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ABSTRACT

The aim of the dissertation is to elaborate the remote sensing methods for monitoring subsurface
fire (hotspots) in Jharia Region, (Jharkhand) India; as the Jharia coal field contains almost half of
subsurface mine fires within the Indian coal fields [1]. Thus, detecting and monitoring such
hotspots are mandatory. Since ground based monitoring are quite expensive and difficult task,
exploiting the potential of satellite images have been tried as an alternative solution. For this
purpose, freely available satellite images (e.g., MODIS, NOAA/AVHRR, and LANDSAT) are
being used for our study. This study involves the application of most renowned soft computing
lCChI’]iL]LiIeS such as: supervised classification (parallelepiped, minimum distance) and
unsupervised classification (ISODATA, K-means) over optical data: MODIS, NOAA/AVHRR,
and LANDSAT. NDVI plays an important role for the detection of hotspot due to the fact that
hotspot region usually has bare ground such that neither bushes nor grasses grows over hotspot
region. Thus, NDVI classified image into hotspot and non-hotspot regions is used. The accuracy
of the classified image 1s assessed using the metrics: hotspot detection accuracy (HDA) and false
alarm rate (FAR). The assessed value indicates that there is room for improvement. Thus, an
attempt based on heuristic method- genetic algorithm (GA) have been carried out, since it has
higher chances to result in an optimal classification of hotspot and non-hotspot pixels due to its
ability tlo search for the optimal hypothesis over a larger search space. Therefore, the attempt of
GA based KMI (K-Means Index) indicates that the detection of hotspot with an accuracy of
81%-HDA and 11%-FAR over MODIS dataset.

Such high HDA and low FAR over detection of hotspot and an attainment of good
temporal resolution recommends use of MODIS dataset for area estimation over hotspot
coverage in Jharia region. But due to fragment size of hotspot in comparison to spatial resolution
of MODIS, major amount of hotspot are present partially within a pixel (i.e., mixed pixel issues).
In order to perform hotspot area estimation over such coarse resolution image, subpixel analysis

is performed; by refining the per-pixel spectral-based detected hotspot from MODIS image by

| iii



proposing a method that uses a subpixel spectral detection method called CEM (a target
constrai!nt approach). Constrained energy minimization (CEM) is very efficient in the detection
of small hotspots very effectively as well as it requires only a prior knowledge of target spectral
signature. Due to the requirement of hotspot pure spectral signature, we have used LANDSAT-
5TM irrLage for the endmember selection using PPI. With such refined detected hotspots, the
estimated area coverage of hotspot were found to be of 11.09 Km? (on 14-Mar-2015) and when
validated with week and yearly variation; it is observed that hotspot of 0.165 Km? of variation
been observed within two weeks interval and 2.647 Km? of increased Hotspot coverage is

observed over a period of two years.
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CHAPTER 1

INTRODUCTION

Satellites have led to obtain variety of information about the earth’s surface, which are ranging
from predicting weather patterns globally, monitoring surface vegetation, tectonic activities,
polar ice variation, pollution, and variation in temperature scales, cloud cover and many more

applications.

Satellites have played a vital role in obtaining valuable information about the earth surface which
led to have a better understanding over the changes occurring within our environment such as:

predicting weather condition, monitoring surface vegetation,

Images obtained from satellites are the best source to obtain details about the resource coverage
of a region which could be used for resource management in an efficient way. Resources include
mineral, forest, agricultural, forest, hydrological, geological resources ctc. These information are

obtained/extracted from the satellite images using digital image processing.

The reduction in price of the satellite images for the availability among the public and the
abundant availability of satellite images of various resolution has lead to the involvement of
researchers among various countries to be involved to bring an evolution of gathering
information about the earth resource without in physical contact to the target (eg: land surface)

and occurring and sharing such information throughout the globe in least amount of time.

The satellite images can be distinguished based on different spatial resolution and spectral
characteristics. Resolution is the characteristic of an image that describes the level of detail that
can be distinguished. Since the smallest unit in the satellite image is a single pixel, thus a
minimal scale of the earth surface that can be extracted from the image is equivalent to the size
of a single pixel. Major satellite images are available with the spatial resolution of about 50
centimeters to 100 meters. Based on the resolution of an image the usage of the image can be
varied. The high resolution satellite data such as IKONOS, QuickBird, ASTER which offers
spatial resolution up to 60 centimeters whereas low resolution data such as NOAA/AVHRR and

MODIS provides the spatial resolution of 1.1 km and (250-1000 meters) but due to the advantage



of higher temporal resolution (i.e., several times coverage of a region in a day); these low
resolution data can be used in applications such as forest fire monitoring, drought and flood
occurrence etc which covers huge land area. Thus, due to the higher revisit of a region and the
free available of such low resolution data has led to wider involvement of researchers to find
techniques that results in extract of finer details from such coarse spatial resolution images. Also,
the high resolution images can be used for various purposes but the major issue is the less
availability of images at different intervals of time and limited spatial coverage has put a

limitation towards the usage of high resolution satellite data.

Day by Day the world is facing various geographical and environmental crisis for which satellite
images can be used as an effective source of remedy to mitigate such issues. Among these
problems, the problem occurred due to subsurface coal fires (further on will be called as
hotspots) is a problem to be prioritized in coal producing countries. The coal fires can cause
severe damages to the environment such as: air pollution, land cracks and subsidence, deposition
of unwanted/toxic chemicals over land leads to invalid use of land covers, emission of smokes
can lead to lung related diseases. These can disturb the entire ecosystem by releasing toxic
fumes, greenhouse gases. It also affects human health as the people in such affected areas are
found to suffer from various diseases like tuberculosis, asthma; majority of population could

suffer from breath related diseases.

As per today, there are plenty of methods are suggested by the researchers to use satellite data to
analyze and detect coal fires. In order to bring out a better accuracy among such detection,
techniques of soft computing could be utilized as the uncertainty among the detection (i.e
classification) of hotspots could be resolved to a better approximate as the soft computing

techniques are widely known to resolve such issues.

Natural resources are the backbone of the economy. Mining of these natural resources is carried
out worldwide. However, various hazards are triggered due to mining of natural resources. One
such natural resource is coal, which is a non-renewable source of energy. Mining of coal is
carried out for centuries because of its numerous benefits such as source of fuel, electricity etc.
Hazards associated to coal mining are for example, land subsidence, surface and subsurface coal-

fires.



Some of the very noticeable affects due to coal fire are [1]:
» Land subsidence.

« Emission of large quantity of toxic and greenhouse gases such as: SO2, NO, CO, CHa4 and
CO:z resulting in pollution of environments and adversely affects the health of millions of

people.

« Land deformations occurred due to the activity of underground coal fires affects the human

settlements.

+ Due to unwanted and uncontrollable burning of valuable coal deposits results in major

economic loss.

Thus, for the sustainable development of the mining environment, the socio-economic impacts,
environmental impacts, health and safety issues of the local people results in firm need of an

effective mitigation measures.

1.1 Soft computing

Soft computing is the use of approximate solutions to solve computationally hard problems (ie.,
those problems that cannot be solved in polynomial time) such as NP-Complete problems. As
they resemble natural processes more closely than traditional techniques, which are majorly
dependent on formal logical systems, such as sentential logic and predicate logic, or rely heavily
on computer-aided numerical analysis (as in finite element analysis). In short, they have similar
computation as found in human mind.

Soft computing are majorly used in many modules (preprocessing module, enhancement

module) in remote sensing but majorly involved in classification of satellite Images.

1.1.1 Goals of soft computing

e It is a new multi-disciplinary field which is applied to construct new generation Artificial
Intelligence system whose functionality are almost an emulation of computational
neuroscience.

e The main goal of soft computing is to provide solutions to real world problems, which

cannot be modeled or too difficult to model mathematically.
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= Task —II:
Application of subpixel analysis for area estimation of hotspot coverage using

constrained target subpixel detection method.

1.3 Organization of thesis

The report is organized as follows. Chapter 2 provides an overall survey of various literatures in
correspondence to the application of soft computing techniques over satellite images majorly
focusing over detection of coal fires as well as over the various subpixel classification

techniques.

In Chapter 3 the types of satellite images is briefly written while highlighting the
advantages of NDVI index over the satellite images in regards to utilize it for our purpose. Also,
it includes theoretical background about various soft computing techniques over image
classification as well as elaboration about methods used for performing subpixel classification
using constrained target approach, a description on PPI for endmember extraction and brief
overview on segmentation especially on Otsu method and segmentation as clustering problem

using cluster a well-known similarity index called DBI by the aid of genetic algorithm.

Chapter 4 discusses the methodology into two parts: per pixel spectral-based classifier for
detection of hotspots and subpixel spectral-based classifier for hotspot area estimation. Followed
by Chapter 5, discusses about the result obtained after performing certain numbers of
classification techniques over different satellite data’s and the result on the task: subpixel
classification for hotspot area estimation. Finally, Chapter 6 provides the concluding remarks and

future-scope.



1.1.2

Its focus is to exploit the tolerance for approximation, uncertainty, imprecision, and
partial truth in order to achieve a similar computational behavior as that of human like

decision making.
Soft computing preference for satellite images

Soft computing is better in handling uncertainty in the data. Thus, it can be used to
remove the uncertainties found in satellite images which are introduced due to the
dependence of images on the atmospheric conditions. The presence of such uncertainties
results in increase in difficulty to create a generic classification model which can classify
the same region in different observational conditions.

Soft technique approaches can be used to reduce the dimensionality of the input features
resulting in simplification of the analysis with reduction in dependability among the

f‘c atures.

1.2  Objective

= TaskI:
a. Critical study of superyised and unsupervised classification techniques by using
different satellite data: MODIS, Landsat-5TM and NOAA/AVHRR to detect

hotspots.

o Supervised classifiers:
» Minimum distance
» Parallelepiped
» Maximum likelihood
o Unsupervised classifiers:
» K-means
» 1SODATA
b. Explore the possibility of soft computing techniques for hotspot detection with

higher detection accuracy (HDA) and low false alarm rate (FAR).



CHAPTER 2

BRIEF LITERATURE REVIEW

In this chapter, a brief literature review is performed in correspondence to the application of soft
computing techniques over satellite images majorly focusing over detection of coal fires as well

as over the various subpixel classification techniques.

2.1 Satellite image analysis for hotspot detection

Satellite images are used for applications such as: change detection, agricultural monitoring,
forest fire monitoring, landslide monitoring, natural calamity monitoring etc. Soft computing
techniques are majorly used in processing satellite images for various purposes. One among them
is the use of Genetic Algorithm (GA) in performing Image fusion [2-3] of satellite images where
the weights over the parameter of different images are optimized to give the finest resultant
image. Such fusion of satellite data of MODIS and PALSAR using GA was performed by T.
Ahmed et al [4] as well as Particle Swarm Optimization (PSO) [5] (instead of GA) to classify
holspoti and non-hotspot regions in Jharia, Jharkhand. Also, in this [6], thermal and visual images
are fused and a technique which comprises of discrete wavelet transform (DWT) for feature
extraction and GA to get better optimized combined image are used while PSO can also be used
as the optimizing tool to detect hotspots over the fused image of SAR and MODIS reported by
Bushra et al. [7]. Thus, this highlights about the advantage of PSO and GA and it also indicates

that the fusion of different satellite data’s [8] can be used for our purpose.

Also, determination of hotspots at Jharia using NOAA/AVHRR channel 4, channel 5 and
different indices were developed by fuzzy based methodology [9]. The detection accuracy
achieved by this algorithm was consistently higher than 80% and maximum detection accuracy
achieved was 96%. The use of fuzzy logic have resulted in better performance over the entropy

based threshold, multi-threshold and contextual methods.

Since SVM is quite popular, robust technique for image classification [10-12]. Thus, the
application of SVM has been analyzed for hotspot detection over Jharia coalfield as well as

image analysis techniques were carried on NOAA/AVHRR satellite images [13-14]. Since the
|

6



image is of low resolution results in the need of efficient optimization techniques along with the
image analysis techniques. The multi-threshold technique is used to remove cloud coverage from
land coverage and classify hotspots. While SVM has the advantage over multi-thresholding
tcchniqﬁie that it can learn patterns from the examples and therefore is used to optimize the
performance by removing the false points which are highlighted in the threshold technique. RBF
kernel is used to train SVM because it non-linearly maps the samples into a higher dimensional
space, so it, unlike the linear kernel, can handle the case when the relation between class labels
and attributes is non-linear. Thus, hotspots and non-hotspots can be classified. The performance
of the SVM is also compared with the performance obtained from the neural networks and SVM
appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser

false alarm rate.

An unsuperyised classification technique using genetic algorithm with Davies—Bouldin
index q;DBl); DBI as fitness function were studied by Bandyopadhyay et al [15] and as
unsupervised classification in [16]. It performs clustering by using the centre of cluster which is
suggested by GA, as genetic algorithm outputs the optimal cluster centre. The optimal cluster
centre is obtained by minimizing the ratio of the sum of within-cluster scatter to between-cluster
separation (called DBI). This technique is demonstrated over satellite images as well as real-life
datasets [17]. In [18], author proposes a new cluster validation index along with comparisons of
various indices such as: DB Index, Dunn’s Index, Generalized Dunn’s Index. In [19], superiority
of GA based K-means over the widely known K-means approach has been studied by analyzing

their performance over classifying a satellite image.

linrico|et al [20] proposes the application of NIR region of SAR data for the identification of
burned area as the NIR region has the most valuable information about the aspect of burned
surface since the decrease of the reflectance value of NIR is observed over such burned surface
due to the presence of ash and carbon over the soil. Also, in [21], detection of burn scars using

optical dataset (MODIS) is elaborated.

Discussion about the use of thermal data during day and night time, detection of coal fires
using multi spectral thermal images were done by Zhang et al. [22] which can be viewed as
application of remote sensing for the detection of coal fires. The considered, satellite images are

LANDiSAT TM, NOAA/AVHRR, ASTER etc.



Also, Walker et al [23] assess the ability of ALOS/PALSAR data over LANDSAT for the
estimation of large areas of Land cover and mapping of forest in Brazilian Amazon. It indicates
that PALSAR has higher accuracy over the estimation of Land cover when compared with
lLandsat. The data fusion method was applied over the detection of hotspot by fusing SAR image
and optical resolution: MODIS image [24]. Thus, such fusion was found to indicate an efficient

method to detect Hotspots with a good accuracy over HDA and FAR.

2.2 Subpixel Analysis

In coarse resolution images such as NOAA/AVHRR, MODIS etc., target to be detected might
belong partially within a pixel or are shared among more than one pixel. Thus, such mixed pixels
are ma}jor problems with the low spatial resolution images, requiring for a better classification
rather than hard classification such as Maximum likelihood which are more profound over hard
classification, where the pixel will be classified to a class that has highest proportion of spectra
value in comparison to other classes. Thus, this leads to inappropriate classification considering
smaller target (in comparison to the spatial resolution of satellite image). This drawback can be
overcome by performing soft classification which involves classifying a pixel into more than one
class in such mixed pixel images. The Linear Mixture Modeling (LMM) is widely known
method for sub-pixel classification which is based on the assumption that the spectral response of
each pixels is the linear combination of various target classes present within the pixels and each
|

targets are weighted by an abundance fraction such that these fractions are their corresponding

proportions of their presence (various target classes) over the ground.

Spectral unmixing approach involves majorly two steps: First, find a pure pixel which consists of
only a single ground component of specific target usually known as endmember and second is
about estimating the fraction of such endmember present within the mixed pixel spectrum. In
[25], author have 'providcd a comparative analysis of various available algorithm for linear
spectral unmixing of hyperspectral image. In this study, noise, mixture complexity, use of
radiance/reflectance data are investigated for the simulated and real hyperspectral data collected

by the Airborne Visible and infrared Imaging Spectrometer (AVIRIS).

Linear spectral unmixing are efficient and effective when target signatures are distinct. In

[26], the author have performed linear spectral mixture analysis by imposing constraints on



target signatures rather than target abundance fractions and therefore such techniques are referred
as target signature constrained mixed pixel classifiers. Whereas, in [27] authors have proposed a
methodology to perform extraction of pure pixel spectral signature from the image data for the
purpose of performing linear mixture model. The author have estimated the proportions of target
class present within the low spatial resolution of MODIS data using the auxiliary data obtained
from the medium spatial resolution (Landsat Enhanced Thematic Mapper Plus) data. The main
disadvantage of such linear spectral mixture analysis based approach is that it can be utilized for

target detection but under performs for detecting similar targets.

An approach called constrained energy minimization (CEM), which is more effective due
to implementation at real time processing; has been proposed to estimate endmembers and
detection of targets in multi-spectral and hyperspectral images in [27-31]. The very gain of CEM
is its aiJi]ity to detect small targets effectively. CEM is a constrained target detection method;
which fis conditioned by constraining over its desired target spectral signature unlike other
techniques such as: FCLS (Fully constrained least squares), SCLS (Sum-to-one constrained least
squares) and NCLS (Non-negatively constrained least squares) which are constrained on targets
abundance fractions [32]. Unlike these techniques, CEM requires only a prior knowledge of

target signature while considers other classes as interferers.

An extended version of CEM approach for performing band selection called constrained
band selection (CBS) for hyperspectral imagery is proposed in [33]. The proposed technique
interprets a band image as a desired target signature while others are neglected as unknown
signatures. It is experimented and conveyed that CEM is a robust band-selection technique.
Further, in [28], a detection of targets using multispectral imagery is done at subpixel level by
generalized constrained energy minimization (GCEM) approach which comprises of
dimensionality expansion (DE) approach, to generate additional band which are non-linear
combination of original multispectral bands. Thus, such dimensionality expansion aids in the

applicafion of CEM over multispectral imagery dataset.

The overall literature review indicates that there are limited works available over the
spatial estimation of hotspot coverage using freely available coarse spatial resolution satellite
images (esp. MODIS). Hotspot monitoring requires a high temporal resolution dataset for having

regular monitoring. Sensors such as MODIS with high temporal resolution (one image per day)

9



proves to be a better way for monitoring the changes in the hotspot affected areas. But the coarse
spatial n’[esolution of MODIS data makes hotspot monitoring a cumbersome task. In order to

overcome such drawback, subpixel analysis which has been used in many literatures for different

problems can be employed for hotspot detection in subpixel level. Subpixel analysis methods
like CEtrl, could be a better method in detecting small targets efficiently [29-32, 34]. This can be

further extended to estimate fractional hotspot area coverage over a region.

10



CHAPTER 3

THEORETICAL BACKGROUND
|

In this chapter, a conceptual understanding of various methods or techniques used for performing
the tasks such as: Per pixel spectral based classifier for the detection of hotspot by the use of
various optical satellite images have been elaborated. Also, the concepts in relate to subpixel
classification for area estimation such as: Pixel purity index (PPI), subpixel target detection

method etc., have been elaborated.

3.1 Study Area
Jharia coalfield is chosen as the study region. Jharia is situated nearer to Dhanbad town located

at 260 ' km in the North-West of Kolkata and at 1150 km in South-East of Delhi. It is
geographical lat/lon are: latitude 23° 35” N to 23° 55° N and longitude 86° 05’ E to 86" 30" E as
shown in figure: 3.1 and 3.2. The Coal field almost spread around 450 km’.
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i e o
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& .
I|
\'.
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" o _.-rJ'H 1( &
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N
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(b) 0 100km| |(€)

Figure 3.1 Location Map of Jharia, Jharkhand [35]
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Figure 3.2 Satellite imagery (Landsat-5) of the Jharia coalfield [35]
Attributes of Study Area [1]:

e A major river “Damodar river” is found to flow through our study region.

e This coal field has above 100 coal mines

. I]i] this coal field, there are underground and open-cast mining activities, but majorly open-

chm coal fields are noticed.
* e major number of underground mining areas is found to be densely populated about 1.1
illion, which are facing adverse effects due to coal fire.

Important subsurface coal fire (hotspots) regions latitude and longitude are mentioned in table
3.1,
Table 3.1 Latitude and longitude of important hotspots in Jharia coalfield [59].

1 | 23°41'22" | 86°22'34 11{ 23°41'17" | 86°2325" 21| 23°45'13" | 86°24'00"
2 | 23°47'31" | 86°18'48" 12| 23°42'08" | 86°25'36" 22| 23°47'04" | 86°18'57"
3 | 23°4820" | 86°08'37" 13| 23°45'01" | 86°07°24" 23| 23°47'02" | 86°16'31"
4 | 23°47'34" | 86°20'3R" 14| 23°39'32" | 86°27'02" 24| 23°43'58" | 86°26'39"
5 | 23°42'19" | 86°25'38" 15] 23°47'24" | 86°17'30" 25| 23°46'09" | 86°21'41"
6 | 23°44'03" | 86°22'02" 16{ 23°46'28" | 86°09'51" 26| 23°42'38" | B6°25'18"
7 | 23°42125" | 86°25'41" 17| 23°47'58" | 86°27'02" 27| 23°42'33" | 86°27'06"
8 | 23°4724" | 86°11'59" 18| 23°47'53" | 86°13'06" 28| 23°42'53" | 86°2323"
9 | 23°44'31" | 86°2423" 19] 23°48'19" | 86°22'41" 29| 23°44'11" | 86°25'14"
10{ 23°00'14" | 86°2628" 20| 23°46'44" | 86°19'30" 30| 23°47'50" | 86°15'49"

12




3.2 Satellite images used

The satellite Images can be broadly classified into two categories (as shown in fig. 3.3) based on

the sensor used. These two types are:

1. Passive sensors

2. Active sensors

Passive sensors use the natural energy to identify the object. These natural energies are emitted
or reflected by the target or target surrounding. Infra-red, charge-coupled devices, radiometers
can be called as examples of passive sensors. While on the other hand, the active sensors are
those which doesn’t depend on natural energy instead it uses its own energy as the source and
this is reflected or backscattered by the target. The speed and round trip delay (between emission

and return) of the source energy is used to find the characteristics of the target.

~ satelliteImag
~ Processing

{ Pas’Si.\.:eféai_ql_l\i_i'é‘lmgging

+

l " l

NOAAJAVHRR LANDSAT SPOT RADAR

Figure 3.3 Types of satellite imaging with examples [34]

In addition to availability of satellite images in different resolution; the satellite images can be
distinguished based on the spectral channels of variable wavelength. Each of these channels has

its own significance and they are unique to the respective applications. For example,
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a. Thermal channels are useful to monitor temperature variation aspects such as forest fire,
ocean current variations

b. Visible and near-infrared are very suitable to monitor cloud, water and agriculture.

Additively, other indices such as NDVI, MSAVT are used to measure the vegetation index and

soil characteristics respectively.

The statistical methods applied on these channels such as: fusion of different bands etc. can be an
added advantage as they improve the features of utilizing the satellite images as such fusion of

different bands has been used as an approach to detect hotspots.

Satellite data comprises of an image where each pixel of this image called DN value indicates the
spectral signature of an object within the pixel. The satellite images can be varied based on

spatial, temporal and spectral resolution.

3.2.1 Moderate-resolution imaging spectroradiometer (MODIS) Data

MODIS  is the payload launched by NASA by boarding it to TERRA satellite in 1999 and
boarded AQUA satellite by 2002. This instrument contains 36 bands ranging in wavelength from
0.4 um to 14.4 um and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29
bands at 1 km). Thus, It could create the entire earth image in every 1 or 2 days. The main
objective of MODIS is to provide earth dynamics such as: change in cloud cover, radiation
budget, and wildfire. MODIS spatial Resolution is: 250 m (bands 1-2) 500 m (bands 3-7) 1000
m (bands 8-36). The MODIS bands and its uses are shown in table 3.2.

Table 3.2 MODIS bands

Band Wavelength = Resolution

Primary Use
(nm) (m) A

1 620-670 250 - Land/Cloud/Aerosols
2 | 841-876 250 | Boundaries
3 459479 500
4 545-565 500 | Land/Cloud/Aerosols
5 1230-1250 500 Properties
6 | 1628-165 500

14



15
16
17
18
19
20
21
22
123
124
25
26
27
28
29

30

31

:32..

33
34
32
36

2105-2155

- 405-420
438448

483493

1 526-536

.I 546_—556 —— ......... A
662672
| 673-683

1 743-753
' 862-877
' 890-920

931-941
' 915-965

13.660-3.840
1 3.929-3.989

13.929-3.989

' 4.020-4.080

| 4.433-4.498
4.482-4.549

13601390

1 6.535-6.895
. 7.175-7.475

8.400-8.700

19.580-9.880
1 10.780—11.280

| 11.770-12.270
13.185-13.485
13.485-13.785

© 13.785-14.085
' 14.085-14.385
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3.2.2 Advanced very high resolution radiometer (AVHRR) Data

AVHRR is a space-borne sensor which measures the earth reflectance in 5 wide spectral bands.
It has been carried by NOAA family of polar orbiting platforms. NOAA has at least two polar-
orbitin% meteorological satellites in orbit at all times where one satellite crosses the equator in
early morning and early evening and the other crossing the equator in the afternoon and late
evening with respect to (Indian Standard Time) IST. Together they provide twice-daily global
coverage such that data for any region of the earth are no more than six hours old. The main
purpose of AVHRR is to study climate change, monitor clouds and to measure thermal emission

of earth.

NOAA/AVHRR image comprises five spectral bands: visible (ch.1, 0.63 pm), near-infrared
(ch.2, 0.83 pm), mid-infrared (ch.3, 3.75 um), and thermal (ch.4-5, 10-12 pm). The highest
ground resolution that can be achieved by NOAA/AVHRR is 1.1 kilometer; it means the
minimal amount of area that can be shown in a pixel is 1.1 x 1.1 km* area. The channels and its

|
corresponding usages are shown in table: 3.3.

Table 3.3 AVHRR Spectral Characteristics

Channel No. Wavelength Typical use

1 0.58-0.68 Daytime cloud, haze and
surface mapping

2 0.725-1.00 Land-water boundaries

3 3.55-3.93 Night cloud mapping, sea
surface temperature

3A N/A Snow and ice detection

3B N/A Night cloud mapping, sea
surface temperature

4 10.30-11.30 Night cloud mapping, sea
surface temperature

5 11.50-12.50 Sea surface temperature
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3.2.3 LANDSAT Data

Landsatlis the world’s longest continuously acquired collection of satellite based moderate-
resolution land remote sensing data. It provides a unique resource for those who work in
agriculture, forestry, regional planning, geology, and global change research etc., Landsat images
are also invaluable for emergency response and disaster relief. For over 40 years, the Landsat
program has collected spectral information from Earth’s surface, creating a historical archive

unmatched in quality, detail, coverage, and length. It has moderate-spatial resolution.

The latest series- Landsat-8 has the following 11 bands as shown in table 3.4.

Table 3.4 LANDSAT-8 bands

Band Number pm Resolution
1 0.433-0.453 30 m
2 0.450-0.515 30 m
3 0.525-0.600 30m
4 | 0.630-0.680 30m
5 0.845-0.885 30m
6 1.560-1.660 30m
7 2.100-2.300 30m
8 0.500-0.680 15m
9 1.360-1.390 30m
10 10.6-11.2 100 m
11 11.5-12.5 100 m

Bands 1-4 and 8 senses visible light; Band 5 measures near-infrared; Bands 6 and 7 cover
different slices of the shortwave infrared; Band 9 covers a very thin slice of wavelengths: only
1370 + 10 nanometers. Thus, Band 9 is meant to capture very bright/clearly visible object. Bands

10 and 11 are in the thermal infrared.

For our study, we have considered Landsat 5 Thematic Mapper (TM). Landsat-5TM images
consist oif seven spectral bands with a spatial resolution of 30 meters for bands 1-5 and 7 while
band-6 is 120 meters which is resample to 30-meter pixels. The various bands and its

corresponding usages are mentioned in table 3.5.
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Table 3.5 Spectral Characteristics of LANDSAT -5 TM

Band Wavelength Useful for mapping
Band 1 - blue 0.45 - 0.52 | Bathymetric mapping, distinguishing soil from vegetation
and deciduous from coniferous vegetation
Band 2 - green 0.52-0.60 | Emphasizes peak vegetation, which is useful for assessing
plant vigor
Band 3 - red 0.63-0.69 | Discriminates vegetation slopes
Band 4 - Near 0.77-0.90 | Emphasizes biomass content and shorelines
~ Infrared
Band 5 - Short- 1.55-1.75 | Discriminates moisture content of soil and vegetation;
wave Infrared penetrates thin clouds
Band 6 - Thermal 10.40 - Thermal mapping and estimated soil moisture
Infrared 12.50
Band,7 - Short- 2.09 -2.35 | Hydrothermally altered rocks associated with mineral
wave Infrared deposits

3.3 Preprocessing of different optical satellite data

Optical images that are available from sensors like MODIS, NOAA/AVHRR, Landsat are
available as pre-processed data. These data are available in sinusoidal projection and are thus

converted to Geographic Lat/Lon projection (WGS-84).

|
3.4 Useful information to be extracted from satellite data

The Normalized Difference Vegetation Index (NDVI) is one of the most commonly used index
for measuring the greenness and vegetation abundance over a region. It aid to distinguish
between|Green vegetation and soil brightness. It is a ratio image formed by the composite of NIR

and RED bands which is mathematically expressed as

(D.we = (DRMJ
D, +D

NDVI = (n

NIR RED

The NDVI value falls within the range of -1 to +1. Positive NDVI refers to presence of
vegetation whereas negative refers to presence of water bodies or no vegetation. NDVI value
falling arlound zero is a physical significance of presence of bare soil ground or rock.

NDVI plays an important role for the detection of hotspot due to the fact that hotspot

region usually has bare ground such that neither bushes nor grasses grows over hotspot region.
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Thus, vegetation’s are not observed over the hotspot region as such hot subsurface doesn’t yield

vegetation [36-39]. Generally, vegetation has a low correlation between the visible and NIR

bands due to the strong absorption of NIR bands but high reflectance of red band [36]. Thus,

|
unfit lands to support vegetation over the subsurface areas could be identified by the use of RED
and NIR bands.

Table 3.6 Optical satellite data used for the study

NDVI Data
;. . 1
oy Data Acquisition ID Acquiition 4
o Date NIR | Red
Band | Band
| LT51400432011086BKTO1 26-Mar-2011 LST1
LANDSAT
+5TM Band | Band
2 LT51400442011086BKT01 27-Mar-2011 4 3 LST2
MOD
3 MOD09Q1.A2011113.h25v06.005.2011123032639 23-Apr-2011 1
MOD
4 MOD09Q1.A2012081.h25v06.005.2012096143505 | 21-Mar-2012 5
' Band | Band
MODIS
2 1
| . MOD
5 MOD09Q1.A2015073.h25v06.005.2015083112326 | 14-Mar-2015 3
. = MOD
6 MOD09Q1.A2015089.h25v06.005.2015098081632 | 30-Mar-2015 4
NOAA/AV | NSS.LHRR.NP.D11111.80720.E0732.B1133636. Band | Band | AVH
7 HRR WI el | g 1 1

The tablé 3.6 indicates various datasets used for performing our tasks. MOD1, AVHI and LST1

are used for performing per-pixel spectral based classification. And LST2, MOD2, MOD3 and

MOD4 were used for performing subpixel spectral based classification for performing hotspot

| ; ;
area coverage over Jharia region.
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3.5 Per pixel spectral-based classification

Satellite images are classified to various target classes based on the effective presence of a
specific target class in comparison to other target classes within the image. The satellite images
can be flslassiﬁed based on spectral and spatial properties but majority of image classifications are
based merely on spectral signatures of target classes. In such spectral based classifiers,
classification is performed based on the statistical parameters of each pixel spectral values and
they are assigned to a single class but cannot be assigned to more than one class. But usually, due
to the difference of spatial measurement between the satellite image and its corresponding
ground measurement are varied; thus a pixel would comprise many target classes and these
pixels are called mixed pixels. In order to classify such mixed pixels, the statistical characteristic
of each class is calculated and this pixel is classified into a target class of higher proportion in
comparison to other class proportions. Thus, such classification based on spectral attributes of

the image is called per pixel spectral based classifier.

In our problem, the overall objective is to classify pixels into their respective feature classes:
hotspot and non-hotspot, which are performed according to the classification algorithm. Image
classification is performed by classifying the NDVI image of the corresponding satellite dataset
by applying learning algorithms to classify all pixels in an image to fall into the feature classes
based on predefined classification model. The classifiers used to perform image classification
can be Broadl)f divided into categories such as: supervised classifiers, unsupervised classifiers.

The classified image are then assessed by metrics- HDA and FAR as discussed in section 3.7.

3.5.1 Supervised classification

It involves performing classification by training the classifier using the user input training
samples collected as ground truth point with the information of them belonging to respective
feature classes. These collected training samples are feed to the classification algorithm along
with the input image (to be classified) resulting in pixels classified to the respective feature

classes.

Generally, there are three major steps involved in supervised classification:
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Step 1: Training

Collection of some training points from the representative training area are performed
under training phase as these training data points are the numerical description of the

spectral attributes of each feature class.
Step 2: Classification

Each pixel in the image is classified into a class which has higher resemblance over the
other. The weighting of each class is measured using the training points. If a pixel doesn’t

resemble any of the feature classes, will be labeled as unknown.
Step|3: Accuracy assessment

The Classified image is compared with some reference image or ground truth points in

order to calculate the accuracy of classification.

Hotspot and non-hotspot are the two target classes to which all the pixels are classified into. The
collected ground truth point are used as the training point for the classifiers and each classifier

will give a resultant classified image.

There are various types of supervised classification techniques. Some of the techniques which

have been used in our problem is briefed in the below subsection.

3.5.1.1 Types of supervised classification

I.  Maximum likelihood classification:

This involves classifying the input image into corresponding feature classes by evaluating
variance and co-variance of the categorical spectral response pattern of the image. It works with
an assumption of the data being classified has a Gaussian distribution. Thus, the statistical
parameters such as: mean and co-variance of the training data are utilized to classify an unknown
pixel into the respective feature class by calculating its conditional probability of belonging to a
particular class [40]. The multivariate normal distribution is used to describe that a pixel x

belonging to a class & as:

z* |-'-"2 X e—lfer—m:;'(X—m ()

¢ (x,)=(27)"
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II. | Minimum distance classifier:

The minimum distance classifier can also be called as a mean - distance classifier as it involves
assignlng an unknown pixel to a respective class based on its minimal distance between the pixel
to be classified and the mean of classes [40]. The distance between the pixel and the class mean
are called as the similarity index, lesser the distance between them means higher its similarity

index.| The concept of minimum distance classifier is shown in figure 3.4.
The following distance measures are often considered:
1. | Euclidean distance:
The Euclidean distance is calculated by
4} =(X - p ) (X=m,) 3)

Where

. X: Vector of Image data (n bands)

Xz[x]!,xz.......,x"]

wo=lm.ms . my
band2
| (0 . unknown image - Minimum distance

~O 0o/ classB

classA S F Rl by £

S/ daaX to class B, then
\da s/ classify to B

\division line "< 1, & |

Im— ;7 ds

- average of classB
‘.

‘ ¢ o distance of classB
and unknown image data

po—

. classC

.

band|

Figure 3.4 Concept of Minimum Distance Classifier [41]
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The minimum distance classifier is considered to be computationally faster, but it is not as

flexible as a maximum likelihood classifier as it doesn’t use covariance data.

III.  Parallelepiped classifier:

The Parallelepiped classifiers are normally referred as box classifier. It is a Rule-based algorithm
where the threshold of each class signature is used to decide to which class a pixel belongs. The
class signature is derived from the statistical calculation of analyst defined training samples [40].
A pixel is classified as a member of a class when this pixel value falls between the ranges of a
class signature whereas whenever there is a overlapping among more than one class then it

assigned to the first class while unclassified pixels are to a class called unknown class.

3.5.2 Unsupervised classification

It is the classification to classify pixels into a group of pixels having similar characteristics
without using any training data. But it requires user’s knowledge of the area being classified as
he must be aware to relate it to the actual feature over the ground. In our problem, the image to

be classified is NDVI image and it is classified into two target classes: hotspot and non-hotspot.

3.5.2.1 Types of unsupervised classification
I.  K-means

K-means is one of the simplest algorithm known to classify (group similar pixels) in a less
computational time. K-means tries to group similar pixels based on measuring the distance
between the centre of clusters and the pixel. The pixel is assigned to a cluster which has high
similarity index (closer to the center) [40]. K-means requires explicit indication of number of

clusters.

Below are the brief steps followed in K-means:

Step 1: Choose initial cluster centre randomly

Step 2: Assign pixels to the clusters which has high similarity index.
Step 3: Compute new centre for the clusters.
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Step 4: Iterate the above steps from step 2 and 3 until movement of cluster centers are below the
threshold.

II. ISODATA

ISODATA works in similar to K-means with the distinct difference that it doesn’t require a prior
knowledge about “Number of clusters” [40]. Thus, it can be seen as a specific refinement over

K-Means algorithm. These specific refinements are:

i Clusters with few members are discarded.
ii. Too many member clusters are split into two new clusters.
iii. | Clusters that are too spread are split into two groups.

iv. Clusters are merged if their centers are too close.
Below are the brief steps followed in ISODATA:

Stcp| 1: Cluster centers are randomly chosen while non-centre members are assigned to a

cluster based on its shortest distance to the center.

Step 2: Distance between center of clusters as well as standard deviation within the cluster

are calculated such that:

e Clusters are split if standard deviations are more than the user-defined threshold.
‘ e Clusters are merged if the distance between cluster centre’s are less than the user-

specified threshold.
|

Step 3: Repeat the above steps with new cluster centre’s.
Step 4: Iterations are performed until:

e Average inter-cluster centre distance is below the user-defined threshold.
o Average change between the inter-cluster centre among iterations are below the

| threshold or the maximum number of iteration is met.
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3.5.3 Classification with commonly used soft computing technique

Soft computing aims to exploit the tolerance for imprecision, uncertainty, approximate reasoning
and pdrlia] truth in order to achieve tractability, robustness and low-cost solutions. Genetic
algorithm is a widely known soft computing technique which mimics the process of natural

selection process.

3.5.3.1 Genetic algorithm

Genetic algorithms follows the adaptive heuristic search algorithm which involves competition
among individuals for scanty resources resulting in fittest individuals dominates over the weaker
ones. In brief, GA follows the Darwin theory- survival of the fittest [43]. Thus, it is an idea of
natural selection. Though they seem randomized but GAs is by no means random, instead they
exploit the probabilistic nature of the problem to direct the search into the region of better
performance within the search space. In short, they try to simulate processes in natural systems

necessary for evolution.

GAs terminology is analogous to that used by biologists. As shown in the table: 3.7:
Table 3.7 GA terminology [43]

Biological GA
Chromosome or genotype Structure, or string (often binary)
Locus A particular (bit) position on the string
Phenotype Parameter set or solution vector (real-valued)

GAs contains a population of individuals (pool of hypothesis) to guess initially within the search
space. These populations are usually selected random out of the entire search space. These
individuals are mostly encoded as binary values (i.c., base-2) but in recent years, use of real
values (base-10) is highly noticed [43]. These encoded individuals are used by further GA

operators such as: selection, crossover, mutation in the following order.

Step 1: Selection

|
It is used to select the best individual out of the entire population which will be considered in
further generation as similar to natural selection found in biological systems [44]. Poorer
performing individuals are neglected while those individuals better than the average will be

considered as the finest individual to be considered further operations. These evaluation is based
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on an objective function (i.e. fitness function) [43]. The pictorial explanation of selection

operator is shown in fig. 3.5.

Parent 1 |AfBJC|D|E{F]G]
Parent 2 H .] J K|L |[M N1
Offspring |H|B|C|D]E]I]J]

Figure 3.5 Selection Operator

Step 2: Crossover Operator

The individuals selected by selection operator are considered for crossover. Crossover allows
exchange of information among the parent individuals as similar to exchange of genes among the
chromosomes in natural selection analogy. Based on the number of locus chosen and randomly
choosing this locus within in considered individuals, lets the two individuals to swap all the
information across the locus point [43].

Crossover can be of two types: single point crossover and double point crossover based on the

number of locus considered.

Eg: Single Point Crossover:

If Parent; = 000000 & Parent; = 111111
While the locus is 2 then,

Parent;' = 110000 & Parenty' = 001111

This new offspring’s are included into the population of next generation.
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Step 3: Mutation Operator

Mutation is used to randomly flip one/more bits within an individual. Rate of mutation is always
kept minimal compared to crossover as mutation results in a random walk through the search
space whereas mutation with selection (without crossover) creates a noise-tolerant, hill-climbing

algorithm [18]. In brief, mutation operator is to stimulate diversity within the population.

Before Mutation

IR R

[AlBIC|D|E]F]G]

After Mutation

LAlBIX[v]|Z]F|G]

Figure 3.6 Mutation Operator

After performing the above operations, a new population is formed comprising these offspring’s
after the removal of old parents as the size of the population has to be kept intact. This results in

completion of a generation. The pictorial explanation of mutation operator is shown in fig. 3.6.

These processes of selection, crossover and mutation are performed again and again with the
new set of individuals until the termination criteria are met. The termination criteria can be:

exceeding the time limit of execution time, maximum generations etc.

[n brief, GA is used to search a pool of hypothesis in order to find the best hypothesis. The
measure of selecting the hypothesis is based on a numerical function called fitness function. The
fitness function called K-means index is used to perform hotspot detection which is as described

in the following subsection.

GA-KMI clustering (KMI as fitness function)

GA KMI is performed to classify an image into its feature classes by performing GA operations
using K-means index as its fitness function. This fitness value is used as a guide to the stochastic
selection of chromosomes which are then considered for further operation: crossover and

mutation. Crossover generates new chromosome by performing single point crossover over two
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or more selected parents [15, 18]. Mutation acts by randomly selecting genes to be altered
thereby avoiding the persistence of local-optimal solutions and thereby improving the diversity

within ipopu]ation.

Step 1: String Representation

In GA-KMI, the chromosomes were made up of real numbers and the length of chromosome 1s

cquivalent to the number of clusters as each gene on chromosome refers to the centre of cluster

[15].
Step 2: Population Initialization

For each string 7 in the population (i=1, 2... P where is the size of population), i refers to the
value of cluster centre. Since, the number of cluster is known a prior, the Icﬁgth of chromosome
is fixed as each chromosome comprises of n genes (n refers to number of clusters) and these
centre’s are chosen randomly from the data set as well as distributed randomly in the

chromosomes [15].

Step 3: Fitness Computation

The fitness of a chromosome is computed using K-Means Index. This index is to group similar

pixels within in an image based on its distance between the pixel and its centre.

P

x,— 1

V<&, j &K, | #k:0¥n < 4)
0; otherwise

x, = pixel n with grey values x (one for each band).

N = Total number of pixels.
L, = indicator variable of each pixel belonging to cluster k.

M
(#ku)xn
: )

_n=
vk - M
Z)u kn

n=]

v, = average value of each cluster
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KMI =—————— 1 (6)

Sl

After termination of the algorithm, an elite chromosome is given which comprises of those
cluster centres which have been very closer to its mean value when compared between the
distance of cluster centres and their respective means found in other chromosomes. The entire

flow of above described steps are shown in fig 3.7.

In our problem, the aim of GA-KMI is to classify the NDVI image into classes: hotspot and non-
hotspot. Thus, two clusters are required to be formed such the formed cluster is optimal. This is
done by assigning each chromosomes with the pixel values randomly chosen among the entire
image such that the elite chromosome suggested after the termination of GA-KMI will contain
the optimal cluster centre. Thus, the clusters (clusters: hotspot and non-hotspot) formed is the

optimal cluster.
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Initialization

Fitness
Computation

Genetic
Operations

Start

GA-KMI clustering

Y

Input: K, max_gen, W, Un
gen=1

Y

For each chromosome i in population

e Choose n points randomly from
data

e Distribute these points randomly
in the chromosome

I

For each chromosome i in population

e  Perform clustering by assigning each

points to the cluster corresponding to its

closest center.

e Compute KM Index KM; by Eqn ()
e Compute fitness as : 1/KM;

I

For each chromosome i in population

e Selection
Single point crossover with probability:

He

¢ Mutation performed with mutation

gen < max_gen

[

Output

Decoded best string and stop

Figure 3.7 Flowchart of GA-KMI clustering
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3.6 Assessment of hotspot detection using HDA and FAR

The classified images are assessed using HDA and FAR [14] in order to measure the accuracy of
classification algorithms over segregating pixels based on its class feature: hotspot and non-
hotspot.

The accuracy of detecting hotspot is calculated as:

— ;
HDA - Correctly Detected Hotspots )
Total Hotspots That Exist

While False Alarm Rate is calculated as:

B Incorrectly Detected Hotspots
(Total No. of Pixels —Total Hotspots That Exist)

”

The classifier should behave in such a way that it gives higher HDA while retaining a low upper

bound over FAR.

(8)

|
The entire flow chart of per pixel spectral-based classifier is depicted in fig. 3.8.

| MoDis [ LANDSAT-5TM | | NOAA/AVHRR |
, \ l
Preprocessing Preprocessing Preprocessing
« (Calibration * (Calibration » Calibration
*  Geo- *+  Geo- +  Geo-
referencing referencing referencing
v v A2
NDVI
Training Supervised Unsupervised
Points Classification Classification
’P +  Minimum » Isodata
Onsi Distance *» K-Means
H3ne *  Parallelepiped
Data PR
. «  GA-KMI
| | Collection

| |

Classified Image
* Hotspot

*  Non-hotspot

Figure 3.8 Flow chart for detection of hotspots by per-pixel classification
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3.7 Area estimation using subpixel spectral-based classification

A pixci of a coarse resolution satellite image (eg: MODIS) might comprise of many classes (eg:
urban, vegetation, land, water etc.,) within a pixel, which is due to the fact that the ground
sampling distance is much larger than the size of individual class. These pixels are generally
called as mixed pixels. This study focuses on area estimation of hotspot coverage over Jharia

region at subpixel scale on MODIS dataset.

High hotspot detection accuracy (HDA) and low false alarm rate (FAR) from a classified image
is required for better area estimation. While analyzing the dataset, water was giving higher FAR.
Therefore, it is important to mask water areas. Land cover classification into three classes:
h()tSpof, non-hotspot and water have been critically analyzed using various classification
techniques, and it is found that SVM gives a better classification accuracy. The obtained hotspot
classified image will be providing a suspected hotspot prone zone. Therefore, for estimating the
area, subpixel analysis is required. Though there are various subpixel method such as: NCLS,
FCLS, OSP but CEM is found to be an effective method since it requires only the prior
knowledge of hotspot spectral signature and also, unlike other methods, CEM is quite efficient in
the detection of smaller targets very effectively. Thus, CEM is being considered for our problem

and it is performed over the obtained hotspot classified image.

The detected hotspots from the classified image are then further refined by constrained energy
minimization (CEM) for the better estimate of hotspot present on MODIS mixed pixels. These
fractions of hotspots computed from CEM method is then segmented into various levels of
hotspot density using segmentation technique called GA-DBI. CEM requires a prior knowledge
of hotspot spectral signature which is obtained by endmember extraction technique called pure
pixel index (PPI). The following entire section of this chapter gives a brief description of each of

the above mentioned techniques.
The following steps have been proposed for performing area estimation of hotspot coverage.

Step 1: Image classification

As discussed in section 3.5.1 and 3.5.2, there are various classification techniques available for

performing image classification. In order to perform land cover classification (target classes:
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hotspot, non-hotspot and water) with an intent to obtain high accuracy; SVM is found to be the
appropriate classification technique as it results in higher kappa coefficient and higher overall
accuracy in compared to other classification techniques. Support vector machine has been
formulated using statistical learning theory [45]. They have been widely popular for being robust
like other nonparametric classifiers [46, 47]. SVMs works by nonlinear projecting the training
data from input space over to a feature space of higher (infinite) dimension which is achieved by
the aid of kernel functions. Such projection results in linearly separable dataset which can be
separated by a linear classifier. Thus, such process aides for the classification of satellite images
which are of higher dimension input space and cannot be linearly separated. Usually
classification in higher dimension space results in over-fitting, however, in SVM over-fitting is
constrained by a principle of structured risk minimization [45]. The margin between the decision
boundary and the data points are maximized for the minimization of empirical risk of
misclassification. In practice, such criteria are met by minimizing a cost factor which involves
both the complexity of the classifier and the degree of marginal points that are misclassified.
This tradeoff is combined as an error parameter which is selected by performing cross-validation

procedures.

The projection from input space to higher space are performed by the aide of kernels such
as: Polynomial, Gaussian (aka RBF) etc., a deeper mathematical discussion can be found in [45,

48, 49].
Step 2: Computation of pixel purity index (PPI)

While performing spectral unmixing, the first step is to determine the spectral response of purest
pixels lor endmembers (of hotspot) in the image. Thus, to find such appropriate image
endmembers for spectral mixture analysis, the purest hotspot signature has to be obtained by the
aid of PPI. PPI is a widely used endmember extraction technique where endmember is defined as
idealized pure signature of a class for example vegetation, urban, water classes. Though there are
many other such endmember extraction techniques [50, 51]: N-FINDR, Convex cone analysis,
simulated annealing algorithm (SAA) but PPI is widely used due to its easy use and its
availability as a module with in the commercial product called ENVI. The PPI technique
involves search for a set of vertices of a convex hull in an L-dimensional hyper or multispectral

image cube. As a pre-requisite of PPI algorithm, the data sample vectors (pixels) are usually
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maximum noise fraction (MNF) transformed such that to reduce dimensionality of the dataset
and to perform noise whitening process [52]. Thus, these MNF transformed dataset is projected
over a large set of random unit vectors called “skewers” of L-dimension (size of image
cube).And, for n-iterations (n is set explicitly) all data sample vectors are projected onto each
skewers such that extremity score for the extreme data sample vectors are computed for each
iteration and they are cumulatively recorded and such recorded scores are considered as pixel
purity index for the respective pixel. Endmember extraction is done by comparing such pixel
against target spectra which ever pixel is found to be closer to target spectra is called as

endmember.
PPI Algorithm can be briefly written as [53]:

Initialization: Apply maximum noise fraction (MNF) transform to perform reduction of

; T 3 . . k
dimensionality of the dataset and k unit vectors called “‘skewers”, {skewer)}_ Ibf: generated
=
randomly; & be a large sufficient positive integer.

PPI Calculation: For each skewer;, all data sample vectors are projected onto skewer; such that
to find extreme positioned vectors and form extrema set denoted by Sextema (skewer;) for each
skewer; which comprises of all such extreme positioned vectors. Despite the fact, a different
skewer; generates a different extrema set Sexwema (skewer;), it is very likely some sample vectors

may appear in more than one extrema set.

As a requirement of pure hotspot spectral signature for performing subpixel analysis, we find
such pure spectral signature with the aid of PPI; by applying PPI on a high resolution image (i.c.,
Landsat-5TM), it results in an endmember which is a pure pixel that comprises of only hotspot as

its component.

Step 3: Subpixel hotspot detection using CEM

After obtaining the pure spectral signature and the hotspot classified image, there is a need for
identifying target in subpixel level. This can be performed using subpixel target detection
method. The detection of specific target using only spatial properties will be cumbersome; thus

incorporating spectral property can improve hotspot detection. The spectral properties such as
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variability, spectral contrast, similarity can be used to perform target detection at subpixel level

[32].

Usually a hyper or multispectral image is represented as an image cube; an image pixel cube is
typically represented as an L - dimensional vector where L represents the number of spectral

bands.

Linear spectral mixture analysis has been widely used for subpixel detection where the spectral
signatures of an image pixel vector r is represented as linear combination of target spectral

signatures (my, m> .... mp) with their appropriate abundance fractions specified by a1,a2...ap.
In general, the following constraints:

Abundance sum-to-one constraint (ASC) formulated as,

i ) .
ASC :Za.f =]} ASC = zf:u o =1 and

=0

©)
Abundance non-negativity constraint (ANC) formulated as,
ANC=a;> 0 forall1 < j<p. (10)

In brief [32], various LSMA approaches were formed by consideration of ASC and ANC
constraints. Fully Constrained Least squares (FCLS) considers both the constraint whereas Non-
negatively constrained least squares (NCLS) and Sum-to-one constrained least squares (SCLS)
are the partial constrained methods in which SCLS imposes ASC and ignores ANC and NCLS
imposes ANC and ignores ANC. Also, orthogonal subspace projection (OSP) is a method which
ignores ASC and ANC.

The partially constrained methods (SCLS and NCLS) generally don’t estimate targets effectively
but can detect targets. Due to sum-to-one at ASC, SCLS cannot detect many target signatures
usually in cases where we have many spectral bands being considered. But NCLS doesn’t have
such issues since it doesn’t impose ASC, resulting in detection of many targets. Therefore,

NCLS seems to be efficient over the detection of targets in comparison to SCLS.
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Since, the above discussed least square methods comprises of imposed constraints based on
abundance fractions (a). Thus, such methods are called target abundance-constrained

approaches.

The above mentioned methods are not quite efficient for the detection of hotspot when its
fraction is small; which is so because of the fact that hotspots are smaller in size when compared
with the spatial resolution of MODIS images; most of the hotspots may be present partially
within one or more pixel leading to mixed pixel issues. Therefore, detection of such smaller
hotspots over a coarse resolution images are implied which can be attained by the aid of CEM

approach since CEM is efficient over the detection of such smaller targets.

Constrained energy minimization (CEM)

Unlike the above methods, CEM is a target signature-constrained approach which constrains
over the desired target signature instead of its abundance fraction. CEM can be described as an
adaptive filter that minimizes the filter output energy while constraining a desired target
signature by a specific gain [32]. Unlike the above mentioned abundance constrained approach
which requires a prior knowledge about all the target class spectral signatures whereas CEM

requires only the knowledge of desired signature.
|

Assume that we are given a finite set of observations S = {ri, ra,....rn} where ri = (ris, riz, ...ri)"
for 1 < i <N is an L-dimensional sample pixel vector. Let d denote the desired target spectral
signature, which is known a priori. The objective is to design an FIR linear filter with L filter
coefficients {ws, wa,... wi} denoted by an L-dimensional vector w = (w; w2 ... wr) that
minimizes the filter output power in subject to the following constraint

d'w=Yl dw; =1 (n

Let yi denote the output of the designed FIR filter resulting from the input #:. Then yi is

L
yi= X Wira =wiry=n'w (12)

The average output power produced by the observation set S by using the above FIR filter with

coefficient vector w = (ws w2 ... wr)" is specified by
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1 1
Sy =S I w)riw = wi(Z ral)w = wiRqw (13)

Where Rix = I/N [ZX, ;7] turns out to be the L x L sample autocorrelation matrix of S.

Minim}izing (xx) with the filter response constraint d"w= Yt d,w; = 1 yields
in (1 :
T {E [Ehy yf]} = mnfwlR,  w} Subjecttodw=1 (14)

The solution to (14) was shown in [54, 55] and called the CEM filter with the weight vector w*

given by
M.4]. R d
u"*z———dr.;ef_‘l dw -7 & (15)
Lt d'Rpy.d

The Rixt in (15) is not necessarily full rank. Thus, calculating Rex. can be cumbersome. It has
been observed that CEM is very sensitive to the knowledge used for desired target as well as the
noise [éS]. As shown in experiments [32] the noise sensitivity is closely related to the rank used
for the calculation of weight vector in (15). The rank of Rix. determines the number of
cigenvectors required for calculating R;j; and it is also closely related to the intrinsic
dimensionality of a multi/hyper spectral image. In cases where Rix. doesn’t have full rank then
the inverse of Rix. can be computed by singular value decomposition such that Rix. = vavT
where V = (97 95 ..U ) is an eigenmatrix, v) is the L-dimensional vector corresponding to
the cigen value Ax and A = diag{\i , A2 , ..., kq} is a diagonal matrix with eigenvalues as
diagonal elements. Thus, by performing eigen-decomposition, the inverse of Rix. can be found
by R;,} = VA™VT [54]. But such decomposition requires a prior knowledge of knowing the

number of eigenvectors. The deduction of optimal weight vector in (15) is elaborated in [55].

The application of CEM over classified hotspot image will yield a fractional image that
comprises of fractions of hotspot present within a pixel. Thus, such image indicates the estimate
of hotspot present within a region. But, in order to perform area estimation based on hotspot
density, we perform segmentation by the aid of segmentation technique such as: Otsu multi-
threshold method and cluster similarity measure based method called DBI using GA as its

optimizing technique.
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Step: 4 Hotspot prone zone segmentation

After obtaining hotspot fractional image from the previous step; it is important to segment the
image into various zones based on hotspot subpixel fractional area. In this method, hotspot area

are to be segmented into four zones. Thus, image segmentation technique is applied.

Image segmentation is the division of an image into various regions, each region will have a
specific properties. Thus, segmentation is performed such that to group similar pixels together
and these grouped pixels are segregated into various classes. Image segmentation can be
performed by various threshold methods such as Otsu threshold, Maximum entropy based

thresholding etc. as well as by clustering methods such as K-means.

In threshold method, we try to obtain a set of threshold levels (11, Iz, I3....Ix) such that all pixel
with f(x,y) € (Ii,...Jis1) Where i=0,1,...k constitute the i-th region type. f{x,y) represents the
feature value at the (x,y) spatial coordinates of the pixel [58]. Thus, by using thresholding

method, we obtain the threshold levels such that it segments the pixels into appropriate levels.

1. Otsu method
|

This method as proposed in [56] is to select an optimal threshold by the use of discriminant
analysis over gray level histogram of the image to be segmented. In this method, the optimal
threshold is chosen such that to partition of the pixels in an image into two distinct classes Co and
C1 at gray level 7. Pixels with grey levels lesser/equal to ¢ are into class Co (i.e., Co = {0,1,2,....1})
whereas pixels of greater grey levels than r-level are into Ci (i.e., Ci = {r+1,/+2, ,....L}). The
threshold level is chosen based on minimizing the following discriminant criterion measures

_%

A=—L k=— and n=—
o, _ oy

(16)

where o is the between-class variance

o are the with-in class variance

o, are the total variance of levels.
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Of all the above discriminant measures, 7 calculation is simplest [Otsu, 1979]. Thus, the

optimal threshold gray level 1* is

t*= Argminn (17)
rel
Otsu method can be extended to multi-thresholding problems. For example, in the case of two
thresholds, image gets segmented into three levels 1<ti<tz<K such that minimization of
discriminant measure is

t*= Argming (18)

[T

II. | Segmentation — by clustering method

Segmc'rtation can be reduced to the problem of clustering the pixels based on similarity measure

within the cluster. Thus, we have performed segmentation based on cluster similarity measure
called Davies-Bouldin index (DBI) using genetic algorithm. The advantage of GA-DBI is its
assurance of providing global threshold levels even though in multi-threshold condition. But,
Otsu fails over segmenting at optimal levels when multi-threshold of 3 or more levels are
required and also, the non-requirement of histogram of source image for performing

segmentation unlike Otsu multi-threshold.

GA-DBI clustering

GA-DI}I is performed to classify (i.c., segment [57]) an image into its feature classes by
performing GA operations using Davies-Bouldin index (DBI) as its fitness function [15]. This
fitness value is used as a guide to the stochastic selection of chromosomes which are then
considered for further operation: crossover and mutation. Crossover generates new chromosome
by performing single point crossover over two or more selected parents [18]. Mutation acts by
randomly selecting genes to be altered thereby avoiding the persistence of local-optimal

solutioins and thereby improving the diversity within population.
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Step 1: String Representation:
In GA-DBI, the chromosomes were made up of grayscale values of our image to be segmented
and the length of chromosome is equivalent to the number of clusters (i.e., number of threshold
levels) as each genes of chromosome refers to the centre of cluster [15].

|
Step 2: Population Initialization:

For each string i in the population (i=1,...,P where P is the size of population), i refers to the
value of cluster centre. Since, the number of cluster is known prior, the length of chromosome is
fixed as each chromosome comprises of n genes (n refers to number of clusters) [15]. These
cluster centres are chosen randomly from the data set as well as distributed randomly in the

chromosomes.

Step 3: Fitness Computation:
The fitness of a chromosome is computed using Davies-Bouldin index. This index is to group

similar pixels within in an image based on the ratio of intra and inter-cluster distance.

|x" U, |‘s "x" —U, H

-
g 1<k, j<K;j#kil<n<N (19)
0; otherwise

: |
x, = pixel n with grey values x.

N = Total number of pixels.

A, = indicator variable of each pixel belonging to cluster k.

ur= centre of k™ cluster

Z ()L 't.hp )xn
o (20)

Vi M

Zﬂkn

n=l
Where, v, = average value of each cluster

‘ 1 il 23112
S =7 Q=) @n
R =

Where, | Xk = Number of pixels belonging to k™ cluster
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Sk = standard deviation of the pixels in &” cluster

d,, =[v-, (22)
Where, dij = Euclidean distance between the k™ and j™ centroids.
S, +S,
R, =max (23)
j£k dk__;

Where, Ry is the maximum value of the ratio between inter and intra-cluster distance

K
Bl >R, (24)
K k=1 '

The DBI value is the average value of R for all cluster
| DBI =min {L} (25)
DB

The aim of the method is to minimize the DBI. In other words, the cluster which is formed is
equivalent to the cluster with smallest intra-cluster and the largest inter-cluster distance. After
calculating DBI for each chromosome from the population, those chromosomes which have
minimal DBI value will be called as the best chromosome. For each generation, best
chromosomes are obtained and they are compared with the previous generation (iteration). The
termination condition is attained either if the differences between these two chromosomes are

lesser than a pre-defined threshold value or it has reached the maximum iteration.

" Thus, afltcr the termination of algorithm, an elite chromosome is given which comprises of those

cluster centres which have been very closer to its mean value when compared between the
distance of cluster centres and their respective means found in other chromosomes. The entire

flow is depicted in figure: 3.9.

In cases for performing Image segmentation using GA-DBI, the chromosomes are made from the
population which comprises of grayscale values of the image to be segmented and the length of
our chromosome is equivalent to the number of threshold levels. Thus, after optimizing the
fithess function with the aid of various genetic algorithm operators such as crossover, selection
and mutation; the resulting optimal set of grayscale values indicate the threshold levels by which

we segment the image into various regions.
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The entire flow chart of subpixel classification of hotspot for area estimation is depicted in fig.
3.10.
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Figure 3.9 Flow chart of GA-DBI clustering
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Figure 3.10 Flow chart for subpixel classification of hotspots for area estimation

43




CHAPTER 4
METHODOLOGY

In this ©

subpixel

41 M

hapter, the methodology devised for per pixel spectral-based hotspot classification and

spectral-based classification of hotspots for area estimation are elaborated.

ethodology for per pixel spectral-based hotspot classification

The detection of hotspots and non-hotspots were carried using satellite Images. Optical datasets

such as Landsat-5TM, MODIS and NOAA/AVHRR are used for performing per-pixel spectral

based classification; such classification is carried by using various classification techniques as

discusse
dataset

AVHI.

Step 1:

are conv,

optical i

Step 3:

d in section 3.5 and the entire flow is depicted in fig. 3.8. Also, the corresponding
MODIS, LANDSAT-5TM and NOAA/AVHRR are identified as: MODI, LST1 and
The methodology for performing per pixel spectral-based classification for hotspot

detection is as follows:

As discussed in section 3.3, the optical images that are available in sinusoidal projection
erted to geographic lat/lon (WGS84).

Step 2: NDVI image is then computed from the available red and NIR bands of the preprocessed

mages using the equation (1) mentioned in section 3.4.

The obtained NDVI image is then classified into hotspot and non-hotspot classes using

different classification techniques as mentioned in section 3.5.
|

Step 4:

mention

The classified pixels are assessed by test data set using the metrics HDA and FAR as

in equation (7) and (8) respectively of section 3.6. These were done to measure the

accuraC)} of classification algorithms over segregating pixels based on its class feature: hotspot

and non-hotspot.
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4.2 Methodology for subpixel spectral-based classification of hotspots for area
estimation

This task focuses on estimating the area coverage of hotspot regions of Jharia at subpixel scale
with the first two MODIS surface reflectance bands along with its NDVI image. Though the
spatia]!resolution of MODIS is 250m but detection of hotspot at such moderate spatial resolution
could be cumbersome. Due to the fact that hotspot may not lie entirely on a single pixel but be
present partially in the pixel. Thus, it is not viable to estimate the hotspots with better accuracy
using the pixel level information of MODIS images. Therefore, the work utilizes a high
resolution LANDSAT-5TM image of Jharia region for identifying the present pixel’s spectral
signature. Also, the LANDSAT-5TM dataset used for this study is identified as (Data_Id: LST2)
and our test MODIS dataset is MOD3 whereas for validation we have used MOD2 and MODA4.

The algorithm is primarily of two steps:

1. Determination of present hotspot spectral signature from high resolution data-
LANDSAT-5TM dataset (LST2).
2. Application of constrained subpixel spectral target detection on low resolution MODIS

image to estimate the actual fraction of hotspot in mixed pixel spectrum.

After obtaining the fraction image of spatial presence of hotspots; Area estimation of
hotspots is done using image segmentation technique such that the hotspot regions can be
segmented based on the dense presence of hotspots. The entire flow of work is depicted as

|
flow chart in fig 3.10.

4.2.1 Determination of purest hotspot spectral signature

The flow chart at fig. 3.10 indicates the entire flow during the process of obtaining purest
hotslpol spectral signature from Landsat-5TM image of Jharia region. These steps are

elaborated in the following steps.
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a. RED band Image b. NIR band Image c. NDVI Image

|
Figure 4.1 Landsat-5TM Preprocessed Image of Jharia region (a). Band-3 (RED) Image (b). Band-4 (NIR) Image (). NDVI
Image.

Step 1: Landsat-5TM (LST2) image is available as pre-processed; thus, only projection
convelrsion from sinusoidal to geo Lat/Lon (WGS-84) is performed. The Preprocessed image

of red| and NIR bands are shown in fig. 4.1(a) and 1(b) respectively.

Step 2: Band-3 (red), band-4 (NIR) and NDVI (calculated from equation (1) in section 3.4);
they are stacked in the sequence: band-3, band-4 and NDVI. The corresponding NDVI image
is shown in fig.4.1(c). In the further steps the stacked image will be considered as a single

image 1.e., as a multiband image.

Step 3: The minimum noise fraction (MNF) transform is performed over the stacked images

for noise removal which is a pre-requisite step for PP1.

Step 4: Pixel purity index algorithm is applied over the MNF transformed image in order to
obtainl the pure spectral signature of hotspot by projecting the MNF image onto a random
unit vectors called skewers such that the cumulative records of extreme pixels obtained from
each pquiection is noted. Those pixels with such extremity scores are considered to be the
pixel p'urity index. Those extreme-score pixels highlighted over the PPI process are shown in

fig. 4.2(a). The PP al gorithm is performed as described in step: 2 of section 3.7.
|
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Figure 4.2 Pixel Purity Index applied over the MNF transformed image of Landsat-5TM. (a). PP1 Image.
(b). PPI image where water pixels were excluded since it makes cumbersome over the detection of hotspots.

Figure 4.3 SVM classified Image of Landsat-5TM image over our study region. The BLUE, RED and
GREEN color denotes Water, Hotspot and Non-Hotspot regions respectively.

Step lS The above obtained pixels are compared against the spectral signature of hotspot
whichever is found to be closer is identified as the purest pixel. Thus, the obtained purest
spectral signature of hotspot will be used as the desired target spectral signature for the
CEM!method to be discussed below. During this process, water pixels have been explicitly
excluded by masking them since the presence of water pixels created difficulties over
obtaidjng the purest pixel spectra of hotspot. This masking is performed with the aid of the

classified image over the same study region such that the entire pixels were classified into
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hotspot, non-hotspot and water regions as shown in fig. 4.3. These water pixels were omitted
during the PPI process. This classification was carried with an intention to obtain around
90% accuracy (our classified image is of 9/.4% accuracy) using SVM classification
technique (as discussed in szep: I of section 3.7.). The water masked PPI image is shown in
fig. 4.2(b).

4.2.2 Estimation of hotspot area fraction over mixed pixel using constrained subpixel
target detection method

The left hand flow of steps as depicted in flow chart at fig.3.10 indicates the entire flow

during the process of obtaining hotspot area fraction image using CEM as discussed in the

below steps.
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a.  RED Band Image b. NIR Band Image c¢. NDVIImage

Figure 4.4 Preprocessed MODIS Image- a. RED, b. NIR and c. NDVI Band Image

Step 1: Pre-processing of MODIS image is carried as discussed in section 3.4. The red, NIR

pre-processed image are shown in fig. 4.4 (aand b).

Step 2: Water regions are masked such that all water pixels are excluded from the
|
computation as their presence hinders over the estimation of hotspots. The water masked

image of NDVI preprocessed image are shown in fig. 4.4c.

Step 3: Supervised classification using SVM classifier is performed over the NDVI water
masked image such that the resultant classified image comprises of only two classes: hotspot
and non-hotspot. The classification is performed with intent to obtain above 90% accuracy
over the classification of the image into hotspot and non-hotspot. The water masked NDVI

image as well as its corresponding classified Image are shown in fig. 4.5.
|
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Figure 4.5 Per-Pixel based classification of MODIS image. (a).NDVI Image — water pixels were explicitly
modified to have its DN value ranging within the non-hotspot class range. (b). Supervised classification was
performed by SVM technique such that the pixels are classified to fall into either hotspot or non-hotspot
class. RED refers Hotspot class and GREEN refers Non-Hotspot class.

Step 4: The Layer stacking of NIR, RED and NDVI is performed such that the hotspot pixels

are only considered meaning that non-hotspot pixels are masked and only hotspot pixels are
|

retained. This stacked image will be considered as a single image cube comprising of 3-

layers 1.e., as a multi-band image.

Step 5: Sample Auto-correlation matrix Rixt [i.e., Rs. = I/N (X, r;777) where L=number
of images within the stack which is 3 in our case] is computed from the stacked images

which will be an input variable for constrained energy minimization (CEM).

Step 6: Subpixel target detection is performed by CEM where sample auto correlation matrix
and Hotspot pure spectral signature (from section 4.2.7) are used as its input variable. The
reason for consideration of CEM is because of the following reason: CEM is found to be very
effective in the detection of small targets, as in our case for the detection of those hotspots
which are minor in size in comparison with the spatial resolution of MODIS. Also, CEM is
found to be a very practical approach as it requires only the prior knowledge about knowing
only the desired target spectral signature (i.e., hotspot) unlike other techniques such as FCFS,
NCLS which requires the knowledge spectral signature of all classes. As the final step, the
optimal weight vector is computed by optimizing Rixi. with the unity constraint as shown in

equation (15) under section 3.7.

Step 7: The output of CEM is a fraction image where each pixel of the fraction image

quantifies the density of hotspots present within the pixel while minimizing the presence of
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other classes. Also, CEM fractional values not necessarily bound between 0 and 1. Thus, in
order to bound the fraction of hotspot; negative fractions are retained as zero and fractions
above one as one. It is done with an intuition that the pixels of fraction image quantifies the
presence of hotspots; thus negative and above one fractional values are bounded to zero and

one respectively.

Step 8: The image obtained as the output of CEM is a fractional image where the fractional

value of each pixel indicates the amount of hotspot comprised within a pixel.

Step 9: In order to estimate the area into various classes based on hotspot density; the above

derived fraction image where segmented using the various segmentation techniques.

Step 10: The segmentation technique GA based DBI were performed over the fraction image
in order to segment the image into four classes: highest, high, medium and low as per the
hotspot density. For the implementation of GA-DBI, the chromosomes are made from the
population which comprises of grayscale values of our image (i.e., fraction image obtained
from CEM) and the length of our chromosome is equivalent to the number of threshold
levels. Thus, after optimizing the fitness function with our fraction image as input, the
resulting optimal set of grayscale values indicate the threshold levels by which we segment
the image such that each segment is treated as various classes based on the hotspot density.
ThF performance of segmented image was verified with Otsu multi-threshold method. The
detailed description about GA-DBI and Otsu multi-threshold are briefed in step: 4 of section
3.7.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter the results obtained while performing per pixel hotspot classification and area

estimation of hotspot coverage by subpixel classification are discussed in detail.

5.1 Results of per pixel classification for detection of hotspots

The detection of hotspot over optical dataset: NOAA/AVHRR, MODIS and Landsat-5TM is
carried by the aid of classification such as supervised classification: Minimum (mean) distance
classifier, Parallelepiped, GA-KMI clustering and unsupervised classification: ISODATA and K-
means. The classified images over the datasets mentioned in section 3.4 are shown in this chapter
and its corresponding HDA and FAR are discussed. The datasets respective data_id’s are:
AVHI1, MODI, LST1.

NDVI image obtained from NOAA/AVHRR is shown in fig. 5.1(a). This NDVI image is
classified using different supervised and unsupervised classifiers. The classified images contains
two feature classes: hotpost and non-hotspot pixels as depicted in fig. 5.1(b-f) for different
classifiers. The calculated HDA and FAR are shown in table: 5.1. It is noticable that
parallelepiped assigns certain pixels into an unknown classifier. Similarly, MODIS and Landsat
5TM NDVI images are classified into target classes: hotspot and non-hotspot, and the classified

images are shown in fig. 5.2(b-f) and fig. 5.3(b-f) respectively.
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| (d) (e) (0

Figure 5.1 Classified Image of NOAA/AVHRR .Color code: (RED/BLUE)-Hotspot, (Yellow/Green)-
Nnnl-fotspot and Black-Non-classified. (a) NDVI , (b) ISODATA, (¢) K-means, (d) parallelepiped, (e)
minimum distance and (f) GA-KMI clustering.

(®) (c)

‘ (d) (e) ®
Figure 5.2 Classified Image of MODIS. Color code: (RED/BLUE)-Hotspot, (Yellow/Green)-NonHotspot and
B!ack—NmTclasslﬁed. (a) NDVI, (b) ISODATA, (c) K-means, (d) parallelepiped, (¢) minimum distance and (f)
GA-KMI clustering.
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(d) (e)

(0

Figure 5.3 Classified Image of LANDSAT-5 TM. Color code: (RED/BLUE)-Hotspot, (Yellow/Green)-
NonHotspot and Black-Non-classified. (a) NDVI, (b) ISODATA, (¢) K-means, (d) minimum distance, (¢)

parallelepiped and (f) GA-KMI clustering.

Table 5.1 HDA and FAR for different classifiers on satellite images

E _Supervised classification | Unsupervised
? ! classification
Minimum | Parallelepiped GA-KMI | ISODATA | K-Means
Satellite Data Distance (%) | |
t (%) (%) | (%) (%)
| "HDA | FAR | HDA | FAR | HDA | FAR HDA  FAR  HDA | FAR
~ MODIS(MOD1) |70 | 70 70 70 81 |1 92 20 |89 17
LANDSATS5TM | 67 18 68 33 | 61 16 86 56 |86 56
(LST1) |
NOVAA/AVHRR | 5 75 | 32 8 57 13 |79 |19 |75 18
(AVH1) .
I _ I I
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From tal?!e 5.1, It is observed that classified images from MODIS data indicates that the best
classified image obtained are as that of GA-KMI having HDA as 81 % and FAR as 11% while
ISODATA has HDA as 92% and FAR as 20% while others are having high FAR and low HDA

comparatively.

LANDSAT 5 TM classified images shows that out of all classifiers K-means and parallelpiped
has high HDA but low FAR while GA-KMI has a high HDA and high FAR which indicates that
GA-KMI yeild better performance for detecting hotspots.

Whereas, NOAA/AVHRR indicates that ISODATA and K-means have higher HDA of 75% and

79% but has lower FAR whence GA-KMI has an average performance comparatively.

Overall, |it shows that GA-KMI has higher HDA and FAR bounded within very lower upper
bound. 'l]hus, confirms that GA-KMI has higher performance over the other techniques .

5.2 Results of hotspot area estimation by sub pixel classification

We have performed subpixel spectral detection of target using CEM for the estimation of hotspot
over MODIS image with the aid of High resolution (Landsat-5TM) image for the detection of
|

pure hotspot spectral signature.

As explained in the previous section, finding of pure spectral signature of hotspot pixel using
LST2 (ije., Landsat-5TM image) is initially performed and pixel based classification over
MODIS and Landsat-5TM image are done; such that the Landsat classified image is used for the
detection of hotspot pixels which will be considered for obtaining hotspot spectral signature
using PRI algorithm such that the search of pure pixel within the hotspot target class (hotspot
classified image) gives an assurance of such pixels to be more viable as pure hotspot pixel; such
pixels are then compared with the target spectra of hotspot class (as a final step of PPI
algorithm). Thus, SVM classification is performed on LST2 and the obtained classified image

confusion matrix is as shown in Landsat-5TM column in table 5.2.
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Table 5.2 Confuse matrix and Kappa value of classes: Hotspot, Non-Hotspot and Water (considered only for
LANDSAT-5TM dataset) region over MODIS and LANDSAT-5TM images.

LANDSAT-5TM (LST-2) in % MODIS (MOD?3) in %
Hotspot Non- Water | Producer Hotspot Non- Producer
! Hotspot Accuracy Hotspot Accuracy
Hotspot 65.06 0.00 2.02 65.06 F1.22 0.00 77.22
Non-Hotspot 20.48 100.00 0.00 100.00 22.78 100.00 100.00
Water 14.46 0.00 97.98 97.98 NOT PERFORMED
User Accuracy | 96.43 91.28 88.99 100.00 | 8537 |
Kappa Value 0.8595 0.7946
Overall
Accuracy 91.389 90.217

Also, our intention is to refine the estimate of hotspots present within a hotspot detected pixel of

MODIS image. Thus, subpixel target detection is performed over the per-pixel spectral-based

classified image (classification done by SVM classifier). Thus, such classification was done with

an intention to obtain higher accuracy (above 90%) and kappa value as shown in table MODIS

column in 5.2.
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Figure 5.4 CEM Fraction Image. Indicates the presence of Hotspot within each pixel varying from 0 to 1 (0
refers absence of hotspot and 1 refers enriched presence of hotspot).

These refined hotspot pixels spectral values were considered for performing target
detection at subpixel level using CEM such that the obtained output image indicates the fraction
of hotspot present within the per-pixel classified hotspot pixel as shown in fig. 5.4. This
fractional image is segmented into various classes: Highest, High, Medium and Low based on
density of hotspot coverage; using GA based DBI. The segmentation of GA-DBI is compared
with Otsu multi-threshold method. The segmented image by GA-DBI and Otsu Multi-Threshold

are shown respectively in figure 5.5 and 5.6.
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Figure 5.5 CEM fractional hotspots are segmented into various classes by GA-DBI: Low (0-1), Medium (1-2),
High (2-3) and highest (3-4).
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Figure 5.6 CEM fractional hotspots are segmented into various classes by Otsu Multi-threshold: Low (0-1),
Medium (1-2), High (2-3) and highest (3-4).

The area estimation of hotspot at various segmented levels is shown in table 5.3.

Table 5.3 Lists Hotspot density coverage in Km? for various classes over different temporal dataset MOD3,
MOD4 and MOD2 are acquainted on 14-March-2015, 30-March-2015 and 23-March-2012 respectively.

MODIS dataset Segmentation HIGHEST | HIGH | MEDIUM | Low | Total Area
Hotspot Area Estimation

MOD3 Otsu Method 4.2615 42806 | 2.1894 0.3549 | 11.086
GA-DBI 10.099 0.27762 | 0.0332 0.6768

MOD4 Otsu Method 4.039 3.9507 | 2.468 0.4634 | 10.921
GA-DBI 8.6073 0.6233 | 0.01672 | 1.6737

MOD2 Otsu Method 4.1601 2.5212 | 1.5064 0.2511 | 8.4387
GA-DBI 7.6205 0.3239 | 0.1115 0.3829
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As mentioned in step: 4 in section 3.7, Otsu multi-threshold is not optimal when it comes to
three or higher levels of threshold. Thus, we have used GA-DBI for our case: segmenting
fractiopal image into four classes (i.e., 3-level thresholding). Since, GA-DBI segmentation is
performed by GA which is a heuristic method that promises in leading to global optimization. As
shown|in table 5.3, GA-DBI indicates that the level bound for “Highest” segment is larger when
compared with “Highest” segment of Otsu whereas other segments are tightly bounded in

comparison to Otsu.

MOD4 and MOD?2 datasets of 30-March-2015 and 23-March-2012 respectively; have been used
for validation of our hotspot area estimation by subpixel analysis with the dataset MOD3 (i.e.,
data acquaintance date is 14-March-2015). For segment comparison purpose, we have

considered segments generated by GA-DBI.

|
When MOD3 is compared with a weekly varied temporal data (i.e., MOD4); it indicates

that the hotspot area coverage variation is in negligible value especially among the respective

segments. Also, the total area hotspot coverage between them is of 0.165 Km? variance.

In the need of validating MOD3 for yearly variation, MOD2 dataset is used and it is
obseryed that the hotspot density over various segments indicates that there is a 1 Km? increase
in denser hotspot, 0.3 Km? increase in high density hotspot coverage, 0.1 Km? variation in
medium hotspot density segment and almost 1.29 km? low denser hotspot has been increased
within the span of 2012 to 2015.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

The detection of hotspots using various supervised and unsupervised classification on per-pixel
spectral based classification result shows that GA-KMI has higher performance over the other
techniques and it is so because of unbounded space over the range for choosing the optimal value
compared to the others as they are bounded to choose within a limited search space. In other
words, GA-KMI has wider scope to find the correct hypothesis (optimal center) since the search
space of hypothesis is relaxed and such relaxation is attained by the choice of GA parameters
such as: Population size, number of generation and GA operators: crossover and mutation.

Also, regarding the satellite dataset, the per-pixel spectral based classifier indicates that
MODIS |can be used for the detection of hotspot since it has a good trade-off over detection of
hotspot with good accuracy (81%- HDA, 11%-FAR: attained by GA-KMI clustering) and good
temporal resolution. But due to mixed pixel issues and also the smaller in size of hotspot, the
detected hotspot by per-pixel classifier cannot lead an accurate estimation of hotspot coverage.

Thus area estimation of hotspot coverage has been performed by refining the hotspot
detected by per-pixel classifier over MODIS dataset. This refinement of per-pixel detected
hotspot is done by the application of subpixel classification using target constrained approach
called CIEM. Since, it is quite efficient in the detection of smaller targets; thus, hotspot coverage
area estimation is performed using CEM. Also, the resultant hotspot area coverage estimation
has been validated with dataset of weekly and yearly variation, we find that hotspot of 0.165
Km? of variation been observed within a week and 2.647 Km? of increased Hotspot coverage is

observed over a period of two years.

6.2 FUTURE SCOPE

Hotspot Monitoring can be further done by the aid of SAR images as one can take advantage of
its microwave application and its higher spatial resolution. Also, as a better trade-off of spatial

and temporal resolution, data fusion of various sensors can be utilized since data fusion among
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various sensors of different time series dataset can aid for creating up a hotspot monitoring

system.

'Also, from the aspect of the study discussed on subpixel analysis by target constrained
approach —CEM; have shown that only one target can be detected simultaneously but this could
be extended further to detect more than one class of target like vegetation, water, bare soil
classes etc., by obtaining optimal weight vector for each targets by constraining over all target
signature rather than a single target signature as shown in equation (11) in section 3.7. Also, the
advantage of CEM is it can be implied in real-time processing and can be used to detect small
targets efficiently; thus, CEM can be utilized for tasks such as crop identification; which requires
recognition of target of smaller size but with an explicit constraint that is, its spectral
characteristic should be very similar to the desired target signature knowledge within the mixed

pixel.
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