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1. INTRODUCTION 
 

Traffic networks which includes many kinds of networks like highways, streets etc., provide 

convenient and economical conveyance of passengers and goods. The basic activity in 

transportation being a trip, which is defined by destination and origin, arrival and departure 

times and the route taken for travel. Different trips interact with each other on the network to 

produce complex pattern of traffic flows. Since traffic conditions in major cities and urban 

conglomerations are becoming increasingly congested, affecting the overall operational 

efficiency of networks as well as the cost of travel of each individual trip, modelling of traffic 

flow is being seen as essential rather than secondary process in traffic engineering and the 

policy making process in transport sector. 

 

Traffic flow is one such phenomenon which is highly difficult to model mathematically due to 

its extreme complexity. The most basic traffic scenario is a one dimensional road with one-

way traffic. This is a simple scenario to model as we have eliminated various factors. 

 

There are three main approaches taken to model traffic flow; microscopic approaches, 

macroscopic approaches and mesoscopic approach. Microscopic models map traffic flow as a 

set of individual vehicles, while macroscopic models map traffic flow as fluid flow where each 

vehicle is analogous to a molecule of fluid. Mesoscopic models describe vehicle behaviour in 

aggregate terms such as in probability distributions. They essentially cover the ground in 

between a macroscopic and a microscopic model. 

 

In this report, the main emphasis is on macroscopic models. Macroscopic models place more 

emphasis on traffic flow as a continuum versus a collection of individual vehicles. Continuum 

traffic flow modelling generally uses a macroscopic perspective, although microscopic 

principles can be incorporated into continuum models. 

 

1.1 Traffic Modelling 
 

In modelling traffic, it is necessary to visualize a coupled system consisting the car and the 

driver. The driver is responsible for operating the car and making it become a part of the traffic 

flow. Thus the traffic is not just a mechanical process but one in which human decisions are 

involved. But on a whole, this individual vehicle is not as important as the overall flow of 

traffic. Macroscopic models of traffic flow exploit these conditions and use them to come up 

with a set of assumptions. When these cars are viewed as a moving gas or liquid, it is called a 

continuum model of traffic flow. When the traffic theory is based on individual drivers 

responding to surrounding traffic, it is called car-following theory. Here we will look at the 

background and evolution of traffic models (van Wageningen-Kessels et al. 2014). 

 

1.1.1. Fundamental Diagram 
 

Traffic flow models are based on the assumption that there is some relation between the 

distance between vehicles and their velocity. This relation between distance and velocity was 
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first studied by Greenshields (van Wageningen-Kessels et al. 2014) and called the fundamental 

relation. Originally, Greenshields studies the relation between spacing (s) and velocity (v). 

However, the fundamental relation can be expressed in other variables such as density (q, 

average number of vehicles per unit length of road) and flow (q, average number of vehicles 

per time unit). 

 

 
 

Figure 1-1 Branch of Traffic Flow models showing fundamental diagram family 

 

 

Greenshields proposed a linear relationship in the density-velocity plane and parabolic in 

density-flow plane, whereas Daganzo (Daganzo 1995) relation is triangular in the density-flow 

plane. Smulders is a combination of both. It is parabolic for low densities and linear for higher 

densities. Drake proposes a characteristic curve for the density-flow plot. However, observed 

density flow plots show a wide scatter. These are being explained by a range of phenomenon 

like capacity drop, hysteresis and the 3-phase fundamental relation proposed by Kerner (Kerner 

2004) 

 

 

 
 

Figure 1-2 Different shapes of Fundamental Relations 
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a. Scatter observed in a density-flow              b. Fundamental relation with capacity  

plot       drop 

 

 

 
      c.  Fundamental relation with             d. 3-phase fundamental relation line 

             hysteresis 

Figure 1-3 Fundamental ‘relations’ based on scatter in observations 

 

Fundamental relations are important in all families of traffic models since in any model, traffic 

is assumed to be in a state of fundamental relation or proceeds toward it. Macroscopic and 

mesoscopic models explicitly include it but microscopic models have some assumptions on the 

fundamental relations which differ from model to model. 

 

 

1.1.2. Microscopic Models 
 

Microscopic models, one of the earliest models, are based on the assumption that drivers adjust 

their behaviour based on the vehicle they are following. They describe both the longitudinal 

(car-following) and lateral (lane-changing) behaviour of vehicles.  
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Figure 1-4 Details of traffic models showing microscopic model family 

 

1.1.2.1. Safe-Distance Model 
The earliest car following models were based on a safe following distance. Pipes [7] proposes 

a model where the position of the leader is expressed in terms of the position of the follower. 

𝑥𝑛−1 = 𝑥𝑛 + 𝑑 + 𝑇𝑣𝑛 + 𝑙𝑛−1
𝑣𝑒ℎ  

 
Where d is the distance between vehicles at standstill and Tvn is the legal distance assumed by 

Pipes. Kometani and Sasaki [8] derive an improvised version of this model with the help of 

Newtonion equations of motion. They replace distance at standstill “d” with a velocity 

dependant term and also include a time delay, τ. 

 

1.1.2.2 Stimulus-Response Model 
These are based on the assumption that drivers accelerate or decelerate based on three stimuli; 

own velocity (vn), spacing with leader (sn) and relative velocity with leader (sn’). It is called the 

GHR Model named after Gazis et al [9]. 

𝑎𝑛(𝑡) =  𝛾
(𝑣𝑛−1(𝑡))

𝑐1

(𝑠𝑛(𝑡 − 𝜏))
𝑐2 𝑠�̇�′(𝑡 − 𝜏) 

Where ϒ is the sensitivity parameter. Sn(t-τ) is the stimulus and an(t) is the response, hence it 

is called the stimulus response model.  

Recent improvements over this model include the optimal velocity model which states that the 

driver accelerates or decelerates until their optimal velocity, a function of headway. 
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𝑎𝑛(𝑡) = 𝛾(𝑣
∗(𝑠𝑛(𝑡)) − 𝑣𝑛(𝑡)) 

𝑣∗(𝑠) = 𝑣𝑚𝑎𝑥(tanh(𝑠 − 𝑐1) + 𝑐2) 

1.1.2.3 Action Point Model 
This branch of car-following model is based on the fact that a driver reacts to a situation only 

when he/she approaches a vehicle. There is a proposed perception threshold before a driver 

reacts. The assumptions incorporated in this model are that at large headways, driving 

behaviour is least affected by other vehicles. Whereas at small headways, it is only influenced 

by other vehicles. 

1.1.2.4 Conclusions 
Microscopic traffic models are often criticized for having too many parameters. Models like 

the one proposed by Gazis et al [9] have parameters c1 and c2 which don’t have a physical 

interpretation. Other models have parameters which are too difficult to observe or tabulate 

which makes the whole exercise futile. That is why continuum models having lesser parameters 

are preferred.  

 

1.1.3 Macroscopic Models 
 

These models treat traffic as a continuum where individual vehicles are not modelled. However 

aggregates variables such as flow and density are used. Some of the models are explained 

below. 

 

 

Figure 1-5 Details of traffic models showing macroscopic model family 

 



6 
 

1.1.3.1 Kinematic Wave Models 
Macroscopic traffic flow models were first introduced by Lighthill and Whitham [2] in 1955 

and independently by Richards in 1956. This is commonly known as the LWR Model. It is 

based around the assumption that the number of vehicles is conserved between any two points 

if there are no entrances (sources) or exits (sinks).The dynamics of traffic are given by a partial 

differential equation: 

∂ρ

∂t
+
∂

∂x
(q(ρ)) = 0 

Where flow (q) is a function of density (ρ). This model has been used to analyse a number of 

traffic flow problems. Notably, both Lighthill & Whitham and Richards used the model to 

demonstrate the existence of shockwaves in transport systems. The main drawback of this 

model is that the vehicles are assumed to attain the equilibrium velocity almost instantly after 

the change of state, which implies infinite acceleration. Another disadvantage is that the 

transition from a free flow regime to a congested regime always occurs at the same densities. 

Further, the model does not contain any inertial effects, which implies that the vehicles adjust 

their speeds instantaneously, nor does it contain any diffusive terms, which would model the 

ability of drivers to look ahead and adjust to changes in traffic conditions, such as shocks, 

before they arrive at the vehicle itself. Some variants of the LWR model have proposed 

bounded-acceleration while a stochastic kinematic wave model uses breakdown probabilities 

to predict that a breakdown may occur at different densities.  

In order to address some of the limitations, Lighthill & Whitham propose a second-order model 

of the form 

𝜕𝜌

𝜕𝑡
+ 𝑐

𝜕𝜌

𝜕𝑥
+ 𝑇

𝜕2𝜌

𝜕𝑡2
+ 𝐷

𝜕2𝜌

𝜕𝑥2
= 0 

 
where T is the inertial time constant for speed variation, c is the wave speed (obtained from the 

relationship between q and ρ, and D is a diffusion coefficient-representing how vehicles 

respond to nonlocal changes in traffic conditions. 

 

1.1.3.2 Multi class Kinematic Wave Models 
A multi class multi-lane model was proposed by Daganzo [4] based on the LWR model which 

distinguishes between two types of drivers: slugs who drive slow and don’t overtake whereas 

rabbits who drive fast and overtake more often. 

Wong and Wong [6] first introduced a class specific version of the conservation equation. 

𝜕𝜌𝑢
𝜕𝑡

+
𝜕𝑞𝑢
𝜕𝑥

= 0 

Here ρu represents class specific density. Effectively, the vertical axes of the density–velocity 

fundamental relations are scaled differently for each class. It has been found that multiclass 

models are able to reproduce phenomena related to scatter in the fundamental diagram better 

than mixed-class models. 
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                                                        a. Daganzo             b. Drake 

 

                                      c. Greenshields             d. Smulders 

Figure 1-6 Different shapes of two-class fundamental relations.  

  

The model provided by Nair et al is a recent multi class kinematic wave model. It is known as 

the porous flow model. It is different in the sense that it considers heterogeneous traffic instead 

of homogenous. It assumes that small vehicles can drive through pores which in this case are 

the gaps between two vehicles. This model tries to explain traffic which is discontinuous and 

disordered. It also has different types of vehicle classes like bikes, cars etc as is generally the 

case with Indian conditions. 

  

1.1.3.3 Higher Order Models 
Higher order models give an equation which describes the acceleration towards the equilibrium 

velocity that has been discussed in the fundamental relations. Payne [10] derived a macroscopic 

traffic flow model from a simple stimulus–response car-following model. It yielded a model 

consisting of the fundamental relation and two-coupled partial differential equations, hence the 

name higher-order model.  

 

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
=
𝑣 ∗ (𝜌) − 𝑣

𝑡𝑟𝑒𝑙𝑎𝑥
−
𝑐2𝜕𝜌

𝜌𝜕𝑥
 

 

Here v*(ρ) is the equilibrium velocity described in the fundamental relations. But several 

authors have argued that higher-order models are flawed because they are not anisotropic. 

Anisotropy generally means that the speed of the traffic wave cannot be faster than the speed 

of individual vehicles inside the flow. Hence improvements were made to the model and 

instead of Payne’s velocity, 

 

𝜕

𝜕𝑡
(𝑣 + 𝑝(𝜌)) + 𝑣

𝜕

𝜕𝑥
(𝑣 + 𝑝(𝜌)) = 0 

 
The p(ρ) is the pressure term. This implies that when parameters have been correctly chosen, 

the characteristic speed cannot be faster than vehicles.  
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1.1.3.4 Conclusions 
Although an analogy is assumed between a traffic flow and fluid flow, the number of particles 

in a traffic flow is extremely small as compared to a fluid. This means that the descriptive 

accuracy achieved by these models will never be the same as that in fluids. Moreover, the so 

called particles in the flow, i.e. the drivers, all behave differently and change behaviour over 

time and distance unlike fluid particles which obey simple physical laws. However if the level 

of descriptive detail is overlooked or compromised a little, then the continuum assumption can 

prove reasonable. 

 

1.1.4 Mesoscopic Models 
 

This class of models were originally developed to fill voids or gaps left by macro models which 

consider traffic flow as that of a fluid and find analogues between the two and micro models 

which see the individual vehicles in a traffic flow. They describe vehicle behaviour in aggregate 

terms. It can be probability distributions.  

 

Figure 1-7 Details of traffic models showing mesoscopic model family 

 

1.1.4.1 Gas-Kinetic Models 
The continuum models of traffic flow presents an analogy between traffic and fluid flow. 

Similarly gas kinetic models describes these motions in terms of gas particles. When applied 

to traffic flow, these models describe the dynamics of velocity distribution functions of 

vehicles.  
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𝜕�̃�

𝜕𝑡
+ 𝑣

𝜕�̃�

𝜕𝑥
= (

𝜕�̃�

𝜕𝑡
)
𝑎𝑐𝑐

+ (
𝜕�̃�

𝜕𝑡
)
𝑖𝑛𝑡

 

 
 

With reduces phase space density �̃�. At any time t, the expected number of vehicles between 

location x and x & dx that drive with a velocity between v and v & dv is the integral of the 

reduced phase-space density over this two-dimensional area [1].  

 

∫ ∫ �̃�(𝑥, 𝑣, 𝑡)𝑑𝑥𝑑𝑣 ≈  �̃�(𝑥, 𝑣, 𝑡)𝑑𝑥𝑑𝑣 

𝑣+𝑑𝑣

𝑣

𝑥+𝑑𝑣

𝑥

 

 

1.2. Need for Study 
 

This report aims to study the traffic flow modelling incorporating driver’s forecast effect. These 

type of driving behaviour models try to capture a drivers’ decisions when manoeuvring in 

various traffic conditions. They are essential for traffic simulation and for several other fields 

of transportation science such as studies for safety and capacity, in which aggregate traffic flow 

characteristics might be needed. 

 

It is highly required since the ability to map traffic conditions can save a lot of time and effort 

as the future predictions can be done accordingly and steps taken to ensure that those scenarios 

do not play out the way they did in the simulations. 

 

This can be used in traffic reduction which means accident prevention, better travel times since 

flow is managed efficiently. All these can be done theoretically to get a first glance of the 

outside situation and then if required further predictions or models can be developed. 

 

1.3. Objectives of the Study 
 

The main objectives of the study are: 

 

1. The macroscopic model or equation is solved and basic parameters are measured to check 

whether it can be used any further before calibration. 

 

2. The model to be used to simulate some default conditions to authenticate its seriousness. 

 

3. Compare it with a previous model and look for signs of improvement 
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1.4. Composition of Dissertation 
 

The entire thesis is divided into 6 chapters.  

Chapter 1 gives a general idea about traffic modelling, a brief history about various models and 

the current scenario along with the merits and demerits of the various methods. 

Chapter 2 is the background study required to proceed with the modelling. Various derivations 

of the basic formulas and ideas is given to be used in the following chapters. 

Chapter 3 is the literature review of the dissertation. It gives a brief about the main sources of 

literature helpful in the thesis. 

Chapter 4 is the research methodology where the traffic model is analysed using numerical 

methods. 

Chapter 5 is Results and Discussions where graphs are given and its occurrence is discussed. 

Chapter 6 is the limitations and future scope of the study 
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2. MATHEMATICAL BACKGROUND STUDY 
 

2.1. The Conservation Law 
 

The fluid flow analogy is where macroscopic mathematical modelling rests, where the traffic 

stream is treated as a 1-D compressible fluid. Any conservation law states that the change in 

some physical quantity in a region of space is equal to the net influx, provided there are no 

sinks. 

If in a one lane road, ρ(x,t) denotes the density at some interval (x1,x2), then the integral of the 

conservation law can be written as  

𝑑

𝑑𝑡
∫ 𝜌(𝑥, 𝑡)𝑑𝑥 = 𝑓𝑥=𝑥1−𝑓𝑥=𝑥2

𝑥2

𝑥1

 

 

The left hand side can be written as ∫
𝜕𝜌

𝜕𝑡

𝑥2

𝑥1
𝑑𝑥 and right hand side as  -∫

𝜕𝑓

𝜕𝑥
𝑑𝑥

𝑥2

𝑥1
, we can rewrite 

(1) as 

∫
𝜕𝜌

𝜕𝑡

𝑥2

𝑥1

+
𝜕𝑓

𝜕𝑥
 𝑑𝑥 = 

 

                                                  
𝜕𝜌

𝜕𝑡
+
𝜕𝑓

𝜕𝑥
= 0                                      (2)      

  
This is the conservation law or also known the continuity equation in its partial differential 

form. 

Since f takes the form f = f(ρ(x,t)), it is safe to assume that v(ρ) = v0(1-
𝜌

𝜌𝑚𝑎𝑥
) .  

 

                                              𝑓(𝜌) =  𝑣(𝜌) ∗ 𝜌 

                                                       = 𝑣0 (1 −
𝜌

𝜌𝑚𝑎𝑥
) ∗ 𝜌   𝑓𝑜𝑟 0 < 𝜌 < 𝜌𝑚𝑎𝑥  

 

Let us set σ as the value for  ρ at which f is maximised. 
 

                                            Then 𝜎 =
𝜌𝑚𝑎𝑥

2
                                     (4) 

 
a. flow with respect to ρ greater than σ is referred as heavy traffic  

b. flow with respect to ρ lower than σ is referred to as light traffic   
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2.2 Characteristics 
 

If the equation has to become solvable, the initial density distribution must be given, 

                                                 𝜌𝑡 + 𝑓(𝜌)𝑥 = 0  ,            𝑥 ∈ 𝑅 , 𝑡 > 0 

𝜌(𝑥, 0) =  𝜌0(𝑥)      ,       𝑥 ∈ 𝑅 

Level curve of x = x(t) on the x-t plane is given by 

𝜌(𝑥(𝑡), (𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  𝑃0 

                                                      
Differentiating w.r.t t and using ρt = -f’(ρ) * ρx 

 

0 =  𝜌𝑥𝑥
′(𝑡) + 𝜌𝑡 = 𝜌𝑥(𝑥

′(𝑡) − 𝑓′(𝑃0)) 
 
It can be seen that x’(t) = f’(P0) which comes down to a straight curve as a characteristic in the 

x-t plane. Here f’(P0) is the signal speed at which wavefront will propagate. Since it is a 

derivative term, it is the slope of the equation also. 
 

2.3. Discontinuities and the Jump 
 

Despite having initial data, when the characteristics are drawn, we find that a continuous 

solution is not possible after a certain point of time, since different concentration characteristics 

interact with each other. 

To let us calculate the solution after the discontinuity, generalisation of the solution concept 

needs to be done. The below equation 

𝑥 = 𝑓′(𝜌0(𝑥0))𝑡 + 𝑥0 

𝜌 = 𝜌0(𝑥0)                     

the above eqn is multiplied with a test function ϕ and integrated by parts 

∫ ∫ (𝜌𝜑𝑡 + 𝑓(𝜌)𝜑𝑡)𝑑𝑥𝑑𝑡 + ∫ 𝜌(𝑥, 0)𝜑(𝑥, 0)𝑑𝑥 = 0, ∀ 𝜑 ∈ 𝐶0
1

∞

−∞

∞

−∞

∞

0

 

                                      

Now let ρ+ = ρ(x(t) + 0,t) and ρ- = ρ(x(t) – 0,t) be the values of ρ on the left and the right. 

The conservation law gives that 

𝑓(𝜌(𝑎, 𝑡)) − 𝑓(𝜌(𝑏, 𝑡)) =  
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑥 =
𝑏

𝑎

𝑑

𝑑𝑡
(∫ 𝜌𝑑𝑥 +

𝑥(𝑡)

𝑎

∫ 𝜌𝑑𝑥
𝑏

𝑥(𝑡)

) = 
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=  ∫ 𝜌𝑡𝑑𝑥 + 𝜌
−𝑥′(𝑡) +

𝑥(𝑡)

𝑎

∫ 𝜌𝑡𝑑𝑥 − 𝜌
+𝑥′(𝑡) = [𝜌𝑡 = −𝑓𝑥]

𝑏

𝑥(𝑡)

 

= 𝑓(𝜌(𝑎, 𝑡)) − 𝑓(𝜌(𝑏, 𝑡)) + 𝑓(𝜌+) − 𝑓(𝜌−) − (𝜌+ − 𝜌−)𝑥′(𝑡) 

Solving for x’, we can find that  

𝑥′(𝑡) =  
𝑓(𝜌+) − 𝑓(𝜌−)

𝜌+ − 𝜌−
= 𝑠 

That last expression is known as the jump condition and it further proves the above mentioned 

case that the slope of the graph between two points gives the speed of the shock waves. 

 

2.4. The Riemann Problem 
 

The Riemann problem is a conservation law combined with a piecewise constant with just one 

single discontinuity. Let us consider the example below: 

𝜌(𝑥, 0) =  {
𝜌𝑙 ,   𝑥 < 0
𝜌𝑟  ,   𝑥 > 0

 

Where ρl and ρr corresponds to an arbitrary point to the left and right side of the data 

respectively. The points are chosen in such a way that they are not too far from the surface to 

give appropriate values closest to the actual value. And they are not too close to the surface 

that they start to interact with the surface itself. 

Case 1: when ρl < ρr 

The shock acts as a barrier between the two sides. The characteristics from either side go into 

the shock. 

 

Figure 2-1 Shock Waves 
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Case 2: when ρl > ρr 

Theoretically, it results in the jump being taken from infinitely many places or suggests 

infinitely many solutions. The characteristics travel away from shock.   

 

Figure 2-2 Rarefaction waves 
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3. LITERATURE REVIEW 
 

3.1. Formation of a Continuum Model 
 

One of the first continuum models was proposed by Lighthill and Whitham (1955) and 

Richards (1956) [2]. It provided an analogous between fluid flow and traffic flow. It was 

assumed that there is a conservation of the number of vehicles in a road section given that there 

are no entry or exit ramps.  

Since fluctuation of speed is not permitted around equilibrium speed, the model is unable to 

explain non equilibrium conditions which are what real life problems are based on. Hence the 

model was improvised by Lighthill et al and a new model containing inertial time constant, T 

and diffusion coefficient, D, were introduced. The inertial time constant accounted for 

adjustments in speed implying that the decision to accelerate or brake is not instantaneous. The 

diffusion coefficient implies for the dependency of flow on concentration gradient.  

 

3.2. Three Phase traffic Theory 
 

(Kerner 2004) introduces us to the concept of three phase traffic flow and their applications in 

traffic flow modelling. Understanding traffic congestion is the key to effective management 

and control of transportation. According to this theory, there are two types of flow: free flow 

and congested flow. Further subdivisions of congested flow are synchronized flow and wide-

moving jams. 

The difference between a synchronized flow and a wide moving jam is that in wide moving 

jam, the velocity of the jam front remains the same even after the passing of the bottleneck or 

other complex traffic states. But in synchronized flows, the jam front velocity is fixed at the 

bottleneck, meaning after the bottleneck the flow is converted to a free flow. 

 

Figure 0-1 Density-flow plot for 3-phase traffic flow. 
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Curve F shows free flow while the dashes region is synchronized flow for a multi-lane 

homogenous road. The dotted line is the minimum possible speeds in steady states of 

synchronized flow. 

This graph shows that for a given density, there a multitude of flows or speeds and vice-versa. 

This means that there is no single fundamental diagram for the steady state speed for a 

synchronized flow unlike other models. This also explains the scattering of flow in a better 

way. 

The results of this work are important since previously all mathematical models had to provide 

steady state solutions which belong to a curve going through the origin and has at least one 

maximum. 

 

3.3. A new macro model for traffic flow with consideration 

of DFE 
 

In this paper, (Tang et al. 2010a) discusses about various developments in macroscopic traffic 

flow models. Acceleration equations of improved optimal velocity model, multi velocities 

difference model are given. Even though the models explain a magnitude of complex 

phenomenon, they cannot be used to study Driver’s Forecast Effect since they do not consider 

it in the acceleration equation. With the advent of ITS, the forecast information will be crucial 

and driver’s will adjust acceleration based on this information. 

First the acceleration equation with DFE coefficient is given: 

𝑑𝑣𝑛(𝑡)

𝑑𝑡
=  𝜅 (𝑉(∆𝑥𝑛(𝑡)) − 𝑣𝑛(𝑡)) + 𝛽𝜅(𝑉(∆𝑥𝑛(𝑡 + 𝜏) − 𝑣𝑛(𝑡 + 𝜏)) 

Here β is the coefficient for DFE, k is the reactive coefficient in the Optimal Velocity model 

and τ is the time step of the driver’s forecast. The first term is the acceleration from normal 

conditions while the second term is the acceleration from the forecast information at time t+τ. 

For the new macro model, the micro variables are converted into macro variables and the non-

linear terms are neglected. 

{
 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕𝑥
= 0 ,

𝜕𝑣

𝜕𝑡
+ (𝑣 − 𝛽𝜏𝑢′𝑒(ℎ)𝑐0)

𝜕𝑣

𝜕𝑥
=  
(1 + 𝛽)(𝑣𝑒(𝜌) − 𝑣)

𝑇 + 𝛽𝜏

 

 

 



17 
 

3.4. Macro Modelling and Analysis of Traffic Flow using 

road width 
 

(Tang et al. 2011)have proposed a traffic model which takes into consideration the road width. 

The changes in road width is a major reason for the decrease or increase in speeds of the flow 

in general and for drivers in particular. The changes can be in the form of disturbances due to 

activities like construction work or in the event of an accident. This paper in particular focuses 

on a speed gradient model since density gradient models were found to have characteristic 

speeds greater that the vehicular speed which resulted in a backward movement of traffic under 

certain situations.  

Hence they proposed an improvised model which is anisotropic, heterogeneous and which 

accounts for the change of road width. 

{

𝜌𝑡 + (𝜌𝑣)𝑥 = 0 ,

𝑣𝑡 + 𝑣𝑣𝑥 =
𝑣𝑒 − 𝑣

𝜏
+ 𝑐0𝑣𝑥 +

𝑣𝑑𝐴

𝜎𝑑𝑥

 

Here c0 is the speed of propagation for a disturbance whereas the term 
1

𝜎

𝑑𝐴

𝑑𝑥
𝑣 accounts for the 

gradient of road width where A is the road width and σ is the reaction time for the driver. 

This model portrays a directly proportional relationship of road width and equilibrium speed 

and flow. It investigates the effects of small disturbances in width to the speed and finds that 

the under moderate to high densities the effect of disturbances is heavy while under low 

densities, it is negligible. 

 

3.5. A new continuum model for traffic flow and numerical 

tests 
The model proposed in the paper (Jiang et al. 2002) is given below 

{

𝜕𝑘

𝜕𝑡
+
𝜕(𝑘𝑢)

𝜕𝑥
= 𝑔(𝑥, 𝑡),

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=
𝑢𝑒 − 𝑢

𝑇
+ 𝑐0

𝜕𝑢

𝜕𝑥

 

The model successfully removed various discrepancies occurring in previous models like 

isotropic behaviour etc. it successfully proved that the characteristics equation is not greater 

than flow speed at any point in the interval. Further numerical tests showed that linear stability 

analysis and local cluster effect is also successfully reproduced.  

But the drawback is that at higher densities, the phenomenon of stop and go traffic takes 

frequent occurrences and the model is incapable of reducing these type of conditions.  
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4. RESEARCH METHODOLOGY 
 

4.1. Overview 
 

The focus of this study is to test out a macroscopic traffic flow model to find out how well it can map 

traffic conditions and find its true potential. Since these models are purely deterministic, it is considered 

that drivers always behave according to the same laws and are predictable as well. The model predicts 

a uniform model at low densities whereas after a certain threshold density, flow becomes unstable as 

small perturbations are amplified. 

The model considered here  (Tang et al. 2010b) is the one developed with consideration for driver’s 

forecast effect 

 

 

 

{
 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)

𝜕𝑥
= 0 ,

𝜕𝑣

𝜕𝑡
+ (𝑣 − 𝛽𝜏𝑢′𝑒(ℎ)𝑐0)

𝜕𝑣

𝜕𝑥
=  
(1 + 𝛽)(𝑣𝑒(𝜌) − 𝑣)

𝑇 + 𝛽𝜏

 

 

1 

 

 

Here, β is the driver’s forecast effect. 

The above equation is similar to the advection equation. The term advection means transport 

of a substance by bulk motion. Here it might denote the movement of a disturbance in the 

traffic flow and the speed with which it is transferred along the stream. 

It is convenient to write this system in vector form, i.e., 

 

 U + F(U) = S(U) 
 

2 

   

Where 

U = (𝜌
𝑣
) ,  F(U) = ( 𝜌𝑣

𝑣−𝛽𝜏𝑢𝑒(ℎ)𝑐0
),  S(U) = (

0

(𝑣𝑒(𝜌)−𝑣)
(1+𝛽)

(𝑇+𝛽𝜏)

) 

Here U is the vector of conserved variables, F(U) is the flux vector and S(U) is the vector of 

source terms. 

The homogenous form of this equation is 

Ut + F(U)x = 0 
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We can linearize the equation by writing in the form Ut + J*Ux = 0 where J is the Jacobian 

Matrix defined by  

 

 

J = 
𝜕 𝐹(𝑈)

𝜕 𝑈
 = (

𝜕 𝐹1

𝜕𝑈1

𝜕 𝐹1

𝜕 𝑈2
𝜕 𝐹2

𝜕 𝑈1

𝜕 𝐹2

𝜕 𝑈2

) 

 
 

3 

Where, U = (𝑈1
𝑈2
) = (𝜌

𝑣
) and   F(U) = (𝐹1

𝐹2
) = ( 𝜌𝑣

𝑣−𝛽𝜏𝑢𝑒(ℎ)𝑐0
)  

since we have to write F in terms of U, we convert the F matrix to the following, 

F(U) = ( 𝑈1∗𝑈2
𝑈1− 𝛽𝜏𝑢𝑒(ℎ)𝑐0

) 

Where the term 𝛽𝜏𝑢𝑒(ℎ)𝑐0 is a constant. 

it is easily shown that the Jacobian matrix J is 

J = (
𝑈2 𝑈1
0 1 − 𝛽𝜏𝑢𝑒(ℎ)𝑐0

) 

Therefore, Ut + J*Ux = 0 becomes 

(𝜌
𝑣
) + (

𝑈2 𝑈1
0 1 − 𝛽𝜏𝑢𝑒(ℎ)𝑐0

) ∗ ( 𝜌𝑣
𝑣−𝛽𝜏𝑢𝑒(ℎ)𝑐0

) = 0 

 

The Jacobian matrix J has two eigenvalues 𝜆1 =  𝑣 − 𝛽𝜏𝑢𝑒(ℎ)𝑐0 and λ2 = v 

These are the characteristic speeds of the model. Here we can see that at no time interval, these 

characteristic speeds will be greater than the flow velocity. Since the characteristic speeds 

represents the speed of information, it can be safe to assume that it cannot travel from upstream 

to downstream. This signifies is that the driver will not be affected by vehicles from behind. 

As we can see that the eigenvalues are real and distinct which classifies the above equations as 

hyperbolic PDEs. The solutions of hyperbolic equations are distinctive, in the sense that they 

are wave-like. Disturbances generally have a finite propagation or perturbation speed. In the 

case of the above equation, c0 is the speed of small perturbations and it is equal to ε / βτ + T > 

0. 

 

4.2. Numerical Simulations 
 

There are different types of numerical methods: 

1. Method of characteristics 
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2. Finite Element Method 

3. Finite Difference Method 

4. Finite Volume Method 

Generally, method of characteristics is not used for hyperbolic PDEs since they don’t 

necessarily contain exact solutions. Some earlier models like LWR model can be solved using 

this method. Hence FEM, FDM or FVM are used. In this case, we go with FDM to provide 

numerical solutions.   

Before we proceed to carry out the solution, we have to look at the numerical scheme of the 

above mentioned equation, since in spite of being a hyperbolic system, it is not possible to 

write it in a conservative scheme. Hence we use upwind scheme to carry out the discretization. 

In this, all continuous functions, models, variables etc. are transferred into their discrete 

counterparts. This enables the user to carry out suitable numerical evaluation, albeit with some 

approximations. 

  

𝜌𝑘
𝑚+1 = 𝜌𝑘

𝑚 +
∆𝑡

∆𝑥
𝑣𝑘
𝑚(𝜌𝑘−1

𝑚 − 𝜌𝑘
𝑚) +

∆𝑡

∆𝑥
𝜌𝑘
𝑚(𝑣𝑘

𝑚 − 𝑣𝑘+1
𝑚 ) 

 

4 

 
 

 
 

 

       if             𝑣𝑘
𝑚 < 𝛽𝜏𝑢′𝑒(ℎ𝑘

𝑚)𝑐0                                                                                                                                     

   
𝑣𝑘
𝑚+1 = 𝑣𝑘

𝑚 +
∆𝑡

∆𝑥
(𝛽𝜏𝑢′𝑒(ℎ𝑘

𝑚)𝑐0 − 𝑣𝑘
𝑚)(𝑣𝑘+1

𝑚 − 𝑣𝑘
𝑚)

+
∆𝑡(1 + 𝛽)

𝑇 + 𝛽𝜏
(𝑣𝑒(𝜌𝑘

𝑚) − 𝑣𝑘
𝑚) 

 

5 

Else  

 
𝑣𝑘
𝑚+1 = 𝑣𝑘

𝑚 +
∆𝑡

∆𝑥
(𝛽𝜏𝑢′𝑒(ℎ𝑘

𝑚)𝑐0 − 𝑣𝑘
𝑚)(𝑣𝑘

𝑚 − 𝑣𝑘−1
𝑚 )

+
∆𝑡(1 + 𝛽)

𝑇 + 𝛽𝜏
(𝑣𝑒(𝜌𝑘

𝑚) − 𝑣𝑘
𝑚) 

 
 

6 

Here a first-order upwind scheme has been used to convert the continuous variables in the 

hyperbolic PDE to discrete variables. Note that the notations k, m, ∆t, ∆x denote space index, 

time index, time step and special step respectively.  

ρk
m and vk

m are density and speed at the corresponding point (k,m). 
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4.3. Shock and Rarefaction Waves 
 

By definition, shock waves occur when a particular stream of traffic with certain characteristics 

meets another stream with different characteristics.  

As pointed out by Daganzo, the realistic description of shock fronts in traffic is a particularly 

difficult problem. We will investigate how the traffic flow fronts between a congested and a 

nearly free traffic evolve under two Riemann initial conditions. These two initial conditions 

are: 

 

 𝜌𝑢
1 = 0.04, 𝜌𝑑

1 = 0.18, 7 

   

 𝜌𝑢
2 = 0.18, 𝜌𝑑

2 = 0.04, 
 
 

8 

   

Where   ρu and ρd  are upstream and downstream densities for cases 1 and 2 respectively. 

The plot below shows a theoretical representation of shockwaves in traffic flow. 

 

Figure 0-1Riemann Conditions as step wise function 

 

Figure 0-2 Shock Wave Fronts 
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The above plot shows shock waves. The changing colour gradients re the shock fronts and the 

empty area has almost zero densities or free flow speeds. 

The initial speeds are 

 

 𝑣𝑢
1,2 = 𝑣𝑒(𝜌𝑢

1,2), 𝑣𝑑
1,2 = 𝑣𝑒(𝜌𝑑

1,2) 9 

   

We use the following equilibrium speed: 

 

𝑣𝑒(𝜌) = 𝑣𝑓 (1 − 𝑒𝑥𝑝(1 − 𝑒𝑥𝑝 (
𝑐𝑚
𝑣𝑓
(
𝜌𝑗

𝜌
− 1)))) 

 
 

10 

Where vf is the free speed and cm is the kinematic wave speed at jam density. The above 

equation can also be written as  

 

𝑢𝑒(ℎ) = 𝑣𝑓 (1 − 𝑒𝑥𝑝(1 − 𝑒𝑥𝑝 (
𝑐𝑚
𝑣𝑓
(ℎ𝜌𝑗 − 1)))) 

 

11 

                                              

It is essentially the same equation with mean headway, h=1/ρ being substituted in place. 

Other parameters are:  

vf = 30 m/s, ρj = 0.2 veh/m, T = 10 s, τ = 5 s, 

C0 = Cm = 11 m/s, β = 0.3, ∆x = 100 m, ∆t = 1 s 

 

4.4. Evolution of Small Perturbations 
 

Whenever something unexpected happens in a traffic flow like vehicles changing lanes or 

vehicles entering or exiting the flow, its continuity is disturbed. This disturbance can travel like 

a ripple inside the flow and might cause a major problem if left unchecked. Hence it is essential 

to map such disturbances and to know the conditions which cause them and also increase the 

chances and frequency of its occurrence. 

To describe this effect, the initial condition (Herrmann and Kerner 1998) 

 
𝜌(𝑥, 0) = 𝜌0 + ∆𝜌 {𝑐𝑜𝑠ℎ

−2 (
160

𝐿
(𝑥 −

5𝐿

16
)) −

1

4
𝑐𝑜𝑠ℎ−2 (

40

𝐿
(𝑥 −

11𝐿

32
))} 

 
 

12 
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We will also use speed; (B. Kerner 1993) 

 

𝑣𝑒(𝜌) = 𝑣𝑓

(

 
 
(1 + 𝑒𝑥𝑝{

𝜌
𝜌𝑗𝑎𝑚

− 0.25

0.06
}) − 3.72 ∗ 10−6

)

 
 

−1

 

 
 

13 

And also the equilibrium speed; 

 

 

𝑢𝑒(ℎ) = 𝑣𝑓

(

 
 
(1 + 𝑒𝑥𝑝{

1
ℎ𝜌𝑗

− 0.25

0.06
}) − 3.72 ∗ 10−6

)

 
 

−1

 14 

4.5. Traffic Data 
 

Traffic data obtained from RITES LTD on the National Highway 44 (previously NH-7) on the 

Nagpur-Hyderabad section near Multimodal International Hub at Nagpur is used for some real 

world correlation with the traffic model to see if it can be adapted to the existing conditions. 

A sample of flow (q), densities (ρ) and observed velocity (v) data for 1-day are tabulated below: 

 

Density 
(veh/km) 

Velocity  
(km/hr) 

Flow  
(veh/hr) 

15 59 852 

17 57 948 

25 47 1176 

14 52 720 

17 53 912 

15 50 744 

15 60 876 

19 54 1044 

20 55 1104 

15 62 912 

29 51 1476 

11 62 684 

15 59 852 

17 57 948 

25 47 1176 

14 52 720 

17 53 912 

15 50 744 

11 108 1224 

9 90 780 
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16 65 1032 

9 62 540 

2 48 120 

5 65 312 

 

The flow obtained for 15-min intervals were converted to 1-hr data to match the units of 

vehicular speed in km/hr. Then densities were obtained by the fundamental equation q = ρ * v. 

The values from these data, i.e., jam densities, free flow velocities and flow, have been used 

alongside the plots from the model and inferences are drawn from the comparison. 

The inferences are shown alongside Figure 5-4 and Figure 5-5. 
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5. RESULTS AND DISCUSSION 
 

Simulations have been carried out 

The graphs below depict the shock wave and rarefaction wave from the model. 

 

 

 

Figure 0-1 3-D Shock and Rarefaction Waves 

 

The Cauchy-Riemann initial conditions were applied and it can be seen that the model is 

successfully able to produce shock waves and rarefaction waves. The shock wave is essentially 

when a high density stream meets a low density stream or a low flow stream meets a high flow 

stream. Rarefaction waves are the opposite of this and happens when the traffic is cleared. 
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Note that in 2-D, i.e., when only the density vs position axis are considered, the graph resembles 

a plot of Riemann conditions with upstream and downstream densities of 0.04 and 0.18 

respectively for shock waves and vice-versa for rarefaction waves. 

 

 

(a) 

 

(b) 
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(c) 

Figure 0-2 Evolution of perturbations  

When the initial velocities are (a) 0.03, (b) 0.04 and (c) 0.05 

 

The above figures show evolution of perturbations when the initial densities are 0.03, 0.04 and 

0.05 respectively. The model shows the propagation direction of the disturbances along with 

their amplitudes. At the point of origin, the perturbation shows a peak which gradually 

smoothens out as it fans outwards.  

Also at initial density of 0.04, which was the initial condition for a shock wave, the perturbation 

starts at the same place for all times t, which can be correlated with the earlier plot for shock 

wave condition for comparison and verification. 
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(a) 

 

 

(b) 

 

(c) 

Figure 0-3 Local Cluster Effect in Jiang Model 

 

The graphs show a similar plot of perturbations from a different model proposed (Jiang et al. 

2002)  

The proposed model is presented below: 

 

{

𝜕𝑘

𝜕𝑡
+
𝜕(𝑘𝑢)

𝜕𝑥
= 𝑔(𝑥, 𝑡),

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
=
𝑢𝑒 − 𝑢

𝑇
+ 𝑐0

𝜕𝑢

𝜕𝑥
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The drawback of this model compared to the present one is that small perturbations lead to 

huge aberrations and causing stop-and-go traffic conditions at different times. As we can see 

the wave fronts presented in this paper are smoother. They also are eliminated or die-out as it 

moves forward. 

 

 

Figure 0-4 Speed Density Curve for local data 

 

From the sample of traffic values obtained, speed vs density graph is plotted. A trend line is 

formed which conforms to the Greenshields speed-density relation. 

The equation of the trend line is y = -0.9172x + 72.96. Using this equation, we can find the free 

flow velocity vf by substituting x=0 and jam density ρjam by substituting y=0. 

the values of                                   vf = 72.96 km/hr or 20.26 m/s. 

                                                     ρjam = 79.55 veh/km or 0.079 veh/km 
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Figure 0-5 Evolution of perturbations for local data 

 

In this plot the initial density is taken as 0.079 veh/m ≈ 0.08 veh/m. we can see that the results 

are in accordance with other plots. Since 0.08 veh/m is the calculated jam density of our data, 

it is shown that even at these high densities, the model behaves properly without any significant 

alterations.  

Even though the data is fairly small and the values obtained from it can be classified as 

approximate in value, it is the closest to the real world data feasible.  
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6. Conclusions and Recommendations 
 

From the results we can conclude the following: 

1. The macroscopic model is able to prove its anisotropic nature, i.e., information does not 

reach the driver from behind. This means that anything happening on the upstream cannot 

affect the drivers in the downstream which is physically right. 

2. The model successfully reproduces shock and rarefaction waves. This is essential as 

these phenomenon has been associated with macroscopic models since the very first model 

by Lighthill and Witham, Payne (LWR) Model. This is one of the most basic criteria’s for 

a model in this domain. 

3. The effect of small perturbations or disturbances are created. It is also compared with 

similar plots from another model. It can be concluded that this model smoothens the effect 

greatly and there is also no occurrence of any stop and go traffic in the temporal 

distribution.  

4. The sample traffic data obtained is used to calculate densities and speeds of the actual 

road conditions. These data is used to create a perturbation plot. It can be concluded that 

even at jam densities for the road section, this model is able to give encouraging results. It 

must be noted that the data values are highly limited and further huge amounts of data is 

required to model perspectives more clearly. 
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7. Limitations and Future Scope 
 

 One of the major limitations of macroscopic traffic modelling in general is that they are 

highly theoretical in nature. Real world data is seldom used to validate these models as 

computer simulated graphics show sufficiently good results. Hence their real world 

simulation capabilities are limited in nature. 

 

 Having said that, they are still used among researchers because of their relative ease 

during developmental stages and during simulations than their microscopic 

counterparts. 

 

 Another drawback of these models are that they take only homogenous traffic 

conditions into account while model creation and validation. Since no traffic in the 

world can be classified as perfectly homogenous, it is difficult to obtain the exact results 

we are hoping for. 

 

 Continuing from the previous point, since their noon-heterogeneous nature has been 

established, their ability to model Indian conditions comes under question. Not only is 

Indian conditions highly heterogeneous, the driver behaviour is also very erratic.  

 

 Hence a heterogeneous model taking into account factors such as irrational driving or 

road conditions etc must be created which hopefully can more successfully model real 

world conditions. 
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