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Abstract

Control systems are ubiquitous in everyday life. A control system is a mathematical law that

enables the achievement of desired characteristics. Among many such laws, one of the most

popular ones is a PID controller. It is a fundamental control algorithm that that is widely used for

the control in industry due to its simplicity and flexibility. There exist innumerable techniques in

the control literature for tuning a PID controller, however no such technique has been developed

that can suffice for all types of situations. This calls for further research and challenges in tuning

of PID controllers.

Most of the conventional techniques of tuning a PID controller like Ziegler Nichols, Chiens-

Hrones-Reswick (C-H-R), Cohen-Coon are simple but are applicable to only a certain class of

systems. Hence, there is a need to develop techniques that are not only applicable to a more gen-

eral class of systems but simultaneously avoid the computational complexity which is exhibited in

many soft computing techniques. Further, the techniques must be easily implementable on a hard-

ware system as well. It is observed that the major drawback of the optimal control techniques is

that they cannot be implemented on a hardware. Hence, a new approach known as the QRAWCP is

developed which transforms an optimal LQR controller into a classical PID controller. This tech-

nique is also accompanied by the augmentation of an additional pole to the closed loop system

consisting of a LQR controller. In this thesis, a well-structured manner of selecting the additional

pole is proposed. Further, it is entirely possible, that all the states of the system are not measurable.

To ameliorate this limitation, a LQG based PID controller is designed that comprises of a Kalman

filter which acts as an observer and the LQR controller that can be utilized for optimal tuning

of the resulting system. Further, both the schemes elucidated above are validated via hardware

simulations. The hardware setups used in this thesis for validation of the proposed techniques are

QUBEDC servo system, Cart inverted pendulum system and the rotary inverted pendulum (RIPS)

system.

There are numerous techniques of tuning a PID controller, and each one has its own advantages

and limitations. The adaptive control scheme, first proposed in this thesis, uses multiple candidate

controllers, each of which is tuned via different control approaches and the resultant output of the
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system follows the best of these multiple approaches via the assignment of appropriate weights for

each control scheme. It is observed that the proposed adaptive strategy outperforms the individual

control techniques. The proposed scheme, in its current form is then modified via the addition of

a median filter and an epsilon term to get rid of the problem in which the derivative term becomes

zero. To validate the effectiveness and strength of the modified scheme, it is then tested on a

hardware setup of a Cart Inverted pendulum system.

Next, all the approaches developed above are tested primarily on two setup, i.e., DC servo system

and Cart Inverted Pendulum system (CIPS). Various illustrative examples are provided to compare

the proposed technique with the existing techniques in the literature. To investigate the robustness

of the proposed technique, the effect of input disturbances, measurement noise, addition of input

gains, are also taken into consideration. The simulation examples are compared via time response

plots and performance indices. An interactive and animated graphical user interface is also devel-

oped for analysis, design and validation of controllers for cart inverted pendulum system (CIPS).

Finally, the problem of load frequency control of a power system is presented. Both the QRAWCP

and the adaptive scheme developed above are applied to different models of the power system. The

effect of non-linearities such as governor dead-band and generation rate constraint is also explored

for different studies. To investigate the strength of the proposed technique for a more realistic

power systemmodel in the presence of non-linearities, a 10 machine New England system, having

a topology similar to IEEE 39 bus system is also considered. The effect of parametric uncertainty

is ascertained by the perturbation of parameters by ± 50%. To analyze the effectiveness of the

proposed controller design techniques, a comprehensive comparative study with respect to the

performance indices and time response is also undertaken. The simulation studies are a testimony

to the effectiveness and efficiency of the proposed technique.

Overall, in this thesis, an attempt has been made by the author to develop simple and reliable

control schemes to design a controller to obtain an improved time response and better disturbance

rejection behaviour. Through illustrated examples and hardware validation, it is evident that the

schemes are practically useful in the analysis and design of the control system.
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Chapter 1

Introduction

Control systems are ubiquitous in everyday life. They are present everywhere. The behaviour

of such systems is determined by a set of elementary propositions that can be comprehended by

anyone. Even, fundamental thoughts and relations can be translated into mathematical forms.

Mathematical modelling allows us to describe and predict the expected response of a wide variety

of systems. Systems can simply be defined as those parts of the real world that have determined or

virtual or even flexible boundaries. These boundaries delineate the system from its environment.

Looking around us, we can observe control systems everywhere. From the regulator of the fan

to the switch of our tube-light, control systems are widely scattered around us [3]. Fridges, dish-

washers, electric boilers, vacuum cleaners, washingmachines etc. are all controlled systems. They

could be simply on-off systems like the switch of the tube-lights, discrete control system such as

the regulator in the fan or continuous control system like the DC servo motor. The first two ex-

amples are the open loop systems, whereas the last example describes a closed loop feedback

system.

Feedback control systems are a fundamental part of numerous physical, electrical, chemical, met-

allurgical, biological and other engineering systems [4]. Addition of feedback loop(s) to an open

loop system generally increases the speed of response of the system and minimizes the effect of

random disturbances, process noise, parametric uncertainty, etc. Over the last few decades, re-

markable innovation has been witnessed in the theory of control systems and in their applications
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to innumerable real-life systems. PID controller [5] is one of the most important control system,

which serves as the backbone of more than 90% of the modern control industries [6]. The funda-

mental features of the PID controllers and various tuning techniques [7] that satisfy multifarious

design requirements are discussed in the upcoming sections of the thesis.

1.1 Overview of PID

PID is an acronym for Proportional IntegralDerivative controller [5, 8], which is a feedbackmech-

anism that has become ubiquitous in the modern control industry. Over the past few decades, there

has been a rapid advancement in the theory of control systems, yet the PID controller remains a

perennial workhorse in the modern industry [9]. The universal prevalence and popularity of the

PID controller can be ascribed to its simplicity, flexibility and ability to function in a wide range

of operating conditions [6]. As its name suggests, PID comprises of three modes [10], i.e, propor-

tional(P), integral(I) and derivative(D), which can act individually or in tandem with each other

[11]. The individual P, I and D blocks in a PID controller can be rearranged and put up at different

places in a closed loop system [12], leading to new structures like PI-PD, PI-D, I-PD controllers

[13, 14], etc. Numerous techniques of tuning a PID controller are delineated in literature, making it

a fascinating algorithm to implement in real world scenarios [15]. The applications of such a con-

trol scheme are not limitedmerely to electrical engineering, but have been extended tomultifarious

problems spread across widespread disciplines like aerospace, process control[16], bio-medical

[17] electronics and telecommunication [4], robotics [18, 19] management[20], psychology[21],

etc.

The controller synthesis schemes of a PID controller can be broadly classified into conventional

control methods[22], IMC control schemes[23], soft computing methods[24], optimal control

techniques[1, 18] and robust control approaches[25]. Ziegler-Nichols(ZN) [26], Cohen Coon and

CHR (Chiens Hrones Reswick)[27], named after their respective discoverers are the widely pop-

ular conventional approaches which depend on the open loop response of the plant[28]. Internal

model control is a highly rated control scheme that is based on the concept of Q parameteri-

zation and it is characterized by an internal model consisting of the model of the plant and a
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controller[29]. On the other hand, soft computing schemes [30] belong to the Computational

intelligence family and comprise of a large number of heuristic search techniques like Genetic

algorithm (GA), particle swarm optimization (PSO), firefly algorithm (FFA), etc. Optimal con-

trol techniques like linear quadratic regulator (LQR)[31], linear quadratic gaussian (LQG) deal

with the maximization or minimization of a single or multiple performance criterion and then use

to obtain a control law. Finally, robust control approaches [25, 32] such as H∞ based schemes,

Lyapunov theory, explicitly deal with uncertainty and aim to achieve optimal performance in the

presence of uncertain environment, modelling errors, etc.

1.2 Motivation

All the techniques mentioned in the previous section encounter certain limitations in their im-

plementation. The conventional control techniques like ZN and CHR are intended for a Type 0

plant having only real poles and zeros [5, 33] and fail to give appreciable results for a system of

Type 1 and a system having complex conjugate poles and zeros [34]. On the other hand, the soft

computing techniques [35] involve numerous random parameters and require a large computation

time in software[36, 37]. In the internal model control scheme, the model of the system must be

highly accurate and resemble the actual plant as close as possible, else this approach may lead

to misleading and inaccurate results[29, 38]. Further, the choice of the filter time constant (λ ),

is random [39] and there do not exist explicit rules for its selection[40]. One can even design a

controller by using a simple Ackermann’s formula but the selection of desired poles needs expert

selection and is a random process[41].

To ameliorate the drawbacks of the Ackermann’s formula, an advanced state space optimal ap-

proach known as Linear Quadratic regulator (LQR) was formulated. In LQR technique, the feed-

back gainK is chosen optimally viaminimization of a quadratic cost function[42]. For the physical

realization of the LQR controller, one needs to transform it into the form of a PID controller[1, 43].

It is pertinent to mention here that, application of LQR controller to a system does not increment

the order of the system transfer function [44], whereas the addition of a PID controller, having a

non-zero value of the integral gain will increase the order of the system by 1. Hence, there arises a
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need to augment an additional pole to the characteristic equation of the closed loop LQR system.

Thus, despite the superiority of the proposed LQR scheme, few limitations are still present.

• Till the present date, the additional pole was randomly chosen to be certain number of times

the real part of the dominant pole in the system. Also, the nature of the system for the

application of LQR-PID was unspecified.

• Further, the implementation of the LQR on a real time system is difficult, since all the states

of a system are not measurable, but for practical realization, all the states of the system must

be measurable.

All the control schemes elucidated in the preceding paragraphs have certain advantages and cer-

tain limitations[45]. It is difficult to satisfy all the desired performance specifications with a single

controller [46]. A solitary design technique would not be able to meet multiple desired require-

ments in the presence of noise, input disturbance, parametric uncertainties, modelling errors, etc.

Thus, there exist a few research gaps, which are given below.

• There is no single control strategy that can incorporate multiple controllers designed via

different control schemes. The output of such a control scheme should be able to subsume

the best points of each design technique.

• Such a control scheme should be physically realisable.

To address the above issues, a clear and more logical framework is required for conventional LQR

controller and its modified version in PID [1, 47] form which is simple to understand and realistic

for implementation while posing a sound fundamental basis.

1.3 Contribution of the thesis

The aforementioned discussion is the motivation to carry out research work. The work is mainly

concernedwith the design of a PID controller viaQRAWCP approach and adaptive control scheme.
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In the thesis, an attempt has been made to keep the mathematics at a reasonably simple level, and

emphasis has been given to the results that enhance insight and intuition. The simulation studies

of all the examples and case studies have been done with the help of MATLAB R© and Simulink

software [48]. The major contributions of the thesis can be viewed in the following objectives.

• Design and validation of QRAWCP based PID controller for SISO and SIMO systems

using optimal control theory

In this objective, the concept of optimal LQR [1, 43, 49] and LQG is used to derive the

PID controller via QRAWCP [50] for a general class of SISO and SIMO systems. The

proposed methodology has been demonstrated through illustrative examples of a second

and fourth order system with repeated poles. Apart from these, the proposed technique has

been applied to the illustrative examples by considering the model of a PMS motor and

manutec robot system via simulation. Further, a comprehensive analysis of the proposed

QRAWCP approach has been performed for a solar tracker system. The results, hence ob-

tained are compared with recent techniques from the literature. Furthermore, the impact of

input disturbances, output noise and parametric uncertainties has also been investigated for

the proposed approach. To validate the performance of the proposed scheme for real time

systems, it is also tested on the hardware setup of a QUBE servo for position and velocity

control and also for balancing the rotary inverted pendulum system. The results signify the

efficacy and superiority of the proposed technique.

• Adaptive control policy

In this objective, a generalized adaptive control scheme is proposed for linear time invariant

(LTI) systems. The proposed strategy is elucidated via two illustrative examples of dif-

ferent models[51]. A two candidate controller is designed for the position control of the

model of a flexible robotic arm system, wherein the individual controllers are tuned via

PID-LQR and SBL-PID, respectively. Next, three candidate controllers are derived for the

position control of a DC servo system model and the individual controllers here are tuned

via LQR [1], SBL [52] and ZN techniques, respectively. For each of the above cases, the

results obtained via the proposed approach are compared with the design approaches of the

individual controllers. It is observed that the proposed adaptive strategy outperforms the
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individual control techniques. The proposed scheme, in its current form is then modified

via the addition of a median filter and an epsilon(ε) term to get rid of the problem in which

the derivative term becomes zero. To validate the effectiveness and strength of the modified

scheme, it is then verified via illustrative examples and also implemented on hardware setup

of a Cart Inverted pendulum system.

• Application to Cart Inverted Pendulum system

The primary objective of this work is the design and implementation of different control

strategies that have been developed [53] in the preceding chapters to a cart inverted pen-

dulum system (CIPS)[54, 55]. First, a simplified model of the CIPS is derived. Then, the

QRAWCP approach, is used to design a PID controller for the obtained model. To tackle the

problem of parametric uncertainties, a combination of Kharitonov’s theorem [56] and SBL

technique [57] is applied to tune the PID controller. Further, an adaptive control policy[2],

comprising of two candidate PID controllers that are tuned via SBL and LQR respectively is

applied to the given system and the effects of input disturbance, variation in input gain and

input time delay are also explored. To investigate the effectiveness of the adaptive scheme

to real life situations, it is also implemented on the hardware setup of CIPS system [53].

Further, a modified adaptive control policy is also used to tune a PID controller. Finally, an

interactive and animated graphical user interface is developed for analysis, designing and

validation of controllers for cart inverted pendulum system (CIPS).

• Application to Load frequency control

This objective focuses on the application of different techniques discussed in the preceding

chapters to the problem of load frequency control [58], which is a system to regulate the

power flow between different areas while holding the frequency to a constant value[59, 60].

First, QRAWCP approach is applied to a single area and two area power system comprising

of reheated and non-reheated turbine. To investigate the robustness of the proposed con-

troller, the LFC parameters are perturbed by ±50%. Further, the effect of non-linearities

such as governor dead-band (GDB) and generation rate constraint(GRC) [38, 61] is explored

for the different cases given above. To investigate the strength of the proposed technique for

a more realistic power system model in the presence of non-linearities, a New England
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system, having a topology similar to IEEE 39 bus system is also considered. Then, the

adaptive control scheme is applied on a single area and two area power system compris-

ing of a non-reheated turbine. The effect of parametric uncertainty is ascertained by the

perturbation of parameters by ±50%. To analyze the effectiveness of the proposed afore-

mentioned controller design techniques, a comprehensive comparative study with respect

to the performance indices and time response is also undertaken. The simulation studies are

a testimony to the effectiveness and efficiency of the proposed technique.

1.4 Organization of thesis

The work done in this thesis for PID control strategies has been presented in seven different chap-

ters. The description of each research objective is included in the introduction section of each

chapter.

Chapter 1 describes the background of PID controller, optimal controller and adaptive controller

along with their salient features and advantages. Some of the research gaps and issues pertaining

to different controller design schemes are discussed in the motivation section. The contribution

of the thesis work is provided. Finally, the organization of the thesis work is presented.

Chapter 2 gives a brief description of classical PID tuning techniques such as Ziegler Nichols,

Cohen Coon, and C-H-R approaches. Next, the mathematical formulae and the theory of internal

model control (IMC) and stability boundary locus (SBL) are discussed. Finally, the different

performance indices, used for the evaluation of the system performance are examined.

Chapter 3 finds the use of optimal control approaches such as LQR and LQG to formulate the

QRAWCP-PID controller for a general class of SISO and SIMO systems. Illustrative examples of

different order systems are analyzed. The proposed scheme is also applied on themodel of the solar

tracking system and an exhaustive comparative analysis with respect to time response, parametric

uncertainties and robustness is performed. Finally, the proposed scheme is implemented on the

hardware setup of a QUBE servo for position and velocity control and also for balancing the rotary

inverted pendulum system.

7



Chapter 4 introduces a new adaptive control policy for linear time invariant systems. Two case

studies for position control of the model of a flexible robotic arm system and DC servo system are

discussed. It is observed that, in both the cases, the proposed adaptive strategy outperforms the

individual control techniques. The proposed scheme, in its current form is then modified via the

addition of a median filter and a epsilon(ε) term and the modified scheme is tested on the hardware

setup of a cart inverted pendulum system.

Chapter 5 deals with the application of the control schemes discussed in the preceding chapters,

i.e., QRAWCP, adaptive policy and modified adaptive scheme to the problem of cart inverted

pendulum system (CIPS). The effect of parametric uncertainties is dealt with by combining the

Kharitonov’s theoremwith the stability boundary locus (SBL) approach of tuning PID controllers.

To investigate the effectiveness of the adaptive scheme to real life situations, it is also implemented

on the hardware setup of CIPS system. Finally, an interactive and animated graphical user interface

is developed for analysis, design and validation of controllers for CIPS.

Chapter 6 explores the application of the control schemes discussed in the preceding chapters,

i.e., QRAWCP and adaptive control policy to the problem of load frequency control. The afore-

mentioned schemes are applied for different case studies of single and multi-area power systems

comprising of non-reheated and reheated turbine. To investigate the strength of the proposed

technique for a more realistic power system model in the presence of non-linearities, a New Eng-

land system, having a topology similar to IEEE 39 bus system is also considered. The effect of

parametric uncertainties is ascertained by the perturbation of parameters by ±50%. Further, a

comprehensive comparative study with respect to the performance indices and time response is

also undertaken.

Chapter 7 compiles the salient conclusions of the present study regarding the use of QRAWCP

scheme and adaptive control policy for different systems with numerical illustrations, practical

applications and hardware validations. The recommended direction for future investigations is

also discussed.
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Chapter 2

PID tuning techniques

This chapter is dedicated to the study of different structures of PID based control schemes. It

begins with a brief introduction to PID controllers. Next, three PID forms, i.e., ideal PID, series

PID and parallel PID are elaborated. Numerous control techniques are available in literature, and it

is almost impossible to enlist all of them, thus only five popular control techniques, are singled out

and discussed in detail. Those five techniques are the conventional methods like Ziegler Nichols,

Cohen coon, CHR as well as techniques like Stability boundary locus and the internal model

control scheme, which will be extensively used in the upcoming chapters of the thesis.

2.1 Overview of PID controller

PID Stands for : P (Proportional) I (Integral) and D (Derivative). So, it also called three term

control. These controllers exhibit certain advantages, such as

• Simple in design [62].

• Good record of past success [9].

• PID controllers are used in more than 90% of the industrial applications [6].

• Flexibility to design [10].
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(a) (b)

Figure 2.1: Control structures of PID controllers

• It is a "Trikal jnana" controller, i.e., it has information about past(Integral), present(Proportional)

and future(Derivative) [9, 63].

PID has been used in a wide range of application areas such as Aerospace [64], Marine [65], Bio-

medical [66], Power system [67], Electronics, Tele-communication [68] and so on. During the

1930s, three mode controllers with proportional(P), integral(I), and derivative(D) (PID) actions

became commercially viable and gained widespread industrial acceptance [5, 69]. These types of

controllers are still the most widely used controllers in process industries. As discussed above,

their success is a result of innumerable good features because of simplicity, robustness and wide

applicability.

There exist three major variations in the structure of PID controller [5], they are, ideal PID, series

PID and parallel PID controller. Fig. 2.1(a) and 2.1(b) depicts the structures of series and parallel

PID controller, respectively. The primary distinction among these forms is the effect of setting

coefficients on the controller’s behaviour. Each of these three forms are described below.

(i) Ideal PID: In this, the adjustment of the proportional gain affects the proportional, integral and

derivative terms. Thus, a simple readjustment of one parameter affects all the three actions. The

controller output of an ideal PID is given below.

c(t) = Kp

(
e(t)+

a
τi

∫
edt + τd

de
dt

)
(2.1)
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The main feature of such type of controller is that the gain term Kp is distributed to all the terms

in the parenthesis and all the portions of the PID controller are influenced by the gain. But the

integral and the derivative time constants (τi,τd) can act independently.

(ii) Series PID: Such a structure finds usage in the peculiarities of pneumatic controller mecha-

nism and in the analog circuits [6]. The controller output of series PID is given as,

c(t) = Kp

((
τd

τi
+1
)

e(t)+
a
τi

∫
e(t)dt + τd

de
dt

)
(2.2)

Here, too, gain term Kp is distributed to all the terms in the parenthesis. The distinctive or the

characteristic feature is that the integral and the derivative terms have an effect on the proportional

term also. In other words, readjusting τi or τd influences the proportional term as well.

(iii) Parallel PID: It is the simplest form of the PID controller and widely used in the literature

among the control practitioners [41]. Each of the three actions occurs in different terms and the

combined action is simply the sum of the three individual actions. It is given by

c(t) = Kpe(t)+
1
τi

∫
e(t)dt + τd

de(t)
dt

(2.3)

On first look, it may appear that this structure is the best as each term controls each action sepa-

rately. But in many of the applications, it is better than only one term affects all the three control

actions.

Various tuning methods have been proposed from 1942 [26] until the present time for obtaining

better and more acceptable system response based on our desired control objectives such as per-

cent of overshoot (Mp), integral error-based performance indices, settling time (ts), manipulated

variable behaviour, etc. Some of these tuning methods have considered only one of these objec-

tives as a criteria for their tuning while others have developed their algorithm by considering an

appropriate weighted combination of the multiple control objectives.
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2.2 Ziegler Nichols tuning

Ziegler Nichols tuning [26] approach is a heuristic approach for setting the parameters of a PID

controller based on the transient response of the plant. These tuning rules give an educated esti-

mation of the parameter values, and can be used to provide initial settings for further refinement.

The Ziegler-Nichols (ZN) tuning approaches can be broadly categorised into two parts [3], that

are explained below.

(a) Method 1: It is used, when the model of the plant is unknown. For the applicability of this

method, the open loop step response curve should be S shaped. One can obtain such step response

curves experimentally or by dynamic simulation. Such a S shaped curve is characterised by two

constants, known as the delay time (L) and time constant (T). For a system, having this curve, the

transfer function of plant can be approximated by

Y (s)
U(s)

=
Ke−Ls

T s+1
(2.4)

Table 2.1 gives the tuning rules of a PID controller by Ziegler Nichols approach.

The transfer function of a PID controller is given by

C(s) = Kp +
Ki

s
+Kds (2.5)

Substituting the values of Kp. Ki and Kd from Table 2.1, we get

C(s) = 1.2
T
L

(
1+

1
2Ls

+0.5Ls
)

(2.6)

Simplifying further, we finally obtain

C(s) = 0.6T

(
s+ 1

L

)2

s
(2.7)
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Table 2.1: Ziegler Nichols parameters for method 1

Control Type Kp Ti Td
P T

L ∞ 0
PI 0.9T

L
L

0.3 0
PID 1.2T

L 2L 0.5L

(b) Method 2: This technique is based on varying of the proportional gain from 0 to a critical gain

Kc, at which sustained oscillations are obtained.

1. Initially, turn the proportional gain (Kp) of the system to zero.

2. Now, gradually increase Kp while continuously observing the output.

3. Continue the above step until the output of the controller begins to exhibit sustained oscil-

lations.

4. The gain at which the system exhibits these sustained oscillations is known as the critical

gain.

5. Note down the critical gain (Kc) and the time period (Tc) of sustained oscillations.

6. Calculate the Kp, Ti and Td , using the formulas given in Table 2.2.

Table 2.2: Ziegler Nichols parameters for method 2

Control Type Kp Ti Td
P 0.5Kc - -
PI 0.45Kc 0.85Tc -
PID 0.6Kc 0.5Tc 0.13Tc

2.3 Cohen Coon method

Cohen Coon approach [70] is a conventional PID design technique, that is applicable to more

number of processes as compared to Ziegler Nichols approach. It is a versatile control strategy

that can work even if dead time is less than two times the length of the time constant in contrast to

the Ziegler Nichols tuning technique which gives appreciable results only when dead time is less
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than half the length of the time constant. Both the ZN and Cohen Coon schemes are applicable

for a quarter-amplitude damping response. The Cohen-Coon tuning method is generally used

for self-regulating processes. Most control loops, e.g., flow, temperature, pressure, speed, and

composition, contain self-regulating processes. The most common exception is a level control

loop, which contains an integrating process. The main drawbacks of the Cohen Coon method

[71] are that it gives oscillatory response and may lead to instability, if there are perturbations in

gain of the system. For example, if the rule provides for a controller gain of 2, it is recommended

to use only 1. Such an adjustment will provide an admissible stability margin and will prevent

oscillations.

CohenCoon approachmakes use of three system parameters, i.e., process gain (Gp), dead time (τd)

and time constant of the system (τ), that are obtained using the open loop response curve of the

system. A set of Cohen Coon tuning rules are given in Table 2.3.

Table 2.3: Cohen Coon tuning parameters

Control Type Kp Ti Td
P 1.03

Gp
( τ

τd
+0.34) - -

PI 0.9
Gp

( τ

τd
+0.092) 3.33τd

τ+0.092τd
τ+2.2τd

-
PD 1.24

Gp
( τ

τd
+0.129) - 0.27τd

τ−0.324τd
τ+0.129τd

PID 1.35
Gp

( τ

τd
+0.185) 2.5τd

τ+0.185τd
τ+0.611τd

0.37τd
τ

τ+0.185τd

2.4 C-H-R Method

This approach is amodification of the ZN tuning technique andwas propounded byChiens, Hrones

and Reswick in 1952 [27, 72]. It is concerned with the regulation of set point and rejection of

disturbance. The design criteria used in this technique is "quickest response without overshoot"

and "quickest response with 20% overshoot". The process model, used in CHR is the same as the

one we assumed in ZN approach. It is given as

G(s) =
Ke−Ls

T s+1
(2.8)
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Here L represents the delay and T is the time constant of the first order system with delay.

Once, a and T are determined, one can compute the P/PI/PID parameters using the procedure

given in Table 2.4, and Table 2.5 respectively.

Table 2.4: PID parameters for zero overshoot using CHR set point response method

Control Type Kp Ti Td
P 0.3/a - -
PI 0.35/a 1.2T -
PID 0.6Kc/a T 0.5L

Table 2.5: PID parameters for 20% overshoot using CHR set point response method

Control Type Kp Ti Td
P 0.7/a - -
PI 0.6/a T -
PID 0.9Kc/a 1.4T 0.47L

2.5 Drawbacks of classical techniques

The principal drawback of ZN, Cohen Coon and CHR control methods is that they are intended for

Type 0 plant having real poles and zeroes. These techniques fail for Type 1 plant and those plants

with complex poles and zeros. To ameliorate such drawbacks, we need new techniques which can

work for a general plant [6, 73, 74]. In the section below, we discuss two of these techniques, i.e.,

Internal model control scheme and Stability boundary locus approach.

2.6 IMC

Morari et.al developed a new control system strategy that is known as Internalmodel control (IMC).

It is a well laid out mechanism for controller design based on Q parameterization principle and

has been developed for integer order (IO) as well as fractional order (FO), SISO and MIMO con-

tinuous time and discrete time systems. It provides a good trade-off between a robust controller

and an optimal controller. An extensive literature survey of the IMC technique is presented in
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[75]. IMC has also been used in a number of application areas like Microwave oven, induction

motor, boiler, evaluation of artificial pancreas, etc.

The IMC approach has two distinct advantages [76]: (1) It explicitly takes into account the model

uncertainty. (2) It allows the designer to trade-off control system performance with system robust-

ness to process changes and modelling errors.

The block diagram of the IMC control scheme is shown in Fig. 2.2. In this diagram, Gp denotes

the transfer function of the process and Gm is the transfer function of the process model. Also,

Gcl is the IMC controller transfer function.

For the sake of convenience and simplicity, the IMC model in Fig. 2.2 can be simplified and

transformed into a system in classical feedback form, which is illustrated in Fig. 2.3.

The steps of IMC scheme for a second order plant are given below. For a higher order plant, one

can use model order diminution techniques to apply the given approach.

Consider a plant, which can be represented by a general second transfer function given as

G(s) =
a0s+a1

b0s2 +b1s+b2
(2.9)

Upon taking the factor of a0 outside as a gain term, equation (2.9) can be re-written in the following

form

G(s) =
a1(1+a2s)

b0s2 +b1s+b2
(2.10)

where, a2 =
a0
a1

In this chapter, we will consider the case of a2 < 0. If a2 > 0, an almost identical approach can

be applied except the additional lag term.

• Factorise the plant model into minimum phase and non-minimum phase part, respectively.

This can be mathematically given as

G(s) = Gm(s)Gnm(s) (2.11)
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Figure 2.2: IMC control scheme

Figure 2.3: IMC control scheme in classical feedback form

Herein, G(s) denotes the plant transfer function and Gm(s) and Gnm(s) represent the mini-

mum and non-minimum phase parts, respectively.

Thus,

Gm(s) =
a1

b0s2 +b1s+b2
(2.12)

Gnm(s) = 1+a2s (2.13)

• In this step, we can chose a filter given in the form below,

F(s) =
1

(1+λ s)r (2.14)

Here, r is a parameter, which can be selected in such a manner that the transfer function in

(2.15) becomes proper or is at-least semi-proper. λ is a tuning parameter, which is inversely

proportional to the speed of the closed loop system.
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• The transfer function of the IMC controller Q(s) can be derived as follows

Q(s) =
F(s)

Gm(s)
(2.15)

On substituting the above transfer functions from Equation (2.12) and (2.14), we get

Q(s) =
b0s2 +b1s+b2

a1(1+λs)
(2.16)

• It is possible to convert the IMC controller Q(s) into the classical feedback form via the

formula given as

C(s) =
Q(s)

1−G(s)Q(s)
(2.17)

On replacing (2.9) and (2.16) in (2.17), we get,

C(s) =
b1

a1λ −a0
+

b1

a1λ −a0

1
s
+

b0

a1λ −a0
s (2.18)

The transfer function of a PID controller can be stated as

C(s) = Kp +
Ki

s
+Kds (2.19)

• Thus, finally comparing equations (2.18) and (2.19) we get,

Kp =
b1

a1λ −a0

Ki =
b1

a1λ −a0

Kd =
b0

a1λ −a0

(2.20)

2.7 Stability Boundary Locus (SBL)

There exist various techniques of designing a PID controller. A graphical method to compute the

stable values of PID from stability region, known as stability boundary locus(SBL)was formulated

by N.Tan [57, 77]. This main advantage of this technique is that it is easy to implement and does
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not require sweeping over the controller parameters. Further, it does not require an inversion of

the plant model as in IMC scheme. A brief explanation of the method is provided below.

Consider a system, having the transfer function of the form

G(s) =
N (s)
D(s)

(2.21)

PID controller can be formulated as

C (s) = Kp +
Ki

s
+Kds (2.22)

Replacing s = jω in (2.21) we get,

G( jω) =
Ne

(
−ω2

)
+ jωNo

(
−ω2

)
De
(
−ω2

)
+ jωDo

(
−ω2

) (2.23)

The closed-loop characteristic equation 1+C(s)G(s) = 0 using (2.22) and (2.23) can be written

as,

∆(s) =

[(
−ω

2
)

Do

(
−ω

2
)
+Kd

((
−ω

2
)

Ne

(
−ω

2
))

+Kp

((
−ω

2
)

No

(
−ω

2
))

+Ki

(
Ne

(
−ω

2
))]

+ j

[
(ω)De

(
−ω

2
)
+Kd

((
−ω

3
)

No

(
−ω

2
))

+Kp

(
(ω)Ne

(
−ω

2
))

+Ki (ω)No

(
−ω

2
)]

(2.24)

Separating real and imaginary parts and equating them to zero, we get, the real part as:

lKd

((
−ω

2
)

Ne

(
−ω

2
))

+Kp

((
−ω

2
)

No

(
−ω

2
))

+Ki

(
Ne

(
−ω

2
))

=

((
ω

2
)

Do

(
−ω

2
))

(2.25)
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and imaginary part as:

lKd

((
−ω

3
)

No

(
−ω

2
))

+Kp

(
(ω)Ne

(
−ω

2
))

+Ki

(
(ω)No

(
−ω

2
))

=

(
(−ω)De

(
−ω

2
))

(2.26)

Let,

P(ω) =
(
−ω

2
)

No

(
−ω

2
)

Q(ω) = Ne

(
−ω

2
)

R(ω) =
(
−ω

2
)

Ne

(
−ω

2
)

S (ω) = (ω)Ne

(
−ω

2
)

T (ω) = (ω)No

(
−ω

2
)

U (ω) =
(
−ω

3
)

No

(
−ω

2
)

X (ω) =
(

ω
2
)

Do

(
−ω

2
)

Y (ω) = (−ω)De

(
−ω

2
)

(2.27)

From (2.26) and (2.27), we get

Kp
(
P(ω)

)
+Ki

(
Q(ω)

)
+Kd

(
R(ω)

)
= X (ω) (2.28)

and

Kp
(
S (ω)

)
+Ki

(
T (ω)

)
+Kd

(
U (ω)

)
= Y (ω) (2.29)

On selecting using (2.28) and (2.29), we get,

Kp =
X (ω)T (ω)−Y (ω)Q(ω)

P(ω)T (ω)−Q(ω)S (ω)
(2.30)

Ki =
Y (ω)P(ω)−X (ω)S (ω)

P(ω)T (ω)−Q(ω)S (ω)
(2.31)

Now, selecting the value of Kd and then using (2.31) and (2.32), plot the graph between Kp and
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Figure 2.4: Stability Boundary Locus plot

Ki by varying the frequency (ω ) from 0 to ∞. The parameter plane ((Kp,Ki) plane) is divided

into stable and unstable regions as shown in Fig. 2.4. Choosing a set of test points (T1,T2 and T3)

from each region, we are able to segregate stable and unstable boundary of Kp-Ki plane. From the

stable region, the parameters Kp and Ki can be determined.

2.8 Performance evaluation

To analyse and test the optimal performance of the control scheme, the performance indices (cost

functions) in the form of integral error criterion are selected [45]. They are integrated error (IE),

integral of the squared error (ISE), integral of the absolute error (IAE), integral of the time squared

error (ITSE) and integral of the time weighted absolute error (ITAE) defined, respectively, by

IE =

∞∫
0

e(t)dt, ISE =

∞∫
0

e2(t)dt, IAE =

∞∫
0

∣∣e(t)∣∣dt,

IT SE =

∞∫
0

te2(t)dt, ITAE =

∞∫
0

t
∣∣e(t)∣∣dt

(2.32)

where, e(t) is the error signal, i.e., the difference between the set-point (desired) input and the

actual output. IE accumulates the net error and describes the performance of monotonic response

[78]. ISE index indirectly denotes several characteristics like settling time, overshoot, speed of
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response, and all other important features of the transient response. IAE index is a measure of

disturbance rejection for integral controller. ITSE index considers squared long duration error.

ITAE index accounts for long duration error. Lastly, the control system is optimal if the value of

these indices are minimum.

2.9 Concluding remarks

In this chapter, a brief review of five widely cited PID tuning techniques, i.e., Ziegler Nichols ap-

proach, Cohen Coon, CHR technique, Internal model control (IMC) scheme and stability bound-

ary locus (SBL) is presented. PID controllers are ubiquitous in industry owing to their simplicity

and operability in a wide range of operating conditions. ZN and CHR are the conventional PID

tuning techniques, which depend on the open loop response of the plant, whereas IMC scheme is

based on Q- parameterization principle and SBL technique is based on the choice of parameters

in the stabilising region of the system. There are widely different PID techniques, but the ultimate

aim of each of them is the attainment of desired response, in terms of ideal time response specifi-

cations, frequency response specifications, lower values of performance indices or a combination

of one or more of these factors. The next chapter will focus on a new technique, known as the

QRAWCP approach, that makes it possible to practically realise an optimal LQR controller via its

transformation into the form of a conventional PID controller.
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Chapter 3

Proposed Control Approach–I- An Optimal

PID using QRAWCP

In this chapter, a direct formula is propounded for the design of an optimal PID controller for a

class of systems via a new technique, known as Quadratic regulator approach with compensating

pole (QRAWCP). The beauty of the proposed approach is that the optimal properties of a LQR

controller are transferred into a PID controller, and this transformation is accompanied by the

augmentation of an additional pole to the characteristic equation of the LQR compensated system.

Further, in certain situations, all the states of the system are not observable. In such a case, an

additional Kalman filter can be added in series with the LQR controller, which leads to a technique

known as Linear Quadratic Gaussian (LQG) method.

Thus, by using this approach, one does not need to go for iterative soft computing techniques which

are time consuming [71], computationally inefficient and require a prior knowledge of the search

space in which the solution will lie. The superiority of the proposed approach is demonstrated

through illustrative examples and via the comparison of the performance indices with the well-

known methodologies in literature.

To verify the effectiveness of the proposed approach to real time systems, it is implemented for

position control, velocity control of DC servo system and balancing of rotary inverted pendulum.

Further, it is also tested on a QUBE servo2 hardware setup [79] for the position control of dc
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servo system. Furthermore, during detailed analysis of solar tracker system [35], the proposed

approach is compared with the recently applied tuning approaches for sun tracker systems such

as particle swarm optimisation (PSO)[80], firefly algorithm (FFA)[81] and cuckoo search algo-

rithm (CSA)[82]. The performance of the existing and proposed approaches is verified in time

domain, frequency domain and also via integral performances indices. It is found that the pro-

posed approach exhibits better performance for transient, robustness, and uncertainty aspects in

comparison to recently published approaches on soft computing techniques.

3.1 Linear Quadratic Regulator

3.1.1 Introduction

The word LQR is an initialism, that stands for ‘Linear Quadratic Regulator’. It belongs to a class

of optimal control [83] problems wherein the system dynamics are described by a set of linear

differential equations and the performance criteria is delineated by a quadratic weighted function

of the states and the control energy. The quadratic cost functional is presented as follows:

J =
∫ t f

t0

[
xT (t)Q(t)x(t)+uT (t)R(t)u(t)

]
dt (3.1)

In (3.1), Q and R are the coefficient matrices-Q is positive semi-definite, and R positive definite.

The reason behind this choice is that the energy associated with any arbitrary state can only be

positive or zero (it is zero at equilibrium point, when the system is initially relaxed). So, according

to Sylvester’s theorem [41], Q must be positive semi-definite. For R, the case is a bit different.

This is because, it is absolutely meaningless to achieve minimum cost function without applying

any input. Keeping this in mind, R must always be positive definite. Before delving further into

the study of LQR based optimal control, the most obvious question that arises is this, what is

the specialty of this technique. The pole-placement technique emerges from the idea of matching

time-domain specifications and designing the control law accordingly. However, the pole place-

ment technique is solely based on choice of good poles and does not look into the aspect of control

energy minimization. As cost incurred by any engineering problem is a very important issue to
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look at, LQR guarantees to achieve a minimum energy cost value using the control law designed

using that constraint [84]. It may fail to give the best transient and steady-state characteristics,

but when looked at from the economical aspects, it is digestible that although the time-domain

characteristics are not up to the mark, the energy cost by the entire process is minimum.

3.1.2 Literature survey

LQR is a popular control technique and is being actively researched upon in the recent past [84].

The work on LQR started off in 1948-1949, with the great work of N.Weiner [85, 86], in automatic

control of firing of weapons during World War II. In his work, Wiener designed mean-squared

filters by the minimization of the following functional:

J = E[e2(t)] (3.2)

This functional is actually the expected value for themean-squared error function. The generalised

performance function that emerged for multi-input multi output (MIMO) systems is as follows:

J =
∫

∞

0
eT (t)Qe(t)dt (3.3)

where, Q is a positive semi-definite matrix. In a regulation problem, the equilibrium point is al-

ways zero. So e(t) = 0− x(t). Without u(t), (3.1) becomes (3.3) with e(t) = −x(t). This is to

reduce the regulation error, and in combination of u(t), as in (3.1), involves the design of an opti-

mal control which guarantees minimum integral squared of tracking error as well as input control

energy. This is called the Lagrange’s problem of optimization. FollowingWeiner’s work, attempts

to solve the Lagrange’s problem defined by (3.1) started coming into the picture. In 1957-1965,

Bellman worked on the solution of discrete optimal control problems [87–89], where he devised a

popular technique of optimization named as ‘Dynamic Programming’. The most important land-

mark in the journey of optimal control was made by Pontryagin (of the former USSR) in the year

of 1956 [90]. L. S. Pontryagin, together with his associates presented to the world his famous

theory of ‘Maximum Principle’ in [91]. The detailed analysis and description of this principle

is given in [92]. Gramkrelidze, one of Pontryagin’s associates, also reported a fascinating article
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regarding this field, in [93]. During this period, in 1960, it was R. E. Kalman who gave to the

control engineering world the concepts of ‘Linear Quadratic Regulator’ and ‘Linear Quadratic

Gaussian’, which can be found in [94]. The main intention of Kalman behind these contribu-

tions is to provide optimal feedback control laws, as feedback control system is the backbone of

both classical and modern control theory and applications. Kalman used his concepts of LQR

and LQG to develop the theories on optimal filtering and estimation, leading to the birth of the

famous ‘Kalman Filter’, in discrete form [95]. The continuous version of the Kalman filter was

developed by Kalman, in association with Bucy [96]. However, the formulation of optimal feed-

back control proposed by Kalman was heavily dependent on the Riccati Equation. This equation

is named after Jacopo Riccati, an Italian mathematician. He had proposed the solutions for some

nonlinear differential equations in the year of 1724 [97, 98]. In spite of publishing the base for

Kalman’s theory, he was completely ignorant of how much important his theory will prove to be,

in the field of control literature.

Following the historical background of LQR, in the recent times, theoretical advancements in this

field include the works of [99], where the authors have worked on the effect of changing input

gains, if LQR is used to design the control. In [100], integral sliding mode control combined with

the conventional LQR problem was desired meant for Linear Time-Varying systems, in order to

enable LQR to deal with robust control problems. Similar attempt was made in [101], where the

robustification was done using the concept of disturbance observer based control. A numerical

computation based solution of the algebraic riccati equation (an integral step of the optimal control

design using LQR) was proposed in [1, 102, 103]. As PID is very familiar among most of today’s

industries, J. He et. al. proposed an approach to tune PID control parameters with the help of

LQR based optimal gain matrix[104]. Moving onward to areas where LQR is still being applied

in recent times, lead to the works of [43, 50, 105–108], which imply that the research in this field

is still prevalent and going on at steady pace.
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3.1.3 Mathematical formulation

For a linear, time-invariant (LTI) system, which is asymptotically stable, the performance index

(i.e. the cost function) J is defined as follows:

J =
1
2

∫
∞

0

[
xT (t)Qx(t)+uT (t)Ru(t)

]
dt (3.4)

This cost function is subjected to the following system constraint:

ẋ(t) = Ax(t)+Bu(t) (3.5)

The optimal control law is obtained using the Pontryagin Minimum Principle [83]. This is de-

scribed in the following steps:

• Step 1: Hamiltonian

The Hamiltonian for this problem is defined as follows:

H(x,u, t) =
1
2

[
xT (t)Qx(t)+uT (t)Ru(t)

]
+λ

T [Ax+Bu] (3.6)

• Step 2: Control Law

Partial differentiation of (3.6) with respect to u gives the optimal control law:

u∗ =−R−1BT
λ (3.7)

• Step 3: State and Co-state equations are: ẋ

λ̇

=

 A −BR−1BT

−Q −AT


x

λ

 (3.8)
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• Step 4: Formulation of Algebraic Riccati Equation (ARE):

Using (3.7), (3.8), and λ = Px, the ARE is formulated as follows:

PA+AT P−PBR−1BT P =−Q (3.9)

Solving (3.9) for P, the optimal control law is obtained as follows:

u∗ =−R−1BT Px (3.10)

3.1.4 Q and R selection

Bryson’s Rule [109]: LQR is a technique which gives an optimal way to design a controller via

minimisation of the error in states and control energy. One of the challenges is to select the suitable

weighting matrices Q and R for minimising the cost function. This difficulty can be overcome by

using Bryson’s rule which gives the initial values of the diagonal elements of Q and R matrix as:

qii =
1

x2
imax

r j j =
1

u2
jmax

where, i, j = 1,2,3, ...,n. Here, n denoted the number of states of the system. Also ximax and u jmax

are the maximum acceptable values of ith state and jth control input. This causes the maximum

value of each term of cost function to be 1 and notmore than that. Hence cost function isminimised

such that its value is not more than a particular value.

Modified Bryson’s Rule: This rule comes with a slight modification in Bryson’s rule [110]. Ac-

cording to this,

qii =
α2

i

x2
imax

r j j = ρ×
β 2

j

u2
jmax
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where, α and β are chosen according to the priority given to the individual state and control input.

If α1 is chosen higher then x1 will settle fast to minimise the cost function and,

Σ
n
i=1α

2
i = 1

Σ
m
j=1β

2
j = 1

ρ is chosen to maintain a balance between the speed of settling of state and the control energy

required. If ρ will be higher then control energy will reduce but states will take more time to settle

and overshoot will also increase.

3.2 QRAWCP scheme

This section presents the generalised formulation of Quadratic Regulator Approach with Com-

pensating Pole (QRAWCP) scheme for SISO and SIMO systems in a step by step manner.

3.2.1 SISO system

Let the single input single output (SISO) plant model be represented by the following general

transfer function of nth order:

G(s) =
b0

n
∑

l=0
an−lsn−l

(3.11)
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Representing (3.11) in Controllable Canonical Form of state-space representation in the following

equation, we get:

ẋ1

ẋ2

ẋ3
...

ẋn


=



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
... ... ... ... . . . ...

−a0 −a1 −a2 −a3 . . . −an





x1

x2

x3
...

xn


+



0

0

0
...

b0


u

y =
[

1 0 0 . . . 0

]


x1

x2

x3
...

xn



(3.12)

The state-space matrices are assigned to the following variables as follows:

A =



0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
... ... ... ... . . . ...

−a0 −a1 −a2 −a3 . . . −an


;B =



0

0

0
...

b0


C =

[
1 0 0 . . . 0

]
(3.13)

Using (3.9) and (3.10) with P as a real, symmetric positive definite matrix, the LQR based control

law is obtained as follows:
K = R−1BT P

=
1
r

[
0 0 0 . . . b0

]


P1

P2

P3
...

Pn


(3.14)
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where, Pj =
[
p j1 p j2 p j3 . . . p jn

]
. Note that, since P is symmetric, p jk = pk j(1 ≤ j,k ≤

n). With this optimal gain matrix, the modified system matrix is Ã = A−BK. The determinant

of (sI− Ã) gives the characteristic polynomial of the closed-loop system. Representing the same

in factorized form, we get,

|sI−A+BK|= 0 =⇒
n

∏
i=1

(s+λi) = 0 (3.15)

Multiplying both sides of (3.15) with a compensating pole placed at s =−λ
′ , the resultant char-

acteristic equation turns out to be:

(s+λ
′
)

n

∏
i=1

(s+λi) = 0 =⇒ sn+1 +
n

∑
i=0

cn−isn−i = 0 (3.16)

where, c0,c1, . . . ,cn ∈ R. The generalized expression for (3.15) in polynomial form is as follows:

|sI−A+BK|= 0 =⇒ sn +
n

∑
i=1

(an−i +b0k(n+1−i))s
n−i = 0 (3.17)

After adding the compensating pole at s = −λ
′ , the resultant characteristic equation is obtained

by multiplying (s+λ
′
) on both sides of (3.17), which is written in the following manner:

sn+1 +(an−1 +b0kn +λ
′
)sn +

n−1

∑
i=2

{
(an−i +b0k(n+1−i)+

λ
′
(an−i+1 +b0kn−i+1)

}
+λ

′
(a0 +b0k1) = 0

(3.18)

The value of ki (i ∈ [1,n]) can be obtained as equal to
b0

r
pni. If the control of (3.11) is done by a

PID controller Gc(s) =Kp+
Ki

s
+sKd , then the resultant characteristic equation of the closed-loop

system is given as follows:

=⇒ (sn+1 +a1sn +a2sn−1 + . . .+a0s)+b0(kds2 + kps+ ki) = 0 (3.19)
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Comparing (3.19) with (3.16) for the values of kp,ki, and kd in terms of the closed-loop poles, we

obtained the following equation:

ki =
1
b0

(−1)n

{
n

∏
i=1

λi

}

kp =−
1
b0

{
(−1)2n−1b0ki

n

∑
i=1

(
1
λi

)
−a0

}

kd =
1
b0

(−1)2(n−1)b0ki

n

∑
k=2

1
λk

k−1

∑
j=1

1
λk− j

−a1


(3.20)

These formulae will be helpful if all the closed-loop poles positions are known. The general-

ized formulae for kp,ki,kd, and λ
′ are obtained by comparing (3.18) and (3.19), and are listed as

follows:
λ
′
=−b0kn

kp = k1 +λ
′
(

a1

b0
+ k2

)
ki = λ

′
(

a0

b0
+ k1

)
kd = k2 +λ

′
(

a2

b0
+ k3

)
k j =

b0

r
pn j ( j ∈ [1,3])

(3.21)

An extension of this analysis has been carried out for a system with single input and multi outputs.

3.2.2 SIMO system

The method to obtain the values of controllers’ gains is described in the following: Let the single

input and multi outputs(SIMO) system be defined by the following equations:

ẋ = Ax+Bu (3.22)

y =Cx (3.23)

where, A ∈ Rn×n,B ∈ Rn×1,C ∈ Rm×n. In order to formulate a simplified methodology for the

implementation of the same control technique, (3.22) is converted into controllable canonical
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form, using the transformation xc = Tcx. Let the converted system be defined as the following:

ẋc = Acxc +Bcu (3.24)

y =Ccxc (3.25)

As a systemmay have numerous degrees of freedom, the matrices Ac,Bc, andCc can be partitioned

into Jordan canonical form as follows:

Ac =



A1 O2 O2 O2 . . . O2

O2 A2 O2 O2 . . . O2

O2 O2 A3 O2 . . . O2
... ... ... ... . . . ...

O2 O2 O2 O2 . . . Ak


;Bc =



B1

B2

B3
...

Bk



Cc =



C1 O2 O2 O2 . . . O2

O2 C2 O2 O2 . . . O2

O2 O2 C3 O2 . . . O2
... ... ... ... . . . ...

O2 O2 O2 O2 . . . Ck



(3.26)

where,

Ak =

 0 1

−ak0 −ak1

 ;Bk =

 0

bk


Ck =

[
1 0

]
;O2 =

0 0

0 0


O2 =

[
0 0

]
Using the Bc of (3.26), the optimal gain matrix Ko for the system given in (3.22) is obtained from

the Algebraic Riccati Equation:

Ko =−
1
r

BT
c P (3.27)
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The matrix P is rewritten for each degree-of-freedom as follows:

P =

[
P1 P2 P3 . . . Pk

]
Pk =

[
p11 p12 p13 . . . p1k

]T (3.28)

Using (3.26) and (3.27), the eigen values of Ac−BcKo are to be obtained. Let the set Λ represent

the set of these values:

Λ =
{

i ∈ [1,n]|λi ∈ Λ
}

(3.29)

Using (3.29), |sI−Ac +BcKo|= 0 is as follows:

n

∏
i=1

(s+λi) = 0 (3.30)

If there are k number of degree-of-freedoms, then k number of PID controllers are to be used.

This implies that the number of compensating poles to be added to the system is k− 1. Let the

resulting factored equation be written as follows:

k−1

∏
j=1

(s+λ
′
j)

n

∏
i=1

(s+λi) = 0 (3.31)

Each transfer function corresponding to the kth (k ∈ N) degree-of-freedom is of the following

form:

Pk(s) =
bk

s2 +ak1s+ak0
(3.32)

The generalized characteristic equation of the closed-loop system is obtained using (3.32) in the

following:

k

∑
i=1

PiCi =−1 (3.33)

=⇒
k

∏
j=1

(
b j

s2 +a j1s+a j0

)(
kd js2 + kp js+ ki j

s

)
=−1 (3.34)
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For better clarity, (3.33) is rewritten in the following equation:

sk−1
k

∏
i=1

Di(s)+
k

∑
i=1

( k

∏
i=1

Di

)(
bi

Nci

Di

)= 0 (3.35)

In (3.35), Di(i ∈ [1,n]) From above (3.35) we can say that, the number of controllers is same as

the number of degree of freedom (DOF)s, which is one-half of the system’s order.

When k = 2

In (3.33) and (3.35), with k = 2, the characteristic equation of the closed-loop system is as follows:

s
2

∏
j=1

(s2 +a j1s+a j0)+
2

∑
j=1

[
b1Nc1(s)D2(s)+b2Nc2(s)D1(s)

]
= 0 (3.36)

where, Nc1 = kd1s2 + kp1s+ ki1,Nc2 = kd2s2 + kp2s+ ki2. Hence, the resultant equation is given

below:

s
{

s4 +(a11 +a21)s3 +(a10 +a20)s2 +(a21a10 +a11a20)s+a10a20

}
+

b1

[
kd1s4 +(kd1a21 + kp1)s3 +(kd1a20 + ki1)s2 +(kp1a20 + ki1a21)s+ ki1a20

]
+

b2

[
kd2s4 +(kd2a11 + kp2)s3 +(kd2a10 + ki2)s2 +(kp2a10 + ki2a11)s+ ki2a10

]
= 0

(3.37)

Grouping together the like terms of (3.37) and rewriting (3.36) as follows:

s5 +{a11 +a21 +b1kd1 +b2kd2}s4 +
{

a10 +a20 +b1(kd1a21 + kp1)
}

s3+{
a21a10 +a11a20 +b1(kd1a20 + ki1)+b2(kd2a10 + ki2)

}
s2 +

{
a10a20 +b1(kp1a20

+ki1a21)+b2(kp2a10 + ki2a11)
}

s+b1ki1a20 +b2ki2a10 = 0

(3.38)

Following from (3.31), the same equation can be written in generalised polynomial form as fol-

lows:

1+P1C1 +P2C2 = s5 + p4s4 + p3s3 + p2s2 + p1s+ p0 = 0 (3.39)
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Comparison of (3.38) and (3.39) leads to the following set of formulae:



0 0 b1 0 0 b2

b1 0 b1a21 0 0 0

0 b1 b1a20 0 b2 b2a10

b1a20 b1a21 0 b2a10 b2a11 0

0 b1a20 0 0 b2a10 0





kp1

ki1

kd1

kp2

ki2

kd2


=



p4−a11−a21

p3−a10−a20

p2−a21a10−a11a20

p1−a10a20

p0


(3.40)

The values of the coefficients of (3.39) can be obtained from the eigen values of (Ac−BcKo) and

the added compensating pole, using the following formulae:

p0 = (−1)5
(

λ1λ2λ3λ4λ
′
)

(3.41)

p1 = (−1)4
(

λ1λ2λ3λ4 +λ1λ2λ3λ
′
+λ1λ2λ4λ

′
+λ1λ3λ4λ

′
+λ2λ3λ4λ

′
)

(3.42)

p2 = (−1)3
(

λ1λ2λ3 +λ1λ2λ4 +λ1λ2λ
′
+λ1λ3λ4 +λ1λ3λ

′
+λ1λ4λ

′
+λ2λ3λ4+ (3.43)

λ2λ3λ
′
+λ2λ4λ

′
+λ3λ4λ

′
)

(3.44)

p3 = (−1)2
(

λ1λ2 +λ1λ3 +λ1λ4 +λ1λ
′
+λ2λ3 +λ2λ4 +λ2λ

′
+λ3λ4 +λ3λ

′
+λ4λ

′
)

(3.45)

p4 = (−1)1 (λ1 +λ2 +λ3 +λ4 +λ5) (3.46)

Having obtained the values of the coefficients, (3.40) is to be used to compute the PID controller

parameters.

3.3 Illustrative Examples

This section illustrates the application of the proposed scheme for different classes of linear time

invariant systems.

Example 1: Consider a repeated pole second-order system

G1(s) =
1

(s+1)2 =
1

s2 +2s+1
(3.47)
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Let us consider the generalized system in variable form as, G1(s) = 1
s2+a1s+a2

. On simplification

of 1+G1(s)C(s) = 0, we get the closed loop characteristic equation as

1+
1

s2 +a1s+a2
× (kp +

ki

s
+ kds) = 0 (3.48)

On further simplification, we get

s3 +(a1 + kdb0)s2 +(a2 +b0kp)s+b0ki = 0 (3.49)

In the next step, we obtain the state feedback gain matrix K, via LQR approach as K = R−1BT P.

The system matrices A, B and positive definite matrix P and R are given as follows:

A =

 0 1

−a2 −a1

 ; B =

 0

1

 ; P =

 p11 p12

p12 p22

 ; R = [1] (3.50)

Substituting these values to compute K, we get, K = [p12 p22], consequently, it’s closed loop

system equation becomes

|sI− (A−BK)|= s2 +(a1 + p22)s+a2 + p12 = 0 (3.51)

Since Equation (3.51) is of second order, whereas the system with PID controller is of third order,

so we augment one extra pole λ3, thus the characteristic equation becomes (s+ λ3)(s2 +(a1 +

p22)s+(a2 + p12) = 0. On further simplification, we get,

s3 +(a1 + p22 +λ3)s2 +(a1 + p22 +λ3(a1 + p22))s+(a2 + p12) = 0 (3.52)

Since there are two equations and three unknowns, so in equation (3.49), set Kd to desired value,

depending on the actuator rate constant. On comparing the coefficients of Laplace variable of

order 2, we get

λ3 = Kd− p22 (3.53)
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Figure 3.1: Output for step-type (a) set-point, (b) disturbance, and control action for (c) set-point
tracking and (d) disturbance rejection of Example 1

On further comparison of (3.49) and (3.52), the other two PID controller gains can be obtained as

follows:

Kp = p12 +λ3(a1 + p12) Ki = (a2 + p12)λ3 (3.54)

Using the proposed scheme, the PID parameters are λ3 =−8.5858 and the controller gain from

(3.54) as: Kp = 21.1421 Ki = 20.7279. We have presumed, Kd = 10. For the purpose of com-

parison and validation of the proposed approach, we consider two techniques from the literature,

i.e., IMC PID whose parameter values are given by Kp = Ki = Kd = 1/λ in [39] and other is the

SIMC approach [111] which, gives τI = min(1,4λ ), Kp = τI/λ , τD = 1.

The comparison of the output response for unit step input is shown in Fig. 3.1(a) wherein, the out-

put obtained by using proposed technique reaches the steady state quickly with minimal overshoot

and exhibits smaller oscillations as compared to Skogestad IMC (SIMC)[111]. Also, the response
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obtained using second-order filter (n = 2) gives less overshoot, but it is sluggish in nature due to

the presence of a lag-term. Next, for the observation of disturbance attenuation property, a step

disturbance of amplitude of 0.5 units is applied at t = 0 seconds. It can be seen in Fig. 3.1(b) that

the proposed technique gives faster disturbance attenuation as compared to IMC [39] and SIMC

[111]. The control actions for set-point tracking and disturbance rejection performance are de-

picted in Figs. 3.1(c) and 3.1(d). To test the optimality, different performance indices are given

in Table 3.1. It can be seen, that for reference tracking, the proposed technique gives least error

among the other methods in the literature. However, for SIMC, IE is the least due to oscillatory

nature of the response.

Example 2: Now, consider a second order plant which is a model of the PMS set-up1, designed

by Feedback Instruments Limited, England.

From user manual, the transfer function model for angular shaft velocity (ω) versus armature

current (ia) is given as

G2(s) =
1.362×108

s2 +1000s+8.476×104 (3.55)

This transfer function can be generalized as, G1(s) =
b0

s2+a1s+a2
. Upon simplification of the closed

loop characteristic equation, 1+G2C(s) = 0, we get,

1+
b0

s2 +a1s+a2
× (kp +

ki

s
+ kds) = 0 (3.56)

Rearranging the similar power terms, we get, the final closed loop characteristic equation as

s3 +(a1 + kdb0)s2 +(a2 +b0kp)s+b0ki = 0 (3.57)

In a similar manner as given in example 1, the LQR feedback gain matrix K = [k1 k2] is com-

puted, then the matrix |sI − (A− BK)| is obtained and finally the pole λ3 is augmented to it.

Now, the difference between Ghosh LQR-PID [1] and Proposed PID is that, in Ghosh PID, the

augmented pole is randomly adjusted as multiple times of real part of the dominant pole of the

system. But, there is no well-defined rule on how far we need to select the pole, and the choice
1The detailed information is available at http://www.feedback-instruments.com/ products/ education/ control in-

strumentation/ precision modular control workshop
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Figure 3.2: Output for step-type (a) set-point, (b) disturbance, and control action for (c) set-point
tracking and (d) disturbance rejection of Example 2

of this pole plays a critical role in stabilization of system. But in the proposed PID, a well-

structured scheme is recommended for the design of PID controllers. For the present example, we

chose Kd = 4.1191× 10−6 and hence obtain λ3 = −42.3864 and other controller gain values as

Kp = 3.1121×10−4 and Ki = 0.0264.

For the comparison and verification of proposed technique with LQR-PID, we have randomly se-

lected the LQR-PID values by adjusting λ3 as 2, 4, and 6 times of dominant pole of a system, as dis-

cussed in [1]. Thuswe get, LQR-PID for 2 timesmultiple: λ2×2=−187.0054,Kp = 0.0014,Ki =

0.1164, Kd = 1.3730×10−6, LQR-PID for 4 times multiple: λ2×4 =−374.0108,Kp = 0.0027,

Ki = 0.2328, Kd = 2.7460×10−6 and LQR-PID for 6 times multiple: λ2×4 =−561.0163,Kp =

0.0041, Ki = 0.3491, Kd = 4.1191×10−6.

The set-point tracking and disturbance rejection capability (along with their control actions) of
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the proposed approach and LQR-PID, shown in Fig. 3.2, is the fastest and optimal (see Table 3.1)

amongst all.

Example 3: Now, consider the fourth order plant having repeated poles as follows

G3(s) =
1

(s+1)4 (3.58)

This can be represented by the following fourth order transfer function

G4(s) =
b0

s4 +a3 s3 +a2 s2 +a1 s+a0
(3.59)

where, b0 = 1, a3 = 4,a2 = 6, a4 = 4, and a0 = 1.

On further simplification, we get the closed-loop characteristic equation 1+G4(s)C(s) = 0 as

s5 +a3s4 +Kdb0s2 +a2s3 +Kpb0s+a1s2 +Kib0 +a0s = 0 (3.60)

Rearranging the terms in (3.60) yields,

s5 +a3s4 +a2s3 +(a1 +Kdb0)s2 +(Kpb0 +a0)s+Kib0 = 0 (3.61)

In a similar manner, as done in example 1, the LQR feedback gain matrix K = [k1 k2 k3 k4]

is calculated, then |sI− (A−BK)| is obtained and finally on augmenting pole −λ5, we get the

closed-loop characteristic equation as

s5 +(a4 + p44 +λ5)s4 +
(
a2 + p34 +(a4 + p44)λ5

)
s3+(

a1 + p24 +(a2 + p34)λ5
)

s2 +
(
a0 + p14 +(a1 + p24)λ5

)
s+(a0 + p14)λ5

(3.62)
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Figure 3.3: Output for step-type (a) set-point, (b) disturbance, and control action for (c) set-point
tracking and (d) disturbance rejection of Example 3

Comparing (3.61) and (3.62), the values of augmented pole obtained are are, λ5 = − p34
a4+p44

and

PID gains become

Kp =
a1 λ5 + p24 λ5 + p14

b0

Ki =
(a0 + p14)λ5

b0

Kd =
a2 λ5 + p34 λ5 + p24

b0

(3.63)

Thus we obtain λ5 = −0.1945 and other controller gain values as Kp = 1.374, Ki = 0.2025 and

Kd = 2.23. We have also designed a PI controller using proposed approach, thus we obtain

QRAWCP-PI controller as, λ5 = −0.1359, Kp = 1.0841, Ki = 0.1921. From [57], the SBL-PI

controller values are Kp = 0.35, Ki = 0.3. The respective results are shown in the Fig. 3.3. The

set-point tracking and disturbance responses (along with their control actions) of the proposed

approach and LQR-PID, are shown in Fig. 3.3, and it can be concluded that the step response
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obtained via the proposed approach is the fastest and optimal among all others. (See Table 3.1,

Example 3)

Example 4: Now consider, the transfer function model of Manutec robot [57] of fourth order as

G5(s) =
10

s(s+2)(s+40)(s+45)
(3.64)

This can be represented in the generalized form as

G5(s) =
b0

s4 +a3 s3 +a2 s2 +a1 s+a0
(3.65)

where, b0 = 10, a3 = 87,a2 = 1970, a1 = 4, and a0 = 1. On substituting the values of C(s) and

G5(s), we obtain the closed loop characteristic equation as

s5 +a3s4 +Kdb0s2 +a2s3 +Kpb0s+a1s2 +Kib0 +a0s (3.66)

Rearranging (3.66) the terms, we obtain

s5 +a3s4 +a2s3 +(a1 +Kdb0)s2 +(Kpb0 +a0)s+Kib0 = 0 (3.67)

Similar to example 1, the LQR feedback gain matrix K = [k1 k2 k3 k4] is evaluated and then

|sI− (A−BK)| is obtained and finally, additional pole, i.e., λ5 is augmented to the characteristic

equation. The final closed loop characteristic equation is given as,

s5 +(a4 + p44 +λ5)s4 +
(
a2 + p34 +(a4 + p44)λ5

)
s3 +

(
a1 + p24 +(a2 + p34)λ5

)
s2

+
(
a0 + p14 +(a1 + p24)λ5

)
s+(a0 + p14)λ5 = 0

(3.68)

Comparing (3.67) and (3.68), the values of augmented pole obtained as λ5 = − p34
a4+p44

and PID

gains becomes, Kp = a1 λ5+p24 λ5+p14
b0

, Ki =
(a0+p14)λ5

b0
and Kd = a2 λ5+p34 λ5+p24

b0
. Thus we obtain

λ5 =−14.2586 and other controller gain values asKp = 6.5379×103,Ki = 4.5628×102 andKd =

3.0040× 103. For the verification and validation of the proposed approach, it is compared with

SBL-PI controller designed in [57]. We also design a PI controller using proposed approach and

get QRAWCP-PI controller as λ5 = −0.0025624, Kp = 1.0143e2, Ki = 0.025929. According
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Figure 3.4: Output for step-type (a) set-point, (b) disturbance, and control action for (c) set-point
tracking and (d) disturbance rejection of Example 4

to SBL-PI [57] controller gain Kp = 1000, Ki = 187.16. The respective results are shown in the

Fig. 3.4. The set-point tracking and disturbance responses (along with their control actions) of

the proposed approach and SBL-PI[57], shown in Fig. 3.4, are the fastest and optimal amongst all

others (See Table 3.1, Example 4).
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Table 3.1: Comparison of performance indices for illustrative examples

Examples Method Reference tracking Disturbance rejection
ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Example1
Proposed 3.361×10−1 7.806×10−1 1.648×10−1 9.040×10−1 8.403×10−2 3.903×10−1 4.121×10−2 4.520×10−1

IMCPID 6.319×10−1 1.512×100 6.471×10−1 3.460×100 1.580×10−1 7.561×10−1 1.618×10−1 1.730×100

SIMC 6.976×10−1 1.515×100 6.656×10−1 3.036×100 1.744×10−1 7.573×10−1 1.664×10−1 1.518×100

Example2

Proposed 1.415×10−2 2.411×10−2 1.650×10−4 4.569×10−4 3.549×100 2.927×10−1 3.281×10−1 2.442×10−2

LQR-PIDx2 3.338×10−3 5.766×10−3 8.617×10−6 3.147×10−5 1.115×10−3 3.290×10−3 1.892×10−6 1.761×10−5

LQR-PIDx4 2.067×10−3 3.790×10−3 3.256×10−6 2.039×10−5 5.573×106 2.921×102 5.225×105 2.638×101

LQR-PIDx6 1.615×10−3 3.178×10−3 2.059×10−6 1.823×10−5 2.673×1017 4.565×107 2.586×1016 4.340×106

Example3
Proposed 1.612×100 3.636×100 3.021×100 1.791×101 4.029×10−1 1.818×100 7.553×10−1 8.957×100

SBLPI 2.742×100 5.151×100 6.147×100 3.462×101 9.203×10−1 2.950×100 2.323×100 1.581×101

QRAWCP-PI 2.742×100 5.151×100 6.147×100 3.462×101 6.855×10−1 2.575×100 1.537×100 1.731×101

Example4
Proposed 6.399×10−2 1.448×10−1 3.399×10−3 3.448×10−1 1.600×10−2 7.755×10−2 8.893×10−4 3.143×10−1

SBLPI 5.573×10−1 1.187×100 3.419×10−1 2.422×100 6.489×100 1.568×101 9.867×101 2.722×102

QRAWCP-PI 2.051×100 3.533×100 3.280×100 1.041×101 5.128×10−1 1.774×100 8.202×10−1 5.437×100
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3.4 Comprehensive analysis for solar tracker system

In this section, a third order real time plant model of solar tracker system is considered. The solar

tracker system with DC servo motor and PID controller is shown in Fig. 3.5. To obtain maximum

efficiency from solar panel, minimum two axes of sun tracker are required, i.e., one is azimuth

angle (θ ) that measures the angle of incoming sunlight to the surface of PV cell and other is tilted

angle (α) which measures the inclination angle of sunlight. As sun tracker is a non-interacting

system, controller designed for single axis will be the replica for another axis also. Therefore, the

analysis has been carried out on a single axis sun tracker system as shown in Fig. 3.6. Mathematical

model of sun tracker is determined using basic laws of physics. For the major hardware parts such

as DC servo motor, it’s speed transfer function G1 is given in (3.69) and G2 is for position control

in (3.70). A gear ratio (N) and other parameters with values are listed in Table 3.2. Now, we

Figure 3.5: Sun tracker system layout

consider a single axis model as shown in Fig. 3.6. Applying Kirchhoff law to DC motor, we get

angular velocity (ω(s))-to-armature voltage transfer function as

G1(s) =
ω(s)
Va(s)

=
Kt

(Ra +Las)(Js+b)+(KtKb)
(3.69)
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Figure 3.6: Model of solar tracker system

where, Va(s) is an armature input voltage. By integrating (3.69), the position control transfer

function can be obtained as,

G2(s) =
θy(s)
Va(s)

=
Kt

LaJs3 +(bLa +RaJ)s2 +(Rab+KtKb)s
(3.70)

Moreover, the sun tracker is interfaced with some additional components such as error discrimi-

nator (Ke), amplifier gain (K), servo amplifier (Ks) and gear ratio (N). If all these parameters are

considered, then open loop transfer function for this sun tracker system becomes,

G(s) =
θy(s)
θr(s)

=
KsKKeKtN

LaJs3 +(bLa +RaJ)s2 +(Rab+KtKb)s
(3.71)

In equation (3.71), transfer function can also be written as

G(s) =
a4

b1s3 +b2s2 +b3s+b4
(3.72)

where, a4 = KsKKeKtN, b1 = LaJ, b2 = (bLa +RaJ), b3 = (Rab+KtKb), and b4 = 0. Equation

(3.72) can be transformed into a state space model, by defining the states as, x1 = θy, x2 = θ̇y, and

x3 = θ̈y. The input and output variables are represented as u = θr and y = θy, respectively. Using
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this, the state space model can be written as
ẋ1

ẋ2

ẋ3

=


0 1 0

0 0 1

−b4
b1
−b3

b1
−b2

b1




x1

x2

x3

+


0

0
a4
b1

u

y =
[

1 0 0

] 
x1

x2

x3


(3.73)

3.4.1 Optimal PID design using QRAWCP scheme

The quadratic regulator approach with compensatory pole (QRAWCP) approach to tune PID con-

troller is described in a series of distinct steps as follows.

Table 3.2: Parameters of sun tracker system

Parameter Value Unit

Error discriminator(Ke) 0.001 V/rad
Amplifier gain(K) 10000 V/V
Servo amplifier(Ks) 1 V/V
Armature resistance(Ra) 6.25 ohm
Armature inductance(La) 0.001 H
Torque constant(Kt) 0.01125 Nm/A
Back emf constant(Kb) 0.0125 Nm/A
Inertia of motor rotor(J) 1×10−6 kgm2/rad
Friction coefficient(b) 0.000001 Nm
Gear ratio(N) 1/800 -

Step 1: The transfer function of the sun tracker system model G(s) is given in (3.72), and the

respective parameters are given in Table 3.2. The proportional (Kp), integral (Ki) and derivative

(Kd) (PID) controller C(s) can be written as

C(s) =
Kds2 + sKp +Ki

s
(3.74)
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Step 2: The closed-loop characteristic polynomial for PID controllerC(s) and plant G(s) is given

as,

∆(s) = 1+G(s)C(s) (3.75)

Simplifying (3.75) and equating to zero, we get, the closed loop characteristic equation as,

s4 +
b2

b1
s3 +

(
b3 +a4Kd

b1

)
s2 +

(
b4 +a4Kp

b1

)
s+

a4

b1
Ki = 0 (3.76)

Step 3: The state space form for sun tracker system is given in (3.73). Using this, the design

procedure of PID is given in step 4 to step 7 below.

Step 4: Determination of performance index in terms of initial conditions:

The quadratic regulator approach is an optimal state feedback controller which can be designed

to minimize a specific quadratic cost function, also known as performance index (PI). The PI

is designed for constraints like control voltage (u), output signal (y), error (e) or unconstrained

objectives of linear time invariant (LTI) system. The optimal control vector u(t) can be obtained

by using the following equation:

u(t) =−Klx(t) (3.77)

Here, unconstrained optimal action is considered. Therefore, cost function of the system is defined

as

Jl =

∞∫
0

(
xT Qx +uT Ru

)
dt (3.78)

where Q ∈ Rl×l and R ∈ Rm×m are symmetric positive definite matrices. Using (3.77), the LTI

system equation becomes,
ẋ = (A−BKl)x

ẋ = Ãx
(3.79)

where, Ã = (A−BKl) If A and B are controllable, then optimal state feedback controller can be

designed. Thus , Ã has eigenvalues on the left of the s-plane. Substituting (3.77) in (3.78), the
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performance index can be written as,

Jl =
∞∫
0

(
xT Qx +(Klx)

T R(Klx)
)

dt

=
∞∫
0

(
xT
(

Q+KT
l RKl

)
x
)

dt
(3.80)

Let,

(
xT
(

Q+KT
l RKl

)
x
)
=− d

dt

(
xT Px

)
=−xT Pẋ− ẋT Px

(3.81)

On putting (3.79) in (3.81) and then substituting in (3.80), we get,

Jl =−xT
[
P(A−BKl)+(A−BKl)

T P
]

x (3.82)

In (3.82), P must be positive definite matrix. By comparing (3.81) with (3.82), we get,

P(A−BKl)+(A−BKl)
T P =−

(
Q+KT

l RKl

)
(3.83)

As (A−BKl) is a stable matrix, therefore, solving for a positive definite matrix Pwhich will satisfy

(3.83), the cost function can be evaluated as,

Jl =

∞∫
0

(
xT
(

Q+KT
l Kl

)
x
)

dt (3.84)

From (3.81), we can write as,

Jl = −xT Px
∣∣∣∞
0

=−xT (∞)Px(∞)+ xT (0)Px(0)
(3.85)

As the system (3.79) is stable, eigenvalues of (3.85) must have negative real part. Therefore,

x(∞)→ 0. Thus, we get Jl = xT (0)Px(0). It is obtained in terms of initial condition.

Step 5: From (3.83), the minimization of Jl gives Kl by using feedback control law u = −Klx.
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The feedback gain Kl is found by using

Kl = R−1BT P (3.86)

and further simplifying, we get Riccati equation as,

AT P+PA−PBR−1BT P+Q = 0 (3.87)

In (3.87), Q and R are selected in such a way that Q = diag(q11,q22,q33) is q11 > q22 > q33 > 0

and R = χT χ > 0, where, χ is non singular matrix.

Step 6: Using Riccati equation (3.87) and state model from (3.73), positive definite matrix P is

obtained which is given below.

P =


p11 p12 p13

p12 p22 p23

p13 p23 p33

 (3.88)

Step 7: Using (3.86), state feedback control gain Kl is obtained as

Kl = [R]−1
[
BT
]
[P]

= [1]
[

0 0
a4

b1

]
p11 p12 p13

p12 p22 p23

p13 p23 p33


(3.89)

Kl =

[
p11

a4

b1
p23

a4

b1
p33

a4

b1

]
(3.90)

Step 8: Using state feedback control law for Ã, new system matrix can be written as,

(sI− Ã) =
s −1 0

0 s −1(
p13

a4
b1
+1
)

a4
b1

(
p23

a4
b1
+1
)

a4
b1

(
p33

a4
b1
+1
)

a4
b1


(3.91)
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From (3.91), the closed-loop characteristic equation can be written as

s3 +

(
p33

a4

b1
+1
)

a4

b1
s2 +

(
p23

a4

b1
+1
)

a4

b1
s+
(

p13
a4

b1
+1
)

a4

b1
= 0 (3.92)

Step 9: The closed-loop system in (3.76) is of fourth order and (3.92) is of third order. Therefore,

in order to compare these two equations, we need to add one additional pole. The recipe of adding

pole is explained below.

Let us consider fourth pole (s+λ4) on the left half of the s-plane. Then (3.92) can be written as,[
s3 +

(
p33

a4

b1
+1
)

a4

b1
s2 +

(
p23

a4

b1
+1
)

a4

b1
s+
(

p13
a4

b1
+1
)

a4

b1

]
(s+λ4) = 0 (3.93)

The above (3.93) can also be written as

s4 +

(
λ4 +

(
p33

a4

b1
+1
)

a4

b1

)
s3+(λ4

(
p33

a4

b1
+1
)

a4

b1

)((
p23

a4

b1
+1
)

a4

b1

)s2+

(λ4

(
p23

a4

b1
+1
)

a4

b1

)((
p13

a4

b1
+1
)

a4

b1

)s+

(
λ4

(
p23

a4

b1
+1
)

a4

b1

)
= 0

(3.94)

If (3.94) is compared with (3.93), λ4 is calculated as

λ4 =−

[(
p33

a4

b1
+1
)

a4

b1
− b2

b1

]
(3.95)

The fourth pole (s+λ4) is augmented by δ . Here, δ is a compensation factor which is a variable

value. Thus, modified λ4 becomes,

λ4 =−

[(
p33

a4

b1
+1
)

a4

b1
− b2

b1

]
+δ (3.96)
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Before substituting (3.96) in (3.93), let

p̃13 =

(
p13

a4

b1
+1
)
, p̃23 =

(
p23

a4

b1
+1
)
, p̃33 =

(
p33

a4

b1
+1
)

(3.97)

Therefore equation (3.94) becomes,

s4 +

(
b2

b1
+δ

)
s3

+

[
p̃23

a4

b1
+

(
p̃33

a4

b1

)2

+

(
p̃33

a4

b1

)(
b2

b1
+δ

)]
s2

+

[
p̃13

a4

b1
+ p̃23 p̃33

(
a4

b1

)2

+p̃23

(
a4

b1

)(
b2

b1
+δ

)]
s

+

[
p̃13 p̃33

(
a4

b1

)2

+p̃13

(
a4

b1

)(
b2

b1
+δ

)]
= 0

(3.98)

The above (3.98) can be written in simplified form as,

s4 + p1s3 + p2s2 + p3s+ p4 = 0 (3.99)

where,

p1 =

[
b2

b1
+δ

]
p2 =

[
p̂23 + p̂2

33 + p̂33

(
b2

b1
+δ

)]

p3 =

[
p̂13 + p̂23 p̂33 + p̂23

(
b2

b1
+δ

)]

p4 =

[
p̂13 p̂33 + p̂13

(
b2

b1
+δ

)]
(3.100)

and

p̂13 = p̃13
a4

b1
; p̂23 = p̃23

a4

b1
; p̂33 = p̃33

a4

b1
(3.101)
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Step 10: By comparing (3.93) and (3.99), we get PID controller C(s) parameters as follows,

Kp =
b1

a4

[
p̂13 + p̂23 p̂33 + p̂23

(
b2

b1
+δ

)]
− b4

a4

Ki =
b1

a4

[
p̂13 p̂33 + p̂13

(
b2

b1
+δ

)]

Kd =
b1

a4

[
p̂23 + p̂2

33 + p̂33

(
b2

b1
+δ

)]
− b3

a4

(3.102)

3.4.2 Simulation results and analysis

Using (3.72), substitute system parameters from Table 3.2 in (3.93). Further, Q and R are con-

sidered such that Q = diag [1,1,1] and R = 1×10−5. The gain matrix Kl can be calculated using

(3.90), i.e., Kl = [7.9958, 13.8156, 316.2278]. The eigenvalues of closed loop system Ã be-

comes, λ1 =−6.2354×103, λ2 =−23.5549, λ3 =−2.1530×10−3. The original system (3.92)

is of third order. Therefore, we require one more pole which is calculated using (3.95), so we

get λ4 = −1.2510× 104. Augmenting with δ = 10000 that gives λ4 = −2.5100× 103. Using

these roots, the coefficients of characteristic equation (3.99) is obtained, i.e., p1 = 8.7690×103,

p2 = 1.5857×107, p3 = 3.6869×108 and p4 = 7.9373×105. Using (3.72), (3.100), then substi-

tuting in (3.102), we get QRAWCP-PID controller parameters as Kp = 2.6218×103, Ki = 5.6443,

Kd = 111.7160.

3.4.2.1 Time response analysis

To validate the proposed technique and to show the superiority of QRAWCP approach, we an-

alyze step response of sun tracker system for three cases, (i) without disturbance, (ii) with input

disturbance and (iii) with output disturbance. The results are compared with the recently designed

PID controller schemes for sun tracker system which are based on swarm optimization approaches

such as PSO [35], FFA [35] and CSA [35]. The PID parameters of proposed QRAWCP PID and

PSO PID, FFA PID, and CSA PID are given in Table 3.3. The performance of proposed PID

controller and other existing PID controllers is explained in case 1, case 2 and case 3 for the case

without disturbance, with input disturbance and with output disturbance, respectively.
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Table 3.3: PID controller parameters

Method Kp Ki Kd

QRAWCP PID
(Proposed) 2621.80 5.64430 111.721

PSO PID 9.51202 7.49203 0.00022
FFA PID 9.72083 7.44047 0.00010
CSA PID 9.99999 8.11378 0.00010
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Figure 3.7: Step responses of system with PID without disturbance

Case 1: Fig. 3.7(a) depicts the step response of the closed loop system for sun tracker system

in the absence of disturbance. From this figure, it can be seen that performance of the proposed

QRAWCP technique is better in comparison to other PID approaches which are based on soft

computing techniques.

The results are verified by performing analysis of transient performance parameters such as, rise

time (tr), settling time (ts), peak overshoot (Mp), absolute peak value (At p), peak time (tp) and

steady state error (ess). They are tabulated in Table 3.4. From this table, it is found that, the

proposed approach gives lesser value of error-based performance indices in comparison to other

PIDs. Fig. 3.7(b) shows control signals using saturation limit of ±50V . It is found that overall

control energy of proposed QRAWCP approach is less in comparison to other techniques. The

performance of proposed PID is verified for disturbance di(t) and do(t), where di(t) is input dis-

turbance and do(t) is output disturbance. Both these disturbances are written mathematically in
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Table 3.4: Output response of system

Method tr(sec) ts(sec) Mp(%) At p tp(sec) ess

QRAWCP PID
(Proposed) 0.09490 0.17750 0.00011 1.00010 0.79410 0.00011

PSO PID 0.16640 0.25850 0.32890 1.00330 0.33550 0.01146
FFA PID 0.16300 0.25230 0.38740 1.00390 0.32720 0.01256
CSA PID 0.15670 0.23830 1.15880 1.01160 0.31580 0.00942
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Figure 3.8: Disturbance (d(t)) applied to system

(3.103) as

d(t) =


0, t < 2 or t > 4

0.15× (sin4πt + cos2πt

+sinπt + sin4πt)−0.5, 2≤ t ≤ 4

(3.103)

The disturbance applied to the system is illustrated in Fig. 3.8. The performance analysis of the

system in case of input disturbance and output disturbance is presented in case 2 and case 3,

respectively.

Case 2: Fig. 3.9(a) shows the step response of the system when the disturbance (di(t)) is applied

from time t = 2s to t = 4s. The proposed approach gives better response in comparison to other

PIDs. Fig. 3.9(b) shows control efforts which is quite higher for proposed controller at initial

time. It is because of large inertia of system at initial time. However, during the time interval

between 2 to 4 seconds. (see Fig. 3.9(b)), we found that that the control efforts are lower (see

Fig. 3.9(a)) in comparison to other approaches.

Case 3: Fig. 3.10(a) shows step response of system when output disturbance (do(t)) is applied
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Figure 3.9: Step responses of system with input disturbance

from 2 to 4 seconds to the plant output side, i.e., the measurement noise. It is seen that, the pro-

posed approach gives stable response with negligible ess in comparison to other PID approaches.

The control efforts are shown in Fig. 3.10(a), which are quite large for proposed QRAWCP PID

controller. However, during disturbance in time interval from 2 to 4 seconds, we observe that,

there is less overshoot in system output, whereas other approaches have large overshoot (see

Fig. 3.10(a)). Also, for safety purpose, we have considered the saturation limit of ±50V. Fur-

ther, loop robustness is also verified as given in next subsection.

3.4.2.2 Loop robustness

The robustness of PID controllers for sun tracker system, to calculate loop transfer function L(s),

is given by (3.104).

∆(s) = 1+L(s) (3.104)

where, L(s) is obtained as,

L(s) = G(s)C(s) =
a4(Kds2 + sKp +Ki)

b1s4 +b2s3 +b3s2 +b4s
(3.105)

Loop robustness is determined in terms of gain margin (GM), phase margin (PM), gain crossover

(ωgc) and phase cross-over (ωpc) frequencies. They are tabulated in Table 3.5.
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Figure 3.10: Step responses of system with output disturbance

Table 3.5: Loop robustness of PID compensated system

Method GM (dB) ωgc(rad/s) PM (deg) ωpc(rad/s) ||S||∞ DM (sec)

QRAWCP PID
(Proposed) ∞ 2359.10 69.2549 ∞ 1.2293 0.0005

PSO PID 57.8081 8.8371 69.9214 407.8013 1.2320 0.1381
FFA PID 56.8303 9.0061 69.6572 389.6705 1.2356 0.1350
CSA PID 56.5502 9.2369 68.8322 388.9042 1.2425 0.1301

Further, there is need to calculate sensitivity (||S||∞) and delay margin (DM) for robustness anal-

ysis [112]. The sensitivity (S) can be calculated as, S = 1
1+L , where, S∞ ≤ 2 ensure robustness.

However, DM is calculated using frequency domain analysis which is given by (3.106)

DM =
PM◦Π

180◦×ωgc
(3.106)

The above robustness test has been carried out for proposed method and existing controllers as

given in Table 3.5.

It is observed that, proposed PID controller shows better stability margin, reduces delay margin,

better sensitivity in comparison to other methods. Finally, the comparative studies of proposed

QRAWCP approach with existing approaches[35] are carried out by calculating integral perfor-

mance indices. They are explained below.
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3.4.2.3 Integral performance indices

The commonly used performancemeasures are Integral Squared Error (ISE), Integral Absolute Er-

ror (IAE) and Integral Time-weighted Absolute Error (ITAE). Mathematically, they can be given

as

ISE =
∫

∞

0

(
θr−θy

)2dt; IAE =
∫

∞

0

∣∣(θr−θy
)∣∣dt; ITAE =

∫
∞

0
t
∣∣(θr−θy

)∣∣dt (3.107)

where,
(
θr−θy

)
is the error between reference input position and measured output position (θy)

at time ‘t’. All integral errors are calculated for sun tracking system which is shown in Table 3.6.

From this table, it is observed that, the proposedQRAWCPmethod for design of PID hasminimum

error in comparison to PSO PID[35], FFA PID[35] and CSA PID [35].

3.4.2.4 Parametric uncertainties

We know that in real time, parameters of the system are not constant. They vary from minimum

to maximum value. This is due to non-linearity, environmental variations and also due to aging.

The main motto of controller design is that it should work even though there exist uncertainties

in the system. Here, for sun tracker system model, its parameters are represented in terms of

uncertainties as
Ke = Ke±∆Ke, K = K±∆K, Ks = Ks±∆Ks,

La = La±∆La, Ra = Ra±∆Ra, Kt = Kt±∆Kt ,

J = J±∆J, b = b±∆b, Kb = Kb±∆Kb

(3.108)
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Table 3.6: Integral performance indices for ±50% perturbation without disturbance

Methods Nominal case -50% Lower bound +50% Upper bound
ISE IAE ITAE ISE IAE ITAE ISE IAE ITAE

QRAWCP PID
(Proposed) 0.0315 0.0532 0.0024 0.0583 0.0845 0.0048 0.0260 0.0474 0.0021

PSO PID 0.0755 0.1189 0.0137 0.2140 0.3409 0.0841 0.0464 0.1019 0.0232
FFA PID 0.0744 0.1180 0.0140 0.2110 0.3368 0.0824 0.0459 0.1016 0.0233
CSA PID 0.0727 0.1134 0.0123 0.2050 0.3280 0.0790 0.0450 0.0988 0.0218

Here, ±50% uncertainty is considered in all the parameters of the system. For this uncertainty,

the upper and lower bounds are listed below.

Ke ∈ [0.00050,0.00150]

K ∈ [5000.00,15000.00]

Ks ∈ [0.50,1.50]

La ∈
[
5×10−4,1.50×10−3

]
Ra ∈ [3.125,9.375]

Kt ∈ [0.005625,0.016875]

J ∈
[
5×10−7,1.50×10−6

]
b ∈

[
0.5×10−6,1.50×10−6

]
Kb ∈ [0.00625,0.01875]

(3.109)

Similar to subsection 3.4.2, the performance analysis is also carried for both lower and upper

bounds. From Fig. 3.11 and Fig. 3.12, it is observed that the performance of the proposed control

is better in comparison to existing controllers except that the control input is slightly more at early

part of the response. Further, performance in case of parametric uncertainly is carried out by

determining performance indices in case of without and with input disturbances. They are shown

in Table 3.6 and 3.7, respectively. Both these tables indicate that the proposed controller approach

is better in comparison to existing controllers.
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Figure 3.11: Response for ±50% parametric uncertainties in system without disturbance

Table 3.7: Integral performance indices for ± 50% perturbation with input disturbance

Methods Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITAE ISE IAE ITAE ISE IAE ITAE

QRAWCP PID
(Proposed) 0.0315 0.0536 0.0037 0.0583 0.0850 0.0063 0.0260 0.0478 0.0033

PSO PID 0.0790 0.2166 0.3386 0.2275 0.5221 0.5004 0.0516 0.2250 0.3940
FFA PID 0.0779 0.2159 0.3371 0.2234 0.5114 0.4856 0.0510 0.2244 0.3913
CSA PID 0.0759 0.2043 0.3176 0.2185 0.5065 0.4831 0.0496 0.2138 0.3706
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Figure 3.12: Response for ±50% parametric uncertainties with input disturbance in system

3.5 Observer based QRAWCP approach

The LQR solution is basically a state feedback type of controller, i.e., it requires that all states

are available for feedback. In most of the situations that we encounter in real life, observability

is an unreasonable assumption and is usually not valid. Hence, some form of state estimation is

necessary. We know that an observer can be used in such situations, when we need to estimate the

state of the system. Also, the combination of an observer and state feedback will always lead to

a stable closed loop system. One could select the observer poles randomly too, but this requires

an expert selection and it is quite possible that the control energy is not optimal. Further, if the

system is affected by the input disturbances and the output noise, the observer chosen randomly

may fail to give appreciable results. To wriggle out of such a situation, we can select an optimal

observer– the Kalman filter. We can then cascade the Kalman filter with the state feedback LQR

controller, and this combination is known as the Linear Quadratic Gaussian (LQG).
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LQR problem is the fundamental one in the optimal control theory (discussed in section 3.1),

wherein a quadratic cost function dependent on the states and the control energy has to be min-

imized and at the same time, the state space equation of the linear plant needs to be satisfied. It

forms an important part of the LQG problem, which will be elaborated in this particular chapter.

In a sense, LQG problem is a generalization of that of the LQR. The principal stumbling block

in the usage of LQR controller is that the system model must be uncorrupted by noise and unaf-

fected by any input disturbances [113], i.e, the effect of input disturbance and measurement noise

is not considered in the design of a LQR controller. Further, all the states of the system must be

observable, which is an unreasonable and vexatious assumption and hence, some form of state

estimation is mandatory.

In [114], it is proved that a combination of observer and state feedback will always result in a

closed loop system that is always stable. One can chose the desired poles for a controller via

Ackermann’s formula and at the same time, it is possible to obtain those poles via a closed loop

system, obtained with the aid of Riccati equation using optimal control. The desired poles of

the controller and observer can be independently selected for a system. But in LQG, it is the

optimal control theory that will influence the choice of both the observer and the controller poles.

In simpler terms, LQG is the series combination of the Kalman filter, which acts as an optimal

observer and the LQR controller as illustrated in Fig. 3.13(a). In the upcoming sections of the

chapter, the problem statement, mathematical equations and the analysis related to the LQG is

presented.

3.5.0.1 Formulation of LQG

Consider the state space model of the linear system in the presence of input disturbance and mea-

surement noise as follows

ẋ(t) = Ax(t)+Bu(t)+Γw(t) (3.110)

y(t) =Cx(t)+ v(t) (3.111)

where, the initial state is given as x(0) = x0. x represents a state vector of dimension (n× 1), u
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(a) (b)

Figure 3.13: LQG structure

is an input (m×1) vector and w(t) denotes the input disturbance matrix of size p. A, B and C are

the state space matrices and v(t) indicates the measurement noise[115].

The following assumptions are considered

• The model of the system in (3.110) and (3.111) assumes additive noise only and the noise

enters the system at two places only as shown in Fig. 3.13(b). This restriction can easily be

met by making appropriate adjustments in the system model.

• The statistical nature of noise in both the state and output equations is known to us. It is

assumed to be white Gaussian noise with zero mean. This assumption is valid for many

naturally occurring noise and can be mathematically translated as follows

E(v(t)v′(τ)) =V (t)δ (t− τ) E(v(t))≡ 0 (3.112)

E(w(t)w′(τ)) =W (t)δ (t− τ) E(w(t))≡ 0 (3.113)

for some non-negative definite and symmetric matrices V and W . Here, E(v(t)) stands for

expectation of any function v(t) and hence E(v(t)v′(τ)) denotes the co-variance of v(t).

The δ term in (3.112) and (3.113) is responsible of the whiteness property of the noise.

• The terms v(t) and w(t) are uncorrelated.
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• x0, the initial state of the plant is also a Gaussian variable whose mean and variance are

known.

• The system is controllable.

Hence, for the plant in (3.110) and (3.111), satisfying the assumptions given above, the problem

is to find optimal control law u =−Kx̂, that minimizes the quadratic fitness function given as

J =
∫

∞

0
(x(t)T Qx(t)+u(t)T Ru(t))dt (3.114)

where x̂ is the observed state of the system, estimated using a Kalman filter, such that it minimizes

the performance index, given as follows

Je =
∫

∞

0
(x(t)− ˆx(t))T (x(t)− ˆx(t)))dt (3.115)

Equation (3.115) effectively implies that the observed state must be as close to the actual state as

possible.

3.5.0.2 Solution of the LQG problem

The LQR problem is a well understood problem, wherein the controller K is given by [116, 117]

K = R−1BT P (3.116)

Here, P is a positive definite symmetric matrix which can be computed via the algebraic Riccati

equation given as

AT P+PA+Q−PBR−1BT P = 0 (3.117)

On closer observation of (3.115) and comparing it with the standard LQR problem, one can rec-

ognize that both the equations are analogous and their solutions can be found in a similar manner,

which will be illustrated below.
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For the LQG problem, the Kalman filter acts as a state observer, whose dynamics are given in the

following equations.

ˆ̇x(t) = Ax̂(t)+Bu(t)+L(y(t)−Cx̂(t)) (3.118)

Here, L is referred to as the Kalman gain. On rearranging the terms of (3.118), we obtain

ˆ̇x(t) = (A−LC)x̂(t)+Bu(t)+Ly(t) (3.119)

Hence, the state space solution of the above design problem is given by the solution of the Con-

tinuous filter algebraic Riccati equation, which can be given as

APe +PeAT −PeCTV−1CPe +ΓWΓ
T = 0 (3.120)

The matrix L can be computed using the equation as given below

L = PeCTV−1 (3.121)

Fig. 3.13(b) illustrates the block diagram of the overall system with LQG controller. The control

input u(t) can thus, be given by

u =−Kx̂(t) (3.122)

where, K is the optimal LQR gain.

3.5.0.3 LQG transfer function

To compute the transfer function of the closed loop system, we begin with the state space equation

of the observer system which is restated here for convenience.

ˆ̇x(t) = (A−LC)x̂(t)+Bu(t)+Ly(t) (3.123)

Substituting the value of u(t) from (3.122), we get

ˆ̇x(t) = (A−LC−BK)x̂(t)+Ly(t) (3.124)
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Figure 3.14: Real-time Qube-Servo2 motor set-up

Taking the Laplace transform of (3.124), we obtain

(sI− (A−BK−LC))X̂(s) = LY (s) (3.125)

After simplifying function(Eq3_102), we get,

X̂(s) = (sI− (A−BK−LC))−1LY (s) (3.126)

Multiplying both sides of (3.126) by −K gives

−KX̂(s) =−K(sI− (A−BK−LC))−1LY (s) (3.127)

Using (3.126), the transfer function from Y (s) to U(s) can be finally given as

U(s) =−K(sI− (A−BK−LC))−1LY (s) (3.128)
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3.6 Experimental analysis

To validate the proposed QRAWCP in real time problem, we have considered the QUBE servo

system for position and speed control case. However, the limitation of LQR is that all the states are

not measurable so that we have assumed these using LQG which is LQR plus full order observer,

the further details are given in the upcoming section.

3.6.1 Case 1: Position control

Consider an identifiedmodel of QUBE Servo 2 (3.14), whose position-to-voltage transfer function

is given as

G4(s) =
Θm(s)
Vm(s)

=
K

τs2 +a0s
, (3.129)

where, Θm(s) = L
[
θm(t)

]
is the motor / disk position, Vm(s) = L

[
vm(t)

]
is the applied motor

voltage, K represents the model steady-state gain, a0 is a coefficient and τ is the model time

constant. The values of the motor parameters are given below.

K = 26.5 rad/(V − s), τ = 0.155 s, a0 = 1 (3.130)

If desired, the model parameters K and τ , can be obtained by conducting an experiment (e.g.

by performing the Bump Test laboratory experiment). The transfer function of PID controller is

C(s) = Kp +
Ki
s +Kds.

1. Proposed approach using LQG:

The closed loop characteristic equation 1+G4(s)C(s) = 0 can be written as,

τs3 +(KKd +a0)s2 +KKps+KKi = 0 (3.131)

Let the state space equation for above system be ẋ = Ax+Bu, where,

A =

 0 1

−a0 −a1

 B =

 0

β1

 (3.132)
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From LQG(Linear Quadratic Gaussian), which is a combination of LQR and full state observer,

we can obtain feedback gain matrix as K = R−1BT P, where, R = [1/r], and P =

P11 P12

P21 P22

.
Thus, we get, K =

[
rP12β1 rP22β1

]
= [k1 k2], and full state observer gain L = PeCTV−1.

The overall closed loop transfer function of the LQG compensator is given by

H(s) = K(sI−A+BK +LC)−1L (3.133)

Using (3.133), we get the closed loop characteristic equation as s2 + l1s+ l2 = 0. It can be seen

that the order of (3.133) is one less than the order of the PID compensated system given in (3.131).

Thus, we augment one pole λ3 to the closed loop characteristic equation in (3.133) and obtain

(s2 + l1s+ l2)(s+λ3) = 0 (3.134)

On simplification and expansion of equation (3.134), we get

s3 +(l1 +λ3)s2 +(l2 + l1λ3)s+(l2λ2) = 0 (3.135)

Now, select an arbitrary value of Kd in (3.131). On comparing it with (3.135), we can com-

pute the augmented pole as λ3 = K.Kd+a0
τ
− l1. The parameters of PID can thus be calculated

as, Kp = τ(l2 + l1λ3)/K and Ki = l2λ3τ/K. On assuming Kd = 0.08, we get λ3 = −129.8462.

Subsequently, the parameters of PID controller are given as Kp = 5.66285, Ki = 0.903277. The

output response and its control signal are shown in Fig. 3.15.

2. LQR-PID approach:

The closed loop characteristic equation 1+G4(s)C(s) = 0 can be written as,

τs3 +(KKd +a0)s2 +KKps+KKi = 0 (3.136)

The LQR feedback gain matrix can be obtained as K =

[
rP12β1 rP22β1

]
= [k1 k2].

69



0 2 4 6

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

O
u
tp
u
t

Reference
Proposed

(a)

0 2 4 6

Time(s)

-15

-10

-5

0

5

10

15

C
on

tr
ol

Proposed

(b)

Figure 3.15: Qube servo position control using proposed approach (a) output and (b) control signal
response

Therefore, the closed loop characteristic equation becomes,

s2 +(a1 + k2)s+(a0 + k1) = 0 (3.137)

Now augmenting an extra pole λ3 in (3.137), which is assumed to be six times of the real part of

the dominant pole as discussed earlier, we get,

s3 +(a1 + k2 +λ3)s2 +(a0 + k1 +λ3(a1 + k2))s+(a0 + k1)λ3 (3.138)

Equation (3.138) can also be expressed as,

s3 +(p1)s2 +(p2)s+ p3 = 0 (3.139)

Now equating eq.(3.138) and (3.139), we get the PID controller gains as, Kp = p2τ

K , Ki =
p3
K ,

and Kd = p1τ−a0
K . On substituting the value of λ3 in (3.138), we get the parameters of PID as

Kp = 2.1 Ki = 3.5 Kd = 1. The response for set-point tracking is shown in Fig. 3.16.

It can be deduced from Fig. 3.15(a) and Fig. 3.16(a), that although LQG control scheme shows an

overshoot in the output position response, but the steady state error is minimal. In contrast, LQR

scheme has more steady state error accompanied with zero overshoot. The corresponding control

voltages, as depicted in Fig. 3.15(b) and Fig. 3.16(b) show that the proposed approach entails the
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Figure 3.16: Qube servo position control using LQR-PID approach output and control signal

use of minimal energy.

3.6.2 Case 2: Velocity control

Consider an identified model of QUBE Servo 2, whose speed (Ωm(s))-to-voltage (Vm(s) transfer

function is

P(s) =
Ωm(s)
Vm(s)

=
K

(τs+1)
, (3.140)

1. Proposed approach using LQG:

The closed loop characteristic equation 1+G4(s)C(s) = 0 can be written as,

(τ +KdK)s2 +(KKp +a0)s+KKi = 0 (3.141)

From LQR, the feedback gain matrix is K = R−1BT P, where R = [1/r], and P is the positive semi

definite matrix, and from observer dynamics, we get the gain matrix as L = ∑CT R−1. Therefore,

the overall closed-loop transfer function of the LQG compensator becomes H(s) = K(sI−A+

BK+LC)−1L. From this, we get closed-loop characteristic equation as s+ l1 = 0, whose order is

one less than the order of PID compensated closed loop characteristic equation given in (3.141).

Therefore, we augment one pole λ2, leading to (s+ l1)(s+λ2) = 0. On expanding, we get,

s2 +(l1 +λ2)s+ l1λ2 = 0 (3.142)
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(a) (b)

Figure 3.17: Qube servo velocity control (a) output and (b) control signal

Now selecting the value of Kd and Ki in (3.141) and comparing with eq(3.142), we can calculate

the augmented pole as λ2 = K.Ki
l1τ(1+Kd)

, while the other parameters of PID can be calculated as

Kp = τ(l1 + l1λ2)(1+Kd)/K.

Thus, we assume Kd = 1 and Ki = 3.5 randomly and obtain Kp = 2.1 The output response and its

control signal are shown in Fig. 3.17.

2. LQR-PID approach:

The closed loop characteristic equation 1+G4(s)C(s) = 0 can be written as,

τ(1+Kd)s2 +(KKp +a0)s2 +KKi = 0 (3.143)

As discussed earlier, λ2 is taken as 6 times of real part of system’s dominant pole andKd is selected

same as in LQG, thus we can obtain Kp and Ki. Comparing (3.141) with (3.142), we get,

Kp =
τ(l1 + l1λ2)(1+Kd)

K

Ki =
λ2l1τ(1+Kd)

K

(3.144)

By substituting the value of λ2 and Kd in (3.144), we get the parameters of LQR-PID as: Kp = 2.1,

Ki = 3.5, Kd = 1. The response for set-point tracking is shown in Fig. 3.18.
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Figure 3.18: Qube servo velocity by LQR-PID (a) output and (b) control signal

Table 3.8: Integral error performance indices for real time result of Qube servo

Examples Method Reference tracking
ISE IAE ITSE ITAE

Position
control

Proposed 1.544 2.999 4.491 8.850
LQR-PID 1.286 2.754 3.739 8.147

Velocity
control

Proposed 1.6895 3.0256 5.2030 9.1688
LQR-PID 1.8481 3.1095 5.7513 9.4078

It can be seen from Fig. 3.17(a) and Fig. 3.18(a) that both LQR and LQG show oscillations in

output velocity response. However, the oscillations in LQG approach are lesser as compared to

LQR because of the noise filtering properties of Kalman filter in LQG scheme. The corresponding

control voltages, as depicted in Fig. 3.17(b) and Fig. 3.18(b) show that the proposed approach

needs minimal energy.

Table 3.8 enlists different performance indices for position control (Case 1) and velocity con-

trol (Case 2) of QUBE servo system via proposed LQG-QRAWCP and LQR-PID.

3.6.3 Case 3: Rotary inverted pendulum system (RIPS)

The hardware setup of Qube Servo2Rotary inverted pendulum system control is shown in Fig. 3.19

[18, 79, 118]. The details of themathematical modelling and the values of the parameters are given

in Appendix B. We have considered balancing the pendulum in vertical direction.
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Figure 3.19: Real-time Qube-Servo2 Rotary inverted pendulum set-up

1. Proposed approach using LQG:

RIPS can be modelled by a single input - multi output (SIMO) system, wherein, the input is

control voltage (U) and the output is rotary arm angle (θ ) and pendulum angle (α). Hence, both

the transfer functions can be written as follows:

P1(s) =
θ(s)
U(s)

=
b1s2 +b2

s4 +d1s3 +d2s2 +d3s

P2(s) =
α(s)
U(s)

=
a1s2 +a2s+a3

s4 +d1s3 +d2s2 +d3s

(3.145)

where, b1 = 49.7275, b2 = −5.6724, a1 = 49.1493, a2 = −1.7203, a3 = −3.6669, and d1 =

0.0104, d2 =−261.6091, d3 = 1.1912.

The state space model for above system can be given by ẋ = Ax+Bu and y =Cx+Du, where, the

matrices are defined as:

A =


0 0 1 0

0 0 0 1

0 149.2751 −0.204 0

0 261.6091 −0.0103 0


B =


0

0

49.7275

49.1493


C =

1 0 0 0

0 1 0 0

D =

0

0

 (3.146)
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(a) (b)

(c)

Figure 3.20: Qube servo RIPS control (a) rotary arm (b) pendulum angle and (c) control signal

Selecting the appropriate values of disturbance (w) and noise covariance (v), we obtain the LQG

transfer function as H(s) = K(sI−A+BK +LC)−1L.

Now, we implement the aforementioned approach on the hardware setup of Qube servo2 RIPS [79]

and observe the stabilization of pendulum in vertical direction, for square wave input trajectory

given to rotary arm. The corresponding output response of the rotary arm(θ ), pendulum angle(α)

and control signal(U) is shown in Fig. 3.20(a), 3.20(b) and 3.20(c), respectively.

2. LQR compensator:

To analyse the effect of LQG on RIPS, we design a standard LQR using Q = diag([1,1,1,1]),

and R = [1]. Since it is not possible to measure the all the states, thus we have used a derivative

function from the MATLAB and obtained all the states. The corresponding output angle response

and its control signal are shown in Fig. 3.21.

FromFig. 3.20 and Fig. 3.21, it is seen that although the proposed LQG-QRAWCP approach shows

less oscillations in comparison to LQR-PID, but the peak amplitude of its control signal is more.
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(a) (b)

(c)

Figure 3.21: Qube servo RIPS control by LQR (a) rotary arm (b) pendulum angle and (c) control
signal

Table 3.9: Performance indices for RIPS

Method Pendulum angle(α) Rotary arm angle(θ )
ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed 5.036 2.534 1.722 5.862 3.700 6.827 52.85 96.33
LQR-PID 10.150 4.265 5.755 7.843 3.674 7.268 55.92 108.4

Table 3.9 enlists different performance indices for rotary arm angle (α) control and pendulum

angle(θ ) control of RIPS via proposed LQG-QRAWCP and LQR-PID.

3.7 Concluding remarks

This chapter deals with the development of a generalised and a direct formula for the design of

an optimal PID controller for SISO and SIMO systems. A new technique, known as QRAWCP,

that transforms an optimal LQR controller into the structure of a PID controller is proposed. It
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can be deduced that the proposed QRAWCP approach outperforms the existing techniques for

four illustrative examples of SISO systems. However, QRAWCP approach encounters a limitation

when the system is not observable. To ameliorate this drawback, one can combine LQR and

Kalman filter, resulting in LQG system. This approach is then implemented on hardware for

position and velocity control of QUBE servo system and also for balancing of the rotary inverted

pendulum, which is a SIMO system. The proposed LQG-PID is compared with LQR-PID. It

is observed that LQG stabilises the system too, but it is required only when the states of the

system are not observable and it does not guarantee better response over the LQR approach. In

future, the proposed approach can be applied to various other engineering problems. In the next

chapter, we discuss a rather interesting approach that proposes to combine the good properties

of the controllers designed via different techniques through a weighing mechanism. This scheme

will be known as the adaptive control scheme.
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Chapter 4

Proposed Control Approach–II- An

Adaptive control policy

The term ‘adaptive’ means ‘to change’ or to adapt to the present environment [119]. This concept

has come from keen observation of natural beings to adapt to the changing environment. It is a

control technique used by a particular controller setup such that it is able to acclimatise to the

changing environmental conditions, as the system in certain cases are susceptible to a large scale

variation in the nominal parameters. In this chapter, a generalised adaptive control scheme is

proposed for linear time invariant (LTI) systems. Further, the proposed strategy is elucidated

via two illustrative examples of different models. Two candidate controllers are designed for the

position control of the model of a flexible robotic arm system, wherein the individual controllers

are tuned via PID-LQR and SBL-PID respectively. Next, a three candidate controller is derived

for the position control of a DC servo system model and the individual controllers here are tuned

via LQR, SBL and ZN techniques, respectively. For each of the above cases, the results obtained

via the proposed approach are compared with the design approaches of the individual controllers.

It is observed that the proposed adaptive strategy outperforms the individual control techniques.

Finally, the proposed scheme is further modified through the addition of a median filter and an ε

term to get rid of the zero derivative problem. To validate the effectiveness and strength of the

modified scheme, it is then tested on illustrative examples and on hardware setup of a Cart Inverted

pendulum system.
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4.1 Motivation

In control literature, the field of adaptive control, can be traced back to 1936’s when a US patent

was filed on self-stabilizing control mechanism by Nikolai B. et.al [120], and a hardware mech-

anism was designed to control the magnitude of variable temperature of the motor. Although in

1947 and in 1954, two US patents were filed on the control system for automatic response ad-

justment [121] and self-adjusting control apparatus [122] respectively, the word “adaptive" was

first coined in 1958 in a survey paper [119]. Since then, various researchers such as, Whitaker

et.al[123] have designed autopilot for automatic manoeuvring at different speeds and altitudes.

In a similar fashion, adaptive pole placement technique based on linear quadratic control was

suggested by Kalman [42]. Since the older times till date, various adaptive control techniques

have been developed and reported in the literature [124, 125]. The main idea of adaptive control

is always confined to parameter estimation and re-adjustments, to achieve desired performance.

This has been done in different ways and reported by various researchers [126, 127], in order to

simplify the controller design as well as achieve better response. The classification of all the re-

ported control laws in a broad sense is of two types: Identifier-based and Non-identifier based.

In the former category, the controller adaptation is on the basis of online parameter estimation.

In contrast to this, non-identifier based methods do not employ online parameter estimation but

use heuristic or deterministic search algorithms to determine the best controller configuration re-

quired. The popular gain scheduling technique [128] is used for faithful power system operation

and comes under the category of non-identifier based control. Gain scheduling [129] basically

deals with a controller block composed of multiple numbers of controllers, each possessing its

own characteristics, and a switching logic block which, on the basis of some search algorithm

technique, determines which controller to be preferred the most for the current scenario.

However, it is found that in most of the cases [53, 130], one type of controller gives the optimum

result for some types of performance measures but may not be optimum for the rest [131, 132].

In such cases the adaptive control strategy is useful, to stabilize the system even in presence of

parametric uncertainties and disturbance, or if any of the other controller fails. This is carried out

by assigning an appropriate weight to the respective candidate controllers to get desired or opti-

mum performance. The adaptive weighing principle [133–135] for prioritizing the controllers is

80



inspired from [136–138]. Instead of employing search algorithms for the optimum weight pairs,

gradient descent algorithm can be used [139, 140], which is a efficient and relatively faster for

online update of the weights [141]. Valluru et. al. [142] tuned PID by a multi-objective ge-

netic algorithm and used adaptive particle swarm optimization (APSO) algorithm for the inverted

pendulum [143].

Keeping in mind the drawbacks of the above-discussed control techniques, in this chapter, an

adaptive control logic is proposed to stabilize the LTI system. The control law involves two candi-

date PID controllers, wherein, one is having better transient performance and the other is having

better steady state performance. The adaptive weights are updated by online gradient descent al-

gorithm. The design procedure is simplified by selecting these two types of controllers which not

only reduce the mathematical intricacies, but also provide good performance of the system, both

in presence and absence of matched disturbances into the system.

Summarizing the above discussion, the main contribution of this chapter is highlighted in the

following points:

• A single control unit is proposed, which is to be composed of multiple number of candidate

controllers, operated adaptively.

• The main motivation behind this initiative is to handle model uncertainties and external

disturbances using an adaptive form of PID terminology.

4.2 Adaptive control logic scheme

For the control of systems having matched disturbances as an external input, a supervisory system,

which select controller from a set of pre-designed controllers, can be used. Here, supervisory sys-

tem means adaptive control logic. But in most of the practical problems, designing a supervisory

control requires prior knowledge of the accurate behavior of a system, based on which it can be

further trained.
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Figure 4.1: General block diagram for adaptive control logic

This training data set may not be available in every possible scenario since an accurate behaviour of

a system in case of uncertain environment is not known every time. So, an approach to adaptively

control a system using online gradient descent to obtain parameter estimates can be used for such

problems. In an online learning model, the algorithm receives immediate feedback about each

prediction and uses this feedback to improve its accuracy in subsequent predictions. Fig. 4.1

shows the block diagram of the proposed approach where to control plant G, a set of k candidate

controllers have been pre-designed. The output signal from the nth controller (where n∈N,n≤ k)

at time ‘t’ is denoted by un(t). This output is multiplied by weight wn(t) before it is fed as an input

to the plant. So the net control input to the plant at time ‘t’ can be written as:

i(t) = w(t)T u(t) (4.1)

where,
u(t) = [u1(t) u2(t) u3(t) ... uk(t)]T

w(t) = [w1(t) w2(t) w3(t) ... wk(t)]T
(4.2)

In order to carry out dynamic adaptive control among a set of candidate controllers, the weight

vector is updated at every iteration to mask inactive controllers. This update is carried out by

means of gradient descent algorithm [139], which is a first order optimization algorithm that aims

at finding a local minimum of a function by moving in the direction of negative gradient of a

function, calculated at the current point.
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Consider a general plant of order q, which is represented in the transfer function form as follows:

G(s) =
b0 +b1s+b2s2 + ...+bmsm

a0 +a1s+a2s2 + ...+aqsq m < q (4.3)

Let the set of pre-defined candidate controllers [C] for the given plant be formulated as

C(s) = [C1(s) C2(s) C3(s) ... Ck(s)] (4.4)

The output of nth controller Cn(s) at any time ‘t’ is given by un(t), and the net control input i(t)

that is to be applied to the plant is given in (4.1). The output y(t) of plant G(s) can be written

in s-domain as: Y (s) = G(s)I(s) where, Y (s) ≡L (y(t)) =
∫

∞

0 e−sty(t)dt and I(s) ≡L (i(t)) =∫
∞

0 e−st i(t)dt, Thus, we get,

Y (s)[a0 +a1s+a2s2 + ...+aqsq] = I(s)[b0 +b1s+b2s2 + ...+bmsm] (4.5)

Taking inverse laplace transform and converting (4.5) into a differential equation, we write

a0y(t)+a1
dy(t)

dt
+ ...+aq

dqy(t)
dtq = b0i(t)+b1

di(t)
dt

+ ...+bm
dmi(t)

dtm
(4.6)

with zero initial conditions, i.e., dyq−1(t)
dtq−1 |t=0+= 0, ∀q and dim−1(t)

dtm−1 |t=0+= 0, ∀m.

To find the optimum value of the weight vector wn(t) iteratively, using gradient descent method,

let us define an error function as:

e(t) =
1
2

∫
∞

0
(r(t)− y(t))2dt (4.7)

where, r(t) is the reference input to the plant at time ‘t’ and y(t) is the actual output.

To improve the system performance in uncertain noisy environment, we must choose the weights

(see (4.2)) such that, the error function e(t), at any time ‘t’, is minimized. For that, the weights

are iteratively updated using gradient descent [144] and the update rules can be written as:

wn(t +1)←
[

wn(t)−α
∂e(t)

∂wn(t)

]
(4.8)
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From equation (4.8), ∂e(t)
∂wn(t)

is written using chain rule. This is shown in (4.9).

∂e(t)
∂wn(t)

=
∂e(t)
∂y(t)

∂y(t)
∂ i(t)

∂ i(t)
∂wn(t)

n ∈ {1,2,3, ...,k} (4.9)

Here, α is the learning rate, {α ∈R |0 < α < 1}. Using (4.7), we can write ∂e(t)
∂y(t) =−(r(t)−y(t))

and using (4.1), we get ∂ i(t)
∂wn(t)

= un(t). Since y and i are functions of time t alone, hence the

following holds true:
∂y
∂ t

=
dy
dt

;
∂ i
∂ t

=
di
dt

=⇒ ∂y
∂ i

=
dy
di

(4.10)

Rearranging the terms of (4.6), we get

i(t) =
1
b0

(
a0y(t)+a1

dy(t)
dt

+a2
d2y(t)

dt2 + ...+aq
dqy(t)

dtq −(
b1

di(t)
dt

+b2
d2i(t)

dt2 + ...+bm
dmi(t)

dtm

) (4.11)

Differentiating both sides of (4.11) and simplifying, we get

di(t)
dy(t)

=
1
b0

a0
dy(t)

dt
+a1

d2y(t)
dt2 + ...+aq

dq+1y(t)
dtq −

(
b1

d2i(t)
dt2 + ...+bm

dmi(t)
dtm+1

) (4.12)

Substituting the values from (4.9) and (4.12) in (4.8), we obtain the final weights as

wn(t +1) = wn(t)−
α(y(t)− r(t))unb0

dy
dt

v(t)
(4.13)

where,

v(t) =

(
a0

dy(t)
dt

+a1
d2y(t)

dt2 + ...+aq
dq+1y(t)

dtq −

(
b1

d2i(t)
dt2 + ...+bm

dmi(t)
dtm+1

) (4.14)

Note: The number of controllers (Cn) depends upon desired specifications and also on the perfor-

mance of the corresponding individual candidate controllers.
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4.3 Illustrative Examples

The superiority of the proposed approach is demonstrated through illustrative examples and via

the comparison of the performance indices with the existing methodologies in control theory lit-

erature.

4.3.1 Example 1: two candidate controller

To illustrate the proposed adaptive control policy, we consider an example of a flexible robotic

arm model [145], wherein two candidate controllers are designed, one using SBL-PID[57] and

other via LQR-PID[1] scheme.

Following steps need to be followed to formulate an adaptive policy for flexible robotic arm.

The transfer function of a flexible robotic arm [57] is given as

G1(s) =
s+500

s(s+0.0325)(s2 +2.57s+6.667)
(4.15)

Fig. 4.2 depicts the block diagram for implementing the proposed control logic. The proposed

Figure 4.2: Block diagram of proposed adaptive control technique for example 1

adaptive logic is based on two contrasting candidate PID controllers. They are designed based on

LQR[1, 50] and SBL based [57] approaches respectively. The design methodology is explained

as follows:
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(i) First candidate controller(C1): Design by LQR-PID

The first candidate controller is a PID, represented as C1(s) and is tuned by pole placement tech-

nique. Let C1(s) be written as: C1(s) =
Kd1s2+sKp1+Ki1

s . The flexible robotic arm transfer function

(4.15) can be written in generalised coefficient form as,

G2(s) =
s+b0

s4 +a3s3 +a2s2 +a1s
(4.16)

The closed-loop characteristic equation usingC1(s) and (4.16) becomes 1+G2(s)C1(s)= 0, which

is simplified as

s5 +a3s4 +(a2 +Kd)s3 +(Kdb0 +a1 +Kp)s2 +(Kpb0 +Ki)s+Kib0 = 0 (4.17)

Equation (4.17) is of fifth order. Therefore, we select five poles on the left half of the s-plane. The

characteristic equation of the system having these poles is shown in eq.(4.18).

(s+λ1)(s+λ2)(s+λ3)(s+λ4)(s+λ5) = 0 (4.18)

The above equation can also be written as

s5 + p4s4 + p3s3 + p2s2 + p1s+ p0 = 0 (4.19)

where,

p4 = (λ1 +λ2 +λ3 +λ4 +λ5)

p3 =
(
λ1 λ2 +(λ1 +λ2)λ3 +(λ1 +λ2 +λ3)λ4 +(λ1 +λ2 +λ3 +λ4)λ5

)
p2 = λ1 λ2 λ3 +

(
λ1 λ2 +(λ1 +λ2)λ3

)
λ4 +

(
λ1 λ2 +(λ1 +λ2)λ3 +(λ1 +λ2 +λ3)λ4

)
λ5

p1 = λ1 λ2 λ3 λ4 +
(

λ1 λ2 λ3 +
(
λ1 λ2 +(λ1 +λ2)λ3

)
λ4

)
λ5

p0 = λ1 λ2 λ3 λ4 λ5
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By comparing (4.17) and (4.19), parameters of C1(s) are calculated as

Kp1 =
p1b1

a4
, Ki1 =

p0b1

a4
, Kd1 =

p2b1−b3

a4
(4.20)

(ii) The secondPID controllerC2(s) is tuned by SBLmethod [57]. Themathematical explanation

of the SBL-PID is given in chapter 2 and is not included here for avoidance of repetition.

4.3.1.1 Proposed methodology

After designing the two candidate controllers C1 and C2, such that one performs better during

the transient part and other in steady state part, now design the proposed adaptive scheme for the

flexible robotic arm system, which is given in (4.16). From Fig. 4.2 the system input i(t) can be

written as:

i(t) = w1(t)u1(t)+w2(t)u2(t) (4.21)

where, u1(t) is the output of C1 controller and u2(t)is the output of the C2 controller.

The Laplace transform of the output θy(t) can be written as

θy(s) = i(s)× s+b0

s4 +a3s3 +a2s2 +a1s
(4.22)

Equation (4.22), in time domain form, can be written as:

i(t) =
d4θy(t)

dt4 +a3
d3θy(t)

dt3 +a2
d2θy(t)

dt2 +a1
dθy(t)

dt −
di(t)

dt

b0
(4.23)

Defining the objective function e(t) such that

e(t) =
1
2
(
θr−θy

)2
(t) (4.24)

where, θr(t) is the reference position and θy(t) is the actual output angular position. The main

objective is to minimize e(t). The rules to update weights wn(t +1) are decided by using on-line
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gradient descent function which is represented in (4.25).

wn(t +1) =
(

wn(t)−α
de(t)

dwn(t)

)
(4.25)

where, n = 1,2 and α is the rate of convergence. Substituting n = 1 in (4.25), we get w1(t + 1)

that can be written as:

w1(t +1) =
(

w1(t)−α
de(t)

dw1(t)

)
(4.26)

In order to find de(t)
dw1(t)

, the following steps are to be followed:

de(t)
dw1(t)

=
de(t)
dθy(t)

×
dθy(t)
di(t)

× di(t)
dw1(t)

(4.27)

For de(t)
dθy(t)

, differentiating (4.24) with respect to θy, we get,

de(t)
dθy(t)

=−1
(
θr(t)−θy(t)

)
(4.28)

Differentiating (4.21) with respect to w1, the following equation is obtained:

di(t)
dw1(t)

= u1(t) (4.29)

To find dθy(t)
di(t) , differentiating (4.23) by θy(t), we get

di(t)
dθy(t)

=
d

dθy(t)

(
d4θy (t)

dt4

)
+

d
dθy(t)

(
a3

b0

d3θy (t)
dt3

)

+
d

dθy(t)

(
a2

b0

d2θy (t)
dt2

)
+

d
dθy(t)

(
a1

b0

dθy (t)
dt

)
− d

dθy(t)

(
1
b0

di(t)
dt

) (4.30)

Simplifying using chain rule, (4.30) becomes

di(t)
dθy(t)

=
d
dt

dt
dθy(t)

(
d4θy (t)

dt4

)
+

d
dt

dt
dθy(t)

(
a3

b0

d3θy (t)
dt3

)

+
d
dt

dt
dθy(t)

(
a2

b0

d2θy (t)
dt2

)
+

d
dt

dt
dθy(t)

(
a1

b0

dθy (t)
dt

)
− d

dt
dt

dθy(t)

(
1
b0

di(t)
dt

) (4.31)

88



Equation (4.31) can also be written as

di(t)
dθy(t)

=

1
b0


(

d5θy(t)
dt5

)
+

(
a3

d4θy(t)
dt4

)
+

(
a2

d3θy(t)
dt3

)
+

(
a1

d2θy(t)
dt2

)
−
(

d2i(t)
dt2

)


dθy(t)
dt

(4.32)

To obtain dθy(t)
di(t) , rearranging (4.32), we get,

dθy(t)
di(t)

= b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

) (4.33)

By substituting (4.28), (4.29), (4.33) in equation (4.27), we get,

de(t)
dw1(t)

=
(
θy(t)−θr(t)

)
×u1(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

) (4.34)

To obtain next state value of weight w1(t +1), we substitute (4.52) in (4.26), which yields,

w1(t +1)←
{

w1(t)−α

[(
θy(t)−θr(t)

)
u1(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

)



(4.35)

Similarly, weight w2(t +1) is calculated as below:

w2(t +1)←
{

w2(t)−α

[(
θy(t)−θr(t)

)
×u2(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

)



(4.36)
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Figure 4.3: Output response for example 1

These two weights w1(t +1) and w2(t +1) are multiplied with i(t +1) at time (t +1). This will

be the future state control signal value given to the system.

4.3.1.2 Results and analysis

The output response of the adaptive controller and the individual candidate controllers is illustrated

in Figure 4.3. It can be observed that the controller designed via the adaptive scheme follows the

reference more closely as compared to the controller that is tuned by the individual control ap-

proach. Figure 4.4(a) and Figure 4.4(b) depict the control signal response and the weight update

plot for example respectively. It can be seen that although the control energy for LQR-PID is min-

imum, but its response does not track the reference. The proposed approach tracks the reference

and uses fairly minimum energy as well.

Table 4.1 enlists different performance indices for the proposed adaptive policy and the individual

candidate controllers in Example 1. It can be observed that the proposed logic gives the least value

of ISE, IAE, ITAE and ITSE.
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(a) (b)

Figure 4.4: Control signal and weight response for example 1

Table 4.1: Performance indices for example 1

Examples Method Reference tracking
ISE IAE ITSE ITAE

Example1
Reference
tracking

Proposed 0.107482281 0.857726399 0.784649916 5.554876783
LQR-PID 0.835963702 2.348153083 4.797519615 13.3877223
SBL-PID 0.170506727 1.06822442 1.270615494 7.042755378

4.3.2 Example 2: three candidate controllers

In this example, three candidate controllers,C1 (LQR-PID[1]),C2 (SBL-PID [57]), andC3 (ZNPID[26])

with each having a distinct advantage have been considered for DC servo motor control problem.

The design steps for each of these candidate controllers are designed previously. C1 is discussed

in example 1 as well as in chapter 3, and C2 and C3 are given in chapter 2.

Here, we have considered the DC servo motor position control transfer function from user manual

of precision modular servo (PMS) system [146] manufactured by Feedback instruments Ltd., UK.

G2(s) =
0.042

2.424×10−8s3 +0.0001755s2 +0.001764s
(4.37)
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Figure 4.5: Block diagram of proposed adaptive control technique for example 2

4.3.2.1 Proposed methodology

Let the transfer function, be written as (4.37),

G2(s) =
b0

a3s3 +a2s2 +a1s
(4.38)

From Fig. 4.5, the plant input i(t) to the servo motor can be written as:

i(t) = w1(t)u1(t)+w2(t)u2(t)+w3(t)u3(t) (4.39)

where, u1(t) is the output of C1 controller, u2(t)is the output of the C2 controller and u3(t)is the

output of the C3 controller. Similarly, the output θy(t) can be written as

θy(s) = i(s)
b0

a3s3 +a2s2 +a1s
(4.40)

Equation (4.40), in time domain form, can be written as:

i(t) =
a3

d3θy(t)
dt3 +a2

d2θy(t)
dt2 +a1

dθy(t)
dt

b0
(4.41)

92



Let us define the objective function e(t) as

e(t) =
1
2
(
θr−θy

)2
(t) (4.42)

where, θr(t) is the reference position and θy(t) is the actual output angular position. The main

objective is to minimize e(t). The rules to update weights wn(t +1) are decided by using on-line

gradient descent function which is represented in (4.43).

wn(t +1) =
(

wn(t)−α
∂e(t)

∂wn(t)

)
(4.43)

where, n = 1,2,3 and α is the rate of convergence.

For first weight n = 1 in (4.43), we get w1(t +1) that can be written as:

w1(t +1) =
(

w1(t)−α
de(t)

dw1(t)

)
(4.44)

In order to find de(t)
dw1(t)

, the following steps are to be followed:

de(t)
dw1(t)

=
de(t)
dθy(t)

×
dθy(t)
di(t)

× di(t)
dw1(t)

(4.45)

For de(t)
dθy(t)

, differentiating (4.42) with respect to θy, we get

de(t)
dθy(t)

=−1
(
θr(t)−θy(t)

)
(4.46)

Differentiating (4.39) with respect to w1, the following equation is obtained:

di(t)
dw1(t)

= u1(t) (4.47)

To find dθy(t)
di(t) , differentiating (4.41) by θy(t), we get,

di(t)
dθy(t)

=
d

dθy(t)

(
d4θy (t)

dt4

)
+

d
dθy(t)

(
a3

b0

d3θy (t)
dt3

)

+
d

dθy(t)

(
a2

b0

d2θy (t)
dt2

)
+

d
dθy(t)

(
a1

b0

dθy (t)
dt

)
− d

dθy(t)

(
1
b0

di(t)
dt

) (4.48)
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Simplifying using chain rule, (4.48) becomes,

di(t)
dθy(t)

=
d
dt

dt
dθy(t)

(
d4θy (t)

dt4

)
+

d
dt

dt
dθy(t)

(
a3

b0

d3θy (t)
dt3

)

+
d
dt

dt
dθy(t)

(
a2

b0

d2θy (t)
dt2

)
+

d
dt

dt
dθy(t)

(
a1

b0

dθy (t)
dt

)
− d

dt
dt

dθy(t)

(
1
b0

di(t)
dt

) (4.49)

Equation (4.49) can also be written as

di(t)
dθy(t)

=

1
b0


(

d5θy(t)
dt5

)
+

(
a3

d4θy(t)
dt4

)
+

(
a2

d3θy(t)
dt3

)
+

(
a1

d2θy(t)
dt2

)
−
(

d2i(t)
dt2

)


dθy(t)
dt

(4.50)

Further, simplified form of (4.50) is represented so as to obtain dθy(t)
di(t) , rearranging (4.50), we get,

dθy(t)
di(t)

= b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

) (4.51)

By substituting (4.28), (4.29), (4.51) in equation (4.27), we get,

de(t)
dw1(t)

=
(
θy(t)−θr(t)

)
×u1(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

) (4.52)

To obtain next state value of weight w1(t +1), we substitute (4.52) in (4.26), which yields,

w1(t +1)←
{

w1(t)−α

[(
θy(t)−θr(t)

)
u1(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

)



(4.53)
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Similarly, weights w2(t +1) and w3(t +1) are calculated as below:

w2(t +1)←
{

w2(t)−α

[(
θy(t)−θr(t)

)
u2(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

)



(4.54)

w3(t +1)←
{

w3(t)−α

[(
θy(t)−θr(t)

)
u3(t)

×b0

dθy(t)
dt(

d5θy(t)
dt5

)
+
(

a3
d4θy(t)

dt4

)
+
(

a2
d3θy(t)

dt3

)
+
(

a1
d2θy(t)

dt2

)
−
(

d2i(t)
dt2

)



(4.55)

These three weights w1(t +1), w2(t +1) and w3(t +1) are multiplied with i(t +1) at time (t +1).

This will be the next state (t +1) control signal value given to the system.

4.3.2.2 Results and analysis

Here, the three candidate controllers are considered as follows: C1(s) is LQRPID1 designed us-

ing steps considered in chapter 3, C2(s) is SBLPID2 designed using steps considered from [57]

which are discussed in chapter 3, andC3(s) is ZNPID1 designed using conventional tuningmethod

discussed in chapter 2 section 4.

The output response of the adaptive controller and the individual candidate controllers are illus-

trated in Figure 4.6. It is observed that the controller designed via the adaptive scheme follows

the reference more closely as compared to the controller that is tuned by the individual control

approach. Fig. 4.7(a), and Fig. 4.7(b) depict the control signal response and the weight update

plot, respectively.

It is seen that at initial time, more weight is assigned to SBLPID2(C2(s)), whose rise time is

less than others, then, because of less overshoot, the adaptive policy assigns more weight to

LQRPID1(C1(s)) and further, in the next state the weights has been assigned to ZNPID3 which

has better steady state performance. The proposed approach tracks the reference and uses fairly
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Table 4.2: Performance indices for example 2

Example Method Reference tracking
ISE IAE ITSE ITAE

Example 2
Reference
tracking

Proposed 6.427×10−03 8.350×10−03 2.473×10−05 4.045×10−05

LQR-PID 2.678×10−02 5.766×10−02 1.050×10−03 4.256×10−03

SBL-PI 5.617×10−02 1.280×10−01 5.912×10−03 2.093×10−02

ZNPID 1.699×10−02 3.361×10−02 2.454×10−04 2.173×10−03

Figure 4.6: Output response for example 2

minimum energy as well in comparison to other candidate controllers. This can also be verified

using performance indices in Table 4.2.

4.4 Modified Adaptive control policy

The generalised form of the adaptive control logic given in [140] is shown in Fig. 4.8. This control

logic is briefly discussed, together with the modifications to the existing method, in the following

set of equations:

Y (s) = G(s)Ic(s) (Ic(s) = L[ic(t)]) (4.56)

ic(t) =
k

∑
i=1

wiCi
T (s)Z(s) (4.57)
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(a) (b)

Figure 4.7: Control signal and weight response for example 2

Figure 4.8: Proposed modified adaptive policy general structure

In (4.56), G(s) represents the plant’s transfer function having input as ic(t) and output y(t), whose

Laplace Transform is Y (s). In (4.57), the expression for ic(t) is given, where Z(s) is the Laplace

Transform of the state vector z(t) of G(s), with dimension p×1(p∈N). The number of candidate

controllers used is k ∈ N and Ci(s) =
[
Ci1 Ci2 Ci3 . . .Cip

]T
(s), where {i ∈ N | i≤ k}. Each Cip(s)

represents the Laplace Transform of the controller for each state of the plant. The corresponding

weight for each Ci is given by wi(t), where wi(t) ∈ wc(t) = [w1 w2 . . .wk]
T (t). The error function

e(t) is obtained as e(t) = (r(t)− y(t)), where r(t) is the reference input to the system, and its

Laplace Transform is represented by R(s) in Fig. 4.8.
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The objective function used to carry out the adaptive control logic is given by Jo(e(t))= 0.5‖e(t)‖2
2.

The weights are updated according to the gradient descent algorithm, as given below:

wc(t +1) = wc(t)−α∇Jo(t) (4.58)

where, α (α ∈ R>0 |α < 1) is the learning rate. The expression for ∇Jo(t) can be obtained using

the chain rule of derivatives

∇Jo(t) =
∂Jo

∂e(t)
.

∂e
∂ ic(t)

.
∂ ic

∂wc(t)
(4.59)

Also, to avoid the flat spots in the error surface, the following equation is adopted for the eradica-

tion [147]:

wc(t +1) = (2− ε)wc(t)+(2ε−1)wc(t−1)− εwc(t−2) (4.60)

where, ε is a positive real number such that ε ∈ (0,1).

To illustrate the modified adaptive policy, we have considered the problem of balancing the pen-

dulum angle and cart position of CIPS in chapter 5 and load frequency control of power system

in chapter 6. For CIPS, simulation and real time hardware implementation is done, whereas for

LFC, simulation results are carried out.

4.5 Concluding remarks

In this chapter, a novel adaptive technique is proposed consisting of a single control unit, which

is further composed of multiple candidate controllers, each tuned via a different technique. Ap-

propriate weights are assigned to each controller via gradient descent algorithm in such a manner

that the merits of each individual controller are replicated in the final output response as far as

possible. It is observed that, in the two illustrative examples that are undertaken here, the proposed

adaptive strategy outperforms the individual control techniques. Further, the proposed adaptive

control scheme is modified via the incorporation of a median filter and an epsilon(ε) term and it

can be seen from the hardware simulation of CIPS, that the proposed technique is implementable
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and it shows improvement in performance over the proposed adaptive control scheme. Inclusion

of an epsilon term preserves the analytic properties of the weights and median filter minimises

the switching frequency of the control signal. From the next chapter onwards, the focus of our

discussion shifts from the proposition of new techniques to their applications to real world sys-

tems. Therefore, for the purpose of illustration of the proposed techniques, an example of inverted

pendulum is considered. This is presented in next chapter.
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Chapter 5

Application–I: Stabilization of Inverted

pendulum system

The inverted pendulum system is an important benchmark problem in control system engineering

because of non-minimum phase and unstable nature of the system [34, 148, 149]. Hence, it is

arduous to design a controller for such class of systems [150, 151]. Moreover, even if controller

is verified in simulation, it is difficult to implement it in real time application due to various

constraints such as track length, rotary arm rotational limit, applied voltage and pendulum angle.

5.1 Introduction

The primary objective of this chapter is the design and implementation of different control strate-

gies [53] that have been developed in the preceding chapters to a cart inverted pendulum system

(CIPS)[54, 55]. First, a simplified model of the CIPS is derived. Then, the QRAWCP approach,

is used to design a PID controller for the obtained model. To tackle the problem of parametric

uncertainties, a combination of Kharitonov’s theorem [56] and SBL technique [57] is applied to

tune the PID controller. Further, an adaptive control policy[2], comprising of two candidate PID

controllers that are tuned via SBL and LQR respectively is applied to the given system and the
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effects of input disturbance, variation in input gain and input time delay are also explored. To in-

vestigate the effectiveness of the adaptive scheme to real life situations, it is also implemented on

the hardware setup of CIPS system [152]. Further, a modified adaptive control policy is also used

to tune a PID controller. Finally, an interactive and animated graphical user interface is developed

for analysis, design and validation of controllers for cart inverted pendulum system (CIPS).

5.2 Motivation

Earlier in control literature [9], classical control techniques were widely used in stability analysis

and controller of design for linear systems [153]. But, when the system belongs to non-linear or

interval type [154], researchers found it difficult to design a classical controller. In order to solve

these problems, various advanced control techniques have been developed for tuning of controller

such as linear quadratic optimal approach [43], sliding mode control [155], feedback linearization

[156] and Kharitonov’s theorem [154]. As we know inverted pendulum system is highly non-

linear plant [157], thus, it is difficult to design classical controllers such as PI/PID, Lag/lead, etc.

Recently in [1], it is shown that classical PID controller can be designed for inverted pendulum

system using linear quadratic regulator (LQR) approach. This work has also been referred by var-

ious authors [47, 158–160]. In [1], robustness is studied via investigation and computation of gain

margin, phase margin, delay margin, and sensitivity. However, in [1], parameter variations are

not considered, but they are essential to probe in real time applications. For example, in guided

missile system, the mass of the system changes due to the consumption of fuel. The variation in

cart mass is an important element in cart inverted pendulum system. It may be possible that the

controller stabilizes the inverted pendulum for some specific cart mass but becomes unstable if

some additional load is applied. Further, variations in length of the pendulum and force applied

to it are also crucial. Therefore, in this chapter, mathematical conditions have been developed for

LQR based PID controller and stability boundary locus (SBL) based PID controller for stabiliza-

tion of CIPS. This approach is based on well-known V. Krishnamurthi’s corollary [161] on Routh

stability criterion [34, 162]. The proposed condition gives the information about the additional
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load (mass) either minimum or maximum which can be bore by the CIPS [163, 164]. The pro-

posed condition has been verified in simulation and also in real time environment. It is shown that

SBL based PID controller can be a useful aid in carrying more additional cart mass in compari-

son to LQR based PID controller. Further, the effectiveness of both the controllers is scrutinized

in the presence of increase in pendulum length and applied force. Herein, the effect of increase

in pendulum length is shown in hardware and the effect of increase of applied force is shown in

simulation. Finally, practical issues have been discussed by comparing simulation and real time

results.

The cart inverted pendulum has been used in research as well as pedagogical settings. The basis of

this setup is to sustain a weight suspended from the pivot in a vertical upright position. Control of

an inverted pendulum is akin to the attitude control of robot [165]. Since the pendulum system is

nonlinear, under-actuated and has a non-minimum phase, therefore it serves as a physical example

of several types of control systems.

5.3 Mathematical modelling of CIPS

In [1], authors have reported linearized model of CIPS. It is observed that this model is not gen-

eralized. Moreover, minor correction is required in equation (2) of [1]). Although, this does not

affect the final result, but can be helpful to the research community. The apt approach for obtaining

linearized model is presented below.

Table 5.1: Parameters of the CIPS

Symbol Parameter Value Unit

Mc Cart mass 2.4 kg
m Mass of pendulum 0.23 kg
l Length of pendulum 0.4 m
g Gravitational constant 9.8 m/s2

F Applied force to cart ±20 N
b Cart friction 0.055 Ns/m
J Moment of Inertia 0.099 kgm2

d Damping coefficient 0.005 Nms/rad
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Figure 5.1: Model of cart inverted pendulum

Figure 5.1 shows the cart inverted pendulum system and its parameters are given in Table 5.1

[152]. Let, M̃c is actual cart mass and Mc is total cart mass. From this figure, horizontal (x)

and rotating (θ) motions of CIPS are determined. Equation (5.1) and (5.2) given below shows

the linear motion of the cart in the X-axis and rotation of the pendulum about the X-Y plane,

respectively.

ẍ =

J+ml2
(

F−bẋ+mlθ̇ 2 sinθ

)
1 −m2l2gcosθ sinθ +dθ̇ (ml cosθ)


J (Mc +m)+Mcml2 +m2l2sin2

θ

(5.1)

θ̈ =

−ml
(
(F−bẋ)cosθ − (Mc +m)gsinθ

1 +mlθ̇ 2 cosθ sinθ

)
+(Mc +m)dθ̇


J (Mc +m)+Mcml2−m2l2sin2

θ

(5.2)

It is observed that above equations are non-linear. Therefore, for analysis and design purpose,

there is a need to linearize above equations using Taylor series expansion about the equilibrium

point. Here, the equilibrium point of a pendulum is considered as (θ = 0) in a vertical plane that

gives sinθ = θ , cosθ = 1 and higher order term as θ̇ 2 = 0. Thus, by linearising (5.1) and (5.2)

about the equilibrium point for small angle of θ from a vertical plane, we get equations, (5.3) and

(5.4).

ẍ =
(J+ml2)F−m2l2gθ

J (Mc +m)+Mcml2 (5.3)
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θ̈ =
−mlF +(Mc +m)mglθ

J (Mc +m)+Mcml2 (5.4)

As the damping coefficient(d) and friction coefficient(b) are small in comparison to other param-

eters, therefore, they are neglected. By taking Laplace transform of (5.3) and (5.4), the transfer

function(TF) of position(x) versus input force (F) and angle (θ ) versus input force (F) can be

determined and are given in (5.5) and (5.6), respectively. The proof of equations (5.5) and (5.6)

is given in appendix A.

x(s)
F(s)

=

(
J+ml2

)
s2−mgl

ψs4−
(
mgl(Mc +m)

)
s2 (5.5)

where, ψ = J (Mc +m)+Mcml2.

θ(s)
F(s)

=
mls2

ψs4−
(
mgl(Mc +m)

)
s2 (5.6)

On simplification of equation (5.5), we obtain

x(s)
F(s)

=

(
J+ml2

)(
s2− mgl

(J+ml2)

)
ψ

(
s4− mgl(Mc+m)

ψ
s2
) (5.7)

In (5.7), we can write σ (Mc +m) = ψ +m2l2, where, σ =
(

J+ml2
)
. From Table 5.1, it is found

that m2l2 = 0.0085. This is a small quantity which can be neglected. Here, Mc shows the total

mass, i.e., Mc = M̃c+∆Mc where M̃c is the actual cart mass and ∆Mc is the additional perturbation

mass. Therefore, equation(5.7) can be written as

x(s)
F(s)

'
σ

(
s2− mgl

σ

)
σ (Mc +m)

(
s4− mgl(Mc+m)

σ(Mc+m) s2
) (5.8)

On further simplifying above equation, we get,

x(s)
F(s)

=
1

(Mc +m)s2

P1(s) =
x(s)
F(s)

=
b1

s2

where, b1 =
1

(Mc +m)

(5.9)
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Similarly, for angle control(θ(s)/F(s)), we get transfer function as given in equation (5.10). Fur-

ther, simplification leads to equation (5.11).

θ(s)
F(s)

' mls2

σ (Mc +m)
(

s4− mgl(Mc+m)
σ(Mc+m) s2

) (5.10)

θ(s)
F(s)

=
mls2

σ (Mc +m)
(

s4− mgl
σ

s2
)

P2(s) =
θ(s)
F(s)

=
b2

s2−a2

(5.11)

where,

b2 =
ml

σ (Mc +m)
, a2 =

mgl
σ

(5.12)

State space model of CIPS: The minimum states required to represent the complete model of

CIPS are cart position (x1 = x), pendulum angle (x3 = θ ) and their respective velocities (x2 = ẋ)

and (x4 = θ̇ ). 
ẋ1

ẋ2

ẋ3

ẋ4


=


0 1 0 0

0 0 Mc+m
Mcl g 0

0 0 0 1

0 0 − m
Mc

g 0




x

ẋ

θ

θ̇


+


0

− 1
Mcl

0
1

Mc


u(t);

y(t) =

 1 0 0 0

0 0 1 0




x

ẋ

θ

θ̇



(5.13)

Control structure logic:

In [1], two loop PID control scheme has been designed. Figure 5.2 shows the two loop PID

controller for CIPS. In this figure, C1(s) , C2(s) denote the PID controllers for position control

and angle control respectively and P1(s) and P2(s) are the position and angle transfer functions,
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Figure 5.2: Two loop PID control scheme

respectively. From this figure, the closed-loop characteristic equation can be written as

1−P1(s)C1(s)+P2(s)C2(s) = 0 (5.14)

In above equation, C1(s) and C2(s) are represented as

Cn(s) = Kpn +
Kin

s
+ sKdn; n = 1,2 (5.15)

Using equation (5.14) and equation (5.15), the closed-loop characteristic equation can be written

as
s5 +(−b1Kd1 +b2Kd2)s4 +

(
−a2−b1Kp1 +b2Kp2

)
s3

+(−b1Ki1 +a2b1Kd1 +b2Ki2)s2 +
(
a2b1Kp1

)
+(a2b1Ki1) = 0

(5.16)

Here, stability analysis in the presence of parametric uncertainty is carried out using two PID

based control approaches. First PID controller design for CIPS is carried out using linear quadratic

regulator approach and second PID controller design is carried out using stability boundary locus.

The details of PID controller design using LQR approach and stability boundary locus approach

are reported in [1], and [57, 166], respectively. The PID tuning parameters using both these

approaches are enlisted below.
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1. The LQR PID gain values for position control PID (C1) and angle control PID (C2) are

determined in [1]. They are given below.

Kp1 = 43.3,Ki1 = 33.796,Kd1 = 2.254

Kp2 = 120.9,Ki2 = 247.43,Kd2 = 10.
(5.17)

2. The SBL PID gain values for position control PID (C1(s)) and angle control PID (C2(s)) are

determined in [57, 166]. Design steps are given in appendix 2.

Kp1 = 6.9964,Ki1 = 0.2,Kd1 = 5

Kp2 = 50.3294,Ki2 = 5,Kd2 = 10.
(5.18)

The stability analysis in presence of uncertainty such as increment and decrement of additional

cart mass is presented below.

5.4 Stability Analysis for Mc and m

The proposed stability analysis is carried out using various steps. They are elucidated below.

Step 1 : Determination of closed-loop characteristic equation in terms of variation in cart mass.

The controller design which has been carried out in [1] is only applicable for the fixed system.

However, in [1], robustness analysis is carried out by determining the gain margin and phase mar-

gin via the introduction of a gain block and a delay block, respectively. This has been done through

software simulation. Along with this, the main focus is on the parametric variations in the actual

CIP plant. Here, the stability analysis has been carried out by considering variation in the cart

mass (Mc). As shown in Table 1, cart mass is represented as M̃c. Suppose, the perturbation in Mc

is represented by (M̃c−∆Mc) and (M̃c+∆Mc). However, in available set-up of CIP system [152],

there is no provision to reduce cart mass. Therefore, for the analysis purpose, only additional

mass, i.e., (M̃c+∆Mc) is considered. By substituting values of b1, b2 and a2 from (5.9), (5.12) in
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(5.16), we get,

s5 +

(
− Kd1

(Mc +m)
+

mlKd2

σ (Mc +m)

)
s4 +

(
−mgl

σ
+

1
(Mc +m)

(
−Kp1 +

mlKp2

σ

))
s3

+
1

(Mc +m)

(
−Ki1 +

mglKd1

σ
+

mlKi2

σ

)
s2 +

(
mgl

σ (Mc +m)

)(
Kp1 +Ki1

)
= 0

(5.19)

Further simplifying, we get,

(Mc +m)s5 +

(
−Kd1 +

mlKd2

σ

)
s4 +

(
−(Mc +m)mgl

σ
−Kp1 +

mlKp2

σ

)
s3

+

(
−Ki1 +

mglKd1

σ
+

mlKi2

σ

)
s2 +

(
mglKp1

σ

)
+

(
mglKi1

σ

)
= 0

(5.20)

In above equation, let us consider, J̃ = J+ml2 and Ĵ = ml
σ
. Equation (5.20) can be expressed as,

(Mc +m)s5 +
(
−Kd1 + ĴKd2

)
s4 +

(
−(Mc +m) Ĵg−Kp1 + ĴKp2

)
s3

+
(
−Ki1 + ĴgKd1 + ĴKi2

)
s2 +

(
ĴgKp1

)
+
(

ĴgKi1

)
= 0

(5.21)

The above equation (5.21) can also be written as

p5s5 + p4s4 + p3s3 + p2s2 + p1s+ p0 = 0 (5.22)

where,
(Mc +m) = p5(
−Kd1 + ĴKd2

)
= p4(

−(Mc +m) Ĵg−Kp1 + ĴKp2

)
= p3(

−Ki1 + ĴgKd1 + ĴKi2

)
= p2(

ĴgKp1

)
= p1(

ĴgKi1

)
= p0

(5.23)

Step 2 : The proposed analysis is based on Krishnamurthi’s approach on Routh stability criterion.

This is explained below.
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Routh stability criterion is normally used for absolute stability of the system. But in [161], V. Kr-

ishnamurthi showed that Routh criterion is useful for the relative stability analysis. It is explained

in corollary 1.

Corollary 1:[161] According to Routh criterion, the test function in the s1 row of the Routh array

is proportional to the characteristic vector 1+G(s)H(s) and if the test function in the s1 row of

the Routh array is zero, a pair of imaginary roots exists.

Using this corollary, the marginal gain (Km) is obtained by equating the test function in the s1 row

to zero. By knowing the actual gain K of the system, the gain margin can be determined.

Step 3 : Application of Krishamurthi’s approach on Routh stability criterion to CIP System.

Applying Routh criterion to equation (5.22), we get,

s5→ p5 p3 p1

s4→ p4 p2 p0

s3→
(

p4 p3− p2 p5

p4

) (
p1 p4− p0 p5

p4

)
0

s2→
p2

(
p4 p3−p2 p5

p4

)
− p4

(
p1 p4−p0 p5

p4

)
(

p4 p3−p2 p5
p4

) p0

s1→
Q
(

p1 p4−p0 p5
p4

)
− p0

(
p4 p3−p2 p5

p4

)
Q

0

s0→ p0

(5.24)

where,

Q=
p2

(
p4 p3−p2 p5

p4

)
− p4

(
p1 p4−p0 p5

p4

)
(

p4 p3−p2 p5
p4

) (5.25)
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Using Krishnamurthi’s approach [161], we write,

s1→
Q
(

p1 p4−p0 p5
p4

)
− p0

(
p4 p3−p2 p5

p4

)
Q

≥ 0
(

p2

(
p4 p3−p2 p5

p4

)
−p4

(
p1 p4−p0 p5

p4

)
(

p4 p3−p2 p5
p4

)
)(

p1 p4−p0 p5
p4

)
−p0

(
p4 p3−p2 p5

p4

)


(
p2

(
p4 p3−p2 p5

p4

)
−p4

(
p1 p4−p0 p5

p4

)
(

p4 p3−p2 p5
p4

)
) ≥ 0

(5.26)

(
p2

(
p4 p3− p2 p5

p4

)
− p4

(
p1 p4− p0 p5

p4

))
(

p1 p4− p0 p5

p4

)
− p0

(
p4 p3− p2 p5

p4

)2

≥ 0

(5.27)

Further simplifying, [{
p2 (p4 p3− p2 p5)− p4 (p1 p4− p0 p5)

}
(p1 p4− p0 p5)

]
− p0(p4 p3− p2 p5)

2 ≥ 0
(5.28)

Simplifying (5.28), we get,

p2 (p4 p3− p2 p5)(p1 p4− p0 p5)

− p4(p1 p4− p0 p5)
2− p0(p4 p3− p2 p5)

2 ≥ 0
(5.29)

Equation (5.29) can also be written as

p2ΘΓ− p4Γ
2− p0Θ

2 ≥ 0 (5.30)

where, Θ = (p4 p3− p2 p5) and Γ = (p1 p4− p0 p5). Substituting coefficients from (5.23) in Θ and

Γ, we get
Θ = (p4 p3− p2 p5)

=−
(

ĴKd1g+ ĴKi2Ki1

)
(Mc +m)

+
(
−(Mc +m)Ĵ−Kp1 + ĴKp2

)(
ĴKd2−Kd1

) (5.31)
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Γ = (p1 p4− p0 p5)

=−ĴgKi1(Mc +m)+ ĴgKp1

(
ĴKd2−Kd1

) (5.32)

Suppose, ϒ = p2ΘΓ− p4Γ2 and Λ =−p0Θ2. Thus (5.30) can be written as

ϒ−Λ≥ 0 (5.33)

where,
ϒ = p4 (p4 p3− p0 p5)(p1 p4− p0 p5)

=
(

ĴKd1g+ ĴKi2−Ki1

)
(
−
(

ĴKd1g+ ĴKi2−Ki1

)
(Mc +m)

+
(
−Ĵ (Mc +m)−Kp1 + ĴKp2

)(
ĴKd2−Kd1

))
(
−ĴgKi1 (Mc +m)+ ĴgKp1

(
ĴKd2−Kd1

))
(5.34)

Λ = p0(p4 p3− p0 p5)
2

=

mlgKi1

 −
(

mlKd1g
σ

+ mlKi2
σ
−Ki1

)
p5

+
(
− (Mc+m)ml

σ
−Kp1 +

mlK p2
σ

)
p4


2

σ

(5.35)

Now, we check stability condition (5.33) for two different controllers, i.e., LQR based PID con-

troller and SBL based PID controller, which are shown in equations (5.16) and (5.17). The stability

condition for these controllers are explained below in step 4 and step 5.

Step 4: LQR based PID analysis [1]:

Substituting values of C1, C2 from (5.16), and ϒ, Λ from equation (5.34) and (5.35) in (5.33) and

replacing parameters values from Table 5.1, we get,

−8.4639×1030Mc
2−1.0059×1032Mc

+2.1467×1033 ≥ 0
(5.36)
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From (5.36), we write,

f (Mc) =−M2
c −11.8843Mc +253.6351 = 0 (5.37)

The roots of above equation are calculated as Mc1 =−22.9405 and Mc2 = 11.0562.

The significance of the roots of the equations is given below.

M̃c +∆Mc1 =−22.9405

2.4+∆Mc1 =−22.9405

∆Mc1 =−20.5405

(5.38)

M̃c +∆Mc2 = 11.0562

2.4+∆Mc2 = 11.0562

∆Mc2 = 8.6562

(5.39)

Equations (5.38) and (5.39) give the limits for the minimum andmaximum additional mass (∆Mc),

respectively. Now, we verify the above equation by considering different cases as shown below.

Case (i): Mc = - 23

f (−23) =−4.4774×1033 +2.3136×1033

+2.1467×1033

=−1.7133×1031 < 0

(5.40)

Case (ii): Mc = - 2
f (−2) =−3.3856×1031+2.0118×1032

+2.1467×1033

= 2.3140×1033 > 0

(5.41)

Case (iii.a): Mc = 3
f (3) =−7.6175×1031−3.0177×1032

+2.1467×1033

= 1.7688×1033 > 0

(5.42)
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Case (iii.b): Mc = 4.3
f (4.3) =−1.5650×1032−4.3254×1032

+2.1467×1033

= 1.5577×1033 > 0

(5.43)

Case (iv): Mc = 12
f (12) =−1.2188×1033−1.2071×1033

+2.1467×1033

=−2.7918×1032 < 0

(5.44)

From above, it is proved that for all Mc1 < M̃c < Mc2⇒ f (Mc) > 0⇒ are stable. The bound of

Mc for stability is shown as follows

−22.9405 < Mc < 11.0562

−22.9405 < 2.4+∆Mc < 11.0562

−20.5405 < ∆Mc < 8.6562

(5.45)

From equation (5.45), it is found that, for negative values of ∆Mc, i.e., for reducing a cart mass

Mc, system can also be stable. Therefore, the stability margin of lower to higher values of cart

mass is shown in Figure 5.3.

Figure 5.3: Different stability cases for total cart mass Mc

Step 5: SBL based PID analysis [57, 166]:

Similarly, substituting values of SBL PIDs C1, C2 from (5.17) and replacing parameters values
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from Table 5.1 in (5.33), we get,

−2.9348×1050Mc
2−2.8079×1053Mc

+3.8432×1054 ≥ 0
(5.46)

From (5.46), we write,

f (Mc) =−M2
c −956.7615Mc +13095 = 0 (5.47)

The roots of above equation (5.47) are calculated as Mc1 =−970.2583 and Mc2 = 13.4968.

The roots of the equation (5.47), are represented by Mc1 and Mc2 and provide the limits for the

minimum and maximum values of ∆Mc1 in (5.48) and ∆Mc2 in (5.49), respectively

M̃c +∆Mc1 =−970.2583

2.4+∆Mc1 =−970.2583

∆Mc1 =−967.8583

(5.48)

M̃c +∆Mc2 = 13.4968

2.4+∆Mc2 = 13.4968

∆Mc2 = 11.0968

(5.49)

Now we can verify ∆Mc1 and ∆Mc2 conditions by considering different cases such as,

Case (i): Mc = - 971
f (−971) =−2.7670×1056 +2.7265×1056

+3.8432×1054

=−2.1467×1053 < 0

(5.50)

Case (ii): Mc = - 23
f (−23) =−1.5525×1053 +6.4582×1054

+3.8432×1054

= 1.0146×1055 > 0

(5.51)
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Case (iii.a): Mc = 4.3
f (4.3) =−5.4264×1051−1.2047×1054

+3.8432×1054

= 2.6304×1054 > 0

(5.52)

Case (iii.b): Mc = 12
f (12) =−4.2261×1052−3.3695×1054

+3.8432×1054

= 4.3146×1053 > 0

(5.53)

Case (iv): Mc = 14

f (14) =−5.7522×1052−3.9311×1054 +3.8432×1054

=−1.4538×1053 < 0
(5.54)

From above, it is proved that for all Mc1 < M̃c < Mc2⇒ f (Mc) > 0⇒ are stable. The bound of

Mc for stability is shown in (5.55).

−970.2583 < Mc < 13.4968

−970.2583 < (2.4+∆Mc)< 13.4968

−967.8583 < ∆Mc < 11.0968

(5.55)

From equation (5.55), it is found that, for negative values of ∆Mc, system can also be stable.

Therefore, the stability margin of lower to higher values of cart mass can also be represented by

Figure 5.3. Thus, from equation (5.45), which is LQR based PID, maximum additional cart mass

to be carried is 8.6562 kg and from equation (5.55), which is based on SBL based PID, maximum

additional cart mass to be carried is 11.0968kg. Thus, SBL based PID controller shows better

robustness in comparison to LQR based PID. However, in the practical set-up which we have

considered here, it is not possible to reduce the actual cart mass M̃c. Therefore, reduction of cart

mass analysis is carried out through simulation only, whereas effect of addition of cart mass is

carried out through both simulation and also on real time set-up of CIPS.
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5.4.1 Results and Analysis

Here, the digital cart inverted pendulum set-up has been considered, which is provided by Feed-

back Instruments Ltd. UK r company [152]. The CIPS parameters are given in Table 5.1.

According to user manual of the set-up[152], maximum output voltage (in v) and force (in N) are

given, which are shown in equation (5.56). As per [1], the actuator DC motor gain is considered

to be 15, which when multiplied with applied force, leads to the position transfer function as,

P1(s) = x(s)/U(s) and angle TF P2(s) = θ(s)/U(s). The cart rail limit is ±0.5m and angle θ

should be less than 0.2 rad. The stability margin or bounds for the additional mass are verified

through simulation and hardware set-up.

−2.5 V to 2.5 V ' 0 to 5 V

−20 N to 20 N ' 0 to 40 N
(5.56)

As discussed earlier, M̃c is the actual cart mass and ∆Mc is the additional perturbation mass and

Mc is the total mass. So, we can write

Mc = M̃c +∆Mc (5.57)

Using equation (5.57), total mass of the cart for additional mass are shown in (5.58). Here, seven

cases have been considered. They are given below.

∆Mc = 0, Mc = 2.4+0⇒ 2.4kg

∆Mc =−1.4, Mc = 2.4−1.4⇒ 1kg

∆Mc = 1, Mc = 2.4+1⇒ 3.4kg

∆Mc = 1.9, Mc = 2.4+1.9⇒ 4.3kg

∆Mc = 8.5, Mc = 2.4+8.5⇒ 10.9kg

∆Mc = 8.7, Mc = 2.4+8.7⇒ 11.1kg

∆Mc = 9.6, Mc = 2.4+9.6⇒ 12kg

and ∆Mc = 11, Mc = 2.4+11⇒ 13.4kg

(5.58)
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Table 5.2: Maximum value at different cases for LQR PID

∆Mc(kg) Mc(kg) x(m) θ (rad) u(v)

0 2.4 -0.3271 -0.1201 -12.09
-1.4 1 -0.3024 -0.1038 -12.09
1 3.4 -0.3496 -0.1346 -12.09
1.9 4.3 -0.3684 -0.147 -12.09
8.5 10.9 0.4943 0.2608 -12.2358
8.7 11.1 0.5083 0.2679 -12.2379
9.6 12 0.5717 -0.3065 13.8448

4.1 Simulation results:

For all the cases, simulation analysis are carried out for initial angle θ0 = 0.1 rad.

i) LQR based PID results:

The additional mass ∆Mc and cart mass (Mc) are shown in (5.58). Initially, small variations around

cart mass M̃c have been considered, i.e., ∆Mc = 0,−1.4,1 and 1.9 kg. Using equations (5.9), (5.11)

and (5.16), the responses of LQR PID controlled cart position (x) are shown in Figure 5.4(a),

and corresponding to this, pendulum angle (θ ) in Figure 5.4(b) and the control voltages (u) in

Figure 5.4(c) are shown. In proposed approach, it is shown that for some values of ∆Mc, i.e., up

to additional mass ∆Mc = 1.9 kg, the LQR PID controller stabilizes the system effectively. This

is shown in Figures 5.4((a)-(c)). We further check the extreme condition of additional mass after

which CIPS become unstable. It is explained below.

Earlier, it is shown that at ∆Mc = 8.6562 kg, the system is on the verge of instability. Therefore,

additional mass∆Mc such as 8.5 kg is considered, which shows that the cart position (x), pendulum

angle (θ ) and also control voltage (u) are within the prescribed limits. It is shown in Table 5.2. As

the additional mass increases to 8.7kg and 9.6kg, it is found that the cart position, pendulum angle

and control voltage cross the maximum limits. This is depicted in Figures 5.5(a), 5.5(b), 5.5(c),

respectively. The actual values are shown in Table 5.2. Thus, the proposed analysis is verified

through simulation.

(ii) SBL based PID results:

SBL-based PID tuning parameters are shown in (5.18). The variations of ∆Mc(0,−1.4,1.9, and

9.6kg) from (5.58) have been considered. Then system responses are obtained for x, θ , and u,
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Figure 5.4: Response of CIPS using LQR PID for ∆Mc

which are shown in Figure 5.6((a)-(c)) respectively and their maximum values are tabulated in

Table 5.3.

Earlier using equation (5.55), it is shown that when ∆Mc = 11.0968 kg, the system is on the verge

of instability. Therefore, additional extreme mass ∆Mc of 11 kg is considered, that shows that the

cart position (x), pendulum angle (θ ) and also control voltage (u) are within the prescribed limits.

They are shown in Table 5.3. As the additional mass increases to 11.5kg and 12kg, it is found that

the cart position, pendulum angle and control voltage cross the maximum limits. They are shown

in Figures 5.7((a)-(c)), respectively. Thus, the proposed analysis is verified through simulation.

The actual values are shown in Table 5.3.

(iii) Comparison between LQR based PID and SBL based PID with reference cart mass

uncertainty :

The responses of cart position for extreme cart mass Mc in case of LQR based PID controller and
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Figure 5.5: Response of CIPS using LQR PID for extreme ∆Mc

Table 5.3: Maximum value at different cases for SBL PID

∆Mc(kg) Mc(kg) x(m) θ (rad) u(v)

0 2.4 -0.2609 0.1 -5.0329
-1.4 1 -0.2168 0.1 -5.0329
1.9 4.3 -0.3009 0.1 -5.0329
9.6 12 -0.4027 -0.1389 -5.0329
11 13.4 -0.418 0.1584 -5.4784
11.5 13.9 -0.4235 0.2051 -7.5368
12 14.4 -0.6509 0.3247 -11.9064
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Figure 5.6: Response of CIPS using SBL PID for ∆Mc

SBL based PID controller are shown in Figure 5.5(a) and 5.7(a), respectively. It is found that LQR

based PID controller stabilized the system till additional mass ∆Mc = 8.5kg, whereas, SBL based

PID controller stabilized CIPS till ∆Mc = 11kg. Thus, SBL based PID controller is more robust

than LQR based PID controller. We have already obtained the stability margin in section 3 for

both the PIDs, for LQR PID is ∆Mc < 8.6565, and for SBL PID is ∆Mc < 11.0968. Thus, the

mathematical approach is verified through simulation.

iv) Comparison between LQR based PID and SBL based PID with respect to uncertainty in

length of pendulum and force applied to the cart:

The effect of additional increase of length of pendulum∆l = 0.08m for both type of PID controllers

is considered when ∆Mc = 0 and ∆Mc = 1.9kg. The performance of LQR based PID controller

and SBL based PID controller are shown in figure 5.8(a)-(c). In this figure 5.8(a) shows cart
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Figure 5.7: Response of CIPS using SBL PID for extreme ∆Mc

position, figure 5.8(b) shows pendulum angle and figure 5.8(c) shows the corresponding control

voltage. In this, the actual length of pendulum is 0.4m. It is observed that for additional length of

pendulum (∆l) equal to 0.08m,(total length of pendulum= 0.4+0.08 = 0.48m), complete CIPS

system is stable. However, performance of SBL based PID is better than LQR based PID con-

troller. Similar to above, effect of increase and decrease of applied force (F) to the cart has been

verified when additional cart mass is at ∆Mc = 1.9kg and additional length ∆l = 0.08m. The ac-

tual force is 15N and perturbation in force is considered as ±50%. Thus, the variation in actual

force is in between [7.5 22.5]N. The results are shown in figure 5.9(a)-(c). Fig. 5.9(a) shows cart

position, figure 5.9(b) shows pendulum angle and figure 5.9(c) shows control voltage. Here, it is

also observed that performance of CIPS system based on SBL based PID is better than LQR based

PID.
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Figure 5.8: Comparison of SBL and LQR PIDs response for ∆Mc at ∆l = 0.08m

4.2 Hardware results:

For the experimental results, pendulum is swung up by hand to bring it to the stabilization zone.

The angular plots in these responses start from π rad which is a point of stable equilibrium. From

the user manual of actual hardware, the actuator (DC motor) capacity is calculated in terms of

total cart mass(Mc). This capacity shows that the actuator can carry maximum load irrespective

of control algorithm. It is elucidated below. We know that,

F = Mx×a (5.59)

where, Mx is the total mass across the motor shaft, which includes cart mass(Mc) and pendulum

assembly mass (m+mb), where, mb is a bob mass(mb ≈ 0.1kg) and ‘a’ is an acceleration due to
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Figure 5.9: Comparison of system response for ∆u using SBL and LQR PID for ∆Mc = 1.9kg at
∆l = 0.08m

gravity, i.e., a = 9.81 ms−2. We write,

Mx = Mc +(m+mb) (5.60)

Equation (5.59) can be written as,

40 = (Mc +0.33)×9.81 (5.61)

Solving above equation, we get,

Mc ' 3.7475kg (5.62)
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In the real time environment, maximum mass perturbation (∆PMc) is obtained using equation

(5.63).

∆PMc = min
[
ΩMc,ΠMc

]
(5.63)

where, ∆PMc is the maximum cart mass perturbation, ΩMc is the stability margin of designed

controller (SMDC) with respect to cart mass(Mc) and ΠMc is practical actuator rating (PAR) with

respect to Mc.

Figure 5.10: Hardware set-up of cart inverted pendulum system

i) LQR based PID results :

For LQR PID, SMDC ΩMc = 8.6562 kg is obtained in (5.45) and PAR ΠMc= Mc = 3.7475 kg is

calculated in (5.62). Hence, using equation (5.63), maximum cart mass perturbation allowed is

nothing but the minimum of ΩMc and ΠMc . Thus, using (5.62), we get ∆PMc = 3.7475 kg.

Table 5.4: Real-time maximum values of LQR PID for different cases

∆Mc(kg) Mc(kg) x(m) θ (rad) u(v)

0 2.4 0.2564 0.9879 -24.2642
0.5 2.9 0.2322 0.9940 -24.2708
1 3.4 0.1896 0.9942 -24.2116
1.9 4.3 0.1044 0.9913 -24.1556

The hardware set-up of cart inverted pendulum is shown in Figure 5.10. The hardware results

are carried out for different masses (Mc) equal to 2.4, 2.9, 3.4 and 4.3 kg considering additional
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Figure 5.11: LQR PID real-time response of CIPS system for ∆Mc

mass as (∆Mc) 0, 0.5, 1 and 1.9 kg, respectively. Here, we have not considered all the additional

mass which we have considered in the simulation due to limitation imposed by (5.63). This is

important from the safety point of view of CIPS. The effect of additional cart mass on position of

cart(x), pendulum angle(θ ) and corresponding control voltage(u) are shown in figure 5.11((a)-(c)),

respectively. From these figures, it is found that for the additional variation in cart mass (∆Mc),

stable cart position(x) and pendulum angle(θ ) of CIPS have been obtained. Similar to simulation

results, in hardware results, maximum values of x, θ and u for additional mass ∆Mc are tabulated

in Table 5.4. Thus, hardware results satisfied the bounded range of cart mass as determined in

(5.62).

Further, real time analysis is carried by increasing pendulum length (∆l = 0.08m) when there is

no additional cart mass and also when there is an additional cart mass ∆Mc = 1.9kg. The response

of CIPS system is shown in Figures 5.12(a,b,c). Figure 5.12(a) shows x, figure 5.12(b) shows

θ and figure 5.12(c) shows u. From these figures, it is found that the LQR based PID controller

stabilized the CIPS, however their exist small oscillation across x and θ and increased control

voltage (u) level.
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Figure 5.12: Real time CIPS response with LQR PID for ∆Mc at ∆l = 0.08m

ii) SBL based PID results :

For SBL PID, SMDC ΩMc= 11.0968 kg is obtained in (5.55) and PAR ΠMc = 13.4968 kg is

calculated in (5.62). Hence, similarly using equation (5.63), maximum ∆Mc allowed is nothing

but the minimum of SMDC ΩMcand PAR ΠMc . Thus, using (5.62), we get ∆PMc = 3.7475 kg. The

real-time results are carried out for different masses (Mc) 2.4 kg, and 4.3 kg considering additional

mass as ∆Mc = 0, and ∆Mc = 1.9 kg, respectively. Here, we have not considered all the additional

mass which we have considered in the simulation due to (5.63), as this is important from the

safety point of view of CIPS. The effect of additional cart mass on x, θ and corresponding u are

shown in Figure 5.13(a), 5.13(b) and 5.13(c), respectively. From these figures, it is found that

for the additional variation in cart mass (∆Mc), SBL based PID stabilized the cart position(x) and

pendulum angle(θ ). However, small oscillations can be seen across the cart position. Moreover,

hardware results satisfy the bounded range of cart mass as determined in (5.62). Further, real time

analysis is carried for increasing pendulum length (∆l = 0.08m), when there is no additional cart

mass and also when there is additional cart mass is ∆Mc = 1.9kg. The responses of CIPS system

are shown in figures 5.13(a,b,c), Figure 5.13(a)shows x, figure 5.13(b) shows θ and figure 5.13(c)

shows u. From these figures, it is found that the SBL based PID controller stabilised the CIPS

127



0 10 20 30 40
Time (s)

-0.2

-0.1

0

0.1

0.2

0.3

x
(m

)

Cart position

"Mc=0kg
"Mc=1.9kg

(a)

0 10 20 30 40
Time (s)

-1

0

1

2

3

4

3
(r

a
d
)

Pendulum angle

"Mc=0kg
"Mc=1.9kg

5 10
-0.05

0
0.05

(b)

0 10 20 30 40
Time (s)

-30

-20

-10

0

10

u
(v

)

Control voltage

"Mc=0kg
"Mc=1.9kg

(c)

Figure 5.13: Real time CIPS response with SBL PID for ∆Mc at ∆l = 0.08m

system, but still small oscillations are present across x and θ .

iii) Comparison between LQR based PID and SBL based PID :

From above discussion and from figures 5.12(a,b,c) and figures 5.13(a,b,c), it can be deduced

that the performance based on SBL based PID is better in comparison to LQR based PID when

additional cart mass and increase of pendulum length are considered. Particularly, control input

voltage u and oscillation across pendulum angle θ are also found minimum in case of SBL based

PID controller.

5.5 Proposed controller design techniques

In this section, we propose three different techniques for the control of cart inverted pendulum

system. Initially, for an interval system, SBL-PID has been designed via Kharitonov’s theorem.

Then, adaptive control policy has been used to extract the best features of the individual candidate

controllers. Further, the existing adaptive scheme has been modified and implemented on real

time CIPS setup. Finally, QRAWCP-PID is designed and compared with existing LQR-PID.
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5.5.1 SBL for perturbed CIPS

Let the perturbed model of CIPS be given as

x(s)
F(s)

=

(
(J±δJ)+(m±δm)(L±δL)

2
)

(
(J±δJ)+(m±δm)(L±δL)

2
)(

(M±δM)+(m±δm)
)×[

s2− (m±δm)g(L±δL)(
(J±δJ)+(m±δm)(L±δL)

2
)
]

[
s4− (m±δm)g(L±δL)((M±δM)+(m±δm))(

(J±δJ)+(m±δm)(L±δL)
2
)
((M±δM)+(m±δm))

s2

]
(5.64)

Simplification of (5.64) gives,

x(s)
F(s)

=
1(

(M±δM)+(m±δm)
)

s2 (5.65)

Further (5.65), can be written as

P1 =
x(s)
F(s)

=
b1

s2 (5.66)

where,

b1 =
1(

(M±δM)+(m±δm)
)

Similarly, the transfer function for angle control is determined as,

θ(s)
F(s)

=

[
(m±δm)(L±δL)

]
s2[

(J±δJ)(M±δM +m±δm)+(M±δM)(m±δm)(L±δL)
2
]

s4

× 1
−
[
(m±δm)(M±δM +m±δm)(L±δL)

]
gs2

(5.67)

Equation (5.67) is simplified as,

θ(s)
F(s)

' (m±δm)(L±δL)s2(
(J±δJ)+(m±δm)(L±δL)

2
)(

(M±δM)+(m±δm)
)×

1[
s4− (m±δm)g(L±δL)((M±δM)+(m±δm))(

(J±δJ)+(m±δm)(L±δL)
2
)
((M±δM)+(m±δm))

s2

] (5.68)
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θ(s)
F(s)

' (m±δm)(L±δL)s2(
(J±δJ)+(m±δm)(L±δL)

2
)(

(M±δM)+(m±δm)
)×

1[
s4− (m±δm)g(L±δL)(

(J±δJ)+(m±δm)(L±δL)
2
)s2

] (5.69)

Further, (5.69) can be written as

P2 =
θ(s)
F(s)

=
b2

s2−a3
(5.70)

where,
b2 =

(m±δm)(L±δL)(
(J±δJ)+(m±δm)(L±δL)2

)(
(M±δM)+(m±δm)

)
a3 =

(m±δm)g(L±δL)(
(J±δJ)+(m±δm)(L±δL)2

) (5.71)

Design of SBL-PID using Kharitonov’s theorem The design of SBL based PID for various

systems is discussed in [57, 166–168]. Two PID controllers are designed, one for position control

i.e., PID1(C1) and other for angle control i.e., PID2(C2).

The closed-loop characteristics equation for both the transfer function are derived below.

1. Position control (x):

1+P1(s)C1(s) = 0 (5.72)

Using (5.66) and C1(s) = Kp1 +
Ki1
s +Kd1.s, (5.72) can be written as

1+
{

b1

s2

}{
Kp1 +

Ki1

s
+Kd1.s

}
= 0 (5.73)

Simplification of (5.73) gives,

s3 +b1Kd1s2 +b1K p1.s+b1Ki1 = 0 (5.74)

2. Angle control(θ ):

1+P2(s)C2(s) = 0 (5.75)
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Using (5.70) and C2 (s) = Kp2 +
Ki2
s +Kd2.s, (5.75) can be written as

1+
{

b2

s2−a3

}{
Kp2 +

Ki2

s
+Kd2.s

}
= 0 (5.76)

Further simplification of (5.76) gives,

s3 +b2Kd2s2 +
(
b2Kp2−a3

)
s+b2Ki2 = 0 (5.77)

Now using Kharitonov’s theorem which has been discussed in [56, 169, 170], the four extreme

polynomials for closed-loop characteristic equations (5.74) and (5.77) can be obtained, as given

below.

5.5.1.1 Kharitonov polynomials

Applying Kharitonov’s theorem to position control transfer function (TF) (5.66), the four polyno-

mials are written as,
K1

x = b1K1
i1 +b1K1

p1s+b1K1
d1s2 + s3

K2
x = b1K2

i1 +b1K2
p1s+b1K2

d1s2 + s3

K3
x = b1K3

i1 +b1K3
p1s+b1K3

d1s2 + s3

K4
x = b1K4

i1 +b1K4
p1s+b1K4

d1s2 + s3

(5.78)

Where, b1 and b1 are the minimum and maximum values of b1 ∈ [x1,y1], respectively. x1 and y1

can be written as,
x1 =

1(
(M+δM)+(m+δm)

)
y1 =

1(
(M−δM)+(m−δm)

) (5.79)

Equation (5.78) can be written as,

K1
x = x1K1

i1 + x1K1
p1s+ y1K1

d1s2 + s3

K2
x = x1K2

i1 + y1K2
p1s+ y1K2

d1s2 + s3

K3
x = y1K3

i1 + x1K3
p1s+ x1K3

d1s2 + s3

K4
x = y1K4

i1 + y1K4
p1s+ x1K4

d1s2 + s3

(5.80)
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Similarly for angle control, applying Kharitonov’s theorem to (5.77), the four polynomials can be

written as

K1
θ = b2K1

i2 +
(

b2K1
p2−a3

)
s+b2K1

d2s2 + s3

K2
θ = b2K2

i2 +
(

b2K2
p2−a3

)
s+b2K2

d2s2 + s3

K3
θ = b2K3

i2 +
(

b2K3
p2−a3

)
s+b2K3

d2s2 + s3

K4
θ = b2K4

i2 +
(

b2K4
p2−a3

)
s+b2K4

d2s2 + s3

(5.81)

where, b2 and b2 shows minimum and maximum values of b2 ∈ [x2,y2] respectively, and similarly(
b2Kp2−a3

)
and

(
b2Kp2−a3

)
shows minimum and maximum values of a3 ∈ [x3,y3]. Using

eq.(5.71), x2, y2, x3, and y3 can be written as,

x2 =
(m−δm)(l−δl)(

(J+δJ)+(m+δm)(L+δL)2
)(

(M+δM)+(m+δm)
)

y2 =
(m+δm)(L+δL)(

(J−δJ)+(m−δm)(L−δL)2
)(

(M−δM)+(m−δm)
)

x3 =
(m−δm)g(L−δL)(

(J+δJ)+(m+δm)(L+δL)2
)

y3 =
(m+δm)g(L+δL)(

(J−δJ)+(m−δm)(L−δL)2
)

(5.82)

Similarly, (5.81) can be written as,

K1
θ = x2K1

i2 +
(

x2K1
p2− y3

)
s+ y2K1

d2s2 + s3

K2
θ = x2K2

i2 +
(

y2K2
p2− x3

)
s+ y2K2

d2s2 + s3

K3
θ = y2K3

i2 +
(

x2K3
p2− y3

)
s+ x2K3

d2s2 + s3

K4
θ = y2K4

i2 +
(

y2K4
p2− x3

)
s+ x2K4

d2s2 + s3

(5.83)

5.5.1.2 Obtaining SBL regions

For designing SBL for position control and angle control, SBL is obtained for (5.80) and (5.83),

respectively. The SBL based PID controllers are as given below.

For PID1
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1. Substituting s = jw in (5.80) for first polynomial K1
x (s). Thus, the closed loop characteristic

equation is given as

x1K1
i1 + x1K1

p1( jω)+ y1K1
d1(−ω

2)+ jω(−ω
2) = 0 (5.84)

On equating real and imaginary parts of (5.84) to zero, (5.85) and (5.86) can be obtained

as,

x1K1
i1 = y1K1

d1(ω
2) (5.85)

and

x1K1
p1( jω) = jω(ω2) (5.86)

Now arbitrarily selecting the value of K1
d1, other parameters of PID1 can be obtained for

K1
x (s) using (5.85) and (5.86) as,

K1
i1 =

y1K1
d1ω2

x1
(5.87)

and

K1
p1 =

ω2

x1
(5.88)

By varying ω from (0,∞), the SBL plot is obtained.

Similarly for other three polynomials K2
x (s),K3

x (s), and K4
x (s), Kp1 and Ki1 are computed,

which are given below.

2. Taking second polynomial K2
x from (5.80), (5.89) can be obtained as,

x1K2
i1 + y1K2

p1( jω)+ y1K2
d1(−ω

2)+ jω(−ω
2) = 0 (5.89)

For above polynomial, K2
p1 and K2

i1 can be determined, by equating real and imaginary parts

of K2
x ( jw) (5.89) to zero and arbitrarily selecting K2

d1, (5.90) and (5.91) are obtained as,

K2
i1 =

y1K2
d1ω2

x1
(5.90)
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and

K2
p1 =

ω2

y1
(5.91)

3. Consider the third polynomial of K3
x from (5.80), as

y1K3
i1 + x1K3

p1( jω)+ x1K3
d1(−ω

2)+ jω(−ω
2) = 0 (5.92)

For above polynomial, K3
p1 and K3

i1 can be determined, by equating real and imaginary parts

of (5.92) to zero and arbitrarily selecting K3
d1, (5.93) and (5.94) are obtained as,

K3
i1 =

x1K3
d1ω2

y1
(5.93)

and

K3
p1 =

ω2

x1
(5.94)

4. Similarly, using the fourth polynomial of K4
x from (5.80), (5.95) is obtained.

y1K4
i1 + y1K4

p1( jω)+ x1K4
d1(−ω

2)+ jω(−ω
2) = 0 (5.95)

For above polynomial, K4
p1 and K4

i1 can be determined, by equating real and imaginary parts

of (5.95) to zero and arbitrarily selecting K4
d1, (5.96) and (5.97) can be obtained as,

K4
i1 =

x1K4
d1ω2

y1
(5.96)

and

K4
p1 =

ω2

y1
(5.97)

For PID2

1. In eq.(5.83), the first polynomial is represented as K1
θ
. In this equation, substituting s = jw,

(5.98) is obtained.

x2K1
i2 +

(
x2K1

p2− y3

)
( jω)+ y2K1

d2(−ω
2)+ jω(−ω

2) = 0 (5.98)
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By equating real and imaginary parts of (5.98) to zero, (5.99) and (5.100) are obtained as,

x2K1
i2 = y2K1

d2(ω
2) (5.99)

and (
x2K1

p2− y3

)
( jω) = jω(ω2) (5.100)

By arbitrarily selecting K1
d2 , other parameters of PID2 can be obtained for K1

θ
polynomial

as,

K1
i2 =

y2K1
d2ω2

x2
(5.101)

and

K1
p2 =

ω2 + y3

x2
(5.102)

By varying ω from (0,∞), the SBL plot is obtained.

Similarly, for other three polynomials, K2
θ
,K3

θ
and K4

θ
are obtained which are given below.

2. The second polynomial K2
θ
from (5.83) is written as

x2K2
i2 +

(
y2K2

p2− x3

)
( jω)+ y2K2

d2(−ω
2)+ jω(−ω

2) = 0 (5.103)

In above equation, K2
p2 and K2

i2 can be determined, by equating real and imaginary parts of

(5.103) to zero and arbitrarily selecting K2
d2, (5.104) and (5.105) are obtained as,

K2
i2 =

y2K2
d2ω2

x2
(5.104)

and

K2
p2 =

ω2 + x3

y2
(5.105)

3. Taking the third polynomial K3
θ
from (5.83), (5.106) is obtained as,

y2K3
i2 +

(
x2K3

p2− y3

)
( jω)+ x2K3

d2(−ω
2)+ jω(−ω

2) = 0 (5.106)
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Table 5.5: Perturb parameters of cart inverted pendulum system

Parameter Nominal Perturbation [Min δ Max δ ]

Cart mass (M) 2.4 kg δM =±0.480 kg [1.92,2.88]kg
Pendulum mass (m) 0.23 kg δm =±0.040 kg [0.184,0.276]kg
Pendulum length (L) 0.4 m δL =±8 cm [0.32,0.48]m

In above equation, K3
p2 and K3

i2 can be determined, by equating real and imaginary parts of

K3
θ
( jw) (5.106) to zero and arbitrarily selecting K3

d2, (5.107) and (5.108) are obtained as,

K3
i2 =

x2K3
d2ω2

y2
(5.107)

and

K3
p2 =

ω2 + y3

x2
(5.108)

4. Similarly, using the fourth polynomial of K4
θ
from (5.83), (5.109) is obtained as,

y2K4
i2 +

(
y2K4

p2− x3

)
( jω)+ x2K4

d2(−ω
2)+ jω(−ω

2) = 0 (5.109)

In above equation, K4
p2 and K4

i2 can be determined by equating real and imaginary parts of

(5.109) to zero and arbitrarily selecting K4
d2, (5.110) and (5.111) are obtained as,

K4
i2 =

x2K4
d2ω2

y2
(5.110)

and

K4
p2 =

ω2 + x3

y2
(5.111)

5.5.1.3 Plotting stability boundary locus

For CIP system, 20% variations are considered in the cart mass, pendulum mass and pendulum

length from the nominal value. The lower and upper bounds of parameters are listed in Table 5.5.
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Using Table 5.1, Table 5.5 and from eq.(5.79), (5.82), x1 = 0.31686, y1 = 0.47529, x2 = 0.10229,

y2 = 0.64224, x3 = 3.16690 and y3 = 13.25589 are calculated. Further, for performing an experi-

ment on hardware setup, a conversion factor α is also required. In user manual [152], conversion

factor is given as α = 15. Therefore, the coefficients b1, b2 and a3 become

b1 ∈ [4.7529,7.1293]

b2 ∈ [1.5343,9.6335]

a3 ∈ [3.1669,13.2559]

(5.112)

The design of PID controller is carried out using stability boundary locus for cart control and

angle control for CIP system. As mentioned earlier, PID1 is for cart control and PID2 is for angle

control. For cart control, derivative gain is fixed as Kd1 = 5. The stability boundary locus, i.e.,

locus between Kp1 verses Ki1 is determined for four Kharitonov polynomials as given in eq.(5.78).

For first polynomial, SBL determined using eq.(5.87) and eq.(5.88). Similarly, for second, third,

and fourth polynomials, SBL is determined using eq.(5.90) (5.91), (5.93) (5.94), (5.96) and (5.97),

respectively. In order to find the parameters of PID1, in Fig. 5.14, the intersection region, i.e., K1
x

∩ K2
x ∩ K3

x ∩ K4
x is selected. In this, two regions are obtained, i.e., one above the K2

x and other

below the K3
x . By selecting, one value from each of these regions, stability of cart control system is

checked. Here, it is found that the value from below K3
x region gives stable response. Afterwards,

using trial and error procedure, a suitable value is selected which gives satisfactory performance.

The selected value is shown by the marker ‘.’in Fig. 5.14. Thus, from this figure, the PID1 values

are selected as Kp1 = 6.9964, Ki1 = 0.2 and Kd1 = 5.

Similar to above procedure, SBL is determined for angle control system. For angle control,

derivative gain is fixed at Kd2 = 10. The stability boundary locus i.e., locus between Kp2 ver-

sus Ki2 is determined for four Kharitonov polynomials. For first polynomial, SBL determined

using eq.(5.101) and (5.102). Similarly, for second, third, and fourth polynomials, SBL is deter-

mined using eq.(5.104) (5.105), eq.(5.107) (5.108) and eq.(5.110) (5.111), respectively. In order

to find the parameters of PID2, in Fig. 5.15, the intersection region of K1
θ
∩ K2

θ
∩ K3

θ
∩ K4

θ
is

selected. In this, enclosed regions which lie between above K1
θ
, K3

θ
and below K2

θ
, K4

θ
are de-

termined. By selecting one value from enclosed region and one value from outside this region,
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Figure 5.14: SBL of four Kharitonov polynomials for cart control

the enclosed region gives stable response. Subsequently, using trial and error procedure, suitable

value is selected which gives satisfactory performance. The selected value is shown by marker

‘.’in Fig. 5.15. Thus, from this figure, the PID2 values are selected as Kp2 = 50.3294, Ki2 = 5,

and Kd2 = 10.

5.5.1.4 Stability analysis of Kharitonov’s polynomials

The two PID control structure for CIP are shown in Fig.5.2. From this figure, the closed-loop

characteristic equation becomes 1−P1C1(s)+P2C2(s). From eq.(5.80) and (5.83), the open loop

transfer functions with controllers are given in eq.(5.113) and (5.114), respectively.

{P1C1}1
x =

x1 Ki1

y1 Kd1 s2 + x1 Kp1 s+ s3

{P1C1}2
x =

x1 Ki1

y1 Kd1 s2 + y1 Kp1 s+ s3

{P1C1}3
x =

y1 Ki1

x1 Kd1 s2 + x1 Kp1 s+ s3

{P1C1}3
x =

y1 Ki1

x1 Kd1 s2 + y1 Kp1 s+ s3

(5.113)
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Figure 5.15: SBL of four Kharitonov polynomials for angle control

{P2C2}1
θ =

x2 Ki2

s3 + y2 Kd2 s2 +
(
Kp2 x2− y3

)
s

{P2C2}2
θ =

x2 Ki2

s3 + y2 Kd2 s2 +
(
y2 Kp2− x3

)
s

{P2C2}2
θ =

y2 Ki2

s3 + x2 Kd2 s2 +
(
Kp2 x2− y3

)
s

{P2C2}2
θ =

y2 Ki2

s3 + x2 Kd2 s2 +
(
y2 Kp2− x3

)
s

(5.114)

Using above eq.(5.113) and (5.114), sixteen possible combinations of Kharitonov polynomials are

written as
1−{P1C1}1

x +{P2C2}1
θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
(
Kd1 Kd2 x2 y1 +Kp1 x1 + y2 Kp2− x3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

x1 +
(
Kd1 Kp2 y1 +Ki2

)
y2−Kd1 x3 y1

)
s2

+
((
−Kd2 Ki1 x2 +Kp1 Kp2 y2−Kp1 x3

)
x1 +Kd1 Ki2 y1 y2

)
s

+ x1

((
−Ki1 Kp2 +Ki2 Kp1

)
y2 + x3 Ki1

)
= 0

(5.115)
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1−{P1C1}1
x +{P2C2}2

θ = 0;

s5 +(Kd1 y1 +Kd2 y2)s4 +
(

Kp1 x1 +
(
Kd1 Kd2 y1 +Kp2

)
y2− x3

)
s3

+
((

Kd2 Kp1 y2−Ki1
)

x1 +Kd1 Kp2 y1 y2−Kd1 x3 y1 + x2 Ki2

)
s2

+

(((
−Kd2 Ki1 +Kp1 Kp2

)
y2−Kp1 x3

)
x1 +Ki2 x2 y1 Kd1

)
s

+ x1
(
−Ki1 Kp2 y2 +Ki2 Kp1 x2 + x3 Ki1

)
= 0

(5.116)

1−{P1C1}1
x +{P2C2}3

θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
(

Kp1 x1 +
(
Kd1 Kd2 y1 +Kp2

)
x2− y3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

x1 +Kp2 x2 y1 Kd1− y1 y3 Kd1 + y2 Ki2

)
s2

+

(((
−Kd2 Ki1 +Kp1 Kp2

)
x2−Kp1 y3

)
x1 +Kd1 Ki2 y1 y2

)
s

+ x1
(
−Ki1 Kp2 x2 +Ki2 Kp1 y2 +Ki1 y3

)
= 0

(5.117)

Similarly, the other combinations of Kharitonov polynomials can be obtained as,

1−{P1C1}1
x +{P2C2}4

θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
(
Kd1 Kd2 x2 y1 +Kp1 x1 + y2 Kp2− x3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

x1 +
(
Kd1 Kp2 y1 +Ki2

)
y2−Kd1 x3 y1

)
s2

+
((
−Kd2 Ki1 x2 +Kp1 Kp2 y2−Kp1 x3

)
x1 +Kd1 Ki2 y1 y2

)
s

+ x1

((
−Ki1 Kp2 +Ki2 Kp1

)
y2 + x3 Ki1

)
= 0

(5.118)

1−{P1C1}2
x +{P2C2}1

θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

y1 + y2 Kp2− x3

)
s3

+
((

Kd1 Kp2 y2 +Kd2 Kp1 x2−Kd1 x3
)

y1 + y2 Ki2− x1 Ki1

)
s2

+

(((
Kd1 Ki2 +Kp1 Kp2

)
y2−Kp1 x3

)
y1−Kd2 Ki1 x1 x2

)
s

+Ki2 Kp1 y1 y2− x1 Ki1
(
y2 Kp2− x3

)
= 0

(5.119)
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1−{P1C1}2
x +{P2C2}2

θ = 0;

s5 +(Kd1 y1 +Kd2 y2)s4 +
((

Kd1 Kd2 y2 +Kp1
)

y1 + y2 Kp2− x3

)
s3

+

(((
Kd1 Kp2 +Kd2 Kp1

)
y2−Kd1 x3

)
y1 + x2 Ki2− x1 Ki1

)
s2

+
((

Kd1 Ki2 x2 +Kp1 Kp2 y2−Kp1 x3
)

y1− x1 y2 Kd2 Ki1

)
s

+Ki2 Kp1 x2 y1− x1 Ki1
(
y2 Kp2− x3

)
= 0

(5.120)

1−{P1C1}2
x +{P2C2}3

θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

y1 +Kp2 x2− y3

)
s3

+

(((
Kd1 Kp2 +Kd2 Kp1

)
x2− y3 Kd1

)
y1 + y2 Ki2− x1 Ki1

)
s2

+
((

Kd1 Ki2 y2 +Kp1 Kp2 x2−Kp1 y3
)

y1−Kd2 Ki1 x1 x2

)
s

+Ki2 Kp1 y1 y2− x1 Ki1
(
Kp2 x2− y3

)
= 0

(5.121)

1−{P1C1}2
x +{P2C2}4

θ = 0;

s5 +(Kd1 y1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

y1 + y2 Kp2− x3

)
s3

+
((

Kd1 Kp2 y2 +Kd2 Kp1 x2−Kd1 x3
)

y1 + y2 Ki2− x1 Ki1

)
s2

+

(((
Kd1 Ki2 +Kp1 Kp2

)
y2−Kp1 x3

)
y1−Kd2 Ki1 x1 x2

)
s

+Ki2 Kp1 y1 y2− x1 Ki1
(
y2 Kp2− x3

)
= 0

(5.122)

1−{P1C1}3
x +{P2C2}1

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

x1 + y2 Kp2− x3

)
s3

+
((

Kd1 Kp2 y2 +Kd2 Kp1 x2−Kd1 x3
)

x1 + y2 Ki2− y1 Ki1

)
s2

+

(((
Kd1 Ki2 +Kp1 Kp2

)
y2−Kp1 x3

)
x1− x2 y1 Kd2 Ki1

)
s

+Ki2 Kp1 x1 y2− y1 Ki1
(
y2 Kp2− x3

)
= 0

(5.123)
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1−{P1C1}3
x +{P2C2}2

θ = 0;

s5 +(Kd1 x1 +Kd2 y2)s4 +
((

Kd1 Kd2 y2 +Kp1
)

x1 + y2 Kp2− x3

)
s3

+

(((
Kd1 Kp2 +Kd2 Kp1

)
y2−Kd1 x3

)
x1 + x2 Ki2− y1 Ki1

)
s2

+
((

Kd1 Ki2 x2 +Kp1 Kp2 y2−Kp1 x3
)

x1− y1 y2 Kd2 Ki1

)
s

+Ki2 Kp1 x1 x2− y1 Ki1
(
y2 Kp2− x3

)
= 0

(5.124)

1−{P1C1}3
x +{P2C2}3

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

x1 +Kp2 x2− y3

)
s3

+

(((
Kd1 Kp2 +Kd2 Kp1

)
x2− y3 Kd1

)
x1 + y2 Ki2− y1 Ki1

)
s2

+
((

Kd1 Ki2 y2 +Kp1 Kp2 x2−Kp1 y3
)

x1− x2 y1 Kd2 Ki1

)
s

+Ki2 Kp1 x1 y2− y1 Ki1
(
Kp2 x2− y3

)
= 0

(5.125)

1−{P1C1}3
x +{P2C2}4

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
((

Kd1 Kd2 x2 +Kp1
)

x1 + y2 Kp2− x3

)
s3

+
((

Kd1 Kp2 y2 +Kd2 Kp1 x2−Kd1 x3
)

x1 + y2 Ki2− y1 Ki1

)
s2

+

(((
Kd1 Ki2 +Kp1 Kp2

)
y2−Kp1 x3

)
x1− x2 y1 Kd2 Ki1

)
s

+Ki2 Kp1 x1 y2− y1 Ki1
(
y2 Kp2− x3

)
= 0

(5.126)

1−{P1C1}4
x +{P2C2}1

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
(
Kd1 Kd2 x1 x2 +Kp1 y1 + y2 Kp2− x3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

y1 +
(
Kd1 Kp2 x1 +Ki2

)
y2− x1 x3 Kd1

)
s2

+
((
−Kd2 Ki1 x2 +Kp1 Kp2 y2−Kp1 x3

)
y1 +Ki2 x1 y2 Kd1

)
s

+ y1

((
−Ki1 Kp2 +Ki2 Kp1

)
y2 + x3 Ki1

)
= 0

(5.127)
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1−{P1C1}4
x +{P2C2}2

θ = 0;

s5 +(Kd1 x1 +Kd2 y2)s4 +
(

Kp1 y1 +
(
Kd1 Kd2 x1 +Kp2

)
y2− x3

)
s3

+
((

Kd2 Kp1 y2−Ki1
)

y1 +Kp2 x1 y2 Kd1− x1 x3 Kd1 + x2 Ki2

)
s2

+

(((
−Kd2 Ki1 +Kp1 Kp2

)
y2−Kp1 x3

)
y1 +Ki2 x1 x2 Kd1

)
s

+ y1
(
−Ki1 Kp2 y2 +Ki2 Kp1 x2 + x3 Ki1

)
= 0

(5.128)

1−{P1C1}4
x +{P2C2}3

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
(

Kp1 y1 +
(
Kd1 Kd2 x1 +Kp2

)
x2− y3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

y1 +Kp2 x1 x2 Kd1− x1 y3 Kd1 + y2 Ki2

)
s2

+

(((
−Kd2 Ki1 +Kp1 Kp2

)
x2−Kp1 y3

)
y1 +Ki2 x1 y2 Kd1

)
s

+ y1
(
−Ki1 Kp2 x2 +Ki2 Kp1 y2 +Ki1 y3

)
= 0

(5.129)

1−{P1C1}4
x +{P2C2}4

θ = 0;

s5 +(Kd1 x1 + x2 Kd2)s4 +
(
Kd1 Kd2 x1 x2 +Kp1 y1 + y2 Kp2− x3

)
s3

+
((

Kd2 Kp1 x2−Ki1
)

y1 +
(
Kd1 Kp2 x1 +Ki2

)
y2− x1 x3 Kd1

)
s2

+
((
−Kd2 Ki1 x2 +Kp1 Kp2 y2−Kp1 x3

)
y1 +Ki2 x1 y2 Kd1

)
s

+ y1

((
−Ki1 Kp2 +Ki2 Kp1

)
y2 + x3 Ki1

)
= 0

(5.130)

After substituting the values of perturbations from (5.112) and parameters of PID1 and PID2 in

(5.115) to (5.130), the roots of these closed loop characteristics equation are obtained. They are

shown in appendix Table 5.6. It is found that for all sixteen combinations, roots are lying on the

left half of the s-plane. Hence, system is stable. Further, the results of proposed PID scheme are

verified using simulation and also on real time hardware setup. For ±20% parametric variations

in system model as shown in Table 5.5, performance of the controllers is discussed in the next

section.
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Table 5.6: Roots of sixteen Kharitonov polynomials

From
eq. Closed loop characteristic equation Roots Remark

(5.115) s5 +92.54s4 +2078s3 +5823s2 +4451s+325.9 = 0 -58.9260,-30.4950,-1.8081,-1.2278,-0.0817 Stable

(5.116) s5 +92.54s4 +2266s3 +1.178×104s2 +1.127×104s+131.1 = 0 -55.4134,-30.4950,-5.3984,-1.2199,-0.0118 Stable

(5.117) s5 +56.16s4 +925.5s3 +4521s2 +5065s+985.8 = 0 -30.4950,-18.3714,-5.8162,-1.2301,-0.2459 Stable

(5.118) s5 +56.16s4 +1113s3 +1.047×104s2 +1.188×104s+790.9 = 0
-30.4950, -12.1856 +12.2748i,
-12.1856 -12.2748i,-1.2214 ,-0.0710 Stable

(5.119) s5 +92.54s4 +2086s3 +6314s2 +5368s+424.6 = 0 -58.9260,-30.2173,-1.8042,-1.5032,-0.0879 Stable

(5.120) s5 +92.54s4 +2274s3 +1.227×104s2 +1.37×104s+229.7 = 0 -55.4134,-30.2173,-5.3984,-1.4924,-0.0170 Stable

(5.121) s5 +56.16s4 +933.5s3 +4719s2 +5982s+1231 = 0 -30.2173,-18.3714,-5.8161,-1.4996,-0.2543 Stable

(5.122) s5 +56.16s4 +1121s3 +1.067×104s2 +1.431×104s+1036 = 0
-30.2173, -12.1856 +12.2748i,
-12.1856 -12.2748i,-1.4934,-0.0768 Stable

(5.123) s5 +86.78s4 +1728s3 +5167s2 +4367×104s+299.7 = 0 -58.9260,-24.4381,-1.7983,-1.5399,-0.0752 Stable

(5.124) s5 +86.78s4 +1916s3 +1.004×104s2 +1.118×104s+61.58 = 0 -55.4134,-24.4381,-5.3984,-1.5220,-0.0055 Stable

(5.125) s5 +50.4s4 +784.4s3 +3866s2 +4884s+959.6 = 0 -24.4381,-18.3714,-5.8157,-1.5326,-0.2398 Stable

(5.126) s5 +50.4s4 +972.4s3 +8737s2 +1.17×104s+721.4 = 0
-24.4381, -12.1856 +12.2748i,
-12.1856 -12.2748i,-1.5235,-0.0648 Stable

(5.127) s5 +86.78s4 +1736s3 +5658s2 +5283s+398.4 = 0
-58.9260, -24.0813,-1.8439 + 0.0538i,
-1.8439 - 0.0538i,-0.0825 Stable

(5.128) s5 +86.78s4 +1924s3 +1.053×104s2 +1.361×104s+160.2 = 0 -55.4134,-24.0813,-5.3984,-1.8725,-0.0119 Stable

(5.129) s5 +50.4s4 +792.5s3 +4063s2 +5801s+1205 = 0 -24.0813,-18.3715,-5.8156,-1.8802,-0.2491 Stable

(5.130) s5 +50.4s4 +980.4s3 +8934s2 +1.413×104s+966.7 = 0
-24.0813, -12.1856 +12.2748i, -12.1856,
-12.2748i,-1.8735,-0.0716 Stable
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Figure 5.16: Response of CIPS without disturbance

5.5.1.5 Simulation results and discussion

For the verification of proposed PID scheme for interval CIP system, two cases have been consid-

ered for simulation. One is for linear interval model and other is for non-linear interval model.

(a) Linear interval model:

In order to verify the performance of controllers for uncertainties as mentioned in Table 5.5, the

linear interval model is considered. The linear model equations are shown in (5.66) and (5.70).

In this, three conditions are examined. One is nominal value, other conditions are minimum

(Min δ ) and maximum(Max δ ), values respectively. The proposed results are compared with the

results based on LQR PID approach as presented in [1]. In this, initial condition is considered as

θ = 0.1 rad. The results are shown in Fig. 5.16. Fig. 5.16(a) shows cart position response, which

shows minimal overshoot for all three conditions. Fig. 5.16(b) shows pendulum angle at θ = 0

rad without oscillations in all three conditions. Fig. 5.16(c) shows control efforts (u) required
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Table 5.7: Performance indices using LQR PID [1] for linear model

Perfor.
indices

Nominal values Min δ Max δ

x θ x θ x θ

ISE 0.04705 0.005891 0.06808 0.008462 0.03929 0.005056
IAE 0.2672 0.09242 0.3115 0.1054 0.2497 0.08714
ITSE 0.02744 0.003191 0.03618 0004521 0.02406 0.002738
ITAE 0.2268 0.07666 0.2517 0.08034 0.2231 0.07492

Table 5.8: Performance indices using proposed PID for linear model

Perfor.
indices

Nominal values Min δ Max δ

x θ x θ x θ

ISE 0.03406 0.00159 0.04 0.002091 0.03195 0.001547
IAE 0.2773 0.04674 0.2842 0.04986 0.2736 0.04737
ITSE 0.02186 0.0005518 0.02238 0.0006813 0.02177 0.0005547
ITAE 0.436 0.05606 0.4297 0.05585 0.4385 0.05742

to stabilize the pendulum vertically, which are less as compared to LQR PID [1] control efforts.

Further, results are compared for commonly used integral performance indices such as integral

square error (ISE), integral absolute error (IAE), integral time square error (ITSE) and integral

time absolute error (ITAE). Here, for all there conditions, LQR PID performance indices are listed

in Table 5.7 and for proposed PID are listed in Table 5.8. The proposed approach also shows

minimum values in all three conditions in comparison to LQR PID [1].

Robustness analysis using input gain and time delay:

Further, robustness analysis is carried out for +20% perturbation for two cases. One is by intro-

ducing gain and other is by adding time delay at plant input (u). For first case, effects on CIP

when plant input gain decreases and increases are observed, which is shown in Fig. 5.16 and 5.17,

respectively. From these figures, it is shown that, proposed controller design has less overshoot in

comparison to LQR PID design [1]. For second case, time delay is introduced at plant input and

their effects are shown in Fig.5.18, which shows proposed controller design has less overshoot in

comparison to LQR PID design[1].

(b) Non-linear interval model:

Further, the non-linear model using (5.64) and (5.67) is considered for three physically possible

conditions, i.e., nominal, extreme min δ and extreme max δ . The results of proposed PID are
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Figure 5.17: Effects of decreasing input gain at +20% perturbed CIP linear model

shown in Fig. 5.19 and it is also compared with LQR PID designed as given in [1] for the ini-

tial condition of θ = 0.1 rad pendulum angle. Fig.5.19(a) shows cart position response with less

overshoot for all three conditions. Fig. 5.19(b) shows pendulum angle at θ = 0 rad exhibits nil

oscillations in all three conditions. Fig. 5.19(c) gives amount of control effort required to stabilize

the pendulum vertically, which is less as compared to LQR PID control voltage. Further, integral

performance indices such as ISE, IAE, ITSE and ITAE are calculated. For all three conditions,

performance indices of LQR PID and proposed PID are listed in Table 5.9 and Table 5.10, re-

spectively. It also shows that the proposed PID design has minimum error values, in all three

conditions compared to LQR PID design [1].
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Figure 5.18: Effect of time delay input at +20% perturbed CIP linear model

Table 5.9: Performance indices using LQR PID [1] for non-linear model

Perfor.
indices

Nominal values Min δ Max δ

x θ x θ x θ

ISE 0.06048 0.009675 0.09656 0.01505 0.04965 0.008391
IAE 0.3007 0.1104 0.3614 0.1323 0.2771 0.1049
ITSE 0.03526 0.005107 0.05471 0.008522 0.02974 0.004344
ITAE 0.2546 0.08271 0.2866 0.09479 0.2435 0.08103

Table 5.10: Performance indices using proposed PID for non-linear model

Perfor.
indices

Nominal values Min δ Max δ

x θ x θ x θ

ISE 0.03908 0.003051 0.04971 0.004829 0.03635 0.00288
IAE 0.2749 0.06315 0.2901 0.08476 0.2713 0.06075
ITSE 0.0233 0.001081 0.02752 0.002406 0.02282 0.001113
ITAE 0.4262 0.06408 0.4431 0.08385 0.4252 0.0623
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Figure 5.19: Response of non-linear model using LQR PID and Proposed PID

Figure 5.20: Hardware setup with +20% perturbed parameters of CIP system
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Table 5.11: Performance indices analysis for proposed PID on hardware setup

Performance
indices

Nominal values Max δ

x θ x θ

ISE 0.4408 20.19 0.2309 24.07
IAE 3.24 7.683 2.31 8.769
ITSE 9.479 21.36 4.701 29.9
ITAE 70.08 18.25 49.29 18.8

5.5.1.6 Real time hardware results

The proposed method is also validated on a real time hardware setup of digital cart inverted pen-

dulum system [152], in which two physical conditions are possible, one is nominal and other is ex-

treme+δ parameters. The hardware setup is shown in Fig. 5.20. Practically, the cart mass(+δM),

pendulummass (+δm) and pendulum length (+δL) are externally addedAND is shown in Fig. 5.20.

The hardware results are obtained by following procedure. In the beginning, pendulum is man-

ually lifted from stable position (θ = π) to its stabilization zone at θ = ±0.2 rad, from where

proposed controller take over to stabilize the pendulum at unstable position (θ = 0). Now two

possible conditions can be checked. They are as given below.

In the first condition, performance of pendulum angle (θ ), cart position (x) and control voltage(u)

have been verified without adding uncertainties. The results are shown in Fig. 5.21. It can be

seen that the proposed controller stabilizes pendulum vertically at θ = 0 angle with the minimum

control energy. However, small oscillations are observed in cart position.

For second condition, on adding physical uncertainties, +δM, +δm and +δL, the proposed PID

controller stabilizes the perturbed CIP plant. The results are shown in Fig. 5.21. Further, the

integral performance indices for both conditions are tabulated in Table 5.11. Hence, proposed

controller is robust and stabilizes interval CIP system in both conditions.

5.5.2 Adaptive policy for CIPS

This section describes the working and implementation of the proposed adaptive control logic for

CIPS and derives the mathematical update rules for this system.
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Figure 5.21: Response of proposed PID for nominal and perturbed parameters of CIP system

5.5.2.1 Dynamics of CIPS

CIPS is highly non-linear, unstable, under-actuated and non-minimum phase system [171, 172].

This system exhibits two types of motions-linear and rotational [1, 152]. The linear motion of

the cart is in the horizontal direction, while the rotational one is of the pendulum about its hinge.

Fig. 5.1 shows the model of CIPS. Parameters of CIPS are shown in Table 5.1. The linearised

models are given in (5.8) and (5.10).

Finally, the position control x(s)
F(s) angle control (θ(s)/F(s)) transfer function, has obtained in (5.9)

and (5.11), respectively.

5.5.2.2 Design of candidate controllers

The following section describes the design of different candidate controllers, as explained below.
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(a) LQR based PID controller [1]:

The first candidate controller is chosen from [1] which is a PID controller. It has been designed us-

ing Linear Quadratic Regulator (LQR) and pole placement technique, where the dominant closed-

loop poles are obtained from an LQR design. The tuned parameter values of position control

PID (C1
1), are K1

p1 = 43.3, K1
i1 = 33.796, K1

d1 = 2.254. Similarly, for the angle control PID (C1
2),

the tuned controller parameters are K1
p2 = 120.9, K1

i2 = 247.43, K1
d2 = 10.

(b) SBL based PID controller [2, 57]:

The second candidate controller is determined using Stability Boundary Locus approach [57].

Using this approach, two PID controllers are designed. One is for position control (C2
1) and the

other for angle control (C2
2). The method is briefly explained below.

1) Position control: The closed-loop characteristic equation is written as

1+P1(s)C2
1(s) = 0 (5.131)

Using C2
1(s) = K2

p1 +
K2

i1
s +K2

d1s, (5.131) can be written as

1+
(

b1

s2

)(
K2

p1 +
K2

i1
s

+K2
d1.s

)
= 0 (5.132)

Simplification of (5.132) gives,

s3 +b1K2
d1s2 +b1K2

p1.s+b1K2
i1 = 0 (5.133)

For C2
1 , substituting s = jw in (5.132) gives,

b1K2
i1 +b1K2

p1( jω)+b1K2
d1(−ω

2)+ jω(−ω
2) = 0 (5.134)

Equating real and imaginary parts of (5.134) to zero, the following equations are obtained:

b1K2
i1 = b1K2

d1(ω
2) (5.135)
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(a) (b)

Figure 5.22: Stability boundary locus for CIP system (a) Cart position control (b) Angle control

and

b1K2
p1( jω) = jω(ω2) (5.136)

For any arbitrarily chosen value of K2
d1, (5.135) and (5.136) can be expressed as,

K2
i1 = K2

d1ω
2 (5.137)

and as physical mass of CIPS (Mc +m) 6= 0, b1 6= 0

K2
p1 =

ω2

b1
(5.138)

Taking the values of K2
d1 = 5 and K2

d1 = 4, and by varying ω in [0,5], SBL plot between K2
p1 and

K2
i1 is obtained in Fig. 5.22(a).

2) Angle control: The closed-loop characteristic equation can be written as

1+P2(s)C2
2(s) = 0 (5.139)

Using (5.11) and C2
2 (s) = K2

p2 +
K2

i2
s +K2

d2s, (5.139) can be written as

1+
(

b2

s2−a3

)(
K2

p2 +
K2

i2
s

+K2
d2s

)
= 0 (5.140)
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Further simplification of (5.140) gives,

s3 +b2K2
d2s2 +

(
b2K2

p2−a3

)
s+b2K2

i2 = 0 (5.141)

For C2
2 , substituting s = jw in (5.141) gives,

b2K2
i2 +

(
b2K2

p2−a3

)
( jω)+b2K2

d2(−ω
2)+ jω(−ω

2) = 0 (5.142)

Equating real and imaginary parts of (5.142) to zero, equations obtained are:

b2K2
i2 = b2K2

d2(ω
2) (5.143)

and (
b2K2

p2−a3

)
( jω) = jω(ω2) (5.144)

For any arbitrarily chosen value of K2
d2, (5.143) and (5.144) can be expressed as,

K2
i2 = K2

d2ω
2 (5.145)

and since b2 6= 0, thus

K2
p2 =

ω2 +a3

b2
(5.146)

Using K2
d2 = 10 and K2

d2 = 1.8, and by varying ω in [0,1], SBL plot between K2
p2 and K2

i2 is ob-

tained in Fig. 5.22(b). Figures 5.22(a) and 5.22(b) consist of two regions separated by the stability

boundary locus. Stability of the cart and angle control in these regions can be checked by arbitrar-

ily selecting any value from the two regions. Here, it is found that the values K2
d1 and K2

d2 from the

region give stable response. Thus, by selecting any arbitrarily values from the stable regions of the

plots Figure 5.22(a) and 5.22(b), PID parameters for C2
1 and C2

2 can be obtained. Two values, one

from Fig. 5.22(a) and the other from Fig. 5.22(b), are selected arbitrarily from the large stability

regions of the respective plots, as shown with marker ‘+’in Fig.5.22(a) and Fig.5.22(b). For these

values, PID parameters are obtained[2] for C2
1 as K2

p1 = 6.9964, K2
i1 = 0.2 and K2

d1 = 5; and for

C2
2 , K2

p2 = 50.3294, K2
i2 = 5 and K2

d2 = 10.
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Figure 5.23: Block diagram of proposed adaptive control technique for CIPS

5.5.2.3 Implementation of Adaptive policy

Fig. 5.23 shows the block diagram of the proposed adaptive control logic technique for CIPS. In

this figure, the output y(t) involves cart position (x(t)) and pendulum angle (θ(t)).The states are

identified as x(t), θ(t), v(t), ω(t), and w(t+1)where, v(t) is cart velocity, ω(t) is angular velocity

of pendulum and w(t + 1) implies future time value of the weight. In the following section, we

derive the update rules for CIPS.

Equations of motion:

By summing up all the forces acting on the CIPS in the horizontal direction, the equation of

rectilinear motion can be written as:

(Mc +m)
d2x
dt2 +b

dx
dt

+ml cosθ
d2θ

dt2 −ml
d2θ

dt2 sinθ = F(t) (5.147)

The equation for curvilinear motion is obtained by considering forces perpendicular to the pen-

dulum axis and can be written as:

(J+ml2)
d2θ

dt2 +mgl sinθ =−ml cosθ
d2x
dt2 (5.148)

Further, for performing experimental analysis on hardware setup [152], a conversion factor of DC

motor gain equal to 15 is multiplied [1]. Therefore, after linearisation at equilibrium point θ = 0,
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and b,ζ ≈ 0, (5.147) and (5.148) can be expressed as:

(Mc +m)
d2x
dt2 +ml

d2θ

dt2 = un(t) (5.149)

(J+ml2)
d2θ

dt2 −mglθ =−ml
d2x
dt2 (5.150)

From Fig. 5.23, plant input can be written as

i(t) = u1(t)w1(t)+u2(t)w2(t) (5.151)

Using (5.149), (5.150), (5.151) and substituting system parameter values from Table 5.1, update

rules for weights w1(t) and w2(t) are derived in the following section.

Formulation of update rules using online gradient descent algorithm:

Let us first define the objective function, which needs to be optimized. To control CIPS, we need

to minimize errors (e(t)) in the pendulum angle (θ) and the cart position (x). Therefore, the

objective function to control CIPS can be written as:

e(t) =
∫

∞

0
(θ 2(t)+ x2(t))dt (5.152)

where, θ(t) is the pendulum angle, measured from the reference angle (θr = 0) at time ‘t’and x(t)

is the cart position, measured from the reference cart position (xr = 0) at time ‘t’. The weight

update rules for the CIPS can be written as:

w1(t +1)←
[

w1(t)−α
∂e(t)

∂w1(t)

]
(5.153)

w2(t +1)←
[

w2(t)−α
∂e(t)

∂w2(t)

]
(5.154)

Using (5.152) and the chain rule of derivative, ∂e(t)
∂w1(t)

and ∂e(t)
∂w2(t)

can be expressed as,

∂e(t)
∂w1(t)

=
∂e(t)
∂θ(t)

∂θ(t)
∂ i(t)

∂ i(t)
∂w1(t)

+
∂e(t)
∂x(t)

∂x(t)
∂ i(t)

∂ i(t)
∂w1(t)

(5.155)

∂e(t)
∂w2(t)

=
∂e(t)
∂θ(t)

∂θ(t)
∂ i(t)

∂ i(t)
∂w2(t)

+
∂e(t)
∂x(t)

∂x(t)
∂ i(t)

∂ i(t)
∂w2(t)

(5.156)
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From (5.149) and (5.150),we get two transfer functions, one is control voltage u j(t) to angle θ(t),

which is written as,

u j(t) = (Mc +m)gθ(t)−
(

σ

ml

)
d2θ(t)

dt2 ( j = 1,2) (5.157)

du j(t)
dθ(t)

= (Mc +m)g−
(

σ

ml

)
d3θ(t)

dt3 /
dθ(t)

dt
(5.158)

and other is angle θ(t) to position x(t). Using chain rule du(t)
dx(t) =

du(t)
dθ(t)

dθ(t)
dx(t) , so, (5.150) becomes,

dθ(t)
dx(t)

=

[
(J+ml2)d3θ(t)

dt3 +ml d3x(t)
dt3

]
(mgl dx(t)

dt )
(5.159)

So, at every time instant ‘t’, using (5.151), (5.152), (5.158) and (5.159) the weights w1(t) and

w2(t) are updated. Therefore, (5.153) and (5.154) can be written as,

w1(t +1)←

w1(t)−αu1(t)

2θ(t)
du1(t)
dθ(t)

+
2x(t)

du1(t)
dθ(t)

dθ(t)
dx(t)


 (5.160)

w2(t +1)←

w2(t)−αu2(t)

2θ(t)
du2(t)
dθ(t)

+
2x(t)

du2(t)
dθ(t)

dθ(t)
dx(t)


 (5.161)

where, α is the learning rate.

To summarize, the following steps are to be followed for implementing the proposed logic are

given below,

• Initialize w1, w2 and α to one and obtain inputs u1(t) and u2(t) from Fig. 5.23.

• Using (5.152), define the performance indices to be minimized.

• Calculate ∂e(t)
∂w1(t)

, and ∂e(t)
∂w2(t)

using (5.155) and (5.156) respectively.

• Use the calculated values of ∂e(t)
∂w1(t)

, and ∂e(t)
∂w2(t)

to update the weights w1(t+1), and w2(t+1)

for next iteration, as per (5.160) and (5.161) respectively.
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5.5.2.4 Simulation results and analysis

The analysis of CIPS (for parameter values, refer to Table 5.1) with the proposed control logic

and the individual controllers is carried out using simulation in the MATLAB c© and Simulink

environment. Based on this analysis, the comparative conclusions are also drawn. The results are

obtained for α = 1 and initial angle 0.1 rad which are discussed below.

Case 1: In absence of disturbance

The trajectories of the cart’s position (x), pendulum angle (θ ) and control signal (u) are obtained

in Fig. 5.24. Referring to this figure on cart position, it can be seen that with LQR-PID[1], the rise

time and settling time are less, but at the cost of increased deviation with respect to the steady-

state value. On the other hand, the response begins with a slower start, with reduced deviation

from the steady-state value, but takes a longer time to settle, when controlled with SBL-PID[2].

Hence, comparing the responses with two individual controllers, in terms of rise time and settling

time, LQR-PID[1] performs better, while SBL-PID[2] rules over LQR-PID[1] when it comes to

the peak deviations from the steady-state value. Similar result can be observed from the response

of the pendulum’s angle. Now, coming to the system’s response with the proposed logic, starting

with the cart’s position with time, the curve almost matches that with the one with LQR-PID[1].

Next, in terms of the peak deviations from the steady-state value, if the figure is observed closely,

it can be seen that the magnitudes of the deviations are smaller than that with LQR-PID[1], and

comparable with that achieved using SBL-PID[2]. Progressing further ahead in time, the response

with proposed logic settles almost as quick as the response with LQR-PID[1]. Thus, summarizing

the description on the traversal of the curve, the proposed logic assigns more weight to w1, then

to w2, and lastly to w1 again, in order to resemble the behaviour of the system with LQR-PID[1]

at first, following by SBL-PID[2] and LQR-PID[1] till the response settles.

Same conclusion can be drawn from the trajectory of the pendulum’s angle. The more interesting

point can be seen from the profile of the control signal, where the peak control voltage lies within

that using LQR-PID[1], thus implying that the performance is improved but not at the cost of

excess control energy. The weight update profile for this operating condition is shown in Fig. 5.25.
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Case 2: In presence of disturbance

The disturbance profile used is a white Gaussian noise with power intensity 0.01, seed value 23341

at sample time 0.001 sec. is used to mimic the external disturbances in real-time. Fig. 5.27 shows

the disturbance profile, which is applied to plant input.

In previous case, the performance analysis is done with the nominal system model. Now a fabri-

cated disturbance (the profile is shown in Fig. 5.27(a)) is introduced in the input channel for the

entire period of the simulation. The performance of the system under this condition is analysed

via Fig. 5.26, with respect to the three different control strategies. The responses of x and θ in this

figure resemble to that of Fig. 5.24, if the small bumps caused by the input channel disturbance are

omitted. Referring to the weight assignment profile under this condition, the close resemblance

to the update of weights when analysed using the nominal model (given in Fig. 5.25) proves that

the proposed adaptive logic assigns more value to w1, then w2, and lastly to w1 again, till the

settling point is reached. The reason behind this kind of operation of the proposed logic is ex-

plained as follows, with reference to Fig. 5.27(b). As the process begins, with LQR-PID[1], rise

time is comparatively lesser than with SBL-PID[2], so LQR-PID[1] appears to be the best out of

the two, during this span of time. As time progresses, LQR-PID[1] causes larger cart position

deviations about x = 0, in comparison with that caused by SBL-PID[2]. Hence adaptive logic

allots more weight to w2 to prioritize SBLPID over LQRPID[1], therefore it shows minimum os-

cillation across cart. After t = 2 seconds, x, when controlled by LQR-PID[1] alone, settles down

quicker than when controlled by SBL-PID[2] only. Therefore, proposed adaptive logic assigns

more weight to LQR-PID[1] to obtain desired performance.

Case 3: Change in input gain:

In this case, the plant input is amplified and attenuated with time (as shown in Fig. 5.28 to 5.30),

to analyse the system performance under faulty operation of the actuator, thus supplying the plant

with tampered actuated signal. Assuming this situation, the stabilization of the same CIPS is

achieved using the three control strategies. The plots of x and θ , when controlled by the respective

control strategies, are shown in Fig. 5.29. Studying this figure, it can be observed that, if the

actuator signal is attenuated by a factor of 0.4, then the system stability fails, under the influence

of LQR-PID[1] alone, but not, when it is SBL-PID[2]. So the best of the two for this situation

is SBL-PID[2], and more value should be assigned to w2 so that the proposed logic behaves like
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this controller. This can be confirmed from the same figure, where it is evident that the system is

stabilized using the proposed logic. This also proves the efficacy of the proposed control law, that

the overall controller output can be maintained stable, despite having some candidate controllers

unstable under certain circumstances. Furthermore, the system is also tested with increment in

input gain 2. Referring to Fig. 5.30, it can be concluded that, although the increasing input gain

hinders the appropriate working of the adaptive weight assignment process, however, the gain

sensitivity is improved compared to both the candidate controllers, at different instants of time.

Case 4: Introduction of input time delay

In this case, an intentional time delay of 0.02 second is introduced in the input channel of the plant,

to analyse the performance using the proposed logic in presence of input time delays. The system’s

performance under this operating condition is depicted in Fig. 5.31. By observing this figure, it is
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Table 5.12: Integral performance indices for CIPS using proposed approach

Perf.
Indices

Without disturbance With disturbance Decreasing gain 0.5 Increasing gain 2 Input dealy 0.02

x θ x θ x θ x θ x θ

ISE 0.03209 0.00342 0.04105 0.00404 0.12052 0.01335 0.03265 0.00286 0.05070 0.00687
IAE 0.23286 0.07099 0.34825 0.10043 0.53579 0.15935 0.24850 0.07304 0.27425 0.09334
ITSE 0.01754 0.00149 0.03531 0.00302 0.11879 0.01041 0.02204 0.00172 0.03045 0.00281
ITAE 0.29455 0.07949 0.78425 0.24678 0.85672 0.21373 0.28624 0.08376 0.30002 0.08560
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Figure 5.30: Time domain responses as input gain increases to 2

Table 5.13: Integral performance indices for CIPS using LQR PID[1] controller

Perf.
Indices

Without disturbance With disturbance Decreasing gain 0.5 Increasing gain 2 Input delay 0.02

x θ x θ x θ x θ x θ

ISE 0.06045 0.00967 0.05946 0.00926 0.19118 0.05046 0.04759 0.00605 0.06696 0.01133
IAE 0.30073 0.11033 0.36323 0.13945 0.79867 0.42657 0.27362 0.09457 0.30590 0.11736
ITSE 0.03525 0.00510 0.04064 0.00627 0.23182 0.06887 0.03012 0.00336 0.03593 0.00541
ITAE 0.25481 0.08263 0.68697 0.29755 1.64569 0.92324 0.23900 0.07968 0.25487 0.08487

evident that the curve of x(t) and θ(t) experience slight oscillatory behaviour, inherited from the

SBL-PID’s nature, but makes up to the performance using LQR-PID[1], as time approaches the

settling time.

Moreover, performances of all these three cases are compared using integral performance indices,

such as integral square error (ISE), integral absolute error (IAE), integral time square error (ITSE)
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Figure 5.31: Time domain responses with time delay 0.02 sec

Table 5.14: Integral performance indices for CIPS using SBL PID[2] controller

Perf.
Indices

Without disturbance With disturbance Decreasing gain 0.5 Increasing gain 2 Input dealy 0.02

x θ x θ x θ x θ x θ

ISE 0.03908 0.00305 0.04706 0.00342 0.06936 0.01109 0.03287 0.00154 0.04613 0.00494
IAE 0.27492 0.06315 0.42547 0.11335 0.40018 0.18577 0.27538 0.04583 0.28306 0.08396
ITSE 0.02330 0.00118 0.06212 0.00559 0.05685 0.01166 0.02135 0.00053 0.02716 0.00230
ITAE 0.42619 0.06408 1.26629 0.42233 0.71799 0.35113 0.44557 0.05557 0.42451 0.08183

and integral time absolute error (ITAE), for more clarification. Table 5.12, 5.13, and 5.14 rep-

resent the performance indices of the proposed adaptive logic, LQR PID[1] and SBL PID[2],

respectively.
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5.5.2.5 Real-Time experimental results

A Real-Time experimental hardware setup of CIPS, developed by the Feedback Instruments, is

used to prove and extend the applicability of the proposed adaptive control strategy in real-world

engineering applications. Assuming a unity input gain, Fig. 5.32 shows the experimental setup

of CIPS. The proposed adaptive logic and both candidate controllers are implemented using

MATLAB c© and Simulink, which is interfaced with the control unit of the hardware setup. Ini-

tially, pendulum is lifted up to the stabilization zone, i.e., θ = 0.2 rad, and then the control action

starts which stabilizes it in a vertical direction by sending the appropriate control signal. Two

situations-without and with external disturbances-are considered in the following two cases:

Case 1: Without external disturbances:

In Fig. 5.33, it is shown that the proposed adaptive logic has extracted the best feature of each

candidate controller which stabilized pendulum effectively in comparison to individual candidate

controller LQR PID[1] and SBL PID[2] controller. This is verified by determining performance

indices which are shown in Table 5.15. Thus, from this table, it is concluded that the proposed

controller outperforms the individual candidate controllers. The change in weights w1 and w2

with time is shown in Fig. 5.34.
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Figure 5.34: Variations of w1, w2 with time during the experimental validation
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Table 5.15: Performance indices of experimental CIPS for various controllers

Perf.
Indices

Proposed LQR PID SBL PID

x θ x θ x θ

ISE 0.146114578 14.95432964 0.053774928 14.08492555 0.369564756 15.73201068
IAE 1.857065971 6.271232529 1.083638613 5.720373892 3.017500154 6.192373645
ITSE 2.185765629 12.22071198 0.702349346 10.7293046 7.314059263 13.12570964
ITAE 36.15661772 17.29642657 20.03770789 12.35830865 62.67149012 14.63843352

Case 2: With external disturbances:

Applying manually a small perturbation to the CIPS at t = 20 seconds and again at t = 30 seconds.

The real-time experimentation is carried out in presence of these disturbances.

In Fig. 5.35, it is clear that the sudden effect of disturbances at t = 20 and t = 30 seconds are alle-

viated swiftly by means of the proposed adaptive control logic, thereby proving its effectiveness

in presence of external disturbances. The corresponding variation in weights during the entire

stabilization process is shown in Fig. 5.36.

5.5.3 Modified adaptive policy for CIPS

From (5.149), (5.150), z(t) = [x θ ]T (t). The objective function is chosen to be Jo(t). Following

from (5.153) and (5.155), and also (5.149) and (5.150), the weight update rule for updating each

weight wi(t) of wc(t), for the CIPS is obtained as follows:

wi(t +1) = wi(t)−αui(t)

2θ(t)
dui(t)
dθ(t)

+
2x(t)

dui(t)
dθ(t)

dθ(t)
dx(t)

 (5.162)

where i = 1,2, and ui(t) represent the output signal of each individual state’s controller.

Note: For handling the flat spots, the weights are updated where λ is taken to be 0.9.

5.5.3.1 Stability analysis of modified approach

The system’s stability analysis is carried out by using Corollary I of [161]. Following from this

corollary, for a particular candidate controller Ck(s), the closed-loop characteristic equation is

1+∑
p
i=1Cki(s)Gi(s) = 0. The systems Gi(s)(i = 1,2) are control-to-position and control-to-angle
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transfer functions respectively. Hence, for the system under consideration, the characteristic equa-

tion is represented as follows:

s5 +δ4s4 +δ3s3 +δ2s2 +δ1s+δ0 = 0 (5.163)

where,
δ4 = (−Kd11w1−Kd21w2)b1 +b2 (Kd12w1 +Kd22w2)

δ3 =
(
−Kp11w1−Kp21w2

)
b1 +b2Kp12w1 +Kp22b2w2−a2

δ2 =
(
(Kd11a2−Ki11)w1−w2 (−Kd21a2 +Ki21)

)
b1

+b2 (Ki12w1 +Ki22w2)

δ1 = a2b1
(
Kp11w1 +Kp21w2

)
δ0 = a2b1 (Ki11w1 +Ki21w2)

The Routh array for (5.163) is obtained in equation (5.164).

s5 1 δ3 δ1

s4
δ4 δ2 δ0

s3 δ4δ3−δ2

δ4

δ4δ1−δ0

δ4
0

s2 γ1δ2−δ4γ2

γ1

γ1δ0−0
γ1

0

s1 β1γ2− γ1δ0

β1
0 0

s0 ψδ0

ψ
0 0

(5.164)

where, β1 = γ1δ2−δ4γ2
γ1

; γ1 = δ4δ3−δ2
δ4

; γ2 = δ4δ1−δ0
δ4

, and ψ = β1γ2−γ1δ0
β1

. Using Krishnamurthi’s

approach [161], for stability of the system, ψ must be positive, which is given as,

ψ =
β1γ2− γ1δ0

β1
> 0 (5.165)

Since w1,w2 > 0, further simplifying above, we get

β1γ2− γ1δ0 > 0 (5.166)
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By varying w1 and w2 from 0 to 1, stability condition (5.166) has been verified. It is found that

ψ(w1,w2)> 0. Thus, ∀w1,w2 ∈ [0,1], the system is stable. This is also verified graphically which

is shown in Fig. 5.37. Hence, it shows that the stability condition is satisfied.

5.5.3.2 Simulation results and analysis

The application of the proposed control on CIPS is tested in MATLAB-Simulink c© environment

and on a Real-Time hardware setup. The results obtained are discussed and analyzed as follows:

(i) Without disturbance: In absence of external disturbances, the performance of CIPS, con-

trolled by the proposed logic, shows significant improvement in both transient and steady-state

regions. From Fig. 5.38, it is clear that the modified control action performs better, by providing

early corrections, thus reducing the magnitudes of the deviations. Fig. 5.38(c)shows the control

energy’s variations, which infer that the chattering caused by the control given in [2], is reduced

by using the proposed control logic.

(ii) With disturbance: Adding Gaussian white noise as an external disturbance to the CIPS,

setting aside the small spontaneous crests and troughs caused by the noise, the improvement in

performance is clearly evident from Fig. 5.38. The system converges to the equilibrium point

quicker than when controlled using the existing adaptive control [2].
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Figure 5.38: Response of CIPS without and with disturbance
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Table 5.16: Proposed Adaptive Logic with Median filter

Perf.
Indices

Without dist. With dist. ⇓ gain 0.5 ⇑ gain 2 Input time delay 0.02
x θ x θ x θ x θ x θ

ISE 0.03222 0.00343 0.04979 0.00357 0.05807 0.00613 0.01361 0.00121 0.05049 0.00583
IAE 0.23266 0.07109 0.48149 0.13004 0.31902 0.09732 0.18665 0.05228 0.29319 0.08657
ITSE 0.01787 0.00153 0.08049 0.00781 0.03794 0.00309 0.01294 0.00078 0.03377 0.00262
ITAE 0.27028 0.07455 1.47192 0.49972 0.36925 0.10047 0.32629 0.08940 0.33650 0.08733

Table 5.17: Existing Adaptive control logic [2]

Perf.
Indices

Without noise With noise ⇓ gain 0.5 ⇑ gain 2 Input time dealy 0.02
x θ x θ x θ x θ x θ

ISE 0.04929 0.00504 0.05562 0.00617 0.05859 0.00741 0.03818 0.00303 0.05352 0.00679
IAE 0.31464 0.09667 0.50852 0.17581 0.32349 0.10811 0.29196 0.07708 0.31168 0.09744
ITSE 0.03717 0.00299 0.10004 0.01597 0.04073 0.00420 0.03031 0.00187 0.03511 0.00299
ITAE 0.37206 0.11276 1.72741 0.71863 0.33858 0.10206 0.37036 0.08998 0.38138 0.09929

(iii) Changing input gain: The improvement in performance in terms of the gain sensitivity can

be verified from Figs. 5.39. Both the transient and steady-state responses are smoothened, which

marks the superiority of the modified adaptive logic.

(iv) Effect due to input delay: The plots of each variable’s variation with time, when an input

delay of 0.02 second is introduced, are shown in Figs.5.39. The peaks attained by x(t) and θ(t)

are lesser, when driven by the proposed control law. The more significant improvement can be ob-

served from the improvement in the variations of the control input, as compared to the undesirable

chattering that occurs with adaptive logic of [2].

5.5.3.3 Experimental results

For validation of the effectiveness of introducing the proposed modifications to the existing adap-

tive control logic, the modified control is applied on a Real-Time CIPS, developed by the Feedback

Instruments c© (shown in Fig. 5.40). The stabilization of the pendulum of this setup is carried

out, subject to a mild disturbance given to it externally. The results of the variations in each

state variable are obtained in Fig. 5.41. Referring to this figure, it is ensured that the primary

objective of the problem, that is the stabilization of the CIPS is achieved using the modified

adaptive control. The improvements, as expected from the simulation-based analysis, can be
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Figure 5.39: Response of CIPS without and with input gain 0.04 and input time delay 0.02sec
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Figure 5.40: CIPS real-time hardware setup

seen in the trajectories of x(t) and θ(t), where the former shows reduction in the amplitude of

the oscillatory motion of the cart, while in the latter, though both the curves seem to be super-

imposed, yet the response under the influence of the modified control shows improvement as

compared to that using the existing one. Next, focusing on the control signal’s variations, al-

though inft∈R+

{
uproposed−uexisting

}
(t)> 0, still the fluctuations are limited to the safety bounds

for the system. This implies that the proposed modifications can improve the system’s perfor-

mance at the cost of increased control energy, but the increment is not high enough to cross the

safety limits, rather limited to a level well below the maximum control energy applicable for the

hardware setup.

Analysis using Integral performance indices

The performance analysis of the CIPS is also carried out using the commonly used integral perfor-

mance indices-ISE, IAE, ITSE, and ITAE. In this analysis, the values of these indices are obtained

for both x and θ , working under different operating conditions. Table 5.17 shows the results when

controlled using the proposed control logic, and Table 5.16 contains the values of the indices, when

controlled using the conventional adaptive logic. To show the improvement in performance, the

ISE values for x are compared between these tables, for each operating condition. Taking a closer

look of the values, it can be observed that the ISE values of x in Table 5.16 are approximately
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Figure 5.41: Response of real time setup of CIPS

65%, 89%, 98%, 38%, 94% of the ISE values of x in Table 5.16 , for each respective operating

condition, starting with performance in absence of noise. The best of all these is when the input

gain is increased.

5.5.4 QRAWCP-PID

The stabilisation of pendulum and the control of cart position in a CIPS system is a classical

benchmark problem in the area of control engineering. It is characterized by high non-linearity,

non-minimum phase characteristics [173], instability [9] as well as under-actuation [3]. Hence,

it has been a challenging task for control practitioners to design a controller for this problem

so that the desired performance is achieved and the control strategy used is not too complex to
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comprehend [174, 175]. A comprehensive review of the techniques for the control of an inverted

pendulum is presented in [53].

The CIPS has two types of motions-linear and rotational [1, 152]. The linear motion of the cart is

in the horizontal direction, while the rotational motion of the pendulum is about its hinge. Fig. 5.1

shows the model of CIPS system.

On linearising the model of CIPS about its equilibrium point, for small angular displacement θ ,

we get the equations of motion as follows:

ẍ≈ (J+ml2)F−m2l2gθ

J (Mc +m)+Mcml2 (5.167)

θ̈ ≈ −mlF +(Mc +m)mglθ
J (Mc +m)+Mcml2 (5.168)

On further simplification, we get the transfer functions as P1(s) =
x(s)
F(s) =

b1
s2 and P2(s) =

θ(s)
F(s) =

b2
s2−a2

.The parameters of CIPS are shown in Table 5.1. From appendix A, the values of the transfer

function parameters are b1 = 5.841,b2 = 3.957 and a2 = 6.807. For the purpose of illustration

in this example, the model of the inverted pendulum has been taken from [1]. In [1], effect of the

filter in derivative term has been neglected while designing a LQR-PID controller. But, in this

example, the effect of filter has also been analyzed.

As discussed earlier, the closed-loop characteristic equation of the Cart inverted pendulum system

can be given by, 1−P1C1 +P2C2 = 0, where Cn(s) =
Kdns2+sKpn+Kin

s ,n = 1,2.

Thus, the characteristic equation becomes,

1− b1

s2 (Kp1 +
Ki1
s

+Kd1s)+
b2

s2−a2
(Kp2 +

Ki2
s

+Kd2s) = 0 (5.169)

On further simplification, finally, we get the closed loop characteristic equation as

s5 +(−b1Kd1 +b2Kd2)s
4 +(−a2−b1Kp1 +b2Kp2)s

3+

(−b1Ki1 +a2b1Kd1 +b2Ki2)s
2 +(a2b1K p1)s+a2b1Ki1 = 0

(5.170)
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(1) Proposed approach

Initially, we obtain the state feedback gainmatrix using LQR.We know thatK =R−1BT P. On sub-

stituting the values of the variables, we get, K = [p12 p22]. Thus, the closed loop characteristic

equation of the system can be given by

s4 + p1s3 + p2s2 + p3s+ p4 = 0 (5.171)

Equation (5.170), that represents a PID compensated closed loop system is of fifth order, whereas,

(5.171) has an order of four. Therefore, to effectively compare (5.170) and (5.171), we augment

(5.171) with one extra pole. On augmenting the pole λ5 to (5.171), we obtain,

(s+λ5)(s4 + p1s3 + p2s2 + p3s+ p4) (5.172)

Simplification of (5.172) yields,

s5 +(p1 +λ5)s4 +(p2 +K1λ5)s3 +(p3 + p2λ5)s2 +(p4 + p3λ5)s+ p4λ5 (5.173)

We set Kd1 and Kd2 to desired values, depending on the actuator rate constant. Consequently, the

additional pole can be determined as,

λ5 = Kd1b1 + p1−b2Kd2 (5.174)

Substitution of λ5 in (5.172) yields,

s5 + k1s4 + k2s3 + k3s2 + k4s+ k5 (5.175)

On comparing (5.170) and (5.175), the gain parameters of the PID controller are obtained as

Kp1 =
k4

a2b1
; Ki1 =

k5

a2b1
(5.176)

Kp2 =
k2 +b1Kp1

b2
; Ki2 =

(k3− (a2b1Kd1)+b1Ki1)

b2
(5.177)
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(2) LQR PID approach

In [1], Ghosh et al. have designed a LQR-PID controller, wherein they have chosen the addi-

tional pole to be six times of the dominant real pole of the closed loop system. But they have

not discussed the reason for the random choice of the additional pole and the effect of this extra

pole on the stability of the system. Further, the effect of the filter on the derivative term of the

PID controller has also not been taken into consideration in the design phase. For the purpose of

comparison, the values of the controller gains are taken from [1].

5.5.4.1 Results and analysis

To perform a fair comparison between LQR-PID and the proposed approach, the values ofKd1, Kd2

for the proposed PID are assumed to be the same as computed by LQR-PID in [1]. The values are

Kd1 = 2.254 and Kd2 = 10. Thus, λ5 =−46.1606.

The gains of the proposed PID controller are computed from (5.176) (5.177) and are enlisted as

follows:
Kp1 = 124.8050, Ki1 = 100.7733, Kd1 = 2.254

Kp2 = 325.9798, Ki2 = 782.5889, Kd2 = 10
(5.178)

The parameters of the LQR-PID controller [1] are given as

Kp1 = 44.3, Ki1 = 33.796, Kd1 = 2.254

Kp2 = 120.9, Ki2 = 247.43, Kd2 = 10
(5.179)

We have undertaken two case studies, one in the absence of output noise and the other in the

presence of output noise. The step noise, having an amplitude of 0.05 units has been applied to

the system at time t = 5s for the duration of 0.5 seconds to the pendulum angle channel.

Fig. 5.42(a-c) depicts the comparison of the response of cart position, pendulum angle and con-

trol energy for proposed approach and LQR-PID respectively. In a similar manner, Fig. 5.42(d-f)

depicts the same responses, but in the presence of noise. It can be seen that the proposed approach

shows less overshoot as compared to LQR-PID for cart position and pendulum angle control re-

spectively. On a closer look at the control energy plots in the presence of noise, it can be observed
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Figure 5.42: Output CIPS for D-filter cases (a) cart position, (b) pendulum angle, and (c) control
action for wihtout filter case and (d) cart position, (e) pendulum angle, and (f) control action for

with D-filter of Example 3
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that the LQR-PID technique needs a large amount of control energy, whereas for the proposed ap-

proach, the control energy requirement is minimal. Hence, there is a large reduction in the control

energy on implementing the proposed approach.

5.6 Interactive and Animated GUI for CIPS

To design and validate these control techniques, there are various mathematical computational

software that are available in market such as: MATLAB R© [48], Scilab [176], SageMath R©[177],

MAPLE R© [178], and MATHEMATICA R© [179]. However, MATLAB R© is popular, because it

is a multidisciplinary software which is widely used in all the branches of engineering and has

large number of inbuilt toolboxes. Basically, MATLAB stands for MATrix LABoratory. Matrix

is the fundamental building block of this software. MATLAB R© has varieties of products such

as Simulink, Simmechanics, Graphical User Interface (GUI) editor, application development, etc,

[180]. Many interactive GUI have been developed in past. In [181], a GUI is developed for

Computer controlled systems (CCSDEMO) with Virtual interactive system, whereas in [182], the

description of GUI for root locus and bode design and classical control is given. In [183, 184],

interacting tools (IC Tools) for linear control system analysis and for modelling of level control

system are elucidated. There are GUI on servo systems [180], linear systems [185, 186] and

Quadrotor [187]. In [188], an interactive GUI is designed for cart-pendulum system but it has

limited functionalities and gives very less freedom in system and controller design.

GUI’s have certain advantages over traditional learning. It gives necessary freedom on system

parameters and other inputs to the user. This gives user a chance to see the effects of these param-

eters on system performance. In this GUI, we have given necessary freedom for user to design

its own system and controllers. Various researchers reported about the programming difficulties

in [181, 183], which have been overcome in this GUI. User friendly graphical application and

in-build functions, also, eliminates complex mathematics calculations for user.

In this section, an interactive and animated graphical user interface is developed for analysis,

design and validation of controllers for cart inverted pendulum system (CIPS) and rotary inverted

pendulum system (RIPS). User can design the pendulum system, as linear or non-linear model,
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and controllers by providing various system controller parameters, respectively. User can also

design three types of controllers: pole-placement, linear quadratic regulator (LQR) and parallel

structure Proportional Integral Derivative (PID) controller. Further, user can analyse controller-

based systems in time domain by obtaining transient plot of various signals like position, pendulum

angle etc. Further, it facilitates the animation of CIPS which depicts the behaviour or motion of

system in 3-D space subjected to aforementioned control techniques.

5.6.1 Description of CIPS GUI toolbox :

This Tab is used for designing controllers for linear and non-linear model of CIPS and for the

analysis of the resultant system. Figure 5.1 shows CIPS tab, with an example. The various panels

of this tab are explained hereinafter.
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(i) System parameters: This panel takes the input variables which defines the CIPS such as, cart

mass (M), pendulum mass (m), length of pendulum (L) and movement of inertia (J). Few other

standard system parameters are assumed internally inside the GUI function. Here, user, also, has

to provide the initial conditions, reference input for cart position and simulation run time of the

pendulum setup considered. Once all input parameters are entered, user can see the free body

diagram, state space model and transfer function of CIPS by clicking ‘System’ push button. One

demonstration example can be loaded, to help the user, by clicking ‘Demo’ push button which

loads all the values in desired syntax at corresponding input edit boxes.

(ii) Controllers: In this panel, user can design the three different control methodologies such

as, pole placement, LQR and PID for CIPS. For pole placement method, user need to enter four

desired closed loop poles, since, order of the system is four. For designing LQR, user need to

provide Q and R matrices. Once these controllers are designed, K and Poles edit boxes give

state feedback gain and closed loop poles of the system. Since, a controller designed by pole

placement and LQR method do not provide reference tracking, so Reference tracking check box

provide an option to choose reference tracking. Here, reference tracking is done by multiplying a

gain to reference input. In PID controller sub-panel, the user can manually enter the gain values

of proportional gain (Kp), integral gain (Ki), and derivative gain (Kd). The control law has been

considered from [1], where two loop PID control scheme has been designed.

(iii) Simulation: This panel simulates the controller based closed loop CIPS. User can select ei-

ther linear or non-linear model of CIPS for simulation. In this version of GUI, we have considered

the linear system for all the three controllers from controller panel, and only PID controller with

non-linear model. Once all system parameters and all controller parameters of chosen controller

are entered correctly, user can press Run push button to run simulation the system. This simulation

will run for the specified time entered by the user in System parameter panel.

(iv) Output: This panel is for displaying the animation of CIPS’s motion in 2-D space, where

horizontal direction is cart position (x) and vertical direction is Y-position. Transient behaviour of

three signals is also displayed for analysis purpose in three plots. First plot is for cart position (x) in

meters (m) vs time in seconds (s). Second plot is for pendulum angle (θ ) in radian (rad) vs time (s),

and last plot is for control signal (u) in voltage (v) vs time (s). As user press Run push button,
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animation and plotting begins simultaneously. As the time progresses, plots also get updated or

drawn further, means at any time, cart position, pendulum angle and control signal are according to

corresponding spatial arrangement of animated CIPS. In other words, plots are plotted according

to animation as time passes. In this panel, transient behaviour of signals for multiple controllers

can be compared and studied. Moreover, there are other functions such as, save, print, zoom-in,

zoom-out, data cursor, pan, rotate 3-D are given in tool-bar of GUI to facilitate the user. We

have stored the necessary results or data in workspace, so that the data can be used by user for

plotting and analysis the results separately. There is Comment edit box which displays the useful

suggestions and errors that occur, while operating this GUI.

5.7 Concluding remarks

In this chapter, different control strategies developed in the earlier chapters have been applied to

a cart inverted pendulum system. A mathematical model of the CIPS is derived, followed by the

stability analysis of the system. It is observed that the QRAWCP approach, that transforms the

optimal LQR or LQG controller into a classical PID controller outperforms the soft computing

techniques for a solar tracker system. Next, fixed robust PID controllers have been designed by

using stability boundary locus and Kharitonov’s theorem for perturbed CIP system. The perfor-

mance of proposed controllers have been verified using simulation and also on a real time hardware

setup. The effectiveness of proposed controllers have been checked by determining various per-

formance indices such as ISE, IAE, ITSE, ITAE. Further, adaptive control logic has also been

utilised to combine two PID controllers having good properties in different regions and it was

observed, that the resultant system is able to replicate the good properties of the individual can-

didate controllers. An extensive and a comprehensive analysis is conducted, which highlights the

effectiveness and strength of the proposed techniques. Furthermore, an interactive and animated

GUI is developed and illustrated with an example. In the next chapter, we study the importance

of the load frequency control in power systems and the manner in which the techniques proposed

in the preceding chapters are applied to the load frequency control problem in power system.
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Chapter 6

Application–II-Load Frequency Control

6.1 Introduction

Nowadays, electricity demand of every country is increasing continuously, due to industrial revo-

lution, technological developments, etc. However, in power delivery, the most critical issue is to

provide uninterrupted power supply to the consumers in-spite of the presence of any parametric

uncertainties or external disturbances [189]. For stable and continuous operation, one of the an-

cillary services is the ‘frequency regulation’ or ‘load following’ for the Load Frequency Control

(LFC).

The frequency of the generated voltage should be kept within the permissible limits [190]. If the

input-output power balance is not maintained, change in the frequency occurs. Hence, frequency

control is an essential issue, which is achieved via speed governor mechanism. The role of the

governor is to control the speed of generator according to load. If the load on the turbine in-

creases, the speed of the governor decreases and vice-versa. Fig. 6.1 shows the general scheme of

a generating unit, whereVr is the voltage demand and f is the reference frequency as discussed in

[191].

LFC has been in practice for several years as part of the automatic generation control (AGC) unit

in electric power systems. AGC is a system for adjusting the power output of multiple generators

at different power plants, in response to changes in the load [192, 193]. Whenever there is a
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Figure 6.1: General scheme of a generating unit

change in load, frequency of the system changes from its nominal value. In the control literature,

various control techniques have been implemented on the LFC problem. This frequency regulation

concept can be traced back nearly hundred years from today[194–196].

6.2 Motivation

In the last two decades, the electricity demand has increased steeply due to population explosion,

industrialisation, urbanisation, etc. So, it is observed that, because of the frequency mismatches,

we can see occurrences of interruption in power supply have become a new normal.

To overcome it, researchers have proposed numerous methodologies to guarantee the uninter-

rupted power flow. Internal Model Control (IMC) scheme has been proposed in [61] and it uses

model order reduction for uncertain model [190, 197]. In [58], a unified tuning of proportional–

integral–derivative (PID) control was presented, and in [59], a PID design technique using fre-

quency response matching with direct synthesis technique was proposed. In [198], PID controller

was designed using Kharitonov’s theorem for, perturbed multi-area systems and in [140], adaptive

policy for LFCwas explained. Apart from these techniques, there are various other non-linear con-

trol strategies reported in the control literature till date, which can outperform linear controllers;
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however, most of these are mathematically complicated and difficult to implement in real time ap-

plications. Since, PID is one of the simplest linear controller till date, it is also used in conjunction

with optimal control.

The PID controller offers simplicity, ease of functionality, past good record of success, and the

most profound solution to process industry and also to many real-time control problems, as eluci-

dated in [5, 11]. The three control actions of the PID controller provide improvement in both the

transient and steady-state specifications of the control system response, as described in [199–201].

The first tuning method for PID controllers was presented in [26]. Since then a lot of research has

been carried out on PID, leading to the development of new techniques such as, Cohen-Coon,

Chien, Hrones and Reswick (C-H-R), Internal Model Control (IMC), optimization methods such

as, Particle Swarm Optimization (PSO) [202], Big-Bang Big-Crunch (BBBC) techniques [203],

Linear Quadratic Regulator (LQR)-PID [2], Fuzzy PID, ANN-PID [204], SBL-PID [57], FOPID

[205, 206], etc. However, all these methods have certain merits and demerits, and attempt to im-

prove upon previous method either in terms of transient or steady state response. In [192], LQR

and Linear Quadratic Gaussian (LQG) controllers were designed, but only for a single area sys-

tem, and non-linear constraints were not taken into consideration. Recently, a quadratic regulator

based PID for Sun tracker system, was proposed in [207], however this technique did not consider

the effect of non-linearities on the performance of the system.

So, in this chapter, we first design an optimal PID controller for load frequency control using di-

rect model based formula via Quadratic Regulator Approach with Compensating Pole (QRAWCP)

approach. To demonstrate the superiority of proposed technique, we compare the results for the

single and multi-area cases, in the presence of practical issues such as non-linearities Generation

Rate Constraint (GRC), Governor Dead Band (GDB) and parametric uncertainties, with the re-

cently designed PID controller and other control techniques. The comparison is carried out for

three different cases, which are discussed later in the chapter. Further, an adaptive control scheme

that gives a guaranteed performance improvement by combining the merits of different control

schemes is proposed. Different case studies for single and multi-area power systems have been

conducted to verify the accuracy and efficiency of the proposed method.
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Table 6.1: Nomenclature of LFC

∆ f Incremental frequency deviation (Hz)
∆Pd Load disturbance (p.u.MW)
f Reference load frequency input
u Control signal
KP Electric system gain
TP Electric system time constant (s)
KG Governor gain constant
TG Governor time constant (s)
KT Turbine gain constant
TT Turbine time constant (s)
R Speed regulation due to governor action (Hz/p.u.MW)
∆PG Incremental change in generator output (p.u.MW)
∆XG Incremental change in governor valve position

Figure 6.2: Schematic of the proposed control system

6.3 Mathematical modelling of LFC

The mathematical models of LFC depend on the nature of turbine as well as the number of control

areas. For different types of turbines, one can obtain various mathematical models like, single

area non-reheated, single area-reheated, two area- non-reheated, two area reheated, etc. They are

explained individually below.
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Figure 6.3: Model of single area power system

6.3.1 Single area power system

6.3.1.1 Non-reheated turbine based model

The mathematical modelling of single area thermal power system is described in [58, 208]. The

plant for LFC system consists of governor, turbine, rotating mass generating unit and load [59].

An electric power system is a complex large scale system comprising of nonlinear dynamics. But

for LFC problem, it can be represented by a linear system, linearized about the operating point

since the load changes during its normal operation are assumed to be small.

The linearised model of the plant is shown in Fig. 6.3. The transfer function of plant for non-

reheated turbine with droop characteristics is written as:

G(s) =
GG(s)GT (s)GP(s)

1+GG(s)GT (s)GP(s)/R
(6.1)

G(s) =
RKP (TPTGTT s3 +(TPTG +TPTT +TGTT )s2

+(TP +TG +TT )s+1)R+KP


(6.2)

where, Governor dynamics, GG(s) = 1/(sTG+1), Turbine dynamics, GT (s) = 1/(sTT +1), rotat-

ing mass generating unit and load with dynamic, GP(s) = KP/(sTP+1) and R is speed regulation

due to governor action (Hz/p.u.MW), ∆Pd is load disturbance(p.u.MW),KP is electric system gain,

TP is electrical system time constant, TT is turbine time constant, TG is governor time constant, ∆ f

is frequency deviation, u is load reference.
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6.3.1.2 Reheated turbine model

The dynamics of reheated turbine are given as

GT (s) =
cTR +1

(TRs+1)(TT s+1)
(6.3)

Here, TR is time constant and c is percentage of the power generated by the reheated turbine to the

total generated power. In such case, the closed loop transfer function with droop characteristics is

given as

G(s) =
RKP(cTR +1)

(TRs+1)(TT s+1)(TGs+1)(TPs+1)R+KP(cTR +1)
(6.4)

6.3.2 Multi-area power system

Figure 6.4: Schematic block-diagram of ith control area for LFC design

6.3.2.1 Two-Area power system with non-reheated turbine

In two area power system, frequency and tie line power are main variables in LFC design. The

values of these variables in each area should be in specified limits i.e., any deviations in frequency
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must be restored to its nominal value and the tie line power should be returned to scheduled power

value. So a composite factor, area control error (ACE) is used as a feedback variable in LFC

studies. The ACE is defined as (for ith control area)

ACEi = Bi∆ fi +∆Ptielinei (6.5)

Here, Bi is feedback bias setting and ∆Ptielinei is tie line power of ith control area and is defined as

N

∑
j=1
j 6=i

∆Ptielinei j =
2π

s

 N

∑
j=1
j 6=i

Ti j∆ fi(s)−
N

∑
j=1
j 6=i

Ti j∆ f j(s)

 (6.6)

where, Ti j is a tie-line synchronizing parameter between area i and j (p.u. MW/radian). Similarly,

for a single area power system, the plant dynamics for multi area power system of each control

area becomes (for ith control area)

Gi(s) = Bi
GG,i(s)GT,i(s)GP,i(s)

1+GG,i(s)GT,i(s)GP,i(s)/Ri
(6.7)

6.3.3 Worst-case plant selection approach

This section presents the controller synthesis scheme using the worst-case plant selection. It has

been observed that in order to test the robust stability of low degree polynomial family, there is no

need to investigate all four Kharitonov’s polynomials. The analysis can be done with the help of

1, 2, and 3 Kharitonov polynomials for polynomials of degree 3, 4 and 5, respectively [209, 210].

Also, in [39] , the authors have proposed a worst-case polynomial selection theorem for interval

polynomial given by

G(s,∆) = {g(s,δ ) = δ0 +δ1s+ ...+δnsn} (6.8)

having uncertain parameter vector δ = [δ1,δ2...δn]
T and

∆ =

{
δ | δi ∈

[
δ i,δ i

]
, δ i > 0, i = 0,1, ...,n

}
is robustly stable if and only if the Kharitonov’s

four extreme polynomials are Hurwitz.

g1(s,δ−−) = δ 0 +δ 1s+δ 2s2 +δ 3s3 +δ 4s4 + ... (6.9)
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g2(s,δ−+) = δ 0 +δ 1s+δ 2s2 +δ 3s3 +δ 4s4 + ... (6.10)

g3(s,δ+−) = δ 0 +δ 1s+δ 2s2 +δ 3s3 +δ 4s4 + ... (6.11)

g4(s,δ++) = δ 0 +δ 1s+δ 2s2 +δ 3s3 +δ 4s4 + ... (6.12)

Theorem 6.1 ([198, 209]). For the interval polynomial described in (6.8) having σ(P) = 3, the

testing set is ∆T = δ+− that means only g3(s,δ+−) described by (6.11) is sufficient to investigate

the robust stability of the entire family of polynomials in P .

Theorem 6.2 ([198, 209]). LetG(s) be interval plant as defined in (20) from [198]. Then the entire

family is G(s) stabilized by a particular PID controller, if the worst-case plant G23(s) defined in

(21) from [198] is stabilized by that same PID controller.

Therefore, using theorem 1 and 2, we simplify the system model and from that we select the g3(s)

polynomial and carried out further analysis to design optimal QRAWCP-PID controller.

6.4 Proposed controller approach for LFC

Fig. 6.2, shows the schematic of load frequency control using controller to compensate the devi-

ation ∆ f using a proper control signal u.

6.4.1 QRAWCP-PID approach

The steps of QRAWCP scheme for the single area and multi-area power system model consisting

of a non-reheated turbine are described simultaneously as follows:

Step 1: For a single area power system, comprising of a non-reheated turbine, the transfer function

G(s) of LFC is given in the generalised form as

G(s) =
K

s3 +b2s2 +b1s+b0
(6.13)

where,K=KPKT KG/σ , b0 = 1+KPKT KG/σR, b1 =(TG +TT +TP)/σ , b2 =(TGTT +TGTP +TT TP)/σ

and σ = TGTT TP. For multi-area power system, the system model of each control area is BiG.
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Further, the state space model is given in (6.14). Table 6.1 provides the nomenclature of LFC

variables, which are taken from [198].
ẋ1

ẋ2

ẋ3

=


0 1 0

0 0 1

−b0 −b1 b2




x1

x2

x3

+


0

0

K

u

y =
[

1 0 0

] 
x1

x2

x3


(6.14)

In (6.14), A ∈ R3×3, B ∈ R3×l, and C ∈ R1×3.

The transfer function of a PID controller is given by C(s) = (ρds2 + sρp +ρi)/s, where, ρp =

proportional gain, ρi= integral gain and ρd = derivative gain.

Step 2: The closed-loop characteristic polynomial for the closed loop plant with controller is given

as ∆(s) = 1+G(s)C(s), and equating ∆(s) to zero, we get the closed loop characteristic equation

as

s4 +b2s3 +(b1 +Kρd)s2 +
(
b0 +Kρp

)
s+Kρi = 0 (6.15)

Step 3: Determine the control law by Linear Quadratic Regulator approach. The quadratic reg-

ulator approach is an optimal state feedback technique which is designed to minimize a specific

quadratic cost function. The performance index can be designed for constraints like u, y, error(e)

or unconstrained objectives of linear time invariant (LTI) system. The optimal control vector u(t)

is obtained from the control law given by u(t) = -κ x(t). Here, unconstrained optimal action is

considered. Therefore, Performance Index (PI) of the system is defined as,

ψ =

∞∫
0

(
xT Qx +uT Ru

)
dt (6.16)

where Q ∈ Rm×m and R ∈ Rl×l are symmetric positive semi definite and positive definite respec-

tively. Here, for the LFC problem m = 3 and l = 1.
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So, the closed loop system equation becomes,

ẋ = Ãx (6.17)

where, Ã = (A−Bκ). Equation (6.16) can be re-written as,

ψ =
∞∫
0

(
xT
(

Q+κT Rκ

)
x
)

dt (6.18)

Also, d
dt

(
xT Px

)
=−

(
xT
(

Q+κT Rκ

)
x
)

=⇒
(

xT
(

Q+κ
T Rκ

)
x
)
=−xT Pẋ− ẋT Px (6.19)

Using (6.17) in (6.19) and then substituting in (6.18), we obtain,

ψ =−
∞∫

0

xT
[
PÃ+ ÃT P

]
xdt (6.20)

It is necessary condition that P must be positive definite matrix. By comparing (6.19) with (6.20),

we get,

PÃ+ ÃT P =−
(

Q+κ
T Rκ

)
(6.21)

As (A−Bκ) is a stable, its eigenvalues are on left side of s-plane. Therefore, solving for a positive

definite matrix P which can satisfy (6.21), the cost function can be further simplified as,

ψ =

∞∫
0

(
xT
(

Q+κ
T Rκ

)
x
)

dt (6.22)

Equation (6.19) can be written as ψ = −xT Px
∣∣∞
0 , so we get

ψ =−xT (∞)Px(∞)+ xT (0)Px(0) (6.23)

Since (6.17) is asymptotically stable, and x(∞)→ 0. Thus we get ψ = xT (0)Px(0). It is obtained

in terms of initial condition.

194



Step 4: From (6.16), the minimization of ψ using Pontryagin’s minimum principle gives the state

feedback control law u =−κx. The feedback gain κ is found as:

κ = R−1BT P (6.24)

Using this control law and further simplifying (6.17), we get the Algebraic Riccati Equation(ARE)

as,

AT P+PA−PBR−1BT P+Q = 0 (6.25)

In (6.25), Q and R can be selected in such a way that Q = diag(q11,q22,q33) , wherein q11 >

q22 > q33 > 0 and R =V TV > 0, where V ∈ Rm
>0.

Step 5: Using ARE, (6.24), and (6.25), state feedback control gain κ is obtained as,

κ = [p13K p23K p33K] (6.26)

Step 6: The closed-loop characteristic equation (sI− Ã) = 0 can thus be written as,

s3 +
(

b2 + p33K2
)

s2 +
(

b1 + p23K2
)

s+
(

b1 + p13K2
)
= 0 (6.27)

Step 7: The closed-loop system in (6.15) is of fourth order and (6.27) is of third order. Therefore,

in order to compare these two equations, we need to augment one pole to the latter. Thus, we obtain

s4 +

(
λ4 +

(
b2 + p33K2

))
s3 +

((
b1 + p23K2

)
+
(

b2 + p33K2
)

λ4

)
s2+((

b1 + p13K2
)
+
(

b1 + p23K2
)

λ4

)
s+
(

b1 + p13K2
)
= 0

(6.28)

Comparing (6.28) with (6.15), λ4 can be computed as,

λ4 =−p33K2 (6.29)

For the sake of comparison, equation (6.28) can be written in simplified form as,

s4 + p1s3 + p2s2 + p3s+ p4 = 0 (6.30)
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Here,
p1 = p33K2 +b2 + p33K2

p2 =
(

b1 + p23K2
)
+
(

b2 + p33K2
)

p33K2

p3 =
(

b1 + p13K2
)
+
(

b1 + p23K2
)

p33K2

p4 = b1 + p13K2

(6.31)

Step 8: Finally, by comparing (6.15) and (6.30), we get the parameters of C(s) as follows,

ρp =
1
K

(
b1 + p13K2 +

(
b1 + p23K2

)
p33K2−b0

)
ρi =

1
K

(
b1 + p13K2

)
ρd =

1
K

(
p23K2 +

(
b2 + p33K2

)
p33K2

) (6.32)

The results will be obtained for two different conditions, initially we obtain the QRAWCP-PID

without considering the worst-case polynomial and then with worst-case polynomial selection for

designing the QRAWCP-PID for LFC problems.

6.4.1.1 For nominal plant

In this section, we take three different cases. In Case 1 and 2, we consider a single-area power

system in the presence and absence of parametric uncertainties and non-linearities, while in case 3,

a two-area scenario is discussed. Using QRAWCP approach, PID parameters are obtained as

ρp = 6.5208, ρi = 8.7649 and ρd = 3.1385 and using the parameters of single area LFC from

[59, 198, 208], we simulate the model and controller in MATLAB & Simulink environment.

Case studies and result analysis:

Case 1: Single area for N-R turbine: The nominal parameters for single-area power system

with N-R turbine are considered from [208] as KP = 120, TP = 20, KT = 1, TT = 0.3, KG = 1,

TG = 0.08, R = 2.4.
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Figure 6.5: Time response for Case 1 (a)nominal,(b)−50%lower and (c)+50%upper parametric
uncertainty of LFC

In this case, for the purpose of comparisonwith the proposed (QRAWCP-PID), we have considered

the recently designed PID controller approaches, i.e., IMC-PID[58], direct synthesis approach[208],

Laurent series based PID [59] and model order reduction based IMC-PID [190]. Fig. 6.5(a) shows

the time evolution of frequency variation for a sudden load disturbance of 0.01 p.u. MW, which

is applied at 1 s. It is seen that the QRAWCP scheme shows the least undershoot in comparison to

other approaches. Further, we analyse the controllers in the presence of ±50% parametric varia-

tion from its nominal value, for lower and upper bound. It is shown in Fig. 6.5(b) and 6.5(c), that

the frequency curve converges to zero with minimum undershoot and lesser time as compared to

other considered approaches. The performance can also be measured quantitatively with the aid of

integral performance indices such as Integral Square Error (ISE), Integral Absolute Error (IAE),

Integral Times Squared Error (ITSE), Integral Time Absolute Error (ITAE). From Table 6.2, it is
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evident that using the proposed scheme, minimum value of the integral error indices are obtained

in both the cases.

Table 6.2: Performance indices for Non-reheated turbine(×10−4)

Methods Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed 0.013 13.79 0.018 25.24 0.0087 12.73 0.014 24.61 0.022 14.52 0.028 24.96
Tan 1.777 177.7 3.026 348.1 0.696 157.0 1.396 428.8 2.524 202.7 4.229 391.9
Padhan & Majhi 0.393 76.63 0.562 150.5 0.191 76.36 0.340 196.5 0.790 110.4 1.205 222.9
Anwar & Pan 0.289 44.35 0.378 61.97 0.110 39.99 0.155 70.23 0.786 124.6 1.291 275.6
Saxena & Hote 0.350 65.55 0.492 117.5 0.073 22.34 0.089 32.80 1.084 160.9 1.982 387.4

Case 2: LFC considering GRC and GDB constraints: For this case, we have considered real-

time non-linearities of generation rate constraint (GRC), and governor dead band (GDB). Their

specifications are GRC = 0.1 p.u./min. or 0.001667 p.u./sec. [58, 61] and GDB = 0.06% or 0.036

Hz/p.u. MW [211]. These are then applied to the LFC configuration given in case 1. Fig. 6.6(a)

depict that QRAWCP performs better in comparison to other PID controller techniques given in

[59, 190, 208, 212], Similar to case 1,±50%parametric variation has been considered, as shown in

Fig. 6.6(b) and 6.6(c), which highlights robustness capability of proposed approach in comparison

to others. The results obtained from the graphical analysis can be better understood using the

integral performance indices values, given in Table 6.3, for respective control techniques including

the proposed one. The values from this table clearly imply that the frequency of generated voltage

suffers less variation, when controlled using QRAWCP approach.

Table 6.3: Performance indices in the presence of GRC and GDB (×10−4)

Methods Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Proposed 0.165 60.92 0.339 140.5 0.160 58.21 0.313 127.3 0.162 60.83 33.73 143.7
Tan 27.93 792.5 60.56 1864.4 13.55 719.8 31.24 2138.8 30.21 795.5 65.29 1828.6
Padhan & Majhi 5.129 352.5 9.423 815.8 3.551 351.0 7.296 969.2 5.738 352.5 10.33 806.4
Anwar & Pan 2.997 184.0 4.679 306.7 1.908 183.9 3.113 356.1 4.009 260.9 6.699 558.4
Saxena & Hote 3.412 231.8 5.612 456.3 0.953 92.53 1.332 147.5 6.062 426.1 12.85 1168.1

Case 3: LFC for two area control: In this case, we extend the application of the proposed

technique to two-area power system model. The model assumed for this purpose consists of two
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Figure 6.6: Time response for Case 2 (a)nominal,(b)−50%lower and (c)+50%upper parametric
uncertainty with GRC and GDB of LFC

reheated generators, one in each area. The schematic of the individual areas and their interconnec-

tions is shown in Fig. 6.7, which is taken from [208] and [59]. The dynamics of each area are same

as for the single area case, with the addition of the interconnected tie-line power of Ti1 = Ti2 = 4.2

and frequency bias is B1 = B2 = 0.35. The analysis of the two-area model is done by applying a

load disturbance at 1 sec for ∆Pd1, and at 15 sec for ∆Pd2. The PID controller used for this analysis

is identical to the one used for the single area situation, and the magnitude of the injected distur-

bance is: |∆Pd1|= |∆Pd2|= 0.01 p.u.MW. The results of this analysis are illustrated in Fig. 6.8,

which shows that the load frequency curve exhibits lesser undershoot and quicker convergence to

zero, as compared to using other techniques reported so far.
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Figure 6.7: Block diagram of two area power system
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Figure 6.8: Comparison of responses of two area system for Case 3
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6.4.1.2 Using worst-case polynomial selection

Case studies and result analysis:

1) Case 1: In this case, the efficacy of controller is evaluated for single area non-reheated tur-

bine with droop characteristics based power system, in the presence of nominal parameters and

parametric uncertainty (lower bound (−50%) and upper bound (+50%)) where, 0.01 p.u. as step

change is introduced in load disturbance at t = 1 sec.

The parametric uncertainties are considered asKP = [60,180], TP = [10,30], TG = [0.04,0.12],TT =

[0.15,0.45], R = [1.2,3.6]. Therefore, we get worst-case plant polynomial for considered system

dynamics as G3(s) = 151+10.19s+1.906s2+1.62s3. Using QRAWCP approach and worst-case

plant selection approach, we obtain the optimal PID gain values as Kp = 6.5208, Ki = 8.7649, and

Kd = 3.1385.

For the ease of understanding, we subdivide Case 1 in two parts as follows, Case 1(a): Here,

the effect of GRC and GDB is not taken into consideration. The resulting plots are shown in

Fig. 6.13 (a-c). Case 1(b): Here, the effect of GRC and GDB are considered. The resulting plots

are shown in Fig. 6.13 ((d)-(f)). It can be seen from Fig. 6.13((a)-(f)), that the proposed control

schemes outperform the existing control schemes ([58, 59, 61, 208]).

2) Case 2: The single area Reheated turbine with droop characteristics-based power system is

considered in this case. The parametric uncertainties are considered as KP = [60,180], TP =

[10,30], TG = [0.04,0.12], TT = [0.15,0.45], Tr = [2.1,6.3], c = [0.175,0.525], R = [1.2,3.6]

([58, 198]). Therefore, we get worst-case plant polynomial for single area Reheated turbine

with droop characteristics based power system G3(s) = 151+34.34s+32.945s2 +109.6902s3 +

10.2060s4. Using QRAWCP approach and worst-case plant polynomial, we obtain the optimal

PID gain values: Kp = 27.9082, Ki = 19.1910, and Kd = 14.3941. We can demarcate Case 2

in two parts as follows, Case 2(a): Here, the effect of GRC and GDB is not taken into account.

The corresponding plots are shown in Fig. 6.9 (a-c). Case 2(b): Here, the effect of GRC and

GDB is considered. The corresponding plots are shown in Fig. 6.9 ((d)-(f)). It can be seen from

Fig. 6.9((a)-(f)), that the proposed control schemes shows less frequency deviation as compared

to the existing techniques. ([58, 59, 208]).
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Figure 6.9: Time response of R-turbine based single area power system for case 2(a) without and
(b) with GRC and GDB
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Figure 6.10: Time response of NR-turbine based two area power system for case 3(a) without, and
case 3(b) with GRC and GDB.

3) Case 3: In this case, the proposed control scheme is extended for a two area power system

based on NR turbine. The system parameters are taken from [59, 212]. Now, we apply the same

procedure as discussed in case-1. Both areas in the given system are identical. Using QRAWCP

approach and worst-case plant selection approach, we obtain the optimal PID gain values for each

area as Kp = 6.5208, Ki = 8.7649, and Kd = 3.1385. The frequency deviation for area 1 (∆ f1) and

area 2 (∆ f2), and tie-line power(∆ptie) deviation of two area power system without GRC, GDB

are given in Fig.6.10(a) and the robustness analysis for ±50% parametric uncertainty is shown in

Fig. 6.10(b-c). Further, the simulation is carried out with GRC and GDB physical constraints in

two area power system as shown in Fig. 6.10(d-f). From these results, it can be seen the proposed

controller has theminimum frequency and tie-line power deviation compared to existing controller

schemes [59, 212].

204



Table 6.4: Performance indices for NR-Turbine based single area power system without(case 1(a))
and with(case 1(b)) GRC and GDB

Methods Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Ca
se

1(
a) Proposed 1.330 13.79 1.880 25.24 0.871 12.73 1.420 24.62 2.240 14.52 2.830 24.96

Anwar & Pan 28.90 44.36 37.80 61.98 11.00 40.00 15.50 70.24 78.60 124.6 129.1 275.6
Padhan & Majhi 39.30 76.63 56.20 150.6 19.10 76.36 34.00 196.5 79.00 110.4 120.5 223.0
Saxena & Hote 35.00 65.55 49.20 117.5 7.300 22.34 8.890 32.80 108.5 160.9 198.2 387.4
Tan 177.7 177.8 302.6 348.1 69.60 156.6 139.6 428.8 252.5 202.8 422.9 392.0

Ca
se

1(
b) Proposed 16.54 60.92 33.9 140.6 16.04 58.22 31.33 127.4 16.17 60.84 33.73 143.8

Anwar & Pan 299.7 184 467.9 306.7 190.8 184.0 311.3 356.0 400.9 260.9 669.9 558.4
Padhan & Majhi 512.9 352.5 942.3 815.8 355.5 351.1 729.6 969.2 573.8 352.5 1033 806.4
Saxena & Hote 341.2 231.8 561.2 456.3 95.33 92.53 133.2 147.5 606.2 426.1 1285 1168
Tan 2793 792.5 6056 1864 1355 719.8 3125 2139 3021 795.6 6530 1829

∗ISE=×10−6, IAE=×10−4, ITSE=×10−6, and ITAE=×10−4.

Table 6.5: Performance indices for R-Turbine based single area power system without(case 2(a))
and with(case 2(b)) GRC and GDB

Methods Nominal Plant Lower -50% plant Upper +50% plant
ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Ca
se

2(
a) Proposed 0.643 11.81 0.981 31.60 0.429 11.39 0.782 32.68 1.160 12.68 1.550 31.28

Anwar & Pan 7.100 40.04 10.90 92.65 4.930 39.98 9.150 105.7 12.20 40.33 16.50 84.93
Padhan & Majhi 20.20 59.13 28.80 140.5 12.40 56.62 20.80 141.4 39.20 68.71 54.60 149.6
Tan 62.00 116.0 97.90 309.6 39.30 103.9 69.40 289.7 99.60 121.7 149.4 304.3

Ca
se

2(
b) Proposed 2.670 26.39 4.780 64.23 2.420 27.07 5.080 69.05 3.990 25.29 5.740 59.14

Anwar & Pan 47.40 182.4 131.0 835.8 44.80 182.1 130.0 863.2 48.60 182.4 135.0 863.0
Padhan & Majhi 112.0 237.8 254.0 880.4 99.60 237.6 246.0 936.8 127.0 237.9 268.0 869.2
Tan 372.0 361.2 774.0 1029 306.0 361.1 695.0 1162 426.0 361.2 829.7 974.1

∗ISE=×10−6, IAE=×10−4, ITSE=×10−6, and ITAE=×10−4.

6.4.1.3 New England (10 machine 39 bus) power system

This section describes a model of a New England (10 machine 39 bus) interconnected power

system.

Here for study, we consider a realistic power system that is similar to network topology of the

standard IEEE 39 bus test system ([213–215]). The single line diagram is depicted in Figure

6.11. In this test system, we consider GDB and GRC nonlinearities in the westing-house electro
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Table 6.6: Performance indices of NR-Turbine based Two area power system with(case 3(a)) and
without(case 3(b)) GRC and GDB

Nominal plant Lower -50% plant Upper +50% plant
Methods ISE IAE ITSE ITAE ISE IAE ITSE ITAE ISE IAE ITSE ITAE

Area1
Case 3(a)

Proposed 6.859 47.21 48.28 359.0 16.35 81.46 141.2 665.5 5.190 34.82 25.40 233.4
Tan 96.83 153.2 713.8 1176 122.7 292.9 1103 2675 103.7 163.6 696.8 1163
Anwar & Pan 21.53 67.94 139.8 482.5 36.80 118.6 306.6 967.2 19.84 58.39 97.20 348.2

Area2
Case 3(a)

Proposed 88.83 190.0 335.5 943.0 205.7 275.9 695.4 1246 45.80 149.9 267.2 906.5
Tan 1029 562.1 4085 2645 1559 999.4 6002 5693 797.3 533.1 4075 2933
Anwar & Pan 247.9 291.1 1045 1420 439.0 403.4 1486 1848 175.5 255.8 964.7 1389

Area1
Case 3(b)

Proposed 51.45 161.7 155.6 766.1 141.5 274.9 469.8 1259 27.96 113.4 86.02 551.9
Tan 658.8 523.8 2184 2404 1182 999.4 4598 5731 476.7 426.3 1758 2072
Anwar & Pan 143.6 236.9 448.7 1076 308.1 403.4 989.6 1864 87.53 181.2 282.5 876.6

Area2
Case 3(b)

Proposed 88.83 190.0 335.5 943.0 205.7 275.9 695.4 1246 45.80 149.9 267.2 906.5
Tan 1029 562.1 4085 2645 1559 999.4 6002 5693 797.3 533.1 4075 2933
Anwar & Pan 247.9 291.1 1045 1420 439.0 403.4 1486 1848 175.5 255.8 964.7 1389

∗ISE=×10−6, IAE=×10−4, ITSE=×10−6, and ITAE=×10−4.

hydraulic speed governor system without steam feedback ((IEEE Report, 1973). This test system

is divided into three control areas. Only one generator in each area participates in the LFC task.

These generation units are G3, G7 and G9 in area 1, area 2 and area 3 respectively. The test system

specifications for generators, loads and lines parameters have been listed in [[214], [215]]. With

the droop characteristics, the transfer function of plant model is given as follows [61].

G(s) =
R (2HTGTT s3 +(2HTG +DTGTT +2HTT )s2

+(2H +DTG +DTT )s)R+RD+1


(6.33)

Here, two tie-lines (the transmission lines between bus 1 and 39, bus 3 and 4), that exist between

area 1 and area 3 are considered equivalent to one tie-line. The steam speed governing system is

depicted in Figure 6.12.

Simulation and Result analysis: This section demonstrates the simulation results obtained in

MATLAB/Simulink environment for evaluation of the performance of proposed control scheme
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Figure 6.11: Single line diagram of New England 10 machine 39 bus power system.

Figure 6.12: Steam speed governing system with GDB and GRC.

Table 6.7: System parameters

Parameters H D TG TT Pop

G3 35.8 10 0.15 0.3 6.50
G7 26.4 8 0.1 0.3 5.60
G9 34.5 14 0.1 0.3 8.30

for various case studies. The effectiveness of proposed control scheme is assessed and compared

with existing control schemes.

Note 1: The specifications on non-linearities are given as GRC as 0.1 p.u./min. or 0.001667

p.u./sec. [216], [61] and GDB is 0.06% or 0.036 Hz/p.u. MW according to IEEE standard [211]

for case 1 to 3.
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Note 2: The nominal, lower bound (-50%) and upper bound (+50%) values of system parameters

for single area non-reheated and reheated turbine based isolated power systems are given for case

1-3 as follows, ([58], [208]), [38], [39]) Bi = 0.425, Ri = 2.4, T gi = 0.08, T ti = 0.3, T pi = 20,

K pi = 120, Tri = 4.2, T12 = 0.545, and i = 1,2. The lower and upper bound values can be written

as follows, 1/Tt ∈ [2.564, 4.762],, 1/Tg ∈ [9.615, 17.857],, 1/RTg ∈ [3.081, 10.639],, Kp/Tp ∈

[4, 12],, and 1/Tp ∈ [0.033, 0.1].

Note 3: Each area has a rating of 2 GW with a nominal load of 1 GW operating at frequency

f = 60 Hz for case 1-3.

4) Case 4: From the practical point of view, the proposed controller is evaluated for New England

(10 generator and 39 bus) power system. The different parameters areR= 0.05, Ṗup = 0.1, Ṗdown =

−0.1, Pmax = 2Pop, Pmin = −Pop, N1dgl = 0.8, N2dgl = −0.2, Tdgl = 0.1 and Bi = Di +
1
R where

i = 1,2,3[214], [61]. Then, considering interval parameters, H ∈ [26,34], D ∈ [8,14], TG ∈

[0.1,0.15], we get worst-case plant polynomial G3(s) = 34+ 55.2s+ 21.04s2 + 3.24s3. Using

QRAWCP approach and worst-case plant selection approach, optimal value of PID gain are: Kp =

4.3644, Ki = 1.1676, and Kd = 1.6518.

During the simulation, a step change in load with magnitude of 0.038 p.u. MW, 0.064 p.u. MW

and 0.043 p.u. MW for area 1, area 2 and area 3 is applied to bus 8 at t = 1sec, bus 16 at t = 50

sec and bus 3 at t = 80 sec, respectively. The response of frequency deviation ∆ f1, ∆ f2, ∆ f3 for

area 1, 2 and 3, and net tie-line power deviation ∆Ptie1, ∆Ptie2, ∆Ptie3 of three area power system

are given in Fig. 6.14, respectively. The simulation results show that the QRAWCP-PID scheme

gives better results than [61].

Performance indices: Moreover, tomeasure the robustness and optimality of the proposedQRAWCP-

PID scheme and existing control method, Integral Square Error (ISE =
∫

∞

0 ∆ f (t)2dt ), Integral Ab-

solute Error(IAE =
∫

∞

0 |∆ f (t)|dt), Integral Time Squared Error(ITSE =
∫

∞

0 ∆t f (t)2dt ) and Integral

Time Absolute Error(ITAE =
∫

∞

0 t|∆ f (t)|dt ) are evaluated for all the cases in Table 6.4 for case 1,

in Table 6.5 for case 2, in Table 6.6 for case 3, and in Table 6.8 for case 4. The value of perfor-

mance indices for all the cases are minimum for the proposed scheme as compared to existing

control schemes. Thus, the proposed control scheme in all the above cases is almost optimal and

robust in nature.
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Figure 6.13: Time response of NR-turbine based single area power system for case 1(a) without
and (b) with GRC and GDB
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Figure 6.14: Time response of Case 4 New England 39 Bus system ∆ f and Tie line power ∆Ptie
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Table 6.8: Performance indices for Case 4 New England 39 bus power system

Methods ISE IAE ITSE ITAE

A
re
a1 Proposed 0.2100 23.19 3.480 1032

IMC PID 0.8600 50.88 13.37 1782

A
re
a2 Proposed 0.7000 24.41 36.83 1353

IMC PID 1.960 69.73 115.0 4535
A
re
a3 Proposed 0.220 19.34 15.83 1139

IMC PID 1.190 56.65 94.1 4021

∗ISE=×10−6, IAE=×10−4, ITSE=×10−6, and ITAE=×10−4.

6.4.2 Adaptive policy

Till date, various load frequency control (LFC) schemes have been reported and every scheme has

its own way of disturbance rejection. Combining some of them together via switching mechanism

may lead to an improved performance. Keeping this fact in mind, an adaptive control policy is

proposed in this section. The policy incorporates the concept of enhancing and lowering the con-

troller activity by assigning them weights at every instance throughout the operation. Thus, there

is no need to go for a new control scheme until required; and a guaranteed improved performance

would be achieved. Different case studies including single and multi-area power systems have

been conducted to verify the accuracy and efficiency of the proposed method.

In power system studies, LFC is a subject of research for more than four decades and numerous

control strategies have been developed. We believe that if some of the existing control strategies

are included in LFC operation in a manner that their best features are extracted then a highly im-

proved performance can be achieved. In this regard, an adaptive control policy is proposed which

encapsulates two controllers and their activity is enhanced or decreased as per their performance

throughout the control operation.

To simplify the analysis, but without loss of generality, a single/two-area system consisting of non-

reheated thermal turbine is considered (see [58] for list of nomenclature and data). Figure 6.15

illustrates the schematic of the proposed closed-loop power system model G with two controllers

C1 andC2 whose best features are to be extracted. One can select the controller on the basis of their

performance merits (robustness, optimality, etc), wide area applicability and recent development.
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The multiplying factors w1 and w2 are weights that emphasis the comparative role of C1 and C2,

respectively. The control signal is:

U = w1u1 +w2u2 (6.34)

Since, ∆ f = G×U and for single-area, the output is:

∆ f (s) =
K

s3 +b2s2 +b1s+b0
U(s) (6.35)

where, K =
Kp

TGTT TP
, b0 =

Kp
RTGTT TP

, b1 = TG +TT +TP, b2 = TGTT +TGTP +TT TP. Note that for

multi-area system, the system model for ith control area becomes BiGi. Now, for the proposed

Figure 6.15: Schematic of the proposed control system

control structure, the control signal can be expressed using (6.35) as:

U(t) =
1
K

[
∆ f (3)(t)+b2∆ f (2)(t)+b1∆ f (1)(t)+b0∆ f (t)

]
(6.36)

We choose performance index (integral of a squared error):

Is =
1
2

∫
e2(t)dt (6.37)

as an objective function, where, e(t)≡ fr(t)− f (t) =− f (t) (As fr = 0 for disturbance rejection).

To update the weights, we apply gradient descent algorithm [139]:

wn(t +1)←
(

wn(t)−α
dIs(t)
dwn(t)

)
; n = 1,2 (6.38)
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Figure 6.16: Time response and weight update pattern for Case 1
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Figure 6.17: Response under parametric uncertainty in Case 1

Here, α is a learning rate. To obtain dIs(t)
dwn(t)

, we apply chain rule: dIs(t)
dwn(t)

= dIs(t)
d∆ f (t)

d∆ f (t)
dU(t)

dU(t)
dwn(t)

.

On performing differentiation of (6.34), (6.36) and (6.37), we get dIs(t)
dwn(t)

= un∆ f
D(t) ; n = 1,2 where

D(t) = ∆ f (4)(t)+b2∆ f (3)(t)+b1∆ f (2)(t)+b0∆ f (1)(t)

K d∆ f (t)
dt

. Therefore, weights in (6.38) follows the rule as:

wn(t +1)←
(

wn(t)−
αun∆ f
D(t)

)
; n = 1,2 (6.39)

With this update rule (6.39), the intensity of the individual controller C1 and C2 can be altered

to achieve desired performance. Note that the control algorithm starts with initial weights as

w1 = w2 = 1. A fair selection occurs when both the controllers are given equal priority.

Case Studies:

This section elaborates different case studies where cases 1 and 2 are the scenario of single-area,

while case 3 illustrates the two-area scenario.
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Figure 6.18: Time response and weight update pattern for Case 2
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Figure 6.19: Response under parametric uncertainty in Case 2
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Table 6.9: Performance indices (×10−6)

Method Nominal Lower Upper

ISE ITSE ISE ITSE ISE ITSE

Proposed 27.9 42.4 16.7 31.0 52.1 75.4

Ca
se

1

Tan[58] 138.1 229.3 69.6 139.6 251.6 421.8
Saxena & Hote[190] 30.6 42.0 7.2 8.8 106.1 192.9

Proposed 9.44 11.7 4.3 6.0 25.6 35.4

Ca
se

2

Anwar & Pan[59] 26.3 34.2 11.0 15.5 76.7 125.2
Padhan & Majhi[208] 36.1 52.3 19.1 34.0 77.7 118.0

Case 1: This case study considers two different type of control structure. The first controller C1

acquires PID controller using W. Tan’s technique [58] and the second one C2 is obtained through

internal model control technique using Saxena and Hote’s method [190]. Fig. 6.16 illustrates the

time evolution of frequency excursion for a sudden load disturbance of 0.01 p.u. MW. It can be

observed that the proposed scheme initially follows the response of [190] due to low overshoot

and then follows [58] because of its smooth response behavior while giving less importance to

[190]. This can be easily understood by observing the weight update in Fig. 6.16. The response

is also improved when ±50% parametric variations are present in the system (see Fig. 6.17).

Case 2: In this case study, two PID controllers for LFC are considered using Anwar and Pan [59]

and Padhan and Majhi scheme [208]; and the weights are updated as per the proposed scheme.

Fig. 6.18 depicts that the proposed scheme enhances the weights of [59] and decreases the weight

of [208] to counteract the sudden disturbance. The proposed scheme also works well when un-

certainty are present (see Fig. 6.19).

The error indices are also measured to analyze the optimal performance of proposed scheme; and

from Table 6.9, it is evident that the scheme attains minimum value in both cases.

Case 3: For the two-area power system, again the PID schemes from [59] and [208] are taken into

account. The proposed control scheme follows the control scheme in [59] and less weightage is

given to scheme in [208] (see Fig. 6.20).
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6.5 Concluding remarks

In this chapter, QRAWCP approach is applied to a single area and two area system. A keen

observation of the results obtained from these analyses clearly indicate that the proposed approach

is characterised by better disturbance rejection capability, minimal overshoots and undershoots

as well as least steady state error. Further, it also shows better robustness towards parametric

uncertainty and gives improved results, even when it is implemented on a 39 bus New England 10

machine system, which is susceptible to non-linearities like Governor dead band and generation

rate constraint. Finally, an adaptive control scheme is also applied to design a controller for the

LFC problem and it is observed that it is able to emulate the good properties of each candidate

controller. A comprehensive comparison of the proposed techniques with the existing ones via

integral performance indices is done and, in each case, it is observed that the proposed approach

gives the least value of different indices. The simulation results are a testimony to the effectiveness

of the proposed schemes. Finally, we are left with the last chapter, where we give the final remarks

about the work done in this thesis and suggest further improvements, which can be undertaken by

control practitioners to obtain better and improved results.
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Chapter 7

Conclusion and Future Scope

Thework presented in this thesis is primarily focused on the novel designmethodologies for tuning

of PID controllers via QRAWCP approach and adaptive control scheme. The authors have made

an honest attempt in this thesis to enlist the past contributions as well as suggest some new design

approaches that are computationally simple and easy to understand. To address any apprehensions

regarding the practical implementation of the proposed work in the presence of uncertainties, non-

linearities, an extensive experimental validation of the proposed techniques has been conducted

on QUBE servo2 system, cart inverted pendulum and rotary inverted pendulum.

7.1 Conclusion

The following conclusions are drawn based on the accomplishments of this thesis:

• It is possible to bring the optimal control theory based LQR approach in actual practice via

the use of PID controllers. Addition of a compensating pole to the optimal control theory is

done in a well-structured manner. Simplicity, robustness and computational efficiency are

the key features of this scheme. The efficient use of this approach has led to an optimal de-

sign of conventional PID controller. The hardware results further validate the effectiveness

of the proposed scheme.
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• Numerous techniques of PID tuning are available in literature, but a single control scheme

combining the advantages of multiple PID controllers designed by various methods has

never been formulated till date. This very deficiency is addressed in this thesis via the

development of an adaptive control scheme in which the output response is shaped in such

a way that it follows the best portions of the individual response curves when controlled

by individual PIDs. This very technique is applied to the control of CIPS and LFC, under

various constraints. The results obtained via the proposed approach are compared with the

design approaches of the individual controllers.

It is observed that the proposed adaptive strategy outperforms the individual control tech-

niques, thus satisfying the proposed objective and motivation. Not only simulation-based

verification, the hardware setup of CIPS system is also employed to carry out the validation,

whereby it is found that the experimental results match closely with the ones obtained via

simulation. This scheme thus opens up exciting avenues of further research.

• From the design and application of simpler control techniques like QRAWCP scheme, it

can be concluded that, although mathematically complicated and computationally intensive

control techniques promise superior performance than linear controllers, it is not always

necessary to apply these methods. This has been observed from the stabilization of CIPS

and performance improvement of DC servo system using the proposed QRAWCP scheme.

• In reality, the parametric variations of a system with respect to the nominal values leads to

uncertainty. At this stage, robust stabilization is a primary issue. To handle this, one could

use Kharitonov’s theorem and design a robust PID controller using stability boundary lo-

cus (SBL). The adaptive control scheme proposed in this thesis employed one candidate

controller designed by SBL, thus taking into consideration the problem of parametric un-

certainty.

• The problem of load frequency control is one of the crucial issues in power system theory

and one needs to maintain a constant system frequency and fixed tie-line power to maintain

the faithful transmission and distribution of electric power. Both the QRAWCP and adaptive

control scheme have demonstrated their applicability to this problem, which resulted in a

robust control for single as well as multiple area power systems.
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7.2 Future Scope

Research and development is a never ending process and there is always a possibility of improve-

ment. Though the literature is voluminous, yet there is a scope for further exploration on the work

presented in this thesis. As a result of investigation carried out in implementing QRAWCP and

adaptive control strategies, following aspects are identified that leave rooms for future research:

• The schemes proposed in this thesis can be a benchmark for other real time applications

particularly, power electronics, electrical drives, robotics, process control, aerospace engi-

neering, chemical engineering, etc.

• The proposed schemes can be further applied to a class of nonlinear systems known as

separable systems and a little more effort is needed for the treatment of highly nonlinear

systems so called as non separable systems

• Fractional control theory is a recent development in the area of control engineering, and

it is well known that the best fractional order control outperforms the best integer order

controller. Thus, one could extend the proposed scheme to the fractional domain and strive

to obtain better control along with the use of less control energy.

• As far as the interval systems are concerned, the future direction in this research is to make

more efforts on developing the robust controller design of higher order interval plants.
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Appendix A

Modelling of Cart inverted pendulum

system

A.1 Proof for equations (5.3) and (5.4)

From Fig. 5.1, motions of pendulum around the center of gravity, xG = x+ lcosθ and yG = lcosθ

are given below.

The rotational and horizontal motions of pendulum are shown in (A.1) and (A.2).

γl sinθ −λ l cosθ −ζ
dθ

dt
= J

d2θ

dt2 (A.1)

λ = m
d2

dt2 (x+ l sinθ)

= mẍ+mlθ̈ cosθ −mlθ̇ 2 sinθ

(A.2)

Dynamic equation of the pendulum’s center of gravity in the vertical direction can be written as:

γ =−mlθ̈ sinθ −mlθ̇ 2 cosθ +mg (A.3)

Similarly, dynamic equation for horizontal motion of the cart can be written as:

Mc
d2x
dt2 = F−λ −b

dx
dt

(A.4)

221



Substituting (A.2) in (A.4), we get,

(Mc +m)ẍ+bẋ+mlθ̈ cosθ −mlθ̇ 2 sinθ = F (A.5)

Similarly, for pendulum using (A.2) and (A.3) in (A.1), we get:

(J+ml2)θ̈ −mgl sinθ +mlẍcosθ +ζ θ̇ = 0 (A.6)

Using (A.5) and (A.6), the expression for ẍ can be written as:

ẍ =

(
F−bẋ−mlθ̈ cosθ +mlθ̇ 2 sinθ

(Mc +m)

)
(A.7)

Replacing (A.7) in (A.6) and solving for θ̈ , we get:

(J+ml2)θ̈ −mgl sinθ

+ml

(
F−bẋ−mlθ̈ cosθ +mlθ̇ 2 sinθ

(Mc +m)

)
cosθ

+ζ θ̇ = 0

(A.8)

Rewriting (A.8), we get (A.9),

{J(Mc +m)+ml2Mc +m2l2−m2l2cos2
θ}θ̈

+(ζ θ̇ −mgl sinθ)(Mc +m)

+ml(F−bẋ)cosθ +m2l2
θ̇

2 cosθ sinθ = 0

(A.9)

Further, rearranging (65), we get (66),

θ̈ = ml



 (F−bẋ)cosθ +mlθ̇ 2 cosθ sinθ

−(ζ θ̇/ml−gsinθ)(M+m)


(J(Mc +m)+ml2Mc +m2l2sin2

θ)


(A.10)
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Substituting (A.10) in (A.7) and rewriting the expression for ẍ, we get the following equation:

ẍ =



 (J+ml2)
(

F−bẋ+mlθ̇ 2 sinθ

)
+(ml cosθ)(ζ θ̇ −mgl sinθ)


(J(Mc +m)+Mcml2 +m2l2sin2

θ)


(A.11)
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Appendix B

Mathematical modelling of RIPS

The rotary pendulum system, also known as a Furuta Pendulum [79, 217, 218], is a classic bench-

mark system often used to teach modelling and control in educational institutes. The free-body

diagram of a basic RIPS is depicted in Fig. B.1. The rotary arm, which is attached to the motor

pivot, makes an angle θ with X-axis in X-Y plane. Pendulum , which is attached to the end of

the rotary arm, makes an angles α with Z-axis in plane that is perpendicular to rotary arm. θ

denotes rotatory arm position and α denotes pendulum angle. The RIPS parameters are rotary

arm mass (mr), pendulum mass (mp), rotary arm length (Lr), length of pendulum (Lp), rotary

Figure B.1: Model of rotary inverted pendulum
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Table B.1: Quanser Qube servo2 setup parameters

Symbol Description value units

DC motor
Rm Terminal resistance 8.4 Ω

kt Torque constant 0.042 N.m/A
km Motor back-emf constant 0.042 V/(rad/s)
Jm Rotor inertia 4×10−6 kg.m2

Lm Rotor inductance 1.16 mH
mh Load hub mass 0.0106 kg
rh Load hub radius 0.0111 m
Jh Load hub inertia 0.6×10−6 kg.m2

Load Disk
md Mass of disk load 0.053 kg
rd Radius of disk load 0.024 m

Rotary pendulum
Mr Mass of rotary arm 0.095 kg
Lr Length of rotary arm 0.085 m
Jr Moment of inertia at pivot MrL2

r/12 kg.m2

Mp Mass of pendulum 0.024 kg
Lp Length of pendulum 0.129 m
Jp Moment of inertia at pivot MpL2

p/12 kg.m2

arm movement of inertia (Jr), pendulum movement of inertia (Jp), viscous damping coefficient of

rotary arm (Dp) and pendulum (Dr), gravitational constant (g) and applied torque (τ).

The equations ofmotion (EOM) for the pendulum systemwere developed using the Euler-Lagrange

method. The complete derivation of the EOM has been considered from [79], The resultant non-

linear EOM are: (
mpL2

r +
1
4

mpL2
p−

1
4

mpL2
p cos(α)2 + Jr

)
θ̈

−
(

1
2

mpLpLr cos(α)

)
α̈ +

(
1
2

mpL2
p sin(α)cos(α)

)
θ̇ α̇

+

(
1
2

mpLpLr sin(α)

)
α̇

2 = τ−Drθ̇

(B.1)

1
2

mpLpLr cos(α)θ̈ +

(
Jp +

1
4

mpL2
p

)
α̈

− 1
4

mpL2
p cos(α)sin(α)θ̇ 2 +

1
2

mpLpgsin(α) =−Dpα̇.

(B.2)
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A servo motor applies torque to rotary arm with equation:

τ =
km

(
Vm− kmθ̇

)
Rm

(B.3)

When the non-linear EOM are linearised about the operating point, the resultant linear EOM for

the inverted pendulum are defined as:

(
mpL2

r + Jr

)
θ̈ − 1

2
mpLpLrα̈ = τ−Drθ̇ . (B.4)

and
1
2

mpLpLrθ̈ +

(
Jp +

1
4

mpL2
p

)
α̈ +

1
2

mpLpgα =−Dpα̇. (B.5)

Solving for the acceleration terms yields:

θ̈ =
1
JT

(
−
(

Jp +
1
4

mpL2
p

)
Drθ̇ +

1
2

mpLpLrDpα̇

+
1
4

m2
pL2

pLrgα +

(
Jp +

1
4

mpL2
p

)
τ

) (B.6)

and
α̈ =

1
JT

(
1
2

mpLpLrDrθ̇ −
(

Jr +mpL2
r

)
Dpα̇

−1
2

mpLpg
(

Jr +mpL2
r

)
α− 1

2
mpLpLrτ

) (B.7)

where

JT = JpmpL2
r + JrJp +

1
4

JrmpL2
p. (B.8)
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Appendix C

Data for the 39-bus New England Power

System

The 39-bus New England Power System [213, 214] , as shown in Fig. C.1, is used in the thesis

for different simulations as given in the respective chapters. It is simplified representation of the

345 KV transmission system in the New England having 10 generators, 29 load buses and 46

transmission lines. The bus data and transmission line data are given at 100 MVA in Table C.1

and Table C.2 respectively

Figure C.1: Single line diagram of New England 10 machine 39 bus power system.
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Table C.1: Bus data for the 39-bus New England Power System (in p.u.)

Bus
No. PG,i PD,i QG,i QD,i Qmax

G,i Qmin
G,i Vi V max

i V min
i

Base
kV

1 5.5270 0.9200 1.6870 0.0460 2.0000 -1.5000 0.9800 1.06 0.94 345
2 10.0000 11.0400 2.4250 2.5000 4.0000 -2.0000 1.0300 1.06 0.94 345
3 6.5000 0.0000 1.7050 0.0000 2.7000 -1.3000 0.9800 1.06 0.94 345
4 5.0800 0.0000 1.6730 0.0000 2.3000 -1.0000 1.0100 1.06 0.94 345
5 6.3200 0.0000 0.7600 0.0000 2.5000 -1.2000 0.9900 1.06 0.94 345
6 6.5000 0.0000 2.6690 0.0000 2.5000 -1.3000 1.0400 1.06 0.94 345
7 5.6000 0.0000 2.4150 0.0000 2.5000 -1.1000 1.0600 1.06 0.94 345
8 5.4000 0.0000 0.2390 0.0000 2.2000 -1.1000 1.0200 1.06 0.94 345
9 8.3000 0.0000 0.6310 0.0000 3.2000 -1.7000 1.0200 1.06 0.94 345
10 2.5000 0.0000 1.7670 0.0000 1.8000 -0.5000 1.0400 1.06 0.94 345
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0300 1.06 0.94 345
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0200 1.06 0.94 345
13 0.0000 3.2200 0.0000 0.0240 0.0000 0.0000 0.9790 1.06 0.94 345
14 0.0000 5.0000 0.0000 1.8400 0.0000 0.0000 0.9450 1.06 0.94 345
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9470 1.06 0.94 345
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9480 1.06 0.94 345
17 0.0000 2.3380 0.0000 0.8400 0.0000 0.0000 0.9400 1.06 0.94 345
18 0.0000 5.2200 0.0000 1.7600 0.0000 0.0000 0.9410 1.06 0.94 345
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0060 1.06 0.94 345
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9540 1.06 0.94 345
21 0.0000 2.7400 0.0000 1.1500 0.0000 0.0000 0.9780 1.06 0.94 345
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0070 1.06 0.94 345
23 0.0000 2.7450 0.0000 0.8400 0.0000 0.0000 1.0060 1.06 0.94 345
24 0.0000 3.0860 0.0000 0.9220 0.0000 0.0000 0.9670 1.06 0.94 345
25 0.0000 2.2400 0.0000 0.4720 0.0000 0.0000 1.0190 1.06 0.94 345
26 0.0000 1.3900 0.0000 0.1700 0.0000 0.0000 1.0050 1.06 0.94 345
27 0.0000 2.8100 0.0000 0.7550 0.0000 0.0000 0.9850 1.06 0.94 345
28 0.0000 2.0600 0.0000 0.2760 0.0000 0.0000 1.0090 1.06 0.94 345
29 0.0000 2.8350 0.0000 0.2690 0.0000 0.0000 1.0120 1.06 0.94 345
30 0.0000 6.2800 0.0000 1.0300 0.0000 0.0000 0.9800 1.06 0.94 345
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9510 1.06 0.94 345
32 0.0000 0.0750 0.0000 0.8800 0.0000 0.0000 0.9310 1.06 0.94 345
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9520 1.06 0.94 345
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9500 1.06 0.94 345
35 0.0000 3.2000 0.0000 1.5300 0.0000 0.0000 0.9510 1.06 0.94 345
36 0.0000 3.2940 0.0000 0.3230 0.0000 0.0000 0.9670 1.06 0.94 345
37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9750 1.06 0.94 345
38 0.0000 1.5800 0.0000 0.3000 0.0000 0.0000 0.9750 1.06 0.94 345
39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9790 1.06 0.94 345
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Table C.2: Transmission line data for the 39-bus New England Power System (in p.u.)

Line
No.

From
Bus No.

To
Bus No. R X Bch(full)

Transformer
Tap-setting

Max.Line
Rating

1 39 30 0.0007 0.0138 0.0000 1 5.0000
2 39 5 0.0007 0.0142 0.0000 1 6.5000
3 32 33 0.0016 0.0435 0.0000 1 3.0000
4 32 31 0.0016 0.0435 0.0000 1 3.0000
5 30 4 0.0009 0.0180 0.0000 1 6.5000
6 29 9 0.0008 0.0156 0.0000 1 9.0000
7 25 8 0.0006 0.0232 0.0000 1 6.0000
8 23 7 0.0005 0.0272 0.0000 1 6.0000
9 22 6 0.0000 0.0143 0.0000 1 7.0000
10 20 3 0.0000 0.0200 0.0000 1 7.0000
11 16 1 0.0000 0.0250 0.0000 1 6.0000
12 12 10 0.0000 0.0181 0.0000 1 4.0000
13 37 27 0.0013 0.0173 0.3216 0 4.0000
14 37 38 0.0007 0.0082 0.1319 0 4.0000
15 36 24 0.0003 0.0059 0.0680 0 4.0000
16 36 21 0.0008 0.0135 0.2548 0 4.0000
17 39 36 0.0016 0.0195 0.3040 0 6.0000
18 36 37 0.0007 0.0089 0.1342 0 4.0000
19 35 36 0.0009 0.0094 0.1710 0 4.0000
20 34 35 0.0018 0.0217 0.3660 0 3.0000
21 33 34 0.0009 0.0101 0.1723 0 4.0000
22 28 29 0.0014 0.0151 0.2490 0 4.0000
23 26 29 0.0057 0.0625 1.0290 0 3.0000
24 26 28 0.0043 0.0474 0.7802 0 4.0000
25 26 27 0.0014 0.0147 0.2396 0 4.0000
26 25 26 0.0032 0.0323 0.5130 0 4.0000
27 23 24 0.0022 0.0350 0.3610 0 4.0000
28 22 23 0.0006 0.0096 0.1846 0 4.0000
29 21 22 0.0008 0.0135 0.2548 0 6.5000
30 20 33 0.0004 0.0043 0.0729 0 4.0000
31 20 31 0.0004 0.0043 0.0729 0 4.0000
32 19 2 0.0010 0.0250 1.2000 0 4.0000
33 18 19 0.0023 0.0363 0.3804 0 4.0000
34 17 18 0.0004 0.0046 0.0780 0 4.0000
35 16 31 0.0007 0.0082 0.1389 0 4.0000
36 16 17 0.0006 0.0092 0.1130 0 5.0000
37 15 18 0.0008 0.0112 0.1476 0 4.0000
38 15 16 0.0002 0.0026 0.0434 0 5.0000
39 34 14 0.0008 0.0129 0.1382 0 2.5000
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