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Abstract 

The performance modeling of Markovian and non-Markovian queueing models plays a vital 

role in design of real time queueing systems. The application of such models can be seen at 

many places including telecommunication system, computer networks, industrial and 

production system, etc.  The state-dependent queueing models are of practical use and robust in 

depicting many real life congestion scenarios. These queues deal with the many realistic 

situations such as queues with discouragement, time sharing system, machine repair problems, 

etc. Optimal control of parameters of the queueing system is the key concern as far as the 

organizer as well customer’s point of view. The arriving customers decide before joining the 

system whether to join or not to join the system based on their prior assessment of the queue 

length. So far as the controlling of the arrivals in the finite capacity system is concerned, 

admission control F-policy is quite useful to control the congestion of the customers/jobs and it 

can be helpful in reducing the lost customers/jobs in particular when the system capacity is full. 

The admission control F-policy mainly restricts the customers/jobs from an entry in the 

queueing system when the system capacity is exhausted and further admission of customers/jobs 

is allowed when enough customers/jobs are served so that the number of customers/jobs in the 

system drops to a threshold level ' 'F . The admission control F-policy can be employed to 

resolve the issue of controlling of the arrivals in the queueing system so as to avoid the loss of 

revenue and inconvenience to the customers.  

In the present thesis, we investigate state dependent queueing models applicable to 

several queueing scenarios. The noble features of the investigation done are design of the control 

policies for some Markov and non-Markov queueing models by incorporating several features 

such as admission control F-policy, balking, reneging, feedback, unreliable server, retrial orbit, 

vacation, etc. In order to study the concerned queueing models, various system metrics such as 

number of customers in the system and in the queue, throughput, customer’s loss, long run 

probabilities and reliability indices have been obtained using the relevant analytical/numerical 

techniques. The cost optimization and evaluation of optimal control parameters of the concerned 

queueing models, have been done using various methods such as quasi-Newton method, genetic 

algorithm, Harmony search algorithm, etc. The soft computing approaches namely fuzzy logic, 

neuro fuzzy technique, parametric non-linear programing are also employed for the prediction 

of performance indices of the concerned queueing models.  
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The main focus of our investigation in the present thesis is to the state dependent 

queueing models along with optimal control strategies. The work done on the optimal strategies 

and evaluation of performance indices of state dependent queueing models is organized into 

eight chapters. Some state-dependent queueing models have been developed by incorporating 

customer’s joining strategies, admission control policy, double orbit, etc. The numerical results 

based on sensitivity analysis are also performed to validate the results derived for the concerned 

queueing model. The investigations done in the thesis are divided into eight chapters which are 

described as follows. 

Chapter 1 is devoted for an overview and the motivation of the relevant topics alongwith 

preliminary concepts used for the concerned queueing models. The brief description of the 

methodologies used and the literature survey of relevant topics have been highlighted. Chapter 

2 is concerned with an unreliable retrial queueing model under the admission control F-policy 

by incorporating the startup time and threshold policy. The adaptive neuro fuzzy inference 

system (ANFIS) technique is implemented to compare the numerical results obtained by Gauss-

Seidel method. Chapter 3 presents the single server state-dependent model with general retrial 

attempts under admission control F-policy. The minimum cost of the system corresponding to 

optimal threshold parameter and optimal service rate is also determined using direct search 

method and quasi-Newton method. Chapter 4 deals with the multi-server finite queueing model 

with customer’s balking behaviour. The concepts of admission control of customers based on 

F-policy and one additional server are incorporated to shorten the queue length formed by the 

customers in the rush hour. The system cost is minimized using direct search method and quasi-

Newton method to obtain the admission control parameter.  

Chapter 5 contains various results for the single server finite capacity queueing model with 

discouragement and general retrial times while the system operates under admission control F-

policy. The soft computing based artificial neuro fuzzy inference system (ANFIS) method is 

applied to validate the results obtained by analytical method. Cost analysis is also done using 

genetic algorithm (GA) and quasi-Newton method by evaluating the optimal control parameters. 

Chapter 6 deals with the finite population models with general distributed retrial time under 

admission control F-policy. The fuzzy cost analysis for the finite population model is done by 

considering the cost elements as trapezoidal fuzzy numbers. Furthermore, the signed distance 

method is used to defuzzify the cost function. To determine the optimal control parameter and 

minimum cost of the system, genetic algorithm (GA) is also applied.  Chapter 7 presents finite 
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crisp and fuzzy population model for the multi-component machining system with general 

repair, standby support and server vacation. The cost analysis is done using Harmony search 

algorithm to determine optimal control parameters.  

In Chapter 8, three infinite capacity double orbit retrial queueing models are studied. The first 

model is concerned with the customers’ joining strategy in a double orbit retrial queueing system 

with balking. This model is transformed into fuzzy environment to study the fuzzified indices 

using the parametric nonlinear programing (P-NLP). The cost optimization is also done to 

determine optimal service rates using GA. The second model deals with double orbit feedback 

model. In the third double orbit model, the single server is taken as unreliable. In order to 

validate the feasibility of use neuro- fuzzy controller, ANFIS technique is also implemented. 

The cost function is framed and used to obtain the optimal service rates using quasi-Newton 

method.  

At the end of the thesis, the concluding remarks and future scope have been outlined. The 

relevant references have been listed in the end of the thesis in alphabetical order. 
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Chapter 1 
 

Introduction 
 

1.1. MOTIVATION 

 The optimal control policy can be implemented to facilitate the quality of service to the 

customers and to enhance the profit of the service systems operating in many real world 

queueing scenarios. To encourage the jobs/customers for getting served by the server, the system 

organizer should focus on the optimal control parameters such as admission/service control 

threshold parameter, joining threshold probability, service/repair rate, startup rate, vacation rate, 

etc. Optimal control parameters in queueing systems are important factors for the customers to 

decide whether to queue up or not for desired service, based on their assessment of queue length 

or total waiting time. These parameters play key role for the design and management of queueing 

service systems so that the trade-off between system cost and waiting time of jobs/customers 

may be done. Optimal control strategies provide valuable insights to the system designers and 

decision makers to reduce the system cost and delay in congestion problems and can be used for 

the improvement of the concerned system. Optimal control for the queueing system may be 

helpful to check the discouragement behavior of the customers in several queue length 

dependent scenarios including the computer and communication networks, manufacturing and 

production units, service and distribution systems, and many more systems.  

In several queueing systems, the rates may be state-dependent, i.e. the arrival and service 

may be dependent on the number of customers present in the system. It is also seen that the 

server may render service with faster rate as soon as the queue size increases. On the contrary, 

sometimes it may happen that the server becomes slow due to stress. The importance of the state 

dependent queue may be realized in many day-to-day queueing scenarios including queues with 

customer’s discouragement behavior, machine repair systems, time-sharing systems, etc. The 

state-dependent queueing model may also be applicable to the queueing system in which the 

decision-maker can facilitate the additional servers on observing the long queue based on 

threshold policy. 
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The customers’ discouragement behavior in the queueing situations, is a common issue 

and may be noticed at many places in our routine lives including at railways reservation 

counters, banks, restaurants, post office, VISA service centers, etc. In queueing scenarios, 

sometimes, it is seen that the arriving customer may decide not to join the queue for receiving 

the service due to some reason. In such a case, the discouraged customer may depart from the 

system forever without joining the system; and this phenomenon is known as balking. On the 

other hand, it can be seen that the arriving customer joins the queue for receiving the service 

and due to impatience after waiting for some time, he may leave the system without being 

served; this kind of discouragement behavior is known as reneging. The discouragement 

behavior of the customers in the queueing system affects the profit as well as the goodwill of 

the system organizers. Most often, it is experienced that after getting served, the customers do 

not feel satisfied with the service. Once the customer is served by the server and if he is not 

satisfied with the service then he may re-join the queue for the service; this phenomenon is 

termed as customers’ feedback. 

In many organizations/industries, it is noticed that the machines used for rendering the 

service to jobs/units are prone to failures. The system managers constantly try to facilitate the 

service to their customers at a fast pace, however, the system may stop functioning due to 

unpredictable failure of the machines. In order to reduce the congestion of failed machines in 

the system and to maintain the smooth functioning of the machining system, the managers of 

the concerned system provide the immediate repair to the failed machines at optimal cost.  

The formation of queues and consequently discouragement behavior of the customers as 

well as delay in the service are the major problems for both customers as well as the system 

organizers. In order to maintain the smooth functioning of the service systems where long 

queues are built up, the arrivals should be controlled and this can be done by implementing the 

optimal admission control F-policy. The intention of the admission control F-policy is to control 

the admission of joining customers in case when the waiting space is full. In admission control 

F-policy, the jobs/customers are completely restricted to join the queue when the system waiting 

space becomes exhausted and during this period only jobs present in the system are served by 

the server to reduce the waiting line to a certain extent. The further admission of customers can 

be allowed when ‘F’ jobs remain after departure of the served customers in the system. The 

queueing models investigated under admission control F-policy have several applications at 

various places such as day-to-day service systems, hospitals, call centers, assembly lines, etc. 
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To illustrate the applicability of optimal F-policy, we cite an example of transport service system 

where loaded trucks arrive at a warehouse for unloading. Due to the limited space available for 

trucks at parking area, the admission control under F-policy for loaded trucks can be employed 

for the smooth functioning of the unloading service. When the capacity of the parking area 

becomes full, the newly arrived loaded trucks can be stopped for the time being to enter in the 

parking area and as soon as the number spaces for the trucks in the parking area ceases to a pre-

defined level ‘F’. The loaded trucks are further allowed to park in the available space for 

unloading. 

In queueing situations, sometimes it is experienced that the arriving customer may not like 

to wait in the queue on finding the busy server and prefers to do some other work in the virtual 

place called retrial orbit. After a random period of time, the customers waiting in the orbit, may 

retry for getting the service with the expectation that the service facility is likely to be free; such 

a special type of queue is termed as retrial queue. The formation of retrial queues may be seen 

at many places including banks, ATMs, computer communication networks, business, 

industries, etc. To examine the practical applicability of retrial queues, consider an example of 

call center wherein the caller may try for a call to the center and if the dialed number is busy, 

the caller may get a message of busy line. The caller may disconnect the call and would like to 

remain in the retrial orbit and may try after some time with the hope that the line becomes free 

to connect the call.  

It is often realized that some of the arriving customers may not be willing to join the queue 

if the facility available in the waiting zone is not up to their expectation. Some customers do not 

bother about paying more money for getting better comfort during waiting period. To deal with 

such type of situations, the provision of double orbits in retrial queue namely, ordinary orbit and 

premium orbit can be provided. If the arriving customers find the server busy, the system 

organizer directs them to shift to ordinary orbit or premium orbit as per their demand and paying 

capacity and after a period of time customers retry for the service again from their respective 

orbits. To understand the single server double orbit retrial queue in a practical way, we cite an 

example of e-commerce website which allows customers to shop directly from the 

manufacturing unit through the internet. The e-commerce website may deal with two types of 

customers namely, ordinary customers and premium customers. During the festive season, the 

e-commerce website seems too busy due to high access by a large number of customers at the 

same time. It is experienced that some of arriving customers may not wish to continue shopping 
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due to the heavily loaded website and become discouraged and leave the website forever. On 

the other hand, many arriving ordinary customers (premium customers) join the queue on 

finding the website busy. However, the ordinary (premium) customers move to the ordinary 

orbit (premium orbit) and later re-attempt for the shopping. 

The server breakdown is a common phenomenon in queueing systems. Due to over 

congestion of the customers in the system, sometimes server may not bear the load of the 

customers and this results in server break down. Such example can be seen at railway reservation 

counter where operator provides the tickets via computer to the customers. One can experience 

that the computer may stop working due to several reasons such as software failure, network 

problem, system overload, hardware issues, power backup, etc. Similar situation can be seen at 

many places where server may breakdown such as telecommunication system, data center, etc. 

In queueing problems, server failure is key issue so that the system organizers focus on it when 

dealing with the queueing models.      

In queueing literature, a very few researchers have studied the admission control related 

issues for queueing situations by developing generic state dependent finite model. There is 

scarcity of works towards queueing models having double retrial orbit. The joining strategies 

and optimal control of system parameters have been found interesting and require more attention 

by noticing that there is significant gap between theoretical and application oriented research 

works. Our study on admission control joining strategies of customers is motivated by its ample 

applications in failure prone machining environment and day-to-day congestion scenarios. The 

main objective of the present study is the performance modeling and design of the control 

policies for some Markov and non-Markov queueing models for realistic queueing situations. 

Markovian as well as non-Markovian models under steady state have been analyzed for both 

crisp and fuzzy descriptors. By developing state dependent queueing models, we have studied 

the admission control strategies by incorporating many realistic features including fuzzy 

parameters, retrial attempts, double orbits, discouragement, feedback, etc. The rest of the 

introductory chapter is organized in the following manner. Section 1.2 is devoted to introductory 

aspects of queue with optimal control strategies and the admission control F-policy. Section 1.3 

describes the mathematical formulation of state-dependent queue operating under admission 

control F-policy. The methodologies and techniques used for the state-dependent queueing 

models have been discussed in Section 1.4. In Section 1.5, some special queueing models under 

admission control F-policy are presented. Literature review of the work done in the thesis is 
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given in Section 1.6.  Section 1.7 highlights the overview and outlines of the thesis. Finally, the 

concluding remarks are given in Section 1.8.  

1.2. QUEUE WITH OPTIMAL CONTROL STRATEGIES  

In many congestion situations, it is experienced that the arriving customers observe the 

queue size and decide whether to join the queue for the service or not. However, when the 

system seems to be congested, it results in the loss of revenue in case arriving customers balk 

or waiting customers renege. It is most often inconvenient to the customers to wait in the queue. 

In order to encourage the customers for joining the system for the service, the system organizer 

may offer a reward to the customer for being served. Also, a waiting cost is imposed when the 

customers remain in the system. The arriving customers can make such a strategy to join the 

system so that the reward offered by the system organizer is greater than the waiting cost 

incurred on them. If the customers observe that the reward is greater (less) than the waiting cost 

then the customers always prefer to join (balk) the system for the service (without being served) 

whereas the customers can be indifferent between joining the system and balking when the 

reward and the cost are equal. In order to make optimal strategies so that the net profit would be 

maximized, the system organizer can establish a reward-cost structure as follows. Consider a 

single server queue in which the customers join the system as per Poisson distribution with rate 

  and service is provided by the single server as per exponential distribution with rate  . It is 

assumed that the arriving customer enters into the system with probability q and balks with 

probability (1 )q . After being served, each customer receives a reward R per unit time and 

spends waiting cost C per unit time. Based on reward-cost structure, the profit function ( )f q  

can be constructed as  

    ( ) ( )R C Waiting timef q q   . 

For more details of optimal control strategies based on cost-reward structure, we refer the book 

by Hassin and Haviv (2003) and papers by Nobel and Tijms (1999, 2000). 

Gupta (1995) introduced the concept of admission control F-policy for finite capacity single 

server Markov queueing system. According to Gupta (1995), F-policy problem addresses the 

issue of controlling arrivals in a finite capacity (K) queueing system. If the system reaches to its 

capacity K (i.e. the system becomes full), no further customers are allowed to enter the system  
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Figure 1.1: Pictorial view of admission control F-policy 

until enough customers who are already in the system have been served so that the number of 

customers in the system drops down to a threshold value F (0 1)F K   . At that point, a setup 

time is required to start allowing the customers in the system. Then after the system behaves 

normally until it reaches its capacity and above process is repeated all over again. To understand 

the concept of F-policy, a pictorial view of admission control F-policy is shown in Figure 1.1. 

1.3. STATE DEPENDENT QUEUE UNDER ADMISSION CONTROL F-POLICY 

To construct the mathematical model for the admission control F-policy for state 

dependent single server finite capacity (K) Markov model, certain assumptions made are as 

follows: 

 The arriving customers/jobs join the system in Poisson pattern with rate . 

 The customers/jobs are served by the single server following the exponential distribution 

with mean 1/ . 

 As K customers/jobs accumulated in the system, the customers/jobs are restricted till the 

number of customers/jobs in the system further reduces to ‘F’ (0 1)F K   . To start 

admission of customers/jobs in the system, a startup job is required as per exponential 

distribution with mean 1/ . 
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Figure 1.2: Transition state diagram for state dependent model under F-policy 

For F-policy model, we denote the status of the server at time as follows 

( ) 1(2), when theserver is busy in rendring the service and admission of customers 

is allowed(not allowed).

S i  
 

When the server is in state ,i denoting the probability of ( 0,1,2,..., )n n K customers at time   

by 
, ( )i nP  , the transient birth-death equations can be framed as follows (see Figure 1.2): 

For 1i  , 0 1n K   , when the admission of customers is allowed.

1,0 0 1,0 1 1,1 2,0( ) ( ) ( ) ( )
d

P P P P
d

      


           (1.1) 

1, 1, 1 1, 1 1 1, 1 2,( ) ( ) ( ) ( ) ( ) ( ), 1,2,..., 2n n n n n n n n n F n

d
P P P P P n K

d
          


             (1.2) 

1, 1 1 1 1, 1 2 1, 2( ) ( ) ( ) ( )K K K K K K

d
P P P

d
     


           (1.3) 

For 2i  , 0 ,n K  when the admission of customers is restricted.  

2, 2, 1 2, 1( ) ( ) ( ) ( ), 0,2,...,n n F n n n n

d
P P P n F

d
      


         (1.4) 

2, 2, 1 2, 1( ) ( ) ( ), 1,..., 1n n n n n

d
P P P n F K

d
    


                      (1.5) 

2, 2, 1 1, 1( ) ( ) ( )K K K K K

d
P P P

d
    


                     (1.6) 

For the steady state, when   , we denote probabilities by 
, ,lim ( )i n i nP P





 . For the 

steady state, Equations (1.1)-(1.6) alongwith normalizing condition can be solved using various 
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methods available in queueing literature such as recursive method, matrix analytical method 

(Wang and Yang, 2009), maximum entropy method (Jain and Bhagat, 2015a), successive over 

relaxation (SOR) method (Jain and Meena, 2017), etc. 

Gupta (1995) developed M/M/1/K model under F-policy by denoting the steady state 

probability of n  customers by
,i np , where 0(1)i   are used to represent the state when the 

customers are not allowed (allowed) to enter in the system, respectively. The birth-death 

equations of Gupta’s model can be easily framed by using the appropriate transitions rate as 

shown in Figure 1.3. This is special case of state dependent model when n   and .n   

 

Figure 1.3: Transition state diagram for M/M/1/K model under F-policy 

1.4. METHODOLOGICAL ASPECTS 

In order to analyze the state dependent queueing models, the worth-noting analytical 

techniques viz. birth death process, Markov process, supplementary variable technique, 

recursive method, probability generating method, etc. are used. The parametric non-linear 

programing approach and Gauss-Seidel method have also been employed for the development 

of model and mathematical analysis of the concerned queueing models. Numerical optimization 

methods such as direct search method, quasi-Newton method have been implemented to 

determine the optimal control parameters. The soft computing approaches namely fuzzy logic, 

neuro fuzzy technique, genetic algorithm (GA) and harmony search method have been used for 

the prediction of concerned queueing models. To explore the performance of the queueing 

systems, several system metrics namely, expected system size, expected number of customers 

in the queue and in retrial orbit, expected waiting time in the system and in the queue, 

throughput, expected delay time, etc. have been derived. To analyze the status of the server, 

long run probabilities have also been established. The reliability indices such as system 
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availability, operative efficiency, failure frequency have been derived for the queueing system 

having failure prone units/servers. In order to increase the revenue to the system designers and 

to facilitate the customers with better service, the optimal control parameters such as admission 

threshold parameter, joining probability, service rate, vacation rate, number of servers, etc. have 

been determined by minimizing the cost function. In order to validate the investigation done for 

the concerned queueing models, the effects of the system parameters on different performance 

measures have been explored by taking suitable numerical examples. Now, we discuss some 

methodologies/techniques which we have used in our study to establish performance metrics. 

1.4.1. Stochastic and Markov Process 

A stochastic process is a family of random variables, { ( ) : }X T   , where T denotes a 

parameter space and at time , ( )X   is called a state of the process. Stochastic process is said 

to be discrete or continuous depending on whether T is discrete parameter space or continuous 

parameter space.     

Markov processes are memory-less in nature. Markov process is defined as “given that 

the present condition of the process, its future evolution is independent of the past”.  

Mathematically, Markov process is a discrete or continuous parameter stochastic process if, for 

any set of n point 1 2 ... n     in parameter space, the conditional distribution of ( ),nX   

given the value of 1 2 1( ), ( ),..., ( )iX X X    depends only on 1( )nX   . For any real numbers

1 2, ,..., nx x x , Markov process is defined as 

1 1 1 1 1 1Prob{ ( ) | ( )= ,..., ( )= }=Prob{ ( ) | ( )= }.n n n n n n n nX x X x X x X x X x          

For the detailed description of Markov process, we refer the book by Medhi (2003). 

1.4.2. Birth-Death Process and Markov Queueing Model 

A birth-death process is a continuous time or discrete-time Markov chain with the 

restriction that at each step, the state transitions, if any, can occur only between neighboring 

states. Here, birth means arrival of a customer in the system whereas death represents the 

departure of a customer from the system. It is worthwhile to construct the basic mathematical 

model for the finite capacity single server Markovian model with state dependent rates using 

birth-death process. The customers arrive in the finite capacity (K) system as per Poisson 

process with rate  and served according to an exponential distribution with rare  .  
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Consider continuous time Markov chain (CTMC) { ( ), 0}N    and (0) 0N  , where ( )N   

represents the number of customers upto time  . Let ( )S n   denotes the state of the system at 

time  . For state dependent model, consider the transition between  and   as follows: 

Prob{state n  to state 1n  in   time} n   ,  

Prob{state 1n  to state n   in   time} n   , 

Prob{no change in state n   in   time} 1 ( )n n        . 

0 0 0 1 1( ) (1 ) ( )P P P                   (1.7) 

Equation (1.7) can be re-written as 

0 0
0 0 1 1

( ) ( )
( )

P P
P P

  
  



  
    

       (1.8) 

Taking 0  , Equation (1.8), yields 

0 0 0 1 1( ) ( ) ( )
d

P P P
d

    


            (1.9) 

Similarly, the classical birth death equations for finite state space 1 n K   can be formulated 

as  

1 1 1 1( ) ( ) ( ) ( ) ( ),1 1n n n n n n n n

d
P P P P n K

d
       


            (1.10) 

1 1( ) ( ) ( ).K K K K K

d
P P P

d
    


     (1.11) 

For more details of birth-death process, we refer the book by Cox and Miller (2017). 

Let the state dependent arrival and service rates in Markov queueing model be denoted by 

n  and n , respectively. By choosing appropriate values of n  and n , the state dependent 

model can be transformed to finite population model, balking model, reneging model, time 

sharing model, as follows: 

(i) Single server finite population model:  ( )n K n    and .n   

(ii) Balking model: 
, for constant balking,

, for exponentialbalking.
n nq

q

e




 


 

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(iii) Single server reneging model: ( )n r n   , where ( )r n  is a reneging function assumed 

exponential with (0) (1) 0.r r    

(iv) Time sharing model: 
1

n
n


 


 and .n

n


   

1.4.3. Non-Markov Queueing Model 

A classical queueing model is termed as non-Markovian queueing model if either of 

inter-arrival times or service times is not exponentially distributed. In order to explain the non-

Markov queueing model, it is worthwhile to describe the M/G/1 queueing model. We assume 

that the customers arrive according to Poisson fashion with rate . The service times are 

assumed to be independent identical distributed (i.i.d.) random variables with density function 

( ) ( 0)x x  with mean 1/ .  

At the time ,  let ( )N   and ( )U   denote the number of customers in the system and 

remaining service time, respectively. The system state probability at time epoch   is defined as 

follows:  

0( ) Prob{ ( ) 0},P N    

( ) Prob{ ( ) , ( ) }, 0, 1.nP N n x U x dx x n          

Also, 
0

( ) Prob{ ( ) } ( , ) , 1.n nP N n P u dx n  


     

At steady state, i.e., when   , we define: 

lim ( ), 0.n nP P n





   

Now by using the probability arguments, Chapman-Kolmogorov equations are formulated as 

follows: 

0 1(0) 0P P      (1.12) 

1 1( ) ( ) ( ) (0) ( ), 1.n n n n

d
P x P x P x P x n

dx
          (1.13) 

Equations (1.12)-(1.13) can be solved using Laplace transformation and then recursive method. 

The startup, retrial time, vacation time, etc. may also be governed by non-Markovian process.   
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1.4.4. Recursive Method  

This method is commonly used as a tool for solving Chapman-Kolmogorov difference 

equations. In this method, the governing difference equations can be solved to obtain a sequence 

of state probabilities 1 2, ,..., nP P P  each in terms of 0P . The normalizing condition to 
0

1n

n

P




  can 

be used to find 0P  and further all the state probabilities of the queueing system.  

1.4.5. Probability Generating Function  

This method can be used to find the steady state probabilities, say 1 2, ,..., nP P P , of the 

concerned queueing model. This method involves with power series expansion of a function.   

Let us consider a function 
0

( ) n

n

n

z P z




   which has a power series expansion   

i.e. 2 3

0 1 2 3

0

( ) ...n

n

n

z P z P Pz P z P z




         (1.14) 

The power series given in (1.14) is called generating function if the power series converges for 

some range of .z  Probability generating function is appropriate method to solve Chapman-

Kolmogorov difference equations related to queueing system. The steady state probabilities          

can be determined by equating the coefficients of nz  in the expansion of ( )z and normalizing 

condition (1) 1   (cf. Gross et al., 2008). 

1.4.6. Supplementary Variable Technique 

The supplementary variable technique provides an approach to analyze the non-

Markovian queueing models such as M/G/1, GI/M/1, M/M/1 with general retrial time, etc. In 

the queueing literature, there are two types of supplementary variable techniques viz. elapsed 

time (cf. Cox, 1955) and remaining time (cf. Henderson, 1972).  In order to make the system 

Markovian, the supplementary variable can be added to stochastic process. Now, we describe 

the use of the supplementary variable as remaining service (retrial) time to non-Markovian 

queueing models which was first introduced by Henderson (1972).  In order to explain the 

supplementary variable technique, it is worthwhile to describe the M/M/1/K queueing model 

with general retrial attempts. We consider the customers arrive according to Poisson fashion 

with rate   and served according to exponential distribution with rate   whereas the retrial 
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times are independent identical distributed random variables with density function ( ) ( 0)x x 

with mean 1/ .  

At the time ,  let ( )N  , ( )S   and ( )U   denote the number of customers in the system, 

status of the server and remaining service time, respectively. ( )S  is defined as 

0, thecustomersarecompelled to join the retrialpoolon finiding theserver being busy,
( )

1, theserver is occupiedand the jobsarepermitted toenter in thesystem.
S 


 


 

The system state probabilities at time epoch   are defined as follows:  

0,0( ) Prob{ ( ) 0, ( ) 0},P S N      

0, ( ) Prob{ ( ) 0, ( ) , ( ) }, 0, 1,nP S N n x U x dx x n            

1, ( ) Pr{ ( ) 1, ( ) }, 0 1nP S N n n K         

Also, 0, 0,
0

( ) Prob{ ( ) } ( , ) , 1.n nP N n P x dx n  


     

Now by using the probability arguments, Chapman-Kolmogorov equations are formulated for 

the time   and     as follows: 

0, 0, 1,( , ) (1 ) ( , ) ( , ),1 1n n n nP x P x P x n K                   (1.15) 

Equation (1.15) yields the following partial differential equation when 0   

0, 0, 1,( , ) ( , )1 1n n n nP P x P x n K
x

   


  
       

  
 (1.16) 

Similarly, by following same arguments, we have  

0,0 0 0,0 1,0( ) ( ) ( )
d

P P P
d

    


    (1.17) 

1,0 1 1,0 0 0,0 0,1( ) ( ) ( ) ( ) (0, )
d

P P P P
d

      


      (1.18) 

1, 1 1, 0, 1, 1 0, 1( ) ( ) ( ) ( ) ( ) (0, ),1 1.n n n n n n n n

d
P P P P P n K

d
        


            (1.19) 

At steady state, i.e., when   , we define: 
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, ,lim ( ),0 1, 0,1.i n i nP P n K i





      

At steady state, Equations (1.16)-(1.19) take the form 

0, 0, 1,( ) ( )1 1n n n n

d
P P x P x n K

dx
         (1.20) 

0 0,0 1,0 0P P     (1.21) 

1 1,0 0 0,0 0,1( ) (0) 0P P P        (1.22) 

1 1, 0, 1, 1 0, 1( ) (0) 0,1 1.n n n n n n nP P P P n K               (1.23) 

The above set of Equations (1.20)-(1.23) can be solved using recursive method as discussed in 

Section 1.4.4.  

1.4.7. Soft Computing Techniques  

(i) Fuzzy Model 

In order to incorporate fuzzy descriptors for the concerned queueing model, it is 

worthwhile to give a brief account of basic fuzzy concepts used to formulate a fuzzy model. The 

fuzzy model for machining system with general repair can be symbolically represented as 

FM/FG/1/K/K machining system. If we merge the fuzzy descriptors with Kendall’s notations, 

FM and FG denote the fuzzified Markov input and fuzzy general repair time, respectively. For 

FM/FG/1/K/K machining system, the system parameters ( )  such as failure rate, repair rate, 

and vacation rate are used as linguistic quantifiers. 

Let 
1 2 3[ , , ]     be a triangular fuzzy number corresponding to the parameter   with 

membership function ( )y


. Then    

1
1 2

2 1

2

3
2 3

3 2

, ,

( ) 1, ,

, .

y
y

y y

y
y


 

 

 


 

 




  


 
 
  



   (1.24) 

We assume that ( )g y is the system characteristics of interest. Here ( )g  is also a fuzzy number 

and is defined by  



15 

 

( )
( ) {( , ( )) : }

g
g z z z Z


     . (1.25) 

where Z is the universal crisp set of ( )g  . Now, we formulate the membership function of 

( ),g  following Zadeh’s extension principle (cf. Zadeh, 1978) as 

( )
( ) { ( ) | ( )}

g
y Y

z sup min y z g y 
 



    (1.26) 

The  cuts of   are given by 

( ) { : ( ) }.y y  


     (1.27) 

The  cuts defined in (1.27) can be expressed in term of crisp intervals as: 

( ) ( ) , ( ) { : ( ) }, { : ( ) } .LB UB

y Y y Y
y y min y y max y y     

 
 

          
 (1.28) 

According to the convexity of fuzzy number ( ) , the upper and lower bounds of intervals 

defined in (1.28) can be obtained in terms of  as 

1 1( ) , ( ) ( ), ( ) .LB UBy y min max      

 
      

  (1.29) 

Let 
1 2 3 4 1 2 3 4( , , , ), ,U u u u u u u u u    represent a trapezoidal fuzzy number whose 

membership function is given by 

1
1 2

2 1

2 3

4
3 4

4 3

,

( ) 1,

,

U

u u
u u u

u u

u u u u

u u
u u u

u u




  


  
 
  



   (1.30) 

If 
1 2 3 4( , , , )U u u u u and 

1 2 3 4( , , , )V v v v v  be two trapezoidal fuzzy numbers with 

membership functions ( )
U

u and ( )
V

v  respectively, then the fuzzy number *U V is given by 

the membership function
*

( , ):

( ) { ( ), ( )}
U V U V

u v w u v

w sup min u v  
 

 , where "*"  represents the 

algebraic operation between U and V (cf. Verma et al., 2009).  

 Addition:
1 1 2 2 3 3 4 4( , , , )U V u v u v u v u v      .  

 Subtraction:U ⊝ 1 1 2 2 3 3 4 4( , , , )V u v u v u v u v     .  

 Multiplication:
1 1 2 2 3 3 4 4( , , , )U V u v u v u v u v  .              
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 Scalar multiplication:  
1 2 3 4

4 3 2 1

( , , , ), if 0

( , , , ), if 0.

au au au au a
a U

au au au au a


  


    

 Division: U ⊘ 31 2 4

4 3 2 1

, , ,
uu u u

V
v v v v

 
  
 

.        

The cut  of a fuzzy number U in terms of crisp interval is given by  

 1 2 1 4 4 3( ) [ ( ), ( )] [ , ]L UU u u u u u u U U           (1.31) 

Signed distance of fuzzy numbers 

Let (R)W  denotes the family of fuzzy sets on the real number. For , (R),U V W the signed 

distance of V to U is denoted by ( , )D U V . We have 

 
1

0

1
( , ) [ ( ( )) ( ( ))]

1 0
D U V M U M V d   

    (1.32) 

or 
1

0

1
( , ) ( ) ( )

2

U L U LD U V U U V V d            (1.33) 

where 
1

( ( ))
2

L UM U U U       and 
1

( ( ))
2

L UM V V V       for every .  

In particular, the signed distance of 0 to U  is defined as  

 
1

0

1
( ,0) ( )

2

U LD U U U d      (1.34) 

(ii) Adaptive Neuro Fuzzy Inference System (ANFIS) 

ANFIS is a hybrid soft computing technique and uses the features of both the neural 

network and fuzzy inference system. In ANFIS, 1st order Takagi-Sugano (TS) fuzzy system (cf. 

Zimmermann, 1996) is used for the fuzzification whereas, in order to train the data, it uses two 

phase algorithms, namely forward pass and backward pass. The basic features of ANFIS are 

briefly described as follows: 

Phase 1: Least square method is applied to measure the consequent parameters of Takagi-

Sugano (TS) type rules.  

Phase 2: Gradient- descent method is applied to arrange the parameters of the antecedents. 
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Figure 1.4: ANFIS Architecture 

The prediction of ANFIS engages membership functions, fuzzy operators and IF-THEN rules. 

The 1st order TS fuzzy model with one input u  and one out ( )f u  is displayed in Figure 1.4. In 

general 
thi  rule is defined as: 

: is , 1,2,..., .th

i i i i ii Rule IF u A THEN f a u bu c i n      

where , ,i i ia b c  denote the adaptive parameters and iA is the 
thi  fuzzy set.  

Figure 1.4 represents the architecture for the ANFIS that consists of four layers which can be 

explained as: 

Layer 1: This layer consists of adaptive nodes that implement the fuzzification. The 

membership function ( )im u  of the 
thi fuzzy set iA  is considered as Gaussian: 

2

( )
  
   
   

i
i

i

u x
m u exp

y
 (1.35) 

where ix  and iy  are the premise parameters. 

Layer 2: In layer 2, all nodes are fixed and this layer gives the normalization value according 

to the formula: 
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1





i
i n

j

j






   (1.36) 

where i  is the matching degree of the rule iR . 

Layer 3: This layer gives the conclusion part of the fuzzy rule and calculates the normalization 

and an affine function according to ( )i if u . 

Layer 4: This single node is a fixed node labeled by sum and gives the overall output as the 

summation according to the formula:  

1

( ) ( )



n

i i

i

f u f u .              (1.37) 

This method can be employed to concerned queueing model to validate the results 

obtained by analytical method with results obtained with ANFIS technique (cf. Jang, 1993; Jain 

and Meena, 2017). 

1.4.8. Optimization Techniques  

(i) Quasi-Newton Method (QNM) 

This method is used to evaluate the minimum value of the system cost of the concerned 

queueing model corresponding to continuous optimal control parameters. This is an iterative 

method and provides the approximate minimum value of continuous and unimodal function

1 2( , )f x x in the feasible range of 1x and 2x . Let * *

1 2( , )f x x  denote the minimum value of 

1 2( , )f x x at optimal value * *

1 2( , )x x .  

Algorithmic steps of QNM 

Inputs: Tolerance 
ix of 1 2

1

( , )TC x x

x




,  1 2

2

( , )TC x x

x




. 

Output: Approximate solution of * * * *

1 2 1 2( , , ( , )).x x f x x  

Step 1: Set initial trial solution 0 1 2[ , ]TM x x  and evaluate the value of cost function 0( )f M . 
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Step 2: Evaluate the cost gradient 

0

0

1 2

( ) ,

T

M

f f
f M

x x

  
   

  
and the Hessian matrix

2 2

2

1 1 2

2 2

2

1 2 2

( )

f f

x x x
H M

f f

x x x

  
 
  

 
  
 
   

. 

Step 3: Find the new trial solution
1

1 ( ) ( )j j jM M H M f M



     . 

Step 4: Set 1j j  , and repeat step until 
1 2

max tolerance , ,
ix

f f

x x


  
    

 is the tolerance.  

Step 5: Obtain the approximate minimum value * *

1 2( ) ( , )jf M f x x . 

Step 6: End. 

(ii) Genetic Algorithm (GA) 

A genetic algorithm is a search based approach which mimics the natural genetic. In order 

to evaluate the optimal value of the fitness function (objective function), it works in a 

multidimensional search space. Genetic algorithm can be proposed for the evaluation of optimal 

control parameters of the concerned queueing model. GA involves the fitness function (cost 

function), randomly generated population (all possible solutions to the given problem) and the 

three operators namely, (i) selection operator, (ii) crossover operator and (iii) mutation operator. 

We evaluate fitness function at every chromosome (one solution to the given problem). After 

evaluating fitness value at every chromosomes, we check how good solution we have obtained. 

This process is done repeatedly.  

(i) Selection is a very important operator in GA to select the fittest chromosomes 

(chromosomes which have the best fineness value) from the entire population to crossover. 

Chromosomes with best fitness value have the strongest probability to be selected for the next 

step. We use a tournament method for the selection of chromosomes (parents). (ii) In the 

crossover, the fittest chromosomes (parents) are selected from the population to crossover and 

produce children (offspring) for the next generation. Two point crossover method is adopted for 

the crossover of chromosomes. Crossover is said to be successful if the new children (offsprings) 

have the best fitness value as compare to their parents. Crossover probability is considered to 
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be high to produce new children if it is chosen very less then produced new children are the 

same as parents.  (iii) Mutation is an alteration in produced new children (offspring) from the 

crossover of chromosomes. In the evaluation of optimal service rate of queueing model, bit 

inversion mutation is selected (i.e. 0 is changed into 1 or 1 is changed into 0) and a small close 

interval [0, 1] is chosen to generate random values within it if the generated value is less than 

the mutation rate then a bit at a random position is selected and its value is changed.  

After mutation, we check the predefined stopping criteria. If the search process is met to 

stopping criteria then best chromosomes are picked up and final fitness value (optimal value) is 

evaluated at that chromosomes, otherwise, the search process is continued until stopping criteria 

is met. The stopping criteria is taken in terms of a number of generations.  

The description of GA, we refer Mitchell (1998), Hourani (2004). The pictorial view of 

the flowchart of the proposed genetic algorithm is shown in Figure 1.5. 

Generate 

population of n 

chromosomes

Fitness 

function
Selection Crossover Mutation

Check 

stopping 

criteria
Start

No

Yes

New population

Stop

Select two better fitness 

chromosomes from 

population

Crossover the parents to 

produce the new children 

(offspring) 

Mutate offspring 

at 

each locus

Print 

optimal

value

Figure 1.5: Genetic algorithm flow chart 

The pseudo code for GA used for getting the optimal control parameter and minimum cost 

of the concerned queueing model is briefly described in Table 1.1.    
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Table 1.1:  Pseudo code for GA 

GA( ) 

initialize population of chromosomes  

evaluate fitness of chromosomes 

   while (stopping criteria is reached) do 

      parent selection 

      crossover  

      mutation  

   decode and fitness calculation 

   find best 

return best 

(iii) Harmony Search Algorithm 

This algorithm is also used to determine the optimal control parameters and minimum cost 

of the queueing models. Harmony search (HS) is a musician inspired meta-heuristic algorithm 

that has found diverse applications since its inception in 2001. Harmony search is a simple yet 

efficient algorithm and is explained briefly in this section.  While playing music, a musician has 

the following three choices: 

a) Play some famous piece of music exactly as it is. 

b) Play a known piece of music with few alterations. 

c) Compose entirely new nodes. 

The three options were formulated by Geem et al. (2001) as an optimization process and 

the corresponding components became harmony memory (HM), pitch adjusting, and 

randomization. Table 1.2 provides the pseudo code of harmony search algorithm. Steps 1 

through 4 define the control parameters of the algorithm. In Step 5, the HM is initialized with 

random solutions, keeping each component of the solution within bounds. In order to use 

harmony memory effectively, a harmony memory parameter corresponding to rate HMCR

[0,1]  is utilized. A high value of HMCR may produce inferior results as the solution space 

which is not explored properly and on the other hand, a low value of HMCR may result in slow 

convergence because the best solution remains under utilized.  The typical range of HMCR is 

0.7 to 0.95. 
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Table 1.2: Harmony search algorithm 

1 Define objective function ( )f H . 

2 Define the harmony memory consideration rate (HMCR). 

3 Define pitch adjustment rate (PAR) and bandwidth (BW). 

4 Define harmony memory size (HMS). 

5 Initialize harmony memory (HM). 

6 while (Stopping Criteria Not Reached) do 

7     Find current Worst and Best harmony in HM. 

8         for 1i  to d do 

9           if( Rrand HMC ) then 

10              j

i iH HM where _ int (1, )j rand HMS  

11                if(randPAR) then 

12                 i iH H rand BW    

13                 end if 

14          Else 

15                 Generate iH  randomly within the allowed bounds. 

16               end if 

17         end for 

18      if (H is better than worst harmony in HM) then 

19          Update HM by replacing WORST harmony by H. 

20     end if 

21 end while 

22 print Best Harmony as an obtained solution. 

The second component pitch adjustment is determined by a pitch bandwidth (BW) or 

frets width (FW) and pitch adjusting rate (PAR) (cf. Geem and Yoon, 2017)). Pitch adjustment 

corresponds to altering the current solution for generating a slightly different solution. Pitch can 

be adjusted linearly or nonlinearly, however, most often linear adjustment is used. Thus, we 

have 

, [ 1,1]new old

i i i iH H BW r r      and1 i d   (1.38) 

where ( )old new

i iH H is the 
thi component of the existing (new) harmony or solution and BW is the 

bandwidth. The above relation (1.38) yields a new solution around the existing solution by 
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altering it slightly. Here 
ir  is a random number lies between -1 to 1 and d represents the total 

number of components in the Harmony. The recommended PAR value lies in [0.1,0.5].  

The third component of the HS is the randomization, which is used to enhance the 

exploration of the search space. In the pseudo code of harmony search algorithm given in Table 

1.2. Here H represents a potential solution or Harmony, rand [0,1]  is a uniformly distributed 

random number generator, rand_int (1, HMS) generates a uniformly distributed integer random 

number between 1 and HMS, size of harmony memory is represented as HMS and d is the 

dimension of the problem. 

The parameters HMCR, PAR, and BW of the HS algorithm are tuned depending on the 

problem at hand. 

1.5. SOME QUEUEING MODELS UNDER ADMISSION CONTROL F-POLICY 

(ACF-P) 

In this section, we briefly describe the state dependent finite capacity models under 

admission control F-policy dealing with a variants features. In many real life, the queue length 

can never be infinite due to some physical constraints viz. finite waiting space. The admission 

control F-policy for finite capacity Markov model was introduced in mid 90s to control the 

congestion of arrivals in the system.  

1.5.1. M/M/1/K Queue Model under ACF-P without Startup Time  

To formulate the admission control scenario, the basic M/M/1/K queueing model 

without startup time under F-policy is described as follows: 

The arriving customers/jobs join the system in Poisson fashion with rate and are served 

by single server following exponential distribution with mean 1/  . When K customers/jobs 

accumulate in the system, a set-up job as per exponential distribution with rate   is required to 

restrict the customers/jobs from joining the system.  

Define 
1, 1,2,..., ,

0, elsewhere.
n F

n F
 


 


 and 
1, 1,

0, 1,2,..., 2, ,..., 2.
n F

n F

n F F K
 

 
  

  
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Figure 1.6: Transition state diagram for M/M/1/K model under F-policy without startup time 

The further entry of jobs are allowed till number of jobs in the system ceases to ‘F’. For the 

first-come-first-server discipline, Chapman-Kolmogorov (C-K) steady state equations are 

framed and respective transition state diagram is depicted in Figure 1.6. 

0 1,0 1 1,1 0P P     (1.39) 

1, 1 1, 1 1 1, 1 1 2, 1( ) 0, 1,2,..., 2n n n n n n n n F n nP P P P n K           
         (1.40) 

1 1, 1 2 1, 2( ) 0K K K KP P          (1.41) 

2, 1 2, 1 1, 1, , 1,..., 2n n n n KP P P n F F K          (1.42) 

Classical queueing methods such as matrix method, recursive method, etc. can be applied 

to solve the Equations (1.39)-(1.42). Once probability distribution in product form is 

established, several performance indices including average queue length, carried load, etc. can 

be obtained.  

1.5.2. Finite Retrial Queueing Model under ACF-P  

We formulate the state dependent retrial queueing model operating under F-policy by 

considering startup time to return back to normal state from the state where admission of 

customers are not allowed.  

For M/M/1 model having retrial attempts following exponential distribution with rate   

and state dependent arrival rate ( )n and service rate ( )n , the governing Chapman-Kolmogorov 

(C-K) equations can be formulated by balancing the in-flow with out-flow rates as shown in 

Figure 1.7.  
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Figure 1.7: Finite capacity retrial model under F-policy 

The server status ( )S   is defined as  

1(2) : server is busy in rendring the service and admission of customers is allowed

( ) (not allowed),

0 : customers are in retrail orbit.

S i




  



  

For finite capacity retrial queueing model, the governing equations are given by: 

1 1 1, 1, 1 0 0, 2,, 1 0, 0,2,...( ,)n n n nn F nn n n nP P P P FP n                 (1.43)

1 1 1, 1, 1 0, 0, 1 0, 1,...,( ) 2n n n n n n n nP P P n F KP                (1.44)

1, 1 1 1, 2 1 0, 1 0( )K K K K K K KP P P                (1.45) 

2, 2, 11( 0,1,..., ,) 0n F nn n nP P n F            (1.46)

2, 1 2, 1 0, 1,..., 1n n n nP P n F K               (1.47)

2, 1, 1 0K K K KP P             (1.48)

0 0,0 1 1, 1 0KP P              (1.49)

0, 1 1,( ) 0, 1,2,..., 1n n n nP P n K               (1.50) 

1.5.3. Finite Queueing Model with Unreliable Server under ACF-P 

In the queueing system; the server’s breakdown is a common phenomenon. Due to over 

congestion of customers in the system, sometimes server may not bear the load as such break 

down occurs. Now, we describe two unreliable server finite models having state dependent rates 

and operating under F-policy. In the first model the extra feature of startup time on reaching the 
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threshold level ‘F’ in Level 2 (see Figure 1.8, 2i  ) is included so as to return back to Level 1 

(see Figure 1.8, 1i  )  where admission of customers is allowed. The second model is developed 

by taking same assumptions excluding startup time.  

(i) Unreliable Server Model with Startup Time    

Now we formulate the state dependent single unreliable server Markov model under 

admission control F-policy which coincides with model described in Section 1.3 when server is 

taken to be reliable. The server may fail at any time following Poisson process with rate  and 

the system organizer immediately sends it to repair so that the service can be resumed without 

much delay. The repair process follows exponential distribution with rate  . The transition state 

diagram is depicted in Figure 1.8.  

”Figure 1.8: Transition diagram for M/M/1/K queueing model with unreliable server 

The server status ( )S   is  

1(2) : server is busy in rendring the service and admission of customers is allowed

( ) (not allowed),

0 : server is in broken down state.

S i




  

  

The steady state equations of finite capacity queueing model with unreliable server under 

admission control F-policy are formulated as follows:  

1, 1, 11 1, 1 0, 2,1, 1 0, 0,1,2,...,( )n n n nn F n F n n nn nP P P nP P F                   (1.51)

1, 1, 1 1, 1 0,( ) 0, 1, 2,..., 2nn n n n n P n F FP P K              (1.52)

2 0,1 1 1, 1 1, 2 1( ) 0K K K K KKPP P             (1.53) 

2, 1 2, 1( ) 0, 0,1,...,n F n n n nP P n F           (1.54)
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2, 1 2, 1 0, 1, 2,..., 1n n n nP P n F F K           (1.55)

2, 1 1, 1 0K K K KP P       (1.56)

0 0,0 1,0( ) 0P P       (1.57)

0, 1 0, 1 1,( ) 0, 1,2,..., 2n n n n nP P P n K            (1.58)

0, 1 2 0, 2 1, 1 0K K K KP P P          (1.59) 

To derive probability distributions, Equations (1.51)-(1.59) can be solved using various methods 

available in the queueing literature. Furthermore, to determine the several system metrics the 

queue size distribution can be used. 

(ii) Unreliable Server Model without Startup Time 

Figure 1.9: M/M/1/K queueing model with unreliable server under F-policy without startup time 

F-policy model for unreliable server can also be formulated by taking setup job ( )  and 

relaxing the startup times ( ) . The state transition diagram is shown in Figure 1.9. Then 

admission F-policy without startup times the single server Markovian queueing model with state 

dependent rates and unreliable server is formulated by framing C-K equations as follows: 

0 1,0 1 1,1 0,0( ) 0PP P        (1.60)

1, 1 1, 1 1 0, 1 2,1, 1 1 0, 1,2( ,. , 2) ..nn n n n n n F n nn n P P n KP P P         
         (1.61) 

1 1, 1 2 1, 2 0, 1( ) 0K K K K KPP P               (1.62)

2, 1 2, 1 1, 1, , 1,..., 2n n n n KP P P n F F K          (1.63)

0 0,0 1,0 0( )P P     (1.64)
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0, 1, 1 0, 1 0, 1,2,...,( ) 2n n n n nP P P n K            (1.65)

0, 1 02 , 2 1, 1 0K KK KP PP       (1.66)    

1.5.4. Finite Population Model under Admission Control F-Policy 

This section presents the admission control based on F-policy for some finite population 

model. The description of basic finite population models and their mathematical formulation are 

given (cf. Jayaraman and Matis, 2011). We describe admission control F-policy for the finite 

Markov model with population size K and single repairman who takes care of failed 

unites/machines. Let the number of failed units/machines present in the system at any time   is

n , then the life time of failed units/machines and repair process of failed units/machines are 

governed by exponential distribution with parameter  and  , respectively. Thus, the effective 

failure rate is given by ( )n K n   . The steady state balance equations are framed by equating 

the in-flows and out-flows in particular case of state dependent rates when    i.e. for steady 

state, by making substitution ( )n K n    and n   in Equations (1.1)-(1.6). 

1.6. LITERATURE SURVEY 

In many queueing systems, the important issue is to determine optimal control parameters 

in order to achieve the goal of minimum cost and pre-specified grade for the service. The 

optimization problem of a queueing system is mainly concerned with the determination of 

optimal control parameters, such as optimal input rate, strategic joining probability, optimal 

service rate, optimal number of servers, optimal threshold parameter, etc. There are wide 

applications of such queueing models in day-to-day congestion scenarios. It is worthwhile to 

present the survey of literature related to the work done in the thesis.  

The remarkable contributions by several researchers in the field of optimal control 

strategies for state dependent queueing systems have been described into various sub-sections. 

The finite queueing models under admission control F-policy incorporating different features 

are given in Sections 1.6.1-1.6.5. In Section 1.6.6, the literature review of the state-dependent 

queues dealing with finite population model, time sharing model and discouragement models is 

given. Section 1.6.7 is devoted to the literature review on fuzzy queueing models. 
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1.6.1. Finite Capacity Model under Admission Control F-Policy 

The notable works related to finite Markov model under admission control F-policy are 

as follows. Gupta (1995) was the first who introduced the concept of admission control F-policy 

in finite capacity queueing model. By incorporating the admission control F-policy in the single 

server finite capacity queueing model, he used recursive method to derive the steady state results 

for the probability distributions. He also investigated the finite model under N-policy based on 

control on service and then developed the relation between F-policy and N-policy.  

Ke et al. (2010) dealt with the finite capacity model using the concept of primary service 

and second optional service. To control the congestion of customers in the system, the admission 

control F-policy feature was incorporated by Ke et al. (2010). They derived various performance 

measures and constructed a cost function. Furthermore, numerical illustration to validate the 

concerned finite capacity model was given. 

Huang et al. (2011) investigated admission control policy for two server finite capacity 

Markov model. In this study, they controlled the arrival of the customers by adding extra server 

along with the existing server when the capacity of the customers crossed the pre-defined fixed 

value (say M). The added extra server was removed when the capacity of the system decreased 

to a pre-specified value (say Q). The analytical result for the queue size distribution provided 

was further used to establish the various system metrics and cost structure.  

Yang and Chang (2015) studied F-policy model of Gupta (1995) by transforming it into 

fuzzy environment using arrival rate, service rate and start-up rate as triangular fuzzy numbers. 

They have used  cuts and non-linear programing approaches to construct the membership 

functions for the system size.  Jain and Bhagat (2015b) dealt with admission control for finite 

retrial queueing model and threshold recovery policy. In their study, the transient behavior of 

the system was studied. Runga-Kutta fourth order method was used to solve the set of 

differential equations. The numerical results for queue length and cost function were presented 

by taking an appropriate illustration. 

1.6.2. Finite Working Vacation Model under Admission Control F-Policy  

In literature on admission control F-policy for finite capacity model, some works have 

involved the working vacation concept. The worth noting articles in this areas are as follows:  
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Yang at al. (2010) used the concept of single working vacation in finite queueing model 

under admission control F-policy. They applied matrix analytic method to analyze the steady 

state model and derived various system metrics. A non-linear cost function was framed and 

minimized using direct search method and quasi-Newton method in order to determine optimal 

control parameters. 

Jain et al. (2016) investigated the finite population model by controlling the arrivals of 

failed machines in the system. The single working vacation feature was used to make the model 

more effective. Further, Chapman-Kolmogorov steady state equations of finite population 

model were solved using successive over relaxation method. Several performance measures and 

cost function have derived to explore the utility of model in practical situations. 

Jain et al. (2017) investigated the admission control F-policy for single server vacation 

policy for unreliable server queue and developed finite population model. To analyze the finite 

population model along with working vacation feature, they framed the steady state equations 

which were solved using SOR method. 

Jain and Meena (2017) dealt with fault tolerant multi-component machining system with 

working vacation and admission control F-policy. The steady state analysis of fault tolerant 

multi-component machining system was done by solving steady state equations. They derived 

several system metrics by taking an illustrative example to examine the influences of system 

parameters on system metrics. Further, ANFIS technique, which is one of the hybrid soft 

computing approach was given to validate the feasibility of computational results.  

1.6.3. Finite Unreliable Server Queue under Admission Control F-Policy 

By surveying the literature, it is found that the some research works have been done 

towards the admission control F-policy for unreliable server queueing model. Wang and Yang 

(2009) discussed admission control F-policy model for unreliable server. The steady state 

analysis of the system was done using matrix analytical method. They derived various system 

indices and also constructed a cost function. Quasi-Newton method based numerical technique 

was used to minimize the system cost.   

Chang et al. (2011) considered M/H2/1 model with unreliable server operating under 

admission control F-policy. In this case, the unreliable server provides two type of service with 

some probability. Steady state analysis was done to establish the system indices and cost 
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function.  Jain et al. (2012) investigated M/M/2/K model with combined N-policy and F-policy. 

As per their model, the first server renders the service when at-least N customers accumulated. 

The second server is turned on only when the system reaches to its full capacity. The repair of 

failed server is provided in multi-phase.  

Chang et al. (2014a) extended the finite queueing model of Gupta by incorporating the 

concept of balking and unreliable server. The steady state equations for the finite queueing 

model was represented in matrix form. Moreover, optimal management of the concerned model 

was done by minimizing the system cost corresponding to different system parameters using 

direct search and quasi-Newton method. Jain and Bhagat (2015b) investigated the finite optimal 

control F-policy while developing the finite capacity Markov model with unreliable server. The 

transient behavior of the concerned system was investigated and several system metrics ware 

derived using system probabilities.   

1.6.4. Finite Population Models under Admission Control F-Policy  

The relevant works done in queueing literature towards finite population model under 

admission control F-policy are as follows:   

Kumar and Jain (2013) dealt with Markov model for multi-component machining system 

with single repairman by incorporating admission control F-policy and service control N-policy. 

They investigated multi-component machining system in steady state. The recursive method 

was used to derive the analytical results for both F-policy and N-policy models. Chang et al. 

(2013) studied the controlling of arrival of failed machines for a warm standby supported multi 

component machining system with switching failure probability. The steady state solution was 

obtained using matrix method. Further, the minimum cost was evaluated at optimal system 

parameters using direct search method and quasi-Newton method.  

Jain and Bhagat (2014) have done the transient analysis of finite population model under 

the provision of admission control F-policy and threshold recovery policy. Numerical technique 

based on Runga-Kutta method was used to solve the transient equations and to derive various 

performance metrics and cost function. Jain et al. (2016) discussed the admission control for 

machine repair problem with working vacation for the in-flow of failed machines. The steady 

state analysis was done by solving Chapman-Kolmogorov equations by employing the SOR 

method. The system indices such as queue size of failed machines, delay in repair of failed 

machines, long run probabilities, etc. were derived. A non-linear cost function corresponding to 



32 

 

system capacity, threshold parameter F and service rate was constructed which is further 

minimized using direct search method. 

Shekhar et al. (2017) dealt with F-policy and N-policy for redundant machining system 

with permanent single repairman and one additional repairman as per requirement. In this study, 

they considered that both repairmen (permanent and additional) provide repair as per time 

sharing basis. The steady state equations were solved using Cramer’s rule to obtain the queue 

size distributions and other performance metrics. Jain et al. (2017) dealt with machine repair 

problem with admission control and server working vacation policy. The SOR method was used 

to determine the solution of the steady state linear equations. A nonlinear cost function was 

framed with decision variables threshold parameter ‘F’ and repair rate. Direct search and quasi-

Newton method were used to determine the optimal parameter values. Jain and Meena (2017) 

investigated fault tolerance machining system under the admission control of failed machines 

in the system for repair and server working vacation. In this study, they analyzed the fault 

tolerance system by applying the numerical technique based SOR method to find unknown 

steady state probabilities which are further used in derivation of system metrics.   

Kumar et al. (2019) considered two unreliable servers for MRP with warm standbys and 

F-policy. The transient state analysis of the finite population model was done using matrix 

method. Several system metrics such as number of failed machines in the system, throughput, 

long run probabilities, etc. were derived. A cost function was also framed with decision variable 

repair rate. To minimize it, direct search method was implemented. Jain et al. (2019) 

investigated F-policy for single repairman fault tolerance machining system with warm standby 

and working vacation. The transient analysis of the fault tolerance model was done using Runga-

Kutta fourth order method. Several system metrics such as long run probabilities, queueing and 

reliability indices were derived.   

1.6.5. Non-Markovian Queueing Model under Admission Control F-Policy  

In the queueing literature, only a very few papers related to non-Markovian queueing 

model have appeared; the brief account of the same is as follows:  

Karaesmen and Gupta (1997) developed the duality relationship between N-policy and F-

policy by considering G/G/1/K queueing model which controlled the service process or arrival 

process. As per their study, the server turned off when the service process was controlled 

whereas the arrival process stopped/started depending upon the queue size. Wang et al. (2007) 
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used supplementary variable approach to analyze finite non-Markov queue by considering the 

admission control of customers in a finite capacity system. They considered service time for the 

customers as general distributed and arrival times and startup times as exponentially distributed. 

The recursive approach was used to establish the probability distributions of queue size. For the 

computational purpose, exponential distribution and Erlang-3 distribution were used for the 

service times to examine the optimality of threshold parameter ‘F’. Wang et al. (2008) dealt 

with a finite model by involving the control of arriving customers using F-policy. In their model, 

the inter-arrival time of the customers was considered general distributed whereas service times 

and startup times are taken as exponential. The supplementary variable technique (SVT) 

corresponding to remaining arrival times was used to develop the steady state model. Further, 

recursive method was used to derive the results for the finite non-Markov model. Moreover, 

exponential distribution, Erlang-3 distribution and deterministic distribution were considered 

for inter-arrival time to compute the numerical results and optimal value of ‘F’. 

Kuo et al. (2011) established an inter-relation between N-policy based on service control 

policy and F-policy based on admission control policy. They presented two models viz. 

M/G/1/K model under N-policy and G/M/1/K model under F-policy. Using SVT and recursive 

method, steady state analytical results for both models were derived. Further, they concluded 

that the results of M/G/1/K model under N-policy can be obtained from the results for G/M/1/K 

model under F-policy. Goswami (2016) investigated two finite queueing models under (i) (p, 

F)-policy and (ii) (q, N)-policy. The author considered discrete distribution viz. geometric 

distribution for arrival times and service times in place of continuous distribution. The steady 

state analysis was done for both models to establish the queue size distribution using recursive 

method. Further, the relation between (p, F)-policy model and (q, N)-policy model have 

established which is further verified results for (p, F)-policy model using (q, N)-policy model. 

1.6.6. State Dependent Queueing Models 

In queueing literature, many researchers have developed the state dependent queueing 

models under different assumptions (cf. Hadidi, 1974; Gupta and Rao, 1998; Gupta et al., 2017). 

Massey (2002) considered the time-varying rates to explore the performance of a queueing 

system and discussed the applications of the developed queueing model in a telecommunication 

system. A single server queueing system in which the arrival and service rates depend on the 

system states, was analyzed by Adan and Kulkarni (2003). An important work on M/M/1 retrial 



34 

 

queue was done by Parthasarathy and Sudhesh (2007) by considering the state dependent rates. 

Lee (2011) developed the state-dependent stochastic networks using the birth-death process and 

established the different moments and stability properties of the system. A single server bulk 

queueing model using threshold policy was studied by Banerjee and Gupta (2012) by including 

the features of controlling the arrivals and batch service schedule. Kumara and Dharsana (2015) 

analyzed the congestion problem by developing a single server Markovian model with queue 

size dependent arrival rate and impatient customers. Recently, an M/M/1 queueing model with 

queue size dependent service rate was studied by Rodrigues et al. (2016). Recently, Ernst et al. 

(2018) investigated single-server multi-class fluid queue by considering state-dependent arrival 

rate. In order to analyze the fluid model, they obtained stability condition for the fluid queue. 

Hu et al. (2019) dealt with fluid queue models for traffic circulation systems by taking state-

dependent service rate.   

Based on arrival and or service rates, the state dependent queueing models can be further 

classified into different categories including the queueing models with the additional removable 

server, queue with discouragement, finite population i.e. machine interference models, time-

sharing models, etc.  

(i) Finite population model   

The failure of machines is a major difficulty not only for the users but also the loss of 

revenue to the organizers/manufactures in the concerned machining system. In such cases, to 

overcome the problems of machine failures and delay in production, many researchers 

contributed towards finite population models which also dealt with machine repair problems 

under different assumption (cf. Haque and Armstrong, 2007; Liou, 2014;  Jain et al., 2016; 

Huang et al., 2016; Chen, 2018). Sometimes, it is seen that due to less workload, the server may 

remain idle most often which is the wastage of revenue as well as time. The applications of 

machine repair model with retrial attempts can be found in computer repair shop, 

telecommunication system, call centers, etc. (Choudhury and Ke, 2014; Ke et al., 2013; Wang 

et al., 2018). Recently, Yang and Chang (2018) dealt with machine repair problem with general 

retrial policy to explore the performance of the system. They have used the supplementary 

variable technique to provide explicit results for the queue size distributions. 
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(ii) Time sharing model  

The concept of time sharing is also used in a few scenarios including computer 

communication networks, manufacturing and production systems, etc. Many researchers have 

paid their attention to time-sharing models for computer systems (cf. Adiri and Avi-Itzhak, 

1969; Jain et al., 2012; Kim and Kim, 2007). Jain et al. (2005) investigated a time-shared 

machine repair problem with mixed spares. In this investigation, they have considered that the 

caretaker of failed machines operates under N-policy. The online optimization issues of 

machining system used for cloud computing were examined by Chandrasekaran et al. (2013). 

For manufacturing–remanufacturing systems, the time sharing machining system was studied 

by Flapper et al. (2014). Telek and Houdt (2018) investigated MAP/GI/LPS-k(m) processor 

share queue to study the response time distribution using numerical method.  

(iii) Queue with customer’s discouragement  

Most often, the balking behavior of the customers occurs only in a queuing system where 

customers can actually observe the queues. Some renowned researchers contributed their 

pioneer works towards the multi-server queue with balking (cf. Abou-El-Ata and Hariri, 1992; 

Do and Chakka, 2010; Ke and Wang, 1999; Wang and Chang, 2002; Wüchner et al., 2009). A 

few researchers have contributed significantly towards the finite capacity queueing model with 

balking and reneging (cf. Choudhury and Medhi, 2011; Kumar and Sharma, 2012; Vijaya Laxmi 

et al., 2013). Recently, Bouchentouf and Messabihi (2018) and Som and Kumar (2018) 

developed a heterogeneous queueing model by considering balked and reneged customers. They 

presented analytical results for queue size distribution and other performance metrics by 

employing the recursive method.  In the queueing literature, a few researchers have presented 

their extensive works on different aspects related to retrial queues with balking (cf. Artalejo and 

Lopez-Herrero, 2000; Ke and Chang, 2009; Chang et al., 2018). A single server retrial queue 

with balking was also investigated by Gao et al. (2017). In this study, they analyzed Nash 

equilibrium to explore the customers’ joining strategies based on the cost reward structure. Most 

recently, Ke et al. (2019) analyzed a multiple server Markov model for retrial queue with 

vacation and balking by using the matrix geometric method.  

1.6.7. Fuzzy Queueing Models  

The queueing literature has a large number of researches towards the crisp queueing 

models with retrial attempts. In such studies, the queueing parameters corresponding to inter-
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arrival, service and retrial process in crisp queueing models, follow some specific probability 

distributions. Several queueing parameters can be defined in linguistic manner and may be both 

probabilistic and possibilistic. In literature, a very few number of researchers have focused on 

the fuzzy queueing modeling while its application may be seen in every sphere of life due to the 

fact that the some of the queueing descriptors may not be crisp and should be defined in terms 

of linguistic variables. For the practical point of view, fuzzy models (cf. Mohanty and Passi, 

2010; Mishra et al., 2017; Jaggi et al., 2018) are much appropriate and applicable in many real 

time systems as compared to frequently used crisp models. Yang and Chang (2015) used the 

results of Gupta (1995) and extended their work to a finite fuzzy queue with control F-policy. 

Bagherinejad and Pishkenari (2016) obtained fuzzified expected queue length and the average 

waiting time of M/M/C queueing model. They constructed the membership functions by using 

a parametric nonlinear programing approach. Mueen et al. (2017) investigated a single fuzzy 

queue, by adopting parametric nonlinear programing to frame a hexagonal membership 

function. Fuzzy bulk queueing model for the communication system was studied by Bhardwaj 

(2017) and Bhardwaj et al. (2019) in fuzzy environment using Zadeh’s extension principle and 

 cut approach.  

1.7. OUTLINE OF THE THESIS  

The applicability of the state dependent queueing model along with optimal control 

strategies can be seen in every sphere of life where queues are formed. The work done on the 

optimal strategies and evaluation of performance indices of state dependent queueing models is 

organized into eight chapters of the thesis. The ongoing Chapter 1 is concerned with the 

introduction of the modeling and methodological aspects of research investigation done in the 

thesis. Chapters 2-5 contribute towards the finite capacity queueing models under admission 

control F-policy with variant features. Chapters 6-7 present the finite population models with 

specific features such as retrial, vacation and standbys, etc. Chapter 8 is devoted to the joining 

and balking strategies of customers for double orbit retrial queueing model. The chapter-wise 

brief outlines of the contents of the thesis are as follows:  

Chapter 1 is devoted to the introductory part of the investigation done in the thesis. The 

preliminaries of the control strategies and F-policy for queueing models are given.  The 

methodologies and techniques used to establish the performance indices and cost optimization 

for the concerned queueing model are briefly described. The mathematical formulation of some 
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specific models related to our research works have been briefly outlined. The literature survey 

of relevant topics has been given. The organization of the thesis and research scope of the work 

done are briefly described.   

Chapter 2 is concerned with the control policy for the retrial queueing model with server 

breakdowns. The startup time and threshold policy are taken into account to develop Markov 

model. Gauss-Seidel method is applied to present the steady state results. Adaptive neuro fuzzy 

inference system (ANFIS) technique is also implemented to compare the numerical results 

obtained with ANFIS results. 

Chapter 3 deals with the finite state-dependent queueing model under admission control 

F-policy. The model is investigated by incorporating the general retrial attempts. The 

supplementary variable corresponding to the remaining retrial time and recursive method are 

used to derive the performance indices. The optimal control parameters and minimum cost of 

the system are determined using direct search method and quasi-Newton method.  

Chapter 4 presents the multi-server finite queueing model under admission control of 

customers based upon F-policy along with customer’s balking behavior. In order to reduce the 

balking behavior of the customers, there is the provision of one additional server so as to shorten 

the queue length formed by the customers in rush hour. The recursive technique is applied to 

establish the steady-state queue size probability distributions. Cost analysis is also done by 

evaluating the optimal control parameters such as admission control parameter, capacity of the 

system, number of servers and the service rate. 

Chapter 5 deals with the admission control policy for the single server finite capacity 

queueing model with general distributed retrial times and discouraged customers. The recursive 

method and soft computing based artificial neuro fuzzy inference system (ANFIS) approaches 

are applied to establish various performance indices. Genetic algorithm (GA) and quasi-Newton 

method are used to minimize the expected cost of the system. 

Chapter 6 contributes the queueing analysis of the finite population models with retrial 

orbit under admission control F-policy. The machine repair problem of repairable redundant 

system with finite retrial orbit and general distributed retrial policy is investigated. The 

supplementary variable corresponding to remaing retrial time is used to develop C-K equations. 

The recursive method is used to derive the steady state probabilities and queueing and reliability 

indices. A fuzzy cost function is formulated by considering the cost elements as trapezoidal 
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fuzzy numbers. The defuzzification of the cost function is done using signed distance method. 

The genetic algorithm (GA) is applied to determine the optimal control parameter and minimum 

cost of the system. 

Chapter 7 is concerned with the multi-component M/G/1/K machine repair system with 

standby support and vacation. The queue size distributions have been derived using 

supplementary variable technique followed by recursive method. To deal with a realistic 

scenario, the machine repair model is transformed from crisp to fuzzy environment by 

considering the system parameters as fuzzy numbers. The harmony search algorithm is also 

implemented to determine optimal control parameters and minimum cost of the system.  

Chapter 8 contains three double orbit retrial queueing models in which the arriving 

customers are categorized into two classes namely, ordinary customers and premium customers. 

The steady state analytical solution for the probability distribution and system performance 

measures are derived by using probability generating function. The first model investigates the 

customers’ joining strategy in a double orbit retrial queueing system with balking. Double orbit 

retrial model is then transformed into fuzzy environment by using system parameters expressed 

as linguistic variables. The cost optimization is also done using GA to determine optimal service 

rates. The second model is concerned with the double orbit feedback model with balking.  The 

third model develops the unreliable server Markov model with customers’ balking behavior. 

ANFIS technique is also implemented to authenticate the numerical results. Optimal service 

rates are evaluated using quasi-Newton method by constructing the cost function.  

In the end of the thesis, the conclusions and future scope of the investigation done have 

been outlined to highlight the contributions and significance of the work done. The relevant 

references have been listed in alphabetical order at the end of this thesis.   

1.8. CONCLUDING REMARKS  

The optimal policies and strategic management are important means of the queueing 

models which can be used to control the congestion and improve the quality of the service. The 

numerous applications of state-dependent queueing models under optimal control strategies 

encourage the queueing theorists to develop state dependent queueing models which can be well 

suited to the real life queueing scenarios. The present chapter contributes to the introductory 

part of the work done in the thesis. The brief account about the preliminary concepts related to 

the work done, state dependent queues, methodologies, relevant literature, etc. are provided in 
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this chapter. The control policies described may be successfully used in many congestion 

problems where queues are built up. In view of various applications of admission control policy, 

some queueing models under strategic joining policy and threshold control policies are 

investigated. The literature available on optimal state-dependent queues under control strategies 

exhibits the wide applications in call center, production and manufacturing system, health care 

center, etc.  
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Chapter 2 
 

F-Policy for Markovian Retrial Queue with Server 

Breakdown 
 

2.1. INTRODUCTION 

Retrial queue can be seen everywhere around us such as at shopping malls, banks, in front 

of post office, etc. In several real-life day-to-day as well as in industrial/business queueing 

scenarios, the jobs arriving in the system may be compelled to leave the service area and move 

to the retrial pool in the case when the server is busy. The jobs from the retrial pool can try again 

and again for the service after a random period of time so as to avail the service. The recent 

works on retrial queue can be found in the articles by Nobel (2016), Phung-Duc et al. (2017) 

and Chang and Wang (2018). Most of the existing research works referred to retrial queue 

mainly focus on the reliable server model, however retrial queueing model with server 

breakdowns depicts more realistic queueing situations. Sherman and Kharoufeh (2006) 

proposed Markovian retrial queueing model with an unreliable server. They provided the 

stability conditions and several stochastic decomposability results for the concerned model.  

The most common issue involved in queueing system is to control the admission and 

service of the customers. The research works regarding controllable queues can be divided into 

two broad categories (i) control the service and (ii) control the arrival of the customers. The 

concept of admission control F-policy is mainly used to maintain the smooth functioning of the 

queueing system. F-policy can be applied to control the congestion by not allowing the 

customers to join the system when its capacity is full. For example, in a factory, all incoming 

raw materials are handled by one machine. Due to space limitations (say K), incoming raw 

materials are not allowed to enter the system when the system capacity is full. The further raw 

materials join only when the current stock of raw materials falls to a certain threshold value (F). 

Preparation time must also be accounted before raw materials are allowed to enter the system. 

F-policy can also be implemented in several other queueing scenarios of communication 
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networks, manufacturing and production units and many more systems to prevent the critical 

problems of blocking and delay in the system.  

So far as the controlling of the arrivals in the finite capacity system is concerned, F-policy 

is quite useful to control the congestion of the jobs and helps in reducing the lost jobs in 

particular when the system capacity is full. In F-policy, the admission of the jobs is to be 

restricted due to the limitation of buffer size and it can be compensated by providing an 

opportunity to join the system again by pushing the jobs in the retrial orbit.   

Jain and Bhagat (2015) dealt with F-policy for the finite capacity retrial queueing model 

with delayed repair and threshold recovery. They obtained the transient probabilities using 

Runge-Kutta method in order to evaluate various performance indices. Control F-policy is 

recently appeared in the work of Yeh et al. (2017) who analyzed the two phase single server 

finite capacity queueing model under (p, F) policy. They have used a matrix method to establish 

the steady state solution of the queue size distribution and several other system indices.  In recent 

years, some research works have appeared on queueing model towards F-policy (cf. Yang and 

Yang, 2018; Kuamr et al., 2019).  

Adaptive neuro fuzzy inference system (ANFIS) is a combination of neural networks and 

fuzzy logic and this can be used for the performance prediction of complex systems for which 

analytical model cannot be developed easily. ANFIS which is a hybrid soft computing technique 

may be used for the performance prediction of a wide variety of problems including the financial 

engineering, automobile with automatic transmission, telecommunication system, etc. The 

architecture and learning process of ANFIS technique was first proposed by Jang (1993) to study 

the mapping of input-output based human knowledge. In recent years, modeling of electro 

chromic device by using ANFIS was done by Dounis et al. (2016). They used ANFIS network 

and performed many experiments by taking training data and testing data. For ANFIS modeling 

in queueing theory, the contributions of Jain and Upadhyaya (2009) and Jain and Meena (2017) 

are worth-noting.  

In the present chapter, we develop a single server retrial Markov queueing system 

operating under F-policy and supported by an unreliable server. The adaptive neuro-fuzzy 

inference system (ANFIS) approach is successfully implemented to authenticate the numerical 

results obtained by analytical method of the concerned retrial queueing system. The rest of the 

chapter is organized in the following manner. In Section 2.2, the description of the model is 
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given. Chapman-Kolmogorov steady state equations and system indices are given Section 2.3, 

and Section 2.4 respectively. Section 2.5 is devoted to the sensitivity analysis by taking a 

numerical example and using ANFIS approach. Finally, the concluding remarks are given in 

Section 2.6.  

2.2. DESCRIPTION OF THE MODEL 
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Figure 2.1: Transition state diagram 

Consider M/M/1/K retrial queueing model under admission control F-policy and startup 

time. The arriving customers join the system as per first-come-first-served (FCFS) discipline. 

The formulation of Markov model is done based on the certain assumptions which are as follow. 

The arriving customer enters into the system with probability q according to the Poisson 

process with rate . The service to the customers is rendered according to exponential 

distribution with mean1/  . If the arriving customer finds the server busy, he enters to the retrial 

orbit of finite capacity (K). From the retrial orbit, the customers retry for the service following 
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exponential distribution with mean1/  . In the case when an arriving customer finds the server 

free, he immediately gets the service and leaves the system. When the system capacity becomes 

full, then a setup job is required to stop the customers from joining the system; the time required 

for the setup is assumed to be exponentially distributed with rate . Once the system capacity 

becomes full, the customers are not allowed to join the system until the number of customers in 

the system are further ceases to prefixed threshold level ‘F’. It is assumed that the server requires 

a startup time with mean 1/  before allowing the customers in the system after the number of 

customers in the system drops to ‘F’ level. The customers are served during F-policy according 

to exponential distribution with mean1/ F . The server may breakdown at any time; the 

breakdown occurs as per Poisson process with rate . When the server breaks down, it cannot 

be repaired immediately until the number of customers in the system accumulated to a threshold 

value ‘Q’. The broken-down server is sent for repair where primary repair job is done according 

to exponential distribution with mean 11/  . After getting primary repair, the server is recovered 

with probability ; otherwise broken down server goes to secondary phase of repair with 

probability 1   , and the repair is done by the same repairman according to exponential 

distribution with mean 21/  . 

At the time , the random variables ( ), ( )N S  denote the number of customers in the 

system and status of the server, respectively. The server status ( )S   is defined as follows: 
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3, Server is in broken down u
)

i
(

d r
S  

ng normaloperation and is primary phase repair,

erver is broken down during normaloperation and issecondary phase repair,

erver is broken down during F-policyand is primary phase

4, S

5, S

6, S

 repair,

erver is broken down during F-policy when customers'arrived is not allowed and 

issecondary phase repair.















We define the system states probabilities at epoch   by , ( ) Prob{ ( ) , ( ) }i nP S i N n      for 

node ( , )i n as depicted in Figure 2.1. It is noted that ( ), ( ) : 0S N    is a bi-variate Markov 

process which is discrete in state space and continuous in time. We shall analyze the model at 

steady state, i.e., when    denoting probability by 
, ,lim ( )i n i n

t
P P 


  
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2.3. GOVERNING EQUATIONS 

Now by using the probability arguments, the steady state Chapman- Kolmogorov 

equations for the system states for seven levels ( ) (0 6)S i i   are constructed as follows: 

(i) For system state 0,0 1   i n K . 

0,0 2,0 1,0 0FP P P        (2.1) 

0, 1,( ) 0, 1 1n nn P P n K                (2.2) 

(ii) For system state 1,0 1   i n K . 

1,0 0,0 2,0 0,1( ) 0           q P P P P       (2.3) 

1, 1, 1 0, 2, 0, 1( ) ( 1) 0,1 1n n n n nq P qP P P n P n Q                     (2.4) 

1, 1, 1 0, 2, 0. 1 1 3, 2 4,( ) ( 1) 0,n n n n n n nq P qP P P n P P P

Q n F

                    

 
 (2.5) 

1, 1, 1 0, 0, 1 1 3, 2 4,( ) ( 1) 0,

1 2

n n n n n nq P qP P n P P P

F n K

                  

   
  (2.6) 

1, 1 1, 2 0, 1 1 3, 1 2 4, 1( ) 0K K K K KP qP P P P                     (2.7) 

(iii) For system state 2, 0 1   i n K  

2, 2 6, 1 5, 2, 1( ) 0,0F n n n F nP P P P n F                    (2.8) 

2, 2 6, 1 5, 2, 1( ) 0, 1 2F n n n F nP P P P F n K                  (2.9) 

2, 1 2 6, 1 1 5, 1 1, 1( ) 0F K K K KP P P P               (2.10) 

(iv)  For system state 3, 0 1   i n K  

3,0 1,0 0   bP P   (2.11) 

3, 1, 3, 1 0,1 1b n n b nP P P n Q           (2.12) 

1 3, 1, 3, 1( ) 0, 2b n n b nP P P Q n K              (2.13) 

1 3, 1 1, 1 3, 2 0       K K b KP P P   (2.14) 
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(v) For system state 4, 1i Q n K      

2 4, 1 3, 0, 1n nP P Q n K         (2.15) 

(vi)  For system state 5, 0 1   i n K  

1 5, 2, 0, 0 1n nP P n K        (2.16) 

(vii) For system state 6, 0 1   i n K  

2 6, 1 5, 0, 0 1n nP P n K         (2.17) 

By realizing that the analytical approach to solve the system of equations (2.1)-(2.17) is 

quite tedious, we convert it into matrix equations AP 0 , where A  is a square coefficient 

matrix formed by the coefficients of unknown probabilities 
,i nP  of equations (2.1)-(2.17), P  is 

a probability vector whose elements are
, , 0,1,...,6i jP i  and 0,1,..., 1 j K . To get 

,i jP we 

replace the last row of the coefficient matrix A  by a row with all elements 1 and vector 0 by a 

vector B  whose all elements are zero except last one which is taken as 1. So, we have a matrix 

equations  A P B  which can be easily solved by using numerical technique viz. Gauss-Seidel 

method. The system states probabilities can be further used to evaluate the system performance 

measures as established in the next section.   

2.4. PERFORMANCE MEASURES 

To analyze the system characteristics, we establish various performance measures which 

are as follows: 

(i)  Expected number of customers in the system  

1 1 1

0, , 4,

0 0 1,2,3,5,6

[ ] ( 1) ( 1)
  

   

       
K K K

S n i n n

n n i n Q

E N nP n P n P  (2.18) 

(ii) Expected number of customers in the queue and in the retrial orbit are 

1 1

, 4,

0 1,2,3,5,6

[ ]
 

  

   
K K

q i n n

n i n Q

E N nP nP    (2.19a) 

 and 
1

0,

0

[ ]





K

R n

n

E N nP   (2.19b) 

(iii)  System throughput is obtained using  
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1 1

1, 0 2,

0 0

 
 

 

  
K K

n n

n n

TP P P  (2.20) 

(iv)  The probability of  the server being idle and busy respectively, are 

  
1

0,

0

K

I n

n

P P




  and 
1

1, 2,

0

( )
K

SB n n

n

P P P




   (2.21a-b) 

(v) The probabilities that server is in broken down state and waiting for the repair 

1

3,

0






Q

BD n

n

P P  (2.22) 

(vi) The probabilities that server is broken down while the customers are allowed to join the 

system 

1 1

5, 6, 3, 4,

0

( ) ( )
 

 

    
K K

SR n n n n

n n Q

P P P P P  (2.23) 

(vii) Failure frequency of the server 

1

1, 2,

0

( )




 
K

f n n

n

F P P  (2.24) 

(viii) Cost function 

 We construct a cost function per unit time in the system with service rate as decision 

variable. For constructing the cost function, various cost elements associated with different 

activities are used. The cost factors involved in cost function are as follows: 

I

B

H

R

F

C : Cost per unit time when theserver is idle,

C : Cost per unit time when theserver is busy,

C : Holding cost per unit timeof each customer present in thesystem,

C : Cost per unit timeincurred on repairng of the broken down server,

C : Cost p

A

S

er unit timefor providingservice to thecustomer when thearrivals are not allowed,

C : Cost per unit timefor providingservice to thecustomer when thearrivals areallowed,

C : Cost for startup process when thecustomersare allowed toe

O

nter in thesystem,

C : Cost per unit timeincurred on each customer in the retrialorbit.

 

Now we formulate the cost function as: 

( ) [ ] [ ] [ ]I I B SB H q R BD SR F F A S O RTC C P C P C E N C P P C C C C E N            (2.25) 

2.5. NUMERICAL RESULTS  

In this section, we present the numerical illustration to analyze the effects of system 

parameters on various performance measures. The numerical results are obtained by coding the 
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computer program in MATLAB software. For the computation purpose, we set the default 

parameters as 6,K  3,F  2,  10,F   0.2,  0.2,  3,  0.7, 
1 0.8, 

2 0.9,  0.5,  0.3b  . To determine the optimal service rate and associated minimum cost, 

we consider the three cost sets as given in the Table 2.1. 

Table 2.1: Cost elements for cost sets (in $) 

Cost Set IC  BC  HC  RC  FC  AC  SC  oC  

I 200 400 10 50 4 5 10 15 

II 100 200 10 50 4 5 10 15 

III 200 400 20 25 4 5 10 15 

 

The optimal control parameter ' '  is determined using a direct search method and 

corresponding minimum cost which is depicted in Figure 2.2. The optimal service rate and 

corresponding minimum cost ( *)TC  for the three cost sets are recorded in Table 2.2. 

Table 2.2: ( *, ( *))TC  for different cost sets 

Cost Set 
( *, ( *)) TC  

0.3q  0.6q  0.9q  

I (5.322, $326.06 ) (6.667, $344.40 ) (7.595, $359.14) 

II (4.080, $207.50) (5.180, $224.26) (5.798, $237.43) 

III (5.544, $326.52 ) (7.010, $346.36) (8.059, $362.26) 

 

To carry out the sensitivity analysis, numerical results are displayed in Tables 2.3-2.6 and 

Figures 2.4-2.7. 

 

 

 

 

 

 

 

 

 

Table 2.3: Performance measures by varying values of λ and q 

q    [ ]QE N  [ ]RE N  TP  fF  TC  

0.3 

2 1.0856 0.8859 1.1157 0.1116 1122.08 

4 2.1820 1.2214 1.7661 0.1766 1131.17 

6 2.8819 1.1525 2.0730 0.2073 1140.20 

0.6 

2 1.3444 1.2288 1.2424 0.1242 1118.77 

4 2.5744 1.4556 1.8517 0.1852 1132.73 

6 3.1489 1.2591 2.1176 0.2118 1141.64 

0.9 

2 1.5804 1.5047 1.3322 0.1332 1117.91 

4 2.7461 1.5500 1.8837 0.1884 1133.87 

6 3.2617 1.3036 2.1389 0.2139 1142.18 
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The ANFIS approach is also implemented using the neuro-fuzzy tool in MATLAB 

software. The membership functions of the input parameters , ,    and are taken as a 

trapezoidal function by taking each one as (i) very low (ii) low (iii) average (iv) high and (v) 

very high values as depicted in Figure 2.3. The ANFIS results (see tick marks of circle, square 

and diamond) for the expected number of customers in the system have been plotted in Figures 

2.4-2.7 along with the numerical results by varying parameters , ,    and obtained. As 

expected, [ ]SE N  increases (decreases) as and q  ( and  ) increases. These figures show  

Table 2.4: Performance measures by varying values of   and q 

q    [ ]QE N  [ ]RE N  TP  fF  TC  

0.3 

10 0.7913 0.7929 1.2197 0.0854 1535.65 

25 0.3623 0.5138 1.4857 0.0416 3615.36 

40 0.2417 0.3820 1.6141 0.0282 5704.44 

0.6 

10 0.9333 1.1031 1.3402 0.0938 1532.01 

25 0.3845 0.6781 1.5464 0.0433 3613.87 

40 0.2506 0.4949 1.6517 0.0289 5703.82 

0.9 

10 1.0884 1.4045 1.4445 0.1011 1529.99 

25 0.4088 0.8543 1.6089 0.0450 3612.52 

40 0.2596 0.6131 1.6904 0.0296 5703.23 

Table 2.5: Performance measures by varying values of  and q 

q    [ ]QE N  [ ]RE N  TP  fF  TC  

0.3 

3 1.0856 0.8859 1.1157 0.1116 1122.08 

6 1.0872 0.8889 1.1165 0.1117 1152.02 

9 1.0879 0.8903 1.1169 0.1117 1181.99 

0.6 

3 1.3444 1.2288 1.2424 0.1242 1118.77 

6 1.3505 1.2389 1.2449 0.1245 1148.61 

9 1.3534 1.2438 1.2462 0.1246 1178.54 

0.9 

3 1.5804 1.5047 1.3322 0.1332 1117.91 

6 1.5933 1.5248 1.3368 0.1337 1147.66 

9 1.5994 1.5346 1.3389 0.1339 1177.55 

Table 2.6: Performance measures by varying values of  and q 

q    [ ]QE N  [ ]RE N  TP  fF  TC  

0.3 

0.2 1.0856 0.8859 1.1157 0.1116 1122.08 

1.1 0.7948 0.1987 0.9051 0.0905 1140.89 

2.0 0.7556 0.1119 0.8719 0.0872 1143.95 

0.6 

0.2 1.3444 1.2288 1.2424 0.1242 1118.77 

1.1 0.8991 0.2747 0.9944 0.0994 1139.56 

2.0 0.8389 0.1531 0.9463 0.0946 1143.69 

0.9 

0.2 1.5804 1.5047 1.3322 0.1332 1117.91 

1.1 1.0296 0.3622 1.0970 0.1097 1138.15 

2.0 0.9418 0.2004 1.0336 0.1034 1143.28 
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Figure 2.2: TC vs  for different values of q  Figure 2.3: Membership function for   

  

Figure 2.4: [ ]vsSE N  for 0.3,0.6,0.9q   Figure 2.5: [ ]vsSE N  for 0.3,0.6,0.9q   

  

Figure 2.6: [ ]vsSE N  for 0.3,0.6,0.9q   Figure 2.7: [ ]vsSE N  for 0.3,0.6,0.9q   

 

almost a collinear trend for both numerical and ANFIS results which imply that the results 

obtained by ANFIS are at par with the analytical results. 
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2.6. CONCLUDING REMARKS  

In this chapter, we have investigated the performance analysis of M/M/1/K retrial 

queueing system with server breakdown by incorporating several realistic features such as 

balking, threshold recovery and admission control policy. Numerical results are compared with 

the results obtained by using adaptive neuro fuzzy inference system (ANFIS) which 

demonstrates the future scope and usefulness of neuro-fuzzy tool for the performance prediction 

of real world queueing systems operating under several techno-economic constraints.  
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Chapter 3 
 

Finite Capacity Queue with General Retrial and State-

Dependent Rates 
 

3.1. INTRODUCTION  

Queueing models with state dependent arrival of jobs and state dependent service have 

useful applications in various congestion situations of day to day life activities. In industrial 

scenarios, the utilities of queueing models can also be seen in production and manufacturing 

systems, transportation and service systems, etc. In many congestion situations, the arrival and 

service rates depend on the present state of the system. The speed of service provided by the 

server may depend on the present work load. For example, the queue size affects the efficiency 

of the server; the server may render service with faster rate, in case of long queue. Similarly, 

some servers act slowly under the pressure of the long queue size which decreases the service 

rate. There are two types of queueing systems; in some systems, the service terminates at any 

specified time whereas in the other, service continues till the queue becomes empty. The state 

dependent service rate may be applicable for the service systems having a human being as server 

and can be seen in the production system, where the service rate of the server is relatively less 

when there is much burden of the workload. For the notable works related to state dependent 

queueing models, we refer the work by Banerjee and Gupta (2012) and Rodrigues et al. (2016).  

Based on F-policy, non-Markovian M/G/1/K and G/M/1/K queueing models were 

investigated by Wang et al. (2007, 2008). For the detail description of the admission control F-

policy, we refer Section 1.5 of Chapter 1. To highlight the practical utility of F-policy in finite 

capacity retrial queueing models, we cite the queue formed at the shopping center wherein the 

arriving jobs on finding the busy server, may wait in the retrial pool and return back after some 

time with the hope that the server becomes free. In such queueing scenarios, when the capacity 

of system becomes full, the admission of customers can be controlled via F-policy. 

The M/G/1 queueing model has been extensively implemented by several researchers 

using supplementary variable technique in different frameworks to study the non-Markovian 
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queueing service systems. Some researchers have contributed towards the analysis of retrial 

queueing models in different structures (cf. Chang and Wang, 2018; Phung-Duc and Kawanishi, 

2019). An M/G/1 retrial queueing model was investigated by Moreno (2004)  by considering 

general retrial times. The author also presented the condition of ergodicity for the system and 

established analytical results for the stationary distribution and other performance measures. 

Gao et al. (2014) developed an M/G/1 queueing model by considering the general distributed 

retrial times, working vacations and interruptions due to server breakdown. They have obtained 

the stationary state probability distribution by using the supplementary variable method. To 

obtain the queue size distribution and probability generating function (PGF) of the joint 

distributions of the queue size, M/G/1 queue with general distributed retrials times and Bernoulli 

vacation was dealt by Choudhury and Ke (2014). A stochastic comparison of Markov chains 

was proposed by Boualem et al. (2014) for the study of single server queue with retrial times as 

general distributed. In the work of Yang et al. (2016), the unreliable server retrial queue with 

general distributed retail attempts was studied by employing the supplementary variable method 

to establish several performance measures.  

In this chapter, we develop a finite queueing model in generic set up by considering many 

realistic features such as admission control policy, general retrial times and state-dependent 

arrival and service processes. To analyze the retrial model under F-policy, this chapter is 

arranged in different sections. Section 3.2 presents a model description of the concerned 

problem. In Section 3.3, equations for the non-Markovian model are framed by using 

supplementary variable corresponding to remaining of retrial time. Some special models 

deduced from our study are given in Section 3.4. Various system indices and cost structure are 

established in Section 3.5. By taking the appropriate illustration, numerical experiment and 

sensitivity analysis and cost optimization of machine repair problem and time sharing model, 

are presented in Section 3.6. Finally, Section 3.7 presents the conclusion of the investigation 

done. 

3.2. DESCRIPTION OF THE MODEL 

For the queueing scenario with admission control according to F-policy, we consider a 

single server finite capacity (say K) queueing model with general retrial attempts. The service 

discipline for rendering the service to the jobs follows the first-come-first-served (FCFS) rule. 

The formation of the model is based on certain assumptions which are outlined as follows: 
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0 1 F-2… n …

1

1



( )x

0

1

2

i
n F-1 F F+1 K-2 K-1

2 n 1n  2F  1F 

( )x ( )x ( )x ( )x

2 1n  1F  F 1F 

1 n 2F  1F 

F

F

( )x ( )x

   



1F  2F  2K  1K 

0 ( )x ( )x ( )x

2F  1K  K

1F  2K  1K 

( )x

Figure 3.1: Transition state diagram 

 The jobs join the system according to Poisson fashion with parameter .  

 If the arriving job finds the server free, the job gets served according to an exponential 

distribution with rate . 

 If the server is occupied then the arriving job joins the retrial pool. From the orbit, the job 

re-attempts for the service with general distributed retrial time having probability 

distribution ( ) ( 0)G x x  with (0) 0G  , the probability density function ( ),x and mean 

retrial time 1/  . 

 When the system attains its full capacity, then setup time is required to stop the arriving 

jobs from joining the queue; the time required for the setup is assumed to exponentially 

distributed with mean 1/ .  

 Once the system becomes full, the arrivals are restricted from joining the system. The 

further admission of jobs in the system is permitted when the number of jobs in the system 

ceases to a prefixed threshold value ' 'F (0 1)F K   . 

For developing the state-dependent model for the retrial queueing system, we denote the state-

dependent arrival and service rates by 
n  and 

n , respectively. The supplementary variable ( )U

is used corresponding to the remaining retrial time of the jobs while residing in the retrial pool. 

At the time , ( )N  denotes the number of jobs present in the system. The status of the server 

at a time  is denoted by ( ).S   To formulate the mathematical model, the random variable ( )S 

is defined as follows: 
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0, the jobsarecompelled to join the retrialpoolon finiding theserver being busy,
(τ)=

1(2), theserver is occupiedand the jobsarepermitted (not permitted) to enter in the system.
S





The system state probabilities at time epoch  are as follows: 

0,0

0,

1,

2,

( ) Prob{ ( ) 0, ( ) 0}

( , ) Prob{ ( ) 0, ( ) , ( ) }, 0,1 1

( ) Prob{ ( ) 1, ( ) }, 0 1

( ) Prob{ ( ) 2, ( ) }, 1

n

n

n

P S N

P x dx S N n x U x dx x n K

P S N n n K

P S N n F n K

  

   

  

  

   


          


      
      

  (3.1) 

We denote  0, 0,
0

( ) Prob{ ( ) 0, ( ) } ( , ) , 1 1n nP S N n P x dx n K   


          (3.2) 

At steady state, i.e., when  , we define 

0,0 0,0lim ( )P P





 ,  

0, 0,( ) lim ( , ), 1 1n nP x P x n K





    ,  

1, 1,lim ( ), 0 1n nP P n K





    ,  

2, 2,lim ( ), 1n nP P F n K





    . 

3.3. GOVERNING EQUATIONS AND QUEUE SIZE DISTRIBUTION  

To establish the steady state probabilities of the system state space, the governing 

equations for three levels (i.e., when ( )S i  0,1,2) of the non-Markovian model are 

constructed by introducing the supplementary variable corresponding to remaining of retrial 

time. The in-flows and out-flows of system states ( , )n i  are depicted in the transition diagram 

shown in Figure 3.1. 

Now by using the probability arguments, Chapman-Kolmogorov equations are formulated as 

follows: 

(i) For 0 :i   

0 0,0 1 1,0P P            (3.3) 

     0, 0, 1 1, , 1 .1n n n n n

d
P P P x K

d
x x n

x
             (3.4) 

(ii)  For 1:i   
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01 1 1,0 0,0 0,1( ) (0)P P P             (3.5)

1 1 1, 1, 1 0, 0, 1( ) 1(0) 2,n n n n n n n nP P P P n F                 (3.6)

1, 1 1, 2 0, 1 0, 2,1 1( ) (0)F F F F F F F FFP P P P P               (3.7)

1 1 1, 1, 1 0, 0, 1( ) (0), 2n n n nn n nnP P P P F n K                (3.8) 

1 01, 1 , 11 1, 2( ) KK K KK KP P P               (3.9) 

(iii)  For 2 :i   

2, 1 2, 2 1, 1 3,n n KP P P F Kn         (3.10) 

Define Laplace-Stieltjes transform (LST) of ( )x and 
0, ( )nP x  by *( )   and  *

0,nP  , 

respectively.  

Also,  * *

0, 0, ( )n nP P    (3.11) 

The symbols nS and FR  are used for the brevity of notations and are defined as follows:  

1 1 1
* *

1 1

32 2 2

( ) ( )
K K i KK

n i l j j j j

i ni n l i j n j n

S          
  

 

       

       
                 

     

1 1
* *

1 1 1

1 1

( ) ( )
F K

F j j i F F F

j i F

R S        
 

 

  

   
    

   
   . 

Theorem 3.1: The steady state queue size distribution for the state dependent retrial model 

operating under F-policy is given by 

0
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1 1
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
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


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  
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   


     
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  
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



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 (3.12) 
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
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 (3.13) 

1

2, 0,0

0

, 1
K

n i

i F

P P F n K
R










 
    
 
 . (3.14) 

Proof: Taking LST on both sides of (3.4), we obtain 

     * *

0, 1 1, 0,( 0 1) , 1    n nn n nP P P n K      (3.15) 

Using (3.15), we have 

1, 0,*

1

1
(0)

( )
n n

n n

P P
  

 and
1, 0,*

1(1 ( ))

n
n n

n n

P P


  




 (3.16a-b) 

Using (3.3),  

0
1,0 0,0

1

P P



  (3.17) 

Now (3.17) and (3.5) yield 

0 1
0,1 0,0

1

(0)P P
 


  (3.18) 

Using (3.16a) and (3.18), we obtain 

0 1
1,1 0,0*

1 2 1( )
P P

 

   
  (3.19) 

Further, using (3.16b) and (3.19), we get 

0
0,1 0,0*

1 1

1
1

( )
P P



  

 
  

 
 (3.20) 
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Setting n 1 in (3.6) and using (3.17), (3.19) and (3.20), the probability 
0,2 (0)P is obtained as 

0 1 2
0,2 0,0*

1 2 1

(0)
( )

P P
  

   
  (3.21) 

From (3.21), (3.16a) and (3.16b), we obtain 

0 1 2
1,2 0,0* *

1 2 3 1 2( ) ( )
P P

  

      
  and 0 1

0,2 0,0* *

1 2 1 2

1
1

( ) ( )
P P

 

     

 
  

 
   (3.22-3.23) 

In general, we obtain 

1, 0,0

0 1 *

1

1
, 1 1

( )

n
i

n n
i i

j

j

P P n F



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 



 
    

  
 
 




 (3.24) 

1

0, 0,0*1
0 1 *

1

1 1
1 , 1 1

( )
( )

n
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n n
i i n

j

j

P P n F


  
 




 



   
       

    
 
 




 (3.25) 

From (3.7)-(3.9) and using (3.24) and (3.25), we obtain 

1, 0,0

0

, 2
n

n
n i

i F

S
P P F n K

R




 
    
 
  (3.26) 

*

1
0, 0,0

0

(1 ( ))
, 2

n
n n n

n i

i n F

S
P P F n K

R

  







 
    
 
  (3.27) 

1

1, 1 0,0

0

1K

K i

i F

P P
R








 
  
 
  (3.28) 

*1
1

0, 1 0,0

0 1

(1 ( )) 1K
K K

K i

i K F

P P
R

  









 

 
  
 
  (3.29) 

Now, using (3.28) in (3.10), result given in (3.14) is obtained. Also, 
0,0P  can be determined 

using normalizing condition given by 

1 1 1

0, 1, 2,

0 0

1
K K K

n n n

n n n F

P P P
  

  

      (3.30) 
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Remark. It should be noted that when 1,F K  we have M/M/1/K model with state dependent 

rates and general retrial. In this case, F-policy is not taken into account as such 0, 
FS  1. 

3.4. SPECIAL MODELS 

In this section, some special models are deduced by setting suitable parameter values for 

the state dependent rates. First of all, by setting state dependent arrival rates, we consider a finite 

population model for machine repair problem (MRP) and its particular case when the control of 

arrivals is not taken into consideration. Then after, by setting the state dependent service rate 

time sharing model is discussed.  

3.4.1. Finite Population Model (FPM) 

In the present scenario of modern lifestyle, machines are needed to perform day-to-day 

as well as specific jobs. It is noticed that the unexpected failures of machines have an adverse 

impact on the system efficiency/availability and also increases the production cost and 

downtime of the system. In this sub-section, the machine repair model which is a finite 

population model is presented as follows:  

By setting ( )n K n   and ,n  equations (3.12), (3.13) and (3.14) yield the queue size 

distribution. Thus, for the finite population model for MRP, we get  
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 (3.31) 
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 (3.32) 
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 
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 
  (3.33) 

In particular, when F-policy is not taken into account, so that ,n  ( ) n K n  , Equations 

(3.12) and (3.13) yield   
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  (3.35) 

Equations (3.34) and (3.35) provide the same results as obtained by Yang and Chang (2018). 

3.4.2. Time-Sharing Model (TSM) 

The time-sharing system involves the sharing of source among many tasks by means of 

parallel operations or allocating a very small quantum of time to each task in round robin 

fashion. In case of single server time sharing queueing system, the arriving jobs may wait in the 

queue for the service for a small pre-specified time duration; if they do not get served within 

this duration, these jobs have to join the end of the queue. When the jobs again join the server 

for service, the same rule of time-sharing is again applied until they get served. If some jobs are 

already present for the service, the arriving job has to join the retrial orbit. 



62 

 

The state-dependent time sharing model is formulated by setting and
1

 


n n
n n

 
  in 

(3.12)-(3.14). The queue length distribution for the time-sharing system with state-dependent 

rates is obtained as 

 
0,0

*

0,01
**

10,

*

1

0,0

*

1

0,0

1
1 , 1,

2

1 1
1 , 1 1,

11

1
1

, 2,
( 1)!

1
1 1

,
( 1)!









 
  
  
 

 
  
     

      
          

  
   

     


  
   

   




n

n

jn

n

n

F

n

F

P n

P n F

njP

n S
P F n K

n R

n
P n K

n R



 



  


 






 




1.



















 


 (3.36) 
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In particular case when the arrival rate is constant, by setting n  in (3.36)-(3.38), we get the 

results for F-policy general retrial model with constant arrival rate. 
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Special Case: When retrial time follows exponential distribution in TSM 

Laplace-Stieltjes transform of ( )x for exponential distribution ( )Exp  is taken as *( ) .


 
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Equations (3.36)-(3.38) give the result for TSM when retrial time is taken as exponential as 
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3.5. PERFORMANCE PREDICTION  

To analyze the queueing characteristics of the concerned retrial service system and to 

make the model applicable to the real-time situation, it is beneficial to establish various system 

indices and cost analysis.  

3.5.1. Performance Indices 

The queueing model developed in the previous section for a single server finite model 

with general retrial attempts under admission control according to F-policy is analyzed by 

deriving some system indices as follows:   

(i) The average number of jobs in the system and in the queue respectively, are  
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(ii) The average number of jobs in the orbit is 
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(iii) The system throughput is  
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(iv) The status of the server can be represented by the probability of the server being free ( IP ) 

and being engaged ( SBP ) in rendering service, respectively. Thus we obtain 
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3.5.2. Cost Function  

For the retrial queueing system operating under F-policy, the organizers may be 

interested in the optimal service rate that optimizes the total system cost. To formulate the cost 

function, the cost components associated with different activities are used. To evaluate the 

threshold parameter ( )F  and service rate that optimize the cost function ( , )TC F  , we 

formulate the total cost per unit time for operating the system as follows: 

( , ) [ ] [ ]    I I B SB H q F O RTC F C P C P C E N C C E N   (3.46) 

where  

I

B

H

F

C : Cost associated with theserver per unit timeduring idlestate,

C : Cost of theserver per unit time when heis busyin rendering theservice,

C : Holding cost of each job residing in thesystem,

C : Cost involved per unit time in r

O

endering theservice to the job,

C : Cost spent on each customer while residing in the orbit.
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The cost function given in (3.46) is highly non-linear and complex, therefore, its explicit 

analytical solution may not possible, however numerical methods can be easily employed. To 

get optimal decision parameters ( , )F  , (i) direct search method is used to determine optimal 

threshold parameter ( *)F  which is discrete decision parameter and then (ii) quasi-Newton 

method is used to evaluate optimal service rate ( *)  which is continuous decision parameter.  

Direct search method to evaluate ( *)F : To control the admission of jobs in the system, we 

find the optimal threshold parameter ( *)F  so as to optimize the system cost given in (3.43). It 

is noticed that the threshold parameter ' 'F (0 1)F K    has integer values. Thus, direct 

search method based on a heuristic approach is used by successively substituting F 0,1,2,...,

2K   to compute cost function given in (3.46). The optimal threshold parameter ( *)F  is 

evaluated by using the inequalities. ( * 1, ) ( *, ) TC F TC F  and ( * 1, ) ( *, ) TC F TC F  . 

Quasi-Newton method to evaluate ( *) : After determining the optimal threshold parameter

( *)F , we use the quasi-Newton method to determine optimal service rate ( *)  by minimizing 

the cost function ( *, )TC F  . The algorithmic steps of the quasi-Newton method are given in 

Section 1.4.8 of Chapter 1. We set the following input parameters for execution of quasi-Newton 

method.  

Inputs: ,K *,F ,
0 , , , ,IC ,BC ,HC ,FC ,OC and tolerance 

0 of 
( *, )TC F 






. 

Output: Approximate optimal solution of service rate ( )  and total cost per unit time ( )TC as 

*, ( *, *).TC F   

3.6. ILLUSTRATION AND NUMERICAL RESULTS 

F-policy state dependent retrial queueing model developed has applications in several real 

time congestion problems including MRP and time-sharing system. To illustrate MRP, we 

consider a computer repair shop in which finite number (say K ) of computers can be repaired 

under a maintenance contract. The failed computers arrive for the repair to the shop by following 

Poisson process with the rate . The repair job of a failed computer is done by the repairman 

following the exponential distribution with mean1/  . If the caretaker of the failed computer 

finds the repairman busy, the failed computers are put in the orbit; from the orbit, it can be sent 

again for the repair job; the retrial time is assumed to be general distributed with mean 1  . Due 
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to the limited space of the shop, the arriving failed computers are not permitted to enter the shop 

as soon as the capacity of the shop becomes full. The failed computers are further permitted to 

join the shop only when the workload of failed computers reduces to a predefined level ' 'F  in 

terms of a number of failed computers. Before allowing the failed computers to enter the shop 

for repair, the setup time is required which is also assumed to be exponentially distributed with 

the rate . 

The applicability of time sharing queueing model is quite prevalent in the multiplexed 

information and computing service system, operating systems, computer and communication 

system, cloud computing centers, etc. To be specific, we cite the illustration of a call center with 

a single server to serve the queries of arriving calls. The arriving calls contact the agent i.e. 

server of the call center to receive the service. If the agent is free at that time, then the call gets 

service immediately. When the agent is busy, then the arriving call has to wait in the retrial orbit. 

After some random time, the call requests for the service to the agent again. In the case when 

the number of calls accumulated in the call center reaches to the system capacity (i.e., K ) of the 

call center, the arriving calls are not allowed to join until the number of calls in the system 

reduces to pre-fixed level (i.e., F ).    

The numerical simulation and cost optimization have been carried out for both machine 

repair problem (MRP) and the time-sharing model (TSM). The numerical experiment performed 

may be helpful to examine the effects of parameters on various performance measures and to 

determine the optimal threshold parameter and optimal service rate. The three distributions for 

the retrial time, have been considered. The Laplace- Stieltjes transform of ( )x for exponential

( ),Exp Erlang-3 3( ),E and deterministic ( )D distribution are taken as *( )


 
 




, 

3

* 3
( )

3


 

 

 
  

 
and 

*( ) e     , respectively. 

The software ‘MATLAB’ is used to develop the computer program to compute the system 

indices and cost function. For the machine repair problem (MRP) and the time-sharing model 

(TSM), we set the state dependent rates as (i) ( )n K n   , n   and (ii) ( 1)n n   , 

n n  , respectively. 



67 

 

3.6.1. Numerical Results for the Machine Repair Model (MRP) 

To validate the practical application of the computer repair shop model, we evaluate the 

performance indices numerically for exponential distributed retrial time by setting the default 

parameters as K  7, F 4, 1unit/hour, 2 unit/hour,   0.5 unit/hour, 0.5unit/hour. 

For the computer repair example, the average number of failed computers in the shop is obtained 

as 5.65.  

(i) Sensitivity analysis for MRP  

To explore the sensitivity of the repair rate ( ), failure rate ( ) and retrial rate ( ) with respect 

to the indices [ ]SE N and ,TP the graphs are plotted in Figures 3.2(a-c) and 3.3(a-c), respectively. 

Some other performance indices have also been summarized in Tables 3.1-3.3 for varying the 

values of these parameters. For the computation of system indices, the default parameters are 

fixed as K  7, F 4,  0.5,  8,  0.5,  1. 

Based on numerical experiments performed, we present the sensitivity of the parameters as 

follows: 

Effect of  : It is observed that as the repairman (server) repairs the failed machines with a 

faster rate, the average number of failed machines decreases which also demonstrates the 

validity of analytical results. Also the status of the repairman (idle or busy) completely depends 

on the number of failed machines. From Table 3.1, it is noticed that as repair rate ( ) increases, 

the average number of failed machines in the queue ( [ ])qE N decreases. Also the probability of 

repairman being busy (idle) decreases (increases) by enhancing the . The graph plotted in 

Figure 3.2(a) depicts that [ ]SE N  lowers down as the service rate goes up. From Figure 3.3(a), 

it is clear that the throughput ( )TP grows up as the service rate ( ) speeds up which is the same 

as we expect. 

Table 3.1: Various performance measures for varying values of   for MRP 

 
  

[ ]qE N  
IP  

SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

1 3.164 3.110 3.060 0.303 0.335 0.354 0.697 0.665 0.646 532.25 543.43 547.66 

2 2.043 2.013 1.964 0.492 0.543 0.569 0.508 0.457 0.431 473.61 506.62 518.70 

3 1.482 1.477 1.436 0.580 0.643 0.672 0.420 0.357 0.328 431.77 485.08 505.76 

4 1.155 1.166 1.135 0.633 0.699 0.730 0.367 0.301 0.270 403.18 469.82 499.15 

5 0.940 0.963 0.941 0.671 0.735 0.768 0.329 0.265 0.232 385.15 459.00 496.05 
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Table 3.2: Various performance measures for varying values of   for MRP 

  
[ ]qE N  

IP  
SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

1 1.132 1.060 0.998 0.704 0.771 0.793 0.296 0.229 0.207 562.12 599.89 618.34 

2 1.742 1.604 1.542 0.644 0.687 0.702 0.356 0.313 0.298 677.66 662.77 667.59 

3 2.161 2.026 1.985 0.582 0.617 0.626 0.418 0.383 0.374 711.49 688.00 689.76 

4 2.494 2.372 2.347 0.530 0.559 0.564 0.470 0.441 0.436 729.36 704.04 704.74 

5 2.767 2.661 2.645 0.486 0.510 0.514 0.514 0.490 0.486 741.01 715.85 716.15 

 

Table 3.3: Various performance measures for varying values of   for MRP 

  
[ ]qE N  

IP  
SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

0.5 0.581 0.633 0.628 0.745 0.799 0.830 0.255 0.201 0.170 384.56 448.74 500.10 

0.6 0.562 0.627 0.637 0.733 0.784 0.817 0.267 0.216 0.183 365.13 423.37 477.68 

0.7 0.544 0.617 0.643 0.723 0.771 0.805 0.277 0.229 0.195 348.73 403.30 459.70 

0.8 0.527 0.606 0.645 0.714 0.760 0.795 0.286 0.240 0.205 334.57 386.37 444.12 

0.9 0.510 0.593 0.644 0.706 0.750 0.784 0.294 0.250 0.216 322.17 371.45 429.80 

Effect of  : For the MRP, if the repairman provides repair job to the machines with constant 

rate and the failure rate ( )  of machines increases, then [ ]qE N  seems to increase at a faster 

pace. Table 3.2 displays the numerical results which demonstrate that by keeping the service 

rate constant, if the rate of the failure of machines increases, then the average queue size ( [ ])qE N

enhances. The probability of the repairman being busy (idle) also seems to increase (decrease) 

by increasing the failure rate of the machines. From graphs shown in Figures 3.2(b) and 3.3(b), 

it is evident that [ ]SE N  and TP grow up as  increases.   

Effect of  :  Table 3 presents the negligible effect of the retrial rate on various performance 

indices. We observe that [ ]qE N  decreases very slowly as the retrial rate increases. The 

probability of a repairman being busy (idle) remains almost constant as the retrial rate grows 

up. Figure 3.2(c) reveals the trends of [ ]SE N  which decreases at a slow pace as the retrial rate

( )  increases. Figure 3.3(c) shows that the throughput ( )TP of the system enhances with a very 

slow rate as   enhances. 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Figure 3.2: [ ]SE N vs (a)  (b)  (c)   for   

different distributions for MRP 

Figure 3.3:TP  vs (a)   (b)  (c)   for 

different distributions for MRP 
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(ii) Cost optimization for MRP  

In machine repair problem, the system organizers may be interested to evaluate optimal 

threshold parameter ' 'F , optimal service rate ( ) and corresponding minimal cost of the system. 

From the practical point of view, the system capacity K  can be treated as an upper bound to 

determine the threshold parameter ' 'F  which can be searched in the desired feasible region. For 

evaluating the total cost, the four cost sets given in Table 3.4, have been taken into account.  

Table 3.4: Cost sets with different cost elements (in $) for MRP 

     Cost Set IC  BC  HC  FC  OC  

I 30 30 50 70 40 

II 10 10 120 15 90 

III 15 5 120 15 90 

IV 20 20 100 15 90 

Optimal threshold parameter ( *)F :  In order to compute the optimal threshold parameter and 

minimum cost for the MRP, a direct search method, based on a heuristic approach is applied. 

To determine *F and corresponding total cost ( *, )TC F  for Cost Set - I, the default parameters 

are fixed as K  25,  0.1,  1.5,  0.5,  1, and then the total cost is computed by 

varying F in the feasible region from 0 to 23. The total cost function for different distributions 

(exponential ( )Exp , Erlang-3 3( )E  and deterministic ( )D ) is computed and plotted in Figure 4 

for varying values of F . From Figure 3.4, it is seen that the expected cost function is unimodal 

and convex in the feasible range (0, 23) with respect to the threshold parameter ' 'F . We indicate 

the minimum cost corresponding to the optimal value of the threshold parameter ' 'F for ,Exp

3E and D  distributions of retrial time. Table 3.5 displays the optimal threshold parameter *F

and corresponding optimal cost ( *, )TC F  for different distributions for varying values of 

retrial rate as  0.3, 0.5 and 0.7. 

Table 3.5: Searching the optimal F for MRP for different   

  
( *, ( *, ))F TC F   

Exp  
3E  D  

0.3 (12, 852.01 ) (14, 898.49) (15, 937.18) 

0.5 (10, 821.20) (12, 848.52) (13, 874.16) 

0.7 (8, 806.92) (10, 821.04) (11, 836.66) 
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Figure 3.4: TC vs F for different distributions when 0.5   for MRP 

 

   

(a) (b) (c) 

Figure 3.5: TC vs  and F for (a) Exp (b) 3E  (c) D  by taking Cost Sets- I for MRP 

Optimal service rate ( *) :  Since is a continuous decision parameter, we apply the quasi-

Newton method to evaluate the optimal service rate ( *) . To compute the optimal service rate 

( *),  we choose the threshold optimal parameter (F*) which is already obtained using direct 

search method (see Table 3.5). Using algorithmic steps of the quasi-Newton method given in 

Section 1.4.8 of Chapter 1, for the exponential distribution, we see in Table 3.6 that after 

performing 7 iterations, the optimal service rate ( *)  is attained; the corresponding minimum 

cost ( *, *)TC F   is $821.20.  The total minimum costs corresponding to the optimal threshold 

parameter ( *)F  and optimal service rate ( *) for different distributions ( Exp , 3E  and D ) by 

considering   0.3, 0.5 and 0.7 are recorded in Table 3.7. 
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(a)  (b)  (c)  

Figure 3.6: TC vs  and  for exponential distribution by taking (a) Cost Set-II (b) Cost Set-

III (c) Cost Set-IV for MRP 

   

   

(a) (b) (c) 

Figure 3.7: TC vs  and  for Erlang-3 distribution by taking (a) Cost Set-II (b) Cost Set-III 

(c) Cost Set-IV for MRP 

   

   

(a) (b) (c) 

Figure 3.8: TC vs  and  for deterministic distribution by taking (a) Cost Set-II (b) Cost Set-

III (c) Cost Set-IV for MRP 

From the results given in Table 3.7, we notice that the expected minimum cost corresponding 

to optimal service rate in case of the exponential distribution is least as compared to other two 
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distributions viz. Erlang-3 and deterministic for the retrial time. For Exp , 
3E  and D  retrial 

time distributions, the surface graphs of cost function TC by varying parameters ' 'F and ' '  

are depicted in Figures 3.5(a)-3.5(c) respectively; these graphs reveal the convexity of TC  with 

respect to F  and   both. 

By setting the parameters K  7, F 4,   0.5, 1for the Cost Sets II, III, and IV, the surface 

graphs for the expected cost function ( , )TC F  are also shown in Figures 3.6-3.8 for the 

exponential ( )Exp , Erlang-3 3( )E and deterministic ( )D distributions, respectively. In these 

figures, the total cost TC  is displayed with varying the values of   from 2 to 16 and   from 

0.4 to 2. We can see that the cost functions are convex and unimodal in a feasible range of 

service rate. 

Table 3.6: Searching the *  by quasi-Newton method for exponential distribution 

( *F 10,   0.5) 

Iterations *F    ( *, )TC F   Max. tolerance 

0 10 1 853.525 9.87E+01 

1 10 2 842.70 5.69E+01 

2 10 1.6344 823.783 3.5E+01 

3 10 1.0491 821.311 8.28E+00 

4 10 1.5255 821.207 2.27E+00 

5 10 1.4917 821.199 6.35E-02 

6 10 1.4990 821.199 4.12E-04 

7 10 1.4988 821.199 1.02E-05 

 

Table 3.7: Minimum cost ( *, *, ( *, *))F TC F   for   0.3, 0.5 and 0.7 for MRP 

  
( *, *, ( *, *))F TC F   

Exp  
3E  D  

0.3 (12, 1.601, 851.05) (14,1.668, 897.73) (15, 1.323, 936.78) 

0.5 (10, 1.499, 821.20 ) (12, 1.579, 847.89) (13, 1.691, 872.05) 

0.7 (8, 1.489, 806.90) (10, 1.543, 820.77) (11, 1.627, 834.89) 

3.6.2. Numerical Results for the Time-Sharing Model (TSM)  

The analytical derivation of the system indices for the time-sharing model is done in 

Section 3.5.1. However, to understand the system behavior, the sensitivity of the parameters for 

different indices is required.  

(i) Sensitivity analysis for TSM 

For the TSM, the pictorial representations of [ ]SE N andTP are shown in Figures 3.9(a-c) and 

3.10(a-c), respectively. The numerical results for the probability of the server being busy or idle 
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and [ ]qE N are summarized in Tables 3.8-3.10 for varying values of ,  and  , respectively. 

For the computation of system indices, the default parameters are fixed as K  7, F  4,  2.8,

 10,   1,  1. 

Table 3.8: Various performance measures for varying values of   for TSM 

 
  

[ ]qE N  
IP  

SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

6 0.876 0.995 1.041 0.552 0.557 0.564 0.448 0.443 0.436 274.65 307.11 323.69 

8 0.476 0.570 0.623 0.654 0.656 0.659 0.346 0.344 0.341 241.50 270.93 290.14 

10 0.286 0.352 0.399 0.721 0.722 0.723 0.279 0.278 0.277 237.26 261.73 280.32 

12 0.187 0.235 0.272 0.767 0.767 0.768 0.233 0.233 0.232 247.50 267.75 284.72 

14 0.131 0.166 0.196 0.800 0.800 0.801 0.200 0.200 0.199 265.16 282.20 297.46 

 

Table 3.9: Various performance measures for varying values of   for TSM 

  
[ ]qE N  

IP  
SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

2 0.107 0.124 0.138 0.800 0.800 0.800 0.200 0.200 0.200 193.36 201.93 208.81 

4 0.783 0.948 1.014 0.613 0.619 0.628 0.387 0.381 0.372 341.33 391.91 418.07 

6 1.726 1.843 1.829 0.493 0.516 0.535 0.507 0.484 0.465 504.56 547.33 559.06 

8 2.340 2.357 2.303 0.426 0.456 0.478 0.574 0.544 0.522 589.23 614.24 619.62 

10 2.737 2.699 2.632 0.380 0.412 0.434 0.620 0.588 0.566 634.09 649.61 652.77 

 

Table 3.10: Various performance measures for varying values of   for TSM 

  
[ ]qE N  

IP  SBP  TC  

Exp  
3E  D  Exp  

3E  D  Exp  
3E  D  Exp  

3E  D  

1 0.286 0.352 0.399 0.721 0.722 0.723 0.279 0.278 0.277 237.26 261.73 280.32 

1.5 0.225 0.256 0.276 0.719 0.721 0.722 0.281 0.279 0.278 214.93 226.13 234.03 

2 0.195 0.212 0.223 0.718 0.720 0.721 0.282 0.280 0.279 204.02 210.31 214.43 

2.5 0.177 0.188 0.194 0.717 0.719 0.720 0.283 0.281 0.280 197.58 201.59 204.06 

3 0.165 0.173 0.177 0.716 0.718 0.719 0.284 0.282 0.281 193.35 196.12 197.75 

Effect of  : Numerical results for [ ], ,q I SBE N P P  and cost function ( )TC  for varying values of

 are summarized in Table 3.8. It is seen that as the service rate increases, [ ]qE N and the 

probability of the server being busy (idle) decreases (increases). From Figure 3.9(a), it is clear 

that [ ]SE N decreases as  grows up. Figure 3.10(a) reveals thatTP goes up as  speeds up. 

Effect of  : Table 3.9 displays the numerical results of various performance indices for varying 

values of  . It is noted that as  increases, [ ]qE N  also increases. The probability of the server 

being idle (busy) seems to decrease (increase) by increasing the value of and keeping the as 

constant. The trends shown in Figures 3.9(b) and 3.10(b) indicate that [ ]SE N and TP of the 

system grow up as the arrival rate of the jobs increases.   
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Figure 3.9: [ ]SE N vs (a)   (b)  (c)   for 

different distributions for TSM 

Figure 3.10: TP  vs (a)   (b)  (c)   for 

different distributions for TSM 
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Effect of  : Table 3.10 reveals that the retrial rate ( )  of the jobs has no significant effects on 

the system indices. As the retrial rate goes up, [ ]qE N  seems to decrease with a very slow pace. 

From Table 3.10, it is noticed that as the retrial rate increases, the probability of the server being 

busy (idle) increases (decreases) with very slow rate. From Figure 3.9(c), it is clear that [ ]SE N  

goes up very slowly as the retrial rate ( )  increases. Figure 3.10(c) shows that the throughput of 

the system increases as  grows. 

(ii) Cost optimization for TSM  

The time-sharing model is explored to determine the optimal threshold parameter ( *)F and 

optimal service rate ( *) and the corresponding minimum cost ( *, *)TC F   of the system. It is 

noticed that the system capacity K can be used as an upper bound for the feasible search space 

of ' 'F . The combined direct search method and the quasi-Newton method are used to evaluate

*F  and * , respectively. For determining the total cost, the four cost sets have been taken into 

consideration as given in Table 3.11. 

Table 3.11: Cost sets with different cost elements (in $) for TSM 

Cost Set IC  BC  HC  FC  OC  

I 30 40 120 60 90 

II 10 10 120 15 90 

III 15 5 120 15 90 

IV 10 10 100 15 110 

Optimal threshold parameter ( *)F :  To evaluate the optimal threshold parameter ' ',F the 

default parameters are set as K  20,  4,   3,  1. For cost set-I, by varying the value of 

F  from 0 to 18, the total cost TC  is computed. Table 3.12 provides the minimum cost of the 

system corresponding to the optimal threshold parameter for the exponential, Erlang-3 and 

deterministic distributed retrial time by taking  1, 3, 5. The trend of TC  by varying F  shown 

in Figure 3.11 reveals that the optimal threshold parameter ( *)F lies in the feasible range 

(0 1)F K   of F . 

Table 3.12: Searching the optimal F  for TSM 

  
( *, ( *, ))F TC F   

Exp  
3E  D  

1 (2, 822.28 ) (1, 858.94) (1, 872.35) 

3 (5, 665.29) (5, 678.51) (5, 687.12) 

5 (6, 627.96) (6, 632.94) (6, 635.92) 
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Figure 3.11: TC vs F for different distributions when 3   for TSM 

 

   

(a) (b) (c) 

Figure 3.12: TC vs  and F for (a) Exp (b) 3E  (c) D  by taking Cost Sets- I for TSM 

Optimal service rate ( *) : For the time-sharing system, the service can be controlled by the 

system developers so as to provide the better service but at minimum cost. For   3, *F  5, to 

determine the optimal service rate ( *),  quasi-Newton method is applied by considering the 

retrial times as exponential. It is noticed that after 5th iterations, the minimum cost ( *, *)TC F 

is achieved at $659.19 corresponding to *  7.271 as can be seen from Table 3.13. 

Now, we perform a numerical experiment to determine * . First of all, we use the optimal 

threshold parameter *F  which is given in Table 3.12 and then use the quasi-Newton method 

for exponential, Erlang-3 and deterministic distributions by taking  1,3,5. The optimal values 

of parameters and corresponding minimum cost are shown in Table 3.14.  
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Table 3.13: Searching the *  by quasi-Newton method for exponential distribution 

( *F 5,  3) 

Iterations *F    ( *, )TC F   Max. tolerance 

0 5 8 665.286 1.58E+01 

1 5 7 660.172 7.35E+00 

2 5 7.3170 669.221 1.16E+00 

3 5 7.2739 659.194 6.86E-02 

4 5 7.2712 659.194 7.04E-04 

5 5 7.2712 659.194 0 

 

Table 3.14: Minimum cost ( *, *, ( *, *))F TC F   for   1, 3 and 5 for TSM 

  
( *, *, ( *, *))F TC F   

Exp  
3E  D  

1 (2, 6.169, 803.45) (1, 5.854, 809.85) (1, 6.092, 820.80) 

3 (5, 7.271, 659.19) (5, 7.341, 673.70) (5, 7.378, 682.92) 

5 (6, 7.012, 615.23) (6, 7.048, 621.22) (6, 7.068, 624.76 ) 

It is seen that the minimum cost for the exponentially distributed retrial time is less as 

compared to Erlang-3 and deterministic distributions for the retrial time. From Figures 3.12(a-

c), it is clear that the cost function is convex and the minimum value of the cost is achieved at 

the optimal threshold parameter and optimal service rate. From the graphs plotted in Figures 

3.12(a-c), it is also observed that the exponential distribution gives the lowest value of the 

minimum cost in comparison to other distributions for retrial time. 

For the cost sets II, III and IV, by fixing K  7, F 4,  2.8, 1, the surface graphs 

for the total cost function are shown in Figures 3.13-3.15 by varying  from 5 to 12 and   from 

1 to 4. It is seen that the cost functions are convex for all the three distributions viz. exponential, 

Erlang-3 and deterministic distributions and the minimum value of the cost can be attained at 

an optimal service rate. 
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(a) (b) (c) 

Figure 3.13: TC vs  and  for exponential distribution by taking (a) Cost Set-II (b) Cost Set-

III (c) Cost Set-IV for TSM 

   

   

(a) (b) (c) 

Figure 3.14: TC vs  and  for Erlang-3 distribution by taking (a) Cost Set-II (b) Cost Set-III 

(c) Cost Set-IV for TSM 

   

   

(a) (b) (c) 

Figure 3.15: TC vs  and  for deterministic distribution by taking (a) Cost Set-II (b) Cost 

Set-III (c) Cost Set-IV for TSM 
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3.7. CONCLUDING REMARKS  

This chapter investigates the single server finite capacity queueing model with general 

retrial times by adding the realistic features of admission control F-policy and state dependent 

rates using the supplementary variable corresponding to remaining retrial times. The recursive 

method is applied to establish the steady state queue size distributions of the system. Some 

specific distributions viz. exponential, Erlang-3 and deterministic distributions are considered 

for the general retrial times for providing the computational results for various performance 

indices. The system indices measured by taking numerical illustration show the validity of the 

model in real time system. The performance analysis of the concerned model may be applicable 

to many real-world congestion problems to chalk out the admission control policy by controlling 

the arrivals of jobs in the system in particular when the capacity of the system is not sufficient 

for heavy traffic. Further, optimal control parameters and corresponding minimal cost of the 

system determined by direct search method and quasi-Newton method which may be helpful to 

the system organizers and decision makers for improving the grade of service of existing system.  
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Chapter 4 

 

F-Policy for Multi-Server Queue with an Additional 

Server and Balking 

 

4.1. INTRODUCTION 

In the real world, multi-server queues are formed everywhere including various service 

centers such as at post office, ATMs and many other places. The customers’ balking behavior 

is a common issue in many congestion problems as such a queueing model incorporating the 

concept of balking may be more appropriate to analyze these problems. In practice, additional 

server queueing model which also deals with the balking behavior of the customers, has certain 

advantages by reducing the waiting time of the customers and enhancing the profit to the 

organization. In recent years, some researchers have also paid their attention towards multi-

server Markovian congestion problem. The stationary behavior of M/M/C queueing model in 

the random environment was analyzed by Liu and Yu (2016). Baumann and Sandmann (2017) 

dealt with a multi-server tandem queueing model by considering the Markovian arrival process. 

Laxmi and Kassahun (2017) presented a novel work for the infinite capacity queue with multi-

server and discouraged customers. In their investigation, they have analyzed Markovian 

feedback queue with reneging and balking.  

Sometimes in the queueing system, it is noticed that due to the long queue in front of the 

servers, the customers do not wish to join the system and may balk without receiving the service. 

The concept of additional server may reduce the queue length and balking behavior of the 

customers. To be more specific, we illustrate the queueing scenario of customer care department 

of production organization where calls come regarding many complaints/queries. Sometime due 

to congestion of the calls, the subscribers may get a busy signal and wait in the queue. To reduce 

the long queue of the calls, one additional customer care executive may be added to the pool of 

existing executives. In queueing literature a few researchers have developed such type of 

queueing models by considering additional servers after a certain workload (cf. Mokaddis and 
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Jaki, 1983; Abou-El-Ata and Shawky, 1992; Shawky, 1997). Jain and Sharma (2002) dealt with 

the Markovian multi-server finite queue with additional servers and balking behavior of the 

customers. In this investigation, they derived various system indices. Markovian multi-server 

queueing model with balking, provision of additional servers was analyzed by Jain and Singh 

(2002). By considering the ‘R’ permanent and ‘r’ additional removable repairmen, a multi-

component machine repair problem was studied by Jain et al. (2014). They have developed a 

Markovian model to analyze the queueing situations by including reneging parameter and time-

sharing concept. The steady-state analysis of multi-server queue with customer’s 

discouragement behavior was investigated by Jain et al. (2019). Queue size probability 

distributions was obtained using recursive method which is further used to derive various 

performance metrics. 

The optimal F-policy can be implemented to the queueing system in order to facilitate the 

quality of the service to the customers by controlling the arrivals and to enhance the profit of 

the service systems operating in many real-world queueing scenarios. The main objective of the 

F-policy is to deal with the control of the arrival process in case when the waiting area is fully 

occupied. For the detail description of F-policy, we refer Section 1.5 of Chapter 1. 

In this chapter, we develop a Markov multi-server queueing model with the provision of 

additional removable server and balking. By including the realistic features of the balking 

behavior of the customers and secondary server in rush hour, the present study on the finite 

multi-server queue under F-policy portraits many real-world queueing scenarios. The present 

chapter is arranged in different sections apart from the ongoing introduction section. In Section 

4.2, the description of the concerned model is given. Chapman-Kolmogorov equations are 

framed and solved by using the recursive method in Section 4.3. The system performance 

indices and cost function are formulated in Section 4.4. Section 4.5 presents the numerical 

illustration, ANFIS computing and cost analysis. Finally, Section 4.6 concludes the noble 

features and the outcomes of the queueing model studied. 

4.2. MODEL DESCRIPTION   

Consider the finite capacity multi-server Markovian queueing model with two type of 

customers and the provision of an additional server under admission control F-policy by 

including the balking behavior of the customers. The assumptions for the mathematical model 

are outlined as follows:  
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i=1
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... ... ... ...n

 

Figure 4.1: Transition state diagram for M/M/R/K model 

 Two types of the customers namely, Class-1 and Class-2 join the system in Poisson 

fashion with rate 0 and 1 , respectively.   

 There is the provision of R permanent servers who are always available in the system to 

render the service to the customers according to FCFS discipline. 

 The permanent servers provide service to both classes of customers according to an 

exponential distribution with mean 01/ .  When all the permanent servers are engaged, 

they switch over to faster service mode to reduce the queue size and render the service 

with rate .  

 When all permanent servers (R) become busy, the Class-2 customers show the normal 

behavior in joining the system whereas the Class-1 customers may balk with probability

0(1 ) .  

 At the threshold level Q of queue length, the Class-1 customers are completely lost in the 

system whereas the Class-2 customers join the system with probability 1.  

 At threshold level Q, one additional server is added to reduce the queue length and balking 

behavior of the customers. Due to the feasibility of additional server at threshold Q, the 

integrated service rate at this level ‘Q’ of queue size, is 1Q R    where 1  denotes 

the service rate of an additional server. 

 As the system becomes full i.e. all waiting space is occupied by the customers, Class-2 

customers (Class-1 customers already lost) are not permitted to join the system. To stop 

the customers from joining the system when the system capacity becomes full, 

exponentially distributed setup job with rate is required. However when the queue size 

drops to a prefixed threshold value ‘F’ (0 1)F K   , Class-2 customers are further 

permitted to queue up. When the customers are not allowed due to F-policy, the servers 
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provide service to the customers with integrated rate
2F R    , where 

2  is the 

service rate of the additional server in the faster mode when new customers are restricted 

to join the system. 

Let at the time , the random variables ( )N  and ( )S  denote the number of customers and 

servers’ status respectively. The server status ( )S   is defined as ( ) 1(2)S   in the case when 

the servers are engaged and the customers are permitted (not permitted) to join in the system. 

The state transition diagram of system states is shown in Figure 4.1. To formulate the model, let 

us consider a bi-variate Markov process{ ( ), ( ) : 0}S N    , which is discrete in state space and 

continuous in time. The system states probability at a time  for the node ( , )i n is defined by 

, ( ) Prob{ ( ) , ( ) }i nP S i N n     . Markov model is analyzed at steady state for which we define 

the state probabilities by 
, ,lim ( ), 1,2.i n i nP P i





   

The state-dependent arrival and service rate are respectively, as follows:  
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
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where 0 1    , 0 0 1R     , 1 1Q   , 1Q R    , 2F R    . 

4.3. GOVERNING EQUATIONS AND SOLUTION   

To investigate the queue size of multi-server queueing system, the steady state 

probabilities of the system state are required. Chapman-Kolmogorov equations for two levels 

(i.e., when ( ) 1,2S i   ) of the model can be framed by using the probability arguments and 

in-flow rates and out-flow rates of each state (see Figure 4.1). Now, we formulate the equations 

governing the model by balancing the in-flows and out-flows as follows:  

(i) For 1i  : When the customers are permitted to enter the system.  

1,0 0 1,1 0P P              (4.1) 

0 1, 1, 1 0 1, 1( ) ( 1) 0, 1 1n n nn P P n P n R                  (4.2) 

0 1, 1, 1 1, 1( ) 0R R R RR P P R P                (4.3) 

1, 1, 1 1, 1( ) 0, 1 1R n R n nR P P R P R n Q                  (4.4) 
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1, 1, 1 1, 1( ) 0Q Q R Q Q QR P P P                (4.5) 

1, 1, 1 1, 1( ) 0, 1 1Q Q n Q n Q nP P P Q n F                  (4.6) 

1, 1, 1 1, 1 2, 1( ) 0Q Q F Q F Q F F FP P P P                  (4.7) 

1, 1, 1 1, 1( ) 0, 1 1Q Q n Q n Q nP P P F n K                  (4.8) 

1, 1, 1( ) 0Q K Q KP P               (4.9) 

(ii) For 2i  : When the customers are restricted to enter the system. 

2, 2, 1 1, , 1 1F n F n KP P P F n K         (4.10) 

Theorem 4.1: The steady-state queue size distribution for the multi-server queueing model with 

additional server operating under F-policy is given by   
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 (4.11) 

where  
1

1 1

1

( ) ( )
K n

K n K n j j

Q Q Q Q

j

g n      
 

    



    . 

Proof: From (4.1), it follows  

1,1 1,0

0

P P



    (4.12) 

Set 1n   in (4.2) and using (4.12), we have  

2

1,2 1,02

02
P P




    (4.13) 

In general, we have    
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1, 1,0
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n n
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Now (4.3) and (4.14) yield  
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P P
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                                                                                                   (4.15) 

Set 1n R   in (4.4) and using (4.14) and (4.15), we obtain 

2

1, 2 1,02 2

0!
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R R

P P
R R

 
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   (4.16) 

In general, we have 
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Now (4.5) and (4.17) yield 
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Set 1n Q   in (4.6) and using (4.17) and (4.18), we obtain                                           
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In general, we have    

1, 1,0

0

, 1
!

n Q Q R R

Q R

n n Q Q R Q R R

Q

P P Q n F
R R

  

  

 

  
     (4.20) 

Adding (4.7)-(4.9) and using (4.10) and (4.20),we find
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Using (4.21) in (4.9), we obtain    
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Equations (4.10) and (4.22) yield 
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  (4.23) 

where 
1,0P  is determined by using normalizing condition  

1, 2,

0 1

1
K K

n n

n n F

P P
  

      (4.24) 

4.4. PERFORMANCE MEASURES AND COST FUNCTION  

To examine the characteristics and behavior of the concerned queueing system, several 

performance measures namely average system size [ ]SE N , an average number of idle permanent 

servers [ ]SE I and the average number of busy permanent servers [ ]SE B  are derived. The long-

run probabilities of the server status namely probability of additional server being busy ASBP  and 

the probability of all permanent servers being busy PSBP  have also been derived. Several system 

indices established are as follows:  

(i) 
1, 2,

1 1

[ ]
K K

s n n

n n F

E N nP nP
  

      (4.25) 

(ii) 
1

1,

0

[ ] ( )
R

s n

n

E I R n P




     (4.26) 

(iii) 
1

1, 1, 2,

1 1

[ ]
R K K

s n n n

n n R n F

E B nP R P P


   

 
   

 
       (4.27) 

(iv) 1, 2,

1 1

K K

ASB n n

n Q n F

P P P
   

      (4.28) 

(v) 
1, 2,

1

K K

PSB n n

n R n F

P P P
  

      (4.29) 

(vi) Cost function  

For the multi-server queueing model under F-policy and supported by one additional 

server in rush hour to reduce the balking behavior of the customers, the organization may be 

interested in the total expected cost incurred in various activities of the system. The cost 

function per unit time depends on various cost elements. To frame cost function, we consider 

per unit time cost elements related to (i) holding cost of each customers present in the system 
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( )HC  (ii) cost for providing service when at least one server idle
0

( )C  (iii) cost incurred 

during all permanent servers being busy ( )C , (iv) cost 
Q

C (
F

C ) incurred when one 

additional server is added and customers are allowed (not allowed) and (v) the cost incurred 

on each idle permanent server ( )IC . The cost function involves the service rate ( ) , the 

number of permanent servers (R), the threshold parameter (F) and the capacity of the system 

(K) as decision variables. The optimal values of ( , , , ),F K R  say ( *, *, *, *)F K R   can be 

determined by minimizing the expected total cost per unit time TC. Now we construct the 

cost function per unit time in terms of cost factors related to different activities as follows:   

0

1

0 1, 1, 2, 1 1,

1 1 1

1

2 2, 1,

1 0

( , , , ) [ ]

( ) .

Q

F

R K K K

H S n n n n

n n R n F n Q

K R

n I n

n F n

TC F K R C E N C nP R C P P C P

C P C R n P

  



   





     



  

 
     

 

  

   

 

 (4.30) 

4.5. NUMERICAL RESULTS AND COST OPTIMIZATION   

In this section, the numerical experiment is done for examining the admission control 

policy for finite capacity multi-server queue with an additional server and balking. The 

sensitivity analysis is carried out which may be very useful to analyze the effects of the 

parameters on several system indices. 

4.5.1. Sensitivity Analysis 

For the computational purpose, we fix the system parameters as 0 5,  1 3,  0.8, 

0 0.5,  1 0.9,  1,  0 0.9 ,  1 1.1 ,  2 1.2 ,  4,R  11,Q  15F  , 20.K       

Based on the numerical result obtained, we explain the effect of the parameters on various 

system indices. 

As expected, it is observed that by keeping arrival rate constant as the servers provide service 

with faster rate, the average number of idle (busy) servers, increases (decreases). The status of 

the servers depends on the service rate as such the probability of the additional server being 

busy and the probability of the permanent servers busy become low by facilitating the service 

with a faster rate. Table 4.1 and Table 4.3 reveal the same facts. From Table 4.2 and Table 4.4, 

it is noticed that as 1 increases, [ ]SE I  decreases while [ ]SE I  grows up. On the other hand, we 

see that the long run probability ASBP  increases with faster rate whereas PSBP increases at a slower 
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rate as 
1  increases. Figure 4.3 and 4.4 depict the effect of

1  on [ ]SE N  for varying values of 

joining parameters 1  and 0 ,  respectively. It is seen that as 1  grows, [ ]SE N  also grows which 

is quite obvious due to the fact that, by a faster arrival rate, the system becomes crowded. 

Table 4.1: System indices by varying values of   and 
1  

1  
  [ ]sE I

 
[ ]sE B

 ASBP
 PSBP

 

0.5 

1 0.024269 3.975731 0.107796 0.982184 

2 0.649855 3.350145 0.002557 0.623634 

3 1.397539 2.602461 0.000080 0.318095 

0.7 

1 0.022613 3.977387 0.168659 0.983399 

2 0.649019 3.350981 0.003840 0.624118 

3 1.397487 2.602513 0.000117 0.318120 

0.9 

1 0.020534 3.979466 0.245094 0.984925 

2 0.648052 3.351948 0.005324 0.624678 

3 1.397430 2.602570 0.000157 0.318148 

 

Table 4.2: System indices by varying values of  
1  and 

1  

1  
1  [ ]sE I  [ ]sE B  

ASBP  
PSBP  

0.5 

2 0.019206 3.980794 0.089887 0.985561 

4 0.001233 3.998767 0.327901 0.999017 

6 0.000100 3.999900 0.613910 0.999917 

0.7 

2 0.018209 3.981791 0.137106 0.986310 

4 0.000890 3.999110 0.514932 0.999291 

6 0.000039 3.999961 0.847570 0.999967 

0.9 

2 0.017020 3.982980 0.193488 0.987205 

4 0.000538 3.999462 0.706742 0.999571 

6 0.000013 3.999987 0.948871 0.999989 

 

Table 4.3: System indices by varying values of    and 
0  

0  
  [ ]sE I

 
[ ]sE B

 ASBP
 PSBP

 

0.5 

1 0.020534 3.979466 0.245094 0.984925 

2 0.648052 3.351948 0.005324 0.624678 

3 1.397430 2.602570 0.000157 0.318148 

0.7 

1 0.007900 3.992100 0.303625 0.994200 

2 0.509237 3.490763 0.013471 0.705073 

3 1.323189 2.676811 0.000479 0.354373 

0.9 

1 0.003286 3.996714 0.343834 0.997588 

2 0.373200 3.626800 0.026882 0.783859 

3 1.233683 2.766317 0.001216 0.398046 
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Table 4.4: System indices by varying values of  
1  and 

0  

0  
1  [ ]sE I  [ ]sE B  

ASBP  
PSBP  

0.5 

2 0.017020 3.982980 0.193488 0.987205 

4 0.000538 3.999462 0.706742 0.999571 

6 0.000013 3.999987 0.948871 0.999989 

0.7 

2 0.005386 3.994614 0.249467 0.995951 

4 0.000204 3.999796 0.731001 0.999837 

6 0.000006 3.999994 0.951773 0.999995 

0.9 

2 0.001919 3.998081 0.286209 0.998557 

4 0.000087 3.999913 0.747112 0.999931 

6 0.000003 3.999997 0.953894 0.999997 

 

  
(a)  (b)  

Figure 4.2: Membership function of 1  (a) for 0 0.5  (b) for 1 0.5   

 

  

Figure 4.3: [ ]sE N  vs 1  for 1 0.5,0.7,0.9   Figure 4.4: [ ]sE N  vs 1  for 0 0.5,0.7,0.9   

 

The ANFIS approach is also applied to compute the results using the neuro-fuzzy tool in 

MATLAB software and these results are compared with numerical results obtained by the 
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recursive method. For our model, we consider the one input parameter as 
1  and one output 

parameter as [ ]sE N (cf. Section 1.4.7 of Chapter 1). We notice that both results almost coincide 

that validates the usefulness of ANFIS in real time complex queueing systems. By considering 

the Gaussian membership function and five linguistic values for the input parameter 1  as very 

low, low, average, high, and very high, we proceed to obtain ANFIS results. The membership 

functions for the input parameter 1  are shown in Figures 4.2(a-b). In Figures 4.3 and 4.4, the 

ANFIS results for [ ]sE N  are shown by tick marks (circle, square and diamond) while the 

smooth lines show the trends obtained by an analytical approach.  

4.5.2. Cost Optimization 

To evaluate the optimal parameters ( *, *, *, *)F K R  and corresponding minimal cost 

( *, *, *, *),TC F K R   the cost elements are fixed as $20,HC 
0

$50,C  $50,C  $55,
Q

C 

$60,
F

C  $10.IC   

(i) Direct Search Method (DSM)  

Since the parameters ‘F’, ‘K’ and ‘R’ are having the integer values, a direct search method based 

on a heuristic approach is used.  

Optimal threshold parameter ‘F’: To control the admission of the customers in the system, 

we compute the optimal threshold parameter *F  so as to minimize the cost function. By 

choosing the value of 0.5   and using other default system parameters, we compute the *F  

and corresponding minimum cost in the desired range of .F  *F  and expected minimum cost of 

the system ( *, ( *))F TC F  are obtained for different values of 0 = 0.3, 0.4 and 0.5 as (12, 

$456.05), (13, $458.54), (13, $460.30). Figure 4.5 reveals that the cost function is convex and 

unimodal in the desired range as such minimum cost can be attained. 

Optimal system capacity ‘K’: In order to find the optimal capacity of the system, we set the 

default system parameters as 0.56,  0 0.5  , 1 0.6,  * 13F  . A unimodal and convex 

graph is obtained for varying values of K from 18 to 28. From Figure 4.6, it is noticed that when 

K goes up from 18 to 22 then the expected cost decreases and then after starts increasing up to 

28. The optimal capacity of the system is noticed as * 22K   and the corresponding minimum 

cost ( *, *)TC F K  is found as $369.18.  
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Figure 4.5: TC  vs F  for 0 0.3,0.4,0.5   Figure 4.6: Variation in TC for different K 

 

Optimal permanent servers ‘R’: Now we compute the optimal value of the permanent servers 

( *)R  by considering the updated values in the default system parameters as * 13F  , * 22,K 

0.56,  0 0.5  and 1 0.6.   The minimum expected cost of the system corresponding to an 

optimal number of servers ( *)R is computed for different values of 1 3,4,5,6  . It is observed 

that the optimal number of servers ( *)R  and corresponding minimum expected cost 

( *, ( *, *, *))R TC F K R are achieved at (4, $369.18), (5, $411.10), (7, $453.47), (8, $495.05), 

respectively. Figure 4.7 shows the surface graph for the expected cost for the varying values of 

R and 1 . 

 

Figure 4.7: TC  vs R  for varying values of 1  
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(ii) Quasi-Newton method (QNM) 

For the algorithmic steps of quasi-Newton method, we refer Section 1.4.8 of Chapter 1. 

Optimal service rate ( *) : Now we employ a quasi-Newton approach to compute the optimal 

service rate ( *) which is a continuous decision parameter. For evaluating optimal value *

and corresponding minimum cost ( *, ( *, *, *, *))TC F K R  , we fix the optimal threshold 

parameters as * 13F  , * 22,K  * 4,R  and 0 0.5  , 1 0.6.   

After performing 5 iterations, as displayed in Table 4.5, it is noticed that maximum tolerance is 

71.267 10  which is less than that of 
6

0/ 10TC       . Therefore after 5 iterations, we 

achieve *  and minimum system cost ( *, ( *, *, *, *))TC TC F K R  as (0.5753, $369.14). It is 

also noticed from Figures 4.8 and 4.9, that the expected cost function ( )TC   is convex with 

respect to service rate ( )  and 0 1,  , respectively. 

  

Figure 4.8: TC  vs   for varying values of 0  Figure 4.9: TC  vs   for varying values of 1  

 

Table 4.5: Searching the optimal value of   by using quasi-Newton method 

Iterations ( *, *, *)F K R    ( *, *, *, )TC F K R   Max. tolerance 

0 (13,22,4) 1 394.801 59.2 

1 (13,22,4) 0.6111 369.687 28.6 

2 (13,22,4) 0.5748 369.142 0.459 

3 (13,22,4) 0.5754 369.142 
29.59 10  

4 (13,22,4) 0.5753 369.142 
42.48 10  

5 (13,22,4) 0.5753 369.142 
71.267 10  
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4.6. CONCLUDING REMARKS  

F-policy for Markovian multi-server finite queueing model with the additional server and 

balking has investigated by employing the recursive technique to establish the queue size 

distribution for the customers. The provision of the additional server made in the multi-server 

queue may be helpful in reducing the balking behavior of the customers. Adaptive neuro fuzzy 

inference system (ANFIS) approach is successfully applied that validates the feasibility of the 

use of fuzzy parameters and neural network in our queueing model. The validation of ANFIS in 

our model gives insight that it may be implemented in several complex queueing problems for 

which analytical results cannot be derived in closed form. It may also beneficial to earn more 

profit and reduce waiting time in several queueing scenarios including the hospitals, call centers, 

computer communication network, ATMs, shopping malls, admission counter in the 

educational system, and many more. The cost analysis performed may be helpful in setting 

optimal threshold parameters at the minimum expected cost incurred on the system. Some other 

system parameters treated as decision variables include the optimal service rate, the optimal 

number of permanent servers, and the optimal capacity of the system. 
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Chapter 5 
 

Markovian Queue with General Retrial Times and 

Discouragement 
 

5.1. INTRODUCTION  

In the past, some researchers have focused towards the performance analysis of non-

Markovian retrial queueing models and enriched the literature by contributing significantly for 

both the theoretical and applicable aspects (cf. Phung-Duc, 2017). The non-Markovian queueing 

model with general retrial attempts and Bernoulli schedule was studied by Gao et al. (2016). In 

this study, they applied the supplementary variable technique to establish the stationary 

distribution of the system size. Single server retrial queueing model with an optional vacation 

for the unreliable server, batch arrivals and M-vacation was studied by Jailaxmi et al. (2017). 

They have evaluated the probability generating function for the queue size distribution after 

introducing the supplementary variable (SV). Zirem et al. (2018) studied a single server queue 

with general retrial times in which customers arrive in a batch and the server is subject to failure. 

They have used SVT to carry out their study to establish queue size distributions and 

performance indices.   

The cost optimization and evaluation of optimal control parameter for the queueing 

model using genetic algorithm has rarely appeared in the queueing literature. It is worthwhile to 

have a look at notable contributions towards optimization problems in different contexts using 

GA (cf. Raman et al., 2009; Jana and Sharma, 2010; Ke et al., 2010; Huang et al., 2011; Lin and 

Ke, 2011; Majumdar et al., 2018). In order to balance the cloudlet’s loads in a mobile cloud 

computing system, Rashidi and Sharifian (2017) developed a multi-server queueing model. 

They have used GA along with ant colony optimization technique for load balancing and 

determined the optimum mean completion time of offloaded jobs. For the study of queueing 

characteristics of the allocation problem related to the hub network, Hasanzadeh et al. (2018) 

employed GA to estimate the optimum waiting cost and queueing capacity of each hub.  
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In this chapter, we investigate the finite queueing model with general retrial attempts 

and discouragements under admission control F-policy. The soft computing approaches viz. 

ANFIS and GA have been used for the performance analysis and cost optimization of the 

concerned finite model. To investigate the finite queueing model with general repeated attempts, 

the contents of present chapter are arranged in different sections. Section 5.2 presents the 

description of the finite capacity retrial model. In Section 5.3, Chapman-Kolmogorov equations 

are framed by using the SVT corresponding to remaining retrial time. The mathematical analysis 

of the model is also given in the same section. Several performance metrics and cost 

optimization algorithms are given in Sections 5.4 and 5.5, respectively. An application example 

alongwith numerical results and cost optimization are given in section 5.6. Section 5.7 concludes 

the present investigation by highlighting the noble features.  

5.2. MODEL DESCRIPTION  

Consider M/M/1//K queueing model with general retrial attempts. The realistic features 

such as F-policy and discouraged customers are taken into account to develop the finite capacity 

general retrial model. The customers follow the first-come-first-served (FCFS) rule to join the 

system. The mathematical construction of the model is based on certain assumptions which are 

as follows: 

 The arriving customers enter into the system in Poisson fashion with parameter . 

 The arriving tagged customer observes the queue length and decides whether to join the 

queue or balk. Let n  be the probability of joining of the customer in the system and 

(1 )n  represents the balking probability of the customers when there are already n  

customers present in the system.  

 On arrival, if the customer finds the server engaged in the service of other customer, then 

he is forced to join the retrial orbit. From the retrial orbit, he re-attempts for the service 

with general distributed retrial time having distribution function ( ),G x the probability 

density function ( )x ( 0)x   with mean retrial time 1/  . If the arriving customer finds 

the server free, he immediately gets served; the service time follows the exponential 

distribution with mean 1/ .  

 After admitting in the queue, each customer waits for his turn up to a certain time and then 

gets impatient and leaves the queue without getting service. The impatience time period 
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T is governed by an exponential distribution with rate  . The reneging function for the 

state ' 'n  which denotes the number of customers present in the system is defined by  

 
( 1) , 1

0,
n

n n K
r

n K

  
 


 (5.1) 

 A setup job is required before restricting the arriving customers from joining the system 

when the system capacity becomes full. The time required for the setup follows the 

exponential distribution with mean 1/  . 

 As the system reaches its full capacity K  i.e. there is no space for waiting, the arriving 

customers are not permitted to enter into the system until number of customers drops to a 

threshold level F (0 1)F K   . 

0 1 F-2… n …

1

1



( )x

0

1

2

i

n F-1 F F+1 K-2 K-1

2 n 1 n 2 F 1 F

( )x ( )x ( )x ( )x

2 1 n 1 F F 1 F

1 n 2 F 1 F

F

F

( )x ( )x

   



1 F 2 F 2 K 1 K

0 ( )x ( )x ( )x

2 F 1 K K

1 F 2 K 1 K

( )x

 

Figure 5.1: State transition diagram 

For developing the admission control finite capacity model with general distributed retrial 

times and discouraged customers, we denote the state dependent arrival rates and service rates 

by n  and n , respectively. Thus  

 
, 0 1

0,

n

n

n K

n K




  
 


  (5.2a) 

and , 1 .n nr n K       (5.2b) 

At any time , ( )N   and ( )S   denote the number of customers present in the system and 

status of the server, respectively. To formulate the mathematical model, ( )S  is defined as 

follows: 
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0, thecustomersareforced to join the retrialpoolon finiding theserver being busy,

( ) 1(2), theserver is occupied and thecustomersarepermitted (not permitted) to join

thesystem.

S i




  



 

Let the supplementary variable ( )U be used corresponding to the remaining retrial time of 

the customers while waiting in the retrial pool. 

The system state probabilities at the time ' '  are defined as follows: 

0,0( ) Prob{ ( ) 0, ( ) 0}P S N      

0, ( , ) Prob{ ( ) 0, ( ) , ( ) }, 0,1 1nP x dx S N n x U x dx x n K              

1, ( ) Prob{ ( ) 1, ( ) }, 0 1nP S N n n K         

2, ( ) Prob{ ( ) 2, ( ) }, 1nP S N n F n K          

Also 
0, 0,

0
( ) Prob{ ( ) 0, ( ) } ( , ) , 1 1n nP S N n P x dx n K   



       . 

When  , the steady state probabilities are denoted by 

0,0 0,0lim ( )P P





 ; 
0, 0,( ) lim ( , ), 1 1n nP x P x n K





     

1, ,lim ( ), 0 1n i nP P n K





    ;
2, 2,lim ( ), 1n nP P F n K





    . 

Denote Laplace Stieltjes transform (LST) of ( )x  and 
0, ( )nP x  by *( )  and 0 ( )*

,nP  , respectively. 

Also, 0 0( )= ( )* *

,n ,nP P   . 

5.3. GOVERNING EQUATIONS AND ANALYSIS 

For the analysis, the supplementary variable technique (SVT) is used by introducing the 

random variable corresponding to the remaining retrial time. Now, we construct the steady state 

probability distribution of the non-Markovian model for three levels i.e. for 0,1,2i  . The 

system state transition diagram is depicted in Figure 5.1. Chapman-Kolmogorov equations for 

the system states are formulated as follows: 

(i)  For 0i  : When the customers are waiting in the retrial orbit. 

     0, 0, 1 1, , 1 1n n n n n

d
P P Px x x n K

dx
              (5.3) 

0 0,0 1 1,0P P        (5.4) 



99 

 

(ii) For 1i  : When the customers are allowed to enter into the system. 

01 1 1,0 0,0 0,1( ) (0)P P P             (5.5) 

1 1 1, 1, 1 0, 0, 1( ) 1(0) 2,n n n n n n n nP P P P n F                 (5.6) 

1, 1 1, 2 0, 1 0, 2,1 1( ) (0)F F F F F F F FFP P P P P               (5.7) 

1 1 1, 1, 1 0, 0, 1( ) (0), 2n n n nn n nnP P P P F n K                 (5.8) 

1 01, 1 , 11 1, 2( ) KK K KK KP P P               (5.9) 

(iii) For 2i  : When the customers are not allowed to enter into the system due to F-policy. 

2, 1 2, 2 1, 1 3,n n KP P P F Kn         (5.10) 

The queue size distribution is obtained in terms of probability
0,0P . The normalizing condition is 

given by 

1 1 1

0, 1, 2,

0 0

1
K K K

n n n

n n n F

P P P
  

  

      (5.11) 

Taking LST of (5.3), we obtain 

     * *

0, 1 1, 0, 0 ,( 1 1) n n n nn P P P n K           (5.12) 

For brevity of notations, we note 
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Theorem 6.1: The steady state probability distributions for M/M/1/K retrial queueing model 

with discouraged customers and operating under F-policy, are given by  
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 (5.13b) 
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where  
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Proof: Using (5.12), we get  
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Applying recursive technique, equations (5.4)-(5.10) are solved to obtain expressions for the 

state probabilities as given in equations (5.13a-c).
0,0P  is obtained using (5.13a-c) in (5.11).      

Remark 6.1:  When the customers’ discouragement behavior and admission control F-policy 

are not taken into account and ,n  ( ) n K n  , the results given in (5.13a) and (5.13b) 

coincide with the results obtained by Yang and Chang (2018).   
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Remark 6.2: For general retrial queueing model, Laplace-Stieltjes transforms *( )   of some 

specific probability distributions ( )x  for general retrial time are given by 
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2

2

, for k-phase Erlang distribution,

*( ) ,    for gamma distribution,

(1 ) , [0,1], for hyper exponentialdistribution.
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Exponential and deterministic distributions are particular cases of the k  phase Erlang 

distribution ( )kE  and are obtained when 1k   and when k  , respectively.  

5.4. PERFORMANCE MEASURES AND COST FUNCTION 

To explore the proposed model, various system indices and cost function have been 

derived which can be further utilized to resolve the queueing problems of the real time system.  

5.4.1. Performance Indices  

The following system indices are established in terms of probabilities:  

(i) The average number of customers in the system and in the queue respectively, are  

(a) 
1 1 1

0, 1, 2,

0 0

[ ] ( 1) ( 1)
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n n n F

E N nP n P n P
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(b) 
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(ii) System throughput is  

1 1
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
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(iii) The probability of the server being idle and busy respectively, are   

(a) 
1

0,

0
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    (5.18) 

(b) 
1 1

1, 2,

0

( )
K K

B n n
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P S P P
 

 

     (5.19) 

(iv) Average balking rate, average reneging rate and the average rate of customers loss 

respectively, are 
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(b) 
1

1,

1

K

avg n

n

R n P




  (5.21) 

(c) 
avg avgCL B R   (5.22) 

5.4.2. Cost Function  

One of the key concern of analyzing the queueing system operating under the admission 

control policy is to run the system at minimum cost so that the maximum profit can be earned. 

In any system, the organizers would like to provide faster service to the customers but it may 

increase the total system cost. To tradeoff between the excessive cost due to facilitating better 

service and inconvenience due to longer waiting, we compute the optimal service rate and 

corresponding expected minimum cost. For this purpose, a cost function per unit of time which 

is composed of different cost elements per unit of time corresponding to different activities, is 

framed as:  

     ( ) ( ) ( ) [ ]I I B B H q ATC C P S C P S C E N C      (5.23) 

where different cost components in per unit time used are as follows:  

( ): Cost incurred on theserver during theidlestate (busystate),

: Holding cost of each customer residing in thesystem,

:  Cost for rendering theservice to thecustomer.

I B

H

A

C C

C

C

 

5.5. COST OPTIMIZATION  

To determine the optimal service rate ( *) and corresponding minimum total cost ( *),TC 

we employ quasi-Newton method (QNM). The genetic algorithm (GA) is also used for the cost 

optimization.  

5.5.1. Quasi-Newton Method (QNM) 

For the general retrial queueing model with customers’ discouragement, we apply QNM 

to find the optimal service rate ( *) and minimum cost ( *)TC  . The algorithmic steps for the 

QNM can be seen in Section 1.4.8 of Chapter 1. The following input parameters are used for 

QNM to determine the minimum cost.   
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Inputs: ,K ,F , , , , , , ,IC ,BC ,HC AC , tolerance
0 10E 06    and the initial trial 

solution 0 for  .  

Output: Approximate optimal service rate ( *) and ( *)TC  . 

5.5.2. Genetic Algorithm (GA) 

For the queueing model, we apply the GA (cf. Section 1.4.8 (ii), Chapter 1) to evaluate 

optimal service parameter ( * ) by using input parameters ,K ,F , , , , , , ,IC ,BC

HC and AC , population size ,Y  genes X   and probabilities of crossover and mutation. The 

algorithm steps for implementing GA are briefly given below. 

Step 1: Initialization of population. Consider the fixed size Y  of the population which is 

represented by genes ( )X   of chromosomes. Use binary encoding in which every 

chromosome is a string of bits 1 or 0. 

Step 2: Evaluation of fitness function. Compute the fitness function (cost function) at each 

chromosome. 

Step 3: Selection. Select the fittest chromosomes (fittest parents) from the 
Y  population. We 

select 
Y /5 population from the entire population for the next generation using 

tournament selection. 

Step 4: Crossover. To produce the next generation, the crossover of the selected chromosomes 

is done. Two point crossover method is considered and crossover probability is taken 

as CP .   

Step 5: Mutation. It is done to maintain diversity in the population. The bit inversion mutation 

is adopted and the mutation rate is selected as RM .  

Step 6: Stopping criteria. The stopping criteria of GA in terms of generations, stall generation 

and function tolerance.  

5.6. APPLICATION EXAMPLE AND NUMERICAL RESULTS 

The finite capacity retrial queueing system with discouraged customers and admission 

control has varied applications in the real life queueing scenarios including the patients waiting 

for treatment in the hospitals, failed computers/vehicles arriving in the repair shop, jobs arriving 
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in the production system, etc. In order to illustrate the applicability of the model developed, we 

cite an example of a queue formed at the reception counter in the hospital. The patients arrive 

for the treatment to the hospital following Poisson process with rate . The arriving patient may 

be discouraged due to the crowd present at the reception counter of a hospital having finite 

waiting space and decides not to join the queue for treatment and balks from the hospital with 

probability (1 ) . The receptionist at the counter allocates the doctor to the patients as per need 

of treatment according to the exponential distribution with rate . After waiting for a certain 

period of time in the queue, the patients may get impatient and renege without being getting the 

appointment according to exponential distribution with rate . If the arriving patient finds the 

receptionist busy with another patient then he is shifted to the waiting hall available in the 

hospital and re-attempts for the appointment for the doctor after some time by following the 

exponential distribution with mean1/  . Due to capacity constraint, as soon as the capacity (say

K ) is full, the arriving patients are not allowed to get appointments. Further, the patients are 

allowed for admission at the hospital when the number of patients for admission ceases to a 

predefined number ‘F’. To understand the more practical situation, we consider exponential 

distribution for general retrial time and set the parameters as 30K patients, 20F patients,

8  patients/hour, 5  patients/hour, 1  patient/hour, 1,  0.5,  0.8  . For these fix 

parameter values, using Equation (5.16a), we find the average number of patients present in the 

reception area of the hospital as 21.45 22 .   

5.6.1. Sensitivity Analysis  

This section explores the effect of system descriptors ,  and on various performance 

measures derived in Section 5.4.1.  In order to analyze the impact of the system parameters on 

different performance measures, we illustrate a numerical example. We consider two 

distributions, namely exponential distribution ( )Exp  and 3-stage Erlang distribution 3( )E for the 

general retrial times.  

3

, for exponentialdistribution,

*( )
3

, for 3-stage Erlang distribution.
3


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

 


 

 
 
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The following two balking functions namely, constant balking (CB) and exponential 

balking (EB) are taken into account to compute the numerical results. 

, constant balking,

, exponentialbalking.
n ne 







 


 

The MATLAB software is used to perform a numerical experiment by assigning the 

default values to the system parameters as 25,K  15,F  8,  3, 1,  1,  0.5, 

0.6,  0.05,  20,IC  30,BC  100,HC  35,FC  30.AC   

The numerical results for constant balking and exponential balking are displayed in 

Table 5.1 and Table 5.2, respectively. The trends of [ ]SE N  by varying parameters ,  and

for both constant and exponential balking cases and exponential as well as Erlang-3 distributions 

are depicted in Figures 5.3(a-c).  

The following observations are made after performing numerical experiments by 

varying the different system parameters: 

 Effect of service rate ( ) :  In case, when the system organizers provide service to the 

customers with faster rate i.e. when  is higher, [ ],SE N [ ]qE N  and CL  become less. The 

numerical results for constant balking (CB) and for exponential balking (EB) are 

summarized in Tables 5.1 and 5.2 which reveal the similar pattern of [ ]qE N  and CL  for 

varying values of  for both Exp and 3E  distributions for the retrial time. From Figure 

5.3(a), we notice that when the customers follow constant balking, the number of 

customers decreases rapidly at the initial stage as  increases upto 7 and then after as 

goes up, the decreasing effect diminishes before reaching to an asymptotically constant 

value. Furthermore, in case of both constant and exponential balking, [ ]SE N  decreases 

with faster rate when retrial time follows Exp  distribution in comparison to the model 

when the retrial time is 3E distributed. 

 Effect of retrial rate ( ) :  From Tables 5.1-5.2, it is noticed that as goes up, [ ]qE N  lower 

down but CL  goes up in all the cases of balking and retrial time distributions. It is observed 

in Figure 5.3(c) that [ ]SE N  reduces gradually at the initial stage as   enhances while later 

on it becomes asymptotically constant when   goes beyond 2.5. 
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Table 5.1: Performance measures for 
n   by varying values of ( , , )    

( , , )    
Exp  3E  

[ ]qE N  CL  TC  [ ]qE N  CL  TC  

(1,3,1) 8.75 2.65 963.89 13.58 2.75 1445.06 

(2,3,1) 6.76 2.30 829.17 11.61 2.52 1313.19 

(3,3,1) 4.93 2.04 710.99 9.59 2.28 1176.14 

(4,3,1) 3.46 1.90 629.49 7.63 2.06 1044.92 

(5,3,1) 2.44 1.87 591.93 5.86 1.89 933.58 

(8,1,1) 0.06 0.93 546.70 0.07 0.93 547.91 

(8,2,1) 0.31 1.65 572.59 0.48 1.56 589.57 

(8,3,1) 1.05 2.06 646.91 2.57 1.80 798.82 

(8,4,1) 3.27 2.34 869.42 12.53 2.62 1794.80 

(8,5,1) 9.02 3.08 1443.98 18.72 3.51 2413.57 

(8,3,1) 1.05 2.06 646.91 2.57 1.80 798.82 

(8,3,1.5) 0.62 2.23 603.86 1.00 2.08 642.31 

(8,3,2) 0.45 2.32 586.73 0.62 2.23 603.68 

(8,3,2.5) 0.35 2.38 577.60 0.45 2.32 587.08 

(8,3,3) 0.30 2.42 571.94 0.36 2.38 577.99 

 

Table 5.2: Performance measures for n

n e    by varying values of ( , , )    

( , , )    
Exp  3E  

[ ]qE N  CL  TC  [ ]qE N  CL  TC  

(1,3,1) 9.19 2.65 1007.63 11.32 2.74 1219.61 

(2,3,1) 8.16 2.32 969.13 10.48 2.50 1200.49 

(3,3,1) 7.17 2.02 935.56 9.69 2.28 1186.64 

(4,3,1) 6.24 1.75 907.31 8.95 2.08 1177.54 

(5,3,1) 5.38 1.52 885.58 8.26 1.89 1172.77 

(8,1,1) 0.17 0.79 558.52 0.23 0.76 564.50 

(8,2,1) 1.03 1.00 645.18 1.96 0.79 738.00 

(8,3,1) 3.32 1.13 874.40 6.40 1.43 1181.97 

(8,4,1) 6.55 1.95 1197.99 10.62 2.57 1604.24 

(8,5,1) 9.55 3.03 1497.54 14.14 3.68 1955.18 

(8,3,1) 3.32 1.13 874.40 6.40 1.43 1181.97 

(8,3,1.5) 2.06 1.18 748.85 3.63 1.13 905.19 

(8,3,2) 1.48 1.29 691.22 2.32 1.14 774.53 

(8,3,2.5) 1.16 1.40 659.48 1.66 1.24 708.71 

(8,3,3) 0.96 1.48 639.71 1.28 1.35 671.57 

 

 Effect of arrival rate ( ) :  Now we examine the case when the system organizer serves 

the customers with constant service rate and the arrival rate of the customers increases, 

i.e. when the system becomes more crowded. Tables 5.1 and 5.2 show that  and 

CL  increase as the arrival rate of the customers, goes up in all the cases. The trends shown 

[ ]qE N
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in Figure 5.3(b) depict that in case of constant balking (CB) as   starts increasing, initially

[ ]SE N  increases with slower rate and later on steep increment is reported before reaching 

an asymptotically constant value as   crosses 8. When the customers follow exponential 

balking (EB) behavior, [ ]SE N  increases linearly as   goes up for both retrial time 

distributions ( Exp  and 3E ); however, [ ]SE N  is always less for Exp  than 3E  distribution. 

5.6.2. ANFIS Computing and Results   

Now, we compare the numerical results obtained by analytical formulae and ANFIS 

approach. Using the evalfis function in MATLAB software, ANFIS results are generated for 

default system parameter values given in Section 5.6.1. The membership functions 

corresponding to input parameters (i)  (ii)   (iii)   are selected as Gaussian function and the 

linguistic variables for input parameters are defined as given in Table 5.3.  

Table 5.3: Input parameters, membership function and linguistic variables for ANFIS 

Sr. 

No. 
Input parameter Number of membership function Linguistic variables 

1.   3 Small; medium; large 

2.   3 Small; medium; large 

3.   3 Small; medium; large 

The absolute percentage error ( ) is evaluated by the formula  

| { [ ]} { [ ]}|
100%

{ [ ]}


  S S

S

I E N M E N

M E N
 (5.24) 

where   absolute percentage error, { [ ]}SI E N  estimated value of [ ]SE N  by ANFIS,

{ [ ]}SM E N  computed value of analytical formula for [ ].SE N  

The absolute percentage errors ( ) and accuracy of the estimated value in percentage of [ ]SE N

are also summarized in Tables 5.4-5.6. The low values of   represent how ANFIS approach 

facilitates good approximate results. The graph for the membership function for the input 

parameter (i)  (ii)   (iii)   are shown in Figures 5.2(a-c), respectively. 

From Tables 5.4-5.6, it is recorded that the computed values of [ ]SE N by analytical formula 

(5.16a) and the estimated values of [ ]SE N by ANFIS are very close which authenticate the 

feasibility of ANFIS in the performance evaluation of real time complex system. The ANFIS 
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results in Figures 5.3(a-c) are shown by tick marks and the analytical results are represented by 

continuous lines and discrete lines for the prediction of [ ].SE N  From these Figures, we notice 

that both results have a good match as tick marks can be seen almost over the curved lines.  

Table 5.4: Absolute percentage error ( ) and { [ ]}SI E N  obtained by ANFIS by varying   

  

Constant balking 
n   Exponential balking n

n e    

Exp  
3E  Exp  

3E  

SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

{ [ ]}SM E N

 

  SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

SM{E[N ]}

 

  

1 9.110 9.072 0.416 13.822 13.796 0.191 9.541 9.527 0.147 11.583 11.574 0.078 

2 7.111 7.150 0.551 11.851 11.882 0.265 8.496 8.510 0.167 10.732 10.740 0.080 

3 5.269 5.225 0.847 9.830 9.798 0.323 7.500 7.485 0.203 9.933 9.924 0.096 

4 3.784 3.796 0.325 7.866 7.864 0.022 6.557 6.559 0.021 9.183 9.185 0.020 

5 2.732 2.766 1.250 6.097 6.140 0.697 5.680 5.696 0.287 8.477 8.486 0.099 

6 2.033 1.993 1.967 4.648 4.610 0.815 4.883 4.869 0.300 7.812 7.804 0.103 

7 1.571 1.572 0.085 3.553 3.542 0.291 4.182 4.177 0.138 7.186 7.183 0.039 

8 1.258 1.290 2.554 2.764 2.808 1.600 3.582 3.601 0.533 6.597 6.607 0.149 

9 1.039 1.019 1.914 2.202 2.181 0.954 3.079 3.072 0.234 6.047 6.044 0.052 

10 0.879 0.866 1.471 1.800 1.777 1.261 2.663 2.651 0.475 5.536 5.528 0.136 

11 0.759 0.782 3.003 1.505 1.537 2.148 2.321 2.337 0.661 5.063 5.072 0.161 

12 0.666 0.662 0.590 1.284 1.281 0.241 2.040 2.041 0.012 4.630 4.632 0.027 

13 0.592 0.578 2.464 1.115 1.092 2.060 1.808 1.795 0.719 4.236 4.228 0.197 

14 0.533 0.548 2.859 0.982 1.005 2.343 1.616 1.628 0.765 3.879 3.887 0.193 

15 0.484 0.470 2.865 0.875 0.854 2.421 1.455 1.443 0.808 3.558 3.550 0.211 

Average of   1.544 1.042 0.365 0.109 

Accuracy in 

predicted value (%) 
98.456 98.958 99.635 99.891 

 

Table 5.5: Absolute percentage error ( ) and { [ ]}SI E N  obtained by ANFIS by varying   

  

Constant balking 
n   Exponential balking n

n e    

Exp  
3E  Exp  

3E  

SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

SM{E[N ]}

 

  SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

SM{E[N ]}

 

  

1 1.258 1.258 0.000 2.764 2.764 0.001 3.582 3.582 0.000 6.597 6.597 0.000 

1.5 0.832 0.832 0.001 1.213 1.213 0.002 2.356 2.356 0.001 3.883 3.883 0.001 

2 0.662 0.662 0.001 0.830 0.830 0.003 1.795 1.795 0.001 2.607 2.607 0.002 

2.5 0.572 0.572 0.001 0.666 0.666 0.004 1.486 1.486 0.001 1.965 1.965 0.002 

3 0.516 0.516 0.001 0.576 0.576 0.002 1.294 1.294 0.001 1.604 1.604 0.001 

Average of   0.001 0.002 0.001 0.001 

Accuracy in predicted 

value (%) 
99.999 99.998 99.999 99.999 
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Table 5.6: Absolute percentage error ( ) and { [ ]}SI E N  obtained by ANFIS by varying   

  

Constant balking 
n    Exponential balking n

n e   

Exp  
3E  Exp  

3E  

SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

SM{E[N ]}

 

  SM{E[N ]}

 

{ [ ]}SI E N

 

  { [ ]}SI E N

 

SM{E[N ]}

 

  

2 0.457 0.434 5.069 0.626 0.666 6.354 1.250 1.227 1.847 2.162 2.124 1.739 

3 1.258 1.234 1.934 2.764 2.647 4.230 3.582 3.567 0.417 6.597 6.579 0.281 

4 3.520 3.539 0.527 12.704 12.350 2.782 6.814 6.814 0.008 10.804 10.791 0.116 

5 9.261 9.294 0.354 18.895 19.304 2.162 9.797 9.808 0.111 14.302 14.330 0.202 

6 15.982 15.910 0.445 20.011 19.758 1.262 12.391 12.374 0.131 17.135 17.099 0.213 

7 18.797 18.860 0.338 20.449 20.607 0.772 14.659 14.678 0.131 19.128 19.166 0.198 

8 19.838 19.796 0.212 20.713 20.624 0.427 16.575 16.556 0.110 20.255 20.226 0.146 

9 20.356 20.374 0.088 20.902 20.932 0.143 18.093 18.105 0.068 20.818 20.832 0.068 

10 20.675 20.734 0.285 21.052 21.212 0.760 19.207 19.239 0.165 21.105 21.148 0.207 

Average of   0.826 1.907 0.246 0.249 

Accuracy in predicted 

value (%) 
99.174 98.093 99.754 99.751 

 

5.6.3. Cost Analysis using QNM and GA 

In the finite queueing model, the customers always demand faster service to avoid 

waiting time in the system but it enhances the system cost also. The objective of the cost analysis 

in the present section is to evaluate the optimal service rate so as to minimize the total cost.  It 

is seen that the system capacity ( )K  has an upper bound, which indicates that the expected 

minimum cost will be computed in the desired feasible region. In order to evaluate the optimal 

service rate ( *)  and corresponding minimum cost ( *),TC  we set the default values of the 

system parameters as 25,K  15,F  8,  8,  1,  1,  0.5,  0.6,  0.05  . The 

three cost sets for the numerical experiment are taken into consideration as given in Table 5.7. 

Table 5.7: Cost sets with different cost elements (in $) 

Cost set HC  AC  IC  BC  

I 100 65 20 30 

II 110 55 20 30 

III 100 65 50 50 
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(b) (b) 
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Figure 5.2: Membership function for (a)   

(b)   (c)     

Figure 5.3: [ ]SE N for varying values of (a)   

(b)   (c)   
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To achieve the goal of the optimal service rate and the minimum expected cost of the 

system, it is noticed that the cost function given in (5.23) is highly non-linear and complex and 

it is not an easy task to minimize it by using the analytical method. However, the search method 

namely, quasi-Newton method (QNM) and genetic algorithm (GA) can be applied for the 

evaluation of the optimal values of the service rate ( *) .  

The quasi-Newton method (QNM) is used for three cost sets given in Table 5.7 with initial 

solution 0 3  and 0 4   of   for Exp  retrial time and 3E retrial time, respectively. The values 

of *  and corresponding minimum cost of the system are gathered in Tables 5.9-5.12 by taking 

n   and n

n e    for different values of other parameters namely ,  and . From Figures 

5.4(a-c)-5.7(a-c), it is noted that as the constant (exponential) balking parameter  ( ) increases 

(decreases), the cost of the system enhances. On the other hand, it is also observed that the 

expected cost function is unimodal and convex in the feasible range of  ; the minimum cost is 

achieved in the desired search space for different balking parameters.  

To achieve the optimal service rate ( *)  and the corresponding minimum expected cost 

( *)TC  of the system, metaheuristic algorithm GA is successfully implemented. To obtain the 

minimum cost of the system for constant balking (CB) and exponential balking (EB), the 

numerical results of *  and ( *)TC  are evaluated using the computational steps mentioned in 

Section 5.5.2 by setting the input parameters as 25,K  15,F  3, 1,  1,  0.5, 

0.6,  0.05  , 0.01.   The numerical results are generated for three different cost sets 

displayed in Table 5.7. GA parameters used to compute *  are shown in Table 5.8. 

Repeating steps of GA from 2 to 5 given in Section 5.5.2, it is noted that after every 51 

iterations, the weighted average change in the fitness function (cost function) value over stall 

generations is less than function tolerance. Therefore, the algorithm meets the stopping criteria 

and the approximate values of *  and  ( *)TC   are recorded in Tables 5.9-5.12. We notice that 

the optimal values obtained by GA almost coincide with the optimal values obtained by the 

QNM.  
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Table 5.8: GA parameters for computation of * and ( *)TC   

Population size ( )Y  20 

Probability of crossover ( )CP  1 

Mutation rate ( )RM  0.08 

Stopping criteria   

(i) Generations 100 

(ii) Stall generation 50 

(iii) Function tolerance  10E-06 

 

Table 5.9: ( *, ( *))TC  by varying value of   for n  using QNM and GA 

Distribution 

for general 

retrial times 

Cost Set Method 0 5  .  0 6  .  0 7  .  

Exp  

I 
QNM (4.206, 466.6314) (5.558, 587.1582) (7.085, 718.9362) 

GA (4.204, 466.6315) (5.558, 587.1582) (7.085, 718.9363) 

II 
QNM (4.714, 437.6154) (6.162, 547.1549) (7.785, 666.1737) 

GA (4.711, 437.6155) (6.158, 547.1551) (7.781, 666.1739) 

III 
QNM (4.193, 493.6604) (5.547, 614.4117) (7.076, 746.3861) 

GA (4.190, 493.6606) (5.553, 614.4146) (7.083, 746.3868) 

3E  

I 
QNM (5.597, 593.3789) (7.993, 798.8203) (11.029, 1048.7280) 

GA (5.593, 593.3791) (7.995, 798.8203) (11.025, 1048.7278) 

II 
QNM (6.207, 553.3419) (8.749, 738.6806) (11.936, 962.3292) 

GA (6.199, 553.3429) (8.769, 738. 6847) (11.934, 962.3292) 

III 
QNM (5.588, 621.1035) (7.987, 826.8685) (11.024, 1077.0490) 

GA (5.587, 621.1036) (7.989, 826.8686) (11.019, 1077.0490) 

 

Table 5.10: ( *, ( *))TC  by varying value of   for n

n e   using QNM and GA 

Distribution 

for general 

retrial times 

Cost Set Method 0 03  .  0 04  .  0 05  .  

Exp  

I 
QNM (8.739, 969.9668) (7.755, 916.1820) (6.886, 868.0854) 

GA (8.739, 969.9668) (7.751, 916.1821) (6.882, 868.0855) 

II 
QNM (10.067, 909.8519) (9.175, 866.0991) (8.389, 826.7751) 

GA (10.070, 909.8519) (9.178, 866.0991) (8.386, 826.7751) 

III 
QNM (8.729, 997.4295) (7.744, 943.5102) (6.873, 895.2829) 

GA (8.730, 997.4295) (7.746, 943.5103) (6.876, 895.2830) 

3E  

I 
QNM (10.681, 1440.5781) (7.699, 1292.4704) (5.690, 1171.8401) 

GA (10.659, 1440.5791) (7.696, 1292.4704) (5.689, 1171.8401) 

II 
QNM (14.158, 1376.7692) (11.638, 1259.1987) (9.636, 1160.3067) 

GA (14.166, 1376.7693) (11.650, 1259.1990) (9.624, 1160.3070) 

III 
QNM (10.668, 1468.8665) (7.680, 1320.5287) (5.668, 1199.6807) 

GA (10.666, 1468.8665) (7.675, 1320. 5288) (5.666, 1199.6807) 
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Table 5.11: ( *, ( *))TC  by varying value of   for 
n  using QNM and GA 

Distribution 

for general 

retrial times 

Cost Set Method 1   2   3   

Exp  

I 
QNM (5.558, 587.1582) (3.825, 427.3411) (3.230, 369.5056) 

GA (5.558, 587.1582) (3.830, 427.3415) (3.226, 369.5060) 

II 
QNM (6.162, 547. 1549) (4.298, 400.8663) (3.650, 347.4191) 

GA (6.167, 547.1553) (4.296, 400.8663) (3.671, 347.4264) 

III 
QNM (5.547, 614.4117) (3.809, 453.4553) (3.210, 394.9680) 

GA (5.548, 614.4118) (3.795, 453.4589) (3.210, 394.9680) 

3E  

I 
QNM (7.993, 798.8203) (4.404, 481.8967) (3.486, 394.5844) 

GA (7.992, 798.8203) (4.405, 481.8967) (3.486, 394.5844 

II 
QNM (8.749, 738.6806) (4.923, 451.0108) (3.929, 370.6347) 

GA (8.745, 738.6807) (4.920, 451.0109) (3.930, 370.6347) 

III 
QNM (7.987, 826.8685) (4.389, 508.4852) (3.467, 420.3520) 

GA (7.990, 826.8686) (4.387, 508.4852) (3.458, 420.3535) 

 

Table 5.12: ( *, ( *))TC  by varying value of   for n

n e    using QNM and GA 

Distribution 

for general 

retrial times 

Cost Set Method 1   2   3   

Exp  

I 
QNM (6.886, 868.0854) (5.242, 636.0440) (4.522, 545.3628) 

GA (6.895, 868.0858) (5.239, 636.0441) (4.525, 545.3629) 

II 
QNM (8.389, 826.7751) (6.173, 603.3290) (5.285, 516.7588) 

GA (8.391, 826.7752 ) (6.164, 603.3297) (5.307, 516.7635) 

III 
QNM (6.873, 895.2929) (5.225, 662.0901) (4.502, 570.6971) 

GA (6.866, 895.2832) (5.224, 662.0901) (4.504, 570.6971) 

3E  

I 
QNM (5.690, 1171.8401) (5.849, 747.2241) (4.887, 600.7302) 

GA (5.688, 1171.8401) (5.841, 747.2245) (4.884, 600.7303) 

II 
QNM (9.636, 1160.3067) (7.101, 712.9964) (5.773, 570.6814) 

GA (9.638, 1160.3067) (7.110, 712.9969) (5.771, 570.6815) 

III 
QNM (5.668, 1199.6807) (5.832, 773.8704) (4.868, 626.4996) 

GA (5.665, 1199.6807) (5.831, 773.8704) (4.867, 626.4996) 

It can also be noticed that when customer re-tries from the orbit for the service as per exponential 

distribution, the minimum cost is less as compared to when he re-tries according to Erlang-3 

distribution. Also, when the customer balks following constant balking (exponential balking) 

then system cost seems less (more). These facts can be seen in Tables 5.9-5.12. Surface graphs 

shown in Figures 5.8(a-c)-5.11(a-c) depict that the cost function is convex with respect  in the 

feasible interval as such minimum cost of the system is achieved at *.  
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(a) Cost Set-I (a) Cost Set-I 

  
(b) Cost Set-II (b) Cost Set-II 

  
(c) Cost Set-III (c) Cost Set-III 

Figure 5.4: vsTC  for n   and 

exponential retrial time 

Figure 5.5: vsTC  for n

n e    and 

exponential retrial time 
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(a) Cost Set-I (a) Cost Set-I 

  
(b) Cost Set-II (b) Cost Set-II 

  
(c) Cost Set-III (c) Cost Set-III 

Figure 5.6: vsTC  for n   and Erlang-3 

retrial time 

Figure 5.7: vsTC  for n

n e    and 

Erlang-3 retrial time 
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(a) Cost Set-I (a) Cost Set-I 

  

  
(b) Cost Set-II (b) Cost Set-II 

  

  

(c) Cost Set-III (c) Cost Set-III 

Figure 5.8: Total cost for varying values of 

and   for n   and exponential retrial 

time 

Figure 5.9: Total cost for varying values of 

and    for n

n e    and exponential 

retrial time 
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(a) Cost Set-I (a) Cost Set-I 

  

  
(b) Cost Set-II (b) Cost Set-II 

  

  
(c) Cost Set-III (c) Cost Set-III 

Figure 5.10: Total cost for varying values of 

and  for n   and Erlang-3 retrial time 

Figure 5.11: Total cost for varying values of

and  for n

n e    and Erlang-3 retrial 

time 



118 

 

5.7. CONCLUDING REMARKS  

The study done in this chapter on the admission control for M/M/1/K queueing model 

with general retrial attempt and discouraged customers is supported by implementing soft 

computing approach. The supplementary variable used corresponding to retrial time helps in 

providing the exact analytical results by using a recursive method. The exponential distribution 

and Erlang-3 distribution are considered for the general retrial times for illustration purpose. 

The incorporation of realistic features i.e. balking and reneging alongwith F-policy make our 

model closer to real world queueing problem seen at many day-to-day as well as industrial 

queueing problems. The sensitivity analysis conducted by taking a numerical illustration shows 

the effect of variation in parameters on the performance indices. The adaptive neuro fuzzy 

inference system is successfully implemented and authenticates the scope of the ANFIS 

technique for the complex queueing system for which analytical results cannot be established in 

closed form in particular when the network of queues are formed. The applicability of quasi-

Newton method and genetic algorithm to optimize the cost function shown by implementing it, 

validates the scope of soft computing approaches for the future design of complex queueing 

systems for which analytical results are difficult to derive in explicit form. 
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Chapter 6 
 

F-Policy for Machine Repair System with General 

Retrial Attempts 
 

6.1. INTRODUCTION  

With the advancement of modern technology, the life of the human being depends on 

machines to perform various activities. But due to unexpected failures of machines, there may 

not be only inconvenience to the users but also an undesirable loss of revenue along with 

goodwill of the concerned systems. Using recursive method, Gupta and Rao (1994) investigated 

machine interference problem with arbitrary repair to present the steady state results for the 

performance analysis. To analyze the unexpected breakdowns of the machines, many 

researchers working in the field of queueing theory have paid their attention towards machine 

repair problems (cf. Haque and Armstrong, 2007; Huang et al., 2016; Chen, 2018). In many 

finite population retrial queues, if the caretaker of the failed machine finds the repairman 

occupied, then he may leave the service area and can wait in the retrial orbit; from retrial orbit, 

after a random time duration he repeats his attempt for the service. To be more specific, one can 

notice the computer repair shop where failed computers join the system for the repair job; in the 

case when a repairman is busy, the failed computers may wait in the pool of blocked computers 

called retrial orbit and from there those failed computers seek for the repairing job and try again 

later. Whenever, the repairman becomes free, it takes the next failed computer for the repair, 

however, other failed computers may also try to get repair from the orbit. Due to enormous 

applications of retrial queueing problems in computer and communication systems, service and 

transportation systems, production and manufacturing systems, etc., many researchers 

contributed towards retrial queueing models in different frameworks. 

F-policy can be used to restrict the failed machines from joining the system for repair 

when the system size is full. Jain et al. (2016) investigated the machine repair problem with 

working vacation and F-policy. The matrix method is used to establish the steady state 

probability distribution of the system size. Recently, a few researchers have paid their attention 
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towards F-policy and presented a variety of works by considering F-policy (Kumar et al., 2019, 

Jain et al. 2019). 

The system managers/organizers of the service systems may be interested to facilitate the 

service to their customers at a fast pace; however, the system may stop functioning due to the 

failure of machines. In order to reduce the congestion of failed machines in the system and to 

maintain the smooth functioning of the machining system, the managers/organizers of the 

concerned system should provide the immediate repair to the failed machines at optimal cost. 

Now-a-days, the industrial engineers design fault tolerant system (FTS) using optimal 

maintenance policy. In the queueing literature, a few researchers have paid their attention to the 

maintenance issues of the multi-component machining systems (cf. Chang et al., 2014b; Liou, 

2014; Wang et al., 2014; Chen et al., 2016;) by developing cost models having parameters and 

cost elements as crisp. In recent years, some attempts have also been made to study the fuzzy 

queue in which arrival and/or service parameters were considered as fuzzy numbers (cf. 

Bagherinejad and Pishkenari, 2016; Ke et al., 2007; Mueen et al., 2017). In the crisp 

environment, the cost incurred on various activities are considered to be crisp (cf. Tandra et al., 

2004). Kapur and Sachdeva (2016) dealt with the optimization problem to analyze the software 

faults of different severity to achieve desired system reliability. Kapur et al. (2017) also 

formulated optimization problem based on Bass diffusion model to depict the amount in cost-

saving in manufacturing process. Recently, Bagyam and Chandrika (2019) studied single server 

retrial queue with admission control and vacation in which the customers join the queue in batch. 

Using Zadeh’s extension principle they analyzed the model in environment.    

In real time system, the cost elements do not always have definite values. Therefore, we 

need to analyze the cost function of the finite population model in a fuzzy environment. In some 

organizations, the cost factors associated with the total cost are linguistic variables and may be 

both probabilistic and possibilistic. The fuzzy cost function gives more robust design in 

comparison to the traditionally used crisp cost function. The same in the case with machine 

interference system for which finite population model can be used to deal with a variety of 

applications in real time machining system by considering fuzzy cost factors. The system 

organizers/managers should have an idea of fuzzified system cost, in particular when the cost 

function is analyzed for machining system operating in the fuzzy economic environment. The 

process in which the crisp value extracted from the fuzzy set, is often known as defuzzification. 

The fuzzified cost output is also to be converted into crisp cost output by choosing the suitable 
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method of defuzzification (cf. Leekwijck and Kerre, 1999; Roychowdhury and Pedrycz, 2001). 

Some authors have used the signed distance method to defuzzify the fuzzy set (cf. Abbasbandy 

et al., 2013; Jaggi et al., 2016; Sahoo, 2017). The fuzzy cost function can be transformed into 

crisp equivalent cost function by using signed distance method (cf. Yao and Wu, 2000) of 

defuzzification of trapezoidal fuzzy numbers.  

The objective of this chapter is to study the machine repair problem with the provision of 

retrial orbit. In the generic setup of general retrial times and admission control F-policy, the 

present study present the cost analysis in the fuzzy environment for machine repair problem by 

constructing the cost function and associated cost elements to be trapezoidal fuzzy numbers. 

The contents of this chapter along with ongoing section are arranged in different sections. The 

machine interference problem is described in Section 6.2. Chapman-Kolmogorov equations and 

steady-state results of the concerned model are given in Section 6.3. The various system metrics 

are established in Section 6.4. An application of the concerned study is given in Section 6.5. 

Section 6.6 is devoted to numerical results of the investigation done. In Section 6.7, the cost 

function of the concerned model is analyzed in the fuzzy environment. The cost optimization is 

done in Section 6.8 using a genetic algorithm. Section 6.9 concludes the whole investigation 

done in this chapter.    

6.2. MODEL DESCRIPTION  

Consider the finite population single repairman machine interference system with retrial 

attempts under admission control of failed machines. The system consists of ‘K’ identical 

machines. We assume that the machines are subject to failure. The transition flow diagram of 

MIP is depicted in Figure 6.1. The following assumptions are made to formulate the machine 

interference problem (MIP): 

 The failed machine joins the repair station by following a Poisson distribution with rate .   

 The effective arrival rate n for machine inference problem is defined by ( ) ,n K n    

where K denotes the population size of the machines. 

 If the caretaker of the failed machine finds the repairman free then the failed machine is 

repaired by following an exponential distribution with mean 1  . 

 On an arriving of the caretaker of failed machines in the system, if the repairman seems busy 

then the failed machines shifted to the retrial orbit of finite capacity ‘F’. Later on, after some 

duration, the failed machine can be made to re-attempt for the repair job by following general  
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Figure 6.1: Transition state diagram for MRP 

 

distribution of retrial time (G) with cumulative distribution function (CDF) ( ) ( 0)G x x  and 

instantaneous rate ( )x  and meantime1  . 

 As the capacity of the system becomes full, then the failed machines cannot join the system; 

a setup job following exponential distribution with rate  is needed to restrict the further 

entry of failed machines in the system until the system size reduces to prefixed threshold 

level ‘F’ (0 1)F K   .  

 The life time of the operating machine, repair time of the repairman, and retrial time of the 

failed machines are mutually independent. 

Let at the time , ( ) {0,1,..., }N K  and ( ) {0,1,2}S i    denote the number of failed 

machines in the system and the status of the repairman, respectively. The random variable ( )Y 

is defined as follows: 

0 if the repairman is busyand thefailed machines move to the retrialorbit,

( ) 1(2) if the repairman is busyand thefailed machinesareallowed (not allowed) toenter

thesystem.

S 




 



 

Define the probabilities of the system states as follows: 

0,0

0,

0, 0,
0

1, 1,
0

( ) Prob{ ( ) 0, ( ) 0}

( , ) Prob{ ( ) 0, ( ) }, ( ) , 0,1

( ) Prob{ ( ) 0, ( ) } ( , ) , 1

( ) Prob{ ( ) 1, ( ) } ( , ) , 1 1

n

n n

n n

P S N

P x dx S N n x U x dx x n F

P S N n P x dx n F

P S N n P x dx n K

  

   

   

   





  

        

     

      




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Define 
,0

1, 1 ,

0, elsewhere.
n F

n F
 

 
 


 

We use the supplementary variable ( )U  corresponding to remaining retrial times for the failed 

machines while put in the retrial pool. 

We shall explore the model at steady state, i.e., when  .The steady-state probability 

,i nP  is defined as 

0,

, 1,

2,

( ), 0 , 0,

lim ( ), 0 1, 1,

( ), 1, 2.

n

i n n

n

P

P P

P

n F i

n K i

F n K i









  

    

   







  

Define the Laplace-Stieltjes transform (LST) of ( )x and 
0, ( )nP x  by 

*( )   and *

0, ( )nP  , 

respectively.  

Also, 
1

1, 1,2,3,...
n

i

i n

y n




            (6.1) 

6.3. GOVERNING EQUATIONS AND ANALYSIS  

To analyze the finite population model with a retrial and under control F-policy, the steady 

state Chapman-Kolmogorov equations for the three levels when ( ) {0, 1, 2}S   are framed by 

introducing the supplementary variable ( )U  corresponding to remaining retrial times as follows: 

(i) For level 0 :i  When failed machines are waiting for repair job in retrial orbit. 

0 0,0 1,0P P            (6.2) 

     0, 0, 1, , .1n n n n

d
P P Px x F

x
x

d
n           (6.3) 

(ii) For level 1:i  When failed machines are allowed to join the system for a repair job. 

 ,01 1, 1, 1 0, 0, 1( ) 0 ,0 2n n n n n n nn FP P P P n F                (6.4) 

1, 1 1, 2 01 , 1 0,1 2,( ) (0)F FF F F F F FP P P P P              (6.5) 

1 1, 1, 1 0, , 1, 10( ) , 2n n F nn n n n nP P P P F n K                (6.6) 

1, 1 1 1, 2( ) K K KP P              (6.7) 

(iii) For level 2 :i   When failed machines are not allowed to join the system for repair job. 

during F-policy. 

2, 2, 1 1, 1, 2n n KP P P F Kn              (6.8) 
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Define * *

0, 0,( ) ( )n nP P            (6.9) 

Taking LST on both sides of (6.3), we get 

     * *

0, 1, 0,( 0 ,) 1n n nn P P P n F         (6.10) 

1, 0, 0,* *

1
(0),

(1 ( )) ( )
1n

n n n

n n

n FP P P 


 


    
 (6.11) 

Using (6.2), we get 

1,0 0,0P P
μ

K



 (6.12) 

Using (6.4) and (6.12), we have 

 
  2

0,1 0,0

1
0

K K
P P







 (6.13) 

Using (6.10) and (6.13), we obtain 

2

1,1 0,02 *

( 1)

[( 1) ]

K K
P P

K








  
 (6.14) 

Using (6.10), (6.13) and (6.14), we have 

*

0,1 0,0*

1(

1
(0) 1

)

K
P P

 
  

 



  
 (6.15) 

Using (6.9), (6.10), (6.13) and (6.14), we obtain  

0,1 0,0*

1

1
1

)(

K
P P

 
  

 



  
 (6.16) 

Setting 1n   in (6.4), and using (6.11) and (6.14), we get 

 
  3

0,2 0,02 *

1

1 ( 2)

(
0

)

K K K
P P

 




  
 (6.17) 

Using (6.10) and (6.17), we have 

  3

0,2

1,2 0,0* 3 * *

2 2 1

(0) 1 (

( ( (

2)

) ) )

P K K K
P P

 
 



      
 (6.18) 

Using (6.10), (6.17) and (6.18), we get 

 
2

*

0,2 0,2 0,02 * *

1 2

(

( (

1) 1
0 1

) )

K K
P P P

 
   

 



    
 (6.19) 
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In general, we obtain 

1,

1, 1,

1

1 1

1

1

,

, 0

( ) ,

1,

2,

, 1.

n

n n

n F

n F

n

P f n R F

F

n K

R K

n

n



 

  

 

   


 




  

 

  (6.20) 

0, 1

*

0,

0, 1

1

, 1 1,

( ) ( ) , .
n

n

n

n

n F
P

f n R n F 







  


 





  (6.21) 

 
* 1

0, 1

0,

0, 1

, 1 1

( ) ) , .
0

,

(

n

n

n

n

n F
P

f n R n F 







  




 



  (6.22) 

1

1

, , 12 , 1.
n

n

F

nP F n K
R

  

      (6.23) 

Here
0,0P can be determined by following the normalizing condition given by  

1 1

0, 1, 2,

0 0

1
F K K

n n n

n n n F

P P P
 

  

       (6.24) 

where  
1

1, 1

*

0,0*
1

(
(

)
)

i

i

n n n

n n
i i F

K K i
P


 

  




 

 
 


 


  ,  

0, 1

1

0,0* *
1

(

(

)
1

(

1

) )

n n

n

i

n

i n

K K i
P



    







 
 

 
   ,  

  1 1

0,01 *0

1

,
( )

n

i

n

n

n
i

K K n K i
P



  

 









  , 

2
2 2

1 1

( ) ( )     
 

    



 

  
    

  
 

jK F
K F K F j

K i

j i

f F , 

1
*

1

( ) ( ) ( )
K

i F

i F

R f F   


 

  . 

Special Case: When retrial time is takes as exponential  

We put
*( )


 

 



 for exponential retrial time. The results given in (6.20), (6.21) and (6.23) 

reduce in the following results: 
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1
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



 





  


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 














   
  

 
   

     
 

   
   

  

   



 












   (6.25) 
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



 
 


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



 

 
  





 








   (6.26)  

  0,

1 1

2 0, 1
1

, 1i

i

n n n

n F
i i F

P P F ni
R

K
KK

 


 

     
   



 


    
       (6.27) 

6.4. PERFORMANCE MEASURES  

To explore the behavior of the system, we establish the various performance indices as 

follows:   

 The expected number of failed units in the system, is  

1 1

0, 1, 2,

0 0

[ ] ( 1) ( 1)
F K K

S n n n

n n n F

E N nP n P n P
 

  

        (6.28) 

 Expected number of failed units in the queue and in the retrial orbit respectively, are 

1 1

1, 2, 0,

0 0

[ ] and [ ]
K K F

q n n R n

n n F n

E N nP nP E N nP
 

  

        (6.29a-b) 

 The probability of  the server being idle and busy respectively, are 

1 1

0, 1, 2,

0 0

and
F K K

I n SB n n

n n n F

P P P P P
 

  

      (6.30a-b) 

 The unit availability and operative efficiency respectively, are 

0,

0

[ ]
1 and . . 1

F

n

n

E N
MA O E P

K 

     (6.31a-b) 

Cost Function: We construct a cost function with service rate as decision variable 

corresponding to total cost incurred per unit time in the system. The cost function is defined as 
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( ) [ ] [ ]I I B SB H q F A O RTC C P C P C E N C C C E N         (6.32) 

where 

I B

H

F A

TC : Totalcost per unit time

C (C ) : Cost per unit time when theserver is idle (busy)

C : Holding cost per unit timeof each unit present in thesystem

C (C ): Cost per unit timefor providingservice to the unit when thearrivalsare not allowe

O

d

(allowed )

C : Cost per unit timeincurred on each unit in the retrialorbit

 

6.5. ILLUSTRATION  

To illustrate the practical utility of admission control for machine interference model with 

a retrial orbit, here we cite an example of automobile repair workshop where vehicles can be 

repaired. In the repair workshop, following Poisson process with rate ,  the motor vehicles of 

finite capacity (say K) arrive for the repair/maintenance. The repair job of motor vehicles is done 

by a single repairman as per exponential distribution with rate   on basis of first-come-first-

served rule. If the arriving motor vehicles find the repairman busy with the repair job of other 

vehicle, then the motor vehicles go to the parking area (i.e. retrial pool) of finite capacity (say 

F) available in the workshop. Due to the limited parking capacity of the workshop, the admission 

control policy for the arrived motor vehicles may be applied to maintain the smooth functioning 

of the repair workshop. As soon as the capacity of the workshop is full, the vehicles arriving for 

the repair will not be allowed to enter in the workshop until the parking places of the workshop 

decreases to a predefined threshold level ‘F’ at which the vehicles are further allowed to join 

the workshop to get repair/maintenance services. 

6.6. NUMERICAL RESULTS  

We present the numerical illustration to analyze the effects of system parameters on 

various performance measures. For the computational purpose, the default parameters are fixed 

as 7,K  4,F  3,  8,  1,  1,  10,IC  10,BC  120,HC  10,FC  5,AC 

90oC  . 

For the computational purpose, the three distributions for the retrial times namely, 

exponential ( ),Exp Erlang-3 3( )E and deterministic ( )D  are taken. It is noted that 
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3

*

, for exponential retrial time,

3
, for Erlang-3retrial time,( )  

3

, for deterministic retrial time.e  



 


 

 




 

 

  
 





 

The numerical results for [ ]SE N , TC and MA are displayed in Figures 6.2-6.3 and Table 6.1.  

Table 6.1: Machine availability ( MA ) and Total Cost (TC) by 

varying , and    

( , , )    
MA   TC  

Exp  
3E  D   Exp  

3E  D  

(1,8,1) 0.46 0.41 0.39  477.31 509.48 526.23 

(3,8,1) 0.28 0.28 0.27  617.53 622.46 623.36 

(5,8,1) 0.22 0.21 0.21  677.31 678.53 678.63 

(3,4,1) 0.21 0.21 0.21  629.51 630.61 630.80 

(3,8,1) 0.28 0.28 0.27  617.53 622.46 623.36 

(3,12,1) 0.33 0.32 0.32  633.95 643.06 644.74 

(3,8,1) 0.28 0.27 0.27  617.53 622.46 623.36 

(3,8,2) 0.29 0.28 0.28  612.79 619.99 622.73 

(3,8,3) 0.30 0.29 0.29  608.77 617.30 620.57 

 

  

Figure 6.2: [ ]SE N vs   for different distributions Figure 6.3: TC vs   for different distributions 

From Table 6.1, we notice that the machine availability decreases as increases but increases 

as  and  increase. The optimal control parameter ' '  is determined using heuristic approach 

based on direct search approach by computing the cost function. From Figure 6.3, we find 

( *, ( *))TC        7.477,  $617.27 , 6.966,  $621.37 , 6.876,  $622.06 corresponding to three 

distributions {exponential, Erlang-3, deterministic} for retrial times. 
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6.7. FUZZY COST FUNCTION  

The decision makers of the queueing system/organization are always interested to 

facilitate the repair job at minimum cost by setting the optimal control parameter  . Cost 

analysis of the concerned system can point out benefit to the care-taker of the failed machines. 

The same in the case with present retrial machine interference problem wherein the cost function 

in the fuzzy environment is taken into account by considering the cost factors as trapezoidal 

fuzzy numbers. The total fuzzy cost ( , , , , , )O H I B F ATC C C C C C C  per unit of time incurred due to 

different cost elements treated as trapezoidal fuzzy numbers, is given by 

( , , , , [ [, ) ] ]O R H q I IO H I B F B S FA B AC E N CTC C C C C E N C P CC C P C C              (6.33) 

where 

( ) :O HC C fuzzy cost spent on each failed machine in the retrial orbit (queue), 

( ) :I BC C fuzzy cost when the repairman is idle (busy), 

( ) :A FC C fuzzy cost when failed machines are allowed (not allowed) in the system. 

The following fuzzy cost factors are represented by trapezoidal fuzzy numbers as: 

1,O 2,O 3,O 4,O( , , , ),OC h h h h 1,H 2,H 3,H 4,H( , , , ),HC h h h h 1,I 2,I 3,I 4,I( , , , ),IC h h h h

1,B 2,B 3,B 4,B( , , , ),BC h h h h 1,F 2,F 3,F 4,F( , , , ),FC h h h h 1,A 2,A 3,A 4,A( , , , ).AC h h h h  

From (6.33), we have 

1,O 2,O 3,O 4,O 1,H 2,H 3,H 4,H

1,I 2,I 3,I 4,I 1,B 2,B 3,B 4,B

1,F 2,F 3,F 4,F 1,A 2,A 3,A 4,A

( , , , ) [ ] ( , , , ) [ ]

( , , , ) ( , , , )

( , , , ) ( ,

( , , , ,

).

,

,

)

,

O H I B qF A R

I SB

h h b b E N h h h h E N

h h h h P h h h h P

h h

TC C C C C

h h h h h h

C C

 

    

   

  
 

 (6.34) 

Simplifying (6.34) by using arithmetic operations defined in Section 1.4.7 of Chapter 1, we get 

1,O 1,H 1,I 1,B 1,F 1,A 2,O 2,H 2,I 2,B

2,F 2,A 3,O 3,H 3,I 3,B 3,F 3,A 4,O 4,H

( [ ] [ ] , [ ] [ ]

, [ ] [ ] , [ ] [ ]

R q I SB R q I SB

R q I SB R q

TC h E N h E N h P h P h h h E N h E N h P h P

h h h E N h E N h P h P h h h E N h E N

 

   

         

       

4,I 4,B 4,F 4,A )I SBh P h P h h   

                 

(6.35) 

The total fuzzy cost given is (6.35) is also a trapezoidal number having lower bound  
L

TC


and 

upper bound  
U

TC


of cuts  as 
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1,O 1,H 1,I 1,B 1,F 1,A 2,O 1,O

2,H 1,H 2,I 1,I 2,B 1,B 2,F 1,F 2,A 1,A

( ) [ [ ] [ ] ] [( ) [ ]

( ) [ ] ( ) ( ) ( ) ( ) ]

L

R q I SB R

q I SB

TC h E N h E N h P h P h h h h E N

h h E N h h P h h P h h h h

   

 

        

        
  

  (6.36)  

4,O 4,H 4,I 4,B 4,F 4,A 4,O 3,O

4,H 3,H 4,I 3,I 4,B 3,B 4,F 3,F 4,A 3,A

( ) [ [ ] [ ] ] [( ) [ ]

( ) [ ] ( ) ( ) ( ) ( ) ]

U

R q I SB R

q I SB

TC h E N h E N h P h P h h h h E N

h h E N h h P h h P h h h h

   

 

        

        
 

  

(6.37) 

Defuzzification: A Signed Distance Method 

To extract the crisp value from the fuzzy value of the system cost, assigned distance method is 

adopted by defuzzifying the TC . Refer to Section 1.4.7 of Chapter 1, the signed distance from 

0  to ( , , , , , )O H I B F ATC C C C C C C is given by 

 
1

0

1
( ( , , , , , ), ( (0) ) )

2

L

O H B F A

U

I TC TCD TC C C C C C C d         (6.38) 

Using (6.36) and (6.37) in (6.38), we obtain 

1,O 2,O 3,O 4,O 1,H 2,H 3,H 4,H

1,I 2,I 3,I 4,I 1,B 2,B 3,B 4,B

1,F 2,F 3,F 4,F 1,A 2,A 3,A 4,A

1
[( ) [ ] ( )

4

[ ] ( ) ( )

( ( , , , , , ), 0

( )] (

)

) ( )

R

q I

O H I B F

B

A

S

h h h h E N h h hD TC C C C C h

E N h h h h P h h h h P

h h h h h

C

h h h H

C

  

       

       

        

   (6.39) 

We consider the right-hand side of (6.39) as a function of , i.e., ( )H  and minimize it with 

respect to  using genetic algorithm (GA) in the next section.  

6.8. COST OPTIMIZATION USING A GENETIC ALGORITHM (GA) 

It can be observed that the cost function given in (6.39) is non-linear in   and thus it is 

not an easy job to find its minimum value by analytical method. Genetic algorithm (GA) is a 

search based approach which mimics the natural genetic. In order to evaluate the optimal value 

of the fitness function (objective function), it works in multidimensional search space. In this 

section, we determine the optimal control parameter  by implementing a genetic algorithm to 

minimize ( )H . Genetic algorithm is associated with the fitness function (i.e. cost function), 

randomly generated a population of chromosomes, selection, cross over, and mutation. The 

description of GA can be seen in Section 1.4.8 of Chapter 1. To minimize (6.39), we determine 
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minimum cost of the system and corresponding optimal control parameter * ; GA program is 

developed in MATLAB software.  

The system input parameters , , , , , ,   K F trapezoidal fuzzy numbers and GA 

parameters namely initial population size ( ( ))PS  , genes ( ),g selection operator ( )S , 

crossover rate ( )CR and mutation rate ( )MR  are summarized in Table 6.2. The outputs

( *, ( *)) H  of GA for different values of   and  are displayed in Table 6.3. 

Table 6.2: Input parameters for computation of  and ( *)H   using GA 

Parameters Value assigned Method 

( , , )K F   

  

  

(7,4,1)  

1, 2, 3 

1, 2, 3 

--- 

1,O 2,O 3,O 4,O( , , , )OC h h h h  (85,88,91,94)  

-- 

1,H 2,H 3,H 4,H( , , , )HC h h h h  (115,118,121,123)  

1,I 2,I 3,I 4,I( , , , )IC h h h h  (5,7,11,14)  

1,B 2,B 3,B 4,B( , , , )BC h h h h  (6,9,11,13)  

1,F 2,F 3,F 4,F( , , , )FC h h h h  (5,8,11,13)  

1,A 2,A 3,A 4,A( , , , )AC h h h h  (2,4,6,8)  

PS( )  50 Binary encoding 

S PS( ) / 4  Tournament selection 

CR  1 2-Point crossover 

MR  0.08 Bit inversion mutation 

Stopping criteria:  

-- 
             (i) Generations 100 

             (ii) Stall generation 50 

             (iii)Function tolerance 61 10  
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(a) (b) (c) 

Figure 6.4: Fitness value vs Generations for (a) Exp  (b) 3E  (c) D  distributions when 

( , ) (3,1)    

   

   

(a) (b) (c) 

Figure 6.5: Fitness value vs Generations for (a) Exp  (b) 3E  (c) D  distributions when 

( , ) (3,2)    

   

   

(a) (b) (c) 

Figure 6.6: Fitness value vs Generations for (a) Exp  (b) 3E  (c) D  distributions when 

( , ) (3,3)    
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(a) (b) (c) 

Figure 6.7: Effect of ( , )  on system cost for (a) Exp  (b) 3E  (c) D  distributions when 1   

   

   

(a) (b) (c) 

Figure 6.8: Effect of ( , )  on system cost for (a) Exp  (b) 3E  (c) D  distributions when 2   

   

   

(a) (b) (c) 

Figure 6.9: Effect of ( , )  on system cost for (a) Exp  (b) 3E  (c) D  distributions when 3   

While implementing genetic algorithm, it is noticed that the weighted average variation in the 

fitness function (cost function) value over stall generations is less than the function tolerance. 

The graphs are plotted for the fitness values (best fitness value and the mean fitness value) 

versus a number of iterations (generations) for different distributions for 3  . In case of three 



134 

 

distributions namely exponential, Erlang-3 and deterministic of retrial times, Figures 6.4-6.6 

display the GA trends of fitness values versus generations for 1,2,3  , respectively. The GA 

trends for 1 and 2   can be plotted in a similar way. 

Table 6.3: Total cost (in $) for varying values of and    

      
( *, ( *)) H  

Exp  
3E  D  

1 

1 (7.663, 468.61) (5.933, 495.00) (5.333, 506.56) 

2 (11.446, 418.56) (6.110, 485.95) (6.712, 479.82) 

3 (12.475, 375.99) (6.191, 482.31) (8.776, 446.45) 

2 

1 (7.511, 559.39) (6.771, 569.02) (6.552, 571.82) 

2 (8.420, 547.83) (7.210, 563.14) (6.847, 568.06) 

3 (9.366, 536.61) (7.532, 558.24) (7.378, 560.99) 

3 

1 (7.821, 608.13) (7.288, 612.55) (7.194, 613.30) 

2 (8.382, 603.32) (7.561, 610.42) (7.261, 612.78) 

3 (8.910, 598.75) (7.861, 607.91) (7.491, 610.93) 

The surface graphs for the total cost of the system are shown in Figures 6.7-6.9 for 

1,2,3   and three distributions namely exponential, Erlang-3 and deterministic for retrial 

times respectively, by varying values of  on axisx and   on axis.y   Figures 6.7-6.9 depict 

that the cost function given in (6.39) is convex and optimal value of  exists. The output 

numerical values for minimum cost ( *)H  of the system corresponding to the optimal 

parameter *  for varying values of   are recorded in Table 6.3. 

The information listed in Table 6.3 of the minimum cost of the system corresponding to 

optimal control parameter ( *)  on the basis of arrival rate and retrial rate of the failed machines 

can support to the decision maker to make the budget required for the machine interference 

system. It is quite clear that for the fixed value of arrival rate of failed machines, the system cost 

is less for exponential retrial time as compared to Erlang-3 and deterministic retrial times. 

6.9. CONCLUDING REMARKS  

The applicability of investigation done on the machine repair model of machine 

interference problem with general distributed retrial attempts and operating under F-policy can 

be realized in many real time systems. The cost optimization for machine interference problem 

has been studied in the fuzzy environment using a genetic algorithm. Various performance 

measures derived are further used to formulate the fuzzy cost function. The trapezoidal fuzzy 

number is considered for the cost elements associated with a cost function. cut   approach is 
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applied on trapezoidal fuzzy cost function to get lower and upper bound of the fuzzy cost. A 

signed distance method of defuzzification for fuzzy cost is applied to convert the fuzzy cost into 

crisp cost function. The numerical simulation and sensitivity analysis carried out provide the 

valuable insights to the decision makers and system designers for controlling the system 

descriptors to achieve the desired output at optimum cost. The genetic algorithm is successfully 

implemented to determine optimal repair rate and corresponding minimum cost of the machine 

interference problem. The application of this investigation can be found in various places 

including the telecommunication system, production system, assembly lines, call centers, 

shopping malls, etc.  
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Chapter 7 
 

Fuzzy Model for Machining System with General 

Repair and Vacation 
 

7.1. INTRODUCTION  

In recent past, some queueing theorists have studied the finite population models to deal 

with machine repair problems with standby support (cf. Sivazlian and Wang, 1989; Wang, 

1995). A few researchers have also developed the machine repair models by incorporating the 

feature of server vacation to deal with more realistic scenarios (Gupta, 1997; Jain et al., 2004). 

To derive queueing and reliability measures such as failure frequency, mean time to failure 

(MTTF), reliability, availability of the K-out-of-M:G system, Ke and Lin (2005) studied a 

Markov model for machine repair system with standby support and multiple vacations. Ke and 

Wang (2007) and Jain and Upadhyaya (2009) analyzed the performance of a repairable multi-

component machining system with standby support by incorporating the concepts of single 

vacation and multiple vacations, respectively. The profit analysis of machine repair problem 

with standby support and multiple vacations using particle swarm optimization has been carried 

out by Wang et al. (2014). Recently, Jain and Meena (2017) and Jain et al. (2019) proposed a 

Markovian model for machine repair problem (MRP) to analyze the performance of redundant 

fault tolerant machining system by incorporating admission control F-policy, imperfect 

coverage, working vacation and standby support. 

To analyze non-Markovian model, the supplementary variable technique can be used (cf. 

Section 1.4.6 of Chapter 1). Some noticeable works on non-Markovian queueing modeling and 

performance analysis of machine interference systems can be seen in queueing literature (cf. 

Gupta and Rao, 1994; Wang et al., 2005). The repairable multi-component machining system 

with imperfect coverage and multiple vacations was studied by Jain and Gupta (2013). Using 

supplementary variable technique and recursive method, they derived the steady-state analytical 

expressions for various system indices. By treating remaining repair time as a supplementary 

variable, Ke and Liu (2014) proposed a non-Markovian queueing model for machining system 
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with imperfect coverage, reboot and standby support.  Ke et al. (2016) used the supplementary 

variable technique and recursive method to analyze the steady state behavior of machine repair 

system with switching failure and warm standby support. 

The applicability of fuzzy queueing models in the real world scenario seems to be more 

appropriate than the crisp queueing models (cf. Chen and Chang, 2006). The notable works on 

fuzzy models can be seen in the literature (cf. Yang and Chang, 2015; Bouazzi et al., 2017; Jana 

et al., 2016; Gupta and Mohanty, 2016; Gupta and Mohanty, 2017). Verma et al. (2005) 

formulated a fuzzy optimization problem for conventional dc flow based crisp linear programing 

(CLP) model. Recently, Mueen et al. (2017) presented a fuzzy Markov single server queue by 

considering a hexagonal membership functions for determining the waiting time in the queue 

and mean system size. Bhardwaj et al. (2018) proposed the fuzzy analysis of two servers queue 

placed in series combination using Zadeh’s extension principle. They employed  cut 

approach for constructing the triangular membership function for the valuation of the system 

size by taking arrival and service rate as fuzzy parameters. In the queueing literature, most of 

the research works related to the performance modeling of machining system have been done 

in the crisp environment. In many studies on MRP, the crisp system parameters were used to 

develop the performance models of the machining system having failure prone on-line as well 

as standby components (cf. Wang et al., 2007). To analyze Markov model of multi-components 

machining system with standby support in a fuzzy environment, the system parameters should 

be considered in the linguistic form (cf. Buckley, 2004). A very few researches on the 

performance analysis of machining system have considered the fuzzy queueing descriptors. 

Chen (2006) used cut  approach to study the fuzzy queueing model for cost optimization of 

machine repair problem (MRP) by taking cost coefficients and the machine breakdown as the 

trapezoidal fuzzy numbers. Ke et al. (2008) developed Markov model for a redundant repairable 

system operating in fuzzy environment by incorporating the imperfect coverage. They have used 

the parametric nonlinear programming approach via cut  to represent the membership 

functions for MTTF and machine availability by considering the failure/repair rates of operating 

and standby units as trapezoidal fuzzy numbers.  

Harmony search (HS) which is a musicians behavior inspired evolutionary algorithm for 

optimization, was introduced by Geem et al. (2001). In literature, it is noticed that there is no 

work on queueing modeling in which harmony search approach has been used for the cost 

optimization. For the brief description of HS method is presented Section 1.4.8 of Chapter 1.  
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In this chapter, we develop finite population M/G/1/K machine repair model with standby 

support and vacationing server in both crisp and fuzzy environments. Using the supplementary 

variable technique (SVT) and recursive approach, the stationary queue size distributions and 

various performance metrics of the concerned model have been established. The prime objective 

of present study is to develop fuzzy model and facilitate the cost analysis which has been carried 

out using harmony search algorithm. The remaining part of the chapter is organized in the 

following manner. In Section 7.2, the model description and governing equations of finite 

population non-Markovian M/G/1/K model are presented. The various system metrics and cost 

function are given in Section 7.3. In Section 7.4, the performance metrics of multi-component 

machining system are analyzed by developing FM/FG/1/K/K model with vacation in the fuzzy 

environment.  Next Section 7.5 is devoted to the numerical results of performance metrics of 

both M/G/1/K/K and FM/FG/1/K/K models. The cost optimization problem has been studied to 

determine the optimal control parameters viz. repair rate and vacation rates using harmony 

search algorithm. Finally, we conclude the findings of the present investigation in Section 7.6. 

7.2. MODEL DESCRIPTION  

The finite population M/G/1/K/K multi-component machining system comprising of M

operating and S warm standby machines is studied. For the repair job of failed machines, there 

is the provision of a single repairman who may be allowed to take a vacation in case of no 

pending repair jobs of failed machines. 

To develop the non-Markovian finite population M/G/1/K queueing model, the 

following assumptions are made:  

 The operating (standby) machines are prone to failure; the lifetime of operating (standby) 

machines follow exponential distribution with mean1/ (1/ )a .  

     As soon as the operating machine fails, it is replaced by the standby machine if available. 

The failure characteristic of replaced standby machine is assumed to be the same as that 

of the operating machine. The switching time of the failed operating machine to warm 

standby machine after the repair is assumed to be negligible. 

     The repair time of the operating machine is assumed to govern by general distribution 

with a probability distribution ( )B x , the probability density function ( ) ( 0)b x x  and mean

1/  . The repair jobs of failed machines are done according to their failure order i.e. first-

come-first-served (FCFS) basis.   
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( ) 1S  

( ) 2S  

1K0 1 2 3K

1K

2K

2K3K
210

( )b x( )b x( )b x( )b x( )b x

     

( )b x

0 1 2 K-2 K-1 Kn


 

Figure 7.1: Transition state diagram for M/G/1/K/K model 

     As the system becomes empty i.e. there is no failed machines in the system, the repairman 

goes for a vacation with a rate   and returns back from vacation when any failed machine 

enters the system. The vacation time is governed by exponential distribution with mean

1/ . 

To analyze the non-Markovian finite population M/G/1/K model, we introduce ( )U  as a 

supplementary variable corresponding to the remaining repair time at time . Let

{ ( ), ( ); 0}N S     be a continuous time bi-variate stochastic process. At the time ,  ( )N   and 

( )S  denote the number of failed machines in the system and status of the system, respectively. 

( )S   holds values 1 and 2 for normal operating mode and vacation mode of the repairman, 

respectively.  

We define system states probabilities at time epoch  as follows: 

(i) Normal operating state. 

1,0( ) Prob{ ( ) 1, ( ) 0}P S N      

1, ( , ) Prob{ ( ) 1, ( ) , ( ) }, 1 .nP x dx S N n x U x dx n K             

(ii) Vacation state. 

2, ( ) Prob{ ( ) 2, ( ) },0 .nP S N n n K         

We denote 1, 1,
0

( ) Prob{ ( ) 1, ( ) } ( , ) , 1 1n nP S N n P x dx n K   


       . 

Define Laplace-Stieltjes transform of any function ( )b x  as *( )b s . 

The state-dependent failure rate n  of the machines is defined by: 
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( ) , 0 ,

( ) , ,

0, otherwise.

n

M S n a n S

M n S n M S K



 

   


     



                   (7.1) 

7.2.1. The Governing Equations and Queue Size Distributions 

Chapman-Kolmogorov equations for the finite population model are framed using the 

state-transition rate (See Figure 7.1) relating to the individual states of the system at the time   

and d   as follows:  

1,0 0 1,0 1,1( ) ( ) ( ) (0, )
d

P P P
d

    


       (7.2) 

1, 1, 1 1, 1 2, 1 1, 1( , ) ( , ) ( , ) ( ) ( , ) ( ) (0, ),1 1n n n n n n nP x P x P x b x P x b x P n K
x

       


   

  
         

  
 (7.3) 

1, 1 1, 1 2,( , ) ( , ) ( ) ( , )K K K KP x P x b x P x
x

    


 

  
   

  
  (7.4) 

2,0 0 2,0 1,0( ) ( ) ( )
d

P P P
d

    


      (7.5) 

2, 2, 1 2, 1( ) ( ) ( ) ( ), 1 1n n n n n

d
P P P n K

d
     


          (7.6) 

2, 2, 1 2, 1( ) ( ) ( )K K K K

d
P P P

d
    


       (7.7) 

At the steady state, we have  

1,0 1,0lim ( )P P





  

1, 1,( ) lim ( , ),1n nP x P x n K





     

2, 2,( ) lim ( , ), 0 .n nP x P x n K





    

Also, we define 

1, 1,( ) ( ) , 0n nP x b x P n K      (7.8) 

The steady state equations corresponding to transient equations (7.2)-(7.7) can be written as 

1,1 0 1,0(0) ( ) 0P P       (7.9) 

1, 1, 1 1, 1 2, 1, 1( ) ( ) ( ) ( ) ( ) ( ) (0) 0, 1 1n n n n n n n

d
P x P x P x b x P x b x P n K

dx
              (7.10) 
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1, 1 1, 1 2,( ) ( ) ( ) 0K K K K

d
P x P x b x P

dx
      (7.11) 

0 2,0 1,0 0P P       (7.12) 

2, 1 2, 1( ) 0, 1 1n n n nP P n K             (7.13) 

2, 1 2, 1 0K K KP P         (7.14) 

Define
( )

i
i

i







 
.  

Now, from (7.10), (7.12) and (7.13), we obtain 

1, 1, 1 1, 1 1,0 1, 1

1

( ) ( ) ( ) ( ) ( ) (0) 0, 1 1
n

n n n n n i n

in

d
P x P x P x b x P b x P n K

dx


   


  



          (7.15) 

Also using (7.11)-(7.14), we obtain 

1

1, 1 1, 1 1,0

1

( ) ( ) ( ) 0
K

K K K i

i

d
P x P x b x P

dx
  



 



       (7.16) 

Laplace-Stieltjes transforms (LST) of (7.15)-(7.16) yield 

 * * * * * *

1, 1, 1, 1 1, 1 1, 1, 1

1

( ) (0) ( ) ( ) ( ) ( ) (0) 0, 1 1
n

n n n n n n i n n

in

s P s P P s b s P b s P b s P n K


   


  



           (7.17) 

 
1

* * *

1, 1, 1 1, 1 1,0

1

( ) (0) ( ) ( ) 0
K

K K K K i

i

sP s P P s b s P  


 



      (7.18) 

Substituting 0s  in (7.17), we get 

1, 1 1, 1,0

1

(0) , 1 1
n

n n n i

i

P P P n K  



        (7.19) 

 Using (7.17) and (7.19) and then substituting ns   , we get 

*

1, 1,

* 1

0
0

* *
1 1 1 1

1 ( )(1 ( ))
, 1 1

( ) ( )

n i
ji

j

i i j j ii j

n n

n

n n

b
n

b
P

b
P K

b

   


   



    

    
         
     

      (7.20) 

To find 1,KP , differentiate (7.18) with respect to ' 's  and then substitute 0s  . Thus, we obtain 

1

1, 1 1 1, 1 1,0

1

K

K K K i

i

P b P P  


 



 
  

 
    (7.21) 

Using (7.20) in (7.21), we get 

**

0 * *
1

1

1 1

1 2 1

1, 1 1,0

1 1

1 ( )(1 ( ))
( )

( ) ( )

i
ji

j

K K K K

K i

i i i j j ii j

P b P
bb

b b


     

 

  

  



  

  
     

   

         (7.22) 
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where *

1 (0).
d

b b
ds

   

Solving recursively (7.12)-(7.14), we obtain  

1,0

0

1

2, 1,0

0 0

2
1

1,0

0 0

,

, 1

, 0

1,

, .

n

n i

i

n
K

i

i

P

P P n

P n K

n

K











 

 



 
  


 

 






 (7.23) 

The unknown probability 
1,0P  is evaluated using normalizing condition 

2

,

1 0

1
K

i n

i n

P
 

     (7.24) 

Remark 7.1: For specific phase type distributions of general repair time, Laplace-Stieltjes 

transforms 
*( )jb   is given by 

*

1

1

, for k-phase Erlang distribution,

( ) ,    for coxian distribution,

, for mixed-Erlang distribution.

 

i

k

j

k
i

j

i j i

k
L

i i
i

i j i

k

k

b

k
p



 




 



 





 
   


 
      


 
    





 

Remarks 7.2: The k  phase Erlang distribution ( )kE reduces to exponential distribution if 1k   

and it becomes deterministic distribution when k  . When ,i   then coxian distribution 

takes the form of gamma distribution. It is noted that for 1ik  , mixed-Erlang distribution 

becomes hyper exponential distribution.  

7.3. SYSTEM PERFORMANCE MEASURES AND COST FUNCTION  

To predict the behavior of multi-component machining system, the performance measures 

are formulated as follows: 

(i) The expected queue length of failed machines in the system ( )SL is 

1, 2,

0

( )
K

S n n

n

L n P P


     (7.25) 
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(ii) The machine availability ( )MA is 

1 SL
MA

K
     (7.26) 

(iii) The long-run probabilities of the system being in operating state and vacation state 

respectively, are 

1, 2,

0 0

and
K K

SB n V n

n n

P P P P
 

      (7.27a-b) 

Now, we construct a cost function to analyze the cost associated with different activities 

of the machining system. The total cost incurred per unit time of the system is determined by 

considering repair rate ( ) and vacation rate ( )  as decision variables. To make machining 

system cost-economic, the total cost function ( , )TC   is minimized corresponding to repair 

rate ( ) and vacation rate ( ) . 

The cost elements incurred on different activities of the system are as follows: 

:HC  Holding cost per unit time incurred on each failed machine waiting for the repair. 

:BC   The cost incurred per unit time on a busy repairman. 

:VC   The cost incurred per unit time when the repairman is on vacation. 

:mC   The cost incurred per unit time on the repair with rate  . 

Now, the cost function is 

( , ) H S B SB V V mTC C L C P C P C         (7.28) 

The cost optimization problem (OP) is formulated as follows:  

  ( , ) )O ( ,P TC minTC         (7.29) 

It is quite tedious task to optimize ( , )TC    analytically due to non-linear nature of the cost 

function. We use soft computing approach based on harmony search algorithm to determine 

the minimum expected total cost ( , )TC    and optimal value of decision variables * and 

* . 
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7.4. FM/FG/1/K MODEL WITH VACATION 

Now, we consider a fuzzy model for multi-component machining system which is more 

realistic than the traditional used crisp parameter based M/G/1/K model for the machining 

system with vacation and spare part support. The fuzzified parameters , , and   are 

considered corresponding to crisp parameters with membership functions ( ),p


 ( ),q  and 

( )r


 , respectively. Let j  be a fuzzy set with the membership function ( )
j

jz


. Thus 

{( , ( )) : }, 1,2,3.
j

j j j j jz z z Z j


      (7.30) 

For the FM/FG/1/K model, we have  

, 1,

, 2,

, 3.

j

for j

for j

for j







 


  




 and 

, 1,

, 2,

, 3.

j

p for j

z q for j

r for j




 
 

 

Since j  represents the fuzzy numbers, we notice that 
SL  and MA  are also fuzzy numbers 

corresponding to metrics SL  and MA . Now, we determine that the system characteristics of 

interest such as a expected number of failed machines in the system (
SL ) and machine 

availability ( MA ). Thus 

1 2 3( , , ) Sg z z z L   (7.31) 

The membership functions of 
SL  is given by 

 ( ) ( ) : 1,2,3 | .
S j

i SL
z supmin z j z L 


         (7.32) 

Likewise, the membership function of MA  is  

 ( ) ( ) : 1,2,3 |
j

iMA
z supmin z j z MA 


   .  (7.33) 

Now, we employ the parametric nonlinear programming (P-NLP) to find cuts  of 
SL and MA

using extension principle.  

7.4.1. Parametric Nonlinear Programming (P-NLP) 

In this subsection, our aim is to formulate the membership functions of 
SL  and MA . 

From (7.32), we notice that ( )
SL

z is the minimum of ( ), 1,2,3
j

iz j


 . Therefore, to formulate 
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the membership function of
SL , one of the following three cases must hold such that

Sz L , 

which satisfies ( )
SL

z  :  

Case 1: 
1

1( ) , ( ) , 2,3.
j

jz z j   
 

    

Case 2: 
2

2( ) , ( ) , 1,3.
j

jz z j   
 

    

Case 3: 
3

3( ) , ( ) , 1,2.
j

jz z j   
 

    

Now, for Cases 1-3, the lower bound ( )LBz  and upper bound ( )UBz of cut  of
SL  are obtained 

as: 

,

LB

j Sz min L     (7.34) 

and , , 1,2,3UB

j Sz max L j     (7.35) 

For 2 10 1    , we have 
1 1 2 2

( ) , ( ) ( ) , ( ) , 1,2,3LB UB LB UB

j j j jz z z z j   
        as cuts  form a 

nested structure with respect to  . Thus, (7.34) has the same smallest values whereas (7.35) 

has the same largest value. Now, to determine LBz and UBz , it is sufficient to evaluate the left and 

right part of ( )
SL

z defined in (7.32). Thus, we have 

( )LB LB

S SL z min L    where , , .LB UB LB UB LB UBp p p q q q r r r            (7.36a) 

( )UB UB

S SL z max L    where , , .LB UB LB UB LB UBp p p q q q r r r            (7.36b) 

Here (7.36a-b) are the special cases of P-NLPs (Gal, 1979). In order to hold
SL

  , one of iz  

must hits the boundary of its cut  . We observe that LBz  is increasing function whereas UBz is 

decreasing function subject to . Thus, 
2 1

LB LBz z  and 
2 1

;UB UBz z 
2 10 1    .  

Now, the membership function of 
SL  is framed as 

0 1

1 1

1 0

( ), ( ) ( )

( ) 1, ( ) ( )

( ), ( ) ( ) .

S

LB LB

S S S

LB UB

S SL

UB UB

S S S

L z L z L

z L z L

R z L z L

 

 

 



 

 

 

  


  


 

  (7.37) 

For the analytical solutions of ( )LB

SL  and ( )UB

SL  , closed-form results cannot be determined. 

However, the numerical technique can be applied to compute ( )LB

SL   and ( )UB

SL   which is 

enough to determine the shape of the membership function ( ( ))
SL

z of 
SL .  In (7.37), ( )SL z and 



147 

 

( )SR z denote the left and right parts of membership function of 
SL and are obtained as 

1( ) [( ) ]L

S SL z L 

 and 1( ) [( ) ]U

S SR z L 

 , respectively.  

Now, we construct the lower bound (( ) )LBMA   and upper bound (( ) )UBMA  of cut  of MA as 

( )LMA minMA   where , , .LB UB LB UB LB UBp p p q q q r r r              (7.38a) 

( )UMA max MA   where , , .LB UB LB UB LB UBp p p q q q r r r            (7.38b) 

The membership function 
MA

 of MA is 

0 1

1 1

1 0

( ), ,

( ) 1, ,

( ), .

LB LB

A

LB UB

MA

UB UB

A

L z MA z MA

z MA z MA

R z MA z MA

 

 

 



 

 

 

  


  


 

  (7.39) 

where 1(( ) ) ( )LB

AMA L z

  and 1(( ) ) ( )UB

AMA R z

  . 

For FM/FG/1/K/K model, the implementation of P-NLP is done by considering j as the 

triangular fuzzy number corresponding to crisp parameters , ,    respectively. Thus, we have 

1, 2, 3,[ , , ];j j j j   
1, 2, 3,j j j    .  

The membership functions of j is given by 

1,

1, 2,

2, 1,

2,

3,

2, 3,

3, 2,

, ,

( ) 1, ,

, .

j j

j j j

j j

j j j

j j

j j j

j j

z
z

z z

z
z


 

 

 


 

 



 
 




 


  
 

  (7.40) 

cut  of j in terms of the crisp interval is given by 

1, 2, 1, 3, 3, 2,( ) [( ) ,( ) ] [ ( ), ( )], 1,2,3.LB UB

j j j j j j j jz z j                  (7.41) 

Thus, (7.36a) and (7.36b) yield 

( )LB

S SL min L     (7.42) 

and ( )UB

S SL max L    (7.43) 

where 1, 2, 1, 3, 3, 2,( ) ( ), 1,2,3.j j j j j j jz j               

Similarly, from (7.38a) and (7.38b) 

( )LBMA minMA     (7.44) 
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and ( )UBMA max MA     (7.45) 

where 
1, 2, 1, 3, 3, 2,( ) ( ), 1,2,3.j j j j j j jz j               

7.5. NUMERICAL RESULTS 

The numerical results by taking an illustration of machining system with standby (MSS) 

for different repair time distributions are presented. For computational purpose, we consider 

exponential distribution (M), 3-phase Erlang distribution 3( )E  and deterministic distribution 

(D) of repair time and their LSTs can be found by putting  1,k  3k   and k   in k  phase 

Erlang distribution. 

7.5.1. Illustration of a Flexible Manufacturing System (FMS) 

To reveal the practical applicability of the model proposed in this investigation, we cite 

an illustration of a flexible manufacturing system (FMS) where robots are used for packing 

purpose. The flexible manufacturing system consists of M operating and S standby robots; 

.K M S   The operating (standby) robots are subjected to failure having lifetimes following 

an exponential process with parameter  ( a ). The switching time of the failed operating robot 

to standby robot after the repair is assumed to be negligible. A skilled repairman is available in 

the system for providing repair to failed robots. If there are no failed robots in the system, the 

repairman goes for vacation by following the exponential distribution with parameter . The 

vacation time of the repairman is assumed to be distributed exponentially with parameter  . 

The repair time of operating robot is governed by general distribution with cumulative 

distribution function ( ) ( 0)B x x  , probability density function ( ) ( 0)b x x  , and mean repair 

time1/  . 

7.5.2. Sensitivity Analysis of M/G/1/K/K Model 

To predict the behavior of the system with respect to different parameters, we carried 

out the numerical experiments using the Matlab software. The system indices by computing 

different state probabilities 1,nP and
2,nP (0 )n K   are obtained to characterize the system 

behavior by fixing default system parameters as 4K  , 2,M  2,S  0.2,  3,k 

0.06,a  2,  0.5,  0.6.   

Numerical results displayed in Table 7.1 indicate the increasing trend of machine 

availability ( )MA  and vacation state probability ( )VP of the system with the increase in repair  
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rate ( ) for all the three models M/M/1/K, M/E3/1/K, and M/D/1/K. The operative state 

probability ( )SBP also increases as the value of repair rate ( )  increases for all the three models. 

The machine availability ( )MA  and operative state probability ( )SBP of the system 

increase with the increase in vacation return rate ( ) . On the contrary, the vacation state 

probability ( )VP shows a decreasing trend as rate ( ) grows up; this fact can be seen in Table 

7.2. Figures 7.2 and 7.3 depict the trend of mean queue length of failed machines ( )SL in the 

system for M/M/1, M/E3/1 and M/D/1 models with respect to failure rate ( ) and repair rate ( )

respectively. Figure 7.2 depicts that SL increases rapidly initially for the increasing value of 

failure rate from 0.1   to 1  ; but beyond 1  , the mean queue length gradually increases 

for the further increment in 1  to 2  . On the contrary, Figure 7.3 shows a reverse trend for 

SL for varying values of repair rate ( ).  In Figure 7.4, the machine availability ( )MA decreases 

rapidly initially as the value of   increases from 0.1   to 1.2  , but then after the gradually  

Table 7.1: Performance measures vs  for three models 

  
M/M/1/K M/E3/1/K M/D/1/K 

MA  SBP  VP  MA  SBP  VP  MA  SBP  VP  

0.1 0.052 1.000 0.000 0.044 1.000 0.000 0.042 1.000 0.000 

0.6 0.377 0.896 0.104 0.260 0.984 0.016 0.227 0.994 0.006 

1.1 0.566 0.738 0.262 0.461 0.901 0.099 0.425 0.928 0.072 

1.6 0.630 0.662 0.338 0.571 0.813 0.187 0.552 0.836 0.164 

2.1 0.657 0.624 0.376 0.625 0.751 0.249 0.615 0.767 0.233 

2.6 0.671 0.604 0.396 0.652 0.710 0.290 0.647 0.721 0.279 

3.1 0.679 0.591 0.409 0.668 0.681 0.319 0.665 0.689 0.311 

3.6 0.684 0.582 0.418 0.678 0.661 0.339 0.676 0.667 0.333 

Table 7.2: Performance measures vs for three models 

  
M/M/1/K M/E3/1/K M/D/1/K 

MA  SBP  VP  MA  SBP  VP  MA  SBP  VP  

0.5 0.579 0.418 0.582 0.587 0.519 0.481 0.585 0.529 0.471 

0.7 0.620 0.471 0.529 0.620 0.572 0.428 0.618 0.582 0.418 

0.9 0.642 0.507 0.493 0.638 0.607 0.393 0.636 0.616 0.384 

1.1 0.655 0.532 0.468 0.649 0.631 0.369 0.646 0.640 0.360 

1.3 0.664 0.552 0.448 0.655 0.649 0.351 0.652 0.658 0.342 

1.5 0.670 0.567 0.433 0.660 0.663 0.337 0.656 0.671 0.329 

1.7 0.674 0.579 0.421 0.662 0.674 0.326 0.659 0.682 0.318 

1.9 0.676 0.589 0.411 0.664 0.683 0.317 0.661 0.691 0.309 
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Figure 7.2: Effect of  on 

SL  Figure 7.3: Effect of  on SL  

  

Figure 7.4: Effect of  on MA  Figure 7.5: Effect of  on MA  

decreasing trend is noticed as  varies from 1.2 to 2 . In Figure 7.5, the trends for machine 

availability ( )MA exhibit the increasing trend as  increases. 

7.5.3. Numerical Results for FM/FG/1/K Model 

The fuzzy approach described in Section 7.4 is implemented for the performance 

analysis of multi-component machining system along with standby support and vacation. A 

number of real-life applications of the fuzzy model for multi-component machining system are 

often encountered in our day to day life.  To reveal the practical applicability of fuzzy model for 

the performance modeling of multi-component machining system, we compute numerical 

results for the fuzzy model which fitted well for the performance analysis of flexible 

manufacturing system where robots are used for packing purpose. 
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Figure 7.6: The fuzzy membership function 

for 
SL  

Figure 7.7: The fuzzy membership function 

for MA  

 

For the computational purpose, we consider 4K  , 2M   and 2S  . The failure rate of 

robots in standby mode is 0.2a  . In case when there is no failed robot in the system, the 

repairman goes for vacation with rate 0.5  . The failure rate and repair rate of the robots, and 

vacation time of repairman are considered as triangular fuzzy numbers and are represented in 

units per day as [0.5,1,1.5]  , [1,2,3]  , and [0.5,0.7,0.9]  . In this practical example, the 

crisp interval [( ) , ( ) ]LB UB

S SL L  for the mean number of failed robots ( )SL and crisp interval 

[( ) , ( ) ]LB UBMA MA   for the machine (robot) availability ( )MA are determined using Equations 

(7.42)-(7.43) and (7.44)-(7.45), respectively. 

From (7.41), we have [( ) , ( ) ]LB UBp p   [0.5 0.5 ,1.5 0.5 ]   ,[( ) ,( ) ] [1 ,3 ]LB UBq q      , 

[( ) ,( ) ] [0.5 0.2 ,0.9 0.2 ]LB UBr r      . Now, our aim is to determine the decision variables 

( , and )p q r using Equations (7.42)-(7.45) for 0(0 1)1.  . The optimization problems given in 

(7.42)-(7.45), are highly nonlinear and complex as such the analytical solution of (7.42)-(7.45) 

in terms of   is not easy to found. To achieve the goal of determining [( ) , ( ) ]LB UB

S SL L  and

[( ) , ( ) ]LB UBMA MA  , the interior point algorithm via ‘fmincon’ function of the software MATLAB 

is implemented. The numerical results of three models viz. M/M/1/K, M/E3/1/K and M/D/1/K 

for [( ) , ( ) ]LB UB

S SL L   and [( ) , ( ) ]LB UBMA MA   are displayed in Tables 7.3-7.4, respectively. The 

membership functions for 0(0 1)1.  are plotted for 
SL

 and
MA

 as shown in Figures 7.6 and 

7.7, respectively. 
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Table 7.3: The cuts  of , ,    and the mean number of failed robots ( )SL  in the system 

  
LBp  UBp  

 
LBq

 

 
UBq

 

LBr  UBr  

M/M/1/K M/E3/1/K M/D/1/K 

 

( )LB

sL 

 

( )UB

sL   ( )LB

sL   ( )UB

sL   

 

( )LB

sL 

 

( )UB

sL   

0 0.50 1.50 1 3 0.50 0.90 2.80 3.95 2.61 3.92 2.60 3.90 

0.1 0.55 1.45 1.1 2.9 0.52 0.88 2.93 3.94 2.71 3.90 2.69 3.88 

0.2 0.60 1.40 1.2 2.8 0.54 0.86 3.04 3.93 2.80 3.88 2.78 3.86 

0.3 0.65 1.35 1.3 2.7 0.56 0.84 3.15 3.92 2.89 3.86 2.87 3.83 

0.4 0.70 1.30 1.4 2.6 0.58 0.82 3.26 3.90 2.98 3.83 2.95 3.80 

0.5 0.75 1.25 1.5 2.5 0.60 0.8 3.36 3.88 3.08 3.80 3.03 3.76 

0.6 0.80 1.20 1.6 2.4 0.62 0.78 3.46 3.86 3.18 3.76 3.12 3.72 

0.7 0.85 1.15 1.7 2.3 0.64 0.76 3.54 3.84 3.28 3.72 3.21 3.67 

0.8 0.90 1.10 1.8 2.2 0.66 0.74 3.61 3.81 3.38 3.67 3.30 3.61 

0.9 0.95 1.05 1.9 2.1 0.68 0.72 3.67 3.77 3.46 3.61 3.39 3.54 

1 1.00 1 2 2 0.7 0.7 3.73 3.73 3.54 3.54 3.47 3.47 

 

Table 7.4: The cuts  of , ,    and the machine (robots) availability ( )MA  

  
LBp  

UBp  

 
LBq
 

 
UBq
 

LBr  
UBr  

M/M/1/K M/E3/1/K M/D/1/K 

 

( )LBMA 

 

( )UBMA   ( )LBMA   ( )UBMA   ( )LBMA   ( )UBMA   

0 0.5 1.5 1 3 0.5 0.9 0.01 0.30 0.02 0.35 0.03 0.35 

0.1 0.55 1.45 1.1 2.9 0.52 0.88 0.02 0.27 0.02 0.32 0.03 0.33 

0.2 0.60 1.40 1.2 2.8 0.54 0.86 0.02 0.24 0.03 0.30 0.04 0.31 

0.3 0.65 1.35 1.3 2.7 0.56 0.84 0.02 0.21 0.03 0.28 0.04 0.28 

0.4 0.70 1.30 1.4 2.6 0.58 0.82 0.02 0.18 0.04 0.25 0.05 0.26 

0.5 0.75 1.25 1.5 2.5 0.60 0.80 0.03 0.16 0.05 0.23 0.06 0.24 

0.6 0.80 1.20 1.6 2.4 0.62 0.78 0.03 0.14 0.06 0.20 0.07 0.22 

0.7 0.85 1.15 1.7 2.3 0.64 0.76 0.04 0.11 0.07 0.18 0.08 0.20 

0.8 0.90 1.10 1.8 2.2 0.66 0.74 0.05 0.10 0.08 0.16 0.10 0.17 

0.9 0.95 1.05 1.9 2.1 0.68 0.72 0.06 0.08 0.10 0.13 0.11 0.15 

1 1 1 2 2 0.7 0.7 0.07 0.07 0.12 0.12 0.13 0.13 

 

In Table 7.4, it is noticed that at 0,  the mean number of failed robots in the system can never 

cross the interval [2.80, 3.95] for M/M/1/K model, [2.61, 3.92] for M/E3/1/K model, [2.60, 3.90] 

for M/D/1/K model. It is also found that at 1,   the mean number of robots in the system are 

3.73 for M/M/1/K model, 3.54 for M/E3/1/K model and 3.47 for M/D/1/K model. It is noticed 

that the mean number of robots in the system for M/M/1/K model is always greater than that of 

M/E3/1/K, M/D/1/K. Moreover, if the decision maker specifies the mean number of failed robots 

between 3.36 and 3.88 for M/M/1/K model then  - level possibility should be 0.5 and desired 

range for arrival rate, repair rate and vacation rate are [0.75, 1.25], [1.5, 2.5] and [0.6, 0.8], 

respectively.  
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7.5.4. Cost Analysis 

The cost-benefit analysis plays a significant role to improve the future system design. In 

the competitive world of industrial scenarios where failures/faults of machines cannot be 

avoided, the repair rate and vacation rate should be optimized by considering it as decision 

variables so as to make the system operative at economic cost. The cost function ( , )TC    

seems to be non-linear and complex in nature; therefore it is quite a tedious task to optimize 

such a function analytically. Here, we determine the optimal repair rate ( *) and optimal 

vacation rate ( *) by minimizing the cost function ( , )TC   of the concerned system for 

M/M/1/K, M/E3/1/K and M/D/1/K models using harmony search algorithm. 

To minimize the cost function ( , ),TC    the variations in the values of and are 

considered in the feasible range 0.1 to 2 and 0.5 to 2, respectively. In order to evaluate cost 

function ( , )TC    using harmony search algorithm, each harmony is a two-dimensional vector; 

the first dimension corresponds to  and the second dimension corresponds to  . To determine 

the optimal repair rate ( )* and optimal vacation rate ( )* using harmonic search (HS) 

algorithm for the following cost sets: 

Cost Set I: $70, $60, $30, $45.H B V mC C C C     

Cost Set II: $80, $75, $30, $55.H B V mC C C C     

Cost Set III: $90, $75, $35, $55.H B V mC C C C   
 

HS approach for the cost optimization is used by fixing the default parameters as chosen for the 

sensitivity analysis in Subsection 7.5.2. 

Initially, each component of harmony is initialized within the range 0.1 to 2 and 0.5 to 2 for 

and respectively, and is evaluated using objective function given in (7.28). The new harmony 

(H) is generated either using harmony memory or using randomization, and evaluated using 

objective function and replaces the worst harmony from HM in case it is better (Steps 18 and 

19 of Algorithm 1 in Section 1.4.8 of Chapter 1). The above procedure is repeated for 100 

generations. The values of parameters HMCR, PAR and HMS have been chosen as 0.9, 0.3 and 

5, respectively. Harmony search algorithm has been implemented in Matlab and numerical 

results for the costs ( *, *)TC   and ( *, *)   for three models M/M/1/K, M/E3/1/K and 

M/D/1/K are depicted in Figures 7.8-7.10, respectively.  
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Table 7.5: ( *, *)  and ( *, *)TC   (in $) for different cost sets 

Cost 

Set 

M/M/1/K M/E3/1/K M/D/1/K 

*  
*  ( *, *)TC    *  

*  ( *, *)TC    *  
*  ( *, *)TC    

I 0.95 1.05 148.20 1.15 0.90 172.33 1.25 0.85 174.94 

II 0.90 1.10 170.64 1.15 0.90 201.29 1.25 0.90 204.51 

III 0.95 1.05 184.55 1.20 0.90 215.17 1.25 0.85 218.37 

 

Table 7.6: ( *, *)  and ( *, *)TC   (in$) for varying values of   

    
M/M/1/K M/E3/1/K M/D/1/K 

*  
*  ( *, *)TC    *  

*  ( *, *)TC    *  
*  ( *, *)TC    

0.2 1.01 1.27 171.81 1.24 0.84 201.51 1.25 0.84 204.50 

0.4 1.04 0.51 277.34 1.26 0.63 291.42 1.29 0.63 296.43 

0.6 0.79 0.72 339.43 1.04 0.71 346.33 1.11 0.61 351.53 

0.8 0.57 1.67 364.28 0.86 0.87 372.43 1.01 0.70 378.46 

 

The surface graphs are plotted for the cost function ( , )TC    to demonstrate the variability as 

well as computational tractability for real-time systems. The trends of total cost ( , )TC   by 

varying parameters  and are depicted in Figures 7.8-7.10 for M/M/1/K, M/E3/1/K, and 

M/D/1/K models. It is noticed that the cost function has the convex nature with respect to the 

repair rate ( )  and vacation rate ( ) . The optimal system cost ( *, *)TC   and the 

corresponding optimal parameters ( *, *)  obtained for three cost sets are displayed in Tables 

7.5-7.6.  

The comparative study of minimum cost ( *, *)TC    is done using harmony search algorithm 

among the three models by varying values of . Based on the numerical results, the order of 

total cost is found as 
3/ /1/ / /1/ / /1/M M K M E K M D KTC TC TC  , which can be noticed in the Figures 7.8-

7.10 and Tables 7.5-7.6 also. 
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(a) (b) (c) 

Figure 7.8: TC vs ( , )  (a) M/M/1/K, (b) M/E3/1/K, and (c) M/D/1/K for Cost Set-I 

 

   

(a) (b) (c) 

Figure 7.9: TC vs ( , )  (a) M/M/1/K, (b) M/E3/1/K, and (c) M/D/1/K for Cost Set-II 

 

   

(a) (b) (c) 

Figure 7.10: TC vs ( , )  (a) M/M/1/K, (b) M/E3/1/K, and (c) M/D/1/K for Cost Set-III 

 

7.6. CONCLUDING REMARKS 

The performance analysis of the finite population M/G/1/K multi-component machining 

system with server vacation and standby support in both crisp, as well as the fuzzy environment, 

is done. Using the analytical technique based on recursive and supplementary variable 

approaches, the queue size distribution and system metrics are derived in explicit form. The 
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multi-components machining system with general repair time is then investigated in the fuzzy 

environment by taking system parameters as the fuzzy numbers. The meta-heuristic, harmony 

search algorithm is implemented to minimize the cost function which demonstrates the potential 

applicability and tractability of it in the real-time system. The cost optimization done reveals the 

scope of the model for the fault-tolerant machining system operating with standbys and repair 

support and provision of server vacation. 

 



157 

 

 

Chapter 8 
 

Customers' Joining Strategies for Double Orbit Retrial 

Queue 
 

8.1. INTRODUCTION  

In many real life congestion scenarios, it is noticed that the customers do not like to wait 

in front of the unreliable server so that the system organizer provides them facility of waiting 

hall; from there they can re-attempt their request for the service (cf. Artalejo and Falin, 2002). 

In the queueing literature, a few researchers have presented their pioneer works on the unreliable 

server retrial queue (cf. Chang and Wang, 2018; Choudhury et al., 2015; Yang et al., 2016). The 

balking behavior of the customers in case of unreliable server retrial queue is a common issue 

in our daily life; this situation may be realized at a number of places. There are scarcity of works 

on unreliable server retrial queue with balking. Most recently, Ke et al. (2019) analyzed a 

multiple server Markov model for retrial queue with vacation and balking by using the matrix 

geometric method. In the queueing literature, some researchers have focused on retrial queue 

with feedback (cf. Kumar and Sharma, 2014; Tao et al., 2014). Singh et al. (2017) dealt with 

the non-Markov bulk input queueing model by incorporating both discouraged behavior and 

feedback. Chang et al. (2018) considered an unreliable server retrial queueing model along with 

customers’ impatient and feedback behaviour. They investigated Markov model by using quasi-

birth and death processes. Based on the linear cost-reward structure, Hemachandra and Narahari 

(2000) considered an MMPP/GI/1 queue and analyzed two optimization problems i.e. profit per 

unit time (PUT) and profit per accepted customers (PAC).  

The single server crisp queueing model with retrial attempts can be further extended to 

single server double orbit fuzzy queueing model with balking behavior of the customers, server 

breakdown and customer’s feedback. This extended study may have wider applications in a real 

time systems and would be beneficial to the decision makers is facilitating better service for 

which the customers are agreed to pay. The work on double retrial orbit in queueing literature 

is rarely found. The applicability of double orbit retrial queue in our daily life may be noticed 
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including railway station where two types of waiting rooms (ordinary and premium) are 

available for the arriving passengers. Double orbit retrial queueing model with priority 

customers was presented by Jain and Bhagat (2013). They presented a transient solution of the 

queue size distribution by using the Runge-Kutta 4th order method. Jain et al. (2015) dealt with 

a single unreliable server finite queueing model with double orbit retrial. They categorized 

customers into two classes namely, priority and non-priority and then steady state analysis is 

done based on the matrix method.  

The fuzzy model for double orbit retrial queue deals with more versatile and realistic 

queueing scenarios. Many researchers working in the area of queueing theory have contributed 

towards crisp retrial queueing models but a very few researchers have paid their attention to 

study the fuzzy retrial queueing model (cf. Ke et al., 2006, 2007; Kalayanaraman et al, 2010; 

Yang and Chang, 2015). The applicability of fuzzy retrial queueing models is more realistic as 

compared to crisp retrial queue models from an application viewpoint. Rao et al. (2007) studied 

a test interval optimization problem using fuzzy-genetic approach. In fuzzy environment, 

Sharma et al. (2017) considered trapezoidal fuzzy number to frame the cost function of 

inventory model so as to determine the optimal values of the system descriptors.  In the crisp 

retrial queueing model, the system parameters namely arrival rate, service rate, retrial rate, etc. 

have a constant value whereas in fuzzy retrial queueing model these parameters are represented 

in linguistic way. The system parameters used in the fuzzy queue are possibilistic and 

probabilistic (cf. Buckeley, 2004). The priority-based fuzzy queueing model was studied by 

Bouazzi et al. (2017). They used the fuzzy logic controller in wireless sensor networks to 

propose a fuzzy logic algorithm. Bhardwaj et al. (2018) proposed a Markov model with two 

queues in series and reneged customers in fuzzy environment. 

In the queueing literature, the single server double orbit retrial queue with customers’ 

balking behavior has not appeared earlier while it has a variety of applications in our routine life 

including at repair workshops and communications systems, etc. In this chapter, we deal with 

the double orbit queueing models with balking behavior of the customers and unreliable server 

model. In Section 8.2, the single server double orbit queue with customers’ joining strategy has 

been investigated in both crisp environments. Section 8.3 is devoted to the optimal management 

of double orbit retrial queue with balking.  Further, the model discussed in Section 8.2 is 

transformed into fuzzy environment and analyzed in Section 8.4. In Section 8.5, the double orbit 

queue is discussed by incorporating the concept of feedback. In Section 8.6, the concept of 
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unreliable server is incorporated to develop double orbit retrial queueing model along with 

customer’s balking behaviour. The soft computing based ANFIS technique is also used to 

validate the numerical results for unreliable server model. In Section 8.7, the concluding 

remarks of the investigation done are given.  

8.2. DOUBLE ORBIT RETRIAL MODEL WITH BALKING 

In the present model, we study the retrial queueing model by incorporating the concepts 

of double orbit along with balking in both crisp and fuzzy environment. The applications of such 

queueing model can be seen at many places including automobile industries, shopping malls, 

communication system, etc. 

8.2.1. Model Description of Double Orbit Model 

Consider a single server infinite capacity retrial queueing model with balking. To 

develop Markov model, the concept of double orbit namely, ordinary orbit and premium orbit 

is incorporated. The following assumptions are made to construct the mathematical model:  

(i) The arriving customers join the system in Poisson fashion with rate . 

(ii) On arrival, the customers decide whether to join the queue or not. It is assumed that the 

arriving customers join the system with probability q and balk with probability (1 ).q  

(iii) Reaching at the service center, if the customer finds the server busy then there are two 

options namely, either he waits in the queue or join the ordinary or premium orbit with 

probability   or (1 ) . Those whose paying capacity is less, joins the ordinary orbit and 

those who are in the position to pay high, join the premium orbit.  

(iv) After a random period of time, both types of customers re-attempt for the service 

according to exponential distribution with mean1/  . 

(v) The server facilitates the service to the ordinary customers and the premium customers 

according to an exponential distribution with rates 1  and 2 , respectively.  

(vi) The customers present in the queue/orbit are served according to first-come-first-served 

(FCFS) rule.  

For the convenience of notations, we define 1O    and 2(1 ) .P      

Let ( )N   and ( )S   be the random variables denoting the number of customers in the system 

and status of the server at any time , respectively. Now, the three levels of system states are 

defined as follows: 



160 

 

0 1 2 3 … n …



P
P P P P

   

    

O O O O O

q q q q q q

 2 3 n

4 ( 1) n

( 1) n

n

432

0

1

2

i

n

Figure 8.1: Transition state diagram for double orbit model 

0(2), when theserver is free and thecustomersare residing in the ordinary

( ) (premium)orbit

1, when theserver is busy.

S i




  



            

We consider a bi-variate stochastic process { ( ), ( ) : 0}S N    which portrays the 

continuous time Markov chain (CTMC) with the state space{0,1,2} {0,1,2,...} . Markov retrial 

model is developed in terms of steady state probabilities
, ,lim ( ), 0,1,2.i n i nP P i





   

It can be easily verified that the system is stable if (cf. Gross et al., 2008)  1.
O P

q


 
 


 

8.2.2. The Governing Equations and Analysis  

For the mathematical analysis of the model, the steady state Chapman-Kolmogorov (C-

K) equations are constructed for the system states at three levels 0,1 and 2i   by balancing the 

in-flows and out-flows of different states as follows: 

0, 1,( ) 0, 0,1,2,...n o nn P P n         (8.1)  

1,0 0,0 2,0 0,1 2,1( ) 0o Pq P P P P P                (8.2) 

1, 1, 1 0, 2, 0, 1 2, 1( ) ( 1) ( 1) 0, 1,2,...o P n n n n n nq P qP P P n P n P n                      (8.3) 

 
2, 1,( ) 0, 0,1,2,...n P nn P P n         (8.4) 
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The probability generating functions (PGFs) ( )i z  where | | 1z   for the three levels 0,1i  and 

2, i.e. when the customers are in ordinary orbit, busy state and in the premium orbit respectively, 

are defined as follows:  

0 0,

0

( ) n

n

n

z P z




  ,   (8.5) 

1 1,

0

( ) n

n

n

z P z




     (8.6) 

and 
2 2,

0

( ) n

n

n

z P z




  .  (8.7) 

Lemma 8.1: The probability generating functions 0 1( ), ( )z z  and 2 ( )z  are given by 

(i) 
0 ( ) (1 )O

O P

z z






 




  


  (8.8) 

(ii)  
1

1( ) (1 )
O P

z z






 




  


   (8.9) 

(iii) 
2 ( ) (1 )P

O P

z z






 




  


   (8.10) 

where 

1

(1 )
.

(1 )
q











 

 

 

Proof: Multiplying (8.1) and (8.4) by nz  and summing over n , we get 

0 0 1(z) (z) (z)    Oz     (8.11) 

2 2 1(z) (z) (z)    Pz      (8.12) 

where ( )z  is the first derivative of ( )z with respect to z. 

Multiplying (8.3) by nz and summing over n , and then adding (8.2), we have 

1 0 0 2 2( )Π (z) (z) (z) (z) (z)O Pq qz                     (8.13) 

Denote 0 2( ) ( ) ( )  z z z    (8.14) 
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Adding (8.11) and (8.12) and using (8.14), we find  

1( ) ( ) ( ) ( )     O Pz z z z       (8.15) 

Now (8.13) and (8.14) yield, 

1( ) ( ) ( ) ( )       O Pq qz z z z         (8.16) 

Solving (8.15) for
1( ) z and then substituting into (8.16), we get 

( ) ( )
(1 )

z z
z



 
  


   (8.17) 

Equation (8.17) yields  

( ) (1 ) ,z k z







   k  being constant.   (8.18) 

Using (8.15), (8.17) and (8.18), we get 

1

1( ) (1 )
k

z z
q









      (8.19) 

Adding (8.18) and (8.19) and then using normalizing condition 
2

0

(1) 1i

i

  , the constant .k  

Also, 1( )z  given in (8.9) is obtained by using the value of k  into (8.19). Substituting 1( ) z

from (8.9) into (8.11) and (8.12) respectively, and solving for 0 2( )and ( ), z z  probability 

generating functions given in (8.8) and (8.10) are obtained. 

Theorem 8.1: The steady state probabilities for the double orbit single server queueing model 

with balking are given by 

1

0

1

,

0

1

0

1
( ) , 0, 0,1,2,...,

!

1
( ( 1) ) , 1, 0,1,2,...,

!

1
( ) , 2, 0,1,2,....

!

 
 

  

 
 

  

 
 

  













    
     

    


   
       

     


  
          







n
n

O

jO P

n
n

i n

jO P

n
n

P

jO P

j i n
n

P j i n
n

j i n
n

  (8.20) 



163 

 

where 
1

1; 0,1,... .




 
n

j

j n

x n  

Proof: By expanding 
1

(1 ) and (1 )z z

 

  

 


   given in (8.8)-(8.10) and then collecting the 

coefficients of nz , we obtain results given in (8.20).  

Lemma 8.2: The long run probabilities for the idle server and the busy server are respectively, 

given by 

(1 )

(1 )
I

q
P

q




 



 
  (8.21) 

(1 )


 
SBP

q



 
  (8.22)  

Proof: Adding (8.8) and (8.10) and putting 1z  , we obtain (8.21). The result given in (8.22) 

can be derived from (8.9) by substituting 1.z    

Theorem 8.2: When the customer enters into the system with probability ,q the expected 

number of customers in the ordinary orbit, in front of the server, in the premium orbit and in the 

system are respectively, given by 

(i) 
2

[ ]
(1 )

O
OE N

q

 

  


 
   (8.23) 

(ii) 
2 1

[ ]
1 (1 )

qE N
q

  

   

 
  

    
  (8.24)  

(iii)  
2

[ ]
(1 )

P
PE N

q

 

  


 
   (8.25) 

(iv) 
2 1 1

[ ]
(1 ) 1

O P
SE N

q

   
    

     

   

     
  (8.26) 

Proof: Differentiating (8.8), (8.9) and (8.10) with respect to ,z  and then putting 1z  , we obtain 

(8.23), (8.24) and (8.25). Expected number of customers in the system ( [ ])SE N given in (8.26) 

is obtained by summing the total number of customers in the queue and average customers in 

the service. 
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Remark 8.1: Expected waiting time in the system ( [ ])SE W is determined using Little’s formula 

given by
[ ]S

eff

E N


 

2 1 1
[ ]

1

O P
SE W

q

   

    

   
    

   
  (8.27) 

where ( )
(1 )

eff

q
q

q




 


 
.   (8.28) 

Remark 8.2: Total number of customers in the queue ( [ ])TE N is given by the sum of customers 

waiting in the ordinary orbit ( [ ])OE N , premium orbit ( [ ])PE N  and in front of the server 

( [ ]).qE N  Thus

2 1
[ ]

(1 ) 1

O P
TE N

q

   

    

   
   

    
  (8.29) 

8.2.3. Numerical Results of Double Orbit Retrial Model with Balking 

In this section, the sensitivity analysis of system parameters on various performance 

measures is conducted by taking a numerical illustration. For the computation of numerical 

results, MATLAB software is used by setting default parameters as 22, 
1 20,  2 30, 

10,  0.75,q  0.5  and cost elements per unit time as 60,OC  120,PC  30,HC 

30,IC  110,BC  1 50,C  2 50.C   

The numerical experiments are conducted by varying the values of 1 2, , , ,q    and the 

numerical values of the expected total number of customers in the queue ( [ ])TE N , expected 

waiting time spent by the customers in the system ( [ ])SE W  and long run probabilities namely, 

server being idle ( )IP  and busy ( )SBP  are recorded in Tables 8.1-8.4. Also, the trends of the 

expected number of customers in the system ( [ ])SE N  are shown in Figures 8.2-8.5 against

1 2, , ,    respectively, for varying the value of .q  
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Figure 8.2: 1[ ] vsSE N   for 0.7,0.8,0.9q   Figure 8.3: 2[ ] vsSE N   for 0.7,0.8,0.9q   

  

 
 

Figure 8.4: [ ] vsSE N   for 0.7,0.8,0.9q   Figure 8.5: [ ] vsSE N   for 0.7,0.8,0.9q   

 

Table 8.1: Effect of q  and 1  on various performance measures 

q  
1  [ ]TE N  [ ]SE W  SBP  IP  TC  

0.7 

16 5.97 0.39 0.74 0.26 1497.50 

24 3.79 0.25 0.65 0.35 1609.94 

32 2.76 0.18 0.59 0.41 1762.48 

0.8 

16 9.78 0.57 0.80 0.20 1635.54 

24 5.44 0.32 0.70 0.30 1677.08 

32 3.7 0.22 0.62 0.38 1805.46 

0.9 

16 19.02 0.99 0.87 0.13 1939.77 

24 8.12 0.44 0.75 0.25 1778.41 

32 5.06 0.28 0.66 0.34 1862.29 
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Table 8.2: Effect of q  and 
2  on various performance measures 

q  
2  [ ]TE N  [ ]SE W  SBP  IP  TC  

0.7 

25 6.42 0.42 0.76 0.24 1481.57 

30 4.64 0.31 0.70 0.30 1545.84 

35 3.62 0.24 0.65 0.35 1632.99 

0.8 

25 10.84 0.63 0.82 0.18 1636.78 

30 7.02 0.41 0.75 0.25 1637.15 

35 5.13 0.31 0.69 0.31 1697.05 

0.9 

25 22.66 1.18 0.89 0.11 2017.90 

30 11.46 0.61 0.81 0.19 1794.10 

35 7.56 0.41 0.74 0.26 1791.12 

 

Table 8.3: Effect of q  and   on various performance measures 

q    [ ]TE N  [ ]SE W  SBP  IP  TC  

0.7 

15 1.45 0.15 0.51 0.49 1399.55 

20 3.36 0.25 0.65 0.35 1492.22 

25 7.63 0.44 0.77 0.23 1659.23 

0.8 

15 1.89 0.18 0.54 0.46 1421.66 

20 4.78 0.32 0.69 0.31 1551.45 

25 13.34 0.68 0.83 0.17 1856.67 

0.9 

15 2.43 0.21 0.57 0.43 1448.48 

20 7.04 0.42 0.74 0.26 1638.69 

25 30.69 1.39 0.91 0.09 2408.18 

 

Table 8.4: Effect of q  and   on various performance measures 

q    [ ]TE N  [ ]SE W  SBP  IP  TC  

0.7 

2 18.76 1.12 0.70 0.30 2252.39 

6 6.99 0.44 0.70 0.30 1663.60 

10 4.64 0.31 0.70 0.30 1545.84 

0.8 

2 27.94 1.53 0.75 0.25 2612.73 

6 10.51 0.60 0.75 0.25 1799.75 

10 7.02 0.41 0.75 0.25 1637.15 

0.9 

2 44.96 2.26 0.81 0.19 3222.12 

6 17.04 0.88 0.81 0.19 2032.11 

10 11.46 0.61 0.81 0.19 1794.10 

 

It is assumed that both ordinary, as well as premium customers, join the system with constant 

arrival rate and the system organizer facilitates the waiting spaces as per choice of the customers 

in ordinary and premium orbits. If the customers are served with faster service rate, then [ ],TE N

[ ]SE W  and SBP ( )IP  would be decreased (increased) and this fact has been reported in Tables 
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8.1-8.2. Figures 8.2 and 8.3 reveal that [ ]SE N  decreases on increasing the service rates

1 2and ,   respectively. But [ ]SE N  increases with respect to q ; however later on, it becomes 

asymptotically constant when 
1 2and   become high. Table 8.3 depicts that [ ]TE N , [ ]SE W  and 

SBP rise but IP  downfalls as  increases by keeping the service rate 1 2and   as constants. Also, 

an increment in [ ]SE N  is reported (see Figure 8.4) with . As the customers re-attempt for the 

service with increasing , there seems to be a downfall in [ ]TE N  and [ ]SE W  as can be seen in 

Table 8.4. Similarly, Figure 8.5 shows that [ ]SE N  becomes less as   goes up and at a later 

stage for higher , it becomes asymptotically constant. 

8.3. OPTIMAL MANAGEMENT OF DOUBLE ORBIT RETRIAL QUEUE 

This section presents the optimal admission control policy for the double orbit retrial queue with 

balking. We analyze the customers’ joining/balking strategy based on profit function. The 

system cost per unit time is also optimized to determine the optimal service rates.   

8.3.1. Optimal Joining Strategy and Profit Function  

In the section, we formulate the profit function to determine the optimal joining 

probability of the customer for the single server double orbit retrial queue. We assume that the 

arriving customers upon joining the system, are facilitated by the single server and then they 

receive reward R units for their satisfaction. On the other hand, each customer has to pay a 

waiting cost C per unit of time when they remain in the system to receive the service. Arriving 

customers before joining the system, estimate the expected reward related to the service received 

and the expected waiting cost as per information gathered from the system and then decide 

whether to queue-up or balk. In particular, customers always prefer to join the system if the 

reward is greater than the expected waiting cost and are neutral when the rewards are equal to 

the expected waiting cost. Now, we construct the profit function ( )f q for the single server 

double orbit retrial queue as follows: 

    ( ) ( ) . [ ]eff Tf q q R C E N                 (8.30) 

where ( )eff q and [ ]TE N  are given by (8.28) and (8.29), respectively.  

After getting served, the customers are strictly preferred to receive maximum profit from the 

system organizer. Our aim is to maximize the profit function given in (8.30) corresponding to 

joining probability q . Thus, the optimization problem is constructed as follows: 
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 max ( ) ( *)f q f q  where 0 1q   (8.31) 

Theorem 8.3: In the single server double orbit retrial queue, when the server is busy, the 

customers join the system with probability *q  that maximizes the profit per unit time given by 

 1 2 1

0, 0

(1 )
* ,

1, ,

R
u

C

R
q u v

C

R
v

C

   




 


  

  






  (8.32) 

where 1 2 1 2

2

1 2

( (1 ) )( (1 ) )

( (1 ) )
u

        

   

      


 
, 

2

1 2 1 2 1 2

2

1 2 1 2

( (1 ) ) ( (1 ) ) ( (1 ) )

( (1 ) )( (1 ) )
v

           

       

        


    
, 

1 2
1

1 2 1 2

( (1 ) )( )

( (1 ) )) ( (1 ) )

C X

C RC

    


       

   


     
, 

2

1 2 1 2 1 2

1 2

( ( (1 ) )( )) ( (1 ) )( )( ( (1 ) ))

( (1 ) )).

X C C C

RC

              

   

          

  
 

Proof: Substituting ( )eff q and [ ]TE N  from (8.28) and (8.29) into (8.30), we have 

 
2

1 2(1 ) 1
( )

(1 ) (1 ) 1

qR C
f q

q q

     

      

    
    

      
  (8.33) 

After some algebra, (8.33) yields  

2

1 2 1 2

1 2 1 2 1 2

( (1 ) ) ( (1 ) )
( )

(1 ) ( (1 ) )( (1 ) )

R C q q
f q

q q q

          

              

      
 

          
  (8.34) 

Now, (8.34) can be rewritten as 

1 2 1 2 1 2 1 2

1 2 1 2

[(( (1 ) ) ( (1 ) ) )( (1 ) ) ( )( (1 ) )]
( )

( (1 ) )( (1 ) )

C R q CC
f q

q q

                 

          

            
 

      

 (8.35) 

Fsor the brevity of notation, we assume 1 2(1 ) .q        Now, (8.35) yields 
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 1 2 1 2 1 2[(( (1 ) ) ( (1 ) ) ) ( )( (1 ) )]
( )

( )

C R CC
f

              


   

         
 



  (8.36) 

where 1 2 1 2[ (1 ) , (1 ) ]             .  

Profit function ( )f q given in (8.30) for 0 1q   is equivalent to profit function ( )f   given in 

(8.36) for 1 2 1 2(1 ) (1 )              . Maximizing profit function given in (8.30) 

is now equivalent to maximizing profit function given in (8.36). Differentiating (8.36) with 

respect to , we have 

 
2

2 2

( ) [ ]

( )

df A B D

d

   

   

  



  (8.37) 

where 1 2 1 2(( (1 ) ) ( (1 ) ) )A C R              , 1 22 ( )( (1 ) )B C          and 

1 2( )( (1 ) )D C         . We notice that 0B  and 0D   whereas either 0A  or 

0A  .  

Case 1: If 0A   

1 2 1 2(( (1 ) ) ( (1 ) ) ) 0C R              
1 2

1 1
.

(1 )

R

C    
 

 
 

We observe 
( )

0
df

d




 . Therefore, ( )f  is strictly increasing function in   and hence its 

maximum value is attained at 1 2(1 )       or equivalently, * 0q  . When 

1 2

1 1

(1 )

R

C    
 

 
, then customers would not prefer to join the system and balk, i.e. 

* 0.q   

Case 2: If 0A   

1 2 1 2(( (1 ) ) ( (1 ) ) ) 0C R              
1 2

1 1
.

(1 )

R

C    
 

 
 

In this case, we cannot predict whether ( )f   is increasing or decreasing in   for 

1 2 1 2(1 ) (1 )              . Solving 
( )

0
df

d




 , we have 
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1 2
1

1 2 1 2

( (1 ) )( )
0

( (1 ) )) ( (1 ) )

C X

C RC

    


       

   
 

     
  (8.38) 

1 2
2

1 2 1 2

( (1 ) )( )
0

( (1 ) )) ( (1 ) )

C X

C RC

    


       

   
 

     
  (8.39) 

Thus, we notice that ( )f   is decreasing in 2 1( , ) ( , )     and increasing in 2 1[ , ]  . Now 

there are three subcases as follows: 

Case 2.1: When 1 2 1(1 )       1 2

2

1 2

( (1 ) )( )

( (1 ) )

R

C

     

   

   


 
. This implies that

( )f  is an increasing function in 1 2 1 2[ (1 ) , (1 ) ]           . Thus ( )f   has its 

maximum value at its upper bound i.e., at 1 2(1 )       or equivalently, when * 0q  . 

Therefore, the best response of the customers is balking.  

Case 2.2: When 1 2 1 1 2(1 ) (1 )              
R

u v
C

  , ( )f   increases in 

1 2 1[ (1 ) , ]        and decreases in 1[ , ]  . Thus, ( )f  attains its maximum value at 

1   or equivalently, when 1 2 1(1 )
*q

   



  
 . To get the maximum profit after getting 

served when 
R

u v
C

  , customers should join the system with probability

1 2 1(1 )
*q

   



  
 . 

Case 2.3: When 1 1 2(1 )        
R

v
C
 . This implies that ( )f   is a decreasing 

function in 1 2 1 2[ (1 ) , (1 ) ]           . Therefore, ( )f   attains its maximum value at 

1 2(1 )         or equivalently, * 1q  . This shows that arriving customers necessarily 

join the system to get maximum profit.  

8.3.2. Cost Function 

For the single server double orbit retrial queue with balking, the system organizers 

always prefer to serve the customers as per their demand and earn as much profit as possible. 

To reduce the system cost and provide better service to the customers, we construct a cost 

function that can be used to determine the minimum system cost per unit of time corresponding 
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to the optimal service rate. The cost function is framed by considering various cost factors per 

unit time including ( )O PC C as cost per unit of time incurred on each customer while residing 

in ordinary orbit (premium orbit); HC as holding cost of each customer in the system; ( )I BC C

as cost spent when the server is idle (busy); 1 2( )C C as cost per unit of time incurred on each 

ordinary customer (premium customer) when he is being served by the server. Thus, total cost 

function is given by    

 
1 2 1 1 2 2( , ) [ ] [ ] [ ] (1 )O O P P H q I I B SBTC C E N C E N C E N C P C P C C             (8.40) 

The cost function given in (8.40) looks highly non-linear in 1 2and  . Thus, in such a case we 

may not be able to minimize it by an analytical method. Thus, we use the genetic algorithm 

(GA) based on soft computing technique to deal with the cost function.  

8.3.3. Numerical Results 

(i) Joining Strategy of Customers and Profit Function  

In this section, we analyze the impact of system parameters on profit function given in (8.31) 

and on optimal joining probability. For illustration purpose, a numerical example is considered 

which will be helpful to validate the tractability of the profit function along with optimal joining 

probability. For computation, we take default parameters as 1 6  , 2 8  , 0.5  , 1  , 10R   

and 1C  . When the system organizer serves the customers with faster rates or customers from 

retrial orbit re-request for the service with faster rates, the customers are encouraged to join the 

system with higher probability and this fact can be noticed in Figures 8.6(a-b) and Figure 8.6(d) 

for 8,10,12.R   Figure 8.6(c) reveals that when the system seems congested then the probability 

of joining the system is monotonically decreasing.  

Figures 8.7(a-b) and Figure 8.7(d) show that maximum profit enhances rapidly as the 

service rates and retrials of customers increase. This is due to the fact that the customers spend 

less waiting time in the system so that their waiting cost reduces and profit increases. On the 

other hand, we see in Figure 8.7(c) that when the arrival rate goes up then maximum profit 

increases gradually as the system becomes congested and the customers spend more time in the 

system. The surface graphs plotted in Figures 8.8(a-d) for the expected profit function versus 

joining probability by taking system parameters (a) 1  (b) 2  (c)   and (d) R  are concave and 

the maximum profit corresponding to optimal joining probability occurs.       
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(a) (b) 

  

  
(c) (d) 

Figure 8.6: *q  vs (a) 1 (b) 2  (c)  (d)   for different values of R  

 

  
(a) (b) 
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(c) (d) 

Figure 8.7: ( *)f q  vs  (a) 1 (b) 2  (c)  (d)   for different values of R  

 

  
(a) (b) 

  

  
(c) (d) 

Figure 8.8: ( )f q for varying values of q  and (a) 1 (b) 2  (c)  (d) R  
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(ii) Cost Optimization using Genetic Algorithm (GA) 

To minimize the system cost alongwith the best service to the customers is the main concern of 

the system organizer. In this section, our main goal is to determine optimal service rates * *

1 2( , ) 

for both ordinary and premium customers and the corresponding minimum costs 

* *

1 2( ( ), ( ))TC TC   of the system. Since the cost function given in Equation (8.40) of the previous 

Section 8.3.2, is highly nonlinear and complex so it is not an easy task to analyze its nature 

analytically. A population search based genetic algorithm is implemented to achieve the goal of 

optimal service rates by following the algorithmic steps given in Section 1.4.8 of Chapter 1.  

For the M/M/1 double orbit retrial queueing model with balking, the input parameters 

1 2, , , , , , , , ,O P H I Bq C C C C C C C   and population size ( )P , genes ( )G , crossover rate ( )RC  and 

mutation rate R(M )  are used. The output of the GA are (i) *

1 and *

1( )TC   and (ii) *

2  and 

*

2( ).TC  To determine the output through GA, the numerical values for the input parameters are 

summarized in Tables 8.5-8.6. 

After following the steps for GA (cf. Mitchell, 1996), Figures 8.9-8.12 indicate the best 

fitness values and best mean fitness in each generation versus iteration number. Also, it is 

noticed that the weighted average change in the fitness function (cost function) value over stall 

generations is less than function tolerance. Therefore, GA is executed successfully after 51 

iterations and the output results (i) *

1 and *

1( )TC   and (ii) *

2  and *

2( )TC   for varying values 

of  andq   are recorded in Table 8.7. Minimum values of the system cost summarized in Table 

8.7 reveal that when the customers join the system with higher probability, then system becomes 

congested; in such scenario, the system organizer has to render the service at faster rate. On the 

other hand, when the customers retry from their respective orbits for the service with faster rate, 

the system gradually becomes less congested; also the system cost decreases. Cost function 

given in (8.40) is convex as can be seen in the surface graphs shown in Figures 8.13-8.16. The 

surfaces graphs are made for total cost versus service rates, 1 2( , )   by considering different 

values of q and .  
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Table 8.5: GA parameters for computation of *

1 and *

1( )TC   

Parameters Value assigned Method 

2( , , , , )q     

1 2( , , , , , , )O P H I BC C C C C C C  

(22,30,0.5,0.75,10)  

(60,120,30,30,110,50,50)  

 

--- 

Population size 
1

( )P  20 Binary encoding 

Selection 
1

/ 5P  Tournament 

selection 

Crossover rate ( )RC  1 2-Point crossover 

Mutation rate ( )RM  0.08 
Bit inversion 

mutation 

Stopping criteria: 

(i) Generations 

(ii) Stall generation 

(iii) Function tolerance 

100 

50 
61 10  

 

 

--- 

 

 

Table 8.6: GA parameters for computation of *

2 and *

1( )TC   

Parameters Value assigned Method 

1( , , , , )q     

1 2( , , , , , , )O P H I BC C C C C C C  

(22,20,0.5,0.75,10)  

(60,120,30,30,110,50,50)  

 

--- 

Population size 
1

( )P  20 Binary encoding 

Selection 
1

/ 5P  Tournament 

selection 

Crossover rate ( )RC  1 2-Point crossover 

Mutation rate ( )RM  0.08 
Bit inversion 

mutation 

Stopping criteria: 

(i) Generations 

(ii) Stall generation 

(iii) Function tolerance 

100 

50 
61 10  

 

 

--- 

 

 

Table 8.7: * *

1 1( , ( ))TC  and 
* *

2 2( , ( ))TC  for different andq   

( , )q   * *

1 1( , ( ))TC   * *

2 2( , ( ))TC   

(0.70, 10) (12.56, $1479.84) (21.99, $1466.43 ) 

(0.75, 10) (15.15, $1554.88) (24.61, $1545.99) 

(0.80, 10) (17.73, $1629.28) (27.23, $1624.90) 

(0.75, 6) (18.07, $1719.31) (27.15, $1713.08) 

(0.75, 9) (15.67, $1584.34) (25.07, $1575.57) 

(0.75, 12) (14.35, $1508.75) (23.90, $1499.98) 
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Figure 8.9: TC vs Generation for evaluation 

of  1 by varying value of q 

Figure 8.10: TC vs Generation for 

evaluation of  2 by varying value of q 

  

  
Figure 8.11: TC vs Generation for 

evaluation of  1 by varying value of   

Figure 8.12: TC vs Generation for 

evaluation of  2 by varying value of   

 

  

Figure 8.13: TC  for varying of 1 and q  Figure 8.14: TC  for varying of 2 and q  
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Figure 8.15: TC  for varying of 1 and   Figure 8.16: TC  for varying of 2 and   

 

8.4. FM/FM/1 DOUBLE ORBIT RETRIAL FUZZY QUEUE 

In this section, double orbit retrial queueing model with infinite capacity is developed in 

fuzzy environment. The input parameters namely arrival rate ( ) , the effective service rate for 

ordinary customers ( )O , the effective service rate for premium customers ( )P and the retrial 

rate ( ) used in M/M/1 model developed in previous section are to be considered as fuzzified 

arrival rate ( ) , the effective service rate for the ordinary customers ( ),O the effective service 

rate for the premium customers ( )P and the retrial rate ( ) , respectively. It is noted that 

, ,O P and    are the convex fuzzy numbers and their membership functions are ( ),l



( ), ( )
O PO Pm m   and ( ),g respectively. Assume j  denotes a convex fuzzy set and its 

membership function is denoted by ( )
j

jx

 . Thus,  

 {( , ( )) : }, 1,2,3,4
j

j j j j jx x x X j  


    (8.41) 

where 
jX  denotes the crisp universal set corresponding to j . Also for FM/FM/1 model, we 

get 
1 2 3 4, , ,O P           and 1 2 3 4, , ,O Px l x m x m x g    . 

Let 1 2 3 4( , , , )f x x x x denote the system performance index. Here j are fuzzy numbers, so that

1 2 3 4( , , , )f      is also a fuzzy number. Now, we define 
1 2 3 4( , , , )f      by  

 
1 2 3 4

1 2 3 4 ( , , , )
( , , , ) {( , ( )) : }

f
f y y y Y 

   
      . (8.42) 
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where Y is the universal crisp set of 
1 2 3 4( , , , )f     . Based on Zadeh’s extension principle 

(Zadeh, 1978), the membership function of 
1 2 3 4( , , , )f     is determined by 

 
1

1 2 3 4

1 2 3 4

1

( , , , ) ( )
( , , , )

{ ( ) : 1,2,3,4}; ( )
( )

0

j
j

x x x x f y
f

sup min x j if f y exists
y

otherwise



   


 





 


 


  (8.43) 

Thus, 
1 2 3 4

1 2 3 4( , , , )
( ) { ( ) : 1,2,3,4 | ( , , , )}

j
j j

jf
x X

y sup min x j y f x x x x
    

 


     (8.44) 

Referring to Theorem 8.2, the membership functions for the expected number of customers

( [ ])SE N and the expected waiting time in the system ( [ ])SE W respectively, are given by  

 
[ ]

1

1 1
( ) ( ), 1,2,3,4 |

1S j

O P
jE N

r

m m l g
y sup min x j y

g r g r
  



     
       

     

  (8.45) 

 
2

[ ]
1

1 1
( ) ( ), 1,2,3,4 |

1S j

O P
jE W

r

m mr l g
y sup min x j y

lq g r g r
 



     
       

     

  (8.46) 

where 
2

and
(1 )O P

lq r
r

m m q r r
 

  
 . 

From (8.45) and (8.46), it is not an easy task to plot the membership function of [ ]SE N  and

[ ]SE W . The parametric nonlinear programing (P-NLP) is used to find  cut of [ ]SE N and 

[ ]SE W by using Zadeh’s extension principle. 

8.4.1. Parametric Nonlinear Programing (P-NLP) 

The membership functions are framed by using a parametric non-linear programing approach. 

Based on Zadeh’s extension principle, cuts of [ ]SE N are constructed as 

 
[ ]

[ ]( ) { : ( ) }, [0,1]  
S

S E N
E N y y      (8.47) 

The cuts of j are defined by 

 ( ) { : }
j

j jx 


    , 1,2,3,4j   (8.48) 

The cuts of j in terms of the crisp interval are obtained as 
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 ( ) ( ) , ( ) { : ( ) }, { : ( ) } , 1,2,3,4.
j j

j j j j

L U

j j j j j j j
x X x X

x x min x x max x x j   
     

 

          
 (8.49) 

Since j is a convex fuzzy number, therefore the upper and lower bounds of j can be 

represented in terms of such that  

 1 1( ) , ( ) ( ), ( ) , 1,2,3,4.
j j

L U

j jx x min max j   
           

  (8.50) 

Based on Zadeh’s extension principle, (8.45) holds if at least one of the four cases holds: 

Case 1: 
1

1( ) , ( ) , 2,3,4,
j

jx x j
 
       

Case 2: 
2

2( ) , ( ) , 1,3,4,
j

jx x j
 
       

Case 3: 
3

3( ) , ( ) , 1,2,4,
j

jx x j
 
       

Case 4: 
4

4( ) , ( ) , 1,2,3.
j

jx x j
 
       

Thus 

 
1 1

1

O Pm m l g
y

g r g r

   
    

   
   (8.51) 

satisfies 
[ ]

( )
SE N

y  .  

The parametric nonlinear programing (P-NLP) is used to construct the lower bound ( )Ly  and 

upper bound ( )Uy of cut  of [ ]SE N through the Cases 1-4. Thus, we obtain   

 
1,

1

1 1

1

L O P

r

m m l g
y min

g r g r
 



   
    

   
  (8.52a) 

 
1,

1

1 1

1

U O P

r

m m l g
y max

g r g r
 



   
    

   
  (8.52b) 

 
2,

1

1 1

1

L O P

r

m m l g
y min

g r g r
 



   
    

   
  (8.53a) 

 
2,

1

1 1

1

U O P

r

m m l g
y max

g r g r
 



   
    

   
  (8.53b) 
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3,

1

1 1

1

L O P

r

m m l g
y min

g r g r
 



   
    

   
  (8.54a) 

 
3,

1

1 1

1

U O P

r

m m l g
y max

g r g r
 



   
    

   
  (8.54b) 

 
4,

1

1 1

1

L O P

r

m m l g
y min

g r g r
 



   
    

   
  (8.55a) 

 
4,

1

1 1

1

U O P

r

m m l g
y max

g r g r
 



   
    

   
  (8.55b) 

Since ( )j jx   , ( ) , ( )L U

j j jx x x    . For given 2 10 1    , we conclude 

1 1 2 2
( ) , ( ) ( ) , ( ) for 1,2,3,4L U L U

j j j jx x x x j   
        ; this is because cuts form a nested 

structure with respect to  . Therefore, it is clear that (8.52a), (8.53a), (8.54a) and (8.55a) have 

the same smallest values. On the other hand (8.52b), (8.53b), (8.54b) and (8.55b) have the same 

largest value. To plot the membership function  [ ]SE N
  of [ ]SE N , it is sufficient to determine 

the lower and upper bound of the membership function
[ ]SE N

 , which is equivalent to determine 

the lower bound ( )Ly  and upper bound ( )Uy of cut of [ ]SE N  given as follows: 

 
1

1 1
[ ]

1

L L O P
S

r

m m l g
E N y min

g r g r

   
     

   
     (8.56) 

where           , , ,
L U L UL U L U

O O O P P Pl l l m m m m m m g g g             
  

and 
1

1 1
[ ]

1

U U O P
S

r

m m l g
E N y max

g r g r

   
     

   
     (8.57) 

where           , , ,
L U L UL U L U

O O O P P Pl l l m m m m m m g g g             
. 

At least one of ; 1,2,3,4jx j  must be on the boundary of their cut that satisfies 
[ ]SE N

  . 

Here, (8.56) and (8.57) are the special cases of P-NLPs (Gal, 1979). Ly and Uy are respectively 

increasing and decreasing functions as  goes up because 
2 1

L Ly y  and 
2 1

U Uy y  through 

2 10 1    . Therefore, the membership function 
[ ]SE N

 of [ ]SE N  is constructed as 
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0 1

1 1

[ ]

1 0

( ), [ ] [ ]

1, [ ] [ ]
( )

( ), [ ] [ ]

0,

S

L L

N S S

L U

S S

E N U U

N S S

L y E N y E N

E N y E N
y

R y E N y E N

otherwise

 

 

 



 

 

 

  


 
 

 



  (8.58) 

where 1( [ ] ) ( )L

S NE N L y

  and 1( [ ] ) ( )U

S NE N R y

   are the left and the right portion of the 

portrait of the membership function 
[ ]SE N

 of [ ]SE N . 

By following the same procedure from (8.47) to (8.58), the lower bound ( [ ] )L

SE W   and upper 

bound ( [ ] )U

SE W  of cut  of [ ]SE W  are obtained as 

 
2

1

1 1
[ ]

1

L O P
S

r

m mr l g
E W min

lq g r g r




   
    

   
  (8.59) 

where           , , ,
L U L UL U L U

O O O P P Pl l l m m m m m m g g g             
  

and 
2

1

1 1
[ ]

1

U U O P
S

r

m mr l g
E W y max

lq g r g r
 



   
     

   
  (8.60) 

where           , , ,
L U L UL U L U

O O O P P Pl l l m m m m m m g g g             
. 

The membership function 
[ ]SE W

 of [ ]SE W is constructed as 

 

0 1

1 1

[ ]

1 0

( ), [ ] [ ]

1, [ ] [ ]
( )

( ), [ ] [ ]

0,

S

L L

W S S

L U

S S

E W U U

W S S

L y E W y E W

E W y E W
y

R y E W y E W

otherwise

 

 
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 

 

  


 
 

 



  (8.61) 

where 1( [ ] ) ( )L

S WE W L y

  and 1( [ ] ) ( )U

S WE W R y

   are the left and the right portion of the 

portrait of the membership function 
[ ]SE W

 of [ ]SE W . 

8.4.2. Defuzzification Approach: Yager Ranking Index 

In many real time applications, the system organizers/managers prefer to have real 

(crisp) value instead of fuzzy value. In order to find the crisp values corresponding to fuzzy 

output values, Yager’s ranking index approach is applied. Yager’s ranking index is given as (cf. 

Yager, 1981) 
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1

0

1
( ) ( )

2

L UR d        (8.62) 

where ,L U     is an cut  of a convex fuzzy number .  

8.4.3. Evaluation of Extrema of [ ]SE N   and [ ]SE W   

Let , , ,O P    be the trapezoidal fuzzy numbers and they are represented by

1 2 3 4[ , , ],a a a a  1 2 3 4[ , , ],O b b b b  1 2 3 4[ , , ],P c c c c  1 2 3 4[ , , ]d d d d  , respectively; and

1i ia a  , 1i ib b  , 1i ic c  , 1i id d  , 1,2,3.i   The membership functions for , , andO P     

are respectively, given as 
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  (8.63) 
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  (8.64) 
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  (8.65) 
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  (8.66) 
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With the help of (8.49), cuts of , , andO P    are given by 

 
1 2 1 4 4 3( ) [ , ] [ ( ), ( )]L Ul l a a a a a a            (8.67) 

  1 2 1 4 4 3( ) [( ) ,( ) ] ( ), ( )L U

O O Om m b b b b b b            (8.68) 

  1 2 1 4 4 3( ) [( ) ,( ) ] ( ), ( )L U

P P Pm m c c c c c c            (8.69) 

  1 2 1 4 4 3( ) [ , ] ( ), ( )L Ug g d d d d d d            (8.70) 

Thus, (8.56) and (8.57) yield 
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1 1
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1

L O P
S

r

m m l g
E N min

g r g r

   
    

   
    (8.71) 

 
1

1 1
[ ]

1

U O P
S

r

m m l g
E N max

g r g r

   
    

   
    (8.72) 

and satisfy 1 2 1 4 4 3( ) ( )a a a l a a a       , 1 2 1 4 4 3( ) ( )Ob b b m b b b       ,  

1 2 1 4 4 3( ) ( )Pc c c m c c c       , 1 2 1 4 4 3( ) ( )d d d g d d d       . 

To determine the extremum of the objective functions given in (8.71) and (8.72), we employ the 

concepts of differential calculus.   

Differentiating (8.71) partially with respect to , , andO Pl m m g  respectively, we notice that

[ ] 0L

SE N
l





 , [ ] 0L

S

O
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m






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S

P

E N
m







 and [ ] 0L

SE N
g





  for 1 4a l a  , 

1 4Ob m b  , 1 4Pc m c  , 1 4d g d  . Therefore, the minimum value of [ ]L

SE N 
 occurs at 

1 2 1( ),l a a a   4 4 3( ),Om b b b   4 4 3( )Pm c c c   and 4 4 3( )g d d d    and the 

maximum value of [ ]U

SE N 
 is found at 4 4 3( ),l a a a   1 2 1( ),Om b b b  

1 2 1( )Pm c c c   and 1 2 1( )g d d d   . Now, we have  

 
 
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  (8.73) 
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            

                     (8.74) 

By following the same procedure for (8.59) and (8.60), [ ]L

SE W 
 attains its minimum value at 

1 2 1( ),l a a a   4 4 3( ),Om b b b   4 4 3( )Pm c c c   and 4 4 3( )g d d d   . 

Also attains its maximum at 4 4 3( ),l a a a   1 2 1( ),Om b b b   1 2 1( )Pm c c c   and 

1 2 1( )g d d d   . Thus, we obtain  
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                    (8.75) 
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       (8.76) 

 where 1 4 3 4 3 4 4( )u b b b c c c      and 1 1 2 1 2 1 1( )v b b b c c c      . 

8.4.4. Example of FM/FM/1 Double Orbit Retrial Queue 

To explore the proposed fuzzy retrial model in fuzzy environment, we present an 

application example of movie ticket booking counter which makes the concerned study more 

beneficial for the system organizers. Let us assume that the movie theatre has single booking 

counter which provides two types of tickets namely, ordinary ticket and premium ticket. 

Ordinary customers buy ordinary tickets and the premium customers buy a premium ticket from 

the booking counter. The arriving customers are assumed to follow Poisson process. The 

arriving customers may observe the queue length of customers before joining the queue and 

decide to join the queue with probability q  and balk with probability (1 )q . The ordinary 

(premium) customers are served by the booking counter according to exponential distribution 

with service rates 1 2( )  . If the arriving ordinary (premium) customer finds the booking counter 

busy then he is moved to the ordinary (premium) waiting hall and retries for the booking after a 

random period of time. The arrival rate and the effective service rate of ordinary customers, the 

effective service rate of premium customers and retrial rate are trapezoidal fuzzy numbers and 
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are given by parameter values for per hour as [28,30,32,34],  [18,19,20,21]O  ,

[20,21,22,23],P  [2,3,4,5]  , respectively. The system organizers may find fuzzy 

expected number of customers in the system ( [ ])SE N and fuzzy expected waiting time in the 

system ( [ ])SE W for different values of 0.5,0.7,0.9q  . Using results given by (8.73)-(8.74) and 

(8.75)-(8.76), the numerical values are obtained and displayed in Tables 8.8-8.9 for

0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1  . 

From Table 8.8, it is noticed that at 0,  fuzzy value of [ ]SE N  lies in the intervals [3.32, 

14.88], [5.46, 30.38] and [8.91, 74.51] when 0.5,0.7,0.9q  , respectively. It means that the 

fuzzy value of the expected number of customers would not lie outside of the intervals for 0. 

On the other hand, when 1  and 0.5,0.7,0.9q  , the interval range for [ ]SE N  are reported 

as  [4.99, 80.6], [8.68, 15.04] and [15.37, 30.07], respectively. The same fact is shown in Figures 

8.17(a-c).  

Numerical results shown in Table 8.9 depict that fuzzy value of expected waiting time (in hour) 

for the customers in the system would not be decreased (increased) below (above) 0.16 (0.63) 

when 0.5q  and 0.   At 1  and 0.5,q  the fuzzy expected time in the system lies in the 

range [0.23 0.35]. Similarly, when joining the probability of the customers is 0.5,0.7q  and 

1,  then the expected waiting time lies in [0.35 0.58], [0.55, 1.02], respectively. These facts 

are depicted in Figures 8.18(a-c). 

The system organizers may be interested in the crisp values of the expected number of customers 

in the system and expected waiting time spent by the customers in the system instead of fuzzy 

values. To defuzzify the fuzzy value, we follow the defuzzification rule stated in Section 8.4.2. 

Using (8.73) and (8.74) in (8.62) for q   0.5, 0.7, and 0.9., the crisp values of the expected 

number of customers in the system is obtained as 7.52, 14.18 and 29.70, respectively. Similarly, 

crisp values of expected waiting time in the system are obtained as 0.33 hour, 0.55 hour, 1 hour 

for q   0.5, 0.7, and 0.9. 
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Table 8.8: cutsof , , , and [ ]O P SE N      

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Ll  28 28.2 28.4 28.6 28.8 29 29.2 29.4 29.6 29.8 30 

Ul  34 33.8 33.6 33.4 33.2 33 32.8 32.6 32.4 32.2 32 

( )L

Om 
 18 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 

( )U

Om 
 21 20.9 20.8 20.7 20.6 20.5 20.4 20.3 20.2 20.1 20 

( )L

Pm 
 20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 

( )U

Pm 
 23 22.9 22.8 22.7 22.6 22.5 22.4 22.3 22.2 22.1 22 

Lg
 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

Ug  5 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4 

0.5q   
[ ]L

SE N 
 3.32 3.45 3.59 3.73 3.88 4.04 4.21 4.39 4.57 4.77 4.99 

[ ]U

SE N 
 14.88 13.87 12.96 12.14 11.39 10.71 10.09 9.52 8.99 8.51 8.06 

0.7q   
[ ]L

SE N   5.46 5.7 5.96 6.23 6.52 6.83 7.15 7.5 7.86 8.26 8.68 

[ ]U

SE N   30.38 28.03 25.93 24.05 22.36 20.83 19.45 18.19 17.05 16 15.04 

0.9q   
[ ]L

SE N   8.91 9.37 9.86 10.39 10.95 11.56 12.21 12.91 13.67 14.48 15.37 

[ ]U

SE N   74.51 66.92 60.39 54.71 49.77 45.43 41.6 38.21 35.19 32.49 30.07 

 

Table 8.9: cutsof , , , and [ ]O P SE W      

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Ll  28 28.2 28.4 28.6 28.8 29 29.2 29.4 29.6 29.8 30 

Ul  34 33.8 33.6 33.4 33.2 33 32.8 32.6 32.4 32.2 32 

( )L

Om   18 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 

( )U

Om   21 20.9 20.8 20.7 20.6 20.5 20.4 20.3 20.2 20.1 20 

( )L

Pm   20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21 

( )U

Pm   23 22.9 22.8 22.7 22.6 22.5 22.4 22.3 22.2 22.1 22 
Lg  2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 
Ug  5 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4 

0.5q   
[ ]L

SE W   0.16 0.16 0.17 0.17 0.18 0.19 0.19 0.2 0.21 0.22 0.23 

[ ]U

SE W   0.63 0.59 0.55 0.52 0.49 0.46 0.44 0.41 0.39 0.37 0.35 

0.7q   
[ ]L

SE W   0.23 0.24 0.25 0.26 0.27 0.28 0.3 0.31 0.32 0.34 0.35 

[ ]U

SE W   1.13 1.05 0.97 0.91 0.85 0.79 0.74 0.7 0.66 0.62 0.58 

0.9q   
[ ]L

SE W   0.34 0.35 0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.52 0.55 

[ ]U

SE W   2.39 2.16 1.95 1.78 1.63 1.49 1.37 1.27 1.17 1.09 1.02 
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Figure 8.17: The membership function for 

[ ]SE N   for (a) 0.5q  (b) 0.7q   (c) 0.9q   

Figure 8.18: The membership function for 

[ ]SE W   for (a) 0.5q  (b) 0.7q   (c) 0.9q   
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8.5. DOUBLE ORBIT RETRIAL MODEL WITH FEEDBACK 

If the served ordinary customer is not satisfied with service then he re-joins the system for 

the re-service. It is assumed that after getting served,   proportion of the ordinary customers 

leave the system whereas (1 ) proportion of customers are feedback to the system again. The 

transition state diagram for ordinary customer’s feedback is depicted in Figure 8.19. 
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Figure 8.19: Transition state diagram for double orbit feedback model 

The probability generating functions and steady state probabilities for the feedback model are 

given as:  
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 (8.77) 

1

0

1

,

0

1

0

1
( ) , 0,

!

1
( ( 1) ) , 1,

!

1
( ) , 2.

!

n
n

O

jO P

n
n

i n

jO P

n
n

P

jO P

j i
n

P j i
n

j i
n

 
 

  

 
 

  

 
 

  













    
    

    


    
      

     


   
         







 (8.78) 



189 

 

where 
O P

q


 
 


and 

1

(1 )
.

(1 )
q











 


 

 

Special Case: When 1  then double orbit retrial model with feedback reduces to double orbit 

retrial model without feedback as described in Section 8.2. 

8.6. UNRELIABLE SERVER DOUBLE ORBIT RETRIAL MODEL 

In this model, we deal with double orbit queue having failure prone server and balking 

behavior of the customers. ANFIS approach is also proposed to show the feasibility of the 

implementation of the soft computing approach for the performance evaluation of the present 

queueing system. 

8.6.1. Model Description of Unreliable Server Model  
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Figure 8.20: Transition state diagram for double orbit retrial model with unreliable server 

 Now we formulate the unreliable server double orbit model which coincides with the 

double orbit model described in Section 8.2 when server is taken to be reliable.  In this model, 

the concept of unreliable server is also taken into account. To describe the unreliable server 

model, the additional assumption alongwith the assumptions (i)-(vi) described in Section 8.2.1 

is that the server may fail at any time according to Poisson distribution with rate  . As the server 

goes to breakdown state, it is immediately sent for repair which is performed according to 
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exponential distribution with rate  . The transition state diagram for unreliable server model is 

depicted in Figure 8.20. 

Now, the fourth level of system states ( )S  is defined as follows: 

( ) 3, the server is brokendown and under repair.S i    

8.6.2. The Analysis of the Unreliable Server Model 

In order to derive the queue size and other performance metrics, the steady state 

Chapman-Kolmogorov equations by balancing the in-flows and out-flows (see Figure 8.20) are 

framed for all system states 0,1,2,3i   as follows:   

0, 1,( ) 0, 0,1,2,...n O nn P P n         (8.79)  

1,0 0,0 2,0 0,1 2,1 3,0( ) 0O Pp P P P P P P                    (8.80) 

1, 1, 1 0, 2, 0, 1 2, 1 3,( ) ( 1) ( 1) 0,

1,2,...

O P n n n n n n nq P qP P P n P n P P

n

                       


      (8.81) 

2, 1,( ) 0, 0,1,2,...n P nn P P n         (8.82) 

3, 1, 0, 0,1,2,...n nP P n        (8.83) 

Define the probability generating functions (PGFs) for unreliable server model as follows: 
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Lemma 8.3: For the unreliable server model, the probability generating functions ( )i z is 
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  (8.84) 
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Proof: Proof is similar as Lemma 8.1.  

Theorem 8.4: For the unreliable server model, the steady state probability distribution, 
,i nP is  
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Proof: Expanding (1 )z







 and 
1

(1 )z








 in (8.84), then after collecting the coefficient of

,nz we get (8.85). 

8.6.3. Performance Measures for Unreliable Server Model 

In order to explore the system performance, we derive steady state metrics namely, long 

run probabilities, mean queue size, mean waiting time and failure frequency, as follows:  

(i) Queue Size  

Let [ ]TE N  and [ ]SE N denote the total mean number of customers in the queue and mean 

total number of customers in the system, respectively. Then 

(a) 
3

0 1

[ ] ( )T i

i z

d
E N z

dz  

 
  
 
      

 

2 1
[ ] 1

(1 ) 1

O P
TE N

q q

     

      

    
     

       
 (8.86) 

(b) [ ] [ ] mean number of customers in the serviceS TE N E N    
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 

2 1 1
[ ] 1

(1 ) 1

O P
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q q

     

       

    
      

       
  (8.87) 

(ii) Waiting Time 

The mean waiting time in the queue and mean waiting time in the system spent by both 

types of customers are donated by [ ]TE W , [ ]SE W , respectively. Then 

(a) 
2 1

[ ] 1
1

TE W
q

    

    

   
     

    
 (8.88) 

(b) 
2 1 1

[ ] 1
1

SE W
q

    

     

   
      

    
 (8.89) 

Results given in (8.88) and (8.89) are obtained by using Little’s formulae 

[ ] [ ]T eff TE N E W  and [ ] [ ]S eff SE N E W , where 
eff is effective arrival rate and it is given by

 (1 )
eff

q

q q

 


  


  
. 

(iii) Failure Frequency  

At any time, the server may be broken down so that the failure frequency ( )fF  of the 

server is obtained using    

1(1)fF      (8.90) 

(iv) Long Run Probabilities  

The long run probabilities of the server being idle ( )IP , busy ( )SBP  and broken down 

( )BDP  respectively, are obtained as  

(a)  
 

0 2
1

(1 )
lim ( ) ( )

(1 )
I

z

q
P z z

q q

 

  


   

  
 (8.91) 

(b) 
 

1
1
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SB
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P z
q q



  
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  
   (8.92) 

(c) 
 

3
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lim ( )
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BD
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P z
q q



  
  

  
 (8.93) 
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(v) Cost Function 

To facilitate the customer’s quality of service (QoS) in economic way, the system 

organizers must provide service in such a manner that the system cost can be reduced by 

controlling the service rate. Now, the total cost function 1 2( , )TC   per unit of time in terms of 

decision variables 1 and 2  is framed by including different cost elements per unit time. Let 

1 2
( )C C  be cost/unit time incurred on each ordinary customers (premium customers) when they 

are getting service, ( )I SBC C be the cost/unit time when the server is in idle (busy) state, HC  be 

the holding cost/unit time when the customers are waiting in the orbits. Thus 

1 21 2 1 2( , ) (1 ) [ ]SB SB I I H TTC C C C P C P C E N             (8.94) 

8.6.4. Numerical Results of Unreliable Server Model 

In this section, we visualize the effects of system parameters namely, , , 1, 2  on 

different performance metrics of the double orbit retrial queueing model with unreliable server. 

For the cost analysis, quasi-Newton method is applied so as to obtain optimal service rates at 

minimum cost. For the computational purpose, default values of the system parameters are 

chosen as given in Table 8.10.   

Table 8.10: Default system parameters 

Parameter q        1  2      

Default values 0.8 20 10 0.5 20 30 2 3 

 

(i) Sensitivity of the System Parameters  

We analyze the effects of arrival rate ( ),  retrial rate ( ),  and service rates 1 2( , )  on 

various performance metrics viz. [ ]TE N , [ ]TE W , [ ]SE W , SBP , IP , 
fF , TC  and recorded in 

Tables 8.11-8.14. Also the variations in [ ]SE N corresponding to parameters , , 1, 2  are 

shown in Figures 8.22-8.25, respectively. Now we examine the sensitivity of different 

parameters based on numerical results as follows: 
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Table 8.11: Effect of   on performance metrics 

q    [ ]qE N  [ ]qE W  [ ]SE W  fF  
SBP  IP  BDP  TC  

0.4 

10 0.27 0.04 0.08 0.53 0.265 0.558 0.177 1304.17 

15 0.65 0.08 0.12 0.68 0.341 0.432 0.227 1320.05 

20 1.25 0.13 0.17 0.79 0.397 0.338 0.265 1341.43 

0.6 

10 0.46 0.07 0.11 0.56 0.280 0.533 0.187 1310.72 

15 1.19 0.13 0.17 0.73 0.366 0.390 0.244 1337.55 

20 2.51 0.23 0.27 0.86 0.432 0.281 0.288 1381.21 

0.8 

10 0.70 0.09 0.13 0.59 0.297 0.505 0.198 1318.93 

15 1.99 0.20 0.24 0.79 0.395 0.342 0.263 1363.44 

20 4.96 0.42 0.46 0.94 0.472 0.213 0.315 1457.01 

 

Table 8.12: Effect of   on performance metrics 

q    [ ]TE N  [ ]TE W  [ ]SE W  fF  
SBP  IP  BDP  TC  

0.4 

4 2.66 0.27 0.31 0.79 0.397 0.338 0.265 1383.78 

8 1.49 0.15 0.19 0.79 0.397 0.338 0.265 1348.48 

12 1.10 0.11 0.15 0.79 0.397 0.338 0.265 1336.72 

0.6 

4 5.28 0.49 0.53 0.86 0.432 0.281 0.288 1464.28 

8 2.97 0.28 0.32 0.86 0.432 0.281 0.288 1395.05 

12 2.20 0.20 0.24 0.86 0.432 0.281 0.288 1371.98 

0.8 

4 10.29 0.87 0.91 0.94 0.472 0.213 0.315 1617.01 

8 5.84 0.49 0.53 0.94 0.472 0.213 0.315 1483.67 

12 4.36 0.37 0.41 0.94 0.472 0.213 0.315 1439.23 

 

Table 8.13: Effect of 1  on performance metrics 

q  
1  [ ]TE N  [ ]TE W  [ ]SE W  fF  

SBP  IP  BDP  TC  

0.4 

10 1.82 0.21 0.26 0.88 0.441 0.265 0.294 1111.18 

15 1.49 0.16 0.20 0.84 0.418 0.303 0.279 1224.72 

20 1.25 0.13 0.17 0.79 0.397 0.338 0.265 1341.43 

0.6 

10 4.21 0.44 0.49 0.97 0.484 0.194 0.323 1185.32 

15 3.15 0.31 0.35 0.91 0.456 0.240 0.304 1277.02 

20 2.51 0.23 0.27 0.86 0.432 0.281 0.288 1381.21 

0.8 

10 11.57 1.08 1.13 1.07 0.536 0.107 0.357 1409.29 

15 6.98 0.62 0.66 1.00 0.502 0.163 0.335 1394.61 

20 4.96 0.42 0.46 0.94 0.472 0.213 0.315 1457.01 

 

 Effect of arrival rate ( ) : From Table 8.11, it is seen that when , 1, 2  are constant and 

  goes up, [ ],TE N [ ]TE W , [ ]SE W , SBP , BDP  and fF  increase whereas IP  falls down. The 

trends for different joining probability ( )q  shown in Figure 8.22 depict the increasing 

trend of [ ]SE N  as  increases, which is same as per our expectation. 
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Table 8.14: Effect of 2  on performance metrics 

q  
2  [ ]TE N  [ ]TE W  [ ]SE W  fF  

SBP  IP  BDP  TC  

0.4 

16 2.22 0.27 0.32 0.92 0.462 0.231 0.308 1024.15 

20 1.82 0.21 0.26 0.88 0.441 0.265 0.294 1111.18 

24 1.55 0.17 0.21 0.85 0.423 0.296 0.282 1201.71 

0.6 

16 5.69 0.62 0.68 1.02 0.508 0.153 0.339 1131.36 

20 4.21 0.44 0.49 0.97 0.484 0.194 0.323 1185.32 

24 3.32 0.33 0.37 0.92 0.462 0.231 0.308 1257.38 

0.8 

16 23.55 2.31 2.37 1.13 0.566 0.057 0.377 1670.38 

20 11.57 1.08 1.13 1.07 0.536 0.107 0.357 1409.29 

24 7.59 0.68 0.72 1.02 0.508 0.153 0.339 1388.31 

 

 Effect of retrial rate ( ) : The retrial rate ( )  affects significantly [ ]TE N , [ ]TE W , [ ]SE W  

as can be seen from Table 8.12. It is observed that SBP , IP , BDP and fF  do not much change 

with respect of  . From Table 8.12, we see that as the customers retry for the service with 

faster rate, mean number of customers in the orbits (ordinary and executive) becomes less 

and subsequently their waiting time is also reduced. The same fact can also be seen from 

Figure 8.23. 

 Effect of service rates 1 2( and )   : The mean number of customers in the orbit or in the 

system and mean waiting time spent by the customers always depend on the service 

provided by the system organizer. When the system organizer provides faster service and 

arrival rate of the customers is constant, then [ ],TE N [ ]TE W , [ ]SE W , 
fF , BDP  and SBP  

seem lower down whereas IP  increases as can be seen from the Tables 8.13 and 8.14. 

Figures 8.24 and 8.25 reveal that [ ]SE N becomes less when the server facilitates service 

to the customers with faster rate. 

(ii) ANFIS computing  

The artificial neuro fuzzy inference system (ANFIS) is a soft computing tool which works based 

on neural network and fuzzy inference system. ANFIS has been successfully used for the 

prediction of many complex systems in the diverse area. The applications of ANFIS may be 

seen in the fields of traffic modeling apart from financial engineering, industrial engineering, 

food engineering, telecommunication system, etc. ANFIS technique is implemented to 

authenticate the steady state results. The procedural steps of ANFIS can be seen in Section 1.4.7 

of Chapter 1. For analyzing the unreliable server double orbit retrial queueing model with 
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balking, we consider the fuzzified input parameters (i)   (ii)  (iii) 1  (iv) 2 . The Gaussian 

membership function is taken corresponding to input parameters (i)   (ii)  (iii) 1  (iv) 2   

and the linguistic variables for the input parameters are given in Table 8.15. 

Table 8.15: Input parameters, membership function and linguistic variables for ANFIS 

Sr. 

No. 

Input 

parameter 

Number of 

membership 

function 

Linguistic variables 

1.   5 Very small, small, medium, large, very large 

2.   3 Small, medium, large 

3. 1  4 Small, medium, large, very large 

4. 2  4 Small, medium, large, very large 

 

Matlab software is used to produce the ANFIS results to compare the numerical results obtained 

by analytical method by employing the anfisedit command and setting the default parameters as 

given in Table 8.10. The accuracy in the ANFIS results for [ ]SE N  is examined by evaluating 

the absolute percentage errors ( ) given by  

ˆ| [ ] [ ] |
100%

[ ]

S S

S

E N E N

E N


                                                  (8.95) 

where   is absolute percentage error, ˆ[ ]SE N  is estimated value of expected number of 

customers in the system by ANFIS; [ ]SE N is exact value expected number of customers in the 

system  by analytical method. 

The exact values of [ ]SE N  by analytical method using (8.87) and the estimated values

ˆ[ ]SE N of [ ]SE N  by ANFIS technique for varying values of (i)   (ii)  (iii) 2  (iv) 1  for 

0.6,0.7,0.8q   are recorded in Tables 8.16-8.19. We notice that the values of ˆ[ ]SE N and 

[ ]SE N are almost coincide which shows the feasibility of the ANFIS approach in complex 

model of real time system. Further, absolute percentage error and accuracy in estimated value 

in percentage of [ ]SE N  are evaluated by using (8.95) and summarized in Tables 8.16-8.19. We 

see that less value of  shows that how our ANFIS approach is closer with the results obtained 

by analytical method.     
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(a) (b) 

  
(c) (d) 

Figure 8.21: Membership function for (a)  (b)   (c) 1  (d) 2  

 

  
Figure 8.22: SE[N ]vs for 0.6,0.7,0.8q   Figure 8.23: SE[N ]vs for 0.6,0.7,0.8q   
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Figure 8.24: S 1E[N ]vs for 0.6,0.7,0.8q   Figure 8.25: S 2E[N ]vs for 0.6,0.7,0.8q   

 

The membership function for input parameter (i)   (ii)  (iii) 1  (iv) 2  respectively, are 

shown in Figures 8.21(a-d). Figures 8.22-8.25 show best match between exact value of [ ]SE N  

and ˆ[ ].SE N  The ANFIS results ˆ[ ]SE N  are depicted in Figures 8.22-8.25 by the tick marked 

whereas the analytical results are indicated by the lines (continuous line, dash line, and dotted 

line) for the prediction of [ ]SE N . 

Table 8.16: , [ ]SE N  and ˆ[ ]SE N  by varying   for 0.6,0.7,0.8q   

  
0.6q   0.7q   0.8q   

[ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) 

15 1.553 1.552 0.008 1.924 1.924 0.015 2.387 2.386 0.034 

16 1.773 1.773 0.027 2.229 2.230 0.049 2.810 2.813 0.104 

17 2.018 2.017 0.072 2.576 2.573 0.124 3.307 3.298 0.248 

18 2.292 2.295 0.119 2.973 2.978 0.199 3.892 3.907 0.382 

19 2.599 2.595 0.154 3.428 3.419 0.249 4.590 4.569 0.459 

20 2.942 2.947 0.171 3.954 3.964 0.268 5.428 5.453 0.472 

21 3.327 3.322 0.144 4.563 4.553 0.218 6.448 6.425 0.366 

22 3.761 3.765 0.108 5.276 5.284 0.158 7.711 7.730 0.253 

23 4.252 4.249 0.067 6.116 6.110 0.095 9.302 9.289 0.146 

24 4.809 4.810 0.032 7.115 7.118 0.044 11.360 11.367 0.064 

25 5.444 5.443 0.011 8.319 8.318 0.014 14.107 14.104 0.020 

Average of    0.083 0.130 0.232 

Accuracy in predicted 

value (%) 

99.91

7 
99.870 99.768 
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Table 8.17:   , [ ]SE N  and ˆ[ ]SE N  by varying   for 0.6,0.7,0.8q   

  
0.6q   0.7q   0.8q   

[ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) 

4 5.711 5.711 0.007 7.772 7.771 0.007 10.761 10.760 5.711 

5 4.788 4.789 0.026 6.499 6.501 0.026 8.983 8.986 4.788 

6 4.173 4.169 0.076 5.650 5.646 0.077 7.798 7.792 4.173 

7 3.733 3.739 0.145 5.044 5.052 0.148 6.952 6.962 3.733 

8 3.403 3.396 0.220 4.590 4.580 0.225 6.317 6.302 3.403 

9 3.147 3.156 0.276 4.236 4.248 0.282 5.823 5.840 3.147 

10 2.942 2.934 0.252 3.954 3.943 0.259 5.428 5.414 2.942 

11 2.774 2.779 0.191 3.722 3.729 0.197 5.105 5.115 2.774 

12 2.634 2.631 0.111 3.529 3.525 0.114 4.835 4.830 2.634 

13 2.516 2.517 0.039 3.366 3.367 0.041 4.607 4.609 2.516 

14 2.414 2.414 0.011 3.226 3.226 0.011 4.412 4.411 2.414 

Average of    0.123 0.126 0.128 

Accuracy in predicted 

value (%) 
99.877 99.874 99.872 

 

Table 8.18:  , [ ]SE N  and ˆ[ ]SE N  by varying 2  for 0.6,0.7,0.8q   

2  
0.6q   0.7q   0.8q   

[ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) 

18 5.341 5.340 0.022 8.557 8.554 0.032 16.110 16.101 0.055 

19 4.996 4.999 0.065 7.791 7.799 0.098 13.823 13.848 0.184 

20 4.694 4.689 0.103 7.153 7.141 0.168 12.107 12.066 0.344 

21 4.427 4.431 0.096 6.612 6.623 0.170 10.772 10.814 0.389 

22 4.189 4.188 0.024 6.149 6.145 0.060 9.704 9.686 0.184 

23 3.976 3.974 0.063 5.747 5.742 0.090 8.830 8.818 0.144 

24 3.785 3.788 0.098 5.395 5.404 0.166 8.102 8.130 0.354 

25 3.611 3.609 0.050 5.085 5.079 0.102 7.485 7.466 0.261 

26 3.453 3.452 0.030 4.808 4.807 0.033 6.956 6.955 0.023 

27 3.309 3.311 0.077 4.561 4.567 0.126 6.498 6.514 0.251 

28 3.176 3.174 0.062 4.338 4.333 0.117 6.097 6.080 0.268 

29 3.055 3.055 0.024 4.137 4.139 0.056 5.743 5.751 0.148 

30 2.942 2.942 0.004 3.954 3.953 0.014 5.428 5.425 0.046 

Average of    0.055 0.095 0.204 

Accuracy in predicted 

value (%) 
99.945 99.905 99.796 

 

 



200 

 

Table 8.19:  , [ ]SE N  and ˆ[ ]SE N  by varying 1  for 0.6,0.7,0.8q   

1  
0.6q   0.7q   0.8q   

[ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) [ ]SE N  ˆ[ ]SE N   (%) 

10 4.694 4.692 0.041 7.153 7.148 0.062 12.107 12.094 0.106 

11 4.427 4.431 0.111 6.612 6.624 0.173 10.772 10.806 0.315 

12 4.189 4.184 0.110 6.149 6.138 0.181 9.704 9.670 0.354 

13 3.976 3.976 0.011 5.747 5.747 0.006 8.830 8.832 0.022 

14 3.785 3.789 0.118 5.395 5.405 0.187 8.102 8.130 0.348 

15 3.611 3.609 0.047 5.085 5.080 0.087 7.485 7.470 0.198 

16 3.453 3.450 0.098 4.808 4.801 0.148 6.956 6.939 0.256 

17 3.309 3.312 0.088 4.561 4.568 0.150 6.498 6.518 0.304 

18 3.176 3.178 0.063 4.338 4.342 0.089 6.097 6.105 0.139 

19 3.055 3.051 0.108 4.137 4.130 0.177 5.743 5.723 0.340 

20 2.942 2.941 0.014 3.954 3.953 0.011 5.428 5.428 0.008 

21 2.837 2.840 0.102 3.786 3.792 0.161 5.146 5.161 0.296 

22 2.740 2.740 0.028 3.632 3.630 0.054 4.892 4.886 0.120 

23 2.650 2.648 0.079 3.491 3.487 0.121 4.663 4.653 0.213 

24 2.566 2.568 0.085 3.360 3.365 0.140 4.454 4.466 0.266 

25 2.486 2.486 0.032 3.239 3.237 0.056 4.263 4.258 0.110 

Average of    0.071 0.113 0.212 

Accuracy in predicted 

value (%) 
99.929 99.887 99.788 

 

(iii) Cost Optimization  

In this subsection, our objective is to minimize the cost function in order to determine the 

decision variables which are service rates 1 2and  . From the cost function given in Equation 

(8.94), it is noticed that it is highly non-linear and complex so it is a tough task to minimize it 

analytically. Therefore, we use computational technique to achieve our goal of minimum cost 

at optimal service rates. The decision variables 1 2( and )  and minimum cost are evaluated by 

implementing quasi-Newton method in MATLAB software. 

For the implementation of the quasi-Newton method, we consider the following two cost sets:  

1 2

1 2

CostSet-I: $50, $50, $110, $30, $30.

CostSet-II: $50, $50, $90, $35, $50.

SB I H

SB I H

C C C C C

C C C C C

 

 

    

    
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Quasi-Newton Method (QNM) 

The quasi-Newton method is used to find the approximate minimum value of  1 2( , )TC   in the 

feasible range of 1 and 2 . Let 
* *

1 2( , )TC    denote the minimum value of 1 2( , )TC   at optimal 

value
* *

1 2( , )  . The minimization problem is mathematically formulated as 

(OP)   
1 2

1 2
0, 0

( , )min TC
 

 
 

 subject to 1                (8.96) 

Using the algorithmic steps of QNM given in Section 1.4.8 of Chapter-1, we implement QNM. 

Inputs: ,q  , , , , ,
1
,C 2

,C ,SBC ,IC HC and tolerance  of 1 2

1

( , )TC  






,  

1 2

2

( , )TC  






. 

Output: Approximate solution of 
* * * *

1 2 1 2( , , ( , )).TC     

Applying algorithmic steps of quasi-Newton method, the minimum cost for Cost Set-I using 

default parameters given in Table 8.10 and initial trial solution 1 2( , ) (15,20)   is 

1 2( , ) $2512.44.TC    Also, we notice that the expected minimum cost 

* *

1 2( ) $152 .76, 8TC    is attained at 
* *

1 2 20.4435,25( ., ) 35( )44    after performing 10 

iterations (for tolerance 610  ) as can be seen from Table 8.20.  

Again, we select Cost Set-1 and parameter values 22,  5,   7  , initial trial 

solution 1 2( , ) (15,22)   so that the corresponding cost is 1 2( , ) $4174.38.TC     Using the 

QNM, the minimum value of 1 2( , )TC   is achieved after 10 iterations. The procedures of QNM 

are repeated for Cost Set -II and minimum values of cost at optimal service rates are recorded 

in Table 8.21. The surface graphs for the cost function for varying values of service rates 1 and 

2  are also shown in Figures 8.26-8.29. The convexity of 1 2( , )TC   is quite clear from these 

figures. 
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1 2Figure8.26: vs ( , ) for Cost Set-Iand

( , , ) (20,2,3)

TC  

   
 

1 2Figure8.27: vs ( , ) for Cost Set-Iand

( , , ) (22,5,7)

TC  

   
 

  

  

1 2Figure 8.28: vs ( , ) for Cost Set-IIand

( , , ) (20,2,3)

TC  

   

 

1 2Figure8.29: vs ( , ) for Cost Set-IIand

( , , ) (22,5,7)

TC  

   

 

 

Table 8.20: Quasi-Newton method in searching of 
* *

1 2( , )   and 
* *

1 2( , )TC   . 

(Cost Set -1, 20, 2, 3)     . 

Iterations 1  
2  

1 2( , )TC    Max. Tolerance 

0 15 20 1885.67 295 

1 16.0000 21.0000 1551.09 90.5 

2 16.4417 21.4417 1486.44 58.5 

3 17.2487 22.2487 1420.98 26.5 

4 17.9174 22.9174 1395.93 12.1 

5 18.4837 23.4837 1386.92 4.23 

6 18.7865 23.7865 1385.36 1 

7 18.8806 23.8806 1385.26 0.109 

8 18.8921 23.8921 1385.25 0.00319 

9 18.8924 23.8925 1385.25 51.02 10  

 



203 

 

 

Table 8.21: Optimal table for evaluating * *

1 2( , )TC   . 

( , , )    
* * * *

1 2 1 2( , , ( , ))TC     

Cost Set-I Cost Set-II 

(20, 2, 3) (18.8924, 23.8925, $1385.25) (19.9211, 25.9211, $1523.68) 

(22, 5, 7) (19.9365, 26.9356, $1508.78) (23.0966, 27.0966, $1660.60) 

 

8.7. CONCLUDING RAMARKS 

The steady state analysis of the single server double orbit retrial queue with customers’ 

balking is done by considering both reliable server and unreliable server. The probability 

generating function method is used to obtain explicit formulae for various queueing system 

indices. The model is also investigated in fuzzy environment by constructing membership 

functions for the system performance metrics by parametric non-linear programing approach. 

The customers’ behavior of joining the system based on reward-cost structure analyzed would 

be beneficial to the customers’ point of view to decide whether to join the queue or not to join 

the queue. A cost function framed is minimized using genetic algorithm which can help the 

decision maker to facilitate service at minimum cost. Furthermore, the applications of our study 

on single server double orbit queueing system can be noticed in daily routine life including 

hospitals, malls, online shopping, telecommunication systems, etc. A real life application 

example of ticket booking counter presented exhibits the realistic and fuzzified metrics for the 

future system design.  

In unreliable server model, a soft computing based ANFIS approach is applied which 

authenticates the steady state results obtained by analytical method. For illustration and validity 

of cost function, the minimum cost of the system and optimal service rates determined by 

employing quasi-Newton method demonstrate the applicability of model for decision making 

for the concerned system.  
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Conclusions 

The state-dependent queueing models with control strategies investigated in the present thesis 

are of significant importance in the real life congestion scenarios. Due to various applications 

of such queues in day to day activities and several other places have motivated us to develop 

and analyze the new models in this area. In the present thesis, the state dependent queueing 

models investigated by incorporating various realistic key features such as balking, reneging, 

feedback, server’s breakdown, server’s vacation, retrial orbit, control policies, threshold 

recovery, etc. may be helpful to study the complex systems arising in many congestion 

situations. The state-dependent queueing situations studied for repairable machining system and 

time-sharing system can be seen at computers/communication networks, 

manufacturing/production lines, etc. It is worth-while to highlight the main contributions and 

noble features of the present thesis as follows:  

 The finite capacity queueing models with various features including admission control F-

policy are developed in Chapters 2-5. The applications of such models may be noticed at 

various places including call centers, shopping malls, banks, industrial and manufacturing 

system, etc. The machine repair problems with specific concepts such as server vacation, 

standbys, retrial orbit, etc. are studied by developing the finite population model in 

Chapters 6-7.  

 The arriving customers in the system or the customers waiting in the queue for their turn 

may be discouraged due to formation of long queue in the system or slow service provided 

by the server.  The discouragement behavior of the customers considered in Chapters 

2,3,5 and 8 is a most common and realistic phenomenon in day to day activities and 

congestion scenarios and this can be noticed where long queues are built.  

 In real time systems such as industrial and production system, communication system, 

computer network, and many others, the facility of retrial orbit for waiting of 

jobs/customers may be noticed. The retrial queues deal with congestion situations 

encountered in daily routine life and hold a significant place in the area of cellular 

networks, telecommunication systems, railway ticket counters, ATMs, etc. The retrial 

orbit queueing models are developed in Chapters 2, 3, 5, 6, 8.   

 It is worth-noting that the concepts of double orbit and two types of customers namely, 

ordinary and premium are taken into account and are incorporated in infinite capacity 
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retrial model with customer’s balking, feedback and unreliable as can be seen in Chapter 

8.  

 Due to space, cost, delay and other constraints; the admission control of customers/jobs 

in queueing system is one of the important measures. Optimal control strategies can be 

employed to control the customer’s discouragement behavior (cf. Chapters 4 and 8) and 

may be helpful in resolving the delay and blocking issues in the queueing system. The 

admission control F-policy proposed in Chapters 2-6, may be beneficial in many places 

where a limited number of customers can queue up as such control of admission of 

customers/jobs becomes essential.  

 In queueing systems with the vacation, server may be unavailable for a certain period of 

time due to some reasons. The concept of vacation incorporated for the study of multi-

component machining system in Chapter 8 can be realized in the real time industrial 

systems operating in machining environment. One can also notice that the service facility 

is not always available. The concept of server’s vacation and/or unreliable server can also 

be seen in many day-to-day as well as industrial queueing situations.  

 In the present thesis some queueing models have studied in fuzzy environment (cf. 

Chapters 7-8). As far as the practical utility is concerned, the fuzzy queueing models 

portray more versatile real time congestion situations as compared to frequently used crisp 

queueing models.  

From application view points, by incorporating admission control F-policy to the concerned 

queueing systems, the problem of waiting can be resolved economically to some extent. It is 

noticed that the congestion of customers/jobs in the concerned queueing system with retrial orbit 

can also be managed by incorporating the admission control F-policy. It is suggested that the 

discouragement behavior of the customers may be reduced by many ways such as providing fast 

service to the customers, adding removable additional server(s) alongwith the existing 

permanent servers, providing some reward to the customers after getting service for their 

satisfaction, etc.  

The investigations done in the present thesis can be further extended by incorporating the 

concept of priority, bulk input and/or general input but the analysis and computation will 

become tedious. The service control based on N-policy may also be incorporated along with 

admission control F-policy and threshold recovery policy. There is further scope to work on the 

admission control F-policy for multi-server queueing model for the time sharing systems. Multi-
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component machine repair model operating under optimal control policy can be extended by 

using the concepts of working vacation and threshold recovery policy. There is need to study 

the optimal control of the real time queueing systems in generic frameworks by including the 

customer’ balking behavior, general retrial times, reneged customers, feedback, etc. 

There are enormous applications of optimal control strategies in real time congestion 

problems encountered in routine life congestion scenarios as well as in industrial delay problems 

such as in data centers, wireless communication systems, computer networks, 

telecommunication systems, manufacturing and production system, etc. We hope that our 

investigations on the optimal control strategies for state-dependent queues may facilitate the 

valuable insights to the system designers and the decision makers to tackle with system cost 

minimization, customers’ profit maximization and traffic management issues involved in the 

concerned congestion problems encountered in day-to-day as well as industrial scenarios. 
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