
OUTPUT-ONLY SYSTEM IDENTIFICATION USING BLIND 

SOURCE SEPARATION 
 

 

 

 

 

Ph.D. THESIS 

 

 

 

 

 

by 

 

 

 

 

 

SMITA KALONI 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF EARTHQUAKE ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE - 247 667 (INDIA) 

JULY, 2018 



OUTPUT-ONLY SYSTEM IDENTIFICATION USING BLIND 

SOURCE SEPARATION 

 

A THESIS 

 

 

Submitted in partial fulfilment of the 

requirements for the award of the degree 

 

 
of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

in 

 

 

EARTHQUAKE ENGINEERING 

 

 

by 

 

 

SMITA KALONI 

 

 

 
 
 

 

 

 

 

 

 

DEPARTMENT OF EARTHQUAKE ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE - 247 667 (INDIA) 

JULY, 2018 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2018 
ALL RIGHTS RESERVED 

 



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE 
 

 

 

CANDIDATE’S DECLARATION 

 
 

I hereby certify that the work which is being presented in the thesis entitled 

“OUTPUT-ONLY SYSTEM IDENTIFICATION USING BLIND SOURCE  

SEPARATION” in partial fulfilment of the requirements for the award of the Degree of Doctor of 

Philosophy and submitted in the Department of Earthquake Engineering of the Indian Institute of 

Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period 

from July, 2014 to July, 2018 under the supervision of Dr. Manish Shrikhande, Professor, 

Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee. 

The matter presented in this thesis has not been submitted by me for the award of any 

other degree of this or any other Institute. 

  

                           (SMITA KALONI)   

 

This is to certify that the above statement made by the candidate is correct to the best 

of my knowledge.  

 

Date:      July, 2018                                                                                         (Manish Shrikhande) 

     Supervisor 

 

 

 

                  The Ph.D. Viva-Voce Examination of Ms. Smita Kaloni,  Research Scholar,  has  been  

held on ....................................  

 

Chairman, SRC                                                                            Signature of External Examiner 

 

 

                    This is to certify that the student has made all corrections in the thesis. 

       

Signature of Supervisor                                                                            Head of the Department 

Date 



Abstract

The increasing complexity of engineering structures has raised the requirement of contin-

uous monitoring for their proper functioning. Structural health monitoring needs reliable

response measurements, robust system identification algorithm for its analysis to assess the

state of the structure. The process involves postulation of a model for the structural system

followed by the estimation of the model parameters based on the analysis of output and/or

input data. With advancement in communication technology and affordable computing,

the vibration-based system identification techniques have been receiving attention to this

end. Earlier approaches to structural system identification were based on minimization of

the prediction error of the response of identified model. Direct estimation of the system

parameters in physical space (namely, stiffness, mass and damping) has also been stud-

ied within prediction error minimization framework, or within Bayesian framework. Other

methods for system identification in modal space based on the estimation of frequency re-

sponse functions in frequency domain, or impulse response functions in time domain have

also been developed. Various single input single output, single input multi output, multi

input multi output based modal identification techniques have been developed in the past.

However in come cases the input excitation are not known or difficult to measure, (e.g. am-

bient vibration excitation) output only system identification are used where only response

measurements are available for estimation of system parameters.

We focus on output-only modal identification in this work. Random decrement (RD)

technique, natural excitation technique (NExT), stochastic subspace identification (SSI) and

frequency domain decomposition (FDD) are some of the most commonly used output-only

modal identification procedures. The random decrement, natural excitation and stochas-

tic subspace identification techniques are not suitable for identification of base excitation

problems where all response measurements include a component of base motion. Frequency

domain decomposition often leads to several spurious modes which are often very difficult to

distinguish from true structural modes. Recently, blind source separation (BSS) procedures

based on certain statistical properties of signals have been used for modal identification.
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The objective of BSS procedure is to extract the source components or modal responses from

the measured data for further estimation of modal parameters such as natural frequencies,

modal damping and mode shapes. Statistical BSS procedures like independent component

analysis (ICA), second order blind identification (SOBI), complexity pursuit (CP) and their

derivatives involve identification of modal responses within a scaling factor. Because of this

scaling of modal response, the estimation of mode shapes is a complex affair in these proce-

dures. Moreover, these procedures are sensitive to the algorithmic parameters as well as the

assumptions about the statistical properties of the signals considered for source separation

are not always valid.

Motivated with the limitations of statistical-BSS based procedure, a non-statistical time-

frequency based synchrosqueezed transform (SST) procedure for BSS is proposed in this

study. It is shown that using acceleration measurements there is a greater chance of identi-

fying higher modes than with displacement/velocity measurements. The decomposition of

recorded response time histories in the time-frequency plane improves the quality of identi-

fication and allows extraction of modal components (sources) in true strength/intensity to

the extent of their contribution in making up the total response. This allows for developing

a simple procedure for estimation of mode shapes and modal damping, which avoids tedious

computations required for other formulations. The mode shapes are estimated from the ra-

tios of the extracted harmonic components from the response measured at different floors.

A simplified procedure of estimation of modal damping is proposed. Due to decaying ground

motion amplitudes towards the end of an event, the tail portions of the recorded response

primarily comprise of free vibration response and a simple curve fitting of an exponentially

decaying envelope to the tail portion of extracted modal source provides the estimate of

modal damping. For validating the performance of proposed modal identification several

example (for different building model and different earthquake excitation) cases have been

considered.

This study, focusses on modal identification and tracking changes thereof as damage

indicator. In vibration based damage identification techniques a prior knowledge of modal

parameters is required, to serve as a benchmark for comparison. Often, the lack of avail-

ability of this type of data can make a method impractical for certain applications. To

address this issue a moving time window based damage identification procedure is pro-

posed. Modal identification is performed in a number of non-overlapping time intervals by

using synchrosqueezed transform based blind identification scheme. The time windows are

selected based on the energy distribution of the signal in the time-frequency plane. As the

ii



window moves forward, the changes in modal parameters of the structure are tracked to

detect changes in the state of structure. The change in flexibility of the structure is tracked

by using a rank-1 update reduced rank approximation. Numerical simulation studies are

presented on UCLA Factor Building for different earthquake events to demonstrate the

validity of the proposed method.
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Chapter 1

Introduction

1.1 System Identification

The complexity of civil engineering structures is increasing on account of the technological

advancements, evolution of new materials, functional requirements and contemporary ar-

chitectural trends. Several challenging projects have been executed in India (for example,

The 42 (268 m), One Avighna Park (266 m), Kalisindh Thermal Power Station Cooling

tower (202 m)), and beyond (Burj Khalifa (828 m), Shanghai Tower(632 m), Taipei 101

(508 m)). Maintenance of such complex systems is a major challenge and an early detection

of damage/deterioration in any structural element is crucial for a satisfactory performance

of the system. Vibration based system identification holds a lot of potential for a structural

health monitoring system to alert the maintenance team.

The response of structures under dynamic excitation depends on its dynamic character-

istics, namely, natural frequencies, mode shapes, and damping. These dynamic (or modal)

characteristics are in turn governed by the physical properties such as mass/inertia, stiff-

ness and energy dissipation. System identification is an inverse problem to ascertain the

structural (physical or, modal) parameters from the analysis of the system response (out-

put) along with (or, without) the information about the excitation (input). Results of

system identification study can be used for different purposes, such as, validation and/or

calibration of an analytical/finite element model, condition assessment and to detect pos-

sible damages following extreme loading events (wind storms, earthquakes, etc.). Earlier

approaches to structural system identification were based on minimization of the prediction

error of the response of identified model. Direct estimation of the system parameters in

physical space (namely, stiffness, mass and damping) has also been studied within prediction

error minimization framework, or within Bayesian framework. Other methods for system

1



identification in modal space based on the estimation of frequency response functions in

frequency domain, or impulse response functions in time domain have also been developed.

An extensive overview of these procedure are presented in [70, 71, 51, 3, 81, 58, 7, 78, 5].

Often it is not possible to measure the input excitation and one has to work only with the

response/output data. Several output only identification techniques have been developed in

the past operating either in time or frequency domains. Some of the commonly used time do-

main procedures are random decrement technique (RD) [50], natural excitation technique

(NExT) [52], eigensystem realization algorithm (ERA) [53], stochastic subspace identifi-

cation (SSI) [108]. The most popular frequency domain procedure is frequency domain

decomposition (FDD) [15]. A few wavelet-based techniques [103, 65, 118] have been pro-

posed for refining the input data for use in the aforementioned techniques. Non-uniqueness

of the identified system model is a problem with most of these procedures. Typically, one

begins with the identification of a sufficiently higher order model and monitor the stability

of the identified parameters as the order of assumed model is gradually reduced. The qual-

ity of the identification results is generally poor for nonstationary signals. A wavelet-based

Hilbert-Huang transform (HHT) technique has also been used in modal identification for

nonstationary signals [113, 114]. Intrinsic mode functions (IMF) have been extracted by

using HHT from the measured response data by an iterative empirical mode decomposition

(EMD) procedure [44]. However, the iterative empirical mode decomposition process does

not guarantee extraction of modal response and the process is also vulnerable to numerical

instabilities, particularly for higher modes.

Recently, statistical signal processing framework like proper orthogonal decomposition

(POD) [57], and blind source separation (BSS) [42, 23, 8] has been used in structural

dynamics. Proper orthogonal decomposition is a data compression technique to reduce

the number of independent components while preserving variance as much as possible.

Further, the derived orthogonal components may not correspond to modal responses as

the process does not involve any constraint from the dynamics of structure. Contrary to

this BSS has been used as a promising tool for output-only modal identification in last

decade [119, 58, 85, 120, 37, 38, 39, 92, 91]. Unlike other output-only modal identification

methods, the BSS-based procedures do not require any prior assumption about the model

order. The blind source separation involves separation of a set of independent signals from

their mixture without any prior information about the mixing process. The separation of

independent sources from the observed mixtures is achieved by optimizing some statistical

measure of the underlying process with techniques like independent component analysis

2



(ICA) [23, 46], second-order blind identification (SOBI) [8] and complexity pursuit (CP)

[116]. There are a few challenges in putting these blind source separation techniques to use.

First, these procedures are based on certain idealizations about the statistical properties of

the signals which may not always hold for all types of signals; second, the results are often

found sensitive to the choice of algorithmic parameters; and third, the independent source

components are identified only within a scaling factor of true sources, i.e., if si(t) is a source

then the BSS process will extract a proportional source αisi(t).

One of the most significant applications of system identification in structural engineering

is the health monitoring and damage detection. Worldwide the efforts are directed towards

development of an automated structural health monitoring system for issuing timely alerts

for maintenance. We propose a new blind source separation scheme in a non-statistical

framework by using the wavelet-based synchrosqueezed transform (SST) [27, 11, 106] for

modal identification. The primary objective is to minimize the subjectivity in the data

processing for structural system identification and health monitoring.

1.2 Damage Detection

The structural systems are evolving into increasingly more complex forms with various

types of claddings obstructing the physical access for regular inspection and maintenance.

With increasing size and scale of structural systems coupled with difficulty in accessing

structural members, the conventional methods of visual inspection and the use of vari-

ous non-destructive techniques are impractical. A need is therefore felt for a quick and

automated screening system to monitor the health of structural system. Some damage

identification procedures have evolved over time where structural characteristics are in-

ferred from analysing its vibration response data and are known as vibration-based system

identification techniques.

Damage in a structure manifests as deterioration and degradation of strength and/or

permanent deformations following inelastic excursions. Inelastic deformations lead to re-

duction in the secant stiffness of the structure and this stiffness degradation can be tracked

as an indicator of the damage. In this study, the stiffness degradation following damage

is used as an indicator of the damage. Any changes in the system stiffness imprints the

changes in modal properties, namely, natural frequencies, mode shapes and modal damp-

ing. Therefore damage in a structural system is identified by tracking changes in either

the stiffness, or modal parameters of the system. In 1993 Rytter [90] divided the damage
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identification methodology into four levels detection, localization, quantification and prog-

nosis. The scope of the study is limited to damage detection. Several damage identification

techniques have been proposed in the past. The classification is mainly based on the type of

recorded data used, and/or the processing used to identify the damage. Some of the com-

monly used vibration based procedures are based on measure of shift in natural frequencies

[94], changes in mode shapes [110] and mode shape curvature [80], change in strain energy

[31] and changes in flexibility matrix [79]. Apart from these, model updating procedures are

also sometimes used for damage identification [122, 69, 97]. One of the main challenges in

vibration-based damage detection procedures is the need of a reference set of information

corresponding to the undamaged state of the structure against which the identified param-

eters are compared to detect any deviations. Many a times availability of a detailed finite

element model of the healthy structure, or some data set(s) from the undamaged structure

is presumed. Often, the lack of availability of this type of data renders the entire exercise

impractical [32]. There is, therefore, a need for developing processes where only vibration

data from a single event/experiment is adequate for the purpose of damage detection. We

address this issue by studying the evolution of identified modal parameters in different time

windows of a vibration record.

1.3 Aims and Objectives

The present study is aimed at developing a vibration-based modal identification procedure

which can be used with relatively smaller stretches of data to facilitate moving window

analysis of the identified modal parameters for the purpose of damage detection. The main

objectives of the current undertaking are as follows:

• To formulate the problem of modal identification of earthquake excited systems by

using blind source separation process;

• To develop a non-iterative and robust scheme for identifying independent modal

sources. We make use of wavelet based synchrosqueezed transform for this purpose;

• To extract information about modal damping from the separated modal components

from the response of earthquake excited systems; and

• To develop a moving time window based damage detection scheme.
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1.4 Organization of Thesis

The present thesis is organized in six chapters as follows:

Chapter 1 introduces the problem statement and outlines the broad contours of the ob-

jectives of the study.

Chapter 2 presents a contextual framework for the problem statement with a background

discussion on the system/modal identification techniques with particular emphasis on

blind source separation (BSS) methods.

Chapter 3 introduces the concept of synchrosqueezed transform (SST), followed by the

development of a new synchrosqueezed transform based modal identification method

for earthquake excited systems.

Chapter 4 presents a validation exercise for the SST based modal identification scheme.

A numerical study is carried out on three degree of freedom system, followed by an

experimental and numerical case study on UCLA Factor building.

Chapter 5 deals with the problem of damage detection using the SST based modal identifi-

cation. A case study of UCLA factor building is considered. The damage identification

is carried out in moving time windows.

Chapter 6 summarizes the developements and findings of this study and recommendations

for possible extensions.
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Chapter 2

Literature Review

2.1 System Identification

System identification is the process of modelling the underlying physical system based on

the analysis of a set of input-output or only output data. Initially, the concept of sys-

tem identification was used in the context of control systems engineering and later devel-

oped as a diagnostic tool for condition monitoring of equipment and machinery. With the

developments in sensor, computing and storage technologies, its potential for preventive

maintenance of large scale structural systems was recognized by the structural engineering

community and the field of structural health monitoring has been under constant evolution

for the last few decades. The motivation for the use of system identification in structural

engineering comes from two basic needs. First, to have reliable information of the structure

as constructed and its dynamic properties for improving the predictive capabilities of the

analytical models. Second, to monitor the health of the structure in view of age related

degradation, or following adverse environmental loading [64].

For civil engineering structures, system identification refers to either identification of

physical parameters (mass, damping, and stiffness), or the parameters in modal space,

namely, natural frequencies, mode shapes and modal damping. The modal identification

is a relatively more stable process than the identification of physical parameters which

often poses problems of ill-conditioning and non-uniqueness. Since the modal parameters

are governed by the physical parameters of the structural system, those can be used for

structural health monitoring, damage detection, and modal updating purposes [71, 29]. For

specified physical properties like mass, stiffness, and damping the modal parameters are

defined by the generalized eigenvalue problem of free vibration. Considering the undamped
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free vibration problem given by Eq. (2.1):

Mẍ(t) +Kx(t) = 0 (2.1)

where, M and K respectively represent the mass and stiffness matrices, and ẍ and x denote

the acceleration and displacement response. The normal modes can be determined by

exploring the possibility of existence of synchronous simple harmonic motion as a solution

which leads to the generalized eigenvalue problem defined by Eq. (2.2):

(K− λM)ϕ = 0 (2.2)

where, λ represents the eigenvalue, square of the natural frequency and ϕ represents the

associated eigenvector, or the mode shape vector. There exist n such eigenpairs for an n

degree of freedom system. The free vibration of damped system is given by Eq. (2.3)

Mẍ(t) +Cẋ(t) +Kx(t) = 0 (2.3)

and the associated eigenvalue problem is given by:(
λ2M+ λC+K

)
ϕ = 0 (2.4)

where, C is the damping matrix, λ represents the eigenvalue and ϕ is the associated eigen-

vector of the quadratic eigenvalue problem (QEP) [100]. The solution of quadratic eigen-

value problem is much more demanding in comparison to the linear eigenvalue problem of

undamped systems as defined by Eq. (2.2). Usually for the small/moderate inherent damp-

ing in the structural system, the classical damping model suffices and the normal modes of

the undamped system can be used to decouple the system of equations in mode superposi-

tion analysis. We assume the classical damping model in this study. The forced vibration

of a damped system is described by Eq. (2.5):

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) (2.5)

where, f(t) is the external excitation. The dynamic response of the system is determined by

the solution of governing equation of motion, either in time domain or in frequency domain

(for linear systems). Typically, the mode superposition is employed in the case of linear sys-

tem behaviour for economic computations. The reliability of the results obviously depend

on how faithful the model parameters are to the physical system. Since it is difficult to inde-

pendently verify the physical parameters of the analytical model, namely, inertia, damping

and stiffness properties, the dynamic properties in modal space are determined from exper-

imental observations. The physical parameters are calibrated against these observations to

improve the fidelity of the analytical model as a predictive tool. The experimental modal

analysis (EMA) is therefore a crucial link in the process of model verification.
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Fig. 2.1. Experimental modal analysis procedure

2.2 Experimental Modal Analysis

The experimental modal analysis is aimed at determining the modal parameters of the

structure subjected to a monitored excitation [30]. Both dynamic responses and input

excitations are used for identification of modal parameters. The EMA procedure comprises

of two steps (i) the testing of the structure to obtain the required raw data (input excitation

and response), (ii) the analysis of data to estimate the modal parameters of the structural

system. Sometimes an additional step of sanity check is required to weed out the spurious

information. The scheme of experimental modal analysis is shown in Fig. 2.1.

2.2.1 Structural Testing

A lot of careful planning is required for setting up the test for experimental modal anal-

ysis [105]. The structural testing comprises three stages, namely, the excitation, sensing,

and the data acquisition and data processing. The system response characteristics are gov-

erned by the excitation characteristics, and therefore, the choice of the excitation is of vital

importance in the experimental modal analysis. The impact hammer, or shaker/vibration

generator is usually used for forced vibration testing else, the structural response is recorded

for the ambient environmental and operating loads on the structure. The impact hammer

procedure is simple, but the magnitude and distribution of excitation energy is quite limited
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and is not sufficient to excite large structures and hence, its application is limited only to

the small, lightly damped systems. For large structures, vibration generators or shakers are

used. A shaker allows the application of a variety of input excitation within a frequency

range such as a constant harmonic, sine sweep, random waveform, etc. In some situations

the input excitation is unquantifiable such as ambient/environmental disturbance, wind

loads, traffic-induced vibrations, etc. and the modal parameters are estimated using only

the output response data. Such procedures are called as output-only system identification

or operation modal analysis (OMA).

Apart from the excitation, the other critical components of structural testing are sensors—

type and their placements, signal conditioning and data acquisition. The choice of sensor

depends on response quantity to be measured, operating frequency and amplitude ranges,

resolution, and triggering system. The signal conditioning and data acquisition needs to

account for the accurate analog to digital conversion, anti-aliasing filter, synchronization

across different data channels, background recording noise, etc. The effective utilization of

the recorded response data also depends on the number and placement of sensors in the

structure. Some guidelines have been recommended in the past in this regard [55, 25, 98, 41].

The sanitized data is then processed for identifying system parameters — either in physical

space, or in modal space. We consider modal identification in this study on account of its

robustness.

2.2.2 Modal Parameter Estimation

The modal system identification was initially developed as a tool for validating analytical

models in aerospace engineering and for condition monitoring of machines. The ideas were

subsequently applied to civil engineering systems for model validation and health monitor-

ing with easy availability of computing power and networked storage for large data. Over

the years, several algorithms and procedures have evolved for the experimental determina-

tion of modal properties with specific objectives and/or constraints. The user needs to first

examine the suitability of a particular procedure for the application at hand before plan-

ning the instrumentation and tests. The EMA procedures are formulated either in time

domain, or in frequency domain. Although frequency domain methods are more intuitively

appealing, time domain methods are generally preferred owing to better resolution and fi-

delity. Other classification is based on the basis of availability (or, non-availability) of a

specified model structure for parametric (or, non-parametric) identification of modal prop-

erties. Non-parametric methods lead directly to the modal properties and are referred to
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as the direct methods, while the parametric methods identify the structure of a time series

model and the properties in modal space are derived therefrom and therefore are classified

as indirect modal identification methods. Another classification of the EMA procedures is

based on the excitation and measurement type, namely, single input-single output (SISO),

single input-multiple output (SIMO), and multiple input-multiple output (MIMO). The

classification of experimental modal identification procedures is summarised in Fig. 2.2.

Some important time domain EMA procedures are complex exponential algorithm (CE) for

single input single output (SISO) systems [102], least square complex exponential (LSCE)

algorithm for single input multiple output SIMO systems [16], Ibrahim time domain (ITD)

for SIMO systems [48], poly-reference complex exponential (PRCE) [109], and eigensystem

realization algorithm [53] for MIMO systems. Maia provides a comprehensive review of

experiment modal identification procedures [71]. All of the modal identification procedures

mentioned above are based on the analyses of a set of measured input and output data.

However, in some cases it is difficult to measure the input excitation like the wind-induced

vibrations in high rise buildings, traffic-induced vibrations of bridges, etc., output only

identification techniques are used. We discuss these output-only procedures in some detail.

2.3 Output-only System Identification

When the input/excitation can not be measured (or, not known) modal parameters can be

identified from the analysis of the system response data only and the process is referred
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to as the output-only identification, or the operational modal analysis (OMA). The basic

assumption for OMA procedures is that the excitation sources are broadband, uncorrelated

and distributed over the entire structure. The output-only identification techniques are

classified according to domain of operation, i.e., time or frequency. Apart from these, some

procedures are based on the signal characteristics in time-frequency plane.

2.3.1 Time Domain Techniques

The output-only system identification in time domain has received a lot of attention in

past because of their potential to achieve fine resolution in spectral representation. Early

efforts were based on autoregressive (AR) time series models [70], which were found suitable

for civil engineering structure under ambient vibrations for estimation of modal damping.

However, these models are very sensitive to choice of window length, sampling rate, and

signal to noise ratio [13]. Identification of impulse response function (IRF) (or, free vibration

response) from the measured vibration response data provides information about the natural

frequency and damping. The random decrement (RD) technique, or the natural excitation

technique (NExT) is used for estimating the free vibration response from measured vibration

response data. These estimates of impulse response functions are subsequently used as input

Markov parameters for other modal identification methods such as Ibrahim time domain,

or eigensystem realization algorithm. Stochastic subspace identification is another time

domain technique for identifying a state-space model of the system from the analyses of

vibration response data.

Random Decrement Technique

Random decrement (RD) a signal processing technique for analysing the dynamic response

of structure under ambient excitation [22, 21]. The objective of RD is to identify the free

response known as random decrement functions from the recorded vibration response data.

The RD technique is based on the on the idea that the random component of the response

can be averaged out to estimate the free vibration (or impulse response) of the structural

system. The response of any system to random excitation consists of two parts: first, the

deterministic part (response to initial displacement and\or velocity), the second random

part being the response to random excitation. By considering the average of a number of

samples of the same random vibration response, the random part of the response will average

out, leaving the deterministic of free vibration part of the response. To avoid averaging out
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the free vibration part of the signal, the samples should start from (i) constant level, (ii)

positive slope and zero level, and (iii) negative slope and zero level to provide the sample free

decay step response, free decay positive impulse response and free decay negative impulse

response, respectively. For the measured response y(t) the free vibration decay response

may be obtained by averaging the segment of system response time histories as:

ĥ(τ) =
1

N

N∑
n=1

y(tn + τ) (2.6)

where, tn denotes the first time instant when the response crosses the chosen threshold.

The RD technique has been developed in association with time domain modal identification

methods, like the Ibrahim time domain method (ITD) [49] or the eigensystem realisation

algorithm (ERA) [53] for modal identification.

Natural Excitation Technique

The natural excitation technique (NExT)[52] is an output only system identification tech-

nique of structure under ambient excitation. The natural excitation technique is designed

for estimation of free vibration response or impulse response from the recorded forced vibra-

tion response data. In the case of white noise excitation, the cross-correlation between any

two response time histories recorded at different locations are given by linear combination

of damped sinusoids and each sinusoid has a damped natural frequency and damping ratio

that is equal to one of the corresponding fundamental mode [9]. Based on the similarities

in mathematical expression of the response cross-correlation and impulse response function

due to input white excitation, cross correlation of the response signals is used as the im-

pulse response function or free decay function in case of NExT procedure. Most commonly

the ERA is combined with the Natural Excitation Technique (NExT) to identify modal

parameters from ambient vibration measurements.

Stochastic Subspace Identification

The stochastic subspace identification procedure deals with the processing of recorded re-

sponse data without estimating the impulse response function (Markov parameters). The

state matrix is estimated from the measured response data by projecting data into covari-

ance subspace and estimating a minimum order state matrix therefrom. The eigenvalues

and eigenvectors are then estimated by solving the standard eigenvalue problem with the

estimated state matrix [108, 100].
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2.3.2 Frequency Domain Techniques

Earliest frequency domain procedures were based on the peak picking (PP) method. Nat-

ural frequencies are obtained from the peaks of Fourier amplitude spectrum, or frequency

response function [24, 107]. A more robust technique, namely, frequency domain decom-

posion, based on the decomposition of power spectra is very commonly used in structural

system identification.

Frequency Domain Decomposition

Frequency domain decomposition (FDD) [14, 15] deals with the decomposition of the power

spectral density of a multi degree of freedom (MDOF) system as sum of contributions from

modal responses by using singular value decomposition (SVD) of power spectral density

matrices (PSD). The mode shapes can be extracted from the singular vectors of the decom-

position at a frequency which maximizes the corresponding singular value. The spurious

modes are detected by keeping track of the modal assurance criterion (MAC) between the

identified mode shape and one from a suitable analytical model.

2.4 Techniques Based on Time-Frequency Distribution

Considering that the vibration signals contain useful information in both time and frequency-

domains, a joint characterization in the time-frequency plane allows a simultaneous view at

both representations. The short time Fourier transform (STFT) and spectrogram, wavelet

transform, etc. are the primary tools in joint time-frequency representations [103, 59, 60, 61].

Another time-frequency based approach for modal identification is Hilbert-Huang transform

(HHT), wherein the vibration signature is decomposed into a sum of constituent intrinsic

mode functions (IMF) through an iterative sifting process followed by applying Hilbert

transform on each of these IMFs [44, 112, 113, 114]. All operational modal analysis proce-

dures discussed above pre-suppose the existence of a model structure in some form or the

other to which the modal identification from recorded response data is predicated. Most of

the time the problem is resolved by assuming a sufficiently higher order model and examin-

ing consistency of the identified modal parameters as the model order is reduced gradually.

The process is thus vulnerable to producing some spurious modes which are artefacts of

numerical process and have little relation to the dynamics of the structure. Out of all these

procedures the random decrement, natural excitation and stochastic subspace identification

techniques are not suitable for identification of base excitation problems where all response
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measurements include a component of base motion. The requirement of information about

the model structure is obviated in a model free procedure like blind source separation (BSS)

which we discuss next.

2.5 Blind Source Separation

The blind source separation (BSS) is a powerful signal processing tool which involves sep-

aration of a set of independent signals (sources) from their mixture. The BSS problem is

identical to cocktail party problem, where several speakers are present in a room speaking

at the same time, and the available microphones record the mixture of speaker’s voices.

The objective is to segregate the voices (independent sources) from the recorded mixture.

Similarly, in BSS problem individual source components (speakers’ voices) are estimated

from the observed data (the recorded mixture of voices) without any information of the

mixing pattern. The only information available is that the sources are originating from dif-

ferent physical process. The BSS technique has found application in several fields ranging

from communications engineering [17], biomedical application [73, 56], differentiating pure

tones and sharp-pointed resonance [6], machine condition monitoring [87, 82, 86] to damage

detection [119] and modal identification [119, 58, 85, 120, 37, 38, 39, 92, 91, 93].

2.5.1 The BSS Model

The simplest BSS problem is stated as:

x(t) = As(t) (2.7)

where, x(t) is the vector of observed output, s(t) is the vector of source signals, and A is

the mixing matrix. The BSS model for noisy data is stated as:

x(t) = As(t) + n(t) (2.8)

where, n(t) represents the measurement noise. The BSS model is illustrated in Fig 2.3.

The mixing of sources can be the static (instantaneous mixing) or convolutive mixing. The

mixing process is generally considered as static to simplify source separation process. The

convolutive mix can be transformed into static mix by a linear transformation, and therefore,

we discuss the instantaneous mixing of source components. The separation of sources from

the mixture without any idea of the process is achieved by establishing a basic framework

based on independence of sources. Since the BSS problem comprises of two unknowns in a

15



 

Estimated Sources 

𝑋1
𝑋2
⋮
𝑋𝑛

 

Observation 

 

𝑆1
𝑆2
⋮
𝑆𝑛

  Separation 

 

Sources 

 

  Mixture 

 

𝑆1
𝑆2
⋮
𝑆𝑛

 

Fig. 2.3. Basic blind source separation framework

product form (As(t)), indeterminacies related to the amplitude and the order of the sources

will remain in the results: (i) The effect of scalar α on the source component is balanced

by multiplying the column of mixing matrix with 1
α
, thus the variance of the source cannot

be determined, and (ii) the permutation of the columns of mixing matrix can be balanced

by a permutation of source order. Therefore, the order of sources can not be determined

uniquely.

Among various BSS procedures, independent component analysis (ICA) and second-

order blind identification (SOBI) have received more attention. The ICA and SOBI pro-

cedures are multivariate statistical methods, and unknown variables are entirely based on

the statistical relationship between the sources and observed data. The ICA procedure is

a higher order statistics technique whereas the SOBI procedure exploits the second order

statistics.

2.5.2 Independent Component Analysis

The ICA procedure is considered as an efficient iterative method for separation of sources

from the observed data [54]. Apart from statistical independence, another assumption of

ICA model is the non-Gaussianity of the source. The ICA is based on the principle of

the central limit theorem. Therefore by maximising the non-Gaussianity of the sources,

independent components are separated from the observed mixture. Let us consider,

y(t) = Wx(t) (2.9)

where, W is the inverse of the mixing matrix A. The model can also be expressed as:

y(t) = Wx(t) = Zs(t) (2.10)

where, Z = WTA. According to central limit theorem Zs(t) will be more Gaussian than any

of the individual sources. Thus by maximising the non-Gaussianity of Zs(t) or equivalently

Wx(t) the independent source components s(t) are estimated. The non-Gaussianity of

the random variable in ICA procedure is obtained by considering higher order moments,
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such as kurtosis or negentropy etc. The independent components can also be estimated

by exploiting the mutual information minimisation theory of random variables. Once the

independent sources are estimated from observed data, the mixing matrix is estimated. In

ICA procedure, the observed data x(t) are processed by centering to obtain zero mean data

followed by the whitening operation to transform the centered data to a new set whose

components are uncorrelated and have unit variance.

2.5.3 Second Order Blind Identification

The second popular technique for blind identification is the second order blind identification

(SOBI). The SOBI method [8] is based on the second-order statistics (i.e., autocorrelation)

and the assumptions that sources are stationary and uncorrelated. The SOBI method

involves the orthogonal decomposition of the covariance kernel to extract individual sources

and is generally implemented as a three-step process: (i) pre-whitening, which involves the

linear transformation of the observed data such that the whitened data are uncorrelated with

unit variance, (ii) the orthogonalization, applied to diagonalize the time-lagged covariance

matrix Rw
x (τ) of whitened data, and (iii) to find a unitary transform for the whitening

matrix W, such that U = WA.

Rw
x (τ) = WE[x(t)xT (t+ τ)]WH

= WAE [s(t)sT (t+ τ)]ATWT

= URs(τ)U
T

(2.11)

where, E[·] denotes the mathematical expectation operator. The unitary transformation

diagonalizes the whitened covariance matrix Rw
x (τ). The desired unitary matrix can be

estimated from the eigenvalue decomposition of the time-lagged whitened covariance matrix.

The mixing matrix can be then estimated from the relationship between whitening matrix

and the estimated unitary matrix. The independent sources can be subsequently estimated

from the measured data and pseudo-inverse of the mixing matrix.

2.6 Modal Identification using Blind Source Separa-

tion

The blind source separation has been extensively used for modal identification in recent

times on account of its potential for a robust identification technique as it does not require

any prior information about the model structure. The process can be implemented within
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a framework of generic assumptions about the data. The vibration response, however, is a

convolutive mix and the BSS procedure for static mixture is applicable in the modal space,

wherein the vibration response is given as the linear combination of modal responses.

2.6.1 Modal Identification

Let us consider an n degree of freedom linear mechanical system defined by Eq. (2.5):

Mẍ(t) +Cẋ(t) +Kx(t) = f(t) (2.12)

where, M,C and K are the mass, damping and the stiffness matrices, x denotes the dis-

placement response, f is the excitation, and a dot indicates time derivative. The dynamic

response of the mechanical system in time domain can be defined in terms of impulse re-

sponse function given as:

x(t) = h(t) ∗ f(t) (2.13)

where, h(t) denotes matrix of impulse response functions and ∗ represents the convolution

operator. In view of difficulties in handling convolutive mixtures, Kerschen et al. proposed

the concept of virtual sources based on the modal expansion theorem [58]. Accordingly, the

response is defined as:

x(t) = Φq(t) =
n∑
i=1

ϕiqi(t) (2.14)

where, q(t) denotes modal coordinates, and Φ is the mode shape matrix. The modal co-

ordinates may be considered as statistically independent, if the ratios of system natural

frequencies are not integers [58, 84]. The similarity between Eq.(2.14) and the BSS state-

ment Eq.(2.7) may be noted with modal coordinates (q(t)) being source components (s(t))

regardless of the number and type of the physical excitation, and the mode shape matrix

(Φ) being the mixing matrix, A. The other modal parameters (natural frequencies and

modal damping) are identified from post-processing of the identified sources. The modal

frequencies values are estimated from the peak picking method applied to identified source

components. The damping values are estimated from half power bandwidth method or the

identified source components are transformed into a free decaying signal using the natural

excitation techniques (NExT) [52]. This additional step, however, degrades the quality of

damping estimates [58, 84]. The procedure for estimation of modal parameters using BSS

techniques is presented through flow chart in Fig 2.4. Initially, the independent component

analysis (ICA) was applied for modal identification using virtual source concept [58, 85]

for free and forced vibration response of mechanical system. A fairly good correspondence
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Fig. 2.4. Estimation of modal parameters using BSS

was observed between the vibration modes and mixing matrix for lightly damped system.

For the damping value greater than 1% ICA procedure reported performance degradation.

Some modifications to ICA procedure were suggested in conjunction with short time Fourier

transform (STFT) to address the nonstationarity of the response time histories [115]. In

comparison to ICA procedure, SOBI has been more popular in modal system identification

mainly because of two reasons: (i) it exploits the temporal structure of the signal for es-

timation of individual sources component,and (ii) working with second-order statistics is

numerically easier in comparison to higher order statistics. The SOBI formulation relies on

the stationarity of covariance structure, and the results begin to deteriorate in the presence

of non-stationarity. However, unlike ICA, SOBI procedure performs satisfactorily for lighter

to moderate damping [85, 120]. The SOBI procedure sometimes predicts spurious modes

which do not correlate with structural modes of vibration [84]. Prior knowledge of noise

covariance is one of the pre-requisites of SOBI procedure, it may not always be possible to

have this information. The sensitivity to non-stationarity has been addressed up to some ex-

tent by analysing the time series in time windows [75]. An extended SOBI algorithm known

as modified cross-correlation (MCC) makes use of several time windows in the formation of

covariance matrices, by considering the auto and cross-correlation of the measurements as

Markov parameters [38]. The modified cross-correlation technique differs from SOBI only

in two aspects (i) the SOBI techniques work in the response (observed) data whereas the

MCC works on the correlation at all time lags of the response (observed) data. The main
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idea behind this is that in case of SOBI procedure, information of noise statistics is needed

a priori and acquiring it is almost an impossible task; therefore, correlation of observed data

is considered to eliminate the noise components, and (ii) in MCC diagonalisation procedure

involves covariance matrices obtained from multiple non-overlapping windows instead of

time lagged covariance matrices as in case of SOBI to address the issue of nonstationarity.

The SOBI procedure has been further extended to wavelet-based modified cross correlation

(WMCC) [37]. For signals with lower energy modes, and noisy data wavelet transform

is used for the separation of sources [63, 121]. The procedure of estimation of sources

through WMCC involves the pre-processing of correlation of response data using stationary

wavelet transform for obtaining time-invariant wavelet coefficients followed by diagonaliza-

tion of several time-lagged non-overlapping windows for the estimation of mixing matrix and

source components. For nonstationary response, covariance matrices have been obtained

from several trimmed overlapping windows, followed by joint-approximate diagonalisation

(JAD) of these matrices for modal parameter estimation [92]. The diagonalization process

in all of these SOBI and variants involve two problem-specific parameters: window length

and time lag, which are often hard to determine. These parameters are the function of the

degree of the non-stationarity present in the system [12].

Recently a generalization of the ICA procedure, called complexity pursuit (CP) [45] has

been proposed for modal identification [116, 117, 118]. The complexity pursuit based BSS

overcomes some of the limitations of the ICA procedure, namely, the assumption of indepen-

dent nature of source components, and presence of at least one Gaussian source component.

The CP procedure consists of estimating source component from the temporal structure

of the signals and does not require any additional condition of Gaussian distribution of

sources. The estimation of source components through CP is based on Stone’s theorem

[104], wherein the simplest (non-dispersive) constituents (sources) are sequentially extracted

from a recorded mixture. In structural dynamics problems, these extracted constituents—

represent the modal response to a scale factor— are obtained by minimising a measure of

the complexity of recorded signals. The detail theoretical study on CP based BSS for modal

identification was further carried out by Antoni et al. [5]. The simulation shows that CP

is not superior to SOBI in the general case and suffers performance issue in the presence

of closely spaced modes and complex modes. Antoni et al. proposed a generalized CP

approach [5] where the simplest (non-dispersive) constituents (sources) are sequentially ex-

tracted from a recorded mixture using an arbitrary number of filters. However, the problem

of scaling issues of extracted modal components remains unaddressed.
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2.6.2 Outstanding Issues in BSS based Modal Identification

The output-only modal identification procedures hold potential for evolving into robust

automated system for online monitoring of systems subjected to environmental loading.

Based on the review presented above, following issues have been identified for developing

robust BSS based procedures.

Formulation for Base Excited System For earthquake excited structural systems, the

strong motion recording comprise the total acceleration at a point while the equation

of motion is formulated in terms of the motion relative to the base motion and the

modal expansion is in reference to the relative displacement response.

Scaling of Identified Sources One of the major problem associated with BSS based on

ICA, SOBI, CP and their variants is that the independent sources are identified within

a scaling factor. This causes problems in identification of mode shapes and necessitates

use of specialized techniques for the purpose.

Dependency on Algorithmic Parameters The diagonalisation process in SOBI and its

variants involve two problem-specific parameters, namely, window length and time lag,

and the results are sensitive to the choice of these parameters.

Non-stationarity The SOBI procedure is based on the assumption of stationarity of the

sources, which is not true most of the times.

Iterative Nature The ICA and CP procedures are iterative procedures for estimation of

source components from the observed data. The iterative procedure does not always

guarantee extraction of exact components and also increases the computational load.

Spurious Modes The SOBI procedure introduces spurious mode due to numerical pro-

cessing. The separation of spurious modes from the genuine modes requires further

processing.

Pre-processing of Data The ICA and SOBI procedures require a number of pre-processing

steps like the whitening, centring, correlation of input data, wavelet transforms, etc.

Noisy Data The study on noise contaminated data has not received much attention.

Based on the problems mentioned above, we develop a simplified BSS based modal iden-

tification in a non-statistical framework using synchrosqueezed transform (SST). The SST

is an adaptive procedure, which facilitates the separation of harmonics from the vibration

signature.
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Chapter 3

Modal Identification Using Blind

Source Separation

3.1 Background

Identification and quantification of the constituents comprising a multi-component signal

is a classical problem of signal processing. The process of separation of constituents from

the measured data without any information of the mixing process is known as blind source

separation. The source separation procedures are generally categorized into two classes

depending upon their application domain, statistical and non-statistical. Statistical signal

processing based blind modal identification technique has received attention in past one

decade [58, 74, 37, 92]. In non-statistical category empirical mode decomposition procedure

has been used [44]. In recent years a new non-statistical synchrosqueezed transform (SST)

technique has been developed as source separation tool [27, 111, 106, 11] which offers fine

resolution in the time-frequency plane. For earthquake like signals where all constituents of

time series are well localised in time and frequency plane, synchrosqueezed transform provide

an effective alternative for source separation. In this study synchrosqueezed transform has

been used for blind modal identification. The details are given in next sections.

3.2 The Synchrosqueezed Transform

Synchrosqueezing technique was initially introduced in the context of audio signal processing

[28] and further analysed as an alternative to empirical mode decomposition algorithm [27].

The synchrosqueezed transform (SST) is a wavelet based time-frequency analysis tool that
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can identify different harmonic components from a time series comprising several harmonics

[47]. SST procedure has been used in different areas including speech recognition [27],

geophysics [43], atmospheric and climate studies [106, 11], medical data analysis [27], fault

diagnosis [67, 66, 34] and damping estimation[76, 77]. Let us consider a signal y(t) as:

y(t) =
m∑
i=1

si(t) (3.1)

with each source component, known as intrinsic mode type function (IMT), is like si(t) =

Ai(t) cos θi(t), and m is the number of components in y(t), Ai and θi(t) respectively are

the instantaneous amplitude and (slowly varying) phase of the ith component. Knowing

the signal y(t), the source separation problem deals with estimation of its constituents

components si(t). For noise corrupted data the Eq. (3.1) can be modified as:

y(t) =
m∑
i=1

si(t) + n(t) (3.2)

where, and n(t) is the measurement noise.

3.3 Synchrosqueeezed Transform Procedure

Synchrosqueezed transform (SST) allows the estimation of harmonics present in a time

series. The SST has the ability to provide the sharper representation of signal in time-

frequency plane by reallocating the coefficients of continuous wavelet transform to time fre-

quency plane by applying synchrosqueezing operation. The signal can be then reconstructed

by allowing transformation from time frequency plane. Synchrosqueezed transform for esti-

mation of individual source components is a three step process: (i) computation of wavelet

transform, (ii) synchrosqueezing operation to map the wavelet transform coefficients from

the time-scale plane to the time-frequency plane, and (iii) reconstruction of the time-domain

signal from its synchrosqueezed transform.

3.3.1 Continuous Wavelet Transform

The continuous wavelet transform (CWT) provides the time frequency information of any

signal y(t) and is defined as [26]:

Wy(a, b) =
1√
a

∫
y(t)ψ∗

(
t− b

a

)
dt (3.3)

where Wy(a, b) is known as continuous wavelet transform coefficient, ψ∗(t) is the complex

conjugate of the mother wavelet ψ(t). The CWT represents the inner product between
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the signal y(t) and a scaled version of the complex conjugate of the mother wavelet ψ(t).

The parameters a and b control the scale and time-shift of the transform process. The

instantaneous frequency ω(a, b) of the signal y for any point in time-scale plane (a, b) for

which Wy(a, b) ̸= 0 is given by [28, 27]:

ω(a, b) =


−i

Wy(a,b)

∂[Wy(a,b)]

∂b
; |Wy(a, b)| ̸= 0

∞; |Wy(a, b)| = 0

(3.4)

The synchrosqueezing operation is performed on the wavelet transform to map the wavelet

coefficients from time-scale plane to time-frequency plane.

3.3.2 Synchrosqueezing of CWT Coefficients

The synchrosqueezing operation is defined as the mapping of CWT coefficients from time-

scale plane to the time-frequency plane, i.e., (b, a) → (b, ω(a, b)). The continuous wavelet

transform provides a “blurred” representation of signal in time-frequency plane. To obtain

the sharper representation of signal synchosqueezing operation is applied.

Let us assume that the CWT coefficient Wy(a, b) is evaluated at discrete values of the

scale parameter, ak, with (∆a)k = ak − ak−1 and its synchrosqueezed transform Ty(ω, b) is

determined at the centre ωl of the frequency interval [ωl− ∆ω
2
, ωl+

∆ω
2
], with ωl−ωl−1 = ∆ω,

by adding different contributions [27]:

Ty(ωl, b) =
1

∆ω

∑
ak:|ω(ak,b)−ωl|≤∆ω

2

Wy(ak, b)ak
−3/2(∆a)k (3.5)

This facilitates the refinement of the signal representation in time-frequency plane around

frequency, ωl.

3.3.3 Signal Reconstruction from SST

The original signal can be reconstructed from its synchrosqueezed transform as:

y(t) = ℜ

[
1

Cψ

∑
l

Ty(ωl, b)

]
(3.6)

where, ℜ(·) denotes the real part of a complex quantity, and the normalizing constant Cψ
is related to the mother wavelet ψ(t) as:

Cψ =
1

2

∫ ∞

0

ψ̂∗(ξ)

ξ
dξ (3.7)
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with ψ̂(ξ) being the Fourier transform of ψ(t) and the superscript (·)∗ indicating complex

conjugate.

It is possible to extract individual harmonics present in the signal by using an ideal band

pass filters with a unit gain in the passband to extract the relevant information from the

time-frequency plane which is then transformed to time-domain by using Eq. (3.6). The

procedure of estimation of source component using SST procedure is illustrated in Fig. 3.1.

The property of reallocation and reconstruction of individual components through the SST

is ideally suited for its use as a source separation technique in BSS and offers a viable

alternative to ICA, SOBI and CP techniques.
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y
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i
(t) 

Given signal 
y(t) 

Fig. 3.1. Source separation procedure using synchrosqueezed transform

One important parameter in synchrosqueezed transform is the selection of mother wavelet

ψ(t). The mother wavelet is selected such that its Fourier transformation ψ̂(ξ) is concen-

trated in the absolute value around the positive frequency ξ = ω0 and is small and rapidly

decaying elsewhere. We use Morlet wavelet for estimation of CWT coefficients in this study.

The implementation details for discrete time sampled data have been proposed by Thakur

et al. [106].
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3.4 Modal Parameters Estimation using Synchrosqueezed

Transform

The estimation of modal parameters from vibration data using BSS schemes is based on

the mathematical similarity between the fundamental BSS problem stated in Eq. (2.7)

as: x(t) = As(t) and the modal expansion theorem Eq. (2.14) as: x(t) = Φq(t), where

x(t) is the measured response or the response correspond to equation of motion Eq. (2.3),

[58, 85, 38]. For base excited structures, such as during earthquake excitation, the equations

of motion are formulated in terms of the relative displacement of the mass with respect to

the base, whereas the inertial accelerometers used for building instrumentation pickup total

acceleration of the point. Therefore, the accelerometer data can not be used directly for

modal identification using BSS formulation in its original form and for identifying relative

responses from the accelerometer measurements, additional information of ground motion is

required. Thus for performing output-only modal identification of base excited structures,

the modal expansion theorem needs to be reformulated in terms of total response.

3.5 BSS Formulation for Base Excited Structures

Let us consider vibrations of an n degree of freedom (DOF) system described by the equation

of motion as:

Mẍ+Cẋ+Kx = f(t) (3.8)

where, M,C and K are the mass, damping and the stiffness matrices, x denotes the dis-

placement response, f(t) is the excitation, and a dot indicates time derivative. The system

response can be given by a linear combination of the normal modes of the system as:

x(t) = Φq(t) =
n∑
i=1

ϕϕϕiqi(t) (3.9)

where, q(t) denotes modal coordinates, and Φ is the mode shape matrix. Thus the modal

expansion of system response Eq. 3.9 is considered analogous to the BSS statement given

by Eq. 2.7 as:

x(t) = As(t) (3.10)

where, x(t) is the vector of observed output, A is the mixing matrix similar to the mode

shape matrix Φ, and s(t) represents the virtual sources equivalent to modal coordinates q(t)

regardless of the number and type of the physical excitation force. The modal parameters
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(natural frequencies and modal damping) are identified from the post-processing of the

identified source time histories, and the mode shapes are provided by the columns of the

mixing matrix. This is the formulation of BSS in terms of the system response to load

directly applied to the structural system and the measured response corresponds to the

system response as in the governing equation of motion.
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m 

𝑥 𝑔(𝑡) 

𝑥 𝑔(𝑡) 𝑥 (𝑡) 

𝑥 𝑡(𝑡) 

Fig. 3.2. Single degree of freedom system subjected to base excitation

For a base excited structure, such as during earthquake excitation, as shown in Fig. 3.2,

the equations of motion are given in terms of the relative displacement of the mass with

respect to the base:

Mẍ(t) +Cẋ(t) +Kx(t) = peff(t) (3.11)

where peff(t) is the effective force vector, can be written as:

peff(t) = −MRẍg(t) (3.12)

where ẍg(t) represents the ground acceleration, R is matrix of rigid body influence coeffi-

cients, and x(t) denotes the displacement of mass-points relative to the base. The solution

by mode superposition proceeds with the modal expansion as in Eq. (3.9). However, the

relative motion can not be measured directly and the inertial accelerometers used for build-

ing instrumentation pickup total acceleration of the point [18]. The governing equation of

motion in terms of the total accelerations can be given by:

M (ẍ(t) +Rẍg(t)) = −Cẋ(t)−Kx(t)

or, ẍt(t) = (ẍ(t) +Rẍg(t)) = −M−1(Cẋ(t) +Kx(t)) (3.13)
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With the help of modal expansion theorem, we have

ẍt(t) = −M−1(CΦq̇(t) +KΦq(t)) (3.14)

Since the damping term is generally negligible in comparison to the restoring force term,

we get an approximate relation for total acceleration as:

ẍt(t) ≈ −M−1KΦq(t) = −Φ (Λq(t)) (3.15)

where, M−1K = ΦΛΦ−1 has been substituted from generalized eigenvalue problem of

structural dynamics, and Λ is the diagonal matrix containing eigenvalues. This is now in

a form suitable for using BSS with total acceleration measurements, ẍt(t). The weighted

modal coordinates are the sources to be identified while the mode shapes can be inferred

from the mixing matrix. The weighting of modal coordinates by the respective eigenvalues

enhances the energy of higher mode components which helps in the identification of higher

modes as well—an important factor for structural health monitoring applications. Further,

the modal responses are narrow band due to sharply peaked transfer functions centered at

the modal frequencies for lightly damped structural systems.

The structural vibration records receive contributions from several modes of vibration

of different frequencies which need to be extracted as virtual sources in the mixture. The

harmonic constituents of a vibration signature can be separated by the process of syn-

chrosqueezing transform, band-pass filtering and reconstruction (Eqs. (3.3–3.6)). Thus the

recorded vibration signature at any degree of freedom in a structural system can be given

by:

xk(t) =
m∑
i=1

ski(t) (3.16)

where, xk(t) represents the response of kth degree of freedom, and ski(t) denotes the ith

SST identified component of the kth signal. The estimated independent source components

are used for the estimation of modal parameters of n degree of freedom structural system.

Considering all dynamic degrees of freedom, we have:,

xn(t) = sn1(t) + sn2(t) + . . .+ snm(t)
... =

...

x2(t) = s21(t) + s22(t) + . . .+ s2m(t)

x1(t) = s11(t) + s12(t) + . . .+ s1m(t)

(3.17)

Considering the modal expansion of the dynamic response with m number of dominant

modes, we have:

x(t) =
m∑
i=1

ϕϕϕiqi(t) (3.18)
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where, qi(t) is modal coordinate and ϕϕϕi mode shape vector of ith mode. For n degree of

freedom system the modal expansion theorem can be written as:


xn(t)
...

x2(t)

x1(t)

 =


ϕn1 ϕn2 . . . ϕnm
... ... . . . ...

ϕ21 ϕ22 . . . ϕ2m

ϕ11 ϕ12 . . . ϕ1m




q1(t)
...

q2(t)

qm(t)

 (3.19)

Comparing Eqs. (3.17 and 3.19), the one-to-one relationship between the separated har-

monic components and the mode shape vectors and modal coordinates can be established.

For base excited structures considering response at all degree of freedom system and its

constituent parts obtained from SST:

ẍtn(t) = sn1(t) + sn2(t) + . . .+ snm(t)
... =

...

xt2(t) = s21(t) + s22(t) + . . .+ s2m(t)

xt1(t) = s11(t) + s12(t) + . . .+ s1m(t)

(3.20)

where, ẍtn(t) represents the total acceleration response of nth degree of freedom.

The modal expansion equation for base excited n degree of freedom system can be written

using Eq. (3.15) as: 
ẍtn(t)
...

ẍt2(t)

ẍt1(t)

 =


ϕn1 ϕn2 . . . ϕnm
... ... . . . ...

ϕ21 ϕ22 . . . ϕ2m

ϕ11 ϕ12 . . . ϕ1m




ω2
1q1(t)
...

ω2
2q2(t)

ω2
mqm(t)

 (3.21)

Again if we compare Eqs. (3.20 and 3.21), the identified constituent sources sni(t) are pro-

portional to the modal response ω2
i qi(t), i = 1, 2, ...,m. Thus for the case of base excitation

and acceleration measurements, the SST identified constituent components correspond to

modal responses weighted by respective eigenvalues, ω2
i , and lead to a comparatively better

representation of higher modes than displacement/velocity measurements.

3.6 Synchrosqueezed Transform Based Modal Param-

eter Estimation

From the one-to-one relationship between the element of matrices given by Eq. (3.20) and

Eq. (3.21), the source components identified through SST procedure are the true measure
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of modal response. Modal parameters namely mode shape, modal damping and natural

frequencies are estimated by processing of the identified modal response vectors.

3.6.1 Estimation of Mode Shapes

Assuming the mode shapes to be normalized to unity at nth degree of freedom, it follows

that the identified constituent sources sni(t) are proportional to the modal coordinates

qi(t); i = 1, 2, ...,m. The natural frequency and modal damping can be estimated by post-

processing of the identified modal coordinates. The mode shapes coefficients at other degree

of freedom are estimated as the time average of instantaneous ratios of SST identified modal

responses:

ϕki = mean
t

(
ski(t)

sni(t)

)
(3.22)

The computation of mode shape coefficients as normalization of response with respect to

the one at nth DOF may sometime create numerical error if the response at n DOF is

not significant in the mode being identified. Therefore, for numerical robustness, the mode

shapes coefficients can be estimated as the time average of instantaneous ratio (normaliza-

tion) of SST identified sources with respect to the component with maximum energy for

that harmonic:

ϕki = mean
t

(
ski(t)

spi(t)

)
(3.23)

where, spi(t) is the source component having maximum energy for ith harmonic, Ei (=∫ t
0
(spi(t))

2 dt ) out of all degrees of freedom k = 1, 2, . . . , n. For the case of seismic exci-

tation through base motion, the estimated mode shape ordinates have a bias due to the

contribution of ground motion component in addition to the structural vibration. This

bias ( = mean
t

(üg(t)/spi(t))) needs to be removed from the estimated coefficients to get the

structural mode shapes. The extracted mode shape coefficients can be further normalized

either to unit length, or mass orthonormalized as required. The modal assurance criterion

(MAC) [1] is used to measures the correlation between the identified mode shapes with

theoretical or reference mode shapes. The modal assurance criteria is defined as:

MAC =
| ϕ̂Tϕ |2(

ϕ̂T ϕ̂
)
(ϕTϕ)

(3.24)

where, ϕ̂ and ϕ are the estimated and reference mode shape vectors respectively. The

MAC value ranges from 1 to 0 with values close to unity representing a good correlation

between the identified and reference mode shapes. The other modal parameters (natural

frequency and modal damping) are estimated from post-processing of maximum energy
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Fig. 3.3. Peak picking method of estimation of natural frequency

source components as modal coordinates. In this study the procedure proposed for mode

shape estimation is based on the availability of response measurements at all floor levels.

However in case of building instrumentation spatial incompleteness is a major issue. In

such cases the missing response time histories can be synthesized either in the frequency

domain or in the time domain by using a suitable interpolation scheme. In time domain

interpolation, the piecewise cubic Hermite interpolating polynomial (PCHIP) interpolation

has been used to estimate the corresponding discrete time sample of response time histories

at intermediate floors [99].

3.6.2 Estimation of Natural Frequencies

The estimation of natural frequencies is most straightforward procedure in comparison to

other modal parameters. The synchrosqueezed transform provides a sharper representation

of the signal in the time-frequency plane. Therefore, the approximate information of the

natural frequencies can be extracted from SST plots. However for more accurate and robust

measurement peak picking method can be applied to identified modal coordinates. Peak

picking method is the simplest procedure of identifying the frequencies of the system where

natural frequencies are taken from the observation of the peaks on the Fourier amplitude

spectrum of the identified source. The process of estimation of natural frequencies using

peak picking method is shown in Fig. 3.3.

3.6.3 Estimation of Modal Damping

Various methods are available for estimation of damping from the structural response to

free, forced, or ambient vibration. The commonly used methods are logarithmic decay
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Fig. 3.4. Hector Mine 1999 earthquake ground motion (Horizontal component)

method, half power bandwidth method, and curve fitting method [20]. In the logarithmic

decay or free decay method, a pull and release test is conducted to measure the free vibration

record. Logarithmic decay method is valid for small oscillation of a lightly damped system.

The second commonly used method is half-power bandwidth method which is based on

estimation of the system of transfer function from the input-output data pairs. It is difficult

to use in case of closely spaced modes. The curve fitting method has been considered as

a most reliable method of estimation of modal damping [88]. The curve fitting procedure

involves the fitting response time series with exponentially damped harmonic functions.

However, for forced excitation cases the shape of the response is unknown therefore curve

fitting cannot be applied directly to the measured response. In some of the studies, the

measured response has been transformed to free decay response using natural excitation

technique (NExT) [52, 50] for further estimation of modal damping.

In BSS based modal identification procedures the modal damping values are estimated

through the processing of identified modal coordinates. For free vibration cases, damping

values are identified directly by fitting the exponential decay function to the identified

modal coordinates. Whereas for forced vibration cases the identified modal coordinates are

processed using NExT procedure to convert them into a free vibration decay function for

identification of modal damping. Processing of the modal coordinates with NExT procedure

increases the computational load as well includes the error in the identified results. In this

study, a novel procedure is proposed for identification of modal damping for earthquake

excited structures. For typical earthquake excitations, the ground motion amplitudes in

the tail portion are very small as shown in Fig. 3.4, and therefore, the system response

shall be primarily dominated by the free vibration component. It is, therefore, appropriate
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Fig. 3.5. SST-based modal identification

to extract a small stretch of the tail portion of the identified sources as representative of

the free vibration response and estimate the modal damping by finding a suitable decay

exponent of the envelope. We explore the possibility of fitting an exponential decay function

of the form:

e(t) = ρe−2ζnωnt (3.25)

to the tail data y(t) = s2(t), where, s(t) denotes the source identified by SST procedure, ζn
is the modal damping, ωn is the natural frequency (in rad/s) for the respective mode, and

ρ denotes the initial amplitude of the envelope. Thus this approach provides a simplified

procedure for estimation of modal damping from SST identified sources. The complete

scheme of SST-based modal identification is shown in Fig. 3.5.
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Chapter 4

Validation of SST-Based Modal

Identification

To validate the SST based modal identification procedure formulated in the preceding chap-

ter, it is tested on a three degree of freedom shear building model. The results identified

from the proposed procedures are compared with the analytical and SOBI identified results.

Subsequently, the studies are performed on UCLA Factor Building using the real earthquake

data recorded on site. The robustness of the proposed procedure for modal identification

with noisy data is studied using analytically computed response of UCLA Factor Building

for a suite of three different ground motions.

4.1 Modal Identification of Shear Building Model

Fig. 4.1. Three DOF-system

A three-degree of freedom shear frame building model,

shown in Fig 4.1, is considered for the validation study.

The equation of motion for this shear building model

may be given as:

Mẍ+Cẋ+Kx = f (4.1)

where mass m1 = m2 = m3 = 10 kg is assumed to be

lumped at each floor, k1 = k2 = k3 = 2 kN/m are the

stiffness of floor columns and cij are the coefficients so as

to give 5% damping in each mode. The building model

is subjected to Northridge earthquake (January 17,1994 at 4:30 A.M. UTC) of magnitude:

Mw ∼ 6.7 recorded at Tarzana-Cedar Hill A at sampling frequency of 50Hz. The Tarzana-
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Fig. 4.2. Northridge earthquake ground motion considered for analysis

Cedar Hill A station is located approximately 7 km south of epicentre, receives the peak

ground acceleration (PGA) approximately as 1.8g, 1.00g in two horizontal directions and

1.04g in vertical direction. In this numerical study the horizontal component of ground

acceleration with peak amplitude of 1.8g is used for the analysis. The details of ground

acceleration are shown in Fig. 4.2 [4]. The response x(t) is obtained by solving Eq. (4.1)

using Newmark’s constant acceleration method.

4.1.1 Source Separation using SST

As discussed earlier, the SST procedure facilitates the separation of harmonic components

present in the signal. The response measurements and corresponding SST plots at all floors

are shown in the Fig. 4.3. The fine horizontal lines in the SST plot denote the different

frequency components present in the signal. Using SST, source components are separated

from measured acceleration data by applying suitable band pass filters. The identified

sources corresponding to top floor measurement response are shown in Fig. 4.4 where, (a)

shows the total acceleration response at top floor, (b) shows the three source components

identified from SST using suitable band pass filters, (c) represents the reconstructed signal as

summation of three identified sources s1(t)+s2(t)+s3(t), and (d) represents the measured vs

reconstructed response. The three identified signal constitute more than 99% energy of the

original signal. Therefore, it can be concluded that the SST is an effective tool for providing

the time frequency information of the signal as well as capable of extracting the individual

harmonics. In similar fashion the harmonic components are extracted from the responses

at remaining two degree of freedom. This shows that the time-frequency based SST is an

effective alternative to other statistical BSS procedures. From the mathematical similarity
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Fig. 4.3. Acceleration measurements and corresponding SST plots at different floor levels
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Fig. 4.4. (a) Total acceleration response at top floor, (b) identified source components,
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between modal expansion of system response Eq. (3.21) and basic SST definition Eq. (3.20),

the SST identified harmonics can be seen as the measure of modal response. To validate

this, SST identified source components are compared with the analytical modal responses.

The analytical modal coordinates for base excited structures are obtained by using the

modal expansion in terms of total acceleration derived in previous chapter (Eq. 3.15) as:

ẍt(t) = −Φ (Λq(t)) (4.2)

The modal response contributions are then obtained by scaling the modal coordinate with

mode shape coefficient ϕjiqi(t) for the ith mode response at jth degree of freedom. Figure 4.5

shows the SST identified sources from top floor measured response and analytically obtained

modal response.
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Fig. 4.5. SST identified sources and theoretical modal responses at top floor level

The analytical modal response and SST identified sources are compared using relative

error (e) calculated as:

e =

√∑
i (ŝ(ti)− s(ti))

2∑
i ŝ

2(ti)
× 100% (4.3)
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Table 4.1. Relative error between the identified sources and analytical modal responses

Relative error in %

DOF Mode 1 Mode 2 Mode 3

3 1.42 1.60 2.20

2 1.51 2.20 2.00

1 1.90 2.21 2.45

where, ŝ(t) is the analytical modal response, and s(t) is the SST identified source. The

relative error of 1.42%, 1.60% and 2.20% are observed between the first, second, and third

SST identified sources and analytical modal responses respectively. Similarly the sources

identified at other degree of freedoms are also compared with corresponding analytical modal

response vectors. The relative error estimated between the analytical modal responses at

each degree of freedom is mentioned in Table 4.1. The smaller value of error shows that

the identified sources are measure of modal response to its true strength and the procedure

proposed for of estimation of mode shapes (Eq. (3.22)) is suitable using SST identified

sources.

4.1.2 Modal Identification Results

The modal parameters, namely, natural frequencies, mode shapes and modal damping are

computed using SST based modal identification procedure along with SOBI procedure.

The widely used SOBI procedure is used in this study as a point of reference for SST

based BSS method. Considering the normalization of mode shape to unity at top floor,

the mode shape coefficients at other degree of freedom are obtained as the time average

of instantaneous ratio of SST identified sources with respect to top floor sources for that

harmonic using Eq. (3.22). The top floor sources components are the maximum energy

components. The identified mode shapes are compared with the analytical mode shapes

and are shown in Fig. 4.6. The modal assurance criterion (MAC) is used to compute the

fidelity of the identified mode shapes with analytical mode shapes. The modal assurance

criteria is defined by Eq. (3.24) as:

MAC =
| ϕ̂Tϕ |2

ϕ̂T ϕ̂ ϕTϕ
(4.4)

where, ϕ̂ and ϕ are the estimated and analytical mode shape vector respectively. The MAC

value ranges from 1 (perfect correlation) to 0 (poor correlation). The MAC values estimated
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Fig. 4.6. SST identified and analytical mode shapes

Table 4.2. Modal identification results three DOF-system

Mode 1 Mode 2 Mode 3

Frequencies (Hz) Theoretical 1.00 2.80 4.06

SST 1.00 2.75 3.98

SOBI 1.00 2.75 3.98

MAC SST 1.00 1.00 0.99

SOBI 1.00 1.00 0.99

Damping ratio (%) SST 5.00 4.50 4.80

SOBI 4.80 4.50 4.30

from SST and SOBI based procedure with theoretical mode shapes are mentioned in Ta-

ble 4.2. Higher MAC values has been observed between the SST identified and analytical

mode shapes. This shows that a simplified procedure as time average of instantaneous ratios

of identified sources provides an ideal estimation of mode shapes. When mode shapes are

normalized with respect to top floor the sources identified from top floor response are the

measure of modal coordinates. The other two modal parameters (natural frequencies and

modal damping) are now estimated by processing the identified modal coordinates. The

frequency spectrum of the identified modal coordinates are shown in Fig. 4.7. Using the

peak picking method, natural frequencies are estimated for each mode. The natural fre-

quencies estimated from SST, SOBI procedure along with theoretical results are mentioned

in Table 4.2. The natural frequencies identified from procedure are closer to the theoretical
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Fig. 4.7. Frequency spectrum of SST identified sources

results as well SOBI identified results.

Lastly, the modal damping values are estimated from the identified modal coordinates

using the proposed procedure (see, Section 3.6.3). The modal damping estimates are ob-

tained from both SST and SOBI procedures. Last fifty data points from tail portion are

considered for the analysis. Fitting of squared values of data points with exponential decay

function are shown in Fig. 4.8 along with the fitting parameters.
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Fig. 4.8. Fitting of SST-based identified tail portion of sources with damped free vibration

envelope for three DOF-system

The modal damping estimates are mentioned in Table 4.2. The damping estimates are

found to be close to 5%, the assumed modal damping for the model. This shows that by

fitting the exponential decay function to tail portion of identified sources provides reasonably

good estimates of modal damping for base excitation cases. From the identified results it

can be concluded that the proposed procedures provides viable tool for robust estimation

of mode shape, natural frequencies and modal damping.
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4.2 Modal Identification of UCLA Factor Building from

Recorded Data

4.2.1 Building Description

For validation of the proposed SST-based modal identification, we consider the UCLA Doris

and Louis Factor building, commonly known as UCLA Factor Building or (UCLAFB). Con-

structed in late 1970’s the UCLAFB accommodates several centres of health and biomedical

facilities. The UCLAFB is a fifteen-storey special moment resisting (SMF) steel frame struc-

ture. The height of the building above the ground is approximately 66m. There are 12 SMF

bays in both the EW and NS directions of the building. Figure 4.9 shows the UCLAFB

elevations and the typical floor plan.

Due to a slight projection on the east and west sides of the building, the floor area for floors

10 through 16 increases by 13.5 percent approximate. The building is symmetric about the

East-West axis and slightly asymmetric about the North-South axis. Except for some con-

crete caissons, the structure is supported by concrete spread footing. The building consists

of 72 uniaxial forced balanced accelerometers with an on site recording system. Four ac-

celerometers exist at each floor above grade, oriented to record translational motions near

the perimeter of the floor (two in each direction). Building has two basement levels, each of

the two basement levels has an accelerometer to record translation in two directions, as well

as two accelerometers to record vertical responses. Later in 2003 building’s sensor network

was upgraded to a 24-bit network that continuously records data including numerous small

earthquakes. This building is one of the most densely permanently instrumented buildings

in North America and has provided a wealth of strong motion recordings over a decade for

system identification and health monitoring studies (see, e.g., [101, 37, 38]). However, it

has not yet experienced any damaging earthquake so far.

The available recorded structural response data from UCLA Factor Building is used

for the validation study. Subsequently, the finite element model of UCLAFB is used for a

numerical study for a suite of earthquake ground motions. Finite element platform SAP

2000 is used for the finite element modelling of building [96]. Rayeigh damping model for

2% damping in first and third modes is used in the analysis. To simplify the finite element

modelling the building foundation is modeled as fixed base. The building is designed for

mass quantities estimated from the architectural drawing and live load is assumed 1.5 kN/m2

for load calculations. The details of mass quantities of UCLA Factor Building are given
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Table 4.3. Mass quantities UCLA Factor Building

Dead Load
Live load

Floor System Exterior System

3.0kN/m2 1.45kN/m2 1.5kN/m2

in Table 4.3. The stiffness of the non structural components is however ignored in finite

element modelling [101]. Total acceleration in three in-place directions (two translations and

one rotation) are obtained by assuming four uni-axial accelerometers installed at each floor.

Using co-ordinate transformations technique the triad of total acceleration data are obtained

at reference point assuming rigid diaphragm [101]. For numerical study on UCLAFB,

it is assumed that the position of accelerometers is same in all floors and is shown in

Fig. 4.9b. The recorded response u1, u2, v1, and v2 from each floor are used to obtain the

storey accelerations in translation directions u0, v0, and torsional direction θ0 at the reference

point using the set of following kinematic relation:

u1 = u0 − y1θ0, u2 = u0 − y2θ0, v1 = v0 − x1θ0 and v2 = v0 − x2θ0 (4.5)

where x and y are the respective coordinates of the assumed accelerometer position from

reference point at which the story accelerations are calculated. The set of equations pre-

sented in Eq. (4.5) is an over-constrained system where the number of equations are greater

than the numbers of unknown and the least-squares solution of these equation is obtained

as: 
u0

v0

θ0

 =


1 0 −y1
1 0 −y2
0 1 −x1
0 1 −x2



† 
u1

u2

v1

v2

 (4.6)

where, [·]† represents the Moore-Penrose pseudo inverse [100]. Thus the estimated storey

acceleration in translation and rotational directions are used for modal identification.

4.2.2 Modal Identification using Recorded Data

In this study, we consider the recorded building response during the 28 September 2004

Parkfield, CA earthquake (Mw ∼ 6.0) which had epicentre located about 260 km from the

UCLAFB. The recorded peak acceleration at the roof level was 0.0025 g in the EW direc-

tion. The use of such a small intensity shaking minimizes other influences like, soil-structure
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interaction, response of non-structural components, etc. and the performance of the identi-

fication algorithm can be judged easily. The same set of data has been used in several other

studies providing a good pool of independent results for comparison. The building response

has also been computed analytically via a finite element model. The analytically computed

building response from finite element model is compared with the recorded response data

during the Parkfield earthquake. The total acceleration time histories recorded at the roof,

and those computed from finite element model, along EW, NS and torsional directions are

shown in Fig. 4.9. A good agreement between these sets of time histories in EW and NS

directions affirms the fidelity of the finite element model. However in torsional direction the

magnitude of response from analytical model are an order of magnitude lower than those

estimated from recordings. Further, the torsional component derived from records seems to

be affected by measurement noise as reflected by high frequency jitters.

4.2.3 Comparison of SST, EMD and SOBI Source Separation

Procedures

Similar to SST scheme, empirical mode decomposition (EMD) procedure also deals with

the decomposition of signal into the numbers of components called intrinsic mode functions

(IMFs) using iterative sifting procedure. The first three lowest frequency IMFs in each EW,

NS and Torsional direction obtained using EMD procedure from recorded roof response

of UCLAFB are shown in Fig. 4.10 along with the BSS estimates from SST and SOBI

formulations. The analytically computed modal contributions from the first nine modes

(three in each EW, NS and torsional direction) are also shown for comparison. The

agreement between identified BSS sources and the modal acceleration from finite element

model is very good, the IMF from EMD does not suggest any relationship with the modal

characteristics. Further, the source identified by SOBI captures the frequency characteristics

reasonably well, but the amplitudes in time-domain are much smaller than the true modal

response amplitudes. This is due to the formulation of SOBI which identifies independent

sources within a scaling factor. The source identified by SST procedure, on the other

hand, retains the fidelity with true modal response in frequency as well as in time-domain

amplitude and can, therefore, be used for estimating mode shapes as well —as described

earlier in the preceding chapter. The modal response corresponding to torsional modes,

however, shows some discrepancies.
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Fig. 4.9. Recorded roof acceleration and prediction from finite element model

4.2.4 Modal Identification Results

SST identified source components represent the modal components in true strength to the

extent of their contribution in forming the total response. The mode shapes coefficients

are estimated as the time average of instantaneous ratio (normalization) of SST identified

sources with respect to the source component of a reference degree of freedom where the

mode shape coefficient is assumed to be unity. The natural frequency and modal damping

are estimated by post-processing of the identified modal response. The SST based identified

modal parameters results are compared with the identified results from BSS based SOBI

procedure and the wavelet based modified cross correlation (WMCC) results addressed

by [37] on the same dataset. The detailed formulation of WMCC procedure is given in

APPENDIX B.

Estimation of Natural Frequencies

The natural frequencies are estimated by the peak-picking method using Fourier transform

of the identified sources. The estimated natural frequencies of first five modes, in each

EW, NS and torsional direction are tabulated in Table 4.4. The free vibration results of

the finite element model are tabulated as Analytical, while the SST-based and SOBI-based
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Fig. 4.10. Identified sources from different schemes using roof level response

modal identification results are tabulated under the columns SST and SOBI, respectively.

The WMCC results are adapted from Hazra et al. for wavelet based modified cross corre-

lation method using the same dataset [37]. The estimated natural frequencies by different

BSS procedures are comparable to each other, and consistently higher than the frequencies

predicted by the finite element model. This discrepancy might be due to limitations in the

modelling of skeletal structural frame ignoring the stiffness contributions of non-structural

components.

Estimation of Mode Shapes

The mode shape vectors are obtained by taking ratios of the sources identified from different

floor levels as described in the preceding chapter. The mode shapes are estimated from the

identified harmonic components by Eq. (3.22). These identified mode shapes are compared

with those obtained from the calibrated finite element model of the UCLAFB and SOBI

identified mode shapes. The mode shape plots for first three modes in each EW, NS and

torsional direction identified from SST, SOBI and analytically computed mode shapes are

shown in Fig. 4.11. The modal assurance criterion (MAC) for the first three modes of

finite element model in each EW, NS, and torsional direction with those estimated by the

SST-based modal identification and also between SST and SOBI estimates are shown in

Table 4.5. The WMCC estimates for mode shapes are not available in the numerical form

to facilitate MAC computations. Large MAC values confirm the consistency of estimated
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Table 4.4. Natural frequencies (in Hz) of UCLA Factor building from Parkfield earthquake

Mode
Analytical SOBI WMCC SST

EW NS Tor EW NS Tor EW NS Tor EW NS Tor

1 0.39 0.40 0.56 0.45 0.54 0.65 0.47 0.51 0.68 0.46 0.54 0.70

2 1.16 1.22 1.64 1.49 1.68 2.37 1.5 1.70 2.37 1.50 1.71 2.38

3 1.95 2.13 2.74 2.67 2.85 3.82 2.67 2.88 3.83 2.67 2.85 3.78

4 * * * 4.35 4.98 5.19 4.20 4.55 5.00 3.88 4.37 4.59

5 * * * 6.24 6.41 7.27 5.31 5.69 6.19 5.32 5.51 5.57
∗ the finite element model shows local modes after mode # 9.
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Fig. 4.11. Identified mode shapes for the Parkfield earthquake
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Table 4.5. Modal assurance criterion (MAC) of UCLA Factor building from Parkfield

earthquake

Mode
MAC1 MAC2

EW NS Tor EW NS Tor

1 0.98 0.99 0.96 0.99 1.00 0.98

2 0.86 0.95 0.80 0.92 0.96 0.88

3 0.78 0.80 0.30 0.86 0.89 0.76
MAC1: FEM and SST estimates;

MAC2: SOBI and SST estimates

mode shapes from the vibration data. The mode shapes identified by SST- and SOBI-based

procedures are in very good agreement and reinforce the validity of the simple mode shape

estimation procedure proposed in this study. The SST identified modes shapes have good

correlation with the analytical and SOBI identified shapes for all modes in each EW, NS,

and torsional direction except for higher torsional mode. Poor quality of torsional modes

may be because of insufficient energy in those modes in the dynamic response.

Estimation of Modal Damping

The modal damping is estimated by fitting the exponential decay function to the tail portion

to estimated modal coordinates as proposed in Section 3.6.3. Figure 4.12 shows the damped

exponential fit for the extracted tail data (normalized with respect to peak value) for the

first three modes in each EW, NS and torsion direction identified by the SST procedure. A

similar damped exponent fit for the tail data has also been obtained for sources identified

via SOBI procedure. The modal damping estimates for sources identified by SST-based

formulation are compared with those for SOBI and WMCC schemes (as reported in [37])

in Table 4.6. The estimates from different procedures are generally consistent with each

other and estimated damping ratios are range bound considering that the modal damping

is always an elusive parameter to estimate. For higher modes, the estimates of modal

damping are generally much higher indicating the diminishing reliability of the identified

modal parameters from identified sources with very small amplitudes. The SST identified

results are in line with the results from other statistical BSS procedures like SOBI and

WMCC. This shows that the non-statistical synchrosqueezed transform procedure provides

an alternative to statistical based BSS procedure where, the implementation is not sensitive
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Fig. 4.12. Fitting of SST-based identified tail portion of sources with damped free vibration

envelope

Table 4.6. Modal damping (%) of UCLA Factor building from Parkfield earthquake

Mode
SOBI WMCC SST

EW NS Tor EW NS Tor EW NS Tor

1 4.0 4.5 4.8 3.4 3.2 3.4 5.0 4.8 4.3

2 2.0 3.2 2.2 3.3 3.4 4.3 4.0 3.0 2.0

3 2.5 3.8 2.0 2.8 3.3 3.0 3.5 4.5 2.0
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to the choice of operating parameters like the choice of time lag and the assumptions of

Gaussianity, stationarity.

4.3 Numerical Study on UCLA Factor Building

In the preceding section, modal parameters are estimated by applying the SST based modal

identification to UCLA Factor Building subjected to small amplitude Parkfield earthquake

and compared the identification results with SOBI identified and available data from other

researchers work. To validate the performance and to ascertain the robustness of SST

based modal identification procedure UCLA Factor Building is further analysed numerically

for different sets of earthquake ground motions. The performance of SST based modal

identification to noisy measurements data is also examined. The dynamic response of the

UCLA Factor Building finite element model has been computed for a suite of ground motions

from Loma Prieta, Hector Mine and Northridge earthquakes. The details of the ground

motion suite used for analysis is given in Table 4.7 and Fig. 4.13. The acceleration response

obtained using Eq. (4.6) at each floor is considered as the vibration signature for modal

identification purpose. The response along the EW axis at top floor for the Northridge event,

its synchrosqueezed transform and the extracted harmonics are shown in Fig. 4.14. The

four identified sources add up to 98% of the total energy of the measured total acceleration

response. The modal frequencies are identified from the Fourier transform of these extracted

components while the damping ratio can be estimated from the analysis of their tail portions.

4.3.1 Estimation of Mode Shapes

The mode shapes coefficients are estimated as the time average of instantaneous ratio (nor-

malization) of SST identified sources with respect to nth level source component as given by

Eq. (3.22 ). When UCLA Factor Building was analysed, for different suits of earthquakes,

numerical instability was been observed in the identified mode shapes. Figure 4.15 shows

the mode shapes for the Northridge event. The plot shows poor correlation between some

of the analytical and SST identified mode shapes. Similarly for other earthquakes also some

discrepancies in mode shapes have been observed whereas the frequency information in all

cases are in line with analytical frequencies. The discrepancies in mode shapes are related to

the sudden large amplitude at a particular floor level this may be due to the normalization

procedure (i.e., normalization with respect to nth floor sources).
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Table 4.7. Ground motions considered for numerical modal analysis

S.

No.

Event Name, Date

and Station

Mw R

(km)

PGA (g) fc (Hz) Sampling

Rate (sps)

1 Loma Prieta, Oct.

18, 1989, Hollister

South & Pine

7.1 15 0.37 (H1),

0.18 (H2),

0.19 (V )

1.03 200

2 Northridge, Jan.

17, 1994, Simi

Valley-Katherine

Rd

6.7 48 0.80 (H1),

0.54 (H2),

0.40 (V )

2.04 100

3 Hector Mine, Oct.

16, 1999, Hector

7.1 27 0.27 (H1),

0.33 (H2),

0.14 (V )

3.44 100

Mw: Moment magnitude, R: Epicentral distance, PGA: Peak ground acceleration, fc:

Characteristic frequency)
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Fig. 4.13. Earthquake ground motion and Fourier spectrum

Table 4.8. Modal assurance criteria (MAC) values for different earthquake

Ground Motion
Mode 1 Mode 2 Mode 3

EW NS Tor EW NS Tor EW NS Tor

Loma Prieta 0.99 0.99 0.98 0.98 0.74 0.89 0.77 0.81 0.33

Northridge 0.99 0.99 0.99 0.87 0.99 0.99 0.93 0.72 0.09

Hector Mine 0.99 0.99 0.99 0.92 0.77 0.95 0.89 0.93 0.52

To avoid this computation related discrepancies in the identified results, mode shape

estimation procedure is revised by considering normalization with respect to maximum

energy component given by Eq. (3.23). The other modal parameters (natural frequency and

modal damping) are estimated from post-processing of maximum energy source components

as modal coordinates. The identified mode shapes are compared with those obtained from

the calibrated finite element model of the UCLAFB are shown in Fig. 4.16 to Fig. 4.18.

A good agreement between the identified mode shapes and analytical mode shape has

been observed. Their respective MAC values are listed in Table 4.8. The modal frequencies

are identified from the Fourier transform of extracted maximum energy components. The

identified modal frequencies are shown in Table 4.9. It is possible to identify up to three
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Fig. 4.14. Measured response at the top floor (EW-Direction), its synchrosqueezed trans-

form and the extracted harmonic components (Northridge event)

Table 4.9. Natural frequencies (in Hz)

Ground Motion
Mode 1 Mode 2 Mode 3

EW NS Tor EW NS Tor EW NS Tor

Loma Prieta 0.38 0.40 0.55 1.13 1.25 1.66 1.91 2.11 2.81

Northridge 0.39 0.40 0.57 1.16 1.24 1.66 1.96 2.12 2.73

Hector Mine 0.40 0.39 0.56 1.16 1.23 1.96 1.96 2.12 2.85
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Fig. 4.15. Identified mode shapes in EW, NS and Torsion direction at respective floor

levels with reference to top floor level from Northridge event
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Fig. 4.16. Identified mode shapes in EW, NS and Torsion direction at respective floor

levels from Loma Prieta event
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Fig. 4.17. Identified mode shapes in EW, NS and Torsion direction at respective floor

levels from Northridge event

64



 0

 15

 0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 1 (EW-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 2 (EW-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 3 (EW-Direction)

Analytical
SST

 0

 15

 0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 1 (NS-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 2 (NS-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 3 (NS-Direction)

Analytical
SST

 0

 15

 0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 1 (Torsion-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 2 (Torsion-Direction)

Analytical
SST

 0

 15

-0.5  0  0.5

Fl
oo

r L
ev

el

Mode Shape Amplitude

Mode 3 (Torsion-Direction)

Analytical
SST

Fig. 4.18. Identified mode shapes in EW, NS and Torsion direction at respective floor

levels from Hectormine event
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Table 4.10. Modal assurance criteria (MAC) from synthetic Gaussian random noise

Mode 1 Mode 2 Mode 3 Mode 4

EW NS Tor EW NS Tor EW NS Tor EW NS Tor

1.00 1.00 1.00 0.95 0.99 0.94 0.87 0.96 0.56 0.78 0.72 0.26

modes in each NS and EW direction with high fidelity as indicated by the high MAC values.

The vibration energy is smeared across a wider frequency band for higher frequencies, and

it is difficult to isolate a single harmonic component from the synchrosqueezed transform as

seen in Fig. 4.14. The estimated mode shapes for higher modes are therefore less strongly

correlated with the mode shapes of analytical model. This is due to the lack of adequate

energy in the ground motion in the requisite frequency band for exciting the higher modes of

vibration. However, in torsion direction, only two modes are identified in a good correlation

with analytical mode shapes. The third mode in torsion direction for all cases has shown

poor correlation. The smaller value of MAC in torsion direction may be due to small energy

content in torsional direction response.

To analyse the performance of proposed methodology UCLA Factor Building is re-

analysed with white Gaussian noise at the sampling rate of 100 Hz for estimating higher

modes. The mode shapes are estimated from the vibration response using Eq. (3.23).

Sufficiently good correlation between the identified and analytical mode shape has been

observed for first four modes in EW and NS direction and only first two modes in torsion

direction. Figure 4.19 represents the mode shapes of UCLA Factor Building corresponding

to synthetic white noise, and its MAC values are listed in Table (4.10).

4.3.2 Robustness to Noisy Data

The robustness of SST-based modal identification procedure for noisy measurements is ver-

ified by adding a Gaussian white noise to analytically computed acceleration time histories

at each level for all example cases considered in this study to have a signal to noise ra-

tio (SNR) of 13 dB. The mode shapes are identified for the noisy measurements and the

modal assurance criterion computed for noisy data are given in Table 4.11. There is a sig-

nificant performance degradation for identification of mode shapes beyond the first mode.

The noisy measurements are then processed through a wavelet-based denoising procedure

before performing the synchrosqueezed transform and subsequent modal identification. A
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Fig. 4.19. Identified mode shapes in EW, NS and Torsion direction at respective floor

levels for Gaussian random noise
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major improvement in the quality of the estimated mode shapes after noise removal can be

seen in the Table 4.11. The effect of noise is most significant in the Northridge case and

the improvement after denoising is maximum in this case as well. The Northridge event

is relative short duration event and a lower sampling rate produces fewer data points for

discrete time processing of the signals. Fewer data points for processing generally lead to

more errors in processing.

Table 4.11. Modal assurance criteria (MAC) values for mode shapes identified from noisy

data and after denoising

Ground Motion Mode
Noisy Data Denoised Data

EW NS Tor EW NS Tor

Loma Prieta

1 0.99 0.99 0.96 0.99 0.99 0.99

2 0.85 0.98 0.25 0.95 0.9633 0.90

3 0.97 0.98 0.01 0.97 0.97 0.18

Northridge

1 0.99 0.99 0.99 0.99 0.99 0.99

2 0.80 0.54 0.21 0.87 0.91 0.89

3 0.65 0.35 0.03 0.93 0.85 0.14

Hector Mine

1 0.99 0.99 0.99 1.00 0.99 0.99

2 0.70 0.97 0.63 0.90 0.99 0.89

3 0.57 0.83 0.37 0.90 0.94 0.01

4.4 Concluding Remarks

The performance of SST based modal identification is validated on small numerical model

and complex real life building model. It has been observed that the results identified by

simple SST based procedures are comparable with SOBI based identified results. The

experiment results during small amplitude earthquake from fifteen storey UCLA Factor

Building are used for modal identification. The modal contributions to structural response

are directly extracted by using synchrosqueezed transform. The corresponding mode shape

vectors are then obtained by the normalization of identified modal response from measured

data at different floor levels with the one with maximum energy in that mode. A simple and

efficient scheme for estimation of modal damping for earthquake excited systems is proposed

based on free-vibration idealization of the tail portion of the response. The results are

found to be in good agreement with those obtained from analytical model and from other
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implementations of BSS modal identification. The robustness of the proposed procedure

for modal identification with noisy data is studied and it is shown that a simple de-noising

step enhances the fidelity of the modal identification.
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Chapter 5

A Moving Window System for

Seismic Damage Detection

To demonstrate the utility of SST based modal identification procedure, damage identifica-

tion study is carried out in this chapter. Modal identification is performed in numbers of

non-overlapping time intervals by using modal identification scheme proposed in Chapter 3.

The time windows are selected based on the energy distribution of the signal in the time-

frequency plane. As the window moves forward, the changes in modal parameters of the

structure are tracked to detect changes in the state of structure. Numerical simulation stud-

ies are presented on UCLA Factor Building for different earthquake events to demonstrate

the validity of the proposed method.

5.1 Background

Important civil infrastructure constitute critical lifeline facilities and their health greatly

influences the recovery from a disaster. It is necessary to continuously monitor the health of

these critical facilities to keep those operational. With the advancements in communication

and sensor technologies coupled with easy availability of computing resources, various struc-

tural health monitoring schemes are increasingly being used for periodic health assessment

of these large scale systems [31, 35, 10, 19]. Damage in any structural system is defined

as a reduction in its load carrying capacity and is associated with stiffness degradation on

account of changes in the material and/or geometric properties and boundary conditions.

Primary reasons contributing to damage are poor maintenance, environmental conditions

and extreme loading events. The damage, if not arrested in time, can grow to render

structures unsuitable for occupation. Therefore, damage identification is an important part
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of the preventive maintenance operations for enhancing the life of structures. There are

generally four levels of damage identification, as defined by Rytter [90]: Level 1: damage

detection, Level 2: damage detection and localization, Level 3: detection, localization, and

quantification and the last Level 4: includes the prediction of the remaining life of the

structure. The damage identification study in this thesis is limited to Level 1.

Vibration-based system identification techniques provide a convenient way to track

changes in stiffness and damping properties via identification of modal parameters from

the vibration signatures of structural system [32]. Of all modal parameters, namely, nat-

ural frequencies, mode shapes and damping ratios, frequencies are the easiest to identify

from vibration records and consequently early attempts at structural health monitoring

focused on tracking changes in the identified natural frequencies as indicator of damage

[94]. However, natural frequencies of large structural systems are relatively insensitive to

localized damages/effects and hence the success of natural frequency based procedure is

limited to laboratory-scale structures with few damage locations. Since the local effects

can be reflected in the estimated mode shapes, some measures such as modal assurance

criterion (MAC), and coordinate modal assurance criterion (COMAC) have been proposed

to track changes in mode shapes [2, 68, 110]. For bridge structures, the mode shape based

damage detection procedures have been reported to be more robust in comparison with

frequency based methods [95].The modes shapes based procedures have been also used for

damage localization purpose [89, 36]. For detection of damage in beam-like structures, the

mode shape curvature has been used [80]. The change in modal strain energy has also

been used as an indicator for identifying damages [62, 31]. The mode shape based proce-

dures require measurements from a dense network of sensors at different locations for robust

estimation of mode shapes, or use some kind of interpolation to make-up for incomplete

measurements [41, 98]. Tracking changes in physical parameters, such as, stiffness, or flexi-

bility have also been considered for identification of damage. The difference in the stiffness

matrix obtained from analytical model from the one constructed from modal properties

(mode shapes and modal frequencies) is used as the measure for damage identification [40].

Because of the difficulty in estimating higher modes through vibration testing, the derived

stiffness matrix is likely to be a poor approximation and consequently the use of a reduced

rank approximation of flexibility matrix for damage detection has been proposed [79]. The

changes in physical parameters of structural system can also be tracked by using model

updating procedures. The model updating procedure deals with modifying the parameters

of an analytical model through an optimization algorithm to minimize the differences in
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the measured and computed responses [69, 83, 97, 122]. The updating procedures, if they

converge, provide information about the locations as well as the severity of the damage.

In this study the change in flexibility of the structure is tracked by using a rank-1 update

reduced rank approximation along with the change in natural frequencies and mode shape

of the structure.

5.2 Motivation

The primary issue in vibration based damage identification procedures is the dependence

on prior calibrated analytical models and/or prior test data to serve as a benchmark for

comparison. Many algorithms presume access to a detailed finite element model of the struc-

ture, while others presume that a data set from the undamaged structure is available [72].

Often, the lack of availability of this type of data can make a method impractical for certain

applications [32]. These practical problems motivate the need for a method which extends

the concepts damage identification with single event. This is accomplished by analysing

a time series in different time windows, rather than the complete data. Modal parame-

ters (frequencies and mode shapes) are identified in all time windows and the parameters

corresponding to first window are used as reference parameters.

5.3 Moving Window Analysis

Structural health monitoring involves tracking of changes in the identified system param-

eters with respect to a reference set representing the healthy state of the system. Such a

reference set of parameters may not be always available and in most of the past studies

parameters corresponding to an analytical model of the system has been adopted as the

reference set. However, analytical modeling of a complex structure is an onerous task, and

an unvalidated and uncalibrated model may not be reliable. The modal parameters of a

healthy structure may also be susceptible to seasonal variations due to environmental ef-

fects and comparison of identified parameters with an inappropriate reference set might be

misleading. Since the damage in any structure during a strong earthquake is caused only

during intense shaking following the arrival of S-wave, the structural response during the

initial P -wave can be considered as the baseline for deriving the reference set for comparison

of identified modal parameters to detect damage. The selection of appropriate time window

is a crucial step in this exercise as a too small window may not have enough information
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to identify modal parameters and a too large window might smear out any changes in the

dynamic parameters. The selection of time windows is based on study of the distribution

of energy of vibration record in the time-frequency plane for identifying time stretches of

significant energy of similar frequency composition. Shiradhonkar and Shrikhande used

the spectrogram to select time windows for parametric system identification [97]. We use

the synchrosqueezed transform of the signal for selection of time windows because of its

capacity to provide very sharp resolution in the time-frequency plane [27]. The response

in different time windows is considered to correspond to an equivalent linear model. The

objective is to measure the change in the state of the system by tracking the changes in the

secant stiffness (reflected in modal parameters) of the system. The numerical study using

time windows for damage detection is described in the next section.

5.4 Numerical Simulation

The UCLA Factor Building has been considered for numerical study on detection of damage

caused due to strong earthquakes. The details about the UCLA Factor Building is already

discussed in Chapter 4. In this study we have assumed the sub-surface condition as hard

rock strata and finite element model is modelled using a fixed base foundation, therefore,

the site characteristics effects are not accounted for. The UCLA Factor Building response

is analyzed for three sets of ground motions corresponding to Northridge, Hector Mine, and

Loma Prieta earthquakes respectively representing the near-field, intermediate distance and

far-field events. The details of ground motions used for analysis are given in Table 5.1 and

Fig. 5.1 [4].

Finite element model of the UCLA Factor Building has been developed in SAP 2000

and validated against the reported modal properties of this building. First nine modes

correspond to natural frequencies ranging from 0.39 Hz to 2.74 Hz (see, Table 4.4). The

non-linearity in the structure is modeled in terms of plastic hinges defined by FEMA 356

[33]. The total acceleration response is assumed to be the measured vibration signature of

the building for further processing. Total acceleration in three in-place directions (two trans-

lations and one rotation) are obtained by assuming four uni-axial accelerometers installed

at each floor using Eq. (4.5). The linear and nonlinear dynamic response of the UCLA

Factor Building model is computed for these ground motions. A random, zero mean, Gaus-

sian white noise is added to the computed acceleration response time histories to have a

signal to noise ratio of about 13 dB to simulate noise of recording system and the wavelet
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Fig. 5.1. Earthquake ground motion and corresponding Fourier spectrum for damage

identification

Table 5.1. Ground motions considered for analysis

S.

No.

Event Name, Date

and Station

Mw R

(km)

PGA (g) fc

(Hz)

Sampling

Rate (sps)

Mechanism

1 Northridge, Jan. 17,

1994, Tarzana-Cedar

Hill-A

6.7 7 1.8 (H1),

1.00 (H2),

1.04 (V )

2.9 50 Reverse

2 Hector Mine, Oct.

16, 1999, Hector

7.1 27 0.27 (H1),

0.33 (H2),

0.14 (V )

3.44 100 Strike

slip

3 Loma Prieta, Oct.

18, 1989, Oakland-

Title & Trust

7.1 91 0.19 (H1),

0.25 (H2),

0.15 (V )

0.79 200 Reverse

oblique

Mw: Moment magnitude, R: Epicentral distance, PGA: Peak ground acceleration, fc:

Characteristic frequency
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based denoising has been applied to noisy time histories before taking those up for modal

identification. The linear dynamic response of the finite element model is first considered

for validating modal identification from different time windows. The time windows are se-

lected from the recorded response having maximum energy. The SST plots representing the

time-frequency distribution of energy of the signal is used for selection of time windows as

shown in Fig. 5.2 for the top floor response in EW, NS and Torsion direction for all events.

Independent harmonic modal components extracted from these SST representation by using

suitable band-pass filters and are shown next to each SST plots. The time windows are se-

lected by examining the temporal distribution of energy in these components. We consider

three time windows—W1, W2 and W3—as the first, second and third window, respectively.

The length of the data window is an important consideration and is selected by examining

the temporal evolution of frequency content in the structural response time history using

synchrosqueezed transform. We have observed that for robust estimation of parameters

at least 256 sample points are required. In this study, time windows are selected to have

at least 256 samples and more or less constant frequency line in the SST plot, except for

Northridge case where we had to settle for smaller window owing to smaller sampling rate

(50 sps). Smaller time windows for the Northridge earthquake are selected to capture the

frequency variation. Selection of windows for each source is based on energy distribution

of that source, therefore, the size and location of each time window is different for different

components. Once the time windows are selected, next step is to validate the modal param-

eters identified from these time windows. The mode shapes are identified from the ratios

of extracted harmonic sources in each time window and compared with the mode shapes

obtained from free vibration analysis of finite element model via modal assurance criterion

(MAC) [1]. The MAC matrix provides a graphical presentation of the correlation structure

between different sets of vectors with darker shades representing stronger correlation. The

MAC matrix between the analytically computed and SST identified mode shapes of UCLA

Factor Building for all three earthquake events are shown in Fig. 5.3 and also summarized

in Table 5.2.

A fairly good consistency has been observed between the analytically computed mode

shapes and those identified from SST-based procedure for different time windows, except for

higher torsional modes. Poor quality of torsional modes is because of insufficient energy in

those modes in the computed dynamic response. We now take up the moving time window

analysis of nonlinear response for damage detection.
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Fig. 5.2. SST plot of linear dynamic response in EW, NS and torsion direction at top floor

of UCLAFB along with selected time windows—all earthquake event
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Fig. 5.3. MAC matrix between analytically computed and estimated mode shapes in

different time windows (linear analysis) (X-axis: SST identified mode shapes and Y-axis:

analytical mode shapes)

Table 5.2. Modal assurance criteria (MAC) values for mode shapes in different time

windows

Ground Motion Mode
Window 1 Window 2 Window 3

EW NS Tor EW NS Tor EW NS Tor

Northridge

1 0.95 0.97 0.99 0.99 0.99 0.98 0.94 0.96 0.99

2 0.97 0.91 0.77 0.98 0.98 0.91 0.86 0.95 0.77

3 0.87 0.98 0.28 0.99 0.85 0.68 0.82 0.99 0.98

Loma Prieta

1 0.95 0.98 0.99 0.93 0.99 0.99 0.90 0.95 0.96

2 0.99 0.97 0.97 0.88 0.99 0.77 0.98 0.80 0.92

3 0.87 0.90 0.04 0.95 0.99 0.49 0.96 0.99 0.23

Hector Mine

1 0.91 0.97 0.99 0.97 0.92 0.99 0.98 0.99 0.99

2 0.97 0.91 0.92 0.97 0.92 0.64 0.97 0.99 0.65

3 0.68 0.99 0.12 0.80 0.89 0.63 0.99 0.96 0.45
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5.5 Damage Detection

The nonlinear behaviour is modelled by the formation of plastic hinges and consequently

reflects the stiffness degradation on account of damage during a strong ground shaking.

The nonlinear dynamic response of the UCLA Factor Building finite element model has

been computed. Appropriate time windows for modal identification have been identified

on the basis of time-frequency distribution of energy in each harmonic source in SST plot.

The details about the SST plots and time windows of top floor response in EW, NS and

Torsion direction from non-linear analysis for all earthquake events are shown in Fig. 5.4.

Since it is proposed to use the modal parameters identified from the first time window as

the reference set for comparison to detect damage, it is necessary to test their suitability

for this purpose. Therefore, the identified modal parameters for the first time windows

are compared with the modal parameters of the linear analytical model. Fig. 5.5 shows

the MAC matrices analytical mode shapes and the identified modes shapes from first time

windows. The numeric MAC values are reported in Table 5.3.

Table 5.3. Modal assurance criteria (MAC) values between analytical mode shapes and

W1 estimates for different earthquake

Ground Motion Mode EW NS Torsion

Northridge

1 0.93 0.90 0.99

2 0.97 0.73 0.97

3 0.88 0.97 0.16

Loma Prieta

1 0.92 0.93 0.99

2 0.99 0.99 0.75

3 0.87 0.84 0.66

Hector Mine

1 0.93 0.97 0.99

2 0.97 0.91 0.92

3 0.96 0.99 0.17

Reasonably high consistency has been observed for the first three modes in EW and NS

directions and two torsional modes for all ground motions considered. It might be recalled

that the identified torsional modes are of suspect quality due to inadequate energy in the

torsional response. The consistency of the modal parameters identified from the first time

window with the modal parameters of the linear system support our hypothesis that the

first time window parameters can be considered as the reference set to track changes for
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Fig. 5.4. SST plot of nonlinear dynamic response in EW, NS and torsion direction at top

floor of UCLAFB along with selected time windows—all earthquake event
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Fig. 5.5. MAC matrix between mode shapes obtained fromW1 and analytical mode shapes

(X-axis: SST identified mode shapes and Y-axis: analytical mode shapes)

damage detection.

5.5.1 Changes in Natural Frequencies and Mode Shapes

Any damage to the structural system is associated with the degradation of its stiffness and

considering the mass to be invariant, this softening effect should reflect in the change (de-

crease) in the natural frequencies. Tracking changes in the system natural frequencies is the

one of the earliest procedures used for structural health monitoring. The natural frequencies

have been estimated from the SST sources in all time windows. Natural frequencies iden-

tified in different time windows are given in Table 5.4. The percentage decrease in natural

frequencies in windowsW2 andW3 with respect toW1 are shown in Fig. 5.6. It is observed

that while the natural frequencies decrease with the formation of plastic hinges, different

modes are affected differently by the earthquake ground motions. The near field Northridge

event has significant influence on the first two modes with reduction in frequencies in the

range of 10–20% while the effect is considerably less pronounced in the case of far field

Loma Prieta event. This is consistent with the very few hinge formations (less than 5%) in

the case of Loma Prieta shaking. The intermediate distance event of Hector Mine seems to
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Fig. 5.6. Reduction in natural frequencies
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Table 5.4. Estimated natural frequencies (in Hz) in first three time windows for different

earthquake

Ground Motion Mode
Window 1 Window 2 Window 3

EW NS Tor EW NS Tor EW NS Tor

Northridge

1 0.45 0.49 0.50 0.39 0.39 0.49 0.39 0.39 0.49

2 1.19 1.32 1.49 1.18 1.19 1.33 1.18 1.19 1.29

3 1.96 2.63 2.99 1.95 2.48 2.99 1.94 2.24 2.83

Loma Prieta

1 0.39 0.42 0.59 0.37 0.39 0.44 0.37 0.37 0.44

2 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19

3 2.00 2.33 2.79 1.99 2.19 2.66 1.99 2.11 2.66

Hector Mine

1 0.49 0.49 0.66 0.39 0.39 0.49 0.39 0.39 0.49

2 1.28 1.19 1.33 1.23 1.18 1.17 1.27 0.99 1.15

3 2.24 1.99 2.83 2.24 1.98 2.75 2.17 1.96 2.75

have similar effect as that of the near field Northridge event as far as reduction in natural

frequencies is concerned.

Natural frequencies are global parameters and are not very sensitive to the changes due

to local softening effects. These local effects are better captured by the mode shapes and we

now track the changes in identified mode shapes for damage detection. The mode shapes

estimated from the SST sources from W2 and W3 are compared with the W1 estimates and

the correlations are presented as MAC matrices in Fig. 5.7 while the numeric MAC values

are tabulated in Table 5.5. There is a significant change in mode shapes for the near

field Northridge event while the mode shapes in windows W2 and W3 appear to be better

correlated with the reference mode shapes in the first time window W1. The results for the

intermediate distance event of Hector Mine seem to fall somewhere in between the near field

and far field cases. This pattern is consistent with the extent of damage in the structure

due to these ground motions. In this study it has been observed that if the response have

insignificant energy in parts of the interval, mode shape estimation is severely affected which

leads to poor correlation. In general damage affects the higher modes of the structure and

the lower modes are not much affected so a very small MAC values in lower modes is due

to insignificant energy in the time window being considered. To validate this hypothesis,

we considered a white noise excitation whose frequency content does not change with time.

The SST plot of white noise excitation is shown in Fig. 5.8. Figures 5.9-5.10 show the SST
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Fig. 5.7. MAC matrices for mode shapes from windows W2 and W3 with the reference

state W1 (X-axis: SST identified mode shapes and Y-axis: analytical mode shapes)
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Table 5.5. Modal assurance criteria (MAC) values for mode shapes from windows W2 and

W3 with the reference state W1

Ground Motion Mode
MAC1 MAC2

EW NS Tor EW NS Tor

Northridge

1 0.89 0.87 0.99 0.91 0.88 0.95

2 0.26 0.33 0.63 0.072 0.36 0.67

3 0.36 0.45 0.01 0.94 0.49 0.33

Loma Prieta

1 0.71 0.96 1.00 0.93 0.78 0.98

2 0.85 0.85 0.36 0.96 0.96 0.01

3 0.46 0.76 0.16 0.30 0.74 0.01

Hector Mine

1 0.79 0.96 0.99 0.88 0.96 0.98

2 0.50 0.75 0.76 0.90 0.95 0.75

3 0.72 0.86 0.23 0.13 0.60 0.03
MAC1: MAC value between W1 and W2, MAC2: MAC value between W1 and W3

Fig. 5.8. Synchrosqueezed transform of White noise excitation

plot of e top floor response from linear and nonlinear analysis in EW direction. A constant

energy line throughout is visible which results in good quality estimation of mode shapes.

In fact, it is possible to extract up to four modes for white noise excitation case. The

MAC2 value in case of Northridge earthquake EW component is much severe than the NS

component. The energy of the signal in EW direction is maximum in the frequency band

close to the second and third mode as shown in the SST plot of earthquake EW component
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Fig. 5.9. Synchrosqueezed transform of linear response EW component (White noise

excitation)

Fig. 5.10. Synchrosqueezed transform of nonlinear response EW component (White noise

excitation)
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Fig. 5.11. Synchrosqueezed transform of Northridge ground motion EW component

as shown in Fig. 5.11. The damage in the structure is due to both second and third modes

(the mode participation factor (as computed in SAP2000) of second and third modes in

EW direction are 0.27 and 0.19 , respectively). In the third window (W3 ∈ [15, 20]) for the

second source, the excitation as well as the response have insignificant energy in parts of

the interval which adversely affects the mode estimation and this leads to poor correlation

with the mode shape estimate from the first window.

5.5.2 Changes in Flexibility

The structural stiffness and flexibility matrices can be reconstructed with the help of mass

matrix, mode shapes and natural frequencies as:

K = MΦΛΦ−1 and F = K−1 = ΦΛ−1Φ−1M−1 . (5.1)

While the stiffness is proportional to the eigenvalues (Λ), flexibility is inversely proportional

to those and hence a reasonably good reduced rank approximation of system flexibility

matrix can be constructed by using only a few lower order modes which can be identified

from the vibration records. Such estimates of flexibility matrices in different time windows

can provide some indication of the damage in the system manifesting as increasing flexibility

(or, stiffness degradation). Assuming mass orthonormal mode shapes, ı.e., ΦTMΦ = I, the

inverse of the mode shape matrix is easily obtained as Φ−1 = ΦTM. The flexibility matrix

can be constructed as the rank-1 update using mode shapes and natural frequencies as:

F = ΦΛ−1ΦT =
n∑
i=1

1

ω2
i

ϕiϕ
T
i (5.2)
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Table 5.6. Frobenius norm of reduced rank approximation for flexibility

Ground Motion
EW NS Torsion

W1 W2 W3 W1 W2 W3 W1 W2 W3

Northridge 0.10 0.17 0.17 0.11 0.16 0.16 0.10 0.10 0.10

Loma Prieta 0.16 0.18 0.16 0.14 0.16 0.18 0.11 0.13 0.13

Hector Mine 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.10 0.10

A reduced rank approximation of the flexibility matrix can be constructed by limiting the

sum in Eq. (5.2) to the number of modes identified from the vibration records. However

the primary contribution to flexibility comes from the first mode for which a decrease in

frequency is detected in all subsequent windows owing to the formation of hinges. We

consider the Frobenius norm [100] for tracking the changes in the system flexibility over

different time windows. The Frobenius norm is the the measure of absolute value of a

matrix and is estimated as:

∥F∥ =

(
m∑
i=1

n∑
j=1

|fij|2
)1/2

(5.3)

and is tabulated in Table 5.6 for the reduced rank approximations of flexibility matrices

in different time windows for different ground motions. The percentage increase in system

flexibility in time windowsW2 andW3 with respect to the windowW1 is shown in Fig. 5.12.

The largest increase in the Frobenius norm has been estimated for the near field Northridge

event where the numbers of hinges formed in the structure are also maximum and it is

smallest for the far field Loma Prieta event where the number of hinges formed is minimum

as shown in Fig. 5.13. The mass orthonormal mode shapes influences the identified flexibility

matrix to a scale factor, the relative changes of the flexibility matrix will be constant.

Therefore, the damage parameters identified in different time windows will not be affected

by the choice of normalization process of mode shapes.

5.6 Concluding Remarks

A moving time window procedure to track the changes in structural system is proposed for

the purpose of damage detection. The structural system is characterized by the modal prop-

erties identified by using a SST based blind identification technique which facilitates a sharp

resolution in both time and frequency domain to isolate the modal response components.

The vibration-based structural health monitoring procedures always require parameters of a

95



 

0

10

20

30

40

50

60

70

80

Northridge Loma Prieta Hector Mine

%
  
in

c
re

as
e 

in
 |
|F

|| n
 

EW

NS

Torsion

(a) Window 1 vs Window 2

 

0

10

20

30

40

50

60

70

80

Northridge Loma Prieta Hector Mine

%
  
in

c
re

as
e 

in
 |
|F

|| n
 

EW

NS

Torsion

(b) Window 1 vs Window 3
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reference undamaged state of the structure. It is shown that the reference state parameters

can be estimated from the initial segment of the vibration records. The system parameters

can be identified from different time windows of the vibration signatures. The selection

of appropriate time windows is facilitated by the synchrosqueezed transform to study the

distribution of energy in the time-frequency plane. The modal parameters estimated in the

first window corresponding to the undamaged state of the building is compared with the

parameters estimated in subsequent windows for damage detection. Changes in natural

frequency, mode shapes and system flexibility have been shown to be good identifiers of the

damage.
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Chapter 6

Conclusions and Recommendations

The problem of output-only modal identification has been addressed in this thesis to provide

a non-statistical framework for blind source separation using a time-frequency characteri-

sation tool, namely, the synchrosqueezed transform. The proposed formulation leads to a

robust and elegant modal parameter estimation procedure which can be used for damage

detection. The significant contributions of this research work are summarized as follows:

1. While the governing equations for the earthquake response are formulated in terms

of motion relative to the base motion, the response measurements are invariably total

accelerations. The blind source separation formulation of representing observed sys-

tem response as a mixture of independent sources is extended for the base excitation

case.

2. A new blind identification scheme has been developed using time-frequency based

synchrosqueezed transform. The sources identified from synchrosqueezed transform

show high fidelity with the modal responses.

3. A robust non-statistical framework has been developed for estimating the mode shapes

from ratios of the identified sources for lightly damped systems.

4. A simple and efficient scheme for approximate estimation of modal damping for earth-

quake excited systems is proposed based on the free-vibration modeling of the tail

portion of the response.

5. The vibration-based damage detection process always requires reference parameters

to serve as a benchmark for comparison. To eliminate this pre-requisite, vibration

signatures are analysed in moving time windows where modal parameters identified

in first window are considered as reference parameters.
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6.1 Conclusions

The following conclusions are drawn from this thesis:

1. For earthquake excited structures, the accelerometers record the total acceleration at a

point, comprising of structural vibrations as well as the ground acceleration. Therefore

the measured response data (total acceleration) cannot be expressed directly in terms

of modal response. In this study we propose a BSS formulation for base excited,

lightly damped structures based on measurements of total accelerations which also

enhances the participation of higher modes—an important factor for structural health

monitoring applications.

2. The SST provides the sharp resolution of the signal in time-frequency plane and

facilitates the separation of different harmonics. When SST is applied to the vibration

measurements, the estimated sources are the measure of modal responses to their true

strength and not within a scaling factor as in case of statistical BSS techniques (ICA,

SOBI, CP, and derivatives). This allows for a simplified procedure for estimation of

modes shapes by the normalizing of identified modal response from measured data at

different floor levels with maximum energy component in that mode. The maximum

energy source components is the measure of modal coordinates. The other two modal

parameters namely, natural frequencies and modal damping are identified through

post processing of modal coordinates. The proposed method performed well for small

and a large class of structural system identification problems.

3. A simplified procedure is proposed for estimation of modal damping ratio by exam-

ining the tail data. The tail portion of the earthquake response is dominated by the

free vibration and therefore by fitting the tail data with exponential decay function

damping coefficients are obtained.

4. Moving time window based damage identification procedure is proposed. The modal

properties are identified using SST based blind identification technique. The vibration-

based structural health monitoring procedures always require parameters of a refer-

ence undamaged state of the structure which, if available, may not be reliable. The

reference state parameters are estimated from the initial time window of the vibra-

tion records. The synchrosqueezed transform representation of time series is taken in

account for selection of appropriate time windows. The modal parameters identified

from the initial time window are compared with the modal parameters estimated in
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subsequent windows. The variation in natural frequencies, mode shapes and system

flexibility have been shown as ideal damage detection parameters.

6.2 Recommendations for Future Work

This thesis makes contribution to the development of output-only modal identification

methodologies using time-frequency based synchrosqueezed transform and also its appli-

cation to structural health monitoring. The following seem useful leads for further explo-

ration:

1. In the proposed work, mode shapes are obtained using the vibration response mea-

surement on all floor. It is not practically possible to monitor each degree of freedom

and the effect of missing response from a few degrees of freedom should be studied.

2. Presently, very few BSS procedures are equipped to analyse structures with complex

modes. Formulation for handling complex modes should be developed for cases with

supplemental damping, soil-structure interaction, etc.

3. The proposed study is focused towards the earthquake excited buildings. The method-

ology needs to be extended to other important structural types.

4. In this work the damage detection study is carried out in moving time window. The

study needs to further extended for damage quantification.
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Appendix A

Wavelet-based Modified

Cross-correlation

Modified cross-correlation (MCC) and wavelet-based modified cross-correlation (WMCC)

procedure are the extension of second order blind identification (SOBI) [37, 38]. The SOBI

procedure was initially extended to MCC by Hazra et al. [38] to deal with noisy measure-

ments as well as to simplify the damping identification process by using auto and cross-

correlation of the measured data as the inputs, rather than the actual measurement data

of the system. The auto and cross-correlation of the measurement data are obtained using

the concepts of the NExT algorithm. The MCC procedure was further extended to WMCC

by using stationary wavelet transform (SWT) to improve the separability of the sources

and to deal with non-stationary measurement data. The WMCC is different from the tra-

ditional SOBI procedure in two ways. First, the wavelet coefficients obtained through the

stationary wavelet transform (SWT) of the correlation of measurements are used instead

of the measurements directly; secondly, the non-stationary nature of the sources is handled

through the use of several time-lagged non-overlapping windows. Starting with basic BSS

problem statement given as:

x(t) = As(t) (A.1)

where, x(t) is the measurement data, A the mixing matrix and s(t) is the source signals.

Considering the orthogonal wavelet decomposition of the sources, each source signal in terms

of its decomposition coefficients:

sji (t) =
∑
k

cjkiψ
j
k(t) i=1,2,...,m (A.2)

Where, j represents the scale parameter or dilation parameter, k represents the shift index,

and i represents source index. cjki are the decomposition coefficients, and ψ(t) is the selected
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wavelet. Similarly, each component of the measurements x can be expressed as:

xji (t) =
∑
k

f jkiψ
j
k(t) i=1,2,...,m (A.3)

Where, i is the sensor index, and f jki represents the decomposition coefficients. Substituting

A.2 and A.3 in the basic BSS equation A.1 by considering the wavelet coefficients at lth

shift of sensor sources and then applying the orthogonality condition for wavelet:

fl = Acl (A.4)

where A is m×m size mixing matrix with m sources, and m sensor responses. The vector

obtained from the lth coefficients of the mixtures and sources are fl and cl respectively.

The second step involved in the formulation is the estimation of autocorrelation matrices

of the wavelet coefficients of the sources cjkl, and the responses f jkl using SWT. The covariance

matrices in terms of of wavelet coefficients are defined given as

Rs(τ) = E

[∑
l

cjlψ
j
l (t))

∑
i

cji+τψ
j
i (t+ τ)

]
τ ̸= 0 (A.5)

and

Rx(τ) = E

[∑
l

f jl ψ
j
l (t))

∑
i

f ji+τψ
j
i (t+ τ)

]
τ ̸= 0 (A.6)

using orthogonality properties of the wavelet:

Rs(τ) = Rws(τ) = E
[
cjl c

j
l+τ

]
Rx(τ) = Rws(τ) = E

[
f jl f

j
l+τ

]
(A.7)

Now multiplying Eq. (A.4) both sides by fp+l and taking the expectation operator on both

sides, the equation is modified as:

E
{
flf

l
l+p

}
= AE

{
clc

T
l+p

}
AT (A.8)

where, p is an index with same meaning as τ . Using Eq. (A.7) and Eq. (A.8) the covariance

matrix of response and sources are simplified as:

Rwx(p) = ARws(p)A
T (A.9)

Now the Eq. (A.9) is the form similar to the SOBI and the procedure of estimation of mixing

matrix and sources are same as for SOBI procedure i.e. the whitening, orthogonalization

followed by unitary transform. Whitening is a linear transformation expressed as:

x̄(k) = Qx(k) = Λ
− 1

2
x VT

xx(k) (A.10)
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where, Vx and Λx are the eigenvector and eigenvalue of the covariance matrix of x. The

next step is the orthogonalization, to diagonalize the time lagged covariance matrix to get:

R̂wx̄(p) = QARws(p)A
TQT (A.11)

If the sources are assumed to be uncorrelated and scaled to have a unit variance, the product

QA is a unitary matrix. the problem now becomes one of diagonalizing the matrix R̂wx̄(p)

resulting in the unitary matrix, U = QA. The mixing matrix can be then estimated

from the relationship between whitening matrix and the estimated unitary matrix. The

independent sources can be subsequently estimated from the measured data and pseudo-

inverse of the mixing matrix.
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