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Abstract 

 

Antlion Optimizer (ALO) is a metaheuristic for global optimization problems based on life cycle 

and unique hunting behaviour of antlion. Though this algorithm is developed recently, yet its 

efficiency and effectiveness can be demonstrated to solve various real life complex applications 

in many areas such as feature selection problems, optimal power and load dispatch in electrical 

engineering, wireless sensors networks, clustering and classification problems, unit commitment 

problems are few of many.  

 The objective of this Ph.D Thesis is to improve the efficiency, reliability and stability of 

Antlion Optimizer (ALO). To achieve this goal, Chapter 2 proposes a novel variant of ALO 

namely Opposition Based Laplacian Antlion Optimizer (OB-𝐿-ALO) for unconstraint global 

optimization. This version addresses the drawback of premature convergence and inability to 

avoid entrapment into local optima of ALO. For this purpose, the random walk of classical ALO 

is improved by applying Laplace distribution in place of uniform distribution as a first strategy 

to enhance exploration of search region in early iterations. The second strategy is to apply 

opposition based learning (OBL) model to the best (elite) candidate solution. The performance 

of proposed OB-𝐿-ALO is verified over a set of 31 benchmark problems of varying difficulties 

containing 23 state-of-the-art problems (a set of unimodal, multimodal and fixed dimension 

multimodal functions) and 8 IEEE CEC 2014 composition functions. This set is produced in 

Appendix I of this thesis.  A wide analysis is performed to validate the performance of the 

proposed OB-𝐿-ALO such as convergence behaviour, trajectory analysis of best candidate 

solution, average distance analysis of search agent before and after applying the updating 

strategies and elite convergence curve. Statistical significance of OB-𝐿-ALO is tested using 

Wilcoxon ranksum test. The obtained numerical results establish that the proposed OB-𝐿-ALO 

outperforms classical ALO for most of the problems. 

 Chapter 3 introduces two variants namely OB-ac-ALO and OB-SAC-ALO to accelerate 

the convergence to opposition based ALO as given in Chapter 2. The OBL model is hybridized 

with varying acceleration parameter (ac) to propose OB-ac-ALO which is useful to control the 

abrupt behaviour of the solutions at later stages of the generation and accelerate the convergence 

speed. The second modification is accomplished by hybridizing the OBL mechanism applied to 

best (elite) candidate solution with sine acceleration coefficient (SAC) to propose OB-SAC-

ALO. The performance of both the proposed variants is investigated over same set of benchmark 

functions as applied in chapter 2 and reproduced in Appendix I of this thesis. The similar analysis 
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metrics are performed as utilized in chapter 2. The obtained results and analysis prove that OB-

ac-ALO and OB-SAC-ALO perform better than ALO in majority of the problems. 

 Chapter 4 proposes another extended variant of opposition based ALO with inspiration 

to improve the random walk by taking the advantage of random jump based on step length of 

lévy flight distribution and utilizing the hybridization of OBL mechanism with acceleration 

parameter to propose opposition based lévy flight antlion optimizer (OB-LF-ALO). The 

performance of proposed OB-LF-ALO is tested on same set of benchmark problems as utilized 

in chapter 2 and 3 and compared with classical ALO which is reproduced in Appendix I of this 

thesis. Wilcoxon ranksum test is used to show the statistical significance with computational 

complexity. To keep the uniformity among all chapters, similar analysis metrics including search 

history behaviour are performed to investigate the performance of proposed OB-LF-ALO. The 

analysis of results prove that OB-LF-ALO outperforms the classical ALO. 

 Chapter 5 is divided into two parts. In first part, the modification utilizes a different 

distribution namely Cauchy distribution to generate the random number in place of uniform 

distribution to implement the random walk as a first strategy. As a second strategy, OBL 

mechanism is applied around the best (elite) candidate solution and hybridized with acceleration 

parameter to keep proper balance between early exploration and later exploitation. The 

modification is proposed as opposition based antlion optimizer using Cauchy distribution (OB-

C-ALO) .OB-C-ALO is verified using the same set of benchmark problems as used in previous 

chapters and compared with classical ALO. Similar analysis metrics are used in previous chapters 

for analysis and Wilcoxon ranksum test is used to show the statistical significance with 

computational complexity. The second part of the chapter presents the performance comparison 

in terms of obtained results and analysis among all the five proposed variants of classical ALO 

i.e. OB-𝐿-ALO, OB-ac-ALO, OB-SAC-ALO, OB-LF-ALO and OB-C-ALO.  

 In Chapter 6, the performance of proposed variants of classical ALO is investigated over 

a real world complex application of model order reduction of linear time invariant system in the 

field of control system. The performance of these algorithms are investigated by applying on 

three single input single output (SISO) systems including two four and one eight order problem 

of different characteristics. 

 Chapter 7 attempts to determine optimal values of heat transfer coefficient (�̃�) and 

pressure drop(∆𝑃) parameters. This problem consist of two conflicting objective functions: first 

to maximize heat transfer coefficient and second to minimize pressure drop value. The problem 
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is optimized using two approaches: First, single objective approach for both the objective 

functions. Secondly, multi-objective approach in which both the objective functions are 

optimized .This purpose is achieved using two different methods of multi-objective optimization: 

(i) Using weighted sum approach of multi-objective optimization using classical ALO and its 

proposed variants (ii) Pareto based multi-objective optimization using multi-objective antlion 

optimizer (MOALO).  

 Chapter 8 investigates the performance of designed variants of classical ALO for 

optimizing the production of biodiesel from renewable energy sources. In this work, the 

regression equation demonstrating the relationship among three independent variables namely 

temperature ,methanol to oil ratio and concentration of catalyst is successfully optimized for 

biodiesel production using Antlion Optimizer  (ALO) and its proposed modified versions OB-𝐿-

ALO,OB-ac-ALO,OB-SAC-ALO,OB-LF-ALO and OB-C-ALO. 

 Chapter 9 concludes the Thesis by deriving overall observations and concluding 

remarks. It also outlines the limitations and scope of the proposed variants of ALO algorithms. 

Later on, some suggestion to future research are provided. 
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CHAPTER 1 

Introduction 

 

This introductory Chapter states the definitions and underlines the objectives and motivation 

behind this Thesis. It also reviews the available literature. The Chapter closes with a brief 

summary of the work presented in this Thesis. 

 

1.1 Optimization 

Optimization is the methodology of choosing "the best" alternatives(s) among a specified set of 

available options. This approach of determining "the largest" / "the smallest" possible value of a 

given mathematical expression can attain in its specified domain of definition, is called 

optimization. The mathematical expression that has to be optimized could be either linear, 

nonlinear, integer, geometric or fractional. In some situations, explicit mathematical formulation 

of the function is not readily defined or may not be available. Many times the mathematical 

function which needs to be optimized has restrictions in the form of inequality or equality 

constraints. Therefore, the process of optimization can be considered as a problem of finding 

those values of the independent variables which do not violate the inequality and equality 

constraints in such a way to provide an optimal value of the mathematical function to be 

improved. In other words, “the mathematical techniques for determining the optimal value or 

value(s) ("the greatest possible value" or "the least possible value") of a mathematical function 

are called “Optimization Techniques”. Determining the solution of most realistic problems may 

not be possible in the absence of robust optimization techniques. In literature, numerous books 

and articles are available based on mathematical concepts of optimization [1-15].  

 Optimization problems arise in various fields of science, engineering, software industry, 

economics, manufacturing system, physical science, transportation etc. In view of their 

applicability, it is necessary to design and develop robust and efficient computational algorithms. 

 

1.2 Definition of an Optimization Problem 

Mathematically speaking, the most general form of single objective optimization problem is: 

            𝑀𝑖𝑛𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒) 𝑓(�⃗�); �⃗� =(𝑥1, 𝑥2, … , 𝑥𝐷)                                              (1.1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 X⃗⃗⃗є 𝐹,   𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 
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𝐹 = {

�⃗� ∈ 𝑅𝐷  𝑠. 𝑡.    ℎ𝑖(�⃗�) = 0; 𝑖 = 1,2, … , 𝑚       (𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)                   (1.2) 

𝑎𝑛𝑑    𝑔𝑗(�⃗�) ≥ 0; 𝑗 = 𝑚 + 1, 𝑚 + 2, … , 𝑝   (𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)             (1.3)

𝑎𝑛𝑑     𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,2,3, … 𝐷              (𝐵𝑜𝑥 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)                            (1.4)

} 

         Where 𝑓, ℎ1, ℎ2, … ℎ𝑚, 𝑔𝑚+1, 𝑔𝑚+2, … 𝑔𝑝 are real valued functions on 𝑅𝐷. 

 Function 𝑓(�⃗�) is known as “objective function” which is to be maximized or minimized. 

Equation (1.2) showing  ℎ𝑖(�⃗�) = 0 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚 are termed as the equality constraints and 

equation (1.3) depicting 𝑔𝑗(�⃗�) ≥ 0 𝑓𝑜𝑟 𝑗 = 𝑚 + 1, 𝑚 + 2, … , 𝑝 are known as inequality 

constraints. (Inequality constraint 𝑔𝑗(�⃗�) ≤ 0 may be represented as −𝑔𝑗(�⃗�) ≥ 0). The 

determined values of the variables  𝑥1, 𝑥2, … , 𝑥𝐷, should be find in such a way that the optimal 

value of objective function 𝑓(�⃗�) should be optimized without violating any of the restrictions 

imposed in equation (1.2), (1.3) and (1.4). The variables 𝑥𝑖′𝑠 are known as ‘decision variables’. 

𝑎𝑖’s are the lower bounds and 𝑏𝑖’s are the upper bounds of the “decision variables”. “A decision 

vector �⃗� = (𝑥1, 𝑥2,…,𝑥𝐷) ∈ 𝑅𝐷which satisfies all the constraints is called a feasible solution”. If 

a solution 𝑋 is feasible and it optimizes the objective function 𝑓(�⃗�) then it is termed as a feasible 

optimal solution. 

 

On the basis of presence of Constraints, there are two types of optimization problems named 

unconstrained optimization problems and constrained optimization problems. Unconstrained 

optimization problems involve an objective function given by equation (1.1) or lower or upper 

bounds on variables given by equation (1.4). Constrained optimization problems involve an 

objective function given in equation (1.1), the box constraints given by equation (1.4) and linear 

or/and non-linear, equality constraints given by equation (1.2) or/and inequality constraints given 

by equation (1.3). Due to presence of equality and inequality constraints, constrained 

optimization problems are more difficult to solve. 

 

1.3 Optimal Solutions: Local and Global 

Let F denotes the feasible region of the solution vector 𝑋 that satisfies the conditions of all 

constraints defined for an optimization problem. Consequently, in case of a minimization 

problem, “if for �̅⃗� ∈ 𝐹 there exists an -neighborhood  𝑁𝜀 (�̅⃗�) around �̅⃗� such that 𝑓(�⃗�) ≥ 𝑓(�̅⃗�) 

for each �⃗� ∈ 𝐹 ∩ 𝑁𝜀(�̅⃗�) then �̅⃗� is known as a Local minimum solution”. However, “if, �̅⃗� ∈ 𝐹  

and 𝑓(�̅⃗�) ≥ 𝑓(�̅⃗�) for all �̅⃗� ∈ 𝐹 then �̅⃗� is known as a Global minimum solution” of the 
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optimization problem at hand. Figure 1.1 shows local and global optimum solutions of a 

mathematical function. 

 

 

  

 

Figure 1.1: Demonstration of Local optima and Global optima 

 

 In general it may happen that there are either no optimal solutions, or a unique optimal 

solution or several optimal solutions, for a given nonlinear optimization problem. In case if a 

problem is unimodal i.e. it contains only one optimal solution then the same solution will also be 

the global solution. But in case of multimodal function, it contains many local optimal solution 

and one or more global optimal solution. If problem in hand is a linear programming problem, 

every local optima is also the global optima. But it is not true for nonlinear optimization 

problems. If the feasible region of nonlinear problem is convex for minimization problem, then 

only the local optima will also be the global optima.  

 In many nonlinear optimization problems, it is usually desirous to determine a “global 

optimal solution instead of a local optimal solution”. But, usually, it is hard to obtain the global 

optimal solution of a nonlinear optimization problem, rather than finding the local optimal 

solution. However, due to its practical significance, it becomes necessary to determine the global 

optimal solution. 

 For a mathematical function which is twice-differentiable, there exist conditions which 

may be used to determine a local optimal solution. If it is not so, then due to the property of 



4 

 

“continuous differentiability of function”, a solution with a lesser objective function value can 

be determined in its neighborhood. Thus, a sequence of solutions can be constructed which 

converge to the local optimal solution. However, in general, such tests are not sufficient. 

Sometimes, it is thought that finite number of steps may not be sufficient to solve a global 

optimization problem. Therefore any given solution cannot be guaranteed as a solution of global 

minima without evaluating the objective function at least at one solution of its neighborhood. 

But, the neighborhoods of a solution may be unbounded; therefore, an infinite numbers of steps 

are required to attain the global minima. 

 

1.4 Methods for Global Optimization 

The method of global optimization aims to determine the best (maximum or minimum) solution 

out of all the local optima. Designing an algorithm to find global solution is a critical a task as 

there are no fixed criteria whether the developed technique is able to find a global solution or 

not. However, many techniques are noticed in literature for solving nonlinear optimization 

problems. These methods to solve nonlinear optimization may be primarily categorized as 

deterministic and probabilistic methods. 

 Fixed guesses are tried in deterministic methods to obtain the neighborhood of global 

optima. These methods are free from the use of any stochastic approach however try to search 

the feasible region completely. But these techniques are applied to restricted class of functions. 

On the other hand, the probabilistic techniques are able to approximate the near to optimal 

solution. This is because it is assumed that the good solutions are near to global solution and to 

each other within the search region. This assumption is valid for most real life problems [16]. 

These methods utilizes the stochastic based approach. Though these methods may not provide 

an absolute global solution but promise to give good solutions  where deterministic approach are 

failed due to their applicability over a wide range of functions.   

 

1.5 Nature Inspired Optimization Algorithm 

One of the most striking trend that emerged in the optimization field is the simulation of natural 

processes as efficient global search methods. The natural processes or phenomena are firstly 

analysed mathematically and then coded as computer programs for solving complex nonlinear 

real world problems. The resulting methods are called ‘Nature Inspired Algorithms (NIA)’ that 

can often outperform classical methods. The advantages of these methods are their ability to 

solve various standard or application based problems successfully without any prior knowledge 
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of the problem space. Moreover, these algorithms are more likely to obtain the global optima of 

a given problem. They do not require any continuity and differentiability of the objective 

functions and / or constraints. Also, they work on a randomly generated population of solutions 

instead of one solution. They are easy to programme and can be easily implemented on a 

computer. 

 Nature Inspired optimization techniques can be categorized into various categories. First 

category is Evolutionary Algorithms which depend upon the evolution process of living 

organisms. They depend on the Darwin’s theory of Evolution which has two features 

𝑖) Inheritance, and 𝑖𝑖) survival of the fittest. The popular techniques under this category are: 

Genetic Algorithm (GA) [17]. The decision parameters are encoded into a encoded space (Binary 

/ Real / Octal, etc) and crossover, mutation and elitism is performed over a number of generations 

until a pre specified stopping criteria is attained. 

 Another popular algorithm under this category called Differential Evolution is proposed 

in middle of 90’s which uses only the mutation operator on a target vector [18]. Then it is 

extended for constrained optimization using different techniques and applied on applications of 

various fields [19-22]. 

 Second category is the Swarm Intelligence based Algorithms. These algorithms mimics 

the foraging behaviour of swarm of various species like ants, birds, wolves, bees etc. In this 

category of algorithms, the search agents moves in a search space by updating their positions. 

An important development is the introduction of Particle Swarm Optimization [23]. It mimics 

the behaviour of a flock of birds or school of fishes. All the solutions or particles of the swarm 

fly through the search space using their personal best position in history as well as the global best 

position of the entire swarm. Improved PSO are proposed for global optimization by Ali et al. 

[24] and Sabat et al.[25-26]. In [27-29], another improvements in PSO are presented and applied 

to various real world applications. 

 Glow Worm Swarm Optimization mimics the behaviour of glow worms which emit light 

in order to attract the others in the group for mating [30]. It is particularly designed to capture 

multiple local and global optima. Artificial Bee colony optimization is based on Self-organization 

and division of labor [31]. It is based on inspecting the behaviours of bees on finding nectar and 

sharing the information of food sources to the bees in the hive, by the employed bees, onlooker 

bees and scouts. Another Swarm Intelligence based algorithm is the Spider Monkey Algorithm 

given by Bansal et al. [32]. It is based on the foraging behaviour and fission-fusion social 

structures of spider monkeys. 
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 Ant Colony Optimization is proposed wherein the pheromone left behind ants and their 

ability to change their path as and when an obstacle is encountered on their path, is mimicked 

into the design of Ant colony optimization [33]. The behaviour of the growth of bacteria forms 

a basis of Bacterial Foraging Optimization Algorithm given by Passino [34]. A modified version 

of this algorithm is also proposed for engineering design problem [35]. Grey Wolf Optimizer is 

a relatively new nature inspired optimization technique. This algorithm imitates the exclusive 

hunting behaviour and leadership hierarchy of grey wolves [36]. Four types of grey wolves such 

as alpha, beta, delta and omega are employed for simulating the leadership hierarchy by 

incorporating the three steps of hunting namely searching for prey, encircling the prey and 

attacking the prey. 

 The third category draw their inspiration from the physical laws of nature. For example 

Gravitational Search Algorithm is based on gravitational interaction between masses [37]. It 

artificially simulates the Newton's Theory, Newtonian laws of gravitation and motion. Similarly, 

Central Force Optimization [38], is based on gravitational kinematics.  

 Harmony Search Algorithm is another nature inspired optimization which is inspired 

from music and applied to engineering applications [39-41]. 

 These days many new nature inspired optimization techniques are being proposed by 

researchers. Some of them are: Biogeography based Optimization[42-43],Water drop Algorithm 

[44], Firework Algorithms [45], Teaching Learning Based Optimization [46], Water Weed 

Optimization [47], Kidney Inspired Optimization [48], Moth-flame Optimization Algorithm 

[49], Whale Optimization Algorithm [50] and Sine Cosine Algorithm [51].  

 An excellent review of Nature Inspired Optimization Techniques is presented in: Ali and 

Törn [52],Yang [53], Kar [54] and Yang et al.[55]. 

 Many of these algorithms suffer with stagnation in local optima and premature 

convergence. It leads researchers to improve existing algorithm or to develop new algorithm. In 

the same line, a new swarm intelligence based efficient algorithm namely Antlion Optimizer 

(ALO) [56] is developed for global optimization problems. This algorithm consists good 

combination of exploration and exploitation mechanisms.  

The scope of this Thesis is Antlion Optimizer (ALO) algorithm. 

 

1.6 The No Free Lunch Theorem 

A major and interesting result in optimization theory was the presentation of the "No Free Lunch 

(NFL) theorem" given by Wolpert and Macready [57-58]. NFL states "that the performance of 
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all optimization (search) algorithms, amortized over the set of all possible functions, is 

equivalent." The theorem has far reaching implications, because it implies that "no algorithm can 

be designed so that it will be superior to a linear enumeration of the search space, or even a purely 

random search". Although, finite search space if used for theorem, yet, it is not proved if the 

result is applicable to infinite search spaces, e.g. 𝑅𝐷. The implementation of search algorithms 

in computers is done using finite search spaces; therefore it is applied to all the available 

algorithms. This theorem says that the performance of search algorithms over all functions is 

average which implies that “it does not necessarily hold for all subsets of this set. The set of all 

functions over a finite domain includes the set of all the permutations of this domain”. 

 

 1.7 Antlion Optimizer: Background 

Antlion optimizer (ALO) is a newly developed non-deterministic, population based 

metaheuristic technique which relies on the life cycle of antlion. The life cycle of antlion is 

divided in two main phases: larvae and adult. The antlion hunts in larvae stage and reproduction 

is done in adult phase. The larvae performs hunting in a sole technique by tunneling a cone shaped 

pit in the land by throwing the sand outside using its strong jaw as shown in Figure 1.2(a). The 

antlion’s larvae sits at the bottom and waits for a prey or ant to fall and consumes it(Figure 

1.2(b)). Once the antlion larvae catches the ant then it rebuilds the trap again by digging another 

pit and waits for new ant. The ants are assumed to walk randomly around the antlion’s trap. 

Another trap is rebuilt again to catch some other ant. The random walk of ant around the antlion 

mimics the exploration of the search space. Once the ant is caught by the antlion then the fitness 

of ant becomes better than the corresponding antlion and the position of the ant becomes new 

position of antlion. 

 

      (a)Cone-shaped traps                                      (b)Hunting behaviour of antlions 

Figure 1.2: Antlion behaviour 

Taken from: Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering 

Software, 83,  80-98,Elseveier.[Reprinted with License No. 4578561079159,29-04-2019] 
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 This conceptual description draws the following assumption and facts: 

(1) The ants (prey) are assumed to walk randomly around the antlions. 

(2) The antlion builds the trap (cone shaped pit) to hunt the prey or ant. 

(3) The depth of the pit is proportional to the fitness of antlion i.e. higher fitness means more 

depth of pit with higher probability to catch the ant. 

(4) The boundaries of ant’s random walk around antlion is decreased adaptively to mimic the 

movement of ant towards antlion. 

(5) Once the ant is caught and consumed by the antlion then it implies that the fitness of ant 

becomes better than the antlion. 

(6) The position of antlion is updated with the most recent ant (prey) caught by the corresponding 

antlion and rebuilds the trap to catch another ant. 

 

1.7.1 Mathematical Model 

Let the size of population (number of ants) be 𝑁 within a search space of dimension 𝐷.  The 

terminology used in mathematical modelling can be given as follows [59]: 

 𝑆𝑎𝑛𝑡 = (𝑆𝐴,1, 𝑆𝐴,2, … 𝑆𝐴,𝑛, … 𝑆𝐴,𝑁)T : Population of ants 

 𝑆𝐴,𝑛 = (𝑆𝐴,𝑛
1 , … 𝑆𝐴,𝑛

𝑑 , … 𝑆𝐴,𝑛
𝐷 ) : 𝑛th ant’s position and 𝑆𝐴,𝑛

𝑑  is the position of 𝑑th variable of 

the 𝑛th ant 

 𝑇𝑎𝑛𝑡 = (𝑇𝐴,1, 𝑇𝐴,2 … 𝑇𝐴,𝑛, … 𝑇𝐴,𝑁)T : Matrix of Objective(fitness) function values of ants 

and 𝑇𝐴,𝑛=𝑓(𝑆𝐴,𝑛
1 , … , 𝑆𝐴,𝑛

𝑑 , … , 𝑆𝐴,𝑛
𝐷 ) is the fitness of nth ant. 

 𝑆𝑎𝑛𝑡𝑙𝑖𝑜𝑛 = (𝑆𝐴𝐿,1, 𝑆𝐴𝐿,2, … , 𝑆𝐴𝐿,𝑛, … , 𝑆𝐴𝐿,𝑁)T : Population of antlion 

 𝑆𝐴𝐿,𝑛 = (𝑆𝐴𝐿,𝑛
1 , … 𝑆𝐴𝐿,𝑛

𝑑 , … 𝑆𝐴𝐿,𝑛
𝐷 ): nth antlion position and 𝑆𝐴𝐿,𝑛

𝑑  is the position of 𝑑th 

variable of the 𝑛th antlion 

 𝑇𝑎𝑛𝑡𝑙𝑖𝑜𝑛 = (𝑇𝐴𝐿,1, 𝑇𝐴𝐿,2 … , 𝑇𝐴𝐿,𝑛, … , 𝑇𝐴𝐿,𝑁)T: Matrix of Objective(fitness) function values 

of antlions 

 𝑇𝐴𝐿,𝑛=𝑓(𝑆𝐴𝐿,𝑛
1 , … 𝑆𝐴𝐿,𝑛

𝑑 , … 𝑆𝐴𝐿,𝑛
𝐷 ): Fitness of nth antlion 

The ant moves randomly around the antlion which is termed as random walk and can be defined 

as: 

 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)-1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)] (1.5) 

The 𝑑th variable at  𝑖𝑡th iteration of 𝑛th ant is given as  𝑆𝐴,𝑛
𝑑 (𝑖𝑡). 
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where 𝑐𝑢𝑚𝑠𝑢𝑚 states cumulative sum of uniformly generated random numbers and 𝑟(𝑖𝑡) is a 

function defined as: 

 𝑟(𝑖𝑡 )={
1 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 0.5

        (1.6) 

where 𝑟𝑎𝑛𝑑 produces random numbers generated in uniform way between 0 and 1. 

Random walk is kept within the search region by applying min-max normalization process as 

shown in equation(1.7) 

 𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡)     (1.7) 

 where min 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) and max 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ) denote min and max of random walk of 𝑛th ant for 

𝑑th variable, 𝐿𝑑(𝑖𝑡) and 𝑈𝑑(𝑖𝑡) are lower and upper bounds at  𝑖𝑡th iteration of 𝑑th variable. 

Two random walks around selected antlion and best antlion are performed. The selection of 

antlion is done using GA’s roulette wheel’s method. Then the average of these two random walk 

is taken to determine the new position of ant as shown in equation (1.8)  

 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
        (1.8) 

 here random walk 𝑟𝑤𝐴
(𝑖𝑡) is around 𝑆𝑠𝑒𝑙 (selected antlion) and random walk 𝑟𝑤𝐸

(𝑖𝑡) is 

around 𝑆𝑒𝑙𝑖𝑡𝑒(elite antlion). 

 After exploration using random walk, the exploitation mechanism is performed by 

shrinking boundaries adaptively of trap built by antlion. This mechanism is analogous to 

adaptively decreasing the lower and upper bounds as defined in equations (1.9) and (1.10): 

  

 𝐿𝑑(𝑖𝑡) =
𝐿𝑑(𝑖𝑡)

𝐼
                      (1.9) 

 𝑈𝑑(𝑖𝑡)=
𝑈𝑑(𝑖𝑡)

𝐼
                    (1.10) 

 Where “ 𝐼 is a ratio defined as 𝐼 = 10𝑣 𝑖𝑡𝑐𝑢𝑟𝑟

𝑖𝑡𝑚𝑎𝑥
 where 𝑖𝑡𝑐𝑢𝑟𝑟 is the current iteration and 

𝑖𝑡𝑚𝑎𝑥 is the maximum number of iteration,𝑣 is a constant based on the value on current 

iteration(𝑣 = 2 when 𝑖𝑡𝑐𝑢𝑟𝑟 > 0.1 𝑖𝑡𝑚𝑎𝑥, 𝑣 = 3 when 𝑖𝑡𝑐𝑢𝑟𝑟 > 0.5𝑖𝑡𝑚𝑎𝑥, 𝑣 = 4 when  𝑖𝑡𝑐𝑢𝑟𝑟 >

0.75 𝑖𝑡𝑚𝑎𝑥, 𝑣 = 5 when 𝑖𝑡𝑐𝑢𝑟𝑟 > 0.9 𝑖𝑡𝑚𝑎𝑥 , and 𝑣 = 6 when 𝑖𝑡𝑐𝑢𝑟𝑟 > 0.95 𝑖𝑡𝑚𝑎𝑥). Here the 

value of 𝑣 is used to control the exploitation process”. 

 Bounds of the trap built by antlion are changed around the elite (best) and selected antlion 

after adaptive shrinking as mentioned in equations (1.9) and (1.10). This phenomena can be 

modelled as shown in equations (1.11) and (1.12).  
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 𝑈𝑖𝑡
𝑑(𝑖𝑡)={

𝑆𝐴𝐿
𝑑 (𝑖𝑡) + 𝑈𝑖𝑡

𝑑  𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5

𝑆𝐴𝐿
𝑑 (𝑖𝑡) − 𝑈𝑖𝑡

𝑑      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (1.11) 

 𝐿𝑡
𝑑(𝑖𝑡)={

𝑆𝐴𝐿
𝑑 (𝑖𝑡) + 𝐿𝑖𝑡

𝑑 (𝑖𝑡) 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5

𝑆𝐴𝐿
𝑑 (𝑖𝑡) − 𝐿𝑖𝑡

𝑑 (𝑖𝑡)     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (1.12) 

Here the 𝑑th variable is 𝑆𝐴𝐿
𝑑  of the antlion 𝑆𝑠𝑒𝑙 or 𝑆𝑒𝑙𝑖𝑡𝑒. 

 Once the objective(fitness) function value becomes better as compared to 

objective(fitness) function value of antlion then conceptually ant is caught by antlion and the 

position of antlion is updated with ant’s position as shown in equations (1.13): 

 𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡))              (1.13) 

 here 𝑆𝐴𝐿,𝑗(𝑖𝑡) is the position of 𝑗th antlion at 𝑖𝑡th iteration, 𝑆𝐴,𝑖(𝑖𝑡) is the 𝑖th ant’s position 

at 𝑖𝑡th iteration. “This process is obtained by concatenating all  𝑇𝑎𝑛𝑡 and  𝑇𝑎𝑛𝑡𝑙𝑖𝑜𝑛 and sort them 

from smallest to largest. Then first 𝑁 rows are updated as 𝑇𝑎𝑛𝑡𝑙𝑖𝑜𝑛 to the corresponding position 

of 𝑇𝑎𝑛𝑡𝑙𝑖𝑜𝑛”. 

The computing steps of classical ALO algorithm can be depicted in Table 1.1 as follows: 

Table 1.1: Pseudo code of ALO algorithm [56] 

Input: Population Size N, Maximum iteration i𝑡𝑚𝑎𝑥,Lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  antlions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 
6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an ant lion 𝑆𝑠𝑒𝑙  using Roulette wheel selection method 

8 
                  Modify lower L and upper U boundaries with Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙  

11                         and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  using uniform distribution with Eq.. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)-   

                           1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)] 

12                           Normalize random walk using Eqs 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)-   

                           1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)]  and  

                             𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =   

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡) 

13                   end for 
14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛

𝑑 (𝑖𝑡)=
𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 
16              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

17                 Determine the fitness of all ants 

18           end for 
19                Substitute an antlion with  its respective ant  if it becomes fitter using Eq. 

             𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

20              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an ant lion becomes fitter than the elite 

21             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

22       end while 
23 Return elite  𝑆𝑒𝑙𝑖𝑡𝑒 
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1.8 Literature Review: Antlion Optimizer (ALO) 

ALO has been recognized as an efficient metaheuristic in recent time due to its effective 

explorative and exploitative behaviour for solving complex nonlinear optimization problems as 

compared to other available algorithms. ALO is attracting the researchers and developers from 

optimization field enormously. Numerous advancements have been noted as far as the 

enhancement in the efficiency and employability of ALO in various field of studies are 

concerned. Some of them are as follows: 

 

1.8.1 Variants of Antlion Optimizer 

The existing algorithms are sometimes not capable of finding global optima due to certain 

limitations equipped in algorithms. It motivates the researchers to develop modified versions to 

overcome these limitations and to solve the complicated real life applications. The modifications 

may be proposed to apprise the basic functional mechanism of the original algorithms or to 

update the operators to avoid local optima entrapment in early generations by proper balancing 

the exploration and exploitation mechanisms. Few modification are proposed by incorporating 

the operators for achieving adequacy of diversification at early generations and intensification at 

later generations. In this section, various modifications in ALO proposed so far in literature are 

discussed in different subsections. 

 

Improved Operators 

Saha et al. [60] proposed a modified variant of ALO for better balancing between exploration 

and exploitation. In this work, the initial random population is generated by implementing quasi-

opposition based learning (QOBL) mechanism. The searching mechanism in proposed work 

utilizes QOBL based generation jumping to enhance convergence speed. Chaotic local search 

(CLS) mechanism is incorporated with QOBL to perform local searching for better exploitation 

at later stages of generations. The superiority of proposed algorithm is verified by using state of 

the art benchmark functions available in literature.  It is also employed to solve real world 

applications from the field of electrical engineering. 

 

Employing New Operators 

This subsection elaborates the performance enhancement of classical ALO algorithm by 

employing new local search  or cross over operators. Few works have been noticed in this 

direction using ALO:  
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 In [61], chaotic antlion optimizer (CALO) is proposed for feature selection problem. In 

classical ALO, the parameter 𝐼 exhibits trade-off between exploration and exploitation. This 

parameter decreases linearly and shows exploration at early stages of generations and 

exploitation at later stages. The authors adapts parameter 
1

𝐼
  for obtaining exploration and 

exploitation and use chaotic system due to its ergodicity and intrinsic stochasticity for adapting 

this parameter [61]. Various chaotic maps such as logistic map, sinusoidal maps, tent maps etc. 

are utilized in this work.. 

 A binary version of ALO is also proposed by Emary et al. [62] for feature selection 

problems. In this work authors proposed two approaches: In first approach, crossover operator is 

applied on two binary solutions acquired from random walks around elite antlion and around 

selected antlion using roulette wheel selection method as described in classical ALO. It is 

determined as: 

 𝑋𝑖
𝑡+1(𝑟𝑤1, 𝑟𝑤2)                               (1.16) 

Here, the crossover (𝑥, 𝑦) depicts solutions 𝑥 and 𝑦 whereas 𝑟𝑤1 and 𝑟𝑤2 are binary vectors 

representing two random walks around best solution and selected solution respectively. 

 In second approach of binary ALO, the random walks 𝑟𝑤1 and 𝑟𝑤2 which are determined 

as continuous functions, are converted into binary solutions by squashing each continuous value 

in every dimension using S-shaped or V-shaped transfer functions [63]. These transfer functions 

are also utilized in [64] to improve the performance of binary ALO for feature selection problems. 

The performance of the proposed binary ALO is verified over data taken from UCI machine 

learning repository. 

 Multi-objective version of ALO (MOALO) is proposed by Mirjalili et al. [65] to solve 

multi-objective problems. Conceptually, multi-objective version should follow the same 

mechanism of parent optimization algorithm. Here, MOALO utilizes similar mechanism to 

obtain the updated positions as depicted in parent ALO. All the operators used in ALO are 

utilized in MOALO. 

 

1.8.2 Applications of ALO 

The appropriate balancing between exploration and exploitation operators involved in ALO has 

ample benefits over other optimization algorithms and establish ALO as an efficient and 

impressive algorithm to solve real life complex optimization algorithms. The applications tackled 

by ALO may be categorized as engineering applications, computational intelligence based 

applications, wireless sensor networking applications etc.   
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1.8.2.1 Engineering Applications  

Every field of real world is related with the design and applications of wide domains of 

engineering area.  The impact of these applications has direct influence on the life of a normal 

human beings. The outcomes of these applications may require to be improved in terms of 

efficiency and robustness which initiates the need of the use of good optimization algorithm. The 

recently proposed ALO is also one such algorithm which is extensively employed to optimize 

the various engineering applications. In this section, various engineering applications are 

discussed such as:   

 

Tuning and Designing of Controller 

This subsection focused on related literature to optimize the proportional integral derivative 

(PID) controller. In [66], the performance of PID controller of automobile cruise control system 

(ACCS) is optimized. The cruise control system is implemented using linearized model in closed 

loop system and the problem is redesigned as an optimization problem which is solved using 

ALO. 

 The ACCS system is utilized to control the speed of vehicle as per the reference command 

issued by driver. Then the PID controller in control system of ACCS is optimized in terms of 

time response measured from various performance indexes. 

 The problem of Load frequency control (LFC) by estimating and tuning the PI controller 

parameters is resolved using antlion optimizer (ALO) and determines very exciting results [67]. 

The test system of three area interconnected power system is considered for simulation. Various 

parameter conditions of loading are chosen to investigate the effectiveness of ALO. The obtained 

results are then compared with other popular metaheuristic algorithms such as Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Bat Algorithm (BA) and using standard PI controller. 

ALO outperforms other techniques as only one parameter is required for fine tuning. The 

obtained results using ALO exhibits the effectiveness of the controller as far as various indices 

and settling time are concern. 

 

Control and Power System 

The huge amount of power transmission may cause unimportant signal oscillations due to long 

distance power lines [68]. Now a days the automatic generation control of interconnected systems 

is in high demand as per the usage requirement of electricity throughout. In [69], the thermal 
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generators are successfully employed for generation control automatically of inter connected 

power systems of two areas. ALO is utilized to find the parameters of loop governing the thermal 

generators. To measure the performance of the system, classical fitness function namely Integral 

Square Error (ISE) and Integral Time Absolute Error (ITAE) are implemented successfully. The 

authors determined speed regulation and frequency sensitivity coefficient along with integral 

gain for both the areas possessing interconnected power system.  

 In [70], the most general problem of power system for optimal power flow is dealt using 

ALO. A standard 30-bus IEEE system is used to solve this problem for different cases such as 

active power loss, fuel cost, reactive power loss, and voltage stability index and voltage 

deviation. The results determined using ALO are also compared with PSO and FA to investigate 

and analyze the comparative study. This study shows that the obtained results are better than the 

other algorithms.  

 ALO is also utilized to deal with the optimal reactive power dispatch (ORPD) problem 

for a large scale complex power system [71]. The formulation of this problem is done as a 

complex combinatorial optimization problem having nonlinear characteristics. Three varying test 

system of different complexity i.e. IEEE 30-bus, larger IEEE 118-bus and IEEE 300 bus system 

are utilized for simulation to exhibit the performance of ALO in terms of achieving global 

solution. The superiority of proposed technique using ALO is shown using various simulation 

and compared with other techniques also. ALO is also utilized in [72] to optimally schedule the 

various thermal units for electrical economic power dispatch problem (EEPDP) and verified over 

six unit test systems. The results show minimized operating cost, high speed of convergence and 

optimum generation of power. 

 Another version of ALO is developed to solve optimal power dispatch problem in [73]. 

In this work, elitism property is used with weights and known as weighted elitism ALO. The 

exploration property is enhanced by redesigning and controlling the elitism phase of original 

ALO. A parameter “𝑤” termed as elitism weight is used to control the probability of random 

walk of ant around elite antlion. Using this approach, the modified equation for updating the 

position of ant as shown in equation (1.8) can be represented as: 

 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

(2−𝑤)×𝑟𝑤𝐴(𝑖𝑡)+𝑤×𝑟𝑤𝐸(𝑖𝑡)

2
                                                                         (1.17)                                                

 Where 0 ≤ 𝑤 ≤ 2 

When 𝑤 = 0, it signifies random walk around selected antlion using roulette wheel method. 

When 𝑤 = 2, it shows the random walk around elite antlion. 

When 𝑤 = 1 then it behaves like original ALO. 
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This modified ALO using weighted elitism technique is then applied to optimal power dispatch 

problem while tested on standard IEEE-30 and IEEE-57 power bus systems and compared with 

the original ALO.  

 Fuzzy based ALO is utilized in [74] to solve the dynamic P-Q dispatch problem of power 

system. The proposed algorithm is tested and verified using multi-objective environment 

including fuel cost and emission for IEEE-50 and JEAS-118 bus systems. The various important 

aspects of optimal power flow like VP effects, POZ, Spinning reserves, RR and other limitation 

s of fuels are also considered in this paper. 

 

Renewable and Grid Distributed Generations  

Now a days, renewable sources of energy are in high demand. In case of Distributed Generations, 

Photovoltaic system (PVS) and Wind Turbine (WT) are identified as great source of distributed 

generation (DG) [75-76]. These sources produce smaller amount of carbon dioxide as compared 

to other natural gas and coal sources [77]. The sizing and allocation of distributed generation is 

performed using antlion optimizer (ALO) in various distribution networks. The loss sensitivity 

factor (LSF) index in radial distribution network is also performed. Multi-objective functions is 

used to minimize loss of power, enhancing voltage profiles and voltage stability index(VSI) 

distribution system. ALO proves its superiority over other techniques while applying on wide 

variety of systems.  

 The growing exploitation of fossil fuels indicating the need of renewable energy sources. 

It can be seen as an alternate energy resource in unit commitment operation [78]. Effectiveness 

of this operation can be maximized using smart grid system. This system is capable of generating 

intelligence based decision to maintain environment stability while generating electricity. ALO 

is found to be good technique to solve unit commitment problem in smart grid as well as in 

conventional UC in terms of minimum time and operating cost. It is also observed by analyzing 

the results that using solar energy sources with unit commitment scheduling algorithm are able 

to optimize the operational cost proficiently.  

 

1.8.2.2 Machine Learning and Computational Intelligence based Applications 

The use of machine learning techniques is highly in demand due to its extensive capability of 

solving very complex and large problems very efficiently. These applications can be categorized 

in various categories such as clustering applications, features selection problems, training neural 

networks and fuzzy systems. 
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Clustering Applications  

The use of clustering techniques in wireless sensor networks for harmonizing energy 

consumption of sensor nodes and increasing network lifetime are of great interests for researchers 

and developers these days [79]. The use of sensors networks is enormously increased in every 

field of engineering where energy consumption and handling of energy related constraints are 

concern. The routing algorithms need to be optimized properly keeping less energy consumption 

in mind. Clustering based routing algorithm are catching the attention and becoming popular for 

optimal path. In [80], antlion optimizer(ALO) is utilized by applying clustering based routing 

algorithm for determining optimum path. In this work, the selection of cluster head is modelled 

and termed as objective function to improve the performance of network. The discrete version of 

ALO is applied to determine the optimal data gathering tour for a sink node having minimum 

tour length of data collection. After applying the improved clustering approach, the results in 

terms of life time of network, throughput and reduction in number of nodes as compared to other 

existing algorithms are determined. Thus ALO produces an optimal path for a mobile sink to 

collect data form the cluster head having tour distance with minimum data collection. 

 In [81], ALO is utilized as a clustering technique to perform segmentation in MRI images. 

It is used to segment the liver image while combining with the statistical image. Morphological 

operations are used to improve the region of segmented liver called as region of interest (ROI). 

For this purpose mean shift clustering technique is used to determine the number of ROIs using 

a statistical image of liver. A collection of 70 MRI images is used to segment the liver while 

validating the proposed approach. An useful metric called structural similarity index (SSIM) is 

used to measure the accuracy and efficiency of obtained results. 

 

Feature Selection Problems 

A recent variant of ALO namely chaotic antlion optimizer [61] is proposed to solve feature 

selection problems. The parameter of ALO responsible for adaptive shrinking of search space 

boundaries is being improved using chaos based approach. Then the improved version of ALO 

is implemented to solve feature selection problems in wrapper mode. The fitness function to be 

evaluated reflects the classification performance and also to reduce the number of features.18 

different data sets are evaluated to perform the simulation and compared against original ALO, 

PSO and GA in terms of selected features quality. The binary version of ALO are also proposed 

to solve feature selection problems [61] as discussed in section 3. 
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Data Communication and Networking Applications 

The revolution of digital communication over internet increases lot of data to be transferred 

through transmission channels. It incurred a number of security issues while transmitting data 

from source to destination which motivates researchers to optimize and invent new security 

techniques [82-83]. Community detection in social network is very interesting topic of 

researchers involved in analyzing these networks [84]. This problem can be treated as an 

optimization problem as to separate various interconnected network groups having strong 

connectivity within same group than other group [85]. ALO is used efficiently by determining 

community fitness and modularity in the networks automatically.  Locus based adjacency 

encoding scheme is utilized relying on GA [86-87]. Normalized mutual information (NMI) is 

used to measure the similarity index within the same group of elements [88]. 

 ALO is also applied to electromagnetics and antenna community to improve the 

communication efficiency of the network. In [89], antlion optimizer (ALO) is applied to antenna 

current and antenna position for pattern synthesizer in linear antenna. The ALO is effectively 

implemented to attain an array pattern while minimizing side lobe level (SLL) as well as 

placement of null in specified locations. Close-in side lobe level is also minimized for optimal 

pattern synthesis. The obtained results are compared with state of the art metaheuristic 

algorithms. 

 In [90], a new variant of ALO called enhanced ALO (e-ALO) is proposed to replace 

uniform distribution of original ALO with four different distribution namely (a) Beta (b) Pareto 

(c) burr and (d) Cauchy. The updated position of ant in e-ALO can be represented as following 

equation: 

 

 𝑆𝐴,𝑛
𝑑 (𝑖𝑡) = 𝛾𝐴 × 𝑟𝑤𝐴

+ 𝛾𝐸 × 𝑟𝑤𝐸
                                                                              (1.18)                                                 

Here 𝛾𝐴 and 𝛾𝐸 weighting factors for selected and elite antlion respectively. These weighting 

factors can be determined using above four distribution to update the position of ant. 

 This improved e-ALO algorithm is applied in antenna array synthesis for two 

configuration namely Linear Antenna Array (LAA) and Circular Antenna Array (CAA) [90]. 

The purpose of applying e-ALO is to determine inter spacing distance between the elements of 

antenna and their excitation amplitudes. The parameter optimized is side lobe level with the 

constraints such as beam widths, null at specified locations etc. 
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Training Neural Network and Fuzzy 

In [91], ALO is proposed as stochastic approach to train multi-layer perceptron (MLP). The ALO 

determines the weights and biases while training MLP to minimize the error and to achieve high 

classification rate. This model is verified by using four classification datasets and obtained results 

are compared with trainers using PSO, ACO and GA. The comparison shows that the proposed 

model achieves the best MSE values and high classification rate. The proposed model using ALO 

also exhibits better exploration than the other trainers. 

 

1.8.2.3 Biomedical Applications 

The use of evolutionary techniques is increased enormously in the field of biomedical recently. 

The identification and feature extraction of gene groups having similar properties and pattern are 

very useful for analyzing biomedical problems [92]. ALO is applied for exchanging kidneys in 

a given pool. Kidney exchange is modeled as an optimization problem [93]. In this work, bio-

inspired ALO is implemented to the kidney exchange space and maximizing the number of 

feasible cycles and chains in the pool of pairs. ALO is proved to be efficient technique to identify 

comparable kidney exchange results in comparison to other deterministic like integer 

programming and stochastic approaches such as the genetic algorithm. The program is 

implemented in Matlab software. 

 Nowadays, the hepatitis C virus is influencing the humans at large throughout the world. 

The chemical effect on the human body can be approximated using the quantitative structure-

activity relationship (QSAR) models in various applications. Adaptive neuro-fuzzy inference 

system (ANFIS) is much famous regression technique used to create QSAR models. The use of 

descriptors and their selection using ANFIS is of much concerned as it shows slow convergence 

and high complexity. To address this problem, in [94] antlion optimizer (ALO) is used to select 

appropriate descriptors prior to construct a nonlinear QSAR model and descriptors using ANFIS.  

 

1.8.3 Open Source Software of ALO 

In [95], a toolkit is developed to implement the antlion optimizer (ALO) including all the steps 

within the algorithm in a LabVIEWTM environment. Prior to this, a toolkit of grey wolf optimizer 

is also developed in LabVIEWTM environment [96]. However, only differential evolution (DE) 

toolkit is available in LabVIEWTM as a standard optimizer toolkit. The experiments using the 

developed toolkit is performed on benchmark problems and also performed on DE toolkit. The 

obtained results using ALO toolkit are superior. 

file:///H:/Thesis/chapter_APA.docx
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1.9 Summary of Literature Review  

The literature review summary of antlion optimizer is depicted in Table 1.2, Table 1.3 and Table 

1.4. 

Table 1.2: Various variants of ALO 

Updating techniques  Saha et al.[60] 

New operators Zawabaa et al.[61],Emary et al.[62] 

Multi-objective ALO Mirjalili et al. [65] 

 

Table 1.3: Applications of ALO 

Area Subarea Studies 

 

 

 

Engineering  

Tuning  and 

Designing of 

Controller 

Pradhan et al.[66], Satheesh et al.[67] 

Control and 

Power Systems 

Gupta et al.[69],Trivedi et al.[70], Mouassa et 

al.[71],Tung et al.[72], Rajan et al.[73], Radha et al.[74] 

Renewable and 

Grid distributed 

generations 

Ali et al.[75], Ali et al.[76], Sam’on[78] 

 

 

Machine 

learning and 

computational 

intelligence 

Clustering Yogarajan et al.[80],Mostafa et al.[81] 

Feature selection Zawabaa et al.[61],Emary et al.[62] 

Communucation 

and Networking 

Babers[85],Pizzuti[86],Pizzuti[87], L. Danon et 

al.[88],Saxena et al.[89], Subhashini et al.[90] 

Training neural 

network and 

fuzzy 

 

Yamany et al.[91] 

Biomedical  Biomedical Hamouda et al.[93], Elaziz et al.[94] 

 

Table 1.4: Developed Open source software of ALO 

Technology Studies 

Matlab Mirjalili et al. [56] 

LabVIEW Gupta et al.[95] 
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1.10 Motivation and Objective of the Thesis 

The performance of metaheuristic algorithms has proven to be superior than the deterministic 

approach based optimization techniques where gradient derivative free searching optimization is 

required. In these case stochastic operators utilized in optimization algorithms play vital roles 

and decisive in the obtained performance of algorithm. Overall, this performance of 

metaheuristic algorithms heavily depend on exploration and exploitation capability during the 

whole evolution process. An efficient metaheuristic algorithm must exhibit enhanced exploration 

at staring phase of the generation and improved exploitation at the later stage of generation so as 

to be more conducive while converging.  

 Most of the available nature inspired optimization techniques suffer with stagnation to 

local optima and premature convergence due to inappropriate balance between two contradictory 

operators to implement exploration and exploitation process. Though the performance of this 

recently developed Antlion Optimizer is comparable with other available state of the art 

optimization algorithms, yet it also suffers with problems as discussed above. This motivates 

author to design new variants for achieving adequacy between exploration and exploitation so 

that the performance of classical Antlion Optimizer (ALO) may be improved in terms of 

efficiency, reliability and robustness.  

 The work done in this thesis is interdisciplinary in nature and computationally dominant. 

The major objectives of the thesis may be identified as: 

1. Designing efficient and robust Antlion Optimizer based algorithms. 

2. Verifying the designed algorithms over well-known benchmark problems available in 

literature. 

3. Applying classical Antlion Optimizer as well as new designed algorithms over wide variety of 

real life optimization application from the field of Science and Engineering. 

 

1.11 Organization of Thesis 

The chapter wise summary of the Thesis is given below:  

 Chapter 1 is introduction. It states the relevant concepts and elaborates the introduction 

of Antlion Optimizer (ALO), its existing literature including related modifications and 

applications. 

 Chapter 2 proposes a novel opposition based Laplacian antlion optimizer (OB-L-ALO) 

as a modified variant of classical ALO to address the drawback of premature convergence and 

inability to avoid entrapment into local optima. The performance of proposed algorithm is 
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analyzed and compared with classical ALO over a set of 31 benchmark problem having variety 

of difficulties including 23 state-of-the art problems containing unimodal, multimodal, fixed 

dimension multimodal functions and 8 IEEE CEC 2014 composition benchmark functions. The 

obtained numerical results for proposed algorithm demonstrates its superiority over classical 

ALO. 

 Chapter 3 proposes two variants namely OB-ac-ALO and OB-SAC-ALO to accelerate 

the convergence to opposition based ALO as given in Chapter 2. The OBL mechanism is applied 

to the best candidate solution and then hybridized with the acceleration parameter which is useful 

to control the abrupt behaviour of the solutions at later stages of the generation and accelerate 

the convergence speed. The second modification is accomplished by hybridizing the OBL 

mechanism applied to best (elite) candidate solution with sine acceleration coefficient (SAC) to 

propose OB-SAC-ALO.  The performance of both the proposed hybrid algorithm is analyzed 

and compared with classical ALO using the same set of benchmark problems as utilized in 

chapter 2. The similar analysis metrics are performed as utilized in chapter 2 including 

computational complexity. The obtained results and analysis prove that OB-ac-ALO and OB-

SAC-ALO perform better than ALO in majority of the problems. 

 Chapter 4 strikes to improve the balance between exploration and exploitation by 

proposing a novel Lévy Flight Distributed Opposition based Antlion optimizer (OB-LF-ALO) 

with Acceleration Coefficient. The performance of proposed version is compared and analyzed 

with classical ALO using the same set of benchmark problems as utilized in chapter 2 and chapter 

3. The quantitative and qualitative results authorizes superiority of proposed algorithm over 

classical ALO. The analysis over various metric of wide characteristics and obtained numerical 

results establish the superiority of proposed algorithms. 

 Chapter 5 introduces another modified version to improve the performance of classical 

ALO namely Cauchy Distributed Hybrid Opposition based Antlion Optimizer with Acceleration 

Coefficient (OB-C-ALO). It improves the balance between early exploration and later 

exploitation during evolutions process. The same set of benchmark problems as used in Chapter 

2, 3 and 4 is used to validate the performance of modified algorithm. The obtained results and 

wide analysis prove the superiority of proposed algorithm over classical ALO. The second part 

of this chapter represents the comparison among all the modified variants including classical 

ALO. 

 Chapter 6 represents the performance of modified variants of classical ALO over a real 

world complex application of model order reduction of linear time invariant system from the 
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field of control system. The performance of these algorithms are verified by applying on three 

single input single output (SISO) systems including two four and one eight order problem. The 

obtained output model of reduced order using the proposed algorithms are compared and 

analyzed to devise the performance order. 

 Chapter 7 demonstrates single and multi-objective optimization to determine values of 

five independent design variables to find out the optimal values of heat transfer coefficient (�̃�) 

and pressure drop(∆𝑃) parameters by utilizing two conflicting objective functions: first to 

maximize heat transfer coefficient and second to minimize pressure drop value. For single 

objective function optimization all the modified variants of classical ALO are applied while 

multi-objective antlion optimizer (MOALO) is utilized to find out pareto optimal front while 

using both the objective function simultaneously. 

 Chapter 8 focuses to determine optimal values of three independent variables namely 

temperature, methanol to oil ratio and concentration of catalyst to optimize biodiesel production 

using classical ALO and its modified variants in this thesis. 

 Chapter 9 concludes the thesis. It depicts the overall conclusions of this Thesis and 

outlines the limitations and scope of the proposed algorithms. It also suggests some future scope 

and new research direction in this area of research. 
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CHAPTER 2 

Opposition based Laplacian Antlion Optimizer (OB-𝐿-ALO) for 

Unconstrained Continuous Optimization Problems 

 

2.1 Introduction 

The adequate balance between operators of exploration and exploitation help in improving the 

performance of metaheuristic algorithms in solving optimization problems. Absence of their 

proper combination leads an optimization algorithm towards stagnation to local optima and 

premature convergence. The classical antlion optimizer (ALO) suffers with these limitations. To 

overcome these shortcomings in ALO, two strategies are applied in this chapter to propose a 

modified variant of classical ALO. Initially, random walk is modified using Laplace distribution 

in place of employing uniform distribution to enhance the diversity of search region. At later part 

of generation, opposition based learning (OBL) model is applied around the best candidate 

solution to approximate the opposite solution along with the initially randomly generated solution 

during the process of evolution. The OBL learning is capable of enhancing exploration and 

acceleration in convergence. This technique is proposed for continuous optimization problems 

and named as Opposition based Laplacian Antlion Optimizer (OB-𝐿-ALO). 

 A benchmark test suit containing 31 problems of diversified characteristic including 23 

state of art problems and 8 IEEE CEC composition functions are taken to show the performance 

of newly developed variant for varying problem size. A wide variety of analysis metrics are used 

to investigate the impact of employed strategies such as: convergence curve, best candidate 

solution’s trajectories, best candidate’s (elite) convergence curve, average distance between the 

search agents before and after employing the new strategies and computational complexity. The 

statistical significance of proposed technique is also analyzed by performing non-parametric 

Wilcoxon ranksum test.  

 The organization of this chapter is as follows: 

Section 2.2 defines motivation and literature. Represents related literature. Section 2.3 depicts 

proposed variant OB-𝐿-ALO including related concepts about the proposed techniques and 

pseudo code. Section 2.4 represents the description of benchmark test functions, experimental  

____________________________________________________________________________________________ 

Partial contents of this chapter has been published as: 

 Dinkar, S. K., & Deep, K. (2017). Opposition based Laplacian Ant Lion Optimizer. Journal of 

Computational Science, 23, 71-90. (SCIE,IF-1.906) 
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Setup, results and discussion. Section 2.5 exhibits convergence and other analysis using various 

metrics to authenticate proposed algorithm. Section 2.6 presents concluding remarks. 

 

2.2 Motivation  

Classical antlion optimizer (ALO) is recently developed metaheuristic algorithm by Mirjalili [ 

56] to solve unconstraint continuous optimization problems. Though ALO is quite comparative  

with other optimization algorithms available in literature. However, the random walk of ALO 

ensures diversification in early phase and adaptive shrinking of boundaries guarantees 

intensification at later part yet it suffers with entrapment in local optima and premature 

convergence. 

 The primary goal of this chapter is to enhance the exploration at the early phase of 

generation to probe all the possible candidate solutions and then quickening the exploitation 

process to speed up the convergence. In classical ALO, average of two random walks is utilized 

to determine the new position. The first random walk is performed around the best solution and 

the second one is performed around the antlion determined using “roulette wheel selection 

method”. Random walk is implemented using random number generated using uniform 

distribution. In developed OB-𝐿-ALO technique, uniform distribution is replaced with Laplace 

distribution to enhance the exploration as established in [97]. Then OBL mechanism introduced 

by Tizoosh et al. [98] is employed to determine opposite solution at later phase of generation to 

accelerate the convergence towards determining the optimal solution. This concept is 

mathematically supported with the fact that the opposite numbers come out to be nearer to global 

optima as compared to original random numbers [99]. Later on, this concept was also 

conceptualized in the form of space transformation search by Wang et al. [100].  

 

2.3 Proposed Opposition based Laplacian Antlion Optimizer (OB-𝐿-ALO)  

The proposed modified version of classical ALO is described in this section. In case of 

continuous distribution, infinite solutions may be approximated within the given range of search 

region. Keeping this fact in mind, first strategy is applied to enhance the exploration as much as 

possible by replacing uniform distribution with Laplace distribution to implement random walk. 

The second strategy, Opposition based learning (OBL) is utilized at later part of the generation 

to accelerate the convergence. The detailed description of the applied strategies are as follows: 
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2.3.1 Laplace Distribution 

The standard Laplace probability distribution, denotes as 𝐿(𝜇, 𝛼) can be defined in terms of 

probability density function  as: 

 

 𝑓(𝑥; 𝜇, 𝛼) =
1

2𝛼
exp (−

|𝑥−𝜇|

𝛼
), −∞ < 𝑥 < ∞            (2.1) 

 

In same manner, “distribution function of Laplace distribution” is defined as 

 

 𝐹(𝑥) = {

1

2
exp (

|𝑥−𝜇|

𝛼
) ,                       𝑥 ≤ 𝜇,

1 −
1

2
exp (−

|𝑥−𝜇|

𝛼
) ,              𝑥 > 𝜇,

                (2.2)

  

Here, 𝜇 is termed as location parameter in 𝜇 ∈  (−∞, ∞) and 𝛼 is a scale parameter such as 𝛼 >

0. The density function “ 𝑓 is a symmetric function about location parameter 𝜇, increasing in the 

range [0, 𝜇] and decreasing in the interval [𝜇, ∞] with mode 𝑥 = 𝛼”. 

 After performing experiments, the values chosen for location 𝜇 and scale  𝛼 parameters 

are 1 and 2 respectively. 

 Figure 2.1 depicts the comparative random number generation utilizing uniform and 

Laplace distribution over 200 generations. The figure clearly demonstrates that the  more search 

area is spanned using Laplace distribution as compared to uniform distribution. Thus the use of 

Laplace distribution guarantees to enhance exploration. The random walk shown in Eq.(1.5) can 

be modified using Laplace distribution as: 

𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡1)-1), 𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐿(𝑖𝑡𝑚𝑎𝑥)-1)           (2.3) 

Here 𝐿(𝜇, 𝛼) denotes Laplace distribution. 

 

2.3.2 Opposition Based Learning (OBL) Model 

Metaheuristic algorithms initiate searching process of the region by generating initial random 

population without any priori information about objective function or other limitations [101]. 

After enhancing exploration at earlier stage of generation, the exploitation should be improved 

at later part to accelerate the convergence. It is being proved that the time required to converge 

candidate solutions is related to their distance from global optima [101]. Mathematically, it is 

also proved that the opposite numbers are more likely to be closer to the optimal solution than 

the initial numbers [102]. This mechanism is successfully applied in [103-107].Thus the OBL 



26 

 

approach is useful to accelerate the convergence at later stage. Definition may be described as 

follows:  

Definition 1: Opposition Based Learning Rahnamayan et al.[102]. The concept of opposite 

numbers transforms the region to a new region. Let 𝑠 be a randomly generated number/ solution 

in the search region s.t. 𝑠 ∈  [𝐿, 𝑈], then the opposite number/solution 𝑠*   in a transformed space 

can be defined as 

 𝑠∗ =  𝐿 + 𝑈 −  𝑠                  (2.4) 

This definition of OBL may be extended to higher dimensions as well.  

Definition 2: Opposition Based Learning in High Dimension Rahnamayan et.al.[102]. Let 

“𝑆 =(𝑠1, 𝑠2, … , 𝑠𝐷) be a point in 𝑁 dimensional search space where 𝑠1, 𝑠2, … , 𝑠𝑁 ∈ 𝑅, where 𝑅 is 

real Euclidean space and 𝑠𝑖 ∈ [𝐿𝑖 , 𝑈𝑖]  ∀ 𝑖 ∈ (1,2, … , 𝑁) then the new transformed feasible 

solution 𝑆∗⃗⃗⃗⃗⃗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑁
∗ )” is defined by 

  𝑠𝑖
∗ = 𝐿𝑖 + 𝑈𝑖 − 𝑠𝑖                  (2.5) 

Let 𝑓(. ) denotes the cost function or objective function of a given optimization problem and 

𝑓(𝑆) objective (fitness) function value at position 𝑆 where 𝑆 = (𝑠1, 𝑠2, … , 𝑠𝑁) be a candidate 

solution in an 𝑁-dimensional space. The opposite candidate solution of the existing solution 𝑆 =

(𝑠1, 𝑠2, … , 𝑠𝑁)  in transformed search space can be defined as 𝑆∗⃗⃗⃗⃗⃗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑁
∗ ) and its 

objective (fitness) function value can be determined as 𝑓(𝑆∗⃗⃗⃗⃗⃗). For a problem to be minimized 

     𝑀𝑖𝑛  𝑓 

     𝑖𝑓 𝑓(𝑆∗⃗⃗⃗⃗⃗) ≤  𝑓(𝑆) 

     𝑡ℎ𝑒𝑛 

     𝑆 = 𝑆∗⃗⃗⃗⃗⃗ 

     𝑒𝑙𝑠𝑒 

     𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑤𝑖𝑡ℎ 𝑆 𝑓𝑜𝑟 𝑛𝑒𝑥𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 In this way, the opposite point (candidate solutions) 𝑆∗⃗⃗⃗⃗⃗ of initial point 𝑆 generated 

randomly are determined simultaneously and fitter one is passed to the next generation. It has 

concluded that the fitness of the candidate solutions is directly proportional to the distance 

between these solutions to global optima. Hence, the candidates nearer to the optima will be fitter 

as compared to the other candidates. 

 In improved version of ALO, the generation of random population is done initially using 

uniform distribution. The objective function (fitness) value  is determined for each solution. The 

obtained fitness value are sorted in ascending order to determine the minimum fitness value 
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termed as best (elite) candidate solution. After applying improved random walk using Laplace 

distribution, the updated positions of the solutions are retrieved. For current generation, from the 

definition of the opposite number the elite candidate solution must be nearer to the optima as 

compared to other solutions. Using the fact that there are 50% chance for an opposite number to 

be nearer than the original number, the opposite candidate solution to the elite is determined. 

Now, a new population containing the opposite candidate solution to elite is generated. The 

obtained opposite position around elite candidate solution is inserted in place of the candidate of 

first dimension of the updated population obtained after applying random walk. The objective 

function (fitness) value is determined and process of evolution is continued by carrying the elite 

solution to the next generation until termination criteria is satisfied. Mathematically, this process 

can be modelled as: 

 𝑆𝐴,𝑖(𝑖𝑡) = 𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡)                (2.6)

  

here 𝑆𝐴,𝑖 signifies the “updated(opposite)  position” of candidate after applying OBL. 𝑆𝑒𝑙𝑖𝑡𝑒 is the 

best position obtained in generation 𝑖𝑡.  

 

2.3.3 Pseudocode of Proposed OB-𝐿-ALO  

Two strategies discussed above are applied to classical ALO. The pseudo code of proposed OB-

𝐿-ALO is described in Table 2.1. The flow chart is depicted in Figure 2.2.  

 

2.4 Experimental Setup 

2.4.1 Benchmark Test Problems 

Benchmark test functions of different characteristics including unimodal, multimodal, fixed 

dimension multimodal and composition functions are tested to investigate the performance of 

newly developed OB-𝐿-ALO in terms of diversification and intensification. The functions 

containing single optima are unimodal functions and useful to investigate the exploitation and 

convergence speed of proposed algorithm. Similarly, the multimodal functions contain many 

local optima and one or more global optima, hence these function testify the avoidance ability 

form local (exploration)of proposed algorithm. Though the fixed dimension multimodal 

functions also contain many optima but these functions behave differently due to their non-

scalable property. The composition functions are combination of scaled, transformed and rotated 

unimodal and multimodal functions and capable of verifying both exploration and exploitation 

capability of algorithm. 
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 A set of  31 benchmark problems out of which 23 well-known state-of-the-art functions 

defined by Yao et al. [108] and 8 composition functions taken from IEEE CEC-2014[109] 

benchmark test suit are employed in this work. The details of the benchmark functions are shown 

in Appendix I. The first seven functions  𝐹1-𝐹7  are unimodal functions and next six 

functions  𝐹8 − 𝐹13 are multimodal functions followed by ten functions 𝐹14-𝐹23 which 

represent low and fixed dimensional multimodal functions. The last eight functions 𝐹24 − 𝐹31 

are composition test functions.  

 

Experimental and Parameter Setup  

The balance between the applied operators in evolutionary algorithms can be established by 

execution of continuous experiments by approximating the “population size, stopping criteria 

and independent runs” etc. Analysis of experiments suggest that the probability of reaching 

global optima enhances by increasing iterations with appropriate size of population. In this work, 

the population size is taken as 30. 

 The performance of OB-𝐿-ALO is validated by comparing with classical ALO. For 

scalable problems (unimodal and multimodal functions), the experiments are performed for 10 

and 30 dimensions and for composition functions, experiments are performed for 10 dimensions. 

The dimensions of these problems are chosen as 10 and 30 as taken in original work of classical 

ALO and to keep them similar to real world problems. The performance of proposed algorithm 

is measured “in terms of average, standard deviation, maximum and minimum of objective 

function values”. Next, thirty independent runs are utilized to record the results by keeping initial 

random population size as 30. For 10 dimension, 500 iterations and for 30 dimensions and fixed 

dimensional multimodal functions, 1000 iterations are fixed as stopping criteria. For composition 

functions, 1000 iterations are chosen. “All the experiments have been performed on MATLAB 

R2010a on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz-2.71 GHz with 8GB RAM”. 

 

2.4.2 Experimental Results and Discussion 

Results on various benchmark test function of newly developed OB-𝐿-ALO algorithm are shown 

within tables. Since the two strategies are applied to expand the performance of classical ALO 

thus it is worthy to compare the newly developed algorithm with the classical ALO to authorize 

superiority of proposed algorithm over the original one.   Table 2.2, Table 2.3, Table 2.4 and 

Table 2.5 exhibit results on 10 and 30 dimensions(scalable unimodal and  multimodal functions) 
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whereas Table 2.6 shows the results on fixed dimensions multimodal functions. Table 2.7 

presents the results on composition benchmark test functions. 

 

Performance Evaluation of Exploitation Capability (Function 𝑭𝟏 − 𝑭𝟕) 

These functions efficiently verify the exploitation capability of proposed algorithm due to the 

presence of only single optima. The obtained results for these functions are exhibited in Table 

2.2 for 10 dimension and Table 2.3 for 30 dimensions respectively. The results in terms of 

average of objective function values show significant improvement as compared to classical 

ALO except function 𝐹6. These obtained results are statistically analyzed using non parametric 

Wilcoxon ranksum test and signify the superiority of developed OB-𝐿-ALO as depicted in tables 

of results. The results indicate that the applied strategies using Laplace distribution at early phase 

and OBL mechanism at later phase of generations efficiently balance the exploration and 

exploitation process. The obtained near to optimal results show that the opposite candidate 

solutions around the best candidate solution approximate fitter (closer) solutions than the original 

solutions. This mechanism helps to accelerate the convergence and speed up the exploitation. 

 

Performance Evaluation of Exploration capability (Function  𝑭𝟖 − 𝑭𝟏𝟑) 

The multimodal functions are known to have many local and one or many global optimas. These 

functions are capable of evaluating the local optima avoidance ability of optimization algorithm. 

The stagnation to local optima can be avoided if algorithm searches the region efficiently by 

exploring the unvisited regions of search space.  

 The results for multimodal functions 𝐹8 − 𝐹13 are depicted in Table 2.4 and Table 2.5 

for 10 and 30 dimensions respectively. It is observed from the tables that the performance of 

developed OB-𝐿-ALO is far better in terms of average objective function values for functions 

𝐹9 − 𝐹13  for 10 dimension and for functions 𝐹8 − 𝐹13 for 30 dimensions as compared to 

classical ALO. The analysis of results clearly demonstrates the enhanced capability of exploring 

the search region using OB-𝐿-ALO by employing Laplace distributed random walk. Also the 

results of test functions indicate that OBL mechanism is able to accelerate the convergence at 

later part of evolution. The average standard deviation also authorizes the superiority and stability 

of proposed algorithm over classical ALO. 
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Performance Evaluation of Fixed Dimension Multimodal Functions ( 𝑭𝟏𝟒 − 𝑭𝟐𝟑) 

Though these functions are multimodal yet the behaviour of these functions are contrary to the 

scalable multimodal function. Hence it is always interesting to analyze these fixed dimensional 

functions. The results are exhibited in Table 2.6 which are taken when the stopping criteria is to 

achieve a maximum of 1000 iterations. It is evident from the table that the proposed OB-𝐿-ALO 

performs slightly better in function 𝐹14 and 𝐹15 than classical ALO in terms of average 

objective function values. Proposed algorithm also performs better in terms of average objective 

function values for functions 𝐹19,𝐹20 and 𝐹21 as compared to classical ALO. The obtained 

results for functions  𝐹16,𝐹17 , 𝐹18 , 𝐹22 and  𝐹23 are similar for proposed OB-𝐿-ALO and 

classical ALO.  

 

Performance Evaluation on Composition Functions 

These problems are taken from IEEE CEC 2014 benchmark test suit to evaluate the performance 

of proposed OB-𝐿-ALO algorithm over complex composite test problems. As these problems are 

very complex in nature hence it is quite challenging to avoid stagnation to local optima while 

solving such problems. The results are depicted in Table 2.7. It is evident from the table that 

average objective function value of function 𝐹24 is better than classical ALO. However, there is 

no improvement in average value of function  𝐹25 and 𝐹26, still the standard deviation is steady 

throughout and reflects the stable distribution. The functions 𝐹29 and 𝐹31 show strong 

improvement and remaining 𝐹27 and 𝐹28 show slight improvement as compared to classical 

ALO. 

 

2.5 Analysis of Results  

The following analysis are performed to verify the obtained results:  

       2.5.1 Convergence Behaviour 

       2.5.2 Statistical Analysis- Wilcoxon Ranksum Test 

       2.5.3 Proposed Algorithm Analysis 

     Trajectory analysis 

          Trajectory behaviour of average distance between search agents 

     Elite convergence curve 

       2.5.4 Computational Complexity 
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2.5.1 Convergence Behaviour 

To verify superiority of newly developed OB-𝐿-ALO algorithm, graphical interpretation of 

convergence behaviour is analyzed and compared with classical ALO. Various test functions of 

different characteristics are taken to authorize the performance of OB-𝐿-ALO. The number of 

generations and the best average value of objective functions for 30 independent runs have been 

plotted on horizontal-axis and log scale of vertical-axis respectively.  

 In Figure 2.3, three curves showing convergence behaviour over fixed number of 

generations for unimodal functions 𝐹1,𝐹3 and 𝐹7 are depicted. The curves clearly indicate that 

the proposed OB-𝐿-ALO starts converging at early generations than the classical ALO. The 

convergence curve for functions 𝐹1,𝐹3 depicts significant convergence speed and better 

convergence behaviour for function 𝐹7 as compared to classical ALO. These functions in Figure 

2.3 exhibit that inclusion of OBL followed by enhanced exploration using Laplace distribution 

is highly impactful for convergence acceleration and capable of finding global optima at early 

stage of generations. This conduct of proposed algorithm promises to converge to global optima 

[110]. 

  In Figure 2.4, curves of three scalable multimodal function (𝐹11, 𝐹12, 𝐹13)  are 

drawn and compared with classical ALO. The proposed algorithm shows sharp convergence 

starting from the initial generations. The convergence curves of proposed OB-𝐿-ALO clearly 

exhibit their superiority over classical ALO for all the functions. It shows the local optima 

avoidance capability of proposed algorithm. These curves also authorizes that the inclusion of 

Laplace distribution enhances exploration in early generation and OBL mechanism accelerates 

exploitation at later generation. Figure 2.5 depicts convergence curves for fixed or non-scalable 

multimodal functions 𝐹15 and 𝐹21. Proposed OB-𝐿-ALO exhibits improvement in convergence 

as compared to classical ALO.  Overall, it can be concluded that inclusion of OBL model 

promises to enhance diversification by exploring the opposite candidate solution simultaneously 

with the original solutions and able to avoid local optima entrapment. 

  Figure 2.6 depicts the convergence graph of three composition function (𝐹27, 𝐹29 and 

𝐹31) . These benchmark functions are combinations of compound functions which make them 

very similar to real life problems. These problems require very efficient and tuned algorithm 

containing balanced combination of exploitation and exploration parameters. Convergence 

analysis of Function 𝐹27 shows slightly better convergence but functions 𝐹29 and 𝐹31 exhibits 

better convergence rate for proposed OB-𝐿-ALO over the classical ALO. 
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2.5.2 Statistical analysis- Wilcoxon Ranksum test 

The success of an algorithm can be measured by analyzing its statistical significance. This 

analysis tests the data samples and its distribution pairing with the data sample drawn from other 

algorithm and concludes if an algorithm is superior as compared to other algorithm in terms of 

statistical significance or not. This section demonstrates statistical analysis of proposed OB-𝐿-

ALO and compared with classical ALO. To verify statistical significance, Wilcoxon ranksum 

test is performed to reject null hypothesis.  

 “The null hypothesis states that the sample data drawn from algorithm1 and algorithm 2 

from continuous distribution having equal median against the alternative that actually they are 

not”. The sampled data should not necessarily of same length but it must be independent. The 

applied Wilcoxon ranksum test utilizes this null hypothesis and verifies the statistical 

significance of the algorithms.  

 The data for this test is drawn in pair from two algorithms to be tested. The dimensions 

of the data drawn is 30 for 23 state-of-the-art problems and 10 for CEC 2014 composition 

functions which is taken after simulating 30 independent runs. The confidence level is chosen as 

0.95 to test the null hypothesis. The obtained p-values of the two pairs of ALO with proposed 

OB-𝐿-ALO proposed in this chapter are shown in Table 2.8. In Table 2.8, it is shown “that   ‘+’ 

means significant statistical difference (rejection of null hypothesis) at 0.05 level of significance, 

‘-’ designates no significant difference and ‘=’ shows that the sample drawn from both the 

algorithms are same and no comparison is possible”.  

 It can be clearly observed from the table that OB-𝐿-ALO proves to be statistical 

significant as compared to classical ALO for 19 problems and behaves statistically similar for 5 

problems.  

 

2.5.3 Analysis of Proposed Variant 

The modified version OB-𝐿-ALO of classical ALO is proposed to enhance exploration and 

acceleration in convergence to achieve proper balance between exploration and exploitation at 

early as well as later stages of generations. These improvements can be authorized by employing 

certain metrics such as (1) Trajectory analysis (2) Average distance between search agents before 

and after applying improvement strategies and (3) Elite convergence for analyzing the 

performance of proposed version. For this purpose some benchmark test functions of different 

characteristics have been used. All the experiments for analysis are performed by employing four 

search agents for 30 dimensions over 200 iterations and compared with classical ALO with same 

parameter setting. The analysis using various metric is as follows: 
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Analysis of trajectory 

The trajectory behaviour of best (elite) candidate solution for proposed OB-𝐿-ALO and classical 

ALO is depicted in Figure 2.7 to verify movement of candidate solutions towards the optima. 

These trajectories of first dimension of elite candidate are drawn up to 200 iterations. This 

trajectory behaviour analysis is capable of showing whether the proposed algorithm is able to 

approximate the nearby positions of global optima or not.   

 For this analysis, a set of benchmark test functions is chosen including unimodal 

(𝐹1,𝐹3, 𝐹7), multimodal (𝐹9, 𝐹10,𝐹11), two fixed dimension multimodal (𝐹14,𝐹20) and two 

composition (𝐹28,𝐹29) functions. It can be observed from the figures that the proposed OB-𝐿-

ALO shows enhanced exploration due to employment of Laplace distribution at earlier phase of 

evolution. It is clearly evident from the figure that the positions of elite in OB-𝐿-ALO shows 

sharp acceleration in convergence for functions 𝐹1,𝐹3, 𝐹7, 𝐹9 and 𝐹11 and approve the use of 

Laplace distribution for exploration and OBL mechanism for convergence acceleration. In same 

manner, exploration for function 𝐹10 is also enhanced with great extent at early generations and 

then converges to the nearby positions of global optima. The average fitness value of proposed 

OB-𝐿-ALO is slightly better than classical ALO for function 𝐹14  and consequently trajectory 

of the proposed OB-𝐿-ALO is able to search the closer positions as compared to classical ALO. 

Whereas, for function 𝐹20, the proposed OB-𝐿-ALO and classical ALO approximate almost 

similar nearby positions of optima in spite of better average fitness value achieved by proposed 

OB-𝐿-ALO. The trajectory of composition function 𝐹28 shows similar behaviour as of classical 

ALO but it approximates the closer positions to global optima at the later generations as 

compared to classical ALO. Similarly, the trajectory of function 𝐹29 is far than the ALO but 

approximates the nearer positions at later generations. It can be concluded that the performance 

of OB-𝐿-ALO outperforms the classical ALO as far as the searching of closer positions to the 

global optima is concern. 

 

Trajectory behaviour of average distance between search agents 

It is good idea to determine the “distance between search agents before and after applying the 

improvement strategies”. The search agents with lesser distance apart disclose closer positions 

to global optima. This theory has been conceptualized by stating that there are half chances of a 

candidate solution determined using OBL mechanism to be closer than the randomly generated 

number [61]. So, it is better to use opposite number rather than generating additional random 
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number during evolution process for convergence [61]. This analysis is useful to evaluate the 

importance of OBL mechanism. This can be determined experimentally by evaluating the 

“average of distance (Euclidean) between the search agent before and after applying the updating 

strategies”.  

 Mathematically, the distance (Euclidean) between two points 𝑃(𝑝1, 𝑝2, … , 𝑝𝐷) and 

𝑄(𝑞1, 𝑞2, … , 𝑞𝐷) in a 𝐷-dimensional search space can be defined as [61]: 

 𝑑(𝑃, 𝑄)=||𝑃, 𝑄||=√∑ (𝑝𝑖 − 𝑞𝑖)2𝐷
𝑖=1                 (2.7) 

It can be simplified for one dimension as follows: 

 𝑑(𝑃, 𝑄)=||𝑃, 𝑄|| = |𝑝 − 𝑞|                 (2.8)

  

 The “absolute value of average distance between search agents before and after 

employing improvements strategies” is determined in each iteration. The obtained value is than 

compared with the average distance of classical ALO to establish the superiority of OB-𝐿-ALO. 

The experiments are conducted for 200 iterations over first variable by choosing ten benchmark 

test functions including three unimodal(𝐹1, 𝐹3, 𝐹7),,three multimodal(𝐹9, 𝐹10, 𝐹11) ,two fixed 

dimension multimodal(𝐹14, 𝐹20) and two composition(𝐹28 and 𝐹29) functions”to validate the 

performance of OB-𝐿-ALO.  

 The curves shown in Figure 2.8 depict the determined average distance using proposed 

OB-𝐿-ALO. From the figure, it is shown that the average distance is fluctuating at early 

generations due to enhanced exploration caused by Laplace distribution. Then it gets smooth and 

steady once distance becomes lesser or closer to optimal solution at later generations. This 

behaviour is caused by using OBL integrated with exploitation adjustment parameter. For 

functions 𝐹1, 𝐹3, 𝐹7, 𝐹9 , 𝐹10  and 𝐹11 ,the determined average distance shows steady 

behaviour around the optimal position as OB-𝐿-ALO performs better than classical ALO as 

shown in result tables. This implies that the obtained distance for proposed OB-𝐿-ALO  is closer 

to optima as compared to classical ALO. The curve for function 𝐹14 shows that proposed 

algorithm determine closer distance as compared to classical ALO at later generations. The curve 

for function 𝐹20 shows abrupt behaviour in starting generations due to inclusion of Laplace 

distribution but become steady at later generations. The curves of composition functions 𝐹28 and 

𝐹29 are also able to approximate the closer distance for OB-𝐿-ALO while comparing with 

classical ALO. Overall, this analysis establishes that the obtained average distance using 

proposed OB-𝐿-ALO promises to accelerate the convergence. 



35 

 

 

Elite convergence curve 

The convergence curve verifies the convergence capability of best (elite) candidate solution. The 

similar set of test functions as utilized in previous section is used for this analysis. These curves 

are depicted in Figure 2.9. 

 The curves  depicted in Figure 2.9 exhibit that the fitness of elite solution drops 

significantly starting from initial iterations  which shows that the elite solution starts to converge 

even at initial iterations for proposed OB-𝐿-ALO as compared to classical ALO. The classical 

ALO shows better convergence behaviour for function 𝐹24 in initial iterations but as compared 

to proposed OB-𝐿-ALO. The curve of function 𝐹25 depicts better convergence steadily for 

proposed OB-𝐿-ALO  than classical ALO and further drops at later generation and exhibits the 

superiority of proposed OB-𝐿-ALO over classical ALO. This analysis validates high acceleration 

in convergence with the increase in number of iterations and tries efficiently to search global 

optima with more precision. The employability of Laplace distribution ensures the enhanced 

exploration and avoidance of local optima stagnation. The opposition based learning (OB) is 

capable of approximating the nearer solution to the best ant lion (elite) and ensures the 

acceleration in convergence towards a point [110]. 

 

2.5.4 Computational Complexity 

The computation complexity of proposed OB-𝐿-ALO relies on the number of search agents, 

maximum number of iterations, 𝑓𝑜𝑟 loops used throughout the algorithm and the number of 

function evaluation while determining the cost of objective function. The complexity of proposed 

OB-𝐿-ALO and classical ALO can be defined as follows:   

 The parameters are initialized using constant input values for both algorithms with “time 

complexity 𝑂(1)”.The search agents or population of “size 𝑁” for both the algorithms in step 1 

are generated randomly with “time complexity  𝑂(𝑁)”. In step 2, the fitness or objective function 

value is determined with “time complexity 𝑂(𝑁) ∗ 𝑂(𝑓(�⃗�))” where “ 𝑓(�⃗�) denotes the objective 

function value” which is followed by sorting of fitness values as “linear search with time 

complexity 𝑂(𝑁)”.  

 The while loop up to maximum number of iteration 𝒊𝒕𝒎𝒂𝒙  initiated at step 5. So every 

statement inside this loop will have time complexity multiplied by 𝒊𝒕𝒎𝒂𝒙. The next step 6 

executes for loop of size 𝑁 and step 7 and 8 are executed for  𝑁 times with complexities (𝑖𝑡𝑚𝑎𝑥 ∗

𝑁) respectively for both ALO and proposed OB-𝐿-ALO. Then the random walk is determined 

file:///H:/OB-Ly-ALO/An%20efficient%20Opposition%20based%20Levy%20Flight%20Ant%20lion%20optimizer%20for%20Optimization%20Problems.docx
file:///H:/OB-Ly-ALO/An%20efficient%20Opposition%20based%20Levy%20Flight%20Ant%20lion%20optimizer%20for%20Optimization%20Problems.docx
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and normalized for “each dimension 𝐷 with time complexities 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗ 𝐷 ∗ 𝑁)”. In next step 

12, the mean of the two random walks is determined to “update the positions of all 𝑁 ants with 

time complexity 𝑂 (𝑖𝑡𝑚𝑎𝑥  ∗ 𝑁)”.  

 Before determining the fitness of all ants after position updates, the position of randomly 

generated population of ants are again updated using proposed opposition based learning(OBL) 

integrated with Laplace distribution having time complexity 𝑂 (𝑖𝑡𝑚𝑎𝑥  ∗ 1). The random walks 

determined in earlier step are used to update the ants positions in step 14 having complexity 𝑂 

(𝒕𝒎𝒂𝒙 *N). Opposition based learning is applied around the elite antlion  𝑆𝑒𝑙𝑖𝑡𝑒 to again 

determine the updated ants positions in step 16 and 17 with complexity 𝑂 (𝒕𝒎𝒂𝒙 ∗ 𝑵) .This step 

defines as improvement strategy in proposed OB-𝐿-ALO which is not present in the original 

ALO. The fitness of all ants is calculated in step 19 using updated position by executing the 

instruction for 𝑁 times. Thus the fitness of updated ants are determined “with time 

complexity 𝑂(𝑖𝑡𝑚𝑎𝑥  ∗ 𝑁) ∗ 𝑂(𝑓(�⃗�))”. Hence the time complexity in worst case scenario can be 

visualized for both “classical ALO as well as proposed OB-𝐿-ALO as 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗ 𝐷 ∗ 𝑁)* 𝑂 

(𝑓(�⃗�))”. 

 

2.6 Conclusion 

The goal of this chapter is to enhance the exploration to avoid the stagnation in local optima and 

then accelerating the convergence speed at later part of the generation. Two strategies namely 

Laplace distribution by substituting the uniform distribution in random walk and opposition 

based learning (OBL) about the elite(best) candidate solutions are applied to achieve the purpose. 

 The improved performance of developed OB-𝐿-ALO is verified by using 31 test problems 

of wide and different behaviour having complexities matching with real world optimization 

problems. Extensive analysis is performed to establish the superiority of the proposed algorithm 

such as convergence behaviour, trajectory behaviour, average distance between search agents 

before and after applying improvement strategies and elite convergence analysis. A non-

parametric statistical Wilcoxon ranksum test is performed to verify statistical significance of 

proposed OB-𝐿-ALO and computational complexities of both proposed algorithm and classical 

ALO are also discussed. 

 The inclusion of Laplace distribution is clearly capable of enhancing the exploration 

ability of the search region as compared to classical ALO. The analysis reflects the influence of 

OBL mechanism at later stage of generation in accelerating the convergence speed. In majority 

of the problems, proposed algorithm exhibits consistent acceleration after sudden fluctuation 
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shown in starting iterations in trajectory curves. The employed techniques reduces the probability 

of stagnation to local optima and tend to find global optima while enhancing the convergence 

speed.  

 Though the proposed OB-𝐿-ALO improves the overall performance of classical ALO, 

yet it suffers with certain limitations. The Laplace distribution is a double exponential probability 

distribution which makes random walk more exhaustive and increases the computation time 

specifically for higher dimensional problems.    
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Table 2.1: Pseudo code of Proposed OB-𝐿-ALO 

Input: Population Size N, Maximum iteration i𝑡𝑚𝑎𝑥,lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  ant lions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 

6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an ant lion 𝑆𝑠𝑒𝑙  using Roulette wheel 

8 
                  Modify lower L and upper U boundaries with equations Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙  

11                         and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  using Laplace distribution with Eq. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡1)-     

                            1), 𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐿(𝑖𝑡𝑚𝑎𝑥)-1) 

12                           Normalize random walk using Eqs. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡1)-     

                            1), 𝑢𝑚𝑠𝑢𝑚(2∗ 𝐿(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐿(𝑖𝑡𝑚𝑎𝑥)-1)  and 

                            𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =   

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡) 

13                   end for 

14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 

16            Modify position of ant by applying opposition based learning model  

17            using  Eq. 𝑆𝐴,𝑖(𝑖𝑡) = 𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡)    

18              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

19                 Determine the fitness o f all ants 

20           end for 

21                Substitute an antlion with  its respective ant  if it becomes fitter using Eq.  

               𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

22              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an ant lion becomes fitter than the elite 

23             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

24       end while 

25 Return elite 
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Table 2.2: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal test functions 

(10D) 
Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-𝐿-ALO 1.090E-11 3.860E-11 0.000E+00 2.050E-10 

ALO 7.870E-09 5.490E-09 2.390E-09 2.580E-08 

 

𝐹2 

OB-𝐿-ALO 1.850E-18 1.010E-17 0.000E+00 5.550E-17 

ALO 4.860E-01 8.850E-01 1.550E-05 2.800E+00 

 

𝐹3 

OB-𝐿-ALO 1.730E-32 6.950E-32 0.000E+00 3.450E-31 

ALO 8.310E-02 1.850E-01 1.360E-04 8.750E-01 

 

𝐹4 

OB-𝐿-ALO 4.090E-06 9.620E-06 0.000E+00 3.220E-05 

ALO 3.180E-03 6.160E-03 1.020E-04 3.290E-02 

 

𝐹5 

OB-𝐿-ALO 5.460E-04 1.600E-03 1.250E-07 8.630E-03 

ALO 6.810E+01 1.990E+02 1.020E-04 1.070E+03 

 

𝐹6 

OB-𝐿-ALO 3.320E-08 3.000E-08 7.360E-09 1.160E-07 

ALO 8.390E-09 5.220E-09 2.150E-09 2.220E-08 

 

𝐹7 

OB-𝐿-ALO 2.850E-04 2.490E-04 3.890E-05 1.330E-03 

ALO 2.210E-02 1.230E-02 1.810E-03 5.630E-02 

 

 

 

 

 

 

 

 

 

Table 2.3: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal test functions 

(30D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-𝐿-ALO 1.010E-09 4.630E-09 0.000E+00 2.530E-08 

ALO 9.450E-06 5.540E-06 1.720E-06 2.110E-05 

 

𝐹2 

OB-𝐿-ALO 5.980E-05 4.260E-05 0.000E+00 1.090E-04 

ALO 3.650E+01 5.170E+01 2.090E-02 1.340E+02 

 

𝐹3 

OB-𝐿-ALO 1.160E-29 5.950E-29 0.000E+00 3.260E-28 

ALO 9.550E+02 5.080E+02 2.470E+02 2.160E+03 

 

𝐹4 

OB-𝐿-ALO 1.090E-05 2.290E-05 0.000E+00 7.130E-05 

ALO 1.210E+01 3.650E+00 4.630E+00 1.960E+01 

 

𝐹5 

OB-𝐿-ALO 5.460E-03 7.170E-03 5.540E-06 3.220E-02 

ALO 1.040E+02 3.120E+02 1.640E+01 1.740E+03 

 

𝐹6 

OB-𝐿-ALO 3.230E-05 1.840E-05 7.980E-06 7.620E-05 

ALO 9.490E-06 6.100E-06 1.320E-06 2.920E-05 

 

𝐹7 

OB-𝐿-ALO 2.780E-04 2.530E-04 9.410E-06 1.240E-03 

ALO 1.100E-01 3.570E-02 5.700E-02 2.250E-01 
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Table 2.4: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal test 

functions (10D) 

 

Function 

Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-𝐿-ALO -2.450E+03 4.230E+02 -3.320E+03 -1.920E+03 

ALO -2.470E+03 4.260E+02 -3.730E+03 -1.920E+03 

 

𝐹9 

OB-𝐿-ALO 5.070E-10 6.450E-10 0.000E+00 2.240E-09 

ALO 2.480E+01 1.080E+01 6.960E+00 5.070E+01 

 

𝐹10 

OB-𝐿-ALO 1.540E-05 8.100E-06 8.880E-16 2.850E-05 

ALO 3.240E-01 5.540E-01 2.070E-05 1.650E+00 

 

𝐹11 

OB-𝐿-ALO 7.210E-10 2.110E-09 0.000E+00 9.600E-09 

ALO 2.140E-01 8.720E-02 6.640E-02 4.060E-01 

 

𝐹12 

OB-𝐿-ALO 1.630E-08 2.410E-08 4.710E-32 1.230E-07 

ALO 1.790E+00 1.670E+00 8.230E-09 5.610E+00 

 

𝐹13 

OB-𝐿-ALO 6.820E-08 9.610E-08 1.350E-32 3.800E-07 

ALO 1.800E-03 4.940E-03 3.840E-09 2.100E-02 

 

 

 

 

 

 

Table 2.5: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal test 

functions (30D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-𝐿-ALO -5.98E+03 1.71E+03 -1.26E+04 -5.42E+03 

ALO -5.44E+03 4.19E+01 -5.54E+03 -5.42E+03 

 

𝐹9 

OB-𝐿-ALO 3.01E-09 4.82E-09 0.00E+00 1.57E-08 

ALO 1.97E+00 8.39E-01 5.89E-04 3.52E+00 

 

𝐹10 

OB-𝐿-ALO 2.10E-05 1.46E-05 8.88E-16 4.20E-05 

ALO 1.87E+00 6.90E-01 1.02E-03 3.09E+00 

 

𝐹11 

OB-𝐿-ALO 6.32E-09 1.27E-08 0.00E+00 5.22E-08 

ALO 1.19E-02 1.26E-02 3.47E-04 3.86E-02 

 

𝐹12 

OB-𝐿-ALO 6.44E-07 5.81E-07 7.19E-08 2.10E-06 

ALO 1.00E+01 4.34E+00 5.75E+00 2.33E+01 

 

𝐹13 

OB-𝐿-ALO 6.98E-06 5.33E-06 1.35E-32 2.05E-05 

ALO 1.32E+00 3.15E+00 1.14E-05 1.05E+01 
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Table 2.6: Average, Standard Deviation, Minimum, and Maximum of objective function values of  fixed dimension 

multimodal functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹14 

OB-𝐿-ALO 1.690E+00 8.700E-01 9.980E-01 2.980E+00 

ALO 1.790E+00 9.520E-01 9.980E-01 3.970E+00 

 

𝐹15 

OB-𝐿-ALO 7.390E-04 1.280E-04 4.650E-04 1.220E-03 

ALO 3.380E-03 6.780E-03 3.080E-04 2.040E-02 

 

𝐹16 

OB-𝐿-ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

 

𝐹17 

OB-𝐿-ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

 

𝐹18 

OB-𝐿-ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

 

𝐹19 

OB-𝐿-ALO -9.400E+00 2.300E+00 -1.020E+01 -2.630E+00 

ALO -6.780E+00 2.680E+00 -1.020E+01 -2.680E+00 

 

𝐹20 

OB-𝐿-ALO -9.640E+00 2.330E+00 -1.040E+01 -2.770E+00 

ALO -7.390E+00 3.150E+00 -1.040E+01 -2.750E+00 

 

𝐹21 

OB-𝐿-ALO -7.490E+00 3.670E+00 -1.050E+01 -2.420E+00 

ALO -6.590E+00 3.400E+00 -1.050E+01 -2.420E+00 

 

𝐹22 

OB-𝐿-ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

 

𝐹23 

OB-𝐿-ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

 

 

 

 

 
Table 2.7: Average, Standard Deviation, Minimum, and Maximum of objective function values of composition 

functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹24 

OB-𝐿-ALO 2.546E+03 6.248E+01 2.500E+03 2.630E+03 

ALO 2.630E+03 1.275E-03 2.630E+03 2.630E+03 

 

𝐹25 

OB-𝐿-ALO 2.540E+03 2.163E+01 2.517E+03 2.600E+03 

ALO 2.538E+03 1.477E+01 2.512E+03 2.577E+03 

 

𝐹26 

OB-𝐿-ALO 2.690E+03 1.470E+01 2.650E+03 2.700E+03 

ALO 2.680E+03 2.430E+01 2.630E+03 2.700E+03 

 

𝐹27 

OB-𝐿-ALO 2.700E+03 1.030E-01 2.700E+03 2.700E+03 

ALO 2.700E+03 1.090E-01 2.700E+03 2.700E+03 

 

𝐹28 

OB-𝐿-ALO 2.940E+03 1.640E+02 2.700E+03 3.100E+03 

ALO 3.010E+03 1.440E+02 2.700E+03 3.110E+03 

 

𝐹29 

OB-𝐿-ALO 3.220E+03 1.230E+02 3.000E+03 3.710E+03 

ALO 3.490E+03 2.920E+02 3.170E+03 3.930E+03 

 

𝐹30 

OB-𝐿-ALO 1.050E+05 4.100E+05 3.100E+03 1.730E+06 

ALO 8.270E+05 1.520E+06 3.100E+03 3.670E+06 

 

𝐹31 

OB-𝐿-ALO 3.790E+03 2.530E+02 3.500E+03 4.470E+03 

ALO 4.420E+03 4.140E+02 3.880E+03 6.170E+03 
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Table 2.8: P-values of Wilcoxon ranksum test  

Function P-values 

 

Conclusion 

𝐹1 7.880E-12 + 

𝐹2 2.920E-11 + 

𝐹3 3.160E-12 + 

𝐹4 1.610E-11 + 

𝐹5 3.020E-11 + 

𝐹6 3.350E-08 - 

𝐹7 3.020E-11 + 

𝐹8 3.350E-08 - 

𝐹9 2.380E-11 + 

𝐹10 2.900E-11 + 

𝐹11 1.620E-11 + 

𝐹12 3.020E-11 + 

𝐹13 2.260E-10 + 

𝐹14 6.870E-01 - 

𝐹15 1.170E-02 + 

𝐹16 NA = 

𝐹17 NA = 

𝐹18 NA = 

𝐹19 2.870E-04 + 

𝐹20 2.700E-03 + 

𝐹21 5.170E-05 + 

𝐹22 NA = 

𝐹23 NA = 

𝐹24 2.33E-11 + 

𝐹25 7.74E-01 - 

𝐹26 4.40E-03 - 

𝐹27 4.70E-03 + 

𝐹28 3.01E-02 - 

𝐹29 5.56E-09 + 

𝐹30 6.49E-05 + 

𝐹31 7.68E-14 + 

24/31(19 ‘+’ , 5 ‘=’) 
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Figure 2.1: Generation of random numbers using Uniform and Laplace distribution 
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Figure 2.2: Flowchart of Proposed OB-𝐿-ALO Algorithm 

Start 

Initialize D,𝑖𝑡𝑚𝑎𝑥,𝑖𝑡𝑐𝑢𝑟𝑟,𝐿 ,𝑈 , positions of ants 𝑆𝐴,𝑛 = (𝑆𝐴,𝑛
1 , … 𝑆𝐴,𝑛

𝑑 , … 𝑆𝐴,𝑛
𝐷 ) and antlions 𝑆𝐴𝐿,𝑛 =

(𝑆𝐴𝐿,𝑛
1 , … 𝑆𝐴𝐿,𝑛

𝑑 , … 𝑆𝐴𝐿,𝑛
𝐷 ) 

 

Calculate the fitness of antlions and sort them to determine the best (min fitness) antlion 𝑆𝑒𝑙𝑖𝑡𝑒 and 𝑆𝑠𝑒𝑙(Using 

Roullette wheel operator) 

𝑖𝑡𝑐𝑢𝑟𝑟 = 2 

Find out the adaptive boundary shrinking operator I dynamically 

Modify  lower and upper bound using Eqs. (1.9-1.12) around 𝑆𝑒𝑙𝑖𝑡𝑒 and 𝑆𝑠𝑒𝑙 

Determine 𝑟𝑤𝐴(𝑖𝑡) and𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑠𝑒𝑙 and 𝑆𝑒𝑙𝑖𝑡𝑒 respectively  using Eq. (2.3) 

Update the position of all ants using Eq. (1.8)  

Modify position of ant after applying OBL using Eq. (2.6) 

Calculate  the fitness ants using modified ant’s position and substitute an antlion if it becomes fitter 

Update  positions of antlion using equation (1.13) and find out elite antlion 𝑆𝑒𝑙𝑖𝑡𝑒 for next iteration 

𝑖𝑡𝑐𝑢𝑟𝑟 = 𝑖𝑡𝑐𝑢𝑟𝑟 + 1 

𝑖𝑡𝑐𝑢𝑟𝑟 > 𝑖𝑡𝑚𝑎𝑥 

Return best(elite) solution 𝑆𝑒𝑙𝑖𝑡𝑒 

 

End 
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Figure 2.3: Convergence curves of three unimodal functions 𝐹1,𝐹3 and 𝐹7 
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Figure 2.4: Convergence curves of three multimodal functions 𝐹11,𝐹12 and 𝐹13 

 

 

 
Figure 2.5: Convergence curves of two fixed dimension multimodal functions 𝐹15 and 𝐹21 
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Figure 2.6: Convergence curves of three composition functions 𝐹27, 𝐹29 and 𝐹31 
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Figure 2.7: Trajectories of  elite antlion 
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Figure 2.7: (Continued) 
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Figure 2.8: Trajectory behaviour of average distance between search agents 
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Figure 2.8: (Continued) 
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Figure 2.9: Elite convergence curves 
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Figure 2.9: (Continued) 
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CHAPTER 3 

Modified Opposition based Antlion Optimizer (ALO) using Acceleration 

Mechanisms for Continuous Optimization Problems 

 

3.1 Introduction 

This chapter proposes two acceleration mechanisms to enhance the convergence speed of classic 

antlion optimizer (ALO) along with the opposition based learning(OBL) model. Though the 

improvement suggested in chapter 2 are quite useful to enhance the performance of ALO yet it 

exhibits slow convergence and vulnerable to be trapped in local optima for some problems. In 

this chapter, the acceleration parameters are incorporated with opposition based learning (OBL) 

model which is applied to the best candidate solution obtained in each generation to enhance the 

exploration of opposite candidate solution along with the originally generated solutions.  

 Two unified approaches are utilized using acceleration parameters to achieve this 

objective: (1) Varying acceleration coefficient (2) Sine acceleration coefficient (SAC) with OBL 

mechanism. The OBL mechanism helps to avoid local optima by exploring the original randomly 

generated as well as opposite candidate solution within the search space. Then it is combined 

with Varying acceleration coefficient (ac) and Sine acceleration coefficient (SAC) to accelerate 

the exploitation at later generations. These two proposed algorithms are named as OB-ac-ALO 

and OB-SAC-ALO. The performance of both these versions of ALO are experimentally tested 

using 31 unconstrained continuous benchmark problems including unimodal, multimodal, fixed 

dimensional multimodal and composition functions of CEC 2014 as utilized in chapter 2 and 

shown in Appendix I. A non-parametric Wilcoxon ranksum test is performed to evaluate the 

performance of the proposed variants over the existing one. The numerical as well as graphical 

analysis of results are performed using various metrics including convergence curves, trajectories 

of solutions, average distance between search agents before and after improving the algorithm 

and elite convergence curves. The computational complexity of proposed variants is also 

presented. 

The organization of this chapter is as follows: 

Partial contents of this chapter has been published as: 

 Dinkar, S. K., & Deep, K. (2018). Accelerated Opposition-Based Antlion Optimizer with Application 

to Order Reduction of Linear Time-Invariant Systems. Arabian Journal for Science and 

Engineering, 44(3), 2213-2241. (SCIE, IF-1.092). 
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Section 3.2 represents related literature. Section 3.3 describes two proposed algorithms namely 

OB-ac-ALO and OB-SAC-ALO with some brief information about applied strategies. Section 

3.4 depicts the description of benchmark test functions and experimental setting. Section 3.5 

exhibits numerical results and discussion based on characteristics of benchmark functions. 

Section 3.6 shows convergence and other algorithm analysis using various metrics to authenticate 

proposed algorithms. Section 3.7 presents concluding remarks. 

 

3.2 Related literature 

The basic conceptual material of OBL was proposed by Tizoosh in 2005[98] which suggests to 

consider the currently determined solutions as well as their opposite solutions simultaneously to 

approximate new and closer solutions to optima efficiently. This strategy is proved to be quite 

efficient in past research while improving the efficiency of metaheuristic algorithms. In [103], 

the OBL mechanism is employed with recently proposed sine cosine algorithm (SCA) [51] to 

enhance its performance for global optimization. In [104], the lévy flight random walk is 

integrated with OBL in artificial bee colony (ABC). The efficiency of differential evolution is 

enhanced using OBL [105]. The shuffled differential evolution [101]  and shuffled frog leaping 

(SFL)[106] are also improved in terms of convergence acceleration with the use of opposition 

based modelling.  

 To maintain the proper exploitation after exploration, varying acceleration coefficient 

(ac) is utilized to propose first variant to enhance convergence speed of opposition based ALO 

as a new idea. After applying OBL, the newly generated candidate solutions may exhibit 

unexpected behaviour which can be adjusted by balancing the exploration and exploitation 

process [111]. This coefficient is hybridized with OBL mechanism to accelerate the exploitation 

after exploration so as to accelerate the convergence speed. 

 The other parameter namely sine acceleration coefficient (SAC) is used as the second 

scheme for adjusting the balance between exploration and exploitation. Sine acceleration 

coefficient (SAC) is employed with opposition based learning (OBL) as second strategy. This 

parameter is useful for global search at early generation and local search at later generation [112].  

3.3 Proposed Variants  

3.3.1 Variant 1: Opposition based ALO with Varying Acceleration Coefficient (OB-ac-

ALO)  
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 This section demonstrates the newly developed variant as scheme 1 to improve the 

performance of classical ALO. ALO suffers from stagnation to local optima and slow 

convergence. In this technique, few candidate solutions are updated towards the best solution but 

some get stuck and move away from the best one. Due to this process, the algorithm is not capable 

of avoiding local optima and subsequently, it is enforced into premature and slow convergence. 

Therefore the proposed variant takes the candidate solutions in opposite direction while applying 

opposition based learning model (OBL). The OBL technique is combined with acceleration 

coefficient (ac) to improve the convergence speed in order to maintain proper balance between 

exploration and exploitation. Both of these mechanism are explained in the following 

subsections: 

 

The Opposition based learning (OBL) model 

 Due to the fact that the fitter solutions are closer to the optimum than the rest of the 

solutions, it is always better to search the closer candidate solutions. The theory of opposite 

numbers establishes that these numbers are closer to the optimum than the original numbers 

[102]. So it is better to approximate the initial along with opposite candidate solutions 

simultaneously and retain the fitter one to the next generation as described in chapter 2. With this 

approach, the strategy of OBL is applied in this work to improve the convergence. The definition 

of opposite numbers is defined in Section 2.3.2 of Chapter 2. 

 In proposed work, uniformly distributed random numbers are employed to generate the 

initial random solutions. The fitness (objective function value) of each candidate solution 

(antlion) is determined. Then the best candidate solution is found after sorting the obtained fitness 

values. This candidate solution is termed as elite. The positions of the candidate solutions are 

updated as mentioned in the classical ALO. Now, a new population is generated around the elite 

candidate solution to explore the opposite search region along with the updated population. The 

obtained opposite position around elite candidate solution is interchanged with the candidate of 

first dimension of the initial population. Then the fitter (elite) solutions are carried to the next 

generation after determining the fitness using new population. The process of evolution is 

continued until the predefined criteria is not satisfied. Mathematically, this process can be 

modelled as: 

 𝑆𝐴,𝑖(𝑖𝑡) = 𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡)                (3.1)
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where 𝑆𝐴,𝑖 signifies the updated(opposite)  position of candidate after employing OBL. 𝑆𝑒𝑙𝑖𝑡𝑒 is 

the best position for current iteration 𝑖𝑡.  

Varying acceleration coefficient  

Though the employment of OBL strategy guarantees the convergence acceleration in ALO, yet 

the generated opposite numbers may exhibit unexpected explorative behaviour. However it is a 

good idea to have enhanced exploration at early stages of generation but the algorithm must 

exploit with time as the number of generation increases. Hence the strategy is to hybridize the 

OBL with acceleration coefficient which enforces parameter adjustment while balancing 

exploration and exploitation. 

 To achieve this, a varying acceleration coefficient 𝑒𝑎𝑐 is employed which is decreased 

adaptively as the number of iteration increases. This parameter 𝑒𝑎𝑐 can be calculated as [111]: 

 𝑒𝑎𝑐  = 𝑒𝑚𝑎𝑥 − 𝑖𝑡𝑐𝑢𝑟𝑟
𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛

𝑖𝑡𝑚𝑎𝑥
               (3.2) 

 Here 𝑒𝑚𝑎𝑥 = 1 as maximum value and 𝑒𝑚𝑖𝑛 = 0.00001 as minimum value.  𝑖𝑡𝑐𝑢𝑟𝑟 

Indicates current iteration and 𝑖𝑡𝑚𝑎𝑥  indicates maximum iteration. 

After combining, the eq.(3.1)  can be formulated using eq.(3.2) as:  

 𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐 × (𝐿𝐵𝑖 + 𝑈𝐵𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))            (3.3) 

here 𝑒𝑎𝑐 is given in eq.(3.2). 

Proposed OB-ac-ALO Variant 

 The above described strategies are integrated to define proposed improved opposition 

based acceleration coefficient (OB-ac-ALO) as a new technique described in eq.(3.3). As first 

strategy, the OBL is applied around elite candidate solution to generate the opposite candidate 

solutions for the next generation. This strategy enhances the exploration by using the initial as 

well as opposite candidate solutions and improves the convergence acceleration. 

 The second strategy is acceleration coefficient which is applied to adjust the parameter 

for balancing between exploration and exploitation. This strategy ensures the exploration at early 

stages and then exploitation at later stages of generation. Hence it promises the acceleration in 

convergence as the number of iteration increased. 

 The pseudo code of proposed OB-ac-ALO is shown in Table 3.1.     
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3.3.2 Variant 2: Opposition based ALO with Sine Acceleration Coefficient (OB-SAC-

ALO) 

This section demonstrates scheme 2 to propose OB-SAC-ALO to improve the performance of 

ALO by first applying opposition based learning (OBL) model to update the positions of the 

candidate solution. This mechanism is combined with sine acceleration coefficient (SAC)  as a 

new idea to accelerate the convergence speed. The OBL mechanism is described in chapter 2. 

The second strategy can be explained as follows:  

Sine Acceleration Coefficient  

  During the evolution process, it is observed that an optimization algorithm should exhibit 

global search ability with enhanced exploration at early generations and good exploitation at later 

generations to achieve global convergence. So, it is good a idea to utilize a parameter adjusting 

coefficient to adjust the abrupt and unexpected explorative behaviour at initial phase and then 

exploit at advanced stages. The second strategy i.e. sine acceleration coefficient which is 

proposed by Chen et al. [112] is integrated with OBL to adjust steadiness during process of 

evolution and improving  acceleration in convergence.  

 Sine acceleration coefficient (SAC) is capable of harmonizing between global search  and 

global convergence . Mathematically, the SAC can be formulated as: 

 𝑐𝑆𝐴𝐶 = 𝜇 × sin ((1 −
𝑖𝑡𝑐𝑢𝑟𝑟

𝑖𝑡𝑚𝑎𝑥
)) + 𝜌               (3.4) 

where 𝜇 and 𝜌 are two constants (𝜇 = 2, 𝜌 = 0.5), 𝑖𝑡𝑐𝑢𝑟𝑟= current generation and 𝑖𝑡𝑚𝑎𝑥= 

maximum number of generations[112]. 

Using the above two strategies, the position equation can be updated using eq.(3.1) and (3.4) as 

follows: 

 𝑆𝐴,𝑖(𝑖𝑡) = 𝑐𝑆𝐴𝐶 × (𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))               (3.5) 

Proposed OB-SAC-ALO variant 

The above mentioned techniques are integrated to propose an improved opposition based sine 

acceleration coefficient (OB-SAC-ALO) variant.  The OBL technique is employed to the elite 

candidate solution at each iteration to generate the opposite candidates. The fitness is then 

evaluated and compared to determine the new elite solution which is carried forward to the next 
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generation throughout the evolution process. The OBL mechanism efficiently explores the 

opposite candidate solutions to accelerate the convergence. 

 The other mechanism is a parameter to adjust between global and local search during 

early and later stages of generations respectively. The parameter sine acceleration coefficient 

(SAC) is hybridized with OBL mechanism as shown in eq.(3.5). After applying SAC in 

conjunction with OBL, the convergence accelerates as the number of generations increase. Hence 

it promises to enhance the convergence as the number of iteration increases. 

The pseudo code the proposed OB-SAC-ALO is depicted in Table 3.2.  

3.4 Experimental Setup 

The performance of proposed OB-ac-ALO and OB-SAC-ALO are demonstrated using a set of 

benchmark problems depicting different characteristics as used in Chapter 2. The results are 

obtained in terms of average, standard deviation, maximum and minimum of fitness values taken 

over 30 independent runs.  

 

Benchmark Test functions 

The similar set of benchmark functions utilized in chapter 2 are used to evaluate the performance 

of proposed techniques. These benchmark functions are depicted in Appendix I.  

 

Experimental and Parameter Setting 

The performance of any metaheuristic algorithm majorly depends on the stochastic behaviour of 

the employed operators in algorithm. The adequacy of parameter-setting can be established by 

performing continuous experiments such as “the size of initial population, stopping criteria and 

number of independent runs” etc. The experimental analysis establishes that the chances to find 

global optima increases as the number of generations increase. Based on this analysis, the size of 

population is chosen as 30 in this work. 

 To demonstrate the performance of proposed OB-ac-ALO and OB-SAC-ALO, they are 

evaluated and compared with classical ALO. For scalable problems (unimodal and multimodal 

functions), the experiments are performed for 10 and 30 dimensions keeping as similar as utilized 

in chapter 2. The performance of proposed variants are measured in terms of “average, standard 

deviation, maximum and minimum of objective function values”. Further, 30 independent runs 

have been performed by generating an initial population size of 30. “Stopping criteria is fixed at 

500 and 1000 iterations for 10 and 30 dimensions respectively. For composition function, 
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stopping criteria is taken as 1000 iteration for 10 dimension over 51 independent runs as desired 

in evaluation criteria of CEC 2014.  All the experiments have been performed on MATLAB 

R2014a on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz-2.71 GHz with 8GB RAM”.  

3.5 Results and Discussion 

  Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7 and Table 3.8 show the results for 

different dimensions of various categories of problems.  

 

Comparison on of results on Unimodal functions( 𝑭𝟏-𝑭𝟕) 

Due to the presence of single optima, these are appropriate to evaluate the exploitation ability of 

an optimization algorithm. This analysis can be authorized by observing the results as shown in 

Table 3.3 and Table 3.4 for 10 and 30 dimensions respectively. It can be clearly observed from 

the tables that the proposed OB-ac-ALO and OB-SAC-ALO algorithms depict significantly 

better results as compared to classical ALO.   For functions 𝐹1 − 𝐹4, the average fitness values 

for proposed OB-ac-ALO are significantly better and able to attain global optima in very less 

function evaluations. For function 𝐹5 and 𝐹7 the results are slightly better. The proposed OB-

SAC-ALO shows significantly better results for functions 𝐹1 − 𝐹4  and attains the global optima 

for functions 𝐹2 − 𝐹3 in 10 dimension and for 𝐹2 − 𝐹4 in 30 dimensions respectively than 

classical ALO. It is evidently shown in the tables that both the variants OB-ac-ALO and OB-

SAC-ALO clearly outperform the classical ALO except the case of function 𝐹6. Out of the 

proposed variants, OB-ac-ALO perform better than the other proposed OB-SAC-ALO algorithm. 

Also the standard deviations for proposed algorithm are steady throughout and establishes the 

superiority and stability over the classical ALO. The performance of proposed OB-SAC-ALO 

and OB-ac-ALO show that the applied OBL mechanism effectively explores the nearby opposite 

candidate solution with respect to global optima as compared to classical ALO. It is also 

evidently proven that the hybridization of sine acceleration coefficient (SAC) and varying 

acceleration coefficient (ac) promise improved acceleration in convergence. 

 

Comparison of results on Multimodal functions( 𝑭𝟖-𝑭𝟏𝟑) 

These functions contain numerous local and global optima. To perform over such kind of 

problems, an algorithm must be capable of avoiding stagnation to local optima. These benchmark 

problems authorizes the exploration ability of proposed OB-ac-ALO and OB-SAC-ALO by 

visiting the unexplored region of the search space while avoiding entrapment to local optima and 

approximating nearby positions to global optima.  

file:///H:/OB-Ly-ALO/TempAn%20efficient%20Opposition%20based%20Levy%20Flight%20Ant%20lion%20optimizer%20for%20Optimization%20Problems.docx
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 The obtained results are observed in Table 3.5 and Table 3.6 for 10 and 30 dimensions 

respectively. The results clearly reflect that the proposed OB-SAC-ALO exhibits significant 

improvements for functions  𝐹8 − 𝐹13. Proposed OB-SAC-ALO attains significantly better 

results for functions 𝐹8 in 30 dimension than classical ALO. Also OB-SAC-ALO is able to 

attain the global optima for function 𝐹11 and near to optima for function 𝐹9.  

 The other proposed OB-ac-ALO shows better results than classical ALO for all six 

functions 𝐹8 − 𝐹13 and able to get global optima for function 𝐹9 and 𝐹11. OB-ac-ALO 

outperforms the other proposed OB-SAC-ALO for function 𝐹8 − 𝐹11 but OB-SAC-ALO 

performs better than OB-ac-ALO. It is clearly evident that both the OB-ac-ALO and OB-SAC-

ALO outperform the classical ALO. The obtained outcome evidently shows that the applied OBL 

mechanism in proposed techniques is quite capable of improving diversification of the search 

space by exploring the original and opposite solutions simultaneously. The integration of sine 

acceleration coefficient (SAC) and  varying acceleration coefficient (ac) guarantees to achieve 

balance between exploration and exploitation. So, the applied proposed techniques are able to 

improve the efficiency and determine better solutions in comparison to classical ALO.  

 

Comparison of results on Fixed Dimension Multimodal Functions (𝑭𝟏𝟒 − 𝑭𝟐𝟑) 

This category of functions are multimodal but has fixed dimension and cannot be scaled. Thus 

the behaviour of these functions is contrary to scalable multimodal functions. It is interesting to 

analyze the performance of these function while having fixed dimensions. The results for these 

functions when the stopping criteria is to achieve a maximum of 1000 iterations are shown in 

Table 3.7.  It can be observed from the table that the proposed OB-SAC-ALO is significantly 

improved for  functions 𝐹19,𝐹20 and slightly better for function 𝐹14 than the original ALO and 

other proposed OB-ac-ALO. The results obtained for proposed OB-SAC-ALO, OB-ac-ALO and 

ALO are same for functions  𝐹16, 𝐹17 𝐹18, 𝐹22 and F23 . OB-SAC-ALO and OB-ac-ALO 

show improved performance than classical ALO for function  𝐹19,𝐹20 and 𝐹21. 

 

Comparison of results on Composition Functions (𝑭𝟐𝟒 − 𝑭𝟑𝟏) 

The results are depicted in Table 3.8. It is evident from the table that average value obtained for 

OB-ac-ALO is better in terms of average values than OB-SAC-ALO and classical ALO for 

function 𝐹24. But OB-SAC-ALO performs better than OB-ac-ALO and classical ALO for 

function 𝐹25 and 𝐹26. and OB-SAC-ALO achieve better standard deviation for function 𝐹26. 

It also outperforms the OB-ac-ALO in terms of better average value though the standard 

file:///H:/OB-Ly-ALO/An%20efficient%20Opposition%20based%20Levy%20Flight%20Ant%20lion%20optimizer%20for%20Optimization%20Problems.docx
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deviation is better for OB-ac-ALO which show stability of OB-ac-ALO through the independent 

runs. OB-ac-ALO performs better for function 𝐹27, 𝐹28, 𝐹29 and 𝐹30 than the classical ALO 

and OB-SAC-ALO. But both of these algorithms are not able to beat classical ALO for 𝐹31.  

 

3.6 Analysis of Results 

The following metrics are used to analyze the performance of proposed variants: 

       3.6.1 Convergence Behaviour 

       3.6.2 Statistical Analysis- Wilcoxon Ranksum Test 

       3.6.3 Proposed Algorithm Analysis 

     Trajectory analysis 

          Trajectory analysis of average distance between search agents 

     Elite convergence curve 

3.6.4 Computational Complexity 

3.6.1 Convergence Behaviour 

Convergence behaviour of OB-ac-ALO and OB-SAC-ALO is analyzed and compared with 

classical ALO. To perform this analysis, functions of different characteristics have been chosen 

and convergence graph have been drawn to verify the performance of proposed variants in terms 

of convergence behaviour. The number of generations and the best average value of objective 

functions for 30 independent runs have been plotted on X-axis and log scale of Y-axis 

respectively.  

 Three curves in Figure 3.1 depicts the convergence behaviour of unimodal functions 

𝐹1,𝐹3 and 𝐹7. It is observed from the figures that the proposed OB-SAC-ALO and OB-ac-ALO 

initiates convergence starting from earlier generations for all three unimodal functions in 

comparison to classical ALO. OB-ac-ALO attains the global optima in less than 200 generations 

for function 𝐹1 and less than 100 generation for function  𝐹3. OB-SAC-ALO also converge in 

700 generation for function 𝐹3. These curves clearly exhibit that the inclusion of proposed OBL 

mechanism promises to search the closer candidate solutions starting from initial generations as 

compared to classical ALO. Then the varying acceleration coefficient and sine acceleration 

coefficient (SAC) integrated with OBL mechanism are capable of balancing between 

diversification and intensification to speed up the convergence. The behaviour shown by curves 

guarantee to converge global or near global optima [110].  

 The curves shown in Figure 3.2 and Figure 3.3  depict the convergence analysis of “two 

scalable multimodal functions(𝐹10, 𝐹11) and two fixed multimodal functions(𝐹14 and 𝐹20)”. 

file:///H:/OB+Sine/Oppostion%20based%20sine%20ALO.docx
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It is clearly apparent from the figure that the proposed OB-SAC-ALO and OB-ac-ALO exhibit 

sharp convergence starting from initial generation for functions 𝐹10 and 𝐹11 and end with the 

same behaviour till the last generations. Both the proposed variants OB-ac-ALO and OB-SAC-

ALO are able to  attain the optima in 300 and 700 generations respectively.  In Figure 3.3, the 

proposed OB-SAC-ALO exhibits substantial convergence for function 𝐹14 as compared to other 

two algorithms but for function 𝐹20,the proposed algorithm shows better convergence than 

ALO. This conduct shows that the inclusion of OBL model promises to enhance diversification 

by to exploring the opposite candidate solution simultaneously with the original solutions and 

able to avoid local optima entrapment. 

 Figure 3.4 shows the convergence curves of three composition functions namely 

𝐹27, 𝐹28 and 𝐹29. These functions are able to testify the performance of the proposed 

algorithms over complex composition problems. To solve these problems, the parameters of 

algorithm must be properly tuned and able to balance exploration and exploitation efficiently. 

Convergence analysis of Function 𝐹27 depicts slightlle better improvement and for functions 

𝐹28 and 𝐹29 clearly show significant improvement as shown in Table 3.7 and Table 3.8.  

3.6.2 Statistical analysis-Wilcoxon Ranksum Test 

Wilcoxon ranksum test is a non-parametric test which is used to verify the statistical significance 

of OB-ac-ALO and OB-SAC-ALO proposed in this chapter. The data for this test is drawn in 

pair from two algorithms to be tested. The dimensions of the data drawn is 30 which is taken 

after simulating 30 independent runs. The confidence level is chosen as 0.95 to test the null 

hypothesis. The obtained p-values of the two pairs of ALO with proposed OB-ac-ALO and OB-

SAC-ALO respectively proposed in this chapter are shown in Table 3.9. In Table, it is shown 

“that   ‘+’ means significant statistical difference (rejection of null hypothesis) at 0.05 level of 

significance, ‘-’ designates no significant difference and ‘=’ shows that the sample drawn from 

both the algorithms are same and no comparison is possible”.  

 It can be clearly observed from the table that both OB-ac-ALO and OB-SAC-ALO proves 

to be statistical significant as compared to classical ALO for 19 and 18 problems respectively 

and behaves statistically similar for 5 problems.   

3.6.3 Analysis of Proposed Variants 

The analysis of proposed OB-ac-ALO and OB-SAC-ALO is performed using certain metrics and 

comparison is performed with classical ALO. This analysis establishes the improvement in 
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speeding up the convergence and provide proper balance between diversification and 

intensification. The analysis is described as follows:  

 

Analysis of trajectory 

This analysis is used to demonstrate the behaviour of trajectories (position) of the candidate 

solutions before and after applying the improvement strategies. The trajectories are drawn for the 

first variable initiating from very first iteration to the maximum number of iteration (200). This 

analysis is capable of verifying the ability of proposed OB-ac-ALO and OB-SAC-ALO to find 

out the nearest positions of the global optima. The diagrammatic representation is described in 

Figure 3.5.   

 This analysis is performed by taking few benchmark functions of different characteristics 

including three unimodal function (𝐹1,𝐹3, 𝐹7), two multimodal functions (𝐹9,𝐹11),two fixed 

dimensions multimodal functions (𝐹14,𝐹20) and three composition functions(𝐹27, 𝐹28, 𝐹29). 

It is clearly evident from the figures that the inclusion of varying acceleration coefficient (ac) 

and sine acceleration coefficient (SAC) with OBL technique ensures the enhanced exploration 

of the search region at early generations and then converges at later generations for both the 

proposed algorithms. However, it is visible from the curves of function 𝐹1,𝐹3 and 𝐹7 that the 

OB-ac-ALO exhibits good convergence at early generations than the OB-SAC-ALO but able to 

find the optima or near to optima as results shown in result tables. The OB-SAC-ALO also 

converges at later generations after showing enhanced exploration at early generations. 

  For function 𝐹9 and 𝐹11, both the algorithms show similar behaviour as exhibited in 

earlier functions. This is due to the fact that the proposed OB-ac-ALO and OB-SAC-ALO 

enhances exploration and show the searching ability in efficient manner and thus able to exhibit 

steady behaviour by approximating the opposite solutions near to global optima. The trajectories 

of compositions function 𝐹27, 𝐹28 and 𝐹29 are represented in the figure. The trajectories for 

OB-ac-ALO and OB-SAC-ALO are almost similar for function 𝐹27 and 𝐹28 but it shows steep 

convergence at later generations in function 𝐹29 for OB-ac-ALO. 

 

Trajectory analysis of average distance between search agents 

The concept of OBL mechanism states that there are 50% chances of a candidate solution either 

generated randomly or opposite candidates to be nearer to the optimal solution. It is better to 

select opposite candidate solution in spite of generating additional random numbers during 

evolution process for accelerating convergence. This concept is experimentally established by 
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determining the average of distance (Euclidean) between the search agent before and after 

applying the updating strategies.  

Formally, the Euclidean distance using two points is depicted in chapter 2 by formulating eq.(2.6) 

for D-dimensional search space and in eq.(2.7) for one dimension.  

 The obtained distance for proposed OB-ac-ALO and OB-SAC-ALO is analyzed and 

compared with classical ALO to authorize the improvement. The experiments are performed for 

200 iterations over first variable and ten benchmark functions of wide variety including 3 

unimodal(𝐹1, 𝐹3, 𝐹7),two multimodal(𝐹9, 𝐹11), two fixed dimension multimodal(𝐹14, 𝐹20) 

and three composition functions (𝐹27, 𝐹28, 𝐹29) to verify the performance of proposed 

algorithms.   

 The determined absolute values of average distance of proposed OB-ac-ALO and OB-

SAC-ALO can be analyzed by the curves shown in Figure 3.6. It is observed that the determined 

average distance using OB-ac-ALO approximates the closer distance to the global optima starting 

from initial generations as compared to OB-SAC-ALO and classical ALO for  unimodal 

functions (𝐹1, 𝐹3 and 𝐹7) and multimodal functions (𝐹9 and 𝐹11). OB-SAC-ALO shows 

fluctuation of average distance in initial generations due to enhanced exploration after applying 

the proposed strategies. Then it becomes steady and smooth at later generations which determines 

the closer distance to the global optima for unimodal as well as multimodal functions. Since the 

obtained optimum for these functions are better than the classical ALO as shown in result tables, 

thus the determined average distance proved to be closer than the classical ALO. It is also 

observed from the curves that the newly developed OB-ac-ALO is able to determine closer 

distance for function 𝐹14  while comparing with OB-SAC-ALO and ALO. OB-SAC-ALO 

shows closer distance than classical ALO but it is accomplished at later generations. Similarly, 

function 𝐹20 shows abrupt behaviour at later generations for proposed algorithms though 

obtained optima for function 𝐹20 is better than the classical ALO. The curves showing average 

distance for compositions functions 𝐹27, 𝐹28 and 𝐹29 are depicted in figure. Overall analysis 

depicts that the proposed algorithms guarantees acceleration in convergence. 

Elite convergence curve 

These curves authorize the convergence of best (elite) candidate solutions of first variable. It is 

clearly evident from the curves that the convergence shown by the proposed algorithms OB-ac-

ALO and OB-SAC-ALO is quite steep from initial generations as compared to classical ALO for 

unimodal and multimodal functions. This behaviour establishes that the rate of convergence 

accelerates as the number of iteration increases and tend to approximate the global or near to 
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global optima as early as possible. The elite convergence behaviour of the composition functions 

also reflect that the fitness value of elite is almost similar at initial generations but OB-ac-ALO 

shows steep convergence as compared to OB-SAC-ALO and ALO. It is also evident from the 

results tables.  This graphical interpretation proves that the employed acceleration coefficient 

(ac) in OB-ac-ALO and sine acceleration coefficient (SAC) in OB-SAC-ALO are well capable 

of accelerating the convergence rate of the elite candidate solutions and tends to find the global 

optima in early generations. 

 

3.6.4 Computational complexity 

The computational complexities for classical ALO and OB-𝐿-ALO proposed in chapter 2 are 

described and compared in previous chapter. It is ensured in this chapter while proposing these 

two algorithms that there is no inclusion of any extra loop or function evaluation. This fact 

establishes that there is no change in the asymptotic computational complexities of both of these 

algorithms. It is observed that the complexities in worst case scenario of both OB-ac-ALO and 

OB-SAC-ALO are derived as 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗ 𝐷 ∗ 𝑁)* 𝑂 (𝑓(𝑋)) where 𝑖𝑡𝑚𝑎𝑥 maximum number of 

iterations, 𝐷 represents dimensions, 𝑁 is population size and 𝑓(𝑋) is the objective function. 

 

3.7 Conclusion 

In this chapter, two variants are proposed to improve the convergence of classical ALO. One 

algorithm namely OB-ac-ALO is proposed by employing a new parameter namely varying 

acceleration coefficient (ac) and hybridized with OBL mechanism. Similarly, the second 

algorithm OB-SAC-ALO is proposed by employing sine acceleration coefficient (SAC) in 

conjunction with OBL technique. The performance of both OB-ac-ALO and OB-SAC-ALO are 

verified using a set of 31 benchmark functions of wide variety. The OBL mechanism is applied 

around elite (best) candidate solution with acceleration coefficient in OB-ac-ALO and with sine 

acceleration coefficient (SAC) in proposed OB-SAC-ALO. This modification ensures the 

exploration of original as well as opposite candidate solution and adjusted with applied 

acceleration parameters to ensure acceleration in convergence. 

 Then the modified variants are analyzed using various metrics such as convergence curve, 

trajectories of best candidate solutions, average distance between the search agents before and 

after modifications and elite convergence curves. A non-parametric test namely Wilcoxon 

ranksum test is also performed to verify the statistical significance of the proposed OB-ac-ALO 

and OB-SAC-ALO and compared with the classical ALO.  
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 Few observations can be highlighted in this study. The inclusion of opposition based 

learning model around the best candidate solution in both the proposed approaches is able to 

approximate the opposite and closer candidate solution to the global optima. This is established 

using the analysis of the average distance between search agents before and after applying the 

modifications. The use of acceleration coefficient guarantees the acceleration in convergence as 

validated by the convergence curves and trajectories of the elite candidate at each iteration while 

adjusting the proper balance between exploration and exploitation. However, both the approaches 

suffer with increase of computation time as compared to classical ALO for high dimensional 

problems. Yet, preservation of elitism property ensures the significant drop in average of 

objective function values at early stage. The employability of the proposed approaches proved to 

be significantly better than the classical ALO. 
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Table 3.1: Pseudo code of Proposed OB-ac-ALO algorithm 

Input: Population Size N, Maximum iteration 𝑖𝑡𝑚𝑎𝑥 ,lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  antlions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 

6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an ant lion 𝑆𝑠𝑒𝑙 using Roulette wheel 

8 
                  Modify lower L and upper U boundaries with equations Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙   and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  

11                            using uniform distribution with Eq. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)- 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)…        

                            𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)] 

12                           Normalize random walk using Eqs. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)-   

                           1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)]  and  

                             𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =   

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡) 

13                   end for 

14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 

16            Modify position of ant by applying coefficient 𝑒𝑎𝑐 with opposition based  

17            learning using  Eq. 𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐 × (𝐿𝐵𝑖 + 𝑈𝐵𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))    

18              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

19                 Determine the fitness o f all ants 

20           end for 

21                Substitute an antlion with its respective ant if  it becomes fitter using Eq. 

             𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

22              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an ant lion becomes fitter than the elite 

23             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

24       end while 

25 Return elite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 

 

 

 

 

 

 

Table 3.2: Pseudo code of Proposed OB-SAC-ALO algorithm 

Input: Population Size N, Maximum iteration 𝑖𝑡𝑚𝑎𝑥 ,lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  ant lions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 

6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an ant lion 𝑆𝑠𝑒𝑙  using Roulette wheel 

8 
                  Modify lower L and upper U boundaries with equations Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙  

11                         and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  using uniform distribution with Eq. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)- 1),     

                            𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)…𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)] 

12                           Normalize random walk using Eqs. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡1)-   

                           1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑟(𝑖𝑡𝑚𝑎𝑥)-1)]  and  

                             𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =   

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡) 

13                   end for 

14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 

16            Modify position of ant by applying coefficient 𝑐𝑆𝐴𝐶 with opposition based  

17            learning using  Eq. 𝑆𝐴,𝑖(𝑖𝑡) = 𝑐𝑆𝐴𝐶 × (𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))    

18              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

19                 Determine the fitness o f all ants 

20           end for 

21                Substitute an antlion with  its respective ant  if it becomes fitter using Eq 

             𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

22              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an ant lion becomes fitter than the elite 

23             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

24       end while 

25 Return elite 
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Table 3.3: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal test functions 

(10D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 7.330E-33 2.680E-32 0.000E+00 1.130E-31 

ALO 7.870E-09 5.490E-09 2.390E-09 2.580E-08 

 

𝐹2 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 4.860E-01 8.850E-01 1.550E-05 2.800E+00 

 

𝐹3 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 8.310E-02 1.850E-01 1.360E-04 8.750E-01 

 

𝐹4 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 1.160E-15 3.270E-15 2.230E-21 1.730E-14 

ALO 3.180E-03 6.160E-03 1.020E-04 3.290E-02 

 

𝐹5 

OB-ac-ALO 2.270E-04 3.680E-04 1.410E-03 2.400E-07 

OB-SAC-ALO 4.080E-04 6.500E-04 7.610E-07 3.040E-03 

ALO 6.810E+01 1.990E+02 1.020E-04 1.070E+03 

 

𝐹6 

OB-ac-ALO 2.920E-08 4.920E-08 5.320E-09 2.640E-07 

OB-SAC-ALO 1.250E-08 1.610E-08 3.240E-09 8.530E-08 

ALO 8.390E-09 5.220E-09 2.150E-09 2.220E-08 

 

𝐹7 

OB-ac-ALO 2.620E-04 1.920E-04 6.980E-04 9.880E-06 

OB-SAC-ALO 4.030E-04 3.930E-04 1.200E-05 1.710E-03 

ALO 2.210E-02 1.230E-02 1.810E-03 5.630E-02 

 

 

 

Table 3.4: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal test functions  

(30D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 2.280E-54 1.250E-53 0.000E+00 6.830E-53 

ALO 9.450E-06 5.540E-06 1.720E-06 2.110E-05 

 

𝐹2 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 3.650E+01 5.170E+01 2.090E-02 1.340E+02 

 

𝐹3 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 9.550E+02 5.080E+02 2.470E+02 2.160E+03 

 

𝐹4 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 1.210E+01 3.650E+00 4.630E+00 1.960E+01 

 

𝐹5 

OB-ac-ALO 5.530E-04 6.800E-04 2.950E-03 1.160E-05 

OB-SAC-ALO 2.090E-03 1.930E-03 1.990E-04 8.050E-03 

ALO 1.040E+02 3.120E+02 1.640E+01 1.740E+03 

 

𝐹6 

OB-ac-ALO 1.820E-05 1.600E-05 7.350E-05 1.140E-06 

OB-SAC-ALO 1.760E-05 1.030E-05 3.160E-06 4.360E-05 

ALO 9.490E-06 6.100E-06 1.320E-06 2.920E-05 

 

𝐹7 

OB-ac-ALO 1.670E-04 1.020E-04 3.760E-04 7.520E-06 

OB-SAC-ALO 2.710E-04 2.670E-04 1.500E-05 1.050E-03 

ALO 1.100E-01 3.570E-02 5.700E-02 2.250E-01 
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Table 3.5: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal test functions 

(10D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-ac-ALO -2.880E+03 6.160E+02 -1.970E+03 -3.970E+03 

OB-SAC-ALO -2.430E+03 2.820E+02 -3.040E+03 -1.970E+03 

ALO -2.470E+03 4.260E+02 -3.730E+03 -1.920E+03 

 

𝐹9 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 2.480E+01 1.080E+01 6.960E+00 5.070E+01 

 

𝐹10 

OB-ac-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

OB-SAC-ALO 1.100E-14 1.110E-14 4.440E-15 4.000E-14 

ALO 3.240E-01 5.540E-01 2.070E-05 1.650E+00 

 

𝐹11 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 2.140E-01 8.720E-02 6.640E-02 4.060E-01 

 

𝐹12 

OB-ac-ALO 2.460E-08 2.300E-08 2.100E-02 1.250E-09 

OB-SAC-ALO 1.490E-08 1.410E-08 7.020E-10 5.600E-08 

ALO 1.790E+00 1.670E+00 8.230E-09 5.610E+00 

 

𝐹13 

OB-ac-ALO 1.470E-03 3.800E-03 1.100E-02 1.070E-08 

OB-SAC-ALO 2.870E-03 6.220E-03 1.340E-08 2.100E-02 

ALO 1.800E-03 4.940E-03 3.840E-09 2.100E-02 

  
 

 

 

 

 

Table 3.6: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal test functions 

(30D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-ac-ALO -1.250E+04 9.340E+01 -1.240E+04 -1.260E+04 

OB-SAC-ALO -6.490E+03 7.260E+01 -6.540E+03 -6.270E+03 

ALO -5.440E+03 4.190E+01 -5.540E+03 -5.420E+03 

 

𝐹9 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 1.890E-15 1.040E-14 0.000E+00 5.680E-14 

ALO 1.970E+00 8.390E-01 5.890E-04 3.520E+00 

 

𝐹10 

OB-ac-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

OB-SAC-ALO 4.440E-15 4.010E-30 4.440E-15 4.440E-15 

ALO 1.870E+00 6.900E-01 1.020E-03 3.090E+00 

 

𝐹11 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 1.190E-02 1.260E-02 3.470E-04 3.860E-02 

 

𝐹12 

OB-ac-ALO 8.360E-07 6.410E-07 3.370E-06 1.780E-07 

OB-SAC-ALO 6.650E-07 3.070E-07 1.470E-07 1.380E-06 

ALO 1.000E+01 4.340E+00 5.750E+00 2.330E+01 

 

𝐹13 

OB-ac-ALO 2.870E-03 6.720E-03 3.090E-02 3.830E-06 

OB-SAC-ALO 1.480E-03 3.810E-03 2.100E-06 1.100E-02 

ALO 1.320E+00 3.150E+00 1.140E-05 1.050E+01 
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Table 3.7: Average, Standard Deviation, Minimum, and Maximum of objective function values of fixed dimension 

multimodal functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹14 

OB-ac-ALO 1.860E+00 1.310E+00 6.900E+00 9.980E-01 

OB-SAC-ALO 1.490E+00 7.700E-01 9.980E-01 3.970E+00 

ALO 1.790E+00 1.340E+00 1.950E-08 4.950E+00 

 

𝐹15 

OB-ac-ALO 3.380E-03 6.790E-03 2.050E-02 5.980E-04 

OB-SAC-ALO 3.380E-03 6.790E-03 3.080E-04 2.050E-02 

ALO 4.180E-03 7.370E-03 5.550E-04 2.040E-02 

 

𝐹16 

OB-ac-ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

OB-SAC-ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

 

𝐹17 

OB-ac-ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

OB-SAC-ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

 

𝐹18 

OB-ac-ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

OB-SAC-ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

 

𝐹19 

OB-ac-ALO -7.540E+00 2.690E+00 -2.630E+00 -1.020E+01 

OB-SAC-ALO -8.970E+00 2.170E+00 -1.020E+01 -5.100E+00 

ALO -6.280E+00 2.930E+00 -1.020E+01 -2.630E+00 

 

𝐹20 

OB-ac-ALO -7.900E+00 2.960E+00 -2.770E+00 -1.040E+01 

OB-SAC-ALO -8.950E+00 2.710E+00 -1.040E+01 -2.770E+00 

ALO -6.670E+00 3.420E+00 -1.040E+01 -1.840E+00 

 

𝐹21 

OB-ac-ALO -7.470E+00 3.410E+00 -2.420E+00 -1.050E+01 

OB-SAC-ALO -8.080E+00 3.350E+00 -1.050E+01 -2.420E+00 

ALO -6.270E+00 3.660E+00 -1.050E+01 -1.860E+00 

 

𝐹22 

OB-ac-ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

OB-SAC-ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

 

𝐹23 

OB-ac-ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

OB-SAC-ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 
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Table 3.8: Average, Standard Deviation, Minimum, and Maximum of objective function values of composition 

benchmark functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹24 

OB-ac-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

OB-SAC-ALO 2.630E+03 3.270E-04 2.630E+03 2.630E+03 

ALO 2.630E+03 1.275E-03 2.630E+03 2.630E+03 

 

𝐹25 

OB-ac-ALO 2.540E+03 2.017E+01 2.518E+03 2.600E+03 

OB-SAC-ALO 2.536E+03 1.312E+01 2.518E+03 2.580E+03 

ALO 2.538E+03 2.512E+03 2.577E+03 1.477E+01 

 

𝐹26 

OB-ac-ALO 2.690E+03 2.100E+01 2.620E+03 2.700E+03 

OB-SAC-ALO 2.680E+03 2.320E+01 2.620E+03 2.700E+03 

ALO 2.680E+03 2.430E+01 2.630E+03 2.700E+03 

 

𝐹27 

OB-ac-ALO 2.700E+03 1.100E-01 2.700E+03 2.700E+03 

OB-SAC-ALO 2.700E+03 1.040E-01 2.700E+03 2.700E+03 

ALO 2.700E+03 1.090E-01 2.700E+03 2.700E+03 

 

𝐹28 

OB-ac-ALO 2.840E+03 9.170E+01 2.700E+03 2.900E+03 

OB-SAC-ALO 2.970E+03 1.720E+02 2.700E+03 3.100E+03 

ALO 3.010E+03 1.440E+02 2.700E+03 3.110E+03 

 

𝐹29 

OB-ac-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

OB-SAC-ALO 3.480E+03 2.950E+02 3.160E+03 3.890E+03 

ALO 3.490E+03 2.920E+02 3.170E+03 3.930E+03 

 

𝐹30 

OB-ac-ALO 7.220E+05 1.470E+06 3.100E+03 3.670E+06 

OB-SAC-ALO 7.220E+05 1.470E+06 3.100E+03 3.670E+06 

ALO 8.270E+05 1.520E+06 3.100E+03 3.670E+06 

 

𝐹31 

OB-ac-ALO 4.460E+03 3.980E+02 3.880E+03 6.190E+03 

OB-SAC-ALO 4.460E+03 3.980E+02 3.880E+03 6.190E+03 

ALO 4.420E+03 4.140E+02 3.880E+03 6.170E+03 
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Table 3.9: P-values of Wilcoxon ranksum test 

Function OB-SAC-ALO vs ALO OB-ac-ALO vs ALO 

p-values conclusion p-values conclusion 

𝐹1 1.720E-12 + 1.21E-12 + 

𝐹2 1.210E-12 + 1.21E-12 + 

𝐹3 1.210E-12 + 1.21E-12 + 

𝐹4 1.210E-12 + 1.21E-12 + 

𝐹5 3.020E-11 + 3.02E-11 + 

𝐹6 1.700E-03 - 1.53E-02 - 

𝐹7 3.020E-11 + 3.02E-11 + 

𝐹8 6.480E-12 + 1.33E-12 + 

𝐹9 1.700E-12 + 1.20E-12 + 

𝐹10 1.180E-12 + 1.18E-12 + 

𝐹11 1.210E-12 + 1.21E-12 + 

𝐹12 3.020E-11 + 3.02E-11 + 

𝐹13 1.700E-08 + 2.29E-08 + 

𝐹14 1.870E-01 - 8.78E-01 - 

𝐹15 9.880E-01 - 5.15E-01 - 

𝐹16 N/A = N/A = 

𝐹17 N/A = N/A = 

𝐹18 N/A = N/A = 

𝐹19 4.630E-04 + 7.05E-02 + 

𝐹20 4.350E-02 + 4.03E-02 + 

𝐹21 1.050E-01 - 3.20E-02 + 

𝐹22 N/A = N/A = 

𝐹23 N/A = N/A = 

𝐹24 2.33E-11 + 1.36E-20 + 

𝐹25 6.30E-01 - 8.67E-01 - 

𝐹26 8.98E-01 - 2.56E-01 - 

𝐹27 3.37E-02 + 7.84E-03 + 

𝐹28 6.63E-05 + 8.88E-10 + 

𝐹29 5.38E-02 + 1.39E-20 + 

𝐹30 8.93E-01 - 7.42E-01 - 

𝐹31 4.99E-01 - 4.99E-01 - 

 23/31(18 ‘+’ , 5 ‘=’) 24/31(19 ‘+’ , 5 ‘=’) 
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Figure 3.1: Convergence curves of three of the unimodal functions 𝐹1,𝐹3 and 𝐹7 

 

  

Figure 3.2: Convergence curves of three multimodal functions 𝐹10 and 𝐹11  
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Figure 3.3: Convergence curves of two fixed dimension multimodal functions 𝐹14 and 𝐹20 

 

  

 

Figure 3.4: Convergence curves of three composition functions 𝐹27, 𝐹28 and 𝐹29 
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Figure 3.5: Trajectories of antlion 
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Figure 3.5: (Continued) 
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Figure 3.6: Trajectory of average distance between search agents 
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Figure 3.6: (Continued) 
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Figure 3.7: Convergence curve of elite(best)candidate solution 
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Figure 3.7: (Continued) 
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CHAPTER 4 

Lévy Flight Distributed Opposition based Antlion Optimizer with 

Acceleration Coefficient for Continuous Optimization Problems 

 

4.1 Introduction 

The performance of any optimization algorithm can be improved by tuning applied stochastic 

operators which must be capable of exploring search region as much as possible in early phase 

of generation and exploitation to increase the convergence at later phase of generation. In ALO, 

the exploration of the algorithm can be enhanced by manipulating the random walk which  is 

responsible to explore the search region. In the same way, convergence can be accelerated by 

good exploitation with appropriate acceleration parameter. This chapter proposes an extended 

modified opposition based ALO which tries to utilize the inclusion of three operators: (1) Lévy 

Flight distribution based random walk (2) Opposition based Learning around the best candidate 

solution (3) Acceleration parameter hybridized with OBL mechanism. This modified algorithm 

is named as Opposition based Antlion Optimizer using Lévy Flight distribution (OB-LF-ALO).  

 The classical ALO algorithm suffers from stagnation to local optima and requires 

diversified exploration with appropriate blending of exploitation. In this chapter, the extended 

proposed variant of classical ALO tries to expand stability between diversification and 

intensification during process of evolution. The performance of newly developed variant is 

evaluated using same set of benchmark test functions used in chapter 2 and 3 as well given in 

Appendix I. The impact of random numbers generated using lévy flight and updated population 

after employing opposition based learning during evolution is analyzed using certain metrics 

such as trajectories, elite convergence curve, and average of absolute distance between search 

agents before and after improving the algorithm. A non-parametric Wilcoxon ranksum test is 

used to exhibit its statistical significance. Computational complexity of proposed optimization 

algorithms is also derived and compared with classical ALO. 

 

 

Partial contents of this chapter has been published as: 

 Dinkar, S. K., & Deep, K. (2018). An efficient opposition based Lévy Flight Antlion Optimizer for 

optimization problems. Journal of Computational Science,29,119-141.(SCIE,IF-1.925) 
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This chapter is organized as follows: Section 4.2 describes related literature and motivation. 

Section 4.3 represents the proposed OB-LF-ALO algorithm including conceptual material about 

employed strategies. Section 4.4 depicts the description of benchmark test functions and 

experiment setting. Section 4.5 shows the computational results comparison and discussion as 

per the characteristics of benchmark functions. Section 4.6 depicts convergence and other 

analysis using various metrics to authenticate newly developed OB-LF-ALO and classical ALO. 

Afterwards, Section 4.7 gives concluding remarks. 

 

4.2 Motivation 

Though the classical ALO shows significant diversity of the search region still there is a scope 

of improvement in the basic search pattern by exploring the unvisited areas of the region and able 

to diminish the convergence errors. Lévy Flight (LF) is an efficient way to model the random 

walks of ants instead of using uniform distribution. LF has random initiated step length preferred 

to come out as probability distribution of power law distribution [113]. As per the research work 

published in Nature, it has been observed that the hunting pattern of prey-predator rely on the 

optimal walk based on Lévy flight distribution (LF) [114-115]. Later on, the concept of LF was 

employed to various optimization algorithms such as cuckoo search (CS) for generating new 

candidate solutions [116]. FA [117], ABC [104] and GWO [118] optimization algorithms were 

also enhanced using LF distribution. Some more work were introduced to enhance the 

performance of the metaheuristics algorithms. The LF distribution is employed to determine 

improved candidate solutions while improving the exploration of the search region in cuckoo 

search [116,119]. The concept of LF is also employed to improve the performance of basic PSO 

[120-121]. 

 The second strategy applied in this work is opposition based learning (OB) model as 

utilized in chapter 2 and 3 for convergence acceleration. This model approximates the opposite 

candidate solutions concurrently along with normal solutions [98]. The randomization process 

does not guarantee to cover each and every candidate solution of the region. Determining the 

opposite candidate solutions is better to approximate as mathematically, the opposite numbers 

lie closer to the best solution [105].  The performance of differential evolution is also enhanced 

by employing OBL mechanism to the shuffled differential evolution [101]. In [106], opposition 

based learning (OBL) is implemented in shuffled frog leaping for parameter identification. 
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 Third strategy is used in conjunction with OBL mechanism to enhance the acceleration 

and to adjust the exploration and exploitation. The generated random solution after applying LF 

distribution and OBL mechanism may exhibit abrupt behaviour. This conduct may be adjusted 

using a parameter known as varying acceleration cofficient (ac). This parameter is applied in 

chapter 3 also and proved to be an efficient way to accelerate the exploitation after exploration 

and accelerate the convergence speed. 

4.3 Proposed Opposition based Lévy Flight Antlion Optimizer (OB-LF-ALO) 

This section depicts the new developed variant to improve the performance of classical ALO. 

Though the exploration in classical ALO is well ensured by selection of antlion and ant’s random 

walks around the antlion. The exploitation is achieved by adaptive shrinking of the trap built by 

antlion in each generation. It is better idea to enhance the coverage of the unexplored region of 

the search space so that unvisited candidate solutions may also be explored. The candidate 

solutions in classical ALO seem to be entrapped in local optima specifically in later generations. 

Increased exploration of the search region ensures to avoid local optima during evolution process.  

 Lévy Flight is proved to be efficient distribution based on random step lengths to diversify 

the search region effectively. It can alleviate the searching efficiency of the candidate solutions 

even at the deeper areas of the search region and tends to search global optima. In classical ALO 

the random walk is implemented using uniform distribution whereas in the proposed method, 

this uniform distribution is replaced with LF distribution. The second strategy opposition based 

learning with acceleration coefficient is applied to accelerate convergence rate. The elite (best) 

antlion is determined in each generation about which opposition strategy is employed to generate 

the new opposite candidate solution as new population for next generation. This integrated 

approach promises enhanced performance in terms of exploration by employing lévy flight 

distribution and convergence acceleration using opposition based strategy.  

4.3.1 Lévy Flight Distribution 

The distribution based on lévy flight (LF) is a kind of random walk which generate random 

numbers in principle on the basis of random steps and jumps determined by step length [122-

123].  The LF distribution can be defined as: 

 𝐿é𝑣𝑦(𝛾)~𝑢=𝑡−𝛾, 1 < 𝛾 ≤ 3                 (4.1) 

The step length in LF distribution based random walk is heavy tailed probability distribution. 

The Lévy random number can be determined as: 
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 𝐿é𝑣𝑦(𝛾)~
𝜑×𝜇

|𝛼|𝛾  ,                  (4.2) 

Here 𝜇 and 𝛼 both represent normal distribution. 𝜑 is defined as follows: 

 𝜑 = [
ℸ(1+𝛾)×sin(𝜋×

𝛾
2⁄ )

ℸ((
1+𝛾

2
)×𝛾×2

𝛾−1
2 )

]

1
𝛾⁄

,                           (4.3)

 where ℸ is a standard gamma function, 𝛾 is taken to be 1.5. 

Here 𝑗= 
𝜇

|𝛼|𝛾
 defines the step length of the random distribution for |𝑗|≥ |𝑗0| and 𝑗0 is the smallest 

step length [124]. 

 The use of LF distributed random numbers in place of uniform random numbers improves 

the local search ability of global optima of the proposed algorithm. It also reduces the chances of 

the algorithm to be trapped in local optima due to its diverse capability of exploring the search 

region. This is imperative from the discussion that LF distribution guarantees the enhanced 

exploration of candidate solutions and better approximate the global optima than the original 

algorithm. 

 The proposed algorithm is employed with a step size 𝐽 generated using lévy flight 

distribution as follows: 

 𝐽(𝑖𝑡)=0.001× 𝑗(𝑖𝑡)                  (4.4)

 where 𝑖𝑡 is the current iteration.  

 Due to the unpredictable jumps of LF distribution, the new candidate solutions may 

sometime jump out of the search region. Thus the size may be chosen in such a way that the 

exploitation of the search region locally must be performed in efficient manner [125].  

Hence the LF based random walk can be described as shown in eq. (4.5). 

𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡1)-1),𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐽(𝑖𝑡𝑚𝑎𝑥)-1)        (4.5) 

 Where 𝐽 is LF distribution as defined in eqs. (4.1), (4.2), (4.3) and (4.4). 

 The impact of applying LF distribution as to enhance the exploration capability of the 

proposed algorithm can be visualized in Figure 4.1. The figure shows uniformly generated and 

LF distributed generated random population for size 200. It is apparent from the Figure 4.1 that 

the inclusion of LF distribution visits more search area as compared to the uniform distribution. 
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So this strategy ensures to expand the exploration of search region and useful to jump out of the 

local solutions while tending to identify the global optima. 

4.3.2 Opposition Based Learning (OBL) Model 

Commonly, Nature Inspire Optimization Techniques obey the black box functionality. In these 

algorithms, the candidate solutions are initialized randomly and then search the available search 

region effectively to improve the quality of candidate solutions so that the optimal solution is 

obtained until some termination criteria is reached. Utilization of this strategy guarantees the 

prominent acceleration in convergence and the definition of opposite numbers is defined in 

Section 2.3.2 of Chapter 2. 

 

4.3.3 Acceleration Coefficient (ac) 

Acceleration parameter 𝑒𝑎𝑐 as defined in chapter 3 is used to improve evolutionary process which 

is decreased adaptively as the number of iterations increases. This parameter 𝑒𝑎𝑐 is combined 

with OBL mechanism as follows: 

 𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐  × (𝐿𝐵𝑖 + 𝑈𝐵𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))               (4.6) 

4.3.4 Proposed OB-LF-ALO algorithm 

The described strategies are applied to define proposed OB-LF-ALO algorithm in two phases: at 

first step the uniform distributed random numbers are replaced with random numbers generated 

using LF distribution as shown in eq. (4.5). This updation ensures the exploration augmentation 

of the search region. After improving random walk, new positions of ants are determined and 

compared with elite to find out whether elite is updated or not.  

 In second step: This process of evolution follows the employment of OBL around the 

updated elite (best antlion). Then it is combined with acceleration factor to balance evolutionary 

process. It results in improved position of candidate solution and fitness is determined for each 

ant. After evaluation, the fitness value of elite is compared with every ant’s fitness and ant with 

better fitness value becomes elite antlion which is preserved as new elite and carried to the next 

generation.  These two strategies employed in two steps promise to span more search area and 

acceleration in convergence. The computational steps of developed algorithm are described in 

Table 4.1 respectively.  

4.4  Experimental Setup 

Benchmark Test Functions 
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The same set of benchmarks functions  as utilized in previous chapters to evaluate the 

performance of proposed  variant is used. It is depicted depicted in Appendix I.  

Experimental Setup and Parameter Setting 

The similar setting of parameter is chosen as described in section 3.4 of chapter 3. The proposed 

algorithm OB-LF-ALO is compared with classical ALO to test the authority of this algorithm.  

The results are obtained on 10 dimension with 500 iterations and 30 dimension with 1000 

iterations (stopping criteria) respectively on 23 traditional test suite as given in Appendix I. For 

both the algorithms, 30 independent runs are performed. For 8 composition functions, results are 

determined on 10 dimension and 1000 iteration taking 51 independent runs. “““All the experiments 

have been performed on MATLAB R2014a on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz-

2.71GHz with 8 GB RAM””. 

4.5 Results and Discussion 

The proposed algorithm is developed for continuous optimization problems. So, it is worthy to 

compare it with the classical ALO which is also designed for continuous optimization problems. 

Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6 and Table 4.7 show the results for different 

dimensions of various categories of problems.  

 

Performance of exploitative behaviour for unimodal functions 𝑭𝟏-𝑭𝟕 

The results for 10 and 30 dimensions are shown in Table 4.2 and Table 4.3 respectively. It is 

clear from both the tables that for functions 𝐹1-𝐹7 , the proposed OB-LF-ALO shows better 

results than classical ALO. For functions 𝐹1-𝐹4 the proposed OB-LF-ALO algorithm achieves 

global optima. For  𝐹7 , the average of objective function values is significantly better for 

proposed OB-LF-ALO also. The standard deviation is steady throughout and establishes the 

stability and superiority of the proposed algorithm. It is evident from the results that the proposed 

applied strategy of lévy flight distribution and opposition based learning model with acceleration 

coefficient shows exploration in early stages of generation and exploitation in the later stages to 

search the exact global point efficiently for functions 𝐹1-𝐹7.  

 

Performance of explorative behaviour for multimodal functions 𝑭𝟖-𝑭𝟏 

The description of results on multimodal functions are depicted in Table 4.4 and Table 4.5 for 

10 and 30 dimensions respectively. The average of objective function values for functions 𝐹8-

𝐹13 shows significant improvement for newly developed OB-LF-ALO in comparison to 

classical ALO. For functions 𝐹9 and 𝐹11 the proposed algorithm attains the best result and reach 
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to global optima. This implies that the inclusion of lévy flight distribution enhances the diversity 

of search region and the proposed technique is capable of searching steeper point of the region. 

Hence this mechanism is efficient to determine a good solution than the uniform distribution 

applied in classical ALO.  

Performance on fixed dimension multi modal test functions (Functions 𝑭𝟏𝟒-𝑭𝟐𝟑) 

These benchmark functions are similar to multimodal functions except that these functions are 

having fixed dimensions. Due to the varying nature of dimensions, these functions behave 

differently than the other multimodal functions. The results for these functions are depicted in 

Table 4.6. It can be observed from the results given in table that both the algorithms show same 

behaviour for functions 𝐹16, 𝐹17 , 𝐹18,𝐹22 and 𝐹23 and  obtained results are also same. OB-

LF-ALO outperforms the classical ALO for function 𝐹14 whereas the OB-LF-ALO show slight 

superiority over classical ALO for function 𝐹15 as far as average objective function value is 

concerned. For function 𝐹19, 𝐹20 and 𝐹21, the OB-LF-ALO outperforms classical ALO in 

terms of average function Value. The obtained values of standard deviation show remain steady 

and authorizes the improved performance of OB-LF-ALO.  

 

Comparison of results on Composition Functions (𝑭𝟐𝟒 − 𝑭𝟑𝟏) 

Results of composition functions are depicted in Table 4.7. These functions define complex 

problem matching with the real world optimization applications and henceforth difficult to get 

the global optima. It is evident from the table that the proposed OB-LF-ALO outperforms the 

classical ALO for functions𝐹24, 𝐹27 and 𝐹28 significantly. It is evident form the table that the 

standard deviation for these three functions is zero which exhibits the steady and stable 

performance of the proposed algorithm for these three functions. However, OB-LF-ALO is not 

able to beat classical ALO for remaining composition functions.  

 

4.6 Analysis of Results 

To verify the performance of OB-LF-ALO, following analysis are performed: 

       4.6.1 Analysis of Convergence Behaviour 

       4.6.2 Statistical significance- Wilcoxon ranksum test 

       4.6.3 Proposed Algorithm analysis 

  Search history behaviour 

       Trajectory behaviour 

  Average distance analysis between search agents 
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  Elite convergence curve 

4.6.4 Computational complexity 

4.6.1 Analysis of Convergence Behaviour  

The convergence behaviour of OB-LF-ALO method is analyzed with respect to classical ALO. 

A set of benchmark functions containing each type of functions are chosen and the corresponding 

convergence curves are drawn to verify the acceleration in convergence of  new algorithm. On 

X-axis, the number of generations have been plotted against the average of best objective 

function (fitness) values performing 30 runs independently on log scale of Y-axis.  

 Figure 4.2 depicts the convergence behaviour of three unimodal functions 𝐹1,𝐹3 and 𝐹7. 

It is clearly evident from the curves that the newly developed OB-LF-ALO algorithm shows 

convergence starting from initial generation. The curve in Figure 4.2 clearly shows the superior 

convergence of OB-LF-ALO over classical ALO. This behaviour guarantees that the inclusion 

of LF distribution enhances the exploration of search region followed by opposition based model 

which is capable of approximating the opposite candidate solutions nearer to the global optima. 

Since these functions contain a single optima, thus this convergence behaviour of proposed 

algorithm ensures to converge to a global optima [110].  

 Figure 4.3 and Figure 4.4 represent the converging capability of three multimodal 

functions (𝐹9,𝐹10,𝐹11) and non-scalable multimodal functions (𝐹14,𝐹20). It can be clearly 

observed from the Figure 4.3 that the proposed OB-LF-ALO exhibits very steep acceleration in 

convergence from early generations and exhibits superior and significant acceleration in 

convergence rate for all three multimodal functions. The proposed algorithm exhibits significant 

convergence rate for fixed multimodal functions 𝐹14 and 𝐹20 which shows that OB-LF-ALO 

outperforms the classical ALO. Figure 4.5 exhibits the convergence behaviour for composition 

functions 𝐹28 and 𝐹29. It is clearly evident that the classical ALO shows better convergence in 

early generations for both the functions but OB-LF-ALO depicts sharp and steep convergence at 

later generations and performs better than the classical ALO for both functions. The multimodal 

and composition functions contain many optima and prone to be entrapped in local optima thus 

restricted to reach global optima. But the random jumps in LF distribution ensures to visit the 

unexplored region of the search space and tries to avoid local optima. This philosophy helps the 

proposed algorithm to reach near to global optima with a very high rate of convergence 

acceleration due to opposition based learning model followed by LF distribution.  
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4.6.2 Statistical significance- Wilcoxon Ranksum Test 

The applied non-parametric Wilcoxon ranksum test investigates the statistical significance of 

proposed OB-C-ALO with respect to classical ALO. This test analyzes the distribution of 

sampled data drawn from two algorithms in pair. The obtained result in terms of p-values 

authorizes the data drawn from one algorithm is statistically significant than the data drawn from 

other algorithm.    

 The confidence level is taken as 0.95. The sampled data drawn for 30 dimensions of 23 

state-of-the-art and 10 dimensions for 8 composition problems from two algorithms as used in 

pair from 30 independent runs to reject the null hypothesis. This hypothesis checks that the data 

drawn of continuous distribution from two algorithms with equal median against the alternative 

that actually they are not. The obtained results in terms of p-values are shown in Table 4.8. This 

table depicts the comparison of statistical significance for proposed OB-LF-ALO with classical 

ALO. The ‘+’ denotes that the statistical difference is significant at 0.05 level of significance, ‘-

’ indicates that there is no statistical difference and ‘=’ depicts that the sampled data drawn from 

the pair of algorithm are similar and comparison is not possible.  

 

4.6.3 Analysis of Proposed Variant 

The verification of the performance of OB-LF-ALO is authorized by employing few analysis 

metrics to investigate its superiority over the classical ALO. The aim of performing this analysis 

is to establish the improvement of acceleration in convergence rate, exploration capability and 

exploitation ability of OB-LF-ALO. For this analysis, four search agents are employed by 

choosing few unimodal, multimodal, on-scalable fixed dimension multimodal and composition 

functions for maximum of 200 iterations. Analysis is performed using given below metrics: 

 

Search history behaviour  

This analysis is performed to verify the searching behaviour of the random population before and 

after employing the proposed strategies. Figure 4.6 demonstrates this behaviour for few 

benchmark suits by drawing the population over the contour of the respective functions. It is 

clearly evident that after applying LF distribution followed by opposition based learning, the 

search agents of proposed OB-LF-ALO are more accurate and efficient to search the promising 

region of the search space as compared to the classical ALO. This behaviour can be easily 

visualized by analyzing the search history of functions 𝐹1, 𝐹3, 𝐹9,𝐹11 and 𝐹14. It is also visible 
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that the proposed algorithm is significantly better to search the promising region at early stages 

and guarantees to accelerate the convergence rate.  

 

Trajectory behaviour 

This analysis presents the position of the elite antlion starting from the first iteration to the last 

iteration. It signifies the changes in the position of elite antlion after employing the proposed 

mechanism of LF distribution followed by opposition based learning with acceleration 

coefficient in proposed OB-LF-ALO as the number of iterations increased. Its impact on updating 

the position is then compared to classical ALO. The graphical representation is shown in Figure 

4.7.  

 A set of ten functions including 3 unimodal functions(𝐹1,𝐹3,𝐹7),3 multimodal functions 

(𝐹9,𝐹10,𝐹11),2 fixed dimensions functions (𝐹14,𝐹20) and 2 composition functions(𝐹28, 𝐹29) 

have been chosen to analyze antlion’s trajectories. It is evident from Figure 4.7 that the random 

jump of LF distribution has a great impact on antlion’s trajectory which enhances the exploration 

behaviour to come out of local optima at early stage of generations. Then the opposition based 

learning around elite antlion finds the corresponding opposite positions and responsible for a 

stationary behaviour of trajectories around the global optimum position. This behaviour of 

antlion’s position promises the enhanced exploration due to LF distribution and capable of 

avoiding entrapment in local optima during initial generations and then accelerate the 

convergence due to employing acceleration coefficient with opposition based learning while 

ensuring to converge a point. The behaviour of obtained positions of antlion promises that the 

algorithm searches prominent regions of the space as compared to classical ALO. It also ensures 

the enhancement in exploration of search region and guarantees to converge at optima while 

avoiding stagnation to local optima [110].  

Average distance analysis between search agents 

This analysis is performed by finding the average (Euclidean) distance between the original and 

updated positions before and after applying the improvement strategies of the search agents. 

Euclidean distance between two points 𝑋(𝑥1, 𝑥2, … , 𝑥𝐷) and 𝑌(𝑦1, 𝑦2, … , 𝑦𝐷) in a 𝐷-dimensional 

search space can be defined as also described in chapter 2 and chapter 3: 

 𝑑(𝑋, 𝑌)=||𝑋, 𝑌||=√∑ (𝑥𝑖 − 𝑦𝑖)2𝐷
𝑖=1       (4.7) 

The eq.(4.9) shown above can be simplified for a one dimensional search space: 
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 𝑑(𝑋, 𝑌)=||𝑋, 𝑌|| = |𝑥 − 𝑦|       (4.8) 

     

The average distance is determined using above equation during each iteration  for classical ALO 

and proposed OB-LF-ALO after applying improvement strategies. The maximum iteration to be 

chosen are 200 of first dimension of first variable.   

 This analysis is useful to determine the impact of employed LF distribution followed by 

opposition based learning with acceleration parameter. The determined distance is capable of 

verifying candidate solutions which are possibly nearer to global optima. For this purpose same 

ten functions including three unimodal (𝐹1, 𝐹3, 𝐹7), three multimodal (𝐹9, 𝐹10, 𝐹11),two fixed 

dimension (𝐹14, 𝐹20)  and two composition (𝐹28,𝐹29) functions are chosen. 

 It is clearly evident from the Figure 4.8 that the proposed OB-LF-ALO technique is 

approximating the closer candidate solution as compared to classical ALO and tends to find 

global optima with improved convergence speed than the original algorithm. The trajectory for 

unimodal functions and multimodal functions clearly established the better approximation of the 

candidate solutions near to the global optimum and guarantees to accelerate the convergence 

speed towards to global solution. But for one fixed dimension function(𝐹20) shows slightly 

different behaviour in which the candidate solutions are not approximating at closer positions of 

global solution though the proposed OB-LF-ALO determines better fitness value than the 

original algorithm as shown in result table. The proposed OB-LF-ALO also exhibits trajectories 

nearer to global optima than classical ALO for both 𝐹28 and 𝐹29 functions. Overall analysis 

shows that the proposed algorithm guarantees acceleration in convergence.  

 

Elite convergence curve 

Another metric to verify the performance of OB-LF-ALO is convergence of elite antlion. This 

convergence rate is shown as a curve of best antlion (elite) of first variable. The same ten 

functions as used in the previous section have been analyzed for elite convergence curve and 

depicted in Figure 4.9. 

 It is clearly observed from Figure 4.9 that the fitness drops significantly even at initial 

iterations which signifies that the antlions’ fitness of proposed OB-LF-ALO converges during 

the course of iterations as compared to classical ALO. However, the convergence behaviour is 

unusual for function 𝐹28 and 𝐹29 where the curves show steady behaviour at earlier generations 

but exhibit steep convergence and abrupt jumping behaviour at later generations and prove to 
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have better convergence than classical ALO. This analysis validates high acceleration in 

convergence with the increase in number of iterations and tries efficiently to search global optima 

with more precision. The employability of LF distribution ensures the enhanced exploration and 

avoidance of local optima stagnation. The opposition based learning (OB) is capable of 

approximating the nearer solution to the best antlion (elite) and ensures the acceleration in 

convergence towards a point. 

4.6.4 Computational Complexity 

Computational complexity plays a vital role in development of any algorithm. A better technique 

to modify an existing algorithm should not increase the computational complexity of proposed 

algorithm. In proposed OB-LF-ALO, although three new strategies are employed to improve the 

performance of algorithm, yet it is being taken care of that there should not any enhancement in 

computational complexity. 

 It is ensured not to include any extra loop and the evaluation of objective function is 

performed after applying all the strategies to determine the updated position. This theory 

establishes that there is no change in asymptotic computational complexity and it remains same 

as of classical ALO as described in chapter 2 and chapter 3.  Thus, it is observed as 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗

𝐷 ∗ 𝑁)* 𝑂 (𝑓(𝑋)) where 𝑖𝑡𝑚𝑎𝑥 maximum number of iteration, 𝐷 represents dimensions, 𝑁 is 

population size and 𝑓(𝑋) defined as the objective function for worst case scenario. 

4.7 Conclusion 

This chapter aims to extend and improve the ability of classical ALO by firstly, enhancing the 

exploration of search region efficiently using lévy flight distributed random numbers in place of 

uniform random numbers. Secondly, opposition based model and thirdly acceleration parameter 

in conjunction with OBL mechanism applied to the elite antlion to approximate the closer 

candidate solution to the global optima which enhances the convergence acceleration rate. These 

three approaches are integrated to propose OB-LF-ALO.     

 The performance of the proposed algorithm is verified over 31 benchmark functions of 

variety of characteristics including unimodal, multimodal, fixed dimensional multimodal and 

composition functions in order to validate the exploitation, exploration and ability to avoid local 

optima stagnation of the proposed algorithm. The OB-LF-ALO algorithm is extensively analyzed 

using convergence curve and other useful metrics and compared with classical ALO. The 

inclusion of lévy flight distributed random numbers in proposed OB-LF-ALO algorithm has a 

potential to enhance the exploration of the unvisited region of the search space which can be 
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observed from the convergence curves. After that, integration of opposition based model around 

the elite antlion is able to approximate the closer candidate solutions and thus proposed OB-LF-

ALO is able to accelerate the convergence rate efficiently. The algorithm analysis in terms of 

various metrics like search history analysis, trajectories analysis, elite convergence curve and 

average distance between search agents digs out the efficiency of proposed algorithm in 

comparison to classical ALO. The search history is useful to indicate the search behaviour of 

search agents for showing exploration of promising region of the search space before and after 

applying the proposed strategies. Elitism approach demonstrates the significant drop even at 

initial generation as verified from convergence curve. Local optima stagnation is efficiently 

avoided in proposed OB-LF-ALO as it is evident that for nine functions, the proposed algorithm 

is capable to reach global optima.  

 Though the applied strategies are able to enhance the overall performance of classical 

ALO. But heavy tailed probability distribution of step length in random walk of lévy flight causes 

enormous rise in computational time of proposed OB-LF-ALO as compared to classical ALO for 

high dimension problems. 
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Table 4.1: Computational Steps of Proposed OB-LF-ALO algorithm 

Input: Population Size N, Maximum iteration 𝑖𝑡𝑚𝑎𝑥 ,lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  antlions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 

6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an antlion 𝑆𝑠𝑒𝑙 using Roulette wheel 

8 
                  Modify lower L and upper U boundaries with equations Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙  

11                         and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  using LF distribution with Eq. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡1)-     

                           1),𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐽(𝑖𝑡𝑚𝑎𝑥)-1) 

12 
                          Normalize random walk using Eqs 𝑆𝐴,𝑛

𝑑 (𝑖𝑡) =   
(𝑆𝐴,𝑛

𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡)and  

                          𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡1)- 1),𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐽(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐽(𝑖𝑡𝑚𝑎𝑥)-1) 

13                   end for 

14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 

16            Modify position of ant by applying acceleration parameter 𝑒𝑎𝑐   integrated 

17            With opposition based learning(OBL) model using   

           Eq. 𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐  × (𝐿𝐵𝑖 + 𝑈𝐵𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))    

18              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

19                 Determine the fitness o f all ants 

20           end for 

21                Substitute an antlion with  its respective ant  if it becomes fitter using Eq. 

             𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

22              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an antlion becomes fitter than the elite 

23             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

24       end while 

25 Return elite 
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Table 4.2: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal functions 

(10D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 7.870E-09 5.490E-09 2.390E-09 2.580E-08 

 

𝐹2 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 4.860E-01 8.850E-01 1.550E-05 2.800E+00 

 

𝐹3 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 8.310E-02 1.850E-01 1.360E-04 8.750E-01 

 

𝐹4 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 3.180E-03 6.160E-03 1.020E-04 3.290E-02 

 

𝐹5 

OB-LF-ALO 6.290E-02 1.070E-01 2.920E-05 4.030E-01 

ALO 6.810E+01 1.990E+02 1.020E-04 1.070E+03 

 

𝐹6 

OB-LF-ALO 1.200E-03 1.290E-03 5.900E-06 5.100E-03 

ALO 8.390E-09 5.220E-09 2.150E-09 2.220E-08 

 

𝐹7 

OB-LF-ALO 3.110E-04 4.150E-04 1.670E-05 1.990E-03 

ALO 2.210E-02 1.230E-02 1.810E-03 5.630E-02 

 

 

 

 

 

 

 

Table 4.3: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal functions  

(30D)  

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹1 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 9.450E-06 5.540E-06 1.720E-06 2.110E-05 

 

𝐹2 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 3.650E+01 5.170E+01 2.090E-02 1.340E+02 

 

𝐹3 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 9.550E+02 5.080E+02 2.470E+02 2.160E+03 

 

𝐹4 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 1.210E+01 3.650E+00 4.630E+00 1.960E+01 

 

𝐹5 

OB-LF-ALO 9.590E-03 1.280E-02 2.310E-04 4.740E-02 

ALO 1.040E+02 3.120E+02 1.640E+01 1.740E+03 

 

𝐹6 

OB-LF-ALO 5.860E-04 5.890E-04 3.820E-05 2.200E-03 

ALO 9.490E-06 6.100E-06 1.320E-06 2.920E-05 

 

𝐹7 

OB-LF-ALO 9.730E-05 8.690E-05 1.480E-06 3.090E-04 

ALO 1.100E-01 3.570E-02 5.700E-02 2.250E-01 
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Table 4.4: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal functions 

(10D) 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-LF-ALO -1.340E+03 8.610E+00 -1.360E+03 -1.330E+03 

ALO -2.470E+03 4.260E+02 -3.730E+03 -1.920E+03 

 

𝐹9 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 2.480E+01 1.080E+01 6.960E+00 5.070E+01 

 

𝐹10 

OB-LF-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

ALO 3.240E-01 5.540E-01 2.070E-05 1.650E+00 

 

𝐹11 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 2.140E-01 8.720E-02 6.640E-02 4.060E-01 

 

𝐹12 

OB-LF-ALO 1.300E-03 2.250E-03 2.300E-09 9.130E-03 

ALO 1.790E+00 1.670E+00 8.230E-09 5.610E+00 

 

𝐹13 

OB-LF-ALO 5.720E-03 1.280E-02 1.580E-06 6.350E-02 

ALO 1.800E-03 4.940E-03 3.840E-09 2.100E-02 

 

 

 

 

 

 

 

 

Table 4.5: Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal functions 

(30D) 
Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹8 

OB-LF-ALO -1.080E+04 3.780E+03 -1.260E+04 -2.130E+03 

ALO -5.440E+03 4.190E+01 -5.540E+03 -5.420E+03 

 

𝐹9 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 1.970E+00 8.390E-01 5.890E-04 3.520E+00 

 

𝐹10 

OB-LF-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

ALO 1.870E+00 6.900E-01 1.020E-03 3.090E+00 

 

𝐹11 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

ALO 1.190E-02 1.260E-02 3.470E-04 3.860E-02 

 

𝐹12 

OB-LF-ALO 3.200E-05 8.410E-05 1.460E-08 4.540E-04 

ALO 1.000E+01 4.340E+00 5.750E+00 2.330E+01 

 

𝐹13 

OB-LF-ALO 1.890E-04 3.900E-04 1.720E-07 1.940E-03 

ALO 1.320E+00 3.150E+00 1.140E-05 1.050E+01 
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Table 4.6: Average, Standard Deviation, Minimum, and Maximum of objective function values of fixed dimensional 

multimodal functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹14 

OB-LF-ALO 1.300E+00 5.310E-01 9.980E-01 2.9800E+00 

ALO 1.790E+00 1.340E+00 1.950E-08 4.9500E+00 

 

𝐹15 

OB-LF-ALO 1.510E-03 3.570E-03 5.100E-04 2.040E-02 

ALO 4.180E-03 7.370E-03 5.550E-04 2.040E-02 

 

𝐹16 

OB-LF-ALO -1.030E+00 6.7800E-16 -1.030E+00 -1.030E+00 

ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

 

𝐹17 

OB-LF-ALO 3.980E-01 1.6900E-16 3.980E-01 3.980E-01 

ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

 

𝐹18 

OB-LF-ALO 3.000E+00 0.0000E+00 3.000E+00 3.000E+00 

ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

 

𝐹19 

OB-LF-ALO -7.790E+00 2.810E+00 -1.020E+01 -2.630E+00 

ALO -6.280E+00 2.930E+00 -1.020E+01 -2.630E+00 

 

𝐹20 

OB-LF-ALO -8.520E+00 2.970E+00 -1.040E+01 -2.770E+00 

ALO -6.670E+00 3.420E+00 -1.040E+01 -1.840E+00 

 

𝐹21 

OB-LF-ALO -7.100E+00 3.580E+00 -1.050E+01 -2.420E+00 

ALO -6.270E+00 3.660E+00 -1.050E+01 -1.860E+00 

 

𝐹22 

OB-LF-ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

ALO -3.863E+00 3.160E-15 -3.863E+00 -3.863E+00 

 

𝐹23 

OB-LF-ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

ALO -3.322E+00 1.810E-15 -3.322E+00 -3.322E+00 

 

 

 

 
Table 4.7: Average, Standard Deviation, Minimum, and Maximum of objective function values of composition 

benchmark functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

𝐹24 

OB-LF-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

ALO 2.630E+03 1.275E-03 2.630E+03 2.630E+03 

 

𝐹25 

OB-LF-ALO 2.600E+03 7.066E-01 2.596E+03 2.600E+03 

ALO 2.538E+03 1.477E+01 2.577E+03 2.512E+03 
 

𝐹26 

OB-LF-ALO 2.700E+03 4.349E-01 2.697E+03 2.700E+03 

ALO 2.680E+03 2.430E+01 2.630E+03 2.700E+03 

 

𝐹27 

OB-LF-ALO 2.705E+03 9.557E-02 2.705E+03 2.705E+03 

ALO 2.700E+03 1.090E-01 2.700E+03 2.700E+03 

 

𝐹28 

OB-LF-ALO 2.900E+03 0.000E+00 2.900E+03 2.900E+03 

ALO 3.010E+03 1.440E+02 2.700E+03 3.110E+03 

 

𝐹29 

OB-LF-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

ALO 3.490E+03 2.920E+02 3.170E+03 3.930E+03 

 

𝐹30 

OB-LF-ALO 4.224E+06 1.406E+06 3.100E+03 4.755E+06 

ALO 8.270E+05 1.520E+06 3.100E+03 3.670E+06 

 

𝐹31 

OB-LF-ALO 5.623E+03 5.444E+02 5.406E+03 7.653E+03 

ALO 4.420E+03 4.140E+02 3.880E+03 6.170E+03 
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Table 4.8: P-values of Wilcoxon ranksum test 
Function OB-LF-ALO vs ALO 

p-values conclusion 

𝐹1 1.21E-12 + 

𝐹2 1.21E-12 + 

𝐹3 1.21E-12 + 

𝐹4 1.21E-12 + 

𝐹5 3.02E-11 + 

𝐹6 3.02E-11 - 

𝐹7 3.02E-11 + 

𝐹8 4.73E-06 + 

𝐹9 1.20E-12 + 

𝐹10 1.18E-12 + 

𝐹11 1.21E-12 + 

𝐹12 3.02E-11 + 

𝐹13 7.60E-07 + 

𝐹14 2.38E-02 + 

𝐹15 8.94E-01 - 

𝐹16 N/A = 

𝐹17 N/A = 

𝐹18 N/A = 

𝐹19 1.73E-01 - 

𝐹20 1.69E-01 - 

𝐹21 7.62E-01 - 

𝐹22 N/A = 

𝐹23 N/A = 

𝐹24 1.36E-20 + 

𝐹25 3.84E-20 - 

𝐹26 2.21E-06 - 

𝐹27 3.30E-18 - 

𝐹28 1.78E-09 + 

𝐹29 1.39E-20 + 

𝐹30 2.04E-12 - 

𝐹31 5.28E-16 - 

21/31(16 ‘+’ , 5 ‘=’) 
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Figure 4.1: Demonstration of random population using lévy flight and uniform distribution 
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Figure 4.2: Convergence behaviour on three of the unimodal functions  𝐹1,𝐹3 and 𝐹7 

 

 

 

 

2 10 50 100 200 300 500 700 1000
10

-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F1

 

 

OB-LF-ALO

ALO

2 10 50 100 200 300 500 700 1000
10

-30

10
-20

10
-10

10
0

10
10

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F3

 

 

OB-LF-ALO

ALO

2 10 50 100 200 300 500 700 1000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F7

 

 

OB-LF-ALO

ALO



105 

 

  

 

Figure 4.3: Convergence behaviour on three multimodal functions 𝐹9,𝐹10 and 𝐹11. 

 

  

Figure 4.4: Convergence behaviour on two fixed dimension multimodal functions 𝐹14 and 𝐹20 
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Figure 4.5 : Convergence behaviour on two composition functions 𝐹27 and 𝐹28 
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Figure 4.6: Search history analysis of functions 𝐹1, 𝐹3, 𝐹9, 𝐹11, 𝐹14 and 𝐹20 
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Figure 4.7: Trajectories of antlion 
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Figure 4.7: (Continued) 
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Figure 4.8: Average distance analysis between search agents 
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Figure 4.8: (Continued) 
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Figure 4.9: Elite convergence curve  
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Figure 4.9: (Continued) 

 

 

 

 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

Function F14

Iterations

E
lit

e
 c

o
n
v
e
rg

e
n
c
e

 

 

OB-LF-ALO

ALO

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

-0.5

Function F20

Iterations

E
lit

e
 c

o
n
v
e
rg

e
n
c
e

 

 

OB-LF-ALO

ALO

0 20 40 60 80 100 120 140 160 180 200
2800

3000

3200

3400

3600

3800

4000

Function F28

Iterations

E
lit

e
 c

o
n
v
e
rg

e
n
c
e

 

 

OB-LF-ALO

ALO

0 20 40 60 80 100 120 140 160 180 200
3000

3500

4000

4500

5000

5500

6000

Function F29

Iterations

E
lit

e
 c

o
n
v
e
rg

e
n
c
e

 

 

OB-LF-ALO

ALO



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

CHAPTER 5 

Cauchy Distributed Opposition based Antlion optimizer with Acceleration 

Coefficient (OB-C-ALO) for Continuous Optimization Problems 

 

5.1 Introduction  

This chapter is divided into two parts. In first part, another extended variant of opposition based 

ALO is proposed to enhance the efficiency of classical ALO. Three strategies are employed to 

do so. (1) Cauchy distribution based crossover mechanism to manipulate the random walk for 

exploration enhancement of the search region. (2) Opposition based learning(OBL) mechanism 

is applied to the best candidate solution to explore the nearby positions of global optima.(3) 

Acceleration coefficient(ac) parameter to adjust the exploitation at later stages of the iterations 

and thus able to increase the convergence of proposed algorithm.  

 Tendency of classical ALO to be entrapped in local optima requires increased 

diversification of the search space to come out of local solution. Proposed variant of classical 

ALO attempts improve balance between diversification and intensification while speeding up the 

convergence. To evaluate the performance, same set of benchmark functions utilized in Chapters 

2, 3 and 4 has been chosen. To evaluate the impact of Cauchy distribution based random numbers 

and opposition based learning (OBL) model integrated with acceleration coefficient, various 

metrics have considered such as trajectories, elite convergence curve, and average of absolute 

distance between search agents before and after improving the algorithm. A non-parametric 

Wilcoxon ranksum test is used to exhibit its statistical significance and computational complexity 

of the proposed algorithm is also discussed. 

 In second part of this chapter, the performance of all the proposed variants of classical 

ALO developed in previous chapters as well as in this chapter are compared and analyzed using 

the similar set of benchmark functions and analysis metrics 

__________________________________________________________________________________________ 

Partial content of this chapter has been published as: 

 Dinkar, S. K., & Deep, K. (2019). Opposition based Antlion Optimizer using Cauchy distribution and 

its application to data clustering problem. Neural Computing and Applications, Springer. https: 

//doi.org/10.1007/s00521-019-04174-0. (SCIE, IF-4.213). 
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This chapter is organized as follows: Section 5.2 describes related literature and motivation. 

Section 5.3 represents the proposed OB-C-ALO algorithm including conceptual material about 

employed strategies. Section 5.4 depicts the description of benchmark test functions and 

experimental setting. Section 5.5 shows the computational results, comparison and discussion as 

per the characteristics of benchmark functions. Section 5.6 depicts convergence and other 

analysis using various metrics to authenticate newly developed OB-C-ALO and classical ALO. 

Afterwards, Section 5.7 represents performance comparison of all the modified variants proposed 

in previous chapters. Section 5.8 gives concluding remarks. 

5.2 Motivation and Related Literature 

The mechanism of random number generation during the searching process of the region plays a 

vital role. The aim is to improve the searching of unvisited area of the search region so that  the 

proposed algorithm is capable of avoiding local optima during evolution process[107]. Then 

opposition based learning (OBL) is employed after position update using random walk at later 

part of generation as a second strategy. After employing Cauchy distribution followed by OBL 

mechanism, an acceleration coefficient is merged with OBL technique as third strategy[111] to 

maintain balance between early and later part of  evolutionary process[112].  

 

5.3 Proposed Opposition based ALO with Cauchy distribution(OB-C-ALO) 

This section describes the extended version of opposition based ALO using new exploration 

strategy namely Cauchy distribution to improve the performance of classic ALO. In spite of good 

convergence performance of classical ALO, some candidate solutions may not be able to move 

towards global optima and may get trapped in local optima. It leads the necessity to improve the 

diversification of search region during process of evolution. For accomplishing it, the random 

numbers are generated using Cauchy distribution (CD) in place of uniformly generated random 

numbers in classical ALO.  At later stages, the opposite points of updated positions of candidates 

solutions are determined using opposition based learning (OBL) to accelerate the convergence 

and exploitation in conjunction with acceleration coefficient. The applied mechanism are 

described in the following subsections. 

 

5.3.1 Cauchy distribution 

The search ability of an optimization algorithm can be improved by approximating the candidate 

solution nearby to the global solution in each generation during evolution process. During this 

process, the candidate solutions initially generated randomly, can move to better positions. In 
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classical ALO, random walk of ants around antlion is performed using uniform distribution. In 

this work, it is replaced with the Cauchy distribution in order to enhance the exploration. The 

Cauchy distribution (CD) is successfully employed in many nature inspired optimization 

algorithms such as Krill Herd [107], PSO [127-128] and DE [129-130]. 

 The probability distribution function (PDF) of Cauchy distribution (CD) denoted by 

𝐶(𝑎, 𝑏) can be defined as [131-132]: 

 𝑓(𝑥; 𝑎, 𝑏) =
1

𝜋𝑏
[

𝑏2

(𝑥−𝑎)2+𝑏2]                 (5.1) 

 Here 𝑎 describes the location of the peak of distribution known as location parameter and 

𝑏 > 0 specifies the scale parameter. In this work, the experimental analysis establishes that the 

appropriate values of 𝑎 and 𝑏 are chosen to be as 1 and 5 respectively after performing a number 

of experiments with different values of 𝑎 and 𝑏. 

The Cauchy distributed function can be defined as: 

 𝐹(𝑥; 𝑎, 𝑏) =
1

𝜋
arctan (

𝑥−𝑎

𝑏
) +

1

2
                (5.2) 

 Random numbers generated uniformly and using Cauchy distribution over 200 numbers 

of iterations are shown in Figure 5.1. It is evident from the figure that inclusion of Cauchy 

distribution in random walk spans more search area and provides new candidate solutions which 

may not be approximated using uniform distribution. This mechanism promises to explore the 

search region while avoiding stagnation to local optima and shows tendency of moving towards 

global optima. 

 Replacing uniform distributed random numbers with Cauchy distributed random numbers 

can be mathematically reformulated as 

 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡1)-1), 𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡𝑚𝑎𝑥)-1)]     (5.3) 

 Here 𝐶 represents the Cauchy distributed random numbers and 𝑐𝑢𝑚𝑠𝑢𝑚 defines the 

cumulative sum of random numbers in each iteration 𝑖𝑡. 

5.3.2 Opposition based learning (OBL) Model 

The definition of opposite numbers is defined in Section 2.3.2 of Chapter 2. It is concluded that 

the fitness of the candidate solutions is directly proportional to the distance between these 
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solutions to global optima. Hence, the candidates nearer to the optima will be fitter as compared 

to other candidates. 

   

5.3.3 Acceleration Coefficient (ac) Parameter 

For accelerating the exploitation at later stages, a parameter 𝑒𝑎𝑐 is applied to approximate the 

exploitation convergence which is decreased adaptively as the number of iteration increases. This 

parameter 𝑒𝑎𝑐  can be determined as shown in eq. (3.2), section 3.3.1 of chapter 3. 

 The parameter 𝑒𝑎𝑐 is hybridized after applying OBL technique. Mathematically, this 

process can be defined by reformulating in eq. (5.4) as follows: 

 𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐  × (𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))               (5.4)

  

5.3.4 Proposed OB-C-ALO algorithm 

The strategies discussed above are employed to propose Opposition based ALO with Cauchy 

distribution (OB-C-ALO) to improve the performance of classical ALO in terms of refining 

balance between exploration and exploitation. The random walk is improved by applying Cauchy 

distributed random numbers as first strategy to enhance the exploration. It is followed by second 

strategy as OBL mechanism to generate the opposite positions of updated population. Then third 

strategy as exploitation parameter to adjust balance between exploration and exploitation which 

is integrated with OBL. 

 Pseudo code of newly developed OB-C-ALO is described in Table 5.1.   

5.4 Experimental Setup 

The performance of proposed OB-C-ALO and comparison of all modified variants are 

demonstrated by choosing similar set of benchmark test functions as depicted in Appendix I. 

 

Benchmark test functions 

These functions are of different characteristics including unimodal, multimodal, fixed dimension 

multimodal [108] and composition functions [109] and have been tested to verify the 

performance of proposed OB-C-ALO in terms of exploration and exploitation capability of 

algorithm.  
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Experimental and parameter setting 

The performance of proposed OB-C-ALO is verified by comparing with classical ALO For 

scalable problems (unimodal and multimodal functions) by performing the experiments are for 

10 and 30 dimensions. The performance of proposed algorithm is measured in terms of average, 

standard deviation, maximum and minimum of objective function values taken over 30 

independent runs. These 30 independent runs have been performed by generating an initial 

population size of 30. Stopping criteria is fixed at 500 and 1000 iterations for 10 and 30 

dimensions respectively. For composition functions, the problems are taken of 10 dimensions 

with stopping criteria of 1000 iteration having 51 independent runs. All the experiments have 

been performed on MATLAB R2014a on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz-2.71 

GHz with 8GB RAM. 

 

5.5 Experimental Results and discussion 

The results on various benchmark test function of proposed OB-C-ALO algorithm are shown in 

different tables. Table 5.2, Table 5.3, Table 5.4, Table 5.5  exhibit results on 10 and 30 

dimensions(scalable) for unimodal and multimodal functions whereas Table 5.6 shows the results 

on fixed dimensions multimodal respectively. Table 5.7 depicts results of composition functions.  

 

Evaluation of exploitation capability (Function 𝑭𝟏 − 𝑭𝟕) 

The results of proposed OB-C-ALO over unimodal functions are shown in Table 5.2 and Table 

5.3 for 10 and 30 dimensions respectively. It is clear from the tables that the proposed OB-C-

ALO attains global optima (average objective function values) for functions  𝐹1 − 𝐹4 with zero 

standard deviation which shows that the proposed algorithm is stable throughout the evolution 

process and performs significantly better than the classical ALO  for both 10 and 30 dimensions. 

It is also evident from the tables that the proposed OB-C-ALO shows slightly better average 

value than classical ALO for functions 𝐹5 and 𝐹7. This performance in terms of average fitness 

values shows that inclusion of Cauchy distributed random numbers in random walk followed by 

OBL mechanism in conjunction with acceleration coefficient is capable of reaching global 

optima or near to global optima at later stages during exploitation phase. The results clearly 

demonstrates that OBL mechanism could find the opposite candidate solution nearer to the global 

optima in comparison to other algorithms. It is also evident from the table that the average value 

of standard deviation is steady throughout the evolution process and authorizes constancy and 

superiority over classical ALO.  

file:///H:/OB-Ly-ALO/An%20efficient%20Opposition%20based%20Levy%20Flight%20Ant%20lion%20optimizer%20for%20Optimization%20Problems.docx
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Evaluation of exploration capability (Function  𝑭𝟖 − 𝑭𝟏𝟑) 

The results for multimodal functions 𝐹8 − 𝐹13 are depicted in Table 5.4 and Table 5.5 for 10 

and 30 dimensions respectively. It is evident from the tables that the proposed OB-C-ALO 

performs better in terms of average objective function values for functions 𝐹8 − 𝐹12  for 10 

dimension and for functions 𝐹8 − 𝐹13 for 30 dimensions as compared to classical ALO. It is 

also clear from the tables that OB-C-ALO attains global optima for functions 𝐹9 and 𝐹11 for 

both 10 and 30 dimension respectively. The analysis of results clearly demonstrates the enhanced 

exploration capability of proposed OB-C-ALO by employing Cauchy distributed random walk. 

Also the results of functions 𝐹9 and 𝐹11 indicates that OBL mechanism with acceleration 

coefficient is able to accelerate the convergence at later part of evolution. The average standard 

deviation for functions 𝐹8 − 𝐹12  also authorises the superiority and stability of proposed 

algorithm over classical ALO. 

 

Evaluation of exploration capability of fixed dimension multimodal functions ( 𝑭𝟏𝟒 − 𝑭𝟐𝟑) 

Though these functions are multimodal yet the behaviour of these functions are contrary to the 

scalable multimodal function due to non-scalability. Hence it is always interesting to analyse 

these fixed dimensional functions. The results are exhibited in Table 5.6 which are taken when 

the stopping criteria is to achieve a maximum of 1000 iterations. It is evident from the table that 

the proposed OB-C-ALO performs slightly better in function 𝐹14 and 𝐹15 than classical ALO 

in terms of average objective function value and steady standard deviation. Proposed algorithms 

also attain better average objective function values for functions 𝐹19,𝐹20 and 𝐹21 than the 

classical ALO. The obtained results for functions 𝐹16,𝐹17 ,𝐹18,𝐹22 and 𝐹23 are similar for 

OB-C-ALO and classical ALO. After comparison of results, it can be concluded that the applied 

strategies are efficiently able to improve the performance of proposed OB-C-ALO. 

 

Results on Composition Functions (𝑭𝟐𝟒 − 𝑭𝟑𝟏) 

The results for composition functions are exhibited in  Table 5.7. These functions define complex 

problem matching with the real world optimization applications and henceforth difficult to get 

the global optima. It is evident from the table that the proposed OB-C-ALO outperforms the 

classical ALO for functions 𝐹24, 𝐹27, 𝐹28, 𝐹29, 𝐹30 and 𝐹31 significantly in terms of average 

objective function values. It can be observed from the result tables that the standard deviation for 

proposed OB-C-ALO is steady as compared to classical ALO exhibiting the stable performance. 



121 

 

The employed strategies proved to be more efficient for proposed OB-C-ALO as compared to 

classic ALO.  

 

5.6 Analysis  

The proposed algorithm is analyzed using various performance metrics as follows: 

       5.6.1 Convergence Behaviour 

       5.6.2 Statistical analysis- Wilcoxon ranksum Test 

       5.6.3 Analysis of Proposed Variant 

          Search history analysis 

     Trajectory analysis 

          Trajectory analysis of average distance between search agents 

     Elite convergence curve 

 5.6.4 Computational Complexity 

5.6.1 Convergence Behaviour 

To evaluate the performance of proposed OB-C-ALO algorithm, graphical interpretation of 

convergence behaviour of OB-C-ALO algorithm is analyzed and compared with classical ALO. 

Various benchmark test functions of wide variety of characteristics are chosen to authorize the 

performance of OB-C-ALO. The number of generations and the best average value of objective 

functions for 30 independent runs have been plotted on horizontal-axis and log scale of vertical-

axis respectively.  

 In Figure 5.2, three curves showing convergence behaviour over fixed number of 

generations for unimodal functions 𝐹1,𝐹3 and 𝐹7 are depicted. It is evident from the curves that 

the proposed OB-C-ALO starts converging in early generations than the classical ALO. The 

curves are clearly showing that proposed OB-C-ALO attains global optima in 100 and 10 

generations for function 𝐹1 and 𝐹3 respectively which shows superiority of proposed algorithm 

over other versions. The proposed OB-C-ALO shows better convergence behaviour for function 

𝐹7. This behaviour demonstrates that inclusion of OBL followed by enhanced exploration using 

Cauchy distribution is highly impactful for convergence acceleration and capable of finding 

global optima at early stages of generations. This behaviour of proposed algorithm promises to 

converge to global optima [110].  

 In Figure 5.3, curves of three scalable multimodal function 𝐹9, 𝐹10 and 𝐹11 are drawn 

and compared with classical ALO. The proposed algorithm shows sharp convergence from the 

initial generations and attains global optima for function 𝐹9 and 𝐹11 in around 300 generations 
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each. Function 𝐹10 also exhibits excellent convergence accelerations. It can be clearly observed 

that the employed strategies are useful for achieving high convergence speed even at early stages 

of generations. 

  Figure 5.4 depicts convergence curves for fixed or non-scalable multimodal functions 

𝐹14 and 𝐹20. Proposed OB-C-ALO exhibits ample improvement in convergence as compared 

to classical ALO. However, for function 𝐹20, OB-C-ALO shows better convergence behaviour 

than classical ALO. Overall, it can be concluded that inclusion of OBL model promises to 

enhance diversification by exploring the opposite candidate solution simultaneously with the 

original solutions and able to avoid entrapment in local optima. Figure 5.5 shows convergence 

curves for functions  𝐹29 and 𝐹31. It is evident from the curves that the proposed OB-C-ALO 

is clearly a winner as compared to classical ALO which can be also observed from the tables of 

results. These composition functions contain many optima like multimodal functions and prone 

to be entrapped in local optima thus restricted to reach global optima. But the inclusion of Cauchy 

distribution in random walk ensures to explore the unvisited region of the search space and tries 

to avoid local optima. Due to this fact, the proposed algorithm is able to reach global optima or 

near to optima with increased rate of convergence due to opposition based learning model 

followed by Cauchy distribution.     

 

5.6.2 Statistical analysis-Wilcoxon Ranksum Test 

A non-parametric Wilcoxon ranksum test is applied to investigate the statistical significance of 

proposed OB-C-ALO with respect to classical ALO. This test analyze the distribution of sampled 

data drawn from two algorithms in pair. The obtained result in terms of p-values authorizes the 

data drawn from one algorithm is statistically significant than the data drawn from other 

algorithm.    

 The confidence level is taken as 0.95. The sampled data drawn for 30 dimensions from 

two different algorithms is used in pair from 30 independent runs to reject the null hypothesis. 

This hypothesis checks that the data drawn of continuous distribution from two algorithms with 

equal median against the alternative that actually they are not. The obtained results in terms of 

p-values are shown in Table 5.8. This table depicts the comparison of statistical significance for 

proposed OB-C-ALO with classical ALO. The ‘+’ denotes that the statistical difference is 

significant at 0.05 level of significance, ‘-’ indicates that there is no statistical difference and ‘=’ 

depicts that the sampled data drawn from the pair of algorithm are similar and comparison is not 

possible.  
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 It is clearly demonstrated from Table 5.8 that the proposed OB-C-ALO is statistically 

significant for most of the functions i.e.20 test problems and remain same for 5 problems  

𝐹16, 𝐹17 , 𝐹18 ,𝐹22 and 𝐹23 where both the algorithms obtain optima. Out of these problems, 

OB-C-ALO is statistical significant for 6 problems out of  8  problems of composition functions. 

Overall, it can be concluded that the proposed OB-C-ALO clearly outperforms the classical ALO. 

 

5.6.3 Analysis of Proposed Variant 

The modified version OB-C-ALO of classical ALO is proposed to enhance exploration and 

acceleration in convergence to achieve proper balance between exploration and exploitation at 

early as well as later stages of generations. These improvements can be authorized by employing 

certain metrics such as (1) Search history analysis (2) Trajectory analysis(3) Average distance 

between search agents before and after applying improvement strategies and (4)Elite 

convergence for analyzing the performance of proposed version. For this purpose some 

benchmark test functions of different characteristics have been used. All the experiments for 

analysis are performed by employing four search agents for 30 dimensions over 200 iterations 

and compared with classical ALO with same parameter setting. The analysis using various metric 

is as follows: 

 

Search history analysis  

This analysis is performed to verify the searching ability of the search agents of original ALO 

and the proposed OB-C-ALO after applying the improvement strategies. The distribution of 

population is drawn over the contour of the search space of the respective functions as shown in 

Figure 5.6. To establish this analysis, the contour and surface plot of one unimodal function 𝐹3 

and one multimodal function 𝐹11 are drawn. The search agents with ‘square’ and ‘asterisks’ 

represents the classical ALO and proposed OB-C-ALO over the search space respectively. It is 

clearly evident from the figure that after replacing uniformly distributed random numbers from 

random walk with Cauchy distributed random numbers, the proposed technique is more 

proficient in searching prominent region accurately. It is also visible that implementing OBL 

mechanism with acceleration coefficient tends to search nearby positions of global optima. It can 

be concluded that the proposed OB-C-ALO is spanning the prominent region of the search space 

at early generations and promises to accelerate the convergence rate. 
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Analysis of trajectory 

The trajectories of best (elite) candidate solution depicted in Figure 5.7 as graphical form to 

analyze the movement behaviour of best candidate solution towards the global optima. 

Trajectories of elite candidate solution i.e. first variable are drawn up to maximum (200) 

iterations. This analysis is useful to investigate that the proposed algorithm OB-C-ALO is 

capable to determine the nearer positions to global optima as compared to classical ALO. 

 Few problems of benchmark test functions of wide characteristics are used to perform 

this analysis including unimodal function (𝐹1,𝐹3, 𝐹7), multimodal functions (𝐹9, 𝐹10,𝐹11),two 

fixed dimensions multimodal, (𝐹14,𝐹20) and two composition(𝐹28,𝐹29) functions. It is clearly 

evident from the figure that the proposed OB-C-ALO shows enhanced exploration due to 

employment of Cauchy distribution at early generations. It is visible that the positions of elite in 

OB-C-ALO shows sharp acceleration in convergence for functions 𝐹1,𝐹3, 𝐹7, 𝐹9 and 𝐹11 and 

authorises that the use of OBL mechanism with acceleration coefficient parameter is capable of 

finding nearer positions to the global optima in comparison to classical ALO.  Similarly, for 

function 𝐹10 the exploration is enhanced with great extent at early generations and then 

converges to the nearby positions of global optima. However, for function 𝐹14  ,the average 

objective function values of OB-C-ALO is better than classical ALO as shown in result table but 

the trajectory of the candidate solution depicts abrupt behaviour initially but gets steady at later 

generations. Whereas, for function 𝐹20, the proposed OB-C-ALO is not able to approximate this 

nearby positions of optima. The trajectory of composition function 𝐹28 shows similar behaviour 

as of classical ALO but it approximates the closer positions to global optima at the later 

generations as compared to classical ALO. Similarly, the trajectory of function 𝐹29 is far than 

the ALO but approximates the nearer positions at later generations. It can be concluded that the 

performance of OB-C-ALO outperform the classical ALO as far as the searching of closer 

positions of the global optima. 

Trajectory analysis of average distance between search agents 

The absolute average distance between search agents before and after employing improvements 

strategies is determined in each iteration. The obtained value is than compared with the average 

distance of classical ALO to establish the performance of OB-C-ALO. The experiments are 

conducted for 200 iterations over first variable by choosing ten benchmark test functions 

including three unimodal(𝐹1, 𝐹3, 𝐹7),,three multimodal(𝐹9, 𝐹10, 𝐹11),two fixed dimension 

multimodal(𝐹14, 𝐹20) and two composition (𝐹29,𝐹30) functions.to validate the performance of 

OB-C-ALO.  
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 The curves shown in Figure 5.8 depicts the determined average distance using proposed 

OB-C-ALO. From the figure, it is shown that the average distance is fluctuating at early 

generations due to enhanced exploration caused by Cauchy distribution. Then it gets smooth and 

steady once distance becomes lesser or closer to optimal solution at later generations. This 

behaviour is caused by employing OBL integrated with exploitation adjustment parameter. For 

functions 𝐹1, 𝐹3, 𝐹7, 𝐹9, 𝐹10   and 𝐹11 ,the determined average distance shows steady 

behaviour around the optimal position as OB-C-ALO performs better than classical ALO as 

shown in tables of results. This implies that the obtained distance is closer to optima as compared 

to other algorithms. The graph for function 𝐹14 shows that proposed algorithm displays closer 

distance as compared to classical ALO at later generations. However, function 𝐹20 shows 

uneven performance at later generation though OB-C-ALO obtains better results in comparison 

to classical ALO. Some unusual behaviour is shown by the curves for functions 𝐹29 and 𝐹30 

where the determined average distance is far away as compared to classical ALO but it gets closer 

and coincides at later generations. However the results in terms of mean value and standard 

deviation of objective function values are better for proposed OB-C-ALO in comparison to 

classical ALO. Overall, this analysis establishes that the obtained average distance using 

proposed OB-C-ALO promises to accelerate the convergence. 

 

Elite convergence curve 

This metric verifies the convergence capability of elite candidate solutions over 200 iterations. 

This convergence rate is shown as a curve of best antlion (elite) of first variable. The ten functions 

as used in the previous section have been analyzed for elite convergence curve and depicted in 

Figure 5.9. 

 The curves for elite convergence as depicted in Figure 5.9 clearly shows that the fitness 

of elite solution drops significantly starting from initial iterations  which shows that the elite 

solution starts to converge even at initial iterations for proposed OB-C-ALO as compared to 

classical ALO. The classical ALO shows better convergence behaviour for function 𝐹28 in initial 

iterations but curve of proposed OB-C-ALO overtakes it at later generations. The curve of 𝐹29 

depicts better convergence steadily than ALO and further drops at later generation and exhibits 

the superiority of proposed OB-C-ALO over classical ALO. This analysis validates high 

acceleration in convergence with the increase in number of iterations and tries efficiently to 

search global optima with more precision. The employability of Cauchy distribution ensures the 

enhanced exploration and avoidance of local optima stagnation. The opposition based learning 
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(OB) is capable of approximating the nearer solution to the best ant lion (elite) and ensures the 

acceleration in convergence towards a point. 

5.6.4 Computational Complexity 

Though the initial population is generated using OBL mechanism, yet there is no additional 

inclusion of functional evaluation or any extra loop during evolution process to determine the 

updated position. It ensures no change in asymptotic computational complexity and it remains 

same as of classical ALO as described in chapter 2, chapter 3 and chapter 4.  Thus, it is observed 

as 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗ 𝐷 ∗ 𝑁)* 𝑂 (𝑓(𝑋)) where 𝑖𝑡𝑚𝑎𝑥 maximum number of iteration, 𝐷 represents 

dimensions, 𝑁 is population size and 𝑓(𝑋) defined as the objective function for worst case 

scenario. 

 

5.7 Performance Comparison of Proposed Variants of Classical ALO 

This section presents the perfromance comparison among proposed variants namely  OB-𝐿-ALO, 

OB-ac-ALO, OB-SAC-ALO, OB-LF-ALO and OB-C-ALO of classical ALO in previous as well 

as in this chapter. 

 

5.7.1 Results and Discussion 

The performance of proposed versions described in previous chapters are compared in terms of 

average, standard deviation, minimum and maximum objective function values taken over 30 

independent runs. The same parameter setting is chosen for comparison and the obtained results 

are depicted in Table 5.9 and Table 5.10 for unimodal functions, Table 5.11 and Table 5.12 for 

multimodal functions, Table 5.13 for fixed dimensions multimodal and Table 5.14 for 

composition functions.   

 

Comparison of results on unimodal functions (𝑭𝟏-𝑭𝟕) 

The results on unimodal functions validate the exploitation capability of an optimization 

algorithms due to presence of single optima. The results are represented in Table 5.9 and Table 

5.10 for 10 and 30 dimensions respectively. The average value of objective functions in Table 

5.9 shows that the three proposed algorithms namely OB-C-ALO,OB-LF-ALO and OB-ac-ALO  

are capable of obtaining the exact global optima for function 𝐹1,𝐹2.𝐹3 and 𝐹4 in both 10 and 

30 dimension. However, OB-SAC-ALO achieves global optima for function 𝐹2 and 𝐹3 for 10 

dimension and 𝐹2, 𝐹3 and 𝐹4 for 30 dimension. OB-C-ALO performs better than other 

algorithms in terms of average fitness value for function 𝐹5 and OB-ac-ALO wins for function 
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𝐹7 for 10 dimension. But OB-ac-ALO obtains better average fitness value for Function 𝐹5 and 

OB-LF-ALO performs better for function 𝐹7 in 30 dimensional problems. However, no proposed 

algorithm performs better than ALO for function 𝐹6. 

 

Comparison of results on multimodal functions (𝑭𝟖-𝑭𝟏𝟑) 

These problems are used to investigate the explorative capability of proposed algorithms. 

Obtained results are presented in Tables 5.11 and 5.12 for 10 and 30 dimensions respectively. 

Four algorithms namely OB-C-ALO, OB-LF-ALO, OB-ac-ALO and OB-SAC-ALO attains the 

optima value for function 𝐹9 and 𝐹11 as evident from the average fitness value for 10 and 30 

dimensions. For function 𝐹8, OB-C-ALO obtains best value and for function 𝐹12, OB-C-ALO 

and OB-ac-ALO perform better than other algorithms for 10 dimensions. OB-L-ALO exhibits its 

superiority in function 𝐹13 as compared to other algorithms. For 30 dimension, OB-ac-ALO 

performs better for function 𝐹8 and OB-SAC-ALO wins in case of function 𝐹12 and 𝐹13.  The 

less fluctuated values of standard deviations for proposed algorithm describe the steady and 

stable performance achieved by the proposed algorithms. The overall obtained results conclude 

the superior and enhanced performance of proposed algorithms as compared to classical ALO. 

 

Comparison of results on fixed dimension multimodal functions ( 𝑭𝟏𝟒 − 𝑭𝟐𝟑) 

Analyzing the behaviour of fixed dimension multimodal functions by observing the results is 

interesting due to the non-scalable nature of these problems. The results are exhibited in Table 

5.13 which are taken when the stopping criteria is to achieve a maximum of 1000 iterations. It is 

evident from the table that the OB-LF-ALO performs slightly better in function 𝐹14 and OB-L-

ALO shows its superiority in 𝐹15 as compared to other variants of classical ALO in terms of 

average objective function value and steady standard deviation. Interestingly, all proposed 

algorithms including ALO exhibit same results and able to obtain global optima for function 

𝐹16, 𝐹17, 𝐹18,𝐹22 and 𝐹23. However, OB-𝐿-ALO performs better for remaining 𝐹19, 𝐹20 

and 𝐹21 by keeping OB-C-ALO at second place. After analysing the results table, it can be 

concluded that the applied proposed strategies for developing new algorithms are capable of 

enhancing exploration as well as exploitation ability of the classical ALO. 

 

Results on Composition Functions (𝑭𝟐𝟒 − 𝑭𝟑𝟏) 

The obtained results for composition functions are depicted in Table 5.14. The evaluation of 

proposed variants of classical ALO over these problem reflect the ability of these algorithms to 
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solve complex and hybrid problems related to the real life optimization problems. For function 

𝐹24, three algorithms namely OB-C-ALO, OB-LF-ALO and OB-ac-ALO performs equally 

better than other algorithms. For function 𝐹25 and 𝐹26, OB-SAC-ALO performs better in terms 

of obtained average objective function value. For function 𝐹27 and 29 , OB-C-ALO clearly beats 

other proposed algorithms including classical ALO. Whereas OB-ac-ALO performs better for 

function 𝐹28 and equally better with OB-C-ALO and OB-LF-ALO for function 𝐹29. For 

function 𝐹30 and 𝐹31, OB-𝐿-ALO shows its superiority over other algorithms. It is clearly 

evident that no one algorithm gets superior results for all composition functions however, OB-

C-ALO outperforms other algorithms for majority of the composition functions as compared to 

other techniques. 

 

5.7.2 Analysis  

The performance of all proposed algorithms is analyzed using various performance metrics as 

follows: 

  5.7.2.1 Convergence Behaviour 

  5.7.2.2 Analysis of all proposed variants 

           Trajectory analysis 

           Trajectory analysis of average distance between search agents 

       Elite convergence curve 

5.7.2.1 Convergence Behaviour 

The comparison among all the proposed versions of classical ALO is performed in terms of 

convergence curve. A set of benchmark functions of different characteristics have been used to 

validate the performance. The number of generations and the best average value of objective 

functions for 30 independent runs have been plotted on horizontal-axis and log scale of vertical-

axis respectively.  

 Figure 5.10 shows convergence curves of three unimodal function 𝐹1,𝐹3 and 𝐹7. The 

curves in graphs depict that three algorithms namely OB-C-ALO, OB-LF-ALO and OB-ac-ALO 

are able to achieve global optima in 100 generations for function 𝐹1. For function 𝐹3, OB-SAC-

ALO also obtains optima in addition to first three algorithms but OB-C-ALO obtains the global 

optima in even 10 generations and outperforms other algorithms marginally. For function 

𝐹7,OB-LF-ALO performs better in comparison to other algorithms. This convergence behaviour 

clearly demonstrates the superiority of applied techniques to classical ALO. 
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 The convergence curves for two multimodal functions 𝐹10 and 𝐹11 are shown in Figure 

5.11. OB-C-ALO, OB-LF-ALO and OB-ac-ALO exhibit fluctuation in early generations but 

converge at same point at later generations which can be verified by observing the result Table 

5.11. The OB-SAC-ALO algorithm performs better than OB-L-ALO and classical ALO but not 

able to match with other algorithms. However OB-L-ALO also performs significantly better than 

classical ALO. Overall, it can be concluded that all the proposed algorithms in this thesis 

outperforms classical ALO.  

 Figure 5.12 demonstrates the convergence behaviour of two fixed dimensional 

multimodal functions 𝐹14 and 𝐹20.  OB-SAC-ALO and OB-L-ALO outperform other proposed 

algorithms for functions 𝐹14 and 𝐹20 respectively. Figure 5.13 exhibits the curves for 

composition functions 𝐹29 and 𝐹30. It is observed from the curves that OB-C-ALO outperforms 

other proposed variants in function 𝐹29 and function 𝐹30 however OB-L-ALO performs almost 

similar to OB-C-ALO for function 𝐹30.   

 

5.7.2.2 Analysis of all proposed variants 

This subsection elaborates the various analysis to investigate the performance of proposed 

versions of classical ALO. These analysis try to verify the global exploration and exploitation by 

applying different analysis metrics such as: (1) Trajectory analysis (2) Average distance between 

search agents before and after applying improvement strategies and (3) Elite convergence for 

analyzing the performance of proposed version. For this purpose a set of benchmark test 

functions of different characteristics have been used. All the experiments for analysis are 

performed by employing four search agents for 30 dimensions over 200 iterations and compared 

with same parameter setting. 

 

Analysis of trajectory 

It investigates the behaviour of trajectory of best (elite) candidate solution determined in each 

iteration whether it is able to approximate the nearby trajectory or positions to global optima. 

Figure 5.14 represents the trajectories of best antlion for all proposed algorithms. The curves 

show the enhanced exploration at early generations due to applied strategies except and after few 

generations, trajectories become steady. For unimodal (𝐹1,𝐹7) and multimodal (𝐹9, 𝐹11), the 

proposed OB-SAC-ALO exhibit abrupt exploration but gets closer to optima at later generations. 

However OB-C-LAO, OB-LF-ALO and Ob-ac-ALO become steady and stable at early 

generations. For fixed dimensional function 𝐹14  ,the average objective function values of OB-
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C-ALO and OB-SAC-ALO are better than classical ALO as shown in result table but the 

trajectory of the candidate solution is depicting abrupt behaviour initially but gets steady at later 

generations. For function 𝐹20, it is observed from the curves that all proposed algorithms are 

able to approximate this nearby positions of optima. The trajectories of OB-LF-ALO and OB-C-

ALO for composition functions 𝐹28 and 𝐹29 show highly abrupt behaviour where both of these 

algorithms are able to approximate the nearby position of optima at almost last generations in 

comparison to other algorithms.  

  

Trajectory analysis of average distance between search agents 

This analysis is performed by determining the average of absolute distance between the search 

agents or candidate solutions before and after applying the improvement strategies. The value of 

this distance is determined in each iteration. The obtained value is than compared among all the 

proposed version of classical ALO represented in terms of curves. The experiments are evaluated 

for 200 iterations over first variable by choosing a set of benchmark test functions containing 

two unimodal(𝐹1, 𝐹7),,two multimodal(𝐹9, 𝐹11),two fixed dimension multimodal(𝐹14, 𝐹20) 

and two composition (𝐹28,𝐹29) functions.to investigate the   performance of proposed 

algorithms.  

 The curves shown in Figure 5.15 depicts fluctuation of determined distances in initial 

generations. Then it gets smooth and steady once distance becomes lesser or closer to optimal 

solution at later generations. This behaviour is caused by using OBL integrated with exploitation 

adjustment parameter. For functions 𝐹1, 𝐹7, 𝐹9  and 𝐹11 the determined average distance shows 

steady behaviour around the optimal position for all the proposed algorithms except classical 

ALO. It exhibits that the obtained distance is closer to optima for proposed variants of ALO as 

compared to classical. The graph for function 𝐹14 shows that proposed OB-C-ALO and OB-

SAC-ALO algorithm determine closer distance at later generations after showing abrupt 

behaviour at initial generations. For function 𝐹20 shows uneven performance for all proposed 

algorithms except OB-L-ALO which shows steady and stable distance through all the iterations. 

The proposed algorithms OB-C-ALO,OB-LF ALO,OB-ac-ALO and OB-SAC-ALO exhibit 

unusual behaviour in spite of determining better average distance to the optima for function 𝐹28 

and 𝐹29 as compared to classical ALO.  However the results in terms of mean value and standard 

deviation of objective function values are better for proposed algorithms in comparison to 

classical ALO. Overall, this analysis establishes that the obtained average distance using 

proposed methods promise to accelerate the convergence. 
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Elite convergence curve 

These curves are drawn to investigate the convergence capability of elite candidate solutions over 

200 iterations. The same set of benchmark functions as chosen for trajectory and average distance 

are taken to analyze the behaviour of these curves. 

 The curves for elite convergence as depicted in Figure 5.16 clearly shows that the fitness 

of elite solution drops significantly starting from initial iterations for OB-LF-ALO followed by 

OB-C-ALO for functions 𝐹1 and 𝐹7. It shows that OB-LF-ALO outperforms other algorithm for 

function 𝐹1 and 𝐹7 as evident from the result tables as compared to other algorithms. The same 

pattern can be observed from the curves of functions 𝐹9 and 𝐹11. However,OB-ac-ALO,OB-

SAC-ALO and OB-C-ALO show better convergence for function 𝐹14. OB-C-ALO outperforms 

other algorithms for function 𝐹28 and shows better fitness value for elite. For function 𝐹29, OB-

C-ALO perform better and achieves best fitness value at later iterations though classical ALO 

performs better at initial generations. OB-ac-ALO also performs well and achieves same 

convergence as of OB-C-ALO at later iterations. This analysis validates high acceleration in 

convergence with the increase in number of iterations and tries efficiently to search global optima 

with more precision. The employability of applied techniques ensure the enhanced exploration 

and avoidance of local optima stagnation. The opposition based learning (OB) is capable of 

approximating the nearer solution to the best ant lion (elite) and ensures the acceleration in 

convergence towards a point.  

5.8 Conclusion  

In the first part of this chapter, a novel opposition based antlion optimizer with Cauchy 

distribution (OB-C-ALO) is proposed to improve the performance of classical ALO in terms of 

avoiding stagnation to local optima and convergence acceleration. The Cauchy distribution based 

random walk is capable of exploring search region in early generations followed by OBL 

mechanism with acceleration coefficient to improve local search at later generations. The 

obtained results on benchmark test functions authorize the superiority of proposed OB-C-ALO 

over classical ALO on unimodal, multimodal, fixed dimension multimodal and composition 

functions. The results on these functions are evident to show enhanced exploration and 

acceleration in convergence. 

 The wide analysis is also performed in terms of convergence curves, search history 

analysis, trajectory of best candidate solution, average distance between candidate solutions 

before and after applying improvement strategies and elite convergence curves. The search 

history of benchmark problems determine the searching behaviour of search agents before and 
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after applying new strategies as shown from contour diagram of test suit. The trajectories of best 

candidate solutions depicts the changes in movement of its position towards the global optima 

during evolution process. The determination of average distance between search agents is capable 

of quantifying the impact of opposition based learning (OBL) by using opposite and initially 

generated random candidate solution as the less average distance exhibits the nearer solutions to 

the optima. However, the applied strategy causes random walk to be more complex and 

computationally intensive which enhances processing time of proposed OB-C-ALO as compared 

to classical ALO.  

 The second part of the chapter describes the comparison among all the proposed variants 

namely OB-C-ALO, OB-LF-ALO, OB-ac-ALO, OB-SAC-ALO and OB-𝐿-ALO including 

classical ALO over a set of 31 benchmark test problems. It is evident from the results that three 

variants namely OB-C-ALO, OB-LF-ALO and OB-ac-ALO obtain exact global optima for 

eleven benchmark functions (𝐹1,𝐹2,𝐹3,𝐹4,𝐹9,𝐹11,𝐹16,𝐹17,𝐹18, 𝐹22, 𝐹23). For functions 𝐹5 

and 𝐹8(10 dimension) OB-C-ALO outperforms the other variants whereas OB-SAC-ALO 

performs better than other algorithms for functions 𝐹12 and 𝐹13. OB-LF-ALO performs best for 

function 𝐹14 and OB-𝐿-ALO outperforms all other variant for function 𝐹19, 𝐹20 and 𝐹21.  For 

composition functions, OB-C-ALO performs better for functions 𝐹24, 𝐹27, 𝐹29, 𝐹30 and 𝐹31. 

This comparison clearly demonstrates the importance of the statements of No Free Lunch 

Theorem. The performance order can be concluded as OB-C-ALO > OB-ac-ALO > OB-LF-

ALO > OB-SAC-ALO > OB-𝐿-ALO > ALO. 
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Table 5.1: Pseudo code of Proposed OB-C-ALO algorithm 

Input: Population Size N, Maximum iteration 𝑡𝑚𝑎𝑥,lower bound L, Upper bound U and dimension D 

 

Output: The best candidate solution  𝑆𝑒𝑙𝑖𝑡𝑒  

1 Randomly initialize the  initial  population N of ants  and  antlions 

2 Determine the objective( fitness) function  value  of  antlions 

3 Find out the  best(with min fitness)  antlion  as the  elite  𝑆𝑒𝑙𝑖𝑡𝑒  

4 Initialize iteration no. i𝑡𝑐𝑢𝑟𝑟=2 

5         while (𝒊𝒕𝒄𝒖𝒓𝒓 ≤ 𝒊𝒕𝒎𝒂𝒙) 

6                  for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

7                     Find an ant lion 𝑆𝑠𝑒𝑙 using Roulette wheel 

8 
                  Modify lower L and upper U boundaries with equations Eqs. 𝐿𝑑(𝑖𝑡) =

𝐿𝑑(𝑖𝑡)

𝐼
 and  𝑈𝑑(𝑖𝑡)=

𝑈𝑑(𝑖𝑡)

𝐼
) 

9                        for every dimension(𝒋 = 𝟏, 𝟐, 𝟑, … , 𝑫) 

10                             Perform random walk 𝑟𝑤𝐴(𝑖𝑡) around 𝑆𝑠𝑒𝑙  

11                         and 𝑟𝑤𝐸(𝑖𝑡) around 𝑆𝑒𝑙𝑖𝑡𝑒  using Cauchy distribution with Eq. 𝑟𝑤(𝑆𝐴,𝑛
𝑑 ) = [𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡1)-   

                       1), 𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡2)-1)… 𝑐𝑢𝑚𝑠𝑢𝑚(𝐶(𝑖𝑡𝑚𝑎𝑥)-1)]      
12 

                          Normalize random walk using Eqs𝑆𝐴,𝑛
𝑑 (𝑖𝑡) =   

(𝑆𝐴,𝑛
𝑑 (𝑖𝑡)−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 ))(𝑈𝑑(𝑖𝑡)−𝐿𝑑(𝑖𝑡))

max 𝑟𝑤(𝑆𝐴,𝑛
𝑑 )−min 𝑟𝑤(𝑆𝐴,𝑛

𝑑 )
+𝐿𝑑(𝑖𝑡)and  

                          𝑟𝑤(𝑆𝐴,𝑛
𝑑 )=[𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐶(𝑖𝑡1)- 1),𝑐𝑢𝑚𝑠𝑢𝑚(2∗ 𝐶(𝑖𝑡2)-1),…,𝑐𝑢𝑚𝑠𝑢𝑚(2*𝐶(𝑖𝑡𝑚𝑎𝑥)-1) 

13                   end for 

14                 Modify the position of ant  using Eq. 𝑆𝐴,𝑛
𝑑 (𝑖𝑡)=

𝑟𝑤𝐴(𝑖𝑡)+𝑟𝑤𝐸(𝑖𝑡)

2
 

15             end for 

16            Modify position of ant by applying acceleration parameter 𝑒𝑎𝑐   integrated 

17           with opposition based learning(OBL) model using  Eq.  𝑆𝐴,𝑖(𝑖𝑡) = 𝑒𝑎𝑐  × (𝐿𝑖 + 𝑈𝑖 −  𝑆𝑒𝑙𝑖𝑡𝑒(𝑖𝑡))   

18              for every ant(𝒊 = 𝟏, 𝟐, 𝟑, … , 𝑵) 

19                 Determine the fitness o f all ants 

20           end for 

21                Substitute an antlion with  its respective ant  if it becomes fitter using Eq. 

             𝑆𝐴𝐿,𝑗(𝑖𝑡) = 𝑆𝐴,𝑖(𝑖𝑡) 𝑖𝑓 𝑓(𝑆𝐴,𝑖(𝑖𝑡)) < 𝑓(𝑆𝐴𝐿,𝑗(𝑖𝑡)) 

22              Modify 𝑆𝑒𝑙𝑖𝑡𝑒   if an ant lion becomes fitter than the elite 

23             Increment iteration i.e. 𝑖𝑡𝑐𝑢𝑟𝑟=𝑖𝑡𝑐𝑢𝑟𝑟+1 

24       end while 

25 Return elite 

 

 

 

 

 

 

 

 

 

 



134 

 

 

 

Table 5.2 Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal functions  

(10 D) 

Function Methods Ave. Std. Dev. Min Max 

 

𝐹1 

ALO 7.870E-09 5.490E-09 2.390E-09 2.580E-08 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹2 

ALO 4.860E-01 8.850E-01 1.550E-05 2.800E+00 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹3 

ALO 8.310E-02 1.850E-01 1.360E-04 8.750E-01 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹4 

ALO 3.180E-03 6.160E-03 1.020E-04 3.290E-02 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹5 

ALO 6.810E+01 1.990E+02 1.020E-04 1.070E+03 

OB-C-ALO 2.040E-04 3.910E-04 1.370E-07 1.830E-03 

 

𝐹6 

ALO 8.390E-09 5.220E-09 2.150E-09 2.220E-08 

OB-C-ALO 4.580E-08 5.100E-08 2.870E-09 2.140E-07 

OB-L-ALO 3.320E-08 3.000E-08 7.360E-09 1.160E-07 

 

𝐹7 

ALO 2.210E-02 1.230E-02 1.810E-03 5.630E-02 

OB-C-ALO 2.660E-04 2.200E-04 9.950E-06 8.540E-04 

 

 

 

 

 

 

 

 

 

Table 5.3: Average, Standard Deviation, Minimum, and Maximum of objective function values of unimodal functions  

(30 D) 

Function Methods Ave. Std. Dev. Min Max 

 

𝐹1 

ALO 9.450E-06 5.540E-06 1.720E-06 2.110E-05 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹2 

ALO 3.650E+01 5.170E+01 2.090E-02 1.340E+02 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹3 

ALO 9.550E+02 5.080E+02 2.470E+02 2.160E+03 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹4 

ALO 1.210E+01 3.650E+00 4.630E+00 1.960E+01 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹5 

ALO 1.040E+02 3.120E+02 1.640E+01 1.740E+03 

OB-C-ALO 3.070E-03 4.720E-03 1.580E-06 1.950E-02 

 

𝐹6 

ALO 9.490E-06 6.100E-06 1.320E-06 2.920E-05 

OB-C-ALO 2.430E-05 1.650E-05 2.860E-06 6.450E-05 

 

𝐹7 

ALO 1.100E-01 3.570E-02 5.700E-02 2.250E-01 

OB-C-ALO 2.160E-04 1.880E-04 7.520E-06 6.610E-04 
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Table 5.4 Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal functions  

(10D) 
Function Methods Ave. Std. Dev. Min Max 

 

𝐹8 

ALO -2.470E+03 4.260E+02 -3.730E+03 -1.920E+03 

OB-C-ALO -2.970E+03 6.230E+02 -3.970E+03 -2.090E+03 

 

𝐹9 

ALO 2.480E+01 1.080E+01 6.960E+00 5.070E+01 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹10 

ALO 3.240E-01 5.540E-01 2.070E-05 1.650E+00 

OB-C-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

 

𝐹11 

ALO 2.140E-01 8.720E-02 6.640E-02 4.060E-01 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-L-ALO 7.210E-10 2.110E-09 0.000E+00 9.600E-09 

 

𝐹12 

ALO 1.790E+00 1.670E+00 8.230E-09 5.610E+00 

OB-C-ALO 1.490E-08 1.410E-08 7.020E-10 5.600E-08 

 

𝐹13 

ALO 1.800E-03 4.940E-03 3.840E-09 2.100E-02 

OB-C-ALO 2.930E-03 4.940E-03 3.240E-09 1.100E-02 

  
 

 

 

 

 

 

 

 

Table 5.5 Average, Standard Deviation, Minimum, and Maximum of objective function values of multimodal functions 

 (30D) 

Function Methods Ave. Std. Dev. Min Max 

 

𝐹8 

ALO -5.440E+03 4.190E+01 -5.540E+03 -5.420E+03 

OB-C-ALO -1.180E+04 1.420E+03 -1.260E+04 -8.440E+03 

 

𝐹9 

ALO 1.970E+00 8.390E-01 5.890E-04 3.520E+00 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹10 

ALO 1.870E+00 6.900E-01 1.020E-03 3.090E+00 

OB-C-ALO 8.880E-16 4.010E-31 8.880E-16 8.880E-16 

 

𝐹11 

ALO 1.190E-02 1.260E-02 3.470E-04 3.860E-02 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

 

𝐹12 

ALO 1.000E+01 4.340E+00 5.750E+00 2.330E+01 

OB-C-ALO 1.090E-06 6.340E-07 3.560E-07 3.560E-06 

 

𝐹13 

ALO 1.320E+00 3.150E+00 1.140E-05 1.050E+01 

OB-C-ALO 2.550E-03 5.430E-03 4.310E-06 2.100E-02 
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Table 5.6: Average, Standard Deviation, Minimum, and Maximum of objective function values of fixed dimensional 

multimodal functions 

Function Methods Ave. Std. Dev. Min Max 

 

𝐹14 

ALO 1.790E+00 1.340E+00 1.950E-08 4.950E+00 

OB-C-ALO 1.490E+00 7.700E-01 9.980E-01 3.970E+00 

 

𝐹15 

ALO 4.180E-03 7.370E-03 5.550E-04 2.040E-02 

OB-C-ALO 3.380E-03 6.790E-03 3.080E-04 2.050E-02 

 

𝐹16 

ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

OB-C-ALO -1.030E+00 6.780E-16 -1.030E+00 -1.030E+00 

 

𝐹17 

ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

OB-C-ALO 3.980E-01 1.690E-16 3.980E-01 3.980E-01 

 

𝐹18 

ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

OB-C-ALO 3.000E+00 0.000E+00 3.000E+00 3.000E+00 

 

𝐹19 

ALO -6.280E+00 2.930E+00 -1.020E+01 -2.630E+00 

OB-C-ALO -9.230E+00 2.140E+00 -1.020E+01 -2.630E+00 

 

𝐹20 

ALO -6.670E+00 3.420E+00 -1.040E+01 -1.840E+00 

OB-C-ALO -8.720E+00 2.860E+00 -1.040E+01 -3.720E+00 

 

𝐹21 

ALO -6.270E+00 3.660E+00 -1.050E+01 -1.860E+00 

OB-C-ALO -9.190E+00 2.780E+00 -1.050E+01 -2.420E+00 

 

𝐹22 

ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

OB-C-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

 

𝐹23 

ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

OB-C-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

 

 

 

 

 

Table 5.7: Average, Standard Deviation, Minimum, and Maximum of objective function values of composition 

benchmark functions 

Function Methods Ave. Std. Dev. Min Max 

 

𝐹24 

OB-C-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

ALO 2.630E+03 1.275E-03 2.630E+03 2.630E+03 

 

𝐹25 

OB-C-ALO 2.545E+03 2.516E+03 2.600E+03 2.416E+01 

ALO 2.538E+03 2.512E+03 2.577E+03 1.477E+01 

 

𝐹26 

OB-C-ALO 2.693E+03 1.398E+01 2.647E+03 2.700E+03 

ALO 2.680E+03 2.430E+01 2.630E+03 2.700E+03 

 

𝐹27 

OB-C-ALO 2.700E+03 1.142E-01 2.700E+03 2.701E+03 

ALO 2.700E+03 1.090E-01 2.700E+03 2.700E+03 

 

𝐹28 

OB-C-ALO 2.865E+03 7.594E+01 2.702E+03 2.900E+03 

ALO 3.010E+03 1.440E+02 2.700E+03 3.110E+03 

 

𝐹29 

OB-C-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

ALO 3.490E+03 2.920E+02 3.170E+03 3.930E+03 

 

𝐹30 

OB-C-ALO 1.387E+05 4.681E+05 3.100E+03 4.681E+05 

ALO 8.270E+05 1.520E+06 3.100E+03 3.670E+06 

 

𝐹31 

OB-C-ALO 3.823E+03 2.735E+02 3.500E+03 4.641E+03 

ALO 4.420E+03 4.140E+02 3.880E+03 6.170E+03 
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Table 5.8: P-values of Wilcoxon ranksum test 

Function OB-C-ALO vs ALO 

p-values conclusion 

𝐹1 1.21E-12 + 

𝐹2 1.21E-12 + 

𝐹3 1.21E-12 + 

𝐹4 1.21E-12 + 

𝐹5 3.02E-11 + 

𝐹6 2.43E-05 - 

𝐹7 3.02E-11 + 

𝐹8 4.24E-12 + 

𝐹9 1.20E-12 + 

𝐹10 1.18E-12 + 

𝐹11 1.21E-12 + 

𝐹12 3.01E-11 + 

𝐹13 5.52E-08 + 

𝐹14 3.18E-01 - 

𝐹15 2.64E-01 - 

𝐹16 N/A = 

𝐹17 N/A = 

𝐹18 N/A = 

𝐹19 6.10E-03 + 

𝐹20 9.30E-01 - 

𝐹21 3.74E-02 + 

𝐹22 N/A = 

𝐹23 N/A = 

𝐹24 1.36E-20 + 

𝐹25 3.15E-01 - 

𝐹26 5.20E-03 - 

𝐹27 9.97E-02 + 

𝐹28 2.71E-10 + 

𝐹29 1.39E-20 + 

𝐹30 8.95E-05 + 

𝐹31 3.64E-13 + 

25/31(20 ‘+’ , 5 ‘=’) 
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Table 5.9: Comparison of results on unimodal functions (10D) 

Function Methods Ave. Std. Dev. Min Max 

 

 

𝐹1 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 7.330E-33 0.000E+00 2.680E-32 1.130E-31 

OB-𝐿-ALO 1.090E-11 0.000E+00 3.860E-11 2.050E-10 

ALO 7.870E-09 2.390E-09 5.490E-09 2.580E-08 

 

 

𝐹2 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 1.850E-18 0.000E+00 1.010E-17 5.550E-17 

ALO 4.860E-01 1.550E-05 8.850E-01 2.800E+00 

 

 

𝐹3 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 1.730E-32 0.000E+00 6.950E-32 3.450E-31 

ALO 8.310E-02 1.360E-04 1.850E-01 8.750E-01 

 

 

𝐹4 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 1.160E-15 2.230E-21 3.270E-15 1.730E-14 

OB-𝐿-ALO 4.090E-06 0.000E+00 9.620E-06 3.220E-05 

ALO 3.180E-03 1.020E-04 6.160E-03 3.290E-02 

 

 

𝐹5 

OB-C-ALO 2.040E-04 1.370E-07 3.910E-04 1.830E-03 

OB-LF-ALO 6.2900E-02 2.9200E-05 1.0700E-01 4.0300E-01 

OB-ac-ALO 2.270E-04 1.410E-03 3.680E-04 2.400E-07 

OB-SAC-ALO 4.080E-04 7.610E-07 6.500E-04 3.040E-03 

OB-𝐿-ALO 5.460E-04 1.250E-07 1.600E-03 8.630E-03 

ALO 6.810E+01 1.020E-04 1.990E+02 1.070E+03 

 

 

𝐹6 

OB-C-ALO 4.580E-08 2.870E-09 5.100E-08 2.140E-07 

OB-LF-ALO 1.200E-03 5.900E-06 1.290E-03 5.100E-03 

OB-ac-ALO 2.920E-08 5.320E-09 4.920E-08 2.640E-07 

OB-SAC-ALO 1.250E-08 3.240E-09 1.610E-08 8.530E-08 

OB-𝐿-ALO 3.320E-08 7.360E-09 3.000E-08 1.160E-07 

ALO 8.390E-09 2.150E-09 5.220E-09 2.220E-08 

 

 

𝐹7 

OB-C-ALO 2.660E-04 9.950E-06 2.200E-04 8.540E-04 

OB-LF-ALO 3.1100E-04 1.6700E-05 4.1500E-04 1.9900E-03 

OB-ac-ALO 2.620E-04 6.980E-04 1.920E-04 9.880E-06 

OB-SAC-ALO 4.030E-04 1.200E-05 3.930E-04 1.710E-03 

OB-𝐿-ALO 2.850E-04 3.890E-05 2.490E-04 1.330E-03 

ALO 2.210E-02 1.810E-03 1.230E-02 5.630E-02 
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Table 5.10: Comparison of results on unimodal functions (30D) 

Function Methods Ave. Std. Dev. Min Max 

 

 

𝐹1 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 2.280E-54 0.000E+00 1.250E-53 6.830E-53 

OB-𝐿-ALO 1.010E-09 0.000E+00 4.630E-09 2.530E-08 

ALO 9.450E-06 1.720E-06 5.540E-06 2.110E-05 

 

 

𝐹2 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 5.980E-05 0.000E+00 4.260E-05 1.090E-04 

ALO 3.650E+01 2.090E-02 5.170E+01 1.340E+02 

 

 

𝐹3 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 1.160E-29 0.000E+00 5.950E-29 3.260E-28 

ALO 9.550E+02 2.470E+02 5.080E+02 2.160E+03 

 

 

𝐹4 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 1.090E-05 0.000E+00 2.290E-05 7.130E-05 

ALO 1.210E+01 4.630E+00 3.650E+00 1.960E+01 

 

 

𝐹5 

OB-C-ALO 3.070E-03 1.580E-06 4.720E-03 1.950E-02 

OB-LF-ALO 9.590E-03 2.310E-04 1.280E-02 4.740E-02 

OB-ac-ALO 5.530E-04 2.950E-03 6.800E-04 1.160E-05 

OB-SAC-ALO 2.090E-03 1.990E-04 1.930E-03 8.050E-03 

OB-𝐿-ALO 5.460E-03 5.540E-06 7.170E-03 3.220E-02 

ALO 1.040E+02 1.640E+01 3.120E+02 1.740E+03 

 

 

𝐹6 

OB-C-ALO 2.430E-05 2.860E-06 1.650E-05 6.450E-05 

OB-LF-ALO 5.860E-04 3.820E-05 5.890E-04 2.200E-03 

OB-ac-ALO 1.820E-05 7.350E-05 1.600E-05 1.140E-06 

OB-SAC-ALO 1.760E-05 3.160E-06 1.030E-05 4.360E-05 

OB-𝐿-ALO 3.230E-05 7.980E-06 1.840E-05 7.620E-05 

ALO 9.490E-06 1.320E-06 6.100E-06 2.920E-05 

 

 

𝐹7 

OB-C-ALO 2.160E-04 7.520E-06 1.880E-04 6.610E-04 

OB-LF-ALO 9.730E-05 1.480E-06 8.690E-05 3.090E-04 

OB-ac-ALO 1.670E-04 3.760E-04 1.020E-04 7.520E-06 

OB-SAC-ALO 2.710E-04 1.500E-05 2.670E-04 1.050E-03 

OB-𝐿-ALO 2.780E-04 9.410E-06 2.530E-04 1.240E-03 

ALO 1.100E-01 5.700E-02 3.570E-02 2.250E-01 
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Table 5.11: Comparison of results on multimodal functions (10D) 

Function Methods Ave. Std. Dev. Min Max 

 

 

𝐹8 

OB-C-ALO -2.970E+03 -3.970E+03 6.230E+02 -2.090E+03 

OB-LF-ALO -1.3400E+03 -1.3600E+03 8.6100E+00 -1.3300E+03 

OB-ac-ALO -2.880E+03 -1.970E+03 6.160E+02 -3.970E+03 

OB-SAC-ALO -2.430E+03 -3.040E+03 2.820E+02 -1.970E+03 

OB-𝐿-ALO -2.450E+03 -3.320E+03 4.230E+02 -1.920E+03 

ALO -2.470E+03 -3.730E+03 4.260E+02 -1.920E+03 

 

 

𝐹9 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 5.070E-10 0.000E+00 6.450E-10 2.240E-09 

ALO 2.480E+01 6.960E+00 1.080E+01 5.070E+01 

 

 

𝐹10 

OB-C-ALO 8.880E-16 8.880E-16 4.010E-31 8.880E-16 

OB-LF-ALO 8.8800E-16 8.8800E-16 4.0100E-31 8.8800E-16 

OB-ac-ALO 8.880E-16 8.880E-16 4.010E-31 8.880E-16 

OB-SAC-ALO 1.100E-14 4.440E-15 1.110E-14 4.000E-14 

OB-𝐿-ALO 1.540E-05 8.880E-16 8.100E-06 2.850E-05 

ALO 3.240E-01 2.070E-05 5.540E-01 1.650E+00 

 

 

𝐹11 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 7.210E-10 0.000E+00 2.110E-09 9.600E-09 

ALO 2.140E-01 6.640E-02 8.720E-02 4.060E-01 

 

 

𝐹12 

OB-C-ALO 2.91E-08 1.55E-09 3.48E-08 1.73E-07 

OB-LF-ALO 1.3000E-03 2.3000E-09 2.2500E-03 9.1300E-03 

OB-ac-ALO 2.460E-08 2.100E-02 2.300E-08 1.250E-09 

OB-SAC-ALO 1.490E-08 7.020E-10 1.410E-08 5.600E-08 

OB-𝐿-ALO 1.630E-08 4.710E-32 2.410E-08 1.230E-07 

ALO 1.790E+00 8.230E-09 1.670E+00 5.610E+00 

 

 

𝐹13 

OB-C-ALO 2.930E-03 3.240E-09 4.940E-03 1.100E-02 

OB-LF-ALO 5.7200E-03 1.5800E-06 1.2800E-02 6.3500E-02 

OB-ac-ALO 1.470E-03 1.100E-02 3.800E-03 1.070E-08 

OB-SAC-ALO 2.870E-03 1.340E-08 6.220E-03 2.100E-02 

OB-𝐿-ALO 6.820E-08 1.350E-32 9.610E-08 3.800E-07 

ALO 1.800E-03 3.840E-09 4.940E-03 2.100E-02 
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Table 5.12: Comparison of results on multimodal functions (30D) 

Function Methods Ave. Std. Dev. Min Max 

 

 

𝐹8 

OB-C-ALO -1.180E+04 -1.260E+04 1.420E+03 -8.440E+03 

OB-LF-ALO -1.080E+04 -1.2600E+04 3.7800E+03 -2.1300E+03 

OB-ac-ALO -1.250E+04 -1.240E+04 9.340E+01 -1.260E+04 

OB-SAC-ALO -6.490E+03 -6.540E+03 7.260E+01 -6.270E+03 

OB-𝐿-ALO -5.980E+03 -1.260E+04 1.710E+03 -5.420E+03 

ALO -5.440E+03 -5.540E+03 4.190E+01 -5.420E+03 

 

 

𝐹9 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 1.890E-15 0.000E+00 1.040E-14 5.680E-14 

OB-𝐿-ALO 3.010E-09 0.000E+00 4.820E-09 1.570E-08 

ALO 1.970E+00 5.890E-04 8.390E-01 3.520E+00 

 

 

𝐹10 

OB-C-ALO 8.880E-16 8.880E-16 4.010E-31 8.880E-16 

OB-LF-ALO 8.880E-16 8.8800E-16 4.0100E-31 8.8800E-16 

OB-ac-ALO 8.880E-16 8.880E-16 4.010E-31 8.880E-16 

OB-SAC-ALO 4.440E-15 4.440E-15 4.010E-30 4.440E-15 

OB-𝐿-ALO 2.100E-05 8.880E-16 1.460E-05 4.200E-05 

ALO 1.870E+00 1.020E-03 6.900E-01 3.090E+00 

 

 

𝐹11 

OB-C-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-LF-ALO 0.000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

OB-ac-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-SAC-ALO 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

OB-𝐿-ALO 6.320E-09 0.000E+00 1.270E-08 5.220E-08 

ALO 1.190E-02 3.470E-04 1.260E-02 3.860E-02 

 

 

𝐹12 

OB-C-ALO 1.090E-06 3.560E-07 6.340E-07 3.560E-06 

OB-LF-ALO 3.200E-05 1.4600E-08 8.4100E-05 4.5400E-04 

OB-ac-ALO 8.360E-07 3.370E-06 6.410E-07 1.780E-07 

OB-SAC-ALO 6.650E-07 1.470E-07 3.070E-07 1.380E-06 

OB-𝐿-ALO 6.440E-07 7.190E-08 5.810E-07 2.100E-06 

ALO 1.000E+01 5.750E+00 4.340E+00 2.330E+01 

 

 

𝐹13 

OB-C-ALO 2.550E-03 4.310E-06 5.430E-03 2.100E-02 

OB-LF-ALO 1.890E-04 1.7200E-07 3.9000E-04 1.9400E-03 

OB-ac-ALO 2.870E-03 3.090E-02 6.720E-03 3.830E-06 

OB-SAC-ALO 1.480E-03 2.100E-06 3.810E-03 1.100E-02 

OB-𝐿-ALO 6.980E-06 1.350E-32 5.330E-06 2.050E-05 

ALO 1.320E+00 1.140E-05 3.150E+00 1.050E+01 
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Table 5.13: Comparison of results on fixed dimension multimodal benchmark functions (Continued…)  

Function Methods Ave. Std. Dev. Min Max 

 

 

𝐹14 

OB-C-ALO 1.490E+00 9.980E-01 7.700E-01 3.970E+00 

OB-LF-ALO 1.300E+00 9.9800E-01 5.3100E-01 2.9800E+00 

OB-ac-ALO 1.860E+00 6.900E+00 1.310E+00 9.980E-01 

OB-SAC-ALO 1.490E+00 9.980E-01 7.700E-01 3.970E+00 

OB-𝐿-ALO 1.820E+00 9.980E-01 1.080E+00 4.950E+00 

ALO 1.790E+00 1.950E-08 1.340E+00 4.950E+00 

 

 

𝐹15 

OB-C-ALO 3.380E-03 3.080E-04 6.790E-03 2.050E-02 

OB-LF-ALO 1.510E-03 5.100E-04 3.570E-03 2.040E-02 

OB-ac-ALO 3.380E-03 2.050E-02 6.790E-03 5.980E-04 

OB-SAC-ALO 3.380E-03 3.080E-04 6.790E-03 2.050E-02 

OB-𝐿-ALO 8.210E-04 4.190E-04 2.050E-04 1.210E-03 

ALO 4.180E-03 5.550E-04 7.370E-03 2.040E-02 

 

 

𝐹16 

OB-C-ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

OB-LF-ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

OB-ac-ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

OB-SAC-ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

OB-𝐿-ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

ALO -1.030E+00 -1.030E+00 6.780E-16 -1.030E+00 

 

 

𝐹17 

OB-C-ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

OB-LF-ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

OB-ac-ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

OB-SAC-ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

OB-𝐿-ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

ALO 3.980E-01 3.980E-01 1.690E-16 3.980E-01 

 

 

𝐹18 

OB-C-ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

OB-LF-ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

OB-ac-ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

OB-SAC-ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

OB-𝐿-ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

ALO 3.000E+00 3.000E+00 0.000E+00 3.000E+00 

 

 

𝐹19 

OB-C-ALO -9.230E+00 -1.020E+01 2.140E+00 -2.630E+00 

OB-LF-ALO -7.790E+00 -1.0200E+01 2.8100E+00 -2.6300E+00 

OB-ac-ALO -7.540E+00 -2.630E+00 2.690E+00 -1.020E+01 

OB-SAC-ALO -8.970E+00 -1.020E+01 2.170E+00 -5.100E+00 

OB-𝐿-ALO -9.900E+00 -1.020E+01 1.370E+00 -2.630E+00 

ALO -6.280E+00 -1.020E+01 2.930E+00 -2.630E+00 

 

 

𝐹20 

OB-C-ALO -8.720E+00 -1.040E+01 2.860E+00 -3.720E+00 

OB-LF-ALO -8.520E+00 -1.040E+01 2.970E+00 -2.770E+00 

OB-ac-ALO -7.900E+00 -2.770E+00 2.960E+00 -1.040E+01 

OB-SAC-ALO -8.950E+00 -1.040E+01 2.710E+00 -2.770E+00 

OB-𝐿-ALO -1.040E+01 -1.040E+01 7.230E-15 -1.040E+01 

ALO -6.670E+00 -1.040E+01 3.420E+00 -1.840E+00 
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Table 5.13: (Continued) 

 

 

𝐹21 

OB-C-ALO -9.190E+00 -1.050E+01 2.780E+00 -2.420E+00 

OB-LF-ALO -7.100E+00 -1.050E+01 3.580E+00 -2.420E+00 

OB-ac-ALO -7.470E+00 -2.420E+00 3.410E+00 -1.050E+01 

OB-SAC-ALO -8.080E+00 -1.050E+01 3.350E+00 -2.420E+00 

OB-𝐿-ALO -1.050E+01 -1.050E+01 9.030E-15 -1.050E+01 

ALO -6.270E+00 -1.050E+01 3.660E+00 -1.860E+00 

 

 

𝐹22 

OB-C-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

OB-LF-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

OB-ac-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

OB-SAC-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

OB-𝐿-ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

ALO -3.863E+00 -3.863E+00 3.160E-15 -3.863E+00 

 

 

𝐹23 

OB-C-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

OB-LF-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

OB-ac-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

OB-SAC-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

OB-𝐿-ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 

ALO -3.322E+00 -3.322E+00 1.810E-15 -3.322E+00 
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Table 5.14: Comparison of results on composition functions 

Function Methods Ave. Stan.  Dev. Min. Max. 

 

 

𝐹24 

OB-C-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

OB-LF-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

OB-ac-ALO 2.500E+03 0.000E+00 2.500E+03 2.500E+03 

OB-SAC-ALO 2.630E+03 3.270E-04 2.630E+03 2.630E+03 

OB-𝐿-ALO 2.546E+03 6.248E+01 2.500E+03 2.630E+03 

ALO 2.630E+03 1.275E-03 2.630E+03 2.630E+03 

 

 

𝐹25 

OB-C-ALO 2.545E+03 2.516E+03 2.600E+03 2.416E+01 

OB-LF-ALO 2.600E+03 7.066E-01 2.596E+03 2.600E+03 

OB-ac-ALO 2.540E+03 2.017E+01 2.518E+03 2.600E+03 

OB-SAC-ALO 2.536E+03 1.312E+01 2.518E+03 2.580E+03 

OB-𝐿-ALO 2.690E+03 1.470E+01 2.650E+03 2.700E+03 

ALO 2.538E+03 2.512E+03 2.577E+03 1.477E+01 

 

 

𝐹26 

OB-C-ALO 2.693E+03 1.398E+01 2.647E+03 2.700E+03 

OB-LF-ALO 2.700E+03 4.349E-01 2.697E+03 2.700E+03 

OB-ac-ALO 2.690E+03 2.100E+01 2.620E+03 2.700E+03 

OB-SAC-ALO 2.680E+03 2.320E+01 2.620E+03 2.700E+03 

OB-𝐿-ALO 2.690E+03 1.470E+01 2.650E+03 2.700E+03 

ALO 2.680E+03 2.430E+01 2.630E+03 2.700E+03 

 

 

𝐹27 

OB-C-ALO 2.700E+03 1.142E-01 2.700E+03 2.701E+03 

OB-LF-ALO 2.705E+03 9.557E-02 2.705E+03 2.705E+03 

OB-ac-ALO 2.700E+03 1.100E-01 2.700E+03 2.700E+03 

OB-SAC-ALO 2.700E+03 1.040E-01 2.700E+03 2.700E+03 

OB-𝐿-ALO 2.700E+03 1.030E-01 2.700E+03 2.700E+03 

ALO 2.700E+03 1.090E-01 2.700E+03 2.700E+03 

 

 

𝐹28 

OB-C-ALO 2.865E+03 7.594E+01 2.702E+03 2.900E+03 

OB-LF-ALO 2.900E+03 0.000E+00 2.900E+03 2.900E+03 

OB-ac-ALO 2.840E+03 9.170E+01 2.700E+03 2.900E+03 

OB-SAC-ALO 2.970E+03 1.720E+02 2.700E+03 3.100E+03 

OB-𝐿-ALO 2.940E+03 1.640E+02 2.700E+03 3.100E+03 

ALO 3.010E+03 1.440E+02 2.700E+03 3.110E+03 

 

 

𝐹29 

OB-C-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

OB-LF-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

OB-ac-ALO 3.000E+03 0.000E+00 3.000E+03 3.000E+03 

OB-SAC-ALO 3.480E+03 2.950E+02 3.160E+03 3.890E+03 

OB-𝐿-ALO 3.220E+03 1.230E+02 3.000E+03 3.710E+03 

ALO 3.490E+03 2.920E+02 3.170E+03 3.930E+03 

 

 

𝐹30 

OB-C-ALO 1.387E+05 4.681E+05 3.100E+03 4.681E+05 

OB-LF-ALO 4.224E+06 1.406E+06 3.100E+03 4.755E+06 

OB-ac-ALO 7.220E+05 1.470E+06 3.100E+03 3.670E+06 

OB-SAC-ALO 7.220E+05 1.470E+06 3.100E+03 3.670E+06 

OB-𝐿-ALO 1.050E+05 4.100E+05 3.100E+03 1.730E+06 

ALO 8.270E+05 1.520E+06 3.100E+03 3.670E+06 

 

 

𝐹31 

OB-C-ALO 3.823E+03 2.735E+02 3.500E+03 4.641E+03 

OB-LF-ALO 5.623E+03 5.444E+02 5.406E+03 7.653E+03 

OB-ac-ALO 4.460E+03 3.980E+02 3.880E+03 6.190E+03 

OB-SAC-ALO 4.460E+03 3.980E+02 3.880E+03 6.190E+03 

OB-𝐿-ALO 3.790E+03 2.530E+02 3.500E+03 4.470E+03 

ALO 4.420E+03 4.140E+02 3.880E+03 6.170E+03 
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Figure 5.1: Generation of random numbers using Uniform and Cauchy distribution 
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Figure 5.2: Convergence behaviour on three of the unimodal functions 𝐹1, 𝐹3 and 𝐹7 
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Figure 5.3: Convergence behaviour on three multimodal functions 𝐹9, 𝐹10 and 𝐹11 

 

  

Figure 5.4: Convergence behaviour on two fixed dimension multimodal functions  𝐹14 and 𝐹20 

2 10 50 100 200 300 500 700 1000
10

-15

10
-10

10
-5

10
0

10
5

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F9

 

 

OB-C-ALO

ALO

2 10 50 100 200 300 500 700 1000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F10

 

 

OB-C-ALO

ALO

2 10 50 100 200 300 500 700 1000
10

-20

10
-15

10
-10

10
-5

10
0

10
5

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F11

 

 

OB-C-ALO

ALO

2 10 50 100 200 300 500 700 1000
10

0

10
1

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F14

 

 

OB-C-ALO

ALO

2 10 50 100 200 300 500 700 1000

-10
0

No. of Generations

A
v
e

ra
g

e
 B

e
s
t 
S

o
 F

a
r

Function F20

 

 

OB-C-ALO

ALO



148 

 

 

 

 

 

  

 

Figure 5.5: Convergence behaviour on three composition functions 𝐹29,𝐹30 and 𝐹31 
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Figure 5.6: Search history analysis of functions 𝐹3 and 𝐹11 

 

 

 

 

 

 

X-axis 

Y
-a

x
is

 

Search history of F3 
Square:-ALO, Asterisk:-OB-C-ALO 

  

  

-100 -50 0 50 100 
-100 

-50 

0 

50 

100 

X-axis 

Y
-a

x
is

 

Search history of F11 
Square:-ALO, Asterisk:-OB-C-ALO 

  

  

-400 -200 0 200 400 600 
-600 

-400 

-200 

0 

200 

400 

600 



150 

 

  

  

  

Figure 5.7: Trajectories of  elite antlion 
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Figure 5.7: (Continued) 
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Figure 5.8: Trajectory analysis of average distance between search agents 
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Figure 5.8: (Continued) 
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Figure 5.9: Elite convergence curves 
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Figure 5.9: (Continued) 
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Figure 5.10: Convergence behaviour on three of the unimodal functions 𝐹1, 𝐹3 and 𝐹7 

 

  

Figure 5.11 : Convergence behaviour on two of the multimodal functions 𝐹10 and 𝐹11 
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Figure 5.12: Convergence behaviour on two of the fixed dimensional multimodal functions 𝐹14 and 

𝐹20 

 

 

  

Figure 5.13: Convergence behaviour on two of the composition functions 𝐹29 and 𝐹31 
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Figure 5.14: Trajectories of  elite antlion 
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Figure 5.14: (Continued) 
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Figure 5.15: Trajectory analysis of average distance between search agents 
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Figure 5.15: (Continued) 
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Figure 5.16: Elite convergence curves 
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Figure 5.16: (Continued) 
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CHAPTER 6 

Order Reduction of High Order Continuous Linear Time Invariant System 

using Antlion Optimizer and its Modified Variants 

 

The Objective of this chapter is to investigate the capability of the Antlion optimizer and its 

proposed variants to solve a real life problem in the field of Electrical engineering. The problem 

is to reduce the order of complex continuous liner time invariant system into lower order keeping 

system as stable while it is in transient state. 

6.1 Introduction 

In the field of power system and control engineering, it is necessary to minimize the complexities 

of high order continuous linear time invariant systems. This process can be accomplished by 

applying order reduction techniques to obtain steady state while the system is in transient or 

dynamic condition. This problem can be seen as an optimization problem of minimizing the error 

between original high order and reduced order system. In this chapter, this problem is dealt using 

classical ALO and its proposed variants in this thesis to reduce the order of complex system. For 

this purpose, integral square error (ISE) is chosen to be minimized as an objective function to 

verify the performance. Three well known single input single output (SISO) problems of varying 

orders are considered in this chapter and the results are obtained using classical ALO and its 

variants which are further compared with the existing techniques of order reduction. The obtained 

results using proposed algorithms are found to be better as compared to other order reduction 

techniques available in literature. 

 The chapter is organized as follows: Section 6.2 describes the model order reduction, 

related literature and basic definitions. Section 6.3 formalizes the order reduction problem as an 

optimization problem including pseudo code and computational complexity. Section 6.4 

illustrates the various SISO problems of varying order including obtained results discussion and 

analysis. Section 6.5 represents conclusive remarks. 

____________________________________________________________________________ 

Partial contents of this chapter has been published as: 

 Dinkar, S. K., & Deep, K. (2018). Accelerated Opposition-Based Antlion Optimizer with Application 

to Order Reduction of Linear Time-Invariant Systems. Arabian Journal for Science and 

Engineering, 44(3), 2213-2241. (SCIE, IF-1.092). 
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6.2 Model Order Reduction Problem 

Large systems are represented in the form of complex high order differential equations in the 

area of control system engineering. There are lot of difficulties while dealing and analyzing these 

systems [133]. This situation originates the spirit of approximating high order continuous linear 

time invariant complex system into corresponding low order systems [134]. In reality, reduction 

of order is very important as the attained system after transformation must be stable [135]. 

Davison [136] in 1966 proposed the very first technique of model order reduction and later 

updated by Chidambara[137-139] in 1967. Few techniques were proposed based on minimal 

realization [140-143]. Some other popular methods such as Aggregation method [144], Padé 

approximation [145], Routh approximation [146], Moment matching technique [147] and Routh 

stability technique [148] etc. which describe the effective employment of high order reduction in 

to efficient low order reduced system.  

 On the contrary, it is observed that sometimes the model may be restricted in non-minimal 

phase [149]. This inspired researcher and practitioners to use optimization techniques to remove 

this restriction. In reduction of high order system, the optimization techniques are utilized to 

minimize the integral square errors between the transient parts of high and low order reduced 

systems [150-151].  

 The increasing popularity and efficiency to solve highly complex real-life applications 

using nature inspired optimization algorithms and effective implementation to this problem is 

found to be a good practice [134]. Minimization of error is one method to be utilized while 

reducing higher order system into corresponding lower order system. Integral square error (ISE) 

is one of the measures to optimize during this process as objective function to optimization 

technique [152-153]. Though the other performance metrics such as integral absolute 

error(IAE),integral time squared error(ITSE) etc. are also available but in this chapter integral 

square error(ISE) is utilized due to its ability in diminishing huge error in stable and 

dynamic(transient) state. 

 With the above reasons, the proposed variants of antlion optimizer (ALO)are employed 

for reduction of high order complex system into low order system while using ISE as 

objective(fitness)function. The numerator and denominator of transfer function of reduced order 

system are determined using the same variant of ALO. Number of search agents are fixed as 30 

with the termination criteria as maximum number of iteration which is chosen as 200. The lower 

and upper bound for each problem are chosen 0.005 and 4 respectively. 

file:///C:/Users/Sunil%20Dinkar/AppData/Roaming/Microsoft/Word/CHAPTER%207.docx
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6.2.1 Basic Definitions 

Model order reduction [134]  

Model order reduction can be defined as follows: 

Definition : Assume that 𝑃(𝑠): 𝑥 → 𝑦 be transfer function depicting a system of high order  

𝑛,then the order reduction method determines the numerator and denominator coefficient values 

of a reduced order transfer function 𝑃(𝑠): 𝑥 → �̃�  with order �̃� such that �̃� <  𝑛 implying  for the 

same input 𝑥(𝑡),the obtained output is �̃�(𝑡) ≈ 𝑦(𝑡). 

Single Input Single Output (SISO) System [134] 

The transfer function form of  𝑛th original higher order continuous linear time invariant system  

can be depicted as:  

 𝑃(𝑠)=
∑ 𝑎𝑧𝑠𝑧𝑚

𝑧=0

∑ 𝑏𝑧𝑠𝑧𝑛
𝑧=0

=
𝑎0+𝑎1𝑠+𝑎2 𝑠

2+𝑎3 𝑠
3+⋯+𝑎𝑚 𝑠

𝑚

𝑏0+𝑏1𝑠+𝑏2 𝑠2+𝑏3 𝑠3+⋯+𝑏𝑛 𝑠𝑛                (6.1) 

where 𝑚 ≤ 𝑛 and 𝑧, 𝑚, 𝑛 ∈ 𝐼 and the system is depicted in eq. (6.1)  

 The system shown in eq. (6.1) is a “bounded input bounded output(BIBO) stable 

continuous” high order system of order 𝑛 in actual form; 𝑎𝑧 and 𝑏𝑧 are represented as constant 

coefficient of variable 𝑠 as numerator and denominator polynomial. Here, 𝑠 is a complex variable. 

The proposed variants of antlions optimizer (ALO) estimate the actual 𝑛th order system 𝑃(𝑠)  

into the 𝑃(𝑠)̃  of reduced form of 𝑟th order in such a way that [134] 

 𝑃(𝑠)̃ =
∑ 𝑎�̃�𝑠𝑧𝑚𝑟

𝑧=0

∑ 𝑏�̃�𝑠𝑧𝑛𝑟
𝑧=0

                  (6.2) 

here 𝑚𝑟 ≤ 𝑛𝑟 and 𝑧, 𝑚𝑟 , 𝑛𝑟 ∈ 𝐼. 𝑎�̃� and 𝑏�̃� are coefficient of 𝑠 in numerator and denominator 

respectively in reduced order system as shown in eq.(6.2). 

6.3 Formulation of Model order reduction as an optimization problem 

In this section, the MOR problem is modelled as optimization problem. Let  𝑃(𝑠) be the actual 

high order system to be reduced in to 𝑃(𝑠)̃ as low order system.  

Formulation as optimization problem can be represented as: 

 𝑚𝑖𝑛 𝐼𝑆𝐸=∫ [𝑒(𝑡) − 𝑒(𝑡)̃ ]2𝑑𝑡
∞

0
               (6.3) 
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where 𝐼𝑆𝐸=Integral square error; 𝑒(𝑡) and 𝑒(𝑡)̃  are step responses of actual  𝑃(𝑠) and reduced 

𝑃(𝑠)̃  LTI systems respectively. 

 After formulating the problem, the proposed techniques of ALO are applied to determine 

the coefficient [𝑎0, … , 𝑎𝑟−1] and [𝑏0, … , 𝑏𝑟−1] of numerator and denominator polynomial of 

reduced system 𝑃(𝑠)̃  while minimizing the 𝐼𝑆𝐸. Here 𝑟 denotes the order of reduced system. 

The determined coefficients must be able to transform the high order system into low order 

system that the system is stable in transient as well as in steady state. 

6.3.1 Computational Complexity 

Computational complexity highly relies on size of population, number of iterations, number of 

function evaluation and internal loops within the steps to determine the output. As far as the 

complexity of proposed ALO algorithms is concerned, it comes out to be 𝑂(𝑖𝑡𝑚𝑎𝑥 ∗ 𝐷 ∗ 𝑁)* 𝑂 

(𝑓(𝑋)) as described in computational complexity section of earlier chapters. Here, 𝑖𝑡𝑚𝑎𝑥, 𝐷 and 

𝑁 represent maximum number of iterations, dimensions and size of population or candidate 

solutions. 𝑓(𝑋) depicts as objective function to determine the integral square error (ISE).  

 It is evident from computational steps that the instruction to determine 𝐼𝑆𝐸 is executed 

for  𝑁 times. Thus the computational complexity of objective function 𝑓(𝑋) is 𝑂 (𝐼𝑆𝐸) where 

𝐼𝑆𝐸 = ∫ [𝑒(𝑡) − 𝑒(𝑡)̃ ]2𝑑𝑡
∞

0
. 

6.4 Illustration of single input single output (SISO) problems 

6.4.1 First Problem [135] 

Let us consider a problem of fourth order in transfer function form as 

 𝑃(𝑠) =
𝑠3+7𝑠2+24𝑠+24

𝑠4+10𝑠3+35𝑠2+50𝑠+24
                 (6.4) 

Performance evaluation and discussion of results (Problem 1)  

The comparison of obtained ISE value is performed with the original system, classical ALO and 

its proposed variants and other reduced systems available in literature as shown in Table 6.1. The 

best ISE value obtained out of 30 independent runs is taken. It is evident from the table that the 

obtained ISE using OB-SAC-ALO is better (minimum) than the other techniques. The coefficient 

of numerator and denominator polynomial determined using OB-SAC-ALO are 𝑎0 =
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2.4736, 𝑎1 = 1.0124    and  𝑏0 = 2.4737,𝑏1 = 3.6908  ,𝑏2 = 1.3422    respectively. The obtained 

reduced second order system is 𝑃(𝑠)̃=
1.0124𝑠+2.4736

1.3422𝑠2+3.6908𝑠+2.4737
  and the obtained integral square error 

(𝐼𝑆𝐸) is 𝟕. 𝟓𝟕𝟖𝟖 × 𝟏𝟎−𝟒. 

 The obtained values of 𝑎0 in numerator and   𝑏0 in denominator guarantees the steady 

state after reducing higher order to low order. The comparison among unit step responses in time 

domain and frequency domain is depicted in Figure 6.1 and Figure 6.2 respectively. It is evident 

from the figures that the reduced order system obtained using proposed OB-SAC-ALO is better 

approximating the original higher order system as compared to other reduced models. The 

performance order of classical ALO and its proposed variants can be given as OB-SAC-ALO > 

OB-ac-ALO > OB-L-ALO > ALO > OB-C-ALO > OB-LF-ALO. 

 The analysis of reduced system in transient state is also performed using step information 

as shown in Table 6.2 for problem 1. Three parameters namely Rise time(𝑇𝑟),Settling time(𝑇𝑠) 

and Peak overshoot(𝑀𝑝) are chosen to show the transient response. The parameter 𝑇𝑟 ensures 

whether the proposed reduced model takes similar time for response to rise. The parameters 𝑇𝑠 

and 𝑀𝑝 also approximate the original system to ensure whether the proposed system conforms 

the steady state during transient response. It is visible from the Table 6.3  that the rise time of 

OB-SAC-ALO is better as compared to other techniques. Though the settling time is slightly 

higher but peak overshoot is better approximated by OB-SAC-ALO.    

6.4.2 Second Problem[135] 

Considering eighth order problem in terms of transfer function as 

 𝑃(𝑠) =
18𝑠7+514𝑠6+598𝑠5+36380𝑠4+122664𝑠3+222088𝑠2+185760𝑠+40320

𝑠8+36𝑠7+546𝑠6+4536𝑠5+22449𝑠4+67284𝑠3+118124𝑠2+109584𝑠+40320
          (6.5) 

Performance evaluation and discussion of results(Problem 2)  

The best solution attained out of 30 runs using classical ALO and its variants to evaluate their 

performance is exhibited in Table 6.3. The obtained coefficient of numerator and denominator 

using OB-SAC-ALO are shown as 𝑎0 = 0.5609    , 𝑎1 = 1.8172 and 𝑏0 = 0.5608,𝑏1 =

0.7341    ,𝑏2 = 0.1079  .The reduced second order system obtained is  

𝑃(𝑠)̃=
1.8172 𝑠+0.5609    

0.1079 𝑠2+0.7341𝑠+0.5608
  and the obtained integral square error (ISE) is 𝟔. 𝟓𝟒𝟏𝟒 × 𝟏𝟎−𝟑. 
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 It is observed from the Table 6.3 that the OB-SAC-ALO determines the minimum ISE 

value as compared to other methods. It is also evident from the table that the numerator and 

denominator polynomial values are well capable of approximating the original higher order 

system and remains steady throughout the transient phase. The performance order is given as 

OB-SAC-ALO > OB-ac-ALO > ALO > OB-L-ALO > OB-C-ALO > OB-LF-ALO. 

 The time response and frequency response diagrams in time  and frequency domain are 

shown in Figure 6.3 and Figure 6.4 respectively. It is clearly observed from both the figures that 

the OB-SAC-ALO model is better representing the original system as compared to other existing 

systems. 

 The step information analysis of transient response analysis of problem 2 is depicted in  

Table 6.4. The chosen parameter for analysis Rise time (𝑇𝑟) ensures that reduced model takes 

approximately similar time for response to rise. Though the Settling time (𝑇𝑠) and Peak overshoot 

(𝑀𝑝) of reduced model is slightly different with the original system yet the reduced model is 

capable of approximating the original system as evident from the unit step and frequency 

response diagrams. 

6.4.3 Third Problem [156] 

The transfer function form of problem 3 is shown in eq. (6.6) 

 𝑃(𝑠) =
𝑠+4

𝑠4+19𝑠3+113𝑠2+245𝑠+150
                (6.6) 

Performance evaluation and discussion of results (Problem 3)   

While comparing the obtained ISE using classical ALO and its proposed variants as shown in 

Table 6.5, it can be concluded that the ISE of second order reduced system for OB-C-ALO is 

better than the  ISE of original system as determined using various variants of ALO and other 

methods. The numerator coefficients using OB-C-ALO are 𝑎0 = 0.0050 , 𝑎1 = 0.0050 and 

denominator coefficients are 𝑏0 = 0.1877, 𝑏1 = 0.4268 and 𝑏2 = 0.3442 . The second order reduced 

system is 𝑃(𝑠)̃=
0.0050 𝑠+0.0050    

0.3442 𝑠2+0.4268𝑠+0.1877
  and the integral square error (ISE) value is 𝟒. 𝟖𝟔𝟖𝟕 × 𝟏𝟎−𝟓. 

  It is evident from the obtained results that the reduced system using proposed OB-C-

ALO is better approximating the high order system as compared to other systems. The values of 

numerator and denominator also reveal that the reduced system is steady as well during the 

transient phase. 

file:///H:/OLO+Exploitation/AJSE/A%20hybrid%20opposition%20based%20ant%20lion%20optimizer%20with%20acceleration%20coefficient%20for%20reducing%20LTI%20systems.docx
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 The step response comparison and frequency response comparison are shown in Figure 

6.5 and Figure 6.6 respectively. 

 To analyze the transient response, step information comparison for problem 3 is 

performed and depicted in Table 6.6. The obtained values of the Rise time (𝑇𝑟) and Settling time 

(𝑇𝑠) are slightly different from the original system but Peak overshoot(𝑀𝑝) of reduced model is 

exactly the same as of original system. It shows the steady state of the reduced model which is 

also evident from the unit step response diagram. 

 

6.5 Conclusion 

 In this chapter, the performance of proposed variants of classical ALO described in 

previous chapters is investigated to solve a real world complex application of model order 

reduction of linear time invariant system in the field of control system. The performance of these 

algorithms are verified on three single input single output (SISO) systems of different orders. 

The performance metric is chosen so as to minimize the objective function in terms of integral 

square error (ISE) while reducing the order of input system. The analysis of step information is 

performed using Rise time (𝑇𝑟), Settling time (𝑇𝑠) and Peak overshoot (𝑀𝑝) for investigating the 

performance of proposed variants over model order reduction problem. The reduced models 

using all ALO algorithms and other techniques available in literature are compared to devise the 

performance order. The obtained results are analyzed using step response in terms of time and 

frequency diagrams. 
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Table 6.1: Comparison of order reduction Techniques with respect to ISE (Problem 1) 

Model order reduction techniques Reduced Model ISE 

Classical ALO 1.2253𝑠 + 2.2541

1.5689𝑠2 + 3.6569𝑠 + 2.2543
 

8.0415 × 10−4 

OB-L-ALO 1.1806𝑠 + 2.3043

1.2104𝑠2 + 3.4623𝑠 + 2.3048
 

7.8362 × 10−4 

OB-SAC-ALO 𝟏. 𝟎𝟏𝟐𝟒𝒔 + 𝟐. 𝟒𝟕𝟑𝟔

𝟏. 𝟑𝟒𝟐𝟐𝒔𝟐 + 𝟑. 𝟔𝟗𝟎𝟖𝒔 + 𝟐. 𝟒𝟕𝟑𝟕
 

𝟕. 𝟓𝟕𝟖𝟖 × 𝟏𝟎−𝟒 

OB-ac-ALO 1.2806𝑠 + 2.5048

1.6504𝑠2 + 3.6848𝑠 + 2.5050
 

7.6574 × 10−4 

OB-C-ALO 1.8793𝑠 + 1.7185

2.2557𝑠2 + 3.7137𝑠 + 1.7189
 

2.2247 × 10−3 

OB-LF-ALO 1.7316𝑠 + 1.7559

0.7997𝑠2 + 1.9986𝑠 + 1.7678
 

297.95 × 10−2 

Birader and Saxena[135] 0.2838𝑠 + 1.00043

0.3986𝑠2 + 1.3744𝑠 + 1
 

1.1478 × 10−3 

Sikander & Prasad[134] 0.6997𝑠 + 0.6997

𝑠2 + 1.45771𝑠 + 0.6997
 

27.7989 × 10−3 

Desai & Prasad[154] 0.8058𝑠 + 0.7944

𝑠2 + 1.65𝑠 + 0.7944
 

2.8358 × 10−3 

Truncation Method[155] 7𝑠2 + 24𝑠 + 24

35𝑠2 + 50𝑠 + 24
 

70.138 × 10−3 

Routh Hurwitz[148] 0.2057𝑠 + 24

30𝑠2 + 42𝑠 + 24
 

97.41283 × 10−3 

 

 

 

 

 

 

Table 6.2: Step information comparison in terms of transient response (Problem1) 

Model order reduction techniques Rise time 𝑇𝑟(s) Settling time 𝑇𝑠(s) Peak overshoot 𝑀𝑝(%) 

Original system 2.260 3.931 0 

Classical ALO 2.265 3.803 0 

OB-L-ALO 2.264 3.8172 0 

OB-SAC-ALO 2.259 3.8658 0 

OB-ac-ALO 2.264 3.817 0 

OB-C-ALO 2.3035 3.7403 0.1640 

OB-LF-ALO 0.6446            3.3878 11.2556 

Birader and Saxena[135] 2.268 3.958 0 

Sikander and Prasad[134] 2.301 3.410 1.0722 

Desai and Prasad[154] 2.278 3.619 0.274 

Truncation method[155] 2.737 4.080 0.564 

Routh Hurwitz[148] 1.926 5.587 3.595 
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Table 6.3: Comparison of order reduction Techniques with respect to ISE (Problem 2) 

Model order reduction techniques Reduced Model ISE 

Classical ALO 1.4764 𝑠 + 0.4585    

0.0873 𝑠2 + 0.5996𝑠 + 0.4587
 

6.6766 × 10−3 

OB-L-ALO 1.8071 𝑠 + 0.5609    

0.1069 𝑠2 + 0.7342𝑠 + 0.5611
 

6.6814 × 10−3 

OB-SAC-ALO 𝟏. 𝟖𝟏𝟕𝟐 𝒔 + 𝟎. 𝟓𝟔𝟎𝟗    

𝟎. 𝟏𝟎𝟕𝟗 𝒔𝟐 + 𝟎. 𝟕𝟑𝟒𝟏𝒔 + 𝟎. 𝟓𝟔𝟎𝟖
 

𝟔. 𝟓𝟒𝟏𝟒 × 𝟏𝟎−𝟑 

OB-ac-ALO 1.8071 𝑠 + 0.5609    

0.1069 𝑠2 + 0.7342𝑠 + 0.5611
 

6.5814 × 10−3 

OB-C-ALO 3.6545 𝑠 + 1.1904    

0.2206 𝑠2 + 1.4623𝑠 + 1.1895
 

2.0723 × 10−2 

OB-LF-ALO 2.0955 𝑠 + 2.2615    

0.1996 𝑠2 + 1.2777𝑠 + 2.2435
 

734.05 × 10−2 

Birader and Saxena[135] 3.1084𝑠 + 1.0005

0.2075𝑠2 + 1.2434𝑠 + 1
 

38.1244 × 10−3 

Sikander & Prasad[134] 16.92𝑠 + 5.263

𝑠2 + 6.893𝑠 + 5.263
 

19.2386 

Desai & Prasad[154] 2.06774𝑠 + 0.43184

𝑠2 + 1.17368𝑠 + 0.43184
 

69.569 × 10−3 

 

 

 

 

 

 

 

Table 6.4:  Step information comparison in terms of transient response (Problem 2) 

Model order reduction techniques Rise time 𝑇𝑟(s) Settling time 𝑇𝑠(s) Peak overshoot 𝑀𝑝(%) 

Original System 0.0569 4.8201 120.3504 

Classical ALO 0.0596 5.0921 122.8296 

OB-L-ALO 0.0596 5.0975 122.7421 

OB-SAC-ALO 0.0597 5.0972 123.6659 

OB-ac-ALO         0.0596           5.0975              122.7421 

OB-C-ALO 0.0605 4.7676              124.3630 

OB-LF-ALO 0.1078 1.8407 53.0155 

Birader and Saxena[135] 0.0669 4.7990 123.3062 

Sikander & Prasad[134] 0.0596 5.1033 122.1894 

Desai & Prasad[154] 0.5244 8.7786 61.5459 
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Table 6.5: Comparison of order reduction Techniques with respect to ISE (Problem 3) 

Model order reduction techniques Reduced Model ISE 

Classical ALO 0.1851 𝑠 + 0.0051    

0.0135 𝑠2 + 1.1377𝑠 + 0.1864
 

2.5649 × 10−3 

OB-L-ALO 0.0127 𝑠 + 0.0317       

1.4904 𝑠2 + 1.8999𝑠 + 1.1927
 

8.9 × 10−4 

OB-SAC-ALO 0.0050 𝑠 + 0.0050    

0.1866 𝑠2 + 0.4519𝑠 + 0.1871
 

2.6095 × 10−4 

OB-ac-ALO 0.0050 𝑠 + 0.0050    

0.1866 𝑠2 + 0.4519𝑠 + 0.1871
 

2.6095 × 10−4 

OB-C-ALO 𝟎. 𝟎𝟎𝟓𝟎 𝒔 + 𝟎. 𝟎𝟎𝟓𝟎       

𝟎. 𝟑𝟒𝟒𝟐 𝒔𝟐 + 𝟎. 𝟒𝟐𝟔𝟖𝒔 + 𝟎. 𝟏𝟖𝟕𝟕
 

𝟒. 𝟖𝟔𝟖𝟕 × 𝟏𝟎−𝟓 

OB-LF-ALO 0.0050 𝑠 + 0.0059       

0.0050 𝑠2 + 0.0053𝑠 + 0.2332
 

11.705 × 10−2 

Singh[157] −494.596𝑠 + 405.48

150𝑠2 + 2487𝑠 + 15205.5
 

2.856 × 10−3 

 

 

 

 

 

 

 

 

Table 6.6:  Step information comparison in terms of transient response (Problem 3) 

Model order reduction techniques Rise time 𝑇𝑟(s) Settling time 𝑇𝑠(s) Peak overshoot 𝑀𝑝(%) 

Original system 2.3691 4.3583 0 

Classical ALO 0.0018 23.9191 489.6116 

OB-L-ALO 2.2418 6.2403 4.5040 

OB-SAC-ALO 3.4402 6.5765 0 

OB-ac-ALO 3.4402 6.5765 0 

OB-C-ALO 2.6605 3.8407 1.5105 

OB-LF-ALO 0.0205 7.6379 506.5704 

Singh[157] 2.301 3.410 1.0722 
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Figure 6.1: Comparison of step response for problem 1 
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Figure 6.2: Comparison of frequency response for problem 1 
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Figure 6.3: Comparison of step response for problem 2 
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Figure 6.4: Comparison of frequency response for problem 2 
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Figure 6.5: Comparison of step response for problem 3 

 

 

 

Figure 6.6: Comparison of frequency response for problem 3 
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CHAPTER 7 

Single and Multi-objective Optimization of Nanofluid flow in flat tube to 

enhance Heat Transfer using Antlion Optimizer and its Variants 

 

The objective of this chapter is to investigate the performance of classical Antlion optimizer and 

its variants to solve a real world problem from the field of Computational Fluid dynamics. This 

problems is to optimize two conflicting objective functions: maximizing heat transfer coefficient 

and minimizing pressure drop value using Nanofluid flow in flat tube.  

7.1 Introduction 

This optimization problem focuses to determine the five independent design variables to find out 

the optimal values of heat transfer coefficient (�̃�) and pressure drop(∆𝑃) parameters. This 

problem consist of two conflicting objective functions: first to maximize heat transfer coefficient 

and second to minimize pressure drop value. In this chapter, the problem is optimized using two 

approaches: First, single objective approach for both the objective functions separately to 

determine the optimal values of design variables using classical ALO and its proposed modified 

variants namely OB-C-ALO,OB-LF-ALO, OB-ac-ALO,OB-SAC-ALO and OB-L-ALO in this 

thesis.  Secondly, multi-objective approach in which both the objective functions are optimized 

simultaneously to determine objective function values of heat transfer coefficient and pressure 

drop while optimizing design variables. This purpose is achieved using two different methods of 

multi-objective optimization: (i) Utilizing weighted sum approach of multi-objective 

optimization using classical ALO and its proposed variants (ii) Pareto based multi-objective 

optimization using multi-objective antlion optimizer (MOALO). The model used in this work is 

developed using Al2O3 –water nanofluid using horizontal flat tube with the help of computational 

fluid dynamics (CFD) and response surface methodology (RSM).  The obtained results show 

superiority of ALO and its modified variants approach and also compared with RSM.  

 

____________________________________________________________________________________________ 

The content of this chapter is communicated as: 

Dinkar, S. K., & Deep, K. (2018). Single and Multi-objective optimization of Nanofluid flow in flat tube to 

enhance Heat Transfer using Antlion Optimizer Algorithms. Arabian Journal for Science and Engineering, 

Springer.  
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7.2 Motivation and Literature review 

The development of various engineering equipment require adequate heat transfer from one 

component to other [158]. There are three modes of heat transfer extensively used: convection, 

conduction and radiation. Out of these modes, convection is most popular and easy to use among 

all. The functioning of convection process relies on the properties of fluid including surface area 

and thermal properties. Now a days, nanofluid particles are efficiently used in the mechanism of 

increasing heat transfer in tube [159]. The cross section of these tubes may be of various shapes 

such as circular, rectangular, flat etc. Nonofluid can be termed as a mixture prepared with mixing 

nanoparticles such as Al2O3 or CuO with basic fluid which is responsible in increasing the 

thermal conductivity and heat transfer of the surface tube. In [160], the behaviour of thermal 

conductivity of nanoparticles is studied by analyzing various parameters such as size of 

nanoparticles, Brownian motion, nanolayer and temperature. 

 There are various mixture methods to accomplish heat transfer through various surfaces: 

single phase, two phase and Eulerian-Eulerian method. These methods are investigated using 

flow of nanofluids particles in circular tubes [161]. In [162], Al2O3 –water nanofluid flow is 

simulated using two phase mixture method in straight elliptic tubes. In similar way, flat tubes are 

used to increase the heat transfer instead of circular tubes due to the higher surface area. This is 

helpful to enhance the compactness and consequently able to increase the heat transfer of heat 

exchangers [163]. Using nanofluids in flat tubes, very few studies have been noticed till now 

[163-164].  

 The use of nanofluids within flat tubes result in enhancing heat transfer and minimizing 

pressure drop value. These two coefficient are different and conflicting in nature and can be 

solved as multi-objective problem as well as single objective problem. This optimization using 

nanofluid with flat tubes is investigated with modelling and optimization process as a 

combination of computational fluid dynamics (CFD) and response surface methodology [159]. 

Safikhani et al. [165] also implemented multi-objective approach to optimize Al2O3-water 

nanofluid to determine heat transfer coefficient and pressure drop using CFD with artificial 

neural network(ANN) and non-dominated sorted genetic algorithm(NSGA II). The responses 

received from various design variables are collected, statistical analyzed and mathematical 

modelled using RSM. Thus RSM is used to model these problem having various design variable 

and the responses are then optimized. In this chapter, the model which is used is developed by 

utilizing the CFD data and then using RSM technique for optimization of Al2O3-water nanofluid 

in horizontal flat tube [159].  
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 Model thus obtained using RSM is optimized using classical ALO and its proposed 

variants in this thesis for single objective optimization. Since there are two conflicting objectives 

to be optimized hence the problem is handled using two different methods: (1) Firstly, by 

determining the optimal design variables for optimizing two different single objective functions 

separately: first one is to maximize the heat transfer coefficient and second problem is to 

minimize the pressure drop. (2) Secondly, by applying multi-objective optimization approach in 

which both the objective functions are utilized at the same time to determine optimal values of 

design variables. The metaheuristic techniques are very popular as there is no need of priori 

knowledge about search domain or any other information about the objective function to be 

utilized. The determination of heat transfer coefficient is quite popular using the evolutionary 

algorithm and it has been determined using GA [166].  

 The multi-objective approach is applied to optimize such problems due to the presence 

of more than one objective functions. These functions are solved by means of evolutionary 

algorithms as these algorithms are population based algorithm and able to provide parallel 

solution [167]. Pareto optimal solutions can also be determined in multi objective environment 

[168]. The set of these solutions represents non-dominated solutions where no solution is best 

but superior to the rest of the solutions [169]. Another popular approach is to scalarlize the 

objectives into single objective by using some weighting factor [170]. The use of GA to solve 

multi-objective problems paid much attention than other techniques [171]. Non-dominated sorted 

GA(NSGAII) has big impact on solving multi-objective problems since last decades[172-173]. 

In this work, both the methods including weighted sum approach of scalerizing the objectives 

into single objective using some weighting factors and pareto front based multi-objective 

approach are utilized to determine the optimum values of design variables and to obtain the heat 

transfer coefficient and pressure drop values. 

 

7.3 Problem Formulation 

In this work, there are five independent design variables : tube flattening variable (𝑥1), wall heat 

flux(𝑥2),fraction of nanoparticle volume(𝑥3),nanoparticle diameter(𝑥4) and inlet volumetric flow 

rate(𝑥5) which are used to estimate the optimum values of heat transfer and pressure drop. The 

boundary ranges of these design variables are shown in Table 7.1. The values of these design 

variables are utilized for optimization of Al2O3-water nanofluid flow using ALO and its proposed 

variants. 
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 This problem is formulated as nonlinear optimization problem. In [159], RSM is used to 

optimize the five independent variables. The independent variables and data pertaining to these 

variables to produce a response variable can be given in the form of regression equation as an 

output using RSM. Two nonlinear polynomial equations are produced as a result: one defining 

heat transfer coefficient and second defining pressure drop as shown in eq.(7.1) and eq.(7.2): 

𝐻(𝑋)̃ = 705.78 − 55.13𝑥1 + 173.62𝑥2 + 4.63𝑥4 + 125.13𝑥3 − 0.06𝑥4
2 − 14.98𝑥3

2 −

8.89𝑥1𝑥2           (7.1) 

∆𝑃(𝑋) = 52.07 − 21.40𝑥1 + 17810.05𝑥5 + 4.47𝑥3 + 1.84𝑥1
2 − 816.65𝑥1𝑥5 −

0.47𝑥1𝑥3  (7.2)  

 

To determine the optimal values of design variables, two approaches are utilized in this work: 

firstly, maximize the heat transfer coefficient �̃� using eq.(7.1) and minimizing pressure drop ∆𝑃 

using eq.(7.2) separately as single objective function optimization. Secondly, utilizing weighted 

sum and pareto based approach of multi-objective optimization by using both the objective 

function simultaneously. 

 

7.3.1 First Approach: Single objective optimization 

In this approach, the nonlinear optimization problem shown in eq.(7.1) and eq.(7.2) are optimized 

as two distinctive objective functions of conflicting nature. The heat transfer coefficient must be 

enhanced through the tube so that maximum heat can be transferred from one component of the 

system to another while keeping the pressure in flat tube low. These eq.(7.1) and (7.2) represent 

as two different optimization problem as follows:  

Maximize �̃� = 𝑓1(𝑋) = 705.78 − 55.13𝑥1 + 173.62𝑥2 + 4.63𝑥4 + 125.13𝑥3 − 0.06𝑥4
2 −

14.98𝑥3
2 − 8.89𝑥1𝑥2                  (7.3) 

Minimize ∆𝑃 = 𝑓2(𝑋) = 52.07 − 21.40𝑥1 + 17810.05𝑥5 + 4.47𝑥3 + 1.84𝑥1
2 −

816.65𝑥1𝑥5 − 0.47𝑥1𝑥3                 (7.4) 

7.3.2  Second Approach: Multi-objective optimization 

 This optimization problem can be dealt using multi-objective approach also. There may be two 

formulation of this problem using multi-objective approach: Firstly, single objective 

scalarization in which weighted sum approach using some weight factor is used to convert both 

the objective functions into a single objective function. Secondly, using Pareto dominance by 

determining the number of non-dominated solutions. These solutions may not present the best 
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solutions but provide a set of Pareto optimal solution which are better than other solutions.  In 

this work, both the approach of multi-objective optimization is utilized to determine the optimal 

value of variable while increasing the heat transfer coefficient (�̃�) and reducing the pressure drop 

(∆𝑃). 

 

Weighted sum single objective formulation 

In this approach, the basic concept is to reduce or scalarize [170] the unconstrained multi-

objective functions 𝑓: 𝑅𝑚 → 𝑅𝑛 into a single objective function  𝑓: 𝑅𝑚 → 𝑅. Generally weighted 

sum method is more popular for single objective optimization. The weights chosen for this 

purpose is a 𝑛 −dimensional vector 𝑊 = {𝑤1, 𝑤1, … , 𝑤𝑛} where each of 𝑤𝑖 ∈ [0,1]. It can be 

selected optionally provided that  ∑ 𝑤𝑖 = 1𝑛
𝑖=1 . The values of the weights are assigned to each of 

the objective function 𝑓𝑖 and represents the importance given to it. The reduction or scalarization 

of the objective functions is done by taking dot product of vector 𝑤 with corresponding function  

𝑓𝑖. Mathematically, the process of single objective optimization can be defined as: 

 𝐹(𝑋) = 𝑊. 𝑓(𝑋) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑓𝑖(𝑥)               (7.5) 

In this work, the weight vector can be defined as 𝑊 = {𝑤1, 𝑤2} as there are two objective 

functions to be considered as represented by eqs.(7.3) and (7.4) in the form of optimization 

problems depicted in section 7.3.1. 

 The objective functions defined in eq.(7.3) and (7.4) are of conflicting nature. The 

minimization problem shown in eq.(7.4) is converted into maximization problem by changing 

the sign of negative of pressure drop formulation. By analyzing the importance of the problem, 

the weight 𝑤1 assigned to function 𝑓1 is 0.6 and 𝑤2 assigned to function 𝑓2 is 0.4. After 

scalrization of these two functions, the multi-objective problem can be converted into single 

objective optimization as per eq.(7.6) as follows: 

Maximize 𝐹(𝑋) = 𝑤1. 𝑓1(𝑋) + 𝑤2. ( −𝑓2(𝑋))               (7.6) 

Where 𝑓1(𝑋) and 𝑓2(𝑋) are shown in eq.(7.3) and (7.4) respectively such that 

 2 ≤ 𝑥1 ≤ 10                   (7.7) 

 1 ≤ 𝑥2 ≤ 5                   (7.8) 

            0 ≤ 𝑥3 ≤ 5                   (7.9) 

 20 ≤ 𝑥4 ≤ 100                (7.10) 
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 0.002826 ≤ 𝑥5 ≤ 0.014130               (7.11) 

Pareto based multi-objective optimization 

To determine the optimal values of five design variables, the model obtained using RSM method 

is optimized as multi-objective optimization problem using multi-objective antlion optimizer 

(MOALO) [174]. The formulation of multi-objective problem is performed by taking two 

conflicting objective functions as depicted in eq. (7.3) and (7.4) for maximization of heat transfer 

value and minimization of pressure drop value.  The boundary values of five design variable are 

utilized as shown in eqs. (7.7)-(7.11). 

 

7.4 Method of Solution: Antlion Optimizer and its variants 

In this work, the ants and antlions are initialized randomly. For first approach, two distinct 

objective function, one for maximization of heat transfer(�̃�)  and second for minimization of 

pressure drop(∆𝑃) as shown in eqs.(7.3) and (7.4) respectively are considered. These objective 

functions are dealt as two independent optimization problems. The fitness of antlions is 

determined using the objective functions. The antlions are sorted on the basis of their fitness and 

best (maximum for heat transfer and minimum for pressure drop) antlion called elite is 

determined. Then the positions of ants are updated in each generation by taking mean of random 

walks around elite antlion and around selected antlion using roulette wheel method of GA. After 

calculating the fitness of each ant, it is compared with the elite antlion and better antlion is kept 

as elite and carried to the next generation until predefined stopping criteria is satisfied. The 

optimal values of design variables for best candidate solutions are reported. 

 For second approach, the problem is utilized as Multi-objective problem which is 

transformed into single objective problem using weighted sum approach by converting both the 

problems as maximization problems. The remaining steps are same as described above to 

determine the fitness of best candidate solution against the optimal values of design variables. 

Another approach of multi-objective optimization is based on pareto optimal set obtained after 

applying MOALO [174]. The obtained pareto front investigates the obtained non-dominated 

solutions for both the objectives. 

 

7.5 Numerical Simulation  

RSM is used as a method of modelling and regression analysis for both heat transfer coefficient 

(�̃�) and pressure drop (∆𝑃). The accuracy obtained from ANOVA of the model shown in eq. 

(7.1) for heat transfer  �̃� is defined by a parameter 𝑅2 whose value is 90.03% [159]. This value 
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indicates the high accuracy of the heat transfer model. Similarly, the accuracy for the pressure 

drop (∆𝑃) model in eq. (7.2) is 98.39% [159] which also indicates the high accuracy of this model 

also. 

 The parameters used to optimize the design variables for determining the optimum value 

of heat transfer coefficient and pressure drop for both the approaches are chosen as follows: The 

size of the population is 30 for both ant and antlions. Termination criteria is fixed as 200 

maximum number of iterations. Experiments are performed for 30 independent runs out of which 

the result of best run is reported. The antlions are initialized randomly in such a way that each 

candidate solution is defined using a five dimensional vector 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑥5. The boundary 

values of all these parameters are given in Eqs. (7.7)- (7.11). All the experiments have been 

performed on MATLAB 8.3.0(R2014a) on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz- 2.71 

Ghz with 8GB RAM. 

 

7.6 Discussion of Results 

7.6.1 First method: single objective function optimization approach 

In this section, the obtained results to maximize the heat transfer coefficient  (�̃�) and to minimize 

the pressure drop(∆𝑃) are presented. Optimization of objective function for heat transfer 

coefficient (�̃�) determines the optimal values of five design variables as shown in Table 7.2 

which represent the optimized value of pressure drop (∆𝑃) corresponding to determined design 

variables for heat transfer. In similar way, Table 7.3 represents the optimized fitness value and 

design variables for pressure drop. The heat transfer coefficients(�̃�) are also represented in this 

table corresponding to optimal design variable determined for pressure drop. 

 Table 7.2 of results exhibit the results obtained to maximize the heat transfer 

coefficient(�̃�). The results analysis clearly show that the value of heat transfer coefficient is 

maximized significantly as compared to RSM. The performance order in terms of heat transfer 

coefficient is OB-𝐿-ALO > OB-C-ALO > OB-ac-ALO > OB-SAC-ALO > ALO > OB-LF-ALO 

> RSM. However, the pressure drop values corresponding to optimum values obtained using the 

single objective function to optimize heat transfer coefficient(�̃�) is not significant as compared 

to RSM. Similarly, Table 7.3 represents the results after minimizing the pressure drop (∆𝑃). It 

can be clearly observed from the table that reduction in pressure drop values are acceptable as 

compared to RSM but the corresponding optimum value is not enhanced as much in comparison 
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to RSM. The performance order of obtained pressure drop values OB-C-ALO < OB-ac-ALO < 

OB-L-ALO < OB-SAC-ALO <ALO < OB-LF-ALO.  

 This analysis establishes that the optimization using single objective function is capable 

of attaining good results for both the coefficient separately but not able to determine good results 

for other coefficient. All the heat exchangers using flat tubes are having heat transfer and pressure 

drop parameters. These parameters are conflicting in nature and while one improves the other 

deteriorates. This implies that this mechanism is acceptable to find the results for individual 

coefficient (either �̃� or ∆𝑃)but not for determining both the objectives simultaneously using this 

approach. 

 Figure 7.1(a) and (b) represent objective function values and exhibit gradual increment 

in heat transfer coefficient and reduction in pressure drop parameter respectively as the number 

of iterations increased. Figure 7.2 and Figure 7.3 represent bar diagram to exhibit the heat transfer 

coefficient and pressure drop value for proposed ALO algorithms in this thesis.  

 

7.6.2 Second method: Multi-objective optimization 

Weighted sum approach 

The results obtained using second approach are shown in Table 7.4 in which both the objective 

functions are taken simultaneously and converted into single objective function using weighted 

sum approach of multi-objective optimization. The optimum values of five design variables are 

determined for which transfer coefficient value(�̃�) and pressure drop value (∆𝑃) are determined. 

The obtained results are compared among all the proposed ALO algorithms in this thesis and 

RSM method. 

 The results are exhibited in Table 7.4. It is visible that the optimal values of tube flattening 

variable (𝑥1) and inlet volumetric flow rate (𝑥5) have the lowest values and wall heat flux (𝑥2) 

has the highest value of range for all the techniques except OB-LF-ALO. However, other design 

variable values lie between the given ranges. The heat transfer (�̃�) determined using OB-C-ALO 

is maximum whereas OB-L-ALO and ALO obtain similar value of heat transfer. The 

performance order can be visualized for heat transfer coefficient (�̃�) as OB-C-ALO> OB-𝐿-ALO 

> ALO > OB-SAC-ALO > OB-ac-ALO > OB-LF-ALO >RSM. It can be concluded that all the 

proposed ALO algorithms outperform the RSM in terms of obtained heat transfer value. Though 

the pressure drop (∆𝑃) is minimum in case of RSM however the performance order of obtained 

pressure drop value can be  given as OB-SAC-ALO < OB-L-ALO < OB-C-ALO < OB-ac-ALO 
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< OB-LF-ALO < ALO . However, OB-C-ALO is able to provide good design values of variables 

with hear transfer value as 1725.3 and pressure drop value as 76.8106. Figure 7.2 and Figure 7.3 

show bar diagram of heat transfer coefficient (�̃�) and pressure drop value (∆𝑃).  

 

Pareto based multi-objective optimization approach 

To determine the pareto front, size of population is fixed at 100 with maximum iteration 100 

using multi-objective antlion optimizer MOALO. Two conflicting objective functions, one to 

maximize heat transfer coefficient (�̃�) and second to minimize pressure drop value (∆𝑃) are 

taken simultaneously to determine the optimal value of five design variables. 

 Figure 7.4 depict pareto optimal front of both the objective functions obtained by 

applying multi-objective antlion optimizer(MOALO). It can be clearly observed from the figure 

that no point have dominancy over another point i.e. there are no two points having same 

objective function value. In other words, it can be stated that while moving from one point to 

another point, the value of one objective function gets better and other value gets worse. This 

reflects the conflicting behaviour of both the objective functions.  

 Figure 7.4 depicts five optimal points designated as A, B, C, D and E. The corresponding 

design variables to these points are represented in Table 7.5. These points depict unique 

properties with respect to objective function values of both the functions. Points A and points E 

show minimum pressure drop (∆𝑃)  and maximum heat transfer (�̃�) values respectively. Point 

B can be represented as break point which show that up to point B, the value of heat transfer 

increases significantly (36.1%) while pressure drop value increases at low pace (1.77%). 

Similarly, point D represents the break point up to which the heat transfer values enhances at 

much faster rate as compared to pressure drop value but after it, pressure drop value increases at 

much faster rate(27.61%) than heat transfer value(7.43%). Point C is ideal point which reflects 

the optimal values of five design variable to determine both the objective function values. This 

point is obtained as optimal candidate solution using MOALO. 

 

7.7 Conclusion  

In this chapter, a multi-objective real life application to optimize nanofluid flow in flat tube to 

maximize heat transfer (�̃�)  and to minimize pressure drop (∆𝑃) value is solved. The model is 

taken from the literature and is performed using RSM method while using Al2O3-water nanofluid 

flowing in horizontal flat tube. 
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 The objective functions for both these parameters are of conflicting nature. A variety of 

method are applied to solve this optimization problem. First, single objective approach is utilized 

in which both the functions are solved separately using classical ALO ant its proposed modified 

variants in thesis for maximizing heat transfer and minimizing pressure drop value. The five 

design variables: tube flattening variable (𝑥1), wall heat flux (𝑥2), fraction of nanoparticle volume 

(𝑥3), nanoparticle diameter (𝑥4) and inlet volumetric flow rate (𝑥5) are determined from each of 

the functions and used to obtain both the values as shown in tables of results. The convergence 

curves and bar diagrams for (𝐻) and (∆𝑃) are drawn and analyzed. 

 Then the two multi-objective approaches are used to optimize the problem: first method 

is weighted sum approach in which both the functions are converted into single objective function 

by applying appropriate weight to each of function. The results are obtained and compared using 

classical ALO and its proposed variants in thesis. In second method, pareto based approach of 

multi-objective optimization is utilized to optimize both the objective function. Five unique 

points A, B, C, D and E over the pareto front are determined which consist important design 

information about the optimization of this problem and able to give the ideal solution using 

MOALO. 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 

 

 

 

 

Table 7.1: Design variables 

Design variables Lower bound Upper bound 

Flattening variable 𝑥1(mm) 2 10 

Wall heat flux 𝑥2(kWm-2) 1 5 

Nanoparticle volume  𝑥3(%) 0 5 

Nanoparticle diameter 𝑥4(nm) 20 100 

Inlet volumetric flow rate 𝑥5(m3h-1) 0.002826 0.014130 

 

 

 

 
Table 7.2: Heat transfer coefficient and pressure drop using first single objective function for heat transfer 

coefficient 

Method 𝑥1(mm) 𝑥2(kWm-2) 𝑥3(%) 𝑥4(nm) 𝑥5(m3h-1) 𝐻(W(m2k)-1) ∆𝑃(Pa) 

OB-C-ALO 2 5 4.17928 38.5983 0.013294 1725.3473 246.4366 

OB-LF-ALO 2.4252        4.5816       2.61889       41.4024    0.00782144   1582.5605 143.5237 

OB-ac-ALO 2 5 4.06 38.13 0.0028 1725.1 76.2567 

OB-SAC-ALO 2 5 4.37 38.18 0.0030 1724.8 80.5863 

OB-L-ALO 2 5 4.17653 38.5828 0.0106454 1725.3474 203.5811 

ALO 2 5 3.43747 45.482 0.00975376 1714.3088 186.5484 

RSM 5.5 5 3.63 36.16 0.0028 1361.5 6.01 

 

 

 

 

 

Table 7.3: Heat transfer coefficient and pressure drop using second single objective function for pressure drop 
Method 𝑥1(mm) 𝑥2(kWm-2) 𝑥3(%) 𝑥4(nm) 𝑥5(m3h-1) 𝐻(W(m2k-1)) ∆𝑃(Pa) 

OB-C-ALO 6.44235       2.0330 0 23.3362      0.002826 662.5255 26.034 

OB-LF-ALO 5.81223       4.56759       3.19062       35.5005      0.002826 1277.9 32.3107 

OB-ac-ALO 6.34096       3.78811             0       21.3019      0.002826 871.7560 26.053 

OB-SAC-ALO 6.19886       2.23985     0.0731429       21.3165      0.002826   709.9903 26.257   

OB-L-ALO 6.13659       2.37779   .000007556 21.1945      0.002826 721.7621 26.2061 

ALO 6.3398       3.56317       1.03422            20      21.1945      956.0704 27.5947 

RSM 5.5 5 3.63 36.16 0.0028 1361.5 6.01 
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Table 7.4: Heat transfer coefficient and pressure drop using weighted sum approach of multi-objective 

optimization 

Method 𝑥1(mm) 𝑥2(kWm-2) 𝑥3(%) 𝑥4(nm) 𝑥5(m3h-1) 𝐻(W(m2k-1)) ∆𝑃(Pa) 

OB-C-ALO 2 5 4.09775 38.5839 0.002826 1725.3 76.8106 

OB-LF-ALO 2.67394        4.52164       3.20429       31.4211    0.00414678   1569.3 83.0989 

OB-ac-ALO 2 5 4.36375 33.523 0.00282601 1723.3 77.7497 

OB-SAC-ALO 2 5 43.87525 38.4891 0.002826 1724.0 76.0251 

OB-L-ALO 2 5 4.08667 38.4703 0.002826 1725.2 76.7714 

ALO 2 5 4.09225 38.6863 0.002826 1725.2 231.4265 

RSM 5.5 5 3.63 36.16 0.0028 1361.5 6.01 

 

 

 

 

 

 

 

 

 

Table 7.5: Objective function and design variables values of pareto front 

Points 𝑥1(mm) 𝑥2(kWm-2) 𝑥3(%) 𝑥4(nm) 𝑥5(m3h-1) 𝐻(W(m2k-1)) ∆𝑃(Pa) 

A 6.4552 2 0 20 0.002826 650.9680 26.0343 

B 6.1150 4.5922 0.1714 27.0491 0.002826 1018.7 26.5048 

C 4.0208 5 3.2717 39.3917 0.002826 1511.8 45.2654 

D 3.2558 5 3.6129 35.9827 0.002826 1595.1 55.3383 

E 2 5 3.8614 42.0044 0.002856 1723.2 76.4549 
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                  (a) Heat transfer coefficient value                                                  (b) Pressure drop value 

Figure 7.1: Curves showing predicted values w.r.t no. of iterations 

 

 

 

Figure 7.2: Bar diagram of heat transfer value (�̃�) 
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Figure 7.3: Bar diagram of pressure drop (∆𝑃) 

 

 

Figure 7.4: Pareto optimal points for heat transfer(�̃�)  and pressure drop(∆𝑃)   
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CHAPTER 8 

Process Optimization of Biodiesel Production using Antlion Optimizer and 

it’s Variants 

 

The objective of this chapter is to evaluate the performance of ALO and its proposed variants 

for solving the real life problem to optimize the process of biodiesel production.  

8.1 Introduction 

The continuous consumption of energy, particularly fuel obtained from petroleum products is 

becoming uncontrollable and contributing to the extreme build-up of greenhouse gases in the 

environment. The production of biodiesel from vegetable oils is definitely an alternative source 

to reduce the ill effects of greenhouse gases. Usually the production of biodiesel (alkyl ester) is 

performed with transesterification process using response surface methodology. In this chapter, 

the problem of optimizing the production of biodiesel (methyl ester) is performed using modified 

versions proposed in this thesis namely OB-C-ALO, OB-LF-ALO,OB-ac-ALO,OB-SAC-ALO 

and OB-𝐿-ALO including classical ALO. The optimization problem is modelled into a single 

objective optimization problem and a combination of three parameters called temperature (𝑥1), 

methanol/oil ratio (𝑥2) and dolomite catalyst concentration (𝑥3) has been optimized to maximize 

the production of biodiesel (methyl ester). The results indicate significant improvement in 

production of methyl ester (biodiesel) yield using classical ALO and its modified versions. 

The organization of chapter is as follows: 

 Section 8.2 states the motivation and literature review. Section 8.3 depicts the formulation 

of the problem. Section 8.4 establishes the problem as optimization model and states the objective 

function of the problem. Section 8.5 demonstrates method of solution. Section 8.6 depicts the 

computational study and discussion of results using RSM and variants of classical ALO. Section 

8.7 concludes the chapter. 

 

 

_________________________________________________________________________________________ 

The content of this chapter is published as: 

 Dinkar, S. K., & Deep, K. (2019). Process optimization of biodiesel production using antlion 

optimizer. Journal of information and optimization sciences (Taylor & Francis). DOI: 

10.1080/02522667.2018.1491821. (ESCI). 
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8.2 Motivation and related literature study 

The biggest concern of the world is to address the problem of global warming which is affecting 

the environment critically [175-176]. A lot of research is going on to reduce the malefic effect of 

global warming which is majorly contributed by pollution due to industries and consumption of 

fuel. In recent years, great emphasis is on production of biodiesel fuel which is beneficial to 

environment in comparison to other available fuels. As the fossil fuel resources are declining 

very rapidly in the environment so there is high attraction towards the production and use of 

renewable energy resources [176]. 

 Usually biodiesel is produced through a chemical reaction called transesterification 

process which is a process of substituting the organic group of ester with the organic group of an 

alcohol. This reaction is then catalyzed using homogeneous alkaline catalysts as this process 

produces high amount of alkyl ester in a short reaction time [177]. The catalyst performance is 

majorly dependent over the various operating conditions such as reaction temperature, amount 

of catalyst, methanol/oil ratio molar ratio as well as the temperature heat treatment used in natural 

dolomitic rock [178].  

 Sometimes the heterogeneous catalysts can be useful as synthesis process of these 

catalysts as it may be beneficial to add to the supplementary cost to the ultimate product. If 

heterogeneous catalyst is used safely for production of biodiesel then it can be effective for 

various industrial applications [179-180]. 

 In transesterification process, original ester is reacted with alcohol which is called 

alcoholises (Figure 8.1) [177]. Numerous parameters are included like type of catalyst, vegetable 

oil/alcohol molar ratio, reactants purity, temperature etc.  having impact on transesterification by 

reaction. 

 As given in Santos et al. [179], the objective is to maximize the production of methyl 

ester (biodiesel) yield by transesterification of soybean oil with ethanol using several parameters 

which includes alcohol/vegetable oil molar ratio, catalyst and temperature which affect the 

transesterification process and then to develop an approach which establishes relationship among 

the variables (ethanol-to-oil ratio, catalyst concentration and temperature) and the response 

(methyl esters).  

 In this chapter, the experimental values are being taken from [179] where dolomite as a 

heterogeneous catalyst is being used for transesterification process. It is ecologically suitable 

substantial with high basicity and low cost and capable substitute catalyst for biodiesel 

file:///C:/Users/Sunil%20Dinkar/AppData/Roaming/Microsoft/Word/Biodieselfinal%20.docx
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production. To obtain the optimal conditions for biodiesel production central composite rotable 

design (CCRD) and response surface methodology (RSM) is used [179]. 

 Energy sources are in high demand since as long as man’s need of energy even from 

increasing industrialization commencing in early 19th century. This is because of the 

development of various machines used to utilize the energy kept in a variety of power [181].The 

spark ignition and compression ignition (diesel) engines are main study of the combustion 

engines. In spite of fossil sources, biogenic resources also found useful mainly ethanol in case of 

spark-ignition engine [182] and vegetable oils for the compression ignition engine [183]. The 

Belgian patent 422877 perhaps is the first report where the term biodiesel is being used [184-

185]. The alkyl esters extracted from the vegetable oils and animal fats are termed as biodiesel 

and documented for the first time [181, 186]. This process was again reinvented after forty years 

later [187].  

 The recent development for producing esters (biodiesel) is based on use of catalytic 

reaction termed as hydro deoxygenation from biogenic resources [188-189]. These catalysis may 

be homogeneous or heterogeneous and the reactions are termed as transesterification process. 

Extensive research is employed recently on various catalysts for transesterification process. The 

various new heterogeneous catalysts and their chemistry are being reviewed in [190-191].  

Enzymatic catalysis [192-194] , whole-cell biocatalysts [195], ionic liquids [196] and dolomite 

[179] etc. are examples of heterogeneous catalysts. The optimization of alky ester production is 

usually functioned using Response Surface Methodology (RSM) [177, 179]. However, Fayyazi 

et al. [197] used genetic algorithm approach in ultrasonic system for optimizing biodiesel 

production which expresses significance of the use of nature inspired optimization algorithm for 

optimizing this process.  

  

8.3 Problem Formulation: Design and Optimization of Parameters 

For the optimization [179] ,the problem is modelled as nonlinear optimization problem in which 

decision variables are  temperature of reaction, catalyst concentration and methanol/oil ratio 

(molar ratio) as shown in Table 8.1. The first column depicts the independent variables used in 

optimization process, second column shows the coding of range of values of independent 

variables and third and fourth columns indicates the lower and upper bound for variables. 

 A set of 17 experiments is considered by Santosh et. al [179] for full factorial central 

composite design as depicted in Table 8.2. For the given range of independent variables, low 

order polynomial is employed for modelling.  
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 The data pertaining to three independent variables and one response variable is modelled 

to produce a second order polynomial regression equation as the function of independent 

variables to yield methyl ester as biodiesel fuel. The equation can be defined as: 

 

 𝑦𝑚𝑒 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖
3
𝑖=1 + ∑ 𝑏𝑖𝑖𝑥𝑖

23
𝑖=1 + ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

3
𝑖≠𝑗=1           (8.1) 

 

 where 𝑦𝑚𝑒 represents methyl ester yield, 𝑏0 is a constant,𝑏𝑖, 𝑏𝑖𝑖 and 𝑏𝑖𝑗 are linear, 

quadratic and interactive coefficients. 

  The efficiency of the biodiesel production is majorly influenced by three independent 

parameters namely temperature (𝑥1), methanol to oil ratio (𝑥2) and concentration of catalyst (𝑥3). 

The combined effect of these three parameters is also responsible for efficiency of biodiesel 

production called interaction factors. As per Santos et al. [179], after performing experiments 

with different physical parameters as shown in Table 8.2, multiple regression analysis was 

performed and fitted to polynomial Eq. (8.2). It gives the regression equation as the function of 

three independent parameters to form methyl ester (biodiesel) which is defined as: 

 𝑦𝑚𝑒(%) = 37.45 + 0.42𝑥1 + 4.37𝑥2 − 0.16𝑥2
2+24.26𝑥3 − 1.53𝑥3

2 + 0.001𝑥1𝑥2 −

0.24𝑥1𝑥3 − 0.44𝑥2𝑥3                   (8.2) 

 

8.4 Optimization of Biodiesel (Methyl ester) production 

The maximization of biodiesel (Methyl ester) production is performed using proposed variants 

of classical ALO in this thesis in place of transesterification process of soybean oil with ethanol. 

The optimal values of three independent variables are determined in such a way that the 

production of biodiesel gets maximized. The objective function is given in Eq. (8.3) which can 

be defined as optimization problem [179]: 

  𝑚𝑎𝑥 𝑓(𝑥1𝑥2𝑥3) = 37.45 + 0.42𝑥1 + 4.37𝑥2 − 0.16𝑥2
2+24.26𝑥3 − 1.53𝑥3

2 +

0.001𝑥1𝑥2 − 0.24𝑥1𝑥3 − 0.44𝑥2𝑥3        (8.3) 

 

 Such that 

  55 ≤ 𝑥1 ≤ 65,           (8.4) 

 6 ≤ 𝑥2 ≤ 15,                 (8.5) 
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 0.6 ≤ 𝑥3 ≤ 2.0                (8.6) 

8.5 Method of Solution: Antlion Optimizer and its modified variants 

In this chapter, the classical ALO [56] and its modified variants proposed in this thesis are 

applied to the application of maximization of biodiesel (methyl ester) production. Three 

dimensional population of ants and antlions are randomly generated where first, second and 

third dimension represents the independent variables namely temperature (𝑥1), methanol to oil 

ratio (𝑥2) and concentration of catalyst (𝑥3) respectively. Then the fitness of each antlion is 

determined using the objective function shown in eq. (8.3). The fitness values for all antlions 

are sorted to determine the best candidate solution having maximum fitness. Then two random 

walks are performed: (1) around selected antlion using roulette wheel selection method and (2) 

around elite antlion. In classical ALO, the position of ant is updated by taking the average of 

both of these random walks. In modified versions of classical ALO, the updated strategies are 

applied as per corresponding version of classical ALO to determine the updated positions of 

each ant. The fitness of each ant is determined and compared with the fitness of best candidate 

solution as per eq. (1.13), then the fitter solution is carried forward to next generation. 

 

 8.6 Computational Results and Discussions 

The observed values depicted in Table 8.2 are being taken from [179] and predicted values shown 

in column 6 of Table 8.2 are computed using ALO having same values chosen for three 

independent variables as in [179]. Fitness of the model for predicted values computed with ALO 

algorithm is verified with the coefficient of determination R2 which comes to be 0.9929 i.e. 

99.2%. This model is statistically significant as per the F-test with 95% of significance level. The 

value of F is 108.03 and the p-value is 0.0001 which is significantly low. Figure 8.2 shows the 

linear correlation plot between observed and predicted values computed using ALO. 

 This optimization problem having objective function shown in eq. (8.3) is solved by 

employing ALO and its modified versions proposed in previous chapters taking 30 independent 

runs with population size as 30 and the maximum number of iteration as 500. The antlions 

(population) is initialized in such a way that each individual is of three dimensional vector 

corresponding to three independent parameters 𝑥1, 𝑥2 and 𝑥3. The boundary values of all these 

three parameters are given in eqs. (8.4), (8.5) and (8.6) respectively. All the experiments have 

been performed on MATLAB R2014 on Intel(R) Core(TM) i5-7200 CPU @ 2.50GHz 2.71Ghz 

with 8GB RAM. 
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 The optimum values obtained using classical ALO and its proposed modified variants are 

shown in Table 8.3 for three independent variables. After performing 30 independent runs, the 

values of three independent variable, the reported values in Table 8.3 are taken from the best run.  

It can be observed from the table of results that three modified versions of classical ALO namely 

OB-ac-ALO, OB-SAC-ALO an OB-L-ALO are able to produce the maximized methyl ester 

(biodiesel) yield including classical ALO. The optimum value is same for all four algorithm i.e. 

97.4% with values of three independent variables as: temperature 650 , Methanol/oil ratio 12.62 

and catalyst (dolomite) concentration is 1.01 %( w/v). The obtained value is significantly better 

than the yield produced by response surface methodology. However, OB-C-ALO produces 

97.46% yield whereas OB-LF-ALO produces 97.27%. So the performance order for all the 

proposed algorithms can be devised as OB-ac-ALO = OB-SAC-ALO = OB-L-ALO = ALO > 

OB-C-ALO > RSM > OB-LF-ALO.  

  Also Figure 8.3 is drawn to demonstrate the methyl ester(biodiesel) yield as the number 

of iterations increased. The values on horizontal axis represent number of iterations and values 

on vertical axis denote the methyl ester yield. It is visible from the figure that production of yield 

increases up to 200 iterations and then it becomes stable till the last iteration. So,it indicates that 

the maximum value of yield can be achieved up to 200 iteration which takes only 6000 function 

evaluations for the production of biodiesel. Figure 8.4 exhibits the comparison of obtained methyl 

ester (biodiesel) yield for all modified versions of classical ALO and RSM method. It can be 

concluded that the four algorithms namely ALO, OB-ac-ALO, OB-SAC-ALO and OB-L-ALO 

are able to produce same amount of biodiesel.  

8.7 Conclusion 

In this chapter, the regression equation demonstrating the relationship among three independent 

variables namely temperature (𝑥1), methanol to oil ratio (𝑥2) and concentration of catalyst (𝑥3) 

is successfully optimized for maximizing biodiesel production using antlion optimizer (ALO) 

and its proposed modified versions in this thesis namely OB-L-ALO,OB-ac-ALO,OB-SAC-

ALO,OB-LF-ALO and OB-C-ALO. The optimal yield of biodiesel comes out to be 97.47% at  

parameter values as 65℃ temperature,12.62:1 methanol to oil ratio and 1.01 %(w/v) catalyst 

concentration which is significantly high than the biodiesel yield using RSM. Though the 

response surface methodology (RSM) is a popular optimization techniques for such kind of 

process but the success of ALO and its variants indicate the diverse capability of evolutionary 

algorithms for solving such types of real optimization problems. In literature from where the 

model is chosen, the fitness of the model is also verified statistically with the coefficient of 
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determination 𝑅2  and statistical significance with F-test which shows the predictability of the 

model. As ALO and its proposed variants has successfully obtained the optimum yield of methyl 

ester, it shows that the modified versions of classical ALO are proficient in search and can be 

employed to more complex real world applications having compound multimodal functions. The 

performance order of the proposed variants comes out to be as OB-L-ALO > OB-SAC-ALO >

 OB-C-ALO > ALO > OB-ac-ALO > RSM > OB-LF-ALO. The novelty in this work is 

optimizing the process to obtain biodiesel from renewable energy sources in place of using the 

fossil fuels by employing evolutionary algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



202 

 

 

 

 

 

Table 8.1: Range and levels coding of design variables for biodiesel production 

 

Independent Variables Range and Level Lower Bound Upper Bound 

-1 0 1 

Temperature(𝑥1) 55 60 65 55 65 

Methanol/oil ratio(𝑥2) 6:1 10.5:1 15:1 6:1 15:1 

Catalyst concentration(𝑥3) 0.6 1.3 2.0 0.6 2.0 

 

 

 

 

 

 

 

 
Table 8.2: Full factorial central composite design and results for transesterification of soybean oil using dolomite 

[179]  

Run Independent Variables Observed Values of 

Methyl Ester Yield (wt 

%) 

Predicted Values of 

Methyl Ester Yield 

(wt %) 

𝑥1 𝑥2 𝑥3 

1 55 6 0.6 85.5 86.1052 

2 65 6 0.6 89.9 88.9732 

3 55 15 0.6 93.6 93.7102 

4 65 15 0.6 96.1 96.7402 

5 55 6 2.0 92.6 92.324 

6 65 6 2.0 91.6 91.832 

7 55 15 2.0 93.2 94.385 

8 65 15 2.0 94.3 94.055 

9 60 10.5 0.6 93.7 94.6222 

10 60 10.5 2.0 95 97.389 

11 60 15 1.3 94.4 95.4723 

12 60 6 1.3 89.3 90.5583 

13 65 10.5 1.3 94.6 96.8898 

14 55 10.5 1.3 95.6 95.6208 

15 60 10.5 1.3 97.3 96.2553 

16 60 10.5 1.3 96.5 96.2553 

17 60 10.5 1.3 97.1 96.2553 
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Table 8.3: Results Comparison of biodiesel yield using ALO algorithms 

Algorithm Independent Variables Optimum Value of Methyl Ester 

(biodiesel) Yield (wt %) 𝑥1 𝑥2 𝑥3 

OB-C-ALO 65 12.84 1.00 97.46 

OB-LF-ALO 64 12.54 1.01 97.27 

OB-ac-ALO 65 12.32 1.02 97.32 

OB-SAC-ALO 65 12.62 1.01 97.47 

OB-L-ALO 65       12.62       1.01 97.47 

ALO 65 12.71 1.2 97.33 

RSM[179] 60 10.5 1.3 97.3 
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                 H2C-COO-R1         R1-COOR’             CH2-OH 

                    |                                       Catalyst 

                H2C-COO-R2    +   3R’OH                    R2-COO-R’    +     CH2-OH 

                    | 

                H2C-COO-R3                                         R3-COO-R’            CH2-OH 

 

               Triglyceride         Alcohol                     Fatty acid esters      Glycerol 

 

Figure 8.1: General Transesterification reaction 

 

 

 

 

 

Figure 8.2: Linear correlation plot between observed and predicted values 
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Figure 8.3: Methyl Ester (Biodiesel) yield  

 

Figure 8.4: Comparative bar chart diagram of obtained Methyl Ester (Biodiesel) yield 
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CHAPTER 9 

Conclusions and Future scope 

 

This chapter contains the concluding observations about the thesis. The organization of this 

chapter is as follows: Section 9.1 demonstrates the conclusive remarks to outline the studies 

performed in this thesis. Section 9.2 represents some futuristic directions of research related to 

this study. 

9.1 Conclusions 

The performance of any optimization algorithm depends on its efficient searching capability in 

such a way that the search region is explored as much as possible during initial phase and then 

converges towards optima during later phase of searching.  The overall purpose of this thesis is 

to design and modify the Antlion optimizer algorithm (ALO) to propose new variants with an 

objective to acquire appropriate balance between diversity at early phase and exploitation at later 

phase during evolutionary process. These proposed variants are then applied over some real 

world applications. To accomplish this goal, five different variants are proposed: OB-𝐿-ALO to 

enhance the exploration and convergence, OB-ac-ALO and OB-SAC-ALO to accelerate the 

convergence using acceleration parameters, OB-LF-ALO and OB-C-ALO by improving 

exploration, exploitation and acceleration parameters. The performance of the proposed variants 

are evaluated over a set of 31 benchmark problems having different difficulty level 

characteristics. These problems include 23 state-of-the-art problems (7 unimodal, 6 multimodal, 

10 fixed dimension multimodal) and a set of 8 complex composition functions taken from IEEE 

CEC 2014 benchmark problem set.   

 In the second part of the thesis, the performance of proposed variants is investigated on 

three real world applications of different fields. In first real world application, from the field of 

Electrical Engineering three single input single output problems of order reduction of complex 

linear time invariant (LTI) systems are used to evaluate the performance. The second real world 

application from the field of Computational Fluid Dynamics (CFD) is to optimize two conflicting 

objective functions: maximizing heat transfer coefficient and minimizing pressure drop value 

using Nanofluid flow in flat tube. The third problem from the field of Mechanical Engineering 
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is to optimize the process of biodiesel production to address the energy conservation and 

recycling.  

The chapter wise concluding observations of the thesis are as follows: 

Chapter 1 introduces the field of Nature Inspired Optimization and presents the conceptual 

details, operators, modelling and computational steps of classical ALO. Then the recent 

developments in designing modified ALO variants and it’s applications in different areas and 

related literature are discussed.  At the end of the chapter, the organization of thesis is discussed 

in brief. 

 Chapter 2 proposes a novel Opposition Based Laplacian Antlion Optimizer (OB-𝐿-ALO) 

for unconstraint global optimization. This version of classical ALO is useful to address the 

drawback of premature convergence and inability to avoid entrapment into local optima. The 

performance of proposed OB-𝐿-ALO is verified over a set of 31 benchmark problems of varying 

difficulties containing 23 state-of-the-art problems (a set of unimodal, multimodal and fixed 

dimension multimodal functions) and 8 IEEE CEC 2014 composition functions. This set is 

reproduced in Appendix I of this thesis. The performance of proposed variant is compared with 

classical ALO. The obtained numerical results and analysis establish that the proposed OB-𝐿-

ALO outperforms classical ALO over 6 out of 7 unimodal functions, all 6 multimodal functions,9 

out of 10 fixed dimensional multimodal functions and 6 out of 8 composition functions. It can 

be concluded that the proposed OB-𝐿-ALO improves the performance of classical ALO over all 

categories of problems. 

 Chapter 3 proposes two variants namely Opposition based ALO using varying 

Acceleration Coefficient (OB-ac-ALO) and Opposition based ALO using Sine Acceleration 

Coefficient (OB-SAC-ALO) to accelerate the convergence of opposition based ALO. The 

performance of both the proposed variants is investigated over same set of benchmark functions 

as applied in chapter 2 and reproduced in Appendix I of this thesis. Both the variants are 

compared and analyzed with the classical ALO. The performance order of proposed variants is 

given for different categories of problems as: for unimodal functions, OB-ac-ALO > OB-SAC-

ALO > ALO, for multimodal functions OB-ac-ALO > OB-SAC-ALO > ALO, for fixed 

dimensional multimodal functions OB-SAC-ALO > OB-ac-ALO > ALO and for composition 

functions OB-ac-ALO > OB-SAC-ALO > ALO. However both the proposed variants 

outperform classical ALO in most of the problem but it can be concluded that OB-ac-ALO 

performs better than OB-SAC-ALO and classical ALO.  
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 Chapter 4 proposes another extended variant namely Opposition based ALO using Lévy 

flight distribution (OB-LF-ALO).  The performance of proposed OB-LF-ALO is tested on same 

set of benchmark problems as utilized in chapter 2 and 3 and compared with classical ALO which 

is reproduced in Appendix I of this thesis. The evaluation of numerical results and analysis 

authorize that the proposed OB-LF-ALO outperforms classical ALO over 6 out of 7 unimodal 

functions, 5 out of 6 multimodal functions, 9 out of 10 fixed dimensional multimodal functions 

and 3 out of 8 composition functions. It can be concluded that the proposed OB-LF-ALO 

improves the performance of classical ALO in majority of the problems except composition 

functions.  

 Chapter 5 is divided into two parts. The first part introduces an extended modified variant 

to overcome the limitation of premature convergence and entrapment in local optima. In this part, 

the modification is proposed as opposition based antlion optimizer using Cauchy distribution 

(OB-C-ALO) after applying three strategies to classical ALO. OB-C-ALO is verified using the 

same set of benchmark problems as used in previous chapters and compared with classical ALO. 

The numerical results and analysis show that the proposed OB-C-ALO performs better than 

classical ALO over 6 out of 7 unimodal functions, all multimodal and fixed dimensional 

multimodal functions, and 6 out of 8 composition functions. It can be established that the 

proposed OB-C-ALO improves the performance of classical ALO in all categories of problems. 

 The second part of the chapter presents the performance comparison in terms of obtained 

results and analysis among all the five proposed variants of classical ALO i.e. OB-𝐿-ALO, OB-

ac-ALO, OB-SAC-ALO, OB-LF-ALO and OB-C-ALO.  Three variants namely OB-C-ALO, 

OB-LF-ALO and OB-ac-ALO obtain exact global optima for eleven benchmark functions.  It 

can be concluded that OB-C-ALO and OB-ac-ALO performs better for unimodal functions, OB-

C-ALO, OB-ac-ALO and OB-LF-ALO show enhanced performance for multimodal functions 

than other proposed variants. For fixed dimension multimodal functions, OB-𝐿-ALO performs 

better than other variants whereas OB-C-ALO outperforms other variants for compositions 

functions. The overall performance order can be concluded as OB-C-ALO > OB-ac-ALO > OB-

LF-ALO > OB-SAC-ALO > OB-𝐿-ALO > ALO. 

 In Chapter 6, the performance of proposed variants of classical ALO is investigated over 

a real world complex application of model order reduction of linear time invariant system in the 

field of control system. The performance of these algorithms are investigated by applying on 

three single input single output (SISO) systems including two four and one eight order problem 

of different characteristics. The obtained results are analysed using step response in terms of time 
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and frequency diagrams. For first problem, the performance order is concluded as OB-SAC-ALO 

> OB-ac-ALO > OB-𝐿-ALO > ALO > OB-C-ALO > OB-LF-ALO. For second and third 

problems, the performance order of the proposed variants are OB-SAC-ALO > OB-ac-ALO > 

ALO > OB-𝐿-ALO > OB-C-ALO > OB-LF-ALO and OB-C-ALO > OB-ac-ALO > OB-SAC-

ALO > OB-𝐿-ALO > ALO > OB-LF-ALO respectively. 

 Chapter 7 attempts to determine optimal values of two conflicting objective functions i.e. 

heat transfer coefficient (�̃�) and pressure drop(∆𝑃) parameters. Two approaches are utilized: 

First, single objective approach for both the objective functions separately and secondly, multi-

objective approach in which both the objective functions are optimized simultaneously to 

determine objective function values of heat transfer coefficient and pressure drop values: (i) using 

weighted sum approach of multi-objective optimization using classical ALO and its proposed 

variants (ii) Pareto based multi-objective optimization using multi-objective antlion optimizer 

(MOALO). The performance orders in terms of heat transfer coefficient and pressure drop values 

are OB-𝐿-ALO > OB-C-ALO > OB-ac-ALO > OB-SAC-ALO > ALO > OB-LF-ALO and 

OB-C-ALO < OB-ac-ALO < OB-L-ALO < OB-SAC-ALO < ALO < OB-LF-ALO 

respectively. For weighted sum of multi-objective optimization approach, the performance order 

can be concluded for heat transfer coefficient (�̃�) as OB-C-ALO> OB-𝐿-ALO > ALO > OB-

SAC-ALO > OB-ac-ALO > OB-LF-ALO and for pressure drop value as OB-SAC-ALO < OB-

𝐿-ALO < OB-C-ALO < OB-ac-ALO < OB-LF-ALO < ALO. However, it can be concluded that 

OB-C-ALO is able to provide good design values of variables with hear transfer value as 1725.3 

and pressure drop value as 76.8106. 

 In Chapter 8, maximization of biodiesel production using Antlion Optimizer (ALO) and 

its proposed modified is performed. For this purpose, the regression equation demonstrating the 

relationship among three independent variables namely temperature (𝑋1), methanol to oil ratio 

(𝑋2) and concentration of catalyst (𝑋3) is successfully optimized. The optimal yield of biodiesel 

comes out to be 97.47% for OB-𝐿-ALO and OB-SAC-ALO at  parameter values as 65℃ 

temperature,12.62:1 methanol to oil ratio and 1.01 %(w/v) catalyst concentration which is 

significantly high than the biodiesel yield using RSM. The performance order of the proposed 

variants can be concluded as OB-ac-ALO = OB-SAC-ALO = OB-𝐿-ALO = ALO > OB-C-

ALO > RSM > OB-LF-ALO.  
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9.2 Future Work  

Though the five modified versions of classical ALO are designed and verified over a wide variety 

of benchmark problems as well as real life applications, but research is an ongoing process. Still 

there are some suggested directions for future research in this area which are as follows: 

1. The proposed algorithms can be extended as per the different constraint handling techniques 

available in literature so as to solve the constrained optimization problems. 

2. The proposed algorithms can be further enhanced to solve multi-objective and many-objective 

optimization problems. 

3. Techniques suggested in thesis can be applied to multi-objective algorithms such as MOALO, 

MOPSO, NSGA-II, NSGA-III etc. 

4. The performance of these algorithms can be stretched over large scale optimization problems. 

5. These algorithms are computationally extensive, thus the parallelized version of these 

algorithm can be developed to reduce the computational cost. 

6. The proposed algorithms can be applied to solve more complex real life applications. 
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Appendix I 

Benchmark Test Problems 

 

This Appendix presents a set of 31 unconstrained continuous benchmark problems having 

different difficulty level of characteristics. These problems include 23 state-of-the-art problems 

including (i) 7 scalable unimodal problems (𝐹1 − 𝐹7) (ii) 6 scalable multimodal problems (𝐹8 −

𝐹13) (iii) 10 fixed dimensional multimodal problems (𝐹14 − 𝐹23) and a set of 8 complex 

composition functions taken from IEEE CEC 2014 benchmark problem set. Scalable problems 

considered in this thesis are 10 and 30 dimensions. The list of these problems in tabular form are 

shown as under: 

 

Function Search Range Optimum Value 

 

Unimodal Functions                                   D=10,30 

 

𝐹1(𝑋) = ∑ 𝑥𝑖
2

𝐷

𝑖=1

 
[-100,100]  𝐹1(𝑋𝑚𝑖𝑛) = 0 

 

𝐹2(𝑋)=∑ |𝑥|𝐷
𝑖=1 +∏ 𝑥𝑖

𝐷
𝑖=1  

[-10,10] 

 

 

𝐹2(𝑋𝑚𝑖𝑛)=0 

 

𝐹3(𝑋)=∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )𝐷

𝑖=1
2 

 

[-100,100]  𝐹3(𝑋𝑚𝑖𝑛)=0 

𝐹4(𝑋) = max|𝑥𝑖| , 1 ≤ 𝑖 ≤ 𝐷 

 

[-100,100]  𝐹4(𝑋𝑚𝑖𝑛)=0 

 

𝐹5(𝑋)=∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]𝐷−1

𝑖  [-30,30]  𝐹5(𝑋𝑚𝑖𝑛)=0 

 

𝐹6(𝑋)=∑ ([𝑥𝑖 + 0.5])2𝐷
𝑖  

 

[-100,100]  𝐹6(𝑋𝑚𝑖𝑛)=0 

 

𝐹7(𝑋) = (∑ 𝑖. 𝑥𝑖
4

𝐷

𝑖

) + 𝑟𝑎𝑛𝑑[0,1] 

[-1.28,1.28]  𝐹7(𝑋𝑚𝑖𝑛)=0 

 

 

 

 

Multimodal Functions                                   D=10,30 

 

𝐹8(𝑋)=∑ −𝑥𝑖 . sin (√|𝑥𝑖|)
𝐷
𝑖  [-500,500]  𝐹8(𝑋𝑚𝑖𝑛)=-418.9829*D 

𝐹9(𝑋) = ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝐷

𝑖

 
[-5.12,5.12]  𝐹9(𝑋𝑚𝑖𝑛) = 0 

𝐹10(𝑋)=-20exp (− √
1

𝐷

0.2
∑ 𝑥𝑖

2𝐷
𝑖 ) − exp (

1

𝐷
∑ cos 2𝜋𝐷

𝑖 𝑥𝑖) +

20 + 𝑒 

[-32,32]  𝐹10(𝑋𝑚𝑖𝑛)=0 
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𝐹11(𝑋) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖

𝐷

1

𝐷

𝑖

) + 1 
[-600,600]  𝐹11(𝑋𝑚𝑖𝑛) = 0 

𝐹12(𝑋) =
𝜋

𝐷
{10 𝑠𝑖𝑛2(𝜋𝑦1)

+ ∑(𝑥𝑖 − 1)2. [1 + 𝑠𝑖𝑛2(𝑥𝑦𝑖+1)]

𝐷

𝑖=1

+ (𝑦𝐷 − 1)2} + ∑ 𝑢(𝑥𝑖,

𝐷

𝑖

10,100,4) 

[-50,50]  𝐹12(𝑋𝑚𝑖𝑛)=0 

𝐹13(𝑋)=0.1{𝑠𝑖𝑛2(3𝜋𝑥1)+∑ (𝑥𝑖 − 1)2. [1 +𝐷
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] + (𝑥𝐷 − 1)2} + ∑ 𝑢(𝑥𝑖,
𝐷
𝑖 5,100,4) 

[-50,50]  𝐹13(𝑋𝑚𝑖𝑛) = 0 

 

Fixed Dimension Functions                                    

 

𝐹14(𝑋) = (
1

500
+ ∑ (𝑗 + 1 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗

1
𝑖=0 )25

𝑗=1
6)-1 [-65.54,65.54] D=2 𝐹14(𝑋𝑚𝑖𝑛)=0.998 

𝐹15(𝑋) = ∑ (𝑎𝑖
10
𝑖=0 −

𝑥0(𝑏𝑖
2+𝑏𝑖𝑥1)

𝑏𝑖
2+𝑏𝑖𝑥2+𝑥3

)2 [-5,5]
 
             D=4 𝐹15(𝑋𝑚𝑖𝑛)=0.0003075 

𝐹16(𝑋) = 4𝑥0
2 − 2.1𝑥0

4 +
1

3
𝑥0

6 + 𝑥0𝑥1 
[-5,5]                  D=2 𝐹16(𝑋𝑚𝑖𝑛)=-1.0316 

𝐹17(𝑋) = (𝑥1 −
5.1

4𝜋2 𝑥0
2 +

5

𝜋
𝑥0 − 6)2+10(1-

1

8𝜋
)cos(𝑥0)+10 [-5,5]                 D=2 𝐹17(𝑋𝑚𝑖𝑛)=0.398 

𝐹18(𝑋) = {1 + (𝑥0 + 𝑥1 + 1)2(19-14𝑥0 + 3𝑥0
2 − 14𝑥1 −

6𝑥0𝑥1 + 3𝑥1
2)}{30+(2𝑥0 − 3𝑥1)2(18-32𝑥0 + 12𝑥0

2 +

48𝑥1 − 36𝑥0𝑥1 + 27𝑥1
2)} 

[-2,2]                 D=2 𝐹18(𝑋𝑚𝑖𝑛)=3 

𝑓19(𝑋) = − ∑ ((𝑋 − 𝑎𝑖)
5
𝑖=1

T(𝑋 − 𝑎𝑖)+𝑐𝑖)
-1 [0,10]                D=4 𝐹19(𝑋𝑚𝑖𝑛)=-10.1532 

 

𝐹20(𝑋) = − ∑ ((𝑋 − 𝑎𝑖)
7
𝑖=1

T(𝑋 − 𝑎𝑖)+𝑐𝑖)
-1 [0,10]              D=4 𝐹20(𝑋𝑚𝑖𝑛) = −10.4029 

𝐹21(𝑋) = − ∑ ((𝑋 − 𝑎𝑖)
10
𝑖=1

T(𝑋 − 𝑎𝑖)+𝑐𝑖)
-1 [0,10]               D=4 𝐹21(𝑋𝑚𝑖𝑛) = −10.5364 

𝐹22(𝑋) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2
3

𝑗=1
)

4

𝑖=1
 

[1,3]                 D=3 𝐹22(𝑋𝑚𝑖𝑛) = −3.86 

𝐹23(𝑋) = − ∑ 𝑐𝑖exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)2
6

𝑗=1
)

4

𝑖=1
 

[0,1]                 D=6 𝐹23(𝑋𝑚𝑖𝑛) = −3.32 

 

Composition Functions CEC 2014                  D=10 

 

𝐹24(𝑋)=Composition Function 1 [-100,100] 𝐹24(𝑋𝑚𝑖𝑛) = 2300 

 

𝐹25(𝑋)= Composition Function 2 [-100,100] 𝐹25(𝑋𝑚𝑖𝑛) = 2400 

 

𝐹26(𝑋)= Composition Function 3 [-100,100] 𝐹26(𝑋𝑚𝑖𝑛) = 2500 

 

𝐹27(𝑋)= Composition Function 4 [-100,100] 𝐹27(𝑋𝑚𝑖𝑛) = 2600 

 

𝐹28(𝑋)= Composition Function 5 [-100,100] 𝐹28(𝑋𝑚𝑖𝑛) =2700 

 

𝐹29(𝑋)= Composition Function 6 [-100,100] 𝐹29(𝑋𝑚𝑖𝑛) = 2800 

 

𝑓30(𝑋)= Composition Function 7 [-100,100] 𝐹30(𝑋𝑚𝑖𝑛) =2900 

 

𝐹31(𝑋)= Composition Function 8 [-100,100] 𝐹31(𝑋𝑚𝑖𝑛) = 3000 
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