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Abstract

This thesis is concern with gait generation methods for stable walk of flat footed and toe

footed biped robot models. Methods are proposed to generate suitable trajectory, which

can easily adapt the changes in the boundary conditions/constraints during walk. Different

type of approaches such as polynomials, Feedforward Neural Network(FNN) and Wavelet

Neural Network(WNN) are considered for some biped models walking on uneven surfaces

and for avoiding obstacles. To avoid stable leg’s knee bending and for more stable walk,

lateral upper body motion is considered. Force/torque control for walk is designed by

developing the dynamic equations of the biped model.

The thesis is divided into 7 chapters which are briefly described below:

Chapter 1 is introductory with a brief literature review in the area of robotics and neural

networks. We have discussed some biped models and also the inherent challenges associ-

ated with the robots’ stable walk. Finally, a summary of the thesis is presented.

Chapter 2 gives some basics and preliminaries which are used in subsequent chapters.

Chapter 3 focuses on stable FNN trajectory tracking of flat footed biped robot with

upper body motion. Trajectories using cubic spline are generated for ankle joints, hip

joints and upper body so that the resulting walk is stable. Here, the effects of different

lateral upper body motions of the flat footed robot on ZMP stability is analyzed for plane

surface walking. The inverse kinematics of the ankle and hip trajectories are solved using

FNN. Further, simulations are done using Matlab2010b.

Chapter 4 proposes polynomial based trajectory generation algorithm of a robot model

for stable human like gait considering the upper body motion, movable foot and active toe.

This approach allows the smooth transition between walking phases namely, single support

phase and double support phase. ZMP stability is analyzed for plane and uneven surface

walking of the toe footed model by taking into account the lateral upper-body movements
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along with the planned motion trajectories.

Chapter 5 proposes and compares FNN and WNN based approaches for smooth tra-

jectory generation under given constraints. The trajectory generation procedure is derived

from semi-supervised NNs for given boundary conditions without assigning any path in ad-

vance. The trajectories generated by using proposed approaches can be modified according

to the constraints value at any instant of time during tracking. Further, these approaches

are used for the gait generation of a 5 DOF flat footed biped to walk on flat terrain in

3-dimensional space. The suitability of the proposed approaches is studied using ZMP

stability criteria and simulations have been carried out using Matlab2014a.

In Chapter 6, a biped robot model with flat foot is considered. The dynamic equation of

this model is derived and a PD controller for stable walk is presented. FNN approach pro-

posed in Chapter 5 is used for smooth and dynamically stable trajectory generation and the

results are compared with polynomial approach. Simulation results (using Matlab2014a)

show that this model can cross over obstacles of different heights and cross over a ditch by

adjusting the step height and step length in ankle trajectory at any instant during tracking.

Conclusions, limitations and future work have been outlined in Chapter 7.
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Chapter 1: Introduction

Robots are increasingly used in industry, agriculture, space, military and medical appli-

cations. The study of bipedal walk will help in the development of more sophisticated

humanoid robots. Researchers give more importance to humanoid robots because of their

resemblance to human structure. They are able to climb up and down on stairs, walk on

narrow places, jump and perform most of the work better than humans. Stable biped loco-

motion is a challenging problem in robotics. A typical problem is the instability produced

by violent transitions between walking phases, particularly when a swing leg impacts the

ground. During walk, falls commonly occur when the walking speed increases or the terrain

conditions change. However, considerable work has been done on locomotion in literature

but more work needs to be done. As robots will be indispensable in our daily life, it is

expected that the human-robot interaction is and will be an area of active research.

1.1 Introduction to Bipedal Robots

Initially, the study on artificial hands and arms began in 1967 for the development of

robots that can perform work intelligently as a manual skilled labor [4, 27, 79, 85]. Since

70s, many studies were done on biped robot. Vukobratovic et al.(1972) [96] was one of

the pioneering researchers of biped locomotion and Zero Moment Point(ZMP) concept.

The inverted pendulum model was developed by Miura et al.(1980) [64] on bipedal gait

and it could achieve the dynamically stable walk. Zheng et al.(1990) [103] developed gait

synthesis for the SD-2 biped robot to climb sloping surface.

The ZMP concept is applied by Li(1991) [50] to control the motion of 12 degrees of

freedom (DOF) WL-12RIII biped robot. Kajita et al.(1992) [37] proposed an potential

energy conserving orbit concept to formulate new control laws on the biped. Goswami
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et al.(1999) [24] introduced a point called the foot rotation indicator (FRI) point on the

contact surface which is the net ground reaction to keep the foot stationary.

Lim et al.(2000) [55] modeled and studied a balance control of 43 DOF biped robot

(WABIAN-RII) for human like walk. Firstly, the smooth motion is designed of its lower

limbs using a set of walking parameters, and the motion of its trunk and waist is derived us-

ing an iterative method. Finally, a controller is applied to the planned walk. Gienger(2001)

[23] proposed the design and the controller for a 3 dimensional dynamically stable walk of

the bipedal robot. Plestan et al.(2003) [76] demonstrated asymptotically stable walk of a

planar 5 link underactuated bipedal robot model. To verify disturbance rejection capability,

different perturbations were introduced in walk patterns. Mousavi et al.(2007) [65] focused

on simulation and control of the biped robot model on horizontal, ascending and descend-

ing surfaces. The robot path using the given break points is interpolated using mathematical

simulation.

1.1.1 Types of Bipedal Robots

The lower limb model named WL-1 was introduced in 1966-1967 [8, 9, 54]. It was

an artificial lower limb which was made on the basis of locomotion of the lower limb’s

analysis. Further, a master type walking machine WL-3 was developed in 1968 to 1969

which was a mechanical model for lower limbs. It produced human-like movement for

the single and double support phases and it could also sit and stand up. The WAP-3 was

developed in 1971 which was a light weighted model for bipedal walking. It was able to

walk on a slope or staircase, and it could also turn while walking. The static walking was

realized by a heavy model WL-5. This was developed in 1970-1972 and controlled by a

mini computer. In WABOT-1 (45sec/step), WL-5 was used as lower limbs. In 1980-1981

the computer aided design system was developed for artificial limbs.

All these models work in 2 dimensional space and walk slowly using static stability

with large feet. In the 1980s, the bipedal robot BIPER [63] was developed to perform

dynamic walk with larger feet to maintain the balance. Dynamic walk was realized in 1984

with a model WL-10RD (1.3 sec/step). In 1991, the MELTRAN-II was constructed by

Kajita et al. [36] using the inverted pendulum concept. A series of bipedal robots had been

started by Honda since the 90s like 25 DOF ASIMO robot [80] with 1.4 meter height. The

2



Chapter 1. Introduction

Toyota biped robot can play musical instrument and the first kid size biped robot SONY

Qrio [33] was built in 2003. Recently, the HRP series [39] robots is built by AIST institute

and the Kawada Industries. The HRP-2 robot has 30 DOF with 1.52m height and 58 kg

weight. The KHR-1 has 21 DOF with no hands and head [73] and KHR-2 has 41 DOF

and also have human like walk. In 2010, HUBO is refined with its human like movements

and features. The Nao robot [25] is built by the company Aldebaran which is a 58-cm tall

humanoid robot and it is successfully used in computer and science classes for education.

Humanoid robots Johnnie/LOLA [23] by University of Munich Germany is powered by

linear actuators. LUCY from Vrije Universiteit Brussel uses pneumatic muscle, and iCub

[69] by University of Genova Italy is a small biped robot. The DARPA [35] Robotics

Competition 2014 is the center of attraction for the development of autonomous bipeds for

exploring disaster field and used in search and rescue missions. Three years later, in 2016,

italian institute of technology (IIT) introduced a new high-performance humanoid for the

realistic environment: WALKMAN [93]. Atlas [57] introduced by Boston Dynamics is

able to balance when jostled or pushed and can able to walk on different surfaces. Atlas’s

ability to balance while performing tasks and greatly expanding its reach and workspace

allows it to work in a large volume with small feet.

1.2 Challenges Associated with Human Walk

How human gait works is still an active research field. Many researchers have devel-

oped different types of biped robots which can walk with varying speed[31-36] but still

a great amount of theoretical work needs to be done in this field. To realize human like

walk of a biped robot, trajectory planning is considered the most important factor. For a

biped robot to walk, good balance and stability is also necessary. Some biped robot model

have flat feet, and their knees and upper body are bent during walking which look like a

Neanderthal walking. They bend their knees and upper body, all the time during double

support phase of locomotion to balance and to shift the body weight from swing leg to the

stable leg [15, 21, 31, 38, 67, 80]. This walk not only looks unnatural but also leads to

high torque on knee, hip and ankle joints [59, 88, 100], whereas humans walk in a different

manner. They do not shorten the stable leg, but over-extend their swing leg with the help

of foot rotation [48, 68, 99].
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To achieve human gait, it is important to control the motion of the robot and to plan

suitable trajectories for the robot joints during the walk. For a smooth trajectory, path

velocity and acceleration should remain smooth from the start to the final point. Smooth

trajectory is needed for accuracy, efficiency in repetitive tasks and high productivity for

industrial work and also it is also beneficial for biped to avoid jerks. Accurate kinematic

and dynamic models are required for efficient locomotion.

Firstly a brief literature survey related to this research is presented.

1.3 Literature Survey

1.3.1 Various Path Planning Techniques

Trajectory generation problems have been extensively studied in the literature [1, 6, 10,

15, 22, 31, 66, 67, 78, 86, 87, 94, 100]. There are several numerical interpolation and

convolutional methods for smooth motion to generate a collision-free trajectory from an

initial to a final position [6, 10, 28, 40, 58, 75, 78, 87].

Researchers have designed various trajectories for the hip and the foot joints for a stable

walk. Many techniques have been adopted for walk planning of biped robot [22, 31, 66, 67,

100]. The authors in [15, 31, 94, 100] presented a cubic polynomial interpolation algorithm

to implement the biped walk. Also, higher degree polynomials have been used for the

smooth trajectory generation to maintain the continuity of the velocity and acceleration

[87].

Narvez-Aroche et al. [67] have obtained a kinematic model for 12 DOF biped robot

which gives satisfactory results for the position, velocity and acceleration control. They

also presented the steps for the kinematic modeling and ZMP computation method.

Xiaoguang and Ruyi [100] presented a gait plan for NCEPU-I humanoid robot model

with the bar linkage. The hip trajectory and the swing leg’s ankle trajectory are planned for

slope gait. This method can be applied to different angles of high efficiency.

Cuevas et al. [15] used a polynomial trajectory generation algorithm (PTA) on a 10

DOF biped robot from initial to final conditions for smooth transition during walking

phases. The joint trajectories are generated for various surface conditions.

Some robots are also able to cross the obstacles of different heights [15, 51, 72, 90, 104].
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Stasse et al. [90] presented a HRP-2 humanoid robot that can dynamically step over a 15

cm obstacle within 4 secs using quasi static stability with 3 cm stability margin.

On the other hand, Li et al. [51] planned a gait by motion capture system towards

overcoming the obstacle during walk of the humanoid robot. Force sensors are used to

calculate the ground reaction forces.

However, these methods don’t work well in more complex domain. So, the develop-

ment of bipedal robot, which can walk on uneven terrain and can adjust its gait/step accord-

ing to uncertain environment during tracking is one of the challenging fields of research.

Hence, many researchers have investigated different soft computing techniques in different

areas recently.

1.3.2 Soft Computing Techniques

In recent time due to the complexity and computational challenges of problems, soft

computing techniques such as Neural Network (NN), Genetic Algorithm (GA), Fuzzy

Logic (FL) and Particle Swarm Optimization (PSO) etc are popularly considered by sev-

eral authors [2, 3, 7, 41, 43, 52, 55, 59–61], to solve various problems in different areas of

research. These techniques are effective and have learning capability to solve some com-

plex, uncertain and real world problems. Biped robot’s gait generation is difficult due to

its complexity in model development and imprecision in data collection and uncertainty in

walking surfaces. To overcome these challenges, gait can be best modeled using the soft

computing techniques.

Capi et al. [12] used splines for angle trajectory generation based on GA, for stable

walk and going up-stair with the minimum energy consumption. A radial basis function

neural network is considered for the real time application. Simulations are carried out on

Bonten-Maru I biped robot.

Vundavilli et al. [97] used two approaches namely, GA-NN and GA-FLC to generate

stable gait of biped for the staircase. GA, is used offline to optimize the NN’s weights and

to optimize the knowledge bases of FLC.

Nada Kherici et al. [43] used particle swarm optimization (PSO) to generate articulation

angles for stable gait by using the center of mass (COM) constraint of the 10 DoF biped

robot.
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Sarkar and dutta [82] have used GA for energy efficient gait of compliant links bipedal

robot in case of various step lengths and slopes. Gait parameters are varied in a range, and

using these parameters different joint trajectories are generated. GA was used to find the

minimum energy consumption walking trajectory with ZMP stability.

1.3.3 Neural Network as Universal Approximator

Recently, NN has generated a significant interest among soft computing techniques

for its learning ability in the control field, natural language processing, speech and image

recognition. NN’s capability and flexibility of learning by example, generalizing property,

smaller information prerequisite, quick real time operation and simplicity of implementa-

tion characteristics have made them popular in every field of research.

NN has been used (i) to find numerical solution of differential equations [49, 71, 91],

(ii) to approximate multi dimensional non-linear systems [19, 41, 44], (iii) to map the input-

output representation of an unknown system [89] and (iv) to identify and control dynamical

systems [14, 46, 47, 70].

Several NN models also have been proposed to resolve the trajectory planning problems

[1, 29, 30, 56, 60, 62, 97, 98]. Liu et al. [56] used online trajectory generation method based

on neural oscillators for adaptive walking control of biped robot. In [60], SVM controller

is used to predict the truck trajectory using foot and hip trajectories as input to generate a

balanced gait. In some papers, trajectories are generated by NN, using sensory feedback of

data [56, 105], or by collecting human data [84].

NN approach is effective in generating a trajectory, since it can give instant solution at

any desired number of points in less computational time and memory, once the networks

have been trained.

NN can also be used to find inverse kinematic solutions for biped robots. In [5, 16,

17, 32], some random samples of joint angles are taken from specified range and then used

in forward kinematic equations to calculate the end effector’s position and orientation for

each set of joint angles. These pairs of joint angles and position/orientation are called

training data. NN function is trained using supervised learning for these training data (ap-

proximately 1000) by giving position and orientation as inputs and the corresponding joint

angles as desired outputs. Further, NN (at least 100 neurons in hidden layer) gives inverse
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kinematics solutions for any position in workspace. De et al. [16] found the inverse kine-

matic solutions for humanoid robot using supervised learning approach for training data.

Two NNs are used, one for DSP and another for SSP, to learn the most stable positions

from the range of all the possible solutions on basis of COM and no hip roll rotation.

1.3.4 Stable Gait/Locomotion on Generated Trajectory

The objective of the present day research is, not only to design suitable trajectories

for gait generation on complex surfaces but also to make sure that the generated gait is

dynamically balanced. Erbatur et al. [18] used the cart-table model differential equation

for COM trajectory. Vukobratovic et al. [95] used the ZMP concept for stable walk of

the biped robots. The most widely used [15, 18, 31, 51, 53, 59, 67, 68, 74, 88, 90, 94,

100, 101, 104] dynamic balance criterion is the ZMP. Some researchers have assumed a

pre-determined ZMP trajectory [68, 104]. It can be either be a fixed ZMP [31, 67, 80]

typically at the center of the sole in the single support phase, or a moving ZMP which

moves from one foot to another periodically in the supported region during locomotion

[18, 30, 56, 59, 82, 101, 104].

Park [74] has proposed a fuzzy logic ZMP trajectory to reduce the swing motion of

the trunk for the stable walk of biped robot. The trunk trajectory of 7 DOF biped robot

is calculated by solving a differential equation with known ZMP and leg trajectories in

sagittal plane.

Erbatur and Kurt [18] presented an approach for the iterative trajectory generation us-

ing a Linear Inverted Pendulum Model (LIPM) algorithm by specifying a desired ZMP

reference trajectory. These techniques are tested and simulated on a 12 DOF biped robot

model. Narvaez et al. [67] presented a kinematic analysis of a 12 DOF biped robot with

ZMP stability.

In Zhu et al. [104], the optimal allowable ZMP variation region is used to generate

different locomotion with respect to different surface conditions by modifying the ZMP in

lateral direction. Further, gait parameters are optimized for maximum stability margin.
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1.3.5 Effect of Upper Body and Toe Joint on ZMP Stability

To obtain the desired ZMP reference trajectory, the suitable joint motion are required.

The knee bending problem can be alleviated by allowing a vertical body motion (VBM)

[59, 88]. Takanishi et al. [92] presented a method for generating upper body motion by

transforming the ZMP reference trajectories into the Fourier series. Lim et al. [53] de-

scribed a walking pattern of 16 DOF WABIAN-2LL biped robot with stretched knee which

could moves around an object using a hip bending motion. Shin et al. [88] proposed a

locomotion planning of a biped model with vertical body movement to relieve from knee

bending problem with allowable ZMP region (AZR). Here, a control system is established

with 3 Mass Inverted Pendulum Mode (3MIPM). Gait parameters are optimized for min-

imum energy consumption with various ZMP in AZR. In Liu et al. [59] a knee stretched

walking pattern is proposed involving three dimensional motion of upper body based on

ZMP dynamic balance criterion. The proposed walking pattern is modified according to

sensory feedback to stabilize the Nao robot. Vertical upper body point mass motion is ef-

fective in attaining a wide range of step lengths with improved push recovery behavior of

biped robot [22, 102].

In human walk, first the heel of the swing leg contacts the ground, then the sole and

finally the toe contact the ground [18, 99]. For humanoid H6, Nishiwaki et al. [68] added

the extension of foot with toe joints attachment to avoid from knee bending, to speed up

the walking and to enable the robot to take higher steps.

Furthermore, dynamic control is essential part in robotics. Torque/forces are required

for the implementation of the proposed walking patterns. Different dynamic model with

controller for stable locomotion are presented in [7, 11, 41, 45, 81, 98]. Vundavalli et al.

[97] derived dynamic equations and optimal control for 7 DOFs biped robot. Sarkar and

dutta [82] presented energy efficient controlled gait with compliant links for a 12 DOF

bipedal robot model.

This thesis is concern with gait generation methods for stable walk of flat footed and

toe footed biped robot models. Methods are proposed to generate suitable trajectory, which

can easily adapt the changes in the boundary conditions/constraints during walk. Different

types of approaches such as polynomials, Feedforward Neural Network(FNN) and Wavelet

Neural Network(WNN) are considered for some biped models walking on uneven surfaces
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and for avoiding obstacles. To avoid stable leg’s knee bending and for more stable walk,

lateral upper body motion is considered. Force/torque control for walk is designed by

developing the dynamic equations of the biped model.

The thesis is divided into 7 chapters which are briefly described below:

Chapter 1 is introductory with a brief literature review in the areas of robotics and

neural networks. We have discussed some biped models and also the inherent challenges

associated with the robots’ stable walk. Finally, a summary of the thesis is presented.

Chapter 2 gives some basics and preliminaries which are used in subsequent chapters.

Chapter 3 focuses on stable FNN trajectory tracking of flat footed biped robot with

upper body motion. Trajectories using cubic spline are generated for ankle joints, hip

joints and upper body so that the resulting walk is stable. Here, the effects of different

lateral upper body motions of the flat footed robot on ZMP stability is analyzed for plane

surface walking. The inverse kinematics of the ankle and hip trajectories are solved using

FNN. Further, simulations are done using Matlab2010b.

Chapter 4 proposes polynomial based trajectory generation algorithm of a robot model

for stable human like gait considering the upper body motion, movable foot and active toe.

This approach allows the smooth transition between walking phases namely, single support

phase and double support phase. ZMP stability is analyzed for plane and uneven surface

walking of the toe footed model by taking into account the lateral upper-body movements

along with the planned motion trajectories.

Chapter 5 proposes and compares FNN and WNN based approaches for smooth tra-

jectory generation under given constraints. The trajectory generation procedure is derived

from semi-supervised neural network for given boundary conditions without assigning any

path in advance. The trajectories generated by using proposed approaches can be modified

according to the constraints value at any instant of time during tracking. Further, these

approaches are used for the gait generation of a 5 DOF flat footed biped to walk on flat

terrain in 3-dimensional space. The suitability of the proposed approaches is studied using

ZMP stability criteria and simulations have been carried out using Matlab2014a.

In Chapter 6, a biped robot model with flat foot is considered. The dynamic equation of

this model is derived and a PD controller for stable walk is presented. FNN approach pro-

posed in Chapter 5 is used for smooth and dynamically stable trajectory generation and the
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results are compared with polynomial approach. Simulation results (using Matlab2014a)

show that this model can cross over obstacles of different heights and cross over a ditch by

adjusting the step height and step length in ankle trajectory at any instant during tracking.

Conclusions, limitations and future work have been outlined in Chapter 7.

10



Chapter 2: Preliminaries

2.1 Homogeneous Transformation Matrix

Homogeneous transformation is used to describe the position and orientation relation-

ship between two coordinate frames. The kinematics of a robot is concerned with the rela-

tionship between co-ordinate frames attached to the object to be handled/environment and

the joints of the robot. Let G be the universal frame and M be the moving frame, then the

position and orientation of frame M with respect to frame is given by a 4× 4 homogeneous

transformation matrix GTM as

GTM =

[
R3×3 P3×1

01×3 1

]
, (2.1)

where R is a rotation matrix representing the orientation and P is a translation vector with

respect to the frame G.

The inverse of GTM is given by

[GTM ]−1 = MTG =

[
R′ −R′P

01×3 1

]
(2.2)

where R′ denotes the transpose of R.

If M is obtained from G only by translation along a vector ~P = (a, b, c) then

GTM =


1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1

 (2.3)

11



Chapter 2. Preliminaries

which can be represented as Ta(~P ). If M is obtained by rotating G according to a rotation

matrix R, then

GTM =

[
R3×3 03×1

01×3 1

]
(2.4)

The homogeneous transformation matrices representing rotation by an angle θ about the x,

y, z axes respectively, are given by

R(x, θ) =


1 0 0 0

0 Cθ −Sθ 0

0 Sθ Cθ 0

0 0 0 1

 , R(y, θ) =


Cθ 0 Sθ 0

0 1 0 0

−Sθ 0 Cθ 0

0 0 0 1

 , R(z, θ) =


Cθ −Sθ 0 0

Sθ Cθ 0 0

0 0 1 0

0 0 0 1


2.2 Forward and Inverse Kinematics

Kinematics in robot mechanism describes the motion of a body without considering the

torque/force acting on it during the motion. For n link manipulator, a relation between the

joint variables and the position/orientation of the end effector with respect to the base is the

kinematic equations. The robot kinematics problem is classified into forward and inverse

kinematics.

2.2.1 Kinematics of 2 link Manipulator

Consider the 2-link manipulator OAB, where O is at the origin of the XY coordinate

frame. Let (x, y) denotes the coordinate of the end-effector B and let (θ1, θ2) be the joint

angles as shown in the Figure 2.1. From Figure 2.1, it can be easily seen that

x = l1cosθ1 + l2cos(θ1 + θ2) (2.5)

y = l1sinθ1 + l2sin(θ1 + θ2) (2.6)

where l1 and l2 are length of the links.

The above set of 2 equations is called kinematic equations of the given manipulator.

Finding the end effector position (x,y) for given joint angles (θ1, θ2) is called forward

kinematics while finding (θ1, θ2) for given (x,y) is called inverse kinematics.
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Figure 2.1: 2 link manipulator

The inverse kinematic solutions can be easily obtained from equations (1) and (2) as

follows:

θ2 = cos−1
[
x2 + y2 − l12 − l22

2l1l2

]
(2.7)

θ1 = sin−1
[
y(l1 + l2cos θ2)− xl2sin θ2

x2 + y2

]
(2.8)

As number of the links is increased, kinematics for a robot becomes difficult to determine.

Denavit-Hartenberg proposed a matrix method using translational and rotational relation-

ships between adjacent links for the coordinate of an end effector with respect to the base

frame.

2.2.2 Denavit-Hartenberg (D-H) Procedure

A robot manipulator is a sequence of links connected by either revolute or prismatic

joints. Denavit Hartenberg proposed an approach by utilizing homogeneous transforma-

tion matrix to describe the spatial geometry of the links with respect to the base reference

frame. Firstly, the coordinate frames are assigned on each joint and then DH parameters

(θi, di, ai, αi ) for each joint i are calculated as in [20, 79, 83] where θi is the joint angle, di
is the joint distance, ai is the link length and αi is the link twist angle for each i = 1, 2, ..., n.

The position and orientation coordinates of the ith frame can be expressed in the (i-1)th
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frame by a 4× 4 homogeneous transformation matrix after substituting the corresponding

DH parameters. The matrix i−1Ti denotes the position and orientation of the ith frame with

respect to (i-1)th frame which is

i−1Ti = R(zi−1, θi)Ta(0, 0, di)Ta(ai, 0, 0)R(xi, αi)

=


Cθi −CαiSθi SαiSθi aiCαiCθi

Sθi Cθi −SαiCθi aiSθi

0 Sαi Cαi di

0 0 0 1

 =

[
R3×3 P3×1

01×3 1

]

The Arm Matrix for n-link manipulator is

0Tn =0 T1(q1)
1T2(q2)

2T3(q3)...
(n−1)Tn(qn) =

n∏
i=1

i−1Ti

which represent the position and orientation of end effector with respect to base frame. The

inverse of 0Tn is given by

nT0 = 0Tn
−1

=n T(n−1)(qn)(n−1)T(n−2)(q(n−1))...
2T1(q2)

1T0(q1)

2.2.3 Inverse Kinematics

The main problem for the control of motion in robotics, is to find accurate and re-

liable inverse kinematic solutions. Solving the inverse kinematic problems for robots is

quite challenging task because of geometry complexity, multiple solutions, singularities

and nonlinear trigonometric equations occurring between Cartesian space and joint space.

Traditional methods such as geometric, iterative and algebraic are inadequate if the joint

structure of the manipulator is more complex. Disadvantages of analytical approaches to in-

verse kinematic solutions are that they do not adapt well to the changes in the system param-

eters. In order to overcome disadvantages of these techniques, Neural Networks(NN) and

Optimization methods have been widely used for inverse kinematics problems in robotics.

2.3 Feedforward Neural Network(FNN)

A two layer FNN with M input units, m output units and N hidden layer neurons is

shown in Figure 2.2. The relation between input vector s ∈ RM and the output vector
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Figure 2.2: Feedforward neural network

r = f(s) ∈ Rm is given in the following equation:

ri = fi(s) =
N∑
j=1

[
vijσ

(
M∑

k=1
wjksk

)]
; i = 1, 2, ..,m (2.9)

where σ(.) is the activation function for the hidden-layer neurons, wjk and vij are intercon-

nection weights from input layer to hidden layer and hidden layer to output layer respec-

tively.

Sigmoid, Signum, tangent hyperbolic and gaussian are some activation functions gen-

erally used in NN literature. Sigmoid activation function is given by

σ(s) =
1

1 + e−s
. (2.10)

Define the weight matrices as W=[wjk] j=1,2,...,N
k=1,2,...,M

and V=[vij]i=1,2,...,m
j=1,2,...,N

. Then equation(2.1)

can be rewritten as

r = f(s) = V σ(Ws), (2.11)

where r = [r1, r2, ..., rm]′, s = [s1, s2, ..., sM ]′ and σ(s) = [σ(s1), ..., σ(sM)]′.

NN function approximation property: According to the NN function approximation

property, for a given smooth function f on a compact set Ω ⊂ RM and arbitrary ε > 0,

there exists N hidden layer neurons and weight matrices W and V such that

r = f(s) = V σ(Ws) + ε1(s), (2.12)
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where NN approximation error ε1(s) satisfies ||ε1|| < ε.

If ε is sufficiently small then, an estimation of f(s) in terms of neural network can be

written as

f̂(s) = V̂ σ(Ŵs), (2.13)

where Ŵ and V̂ are the approximations of W and V respectively that are provided by some

online weight tuning algorithm.

Error backpropagation Algorithm: This is a common weight tuning algorithm based on

gradient descent algorithm. Let rd be the desired NN output and r is the actual output.

Then the backpropagated error is E = rd − r. Now, the weights are updated to minimize

the error E by the backpropagation algorithm given by:

v
(I+1)
ij = v

(I)
ij − α1

∂E

∂v
(I)
ij

(2.14)

w
(I+1)
jk = w

(I)
jk − α2

∂E

∂w
(I)
jk

(2.15)

where α1 and α2 are learning rates and I is number of iterations.

2.4 Wavelet Neural Network(WNN)

The structure of WNN is shown in Figure 2.3. The relation between input signal vector

x ∈ RM and the output vector y = f(x) ∈ Rm is given in the following equation:

Figure 2.3: Wavelet neural network

yi = hi(x) =
N∑

j=1

[
vijφ

(
M∑

k=1

(wjkxk − ck
dk

)]
; i = 1, 2, ...,m (2.16)
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where φ(.) is the activation function for the hidden-layer neurons, wjk and vij are intercon-

nection weights from input to hidden layer and hidden layer to output layer respectively. ck
and dk are translation and dilation weights respectively.

Gaussian wavelet activation functions is given by

φ(x) =
x√
2π
exp(−x2/2)

The common weight tuning algorithm is based on gradient descent algorithm. Let yd be the

desired NN output and y is the actual output. Then the backpropagated error is E = yd−y.

Now, the weights are updated to minimize the error E by the backpropagation algorithm

given by:

v
(I+1)
ij = v

(I)
ij − α1

∂E

∂v
(I)
ij

(2.17)

w
(I+1)
jk = w

(I)
jk − α2

∂E

∂w
(I)
jk

(2.18)

c
(I+1)
k = c

(I)
k − α3

∂E

∂c
(I)
k

(2.19)

d
(I+1)
k = d

(I)
k − α4

∂E

∂d
(I)
k

(2.20)

where α1, α2, α3 and α4 are learning rates.

2.5 Robot Dynamics

Dynamic equation describes the relationships between the contact and actuation forces

with the motion and acceleration trajectories that are due to the reacting forces. The precise

knowledge of robot dynamics includes mass, location of center of mass and inertia of each

link.

2.5.1 Lagrangian Equations

The Lagrangian L of a robotic system is the difference between the kinetic energy K

and the potential energy P of the robot

L = K − P

The Lagrangian equations describing the motion of the system in terms of the general-

ized coordinates of joint variables q = (q1, q2..., qn) ∈ Rn and the joint torques/forces
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τ = (τ1, τ2..., τn) of the n-link manipulator are expressed as

τi =
d

dt

∂L

∂q̇i
− ∂L

∂qi
; i = 1, 2, ..n

whereq̇i denotes the ith angular/linear velocity of ith actuator.

2.5.2 Dynamic Equations for 2 link Manipulator

In general dynamic equation of a n link manipulator is written as

M(q)q̈s + C(q, q̇)q̇ +G(q) = τ

where qi are the joint angles, vector τ represents the applied torque/forces, M is inertia

matrix, vector C represent the coriolis/centrifugal forces and G is the gravity vector.

According to Lagrange Euler method [20], the dynamic equation of the robot manipu-

lator (given in Figure 2.1) are[
τ1

τ2

]
=

[
(m1

3
+m2)l

2
1 +m2C2l1l2 +

m2l22
3

m2l22
3

+
m2C2l22

2
m2l22
3

+
m2C2l22

2

m2l22
3

][
θ̈1

θ̈2

]
+

[
−1

2
m2S2l1l2θ̇

2
2 −m2S2l1l2θ̇1θ̇2

1
2
m2S2l1l2θ̇

2
1

]
+

[
1
2
m1gl1C1 + 1

2
m2gl2C12 +m2gl1C1

1
2
m2gl2C12

]
where mass m1 and m2 are uniformly distributed, g is gravity and Cθ1 = cos θ1, Sθ1 =

sin θ1, Cθ12 = cos(θ1 + θ2) and Sθ12 = sin(θ1 + θ2).

2.6 Biped Robot Configuration

Research on biped/humanoid robots is currently one of the most exciting topics in the

field of robotics. In this section, we briefly discuss some basic concept related to biped

robot.

2.6.1 Three Dimensional Motion

Let G be the universal frame with x-y-z axes as shown in Figure 2.5. Let the biped

walks in x-direction. Then the three planes as shown in Figure 2.4 are:

1. Frontal plane: Parallel to the yz-plane.

2. Sagittal plane: Parallel to the xz-plane.
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Figure 2.4: Coordinate frame

3. Transverse plane: Parallel to the xy-plane.

The motion ranges of the legs in the transverse plane and the frontal plane are negligible

as compared to the motion in the sagittal plane. So, we consider the leg motion only in the

sagittal plane.

2.6.2 Gait Cycle

Gait: Gait is the manner of walking. Amongst the gait patterns for different animals,

human walking pattern is complicated. Different persons have different gaits. A gait cycle

depends on various factors like terrain, speed and energy efficiency etc. A single gait cycle

is also called as a step. A step (see Figure 2.5) can be divided into two phases:

(i) Single Support Phase(SSP): SSP refers to the duration of time in which stable leg’s foot

is on the ground and swing leg’s foot is moving forward above the ground.

(ii) Double Support Phase(DSP): DSP refers to the situation in which both feet are touching

on the ground.

Biped walking can be considered as a cyclic motion which is a repetition of one step.

Throughout this paper ’stable foot’ means the foot which is on the ground during both
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Figure 2.5: Swing and stable leg’s gait

phases while ’swing foot’ means the one which moves forward above the ground in SSP.

2.6.3 Stability of Walk

Stability of a biped means the capability of the robot to maintain its body posture suit-

able for a given walking pattern/trajectory.

ZMP Stability

ZMP (Zero-Moment Point, ZMP) is defined as the point where the net moment of the

inertial forces and the gravity forces along the axes parallel to the ground is equal to zero.

The x and y coordinates of ZMP are given by:

xZMP =

∑n
i=1mi(xi(z̈i + g)− ẍizi)∑n

i=1mi(z̈i + g)
(2.21)

yZMP =

∑n
i=1mi(yi(z̈i + g)− ÿizi)∑n

i=1mi(z̈i + g)
(2.22)

where n is the number of links, mi is the mass of the links and g is gravity.

Supported region/polygon: The convex hull of all floor contact points is called supported
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region/polygon (Figure 2.6). Supported region is not fixed, it changes at every instant

of time because of biped robot body movements, such as hip, upper body, toe and sole

movements.

Stability margin: Stability margin for a given support polygon is the shortest distance

between ZMP and the edges of the support polygon.

For SSP, the x-directional ZMP (xZMP ) and the y-directional ZMP (yZMP ) must lie inside

Figure 2.6: Supported region for SSP and DSP during one cycle(step) for flat footed robot

the stable foot region. For DSP, if the ZMP falls within the supporting polygon then biped

robot can walk without falling down. The walk is more stable if ZMP lies strictly inside

the supported region with larger stability margin. In typical human locomotion, the ZMP

never stays in a fixed position rather moves forward in the direction of walk.

In Figure 2.6, the supported region (for SSP and DSP) at some time instant for flat

footed robot is given. Blue shaded region shows that the foot is on the ground while light

blue region represents the toe and dark blue region represents the sole of the foot. White

region shows that the foot is above the ground. Grey shaded region between the two feet

shows supported polygon.
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2.6.4 Dynamic Equations of Biped Robot

Single Support Phase

During SSP, the swing leg leaves the contact surface and moves forward, and the whole

body weight of robot is on the stable leg. The dynamical model during SSP can be written

as

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = τs (2.23)

where qs are the joint angles, vector τs represents the applied torque/forces, Ms is inertia

matrix, vector Cs represent the coriolis/centrifugal forces and Gs is the gravity vector.

Double Support Phase

The dynamical model of the instantaneous impact forces exerted by the foot and reaction

torques at the joints at the time when the swing foot first touches the contact surface during

the DSP can be written as

Md(qd)q̈d + Cd(qd, q̇d)q̇d +Gd(qd) = τd + Fext (2.24)

where Fext represents the vector of torques acting at the joint of the biped.
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Footed Biped Robot with Upper Body

Motion

Polynomial cubic spline trajectory is generated for ankle joints, hip joints and upper body

so that the resulting walk is stable using Zero Momentum Point (ZMP) stability criteria

with largest stability margin. Simulation are carried out using Matlab2010b.

3.1 Introduction

Trajectory planning is an important aspect to realize human like walk of a biped robot.

The most widely used dynamic balance criterion is the ZMP. In human locomotion, the

ZMP never stays in a fixed position, rather moves forward in the direction of locomotion

[15, 17, 100, 101]. Narvez-Aroche et al. [67] presented the representative steps of the

kinematic modeling and the computation of the ZMP. Huang et al. [31] proposed an it-

erative computation trajectory generation method for hip and foot by varying the values

of the walking speed and step length to obtain the largest dynamic balance margin based

on the ZMP. An approach is presented by Erbatur and Kurt [18] to improve the iterative

computation trajectory generation of joints by taking into account a desired ZMP reference

trajectory. In [18, 100], a cubic Hermitian polynomial interpolation algorithm is presented

to implement on biped walk. Liu et al. [59] proposed a control, which is based on the

motion of the upper body to maintain good stability of the biped and to relieve from knee

bending problem.

Recently, much attention has been paid on FNN in robotics. FNN’s capability and

flexibility of learning by example, generalizing property, smaller information prerequisite,
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quick real time operation and simplicity of implementation characteristics have made them

useful in every field of research. NN can be used to find inverse kinematics solution for

biped robot. In [5, 16, 17, 32]] researchers take some random samples of joint angles

from specified range and used in forward kinematics equations to calculate the end ef-

fector’s position and orientation for each set of joint angles. These pairs of joint angles

and position/orientation are called training data. NN function is trained using supervised

learning for given training data (approximately 1000) by giving position and orientation

as inputs and the corresponding joint angles as desired outputs. Then NN (at least 100

neurons in hidden layer) gives inverse kinematics solutions for any position in workspace.

De et al. [16] applied the above mentioned approach to find inverse kinematic solutions

for humanoid robot. He used two NNs, one for DSP and second for SSP to learn the most

stable positions from the range of all the possible solutions based on COM and no hip roll

rotation.

In this chapter, first trajectories for ankle, hip and upper body are generated and then

ZMP stability is analyzed. To ensure stability, three types of upper body motion are gen-

erated and whichever gives the best ZMP trajectory with largest stability margin is chosen.

The inverse kinematics is solved using FNN with unsupervised learning procedure.

In Section 3.2, discussion on the robot model is given. Section 3.3 describes planning

of leg trajectories for biped robot’s walk with suitable conditions. Section 3.4 includes

the forward kinematics and inverse kinematics of robot model. ZMP stability is calculated

in Section 3.5. Upper body mass trajectories are discussed in Section 3.6. In Section

3.7, simulated results with graphs and discussion are presented. Conclusions are given in

Section 3.8.

3.2 Robot Model

In Figure 3.1, each leg of biped robot have 2 degrees of freedom (DOF) with flat foot.

All the joints are revolute which are called hip joint (H), knee joint (K) and ankle joint (A).

Center of mass of upper body is denoted by (U). Total length of leg is (l1 + l2) and length

of foot is l3. It is assumed that the length and mass of both the legs are same. The details

of parameters are given in the Table 3.1.
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Figure 3.1: Schematic 3D biped model

Link Length Value Mass Value

HK l1 14 inches m1 4kg
KA l2 14 inches m2 4kg
HU l5 10 inches m6 50kg
HH l0 8 inches m5 4kg

Table 3.1: Parameters

Robot’s walk can be considered as a repetition of one-step motion. The walking se-

quence can be determined by computing the trajectory of the hip, ankle and upper body

joints. For hip trajectory, stable ankle joint is considered as a base and hip as the end effec-

tor, and for ankle trajectory, swing leg’s hip is considered as base and its ankle joint as the

end effector. Flat foot is attached at the ankle joint of each leg.

3.3 Trajectory Generation

Let the robot walk in sagittal plane (xz-plane).
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3.3.1 Foot Trajectory

Let the swing leg’s ankle joint follows a cubic polynomial trajectory. At time t ∈
[t0, tf ], t0 = 0, the ankle coordinate trajectories (xA(t), zA(t)) in x and z directions are

computed by:

xA(t) = a1 + b1t+ c1t
2 + d1t

3 (3.1)

zA(t) = l1 +m1xA(t) + n1xA(t)2 + p1xA(t)3 (3.2)

with boundary conditions

xA(t0) = x0; xA(tf ) = x0 + xf ; ẋA(t0) = 0; ẋA(tf ) = 0.

zA(x0) = 0; zA(xf ) = 0; zA(xm) = h1; żA(xm) = 0.

where h1 is step height, x0 is initial position, xf is step length, total time is tf and xm is the

x-coordinate at which maximum height is achieved.

Considering these boundary conditions, the x and z coordinates of ankle joint are given

below:

xA(t) = (x0+xf )+
(((3t2f t0 − t3f )(xf ))

(tf − t0)3
− (6tf t0(xf ))

(tf − t0)3
t+

3(tf + t0)(xf )

(tf − t0)3
t2− 2(xf )

(tf − t0)3
t3

(3.3)

zA(t) =
h(−(xf + x0)

2x0)

(xm − x0)(xm − xf − x0)2
+
h(xf + x0)(xf + 3x0)xA(t)

(xm − x0)(xm − xf − x0)2

+
(−h(2xf + 3x0)xA(t)2 + hxA(t)3)

(xm − x0)(xm − xf − x0)2
(3.4)

3.3.2 Hip Trajectory

For biped robot walking on a plane, motion of the stable leg is assumed to be like an

inverted pendulum considering it’s ankle joint as base and hip as end effector. While walk-

ing, humans do not fold their stable leg as the whole body weight lies on it. Let the hip

follows a circular path with center at ankle joint A and radius (l1 + l2) with suitable bound-

ary conditions. At time t ∈ [t0, tf ], t0 = 0, the hip coordinates trajectories (xH(t), zH(t))

in xz plane are assumed to be:

xH(t) = q0 + q1t+ q2t
2 + q3t

3 (3.5)

zH(t) =
√

(l1 + l2)2 − (xH(t)− (x0 + xf/2))2 (3.6)
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with boundary conditions

xH(t0) = x0 + xf/4; xH(tf ) = x0 + 3xf/4; ẋH(t0) = vs; ẋH(tf ) = ve.

zH(t0) = h; zH(tf ) = h; żH(t0) = vzs; żH(tf ) = vze.

where h is maximum hip height at time t2, h0 is hip height at both starting and end positions.

Hence, hip trajectory in x and z directions are given by:

xH(t) = x0 +
xf
4

+ vst+

(
(ve − vs)

2tf
− r4

3tf
2

)
t2 − 2

(
xf
2t3f
− (vs + ve)

2t2f

)
t3 (3.7)

zH(t) =
√

(l1 + l2)2 − (xH(t)− (x0 + xf/2))2 (3.8)

where r4 = −2
(
xf
2t3f
− (vs+ve)

2t2f

)

3.4 Forward and Inverse Kinematics

The kinematic equations of swing leg’s ankle is obtained by considering hip joint (H)

as a base and ankle joint (A) as the end effector. So, the forward kinematic equations of the

swing leg are

xA(t)− xH(t) = l1cosθ1(t) + l2cos(θ1(t) + θ2(t)) (3.9)

zA(t)− zH(t) = l1sinθ1(t) + l2sin(θ1(t) + θ2(t)) (3.10)

where (xA(t), zA(t)) and (xH(t), zH(t)) are defined as earlier and and θ1, θ2 are joint angles

as shown in Figure 3.1.

Stable leg’s ankle joint is fixed on the ground and knee joint is locked (no rotation)

while hip is moving. Thus, the stable leg moves like single link manipulator with A as base

and H as end effector. Its forward kinematic equations are

xH(t)−
(
x0 +

xf
2

)
= (l1 + l2)cosθ3(t) (3.11)

zH(t) = (l1 + l2)sinθ3(t) (3.12)

where
(
x0 +

xf
2
, l0, 0

)
is the position of the stable leg’s ankle joint which lies on the plane

y = l0.
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3.4.1 FNN Learning Scheme for Inverse Kinematics

In this section, the inverse kinematic problem is solved using FNN. Analytic solutions

for the inverse kinematic problem of a 2-link manipulator can be obtained very easily.

However there are two solutions (joint angles) for a given end effector position. So, when

the end effector is moving continuously, it becomes very difficult to choose one solution at

every instant of time so that the resulting inverse kinematic solutions are continuous. This

difficultly is removed if FNN is used to solve the inverse kinematics. At a particular instant

of time if the initial weights to the FNN are the final weights of the previous instant, then

we get the desired continuous output.

Proposed FNN Method

A two-layer FNN(as in Section 2.3) with M input units, m output units and N units in the

hidden layer, is shown in the Figure 3.2.

Figure 3.2: Feedforward neural network

Further, the output vector θ is determined in terms of the input vector g by the formula

θi =
N∑
j=1

[
wijσ

(
M∑
k=1

vjkgi

)]
; i = 1, 2, ...,m (3.13)

where σ(.) is the activation function of the neurons of the hidden layer. The input to hidden

layer interconnection weights are denoted by vjk and the hidden layer to output intercon-

nection weights by wij .
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There are many classes of activation functions e.g. sigmoid, tangent hyperbolic and

Gaussian. The sigmoid activation function used in this chapter given by

σ(x) =
1

1 + e−x
(3.14)

By collecting all the FNN weights vjk and wij into matrices of weights V=[vjk] j=1,2...N
k=1,2...M

and

W=[wij]i=1,2...m
j=1,2...N

respectively, FNN equation 3.13 can be written in terms of vectors as

θ = Wσ(V gde) (3.15)

Now, let us consider the processor for solving inverse kinematic solutions for the ankle tra-

jectory whose forward kinematic equations are given by (3.9), (3.10). gde = (xde(t), zde(t)) =

(xA(t) − xH(t), zA(t) − zH(t)) are the x- and z-position coordinates to follow ankle tra-

jectory treating hip as base for each tε[0, tf ]. These coordinates become inputs in neural

network (3.13) to get NN joint angles θnn(t) as outputs (see Figure 3.2). By substitut-

ing these θnn(t) values in the forward kinematic equations the values which are obtained,

called NN position coordinates (xnn(t), ynn(t)). The desired and NN position coordinates

are compared and the resulting error is given by

E(t) = (xde(t)− xnn(t))2 + (zde(t)− znn(t))2 (3.16)

is minimized by updating weights.

The weights are updated by the learning rule given by:

Wn+1(t) = Wn(t)− αδ 0 < α < 1 (3.17)

Vn+1(t) = Vn(t)− αη (3.18)

where,

δ =
∂E

∂wij
i = [1 : 2], j = [1 : 10] (3.19)

η =
∂E

∂vjk
j = [1 : 10], k = [1 : 2] (3.20)

Here, Wn(t) and Vn(t) are the weights matrices at the nth iteration. n and α represents the

iteration number and learning rate respectively. This process is repeated until the absolute

error become less than the tolerance value, so that the desired joint angles are obtained.
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3.5 Stability of Walk and Upper Body Motion

3.5.1 ZMP Stability Analysis

Stability is ensured by using ZMP ceriteria as mentioned in Section 2.6.3 of Chapter 2.

For stable walking, ZMP should lies inside the stable foot region in single support phase

and it should lies within the supported region in double support phase. Modern walking

robots usually have heavy upper body due to batteries and electronic circuits and which

affects the stability. To ensure stable walking, ZMP must be within the supported region.

For this, the parameters of upper body are changed to figure out the suitable ZMP trajectory

which moves in a desired manner.

3.5.2 Upper Body Motion on the Frontal Plane

The total mass of upper body is assumed to be a single mass point at COM (of the upper

body) for planning its trajectory.

On the frontal plane, upper body mass shifts from one position to another (only parallel

to y-direction) and its trajectory in y-direction highly affects the y-ZMP trajectory. In order

to find a desirable ZMP trajectory, three cases of upper body mass trajectory in y-direction

are generated and the one which ensures the higher stability margin is chosen. These tra-

jectories are determined by cubic spline and detailed discussion is given below:

Case-1: As the robot starts its step, upper body starts to move from the middle of the

hips towards the stable leg’s hip during the time interval [t0, t1], stays there during the time

interval [t1, t3], then return back to the middle of the hips during time interval [t3, tf ] in

y-direction where ti = itf/4, i = 0, 1, 2, 3, 4. So, the upper body trajectory in y-direction

is:

yM(t) =



yl + v0yt+ (3(ya−yl)
t12

− 2v0y
t1

)t2 + (−2(ya−yl)
t13

− yv
t12

)t3 t0 ≤ t ≤ t1

ya t1 ≤ t ≤ t3

(ya +
(−3tf t23+t33)(yl−ya)

(t3−tf )3
+

tf t
2
3yv

(t3−tf )2
)

(
6tf t3(yl−ya)
(t3−tf )3

− (t23+2tf t3)yv
(t3−tf )2

)t+ (
−3((yl−ya)(t3+tf )

(t3−tf )3

+
yv(4t3+2tf )

2(t3−tf )2
)t2 + (2(yl−ya)

(t3−tf )3
− yv

(t3−tf )2
)t3 t3 ≤ t ≤ tf

where yl is the middle point of the hips, ya is the extreme position of the upper body
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mass, and v0y > 0 is initial velocity of upper body mass.

Case-2: As robot starts its step, upper body starts to move from middle of hips to the side

of the stable leg’s hip within time t0 to tf/8, stay there for time (tf/8, 7tf/8) and then

return back towards middle of hips within time 7tf/8 to tf in y-direction. Then, the upper

body trajectory can be calculated by equation 3.5.2 by putting t1 = tf/8 and t3 = 7tf/8.

Case-3: As the robot start its step, upper body start to move from middle of hips to the

side of the stable leg’s hip within time t0 to t2, then return back towards middle of hips

within time t2 to tf in y-direction. So the upper body trajectory in y-direction is:

yM(t) =


yl + yvt+ (3(ya−yl)

t22
− 2yv

t2
)t2 + (−2(ya−yl)

t23
− yv

t22
)t3 t0 ≤ t ≤ t2

(ya +
(−3tf t22+t32)(yl−ya)

(t2−tf )3
+

tf t
2
2yv

(t2−tf )2
)

(
6tf t2(yl−ya)
(t2−tf )3

− (t22+2tf t2)yv
(t2−tf )2

)t+ (
−3((yl−ya)(t2+tf )

(t2−tf )3

+
yv(4t2+2tf )

2(t2−tf )2
)t2 + (2(yl−ya)

(t2−tf )3
− yv

(t2−tf )2
)t3 t2 ≤ t ≤ tf

3.6 Results

Let total length of foot is 6 units and width is 4 units, initial and end velocity for ankle

is 0 unit/sec. Ankle is fixed at the middle point of the foot, so that the initial x coordinate

of the ankle is x0 = 3 units. The ankle joint covers a step length xf=14 units from initial

position (x0, 0, 0) to the final position (x0 + xf , 0, 0) with step height h=2.5 units. At any

given instant of time the middle point of the hips is yl=4 units, extreme y coordinate of the

upper body mass is ya=8.5 units. Initially, swing foot lies on the xy plane in the region

0 < x < 6 units and −2 < y < 2 units and stable foot lies on the xy plane in the region

7 < x < 13 units and 6 < y < 10 units.

Figure 3.3 represents the desired trajectory graph for the ankle and hip. The inverse

kinematics of these trajectories are calculated using FNN in Matlab2010b. Figures 3.4(a)

and 3.4(b) shows the inverse kinematic solutions using FNN of swing leg and stable leg

respectively with respect to time. Figures 3.5(a) and 3.5(b) show that the desired trajecto-

ries are followed by the swing leg and stable leg for one step using the inverse kinematic

solutions.
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Figure 3.3: Ankle and Hip trajectory in xz-plane

Figure 3.6(a) describes the error between the position calculated by NN and actual

position of the swing leg’s ankle joint (vertical axis) versus the neural network iteration

number(horizontal axis). Similarly, Figure 3.6(b) describes the error between the position

calculated by NN and actual position of the stable leg’s hip(vertical axis) versus the neural

network iteration number(horizontal axis). Each curve in Figures 3.6(a), 3.6(b) represents

the error graph at a time instant t = 0.1i, where i = 0, 1, 2, ..., 40.

Figures 3.7, 3.8 and 3.9 represent the motion of the ZMP of this biped in the xy plane

for three cases of upper body motion. Here, the step time tf is taken to be 3 secs. As

we can see from these figures, the ZMP trajectories for Case-1 and Case-3 are inside the

support polygon and hence provide stable walking for the desired ankle and hip trajecto-

ries. For step time tf= 2 secs, Case-1 gives marginally stable walk while Case-3 ensured

stable walking. For step time tf= 1.5 secs, Case-1 provides unstable walk(Figure 3.7(b))

while Case-3 provides stable walk (Figure 3.9). So, this experiment results that the upper

body motion given in Case-3 is suitable for stable walking of the biped robot to track the

desired ankle and hip trajectories as given in Table 3.2. Upper body motion given in Case-2

provides the unstable walk in all the cases.

Whole body motion in 3D for one step with step time tf = 1.5 for Case-3 of upper
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(a) For swing leg θ1 and θ2 (b) For stable leg θ3

Figure 3.4: Inverse kinematics solution using FNN tε[0, tf ]

body trajectory is given in Figure 3.10.

3.7 Conclusion

To ensure stability, three cases of upper body motion are considered and it is concluded

from the simulation results that Case-3 of upper body motion gives the best ZMP trajectory

with largest stability margin. In this chapter, the biped robot with flat feet is considered. So

the above observation is suitable, specifically for the flat footed robots but this conclusion

may not be applicable for toe footed robots as we will see in the subsequent chapter.
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(a) Swing leg (b) Stable leg

Figure 3.5: Following the given trajectories using FNN

(a) For swing leg (b) For stable leg

Figure 3.6: Error convergance graphs for inverse kinematics solutions using FNN
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(a) in 3 secs (b) in 1.5 secs

Figure 3.7: Stable ZMP trajectory of Case-1

(a) Case-2 (b) Case-3

Figure 3.8: ZMP trajectories in 3 secs

35



Chapter 3. Stable NN Trajectory Tracking of Flat Footed Biped Robot with Upper Body
Motion

Figure 3.9: Stable ZMP trajectory in 1.5 sec for Case-3

Hip Upper Body ZMP
velocity Time Trajectory initial velocity stability

vs=2.3in/s 3s Case-1 vy0 = 10in/s stable
vs=3.5in/s 2s Case-1 vy0 = 15in/s stable but

small margin
vs=4.7in/s 1.5s Case-1 vy0 = 20in/s unstable

vs=2.4in/s 3s Case-2 vy0 = 16in/s unstable
vs=3.5in/s 2s Case-2 vy0 = 20in/s unstable
vs=4.7in/s 1.5s Case-2 vy0 = 22in/s unstable

vs=2.3in/s 3s Case-3 vy0 = 7.3in/s stable
vs=3.5in/s 2s Case-3 vy0 = 10.3in/s stable
vs=4.7in/s 1.5s Case-3 vy0 = 11in/s stable

Table 3.2: Comparison Table
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Figure 3.10: Biped walk in 3D for one step
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Chapter 4: Toe Footed Biped Robot Model for Sta-

ble Human like Gait with Upper Body

Motion

A polynomial approach for trajectory generation is presented for biped robot which can

walk like human with movable foot and active toe. The proposed approach allows smooth

transition between the walking phases namely, single and double support phase. Zero Mo-

ment Point (ZMP) stability is ensured by taking into account the upper-body movements

along with the planned motion trajectories.

4.1 Introduction

To achieve human gait it is important to plan suitable trajectories for the robot joints

during the walk. Xiaoguang and Ruyi [100] presented a humanoid robot gait planning. The

authors in [15, 94, 100] presented a cubic polynomial interpolation approach to implement

biped walk. In [15, 51, 90, 104], trajectory generation for biped walking on different types

of surfaces have been considered. Humans tend to bend their foot on toe to avoid bending

of knee while walking in a comfortable way. Since 2000 [48, 68], toe footed biped robots

are being constructed and different kinds of designs are presented. In [67], the authors used

toe joint rotation during the double support phase. The addition of toe on foot is required

for implementing the natural way of walking as compared to flat foot. The knee bending

problem can be relieved by allowing a vertical body motion (VBM) [59, 88].

Liu et al. [59] proposed a controller, which is based on the motion of the upper body, to

maintain good stability of the biped robot and to avoid knee bending. Xu et al. [101] studied

ZMP stability by adjusting the hip trajectory using cubic spline function. In this chapter, a
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Figure 4.1: Robot Structure

polynomial trajectory algorithm is given to provide a simple and effective walking pattern.

Ankle and sole joint rotations are considered in DSP for smooth transition between the

walking phases. Three different cases for upper body trajectories and ankle trajectories are

considered and the effect of these trajectories on ZMP stability is analyzed.

This chapter is organized as follows. Section 4.2 describes the robot model. In Section

4.3, the joint trajectories are planned with suitable boundary conditions. ZMP stability

analysis and upper body trajectories are discussed in Section 4.4. Section 4.5 includes

simulation results with graphs and discussions. Conclusion is presented in Section 4.6.

4.2 Robot Model

In Figure 4.1, each leg of the biped robot has 4 degrees of freedom(DOF) and the

upper body has one DOF. Hip joint, Knee joint, Ankle joint of swing leg and stable leg are

represented by H, K, A and Hs, Ks, As respectively. All the joints are revolute joints.

Let center of mass of upper body is denoted by (U). The tip of the toe is T and heel of

the foot is E for swing leg and the tip of the toe is Ts and heel of the foot is Es for stable
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Link Length value mass value

HK l1 14 units m1 4 units
KA l2 14 units m2 4 units
ES 2l3 4 units m3 0.8 units
ST l4 2 units m4 0.2 units
HU l5 12 units m6 50 units
HH l0 8 units m5 4 units
foot width lw 3 units

Table 4.1: Description of robot links

leg. Further, it is assured that the length and mass of both the legs are same and the details

of the parameters are given in the Table 4.1.

The motion of legs in sagittal plane is much greater compare to its motion in the frontal

and transverse planes, therefore, the effects of these motions are negligible. Hence it is

assumed that the robot is walking in sagittal plane. A single cycle of walk for biped robot

can be divided into two parts: legs motion and upper-body motion (see Figure 4.2). Motion

of legs maintains the gait while the upper body motion is for the stability.

The time interval of single cycle(one step) of walk is assumed as (t0, t4) where t0 = 0

. For computing the joint trajectories for one step, the total time is divided into four equal

intervals (ti−1, ti), i = 1, 2, 3, 4 where ti = iTg and Tg = t4/4. The trajectory planning

of all joints in cartesian plane are divided into two phases; Phase-1 is associated to DSP

during (t0, t2) and Phase-2 is associated to SSP during (t2, t4). xf1 is total length travelled

by the heel and xf = xf1 − l3(1− cos θ6) is the total step length traveled by the ankle (see

Figure 4.3(b)).

4.3 Trajectory Planning

4.3.1 Swing Leg’s Joint Trajectories

At t = 0, the coordinates of E, A, S, and T respectively are (0,0,0), (l3, 0, 0), (2l3, 0, 0),

(2l3+l4, 0, 0). Let the (x,y,z) coordinates of the joint A during Phase:i=1, 2 be (xAi
(t), 0, zAi

(t)).

The coordinates of other joints are denoted in similar way by replacing A with a suitable

notation. Initially, the foot TSE of the swing leg is on the ground as a 2 link manipulator

with first link length TS=l4, second link length SE=2l3.
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Figure 4.2: Algorithm

Phase-1: During the time interval [0, t1](see Figure 4.3(a)), the ankle joint A follows a cir-

cular path with center at S and radius l3 while the points S and T are stationary at (2l3, 0, 0)

and (2l3 + l4, 0, 0) respectively. In Figure 4.3(a), it is shown that the sole SE subtends an

angle θ3S = 0 at t = 0 and θ3S = −θa at t = t1 with the x-axis. Here, θa is a designed

parameter.

During the time interval [t1, t2], the point S moves in a circular path with center at T

and the radius l4 while the point T remains stationary at (2l3 + l4, 0, 0). Figure 4.3(b) shows

that the toe TS subtends an angle θ4T = π at t=t1 and θ4T = π− θb at t = t2 with the x-axis

where θb is another designed parameter. Simultaneously, the sole SE reverse its previous

circular motion. Now, smooth trajectories are designed for the joint angles, θ3S and θ4T
during Phase-1 using above boundary conditions (as given in Table-4.2).

The forward kinematic equations of AT during DSP (0, t2) is considered as a 2-link (TS

and SA) manipulator treating toe tip T as base and ankle joint A as end effector are

l4cosθ4T (t) + l3cos(θ3S(t) + θ4T (t)) = xA(t)− (2l3 + l4) (4.1)

l4sinθ4T (t) + l3sin(θ3S(t) + θ4T (t)) = zA(t) (4.2)

Similarly, The forward kinematic equations for (xE(t), 0, zE(t)) and (xS(t), 0, zS(t)) are:
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(a) Swing foot during DSP (b) Swing foot during SSP (c) Stable foot during DSP

Figure 4.3: Feet movement during DSP and SSP

(l4cosθ4T (t) + 2l3cos(θ3S(t) + θ4T (t)) = xA(t)− (2l3 + l4) (4.3)

l4sinθ4T (t) + 2l3sin(θ3S(t) + θ4T (t)) = zA(t) (4.4)

(l4cosθ4T (t) + 2l3cos(θ3S(t) + θ4T (t)) = xA(t)− (2l3 + l4) (4.5)

l4sinθ4T (t) + 2l3sin(θ3S(t) + θ4T (t)) = zA(t) (4.6)

Phase-2: In this phase, ankle trajectory is computed by fitting a polynomial for given

constraints from time t2 (when foot leaves the ground) to final time t4 (where again the

foot touches the ground).

Three types of polynomials: cubic, quartic and quantic are considered for ankle trajec-

tory. Boundary conditions for these trajectories are provided in Phase-2 of Table-4.2. The

coefficients of these polynomials are calculated by using polynomial interpolation.

Polynomial interpolation approach To satisfy four boundary conditions as provided

in Table 4.2, the cubic polynomial is considered as follows:

xA2(t) = n0 + n1t+ n2t
2 + n3t

3 (4.7)
dxA2(t)

dt
= n1 + 2n2t+ 3n3t

2 (4.8)
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By substituting the boundary conditions in equations 4.7 and 4.8, we get

(a) Walk parameters

(b) at time t0

n0 + n1t2 + n2t
2
2 + n3t

3
2 = xe (4.9)

n0 + n1t4 + n2t
2
4 + n3t

3
4 = xf (4.10)

n1 + 2n2t2 + 3n3t
2
2 = xv (4.11)

n1 + 2n2t4 + 3n3t
2
4 = 0 (4.12)
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(c) at time t1

(d) at time t2

The matrix representation for these equations 4.9-4.12 is


xe

xf

xv

0

 =


1 t2 t22 t32

1 t4 t24 t34

0 1 2t2 3t22

0 1 2t4 3t24




n0

n1

n2

n3



Then, the coefficients of the polynomial can be calculated by
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(e) at time t3

(f) at time t4

Figure 4.4: Different phases of biped robot’s walk


n0

n1

n2

n3

 =


1 t2 t22 t32

1 t4 t24 t34

0 1 2t2 3t22

0 1 2t4 3t24


−1 

xe

xf

xv

0


which is denoted by

N4×1 = A−14×4.M4×1 (4.13)

In general, for n boundary conditions, a polynomial of degree n − 1 can be generated and
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its coefficients can be obtained by:

Nn×1 = A−1n×n.Mn×1 (4.14)

Similarly, the coefficients of quartic and quantic polynomials can be obtained.

Trajectories for Swing leg

Phase-1 (t ∈ (t0, t2))
Boundary conditions Trajectory Coefficients
θ3S(t0) = 0, θ3S(t1) = −θa, θ3S(t) = p1 + p2t+ p3t

2 + p4t
3 p1 = 0 p2 = 0

θ̇3S(t0) = 0, θ̇3S(t1) = 0, t ∈ (t0, t1) p3 = 3θa
T 2
g

p4 = −2θa
T 3
g

θ3S(t1) = −θa, θ3S(t2) = 0, θ3S(t) = q1 + q2t+ q3t
2 + q4t

3 q1 = −4θa q2 = 12 θa
Tg

θ̇3S(t1) = 0, θ̇3S(t2) = 0, t ∈ (t1, t2) q3 = −9θa
T 2
g
q4 = 2 θa

T 3
g

θ4T (t)= π t ∈ (t0, t1)

θ4T (t1) = π, θ4T (t2) = π − θb, θ4T (t) = r1 + r2t+ r3t
2 + r4t

3 r1 = π − 5θb r2 = 12θb
Tg

θ̇4T (t1) = 0, θ̇4T (t2) = 0, t ∈ (t1, t2) r3 = −9θb
T 2
g
, r4 = 2θb

T 3
g

Phase-2 (t ∈ (t2, t4))
xA2(t2) = xA1(t2) = xe,ẋA2(t4) = 0, xA2(t) = n0 + n1t+ n2t

2 + n3t
3 N4×1 = A−14×4.M4×1

ẋA1(t2) = ẋA2(t2) = xv,xA2(t4) = xf .

zA2(xe) = zA1(t2) = ze,zA2(xf ) = zf , zA2(t) = a+ bxA2(t) + cxA2(t)
2 C4×1 = B−14×4.X4×1

żA2(xe) = żA1(t2) = zv, +dxA2(t)
3

żA2(xm) = h1, xm =
xf
2
,

xA2(t2) = xA1(t2) = xe,xA2(t4) = xf , xA2(t) = n0 + n1t+ n2t
2 N5×1 = A−15×5.M5×1

ẋA2(t2) = ẋA1(t2) = xv,ẋA2(t4) = 0, +n3t
3 + n4t

4

ẍA2(t2) = ac.

zA2(xf ) = zf ,zA2(xe) = zA1(t2) = ze, zA2(t) = a+ bxA2(t) + cxA2(t)
2 C5×1 = B−15×5.X5×1

żA2(t2) = żA1(xe) = zv,zA2(xm) = h1, +dxA2(t)
3 + exA2(t)

4

żA2(xm) = 0.

xA2(t2) = xA1(t2) = xe,xA2(t4) = xf , xA2(t) = n0 + n1t+ n2t
2 + n3t

3 N6×1 = A−16×6.M6×1
ẋA2(t2) = ẋA1(t2) = xv,ẋA2(t4) = 0, +n4t

4 + n5t
5

ẍA2(t2) = ac,ẍA2(t4) = ac1

Table 4.2: For trajectories of swing leg

During both the phases, the swing leg works like a 2-link (HK and KA) manipulator

treating hip H as a moving base and ankle joint A as end effector. The foot of the swing leg

moves along with the ankle joint in SSP (See Figure 4.4(a) and 4.4(b)). Hence, the forward

kinematic equations of the swing leg are

l1cosθ1(t) + l2cos(θ1(t) + θ2(t)) = xA(t)− xH(t); (4.15)

l1sinθ1(t) + l2sin(θ1(t) + θ2(t)) = zA(t)− zH(t); (4.16)
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where xA(t), zA(t) and xH(t), zH(t) are x and z trajectories of the ankle and hip respec-

Figure 4.5: Both legs with joint angles

tively, are modeled in both phases as given in Tables 4.2 and 4.3, so the RHS of Equations

4.15 and 4.16 are known at each time instant t. Hence θ1(t) and θ2(t) can be obtained by

solving the inverse kinematics using FNN as discussed in Section 3.4.1.

4.3.2 Stable Leg’s Joint Trajectories

Assume that the stable leg moves on the line y = l0. Biped do not fold the stable leg

During both phases of walk and most of the time in SSP the whole body weight is on the

stable leg similar to human walk.

As in Figure 4.3(c), the links EsSs and SsTs respectively, represents sole and toe of the

stable leg’s foot during DSP. The two phases of the stable foot’s trajectory are discussed

below.

Phase-1: During DSP (0, t2), stable leg’s heel joint(Es) is stationary at (xf1/2, l0, 0)

while EsTs moves till it coincides with the line y = l0(Figure 4.3(c)). It is assumed that

the foot EsTs starts with an angle θa at t=0 and comes in contact with the liney = l0 at

t = t2. During time interval [0, t1], sole joint moves in a circular path with center at Es

and radius 2l3. Simultaneously the toe joint also moves in a circular path with center S and
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radius l4.

In time interval [t1, t2], the toe SsTs reverses its circular motion with base at S while the sole

EsSs is flat on the line y = l0. Joint angles θ6 and θ7 are given in the Table 4.3. Designed

parameters θa and θb are the maximum angles subtended by EsSs and SsTs respectively

with the line y = l0.

The forward kinematic equations for the stable leg’s foot as 2-link (EsSs and SsTs) manip-

ulator with Es as the base and Ts as the end effector are given by

2l3cosθ6(t) + l4cos(θ6(t) + θ7(t)) = xTs(t)−
xf1
2

(4.17)

2l3sinθ6(t) + l4sin(θ6(t) + θ7(t)) = zTs(t) (4.18)

xTs, zTs are the x and z coordinates of the stable foot’s toe joint.

Phase(2) : During SSP, stable foot is stationary on the ground. Both the hips (H and

Trajectories for Stable leg

Boundary conditions Trajectory Coefficients
Toe joint angles
θ7(t0) = 0, θ7(t1) = θb, θ7(t) = p1 + p2t+ p3t

2 + p4t
3 p1 = 0 p2 = 0

θ̇7(t0) = 0, θ̇7(t1) = 0, t ∈ (t0, t1) p3 = 3θb
T 2
g

p4 = −2θb
T 3
g

θ7(t1) = θb, θ7(t2) = 0, θ7(t) = q1 + q2t+ q3t
2 + q4t

3 q1 = −4θa q2 = 12 θa
Tg

θ̇7(t1) = 0, θ̇7(t2) = 0, t ∈ (t1, t2) q3 = −9θa
T 2
g
q4 = 2 θa

T 3
g

Sole joint angles
θ6(t0) = θa, θ6(t1) = 0, θ6(t) = r1 + r2t+ r3t

2 + r4t
3 r1 = θa r2 = 0

θ̇6(t0) = 0, θ̇6(t1) = 0, t ∈ (t0, t1) r3 = −3θa
T 2
g
, r4 = 2θa

T 3
g

θ6(t)= 0 t ∈ (t1, t2)

Hip trajectory
xH(t0) = l3 + xf/4, xH(t4) = l3 + 3xf/4, r1 = l3 +

xf
4
, r4 = −2(

xf
2t34
− (vh+vh)

2t24
),

˙xH(t0) = vh, ˙xH(t4) = vh, xH(t) = r1 + r2t+ r3t
2 + r4t

3 r2 = vh, r3 = −r4 3t42 .
zH(t) =

√
(l1 + l2)2 − (xH(t)− (xAs(t))2;

Table 4.3: For trajectories of stable leg

Hs) are following the same trajectory in sagittal plane. The joint H follows a circular path

considering the joint As of stable leg as center and (l1 + l2) as radius (See Figure 4.4)

with suitable boundary conditions,. At t = 0, the coordinate of stable leg’s hip joint H is

(l3 +
xf
4
, l0, h) where h is the initial hip height. During the time interval (0, t4), the x and z

trajectories of joint H are given in Table 4.3.

Stable leg HA works like a 1-link manipulator as there is no rotation at knee joint.
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Hence, the forward kinematic equations of the stable leg are

(l1 + l2)cosθ5(t) = xH(t)− xAs (4.19)

(l1 + l2)sinθ5(t) = zH(t)− zAs (4.20)

where xAs(t) =
xf1
2

+ l3 cos θ6(t) and zAs(t) = l3 sin θ6(t); respectively, are the x and

z coordinates of the stable leg’s ankle joint. The inverse kinematic solutions for these

trajectories can be obtained by using FNN (see Section 3.4.1).

4.4 ZMP Stability Analysis and Upper Body Motion

4.4.1 ZMP Stability

ZMP is defined in Section 2.6.3 of Chapter 2. In Figure 4.6, supported region for SSP

Figure 4.6: Supported region for SSP and DSP during one cycle(step)

and DSP at some time instant are given. Light blue region represents the toe and the dark

blue region represents the sole of the foot. Blue shaded region shows that the foot is on the

ground while white region shows that the foot is above the ground.

Gray shaded region between two feet shows convex hull of supporting points. Due to

the toe and the sole movements, stability region is not fixed and hence it changes at every

instant of time( Figure 4.6).
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In DSP (0, t2), the flexible swing foot first lifts the heal(E) from the ground at t = 0

(Figure 4.6(i)), then lifts the sole joint S at t=t1 (Figure 4.6(ii)) and finally lifts the toe tip

T at t=t2 (Figure 4.6(iii)) to leave the ground. Simultaneously, the stable foot whose heal

is on the ground and the toe above the ground moves toward the ground to coincide with

the line y = l0. During the motion of both the feet, the upper body mass is shifts from

the swing leg’s side to the stable leg’s side. Because of this, the ZMP moves from swing

foot’s toe position to a region below the stable foot (Figure 4.6(ii)). In SSP (t2, t4), due to

the swing leg’s forward motion, the ZMP moves continuously from heel to toe of the stable

foot.

4.4.2 Upper Body Motion

Modern walking robots usually have heavy upper body as electronic circuits and bat-

teries are there. Thus, the upper body mass has its effect on the stability. Therefore, the

parameters for the upper body motion are changed in given ranges to find the ZMP trajec-

tory which moves in a desired manner. If the upper body is in the upright position then,

it reduces the risk of falling down and a similar phenomena is observed in the human gait

also. The total mass of the upper body is assumed to be at single point(U) for planning its

trajectory.

Upper Body Motion on Frontal Plane

On the frontal plane (yz plane), upper body mass(U) shifts from one side to another. Here,

three cases of U trajectory in y-direction are considered. These trajectories are determined

by cubic polynomials.

Case-1: As robot takes its step, U starts to move from swing leg’s hip to stable leg’s hip

during DSP (t0, t2) and stays there all the time during SSP (t2, t4). Then, the U trajectory

in y-direction is given by:

yU(t) =

 y0 + yvt+ −2yvt2+3(ya+ym/2−y0)
t22

t2 + −2(ya+ym/2−y0)+yvt2
t32

t3 t0 ≤ t ≤ t2

ya t2 ≤ t ≤ t4

Case-2: As the robot takes its step, U starts to move from the middle of both hips to
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the side of the stable leg’s hip in the time interval (t0, t1), stays there during time t1 to

t3 and again starts moving towards the middle of both hips between in the time interval

(t3, t4). Then, the U trajectory in y-direction is given by:

yU(t) =



yl
2

+ 3(yl+ya)
(4t12)

t2 − yl+ya
2(t13)

t3 t0 ≤ t ≤ t1

ya t1 ≤ t ≤ t3

(
(16(t3−t4)3−(9(yl+ya)t24t3−(yl+ya)t34)

4(t3−t4)3

+( 3(yl+ya)
2(t3−t4)3 t4t3)t+ 3(yl+ya)(t4+t3)

4(t3−t4)3 t2 − (yl+ya)
2(t3−t4)3 t

3 t3 ≤ t ≤ t4

Case-3: As the robot takes its step, U starts to move from the middle of both hips to

the side of the stable leg’s hip in the time interval (t0, t2) and again starts moving towards

the middle of both hips between t2 to t4 in y-direction.

Then, the U trajectory in y-direction is given by:

yU(t) =


yl
2

+ 3(yl+ya)
(4t22)

t2 − yl+ya
2(t23)

t3 t0 ≤ t ≤ t2

(
(16(t2−t4)3−(9(yl+ya)t24t2−(yl+ya)t34)

4(t2−t4)3 +

( 3(yl+ya)
2(t2−t4)3 t4t2)t+ 3(yl+ya)(t4+t2)

4(t2−t4)3 t2 − (yl+ya)
2(t2−t4)3 t

3 t2 ≤ t ≤ t4

Here, y0 is initial position of U, yl = l0/2 is the middle position of both hips, ya is final

position of U and vy0 is initial velocity.

4.5 Simulation Results

Initially, swing foot lies in the rectangular region, 0 ≤ x ≤ 6 , −1.5 ≤ y ≤ 1.5 and

stable foot lies in the region given by rectangle 6.86 ≤ x ≤ 12.86 and 6.5 ≤ y ≤ 9.5 .

Maximum sole rotation θa = π/6 rad, maximum toe rotation θb = π/6 rad are the designed

parameters. The values of these parameters are chosen to resemble a normal human of

height 40 units. Simulation are done with three types of ankle trajectory(see Table 4.2)

along with three cases of upper body motions (as given in Section 4.4.2) to get most suitable

ZMP trajectory. In the following, this approach is discussed briefly.
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4.5.1 Robot Leg Trajectories

Figures 4.7, 4.8 and 4.9 show x and z positions, velocities and accelerations graphs for

the ankle trajectories which are provided in Table 4.2. Parameters for these trajectories are:

xf=14 units, tf=2.1 secs and h1=2.5 units.

Inverse kinematic solutions of the equations 4.15-4.16 and 4.17-4.18 are calculated

using FNN for given related positions of feet and hips. In Figures 4.10(a), (b) and (c), the

swing leg follows cubic, quartic and quintic ankle trajectories respectively and in Figure

4.10(d) stable leg follows the hip trajectory. Figure 4.11(a) and (b) shows the swing leg’s

foot and stable leg’s foot movements respectively in DSP(0, t2).

4.5.2 Effect of Upper Body Motion on ZMP Stability

While walking slowly biped robot can be stable without upper body but during fast

walking there should be a upper body. To verify this x-ZMP and y-ZMP trajectories (i)

without upper body, (ii) with fixed upper body (at the middle of the hip) and (iii) with

upper body motion are compared in Figure 4.12. By observing the Figures 4.12(a) and (b),

it can be concluded that there should be upper body motion in y-direction to get suitable

x-ZMP and y-ZMP trajectories but the particular manner in which the upper body should

moves is unknown. For this purpose, three cases of upper body trajectories are considered

as in Section 4.4 (see Figure 4.13).

From Figure 4.14(a), (b) and (c), it is observed that the best upper body trajectory for

ZMP stability is obtained using Case-1 (Figure 4.14(a)), in which upper body shifts from

swing leg’s hip to stable leg’s hip during DSP and fixed there during SSP.

4.5.3 Effect of Ankle Trajectory on ZMP Stability

Ankle trajectory is already discussed in subsection 4.3.1. Now, we observe its effect on

stability.

As in Figure 4.9(a), x-acceleration for cubic polynomial is discontinuous at time t = t2.

It affects the ZMP stability as in Figure 4.15(a), 4.16(a) and 4.17(a). To avoid this, x and z

trajectories are generated by quartic polynomial and we get continuous x and z acceleration

trajectories for ankle joint as in Figure 4.9(b). However, x-acceleration at time t = t4 is

very large (Figure 4.9(b)) and it may also affect the ZMP stability as in Figure 4.15(b),

4.16(b) and 4.17(b). To avoid this, final acceleration is assumed to be 0 and the x trajectory
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of ankle is generated by quintic polynomial using 6 boundary conditions (Figure 4.9(c)).

Now, we get the suitable ZMP trajectory as in Figure 4.15(c), 4.16(c) and 4.17(c). Details

observations are given in Table 4.4.

4.5.4 Selection of Parameters for Stable ZMP Trajectory

There are several parameters which highly affect the ZMP stability such as hip velocity,

step time, step length, step height, and initial velocity of upper body etc. Now, the values

of parameters are changed within the reasonable range to find ZMP trajectory with largest

stability margin. A large number of simulations is done with different set of walking pa-

rameters. The parameters are varying as xf from 12 to 16 units, time tf from 2 to 3 secs,

velocity of hip from 2.5 to 3.5 units/sec, and step height h1 from 2.5 to 4 units for cubic,

quartic and quintic polynomial trajectories. The best set of parameters for these trajectories

are analyzed whichever gives most stable ZMP trajectory are highlighted in Table 4.4.

Final ZMP Trajectory for 3 Steps

Figures 4.18(a), (b), (c) and (d) demonstrate the final x and z COM position and velocity

graphs for each joint and Figure 4.18(e) demonstrates final COM trajectory of whole body.

The final ZMP graph for joint trajectories with optimum parameters (as highlighted in Table

4.4) is given in Figure 4.18(f). In the Figure 4.18(f), the ZMP varying trajectory is inside

the support polygon that provides a stable walking of the biped robot for 3 steps.

Full body motion of the biped robot in 3 dimensional space for 2 steps is given in Figure

4.19.

4.5.5 Robot Walk on Uneven Surface

The Obstacle Crossing

As in Figure 4.20, the biped robot can cross an obstacle of width 3.5 units and height 5.5

units using a step length 16 units with step height 9 units within 4 seconds. An increment

of 3 units/sec in x velocity and 2 units/sec in z velocity of ankle at time t2(time at which

DSP change into SSP) is taken.
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Upper Ankle Step Initial hip upper body ZMP Conclusion

body trajectory Time velocity(in/sec) parameters stability
No upper cubic,quartic,quantic 4.5 vh=2.95 - - x-ZMP is in the
body region for t > 4.5s but

y-ZMP at middle of hip
Fixed cubic,quartic,quantic 3 vh=2.55 yl = l0

2
- x-ZMP is in the

region for t > 3s but
y-ZMP at middle of hip

Moving

Case-2 cubic,quartic,quantic 3 vh=2 yv = 0,yl = l0
2

unstable as for last 4 time instant
,ya = 8 ZMP is out of region

Case-3 cubic,quartic,quantic 3 vh=2 yv = 0,yl = l0
2

unstable as for last 4 time instant
,ya = 8 ZMP is out of region

Case-1 cubic 2.5 vh=2.8 yv = 7,y0 = 0 stable stable with desired
,ya = 8 stability margin

cubic 2.2 vh=3.15 yv = 8,y0 = −.5 unstable
,ya = 8.5

quartic 2.5 vh=2.8 yv = 8,y0 = 0 stable stable with desired
,ya = 8 stability margin

quartic 2.2 vh=3.15 yv = 9,y0 = −.5 stable stable with small
,ya = 8.5 stability margin

quartic 2.1 vh=3.55 yv = 9,y0 = −.5 unstable as for last 2 time instant
,ya = 8.5 ZMP is out of region

quintic 2.5 vh=2.8 yv = 8,y0 = 0 stable stable with desired
,ya = 8 stability margin

quintic 2.2 vh=3.15 yv = 9,y0 = 0 stable stable with desired
,ya = 8 stability margin

quintic 2.1 vh=3.55 yv = 9,y0 = −.5 stable stable with desired
,ya = 8.5 stability margin

quintic 2 vh=3.65 yv = 9,y0 = −.5 stable stable with small
,ya = 8.5 stability margin

quintic 1.8 vh=3.65 yv = 9,y0 = −.5 unstable
,ya = 8.5

Table 4.4: Simulations based observations

Walking on Irregular Surface

The robot can also walk on irregular surface of height 0 to 1 unit only by adjusting the foot

(ankle plus toe) movements. Here, the biped motion is presented for 2 different cases of

walk on irregular surface: (i) foot at a height and (ii) foot at inclined upward/downward

position(see Figure 4.21).

Let the robot walks on irregular surface for three steps. In first step, let swing foot lands

flatly on irregular surface of height 1 unit. ZMP trajectory of this case is given in Figure

4.23(a) which is approximately same as the plane surface trajectory.
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In second step, let swing foot lands in a inclined upward position with toe joint on

irregular surface of height< 1/2 unit (so only toe joint angle is changed see Figure 4.22(b))

while stable foot now become flat on the obstacle because of the previous step. So the base

for hip trajectory is slightly changed due to the position of the stable foot. In this case,

ZMP trajectory is slightly changed as in Figure 4.23(b).

Now in third step, let stable foot is at inclined upward position with toe joint on irregular

surface while swing foot lands at inclined upward position with sole joint on irregular

surface of height< 1/2 unit, so results are similar to second step.

4.5.6 Comparison with Existing Models

The comparison of proposed model with existing models is given in Table 4.5.

Ref.No. Foot Upper body Stable leg’s speed Surface ZMP
(length, width) Toe and Sole Gap in between feet movements Knee bend Stability

Rotation (x-direction, y-direction) all time
[14] (10.4, 6.6) No (0, 3.4) Upright No 5units/s plane Stable with

move only less stability
in y-direction margin

[10] (10, 8) No (0, 4) all time bend Yes 5units/s plane and Good Stable on plane
in x-direction slightly surface but less stable

uneven on uneven surface
Proposed (6, 3) Yes (1, 5) Upright move only No 6.7units/s plane and Good stable on both

in y-direction slightly plane and uneven surface
(frontal plane) uneven and can cross obstacles

Table 4.5: Comparison table

4.6 Conclusion

In this work, a biped model is proposed which has human like gait with ZMP stability

without bending knee and upright upper body while walking on plane and uneven surfaces.

In the proposed walking patterns, the robot can walk at low and medium speeds. Here,

first the joint trajectories are generated and then the walking stability of robot is ensured by

ZMP stability criterion. Movements at ankle and toe joint are added for realizing natural

human like walk.
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(a) Cubic ankle trajectory (b) Quartic ankle trajectory (c) Quantic ankle trajectory

Figure 4.7: Ankle and hip trajectories for tε(0, t4)

(a) Cubic (b) Quartic (c) Quantic

Figure 4.8: Ankle velocity trajectory for tε(0, t4)

(a) Cubic (b) Quartic (c) Quantic

Figure 4.9: Ankle acceleration trajectory for tε(0, t4)
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(a) (b)

(c) (d)

Figure 4.10: Legs following the given trajectories using FNN for tε(0, t4)

(a) (b)

Figure 4.11: Feet movements during DSP tε(0, t2)
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(a) x-ZMP (b) y-ZMP

Figure 4.12: Effect of upper body on ZMP

(a) (b)

Figure 4.13: Position and velocity graph for 3 different cases of upper body motion

(a) Case-1 (b) Case-2 (c) Case-3

Figure 4.14: 3 different cases of upper body motion
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(a) (b) (c)

Figure 4.15: ZMP trajectory in 2.5 seconds for 3 types of ankle trajectories

(a) (b) (c)

Figure 4.16: ZMP trajectory in 2.2 seconds for 3 types of ankle trajectories

(a) (b) (c)

Figure 4.17: ZMP trajectory in 2 seconds for 3 types of ankle trajectories

60



Chapter 4. Toe Footed Biped Robot Model for Stable Human like Gait with Upper Body
Motion

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: For quintic polynomial in 2.1 sec
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Figure 4.19: Full body motion in 3D for 2 step
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(a) (b)

Figure 4.20: Crossing an obstacles

Figure 4.21: 3 steps on irregular surface
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(a) (b)

Figure 4.22: Different cases of irregular surface

(a) (b)

Figure 4.23: ZMP trajectory for Figure 24
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Chapter 5: Stable Gait Generation for flat footed

Biped Robot using FNN and WNN

Feedforward Neural Network (FNN) and Wavelet Neural Network (WNN) based trajectory

generation approaches are proposed for smooth and dynamically stable walk of a 5 DOF

biped robot on flat terrain in 3-dimensional space. The trajectory generation procedure is

derived using semi-supervised NN for given boundary conditions without assigning any

path in advance. The suitability of the proposed approaches is studied using Zero Moment

Point (ZMP) stability criteria and simulations have been carried out using Matlab2014a.

5.1 Introduction

The biped robot should be able to walk according to different surface conditions and

according to application in different fields. So, stable biped locomotion is still a challenging

problem in robotics. Trajectory generation problems have been extensively studied in the

literature [15, 22, 31, 66, 67, 100]. However, the predesigned trajectories failed whenever

the terrain conditions change during walk. Humans do not walk based on a predefined

trajectory rather they modify the trajectory during tracking

Recently different soft computing techniques namely, Particle Swarm Optimization

(PSO), Genetic Algorithm (GA), Fuzzy Logic, Neural Network (NN) have been investi-

gated for motion planning of robots [12, 43, 55, 59, 60, 82]. Several authors have proposed

NN models to resolve the trajectory planning problems [1, 30, 56, 60, 77, 97]. Vundavilli

et al. [97] used NN based gait on a sloping surface. In Semwal et al. [84], a multilayered

back propagation neural network is used for gait pattern classification. Capi et al. [13] used

RBFNN to optimize the pre-computed gait for minimum energy consumption. In Dutta et

al. [26], FNN based optimization procedure is used to calculate the optimum coefficient of
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polynomial for given constraints. In some papers, trajectories are generated by NN using

sensory feedback of data [56, 105], or by collecting human data [84]. All these papers used

NN either for parameter optimization or for data optimization and some paper used NN

controller to control the motion. NN approach can be effective for generating trajectory

since it gives instant result at desired points in negligible computation time and memory

without reconstruction, once the networks have been trained.

In this chapter, novel FNN and WNN based trajectory generation procedures are pre-

sented to find the smooth trajectories in less computing time with the help of various sets

of boundary conditions/constraints at various time points. First, a trial trajectory is defined

as a function which is the sum of two networks in such a way that first network vanishes

at initial point and second network vanishes at final point. Then, both the networks are

trained to satisfy the boundary conditions by minimizing the corresponding error. Now,

the trained function is the required trajectory for the given boundary conditions. In case

more constraints need to be imposed on the trajectory, more neural network function can

be added and trained accordingly. FNN trajectories are generated for hip and ankle joints

and for upper body to walk on a plane surface. ZMP stability criteria is used to ensure the

dynamic balance for these NN trajectories.

The organization of this chapter is as follows. Robot model is described in Section

5.2. In Section 5.3, methodology for trajectory generation based on FNN and WNN is

developed and the simulated results are compared. In Section 5.4, NN based trajectory

generation procedure for feet, hip and upper body are discussed and simulated results are

also given. Conclusion is given in Section 5.5.

5.2 Modelling of Biped Robot

5.2.1 Robot Design

As in Figure 5.1, the biped robot has 2 Degrees of Freedom (DOF) for each leg with

flat foot and one DOF for Upper body(U). Hip joint, Knee joint, Ankle joint of swing leg

and stable leg are represented by H, K, A and Hs, Ks, As respectively. All the joints are

revolute joints. The parameters of the robot are given in Table 5.1. Total length of a leg is

(l1 + l2). It is assumed that the length and mass of both legs are the same.
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Figure 5.1: Robot Structure

Link Length value

HK l1 14 units
KA l2 14 units
foot length l3 6 units
HU l5 12 units
HH l0 8 units
foot width l4 3 units
Link Mass value
HK m1 4 units
KA m2 4 units
HH m0 10 units
HHs m5 35 units

Table 5.1: Description of robot links

As discussed in the previous chapters, biped robot walk is considered as repetition of

one step with two alternate phases: Single Support Phase (SSP) and Double Support Phase

(DSP). In SSP, the stable foot holds the robot’s weight while the swing foot is moving

forward in the air. In DSP, both feet are on the ground.

5.2.2 Inverse and Forward Kinematics of Biped

In Figure 5.2, coordinate frames (xi, yi, zi), i = 0, 1, ..., 5 are assigned at the joints

starting from the stable leg’s ankle to swing leg’s ankle according to Denavit-Hartenberg

(DH) procedure, and related joint angles θi; i = 1, 2, ..., 5 are demonstrated. The letter ‘G’

is assigned to indicate the universal coordinate frame. The numeric ‘0’ is assigned to the

base coordinate frame at the ankle joint of stable leg with axes x0, y0 and z0 where x0 is

the direction of walking, z0 is lying along the axis of rotation of joint 1 and y0 is the axis

according to the right hand thumb rule. The Denavit-Hartenberg (DH) parameters for the

biped are given in Table 5.2.

Stable leg moves to follow a hip trajectory without knee bending with hip joint as end
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Figure 5.2: DH Model

Link Joint angle(θi) Twist angle(αi ) Link length(ai) Joint length(di)

1 θ1 0 l1 0
2 θ2 0 l2 0
3 θ3 0 0 l0
4 θ4 0 l2 0
5 θ5 0 l1 0

Table 5.2: DH parameters

effector and ankle joint as the base. Hence,

θ2 = 0 (5.1)

0Hs = (0x2,
0 y2,

0 z2) is the position coordinates of the stable leg’s hip joint with respect to

the base frame 0. Now

0Hs =0 TG
GHs

where GHs = (xH , l0, zH) is the position coordinates of hip joint Hs of the stable leg in

frame G and the homogeneous transformation matrix representing the frame 0 with respect
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Figure 5.3: COM position in DH Struc-
ture

Link ir(rix, riy, riz)

1 1r(−l1/2, 0, 0)
2 2r(−l2/2, 0, 0)
3 3r(0, 0,−l0/2)
4 4r(−l2/2, 0, 0)
5 5r(−l1/2, 0, 0)

joint angle Joint angle limit
θ1 [−3π/4,−π/4]
θ2 [0,0]
θ3 [−5π/4,−π/2]
θ4 [−π/4, π/2]
θ5 [0, 3π/4]

Table 5.3: COM of each link

to universal frame G is given by GT0 =


1 0 0 xAs

0 0 −1 l0

0 1 0 0

0 0 0 1

.

The joint angle θ1 by treating stable leg as 1-link manipulator is given as:

θ1 = tan−1
(

0y2
0x2

)
(5.2)

In Figure 5.2, axis z3 and z4 are collinear and according to DH algorithm x4 axis can be

taken in any perpendicular direction to this line. So, x4 axis is taken in the direction of zG
for convenience. Now,

θ3 = θ1 − π/2; (5.3)

By treating hip of swing leg as base and ankle joint as end effector, swing leg moves like 2

link manipulator. 3A = (3x5,
3 y5,

3 z5) is the position of the swing leg’s ankle joint which

is expressed in terms of frame 3. Now

3A =3 TG
GA

where GA = (xA, 0, zA) is the position of swing leg’s ankle joint in frame G and the
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transformation matrix from universal frame to frame 3 is GT3 =


0 1 0 xH

0 0 −1 0

1 0 0 zH

0 0 0 1


The joint angles for this 2 link manipulator are

θ1a = cos−1

(
(3x5)

2
+ (3y5)

2 − l12 − l22

2l1l2

)
; (5.4)

θ2a = tan−1
(

(3x5)(l1 + l2cos θ4)− (3y5)l2sin θ4
(3y5)(l1 + l2cos θ4) + (3x5)l2sin θ4

)
(5.5)

As x4 axis is in the direction of zG and z4 axis is in the direction of yG, so it is easy to find

the relation between θ4 and θ5 with θ1a and θ2a, which is given as

θ4 =
π

2
− θ1a; (5.6)

θ5 = θ2a. (5.7)

The coordinates ir = [rix, riy, riz], (in Figure 5.3) indicates the centers of mass with respect

to the ith link frame Oi(xi, yi, zi); i = 1 : 5 for the biped robot, are given in Table 5.3.

5.3 FNN and WNN Architecture for Trajectory Generation

In this section, FNN or WNN based approaches are proposed for trajectory genera-

tion. In this section, a general procedure for generating neural network based trajectory

using given constraints is proposed. In next section, this procedure will be adapted for gait

generation of the biped robot model.

5.3.1 Trajectory Generation for Given Conditions

For 4 Constraints

Let x(t) be an unknown trajectory which satisfies the following conditions:

xA(t0) = x0, xA(tf ) = xp, ẋA(t0) = xv1 , ẋA(tf ) = xv2 .

where x0 is initial position, xp is final position, xv1 is initial velocity and xv2 is final velocity.

In order to generate this trajectory x(t) using FNN in the interval t ∈ [t0, tf ], the following
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expression is considered

x(t) =

(
t− t0
tf − t0

)2

N1(t,W1, V1) +

(
tf − t
tf − t0

)2

N2(t,W2, V2), (5.8)

where Ni; i = 1, 2 are neural networks with input t and adjustable weights Wi and Vi. Wi

denotes the weight matrix from the input layer to hidden layer and Vi denotes the weight

matrix from hidden layer to output layer. N1 vanishes at initial time t0 and N2 vanishes at

final time tf . The architecture of NNs N1 and N2 to satisfy given constraints are given in

Figures 5.4(a) and 5.4(b) respectively.

Further, in order to generate this trajectory x(t) using WNN in the interval t ∈ [t0, tf ],

the following expression is considered:

x(t) =

(
t− t0
tf − t0

)2

Nw1(t,Ww1, Vw1, Cw1, Dw1)+

(
tf − t
tf − t0

)2

Nw2(t,Ww2, Vw2, Cw2, Dw2)

(5.9)

where Nwi; i = 1, 2 are neural networks with input t. Wwi denotes the weight matrix from

the input layer to hidden layer and Vwi denotes the weight matrix from hidden layer to

output layer and Cwi and Dwi are translation and dilation vectors respectively in case of

WNN. Nw1 vanishes at initial time t0 and Nw2 vanishes at final time tf .

Now, x(t) is trained(in case of both the approaches) to satisfy all the constraints by

minimizing the error E1 (which is a function of the weights)

E1 = (x(t0)− x0)2 + (x(tf )− xp)2 +

(
∂x(t0)

∂t
− xv1

)2

+

(
∂x(tf )

∂t
− xv2

)2

(5.10)

The error E1 is minimized by updating the weights using gradient decent approach as in

equations 2.15 and 2.15 of Section 2.3 for FNN and in equations [2.18-2.20] of Section 2.4

for WNN in Chapter 2. Once the error reaches below a certain threshold value, the trained

function acts as the required trajectory for the given boundary conditions. One network can

satisfy two constraints easily but beyond that it is time consuming process. So extra neural

networks are added and trained to satisfy other constraints.
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(a) Structure of N1 (b) Structure of N2

Figure 5.4: FNN structure during weight training for x-t trajectory

For 6 Constraints:

Let x(t) be an unknown trajectory which satisfies the following conditions at the starting t0,

middle tm and end points tf respectively:

x(t0) = x0, x(tf ) = xf , ẋA(t0) = xv1 , ẋA(tf ) = xv2 ;xA(tm) = xm, ẋA(tm) = xv3 ;

In order to generate this trajectory x(t) using NN in the interval t ∈ [t0, tf ], the following

expression is considered:

x(t) =

(
tm − t
t2

)2
((

t− t0
tf − t0

)2

N1(t,W1, V1) +

(
tf − t
tf − t0

)2

N2(t,W2, V2)

)

+

(
(tf − t)t

tm(tf − tm)

)2

N3(t,W3, V3) (Using FNN) (5.11)

x(t) =

((
tm − t
tm

)2
((

t− t0
tf − t0

)2

Nw1(t,Ww1, Vw1, Cw1, Dw1) +

(
tf − t
tf − t0

)2

Nw2(t,Ww2,

Vw2, Cw2, Dw2)) +

(
(tf − t)t

tm(tf − tm)

)2

Nw1(t,Ww3, Vw3, Cw3, Dw3)

)
(Using WNN)

(5.12)

where, in FNN approach, N1 vanishes at initial time t0 and middle time tm, N2 vanishes

at final time tf and middle time tm, and N3 vanishes at initial time t0 and final time tf .
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Similarly, in WNN approach, Nw1 vanishes at initial time t0 and middle time tm, Nw2

vanishes at final time tf and middle time tm, and Nw3 vanishes at initial time t0 and final

time tf .

Now, x(t) is trained to satisfy all the constraints by minimizing the error E2

E2 = (x(t0)− x0)2 + (x(tf )− xf )2 +

(
∂x(t0)

∂t
− xv1

)2

+

(
∂x(tf )

∂t
− xv2

)2

+ (x(tm)− xm)2 +

(
∂x(tm)

∂t
− xv3

)2

using gradient decent approach. Once the error reaches below a certain threshold value, the

trained function acts as the required trajectory for the given boundary conditions.

5.3.2 Trajectory Modification for Changed Constraints using NN

Final Position or Velocity Changed

After training a trajectory for given constraints, if final position xp and velocity xv2 are

changed to xP and xV2 during tracking at any intermediate time instant ts < tf then the

weights of N2 are updated to satisfy xF and xV2 using the error function E1a

E1a = (x(tf )− xP )2 +

(
∂x(tf )

∂t
− xV2

)2

. (5.13)

It takes very less time to train the weights for new constraints, as the initial weights used in

the learning algorithm are the weights which were obtained for xp and xv2 .

Middle Position or Velocity Changed:

After training the weights for a trajectory, if middle position xm and middle velocity xv3
are changed to xmF and xV3 during trajectory tracking at any intermediate time instant

ts < tf/2 then the weights of N3 are updated to satisfy xmF using the error function E2a

E2a = (x(tm)− xmF )2 +

(
∂x(tm)

∂t
− xV3

)2

. (5.14)

It takes very less time to train the weights for new constraints, as the initial weights used in

the learning algorithm are the weights which are priorly trained for xmF and xV3 .
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5.3.3 Results and Discussions of Proposed Approach

In this study, the learning rate (as mentioned in equations [2.15-2.20] for FNN are

α1=0.0001, α2=0.0001 and the learning rate for WNN are α1=0.0001, α2=0.0001 α3=0.01,

α4=0.01. The weights are initialized to random numbers between 0 and 1, translation vector

C is initialized to zero vector and dilation vector D is initialized to unit vector. If the error

reaches below a certain threshold (10−4), then the FNN and WNN training stop.

(a) Position trajectories (b) Velocity trajectories (c) Acceleration trajectories

Figure 5.5: Proposed FNN verses WNN approach for (x0=2, xf=14, xv1=0, xv2=0)

(a) Error using FNN (b) Error using WNN

Figure 5.6: Errors for 4 constraints in trajectory generation

The results of proposed FNN and WNN approaches are compared for trajectory genera-

tion in Matlab2014a. In Figure 5.5(a), there are two trajectories red and black respectively,

generated by using proposed FNN approach and WNN approach for 4 constraints. Figure

5.5 demonstrates that the trajectories and respective derivative trajectories are continuous

and satisfy the given boundary conditions. The result of proposed approaches for trajectory
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generation using 4, 6 and 8 constraints is given in Table 5.4. In this weight training algo-

rithm, error converges smoothly to zero in less computation time which is shown in Table

5.4. After obtaining the FNN and WNN trajectory the robot can track the trajectory using

the trained weights and these trajectory can adapt the change in constraints value quickly,

also adaptation time for both are approximately same. Figures 5.6(a) and 5.6(b) shows

the error graph for 4 constraints using FNN and WNN respectively. In Figure 5.6, WNN

approach converges three times faster than FNN approach.

The blue line in Figures 5.7(a), 5.7(b) and 5.7(c) respectively, represents position, velocity

Boundary conditions Values Error Convergence Time

E For FNN For WNN

(x0, xf , xv1 , xv2) (2,14,0,0) 0.0001 15s 2.2s
(x0, xf , xv1 , xv2 , xm, xv3) (2,14,4,-4,7,0) 0.0001 20s 5.13s
(x0, xf , xv1 , xv2 , xm, xv3 , ac1 , ac2) (2,14,4,-4,7,0,0,0) 0.0001 22s 7s

Table 5.4: Simulations based observations for Proposed approach

and acceleration trajectories based on FNN for 6 constraints (x0=0, xm=6, xp=12, xv1=-6,

xv2=6, xv3=0). Although, the blue line in Figures 5.8(a), 5.8(b) and 5.8(c) respectively, rep-

resents position, velocity and acceleration trajectories based on WNN for same constraints

(as for FNN). If for the given trajectories using FNN and WNN, final constraints values are

changed (during tracking) to xP=14, xV2=0 at time instant t=0.4 sec and to xP=15 , xV2=0

at time instant t=0.9 sec then the respective changes in trajectory and derivative trajectory

are shown by red line and black line in the same Figures ((5.7),(5.8)). Also for the same

constraints, if middle position xm is changed (during tracking) from 6 to 7 units at time

instant t=0.4 sec then red line in Figures 5.9 and 5.10 represents the modified trajectory

using FNN and WNN respectively. Similarly, blue line in Figures 5.11 and 5.12 respec-

tively, represents trajectories based on FNN and WNN for 6 constraints (x0=3,xm=6, xp=3,

xv1=-4, xv2=4,xv3=0) and in same figures, red line shows modified trajectories for a change

in final constraints xp=3, xv1=-4, to xP=12.5, xV2=0 at time instant t=0.4 sec.

So it can be concluded that FNN and WNN approaches can adapt the changes in con-

straint values during tracking and modify the trajectory accordingly. Although WNN con-

vergence is 3 time faster than FNN, FNN trajectory is more smooth in comparison with

WNN trajectory which is an important aspect for stable walk.
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(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.7: Trajectory using proposed FNN approach which is modified for final conditions
at time ts=0.4 to xP=14, xV2=0 and at t=0.9 to xP=15 , xV2=0
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(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.8: Trajectory using proposed WNN approach which is modified for final condi-
tions at time ts=0.4 to xp=14, xv2=0 and at t=0.9 to xP=15 , xV2=0
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(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.9: FNN trajectory for (x0=0,xm=6, xp=12, xv1=-6, xv2=0,xv3=6) which modified
at ts = 0.4 for changed middle position xm=7
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(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.10: WNN trajectory for (x0=0,xm=6, xp=12, xv1=-6, xv2=0,xv3=6) which modi-
fied at ts = 0.4 for changed middle position xm=7, xV3=0

79



Chapter 5. Stable Gait Generation for flat footed Biped Robot using FNN and WNN

(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.11: FNN trajectory for(x0=3,xm=6, xp=3, xv1=4, xv3=0,xv2=-4)which modified
for changed final position xP=12.5,xV2=0
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(a) Position trajectories (b) Velocity trajectories

(c) Acceleration trajectories

Figure 5.12: WNN trajectory for(x0=3,xm=6, xp=3, xv1=4, xv2=0,xv3=-4)which modified
for changed final position xP=12.5,xV2=0
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5.4 Gait Generation

The hip, ankle and upper body trajectories are the parts of biped’s Gait. The swing leg

Figure 5.13: Biped robot’s walk

moves forward during SSP and becomes the stable leg in upcoming step. Trajectories have

been generated, for the swing leg’s ankle and hip joints (both hips follow same trajectory)

in the sagittal plane (XG − ZG) and for upper body in frontal plane (YG − ZG). For hip

and ankle trajectories planning, x-trajectory is generated in terms of time t and z-trajectory

is generated in terms of distance x.

5.4.1 Ankle Trajectory

Let (xA(t), 0, zA(t)) : t ∈ [t0, tf ] be the coordinate of the swing leg’s ankle joint. The

x-trajectory for ankle joint A must satisfy the following position and velocity constraints:

xA(t0) = x0, xA(tf ) = xp, ẋA(t0) = 0, ẋA(tf ) = 0;
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The z-trajectory for ankle joint A as a function of x must satisfy the following constraints:

zA(x0) = 0, zA(xp) = 0, zA(xm) = h1, żA(xm) = 0;

where xp = x0 + xf with step length xf , h1 is step height, xm = xA(tf/2) is the middle

position of x0 and xf as given in Figure 5.13.

To satisfy these constraints, xA can be generated by using equation (5.8) in Section 5.3

(with error function E1) and similarly we can define the following z-trajectory:

zA(xA) =

(
xm − xA(t)

xm

)2((
xp − xA(t)

xp − x0

)
N5(xA(t),W5, V5)

+

(
xA(t)− x0
xp − x0

)
N6(xA(t),W6, V6)

)

+

(
xA(t)(xp − xA(t)

xm(xp − xm)

)
N7(xA(t),W7, V7); (5.15)

The error function which is to be minimized by updating weights in networks N5, N6 and

N7 for z-trajectory is given by

E3 = (zA(x0))
2 + (zA(xp))

2 + (zA(xm)− h1)2 +

(
∂zA(xm)

∂t

)2

The weights are updated by minimizing the error using gradient descent approach.

5.4.2 Hip Trajectory

Both the hips follows the same trajectory in xz plane.

For stable leg, the hip follows a circular trajectory with radius (l1 + l2) and center at its

ankle joint. Boundary conditions related to hip coordinate (xH(t), yH(t), zH(t)) are given

by the following:

For motion in x-direction:

xH(t0) = x0 + xf/4, xH(tf ) = x0 + 3xf/4, ẋH(t0) = v3, ẋH(tf ) = v4;

For motion in z-direction:

zH(x0) = h, zH(xp) = h, żH(x0) = 0, żH(xp) = 0;
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where h is maximum hip height (for both initial and final position), v3 and v4 are the initial

and final velocities of hip in x-direction respectively.

The x-trajectory can be calculated by the Equation (5.8) and weights are trained using

error function E4 given by

E4 = (xH(t0)−(x0+xf/4)2+(xH(tf )−x0 + 3xf/4)2+

(
dxH(t0)

dt
− v3

)2

+

(
dxH(tf )

dt
− v4

)2

and the z-trajectory is defined as

zH(xH) =
√

(l1 + l2)2 − (xH(t)− (x0 + xf/2))2; (5.16)

5.4.3 Upper Body Trajectory

The upper body mass has its effect on biped’s stability. For this, suitable choice of

the mass and position, velocity and acceleration conditions of the upper body will provide

better walking efficiency.

The stable leg balanced the whole body weight during SSP. U starts to move in y-

direction from middle point of hips to the stable leg side in half step time(t2 = tf/2) and

moves back to middle point of hips in rest of the time (as in Section 3.6 of chapter 3). So

the boundary conditions for the upper body are

yU(t0) = yl; yU(tm) = ya; yU(tf ) = yl;

∂yU(t0)

∂t
= v5;

∂yU(tm)

∂t
= 0;

∂yU(tf )

∂t
= v6;

∂2yU(t0)

∂t2
= 0;

∂2yU(tf )

∂t2
= 0;

where yl = l0/2 is the middle point of hips, v7 and v8 are the initial and final upper body

velocity, ya is the upper body position at initial and final time. Then, the upper body (U)

trajectory in y-direction is

yU(t) = x(t)+

(
(t− tm)(tm − t)

(tf − t0)

)2(
(t− t0)
tf − t0

)2

N8(t,W8, V8)+

(
(tf − t)
tf − t0

)2

N9(t,W9, V9)

(5.17)

The FNN networks N8 and N9 are added to x(t) (as in equation (5.8)) to satisfy the ac-

celeration constraints at initial time t0 and at final time tf . The weights are updated by

minimizing the error

E5 =

(
d2yU(t0)

dt2

)2

+

(
d2yU(tf )

dt2

)2

(5.18)

Similarly, all joint trajectories can be generated by using WNN.
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5.4.4 Simulated Results

Parameters used for simulation of the trajectories are given in Table-5.5.

Initially, swing foot and stable foot are on the ground and they are positioned at 0 < x <

Parameter Value

For step xf 16 units
h1 2 units
t0 0 sec
x0 2 units
tf 2 sec
l0 8 units

For hip v3 4.2 units
v4 -4.2 units

For upper body ya 7 units
v5 5.4 units
v6 -5.4 units

Learning rate α 0.0001
Hidden layer For 4 constraints 30
neurons in NNs For 6 constraints 45

For 8 constraints 75

Table 5.5: Parameters

5,−2 < y < 2 and 7 < x < 12, 6 < y < 10 respectively.

Figures 5.14(a) and 5.14(b) respectively, represents the desired ankle and hip trajecto-

ries in x-z plane using proposed FNN and WNN approaches. Whole body’s COM trajectory

is given in Figure 5.15(a). The inverse kinematic solutions(with respect to time) for hip and

ankle trajectories are shown in Figure 5.15(b).

The upper body has its effect on ZMP stability. FNN and WNN trajectories are given in

Figure 5.16(a) and respective acceleration trajectories are given in Figure 5.16(b). In Figure

5.16(b), upper body acceleration is less smoother in comparison of WNN. So, proposed

WNN approach is not suitable for upper body motion. The ZMP graphs generated by

using FNN(blue) and WNN(red) approaches for ankle trajectory are given in Figures 5.17.

From these figures, it can be concluded that the stability margin is high for FNN trajectory.

Hence, FNN approach is preferable over WNN.
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(a) Trajectory generation using FNN (b) Trajectory generation using WNN

Figure 5.14: Ankle and Hip trajectories in xz-plane

5.5 Conclusion

To generate a trajectory, the conventional approach is to fit a polynomial by satisfying

the given conditions. However, NN provides a better alternative for trajectory generation.

In this chapter, novel FNN and WNN approaches are proposed for trajectory planning to

produce smooth motion and the performance of WNN and FNN are compared. The ap-

proaches have been tested for 4 and 6 constraints yielding good results in simulation and

can be modified at any instant of time during tracking. Although WNN has fast conver-

gence to trained the modeled trajectory as compared to FNN, it is not found to be suitable

for biped walking trajectory generation. The reason is the acceleration trajectory by using

WNN approach is not smooth as compare to FNN (see Figure 5.17). But if the foot size is

large enough then WNN is preferable to generate the ankle trajectory faster. Both the ap-

proaches can adapt the changes in constraints due to environmental disturbances, obstacles

and sensor noise etc during tracking which is discussed in next chapter and adaptation time

is same for both the approaches.
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(a) COM trajectory (b) Joint angles of biped robot

Figure 5.15:

(a) FNN vs WNN position trajectories (b) FNN vs WNN acceleration trajectories

Figure 5.16: Upper body
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Figure 5.17: ZMP for FNN vs WNN ankle trajectory
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Chapter 6: Walking Control of Biped Robot us-

ing FNN

In this chapter, the dynamic equation of a 5 DOF Biped Robot model (given in previous

chapter) is derived with the assumption that a mass is moving along the hip during the

walk to maintain the stability. Trajectory planning is the main concern of biped walking

to avoid obstacles and ditch in an uncertain environment whose position and the shapes

are not known a priori. A FNN based trajectory generation approach is proposed for the

given boundary conditions in the previous chapter. In this chapter, we verified the ability of

biped using FNN approach to adjust its gait/step according to uncertain environment during

tracking. The suitability of the proposed approach for biped robot is studied using Zero

Moment Point (ZMP) stability criteria and PD controller. The results are compared and

simulated using Matlab2014a which show the effectiveness of the proposed approaches.

6.1 Introduction

Biped dynamics with controller plays an important role for the stable locomotion [7, 11,

41, 45, 81, 98]. One of the great challenges for a biped is to walk in an unknown environ-

ment/terrain. Recently, various techniques have been extensively studied in the literature

[15, 51, 72, 90, 104] for this purpose. Some robots are also able to cross the obstacles of

different heights [15, 51, 72, 90, 104]. Stasse et al. [90] presented a HRP-2 humanoid robot

that can dynamically step over a 15 cm obstacle within 4 secs using quasi static stability

with 3 cm stability margin. On the other hand, Li et al. [51] planned a gait by motion

capture system towards overcoming the obstacle during walk of the humanoid robot. Force

sensors are used to calculate the ground reaction forces. FNN based optimization proce-

dure is used to calculate the optimum coefficient of polynomial for given constraints on
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uneven surface and to cross a ditch [26, 97]. However, these methods don’t work well in

more complex domain as the trajectories can not modified during walking according to ter-

rain conditions. Humans do not walk based on a predefined trajectory rather they modify

the trajectory during tracking when the environment/terrain conditions change possibly to

avoid obstacles, to cross a ditch and to adapt disturbance in parameters due to sensor noise

etc. So the biped should walk in a similar manner. Biped should have a better ability to

move on an uneven terrain where a small unexpected disturbance can cause robot to fall

[34, 42]. Hence, the development of bipedal robot which can adjust its gait/step accord-

ing to terrain during tracking quickly is current field of research. NN can be effective in

generating a trajectory for this purpose.

In this chapter, semi-supervised FNN based approach as proposed in previous chapter

is used to generate walk pattern for 5 DOF biped robot and results are compared with

basic polynomial approach. The trained trajectory can be modified for updated value of

constraints during tracking quickly as it takes very less time to train the weights because

the initial weights used in the learning algorithm (for the new trajectory) are the weights

which were priorly trained(for the old trajectory). ZMP stability criteria is used to ensure

the dynamic balance for these NN trajectories. PD controller is used to control the motion.

The rest of paper is organized as follows. Dynamic equation of this robot model is

given in Section 6.2. Gait planning procedure for feet, hip and upper body is described in

Section 6.3. Section 6.4 is dedicated to results and discussions. Section 6.5 presents the

conclusion.

6.2 Dynamic Equations of Proposed Biped Model

Dynamic equation of motion describes the relationship of the actuation and contact

forces with the acceleration and motion trajectories which are due to the reacting forces.

For the motion of each joint, torque/force is required to follow a desired trajectory. There

are two main method to derive the dynamic equation of a robot, namely, Newton-Euler

and Euler-Lagrange methods. Here, we follow the Lagrange-Euler method to derive the

equation.
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Figure 6.1: DH Structure

6.2.1 Forward Kinematics

In Figure 6.1, coordinate frames (xi, yi, zi), i = 0, 1, 2....5 are assigned at the joints

starting from the stable leg’s ankle to swing leg’s ankle according to Denavit-Hartenberg

(DH) procedure(as in Section 2.2.2 in Chapter 2), and related joint angles θi; i = 1, 2, ...5

are demonstrated. The letter ‘G’ is assigned to indicate the universal coordinate frame. The

numeric ‘0’ is assigned to the base coordinate frame at the ankle joint of stable leg with

axes x0, y0 and z0 where x0 is the direction of walking, z0 is lying along the axis of rotation

of joint 1 and y0 is the axis according to the right hand thumb rule. The DH parameters for

the biped are given in Table 6.1.

Link Joint angle(θi) Twist angle(αi ) Link length(ai) Joint length(di)

1 θ1 0 l1 0
2 θ2 0 l2 0
3 θ3 0 0 l0
4 θ4 0 l2 0
5 θ5 0 l1 0

Table 6.1: DH parameters
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By using these DH parameters, the homogeneous transformation matrix i−1Ti (as in

Section 2.1 of Chapter 2) are expressed as:

0T1 =


Cθ1 −Sθ1 0 l1Cθ1

Sθ1 Cθ1 0 l1Sθ1

0 0 1 0

0 0 0 1

 1T2 =


Cθ2 −Sθ2 0 l2Cθ2

Sθ2 Cθ2 0 l2Sθ2

0 0 1 0

0 0 0 1



2T3 =


Cθ3 −Sθ3 0 0

Sθ3 Cθ3 0 0

0 0 1 l0

0 0 0 1

 3T4 =


Cθ4 −Sθ4 0 l2Cθ4

Sθ4 Cθ4 0 l2Sθ4

0 0 1 0

0 0 0 1



4T5 =


Cθ5 −Sθ5 0 l1Cθ5

Sθ5 Cθ5 0 l1Sθ5

0 0 1 0

0 0 0 1


where Sθi = sinθi, Cθi = cosθi.

The forward kinematics of this biped robot can be derived by using the frame transforma-

tions from the stable leg’s ankle joint to swing leg’s ankle joint, which is given by:

0T5 =
5∏
i=1

i−1Ti

6.2.2 Joint Velocities of a Robot

Let ir be a point on the ith link and expressed in homogeneous coordinates with respect

to the ith joint coordinate frame as

ir = (rix, riy, riz, 1)T

The coordinate of the centers of masses(COM) for all the 5 link are given in the Table 6.2.
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Link coordinate of COM ir(rix, riy, riz)

1 1r(−l1/2, 0, 0)
2 2r(−l2/2, 0, 0)
3 3r(0, 0,−l0/2)
4 4r(−l2/2, 0, 0)
5 5r(−l1/2, 0, 0)

Table 6.2: COM of each link

Let Qi; i = 1, 2, ..., 5 be a matrix defined as

Qi =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


As all the joints are revolute, the partial derivative of i−1Ti with respect to θi can be

easily calculated with the help of Qi as

∂i−1Ti
∂θi

= Qi
i−1Ti

Let Uij andUijk be defined as:

Uij ∼= ∂0Ti
∂θj

=

{
0Tj−1 Qj

iTj−1 j ≤ i

0 j > i

Uijk ∼= ∂Uij

∂θk
=


0Tj−1 Qj

j−1Tk−1 Qk
k−1Ti i ≥ k ≥ j

0Tk−1 Qk
k−1Tj−1 Qj

j−1Ti i ≥ j ≥ k

0 i < j or i < k

For example U11 = ∂0T1
∂θ1

= Q1
0T1, U12 = ∂1T2

∂θ2
= Q2

1T2,

∂U12

∂θ1
= Q1Q2

1T2,
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Using these notations velocity vi of the point ir, expressed in the base coordinate frame

is

vi =
d

dt
(0Ti

ir)

=

[
i∑

p=1

∂0Ti
∂θp

θ̇p

]
ir =

n∑
p=1

Uipθ̇p
ir.

6.2.3 Euler-Lagrange Equation

Let K and P be the total kinetic and potential energy respectively for the biped. The

Lagrangian is defined as

L = K − P

The total kinetic energy K is

K = 1/2
5∑
i=1

i∑
p=1

i∑
q=1

[
Tr(U1pJiU

T
1q)θ̇pθ̇q

]
;

where the pseudo inertia matrices Ji; i = 1, 2..., 5 (assuming that all the products of inertia

are zero) are

J1 =


1/3m1l

2
1 0 0 −1/2m1l1

0 0 0 0

0 0 0 0

−1/2m1l1 0 0 m1

 J2 =


1/3m2l

2
2 0 0 −1/2m2l2

0 0 0 0

0 0 0 0

−1/2m2l2 0 0 m2



J5 =


0 0 0 0

0 0 0 0

0 0 m0l
2
0/3 +m5l(t)

2 m0l0/2 +m5l(t)

0 0 m0l0/2 +m5l(t) m0 +m5



J4 =


1/3m3l

2
2 0 0 −1/2m3l2

0 0 0 0

0 0 0 0

−1/2m3l2 0 0 m3

 J5 =


1/3m4l

2
1 0 0 −1/2m4l1

0 0 0 0

0 0 0 0

−1/2m4l1 0 0 m4


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where mi; i = 1, 2, ..., 5 are the masses of links, M is moving mass on the hip and l(t) is

distance between the moving mass and the COM of hip. The total potential energy P of the

biped robot is

P =
n∑
i=1

(−mig
0Ti

ir̄i) i = 1, 2, ..., 5 (6.1)

where gravity row vector g = (0,−|g|, 0, 0) is expressed in the base coordinate system with

the gravitational constant g.

Then, the lagrangian function L is given by

L = 1/2
n∑
i=1

i∑
p=1

i∑
q=1

[
Tr(UipJiU

T
iq)θ̇pθ̇q

]
+

n∑
i=1

(mig
0Ti

ir̄i) (6.2)

Applying the Lagrange-Euler formulation to the lagrangian function of the biped robot, the

necessary generalized torque τi for joint i [20]is

τi =
d

dt

[
∂L

∂θ̇i

]
− ∂L

∂θi
; i = 1, 2..., n; n = 5.

τi =
n∑
p=1

p∑
q=1

Tr(UpqJjU
T
pi)θ̈q +

n∑
p=1

p∑
q=1

p∑
m=1

Tr(UpqmJpU
T
pi)θ̇q

˙θm −
n∑
p=1

mpg(Upi
pr̄p)

The above equations can be expressed in matrix form as

τ(t) = D(θ(t))θ̈(t) + C(θ(t), θ̇(t)) +G(θ(t)) (6.3)

where

τ(t) = n× 1 generalized torque vector applied at joints.

θ(t) = n× 1 joint variables vector.

θ̇(t) = n× 1 joint velocity vector.

θ̈(t) = n× 1 joint acceleration vector.

D(θ) = n× n inertial acceleration related symmetric matrix.

C(θ, θ̇) = n× 1 nonlinear Coriolis and centrifugal force vector.

G(θ) = n× 1 gravity force vector.

95



Chapter 6. Walking Control of Biped Robot using FNN

Hence, the joint torques (τi; i=1,2,...,5) can be determined as follows:

τi =
n∑
q=1

Diqθ̈q + Ci(θi, θ̇i) +Gi(θ(t)) (6.4)

where inertia, gravity and Coriolis/centrifugal terms respectively are given by

Diq =
5∑

p=max(i,q)

Tr(UpqJpU
T
pq) i, q = 1, 2, ..., 5 (6.5)

Gi =
5∑
p=1

(−mpgUpi
pr̄p) i = 1, 2, ..., 5. (6.6)

Ci =
5∑
q=1

5∑
m=1

hiqmθ̇qθ̇m i = 1, 2, ..., 5 (6.7)

with ciqm =
∑n

p=max(i,q,m)Tr(UpqmJpU
T
pi) i, q,m = 1, 2, ..., 5.

The expressions for Diq , Hi and Ci i = 1, 2, ..., 5, q = 1, 2, ..., 5 are given at the end of this

chapter.

PD Control

The input torque for each joint is

τi = Kpi(θdi − θi) +Kdi(θ̇di − θ̇i) (6.8)

where, θdi is the desired joint angle, θ̇di is the desired angular velocity for each joint

i = 1, 2, ...5. Kpi and Kdi are the coefficients of the proportional and differential terms

respectively.

As the double support phase in case of flat footed robot is instantaneous, walk is only

considered for single support phase in this chapter.

6.3 Gait Generation

The hip, ankle and upper body trajectories are the parts of biped’s Gait. These trajecto-

ries are generated using two approaches namely, FNN approach and polynomial approach.
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6.3.1 Using Proposed FNN Approach

In the FNN approach the trail function is defined using FNN where one network Ni is

defined for each ith boundary point in such a way that all the networks in the function other

than Ni vanish at ith boundary point. Further, the function is trained to satisfy all the given

conditions and this trained function is the required trajectory. Using this procedure the

walking trajectories can be generated offline (for given constraints as given in Section 5.4).

The trained trajectory can be modified online according to change in constraints during

walking.

6.3.2 Polynomial Approach for Biped’s Gait

The joint trajectories for the boundary conditions given in Section 5.4 are generated

using polynomial approach (see Section 4.3.1).

6.4 Simulation Results

In this simulation study, learning rates α1 and α2 in the weight updation algorithm are

taken to be 0.0001 and the weights are initialized to be random numbers between 0 and 1.

(a) Position trajectories (b) Velocity trajectories (c) Acceleration trajectories

Figure 6.2: x-t trajectories using Proposed Method versus standard polynomial approach
for 4 constraints (x0=2, xp=14, xv1=0, xv2=0)

The results of the proposed FNN method are compared with the standard polynomial

approach for trajectory generation. In the Figures 6.2 and 6.3, there are two trajectories one

is generated by using the proposed FNN method (red curve) and other is generated by using

standard polynomial approach (blue curve) for 4 and 6 conditions respectively. It can be

observed from the Figures 6.2 and 6.3 the trajectories and respective derivative trajectories
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(a) Position trajectories (b) Velocity trajectories (c) Acceleration trajectories

Figure 6.3: x-t trajectories FNN versus standard polynomial approach for 6 constraints
(x0=2, xp=14, xv1=0, xv2=0, ac1 = 4, ac2 = 4)

are continuous and satisfy the given conditions. In the Figure 6.4(a), the blue curve rep-

resent a trajectory using the proposed FNN method for final position xf=16 while the red

curve represents a new trajectory when the final position is changed to xF=18 at time ts=0.4

during tracking. Similarly, in the Figure 6.5(a) blue curve represent a trajectory using cu-

bic polynomial for final position xf=16 while the red curve represents a new trajectory

when the final position is changed to xF=18 at time ts=0.4 during tracking. Figures 6.4(b),

6.5(b) and 6.4(c), 6.5(c) represents the corresponding velocity and acceleration trajectories

respectively (using FNN and WNN). It is worthy to note that the acceleration curve for the

modified trajectory generated by proposed FNN method is smooth while the acceleration

curve for the changed trajectory generated by the cubic polynomial is discontinuous at time

t=0.4.

The parameters used for simulation of the trajectories are given in Table 5.5 of Chapter

5. The position, velocity and acceleration trajectories of the upper body using quantic poly-

nomial approach and using proposed NN approach are shown in Figure 6.6(a) and 6.6(b)

respectively. Figures 6.7(a) and 6.7(b) demonstrate the ZMP curves for the upper body

trajectory using quantic polynomial approach and proposed FNN approach respectively.

From the Figures 6.6 and 6.7, it can be concluded that the ZMP curve using proposed FNN

is under the supporting polygon while it is outside the region at some time points in case of

quantic polynomial.

Torque using PD controller for the polynomial and FNN trajectory for SSP are given in

Figures 6.8(a) and 6.8(b) respectively and convergence of error graphs are given in Figures
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(a) Position trajectories (b) Velocity trajectories (c) Acceleration trajectories

Figure 6.4: If final position changed (using proposed approach)

(a) Position trajectories (b) Velocity trajectories (c) Acceleration trajectories

Figure 6.5: If final position changed (using cubic polynomial approach)

6.9(a) and 6.9(b) respectively, which show that NN joint trajectories required less torque in

compared to the polynomial joint trajectories. Hence, the FNN method is best suitable for

trajectory generation when there are obstacles and ditch in the path of robot and the step

length xf and step height h1 of ankle trajectory will changed to cross them during tracking.

In this simulation, final position is changed from 16 units to 18 units at time ts=0.3 during

the locomotion and the simulation results are shown in Figure 6.10. It took very less time

to adapt the change/to train the weights of N2 because in the learning algorithm the trained

weights for xp=16 are used as initial weights for xP = 18. Similarly, if step height h1
of ankle trajectory is changed from 2 units to 3 units to cross an obstacle at time ts=0.4,

then ankle trajectory can adopt this change only by updating the weights of N7 as shown in

Figure 6.12. In all these cases, ZMP of the biped is in support region (see Figure 6.11 and

6.13). In 3D space, gait of biped robot for two steps is shown in Figure 6.14.
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(a) Using polynomial approach (b) Using FNN approach

Figure 6.6: Upper body trajectory in y-direction

(a) For polynomial upper body trajectory (b) For FNN upper body trajectory

Figure 6.7: ZMP trajectory
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(a) For FNN trajectory (b) For polynomial trajectory

Figure 6.8: Required torque using PD controller for SSP

(a) For FNN trajectory (b) For polynomial trajectory

Figure 6.9: Error convergence using PD controller
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Figure 6.10: Change in ankle trajectory to cross a ditch

Figure 6.11: ZMP for changed trajectory
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Figure 6.12: Change in ankle trajectory to cross an obstacle

Figure 6.13: ZMP for changed trajectory
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Figure 6.14: Biped walk in 3D of two step for NN trajectories
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6.5 Conclusion

For small foot length (5 units), the ZMP curve generated using FNN trajectory is stable

while in case of polynomial approach it is unstable (see figures 6.7(a) and 6.7(b)). Success-

ful obstacles negotiation needs online ankle trajectory regulation during tracking. Although

the proposed ankle trajectory is changed to cross a ditch or obstacle during walk, the ZMP

trajectory is inside the support polygon for these changed trajectories. So, this robot can

cross over obstacles of different heights and cross over a ditch by changing the step height

and step length in ankle trajectory during tracking at any instant of time.
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D11 = (m2(3l
2
1 + 3 cos(θ2)l1l2 + l22))/3 + (m4(3l

2
1 + 6 cos(θ2)l1l2 + 6 cos(θ2 + θ3 + θ4)l1l2

+ 3 cos(θ2 + θ3 + θ4 + θ5)l1l1 + 3l22 + 6 cos(θ3 + θ4)l2l2 + 3 cos(θ2 + θ3 + θ4)l2l1 + 3l22

+ 3 cos(θ5)l2l1 + l21))/3 + (m3(3l
2
1 + 6 cos(θ2)l1l2 + 3 cos(θ2 + θ3 + θ4)l1l2 + 3l22

+ 3 cos(θ3 + θ4)l2l2 + l22))/3 + (m0 +m5)(l
2
1 + 2 cos(θ2)l1l2 + l22) + (l21m1)/3;

D21 = (m4(6l
2
2 + 12 cos(θ3 + θ4)l2l2 + 6 cos(θ3 + θ4 + θ5)l2l1 + 6l1 cos(θ2)l2 + 6l22

+ 6 cos(θ5)l2l1 + 6l1 cos(θ2 + θ3 + θ4)l2 + 2l21 + 3l1 cos(θ2 + θ3 + θ4 + θ5)l1))/6

+ (m3(6l
2
2 + 6 cos(θ3 + θ4)l2l2 + 6l1 cos(θ2)l2

+ 2l22 + 3l1 cos(θ2 + θ3 + θ4)l2))/6− (l21m1)/6

+ l2(m0 +m5)(l2 + l1 cos(θ2)) + (l2m2(2l2 + 3l1 cos(θ2)))/6;

D31 = (m4(6l
2
2 + 2l21 + 6l2l1 cos(θ5) + 6l1l2 cos(θ2 + θ3 + θ4) + 3l2l1 cos(θ3 + θ4 + θ5)

+ 3l1l1 cos(θ2 + θ3 + θ4 + θ5) + 6l2l2 cos(θ3 + θ4)))/6 + (l2m3(2l2 + 3l2 cos(θ3 + θ4)

+ 3l1 cos(θ2 + θ3 + θ4)))/6− (l2m2(l2 + 3l1 cos(θ2)))/6;

D41 = (m4(6l
2
2 + 2l21 + 6l2l1 cos(θ5) + 6l1l2 cos(θ2 + θ3 + θ4) + 3l2l1 cos(θ3 + θ4 + θ5)

+ 3l1l1 cos(θ2 + θ3 + θ4 + θ5) + 6l2l2 cos(θ3 + θ4)))/6 + (l2m3(2l2 + 3l2 cos(θ3 + θ4)

+ 3l1 cos(θ2 + θ3 + θ4)))/6;

D51 = (l1m4(2l1 + 3l1 cos(θ2 + θ3 + θ4 + θ5) + 3l2 cos(θ5) + 3l2 cos(θ3 + θ4 + θ5)))/6;

D22 = (m4(3l
2
2 + 6 cos(θ3 + θ4)l2l2 + 3 cos(θ3 + θ4 + θ5)l2l1 + 3l22 + 3 cos(θ5)l2l1 + l21))/3

+ l22(m0 +m5) + (l21m1)/3 + (l22m2)/3 + (m3(3l
2
2 + 3 cos(θ3 + θ4)l2l2 + l22))/3;

D32 = (m4(6l
2
2 + 6 cos(θ5)l2l1 + 6l2 cos(θ3 + θ4)l2 + 2l21 + 3l2 cos(θ3 + θ4 + θ5)l1))/6

− (l22m2)/6 + (l2m3(2l2 + 3l2 cos(θ3 + θ4)))/6;

D42 = (m4(6l
2
2 + 6 cos(θ5)l2l1 + 6l2 cos(θ3 + θ4)l2 + 2l21

+ 3l2 cos(θ3 + θ4 + θ5)l1))/6 + (l2m3(2l2 + 3l2 cos(θ3 + θ4)))/6;

D52 = (l1m4(2l1 + 3l2 cos(θ5) + 3l2 cos(θ3 + θ4 + θ5)))/6;

D33 = (m4(3l
2
2 + 3 cos(θ5)l2l1 + l21))/3 + (l22m2)/3 + (l22m3)/3;

D43 = (m4(3l
2
2 + 3 cos(θ5)l2l1 + l21))/3 + (l22m3)/3;
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D53 = (l1m4(2l1 + 3l2 cos(θ5)))/6;

D44 = (m4(3l
2
2 + 3 cos(θ5)l2l1 + l21))/3 + (l22m3)/3;

D54 = (l1m4(2l1 + 3l2 cos(θ5)))/6;

D55 = (l21m4)/3;

C1 = −θ̇1(θ̇3((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3

+ θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)− (l1l2m2 sin(θ2))/2 + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇2((l1m3(2l2 sin(θ2) + l2 sin(θ2 + θ3 + θ4)))/2

+ (l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + 2l2 sin(θ2) + 2l2 sin(θ2 + θ3 + θ4)))/2

+ l1l2 sin(θ2)(m0 +m5) + (l1l2m2 sin(θ2))/2) + θ̇4((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)

+ l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2) + (θ̇5l1m4(l1 sin(θ2 + θ3

+ θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)− θ̇3(θ̇1((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)

− (l1l2m2 sin(θ2))/2 + l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2)

+ θ̇2((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2

+ l2l2m4 sin(θ3 + θ4)− (l1l2m2 sin(θ2))/2 + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇3((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2

+ (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)− (l1l2m2 sin(θ2))/2

+ l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇4((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)

+ l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2) + (θ̇5l1m4(l1 sin(θ2

+ θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)− θ̇2(θ̇3((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2

+ l2l2m4 sin(θ3 + θ4)− (l1l2m2 sin(θ2))/2 + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇1((l1m3(2l2 sin(θ2) + l2 sin(θ2 + θ3 + θ4)))/2

+ (l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + 2l2 sin(θ2) + 2l2 sin(θ2 + θ3 + θ4)))/2 + l1l2 sin(θ2)

(m0 +m5) + (l1l2m2 sin(θ2))/2) + θ̇2((l1m3(2l2 sin(θ2) + l2 sin(θ2 + θ3 + θ4)))/2
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+ (l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + 2l2 sin(θ2) + 2l2 sin(θ2 + θ3 + θ4)))/2 + l1l2 sin(θ2)

(m0 +m5) + (l1l2m2 sin(θ2))/2) + θ̇4((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2

+ (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4) + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + (θ̇5l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + l2 sin(θ5)

+ l2 sin(θ3 + θ4 + θ5)))/2)− θ̇5((θ̇1l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3

+ θ4 + θ5)))/2 + (θ̇2l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2

+ (θ̇3l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇4l1m4(l1 sin(θ2

+ θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇5l1m4(l1 sin(θ2

+ θ3 + θ4 + θ5) + l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)− θ̇4(θ̇1((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4)

+ l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇2((l2m3(l2 sin(θ3 + θ4)

+ l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2l2l2m4 sin(θ3 + θ4) + l1l2m4 sin(θ2

+ θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇3((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2

+ (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4) + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇4((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2

+ (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2 + l2l2m4 sin(θ3 + θ4) + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + (θ̇5l1m4(l1 sin(θ2 + θ3 + θ4 + θ5) + l2 sin(θ5)

+ l2 sin(θ3 + θ4 + θ5)))/2);

C2 = −θ̇2(θ̇3((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇4((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ (θ̇5l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)− θ̇5((θ̇1l1m4(l2 sin(θ5)

+ l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇2l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2

+ (θ̇3l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇4l1m4(l2 sin(θ5)

+ l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇5l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)

− θ̇1(θ̇3((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇4((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)
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− θ̇1((l1m3(2l2 sin(θ2) + l2 sin(θ2 + θ3 + θ4)))/2 + (l1m4(l1 sin(θ2 + θ3 + θ4 + θ5)

+ 2l2 sin(θ2) + 2l2 sin(θ2 + θ3 + θ4)))/2 + l1l2 sin(θ2)(m0 +m5)

+ (l1l2m2 sin(θ2))/2) + (θ̇5l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)

− θ̇3(θ̇1((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇2((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇3((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇4((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ (θ̇5l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2)

− θ̇4(θ̇1((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇2((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇3((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇4((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ (θ̇5l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2);

C3 = θ̇1(θ̇1((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4

+ θ5))/2 + l2l2m4 sin(θ3 + θ4)− (l1l2m2 sin(θ2))/2 + l1l2m4 sin(θ2 + θ3 + θ4)

+ (l2l1m4 sin(θ3 + θ4 + θ5))/2) + θ̇2((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2

+ (l2l2m3 sin(θ3 + θ4))/2)− (θ̇5l2l1m4 sin(θ5))/2) + θ̇2(θ̇1((l2m4(2l2 sin(θ3 + θ4)

+ l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2) + θ̇2((l2m4(2l2 sin(θ3 + θ4)

+ l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)− (θ̇5l2l1m4 sin(θ5))/2)

− θ̇5((θ̇1l2l1m4 sin(θ5))/2 + (θ̇2l2l1m4 sin(θ5))/2 + (θ̇3l2l1m4 sin(θ5))/2

+ (θ̇4l2l1m4 sin(θ5))/2 + (θ̇5l2l1m4 sin(θ5))/2)− (θ̇3θ̇5l2l1m4 sin(θ5))/2

− (θ̇4θ̇5l2l1m4 sin(θ5))/2;

C4 = θ̇1(θ̇2((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2 + (l2l2m3 sin(θ3 + θ4))/2)

+ θ̇1((l2m3(l2 sin(θ3 + θ4) + l1 sin(θ2 + θ3 + θ4)))/2 + (l1l1m4 sin(θ2 + θ3 + θ4 + θ5))/2

+ l2l2m4 sin(θ3 + θ4) + l1l2m4 sin(θ2 + θ3 + θ4) + (l2l1m4 sin(θ3 + θ4 + θ5))/2)
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− (θ̇5l2l1m4 sin(θ5))/2) + θ̇2(θ̇1((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2

+ (l2l2m3 sin(θ3 + θ4))/2) + θ̇2((l2m4(2l2 sin(θ3 + θ4) + l1 sin(θ3 + θ4 + θ5)))/2

+ (l2l2m3 sin(θ3 + θ4))/2)− (θ̇5l2l1m4 sin(θ5))/2)− θ̇5((θ̇1l2l1m4 sin(θ5))/2

+ (θ̇2l2l1m4 sin(θ5))/2 + (θ̇3l2l1m4 sin(θ5))/2 + (θ̇4l2l1m4 sin(θ5))/2

+ (θ̇5l2l1m4 sin(θ5))/2)− (θ̇3θ̇5l2l1m4 sin(θ5))/2− (θ̇4θ̇5l2l1m4 sin(θ5))/2;

C5 = θ̇1((θ̇2l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇1l1m4(l1 sin(θ2 + θ3 + θ4 + θ5)

+ l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇3l2l1m4 sin(θ5))/2 + (θ̇4l2l1m4 sin(θ5))/2)

+ θ̇3((θ̇1l2l1m4 sin(θ5))/2 + (θ̇2l2l1m4 sin(θ5))/2 + (θ̇3l2l1m4 sin(θ5))/2 + (θ̇4l2l1m4 sin(θ5))/2)

+ θ̇4((θ̇1l2l1m4 sin(θ5))/2 + (θ̇2l2l1m4 sin(θ5))/2 + (θ̇3l2l1m4 sin(θ5))/2 + (θ̇4l2l1m4 sin(θ5))/2)

+ θ̇2((θ̇1l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2 + (θ̇2l1m4(l2 sin(θ5) + l2 sin(θ3 + θ4 + θ5)))/2

+ (θ̇3l2l1m4 sin(θ5))/2 + (θ̇4l2l1m4 sin(θ5))/2);

G1 = (gl2m3 cos(θ1 + θ2 + θ3 + θ4))/2− g(m0 +m5)(l2 cos(θ1 + θ2) + l1 cos(θ1))

− gm2(l2 cos(θ1 + θ2) + l1 cos(θ1))− gm3(l2 cos(θ1 + θ2 + θ3 + θ4) + l2 cos(θ1

+ θ2) + l1 cos(θ1))− gm4(l2 cos(θ1 + θ2 + θ3 + θ4) + l2 cos(θ1 + θ2) + l1 cos(θ1

+ θ2 + θ3 + θ4 + θ5) + l1 cos(θ1)) + (gl2m2 cos(θ1 + θ2))/2

+ (gl1m4 cos(θ1 + θ2 + θ3 + θ4 + θ5))/2− (gl1m1 cos(θ1))/2;

G2 = (gl2m3 cos(θ1 + θ2 + θ3 + θ4))/2− gm4(l2 cos(θ1 + θ2 + θ3 + θ4) + l2 cos(θ1 + θ2)

+ l1 cos(θ1 + θ2 + θ3 + θ4 + θ5))− gm3(l2 cos(θ1 + θ2 + θ3 + θ4) + l2 cos(θ1 + θ2))

− (gl2m2 cos(θ1 + θ2))/2 + (gl1m4 cos(θ1 + θ2 + θ3 + θ4 + θ5))/2

− gl2 cos(θ1 + θ2)(m0 +m5);

G3 = (gl1m4 cos(θ1 + θ2 + θ3 + θ4 + θ5))/2− (gl2m3 cos(θ1 + θ2 + θ3 + θ4))/2

− gm4(l2 cos(θ1 + θ2 + θ3 + θ4) + l1 cos(θ1 + θ2 + θ3 + θ4 + θ5));

G4 = (gl1m4 cos(θ1 + θ2 + θ3 + θ4 + θ5))/2− (gl2m3 cos(θ1 + θ2 + θ3 + θ4))/2

− gm4(l2 cos(θ1 + θ2 + θ3 + θ4) + l1 cos(θ1 + θ2 + θ3 + θ4 + θ5));

G5 = −(gl1m4 cos(θ1 + θ2 + θ3 + θ4 + θ5))/2;

110



Chapter 7: Conclusions and Future Scope

7.1 Conclusions

In this thesis, some flat footed and toe footed biped robot models are considered for

stable human like gait while walking on plane and uneven surfaces. The joint trajectories

are designed such that the ZMP lies in the support region with largest stability margin.

These trajectories can be modified according to the obstacles and ditch in the path. In the

proposed walking patterns, the robot can walk at low and medium walking speeds. In the

following lines, chapterwise conclusions are discussed in brief:

In Chapter 3, trajectories are generated by using polynomial approach for upper body,

ankle and hip joints of flat footed robot. Three types of upper body trajectories are gener-

ated and their effects are analyzed on the ZMP stability with suitable boundary conditions.

Simulation results show that Case-3 of upper body trajectory ensures the ZMP stability

with largest stability margin. Inverse kinematics of these trajectories are calculated by

using FNN.

In Chapter 4, three types of ankle trajectories are considered for smooth transition be-

tween the walking phases(SSP to DSP) along with three cases of lateral upper body motion,

to analyze their effect on ZMP stability. Movements at ankle and hip joints are added to re-

alize human like walk. The simulation results show that Case-1 of upper body motion with

quantic polynomial ankle trajectory with optimum parameters is more suitable for ZMP

stability with largest stability margin. So it can be concluded that upper body mass should

be shifted from swing foot to stable foot during DSP for the proposed model. Simulation

results show that this model can walk on plane and uneven surfaces.

In Chapter 5, FNN and WNN approaches are proposed for trajectory generation and

have been illustrated for 4 and 6 constraints was carried out using Matlab2014b results were
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compared using Matlab2014b. The trajectories generated by using proposed approaches

can be modified at any instant during tracking. Further, these approaches are used to gen-

erate trajectories of the upper body, foot and hip for human like walk of flat footed biped

robot model. The simulated results show that WNN has 3 times faster convergence in com-

parison with FNN. However, FNN generates more smooth trajectories which is required

for stable biped robot walk. However, WNN approach can be applied to generate ankle

trajectory for a robot model with increased foot size as stability is not a big issue in that

case.

In Chapter 6, the dynamic equation is derived for a 5 DOF flat footed biped robot

model. The FNN method proposed in Chapter 5 is adopted for gait generation and results

are compared with the standard polynomial approach. FNN approach is more suitable for

small foot length as compared to polynomial approach. Furthermore, this approach can

adapt the changes in constraints according to uncertain environment/terrain (obstacles and

ditch) and modify the trajectory accordingly during tracking. The ZMP is inside the support

polygon for modified ankle trajectories also. Hence, this robot can cross over the obstacles

and ditch during tracking by changing the step length and step height.

7.2 Future Scope

Although the proposed models can perform walking satisfactorily, there are some limi-

tation in this work. However, to walk on stairs, decline surface, step over an large obstacles,

biped models with higher DOF are essential. The proposed FNN and WNN approaches can

be implemented on the higher degree models for more adaptable walk on different surfaces.

Further, the PD controller is used to control the proposed gaits for biped robot whose effi-

ciency decreases when there is a disturbance, so suitable controller can be developed and

energy optimization can be considered.
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