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1. INTRODUCTION

Traffic networks which includes many kinds of networks like highways, streets etc., provide
convenient and economical conveyance of passengers and goods. The basic activity in
transportation being a trip, which is defined by destination and origin, arrival and departure
times and the route taken for travel. Different trips interact with each other on the network to
produce complex pattern of traffic flows. Since traffic conditions in major cities and urban
conglomerations are becoming increasingly congested, affecting the overall operational
efficiency of networks as well as the cost ofstravel-of gach individual trip, modelling of traffic
flow is being seen as essential-rather than secondary process in traffic engineering and the
policy making process intransport sector.

Traffic flow is one such phenemenon which is highly difficult to. model mathematically due to
its extreme complexity. Theimost basic traffic scenario is a oneg dimensional road with one-
way traffic..Thisis a stimple scenario to model as we have-eliminated various, factors.

There are three main approaches taken to model traffic flow;s microscopic approaches,
macroscopic approaches and mesoscopic approach. Microscopic models map traffic flow as a
set of Individualyehicles, while macroscopic models map traffic flow as fluid flow where each
vehicle is analogous to a molecule-of fluid. Mesoscopic models describe vehicle'behaviour in
aggregate terms such as in_probability distributions. They essentially cover the ground in
between a macroscopic and a microscopic model.

In this report, the main emphasis is on macroscopic models. Macroscopic models place more
emphasis on traffic flow as a continuum versus a collection of individual vehicles. Continuum
traffie= flow modelling generally uses a macroscopic perspective, although micrescopic
principles can be incorporated into continuum models.

1.1 TrafficcModelling

In modelling.traffic, it is necessary. to visualize a coupled-system-consisting-the car and the
driver. The driveris responsiblefor operating-the-carand making itbecome a part of the traffic
flow. Thus the traffic is.not just a mechanical process but.one in which.human decisions are
involved. But on a whole, this individual vehicle isnot as important as the overall flow of
traffic. Macroscopic models of traffic_flow exploit these conditions=and use them to come up
with a set of assumptions. Whensthese cars are viewed as a moving gas or liquid, it is called a
continuum model of traffic flow. When=the traffic theory is based on individual drivers
responding to surrounding traffic, it is called car-following theory. Here we will look at the
background and evolution of traffic models (van Wageningen-Kessels et al. 2014).

1.1.1. Fundamental Diagram

Traffic flow models are based on the assumption that there is some relation between the
distance between vehicles and their velocity. This relation between distance and velocity was



first studied by Greenshields (van Wageningen-Kessels et al. 2014) and called the fundamental
relation. Originally, Greenshields studies the relation between spacing (s) and velocity (v).
However, the fundamental relation can be expressed in other variables such as density (q,
average number of vehicles per unit length of road) and flow (g, average number of vehicles
per time unit).
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Figure-1 Branch of Traffic Flow models showing fundamental diagram family

Greenshields proposed a linear relationship in the density-velocity plane and parabolic in
density-flow plane, whereas Daganzo (Daganzo 1995) relation is triangular in the density-flow
plane. Smulders is a combination of both. It is parabolic for low densities and linear forhigher
densities. Drake proposes a characteristic curve for the density-flow plot. However, abserved
density flow plots show-a wide scatter. These are being explained by-a range of phenomenon
like capacity drop, hysteresis and the 3-phase fundamental relation proposed by Kerner(Kerner
2004)
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Figure 1-2 Different shapes of Fundamental Relations
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Figure 1-3 Fundamental “relations’ based on scatter in observations

Fundamental relations are important in all families of traffic models since.in any model, traffic
is assumed to_be in asstate of fundamental relation or proceeds toward it. Macroscopic and
mesoscopic models explicitly includeit-but microscepic'models have some assumptions on the
fundamental relations*which differ from model to model.

1.1.2. Microscopic Moedels

Microscopic models, one of the earliest models, are based on the assumption that drivers adjust
their behaviour based on the vehicle they are following. They describe both the longitudinal
(car-following) and lateral (lane-changing) behaviour of vehicles.
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Figure 1-4 Details of traffic models showing microscopic model family

1.1.2.1. Safe-Distance-Model

The earliest car following models were based on a safe following distance. Pipes [7] proposes
a model where the position of the leader is expressed in terms of the position of the follower.

X1 =X, +d + Tv, + V1

Wheresd is the distance between vehicles at standstill and Tvy is the legal distance aSsumed by
Pipes. Kometani-and Sasaki [8] derive an-improvised version of this'model with the help of
Newtonion equations of motion. They replace distance at standstill “d? with a velocity
dependangterm and alse include a time delay, t.

1.1.2.2 Stimulus-Response Model
These are based on.the assumption that/drivers accelerate or decelerate based on three stimuli;
own velocity (vn), spacing with.leader (sn) and relative velocity-with leader (sn”). It is called the
GHR Model named after Gazis et al9].

(Vn—1(t)) s (t—1)
(su(t — 1))

Where Y is the sensitivity parameter. Sn(t-1) is the stimulus and an(t) is the response, hence it
is called the stimulus response model.

a,(t) =y

Recent improvements over this model include the optimal velocity model which states that the
driver accelerates or decelerates until their optimal velocity, a function of headway.



an(t) =y (0" (5, (1)) = va (1)
v*(s) = Ve (tanh(s — ¢;) + ¢,)

1.1.2.3 Action Point Model

This branch of car-following model is based on the fact that a driver reacts to a situation only
when he/she approaches a vehicle. There is a proposed perception threshold before a driver
reacts. The assumptions incorporated in this model are that at large headways, driving
behaviour is least affected by other vehicles. Whereas at small headways, it is only influenced
by other vehicles.

1.1.2.4 Conclusions

Microscopic traffic mogdels are often criticizedsfor having too many=parameters. Models like
the one proposed by Gazis et al [9] have parameters ¢l-and c2 which don’t have a physical
interpretation. Qthermodels haveiparameters which ‘are 'too difficult.to observe or tabulate
which makes the whole exercise futile. Thatis why-eontinuum models havinglesser parameters
are preferred.

1.1.3 Macrgoscopic Models

These models treat traffic as-a continuum where individual vehicles are not modelled. However
aggregates variables such as flow and density are used. Some. of the models are explained
below:.
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Figure 1-5 Details of traffic models showing macroscopic model family



1.1.3.1 Kinematic Wave Models
Macroscopic traffic flow models were first introduced by Lighthill and Whitham [2] in 1955
and independently by Richards in 1956. This is commonly known as the LWR Model. It is
based around the assumption that the number of vehicles is conserved between any two points
if there are no entrances (sources) or exits (sinks).The dynamics of traffic are given by a partial
differential equation:

dp 0

5 55 (4(P) =0
Where flow (q) is a function of density (p). This model has been used to analyse a number of
traffic flow problems. Notably, both Lighthill & Whitham.and Richards used the model to
demonstrate the existence of shockwaves in“transport systems. The main drawback of this
model is that the vehicles are assumed to-attain the equilibriumevelocity almost instantly after
the change of state, which.implies infinite lacceleration. /Another idisadvantage is that the
transition froma free"flow, regimeto a congested regime always occurs at the same densities.
Further, the model does not contain-any inertial effects, which implies thatithe vehicles adjust
their speeds instantaneously, mor does it contain any diffusive.terms, which would model the
ability of drivers*o 1ook ahead and adjust to changes in. traffic conditions, such as shocks,
before ;they,"arrive=at the vehicle itself.” Some variants of the LWR model haye-proposed
bounded-acceleration, while a'stochastic kinematic wave model uses breakdown probabilities
to predict that-a breakdown may occur at different densities.
In orderto address some of the limitations, Lighthill & Whitham propose a second-order model
of the form

where T is the inertial time constant for speed variation, c is the wave speed (obtained from the
relationship between g=and p, and D is a diffusion coefficient-representing how vehicles
respond to nonlocal changes in traffic conditions.

1.1.3.2.Multi class Kinematic Wave Models

A multi class multi-lane model was proposed by Daganzo [4] based on.the LWR model which
distinguishes betweenitwo types.of drivers: slugs who drive.slow and ‘don’t evertake whereas
rabbits who drive fast and.overtake more.often.

Wong and Wong [6] first introduced a class specific version of the conservation equation.

2p, 0qy
Tz

Here py represents class specific density. Effectively, the vertical axes of the density—velocity
fundamental relations are scaled differently for each class. It has been found that multiclass
models are able to reproduce phenomena related to scatter in the fundamental diagram better
than mixed-class models.
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Figure'1-6 Different shapes of two-class fundamental relations.

The model provided by Nair et al is a recent multi class kinematic. wave model. It is’known as
the porous flow madel. It is different in the sense that it considers heterogeneous traffic instead
of homogenous. It assumes that small vehicles can drive through pores which in this case are
the.gaps between two vehicles. This model tries to explain traffic which is giscontinuoussand
disordered. It also has different types of vehicle classes like bikes, cars etc @s is.generally the
case with Indian conditions.

1.1.3.3 Higher Order Models

Higher order models give an equation which describes the acceleration towardsithe equilibrium
velocity that has been'discussed in the fundamental relations. Payne [10] derived a macrescopic
traffic flow=model fromra simple stimulus—response car-following model. It yielded.a model
consisting Qf the fundamental relation and two-coupled partial differential equations, hence the
name higher-order model.

6v+ dv_vx*(p)—vsiciap
3 02T Woutar pax

Here v*(p) is the equilibrium‘aelacity described in the fundamental relations. But several
authors have argued that higher-order models are-flawed because they are not anisotropic.
Anisotropy generally means that the speed of the traffic wave cannot be faster than the speed
of individual vehicles inside the flow. Hence improvements were made to the model and
instead of Payne’s velocity,

? d
5 (v+ (@) +vo—(v+pp) =0

The p(p) is the pressure term. This implies that when parameters have been correctly chosen,
the characteristic speed cannot be faster than vehicles.

7



1.1.3.4 Conclusions

Although an analogy is assumed between a traffic flow and fluid flow, the number of particles
in a traffic flow is extremely small as compared to a fluid. This means that the descriptive
accuracy achieved by these models will never be the same as that in fluids. Moreover, the so
called particles in the flow, i.e. the drivers, all behave differently and change behaviour over
time and distance unlike fluid particles which obey simple physical laws. However if the level
of descriptive detail is overlooked or compromised a little, then the continuum assumption can
prove reasonable.

1.1.4 Mesoscopi¢ Models

This class of models were originally developed to fill voids or gaps left by macro models which
consider traffie_flow as.that of a-fluid and find analogues betweenthe two and micro models
which see'the individual vehicles in a traffic flow. They describe vehicle behaviour in aggregate
terms. It.cansbe probability distributions.
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Figure 1-7 Details of traffic. models.showing-mesoscopiesmodel family

1.1.4.1 Gas-Kinetic Models

The continuum models of traffic flow presents an analogy between traffic and fluid flow.
Similarly gas kinetic models describes these motions in terms of gas particles. When applied
to traffic flow, these models describe the dynamics of velocity distribution functions of
vehicles.



ap ap ap ap
ot *vax = (50)... * (1)
ot '« ax  \ot) .  \at),

With reduces phase space density g. At any time t, the expected number of vehicles between
location x and x & dx that drive with a velocity between v and v & dv is the integral of the
reduced phase-space density over this two-dimensional area [1].

x+dv v+dv

f J px, vyt)dxdy =~ p(x, v, t)dxdv
X v

1.2. Need for'Study

This reportaims to Study the traffic flow modelling incorporating driver’s forecast gffect. These
type ofsdriving behaviour maodels try to capture a drivers’ decisidons when manoguyring in
various traffic conditions. They are essential for traffic simulation and for several other fields
of transportation science such as studies for safety and capacity, in which-aggregate traffic flow
characteristics might be needed.

It is highly required since the ability to map traffic conditions can save a lot of time and effort
as the future predictions can be done accordingly and steps taken to ensure that those scenarios
do not play out the way they did in the simulations.

This.can be used in traffic reduction which means accident prevention, better travel times.since

flow is managed efficiently.-All these can be done theoretically to get a first glance of the
outside situation and then if required further predictions or models can be developed:

1.3. Objectivesof the Study

The main objectives of the study are:

1. The macroscopic model or equation is solved-and basic parameters are'measured to check
whether it can be used-any further before calibration.

2. The model to be used to simulate some default conditions to authenticate its seriousness.

3. Compare it with a previous model and look for signs of improvement



1.4. Composition of Dissertation

The entire thesis is divided into 6 chapters.

Chapter 1 gives a general idea about traffic modelling, a brief history about various models and
the current scenario along with the merits and demerits of the various methods.

Chapter 2 is the background study required to proceed with the modelling. Various derivations
of the basic formulas and ideas is given to be used in the following chapters.

Chapter 3 is the literature reviewsofithe dissertation. It gives-a brief about the main sources of
literature helpful in the thesis.

Chapter 4 is the research methodology ‘wherefthe traffic model is analysed using numerical
methods.

Chapter 5 is Results and Discussions where graphs are given.and its"occurrenge is,discussed.

Chapter 6 is the limitations and future scope of the study

10



2. MATHEMATICAL BACKGROUND STUDY

2.1. The Conservation Law

The fluid flow analogy is where macroscopic mathematical modelling rests, where the traffic
stream is treated as a 1-D compressible fluid. Any conservation law states that the change in
some physical quantity in a region of space is equal to the net influx, provided there are no
sinks.

If in a one lane road, p(x,tydenotes the density at some interval (x1,x2), then the integral of the
conservation law can be,written as

x2

d
dt f p(x t)dx —fx x1 fx X2

x1

The left hand side can be written as f p - dx and right hand side as f f — dx,We can rewrite

(1) as
d 9,
j L + —f dx =
af
6t 0x — )

This isithe.conservation_law or.also known the continuity equation.in its partial.differential
form.

Since f takes the form £=f(p(xst)), it is safe to assume that v(p)= vo(1—L

).

pmax.

flo) = v(p) xp
= vy (1 -

)*p for 0 <p < pmax

Pmax

Let us set o as the value for p at which'f.is.maximised.

Then g = £Ta% . (4)

a. flow with respect to p greater than o is referred as heavy traffic
b. flow with respect to p lower than o is referred to as light traffic

11



2.2 Characteristics

If the equation has to become solvable, the initial density distribution must be given,

pe +f(P)y =0, XER,t>0
p(x,0) = po(x) , x€ER

Level curve of x = x(t) on the x-t plane is given by

p(2(t), (t) = constant==P,

Differentiating w.r:t.t and using pg=-f(p) * px

0 =F D, xlt) T+ pr = p,, (X" (B)— (B

It can be seen that x2(t) = £(Po) which comes down to a straight curye as a charagteristic in the
x-t plane’ Here {'(Po) iS the signal speed at which wavefront will"propagate. Sifce it is a
derivative termgit is the slope of the equation also.

2.3. Discontinuities and the Jump

Despite having initial data, when the characteristics are drawn, we. find that-a continuous
solution is not possible after a certain point of time, since different concentration characteristics
interact with each other.

To let us caleulate 'the solution after the discontinuity, generalisation of the solution concept
needs to be done. The below equation

X = f’(Po(xo))t + Xo
0.= po(xo)

the above eqn is multiplied with a test function ¢ and integrated by paris

oo

j j (oo oW s + j (106, 0)dx = 0,v ¢ € C
0 — 00 o

Now let p+ = p(x(t) + 0,t) and p- = p(X(t) — 0,t) be the values of p on the left and the right.

The conservation law gives that

d d x(t) b
j pdx + f pdx) =
a x(t)

b
flp(a, ) = f(pb, 1) = EJ pdx =E<

a

12



x(t) b
= j pedx + p~x'(t) +f pedx — p*x'(t) = [pe = —f3]

a x(t)

= f(p(a, ) = f(p(b, )+ flp*) — f(p7) — (p* — p)x' (V)

Solving for x’, we can find that

e —fp7)
" — =S
p-—p
That last expression is known as'the jump condition and it further proves the above mentioned
case that the slope of the.graph between two points gives the speed-of the shock waves.

xX'(t) =

2.4. The Riemann Problem

The Rigmanh problem is"a conservation law combined with a piecewise constant with just one
single discontinuity. Let us consider the example below:

(P, x<0
a(x,0) = 1P 28

Where pl and pr corresponds to an arbitrary point to the left-and right side of the data
respectively. The points are chosen in such a way that they are not too far from the surface to
give appropriate values closest to the actual value. And they are not too close to the Surface
that they start to interact with the surface itself.

Case 1: when p1 <Ppr

The shock acts as“a barrier between the two sides. The characteristics from.either side'go into
the shock:

Figure 2-1 Shock Waves

13



Case 2: when p1 > pr

Theoretically, it results in the jump being taken from infinitely many places or suggests
infinitely many solutions. The characteristics travel away from shock.

Figure 2-2 Rarefaction waves

14



3. LITERATURE REVIEW

3.1. Formation of a Continuum Model

One of the first continuum models was proposed by Lighthill and Whitham (1955) and
Richards (1956) [2]. It provided an analogous between fluid flow and traffic flow. It was
assumed that there is a conservation of the number of vehicles in a road section given that there
are no entry or exit ramps.

Since fluctuation of speed-is nat permitted around equilibrium speed, the model is unable to
explain non equilibrium,conditions which are what real life problems-are based on. Hence the
model was improvised:by Lighthill et al and a new model containing+nertial time constant, T
and diffusion coefficient, D, “were intreduced.~Fhe..inertial time. constant accounted for
adjustments in=speed. implying that the decision to accelerate-or brake is not instantaneous. The
diffusion Ceefficientimplies for the dependency of flow on concentration gradient:

3.2. Three'Phase traffic Theory

(Kerner 2004) introduces us to the concept of three phase traffic flow and their applications in
traffic flow modelling. Understanding traffic congestion is the key to effeCtive management
and-control of transportation. According to this theory, there are twotypes of flow: free-flow
and congested flow. Further subdivisions of congested flow are synchronized flow and wide-
moving jams.

The difference between a synchronized flow and a wide moving jam is that-in wide moving
jam, the velocity-of the jam front remains the same even after the passing of the bottleneck or
other complex traffic states. But in synchronized flows, the jam front velocity is fixed at the
bottleneck;smeaning after the bottleneck the flow is converted to a free flow.

Flow rate, q
A " e
nehtomzed
(fFee) Sy i
9 pinax
I:'.‘i-:-,.' i)
max

0 (free)  pensity, p

p max

Figure 0-1 Density-flow plot for 3-phase traffic flow.
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Curve F shows free flow while the dashes region is synchronized flow for a multi-lane
homogenous road. The dotted line is the minimum possible speeds in steady states of
synchronized flow.

This graph shows that for a given density, there a multitude of flows or speeds and vice-versa.
This means that there is no single fundamental diagram for the steady state speed for a
synchronized flow unlike other models. This also explains the scattering of flow in a better
way.

The results of this work are important since previously all mathematical models had to provide
steady state solutions which belong to a curve going, through the origin and has at least one
maximum.

3.3. A new.macroimodel for traffic flow with consideration
of DFE

In this paper, (Tang et-al. 2010a) discusses about various developments, in macroscopic traffic
flow models. Acceleration equations of improved optimal velocity madel; multivelocities
difference model are given. Even though the models explain a magnitude of“:eomplex
phenomenon, they cannot be used to study Driver’s Forecast Effect since they do not consider
it in the acceleration equation. With the advent of ITS, the forecast information will be crucial
and driver’s will adjust acceleration based on this information.

First the acceleration equation with DFE coefficient is given:

dv,(t)
Gt e

Here B is the coefficient for DFE, k is the reactive coefficient in the Qptimal Velocity model
and t isthe time step of'the driver’s forecast.. The first term is the acceleration,from normal
conditions while the second'term is the acceleration from the forecast information.at time t-+r.

ic (V (8an (8)) = va(6)) + Bre(V (Dt (& + 7) v+ )

For the new'macro model, the micro variables are converted into macro variables and the non-
linear terms are neglected.

( dp  d(pv) ~
T =4
v OV | (1'F B) (Ve (p) — )

—+ (v = ' (B)6) 5=

Jt T+ pt
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3.4. Macro Modelling and Analysis of Traffic Flow using
road width

(Tang et al. 2011)have proposed a traffic model which takes into consideration the road width.
The changes in road width is a major reason for the decrease or increase in speeds of the flow
in general and for drivers in particular. The changes can be in the form of disturbances due to
activities like construction work or in the event of an accident. This paper in particular focuses
on a speed gradient model since density gradient models were found to have characteristic
speeds greater that the vehicular speed which resultediin a backward movement of traffic under
certain situations.

Hence they proposed an improvised model which is‘anisotropic, heteregeneous and which
accounts for theichange of road width.

pt+ (pv), =0,

ve—v_l_ +vdA
Cop + ——
0% * Gdx

Ve + VU, =

Here co Is the speed; of propagation for a disturbance whereas the term i%v accounts for the
gradient of road width where A is the road width and o is the reaction time for the driver:

This model portrays a directly proportional relationship of road width and equilibrium speed
and flow. It investigates the effects of small disturbances in width to the speed and finds:that

the under moderate to high densities the effect of disturbances is .heavy; while under low
densities, it is negligible.

3.5. A new continuum model for traffic flow and numerical

tests
The model proposed-in-the paper (Jiang et al. 2002) is given below
k.0 (kw)
St o 9t
ou ou ‘up,—=u du
E +u a — + ¢ a—x'

The model successfully removed various=discrepancies occurring in previous models like
isotropic behaviour etc. it successfully proved that the characteristics equation is not greater
than flow speed at any point in the interval. Further numerical tests showed that linear stability
analysis and local cluster effect is also successfully reproduced.

But the drawback is that at higher densities, the phenomenon of stop and go traffic takes
frequent occurrences and the model is incapable of reducing these type of conditions.
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4. RESEARCH METHODOLOGY

4.1. Overview

The focus of this study is to test out a macroscopic traffic flow model to find out how well it can map
traffic conditions and find its true potential. Since these models are purely deterministic, it is considered
that drivers always behave according to the same laws and are predictable as well. The model predicts
a uniform model at low densities whereas after.a certain threshold density, flow becomes unstable as
small perturbations are amplified.

The model considered here (Tang et al."2010b) is the one developedrwith consideration for driver’s
forecast effect

( 9 o(pv) _
ot tan :
ov v (1% B(va(p)'= )

5 + @B Frip (o)==

Jt L+ Pt

Here, 3 is the driver’s forecast effect.

The above equation is similar to the advection equation. The term advection means transport
of a substance by bulk motion. Here it might denote the -movement of a disturbance in the
traffic:flow and the speed with which-it is transferred along the stream,

It is convenient to write this system in vector form, i.e.,

U + F(U) = S(U) 2

Where
- (P — pv _ 0
U= (v) , F(U) = (v—[)’rue(h)co)’ 5(U) = <(ve(p)—v)w>

(T+B7)

Here U is the vector of conserved variables, F(U) is the flux vector and S(U) is the vector of
source terms.

The homogenous form of this equation is

U+ F(U)x =0
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We can linearize the equation by writing in the form Ut + J*Ux = 0 where J is the Jacobian
Matrix defined by

0F1 0F1

J_aF(U)_ U1 9 U2

T 9u \9F2 O0F2 3
oU1 0U2

Where, U = (1) = (?).and "FUY= (B)= (peplobcc)

since we have to wkite F.in terms.of U, we convert the Fimatrix to the follewing,

F(U)=( U1+U2 )

Ul= B‘L’ue(h)co
Where the term STu(h)cg is a constant.

it is easily shown that the Jacobian matrix J is

F (%2 e ﬁg«tle(h)co>

Therefore, Ut + J*Ux = 0 becomes

U2 U1 g
() + ( 0 1-ptu, (h)c0> . (U—BTZZ(h)Co) N

The Jaeobian matrix'J has two eigenvalues 1, = v — Btu,(h)cy and Az= Vv

These are'the characteristic speeds of the model. Here we can see that at no time interval, these
characteristic speeds will be greater-than the flow velocity. Since the-characteristic speeds
represents the speed ofinformatian, it can be safe to assume that it cannot travel from upstream
to downstream. This signifiesiis that the-driver will not be affected by vehicles from behind.

As we can see thatsthe eigenvalues are real and distinct which classifies the above equations as
hyperbolic PDEs. The-solutions of hyperbolic equations are distinctive, in the sense that they
are wave-like. Disturbances generally have a-finite propagation or perturbation speed. In the
case of the above equation, cois the speed. of small perturbations and it is equal to e/ Bt + T >
0.

4.2. Numerical Simulations

There are different types of numerical methods:

1. Method of characteristics
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2. Finite Element Method
3. Finite Difference Method
4. Finite Volume Method

Generally, method of characteristics is not used for hyperbolic PDEs since they don’t
necessarily contain exact solutions. Some earlier models like LWR model can be solved using
this method. Hence FEM, FDM or FVM are used. In this case, we go with FDM to provide
numerical solutions.

Before we proceed to carry out the solution; we/have to look at the numerical scheme of the
above mentioned equation, sirice in spite ofebeing a hyperbalic system, it is not possible to
write it in a conservative'scheme. Henee we uséupwind scheme, to carry out the discretization.

In this, all continuous-functions, ymodels, variables ‘etc.-are transferred into their discrete
counterparts. This enables'the user to carry-out suitable numerical evaluation; albeit with some
approximations,

t
e = i+ Vit oty = i) 2Pk (Vi Vi) g
if vpt < Bruf, (hit)co

t
v = 4 (e (o — Vi) @it = o)
At(1+ pB) ’
W(Ue(plrcn) u v}r{n)
Else

At

TS P S (o =T I V)
At(1+ )
T p R ) 6

Here a first-order upwind scheme has been used to convert the continuous variables in the
hyperbolic PDE to discrete variables. Note that the notations k, m, At, Ax denote space index,
time index, time step and special step respectively.

px™ and vk™ are density and speed at the corresponding point (k,m).
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4.3. Shock and Rarefaction Waves

By definition, shock waves occur when a particular stream of traffic with certain characteristics
meets another stream with different characteristics.

As pointed out by Daganzo, the realistic description of shock fronts in traffic is a particularly
difficult problem. We will investigate how the traffic flow fronts between a congested and a
nearly free traffic evolve under two Riemann initial conditions. These two initial conditions
are:

-. .,0111 =10.04, 1 pcli - 0-18,- u 7
d 02 =018, 52=.0.04 i 8

Where py and pq”ate upstream and downstream:densities for cases.1 and 2 respectively.

I ! | . . u
The plat below shows a'theoretical representation of shockwaves in traffic flow. "=~
- . Riemann Conditions X
0.2 |
| 0,016 |
2 012,
§ 0:08 i
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Figure 0-2 Shock Wave Fronts
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The above plot shows shock waves. The changing colour gradients re the shock fronts and the
empty area has almost zero densities or free flow speeds.

The initial speeds are

1,2 __ 1,2 1,2 __ 1,2
Uy —ve(pu )» vy = Ve(py") 9

We use the following equilibrium-speed:

C .
velp) =vp| limexp( 1 —=exp (—rﬁ(& — 1))

r 10

Where Vsis"the free spéed and cm is the kinematic wave speed at-jam density. The above
equation can also be written as

c
us(h)y=ve| 1—exp| 1—exp (% (hpj 2 1)) 1

It is essentially the same equation with mean headway, h=1/p being substituted in place.
Other parameters are:
vi=30m/s, pj=0.2 veh/m, T=10s, =55,

Co=Cm=11m/s,p=0.3,Ax=100m, At=1s

4.4. Evolution of Small Perturbations

Whenever something ‘unexpected happens in a traffic flowglike vehicles changing lanes or
vehicles entering or exiting the flow its continuity is disturbed. This disturbance can travel like
a ripple inside the flow and might cause amajor preblem if left unchecked. Hence it is essential
to map such disturbances and to know the conditions which cause them and also increase the
chances and frequency of its occurrence.

To describe this effect, the initial condition (Herrmann and Kerner 1998)

160 5L 1 40 11L
— -2 _ _ = -2 _
p(x,0) =py + Ap {cosh ( I (x 16)) 4cosh < T (x 32 ))} .
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We will also use speed; (B. Kerner 1993)

pf’ ~0.25
Ve(p) = vp | | 1+ exp ’“"E)T —3.72 106)
' 13
And also the equilibrium speed;
-1
h—;—_— 0.25
u.(h) = vf| 1+ exp ]OT —372%107° | 14

4.5. Traffic.Data

Traffic data obtained from RITES LTD on the National Highway 44 (previously NH-7)-on the
Nagpur-Hyderabad section near Multimodal International Hubat Nagpur is used for some real
world-correlation with the traffic'model to see if it can be adapted to the existing conditions.

A sample of flow (q), densities (p) and observed velocity (v) data for 1-day are tabulated below:

Density Velocity Flow
(veh/km) (km/hr) (veh/hr)
15 59 852
17 57 948
25 47 1176
14 52 720
17 53 912
15 50 744
15 60 876
19 54 1044
20 55 1104
15 62 912
29 51 1476
11 62 684
15 59 852
17 57 948
25 47 1176
14 52 720
17 53 912
15 50 744
11 108 1224
9 90 780
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16 65 1032
9 62 540
2 48 120
5 65 312

The flow obtained for 15-min intervals were converted to 1-hr data to match the units of
vehicular speed in km/hr. Then densities were obtained by the fundamental equation q =p * v.

The values from these data, i.e., jam densities, free flow velocities and flow, have been used
alongside the plots from the model and inferences.are drawn from the comparison.

The inferences are shown alongside Figure 54"and Figure 5-5.
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5. RESULTS AND DISCUSSION

Simulations have been carried out

The graphs below depict the shock wave and rarefaction wave from the model.

(a) Shock

(b) Rarefaction wave

X

Figure 0-1 3-D Shock and Rarefaction Waves

The Cauchy-Riemann initial conditions were applied and it can be seen that the model is
successfully able to produce shock waves and rarefaction waves. The shock wave is essentially
when a high density stream meets a low density stream or a low flow stream meets a high flow
stream. Rarefaction waves are the opposite of this and happens when the traffic is cleared.
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Note that in 2-D, i.e., when only the density vs position axis are considered, the graph resembles
a plot of Riemann conditions with upstream and downstream densities of 0.04 and 0.18
respectively for shock waves and vice-versa for rarefaction waves.
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" - " Figure 0-2 Evolution of perturbations o fon I on
P " When the initial velocities are (a) 0.03, (b)0.04 and (c) 0.05‘ o

| | l ‘ |
The above figures show evolution of perturbationswhen the initial densitiesjare 0.03, Q. 04. and
0.05 respectlvely The model shows the propagation direction of the disturbances along with
their-amplitudes. At the point of origin, the perturbation shows a peak| which gradually
smoothens out as it fans outwards. | u

Alsoat.initialdensity of 0.04, which was the initial condition for.ashock wave, the perturb'éltion
starts at the same place for all times't, which can be correlated with the. earlla plot.for shock

wave gondition.for comparison and verification. &
iy = - ™ -.
| | n || | |
- .
K -
-
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B g Figu;e 0-3 Local CIuster Effect in Jiang'Model _ °

|

The graphs show a similar plot of piErturbations from a different iodel proposed (Jiang et al.
2002)
The proposed model is presented below:

ok  a(kw)

at * ox 9(x,0),
du N ou u,—u N ou
ot “ox T | “Pdx
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The drawback of this model compared to the present one is that small perturbations lead to
huge aberrations and causing stop-and-go traffic conditions at different times. As we can see
the wave fronts presented in this paper are smoother. They also are eliminated or die-out as it
moves forward.

120
[ ]
100
80
> | eawEm
Q _Lier (5
§ 60 e 9., ‘. 1 |
I3 . *% oe.... ... P
»
40 B =
yi=-0.9172x a7 2296
20 | =
\
| 0 | | u_ N ]
0 5 10 15 20 25 30 35
Density p

Figure 0-4 Speed Density Curve for local data

From the sample of traffic values obtained, speed vs density graph is plotted. A trend line is
formed which conforms to the Greenshields speed-density relation.

The equation.of thettrend line isy = -0.9172x + 72.96. Using this equation; we can findthe free
flow velocity vs by substituting X=0 and jam density pjam by substituting.y=0.

the values of vi= 72.96 km/hr or 20.26 m/s.
pjam = 79.55 veh/km or 0.079 veh/km
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In this;plot the initial denstt; is taken as 0.079 ';eh/m ~ 0.08 veh/m. we can'see that the-results
are in accordance with other plots. Since 0.08 is the calculated jam density of L[_iata,
it is shown that even at ttfse high densities, the model behaves propqu with[ut.apy significant

alt ‘)ns . T . E
though the ata is falrly small and the values obtained flgm- it can be classified as
appr ate ue it is the closest to the real world data feasible. i' = !_i
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6. Conclusions and Recommendations

From the results we can conclude the following:

1. The macroscopic model is able to prove its anisotropic nature, i.e., information does not
reach the driver from behind. This means that anything happening on the upstream cannot
affect the drivers in the downstream which is physically right.

2. The model successfully reproduces shock and rarefaction waves. This is essential as
these phenomenon has been associated with macrgscopic models since the very first model
by Lighthill and Witham, Payne (LLWR) Model. This 1s one of the most basic criteria’s for
a model in this domain.

3. The effect of smiall perturbations or disturbances are created. Itsis alsg compared with
similar plots from another model. It-can be concluded that this model snioothens the effect
greatly-"antd=there is also_,n0 occurrence of any stop“and go traffic®in the temporal
distribution.

4. The'sample traffic data obtained is used to calculate densities and speeds of the actual
road=conditions. These data is used to create a perturbation plot. It can be eancluded that
even at jam densities for the road section, this model iS-able to give encouraging resuits. It
must be noted ‘that the datavalues are highly limited and further huge amounts of data is
required to madel perspectives more clearly.
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7. Limitations and Future Scope

e One of the major limitations of macroscopic traffic modelling in general is that they are
highly theoretical in nature. Real world data is seldom used to validate these models as
computer simulated graphics show sufficiently good results. Hence their real world
simulation capabilities are limited in nature.

e Having said that, they are still used among researchers because of their relative ease
during developmental stages "and duringp simulations than their microscopic
counterparts.

e Another drawback of these models' are that they take only ‘hemogenous traffic
conditions into aceount while model creation and valitation. Sincesho traffic in the
world€an be classified as perfectly homogenous, itis difficultto obtain the.exact results
we are hoping for.

e “Continuing from the previous point, since their noon-heterogeneous nature has been
established, their ability to model Indian conditions comes under question. Notonly is
Indian conditions highly heterogeneous, the driver behaviour is also very erratic:

e Hence a heterogeneous model taking into account factors such as irrational driving or
road conditions etc must be created which hopefully can more successfully model-real
world conditions.
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