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ABSTRACT 

The aim of the dissertation is to elaborate the remote sensing methods for monitoring subsurface 

lire (hotspots) in Jharia Region, (Jharkhand) India; as the Jharia coal field contains almost half of 

subsurface mine fires within the Indian coal fields [1]. Thus, detecting and monitoring such 

hotspots are mandatory. Since ground based monitoring are quite expensive and difficult task, 

exploiting the potential of satellite images have been tried as an alternative solution. For this 

purpose, freely available satellite images (e.g., MODIS, NOAA/AVHRR, and LANDSAT) are 

being used for our study. This study involves the application of most renowned soft computing 

techniques such as: supervised classification (parallelepiped, minimum distance) and 

unsupervised classification (ISODATA, K-means) over optical data: MODIS, NOAA/AVI-IRR, 

- and LAN DSA'I'. NE)VI plays an important role for the detection of hotspot due to the fact that 

hotspot region usually has bare ground such that neither bushes nor grasses grows over hotspot 

region. Thus, NDVI classified image into hotspot and non-hotspot regions is used. The accuracy 

of the classified image is assessed using the metrics: hotspot detection accuracy (HDA) and false 

alarm rate (FAR). The assessed value indicates that there is room for improvement. Thus, an 

attempt based on heuristic method- genetic algorithm (GA) have been carried out, since it has 

higher chances to result in an optimal classification of hotspot and non-hotspot pixels due to its 

ability to search for the optimal hypothesis over a larger search space. Therefore, the attempt of 

GA based KMI (K-Means Index) indicates that the detection of hotspot with an accuracy of 

81%-I 11)A and 11%-FAR over MODIS dataset. 

Such high HDA and low FAR over detection of hotspot and an attainment of good 

temporal resolution recommends use of MODIS dataset for area estimation over hotspot 

coverage in Jharia region. But due to fragment size of hotspot in comparison to spatial resolution 

of MODIS, major amount of hotspot are present partially within a pixel (i.e., mixed pixel issues). 

In order to perform hotspot area estimation over such coarse resolution image, subpixel analysis 

is performed; by refining the per-pixel spectral-based detected hotspot from MODIS image by 



proposing a method that uses a subpixel spectral detection method called GEM (a target 

- constraint approach). Constrained energy minimization (CEM) is very efficient in the detection 

of small hotspots very effectively as well as it requires only a prior knowledge of target spectral 

signature. Due to the requirement of hotspot pure spectral signature, we have used LANDSAT-

5TM image for the endmember selection using PH. With such refined detected hotspots, the 

estimated area coverage of hotspot were found to be of 11.09 Km2  (on I 4-Mar-20 15) and when 

validated with week and yearly variation; it is observed that hotspot of 0.165 Km2  of variation 

been observed within two weeks interval and 2.647 Km2  of increased I-Iotspot coverage is 

observed over a period of two years. 
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CHAPTER 1 

INTRODUCTION 

Satellites have led to obtain variety of information about the earth's surface, which are ranging 

from predicting weather patterns globally, monitoring surface vegetation, tectonic activities, 

polar ice variation, pollution, and variation in temperature scales, cloud cover and many more 

applications. 

Satellites have played a vital role in obtaining valuable information about the earth surface which 

led to have a better understanding over the changes occurring within our environment such as: 

predicting weather condition, monitoring surface vegetation, 

Images obtained From satellites are the best source to obtain details about the resource coverage 

of a region which could be used for resource management in an efficient way. Resources include 

mineral, forest, agricultural, forest, hydrological, geological resources etc. These information are 

obtained/extracted from the satellite images using digital image processing. 

- The reduction in price of the satellite images for the availability among the public and the 

abundant availability of satellite images of various resolution has lead to the involvement of 

researchers among various countries to be involved to bring an evolution of gathering 

information about the earth resource without in physical contact to the target (eg: land surface) 

and occurring and sharing such information throughout the globe in least amount of time. 

The satellite images can be distinguished based on different spatial resolution and spectral 

characteristics. Resolution is the characteristic of an image that describes the level of detail that 

can be distinguished. Since the smallest unit in the satellite image is a single pixel, thus a 

minimal scale of the earth surface that can be extracted from the image is equivalent to the size 

of a single pixel. Major satellite images are available with the spatial resolution of about 50 

centimeters to 100 meters. Based on the resolution of an image the usage of the image can be 

varied. The high resolution satellite data such as IKONOS, QuickBird, ASTER which offers 

spatial resolution up to 60 centimeters whereas low resolution data such as NOAA/AViIRR and 

MODIS provides the spatial resolution of 1.1 km and (250-1000 meters) but due to the advantage 



of higher temporal resolution (i.e., several times coverage of a region in a day); these low 

resolution data can be used in applications such as forest lire monitoring, drought and flood 

occurrence etc which covers huge land area. Thus, due to the higher revisit of a region and the 

free available of such low resolution data has led to wider involvement of researchers to find 

techniques that results in extract of finer details from such coarse spatial resolution images. Also, 

the high resolution images can be used for various purposes but the major issue is the less 

availability of images at different intervals of time and limited spatial coverage has put a 

limitation towards the usage of high resolution satellite data. 

[)ay by Day the world is facing various geographical and environmental crisis for which satellite 

images can be used as an effective source of remedy to mitigate such issues. Among these 

problems, the problem occurred due to subsurface coal fires (further on will be called as 

hotspots) is a problem to be prioritized in coal producing countries. The coal fires can cause 

severe damages to the environment such as: air pollution, land cracks and subsidence, deposition 

of unwanted/toxic chemicals over land leads to invalid use of land covers, emission of smokes 

- 
can lead to lung related diseases. These can disturb the entire ecosystem by releasing toxic 

fumes, greenhouse gases. It also affects human health as the people in such affected areas are 

- found to suffer from various diseases like tuberculosis, asthma; majority of population could 

suffer from breath related diseases. 

As per today, there are plenty of methods are suggested by the researchers to use satellite data to 

analyze and detect coal fires. In order to bring out a better accuracy among such detection, 

techniques of soft computing could be utilized as the uncertainty among the detection (i.e 

classification) of hotspots could be resolved to a better approximate as the soft computing 

techniques are widely known to resolve such issues. 

Natural resources are the backbone of the economy. Mining of these natural resources is carried 

out worldwide. Ilowever, various hazards are triggered due to mining of natural resources. One 

such natural resource is coal, which is a non-renewable source of energy. Mining of coal is 

carried out for centuries because of its numerous benefits such as source of fuel, electricity etc. 

1-lazards associated to coal mining are for example, land subsidence, surface and subsurface coal-

fires. 
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Some of the very noticeable affects due to coal fire are [1]: 

• Land subsidence. 

• Emission of large quantity of toxic and greenhouse gases such as: S02, NO, CO, CH4 and 

CO2 resulting in pollution of environments and adversely affects the health of millions of 

people. 

• Land deformations occurred due to the activity of underground coal fires affects the human 

settlements. 

Due to unwanted and uncontrollable burning of valuable coal deposits results in major 

economic loss. 

I'hus, for the sustainable development of the mining environment, the socio-economic impacts, 

environmental impacts, health and safety issues of the local people results in firm need of an 

effective mitigation measures. 

1.1 Soft computing 

Soft computing is the use of approximate solutions to solve computationally hard problems (ie., 

those problems that cannot be solved in polynomial time) such as NP-Complete problems. As 

they resemble natural processes more closely than traditional techniques, which are majorly 

dependent on formal logical systems, such as sentential logic and predicate logic, or rely heavily 

on computer-aided numerical analysis (as in finite element analysis). In short, they have similar 

computation as found in human mind. 

Soft computing are majorly used in many modules (preprocessing module, enhancement 

module) in remote sensing but majorly involved in classification of satellite Images. 

1.1.1 Goals of soft computing 

• It is a new multi-disciplinary field which is applied to construct new generation Artificial 

Intelligence system whose functionality are almost an emulation of computational 

neuroscience. 

• The main goal of soft computing is to provide solutions to real world problems, which 

cannot be modeled or too difficult to model mathematically. 
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'l'ask —II: 

- Application of subpixel analysis for area estimation of hotspot coverage using 

constrained target subpixel detection method. 

1.3 Organization of thesis 

The report is organized as follows. Chapter 2 provides an overall survey of various literatures in 

correspondence to the application of soft computing techniques over satellite images majorly 

focusing over detection of coal fires as well as over the various subpixel classification 

techniques. 

In Chapter 3 the types of satellite images is briefly written while highlighting the 

advantages of NDVl index over the satellite images in regards to utilize it for our purpose. Also, 

it includes theoretical background about various soft computing techniques over image 

classification as well as elaboration about methods used for performing subpixel classification 

using constrained target approach, a description on PPI for endmember extraction and brief 

overview on segmentation especially on Otsu method and segmentation as clustering problem 

- 
using cluster a well-known similarity index called DBI by the aid of genetic algorithm. 

Chapter 4 discusses the methodology into two parts: per pixel spectral-based classifier for 

detection of hotspots and subpixel spectral-based classifier for hotspot area estimation. Followed 

by Chapter 5, discusses about the result obtained after performing certain numbers of 

classification techniques over different satellite data's and the result on the task: subpixel 

classification for hotspot area estimation. Finally, Chapter 6 provides the concluding remarks and 

future-scope. 
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• Its focus is to exploit the tolerance for approximation, uncertainty, imprecision, and 

partial truth in order to achieve a similar computational behavior as that of human like 

- 

decision making. 

1.1.2 Soft computing preference for satellite images 

I. Soft computing is better in handling uncertainty in the data. Thus, it can be used to 

remove the uncertainties found in satellite images which are introduced due to the 

dependence of images on the atmospheric conditions. The presence of such uncertainties 

results in increase in difficulty to create a generic classification model which can classify 

the same region in different observational conditions. 

2. Soft technique approaches can be used to reduce the dimensionality of the input features 

resulting in simplification of the analysis with reduction in dependability among the 

features. 

1.2 Objective 

• Task 1: 

a, Critical study of supervised and unsupervised classification techniques by using 

different satellite data: MODIS. Landsat-5TM and NOAA/AVHRR to detect 

hotspots. 

o Supervised classifiers: 

> Minimum distance 

> Parallelepiped 

Maximum likelihood 

o Unsupervised classifiers: 

? K-means 

> ISODATA 

b. Explore the possibility of soft computing techniques for hotspot detection with 

higher detection accuracy (1-IDA) and low false alarm rate (FAR). 

4 



CHAITER 2 

BRIEF LITERATURE REVIEW 

In this chapter, a brief literature review is performed in correspondence to the application of soft 

computing techniques over satellite images majorly focusing over detection of coal fires as well 

as over the various subpixel classification techniques. 

2.1 Satellite image analysis for hotspot detection 

Satellite images are used for applications such as: change detection, agricultural monitoring, 

forest lire monitoring, landslide monitoring, natural calamity monitoring etc. Soft computing 

techniques are majorly used in processing satellite images for various purposes. One among them 

is the use of Genetic Algorithm (GA) in performing Image fusion [2-3] of satellite images where 

the weights over the parameter of different images are optimized to give the finest resultant 

image. Such fusion of satellite data of MOI)IS and PALSAR using GA was performed by T. 

Ahnicd et al [4] as well as Particle Swarm Optimization (PSO) [5] (instead of GA) to classify 

hotspot and non-hotspot regions in Jharia, Jharkhand. Also, in this [6], thermal and visual images 

are fused and a technique which comprises of discrete wavelet transform (DWT) for feature 

extraction and GA to get better optimized combined image are used while PSO can also be used 

as the optimizing tool to detect hotspots over the fused image of SAR and MODIS reported by 

Bushra ci. al. [7]. Thus, this highlights about the advantage of PSO and GA and it also indicates 

that the fusion of different satellite data's [81 can be used for our purpose. 

Also, determination of hotspots at Jharia using NOAA/AVHRR channel 4, channel 5 and 

diffirent indices were developed by fuzzy based methodology [9]. The detection accuracy 

achieved by this algorithm was consistently higher than 80% and maximum detection accuracy 

achieved was 96%. The use of fuzzy logic have resulted in better performance over the entropy 

based threshold, multi-threshold and contextual methods. 

Since SVM is quite popular, robust technique for image classification [10-12]. Thus, the 

application of SVM has been analyzed for hotspot detection over Jharia coalfield as well as 

image analysis techniques were carried on NOAA/AVHRR satellite images [13-14]. Since the 



image is of low resolution results in the need of efficient optimization techniques along with the 

image analysis techniques. The multi-threshold technique is used to remove cloud coverage from 

land coverage and classify hotspots. While SVM has the advantage over multi-thresholding 

technique that it can learn patterns from the examples and therefore is used to optimize the 

performance by removing the false points which are highlighted in the threshold technique. RBF 

kernel is used to train SVM because it non-linearly maps the samples into a higher dimensional 

space, so it, unlike the linear kernel, can handle the case when the relation between class labels 

and attributes is non-linear. Thus, hotspots and non-hotspots can be classified. The performance 

of the SVM is also compared with the performance obtained from the neural networks and SVM 

appears to detect hotspots more accurately (greater than 91% classification accuracy) with lesser 

false alarm rate. 

An unsupervised classification technique using genetic algorithm with Davies—Bouldin 

index (DBI); 1)131 as fitness function were studied by Bandyopadhyay et al [15] and as 

unsupervised classification in [16]. It performs clustering by using the centre of cluster which is 

suggested by GA, as genetic algorithm outputs the optimal cluster centre. The optimal cluster 

centre is obtained by minimizing the ratio of the sum of within-cluster scatter to between-cluster 

separation (called DBI). This technique is demonstrated over satellite images as well as real-life 

datasets [17]. In [18], author proposes a new cluster validation index along with comparisons of 

various indices such as: DB Index, Dunn's Index, Generalized Dunn's Index. In [19], superiority 

of GA based K-means over the widely known K-means approach has been studied by analyzing 

their performance over classifying a satellite image. 

Enrico et al [20] proposes the application of NIR region of SAR data for the identification of 

burned area as the NIR region has the most valuable information about the aspect of burned 

surface since the decrease of the reflectance value of NIR is observed over such burned surface 

due to the presence of ash and carbon over the soil. Also, in [21], detection of burn scars using 

optical dataset (MOD IS) is elaborated. 

l)iscussion about the use of thermal data during day and night time, detection of coal fires 

using multi spectral thermal images were done by Zhang et al. [22] which can be viewed as 

application of remote sensing for the detection of coal fires. The considered, satellite images are 

LAN DSA'I' TM, NOAA/AVHRR, ASTER etc. 
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Also, Walker et al [23] assess the ability of ALOS/PALSAR data over LANDSAT for the 

estimation of large areas of Land cover and mapping of forest in Brazilian Amazon. It indicates 

that PALSAR has higher accuracy over the estimation of Land cover when compared with 

Landsat. The data fusion method was applied over the detection of hotspot by fusing SAR image 

and optical resolution: MODIS image [24]. Thus, such fusion was found to indicate an efficient 

method to detect I lotspots with a good accuracy over FIDA and FAR. 

2.2 Subpixel Analysis 

In coarse resolution images such as NOAA/AVIIRR, MODIS etc., target to be detected might 

belong partially within a pixel or are shared among more than one pixel. Thus, such mixed pixels 

are major problems with the low spatial resolution images, requiring for a better classification 

rather than hard classification such as Maximum likelihood which are more profound over hard 

classification, where the pixel will be classified to a class that has highest proportion of spectra 

value in comparison to other classes. Thus, this leads to inappropriate classification considering 

smaller target (in comparison to the spatial resolution of satellite image). This drawback can be 

erome by performing soft classification which involves classifying a pixel into more than one 

class in such mixed pixel images. The Linear Mixture Modeling (LMM) is widely known 

method for sub-pixel classification which is based on the assumption that the spectral response of 

each pixels is the linear combination of various target classes present within the pixels and each 

targets are weighted by an abundance fraction such that these fractions are their corresponding 

proportions of their presence (various target classes) over the ground. 

Spectral unmixing approach involves majorly two steps: First, find a pure pixel which consists of 

only a single ground component of specific target usually known as endrnember and second is 

about estimating the fraction of such endmember present within the mixed pixel spectrum. In 

1251, author have provided a comparative analysis of various available algorithm for linear 

spectral unmixing of hyperspectral image. In this study, noise, mixture complexity, use of 

radiance/reflectance data are investigated for the simulated and real hyperspectral data collected 

by the Airborne Visible and infrared Imaging Spectrometer (AVIRIS). 

- 
Linear spectral unmixing are efficient and effective when target signatures are distinct. In 

1261, the author have performed linear spectral mixture analysis by imposing constraints on 
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target signatures rather than target abundance fractions and therefore such techniques are referred 

as target signature constrained mixed pixel classifiers. Whereas, in [27] authors have proposed a 

methodology to perform extraction of pure pixel spectral signature from the image data for the 

purpose of performing linear mixture model. The author have estimated the proportions of target 

class present within the low spatial resolution of MODIS data using the auxiliary data obtained 

from the medium spatial resolution (Landsat Enhanced Thematic Mapper Plus) data. The main 

disadvantage of such linear spectral mixture analysis based approach is that it can be utilized for 

target detection but under performs for detecting similar targets. 

An approach called constrained energy minimization (CEM), which is more effective due 

to implementation at real time processing; has been proposed to estimate endmembers and 

detection of targets in multi-spectral and hyperspectral images in [27-3 1]. The very gain of CEM 

is its ability to detect small targets effectively. CEM is a constrained target detection method; 

which is conditioned by constraining over its desired target spectral signature unlike other 

techniques such as: FCLS (Fully constrained least squares), SCLS (Sum-to-one constrained least 

squares) and NCLS (Non-negatively constrained least squares) which are constrained on targets 

abundance fractions [32]. Unlike these techniques, CEM requires only a prior knowledge of 

target signature while considers other classes as interferers. 

An extended version of CEM approach for performing band selection called constrained 

band selection (CBS) for hyperspectral imagery is proposed in [33]. The proposed technique 

interprets a band image as a desired target signature while others are neglected as unknown 

signatures. It is experimented and conveyed that CEM is a robust band-selection technique. 

Further, in [28], a detection of targets using multispectral imagery is done at subpixel level by 

generalized constrained energy minimization (GCEM) approach which comprises of 

dimensionality expansion (DE) approach, to generate additional band which are non-linear 

combination of original multispectral bands. Thus, such dimensionality expansion aids in the 

application of CEM over multispectral imagery dataset. 

The overall literature review indicates that there are limited works available over the 

spatial estimation of hotspot coverage using freely available coarse spatial resolution satellite 

images (esp. MODIS). Hotspot monitoring requires a high temporal resolution dataset for having 

regular monitoring. Sensors such as MODIS with high temporal resolution (one image per day) 



proves to be a better way for monitoring the changes in the hotspot affected areas. But the coarse 

spatial resolution of MODIS data makes hotspot monitoring a cumbersome task. In order to 

overcorie such drawback, subpixel analysis which has been used in many literatures for different 

problems can be employed for hotspot detection in subpixel level. Subpixel analysis methods 

like CEM, could be a better method in detecting small targets efficiently [29-32, 34]. This can be 

further extended to estimate fractional hotspot area coverage over a region. 

10 



CHAPTER 3 

THEORETICAL BACKGROUND 

In this chapter, a conceptual understanding of various methods or techniques used for performing 

the tasks such as: Per pixel spectral based classifier for the detection of hotspot by the use of 

various optical satellite images have been elaborated. Also, the concepts in relate to subpixel 

classification for area estimation such as: Pixel purity index (PPI), subpixel target detection 

method etc., have been elaborated. 

3.1 Study Area 
Jharia coalfield is chosen as the study region. Jharia is situated nearer to Dhanbad town located 

at 260 km in the North-West of Kolkata and at 1150 km in South-East of Delhi. It is 

geographical lat/lon are: latitude 23° 35' N to 23° 55' N and longitude 86° 05' E to 86° 30' E as 

shown in figure: 3.1 and 3.2. The Coal field almost spread around 450 km2. 
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Figure 3.1 Location Map of Jharia, Jharkhand I3 1 
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Figure 3.2 Satellite imagery (Landsat-5) of the Jharia coalfield 1351 

Attributes of Study Area Ill: 

• A major river "Damodar river" is found to flow through our study region. 

• This coal field has above 100 coal mines 

• In this coal field, there are underground and open-cast mining activities, but majorly open- 

cast coal fields are noticed. 

• The major number of underground mining areas is found to be densely populated about 1 . 

million, which are facing adverse effects due to coal fire. 

Important subsurface coal fire (hotspots) regions latitude and longitude are mentioned in table 
3.1. 

Table 3.1 Latitude and longitude of important hotspots in Jharia coalfield  1591. 

SNó Latitude Longitude 
1 23041'22" 
2 23047'31" 860 I8'48" 
3 2304820" 86008'37" 
4 23047'34" 86020'38" 
5 23042'19" 86025'38" 
6 23044'03" 86022'02" 
7 23042'25" 8602541" 
8 2304724" 860  11 '59" 
9 23044'31" 86024'23" 
101 23000'14" 86026'28" 

S.No Latitude Longitude 
II 23041'17" 86023'25" 
12 23042'08' 86025'36" 
13 2304501" 86007'24" 
14 23039'32" 86027'02" 
151 23047'24" 86017'30" 
16 23046'28" 86009'51' 
17 23047'58" 86027'02" 
18 23047'53" 86013'06" 
19 231148'19" 86022'41" 
20 2304644" 1 86019'30" 

S.No Latitude Longitude 
21 23045'13" 86°24'00" 
22 23047'04" 86018'57" 
23 23047'02" 86°16'31" 
24 23043'58" 86026'39" 
25 23046'09" 8602P41" 
26 23042'38" 86025'18" 
27 23042'33" 86027'06" 
28 23042'53" 86023'23" 
29 23044'11" 86025'14" 
301 23047'50" 1 86015'49" 
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3.2 Satellite images used 

The satellite Images can be broadly classified into two categories (as shown in fig. 3.3) based on 

the sensor used. These two types are: 

I. Passive sensors 

2. Active sensors 

Passive sensors use the natural energy to identify the object. These natural energies are emitted 

or reflected by the target or target surrounding. Infra-red, charge-coupled devices, radiometers 

can be called as examples of passive sensors. While on the other hand, the active sensors are 

those which doesn't depend on natural energy instead it uses its own energy as the source and 

this is reflected or backscattered by the target. The speed and round trip delay (between emission 

and return) of the source energy is used to find the characteristics of the target. 

Satellite Image 
Processing 

Passive Satellite Imaging I I Active Satellit e Imaging 

NOAA!AVHRR LANDSAT SPOT RADAR 

Figure 3.3 Types of satellite imaging with examples I341 

In addition to availability of satellite images in different resolution; the satellite images can be 

distinguished based on the spectral channels of variable wavelength. Each of these channels has 

its own significance and they are unique to the respective applications. For example, 
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'l'hermal channels are useful to monitor temperature variation aspects such as forest lire, 

ocean current variations 

Visible and near-infrared are very suitable to monitor cloud, water and agriculture. 

Additively, other indices such as NDVI, MSAVI are used to measure the vegetation index and 

soil characteristics respectively. 

The statistical methods applied on these channels such as: fusion of different bands etc. can be an 

added advantage as they improve the features of utilizing the satellite images as such fusion of 

different bands has been used as an approach to detect hotspots. 

Satellite data comprises of an image where each pixel of this image called DN value indicates the 

spectral signature of an object within the pixel. The satellite images can be varied based on 

spatial. temporal and spectral resolution. 

3.2.1 Moderate-resolution imaging spectroradiometer (MODIS) Data 

MODIS is the payload launched by NASA by boarding it to TERRA satellite in 1999 and 

boarded AQUA satellite by 2002. 'I'his instrument contains 36 bands ranging in wavelength from 

0.4 tm to 14.4 pun and at varying spatial resolutions (2 bands at 250 m, 5 bands at 500 in and 29 

bands at I km). Thus, It could create the entire earth image in every 1 or 2 days. The main 

objective of MODIS is to provide earth dynamics such as: change in cloud cover, radiation 

budget. and wildfire. MODIS spatial Resolution is: 250 in (bands 1-2) 500 m (bands 3-7) 1000 

in (bands 8-36). 'l'hc MODIS bands and its uses are shown in table 3.2. 

i'able 3.2 MODIS bands 

Band Wavelength Resolution 
Primary Use 

(nm) (m) 

620-670 250 

2 841-876 250 

3 459-479 500 

4 545-565 500 

5 1230-1250 500 

6 1628-1652 500 
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7 2105-2155 500 

8 405-420 1000 

9 438-448 1000 

10 483-493 1000 

11 526-536 1000 Ocean Color! 
12 546-556 1000 Phytoplankton/ 

13 662-672 ioo Biogeochemistry 

14 673-683 1000 

15 743-753 1000 J 
16 862-877 1000 

17 890-920 1000 
Atmospheric 

18 931-941 1000 
Water Vapor 

19 915-965 1000 

20 3.660-3.840 1000 

21 3.929-3.989 1000 Surface/Cloud 

22 3.929-3.989 1000 Temperature 

23 4.020-4.080 1000 

24 4.433-4.498 1000 Atmospheric 

25 4.482-4.549 1000 Temperature 

26 1.360-1.390 1000 
Cirrus Clouds 

27 6.535-6.895 1000 Water Vapor 
28 7.175-7.475 1000 

29 8.400-8.700 1000 Cloud Properties 

30 9.580-9.880 1000 Ozone 

31 10.780-11.280 1000 Surface/Cloud 

32 11.770-12.270 1000 Temperature 

33 13.185-13.485 1000 

34 13.485-13.785 1000 Cloud Top 

35 13.785-14.085 1000 Altitude 

36 14.085-14.385 1000  



3.2.2 Advanced very high resolution radiometer (AVHRR) Data 

AVI-lRR is a space-borne sensor which measures the earth reflectance in 5 wide spectral bands. 

It has been carried by NOAA family of polar orbiting platforms. NOAA has at least two polar-

orbiting meteorological satellites in orbit at all times where one satellite crosses the equator in 

early morning and early evening and the other crossing the equator in the afternoon and late 

evening with respect to (Indian Standard Time) 1ST. Together they provide twice-daily global 

coverage such that data for any region of the earth are no more than six hours old. The main 

purpose of AVI-IRR is to study climate change, monitor clouds and to measure thermal emission 

of earth. 

NOAA/AVIIRR image comprises five spectral bands: visible (ch.1, 0.63 lim), near-infrared 

(ch.2. 0.83 l.tm), mid-infrared (ch.3, 3.75 rim), and thermal (ch.4-5, 10-12 urn).  The highest 

ground resolution that can be achieved by NOAA/AVHRR is 1.1 kilometer; it means the 

minimal amount of area that can be shown in a pixel is 1.1 x 1.1 km2  area. The channels and its 

corresponding usages are shown in table: 3.3. 

Table 3.3 AVHRR Spectral Characteristics 

Channel No. Wavelength Typical use 

1 0.58-0.68 Daytime cloud, haze and 

surface mapping 

2 0.725 - 1.00 Land-water boundaries 

3 3.55 —3.93 Night cloud mapping, sea 

surface temperature 

3A N/A Snow and ice detection 

3B N/A Night cloud mapping, sea 

surface temperature 

4 10.30— 11.30 Night cloud mapping, sea 

surface temperature 

5 11.50— 12.50 Sea surface temperature 
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3.2.3 LANDSAT Data 

Landsat is the world's longest continuously acquired collection of satellite based moderate-

resolution land remote sensing data. It provides a unique resource for those who work in 

agriculture, forestry, regional planning, geology, and global change research etc., Landsat images 

are also invaluable for emergency response and disaster relief. For over 40 years, the Landsat 

program has collected spectral information from Earth's surface, creating a historical archive 

unmatched in quality, detail, coverage, and length. It has moderate-spatial resolution. 

The latest series- Landsat-8 has the following 11 bands as shown in table 3.4. 

Table 3.4 LANDSAT-8 bands 

Band Number tm Resolution 
1 0.433-0.453 30m 
2 0.450-0.515 30m 
3 0.525-0.600 30m 
4 0.630-0.680 30m 
5 0.845-0.885 30m 
6 1.560-1.660 30m 
7 2.100-2.300 30m 
8 0.500-0.680 15 m 
9 1.360-1.390 30m 

10 10.6-11.2 lOOm 
11 11.5-12.5 lOOm 

Bands 1-4 and 8 senses visible light; Band 5 measures near-infrared; Bands 6 and 7 cover 

different slices of the shortwave infrared; Band 9 covers a very thin slice of wavelengths: only 

1370 + 10 nanometers. Thus, Band 9 is meant to capture very bright/clearly visible object. Bands 

10 and 11 are in the thermal infrared. 

For our study, we have considered Landsat 5 Thematic Mapper (TM). Landsat-STM images 

consist of seven spectral bands with a spatial resolution of 30 meters for bands 1-5 and 7 while 

hand-6 is 120 meters which is resampic to 30-meter pixels. The various bands and its 

corresponding usages are mentioned in table 3.5. 
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Table 3.5 Spectral Characteristics of LANDSAT -5 TM 

Band Wavelength Useful for mapping 

Band 1 - blue 0.45 - 0.52 Bathymetric mapping, distinguishing soil from vegetation 

and deciduous from coniferous vegetation 

Band 2 - green 0.52 - 0.60 Emphasizes peak vegetation, which is useful for assessing 

plant vigor 

Band 3 - red 0.63 - 0.69 Discriminates vegetation slopes 

Band 4 - Near 0.77 - 0.90 Emphasizes biomass content and shorelines 
Infrared  

Band 5 - Short- 1.55 - 1.75 Discriminates moisture content of soil and vegetation; 
wave Infrared penetrates thin clouds 

Band 6 - Thermal 10.40 - Thermal mapping and estimated soil moisture 
Infrared 

12.50  

Band 7 - Short- 2.09 - 2.35 Hydrothermally altered rocks associated with mineral 
wave Infrared deposits 

3.3 Preprocessing of different optical satellite data 

Optical images that are available from sensors like MODIS, NOAA/AVHRR, Landsat are 

- available as pre-processed data. These data are available in sinusoidal projection and are thus 

converted to Geographic Lat/Lon projection (WGS-84). 

3.4 Useful information to be extracted from satellite data 

The Normalized Difference Vegetation Index (NDVI) is one of the most commonly used index 

for measuring the greenness and vegetation abundance over a region. It aid to distinguish 

between Green vegetation and soil brightness. It is a ratio image formed by the composite of NIR 

and RFI) hands which is mathematically expressed as 

ND VI = 
CD V/k - (D RE!) 

(j) vm ± CD RE!) 

The NDVI value falls within the range of -1 to +1. Positive NDVI refers to presence of 

vegetation whereas negative refers to presence of water bodies or no vegetation. NDVI value 

lidling around zero is a physical significance of presence of bare soil ground or rock. 

NDVI plays an important role for the detection of hotspot due to the fact that hotspot 

region usually has bare ground such that neither bushes nor grasses grows over hotspot region. 
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'flius, vegetation's are not observed over the hotspot region as such hot subsurface doesn't yield 

vegetation [36-39]. Generally, vegetation has a low correlation between the visible and NIR 

bands due to the strong absorption of NIR bands but high reflectance of red band [36]. Thus, 

unfit lands to support vegetation over the subsurface areas could be identified by the use of RED 

and NIR bands. 

Table 3.6 Optical satellite data used for the study 

NDVI Data 

S.ii Acquisition  ID 

o 
Data Acquisition ID 

Date NIR Red 
Band Band 

L'i'5 14004320 IIO86BKTO I 26-Mar-20 11 LS'I' I 

-5'l'M 
1,ANDSAT  

Band Band 

2 1,T5140044201108613K'l'0l 27-Mar-2011 4 3 LSl'2 

MOD 

3 M0D09QI.A201 II 13.h25v06005.201 1123032639 23-Apr-201 I 

MOD 

4 MOD09Q 1.A20 1208 1.h25v06.005.20 12096143505 21-Mar-20 12 2 
Band Band 

MOI)IS  

MOD 
5 MOI)09Q 1.A20 15073 .h25v06.005.20 15083112326 14-Mar-2015 3 

MOD 
6 MOl)09Q 1.A20 I 5089.h25v06.005.20 15098081632 30-Mar-201 5 4 

NOAA/AV NSS.LI IRR.NP.D I I II 1.S0720.E0732.B 1133636. 21-Apr-2011 
Band Band AVH 

IIRR WI 2 1 1 

The table 3.6 indicates various datasets used for performing our tasks. MOD], AVI-Il and LSTI 

are used for performing per-pixel spectral based classification. And LST2, MOD2, MOD3 and 

MOD4 were used for performing subpixel spectral based classification for performing hotspot 

area coverage over Jharia region. 
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3.5 Per pixel spectral-based classification 

Satellite images are classified to various target classes based on the effective presence of a 

specific target class in comparison to other target classes within the image. The satellite images 

can be classified based on spectral and spatial properties but majority of image classifications are 

based merely on spectral signatures of target classes. In such spectral based classifiers, 

classification is performed based on the statistical parameters of each pixel spectral values and 

the),  are assigned to a single class but cannot be assigned to more than one class. But usually, due 

to the difference of spatial measurement between the satellite image and its corresponding 

ground measurement are varied; thus a pixel would comprise many target classes and these 

pixels are called mixed pixels. In order to classify such mixed pixels, the statistical characteristic 

of each class is calculated and this pixel is classified into a target class of higher proportion in 

comparison to other class proportions. Thus, such classification based on spectral attributes of 

the image is called per pixel spectral based classifier. 

In our problem, the overall objective is to classify pixels into their respective feature classes: 

hotspot and non-hotspot, which are performed according to the classification algorithm. Image 

classification is performed by classifying the NDVI image of the corresponding satellite dataset 

by applying learning algorithms to classify all pixels in an image to fall into the feature classes 

based on predefined classification model. The classifiers used to perform image classification 

can be broadly divided into categories such as: supervised classifiers, unsupervised classifiers. 

The classified image are then assessed by metrics- HDA and FAR as discussed in section 3.7. 

3.5.1 Supervised classification 

It involves performing classification by training the classifier using the user input training 

samples collected as ground truth point with the information of them belonging to respective 

feature classes. These collected training samples are feed to the classification algorithm along 

with the input image (to be classified) resulting in pixels classified to the respective feature 

classes. 

Generally, there are three major steps involved in supervised classification: 
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Step 1: Training 

Collection of some training points from the representative training area are performed 

under training phase as these training data points are the numerical description of the 

spectral attributes of each feature class. 

Step 2: Classification 

Each pixel in the image is classified into a class which has higher resemblance over the 

other. The weighting of each class is measured using the training points. If a pixel doesn't 

resemble any of the feature classes, will be labeled as unknown. 

Step 3: Accuracy assessment 

l'he Classified image is compared with some reference image or ground truth points in 

order to calculate the accuracy of classification. 

llotspot and non-hotspot are the two target classes to which all the pixels are classified into. The 

collected ground truth point are used as the training point for the classifiers and each classifier 

will give a resultant classified image. 

lherc are various types of supervised classification techniques. Some of the techniques which 

have been used in our problem is briefed in the below subsection. 

3.5.1.1 Types of supervised classification 

1. Maximum likelihood classification: 

This involves classifying the input image into corresponding feature classes by evaluating 

variance and co-variance of the categorical spectral response pattern of the image. It works with 

an assumption of the data being classified has a Gaussian distribution. Thus, the statistical 

parameters such as: mean and co-variance of the training data are utilized to classify an unknown 

pixel into the respective feature class by calculating its conditional probability of belonging to a 

particular class [40]. The multivariate normal distribution is used to describe that a pixel x 

belonging to a class k as: 

q (x, ) = (2r)' 
2j 

k r2 x e2" )(X
-pk) (2) 

PA 





II. Minimum distance classifier: 

The minimum distance classifier can also be called as a mean - distance classifier as it involves 

assigning an unknown pixel to a respective class based on its minimal distance between the pixel 

to be classified and the mean of classes [40]. The distance between the pixel and the class mean 

are called as the similarity index, lesser the distance between them means higher its similarity 

index. The concept of minimum distance classifier is shown in figure 3.4. 

The following distance measures are often considered: 

1. Euclidean distance: 

The Fuclidean distance is calculated by 

dk 2  =(X -/i k )'  .(X—u) (3) 

Where 

- X: Vector of Image data (n bands) 

X=[x1 ,x ......... x,,] 

ittk =[,n1,nm2. ...... ,rn11 ] 

band2 
4 unknown image Minimum distance 

classA 
- data X to class B, then 

classify toB 
classB 

division ' 
..'i;T average of classl3 

/ - d I discancc of classB 

classC 
and unknown image data 

band 

Figure 3.4 Concept of Minimum Distance Classifier 1411 
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Ihe minimum distance classifier is considered to be computationally faster, but it is not as 

flexible as a maximum likelihood classifier as it doesn't use covariance data. 

III. Parallelepiped classifier: 

The Parallelepiped classifiers are normally referred as box classifier. It is a Rule-based algorithm 

where the threshold of each class signature is used to decide to which class a pixel belongs. The 

class signature is derived from the statistical calculation of analyst defined training samples [40]. 

A pixel is classified as a member of a class when this pixel value falls between the ranges of a 

class signature whereas whenever there is a overlapping among more than one class then it 

assigned to the first class while unclassified pixels are to a class called unknown class. 

3.5.2 Unsupervised classification 

It is the classification to classify pixels into a group of pixels having similar characteristics 

without using any training data. But it requires user's knowledge of the area being classified as 

he must be aware to relate it to the actual feature over the ground. In our problem, the image to 

be classified is NI)Vl image and it is classified into two target classes: hotspot and non-hotspot. 

3.5.2.1 Types of unsupervised classification 

1. K-means 

K-means is one of the simplest algorithm known to classify (group similar pixels) in a less 

computational time. K-means tries to group similar pixels based on measuring the distance 

between the centre of clusters and the pixel. The pixel is assigned to a cluster which has high 

similarity index (closer to the center) [40]. K-means requires explicit indication of number of 

clusters. 

13e1ow are the bricisteps followed in K-means: 

Step 1: Choose initial cluster centre randomly 

Step 2: Assign pixels to the clusters which has high similarity index. 

Step 3: Compute new centre for the clusters. 
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Step 4: Iterate the above steps from step 2 and 3 until movement of cluster centers are below the 

threshold. 

LI. ISODATA 

ISODATA works in similar to K-means with the distinct difference that it doesn't require a prior 

knowledge about "Number of clusters" [40]. Thus, it can be seen as a specific refinement over 

K-Means algorithm. These specific refinements are: 

Clusters with few members are discarded. 

Too many member clusters are split into two new clusters. 

Clusters that are too spread are split into two groups. 

Clusters are merged if their centers are too close. 

Below are the brief steps followed in ISODATA: 

Step 1: Cluster centers are randomly chosen while non-centre members are assigned to a 

cluster based on its shortest distance to the center. 

Sic1) 2: Distance between center of clusters as well as standard deviation within the cluster 

are calculated such that: 

• Clusters are split if standard deviations are more than the user-defined threshold. 

• Clusters are merged if the distance between cluster centre's are less than the user-

specified threshold. 

Step 3: Repeat the above steps with new cluster centre's. 

Step 4: Iterations are performed until: 

• Average inter-cluster centre distance is below the user-defined threshold. 

• Average change between the inter-cluster centre among iterations are below the 

threshold or the maximum number of iteration is met. 
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3.5.3 Classification with commonly used soft computing technique 

Soft computing aims to exploit the tolerance for imprecision, uncertainty, approximate reasoning 

- and partial truth in order to achieve tractability, robustness and low-cost solutions. Genetic 

algorithm is a widely known soft computing technique which mimics the process of natural 

selection process. 

3.5.3.1 Genetic algorithm 

Genetic algorithms follows the adaptive heuristic search algorithm which involves competition 

among individuals for scanty resources resulting in fittest individuals dominates over the weaker 

ones. In brief, GA follows the Darwin theory- survival of the fittest [43]. Thus, it is an idea of 

natural selection. Though they seem randomized but GAs is by no means random, instead they 

exploit the probabilistic nature of the problem to direct the search into the region of better 

performance within the search space. In short, they try to simulate processes in natural systems 

necessary for evolution. 

- GAs terminology is analogous to that used by biologists. As shown in the table: 3.7: 

Table 3.7 GA terminology 1 431 

Biological GA 
Chromosome or genotype Structure, or string (often binary) 
Locus A particular (bit) position on the string 

Phenotype Parameter set or solution vector (real-valued) 

GAs contains a population of individuals (pool of hypothesis) to guess initially within the search 

space. These populations are usually selected random out of the entire search space. These 

individuals are mostly encoded as binary values (i.e., base-2) but in recent years, use of real 

values (base-JO) is highly noticed [43]. These encoded individuals are used by further GA 

operators such as: selection, crossover, mutation in the following order. 

Step 1: Selection 

It is used to select the best individual out of the entire population which will be considered in 

further generation as similar to natural selection found in biological systems [44]. Poorer 

performing individuals are neglected while those individuals better than the average will be 

considered as the finest individual to be considered further operations. These evaluation is based 
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on an objective function (i.e. fitness function) [43]. The pictorial explanation of selection 

operator is shown in fig. 3.5. 

Parenti I A I B I C I D I E I F I G I 
Parent2 

Hl1)J1KIL IMtNl 
Offspring IHIBICIDIElI IJ I 

Figure 3.5 Selection Operator 

Step 2: Crossover Operator 

The individuals selected by selection operator are considered for crossover. Crossover allows 

exchange of information among the parent individuals as similar to exchange of genes among the 

chromosomes in natural selection analogy. Based on the number of locus chosen and randomly 

choosing this locus within in considered individuals, lets the two individuals to swap all the 

information across the locus point [43]. 

Crossover can be of two types: single point crossover and double point crossover based on the 

number of locus considered. 

Eg: Single Point Crossover: 

If Parenti = 000000 & Parent2 = 111111 

While the locus is 2 then, 

Parenti' = 110000 & Parentz' = 001111 

This new offspring's are included into the population of next generation. 
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Step 3: Mutation Operator 

Mutation is used to randomly flip one/more bits within an individual. Rate of mutation is always 

kept minimal compared to crossover as mutation results in a random walk through the search 

space whereas mutation with selection (without crossover) creates a noise-tolerant, hill-climbing 

algorithm [18]. In brief, mutation operator is to stimulate diversity within the population. 

Before Mutation 

IAIBIDjE:IFIGI 

After Mutation 

nounan 
Figure 3.6 Mutation Operator 

After performing the above operations, a new population is formed comprising these offspring's 

alter the removal of old parents as the size of the population has to be kept intact. This results in 

completion of a generation. The pictorial explanation of mutation operator is shown in fig. 3.6. 

l'hese processes of selection, crossover and mutation are performed again and again with the 

new set of individuals until the termination criteria are met. The termination criteria can be: 

exceeding the time limit of execution time, maximum generations etc. 

In brief, GA is used to search a pool of hypothesis in order to find the best hypothesis. The 

measure of selecting the hypothesis is based on a numerical function called fitness function. The 

fitness function called K-means index is used to perform hotspot detection which is as described 

in the following subsection. 

GA-KMI clustering (KMI asJitnessfunction) 

• GA KMI is performed to classify an image into its feature classes by performing GA operations 

using K-means index as its fitness function. This fitness value is used as a guide to the stochastic 

• selection of chromosomes which are then considered for further operation: crossover and 

mutation. Crossover generates new chromosome by performing single point crossover over two 
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or more selected parents [15, 18]. Mutation acts by randomly selecting genes to be altered 

thereby avoiding the persistence of local-optimal solutions and thereby improving the diversity 

within population. 

Step 1: String Representation 

In GA-KMI, the chromosomes were made up of real numbers and the length of chromosome is 

equivalent to the number of clusters as each gene on chromosome refers to the centre of cluster 

1151. 

Step 2: Population Initialization 

For each string i in the population (i=1, 2... P where is the size of population), i refers to the 

value of cluster centre. Since, the number of cluster is known a prior, the length of chromosome 

is fixed as each chromosome comprises of n genes (n refers to number of clusters) and these 

centre's are chosen randomly from the data set as well as distributed randomly in the 

chromosomes [15]. 

Step 3: Fitness Computation 

The fitness of a chromosome is computed using K-Means Index. This index is to group similar 

pixels within in an image based on its distance between the pixel and its centre. 

1; llx,, UkIl_X,, U1fl1 
:5 k,j :5 K;j # k;1 :!~ n :!~ N (4) 

.1  0; otherwise 

x, pixel n with grey values x (one for each band). 

N = Total number of pixels. 

Pkn = indicator variable of each pixel belonging to cluster k. 

At 

i=1 

At Vk - 

Pkn 

- average value of each cluster 

(5) 
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KMI= 
k 

I 
(6) 

(k _vkII)2 

After termination of the algorithm, an elite chromosome is given which comprises of those 

cluster centres which have been very closer to its mean value when compared between the 

distance of cluster centres and their respective means found in other chromosomes. The entire 

flow of above described steps are shown in fig 3.7. 

In our problem, the aim of GA-KMl is to classify the NDVI image into classes: hotspot and non-

hoispot. l'hus, two clusters are required to be formed such the formed cluster is optimal. This is 

done by assigning each chromosomes with the pixel values randomly chosen among the entire 

image such that the elite chromosome suggested after the termination of GA-KMI will contain 

the optimal cluster centre. Thus, the clusters (clusters: hotspot and non-hotspot) formed is the 

optimal cluster. 

29 



Start 

GA-KMI clustering 

Input: K, max_gen, it,, 

gen = 1 

For each chromosome i in population 

Population • Choose n points randomly from 

Initialization data 

• Distribute these points randomly 
in the chromosome 

For each chromosome i in population 

Fitness 
• Perform clustering by assigning each 

Computatton 
points to the cluster corresponding to its 

closest center. 

• Compute KM Index KM1  by Eqn () 

• Compute fitness as: 1/KM1  

'Ir 

For each chromosome i in population 

Genetic • Selection 

Operations • Single point crossover with probability: 

ILc 

• Mutation performed with mutation 

Yes gen = gen + 1 
gen < 

Ellitism 

No 

Output 

Decoded best string and stop 

Figure 3.7 Flowchart of GA-KMI clustering 



3.6 Assessment of hotspot detection using HDA and FAR 

The classified images are assessed using HDA and FAR [14] in order to measure the accuracy of 

classification algorithms over segregating pixels based on its class feature: hotspot and non-

hotspot. 

The accuracy of detecting hotspot is calculated as: 

HDA - 
Correctly Deiecied Hotspots 

(7) 
Total Hotspots That Exist 

While False Alarm Rate is calculated as: 

FAR = 
Incorrectly Detected Hotspots 

(8) 
(Total No. of Pixels —Total ilotspots That Exist) 

The classifier should behave in such a way that it gives higher HDA while retaining a low upper 

bound over FAR. 

The entire flow chart of per pixel spectral-based classifier is depicted in fig. 3.8. 

MOI)IS LANDSAT-5TM I VHRR 

Preprocessing Preprocessing Preprocessing 
• Calibration • Calibration • Calibration 
• Gco- • Gco- • Geo- 

referencing referencing referencing 

NDVI 

i7nsupervised 
Classification 

• lsodata 
• K-Means 

............... 

Classified Image 
• l-iotspot 
• Non-hotspot 

Figure 3.8 Flow chart for detection of hotspots by per-pixel classification 
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3.7 Area estimation using subpixel spectral-based classification 

A pixel of a coarse resolution satellite image (eg: MODIS) might comprise of many classes (eg: 

urban, vegetation, land, water etc.,) within a pixel, which is due to the fact that the ground 

sampling distance is much larger than the size of individual class. These pixels are generally 

called as mixed pixels. This study focuses on area estimation of hotspot coverage over Jharia 

region at subpixel scale on MODIS dataset. 

High hotspot detection accuracy (HDA) and low false alarm rate (FAR) from a classified image 

is required for better area estimation. While analyzing the dataset, water was giving higher FAR. 

iherefore, it is important to mask water areas. Land cover classification into three classes: 

hotspot, non-hotspot and water have been critically analyzed using various classification 

techniques, and it is found that SVM gives a better classification accuracy. The obtained hotspot 

classified image will be providing a suspected hotspot prone zone. Therefore, for estimating the 

area, subpixel analysis is required. Though there are various subpixel method such as: NCLS, 

FCLS, OSP but GEM is found to be an effective method since it requires only the prior 

knowledge of hotspot spectral signature and also, unlike other methods, CEM is quite efficient in 

the detection of smaller targets very effectively. Thus, GEM is being considered for our problem 

and it is performed over the obtained hotspot classified image. 

The detected hotspots from the classified image are then further refined by constrained energy 

minimization (GEM) for the better estimate of hotspot present on MODIS mixed pixels. These 

fractions of hotspots computed from GEM method is then segmented into various levels of 

hotspot density using segmentation technique called GA-DBI. GEM requires a prior knowledge 

of hotspot spectral signature which is obtained by endmember extraction technique called pure 

pixel index (PPl). The following entire section of this chapter gives a brief description of each of 

the above mentioned techniques. 

The following steps have been proposed for performing area estimation of hotspot coverage. 

Step 1: Image classification 

As discussed in section 3.5.1 and 3.5.2, there are various classification techniques available for 

performing image classification. in order to perform land cover classification (target classes: 



hoispot. non-hotspot and water) with an intent to obtain high accuracy; SVM is found to be the 

appropriate classification technique as it results in higher kappa coefficient and higher overall 

accuracy in compared to other classification techniques. Support vector machine has been 

formulated using statistical learning theory [45]. They have been widely popular for being robust 

like other nonparametric classifiers [46, 47]. SVMs works by nonlinear projecting the training 

data fi-om input space over to a feature space of higher (infinite) dimension which is achieved by 

the aid of kernel functions. Such projection results in linearly separable dataset which can be 

separated by a linear classifier. Thus, such process aides for the classification of satellite images 

which are of higher dimension input space and cannot be linearly separated. Usually 

classification in higher dimension space results in over-fitting, however, in SVM over-fitting is 

constrained by a principle of structured risk minimization [45]. The margin between the decision 

boundary and the data points are maximized for the minimization of empirical risk of 

misclassification. In practice, such criteria are met by minimizing a cost factor which involves 

both the complexity of the classifier and the degree of marginal points that are misclassified. 

This tradeoff is combined as an error parameter which is selected by performing cross-validation 

- procedures. 

- 
The projection from input space to higher space are performed by the aide of kernels such 

as: Polynomial, Gaussian (aka RBF) etc., a deeper mathematical discussion can be found in [45, 

48,491. 

Step 2: Computation of pixel purity index (PPI) 

While performing spectral unmixing, the first step is to determine the spectral response of purest 

pixels or endrnembers (of hotspot) in the image. Thus, to find such appropriate image 

cndmemhcrs for spectral mixture analysis, the purest hotspot signature has to be obtained by the 

aid of PPl. PPI is a widely used endmember extraction technique where endmernber is defined as 

idealized pure signature of a class for example vegetation, urban, water classes. Though there are 

many other such endrnember extraction techniques 150, 51]: N-FINDR, Convex cone analysis, 

• simulated annealing algorithm (SAA) but PPI is widely used due to its easy use and its 

availability as a module with in the commercial product called ENVI. The PPI technique 

• involves search for a set of vertices of a convex hull in an L-dimensional hyper or multispectral 

image cube. As a pre-requisite of PPI algorithm, the data sample vectors (pixels) are usually 

33 



maximum noise fraction (MNF) transformed such that to reduce dimensionality of the dataset 

and to perform noise whitening process [52]. Thus, these MNF transformed dataset is projected 

over a large set of random unit vectors called "skewers" of L-dimension (size of image 

cubc).And, for n-iterations (ii is set explicitly) all data sample vectors are projected onto each 

skewers such that extremity score for the extreme data sample vectors are computed for each 

iteration and they are cumulatively recorded and such recorded scores are considered as pixel 

purity index for the respective pixel. Endmernbcr extraction is done by comparing such pixel 

against target spectra which ever pixel is found to be closer to target spectra is called as 

endmember. 

PPI Algorithm can be briefly written as [53]: 

Initialization: Apply maximum noise fraction (MNF) transform to perform reduction of 

dimensionality of the dataset and k unit vectors called "skewers", {skewerj}k  be generated 

randomly; k be a large sufficient positive integer. 

PPI Calculation: For each skewer, all data sample vectors are projected onto skewerj such that 

to find extreme positioned vectors and form extrema set denoted by Sextrema (skewer) for each 

skewerj which comprises of all such extreme positioned vectors. Despite the fact, a different 

skewer1  generates a different extrema set Sextrema (skewerj), it is very likely some sample vectors 

may appear in more than one extrema set. 

As a requirement of pure hotspot spectral signature for performing subpixel analysis, we find 

such pure spectral signature with the aid of PPI; by applying FF1 on a high resolution image (i.e., 

Landsat-STM), it results in an endmember which is a pure pixel that comprises of only hotspot as 

its component. 

Step 3: Subpixel hotspot detection using CEM 

Aller obtaining the pure spectral signature and the hotspot classified image, there is a need for 

identifying target in subpixel level. This can be performed using subpixel target detection 

method. The detection of specific target using only spatial properties will be cumbersome; thus 

incorporating spectral property can improve hotspot detection. The spectral properties such as 
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variability, spectral contrast, similarity can be used to perform target detection at subpixel level 

1321. 

- Usually a hyper or multispectral image is represented as an image cube; an image pixel cube is 

typically represented as an L - dimensional vector where L represents the number of spectral 

bands. 

Linear spectral mixture analysis has been widely used for subpixel detection where the spectral 

signatures of an image pixel vector r is represented as linear combination of target spectral 

signatures (mi, 1112 .... n:) with their appropriate abundance fractions specified by ai,u. . . a. 

In general, the following constraints: 

Abundance sum-to-one constraint (A SC) formulated as, 

ASC=a'=IASC = = land 
I 

(9) 

Abundance non-negativity constraint (ANC)formulated as, 

ANC=a?0forail1jp. (10) 

in brief [32], various LSMA approaches were formed by consideration of ASC and ANC 

constraints. Fully Constrained Least squares (FCLS) considers both the constraint whereas Non-

negatively constrained least squares (NCLS) and Sum-to-one constrained least squares (SCLS) 

are the partial constrained methods in which SCLS imposes ASC and ignores ANC and NCLS 

imposes ANC and ignores ANC. Also, orthogonal subspace projection (OSP) is a method which 

ignores ASC and ANC. 

The partially constrained methods (SCLS and NCLS) generally don't estimate targets effectively 

but can detect targets. Due to sum-to-one at ASC, SCLS cannot detect many target signatures 

• usually in cases where we have many spectral bands being considered. But NCLS doesn't have 

such issues since it doesn't impose ASC, resulting in detection of many targets. Therefore, 

• NCLS seems to be efficient over the detection of targets in comparison to SCLS. 
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Since, the above discussed least square methods comprises of imposed constraints based on 

abundance fractions (a). Thus, such methods are called target abundance-constrained 

approaches. 

The above mentioned methods are not quite efficient for the detection of hotspot when its 

fraction is small; which is so because of the fact that hotspots are smaller in size when compared 

with the spatial resolution of MODIS images; most of the hotspots may be present partially 

within one or more pixel leading to mixed pixel issues. Therefore, detection of such smaller 

hotspots over a coarse resolution images arc implied which can be attained by the aid of CEM 

approach since CEM is efficient over the detection of such smaller targets. 

Constrained energy minimization (CEM)  

Unlike the above methods, CEM is a target signature-constrained approach which constrains 

over the desired target signature instead of its abundance fraction. CEM can be described as an 

adaptive filter that minimizes the filter output energy while constraining a desired target 

signature by a specific gain [32]. Unlike the above mentioned abundance constrained approach 

which requires a prior knowledge about all the target class spectral signatures whereas CEM 

requires only the knowledge of desired signature. 

Assume that we are given a finite set of observations S = {ri, r2.....rN} where ri = (ra,, 1-0......iL)T 

for I < i < N is an L-dimensional sample pixel vector. Let d denote the desired target spectral 

signature. which is known a priori. The objective is to design an FIR linear filter with L filter 

coefficients {wi, li'2,... w,.} denoted by an L-dimensional vector w = (wi W2 ... 
WI.)F that 

minimizes the filter output power in subject to the following constraint 

dTw =i d 1w1  = 1 

Lety1 denote the output of the designed FIR filter resulting from the input r,. Thenya is 

i=wiril = w1r1 = r1 Tw (12) 

The average output power produced by the observation set S by using the above FIR filter with 

coefficient vector w = (wi 1V2 ... wL)' is specified by 
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1 VN 2 _ 1 VN 
- 

,j

_i (rTw)Tr 'w wT (>.i rjri)w = WT RLX LW (13) 

Where RLXL = 1/N [ r iTI turns out to be the L x L sample autocorrelation matrix of S. 

Minimizing (xx) with the filter response constraint dTw d1 w1  = 1 yields 

nzin 11 v 
'yfl} - mifl{WT RLXLW} Subject to dTw = 1 (14) 

- 

ftc solution to (14) was shown in [54. 551 and called the CEM filter with the weight vector w* 

given by 

R 
* = L 'l.d = RL U 

(1 5) 
d' RI-V,d dTR Ld 

l'he Ri.i. in (15) is not necessarily full rank. Thus, calculating RLXL can be cumbersome. It has 

been observed that CEM is very sensitive to the knowledge used for desired target as well as the 

noise 1251. As shown in experiments [32] the noise sensitivity is closely related to the rank used 

for the calculation of weight vector in (15). The rank of Rii. determines the number of 

eigenvectors required for calculating R L  and it is also closely related to the intrinsic 

dimensionality of a multi/hyper spectral image. In cases where RLXL doesn't have full rank then 

the inverse of Rixi. can be computed by singular value decomposition such that RLXL = V J1VT 

where i7  = (öj i3 ... 13) is an eigenmatrix, is the L-dimensional vector corresponding to 

the eigcn value Xk and A = diag{?i , )........ Xq} is a diagonal matrix with eigenvalues as 

diagonal elements. Thus, by performing eigen-decomposition, the inverse of kLXL can be found 

by Rjj = Vi4_1VT [541. But such decomposition requires a prior knowledge of knowing the 

number of eigenvectors. The deduction of optimal weight vector in (15) is elaborated in [55]. 

The application of CEM over classified hotspot image will yield a fractional image that 

comprises of fractions of hotspot present within a pixel. Thus, such image indicates the estimate 

of hotspot present within a region. But, in order to perform area estimation based on hotspot 

density, we perform segmentation by the aid of segmentation technique such as: Otsu multi-

threshold method and cluster similarity measure based method called DBI using GA as its 

optimizing technique. 
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Step: 4 Hotspot prone zone segmentation 

Alter obtaining hotspot fractional image from the previous step; it is important to segment the 

image into various zones based on hotspot subpixel fractional area. In this method, hotspot area 

are to be segmented into four zones. Thus, image segmentation technique is applied. 

Image segmentation is the division of an image into various regions, each region will have a 

specific properties. Thus, segmentation is performed such that to group similar pixels together 

and these grouped pixels are segregated into various classes. Image segmentation can be 

performed by various threshold methods such as Otsu threshold, Maximum entropy based 

thresholding etc. as well as by clustering methods such as K-means. 

In threshold method, we try to obtain a set of threshold levels (Ii, 12, 13 .... lk) such that all pixel 

with f(x,y) ( (l,...l+i) where i=0,1, ...k constitute the i-th region type. f,y,.) represents the 

feature value at the (x,y) spatial coordinates of the pixel [58]. Thus, by using thresholding 

method, we obtain the threshold levels such that it segments the pixels into appropriate levels. 

I. Otsu method 

This method as proposed in [561 is to select an optimal threshold by the use of discriminant 

analysis over gray level histogram of the image to be segmented. In this method, the optimal 

threshold is chosen such that to partition of the pixels in an image into two distinct classes Co and 

Ci at gray level 1. Pixels with grey levels lesser/equal to tare into class Co (i.e., Co = (0,1,2.....t)) 

whereas pixels of greater grey levels than i-level are into Ci (i.e., Ci = {i+1,i+2. .....  L}). The 

threshold level is chosen based on minimizing the following discriminant criterion measures 

, k=- and 77 - (16) 

where o-2 is the between-class variance 

are the with-in class variance 

are the total variance of levels. 
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Of all the above discriminant measures, 77  calculation is simplest [Otsu, 1979]. Thus, the 

optimal threshold gray level j*  is 

= Argrnini7 (17) 
('1. 

Otsti method can be extended to multi-thresholding problems. For example, in the case of two 

thresholds, image gets segmented into three levels 1t1<t2<K such that minimization of 

discriminant measure is 

= Arg ruin 17 (18) 

II. Segmentation - by clustering method 

Segmentation can be reduced to the problem of clustering the pixels based on similarity measure 

within the cluster. Thus, we have performed segmentation based on cluster similarity measure 

called Davies-Bouldin index (DBI) using genetic algorithm. The advantage of GA-DBI is its 

assurance of providing global threshold levels even though in multi-threshold condition. But, 

Otsu fails over segmenting at optimal levels when multi-threshold of 3 or more levels are 

required and also, the non-requirement of histogram of source image for performing 

segmentation unlike Otsu multi-threshold. 

GA-DBI clustering 

GA-I)131 is performed to classify (i.e., segment [571) an image into its feature classes by 

performing GA operations using Davies-Bouldin index (DBI) as its fitness function [15]. This 

fitness value is used as a guide to the stochastic selection of chromosomes which are then 

considered for further operation: crossover and mutation. Crossover generates new chromosome 

by performing single point crossover over two or more selected parents [I 8]. Mutation acts by 

randomly selecting genes to be altered thereby avoiding the persistence of local-optimal 

solutions and thereby improving the diversity within population. 
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Step 1: String Representation: 

In GA-DBI, the chromosomes were made up of grayscale values of our image to be segmented 

and the length of chromosome is equivalent to the number of clusters (i.e., number of threshold 

levels) as each genes of chromosome refers to the centre of cluster [15]. 

Step 2: Population Initialization: 

For each string i in the population (i=1,...,P where P is the size of population), i refers to the 

value of cluster centre. Since, the number of cluster is known prior, the length of chromosome is 

fixed as each chromosome comprises of n genes (n refers to number of clusters) [15]. These 

cluster centres are chosen randomly from the data set as well as distributed randomly in the 

chromosomes. 

Step 3: Fitness Computation: 

The fitness of a chromosome is computed using Davies-Bouldin index. This index is to group 

similar pixels within in an image based on the ratio of intra and inter-cluster distance. 

Ii; 1-V1 UkIl!~ XI? 
l !~ k,j :~ K;j # k;1 :!~ n :5 N (19) 

0; otherwise 

x, = pixel n with grey values x. 

N = Total number of pixels. 

= indicator variable of each pixel belonging to cluster k. 

ilk = centre of kth  cluster 

Vk = (20) 

ltkn 
?31 

Where, 11 
k 
 = average value of each cluster 

Sk (21) 
j Xkj 

Where. Xk = Number of pixels belonging to kth  cluster 
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Sk= standard deviation of the pixels in k"cluster 

dkf  I'k ilL (22) 

Where, clAj = Euclidean distance between the kth  and th  centroids. 

Sk  + s1 1 
Rk=maj 

' 

(23) 
A .j 

 
L 

Where, Rk is the maximum value of the ratio between inter and intra-cluster distance 

DB= - - Rk , (24) 
Kk 

Flie DBI value is the average value of R for all cluster 

DBI = mm I--'j. (25) 
DBJ 

The aim of the method is to minimize the DBI. In other words, the cluster which is formed is 

equivalent to the cluster with smallest intra-cluster and the largest inter-cluster distance. After 

calculating DBI for each chromosome from the population, those chromosomes which have 

minimal 1)131 value will be called as the best chromosome. For each generation, best 

chromosomes are obtained and they are compared with the previous generation (iteration). The 

termination condition is attained either if the differences between these two chromosomes are 

lesser than a pre-defined threshold value or it has reached the maximum iteration. 

Thus, after the termination of algorithm, an elite chromosome is given which comprises of those 

cluster centres which have been very closer to its mean value when compared between the 

distance of cluster centres and their respective means found in other chromosomes. The entire 

flow is depicted in figure: 3.9. 

in cases for performing Image segmentation using GA-DBI, the chromosomes are made from the 

population which comprises of grayscaic values of the image to be segmented and the length of 

our chromosome is equivalent to the number of threshold levels. Thus, after optimizing the 

fitness function with the aid of various genetic algorithm operators such as crossover, selection 

and mutation; the resulting optimal set of grayscale values indicate the threshold levels by which 

we segment the image into various regions. 
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The entire flow chart of subpixel classification of hotspot for area estimation is depicted in fig. 

3.10. 

Start 

GA-DBI clustering 

Input: K, max_gen, ii, 
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Figure 3.9 Flow chart of GA-DBI clustering 
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CHAPTER 4 
METHODOLOGY 

In this chapter, the methodology devised for per pixel spectral-based hotspot classification and 

subpixel spectral-based classification of hotspots for area estimation are elaborated. 

4.1 Methodology for per pixel spectral-based hotspot classification 

The detection of hotspots and non-hotspots were carried using satellite Images. Optical datasets 

such as Landsat-5TM, MODIS and NOAA/AVIIRR are used for performing per-pixel spectral 

based classification; such classification is carried by using various classification techniques as 

discussed in section 3.5 and the entire flow is depicted in fig. 3.8. Also, the corresponding 

dataset MODIS, LANDSA'l'-5'1'M and NOAA/AVHRR are identified as: MODI, LSTI and 

AVI II. The methodology for performing per pixel spectral-based classification for hotspot 

detection is as follows: 

Step 1: As discussed in section 3.3, the optical images that are available in sinusoidal projection 

are converted to geographic lat/lon (WGS84). 

Step 2: NDVI image is then computed from the available red and NIR bands of the preprocessed 

optical images using the equation (I) mentioned in section 3.4. 

Step 3: The obtained NDVI image is then classified into hotspot and non-hotspot classes using 

different classification techniques as mentioned in section 3.5. 

Step 4: The classified pixels are assessed by test data set using the metrics HDA and FAR as 

mention in equation (7) and (8) respectively of section 3.6. These were done to measure the 

accuracy of classification algorithms over segregating pixels based on its class feature: hotspot 

and non-hotspot. 
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4.2 Methodology for subpixel spectral-based classification of hotspots for area 

- estimation 

This task focuses on estimating the area coverage of hotspot regions of Jharia at subpixel scale 

with the first two MODIS surface reflectance bands along with its NDVI image. Though the 

spatial resolution of MODIS is 250m but detection of hotspot at such moderate spatial resolution 

could be cumbersome. Due to the fact that hotspot may not lie entirely on a single pixel but be 

present partially in the pixel. 1'hus, it is not viable to estimate the hotspots with better accuracy 

using the pixel level information of MODIS images. Therefore, the work utilizes a high 

resolution LAN I)SAT-STM image of Jharia region for identifying the present pixel's spectral 

signature. Also, the LANDSAT-5TM dataset used for this study is identified as (Data_Id: LST2) 

and our test MODIS dataset is MOD3 whereas for validation we have used MOD2 and MOD4. 

The algorithm is primarily of two steps: 

I. Determination of present hotspot spectral signature from high resolution data-

LANDSAT-5TM dataset (LST2). 

2. Application of constrained subpixel spectral target detection on low resolution MODIS 

image to estimate the actual fraction of hotspot in mixed pixel spectrum. 

Afler obtaining the fraction image of spatial presence of hotspots; Area estimation of 

hotspots is done using image segmentation technique such that the hotspot regions can be 

segmented based on the dense presence of hotspots. The entire flow of work is depicted as 

flow chart in fig 3.10. 

4.2.1 l)etermination of purest hotspot spectral signature 

The flow chart at fig. 3.10 indicates the entire flow during the process of obtaining purest 

hotspot spectral signature from Landsat-5TM image of Jharia region. These steps are 

elaborated in the following steps. 
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Figure 4.1 I.aiidsat-STM PIeproces%ed Image olJharia legion (a). Band-3 (REI)) Image (b). fland4 (NIR) Image (c). NDVI 
Image. 

Step 1: Landsat-5TM (LST2) image is available as pre-processed; thus, only projection 

conversion from sinusoidal to geo LatiLon (WGS-84) is performed. The Preprocessed image 

of red and NIR bands are shown in fig. 4.1(a) and 1(b) respectively. 

Step 2: Band-3 (red), band-4 (NIR) and NDVI (calculated from equation (1) in section 3.4); 

they are stacked in the sequence: band-3, band-4 and NDVI. The corresponding NDVI image 

is shown in iig.4. 1(c). In the further steps the stacked image will be considered as a single 

image i.e., as a multiband image. 

Step 3: The minimum noise fraction (MNF) transform is performed over the stacked images 

for noise removal which is a pre-requisite step for PPI. 

Step 4: Pixel purity index algorithm is applied over the MNF transformed image in order to 

obtain the pure spectral signature of hotspot by projecting the MNF image onto a random 

unit vectors called skewers such that the cumulative records of extreme pixels obtained from 

each projection is noted. Those pixels with such extremity scores are considered to be the 

pixel purity index. Those extreme-score pixels highlighted over the PPI process are shown in 

fig. 4.2(a). The PPI algorithm is performed as described in step: 2 of section 3.7. 
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Figure 4.2 Pixel Punt) Index applied over the MNF transformed image of Landsat-STM. (a). PPI Image. 
(b). PPI image where water pixels were excluded since it makes cumbersome over the detection of hotspots. 
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Figure 4.3 SVM classified Image of Landsat-STM image over our study region. The BLUE, RED and 
GREEN color denotes Water, Hoispot and Non-Hotspot regions respectively. 

Step 5: The above obtained pixels are compared against the spectral signature of hotspot 

whichever is found to be closer is identified as the purest pixel. Thus, the obtained purest 

spectral signature of hotspot will be used as the desired target spectral signature for the 

CEM method to be discussed below. During this process, water pixels have been explicitly 

excluded by masking them since the presence of water pixels created difficulties over 

obtaining the purest pixel spectra of hotspot. This masking is performed with the aid of the 

classified image over the same study region such that the entire pixels were classified into 
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hotspot. non-hotspot and water regions as shown in fig. 4.3. These water pixels were omitted 

during the PPI process. This classification was carried with an intention to obtain around 

90% accuracy (our classified image is of 91.4% accuracy) using SVM classification 

technique (as discussed in step: / of section 3.7.). The water masked PPI image is shown in 

fig. 4.2(b). 

4.2.2 Estimation of hotspot area fraction over mixed pixel using constrained subpixel 
target detection method 

The left hand flow of steps as depicted in now chart at fig.3.10 indicates the entire flow 

during the process of obtaining hotspot area fraction image using CEM as discussed in the 

below steps. 
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Figure 4.4 Preprocessed MODIS Image- a. RED, b. NIR and c. NDVI Band Image 

Step 1: Pre-processing of MODIS image is carried as discussed in section 3.4. The red, NIR 

pre-processed image are shown in fig. 4.4 (a and b). 

Step 2: Water regions are masked such that all water pixels are excluded from the 

computation as their presence hinders over the estimation of hotspots. The water masked 

image of NDVI preprocessed image are shown in fig. 4.4c. 

Step 3: Supervised classification using SVM classifier is performed over the NDVI water 

masked image such that the resultant classified image comprises of only two classes: hotspot 

and non-hotspot. The classification is perfonTled with intent to obtain above 90% accuracy 

over the classification of the image into hotspot and non-hotspot. The water masked NDVI 

image as well as its corresponding classified Image are shown in fig. 4.5. 
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Figure 43 Per-Pixel based classification of MODIS image. (a).NDVI Image - water pixels were explicitly 
modified to have its DN value ranging within the non-hotspot class range. (b). Supervised classification was 

performed by SVM technique such that the pixels are classified to fall into either hotspot or non-hotspot 
class. RED refers Hotspot class and GREEN refers Non-Hotspot class. 

Step 4: The Layer stacking of NIR, RED and NDVI is performed such that the hotspot pixels 

are only considered meaning that non-hotspot pixels are masked and only hotspot pixels are 

retained. This stacked image will be considered as a single image cube comprising of 3-

layers i.e., as a multi-band image. 

Step 5: Sample Auto-correlation matrix RLXL [i.e., RLXL = IN r nT)  where L=number 

of images within the stack which is 3 in our case] is computed from the stacked images 

which will be an input variable for constrained energy minimization (CEM). 

Step 6: Subpixel target detection is performed by CEM where sample auto correlation matrix 

and Hotspot pure spectral signature (from section 4.2.1) are used as its input variable. The 

reason for consideration of CEM is because of the following reason: CEM is found to be very 

effective in the detection of small targets, as in our case for the detection of those hotspots 

which are minor in size in comparison with the spatial resolution of MODIS. Also, CEM is 

found to be a very practical approach as it requires only the prior knowledge about knowing 

only the desired target spectral signature (i.e., hotspot) unlike other techniques such as FCFS, 

NCLS which requires the knowledge spectral signature of all classes. As the final step, the 

optimal weight vector is computed by optimizing RJ..xL with the unity constraint as shown in 

equation (15) under section 3.7. 

Step 7: The output of CEM is a fraction image where each pixel of the fraction image 

quantifies the density of hotspots present within the pixel while minimizing the presence of 
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other classes. Also, CEM fractional values not necessarily bound between 0 and 1. Thus, in 

order to bound the fraction of hotspot; negative fractions are retained as zero and fractions 

above one as one. It is done with an intuition that the pixels of fraction image quantifies the 

presence of hotspots; thus negative and above one fractional values are bounded to zero and 

one respectively. 

Step 8: The image obtained as the output of CEM is a fractional image where the fractional 

value of each pixel indicates the amount of hotspot comprised within a pixel. 

Step 9: In order to estimate the area into various classes based on hotspot density; the above 

derived fraction image where segmented using the various segmentation techniques. 

Step 10: The segmentation technique GA based DBI were performed over the fraction image 

in order to segment the image into four classes: highest, high, medium and low as per the 

hotspot density. For the implementation of GA-DBI, the chromosomes are made from the 

population which comprises of grayscale values of our image (i.e., fraction image obtained 

from CEM) and the length of our chromosome is equivalent to the number of threshold 

levels. Thus, after optimizing the fitness function with our fraction image as input, the 

resulting optimal set of grayscale values indicate the threshold levels by which we segment 

the image such that each segment is treated as various classes based on the hotspot density. 

The performance of segmented image was verified with Otsu multi-threshold method. The 

detailed description about GA-DBI and Otsu multi-threshold are briefed in step: 4 of section 

3.7. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

In this chapter the results obtained while performing per pixel hotspot classification and area 

estimation of hotspot coverage by subpixel classification are discussed in detail. 

5.1 Results of per pixel classification for detection of hotspots 

The detection of hotspot over optical dataset: NOAA/AVHRR, MO[)IS and Landsat-5TM is 

carried by the aid of classification such as supervised classification: Minimum (mean) distance 

classifier, Parallelepiped, GA-KMI clustering and unsupervised classification: ISODATA and K-

means. The classified images over the datasets mentioned in section 3.4 are shown in this chapter 

and its corresponding HDA and FAR are discussed. The datasets respective data_id's are: 

AVIlI. MODI, LSTI. 

NDVI image obtained from NOAA/AVI-IRR is shown in fig. 5.1(a). This NDVI image is 

classified using different supervised and unsupervised classifiers. The classified images contains 

two feature classes: hotpost and non-hotspot pixels as depicted in fig. 5.l(b-f) for different 

classifiers. The calculated HE)A and FAR are shown in table: 5.1. It is noticable that 

parallelepiped assigns certain pixels into an unknown classifier. Similarly, MODIS and Landsat 

STM NDVI images are classified into target classes: hotspot and non-hotspot, and the classified 

images are shown in fig. 5.2(b-I) and fig. 5.3(b-f) respectively. 
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Figure 5.1 Classified Image of NOAA/AVHRR .Color code: (RED/BLUE)-Hotspot. (Yellow/Green)- 
NonHotspot and Black-Non-classified. (a) ND\'I , (b) ISODATA, (c) K-means, (d) parallelepiped, (e) 

minimum distance and (fl GA-KMI clustering. 

(a) (b) (C) 

(d) 

4.1  

(e) (f) 

Figure 5.2 Classified Image of MODIS. Color code: (RED/BLUE)-Hotspot, (Yellow/Green)-Nonllotspot and 
Black-Non-classified. (a) NDVI , (b) ISODATA, (c) K-means, (d) parallelepiped, (e) minimum distance and (I) 

GA-KMI clustering. 
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Figure 5.3 Classified Image of LANDSAT-5 TM. Color code: (REDIBLUE)-Hotspot, (Yellow/Green)-
NonHotspot and Black-Non-classified. (a) NDVI , (b) ISODATA, (c) K-means, (d) minimum distance, (e) 

parallelepiped and (1) GA-KMI clustering. 

Table 5.1 HDA and FAR for different classifiers on satellite images 

Supervised classification Unsupervised 
classification 

MODIS (MOD 1) 70 70 

LANDSAT STM 67 18 

(LSTI) 

NOVAA/AVHRR 5 75 
(AVH1) 

Par allelepiped 

(%) 

HDA FAR 

70 70 

68 33 

32 8 

GA-KMI ISODATA K-Means 

(%) (%) (%) 

ithAl FAR HDA FAR HDA FAR 

Si ii 92 20 89 17 

61 16 - 86 56 86 56 

57 13 79 19 75 18 

L 

Satellite Data Distance (%) 

HDA FAR 
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From table 5.1, It is observed that classified images from MODIS data indicates that the best 

classified image obtained arc as that of GA-KMI having HDA as 81 % and FAR as 11% while 

ISODATA has HDA as 92% and FAR as 20% while others are having high FAR and low HDA 

comparatively. 

LAN DSAT 5 TM classified images shows that Out of all classifiers K-means and parallelpiped 

has high HDA but low FAR while GA-KMI has a high 1-IDA and high FAR which indicates that 

GA-KMI yelid better performance for detecting hotspots. 

Whereas, NOAA/AVHRR indicates that ISODATA and K-means have higher 1-IDA of 75% and 

79% but has lower FAR whence GA-KMI has an average performance comparatively. 

Overall, it shows that GA-KMI has higher HDA and FAR bounded within very lower upper 

bound. Thus, confirms that GA-KMI has higher performance over the other techniques. 

5.2 Results of hotspot area estimation by sub pixel classification 

We have performed subpixel spectral detection of target using CEM for the estimation of hotspot 

over MO[)IS image with the aid of High resolution (Landsat-5TM) image for the detection of 

pure hotspot spectral signature. 

As explained in the previous section, finding of pure spectral signature of hotspot pixel using 

LST2 (i.e., Landsat-5TM image) is initially performed and pixel based classification over 

MOI)IS and Landsat-5TM image are done; such that the Landsat classified image is used for the 

detection of hotspot pixels which will be considered for obtaining hotspot spectral signature 

using Pll algorithm such that the search of pure pixel within the hotspot target class (hotspot 

classified image) gives an assurance of such pixels to be more viable as pure hotspot pixel; such 

pixels arc then compared with the target spectra of hotspot class (as a final step of PPI 

al(0orithm). Thus, SVM classification is performed on LST2 and the obtained classified image 

confusion matrix is as shown in Landsat-5TM column in table 5.2. 
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Table 5.2 Confuse matrix and Kappa value of classes: Hotspot, Non-Hotspot and Water (considered only for 
LANDSAT-STM dataset) region over MODIS and LANDSAT-5TM images. 

LANDSAT-5TM (LST-2) in % MODIS (MOD3) in % 
l-iotspot Non- 

Hotspot 
Water Producer 

 Accuracy 
Hotspot Non- 

 l-iotspot 
Producer 
Accuracy 

IloIspot 65.06 0.00 2.02 65.06 77.22 0.00 77.22 
Non-llotspot 20.48 100.00 0.00 100.00 22.78 100.00 100.00 
Water 14.46 0.00 97.98 97.98 NOT PERFORMED 
User Accuracy 96.43 91.28 88.99  100.00 I 85.37 I 
Kappa Value 0.8595 0.7946 

Overall 
Accuracy 91.389 90.217 

Also, our intention is to refine the estimate of hotspots present within a hotspot detected pixel of 

MODIS image. Thus, subpixel target detection is performed over the per-pixel spectral-based 

classified image (classification done by SVM classifier). Thus, such classification was done with 

an intention to obtain higher accuracy (above 90%) and kappa value as shown in table MODIS 

column in 5.2. 
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Figure 5.4 CEM Fraction Image. Indicates the presence of Hotspot within each pixel varying from 0 to 1 (0 
refers absence of hotspot and 1 refers enriched presence of hotspot). 

These refined hotspot pixels spectral values were considered for performing target 

detection at subpixel level using CEM such that the obtained output image indicates the fraction 

of hotspot present within the per-pixel classified hotspot pixel as shown in fig. 5.4. This 

fractional image is segmented into various classes: Highest, High, Medium and Low based on 

density of hotspot coverage; using GA based DBI. The segmentation of GA-DBI is compared 

with Otsu multi-threshold method. The segmented image by GA-DBI and Otsu Multi-Threshold 

are shown respectively in figure 5.5 and 5.6. 
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Figure 5.5 CEM fractional hotspots are segmented into various classes by GA-DBI: Low (0-1), Medium (1-2), 
High (2-3) and highest (3-4). 
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Figure 5.6 CEM fractional hotspots are segmented into various classes by Otsu Multi-threshold: Low (0-1), 
Medium (1-2), High (2-3) and highest (34). 

The area estimation of hotspot at various segmented levels is shown in table 5.3. 

Table 5.3 Lists Hotspot density coverage in Km2  for various classes over different temporal dataset MOD3, 
MOD4 and MOD2 are acquainted on 14-March-2015, 30-March-2015 and 23-March-2012 respectively. 

MODIS dataset Segmentation HIGHEST HIGH MEDIUM Low Total Area 

Hotspot Area Estimation 

MOD3 Otsu, Method 4.2615 4.2806 2.1894 0.3549 11.086 
0.6768  GA-DBI 10.099 0.27762 0.0332 

MOD4 Otsu Method 4.039 3.9507 2.468 0.4634 10.921 
1.6737  GA-DBI 8.6073 0.6233 0.01672 

MOD2 Otsu Method 4.1601 2.5212 1.5064 0.2511 8.4387 
1  GA-DBI 7.6205 0.3239 0.1115 1 0.3829 
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As mentioned in step. 4 in section 3.7, Otsu multi-threshold is not optimal when it comes to 

three or higher levels of threshold. Thus, we have used GA-DBI for our case: segmenting 

fractional image into four classes (i.e., 3-level thresholding). Since, GA-DBI segmentation is 

performed by GA which is a heuristic method that promises in leading to global optimization. As 

shown in table 5.3, GA-DBI indicates that the level bound for "Highest" segment is larger when 

compared with l-1ighest" segment of Otsu whereas other segments are tightly bounded in 

comparison to Otsu. 

MOD4 and MOD2 datasets of 30-March-2015 and 23-March-2012 respectively; have been used 

for validation of our hotspot area estimation by subpixel analysis with the dataset MOD3 (i.e., 

data acquaintance date is 14-March-2015). For segment comparison purpose, we have 

considered segments generated by GA-DBI. 

When MOD3 is compared with a weekly varied temporal data (i.e., MOD4); it indicates 

that the hotspot area coverage variation is in negligible value especially among the respective 

segments. Also, the total area hotspot coverage between them is of 0.165 Km2  variance. 

In the need of validating MOD3 for yearly variation, MOD2 dataset is used and it is 

observed that the hotspot density over various segments indicates that there is a 1 Km2  increase 

in denser hotspot, 0.3 Km2  increase in high density hotspot coverage, 0.1 Km2  variation in 

medium hotspot density segment and almost 1.29 km2  low denser hotspot has been increased 

within the span of 2012 to 2015. 
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CHAITER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSION 

The detection of hotspots using various supervised and unsupervised classification on per-pixel 

spectral based classification result shows that GA-KMI has higher performance over the other 

techniques and it is so because of unbounded space over the range for choosing the optimal value 

compared to the others as they are bounded to choose within a limited search space. In other 

words, GA-KMI has \vider scope to find the correct hypothesis (optimal center) since the search 

space of hypothesis is relaxed and such relaxation is attained by the choice of GA parameters 

such as: Population size, number of generation and GA operators: crossover and mutation. 

Also, regarding the satellite dataset, the per-pixel spectral based classifier indicates that 

MODIS can be used for the detection of hotspot since it has a good trade-off over detection of 

hotspot with good accuracy (8 1%- HDA, 11%-FAR: attained by GA-KMI clustering) and good 

temporal resolution. But due to mixed pixel issues and also the smaller in size of hotspot, the 

detected hotspot by per-pixel classifier cannot lead an accurate estimation of hotspot coverage. 

Thus area estimation of hotspot coverage has been performed by refining the hotspot 

detected by per-pixel classifier over MODIS dataset. This refinement of per-pixel detected 

hotspot is done by the application of subpixel classification using target constrained approach 

called CEM. Since, it is quite efficient in the detection of smaller targets; thus, hotspot coverage 

area estimation is performed using CEM. Also, the resultant hotspot area coverage estimation 

has been validated with dataset of weekly and yearly variation, we find that hotspot of 0.165 

K m 2 - of variation been observed within a week and 2.647 Km of increased I-lotspot coverage is 

observed over a period of two years. 

6.2 FUTURE SCOPE 

I lotspot Monitoring can be further done by the aid of SAR images as one can take advantage of 

its microwave application and its higher spatial resolution. Also, as a better trade-off of spatial 

and temporal resolution, data fusion of various sensors can be utilized since data fusion among 



various sensors of different time series dataset can aid for creating up a hotspot monitoring 

system. 

4 
Also, from the aspect of the study discussed on subpixel analysis by target constrained 

approach —CEM; have shown that only one target can be detected simultaneously but this could 

be extended further to detect more than one class of target like vegetation, water, bare soil 

classes etc., by obtaining optimal weight vector for each targets by constraining over all target 

signature rather than a single target signature as shown in equation (II) in section 3.7. Also, the 

advantage of CEM is it can be implied in real-time processing and can be used to detect small 

targets efficiently; thus, CEM can be utilized for tasks such as crop identification; which requires 

recognition of target of smaller size but with an explicit constraint that is, its spectral 

characteristic should be very similar to the desired target signature knowledge within the mixed 

pixel. 
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