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Abstract 

Grey Wolf Optimizer (GWO) and Sine Cosine Algorithm (SCA) are recently developed 

population based metaheuristic algorithms to solve global optimization problems. The GWO is 

inspired by the social and leadership behaviour of grey wolves, and the SCA is designed from the 

inspiration of sine and cosine trigonometric functions. Although these algorithms are recently 

developed, their effectiveness and advantages are demonstrated in various real world applications 

like feature selection, thresholding, multi objective optimization, load dispatch problem in 

electrical engineering, clustering and training of neural network etc.  

The aim of this PhD Thesis is to propose some modified variants of the classical GWO and 

classical SCA which are more effective and reliable in terms of search strategy and solution 

accuracy of the optimization problems. To achieve these objectives, in the Thesis, First a modified 

variant of classical GWO called RW-GWO is introduced which improves the exploration as well 

as exploitation ability of the wolves in a grey wolf pack by introducing two different strategies. In 

the first strategy, a new search equation based on random walk search mechanism is introduced 

for the leading hunters, and in second, a greedy selection is applied at the end of each iteration 

corresponding to each wolf between its current and previous state. The random walk search 

strategy focuses on enhancing the exploration and exploitation ability of leading guidance and 

greedy selection preserves the discovered promising areas of the search space. The performance 

of the RW-GWO algorithm is analyzed and compared with classical GWO on IEEE CEC 2014 

benchmark set of unconstrained optimization problems. The numerical results of these test 

problems demonstrate the superior search ability of proposed algorithm as compared to classical 

GWO.  

Next, another variant of the classical GWO called Memory-based Grey Wolf Optimizer (mGWO) 

is introduced. The mGWO algorithm utilizes the personal best history of individual wolves to 

enhance the collaborative strength of grey wolf pack through modified encircling and hunting 

mechanism. The mGWO also integrates the personal best guidance during the search to share the 

available best knowledge regarding the search space among the individual search agents. Hence, 

the leading and personal best guidance together perform the search process in the mGWO. The 

evaluation of the proposed mGWO is performed on IEEE CEC 2014 benchmark set of 

unconstrained problems. The numerical results of these test problems demonstrate the better search 

ability of proposed algorithm as compare to the classical GWO in all the category of optimization 

problems such as unimodal, multimodal, composite and hybrid functions. The comparison 
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between the RW-GWO and mGWO concludes that RW-GWO can be preferred for the unimodal 

and composite problems and for the multimodal and hybrid problems mGWO can be preferred.   

To improve the search accuracy of candidate solutions, a new variant of classical SCA called m-

SCA is proposed in the Thesis which is based on opposition-based learning and modified position 

update mechanism. The opposition-based learning is used to generate the opposite candidate 

solutions so that the stagnation at local optima can be avoided. The jumping rate which allows the 

algorithm to perform the opposition-based learning phase in the algorithm is fixed to a low value 

to keep the balance between exploration and exploitation. The search equation of classical SCA is 

modified based on the cognitive component to reduce the inefficient diversity of search agents and 

to maintain the balance between exploration and exploitation during the search. The performance 

of the m-SCA is analyzed and compared with classical SCA on unconstrained benchmark 

problems given in IEEE CEC 2014. The analysis of the results demonstrates the superior search 

ability of the m-SCA as compared to classical SCA on all category of problems such as unimodal, 

multimodal, composite and hybrid benchmark problems.  

Next, another modified variant of classical SCA called ISCA is introduced which enhances the 

performance of the classical SCA based on the personal best history of candidate solutions, 

crossover operator and modified position update mechanism. In the ISCA, the greedy selection is 

also employed for each candidate solution between its current and previous state to avoid its 

divergence from discovered promising search areas. The performance evaluation of the proposed 

algorithm is performed on IEEE CEC 2014 benchmark suite of unconstrained optimization 

problems. The numerical results of these test problems demonstrate the superior search ability of 

proposed algorithm as compared to the classical SCA in all category of benchmark optimization 

problems. The comparison between the m-SCA and ISCA concludes that ISCA can be preferred 

for the unimodal, multimodal and hybrid problems and for the composite problems both the 

algorithms are very competitive to each other.   

Further, the performance of classical versions of GWO and SCA, and their proposed variants 

called RW-GWO, mGWO, m-SCA and ISCA is evaluated on constrained optimization problems. 

The constrained versions of these algorithms are designed by introducing a simple constraint 

handling mechanism based on the constraint violation. The constrained benchmark problems given 

in IEEE CEC 2006 are used for experimentation. The analysis on these problems demonstrate the 

better search ability of the mGWO algorithm than the classical GWO and RW-GWO algorithms. 

Similarly, the proposed ISCA algorithm shows their better search ability to solve constrained 

optimization problems as compared to the classical SCA and m-SCA. 
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In order to analyze the applicability of the classical GWO, classical SCA and their proposed 

variants, an unconstrained and nonlinear optimization problem which arises in the field of image 

processing is selected. The problem is defined to determine the optimal thresholds for image 

segmentation in grey images. To find the optimum thresholds for an image, Otsu’s between-class 

variance criterion is employed as the fitness function. Nine benchmark images are used for 

experimentation and several statistical measures are used for comparison. The analysis of results 

ensure that the proposed improved variant RW-GWO and mGWO perform better than classical 

GWO, classical SCA, m-SCA and ISCA algorithms.  

Next, the classical GWO, classical SCA and their proposed variants called RW-GWO, mGWO, 

m-SCA and ISCA are implemented on another real-life application which is unconstrained in 

nature and arises in the field of electrical engineering. The objective of this problem is to determine 

the optimal setting for the proper coordination of overcurrent relays. The IEEE 3, 4, 6, and 14-bus 

systems are used for experimentation and validation. The comparison of results demonstrate the 

better search efficiency and solution accuracy of the proposed RW-GWO algorithm than all other 

variants of GWO and SCA and their classical versions in finding the optimal setting for overcurrent 

relays.  

Finally, the Thesis is concluded with the limitations and scope of the proposed algorithms. Later 

it suggests future scope and some new directions of research in this area. 
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Chapter 1   

Introduction 

This introductory Chapter states the definitions and underlines the objectives and motivation 

behind this Thesis. It also reviews the available literature. The chapter closes with a brief summary 

of the work presented in this Thesis as well as future research directions. 

1.1. Optimization 

Optimization is the methodology of choosing "the best" alternative(s) among a specified set of 

available options. This approach of determining "the largest" / "the smallest" possible value, that 

a given mathematical expression can attain in its specified domain of definition, is called 

optimization. The mathematical expression that has to be optimized can be linear, nonlinear, 

integer, geometric or fractional. In some situations, explicit mathematical formulation of the 

function is not readily defined or may not be available. Many times the mathematical function 

which needs to be optimized has restrictions in the form of inequality or equality constraints. 

Therefore, the process of optimization can be considered as a problem of finding those values of 

the independent variables which do not violate the inequality and equality constraints in such a 

way to provide an optimal value of the mathematical function being optimized. In other words, the 

mathematical techniques for determining the optimal value(s) ("the greatest possible value" or "the 

least possible value") of a mathematical function are called ‘Optimization Techniques’. 

Determining the solution of most realistic problems may not be possible in the absence of robust 

optimization techniques. In literature, numerous books are available based on mathematical 

concepts of optimization and some of references are [1-9].  

Optimization problems arise in various fields of science, engineering, software industry, 

economics, manufacturing system, physical science and transportation etc. In view of their 

applicability, it is necessary to design and develop efficient and reliable computational algorithms. 

1.2.  Definition of an Optimization Problem 

Mathematically speaking, the most general formulation of single objective optimization problem 

is: 

𝑀𝑎𝑥/𝑀𝑖𝑛 𝐹(𝑋),    𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 (1.1) 
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𝑠. 𝑡. 𝑔𝑗(𝑋) ≤ 0      𝑗 = 1,2, … , 𝐽 (1.2) 

 ℎ𝑘(𝑋) = 0      𝑘 = 1,2, … , 𝐾 (1.3) 

 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖    𝑖 = 1,2, … , 𝐷 (1.4) 

where 𝐹, 𝑔1, 𝑔2, … , 𝑔𝐽, ℎ1, ℎ2, … ℎ𝐾 are real valued functions. 

Function 𝐹(𝑋) that is to be optimized (maximized or minimized) is called the ‘objective function’. 

Inequalities  𝑔𝑗(𝑋) ≤ 0 for  𝑗 = 1,2, … , 𝐽 are known as the inequality constraints and equalities 

ℎ𝑘(𝑋) = 0 for 𝑘 = 1,2, … , 𝐾 are called equality constraints. It is desired to determine those values 

of the independent variables 𝑥1, 𝑥2, … , 𝑥𝐷 which optimize the objective function without violating 

any of the restriction, imposed in equation (1.2), (1.3) and (1.4). The variables 𝑥𝑖’s are known as 

‘decision variables’. 𝑙𝑖’s are the lower bounds and 𝑢𝑖’s are the upper bounds of the decision 

variables 𝑥𝑖. A decision vector 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 which satisfies all the constraints is 

called a ‘feasible solution’. A feasible solution which optimizes the objective function   is called a 

feasible optimal solution. 

On the basis of presence of constraints, there are two types of optimization problems named 

unconstrained optimization problems and constrained optimization problems. Unconstrained 

optimization problems involve an objective function given by equation (1.1) or lower or upper 

bounds on variables given by equation (1.4). Constrained optimization problems involve an 

objective function given in equation (1.1), the box constraints given by equation (1.4), inequality 

constraints given by equation (1.2) and/or linear or/and non-linear, equality constraints given by 

equation (1.3). Due to presence of inequality and equality constraints, constrained optimization 

problems are more difficult to solve. 

1.3.  Local and Global Optimal Solutions 

Let 𝑆 denote the feasible region of the solution vectors that satisfies all the constraints of an 

optimization problem. Then, in case of a minimization problem, if for 𝑋̅ ∈ 𝑆 there exists a 

neighbourhood 𝑁∈(𝑋̅) around 𝑋̅ such that 𝐹(𝑋̅ ) ≤ 𝐹(𝑋) for each 𝑋 ∈ 𝑆 ∩ 𝑁∈(𝑋̅), then 𝑋̅ is known 

as a ‘local minimum solution’. However, if, 𝑋̅ ∈ 𝑆 and 𝐹(𝑋̅) ≤ 𝐹(𝑋) for all 𝑋 ∈ 𝑆 then 𝑋̅ is known 

as a ‘global minimum solution’ of the optimization problem at hand. Fig 1.1 shows local and global 

optimum solutions of a mathematical function. 
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Fig 1.1: Demonstration of local optima and global optima 

In general it may happen that there are either no optimal solutions, or a unique optimal solution or 

several optimal solutions, for a given nonlinear optimization problem. In case if a problem has a 

single local optimal solution then it is also the global optimal solution. If, however, the 

optimization problem has several local optimal solutions, then, in general, one or more of them 

could be the global optimal solutions. In a Linear Programming Problem, it is for sure that, every 

local optimal solution is the global optimal solution. On the contrary, in case of a Non Linear 

Optimization Problem, if the objective function is convex (for minimization case) and its feasible 

domain is also convex, then it is guaranteed that the local optimal solution is also the global optimal 

solution.  

In many nonlinear optimization problems, it is usually desirous to determine a global optimal 

solution instead of a local optimal solution. But, in general, it is often difficult to obtain the global 

optimal solution of a nonlinear optimization problem, rather than finding the local optimal 

solution. However, due to its practical significance, it becomes necessary to determine the global 

optimal solution. 

For a mathematical function which is twice-differentiable, there exist conditions which may be 

used to determine a local optimal solution. In case the test fails, then due to the property of 

continuous differentiability of function a solution with a lesser objective function value can be 

determined in its neighbourhood. Thus, a sequence of solutions can be constructed which converge 

to the local optimal solution. However, in general, such tests are not sufficient. It may be said that, 

a global optimization problem is not solvable in a finite number of steps. Therefore any given 

solution cannot be guaranteed as a solution of global minima without evaluating the objective 
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function at least at one solution of its neighbourhood. But, the neighbourhoods of a solution may 

be unbounded, therefore, an infinite numbers of steps are required to attain the global minima. 

1.4.  Methods for Global Optimization 

Global optimization focuses on finding the best of the local minima. Designing global optimization 

techniques is not an easy task since, in general, there is no criterion for deciding whether a global 

optimal solution has been achieved or not. In view of the practical necessity and with the 

availability of fast and readily computing machines, many computational techniques are now being 

reported in literature for solving nonlinear optimization problems. The methods currently available 

in literature for solving nonlinear global optimization problems may be broadly classified as 

deterministic methods and probabilistic methods. 

The deterministic methods try to guarantee that a neighbourhood of the global optima is attained. 

Such methods do not use any stochastic techniques, but rely on a thorough search of the feasible 

domain. However, they are applicable only to a restricted class of functions. On the other hand, 

probabilistic methods are used to find the near optimal solution. This is achieved by assuming that 

the good solutions are near to each other in the search space. This assumption is valid for most real 

life problems [10]. The probabilistic methods uses the probabilistic or stochastic approach to 

search for the global optimal solutions. Although probabilistic methods do not give an absolute 

guarantee, these methods are sometimes preferred over the deterministic methods because they are 

applicable to a wider class of problems. Several other methods can also be used as optimization 

task [11-13]. 

1.5. Nature Inspired Optimization Algorithms 

One of the most striking trend that emerged in the optimization field is the simulation of natural 

processes as efficient global search methods. The natural processes or phenomena are firstly 

analysed mathematically and then coded as computer programs for solving complex nonlinear real 

world problems. The resulting methods are called ‘Nature Inspired Algorithms (NIA)’ that can 

often outperform classic methods. The advantages of these methods are their ability to solve 

various standard or application based problems successfully without any prior knowledge of the 

problem space. Moreover, these algorithms are more likely to obtain the global optima of a given 

problem. They do not require any continuity and differentiability of the objective functions and / 

or constraints. Also, they work on a randomly generated population of solutions instead of one 

solution. They are easy to programme and can be easily implemented on a computer. 
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The most primitive subfield of nature inspired optimization techniques is the evolutionary 

algorithms which mimics the concepts of evolution in nature. Genetic Algorithms [14], Genetic 

Programming [15] and Differential Evolution [16] are some famous evolutionary algorithms. 

Genetic Algorithm is based on the Darwin's Theory of Evolution which is based on the property 

of inheritance and survival of the fittest in living organisms. The decision parameters are encoded 

into encoded space (Binary / Real / Octal, etc.) and crossover, mutation and elitism is performed 

over a number of generations until a prespecified stopping criteria is attained. Genetic 

programming is an extension of genetic algorithms in which the programs are expressed as syntax 

trees rather than as lines of code. Differential Evolution uses only the mutation operator on a target 

vector. In [17], Ali and Zhu have extended Differential Evolution for constrained optimization 

using penalty function. These evolutionary algorithms have been applied to solve various real-

world application problems [18-26].  

Another important development in the area of nature inspired algorithms is the introduction of 

Particle Swarm Optimization [27]. It mimics the behavior of a flock of birds or school of fish. All 

the solutions or particles of the swarm fly through the search space using their personal best 

position in history as well as the global best position of the entire swarm. In [28, 29], an improved 

PSO is proposed to obtain faster convergence. Particle Swarm Optimization has been applied to 

many real world problems [30-37]. 

Glow Worm Swarm Optimization [38, 39] mimics the behavior of glow worms which emit light 

in order to attract the others in the group for mating. It is particularly designed to capture multiple 

local and global optima.  

Artificial Bee colony optimization [40] is based on self-organization and division of labour, i.e., it 

is based on inspecting the behaviour of bees on finding nectar and sharing the information of food 

sources to the bees in the hive, by the employed bees, onlooker bees and scouts. Artificial Bee 

colony optimization has been applied to many real world problems including [41, 42]. In [43, 44], 

several analysis have been conducted to for the stability analysis of Artificial Bee Colony 

algorithm. 

Invasive Weed Optimization (IWO) [45] is inspired by the growth process of weeds in nature. It 

has been applied to solve various real-world applications [46-50]. 

Another Swarm Intelligence based algorithm is the Spider Monkey Algorithm [51]. It is based on 

the foraging behavior and fission-fusion social structures of spider monkeys. 
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Ant Colony Optimization [52] is proposed wherein the pheromone left behind ants and their ability 

to change their path when an obstacle is encountered on their path, is mimicked into the design of 

Ant colony optimization.  

The behavior of the growth of bacteria forms a basis of Bacterial Foraging Optimization Algorithm 

[53]. 

Some methods draw their inspiration from the physical laws of nature. For example Gravitational 

Search Algorithm [54] is based on gravitational interaction between masses. It artificially 

simulates the Newton's Theory, Newtonian laws of gravitation and motion. Similarly, Central 

Force Optimization [55-57] is based on gravitational kinematics. 

Harmony Search Algorithm [58] is another nature inspired optimization which is inspired from 

music. Harmony Search Algorithm has been applied to solve various real-world applications [59, 

60]. 

These days many new nature inspired optimization techniques are being proposed by researchers. 

Some of them are: Water drop Algorithm [61], Ant Lion Algorithm [62], Firework Algorithms 

[63], Teaching Learning Based Optimization [64], Water Weed Optimization [45], Kidney 

Inspired Optimization [65], and Moth-flame Optimization Algorithm [66]. 

An excellent review of Nature Inspired Optimization Techniques is presented in [67-72]. 

The scope of this Thesis is Grey Wolf Optimizer (GWO) and Sine Cosine Algorithm (SCA), a 

nature inspired optimization techniques for global optimization problems. 

1.6. The No Free Lunch Theorem 

A major and interesting result in optimization theory was the presentation of the "No Free Lunch 

(NFL) theorem" given by Wolpert and Macready [73, 74]. This theorem states that "the 

performance of all optimization (search) algorithms, amortized over the set of all possible 

functions, is equivalent". The theorem has far reaching implications, because it implies that "no 

algorithm can be designed so that it will be superior to a linear enumeration of the search space, 

or even a purely random search". Although, the theorem is defined over finite search spaces only, 

however, it is not proved if the result is applicable to infinite search spaces, e.g. 𝑅𝑑. All computer 

implementations of search algorithms will, in general, operate on finite search spaces, therefore 

the theorem is applicable to all existing algorithms. The NFL Theorem states that all search 

algorithms perform equally well over all functions, it does not necessarily hold for all subsets of 
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this set. The set of all functions over a finite domain includes the set of all the permutations of this 

domain. 

1.7. Grey Wolf Optimizer (GWO) 

Grey Wolf Optimizer (GWO) is one of the efficient and reliable algorithm based on the swarm 

intelligence of grey wolves. This algorithm was developed in 2014, by Mirjalili et al. [75] by 

analyzing the social and dominant leadership characteristic in grey wolf pack. Grey wolves always 

try to find an optimal way to find the prey. In the hunting mechanism by grey wolves, a leadership 

hierarchy is followed which is shown graphically in Fig 1.2. In a grey wolf pack, wolves are 

divided into four different groups. These groups are divided according to the intelligence and 

strength of wolves. In the first group of wolves, the dominant or leading wolf is included, which 

is known as alpha (𝛼). Alpha wolf is responsible for all the decisions which are very crucial for 

the pack such as selecting a place for staying, how to attack on prey. In the second group of wolves, 

subordinate wolf to the alpha named as a beta(𝛽) is included. Beta wolf transfers all the essential 

information provided by alpha to the other wolves of the pack and serves as a main leading wolf 

for the pack in the absence of alpha. In the third group, sentinels, caretakers, and hunters of the 

pack are included. These wolves are known as delta (𝛿). The last group of wolves is known as 

omega (𝜔) and they have the assent of eating the meal in the end after all other wolves.  

Muro et al. [76] observed that in the hunting process of prey, grey wolves follow the three main 

steps namely, 

i. Tracking and approaching the prey. 

ii. Encircling the prey. 

iii. Attack towards the prey. 

In the algorithm, the assumption has been presumed that beta and delta wolves have sufficient 

information about prey location. To design a Grey Wolf Optimizer, Mirjalili et al. [75] have 

modelled the hunting strategies and the dominant leading characteristics of grey wolves in a 

mathematical manner. The mathematical model of the algorithm is described in next subsection. 
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Fig 1.2. Leadership hierarchy of grey wolves 

 

1.7.1. Mathematical Modeling of GWO 

This section briefly explains the mathematical modeling of various hunting activities of grey 

wolves. 

1.7.1.1. Leadership Behavior 

Since the hunting process of grey wolves starts with searching prey, therefore, the leading wolves, 

alpha, beta and delta are selected for the hunting process according to the fitness of each individual 

wolf. In the optimization problem, the fittest solution is called as alpha, second and third best 

solution are assumed as beta and delta respectively and the remaining solutions of the problem are 

considered as omega. In GWO algorithm, all the omega wolves iteratively improve their locations 

with the guidance of leading wolves, alpha, beta and delta. 

1.7.1.2. Encircling the Prey 

In the classical GWO, it has been discussed that the wolves encircle the prey by the guidance of 

leading wolves alpha, beta and delta. To accomplish this, each wolf updates its position with the 

help of leading wolves by using the mathematical equations –  

 𝑋𝑡+1 = 𝑋𝑝,𝑡 − 𝐴 ∙ 𝐷 (1.5) 

where 𝐷 = |𝐶𝑋𝑝,𝑡 − 𝑋𝑡| (1.6) 

 𝐴 = 2 𝑎𝑟1 − 𝑎 (1.7) 
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 𝐶 = 2 𝑟2 (1.8) 

In the above equations, 𝑋𝑡 and 𝑋𝑡+1 are the states of grey wolf at iteration 𝑡 and 𝑡 + 1 respectively. 

𝑋𝑝,𝑡 is the location of the prey at iteration 𝑡. 𝐴 and 𝐶 are coefficient vectors that acts as a 

exploration and exploitation operators during the search process of prey. 𝑎 is a scalar quantity for 

a particular iteration which helps to the coefficient 𝐴 to control the phase of exploration and 

exploitation and it decreases linearly from 2 to 0 as the iterations of the algorithm proceeds. 𝑟1 and 

𝑟2 are the uniformly distributed random vectors and lie in the interval (0, 1). The vector 𝑎 can be 

defined by mathematical equation as follows 

 
𝑎 = 2 − 2 (

𝑡

𝑇
) 

(1.9) 

where 𝑇 represents the maximum number of iterations which is fixed as a termination criteria for 

algorithm. 

1.7.1.3. Hunting Behavior 

 In the classical GWO, it has been assumed that alpha, beta and delta wolves have sufficient 

information regarding the prey. Therefore, each wolf updates its position with the help of these 

leading wolves and for a particular iteration, hypothetically the prey position is presumed with the 

positions of alpha, beta and delta. To attack on prey, the following mathematical equations are 

proposed by Mirjalili et al. [75] 

 𝑋1 = 𝑋𝛼,𝑡 − 𝐴𝛼 ∙ 𝐷𝛼 (1.10) 

 𝑋2 = 𝑋𝛽,𝑡 − 𝐴𝛽 ∙ 𝐷𝛽 (1.11) 

 𝑋3 = 𝑋𝛿,𝑡 − 𝐴𝛿 ∙ 𝐷𝛿 (1.12) 

where 𝐷𝛼 = |𝐶𝛼𝑋𝛼,𝑡 − 𝑋𝑡| (1.13) 

 𝐷𝛽 = |𝐶𝛽𝑋𝛽,𝑡 − 𝑋𝑡| (1.14) 

 𝐷𝛿 = |𝐶𝛿𝑋𝛿,𝑡 − 𝑋𝑡| (1.15) 

 
𝑋𝑡+1 =

𝑋1 + 𝑋2 + 𝑋3

3
 

(1.16) 
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and the values of 𝐴𝛼 , 𝐴𝛽 , 𝐴𝛿 and 𝐶𝛼, 𝐶𝛽 , 𝐶𝛿 can be obtained with the help of equations (1.7) and 

(1.8). 

In this way, a complete cycle of hunting process is performed by mimicking the leadership, 

encircling and hunting behavior of grey wolves and by repeating this cycle the optima for an 

optimization problem can be determined. The evolution process of wolf is shown in Fig 1.3.  

 

Fig 1.3. Evolution of position in GWO 

 

Various positions in GWO, updated with the help of search equations are presented in Fig 1.4. In 

this figure (𝑥, 𝑦) represents the wolf position and (𝑥∗, 𝑦∗) represents the prey position.  The step- 

wise description of the GWO is provided in Algorithm 1.1. 



11 
 

 

Fig 1.4. The 2-D representation of various possible positions  

 

1.7.1.4. Exploration and Exploitation of Search Space in GWO Algorithm 

 The exploration and exploitation are two conflicting operators in any metaheuristic optimization 

algorithm [77]. In the phase of exploration new regions of a search space are discovered and in 

exploitation phase the potential of previously discovered search regions is analyzed. Therefore, an 

algorithm should be capable of addressing and balancing these two important operators to estimate 

the global optima of the problem. 

 In GWO algorithm the vectors 𝐴 and 𝐶 are introduced to address these two operators. 

When in algorithm |𝐴| < 1 or 𝐶 < 1, search regions are exploited and this situation represents the 

attack on prey. When |𝐴| > 1 or 𝐶 > 1, the new search regions are discovered and this situation 

represents the search behavior of grey wolves to find the prey. As in GWO algorithm, after the 

half of maximum number of iteration, |𝐴| < 1 (as |𝑎| < 1, 𝑎𝑛𝑑 𝐴 ∈ (−𝑎, 𝑎)), then in this case the 

exploration of a search space is performed by the vector 𝐶. In the GWO, a balance between 

exploration and exploitation is maintained with decreasing nature of the variable 𝑎. This variable 

helps to transit from the phase of exploration to exploitation.  
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Algorithm 1.1. Classical Grey Wolf Optimizer (GWO) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 

2. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑡ℎ𝑒 𝑔𝑟𝑒𝑦 𝑤𝑜𝑙𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑋𝑖  (𝑖 = 1,2, . . . , 𝑁) 

3. Evaluate the fitness of each grey wolf  

4. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 𝑡 = 0 

5. 𝑺𝒆𝒍𝒆𝒄𝒕   𝑋𝛼 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑤𝑜𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘   

         𝑋𝛽 = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓    

         𝑋𝛿 = 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓  

6. 𝒘𝒉𝒊𝒍𝒆 𝑡 < 𝑇, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠   

7.      𝒇𝒐𝒓 each of the grey wolf  

8.            Update the state with the help of equation (1.16). 

9.      𝒆𝒏𝒅 

10.      Evaluate the fitness of each grey wolf  

11.      𝒖𝒑𝒅𝒂𝒕𝒆 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑤𝑜𝑙𝑣𝑒𝑠 𝑋𝛼, 𝑋𝛽 𝑎𝑛𝑑 𝑋𝛿 

12.      Update the coefficient 𝑎 

13.      𝑡 = 𝑡 + 1 

14. end 

15. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑤𝑜𝑙𝑓  

 

1.7.2. Literature Review on GWO  

In the literature, several attempts have been done to improve the search ability of the classical 

GWO so that the optimization problems can be solved more efficiently. These modifications can 

be categorized into following classes – 

1. Improvement by updating the search mechanism of GWO 

2. Improvement by introducing the new operators 

3. Hybridization with other algorithms 

4. Different encoding of individual solutions 
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1.7.2.1. Improvement by Updating the Search Mechanism of GWO 

In the direction of improving the search ability in GWO, search equation and parameters of GWO 

are modified. For example: Mittal et al. [78] have modified the parameter 𝑎 in order to maintain 

an appropriate balance between the operators exploration and exploitation. The proposed modified 

vector by Mittal et al. [78] can be represented as- 

 
𝑎 = 2 [1 − (

𝑡

𝑇
)

2

] (1.17) 

In [79], the values of vector 𝑎 is chosen adaptively to maintain an appropriate balance between 

exploration and exploitation. The adapted values of 𝑎 can be obtained as follows 

 

𝑎 = [
1 − (

𝑡
𝑇)

1 − 𝜇 (
𝑡
𝑇)

] (1.18) 

where 𝜇 is non-linear modulation index and 𝑡 represent the current iteration and 𝑇 stands for 

maximum number of iterations which is predefined as termination criteria for the algorithm. Malik 

et al. [80] have proposed a different scheme to approximate the updated position of a current wolf 

with the help of positions which are obtained from leading wolves of the pack. In this strategy, a 

weighted average is used instead of taking a simple arithmetic mean. This proposed algorithm 

performs better as compared to classical GWO on multimodal optimization problems. In [81, 82], 

Levy-flight search strategy is employed to enhance the search-efficiency of wolf pack. In [83], 

grouped GWO has been introduced to enhance the global search ability and employed for 

maximum power point tracking of doubly-fed induction generator. To adopt the parameters of 

GWO fuzzy logic is utilized in [84, 85]. In [86], improved variant of GWO is proposed called 

Experienced Grey Wolf Optimization which uses the reinforcement learning for the parameter 

adaptation and neural network for the adaptation of exploration rate of each wolf.  In [87], the 

parameters of GWO are modified to enhance the search ability of wolves. In [88], the search 

strategy of GWO is modified by inspiring from PSO and applied the proposed algorithm to solve 

large-scale optimization problems. Three novel improved variants of GWO based on the concept 

of astrophysics and prey weight are developed in [89]. In [90], the concept of cellular automata is 

embedded into GWO to enhance the diversity of wolves in GWO. In [91], the hunting search 

strategy of GWO is modified to enhance the exploration during the search. The position update 

equation of GWO is modified in [92] by introducing the contribution of omega wolves.  
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1.7.2.2. Improvement by Introducing the New Operators 

In the direction of improving algorithms, various operators like genetic operators (crossover and 

mutation) and local search operators (chaotic local search, fuzzy hierarchical) are integrated to 

enhance the search ability of grey wolves. In [93], different fuzzy hierarchical operators such as 

centroid and weighted difference are integrated in the search equation of GWO algorithm to force 

the enhancement of contribution of leading wolves in descending order according to their fitness 

to propose different versions of classical GWO. In [94], evolutionary population dynamics has 

been applied to discard the worst fitted wolf from the pack and a new wolf with the help of EPD 

operator is introduced. In [95, 96], the crossover and mutation operators are introduced in the 

GWO to enhance its performance. In [97, 98], the concept of opposition-based learning is 

introduced to avoid the problem of stagnation at local optima. In order to accelerate the 

convergence rate, chaos theory is integrated in the GWO [99-101]. In [102], the binary crossover 

and levy-flight distributed random steps are employed to update the wolves in the GWO. In [103], 

an adaptive bridging mechanism based on β-chaotic sequence is introduced to improve the search 

strategy of GWO. Various selection methods and their behavior is studied on GWO [104]. In [105], 

the operator called refraction learning inspired by the principle of light refraction in physics is 

introduced in the classical GWO to propose a modified variant which can avoid the issue of 

stagnation at local optima. In [106], a boosted GWO is proposed which utilizes the concept of 

levy-flight search, opposition-based learning, random spiral-form motions and random leaders to 

enhance the capability of wolves in terms of exploration and exploitation. 

1.7.2.3. Hybridization with Other Algorithms 

Generally, hybridization refers to combine two or more search algorithm in order to utilize the 

impressive characteristics and advantageous of different algorithms. In this direction, in the 

literature, GWO has been hybridized with various metaheuristics. For example – In [107], Tawhid 

and Ali have hybridized classical GWO with GA to minimize the potential energy of molecule. 

This problems consists of many local minima that increases exponentially with the dimension. In 

[108], the GA and GWO are hybridized to solve the large-scale global optimization problems. In 

[109-111], a hybridized version of DE and GWO has been proposed to solve the global 

optimization problem. In [112, 113], GWO and PSO are hybridized to improve the convergence 

rate. The obtained solutions by this hybridized algorithm are compared with other metaheuristic 

algorithms. In [114], the GWO is hybridized with SCA to enhance the exploration in GWO. In 

[115], BBO and GWO are hybridized to enhance the synergy between to different algorithms. In 

this hybridization, first the BBO is improved by combining the differential mutation and multi-
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migration operators and secondly, GWO is improved by opposition-based learning concept. For 

the optimal selection of parameters in GWO, Cuckoo Search (CS) algorithm is combined with 

GWO [116]. In [117], the opposition-based learning and disruption operators are merged in the 

GWO and the proposed method is hybridized with DE to enhance the global and local search 

ability of GWO. Gaidhane and Nigam [118] have hybridized the GWO with ABC algorithm to 

boost up the exploration strength of wolves in the GWO. In [119], GWO is hybridized with 

Firework algorithm to balance the exploration and exploitation. In [120], the GWO is hybridized 

with Firefly Algorithm to enhance the diversity in GWO and to avoid the stagnation at local 

optima.  

1.7.2.4. Different Encoding of Individual Solutions 

Luo et al. [121] have used the complex valued encoding for the individual wolf with a suggestion 

that this encoding of wolf can enhance the information strength of the wolves and diversity of the 

wolf pack. To verify this concept, the comparison is performed with classical GWO, GGSA and 

ABC on several benchmark test problems. 

1.7.2.5. Other Variants of GWO 

To solve the problem of multi-criteria optimization multi-objective Grey Wolf Optimizer [122, 

123] is designed. In [124], binary version of GWO is proposed using two different approaches.  

1.7.3. Applications of GWO  

Due to the impressive advantageous of GWO in terms of exploration and exploitation, it has been 

applied to solve various application problems in different research domains. As the list of the 

applications of GWO is too large, therefore in this section some of the important and recent 

applications are listed as:  Training of Multilayer perceptron [125], Parameter estimation in surface 

waves [126], Two-stage assembly flow shop scheduling [127], Optimal control of DC motor [128], 

Optimal Power flow [129], Training of q-Gaussian radial basis functional-link nets [130], Non-

convex economic load dispatch [131], maximum power point tracking of doubly-fed induction 

generator based wind turbine [83], Placement and sizing of multiple distributed generation [132], 

Feature selection [133, 134], Unmanned combat aerial vehicle path planning [135],  Dynamic 

scheduling in welding industry [136], Multilevel thresholding for image segmentation [137], 

Minimization of potential energy [107], Load frequency control of interconnected power system 

[138], Unit commitment problem [112], Inversion of geoelectrical data [139], Template matching 

[140], Hyperspectral band selection [141], Short-term unit consignment [142], Optimal reactive 

power dispatch [143]. Detailed literature on the GWO can be accessed from [144]. 
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1.8.    Sine Cosine Algorithm (SCA) 

1.8.1. Mathematical Modeling of SCA 

The Sine Cosine Algorithm (SCA) is a recently developed metaheuristic algorithm based on the 

mathematical characteristics of sine and cosine trigonometric functions. This algorithm was 

designed by Mirjalili in 2015 [145]. Like other population-based metaheuristic optimization 

algorithms, SCA also starts with a set of randomly distributed solutions, then each candidate 

solution updates their position with the help of following equations –  

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝐴 sin(𝑟1) |𝐶𝑋𝛼 − 𝑋𝑖,𝑡| (1.19) 

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝐴 cos(𝑟1) |𝐶𝑋𝛼 − 𝑋𝑖,𝑡| (1.20) 

The above two equations are used in SCA in a following manner  

 𝑋𝑖,𝑡+1 = {
𝑋𝑖,𝑡 + 𝐴 sin(𝑟1) |𝐶𝑋𝛼 − 𝑋𝑖,𝑡|                   𝑖𝑓 𝑟 < 0.5 

𝑋𝑖,𝑡 + 𝐴 cos(𝑟1) |𝐶𝑋𝛼 − 𝑋𝑖,𝑡|                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1.21) 

where 𝑋𝑖,𝑡 and  𝑋𝑖,𝑡+1 represents the 𝑖𝑡ℎ solution vector at 𝑡𝑡ℎ and (𝑡 + 1)𝑡ℎ iteration respectively. 

𝑋𝛼 is the fittest solution in the solution set, 𝑟 is a uniformly distributed random number in the 

interval (0, 1) and 𝑟1 is a random number in the interval (0, 2𝜋) and decides the direction of 

moment of current candidate solution which can be either towards the 𝑋𝛼 or outside 𝑋𝛼. The vector 

𝐶 provides a weight to 𝑋𝛼 which emphasizes on exploration (𝐶 > 1) and exploitation (𝐶 < 1). 

The vector 𝐶 also helps in avoiding the premature convergence at the end of iterations. The vector 

𝑟 helps in transition from sine to cosine functions and vice versa. The effect of random number 𝐴 

on sine and cosine function is shown in Fig 1.5. The effect of random number 𝑟1 on the position 

of candidate solutions is shown in Fig 1.6. 
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Fig 1.5. The impact of sine and cosine functions with coefficient 𝐴 

 

 

Fig 1.6. Effect of the parameter 𝑟1 in updating the position of candidate solutions 

 

The parameter 𝐴 is a random number which decides the area of the search space around the current 

candidate solution. This region of search space may lie inside 𝑋𝛼 and 𝑋𝑖,𝑡 or outside them. The 

parameter 𝐴 also helps in exploration and exploitation of a search space as well as in maintaining 

a suitable balance between them. In the first half of the total number of iterations, coefficient 𝐴 

contributes in the exploration of a search space while in the second half of the total number of 

iterations, it is devoted to the exploitation of the search space. Mathematically, the parameter 𝐴 

can be defined as follows –  
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 𝐴 = 2 − 2 (
𝑡

𝑇
) (1.22) 

where 𝑇 represents the maximum number of iterations which is predefined as the termination 

criteria for SCA. The steps of Sine Cosine Algorithm are presented in Algorithm 1.2.  

Algorithm 1.2. Classical Sine Cosine Algorithm (SCA) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 

2. Initialize the population of candidate solutions 𝑋𝑖   (𝑖 = 1,2, . . . , 𝑁) 

3. Evaluate the fitness of each candidate solution  

4. Select the best solution 𝑋𝛼 from the population of candidate solutions 

5. Initialize the iteration count 𝑡 = 0 

6. while 𝑡 < 𝑇 

7.            Update each solution vector with the help of equation (1.21). 

8.            Compute the fitness of each updated candidate solution  

9.            Update the best solution 𝑋𝛼 

10.            Update the coefficient 𝐴 

11.            𝑡 = 𝑡 + 1 

12. end of while 

13. Return the best solution 𝑋𝛼. 

Although the sine cosine algorithm is efficient to explore the search space but in many cases, it 

suffers from some major difficulties like skipping of true solutions and local optima stagnation 

and therefore, an improvement is required in the search strategy of classical SCA.  

1.8.2. Literature Review on SCA 

In the literature, several attempts have been done to improve the search ability of classical SCA. 

These attempts can be categorized into following classes – 

1. Improvement by updating the search mechanism of SCA 

2. Improvement by introducing the new operators 

3. Hybridization with other algorithms 

4. Other variants of SCA 
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1.8.2.1. Improvement by Updating the Search Mechanism of SCA 

The search mechanism of classical SCA is updated and elitism strategy is employed during the 

search into SCA to enhance its performance [146]. In order to improve the search performance of 

SCA, a novel weighted update position mechanism is introduced in [147]. In [148], a modified 

position update mechanism with nonlinear decreasing conversion parameter strategy is introduced 

for SCA to solve large-dimensional optimization problems. 

1.8.2.2. Improvement by Introducing the New Operators 

In [149], multi-orthogonal search strategy is employed in SCA to enhance the exploration and 

exploitation strength of candidate solutions. The concept of opposition-based learning is employed 

in the SCA [150, 151] to prevent the candidate solutions from stagnation at local optima. In [152], 

the backtracking search strategy is employed in SCA to use its merits in improving the search 

ability of SCA. Levy-flight search strategy is embedded into SCA to enhance its global and local 

search efficiency [153]. A modified version of SCA, based on neighbourhood search and greedy 

levy mutation, is developed in [154] to improve the solution accuracy and convergence rate. In 

[155], a modified SCA is introduced based on the Riesz fractional derivative mutation. In this 

algorithms, the population is initialized with the help of quasi-opposition learning strategy to 

enhance the exploration ability of candidate solutions. In [156], Gaussian local search and random 

mutation is used to enhance the diversity during the search and convergence rate. In [157], cloud 

model based Sine Cosine Algorithm is introduced to adjust the control parameter adaptively while 

keeping SCA algorithm framework unchanged. 

1.8.2.3. Hybridization with Other Algorithms 

In order to escape from local optima and to improve the convergence rate, Nenavath and Jatoth 

[158] have hybridized the SCA with DE. To enhance in the exploitation skills of candidate 

solutions in SCA, it has been hybridized with GWO by Singh and Singh [114]. To overcome the 

issue of premature convergence, a hybrid version of SCA and PSO is developed in [159, 160]. In 

[161], hybrid version of SCA and TLBO is developed to propose a better capability of escaping 

from local optima and to improve the convergence rate of both the algorithms. In [162], SCA and 

Brain Storm Optimization Algorithm are hybridized to balance the exploration and exploitation in 

the SCA.  
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1.8.2.4. Other Variants of SCA 

The multi-objective SCA is proposed by Tawhid and Savsani [163] for multi-criteria optimization. 

In [164], a binary variant of SCA is also developed to solve the binary optimization problems.  

1.8.3. Applications of SCA 

The SCA has been applied to solve several various application problems in different research 

domains. Some of the real world applications where SCA is applied are Feature selection [165], 

wind speed forecasting [166], training feedforward neural networks [167], handwritten arabic 

manuscript image binarization [168], optimal power flow [169], Thermal and economical 

optimization of a shell and tube evaporator [152], short-term hydrothermal scheduling [170], Data 

clustering [171], Context based image segmentation [172], Re-entry trajectory optimization for 

space shuttle [173], optimal design of hybrid power generation systems [174], economic load 

dispatch problem [175], reduction of higher order continuous systems [176], Breast Cancer 

Classification [177], Pairwise Global Sequence Alignment [178], Optimal Camera Placement 

[179], Peak operation problem of cascade hydropower reservoirs [156], Design of PID controllers 

[180], Load frequency control of power system [181] and so on. A literature review on SCA is 

also presented in [182].  

1.9.  Motivation and Objectives of the Thesis 

The efficiency of any metaheuristic algorithm depends on the operators exploration and 

exploitation and an appropriate balance between them. An ideal metaheuristic algorithm should 

have efficient ability to explore the search space in the beginning of algorithm and exploitation at 

the end of generations of algorithm. In order to establish the balance between exploration and 

exploitation, some attempts have been done in the Thesis by proposing the variants of Grey Wolf 

Optimizer and Sine Cosine Algorithm.  

The Thesis focuses on possible improvement in the search strategy of both the algorithms GWO 

and SCA. The objective of the Thesis are 

1. Enhance the search ability of the classical GWO and classical SCA by developing their 

efficient and reliable modified variants. 

2. Investigate the performance of proposed variants of GWO and SCA on standard unconstrained 

and constraint benchmark optimization problems. 

3. Implementation of proposed variants of GWO and SCA on real-world application problems. 
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1.10. Organization of the Thesis 

The current chapter follows the literature survey of GWO and SCA and their applications. The 

summary of other chapters is given below: 

Chapter 2 introduces the Novel Random Walk Grey Wolf Optimizer (RW-GWO) which is the 

modified version of GWO by enhancing the search ability of leading hunters in GWO to provide 

better guidance of search as compared to the classical GWO. The proposed algorithm is analyzed 

and compared with classical GWO on unconstrained IEEE CEC 2014 benchmark test problems. 

The analysis of numerical results demonstrate the superiority of the proposed RW-GWO algorithm 

in terms of accuracy.  

Chapter 3 introduces the Memory-based Grey Wolf Optimizer (mGWO) which utilizes the best 

memory of each wolves to update their states. In this algorithm, the exploitation is also improved 

around the best wolf. The proposed algorithm is analyzed and compared with classical GWO on 

unconstrained IEEE CEC 2014 benchmark test problems. The analysis of numerical results 

demonstrate the superiority of the proposed mGWO algorithm in terms of solution accuracy as 

compared to the classical GWO.  

Chapter 4 presents the improved variant of SCA called m-SCA which utilizes the concept of 

opposition-based learning to prevent from stagnation. In the m-SCA position update mechanism 

is also modified to enhance the search-efficiency. The proposed algorithm is tested on 

unconstrained CEC 2014 benchmark set and experimentation analysis ensure the superiority of the 

proposed algorithm as compared to classical SCA in terms of solution accuracy. 

In Chapter 5, the improved version of classical SCA called ISCA is presented which modifies the 

search strategy of candidate solutions by the crossover operator and personal best state of each 

candidate solutions. The validation and comparison of the proposed algorithm with classical SCA 

is performed on CEC 2014 unconstrained benchmark set. The analysis of the results and 

comparison with classical SCA demonstrate the better search accuracy of the ISCA as compared 

to classical SCA.  

In Chapter 6, the performances of classical GWO, classical SCA, and their proposed variants 

which are presented in chapters 2, 3, 4, and 5 are evaluated on IEEE CEC 2006 constraint 

benchmark problem set. The analysis is done based on the criteria provided by IEEE CEC 2006. 

The comparison among the proposed variants, classical GWO and classical SCA shows the better 

search efficiency of the proposed variants of GWO and SCA.  
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Chapter 7 applies the classical GWO, SCA, and their proposed variants which are presented in 

Chapters 2, 3, 4, and 5 on multilevel thresholding problems. The standard benchmark test images 

are taken for experimentation. The analysis of the results demonstrates the enhanced search-

efficiency of the proposed variants of GWO and SCA to determine the optimal thresholds.  

In Chapter 8, the problem of determining the optimal coordination of directional overcurrent 

relays is solved using classical GWO, classical SCA, and their proposed variants which are 

presented in Chapters 2, 3, 4, and 5. In this study, the IEEE 3, 4, 6 and 14-bus systems are used as 

test models. The numerical results and their analysis verifies the superior performance of proposed 

RW-GWO algorithm in finding the optimal setting for directional overcurrent relays. 

Chapter 9 concludes the Thesis with overall developments in the proposed algorithms with their 

future scope in other real-life applications and some future recommendations are discussed. 

There are appendix in the Thesis, as mentioned below 

1. Appendix A Unconstrained Test Problems 

2. Appendix B Constrained Test Problems 

3. Appendix C Data set corresponding to various bus-systems for the relay coordination 

problem. 
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Chapter 2 

A Novel Random Walk Grey Wolf Optimizer for 

Unconstrained Optimization Problems 

In this chapter an attempt is made to improve the search efficiency of grey wolves by proposing a 

new variant of Grey Wolf Optimizer. 

2.1.  Introduction 

The literature review on GWO presented in Chapter 1 shows that in some cases, the classical GWO 

faces the situation of stagnation at local optima, slow convergence and insufficient balance 

between exploration and exploitation. In the present chapter, one major drawback of insufficient 

guidance in a wolf pack is pointed out and a novel variant of GWO called Random Walk Grey 

Wolf Optimizer (RW-GWO) is introduced. In the RW-GWO, a random walk based search strategy 

is applied to update the position of leading hunters called alpha, beta, and delta.  The performance 

of the proposed RW-GWO algorithm is tested on an unconstrained benchmark problem set given 

in IEEE CEC 2014 and the results are analyzed and compared with classical GWO. 

The organization of the chapter is as follows: Section 2.2 provides a motivation behind proposing 

a new variant of classical GWO and detailed description of the proposed RW-GWO. Section 2.3 

provides numerical experimentation, analysis and comparison with classical GWO. Finally, the 

chapter is closed with concluding remarks in Section 2.4. 

2.2.  Proposed Random Walk Grey Wolf Optimizer (RW-GWO) 

2.2.1. Motivation 

Since, the classical GWO is based on the leadership behavior of grey wolves, therefore, the leading 

wolves are responsible and liable agents of the pack to update the state of each wolf and to provide 

promising directions of search. Therefore, it is very important that in each iteration, these leading 

wolves should be the best (in terms of fitness) so that each wolf can update their state with better 

guidance.  

The content of this chapter is published in:  

Gupta, S., & Deep, K. (2019). A novel random walk grey wolf optimizer. Swarm and Evolutionary 

Computation, 44, 101-112. Elsevier.  
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The classical search equation of GWO shows that each wolf updates its state with the help of 

leading hunters called alpha (𝛼), beta (𝛽) and delta (𝛿). But, then the natural question arises that 

how the states of the leading hunters should be updated, because these wolves have been elected 

as dominant wolves of the pack? The second question is why alpha wolf should take the guidance 

of low fitted (inferior) wolves beta and delta of the pack to update its position? Similarly, why beta 

wolf should update its state with the help of low fitted (inferior) wolf delta? This is the main 

shortcoming that has been observed in the search mechanism of classical GWO and this may be 

the reason that the wolf pack trapped in local optima. Therefore, the selection of leading hunters 

during the search process is very crucial task and some improvisation is needed in the search 

mechanism of classical GWO for the leading hunters. In this direction, to alleviate from all the 

issues mentioned above, the present chapter proposes a novel Random Walk Grey Wolf Optimizer 

(RW-GWO) based on the cauchy random walk to update the leading hunters of the pack. 

2.2.2. Cauchy Distribution 

Cauchy distribution (Lorentz distribution) is a continuous probability distribution [183], with 

parameters 𝑥0 and 𝛾. The parameter  𝑥0 is a positive real number termed as location parameter and 

𝛾 stands for scaling parameter which tells about the shape of the distribution. Less value of 𝛾 

shows the shape of a distribution with parochial width and high peak. In contrast, the higher value 

of 𝛾 shows the shape with a broad width and lower peak. The probability density function of the 

distribution is given by 

 𝑓(𝑥, 𝑥0, 𝛾) =
1

𝜋𝛾[1+(
𝑥−𝑥0

𝛾
)

2
]
 ,    𝑥 ∈ (−∞, ∞) (2.1) 

and the cumulative distribution function of cauchy distribution is given as 

 
𝐹(𝑥, 𝑥0, 𝛾) =

1

2
+

1

𝜋
arctan (

𝑥 − 𝑥0

𝛾
) 

(2.2) 

2.2.3. Cauchy Random Walk Based Strategy for the Leading Hunters 

In order to accelerate the search process and to provide an explorative guidance for the leading 

hunters alpha, beta and delta, a random walk search strategy [184] is utilized. The proposed 

random walk search mechanism is applied for the leading hunters only so that the more promising 

and explorative guidance can be discovered for the wolf pack. The pattern of the steps in a random 

walk is chosen based on the cauchy distribution [183].  As an example, the cauchy distributed 

random numbers over 100 iterations are shown in Fig 2.1. The reason for chosing cauchy 
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distribution is its infinite variance. Because of infinite variantce, it occasionally generates high 

values. It is hoped that higher values may help the pack to escape from local optima, and the lower 

values produced by the distribution may help in exploiting the search space. 

 

Fig 2.1. Distribution of cauchy random numbers over 100 iterations 

 

The proposed search equation for leading hunters can be expressed as follows: 

 𝑋𝑖𝐿,𝑡+1 = 𝑋𝑖𝐿,𝑡 + 𝛼𝐿,𝑡 × 𝑆𝐿,𝑡 (2.3) 

where 𝑥𝑖𝐿,𝑡 represent the position of the 𝑖𝑡ℎ leading wolf (𝑖 = 1, represent alpha, 𝑖 = 2 represent 

beta and 𝑖 = 3 represents delta wolf), 𝑆𝐿 is the step size drawn from the cauchy distribution. The 

variable 𝛼𝐿,𝑡, which controls the step length 𝑆𝐿,𝑡 at iteration 𝑡, is linearly decreased from the value 

2 to 0 over the course of iterations. This selection provides a transition from exploration to the 

exploitation phase and can be formulated as follows: 

 
𝛼𝐿 = 2 (1 −

𝑡

𝑇
) 

(2.4) 

where 𝑡 is a current iteration, and 𝑇 is the maximum number of iterations which are predefined for 

the algorithm.  

Higher values of step length is very effective in sudden jump at the time of stagnation at local 

optima and helps the leading wolves to explore the search space more efficiently. Small values of 

step length help in exploiting the search regions around the leading wolves. Thus, the cauchy 

distributed random walk maintains a balance between exploration and exploitation. At the end of 
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each iteration, greedy selection mechanism is employed corresponding to each wolf between its 

current and previous states. The greedy selection also helps to avoid the divergence of wolves from 

discovered promising search regions. In the RW-GWO, it can be noticed that any extra function 

evaluation is not added in the algorithm and therefore, the number of function evaluations remain 

same in the RW-GWO as in classical GWO.   

The pseudo code of the proposed RW-GWO algorithm is described in Algorithm 2.1.  

Algorithm 2.1: A Novel Random Walk Grey Wolf Optimizer (RW-GWO) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 

2. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑡ℎ𝑒 𝑔𝑟𝑒𝑦 𝑤𝑜𝑙𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑋𝑖 (𝑖 = 1,2, . . . , 𝑁) 

3. 𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑤𝑜𝑙𝑓  

4. 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 𝑡 = 0 

5. 𝑺𝒆𝒍𝒆𝒄𝒕   𝑋𝛼 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑤𝑜𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘   

         𝑋𝛽 = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓    

         𝑋𝛿 = 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓  

6. 𝒘𝒉𝒊𝒍𝒆 𝑡 < 𝑇, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠   

7.              𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑤𝑜𝑙𝑓 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎 𝑎𝑛𝑑 𝑑𝑒𝑙𝑡𝑎 

8.                     𝑓𝑖𝑛𝑑 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑋𝑖𝐿 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑒𝑟𝑠 𝑋𝑖  𝑢𝑠𝑖𝑛𝑔 𝑒𝑞. (2.3)  

9.              𝒆𝒏𝒅 𝒇𝒐𝒓 

10.              𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑜𝑚𝑒𝑔𝑎 𝑤𝑜𝑙𝑓  

11.                     𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑏𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ 𝑒𝑞. (1.16) 𝑜𝑓 𝐺𝑊𝑂  

12.              𝒆𝒏𝒅 𝒇𝒐𝒓     

13.              𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑤𝑜𝑙𝑓  

14.              𝒇𝒐𝒓 𝑖 = 1,2, … , 𝑁 

15.                    𝒊𝒇 𝐹(𝑋𝑖,𝑡+1) ≥ 𝐹(𝑋𝑖,𝑡) 

16.                          𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 

17.                    𝒆𝒏𝒅 𝒊𝒇 

18.              𝒆𝒏𝒅 𝒇𝒐𝒓 

19.                𝒖𝒑𝒅𝒂𝒕𝒆 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑𝑖𝑛𝑔 𝑤𝑜𝑙𝑣𝑒𝑠 𝑋𝛼, 𝑋𝛽 𝑎𝑛𝑑 𝑋𝛿    

20.                𝑡 = 𝑡 + 1  

21.     𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

22. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑤𝑜𝑙𝑓 
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2.2.4. Computational Complexity 

Since the computational complexity plays an important role to analyze the complexity of 

algorithms and the user always prefers less complex algorithm. Therefore, in the present section, 

the worst time complexity of both the algorithms classical GWO and proposed RW-GWO is 

calculated in terms of big−𝑂 notation using their pseudo codes. The step-wise description of the 

obtained complexities of classical GWO and the RW-GWO is as follows:  

For classical GWO: 

1. The classical GWO initializes the wolf pack in 𝑂(𝑁 × 𝐷) time, where 𝑁 is the size of pack 

and 𝐷 represent the dimension of the problem. 

2. Fitness evaluation of wolves requires 𝑂(𝑁) time. 

3. Selection of leading hunters in classical GWO requires 𝑂(𝑁) time. 

4. Position update process in the classical GWO requires the 𝑂(𝑁 × 𝐷) time. 

In summary, the total computational time for the classical GWO is equal to 𝑂(𝑁 × 𝐷 × 𝑇) for 

maximum number of iterations 𝑇. 

For RW-GWO: 

1. The RW-GWO initializes the wolf pack in 𝑂(𝑁 × 𝐷) time, where 𝑁 is the size of pack and 𝐷 

represent the dimension of the problem. 

2. Fitness evaluation of wolves requires 𝑂(𝑁) time. 

3. Selection of leading hunters in RW-GWO requires 𝑂(𝑁) time. 

4. Position update process for leading hunters using random walk search mechanism consumes 

𝑂(𝑁 × 𝐷) time. 

5. Position update process for omega wolves using classical search equation of GWO requires 

𝑂(𝑁 × 𝐷) time. 

In summary, the total computational time for the RW-GWO is equal to 𝑂(𝑁 × 𝐷 × 𝑇)  for 

maximum number of iterations 𝑇. Hence, by comparing the complexities of the classical GWO 

and RW-GWO, it can be concluded that in terms of computational complexity both the algorithms 

are same. 
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2.3.      Numerical Experiments and Analysis of Results 

2.3.1. Benchmark Functions and Parameter Setting 

In this section, the performance of classical GWO and the proposed RW-GWO algorithm is 

studied on the basis of benchmark problems given in IEEE CEC 2014 [185]. The CEC 2014 

benchmark set consists of 30 unconstrained optimization problems from F1 to F30 in which the 

problems from F1 to F3 are categorized as unimodal, F4 to F16 are multimodal, F17 to F22 are 

hybrid and F23 to F30 the problems are composite. As per the guidelines provided by IEEE CEC 

2014, 51 independent runs are to be performed for each test problem to observe the performance 

of both the algorithms. The search space for each variable is fixed to [-100, 100], and the 

termination criteria is set to (10𝐷 × 𝐷) function evaluations where 𝐷 represent the dimension of 

the problem. These problems are presented in Appendix A of this Thesis and all the algorithms 

proposed in this Thesis are investigated on this problem set. 

2.3.2. Analysis of the Results 

In this section, the numerical results obtained by implementing classical GWO and RW-GWO on 

IEEE CEC 2014 [185] benchmark problems are provided. The results are presented in the form of 

absolute error in objective function value. The better results are highlighted in bold face. For a 

feasible solution 𝑋 and optima 𝑋∗ to the problem 𝐹, the absolute error is calculated by |𝐹(𝑋) −

𝐹(𝑋∗)|. The experiments are performed on 10 and 30-dimensional problems and various criteria, 

such as minimum, median, mean, maximum, standard deviation (STD) of the absolute errors in 

objective function values of test problems are presented. The performance of the RW-GWO on 

different categories of benchmarks corresponding to 10 and 30-dimensonal problems is analyzed 

as follows: 

The results for 10 dimension 

The results for 10-dimension problems are given in Table 2.1. From this table, it can be observed 

that: 

In all of the 10-dimensional unimodal problems from F1 to F3, the RW-GWO algorithm 

outperforms classical GWO except for the problem F2. The RW-GWO provides a better minimum, 

maximum, mean, median and standard deviation value of error in objective functions in problems 

F1 and F3. In problem F2, except for the median value, the RW-GWO outperforms GWO in all 

other criteria. Thus, the experimental results demonstrate the better search ability of RW-GWO as 

compared to classical GWO in terms of solution accuracy. 
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In 10-dimensional multimodal problems, the RW-GWO outperforms classical GWO in all criteria 

for the problems F4, F8-F10 and F13-F15. In the problems F5 and F6, the RW-GWO performs 

better than classical GWO in terms of all criteria except standard deviation. In the problem F7, the 

RW-GWO provides better results than classical GWO in terms of all the criteria except median 

value. In F11, the classical GWO is better in providing the mean and median error, and except for 

these criteria, the RW-GWO is better than classical GWO. In the problem F12, the RW-GWO is 

better than classical GWO except for minimum error. In F16, except for maximum and standard 

deviation, the RW-GWO is better than classical GWO. 

In 10-dimensional hybrid problems F17, F19-F21, the RW-GWO provides better results in all the 

criteria as compared to the classical GWO. In problem F18, except for minimum error and in F22, 

except for standard deviation, the RW-GWO provides better results as compared to classical 

GWO.  

For 10-dimensional composite problems F23, F24, F29 and F30, the RW-GWO provides better 

results as compared to classical GWO in all the criteria. In problems F25 and F27, the RW-GWO 

is better than the classical GWO except for maximum and standard deviation value of errors. In 

F26, both the algorithms classical GWO and RW-GWO provide same results in terms of all the 

criteria except for the standard deviation. The standard deviation is better in the RW-GWO than 

the classical GWO for this problem. In F28, except for the minimum error the RW-GWO provides 

better results as compared to classical GWO.  

Thus, it is concluded that the RW-GWO is better than the classical GWO for 10-dimensional 

problems. 

The results for 30 dimension 

The results for 30-dimension problems are given in Table 2.2. From this table, it can be observed 

that: 

In all of the 30-dimensional unimodal problems from F1 to F3, the RW-GWO algorithm 

outperforms classical GWO. The RW-GWO provides a better minimum, maximum, mean, median 

and standard deviation value of error in objective functions in all these problems as compared to 

the classical GWO. 

In 30-dimensional multimodal problems, the RW-GWO outperforms classical GWO in all criteria 

for F4, F7-F10, F12 and F13. In the problems F5, F6 and F16, the RW-GWO performs better than 

classical GWO in terms of all criteria except standard deviation. In problems F11, F14 and F15 
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except for minimum error, the RW-GWO provides better results as compared to classical GWO. 

In  

In 30-dimensional hybrid problems F18-F20, the RW-GWO provides better results in all the 

criteria as compared to the classical GWO. In problem F17, except for minimum and median error 

the RW-GWO is better than classical GWO. In F21, except for median error, the RW-GWO is 

better than classical GWO. In F22, except for minimum error and standard deviation value of 

errors, the RW-GWO provides better results as compared to classical GWO.  

For 30-dimensional composite problems (F23-F30), the RW-GWO provides better results as 

compared to classical GWO except for standard deviation value in F24.  

Thus, it is concluded that the RW-GWO is better than the classical GWO for 30-dimensional 

problems. 

The unimodal problems are used for the evaluation of the exploitation strength of any search 

algorithm. Therefore, the RW-GWO algorithm is better in terms of exploiting the search space as 

it outperformed the classical GWO for unimodal problems. By analyzing the performance of the 

RW-GWO on multimodal problems, it is found that in terms of exploration ability, the RW-GWO 

demonstrates its superior search-ability as compared to classical GWO. The RW-GWO algorithm 

outperformed classical GWO for hybrid and composite problems, and this verifies its superior 

ability of balancing the exploration and exploitation as compared to the classical GWO. 

2.3.3. Statistical Analysis  

Although, the analysis of results presented in Section 2.3.2 demonstrate the better performance of 

the RW-GWO as compared to classical GWO, but in order to make concrete conclusions about 

the significance of differences in the performance of algorithms, Wilcoxon signed rank test [186] 

has been performed. The statistical results also demonstrate that the better results obtained by the 

RW-GWO as compared to classical GWO are not just by chance. The test has been conducted with 

5% level of significance and the statistical results are presented in Tables 2.3 and 2.4 for 10 and 

30-dimensional CEC 2014 benchmark problems respectively. In these tables ‘+’ indicates the 

statistically better performance of RW-GWO as compared to classical GWO, ‘-’ indicates that 

classical GWO performs better than RW-GWO and ‘=’ is used to represent the equivalent 

performance of both the algorithms. From Table 2.3, it can be seen that out of 30 problems, RW-

GWO is better than classical GWO in 22 problems, RW-GWO is inferior to classical GWO in 1 

problem, and both are equal in 7 problems. Similarly, from Table 2.4, it can be seen that out of 30 

problems RW-GWO is better than classical GWO in 26 problems, RW-GWO is inferior to 
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classical GWO in 1 problem, and both are equal in 3 problems. Thus, the statistical comparison 

demonstrate the superior performance of the RW-GWO as compared to classical GWO.  

2.3.4. Convergence Behavior 

Since the fittest solution in each iteration of an algorithm is represented by alpha, therefore, in 

order to analyze the convergence behavior, median values of alpha solutions are plotted for 30-

dimensional problems of IEEE CEC 2014. The convergence curves are shown in Figs 2.2 to 2.5 

for 30-dimensional problems. In these figures, the horizontal axis indicates the number of 

iterations and the vertical axis represents the objective function values (or fitness function value) 

of the test functions. From the convergence curves, it can be observed that in terms of convergence 

rate, the proposed RW-GWO algorithm is better than the classical GWO.  

2.4.  Concluding Remarks 

In this chapter, a novel variant of GWO called Random Walk Grey Wolf Optimizer (RW-GWO) 

is introduced to solve unconstrained global optimization problems. In the RW-GWO, a random 

walk strategy is applied to update the leading hunters of the pack. The step length of the random 

walk is drawn from the cauchy distribution which helps to escape from local optima by producing 

large steps for the random walk. The applied greedy selection mechanism between two consecutive 

iterations of algorithm maintains the balance between exploration and exploitation and avoids the 

divergence of wolves from promising areas of the search space. The experimental results on 

unconstrained problems of IEEE CEC 2014 and their analysis through various metrics such as 

statistical analysis, convergence analysis demonstrate the superior search ability of the RW-GWO 

algorithm in terms of exploring as well as exploiting the search space as compared to the classical 

GWO.  
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Table 2.1. Error values in objective function obtained by classical GWO and RW-GWO for 10-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 

U
n

im
o

d
a

l 

fu
n

ct
io

n
s 

F1 GWO 1.59E+05 1.42E+06 1.81E+06 9.37E+06 1.80E+06 

 RW-GWO 9.98E+02 1.72E+05 1.52E+05 2.71E+05 6.45E+04 

F2 GWO 1.91E+02 1.13E+03 1.03E+07 2.65E+08 5.17E+07 

 RW-GWO 7.83E+01 1.24E+03 2.19E+03 9.28E+03 2.36E+03 

F3 GWO 9.91E+01 4.41E+03 4.55E+03 1.30E+04 3.50E+03 

 RW-GWO 1.60E-01 8.17E+00 2.64E+01 4.35E+02 6.46E+01 

M
u

lt
im

o
d

a
l 

fu
n

ct
io

n
s 

F4 GWO 6.05E+00 3.52E+01 3.27E+01 3.80E+01 8.88E+00 

 RW-GWO 2.55E+00 6.77E+00 6.55E+00 8.89E+00 1.21E+00 

F5 GWO 1.87E+01 2.04E+01 2.03E+01 2.05E+01 2.41E-01 

 RW-GWO 5.00E-02 2.00E+01 1.96E+01 2.00E+01 2.80E+00 

F6 GWO 2.14E-01 1.79E+00 1.92E+00 5.54E+00 1.10E+00 

 RW-GWO 9.34E-02 1.71E+00 1.49E+00 3.99E+00 1.11E+00 

F7 GWO 6.78E-02 8.41E-01 1.11E+00 3.66E+00 8.29E-01 

 RW-GWO 8.06E-02 1.61E-01 1.61E-01 2.97E-01 5.25E-02 

F8 GWO 3.98E+00 8.96E+00 1.05E+01 2.59E+01 4.69E+00 

 RW-GWO 1.99E+00 3.98E+00 4.51E+00 8.96E+00 1.47E+00 

F9 GWO 6.16E+00 1.32E+01 1.47E+01 3.40E+01 7.13E+00 

 RW-GWO 3.00E+00 9.95E+00 1.07E+01 2.49E+01 4.70E+00 

F10 GWO 1.42E+02 3.78E+02 3.95E+02 1.00E+03 2.11E+02 

 RW-GWO 1.53E+01 1.49E+02 1.34E+02 2.69E+02 6.98E+01 

F11 GWO 1.31E+02 4.37E+02 4.70E+02 1.16E+03 2.18E+02 

 RW-GWO 1.25E+02 5.59E+02 5.55E+02 1.10E+03 1.95E+02 

F12 GWO 1.28E-02 4.58E-01 6.08E-01 1.58E+00 5.22E-01 

 RW-GWO 2.35E-02 7.64E-02 8.93E-02 1.84E-01 3.92E-02 

F13 GWO 7.77E-02 1.71E-01 1.69E-01 3.16E-01 5.81E-02 

 RW-GWO 7.47E-02 1.24E-01 1.23E-01 1.82E-01 3.10E-02 

F14 GWO 5.15E-02 2.18E-01 3.37E-01 7.09E-01 2.18E-01 

 RW-GWO 2.91E-02 1.26E-01 1.37E-01 5.79E-01 9.51E-02 

F15 GWO 4.47E-01 1.54E+00 1.57E+00 3.90E+00 7.89E-01 

 RW-GWO 2.96E-01 6.98E-01 7.41E-01 1.24E+00 1.98E-01 

F16 GWO 9.82E-01 2.33E+00 2.31E+00 3.40E+00 5.51E-01 

 RW-GWO 5.13E-01 2.13E+00 2.09E+00 3.51E+00 5.67E-01 

H
y

b
ri

d
 f

u
n

ct
io

n
s 

F17 GWO 8.23E+02 2.57E+03 3.85E+03 1.69E+04 3.20E+03 

 RW-GWO 1.19E+02 1.43E+03 1.97E+03 7.78E+03 1.86E+03 

F18 GWO 1.01E+02 1.31E+03 3.59E+03 1.52E+04 4.02E+03 

 RW-GWO 1.39E+01 6.67E+03 7.09E+03 2.24E+04 6.35E+03 

F19 GWO 1.34E+00 2.03E+00 2.37E+00 5.80E+00 9.09E-01 

 RW-GWO 5.55E-01 1.62E+00 1.75E+00 3.39E+00 6.15E-01 

F20 GWO 3.83E+01 1.16E+02 1.45E+03 8.18E+03 2.38E+03 

 RW-GWO 2.95E+00 1.24E+01 1.47E+01 5.18E+01 9.47E+00 

F21 GWO 1.13E+02 9.38E+02 1.79E+03 6.18E+03 1.69E+03 

 RW-GWO 3.34E+01 2.82E+02 4.45E+02 3.03E+03 5.43E+02 

F22 GWO 2.66E+01 1.46E+02 1.16E+02 1.71E+02 5.70E+01 

 RW-GWO 1.37E+00 3.73E+01 6.59E+01 1.64E+02 5.71E+01 
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C
o

m
p

o
si

te
 f

u
n

ct
io

n
s 

Function Algorithm Minimum Median Mean Maximum STD 

F23 GWO 3.29E+02 3.35E+02 3.35E+02 3.45E+02 4.54E+00 

 RW-GWO 3.29E+02 3.29E+02 3.29E+02 3.29E+02 8.39E-05 

F24 GWO 1.11E+02 1.27E+02 1.33E+02 2.03E+02 2.34E+01 

 RW-GWO 1.07E+02 1.19E+02 1.19E+02 1.35E+02 5.97E+00 

F25 GWO 1.37E+02 2.00E+02 1.92E+02 2.02E+02 1.83E+01 

 RW-GWO 1.32E+02 1.98E+02 1.85E+02 2.03E+02 2.30E+01 

F26 GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 4.08E-02 

 RW-GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.96E-02 

F27 GWO 4.42E+00 3.46E+02 3.35E+02 4.08E+02 7.15E+01 

 RW-GWO 1.21E+00 3.40E+02 3.25E+02 4.23E+02 8.60E+01 

F28 GWO 2.39E+02 3.71E+02 4.03E+02 6.91E+02 7.01E+01 

 RW-GWO 3.06E+02 3.06E+02 3.06E+02 3.07E+02 9.33E-02 

F29 GWO 3.54E+02 6.36E+02 4.76E+04 2.39E+06 3.35E+05 

 RW-GWO 2.02E+02 2.05E+02 2.05E+02 2.11E+02 1.64E+00 

F30 GWO 5.97E+02 8.99E+02 1.01E+03 2.08E+03 3.40E+02 

 RW-GWO 2.24E+02 2.82E+02 3.15E+02 5.90E+02 9.30E+01 
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Table 2.2. Error values in objective function obtained by classical GWO and RW-GWO for 30-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 

U
n

im
o

d
a

l 

fu
n

ct
io

n
s 

F1 GWO 8.18E+06 3.04E+07 3.32E+07 9.79E+07 2.02E+07 

 RW-GWO 2.22E+06 7.66E+06 8.02E+06 1.94E+07 3.31E+06 

F2 GWO 1.42E+06 6.10E+08 1.01E+09 5.72E+09 1.15E+09 

 RW-GWO 2.83E+04 9.28E+04 2.23E+05 3.35E+06 5.51E+05 

F3 GWO 1.58E+04 2.81E+04 2.85E+04 4.58E+04 6.80E+03 

 RW-GWO 1.23E+01 5.57E+01 3.16E+02 1.34E+03 4.34E+02 

M
u

lt
im

o
d

a
l 

fu
n

ct
io

n
s 

F4 GWO 1.00E+02 1.77E+02 1.94E+02 3.83E+02 5.82E+01 

 RW-GWO 1.87E+01 2.81E+01 3.41E+01 8.29E+01 1.80E+01 

F5 GWO 2.08E+01 2.10E+01 2.10E+01 2.10E+01 4.83E-02 

 RW-GWO 2.03E+01 2.05E+01 2.05E+01 2.07E+01 7.46E-02 

F6 GWO 6.24E+00 1.17E+01 1.16E+01 1.82E+01 2.64E+00 

 RW-GWO 3.21E+00 1.03E+01 9.84E+00 1.80E+01 3.49E+00 

F7 GWO 2.27E+00 5.31E+00 7.67E+00 1.86E+01 4.64E+00 

 RW-GWO 8.68E-02 2.21E-01 2.53E-01 8.85E-01 1.43E-01 

F8 GWO 3.42E+01 6.25E+01 6.50E+01 1.22E+02 1.45E+01 

 RW-GWO 2.49E+01 4.34E+01 4.38E+01 6.64E+01 8.48E+00 

F9 GWO 3.88E+01 8.05E+01 8.54E+01 2.42E+02 3.30E+01 

 RW-GWO 3.41E+01 6.37E+01 6.33E+01 9.42E+01 1.30E+01 

F10 GWO 6.99E+02 1.74E+03 1.80E+03 3.08E+03 4.93E+02 

 RW-GWO 5.23E+02 9.47E+02 9.61E+02 1.60E+03 2.72E+02 

F11 GWO 1.47E+03 2.81E+03 2.90E+03 6.45E+03 7.24E+02 

 RW-GWO 1.79E+03 2.62E+03 2.68E+03 3.49E+03 3.68E+02 

F12 GWO 8.20E-02 2.44E+00 2.12E+00 3.13E+00 9.58E-01 

 RW-GWO 2.57E-01 5.17E-01 5.45E-01 1.12E+00 1.66E-01 

F13 GWO 2.19E-01 3.77E-01 3.74E-01 6.92E-01 8.88E-02 

 RW-GWO 1.85E-01 2.66E-01 2.80E-01 4.60E-01 6.30E-02 

F14 GWO 1.24E-01 7.08E-01 7.49E-01 1.04E+01 1.40E+00 

 RW-GWO 1.85E-01 3.01E-01 4.23E-01 7.72E-01 2.15E-01 

 F15 GWO 3.96E+00 1.46E+01 2.06E+01 1.39E+02 2.20E+01 

 RW-GWO 5.08E+00 8.79E+00 8.81E+00 1.26E+01 1.51E+00 

F16 GWO 9.45E+00 1.10E+01 1.09E+01 1.20E+01 5.80E-01 

 RW-GWO 8.98E+00 1.02E+01 1.03E+01 1.15E+01 6.11E-01 

H
y

b
ri

d
 f

u
n

ct
io

n
s 

F17 GWO 4.61E+04 4.46E+05 6.28E+05 3.59E+06 6.11E+05 

 RW-GWO 5.68E+04 4.52E+05 5.71E+05 2.06E+06 4.10E+05 

F18 GWO 2.12E+03 2.11E+04 5.27E+06 6.41E+07 1.34E+07 

 RW-GWO 4.89E+02 6.23E+03 6.52E+03 1.83E+04 4.62E+03 

F19 GWO 7.50E+00 2.07E+01 2.56E+01 8.35E+01 1.77E+01 

 RW-GWO 7.40E+00 1.11E+01 1.14E+01 1.61E+01 2.03E+00 

F20 GWO 4.00E+03 1.19E+04 1.31E+04 2.90E+04 5.26E+03 

 RW-GWO 1.02E+02 2.66E+02 6.27E+02 6.00E+03 1.12E+03 

F21 GWO 6.12E+04 1.60E+05 4.97E+05 4.74E+06 1.05E+06 

 RW-GWO 2.60E+04 2.42E+05 2.58E+05 6.22E+05 1.76E+05 

F22 GWO 5.13E+01 1.90E+02 2.50E+02 6.32E+02 1.16E+02 

 RW-GWO 3.32E+01 1.62E+02 2.08E+02 5.43E+02 1.29E+02 
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C
o

m
p

o
si

te
 f

u
n

ct
io

n
s 

Function Algorithm Minimum Median Mean Maximum STD 

F23 GWO 3.17E+02 3.27E+02 3.28E+02 3.38E+02 4.16E+00 

 RW-GWO 3.14E+02 3.15E+02 3.15E+02 3.15E+02 2.77E-01 

F24 GWO 2.00E+02 2.00E+02 2.00E+02 2.00E+02 7.27E-04 

 RW-GWO 2.00E+02 2.00E+02 2.00E+02 2.00E+02 3.04E-03 

F25 GWO 2.07E+02 2.11E+02 2.11E+02 2.15E+02 2.04E+00 

 RW-GWO 2.02E+02 2.05E+02 2.04E+02 2.07E+02 1.18E+00 

F26 GWO 1.00E+02 1.00E+02 1.00E+02 1.01E+02 9.62E-02 

 RW-GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 7.36E-02 

F27 GWO 4.03E+02 4.30E+02 4.33E+02 4.86E+02 1.82E+01 

 RW-GWO 4.03E+02 4.08E+02 4.09E+02 4.40E+02 6.09E+00 

F28 GWO 7.93E+02 9.07E+02 9.14E+02 1.12E+03 6.63E+01 

 RW-GWO 4.16E+02 4.35E+02 4.34E+02 4.53E+02 8.45E+00 

F29 GWO 4.98E+03 3.28E+04 2.90E+05 1.12E+07 1.57E+06 

 RW-GWO 2.08E+02 2.14E+02 2.14E+02 2.19E+02 2.37E+00 

F30 GWO 8.09E+03 2.71E+04 2.98E+04 6.80E+04 1.57E+04 

 RW-GWO 2.76E+02 6.62E+02 6.69E+02 1.13E+03 2.14E+02 
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Table 2.3. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 10-dimentional IEEE CEC 2014 benchmark problems  

Function p-value conclusion Function p-value conclusion 

F1 1.40E-09 + F16 6.62E-02 = 

F2 4.20E-01 = F17 2.47E-04 + 

F3 5.15E-10 + F18 4.80E-03 - 

F4 7.35E-10 + F19 3.82E-04 + 

F5 9.14E-09 + F20 5.15E-10 + 

F6 6.76E-02 = F21 8.69E-08 + 

F7 1.49E-09 + F22 1.69E-05 + 

F8 3.14E-09 + F23 5.15E-10 + 

F9 8.90E-03 + F24 3.57E-05 + 

F10 4.94E-09 + F25 2.09E-01 = 

F11 5.96E-02 = F26 1.20E-01 = 

F12 4.81E-07 + F27 2.90E-01 = 

F13 1.36E-04 + F28 2.50E-09 + 

F14 1.75E-06 + F29 5.15E-10 + 

F15 7.74E-09 + F30 5.15E-10 + 

 

 

Table 2.4. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 30-dimentional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 6.15E-10 + F16 9.24E-05 + 

F2 5.15E-10 + F17 7.57E-01 = 

F3 5.15E-10 + F18 6.03E-08 + 

F4 5.15E-10 + F19 3.73E-09 + 

F5 3.60E-10 + F20 5.15E-10 + 

F6 1.28E-02 + F21 2.09E-01 = 

F7 5.15E-10 + F22 4.05E-02 + 

F8 2.36E-09 + F23 4.89E-10 + 

F9 2.22E-05 + F24 2.27E-11 - 

F10 1.87E-09 + F25 4.76E-10 + 

F11 5.46E-02 = F26 5.82E-06 + 

F12 6.92E-09 + F27 7.13E-09 + 

F13 3.24E-07 + F28 5.14E-10 + 

F14 3.70E-03 + F29 5.15E-10 + 

F15 8.49E-06 + F30 5.15E-10 + 
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Fig 2.2. Convergence curves for 30-dimensional problems from F1 to F8 corresponding to alpha 

solution of each iteration 
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Fig 2.3. Convergence curves for 30-dimensional problems from F9 to F16 corresponding to 

alpha solution of each iteration  
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Fig 2.4. Convergence curves for 30-dimensional problems from F17 to F24 corresponding to 

alpha solution of each iteration  
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Fig 2.5. Convergence curves for 30-dimensional problems from F25 to F30 corresponding to 

alpha solution of each iteration 
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Chapter 3  

A Memory-based Grey Wolf Optimizer for 

Unconstrained Optimization Problems 

In this chapter another attempt is made to improve the performance of classical GWO. 

3.1.  Introduction 

Although the classical Grey Wolf Optimizer is capable enough in exploring the promising regions 

of the search space but in some cases, the algorithm suffers from the issue of getting trapped at 

local optima and premature convergence. In order to overcome these issues, a novel variant of 

GWO called Memory-based Grey Wolf Optimizer (mGWO) is proposed in the present chapter. 

The mGWO utilizes the personal best states of individual wolves which is saved in the memory of 

wolves to update their positions. The performance of the proposed mGWO algorithm is tested on 

an unconstrained benchmark problem set given in IEEE CEC 2014 and the results are analyzed 

and compared with classical GWO. In the chapter, the performance of the mGWO is also evaluated 

with respect to the RW-GWO which was presented in the previous chapter. 

The organization of the chapter is as follows: Section 3.2 provides a motivation behind proposing 

a new variant of classical GWO and detailed description of the proposed mGWO. Section 3.3 

provides numerical experimentation, analysis and comparison of the mGWO with classical GWO. 

In Section 3.4, a comparison is shown between the mGWO and RW-GWO (introduced in Chapter 

2). Finally, the chapter is closed with concluding remarks in Section 3.5. 

3.2. Proposed Memory-based Grey Wolf Optimizer (mGWO) 

3.2.1. Motivation 

The search equation of classical GWO confirms the dependency of the search directions towards 

the leading hunters (alpha, beta and delta) of the wolf pack. The leading hunters sometimes get 

stuck in a local optima and fail to provide a promising direction of search for omega wolves.  

The content of this chapter is communicated in:  

Gupta, S., & Deep, K. (2019). A Memory-based Grey Wolf Optimizer for global optimization and image 

segmentation. Expert Systems with Applications, Elsevier (Revision submitted).  
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This situation is usually faced in multimodal functions where large number of local optima are 

present. In classical GWO, when the leaders get trapped in these local optima then it is difficult to 

pull out the wolf pack from these optima as the pack is highly dependent on leading hunters. The 

stagnation at local optima is the cause of premature convergence which is harmful in obtaining the 

true solution (optima) of the problem. The personal best state of individual wolf which is saved in 

the memory of wolf can help in such situations and can explore the more promising areas of search 

space. The individual wolves can share their best knowledge to the leading hunters for better 

leading search directions. By motivating these collaborative mechanism and information-

exchange characteristics, the present chapter utilizes the personal best history of wolves along with 

the leading guidance to enhance the search efficiency of wolf pack.  

3.2.2. Framework of Memory-based Grey Wolf Optimizer 

The proposed algorithm called Memory-based Grey Wolf Optimizer (mGWO) integrates the 

personal best knowledge of the individual wolves in GWO during the search to strengthen the 

collaboration among the wolves. The strategies introduced in mGWO can be pointed out as 

follows:  

1. The direction of search is now decided from the personal best history towards the leading 

hunters so that the most promising regions of the search space can be explored. 

2. The personal best guidance is added in the search mechanism with the help of new search 

equation based on random directions. 

3. The crossover is performed between the positions obtained through leading guidance and 

personal best guidance. 

4. The greedy selection mechanism is applied to maintain the balance between the exploration 

and exploitation and to avoid the wolves to diverge from promising regions during the search. 

The above strategies are integrated into the classical search mechanism of GWO to enhance the 

exploration of search space and to alleviate the issues of stagnation at local optima and premature 

convergence.  

The newly proposed mathematical model of encircling mechanism based on the personal best 

history of wolves is as follows: 

 𝑋𝑡+1 = 𝑋𝑝 − 𝐴𝑡 × |𝐶𝑡 × 𝑋𝑝 − 𝑋𝑝𝑏𝑒𝑠𝑡| (3.1) 

where 𝑋𝑝𝑏𝑒𝑠𝑡 is the personal best state saved in the memory of wolf 𝑋 upto iteration 𝑡. The other 

symbols are same as defined in classical GWO. After the encircling mechanism, the hunting is 
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performed based on the leading guidance provided by alpha, beta and delta wolves. The hunting 

mechanism now utilizes the personal best knowledge of each wolf to approximate the prey 

location. In the proposed modified hunting mechanism, it has been assumed that the individual 

wolves may have the information of prey. The modified hunting mechanism based on the personal 

best state of each wolf can be defined as follows: 

 𝑍𝑖,𝑡+1 =
𝑌1 + 𝑌2 + 𝑌3

3
 (3.2) 

where, 𝑌1 = 𝑋𝛼 − 𝐴𝛼,𝑡 × |𝐶𝛼,𝑡 × 𝑋𝛼 − 𝑋𝑖𝑝𝑏𝑒𝑠𝑡
| (3.3) 

 𝑌2 = 𝑋𝛽 − 𝐴𝛽,𝑡 × |𝐶𝛽,𝑡 × 𝑋𝛽 − 𝑋𝑖𝑝𝑏𝑒𝑠𝑡
| (3.4) 

 𝑌3 = 𝑋𝛿 − 𝐴𝛿,𝑡 × |𝐶𝛿,𝑡 × 𝑋𝛿 − 𝑋𝑖𝑝𝑏𝑒𝑠𝑡
| (3.5) 

where 𝑍𝑖,𝑡+1  is the updated position of the wolf 𝑋𝑖   through hunting mechanism, 𝑋𝑖𝑝𝑏𝑒𝑠𝑡
 is the 

personal best state saved in the memory of wolf 𝑋𝑖 upto iteration 𝑡. Rest of the symbols are same 

as defined in the search equation of classical GWO. In order to explore and retrace the 

neighbourhood areas around the personal best state of wolves and to mimic the concept that the 

individual wolf may have the information about the prey, a new search equation is proposed given 

by 

 𝑋̂𝑖,𝑡+1 = 𝑋𝑖𝑝𝑏𝑒𝑠𝑡
+ 𝑘 × (𝑋𝑟1

− 𝑋𝑟2
) (3.6) 

where 𝑋𝑟1
 and 𝑋𝑟2

 are the wolves which are randomly selected from the pack. The parameter 𝑘 is 

scaling factor which controls the effect of difference vector. The higher value of 𝑘 leads to the 

high exploration and the small values favors the exploitation. Therefore, in the present chapter, the 

value of the parameter 𝑘 is selected as a variable which decreases linearly from 1 to 0 over the 

course of iterations. This value of parameter 𝑘 helps in exploiting the neighbourhood areas around 

the personal best states of wolves. In order to combine the information about the prey obtained 

from leading hunters and individual wolves and to obtain a new state of wolf, the crossover is 

performed between the positions obtained from leading and personal best guidance, which can be 

defined as follows: 

 𝑋𝑖,𝑡+1
𝑗

= {
𝑍𝑖,𝑡+1

𝑗
       𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝐶𝑅

𝑋̂𝑖,𝑡+1
𝑗

              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.7) 
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where, CR is the crossover probability which is fixed as 0.5 in our study. 𝑍𝑖,𝑡+1 and 𝑋̂𝑖,𝑡+1 are the 

positions obtained from equations (3.2) and (3.6) respectively. When each wolf of the pack is 

updated using equation (3.7), a greedy selection is applied corresponding to each wolf between its 

current and previous states. This greedy selection mechanism avoids the divergence of wolves 

from discovered promising areas of the search space. The steps of the proposed mGWO are 

provided in Algorithm 3.1. 

Algorithm 3.1: pseudo code of Memory-based Grey Wolf Optimizer (mGWO) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 

2. Initialize the grey wolf population 𝑋𝑖 (𝑖 = 1,2, . . . , 𝑁) 

3. Evaluate the fitness of each grey wolf  

4. Initialize the parameters 𝐶𝑅 and maximum number of iterations 𝑇 

5. Initialize the memory matrix for grey wolf pack as [𝑋𝑖𝑝𝑏𝑒𝑠𝑡
]

𝑖=1

𝑁

= [𝑋𝑖]𝑖=1
𝑁  

6. 𝑺𝒆𝒍𝒆𝒄𝒕   𝑋𝛼 = 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑤𝑜𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘   

         𝑋𝛽 = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓    

         𝑋𝛿 = 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑤𝑜𝑙𝑓  

7. Initialize the iteration count 𝑡 = 0   

8. 𝒘𝒉𝒊𝒍𝒆 𝑡 < 𝑇   

9.            𝒇𝒐𝒓 each leader wolf  

10.                    update the position of each wolf using proposed search equation (3.7)  

11.            𝒆𝒏𝒅 𝒇𝒐𝒓 

12.           Evaluate the fitness of each grey wolf  

13.           𝒇𝒐𝒓 𝑖 = 1,2, … , 𝑁 

14.                  𝒊𝒇 𝐹(𝑋𝑖,𝑡+1) ≥ 𝐹(𝑋𝑖,𝑡) 

15.                          𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 

16.                  𝒆𝒏𝒅 𝒊𝒇 

17.           𝒆𝒏𝒅 𝒇𝒐𝒓 

18.           Update the leading wolves 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿    

19.           𝑡 = 𝑡 + 1  

20.  end while 

21. 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑤𝑜𝑙𝑓 
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3.2.3. Computational Complexity 

The time complexities of the proposed mGWO is discussed as follows: 

1. The mGWO initializes the wolf pack in 𝑂(𝑁 × 𝐷) time, where 𝑁 the size of pack and 𝐷 

represent the dimension of the problem. 

2. Selection of leading hunters requires 𝑂(𝑁) time. 

3. Position update in the mGWO requires the 𝑂(𝑁 × 𝐷) time. 

4. The greedy selection requires an additional 𝑂(𝑁) time in the proposed mGWO. 

5. Fitness evaluation of updated wolves requires 𝑂(𝑁) time. 

In summary, the total computational time for the proposed mGWO algorithms is equal to 𝑂(𝑁 ×

𝐷 × 𝑇) for maximum number of iterations 𝑇 and this is same as for classical GWO.  

3.3. Numerical Experiments and Analysis of Results 

3.3.1. Benchmark Functions and Parameter Setting 

In the chapter the proposed mGWO is tested on the same set of unconstrained benchmark problems 

which are given in IEEE CEC 2014 [185] and used in Chapter 2. In our experimentation, the 

dimension of the problems are fixed as 10 and 30. The population size for the classical GWO and 

mGWO is fixed as 3 × 𝐷, and the termination criteria is taken as the maximum number of function 

evaluations. The termination criteria is selected as per the guidelines of IEEE CEC 2014 which 

is 104 × 𝐷, where 𝐷 represents the dimension of the problem.  

3.3.2. Analysis of the Results 

In this section, the numerical results obtained by implementing classical GWO and mGWO on 

IEEE CEC 2014 benchmark problems are provided. The results are presented in the form of 

absolute error in objective function values and the better results are highlighted in bold face. For 

a feasible solution 𝑋 and optima 𝑋∗ to the problem 𝐹, the absolute error is calculated by |𝐹(𝑋) −

𝐹(𝑋∗)|. The experiments are performed on 10 and 30-dimensional problems and various criteria, 

such as minimum, median, mean, maximum, standard deviation (STD) of the absolute errors in 

objective function values of test problems are presented. The performance of the mGWO on 

different categories of benchmarks corresponding to 10 and 30-dimensonal problems is analyzed 

as follows: 
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The results for 10-dimensional problems 

The results for 10-dimensional problems are given in Table 3.1. On observing the results from the 

table, it is found that the mGWO performs better as compared to the classical GWO. 

In 10-dimensional unimodal problems F1 and F3, the mGWO provides better results in all the 

criteria as compared to classical GWO. In problem F2, the mGWO provides better mean, 

maximum and standard deviation value of errors as compared to classical GWO. In terms of 

minimum and median error, the classical GWO provides better results as compared to the mGWO. 

In 10-dimensional multimodal problems F6-F11, F14 and F15, the mGWO provides better results 

in all the criteria as compared to classical GWO. In problems F4, F5 and F16, the mGWO provides 

better results in all criteria except standard deviation as compared to classical GWO. In F12, 

classical GWO is better than mGWO in terms of minimum error while in other criteria mGWO 

provides better results as compared to classical GWO. In F13, the mGWO is better than classical 

GWO in all the criteria except maximum error. 

In all the 10-dimensional hybrid problems (F17-F22), the mGWO provides better results in terms 

of all the criteria as compared to classical GWO.  

In 10 dimensional composite problems (F23-F25 and F27-F30), the mGWO performs better than 

classical GWO in all the criteria except for standard deviation in the problems F25, F27 and F28. 

In F26, both the algorithm are same in terms of all the criteria except for standard deviation which 

is better in mGWO than the classical GWO. 

The results for 30 dimension 

The results for 30-dimension problems are given in Table 3.2. On observing the results from the 

table, it is found that the mGWO performs better for 30-dimsnional problems also as compared to 

the classical GWO. 

In all the 30-dimensional unimodal problems from F1 and F3, the mGWO provides better results 

in all the criteria as compared to classical GWO.  

In 30-dimensional multimodal problems F4, F6-F11, F13 and F15, the mGWO provides better 

results in all the criteria as compared to classical GWO. In problems F5 and F16, the mGWO 

provides better results in all criteria except standard deviation as compared to classical GWO. In 

problem F12 and F14, classical GWO is better than mGWO in terms of minimum error while in 

other criteria mGWO provides better results as compared to classical GWO. 
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In all the 30-dimensional hybrid problems (F17-F22), the mGWO provides better results in terms 

of all the criteria as compared to classical GWO except for minimum error in F17. 

In 30 dimensional composite problems (F23-F30), the mGWO performs better than classical GWO 

in all the criteria except for standard deviation in the problems F24. 

Hence, an overall analysis of the proposed mGWO on different category of benchmarks 

demonstrate the better exploration and exploitation ability of the mGWO as compared to the 

classical GWO. The experimental results also demonstrate that the proposed strategies in the 

mGWO establishes a more appropriate balance between exploration and exploitation as compared 

to the classical GWO.  

3.3.3. Statistical Analysis  

In order to make concrete conclusions about the significance of differences in the performance of 

the proposed mGWO and classical GWO, a non-parametric Wilcoxon test [186] is applied. The 

test has been conducted at 5% level of significance. The statistical results are presented in Tables 

3.3 and 3.4 corresponding to 10 and 30-dimensional IEEE CEC 2014 problems. In these tables, 

′ +/=/−′ sign are used to indicate that the mGWO is significantly better, equal or worse than the 

classical GWO. From the tables, it can be observed that out of 30 problems the mGWO is better 

than classical GWO in 28 problems corresponding to 10-dimensional benchmarks. Similarly for 

30-dimensional problems, the mGWO is better than classical GWO in 29 problems. Overall, from 

the statistical results, it can be concluded that the proposed mGWO algorithm has significantly 

improved the search efficiency and accuracy of wolves in obtaining the solution. 

3.3.4. Convergence Behavior 

Although the alpha, beta and delta wolves are considered as the leading wolves for the pack and 

are responsible for guiding the search, but the elite solution of the pack is alpha. Therefore, the 

improvement in the solution for any problem can be analyzed through the solution alpha. Hence, 

the history of the elite solution is plotted in Figs 3.1 to 3.4 for the classical GWO and mGWO in 

terms of convergence curves corresponding to the 30-dimensional benchmark problems. The 

growth of iterations is shown on horizontal axis, and the vertical axis represents the objective 

function values. By inspecting the convergence history of alpha solution in the mGWO, it is 

empirical to conclude that the proposed mGWO algorithm is successful to provide a significant 

improvement in the search efficiency of classical GWO in terms of convergence rate.   
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3.4. Comparison Between RW-GWO and mGWO Algorithms 

Although, both the variants RW-GWO (proposed in the Chapter 2) and the mGWO (proposed in 

the current chapter) provide better results as compared to the classical GWO, but the comparison 

between these two variants is required on different categories of benchmark problems to elect the 

best performer. Therefore, in this section, a comparison is performed between the algorithms RW-

GWO and mGWO. For the sake of comparison, the results of the RW-GWO are reproduced and 

presented in Tables 3.1 and 3.2 for 10 and 30-dimensional problems respectively.  

The comparison for 10 dimension 

The results for 10-dimension problems are given in Table 3.1. The description of the results on 

different category of benchmarks is as follows: 

In 10-dimensional unimodal problem F1, the RW-GWO provides better minimum, maximum and 

standard deviation value of error while in terms of mean and median value of error, mGWO is 

better than others. In the problems F2 and F3, the RW-GWO is better than classical GWO and 

mGWO in terms of all the criteria except for median value in F2. The median value of error is 

better in classical GWO than others for F2.  

In 10-dimensional multimodal problems, F6, F8-F11, mGWO provides better results in all criteria 

as compared to the classical GWO and RW-GWO. In F4, the mGWO is better than other in terms 

of minimum and median of error values while in terms of other criteria, RW-GWO provides better 

results than others. In F5, in terms of minimum and mean value of error, mGWO, in terms of 

median and maximum value of error, RW-GWO, and in terms of standard deviation value classical 

GWO is better than other comparative algorithms. In F7, the RW-GWO is better than classical 

GWO and mGWO for all the criteria except minimum error, for minimum error mGWO is better 

than other algorithms. In F12, the mGWO is better in terms of median and mean error, in terms of 

minimum error classical GWO is better and in terms of maximum and standard deviation of error, 

RW-GWO is better than its comparative algorithms. In F13, minimum error is better in mGWO, 

median error is better in mGWO as well as RW-GWO, and mean, maximum and standard 

deviation of errors are better in RW-GWO. In F14, mGWO provides better results in all criteria 

than others except minimum error. In terms of minimum error, RW-GWO is better than others for 

F14. In F15, except for the minimum error, RW-GWO is better than others and for minimum error 

mGWO is better than other algorithms. In F16, mGWO is better in all the criteria except standard 

deviation and for standard deviation, RW-GWO is better than other algorithms. 
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In 10-dimensional hybrid problems F17, F19 and F22, the mGWO provides better results in all 

criteria as compared to the classical GWO and RW-GWO. In F18 and F21, in terms of minimum 

error, RW-GWO is better than other while in other criteria, mGWO provides better results as 

compared to classical GWO and RW-GWO. In F20, RW-GWO provides better results than 

classical GWO and mGWO in terms of all the criteria. 

In 10-dimensional composite problems F23, F26, F29 and F30, the RW-GWO is provides either 

better results or same results as compared to the classical GWO and mGWO. In F24, the mGWO 

provides better results in all the criteria as compared to the others. In F25, the mGWO is better 

than others in terms of minimum, mean and maximum error while the RW-GWO is better in terms 

of median and standard deviation than other algorithms. In F27, the mGWO is better than others 

in terms of mean, median and maximum error while in terms of minimum and standard deviation, 

RW-GWO provides better results as compared to the others. In F28, the RW-GWO provides better 

than other algorithms in all the criteria except minimum error. The minimum error in F28 is better 

in mGWO than other algorithms. 

The comparison for 30 dimension 

The results for 30-dimension problems are given in Table 3.2. The description of the results on 

different category of 30-dimensional benchmarks is as follows: 

In 30-dimensional unimodal problem F1, the mGWO provides better results as compared to the 

classical GWO and RW-GWO in all the criteria except for standard deviation. For standard 

deviation, RW-GWO is better than the other algorithms. In problems F2 and F3, the RW-GWO 

provides better results in all the criteria as compared to the classical GWO and mGWO. 

In 30-dimensional multimodal problems, F4, F5 and F7, RW-GWO provides better results in all 

criteria as compared to the classical GWO and mGWO. In F6, F8-F10, mGWO provides better 

results in all criteria as compared to the classical GWO and RW-GWO. In F11, the standard 

deviation value of errors is better in RW-GWO while other criteria are better in mGWO. In F12, 

the minimum and median value of errors is better in mGWO while in other criteria RW-GWO 

provides better results than others. In F13, minimum, median, and mean values of errors are better 

in RW-GWO while maximum and standard deviation are better in mGWO as compared to other 

comparative algorithms. In F14, the classical GWO provides better minimum error while in terms 

of other criteria, mGWO is better than others. In F15, the mGWO is better than others in providing 

the minimum, median and mean value of errors while the other criteria are better in RW-GWO. In 

F16, minimum, median and mean values of errors are better in mGWO, maximum value of errors 
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is better in RW-GWO and standard deviation value is better in classical GWO than other 

comparative algorithms.  

In 30-dimensional hybrid problems F17- F19, F21 and F22, the mGWO provides better results in 

all criteria as compared to the classical GWO and RW-GWO. In F20, the RW-GWO provides 

better minimum and median value of errors as compared to classical GWO and mGWO while in 

remaining criteria, mGWO is better than others. 

In 30-dimensional composite problems F23, the minimum and maximum errors are better in RW-

GWO, median and mean errors are same in RW-GWO and mGWO but better than classical GWO. 

The standard deviation is better in mGWO than other algorithms for F23. In F24, all the criteria 

are same in all the algorithms except for standard deviation. The standard deviation for F24 is 

better in classical GWO than others. In F25, the minimum, mean and maximum error value of 

errors are better in the RW-GWO and median value is same for RW-GWO and mGWO but better 

than classical GWO while the standard deviation is better in mGWO than other algorithms. In F26, 

classical GWO, RW-GWO and mGWO provides same results in terms of minimum, median, mean 

and maximum value of errors. The standard deviation values for F26 is better in mGWO as 

compared to the other algorithms. In F27, mGWO is better than other algorithms for all the criteria. 

In F28-F30, the RW-GWO provides better results in all criteria as compared to the classical GWO 

and mGWO. 

Although, the numerical results demonstrate the differences in providing the results, but in order 

to analyze the best performer corresponding to each category of benchmarks and to make concrete 

conclusions about the significance of differences in the performance of algorithms, statistical 

comparison between RW-GWO and mGWO is performed through Wilcoxon signed rank test.  The 

comparison is performed using same parameter setting as used in previous chapter. The statistical 

results are listed in Table 3.5 and the best performer is listed in the same table. The convergence 

behavior of classical GWO, RW-GWO and mGWO is also compared in the Figs 3.1 to 3.4. In the 

problems F2-F5, F12, F22, F25, F28-F30, the convergence rate is better in RW-GWO as compared 

to classical GWO and mGWO. In problems F1, F6, F10, F17 and F21 the convergence is better in 

RW-GWO at some fixed initial iteration and after that the convergence in mGWO is better as 

compared to other algorithms.  Overall, from all the comparison analysis the following remarks 

can be made:  

1. In terms of worst time complexity calculated through big−𝑂  notation, all the algorithms 

classical GWO, RW-GWO and mGWO are same. 
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2. On unimodal problems, the RW-GWO performs better as compared to the classical GWO and 

mGWO. 

3. On multimodal and hybrid problems, the mGWO algorithm is more successful as compared to 

the classical GWO and RW-GWO. 

4. On the set of composite problems, the RW-GWO algorithm is more successful as compared to 

the classical GWO and mGWO. 

5. The convergence rate is better in RW-GWO as compared to classical GWO and mGWO. 

 

3.5. Concluding Remarks 

In the chapter, a new variant of classical GWO called Memory-based GWO (mGWO) is proposed 

which enhances the collaborative strength of the wolf pack by utilizing the personal best history 

of wolves. The incorporation of personal best state of wolves in the search equation helps to 

explore the neighbourhood regions of available promising areas in the search space. The applied 

greedy selection mechanism between two consecutive iterations of algorithm maintain the balance 

between exploration and exploitation and avoids the divergence of wolves from promising areas 

of the search space. The experimental results, statistical and convergence analysis on IEEE CEC 

2014 benchmarks demonstrate the superior search ability of the mGWO as compared to the 

classical GWO.  

Moreover, the performance comparison between the variants RW-GWO (proposed in Chapter 2) 

and mGWO (proposed in the current chapter) concludes that the RW-GWO outperforms mGWO 

in unimodal and composite problems while in the multimodal and hybrid problems, the mGWO 

outperforms RW-GWO. Thus, the exploration strength is better in the mGWO as compared to 

RW-GWO and the exploitation strength of RW-GWO is better than mGWO. In maintaining the 

balance between exploration and exploitation, both the algorithms are very competitive.  The 

convergence behaviour of algorithms demonstrate the better convergence rate in RW-GWO as 

compared to classical GWO and mGWO. 

 

 

 

 

 

 

 

 



52 
 

Table 3.1. Error values in objective function obtained by classical GWO, RW-GWO and mGWO 

for 10-dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm minimum median mean maximum STD 

U
n

im
o

d
a
l 

p
ro

b
le

m
s 

F1 GWO 1.59E+05 1.42E+06 1.81E+06 9.37E+06 1.80E+06 

  RW-GWO 9.98E+02 1.72E+05 1.52E+05 2.71E+05 6.45E+04 

  mGWO 2.80E+03 3.00E+04 6.37E+04 5.39E+05 9.68E+04 

F2 GWO 1.91E+02 1.13E+03 1.03E+07 2.65E+08 5.17E+07 

  RW-GWO 7.83E+01 1.24E+03 2.19E+03 9.28E+03 2.36E+03 

  mGWO 2.31E+02 1.38E+03 2.58E+03 1.03E+04 2.77E+03 

F3 GWO 9.91E+01 4.41E+03 4.55E+03 1.30E+04 3.50E+03 

  RW-GWO 1.60E-01 8.17E+00 2.64E+01 4.35E+02 6.46E+01 

  mGWO 3.81E+00 3.52E+01 6.08E+01 4.39E+02 8.42E+01 

M
u

lt
im

o
d

a
l 

p
ro

b
le

m
s 

F4 GWO 6.05E+00 3.52E+01 3.27E+01 3.80E+01 8.88E+00 

  RW-GWO 2.55E+00 6.77E+00 6.55E+00 8.89E+00 1.21E+00 

  mGWO 1.13E-01 4.53E+00 1.66E+01 3.54E+01 1.63E+01 

F5 GWO 1.87E+01 2.04E+01 2.03E+01 2.05E+01 2.41E-01 

  RW-GWO 5.00E-02 2.00E+01 1.96E+01 2.00E+01 2.80E+00 

  mGWO 4.05E-02 2.02E+01 1.74E+01 2.04E+01 6.98E+00 

F6 GWO 2.14E-01 1.79E+00 1.92E+00 5.54E+00 1.10E+00 

  RW-GWO 9.34E-02 1.71E+00 1.49E+00 3.99E+00 1.11E+00 

  mGWO 6.96E-02 1.53E-01 1.82E-01 1.07E+00 1.43E-01 

F7 GWO 6.78E-02 8.41E-01 1.11E+00 3.66E+00 8.29E-01 

  RW-GWO 8.06E-02 1.61E-01 1.61E-01 2.97E-01 5.25E-02 

  mGWO 6.63E-02 1.88E-01 2.05E-01 4.52E-01 8.28E-02 

F8 GWO 3.98E+00 8.96E+00 1.05E+01 2.59E+01 4.69E+00 

  RW-GWO 1.99E+00 3.98E+00 4.51E+00 8.96E+00 1.47E+00 

  mGWO 4.70E-04 1.99E+00 2.01E+00 4.98E+00 1.13E+00 

F9 GWO 6.16E+00 1.32E+01 1.47E+01 3.40E+01 7.13E+00 

  RW-GWO 3.00E+00 9.95E+00 1.07E+01 2.49E+01 4.70E+00 

  mGWO 3.24E-04 3.98E+00 4.58E+00 1.09E+01 2.32E+00 

F10 GWO 1.42E+02 3.78E+02 3.95E+02 1.00E+03 2.11E+02 

  RW-GWO 1.53E+01 1.49E+02 1.34E+02 2.69E+02 6.98E+01 

  mGWO 3.37E-01 6.97E+00 9.97E+00 1.25E+02 1.73E+01 

F11 GWO 1.31E+02 4.37E+02 4.70E+02 1.16E+03 2.18E+02 

  RW-GWO 1.25E+02 5.59E+02 5.55E+02 1.10E+03 1.95E+02 

  mGWO 3.48E-01 1.22E+02 1.00E+02 3.88E+02 9.14E+01 

F12 GWO 1.28E-02 4.58E-01 6.08E-01 1.58E+00 5.22E-01 

  RW-GWO 2.35E-02 7.64E-02 8.93E-02 1.84E-01 3.92E-02 

  mGWO 2.06E-02 6.72E-02 8.46E-02 2.35E-01 5.78E-02 

F13 GWO 7.77E-02 1.71E-01 1.69E-01 3.16E-01 5.81E-02 

  RW-GWO 7.47E-02 1.24E-01 1.23E-01 1.82E-01 3.10E-02 

  mGWO 7.43E-02 1.24E-01 1.32E-01 3.35E-01 4.10E-02 

F14 GWO 5.15E-02 2.18E-01 3.37E-01 7.09E-01 2.18E-01 

  RW-GWO 2.91E-02 1.26E-01 1.37E-01 5.79E-01 9.51E-02 

  mGWO 4.04E-02 1.01E-01 1.03E-01 1.94E-01 3.57E-02 

F15 GWO 4.47E-01 1.54E+00 1.57E+00 3.90E+00 7.89E-01 

  RW-GWO 2.96E-01 6.98E-01 7.41E-01 1.24E+00 1.98E-01 

  mGWO 2.65E-01 8.26E-01 8.19E-01 1.37E+00 2.57E-01 
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Function Algorithm minimum median mean maximum STD 

F16 GWO 9.82E-01 2.33E+00 2.31E+00 3.40E+00 5.51E-01 

  RW-GWO 5.13E-01 2.13E+00 2.09E+00 3.51E+00 5.67E-01 

  mGWO 2.14E-01 1.39E+00 1.36E+00 2.58E+00 6.11E-01 

H
y

b
ri

d
 p

ro
b

le
m

s 

F17 GWO 8.23E+02 2.57E+03 3.85E+03 1.69E+04 3.20E+03 

  RW-GWO 1.19E+02 1.43E+03 1.97E+03 7.78E+03 1.86E+03 

  mGWO 1.01E+02 1.02E+03 1.22E+03 4.30E+03 9.03E+02 

F18 GWO 1.01E+02 1.31E+03 3.59E+03 1.52E+04 4.02E+03 

  RW-GWO 1.39E+01 6.67E+03 7.09E+03 2.24E+04 6.35E+03 

  mGWO 7.86E+01 3.82E+02 1.22E+03 7.93E+03 1.89E+03 

F19 GWO 1.34E+00 2.03E+00 2.37E+00 5.80E+00 9.09E-01 

  RW-GWO 5.55E-01 1.62E+00 1.75E+00 3.39E+00 6.15E-01 

  mGWO 9.25E-02 1.26E+00 1.17E+00 1.62E+00 4.38E-01 

F20 GWO 3.83E+01 1.16E+02 1.45E+03 8.18E+03 2.38E+03 

  RW-GWO 2.95E+00 1.24E+01 1.47E+01 5.18E+01 9.47E+00 

  mGWO 1.97E+01 5.42E+01 5.31E+01 9.63E+01 2.17E+01 

F21 GWO 1.13E+02 9.38E+02 1.79E+03 6.18E+03 1.69E+03 

  RW-GWO 3.34E+01 2.82E+02 4.45E+02 3.03E+03 5.43E+02 

  mGWO 3.36E+01 1.13E+02 1.55E+02 4.59E+02 1.08E+02 

F22 GWO 2.66E+01 1.46E+02 1.16E+02 1.71E+02 5.70E+01 

  RW-GWO 1.37E+00 3.73E+01 6.59E+01 1.64E+02 5.71E+01 

  mGWO 3.29E-01 2.08E+01 1.82E+01 1.20E+02 1.77E+01 

C
o

m
p

o
si

te
 p

ro
b

le
m

s 

F23 GWO 3.29E+02 3.35E+02 3.35E+02 3.45E+02 4.54E+00 

  RW-GWO 3.29E+02 3.29E+02 3.29E+02 3.29E+02 8.39E-05 

  mGWO 3.29E+02 3.29E+02 3.29E+02 3.29E+02 1.61E-03 

F24 GWO 1.11E+02 1.27E+02 1.33E+02 2.03E+02 2.34E+01 

  RW-GWO 1.07E+02 1.19E+02 1.19E+02 1.35E+02 5.97E+00 

  mGWO 1.00E+02 1.10E+02 1.10E+02 1.19E+02 3.96E+00 

F25 GWO 1.37E+02 2.00E+02 1.92E+02 2.02E+02 1.83E+01 

  RW-GWO 1.32E+02 1.98E+02 1.85E+02 2.03E+02 2.30E+01 

  mGWO 1.00E+02 1.99E+02 1.76E+02 2.02E+02 3.63E+01 

F26 GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 4.08E-02 

  RW-GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.96E-02 

  mGWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.28E-02 

F27 GWO 4.42E+00 3.46E+02 3.35E+02 4.08E+02 7.15E+01 

  RW-GWO 1.21E+00 3.40E+02 3.25E+02 4.23E+02 8.60E+01 

  mGWO 1.41E+00 3.05E+02 2.17E+02 4.00E+02 1.71E+02 

F28 GWO 2.39E+02 3.71E+02 4.03E+02 6.91E+02 7.01E+01 

  RW-GWO 3.06E+02 3.06E+02 3.06E+02 3.07E+02 9.33E-02 

  mGWO 1.02E+02 3.57E+02 3.52E+02 5.00E+02 1.01E+02 

F29 GWO 3.54E+02 6.36E+02 4.76E+04 2.39E+06 3.35E+05 

  RW-GWO 2.02E+02 2.05E+02 2.05E+02 2.11E+02 1.64E+00 

  mGWO 2.60E+02 4.56E+02 4.90E+02 8.77E+02 1.42E+02 

F30 GWO 5.97E+02 8.99E+02 1.01E+03 2.08E+03 3.40E+02 

  RW-GWO 2.24E+02 2.82E+02 3.15E+02 5.90E+02 9.30E+01 

  mGWO 5.07E+02 6.81E+02 7.59E+02 1.29E+03 1.90E+02 
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Table 3.2. Error values in objective function obtained by classical GWO, RW-GWO and mGWO 

for 30-dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 

U
n

im
o

d
a

l 
p

ro
b

le
m

s 

F1 GWO 8.18E+06 3.04E+07 3.32E+07 9.79E+07 2.02E+07  
RW-GWO 2.22E+06 7.66E+06 8.02E+06 1.94E+07 3.31E+06  

mGWO 1.97E+06 5.62E+06 6.57E+06 1.81E+07 3.82E+06 

F2 GWO 1.42E+06 6.10E+08 1.01E+09 5.72E+09 1.15E+09  
RW-GWO 2.83E+04 9.28E+04 2.23E+05 3.35E+06 5.51E+05  

mGWO 7.33E+04 6.72E+06 1.88E+07 1.01E+08 2.62E+07 

F3 GWO 1.58E+04 2.81E+04 2.85E+04 4.58E+04 6.80E+03  
RW-GWO 1.23E+01 5.57E+01 3.16E+02 1.34E+03 4.34E+02  

mGWO 1.80E+02 6.36E+02 7.17E+02 2.97E+03 4.69E+02 

M
u

lt
im

o
d

a
l 

p
ro

b
le

m
s 

F4 GWO 1.00E+02 1.77E+02 1.94E+02 3.83E+02 5.82E+01  
RW-GWO 1.87E+01 2.81E+01 3.41E+01 8.29E+01 1.80E+01  

mGWO 6.95E+01 1.16E+02 1.15E+02 1.55E+02 2.74E+01 

F5 GWO 2.08E+01 2.10E+01 2.10E+01 2.10E+01 4.83E-02  
RW-GWO 2.03E+01 2.05E+01 2.05E+01 2.07E+01 7.46E-02  

mGWO 2.06E+01 2.09E+01 2.09E+01 2.10E+01 7.99E-02 

F6 GWO 6.24E+00 1.17E+01 1.16E+01 1.82E+01 2.64E+00  
RW-GWO 3.21E+00 1.03E+01 9.84E+00 1.80E+01 3.49E+00  

mGWO 1.20E+00 2.99E+00 3.17E+00 8.77E+00 1.46E+00 

F7 GWO 2.27E+00 5.31E+00 7.67E+00 1.86E+01 4.64E+00  
RW-GWO 8.68E-02 2.21E-01 2.53E-01 8.85E-01 1.43E-01  

mGWO 3.63E-01 1.09E+00 1.06E+00 1.55E+00 2.49E-01 

F8 GWO 3.42E+01 6.25E+01 6.50E+01 1.22E+02 1.45E+01  
RW-GWO 2.49E+01 4.34E+01 4.38E+01 6.64E+01 8.48E+00  

mGWO 1.58E+01 2.79E+01 2.75E+01 4.30E+01 5.72E+00 

F9 GWO 3.88E+01 8.05E+01 8.54E+01 2.42E+02 3.30E+01  
RW-GWO 3.41E+01 6.37E+01 6.33E+01 9.42E+01 1.30E+01  

mGWO 2.33E+01 4.32E+01 4.35E+01 7.69E+01 1.11E+01 

F10 GWO 6.99E+02 1.74E+03 1.80E+03 3.08E+03 4.93E+02  
RW-GWO 5.23E+02 9.47E+02 9.61E+02 1.60E+03 2.72E+02  

mGWO 2.37E+01 4.16E+02 4.06E+02 8.79E+02 2.22E+02 

F11 GWO 1.47E+03 2.81E+03 2.90E+03 6.45E+03 7.24E+02  
RW-GWO 1.79E+03 2.62E+03 2.68E+03 3.49E+03 3.68E+02  

mGWO 9.28E+02 1.94E+03 1.96E+03 3.21E+03 5.07E+02 

F12 GWO 8.20E-02 2.44E+00 2.12E+00 3.13E+00 9.58E-01  
RW-GWO 2.57E-01 5.17E-01 5.45E-01 1.12E+00 1.66E-01  

mGWO 1.19E-01 4.81E-01 6.22E-01 2.36E+00 4.57E-01 

F13 GWO 2.19E-01 3.77E-01 3.74E-01 6.92E-01 8.88E-02  
RW-GWO 1.85E-01 2.66E-01 2.80E-01 4.60E-01 6.30E-02  

mGWO 2.02E-01 3.11E-01 3.12E-01 4.44E-01 4.62E-02 

F14 GWO 1.24E-01 7.08E-01 7.49E-01 1.04E+01 1.40E+00  
RW-GWO 1.85E-01 3.01E-01 4.23E-01 7.72E-01 2.15E-01  

mGWO 1.37E-01 2.22E-01 2.21E-01 2.95E-01 4.29E-02 

F15 GWO 3.96E+00 1.46E+01 2.06E+01 1.39E+02 2.20E+01  
RW-GWO 5.08E+00 8.79E+00 8.81E+00 1.26E+01 1.51E+00  

mGWO 3.30E+00 6.23E+00 6.48E+00 1.31E+01 1.89E+00 
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 Function Algorithm Minimum Median Mean Maximum STD 

F16 GWO 9.45E+00 1.10E+01 1.09E+01 1.20E+01 5.80E-01  
RW-GWO 8.98E+00 1.02E+01 1.03E+01 1.15E+01 6.11E-01  

mGWO 8.19E+00 1.01E+01 1.01E+01 1.17E+01 7.77E-01 
H

y
b

ri
d

 p
ro

b
le

m
s 

F17 GWO 4.61E+04 4.46E+05 6.28E+05 3.59E+06 6.11E+05  
RW-GWO 5.68E+04 4.52E+05 5.71E+05 2.06E+06 4.10E+05  

mGWO 5.27E+04 1.95E+05 2.20E+05 5.91E+05 1.36E+05 

F18 GWO 2.12E+03 2.11E+04 5.27E+06 6.41E+07 1.34E+07  
RW-GWO 4.89E+02 6.23E+03 6.52E+03 1.83E+04 4.62E+03  

mGWO 4.03E+02 9.82E+02 1.68E+03 1.00E+04 1.78E+03 

F19 GWO 7.50E+00 2.07E+01 2.56E+01 8.35E+01 1.77E+01  
RW-GWO 7.40E+00 1.11E+01 1.14E+01 1.61E+01 2.03E+00  

mGWO 4.95E+00 7.17E+00 7.07E+00 1.05E+01 1.20E+00 

F20 GWO 4.00E+03 1.19E+04 1.31E+04 2.90E+04 5.26E+03  
RW-GWO 1.02E+02 2.66E+02 6.27E+02 6.00E+03 1.12E+03  

mGWO 1.56E+02 2.95E+02 3.30E+02 8.12E+02 1.18E+02 

F21 GWO 6.12E+04 1.60E+05 4.97E+05 4.74E+06 1.05E+06  
RW-GWO 2.60E+04 2.42E+05 2.58E+05 6.22E+05 1.76E+05  

mGWO 1.36E+04 7.24E+04 8.68E+04 2.60E+05 5.95E+04 

F22 GWO 5.13E+01 1.90E+02 2.50E+02 6.32E+02 1.16E+02  
RW-GWO 3.32E+01 1.62E+02 2.08E+02 5.43E+02 1.29E+02  

mGWO 2.86E+01 1.60E+02 1.62E+02 3.06E+02 6.69E+01 

C
o

m
p

o
si

te
 p

ro
b

le
m

s 

F23 GWO 3.17E+02 3.27E+02 3.28E+02 3.38E+02 4.16E+00  
RW-GWO 3.14E+02 3.15E+02 3.15E+02 3.15E+02 2.77E-01  

mGWO 3.15E+02 3.15E+02 3.15E+02 3.16E+02 1.87E-01 

F24 GWO 2.00E+02 2.00E+02 2.00E+02 2.00E+02 7.27E-04  
RW-GWO 2.00E+02 2.00E+02 2.00E+02 2.00E+02 3.04E-03  

mGWO 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.44E-02 

F25 GWO 2.07E+02 2.11E+02 2.11E+02 2.15E+02 2.04E+00  
RW-GWO 2.02E+02 2.05E+02 2.04E+02 2.07E+02 1.18E+00  

mGWO 2.04E+02 2.05E+02 2.05E+02 2.08E+02 9.30E-01 

F26 GWO 1.00E+02 1.00E+02 1.00E+02 1.01E+02 9.62E-02  
RW-GWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 7.36E-02  

mGWO 1.00E+02 1.00E+02 1.00E+02 1.00E+02 6.59E-02 

F27 GWO 4.03E+02 4.30E+02 4.33E+02 4.86E+02 1.82E+01  
RW-GWO 4.03E+02 4.08E+02 4.09E+02 4.40E+02 6.09E+00  

mGWO 4.02E+02 4.04E+02 4.05E+02 4.15E+02 2.42E+00 

F28 GWO 7.93E+02 9.07E+02 9.14E+02 1.12E+03 6.63E+01  
RW-GWO 4.16E+02 4.35E+02 4.34E+02 4.53E+02 8.45E+00  

mGWO 6.62E+02 8.78E+02 8.78E+02 9.89E+02 5.37E+01 

F29 GWO 4.98E+03 3.28E+04 2.90E+05 1.12E+07 1.57E+06  
RW-GWO 2.08E+02 2.14E+02 2.14E+02 2.19E+02 2.37E+00  

mGWO 3.38E+03 1.06E+04 1.24E+04 5.64E+04 9.00E+03 

F30 GWO 8.09E+03 2.71E+04 2.98E+04 6.80E+04 1.57E+04  
RW-GWO 2.76E+02 6.62E+02 6.69E+02 1.13E+03 2.14E+02  

mGWO 2.83E+03 5.55E+03 5.84E+03 1.04E+04 1.75E+03 
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Table 3.3. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 10-dimensional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 5.15E-10 + F16 2.19E-08 + 

F2 0 = F17 6.03E-08 + 

F3 5.15E-10 + F18 8.47E-04 + 

F4 1.12E-07 + F19 6.53E-10 + 

F5 1.97E-07 + F20 5.85E-09 + 

F6 5.15E-10 + F21 5.15E-10 + 

F7 3.33E-09 + F22 5.80E-10 + 

F8 5.15E-10 + F23 6.53E-10 + 

F9 1.77E-09 + F24 5.15E-10 + 

F10 5.15E-10 + F25 4.90E-02 + 

F11 2.10E-09 + F26 0 = 

F12 1.07E-07 + F27 4.24E-04 + 

F13 5.24E-04 + F28 1.52E-02 + 

F14 1.32E-09 + F29 8.20E-07 + 

F15 3.77E-07 + F30 1.25E-05 + 

 

 

 

Table 3.4. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 30-dimensional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 6.15E-10 + F16 9.93E-07 + 

F2 5.46E-10 + F17 3.09E-07 + 

F3 5.15E-10 + F18 1.87E-09 + 

F4 3.52E-09 + F19 5.15E-10 + 

F5 1.53E-07 + F20 5.15E-10 + 

F6 5.46E-10 + F21 1.20E-08 + 

F7 5.15E-10 + F22 1.37E-05 + 

F8 5.15E-10 + F23 5.15E-10 + 

F9 1.05E-09 + F24 5.15E-10 - 

F10 5.15E-10 + F25 5.15E-10 + 

F11 1.14E-08 + F26 4.78E-06 + 

F12 1.27E-08 + F27 6.15E-10 + 

F13 1.64E-04 + F28 8.92E-03 + 

F14 8.25E-08 + F29 3.56E-08 + 

F15 5.85E-09 + F30 5.15E-10 + 
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Table 3.5. Comparison between RW-GWO and mGWO algorithms 

Function 
Dimension = 10 Dimension = 30 

p-value winner p-value winner 

F1 6.24E-06 mGWO 1.96E-02 mGWO 

F2 5.67E-01 same 6.93E-10 RW-GWO 

F3 2.76E-04 RW-GWO 2.86E-04 RW-GWO 

F4 3.18E-02 mGWO 5.15E-10 RW-GWO 

F5 1.74E-03 RW-GWO 5.15E-10 RW-GWO 

F6 6.92E-09 mGWO 8.77E-10 mGWO 

F7 1.74E-03 RW-GWO 6.15E-10 RW-GWO 

F8 1.87E-09 mGWO 3.14E-09 mGWO 

F9 8.65E-09 mGWO 8.69E-08 mGWO 

F10 5.15E-10 mGWO 6.53E-10 mGWO 

F11 5.15E-10 mGWO 4.17E-08 mGWO 

F12 2.90E-01 same 8.22E-01 same 

F13 2.81E-01 same 3.77E-03 RW-GWO 

F14 2.70E-02 mGWO 1.97E-07 mGWO 

F15 1.20E-01 same 1.61E-07 mGWO 

F16 2.53E-06 mGWO 9.52E-02 same 

F17 2.83E-02 mGWO 2.66E-07 mGWO 

F18 3.33E-06 mGWO 1.69E-07 mGWO 

F19 6.52E-06 mGWO 5.15E-10 mGWO 

F20 8.77E-10 RW-GWO 2.65E-01 same 

F21 1.59E-06 mGWO 5.31E-07 mGWO 

F22 1.45E-06 mGWO 3.58E-02 mGWO 

F23 2.83E-02 same 5.80E-10 mGWO 

F24 2.50E-09 mGWO 5.15E-10 RW-GWO 

F25 7.43E-01 same 9.27E-06 RW-GWO 

F26 1.52E-01 same 2.57E-01 same 

F27 1.04E-03 mGWO 2.53E-06 mGWO 

F28 4.89E-04 RW-GWO 5.15E-10 RW-GWO 

F29 5.15E-10 RW-GWO 5.15E-10 RW-GWO 

F30 5.15E-10 RW-GWO 5.15E-10 RW-GWO 
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Fig 3.1. Convergence curves for 30-dimensional problems from F1 to F8 corresponding to alpha 

solution of each iteration 
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Fig 3.2. Convergence curves for 30-dimensional problems from F9 to F16 corresponding to 

alpha solution of each iteration  
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Fig 3.3. Convergence curves for 30-dimensional problems from F17 to F24 corresponding to 

alpha solution of each iteration  
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Fig 3.4. Convergence curves for 30-dimensional problems from F25 to F30 corresponding to 

alpha solution of each iteration  
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Chapter 4 

A Modified Sine Cosine Algorithm with Opposition-

based Learning for Unconstrained Optimization 

Problems  

In this chapter an attempt is made to propose a new variant of Sine Cosine Algorithm. 

4.1. Introduction 

The literature on the SCA shows that in some cases, the algorithm suffers from the situation of 

skipping true solutions and stagnates at local optima. This happens when the mechanism of 

exploration and exploitation is faulty. Therefore, in the present chapter, an attempt has been made 

towards the eradication of these issues from the classical SCA by proposing a modified variant of 

SCA called Modified Sine Cosine Algorithm (m-SCA). In the m-SCA, two different strategies are 

employed. First, the opposition-based learning is used to generate the opposite candidate solutions 

which helps in avoiding the local optima during the search. Second, in order to maintain an 

appropriate balance between exploration and exploitation, the position update mechanism of the 

SCA is modified based on the cognitive component. The performance of the proposed m-SCA is 

tested on an unconstrained benchmark problem set given in IEEE CEC 2014 and the results are 

analyzed and compared with classical SCA. 

The organization of this chapter is as follows: Section 4.2 provides a motivation and detailed 

description of the proposed m-SCA. Section 4.3 provides numerical experimentation, analysis and 

comparison of the m-SCA with classical SCA. Finally, the chapter is closed with concluding 

remarks in Section 4.4. 

4.2. Proposed Modified Sine Cosine Algorithm (m-SCA) 

4.2.1. Motivation 

The efficiency, in terms of search ability, of metaheuristic algorithms depends on how well a  

The content of this chapter is published in:  

Gupta, S., & Deep, K. (2019). A hybrid self-adaptive sine cosine algorithm with opposition based learning. 

Expert Systems with Applications, 119, 210-230. Elsevier. 
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metaheuristic achieves a balance between exploration and exploitation of the search space. In the 

classical SCA, each candidate solution uses the information of best candidate solution to update 

its state and the previous set of candidate solutions is replaced by new updated candidate solutions. 

In this process, only the best solution is saved for the next iteration. Therefore, there may be a 

possibility that the set of candidate solutions gets trapped in local optima due to insufficient 

diversity and improper guidance of search. Therefore, in the present chapter, an opposition-based 

learning is used to generate an opposite approximate to the current set of candidate solutions, so 

that the situation of local optima stagnation can be tackled. In order to provide promising direction 

of search and to enhance the collective strength of SCA, the personal best states of candidate 

solutions are used to integrate a cognitive component in the search equation of classical SCA. The 

concept of generating opposite numbers using opposition-based learning is presented as follows: 

4.2.2. Opposite Numbers 

Consider a point 𝑥 ∈ [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥] where 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 ∈ 𝑅 . Then an opposite point [187] of 𝑥 

denoted by 𝑥𝑜𝑝 can be obtained as –  

 𝑥𝑜𝑝 = 𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥 − 𝑥 (4.1) 

The definition of opposite numbers can be extended for higher dimension also [187, 188]. In 

𝐷 − dimensional space the opposite point 𝑋𝑜𝑝 = (𝑥𝑜𝑝
1, 𝑥𝑜𝑝

2, … , 𝑥𝑜𝑝
𝐷) of a point 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅𝐷 can be calculated as –  

 𝑥𝑜𝑝
𝑗 = 𝑥𝑚𝑖𝑛

𝑗 + 𝑥𝑚𝑎𝑥
𝑗 − 𝑥𝑗 , 𝑗 = 1,2, … , 𝐷 (4.2) 

where 𝑋min = (𝑥𝑚𝑖𝑛
1, 𝑥𝑚𝑖𝑛

2, … , 𝑥𝑚𝑖𝑛
𝐷)  and 𝑋max = (𝑥𝑚𝑎𝑥

1, 𝑥𝑚𝑎𝑥
2, … , 𝑥𝑚𝑎𝑥

𝐷)  are the lower 

and upper limits for any point 𝑋 ∈ 𝑅𝐷. 

In [189], it has been proved that finding the unknown optimal solution to the problem with a 

random direction along with its opposite estimate provides a higher chance as compared to pure 

random direction. The integration of opposite numbers in search algorithm is fruitful when the 

current obtained solution is far away from the optima especially when the optima is in opposite 

direction of a current solution.  

The concept of opposite numbers is used by many researchers to enhance the ability of learn, 

search and optimize the metaheuristic algorithms. The literature on OBL and its benefits in 

metaheuristics can be found in [190]. 
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4.2.3. Framework of the Modified Sine Cosine Algorithm 

The proposed m-SCA utilizes two different strategies to update the solutions in each iteration. In 

the first strategy, the opposite population (𝑋𝑜𝑝,𝑖)𝑖=1
𝑁

 of candidate solutions (𝑋𝑖)𝑖=1
𝑁  is generated 

according to the perturbation or jumping rate (𝐽𝑅) by using opposite numbers as described in 

Section 4.2.2 and then the best candidate solutions equal to the population size are selected from 

the population (𝑋𝑜𝑝,𝑖)𝑖=1
𝑁
∪ (𝑋𝑖)𝑖=1

𝑁 . In the m-SCA, jumping rate is fixed at 0.1 to avoid the 

overflow of diversity because high jumping rate may skips true solutions during the search and 

this misleads the search process. Also, in this situation, the role of search equation of SCA will be 

deficient. This jumping rate helps to move out from local optima and provides a new directions of 

search. This new direction may have higher chance of locating global optima especially in those 

cases where the optima are just in opposite direction from current solution. 

In second strategy, the personal best state of candidate solution is integrated in the search equation 

of classical SCA as a cognitive component. The classical search equation of SCA, given by  

𝑋𝑖,𝑡+1 = {
𝑋𝑖,𝑡 + 𝐴 sin(𝑏)|𝐶𝑋𝛼 − 𝑋𝑖,𝑡|            𝑖𝑓 𝑟 < 0.5

𝑋𝑖,𝑡 + 𝐴 cos(𝑏)|𝐶𝑋𝛼 − 𝑋𝑖,𝑡|           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.3) 

is modified based on the personal best history of candidate solutions. The proposed position update 

search equation is defined as follows:  

𝑋𝑖,𝑡+1 =

{
 
 

 
 
𝑋𝑖,𝑡 + 𝐴 sin(𝑏) |𝐶𝑋𝛼 − 𝑥𝑖,𝑡|

⏞            
Social Component

 + 𝑆𝑅 (𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)
⏞          
Cognitive Component

               𝑖𝑓 𝑟 < 0.5

𝑋𝑖,𝑡 + 𝐴 cos(𝑏) |𝐶𝑋𝛼 − 𝑥𝑖,𝑡|⏟            
Social Component

+ 𝑆𝑅 (𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)⏟          
Cognitive Component

               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.4) 

where 𝑋𝑖,𝑡+1 is the new updated state of a candidate solution 𝑋𝑖, 𝑋𝑖𝑝𝑏𝑒𝑠𝑡 is the personal best history 

of a candidate solution 𝑋𝑖 . 𝑆𝑅  is the coefficient which controls the effect of difference 

vector  (𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) . This parameter has been fixed as random number which is uniformly 

distributed within the interval  (0,1) . The cognitive component 𝑆𝑅 (𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)  helps in local 

search and utilizes the information of personal best state of candidate solution which is saved in 

the memory of 𝑖𝑡ℎ  candidate solution. In the proposed search equation (4.4), the cognitive 

component is used to exploit all the promising regions around the previously obtained best 

solutions.  In equation (4.4) the second term on right hand side refers to the social component as 

it provides the direction towards the elite solution of population. The term 𝑆𝑅 (𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) of the 

search equation (4.4) is referred to cognitive component as it provides the direction towards the 



66 
 

individual’s personal best history which is saved in the memory. Thus, the social and cognitive 

components maintain the balance between exploration and exploitation in the m-SCA.   

The concept of generating opposite estimates using opposition-based learning and integration of 

personal best history in the search equation provide an enhanced global and local search in the m-

SCA and help to alleviate from the situation of stagnation at local optima and increases the 

exploration ability of candidate solutions. The step wise description of the proposed Modified Sine 

Cosine Algorithm (m-SCA) is presented in Algorithm 4.1.  

Algorithm 4.1. Modified Sine Cosine Algorithm (m-SCA) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅
𝐷 

2. Initialize the population of candidate solutions 𝑋𝑖 (𝑖 = 1,2, . . . , 𝑁) 

3. Evaluate the fitness of each candidate solution  

4. Select the best solution 𝑋𝛼 from the population of candidate solutions 

5. Initialize the algorithm parameters: 

       𝑇 − Maximum number of iterations  

       𝐽𝑅 = 0.1, Jumping rate. 

6. Initialize the iteration count 𝑡 = 0 

7. 𝒘𝒉𝒊𝒍𝒆 𝑡 < 𝑇 

8.          Generate a uniformly distributed random number 𝑘 within the interval (0,1) 

9.          𝒊𝒇 𝑘 < 𝐽𝑅 

10.              Calculate the opposite population (𝑋𝑜𝑝,𝑖)𝑖=1
𝑁

of current population (𝑋𝑖)𝑖=1
𝑁 using eq. (4.2) 

11.              Evaluate the fitness of each opposite solution 

12.              Select the 𝑁 best solutions from the population (𝑋𝑜𝑝,𝑖)𝑖=1
𝑁
∪ (𝑋𝑖)𝑖=1

𝑁   

13.              Update the best solution 𝑋𝛼 

14.         𝒆𝒍𝒔𝒆  

15.              𝒇𝒐𝒓 each individual solution  

16.                     Update the state with the help of equation (4.4) 

17.                     Evaluate the fitness of updated candidate solution  

18.                     Update the best solution 𝑋𝛼 

19.             𝒆𝒏𝒅 𝒇𝒐𝒓 

20.         𝒆𝒏𝒅 𝒊𝒇 

21.         𝑡 = 𝑡 + 1 

22. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

23. Return the best solution 𝑋𝛼. 
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4.2.4. Computational Complexity 

Computational complexity of metaheuristic algorithm is very crucial to analyze the efficiency of 

the algorithm. The complexity of the algorithm primarily depends on the structure of the algorithm, 

population size, dimension of the decision vector and maximum number of iterations. Thus, the 

complexity of the proposed algorithm in terms of big-𝑂 notation can be calculated from the pseudo 

code as follows: 

For classical SCA: 

1. The classical SCA initializes the population of candidate solutions in 𝑂(𝑁 × 𝐷) time, where 

𝑁 the population size and 𝐷 represent the dimension of the problem. 

2. Fitness evaluation of population requires 𝑂(𝑁) time. 

3. Selection of best candidate solution from the population requires 𝑂(𝑁) time. 

4. Position update process in the classical SCA requires 𝑂(𝑁 × 𝐷) time. 

In summary, the total computational time for the classical SCA is equal to 𝑂(𝑁 × 𝐷 × 𝑇) for 

maximum number of iterations 𝑇. 

For m-SCA: 

1. The m-SCA initializes the population of candidate solutions in 𝑂(𝑁 × 𝐷) time, where 𝑁 the 

population size and 𝐷 represent the dimension of the problem. 

2. Fitness evaluation of population requires 𝑂(𝑁) time. 

3. Selection of best candidate solution from the population requires 𝑂(𝑁) time. 

4. Generation of opposite population from the current population requires 𝑂(𝑁 × 𝐷) time. 

5. Fitness evaluation of opposite population requires 𝑂(𝑁) time. 

6. Position update process through the proposed search equation (4.4) requires 𝑂(𝑁 × 𝐷) time. 

In summary, the total computational time for the m-SCA is equal to 𝑂(𝑁 × 𝐷 × 𝑇) for maximum 

number of iterations 𝑇. Hence, by comparing the complexities of the classical SCA and m-SCA, 

it can be concluded that in terms of computational complexity both the algorithms are same. 

4.3. Experimental Results and Discussion  

4.3.1. Benchmark Functions and Parameter Setting 

In the present chapter, the performance of the proposed m-SCA is evaluated on the same set of 

benchmark problems as given in IEEE CEC 2014 [185] and used in previous chapters. The 
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dimension of the problems are fixed as 10 and 30 in our study and the termination criteria is 

adopted same as provided by IEEE CEC 2014. For all the test problems, the population size of 

solutions is taken as 3 × 𝐷 where 𝐷 represents the dimension of the problem.  

4.3.2. Analysis of the Results 

In this section, the numerical results obtained by implementing classical SCA and m-SCA on IEEE 

CEC 2014 [185] benchmark problems are provided. The results are presented in the form of 

absolute error in objective function value. The better results are highlighted in bold face. For a 

feasible solution 𝑋 and optima 𝑋∗ to the problem 𝐹, the absolute error is calculated by |𝐹(𝑋) −

𝐹(𝑋∗)|. The experiments are performed on 10 and 30-dimensional problems and various criteria, 

such as minimum, median, mean, maximum, standard deviation (STD), of the absolute errors in 

objective function values of test problems are presented. The performance of the m-SCA on 

different categories of benchmarks corresponding to 10 and 30-dimensonal problems is analyzed 

as follows: 

The results for 10 dimension 

The results for 10-dimensional problems are given in Table 4.1. From the results presented in this 

table it is observed that:  

In all of the 10-dimensional unimodal problems from F1 to F3, the m-SCA outperforms classical 

SCA. The m-SCA provides a better minimum, maximum, mean, median and standard deviation 

value of error in objective functions in all the unimodal problems.  

In all the 10-dimensional multimodal problems, the m-SCA outperforms classical SCA in all 

criteria except for standard deviation value in F5. 

In all the 10-dimensional hybrid problems (F17-F22), the m-SCA outperforms classical SCA and 

provides better minimum, median, mean, maximum and standard deviation value of the errors in 

objective function.  

For 10-dimensional composite problems F24, F26-F30, the m-SCA provides better results as 

compared to classical SCA in all the criteria. In problems F23 and F25, the m-SCA is better than 

the classical SCA for all the criteria except standard deviation.  

Thus, it is concluded that the m-SCA performs better as compared to the classical SCA for 10-

dimensional benchmark problems. 
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The results for 30 dimension 

The results for 30-dimensional problems are given in Table 4.2. From the results presented in this 

table it is observed that:   

In all of the 30-dimensional unimodal problems from F1 to F3, the m-SCA outperforms classical 

SCA. The m-SCA provides a better minimum, maximum, mean, median and standard deviation 

value of error in objective functions in all the unimodal problems.  

In 30-dimensional multimodal problems, the m-SCA provides better results in all the criteria for 

F4, F7-F9, and F13-F15. In the remaining problems, the m-SCA is better than the classical SCA 

for all the criteria except standard deviation.  

In all the 30-dimensional hybrid problems (F17-F22), the m-SCA outperforms classical SCA and 

provides better minimum, median, mean, maximum and standard deviation value of the errors in 

objective function.  

For all the 30-dimensional composite problems (F23-F30), the m-SCA provides better results as 

compared to classical SCA in all the criteria.  

Thus, it is concluded that the m-SCA performs better as compared to the classical SCA for 30-

dimensional benchmark problems. 

4.3.3. Statistical Analysis  

To evaluate the improvement in the performance of the m-SCA against the classical SCA, a non-

parametric Wilcoxon signed rank test [186] is used at 5% confidence interval. The statistical results 

are presented in Tables 4.3 and 4.4 corresponding to 10 and 30-dimensional IEEE CEC 2014 

problems. In these tables, ′ +/=/−′ sign are used to indicate that the m-SCA is either significantly 

better, equal or worse than the classical SCA. The statistical results presented in Table 4.3 

corresponding to 10-dimensional benchmark problems show that the m-SCA is significantly better 

than the classical SCA in all the problems. Similarly, Table 4.4 indicates that in all the 30-

dimensional problems, the m-SCA is significantly better than the classical SCA. Thus, the 

statistical comparison demonstrate the superior performance of the m-SCA as compared to 

classical SCA.  

 

 



70 
 

4.3.4. Convergence Behavior 

In this section, the convergence behavior of the classical SCA and m-SCA are compared through 

the convergence curves. These curves are shown in Figs 4.1 to 4.4 corresponding to the 30-

dimensional IEEE CEC 2014 problems. The iterations are shown on horizontal axis and the 

vertical axis represents the objective function value. By inspecting the convergence history of elite 

candidate solution during the intermediate iterations of algorithms, it is obvious to conclude that 

the proposed m-SCA provides a better convergence rate as compared to classical SCA.   

4.4. Concluding Remarks 

In the chapter, an improved version of classical SCA called Modified Sine Cosine Algorithm (m-

SCA) is introduced to solve global optimization problems. The m-SCA is proposed by finding out 

the drawbacks in classical SCA related to the insufficient diversity, skipping true solutions and 

stagnation to local optima. Therefore, an opposition-based learning is integrated into the search 

mechanism of classical SCA to provide a better and promising move at the time of stagnation. The 

search equations of classical SCA is modified by adding the cognitive component so that the 

promising direction of search can be provided to the candidate solutions. The experimental results 

on IEEE CEC 2014 benchmark set and their analysis through various metrics such as statistical 

analysis, convergence analysis demonstrate the superior search ability of the m-SCA as compared 

to the classical SCA. From the experimental analysis, it is also evident that the proposed m-SCA 

is able to maintain a more appropriate balance between exploration and exploitation as compared 

to the classical SCA.  
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Table 4.1. Error values in objective function obtained by classical SCA and m-SCA for 10-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 
U

n
im

o
d

a
l 

fu
n

ct
io

n
s 

F1 SCA 5.46E+06 2.06E+07 1.54E+07 8.10E+07 1.42E+07 

 m-SCA 3.57E+05 1.80E+06 1.66E+06 4.28E+06 1.03E+06 

F2 SCA 3.54E+08 3.01E+09 2.25E+09 8.90E+09 2.15E+09 

 m-SCA 5.63E+04 2.17E+05 2.04E+05 4.23E+05 8.91E+04 

F3 SCA 1.97E+03 2.12E+04 1.52E+04 7.26E+04 1.79E+04 

 m-SCA 6.39E+02 1.85E+03 1.38E+03 6.09E+03 1.23E+03 

M
u

lt
im

o
d

a
l 

fu
n

ct
io

n
s 

F4 SCA 6.40E+01 3.88E+02 2.42E+02 1.55E+03 3.31E+02 

 m-SCA 1.04E+00 2.05E+01 1.83E+01 3.85E+01 1.17E+01 

F5 SCA 2.02E+01 2.04E+01 2.04E+01 2.07E+01 1.03E-01 

 m-SCA 4.92E+00 1.94E+01 2.03E+01 2.04E+01 2.92E+00 

F6 SCA 6.05E+00 9.76E+00 1.00E+01 1.15E+01 1.22E+00 

 m-SCA 6.89E-01 1.40E+00 1.28E+00 3.02E+00 5.69E-01 

F7 SCA 6.66E+00 6.62E+01 7.58E+01 1.19E+02 3.19E+01 

 m-SCA 4.28E-01 6.98E-01 7.08E-01 9.06E-01 9.64E-02 

F8 SCA 4.27E+01 7.41E+01 7.11E+01 1.09E+02 1.58E+01 

 m-SCA 4.22E+00 1.02E+01 9.68E+00 1.76E+01 2.67E+00 

F9 SCA 2.60E+01 7.95E+01 8.36E+01 1.18E+02 2.11E+01 

 m-SCA 6.66E+00 1.12E+01 1.13E+01 1.78E+01 2.46E+00 

F10 SCA 6.91E+02 1.32E+03 1.33E+03 1.76E+03 2.21E+02 

 m-SCA 9.27E+01 3.08E+02 2.93E+02 6.50E+02 1.35E+02 

F11 SCA 1.20E+03 1.64E+03 1.72E+03 2.02E+03 2.52E+02 

 m-SCA 1.37E+02 4.32E+02 4.41E+02 7.62E+02 1.45E+02 

F12 SCA 8.00E-01 1.53E+00 1.45E+00 2.65E+00 4.37E-01 

 m-SCA 2.62E-01 6.47E-01 6.17E-01 1.04E+00 1.74E-01 

F13 SCA 5.74E-01 2.80E+00 2.85E+00 4.81E+00 1.25E+00 

 m-SCA 1.53E-01 2.43E-01 2.36E-01 4.37E-01 5.35E-02 

F14 SCA 7.00E-01 1.45E+01 1.48E+01 2.77E+01 7.30E+00 

 m-SCA 1.19E-01 2.37E-01 2.35E-01 3.63E-01 6.22E-02 

F15 SCA 6.49E+00 1.11E+04 7.92E+03 4.67E+04 1.23E+04 

 m-SCA 1.02E+00 1.78E+00 1.73E+00 2.77E+00 3.89E-01 

F16 SCA 2.92E+00 3.90E+00 3.98E+00 4.37E+00 3.16E-01 

 m-SCA 1.59E+00 2.53E+00 2.58E+00 2.99E+00 2.77E-01 

H
y

b
ri

d
 f

u
n

ct
io

n
s 

F17 SCA 3.82E+03 3.44E+05 1.71E+05 1.88E+06 3.97E+05 

 m-SCA 8.84E+02 2.15E+03 1.82E+03 8.18E+03 1.17E+03 

F18 SCA 8.46E+03 2.81E+06 5.83E+05 3.87E+07 6.49E+06 

 m-SCA 2.92E+02 2.37E+03 1.70E+03 7.32E+03 1.88E+03 

F19 SCA 6.50E+00 1.13E+01 1.11E+01 2.27E+01 3.55E+00 

 m-SCA 1.56E+00 2.02E+00 2.00E+00 2.51E+00 1.83E-01 

F20 SCA 3.78E+02 1.61E+05 5.16E+04 1.10E+06 2.42E+05 

 m-SCA 9.71E+01 6.54E+02 4.10E+02 2.72E+03 5.57E+02 

F21 SCA 1.89E+03 1.23E+05 5.03E+04 8.77E+05 1.90E+05 

 m-SCA 5.24E+02 1.47E+03 1.30E+03 3.92E+03 6.09E+02 

F22 SCA 5.40E+01 2.27E+02 2.32E+02 5.04E+02 1.12E+02 

 m-SCA 2.51E+01 3.04E+01 2.96E+01 4.13E+01 3.75E+00 
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 Function Algorithm Minimum Median Mean Maximum STD 
C

o
m

p
o

si
te

 f
u

n
ct

io
n

s 

F23 SCA 3.40E+02 4.32E+02 4.30E+02 5.36E+02 4.62E+01 

 m-SCA 1.35E+01 3.10E+02 3.30E+02 3.30E+02 7.00E+01 

F24 SCA 1.48E+02 2.02E+02 2.03E+02 2.37E+02 2.43E+01 

 m-SCA 1.08E+02 1.16E+02 1.15E+02 1.23E+02 2.97E+00 

F25 SCA 1.70E+02 2.06E+02 2.07E+02 2.22E+02 7.83E+00 

 m-SCA 1.27E+02 1.51E+02 1.52E+02 1.83E+02 1.32E+01 

F26 SCA 1.01E+02 1.03E+02 1.02E+02 1.04E+02 8.56E-01 

 m-SCA 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.34E-02 

F27 SCA 1.23E+02 4.45E+02 4.61E+02 6.11E+02 1.16E+02 

 m-SCA 2.84E+00 4.58E+00 4.46E+00 8.52E+00 1.19E+00 

F28 SCA 4.14E+02 5.49E+02 5.49E+02 7.39E+02 7.74E+01 

 m-SCA 2.22E+02 4.15E+02 4.35E+02 5.32E+02 7.28E+01 

F29 SCA 5.59E+03 1.52E+05 4.72E+04 1.83E+06 3.14E+05 

 m-SCA 2.77E+02 5.04E+02 4.60E+02 1.03E+03 1.61E+02 

F30 SCA 1.29E+03 8.13E+03 4.88E+03 4.71E+04 9.54E+03 

 m-SCA 1.18E+03 1.68E+03 1.68E+03 2.27E+03 2.41E+02 
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Table 4.2. Error values in objective function obtained by classical SCA and m-SCA for 30-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 
U

n
im

o
d

a
l 

fu
n

ct
io

n
s 

F1 SCA 1.61E+08 3.93E+08 5.14E+08 1.27E+09 2.77E+08 

 m-SCA 9.86E+06 2.23E+07 2.26E+07 4.60E+07 6.35E+06 

F2 SCA 1.58E+10 3.08E+10 3.35E+10 6.50E+10 1.28E+10 

 m-SCA 1.82E+07 7.00E+07 8.42E+07 2.16E+08 5.50E+07 

F3 SCA 3.01E+04 5.05E+04 5.48E+04 1.20E+05 1.85E+04 

 m-SCA 1.60E+04 2.69E+04 2.70E+04 4.01E+04 6.53E+03 

M
u

lt
im

o
d

a
l 

fu
n

ct
io

n
s 

F4 SCA 8.80E+02 2.22E+03 3.44E+03 1.67E+04 2.97E+03 

 m-SCA 1.37E+02 1.76E+02 1.81E+02 2.31E+02 2.31E+01 

F5 SCA 2.08E+01 2.10E+01 2.09E+01 2.10E+01 4.13E-02 

 m-SCA 2.07E+01 2.09E+01 2.09E+01 2.10E+01 6.41E-02 

F6 SCA 3.15E+01 3.79E+01 3.77E+01 4.20E+01 2.85E+00 

 m-SCA 8.20E+00 1.45E+01 1.45E+01 2.17E+01 3.08E+00 

F7 SCA 1.29E+02 2.91E+02 3.49E+02 8.76E+02 1.68E+02 

 m-SCA 1.26E+00 1.86E+00 1.95E+00 3.19E+00 5.00E-01 

F8 SCA 2.25E+02 2.78E+02 2.84E+02 3.87E+02 3.51E+01 

 m-SCA 7.74E+01 1.14E+02 1.13E+02 1.35E+02 1.17E+01 

F9 SCA 2.22E+02 3.05E+02 3.13E+02 4.41E+02 4.18E+01 

 m-SCA 1.04E+02 1.32E+02 1.35E+02 1.82E+02 1.43E+01 

F10 SCA 5.17E+03 6.71E+03 6.68E+03 7.29E+03 4.23E+02 

 m-SCA 2.37E+03 3.70E+03 3.73E+03 4.67E+03 4.82E+02 

F11 SCA 6.37E+03 7.20E+03 7.16E+03 7.71E+03 2.98E+02 

 m-SCA 4.09E+03 4.94E+03 4.91E+03 5.69E+03 3.70E+02 

F12 SCA 1.91E+00 2.46E+00 2.44E+00 2.97E+00 2.75E-01 

 m-SCA 9.18E-01 1.81E+00 1.81E+00 2.48E+00 3.22E-01 

F13 SCA 3.05E+00 4.53E+00 4.80E+00 7.33E+00 1.25E+00 

 m-SCA 2.82E-01 3.89E-01 3.89E-01 4.82E-01 4.53E-02 

F14 SCA 4.35E+01 1.01E+02 1.11E+02 2.42E+02 5.26E+01 

 m-SCA 1.55E-01 2.73E-01 2.71E-01 3.68E-01 3.84E-02 

F15 SCA 1.21E+03 1.77E+04 3.99E+04 2.61E+05 5.34E+04 

 m-SCA 1.14E+01 1.53E+01 1.50E+01 1.79E+01 1.64E+00 

F16 SCA 1.23E+01 1.31E+01 1.30E+01 1.36E+01 2.39E-01 

 m-SCA 1.13E+01 1.21E+01 1.21E+01 1.26E+01 2.70E-01 

H
y

b
ri

d
 f

u
n

ct
io

n
s 

F17 SCA 1.27E+06 1.49E+07 1.79E+07 6.65E+07 1.39E+07 

 m-SCA 1.31E+05 4.63E+05 5.39E+05 1.54E+06 3.30E+05 

F18 SCA 6.47E+07 4.10E+08 8.74E+08 3.62E+09 9.30E+08 

 m-SCA 4.72E+04 1.57E+05 1.90E+05 5.87E+05 1.21E+05 

F19 SCA 6.54E+01 1.40E+02 1.74E+02 5.05E+02 9.42E+01 

 m-SCA 1.18E+01 1.71E+01 1.76E+01 2.32E+01 2.84E+00 

F20 SCA 7.76E+03 2.20E+04 3.26E+04 1.38E+05 2.85E+04 

 m-SCA 4.60E+03 1.20E+04 1.26E+04 2.01E+04 3.64E+03 

F21 SCA 4.95E+05 3.23E+06 4.52E+06 2.40E+07 4.51E+06 

 m-SCA 2.16E+04 1.21E+05 1.18E+05 2.91E+05 4.95E+04 

F22 SCA 6.17E+02 1.28E+03 1.29E+03 2.71E+03 4.33E+02 

 m-SCA 1.74E+02 2.55E+02 2.59E+02 3.75E+02 5.07E+01 
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 Function Algorithm Minimum Median Mean Maximum STD 
C

o
m

p
o

si
te

 f
u

n
ct

io
n

s 

F23 SCA 3.62E+02 4.05E+02 4.70E+02 1.05E+03 1.48E+02 

 m-SCA 3.19E+02 3.21E+02 3.21E+02 3.24E+02 1.43E+00 

F24 SCA 2.01E+02 2.22E+02 2.32E+02 3.48E+02 3.18E+01 

 m-SCA 2.00E+02 2.00E+02 2.00E+02 2.00E+02 4.63E-02 

F25 SCA 2.00E+02 2.36E+02 2.41E+02 3.05E+02 1.93E+01 

 m-SCA 2.00E+02 2.00E+02 2.02E+02 2.13E+02 4.06E+00 

F26 SCA 1.02E+02 1.05E+02 1.05E+02 1.09E+02 1.69E+00 

 m-SCA 1.00E+02 1.00E+02 1.00E+02 1.01E+02 4.48E-02 

F27 SCA 5.18E+02 6.90E+02 7.30E+02 1.18E+03 1.74E+02 

 m-SCA 4.09E+02 4.26E+02 4.37E+02 4.94E+02 2.46E+01 

F28 SCA 2.06E+03 3.00E+03 3.01E+03 4.34E+03 5.07E+02 

 m-SCA 6.23E+02 1.01E+03 1.14E+03 2.72E+03 4.32E+02 

F29 SCA 9.94E+06 4.59E+07 5.13E+07 1.07E+08 2.05E+07 

 m-SCA 1.49E+04 3.66E+04 9.44E+04 7.59E+05 1.55E+05 

F30 SCA 2.52E+05 7.23E+05 7.76E+05 2.00E+06 3.87E+05 

 m-SCA 1.75E+04 3.93E+04 4.05E+04 1.07E+05 1.52E+04 
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Table 4.3. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 10-dimentional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 5.15E-10 + F16 5.15E-10 + 

F2 5.15E-10 + F17 5.15E-10 + 

F3 5.46E-10 + F18 5.15E-10 + 

F4 5.15E-10 + F19 5.15E-10 + 

F5 2.66E-07 + F20 5.46E-10 + 

F6 5.15E-10 + F21 5.46E-10 + 

F7 5.15E-10 + F22 5.15E-10 + 

F8 5.15E-10 + F23 5.15E-10 + 

F9 5.15E-10 + F24 5.15E-10 + 

F10 5.14E-10 + F25 5.15E-10 + 

F11 5.15E-10 + F26 5.15E-10 + 

F12 5.15E-10 + F27 5.15E-10 + 

F13 5.15E-10 + F28 1.25E-09 + 

F14 5.15E-10 + F29 5.15E-10 + 

F15 5.15E-10 + F30 1.67E-09 + 

 

 

Table 4.4. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 30-dimentional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 5.15E-10 + F16 5.15E-10 + 

F2 5.15E-10 + F17 5.15E-10 + 

F3 7.35E-10 + F18 5.15E-10 + 

F4 5.15E-10 + F19 5.15E-10 + 

F5 3.06E-03 + F20 4.89E-08 + 

F6 5.15E-10 + F21 5.15E-10 + 

F7 5.15E-10 + F22 5.15E-10 + 

F8 5.15E-10 + F23 5.15E-10 + 

F9 5.15E-10 + F24 5.15E-10 + 

F10 5.15E-10 + F25 6.53E-10 + 

F11 5.15E-10 + F26 5.15E-10 + 

F12 1.32E-09 + F27 5.15E-10 + 

F13 5.15E-10 + F28 5.15E-10 + 

F14 5.15E-10 + F29 5.15E-10 + 

F15 5.15E-10 + F30 5.15E-10 + 
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Fig 4.1. Convergence curves for 30-dimensional problems from F1 to F8 corresponding to elite 

candidate solution of each iteration 
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Fig 4.2. Convergence curves for 30-dimensional problems from F9 to F16 corresponding to elite 

candidate solution of each iteration   
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Fig 4.3. Convergence curves for 30-dimensional problems from F17 to F24 corresponding to 

elite candidate solution of each iteration  
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Fig 4.4. Convergence curves for 30-dimensional problems from F25 to F30 corresponding to 

elite candidate solution of each iteration 
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Chapter 5 

Improved Sine Cosine Algorithm with Crossover 

Scheme for Unconstrained Optimization Problems 

In this chapter another attempt is made to improve the performance of classical SCA. 

5.1. Introduction 

This chapter introduces a novel variant of classical SCA called ISCA which enhances the 

exploitation ability of candidate solutions and tries to establish an appropriate balance between 

exploration and exploitation. In order to accomplish these objectives, first the position update 

mechanism of the classical SCA is modified with the help of personal best state of candidate 

solutions and crossover operator. Then the greedy selection mechanism is used to avoid the 

divergence of candidate solutions from the discovered promising areas of the search space. The 

ISCA has been tested and compared with classical SCA on the IEEE CEC 2014 benchmark set of 

unconstrained optimization problems. In the chapter, the performance of the ISCA is also 

evaluated with respect to the m-SCA which was presented in the previous chapter. 

The organization of the chapter is as follows: Section 5.2 provides a motivation behind proposing 

a new variant of classical SCA and detailed description of the proposed ISCA. Section 5.3 provides 

numerical experimentation, analysis and comparison of the ISCA with classical SCA. In Section 

5.4, a comparison is shown between the m-SCA (introduced in Chapter 4) and ISCA. Finally, the 

chapter is closed with concluding remarks in Section 5.5. 

5.2. Proposed Improved Sine Cosine Algorithm (ISCA) 

5.2.1. Motivation and Proposed Strategies 

Although, the SCA explores the search space very efficiently but like other population-based 

algorithms, it sometimes faces the high diversity (exploration). The high diversity may sometimes 

skips the true solutions of the problem if suitable balance between exploration and exploitation is 

not present in the algorithm. 

The content of this chapter is published in:  

Gupta, S., & Deep, K. (2019). Improved sine cosine algorithm with crossover scheme for global 

optimization. Knowledge-Based Systems, 165, 374-406. Elsevier. 
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In the search equations of SCA, a candidate solution is updated around the current state of a 

candidate solution and the area of a search space is decided by the coefficient 𝐴. In the prior 

iteration of the algorithm, candidate solutions are reallocated far from the current state as the 

coefficient 𝐴 supports the exploration of the search space. The coefficient 𝐶 also contributes to the 

exploration during the search process. Therefore, during the search process, in each iteration, a 

candidate solution losses its own features and always reallocate to a new position. The high 

diversity and the loss of personal best features by candidate solutions may skip the true solution 

and it is obvious that these skipped solutions may have a chance to provide better positions in the 

next iteration by exploiting the regions around them.  

Therefore, to alleviate the above mentioned issues from classical SCA, some modifications have 

been done in the search strategy of classical SCA and a new variant called ISCA is proposed. The 

modifications which are introduced in classical SCA are presented as follows: 

i. In the search equation of classical SCA, the fittest position 𝑋𝛼 is replaced by the personal 

best states of candidate solutions in order to prevent from the situation of stagnation at local 

optima. The search process in the direction of personal best state of candidate solutions 

helps in exploring the more promising regions around the personal state of candidate 

solutions. This strategy also helps to escape from the situation when the elite candidate 

solution gets stuck in local optima and fails to guide the search. 

ii. To integrate the personal best features of candidate solutions, a crossover is performed 

between the updated candidate solution through modified search mechanism and its 

personal best state obtained so far. This strategy helps to prevent the skipping of true 

solutions during the search. 

iii. To reduce the high diversity and to provide a greedy direction of search, greedy selection is 

applied between updated and previous state of candidate solutions. 

These modifications in the classical SCA are adopted to enhance the exploration as well as 

exploitation ability of candidate solutions with the help of personal best history of each candidate 

solution. The proposed strategies maintain the collaborative search in the algorithm. Greedy 

selection and crossover operator prevent the candidate solutions to diverge from discovered 

promising areas of the search space and to keep their best features respectively. The crossover 

which is used in the ISCA is described as follows:  
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Crossover  

In the crossover process, two parent candidate solutions 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷)  and 𝑌 =

(𝑦1, 𝑦2, … , 𝑦𝐷) are hybridized to produce an offspring candidate solution 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝐷) 

consisting the features of both the parent solutions. The crossover which is used in the present 

chapter is defined as follows:  

 𝑧𝑗 = {
𝑦𝑗     𝑖𝑓 𝑟𝑗  ≤ 𝐶𝑅

𝑥𝑗     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.1) 

where 𝐶𝑅 is the crossover rate. In the chapter, the crossover probability 𝐶𝑅 is fixed to 0.3. The 

random number 𝑟𝑗 is uniformly distributed in the interval (0,1). 

5.2.2. Framework of Improved Sine Cosine Algorithm (ISCA)    

Similar to the classical SCA, the ISCA also starts with the uniformly distributed population of 

candidate solutions generated randomly within the search space. After initialization, the search 

process for optima of the problem starts. The modified search equation introduced in ISCA is as 

follows: 

 𝑋̂𝑖,𝑡+1 =

{
 
 

 
 

 
𝑋𝑖,𝑡 + 𝐴 sin(𝑟1) |𝐶𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡|

⏞              
Cognitive Component

 + 𝑟2(𝑋𝛼  − 𝑋𝑖,𝑡)⏞        
Social  Component

                𝑖𝑓 𝑟 < 0.5 

𝑋𝑖,𝑡 + 𝐴 cos(𝑟1) |𝐶𝑋𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡|⏟              
Cognitive Component

+ 𝑟2(𝑋𝛼 − 𝑋𝑖,𝑡)⏟        
Social Component

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5.2) 

where 𝑋𝑖,𝑡 is the position of candidate solution at iteration 𝑡, 𝑋̂𝑖,𝑡+1 is the new updated position of 

the candidate solution 𝑋𝑖,𝑡  at iteration 𝑡 + 1. 𝑋𝑖𝑝𝑏𝑒𝑠𝑡  is the personal best history of a candidate 

solution 𝑋𝑖 , 𝑋𝛼  represents the position of best candidate solution from the population, 𝑟2  is a 

uniformly distributed random number between 0 and 1, rest of the parameters such as 𝐴, 𝑟1, 𝐶 and 

𝑟 are same as in classical SCA. 

In equation (5.2), the second term on the right-hand side contributes the cognitive component in 

the search process and the third term contributes to the social component. The benefit of addressing 

these two components in the search process is to perform the local and global search during the 

search process. The cognitive and social components provide an efficient and promising directions 

to the current candidate solution by combining the directions along the solution’s best and 

population’s best states.  
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The candidate solution updated by equation (5.2) may have a chance to diverge from the current 

state when the search area provided by the coefficient 𝐴 is very large. Therefore, in order to handle 

such situation and to integrate the personal best features of a candidate solution, the updated 

solution 𝑋̂𝑖,𝑡+1 is crossed with its personal best state 𝑋𝑖𝑝𝑏𝑒𝑠𝑡. This crossover is performed with the 

help of equation (5.1) and the new obtained position of a candidate solution is represented 

by 𝑋𝑖,𝑡+1. After the crossover mechanism, the greedy selection is applied between the current and 

previous state of candidate solution. Greedy selection mechanism maintains the balance between 

exploration and exploitation in the search process and avoids the divergence of candidate solution 

from discovered promising areas of the search space. All the above steps are clearly summarized 

in Algorithm 5.1. 

5.2.3. Computational Complexity 

The time complexity of the proposed ISCA is discussed as follows: 

1. The ISCA initializes the population of candidate solutions in 𝑂(𝑁 × 𝐷) time, where 𝑁  is the 

population size and 𝐷 represent the dimension of the problem. 

2. Fitness evaluation of initial population requires 𝑂(𝑁) time. 

3. Selection of best candidate solution from the population requires 𝑂(𝑁) time. 

4. Position update of the candidate solutions and the crossover mechanism in the ISCA requires 

the 𝑂(𝑁 × 𝐷) time. 

5. Fitness evaluation of updated candidate solutions requires 𝑂(𝑁) time. 

6. The greedy selection requires an additional 𝑂(𝑁) time in the proposed ISCA. 

In summary, the total computational complexity for the proposed ISCA is equal to 𝑂(𝑁 × 𝐷 × 𝑇) 

for maximum number of iterations 𝑇 and this complexity is same as for classical SCA.  
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Algorithm 5.1. Improved Sine Cosine Algorithm (ISCA) 

1. 𝐹𝑜𝑟    𝑀𝑖𝑛 𝐹(𝑋)     𝑠. 𝑡.    𝑋min ≤ 𝑋 ≤ 𝑋max, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐷) ∈ 𝑅
𝐷 

2. Initialize the population of candidate solutions 𝑋𝑖 (𝑖 = 1,2, . . . , 𝑁) 

3. Evaluate the fitness of each candidate solution  

4. Select the best solution 𝑋𝛼 from the population of candidate solutions 

5. Initialize the algorithm parameters: 

       𝑇 − Maximum number of iterations  

       𝐶𝑅 = 0.3, crossover rate. 

6. Store the personal best history of population as personal best position matrix as [𝑋𝑖𝑝𝑏𝑒𝑠𝑡]𝑖=1

𝑁

=

[𝑋𝑖]𝑖=1
𝑁  

7. Initialize the iteration count 𝑡 = 0 

8. 𝒘𝒉𝒊𝒍𝒆 𝑡 < 𝑇 

9.            𝒇𝒐𝒓 each individual solution 

10.                    Update  the position with the help of equation (5.2) 

11.                    Apply the crossover operator between personal best and updated state of candidate         

                         solution as described in equation (5.1)                     

12.                   Evaluate the fitness of updated candidate solution  

13.                   𝒇𝒐𝒓 𝑖 = 1,2, … ,𝑁 

14.                          𝒊𝒇 𝐹(𝑋𝑖,𝑡+1) > 𝐹(𝑋𝑖,𝑡) 

15.                               𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 

16.                          𝒆𝒏𝒅 𝒊𝒇 

17.                  𝒆𝒏𝒅 𝒇𝒐𝒓 

18.                  Update the personal best state 𝑋𝑖𝑝𝑏𝑒𝑠𝑡  of candidate solution 𝑋𝑖  

19.                  Update the best solution 𝑋𝛼 

20.             𝒆𝒏𝒅 𝒐𝒇 𝒇𝒐𝒓  

21.             𝑡 = 𝑡 + 1 

22. 𝒆𝒏𝒅 𝒐𝒇 𝒘𝒉𝒊𝒍𝒆 

23. Return the best solution 𝑋𝛼. 
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5.3. Experimental Results and Discussion  

5.3.1. Benchmark Functions and Parameter Setting 

In this chapter, the ISCA is evaluated on the same benchmark set as used in previous chapters and 

is given in IEEE CEC 2014 [185]. The experiments are conducted on 10 and 30-dimensional 

problems with population size 3 × 𝐷  and termination criteria 104 × 𝐷  function evaluations, 

where 𝐷 is the dimension of the problem.  

5.3.2. Analysis of the Results 

In this section, the numerical results obtained by implementing classical SCA and proposed ISCA 

on IEEE CEC 2014 [185] benchmark problems are provided. The results are presented in the form 

of absolute error in objective function value and the better results are highlighted in bold face. For 

a feasible solution 𝑋 and optima 𝑋∗ to the problem 𝐹, the absolute error is calculated by |𝐹(𝑋) −

𝐹(𝑋∗)|. The results are calculated in the form of various criteria, such as minimum, median, mean, 

maximum, standard deviation (STD), of the absolute errors in objective function values of test 

problems are presented. The performance of the ISCA on different categories of benchmarks 

corresponding to 10 and 30-dimensonal problems is analyzed as follows: 

The results for 10 dimension 

The results for 10-dimension problems are given in Table 5.1. On observing the results from the 

table, it is found that the ISCA performs better as compared to the classical SCA. 

In 10-dimensional unimodal problems from F1 to F3, the ISCA provides better results in all the 

criteria as compared to the classical SCA.  

In 10-dimensional multimodal problems F4, F6-F15, the ISCA provides better results in all the 

criteria as compared to the classical SCA. In problems F5 and F16, the ISCA is better than classical 

SCA for all criteria except standard deviation. 

In all the 10-dimensional hybrid problems (F17-F22), the ISCA provides better results in terms of 

all the criteria as compared to classical SCA. 

In all the 10 dimensional composite problems (F23-F30) except F25, F27 and F29, the ISCA 

provides better results in terms of all the criteria as compared to classical SCA. In F25 and F27, 

the ISCA is better than classical SCA for all criteria except standard deviation. In F29, the 
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maximum error and standard deviation value is better in classical SCA while in other criteria, 

ISCA is better.  

The results for 30 dimension 

The results for 30-dimension problems are given in Table 5.2. On observing the results from the 

table, it is found that the ISCA performs better for 30-dimsnional problems also as compared to 

the classical SCA. 

In all the 30-dimensional unimodal problems from F1 to F3, the ISCA provides better results in 

all the criteria as compared to the classical SCA.  

In 30-dimensional multimodal problems F4, F6-F10, F13-F15, the ISCA is better than classical 

SCA in terms of all the criteria. In F5, the classical SCA provides better standard deviation than 

ISCA, while the provided minimum and median error is better in ISCA and in terms of mean and 

maximum error, both the algorithms are same. In problems F11, F12 and F16, the ISCA is better 

than classical SCA except for standard deviation. 

In all the 30-dimensional hybrid problems (F17-F22), the ISCA provides better results in terms of 

all the criteria as compared to classical SCA. 

In all the 30-dimensional composite problems (F23, F24 and F26-F30), the ISCA provides better 

results in terms of all the criteria as compared to classical SCA. In F25, the ISCA is better than the 

classical SCA for all the criteria except minimum error. 

Hence, an overall analysis of the proposed ISCA on different category of benchmarks demonstrate 

the better exploration and exploitation ability of the ISCA as compared to the classical SCA. The 

experimental results also demonstrate that the proposed strategies in the ISCA establishes a more 

appropriate balance between exploration and exploitation as compared to the classical SCA.  

5.3.3. Statistical Analysis  

To ensure the improvement in ISCA, Wilcoxon signed rank test [186] has been applied with the 

same setting as used in previous chapters and the obtained statistical conclusions are presented in 

Tables 5.3 and 5.4. In the tables, ′ +/=/−′ sign are used to indicate that the ISCA is significantly 

better, equal or worse than the classical SCA. From the tables, it can be analyzed that in all the 30 

problems, the ISCA is better than classical SCA corresponding to 10 as well as 30-dimensional 

benchmark problems. Overall, from the statistical results, it can be observed that the proposed 

ISCA has significantly improved the search efficiency and accuracy in obtaining the solution. 
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5.3.4. Convergence Behavior 

The improvement in the solution for any problem can be analyzed through the elite solution of 

every iteration. Therefore, in this section, the history of the elite candidate solution is plotted in 

terms of convergence rate. In the Figs 5.1 to 5.4, the convergence history is shown for the 30-

dimensional benchmark problems given in CEC 2014. The growth of iterations is shown on 

horizontal axis the vertical axis represents the average of objective function values. By inspecting 

the convergence curves, it is empirical to conclude that the proposed ISCA is better than classical 

SCA in terms of convergence rate.   

5.4. Comparison Between m-SCA and ISCA Algorithms 

In this section, the results of m-SCA which is proposed in chapter 4, and the proposed ISCA of 

current chapter are compared through Wilcoxon signed rank test. The comparison is conducted for 

10 and 30-dimensional CEC 2014 problems. The statistical results are shown in Table 5.5. From 

the table, it is clear that in unimodal, multimodal, and hybrid problems, the ISCA outperform m-

SCA. In composite problems for the dimension 10 m-SCA and for the dimension 30, ISCA 

performs better. Overall, the ISCA performs better as compared to m-SCA.  

Although, both the variants m-SCA (proposed in the Chapter 4) and the ISCA (proposed in the 

current chapter) provide better results as compared to the classical SCA, but the comparison 

between these two variants is required on different categories of benchmark problems to elect the 

best performer. Therefore, in this section, a comparison is performed between the algorithms m-

SCA and ISCA. For the sake of comparison, the results of the m-SCA are reproduced and 

presented in Tables 5.1 and 5.2 for 10 and 30-dimensional problems respectively.  

The comparison for 10 dimension 

The results for 10-dimension problems are given in Table 5.1. The description of the results on 

different category of benchmarks is as follows: 

In 10-dimensional unimodal problems from F1 to F3, the ISCA provides better results in all the 

criteria as compared to the classical SCA and m-SCA.  

In 10-dimensional multimodal problem F4, the ISCA provides better minimum and maximum 

value of errors than others and m-SCA provides better results in remaining criteria as compared to 

others. In F5, the ISCA is better than the classical SCA and m-SCA in terms of minimum, mean 

and maximum errors while for median error, m-SCA and for standard deviation, classical SCA is 
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better than others. In problems F6, F7 and F14, ISCA provides better minimum, median and mean 

value of errors and the m-SCA provides better maximum and standard deviation of errors as 

compared to other algorithms. In problems F8, F10, F12 and F13, the ISCA provides better results 

in all the criteria as compared to m-SCA and classical SCA. In the problems F9, F11, F15 and F16, 

the ISCA provides better results in all the criteria except for standard deviation value as compared 

to classical SCA and m-SCA. In terms of standard deviation, the m-SCA is better in all these 

problems as compared to others. 

In 10-dimensional hybrid problem F17, the ISCA is better than classical SCA and m-SCA in terms 

of minimum and maximum errors while in other criteria, m-SCA is better than others. In F18, the 

m-SCA is better than other in terms of all the criteria except for minimum error. For this problem, 

the minimum error is better in ISCA than others. In problems F19-F21, the ISCA is better in 

providing better minimum, median and mean value of errors as compared to the other algorithms 

and in other criteria, the m-SCA is better than others. In problem F22, the ISCA provides better 

results than other algorithms in all the criteria except for standard deviation which is better in m-

SCA.  

In 10-dimensional composite problem F23, the m-SCA is better than others in terms of minimum 

and median error. In terms of mean and maximum error both the algorithms m-SCA and ISCA are 

same and better than classical SCA while for the standard deviation, ISCA is better than others. In 

F24, the ISCA is better in terms of minimum and mean of errors as compared to classical SCA 

and m-SCA. In terms of median, maximum and standard deviation of errors, m-SCA is better than 

other algorithms. For F25, the minimum error is better in ISCA, mean, median and maximum error 

is better in m-SCA and standard deviation value is better in classical SCA as compared to other 

algorithms. In F26, the m-SCA and ISCA provide same results for all the criteria except for 

standard deviation. The standard deviation value is better in m-SCA as compared to the other 

algorithms for F26. In F27, except for the minimum error value, the m-SCA is better than the 

classical SCA and ISCA. The minimum is better in ISCA than the other algorithms for F27. In 

F28, the median value of errors is better in m-SCA while in terms of other criteria, the ISCA is 

better than the other algorithms.  In F29, ISCA is better than others in terms of minimum and mean 

of error values while for the other criteria, the m-SCA is better than the others. In F30, except for 

standard deviation (which is better in m-SCA), the ISCA is better than the classical SCA and m-

SCA. 
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The comparison for 30 dimension 

The results for 30-dimension problems are given in Table 5.2. The description of the results on 

different category of benchmarks is as follows: 

In 30-dimensional unimodal problems F1, the ISCA provides better results than classical SCA and 

m-SCA in all criteria except for standard deviation which is better in m-SCA.  In problem F2, the 

m-SCA is better than other except for minimum error which is better in ISCA. In problem F3, the 

ISCA provides better results in terms of all the criteria as compared to classical SCA and m-SCA. 

In 30-dimensional multimodal problem F4, F6, F8 and F10, the ISCA provides results in terms of 

all the criteria as compared to the classical SCA and m-SCA. In F5, the m-SCA and ISCA provides 

same results but better than classical SCA for all criteria except for standard deviation. The 

standard deviation value for F5 is better in classical SCA than other algorithms. In F7, the m-SCA 

is better than the others in terms of all criteria except for minimum error which is better in ISCA. 

In F9, the ISCA is better than the others in terms of all criteria except for standard deviation. The 

standard deviation is better in m-SCA than other algorithms for F9. In F11, F12 and F16, the ISCA 

is better than the others in terms of all the criteria except for standard deviation which is better in 

classical SCA. In F13 and F15, the ISCA is better than others except for maximum and standard 

deviation which is better in m-SCA. In F14, the m-SCA is better than classical SCA and ISCA for 

all the criteria. 

In 30-dimensional hybrid problem F17-F20, the ISCA is better than classical SCA and m-SCA in 

terms of all the criteria. In F21, the m-SCA is better than others in terms of all the criteria. In 

problems F22, the ISCA is better than other algorithms in terms of all the criteria except for 

standard deviation which is better in m-SCA. 

In 30-dimensional composite problem F23, the ISCA is better than others in terms of all criteria 

except for standard deviation which is better in m-SCA. In F24, m-SCA and ISCA provide same 

results in terms of minimum, median, mean and maximum error value but for the standard 

deviation ISCA is better than other algorithms. In F25, the m-SCA is better than others in terms 

for minimum, median and mean value of errors while in terms of other criteria, ISCA is better than 

the others. In F26, m-SCA and ISCA are same and better than classical SCA in terms of all the 

criteria except for standard deviation. The standard deviation value for F26 is better in m-SCA. In 

F27, F29 and F30, the ISCA is better than classical SCA and m-SCA in all the criteria. In F28, the 

ISCA is better than the others in all the criteria except for minimum error which is better in m-

SCA.  
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Although, the numerical results demonstrate the differences in providing the results, but in order 

to analyze the best performer corresponding to each category of benchmarks and to make concrete 

conclusions about the significance of differences in the performance of algorithms, statistical 

comparison between m-SCA and ISCA is performed through Wilcoxon signed rank test.  The 

comparison is performed using same parameter setting as used in previous chapters. The statistical 

results are listed in Table 5.5 and the best performer is listed in the same table. The convergence 

behavior of classical SCA, m-SCA and ISCA is also compared in the Figs 5.1 to 5.4.  

In most of the problems except F2, and F5, the convergence rate is found better in ISCA as 

compared to classical SCA and m-SCA. In problems F2, the convergence of m-SCA is found better 

than ISCA at the end of iteration. In F5, only for some initial iterations (up to 800) the convergence 

is better in m-SCA as compared to ISCA.  Overall, from all the comparison analysis the following 

remarks can be made:  

1. In terms of worst time complexity calculated through big−𝑂  notation, all the algorithms 

classical SCA, m-SCA and ISCA are identical. 

2. On unimodal problems, the ISCA performs better as compared to the classical SCA and m-

SCA. 

3. On multimodal and hybrid problems, the ISCA is more successful as compared to the classical 

SCA and m-SCA. 

4. On the set of composite problems, the m-SCA and ISCA are very competitive to each other. 

5. The convergence rate is better in ISCA as compared to classical SCA and m-SCA. 

 

5.5. Concluding Remarks 

The present chapter introduces an improved version of SCA called ISCA with the help of crossover 

operator and personal best state of candidate solutions. In the ISCA, the search mechanism is 

modified by integrating the personal best state in place of the global best state to decide the search 

region around the personal best state of a candidate solution and to prevent from the situation of 

stagnation at local optima. In the search equation, global best or social component is also added 

with random step size to enhance the search towards the best available candidate solution. The 

greedy selection mechanism and crossover operator help to reduce the problem of inefficient 

diversity during the search process. To examine the impact of integrated strategies of the ISCA, it 

has been tested on standard IEEE CEC 2014 benchmark set. The analysis of results through various 

metrics such as statistical test and convergence behavior analysis ensures that the ISCA is better 

optimizer than classical SCA for all category of benchmark optimization problems. 
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The comparison between classical SCA, m-SCA (proposed in Chapter 4) and ISCA (proposed in 

current chapter) through various metrics shows that the ISCA is better optimizer to solve unimodal, 

multimodal and hybrid benchmark problems as compared to classical SCA and m-SCA. For the 

composite benchmark problems, both the algorithms m-SCA and ISCA are very competitive to 

each other and outperformed the classical SCA. 
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Table 5.1. Error values in objective function obtained by classical SCA, m-SCA and ISCA for 10-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 
U

n
im

o
d

a
l 

p
ro

b
le

m
s 

F1 SCA 5.46E+06 2.06E+07 1.54E+07 8.10E+07 1.42E+07  
m-SCA 3.57E+05 1.80E+06 1.66E+06 4.28E+06 1.03E+06  
ISCA 2.36E+04 3.47E+05 2.14E+05 3.48E+06 5.26E+05 

F2 SCA 3.54E+08 3.01E+09 2.25E+09 8.90E+09 2.15E+09  
m-SCA 5.63E+04 2.17E+05 2.04E+05 4.23E+05 8.91E+04  
ISCA 1.35E+03 6.02E+03 3.39E+03 1.55E+04 4.70E+03 

F3 SCA 1.97E+03 2.12E+04 1.52E+04 7.26E+04 1.79E+04  
m-SCA 6.39E+02 1.85E+03 1.38E+03 6.09E+03 1.23E+03  
ISCA 1.45E+01 2.76E+02 1.20E+02 1.09E+03 2.83E+02 

M
u

lt
im

o
d

a
l 

p
ro

b
le

m
s 

F4 SCA 6.40E+01 3.88E+02 2.42E+02 1.55E+03 3.31E+02  
m-SCA 1.04E+00 2.05E+01 1.83E+01 3.85E+01 1.17E+01  
ISCA 6.56E-01 2.76E+01 3.50E+01 3.52E+01 1.30E+01 

F5 SCA 2.02E+01 2.04E+01 2.04E+01 2.07E+01 1.03E-01  
m-SCA 4.92E+00 1.94E+01 2.03E+01 2.04E+01 2.92E+00  
ISCA 2.31E-01 1.98E+01 2.02E+01 2.03E+01 2.80E+00 

F6 SCA 6.05E+00 9.76E+00 1.00E+01 1.15E+01 1.22E+00  
m-SCA 6.89E-01 1.40E+00 1.28E+00 3.02E+00 5.69E-01  
ISCA 1.52E-01 1.04E+00 7.87E-01 3.53E+00 7.81E-01 

F7 SCA 6.66E+00 6.62E+01 7.58E+01 1.19E+02 3.19E+01  
m-SCA 4.28E-01 6.98E-01 7.08E-01 9.06E-01 9.64E-02  
ISCA 1.17E-01 4.21E-01 3.63E-01 1.20E+00 1.98E-01 

F8 SCA 4.27E+01 7.41E+01 7.11E+01 1.09E+02 1.58E+01  
m-SCA 4.22E+00 1.02E+01 9.68E+00 1.76E+01 2.67E+00  
ISCA 2.94E-03 1.15E+00 1.01E+00 3.98E+00 8.59E-01 

F9 SCA 2.60E+01 7.95E+01 8.36E+01 1.18E+02 2.11E+01  
m-SCA 6.66E+00 1.12E+01 1.13E+01 1.78E+01 2.46E+00  
ISCA 2.99E+00 7.41E+00 6.44E+00 1.40E+01 2.74E+00 

F10 SCA 6.91E+02 1.32E+03 1.33E+03 1.76E+03 2.21E+02  
m-SCA 9.27E+01 3.08E+02 2.93E+02 6.50E+02 1.35E+02  
ISCA 4.79E+00 4.12E+01 2.30E+01 1.56E+02 4.50E+01 

F11 SCA 1.20E+03 1.64E+03 1.72E+03 2.02E+03 2.52E+02  
m-SCA 1.37E+02 4.32E+02 4.41E+02 7.62E+02 1.45E+02  
ISCA 1.28E+00 1.87E+02 1.44E+02 7.09E+02 1.65E+02 

F12 SCA 8.00E-01 1.53E+00 1.45E+00 2.65E+00 4.37E-01  
m-SCA 2.62E-01 6.47E-01 6.17E-01 1.04E+00 1.74E-01  
ISCA 1.37E-01 3.52E-01 3.45E-01 6.03E-01 1.22E-01 

F13 SCA 5.74E-01 2.80E+00 2.85E+00 4.81E+00 1.25E+00  
m-SCA 1.53E-01 2.43E-01 2.36E-01 4.37E-01 5.35E-02  
ISCA 8.08E-02 1.70E-01 1.64E-01 3.12E-01 4.60E-02 

F14 SCA 7.00E-01 1.45E+01 1.48E+01 2.77E+01 7.30E+00  
m-SCA 1.19E-01 2.37E-01 2.35E-01 3.63E-01 6.22E-02  
ISCA 6.70E-02 1.87E-01 1.90E-01 6.07E-01 8.03E-02 

F15 SCA 6.49E+00 1.11E+04 7.92E+03 4.67E+04 1.23E+04  
m-SCA 1.02E+00 1.78E+00 1.73E+00 2.77E+00 3.89E-01  
ISCA 6.30E-01 1.34E+00 1.25E+00 2.29E+00 4.16E-01 
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Function Algorithm Minimum Median Mean Maximum STD 

F16 SCA 2.92E+00 3.90E+00 3.98E+00 4.37E+00 3.16E-01 
 

m-SCA 1.59E+00 2.53E+00 2.58E+00 2.99E+00 2.77E-01  
ISCA 3.54E-01 1.80E+00 1.81E+00 2.83E+00 5.73E-01 

H
y

b
ri

d
 p

ro
b

le
m

s 

F17 SCA 3.82E+03 3.44E+05 1.71E+05 1.88E+06 3.97E+05  
m-SCA 8.84E+02 2.15E+03 1.82E+03 8.18E+03 1.17E+03  
ISCA 1.67E+02 2.68E+03 1.88E+03 7.95E+03 2.35E+03 

F18 SCA 8.46E+03 2.81E+06 5.83E+05 3.87E+07 6.49E+06  
m-SCA 2.92E+02 2.37E+03 1.70E+03 7.32E+03 1.88E+03  
ISCA 4.78E+01 4.92E+03 3.12E+03 1.62E+04 5.03E+03 

F19 SCA 6.50E+00 1.13E+01 1.11E+01 2.27E+01 3.55E+00  
m-SCA 1.56E+00 2.02E+00 2.00E+00 2.51E+00 1.83E-01  
ISCA 1.15E+00 1.59E+00 1.57E+00 2.78E+00 2.36E-01 

F20 SCA 3.78E+02 1.61E+05 5.16E+04 1.10E+06 2.42E+05  
m-SCA 9.71E+01 6.54E+02 4.10E+02 2.72E+03 5.57E+02  
ISCA 7.17E+00 3.82E+02 3.76E+01 4.37E+03 9.61E+02 

F21 SCA 1.89E+03 1.23E+05 5.03E+04 8.77E+05 1.90E+05  
m-SCA 5.24E+02 1.47E+03 1.30E+03 3.92E+03 6.09E+02  
ISCA 5.59E+01 1.41E+03 4.05E+02 5.18E+03 1.70E+03 

F22 SCA 5.40E+01 2.27E+02 2.32E+02 5.04E+02 1.12E+02  
m-SCA 2.51E+01 3.04E+01 2.96E+01 4.13E+01 3.75E+00  
ISCA 1.27E+00 1.69E+01 2.16E+01 4.02E+01 9.66E+00 

C
o

m
p

o
si

te
 p

ro
b

le
m

s 

F23 SCA 3.40E+02 4.32E+02 4.30E+02 5.36E+02 4.62E+01  
m-SCA 1.35E+01 3.10E+02 3.30E+02 3.30E+02 7.00E+01  
ISCA 3.30E+02 3.30E+02 3.30E+02 3.30E+02 2.29E-02 

F24 SCA 1.48E+02 2.02E+02 2.03E+02 2.37E+02 2.43E+01  
m-SCA 1.08E+02 1.16E+02 1.15E+02 1.23E+02 2.97E+00  
ISCA 1.07E+02 1.17E+02 1.13E+02 2.00E+02 1.35E+01 

F25 SCA 1.70E+02 2.06E+02 2.07E+02 2.22E+02 7.83E+00  
m-SCA 1.27E+02 1.51E+02 1.52E+02 1.83E+02 1.32E+01  
ISCA 1.21E+02 1.83E+02 1.99E+02 2.02E+02 2.84E+01 

F26 SCA 1.01E+02 1.03E+02 1.02E+02 1.04E+02 8.56E-01  
m-SCA 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.34E-02  
ISCA 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.93E-02 

F27 SCA 1.23E+02 4.45E+02 4.61E+02 6.11E+02 1.16E+02  
m-SCA 2.84E+00 4.58E+00 4.46E+00 8.52E+00 1.19E+00  
ISCA 2.38E+00 2.79E+02 3.45E+02 4.01E+02 1.66E+02 

F28 SCA 4.14E+02 5.49E+02 5.49E+02 7.39E+02 7.74E+01  
m-SCA 2.22E+02 4.15E+02 4.35E+02 5.32E+02 7.28E+01  
ISCA 2.04E+02 4.16E+02 3.78E+02 5.07E+02 6.11E+01 

F29 SCA 5.59E+03 1.52E+05 4.72E+04 1.83E+06 3.14E+05  
m-SCA 2.77E+02 5.04E+02 4.60E+02 1.03E+03 1.61E+02  
ISCA 2.50E+02 1.09E+05 4.01E+02 2.10E+06 4.42E+05 

F30 SCA 1.29E+03 8.13E+03 4.88E+03 4.71E+04 9.54E+03  
m-SCA 1.18E+03 1.68E+03 1.68E+03 2.27E+03 2.41E+02  
ISCA 4.84E+02 6.71E+02 5.94E+02 2.08E+03 2.72E+02 
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Table 5.2. Error values in objective function obtained by classical SCA, m-SCA and ISCA for 30-

dimentional IEEE CEC 2014 benchmark problems 

 Function Algorithm Minimum Median Mean Maximum STD 
U

n
im

o
d

a
l 

p
ro

b
le

m
s 

F1 SCA 1.61E+08 3.93E+08 5.14E+08 1.27E+09 2.77E+08  
m-SCA 9.86E+06 2.23E+07 2.26E+07 4.60E+07 6.35E+06  
ISCA 4.57E+06 1.35E+07 1.50E+07 3.75E+07 6.57E+06 

F2 SCA 1.58E+10 3.08E+10 3.35E+10 6.50E+10 1.28E+10  
m-SCA 1.82E+07 7.00E+07 8.42E+07 2.16E+08 5.50E+07  
ISCA 2.83E+06 3.04E+08 3.18E+08 8.45E+08 1.82E+08 

F3 SCA 3.01E+04 5.05E+04 5.48E+04 1.20E+05 1.85E+04  
m-SCA 1.60E+04 2.69E+04 2.70E+04 4.01E+04 6.53E+03  
ISCA 5.55E+02 1.84E+03 2.44E+03 6.85E+03 1.57E+03 

M
u

lt
im

o
d

a
l 

p
ro

b
le

m
s 

F4 SCA 8.80E+02 2.22E+03 3.44E+03 1.67E+04 2.97E+03  
m-SCA 1.37E+02 1.76E+02 1.81E+02 2.31E+02 2.31E+01  
ISCA 8.94E+01 1.43E+02 1.44E+02 2.23E+02 3.29E+01 

F5 SCA 2.08E+01 2.10E+01 2.09E+01 2.10E+01 4.13E-02  
m-SCA 2.07E+01 2.09E+01 2.09E+01 2.10E+01 6.41E-02  
ISCA 2.07E+01 2.09E+01 2.09E+01 2.10E+01 6.11E-02 

F6 SCA 3.15E+01 3.79E+01 3.77E+01 4.20E+01 2.85E+00  
m-SCA 8.20E+00 1.45E+01 1.45E+01 2.17E+01 3.08E+00  
ISCA 4.82E+00 8.96E+00 8.82E+00 1.33E+01 1.96E+00 

F7 SCA 1.29E+02 2.91E+02 3.49E+02 8.76E+02 1.68E+02  
m-SCA 1.26E+00 1.86E+00 1.95E+00 3.19E+00 5.00E-01  
ISCA 1.19E+00 3.71E+00 4.46E+00 1.13E+01 2.57E+00 

F8 SCA 2.25E+02 2.78E+02 2.84E+02 3.87E+02 3.51E+01  
m-SCA 7.74E+01 1.14E+02 1.13E+02 1.35E+02 1.17E+01  
ISCA 1.66E+01 2.97E+01 2.99E+01 5.34E+01 7.42E+00 

F9 SCA 2.22E+02 3.05E+02 3.13E+02 4.41E+02 4.18E+01  
m-SCA 1.04E+02 1.32E+02 1.35E+02 1.82E+02 1.43E+01  
ISCA 3.08E+01 5.91E+01 6.05E+01 9.33E+01 1.47E+01 

F10 SCA 5.17E+03 6.71E+03 6.68E+03 7.29E+03 4.23E+02  
m-SCA 2.37E+03 3.70E+03 3.73E+03 4.67E+03 4.82E+02  
ISCA 1.67E+02 5.33E+02 5.89E+02 1.24E+03 2.49E+02 

F11 SCA 6.37E+03 7.20E+03 7.16E+03 7.71E+03 2.98E+02  
m-SCA 4.09E+03 4.94E+03 4.91E+03 5.69E+03 3.70E+02  
ISCA 1.37E+03 2.51E+03 2.49E+03 3.56E+03 5.63E+02 

F12 SCA 1.91E+00 2.46E+00 2.44E+00 2.97E+00 2.75E-01  
m-SCA 9.18E-01 1.81E+00 1.81E+00 2.48E+00 3.22E-01  
ISCA 7.93E-01 1.60E+00 1.59E+00 2.27E+00 3.93E-01 

F13 SCA 3.05E+00 4.53E+00 4.80E+00 7.33E+00 1.25E+00  
m-SCA 2.82E-01 3.89E-01 3.89E-01 4.82E-01 4.53E-02  
ISCA 1.98E-01 3.54E-01 3.50E-01 5.54E-01 6.00E-02 

F14 SCA 4.35E+01 1.01E+02 1.11E+02 2.42E+02 5.26E+01  
m-SCA 1.55E-01 2.73E-01 2.71E-01 3.68E-01 3.84E-02  
ISCA 2.14E-01 7.19E-01 6.44E-01 8.76E-01 2.25E-01 

F15 SCA 1.21E+03 1.77E+04 3.99E+04 2.61E+05 5.34E+04  
m-SCA 1.14E+01 1.53E+01 1.50E+01 1.79E+01 1.64E+00  
ISCA 6.77E+00 1.34E+01 1.31E+01 1.96E+01 2.83E+00 

 



96 
 

 Function Algorithm Minimum Median Mean Maximum STD 

F16 SCA 1.23E+01 1.31E+01 1.30E+01 1.36E+01 2.39E-01  
m-SCA 1.13E+01 1.21E+01 1.21E+01 1.26E+01 2.70E-01  
ISCA 9.48E+00 1.08E+01 1.08E+01 1.21E+01 5.64E-01 

H
y

b
ri

d
 p

ro
b

le
m

s 

F17 SCA 1.27E+06 1.49E+07 1.79E+07 6.65E+07 1.39E+07  
m-SCA 1.31E+05 4.63E+05 5.39E+05 1.54E+06 3.30E+05  
ISCA 5.52E+04 2.56E+05 3.36E+05 1.41E+06 2.58E+05 

F18 SCA 6.47E+07 4.10E+08 8.74E+08 3.62E+09 9.30E+08  
m-SCA 4.72E+04 1.57E+05 1.90E+05 5.87E+05 1.21E+05  
ISCA 1.36E+03 3.02E+03 3.61E+03 9.07E+03 1.82E+03 

F19 SCA 6.54E+01 1.40E+02 1.74E+02 5.05E+02 9.42E+01  
m-SCA 1.18E+01 1.71E+01 1.76E+01 2.32E+01 2.84E+00  
ISCA 6.79E+00 1.23E+01 1.20E+01 2.27E+01 2.65E+00 

F20 SCA 7.76E+03 2.20E+04 3.26E+04 1.38E+05 2.85E+04  
m-SCA 4.60E+03 1.20E+04 1.26E+04 2.01E+04 3.64E+03  
ISCA 5.13E+02 1.65E+03 2.31E+03 9.38E+03 1.98E+03 

F21 SCA 4.95E+05 3.23E+06 4.52E+06 2.40E+07 4.51E+06  
m-SCA 2.16E+04 1.21E+05 1.18E+05 2.91E+05 4.95E+04  
ISCA 4.99E+04 1.32E+05 1.79E+05 5.41E+05 1.30E+05 

F22 SCA 6.17E+02 1.28E+03 1.29E+03 2.71E+03 4.33E+02  
m-SCA 1.74E+02 2.55E+02 2.59E+02 3.75E+02 5.07E+01  
ISCA 7.30E+01 1.89E+02 2.11E+02 3.57E+02 5.95E+01 

C
o
m

p
o
si

te
 p

ro
b

le
m

s 

F23 SCA 3.62E+02 4.05E+02 4.70E+02 1.05E+03 1.48E+02  
m-SCA 3.19E+02 3.21E+02 3.21E+02 3.24E+02 1.43E+00  
ISCA 3.16E+02 3.18E+02 3.18E+02 3.21E+02 1.18E+00 

F24 SCA 2.01E+02 2.22E+02 2.32E+02 3.48E+02 3.18E+01  
m-SCA 2.00E+02 2.00E+02 2.00E+02 2.00E+02 4.63E-02  
ISCA 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.17E-03 

F25 SCA 2.00E+02 2.36E+02 2.41E+02 3.05E+02 1.93E+01  
m-SCA 2.00E+02 2.00E+02 2.02E+02 2.13E+02 4.06E+00  
ISCA 2.04E+02 2.07E+02 2.07E+02 2.11E+02 1.61E+00 

F26 SCA 1.02E+02 1.05E+02 1.05E+02 1.09E+02 1.69E+00  
m-SCA 1.00E+02 1.00E+02 1.00E+02 1.01E+02 4.48E-02  
ISCA 1.00E+02 1.00E+02 1.00E+02 1.01E+02 6.49E-02 

F27 SCA 5.18E+02 6.90E+02 7.30E+02 1.18E+03 1.74E+02  
m-SCA 4.09E+02 4.26E+02 4.37E+02 4.94E+02 2.46E+01  
ISCA 4.04E+02 4.09E+02 4.10E+02 4.23E+02 4.64E+00 

F28 SCA 2.06E+03 3.00E+03 3.01E+03 4.34E+03 5.07E+02  
m-SCA 6.23E+02 1.01E+03 1.14E+03 2.72E+03 4.32E+02  
ISCA 7.78E+02 8.64E+02 8.66E+02 9.88E+02 4.60E+01 

F29 SCA 9.94E+06 4.59E+07 5.13E+07 1.07E+08 2.05E+07  
m-SCA 1.49E+04 3.66E+04 9.44E+04 7.59E+05 1.55E+05  
ISCA 4.41E+03 1.84E+04 2.32E+04 9.11E+04 1.55E+04 

F30 SCA 2.52E+05 7.23E+05 7.76E+05 2.00E+06 3.87E+05  
m-SCA 1.75E+04 3.93E+04 4.05E+04 1.07E+05 1.52E+04  
ISCA 3.42E+03 8.81E+03 9.58E+03 1.77E+04 3.23E+03 
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Table 5.3. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 10-dimensional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 5.145E-10 + F16 5.145E-10 + 

F2 5.145E-10 + F17 5.145E-10 + 

F3 5.145E-10 + F18 5.462E-10 + 

F4 5.145E-10 + F19 5.145E-10 + 

F5 6.528E-10 + F20 5.145E-10 + 

F6 5.145E-10 + F21 5.462E-10 + 

F7 5.145E-10 + F22 5.145E-10 + 

F8 5.145E-10 + F23 5.145E-10 + 

F9 5.145E-10 + F24 5.145E-10 + 

F10 5.145E-10 + F25 7.433E-08 + 

F11 5.145E-10 + F26 5.145E-10 + 

F12 5.145E-10 + F27 3.289E-05 + 

F13 5.145E-10 + F28 1.486E-09 + 

F14 5.145E-10 + F29 1.520E-06 + 

F15 5.145E-10 + F30 5.145E-10 + 

 

 

Table 5.4. Statistical conclusions with p–values obtained by conducting Wilcoxon signed rank test 

on 30-dimensional IEEE CEC 2014 benchmark problems 

Function p-value conclusion Function p-value conclusion 

F1 5.15E-10 + F16 5.15E-10 + 

F2 5.15E-10 + F17 5.15E-10 + 

F3 5.15E-10 + F18 5.15E-10 + 

F4 5.15E-10 + F19 5.15E-10 + 

F5 1.04E-06 + F20 5.15E-10 + 

F6 5.15E-10 + F21 5.15E-10 + 

F7 5.15E-10 + F22 5.15E-10 + 

F8 5.15E-10 + F23 5.15E-10 + 

F9 5.15E-10 + F24 5.15E-10 + 

F10 5.15E-10 + F25 6.15E-10 + 

F11 5.15E-10 + F26 5.15E-10 + 

F12 7.35E-10 + F27 5.15E-10 + 

F13 5.15E-10 + F28 5.15E-10 + 

F14 5.15E-10 + F29 5.15E-10 + 

F15 5.15E-10 + F30 5.15E-10 + 
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Table 5.5. Comparison between m-SCA and ISCA algorithms  

Function 
Dimension =10 Dimension =30 

p-value winner p-value winner 

F1 1.67E-08 ISCA 1.26E-06 ISCA 

F2 5.15E-10 ISCA 1.25E-09 m-SCA 

F3 5.15E-10 ISCA 5.15E-10 ISCA 

F4 8.80E-02 same 2.29E-07 ISCA 

F5 1.56E-02 m-SCA 4.92E-03 ISCA 

F6 7.83E-08 ISCA 8.27E-10 ISCA 

F7 2.31E-06 ISCA 2.08E-08 m-SCA 

F8 5.15E-10 ISCA 5.15E-10 ISCA 

F9 1.04E-06 ISCA 5.15E-10 ISCA 

F10 5.15E-10 ISCA 5.15E-10 ISCA 

F11 2.07E-07 ISCA 5.15E-10 ISCA 

F12 2.87E-08 ISCA 7.34E-03 ISCA 

F13 2.21E-06 ISCA 2.21E-04 ISCA 

F14 3.66E-02 ISCA 5.53E-09 m-SCA 

F15 1.58E-08 ISCA 4.10E-04 ISCA 

F16 1.27E-08 ISCA 5.15E-10 ISCA 

F17 3.73E-01 same 1.07E-03 ISCA 

F18 1.73E-02 m-SCA 5.15E-10 ISCA 

F19 8.65E-09 ISCA 1.49E-09 ISCA 

F20 2.97E-09 ISCA 5.15E-10 ISCA 

F21 4.01E-03 ISCA 2.11E-02 m-SCA 

F22 3.94E-09 ISCA 5.79E-05 ISCA 

F23 9.87E-10 m-SCA 7.35E-10 ISCA 

F24 4.49E-02 m-SCA 5.15E-10 ISCA 

F25 9.37E-04 m-SCA 7.32E-09 m-SCA 

F26 1.69E-05 m-SCA 4.37E-05 m-SCA 

F27 1.69E-07 m-SCA 5.46E-10 ISCA 

F28 2.29E-07 m-SCA 1.20E-06 ISCA 

F29 8.47E-04 m-SCA 5.53E-09 ISCA 

F30 5.15E-10 ISCA 5.15E-10 ISCA 
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Fig 5.1. Convergence curves for 30-dimensional problems from F1 to F8 corresponding to elite 

candidate solution of each iteration 
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Fig 5.2. Convergence curves for 30-dimensional problems from F9 to F16 corresponding to elite 

candidate solution of each iteration  
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Fig 5.3. Convergence curves for 30-dimensional problems from F17 to F24 corresponding to 

elite candidate solution of each iteration 
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Fig 5.4. Convergence curves for 30-dimensional problems from F25 to F30 corresponding to 

elite candidate solution of each iteration 
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Chapter 6 

Performance of GWO and SCA Variants on 

Constrained Optimization Problems 

In this chapter, the performance of the classical GWO, classical SCA and their proposed variants 

which are presented in Chapters 2, 3, 4 and 5 are evaluated on constrained optimization problems. 

6.1. Introduction 

In the previous chapters of this Thesis, two variants of GWO called RW-GWO and mGWO, and 

two variants of SCA called m-SCA and ISCA are proposed. These variants have shown their 

enhanced search efficiency and superior performance as compared to their classical versions on 

unconstrained optimization problems. In order to analyze the search ability on constrained 

optimization problems, the present chapter evaluates these variants on constrained benchmark 

problems given in IEEE CEC 2006. The constrained optimization problems are considered as more 

difficult problems than unconstrained optimization problems because linear/non-linear constraints 

reduce the search space of the problem. The reduced feasible search space evaluates the random 

and guided search ability of any metaheuristic search algorithm.  

The organization of the chapter is as follows: Section 6.2 provides the detail and working of the 

constraint handling technique which is used to tackle the constraints of the problem. In Section 

6.3, numerical experimentation, analysis and comparison is shown between classical GWO, 

classical SCA and their proposed variants. Finally the chapter concludes with Section 6.4. 

6.2. Constraint Handling Technique 

The constraint handling technique plays a significant role for the constrained optimization 

problems to handle the constraints. In this chapter, a parameter-free constraint handling approach 

based on constraint violation [191, 192] is used to select best wolves/candidate solutions from the 

population.  

The partial content of this chapter is published in:  

Gupta, S., & Deep, K. (2018). Random walk grey wolf optimizer for constrained engineering optimization 

problems. Computational Intelligence, 34(4), 1025-1045. Wiley. 
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For a general optimization problem (1.1) – (1.4), the constraint violation (𝑣𝑖𝑜𝑙𝑋) corresponding to 

a solution 𝑋 can be calculated as follows: 

 

𝑣𝑖𝑜𝑙𝑋 = ∑ 𝐺𝑗(𝑋)

𝐽

𝑗=1

+ ∑ 𝐻𝑘(𝑋)

𝐾

𝑘=1

 (6.1) 

where 
 𝐺𝑗(𝑋) = {

𝑔𝑗(𝑋)  𝑖𝑓 𝑔𝑗(𝑋) > 0

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6.2) 

 𝐻𝑘(𝑋) = {
|ℎ𝑘(𝑋)|  𝑖𝑓 |ℎ𝑘(𝑋)| >∈

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6.3) 

and ∈ is predefined tolerance parameter which is fixed as 10−4 in the chapter. 

In each iteration, the population of wolves/candidate solutions is arranged as follows: 

1. The feasible wolves/candidate solutions are placed before the infeasible wolves/candidate 

solutions. 

2. The feasible wolves/candidate solutions are placed in increasing order of their objective 

function values.  

3. The infeasible wolves/candidate solutions are placed in increasing order of their constraint 

violation values. 

From the above sorted list, best wolves/candidate solutions can be selected.  

It can be easily analyzed that the constraint handling technique described above is quite easy and 

common way of picking best wolves/candidate solutions from the population for a constrained 

optimization problem. Also this technique can be thought of as indirect form of Deb’s techniques 

[191] in which each wolf/candidate solution is compared with remaining wolves/candidate 

solutions using Deb’s feasibility rules, which are as follows: 

1. Between two feasible solutions, the solution which has better fitness is selected. 

2. Between two infeasible solutions, a solution with less constraint violation is selected, and 

3. Between a feasible and an infeasible solution, a feasible solution is selected. 

This process provides a new population of wolves/candidate solutions when we arrange them after 

comparing each wolf/candidate solution with all other remaining wolves/candidate solutions. This 

new population of wolves/candidate solutions is same as the population obtained by applying the 

constrained handling technique described above. The main feature in this technique is the 
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simplicity and easy implementation. This constraint handling technique does not require any extra 

parameters other than the algorithm parameters.  

6.3. Numerical Experiments and Analysis of the Results 

6.3.1. Benchmark Functions and Parameter Setting 

In this section, the performance of classical GWO, RW-GWO, mGWO, classical SCA, m-SCA 

and ISCA is studied on the basis of constrained benchmark problems given in IEEE CEC 2006 

[193]. This benchmark test set consists of 24 test problems with inequality and/or equality 

constraints. As per the guidelines provided by IEEE CEC 2006, 25 runs of each algorithm are 

performed corresponding to each test problem. The population size for each problem is fixed 

as 3 × 𝐷, where 𝐷 represent the dimension of the problem. 

6.3.2. Analysis of the Results 

Based on the benchmark criteria stated in Section 6.3.1, the algorithms – classical GWO, RW-

GWO, mGWO, classical SCA, m-SCA, and ISCA are implemented on IEEE CEC 2006 

benchmark set and the obtained results are presented in Table 6.1. In this table, various statistical 

metrics such as minimum, median, average, maximum, and standard deviation of objective 

function values are recorded corresponding to each test problem.  

From the Table 6.1, it can be observed that in the problems g05, g17, g20-g22 all the algorithms 

are unable to enter in a feasible region of the problem. In the problems, g05, g20-g22, the estimated 

ratio between feasible region and search space is 0.0000% and in g17, it is 0.0003% which makes 

the problem more difficult in terms of finding the feasible region of the search space. From now 

onwards the discussion is based on those problems where the algorithm is able to provide a feasible 

solution.  

From the Table 6.1, it can be observed that the classical GWO is able to provide the 100% 

feasibility in the 14 problems namely g01-g04, g07, g09-g12, g14, g16, g18, g19, g24. RW-GWO, 

mGWO and m-SCA provide 100% feasibility in 15 problems namely, g01-g04, g06-g12, g16, g18, 

g19, g24. The ISCA provides 100% feasibility in 13 problems namely, g01- g04, g07, g09-g12, 

g16, g18, g19 and g24. The classical SCA provides 100% feasibility in 13 problems namely, g01, 

g03, g04, g07, g09-g12, g16, g18, g19, g23 and g24. Hence, in terms of feasibility rate the RW-

GWO, mGWO and m-SCA are more successful as compared to other algorithms.  

In terms of minimum objective function value, the classical GWO is better in g04, RW-GWO is 

better in g01, g10 and g19, mGWO is better in g06, g07, g09, g13, g16 and g18, m-SCA is better 
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in g15 and  ISCA is better in g14 and g23 as compared to other algorithms. In g02, RW-GWO and 

mGWO provides better minimum value of objective function as compared to all other algorithms 

and this achieved value of objective function is optimal. Similarly, in g03, classical GWO and 

RW-GWO provides better minimum value of objective function than the others and this achieved 

value of objective function is optimal. In g08, g11 and g12, all the algorithms provide same 

minimum value (equal to the optimal value) of objective function. In g24, all the algorithms except 

SCA and m-SCA provide same minimum value (equal to the optimal value) of objective function. 

In terms of median objective function value, the classical GWO is better than others in g23. In 

problem g08, the algorithms, classical GWO, mGWO, RW-GWO, m-SCA and ISCA provide 

same median value (equal to the optimal value) of the objective function. In problem g11, the 

classical GWO and mGWO provides same median value (equal to the optimal value) of objective 

function. In problem g12, except for the classical SCA, all the other algorithms provides same 

median value (equal to the optimal value) of the objective function. The RW-GWO is better than 

others in problems g01, g03, g04 and g13 in terms of median value of objective function. The 

mGWO is better than others in problems g02, g06, g07, g09, g10, g16, g19 and g24 in terms of 

median value of objective function. The m-SCA is better than other in problems g14 and g15. The 

ISCA is better than other algorithms in problem g18 only, in terms of median value of objective 

function. In g23, the classical SCA and ISCA are better than other algorithms in providing median 

value of objective function. 

In terms of mean objective function value, the classical GWO is better in g04, g11 and g23, RW-

GWO is better in g01, g07 and g18, mGWO is better in g02, g03, g06, g09, g10, g16, g19 and g24, 

m-SCA is better in g14 and g15 as compared to rest of the competitive algorithms. In g08 and g12, 

all the algorithms except classical SCA and m-SCA provide same mean value (equal to the optimal 

value) of objective function. In g13, mGWO and ISCA provide same mean value (equal to the 

optimal value) of objective function.  

In terms of worst value (maximum) of objective function, the classical GWO is better in problems 

g04, g11 and g23, the RW-GWO is better in g01 only, mGWO is better in g02, g03, g06, g07, g09, 

g10, g13, g16, g19 and g24. The m-SCA is better than others in problems g14 and g15, ISCA is 

better than other algorithms in g18 only. In problem g08 and g12, except for the classical SCA all 

the algorithms provide same maximum value (equal to the optimal value) of the objective function. 

In terms of the standard deviation value, the classical GWO is better in g04 and g11, RW-GWO 

is better in g01 and g07, mGWO is better in the problems, g02, g09, g10, g16, g19 and g24, 

classical SCA is better in g03 only, m-SCA is better in g14 and g15, ISCA is better in g13 and 
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g18. In the problems g06, the standard deviation value of mGWO and classical SCA is same but 

better than other algorithms. In problem g08, except for the classical SCA and m-SCA and in 

problem g12, except for the classical SCA, the standard deviation value is equal for all the 

algorithms and better than these exceptional algorithms. In g23, the classical versions of GWO 

and SCA provide better standard deviation than other algorithms. 

Hence, from the experimental results and comparison, it can be observed that the mGWO 

algorithm performs better than the classical GWO and RW-GWO, and ISCA performs better than 

the classical SCA and m-SCA. 

6.3.3. Statistical Analysis  

In order to test the statistical validity of the results obtained by classical GWO, RW-GWO, 

mGWO, classical SCA, m-SCA and ISCA, a non-parametric Wilcoxon rank sum test [186] is 

applied. The test has been conducted at 5% level of significance and the obtained statistical results 

are presented in Tables 6.2 to 6.4. The results clearly demonstrate that the mGWO is significantly 

better than classical GWO and RW-GWO algorithms in most of the test problems. Similarly, the 

ISCA is significantly better than classical SCA and m-SCA in most of the test problems. 

6.4. Concluding Remarks 

In the present chapter, the performance of the constrained versions of classical GWO, classical 

SCA and their proposed variants which are presented in Chapters 2, 3, 4 and 5 is evaluated on 

constrained problems given in IEEE CEC 2006. In these algorithms, a simple constraint handling 

technique based on constraint violation is used to handle the constraints of problems. The 

comparison of results shows that the mGWO algorithm has outperformed classical GWO and RW-

GWO algorithms. Similarly, the ISCA algorithm has outperformed classical SCA and m-SCA. 

Overall comparison between all the algorithms shows that the mGWO algorithm has outperformed 

all other variants of GWO and SCA and their classical versions.  
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Table 6.1. Comparison of results between classical GWO, classical SCA and their proposed variants on IEEE CEC 2006 constrained problems 

Function Algorithm FR Optima Minimum Median Maximum Mean STD 

g01 GWO 100 -15 -14.9985 -11.9767 -11.2994 -7.0664 2.1313 

 RW-GWO 100  -14.9990 -14.9983 -14.9983 -14.9975 0.0004 

 mGWO 100  -14.9872 -14.9796 -14.9780 -14.9627 0.0066 

 SCA 100  -8.8773 -6.0000 -6.1097 -4.0000 1.1824 

 m-SCA 100  -13.3405 -12.4317 -11.8868 -7.8646 1.5036 

 ISCA 100  -14.9967 -11.9990 -11.9588 -9.0000 1.4844 

g02 GWO 100 −0.8036 -0.8034 -0.7519 -0.7407 -0.6208 0.0488 

 RW-GWO 100  -0.8036 -0.7856 -0.7763 -0.7277 0.0223 

 mGWO 100  -0.8036 -0.8035 -0.8010 -0.7924 0.0044 

 SCA 84  -0.6103 -0.5096 -0.5076 -0.4253 0.0444 

 m-SCA 100  -0.7368 -0.5793 -0.5911 -0.4739 0.0727 

 ISCA 100  -0.8034 -0.7979 -0.7968 -0.7719 0.0078 

g03 GWO 100 −1.0005 -1.0005 0.0000 -0.3551 0.0000 0.4827 

 RW-GWO 100  -1.0005 -1.0004 -0.6784 0.0000 0.4538 

 mGWO 100  -1.0004 -0.9986 -0.9942 -0.9371 0.0144 

 SCA 100  0.0000 0.0000 0.0000 0.0000 0.0000 

 m-SCA 100  -0.6556 -0.4023 -0.3885 -0.1197 0.1493 

 ISCA 100  -0.7288 -0.0231 -0.0855 0.0000 0.1555 

g04 GWO 100 −30665.5387 -30665.5183 -30665.3806 -30665.3902 -30665.2531 0.0672 

 RW-GWO 100  -30665.4839 -30665.3816 -30665.3706 -30665.2289 0.0751 

 mGWO 100  -30665.0443 -30664.7606 -30664.6129 -30663.6828 0.3633 

 SCA 100  -30651.2013 -30622.2407 -30620.7484 -30539.6262 23.7919 

 m-SCA 100  -30640.0754 -30620.0943 -30620.4884 -30595.1192 9.5673 

 ISCA 100  -30665.4319 -30665.0172 -30665.0400 -30664.3676 0.2875 

g05 GWO 0 5126.4967 NA NA NA NA NA 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 0  NA NA NA NA NA 
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Function Algorithm FR Optima Minimum Median Maximum Mean STD 

g06 GWO 88 -6961.8139 -6961.0712 -6950.8032 -6939.2355 -6874.8493 26.7092 

 RW-GWO 100  -6960.6666 -6946.1456 -6940.6530 -6877.2450 22.3092 

 mGWO 100  -6961.8139 -6961.8139 -6961.8139 -6961.8139 0.0000 

 SCA 4  -6933.0557 -6933.0557 -6933.0557 -6933.0557 0.0000 

 m-SCA 100  -6957.0843 -6865.2033 -6766.3928 -6245.1956 221.5029 

 ISCA 60  -6958.7833 -6936.6853 -6929.2806 -6838.7383 31.8411 

g07 GWO 100 24.3062 24.7910 29.6234 37.8751 136.2662 29.4923 

 RW-GWO 100  24.4283 24.6792 24.7998 25.2596 0.2948 

 mGWO 100  24.3822 24.5326 24.7117 28.9498 0.8893 

 SCA 100  49.2121 56.4263 57.8688 71.2271 6.5811 

 m-SCA 100  25.8248 27.3936 27.4437 29.6968 1.0367 

 ISCA 100  24.5267 24.9213 25.8465 29.1879 1.8025 

g08 GWO 92 −0.0958 -0.0958 -0.0958 -0.0958 -0.0958 0.0000 

 RW-GWO 100  -0.0958 -0.0958 -0.0958 -0.0958 0.0000 

 mGWO 100  -0.0958 -0.0958 -0.0958 -0.0958 0.0000 

 SCA 72  -0.0958 -0.0956 -0.0954 -0.0945 0.0005 

 m-SCA 100  -0.0958 -0.0958 -0.0958 -0.0952 0.0001 

 ISCA 96  -0.0958 -0.0958 -0.0958 -0.0958 0.0000 

g09 GWO 100 680.6301 680.7987 683.2719 685.3362 711.5630 6.5790 

 RW-GWO 100  680.7119 681.0041 681.1276 684.0611 0.6376 

 mGWO 100  680.6355 680.6432 680.6506 680.7161 0.0202 

 SCA 100  686.5866 689.3029 689.3715 693.5485 1.9691 

 m-SCA 100  680.7154 680.8972 681.0712 682.8519 0.5007 

 ISCA 100  680.6989 680.9866 680.9683 681.1777 0.1270 

g10 GWO 100 7049.2480 7088.7510 7561.6617 7568.9886 8300.0585 373.9541 

 RW-GWO 100  7057.5545 7427.2296 7360.1055 7521.8361 130.4502 

 mGWO 100  7120.5616 7256.4523 7256.7773 7453.3711 81.1893 

 SCA 100  8687.6159 9561.1045 9505.0424 10395.6235 541.2416 

 m-SCA 100  7220.8305 7532.5190 7631.7571 9031.4537 395.1446 

 ISCA 100  7353.6872 7698.4176 7698.9003 8402.9482 221.9554 



110 
 

Function Algorithm FR Optima Minimum Median Maximum Mean STD 

g11 GWO 100 0.7499 0.7499 0.7499 0.7502 0.7570 0.0014 

 RW-GWO 100  0.7499 0.7502 0.7861 0.9999 0.0704 

 mGWO 100  0.7499 0.7499 0.7532 0.7852 0.0089 

 SCA 100  0.7499 0.7507 0.7566 0.8046 0.0134 

 m-SCA 100  0.7499 0.7500 0.7517 0.7812 0.0063 

 ISCA 100  0.7499 0.7511 0.7870 0.9999 0.0671 

g12 GWO 100 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.0000 

 RW-GWO 100  -1.0000 -1.0000 -1.0000 -1.0000 0.0000 

 mGWO 100  -1.0000 -1.0000 -1.0000 -1.0000 0.0000 

 SCA 100  -1.0000 -0.9999 -0.9996 -0.9937 0.0012 

 m-SCA 100  -1.0000 -1.0000 -1.0000 -0.9999 0.0000 

 ISCA 100  -1.0000 -1.0000 -1.0000 -1.0000 0.0000 

g13 GWO 36 0.0539 0.9796 0.9999 1.0028 1.0538 0.0203 

 RW-GWO 40  0.8535 0.9993 0.9676 1.0003 0.0544 

 mGWO 52  0.4745 0.9999 0.9007 1.0000 0.1870 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 68  0.9998 1.0000 1.0000 1.0000 0.0000 

g14 GWO 100 −47.7649 -46.5398 -41.5971 -41.8303 -37.4389 2.4773 

 RW-GWO 96  -44.9855 -40.6523 -40.8448 -36.1438 2.5789 

 mGWO 72  -46.1973 -42.3700 -42.5725 -40.2289 1.8280 

 SCA 0  NA NA NA NA NA 

 m-SCA 20  -44.9596 -43.1657 -43.2747 -42.0671 1.2464 

 ISCA 52  -47.4498 -40.2601 -40.9230 -35.4323 3.2081 

g15 GWO 56 961.7150 961.7168 968.9334 968.2013 972.3099 4.1736 

 RW-GWO 52  961.7390 964.4088 966.0403 972.2926 4.0576 

 mGWO 56  961.7187 962.1567 963.1587 966.4812 1.7412 

 SCA 0  NA NA NA NA NA 

 m-SCA 20  961.7155 961.7346 961.7560 961.8616 0.0608 

 ISCA 88  961.7181 962.2054 964.2342 972.3151 3.8551 
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Function Algorithm FR Optima Minimum Median Maximum Mean STD 

g16 GWO 100 −1.9051 -1.9037 -1.8376 -1.8436 -1.7443 0.0489 

 RW-GWO 100  -1.9017 -1.8833 -1.8781 -1.8356 0.0210 

 mGWO 100  -1.9051 -1.9044 -1.9044 -1.9024 0.0007 

 SCA 100  -1.7776 -1.5277 -1.5102 -1.2027 0.1609 

 m-SCA 100  -1.8913 -1.8010 -1.8152 -1.7315 0.0552 

 ISCA 100  -1.9038 -1.8694 -1.8672 -1.8200 0.0309 

g17 GWO 0 8853.5397 NA NA NA NA NA 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 0  NA NA NA NA NA 

g18 GWO 100 −0.8660 -0.8659 -0.8570 -0.7981 -0.4990 0.1126 

 RW-GWO 100  -0.8659 -0.8605 -0.8436 -0.6717 0.0524 

 mGWO 100  -0.8660 -0.8494 -0.7901 -0.6631 0.0922 

 SCA 100  -0.7695 -0.7016 -0.6719 -0.4594 0.0875 

 m-SCA 100  -0.8644 -0.8577 -0.7879 -0.5324 0.1028 

 ISCA 100  -0.8658 -0.8626 -0.8496 -0.6609 0.0404 

g19 GWO 100 32.6556 33.4456 35.5593 38.5591 66.3511 8.0215 

 RW-GWO 100  32.7399 34.2740 36.2645 50.6187 4.9496 

 mGWO 100  33.4757 34.0840 34.1651 35.6638 0.4988 

 SCA 100  45.3745 89.5503 151.5567 880.0015 178.8423 

 m-SCA 100  47.6534 65.5455 68.6097 124.6039 16.7807 

 ISCA 100  32.9363 34.7730 37.0597 50.8037 5.5059 

g20 GWO 0 0.2050 NA NA NA NA NA 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 0  NA NA NA NA NA 
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Function Algorithm FR Optima Minimum Median Maximum Mean STD 

g21 GWO 0 193.7245 NA NA NA NA NA 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 0  NA NA NA NA NA 

g22 GWO 0 236.4310 NA NA NA NA NA 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 0  NA NA NA NA NA 

 m-SCA 0  NA NA NA NA NA 

 ISCA 0  NA NA NA NA NA 

g23 GWO 4 -400.0551 -0.0018 -0.0018 -0.0018 -0.0018 0.0000 

 RW-GWO 0  NA NA NA NA NA 

 mGWO 0  NA NA NA NA NA 

 SCA 100  0.0000 0.0000 0.0000 0.0000 0.0000 

 m-SCA 0  NA NA NA NA NA 

 ISCA 88  -0.0030 0.0000 163.6358 900.0000 355.2942 

g24 GWO 100 -5.5080 -5.5080 -5.5079 -5.3676 -2.0000 0.7016 

 RW-GWO 100  -5.5080 -5.5016 -5.5000 -5.4854 0.0063 

 mGWO 100  -5.5080 -5.5080 -5.5080 -5.5080 0.0000 

 SCA 100  -5.4992 -5.4689 -5.3599 -3.0000 0.4932 

 m-SCA 100  -5.5079 -5.4968 -5.4947 -5.4658 0.0102 

 ISCA 100  -5.5080 -5.5028 -5.4992 -5.4724 0.0099 
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Table 6.2. Results of statistical test between classical GWO and its proposed variants on IEEE 

CEC 2006 benchmark problems 

Function GWO vs RW-GWO GWO vs mGWO 

 p-value conclusion p-value conclusion 

g01 1.17E-08 + 1.14E-05 + 

g02 8.32E-03 + 3.99E-08 + 

g03 1.33E-02 + 3.24E-03 + 

g04 4.97E-01 = 7.57E-09 - 

g05 NA NA NA NA 

g06 5.16E-01 = 2.17E-10 + 

g07 1.17E-08 + 3.26E-09 + 

g08 3.35E-02 + 1.64E-09 + 

g09 1.67E-04 + 1.42E-09 + 

g10 2.32E-02 + 1.79E-03 + 

g11 1.19E-03 - 4.26E-01 = 

g12 7.89E-04 - 9.73E-11 + 

g13 4.00E-01 = 5.93E-01 = 

g14 1.77E-01 = 3.07E-01 = 

g15 1.67E-01 = 2.62E-03 + 

g16 4.57E-02 + 2.90E-09 + 

g17 NA NA NA NA 

g18 5.47E-02 + 9.38E-01 = 

g19 3.44E-02 + 1.12E-03 + 

g20 NA NA NA NA 

g21 NA NA NA NA 

g22 NA NA NA NA 

g23 NA NA NA NA 

g24 2.66E-06 - 4.77E-10 + 
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Table 6.3. Results of statistical test between classical SCA and its proposed variants on IEEE CEC 

2006 benchmark problems  

Function SCA vs m-SCA SCA vs ISCA 

 p-value conclusion p-value conclusion 

g01 2.64E-09 + 1.14E-09 + 

g02 1.65E-05 + 1.41E-09 + 

g03 9.73E-11 + 1.46E-08 + 

g04 4.15E-01 = 1.42E-09 + 

g05 NA NA NA NA 

g06 5.05E-01 = 8.75E-01 = 

g07 1.42E-09 + 1.42E-09 + 

g08 2.56E-04 + 4.32E-08 + 

g09 1.42E-09 + 1.42E-09 + 

g10 2.90E-09 + 1.42E-09 + 

g11 1.17E-02 + 8.46E-01 = 

g12 3.53E-06 + 1.42E-09 + 

g13 NA NA NA NA 

g14 NA NA NA NA 

g15 NA NA NA NA 

g16 4.64E-09 + 1.42E-09 + 

g17 NA NA NA NA 

g18 1.67E-04 + 1.31E-08 + 

g19 3.61E-02 + 9.29E-09 + 

g20 NA NA NA NA 

g21 NA NA NA NA 

g22 NA NA NA NA 

g23 NA NA 1.68E-01 = 

g24 9.73E-11 + 3.02E-07 + 
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Table 6.4. Results of statistical test between proposed variants of GWO and proposed variants of 

SCA on IEEE CEC 2006 benchmark problems  

Function RW-GWO vs mGWO m-SCA vs ISCA 

 p-value conclusion p-value conclusion 

g01 7.57E-09 RW-GWO 1.16E-01 same 

g02 2.12E-06 mGWO 1.42E-09 ISCA 

g03 1.07E-01 same 1.61E-07 m-SCA 

g04 7.57E-09 RW-GWO 1.42E-09 ISCA 

g05 NA NA NA NA 

g06 9.73E-11 mGWO 1.40E-02 m-SCA 

g07 3.61E-03 mGWO 4.79E-04 ISCA 

g08 7.73E-10 mGWO 1.36E-05 ISCA 

g09 1.60E-09 mGWO 1.35E-01 same 

g10 1.79E-03 mGWO 2.70E-02 m-SCA 

g11 1.30E-02 mGWO 1.57E-01 same 

g12 9.73E-11 mGWO 6.42E-05 ISCA 

g13 9.26E-01 same NA NA 

g14 3.17E-02 mGWO NA NA 

g15 4.94E-02 mGWO NA NA 

g16 1.42E-09 mGWO 2.11E-04 ISCA 

g17 NA NA NA NA 

g18 1.40E-01 same 5.21E-03 ISCA 

g19 9.69E-01 same 1.60E-09 ISCA 

g20 NA NA NA NA 

g21 NA NA NA NA 

g22 NA NA NA NA 

g23 NA NA NA NA 

g24 4.77E-10 mGWO 5.72E-02 same 
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Chapter 7  

Multilevel Thresholding Using Proposed Variants of 

GWO and SCA  

In this chapter, the classical versions of GWO and SCA and their proposed variants which are 

presented is Chapters 2, 3, 4 and 5 are used to solve an unconstrained, nonlinear and discrete 

optimization problem arising in the field of image processing. The idea is to observe the 

effectiveness of solving real life problem using the proposed algorithms in the Thesis.  

7.1.  Introduction 

In the field of image processing, the image segmentation is the process of partitioning an image 

into multiple segments which are called as super-pixels. In other words, image segmentation is the 

process of assigning a label to every pixel in an image such that pixels with the same label share 

certain characteristics. The aim of the segmentation is to change or/and simplify the representation 

of an image into some meaning form which is easier to analyze. Image segmentation is widely 

used in face detection, brake light detection, fingerprint recognition, traffic control system, 

Machine vision, surgery planning, video surveillance and in many other fields. The simplest 

method of image segmentation is called the thresholding method. This method is based on 

determining the clip-level(s) or threshold value(s). Several popular methods which are used in 

industry for thresholding includes maximum entropy method, hybrid thresholding, Otsu's between 

class variance method and k-means clustering.  

The present chapter analyzes the performances of classical GWO, classical SCA, and their 

proposed variants called RW-GWO, mGWO, m-SCA, ISCA which are proposed in Chapters 2, 3, 

4, and 5 respectively in finding the optimal thresholds for grey images. The set of nine benchmark 

images is taken to compare the performance of the algorithms. The optimal thresholds in these 

algorithms are determined by maximizing the fitness value provided by the Otsu method. The 

various statistical metrics and the image quality metric are used for the fair comparison among the 

algorithms.  

The partial content of this Chapter is published in 

Gupta, S., & Deep, K. (2019). Improved sine cosine algorithm with crossover scheme for global 

optimization. Knowledge-Based Systems, 165, 374-406. Elsevier. 
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The organization of the chapter is as follows: Section 7.2 provides a detailed description of 

multilevel thresholding problem.  Section 7.3 provides a numerical experimentation, analysis and 

comparison between classical variants of GWO and SCA, and their proposed variants, which are 

presented in Chapters 2, 3, 4 and 5. Finally the chapter concludes with Section 7.4. 

7.2.  Multilevel Thresholding 

Multilevel thresholding is a popular method for image segmentation. The bi-level thresholding 

partitions an image into two classes namely the object and its background. But, some of the images 

consists of homogeneous regions such as grey level and colour which imply the possibilities of 

effective segmentation. The bi-level thresholding is not very effective in these cases. Therefore, to 

segment an image into multiple classes, the multilevel thresholding method can be used. In 

multilevel thresholding, the determination of optimal thresholds is very crucial for the proper 

segmentation of an image. Multilevel thresholding is a widely used basic operation in image 

processing and in the literature, it is used as an efficient segmentation algorithm.  

To find the optimal thresholds, two approaches are available in the literature – parametric and non-

parametric approaches. In parametric approaches, first, a statistical model is assumed to fit the 

grey level distribution of an image. Secondly, the set of parameters that controls the fitness of the 

model are determined using the histogram of image. In [194], a parametric global thresholding 

method is developed which finds the optimal thresholds by estimating the parameters based on 

expectation-maximization function under the assumption that the object and its background classes 

follow the generalized gaussian distribution. In non-parametric approaches, the thresholds are 

determined by optimizing the objective function such as maximizing between class variance [195], 

maximizing entropy [196, 197]. In the literature [198], clustering techniques are also applied to 

solve the image segmentation problem. The segmentation is usually achieved using a histogram 

of images. The histogram is a distribution of grey level pixels in the image. The finding of optimal 

thresholds may not be straightforward always as it depends on the shape of histogram. Sometimes 

the histogram of image contains large number of wide valleys and peaks and therefore, the 

threshold allocation is difficult in such cases. The nature inspired algorithms are meaningful in 

these cases as they work independently from the nature of the problem and are capable to locate 

the deep valleys and peaks. In some past recent years, the nature inspired optimization algorithms 

[199-203] have attracted a lot of attention in the field of multilevel thresholding to segment images 

into multiple segments.  
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7.2.1. Problem Description 

In this section, the multilevel thresholding problem is presented using Otsu method. Image 

segmentation is process of splitting an image into multiple segments with an aim of simplify the 

representation of objects within an image. Usually, the segmentation is achieved by using a 

histogram of the image. But in some cases, due to the complex structure of histogram of an image, 

thresholding is not straightforward. The deep valleys and peaks in the histogram increases the 

difficulty of the process of thresholding. The Otsu method helps in such situation. 

7.2.2. Otsu Method [195] 

Otsu method is an unsupervised and non-parametric thresholding method. In this method, the 

optimal thresholds are determined by optimizing the class variance between segmented classes. 

For an image which is represented in 𝐿 grey levels 0, 1, 2, … , 𝐿 − 1, the image histogram 𝐻 =

{𝑓0, 𝑓1, 𝑓2, … , 𝑓𝐿−1} can be constructed. Here, 𝑓𝑖 represent the frequency of occurrence of 𝑖𝑡ℎ grey 

level in the image. Let 𝑁 be the total number of pixels in an image. The occurrence probability of  

𝑖𝑡ℎ grey level is given by 

 
𝑝𝑖 =

𝑓𝑖

𝑁
 (7.1) 

Let us suppose that there are 𝑘 thresholds namely 𝑡1, 𝑡2, … , 𝑡𝑘 are to be determined. Obviously 

these thresholds will divide the image into 𝑘 + 1 classes say 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑘. The objective 

function in the Otsu method which is to be maximized is as follows: 

 𝐹(𝑡1, 𝑡2, … 𝑡𝑘) = 𝑣0
2 + 𝑣1

2 + ⋯ 𝑣𝑘
2 (7.2) 

where, 

 𝑣0
2 = 𝑤0(𝑢0 − 𝑢𝑇)2,        𝑤0 = ∑ 𝑝𝑖

𝑡1−1
𝑖=0 ,           𝑢0 = ∑

𝑖 𝑝𝑖 

𝑤0

𝑗=𝑡1−1
𝑖=0  (7.3) 

 𝑣𝑗
2 = 𝑤𝑗(𝑢𝑗 − 𝑢𝑇)

2
,         𝑤𝑗 = ∑ 𝑝𝑖

𝑡𝑗+1−1

𝑖=𝑡𝑗
,         𝑢𝑗 = ∑  

𝑖 𝑝𝑖 

𝑤𝑖

𝑡𝑗+1−1

𝑖=𝑡𝑗
,  𝑗 = 1,2, … , 𝑘 − 1 (7.4) 

 𝑣𝑘
2 = 𝑤𝑘(𝑢𝑘 − 𝑢𝑇)2,       𝑤𝑘 = ∑ 𝑝𝑖

𝐿−1
𝑖=𝑡𝑘

,            𝑢𝑘 = ∑  
𝑖 𝑝𝑖 

𝑤𝑖

𝐿−1
𝑖=𝑡𝑘

  (7.5) 

𝑣0
2, 𝑣1

2, … , 𝑣𝑘
2 are the variances; 𝑤0, 𝑤1, … , 𝑤𝑘 are the class probabilities; 𝑢0, 𝑢1, … , 𝑢𝑘 are the mean 

levels of the segmented classes 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑘. 𝑢𝑇  is the mean level for the image which can be 

calculated as: 𝑢𝑇 = ∑ 𝑤𝑖𝑢𝑖
𝑘
𝑖=0   and ∑ 𝑤𝑖

𝑘
𝑖=0 = 1.  
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Since the Otsu method provides an objective function which is to be maximized. This objective 

function can be transformed into minimization type as follows: 

 
𝐹̂(𝑡1, 𝑡2, … 𝑡𝑘) =

1

1 + 𝐹(𝑡1, 𝑡2, … 𝑡𝑘)
 (7.6) 

7.3.  Experimental Results 

This section presents an experimental analysis of the proposed algorithms to solve the 

segmentation problem. The nine benchmark test images are taken from USC-SIPI and BSD 500 

image database for the experimentation. These benchmark images are presented in Fig 7.1. 30 runs 

of each algorithms are performed with 12 population size and 100 iterations. This parameter setting 

is adopted from the literature. To compare the algorithms, various statistical metrics such as mean, 

median and best fitness of the objective function defined by Otsu method is presented in the 

chapter. To confirm the quality of the segmented image, peak signal-to-noise ratio (PSNR) is 

calculated which is given by 

 
𝑃𝑆𝑁𝑅 = 10 log10

2552

𝑀𝑆𝐸
 (7.7) 

where,      𝑀𝑆𝐸 =
1

𝑀𝑁
[∑ ∑ (𝑂𝑖,𝑗 − 𝑆𝑖,𝑗)

2𝑁
𝑗=1

𝑀
𝑖=1 ]  

where 𝑂 and 𝑆 are the original and segmented images respectively. The obtained results on the test 

images are presented in Tables 7.1 to 7.3. The best, mean and median value of the objective 

function is recorded in these tables for higher number of thresholds 3, 4, 5 and 6. For the less 

number of thresholds, all the variants of GWO and SCA provide the same results.   

From the tables, it can be seen that the proposed variant called RW-GWO and mGWO outperform 

other algorithms in providing the better objective fitness in most of the test images. It can be seen 

from the tables that in some of the test images, the performance of these algorithms is similar to 

ISCA algorithm. The ISCA algorithms provides better objective fitness in terms of median as well 

as average of objective function than classical SCA and m-SCA. Overall, in most of the test images 

the algorithm RW-GWO and mGWO algorithms provides significantly better results than other 

proposed variants and classical versions of GWO and SCA. By analyzing the median and mean of 

objective fitness, the algorithm RW-GWO can be considered as a reliable optimizer as compared 

to all other algorithms. As an example, the optimal thresholds and the segmented images obtained 

by the RW-GWO algorithm are presented in Figs 7.2 to 7.5. The quality of the segmented images 

is compared with the metric PSNR. The mean and median value of PSNR is shown in Tables 7.4 
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and 7.5 respectively. The higher value of PSNR indicates the better quality of the segmented 

image. From these tables, it can be analyzed that the variants RW-GWO and mGWO provide better 

quality of segmented images as compared to the classical GWO, classical SCA, m-SCA and ISCA. 

 

 

(A) Cameraman 

 

(B) Bridge 

 

(C) Couple 

 

(D) Peppers 

 

(E) Airplane 

 

(F) Male 

 

(G) Lena 

 

(H) Bridge2 

 

(I) Lady 

Fig 7.1. Benchmark test images for image segmentation 
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7.4.  Concluding Remarks 

In the present chapter, the classical GWO, classical SCA, and their proposed variants which are 

presented in Chapters 2, 3, 4, 5 called RW-GWO, mGWO, m-SCA, and ISCA respectively are 

employed to determine the optimal thresholds for grey images. The experimental work has been 

conducted on nine standard benchmark grey images. The analysis of the results is conducted 

through various statistical measures such as best, mean, median of objective fitness and the image 

quality metric PSNR. From the experimental results, it can be observed that the proposed variants 

of GWO called mGWO and RW-GWO both perform better than classical GWO. Similarly, the 

ISCA outperforms classical SCA and m-SCA. By analyzing the median and mean value of 

objective fitness, it can be concluded that the RW-GWO algorithm is more reliable optimizer as 

compared to all other algorithms. Overall, the proposed RW-GWO and mGWO algorithms 

outperform other algorithms and therefore, these algorithm can be recommended for thresholding 

of grey images as compared to other proposed variants and classical versions of GWO and SCA.  
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Table 7.1. Mean value of the Otsu’s objective function using classical GWO, classical SCA and 

their proposed variants 

Test image Thresholds GWO RW-GWO mGWO SCA m-SCA ISCA 

Cameraman 

3 3727.37 3727.40 3727.40 3723.52 3726.32 3727.36 

4 3782.08 3782.34 3782.32 3771.81 3779.47 3782.08 

5 3812.40 3813.49 3813.50 3798.04 3809.30 3813.14 

6 3830.00 3833.46 3832.40 3816.65 3827.59 3831.73 

Bridge 

3 2722.34 2722.34 2722.36 2715.23 2721.74 2722.34 

4 2820.06 2822.41 2822.50 2809.07 2820.48 2822.43 

5 2869.73 2873.28 2873.95 2853.91 2868.65 2873.42 

6 2900.73 2905.02 2905.02 2882.24 2898.29 2904.75 

Couple 

3 1380.31 1383.15 1383.16 1372.55 1382.63 1383.11 

4 1448.83 1448.86 1449.74 1438.74 1447.34 1449.62 

5 1491.64 1496.05 1497.27 1479.19 1492.83 1496.39 

6 1521.46 1523.14 1523.93 1506.51 1518.92 1522.05 

Peppers 

3 2703.54 2703.57 2703.56 2695.27 2701.75 2703.52 

4 2766.23 2766.34 2766.24 2754.77 2761.24 2766.04 

5 2808.85 2810.56 2810.34 2787.94 2797.77 2809.59 

6 2829.19 2833.11 2831.22 2810.09 2821.36 2830.99 

Airplane 

3 975.85 975.88 975.87 973.04 974.26 975.65 

4 1010.93 1018.68 1020.99 1008.57 1014.91 1020.29 

5 1037.24 1038.46 1038.36 1029.79 1027.41 1037.33 

6 1052.91 1054.94 1054.04 1039.98 1046.73 1053.26 

Male 

3 3126.83 3126.86 3126.85 3120.63 3126.25 3126.82 

4 3208.63 3208.75 3208.76 3195.81 3206.51 3208.61 

5 3253.94 3254.50 3254.45 3237.64 3250.18 3254.22 

6 3280.04 3283.61 3283.35 3260.82 3278.75 3282.87 

Lena 

3 2128.28 2128.30 2128.27 2119.24 2126.52 2128.20 

4 2191.72 2191.82 2191.67 2176.40 2185.67 2191.40 

5 2216.72 2217.12 2216.41 2201.05 2204.08 2215.42 

6 2234.86 2238.02 2236.57 2216.79 2222.83 2233.42 

Bridge2 

3 3567.57 3567.59 3567.58 3560.25 3566.48 3567.56 

4 3660.11 3660.28 3660.28 3648.91 3658.81 3660.16 

5 3709.31 3710.08 3710.08 3688.10 3706.49 3709.78 

6 3732.60 3735.82 3735.41 3715.79 3729.90 3734.48 

Lady 

3 2211.47 2211.49 2211.49 2205.08 2210.65 2211.47 

4 2263.38 2264.26 2264.26 2251.84 2261.67 2264.08 

5 2292.77 2295.12 2295.16 2278.71 2291.35 2294.71 

6 2313.16 2315.51 2315.62 2296.67 2310.77 2314.85 
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Table 7.2. Median value of the Otsu’s objective function using classical GWO, classical SCA and 

their proposed variants 

Test images Thresholds GWO RW-GWO mGWO SCA m-SCA ISCA 

Cameraman 

3 3727.40 3727.41 3727.40 3723.78 3726.69 3727.40 

4 3782.27 3782.36 3782.35 3772.97 3779.42 3782.23 

5 3813.32 3813.62 3813.56 3797.34 3809.32 3813.21 

6 3832.42 3833.57 3832.93 3814.59 3827.90 3832.43 

Bridge 

3 2722.36 2722.36 2722.36 2716.08 2722.17 2722.36 

4 2822.07 2822.71 2822.71 2808.79 2821.24 2822.71 

5 2873.32 2874.24 2874.19 2855.78 2869.01 2873.43 

6 2904.47 2905.69 2906.01 2880.13 2898.95 2905.36 

Couple 

3 1383.16 1383.16 1383.16 1373.54 1382.76 1383.11 

4 1449.73 1449.76 1449.75 1440.70 1447.64 1449.71 

5 1496.45 1497.21 1497.39 1477.67 1493.23 1497.10 

6 1519.54 1524.52 1525.10 1506.93 1518.91 1522.00 

Peppers 

3 2703.56 2703.57 2703.57 2698.65 2702.65 2703.56 

4 2766.39 2766.40 2766.28 2756.30 2762.16 2766.23 

5 2810.53 2810.69 2810.57 2787.91 2802.43 2809.91 

6 2832.18 2833.52 2832.40 2809.93 2822.64 2832.16 

Airplane 

3 975.86 975.89 975.89 973.50 974.76 975.84 

4 1020.11 1021.17 1021.10 1009.48 1016.56 1020.66 

5 1036.62 1037.50 1036.75 1030.09 1031.07 1036.56 

6 1054.58 1055.15 1054.51 1040.47 1046.95 1053.87 

Male 

3 3126.86 3126.86 3126.86 3121.79 3126.45 3126.86 

4 3208.70 3208.77 3208.75 3197.33 3207.06 3208.68 

5 3254.30 3254.66 3254.55 3238.38 3250.33 3254.37 

6 3281.87 3283.79 3283.70 3261.02 3279.26 3283.16 

Lena 

3 2128.29 2128.31 2128.29 2120.71 2127.04 2128.25 

4 2191.78 2191.87 2191.72 2178.44 2187.55 2191.54 

5 2216.59 2217.42 2216.20 2202.36 2207.61 2215.62 

6 2237.47 2238.16 2237.60 2217.72 2223.66 2235.53 

Bridge2 

3 3567.57 3567.60 3567.60 3560.70 3566.90 3567.56 

4 3660.20 3660.30 3660.30 3650.98 3659.19 3660.22 

5 3710.07 3710.18 3710.21 3688.03 3706.92 3709.89 

6 3733.86 3736.01 3735.74 3715.31 3730.56 3735.26 

Lady 

3 2211.49 2211.49 2211.49 2206.24 2210.79 2211.49 

4 2264.09 2264.30 2264.30 2251.73 2262.29 2264.19 

5 2294.67 2295.31 2295.30 2280.41 2291.85 2294.98 

6 2314.84 2315.81 2315.74 2297.08 2311.28 2314.99 
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Table 7.3. Best value of the Otsu’s objective function using classical GWO, classical SCA and 

their proposed variants. 

Test images Thresholds GWO RW-GWO mGWO SCA m-SCA ISCA 

Cameraman 

3 3727.41 3727.41 3727.41 3726.41 3727.37 3727.41 

4 3782.37 3782.40 3782.40 3780.80 3782.27 3782.37 

5 3813.74 3813.73 3813.74 3811.42 3813.11 3813.71 

6 3833.67 3833.72 3833.71 3828.45 3832.23 3833.53 

Bridge 

3 2722.36 2722.36 2722.36 2722.17 2722.36 2722.36 

4 2822.71 2822.71 2822.71 2821.39 2822.71 2822.71 

5 2874.24 2874.24 2874.24 2864.24 2874.08 2874.24 

6 2906.01 2906.04 2906.04 2902.75 2905.10 2906.04 

Couple 

3 1383.16 1383.16 1383.16 1382.82 1383.16 1383.16 

4 1449.81 1449.81 1449.81 1448.82 1449.48 1449.81 

5 1497.61 1497.61 1497.62 1491.57 1497.42 1497.57 

6 1525.73 1525.83 1525.82 1522.92 1525.08 1525.72 

Peppers 

3 2703.57 2703.57 2703.57 2703.18 2703.57 2703.57 

4 2766.46 2766.46 2766.46 2764.22 2765.99 2766.46 

5 2810.84 2810.82 2810.84 2803.79 2808.55 2810.77 

6 2833.68 2833.74 2833.59 2823.02 2829.25 2833.40 

Airplane 

3 975.89 975.89 975.89 975.77 975.77 975.89 

4 1021.21 1021.22 1021.22 1018.80 1020.41 1021.22 

5 1041.60 1041.62 1041.52 1040.55 1039.59 1040.97 

6 1055.16 1055.24 1055.24 1049.64 1054.03 1054.97 

Male 

3 3126.86 3126.86 3126.86 3126.46 3126.86 3126.86 

4 3208.81 3208.81 3208.81 3205.76 3208.41 3208.78 

5 3254.76 3254.80 3254.76 3252.71 3253.58 3254.80 

6 3284.06 3284.10 3284.10 3275.43 3282.34 3283.89 

Lena 

3 2128.31 2128.31 2128.31 2127.90 2128.16 2128.31 

4 2191.87 2191.87 2191.87 2191.05 2191.32 2191.87 

5 2217.77 2217.78 2217.68 2210.09 2215.01 2217.62 

6 2238.40 2238.39 2238.35 2231.56 2233.98 2237.93 

Bridge2 

3 3567.60 3567.60 3567.60 3566.55 3567.54 3567.60 

4 3660.34 3660.34 3660.34 3657.68 3660.05 3660.34 

5 3710.26 3710.26 3710.26 3707.40 3709.06 3710.26 

6 3736.19 3736.20 3736.21 3729.97 3734.71 3736.18 

Lady 

3 2211.49 2211.49 2211.49 2211.01 2211.40 2211.49 

4 2264.33 2264.35 2264.35 2261.46 2263.97 2264.35 

5 2295.60 2295.60 2295.61 2291.43 2295.00 2295.48 

6 2316.17 2316.19 2316.17 2309.06 2315.30 2316.02 
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Table 7.4. Mean PSNR value using classical GWO, classical SCA and their proposed variants 

Test images Thresholds GWO RW-GWO mGWO SCA m-SCA ISCA 

Cameraman 

3 20.21 20.21 20.21 19.96 20.17 20.20 

4 21.41 21.50 21.49 21.27 21.47 21.47 

5 23.17 23.22 23.25 22.24 23.00 23.22 

6 23.71 23.73 23.78 23.03 23.59 23.81 

Bridge 

3 16.64 16.52 16.59 16.70 16.79 16.62 

4 18.98 18.78 18.99 18.63 18.96 18.98 

5 20.59 20.51 20.59 20.03 20.42 20.61 

6 22.08 22.17 22.17 21.05 21.77 22.24 

Couple 

3 17.22 17.28 17.28 16.99 17.26 17.27 

4 20.36 20.30 20.41 19.45 20.17 20.38 

5 20.78 21.47 21.47 20.70 21.43 21.51 

6 22.04 22.63 22.65 21.79 22.63 22.55 

Peppers 

3 18.47 18.48 18.48 18.38 18.40 18.47 

4 20.65 20.66 20.66 20.10 20.38 20.66 

5 22.25 22.33 22.32 21.39 21.71 22.25 

6 23.32 23.47 23.37 22.20 22.74 23.40 

Airplane 

3 19.27 19.30 19.30 19.23 19.06 19.34 

4 20.51 21.28 21.51 20.70 21.30 21.48 

5 22.82 23.22 23.20 22.53 22.33 23.06 

6 24.41 24.58 24.59 23.05 23.85 24.48 

Male 

3 19.43 19.43 19.43 19.31 19.34 19.43 

4 20.95 20.98 20.98 20.61 20.90 20.98 

5 22.54 22.58 22.58 21.90 22.40 22.56 

6 23.71 23.93 23.91 22.92 23.71 23.91 

Lena 

3 17.31 17.30 17.32 17.13 17.32 17.32 

4 18.64 18.62 18.64 18.46 18.62 18.59 

5 19.64 19.50 19.66 19.38 19.54 19.71 

6 21.10 20.72 20.74 20.29 20.52 20.90 

Bridge2 

3 18.34 18.34 18.35 18.31 18.31 18.34 

4 20.67 20.70 20.70 20.28 20.64 20.68 

5 22.10 22.17 22.17 21.53 22.05 22.14 

6 23.27 23.44 23.43 22.59 23.17 23.38 

Lady 

3 18.87 18.87 18.86 18.74 18.88 18.91 

4 21.15 21.15 21.17 20.89 21.05 21.18 

5 23.06 23.25 23.29 21.86 23.03 23.24 

6 24.30 24.56 24.58 23.11 24.13 24.51 
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Table 7.5. Median PSNR value using classical GWO, classical SCA and their proposed variants 

Test images Thresholds GWO RW-GWO mGWO SCA m-SCA ISCA 

Cameraman 

3 20.21 20.21 20.21 20.06 20.19 20.21 

4 21.39 21.52 21.47 21.39 21.48 21.49 

5 23.20 23.25 23.26 22.33 23.07 23.27 

6 23.64 23.73 23.70 22.90 23.58 23.72 

Bridge 

3 16.61 16.47 16.59 16.69 16.78 16.58 

4 19.01 18.80 19.01 18.81 19.01 19.00 

5 20.68 20.47 20.59 20.04 20.48 20.57 

6 22.22 22.16 22.19 20.98 21.87 22.26 

Couple 

3 17.28 17.28 17.28 16.98 17.27 17.28 

4 20.43 20.42 20.41 19.73 20.28 20.40 

5 21.42 21.48 21.47 20.97 21.45 21.48 

6 22.41 22.94 22.97 21.85 22.70 22.90 

Peppers 

3 18.46 18.49 18.49 18.42 18.40 18.47 

4 20.66 20.67 20.66 20.07 20.38 20.68 

5 22.31 22.34 22.34 21.49 21.78 22.29 

6 23.37 23.48 23.40 22.27 22.75 23.41 

Airplane 

3 19.27 19.33 19.33 19.30 19.09 19.35 

4 21.13 21.46 21.54 21.01 21.42 21.54 

5 22.54 23.27 23.35 22.67 22.79 22.98 

6 24.39 24.61 24.51 23.11 24.03 24.47 

Male 

3 19.43 19.43 19.43 19.28 19.42 19.43 

4 20.96 20.97 20.97 20.63 20.89 20.99 

5 22.57 22.59 22.59 21.91 22.44 22.56 

6 23.79 23.95 23.93 22.90 23.71 23.91 

Lena 

3 17.33 17.29 17.33 17.17 17.32 17.33 

4 18.65 18.60 18.65 18.49 18.62 18.60 

5 19.42 19.35 19.67 19.16 19.40 19.69 

6 20.82 20.72 20.70 20.04 20.29 20.85 

Bridge2 

3 18.34 18.34 18.34 18.32 18.32 18.34 

4 20.68 20.71 20.71 20.39 20.64 20.68 

5 22.15 22.18 22.18 21.53 22.08 22.15 

6 23.30 23.46 23.46 22.53 23.16 23.40 

Lady 

3 18.85 18.83 18.83 18.76 18.90 18.94 

4 21.15 21.14 21.19 21.08 20.99 21.18 

5 23.22 23.27 23.30 22.14 23.04 23.25 

6 24.40 24.59 24.60 23.31 24.14 24.55 
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Fig 7.2. Segmented results obtained by RW-GWO algorithm. (a) represents the segmented image 

and (b) represents the optimal thresholds for test image (A) and (B) 
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Fig 7.3. Segmented results obtained by RW-GWO algorithm. (a) represents the segmented image 

and (b) represents the optimal thresholds for test image (C) and (D) 
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Fig 7.4. Segmented results obtained by RW-GWO algorithm. (a) represents the segmented image 

and (b) represents the optimal thresholds for test image (E) and (F) 
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Fig 7.5. Segmented results obtained by RW-GWO algorithm. (a) represents the segmented image 

and (b) represents the optimal thresholds for test image (G) and (H) 
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Fig 7.6. Segmented results obtained by RW-GWO algorithm. (a) represents the segmented image 

and (b) represents the optimal thresholds for test image (I) 
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Chapter 8   

Optimal Coordination of Overcurrent Relays Using 

Proposed Variants of GWO and SCA  

In this chapter, the classical versions of GWO and SCA and their proposed variants which are 

presented is Chapters 2, 3, 4 and 5 are used to solve a real life problem arising in the field of 

electrical engineering. The idea is to observe the effectiveness of solving real life problem using 

the proposed algorithms of the Thesis.  

8.1. Introduction 

Coordination of relays is a non-linear constrained optimization problem in a large distribution 

network where the operating time of all relays is to be minimized. Proper coordination of 

protective devices is a very crucial task for appropriate functioning of the electrical power system 

with distributed power generating stations. In the present chapter, the proposed variants of GWO 

and SCA along with their classical versions are employed to find the optimal setting for the proper 

coordination of overcurrent relays. The experiments are performed on IEEE 3, 4, 6, and 14-bus 

systems.  

The organization of the chapter is as follows: Section 8.2 provides a detailed description of the 

relay coordination problem. Section 8.3 provides a numerical experimentation, analysis and 

comparison between classical GWO, classical SCA, and their proposed variants which are 

presented in Chapters 2, 3, 4, and 5. Finally the chapter concludes with Section 8.4. 

8.2. Relay Coordination Problem 

8.2.1. Background 

The relay coordination problem has its origin in electrical power system and depends upon finding 

the optimal values of the decision variables for the devices called “Relays” which controls the act 

of isolation of faulty lines from the system without disturbing the healthy lines. Directional 

overcurrent relays (DOCRs) are provided in electrical power system to isolate the faulty lines only,  

The content of this chapter is published in:  

Gupta, S., & Deep, K. (2019). Optimal coordination of overcurrent relays using improved leadership based 

Grey Wolf Optimizer. Arabian Journal for Science and Engineering, Springer. (Accepted). 
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when the fault occurs in the system. These relays are placed at both the ends of each line. Hence, 

the number of DOCRs in an electrical power system is twice to the number of lines. In order to 

maintain the continuity of supply to healthy sections and to isolate the faulty sections relays are 

coordinated. This coordination ensures that the minimum lines are disrupted in the system when 

the fault occurs. This is accomplished in DOCRs by properly fixing the two adjustable parameters 

called “Time Dial Setting (TS)” and “Plug Setting (PS)” of each relay. The above stated problem 

of coordination between DOCRs can be modeled mathematically as a non-linear constrained 

optimization problem where the objective is to minimize the sum of operating time of all primary 

relays which are expected to operate when the fault occurs in the system.  

Generally, there are two approaches that are used for directional overcurrent relay, conventional 

techniques and nature inspired techniques. In conventional techniques, first, the fault analysis is 

conducted and after that meshed networks are broken into radial form. Then relay at far end is set 

and in the last setup of back relays is established and this process is repeated for all relays. Final 

Time Dial Setting and Plug Setting depends on the selection of initial relays which are known as 

breakpoints [204]. These breakpoints are selected by using graph theory. The number of iterations 

here depends on the selection of breakpoints. It has been observed that the values of Time Dial 

Setting and Plug Setting determined by conventional techniques are not optimal [205]. 

Coordination of overcurrent relays in a large distribution network with multi-source and multi-

looped network by using conventional optimization becomes infeasible [205]. Therefore, the 

unconventional parameter optimization techniques that are designed especially for highly non-

linear or non-differentiable problems, are more effective for these type of problems. These 

techniques are called as nature inspired optimization techniques or metaheuristic techniques. The 

description and various examples of nature inspired optimization techniques are provided in the 

Chapter 1 of Thesis.  

In [206], first time the optimization theory has been utilized to deal coordination of directional 

overcurrent relay. The practical importance of these problems inspires to apply different 

optimization strategies to solve this type of problems. In [207], linear programming is also used to 

find the optimal setting of parameters in overcurrent relay. 

Various unconventional optimization algorithms are applied to find the optimal setting for the 

proper coordination of relays. For example: Genetic Algorithm (GA) and its improved variants are 

used [208-210] to determine the optimal coordination. In [211-213], Differential Evolution along 

with its modified variants are employed on the coordination of overcurrent relay problem to find 

the optimum setting of decision parameters TS and PS. In [214-219], Particle Swarm Optimization 
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and its modified variants are used to solve coordination problem with mixed-integer programming 

formulation. In [220], Random Search Technique (RST) is applied to solve the coordination 

problem. Seeker Algorithm is applied in [221] with step length and adaptive search direction to 

find the decision parameters so that the operating time of all relay can be minimized.  

In the present chapter the classical GWO, classical SCA and their proposed variants are evaluated 

on solving the relay coordination problem.  

8.2.2. Problem Description 

The relay operating time of directional overcurrent relay is a nonlinear function (T) of variables 

Time Dial Setting (TS), power flow 𝑖𝑓 and Plug Setting (PS). A mathematical form of the problem 

[222] can be stated as – 

 
𝑇 =

𝜇 × 𝑇𝑆

(
𝑖𝑓

𝑃𝑆 × 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
)

𝛼

− 𝛽

 
(8.1) 

 

In the above problem, only 𝑇𝑆 and 𝑃𝑆 are the decision parameters. The constants 𝜇, 𝛼  and 𝛽 

represents the characteristics of a relay and are chosen as 0.14, 0.02 and 1.0 respectively as per the 

IEEE standards [223]. 𝑖𝑓  is the fault current passing through a relay. 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 is current 

transformer’s primary rating.  If the secondary rating of 𝐶𝑇 is 1.0 then the current sensed by the 

relay is –  

 
𝑖𝑟 =

𝑖𝑓

𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
 

(8.2) 

A fault that occurs near to relay is called near-end-fault or close-in fault and the fault that occurs 

at other end is known as far-end-fault or far-bus fault for the same relay. 𝑛𝑐 represents the number 

of relays responding to close-in fault and 𝑛𝑓 is the number of relays responding to far-bus fault. 

The objective (or fitness) function of the problem is the integration of operating time of all primary 

relays which can be defined as – 

 

𝑜𝑏𝑗 = ∑ 𝑇𝑝𝑟_𝑐𝑙_𝑖𝑛
𝑗

𝑛𝑐

𝑗=1

+ ∑ 𝑇𝑝𝑟_𝑓𝑎𝑟_𝑏𝑢𝑠
𝑘

𝑛𝑓

𝑘=1

 

(8.3) 
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where 
𝑇𝑝𝑟_𝑐𝑙_𝑖𝑛

𝑗
=

0.14 × 𝑇𝐷𝑆𝑗

(
𝑖𝑓

𝑗

𝑃𝑆𝑗 × 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑗 )

0.02

− 1

 
(8.4) 

and 
𝑇𝑝𝑟_𝑓𝑎𝑟_𝑏𝑢𝑠

𝑘 =
0.14 × 𝑇𝐷𝑆𝑘

(
𝑖𝑓

𝑘

𝑃𝑆𝑘 × 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘 )

0.02

− 1

 
(8.5) 

represent the response time of relay 𝑗 and 𝑘 to clear close-in and far-bus fault respectively.  

Constraints 

Bounds constraints for variable TS 

For each relay, the value of 𝑇𝑆 should lie within their lower and upper limits i.e. 

 𝑇𝑆𝑚𝑖𝑛
𝑗

≤ 𝑇𝑆𝑗 ≤ 𝑇𝑆𝑚𝑎𝑥
𝑗

                ∀𝑗 = 1,2, … , 𝑛𝑐 (8.6) 

The values of 𝑇𝑆𝑚𝑖𝑛
𝑗

 and 𝑇𝑆𝑚𝑎𝑥
𝑗

 for each 𝑗 is fixed as 0.05s and 1.10s. 

Bounds constraints for variable PS 

For each relay, the value of 𝑃𝑆 should lie within their lower and upper limits i.e. 

 𝑃𝑆𝑚𝑖𝑛
𝑗

≤ 𝑃𝑆𝑗 ≤ 𝑃𝑆𝑚𝑎𝑥
𝑗

                 ∀𝑗 = 1,2, … , 𝑛𝑓 (8.7) 

The values of 𝑃𝑆𝑚𝑖𝑛
𝑗

 and 𝑃𝑆𝑚𝑎𝑥
𝑗

 for each 𝑗 is fixed as 1.25 and 1.5. 

Constraints for primary operation time  

Each term of the objective function (𝑜𝑏𝑗) should be within the limit of 0.05s and 1s. 

Selectivity constraints for relay pairs 

A situation when the primary relays fail, backup relay operates at that time to prevent from mal-

operation. The selectivity constraints maintain the selectivity of primary and backup relays. The 

sum of operating time of circuit breaker associated with primary relay and overshoot time is known 

as coordinate time interval (𝐶𝑇𝐼 ). In order to maintain a suitable coordination between two 

overcurrent relays, the difference between the operating time of backup and primary relay should 

be greater than or equal to the coordinate time interval (CTI), i.e. 
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 𝑇𝑀 = 𝑇𝑏𝑎𝑐𝑘𝑢𝑝 − 𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 ≥ 𝐶𝑇𝐼 (8.8) 

 𝐶𝑇𝐼 −
0.14×𝑇𝐷𝑆𝑛

(
𝑖
𝑓
𝑗

𝑃𝑆𝑗×𝐶𝑇
𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑗

)

0.02

−1

+
0.14×𝑇𝐷𝑆𝑚

(
𝑖
𝑓
𝑗

𝑃𝑆𝑗×𝐶𝑇
𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑗

)

0.02

−1

≤ 0  (8.9) 

where (𝑚, 𝑛) is the combination of a primary relay 𝑚 and backup relay 𝑛. The value of 𝐶𝑇𝐼 is 

fixed and often set between 0.2s to 0.6s. 

The constraint handling that has been used to solve this problems is as follows: 

8.2.3. Constraint Handling  

In the chapter, the two different constraint handling are utilized to solve the coordination of relays 

problem. In the first technique, a simple constraint handing technique based on constraint violation 

as described in Chapter 6 of the Thesis is used. The second constraint handling techniques which 

is applied is known as static penalty approach [224]. In this constraint handling technique, the 

objective function is defined as 

𝑜𝑏𝑗 = {
           𝐹(𝑋)                                                     𝑖𝑓 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑋 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒  

𝐹(𝑋) + ∑ 𝑐𝑗 × [max (0, 𝑔𝑗(𝑋))]
2

𝐽
𝑗=1                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  (8.10) 

where 𝑐𝑗 (𝑗 = 1,2, … , 𝐽) are the penalty parameters. 

8.3. Experimental Setup and Results 

In this chapter, the classical GWO, classical SCA, and their proposed variants namely RW-GWO 

(presented in Chapter 2), mGWO (presented in Chapter 3), m-SCA (presented in Chapter 4) and 

ISCA (presented in Chapter 5) are applied to solve this complex non-linear relay coordination 

problem. The population size is a very crucial parameter for any metaheuristic algorithm. The 

small size of the population fails to explore the search space of the problem while the large 

population size may fail to determine an efficient solution. Therefore, a suitable population size 

for algorithm should be chosen. In the present study, the population size is fixed as 10 × 

dimension of the problem. For each algorithm 30 runs are performed for each bus-system and the 

best obtained results are recorded. The maximum number of function evaluations are fixed to 105 

for IEEE 3, 4 and 6-bus system and 106 for the 14-bus system. For the comparison Random Search 

Technique (RST) [220], Differential Evolution (DE) [211], modified variants of Differential 

Evolution such as MDE1 [211], MDE2 [211], MDE3 [211], MDE4 [211], MDE5 [211], OCDE1 
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[213], OCDE2 [213], LX-PM [222] have been considered to analyse the comparative ability of 

proposed variants of GWO and SCA in finding the optimal setting for relay coordination problem. 

An algorithm corresponding to the first constraint handing which is based on the constraint 

violation is represented by A1 and the algorithm corresponding to the second constraint handing 

which is based on the penalty approach is represented by A2. Here, A represents the applied 

algorithm which can be GWO, RW-GWO, SCA, m-SCA or ISCA.  

8.3.1. Test Models 

Model I: IEEE 3-Bus, Model II: IEEE 4-Bus, Model III: 6-Bus system and Model IV: 14-Bus 

system 

In the present section, the IEEE 3-Bus, 4-Bus, 6-Bus and 14-bus systems are used to evaluate the 

performance of classical GWO, classical SCA and their proposed variants which are presented in 

Chapters 2, 3, 4, and 5. 

In the 3-bus system, a synchronous generator is used. The number of lines in this bus-system is 3 

and number of relays is 6. In this system, the total number of decision parameters are 12 (𝑇𝑆1 −

𝑇𝑆6 and 𝑃𝑆1 − 𝑃𝑆6). To optimize the parameter setting of this model the coordination of the 

setting of all the six relays is required. The values of 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for 

the 3-bus system is presented in Table C1 of Appendix C, and the line diagram of this model is 

shown in Fig 8.1. The value of CTI is set to 0.3 in this model. This model includes 8 selectivity 

constraints and for this, the values of 𝑖𝑓 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 corresponding to primary and backup 

relay are presented in Table C2 of Appendix C. The obtained optimal decision variables by 

classical GWO, classical SCA, RW-GWO, mGWO, m-SCA, and ISCA are presented in Table 8.1. 

 IEEE 4-bus system consists of 16 decision parameters (𝑇𝑆1 − 𝑇𝑆8 and 𝑃𝑆1 − 𝑃𝑆8), 2 generators 

and 8 relays. In the 4-Bus system number of selectivity constraints are 9. The values of 

𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for the 4-bus system is presented in Table C3 of 

Appendix C and the line diagram of this system is shown in Fig 8.2. The value of 𝐶𝑇𝐼 is fixed to 

0.3 in this model and the values of 𝑖𝑓 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 corresponding to primary and backup 

relay are presented in Table C4 of Appendix C. The obtained optimal decision parameters (TS and 

PS) from various algorithms are presented in Table 8.2.  

IEEE 6-Bus system consists of 7 lines, 3 generators and 14 relays. In this problem, 28 decision 

variables (𝑇𝑆1 − 𝑇𝑆14 and 𝑃𝑆1 − 𝑃𝑆14 ) are involved. The values of 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 

𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for the 6-bus system is presented in Table C5 of Appendix C. The line diagram of 
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this model is presented in Fig 8.3.  The value of 𝐶𝑇𝐼 is 0.2 for this model. In this model, 48 

selectivity constraints are involves corresponding to all possible near-end and far-end faults that 

are sensed by relays of the power system. The values of 𝑖𝑓 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 corresponding to 

primary and backup relay are presented in Table C6 of Appendix C. The obtained optimal decision 

variables 𝑇𝑆 and 𝑃𝑆 obtained from various algorithms are presented in Table 8.3.  

In a 14-Bus system, 80 decision variables (𝑇𝑆1 − 𝑇𝑆40 and 𝑃𝑆1 − 𝑃𝑆40) are involved. The data 

for the 14-bus system can be found in [222] and is provided in Appendix C. The line diagram of 

this model is presented in Fig 8.4. The value of 𝐶𝑇𝐼 is 0.2 for this model. In this model, 145 

selectivity constraints are involves corresponding to all possible near-end and far-end faults that 

are sensed by relays of the power system. The values of 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  

for the 6-bus system is presented in Table C7 of Appendix C. The values of 𝑖𝑓 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔 

corresponding to primary and backup relay are presented in Table C8 of Appendix C. The obtained 

optimal decision variables 𝑇𝑆 and 𝑃𝑆 from various algorithms are presented in Tables 8.4 and 8.5 

respectively.  

The obtained objective fitness value (minimum operating time of all relay) is reported in Table 8.6 

corresponding to all bus systems. By analyzing the results presented in this table, it can be observed 

that the results obtained from DE and its variants (MDE1, MDE2, MDE3, MDE4, MDE5) [211], 

OCDE1 and OCDE2 [213], are infeasible while the optimal setting obtained by RST [220], LX-

PM [222], classical GWO [75], classical SCA [145], RW-GWO, mGWO, m-SCA, and ISCA is 

feasible for 3 and 4-bus systems. For 6 and 14-bus systems, LX-PM, classical-GWO, RW-GWO, 

mGWO, and ISCA gives feasible solution. From the results, presented in Table 8.6, it can be 

concluded that the results obtained from RW-GWO are better than other algorithms under 

consideration. 

8.4. Concluding Remarks 

Coordination of directional overcurrent relays is a very trending and complex non-linear problem 

in the field of electrical engineering. The problem consists of a large number of constraints which 

make the problem more difficult to solve as compared to unconstrained problems. The number of 

decision parameters are also large in this problem. In the present chapter, to find the optimal setting 

for overcurrent relays, classical versions of GWO and SCA, and their proposed variants are 

employed. The comparative analysis of the results between these algorithms and some state-of-

the-art algorithms available in the literature demonstrate the better search efficiency of the 
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proposed RW-GWO algorithm to provide not only feasible solutions but also better and efficient 

solutions. 
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Table 8.1. Optimal decision variables for 3-bus system obtained by classical GWO, classical 

SCA and their proposed variants 

Variable GWO RW-GWO mGWO SCA m-SCA ISCA 

𝑻𝑺𝟏 0.0500 0.0500 0.0500 0.0503 0.0584 0.0500 

𝑻𝑺𝟐 0.1982 0.1979 0.1989 0.2462 0.2347 0.2026 

𝑻𝑺𝟑 0.0500 0.0500 0.0500 0.0500 0.0540 0.0500 

𝑻𝑺𝟒 0.2103 0.2096 0.2095 0.2729 0.2574 0.2153 

𝑻𝑺𝟓 0.1818 0.1830 0.1830 0.2142 0.1990 0.1845 

𝑻𝑺𝟔 0.1823 0.1807 0.1818 0.1924 0.2040 0.1810 

𝑷𝑺𝟏 1.2503 1.2506 1.2506 1.2946 1.2826 1.2527 

𝑷𝑺𝟐 1.4967 1.4976 1.4865 1.5000 1.3796 1.4661 

𝑷𝑺𝟑 1.2500 1.2500 1.2518 1.2500 1.3065 1.2512 

𝑷𝑺𝟒 1.4838 1.4984 1.5000 1.2500 1.4646 1.4268 

𝑷𝑺𝟓 1.4897 1.4666 1.4692 1.5000 1.4525 1.4552 

𝑷𝑺𝟔 1.4723 1.4999 1.4816 1.5000 1.2950 1.5000 
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Table 8.2. Optimal decision variables for 4-bus system obtained by classical GWO, classical SCA 

and their proposed variants 

Variable GWO RW-GWO mGWO SCA m-SCA ISCA 

𝑻𝑺𝟏 0.0500 0.0501 0.0500 0.0728 0.0795 0.0500 

𝑻𝑺𝟐 0.2158 0.2128 0.2127 0.2405 0.2394 0.2137 

𝑻𝑺𝟑 0.0500 0.0500 0.0500 0.0500 0.0596 0.0501 

𝑻𝑺𝟒 0.1257 0.1260 0.1259 0.1454 0.1440 0.1280 

𝑻𝑺𝟓 0.1267 0.1273 0.1268 0.1448 0.1809 0.1272 

𝑻𝑺𝟔 0.0500 0.0500 0.0500 0.0500 0.0552 0.0500 

𝑻𝑺𝟕 0.1351 0.1341 0.1342 0.1664 0.1779 0.1402 

𝑻𝑺𝟖 0.0500 0.0500 0.0500 0.0500 0.0549 0.0502 

𝑷𝑺𝟏 1.2623 1.2524 1.2773 1.5000 1.3207 1.2616 

𝑷𝑺𝟐 1.4274 1.4881 1.4924 1.5000 1.4964 1.4856 

𝑷𝑺𝟑 1.2515 1.2500 1.2500 1.2500 1.2921 1.2505 

𝑷𝑺𝟒 1.5000 1.4948 1.4933 1.5000 1.3265 1.4778 

𝑷𝑺𝟓 1.4951 1.4760 1.4981 1.5000 1.4132 1.4977 

𝑷𝑺𝟔 1.2526 1.2513 1.2516 1.3413 1.3813 1.2500 

𝑷𝑺𝟕 1.4731 1.4936 1.4928 1.2500 1.3792 1.3703 

𝑷𝑺𝟖 1.2511 1.2529 1.2500 1.2500 1.4249 1.2500 
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Table 8.3. Optimal decision variables for 6-bus systems obtained by classical GWO, classical 

SCA and their proposed variants 

Variable GWO RW-GWO mGWO SCA m-SCA ISCA 

𝑻𝑺𝟏 0.1061 0.1157 0.1109 0.2538 0.2507 0.1190 

𝑻𝑺𝟐 0.1897 0.1867 0.2024 0.2367 0.3983 0.2051 

𝑻𝑺𝟑 0.0974 0.0967 0.1011 0.1072 0.2388 0.1071 

𝑻𝑺𝟒 0.1078 0.1046 0.1095 0.2412 0.3435 0.1187 

𝑻𝑺𝟓 0.0503 0.0503 0.0500 0.0813 0.1120 0.0507 

𝑻𝑺𝟔 0.0502 0.0528 0.0503 0.0500 0.1852 0.0698 

𝑻𝑺𝟕 0.0500 0.0500 0.0500 0.0500 0.0795 0.0505 

𝑻𝑺𝟖 0.0502 0.0500 0.0501 0.0908 0.0851 0.0501 

𝑻𝑺𝟗 0.0501 0.0500 0.0501 0.0500 0.0910 0.0509 

𝑻𝑺𝟏𝟎 0.0669 0.0531 0.0647 0.0643 0.2583 0.0691 

𝑻𝑺𝟏𝟏 0.0655 0.0655 0.0667 0.0750 0.2122 0.0798 

𝑻𝑺𝟏𝟐 0.0527 0.0512 0.0598 0.1129 0.2260 0.0689 

𝑻𝑺𝟏𝟑 0.0500 0.0502 0.0503 0.1032 0.2361 0.0524 

𝑻𝑺𝟏𝟒 0.0739 0.0809 0.0888 0.0687 0.3635 0.0901 

𝑷𝑺𝟏 1.4485 1.2937 1.4088 1.5000 1.3761 1.4263 

𝑷𝑺𝟐 1.4596 1.5000 1.3148 1.4166 1.3126 1.3426 

𝑷𝑺𝟑 1.2554 1.2577 1.2578 1.2500 1.2658 1.2500 

𝑷𝑺𝟒 1.3534 1.4333 1.3205 1.2500 1.2985 1.2549 

𝑷𝑺𝟓 1.2625 1.2500 1.2580 1.2500 1.3296 1.2515 

𝑷𝑺𝟔 1.4120 1.3483 1.3999 1.5000 1.4309 1.2500 

𝑷𝑺𝟕 1.2500 1.2506 1.2500 1.2500 1.3146 1.2500 

𝑷𝑺𝟖 1.2500 1.2504 1.2512 1.2500 1.2967 1.2711 

𝑷𝑺𝟗 1.2522 1.2624 1.2523 1.5000 1.3741 1.2706 

𝑷𝑺𝟏𝟎 1.2516 1.4814 1.3723 1.2500 1.3019 1.3990 

𝑷𝑺𝟏𝟏 1.4966 1.4946 1.4839 1.5000 1.4213 1.3455 

𝑷𝑺𝟏𝟐 1.4751 1.4916 1.3320 1.5000 1.3897 1.2852 

𝑷𝑺𝟏𝟑 1.4518 1.4419 1.4545 1.2669 1.2891 1.4468 

𝑷𝑺𝟏𝟒 1.4552 1.3397 1.2592 1.5000 1.3194 1.3382 
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Table 8.4. Optimal decision variables (𝑇𝑆) for 14-bus systems obtained by classical GWO, 

classical SCA and their proposed variants 

Variable GWO RW-GWO mGWO SCA m-SCA ISCA 

𝑻𝑺𝟏 0.06198 0.05477 0.0506 0.0620 0.2489 0.0582 

𝑻𝑺𝟐 0.05004 0.05001 0.0500 0.1361 0.8453 0.0500 

𝑻𝑺𝟑 0.05232 0.05781 0.0698 0.1055 0.1374 0.0633 

𝑻𝑺𝟒 0.05021 0.05024 0.0530 0.0519 0.1556 0.0568 

𝑻𝑺𝟓 0.06395 0.09155 0.0548 0.0864 0.2400 0.0617 

𝑻𝑺𝟔 0.07145 0.09512 0.0776 0.1899 0.1994 0.1082 

𝑻𝑺𝟕 0.05610 0.05105 0.0529 0.0688 0.2129 0.0776 

𝑻𝑺𝟖 0.14305 0.09676 0.0964 0.0763 0.3722 0.1280 

𝑻𝑺𝟗 0.05625 0.06262 0.0767 0.0588 0.4121 0.0682 

𝑻𝑺𝟏𝟎 0.16654 0.16577 0.1523 0.2152 0.3565 0.1377 

𝑻𝑺𝟏𝟏 0.09641 0.14441 0.1177 0.0774 0.4902 0.1168 

𝑻𝑺𝟏𝟐 0.26447 0.22398 0.2239 0.3101 0.4827 0.2306 

𝑻𝑺𝟏𝟑 0.14515 0.13514 0.1462 0.1248 0.3288 0.1384 

𝑻𝑺𝟏𝟒 0.15452 0.12838 0.1222 0.1055 0.3682 0.1337 

𝑻𝑺𝟏𝟓 0.13928 0.12454 0.1212 0.1135 0.2842 0.1354 

𝑻𝑺𝟏𝟔 0.22346 0.22072 0.2345 0.1076 0.2929 0.2329 

𝑻𝑺𝟏𝟕 0.11400 0.11502 0.1358 0.1287 0.3118 0.1274 

𝑻𝑺𝟏𝟖 0.22352 0.22099 0.2265 0.2623 0.2662 0.2289 

𝑻𝑺𝟏𝟗 0.13513 0.16106 0.1471 0.2138 0.3652 0.1595 

𝑻𝑺𝟐𝟎 0.16437 0.15358 0.1206 0.0835 0.4001 0.1520 

𝑻𝑺𝟐𝟏 0.21800 0.22633 0.2159 0.3729 0.4081 0.2041 

𝑻𝑺𝟐𝟐 0.44256 0.42088 0.4464 0.0786 0.8469 0.4718 

𝑻𝑺𝟐𝟑 0.06458 0.05155 0.0667 0.1509 0.1116 0.0509 

𝑻𝑺𝟐𝟒 0.39345 0.39445 0.3832 0.3193 0.3265 0.3878 

𝑻𝑺𝟐𝟓 0.05125 0.05730 0.0536 0.0553 0.1906 0.0566 

𝑻𝑺𝟐𝟔 0.30668 0.31637 0.3035 0.2377 0.5692 0.2961 

𝑻𝑺𝟐𝟕 0.34629 0.34502 0.3622 0.1872 0.4572 0.3437 

𝑻𝑺𝟐𝟖 0.14909 0.06079 0.0656 0.0797 0.3596 0.0682 

𝑻𝑺𝟐𝟗 0.13063 0.12487 0.1347 0.1165 0.3014 0.1354 

𝑻𝑺𝟑𝟎 0.28402 0.28458 0.3003 0.2040 0.3822 0.2781 

𝑻𝑺𝟑𝟏 0.27896 0.25340 0.2636 0.5663 0.5148 0.2789 

𝑻𝑺𝟑𝟐 0.45489 0.45093 0.4498 0.2273 0.6004 0.4373 

𝑻𝑺𝟑𝟑 0.23319 0.23236 0.2351 0.0514 0.3353 0.2280 

𝑻𝑺𝟑𝟒 0.25396 0.23126 0.2469 0.1857 0.4755 0.2570 

𝑻𝑺𝟑𝟓 0.40449 0.38248 0.4044 0.0956 0.9037 0.4183 

𝑻𝑺𝟑𝟔 0.36261 0.36562 0.3794 0.4979 0.6438 0.3561 

𝑻𝑺𝟑𝟕 0.22788 0.22194 0.2863 0.2761 0.3936 0.2418 

𝑻𝑺𝟑𝟖 0.45167 0.44692 0.4569 0.3095 0.6175 0.4391 

𝑻𝑺𝟑𝟗 0.19112 0.16921 0.1979 0.1699 0.4795 0.1905 

𝑻𝑺𝟒𝟎 0.38386 0.36702 0.3887 0.1173 0.6361 0.3684 
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Table 8.5. Optimal decision variables (𝑃𝑆 ) for 14-bus systems obtained by classical GWO, 

classical SCA and their proposed variants 

variable GWO RW-GWO mGWO SCA m-SCA ISCA 

𝑷𝑺𝟏 1.28920 1.36180 1.4214 1.4202 1.3329 1.4581 

𝑷𝑺𝟐 1.49830 1.50000 1.5000 1.2508 1.4945 1.5000 

𝑷𝑺𝟑 1.30480 1.25060 1.2512 1.3871 1.3629 1.2730 

𝑷𝑺𝟒 1.26240 1.25070 1.2509 1.4278 1.3155 1.2783 

𝑷𝑺𝟓 1.39130 1.31220 1.4485 1.2906 1.2780 1.4587 

𝑷𝑺𝟔 1.25930 1.25320 1.2542 1.2763 1.4349 1.4143 

𝑷𝑺𝟕 1.25160 1.43290 1.3427 1.3905 1.3853 1.4292 

𝑷𝑺𝟖 1.47730 1.26050 1.3581 1.3123 1.2915 1.3512 

𝑷𝑺𝟗 1.38950 1.30900 1.3562 1.4754 1.3920 1.4528 

𝑷𝑺𝟏𝟎 1.31950 1.25570 1.3195 1.4147 1.4734 1.4292 

𝑷𝑺𝟏𝟏 1.40660 1.33260 1.3361 1.2935 1.3846 1.4350 

𝑷𝑺𝟏𝟐 1.26210 1.26000 1.3574 1.4756 1.3533 1.3811 

𝑷𝑺𝟏𝟑 1.25860 1.34520 1.3050 1.4877 1.3325 1.4654 

𝑷𝑺𝟏𝟒 1.38460 1.40520 1.2872 1.3925 1.4456 1.3643 

𝑷𝑺𝟏𝟓 1.37680 1.40250 1.3931 1.2935 1.3333 1.3256 

𝑷𝑺𝟏𝟔 1.35750 1.39590 1.3626 1.2580 1.3335 1.3524 

𝑷𝑺𝟏𝟕 1.39810 1.29270 1.2577 1.3858 1.4552 1.3357 

𝑷𝑺𝟏𝟖 1.25340 1.31380 1.3648 1.2642 1.3661 1.3569 

𝑷𝑺𝟏𝟗 1.37660 1.31660 1.4157 1.3959 1.3599 1.4132 

𝑷𝑺𝟐𝟎 1.38790 1.25650 1.4933 1.2991 1.3018 1.2935 

𝑷𝑺𝟐𝟏 1.36230 1.26820 1.4460 1.5000 1.3110 1.4924 

𝑷𝑺𝟐𝟐 1.39730 1.25210 1.3349 1.3861 1.3753 1.2547 

𝑷𝑺𝟐𝟑 1.29350 1.44090 1.2790 1.2524 1.4014 1.4419 

𝑷𝑺𝟐𝟒 1.30200 1.33530 1.4463 1.4410 1.4308 1.3981 

𝑷𝑺𝟐𝟓 1.30060 1.30140 1.2918 1.2890 1.2737 1.4678 

𝑷𝑺𝟐𝟔 1.37090 1.25520 1.4613 1.3333 1.4747 1.4576 

𝑷𝑺𝟐𝟕 1.44080 1.37480 1.3083 1.2875 1.2767 1.4156 

𝑷𝑺𝟐𝟖 1.38720 1.42320 1.3882 1.4941 1.3910 1.3109 

𝑷𝑺𝟐𝟗 1.46160 1.38970 1.2978 1.4929 1.4694 1.3008 

𝑷𝑺𝟑𝟎 1.39240 1.39440 1.2832 1.3930 1.2626 1.4508 

𝑷𝑺𝟑𝟏 1.34730 1.31250 1.3661 1.4477 1.4452 1.2760 

𝑷𝑺𝟑𝟐 1.27690 1.35400 1.4199 1.4523 1.3626 1.3890 

𝑷𝑺𝟑𝟑 1.46560 1.47690 1.4826 1.2956 1.4146 1.4831 

𝑷𝑺𝟑𝟒 1.34450 1.25950 1.4822 1.3733 1.4436 1.4537 

𝑷𝑺𝟑𝟓 1.41080 1.30740 1.2582 1.2904 1.3302 1.3930 

𝑷𝑺𝟑𝟔 1.44230 1.44850 1.3281 1.4775 1.3086 1.4275 

𝑷𝑺𝟑𝟕 1.29490 1.28660 1.4536 1.4233 1.4183 1.3153 

𝑷𝑺𝟑𝟖 1.30330 1.26930 1.2928 1.4723 1.2654 1.2998 

𝑷𝑺𝟑𝟗 1.44550 1.28450 1.3824 1.2939 1.4865 1.3001 

𝑷𝑺𝟒𝟎 1.27460 1.43590 1.2918 1.4468 1.3092 1.4107 
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Table 8.6. Comparison of results on IEEE 3, 4, 6 and 14-bus systems obtained by various 

algorithms. * represents the infeasibility of the obtained solution. 

Algorithm  3-bus system 4-bus system 6-bus system 14-bus system 

RST 4.8354 3.7050 - - 

DE  4.8422* 3.6774* 10.6272* 42.7843* 

MDE1  4.8070* 3.6694* 10.5067* - 

MDE2  4.7873* 3.6734* 10.6238* - 

MDE3  4.7822* 3.6692* 10.4370* - 

MDE4  4.7806* 3.6674* 10.3812* - 

MDE5  4.7806* 3.6694* 10.3514* - 

OCDE1  4.7806* 3.6674* 10.3479* 37.3540*  

OCDE2  4.7806* 3.6674* 10.3286* 37.4603* 

LX-PM  4.8340 3.7029 10.4581 37.2881 

GWO1 4.7865 3.5710 10.3722 44.2596 

GWO2 4.7865 3.5727 10.3590 38.8120 

RW-GWO1 4.7876 3.5698 10.4104 42.7644 

RW-GWO2 4.7852 3.5695 10.3368 37.3062 

mGWO1 4.8262 3.5989 11.2420 44.1539 

mGWO2 4.7896 3.5706 10.5678 38.0012 

SCA1 5.4779 4.0469 11.0386* 28.3478* 

SCA2 5.4761 4.0469 15.0366* 28.3478* 

m-SCA1 5.4978 4.6601 30.8802* 45.3325* 

m-SCA2 5.4347 4.4143 29.5899* 45.3325* 

ISCA1 4.8160 3.5892 11.1415 40.1895 

ISCA2 4.8161 3.5907 11.2142 39.0246 
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Fig 8.1. IEEE 3-bus system 

 

 

Fig 8.2. IEEE 4-bus system 
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Fig 8.3. IEEE 6-bus system 

 

 

 

Fig 8.4. IEEE 14-bus system 
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Chapter 9 

Conclusions and Future scope 

This chapter forms the concluding part of this Thesis and also proposes some suggestions towards 

which the present work can be further continued. It consists of two sections; Section 9.1 brings out 

the overall conclusions of the research carried out in this Thesis and in Section 9.2, suggestions 

regarding the future research directions and possible extensions of the work presented in the Thesis 

are made. 

9.1.  Conclusions 

The primary goal of the Thesis is to improve the performance of classical versions of Grey Wolf 

Optimizer (GWO) and Sine Cosine Algorithm (SCA) which are recently developed nature inspired 

optimization algorithms. The second aim of the work is to implement the proposed modified 

variants of GWO and SCA on real-life problems. For this two problems are selected from the field 

of electrical engineering and the other is from the field of image processing. The underlying focus 

of improving the performance of GWO and SCA is to improve the communication system among 

the wolves/candidate solutions for better exploration and exploitation of the provided search space. 

The Thesis proposes two variants of GWO and two variants of SCA for unconstrained and 

constrained optimization problems and for solving the real-life problems.  

Chapter 1 introduces the field of Nature Inspired Optimization and presents the conceptual details, 

modeling and computational steps of classical GWO and SCA. Then the recent developments in 

designing modified GWO and SCA variants, its applications in different areas of studies and 

related literature are discussed. At the end of this chapter, the organization of the Thesis is 

discussed in brief. It is concluded that a lot of scope of research exists in this area of nature inspired 

optimization. 

Chapter 2 introduces an improved variant of the classical GWO called RW-GWO which is based 

on enhancing the leading search ability of grey wolf pack, In the RW-GWO, cauchy distributed 

random walk is used to update the leading wolves and the greedy selection mechanism is applied 

between two consecutive iterations corresponding to each grey wolf. The cauchy random walk 

strategy maintains the exploration and exploitation of search space and helps the leaders to escape 

from the situation of stagnation at local optima. The greedy selection mechanism maintains the 

balance between exploration and exploitations and avoids the wolves to diverge from discovered 
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promising search regions. The performance of the proposed RW-GWO algorithm is tested, 

analyzed and compared with classical GWO on unconstrained benchmark optimization problems 

given in IEEE CEC 2014. The test set consists of variety of benchmark problems with varying 

difficulty levels. It contains 3 unimodal problems, 13 multimodal problems, 6 hybrid problems 

and 8 composite problems. The comparison between the classical GWO and the RW-GWO is 

performed on the basis of various criteria such as minimum, median, mean, maximum and standard 

deviation of absolute error values in the objective function. Statistical significance of the obtained 

results from the RW-GWO is tested using Wilcoxon signed rank test and the convergence rate is 

analyzed through convergence curves. The computational complexity of the RW-GWO is also 

evaluated and compared with the classical GWO. Overall comparison of the results demonstrates 

the better performance of the RW-GWO as compared to the classical GWO. It is concluded that 

the RW-GWO algorithm is a better optimizer than the classical GWO for different category of 

unconstrained optimization problems. 

Chapter 3 introduces another variant of classical GWO called mGWO which is developed by 

improving the search mechanism of grey wolf pack through a modified encircling and hunting 

mechanism, proposing a new search strategy to integrate the personal best guidance, and greedy 

selection. The modified position update mechanism increases the exploration and exploitation of 

available promising search regions and enhances the collaborative strength of the grey wolf pack. 

The greedy selection maintains the balance between exploration and exploitation, and prevents 

from skipping available promising regions of the search space. The performance of the proposed 

mGWO is tested, analyzed and compared with classical GWO on the same benchmark set given 

in IEEE CEC 2014 and used in Chapter 2 of the Thesis. Statistical significance of the obtained 

results from the mGWO is tested using Wilcoxon signed rank test and the convergence rate is 

analyzed through convergence curves. The computational complexity of the mGWO is also 

evaluated and compared with the classical GWO. Overall comparison of the results demonstrates 

the better performance of the mGWO as compared to the classical GWO. Later in this chapter, 

comparison between the mGWO and the RW-GWO (presented in Chapter 2) is also performed 

based on various criteria such as minimum, median, mean, maximum and standard deviation of 

absolute error values in the objective function, statistical analysis through Wilcoxon signed rank 

test and convergence behavior analysis.  

From the detailed comparative analysis the following conclusions can be made:  

1. In terms of worst time complexity calculated through big−𝑂 notation, all the algorithms 

classical GWO, RW-GWO and mGWO are same. 
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2. On unimodal problems, the RW-GWO performs better than the classical GWO and mGWO. 

3. On multimodal and hybrid problems, the mGWO algorithm is more successful as compared to 

the classical GWO and RW-GWO. 

4. On the set of composite problems, the RW-GWO algorithm is more successful as compared to 

the classical GWO and mGWO. 

5. The convergence rate is better in RW-GWO as compared to classical GWO and mGWO. 

Chapter 4 introduces a modified variant of classical SCA called m-SCA which is based on the 

concept of opposite-based learning and modified position update mechanism. In the m-SCA, 

opposition-based learning is used to generate the opposite candidate solutions so that the 

stagnation at local optima can be avoided. The small jumping rate is chosen to sustain the balance 

between exploration and exploitation in the opposition-based learning. The search equation of 

classical SCA is modified to reduce the inefficient diversity of the population and to maintain the 

balance between exploration and exploitation during the search. The performance of the proposed 

m-SCA is tested, analyzed and compared with classical SCA on the same benchmark problems 

which are given in IEEE CEC 2014 and used in previous chapters. The comparison between the 

classical SCA and the m-SCA is performed based on various criteria such as minimum, median, 

mean, maximum and standard deviation of absolute error values obtained in the objective function. 

Statistical significance of the obtained results from the m-SCA is tested using Wilcoxon signed 

rank test and the convergence rate is analyzed through convergence curves. The computational 

complexity of the m-SCA is also evaluated and compared with the classical SCA. Overall 

comparison of the results demonstrates the better performance of the m-SCA as compared to the 

classical SCA. It is concluded that the m-SCA is a better optimizer than the classical SCA for 

different category of unconstrained optimization problems. 

Chapter 5 introduces another variant of classical SCA called ISCA which enhances the 

performance of the classical SCA based on the crossover operator and modified position update 

mechanism. The search equation of the classical SCA is modified with the help of personal best 

state of candidate solutions and by adding the social component. In the ISCA, a greedy selection 

mechanism is also applied for each candidate solution between two consecutive iterations to avoid 

the divergence of candidate solutions from discovered promising search regions. The performance 

of the proposed ISCA is tested, analyzed and compared with classical SCA on the same benchmark 

problems which are given in IEEE CEC 2014 and used in previous chapters. The comparison 

between the classical SCA and the ISCA is performed based on various criteria such as minimum, 

median, mean, maximum and standard deviation of absolute error values obtained in the objective 

function. Statistical significance of the obtained results from the ISCA is tested using Wilcoxon 
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signed rank test and the convergence rate is analyzed through convergence curves. The 

computational complexity of the ISCA is also evaluated and compared with the classical SCA. 

Overall comparison of the results demonstrates the better performance of the ISCA as compared 

to the classical SCA. Later on in this chapter, the comparison between the ISCA and the m-SCA 

(presented in Chapter 4) is also performed based on various criteria such as minimum, median, 

mean, maximum and standard deviation of absolute error values in objective function, statistical 

analysis through Wilcoxon signed rank test and convergence behavior analysis.  

From the detailed comparative analysis the following conclusions can be made:  

1. In terms of worst time complexity calculated through big−𝑂 notation, all the algorithms 

classical SCA, m-SCA and ISCA are same. 

2. On unimodal problems, the ISCA performs better than the classical SCA and m-SCA. 

3. On multimodal and hybrid problems, the ISCA is more successful as compared to the classical 

SCA and m-SCA. 

4. On the set of composite problems, both the algorithms m-SCA and ISCA are very competitive 

to each other and outperform classical SCA. 

5. The convergence rate is better in ISCA as compared to classical SCA and m-SCA. 

Thus, in the Thesis, four modified variants are proposed namely RW-GWO (presented in Chapter 

2), mGWO (presented in Chapter 3), m-SCA (presented in Chapter 4) and ISCA (presented in 

Chapter 5). The comparison among these variants through statistical test can be performed to 

choose the best performer for different category of optimization problems. Hence, the Wilcoxon 

signed rank test is conducted between the classical GWO, classical SCA and their proposed 

variants on IEEE CEC 2014 benchmark problems and the obtained conclusions are reported in 

Table 9.1.  In this table, the comparison of two algorithms A and B (represented as A/B in the 

table) is shown in the format ‘a/b/c’ where ‘a’ represents the number of problems in which the first 

algorithm (A) performs better than the second algorithm (B). Similarly, ‘b’ represents the number 

of problems in which the second algorithm (B) performs better than the first algorithm (A). ‘c’ 

represents the number of problems in which both the algorithms A and B are statistically same. 

The statistical comparison concludes that the RW-GWO algorithm performed better than all other 

algorithms for unimodal and composite benchmark problems and for multimodal and hybrid 

problems, the mGWO algorithm outperformed other variants of GWO and SCA and their classical 

versions. 
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Table 9.1. Comparison between classical GWO, classical SCA and their proposed variants  

Comparison Dimension unimodal multimodal hybrid composite 

RW-GWO/GWO 
10 2/0/1 10/0/3 5/1/0 5/0/3 

30 3/0/0 12/0/1 4/0/2 7/1/0 

mGWO/GWO 
10 2/0/1 13/0/0 6/0/0 7/0/1 

30 3/0/0 13/0/0 6/0/0 7/1/0 

RW-GWO/mGWO 
10 1/1/1 2/8/3 1/5/0 3/2/3 

30 2/1/0 4/7/2 0/5/1 5/2/1 

m-SCA/SCA 
10 3/0/0 13/0/0 6/0/0 8/0/0 

30 3/0/0 13/0/0 6/0/0 8/0/0 

ISCA/SCA  
10 3/0/0 13/0/0 6/0/0 8/0/0 

30 3/0/0 13/0/0 6/0/0 8/0/0 

m-SCA/ISCA 
10 0/3/0 1/11/1 1/4/1 7/1/0 

30 1/2/0 2/11/0 1/5/0 2/6/0 

GWO/SCA 
10 3/0/0 12/0/1 5/0/1 6/0/2 

30 3/0/0 11/0/2 6/0/0 8/0/0 

GWO/m-SCA 
10 1/1/1 3/6/4 0/2/4 2/6/0 

30 0/2/1 6/4/3 0/2/4 2/4/2 

GWO/ISCA 
10 1/2/0 0/12/1 3/2/1 2/6/0 

30 0/3/0 0/10/3 0/4/2 0/7/1 

RW-GWO/SCA 
10 3/0/0 13/0/0 6/0/0 7/0/1 

30 3/0/0 13/0/0 6/0/0 8/0/0 

mGWO/SCA 
10 3/0/0 13/0/0 6/0/0 7/0/1 

30 3/0/0 13/0/0 6/0/0 8/0/0 

RW-GWO/m-SCA 
10 3/0/0 10/1/2 3/2/1 4/4/0 

30 3/0/0 12/1/0 4/1/1 7/1/0 

RW-GWO/ISCA 
10 3/0/0 6/7/0 2/2/2 5/3/0 

30 3/0/0 8/3/2 1/3/2 7/1/0 

mGWO/m-SCA 
10 3/0/0 11/1/1 6/0/0 4/3/1 

30 3/0/0 13/0/0 6/0/0 7/1/0 

mGWO/ISCA 
10 3/0/0 11/1/1 4/2/0 4/1/3 

30 3/0/0 11/0/2 5/0/1 7/0/1 

 

The performance ordering based on the above performed analysis corresponding to different 

category of problems is as follows: 

Unimodal:  RW-GWO>mGWO>ISCA>m-SCA>GWO>SCA 

Multimodal:  mGWO>RW-GWO>ISCA>m-SCA>GWO>SCA 

Hybrid:  mGWO>ISCA>RW-GWO>m-SCA>GWO>SCA 

Composite:  RW-GWO>mGWO>m-SCA>ISCA>GWO>SCA 

Chapter 6 evaluates the performances of classical GWO, RW-GWO, mGWO, classical SCA, m-

SCA and ISCA on constrained benchmark problems given in IEEE CEC 2006. In this benchmark 
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set, a simple constraint handling technique based on constraint violation is used to handle the 

constraints. The comparison between the algorithms is performed through various criteria such as 

minimum, median, mean, maximum and standard deviation of objective function values. The 

statistical analysis between the results is conducted with the help of Wilcoxon rank sum test which 

demonstrates the better search ability of the mGWO as compared to classical GWO and RW-

GWO. Similarly, the ISCA performs significantly better than classical SCA and m-SCA as a 

constrained optimizer. It is concluded from the results that the proposed mGWO algorithm is better 

constrained optimizer than classical GWO, RW-GWO, classical SCA, m-SCA and ISCA. The 

performance ordering for the constrained problems based on statistical test and the number of 

problems on which algorithms provides feasible solution is as follows: 

mGWO> RW-GWO> GWO> ISCA> m-SCA> SCA 

Chapter 7 implements the classical GWO, RW-GWO, mGWO, classical SCA, m-SCA and ISCA 

to solve an unconstrained nonlinear optimization problem arising in the field of image processing. 

The objective of this problem is to determine the optimal thresholds for image segmentation in 

grey images. Nine benchmark images are used for experimentation and several statistical measures 

are used for the comparison. The analysis of results ensures that the proposed variants RW-GWO 

and mGWO of classical GWO perform better than classical GWO, classical SCA, m-SCA and 

ISCA. The mean and median value of the objective function defined by the Otsu method 

demonstrate the better efficiency and reliability of the proposed RW-GWO algorithm as compared 

to other proposed variants of GWO and SCA and their classical versions. It is concluded from all 

the results and analysis that the proposed RW-GWO is more suitable to find the optimal thresholds 

for grey images as compared to the classical GWO, mGWO, classical SCA, m-SCA and ISCA. 

Chapter 8 employs the classical GWO, RW-GWO, mGWO, classical SCA, m-SCA and ISCA to 

solve a nonlinear constrained optimization problem arising in the field of electrical engineering. 

The objective of this problem is to determine the optimal setting for the proper coordination of 

overcurrent relays. The IEEE 3, 4, 6, and 14-bus systems are used to evaluate the performance of 

these algorithms on relay coordination problem. The comparative analysis of the results on these 

bus systems demonstrates the better search efficiency of the RW-GWO algorithm as compared to 

other proposed variants and classical versions of GWO and SCA to solve the relay coordination 

problem. 

Chapter 9 depicts the overall conclusions of each chapter about the performance of proposed 

variants of classical GWO and classical SCA. It also outlines the limitations and scope of the 

proposed variants of GWO and SCA and suggests the best performer algorithm from these variants 
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to solve global optimization problems. Finally, the chapter is closed with some future research 

directions. 

9.2.  Future Research  

Research is an iterative and continuous procedure. The work presented in the Thesis is not an 

exception. There could be several research directions in which this could be expanded.  

 Instead of applying the cauchy random walk for the leading hunters in GWO, other local and 

global search methods can also be employed to provide a better guidance for the wolf pack. 

 The other constraint handling mechanisms can be merged into proposed modified variants of 

GWO and SCA to solve the constraint optimization problems. 

 The proposed variants can also be implemented on large-scale optimization problems. 

 The multi-objective versions of the proposed algorithms in the Thesis can also be developed 

to deal the multi-criteria optimization.  

 The proposed variants can be applied to solve other real-life application problems.  
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Appendix A 

Unconstrained Test Problems 
 

These problems are taken from (Liang, Qu and Suganthan, 2013). 

 

Table A1. The brief description of IEEE CEC 2014 benchmark functions 

No. Type Name Optimum 

F1 
Unimodal 

Functions 

Rotated high conditioned elliptic function 100 

F2 Rotated bent cigar function 200 

F3 Rotated discus function 300 

F4 

Simple 

Multimodal 

Functions 

Shifted and rotated Rosenbrock’s function 400 

F5 Shifted and rotated Ackley’s function 500 

F6 Shifted and rotated Weierstrass function 600 

F7 Shifted and rotated Griewank’s function 700 

F8 Shifted Rastrigin’s function 800 

F9 Six Hump Camel Back 900 

F10 Shifted and rotated Rastrigin’s Function 1000 

F11 Shifted and rotated Schwefel’s Function 1100 

F12 Shifted and rotated Katsuura Function 1200 

F13 Shifted and rotated HappyCat Function 1300 

F14 Shifted and rotated HGBat Function 1400 

F15 

Shifted and rotated Expanded Griewank’s plus 

Rosenbrock’s Function 1500 

F16 Shifted and rotated Expanded Scaffer’s F6 Function 1600 

F17 

Hybrid 

Functions 

Hybrid function 1 (N = 3) 1700 

F18 Hybrid function 2 (N = 3) 1800 

F19 Hybrid function 3 (N = 4) 1900 

F20 Hybrid function 4 (N = 4) 2000 

F21 Hybrid function 5 (N = 5) 2100 

F22 Hybrid function 6 (N = 5) 2200 

F23 

Composite 

Functions 

Composition function 1 (N = 5) 2300 

F24 Composition function 1 (N = 3) 2400 

F25 Composition function 1 (N = 3) 2500 

F26 Composition function 1 (N = 5) 2600 

F27 Composition function 1 (N = 5) 2700 

F28 Composition function 1 (N = 5) 2800 

F29 Composition function 1 (N = 3) 2900 

F30 Composition function 1 (N = 3) 3000 

Search Range: [-100, 100]D 
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A1. Definitions of the Basic Functions 

A1.1. High Conditioned Elliptic Function 

𝑓1(𝑥) =∑(106)(
𝑖−1
𝐷−1

)𝑥𝑖
2

𝐷

𝑖=1

 

A1.2. Bent Cigar Function 

𝑓2(𝑥) = 𝑥1
2 + 106∑𝑥𝑖

2

𝐷

𝑖=2

 

A1.3. Discus Function 

𝑓3(𝑥) = 106𝑥1
2 +∑𝑥𝑖

2

𝐷

𝑖=2

 

A1.4. Rosenbrock’s Function 

𝑓4(𝑥) = ∑(100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)

𝐷−1

𝑖=1

 

A1.5. Ackley’s Function 

𝑓5(𝑥) = −20𝑒𝑥𝑝(−0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1

) − 𝑒𝑥𝑝(
1

𝐷
∑cos⁡(2𝜋𝑥𝑖

𝐷

𝑖=

) + 20 + 𝑒 

A1.6. Weierstrass Function 

𝑓6(𝑥) =∑(∑ [𝑎𝑘cos⁡(2𝜋𝑏𝑘(𝑥𝑖 + 0.5))]

𝑘max

𝑘=0

)

𝐷

𝑖=1

− 𝐷 ∑ [𝑎𝑘cos⁡(2𝜋𝑏𝑘 ⋅ 0.5)]

𝑘max

𝑘=0

 

𝑎 = 0.5, 𝑏 = 3, 𝑘max = 20 

A1.7. Griewank’s Function 

𝑓7(𝑥) =∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖
)

𝐷

𝑖=1

𝐷

𝑖=1

+ 1 

A1.8. Rastrigin’s Function 
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𝑓8(𝑥) =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

 

A1.9. Modified Schwefel’s Function 

𝑓9(𝑥) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

,⁡⁡⁡⁡𝑧𝑖 = 𝑥𝑖 + 4.209687462275036𝑒 + 002 

𝑔(𝑧𝑖) =

{
 
 

 
 𝑧𝑖 ⁡sin (|𝑧𝑖|

1
2) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡|𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500))𝑠𝑖𝑛 (√|500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

104𝐷
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500)𝑠𝑖𝑛 (√|𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500|) −
(𝑧𝑖 + 500)

2

104𝐷
⁡⁡⁡⁡⁡𝑖𝑓⁡𝑧𝑖 < −500

 

A1.10. Katsuura Function 

𝑓10(𝑥) =
10

𝐷2
∏(1+ 𝑖∑

|2𝑗𝑥𝑖 − 𝑟𝑜𝑢𝑛𝑑(2
𝑗𝑥𝑖|

2𝑗

32

𝑗=1

)

𝐷

𝑖=1

10
𝐷1.2

−
10

𝐷2
 

A1.11. HappyCat Function 

𝑓11(𝑥) = |∑𝑥𝑖
2

𝐷

𝑖=1

− 𝐷|

1.4

+
(0.5∑ 𝑥𝑖

2𝐷
𝑖=1 + ∑ 𝑥𝑖

𝐷
𝑖=1 )

𝐷
+ 0.5⁡ 

A1.12. HGBat Function 

𝑓12(𝑥) = |(∑𝑥𝑖
2

𝐷

𝑖=1

)

2

− (∑𝑥𝑖

𝐷

𝑖=1

)

2

|

1/2

+
(0.5∑ 𝑥𝑖

2𝐷
𝑖=1 + ∑ 𝑥𝑖

𝐷
𝑖=1 )

𝐷
+ 0.5⁡ 

A1.13. Expanded Griewank’s plus Rosenbrock’s Function 

𝑓13(𝑥) = 𝑓7(𝑓4(𝑥1, 𝑥2)) + 𝑓7(𝑓4(𝑥2, 𝑥3)) + ⋯+ 𝑓7(𝑓4(𝑥𝐷−1, 𝑥𝐷)) + 𝑓7(𝑓4(𝑥𝐷 , 𝑥1)) 

A1.14. Expanded Scaffer’s F6 Function 

Scaffer’s F6 Function: 𝑔(𝑥, 𝑦) = 0.5 +
(sin2(√𝑥2+𝑦2)−0.5)

(1+0.001(𝑥2+𝑦2))
2  

𝑓14(𝑥) = 𝑔(𝑥1, 𝑥2) + 𝑔(𝑥2, 𝑥3) + ⋯+ 𝑔(𝑥𝐷−1, 𝑥𝐷) + 𝑔(𝑥𝐷 , 𝑥1) 
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Appendix B 

Constrained Test Problems 
 

 

These problems are taken from (Liang et al., 2006). 

Problem g01 

Minimize 
4 4 13

2

1 1 5

( ) 5 5i i i
i i i

f x x x x
  

      

 
 
 
 
 
 
 
 
 

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

  2  2 10 0,

  2  2 10 0,

  2  2 10 0,

 8 0,

 8 0,

 8 0,

 2  0,

 2  0,

 2  0,
0

( )

( )

( )

g x x x x x

g x x x x x

g x x x x x

g x x x

g x x x

g x x x

g x x x x

g x x x x

g x x x x

     

     

     

   

   

   

    

    

    


13

1,  1,· · ·,9,
0 100,  10,11,12,
0 1.

i

i

x i
x i
x

 
  
 

 

This problem has global minima at   1,1,· · · · · ·1,3,3,3,1x   with  15minf   . 

Problem g02 

Minimize 
4 2

1 1

2
1

cos ( ) 2 cos ( )
( )

nn
i ii i

n
i i

x x
f x

ix

 



 
 


 

Subject to: 

1
1

2
1

( ) 0.75 0

( ) 7.5 0

n

i
i

n

i
i

g x x

g x x n





  

  
 

where  20n   and  0 10  1,. . . ..,ix i n   . The global minimum *x    

3.16246061572185,  3.12833142812967,  3.09479212988791,  3.06145059523469,  
3.02792915885555, 2.99382606701730,  2.95866871765285,  2.92184227312450,  
0.49482511456933,  0.48835711005490, 0.4823164271186

(

5,  0.47664475092742,  
0.47129550835493,  0.46623099264167,  0.46142004984199, 0.45683664767217,  
0.45245876903267,  0.44826762241853,  0.44424700958760,  0.44038285956317)

 

with  0.80361910412559minf  .  
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Problem g03 

Minimize 
1

( ) ( )
n

n

i
i

f x n x


    

Subject to: 2

1
1

( ) 1 0
n

i
i

h x x


    

where  10n   and  0 1   1,2,. . . , ,ix i n    for each variable.  

The global minimum is at *x   

0.31624357647283069, 0.316243577414338339, 0.316243578012345927, 0.316243575664017895,
0.316243578205526066, 0.31624357738855069, 0.316243575472949512, 0.316243577164883938,  
0.316243578155920302, 0.316

(

243576147374916 with  1.00050010001.) minf  

Problem g04 

Minimize   2

3 1 5 1  5.3578547  0.8356891  37.293239 40792.141f x x x x x      

Subject to: 

 
 
 
 

1 2 5 1 4 3 5

2 2 5 1 4 3 5
2

3 2 5 1 2 3

4

  85.334407  0.0056858 0.0006262 0.0022053 92 0,

 85.334407 0.0056858 0.0006262  0.0022053 0,

  80.51249  0.0071317  0.0029955  0.0021813 110 0,

 80

g x x x x x x x

g x x x x x x x

g x x x x x x

g x

     

     

     

 

 
 

2

2 5 1 2 3

5 3 5 1 3 3 4

6 3 5 1 3 3 4

.51249 0.0071317 0.0029955 0.0021813  90 0,

  9.300961  0.0047026  0.0012547  0.0019085 25 0,

 9.300961 0.0047026 0.0012547 0.0019085  20 0,

x x x x x

g x x x x x x x

g x x x x x x x

    

     

      

 

where   1 278 102,  33 45 and 27 45  3,4,5ix x x i       . The optimum solution is 

 78,33,29.995256025682,45,36.775812905788x   where 30665.539minf   . 

Problem 05 

Minimize    3 3

1 1 2 23  0.000001  2  0.000002 / 3f x x x x x     

Subject to: 

 
 
 
 
 

1 4 3

2 3 4

3 3 4 1

4 3 3 4 2

5 4 4

( ) ( )

( ) ( )

(

 0.55 0,

 0.55 0,

  1000 0.25   1000 0.25   894.8  0,

  1000 0.25   1000  0.25   894.8  0,

  1000 0.25   1000 ) (  

g x x x

g x x x

h x sin x sin x x

h x sin x sin x x x

h x sin x sin x x

    

    

        

       

    3 0.25   1294. ,) 8 0  

 

where 1 2 3 40 1200,  0 1200, 0.55 0.55 and 0.55 0.55.x x x x          The best known 

solution  679.9453,1026.067,0.1188764, 0.3962336x    where 5126.49671.minf   
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Problem g06 

Minimize   3 3

1 210 20( ) ( )f x x x      

Subject to: 

 
 

2 2

1 1 2
2 2

2 1 2

5 5 100 0,

6 5 82

( ) ( )

( ) ( ) .81 0,

g x x x

g x x x

      

     
 

where 1 213 100 and 0 100.x x     The optimum solution is  14.095,0.84296x   where 

6961.81388minf   . 

Problem g07 

Minimize   2 2 2 2 2

1 2 1 2 1 2 3 4 5
2 2 2 2 2

6 7 8 9 10

14 16 10 4 5 3( ) ( ) ( )

(2 1 5 7 11 2) ( ) ( (0 )1 ) 7 45

f x x x x x x x x x x

x x x x x

          

         

  

Subject to: 

 
 
 
 
 
 

1 1 2 7 8

2 1 2 7 8

3 1 2 9 10
2 2 2

4 1 2 3 4
2 2

5 1 2 3 4
2 2

6 1 2 1 2 5 6

 105  4  5 3  9 0,

  10 8 17  2 0,

 8  2  5 2 12 0,

  3 2  4 3  2 7 120 0,

  5  8  6 2 40 0,

  2 2 2  14 6 0

( ) ( )

( )

( )

g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x x x x x

      

    

      

       

      

      

 
 

2 2 2

7 1 2 5 6
2

8 1 2 9 10

,

  0.5 8  2 4  3  30 0,

 3  6  12 8 7 0,

( ) ( )

( )

g x x x x x

g x x x x x

       

      

 

where  10 10  1,  . . . ,10ix i    . The optimum solution is 

(2.171996,2.363683,8.773926,5.095984,0.9906548,1.430574,1.321644,x    

9.828726,8.280092,8.375927)  where  24.3062091minf  . 

Problem g08 

Minimize 
 

3

1 2

3

1 1 2

sin (2 )sin(2 )
( )

x x
f x

x x x

 
 


 

subject to: 

 
 

2

1 1 2
2

2 1 2

   1

(

0,

  1  0,) 4

g x x x

g x x x

   

    
 

where 10 10x   and 20 10.x  The optimum is located at

  1.22797135260752599,4.24537336612274885x   where 0.0958250414180359.minf    
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Problem g09 

Minimize   2 2 4 2 6 2 4

1 2 3 4 5 6 7 6 7 6 710 5 12 3 11( ) ( ) ( ) 10 7 4 10 8x x xf x x x x x x x x x               

Subject to: 

 
 
 
 

2 4 2

1 1 2 3 4 5
2

2 1 2 3 4 5
2 2

3 1 2 6 7
2 2 2

4 1 2 1 2 3 6 7

127 2 3 4 5 0,

  282 7 3 10 0,

196 23 6 8 0,

 4 3 2 5 11 0,

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x x x x

       

       

      

      

 

where 10 10ix   for  1,  . . . ,7i  . The optimum solution is 

2.33049935147405174,1.95137236847114592, 0.477541399510615 0( 8 5,x    

4.36572624923625874, 0.624486959100388983,1.03813099410962173,  1.594226678067 )1519

with  680.630057374402minf  . 

Problem g10 

Minimize   1 2 3 f x x x x     

Subject to: 

 
 
 
 
 
 

1 4 6

2 5 7 4

3 8 5

4 1 6 4 1

5 2 7 5 2 4 4

6 3 8 3 5 5

1 0.0025 0,

1 0.0025 0,

1 0.01  0,

833.332

( )

(

52 100 83333.333 0,

1250 1250 0,

1250000 2500 0

)

)

,

(

g x x x

g x x x x

g x x x

g x x x x x

g x x x x x x x

g x x x x x x

    

     

    

     

     

    

 

where  1100 10000,  1000   10000  2,3ix x i      and 10   1000 4,  . . . ,8( )ix i   . The 

optimum solution is at 

*  579.306685017979589,  1359.97067807935605,  5109.9706574313 7,( 331x   

182.01769963061534,295.601173702746792,217.982300369384632,286.41652592786852,
395.601173702746735  with  7049.2480205 8 7.) 2 6minf 

 

Problem g11 

Minimize   2 2

1 2( 1)f x x x    

Subject to: 

  2

1 2 1 0,h x x x    

The bounds on the variables are: 1 1,   1,2ix i    .This problem has global minima at 

 * 0.707036070037170616,0.500000004333606807x    with    0.7499minf  . 
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Problem g12 

Minimize   2 2 2

1 2 3100 5( ( ) ( 5 5 /10) 0) ( )f x x x x          

Subject to: 

  2 2 2

1 2 3( ) ( ) (      0.0625) 0,g x x p x q x r         

where  0 10  1,2,3ix i    and , , 1,2,. . .,9p q r  . The feasible region of the search space 

consists of 93 disjoint spheres. A point 1 2 3,  ,( ) x x x  is feasible if and only if there exist , ,p q r

such that the above inequality holds. The optimum is located at  5,5,5x  where 1minf   . The 

solution lies within the feasible region. 

Problem g13 

Minimize 1 2 3 4 5( )
( )

x x x x x
f x e   

Subject to: 

 
 
 

2 2 2 2 2

1 1 2 3 4 5

2 2 3 4 5
3 3

3 1 2

10 0,

5 0,

1 0,

h x x x x x x

h x x x x x

h x x x

      

  

   

  

where  2.3 2.3  1,2ix i     and    3.2 3.2  3,4,5 .ix i    The optimum solution is 

* 1.71714224003,1.59572124049468,1.8272502406 1( 27 ,x    

  0.763659881912867, 0.7636598673 8)649   with   0.053941514041898.minf   

Problem g14 

Minimize 
10

10
1 1

( ) ln i
i i

i j j

x
f x x c

x 

 
   

 

 

Subject to: 

 
 
 

1 1 2 3 6 10

2 4 5 6 7

3 3 7 8 9 10

2 2 2 0,

2 1 0,

2 1 0,

h x x x x x x

h x x x x x

h x x x x x x

      

     

      

 

where the bounds are  0 10  1,  . . . ,10ix i    and 1 26.089, 17.164,c c     

3 4 5 6 7 8 9  34.054,   5.914,   24.721,   14.986,   24.1,   10.708, 26.662,c c c c c c c             

10 22.179c   . The best known solution is at   * 0.0406684113216( 282,x   

0.147721240492452, 0.783205732104114,0.00141433931889084,0.485293636780388,

0.000693183051556082,0.0274052040687766,  0.0179509660214818,  0.0373268186859717,

 0.0968844604336845  with  47.7648884594915.) minf    
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Problem g15 

Minimize   2 2 2

1 2 3 1 2 1 31000 2f x x x x x x x x        

Subject to: 

 
 

2 2 2

1 1 2 3

2 1 2 3

25 0,

8 14 7 56 0,

h x x x x

h x x x x

    

    
 

where the bounds are  0 10  1,2,3ix i   . The best known solution is at 

 * 3.51212812611795133,  0.216987510429556135,  3.55217854929179921x   

with 961.715022289961minf  . 

Problem g16 

Minimize 

  17 14 13 16

15 2
12 5

16 12

0.0000005843 0.000117 0.1365 0.00002358 0.000001502

0.0321  0.004324 37.48

f x y y y y
c y

y y
c c

    





 
 

Subject to: 

 

 

 

 
 
 
 
 
 
 

1 4

2 3 2

2
3

12

5 1

6 1

7 2

8 2

5

9 3

10

1

4

7

3

4

1

1

1

0.28
0,

0.72
1.5 0,

3496 21 0

213.1 0,

 405.23  0,

17.505 0,

6

1053.6667  0,

11.275 0,

35.03 0,

 214.228 0

2212
( ) 110

,

.6 0

g x y y

g x x x
y

g x
c

g x y

g x

g x y
c

y

g x y

g x y

g x y

g x y

g x y

g

 



  

  

  

  

  

  

 



 



 





  

 
 
 
 
 
 
 

12 4

13 5

14 5

15 6

16 6

17 7

18 7

  665.585  0,

 7.458 0,

  584.463  0,

 0.961 0,

  265.916  0,

 1.612 0,

  7.046  0,

x y

g x y

g x y

g x y

g x y

g x y

g x y

  

  

  

  

  

  

  
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 
 
 
 
 
 
 
 
 
 

19 8

20 8

21 9

22 9

23 10

24 10

25 11

26 11

27 12

28 12

 0.146 0,

 0.222  0,

 107.99 0,

  273.366  0,

 922.693 0,

  1286.105  0,

 926.832 0,

  1444.046  0,

 18.766 0,

  537.141  0

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

  

  

  

  

  

  

  

  

  

  

 
 
 
 
 
 
 
 
 
 

29 13

30 13

31 14

32 14

33 15

34 15

35 16

36 16

37 17

38

,

 1072.163 0,

  3247.039  0,

 8961.448 0,

  26844.086  0,

 0.063 0,

  0.386  0,

 71084.33 0,

  140000  0,

 2802713 0,

  121

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x

  

  

  

  

  

  

  

  

  

 1746108  0,y 
 

where: 

1 2 3

1 4

2

1
2

2 1 1 2 1

3 1 2 1

2
3

3

4 3

1 3
4 1 3 4 3

2

5 2

1

2

6

 41.6,
0.024 4.62,
12.5

12,

 0.0003535  0.5311  0.08705 ,
 0.052  78  0.002377 ,

,

19 ,

0.1956  
0.04782  0.6376 1.594 ,

 100

)

,

( )
(

y x x
c x

y
c

c x x y x
c x y x

c
y

c
y y

x y
c x y y y

x
c x
c x

  
 

 

  
  






    


 3 4

5 6 7

6 1 5 4 3

8 5 4

8
7

1

4
7

5

8
8

  ,

,

0

   ,
 0

.950 ,

.995,

,

,
3798

( )

y y

y c c
y x y y y
c y y

c
y

y

y

c

c

c
c

 


   





 




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7
9 7

8

9 1

9

10 5 4 3 6

11 1 4 3

10

11 2 1

12 10

11
12 10 1

12

13 12 2

14

0.0663
0.3153,

96.82
0.321 ,

 1.29  1.258  2.29  1.71 ,
 1.71 0.452  0.580 ,
12.3

752.3
 1.75 0.995 ,
 0.995  1998,

,

1.

( )( )

75 ,

y
c y

y

y y
c

y y y y y
y x y y

c

c y x
c y

c
y c x

c
y c y

y

  

 

   
  




 

 

 

2 3

9 5

13 10 2 4 14

13
15

13

16 15 13 15 13

14 10 2

14
17 10 11

12

13
15

15

143612
 3623  64.4  58.4 ,

 0.995  60.8  48 0.1121 5095,

,

 148000 331000  40 61 ,
 2324 28740000

 14130000 1328 531

,

,

x x
y x

c y x x y
y

y
c

y y y y y
c y y

c
y y y

c
y y

c
y

   


    



   
 

   

  13

16 15

17 9 5

,
0.52

 1.104 0.72 ,
,

c y
c y x

 
 

 

and where the bounds are 1 2704.4148 906.3855,  68.6 288.88,x x     

3 4 50 134.75,193  287.0966 and 25  84.1988x x x      . The best known solution is at 

* 705.174537070090537,  68.5999999999999943,  102.89999999999 1,( 999x   

282.324931593660324,  37.5841164258054832  with  1.90515525853479.) minf    

Problem g17 

Minimize   1 2( )  ( )f x f x f x   

where 

 1 1
1 1

1 1

30 0 300
 

31 300 400
( )

x x
f x

x x
 


 

 

2 2

2 2 2 2

2 2

28 0 100
( ) 29 100 200

30 200 1000

x x
f x x x

x x

 
  

 

 

Subject to: 
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2

3 4 3
1 1 6

2

3 4 4
2 2 6

2

3 4 4
3 5 6

0.90798
( ) 300 cos(1.48477 ) cos(1.47588),

131.078 131.078
0.90798

( ) cos(1.48477 ) cos(1.47588),
131.078 131.078

0.90798
( ) sin(1.48477 ) sin(1.47

131.078 131.078

x x x
h x x x

x x x
h x x x

x x x
h x x x

     

    

    

2

3 4 3
4 6

588),

0.90798
( ) 200 sin(1.48477 ) sin(1.47588),

131.078 131.078

x x x
h x x   

 

where the bounds are 1 2 3 40 400,  0 1000,  340 420,  340 420,x x x x       

51000  1000x    and 60  0.5236.x   The best known solution is at 

* 201.784467214523659,  99. 9999999999999005,  383.071034852773266,( 420,x   

10.9076584514292652,  0.073148231208428 )7128  where   8853.53967480648f x   

Problem g18 

Minimize   1 4 2 3 3 9 5 9 5 8 6 7( 0.5 )f x x x x x x x x x x x x x        

Subject to: 

 
 
 
 
 
 
 
 
 

2 2

1 3 4
2

2 9
2 2

3 5 6
2 2

4 1 2 9
2 2

5 1 5 2 6
2 2

6 1 7 2 8
2 2

7 3 5 4 6
2 2

8 3 7 4 8

9

 1 0,

 1 0,

 1 0,

   1 0,

     1 0,

     1 0,

     1 0,

  

( )

( ) ( )

( ) ( )

( ) ( )

( ) (   1 0) ,

 

g x x x

g x x

g x x x

g x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x

   

  

   

    

     

     

     

     



 
 
 
 

2 2

7 8 9

10 2 3 1 4

11 3 9

12 5 9

13 6 7 5 8

  1 0,

  0,

 0,  

 0,

  0

( )

,

x x x

g x x x x x

g x x x

g x x x

g x x x x x

   

  

  

 

  

 

where the bounds are  10 10 1,. . .,8ix i     and 90 20.x   The best known -solution is at 

0.657776192427943163, 0.153418773482438542, 0.323413871675240938,(x     

0.946257611651304398, 0.657776194376798906, 0.753213434632691414,    

0.323413874123576972, 0.346462947962331735,0.59979466285 )217542  

where 0.866025403784439.minf    
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Problem g19 

Minimize 
5 5 5 10

3

(10 ) (10 ) (10 )
1 1 1 1

( ) 2ij i j j j i i
j i j i

f x c x x d x b x  
   

      

Subject to: 

5 10
2

(10 ) (10 )
1 1

( ) 2 3 0, 1,...,5.j ij i j j j ij i
i i

g x c x d x e a x j 
 

         

where  40, 2, 0.25, 4, 4, 1, 40, 60,5,1b           and the remaining data is on Table B1. The 

bounds are  0 10 1,  . . . ,15ix i  . The best known solution is at 

* 1.66991341326291344 17,  3.95378229282456509 16,  3.94599045143233784,
1.06036597479721211 16,3.2831773458454161,9.99999999999999822,1.1282941467
1605333 17,1.2026194599794709   17,  2.5070627 0

(

6 00

x e e
e

e e

  


  769697  15,  2.2462412298
7970677 15,  0.370764847417013987,0.278456024942955571,0.523838487672241171,
0.388620152510322781,  0.29815676497467857 )9

e
e




with 

minf = 32.6555929502463. 

 

Table B1. Data set for test problem g19 

 

 

 

 

 

 

 

j 1 2 3 4 5 

ej -15 -27 -36 -18 -12 

c1j 30 -20 -10 32 -10 

c2j -20 39 -6 -31 32 

c3j -10 -6 10 -6 -10 

c4j 32 -31 -6 39 -20 

c5j -10 32 -10 -20 30 

dj 4 8 10 6 2 

a1j -16 2 0 1 0 

a2j 0 -2 0 0.4 2 

a3j -3.5 0 2 0 0 

a4j 0 -2 0 -4 -1 

a5j 0 -9 -2 1 -2.8 

a6j 2 0 -4 0 0 

a7j -1 -1 -1 -1 -1 

a8j -1 -2 -3 -2 -1 

a9j 1 2 3 4 5 

a10j 1 1 1 1 1 
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Problem g20 

Minimize  
24

1

 i i
i

f x a x


   

Subject to: 

 

 

 

 

 

( 12)

24
1

( 3) ( 15)

24
1

( 12)

24 12
13 1( 12)

24
1

12 24

1
4

13

13

1

( )
 0, 1,2,3

( )
 0, 4,5,6

 0, 1,...,12,

40

1 0,

1.671 0,

i i

j j i

i i

j j i

i i i

j j

j ji i

j j

i i

i i

i

i
i i

i

i

i

x x
x i

x e

x x
x i

x e

x c x
x i

x

g

g

h

h

h

x
b b

b b

x x
x x

x k
d b





 





 



 


  




  


   

 

  

    

 

where 
14.7

k= (0.7302)(530)
40

 
 
 

and the data set is detailed on Table B2. The bounds 

are  0 10 1,. . . ,24ix i   . The best known solution is at  

*x  (1.28582343498528086 e-18, 4.83460302526130664 e-34, 0, 0, 6.30459929660781851 e-

18, 7.57192526201145068 e-34, 5.03350698372840437 e-34, 9.28268079616618064 e-34, 0, 

1.76723384525547359 e-17, 3.55686101822965701 e-34, 2.99413850083471346 e-34, 

0.158143376337580827, 2.29601774161699833 e-19, 1.06106938611042947 e-18, 

1.3196834431950 e-18, 0.530902525044209539, 0, 2.89148310257773535e - 18, 

3.34892126180666159 e-18, 0, 0.310999974151577319, 5.41244666317833561 e-05, 

4.84993165246959553 e-16). 

This solution is a little infeasible and no feasible solution is found so far. 

Problem g21 

Minimize   1f x x  

Subject to: 

 
 
 
 
 
 

0.6 0.6

1 1 2 3

1 3 5 6 4 5 4 6 3 4

2 2 4 7 2 4 4 7

3 5 4

4 6 4

5 7

  35  35 0,

 300  7500 7500 25  25  0,

  100  155.365  2500  25 15536.5  0

(

,

   900   0,

   300   0,

)

(

  

)

g x x x x

h x x x x x x x x x x

h x x x x x x x x

h x x ln x

h x x ln x

h x x ln

    

       

      

     

    

   42  70( )0   0,x  

 

where the bounds are 1 2 3 40   1000,  0 ,   40,  100   300,x x x x       56.3   6.7,x   

 65.9   6.4x   and 74.5   6.25x  .  The best known solution is at  

*x  (193.724510070034967, 5.56944131553368433e-27, 17.3191887294084914, 
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100.047897801386839, 6.68445185362377892, 5.99168428444264833, 6.21451648886070451) 

where minf 193.724510070035.  

 

Table B2. Data set for test problem g20 

1 0.0693 44.094 123.7 31.244 0.1 

2 0.0577 58.12 31.7 36.12 0.3 

3 0.05 58.12 45.7 34.784 0.4 

4 0.2 137.4 14.7 92.7 0.3 

5 0.26 120.9 84.7 82.7 0.6 

6 0.55 170.9 27.7 91.6 0.3 

7 0.06 62.501 49.7 56.708  

8 0.1 84.94 7.1 82.7  

9 0.12 133.425 2.1 80.8  

10 0.18 82.507 17.7 64.517  

11 0.1 46.07 0.85 49.4  

12 0.09 60.097 0.64 49.1  

13 0.0693 44.094    

14 0.0577 58.12    

15 0.05 58.12    

16 0.2 137.4    

17 0.26 120.9    

18 0.55 170.9    

19 0.06 62.501    

20 0.1 84.94    

21 0.12 133.425    

22 0.18 82.507    

23 0.1 46.07    

24 0.09 60.097    

 

Problem g22 

Minimize   1f x x  

Subject to: 

 
 
 
 
 
 
 

0.6 0.6 0.6

1 1 2 3 4
7

1 5 8

2 6 8 9
7

3 7 9
7

4 5 10
7

5 6 11
7

6 7 12

 0,

 100000  1 10  0,

  100000 100000 0,

    100000 5 10  0,

  100000 3.3 10 0,

    100000 4.4 10 0,

    100000 6.6 10

g x x x x x

h x x x

h x x x x

h x x x

h x x x

h x x x

h x x x

     

    

   

    

    

    

    

 
 
 
 

7 5 2 13

8 6 3 14

9 7 4 15

10 8 11 16

0,

   120  0,

 80  0,

 40  0,

   0,

h x x x x

h x x x x

h x x x x

h x x x x

  

  

  

   
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 
 
 
 
 
 
 
 

11 9 12 17

12 18 10

13 19 8

14 20 16

15 21 9

16 22 17

17 8 10 13 18 13 19

18

   0,

  100   0,

   300   0,

    0,

   400   0

( )

( )

( )

( ) ,

    0,

    400  0,

 

( )

h x x x x

h x x ln x

h x x ln x

h x x ln x

h x x ln x

h x x ln x

h x x x x x x x

h x

   

    

     

   

     

   

      



 
8 9 11 14 20 14 21

19 9 12 15 15 22

    400  0,

  4.60517  100  0,

x x x x x x x

h x x x x x x

     

     

 

where the bounds are 6 7

1 2 3 4 5 6 70 20000,  0 , , 1 10 ,0 , , 4 10 ,x x x x x x x    

8 9 10 11 12100 299.99,100 399.99,100.01 300, 100 400,100 600,x x x x x         

13 14 150 , , 500,x x x  16 17 18 19 20 21 220.01 300,  0.01 400,  4.7 ,  ,  ,  ,  6.25.x x x x x x x       The 

best known solution is at  *x  (236.430975504001054, 135.82847151732463, 

204.818152544824585, 6446.54654059436416, 3007540.83940215595, 4074188.65771341929, 

32918270.5028952882, 130.075408394314167, 170.817294970528621, 299.924591605478554, 

399.258113423595205, 330.817294971142758, 184.51831230897065, 248.64670239647424, 

127.658546694545862, 269.182627528746707, 160.000016724090955, 5.29788288102680571, 

5.13529735903945728, 5.59531526444068827, 5.43444479314453499, 5.07517453535834395) 

where minf 236.430975504001. 

  

Problem g23 

Minimize   5 8 1 2 6 7 9 15  6  16 1 ) (0f x x x x x x x        

Subject to: 

 
 
 
 
 
 

1 9 3 6 5

2 9 4 7 8

1 1 2 3 4

2 1 2 9 3 4

3 3 6 5

4 4 7 8

  0.02 0.025 0,

    0.02 0.015 0,

      0,

  0.03  0.01    0,

   0,  

   0,

( )

g x x x x x

g x x x x x

h x x x x x

h x x x x x x

h x x x x

h x x x x

   

   

    

    

   

   

 

where the bounds are 1 2 6 3 5 7 4 80 ,  ,  300,  0 ,  ,  100,  0 ,  200x x x x x x x x   and

90.01 0.03x  . The best known solution is at *x  (0.00510000000000259465, 

99.9947000000000514, 9.01920162996045897e - 18, 99.9999000000000535, 

0.000100000000027086086, 2.75700683389584542e -14, 99.9999999999999574, 

2000.0100000100000100008) where minf  -400.055099999999584. 
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Problem g24 

Minimize 1 2( )f x x x    

Subject to: 

4 3 2

1 1 1 1 2
4 3 2

2 1 1 1 1 2

( ) 2 8 - 8 2 0,

( ) 4 32 88 96 36 0,

g x x x x x

g x x x x x x

   

  



  




 

The bounds on the variables are 1 20 3,  0 4x x    . This problem has one global minima at  

*x   (2.32952019747762, 3.17849307411774) with minf  -5.50801327159536.  
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Appendix C 

Data Set Corresponding to Various Bus-systems for 

Relay Coordination Problem 
 

Table C1. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for 3-bus system 

𝑻𝒑𝒓_𝒄𝒍_𝒊𝒏
𝒋

 𝑻𝒑𝒓_𝒇𝒂𝒓_𝒃𝒖𝒔
𝒌  

𝑻𝑺𝒋 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 𝑻𝑺𝒌 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

𝑇𝑆1 9.460 2.06 𝑇𝑆1 14.08 2.06 

𝑇𝑆2 26.910 2.06 𝑇𝑆2 100.63 2.06 

𝑇𝑆3 8.810 2.23 𝑇𝑆3 12.07 2.23 

𝑇𝑆4 37.680 2.23 𝑇𝑆4 136.23 2.23 

𝑇𝑆5 17.930 0.80 𝑇𝑆5 25.90 0.80 

𝑇𝑆6 14.350 0.80 𝑇𝑆6 19.20 0.80 

 

 

Table C2. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘  and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  corresponding to 

selectivity constraints for 3-bus system 

𝑻𝒃𝒂𝒄𝒌𝒖𝒑
𝒋

 𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚
𝒌  

Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

5 14.08 2.06 1 14.08 2.06 

6 12.07 2.06 3 12.07 2.23 

4 25.90 2.23 5 25.90 0.80 

2 14.35 2.06 6 14.35 2.06 

5 9.46 0.80 1 9.46 2.06 

6 8.81 0.80 3 8.81 2.23 

4 19.20 2.06 6 19.20 0.80 

2 17.93 2.23 5 17.93 0.80 
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Table C3. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘  and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for 4-bus system 

𝑻𝒑𝒓_𝒄𝒍_𝒊𝒏
𝒋

 𝑻𝒑𝒓_𝒇𝒂𝒓_𝒃𝒖𝒔
𝒌  

𝑻𝑺𝒋 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 𝑻𝑺𝒌 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

𝑻𝑺𝟏 20.32  0.4800  𝑻𝑺𝟏 12.48  0.4800   

𝑻𝑺𝟐 88.85  0.4800    𝑻𝑺𝟐 23.75   0.4800 

𝑻𝑺𝟑 13.61  1.1789    𝑻𝑺𝟑 10.38  1.1789 

𝑻𝑺𝟒 116.81    1.1789    𝑻𝑺𝟒 31.92   1.1789 

𝑻𝑺𝟓 116.79  1.5259 𝑻𝑺𝟓 31.92     1.5259 

𝑻𝑺𝟔 16.67   1.5259 𝑻𝑺𝟔 12.07 1.5259 

𝑻𝑺𝟕 71.70  1.2018 𝑻𝑺𝟕 18.91   1.2018 

𝑻𝑺𝟖 19.27 1.2018 𝑻𝑺𝟖 11.00 1.2018 

 

 

Table C4. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  corresponding to 

selectivity constraints for 4-bus system 

𝑻𝒃𝒂𝒄𝒌𝒖𝒑
𝒋

 𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚
𝒌  

Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

5 20.32 1.5259 1 20.32   0.4800 

5 12.48   1.5259 1 12.48 0.4800 

7 13.61   1.2018 3 13.61 1.1789  

7 10.38   1.2018 3 10.38 1.1789  

1 1.16    0.4800 4 116.81 1.1789 

2 12.07   0.4800 6 12.07 1.5259  

2 16.67   0.4800 6 16.67 1.5259  

4 11.00    1.1789   8 11.00 1.2018   

4 19.27 1.1789 8 19.27 1.2018   
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Table C5. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘  and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for 6-bus system 

𝑻𝒑𝒓_𝒄𝒍_𝒊𝒏
𝒋

 𝑻𝒑𝒓_𝒇𝒂𝒓_𝒃𝒖𝒔
𝒌  

𝑻𝑺𝒋 𝒊𝒇
𝒋
  𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
  𝑻𝑺𝒌 𝒊𝒇

𝒌  𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌   

𝑻𝑺𝟏 2.5311  0.2585  𝑻𝑺𝟏 5.9495  0.2585  

𝑻𝑺𝟐 2.7376 0.2585  𝑻𝑺𝟐 5.3752  0.2585  

𝑻𝑺𝟑 2.9723 0.4863  𝑻𝑺𝟑 6.6641  0.4863  

𝑻𝑺𝟒 4.1477 0.4863  𝑻𝑺𝟒 4.5897 0.4863  

𝑻𝑺𝟓 1.9545 0.7138  𝑻𝑺𝟓 6.2345 0.7138  

𝑻𝑺𝟔 2.7678 0.7138  𝑻𝑺𝟔 4.2573 0.7138  

𝑻𝑺𝟕 3.8423 1.7460  𝑻𝑺𝟕 6.3694 1.7460  

𝑻𝑺𝟖 5.6180 1.7460  𝑻𝑺𝟖 4.1783 1.7460  

𝑻𝑺𝟗 4.6538 1.0424  𝑻𝑺𝟗 3.8700 1.0424  

𝑻𝑺𝟏𝟎 3.5261 1.0424  𝑻𝑺𝟏𝟎 5.2696 1.0424  

𝑻𝑺𝟏𝟏 2.5840 0.7729  𝑻𝑺𝟏𝟏 6.1144 0.7729  

𝑻𝑺𝟏𝟐 3.8006 0.7729  𝑻𝑺𝟏𝟐 3.9005 0.7729  

𝑻𝑺𝟏𝟑 2.4143 0.5879 𝑻𝑺𝟏𝟑 2.9011 0.5879 

𝑻𝑺𝟏𝟒 5.3541 0.5879 𝑻𝑺𝟏𝟒 4.3350 0.5879 
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Table C6. The value of the constants 𝑖𝑓
𝑗

, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑗

, 𝑖𝑓
𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑘  corresponding to 

selectivity constraints for 6-bus system 

𝑻𝒃𝒂𝒄𝒌𝒖𝒑
𝒋

 𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚
𝒌  

Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

8 4.0909  1.7460  1 5.3752 0.2585 

8 2.9323  1.7460  1 2.5311 0.2585 

11 1.2886  0.7729  1 5.3752 0.2585 

3 0.6213  0.4863  2 2.7376 0.2585 

3 1.6658  0.4863  2 5.9495 0.2585 

10 2.5610  1.0424  3 2.9723 0.4863 

10 3.0923  1.0424  3 4.5897 0.4863 

13 1.4995  0.5879  3 4.5897 0.4863 

1 1.5243  0.2585  4 6.6641 0.4863 

1 0.8869  0.2585  4 4.1477 0.4863 

12 1.4549  0.7729  5 1.9545 0.7138 

12 2.5444  0.7729  5 4.2573 0.7138 

14 1.7142  0.5879  5 4.2573 0.7138 

1 1.1231  0.2585  6 6.2345 0.7138 

3 1.4658  0.4863  6 6.2345 0.7138 

2 2.0355  0.2585  7 4.1783 1.7460 

2 1.8718 0.2585 7 3.8423 1.7460 

11 2.1436  0.7729  7 4.1783 1.7460 

11 1.9712  0.7729  7 3.8423 1.7460 

4 3.4386  0.4863  9 5.2696 1.0424 

4 3.0368  0.4863  9 4.6538 1.0424 

13 1.8321  0.5879  9 5.2696 1.0424 

13 1.6180  0.5879  9 4.6538 1.0424 

6 1.8138  0.7138 11 3.9005 0.7729 

6 1.1099  0.7138 11 2.5840 0.7729 

14 2.0871  0.5879 11 3.9005 0.7729 

14 1.4744  0.5879 11 2.5840 0.7729 

2 0.4734  0.2585 12 3.8006 0.7729 

2 1.5432  0.2585 12 6.1144 0.7729 

8 3.3286  1.7460 12 3.8006 0.7729 

8 4.5736  1.7460 12 6.1144 0.7729 

6 1.6085  0.7138 13 4.3350 0.5879 

12 2.7269  0.7729 13 4.3350 0.5879 

12 1.8360  0.7729 13 2.4143 0.5879 

4 0.8757  0.4863 14 2.9011 0.5879 

4 2.5823 0.4863 14 5.3541 0.5879 

10 2.0260  1.0424 14 2.9011 0.5879 

10 2.7784  1.0424 14 5.3541 0.5879 
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Table C7. The value of the constants 𝑖𝑓
𝑗
, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑗
, 𝑖𝑓

𝑘  and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑘  for 14-bus system 

𝑻𝒑𝒓_𝒄𝒍_𝒊𝒏
𝒋

 𝑻𝒑𝒓_𝒇𝒂𝒓_𝒃𝒖𝒔
𝒌  

𝑻𝑺𝒋 𝒊𝒇
𝒋
  𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
  𝑻𝑺𝒌 𝒊𝒇

𝒌  𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌   

𝑻𝑺𝟏 9.2913 1.4883 𝑻𝑺𝟏 6.5448 1.4883 

𝑻𝑺𝟐 1.2344 1.4883 𝑻𝑺𝟐 1.8339 1.4883 

𝑻𝑺𝟑 6.0113 0.7143 𝑻𝑺𝟑 2.6433 0.7143 

𝑻𝑺𝟒 1.9793 0.7143 𝑻𝑺𝟒 4.3575 0.7143 

𝑻𝑺𝟓 6.4479 0.7040 𝑻𝑺𝟓 3.1281 0.7040 

𝑻𝑺𝟔 3.1417 0.7040 𝑻𝑺𝟔 6.4878 0.7040 

𝑻𝑺𝟕 6.2658 0.5364 𝑻𝑺𝟕 2.6728 0.5364 

𝑻𝑺𝟖 2.8926 0.5364 𝑻𝑺𝟖 6.7856 0.5364 

𝑻𝑺𝟗 5.9094 0.3989 𝑻𝑺𝟗 2.5043 0.3989 

𝑻𝑺𝟏𝟎 2.9101 0.3989 𝑻𝑺𝟏𝟎 6.8739 0.3989 

𝑻𝑺𝟏𝟏 6.1548 0.2389 𝑻𝑺𝟏𝟏 3.1983 0.2389 

𝑻𝑺𝟏𝟐 3.4000 0.2389 𝑻𝑺𝟏𝟐 6.6622 0.2389 

𝑻𝑺𝟏𝟑 5.1962 0.6129 𝑻𝑺𝟏𝟑 4.0312 0.6129 

𝑻𝑺𝟏𝟒 5.1451 0.6129 𝑻𝑺𝟏𝟒 6.6726 0.6129 

𝑻𝑺𝟏𝟓 4.1203 0.3375 𝑻𝑺𝟏𝟓 2.3424 0.3375 

𝑻𝑺𝟏𝟔 3.2408 0.3375 𝑻𝑺𝟏𝟔 6.4102 0.3375 

𝑻𝑺𝟏𝟕 3.2393 0.1642 𝑻𝑺𝟏𝟕 1.2685 0.1642 

𝑻𝑺𝟏𝟖 1.5751 0.1642 𝑻𝑺𝟏𝟖 4.5904 0.1642 

𝑻𝑺𝟏𝟗 5.6780 0.4462 𝑻𝑺𝟏𝟗 2.8500 0.4462 

𝑻𝑺𝟐𝟎 2.8302 0.4462 𝑻𝑺𝟐𝟎 5.6145 0.4462 

𝑻𝑺𝟐𝟏 1.7026 0.0806 𝑻𝑺𝟐𝟏 1.1769 0.0806 

𝑻𝑺𝟐𝟐 3.4646 0.0806 𝑻𝑺𝟐𝟐 6.7384 0.0806 

𝑻𝑺𝟐𝟑 1.4265 0.0772 𝑻𝑺𝟐𝟑 0.6528 0.0772 

𝑻𝑺𝟐𝟒 2.8174 0.0772 𝑻𝑺𝟐𝟒 6.3513 0.0772 

𝑻𝑺𝟐𝟓 1.6753 0.1818 𝑻𝑺𝟐𝟓 0.8932 0.1818 

𝑻𝑺𝟐𝟔 4.2491 0.1818 𝑻𝑺𝟐𝟔 7.5912 0.1818 

𝑻𝑺𝟐𝟕 5.3987 0.1748 𝑻𝑺𝟐𝟕 3.4374 0.1748 

𝑻𝑺𝟐𝟖 2.8776 0.1748 𝑻𝑺𝟐𝟖 4.1301 0.1748 

𝑻𝑺𝟐𝟗 3.0118 0.2719 𝑻𝑺𝟐𝟗 2.3332 0.2719 

𝑻𝑺𝟑𝟎 3.6132 0.2719 𝑻𝑺𝟑𝟎 5.0393 0.2719 

𝑻𝑺𝟑𝟏 1.6025 0.0588 𝑻𝑺𝟑𝟏 1.3932 0.0588 

𝑻𝑺𝟑𝟐 3.7512 0.0588 𝑻𝑺𝟑𝟐 4.7782 0.0588 

𝑻𝑺𝟑𝟑 1.3873 0.0947 𝑻𝑺𝟑𝟑 0.9942 0.0947 

𝑻𝑺𝟑𝟒 2.3552 0.0947 𝑻𝑺𝟑𝟒 4.2483 0.0947 

𝑻𝑺𝟑𝟓 2.5982 0.0433 𝑻𝑺𝟑𝟓 1.8567 0.0433 

𝑻𝑺𝟑𝟔 2.1033 0.0433 𝑻𝑺𝟑𝟔 3.0181 0.0433 

𝑻𝑺𝟑𝟕 3.5842 0.0179 𝑻𝑺𝟑𝟕 1.9815 0.0179 

𝑻𝑺𝟑𝟖 1.2000 0.0179 𝑻𝑺𝟑𝟖 1.9971 0.0179 

𝑻𝑺𝟑𝟗 1.7314 0.0596 𝑻𝑺𝟑𝟗 1.1341 0.0596 

𝑻𝑺𝟒𝟎 1.8029 0.0596 𝑻𝑺𝟒𝟎 3.3438 0.0596 
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Table C8. The value of the constants 𝑖𝑓
𝑗

, 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔
𝑗

, 𝑖𝑓
𝑘 and 𝐶𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑎𝑡𝑖𝑛𝑔

𝑘  corresponding to 

selectivity constraints for 14-bus system 

𝑻𝒃𝒂𝒄𝒌𝒖𝒑
𝒋

 𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚
𝒌  

Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

5 2.1554 0.7040 1 9.2913 1.4883 

7 1.4652 0.5364 1 9.2913 1.4883 

9 1.2524 0.3989 1 9.2913 1.4883 

5 1.5929 0.7040 1 6.5448 1.4883 

7 0.9171 0.5364 1 6.5448 1.4883 

9 0.6463 0.3989 1 6.5448 1.4883 

3 1.2344 0.7143 2 1.2344 1.4883 

3 1.8339 0.7143 2 1.8339 1.4883 

10 1.1509 0.3989 3 6.0113 0.7143 

14 3.1662 0.6129 3 6.0113 0.7143 

19 1.7088 0.4462 3 6.0113 0.7143 

14 1.5165 0.6129 3 2.6433 0.7143 

19 1.2078 0.4462 3 2.6433 0.7143 

1 4.3575 1.4883 4 4.3575 0.7143 

11 1.5283 0.2389 5 6.4479 0.7040 

7 1.1184 0.5364 6 6.4878 0.7040 

9 1.0336 0.3989 6 6.4878 0.7040 

12 1.9806 0.2389 7 6.2658 0.5364 

13 2.3154 0.6129 7 6.2658 0.5364 

15 1.4418 0.3375 7 6.2658 0.5364 

17 0.5423 0.1642 7 6.2658 0.5364 

12 1.0887 0.2389 7 2.6728 0.5364 

15 1.1197 0.3375 7 2.6728 0.5364 

17 0.4140 0.1642 7 2.6728 0.5364 

9 0.8095 0.3989 8 6.7856 0.5364 

5 1.6993 0.7040 8 6.7856 0.5364 

14 3.3518 0.6129 9 5.9094 0.3989 

19 1.8535 0.4462 9 5.9094 0.3989 

14 1.4259 0.6129 9 2.5043 0.3989 

19 1.4814 0.4462 9 2.5043 0.3989 

7 0.9609 0.5364 10 6.8739 0.3989 

5 1.7512 0.7040 10 6.8739 0.3989 

13 2.7200 0.6129 11 6.1548 0.2389 

15 1.4654 0.3375 11 6.1548 0.2389 

17 0.5528 0.1642 11 6.1548 0.2389 

8 1.4184 0.5364 11 6.1548 0.2389 

13 1.3332 0.6129 11 3.1983 0.2389 

15 1.0109 0.3375 11 3.1983 0.2389 

17 0.3791 0.1642 11 3.1983 0.2389 

6 1.5526 0.7040 12 6.6622 0.2389 

19 2.2251 0.4462 13 5.1962 0.6129 

10 1.8327 0.3989 13 5.1962 0.6129 

4 1.1499 0.7143 13 5.1962 0.6129 

19 1.9086 0.4462 13 4.0312 0.6129 
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Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

10 1.3082 0.3989 13 4.0312 0.6129 

15 1.4640 0.3375 14 5.1451 0.6129 

17 0.5283 0.1642 14 5.1451 0.6129 

12 2.0902 0.2389 14 5.1451 0.6129 

8 1.0740 0.5364 14 5.1451 0.6129 

15 1.7474 0.3375 14 6.6726 0.6129 

17 0.6535 0.1642 14 6.6726 0.6129 

12 2.5475 0.2389 14 6.6726 0.6129 

8 1.7383 0.5364 14 6.6726 0.6129 

27 2.5389 0.1748 15 4.1203 0.3375 

29 1.6000 0.2719 15 4.1203 0.3375 

27 1.8665 0.1748 15 2.3424 0.3375 

29 0.4991 0.2719 15 2.3424 0.3375 

13 1.4492 0.6129 16 3.2408 0.3375 

12 1.2568 0.2389 16 3.2408 0.3375 

8 0.8968 0.5364 16 3.2408 0.3375 

17 0.3181 0.1642 16 6.4102 0.3375 

13 2.6267 0.6129 16 6.4102 0.3375 

12 2.0146 0.2389 16 6.4102 0.3375 

8 1.4608 0.5364 16 6.4102 0.3375 

30 1.9335 0.2719 17 3.2393 0.1642 

31 0.8180 0.0588 17 3.2393 0.1642 

33 0.5290 0.0947 17 3.2393 0.1642 

30 0.5860 0.2719 17 1.2685 0.1642 

31 0.4261 0.0588 17 1.2685 0.1642 

33 0.2756 0.0947 17 1.2685 0.1642 

12 0.8171 0.2389 18 1.5751 0.1642 

15 0.5615 0.3375 18 4.5904 0.1642 

13 1.7162 0.6129 18 4.5904 0.1642 

12 1.3473 0.2389 18 4.5904 0.1642 

8 0.9739 0.5364 18 4.5904 0.1642 

21 0.5760 0.0806 19 5.6780 0.4462 

25 0.2974 0.1818 19 5.6780 0.4462 

14 1.4757 0.6129 20 2.8302 0.4462 

10 0.8328 0.3989 20 2.8302 0.4462 

14 3.2590 0.6129 20 5.6145 0.4462 

10 1.4484 0.3989 20 5.6145 0.4462 

36 1.7026 0.0433 21 1.7026 0.0806 

36 1.1769 0.0433 21 1.1769 0.0806 

20 0.7589 0.4462 22 3.4646 0.0806 

20 1.6087 0.4462 22 6.7384 0.0806 

37 1.4265 0.0179 23 1.4265 0.0772 

37 0.6528 0.0179 23 0.6528 0.0772 

21 0.3086 0.0806 24 2.8174 0.0772 

20 0.8810 0.4462 24 2.8174 0.0772 

21 0.5996 0.0806 24 6.3513 0.0772 

20 1.5316 0.4462 24 6.3513 0.0772 

38 0.7848 0.0179 25 1.6753 0.1818 

39 0.8925 0.0596 25 1.6753 0.1818 
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Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

38 0.2091 0.0179 25 0.8932 0.1818 

39 0.6851 0.0596 25 0.8932 0.1818 

21 0.3319 0.0806 26 4.2491 0.1818 

20 1.1625 0.4462 26 4.2491 0.1818 

21 0.6907 0.0806 26 7.5912 0.1818 

20 1.8301 0.4462 26 7.5912 0.1818 

29 1.2730 0.2719 28 2.8776 0.1748 

16 1.6111 0.3375 28 2.8776 0.1748 

29 1.8270 0.2719 28 4.1301 0.1748 

16 2.3124 0.3375 28 4.1301 0.1748 

31 1.2257 0.0588 29 3.0118 0.2719 

33 0.7928 0.0947 29 3.0118 0.2719 

18 1.0273 0.1642 29 3.0118 0.2719 

31 1.0031 0.0588 29 2.3332 0.2719 

33 0.6488 0.0947 29 2.3332 0.2719 

18 0.7063 0.1642 29 2.3332 0.2719 

27 2.0912 0.1748 30 3.6132 0.2719 

16 1.5226 0.3375 30 3.6132 0.2719 

27 2.7262 0.1748 30 5.0393 0.2719 

16 2.3145 0.3375 30 5.0393 0.2719 

35 1.6025 0.0433 31 1.6025 0.0588 

35 1.3932 0.0433 31 1.3932 0.0588 

33 0.5585 0.0947 32 3.7512 0.0588 

30 2.3926 0.2719 32 3.7512 0.0588 

18 0.8254 0.1642 32 3.7512 0.0588 

33 0.7640 0.0947 32 4.7782 0.0588 

30 3.0042 0.2719 32 4.7782 0.0588 

18 1.0475 0.1642 32 4.7782 0.0588 

40 1.3873 0.0596 33 1.3873 0.0947 

40 0.9942 0.0596 33 0.9942 0.0947 

31 0.4315 0.0588 34 2.3552 0.0947 

30 1.4469 0.2719 34 2.3552 0.0947 

18 0.4890 0.1642 34 2.3552 0.0947 

31 0.9445 0.0588 34 4.2483 0.0947 

30 2.4759 0.2719 34 4.2483 0.0947 

18 0.8600 0.1642 34 4.2483 0.0947 

22 2.5982 0.0806 35 2.5982 0.0433 

22 1.8567 0.0806 35 1.8567 0.0433 

32 2.1033 0.0588 36 2.1033 0.0433 

32 3.0181 0.0588 36 3.0181 0.0433 

39 0.7780 0.0596 37 3.5842 0.0179 

26 2.8071 0.1818 37 3.5842 0.0179 

39 0.5065 0.0596 37 1.9815 0.0179 

26 1.4752 0.1818 37 1.9815 0.0179 

24 1.2000 0.0772 38 1.2000 0.0179 

24 1.9971 0.0772 38 1.9971 0.0179 

34 1.7314 0.0947 39 1.7314 0.0596 

34 1.1341 0.0947 39 1.1341 0.0596 

38 0.3683 0.0179 40 1.8029 0.0596 
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Relay 𝒊𝒇
𝒋
 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈

𝒋
 Relay 𝒊𝒇

𝒌 𝑪𝑻𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒓𝒂𝒕𝒊𝒏𝒈
𝒌  

26 1.4391 0.1818 40 1.8029 0.0596 

38 0.6831 0.0179 40 3.3438 0.0596 

26 2.6692 0.1818 40 3.3438 0.0596 
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