 100 

9 No Defect 5 3 2 60 

 

 

Fig. 4.21:(LBPri +LBPu2+ LBPriu2) Feature + Multi – Level thresholding 

It is observed that the classification accuracy of lack of penetration, porosity, slag 

inclusion, lack of fusion and no defects images have very low. It seems that the boundary 

edges haven’t been properly identified in this case too. The results obtained are not 

promising. 
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It is observed from Fig 4.18  to Fig 4.21 that the individual classification accuracy 

of crack, wormhole, undercut and lack of penetration type of flaws are 100% in most of 

the cases with hybrid feature vector combination of LBP +(LBPri + LBPu2 + LBPriu2) 

having feature vector dimension of 256.  

4.7 Summary 

The proposed work of this chapter demonstrated the effectiveness of the different 

combinations of GLCM features with different direction and LBP variants and their 

combination in a different possible manner to enhance the classification accuracy of the 

weld flaws. To achieve this goal, the segmentation of images has also been carried out 

before applying the feature extraction. The features are extracted from segmented 

images and then that features are combined and make it a hybrid feature in such a way 

that each feature have their own merit. Then these hybrid features are fed as input to the 

neural network classifier because this classifier has shown good result for this weld image 

data set as proved in chapter 2 but here to evaluate the performance of neural network, 

two architecture of neural network namely feed-forward algorithm and cascade forward 

algorithm has been compared and it is found that cascade forward network performed 

better than fast forward network. In this chapter, all the experiments have been 

accomplished on 70/30 proportion of randomly divided database. Among the proposed 

segmentation techniques, the image after contrast enhancement obtained the best 

classification accuracy of 88.6% on the CF network of ANN. Using GLSM (16 feature in 4 

direction = 64). In second experiment feature of variants have combined and observed 

that classification accuracy of LBP, LBPri, LBPu2, LBPriu2, are 86.1%, 84.8%, 87.3%, 

89.9% respectively but when we hybrid these features and form a new feature vector of 

256 feature then the CA drastically improved and it archived 92.4% which is the best 

among them all techniques performed here. The individual performance of each type of 

flaws are also described in this chapter and concluded that the individual classification 

accuracy of crack, wormhole, undercut and lack of penetration type of flaws are 100% in 

most of the cases with hybrid feature vector combination of LBP +(LBPri + LBPu2 + 

LBPriu2) having feature vector dimension of 256.  
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CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE 

5.1 Conclusions 

This research work has been carried out to analyze the weld flaws classification of 

the welding joint on the basis of digitized images of radiographic films of the same. The 

emphasis has been given to the design and development of some techniques for texture 

feature extraction for the classification of weld flaws images into nine different categories 

on their merit. The effectiveness of the proposed techniques has been investigated on the 

radiographic image database of weld joints collected from the welding research 

laboratory, department of mechanical and industrial engineering, Indian Institute of 

Technology Roorkee, Roorkee. 

To accomplish the classification task efficiently, a comparative study of the several 

texture feature extraction techniques have been carried out to find the efficient texture 

feature extraction techniques for radiographic images of weld flaws. Further, the 

performance of these techniques has been improved by hybrid these features with many 

different types as well as extracting these features from multi-resolution images and 

combining them to form a feature vector data.  

The feature vector data extracted by these techniques have been then normalized 

in the range of 0 to 1 to give equal weightage  to all the feature vectors prior to applying it 

as classifier inputs. The discrete wavelet transforms feature extraction techniques have 

produced a large number of complex features that may limit the classification accuracy. 

Therefore there is a need for feature reduction techniques. In the present research 

principal component analysis (PCA) as a feature reduction technique has been employed 

to reduce the dimension of feature vector data. Further to analyze the classification 

accuracy on a fixed feature vector either a full feature or reduced feature, three widely 

used classification algorithms namely Linear SVM, RBF Kernal SVM, and ANN-based 

classifier. The Lavenberg Marquardt training method has been employed further to 

evaluate the performance of the ANN classifier with two sets of the randomly divided 

database.  According to the result obtained the best combination of feature extraction 

techniques and classification algorithm has been selected.  
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Performance of Texture Feature Extraction Techniques: 
 

The experimental results accomplished that the full feature vector data (FFVD) and 

PCA reduced feature selection based feature vector data of the BGP texture feature 

extraction technique has achieved the best classification accuracy of 91.14% and 

89.87%on 80/20 and 70/30 randomly divided data set respectively with ANN classifier. 

Moreover, these techniques also achieve the same classification accuracy on the PCA 

reduced feature vector data with very reduced no of features. Amongst several 

techniques examined here, the GLCM and LBPri produced 2nd and 3rd highest accuracy 

using the same classifier with both the proportion of training and testing data set. The 

PCA reduced feature selection hardly affects the performance of the classifier. In all the 

feature extraction techniques the performance of linear SVM and RBF Kernel SVM 

classifiers are not up to mark. 

Performance of DWT Based Texture Feature Extraction Techniques: 
 

The DWTLBP variants and DWTBGP texture feature extraction techniques have 

been proposed to enhance the classification accuracy of radiographic weld images. In the 

proposed techniques, the DWT has been employed to decompose the image up to 5 

different levels, followed by texture feature extraction with LBP variants and BGP. The 

resultant DWT sub-images coefficients obtained using proposed methodologies are 

distinct at each level and contain valuable information. Extracting texture features by 

variants of LBP and BGP from several level (L1 – L5) resolutions sub-images have 

increased the number of significant features. Combining the texture features of several 

levels (L1 – L5), generate significant feature vector useful in discrimination among the 

radiographic image of weld flaws. So basically we are combining the different levels for 

getting the better and the significant outcomes. 

The best classification accuracy of 92.4% is obtained for DWTBGP texture features 

at the 3rd level of image decomposition using the ANN classifier. Further, reduction in 

feature dimensions is obtained using PCA and it is observed that the same result is 

obtained even after applying principal component analysis. In all the cases, the best 

result obtained at the third or fourth level of decomposition and then after the result has 

been reduced for further decomposition level i.e. at the fifth level. 
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Performance of Segmentation Based Hybrid Feature Extraction Techniques: 
The proposed work demonstrated the effectiveness of the different combinations of 

GLCM features with different direction and LBP variants to enhance the classification 

accuracy. To achieve this goal, the segmentation of images has also been carried out 

before applying the feature extraction. The features are extracted from segmented 

images and then that features are combined and make it a hybrid feature in such a way 

that each feature have their own merit. Then these hybrid features are fed as input to the 

neural network. In order to evaluate the performance of the neural network, two 

architecture of neural network namely feed-forward algorithm and cascade forward 

algorithm has been compared and concludes that the cascade forward network 

performed better than the feed-forward network. All the experiments have been 

accomplished on 70/30 proportion of randomly divided databases. Among the proposed 

segmentation techniques, the image after contrast enhancement obtained the best 

classification accuracy of 88.6% on the CF network of ANN using 16 features of GLCM in 

four directions. In second experiment feature of LBP and its variants have combined and 

observed that classification accuracy of LBP, LBPri, LBPu2, LBPriu2, are 86.1%, 84.8%, 

87.3%, 89.9% respectively that have also be shown through the tables but when we 

hybrid these features and form a new feature vector then the CA drastically improved and 

it achieved 92.4% which is the best among all techniques performed here.  

Finally, it is concluded that the segmentation based feature extraction techniques 

presented here for the classification of radiographic weld flaws have extracted significant 

features from the image database. Further, it should be stated that employing PCA as a 

feature vector dimension reduction and selection method has given value addition to the 

proposed approaches. Among all the proposed methods, the hybridization of suitable 

segmentation with the combination of LBP LBPri, LBPu2 and LBPriu2 has given the best 

classification accuracy. Another important finding of this work has been that PCA feature 

reduction methods do not suffer from information loss compared to full feature vector 

data. However, it reduced the computational time significantly. 
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5.2 Scope for Future Work 

Even though comprehensive experimental work has been done here, to improve the 

classification accuracy of weld flaws, following are some of the suggestions for 

implementation in future research work in this field: 

•  The proposed approach has used selected mother wavelets to decompose the 

images by DWT. Several other mother wavelets may be investigated to see their 

effect on the feature extraction and classification of radiographic images of weld 

flaws. 

• In this study, the PCA (dimensionality reduction) technique has been used to 

reduce the dimension of feature vector data. Some other techniques such as 

mRmR, Kernel PCA (dimensionality reduction), genetic algorithm, and correlation-

based feature selection may be investigated to reduce the feature vector data. 

• Further, to get the multi-resolution images, DWT has been employed. Several 

other multi-resolution techniques, namely, BWT, Gaussian pyramid (GP), 

fractional wavelet transform (FRWT) and dual-tree complex wavelet transform 

(DTCWT) may be investigated to produce significant texture features. 

• After compiling the ideas proposed in the present work, an expert system can also 

be designed and developed to assist the welder for automatic monitoring of the 

welding process and an indication of flaws in the real-time process.   
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APPENDIX – A 
 

IMAGE DATABASE 

In total 79 images have been considered. The image has been collected from 

Welding Research Laboratory, Department of Mechanical and Industrial Engineering, 

Indian Institute of Technology Roorkee. This database consists of 09 types of weld flaws 

images. 
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