
 

DIRECT AND INVERSE PROBLEMS FOR CERTAIN 

SUMSETS IN ADDITIVE NUMBER THEORY 

 

  

 

 
 

Ph.D. THESIS 

 

 

 

 

 

 

by 

 

 

 

 

 

 

JAGANNATH BHANJA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF MATHEMATICS 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE – 247 667 (INDIA) 

APRIL, 2019 



 

DIRECT AND INVERSE PROBLEMS FOR CERTAIN  

SUMSETS IN ADDITIVE NUMBER THEORY 

 

 

 

A THESIS 

 

 

Submitted in partial fulfilment of the 

requirements for the award of the degree 

 

of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

in 

 

 

MATHEMATICS 

 

 

by 

 

 

JAGANNATH BHANJA 

 

 

 
 

 

 

 

 

 
 

DEPARTMENT OF MATHEMATICS 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE – 247 667 (INDIA) 

APRIL, 2019 



 

 

 

 

 

 

 

 

 

 

 

 

 

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2019 

ALL RIGHTS RESERVED 



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE 
 

 

 

CANDIDATE’S DECLARATION 

 
 

I hereby certify that the work which is being presented in the thesis entitled “DIRECT AND 

INVERSE PROBLEMS FOR CERTAIN SUMSETS IN ADDITIVE NUMBER 

THEORY” in partial fulfilment of the requirements for the award of the Degree of Doctor of 

Philosophy and submitted in the Department of Mathematics of the Indian Institute of 

Technology Roorkee, Roorkee is an authentic record of my own work carried out during a 

period from July, 2014 to April, 2019 under the supervision of Dr. Ram Krishna Pandey, 

Assistant Professor, Department of Mathematics, Indian Institute of Technology Roorkee, 

Roorkee. 

The matter presented in this thesis has not been submitted by me for the award of any 

other degree of this or any other Institution. 

 

 

 

         (JAGANNATH BHANJA) 

 

This is to certify that the above statement made by the candidate is correct to the best 

of my knowledge.  

 

 

 

(Ram Krishna Pandey) 

                                                                                      Supervisor 

 

Date:  

 



 

 

 

 

 

 

Dedicated 

to 

My Parents 





Abstract

The present thesis deals with the study of direct and inverse problems for certain sumsets in

additive number theory. Let A and B be two nonempty finite sets of integers. Let h and r be two

positive integers. The first sumset considered is the sumset of the form A+ r ·B, called the sum

of dilates of the sets A and B. The second sumset considered is the h-fold generalized sumset

h(γ)A with γ ≥ 1 an integer, which is a generalization of the h-fold sumset hA and the h-fold

restricted sumset h∧A. The third sumset considered is the h-fold signed sumset h±A. The fourth

sumset considered is the h-fold restricted signed sumset h∧±A. The last sumset considered are

the subset and subsequence sums, where the subset sums are actually the unions of restricted

sumsets and the subsequence sums are the unions of generalized sumsets.

The sumset A+ r ·B := {a+ rb : a ∈ A,b ∈ B} is called the sum of dilates of A and B. For

r = 1, the sum of dilates A+ r ·B coincides with the Minkowski sumset A+B := {a+ b : a ∈

A,b ∈ B}. The direct problem for the sum of dilates A+ r ·B is to find the minimum number of

elements in A+ r ·B in terms of number of elements in the sets A and B. The inverse problem

for A+ r ·B is to find the structure of the finite sets A and B for which |A+ r ·B| is minimal. In

this thesis, we solve both direct and inverse problems for A+ r ·B.

Let A = {a0,a1, . . . ,ak−1} be a nonempty finite set of integers. The h-fold sumset hA is the

set of all sums of h elements of A, and the h-fold restricted sumset h∧A is the set of all sums of

h distinct elements of A. More precisely,

hA :=

{
k−1

∑
i=0

λiai : λi ∈ N for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

and

h∧A :=

{
k−1

∑
i=0

λiai : λi ∈ {0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

where N denotes the set of nonnegative integers, and 1≤ h≤ k in case of h∧A.

i
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We define the h-fold signed sumset of A, denoted by h±A, by

h±A :=

{
k−1

∑
i=0

λiai : λi ∈ Z for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
.

We also define the h-fold restricted signed sumset of A, denoted by h∧±A, by

h∧±A :=

{
k−1

∑
i=0

λiai : λi ∈ {−1,0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
,

where 1≤ h≤ k.

The direct problem for the sumset h±A (similarly for h∧±A) is to find the minimum number of

elements in h±A (respectively, h∧±A) in terms of number of elements in A. The inverse problem

for h±A (similarly for h∧±A) is to determine the structure of the finite set A for which |h±A|

(respectively, |h∧±A|) is minimal. In this thesis, we study the direct and inverse problems for

both the sumsets h±A and h∧±A.

In the next part of the thesis, we consider the following generalized sumset. As the name sug-

gests, this sumset generalizes both regular sumset hA and restricted sumset h∧A. For a nonempty

finite set A of k integers, and for positive integers h, γ with 1≤ γ ≤ h≤ kγ , the h-fold generalized

sumset h(γ)A is defined by

h(γ)A :=

{
k−1

∑
i=0

λiai : λi ∈ {0,1, . . . ,γ} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
.

Clearly, the h-fold sumset hA and the h-fold restricted sumset h∧A are particular cases of the

h-fold generalized sumset h(γ)A for γ = h and γ = 1, respectively.

Let A = {0,1, . . . ,k− 2,k− 1+ b}, where b is a nonnegative integer. We investigate the

behaviour of |h(γ)A| with respect to b, by finding the exact cardinality of h(γ)A.

Let A be a nonempty finite set of k integers. Given a subset B of A, the sum of all elements

of B is called the subset sum of B. Let S(A) be the set of all subset sums of A. The subsequence

sum of a given sequence A of integers is defined in a similar way.

We consider the following subset and subsequence sums with some restriction on the number

of elements of the set A (or sequence A ). For a nonnegative integer α (≤ k), we define Sα(A)

to be the set of subset sums of all subsets of A that are of the size at least α . More precisely,

Sα(A) :=

{
∑
b∈B

b : B⊂ A, |B| ≥ α

}
.
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Similarly, for a nonempty sequence A = (a0, . . . ,a0︸ ︷︷ ︸
r copies

,a1, . . . ,a1︸ ︷︷ ︸
r copies

, . . . ,ak−1, . . . ,ak−1︸ ︷︷ ︸
r copies

) of k distinct

integers each repeating exactly r (≥ 1) times, and for a nonnegative integer α (≤ rk), we define

Sα(r,A ) to be the set of subsequence sums of all subsequences of A that are of the size at least

α . More precisely,

Sα(r,A ) :=

{
∑

b∈B
b : B is a subsequence of A with |B| ≥ α

}
,

where |B| is the number of terms in the subsequence B.

We find the minimum cardinality of the set of subset sums Sα(A) and the set of subsequence

sums Sα(r,A ). We also find the structure of the finite set A (or sequence A ) of integers for

which |Sα(A)| (or |Sα(r,A )|) is minimal.
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Chapter 1

Introduction

1.1 Basic definitions

Additive number theory is primarily the study of sumsets of subsets of additive abelian groups.

An additive abelian group is a commutative group under addition. Let G be an additive abelian

group. Let h ≥ 2 be an integer. Let A1,A2, . . . ,Ah be nonempty subsets of G. The Minkowski

sumset or the regular sumset or simply, the sumset A1 +A2 + · · ·+Ah is defined by A1 +A2 +

· · ·+ Ah := {a1 + a2 + · · ·+ ah : ai ∈ Ai for i = 1,2, . . . ,h}. Similarly, the restricted sum-

set A1+̂A2+̂ · · ·+̂Ah is defined by A1+̂A2+̂ · · ·+̂Ah := {a1 + a2 + · · ·+ ah : ai ∈ Ai for i =

1,2, . . . ,h, and ai 6= a j for i 6= j}. If Ai = A for i = 1,2, . . . ,h, then the sumset A1+A2+ · · ·+Ah

is denoted by hA and the restricted sumset A1+̂A2+̂ · · ·+̂Ah is denoted by h∧A. Thus, the h-fold

sumset hA is the set of all sums of h elements of A, and the h-fold restricted sumset h∧A is the

set of all sums of h distinct elements of A.

Let A = {a0,a1, . . . ,ak−1} be a nonempty subset of G. Let h and γ be positive integers

such that 1 ≤ γ ≤ h ≤ kγ . Observe that, in the sumset hA an element of the set A appearing in

a h-fold sum may be repeated at most h times, while in the sumset h∧A an element of the set A

may repeat at most once. Consider the following sumset, that generalizes both regular sumset

and restricted sumset. The h-fold generalized sumset, denoted by h(γ)A is defined by

h(γ)A :=

{
k−1

∑
i=0

λiai : 0≤ λi ≤ γ for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
.

So, the h-fold generalized sumset h(γ)A is the set of all sums of h elements of A, where each

1
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element appearing in a h-fold sum may be repeated at most γ times. Therefore, hA and h∧A are

particular cases of h(γ)A for γ = h and γ = 1, respectively.

Let h≥ 2, and let A1,A2, . . . ,Ah be nonempty subsets of G. Let α1,α2, . . . ,αh be positive

integers. The sumset α1 ·A1+α2 ·A2+ · · ·+αh ·Ah := {α1a1+α2a2+ · · ·+αhah : ai ∈ Ai for i =

1,2, . . . ,h} is called the sum of dilates of the sets A1,A2, . . . ,Ah. Clearly, if αi = 1 for i =

1,2, . . . ,h, then the sum of dilates α1 ·A1 +α2 ·A2 + · · ·+αh ·Ah coincides with the Minkowski

sumset A1 +A2 + · · ·+Ah.

There are some other special type of sumsets, for example, subset sums and subsequence

sums. These sumsets are defined as follows. Let A be a nonempty finite subset of G. Given a

subset B of A, the sum of all elements of B is called the subset sum of B. The set of all subset

sums of A is defined by

S(A) :=

{
∑
b∈B

b : B⊂ A

}
,

where s( /0) = 0.

The subsequence sum of a given sequence of elements of G is defined in a similar way.

Let A = (a0, . . . ,a0︸ ︷︷ ︸
r0 copies

,a1, . . . ,a1︸ ︷︷ ︸
r1 copies

, . . . ,ak−1, . . . ,ak−1︸ ︷︷ ︸
rk−1 copies

) be a nonempty sequence in G with k distinct

elements, where ri ≥ 1 for i = 0,1, . . . ,k−1. Given a subsequence B of A , the sum of all terms

of B is called the subsequence sum of B. The set of all subsequence sums of A is defined by

S(r̄,A ) :=

{
∑

b∈B
b : B is a subsequence of A

}
,

where r̄ = (r0,r1, . . . ,rk−1).

Two main problems associated with these sumsets are the direct and inverse problems.

A direct problem is a problem where we have the information about the set(s) or sequence(s)

and we try to describe the sumset. An example of a direct theorem is Lagrange’s four-square

theorem, which states that “every nonnegative integer can be written as the sum of four squares”.

Thus, if A is the set of all nonnegative squares, then the sumset 4A is the set of all nonnegative

integers. An inverse problem is a problem where we have the information about the sumset, from

which we try to determine the structure and the properties of the underlying set(s) or sequence(s).

An example of an inverse theorem is “if A is a nonempty finite set of k integers such that the

2-fold sumset 2A contains exactly 2k−1 integers, then A is an arithmetic progression”.
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1.2 Motivation and objectives

Let r ≥ 1 be an integer. Let A and B be nonempty finite sets of integers. The sumset A+ r ·B :=

{a+ rb : a ∈ A,b ∈ B} is called the sum of dilates of A and B. If r = 1, then the sum of dilates

A+ r ·B coincides with the Minkowski sumset A+B. For B = A we have A+ r ·A ⊂ A+ rA =

(r + 1)A. Moreover, if A is an arithmetic progression with |A| ≥ r, then A+ r ·A = (r + 1)A.

Further, inverse results for sums of dilates in integers have a natural connection with inverse

results in noncommutative groups such as the Baumslag–Solitar group BS(1,n) := 〈a,b : ab =

ban〉 (see [39, 40]). So, it is a natural problem to find the minimum cardinality of the sum of

dilates A+ r ·B in terms of cardinalities of A and B. It is also equally important to describe

the sets A and B for which the minimum cardinality of A+ r ·B is achieved. In fact, several

results about the minimum cardinality of the sum of dilates and its inverse that if the minimum

cardinality is achieved, then the characterization of individual sets have been obtained by now.

For example, for r = 1,2,3 the direct and inverse problems for A+ r ·A are completely settled

(see [27, 39, 82]). We study similar direct and inverse problems for the sum of dilates A+ r ·B

in Chapter 2.

Let h≥ 1, and let A = {a0,a1, . . . ,ak−1} be a finite subset of an additive abelian group G.

The h-fold sumset hA and the h-fold restricted sumset h∧A respectively, are

hA :=

{
k−1

∑
i=0

λiai : λi ∈ N for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

and

h∧A :=

{
k−1

∑
i=0

λiai : λi ∈ {0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

where N= {0,1,2, . . .}, and 1≤ h≤ k in case of h∧A.

Observe that, in the sumsets hA and h∧A the variables λi only assume nonnegative integer

values. On the other hand, we define the following h-fold sumset in which λi may take negative

integer values. Define the h-fold signed sumset of A, denoted by h±A, by

h±A :=

{
k−1

∑
i=0

λiai : λi ∈ Z for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
.

Clearly, hA∪ h(−A) ⊂ h±A ⊂ h(A∪−A). Thus, if A is a symmetric set, i.e., for all a ∈ A,

−a∈ A, then h±A = hA. Further, the signed sumset have a connection with some other problems
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in number theory, such as the “independence number” of a subset A of a group G (see [11]), and

the “diameter” of G with respect to the subset A (see [63, 64]). So, it is natural to find the

minimum cardinality of h±A in terms of cardinality of A, and to classify the underlying sets

for which the minimum cardinality of h±A is achieved. Recently, Bajnok and Matzke [9, 10]

have studied the direct and inverse problems for h±A in some finite abelian groups. Inspired by

Bajnok and Matzke’s results, we study both direct and inverse problems for h±A in the group of

integers in Chapter 3.

Motivated by this signed sumset h±A, we further define the h-fold restricted signed sumset

of A, denoted by h∧±A, by

h∧±A :=

{
k−1

∑
i=0

λiai : λi ∈ {−1,0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
,

where 1 ≤ h ≤ k. Similar to the signed sumset h±A, we study the direct and inverse problems

for h∧±A in the group of integers in Chapter 4.

Let A be a nonempty finite set of k integers. Let h, γ be positive integers such that 1 ≤

γ ≤ h ≤ kγ . Let m = bh/γc. Finding the exact cardinality of h-fold sumsets hA, h∧A and h(γ)A

of a given set A is a difficult problem. But, it may be comparatively easy to find the exact

cardinality of these sumsets in some special cases. For example, if A = {0,1, . . . ,k− 1}, then

hA = {0,1, . . . ,h(k− 1)}, h∧A = {h(h−1)
2 , h(h−1)

2 + 1, . . . ,hk− h(h+1)
2 }, and h(γ)A = {mγ(m−1)

2 +

(h−mγ)m, mγ(m−1)
2 +(h−mγ)m+1, . . . ,mkγ− mγ(m+1)

2 +(h−mγ)(k−m−1)}. Hence, |hA|=

hk−h+1, |h∧A|= hk−h2 +1, and |h(γ)A|= mγ(k−m)+(h−mγ)(k−2m−1)+1. In 1996,

Nathanson [81] proved that, “if A = {0,1, . . . ,k−2,k−1+b}, where b is a nonnegative integer,

then |hA| is a strictly increasing piecewise-linear function of b for 0 ≤ b ≤ (h− 1)(k− 2) and

that |hA| is constant for b≥ (h−1)(k−2)”. It is natural to derive a Nathanson’s type theorems

for the restricted sumset h∧A and the generalized sumset h(γ)A too. We study these problems in

Chapter 5.

The subset and subsequence sums are fundamental in additive number theory, in partic-

ular, in the study of the zero-sum constants, such as Noether number, Davenport constant and

some variations of these constants [1, 2, 3, 4, 5, 6, 13, 14, 16, 17, 18, 28, 36, 41, 42, 43, 55, 83,

93]. It is necessary to bound the subset and subsequence sums in order to ensure the existence of

a nontrivial zero-subset sum or nontrivial zero-subsequence sum of a set (or sequence). In these

problems, apart from the regular subset and subsequence sums, the subset and subsequence
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sums with some restriction on the number of elements have been appeared several times (see

[20, 44, 45, 46, 49, 50, 54]). Very recently, Balandraud [12] have studied similar subset sums

and obtained the minimum cardinality of these subset sums in finite fields. This motivates us to

study the following subset sums, as that considered by Balandraud, in the group of integers.

Let A be a nonempty set of k integers. For a nonnegative integer α (≤ k), let Sα(A) be the

set of subset sums of all subsets of A that are of the size at least α . More precisely,

Sα(A) :=

{
∑
b∈B

b : B⊂ A, |B| ≥ α

}
,

Clearly, Sα(A) ⊂ S(A). Moreover, Sα(A) may be considered as a generalization of the usual

subset sums S(A), as for α = 0, we have Sα(A) = S(A). Therefore, it makes sense to study both

direct and inverse problems for Sα(A).

Since a finite set is a particular case of a finite sequence, the subset sum problems may

be viewed as a particular case of the subsequence sum problems. This motivates us to study the

analogues subsequence sums of the subset sums Sα(A). We study these subset and subsequence

sum problems in Chapter 6.

1.3 Notation

Throughout the thesis, we follow the following notation. Let N = {0,1,2, . . .}. For a finite set

S, let |S| be the number of elements in S. Let S̄ denote the complement of S in G. For an integer

c, let c · S = {cs : s ∈ S}, c+ S = {c+ s : s ∈ S} and c− S = {c− s : s ∈ S}. We say that the

set S is symmetric, if for all s ∈ S, −s ∈ S. For a real number x, we use the standard notation

bxc for the greatest integer less than or equal to x, and dxe for the smallest integer greater than

or equal to x. We also agree with the convention that
(a

b

)
= 0, if a and b are two nonnegative

integers with a < b. For any two integers a, b (b ≥ a), we let the interval of integers [a,b] =

(a,a+1, . . . ,b). For a nonempty set A= {a0,a1, . . . ,ak−1} of integers with a0 < a1 < · · ·< ak−1,

we let d(A) := gcd(a1−a0,a2−a0, . . . ,ak−1−a0), `(A) := max(A)−min(A), the length of A,

and hA := `(A)+1−|A| the number of holes in A.

Let A = (a0, . . . ,a0︸ ︷︷ ︸
r0 copies

,a1, . . . ,a1︸ ︷︷ ︸
r1 copies

, . . . ,ak−1, . . . ,ak−1︸ ︷︷ ︸
rk−1 copies

) be a nonempty sequence in G with k

distinct elements, where ri ≥ 1 for i = 0,1, . . . ,k−1. We denote this sequence alternatively by
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A = (a0,a1, . . . ,ak−1)r̄, where r̄ = (r0,r1, . . . ,rk−1) be the ordered k-tuple. For a positive integer

c and for a sequence A = (a0,a1, . . . ,ak−1)r̄, we let

c ·A = (ca0,ca1, . . . ,cak−1)r̄.

For integers a, b (b≥ a), we let the sequence interval [a,b]r̄ to be the sequence (a,a+1, . . . ,b)r̄.

Some other specific notation are introduced at appropriate places.

1.4 Some preliminary results

The direct and inverse problems for the sumsets (mentioned in section 1.1 and 1.2) are exten-

sively studied in the past. The first result in this direction dates back to 1813, and is due to

Cauchy [24]. But, the result of Cauchy was not familiar to the mathematical community, until

Davenport [29] rediscovered Cauchy’s result in 1935 (see also [30]). Then, it started getting at-

tention of several mathematicians, who are mainly responsible for developing the subject called

Additive number theory, includes Chowla [25], Kneser [65], Vosper [105], Erdös [37], Heil-

bronn [37], Mann [73, 74], Freiman [38], Kemperman [62], Szemerédy [98, 99], Dias da Silva

[32], Hamidoune [32], Lev [67, 71], Alon [7, 8], Nathanson [81], Ruzsa [7, 8], and many others.

Most of these classical results may be found in the text books of Nathanson [81] and Mann [74].

Freiman’s monograph [38] provides a structural approach to these problems in additive number

theory. Tao and Vu’s [100] book Additive Combinatorics provides analytical aspects of these

problems. While these books are mainly responsible to popularize the subject of additive num-

ber theory, there are other books of Geroldinger and Halter-Koch [47], Geroldinger and Ruzsa

[48], Grynkiewicz [51], Halberstam and Roth [52], which are also equally informative for this

subject. In the last few decades, there have been remarkable progress in the subject of additive

number theory. Now, it is one of the active area of research. Bellow, we discuss some direct and

inverse results in additive number theory related to our work in the present thesis.

1.4.1 Direct and inverse results for Minkowski sumset

The direct problem for the h-fold sumset hA is to find the minimum number of elements in

hA in terms of number of elements in A. The inverse problem for hA is to find the structure

of the finite set A for which |hA| is minimal. The direct and inverse problems for the sumset
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A1 +A2 + · · ·+Ah are defined in a similar way. The following direct theorem is for the sumset

hA, when A is a finite set of integers.

Theorem 1.4.1. [81, Theorem 1.3] Let h ≥ 1, and let A be a nonempty finite set of integers.

Then

|hA| ≥ h|A|−h+1.

This theorem is a particular case of the following direct theorem for the sumset A1+A2+

· · ·+Ah.

Theorem 1.4.2. [81, Theorem 1.4] Let h ≥ 1, and let A1,A2, . . . ,Ah be nonempty finite sets of

integers. Then

|A1 +A2 + · · ·+Ah| ≥ |A1|+ |A2|+ · · ·+ |Ah|−h+1.

The next theorem is an inverse theorem for hA in the group of integers.

Theorem 1.4.3. [81, Theorem 1.6] Let h ≥ 2. Let A be a nonempty finite set of integers such

that

|hA|= h|A|−h+1.

Then A is an arithmetic progression.

This theorem is a particular case of the following inverse theorem for the sumset A1 +

A2 + · · ·+Ah.

Theorem 1.4.4. [81, Theorem 1.5] Let h ≥ 2. Let A1,A2, . . . ,Ah be nonempty finite sets of

integers such that

|A1 +A2 + · · ·+Ah|= |A1|+ |A2|+ · · ·+ |Ah|−h+1.

Then A1,A2, . . . ,Ah are arithmetic progressions with the same common difference.

The following theorem due to Cauchy [24] in 1813, is believed to be one of the oldest

and classical theorem in additive number theory, which finds the minimum cardinality of the

sumset A + B, where A and B are nonempty subsets of residue classes modulo a prime. In

1935, Davenport [29] rediscovered Cauchy’s result, and later, in 1947, Davenport acknowledged

Cauchy’s work (see [30]). This result is now known as the Cauchy-Davenport theorem.
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Theorem 1.4.5 (Cauchy-Davenport [24, 29]). Let q be a prime number, and let A, B be two

nonempty subsets of the group Z/qZ. Then

|A+B| ≥min{q, |A|+ |B|−1}.

The following theorem is the h-fold generalization of this theorem.

Theorem 1.4.6. [81, Theorem 2.3] Let h ≥ 2, and q be a prime number. Let A be a nonempty

subset of the group Z/qZ. Then

|hA| ≥min{q,h|A|−h+1}.

Immediately, after Davenport, Chowla [25] extended the Cauchy-Davenport theorem to

the group Z/mZ, where m may be a composite integer. Several generalizations of this famous

Cauchy-Davenport theorem are available now. Some of them are due to Pillai [86], Shatrowsky

[94], Kneser [65], Pollard [90, 91], Mann [73], Hamidoune [53], Devos et al. [31], Karoly [60],

and Wheeler [107].

The following theorem due to Vosper [105] is the inverse theorem of the Cauchy-Davenport

theorem.

Theorem 1.4.7 (Vosper [105]). Let q be a prime number, and let A and B be nonempty subsets

of Z/qZ with A+B 6= Z/qZ. Then

|A+B|= min{q, |A|+ |B|−1}

if and only if at least one of the following three conditions holds:

(i) min(|A|, |B|) = 1,

(ii) |A+B|= q−1 and B = c−A, where {c}= (Z/qZ)\ (A+B),

(iii) A and B are arithmetic progressions with the same common difference.

Some generalizations of Vosper’s theorem are due to Kemperman [62], Brailovsky and

Freiman [21], Karoly [60], and Hamidoune [55, 56].

Several partial results about the minimum cardinality of the sumsets and its inverse that

if the minimum cardinality is achieved, then the characterization of individual sets have been
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obtained by now. Eliahou, Kervaire and Plagne (see [34, 35, 87, 88, 89]) finally settled the

direct problem by obtaining the minimum cardinality of h-fold sumset hA in abelian groups.

The theorem of Eliahou, Kervaire and Plagne is given bellow.

Theorem 1.4.8 (Eliahou, Kervaire and Plagne [35]). Let G be an abelian group of order n, and

let A be a nonempty subset of G. Then

|hA| ≥min{(hd|A|/de−h+1) ·d : d ∈ D(n)},

where D(n) is the set of positive divisors of n.

The problem of finding the structure of sets A and B such that |A+B| ≤ f (|A|, |B|), where

f (|A|, |B|) is a small diversion from the usual lower bound, is called an extended inverse problem

for the sumset A+B. The following theorem is an example of an extended inverse theorem,

popularly known as the Freiman’s 3k−4 theorem [38, 81].

Theorem 1.4.9 (Freiman [38]). Let A be a finite set of k (≥ 3) integers. If |2A| = 2k−1+b ≤

3k−4, then A is a subset of an arithmetic progression of length k+b≤ 2k−3.

The following theorem is a combined result of Lev and Smeliansky [71], and Stanchescu

[95], which generalizes the Freiman’s 3k−4 theorem to the sumset A+B.

Theorem 1.4.10 (Lev, Smeliansky and Stanchescu [71, 95]). Let A and B be finite subsets of N

such that 0 ∈ A∩B. Define

δA,B =

{
1, if `(A) = `(B);

0, if `(A) 6= `(B).

Then the following statements hold:

(i) If `(A) = max(`(A), `(B))≥ |A|+ |B|−1−δA,B and d(A) = 1, then

|A+B| ≥ |A|+2|B|−2−δA,B.

(ii) If max(`(A), `(B))≤ |A|+ |B|−2−δA,B, then

|A+B| ≥ (|A|+ |B|−1)+max(hA,hB) = max(`(A)+ |B|, `(B)+ |A|).
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1.4.2 Direct and inverse results for restricted sumset

The direct problem for the h-fold restricted sumset h∧A is to find the minimum number of

elements in h∧A in terms of number of elements in A. The inverse problem for h∧A is to find the

structure of the finite set A for which |h∧A| is minimal. The following theorem due to Nathanson

[80] is a direct theorem for h∧A in the group of integers.

Theorem 1.4.11. [80, Theorem 1] Let A be a nonempty finite set of integers, and let 1≤ h≤ |A|.

Then

|h∧A| ≥ h|A|−h2 +1.

This lower bound is best possible.

The following theorem due to Nathanson [80] is an inverse theorem for h∧A in the group

of integers.

Theorem 1.4.12. [80, Theorem 2] Let A be a finite set of integers with |A| ≥ 5. Let 2 ≤ h ≤

|A|−2. If

|h∧A|= h|A|−h2 +1,

then A is an arithmetic progression.

Here, we note that not all extremal sets, i.e., the sets where the minimum cardinality of

h∧A is achieved, are arithmetic progressions.

The following theorem due to Dias da Silva and Hamidoune [32] is a direct theorem for

the restricted sumset h∧A in the group Z/qZ, where q is a prime number.

Theorem 1.4.13 (Dias da Silva and Hamidoune [32]). Let A be a nonempty subset of the group

Z/qZ, and let 1≤ h≤ |A|. Then

|h∧A| ≥min{q,h|A|−h2 +1}.

This theorem is popular as the Erdös-Heilbronn Conjecture, as it was first conjectured by

Erdös and Heilbronn [37] in 1964. Three decades later, in 1994, Dias da Silva and Hamidoune

[32] first proved this conjecture in its general form using some ideas from the exterior algebra

and representation theory. A year later, it was re-proved by Alon, Nathanson and Ruzsa [7, 8]
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using the polynomial method. In the last few years, a large number of articles have been pub-

lished concerning possible extensions and generalizations of the Erdös-Heilbronn conjecture.

Some of them are due to Hou and Sun [57], Liu and Sun [72], Pan and Sun [84, 85], Sun and

Zhao [96], Lev [68, 69, 70], Karolyi [59], Balister and Wheeler [15].

Till date, several attempts are made towards the inverse theorem of the Erdös-Heilbronn

conjecture. Some of them are due to Karolyi [61], Vu and Wood [106], and Bilu, Lev and Ruzsa

[19].

1.4.3 Direct and inverse results for generalized sumset

The direct problem for the h-fold generalized sumset h(γ)A is to find the minimum number of

elements in h(γ)A in terms of number of elements in A. The inverse problem for h(γ)A is to find

the structure of the finite set A for which |h(γ)A| is minimal. The following two theorems are

direct and inverse theorems for h(γ)A, respectively, and are due to Mistri and Pandey [75].

Theorem 1.4.14. [75, Theorem 2.1] Let A be a finite set of k integers. Let γ and h be positive

integers such that 1≤ γ ≤ h≤ kγ . Set m = bh/γc. Then

|h(γ)A| ≥ mγ(k−m)+(h−mγ)(k−2m−1)+1.

Theorem 1.4.15. [75, Theorem 3.1, Theorem 3.2] Let k ≥ 3. Let γ and h ≥ 2 be integers such

that 1 ≤ γ ≤ h ≤ kγ−2 and (k,h,γ) 6= (4,2,1). Set m = bh/γc. If A is a finite set of k integers

such that

|h(γ)A|= mγ(k−m)+(h−mγ)(k−2m−1)+1,

then A is an arithmetic progression.

Clearly, Theorem 1.4.1 and Theorem 1.4.11 are particular cases of Theorem 1.4.14, and

Theorem 1.4.3 and Theorem 1.4.12 are particular cases of Theorem 1.4.15. Furthermore, similar

to the restricted sumset h∧A, in genaralized sumset h(γ)A also, not all extremal sets are arithmetic

progressions.

The following theorem due to Monopoli [79], is a direct theorem for h(γ)A in the group

Z/qZ, where q is a prime number.
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Theorem 1.4.16. [79, Theorem 1.3] Let A be a nonempty subset of the group Z/qZ with |A|= k.

Let γ and h be positive integers such that 1≤ γ ≤ h≤ kγ . Set m = bh/γc. Then

|h(γ)A| ≥min{q,mγ(k−m)+(h−mγ)(k−2m−1)+1}.

1.4.4 Direct and inverse results for sum of dilates

The direct problem for the sum of dilates A+ r ·B is to find the minimum number of elements in

A+ r ·B in terms of number of elements in A and B. The inverse problem for A+ r ·B is to find

the structure of the finite sets A and B for which |A+ r ·B| is minimal. Till date, several direct

and inverse results for the sum of dilates A+ r ·B are known, here we mention few of them.

For r = 1, the sum of dilates A+ r ·B coincides with the sumset A+B. So, the direct

and inverse theorems for the sum of dilates A+1 ·B are the direct and inverse theorems for the

sumset A+B. For r = 2 and B = A, Nathanson [82], Cilleruelo et al. [27], and Freiman et al.

[39] completely solved the direct problem by showing |A+2 ·A| ≥ 3|A|−2. Further, Nathanson

[82] settled the inverse problem for r = 2. Their results can be summarized by the following

theorem.

Theorem 1.4.17. [27, Theorem 1.1] For any nonempty finite set A, we have |A+2 ·A| ≥ 3|A|−2.

Furthermore, if |A+2 ·A|= 3|A|−2, then A is an arithmetic progression or a singleton.

The sharp lower bound and the description of the extremal set(s) for the case r = 3 have

been settled by Cilleruelo et al. [27]. In particular, they proved the following theorem.

Theorem 1.4.18. [27, Theorem 1.2] For any nonempty finite set A, we have |A+3 ·A| ≥ 4|A|−4.

Furthermore, if the equality holds, then A = {0,1,3} or A = {0,1,4} or A = 3 · {0,1, . . . ,n}+

{0,1} or A is an affine transformation of any of these sets.

The following theorem due to Du et al. [33], solves the direct problem for the sum of

dilates A+4 ·A.

Theorem 1.4.19. [33, Theorem 3] For any finite set A of integers with |A| ≥ 5, we have

|A+4 ·A| ≥ 5|A|−6.

For r ≥ 3, Nathanson [82] obtained the uniform lower bound, “|A+ r ·A| ≥
⌊7

2 |A|−
5
2

⌋
”.

Later, Freiman et al. [39] extended Nathanson’s result by proving the following theorem.
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Theorem 1.4.20. [39, Theorem 5] Let A be a nonempty finite set of integers, and let r≥ 3. Then

|A+ r ·A| ≥ 4|A|−4.

Several other direct and inverse results for A+ r ·A are available for large sets and fixed r.

For example, Cilleruelo et al. [26] proved the following theorem.

Theorem 1.4.21. [26, Corollary 1.3] Let r be a prime number. Let A be a finite set of integers

with |A| ≥ 3(r−1)2(r−1)!. Then

|A+ r ·A| ≥ (r+1)|A|−
⌈

r(r+2)
4

⌉
.

Moreover, up to affine transformations, equality holds only if A= r ·{0,1, . . . ,n}+{0,1, . . . ,(r−

1)/2}, for some n.

Later, Du et al. [33], generalized this result to product of primes and to powers of a fixed

prime.

1.4.5 Direct and inverse results for subset and subsequence sums

The direct problem for the subset sums S(A) is to find the minimum number of elements in S(A)

in terms of number of elements in A. The inverse problem for S(A) is to determine the structure

of the finite set A for which |S(A)| is minimal. For a nonempty finite sequence A of integers, the

direct and inverse problems for the subsequence sums S(r̄,A ) are defined in a similar way. The

following theorem due to Nathanson [80] is a direct theorem for S(A) in the group of integers.

Theorem 1.4.22. [80, Theorem 3] If A is a nonempty finite set of positive integers, then

|S(A)| ≥
(
|A|+1

2

)
+1.

If A is a nonempty finite set of nonnegative integers with 0 ∈ A, then

|S(A)| ≥
(
|A|
2

)
+1.

These lower bounds are best possible.

The following inverse theorem of Nathanson [80] classifies all possible sets where the

lower bound for S(A) is exact.
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Theorem 1.4.23. [80, Theorem 5] Let A be a finite set of positive integers. If |A| ≥ 2 and

|S(A)|=
(|A|+1

2

)
+1, then

A = d · [1, |A|],

for some positive integer d.

Let A be a finite set of nonnegative integers with 0 ∈ A. If |A| ≥ 3 and |S(A)|=
(|A|

2

)
+1,

then

A = d · [0, |A|−1],

for some positive integer d.

The aforementioned direct and inverse theorems for the subset sums S(A) have been gen-

eralized to the following direct and inverse theorems for the subsequence sums S(r̄,A ) by Mistri

and Pandey [77].

Theorem 1.4.24. [77, Theorem 3.1] Let k≥ 2. Let A =(a1,a2, . . . ,ak)r̄ be a nonempty sequence

of integers with a1 < a2 < · · · < ak and r̄ = (r1,r2, . . . ,rk), where ri ≥ 1 for i = 1,2, . . . ,k. If

a1 > 0, then

|S(r̄,A )| ≥
k

∑
i=1

iri +1.

If a1 = 0, then

|S(r̄,A )| ≥
k

∑
i=1

(i−1)ri +1.

These lower bounds are best possible.

Theorem 1.4.25. [77, Theorem 3.2] Let k ≥ 5, and let r̄ = (r1,r2, . . . ,rk), where ri ≥ 1 for

i = 1,2, . . . ,k. If A = (a1,a2, . . . ,ak)r̄ is a nonempty sequence of integers with 0 < a1 < a2 <

· · ·< ak, and |S(r̄,A )|= ∑
k
i=1 iri +1, then

A = a1 · [1,k]r̄.

If A = (a1,a2, . . . ,ak)r̄ is a nonempty sequence of integers with 0 = a1 < a2 < · · · < ak,

and |S(r̄,A )|= ∑
k
i=1(i−1)ri +1, then

A = a2 · [0,k−1]r̄.
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Clearly, Theorem 1.4.22 and Theorem 1.4.23 are particular cases of Theorem 1.4.24 and

Theorem 1.4.25, respectively, for r̄ = (1,1, . . . ,1).

Very recently, Jiang and Li [58] have settled the direct and inverse problems for S(r̄,A )

in the remaining case, i.e., when the sequence A contains positive integers, negative integers

and/or zero. The following two theorems due to Jiang and Li [58], are direct theorems for the

subsequence sums S(r̄,A ).

Theorem 1.4.26. [58, Theorem 3.1] Let k, l be two positive integers and r̄ =(r−l, . . . ,r−1,r1, . . . ,rk),

with ri ≥ 1 for i = −l, . . . ,−1,1, . . . ,k. Let A = (a−l, . . . ,a−1,a1, . . . ,ak)r̄ be a nonempty se-

quence of integers with a−l < · · ·< a−1 < 0 < a1 < · · ·< ak. Then

|S(r̄,A )| ≥
k

∑
i=1

iri +
l

∑
i=1

ir−i +1.

This lower bound is best possible.

Theorem 1.4.27. [58, Corollary 3.2] Let k, l be two positive integers and r̄ =(r−l,r−l+1, . . . ,rk),

with ri ≥ 1 for i = −l,−l + 1, . . . ,k. Let A = (a−l,a−l+1, . . . ,ak)r̄ be a nonempty sequence of

integers with a−l < a−l+1 < · · ·< a−1 < a0 = 0 < a1 < · · ·< ak. Then

|S(r̄,A )| ≥
k

∑
i=1

iri +
l

∑
i=1

ir−i +1.

This lower bound is best possible.

The following two theorems due to Jiang and Li [58], are inverse theorems for the subse-

quence sums S(r̄,A ).

Theorem 1.4.28. [58, Theorem 3.3] Let k, l be two positive integers with k≥ 2 or l ≥ 2, and r̄ =

(r−l, . . . ,r−1,r1, . . . ,rk), with ri≥ 1 for i=−l, . . . ,−1,1, . . . ,k. Let A =(a−l, . . . ,a−1,a1, . . . ,ak)r̄

be a nonempty sequence of integers with a−l < · · · < a−1 < 0 < a1 < · · · < ak. If |S(r̄,A )| =

∑
k
i=1 iri +∑

l
i=1 ir−i +1, then

A = a1 ·
(
[−l,−1]r̄′′ ∪ [1,k]r̄′

)
,

where r̄′ = (r1, . . . ,rk) and r̄′′ = (r−l, . . . ,r−1).

Theorem 1.4.29. [58, Corollary 3.5] Let k, l be two positive integers and r̄ =(r−l,r−l+1, . . . ,rk),

with ri ≥ 1 for i = −l,−l + 1, . . . ,k. Let A = (a−l,a−l+1, . . . ,ak)r̄ be a nonempty sequence of
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integers with a−l < a−l+1 < · · · < a−1 < a0 = 0 < a1 < · · · < ak. If |S(r̄,A )| = ∑
k
i=1 iri +

∑
l
i=1 ir−i +1, then

A = a1 · [−l,k]r̄.

1.5 Results and the overview of the contents

In Chapter 2, we solve some direct and inverse problems for the sum of dilates A+ r ·B, where

A, B are finite sets of integers and r is a positive integer. In particular, we present a new proof of

the direct theorem, Theorem 1.4.20 due to Freiman et al. [39], for the sum of dilates A+ r ·A.

Our method of proof of this theorem is elementary and self-contained.

We also generalize the following extended inverse theorem of Freiman et al. [39] to the

sum of dilates A+2 ·B of two sets A and B.

Theorem 1.5.1. [39, Theorem 4] Let A be a finite set of integers with |A| ≥ 3. If |A+ 2 ·A| <

4|A|−4, then A is a subset of an arithmetic progression of length |A+2 ·A|−2|A|+2≤ 2|A|−3.

In Chapter 3, we solve both direct and inverse problems for the signed sumset h±A in the

group of integers. One of the theorem we prove is the following direct theorem, when A contains

only positive integers.

Theorem 1.5.2. Let h≥ 1. Let A be a nonempty finite set of positive integers. If h≤ 2, then

|h±A| ≥ 2(h|A|−h+1).

If h≥ 3, then

|h±A| ≥ 2h|A|−h+1.

These lower bounds are best possible.

We also prove the following inverse theorem for h±A, when A contains only positive

integers.

Theorem 1.5.3. Let h ≥ 2. Let A be a finite set of positive integers with |A| ≥ 3. If |h±A| =

2(h|A|−h+1), then h = 2 and

A = d · {1,3, . . . ,2|A|−1},
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for some positive integer d.

If h≥ 3 and |h±A|= 2h|A|−h+1, then

A = d · {1,3, . . . ,2|A|−1},

for some positive integer d.

Similar direct and inverse theorems for h±A have been proved, when the set A contains (i)

nonnegative integers with 0 ∈ A (ii) arbitrary integers.

In Chapter 4, we study both direct and inverse problems for the restricted signed sumset

h∧±A in the group of integers in two separate cases, such as the set A contains (i) only positive

integers, (ii) nonnegative integers with 0 ∈ A. For h = 1,2 and |A|, we prove the direct and

inverse theorems for h∧±A. For 3 ≤ h ≤ |A|−1, we conjecture similar direct and inverse results

for h∧±A. We also verify our conjectures for the case h = 3.

In Chapter 5, we find the exact cardinality of the generalized sumset h(γ)A for A =

{0,1, . . . ,k−2,k−1+b}= [0,k−2]∪{k−1+b}, where b is a nonnegative integer. We prove

that “|h(γ)A| is a strictly increasing linear function of b for 0≤ b≤N1 and is a strictly increasing,

piecewise-linear function of b for N1 ≤ b≤ N2 and that |h(γ)A| is constant for b≥ N2, for some

positive integers N1 and N2”. Our result is analogues to the Nathanson’s result for the regular

h-fold sumset hA (see [81]), which says that “|hA| is a strictly increasing piecewise-linear func-

tion of b for 0 ≤ b ≤ (h− 1)(k− 2) and that |hA| is constant for b ≥ (h− 1)(k− 2)”. Further,

as a corollary of our result, we obtain a similar result for the restricted sumset h∧A, which says

“|h∧A| is a strictly increasing linear function of b for 0 ≤ b ≤ N and that |h∧A| is constant for

b≥ N, for some positive integer N”.

In Chapter 6, we consider the subset sums Sα(A) of a finite set A of k integers and nonneg-

ative integer α ≤ k. We find the minimum cardinality of Sα(A) in terms of number of elements

in A and α . We also find the structure of the finite set A of integers for which |Sα(A)| is mini-

mal. Further, we generalize the subset sums Sα(A) by defining the following subsequence sums.

For a nonempty sequence A = (a0,a1, . . . ,ak−1)r of k distinct integers each repeating exactly r

times, and for a nonnegative integer α (≤ rk), we define

Sα(r,A ) := {s(B) : B is a subsequence of A with |B| ≥ α} ,

where |B| is the number of terms in the subsequence B.
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Similar to the subset sums Sα(A), we find the minimum cardinality of the subsequence

sums Sα(r,A ) also. We also find the structure of the finite sequence A of integers for which

|Sα(r,A )| is minimal.

We conclude the thesis in Chapter 7, with a summary of results proved in this thesis. We

also propose some unsolved problems for future work.



Chapter 2

Direct and inverse problems for sum of

dilates

In this chapter, we study both direct and inverse problems for the sum of dilates A+ r ·B, where

A, B are finite sets of integers and r is a positive integer. In particular, when B = A, we prove a

direct theorem which gives a uniform lower bound for the sum of dilates A+ r ·A, for all r ≥ 3.

We also prove a Freiman’s 3k−4 type theorem for the sum of dilates A+2 ·B.

2.1 Introduction

Let A and B be nonempty finite sets of integers. Let r ≥ 1 be an integer. The sumset A+ r ·B :=

{a+ rb : a ∈ A,b ∈ B} is called the sum of dilates of A and B. For r = 1, the sum of dilates

A+ r ·B coincides with the Minkowski sumset A+B. The direct problem for A+ r ·B is to find

the minimum number of elements in A+ r ·B in terms of number of elements in A and B. The

inverse problem for A+ r ·B is to find the structure of the finite sets A and B for which |A+ r ·B|

is minimal. Several direct and inverse results for the sum of dilates A+ r ·B have been obtained

by now, few of them are mentioned in Chapter 1. In particular, Freiman et al. [39] proved the

following direct theorem in 2014.

Theorem 2.1.1. [39, Theorem 5] Let A be a nonempty finite set of integers, and let r ≥ 3. Then

|A+ r ·A| ≥ 4|A|−4.

In this chapter, we present a new, self contained, elementary proof of this theorem.

19
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An extended inverse problem for the sum of dilates A+ r ·B is the problem of finding the

structure of the finite sets A and B such that |A+ r ·B| ≤ f (r, |A|, |B|), where f (r, |A|, |B|) is a

small diversion from the usual lower bound. For example, when r = 1, we have the celebrated

Freiman’s 3k−4 theorem, i.e., Theorem 1.4.9. In the same essence, Freiman et al. [39] obtained

the following extended inverse theorem for the sum of dilates A+2 ·A.

Theorem 2.1.2. [39, Theorem 4] Let A be a finite set of integers with |A| ≥ 3. If |A+ 2 ·A| <

4|A|−4, then A is a subset of an arithmetic progression of length |A+2 ·A|−2|A|+2≤ 2|A|−3.

In this chapter, we also prove the following theorem, which generalizes Theorem 2.1.2 to

the sum of dilates A+2 ·B of two sets A and B.

Theorem 2.1.3. Let A and B be two nonempty finite sets of integers with |A| ≥ 3 such that

(i) d(A) = d(B) = 1,

(ii) `(A)≤ `(B), and

(iii) hA ≤ hB.

If

|A+2 ·B|= |A|+2(|B|−1)+h < 2(|A|+ |B|−2), (2.1)

then both A and B are subsets of arithmetic progressions of length |B|+ h = |A+ 2 ·B|− |A|−

|B|+2≤ |A|+ |B|−3.

Further, at the end of this chapter, we present some examples which show that the condi-

tions (ii) and (iii) of Theorem 2.1.3 are sufficient but not necessary.

2.2 Direct problem

Proof of Theorem 2.1.1. Let A = {a0,a1, . . . ,ak−1}, where a0 < a1 < · · ·< ak−1. Then

a0 + ra0 < a1 + ra0 < a0 + ra1 < a1 + ra1 < a2 + ra1 < a1 + ra2 < · · ·<

ak−2 + rak−1 < ak−1 + rak−1.
(2.2)

For each 0 ≤ i ≤ k− 2, there are three distinct integers in the above list, satisfying ai + rai <

ai+1 + rai < ai + rai+1, with one extra integer ak−1 + rak−1. So, we have |A+ r ·A| ≥ 3|A|−2.
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It remains to exhibit |A| − 2 more integers of A+ r ·A. Consider the following string of

six consecutive integers of (2.2), for each i = 1,2, . . . ,k−2,

ai−1 + rai−1 < ai + rai−1 < ai−1 + rai < ai + rai < ai+1 + rai < ai + rai+1. (2.3)

We claim that for each string of type (2.3) there exists an extra element of A+ r ·A which

is not in the list (2.3) but in between ai−1 + rai−1 and ai + rai+1. Once the claim is established,

we have the theorem. To prove the claim, we first check

Subclaim: for every sequence of type (2.3), either

ai + rai−1 < ai+1 + rai−1 < ai−1 + rai,

or

ai+1 + rai < ai−1 + rai+1 < ai + rai+1.

Since for each 1 ≤ i ≤ k− 2, ai + rai−1 < ai+1 + rai−1 and ai−1 + rai+1 < ai + rai+1, so

we only need to show that either ai+1 + rai−1 < ai−1 + rai or ai+1 + rai < ai−1 + rai+1.

If ai+1−ai < (r−1)(ai−ai−1), then clearly ai+1+ rai−1 < ai−1+ rai. If not, then ai+1−

ai ≥ (r−1)(ai−ai−1), which implies

(r−1)(ai+1−ai)≥ (r−1)2(ai−ai−1)> ai−ai−1.

This is equivalent to

ai−1 + rai+1 > ai+1 + rai.

Hence, the subclaim is proved.

Next, we show that for any two consecutive strings of six integers of the form (2.3) one

can always find two distinct elements of A+r ·A, that have not been previously included in (2.2).

This proves our main claim. Consider two consecutive strings of six integers

ai−1 + rai−1 < ai + rai−1 < ai−1 + rai < ai + rai < ai+1 + rai < ai + rai+1, (2.4)

and

ai + rai < ai+1 + rai < ai + rai+1 < ai+1 + rai+1 < ai+2 + rai+1 < ai+1 + rai+2. (2.5)

By the subclaim, there exist x1,x2 in A+ r ·A such that ai−1 + rai−1 < x1 < ai + rai+1

and ai + rai < x2 < ai+1 + rai+2, with x1,x2 not in the lists (2.4) or (2.5). We show that either
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x1 6= x2 or there exists an x3 6= x1(= x2) such that x3 ∈ A+ r ·A and it lies between ai−1 + rai−1

and ai+1 + rai+2.

Any one of the following four cases may arise.

Case 1: If ai+1− ai < (r− 1)(ai− ai−1) and ai+2− ai+1 < (r− 1)(ai+1− ai), then we

get two new distinct elements x1 = ai+1 + rai−1 and x2 = ai+2 + rai of A+ r ·A, not previously

included in (2.4) or (2.5).

Case 2: If ai+1−ai < (r−1)(ai−ai−1) and ai+2−ai+1 ≥ (r−1)(ai+1−ai), then we get

two elements x1 = ai+1 + rai−1 and x2 = ai + rai+2 of A+ r ·A, not previously included in (2.4)

or (2.5). Clearly, x1 6= x2, because

ai+1 + rai−1 < ai+1 + rai < ai+2 + rai < ai + rai+2.

Case 3: If ai+1−ai ≥ (r−1)(ai−ai−1) and ai+2−ai+1 ≥ (r−1)(ai+1−ai), then also we

get two new distinct elements x1 = ai−1 + rai+1 and x2 = ai + rai+2 of A+ r ·A, not previously

included in (2.4) or (2.5).

Case 4: Let ai+1− ai ≥ (r− 1)(ai− ai−1) and ai+2− ai+1 < (r− 1)(ai+1− ai). Then

we have integers ai−1 + rai+1, ai+2 + rai such that ai+1 + rai < ai−1 + rai+1 < ai + rai+1 and

ai+1 + rai < ai+2 + rai < ai + rai+1.

If ai−1+ rai+1 6= ai+2+ rai, then we get two distinct extra elements x1 = ai−1+ rai+1 and

x2 = ai+2 + rai, not previously included in (2.4) or (2.5).

If not, then

x1 = ai−1 + rai+1 = ai+2 + rai = x2. (2.6)

In this case, we show that there exists a new integer x3 = ai + rai+2 in the list (2.5), which

is different from x1 = x2. Clearly, x3 > x2 = x1. So we only need to show that ai + rai+2 >

ai+2 + rai+1, or

(r−1)ai+2− rai+1 +ai > 0.
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Using (2.6) together with the inequality ai+1−ai ≥ (r−1)(ai−ai−1), we get

(r−1)ai+2− rai+1 +ai = (r−1)(rai+1− rai +ai−1)− rai+1 +ai

= (r2−2r)ai+1− (r2− r−1)ai +(r−1)ai−1

≥ (r2−2r)ai+1− (r2− r−1)ai−ai+1 + rai

= (r2−2r−1)(ai+1−ai).

Since r ≥ 3 and ai+1−ai > 0, we get (r2−2r−1)(ai+1−ai)> 0.

Thus, in each case, we get two distinct elements of A+ r ·A, which are not in (2.4) or

(2.5). Hence, we get |A|− 2 extra distinct elements of A+ r ·A, which are not in (2.2). Hence,

|A+ r ·A| ≥ 4|A|−4. This completes the proof of the theorem.

2.3 Inverse problem

We start with the following simple corollary of [27, Lemma 2].

Corollary 2.3.1. Let A be a finite set of integers with |A| ≥ 3 and d(A) = 1. Then for any

nonempty finite set B of integers, we have

|A+2 ·B| ≥ |A|+2(|B|−1).

Proof. Since the translation of A does not change the cardinality of A+ 2 ·B, without loss of

generality we may assume that A⊂ N and 0 ∈ A. Let Â denote the natural projection of A onto

Z/2Z. Since 0 ∈ A and d(A) = 1, we have |Â|= 2. Hence, by [27, Lemma 2],

|A+2 ·B| ≥ |A|+2(|B|−1).

Proof of Theorem 2.1.3. Let A= {a0,a1, . . . ,ak−1} and B= {b0,b1, . . . ,bl−1}, where a0 < a1 <

· · ·< ak−1 and b0 < b1 < · · ·< bl−1. Since translating A or B does not change the cardinality of

A+ 2 ·B, without loss of generality we may assume that a0 = b0 = 0. Hence `(A) = ak−1 and

`(B) = bl−1. Now, write

A = A0∪A1,
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where A0 ⊂ 2Z and A1 ⊂ 2Z+1. Since 0 ∈ A0 ⊂ A and d(A) = 1, it follows that both A0 and A1

are nonempty. Let |A0|= m and |A1|= n. So m,n≥ 1 and k = m+n. Let

A0 = {0 = 2x0 < 2x1 < · · ·< 2xm−1},

A∗0 =
1
2
·A0 = {0 = x0 < x1 < · · ·< xm−1},

A1 = {2y0 +1 < 2y1 +1 < · · ·< 2yn−1 +1},

A∗1 =
1
2
· (A1−1)− y0 = {0 < y1− y0 < y2− y0 < · · ·< yn−1− y0}.

Then

`(A∗0) = xm−1 < ak−1 = `(A) and `(A∗1) = yn−1− y0 < ak−1 = `(A).

So,

|A+2 ·B|= |(A0∪A1)+2 ·B|

= |A0 +2 ·B|+ |A1 +2 ·B|

= |2 ·A∗0 +2 ·B|+ |2 · (A∗1 + y0)+1+2 ·B|

= |A∗0 +B|+ |A∗1 +B|. (2.7)

We will use two inequalities, stated as Claim 1 and Claim 2 below.

Claim 1.

`(B)≤ l +max(m,n)−2≤ k+ l−3. (2.8)

Since `(B)≥ `(A)> `(A∗0) and `(B)≥ `(A)> `(A∗1), we have δB,A∗0 = δB,A∗1 = 0.

Suppose first that m≤ n. If the claim is false, then

`(B)≥ l +n−1 = |B|+ |A∗1|−1≥ l +m−1 = |B|+ |A∗0|−1.

Hence from Theorem 1.4.10(i), we have

|B+A∗0| ≥ |B|+2(|A∗0|−1) = l+2m−2 and |B+A∗1| ≥ |B|+2(|A∗1|−1) = l+2n−2. (2.9)

Using (2.7) and (2.9), we get, |A+ 2 ·B| ≥ 2(|A|+ |B| − 2), which contradicts our hypothesis

(2.1).

Similarly, if n≤m and `(B)≥ l+m−1≥ l+n−1, then d(A) = 1 and Theorem 1.4.10(i)

again imply the inequalities (2.9), which together with (2.7) yields |A+2 ·B| ≥ (|A|+ |B|−2),

a contradiction.
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Hence, `(B)≤ l+max(m,n)−2. Since k=m+n and m,n≥ 1, it follows that max(m,n)≤

k−1 and hence `(B)≤ l +max(m,n)−2≤ k+ l−3.

Claim 2.

|A+2 ·B| ≥ |A|+2(|B|−1)+hB.

For the proof of Claim 2, we consider two cases.

Case 1: Suppose m≤ n. By (2.8), we have `(B)≤ l +n−2. So, it follows from Theorem

1.4.10(ii) that

|B+A∗1| ≥ (|B|+ |A∗1|−1)+hB.

Therefore,

|A+2 ·B|= |A∗0 +B|+ |A∗1 +B|

≥ (|B|+ |A∗0|−1)+(|B|+ |A∗1|−1)+hB

= (m+ l−1)+(n+ l−1)+hB

= |A|+2(|B|−1)+hB.

Case 2: Suppose that n < m. By (2.8), we have `(B)≤ l+m−2. It follows from Theorem

1.4.10(ii) that

|B+A∗0| ≥ (m+ l−1)+hB = (|B|+ |A∗0|−1)+hB.

Therefore,

|A+2 ·B|= |A∗0 +B|+ |A∗1 +B|

≥ (|B|+ |A∗0|−1)+hB +(|B|+ |A∗1|−1)

= (m+ l−1)+hB +(n+ l−1)

= |A|+2(|B|−1)+hB.

In both the cases, we see that

0≤ hB ≤ |A+2 ·B|− (|A|+2|B|−2) = h≤ k−3 = |A|−3.

Thus, B is a subset of the arithmetic progression {0,1, . . . ,bl−1} of size bl−1 + 1 = l + hB ≤

l +h≤ k+ l−3.

Similarly, since `(A) ≤ `(B), the set A is a subset of an arithmetic progression of size

k+ l−3. This completes the proof of the theorem.
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2.4 Remarks

The following remarks show that the conditions (ii) and (iii) of Theorem 2.1.3 are sufficient but

not necessary.

Remark 2.4.1. The condition `(A) ≤ `(B) is not necessary, as can be seen by the following

example.

Example 2.4.1. Let k ≥ 3 be a fixed integer. Let A = [0,2k−1]∪{2k+1} and B = [0,2k−2]∪

{2k}. Clearly, d(A) = d(B) = 1, hA = 1 = hB and `(A) = 2k+1 > 2k = `(B). Since 4k≤ 6k−4

for all k ≥ 2, we have

A+2 ·B = ([0,2k−1]∪{2k+1})+({0,2,4, . . . ,4k−4}∪{4k})

= [0,6k−5]∪{2k+1,2k+3, . . . ,6k−3}∪ [4k,6k−1]∪{6k+1}

= [0,6k−1]∪{6k+1}.

Thus, |A+2 ·B|= 6k+1< 8k−2= 2(|A|+ |B|−2) and the sets A and B are subsets of arithmetic

progressions of length at most 2k+2 = |A+2 ·B|− |A|− |B|+2≤ 4k−2 = |A|+ |B|−3.

Remark 2.4.2. The condition hA ≤ hB is not necessary, as can be seen by the following example.

Example 2.4.2. Let k≥ 6 be an integer. Let A= [0,k−2]∪{k+1} and B= [0,k−2]∪{k,k+1}.

Clearly in this case, d(A) = d(B) = 1, `(A) = k+ 1 = `(B) and hA = 2 > 1 = hB. Since 2k ≤

3k−5 for all k ≥ 5, we have

A+2 ·B = ([0,k−2]∪{k+1})+({0,2,4, . . . ,2k−4}∪{2k,2k+2})

= [0,3k−6]∪{k+1,k+3, . . . ,3k−3}∪ [2k,3k−2]∪ [2k+2,3k]

∪{3k+1,3k+3}

= [0,3k]∪{3k+1,3k+3}.

Thus, |A+2 ·B|= 3k+3< 4k−2= 2(|A|+ |B|−2) and the sets A and B are subsets of arithmetic

progressions of length at most k+4 = |A+2 ·B|− |A|− |B|+2≤ 2k−2 = |A|+ |B|−3.



Chapter 3

Direct and inverse problems for signed

sumset h±A

In this chapter, we study the h-fold signed sumset h±A. We solve both direct and inverse prob-

lems for the sumset h±A by considering three different cases, namely (i) A contains only positive

integers, (ii) A contains nonnegative integers with 0 ∈ A, and (iii) A contains arbitrary integers.

3.1 Introduction

Let G be an additive abelian group, and let A = {a0,a1, . . . ,ak−1} be a nonempty subset of G.

Let h≥ 1 be an integer. Recall that, the h-fold sumset hA is defined by

hA :=

{
k−1

∑
i=0

λiai : λi ∈ N for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
.

Define the h-fold signed sumset of A, denoted by h±A, by

h±A :=

{
k−1

∑
i=0

λiai : λi ∈ Z for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
.

Clearly,

hA∪h(−A)⊂ h±A⊂ h(A∪ (−A)) ,

and for any integer α ,

h±(α ·A) = α · (h±A).

27
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The signed sumset h±A was first appeared in the work of Bajnok and Ruzsa [11] in the

context of the “independence number” of a subset A of G and in the work of Klopsch and Lev

[63, 64] in the context of the “diameter” of G with respect to the subset A. The first systematic

and point centric study appeared in the work of Bajnok and Matzke [9] in which they studied

the minimum cardinality of h-fold signed sumset h±A of subsets of a finite abelian group. In

particular, they proved that the minimum cardinality of h±A is the same as the minimum cardi-

nality of hA, when A is a subset of a finite cyclic group. One year later, they [10] obtained results

regarding cases where the minimum cardinality of h±A coincide with the minimum cardinality

of hA, when A is a subset of an elementary abelian group.

The direct problem for h±A is to find the minimum number of elements in h±A in terms

of number of elements in A. The inverse problem for h±A is to find the structure of the finite set

A for which |h±A| is minimal.

The direct and inverse theorems for hA are well established in the group of integers, which

are mentioned in Chapter 1. In this chapter, we solve similar direct and inverse problems for

h±A in the group of integers. This study is done by considering three different cases, viz.; (i)

A contains only positive integers, (ii) A contains nonnegative integers with 0 ∈ A, and (iii) A

contains arbitrary integers, in the sections 3.2, 3.3 and 3.4, respectively.

3.2 A contains only positive integers

Theorem 3.2.1. Let h≥ 1, and let A be a set of k positive integers. We have

|h±A| ≥ 2(hk−h+1).

This lower bound is best possible for h≤ 2.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. The sumset h±A contains at



29

least the following 2(hk−h+1) integers.

ha0 < (h−1)a0 +a1 < (h−2)a0 +2a1 < · · ·< a0 +(h−1)a1 < ha1

< (h−1)a1 +a2 < (h−2)a1 +2a2 < · · ·< a1 +(h−1)a2 < ha2

...

< (h−1)ak−2 +ak−1 < (h−2)ak−2 +2ak−1 < · · ·< ak−2 +(h−1)ak−1

< hak−1 (3.1)

and

−hak−1 <−(h−1)ak−1−ak−2 < · · ·<−ak−1− (h−1)ak−2 <−hak−2

<−(h−1)ak−2−ak−3 < · · ·<−ak−2− (h−1)ak−3 <−hak−3

...

<−(h−1)a1−a0 < · · ·<−a1− (h−1)a0 <−ha0. (3.2)

Hence,

|h±A| ≥ 2(hk−h+1).

Next, we show that this lower bound is best possible. If h = 1, then |1±A| = 2k. Hence

the lower bound is tight for every finite set A. Next, let h = 2 and A = {1,3,5, . . . ,2k−1}. Then

2±A = {−(4k−2), . . . ,−4,−2,2,4, . . . ,(4k−2)}.

Hence, |2+A|= 4k−2. This completes the proof of the theorem.

Theorem 3.2.2. Let h ≥ 2, and let A be a set of k positive integers. If |h±A| = 2(hk− h+ 1),

then h = 2 and A = d · {1,3, . . . ,2k−1}, for some positive integer d.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. Since |h±A|= 2(hk−h+1),

it follows from Theorem 3.2.1, that the sumset h±A consists precisely the integers listed in (3.1)

and (3.2). For each i = 1,2, . . . ,k−2, we have

ai−1 +(h−1)ai < hai < (h−1)ai +ai+1.

Also,

ai−1 +(h−1)ai < ai−1 +(h−2)ai +ai+1 < (h−1)ai +ai+1.
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Thus,

hai = ai−1 +(h−2)ai +ai+1.

This is equivalent to

ai+1−ai = ai−ai−1.

Therefore, the set A is an arithmetic progression, i.e., ai−ai−1 = d, for some d > 0 and for all

1≤ i≤ k−1.

Again,

−ha1 <−(h−1)a1−a0 <−(h−1)a1 +a0 <−(h−2)a1 +2a0 < · · ·<

−a1 +(h−1)a0 < ha0. (3.3)

Thus, from (3.1), (3.2) and (3.3), it follows that, for i = 1,2, . . . ,h−1,

−(h− i)a1 + ia0 =−(h− i−1)a1− (i+1)a0.

So, the common difference d = a1− a0 = 2ia0, for i = 1,2, . . . ,h− 1. This is possible, only if

h = 2. Hence

A = d · {1,3, . . . ,2k−1}.

This completes the proof of the theorem.

Theorem 3.2.3. Let h≥ 3, and let A be a set of k (≥ 3) positive integers. Then

|h±A| ≥ 2hk−h+1. (3.4)

This lower bound is best possible.

The above theorem does not hold for k = 2, as it can be seen by taking A = {1,2}, h = 3;

A = {1,3}, h = 4; and A = {2,3}, h = 5.

Further, if A = {a0,a1}, where 0 < a0 < a1 and h < a0+a1
2a0

, we observe in the following

remark that |h±A|= 4h.

Remark 3.2.1. Let A = {a0,a1}, where 0 < a0 < a1. Let 3≤ h < a0+a1
2a0

. Then, every summand

in h±A is either of the form (h− i)a0 + ia1, or (h− i)a0− ia1, or −(h− i)a0 + ia1, or −(h−

i)a0− ia1, where 0≤ i≤ h. Hence, the maximum possibility of integers in h±A is 4h, i.e.,

|h±A| ≤ 4h. (3.5)
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On the other hand, as h < a0+a1
2a0

, i.e., 0 < (2h−1)a0 < a1, we have

ha0 <−(h−1)a0 +a1 < (h−1)a0 +a1 <−(h−2)a0 +2a1 < (h−2)a0 +2a1 < · · ·<

−a0 +(h−1)a1 < a0 +(h−1)a1 < ha1.

Since each of the above 2h signed h-fold summand is positive and in h±A, their negatives are

also in h±A. Hence, |h±A| ≥ 4h. This together with (3.5) give |h±A|= 4h.

Proof of Theorem 3.2.3. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · · < ak−1. From

Theorem 3.2.1, it follows that the sumset h±A contains at least 2(hk− h+ 1) integers listed in

(3.1) and (3.2). So, it remains to show at least (h− 1) extra integers in h±A different from the

integers in (3.1) and (3.2). To show this, we consider three cases depending on a2−a1 < a1−a0,

a2−a1 > a1−a0, and a2−a1 = a1−a0. Except in a subcase of the last case, namely, a2−a1 =

a1− a0 = 2a0, which will lead to present the example for the best possible bound, we show

much more extra summands than h−1 in h±A.

Case 1. (a2− a1 < a1− a0, i.e., a2 < 2a1− a0). Consider the following sequence of integers,

which is taken from (3.1).

(h−1)a0 +a1 < (h−2)a0 +2a1 < (h−3)a0 +3a1 < · · ·< a0 +(h−1)a1 < ha1 (3.6)

We shall insert an extra signed h-fold summand between each pair of successive integers

of (3.6) as follows:

(h−1)a0 +a1 < (h−1)a0 +a2 < (h−2)a0 +2a1 < (h−2)a0 +a1 +a2 < (h−3)a0 +3a1

< (h−3)a0 +2a1 +a2 < (h−4)a0 +4a1 < · · ·< 2a0 +(h−3)a1 +a2 < a0 +(h−1)a1

< a0 +(h−2)a1 +a2 < ha1.

Thus, we get h−1 extra positive integers of h±A. Similarly, taking the negatives of these

h− 1 summands, we get another set of h− 1 integers of h±A. Hence, we get a total of at least

2(h−1) extra integers of h±A, not already listed in (3.1) and (3.2).

Case 2. (a2−a1 > a1−a0, i.e., 2a1 < a2 +a0). Similar to the Case 1, we have

ha1 < (h−2)a1 +a2 +a0 < (h−1)a1 +a2 < (h−3)a1 +2a2 +a0 < (h−2)a1 +2a2

< (h−4)a1 +3a2 +a0 < (h−3)a1 +3a2 < · · ·< (h−1)a2 +a0 < a1 +(h−1)a2.
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So, we get h−1 extra summands in h±A between ha1 and a1 +(h−1)a2. Hence, taking

negatives of these h−1 positive summands, we get a total of at least 2(h−1) extra integers of

h±A.

Case 3. (a2− a1 = a1− a0, i.e., a0, a1, a2 are in arithmetic progression). Let a1 = a0 + d,

a2 = a0 +2d, for some positive integer d.

Subcase 1. (d > 2a0). Consider the following integers of (3.1)

ha0 < (h−1)a0 +a1 < (h−2)a0 +2a1 < · · ·< a0 +(h−1)a1 < ha1 < (h−1)a1 +a2

< (h−2)a1 +2a2 < · · ·< a1 +(h−1)a2 < ha2.

Rewrite the list as

ha0 < ha0 +d < ha0 +2d < · · ·< ha0 +(h−1)d < ha0 +hd < ha0 +(h+1)d

< ha0 +(h+2)d < · · ·< ha0 +(2h−1)d < ha0 +2hd.

For each i= 0,1, . . . ,h−2, we insert an extra summand between ha0+2id and ha0+(2i+

1)d. We have

ha0 +2id < (h−2)a0 +(2i+1)d = (h−2− i)a0−a1 +(i+1)a2 < ha0 +(2i+1)d.

Each of these h−1 extra signed h-fold summand (h−2− i)a0−a1+(i+1)a2, is positive.

So, we get h− 1 extra positive integers of h±A. The negatives of these h− 1 integers are also

signed h-fold summands, hence are in the set h±A and different from the summands in (3.2).

Hence, we get at least 2(h−1) extra integers of h±A, which are not listed in (3.1) and (3.2).

Subcase 2. (d < 2a0). We use induction argument on h to write bh
2c extra positive integers of

h±A.

If h = 3, then

a0 < a2−a1 +a0 = a0 +d < 3a0.

If h = 4, then

2a0 < a2−a1 +2a0 = 2a0 +d < 4a0,

and

0 <−a1 +3a0 = 2a0−d < 2a0.
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If h = 5, then

3a0 < a2−a1 +3a0 = 3a0 +d < 5a0,

and

a0 <−a1 +4a0 = 3a0−d < 3a0.

If h = 6, then

4a0 < a2−a1 +4a0 = 4a0 +d < 6a0,

2a0 <−a1 +5a0 = 4a0−d < 4a0,

and

0 < 2a2−3a1 +a0 = d < 2a0.

In all the above cases we get exactly bh
2c number of extra positive signed h-fold sum-

mands, which are not included in (3.1) and (3.2). Now, let h ≥ 7 and assume that the result is

true for h− 1. If h = 4k+ 1 or h = 4k+ 3 for some k ≥ 1, then bh
2c = b

h−1
2 c =

h−1
2 . By the

induction hypothesis, bh−1
2 c extra positive integers as signed (h− 1)-fold summands may be

obtained in (h−1)±A. Adding a single copy of a0 to all these (h−1)-fold summands, we can

obtain bh−1
2 c(= b

h
2c) extra positive signed h-fold summands. This completes the induction in

this case.

Now, let h = 4k, k ≥ 1. Then bh−1
2 c extra positive integers may be obtained from the

bh−1
2 c extra positive summands of (h− 1)-fold signed sumset of A by just adding a0 to it and

one more summand is given by 0 < (k−1)a2− (2k−1)a1+(k+2)a0 = 2a0−d < 2a0. Hence,

we get bh
2c extra positive integers.

Similarly, if h = 4k+ 2, k ≥ 1, then bh−1
2 c extra positive integers may be obtained from

the bh−1
2 c extra positive summands of (h−1)-fold signed sumset of A by just adding a0 to it and

one more summand is given by 0 < (k+1)a2− (2k+1)a1 + ka0 = d < 2a0.

Since, the negatives of these bh
2c integers are also in the set h±A. Hence, we get a total of

at least 2bh
2c extra integers in h±A.

Further, in both the above subcases 1 and 2, we get even more 2bh
3c integers. Let m be the

largest integer such that 3m≤ h, i.e., m = bh
3c or h = 3m+ ε , ε ∈ {0,1,2}. Then,

(h−3)a0 +2a1−a2 = (h−2)a0,
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(h−6)a0 +4a1−2a2 = (h−4)a0,

(h−9)a0 +6a1−3a2 = (h−6)a0,

...

εa0 +2ma1−ma2 = (m+ ε)a0.

So, there are m = bh
3c further extra positive signed h-fold summands which are multiples

of a0, between 0 and ha0. Thus, including negatives of these integers we get, 2m = 2bh
3c even

more extra integers in both the subcases d > 2a0 and d < 2a0. Hence, in both the subcases 1 and

2, we get a total of at least 2(bh
2c+ b

h
3c) extra signed h-fold summands neither included in (3.1)

nor in (3.2).

Subcase 3. (d = 2a0). In this case we show that −(h− 2)a0,−(h− 4)a0,−(h− 6)a0, . . . ,(h−

6)a0,(h− 4)a0,(h− 2)a0 are signed h-fold summands, which are neither included in (3.1) nor

in (3.2). Clearly, their number is h−1.

If h = 3, then 2a1−a2 = a0, and a2−2a1 =−a0. So, we get (h−1) = 2 distinct integers

which are previously not included.

Now, let h≥ 4. Rewrite the summands of (3.1), which are between ha0 and ha1 as follows:

(h−1)a0 +a1 < (h−2)a0 +2a1 < (h−3)a0 +3a1 < · · ·< a0 +(h−1)a1. (3.7)

Adding −(a1 + a2) to the first three successive integers (h− 1)a0 + a1, (h− 2)a0 + 2a1,

(h−3)a0 +3a1 of (3.7), we get

(h−1)a0 +a1− (a1 +a2) = (h−1)a0−a2 = (h−6)a0,

(h−2)a0 +2a1− (a1 +a2) = (h−2)a0 +a1−a2 = (h−4)a0,

and

(h−3)a0 +3a1− (a1 +a2) = (h−3)a0 +2a1−a2 = (h−2)a0.

Now leave the first term of (3.7) and add−2(a1+a2) to the next three successive integers

(h−2)a0 +2a1, (h−3)a0 +3a1, (h−4)a0 +4a1 of (3.7), we get

(h−2)a0 +2a1−2(a1 +a2) = (h−2)a0−2a2 = (h−12)a0,

(h−3)a0 +3a1−2(a1 +a2) = (h−3)a0 +a1−2a2 = (h−10)a0,
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and

(h−4)a0 +4a1−2(a1 +a2) = (h−4)a0 +2a1−2a2 = (h−8)a0.

We continue this process up to the last triplet 3a0 +(h−3)a1, 2a0

+(h−2)a1, a0 +(h−1)a1 of (3.7) by adding −(h−3)(a1 +a2), to get

3a0 +(h−3)a1− (h−3)(a1 +a2) = 3a0− (h−3)a2 =−(5h−18)a0,

2a0 +(h−2)a1− (h−3)(a1 +a2) = 2a0 +a1− (h−3)a2 =−(5h−20)a0,

and

a0 +(h−1)a1− (h−3)(a1 +a2) = a0 +2a1− (h−3)a2 =−(5h−22)a0.

The above process covers all the h−1 integers−(h−2)a0,−(h−4)a0,−(h−6)a0, . . . ,(h−

6)a0,(h−4)a0,(h−2)a0 as signed h-fold summands with some other possible negative integers

which are already counted in (3.2). One may stop this process till one gets −(h− 2)a0. Thus,

we get exactly h−1 extra integers of h±A, not already included in (3.1) and (3.2).

Thus, in all the above cases 1, 2 and 3, we get at least h−1 extra integers of h±A, which

are not included in (3.1) and (3.2). Hence,

|h±A| ≥ 2hk−h+1.

Next, we show that the lower bound in (3.4) is best possible. Let A= {1,3,5, . . . ,(2k−1)}

for some integer k ≥ 1. If h is even, then

h±A⊂ {−h(2k−1), . . . ,−4,−2,0,2,4, . . . ,h(2k−1)}.

If h is odd, then

h±A⊂ {−h(2k−1), . . . ,−5,−3,−1,1,3,5, . . . ,h(2k−1)}.

In both these cases, |h±A| ≤ 2hk− h+ 1. Hence, together with (3.4), we get, |h±A| =

2hk−h+1. This completes the proof of the theorem.

Theorem 3.2.4. Let h≥ 3, and let A be a set of k (≥ 3) positive integers. If |h±A|= 2hk−h+1,

then A = d · {1,3, . . . ,2k−1}, for some positive integer d.
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Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. Since |h±A|= 2hk−h+1,

from the proof of Theorem 3.2.3 it follows that a2− a1 = a1− a0 = d = 2a0. Again, by the

similar argument used in Theorem 3.2.2, we get, for each i = 1,2, . . . ,k−2

ai−1 +(h−1)ai < hai < (h−1)ai +ai+1,

and

ai−1 +(h−1)ai < ai−1 +(h−2)ai +ai+1 < (h−1)ai +ai+1.

Thus,

hai = ai−1 +(h−2)ai +ai+1.

This is equivalent to

ai+1−ai = ai−ai−1.

Therefore, the set A is an arithmetic progression, and hence

A = d · {1,3, . . . ,2k−1}.

This completes the proof of the theorem.

3.3 A contains nonnegative integers with 0 ∈ A

Theorem 3.3.1. Let h≥ 1, and let A be a set of k nonnegative integers with 0 ∈ A. Then

|h±A| ≥ 2hk−2h+1. (3.8)

This lower bound is best possible.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 = a0 < a1 < · · · < ak−1. From (3.1) and (3.2), it is

clear that h±A contains at least hk− h positive integers (h− i)a j + ia j+1 and hk− h negative

integers −(h− i)a j− ia j+1, for 0≤ i≤ h, 1≤ j ≤ k−2, and one extra integer zero. Thus,

|h±A| ≥ 2hk−2h+1.

Next, we show that the lower bound in (3.8) is best possible. Let A = {0,1,2, . . . ,k−1}=

[0,k−1]. The smallest integer of h±A is −h(k−1) and the largest element of h±A is h(k−1).

Therefore,

h±A⊂ [−h(k−1),h(k−1)].
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So

|h±A| ≤ 2h(k−1)+1.

This inequality together with (3.8), implies

|h±A|= 2hk−2h+1.

This completes the proof of the theorem.

Theorem 3.3.2. Let h ≥ 2, and let A be a set of k nonnegative integers with 0 ∈ A. Then

|h±A|= 2hk−2h+1 if and only if A = d · [0,k−1], for some positive integer d.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 = a0 < a1 < · · · < ak−1. Since |h±A| = 2hk−2h+

1, it follows from Theorem 3.3.1 that the sumset h±A consists precisely the integers listed in

equation (3.1) and (3.2). By the similar argument as used in Theorem 3.2.2 and Theorem 3.2.4,

we obtain that the set A is an arithmetic progression. Hence A = d · [0,k−1].

3.4 A contains arbitrary integers

Theorem 3.4.1. Let h≥ 1, and let A be a set of k integers. Then

|h±A| ≥ hk−h+1. (3.9)

This lower bound is best possible.

Proof. The lower bound is trivial and it follows from (3.1). To see that the lower bound is

optimal, consider the interval of integers A =
[
−b k

2c,b
k
2c
]
, where k ≥ 3 is an odd integer. Then,

h±A⊂
[
−h
⌊

k
2

⌋
,h
⌊

k
2

⌋]
.

Thus,

|h±A| ≤ 2h
⌊

k
2

⌋
+1 = (k−1)h+1 = hk−h+1.

This inequality together with (3.9) gives |h±A| = hk− h+ 1. This completes the proof of the

theorem.

Theorem 3.4.2. Let h ≥ 2, and let A be a set of k (≥ 2) integers such that |h±A| = hk−h+1.

Then A is a symmetric set, which is also an arithmetic progression.
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Proof. Let A = {a0,a1, . . . ,ak−1}, where a0 < a1 < · · · < ak−1. Let |h±A| = hk− h+ 1. Since

hA ⊂ h±A, Theorem 1.4.1 implies that hA = h±A. Thus, by Theorem 1.4.3 the set A is in

arithmetic progression. Again, since |h±A|= hk−h+1, the sumset h±A contains precisely the

(hk−h+1) integers listed in (3.1). It also contains the (hk−h+1) integers listed in (3.2). Thus,

for all i = 0,1, . . . ,k−1, we have

hai =−hak−1−i.

This is equivalent to ai = −ak−1−i, for all i = 0,1, . . . ,k− 1. This completes the proof of the

theorem.



Chapter 4

Direct and inverse problems for restricted

signed sumset h∧±A

In Chapter 3, we studied both direct and inverse problems for the signed sumset h±A in the

group of integers. In this chapter, we consider the signed sumset h±A by restricting the weights

of a h-fold sum to at most the absolute value 1. We study both direct and inverse problems for

this sumset in the group of integers.

4.1 Introduction

Let G be an additive abelian group, and let A = {a0,a1, . . . ,ak−1} be a nonempty subset of G.

Let h ≥ 1. Recall that, the h-fold sumset hA, the h-fold restricted sumset h∧A, and the h-fold

signed sumset h±A of the set A are defined by

hA :=

{
k−1

∑
i=0

λiai : λi ∈ N for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

h∧A :=

{
k−1

∑
i=0

λiai : λi ∈ {0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0

λi = h

}
,

and

h±A :=

{
k−1

∑
i=0

λiai : λi ∈ Z for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
,

where 1≤ h≤ k in case of h∧A.

39



40

We define the h-fold restricted signed sumset of A (for 1≤ h≤ k), denoted by h∧±A, by

h∧±A :=

{
k−1

∑
i=0

λiai : λi ∈ {−1,0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
.

Clearly,

h∧A∪h∧(−A)⊂ h∧±A.

Also, for an integer α , we have

h∧±(α ·A) = α · (h∧±A).

The direct problem for h∧±A is to find the minimum number of elements in h∧±A in terms

of number of elements in A. The inverse problem for h∧±A is to find the structure of the finite set

A for which |h∧±A| is minimal.

The direct and inverse theorems for hA and h∧A are well settled in the group of integers,

which are mentioned in Chapter 1. We settled the direct and inverse theorems for h±A in the

group of integers in Chapter 3. In this chapter, we prove similar direct and inverse theorems for

h∧±A in the group of integers.

4.2 A contains only positive integers

Theorem 4.2.1. Let A be a set of k positive integers, and let 1≤ h≤ k. Then

|h∧±A| ≥ 2(hk−h2)+

(
h+1

2

)
+1. (4.1)

This lower bound is best possible for h = 1, 2 and k.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · · < ak−1. For i = 0,1, . . . ,k− h− 1

and j = 0,1, . . . ,h, let

si, j :=
h

∑
l=0

l 6=h− j

ai+l. (4.2)

Let

sk−h,0 :=
h−1

∑
l=0

ak−h+l. (4.3)

Each si, j is a sum of h distinct elements of A, and hence it is in h∧±A. Moreover, for i =

0,1, . . . ,k−h−1 and j = 0,1, . . . ,h−1, we have

si, j < si, j+1 and si,h = si+1,0.
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Thus, we get at least hk− h2 + 1 positive integers in h∧±A. Since h∧±A is symmetric, the

inverses of these hk−h2+1 integers are also in h∧±A with−s0,0 < s0,0. So, we get 2(hk−h2+1)

integers in h∧±A.

For i = 0,1, . . . ,h−1 and j = 0,1, . . . ,h− i−1, define the sequence of integers

ti, j :=
h−i−1

∑
l=0
l 6= j

(−al)+a j +
i

∑
m=1

ah−m. (4.4)

Clearly, each ti, j ∈ h∧±A. Moreover, for j = 0,1, . . . ,h− i−2, we have

ti, j < ti, j+1,

and for i = 0,1, . . . ,h−2, we have

ti,h−i−1 < ti+1,0.

Also,

−s0,0 < t0,0 and th−1,0 = s0,0.

Therefore, we get
(h+1

2

)
−1 more integers in h∧±A which are listed in (4.4). Further, these

elements are different from the elements in (4.2) and (4.3). Hence, we get

|h∧±A| ≥ 2(hk−h2)+

(
h+1

2

)
+1.

Next, we show that the lower bound in (4.1) is best possible for h = 1, 2 and k.

Let h = 1. Then for any finite set A of k positive integers |1∧±A| = 2k and 2(hk− h2)+(h+1
2

)
+1 = 2k.

Now, let h = 2 and A = {1,3,5, . . . ,2k−1}. Then

2∧±A = {−(4k−4),−(4k−6), . . . ,−2,2,4, . . . ,4k−4},

and hence |2∧±A|= 4k−4 = 2(hk−h2)+
(h+1

2

)
+1.

Finally, let h = k and A = [1,k]. It is easy to see that k∧±A contains either odd integers or

even integers. Since k∧±A⊂
[
−
(k+1

2

)
,
(k+1

2

)]
, we get

|k∧±A| ≤
(

k+1
2

)
+1.

This together with (4.1) give |k∧±A| =
(k+1

2

)
+ 1 = 2(hk− h2)+

(h+1
2

)
+ 1. This completes the

proof of the theorem.



42

The next two theorems give the inverse results for the cases h = 2 and h = k, respectively.

For h = 1, any set with k elements is extremal, i.e., where the lower bound is achieved.

Theorem 4.2.2. Let A be a set of k (≥ 2) positive integers such that |2∧±A| = 4k− 4. Then

A = {a0,a1} with a0 < a1, if k = 2, and A = d · {1,3, . . . ,2k−1}, for some positive integer d, if

k ≥ 3.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. Let

|2∧±A|= 4k−4.

First, let k = 2. Then

2∧±A = {a0 +a1,a0−a1,−a0 +a1,−a0−a1},

where

−a0−a1 < a0−a1 <−a0 +a1 < a0 +a1.

Thus, for every set A of two positive integers |2∧±A|= 4 = 4k−4.

Next, let k = 3. Then

2∧±A = {a0 +a1,a0−a1,−a0 +a1,−a0−a1,a0 +a2,a0−a2,−a0 +a2,−a0−a2,a1 +a2,

a1−a2,−a1 +a2,−a1−a2},

where

−a1−a2 <−a0−a2 <−a0−a1 < a0−a1 <−a0 +a1 < a0 +a1 < a0 +a2 < a1 +a2. (4.5)

If |2∧±A|= 4k−4 = 8, then 2∧±A contains precisely the integers listed in (4.5). Since

−a0−a2 < a0−a2 < a0−a1,

we get a0−a2 =−a0−a1, i.e., a2−a1 = 2a0.

Similarly, as

a0−a1 < a2−a1 < a2−a0 = a0 +a1,

we get a2−a1 = a1−a0. Hence, A = a0 · {1,3,5}.
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Now, let k = 4. Then

2∧±A = {a0 +a1,a0−a1,−a0 +a1,−a0−a1,a0 +a2,a0−a2,−a0 +a2,−a0−a2,a0 +a3,

a0−a3,−a0 +a3,−a0−a3,a1 +a2,a1−a2,−a1 +a2,−a1−a2,a1 +a3,a1−a3,

−a1 +a3,−a1−a3,a2 +a3,a2−a3,−a2 +a3,−a2−a3},

where

−a2−a3 <−a1−a3 <−a1−a2 <−a0−a2 <−a0−a1 < a0−a1 <−a0 +a1

< a0 +a1 < a0 +a2 < a1 +a2 < a1 +a3 < a2 +a3. (4.6)

If |2∧±A|= 4k−4 = 12, then 2∧±A contains precisely the integers listed in (4.6). Since

a0 +a2 < a0 +a3 < a1 +a3,

it follows from (4.6) that a0 +a3 = a1 +a2, which is equivalent to a3−a2 = a1−a0.

Similarly, since

−a0 +a1 <−a0 +a2 < a0 +a2,

we have −a0 +a2 = a0 +a1, or a2−a1 = 2a0.

We also have

−a1−a2 =−a0−a3 < a0−a3 < a0−a2 =−a0−a1.

Therefore, a0−a3 =−a0−a2, or a3−a2 = 2a0. Hence, A = a0 · {1,3,5,7} is the extremal set

for all a0 > 0.

Finally, let k ≥ 5, and |2∧±A| = 4k− 4. From Theorem 4.2.1 it follows that the sumset

h∧±A contains precisely the integers listed in (4.2), (4.3) and (4.4), for h = 2. Since 2∧A ⊂

[a0 + a1,ak−2 + ak−1] and there are exactly 2k− 3 integers in (4.2) and (4.3) between a0 + a1

and ak−2 +ak−1, Theorem 1.4.12 implies that the set A is in arithmetic progression. That is, the

common difference d = a1−a0 = a2−a1 = · · ·= ak−1−ak−2.

Again, since

−a0−a2 <−a0−a1 < a0−a1,

and

−a0−a2 < a0−a2 < a0−a1,
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we get a2−a1 = 2a0. Hence A = a0 ·{1,3, . . . ,2k−1}. This completes the proof of the theorem.

Theorem 4.2.3. Let A be a set of k (≥ 3) positive integers such that

|k∧±A|=
(

k+1
2

)
+1.

Then A = {a0,a1,a0+a1} with a0 < a1, if k = 3, and A = d · [1,k] for some positive integer d, if

k ≥ 4.

Proof. First, let k = 3 and A = {a0,a1,a2}, where 0 < a0 < a1 < a2. Then

3∧±A = {a0 +a1 +a2,a0 +a1−a2,a0−a1 +a2,a0−a1−a2,−a0 +a1 +a2,−a0 +a1−a2,

−a0−a1 +a2,−a0−a1−a2},

where, we have

−a0−a1−a2 < a0−a1−a2 <−a0 +a1−a2 <−a0−a1 +a2 < a0−a1 +a2

<−a0 +a1 +a2 < a0 +a1 +a2. (4.7)

If |3∧±A|=
(4

2

)
+1 = 7, then 3∧±A contains precisely the seven integers in (4.7). Since

−a0 +a1−a2 < a0 +a1−a2 < a0−a1 +a2,

we have a0 + a1− a2 = −a0− a1 + a2, i.e., a2− a1 = a0. Hence, A = {a0,a1,a0 + a1} is an

extremal set.

Next, let k = 4 and A = {a0,a1,a2,a3}, where 0 < a0 < a1 < a2 < a3. Let |4∧±A| =(5
2

)
+ 1 = 11. Then 4∧±A contains precisely the following sequence of integers written in an

increasing order.

−a0−a1−a2−a3 < a0−a1−a2−a3 <−a0 +a1−a2−a3 <−a0−a1 +a2−a3

<−a0−a1−a2 +a3 < a0−a1−a2 +a3 <−a0 +a1−a2 +a3 <−a0−a1 +a2 +a3

< a0−a1 +a2 +a3 <−a0 +a1 +a2 +a3 < a0 +a1 +a2 +a3. (4.8)

Since the sumset 4∧±A is symmetric, from (4.8) it follows that

−a0−a1 +a2−a3 =−(−a0−a1 +a2 +a3),
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−a0−a1−a2 +a3 =−(−a0 +a1−a2 +a3),

and

a0−a1−a2 +a3 = 0.

These above three equations give a3−a2 = a2−a1 = a1−a0 = a0. Hence, A = a0 · {1,2,3,4}.

Finally, let k ≥ 5 and A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. Let

|k∧±A|=
(

k+1
2

)
+1.

Then, k∧±A contains precisely the integers listed in (4.4) (for h = k), with one more integer

−a0−a1−·· ·−ak−1. For j = 1,2, . . . ,k−1, set

u j = a0 +
k−1

∑
l=1
l 6= j

(−al)+a j. (4.9)

Clearly,

t0,1 < u1 < u2 < · · ·< uk−2 < uk−1 = t1,0.

So, there are exactly k−2 distinct integers in (4.9) between t0,1 and t1,0. Therefore, (4.4)

and (4.9) implies that, for j = 1,2, . . . ,k−2,

t0, j+1 = u j.

This is equivalent to a j+1−a j = a0, for j = 1,2, . . . ,k−2. That is

ak−1−ak−2 = · · ·= a3−a2 = a2−a1 = a0.

Again, since k∧±A is symmetric, we have −t0,0 = tk−3,0, i.e.,

−(−a0−a1−a2−a3 +a4−·· ·−ak−1) = a0−a1−a2 +a3 +a4 + · · ·+ak−1.

In other words,

a4 = a1 +a2.

Since a3−a2 = a0, we get a4−a3 = a1−a0. Hence, A = a0 · [1,k]. This completes the proof of

the theorem.

For h ≥ 3, we believe that the sumset h∧±A contains at least 2hk−h2 +1 integers. So we

conjecture that



46

Conjecture 4.2.4. Let A be a set of k (≥ 4) positive integers, and let 3≤ h≤ k−1. Then

|h∧±A| ≥ 2hk−h2 +1.

This lower bound is best possible.

The following example confirms the conjecture in a special case. Also in Theorem 4.2.5,

we prove the conjecture for h = 3. Moreover, we also give the inverse result in this case.

Example 1 (Super increasing sequence). Let A = {a0,a1, . . . ,ak−1}, where k ≥ 6, a0 > 0, and

ai > ∑
i−1
j=0 a j, for i = 1,2, . . . ,k−1.

Let h≥ 5. Clearly, the sumset h∧±A contains at least 2(hk−h2)+
(h+1

2

)
+1 integers, which

are listed in (4.2), (4.3) and (4.4).

For j = 1,2, . . . ,h−2, consider the integers −2a0 + s0, j. Clearly

−2a0 + s0, j =−a0 +
h

∑
l=1

l 6=h− j

al ∈ h∧±A,

and

s0, j−1 <−2a0 + s0, j < s0, j.

So, we get h−2 extra positive integers h∧±A, which are not present in (4.2), (4.3) and (4.4).

Since

−s0, j <−(−2a0 + s0, j)<−s0, j−1,

we get h−2 further extra integers in h∧±A.

For j = 2,3, . . . ,h−3, consider the integers

t0,h− j−1 <−t j,h− j−2 <−t j,h− j−3 < · · ·<−t j,0 <−t j−1,h− j < t0,h− j. (4.10)

Then, for each j = 2,3, . . . ,h− 3, we get h− j extra integers. Therefore, we get 3+ 4+ · · ·+

(h−2) =
(h

2

)
−h−2 more integers in h∧±A which are listed in (4.10) and never counted before.

We also get one more integer, i.e., −th−3,2 such that t0,1 <−th−3,2 < t0,2. So, we get 2(h−2)+(h
2

)
−h−2+1 =

(h
2

)
+(h−5) extra integers. Hence, by and large, we have

|h∧±A| ≥ 2hk−h2 +h−4≥ 2hk−h2 +1.
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Theorem 4.2.5. Let A be a set of k (≥ 4) positive integers. Then

|3∧±A| ≥ 6k−8. (4.11)

Moreover, if |3∧±A|= 6k−8, then A = d · {1,3,5, . . . ,2k−1} for some positive integer d.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · · < ak−1. From Theorem 4.2.1, we

have |3∧±A| ≥ 6k−11.

Next, we show that there exist at least three extra integers in 3∧±A which are not counted

in Theorem 4.2.1. Consider the following thirteen integers of 3∧±A:

−a1−a2−a3 <−a0−a2−a3 <−a0−a1−a3 <−a0−a1−a2 < a0−a1−a2

<−a0 +a1−a2 <−a0−a1 +a2 < a0−a1 +a2 <−a0 +a1 +a2 < a0 +a1 +a2

< a0 +a1 +a3 < a0 +a2 +a3 < a1 +a2 +a3. (4.12)

We exhibit at least three extra integers between −a1− a2− a3 and a1 + a2 + a3 in all

possible cases.

Case 1: Let a3− a2 < a3− a1 < 2a0. Then, we get at least two extra positive integers

−a0 +a1 +a3 and −a0 +a2 +a3 which are not present in (4.12) such that

−a0 +a1 +a2 <−a0 +a1 +a3 <−a0 +a2 +a3 < a0 +a1 +a2.

Case 2: Let a3− a2 < 2a0 < a3− a1. Then, we get at least two extra positive integers

−a0−a1 +a3 and −a0 +a1 +a3 which are not present in (4.12) such that

−a0−a1 +a2 <−a0−a1 +a3 < a0−a1 +a2 <−a0 +a1 +a2 <−a0 +a1 +a3

< a0 +a1 +a2.

Case 3: Let a3−a1 > a3−a2 > 2a0. Then, we get an extra positive integer−a0+a1+a3

such that

a0 +a1 +a2 <−a0 +a1 +a3 < a0 +a1 +a3.

To exhibit one further extra positive integer consider the following subcases

Subcase (i) (a2− a1 < 2a0). We get one more extra positive integer −a0 + a2 + a3 such

that

a0 +a1 +a2 <−a0 +a1 +a3 <−a0 +a2 +a3 < a0 +a1 +a3.
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Subcase (ii) (a2−a1 > 2a0). We get one more extra positive integer −a0 +a2 +a3 such

that

a0 +a1 +a2 <−a0 +a1 +a3 < a0 +a1 +a3 <−a0 +a2 +a3 < a0 +a2 +a3.

Subcase (iii) (a2− a1 = 2a0). In this subcase, we get two positive integers a0− a1 + a3

and a0−a2 +a3 such that

a0−a1 +a2 = 3a0 < a0−a2 +a3 < a0−a1 +a3 <−a0 +a1 +a3 < a0 +a1 +a3.

But, we already have

a0−a1 +a2 <−a0 +a1 +a2 < a0 +a1 +a2 <−a0 +a1 +a3 < a0 +a1 +a3.

Thus, except in the cases a0− a2 + a3 = −a0 + a1 + a2 and a0− a1 + a3 = a0 + a1 + a2,

we get at least one extra positive integer and hence we are done.

So, let

a0−a2 +a3 =−a0 +a1 +a2,

and

a0−a1 +a3 = a0 +a1 +a2.

These two equations imply

2(a2−a0) = a3−a1 = a1 +a2.

Consider the integer −a0−a2 +a3. We have

−a0−a1 +a2 = a0 <−a0−a2 +a3 <−a0−a1 +a3 =−a0 +a1 +a2.

If −a0− a2 + a3 6= a0− a1 + a2, then we are done, as we get one extra positive integer.

Otherwise, let

−a0−a2 +a3 = a0−a1 +a2,

or

a3−a2 = 2a0−a1 +a2 = 4a0.

Therefore, we have

a3−a1 = a3−a2 +a2−a1 = 6a0,
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and

a2−a0 =
1
2
(a3−a1) = 3a0.

Solving these equations we get a1 = 2a0, a2 = 4a0 and a3 = 8a0. Thus, we get one extra

positive integer −a1 +a2 +a3 such that

−a0 +a1 +a3 = 9a0 < 10a0 =−a1 +a2 +a3 < 11a0 = a0 +a1 +a3.

Hence, we get at least two extra positive integers in every case.

Case 4: Let a3− a2 < a3− a1 = 2a0. Then we get at least two extra positive integers

−a0−a1 +a3 and −a0 +a1 +a3 which are not present in (4.12) such that

−a0−a1 +a2 <−a0−a1 +a3 = a0 < a0−a1 +a2 <−a0 +a1 +a2 <−a0 +a1 +a3

< a0 +a1 +a2.

Case 5: Let a3−a1 > a3−a2 = 2a0. We consider the following three subcases:

Subcase (i) Let a2− a1 < 2a0. Then, we get at least two extra positive integers −a0−

a2 +a3 and −a0 +a2 +a3 such that

−a0−a1 +a2 < a0 =−a0−a2 +a3 < a0−a1 +a2 <−a0 +a1 +a2 < a0 +a1 +a2

<−a0 +a2 +a3 < a0 +a1 +a3.

Subcase (ii) Let a2− a1 > 2a0. Then, we get two extra positive integers −a0− a2 + a3

and −a0 +a2 +a3 such that

a0 +a1−a2 <−a0 < a0 =−a0−a2 +a3 <−a0−a1 +a2 < a0−a1 +a2 <−a0 +a1 +a2

< a0 +a1 +a2 < a0 +a1 +a3 <−a0 +a2 +a3 < a0 +a2 +a3.

Subcase (iii) Let a2−a1 = 2a0. We get an extra positive integer a1−a2 +a3 such that

a0−a1 +a2 = 3a0 < 2a0 +a1 = a1−a2 +a3 < a0 +2a1 =−a0 +a1 +a2.

If a1−a0 > 2a0, then we get one more extra positive integer a0−a1 +a3 such that

a0−a1 +a2 < a0−a1 +a3 <−2a0 +a3 = a1−a2 +a3 <−a0 +a1 +a2.

If a1−a0 < 2a0, then we get one more extra positive integer −a1 +a2 +a3 such that

a0−a1 +a2 < a1−a2 +a3 <−a0 +a1 +a2 < a0 +a1 +a2 <−a1 +a2 +a3 < a0 +a1 +a3.
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Let a1−a0 = 2a0. Then, the integer −a0−a1+a2 = a0 is positive. So, the inverse of this

integer gives one more extra integer with

−a0 +a1−a2 < a0 +a1−a2 <−a0−a1 +a2 < a0−a1 +a2.

From the above discussion, we conclude that except in the case a1 − a0 = a2 − a1 =

a3−a2 = 2a0, we get at least two extra positive integers in 3∧±A, which are not present in (4.12).

Since, the inverses of these integers are negative, we get two more extra integers. So, total we get

at least four extra integers in 3∧±A, which are not included in (4.12). In case a1−a0 = a2−a1 =

a3−a2 = 2a0, we get at least three extra integers. Therefore, in each case we get at least three

extra integers in 3∧±A, which are not present in (4.12). Hence, |3∧±A| ≥ 6k−8. This establishes

(4.11).

Moreover, if |3∧±A|= 6k−8, then a1−a0 = a2−a1 = a3−a2 = 2a0.

Now, let |3∧±A| = 6k− 8. If k = 4, then we are done, as A = {a0,3a0,5a0,7a0} = a0 ·

{1,3,5,7}.

Let k≥ 5, and let A′ = A\{a0}. Therefore, A′ is a nonempty set of k−1 positive integers

with 3∧A′ ⊂ [a1 + a2 + a3,ak−3 + ak−2 + ak−1]. Since |3∧±A| = 6k− 8, from the above proof

it follows that |3∧A′| = 3k− 11. Thus, Theorem 1.4.12 implies that the set A′ is in arithmetic

progression, i.e.,

ak−1−ak−2 = · · ·= a2−a1 = d.

Hence

A = a0 · {1,3,5, . . . ,2k−1}.

This completes the proof of the theorem.

Now, we conjecture the inverse result as follows:

Conjecture 4.2.6. Let A be a set of k (≥ 4) positive integers, and let 3≤ h≤ k−1. If |h∧±A|=

2hk−h2 +1, then A = d · {1,3, . . . ,2k−1}, for some positive integer d.

Theorem 4.2.5 confirms Conjecture 4.2.6 for h = 3.
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4.3 A contains nonnegative integers with 0 ∈ A

Theorem 4.3.1. Let A be a set of k nonnegative integers with 0 ∈ A, and let 1≤ h≤ k. Then

|h∧±A| ≥ 2(hk−h2)+

(
h
2

)
+1. (4.13)

This lower bound is best possible for h = 1, 2 and k.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 = a0 < a1 < · · · < ak−1. From (4.2) and (4.3), it

follows that h∧±A contains at least hk−h2+1 positive integers and hence including their inverses,

h∧±A contains at least 2(hk−h2 +1) integers.

Again, since a0 = 0, from (4.4) it follows that, for i = 0,1, . . . ,h− 2, we have ti,h−i−1 =

ti+1,0, −s0,0 = t0,0 and th−1,0 = s0,0. Thus, we get
(h

2

)
− 1 extra integers in h∧±A from the list

(4.4). Hence

|h∧±A| ≥ 2(hk−h2)+

(
h
2

)
+1.

Next, we show that the lower bound in (4.13) is best possible for h = 1, 2 and k.

If h = 1, then for any finite set A of k nonnegative integers with 0 ∈ A, we have |1∧±A| =

2k−1 and 2(hk−h2)+
(h

2

)
+1 = 2k−1.

Now, let h = 2 and A = [0,k−1]. Then

2∧±A = [−(2k−3),(2k−3)]\{0}.

So, |2∧±A|= 4k−6 = 2(hk−h2)+
(h

2

)
+1.

Finally, let h = k and A = [0,k− 1]. Then, it is easy to see that k∧±A contains either odd

integers or even integers. Since k∧±A⊂
[
−
(k

2

)
,
(k

2

)]
, we get

|k∧±A| ≤
(

k
2

)
+1.

This together with (4.13) give |k∧±A|=
(k

2

)
+1 = 2(hk−h2)+

(h
2

)
+1. This completes the proof

of the theorem.

We now give inverse results for h = 2 and h = k in theorems 4.3.2 and 4.3.3, respectively.

Theorem 4.3.2. Let A be a set of k (≥ 2) nonnegative integers with 0 ∈ A and |2∧±A| = 4k−6.

Then A = {0,a} with a > 0, if k = 2, and A = d · [0,k−1] for some positive integer d, if k ≥ 3.
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Proof. Let A = {0,a1,a2, . . . ,ak−1}, where 0 < a1 < a2 < · · ·< ak−1. Let

|2∧±A|= 4k−6.

First, let k = 2. Then 2∧±A = {a1,−a1}. So, |2∧±A|= 2 =
(2

2

)
+1. Thus, every set A of two

integers with 0 ∈ A is an extremal set.

Next, let k = 3. Then

2∧±A = {a1,−a1,a2,−a2,a1 +a2,a1−a2,−a1 +a2,−a1−a2},

where

−a1−a2 <−a2 <−a1 < a1 < a2 < a1 +a2. (4.14)

If |2∧±A|= 6 = 4k−6, then 2∧±A contains precisely the integers listed in (4.14). Since

−a2 < a1−a2 < a1,

from (4.14) it follows that a1−a2 =−a1, i.e., a2−a1 = a1. Hence, A = {0,a1,2a1}.

Now, let k = 4. Then

2∧±A = {a1,−a1,a2,−a2,a3,−a3,a1 +a2,a1−a2,−a1 +a2,−a1−a2,a1 +a3,a1−a3,

−a1 +a3,−a1−a3,a2 +a3,a2−a3,−a2 +a3,−a2−a3},

where

−a2−a3 <−a1−a3 <−a1−a2 <−a2 <−a1 < a1 < a2 < a1 +a2 < a1 +a3 < a2 +a3.

(4.15)

If |2∧±A|= 10 = 4k−6, then 2∧±A contains precisely the integers listed in (4.15). Since

a2 < a3 < a1 +a3,

from (4.15) it follows that a3 = a1 +a2, or a3−a2 = a1.

Similarly,

−a2 < a1−a2 < a1

imply a1−a2 =−a1, or a2−a1 = a1. Hence, A = {0,a1,2a1,3a1}.

Finally, let k≥ 5, and |2∧±A|= 4k−6. From Theorem 1.4.11 we know that |2∧A| ≥ 2k−3,

and since 2∧A∩ (−2∧A) = /0, we get |2∧A|= 2k−3. Therefore, by Theorem 1.4.12, the set A is

an arithmetic progression with the common difference ak−1−ak−2 = · · ·= a1−a0 = a1. Hence,

A = a1 · [0,k−1]. This completes the proof of the theorem.
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Theorem 4.3.3. Let A be a set of k (≥ 3) nonnegative integers with 0 ∈ A and |k∧±A|=
(k

2

)
+1.

Then

A =


{0,a1,a2}, 0 < a1 < a2, if k = 3;

{0,a1,a2,a1 +a2}, 0 < a1 < a2, if k = 4;

d · [0,k−1], for some positive integer d, if k ≥ 5.

Proof. Let A = {0,a1,a2, . . . ,ak−1}, where 0 < a1 < a2 < · · ·< ak−1. Let

|k∧±A|=
(

k
2

)
+1.

First, let k = 3. Then

3∧±A = {a1 +a2,a1−a2,−a1 +a2,−a1−a2},

where

−a1−a2 < a1−a2 <−a1 +a2 < a1 +a2.

So, |3∧±A|= 4 =
(3

2

)
+1. Thus, A is an extremal set.

Next, let k = 4. Then

4∧±A = {a1 +a2 +a3,a1 +a2−a3,a1−a2 +a3,a1−a2−a3,−a1 +a2 +a3,−a1 +a2−a3,

−a1−a2 +a3,−a1−a2−a3},

where

−a1−a2−a3 < a1−a2−a3 <−a1 +a2−a3 <−a1−a2 +a3 < a1−a2 +a3

<−a1 +a2 +a3 < a1 +a2 +a3. (4.16)

If |4∧±A| =
(4

2

)
+ 1 = 7, then 4∧±A contains precisely the above seven integers in (4.16).

Since

−a1 +a2−a3 < a1 +a2−a3 < a1−a2 +a3,

we have a1 + a2− a3 = −a1− a2 + a3, i.e., a3− a2 = a1. Hence, A = {0,a1,a2,a1 + a2} is an

extremal set.

Finally, let k≥ 5, and |k∧±A|=
(k

2

)
+1. Let A′ = A\{0}. So, A′ is a nonempty set of k−1

positive integers with k∧±A = (k−1)∧±A′. Since |(k−1)∧±A′| = |k∧±A| =
(k

2

)
+1, Theorem 4.2.3
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implies that the set A′ is in arithmetic progression with the common difference a1, the smallest

element in A′. Hence A = a1 · {0,1,2, . . . ,k−1}= a1 · [0,k−1]. This completes the proof of the

theorem.

For h ≥ 3, we believe that the sumset h∧±A contains at least 2hk− h(h+ 1)+ 1 integers.

So, we conjecture that

Conjecture 4.3.4. Let A be a set of k (≥ 5) nonnegative integers with 0∈A, and let 3≤ h≤ k−1.

Then

|h∧±A| ≥ 2hk−h(h+1)+1.

This lower bound is best possible.

We confirm Conjecture 4.3.4 for h = 3. Moreover, we also give the inverse result in this

case.

Theorem 4.3.5. Let A be a set of k (≥ 5) nonnegative integers with 0 ∈ A. Then

|3∧±A| ≥ 6k−11. (4.17)

Moreover, if |3∧±A|= 6k−11, then A = d · [0,k−1].

Proof. Let A = {0,a1,a2, . . . ,ak−1}, where 0 < a1 < a2 < · · · < ak−1. From Theorem 4.3.1, it

follows that |3∧±A| ≥ 6k−14.

Next, we show that there exists at least three extra integers in 3∧±A which are not counted

in Theorem 4.3.1. Consider the following twelve integers of 3∧±A:

−a1−a2−a4 <−a1−a2−a3 <−a2−a3 <−a1−a3 <−a1−a2 < a1−a2 <−a1 +a2

< a1 +a2 < a1 +a3 < a2 +a3 < a1 +a2 +a3 < a1 +a2 +a4. (4.18)

We exhibit at least three extra integers in between −a1− a2− a4 and a1 + a2 + a4 in all

possible cases.

Case 1: Let a3−a2 < a1. Then, we have

a1−a2 <−a2 +a3 <−a1 +a3 < a1 +a2,

and

a1−a2 <−a1 +a2 <−a1 +a3.
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If −a2 + a3 6= −a1 + a2, then we get two extra positive integers −a2 + a3 and −a1 + a3.

So, let −a2 +a3 = −a1 +a2. If a3−a1 < a1, then we get two extra positive integers −a1 +a3

and −a1 +a2 +a3 such that

−a1 +a2 <−a1 +a3 <−a1 +a2 +a3 < a1 +a2.

If a3−a1 > a1, then we get two extra positive integers −a1 +a3 and −a1 +a2 +a3 such

that

−a1 +a2 <−a1 +a3 < a1 +a2 <−a1 +a2 +a3 < a1 +a3.

If a3− a1 = a1, then also we get two extra positive integers −a1 + a3 and a1− a2 + a3

such that

−a1 +a2 <−a1 +a3 < a1−a2 +a3 < a1 +a2.

Case 2: Let a3− a2 = a1. Then, by similar arguments to Case 1, unless −a2 + a3 =

−a1 +a2, we get two extra positive integers −a2 +a3 and −a1 +a3.

Let −a2 +a3 =−a1 +a2. Then we get an extra positive integer −a1 +a3 such that

−a1 +a2 <−a1 +a3 < a1 +a2.

Again, we get one more extra integer −a1−a2 +a3 = 0 such that

a1−a2 <−a1−a2 +a3 <−a1 +a2.

Case 3: Let a3−a2 > a1. So, a3−a1 > a1.

Subcase (i). Let −a1 + a3 < a1 + a2. Unless −a2 + a3 = −a1 + a2, we get two extra

positive integers −a2 +a3 and −a1 +a3 which are not included in (4.18).

Let −a2 + a3 = −a1 + a2. Then also we get two extra positive integers −a1 + a3 and

−a1 +a2 +a3 such that

−a1 +a2 <−a1 +a3 < a1 +a2 < a1 +a3 <−a1 +a2 +a3 < a2 +a3.

Subcase (ii). Let −a1 + a3 > a1 + a2. Then, we get an extra positive integer −a1 + a3

such that

a1 +a2 <−a1 +a3 < a1 +a3.

If −a2 + a3 6= −a1 + a2 and −a2 + a3 6= a1 + a2, then we are done as we get one more

extra positive integer −a2 +a3.
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If −a2 +a3 =−a1 +a2, then we get an extra positive integer −a1−a2 +a3 such that

a1−a2 <−a1−a2 +a3 <−a1 +a2.

If −a2 + a3 = a1 + a2, then also we are done as we get an extra positive integer −a1−

a2 +a3 such that

−a1 +a2 <−a1−a2 +a3 < a1 +a2.

Subcase (iii). Let −a1 + a3 = a1 + a2. If −a2 + a3 < −a1 + a2, then we get two extra

positive integers −a2 +a3 and −a1−a2 +a3 such that

a1−a2 <−a1−a2 +a3 <−a2 +a3 <−a1 +a2.

If −a2 +a3 = −a1 +a2, then a2 = 3a1 and a3 = 5a1. We get two extra positive integers

−a1−a2 +a3 and a1−a2 +a3 such that

a1−a2 <−a1−a2 +a3 <−a1 +a2 < a1−a2 +a3 < a1 +a2.

Now, let −a2 +a3 >−a1 +a2. Then we get an extra positive integer −a2 +a3 such that

−a1 +a2 <−a2 +a3 <−a1 +a3 = a1 +a2.

If a2−a1 6= a1, then −a1 +a2 +a3 6= a1 +a3. So, we get one more extra positive integer

−a1 +a2 +a3 such that

a1 +a2 =−a1 +a3 <−a1 +a2 +a3 < a2 +a3.

Let a2−a1 = a1. So, a2 = 2a1 and a3 = 4a1. If a4−a3 > a1, then we get an extra positive

integer a2 +a4 such that

a1 +a2 +a3 < a2 +a4 < a1 +a2 +a4.

If a4−a3 < a1, then we get an extra positive integer a2 +a4 such that

a2 +a3 < a2 +a4 < a1 +a2 +a3.

If a4−a3 = a1, then also we get an extra positive integer a1−a2 +a4 such that

a1 +a2 < a1−a2 +a4 < a1 +a3.
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Thus, in Case 1 and Case 3, we get at least two extra positive integers. As the inverses of

these extra integers are also in 3∧±A, so we get four extra integers in these two cases, which are

not present in (4.18). In Case 2, we get at least three extra integers. Therefore, in each case we

get at least three extra integers in 3∧±A which are not present in (4.18). Hence

|3∧±A| ≥ 6k−11.

This establishes (4.17).

Now, let |3∧±A|= 6k−11. From the above discussion it is clear that we are in Case 2 with

a3−a2 = a2−a1 = a1.

Let A′ = A \ {0}. Then, A′ is a nonempty set of k− 1 positive integers with 3∧A′ ⊂

[a1 +a2 +a3,ak−3 +ak−2 +ak−1]. Since |3∧±A|= 6k−11, it follows from the above discussion

that |3∧A′|= 3k−11. Thus, Theorem 1.4.12 implies that the set A′ is in arithmetic progression,

i.e.,

ak−1−ak−2 = · · ·= a2−a1 = d.

Hence, A = a1 · {0,1,2, . . . ,k−1}. This completes the proof of the theorem.

We observe in the following theorem that the minimum requirement of five elements in

the set A in Theorem 4.3.5 is the best possible.

Theorem 4.3.6. Let A be a set of four nonnegative integers with 0 ∈ A. Then

|3∧±A| ≥ 12. (4.19)

Moreover, if |3∧±A|= 12, then A = d · {0,1,2,4}.

Proof. Let A = {0,a1,a2,a3}, where 0 < a1 < a2 < a3. From Theorem 4.3.1, it follows that

3∧±A contains at least the following ten integers.

−a1−a2−a3 <−a2−a3 <−a1−a3 <−a1−a2 < a1−a2 <−a1 +a2 < a1 +a2

< a1 +a3 < a2 +a3 < a1 +a2 +a3. (4.20)

Again, from the proof of Theorem 4.3.5, it follows that the sumset 3∧±A contains at least

three extra integers, except when a2 = 2a1, a3 = 4a1. In the case a2 = 2a1, a3 = 4a1, we get

two extra integers. Therefore, we always get two extra integers in 3∧±A which are not present

in (4.20). Hence |3∧±A| ≥ 12. This establishes (4.19). Moreover, if |3∧±A| = 12, then we have

a2 = 2a1 and a3 = 4a1. Hence A = a1 · {0,1,2,4}. This completes the proof of the theorem.
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We finally conjecture the inverse problem as follows:

Conjecture 4.3.7. Let A be a set of k (≥ 5) nonnegative integers with 0∈A, and let 3≤ h≤ k−1.

If |h∧±A|= 2hk−h(h+1)+1, then A = d · [0,k−1] for some positive integer d.

Theorem 4.3.5 confirms Conjecture 4.3.7 for h = 3.



Chapter 5

Counting the number of elements in h(γ)A:

A special case

Let k ≥ 2. Let h and γ be positive integers such that 1 ≤ γ ≤ h ≤ γk. Set m = bh/γc. Let

A = [0,k− 1] be an interval. Then the h-fold generalized sumset h(γ)A = [mγ(m−1)
2 + (h−

mγ)m,mγ
(
k− m+1

2

)
+(h−mγ)(k−m−1)]. Hence, |h(γ)A|= mγ(k−m)+(h−mγ)(k−2m−

1)+1. In this chapter, we find |h(γ)A| for A= {0,1, . . . ,k−2,k−1+b}= [0,k−2]∪{k−1+b},

which is an almost interval, where b is a nonnegative integer.

5.1 Introduction

Let A be a nonempty finite set of integers. Let h and γ be positive integers such that γ ≤ h.

Recall that, the h-fold generalized sumset h(γ)A is the set of all sums of h elements of A, where

each element appearing in a sum may be repeated at most γ times. So, the regular sumset hA

and the restricted sumset h∧A are special cases of the generalized sumset h(γ)A, for γ = h and

γ = 1, respectively.

Let A = [0,k− 1]. Then hA = [0,h(k− 1)], and hence |hA| = hk− h+ 1. Now, let A =

{0,1, . . . ,k−2,k−1+b}= [0,k−2]∪{k−1+b}, where b is a nonnegative integer. Nathanson

[81], proved that “|hA| is a strictly increasing piecewise-linear function of b for 0 ≤ b ≤ (h−

1)(k− 2) and that |hA| is constant for b ≥ (h− 1)(k− 2)”. The following theorem gives the

precise statement of Nathanson’s result.

59
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Theorem 5.1.1. [81, Theorem 1.11] Let h≥ 2 and k≥ 3. For b≥ 0, let A = [0,k−2]∪{k−1+

b} and b = q(k−2)+ r, where q≥ 0 and 0≤ r ≤ k−3.

If b≤ (h−1)(k−2), then

|hA|= hk− (h−1)+
q(2h−q−1)(k−2)

2
+(h−q−1)r.

If b≥ (h−1)(k−2), then

|hA|= hk− (h−1)+
h(h−1)(k−2)

2
.

In this chapter, we prove an analogue of Nathanson’s theorem to the general h-fold sumset

h(γ)A. Furthermore, as a particular case, we obtain a similar result for the restricted sumset h∧A.

Let h and γ be integers such that 1 ≤ γ ≤ h ≤ γk. Let m be a positive integer such that

h = mγ +ε , where 0≤ ε < γ . Let h≥ 2 and k≥m+2. For b≥ 0, let A = [0,k−2]∪{k−1+b}.

For l = 0,1, . . . ,ε , the smallest element of h(γ)A including l copies of {k−1+b} is

γ ·0+ γ ·1+ · · ·+ γ · (m−1)+(ε− l) ·m+ l · (k−1+b)

=
mγ(m−1)

2
+ εm+ l(k−1+b−m),

and the largest element of h(γ)A including l copies of {k−1+b} is

γ · (k−2)+ γ · (k−3)+ · · ·+ γ · (k−m−1)+(ε− l) · (k−m−2)+ l · (k−1+b)

= mγ

(
k−2− (m−1)

2

)
+ ε(k−m−2)+ l(b+m+1).

For l′ = ε +1,ε +2, . . . ,γ , the smallest element of h(γ)A including l′ copies of {k−1+b} is

γ ·0+ γ ·1+ · · ·+ γ · (m−2)+(γ + ε− l′) · (m−1)+ l′ · (k−1+b)

=
mγ(m−1)

2
+ ε(m−1)+ l′(k−m+b),

and the largest element of h(γ)A including l′ copies of {k−1+b} is

γ · (k−2)+ γ · (k−3)+ · · ·+ γ · (k−m)+(γ + ε− l′) · (k−m−1)+ l′ · (k−1+b)

= mγ

(
k−2− (m−1)

2

)
+ ε(k−m−1)+ l′(b+m).

Thus,

h(γ)A =
ε⋃

l=0

Il

γ⋃
l′=ε+1

Jl′,
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where

Il = [
mγ(m−1)

2
+ εm+ l(k−1+b−m),mγ(k−2− (m−1)

2
)+ ε(k−m−2)+ l(b+m+1)],

and

Jl′ = [
mγ(m−1)

2
+ ε(m−1)+ l′(k+b−m),mγ(k−2− (m−1)

2
)+ ε(k−m−1)+ l′(b+m)].

We have,

| Il |= mγ(k−m−1)+1+(ε− l)(k−2m−2),

and

| Jl′ |= mγ(k−m−1)+1+(ε− l′)(k−2m).

Since k ≥ m+2≥ 3, the intervals Il and Jl′ are shifting towards right in the sense that the

sequence of the left end points and the sequence of right end points are increasing as l and l′

increase, respectively. Also the left end point of Jε+1 is greater than the left end point of Iε and

the right end point of Jε+1 is greater than the right end point of Iε .

For l = 1, . . . ,ε , the set Il−1∪ Il is the interval,

[
mγ(m−1)

2
+ εm+(l−1)(k−1+b−m),mγ(k−2− (m−1)

2
)+ ε(k−m−2)+ l(b+m+1)]

if and only if

b ≤ mγ(k−m−1)−m+(ε− l)(k−2m−2)

= (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε− l)(k−2m−2).

For l′ = ε +2, . . . ,γ , the set Jl′−1∪ Jl′ is the interval,

[
mγ(m−1)

2
+ ε(m−1)+(l′−1)(k+b−m),mγ(k−2− (m−1)

2
)+ ε(k−m−1)+ l′(b+m)]

if and only if

b ≤ mγ(k−m−1)−m+1− (l′− ε)(k−2m)

= (kγ−mγ−1)(m−1)+(γ + ε− l′)(k−2m).

Also, Iε ∪ Jε+1 is the interval

[
mγ(m−1)

2
+ ε(k−1+b),mγ(k−2− (m−1)

2
)+ ε(k−1+b)+b+m]
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if and only if

b≤ (mγ−1)(k−m−1) = (kγ−mγ−1)(m−1)+(γ−1)(k−2m).

We find the cardinality of h(γ)A according as k≥ 2m+2, m+2≤ k≤ 2m, and k = 2m+1

in Sections 5.2, 5.3 and 5.4, respectively. In section 5.5, as concluding remarks, we conclude

that |h∧A| is a strictly increasing linear function of b for 0≤ b≤ (h−1)(k−h−1) and |h∧A| is

constant for b ≥ (h−1)(k−h−1). Further, we also conclude that all the results are also valid

for almost arithmetic progressions.

5.2 The Case k ≥ 2(m+1)

Theorem 5.2.1. Let k ≥ 2(m+ 1) and M = mγ(k−m)+ ε(k− 2m− 1)+ 1. If 0 ≤ b ≤ (kγ −

mγ−1)(m−1)+ ε(k−2m), then |h(γ)A|= M+bγ.

If (kγ −mγ − 1)(m− 1)+ ε(k− 2m) < b ≤ (kγ −mγ − 1)(m− 1)+ (γ − 1)(k− 2m), let b =

(kγ−mγ−1)(m−1)+ ε(k−2m)+q(k−2m)+ s, where q≥ 0 and 0≤ s < (k−2m), then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ ε(k−2m)}+ q(2γ−q−1)(k−2m)

2
+(γ−q−1)s.

If (kγ−mγ−1)(m−1)+(γ−1)(k−2m)< b≤ (kγ−mγ−1)(m−1)+ γ(k−2m)−1, then

|h(γ)A|= M+(γ− ε){(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}

− (γ− ε)(γ− ε−1)(k−2m)

2
+ εb.

If k > 2m+ 2 and (kγ −mγ − 1)(m− 1)+ γ(k− 2m)− 1 < b ≤ (kγ −mγ − 1)(m− 1)+ γ(k−

2m)−1+(ε−1)(k−2m−2), let b = (kγ−mγ−1)(m−1)+γ(k−2m)−1+q(k−2m−2)+s,

where q≥ 0 and 0≤ s < (k−2m−2), then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1}− (γ− ε)(k−2m−1)

− (γ− ε)(γ− ε−1)(k−2m)

2
+

q(2h−2mγ−q−1)(k−2m−2)
2

+(ε−q−1)s.

If b > (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2), then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1}− (γ− ε)(k−2m−1)

− (γ− ε)(γ− ε−1)(k−2m)

2
+

ε(ε−1)(k−2m−2)
2

.
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Proof. For k ≥ 2(m+1), we have the following

0 ≤ (kγ−mγ−1)(m−1)+ ε(k−2m)

< (kγ−mγ−1)(m−1)+(ε +1)(k−2m)

...

< (kγ−mγ−1)(m−1)+(γ−2)(k−2m)

< (kγ−mγ−1)(m−1)+(γ−1)(k−2m)

< (kγ−mγ−1)(m−1)+ γ(k−2m)−1

≤ (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(k−2m−2)
...

≤ (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2).

Case 1. Let 0≤ b≤ (kγ−mγ−1)(m−1)+ ε(k−2m). Clearly, I0∪ ·· ·∪ Iε ∪ Jε+1∪ ·· ·∪ Jγ is

the interval [mγ(m−1)/2+ εm,mγ(k−2− (m−1)/2)+ ε(k−m−1)+ γ(b+m)]. Therefore,

|h(γ)A|= M+bγ.

Case 2. If (kγ−mγ−1)(m−1)+ε(k−2m)< b≤ (kγ−mγ−1)(m−1)+ (γ−1)(k−2m), then

there exists a unique t ∈ [ε−1,γ−1] such that (kγ−mγ−1)(m−1)+(γ +ε− t−1)(k−2m)<

b≤ (kγ−mγ−1)(m−1)+(γ +ε−t)(k−2m). So I0∪ I1∪·· ·∪ Iε ∪Jε+1∪·· ·∪Jt is the interval

J = [mγ(m− 1)/2+ εm,mγ(k− 2− (m− 1)/2) + ε(k−m− 1) + t(b+m)] and the intervals

J,Jt+1, . . . ,Jγ are pairwise disjoint. Hence,

|h(γ)A|= |J|+
γ

∑
l′=t+1

|Jl′|

= M+ tb+(γ− t){(kγ−mγ−1)(m−1)+ ε(k−2m)}+ (γ− t)(γ− t−1)(k−2m)

2
.

Let b = (kγ−mγ−1)(m−1)+ ε(k−2m)+q(k−2m)+ s, where q≥ 0 and 0≤ s < (k−2m).

If s = 0, then t = γ−q. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ ε(k−2m)}+ q(2γ−q−1)(k−2m)

2
.

If 0 < s < (k−2m), then q = γ− t−1 or t = γ−q−1. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ ε(k−2m)}+ q(2γ−q−1)(k−2m)

2
+(γ−q−1)s.
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Case 3. Let (kγ−mγ−1)(m−1)+(γ−1)(k−2m)< b≤ (kγ−mγ−1)(m−1)+γ(k−2m)−1.

Clearly, I0∪ I1∪ ·· · ∪ Iε is the interval J = [mγ(m−1)/2+ εm,mγ(k−2− (m−1)/2)+ ε(k−

m−2)+ ε(b+m+1)]. Moreover, the intervals J,Jε+1, . . . ,Jγ are pairwise disjoint. Hence,

|h(γ)A|= |J|+
γ

∑
l′=ε+1

|Jl′|

= M+(γ− ε){(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}

− (γ− ε)(γ− ε−1)(k−2m)

2
+ εb.

Case 4. If k = 2m+2, then we arrive in Case 3. So, let k > 2(m+1) and (kγ−mγ−1)(m−1)+

γ(k−2m)−1 < b≤ (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−1)(k−2m−2). There exists a

unique t ∈ [1,ε−1] such that (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε− t−1)(k−2m−2)<

b ≤ (kγ −mγ − 1)(m− 1) + γ(k− 2m)− 1 + (ε − t)(k− 2m− 2). So I0 ∪ I1 ∪ ·· · ∪ It is the

interval J = [mγ(m−1)/2+εm,mγ(k−2− (m−1)/2)+ε(k−m−2)+ t(b+m+1)]. Clearly,

the intervals J, It+1, . . . , Iε ,Jε+1, . . . ,Jγ are pairwise disjoint. Hence,

|h(γ)A|= |J|+
ε

∑
l=t+1

|Il|+
γ

∑
l′=ε+1

|Jl′|

= M+(γ− t){mγ(k−m−1)−m}+ tb− (γ− ε)(γ− ε−1)(k−2m)

2

− (γ− ε)(k−2m−1)+
(ε− t)(ε− t−1)(k−2m−2)

2
.

Let b = (kγ −mγ − 1)(m− 1)+ γ(k− 2m)− 1+ q(k− 2m− 2)+ s, where q ≥ 0 and 0 ≤ s <

(k−2m−2). If s = 0, then q = ε− t. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1}− (γ− ε)(k−2m−1)

− (γ− ε)(γ− ε−1)(k−2m)

2
+

q(2h−2mγ−q−1)(k−2m−2)
2

.

If 0 < s < (k−2m−2), then q = ε− t−1. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1}− (γ− ε)(k−2m−1)

− (γ− ε)(γ− ε−1)(k−2m)

2
+

q(2h−2mγ−q−1)(k−2m−2)
2

+(ε−q−1)s.

Case 5. Let b> (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−1)(k−2m−2). Clearly, I0, I1, . . . , Iε ,Jε+1, . . . ,Jγ
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are pairwise disjoint intervals. Hence,

|h(γ)A|=
ε

∑
l=0
|Il|+

γ

∑
l′=ε+1

|Jl′|

= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1}− (γ− ε)(k−2m−1)

− (γ− ε)(γ− ε−1)(k−2m)

2
+

ε(ε−1)(k−2m−2)
2

.

This completes the proof of the theorem.

5.3 The Case m+2≤ k ≤ 2m

Theorem 5.3.1. Let m+2 ≤ k ≤ 2m. If 0 ≤ b ≤ (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−

1)(k−2m−2), then |h(γ)A|= M+bγ.

If (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−1)(k−2m−2)< b≤ (kγ−mγ−1)(m−1)+γ(k−

2m)−1, let b = (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−1)(k−2m−2)+q(2m+2−k)+s,

where q≥ 0 and 0≤ s < (2m+2− k), then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− q(2γ−q−1)(k−2m−2)
2

+(γ−q−1)s.

If (kγ−mγ−1)(m−1)+ γ(k−2m)−1 < b≤ (kγ−mγ−1)(m−1)+(γ−1)(k−2m), then

|h(γ)A|= M+ ε{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− ε(ε−1)(k−2m−2)
2

+(γ− ε)b.

If k < 2m and (kγ−mγ−1)(m−1)+(γ−1)(k−2m)< b≤ (kγ−mγ−1)(m−1)+ε(k−2m),

let b=(kγ−mγ−1)(m−1)+(γ−1)(k−2m)+q(2m−k)+s, where q≥ 0 and 0≤ s< (2m−k),

then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}+ ε(ε−1)(k−2m−2)
2

+ ε(k−2m−1)− q(2γ−2ε−q−1)(k−2m)

2
+(γ− ε−q−1)s.

If b > (kγ−mγ−1)(m−1)+ ε(k−2m), then

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}− (γ− ε)(γ− ε−1)(k−2m)

2

+ ε(k−2m−1)+
ε(ε−1)(k−2m−2)

2
.
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Proof. For k ≤ 2m, we have

0 ≤ (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)

< (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−2)(k−2m−2)
...

< (kγ−mγ−1)(m−1)+ γ(k−2m)−1

< (kγ−mγ−1)(m−1)+(γ−1)(k−2m)

≤ (kγ−mγ−1)(m−1)+(γ−2)(k−2m)

...

≤ (kγ−mγ−1)(m−1)+ ε(k−2m).

Case 1. Let 0 ≤ b ≤ (kγ −mγ − 1)(m− 1) + γ(k− 2m)− 1+ (ε − 1)(k− 2m− 2). Clearly,

I0∪ ·· · ∪ Iε ∪ Jε+1∪ ·· · ∪ Jγ is the interval [mγ(m− 1)/2+ εm,mγ(k− 2− (m− 1)/2)+ ε(k−

m−1)+ γ(b+m)]. Hence,

|h(γ)A|= M+bγ.

Case 2. Let (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−1)(k−2m−2)< b≤ (kγ−mγ−1)(m−

1)+ γ(k−2m)−1. There exists a unique t ∈ [1,ε−1] such that (kγ−mγ−1)(m−1)+ γ(k−

2m)−1+(ε−t)(k−2m−2)< b≤ (kγ−mγ−1)(m−1)+γ(k−2m)−1+(ε−t−1)(k−2m−

2). So I0, I1, . . . , It−1,J are pairwise disjoint intervals, where J = It ∪ ·· · ∪ Iε ∪ Jε+1∪ ·· · ∪ Jγ =

[mγ(m−1)/2+εm+t(k−1+b−m),mγ(k−2−(m−1)/2)+ε(k−m−1)+γ(b+m)]. Hence,

|h(γ)A|= |J|+
t−1

∑
l=0
|Il|

= M+(γ− t)b+ t{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− t(t−1)(k−2m−2)
2

.

Let b = (kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)+q(2m+2−k)+ s, where

q≥ 0 and 0≤ s < (2m+2− k). If s = 0, then t = q. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− q(2γ−q−1)(k−2m−2)
2

.
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If 0 < s < (2m+2− k), then t = q+1. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− q(2γ−q−1)(k−2m−2)
2

+(γ−q−1)s.

Case 3. Let (kγ−mγ−1)(m−1)+γ(k−2m)−1< b≤ (kγ−mγ−1)(m−1)+(γ−1)(k−2m).

Clearly, I0, I1, . . . , Iε−1,J are pairwise disjoint intervals, where J = Iε ∪Jε+1∪·· ·∪Jγ = [mγ(m−

1)/2+ ε(k−1+b),mγ(k−2− (m−1)/2)+ ε(k−m−1)+ γ(b+m)]. Thus,

|h(γ)A|= |J|+
ε−1

∑
l=0
|Il|

= M+ ε{(kγ−mγ−1)(m−1)+ γ(k−2m)−1+(ε−1)(k−2m−2)}

− ε(ε−1)(k−2m−2)
2

+(γ− ε)b.

Case 4. If k = 2m, then we are in Case 3. Therefore, we let k < 2m and (kγ−mγ−1)(m−1)+

(γ−1)(k−2m)< b≤ (kγ−mγ−1)(m−1)+ε(k−2m). There exists a unique t ∈ [ε +1,γ−1]

such that (kγ−mγ−1)(m−1)+(γ +ε− t)(k−2m)< b≤ (kγ−mγ−1)(m−1)+(γ +ε− t−

1)(k−2m). So I0, I1, . . . , Iε ,Jε+1, . . . ,Jt−1,J are pairwise disjoint intervals, where J = Jt ∪ ·· ·∪

Jγ = [mγ(m−1)/2+ε(m−1)+ t(k+b−m),mγ(k−2−(m−1)/2)+ε(k−m−1)+γ(b+m)].

Therefore,

|h(γ)A|= |J|+
ε

∑
l=0
|Il|+

t−1

∑
l′=ε+1

|Jl′|

= M+(γ− t)b+ t{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}+ ε(ε−1)(k−2m−2)
2

+ ε(k−2m−1)− (t− ε)(t− ε−1)(k−2m)

2
.

Let b = (kγ −mγ − 1)(m− 1) + (γ − 1)(k− 2m) + q(2m− k) + s, where q ≥ 0 and 0 ≤ s <

(2m− k). If s = 0, then t− ε = q. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}+ ε(ε−1)(k−2m−2)
2

+ ε(k−2m−1)− q(2γ−2ε−q−1)(k−2m)

2
.

If 0 < s < (2m− k), then t− ε−1 = q. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}+ ε(ε−1)(k−2m−2)
2

+ ε(k−2m−1)− q(2γ−2ε−q−1)(k−2m)

2
+(γ− ε−q−1)s.
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Case 5. Let b> (kγ−mγ−1)(m−1)+ε(k−2m). Clearly, I0, I1, . . . , Iε ,Jε+1, . . . ,Jγ are pairwise

disjoint intervals. Hence,

|h(γ)A|= M+ γ{(kγ−mγ−1)(m−1)+(γ−1)(k−2m)}− (γ− ε)(γ− ε−1)(k−2m)

2

+ ε(k−2m−1)+
ε(ε−1)(k−2m−2)

2
.

This completes the proof of the theorem.

5.4 The Case k = 2m+1

Theorem 5.4.1. Let k = 2m+ 1. If 0 ≤ ε ≤ γ/2 with 0 ≤ b ≤ (mγ + γ − 1)(m− 1)+ ε , then

|h(γ)A|= M+bγ.

If ε < γ/2 with (mγ + γ−1)(m−1)+ ε < b≤ (mγ + γ−1)(m−1)+ γ− ε , then

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ ε}+ q(2γ−q−1)
2

,

where b = (mγ + γ−1)(m−1)+ ε +q, 0 < q≤ γ−2ε .

If (mγ +γ−1)(m−1)+γ−ε < b≤ (mγ +γ−1)(m−1)+γ−2, let b = (mγ +γ−1)(m−1)+

γ− ε +q, where 0≤ q≤ ε−2, then

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ γ−1− (ε−1)}+ q(2γ−q−1)
2

− (γ−2ε +q)(γ−2ε +q+1)
2

.

If ε > γ/2 with 0≤ b≤ (mγ + γ−1)(m−1)+ γ− ε , then |h(γ)A|= M+bγ.

If (mγ + γ−1)(m−1)+ γ− ε < b≤ (mγ + γ−1)(m−1)+ ε , then

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ γ− ε}+ q(2γ−q−1)
2

,

where b = (mγ + γ−1)(m−1)+ γ− ε +q, 0 < q≤ 2ε− γ +1.

If (mγ+γ−1)(m−1)+ε < b≤ (mγ+γ−1)(m−1)+γ−2, let b= (mγ+γ−1)(m−1)+ε+q,

where 0≤ q≤ γ− ε−2, then

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ ε}+ q(2γ−q−1)
2

− (γ−2ε−q)(γ−2ε−q−1)
2

.

If b≥ (mγ + r−1)(γ−1)+ γ−1, then

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ γ−1}− ε(ε−1)
2

− (γ− ε)(γ− ε−1)
2

.
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Proof. If b = 0, then h(γ)A = [0,h(k−1)]. Hence, |h(γ)A|= M. Now let b > 0. For k = 2m+1,

we have the following two sets of integers with their corresponding orders:

0 < (mγ + γ−1)(m−1)+ γ− ε

< (mγ + γ−1)(m−1)+ γ− ε +1
...

< (mγ + γ−1)(m−1)+ γ−1,

and

0 < (mγ + γ−1)(m−1)+ ε

< (mγ + γ−1)(m−1)+ ε +1
...

< (mγ + γ−1)(m−1)+ γ−2.

We have (mγ+γ−1)(m−1)+ε ≤ (mγ+γ−1)(m−1)+γ−ε if and only if 0≤ ε ≤ γ/2.

Assume that 0≤ ε ≤ γ/2.

Case 1. Let 0 < b≤ (mγ +γ−1)(m−1)+ε . Clearly, I0∪·· ·∪ Iε ∪Jε+1∪·· ·∪Jγ is the interval

[mγ(m−1)/2+ εm,mγ(2m−1− (m−1)/2)+ εm+ γ(b+m)]. Hence,

|h(γ)A|= M+bγ.

Case 2. Since ε = γ/2 is covered in Case 1, let ε < γ/2 and (mγ + γ − 1)(m− 1)+ ε < b ≤

(mγ + γ − 1)(m− 1)+ γ − ε . There exists a unique t ∈ [2ε,γ − 1] such that (mγ + γ − 1)(m−

1)+(γ +ε− t−1)< b≤ (mγ + γ−1)(m−1)+(γ +ε− t). So, I0∪ I1∪·· ·∪ Iε ∪Jε+1∪·· ·∪Jt

is the interval J = [mγ(m−1)/2+εm,mγ(2m−1−(m−1)/2)+εm+ t(b+m)]. Moreover, the

intervals J,Jt+1, . . . ,Jγ are pairwise disjoint. Therefore,

|h(γ)A|= |J|+
γ

∑
l′=t+1

|Jl′|

= M+ tb+(γ− t){(mγ + γ−1)(m−1)+ ε}+ (γ− t)(γ− t−1)
2

.

Let b = (mγ + γ−1)(m−1)+ ε +q, where 0 < q≤ γ−2ε . So γ− t = q. Hence,

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ ε}+ q(2γ−q−1)
2

.
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Case 3. Let (mγ+γ−1)(m−1)+γ−ε < b≤ (mγ+γ−1)(m−1)+γ−2. There exists a unique

t ∈ [1,ε−2] such that (mγ +γ−1)(m−1)+γ−ε−1+ t < b≤ (mγ +γ−1)(m−1)+γ−ε + t.

So, It ∪ ·· · ∪ Iε ∪ Jε+1∪ ·· · ∪ J2ε−t is the interval J = [mγ(m− 1)/2+ εm+ t(b+m),mγ(2m−

1− (m− 1)/2)+ εm+(2ε − t)(b+m)]. Moreover the intervals I0, I1, . . . , It−1,J,J2ε−1, . . . ,Jγ

are pairwise disjoint. Hence,

|h(γ)A|= |J|+
t−1

∑
l=0
|Il|+

r

∑
l′=2ε−t+1

|Jl′|

= m2
γ +1− t(b+m−m2

γ−1)− t(2ε− t +1)
2

+ γ(m2r+1)

+(2ε− t)(b+m−m2
γ−1)− (γ− t +1)(γ−2ε + t)

2
.

Let b = (mγ + γ−1)(m−1)+ γ− ε +q, where 0≤ q≤ ε−2. So q = t. Hence,

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ γ− ε}+ q(2γ−q−1)
2

− (γ−2ε +q)(γ−2ε +q+1)
2

.

Now assume that ε > γ/2.

Case 4. Let 0 < b ≤ (mγ + γ − 1)(m− 1)+ γ − ε . Clearly, I0 ∪ ·· · ∪ Iε ∪ Jε+1 ∪ ·· · ∪ Jγ is the

interval [mγ(m−1)/2+ εm,mγ(2m−1− (m−1)/2)+ εm+ γ(b+m)]. Therefore,

|h(γ)A|= M+bγ.

Case 5. Let (mγ + γ−1)(m−1)+ γ− ε < b≤ (mγ + γ−1)(m−1)+ ε . There exists a unique

t ∈ [1,2ε−γ] such that (mγ+γ−1)(m−1)+γ−ε+t−1< b≤ (mγ+γ−1)(m−1)+γ−ε+t.

So, It ∪ It+1∪·· ·∪ Iε ∪Jε+1∪·· ·∪Jγ is the interval J = [mγ(m−1)/2+εm+ t(b+m),mγ(2m−

1− (m−1)/2)+ εm+ γ(b+m)]. Moreover, the intervals I0, I1, . . . , It−1,J are pairwise disjoint.

Hence,

|h(γ)A|= |J|+
t−1

∑
l=0
|Il|

= M+bγ− t(b+m−m2
γ−1)− t(2ε− t +1)

2
.

Let b = (mγ + γ−1)(m−1)+ γ− ε +q, where 0 < q≤ 2ε− γ +1. So t = q. Therefore,

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ γ− ε}+ q(2γ−q−1)
2

.

Case 6. Let (mγ + γ−1)(m−1)+ ε < b≤ (mγ + γ−1)(m−1)+ γ−2. There exists a unique

t ∈ [ε + 2,γ − 1] such that (mγ + γ − 1)(m− 1)+ (γ + ε − t− 1) < b ≤ (mγ + γ − 1)(m− 1)+
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(γ+ε−t). So I2ε−t∪·· ·∪Iε∪Jε+1∪·· ·∪Jt is the interval J = [mγ(m−1)/2+εm+(2ε−t)(b+

m),mγ(2m−1−(m−1)/2)+εm+t(b+m)]. Moreover the intervals I0, I1, . . . , I2ε−t−1,J,Jt+1, . . . ,Jγ

are pairwise disjoint. Hence,

|h(γ)A|= |J|+
2ε−t−1

∑
l=0
|Il|+

γ

∑
l′=t+1

|Jl′ |

= m2
γ +1− (2ε− t)(b+m−m2

γ−1)− (2ε− t)(t +1)
2

+ γ(m2
γ +1)

+ t(b+m−m2
γ−1)− (γ− t)(γ−2ε + t +1)

2
.

Let b = (mγ + γ−1)(m−1)+ ε +q, where 0≤ q≤ γ− ε−2. So q = γ− t. Hence,

|h(γ)A|= M+ γ{(mγ + γ−1)(m−1)+ ε}+ q(2γ−q−1)
2

− (γ−2ε−q)(γ−2ε−q−1)
2

.

Case 7. Let b = (mγ + γ − 1)(m− 1) + γ − 1. So I0, I1, . . . , Iε−2,J,Jε+2, . . . ,Jγ are pairwise

disjoint intervals, where J = Iε−1∪ Iε ∪ Jε+1 = [mγ(m−1)/2+ εm+(ε−1)(b+m),mγ(2m−

1− (m−1)/2)+ εm+(ε +1)(b+m)]. Therefore,

|h(γ)A|= |J|+
ε−2

∑
l=0
|Il|+

γ

∑
l′=ε+2

|Jl′|

= M+ γ{(mγ + γ−1)(m−1)+ γ−1}− ε(ε−1)
2

− (γ− ε)(γ− ε−1)
2

.

Case 8. Let b > (mγ + γ − 1)(m− 1)+ γ − 1. Clearly, I0, I1, . . . , Iε ,Jε+1, · · · ,Jγ are pairwise

disjoint intervals. Hence,

|h(γ)A|=
ε

∑
l=0
|Il|+

γ

∑
l′=ε+1

|Jl′|

= M+ γ{(mγ + γ−1)(m−1)+ γ−1}− ε(ε−1)
2

− (γ− ε)(γ− ε−1)
2

.

This completes the proof of the theorem.

5.5 Remarks

1. If ε = 0 and γ = h, we get Theorem 5.1.1 of Nathanson.

2. If γ = 1, we get the following;
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Let k ≥ 3 and 2 ≤ h ≤ k . For b ≥ 0, let A = [0,k− 2]∪{k− 1+ b}. If h ≤ k− 1 and

b≤ (h−1)(k−h−1), then

|h∧A|= hk−h2 +1+b.

If b > (h−1)(k−h−1), then

|h∧A|= hk−h2 +1+(h−1)(k−h−1).

If h = k, then |h∧A|= 1.

Thus, we observe that |h∧A| is a strictly increasing linear function of b for 0 ≤ b ≤ (h−

1)(k−h−1) and |h∧A| is constant for b≥ (h−1)(k−h−1).

3. Let A = {a,a+d,a+2d, . . . ,a+(k−2)d,a+(k−1+b)d} is almost an arithmetic pro-

gression, where b is a nonnegative integer. Then A = a+ d · ([0,k− 2]∪ {k− 1+ b}).

Set A′ = [0,k−2]∪{k−1+b}. Then h(γ)A = {ha}+d ·h(γ)A′. Thus, |h(γ)A|= |h(γ)A′|.

Hence, our result also holds for the set A.

4. For ε = 0, i.e., h = mγ one requires to consider only two cases; k ≥ 2m and k < 2m. In

both the cases |h(γ)A| is a strictly increasing linear function of b for 0 ≤ b ≤ N1 and is a

strictly increasing piecewise-linear function of b for N1 ≤ b ≤ N2 and |h(γ)A| is constant

for b≥ N2; N1 = (kγ−mγ−1)(m−1), N2 = (kγ−mγ−1)(m−1)+(γ−1)(k−2m), if

k ≥ 2m and N1 = (kγ−mγ−1)(m−1)+(γ−1)(k−2m), N2 = (kγ−mγ−1)(m−1), if

k < 2m.



Chapter 6

Direct and inverse problems for certain

subset and subsequence sums

In this chapter, we consider certain subset and subsequence sums in the group of integers. We

solve the direct and inverse problems for the subset sums. We also solve the direct and inverse

problems for the subsequence sums, when all the distinct integers of the sequence have the

same multiplicity. Moreover, as corollaries of direct and inverse results for these subset and

subsequence sums we obtain already established direct and inverse results for the regular subset

and subsequence sums.

6.1 Introduction

Let A be a nonempty finite set of integers. Given a subset B of A, the sum of all elements of B is

called the subset sum of B. Let S(A) be the set of all subset sums of A, i.e.,

S(A) :=

{
∑
b∈B

b : B⊂ A

}
,

where s( /0) = 0.

The subsequence sum of a given sequence of integers is defined in a similar way. Let A =

(a0,a1, . . . ,ak−1)r̄ be a nonempty sequence of k distinct integers with repetition r̄ =(r0,r1, . . . ,rk−1).

Given a subsequence B of A , the sum of all terms of B is called the subsequence sum of B.

73
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Let S(r̄,A ) be the set of all subsequence sums of A , i.e.,

S(r̄,A ) :=

{
∑

b∈B
b : B is a subsequence of A

}
.

The direct problem for S(A) is to find the minimum number of elements in S(A) in terms

of number of elements in A. The inverse problem for S(A) is to find the structure of the finite

set A for which |S(A)| is minimal. The direct and inverse problems for the subsequence sums

S(r̄,A ) of the sequence A = (a0,a1, . . . ,ak−1)r̄ are defined in a similar way.

The direct and inverse theorems for the subset and subsequence sums are well established

in the group of integers (see [58, 76, 77, 78, 80]). In a recent study, Balandraud [12] finds the

minimum cardinality of certain subset sums with some restriction on the number of elements,

in finite fields. We study the same subset sums in the group of integers, as that considered by

Balandraud. We also study the analogues subsequence sums.

Definition 6.1.1 (Balandraud [12]). Let A be a nonempty finite set of k integers. Let α ∈ [0,k]

be an integer. We define Sα(A) to be the set of subset sums of all subsets of A that are of the size

at least α , and Sα(A) to be the set of subset sums of all subsets of A that are of the size at most

k−α . More precisely,

Sα(A) :=

{
∑
b∈B

b : B⊂ A, |B| ≥ α

}
,

and

Sα(A) :=

{
∑
b∈B

b : B⊂ A, |B| ≤ k−α

}
.

It is easy to see that these subset sums have the following properties:

• If α = 0, then S0(A) = S0(A) = S(A).

• For every α ∈ [0,k], we have the symmetric relation

Sα(A) = ∑
a∈A

a−Sα(A).

Thus, |Sα(A)|= |Sα(A)|.

• If α ≤ α ′, then Sα ′(A)⊂ Sα(A) and Sα ′(A)⊂ Sα(A).
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Definition 6.1.2. Let A = (a0,a1, . . . ,ak−1)r̄ be a nonempty sequence of k distinct integers with

repetition r̄ = (r0,r1, . . . ,rk−1). Let α ∈
[
0,∑k−1

i=0 ri

]
be an integer. We define Sα(r̄,A ) to be the

set of subsequence sums of all subsequences of A that are of the size at least α , and Sα(r̄,A ) to

be the set of subsequence sums of all subsequences of A that are of the size at most ∑
k−1
i=0 ri−α .

More precisely,

Sα(r̄,A ) :=

{
∑

b∈B
b : B is a subsequence of A with |B| ≥ α

}
,

and

Sα(r̄,A ) :=

{
∑

b∈B
b : B is a subsequence of A with |B| ≤

k−1

∑
i=0

ri−α

}
.

These subsequence sums also satisfy similar properties as that satisfied by the aforemen-

tioned subset sums.

• If α = 0, then S0(r̄,A ) = S0(r̄,A ) = S(r̄,A ).

• For every α ∈
[
0,∑k−1

i=0 ri

]
, we have

Sα(r̄,A ) = ∑
a∈A

a−Sα(r̄,A ).

Thus, |Sα(r̄,A )|= |Sα(r̄,A )|.

• If α ≤ α ′, then Sα ′(r̄,A )⊂ Sα(r̄,A ) and Sα ′(r̄,A )⊂ Sα(r̄,A ).

If ri = r for i= 0,1, . . . ,k−1, then we use the notation Sα(r,A ) for Sα(r̄,A ) and Sα(r,A )

for Sα(r̄,A ).

The direct problem for Sα(A) is to find the minimum number of elements in Sα(A) in

terms of number of elements in A and α . The inverse problem for Sα(A) is to find the structure

of the finite set A for which |Sα(A)| is minimal. Similarly, the direct problem for Sα(r̄,A ) is to

find the minimum number of elements in Sα(r̄,A ) in terms of number of distinct elements in

A and α . The inverse problem for Sα(r̄,A ) is to find the structure of the finite sequence A for

which |Sα(r̄,A )| is minimal.

In this chapter, we solve both direct and inverse problems for the set of subset sums Sα(A)

in Section 6.2. We also solve both direct and inverse problems for the set of subsequence sums

Sα(r,A ) in Section 6.3. Furthermore, as particular cases of our results we obtain the direct and

inverse results of Nathanson [80] on regular subset sums, and the direct and inverse results of

Mistri and Pandey [77] on regular subsequence sums.
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6.2 Subset sum

Theorem 6.2.1. Let k ≥ 1 and α ∈ [0,k]. Let A be a set of k positive integers. Then

|Sα(A)| ≥
(

k+1
2

)
−
(

α +1
2

)
+1. (6.1)

This lower bound is best possible.

Proof. First, let k = 1. Then A = {a} for some integer a > 0. Clearly, S0(A) = {0,a} and

S1(A) = {a}. Thus, (6.1) holds for k = 1. So, we may assume that k ≥ 2.

Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · · < ak−1. If α = k, then Sα(A) =

{a0 +a1 + · · ·+ak−1}, and hence |Sα(A)|= 1. This satisfies (6.1).

So, let 0≤ α ≤ k−1. For h = 1,2, . . . ,k−α , define

Bh := {ai +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1 : i = 0,1, . . . ,k−α−h}. (6.2)

Each element of Bh is a sum of at most k−α distinct elements of A. Therefore, Bh ⊂ Sα(A).

Moreover, for h = 1,2, . . . ,k−α−1, we have

max(Bh) = ak−α−h +ak−α−h+1 + · · ·+ak−α−1

< a0 +ak−α−h +ak−α−h+1 + · · ·+ak−α−1 = min(Bh+1).

Therefore, the sets B1,B2, . . . ,Bk−α are pairwise disjoint.

For i = 0,1, . . . ,α−1 and j = 0,1, . . . ,k−α , set

si, j :=
k−α

∑
l=0

l 6=k−α− j

ai+l, (6.3)

and

sα,0 :=
k−α−1

∑
l=0

aα+l. (6.4)

Each of these sums in (6.3) and (6.4) is a sum of k− α distinct elements of A, and hence

si, j ∈ Sα(A). Moreover, for i = 0,1, . . . ,α−1 and j = 0,1, . . . ,k−α−1, we have

si, j < si, j+1,

and

si,k−α = si+1,0.
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Therefore,

si,0 < si,1 < · · ·< si,k−α−1 < si,k−α = si+1,0.

Thus, the total number of integers mentioned in (6.3) and (6.4) is α(k−α)+1.

Since, max(Bk−α) = s0,0, and 0 ∈ Sα(A), we have

|Sα(A)|= |Sα(A)|

≥ |
k−α⋃
h=1

Bh|+α(k−α)+1

=
k−α

∑
h=1
|Bh|+α(k−α)+1

=
k−α

∑
h=1

(k−α−h+1)+α(k−α)+1

=

(
k+1

2

)
−
(

α +1
2

)
+1.

Next, we show that the lower bound in (6.1) is best possible.

Let k ≥ 2 and A = [1,k]. Then

Sα(A)⊂ [0,k+(k−1)+ · · ·+(α +1)]

=

[
0,
(

k+1
2

)
−
(

α +1
2

)]
.

Therefore,

|Sα(A)| ≤
(

k+1
2

)
−
(

α +1
2

)
+1.

This together with (6.1) gives

|Sα(A)|= |Sα(A)|=
(

k+1
2

)
−
(

α +1
2

)
+1.

This completes the proof of theorem.

Corollary 6.2.2. Let k ≥ 2 and α ∈ [0,k]. Let A be a set of k nonnegative integers with 0 ∈ A.

Then

|Sα(A)| ≥
(

k
2

)
−
(

α

2

)
+1. (6.5)

This lower bound is best possible.
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Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 = a0 < a1 < · · ·< ak−1. Let A′ = A\{0}. So, A′ is

a nonempty set of k−1 positive integers. It is easy to see that if α = 0, then

S0(A) = S(A) = S(A′) = S0(A′),

and if α ≥ 1, then

Sα(A) = Sα−1(A′).

Hence, by Theorem 6.2.1, we have

|S0(A)|= |S0(A)|= |S0(A′)| ≥
(

k
2

)
+1,

and for α ≥ 1, we have

|Sα(A)|= |Sα(A)|

= |Sα−1(A′)|

≥
(

k
2

)
−
(

α

2

)
+1.

Next, we show that the lower bound in (6.5) is best possible.

Let k ≥ 3, and A = [0,k−1]. Then

Sα(A)⊂ [0,(k−1)+(k−2)+ · · ·+α]

=

[
0,
(

k
2

)
−
(

α

2

)]
.

Therefore,

|Sα(A)| ≤
(

k
2

)
−
(

α

2

)
+1.

This together with (6.5) gives

|Sα(A)|= |Sα(A)|=
(

k
2

)
−
(

α

2

)
+1.

This completes the proof of the corollary.

As a consequence of Theorem 6.2.1 and Corollary 6.2.2, for α = 0, we obtain Theorem

1.4.22.

Theorem 6.2.3. Let k ≥ 4 and 0≤ α ≤ k−2. Let A be a set of k positive integers such that

|Sα(A)|=
(

k+1
2

)
−
(

α +1
2

)
+1.

Then A = d · [1,k] for some positive integer d.
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Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 < a0 < a1 < · · ·< ak−1. Let

|Sα(A)|= |Sα(A)|=
(

k+1
2

)
−
(

α +1
2

)
+1.

Then, Theorem 6.2.1 implies that Sα(A) contains precisely the integers listed in (6.2), (6.3) and

(6.4), with one more integer, 0. For h = 1,2, . . . ,k−α−1, we have

ak−α−h−1 +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1

< ak−α−h +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1 = max(Bh)

< a0 +ak−α−h +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1 = min(Bh+1),

and

ak−α−h−1 +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1

< a0 +ak−α−h−1 +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1

< a0 +ak−α−h +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1 = min(Bh+1).

Therefore,

max(Bh) = ak−α−h +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1

= a0 +ak−α−h−1 +ak−α−h+1 +ak−α−h+2 + · · ·+ak−α−1.

That is

ak−α−h−ak−α−h−1 = a0

for h = 1,2, . . . ,k−α−1. Thus

ak−α−1−ak−α−2 = ak−α−2−ak−α−3 = · · ·= a1−a0 = a0. (6.6)

If α = 0, then we are done. So, we may assume that α ≥ 1. Then

max(Bh−1) = a1 +a2 +a3 + · · ·+ak−α−1

< a0 +a1 +a2 + · · ·+ak−α−1 = min(Bh) = max(Bh) = s0,0

< a0 +a1 +a2 + · · ·+ak−α−2 +ak−α = s0,1,



80

and

max(Bh−1) = a1 +a2 +a3 + · · ·+ak−α−1

< a1 +a2 +a3 + · · ·+ak−α−2 +ak−α

< a0 +a1 +a2 + · · ·+ak−α−2 +ak−α = s0,1.

Therefore,

max(Bh) = a0 +a1 +a2 + · · ·+ak−α−1

= a1 +a2 +a3 + · · ·+ak−α−2 +ak−α .

That is

ak−α −ak−α−1 = a0. (6.7)

Again, if α = 1, then we are done, as the result follows from (6.6) and (6.7). So, let α ≥ 2.

Then, for i = 1,2, . . . ,α−1, we have

si−1,k−α−1 = ai−1 +ai+1 +ai+2 + · · ·+ai+k−α−1

< ai +ai+1 +ai+2 + · · ·+ai+k−α−1 = si−1,k−α = si,0

< ai +ai+1 +ai+2 + · · ·+ai+k−α−2 +ai+k−α = si,1,

and

si−1,k−α−1 = ai−1 +ai+1 +ai+2 + · · ·+ai+k−α−1

< ai−1 +ai+1 +ai+2 + · · ·+ai+k−α−2 +ai+k−α

< ai +ai+1 +ai+2 + · · ·+ai+k−α−2 +ai+k−α = si,1.

Therefore

si,0 = ai +ai+1 +ai+2 + · · ·+ai+k−α−1

= ai−1 +ai+1 +ai+2 + · · ·+ai+k−α−2 +ai+k−α .

That is

ai+k−α −ai+k−α−1 = ai−ai−1. (6.8)

Since, α ≤ k− 2, we get i+ k−α ≥ i+ 2. Hence, from (6.6), (6.7) and (6.8) it follows

that

ak−1−ak−2 = · · ·= a1−a0 = a0.
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This completes the proof of the theorem.

Corollary 6.2.4. Let k ≥ 5 and 0 ≤ α ≤ k− 2. Let A be a set of k nonnegative integers with

0 ∈ A and

|Sα(A)|=
(

k
2

)
−
(

α

2

)
+1.

Then A = d · [0,k−1] for some positive integer d.

Proof. Let A = {a0,a1, . . . ,ak−1}, where 0 = a0 < a1 < · · ·< ak−1. Let

|Sα(A)|= |Sα(A)|=
(

k
2

)
−
(

α

2

)
+1.

Let A′ = A\{0}. So, A′ is a nonempty set of k−1 positive integers. First, let α = 0. Since

S0(A) = S(A) = S(A′) = S0(A′), we have

|S0(A′)|= |S0(A)|=
(

k
2

)
+1.

Therefore, by Theorem 6.2.3, the set A′ is an arithmetic progression with the common difference

a1, the smallest integer in A′. Hence, A is an arithmetic progression with the common difference

a1, i.e., A = a1 · [0,k−1].

Now, let α ≥ 1. Since Sα(A) = Sα−1(A′), we have

|Sα−1(A′)|= |Sα(A)|=
(

k
2

)
−
(

α

2

)
+1.

Therefore, by Theorem 6.2.3, the set A′ is an arithmetic progression with the common difference

a1. Hence, A is an arithmetic progression with the common difference a1, i.e., A = a1 · [0,k−1].

This completes the proof of the corollary.

As a consequence of Theorem 6.2.3 and Corollary 6.2.4, for α = 0, we obtain Theorem

1.4.23.

6.3 Subsequence sum

Let A = (a0,a1, . . . ,ak−1)r be a nonempty sequence of k distinct nonnegative integers each

repeating exactly r times. Let 0≤ α ≤ rk be an integer. If α = rk, then Sα(r,A ) = {ra0+ ra1+

· · ·+ rak−1}, and hence |Sα(r,A )|= 1. So, we assume that 0≤ α ≤ rk−1.
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Theorem 6.3.1. Let k≥ 2, r≥ 1 and 0≤α < rk. Let m∈ [1,k] be an integer such that (m−1)r≤

α < mr. If A is a nonempty sequence of k distinct positive integers each repeating exactly r

times, then

|Sα(r,A )| ≥ r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1. (6.9)

This lower bound is best possible.

Proof. Let A = (a0,a1, . . . ,ak−1)r, where 0 < a0 < a1 < · · ·< ak−1, k ≥ 2 and r ≥ 1. First, let

m = k. Since (k−1)r ≤ α < rk, we have 0 < rk−α ≤ r. Define

A0 := {ia0 : i = 1,2, . . . ,rk−α}, (6.10)

and for j = 1,2, . . . ,k−1, set

A j := {(rk−α− i)a j−1 + ia j : i = 1,2, . . . ,rk−α}. (6.11)

Clearly, for j = 0,1, . . . ,k− 1, the sets A j are subsets of Sα(r,A ), with max(A j) <

min(A j+1) for j = 0,1,2, . . . ,k− 2. Therefore, the sets A0,A1, . . . ,Ak−1 are pairwise disjoint.

Since 0 ∈ Sα(r,A ), but 0 6∈ A j for j = 0,1,2, . . . ,k−1, we have

|Sα(r,A )|= |Sα(r,A )|

≥
∣∣ k−1⋃

j=0

A j
∣∣+1

=
k−1

∑
j=0
|A j|+1

= k(rk−α)+1

= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1.

Thus, (6.9) is true for m = k.

Now, let 1≤ m≤ k−1. For j = 1,2, . . . ,mr−α , define

B j := {ai +( j−1)ak−m : i = 0,1, . . . ,k−m}, (6.12)

and for l = 1,2, . . . ,k−m and j = 1,2, . . . ,r, define also

Blr+ j :=

{
ai +( j−1)ak−m−l +

m+l−1

∑
t=m+1

rak−t +(mr−α)ak−m : i = 0,1, . . . ,k−m− l

}
. (6.13)
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Next, for l = 1,2, . . . ,k−m, define

Cl :=


k−m

∑
j=0

j 6=k−m−l
j 6=k−m−l+1

ra j +(r− i)ak−m−l +(mr−α + i)ak−m−l+1 : i = 0,1, . . . ,r−mr+α

 .

(6.14)

Clearly, the sets defined in (6.12), (6.13) and (6.14) are subsets of Sα(r,A ), with

max(B j)< min(B j+1) for j = 1,2, . . . ,mr−α−1,

max(Bmr−α)< min(Br+1),

max(B j)< min(B j+1) for j = r+1,r+2, . . . ,(k−m+1)r−1,

max(B(k−m+1)r) = min(C1),

and

max(Cl) = min(Cl+1) for l = 1,2, . . . ,k−m−1.

If m = 1, i.e., 0≤ α < r, then the largest integer of the set Sα(r,A ) is (r−α)a0 + ra1 +

ra2 + · · ·+ rak−1 = max(Ck−m). Observe that 0 ∈ Sα(r,A ), and 0 < a0 = min(B1). Thus, by

(6.12), (6.13) and (6.14) we have

|Sα(r,A )|= |Sα(r,A )|

≥
mr−α

∑
j=1

(k−m+1)+
k−m

∑
l=1

r

∑
j=1

(k−m− l +1)+
k−m

∑
l=1

(r−mr+α)+1

= (mr−α)(k−m+1)+
r(k−m+1)(k−m)

2
+(r−mr+α)(k−m)+1

= (r−α)k+
rk(k−1)

2
+α(k−1)+1

=
rk(k+1)

2
−α +1

= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1.

So, (6.9) is true for m = 1.

Now, let 2≤ m≤ k−1. For x = 0,1, . . . ,m−2 and l = 0,1, . . . ,k−m−1, define

Dx
l :=

(mr−α)ax +
k−m+x+1

∑
j=x+1

j 6=k−m+x−l
j 6=k−m+x−l+1

ra j +(r− i)ak−m+x−l + iak−m+x−l+1 : i = 1,2, . . . ,r

 ,

(6.15)
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and

Dx
k−m :=

{
(mr−α− i)ax + iax+1 +

k−m+x+1

∑
j=x+2

ra j : i = 1,2, . . . ,mr−α

}
. (6.16)

The sets defined in (6.15) and (6.16) are subsets of Sα(r,A ), with

max(Ck−m)< min(D0
0),

max(Dx
l )< min(Dx

l+1) for l = 0,1, . . . ,k−m−1,

and

max(Dx
k−m)< min(Dx+1

0 ) for x = 0,1, . . . ,m−3.

Hence, by (6.12), (6.13), (6.14), (6.15) and (6.16) we have

|Sα(r,A )|= |Sα(r,A )|

≥
mr−α

∑
j=1

(k−m+1)+
k−m

∑
l=1

r

∑
j=1

(k−m− l +1)+
k−m

∑
l=1

(r−mr+α)

+
m−2

∑
x=0

k−m−1

∑
l=0

r+
m−2

∑
x=0

(mr−α)+1

= (mr−α)(k−m+1)+
r(k−m+1)(k−m)

2
+(r−mr+α)(k−m)

+(m−1)(k−m)r+(m−1)(mr−α)+1

= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1.

Hence, (6.9) holds for all 1≤ m≤ k.

Next, we show that the lower bound in (6.9) is best possible.

Let k ≥ 2 and A = [1,k]r. Then

Sα(r,A )⊂ [0,r(k+(k−1)+ · · ·+(m+1))+(mr−α)m] .

Therefore

|Sα(r,A )| ≤ r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1.

This together with (6.9) gives

|Sα(r,A )|= |Sα(r,A )|= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1.

This completes the proof of the theorem.
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Corollary 6.3.2. Let k ≥ 3, r ≥ 1 and 0 ≤ α < rk. Let m ∈ [1,k] be an integer such that (m−

1)r ≤ α < mr. If A is a nonempty sequence of k distinct nonnegative integers each repeating

exactly r times and 0 ∈A , then

|Sα(r,A )| ≥ r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1. (6.17)

This lower bound is best possible.

Proof. Let A = (a0,a1, . . . ,ak−1)r, where 0 = a0 < a1 < · · · < ak−1 and r ≥ 1. Let A ′ =

A \ {0}. So, A ′ is a nonempty sequence of k− 1 distinct positive integers each repeating

exactly r times.

First, let m = 1, i.e., 0≤ α < r. Then

Sα(r,A ) = S0(r,A ′). (6.18)

Hence, by Theorem 6.3.1 we have

|Sα(r,A )|= |Sα(r,A )|

= |S0(r,A ′)|

≥ r
(

k
2

)
+1.

Now, let m ≥ 2, i.e., r ≤ α < rk. Clearly, (m− 1)r ≤ α < mr implies that (m− 2)r ≤

α− r < (m−1)r. Thus,

Sα(r,A ) = Sα−r(r,A ′). (6.19)

Hence, by Theorem 6.3.1 we have

|Sα(r,A )|= |Sα(r,A )|

= |Sα−r(r,A ′)|

≥ r
[(

k
2

)
−
(

m
2

)]
+(m−1)[(m−1)r− (α− r)]+1

= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1.

Next, we show that the lower bound in (6.17) is best possible.

Let k ≥ 3, and A = [0,k−1]r. Then

Sα(r,A )⊂ [0,r((k−1)+(k−2)+ · · ·+m)+(mr−α)(m−1)] .



86

Therefore

|Sα(r,A )| ≤ r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1.

This together with (6.17) gives

|Sα(r,A )|= |Sα(r,A )|= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1.

This completes the proof of the corollary.

As a consequence of Theorem 6.3.1 and Corollary 6.3.2, for α = 0, we obtain the follow-

ing corollary, which is a particular case of Theorem 1.4.24.

Corollary 6.3.3. [77, Theorem 2.1] Let k ≥ 3 and r ≥ 1. Let A be a nonempty sequence of k

distinct positive integers each repeating exactly r times. Then

|S(r,A )| ≥ r
(

k+1
2

)
+1. (6.20)

Let A be a nonempty sequence of k distinct nonnegative integers each repeating exactly

r times and 0 ∈A . Then

|S(r,A )| ≥ r
(

k
2

)
+1. (6.21)

The lower bounds in (6.20) and (6.21) are best possible.

Theorem 6.3.4. Let k ≥ 4, r ≥ 1 and 0 ≤ α ≤ rk− 2. Let 1 ≤ m ≤ k be an integer such that

(m−1)r ≤ α < mr. If A is a nonempty sequence of k distinct positive integers each repeating

exactly r times such that

|Sα(r,A )|= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1,

then A = d · [1,k]r for some positive integer d.

Proof. Let A = (a0,a1, . . . ,ak−1)r, where 0 < a0 < a1 < · · ·< ak−1 and r ≥ 1. Let

|Sα(r,A )|= |Sα(r,A )|= r
[(

k+1
2

)
−
(

m+1
2

)]
+m(mr−α)+1. (6.22)

First, let m = k, i.e., (k− 1)r ≤ α ≤ rk− 2. Then, equation (6.22) and Theorem 6.3.1

implies that Sα(r,A ) contains precisely the integers listed in (6.10) and (6.11) with one more

integer, 0. We have

(rk−α−1)a0 < (rk−α)a0 = max(A0)< (rk−α−1)a0 +a1 = min(A1),
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and

(rk−α−1)a0 < (rk−α−2)a0 +a1 < (rk−α−1)a0 +a1 = min(A1).

Thus,

(rk−α−2)a0 +a1 = (rk−α)a0.

That is

a1−a0 = a0. (6.23)

Again, for j = 1,2, . . . ,k−2, we have

a j−1 +(rk−α−1)a j < (rk−α)a j = max(A j)< (rk−α−1)a j +a j+1 = min(A j+1),

and

a j−1 +(rk−α−1)a j < a j−1 +(rk−α−2)a j +a j+1 < (rk−α−1)a j +a j+1 = min(A j+1).

Therefore,

a j−1 +(rk−α−2)a j +a j+1 = (rk−α)a j for j = 1,2, . . . ,k−2.

That is

a j+1−a j = a j−a j−1 for j = 1,2, . . . ,k−2.

In other words

ak−1−ak−2 = · · ·= a1−a0. (6.24)

Hence, from (6.23) and (6.24) it follows that A = a0 · [1,k]r.

Now, let 1 ≤ m ≤ k− 1, i.e., 0 ≤ α < r(k− 1) ≤ rk− 2. Equation (6.22) and Theorem

6.3.1 implies that Sα(r,A ) contains precisely the integers listed in (6.12), (6.13), (6.14), (6.15)

and (6.16) with one more integer, 0. We have

ak−m−1 +(mr−α−1)ak−m < (mr−α)ak−m = max(Bmr−α)

< a0 +(mr−α)ak−m = min(Br+1),

and

ak−m−1 +(mr−α−1)ak−m < a0 +ak−m−1 +(mr−α−1)ak−m

< a0 +(mr−α)ak−m = min(Br+1).
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Therefore,

a0 +ak−m−1 +(mr−α−1)ak−m = (mr−α)ak−m.

That is

ak−m−ak−m−1 = a0. (6.25)

Similarly, for m≤ k−2 and l = 1,2, . . . ,k−m−1, we have

ak−m−l−1 +(r−1)ak−m−l + r(ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m

< r(ak−m−l +ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m = max(B(l+1)r)

< a0 + r(ak−m−l +ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m = min(B(l+1)r+1),

and

ak−m−l−1 +(r−1)ak−m−l + r(ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m

< a0 +ak−m−l−1 +(r−1)ak−m−l + r(ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m

< a0 + r(ak−m−l +ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m = min(B(l+1)r+1).

Therefore,

a0 +ak−m−l−1 +(r−1)ak−m−l + r(ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m

= r(ak−m−l +ak−m−l+1 + · · ·+ak−m−1)+(mr−α)ak−m.

That is

ak−m−l−ak−m−l−1 = a0 for l = 1,2, . . . ,k−m−1.

In other words

ak−m−1−ak−m−2 = ak−m−2−ak−m−3 = · · ·= a1−a0 = a0. (6.26)

If m = 1, then (6.25) and (6.26) imply that A = a0 · [1,k]. Hence, we are done. So, we

may assume that 2≤ m≤ k−1. For x = 0,1, . . . ,m−2, we have

(mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−1)+ak−m+x +(r−1)ak−m+x+1

< (mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−1)+ rak−m+x+1 = max(Dx
0)

< (mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−2)+(r−1)ak−m+x−1 +ak−m+x

+ rak−m+x+1

= min(Dx
1),
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and

(mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−1)+ak−m+x +(r−1)ak−m+x+1

< (mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−2)+(r−1)ak−m+x−1 +2ak−m+x

+(r−1)ak−m+x+1

< (mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−2)+(r−1)ak−m+x−1 +ak−m+x

+ rak−m+x+1

= min(Dx
1).

Therefore,

(mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−2)+(r−1)ak−m+x−1 +2ak−m+x

+(r−1)ak−m+x+1

= (mr−α)ax + r(ax+1 +ax+2 + · · ·+ak−m+x−1)+ rak−m+x+1.

That is

ak−m+x+1−ak−m+x = ak−m+x−ak−m+x−1 for x = 0,1, . . . ,m−2.

In other words

ak−1−ak−2 = · · ·= ak−m+1−ak−m = ak−m−ak−m−1. (6.27)

Hence, for m = k−1 the result follows from (6.25) and (6.27), and for 2≤ m≤ k−2 the result

follows from (6.25), (6.26) and (6.27). This completes the proof of the theorem.

Corollary 6.3.5. Let k ≥ 5, r ≥ 1 and 0 ≤ α ≤ rk− 2. Let 1 ≤ m ≤ k be an integer such

that (m− 1)r ≤ α < mr. If A is a nonempty sequence of k distinct nonnegative integers each

repeating exactly r times and 0 ∈A , such that

|Sα(r,A )|= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1,

then A = d · [0,k−1]r for some positive integer d.

Proof. Let A = (a0,a1, . . . ,ak−1)r, where 0 = a0 < a1 < · · ·< ak−1 and r ≥ 1. Let

|Sα(r,A )|= |Sα(r,A )|= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1.
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Let A ′ =A \{0}. So, A ′ is a nonempty sequence of k−1 distinct positive integers each

repeating exactly r times. First, let m = 1, i.e., 0≤ α < r. Let

|Sα(r,A )|= r
(

k
2

)
+1.

By (6.18), we have Sα(r,A ) = S(r,A ′). Therefore,

|S(r,A ′)|= r
(

k
2

)
+1.

Hence, by Theorem 6.3.4 (for α = 0), the set A ′ is an arithmetic progression with the com-

mon difference a1, the smallest integer in A . Hence, A is an arithmetic progression with the

common difference a1, i.e., A = a1 · [0,k−1]r.

Now, let 2 ≤ m ≤ k, i.e., r ≤ α < rk. Thus, by (6.19) we have Sα(r,A ) = Sα−r(r,A ′).

Therefore,

|Sα(r,A )|= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1

implies that

|Sα−r(r,A ′)|= r
[(

k
2

)
−
(

m
2

)]
+(m−1)(mr−α)+1

= r
[(

k
2

)
−
(

m
2

)]
+(m−1)[(m−1)r− (α− r)]+1.

Hence, by Theorem 6.3.4 (for α − r), the set A ′ is an arithmetic progression with the com-

mon difference a1, the smallest integer in A . Hence, A is an arithmetic progression with the

common difference a1, i.e., A = a1 · [0,k−1]r. This completes the proof of the corollary.

As a consequence of Theorem 6.3.4 and Corollary 6.3.5, for α = 0, we obtain the follow-

ing corollary, which is a particular case of Theorem 1.4.25.

Corollary 6.3.6. [77, Theorem 2.3] Let k ≥ 5 and r ≥ 1. If A is a nonempty sequence of k

distinct positive integers each repeating exactly r times such that

|S(r,A )|= r
(

k+1
2

)
+1,

then A = d · [1,k]r for some positive integer d.
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If A is a nonempty sequence of k distinct nonnegative integers each repeating exactly r

times and 0 ∈A such that

|S(r,A )|= r
(

k
2

)
+1,

then A = d · [0,k−1]r for some positive integer d.
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Chapter 7

Conclusions and future scope

7.1 Conclusions

The work done in this thesis are mainly concerned about new results on direct and inverse

problems for certain sumsets in the group of integers. The results of the present thesis can be

summarized by the following notes.

The following conclusions can be drawn from Chapter 2:

• The sum of dilates A+ r ·A contains at least 4k−4 distinct integers, for all r ≥ 3 and for

every finite set A of k integers.

• The Freiman’s 3k−4 type theorem for A+2 ·A can be extended to A+2 ·B, under some

conditions on the sets A and B.

• The conditions under which the Freiman’s 3k− 4 type theorem for A+ 2 ·B holds are

necessary but not sufficient.

The following conclusions can be drawn from Chapter 3:

• If A is a set of k positive integers, then the h-fold signed sumset h±A contains at least

2(hk− h+ 1) distinct integers. Moreover, if h ≥ 2 and this lower bound is exact, then

h = 2 and A = d · {1,3, . . . ,2k−1} for some positive integer d.

• For h≥ 3, this bound can be improved to 2hk−h+1. Moreover, if |h±A|= 2hk−h+1,

then A = d · {1,3, . . . ,2k−1} for some positive integer d.
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• Similar direct and inverse results also holds for h±A, when A contains (i) nonnegative

integers with 0 ∈ A, and (ii) arbitrary integers.

The following conclusions can be drawn from Chapter 4:

• If A is a set of k positive integers, then the h-fold restricted signed sumset h∧±A contains at

least 2(hk−h2)+
(h+1

2

)
+1 distinct integers. This bound is optimal for h = 1, 2 and k.

• If k ≥ 4 and |2∧±A|= 4k−4, then A = d · {1,3, . . . ,2k−1} for some positive integer d.

• If k ≥ 4 and |k∧±A|=
(k+1

2

)
+1, then A = d · [1,k] for some positive integer d.

• If A is a set of k (≥ 5) positive integers, then the lower bound 6k−11 for the sumset 3∧±A

can be improved to 6k−8. Moreover, if |3∧±A|= 6k−8, then A = d · {1,3, . . . ,2k−1} for

some positive integer d.

• Similar direct and inverse results also holds for h∧±A, when A contains nonnegative integers

with 0 ∈ A.

The following conclusions can be drawn from Chapter 5:

• If A= {0,1, . . . ,k−2,k−1+b}= [0,k−2]∪{k−1+b}, where b is a nonnegative integer,

then |h(γ)A| is a strictly increasing linear function of b for 0 ≤ b ≤ N1 and is a strictly

increasing, piecewise-linear function of b for N1 ≤ b≤ N2 and that |h(γ)A| is constant for

b≥ N2, for some positive integers N1 and N2.

• A similar result also holds for the restricted sumset h∧A, which states that |h∧A| is a strictly

increasing linear function of b for 0≤ b≤N and that |h∧A| is constant for b≥N, for some

positive integer N.

The following conclusions can be drawn from Chapter 6:

• If A is a set of k positive integers and α ∈ [0,k], then the subset sums Sα(A) contains at

least
(k+1

2

)
−
(

α+1
2

)
+1 distinct integers. Moreover, if this lower bound is exact with k≥ 4

and 0≤ α ≤ k−2, then A = d · [1,k] for some positive integer d.

• If A is a set of k nonnegative integers with 0 ∈ A and α ∈ [0,k], then Sα(A) contains at

least
(k

2

)
−
(

α

2

)
+1 distinct integers. Moreover, if this lower bound is exact with k≥ 5 and

0≤ α ≤ k−2, then A = d · [0,k−1] for some positive integer d.
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• Similar direct and inverse results also holds for the subsequence sums Sα(r,A ) in both

the cases, when the sequence A contains (i) only positive integers, and (ii) nonnegative

integers with 0 ∈A .

7.2 Future plan

This thesis is focused on the direct and inverse problems for certain sumsets in the group of

integers. There are several unsolved problems related to the sumsets considered in this thesis.

For example, the sumsets considered in Chapter 3 and 4 are certainly new and not much known

about these sumsets. The same can be said for the subset and subsequence sums considered in

Chapter 6. It would be interesting to extend the study of these sumsets in to finite abelian groups.

Bellow, we discuss some unsolved problems which we shall try to solve in the near future.

7.2.1 Some unsolved problems from the thesis

As mentioned in the Conclusion section, in Chapter 4, we settled the direct and inverse theorems

for the h-fold restricted signed sumset h∧±A in the group of integers in the cases h = 1,2 and k.

In all other cases, i.e., for 3≤ h≤ k−1, we conjectured the following direct and inverse results.

Conjecture 7.2.1. Let k ≥ 5 and 3≤ h≤ k−1. If A is a set of k positive integers, then

|h∧±A| ≥ 2hk−h2 +1.

If A is a set of k nonnegative integers with 0 ∈ A, then

|h∧±A| ≥ 2hk−h(h+1)+1.

These lower bounds are best possible.

Conjecture 7.2.2. Let k ≥ 5 and 3 ≤ h ≤ k− 1. If A is a set of k positive integers such that

|h∧±A|= 2hk−h2 +1, then

A = d · {1,3, . . . ,2k−1},

for some positive integer d.

If A is a set of k nonnegative integers with 0 ∈ A and |h∧±A|= 2hk−h(h+1)+1, then

A = d · [0,k−1],
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for some positive integer d.

We also verified the conjectures 7.2.1 and 7.2.2, for the case h= 3 by solving the direct and

inverse problems for 3∧±A, that are Theorem 4.2.5 and Theorem 4.3.5, respectively. We observed

that, the technique used for the case h = 3 is also applicable for h ≥ 4, but the computational

complexity increases with the increasing value of h. So, it would be interesting to furnish a new

technique which will establish our conjectures in all the cases.

7.2.2 Generalized signed sumset

Let G be an additive abelian group. Let A = {a0,a1, . . . ,ak−1} be a nonempty subset of G. Let

h≥ 1. Recall that, the h-fold signed sumset h±A and the h-fold restricted signed sumset h∧±A are

defined by

h±A =

{
k−1

∑
i=0

λiai : λi ∈ Z for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
,

and

h∧±A =

{
k−1

∑
i=0

λiai : λi ∈ {−1,0,1} for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
,

respectively.

Observe that, in the sumset h±A the variables λi can assume any integer value between

−h and h, while in the sumset h∧±A the variables λi can assume the integer values −1, 0 and 1.

One can generalize these two sumsets by defining a h-fold sumset, where in a h-fold sum the

variables λi can assume any integer value between −γ and γ , where 1≤ γ ≤ h. For integers h, γ

with 1≤ γ ≤ h≤ kγ , define the h-fold generalized signed sumset of A, denoted by h(γ)± A, by

h(γ)± A :=

{
k−1

∑
i=0

λiai : λi ∈ [−γ,γ] for i = 0,1, . . . ,k−1 and
k−1

∑
i=0
|λi|= h

}
.

So, the signed sumset h±A and the restricted signed sumset h∧±A are particular cases of the

generalized signed sumset h(γ)± A, for γ = h and γ = 1, respectively. Therefore, the generalized

signed sumset provides a unified theory for the signed sumset and restricted signed sumset. It

would be interesting to study both direct and inverse problems for this generalized signed sumset

similar to those in Chapter 3 and 4.
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7.2.3 Other combinatorial problems

I would like to study an interesting diophantine problem due to Frobenius. The Frobenius Prob-

lem is to determine the largest positive integer that is not representable as a nonnegative integer

combination of a given set of positive integers that are coprime. More formally, given a finite

set A = {a1, . . . ,ak} of positive integers with gcd(a1, . . . ,ak) = 1, let Γ(A) := {a1x1+ · · ·+akxk :

xi ≥ 0}. It is well known that Γc(A) := N\Γ(A) is finite. The Frobenius number of A is defined

by g(A) := maxΓc(A). It is also equally important to determine the number n(A) := |Γc(A)|.

Although, it was Sylvester [97] who first showed that g(a1,a2) = (a1 − 1)(a2 − 1)− 1 and

n(a1,a2) =
1
2(a1− 1)(a2− 1), it was Frobenius who was mainly responsible to give a recog-

nition and it is after him that the problem is also named. Determining the exact value of g(A)

and n(A) is a difficult problem in general; there is no general formula for |A| > 2. There

are only a few cases other than when |A| = 2 where g(A) or n(A) have been determined (see

[22, 92, 101, 102, 103, 104]).

I would also like to study the diophantine equations arising from some well-known se-

quences, such as Fibonacci sequence, Lucas sequence, and Pell sequence etc. One can see for

example, the Fibonacci numbers that are representable in the form xl ± xm± 1 considered in

[66]. See also [23] for some other diophantine equations arising from Pell’s and Pell-Lucas

sequences.
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