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Abstract

This thesis addresses the feasibility of introducing geometric variations and surface potential

heterogeneity in micro and nano fluidic systems to create effects other than pure molecular diffu-

sion to enhance mixing efficiency. Geometric modulations are included by considering different

shapes and designs of micro channel with embedded obstacles along the walls. In performing

chemical or biological analysis, samples and reagents need to be mixed together thoroughly and

this is an important flow aspect in miniaturized Total Analysis Systems (µTAS), where mixing

plays a vital role for system analysis. In scaling down dimensions of micro-devices, flow driving

through diffusion process becomes an efficient method to achieve homogenous solutions as the

characteristic length scale becomes sufficiently small.

In this thesis, passive mixing, using geometric modulations with surface potential non-

homogeneity in micro/ nano channels is studied due to its advantage over active mixing in

terms of simplicity and ease of fabrication. The mathematical model is based on the coupling

between Maxwell’s equation for electric potential, Nernst-Planck equation for ion transfer and

Navier-Stokes equation for momentum transport. A control volume based algorithm is used for

the numerical solution of the flow governing equations. Chapter 1 contains the basic definitions

and various solution approaches used for the electrokinetic flow governing equations.

The Chapter 2 deals with electrokinetic transport and species mixing analysis in a nano-

channel under an externally applied steady electric field which are applicable in micro electrical

mechanical systems. The channel geometry is modulated by introducing a non-conducting ob-

stacle on the bottom wall. In addition to geometric modulation, surface potential heterogeneity

is created by putting an overpotential patch on the upper face of the rectangular obstacle. The

effect of block height, block position, strength of the patch potential and external electric field

are analyzed and it is found that mixing length may be significantly reduced by introducing

the heterogeneity in the flow structure. Chapter 3 is concerned with the combined theoretical
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and numerical study of two comparative nano-structured domains with surface potential het-

erogeneity and wall corrugation. The comparative study of mixing analysis is demonstrated in

terms of pressure gradient, electric potentials and average flow rate for a wide range of flow

controlling parameters. Irrespective of all the physical parameters used it can be concluded

that mixing efficiency along the downstream is enhanced with the decrement in electric field

strength and Debye-Hückel parameter.

Electrokinetic flow reversal and its impact on mixing enhancement in a symmetric wavy mi-

cro channel is concerned in Chapter 4. The combined effect of wave amplitude and electric field

strength is studied to predict the threshold parametric relationship between wave amplitude,

external electric field strength, and the ratio of Debye length and channel height. In addition

to flow reversal, a significant contribution of flow separation on mixing efficiency enhancement

is analyzed. Chapter-5 presents the study of electrokinetic flow reversal and its impact on mix-

ing with periodically distributed zeta potential in asymmetrically arranged corrugated domains

with different phase shifts which is an extension of chapter-4. Choosing the best possible phase

shift for Newtonian fluid model in terms of maximum mixing efficiency together with minimum

pressure drop, the model is extended for power-law fluid.

Subsequently, a comparative study on non-Newtonian flow mixing and pressure drop in cir-

cular micro fluidic domains with sudden constriction/ expansion is studied in Chapter 6. The

impact of surface roughness, potential heterogeneity and power-law index is discussed for two

different configurations. A suitable arrangement of flow parameters are considered to estimate a

suitable balance between the mixing efficiency and pressure drop for both the configurations to

propose an efficient and effective cylindrical micromixer which can produce maximum possible

mixing efficiency with minimum pressure drop.

Keywords: Electroosmosis, Poisson-Nernst-Planck model, Mixing efficiency, Pressure drop,

Finite volume method, Mixing performance factor, Power-law fluid, Corrugated channel.
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Chapter 1

Introduction

1.1 Fundamentals of Fluid Mechanics

One of the key aspects in studying fluid dynamics is to determine the velocity field and the

characteristics of the fluid. The governing equations describing the fluid flow are build on the

conservation principles. In general fluid flows are described through two ways; Lagrangian and

Eulerian description. The individual fluid particles are tracked in case of Lagrangian description

whereas, in case of Eulerian description, a fixed control volume is considered in space through

which the fluid flows with the increment of time. Thus, the Eulerian description of flow is to

describe the fluid properties as a function of spatial location and time. This can be described

by sitting on a over-bridge of a river and watching the water passing a fixed location. The

Lagrangian description can be considered as an observer sitting in a boat and drifting down

the river. Most of the theories of fluid mechanics are based on the Eulerian approach due to

its simplicity from the Lagrangian way of describing the fluid flow. We have considered the

Eulerian approach throughout the thesis. To describe the basic properties of fluid mechanics in

mathematical form the material derivative is frequently used. The material derivative represents

the time rate of change of a physical quantity of a material along a path moving with the

fluid velocity and can serve as a link between the Lagrangian and the Eulerian descriptions of

continuum deformation.

D

Dt︸︷︷︸
Lagrangian

=
∂

∂t
+ q.∇︸ ︷︷ ︸

Eularian

(1.1)

where q is the fluid velocity vector and ∇ = î ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

. In the above equation, the partial

derivative ∂
∂t

measures the time rate of change at a fixed spatial location, whereas q · ∇, called

1



2

the convective derivative, measures the time rate of change due to the movement of the fluid

element from one location to another in the flow domain.

The equations which speak the physics of fluid mechanics are based on three fundamental

principles namely, conservation of mass, momentum and energy. These fundamental principles

can be described mathematically as follows.

1.1.1 Conservation of Mass

The continuity equation based on the conservation of mass principle states that the net flow rate

of mass through a control volume equals zero, i.e., the time rate of change of mass in the control

volume is equal to the difference in cumulative mass in flow and out flow from the control surfaces

of the control volume. The differential form of the continuity equation can be written as follows.

∂ρ

∂t
+∇.(ρq) = 0 (1.2)

where ρ, q and t are the density of the fluid, velocity field and time respectively. In case of

incompressible flow ( i.e. ρ is constant), the continuity equation reduces to

∇.q = 0 (1.3)

1.1.2 Conservation of Momentum

The Newton’s second law of motion for a system implies that the time rate of change of the

linear momentum of the system is equal to the sum of the external forces acting on the system.

This equation was derived in the early 18th century by Claude-Louis Navier [187] and George

Gabriel Stokes [248] independently. Using Reynolds transport theorem, the momentum equation

in vector notations can be written as follows

∂

∂t
(ρq) +∇.(ρqq)︸ ︷︷ ︸

Time and Advective acceleration

= −∇p︸ ︷︷ ︸
Isotropic pressure stress

+ ∇ · τ︸ ︷︷ ︸
Anisotropic viscous stress

(1.4)

where σ = −pI + τ is the stress tensor and τ = µ
[
(∇q) + (∇q)T − 2

3
(∇ · q)I

]
is the viscous

stress. Using the equation of continuity for an incompressible fluid, the constitutive equation

for a Newtonian, viscous, incompressible fluid takes the form
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ρ

[
∂q

∂t
+ (q · ∇)q

]
= −∇p+ µ∇2q, (1.5)

where p, ρ and µ denote the pressure, density and the viscosity of the fluid respectively. At

very low Reynolds number the convective acceleration term of the Navier-Stokes equation can

be neglected and under steady state condition, the equation becomes Stokes equation i.e.,

−∇p+ µ∇2q = 0. (1.6)

Besides the governing equation, the Reynolds number (Re), a dimensionless number is tra-

ditionally necessary for fluid flow which quantifies the relative importance of inertial forces and

viscous forces. The dimensionless number (Re) is named after Osborne Reynolds (1883) while

investigating the flow in pipes. The Reynolds number can be written as

Re =
Inertial forces

Viscous forces
=
ρUL

µ
, (1.7)

where U and L denote characteristic velocity scale and length scale respectively. This relation

was discovered by Reynolds [226].

1.1.3 Conservation of Energy

The conservation of energy principle can be deduced from the first law of thermodynamics,

which states that energy cannot be created or destroyed. If quantity of heat dQ added to

volume ∆V during time ∆t serves to increase internal energy by an amount of dET and to

perform work dW , then by the first law of thermodynamics:

dQ = dET + dW or
dQ

dt
=
dET
dt

+
dW

dt
(1.8)

In other words


Rate of

heat transfer

into the system

 =


Rate of

increase of

internal energy

of the system

 =


Rate of

work done

by surface force


Therefore, the energy equation can be written for viscous incompressible fluid as
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+ φ (1.9)

where the viscous dissipation function φ is given by

φ = 2
µ

ρCp

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+
µ

ρCp

[(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂z
+
∂w

∂y

)2
]

(1.10)

Here T , α and Cp are the temperature, thermal diffusivity and heat capacity at a constant

pressure per unit mass, respectively.

1.2 Electrokinetic Phenomena

Electrokinetics refers to the the relative motion between two charged phases [115, 169, 219].

According to electrokinetic theory, there are several ways in which a surface acquires net charge,

such as ionization or ion absorption and ion dissociation. Due to the occurrence of surface

charge, counter ions are attracted to the surface and co-ions are repelled from it which leads to

a redistribution of ions in the vicinity of the charged surface. As a result an induced electric

field is developed close to the charged surface. Under an externally imposed electric field, the

mobile counter ions move towards the electrodes of opposite charge and induce a momentum

in the medium. The charged particles experience electrostatic force and the phenomena that

might take place as a result of relative movement between two charged phases are classified into

four types of electrokinetic phenomena and are most commonly encountered which are briefly

described below.

• Electrophoresis: The movement of charged particles relative to the liquid, when the par-

ticle is suspended under the influence of an applied electric field.

• Electroosmosis: The movement of liquid relative to the stationary charged surface under

the influence of an applied electric field.

• Streaming potential: Electric field generated, when the liquid is forced to flow past a

stationary charged surface.
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• Sedimentation potential: Electric field generated when the charged particle moves relative

to a stationary liquid.

+

Figure 1.1: Schematic of chemical reactions in silicon wall in aqueous mediums for different pH.

1.3 Electric Double Layer (EDL)

Most oxide surfaces, which are commonly found in microfluidic devices exhibits a surface charge

when immersed in aqueous solutions. The surface charges are mainly generated due to the dis-

sociation of surface hydroxyl groups and readsorption of metal hydroxocomplexes [79]. Both

these processes involve H+ and OH− ions which can be controlled by the pH of the solution. In

acidic solutions, the surface is most likely positively charged due to the excess of bound protons

and preferably adsorbs anions, whereas in alkaline solutions, the surface is negatively charged

and preferably adsorbs cations. At some intermediate pH value, the surface acquires a zero net

charge which is called point of zero charge (PZC) or isoelectric point (IEC). If silicon oxide is

immersed in water, the silanol groups SiOH react with water and transform into either SiOH+
2

(pH < PZC) or SiO− (pH > PZC) depending on the buffer pH value (Fig. 1.1).

Electric double layer (EDL) [96, 129] plays a key role in electrokinetic phenomena, which

forms as a result of the interaction of an ionized solution with static charges on dielectric

surfaces (Hunter, 2001). If the channel wall is charged (Fig. 1.2), the ions of opposite charge to

that of the surface (counterions) are attracted towards the surface while the ions of like charge

(coins) are repelled from it, keeping the bulk liquid electrically neutral. The attraction and

repulsion combined with the thermal motion of the ions lead to the formation of a charged

layer, named as electric double layer (EDL). Several theoretical studies have been done and

a number of models have been proposed to describe the ion distribution near the charged
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surface quantitatively. One of the earliest model used for electrokinetic phenomena is Helmholtz

Double Layer model [105]. In this model it is assumed that electrically balanced counter ions

are concentrated on a plane parallel to the uniformly charged surface within a small distance.

Therefore, the electric potential is maximum at the wall surface and decreases linearly with

the distance from the surface. The influence of the mobile layer of counter ions in the bulk

fluid has been recognised by Gouy [99] and Chapman [48]. The charged surface and the mobile

counter ions in the bulk region are together termed as the Gouy-Chapman Diffuse Double Layer.

The model assumes that the total electric charges on the channel surface are considered to be

balanced by excess counterions, so the electric potential is maximum at the surface and decreases

exponentially with the distance from the surface. The Gouy-Chapman model fails in the case

of a highly charged double layer. Stern [247] made corrections in the Gouy-Chapman model

by taking the ion size into account. The model assumes that the electric double layer consists

of two regions where ions adhere to the charge surface giving an internal Stern layer and the

ions are distributed under the influence of the interparticle forces in the outer region to form a

Gouy-Chapman diffuse layer. The electric double layer is separated by the Stern plane, located

at surface is on the order of the ionic radius. The Stern layer is tightly packed with counterions,

and the electric potential decreases linearly with the distance from the surface, according to

the Helmholtz model. In the diffuse layer, the electric potential decreases exponentially with

the distance from the surface. The charged ions present in the diffuse layer can move under

the influence of tangential stress. The junction between fixed and mobile ions is called slipping

plane (shear plane) and the potential at the edge of slipping plane is known as zeta (ζ) potential

or surface potential [219].

1.4 Governing Equations for Electrokinetics

The electric field E in the steady flow case satisfy the Maxwell’s equation in the form∇×E = 0.

The Gauss’s law, which relates the electrical field (E ) and the net electric charge density per

unit volume (ρe ) can be expressed as

∇ · (εeE) = ρe (1.11)

where εe is the dielectric permittivity of the medium. Since the electric field is curl free, one

can define it by a scalar electric potential φ, i.e., E = −∇φ. Substituting this into Gauss’s law

and assuming that the medium is isotropic, the Eq. 1.11 becomes the Poisson’s equation for

electric potential, i.e.,
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Figure 1.2: Schematic of the electric double layer (EDL) formed around a negatively charged
capillary wall.

− εe∇2φ = ρe (1.12)

The Boltzmann distribution is usually used to predict the distribution of ions. It is based on

the condition that the electrochemical potential (µi) of the ions must be constant everywhere

at equilibrium which implies that the electrical force and diffusion of the ion must balance out:

∇µi = −zie∇φ (1.13)

where µi is the chemical potential and e = 1.602 × 10−19 C is the charge on a single electron

or proton. For a flat double layer the electrostatic potential and the chemical potential are

constant in planes parallel to the wall so that Eq. 1.13 can be written as

dµi
dy

= −zie
dφ

dy
(1.14)

and the chemical potential is defined in the form

µi = µ0
i + kBT ln(ni), (1.15)

where ni is the number density of ith ion, µ0
i is the chemical potential in the standard state,
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i.e., when ni assume a value of unity, kB is the Boltzmann constant and T is the absolute

temperature of the solution. From Eq. 1.14 and Eq. 1.15, we have

d

dy
(lnni) =

1

ni

dni
dy

=
zie

kBT

dφ

dy
(1.16)

Integrating this equation from a point in the bulk solution where φ = 0 and ni = n0
i , yields

ni = n0
i exp

(
−zieφ
kBT

)
, (1.17)

where n0
i is the bulk ionic concentration. Eq. 1.17 is known as Boltzmann distribution for ionic

species which gives the local concentration of each species in the double layer region.

Substituting Eq. 1.17 in Eq. 1.12 gives

− εe∇2φ =
∑
i

zien
0
i exp

(
−zieφ
kBT

)
(1.18)

Debye-Hückel approximation is a linearization of the function on the right hand side of the

Poisson-Boltzmann equation (Eq. 1.18). It is based on the assumption that the electrostatic

energy is far less than the thermal energy, i.e., φ � kBT/zie for which exp (−zieφ/kBT ) ≈
1− zieφ/kBT . With this assumption Eq. 1.18 can be written in linearized form as

∇2φ = − 1

εe

∑
i

zien
0
i

(
1− zieφ

kBT

)

= − 1

εe

(∑
i

zien
0
i −

∑
i

z2
i e

2n0
i

φ

kBT

)

=
e2

εekBT

(∑
i

z2
i n

0
i

)
φ

= κ2φ (1.19)

In Eq. 1.17, the first sum is zero because of the electro neutrality in the bulk region. Here,

κ−1 = (εekBT/e
2
∑

i z
2
i n

0
i )

1/2
is EDL thickness or Debye length. For binary and symmetric

electrolyte (z1 = z2 = Z) containing two species, a cation with concentration n1 and an anion

with concentration n2 with identical bulk concentration n0 , the Debye length can be simplified

as κ−1 = (εekBT/2e
2Zn0)

1/2
.

The Boltzmann distribution (Eq. 1.19) for ionic species near a charged surface is based on

the assumptions that the ions are point-like, the solid surface are microscopically homogenous
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and the system is in equilibrium i.e., under no convective movement of charged species or diffu-

sion. The Poisson-Boltzmann description of EDL may not be appropriate for non-neutral core

and for electrolytes containing multivalent ionic species [292].

By applying an external electric field to an electrolyte solution, the free charges in the electric

double layer interact with the electric field and experience an electric body force (ρeE ) close

to the channel walls and provokes fluid motion which is gradually transmitted to the adjacent

fluid layers through viscous drag. Thus, incorporating the electrokinetic body force term, the

modified Cauchy Momentum equation for the electroosmotic flow of a general non-Newtonian

fluid can be written as [287]

ρ

[
∂q

∂t
+ (q · ∇)q

]
= −∇p+∇ · τ + ρeE, (1.20)

where electric field E is determined by the linear superposition of external electric field and

the induced electric field. Here τ denotes the shear stress tensor. For power-law fluid, the

constitutive relation between shear stress tensor and the rate of strain tensor can be written

as [101,164]

τ = 2µ(γ̇)γ̇ = µ(γ̇)

(
∇q +

(
∇q
)T)

(1.21)

where ∇q and
(
∇q
)T

denote the velocity gradient tensor and its transpose respectively. Here γ̇

is the magnitude of the shear strain tensor γ̇, defined as [192,193] γ̇ =
√

1
2

(
γ̇ : γ̇

)
. The apparent

viscosity (µa) can be expressed as a function of γ̇ and is denoted by µa(γ̇). For power-law fluid,

the expression for µa is given by [17]

µa(γ̇) = m
(
γ̇
)n−1

(1.22)

where m, called flow consistency index is a constant relative to the fluid properties and n is the

fluid behavior index, according to which shear thinning or shear thickening behavior is regarded

when n < 1 or n > 1, respectively. For n = 1, the model shows Newtonian characteristics. The

expressions of µa for cartesian and cylindrical coordinates are represented in the corresponding

chapters. For Newtonian model (i.e. for n = 1 and m = µ), the Cauchy-Momentum equation

reduces to [169]

ρ

[
∂q

∂t
+ (q · ∇)q

]
= −∇p+ µ∇2q + ρeE. (1.23)

Under the application of an external electric field, the ionic species in an electrolyte can

move due to the coupling effect between EDL and external potential and the fluid streams move

due to viscous drag. The total number flux N i of the ith ionic species is given by [33]
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N i = −Di∇ni +
zieniDi

kBT
E + niq, (1.24)

where kB is the Boltzmann constant, T is the absolute temperature, e is the elementary charge.

Here Di, ni, zi are the diffusivity, number concentration and valance of ith ionic species respec-

tively. The first term on the right hand side of Eq. 1.24 represents species transport due to

molecular diffusion, the second term is due to electromigration and the third term arises due to

bulk fluid advection niq with speed q. The governing equation for the transport of ionic species

based on the conservation of number flux in steady flow is given by

∇.N i = 0 (1.25)

This equation is known as the Nernst-Planck equation for ionic concentration distribution.

It may be noted that throughout the study we have neglected the production of the ionic species

and reaction into the system. A Poisson-Nernst-Planck model is valid for potential as well as

concentration distribution near the charged surface in any physical circumstances.

Anode Cathode

xo

y

E0

Figure 1.3: Schamatic diagram of electroosmotic flow through a rectangular capillary of height
2H. The dotted lines represent the edge of the EDL where the velocity attains its maximum
value.

1.5 Electroosmosis of Newtonian/ Power-Law Fluid in a

Rectangular Micro/Nano-Channel

We consider an infinitely long rectangular channel filled with power-law fluid under the influence

of a constant electric field parallel to the axis of the capillary (Fig. 1.3). The inner surface of the

capillary is considered to be negatively charged. The mobile ions in the diffuse part of the EDL
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experiences the Lorentz force in response to the applied field. This resulting motion of charged

layer together with fluid layers is known as electroosmotic flow (EOF). This kind of flows find

a wide application in micro- and nanofluidic systems, such as capillary electrophoresis [29,136],

drug delivery and screening [70,271], separation of proteins [285] liquid pumps [176] and several

other fields [46,51,83]. The electrokinetic force per unit volume is given by [169,219]

Fe = ρeE (1.26)

Using Debye-Hückel approximation, the induced potential distribution of a binary symmetric

monovalent electrolyte solution can be written as

φ(y) = ζ
cosh(κy)

cosh(κH)
(1.27)

where φ = ζ on y = H (i.e. at channel wall) and dφ
dy

= 0 on y = 0 (i.e. at centerline).

The simplified Cauchy momentum equation for a steady, incompressible, one-dimensional

flow (u = u(y), v = 0) with no pressure gradient (i.e. ∇p = 0) takes the form [287]

d

dy

[
m

(
−du
dy

)n−1
du

dy

]
= εeE, (1.28)

where ρe = −εe∇2φ = −εe d
2φ
dy2

and E = E0, the Reynolds number (Re) is also very small.

Integrating Eq. 1.28 with no-slip boundary condition along the channel wall (y = H) and

symmetric boundary condition along the line of symmetry (y = 0), yields the velocity field as

u(y) = κ
1−n
n

(
−εeζE0

m

)1/n
∫ κH
κy

sinh1/n(κy) d(κy)

cosh1/n(κH)
, (1.29)

where n is the flow behaviour index and m is the flow consistency index. For Newtonian fluids

n = 1 and m = µ [17,293]. Here κ denotes the Debye-Hückel parameter (inverse of debye layer

thickness) and is defined as κ =
√

2n0e2z2

εekBT
, where n0 is the bulk ionic number concentration, e

is the elementary charge, z is the valance of the binary monovalent ions, and T is the absolute

temperature of the sample electrolyte.

• For n = 1 (Newtonian fluid) the representation for flow velocity is

u(y) =

(
−εeζE0

µ

)[
1− cosh(κy)

cosh(κH)

]
(1.30)

which is the well known electroosmotic velocity distribution of Newtonian fluids [169].
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• For n = 1
2

the representation for flow velocity is

u(y) =
1

2
κ

(
−εeζE0

m

)2
sinh(2κH)− sinh(2κy)− 2(κH − κy)

2 cosh2(κH)
(1.31)

• For n = 1
3

the representation for flow velocity is

u(y) =
1

3
κ2

(
−εeζE0

m

)3
sinh(3κH)− sinh(3κy) + 9 sinh(κH)− 9 sinh(κy)

4 cosh3(κH)
. (1.32)

The term (− εeζE0

m
)1/n is called the generalized Helmholtz-Smoluchowski velocity and is denoted

as Us [254,287]. For Newtonian case (n = 1), it represents the Helmholtz-Smoluchowski velocity

which is defined as UHS = − εζE0

µ
[169]. As the integral in Eq. 1.29 can be analytically evalu-

ated only under some special circumstances. In order to obtain the velocity distribution of an

arbitrary value of flow behaviour index (n), the hyperbolic sine function can be approximated

as [215]

sinh(κy) =

κy ; 0 < κy ≤ 1,

1
2
eκy ; κy > 1.

Using this approximation in Eq. 1.29, analytic solution can be obtained for two different

cases : (i) κH > 1 and (ii) 0 < κH ≤ 1 [287].

Anode Cathode

zo

r

E0

Figure 1.4: Schamatic diagram of electroosmotic flow through a cylindrical capillary of radius
r0. The dotted lines represent the edge of the EDL where the velocity attains its maximum
value.

1.6 Electroosmosis of Newtonian/ Power-Law Fluid in a

Cylindrical Micro/Nano-Channel

The electroosmotic flow of non-Newtonian fluid (power-law) is considered in a cylindrical mi-

crochannel with radius r0, presented in Fig. 1.4. The external electric field is considered along
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the streamwise direction (with magnitude E0) and the wall surface is considered to possess a

uniform ζ potential. The flow field is considered as unidirectional (ur = 0 = uθ) and only the

axial velocity component (uz = uz(r)) is present.

Under above mentioned conditions, the Poisson’s equation of induced potential and the

Cauchy’s equation for momentum transport for power-law fluid takes the form

εe
1

r

d

dr

(
r
dφ

dr

)
= −ρe (1.33)

m
1

r

d

dr

{
r

(
−duz
dr

)n}
= ρeE0 (1.34)

For binary and monovalent electrolyte, under small surface potential assumption, the charge

density due to EDL can be expressed as ρe = −κ2εeφ, which is substituted in the Eq. 1.33 to

get the distribution of induced potential due to EDL with the following boundary conditions :

dφ

dr

∣∣∣∣
r=0

= 0 and φ|r=r0 = ζ. (1.35)

The solution of the induced potential with the prescribed boundary conditions, reduces

to [259,290]

φ(r) = ζ
I0(κr)

I0(κr0)
, (1.36)

where I0(r) denotes the zero-order modified Bessel function and κ is the inverse of debye length

which is defined in the previous section.

Using uz = 0 along r = r0 (no-slip at channel walls) and duz
dr

= 0 along r = 0 (centerline

symmetry) boundary conditions and substituting the Eq. 1.36 in Eq. 1.34, the distribution of

electroosmotic velocity takes the form [290]

uz(r) =
κ

1−n
n

(
− εeE0ζ

m

) 1
n

I
1
n
0 (κr0)

∫ κr0

κr

[I1(r)]
1
n dr. (1.37)

Here I1(r) denotes the modified Bessel’s function of first order. For n = 1 and m = µ, power-law

model shows Newtonian characteristic.
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• For n = 1 (Newtonian fluid), the representation of velocity is

uz(r) =

(
−εeζE0

µ

)[
1− I0(κr)

I0(κr0)

]
(1.38)

which refers the commonly used EOF velocity scale for Newtonian fluids in cylindrical

channels [169,224].

• For n = 1
2
, the representation of velocity is

uz(r) =
κ
(
− εeE0ζ

m

)2

12I2
0 (κr0)

[
(κr0)3

2F3

{
3

2
,
3

2
; 2,

5

2
, 3; (κr0)2

}
−(κr)3

2F3

{
3

2
,
3

2
; 2,

5

2
, 3; (κr)2

}]
. (1.39)

Here 2F3[x1, x2; γ1, γ2, γ3; z] is one of the generalized hypergeometric functions [1, 290]. To get

the EOF velocity distribution in a closed form for an arbitrary value of flow behaviour index,

the approximation used for the first-order modified Bessel function of the first kind is [1]

I1(r) =


r
2
; 0 ≤ r < 1,

ex

(2πr)
1
2

(
1− 3

8r

)
; r ≥ 1.

With the use of the above mentioned approximation, the EOF velocity in a uniform cylindrical

tube can be found for two different domains of κr0 (0 ≤ κr0 ≤ 1 and κr0 > 1) [290].

1.7 Transport of Eluted Species and Mixing efficiency

Mixing of fluids at the microscale poses a variety of challenges, many of which arise from the

fact that molecular diffusion is the dominant transport mechanism in the laminar flow regime.

The unfavorable combination of low Reynolds numbers and high Peclet numbers implies that

cumbersomely long microchannels are required to achieve efficient levels of micromixing. In

general, mixing strategies can be classified as either active or passive, depending on the oper-

ational mechanism. Active micromixers employ external forces beyond the energy associated

with the flow in order to perform mixing, whereas passive micromixers rely on chaotic advection

and molecular diffusion. Out of these two types of micromixing strategies, passive one is widely

used, since it is easy to handle and it does not require any external stirring agents, easy to

integrate with other devices and has a greater reliability due to lack of moving parts [39,143].

The equation for transportation of the uncharged eluted species is governed by convection-

diffusion equation. In the absence of species absorption and chemical reaction the species

transport equation takes the form
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∂C∗

∂t∗
+ (q∗ · ∇)C∗ = Ds∇2C∗, (1.40)

where Ds denotes the diffusion coefficient for the uncharged species with concentration C∗. By

scaling the the species concentration by Cref , space coordinates by characteristic channel height

H and time by H2

Ds
, species transport equation can be written as

∂C

∂t
+ (q · ∇)C =

1

PeS
∇2C. (1.41)

Here Pes stands for the Peclet number for the mixing species which measures the ratio of

advective to diffusion transport.

A measure of species mixing at different levels of the channel is defined by a (mixing effi-

ciency) parameter, σ, as [84,190]

σ =

[
1−

∫ upper surface
lower surface

|C − C∞|dy∫ upper surface
lower surface

|C0 − C∞|dy

]
× 100% (1.42)

Here C∞ and C0 represent the concentrations at the fully mixed and totally unmixed states,

respectively. Mixing efficiency is 100% when the two species are in fully mixed condition,

whereas a completely unmixed mode signifies 0% mixing efficiency.

1.8 Navier Stokes Solver

It is generally observed that the Navier-Stokes (N-S) equations provide a complete description of

fluid flow problems in different branches of science, engineering and technology. Implementation

of various initial and boundary conditions and the approximated solutions provide the impor-

tant flow phenomena and their effects. The unsteady compressible Navier-Stokes equations are

a mixed set of hyperbolic- parabolic equations, while the unsteady incompressible Navier-Stokes

equations for Reynolds can be treated as a mixed set of elliptic-parabolic equations. However,

Navier-Stokes equations show hyperbolic characteristics for convection dominated flow. Exis-

tence and uniqueness of the solution of Navier-Stokes equation are one of the important issues.

As a consequence, different numerical techniques are used to solve the Navier-Stokes equations

in the compressible and incompressible flow regimes. In practice, all efficient numerical methods

for compressible Navier-Stokes equations have employed the unsteady form of the equations.
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This is because of the fact that if the unsteady terms are dropped from these equations, the re-

sulting equations become a mixed set of hyperbolic-elliptic equations which are difficult to solve

because of the differences in numerical techniques required for hyperbolic and elliptic type equa-

tions. Both explicit and implicit finite-difference or finite-volume schemes are used to solve the

compressible Navier-Stokes equations. As the effect of diffusion is usually small in compress-

ible flows because of high Reynolds number, there may occur certain discontinuities such as

shock wave in the flow. Several upwind methods have been developed to solve the compressible

Navier-Stokes equations in conservative law forms such as the MacCormack method, Beam-

Warming method, flux vector splitting scheme, total variation diminishing scheme (TVD), etc.

A detailed description of these methods are discussed in by Peyret et al. [213], Fletcher [89],

Anderson Jr. [10], Anderson et al. [9], Ferziger and Peric [88].

1.8.1 Numerical Methods

To obtain the solution of the Navier-Stokes equation numerically, the equations need to be dis-

cretized. The discretized equations are usually obtained with three commonly used approaches

such as derived by

• Finite difference method

• Finite element method

• Finite volume method

1.8.1.1 Finite Difference Method

The basic idea of finite difference method (FDM) is to replace the partial derivatives by Taylor

series approximation. There are the explicit and implicit schemes to approximate derivatives

by using finite difference method. Incorporating the boundary conditions in this equation,

the resulting algebraic system of equations are solved. This gives the approximate numerical

solutions of boundary value problems. One of the main advantages of using FDM compared to

other methods is its ease of implementation. But, on the other hand this method has several

drawbacks such as, low order accuracy in the derivative evaluation, difficulty in managing with

irregular geometries and in implementation of unusual boundary conditions.
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1.8.1.2 Finite Element Method

The finite element method (FEM) is a numerical technique which gives approximate solutions

to differential equations that model problems arising in physics and engineering. In contrast to

finite difference method, the governing equations in the finite element method are integrated

over each finite element and the solutions are summed over the entire problem domain. As

a consequence of these operations, a set of finite linear equations obtained in terms of a set

of unknown parameters over each element. The solution of these equations is achieved using

linear algebra techniques. The most commonly used finite element approximations are least

square method and Galerkin method. The most significant characteristics of FEM is the ability

to handle the solution domains having irregular geometry. In general it requires fewer grid

points for a given accuracy of solution as compared to FDM. The main drawback of FEM is its

complex algorithmic approach of solution and it continue to retain a low-order method. Some

of the recent studies made using finite element method consists of [140,170,171].

1.8.1.3 Finite Volume Method

For the study of electrokinetic flow, finite volume method (FVM) is one of the most frequently

used numerical techniques. This technique is used for solving the governing equations for mass,

momentum and energy conservation. In this method, the equations justify the conservation

law and are integrated over a control volume. The variables on the control volume interface

are estimated by a linear interpolation between the two neighboring cells to either side of the

control volume interface. Here we have used the staggered grid arrangement for allocating the

variables because of its advantages in considering the influence of the pressure gradients on

fluid flow. A detailed description of this method is discussed by Patankar [210], Versteeg and

Malalasekera [261], Fletcher [89], Lomax et al. [155] and Pletcher et al. [216].

To explain the finite volume method we consider the two dimensional convection- diffusion

equation with the generic variable c as

∂c

∂t
+∇.(cu) = ∇2c+ Sc (1.43)

Here, u represents the corresponding flux tensor and Sc is the source term and to proceed

for the technique, we sub-divide the spatial domain into finite volumes or cells. For a particular

cell (Fig. 1.6), we take the volume integral over the total volume of the cell, VP , which gives
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∫
VP

∂c

∂t
dV +

∫
VP

∇.(cu)dV =

∫
VP

∇2cdV +

∫
VP

ScdV (1.44)

On integrating the first term to get the volume average and applying the Gausss divergence

theorem to the second, this yields

∫
VP

∂c

∂t
dV +

∮
SP

c(u.n) =

∮
SP

∇c.ndS +

∫
VP

ScdV (1.45)

where SP represents the total surface area of the cell and n is a unit vector normal to the

surface and pointing outward. This integrals are approximated as

(
∂c

∂t

)
P

VP +

∮
SP

c(u.n)dS =

∮
SP

∇c.ndS + (Sc)PVP (1.46)

The unsteady term, the fluxes, the diffuse and the source term are further discretized using

various schemes.

1.8.2 Differencing Schemes for Convection and Diffusion Terms

The governing equations for EOF and solute transport consist of various terms namely, tempo-

ral, convective, diffusive, electromigration and source terms. Each terms can be approximated

by various formula depending on the accuracy of the schemes. The convective term, specially for

high Reynolds number flows, leads a non-physical oscillation if we discretize it by using the cen-

tral difference scheme. The Nernst-Planck equation shows hyperbolic characteristics due to the

presence of the convection and electromigration term. Discretization of convective and electro-

migration terms through central difference scheme produce wiggles near the sharpness in solu-

tions [118,256]. To overcome this problem, generally higher order upwind scheme is used. Com-

monly used higher order upwind schemes are the Second order upwind scheme [74,124,240,274]

and the QUICK (Quadratic Upwind Interpolation for Convective Kinematics) [104,145] scheme.

We consider one-dimensional control volume as shown in Fig. 1.5. The boundary of the

control volume is positioned mid-way between the adjacent nodes. A general node point is

denoted by ‘P’ and its neighbor points are the nodes to the west and east are identified by ‘W’

and ‘E’ respectively. The west and east side face of the control volume is referred by ‘w’ and

‘e’ respectively. For the simplicity of the presentation, we have considered the uniformly spaced

nodes and the distance between them is δx. The distance between the point ‘P’ and its east

face ‘e’ is δx/2 and that of west face is δx/2.
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Figure 1.5: Schamatic diagram of the control volume in one dimension.

To illustrate various upwind schemes, we consider one dimensional Convective-Diffusion

equations for the generic variable c, i.e.,

ucx = αcxx (1.47)

Using the central inferencing scheme the approximations of c at cell face e and w is given by

ce =
cE + cP

2
and cw =

cP + cW
2

(1.48)

The major disadvantage of the central differencing scheme are its inability to identify the

flow direction. In a strongly convective flow, the central differencing approximation for the

convective terms is not suitable as it does not account for the flow velocities. However, the

upwind differencing scheme takes into account the flow direction when determining the value at

a cell face, i.e., the convected values of c at cell faces depend on the upstream and downstream

node depending on the flow direction.

1.8.2.1 Second Order Upwind Scheme

Using the second order upwind scheme the convected values of c at cell face e is given by

ce =

(3
2
cP + 4

2
cW − 1

2
cWW ), ue > 0

(−3
2
cP + 4

2
cE − 1

2
cEE), ue < 0.

Similar procedure is adopted to estimate cw at cell face w.
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1.8.2.2 QUICK Scheme

QUICK scheme uses the 3 point upstream weighted quadratic interpolation for the cell face

values. Using the QUICK scheme the convected values of c at cell face e is given by

ce =

(3
8
cE + 3

4
cP − 1

8
cW )), ue > 0

(−3
4
cP + 3

8
cE − 1

8
cEE), ue < 0.

Similar procedure is adopted to estimate cw at cell face w.

Figure 1.6: Schamatic diagram for control volume VP where P is the center and e, w, n, s denote
the cell faces. The interpolation for a variable c based on QUICK scheme

1.8.2.3 Implementation of QUICK Scheme

We consider the general Convective-Diffusion equations for the generic variable c, with some

boundary condition i.e.,

∂c

∂t
+

[
∂

∂x
(uc) +

∂

∂y
(vc)

]
−∇2c = 0 (1.49)

where the first term is due to the time dependency and the last term is the diffusion term.

The computational domain is subdivided into a number of elementary sub cells VP with area
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dV whose sides are dx and dy. On integration of Eq. 1.49 over a cell VP (Fig. 1.6) yields the

discretization as

cn+1
P − cnP
dt

dxdy + [uece − uwcw]n+1dyP + [vncn − vscs]n+1dx

=

[
∂c

∂x

∣∣∣∣
e

− ∂c

∂x

∣∣∣∣
w

]n+1

dyP +

[
∂c

∂y

∣∣∣∣
n

− ∂c

∂y

∣∣∣∣
s

]n+1

dx+ (Sc)Pdxdy (1.50)

Here n, s, e and w, refers to the north, south, east, west face of the cell (Fig. 1.6). An

implicit first-order scheme is used to discretize the time derivatives present. The diffusion terms

are discretized through central difference scheme.

The diffusion flux at interfaces ‘e’ and ‘w’ are evaluated as

∂c

∂x

∣∣∣∣
e

=
cE − cP
dx

and

∂c

∂x

∣∣∣∣
w

=
cP − cW
dx

Similar procedure is adopted to estimate the diffusion flux at the other cell faces ‘n’ and

‘s’. Note that the capital letter subscripts denote the cell centers in which variables are stored

and small letter subscripts denote the corresponding cell faces. Using the QUICK scheme for

the convective terms and central differencing scheme for the diffusion terms, the discretized

equation (Eq. 1.50) can be written as

aP c
k+1
P = aEc

k+1
E + aW c

k+1
W + aNc

k+1
N + aSc

k+1
S + a0

P c
k
P , (1.51)

where the coefficients ai (i = E, W , P , N and S) are as follows

aE = De −min(ue, 0), aW = Dw +max(uw, 0),

aN = Dn −min(vn, 0), aS = Ds +max(vs, 0),

aP = De +max(ue, 0) +Dw −min(uw, 0) +Dn +max(vn, 0) +Ds −min(vs, 0) + a0
P

The contribution of the diffusion terms are included in D.
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Figure 1.7: Staggered arrangement for scalar and vector components.

1.8.3 Choice of Variable Arrangement on Grid

The first issue in discretization is to select the points in the domain at which the values of

the unknown dependent variables are to be computed. The obvious choice is to store all the

variables at the same set of grid points and to use the same control volumes for all variables; such

arranged grids is called collocated grid. Since, many of the terms in each of the equations are

essentially identical, the number of coefficients that must be computed and stored is simplified by

their choice. But the collocated arrangement has significant drawbacks in complicated solution

domains, especially when the boundaries have slope discontinuities or the boundary conditions

are discontinuous. The collocated arrangement was out of favor for a long time for incompressible

flow computation due to the difficulties with pressure-velocity coupling and the occurrence of

oscillations in the pressure. It can be shown that if the velocity components and the pressure are

calculated for the same points, some physically unrealistic fields arise as solutions. A detailed

discussion regarding these difficulties is made by Patankar [210]. A remedy for this is to use

the staggered grid for velocity components [102]. Fig. 1.7 shows a portion of a two-dimensional

grid. In the staggered grid, the scalar variables, including pressure, are stored at the nodes

marked (•), whereas the velocity components (horizontal and vertical) are defined at the cell

faces in between the nodes and are indicated by arrows. Horizontal (→) arrows indicate the

locations for the u-velocities and vertical (↑) ones denote those for v-velocities.
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1.8.4 Pressure Calculation

Solution of incompressible Navier-Stokes (N-S) equations is complicated due to the lack of inde-

pendent equations for pressure, whose gradient contributes to each of the momentum equations.

In incompressible flow, the density is constant and hence not linked to the pressure. Due to

which a coupling between the pressure and velocity introduces a constraint on the solution of the

flow field i.e., if the corrected pressure field is applied in the momentum equation, the resulting

velocity field should satisfy the continuity equation.

Three approaches are usually adopted to calculate pressure in incompressible flow:

• Artificial compressibility approach

• Pressure poisson approach

• Pressure correction approach

A brief description of these schemes are presented below.

1.8.4.1 Artificial Compressibility Approach

This is one of the earlier proposed technique for solving the incompressible Navier- Stokes equa-

tions in primitive variable approach due to Chorin [69]. In this method, the continuity equation

was modified by adding an artificial compressibility term which vanishes when the steady solu-

tion is reached. The continuity equation then becomes an evaluation equation for pressure. The

introduction of the compressibility parameter in the continuity equation helps in the application

of compressible flow solvers for the solution purpose and enhance the convergence characteristics

of the solution.

1.8.4.2 Pressure Poisson Approach

The most common way to combine the continuity and momentum equations is by taking the

divergence of the momentum equations. For the incompressible fluid with constant viscosity,

the viscous and unsteady terms disappear by the virtue of continuity equation, resulting in the

following equation

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

(
∂

∂xj
(ρuiuj)

)
(1.52)
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The above equation for pressure can be solved by any numerical method for elliptic equa-

tions. A pressure equation of this kind is used to calculate the pressure for both explicit and

implicit type solution techniques. To maintain consistency among the approximations used, it

is best to derive the equation for the pressure from the discretized momentum and continuity

equations rather than by approximating the Poisson equation.

One of the earliest and most widely used methods for solving the incompressible N-S

equations in primitive variable form is the Marker and Cell (MAC) methods by Harlow and

Welch [102]. The method is characterized by the use of staggered grid and the solution of a

Poisson equation for pressure at every time step. This method makes use of FTCS (Forward

Time Centered Space) finite difference scheme for the discretization of the governing equations

in an explicit manner. After solving the Poisson equation for pressure, the momentum equations

are solved to update the velocity field using the pressure field obtained from the pressure equa-

tion. Although the original form of MAC method has certain weakness, the use of a staggered

grid and a Poisson equations for pressure has been retained in many modern methods derived

from the MAC method. A simplified Marker and Cell (SMAC) method has been developed by

Amsden and Harlow [8] in which a second Poisson equation for an auxiliary velocity potential

is solved to satisfy continuity equation more directly. However the explicit treatment of the

momentum equations puts unnecessary restriction on the time step. The extension of MAC for-

mulation to allow the momentum equations to be marched in time with implicit approximation

factorization of the velocity term is provided by Ghia et al. [93] for high Reynolds number.

1.8.4.3 Pressure Correction Approach

A number of methods have been developed based on pressure correction approach out of which

SOLA, SIMPLE and PISO are worth mentioning. In the methods known as SOLA, by Hirt [108]

the convective terms are discretized by a combined scheme of central and second upwinding for-

mulation.

The family of SIMPLE algorithm is based on a finite volume dicretization on a staggered

grid. This method, introduced by Patankar and Spalding [211] is essentially a guess-and- correct

procedure for the calculation of pressure on the staggered grid arrangements. The acronym,

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations and describes the it-

erative procedure by which the solutions to the discretized equations are obtained. Here the
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Figure 1.8: (a) Scalar control volume, (b) u -control volume, (c) v -control volume.

continuity equation is converted to an equation for pressure. It starts with a guessed pressure

field which is used in solving the discretized momentum equation and the pressure correction

equation, deduced from the continuity equation which is in turn used to update the velocity

and pressure fields. The velocity field so obtained does not satisfy the continuity equation.

Therefore, the pressure and velocity are corrected to satisfy the continuity equation. The other

variations of SIMPLE algorithm (SIMPLER, SIMPLEC) can produce savings in computational

effort due to improved convergence.

1.9 Implementation of SIMPLE Algorithm for EOF in a

Slit Micro-Channel

The detail analysis of numerical scheme based on SIMPLE algorithm for a rectangular slit

microchannel is briefly stated in this section. The integration of the equations for horizontal

and transverse velocity components at the (n+ 1)th time step over the (j, k)th control volumes

for u and v respectively (Fig. 1.8), yields

auju
n+1
j−1,k + buju

n+1
j,k + cuju

n+1
j+1,k = duj −

(
pn+1
j+1,k − p

n+1
j,k

)
∆y (1.53)

avjv
n+1
j−1,k + bvjv

n+1
j,k + cvjv

n+1
j+1,k = dvj −

(
pn+1
j,k+1 − p

n+1
j,k

)
∆x (1.54)

The mole-fraction equations for the species (counter ion and co-ion) at the (n + 1)th time
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step over the (j, k)th scalar control volume gives

an1
j n

n+1
1j−1,k

+ bn1
j n

n+1
1j,k

+ cn1
j n

n+1
1j+1,k

= dn1
j (1.55)

an2
j n

n+1
2j−1,k

+ bn2
j n

n+1
2j,k

+ cn2
j n

n+1
2j+1,k

= dn2
j (1.56)

Here n1 and n2 stand for mole-fraction for counter and co-ions respectively. For a fixed value

of k, the system of equations can be expressed in a matrix form as

AjX
n+1
j−1 +BjX

n+1
j + CjX

n+1
j+1 = Dj, (1.57)

where the coefficient matrices Aj, Bj, Cj are given by

Aj =


auj 0 0 0

0 avj 0 0

0 0 an1
j 0

0 0 0 an2
j

 ; Bj =


buj 0 0 0

0 bvj 0 0

0 0 bn1
j 0

0 0 0 bn2
j

 ; Cj =


cuj 0 0 0

0 cvj 0 0

0 0 cn1
j 0

0 0 0 cn2
j


with the vector of unknown variables and vector of known variables are

Xj =


un+1
j,k

vn+1
j,k

nn+1
1j,k

nn+1
2j,k

 ; Dj =



duj −
(
pn+1
j+1,k − p

n+1
j,k

)
∆y

dvj −
(
pn+1
j,k+1 − p

n+1
j,k

)
∆x

dn1
j

dn2
j


.

Thus the system of equation can be written in a matrix from as

AX = D, (1.58)

where A represents a block tridiagonal matrix, each element of which is a square matrix of order

four and X, D stand for the vector of unknown variables and the vector of known quantities

respectively.

Integrating the continuity equation at (n+1)th time level over (j, k)th scalar control volume,

we have (
un+1
j,k − u

n+1
j−1,k

)
∆y +

(
vn+1
j,k − v

n+1
j,k−1

)
∆x = 0. (1.59)

The pressure link between the continuity and momentum equations are accomplished by

transforming the discretized continuity equation (Eq. 1.59) into a Poisson’s equation for pres-

sure correction. This pressure correction equation implements a divergence free velocity field.
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At each control volume, pressure pj,k is unknown at the initial stage. To get a solution for

Eq. 1.53 and Eq. 1.54, we guess a pressure field pcj,k. Corresponding to this guessed pressure

field p∗j,k, the velocity field (u∗j,k, v
∗
j,k) is determined form Eq. 1.58. Since u∗j,k, v

∗
j,k satisfy Eq.

1.53 and Eq. 1.54 respectively, then

auju
∗
j−1,k + buju

∗
j,k + cuju

∗
j+1,k = duj −

(
p∗j+1,k − p∗j,k

)
∆y (1.60)

avjv
∗
j−1,k + bvjv

∗
j,k + cvjv

∗
j+1,k = dvj −

(
p∗j,k+1 − p∗j,k

)
∆x (1.61)

Since the velocity field (u∗j,k, v
∗
j,k) at intermediate stage may not form a divergence free ve-

locity field, a correction of velocity field is needed. The correction of the velocity field can be

made through a pressure correction. The pressure link between the momentum and continu-

ity equations is accomplished by transforming the continuity equation into a pressure Poisson

equation. Let pcj,k be the pressure correction at (j, k)th cell and (ucj,k, v
c
j,k) be the corresponding

correction in velocity field. Thus the updated pressure and velocity field can be expressed as

pn+1
j,k = p∗j,k + pcj,k (1.62)

un+1
j,k = u∗j,k + ucj,k (1.63)

vn+1
j,k = v∗j,k + vcj,k (1.64)

Subtracting Eq. 1.60 from Eq. 1.53 and Eq. 1.61 from Eq. 1.54, we get a relation between

pressure correction and velocity correction as

auju
c
j−1,k + buju

c
j,k + cuju

c
j+1,k = −

(
pcj+1,k − pcj,k

)
∆y (1.65)

avjv
c
j−1,k + bvjv

c
j,k + cvjv

c
j+1,k = −

(
pcj,k+1 − pcj,k

)
∆x (1.66)

Ignoring, the neighboring small correction terms ucj−1,k, u
c
j+1,k and vcj−1,k, v

c
j+1,k, the correction

of velocity components can be expressed as

ucj,k = −
(

∆t

∆x

)(
pcj+1,k − pcj,k

)
(1.67)

vcj,k = −
(

∆t

∆y

)(
pcj,k+1 − pcj,k

)
(1.68)

Substituting the corrected velocity field (uj,k, vj,k) into the discretized continuity equation (Eq.

1.59), the following Poisson’s equation for pressure corection is obtained.

[
2

(
∆t∆y

∆x

)
+ 2

(
∆t∆x

∆y

)]
pcj,k = −div∗ +

(
∆t∆y

∆x

)(
pcj−1,k + pcj+1,k

)
+

(
∆t∆x

∆y

)(
pcj,k−1 + pcj,k+1

)
(1.69)
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where

div∗ =
(
u∗j,k − u∗j−1,k

)
∆y +

(
v∗j,k − v∗j,k−1

)
∆x

Here αu and αv are relaxation factors corresponding to axial and transverse velocity corrections

respectively. The Eq. 1.69 is solved using a Gauss-Seidel iterative method to achieve the

pressure correction (pcj,k) at each cell of the flow domain. For rapid convergence, the pressure

field is under-relaxed as

pn+1
j,k = p∗j,k + αpp

c
j,k, (1.70)

where αp is the under-relaxation factor. The relaxation factor is taken between 0 and 1, so

that guessed pressure field is added in a fraction of the corrected pressure field pc, in order to

improve iteration process to carry forward. Similarly, the velocity components un+1
j,k and vn+1

j,k

are under-relaxed in the following manner:

un+1
j,k = u∗j,k + αuu

c
j,k

vn+1
j,k = v∗j,k + αvv

c
j,k

 . (1.71)

Any time step of the algorithm consists of the following sequential steps:

1. Start the iteration by guessed pressure, velocity, ionic concentration and electric potential.

2. Discritized ionic concentration and momentum equations are solved by block elimination

method (Appendix C) using the guessed values of the corresponding variables.

3. Solve the pressure correction equation with SOR method (Appendix A).

4. Update the velocity and pressure fields at each cell using pressure correction.

5. At each time step the equation for potential is solved using the updated ionic concentra-

tion.

6. The process is repeated until getting desired accuracy. The convergence criteria can be

represented as

maxj,k|Θn+1
j,k −Θn

j,k| < ∆,

where Θ = (u, v, n1, n2, φ), ∆ = 10−6. Here n denotes the iteration level and (j, k) stands for

cell index.

In case of eluted species mixing (C), the discretized form of Eq. 1.41 is solved using Tridi-

agonal Matrix Algorithm (Appendix B) with same tolerance (∆).
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1.10 Organization of the Thesis

This thesis consists of seven chapters including the introductory chapter. We have also included

three appendices related to numerical schemes. In the introductory chapter, the governing equa-

tions for fluid flow, ion transport, electric field and the transport of uncharged eluted species are

described. The basic principles of electrokinetic phenomena and their importance in micro/nano

fluidic systems are provided. In this chapter, we have introduced the basic characteristics of the

electrokinetic flow, the electric double layer and the mathematical modeling of electrokinetic

flows. The theoretical analysis of the electroosmotic flow (EOF) based on the Debye- Huckel

approximation and its limitations are explained. At the end of this chapter, the computational

methods for solving the governing set of coupled nonlinear partial differential equations for fluid

flow, ions transport and electric potential have been discussed.

In Chapter 2, the electroosmotic flow and mixing of uncharged species of two different con-

centration are studied in a nano-fluidic system. The channel is modulated with a non-conducting

block, embedded on the lower wall of the channel with surface potential heterogeneity. The

results are presented in terms of electric field lines, streamlines, mixing efficiency and concen-

tration contours by solving a coupled set of non-linear set of pde’s involving Maxwell’s equation

for electric potential, Nernst-Planck equation for ion transport, Navier-Stokes equation for mo-

mentum transport and advection-diffusion equation for uncharged mixing species transport. A

finite volume based numerical approach with QUICK [89] scheme is adopted for solving the

governing system of equations. The simulated results show that the increment of block height

with higher over-potential patch strength increases the retention time and effective contact ares

between flow streams which in turn increases the effective diffusion flux to achieve an improved

mixing. On the other hand, it is concluded that higher external electric field strength increases

the average flow rate which is a cause of reduced mixing efficiency. At the last section of this

chapter it is shown that, maximum mixing efficiency at the downstream of the channel can be

achieved when the block is placed closer to inlet.

In Chapter 3, a comparative study on flow mixing and charge transport is conducted based

on Poisson-Nernst-Planck model. In this chapter two different configurations are considered to

create geometric and surface modulation. In the first configuration (Case I), a non conducting

block with overpotential patch is embedded on the lower wall of the channel and two overpoten-

tial patches are placed on the upper wall asymmetrically. In Case II, two blocks with potential

heterogeneity are placed on the lower wall and two overpotential patches are attached on the
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upper wall symmetrically at the same axial locations. An analytical estimation for pressure

and velocity is made far away from heterogenous region. The simulated results concluded that

a larger pressure drop is developed in Case II as a consequence of higher effective circulation

strength due to the presence of block-patch. As a result, the fluid streams experience more

stretched and folded paths in Case-II which causes better downstream mixing as compared to

earlier case.

In Chapter 4, a numerical investigation of flow mixing and flow reversal is carried out in

a symmetric modulated microchannel. The side walls of this micromixer is composed of two

sinusoidal wave functions. In the first section of this paper, a parametric estimation for flow

reversal is discussed in terms of wave amplitude, ratio of EDL thickness to channel height and

external electric field. This flow reversal diagram revels that the critical wave amplitude for

flow reversal is increased with the increment of external electric field and solution strength. In

the last section, the criterion for mixing enhancement is discussed for a wide range of above

discussed parameters. An improved mixing is found for the increment of wave amplitude and

for the decrement of external electric field and solution strength.

In Chapter 5, a numerical study of electrokinetic mixing and pressure drop is presented

in a wavy patterned microchannel with different phase shift. The rheological behaviour of the

electrolyte is described by power-law model. In this chapter, the wall zeta potential is assumed

to vary sinusoidally with same wave length that of wall structures. In the first section of this

chapter, a parametric study is made to choose the best choice of phase shift for achieving a

good mixing with minimum pressure drop for Newtonian fluid. In the successive section the

discussions for pseudoplastic (shear thinning) and dilatant (shear thickening) fluids are made

using the best chosen phase shift (π/2). The results depict that the mixing efficiency is remark-

ably increased for the increment of wavy nature of the wall with higher power-law index, but

the pressure drop is also increased accordingly. Thus to achieve an effective and controllable

mixing, mixing performance factor (ratio of mixing efficiency and pressure drop) is studied here

along with mixing efficiency. It is found that, higher values of power-law index is not always

beneficial in term of mixing enhancement factor. Mixing performance factor is decreased after

a certain value of power law index (here n = 1.3) due to the dominance of pressure drop over

mixing efficiency.

In Chapter 6, a comparative numerical study on non-Newtonian (power-law) mixing is
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performed in a cylindrical channel with sudden constriction / expansion with surface potential

heterogeneity. In this chapter, overpotential patches are placed in the region of constriction

/ expansion zones. The simulated results are presented in terms of mixing enhancement and

pressure drop. The results show that the mixing efficiency is increased with the increment of

power-law index and wave amplitude for both the cases. It is important to mention that, for the

same set of flow controlling parameters, constricted structure gives better mixing as compared

to expanded one. But the reverse characteristic is followed for mixing enhancement factor due

to the higher pressure drop in case of constricted channel. Thus it is concluded that, for mix-

ing purpose, constricted structure is quiet better, but for overall performance, i.e. for effective

mixing with minimum pressure drop, expanded structure is better.

Finally, we draw some conclusions of the above chapters and discuss future problems in this

direction in Chapter 7.
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Chapter 2

Mixing and Charge Transfer in a

Nanofluidic System Due to a Patterned

Surface

2.1 Introduction

Micro / nano fluidic systems have a wide range of biological and chemical applications such

as drug delivery and control, separation and mixing in small channels, DNA manipulation and

sequencing [70,83,84]. Electroosmotic flow is a very useful transport phenomenon in industrial

applications such as heating and cooling of microchips in electronics, the separation of biological

components in microfluidics system based on a lab-on-a-chip concept. To generate a flow field

in channels of micro/nano scale, a mechanism called electroosmosis is adopted in which fluid

flow occurs due to the interaction between two electric fields namely (i) induced electric field

which is developed near the charged wall and (ii) external electric field which is applied along

streamwise direction in general. A charged layer, called electric double layer (EDL) [146, 147]

is induced in the vicinity of the channel walls.

The electroosmotic flow strongly depends on the surface charge density or zeta-potential,

which varies with solution pH, ionic strength, dielectric constant and absorption of solute

molecules on the walls [263]. The enhancement of mixing in microfluidics have been demon-

strated by several authors through surface potential modulation. A non-uniform surface poten-

tial may arise due to surface defects or the absorption of organic material on the walls. In case

of a positive over potential patch located on a negatively charged wall, a surplus of negative ions

33
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are attracted by the patch while a surplus of positive ions are attracted by the negative charged

wall. Due to the external electric field acting parallel to the wall, the flow near the patch will

be in opposite direction to that of bulk flow, which may lead to a recirculation region [90]. The

effects of non-uniform surface charge distribution on electrokinetic flows have been studied by

several researchers. Electroosmotic flow between two parallel plates with periodic surface mod-

ulation has been studied by Ajdari [3, 4] analytically. Many numerical and experimental works

have been carried out by several authors on mixing in small channels. Erickson and Li [84]

investigated the problem in micro channels with non-uniform charge for mixing applications.

The Boltzmann distribution and the slip boundary conditions have been used in their model.

Their results showed that mixing of two species can be enhanced by the localized circulation

in the bulk flow field which is generated by the non-uniformity of the surface charge distribu-

tion. Wang et al. [266] numerically investigated flow mixing in micro channels with patterned

grooves using a poincaré map. Their simulation showed that patterned grooves cause rotation

of fluid streams to induce more passive mixing. Micro/nano scale mixing can be enhanced

by chaotic advection that can be simulated using Lagrangian particle tracking methods, box

counting and finite time Lyapunov exponents [130,232,251] in which the contact area between

fluid elements are stretched and folded. A detailed mathematical description on stretching and

folding of interfacial area to create significant enhancement in mixing has been discussed by Ot-

tino [203]. Biddis et al. [31] visualized the effect of heterogenous charge arrangement along the

channel walls experimentally for micro-channels. They concluded that patterning arrangement

of surface charge heterogeneities develops flow recirculation and thus, introduces an additional

advective component of mixing. Wang et al. [267] studied the flow pattern in micro-channels

using the Lattice Boltzmann method and concluded that mixing efficiency can be enhanced by

induced transversed velocity. Chang and Yang [43] numerically investigated the flow pattern

and mixing performance in a rectangular micro-channel with patterned blocks. Their model is

based on the Boltzmann distribution and the Debye-Hückel approximation. They have observed

recirculating vortices over the blocks. Stroock et al. also observe this flow pattern experimen-

tally [250]. Chen and Cho [50] numerically investigated the flow pattern in wavy surfaces and

observed that a wavy surface expands the interfacial contact area between two streams, and

hence, provides improved mixing. Wu and Li [276] numerically demonstrated a technique to

increase the diffusive flux by considering fluid streams through a converging-diverging region,

formed by a pair of conducting triangular hurdles. Wang et al. [264] demonstrated the effect

of number, size and displacements of blocks in a rectangular channel with patterned blocks to

determine the optimal choice to get significant mixing efficiency. Tang et al. [253] reported the
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mixing efficiency enhancement in a channel with asymmetric zeta potential distribution using

Lattice Boltzmann (LB) method. Transverse and longitudinal flow through a plane channel

with a periodic arrangement of slipping and non-slipping strips has been investigated by Ng

and Chu [195] using a semi-analytical method. Enhancement of mixing in micro-channels has

been reported by Song and Bennett [246] due to a transverse flow generated by introducing

two layers of electrodes face-to-face placed on the top and bottom of the channel. They no-

ticed that an optimum effect can be obtained by a squarewave pattern of electrodes placed

on both top and bottom of the channel. Ghosh and Chakraborty [94] studied electrokinetic

mixing in a long micro-channel with non-homogeneous charge distribution on the walls. Cho et

al. [66] numerically studied the mixing enhancement for power-law fluids. This study showed

that shear-thinning fluids consist of a higher volumetric flow rate than shear-thickening fluids,

and therefore resulting in poor mixing efficiency. Jain and Nandakumar [117] designed an op-

timal non-homogeneous charged pattern along the channel to get an effective mixing efficiency

enhancement along the channel. Sezavar and Miri [233] designed two different geometries by

placing triangular and rectangular hurdles respectively in a periodic manner on both of the

walls of a micro-channel. Their result shows that rectangular obstacles give more homogenous

mixing than triangular ones. It can also observed that for both types of obstacles, the height

of the barrier is more important than their number for mixing enhancement.

A major limitation of the above studies is that most of the authors have used the Poisson-

Boltzmann model with the Debye-Hückel approximation to analyze the flow mixing in small

channels. The Boltzmann distribution is based on the condition that the electrochemical po-

tential must be constant everywhere at equilibrium and there is no imposed electric field and no

bulk flow. In the Poisson-Boltzmann model, it is typically assumed that electric potential is zero

away from the channel wall and ionic concentration of the liquid away from charged surface is

equal to the bulk ionic concentration. But these assumptions are not applicable for overlapped

EDL cases, when the channel walls are sufficiently close to each other. Also, for heteroge-

neous surface potential with solution pH > 8, the surface potential may exceed 26mV which

violates the applicability of the Debye-Hückel approximation [73]. To avoid these limitations,

the Poisson-Nernst-Planck model has been used by many authors in which the convection and

electric migration effects are also included. Conlisk and Mc Ferren [72] used the Nernst-Planck

equation in their simulation instead of the Boltzmann’s model to describe the distribution of

ionic species in a channel. Bhattacharyya and Nayak [27] demonstrated enhancement in mix-

ing in a micro-channel based on the Nernst-Planck model. They introduced non-homogeneity
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in electric potential along the channel walls and showed that a transverse velocity is induced

over the potential non-homogeneity which significantly modifies the flow field. It is found that

the Nernst-Planck (NP) model and the Poisson-Boltzmann (PB) model show significant dif-

ferences for higher value of external electric field and large overpotential patch strength. A

non-linear distribution of velocity and potential has been studied by Chen and Conlisk [54] us-

ing the Nernst-Planck model. They concluded that the velocity and potential distribution show

a significant difference from the results based on the PB-model when the flow field is strongly

influenced by convection effects with a strong electric field. Nayak [189] showed that convection

effects can not be neglected near a step jump in the zeta potential. It has also been concluded

that a strong convection effect is observed close to channel walls when patches have high electric

potential, close to the channel walls. An asymmetric arrangement of patch potential along the

channel walls give an enhanced mixing efficiency downstream of the channel as compared to a

symmetric arrangement. Bera and Bhattacharyya [22] studied the combined effect of a non-

uniform electric double layer and surface roughness due to the presence of conducting obstacle

mounted on the wall by using a free slip model combined with pressure gradient. Recently,

Nayak et al. [191] studied mixing efficiency enhancement for a binary fluid in a circular channel

with surface potential modulation of channel walls. They showed results for strong as well as for

weak electrolyte solutions and obtained a significant mixing enhancement due to heterogeneity

in surface charge distribution.

Mixing during flow in micro/nano scale channels can be enhanced by heterogeneous surface

potential and/or non- uniform surface geometry. Chang and Yang [43] numerically investigated

the combination of these two features in a study of mixing enhancement in electroosmotic flow

with rectangular blocks on the channel walls, but they used the PB approach rather than the

more appropriate NernstPlanck equations. The current chapter re-examines electroosmotic mix-

ing in the presence of a rectangular block on the channel wall, and patterned surface potential,

using the NernstPlanck equations. The authors believe that this has not yet been investigated.

A two dimensional numerical study is conducted for mixing analysis of the steady electroos-

motic flow in nano-channels. A non conducting block is mounted on the lower wall of the channel

to create heterogeneity inside the domain. To investigate the mixing enhancement, a variation

of patterned potential is considered along the upper face of the block. The improvement of

mixing efficiency is also studied by considering periodic potential instead of constant potential
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in the patterned surface. A mixing-time analysis is performed with the variation of Peclet num-

ber for different patterning of the heterogeneous surface. There are thus two objectives of this

chapter: (1) to investigate the effect of the imposed electric field and convection on the EOF

and (2) to investigate mixing efficiency and mixing time with the variation of block position

and patterning of heterogeneous surface on the upper face of the rectangular block.
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Figure 2.1: Schematic diagram of the flow geometry.

2.2 Physical Configuration

Based on the literature survey, it is predicted that flow mixing can be enhanced by creating a

modulation in the channel geometry. In this chapter, our motivation is to study the enhancement

of mixing efficiency of two streams of different concentrations in a long channel with a non-

conducting block placed on the bottom wall [Fig. 2.1]. Our study is restricted near the block

with an extra potential placed in the upper face and the remaining part of the block faces

and channel wall possesses an uniform zeta potential. The channel is filled with Newtonian

incompressible electrolyte. The configuration is such that the width of the channel is much

smaller as compare to its length so that the flow field can be considered as two dimensional.

Inside the channel, flow is generated due to the interaction between the electric double layer

and the external electric field. The length of the block is taken same as of the height of the

channel such that the aspect ratio becomes 1. In the present study the height of the channel is
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considered as 20 nm and the height of the block varies between 0.2 to 0.5 times of its height.

The uniform external electric field is assumed to vary from 104 V/m to 106 V/m.

2.3 Mathematical Model

Let us consider a cross section of a rectangular channel of height H and length L filled with an

electrolyte solution of uniform permittivity εe and viscosity µ where an obstacle with length H

and height d is placed along the bottom wall of the channel. The imposed electrodes are assumed

to be placed at the inlet and outlet of the channel. To formulate the model mathematically, the

following assumptions are made:

1. The electrolyte is considered as Newtonian and incompressible fluid.

2. It is assumed that charged species concentrations are so dilute that they do not interact

and the diffusion coefficient for both the ions (counter ion and co-ion) are same.

3. Effect of Joule heating is negligible and the species do not interact chemically.

4. The effect of buoyancy and gravity are ignored.

The dimensional electric potential Φ∗ is taken as

Φ∗(x∗, y∗) = φ∗(x∗, y∗) + ψ∗(x∗, y∗), (2.1)

where φ∗ and ψ∗ are the induced and external potential respectively. The dimensional electric

field E∗ satisfies Maxwell’s equation

∇× E∗ = 0 (2.2)

along with the Poisson’s equation

∇ · (εeE∗) = −∇ · ∇Φ∗ = ρe, (2.3)

where E∗ =
(
E∗x, E

∗
y

)
. Here εe is the permittivity of the medium and ρe is the charge density

per unit volume. Permittivity of the medium is defined as, εe = ε0εr, where ε0 is the dielectric

constant of the solution and εr is the permittivity of the vacuum.

The charge density is defined by

ρe = FΣzici = FcΣziXi, (2.4)
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where ci, zi and Xi are the molar concentration, the valence and the mole fraction of the ith

species and c is the total molar concentration; F is the Faraday’s constant.

For symmetric monovalent electrolyte solution one has

ΣiziXi = (n1 − n2). (2.5)

Thus, the dimensionless induced potential equation of a symmetric monovalent electrolyte in

two dimensions can be written as

ε21
∂2φ

∂x2
+
∂2φ

∂y2
= − β

ε2
(n1 − n2). (2.6)

The induced potential is scaled by φ0 = RT
F

= 25.6 mV . Coordinates (x∗, y∗) are non dimen-

sionalized by (L,H) and φ∗ by φ0. i.e. x = x∗

L
, y = y∗

H
and φ = φ∗

φ0
. β = c

I
is the ratio of total

concentration and the ionic strength (I) of the solution where I is defined as I = Σiz
2
i ci. ε(=

λ
H

)

is the aspect ratio where λ is the Debye length which is defined as λ =
√

εeRT
IF 2 ; R is the gas

constant and T is the absolute room temperature which is taken here to be 300 K.

The external electric field is created by introducing electrodes in the upstream and down-

stream locations of the channel. The distribution of the external electric field is obtained by

solving the Laplace equation

∇2ψ = 0. (2.7)

It is assumed that all walls of the channel and the block are electrically insulated, i.e.∇ψ ·n = 0,

where n is the unit outward normal to the surface. Far away from the block, i.e. upstream and

downstream of the channel, ψ is a linear function of x i.e. ψ = −Λx. where Λ = HE0

φ0
is the

dimensionless imposed electric field strength.

The mass transport equation for the ith ionic species for a dilute mixture in vector form is

given by

∂ci
∂t

+∇ ·N∗i = 0, (2.8)

where N∗i is the molar flux which consists of convective, diffusive flux and the flux due to

electro-migration effect are related as [33]

N∗i = −Di∇ci + ciωiziFE∗ + ciq
∗, (2.9)

where E = (Ex, Ey) and q∗ is the velocity of the fluid. Di is the diffusivity and wi (= Di

RT
) is

the mobility of the ith species. zi is the valence of species i (1 for cation and -1 for anion).

Thus, the transport equation for ith species for a steady EOF is written as

∇ ·N∗i = 0. (2.10)
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For species i, the non-dimensional ionic transport equation in two dimensional form based on

Nernst-Planck approach can be written as

∂2Xi

∂y2
+ ε21

∂2Xi

∂x2
= Pe

(
ε1u

∂Xi

∂x
+ v

∂Xi

∂y

)
+

(
ε1zi

∂(XiEx)

∂x
+ zi

∂(XiEy)

∂y

)
, (2.11)

where Ex, Ey are the non-dimensional electric field in x and y direction respectively which can

be written as

Ex = −
(
ε1
∂φ

∂x
+ ε1

∂ψ

∂x

)
, (2.12)

Ey = −
(
∂φ

∂y
+
∂ψ

∂y

)
. (2.13)

The velocity is scaled by the Helmholtz-Smoluchowski velocity UHS, where UHS = εeE0Φ0

µ
. The

non-dimensional parameters for EOF are Re (Reynolds number), Sc (Schmidt number), Pe

(Peclet number) which are defined as Re = UHSH/ν, Sc = ν
Di

and Pe = ReSc.

The momentum equations in dimensional form for an incompressible Newtonian fluid are given

by

ρ

(
∂q∗

∂t
+ (q∗ · ∇)q∗

)
= −∇p∗ + µ∇2q∗ + ρeE

∗, (2.14)

where q∗ = (u∗, v∗). The electrodes are placed at the inlet and outlet of the channel & the

width of the channel is considered is of the order of its length. Thus all gradients with respect

to z is neglected and the flow is taken as two dimensional.

The non-dimensional forms for the equation of motion of the ionized particles in steady

state along with the equation for the induced perturbed potential and the equations for the ion

transport for a binary symmetric electrolyte are

ε1
∂u

∂x
+
∂v

∂y
= 0 (2.15)

Re

(
ε1u

∂u

∂x
+ v

∂u

∂y

)
= −ε1

∂p

∂x
+∇2u− β

ε2
ε1
Λ

(n1 − n2)

(
∂φ

∂x
+
∂ψ

∂x

)
(2.16)

Re

(
ε1u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+∇2v − β

ε2
1

Λ
(n1 − n2)

(
∂φ

∂y
+
∂ψ

∂y

)
(2.17)

ε21
∂2φ

∂x2
+
∂2φ

∂y2
= − β

ε2
(n1 − n2) (2.18)



41

(
ε21
∂2n1

∂x2
+
∂2n1

∂y2

)
=
β

ε2
n1(n1 − n2)−

(
ε21
∂φ

∂x

∂n1

∂x
+
∂φ

∂y

∂n1

∂y

)
−
(
ε21
∂ψ

∂x

∂n1

∂x
+
∂ψ

∂y

∂n1

∂y

)
+ Pe

(
ε1u

∂n1

∂x
+ v

∂n1

∂y

)
(2.19)

(
ε21
∂2n2

∂x2
+
∂2n2

∂y2

)
=− β

ε2
n2(n1 − n2) +

(
ε21
∂φ

∂x

∂n2

∂x
+
∂φ

∂y

∂n2

∂y

)
+

(
ε21
∂ψ

∂x

∂n2

∂x
+
∂ψ

∂y

∂n2

∂y

)
+ Pe

(
ε1u

∂n2

∂x
+ v

∂n2

∂y

)
(2.20)

Here p = p∗

µUHS/H
is dimensionless pressure and ∇2 = ε21

∂2

∂x2
+ ∂2

∂y2
. n1 and n2 are mole fractions

for cation and anion species respectively. The velocity field is coupled with the mass transfer

and the induced potential equations.

The flow is assumed to be fully developed at far away from the block. Along the solid

walls no slip conditions are used for the velocity components. We can either specify the ion

concentrations or the flux at the surface walls for mole fractions. The fixed wall mole fractions

are obtained under the assumption that the average electrochemical potential in the channel

is the same as that in the reservoir. Zheng et al. [292] described the procedure to obtain wall

mole fractions from the electrochemical equilibrium requirements. The boundary conditions are

given by [189]:

At far upstream (x=-L/2) of the channel is taken as

u = uin; v = 0; φ = φin; n1 = nin
1 ; n2 = nin

2 ;
∂p

∂x
= 0. (2.21)

At far downstream (x=L/2) we consider Neumann’s conditions as

∂u

∂x
= 0;

∂v

∂x
= 0;

∂φ

∂x
= 0;

∂n1

∂x
= 0;

∂n2

∂x
= 0;

∂p

∂x
= 0. (2.22)

The boundary condition along the channel walls (y=0 and y=1) can be taken as

u = v = 0; φ = 0; n1 = n0
1; n2 = n0

2. (2.23)

Along the upper face of the block (−0.5 ≤ x ≤ 0.5, y = d/H) the boundary condition is

u = v = 0; φ = φp; n1 = n1p ; n2 = n2p . (2.24)

The values for uin, φin, nin
1 , nin

2 are due to the fully developed EOF.

The non-dimensional patch potential along the upper face of the obstacle is denoted by φp.

On the upper portion of the obstacle the potential & mole-fractions are assumed to be φ = φp,

n1p = n0
1e
φp and n2p = n0

2e
−φp which satisfies the electrochemical equilibrium condition of the

potential.
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Figure 2.2: Comparison of (a) Streamwise velocity component in fully developed region for
various grid sizes from 200 × 50 to 800 × 200, (b) Mole fractions distribution due to Ramirez
and Conlisk [220]. Here n0

1 = 0.154 M , n0
2 = 0.0141 M , H = 50 nm and E0 = 1.7143 V/m.

2.3.1 Mass Transport Equation

The transport of an uncharged species has been considered to analyze the mixing efficiency.

The non-dimensional species transport equation due to the combined effect of convective and

diffusive flux is

∂C

∂t
+ (q · ∇)C =

1

Pes
∇2C, (2.25)

where C is the dimensionless species concentration scaled by reference concentration Cref . Non-

dimensional time t is scaled by diffusion time scale H2

Ds
. For species transport, a constant species

concentration is considered along the inlet and no flux condition along walls (channel walls and

walls of the block) are assumed. Thus the boundary conditions for species transport are:

along upstream:

C = Cin (2.26)

along downstream:
∂C

∂x
= 0 (2.27)

along walls:

∇C · n = 0 (2.28)

where n is the unit outward normal along the surface. Here Cin = 1 on lower half of the channel

inlet (x = −L/2, 0 ≤ y ≤ 0.5) and Cin = 0 on the upper half of the inlet (x = −L/2, 0.5 ≤
y ≤ 1).
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Figure 2.3: Comparison of (a) present solution with the asymptotic solution and the solution due
to Bhattacharyya et al. [26] in the fully developed region when n0

1 = 0.154 M , n0
2 = 0.0141 M ,

H = 20 nm and E0 = 1.7143 V/m. (b) Effective volume flow rate for different channel heights
with the result due to Zheng et al. [292].

2.4 Numerical Method

The coupled nonlinear system of equations for mass transfer, fluid flow and potential distri-

bution has been solved through finite volume approach using staggered grids. On a staggered

grid, the scalar variables are stored in the cell centers and velocity & momentum variables

are located at the cell faces. Equations are discretised by integrating the governing equations

over different control volumes for scalers and vector quantities. A first order implicit scheme

is used to discretise the time derivatives. To cope with the nonlinear terms in the governing

equations, Newton’s linearization technique is used. Numerical method adopted here is similar

to the method described in Chapter 1 (Section 1.8). In contrast to the previous algorithm,

here we have used an upwind discretization for the convection and electro-migration terms in

momentum and ion transport equations. This upwind discretization imparts stability to the nu-

merical scheme when the electro-migration and convection terms in the ion transport equations

are significant. This makes the solver second order accurate in space variables. The discretized

equations are solved through the pressure-correction based iterative SIMPLE (Semi Implicit

Method for Pressure Linked Equation) algorithm. In every time step of the cyclic procedure

Poisson’s equation for pressure correction is solved through the SOR (Successive Over Relax-

ation) technique. The pressure field is corrected to justify the validation of velocity correction

in the continuity equation. This cyclic procedure is repeated until the residuals are less than a

certain tolerance, maxi,j |Θn+1
i,j −Θn

i,j| < ∆, where Θ = (u, v, n1, n2, φ), ∆ = 10−6, n represents

the iteration level and i, j denotes the computational grid points.
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2.4.1 Code Validation

The results for axial velocity and mole-fractions are compared with the existing literature to

validate our numerical algorithm. A grid independent test is performed for the velocity by taking

different grids (200×50, 400×100, 800×200) and compare our result with the result of Ramirez

and Conlisk [220]. Fig. 2.2(a) shows the grid independent co-relations where the optimum grid

size is obtained at 400 × 100 and the error of approximation for the grid sizes is found to be

0.5%. To validate our numerical scheme, we have compared our result for streamwise velocity

with the numerical solution obtained by Bhattacharyya et al. (Fig. 2.3(a)). The computed

numerical solution for the streamwise velocity far away from the obstacle agrees well with the

asymptotic solution 1
2

ln

(
n0
1

n0
2

)
obtained by Bhattacharyya et al. [26]. The comparison of the

mole fractions with the result of Ramirez and Conlisk [220] is presented in Fig. 2.2(b). The

present result agrees with the existing result very well with an error less than 0.05%. The axial

flow rate of EOF is computed in a plane channel for different channel height (Fig. 2.3(b)) and

validated with the results obtained by Zheng et al. [292]. The result for flow rate obtained from

this model agrees 99% with the experimental observation by Zheng et al. [292].

2.5 Results and Discussions

In this section, simulated results are presented to investigate the combined effect of external

electric field, block height and strength of patch potential on flow characteristics within a nano-

channel. Since the Reynolds number is very low for such a small channel, the mixing between

two species is dominated by diffusion and very poor mixing is allowed in small length unless a

mixing enhancement technique is applied. The aim of the present study is to investigate how

mixing performance can be enhanced within a nano-channel of fixed length by introducing a

nonconducting block in the lower wall with non-homogeneous surface potential. The influence

of an external electric field for improving the mixing efficiency under the surface potential

heterogeneity is an another aspect of the present study.

In this chapter, concentrated mixture of solute NaCl and solvent water is taken as electrolyte

solution. The wall concentration is considered to be [Na+] = 0.105 M , [Cl−] = 0.095 M and

water of 55.6 M which corresponds to an EDL thickness of 1 nm. For a channel height of

20 nm the value of Knudsen number [184] which is the ratio between molecular diameter and

characteristic length is 0.06 [26] which ensures the applicability of continuum mechanics. We

restrict our study on putting a single overpotential patch attached along the upper surface of

the block. The wall concentration distribution on the upper face of the block is obtained by the
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Figure 2.4: Streamlines for different strength of the patch potential (a)φp = 0.2, (b)φp = 0.5,
(c)φp = 1.0 with d = 0.2, n0

1 = 0.105 M , n0
2 = 0.095 M and ε = 0.05.

relations n1p = n0
1e
φp and n2p = n0

2e
φp , where φp is the strength of the patch potential. Other key

parameters used in the computations are: dielectric constant of the medium is 78.54, viscosity

µ = 10−3 kg/(ms), density ρ = 1000 kg/m3, temperature as 300 K. The external electric

field is varying between 104 V/m to 106 V/m with the overpotential patch ranges from 0.2 to

1.0. Diffusivity (D) of the cation and anion species is taken as 10−9 m2/s. The characteristic

velocity (UHS) for electroosmotic flow is obtained from the Helmholtz-Smoluchowski velocity

condition as, UHS = εeφ0E0

µ
which corresponds to 0.018 m/s for an electric field 106 V/m. The

corresponding Reynolds number (Re = ρUHSH
µ

) and non dimensional electric field (Λ = E0H
φ0

)

are Re = 0.00036 and Λ = 0.77 respectively for a channel height of 20 nm. The Peclet number

(Pe) for cation and anion species is 0.36. The reference potential φ0 (= RT
F

) is assumed to be

25.6 mV . The diffusivity of the eluted species (Ds) is considered as 0.5 × 10−10 m2/s which

corresponds to the Peclet number (Pes) 7.2. The concentration contours are plotted in time,

when the eluted species reaches the outlet, travelling from the inlet completing the total mixing

time i.e. t = 30 (30, 000 iterations ×0.001(∆t)) in non-dimensional form for φp = 0.2. In this

case for H=20 nm, the diffusion time scale is H2/Ds = 8× 10−6s.

2.5.1 Dynamic Field

We present the streamline pattern to describe the flow field along the channel for different patch

potential strengths 0.2, 0.5 and 1.0 in Fig. 2.4. It is observed from the streamline pattern that

far away from the obstacles the flow is fully developed and the streamlines follow horizontal

parallel lines. Above the block, the flow lines form a recirculation zone due to nonhomogeneous

surface potential distribution. The size of the vortex above the block expands in size as the
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Figure 2.5: Mole fraction distributions (a) far away from the block, (b) above the block for a
fixed φp = 0.2 and (c) u-velocity distribution above the block for different values of φp. Here
n0

1 = 0.105 M , n0
2 = 0.095 M , d = 0.2 and ε = 0.05.

patch potential strength increases and thus the bulk flow follows more tortuous pattern while

passing the block for higher value of φp. The height of the vortex center over the block is

observed to be increased by 14%, when the patch strength is increased from 0.2 to 1.0 (Fig.

2.4 (c)). Distribution of mole fractions at far upstream and downstream and above the block

are presented in Fig. 2.5 (a) and (b) respectively. It is clear from Fig. 2.5(a) that far away

from the region of the surface non-homogeneity, the mole fraction distributions follows the

Poisson-Boltzmann’s distribution with symmetrical distribution of ions. When the bulk flow

comes near the patch, embedded on the block, the bulk region shows a flow variation and is

no longer symmetric (Fig. 2.5 (b)) which follows the Gouy-Chapman model. Fig. 2.5(c) shows

the velocity distribution above the block for various patch strength. It can be seen that above

the block, a negative velocity is developed which varies proportionally with the patch potential

strength. The centerline distributions of pressure, streamwise velocity and transverse velocity

are presented in Fig. 2.6 (a), (b), (c) respectively. It it observed that the pressure gradient

increases with increasing φp and thus u and v-velocity also increase accordingly. For a particular

channel height, it is observed that the pressure variation is very high at the outlet region when

the strength of the patch potential is varied from 0.2 to 0.8 (Fig. 2.6 (a)). All the earlier

studies show that pressure variation is very small with the variation of channel height of surface

mounted heterogeneities. In this study the significant difference in pressure is observed due to

the geometric modulation along with the surface heterogeneity. Fig. 2.6 (b) presents the axial

velocity variation and found to be maximum for φp = 0.8 above the heterogenous region. This

velocity variation is achieved due to the pressure gradient which is created by the influence of
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Figure 2.6: Centerline distribution of (a) pressure and pressure gradient, (b) u-velocity and (c)
v-velocity for variation of patch potential with d = 0.2, Λ = 0.77, n0

1 = 0.105 M , n0
2 = 0.095 M ,

and ε = 0.05.

block embedded patch potential. The transverse velocity shows a Lamb vortex profile when the

flow passes over the block (Fig. 2.6 (c)). Usually, the convective effect is found to be negligible

in case of low Reynolds number flows. But the v-velocity variation proves a steady convection

generated effect which may be a major contributing factor for mixing.

The momentum in fluid is enhanced by the movement of ions due to external electric field

and viscous effects. The driving effects in the mass transfer equation in dimensional form along

the x-direction can be represented as

ρi
−→ui
c

= −Di∇Xi +
Di

RT
ziFXiEx +Xiq. (2.29)

Using the non-dimensional variables, the velocity components for the ith species take the form

ui = − 1

PeXi

∂Xi

∂x
ε1 +

1

Pe
zi

(
Λ− ε1

∂φ

∂x

)
+ u, (2.30)

vi = − 1

PeXi

∂Xi

∂y
− 1

Pe
zi
∂φ

∂y
+ v, (2.31)

where i stands for cation or anion. For a channel height of 20 nm, the values of the parameters

Λ and Pe correspond to 0.77 and 0.36 respectively. The EDL’s are thin corresponding to the

electrolyte taken here and thus the dimensionless bulk velocity reaches the asymptotic solution

which corresponds to 0.050. Hence, in the bulk region the streamwise velocity of the cations

is constant and ucation = 2.16. This indicates that the cations move in the same direction of

the bulk flow with much higher velocity. The dimensionless streamwise velocity of anions is
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Figure 2.7: Distribution of (a) external electric potential, (b) induced potential and (c) total
electric field lines for φp = 0.2, d = 0.2, n0

1 = 0.105 M , n0
2 = 0.095 M , Λ = 0.77 and ε = 0.05.
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Figure 2.9: Concentration contour for different
patch potentials (a)φp = 0.2, (b)φp = 0.5 and
(c)φp = 1.0. Here d = 0.2, n0

1 = 0.105 M ,
n0

2 = 0.095 M , and ε = 0.05.

uanion = −2.16 in the bulk, so the anions move in the opposite direction to the cations and

the bulk flow.

Fig. 2.7 (a) and (b) show the electric potential distribution for external applied electric

field and induced electric potential respectively inside the channel. From Fig. 2.7 (a) it is

observed that the applied electric potential distribution possesses a classical profile as discussed

by several authors [27,43]. Due to the Neumann’s boundary conditions, ψ achieves a transversed

component near the block which shows expansion and contraction in potential lines. The total

electric field lines are obtained by the combined contribution of applied potential and induced
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Figure 2.10: Effect of patch potential on species mixing. (a) Mixing efficiency variation along
channel length, (b) Variation of mixing efficiency with mixing time, where Q and Q0 represent
the average flow rate for present configuration and for plane channel with a unpolarized block
with uniform zeta potential along the channel walls, where d = 0.2, n0

1 = 0.105M , n0
2 = 0.095M ,

and ε = 0.05.

potential. The total electric field lines are obtained by the solution of

dy

dx
=
Ey
Ex
. (2.32)

The induced electric field lines are directed from the patch to the walls and the external field

lines are from the upstream to the downstream of the channel. The combined effect of these

two electric fields is observed from Fig. 2.7 (c).

2.5.2 Effect of Patch Potential Strength

In this section, the mixing enhancement is included by creating potential non homogeneity on

the upper face of the embedded block of fixed height. Under the action of electric field, the fluid

in the heterogeneous region moves in the opposite direction to that of the rest of the channel.

Thus a recirculating zone above the block is created due to this opposite movement of streams.

The mixing efficiency is mostly enhanced due to two integrating factors: (a) improved dispersive

flux, (b) less volume flow rate i.e. prolonged mixing time. To establish the relationship between

patch strength with the flow variables, the vortex strength is measured. The recirculation vortex

strength is measured by the circulation (Γ), which is defined as

Γ =

∫ ∫
ωdxdy (2.33)
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where ω = ε1
∂v
∂x
− ∂u

∂y
is the dimensional vorticity which is scaled by ω0 = εeRTE0

µFH
. Circulation

strength increases as vorticity increases. Fig. 2.8 shows that the dimensionless circulation in-

creases linearly with the strength of the patch potential. As the vortex size expands in size,

more circulation strength is caused for larger values of non-dimensional patch potential strength.

When samples flow through the block embedded channel, the contact area between two streams

increases and this contact area is getting enhanced with larger eddy size over the block. In

addition, the average flow rate is observed to be decreased as the magnitude of patch potential

increases. Thus by increasing the patch strength, the contact area between flow streams is

stretched to get a better diffusive flux and a longer diffusive time (i.e. less volume flow rate) to

enhance the mixing efficiency along the downstream.
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Figure 2.14: Effect of block height on species mixing. (a)Mixing efficiency variation with channel
length (b)Mixing efficiency vs mixing time. Q and Q0 represent the average flow rate for present
configuration and for plane channel with a unpolarized block with uniform zeta potential along
the channel walls, where φp = 0.2, n0

1 = 0.105 M , n0
2 = 0.095 M , and ε = 0.05.

To quantify the mixing in a channel, the parameter mixing efficiency (σ) is defined as [84],

σ =

[
1−

∫ upper surface
lower surface

|C − C∞|dy∫ upper surface
lower surface

|C0 − C∞|dy

]
× 100% (2.34)

where C is the species concentration across the channel. C0 and C∞ are the species concentra-

tions in the completely unmixed and completely mixed states respectively. Thus a fully mixed

state would have 100% mixing efficiency, while the completely unmixed state would have 0%

mixing efficiency. Fig. 2.10 (a) represents the mixing efficiency variation with the increment of

patch strength. It is observed that two streams of different concentrations are totally unmixed

in the upstream region which leads to 0% mixing and mixing performance is improved in very

low rate due to Fick’s diffusion. Above the block, the bulk flow is forced to flow through a

narrow passage which leads to higher diffusive flux and thus mixing is improved in this region.

Due to the expansion of concentration gradient, mixing efficiency drops immediate next to the

block, where there exists a comparatively less mixed samples. When the sample stream goes to

the outlet region the mixing efficiency curve achieves a little increment due to further diffusion.

Mixing time plays a vital role for enhancement of mixing, when different streams of samples

passed through mico/nano channels and mixing efficiency is quantified in terms of volume flow

rate [18, 253]. Literature suggests that perfect design of EOF mixture relies on mixing time

which can be expressed against the average flow rate. In the present study mixing time, t(x) is

considered as a function of distance (x) travelled by the species from the inlet to outlet of the
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channel. Therefore, the total mixing time of a species is the required time to cross the entire

channel (from inlet to outlet). Fig. 2.10 (b) presents mixing efficiency variation with mixing

time. To obtain perfect mixing of two different samples from the poor mixing, it is observed

that the total mixing time is prolonged, since the flow rate is decreasing and requires more time

to diffuse in the downstream. It is observed that the downstream species concentration curve

gets closer to 0.5 with the increment of φp to signify homogeneous downstream concentration to

achieve better mixing. The mixing efficiency at the downstream of the channel reaches 66% by

improving the patch strength up to φp = 1.0 (Fig. 2.10 (a, b)). It is observed that quantitative

analysis of mixing efficiency with respect to patch potential strength suggest that micro mixtures

achieve maximum efficiency with decrease in volume flow rate.

2.5.3 Effect of Block Height

In the previous sections, it is found that increasing patch potential strength enhances circulation

strength over the block. The volumetric flow rate is defined as Q = V A, where V is the velocity

of the flow field and A is the cross section vector area. The total flow rate is obtained by the

surface integral

Q =

∫ ∫
A

V.dA. (2.35)

Fig. 2.12 presents the simulated result of flow rate variation for different block heights. It is

observed that flow rate is decreasing with the increase of block height for a fixed patch potential

and a external electric field. It can be observed that for a fixed electric field strength (106 V/m),

volume flow rate is decreased by 17% by increasing the block height from 0.1 to 0.5. Decrement

of flow rate signifies that the species get more time to diffuse causing more diffusion flux. By
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Figure 2.16: (a)Species concentration profile in the inlet and outlet regions and (b) Variation
of mixing efficiency with mixing time for different external external electric field. Here d = 0.2,
φp = 0.2, n0

1 = 0.105 M , n0
2 = 0.095 M and ε = 0.05.

increasing the height of the block, the total mixing area (A) increases, whereas the passing

zone over the barrier reduces which forces the fluid to flow through a comparatively narrow

passage which increases the species concentration gradient (∇C) and therefore the product

A.∇C is increased i.e. diffusion flux is enhanced significantly which leads to a better mixing.

The concentration profiles (Fig. 2.13) along the downstream of the channel signifies that the

narrower passage over the block i.e. higher block height leads to more homogeneous species

distribution at downstream. Fig. 2.14 (a, b) illustrates the influence of block height variation

on mixing efficiency. It is clearly observed that mixing efficiency can be enhanced from 40.1%

to 55.45%, with the increase of block height from 0.1 to 0.2. The mixing efficiency can further

be improved up to 62.17% by raising the height of the obstacle to 0.5.

2.5.4 Effect of External Electric Field

Fig. 2.12 represents the variation of flow rate with block heights for different electric field

strength. The externally applied electric field forces the liquid to flow through the narrow

channel. With the increment of external electric field, the flow is less reversed above the patch

which results in less vorticity. Thus, for a higher imposed electric field, the size of the vortex over

the obstacle is diminished in size and thus corresponds to less circulation. Fig. 2.15 presents

that the height of the vortex center is reduced with increasing external field strength for a

fixed potential patch. It is clearly observed from Fig. 2.12 that volume flow rate is increasing

when the external electric field strength increases. By the variation of electric field strength

from 104 V/m to 106 V/m, the volume flow rate is increased up to 4% for a fixed block height
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(d = 0.2). The result shows that, with the decrement of external electric field strength the

total mixing time prolongs due to reduced flow rate. The downstream species concentration

profile for different external field is presented in Fig. 2.16 (a). It can be observed that as the

external electric field strength is increased the downstream concentration profile goes away from

the value 0.5, which signifies less homogeneous mixing. The mixing efficiency variation with

respect to mixing time for various external electric field strength is represented in Fig. 2.16

(b). It is noticed that mixing efficiency at the downstream of the channel can be improved from

55.45% to 61.05% by reducing the external electric field from 106 V/m to 105 V/m due to longer

retention time. This improvement in mixing can reach 68.4% by further decrement of flow rate

by decreasing the electric field to 104 V/m.
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Figure 2.17: Variation of Mixing efficiency with different positioning of the block. The param-
eters used in the computation are n0

1 = 0.105 M , n0
2 = 0.095 M , ε = 0.05 and E0= 106 V/m

2.5.5 Effect of Block Position

Generally, the convection effects are lesser compared to ion diffusion effects for small Peclet

number (Pe < 1), while convection effects dominate diffusion effect for large Peclet number

(Pe > 1). Mostly in EOF, hydrodynamic convection is smaller than that of molecular diffusion

as typical Re is on the order of 10−2 and Sc is smaller than 102 and, hence ReSc is smaller than

1. To visualize the convection effects in a clear form we have considered low diffusion coefficient

for eluted sample species (suppose DNA, Ds = 0.5× 10−10 m2/s), for which the advection time

scale (τa = H
UHS

), diffusion time scale (τD = H2

Ds
) and the Peclet number ( τD

τa
) correspond to

1.11× 10−6 s, 8× 10−6 s and 7.2 respectively. The species transport is dominated by convection

and mainly transport with the flow.

In this section three different positions (near inlet, middle of the channel and near outlet of

the channel) of the wall embedded block is considered to make a comparative study of mixing
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Figure 2.18: Streamlines with periodic potential patches for channel height H = 20 nm when
d = 0.2, E0 = 106 V/m, n0

1 = 0.105 M , n0
2 = 0.095 M , ε = 0.05.

enhancement for EOF in a channel of height 20nm. The simulation shows that as a result of the

coupling of convection effect due to wall embedded block with overpotential patch, the pressure

gradient and the electric body force term, the EOF provides the minimum volume flow rate

when the block is placed close to the inlet shown in Fig. 2.17. Moreover, the volume flow rate

increases with the distanced positioning of the block from the inlet source i.e. less mixing time

is available for complete mixing of the species (Fig. 2.17). Consequently, mixing efficiency in

the downstream of the channel is better for the positioning of the block nearer to the channel

inlet and there is more time available for species to be mixed. Moreover increasing the diffusive

coefficient (Ds) leads to decrease in the diffusion time scale to get smaller Peclet number. In

all the above discussions the diffusive coefficient Ds = 0.5 × 10−10 m2/s is considered. In this

context, we observed that the mixing efficiency of an eluted species for two different diffusive

coefficients Ds = 0.5 × 10−10 m2/s & Ds = 0.7 × 10−10 m2/s, the Peclet numbers correspond
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to 7.2 and 5.14 respectively. The mixing efficiencies along the downstream of the channel are

observed to be 59%, 55.45% and 49% respectively, for tree different locations (close to inlet,

middle and close to outlet) of the block for Ds = 0.5 × 10−10 m2/s (i.e.τD = 8 × 10−6s).

It is observed from the Fig. 2.17 that, with the decrement of diffusion time scale (keeping

the advection time scale fixed) the mixing efficiency increases for each of the three different

positioning of the block. For τD = 5.71 × 10−6 i.e. for Ds = 0.7 × 10−10 m2/s, the mixing

efficiency at the outlet of the channel reach upto 51.25% and 58.95% for block locations close

to outlet and middle respectively. In this case the downstream mixing efficiency is observed to

be improved upto 61.1% for the configuration in which block is located close to inlet.

2.5.6 Effect of Periodic Patch Potential

In this case the patch potential strength over the block is assumed to have the following form [53]

φp = −φa cos(nπx). (2.36)

For different values of n and φa different vortex structures are observed. Streamlines for n=2

and φa= 0.2, 0.5, 0.8 and 1.0 are shown in Fig. 2.18. Two small negative vortices (clockwise

circulation) are found over the block for φa=0.2 (Fig. 2.18 (a)) and these vortices are increased

in size with increasing φa (Fig. 2.18(b)). For φa=0.8 a positive vortex is formed between two

negative circulations (Fig. 2.18(c)). This positive circulation zone expands in size with fur-

ther increment of φa (Fig. 2.18(d)). The sum of the magnitude of the circulation strength is

Γ=0.0308 for φa=0.2, Γ=0.1041 for φa=0.5, Γ=0.2175 for φa=0.8 and Γ=0.2947 for φa=1.0.

Thus net circulation over the block is increased with increasing φa and the increment in circula-

tion enhances the species mixing efficiency. The different flow circulation regions formed above

the block can be a further research for mixing enhancement.

2.6 Conclusions

Efficient mixing of species in low Reynolds number regime remains a challenging task in mi-

cro/nano fluidic systems. Overcoming these challenges numerous endeavorers intent on intro-

ducing supplementary mechanism such as advection to the lengthy diffusion based process. This

chapter describes the mixing enhancement due to the presence of a non-conducting block with

charged surface mounted on the lower wall of the channel where both convection and diffusion

with reduction of mixing time analysis is considered. The external electric field acts as an effi-

cient mixing reagent, since it forces the fluid to pass through a narrow region where convection
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effect is maximum, genertates a higher mixing rate along the downstream region. It is also

observed that increasing block height together with patch potential strength increases mixing

efficiency. However, it is also found that mixing efficiency increases with the use of a periodic

potential instead of a constant potential patch, since periodic potential generates stronger vor-

tices. The convection effect is significant for higher Peclet number irrespective of the channel

length. It is also noticed that mixing time plays a vital role for enhancement of mixing when

two different streams of samples pass through wall modulated block and shows a maximum

mixing level, when the block is placed close to inlet.
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Chapter 3

Induced Mixing Electrokinetics in a

Charged Corrugated Nano-Channel:

Towards a Controlled Ionic Transport

3.1 Introduction

Fluid flow and mixing in small channels is an important area of research due to its potential

applications ranging from pharmacy, DNA hybridization to cytometric analysis and biochem-

istry for effective novel mixing processes [175] in passive electrokinetic micromixer. Flow mixing

highlights the importance of smooth functioning of highly explosive or exothermic chemical re-

actions in the fabrication of micro reaction machineries [165]. Experimentally, it is possible to

construct fluid systems with feature sizes as small as few microns by using microfabrication

technology for application in the ’Lab-on-a-Chip’ concept which involves the miniaturization of

many chemical processes onto a single silicon chip [221]. These micro systems allow one to ma-

nipulate single cells and even single macro molecules and hence microfludic systems are used for

analytic tests in biotechnology [38]. Most of the biological applications, such as immunoassay

and DNA hybridization [218,280], require a rapid mixing of reagents but these substances have

low diffusion coefficients. Hence, to study the fundamental behavior of fluids in thin channels a

rapid process of mixing is required which is a challenge.

Mixing schemes used for rapid mixing in micro and nano channels are classified as; passive

mixer and active mixer [255] and the mixer is said to be active when an external source of

energy like applied pressure, imposed electric or magnetic field etc. are utilized to drive the flow

59
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and enhance the mixing efficiency. But, the active mixers require some moving parts within

channels or due the application of AC-electric field causes additional frictions. Passive mixers

use the same energy source but complex geometries (i.e. irregular or asymmetric) to set up

secondary flow structures in the fluids to achieve better mixing due to chaotic advection within

a short transport distance [25,27,120,137]. However, the major difficulty in passive mixers are

found in the design and optimization of manufacture complexity in micro-scale level. In many

applications, however above mentioned manufacturability and procedures take advantage for

mixing time, they may do not rely on the strain in getting united into microfluidic systems [277].

Mostly, electrokinetic mixing is used in microfluidic devices for concentrated solutions. Fluid

motion develope inside micro/nano-channels due to an imposed electric field in EDL which

forcees the charged ions to move in the diffused part of the electric double layer (EDL) [225,260],

leads to a EOF [189]. This is an important transport process to pump biological and chemical

reagents in micro/nano-channels because the ease with which fluid can be controlled and the

flow velocity shows plug like profile with no mechanical driven activities [212]. Moreover, elec-

troosmotic flow mixing is small to low Reynolds number ensures a weak transport of charged

ions.

Many passive mixers have been developed in recent years using different types of channel

geometry (usually T- or Y-Mixer) generate chaotic advection and increase the interfacial area

for circulation [41,150]. The mixing of different liquids in electroosmotic flows are heavily relied

on the channel shape and surface chemistry [205]. It is observed that electrically driven flows

and mixing characteristics are mostly effected by the surface potential (ζ-potential), dielectric

constant, pH of the solution, ionic strength, and solute molecules close to the walls [77]. How-

ever, in many cases, solid surfaces inevitably exhibit certain non-uniform ζ-potential as a result

of defects in designs or the absorption of organic materials to the surfaces during fabrication.

If the heterogeneous part of the surface is positively charged, then surplus of negative ions

will occur over it and the remained positive ions will move towards the negatively charged wall.

The driving force due to imposed electric field along the axial direction provokes a reverse flow

close to the non-uniform surface potential/ charge density regions [84, 141, 157, 217]. Erickson

and Li [84] numerically observed that the recirculation vortex is stronger when ζ−potential

pertains the same value along the heterogeneous surface and negative to that along homoge-

neous surface. It has also been observed that a sudden change (step jump) of ζ−potential close
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to the channel wall creates a change in gradient of pressure and velocity [90]. Some analyt-

ical and numerical studies have been preformed for slowly varying micro channel to observe

the effect of fluid flow and heat transfer [179, 237–239, 243]. Using lubrication approximation

theory, Arcos [12] performed a theoretical study on EOF for a viscoelastic symmetrical (z : z)

electrolyte in a microchannel with varying ζ−potential. All of these studies deal with the

Poisson-Boltzmann model for the flow analysis and mass transfer phenomena using the Debye-

Hückel approximation. Small regions of non-uniform wall potential create a reversed flow above

the patch along with a favorable pressure gradient in the electroosmotic flow [54]. Chen and

Conlisk [54] used a nonuniform potential patch with different ζ-potential embedded along the

lower wall of the channel. They used the Poisson-Nernst-Planck model which can be valid for

overlapping EDL fields and core non-neutrality without using the Debye-Hückel approximation.

In addition, higher values of external electric field predicts a deviation in electric potential and

ion concentration in case of Boltzmann model, and also predicts a weak convection effect.

The interaction of surface roughness and heterogeneity during the electroosmotic flow pro-

duces a strong convection effect [45,116]. The modulation of channel wall can be possible due to

the adsorption of other species like micro molecules create an induced pressure gradient. In such

cases electroosmotic flow is strongly affected due to the presence of roughness in the surfaces

which may change the surface wetted and the flow passage area. Fluid mixing in micro- and

nano fluidic devices (µ-TAS) & Bio-MEMS are frequently required in the context of effective

mixing capability and cannot be achieved effectively due to low Reynolds number. Campo et

al. [40] fabricated the patterned surfaces with pillars in controlled 3D tip geometry mimicking

bio-attachment devices. The fabrication strategy exploits a filling mechanism of 2D lithographic

templates, combined with inking and printing steps using elastomeric precursors with various

viscosities and cross linking kinetics. Also, Matteucci et al. [173] developed a method for fab-

rication of multi-level all-polymer chips by means of silicon dry etching, electroplating and

injection molding. This method can be used for successful fabrication of microfluidic chips for

applications in the fields of electrochemistry, cell trapping and DNA elongation. These chips

incorporate channel depths in the range between 100 nm and 100µm and depth to width aspect

ratios between 1/200 and 2. Several other fabrication techniques including traditional nano-

lithography [82], etching-and-deposition [279], DLP [127], sequentially patterning oxides [61]

and packing of different nano-particles [144] have been used to integrate (fabricate) complicated

nano-fluidic devices with gradually changing geometry & non-homogenous surface charge po-

larity.
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Up to now, many numerical and experimental studies were conducted based on modulated

surfaces with non-uniform surface potential for microfluidic mixing. IN some of our earlier

studies [25, 27] we used oscillating electric field, surface mounted block and overpotential re-

gions for mixing enhancement in micro- and nano-channels. The performance of micro fluidic

mixing in heterogeneous channels due to overpotential regions depends on the strength of the

vortices [189] and the flow velocity effectively increases with the increase of the wall ζ-potential

and the external electric field.

An experimental study carried out by Sadr et al. [230], stated that the average EOF ve-

locity is linearly proportional to the driving electric field and the uniform distribution of flow

can be possible up to the channel wall and the EDL thickness is much less for a fully devel-

oped EOF in a nano-channel. Singh et al. [242] performed an experimental study on EOF to

investigate the effect of nano channel diameter and surface charge density on current-voltage

characteristics in a nanofluidic transistor. An experimental study for surface roughness in elec-

troosmosis in micro- and nano-channels, carried out by Koga et al. [135] to study EOF mobility

which is effected by surface roughness and surface chemistry. The surface roughness of micro

and nanofluidic channels were varied from Angstroms (12.2A to 17A) to micrometers (5 µm)

and EOF velocity had a intense correlation with the surface roughness, especially when the

arithmetic mean of surface roughness was in the order of the thickness of the electric double

layer. Experimentally it has been also shown that a geometric modulation can increase the cross

sectional region for the liquids to be mixed, used to achieve a faster laminar mixing [44,220,278].

EOF effects due to surface roughness height and cavitations in micro-channels was carried

out by Liu and Yang [154] using a FEM simulation for ions distribution based on Boltzmann

distribution (PB model) and were unable to predict any flow recirculation. Moreover, it has

been found that small block height reduces the flow velocity but regular placement of blocks

with the interval length as channel height maximizes the flow velocity. Validation of PB model

on EOF was made by Wang et al. [270] both for micro and nano channel.

Mixing enhancement in micro fluidic channels with constrictions under periodic electroos-

motic flow was experimentally carried out by Lim et al. [149]. Four types of T-type micro

mixer with constrictions were fabricated to study the mixing effects with different amplitude

and frequency of the alternating current (AC) electric field. The experimental result suggests
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that mixing efficiency can be enhanced by increasing the constriction length. The analysis of

ion transport mechanism of a KCl concentrated solution in a gated nanofluidic channel has been

modelled by Fuest et al. [91] based on electromigration, considering the local accumulation and

depletion of ions and subsequent changes in species concentrations. The fabricated nanochannel

enables the similar effect to biological systems while providing throughput and benefits in 1-D

analysis. The fabricated device presents the demonstration of current switching in a nanofluidic

field effect configuration, with tunable control over both the magnitude and direction of current.

The gate electrodes have been patterned and placed asymmetrically to allow investigation of the

effect of electrode location on the field effect control and suggested that ionic flux driven by the

axial potential through the nanochannel along with high electric fields prevent the formation of

an EDL in the electrolyte region immediately below the gate electrode, leaving the gate elec-

trode partially descreened. Xu et al. [281] extended the work of Lim et al. [149] by considering

a particular T-type micro mixer for the mixing performance. They developed a mathematical

model to evaluate mixing performance by considering one particular dependent variable (fre-

quency) and several independent variables (constriction length, phase difference, direct current

(DC) bias). Their results concluded that best mixing performance can be obtained in practical

applications when the constriction length is maximum and DC is minimum.

Mixing process in T-type mixers also requires higher channel length as well as lay time de-

pending on the diffusion. Optimal patterning of heterogeneous surface potential can be utilized

to furnish vortices or localized circulations to obtain complete mixing [117]. Effect of ionic con-

centration on EOF and EOF mixing were investigated by Peng and Li [212] through a straight

micro-channel. They considered mixing of electrolyte solutions of two streams with dissimilar

ionic concentrations inside the channel and found that maximum mixing is observed when a

non-uniform electric field and a high velocity gradient is considered.

Effects of surface roughness and electrokinetic heterogeneity on EOF in a micro-channel have

been carried out by Masilamani et al. [168]. They investigated the effects of surface heterogene-

ity on the EOF for different roughness heights, width, roughness interval spacing. Simulated

results indicate that induced flow vortices are responsible for the flow and mixing within the

micro-channel. A combined pressure driven EOF was performed by Bhattacharyya and Bera [30]

to study mixing effects due to surface mounted block and effective pressure gradient. It has

been demonstrated that rapid mixing can be achieved by surface modulation and heterogeneity

and the performance can be quantified through dispersion of solute.
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In most of the micro and nano scale flows thickness of EDL is assumed to be smaller than

the channel dimension by employing Boltzmann distribution of ions, which generates Poisson-

Boltzmann equation (PB model) for potential. Also, from the previous studies it is observed

that the ionic transport depends on the shape of the roughness such as amplitude and length

of the walls, since the flow rate decreases. The numerical computation of exact NP model can

succeed the difficulties arises in case of PB-model, where core neutrality is required. Since,

PB model is questionable when the core of the channel is non-neutral and convection effect is

considered with the external electric field.

In all of the previous studies, EOF due to convection diffusion effects have been presented by

using the NP model and the PB model. The effect of fluid inertia due to the presence of nonuni-

form surface potential on EOF in micro- and nano-channels are discussed. It is found that in

all of the ongoing works, quantitative analysis of vortex strength and vortical flow dependent

parameters are impaired. To the best knowledge of the authors, the mixing effects due to the

variation of channel height, ion concentrations, surface potential and wall heterogeneity due to

the NP model has not yet been dealt with in literature. The primary goal of the present work is

to obtain the flow attributes due to wall heterogeneity using NP model. The wall heterogeneity

is created by mounted blocks or blocks with patches and patches along the lower and upper wall

of the channel, where the patch and block lengths are on the order of the height of the chan-

nel. In the present analysis, to clarify the effects of EOF mixing parameters like, electric field

strength, non-uniform charge strength, EDL thickness and ionic concentrations are addressed.

The composite solutions such as mixture of multivalent ions can also be easily handled through

this model.

The validity of the NP-model with PB-model for a steady EOF is made, where NP-model

considers the flexibility about the center line symmetry and low potential restriction. Micro

and nanoscale mixing is analyzed through the heterogenous patches and charged blocks in the

corrugated channel wall, some are symmetric and some are asymmetric. Since, the EOF veloc-

ity and mixing are enhanced when the channel height is increased [126, 188, 241], the channel

heights are assumed to vary between 10 nm to 100 nm. The flow is fully developed far away

from the heterogeneities and along the axial direction. The study focuses on the flow patterns

and electroosmotic effects on the formation of vortical flow in corrugated micro/nano channels

in the vicinity of a heterogeneous surfaces. The heterogeneity in corrugated surfaces are created
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Figure 3.1: Schematic diagram of the nano-channel and computational domain. In the figure
the corrugated surfaces along the channel are obtained due to the placement of blocks and
patches of length l+ and l− (∼ O(H)) along the channel surfaces.

by the geometrical modulation and heterogeneous surface potentials, where potentials can vary

both in axial and lateral directions, collectively represents the characteristic equations for fluid

flow, induced potential and ion distributions. The flow patterns for corrugated micro/nano-

channel are obtained both analytically and numerically using the coupled equation of Poisson,

Nernst-Planck, and the Navier-Stokes simultaneously. This provides an opportunity to visual-

ize the complex flow characteristics on micro/nano scale species transport for flow control in

microfluidics.

In the continuation of this work further studies will be carried out for increment of micro

mixing enhancement incase of weak and strong electrolytes for different physical quantities.

With these approaches, in the first phase, governing equations based on Fick’s law of diffusion

with NP approach coupled with Poisson equation is developed. Both analytical and numerical

aspects of the solution algorithm is developed and stability analysis is made and compared with

PB-model solutions. A description of the channel height, ionic strength, induced streaming

potential and surface heterogeneity on micro mixing are made successively.

3.2 Electroosmotic Nano-Channel System and Govern-

ing Equations

For the mathematical modelling, the steady laminar electroosmotic fluid flow of an incompress-

ible Newtonian electrolyte circulating through a long flat parallel plates channel of length 2L,
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Figure 3.2: Schematic of the computational domain due to corrugated surfaces. Case (I) adap-
tation of blocks, Case (II) setting of block with patches.

width W and height H is considered. The channel height H is comparable with the electric

double layer (EDL) thickness with H � L,W . The system is filled with a fluid composed of a

mixture of water and an electrolyte buffer with n-species with permittivity εe and viscosity µ

respectively. The length, height and width are in the x-, y- and z-directions and electrodes are

placed at inlet and outlet of the channel, where external electric field is applied along the x-axis

of the channel (see Fig. 3.1).

We have already discussed that species concentration distribution will not follow Boltzmann

distribution in the edges of the patch and the surface modification can be effected by an initial

reaction with a coupling reagent that will modify the surface potential [54]. The surface het-

erogeneity has been created by putting blocks of height d and length l, block with patch and

stepwise surface potential of length l on to the channel walls, shown in Fig. 3.2.

3.2.1 Electric Potential Distribution

The imposed dimensional electric field [189], E∗ = (E∗x, E
∗
y , E

∗
z ) satisfying the Maxwell’s equa-

tions, E∗ = −∇Φ∗ is governed by the following relation:

∇ · (εeE∗) = ρe. (3.1)

Here, ρe is the charge density per unit volume which is defined as, ρe = F
∑
i

zici = Fc
∑
i

ziXi.

The electric potential, total molar concentration and molarity of ionic species i are defined by

Φ∗ , c and ci, respectively. zi and Xi = ci/c are the valency and mole fraction of species i,
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where F is Faraday’s constant. The dimensional potential Φ∗ can be written as Φ∗(x, y, z)=

ψ∗(x, y, z) +φ∗(x, y, z), where φ∗ and ψ∗ are the induced and external potential respectively.

Non-dimensional induced potential equation, for the Eq. (3.1) is

∂2φ

∂y2
+ ε21

∂2φ

∂x2
+ ε22

∂2φ

∂z2
= − β

A2

∑
i

ziXi. (3.2)

The potential is scaled as, φ = φ∗/φ0 and φ0 is defined as RT/F (= KBT/e). R is the gas

constant, T is a reference temperature of the solution (taken as 300K), KB is the Boltzmann

constant, e is the elementary electric charge. The coordinates are scaled by (L,H,W ), i.e.

x = x∗

L
, y = y∗

H
, z = z∗

W
. Here ε1 = H/L, ε2 = H/W , A = λ/H and β = c/I.

For a symmetric monovalent electrolyte, zi = ±1, and hence,
∑
i

ziXi = n1 − n2. Thus the

final representation of induced potential is of the form:

∂2φ

∂y2
+ ε21

∂φ

∂x2
+ ε22

∂2φ

∂z2
= − β

A2
(n1 − n2). (3.3)

3.2.2 Mass Transfer for Ions

Let us consider a species transport equation for water mixed with multivalent ions and the flow

is governed by the movement of ions. Then, mostly the ion transport will be influenced by the

molecular diffusion, external electric field and electric body force term due to bulk motion of

charges [54]. The molar flux of species i oriented perpendicular to the flow direction (without

any wall chemical reaction or absorption of species) in vector form can be obtained as [219]

N∗i = −Di∇ci + ciωiziFE∗ + ciq
∗, (3.4)

where Di is the diffusion coefficient, ωi is the mobility defined as ωi = Di/RT of the species i

and q∗ is the fluid velocity.

The mass transport equation for species i in steady EOF is governed by

∇ ·N∗i = 0. (3.5)

Using Eq. (3.4) and Eq. (3.5), non-dimensional molar flux equation can be written as

∂2Xi

∂y2
+ ε21

∂2Xi

∂x2
+ ε22

∂2Xi

∂z2

= Pe

(
ε1u

∂Xi

∂x
+ v

∂Xi

∂y
+ ε2w

∂Xi

∂z

)
+

(
ε1zi

∂XiEx
∂x

+ zi
∂XiEy
∂y

+ ε2zi
∂XiEz
∂z

)
. (3.6)

Thus, the non-dimensional electric field E in (x, y, z) directions are of the form: Ex =

−
(
ε1
∂φ
∂x

+ ε1
∂ψ
∂x

)
, Ey = −

(
∂φ
∂y

+ ∂ψ
∂y

)
, Ez = −

(
ε2
∂φ
∂z

+ ε2
∂ψ
∂z

)
. Here Pe=ReSc is the Peclet
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number. The Reynolds number Re is UHSH/ν and the Schmidt number Sc = ν/Di. The scaled

factor for fluid velocity is defined as UHS and ν is the kinematic viscosity of the fluid.

The EDL thickness or Debye length λ, is estimated as
√
εeRT/FI

1/2, which is the charac-

teristic thickness of the electrical double layer and the ionic strength I =
∑
i

z2
i ci. The reduced

non-dimensional ionized equation for divalent ions can be written as(
ε21
∂2n1

∂x2
+
∂2n1

∂y2
+ ε22

∂2n1

∂z2

)
=

β

A2
n1(n1 − n2)−

(
ε21
∂φ

∂x

∂n1

∂x
+
∂φ

∂y

∂n1

∂y
+ ε22

∂φ

∂z

∂n1

∂z

)

−
(
ε21
∂ψ

∂x

∂n1

∂x
+
∂ψ

∂y

∂n1

∂y
+ ε22

∂ψ

∂z

∂n1

∂z

)
+ Pe

(
ε1u

∂n1

∂x
+ v

∂n1

∂y
+ ε2w

∂n1

∂z

)
(3.7)

(
ε21
∂2n2

∂x2
+
∂2n2

∂y2
+ ε22

∂2n2

∂z2

)
= − β

A2
n2(n1 − n2) +

(
ε21
∂φ

∂x

∂n2

∂x
+
∂φ

∂y

∂n2

∂y
+ ε22

∂φ

∂z

∂n2

∂z

)

+

(
ε21
∂ψ

∂x

∂n2

∂x
+
∂ψ

∂y

∂n2

∂y
+ ε22

∂ψ

∂z

∂n2

∂z

)
+ Pe

(
ε1u

∂n2

∂x
+ v

∂n2

∂y
+ ε2w

∂n2

∂z

)
. (3.8)

3.2.3 Governing Fluid Flow Equations

The corresponding momentum equation for an ionized fluid with electroosmotic body forces in

dimensional form is written as

ρ

(
∂q∗

∂t∗
+ (q∗ · ∇)q∗

)
= −∇p∗ + µ∇2q∗ + ρeE

∗ (3.9)

where q∗ = (u∗, v∗, w∗), satisfies the equation of continuity, ∇ · q∗ = 0.

We have already defined the scaling factor for the fluid velocity as UHS, which is the

Helmoholtz-Smoluchosky velocity and UHS = εeE0φ0/µ. Time t∗ is scaled by H/UHS. Here

Peclet number establishes the relation between the height of the channel to the strength of the

applied electric field and the pressure is nondimensionalized as p = p∗

µUHS/H
. The velocity field is

coupled to the mass transfer equations and the equation for the potential. The governing flow

equations for an incompressible, steady ionic fluid in dimensionless form are:

ε1
∂u

∂x
+
∂v

∂y
+ ε2

∂w

∂z
= 0 (3.10)

Re

(
ε1u

∂u

∂x
+ v

∂u

∂y
+ ε2w

∂u

∂z

)
= −ε1

∂p

∂x
− β

A2

ε1
Λ

(n1 − n2)

(
∂φ

∂x
+
∂ψ

∂x

)
+∇2u (3.11)

Re

(
ε1u

∂v

∂x
+ v

∂v

∂y
+ ε2w

∂v

∂z

)
= −∂p

∂y
− β

A2

1

Λ
(n1 − n2)

(
∂φ

∂y
+
∂ψ

∂y

)
+∇2v (3.12)

Re

(
ε1u

∂w

∂x
+ v

∂w

∂y
+ ε2w

∂w

∂z

)
= −ε2

∂p

∂z
− β

A2

ε2
Λ

(n1 − n2)

(
∂φ

∂z
+
∂ψ

∂z

)
+∇2w, (3.13)
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where Λ = HE0/φ0 is the dimensionless electric field.

The above mentioned PDE’s are accompanied with extremely nonlinear terms. In the present

approach, spanwise width (W ) is considered to be very large compared to the height of the

channel and hence ε2 is very small [26, 54] i.e. the important gradients occur in the main flow

direction (x) and in the normal direction (y) parallel to the channel height. In this case the

problem can be treated as two-dimensional and the terms containing variable z can be omitted.

Now, the problem will be reduced to the EOF within a channel of width H and height W � H,

as the gravitational and buoyancy effects are neglected [30].

3.2.4 Computational Domain and Boundary Conditions

In general, to recapitulate the electrolyte solution for two different samples, we will have 4+2

(species) equations with 6 variables. In order to obtain the solution for velocity, anions, cations,

potential and pressure of the samples, four dimensionless flow parameters are governing the

problem i.e. Re, Pe, Λ and A.

The channel is considered to have long upstream and downstream from the corrugated sur-

faces i.e. fully developed flow can be assumed at far upstream and downstream region. Most

often in nano-channel systems fluids are injected and collected at the inlet and outlet respec-

tively through reservoirs. The computational domain and the channel surfaces used for the

simulation process are represented in Fig. 3.2. The corrugated surfaces are heterogeneous in

nature due to the placement of blocks of lengths l+ and l−(∼ O(H)) with constant height d,

along with the patches of finite lengths l+ and l−, which is mounted along upper and lower wall

of the channel.

When modeling EOF within the micro- and nano-channel, a number of assumptions are made

in this study. For example, zeta potential (ζ) is much less compare to applied external potential,

no-slip conditions along the channel walls and constant wall potential. The potential gradient

appears in the governing flow equations involves the potential term, which can be evaluated from

the wall potential by deducting the wall ζ−potential [189]. In the present analysis different ζ−
potentials (i.e. ζp) are attached along the heterogeneous portion. The overpotential along the

patch and block tips can be defined as, φp = ζp− ζ. The ion concentrations or molar flux along

the solid walls and the inlet reservoir are assumed to be at one atmosphere of pressure. Here EOF

can be predicted by the given ζ−potential and vice versa [135] and λ, H needs to be specified to

obtain parameters like Λ and Re. The boundary conditions for mole fractions along the channel
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walls are obtained by considering same electrochemical potential at the reservoirs and arbitrary

cross-section of the channel, which leads the Nernst equation as, ∇ψ = RT
ziF
ln ciR

cic
[26]. Here, ciR

and cic represents the average value of the concentration of species i in the reservoir and the

fully developed region. The simulation is performed for a binary electrolyte NaCl buffer and

the mole fractions for cation is n1 (Na+) and anion is n2 (Cl−).

Hence the simulation follows the boundary conditions (B.C.’s) as

Walls: along the channel walls (y=0 and y=1) B.C.’s can be expressed as

u = v = 0; φ = 0; n1 = n0
1; n2 = n0

2. (3.14)

When the solution (H2O + NaCl) is in contact with the solid surface, the concentration

of OH− ions will decrease due to the adsorption on the solid surface. In order to reach the

equilibrium condition, a certain amount of water molecules will dissociate into H3O
+ and OH−

ions. Experimentally [42], it is also observed that ζ−potential and diameter of oxide systems

can act as functions of concentration, solution of pH and ionic strength of the solutions.

The heterogeneous regions are created by placing some finite overpotential regions by sup-

plying extra potential or fabricating with different materials. This region is specified by φp,

whose length is comparable with channel height and block lengths i.e. L = H and it can be

assumed that ε1 = 1.

Switching flow: The boundary condition along the patches and along the surface of blocks

are,

u = v = 0; φ = φp; n1 = np1; n2 = np2. (3.15)

Note that the Debye- Hückel approximation is based on the Poisson-Boltzmann model and it

is only strictly valid for φ� 25.5 mV . The Boltzmann distribution of mole fraction of species

is Xi = X0
i e
−ziφ. The wall mole fractions along the upper surface of the block and patches

are np1 = n0
1e
φp and np2 = n0

2e
−φp (for binary, monovalent ions), which justifies the equilibrium

condition for electrochemical potential at y=0 and y=1 [72].

It is assumed that, channel is longer and widened where corrugated walls are formed by

the attachment of blocks and patches along the walls and are places at too far up- and down

stream regions where convection effect is not negligible. At far up- and down stream regions, it

is assumed that the flow is fully developed.

Inlet flow: Upstream region of the heterogeneities, (x=-L)

v = 0; u = uin; φ = φin; n1 = nin
1 ; n2 = nin

2 ;
∂p

∂x
= 0. (3.16)
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Parallel flow: Far down stream of the heterogeneities (x=L), a symmetrical condition is

used, i.e.
∂u

∂x
= 0;

∂v

∂x
= 0;

∂φ

∂x
= 0;

∂n1

∂x
= 0;

∂n2

∂x
= 0;

∂p

∂x
= 0. (3.17)

The values of uin, φin, nin
1 , nin

2 are obtained due to the fully developed EOF effects of

potential. Detailed analysis of fully developed EOF equations and the corresponding boundary

conditions is completely discussed by Nayak [189]. For the present discussion the electrolyte is

considered to be consists of monovalent cation and monovalent anion such as NaCl, the mole

fractions sum is 1 along the homogeneous boundary regions far from the blocks and patches.

3.3 Analytical Estimation of Electric Potential (λ � H

and λ ∼ O(H))

Generally, the time variation in EOF inside the EDL are of the order of 10−8 to 10−7 s [111].

This time scale is very less compare to the time scale evolved on the EOF in the core region

which are of order 10−3 to 10−5 s. Therefore, according to the theory of elasticity the net charge

density is governed by Poisson equation which is independent of time, that is

ε21
∂2φ

∂x2
+
∂2φ

∂y2
= −H

2

φ0

ρe
εrε0

= −H
2

φ0

∑
i

zien
∗
i

εrε0
, (3.18)

where εr and ε0 are the dielectric constant of the mixture and permittivity of the free space

respectively, n∗i can be expressed as, n0
i e
−ziφ. n0

i is called number density of an ionic species at

the boundary. Since the number density of an ion species is directly proportional to the molar

concentration of that ion species, we can write ni = NAci, Xi = ci/c. NA is the Avagadro’s

number.

The reduced form of the equation can be re-written as

ε21
∂2φ

∂x2
+
∂2φ

∂y2
= − ch2F 2

εrε0RT

∑
i

ziXi = − c

IA2

∑
i

ziXi, (3.19)

where k =

√∑
i
z2i n

0
i e

2

εeKT
= 1

λ
. Since, we are considering the potential difference due to the imposed

electric field in the flow direction and wall potentials are axially invariant which is also low

enough |ζ| � 25.6mV . To simplify the analysis we use the Debye-Hückel approximation which

is valid, when λ� H and dimensionless potential φ� 1. For symmetrical distribution of ions

the Boltzmann distribution for ions for species i is, Xi = X0
i e
−ziφ. In expanded form we can

write this as, Xi = X0
i (1− ziφ), since φ� 1. Substituting in Eq.(3.19)
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ε21
∂2φ

∂x2
+
∂2φ

∂y2
= − c

A2
∑
i

z2
iX

0
i c

∑
i

(ziX
0
i −z2

iX
0
i φ) = − 1

A2
∑
i

z2
iX

0
i

∑
i

z2
iX

0
i

(
ziX

0
i

z2
iX

0
i

−φ
)
. (3.20)

The reduced form of Eq. 3.20 can be written as,

ε21
∂2φ

∂x2
+
∂2φ

∂y2
=

1

A2

(
φ−

∑
i

ziX
0
i∑

i

z2
iX

0
i

)
. (3.21)

In the present chapter the potential developed across the channel consists of two parts. The

potential (φFD) developed at far upstream and downstream from the heterogeneous region and

the potential developed across the heterogeneities (φH). Hence, it is reasonable to assume that

the total change in potential is given by the linear superposition of φFD and φH which is valid

for long channel. Hence,

φ(x, y) = φH(x, y) + φFD(y). (3.22)

Since the flow is one dimensional (1D) at far upstream and downstream [54], the equation for

φFD can be rewritten as,

∂2φFD
∂y2

=
1

A2

(
φFD −

∑
i

ziX
0
i∑

i

z2
iX

0
i

)
. (3.23)

Here φFD is an unknown. If λ ∼ O(H) the BC’s are φ = 0 at y = 0 and ∂φ
∂y

= 0 at y = 1/2

(centerline symmetry) for λ ∼ O(H) and φ = 0 at y = 0 and φ = φ0 at y = y∞ for λ� O(H).

The solution follows as described by Conlisk et al. [72], as φ = ae−y + bey +

∑
i
ziX

0
i

A2
∑
i
z2iX

0
i
.

For λ� O(H), the solution is, φ =

∑
i
ziX

0
i

A2
∑
i
z2iX

0
i

(
1− e−y

)
.

For λ ∼ O(H), the solution is, φ =

∑
i
ziX

0
i

A2
∑
i
z2iX

0
i

(
1− cosh(y−1/2)

cosh(1/2)

)
.

The equation for φH can be written as

ε21
∂2φH
∂x2

+
∂2φH
∂y2

=
1

A2
φH . (3.24)

This is the perturbed potential in the heterogeneous region due to the external electric field

in the x direction and the over potential patch. The boundary conditions for this equation are,

φH = φp for | x |≤ 0.5 and at y = d and φH = 0 for |x| > 0.5 at y = 0 and y = 1 (in the case of

a single block attached along the lower channel wall).
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Due to a suddenly applied constant wall voltage, the electrolyte gets accelerated and moves

fast due to electroosmosis. The solution is obtained by using separation of variables and intro-

ducing the new variables as follows:

φH(x, y) = X(x)Y (y). (3.25)

Putting the far upstream and downstream boundary conditions i.e. φH = 0 at x = ±L
gives, X(x) = an sin(nπ

2L
(x+ L)), where an is an undetermined coefficient for the solution. This

is a solution for a periodic array of patches. Similarly φH = 0 at y = 1. This gives Y (y) = 0.

Then the solution of equation (3.25) is

Y (y) = bn sinh

(√(
nπ

2L

)2

+
1

A2
(1− y)

)
. (3.26)

The complete solution for φH(x, y) is given by

φH(x, y) = X(x)Y (y) = anbn sin

(
nπ

2L
(x+ L)

)
sinh

(√(
nπ

2L

)2

+
1

A2
(1− y)

)
. (3.27)

On the lower side of the wall at y = d, φH = φp. Hence, φH(x, y) will be reduced to

φH(x, y) = X(x)Y (y) = anbn sin

(
nπ

2L
(x+L)

)
sinh

(√(
nπ

2L

)2

+
1

A2
(1− d)

)
= cn sin

(
nπ

2L
(x+L)

)
(3.28)

where cn = anbn sinh

(√(
nπ
2L

)2

+ 1
A2 (1− d)

)
need to be determined for the boundary con-

dition φH(x, y) = φp for | x |≤ 0.5 and at y = d and φH(x, y) = 0 for |x| > 0.5 at y = 0 and

y = 1.

φH(x, y) =
∞∑
i=1

2φp sin(nπ
2

) sin(nπ
4L

) sin(λn(x+ L)) sinh((1− y)
√
ε)

nπ
2

sinh

(√
1
A2 (1− d) + (nπ

2L
)2

) . (3.29)

where ε =

(
1
A2 + (nπ

2L
)2

)
.
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3.4 Analytical Estimation of Pressure and Velocity Far

Away from the Potential Non-Homogeneity (λ � H

and λ ∼ O(H))

Using the PB model the charge distribution of binary symmetric ions is governed by

n1 = e−φ, n2 = eφ. (3.30)

Using Eq. (3.30), the induced potential and momentum equations take the form:

ε21
∂2φ

∂x2
+
∂2φ

∂y2
=

2β

A2
sinh(φ) (3.31)

Re

(
ε1u

∂u

∂x
+ v

∂u

∂y

)
= −ε1

∂p

∂x
+∇2u+

2β

A2

ε1
Λ

sinh(φ)

(
∂φ

∂x
+
∂ψ

∂x

)
(3.32)

Re

(
ε1u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+∇2v +

2β

A2

1

Λ
sinh(φ)

(
∂φ

∂y
+
∂ψ

∂y

)
(3.33)

Taking the curl of the momentum Eq. (3.32) and (3.33), the vorticity transport equation takes

the form:

Re

(
ε1u

∂ω

∂x
+ v

∂ω

∂y

)
= ∇2ω +

2β

A2

ε1
Λ

cosh(φ)

(
∂φ

∂x

∂ψ

∂y
− ∂φ

∂y

∂ψ

∂x

)
(3.34)

Using the Debye-Hückel approximation and taking a translation of coordinates by Y = y− 1
2

for a two-dimensional, fully developed EOF, the induced potential and vorticity equations are

reduced to

∂2φ

∂Y 2
= (k1H)2φ (3.35)

∂2ω

∂Y 2
= −2βε1

A2
cosh(φ)

∂φ

∂Y
(3.36)

where k1 =

(
2β
λ2

) 1
2

. Solving above equations with the boundary conditions: φ = −1 at

Y = ±1/2; ω = 0 and dω
dY

= 0 at Y = 0, we can get
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φ(Y ) = − cosh(k1HY )

cosh(k1H/2)
(3.37)

ω(Y ) = −2βε1
A2

sinh(k1HY )

(k1H) cosh(k1H/2)
. (3.38)

For a fully developed flow, the relation between vorticity and velocity is

ω(Y ) = − du
dY

(3.39)

Integration of Eq. (3.39) with no-slip boundary condition, yields the expression for velocity

as

u(Y ) = −2βε1
A2

1

(k1H)2

[
φ(Y ) + 1

]
. (3.40)

Simplifying Eq. (3.32) and (3.33) under the fully developed condition, the equations for the

pressure gradients can be expressed in the form:

∂p

∂x
=

∂2u

∂Y 2
− 2β

ε1
A2
φ (3.41)

∂p

∂Y
=

2β

Λ

1

A2
φ
∂φ

∂Y
(3.42)

Substituting Eq. (3.37) and (3.40) into Eq. (3.41) it is observed that the axial pressure

gradient is zero far away from potential heterogeneity where the flow is fully developed. The

pressure distribution in the transverse direction is given by

p(Y ) =
β

2(k1H)2

1

Λε2
cosh(2k1HY )

cosh2(k1H/2)
+ c, (3.43)

where c is a constant. From, Eq. (3.43), it can be clearly observed that a pressure gradient

is existing normal to the surface in the fully developed region but vanishes along the axial

direction.

3.5 Sample Concentration Equation (C) for Flow

To understand the sample flow distribution in a nano-channel, it is essential to obtain the

solution for sample diffusion equation by numerical simulation. Distribution of the sample

species is obtained by solving the non-dimensional steady convection-diffusion equation as

q · ∇C =
1

Pes
∇2C, (3.44)
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where C represents the non-dimensional species concentraion, scaled by reference concentration

Cref and q is the dimensionless velocity, defined as, q = q∗/UHS. Here Pes stands for the Peclet

number of the eluted species, defined by Pes = UHSH
Ds

, where Ds is the diffusivity of the sample

species. The boundary conditions for the species transport are:

Upstream boundary condition:

C = Cin (3.45)

Downstream boundary condition:
∂C

∂x
= 0 (3.46)

Boundary conditions on the walls:

∇C · n = 0 (3.47)

where n is the unit outward normal to the corresponding surface. Here Cin = 0 on lower half of

channel inlet (x = −L, 0 ≤ y ≤ 0.5) and Cin = 1 on the upper half of the inlet (x = −L, 0.5 ≤
y ≤ 1).

3.6 Time Scale Analysis

It is important to generalize the discussion of EOF in full time scale analysis for flow charac-

teristics inside the channel. Since different time scale can be used to non dimensionalize the

flow governing equations, such as viscous time scale i.e. tν = H2/ν, axial diffusive time scale

i.e. td = H2/Di and the convective time scale i.e. tc = H/UHS. In the present analysis the

electroosmotic flow is considered within a nano channel under the influence of external electric

field . The corresponding momentum balance equation for an ionized fluid in vector form can

be represented as

ρ

(
∂q∗

∂t∗
+ (q∗ · ∇)q∗

)
= −∇p∗ + µ∇2q∗ + ρeE

∗ (3.48)

and the corresponding mass conservation equation is

∇ · q∗ = 0. (3.49)

The scaling factor for the fluid velocities is UHS known as the HelmholtzSmoluchowski

velocity and is defined as, UHS = εeE0φ0/µ, pressure scaled by p = p∗

µUHS/H
. If the time is scaled

by convective time scale tc or diffusion time scale td or viscous time scale tν , the dimensionless

governing equation is
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B
∂q

∂t
+Re

(
(q · ∇)q

)
= −∇p+∇2q− β

ΛA2
(n1 − n2)∇φ, (3.50)

where B is non dimensional parameter which may be Re or 1/Sc or unity depends on the

time scaled variable.

If the EOF is considered as an unsteady unidirectional flow with uniform zeta potential

ζ along the channel walls, then the potential flows for Boltzmann distribution and the flow

governing equation reduces to

B
∂u

∂t
=
∂2u

∂y2
− ∂2φζ

∂y2
. (3.51)

and the induced potential equation is

d2φζ
dy2

=
φζ
A2
. (3.52)

The electric field generated due to the wall zeta potential (Eq. 3.52) along with the boundary

conditions φζ = ζ at y = 0 and y = 1, subject to the applied external electric potential can be

written as

φ = φE + φζ = −x+ ζ[cosh(y/A) + a sinh(y/A)]. (3.53)

To study the transient behavior of the EOF represented in Eq. 3.51 we have assumed that

the flow is both steady and unsteady in nature along with no slip boundary condition. Therefore

the steady state solution is obtained as

us(y) = ζ

[
cosh(y/A) + a sinh(y/A)− 1

]
. (3.54)

To obtain the solution of the unsteady problem, the initial and boundary conditions are

used as

u(y, t)|t=0 = u(y) (3.55)

u(0, t) = 0 = u(1, t). (3.56)
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Figure 3.3: (a) κH = 1/A = 10 (b) κH = 1/A = 30 are the velocity distribution for different
times and (c) velocity distribution at different κH = 1/A at t = 0.001.

The solution is obtained by the method of separation in which the dependent function is

defined as the product of the two independent functions as u(y, t) = Y (y)T (t). Using the above

boundary condition the unsteady state solution can be written as

uus(y, t) =
∞∑
n=1

En exp(−n2π2t/B) sin(nπy) (3.57)

where constant En can be determined by the initial condition and the orthogonality properties

as

En = 2ζ

[
1

nπ
− nπ

1/A2 + n2π2

](
1− (−1)n

)
(3.58)

Thus the expression for time dependent velocity is

u(y, t) = ζ

[
sinh((1− y)/A) + sinh(y/A)

sinh(1/A)
− 1

]
+ 2ζ

∞∑
n=1

[
1

nπ

− nπ

1/A2 + n2π2

](
1− (−1)n

)
exp(−n2π2t/B) sin(nπy). (3.59)

The parameter B plays an important role in the flow distribution. From the closed form of

analytic solution it is observed that the solution has been reached at the steady state if B > 1

which is clearly visualized from the Fig. 3.3. Since Sc = ν/Di = 5.0×102 or 103 ifDi = 2.0×10−9

or 1.0 × 10−9 is the diffusivity coefficient of the species. Similarly Re = Pe/Sc < 1 and

B = 1/Re > 1. Thus in diffusion time scale or convective time scale, the transfer of species

from one end of the channel to other end the velocity is essentially steady.
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3.6.1 Discussion of Linear Stability

The flow conventions in our formulation ensure that the direction of EOF is from left to right

as shown in Fig. 3.4 by the base-state velocity profiles at a fixed time for different values of

Reynolds number. Where as a Poiseulle-type flow is observed with a parabolic profile for low

Reynolds number. Thus a flow reversal is observed in core region for higher values of Reynolds

number. Therefore an instability nature of flow characteristics may occur in EOF in a small

channel.

Now a linear stability of the unidirectional EOF can be studied by imposing small pertur-

bation to the base-state solution profiles, u = ū+u′, v = v′, p = p̄+p′ and φ = φ̄+φ′ [172,185],

where − denote the mean variables and ′ denote the perturbed variables. Thus the resulting

perturbed equations are

∂u′

∂x
+
∂v′

∂y
= 0 (3.60)

Re

[
∂u′

∂t
+ ū

∂u′

∂x
+ v′

∂ū

∂y

]
= −∂p

′

∂x
+
∂2u′

∂x2
+
∂2u′

∂y2

− 1

Λ

(
∂2φ′

∂x2
+
∂2φ′

∂y2
− ∂φ′

∂x

∂2φ̄

∂y2

)
(3.61)

Re

[
∂v′

∂t
+ ū

∂v′

∂x

]
= −∂p

′

∂y
+
∂2v′

∂x2
+
∂2v′

∂y2
+

1

Λ

(
∂2φ′

∂x2

∂φ̄

∂y

+
∂2φ′

∂y2

∂φ̄

∂y
+
∂φ′

∂y

∂2φ̄

∂y2

)
(3.62)
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Eliminating pressure terms from the above equations and normalized the linearized equation

by u′ = δ[ũ(y)eik(x−ct)], v′ = δ[ṽ(y)eik(x−ct)], p′ = δ[p̃(y)eik(x−ct)] and φ′ = δ[φ̃(y)eik(x−ct)], where

δ(<< 1), k and c(= cr + ici) are amplitude, wavenumber and phase speed of the infinitesimal

perturbation respectively, resulting in an eigenvalue problem analogous to the Orr-Sommerfeld

equation:

(D2 − k2)2ṽ = ik

[
Re(ū− c)(D2 − k2)ṽ −Reṽd

2ū

dy2
− ζ

ΛA
(1/A2 − k2) sinh(y/A)

]
+
k4ζ2

ΛA

[
1

2
sinh(2y/A) +B cosh2(y/A)

]
, (3.63)

ũ = − 1

ik

dṽ

dy
, (3.64)

where the notation D denotes the ordinary differentiation d
dy

and the boundary condition is

ṽ = ṽy = 0.

The above set of equations form an eigenvalue problem, which is solved numerically by using

spectral collocation method. The linear growth coefficient (kci) and the corresponding wave

number (k) thus obtained are the time and length scales of the instabilities. The dominant

growth coefficient (kci)m is found by determining the global maxima of kci and the neutral

stability plots are obtained by identifying the conditions under which kci = 0.

3.7 Numerical Scheme

The coupled set of governing non-linear equations for potential, ionic concentrations and fluid

flow are solved through a finite volume method [89,123] with their associated boundary condi-

tions. Numerical method adopted here is similar to the method described in Chapter 1 (Section

1.8) in the context of electroosmosis in a charged corrugated nano-channel. A Newtonian lin-

earization technique is used to linearize the nonlinear terms in this process, and the equation is

then solved using the SIMPLE method with staggered grid system. Individual control volumes

are used to integrate all the equations, since edge effects close to the heterogeneous surface

undergo a sharp change. In order to control the sharp variation in the variables, a higher order

upwind scheme QUICK is used to discretize the convective and elctroosmotic migration terms.

The pressure Poisson equation is formulated to establish the relationship between continuity

and momentum equation. In every time step of the cyclic procedure, this pressure correction is

solved through the SOR (Successive Over Relaxation) method to achieve an updated flow field.

This cyclic procedure is repeated until getting a desired accuracy, max |Θn+1
i,j −Θn

i,j| < ∆, where

Θ = (n1, n2, φ, u, v), ∆ = 10−6, n denotes the iteration level and i, j stand for computational
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Figure 3.5: (a) Comparison of velocity and potential with Ramirez and Conlisk [220] along the
axial direction in a fully developed EOF region for H=50 nm, n0

1 = 2.77×10−5, n0
2 = 2.54×10−6

and E0 = 1.7143 V/µm. Grid independency is also represented in the figure. (b) Comparison
of flow rate variation due to Zheng et al. [292] for various channel heights.

grid points.

3.7.1 Code Validation

Several test runs are made to obtain the upstream and downstream region where the variables

become independent and obtains fully developed EOF at a distance 2l from the center of the

block. This distance is obtained when two side-by-side blocks are considered and considered to

be larger. To obtain optimal grid size, grid-independent tests are conducted by changing the

grid size between 400× 80 and 800× 160 and is shown in Fig. 3.5 (a). The grids are found to

be optimal at 400× 80. The computed results are verified with the existing results to check the

accuracy.

A valid comparison is made with the results obtained by Ramirez and Conlisk [220] and

found that present simulated results agree well. The comparisons for u and φ are presented in

Fig. 3.5 (a), when H=50 nm and the wall mole fractions correspond to [Na+] = 0.00154M and

[Cl−] = 0.000141M , with the external electric field 106 V/m for a fully developed EOF. The

velocity profiles are parabolic in nature in case of thick EDL and flow rate increases with the

increase of imposed electric field and ζ-potential [292]. The comparison of experimental results

for axial flow rate due to Zheng et al. [292] is made with the present simulated result for various

channel heights in case of a plane EOF and presented in Fig. 3.5 (b). It is found that simulated

results agree well with the experimented results.
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Figure 3.6: (a) Comparison of axial velocity distribution at the far upstream region with the
result due to Bhattacharyya et al. [26] for different channel heights H = 5 nm, 25 nm, 100 nm,
where [Na+], [Cl−] corresponds to 0.154 M and 0.141 M respectively with the external electric
field strength 3.5 × 6 V/µm, (b) Comparison of ion distribution with the result due to Hu
and Chao [112], (c) Electric potential distribution of external electric field case (II) with E0 =
106 V/m, H = 20 nm, φp = 0.2 and ε = 0.05.

3.8 Results and Discussions

Most of the simulations are performed for a strong electrolyte NaCl (solute) solution with

solvent as water. The wall concentrations for this strong NaCl electrolyte solution is as-

sumed as, [Na+] = 0.154M , [Cl−] = 0.141M . The water molarity is considered as, 55.6M

((1000g)/(18gM−1)) = 55.6 moles) leads to an EDL thickness of 0.8nm. The concentration

distribution along the asymmetric part of the surface is obtained by the relations n1p = n0
1e
−φp

and n2p = n0
2e
φp , where φp is the patch potential strength. The diffusivity of the eluted species

(Ds) is considered as 1.0× 10−11 m2/s which corresponds to the Peclet number (Pes) 14.4.

3.8.1 Electric Field Spectrum

The potential distribution of the external electric field around the wall mounted rectangular

blocks, whose heights are a fraction of the channel height and the length is on the order of the

channel height, combined with over potential regions are presented in Fig. 3.6(c). The external

electric potential is obtained by solving the Laplace equation 52ψ = 0 by assuming that all

walls of the channel and the block are electrically insulated, i.e. ∇ψ.n = 0, where n is the

unit outward normal to the surface. Far away from the block, i.e. upstream and downstream

of the channel, ψ is a linear function of x i.e. ψ = −Λx. The non-dimensional external field

strength is designated as Λ and is defined by Λ = HE0

φ0
, where the electric field strength E0

is varies from 104 V/m to 106 V/m. Mostly the electric field is predominantly along x-axis
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Figure 3.7: EDL-potential contours for (a) case (I) and (b) case (II), when [Na+] = 0.154 M ,
[Cl−] = 0.141 M , H = 20 nm, ε = 0.05 and φp = 0.2.
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Figure 3.8: Total electric field lines (combination of external and induced electric field) for (a)
case (I), (b) case (II), when [Na+] = 0.154 M , [Cl−] = 0.141 M , H = 20 nm, ε = 0.05 and
φp = 0.2.

except in the region near the block, where a y-component of the electric field exists i.e. ∂ψ
∂y

and has a maximum magnitude about 8% of Λ due to blocks (Fig. 3.6(c)). The strength of

the electric field is enhanced in the downstream side and above the charged block due to the

external electric field acting along the x-direction. Fig. 3.6(a) represents a velocity comparison

at different channel heights with Bhattacharyya et al. [26]. The comparison is made with a

strong electrolyte solution of [Na+] = 0.154 M , [Cl−] = 0.141 M and water 55.6 M with an

external electric field strength 6V applied over a channel of length 3.5µ m. These parameters of

concentration correspond to EDL thickness of 0.8 nm. The analytical and numerical comparison

for H = 5 nm, 25 nm and 100 nm shows 1% variation of the numerical solution along the far

upstream velocity profiles. The parabolic and top hat nature follows according to the EDL
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Figure 3.9: Streamlines for case (I) with (a) φp = 0 and (b) φp = 0.2, when [Na+] = 0.154 M ,
[Cl−] = 0.141 M , H = 20 nm, ε = 0.05.
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Figure 3.10: Streamlines for case (II) with (a) φp = 0 and (b) φp = 0.2, when [Na+] = 0.154 M ,
[Cl−] = 0.141 M , H = 20 nm, ε = 0.05.

overlapping and non-overlapping behavior depending on the channel height and molarity of

the solutions. The analytical solution, discussed in Sec. 3, differs by 3.4% from the result of

Bhattacharyya et al. [26], but closely agree with the present numerical results for larger channel

heights i.e. above 25 nm. Fig. 3.6(b) presents the distribution for ionic concentration in a

parallel plane channel and shows a good agreement with the result due to Hu and Chao [112]

for channel height of 0.2 µm and E0 = 105 V/m.

Fig. 3.7 presents the distribution of induced potentials for both the configurations, developed

in the flow domain due to non-homogenous ζ- potential arrangement. The combined influence

of the externally applied electric field and the induced electric field created by the over potential

patch along with the block is presented in Fig. 3.8. The electric field lines composed of both
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the externally applied electric field and the induced field by the patch and the block top. The

direction of the applied electric field is in x-direction, from left to right in all cases and the

direction of the induced field is from the patch to the opposite channel walls. The density of

electric field lines are increased in case of multiple blocks as observed from Fig. 3.8 (b).

3.8.2 Growth of Flow Profile and Flow Spectrum

Above the patch and the block, the asymmetry of these electric field lines causes the asymmetry

of the velocity and concentration distribution of charged ions as shown in Fig. 3.9, Fig. 3.10

and Fig. 3.11. The streamlines for both configurations suggest that no flow separation takes

place in the channel in absence of overpotential patch (i.e. φp = 0) and the reverse flow regions

arise for non-zero (positive) strength of potential patch due to surface potential heterogeneity.

The size of the vortex is balanced by the electrical force and the favorable pressure gradient.

The overpotential regions attract more anions to the region near the patch and thus generate

more reversed flow. The flow velocity increases if parallelly two obstacles with two overpotential

patches are placed (Fig. 3.10 (b)) compared to a single obstacle with two overpotential regions

(Fig. 3.9 (b)). The flow streamlines are increased up to 20% for a nanochannel of height

20nm with external electric field of 106 V/m and the overpotential strength is considered to

φp = 0.2. Electroosmotic circulation created by ducts is increased up to 11% incase of a

overpotential region. The mole fraction distribution shows large variation when the flow past

over two polarized blocks compared to a single polarized block with fixed overpotential patches

along the upper wall. The plug-like velocity profile and core neutrality of mole fractions no

longer exist close to the upstream and downstream of the overpotential regions (Fig. 3.11 (a)

(b)).

3.8.3 Effect of Ex and Overpotential on the Pressure Distribution

Due to Block Height

In Fig. 3.2, it is assumed that the channel is connected to large baths of upstream and down-

stream reservoirs where the filled fluid is initially at rest. The fluid starts movement within

channel when the external electric field is applied. It is already predicted by several authors

e.g. Wu et al. [277] and Peng et al. [212], that there was no axial pressure gradient in the

fully developed EOF region. But there is a pressure effect when the flow is passing above the

heterogeneous surface in fully developed regions means pressure is not zero in that level. Fig.

3.12 shows an example when the ratio of block height to channel height is considered to 0.2,
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Figure 3.11: Mole fraction distributions (a) case (I), (b) case (II), when [Na+] = 0.154 M ,
[Cl−] = 0.141 M , H = 20 nm, ε = 0.05 and φp = 0.2.
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Figure 3.12: Pressure distribution for different overpotential patch and external electric field
strength for (a) case (I), (b) case (II), when [Na+] = 0.154 M , [Cl−] = 0.141 M , H = 20 nm,
ε = 0.05.
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Figure 3.13: (a) Volume flow rate for asymmetrically arranged nonuniform surface potential,
for H=20 nm, ε = 0.05. n0

1 = 0.00276 ([Na+] = 0.154 M), n0
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Figure 3.14: Concentration levels for (a) case (I), (b) case (II), when [Na+] = 0.154 M , [Cl−] =
0.141 M , H = 20 nm and φp = 0.2.
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Ex = 105 V/m and surface potential is assumed to be 0. In this chapter we tried to clarify the

existence of pressure variation in nano-channels by means of an analytical analysis in case of

a fully developed EOF. Mostly, the analytical pressure values along the transverse directions

provide a negative distribution for all the channel heights varying from H=20 nm to 100 nm.

Close to the channel walls the pressure distribution provides a positive variation for all channel

heights and as the distance increases from the wall, the values increase negatively reaching max-

imum variation along y=0.5. For H=20 nm the analytical pressure along the channel centerline

is 0.18 where as the numerically computed value is about 0.2. The axial pressure distribution

for different over potential strengths and the external electric field for case (I) are shown in Fig.

3.12(a). The inlet values of pressure differ due to the constant value appeared in the analytical

solution for different electric fields. In the present observations we can expect the inlet fluid

observes a different pressure for different external electric fields even if the solution and over-

potential remains the same. The comparison between Fig. 3.12(a) and Fig. 3.12(b) provides a

big difference if we can consider the gradient variation close to the obstacle. In the upstream

edge of the patch a positive pressure gradient is found but the electric body force term present

in the momentum equation generates a negative force due to the factor (n1− n2) < 0, resulting

an inflection point, i.e., d2u
dy2

> 0 and leads to a flow separation. In both the cases it is observed

that an increment in electric field strength and block height shows a large difference in pressure

variation. For case (I) if the electric field strength is increasing from 105 V/m to 106 V/m for

φp = 0.2 the pressure is increasing up to 17% negatively but in case (II) it is showing variations

up to 10% for a channel height of 20 nm. The increment in overpotential strength creates a

pressure difference conversely compare to the earlier case. The variation is maximum in case

(II) compared to case (I) if the overpotential strength is varying from 0.1 to 0.3. The variation

of pressure in case (II) is 63% where as for case (I) it is observed to be 65%. But the variation

of pressure in case (II) is larger compared to case (I). Since for a particular channel height and

fixed overpotential patch and electric filed strength (0.1 and 105 V/m), the pressure is increased

up to 45%.

3.8.4 Effect of External and Local Electric Field on Volume Flow

Rate for a Given Block Height

The volume flow rate for a different external electric field strength 104 V/m, 105 V/m and

106 V/m with the variation of φp is presented in Fig. 3.13(a). If the channel dimension reduces,

the reciprocal importance of surface to volume forces grow up which create an advantage for

faster mixing of the entities with confined stream lines dominating the diffusion effect without
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axial dispersion. From this figure, we can see that the volume flow rate drops significantly with

the decrement of electric filed strength as well as with the increase of overpotential strength

along the channel walls. It is already shown in Fig. 3.5(a) that both numerical and experimental

observation predict the flow rate enhancement due to an increase in channel height. It is clearly

observed from Fig. 3.13(a) that volume flow rate is increasing when the electric field increases.

By the variation of electric field strength from 104 V/m to 106 V/m the volume flow rate is

increased up to 4% for a fixed block height (d = 0.2). It can be observed that for a fixed electric

field strength (106 V/m), volume flow rate is decreased by 17% for increasing the overpotential

strength from 0.1 to 0.5. This signifies that increased strength of the external electric field

allows the species less time to diffuse. Thus, increasing the electric field strength results in a

decrease of diffusive flux which corresponds less mixing.

The effective flow variation in terms of velocities for different ionic strength solutions both in

dilute and strong cases in terms of cations and anions are considered as Solution 1 (0.00105, 0.00095),

Solution 2 (0.00154, 0.00141), Solution 3 (0.105, 0.095), Solution 4 (0.154, 0.141) and Solution

5 (0.308, 0.141) are presented in Fig. 3.13(b). The flow variation is plotted for H = 20 nm along

the upstream region where one dimensional nature of the flow variation is predicted. The flow

nature is shifted from parabolic nature to top hat profiles as the molarity is getting stronger.

3.8.5 Mixing Efficiency on the Effect of Overpotential Patch Strength

Mixing of different streams in microfluidics is a challenging task due to low inertial effects. The

flow Reynolds number in such systems are too small due to the small characteristic length for

which it is not possible to get the advantage of turbulence to stir the fluid streams to mix. Thus,

the mass transfer in micro/nano-channels is mainly dominated by Fick’s diffusion which is a very

slow mechanism. Thus a long channel length is required to get a homogeneous mixture in the

outlet when two streams of different concentrations are injected at the inlet. It is experimentally

observed that the diffusion flux is proportional to the concentration gradient and the mixing

interface area. In this chapter two fabricated channel geometry are proposed to get a significant

mixing enhancement in a small channel length. The configurations are chosen in such a way

that the concentration gradient can be improved sufficiently by creating surface heterogeneity

through fabrication technique along the channel walls and simultaneously the mixing interface

area can be made larger by placing blocks on the channel wall to maximize the overall diffusion

flux to achieve a good mixing efficiency in the downstream of the channel.

To quantify the mixing enhancement along the streamwise direction of the channel, a parameter
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named mixing efficiency (σ) is defined as [84],

σ =

[
1−

∫ upper surface
lower surface

|C − C∞|dy∫ upper surface
lower surface

|C0 − C∞|dy

]
× 100%, (3.65)

where C represents the species concentration across the width of the channel. C0 and C∞ are

the species concentrations in the completely unmixed (C0 = 0 or 1) and fully mixed (C∞ = 0.5)

states respectively. Thus a fully mixed state would have 100% mixing efficiency, while the

completely unmixed state would have 0% mixing efficiency. Fig. 3.14 shows the concentration

contours for both configurations for φp = 0.2 with E0 = 106 V/m. The corresponding species

concentration profiles in the downstream is presented in Fig. 3.15 for both the configurations

with various φp. It can be observed from Fig. 3.15 that for both configurations the downstream

concentration profile approaches to fully mixed profile (C = 0.5) with increasing φp. It can also

be noticed that for Case-II the downstream concentration profile is closer to 0.5 compared to

Case-I for a fixed φp. The mixing efficiency for both the cases along the streamwise direction is

presented in Fig. 3.16 (a) and (b). The mixing efficiency for φp = 0.1, φp = 0.2 and φp = 0.3 at

the downstream of the channel for Case-I are found to be 51.9%, 56.8% and 61.5% respectively.

The decrement in total flow rate with increasing dimensionless overpotential patch (Fig. 3.13(a))

suggests that the fluid is allowed more time to diffuse in the channel which gives more mixing

efficiency along the channel downstream. The mixing efficiency is improved for Case-II for

each φp due to the presence of an extra block with potential heterogeneity which enhances the

diffusive flux to give more homogeneous mixing. Compared to the earlier configuration the

mixing efficiency is improved highly in Case-II, since the mixing efficiency reaches 54.1%, 61%

and 65.15% for φp = 0.1, φp = 0.2 and φp = 0.3 respectively.

The above discussions (theoretical and numerical) suggest that, Case- II is one of the most

suitable technique for choosing a passive mixing method of the specific need and also advocate

the novelty by using the standard fabrication techniques like nano-lithography [40, 82, 173],

etching-and-deposition [279], DLP [127], sequentially patterned oxides [61], packing of different

nano-particles [144] etc.

3.9 Conclusions

In this chapter, both numerical and analytical approaches are used to probe the effects of EOF in

nano-channels. The change of pressure in case of a fully developed flow is computed analytically,

where all of the previous studies directly assumed that axial pressure gradient is zero. The fully

developed regions along the inlet upstream and outlet downstream regions are found by doing
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several test runs and observe that a very small change of pressure gradient is occurring at the

entry and exit locations. The steep variation of axial pressure gradient above the heterogeneous

regions due to convection effect and body force terms in the momentum equation reflect a

sharp variation of velocity components. The variation of electric field produces a induced

positive pressure gradient along the axial direction and convective effects become stronger which

produces a higher Lamb-vortex profile for v-velocity. In case of multiple blocks and overpotential

regions the EOF produces a convective force dominating diffusion and axial dispersion process

compared to a single block and obtains fully developed nature at far distances from the blocks.

To optimize the mixing performance, augmented mixing efficiencies are created by formation of

localized flow recirculation regions due to corrugated surfaces with overpotential regions which

is important for design of lab-on-a-chip devices to avoid the lengthy diffusion based process. One

more important factor is to specify the channel length to avoid the tip wall effects, as induced

pressure gradient increases the dispersion of sample species which reduces the performance of

the system [212]. The analytical proof suggests that velocity and pressure gradient are induced

maximum above the corrugated region due to advective component but negligible if the flow

approaches to fully developed nature.
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Chapter 4

Enhanced Mixing and Flow Reversal in

a Modulated Micro-Channel

4.1 Introduction

The transport mechanism in micro/nano-fluidic systems has evolved into a research field of

fundamental curiosity due to its wide range of applications in electronics, medical sciences

and biology [249, 288]. Recently, transport of biofluids through micro & nano channels has

received much attention, as EOF with micro pumping method is used in many systems, such

as familiar micro-electrical mechanical systems (MEMS) [152], intervenous drug delivery sys-

tems, Lab-on-a-Chip (LOC) [85], micromixers [262] etc. Traditionally, flow in channels with

large characteristic scale is often driven by pressure gradient, supplied by mechanical pumping,

but this technique becomes increasingly difficult when the characteristic scale comes down to

micro-nano level due to fatigue, mechanical failure and fabrication difficulty. To overcome such

drawbacks, electrokinetic force driven flow is generally adopted in micro/nano-fluidics in which

the driving momentum is achieved through the influence of external electric field and EDL. The

electrokinetic interaction of electrolyte solution with the charged channel wall forms the EDL.

Also, this interaction creates an electromotive force close to the channel walls and provokes fluid

motion (electroosmosis) [219,269] which is gradually transmitted to the adjacent layers through

the viscous drag [219].

Rapid mixing in microfluidic systems is essential due to its applications in biomedical anal-

ysis, nucleic acid synthesis, targeted drug delivery, chemical synthesis, DNA hybridization

etc. [55, 56, 70, 114]. However rapid mixing in such small scales is very challenging as it is

93
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not possible to take advantage of turbulence in weak Reynolds number (Re) system. Thus, the

transport mechanism is dominated by the diffusion effect to mix miscible fluid layers in laminar

flow regime. Consequently, it is challenging to execute a desirable mixing within a reasonable

time in a limited channel length as diffusion dominated mixing takes place very slowly [120,204].

This mechanism is obviously incompatible with the general trend towards device miniaturiza-

tion, and thus it becomes an important issue to the researchers for the fabrication of micro/nano

channels to get the optimum flow mixing.

Micromixers, depending on the strategy of mixing as reported in the literature can be sepa-

rated into two major categories: active and passive mixers [52]. In active mixing scheme, sam-

ple streams are mixed through induced periodic or aperiodic perturbation forces, e.g. pressure

perturbations [143, 199], thermal perturbations [7, 131, 268], magnetic perturbations [107, 200],

electrical stirring perturbations [138,174,201] or a combined perturbation due to magnetic and

electric fields [21]. The structure of active mixers are often comparatively simple, easy to con-

trol, but the requirement of energy sources makes them difficult to integrate [39] & moreover,

the manufacturing cost is relatively expansive [153]. In contrast, passive micromixers rely on

chaotic advection or diffusion which reduces the complexity of integration, fabrication and power

consumption. Therefore, passive micromixers, fabricated by geometric and surface modulation

are widely used as compared to the active micromixers. Such micromixers are designed to pro-

vide more contact surface area between the fluid layers to increase the diffusion flux. In order to

achieve a desirable mixing in passive micromixers, geometric modulation can be created in addi-

tion to surface heterogeneity to fold and stretch the fluid streams through specified designs, e.g.

patterned block structures [20, 30, 66, 202], conducting barriers [14, 276], convergent-divergent

geometry [2], sharp corner structure [87], grooved structures [6, 266], zig-zag geometry [57, 59],

sinusoidal wavy structured walls [37,50,65] etc. Subsequently, efforts are made for quantitative

improvement of mixing in both design as well as fluid control. In this regard surface modu-

lation provides large surface area to volume ratio for saturated concentrations. In addition to

geometric modulation, peristaltic channels geometry may be effective in transporting reagents

in miniature Lab-On-a-Chip systems for mixing purposes [19,222]. In the recent past, a number

of analytic and numerical studies have been carried out by several authors on wavy surfaces

and peristaltic motions in micro and macro devices [180–183,257].

The fluid advection effect in the heterogeneous region plays an important role for ion trans-

port [17,27,28]. The available literature on mixing mostly follows the Poisson-Bolzmann distri-

bution along with surface heterogeneity due to surface modulation and extra potential, without
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Figure 4.1: (a) Physical geometry (3D) (b) Computational domain (2D).

considering the effect of well built advection and ionic electromigration terms. However, an

advective component of ion transport may be introduced into the flow field and concentration

distributions through nonuniform surface charge (ζ - potential) and geometric barriers [23,190].

In this chapter, following the recent developments on micro scale mixing, we propose a modu-

lated micromixer design based on geometric modulation by incorporating two sinusoidal wave

functions into channel walls symmetrically in the framework of Poisson-Nernst-Planck model.

Park et al. [208] performed an analytical study to estimate the relationship between flow govern-

ing factors for formation of eddies (perimeter eddy and central eddy) in a constricted cylindrical

domain. A phase diagram for both types of eddy formation has been presented as a function of

Debye length, aspect ratio and wave amplitude. Following this idea, the critical modulation fac-

tor (scaled wave amplitude) for the appearance of recirculating eddies (primary and secondary

eddy) near the channel walls are investigated numerically in this chapter for a large range of
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flow governing parameters (external electric field and solution’s molar strength). In section 2,

the geometric configuration of the problem, mathematical modelling and dimensionless param-

eters are described. In section 3, the numerical schemes with the discretization technique is

presented. In the following section, the key issue of this study, enhancing mixing efficiency as

well as determining critical wave amplitude for a wide range of wave amplitude, electric field

strength and Debye-Hückel parameter are described to optimize the mixing enhancement with

respect to the controlling parameters.

4.2 Mathematical Formulation

This chapter focuses on the ion transport mechanism of an aqueous electrolyte in a long channel

with corrugated side walls of length L, width W and average height H as shown in Figure 4.1.

The width of the channel is assumed to be in the order of its length and the flow field is considered

as two dimensional. The side walls are symmetric and comprised of two superimposed sinusoidal

wave structured surface which forms converging-diverging flow domain. The fluid flow is driven

through an external electric field along the channel & the fluid is assumed to be incompressible

and Newtonian. The surface potential (ζ-potential) is assumed to be distributed uniformly

along the surface walls with constant magnitude and the externally applied electric field is

considered to be acted along the streamwise direction. The wall corrugation is considered to be

a superposition of two sinusoidal waves as

y∗(x∗) = ±F∗(x∗)

= ±0.5H ± [α∗1sin(2πx∗/H) + α∗2sin(4πx∗/H)]

 (4.1)

where “±” signs represent upper (+) and lower (−) wavy walls respectively. Here α∗1 and α∗2

denote the wave amplitudes of two superimposed sinusoidal waves. By scaling the coordinates

by H (i.e. x = x∗/H and y = y∗/H), the scaled amplitudes α1 and α2 are defined as α1 = α∗1/H

and α2 = α∗2/H respectively. The geometry of the corrugated surfaces are characterized by the

parameter Rα (= α1/α2), called amplitude ratio.

The physical domain with wavy side walls is transformed into rectangular geometry with a

suitable coordinate transformation as

ξ = x, η =
y

F(x)
,

where F(x) = 1
H
F∗(x∗). In the framework of continuum hypothesis, the governing equations
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for the transport of incompressible, ionized, isothermal, Newtonian fluid is governed by Navier-

Stokes equations, which can be expressed in dimensionless form as [169]

∇ · q = 0 (4.2)

Re(q · ∇)q +∇p−∇2q +
(κH)2

2Λ
ρe∇(φ+ ψ) = 0 (4.3)

where

∇ ≡
(
∂

∂ξ
− ηF

′

F
∂

∂η
,

1

F
∂

∂η

)
and

∇2 ≡ ∂2

∂ξ2
− 2η

F ′

F
∂2

∂ξ∂η
+

[
η2

(
F ′

F

)2

+
1

F2

]
∂2

∂η2
+ η

[
2

(
F ′

F

)2

− F
′′

F

]
∂

∂η
.

Here q=(u, v) is the dimensionless velocity vector scaled by the Helmholtz-Smoluchowski ve-

locity (UHS = εeφ0E0/µ) and ρe = (n1 − n2) is the non-dimensional net charge density scaled

by n0e where ni is the concentration of ith ionic species with valance zi. We scale other di-

mensional variables as follows: the spatial coordinates by the average height of the channel

(H), µUHS/H is the pressure scale, φ0 = kBT/e is the scale for electric potentials and the bulk

number concentration (n0) is the number concentration scale [7,30]. The non-dimensional num-

ber Λ (= E0H/φ0) and Re (= ρUHSH/µ) denote dimensional electric potential and Reynolds

number respectively. Here µ, ρ, E0, e, kB and T stand for fluid visocity, fluid density, dimen-

sional externally applied electric field, elementary charge, Boltzmann’s constant and absolute

temperature respectively. The inverse EDL thickness is defined as κ (= λ−1) =
√

2en0/εeφ0.

Here φ and ψ are respectively denoted the induced potential due to the formation of EDL and

the external potential due to applied electric field.

The induced potential due to wall charge density is described by the Poisson’s equation

∇2φ = −(κH)2

2
ρe. (4.4)

The electric potential due to external electric field is obtained by the solution of Laplace equation

∇2ψ = 0 with electrically insulated boundary condition, i.e. ∇ψ ·n = 0, where n represents the

unit normal to the corresponding surface pointing towards the domain.

The non-dimensional form of the Nernst-Planck equation governing the transport of ith

species is [33]

Pe(q · ∇ni) = ∇2ni + zi∇ni · ∇(φ+ ψ)− (κH)2

2
ziniρe (4.5)
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The present model (Poisson-Nernst-Planck) has the flexibility to handle multivalent ions. For

simplicity we consider simple 1 : 1 electrolyte (e.g. NaCl + H2O) with zi = ±1 for i = 1, 2

respectively and the diffusivity of both the species are considered to be equal i.e. D1 = D2 = D.

Here Pe is the Peclet number which measures the ratio of advective to diffusive transport of

ions & is defined as Pe = HUHS/D.

The fluid is assumed to maintain no-slip condition for velocity and no-ion penetration con-

dition for species along the boundary walls. Along the channel walls some prescribed zeta

potential (or surface charge density) is assumed. Thus the wall boundary conditions are as

follows:

q = 0; (∇ni + zini∇φ) · n = 0; φ = ζ,

where n represents the unit normal vector along the channel walls indicating towards the fluid

and ζ is the surface potential. A periodic boundary condition is considered for all the flow

variables along the upstream and downstream of the main flow domain.

4.2.1 Transportation of Eluted Species

Transportation of the uncharged eluted species is defined by the combined species convection-

diffusion equation. In the absence of species absorption and chemical reaction, the dimensionless

species transport equation is of the form

(q · ∇)C − 1

PeS
∇2C = 0, (4.6)

where C is the non-dimensional species concentration scaled by Cref and Pes(= UHSH/Ds)

represents the Peclet number for eluted mixing species. Here Ds symbolizes the diffusion coeffi-

cient of the mixing species. To obtain mixing efficiency at different cross sections of the channel,

no mass flux (∇C · n = 0) is assumed at walls (y = ±F(x)) and ∂C
∂x

= 0 is considered along

the outlet boundary. At the inlet of the channel (x = 0) a step-like concentration distribution

is assumed, i.e. C = 1 in the lower half (−F(x) ≤ y ≤ 0) and C = 0 in the upper half

(0 < y ≤ F(x)).

A measure of species mixing at different levels of the channel is defined by a (mixing effi-

ciency) parameter, σ, as [84,190]

σ =

1−

∫ F(x)

−F(x)
|C − C∞|dy∫ F(x)

−F(x)
|C0 − C∞|dy

× 100%.
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Here C∞ and C0 represent the concentrations at the mixed (C∞ = 0.5) and unmixed (C0 =

0 or 1) states, respectively. Mixing efficiency is 100% when the two species are in fully mixed

condition and a completely unmixed mode signifies 0% mixing efficiency.

The non-dimensional parameters governing the electrokinetic flow of ionized species with

uncharged eluted species through the wavy channel are defined by Re, Pe, Pes, α1, Λ and the

Debye-Hückel parameter κH.

4.3 Numerical Method

In the simulations, a staggered grid based finite volume method (FVM) is used to solve the

coupled set of non-linear equations [4.2-4.6] [89,227,245,286]. In integrating the coupled equa-

tions over the control volumes, a fully implicit scheme is used for unsteady terms, whereas

QUICK [145] scheme is used for convective terms in the mass transfer and momentum equa-

tions. To cope with the non-linearity, Newton’s linearization technique is adopted in the above

set of equations. The discretized set of equations are solved through SIMPLE [210] algorithm

which is based on a cyclic prediction-correction operations. Velocity field is coupled with pres-

sure field to justify the conservation laws of mass and generate the pressure Poisson equation.

We have implemented successive over relaxation (SOR) iterative scheme to obtain the solution

of pressure upto a desired accuracy.

The detailed analysis of the numerical scheme used in this chapter are mentioned below.

On integrating the u− and v− momentum equations at the (n+ 1)th time step over the (j, k)th

control volumes for u and v (Fig. 4.2) respectively, yield

auju
n+1
j−1,k + buju

n+1
j,k + cuju

n+1
j+1,k = duj −

(
pn+1
j+1,k − p

n+1
j,k

)
∆ηk + 1

8
ηk

(
F ′
F

)
j

×
(
pn+1
j,k+1 + pn+1

j+1,k+1 − p
n+1
j,k−1 − p

n+1
j+1,k−1

)
(∆ξj + ∆ξj+1)

avjv
n+1
j−1,k + bvjv

n+1
j,k + cvjv

n+1
j+1,k = dvj −

(
1
F

)
j

(
pn+1
j,k+1 − p

n+1
j,k

)
∆ξj


(4.7)

The mole-fraction equations for the species (counter ion and co-ion) at the (n + 1)th time step

over the (j, k)th scalar control volume gives

an1
j n

n+1
1j−1,k

+ bn1
j n

n+1
1j,k

+ cn1
j n

n+1
1j+1,k

= dn1
j

an2
j n

n+1
2j−1,k

+ bn2
j n

n+1
2j,k

+ cn2
j n

n+1
2j+1,k

= dn2
j

 (4.8)
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Figure 4.2: Schamatic of different control volumes.

Here n1 and n2 stand for mole-fraction for counter and co-ions respectively. Thus for a fixed

value of k, the system of equations can be expressed in a matrix form as

AjX
n+1
j−1 +BjX

n+1
j + CjX

n+1
j+1 = Dj, (4.9)

where the coefficient matrices (Aj, Bj, Cj), the known vector (Dj) and the vector of unknown

variables (Xj) are given by

Aj =


auj 0 0 0

0 avj 0 0

0 0 an1
j 0

0 0 0 an2
j

 ; Bj =


buj 0 0 0

0 bvj 0 0

0 0 bn1
j 0

0 0 0 bn2
j

 ; Cj =


cuj 0 0 0

0 cvj 0 0

0 0 cn1
j 0

0 0 0 cn2
j

 ;

Xj =


un+1
j,k

vn+1
j,k

nn+1
1j,k

nn+1
2j,k

 ; Dj =



duj −
(
pn+1
j+1,k − p

n+1
j,k

)
∆ηk + 1

8
ηk

(
F ′
F

)
j

(
pn+1
j,k+1 + pn+1

j+1,k+1 − p
n+1
j,k−1

−pn+1
j+1,k−1

)
(∆ξj + ∆ξj+1)

dvj −
(

1
F

)
j

(
pn+1
j,k+1 − p

n+1
j,k

)
∆ξj

dn1
j

dn2
j


.

Thus the system of equation can be written in a matrix from as

AX = D, (4.10)
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where A represents a block tridiagonal matrix, each element of which is a square matrix of

order four. Here X, D stands for the vector of unknown variables and the vector of known

quantities respectively. The matrix equation is solved using block elimination Varga’s Algorithm

(Appendix).

On integrating the continuity equation over (j, k)th scalar control volume, we have(
un+1
j,k − u

n+1
j−1,k

)
∆ηk −

ηk
4

(
F ′

F

)
j

(
un+1
j−1,k+1 + un+1

j,k+1 − u
n+1
j−1,k−1 − u

n+1
j,k−1

)
∆ξj

+

(
1

F

)
j

(
vn+1
j,k − v

n+1
j,k−1

)
∆ξj = 0. (4.11)

The pressure link between the continuity and momentum equations are accomplished by

transforming the discretized continuity equation into a Poisson’s equation for pressure correc-

tion. This pressure correction equation implements a divergence free velocity field.

At initial stage, pressure pj,k is unknown at each cell. To get a solution for equation 4.10,

we guess a pressure field pcj,k. Corresponding to this guessed pressure field p∗j,k, the velocity field

(u∗j,k, v
∗
j,k) is determined form equation 4.7. Since u∗j,k, v

∗
j,k satisfy equation 4.7, then

auju
∗
j−1,k + buju

∗
j,k + cuju

∗
j+1,k = duj −

(
p∗j+1,k − p∗j,k

)
∆ηk + 1

8
ηk

(
F ′
F

)
j

×
(
p∗j,k+1 + p∗j+1,k+1 − p∗j,k−1 − p∗j+1,k−1

)
(∆ξj + ∆ξj+1)

avjv
∗
j−1,k + bvjv

∗
j,k + cvjv

∗
j+1,k = dvj −

(
1
F

)
j

(p∗j,k+1 − p∗j,k)∆ξj


(4.12)

Since the velocity field (u∗j,k, v
∗
j,k), corresponding to the guessed pressure p∗j,k may not satisfy

the continuity equation (Eq. 4.11), a correction of velocity field is needed. The correction of

the velocity field can be made through a pressure correction. The pressure link between the

momentum and continuity equations is accomplished by transforming the continuity equation

(Eq. 4.11) into a pressure Poisson equation. Let pcj,k be the pressure correction at (j, k)th cell

and (ucj,k, v
c
j,k) be the corresponding correction in velocity field. Thus the updated pressure and

velocity field can be expressed as

pn+1
j,k = p∗j,k + pcj,k

un+1
j,k = u∗j,k + ucj,k

vn+1
j,k = v∗j,k + vcj,k

 . (4.13)

Substituting equation 4.12 from equation 4.7, we get a relation between pressure correction and
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velocity correction as

auju
c
j−1,k + buju

c
j,k + cuju

c
j+1,k = −

(
pcj+1,k − pcj,k

)
∆ηk + 1

8
ηk

(
F ′
F

)
j

(
pcj,k+1+

pcj+1,k+1 − pcj,k−1 − pcj+1,k−1

)
(∆ξj + ∆ξj+1)

avjv
c
j−1,k + bvjv

c
j,k + cvjv

c
j+1,k = −

(
1
F

)
j

(
pcj,k+1 − pcj,k

)
∆ξj


(4.14)

Ignoring, the neighboring small correction components as

ucj,k = − ∆t
0.5(∆ξj+∆ξj+1)

(
pcj+1,k − pcj,k

)
+1

4
ηk

(
F ′
F

)
j

∆t
∆ηk

(
pcj,k+1 + pcj+1,k+1 − pcj,k−1 − pcj+1,k−1

)
vcj,k = − ∆t

0.5(∆ηk+∆ηk+1)

(
1
F

)
j

(
pcj,k+1 − pcj,k

)


(4.15)

Substituting the corrected velocity field (uj,k, vj,k) into the continuity equation, the following

Poisson’s equation for pressure corection is obtained.

pcj−1,k

[
− αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+
1

8
αu

{
ηk

(
F ′

F

)
j

}2
∆t∆ξj
∆ηk

]
+pcj,k

[
2αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+ 2αv

{(
1

F

)
j

}2
∆t∆ξj

0.5(∆ηk + ∆ηk+1)
+

1

4
αu

{
ηk

(
F ′

F

)
j

}2
∆t∆ξj
∆ηk

]
+pcj+1,k

[
− αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+
1

8
αu

{
ηk

(
F ′

F

)
j

}2
∆t∆ξj
∆ηk

]
= −div∗ − 1

4
αuηk

(
F ′

F

)
j

∆t

(
pcj+1,k+1 + pcj−1,k−1 − pcj+1,k−1 − pcj−1,k+1

)
−1

4
αuηk

(
F ′

F

)
j

∆t∆ξj
0.5(∆ξj + ∆ξj+1)

(
pcj+1,k+1 + pcj−1,k−1 − pcj+1,k−1 − pcj−1,k+1

)
+

1

16
αu

{
ηk

(
F ′

F

)
j

}2
∆t∆ξj
∆ηk

(
pcj−1,k+2 + pcj−1,k−2 + 2pcj,k+2 + 2pcj,k−2

+pcj+1,k+2 + pcj+1,k−2

)
+αv

{(
1

F

)
j

}2
∆t∆ξj

0.5(∆ηk + ∆ηk+1)

(
pcj,k+1 + pcj,k−1

)
, (4.16)

where

div∗ =

(
u∗j,k − u∗j−1,k

)
∆ηk −

ηk
4

(
F ′

F

)
j

(
u∗j−1,k+1 + u∗j,k+1 − u∗j−1,k−1 − u∗j,k−1

)
∆ξj

+

(
1

F

)
j

(
v∗j,k − v∗j,k−1

)
∆ξj. (4.17)
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Figure 4.3: (a) Comparison for streamwise velocity at wavy crest with Cho et al. [63] for a
symmetric wavy channel of the form y = ±{0.5 + α1sin(2πx) + α2sin(4πx)}. Here α1 = 0.05,
α2 = 0.02, κH = 50 and E0 = 100 V cm−1. (b) Mole-fractions comparison with Fu et al. [90] for
a plane channel when the concentration of the bulk electrolyte is 10−4 mol m−3, external electric
field E0 = 104 V m−1 and channel height H = 0.1 µm. Here n1 and n2 stand for counter-ion and
co-ion respectively. (c) Axial velocity comparison for plane channel with the analytic solutions
due to Masliyah et al. [169] for κH = 5, 10, 20, 30, 40, 50.

Here αu and αv are relaxation factors corresponding to axial and transverse velocity corrections

respectively. The Eq. 4.16 is solved using a Gauss-Seidel iterative method to achieve the

pressure correction (pcj,k) at each cell of the flow domain. For rapid convergence, the pressure

field is under-relaxed as

pn+1
j,k = p∗j,k + αpp

c
j,k, (4.18)

where αp is the under-relaxation factor. The relaxation factor is taken between 0 and 1, so

that guessed pressure field is added in a fraction of the corrected pressure field pc, in order to

improve iteration process to carry forward. Similarly, the velocity components un+1
j,k and vn+1

j,k

are under-relaxed in the following manner:

un+1
j,k = u∗j,k + αuu

c
j,k

vn+1
j,k = v∗j,k + αvv

c
j,k

 . (4.19)

A rapid convergence is found in this chapter for αp = 0.5 and αu = 2/3 = αv. Thus any time

step of this algorithm consists of sequential steps, discussed in Chapter 1 (Section 1.8).

4.3.1 Code Validation

In order to validate the numerical algorithm, results for velocity and mole-fractions distribu-

tion of the present scheme are compared with several existing results. The numerical simu-

lations are performed with the non-uniform grid arrangement to capture the gradients of all
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the flow variables for which dense grids are chosen close to the wavy walls with δt = 0.001.

A grid independence test is performed with three different grid sizes with Grid 1 : 200 ×
200 (∆ξj = 0.01,∆ηk = 0.01), Grid 2 : 200 × 480 (∆ξj = 0.01, 0.0025 ≤ ∆ηk ≤ 0.005),

Grid 3 : 400 × 480 (∆ξj = 0.005, 0.0025 ≤ ∆ηk ≤ 0.005) for a single periodic transformed

domain and compared with the result by Cho et al. [63]. Fig. 4.3 (a) suggests that our results

are in a good agreement for Grid 2 and Grid 3 with the result of streamwise velocity at wave

crest as of Cho et al. [63]. All the computations are performed for the simulated results with the

optimum meshing Grid 2. The computed results for mole-fraction distributions for F(x) = 1

agrees well with the result by Fu et al. [90] (Fig. 4.3 (b)). The results for u-velocity is compared

with the analytic solution of Masliyah and Bhattacharjee [169] for a non-wavy channel (α1 = 0)

with different κH, shown in Fig. 4.3 (c) and are found to be an excellent agreement.

4.4 Results and Discussions

The typical height of the channel is assumed to be 5 µm with the channel length of 50 µm.

In addition, it is assumed that the wall potential is uniformly distributed with magnitude ζ =

−1 (ζ∗ = −25.6 mV ) and the externally applied electric field is considered to be applied along

the primary flow direction which is assumed to vary from Λ = 1.5 (E0 = 7.7×103 V m−1) to Λ =

3.0 (E0 = 15.4×103 V m−1) for which Reynolds number (Re) varies from 6.8×10−4 to 13.6×10−4.

The non-dimensional amplitude ratio of the wavy surface, defined as Rα = α1/α2 and is set as

Rα = 2.5 [67]. The diffusion coefficients of the ionic species is set as D = 1 × 10−9 m2 s−1.

The other physical properties are specified as follows: fluid viscosity, µ = 10−3 kg m−1 s−1;

fluid density, ρ = 103 kg m−3; Faraday’s constant, F = 96485 C mol−1; permittivity of the

medium, εe = 695.4 × 10−12 C V −1 m−1; universal gas constant, R = 8.3 J mol−1 K−1;

Boltzmann’s constant, kB = 1.38 × 10−23 m2 kg s−2 K−1; absolute temperature, T = 300 K

and elementary charge, e = 1.6 × 10−19 C. The diffusion coefficient for the uncharged eluted

species is considered as Ds = 1× 10−11 m2 s−1 [44] for which the corresponding Peclet number

(PeS) varies from 68 (for Λ = 1.5) to 136 (for Λ = 3). In addition, the Debye-Hückel parameter

(κH) is considered to vary from 10 (λ = 0.5 µm) to 40 (λ = 0.125 µm) when the ionic strength of

the electrolyte concentration varies from 3.7×10−7 M (n0 = 2.22×1020 ions/m3) to 5.9×10−6 M

(n0 = 3.55 × 1021 ions/m3) which satisfies the range for solution’s strength used in previous

literatures [30,177].
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Figure 4.4: Distribution of equipotential lines for (a) applied electric field and (b) induced
electric field, for α1 = 0.11, κH = 10, Λ = 2.

4.4.1 Influence of Physical Parameters on Flow Reversal

In this section, we depict the influence of wave amplitude, Debye-Hückel parameter and external

electric field strength on flow separation inside the channel with wavy side walls. Fig. 4.4 (a)

and (b) shows the distributions of EDL potential and external electric potential respectively.

It can be observed that the equipotential lines for induced potential are uniformly distributed

whereas distorted distribution of equipotential lines is seen for external electric field. A denser

arrangement of externally applied equipotential lines is obtained near wave crest and a sparser

equipotential line distribution is followed near wave trough which implies that electric field

strength increases in the crest region of the wavy surface but decreases along the wave trough

region. This trend of non-uniform potential distribution is more evident by increasing the wave

amplitude. The electric field actively influence the ions in the EDL, causes a body force in the

fluid which is present close to the channel walls of the entire mixer, since the external electric

field is acting in the flow direction. Present study deals with the wavy surface walls, where the

fluid encounters a reverse path i.e. rotation is created near wavy walls and the fluid streams

are dragged by the electric body force.

The influence of wave amplitude and Debye-Hückel parameter (for fixed Λ) on flow pattern

can be visualized from Fig. 4.5. It is clearly observed from Fig. 4.5 (left column) that, for a

fixed value of κH (say κH = 10), the streamlines follow the curvature of the wavy walls and

no back flow comes into picture upto α1 = 0.10. As the wave amplitude takes higher values,

flow pattern starts to deviate and flow reversal zone occurs near wavy walls. The streamline

pattern for α1 = 0.12 confirms the occurrence of back flow region between two consecutive wave

trough and crest in each periodic length of the channel. The fluid experiences less momentum
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Figure 4.5: Streamlines for the variation of α1 and κH with Λ = 2.

in the wavy region and does not posses a smooth path to justify the conservation laws. A small

primary eddy is observed in this region, say, at x ∈ (0.2, 0.4) in a single period, say, in [0, 1]. As

the scaled wave amplitude increases (say for α1 = 0.15), the size of the primary eddy enlarges

and a secondary eddy starts to take place at x ∈ (0.6, 0.7). For further increment of α1, both

primary and secondary eddies expand in size. Same flow line pattern is followed for higher

values of κH.

The occurrence of flow separation and re-attachment points for higher values of scaled wave

amplitude (for Λ = 2 and κH = 10) can be interpreted in terms of wall shear stress and axial

velocity distribution. Fig. 4.6 (a) presents the wall shear stress distribution for different values

of α1. It can be noticed that wall shear stress keeps same sign throughout the domain upto



107

x

W
al

l s
h

ea
r 

st
re

ss

-0.002

0

0.002

0.004

0.006

0.008 α1=0.05
α1=0.10
α1=0.11
α1=0.12
α1=0.15
α1=0.17

0 10.2 0.4 0.6 0.8

α1crit

(a)

y

u

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1
α1=0.05
α1=0.10
α1=0.11
α1=0.15
α1=0.17

0.54 0.57 0.6 0.63-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

α1crit

(b)

Figure 4.6: Distribution of (a) wall shear stress and (b) axial velocity distribution for different
wave amplitudes with κH = 10, Λ = 2.

α1 = 0.10. As α1 takes the value 0.11, wall shear stress starts to change its sign in x ∈ (0.2, 0.4)

signifying flow separation beyond α1 = 0.11. The formation of net effect looks to be a twisted

parabolic shear stress distribution, since the driving force operates within the EDL only to suc-

ceed in dealing with the frictional force along the walls. It can also be observed that at α1 = 0.15,

wall shear stress changes its sign twice in a single periodic domain, expectedly, at x ∈ (0.2, 0.4)

and x ∈ (0.6, 0.7) clarifying the occurrence of secondary eddy. Flow reversal phenomena can

be verified by axial velocity distribution at a flow separation point (say x = 0.33) for various

values of α. It can be observed that axial flow velocity does not change its sign for α1 = 0.05,

α1 = 0.07 and α1 = 0.10. When α1 reaches its value 0.11, axial velocity curve changes sign

from +ve to −ve which ensures flow reversal. In addition, it can be concluded from Fig. 4.5

and Fig. 4.6 that the threshold value (or critical value) of scaled wave amplitude (α1) for which

the flow reversal starts to take place, is approximately 0.11, i.e. α1crit ∼ 0.11 for κH = 10, Λ = 2.

Above discussions suggest that, keeping κH and Λ fixed, increment in α promotes flow re-

versal. It is also be observed from Fig. 4.5 that flow reversal can also controlled by an another

dimensionless parameter κH. For a fixed α1 (say 0.12), small eddies can be observed near

channel walls for low solution strength (say κH = 10), and these eddies are shrinked in size and

disappear for higher solution strength and the streamlines follow same pattern as electric field

lines. Same trend is followed for α1 = 0.15 and α1 = 0.17. Fig. 4.7 presents the distribution
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Figure 4.7: Streamlines with the variation of κH and Λ for a fixed α1 = 0.15.

of flow lines as a function of κH and Λ (for α1 = 0.15) which concludes that flow recirculation

zone is wiped out for sufficient increment of electric field strength and solution’s molarity.

It is observed from Fig. 4.5 - Fig. 4.7, that flow separation strongly depends on the dimen-

sionless parameters Λ, κH and α1. Increment of α1 promotes flow reversal, whereas a reverse

characteristic is noticed for Λ and κH. A parametric relationship (recirculation diagram) is

established between the critical wave amplitude with (i) external electric field strength and

(ii) solution’s ionic strength, represented in Fig. 4.8 estimates a barrier between circulation

zone and circulation free zone. This type of estimatin was prectided by Park et al. [208] to

differentiate the circulation zone and eddy-free zone in a constricted circular channel. From

Fig. 4.8, it is observed that for a fixed κH (say κH = 30), whole region is splitted into two

zones: a recirculation zone on and above the curve and a recirculation free zone below of it. The

growth in electric field strength enhances the average fluid velocity to prevent the fluid streams

to allow for a back flow. As a result, for higher external field strength, the scaled threshold wave

amplitude is increased. It is also observed that in case of higher ionic strength, recirculation

free zone is expanded, whereas reverse characteristic is followed for lower ionic strength as the

electric body force becomes higher to generate larger flow rate for higher κH.

4.4.2 Influence of Physical Parameters on Mixing

Microfluidic mixing is a challenging task, when the flow is governed by low Reynolds number

since flow mixing occurs due to slow diffusion process followed by Fick’s law. Thus to get a

desirable mixed species along the downstream, a long channel length and longer retention time
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Figure 4.8: Flow recirculation diagram as a function of wave amplitudes (α1) and non-
dimensional electric field strengths (Λ) with various values of κH (=10, 20, 30, 40).

is required. Literature survey suggests that mixing performance can be enhanced remarkably

through the surface patterned heterogeneity. Thus to achieve a good mixing within a shorter

channel length, diffusion effects should be improved by moduling the channel geometry and

selecting the best fit of flow regulating parameters. In this chapter, the relationships between

flow governing parameters are established to achieve the flow separating zones. The occurrence

of flow reversal provides an effective factor for mixing efficiency enhancement as the overall

diffusion flux is increased due to the induced recirculations.

This section focuses on mixing efficiency improvement by introducing reverse flow regions

combined with the stretched and folded paths. Fig. 4.9 shows the variation of volume flow

rate with the scaled wave amplitude as a function of dimensionless electric field strength and

Debye-Hückel parameter. As the scaled wave amplitude increases (for a fixed Λ and κH), fluid

streams follow longer effective path to achieve a reduced flow rate (Fig. 4.9). This phenomenon

can be interpreted in terms of mixing efficiency enhancement. As the fluid streams flow through

microchannel with wavy side walls, the sample streams are stretched and folded as it passes

through constricted and expanded regions enhancing the interfacial contact area between two

streams which increases with the increment of scaled wave amplitude. Thus, both diffusion

mixing time and effective interfacial contact area is increased with the increment of wave am-

plitude (α1). When α1 crosses the critical amplitude (for flow reversal), diffusion effect becomes

more effective for the appearance of eddies near channel walls. As a result, mixing efficiency is
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Figure 4.9: Average flow rate as a function of α1, κH for different values of Λ (=1.5, 2, 2.5, 3).

improved with increment of wave amplitude (α1). Furthermore, on the electric field increment,

the volume flow rate is increased irrespective of α1 values. For steady flow under a constant

external electric field, the volume flow rate is reduced due to the effect of viscosity. If the EDL

effect is not negligible then the flow rate equation is changed to classical Poiseuille flow rate

equation. This effect is clearly visible from Fig. 4.9, that the volume flow rate is higher in case

of higher concentration (high κH) where the thickness of EDL is small. In case of diluted solu-

tions the EDL thickness is more, resulting low volume flow rate irrespective of α1. Fig. 4.10 (a)

represents the variation of mixing efficiency along the primary flow direction and Fig. 4.10 (b)

represents the concentration profile at the downstream along vertical direction of the channel

respectively as a function of scaled wave amplitude (α1). Generally the fabrication pattern of

micro channels in micromixers is designed in such a fashion that it can reduce the mixing path

with the augmentation of contact area. We report a new strategy for efficient mixing which

involves two sinusoidal functions for structured walls. The mixing process in micromixers is

acquired by injecting two sample streams of different concentration species to be assorted along

the interfacial contact area. This mixing mechanism solely depends on molecular diffusion. The

dimensionless species distribution is presented in Fig. 4.11 for various values of scaled wave

amplitudes along the flow direction keeping all other flow parameters fixed.

It can be observed that, flow streams are stated by blue colour (concentration C = 0) infil-

trate the corrugated channel through upper half of the inflow region, while specified red coloured

streams (with concentration C = 1.0) enter the channel from lower half inlet. The ideal mixed

concentration (with concentration C = 0.5) is demonstrated by green colour. It is observed
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Figure 4.10: (a) Variation of mixing efficiency along the channel length and (b) normalized
downstream concentration profile for different α1(= 0, 0.05, 0.10, 0.15, 0.20). Here κH = 10,
Λ = 2.
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Figure 4.11: Concentration contours for different scaled wave amplitudes (a) α1 = 0.0, (b)
α1 = 0.10, (c) α1 = 0.15 with κH = 10, Λ = 2.

from concentration contour (Fig. 4.11) that, the flows of distinctive species are totally unmixed

in the inlet region showing 0% mixing efficiency and the same is enhanced along the channel

length due to improved diffusion flux. From Fig. 4.10(b) it can be noticed that normalized

downstream concentration profile keeps close to 0.5 with the augmentation of α1 which con-

firms more uniform downstream concentration distribution. The mixing efficiency for α1 = 0.10

and α1 = 0.15 are found to be 85% and 93% at the outlet of the channel (figure 4.9(a)) and it

is further improved up to 97% (which is four times compared to plane channel (α1 = 0)) for

α1 = 0.20. In this case mixing is increased by circulation strength which develops a transverse

velocity between two consecutive trough and crest region of the wavy surfaces.

Fig. 4.12(a) and (b) illustrate the mixing efficiency at the channel downstream as a function
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Figure 4.12: Mixing efficiency at the downstream of the channel for different α1 (=0.05, 0.07,
0.10, 0.12, 0.15, 0.20) with the variation of (a) scaled electric field strength (Λ) and (b) κH.

of Λ and κH respectively for a wide range of α1. As the scaled electric field strength increases,

the fluid streams pass more rapidly through the channel to have a higher value of average flow

rate (shown in Fig. 4.9). As a result, recirculating eddies diminish in size and consequently

mixing efficiency is reduced with the increment of external electric field strength. In the con-

trary, when the external electric field strength is decreased, an advancement in mixing is found

along the downstream of the channel which is shown in the Fig. 4.12(a).

Fig. 4.12(b) shows the effect of Debye-Hückel parameter (κH) on mixing efficiency. For

a smaller κH, the EDL occupies a relatively larger proportion of the flow domain causing a

relatively lower average flow rate (shown in Fig. 4.9). Thus, the diffusion mixing time is

increased for lower values of Debye-Hückel parameter (κH). As a result, mixing efficiency at

the downstream of the channel is improved for the decrement of κH.

4.5 Conclusions

This chapter deals with new mathematical model which concludes the flow reversal and mixing

analysis in a corrugated micro-channel within the framework of Poisson-Nernst-Planck flow

governed equations. The predicted results depict a concurrent relevance with an ever increasing

desire to mimic the microfluidic structures in terms of mixing. The results demonstrates that

mixing length may be significantly reduced by introducing a wavy structure in the flow geometry.

Furthermore, it is concluded that after crossing the threshold amplitude, recirculating eddies

take place to preserve a constant mass flow rate at each cross section and the size of the
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eddies expand with higher wave amplitude to enhance effective diffusive flux to achieve a higher

mixing at channel downstream. In addition to this, at higher electric field strength with the

increment of Debye-Hückel parameter, fluid streams are forced to pass through the wavy channel

to get an enhanced flow rate which in turn increases the threshold wave amplitude. As a

result, irrespective of the values of wave amplitude, mixing efficiency along the downstream

is enhanced with the decrement in electric field strength and Debye-Hückel parameter. Thus,

we can conclude that a desired mixing can be achieved within a shorter channel length by

regulating the key parameters: such as ionic strength, geometric parameter and applied electric

field. These results can be useful for the design of efficient passive micromixers by maintaining

a balance between average flow rate and mixing efficiency.
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Chapter 5

Influence of Varying Zeta Potential on

non-Newtonian Flow Mixing and

Pressure Drop in a Wavy Patterned

Micro-Channel

5.1 Introduction

In last two decades, the rapid advancement of micro-electro-mechanical systems (MEMS) fa-

cilitated it to integrate the multi-functional microfluidic devices on a single chip (Lab-on-a-

chip) [13, 273] to accomplish micro-total analysis system (µ-TAS) for biomedical, chemical,

biological applications. The performance of these devices relies on efficient and controllable

mixing which are indispensable in DNA sequencing, targeted drug delivery, chemical synthesis

etc. Fluid mixing in microsystems is an integral operation in many of the procedures performed

using the microchips. Hence, an efficient procedure is required in order to achieve a rapid mix-

ing effect to improve the performance of these devices. In small characteristic scales, fluid flow

and solute transport is constrained to low Reynolds number regime. As a consequence, flow is

laminar, and the mixing of different miscible streams is dominated by molecular diffusion which

is inherently a slow process. Thus, to achieve a homogenized solution, a large channel length

and a longer mixing time is required which is incompatible with the general trend towards

device miniaturization and high throughput. Thus, control of mixing and mixing efficiency en-

hancement in micro/ nano domain possesses a great challenge for researcher now a days. Many

studies have been performed on micro scale mixing, aims of which is to get an efficient and

115
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effective mixing.

As proposed in literature, the micromixing strategies (depending on the manner in which

they are mixed) can be classified into active and passive categories [120, 142]. Active mixing

strategies are developed in such a way that, external pulsating forces create chaotic flow pattern

in the flow field to achieve a better mixing. In this regard, external forces can be supplied by

generating pressure fields [95], in which an accelerating pulsatory injection method is applied in

the channel inlet to alter the flow rate periodically; electric fields [138,174], in which alternating

electric field is applied to promote mixing; temperature fields [7, 131, 268], where flow reversal

zones are induced due to temperature gradient; magneto-hydrodynamic fields [21], where the

flow perturbations are created by the induction of Lorentz forces in electrolyte solutions; hy-

drodynamic fields [178], in which flow disturbance is created by imposing different electrical

properties in the hydrodynamic fields; ultrasonic fields [284], where the flow perturbations are

created due to acoustic stirring by ultrasonic waves. In contrast, passive micromixers relies on

geometric and surface modulation by stirring the fluid streams to reduce the diffusion length

and by maximizing the contact area between the miscible fluid streams [143]. Different passive

mixing schemes, based on geometric modulation and non-homogeneity in wall fabrication have

been studied in literature, such as channels with surface heterogeneity [84, 189], staggered her-

ringbone microchannels [122,128], three dimensional serpentine mixers [11,207], patterned block

channels [190,253], zig-zag channel geometry [57], wave-form microchannels [37], channels with

conducting barriers [22,276] etc. these channel geometries can be easily fabricated by using the

standard fabrication techniques like nano-lithography [40,82,173], etching-and-deposition [279],

DLP [127], sequentially patterned oxides [61], packing of different nano-particles [144] etc. Out

of these two types of micromixing strategies, passive one is widely used, since it is easy to handle

and it does not require any external stirring agents, easy to integrate with other devices and

has a greater reliability due to lack of moving parts.

Most of the studies on electrokinetic flow and micromixing mentioned above dealt with

Newtonian fluids with constant viscosity. But, in reality micromixing strategies are frequently

involved in biofluids (e.g. DNA, blood, protein, saliva etc.), polymers, colloids etc., where New-

tonian model fails to describe the physical rheology of the system. The characterization of flow

rheology of such systems rely on general Cauchy momentum equation in which the viscosity of

the fluid is considered to be varied with the rate of hydrodynamic shear, rather than Navier-

Stokes equation [289]. To characterize the non-Newtonian flow behavior in such systems, a

number of models have been used in literature like Bingham [32], Casson [158, 196, 234, 235],
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Power-law [16, 125, 192], Phan-Thien-Tanner [167], Eringen [223], Herschel-Bulkley [106], Car-

reau [294], CarreauYasuda [132], Maxwell model [148, 185] etc. Based on the above mentioned

models, power-law model has received much attention because of it’s simple usage and suitable

to fit with a wide range of non-Newtonian fluids [289]. One of the earlier studies on electrokinetic

flow of power-law fluid has been preformed by Das and Chakraborty [76] in a micro-domain

by using a semi-analytical approach. Subsequently, Zhao et al. [287] provided an analytical

solution using the Debye-Hückel approximation under a low zeta-potential assumption for ve-

locity distribution in a slit micro-channel filled with power-law fluid. Several studies, based on

Poisson-Boltzmann with Debye-Hückel approximation were later performed for both cartesian

and cylindrical micro/ nano channels [16,229,288,290]. Vasu and De [258] analytically studied

the EOF characteristics based on power-law model for high surface potentials. Babaie et al. [15]

further extended this work for combined electroosmotic-pressure driven flow. Based on lattice

Boltzmann simulation, Tang et al. [254] introduced electroviscous effect for pressure assisted

EOF in a slit microchannel. EOF of power-law fluid in microchannels with non-uniform cross

section has been presented by Ng and Qi [197].

Most of the above mentioned studies on power-law fluids dealt with analytic and semi-

analytic solutions with simple geometry and uniform surface potential. However, potential

non-homogeneity and non-uniform channel geometry creates flow perturbation inside the flow

domain which stir the flow streams of different concentrations to get a homogenized solution.

Electrokinetic flow and mixing enhancement for power-law fluids for the case of potential hetero-

geneity has been numerically studied by Hadigol [100,101]. Cho et al. [63–66] presented the flow

mixing of power-law fluids with different non-uniform geometry and wall roughness. Recently

Bag and Bhattacharyya [17] analyzed numerically the non-Newtonian flow mixing inside a slit

channel with heterogenous surface properties. The above mentioned results [17, 63–66] showed

that the flow behavior index influenced largely the mixing performance along the flow domain.

It can also be observed that a higher flow rate (for pseudoplastic fluids) is not beneficial for

mixing enhancement, whereas a reduced average flow rate (for dilatant fluids) promotes higher

mixing efficiency.

As mentioned above, designing of micromixer for efficient mixing is a very challenging task,

since design specification must be different from conventional mixers. In this aspect, the motiva-

tion of this chapter is to investigate the flow mixing in a patterned micromixer with fluid trapped
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surfaces, where the pressure drop along the channel length can be acted as an effective param-

eter for a controllable mixing efficiency, as high pressure drop may cause a less performance

of the system [35, 68]. Literature survey reveals that geometric and surface non-homogeneity

promotes higher pressure drop along the channel length [23,120,209]. Also, with the increment

of power-law index, the pressure drop is increased accordingly [17]. Following the recent litera-

ture, mixing performance factor [23,151] (which is the ratio of mixing efficiency at downstream

of the channel and average pressure drop along the channel) is taken into account to predict the

best set of flow governing parameters to achieve a good mixing along with minimum pressure

drop. The problem is formulated by considering the Maxwell’s equation for electric potential

field, Nernst-Planck equation for ionic concentration field, modified Cauchy momentum equa-

tion for flow field and advection-diffusion equation for uncharged eluted species distribution.

The velocity, ionic concentration, potential and eluted species distributions are obtained by an

iterative numerical solution of coupled set of governing equations. However, to the best knowl-

edge of the authors, the study of electrokinetic micro-mixing together with pressure drop of a

non-Newtonian fluid in a wavy-structured micro channel with sinusoidal zeta potential on the

framework of Poisson-Nernst-Planck theory has not yet been studied in literature. This chapter

is organized as follows: Section 2 presents the detailed of problem formulation and mathemat-

ical model based on power-law rheology. A suitable coordinate transformation is made in this

section to map the corrugated domain into a simpler rectangular one. Section 3 contains the

numerical algorithm and validation of our scheme with previously published results for a wide

range of power-law index. In Section 4, we present the mixing efficiency and pressure drop

for Newtonian, pseudoplastic and dilatant fluids for a suitable range of wave amplitudes and

ionic strength of the electrolyte solution. In the first part of this section a parametric study is

presented to choose the best choice of phase shift in terms of mixing and pressure drop which

is the main motivation of the present study. Choosing the best geometric configuration (phase

difference between two wavy walls), numerical simulations are performed with the variation

of power-law index, solution’s ionic strength and wave amplitude. Important conclusions are

appeared in the last section of this chapter.

5.2 Problem Formulation

An incompressible, steady, isothermal power-law fluid is considered to be passed through a

microchannel, surrounded by two sinusoidal plates with different phase shifts where the wall

zeta potential is distributed periodically as presented in Fig. 5.1 (a). As shown in the figure,
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Figure 5.1: (a) Physical geometry and (b) Computational domain of the problem.

the microchannel is maintained with an average height H, width W and length L. The width

of the channel is supposed to be of the order of its length and the flow field is considered as two

dimensional. The wall shapes are defined as

F∗l (x∗) = −0.5H − α∗sin {2πx∗/H} ,

F∗u(x∗) = 0.5H − α∗sin {2πx∗/H + δ∗/H} ,

where F∗l (x∗) and F∗u(x∗) respectively denote the lower and upper wall shapes. Here α∗ and

δ∗ represent the wave amplitude and phase shift respectively. By scaling the coordinates by H

(i.e. x = x∗/H and y = y∗/H), the scaled wave amplitude and scaled phase shift are defined as

α = α∗/H and δ = δ∗/H. A constant electric field is imposed externally along the primary flow

direction whereas the zeta potential is applied periodically according to the walls shape with

the same wave length that of walls & are defined as

ζl(x) = −ζ0sin(2πx),

ζu(x) = ζ0sin(2πx+ δ),

where ζl and ζu stands for the scaled wall zeta potential (scaling factor is φ0 = 25.6 mV ) for

lower and upper wall respectively. In this chapter, the rheological behavior of the non-Newtonian

electrolyte is characterized by Power-law model. The constitutive relationship between the shear

stress and shear strain can be expressed as [101]

τ ∗ = 2µ∗a(γ̇
∗)γ̇∗,

where γ̇∗ =
√

1
2
(γ̇∗ : γ̇∗) and µ∗a(γ̇

∗) = m(γ̇∗)n−1. Here τ ∗ and γ∗ denote the stress tensor and

the strain rate tensor respectively. Here µ∗a is the apparent viscosity, m is the flow consistency
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index and n is the flow behavior index according to which Power-law fluid is categorized as

shear-thinning (pseudoplastic) or shear thickening (dilatant) for n < 1 or n > 1 respectively,

whereas for n = 1 it shows Newtonian behavior. The relationship between shear stress and

shear strain rate can be expressed as

τ ∗ij = µ∗a

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
.

In two dimensions, the apparent viscosity, µ∗a takes the form

µ∗a = m

[
2

(
∂u∗

∂x∗

)2

+ 2

(
∂v∗

∂y∗

)2

+

(
∂u∗

∂y∗
+
∂v∗

∂x∗

)2
]n−1

2

.

A suitable transformation is introduced to convert the deflected geometry to a simple rectangular

(Fig. 5.1 (b)) one as

ξ = x, η =
y −Fl(x)

Fu(x)−Fl(x)
,

where Fl(x) = 1
H
F∗l (x∗) & Fu(x) = 1

H
F∗u(x∗). Using the above transformation, the flow field,

governed by Cauchy momentum equation and equation of Continuity can be expressed as

Re

[
∂q

∂t
+ (q · ∇)q

]
= −∇p+∇ · τ + (κH)n+1

2Λζnn ρe∇Φ, (5.1)

∇ · q = 0. (5.2)

Here time is scaled by H/US and q is the dimensionless velocity vector scaled by general-

ized Helmholtz-Smoluchowski velocity US, where US = nκ
1−n
n

(
− εeE0φ0ζ0

m

)1/n
[17]. The other

dimensional variables are scaled as follows: the spatial coordinates by the average channel

height (H) & the pressure scale is mUn
s /H

n+1. The electrolyte solution is considered to be

binary and symmetric (e.g. NaCl + H2O) with zi (i = 1, 2) = ±1. Here ρe = (n1 − n2)

is the dimensionless charge density scaled by n0e, where e is the elementary charge and n0

is the bulk number concentration. Here zi (i = 1, 2) denotes the valance and ni (i = 1, 2)

denotes the non-dimensional number concentration of ith ionic species scaled by the bulk num-

ber concentration (n0). τ is the dimensionless stress tensor scaled by m(US/H)n. Here Φ,

scaled by φ0 (= RT/F ) denotes the total electric potential which is a linear superposition

of applied potential (ψ) due to external electric field and induced potential (φ) due to EDL

formation. The dimensionless parameters namely Λ (= E0H/φ0) and Re (= U2−n
S Hn/m) de-

note the scaled electric strength and Reynolds number respectively. The inverse of the De-

bye layer thickness is defined as κ =
√

2en0/εeφ0, where εe denotes the permittivity of the
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medium. Here the operators ∇ and ∇2 stand for the gradient and Laplacian in the trans-

formed domain (ξ − η domain) which are defined as ∇ ≡
(
∂
∂ξ
−
(
η
F ′0
F0

+
F ′l
F0

)
∂
∂η
, 1
F0

∂
∂η

)
and

∇2 ≡ ∂2

∂ξ2
−2
{
η
F ′0
F0

+
F ′l
F0

}
∂2

∂ξ∂η
+

{(
η
F ′0
F0

+
F ′l
F0

)2

+ 1
F2

0

}
∂2

∂η2
+

{
2η
(
F ′0
F0

)2

− ηF
′′
0

F0
− F

′′
l

F0
+ 2

F ′0F ′l
F2

0

}
∂
∂η

respectively, where F0(x) = Fu(x) − Fl(x). Here ′ and ′′ stand for the first and second order

derivatives of the corresponding functions.

The expression for non-dimensional apparent viscosity, scaled bym(Us/H)n−1 in ξ−η domain

takes the form

µa =

[
2

{
∂u

∂ξ
−
(
ηF ′0
F0

+
F ′l
F0

)
∂u

∂η

}2

+
2

F2
0

{
∂v

∂η

}2

+

{
1

F0

∂u

∂η
+
∂v

∂ξ
−
(
ηF ′0
F0

+
F ′l
F0

)
∂v

∂η

}2
]n−1

2

,

and the components of the shear-stress tensor in the transformed domain are of the form

τξξ = 2µa

{
∂u

∂ξ
−
(
ηF ′0
F0

+
F ′l
F0

)
∂u

∂η

}
τξη = τηξ = µa

{
∂v

∂ξ
−
(
ηF ′0
F0

+
F ′l
F0

)
∂v

∂η
+

1

F0

∂u

∂η

}
τηη = 2µa

{
1

F0

∂v

∂η

}
(5.3)

The dimensionless form of the equation for induced potential (due to EDL) is represented

by Poisson’s equation as

∇2φ = −(κH)2

2
ρe. (5.4)

The electric potential distribution due to externally applied voltage is followed by the solution

of ∇2ψ = 0 with insulated wall boundary condition i.e. ∇ψ · n = 0, where n represents the

unit normal to the corresponding surface pointing towards the liquid. Based on convection,

diffusion and electro-migration transport mechanism, the equations for ionic species transport

can be represented in non-dimensional form as [33]

Pe(q · ∇ni) = ∇2ni + zi∇ni · ∇Φ− (κH)2

2
ziniρe. (5.5)

This model (Poisson-Nernst-Planck model) has the flexibility to handle multivalent ionic

species. As mentioned above, for simplicity, we consider a 1 : 1 electrolyte with zi (i = 1, 2) =

±1. The diffusivity for both the ionic species (cation and anion) is considered to be same,

i.e. Di (i = 1, 2) = D. The non-dimensional number Pe (Peclet number for charged species)

measures the ratio of advective to diffusive transport and is defined as Pe = HUS/D.
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A fully developed boundary condition is considered along the upstream and downstream of

the channel. A sinusoidally distributed zeta potential (ζ(x)) is assumed along the walls and

the walls are treated as ion impenetrable, i.e. the molar flux of the ionic species is assumed

to be zero along the boundary walls. In addition, a no-slip condition is assumed to maintain

the velocity components along the channel walls. Thus the wall boundary conditions can be

represented as

q = 0; (∇ni + zini∇φ) · n = 0; φ = ζ(x),

where n represents the unit normal vector along the channel walls indicating towards the liquid

and ζ(x) is the surface potential which depends on longitudinal coordinate axis.

5.2.1 Transport of Uncharged Mixing Species

Transportation of the uncharged eluted species is defined by the combined species convection-

diffusion equation. In the absence of species absorption and chemical reaction, the dimensionless

species transport equation are of the form

(q · ∇)C − 1

PeS
∇2C = 0, (5.6)

where C is the dimensionless species concentration scaled by Cref and PeS (= HUS/DS) repre-

sents the Peclet number for eluted mixing species. Here DS stands for the diffusion coefficient

of the mixing species. To obtain mixing efficiency at different levels of the channel, no mass flux

(∇C · n = 0) is assumed along the walls (y = Fl(x) and y = Fu(x)) and ∂C
∂x

= 0 is set as the

outlet boundary condition. At the inlet of the channel i.e. at x = 0, a step-like concentration

distribution is assumed, i.e. C = 1 in the lower half (Fl(x) ≤ y ≤ 0) and C = 0 in the upper

half (0 < y ≤ Fu(x)).

A measure of species mixing at different levels of the channel is defined by a (mixing effi-

ciency) parameter, σ, as [84,190]

σ =

[
1−

∫ Fu

Fl
|C − C∞|dy∫ Fu

Fl
|C0 − C∞|dy

]
× 100%.

Here C∞ and C0 represent the concentrations in the mixed (C∞ = 0.5) and unmixed (C0 =

0 or 1) states, respectively. Mixing efficiency is 100% when the two species are in fully mixed

condition and a completely unmixed mode signifies 0% mixing efficiency.
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Figure 5.2: Comparison of axial velocity in the present study for uniform zeta potential in a
slit micro-channel with the analytic results obtained by Zhao et al. [287] for various values of
flow behavior index (a) n = 0.7, (b) n = 1.0, (c) n = 1.5 when ζ = −1, H = 10 µm and
kH = 5, 10, 20, 30, 50.

5.3 Numerical Method

In performing the simulations, a staggered grid based finite volume method (FVM) [47, 89, 98,

231] is employed to solve the coupled non-linear set of equations [5.2-5.6]. On integrating the

coupled set of equations over different control volumes, a fully implicit scheme is adopted for

the transient terms, whereas a QUICK scheme [145] is used for convective terms in the mass

transfer and momentum equations in order to achieve sharp gradients for fluid velocity, ion

concentration, electrostatic potential near channel walls. A time marching numerical method-

ology is achieved by advancing the fluid variables through a sequence of shorter time steps of

duration 0.001. For the range of parameter values considered here, the flow field achieves a

steady state after a transient state and this steady state is independent of the initial conditions

prescribed. To cope with the non-linearity, Newton’s linearization technique is adopted. The

governing discretized equations are solved through a cyclic pressure correction based SIMPLE

algorithm [210]. The pressure link between the momentum and continuity equations are accom-

plished by transforming the discretized continuity equation into a Poisson equation for pressure

correction which is solved iteratively using a SOR (Successive over relaxation) scheme until

getting a desired accuracy. The convergence criterion is defined as, maxi,j |Θk+1
i,j − Θk

i,j| < ∆,

where Θ = (n1, n2, φ, u, v), ∆ = 10−6, k denotes the iteration level and i, j stand for compu-

tational grid points. A non-uniform grid spacing is taken in η direction to capture the Debye

layer effect on velocity, concentration and potential field, whereas an uniform spacing is consid-

ered in ξ direction. The grid spacing in η direction is varied from 0.005 to 0.01. Moreover, an
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under-relaxation scheme is introduced for apparent viscosity to avoid the divergence as [101]

µa = αnµ
new
a + (1− αn)µolda ; 0.2 < αn < 0.5. (5.7)

A detailed study on numerical methods have been presented in the previous chapter (Chapter

4). The pressure correction equation and the corresponding velocity corrections are included

as follows. Using the same steps discussed in the previous chapter, the Poisson equation for

pressure correction takes the form

pcj−1,k

[
− αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+
1

8
αu

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}2
∆t∆ξj
∆ηk

]
+pcj,k

[
2αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+ 2αv

{(
1

F0

)
j

}2
∆t∆ξj

0.5(∆ηk + ∆ηk+1)

+
1

4
αu

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}2
∆t∆ξj
∆ηk

]
+pcj+1,k

[
− αu

∆t∆ηk
0.5(∆ξj + ∆ξj+1)

+
1

8
αu

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}2
∆t∆ξj
∆ηk

]
= −div∗ − 1

4
αuηk

(
F ′0
F0

)
j

∆t

(
pcj+1,k+1 + pcj−1,k−1 − pcj+1,k−1 − pcj−1,k+1

)
−1

4
αu

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}
∆t∆ξj

0.5(∆ξj + ∆ξj+1)

(
pcj+1,k+1

+pcj−1,k−1 − pcj+1,k−1 − pcj−1,k+1

)
+

1

16
αu

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}2
∆t∆ξj
∆ηk

(
pcj−1,k+2 + pcj−1,k−2

+2pcj,k+2 + 2pcj,k−2 + pcj+1,k+2 + pcj+1,k−2

)
+αv

{(
1

F0

)
j

}2
∆t∆ξj

0.5(∆ηk + ∆ηk+1)

(
pcj,k+1 + pcj,k−1

)
, (5.8)

where

div∗ =

(
u∗j,k − u∗j−1,k

)
∆ηk −

ηk
4

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}(
u∗j−1,k+1 + u∗j,k+1 − u∗j−1,k−1 − un+1

j,k−1

)
∆ξj

+

(
1

F0

)
j

(
v∗j,k − v∗j,k−1

)
∆ξj. (5.9)

The equation 5.8 is solved using Gauss Seidel method for every iteration to achieve pressure

correction in each of the control volumes. The corrections for velocity components associated
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to the pressure correction are as

ucj,k = − ∆t
0.5(∆ξj+∆ξj+1)

(
pcj+1,k − pcj,k

)
+1

4
ηk

{
ηk

(
F ′0
F0

)
j

+

(
F ′l
F0

)
j

}
∆t

∆ηk

(
pcj,k+1 + pcj+1,k+1 − pcj,k−1 − pcj+1,k−1

)
vcj,k = − ∆t

0.5(∆ηk+∆ηk+1)

(
1
F0

)
j

(
pcj,k+1 − pcj,k

)
.


(5.10)

To get a steady state solution of (u, v, n1, n2, φ) upto a desired accuracy, sequential steps are

followed as discussed in the previous chapter (Chapter 4).

5.3.1 Code Validation

A grid independence test is performed to make a balance between numerical cost and numer-

ical convergence. In order to validate our numerical scheme for power law model, we have

considered the case of a slit micro channel with uniform zeta potential distribution and com-

pared the analytic solution for axial velocity profile by Zhao et al. [287] with our results for

different power law indices (n = 0.7, 1, 1.5) with uniform ζ− potential, presented in Fig. 5.2

which shows an excellent agreement with our results for kH = 5, 10, 20, 30, 40, 50. Fig. 5.3

presents the comparison for axial velocity with the numerical results provided by Cho et al. [63]

for n = 0.6, 1, 1.4 along the wave crest for a symmetric wavy channel geometry of the form

Fl(x) = −0.5−{α1sin(2πx)+α2sin(4πx)} and Fu(x) = 0.5+{α1sin(2πx)+α2sin(4πx)}. The

comparison shows a good agreement with our results.

u

y

0 0.2 0.4 0.6 0.8 1 1.2

-0.8

-0.6

-0.4

-0.2

0

n

Results due to Cho et al. [2012]
Present result

Figure 5.3: Comparison for streamwise velocity at wave crest with Cho et al. [63] for different
power law indices (n=0.6, 1, 1.4) for a symmetric wavy channel of the form y = ±{0.5 +
α1sin(2πx) + α2sin(4πx)}. Here α1 = 0.05, α2 = 0.02, κH = 50 and E0 = 100 V/cm.
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5.4 Results and Discussions

In this section, the effect of patterned geometry with periodic surface charge distribution is

presented for Newtonian and power law electrolytes. For simulation purpose, the channel of

average height H = 10 µm is considered with length L = 6H. The thermal potential and the

externally applied electric field are considered as 25.6 mV and 104 V m−1. In addition, the

magnitude of the maximum dimensional zeta potential is considered as 25.6 mV with ζ0 = −1.

For the sake of simplicity, the diffusion coefficients for the cation and anion species are assumed

to be same as D = 1 × 10−9 m2 s−1. The other physical properties are specified as follows:

flow consistency index, m = 10−3 Pa sn; fluid density, ρ = 103 kg m−3; Faraday’s constant,

F = 96485 C mol−1; universal gas constant, R = 8.314 J mol−1 K−1; Boltzmann’s constant,

kB = 1.38× 10−23 m2 kg s−2K−1; permittivity of the medium, εe = 695.4× 10−12 C V −1 m−1;

absolute temperature, T = 300 K and elementary charge, e = 1.602 × 10−19 C. Additionally,

the range of the Debye-Hückel parameter (κH) is considered between 10 (λ = 1 µm) and 50

(λ = 200 nm) by varying the ionic strength of the electrolyte concentration from 9.22×10−8 M

(n0 = 5.55 × 1019 ions/m3) to 2.3 × 10−6 M (n0 = 1.39 × 1021 ions/m3). This range of ionic

concentration is consistent with the solutions used in the available literatures [17, 177]. The

dimensionless parameters namely Reynolds number, Peclet number (for ionic species) and the

scaled external electric field strength take the value Re = 1.78 × 10−3, Pe = 1.78 and Λ = 3.9

respectively thought this chapter. Furthermore, The diffusion coefficient for the uncharged

mixing species is considered as Ds = 1× 10−11 m2 s−1 [44, 113].

5.4.1 Mixing and Pressure Drop for Newtonian Fluid with Different

Phase Shifts

The streamline pattern for different phase shifts in case of Newtonian fluid are presented in

Fig. 5.4. The depicted figure shows the flow line distributions for the sinusoidal patterned

microchannel with the variation of phase shifts. It is observed that recirculating vortices take

place near the channel walls in the crest region due to sinusoidally varying ζ-potential. The

fluids near the regions of wave trough flows in the direction of external electric field due to

negative ζ-potential distribution. Due to the positive surface potential (i.e. opposite to wave

trough), the fluid streams in the crest region experiences an opposite momentum which drive a

reverse flow resulting flow reversal zones near the crest regions. The appearance of flow rever-

sal zones is beneficial to have an improved mixing in the microfluidics. Fig. 5.5 presents the

downstream mixing efficiency for fixed κH and α respectively for different phase shifts. The
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(a) δ = 0 (b) δ = π/2

(c) δ = π (d) δ = 3π/2

Figure 5.4: Streamline patterns for Newtonian case (n = 1) with different phase shifts (δ =
0, π/2, π, 3π/2) when κH = 10, H = 10µm and E0 = 104 V m−1.

results shows that the phase shift δ = π/2 gives highest mixing efficiency at the downstream of

the channel, whereas for δ = 3π/2 the mixing efficiency is lowest (Fig. 5.5 (a)). The mixing

efficiency preserved its maximum value at δ = π/2 and minimum at δ = 3π/2 with the variation

of wave amplitude from 0 to 0.12 (Fig. 5.5 (b)). Fig. 5.6 presents the variation of pressure drop

(∆p) along the channel length as a function of phase shift for various values of wave amplitudes

and EDL thickness. Here the pressure drop is defined as ∆p = pinletavg − poutletavg [17], where pinletavg

and poutletavg denote the average pressure at upstream and downstream of the channel respectively.

It can be observed that the pressure drop is highest for δ = 3π/2 and lowest for δ = π/2.

To measure the mixing enhancement together with pressure drop, mixing enhancement factor

(χ) [23], the ratio of downstream mixing efficiency to average pressure drop is presented in Fig.

5.7 for different phase shifts. It is concluded from Fig. 5.7 that both the mixing efficiency and

mixing enhancement factor are highest for δ = π/2 irrespective of the Debye layer thickness

and wave amplitude. Consequently, the numerical simulations are presented in the successive

sections using the phase shift δ = π/2.

5.4.2 Mixing and Pressure Drop for Power-Law Fluid

In this section, the influence of power law index, EDL thickness and wave amplitude on flow

mixing and pressure drop for the phase shift δ = π/2 are analyzed. Fig. 5.8 shows the flow
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Figure 5.5: Mixing efficiency at the downstream of the channel for Newtonian case (n = 1)
with the variation of (a) Debye-Hückel parameter (κH) and (b) wave amplitude (α) when
H = 10 µm, ζ0 = −1, E0 = 104 V m−1.
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Figure 5.6: Average pressure drop for Newtonian case (n = 1) with the variation of (a) Debye-
Hückel parameter (κH) and (b) wave amplitude (α) whenH = 10 µm, ζ0 = −1, E0 = 104 V m−1.

streamlines for different power-law indices for a fixed wave amplitude. In EOF, the driving force

acts in the EDL and the bulk flow is not driven directly, but it is dragged through momentum

coupling effect. It is observed from Fig. 5.8 that, for n = 1, recirculating eddies appear in the

wave trough due to the coupled effect of heterogenous surface charge and curvature of the wavy

designed geometry. It can also be noticed that, for a higher value of n (under same flow condi-

tion), say for n = 1.5, the recirculating eddies expanded in size, whereas with the decrement in

power-law index i.e. for n = 1.0 the eddies diminish and disappear for n = 0.7. This phenomena

can be described in view of effective viscosity of power-law fluids. For pseudoplastic fluids, the

viscosity is lower than Newtonian and dilatant fluids. Thus, with the decremented values of the

power-law index, the average velocity is enhanced due to less friction force and consequently
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Figure 5.7: Mixing performance factor for Newtonian case (n = 1) with the variation of (a)
Debye-Hückel parameter (κH) and (b) wave amplitude (α) when H = 10 µm, ζ0 = −1, E0 =
104 V m−1.

(a) n=0.7 (b) n=1.0 (c) n=1.5

Figure 5.8: Distribution of flow streamlines for (a) n = 0.7, (b) n = 1.0 and (c) n = 1.5. Here
α = 0.05, ζ0 = −1, κH = 10, E0 = 104 V m−1, H = 10 µm.

flow separating zones are sinked and disappear. In otherwords, it can be concluded that, with

the increment of power-law index, fluid streams experience more tortious path when passing

through the corrugated domain due to high shear force which produces a weak flow rate and

consequently the retention time is increased. Fig. 5.9 presents the effect of wave amplitude on

streamlines distribution. It can be observed that, the reverse flow zones expanded in size as the

wave amplitude is increased, i.e. flow streams follow more stretched and folded paths when the

flow past through the wavy domain with high wave amplitude.

It is evident from the above discussion that, the increment of power-law index increases the

effective fluid viscosity which in turn produces a lower flow rate. Fig. 5.10 shows a parametric
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(a) α = 0.05 (b) α = 0.10

Figure 5.9: Streamlines for different wave amplitude (a) α = 0.05 and (b) α = 0.10 with n = 1.2,
κH = 10 ζ0 = −1, E0 = 104 V m−1, H = 10 µm.
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Figure 5.10: Variation of average flow rate with power-law index (n) and wave amplitude (α)
for kH = 10, 20, 30, 40, 50. Here ζ0 = −1, E0 = 104 V/m, H = 10 µm.

relationship between average flow rate, power-law index and EDL thickness. It can also be ob-

served that the flow rate is decreased with higher wave amplitude as a consequence of stronger

reverse flow. Also, Fig. 5.10 shows that for a fixed power-law index and wave amplitude, average

flow rate is enhanced for higher values of κH (i.e. for thinner EDL), as thicker EDL produces a

less momentum to drive the flow streams. A larger flow rate is beneficial in increasing sample

throughput but leads to a weak mixing. The occurrence of attending a reduced flow rate is

compatible with mixing efficiency enhancement in microfluidics.

From the above discussions, it is observed that flow streams for pseudoplastic fluids produce

higher flow rate as compared to dilatant fluids. In other words, it can be concluded that flow

streams of pseudoplastic fluids pass much faster through the corrugated channel compared to

dilatant fluids which follows a reverse characteristic. Thus, with the increment of power-law

index, not only the contact area between different flow streams are increased but the retention
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Figure 5.11: Distribution of concentration contours for different power-law index (n) and wave
amplitude (α) when ζ0 = −1, κH = 10, E0 = 104 V m−1, H = 10 µm.

time is also increased. As a result diffusion flux in increased for higher values of n to achieve

an improved mixing along different levels of the channel. Also, with the increment of wave

amplitude (irrespective of n), the effective interfacial contact area is increased and consequently

mixing efficiency is increased. Fig. 5.11 illustrates the non-dimensional concentration contour

along the channel length as a function of power-law index and wall’s wave amplitude. It is seen

that, stream specified by blue color (with concentration C = 0) enters the corrugated channel

through lower half of the inlet, while specified red color streams (with concentration C = 1.0)

enter the channel from the upper half inlet. The ideal mixed concentration (with concentration

C = 0.5) is demonstrated by green color. It is observed from concentration contour (Fig. 5.11)

that, the streams of different concentrations are totally unmixed in the upstream, showing 0%

mixing efficiency and the same is getting enhanced along flow direction due to the improvement

of diffusion flux with the increment in power-law index with higher wave amplitude. Fig. 5.12

(a) & Fig. 5.12 (b) present the mixing efficiency along the channel length and the concentra-

tion profile at the channel downstream respectively. It is observed from Fig. 5.12 (b) that the

downstream concentration profiles approaches the saturated value (C = 0.5) when the value of

the power-law index is increased. It can also be concluded that the downstream concentration

profile becomes more closer to the saturated value when the wave amplitude is increased. This

phenomena verifies that the flow mixing at the downstream of the channel is increased with the

power-law index and wave amplitude. The mixing efficiency at the downstream of the chan-

nel is improved from 18% to 96% with the increment of power-law index from 0.7 to 1.5 for
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Figure 5.12: (a) Mixing efficiency along the channel length and (b) downstream concentration
profile for different power-law index (n) and wave amplitude (α). Here ζ0 = −1, κH = 10,
E0 = 104 V m−1, H = 10 µm.

a fixed wave amplitude (α = 0.05). It is also observed that mixing can be further improved

along the downstream by increasing the wave amplitude. Fig. 5.13 represents the downstream

mixing efficiency variation as a function of Debye-Hückel parameter (κH) & power-law index

with different wave amplitudes. For higher values of κH (i.e. for thin EDL), the retention time

is decreased as a consequence of higher flow rate (Figute 5.10), and thus the overall mixing

efficiency at the downstream of the channel is decreased (irrespective of n and α) which can be

observed from Fig. 5.13.

n

D
o

w
n

st
re

am
 m

ix
in

g
 e

ff
ic

ie
n

cy
 (

%
)

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

20

30

40

50

60

70

80

90

100

κH

α=0.10
α=0.05

1.2 1.25 1.3 1.35 1.4
80

85

90

95

κH
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law index (n), Debye-Hückel parameter (κH) and wave amplitude (α). Here ζ0 = −1, E0 =
104 V m−1, H = 10 µm.



133

n
∆p

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
40

45

50

55

60

65

70

75

κH

α=0.10

n

∆p

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.536

39

42

45

48

51

54

57

α

κH=10

Figure 5.14: Variation of pressure drop with the variation of power-law index (n) and Debye-
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ζ0 = −1, E0 = 104 V m−1, H = 10 µm. The inset presents the variation of pressure drop as a
function of n and α (0.05, 0.07, 0.10) for κH = 10.

For designing an efficient and effective mixer, the understanding of pressure drop is necessary,

as high pressure drop may reduce the overall efficiency of the system. Fig. 5.14 demonstrates

the variation of dimensionless pressure drop with the increment of power-law index for different

κH and α. It is clearly observed that pressure drop is lower for pseudoplastic fluid (n < 1) as

compared to dilatant fluid (n > 1) as the average velocity is increased with the increment of

power-law index. One may conclude that the pressure drop establishes a proportional relation-

ship with the wave amplitude, whereas the variation shows an inversely proportional relationship

with the EDL thickness. In order to model a novel micromixer (based on power-law rheology),

taking the average pressure drop into account with mixing efficiency, mixing enhancement factor

is presented in Fig. 5.15. One may observe from Fig. 5.15 (a) that, for fixed wave amplitude

and power-law index, mixing enhancement factor is reduced with the increment of κH as a

consequence of lower mixing efficiency and higher pressure drop. On the other hand, a close

look of Fig. 5.15 (b) revels that, with the increase of the wave amplitudes (for fixed n and κH),

the enhancement factor is reduced slightly as the increment in pressure drop dominates the

mixing efficiency enhancement. One may find the most important observations of this study

from Fig. 5.15 (a) and Fig. 5.15 (b) as follows: the mixing enhancement factor is increased

with the increment of power-law index (irrespective of κH and α) upto n = 1.3 and then it is

decreased due to high pressure drop. The above observations signify that the increment of wave

amplitude and power-law index may improve the mixing efficiency but not always be beneficial

in terms of the enhancement factor. Hence, to propose and demonstrate the design of a novel
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Figure 5.15: Variation of mixing performance factor (χ = σ/∆p) with different power-law
index (n) for different (a) Debye-Hückel parameter (κH = 10, 20, 50) and (b) wave amplitude
(α = 0.05, 0.07, 0.10). Here ζ0 = −1, E0 = 104 V m−1, H = 10 µm.

micromixing structure, it is essential to consider the pressure drop which is one of the key issues

for industrial usage to get optimum output (maximum mixing efficiency with minimum pressure

drop).

5.5 Conclusions

A two-dimensional numerical study in electrokinetically driven flow is demonstrated to model

micro mixing structure through a micro-channel based on Poisson-Nernst-Planck model to in-

vestigate the mixing efficiency and pressure drop with periodic variation of surface potential

and sinusoidal wavy surface. Electroosmotic mixing is purely diffusive in case of straight micro-

channel. The current simulation results depict that the vortices formed due to wavy surfaces as

a result of increment in the interfacial contact area between two streams which can improve the

diffusion flux, and the vortex size is expanded with the increment of flow behavior index which

causes a reduction in the flow rate to achieve a desirable mixing. Although, mixing efficiency is

increased remarkably for higher values of flow behavior and higher wave amplitudes, it causes

a large pressure drop which is not compatible with the system performance. Thus a parametric

relationship is estimated to achieve an efficient, effective and controllable mixing by a combined

study of mixing efficiency and enhancement factor. The simulations have also considered the

effect of heterogeneously charged surface which prompted the formation of circulation zones

generating the perturbation which may be an enhancement factor for heat dissipation. The

idea described in this study can be helpful to design a novel passive micromixer by maintaining



135

a suitable balance between mixing efficiency and average pressure drop.
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Chapter 6

A Comparative Analysis of Mixing

Performance of Power-Law Fluid in

Cylindrical Micro-Channels with

Sudden Contraction / Expansion

6.1 Introduction

In recent years, promising advancements in micro fluidics have been achieved in the application

to the micro total analysis systems (µ TAS) and Lab-On-a-chip (LOC) which aims to integrate

a variety of functions in a small platform [62,86,273]. As compare to macro-scale counterparts,

these miniaturized devices offer significant advantages like higher performance, reduced reagent

consumption, lower cost & excellent portability, and thus such devices have received significant

attentions from different scientific and engineering applications, such as DNA extraction and

synthesis [206,275], bacteria and virus detection [75,103,139], detection and separation of pro-

teins [51], mixing operations [142,143] etc. Electrokinetic pumping (Electroosmosis) which have

several advantages over the conventional pressure driven flow (discussed in Chapter-IV) serves

as an efficient mechanism in micro / nano devices for driving and manipulating the sample

fluids. To deal with such systems with small characteristic scale (of the order of micro and nano

meter), micro-fluidic mixers play an effective role to stir the fluid streams at different levels

in protein crystallization [121,214], chemical reactions [133], biological assays [228], biomedical

diagnostics [236] and so on.
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Because of low Reynolds number regime, the fluid flow in micro fluidic devices is laminar

and fluid mixing relies on slow molecular diffusion and thus to obtain an efficient mixing per-

formance in such miniaturized devices is a great challenge to the researchers. As discussed in

the literature, micromixers are categorized into active and passive [41] depending on whether

mixing is assisted by external stirring agents or not. As discussed in previous chapters, ac-

tive micromixers require external energy sources, such as acousticaiiy induced vibrations [24],

pressure perturbation [95], ultrasound [283], electro-kinetic instabilities [201], incoming flow

pulsing [49,95,174], electrothermal pumping [92], magneto-hydrodynamic interaction [272] etc.

to stir the fluid streams in order to achieve enhanced mixing performance. On the other hand,

passive micromixers do not require any external perturbing sources, but rely on geometric and

surface structure manipulation to modify the flow field, so as to reduce the diffusion length and

maximize the contact area between the fluids. Although active micromixers lead to better mix-

ing but due to active moving parts and fabricating difficulties, integration of such mixers with

other devices becomes a great challange. Because of such drawbacks, passive mixing strategies

are becoming more effective and popular to microfluidic community in mixing purpose. Several

numerical and experimental works have been done on passive mixing by many research groups

to propose micromixer designs to get an optimum mixing. To achieve a desirable mixing in

a shorter channel length, various methods have been developed in recent past [143]. Different

approaches are used to create geometric modulation of the microchannels by using the various

shapes of microchannels or by placing obstacles in the flow domain. Thus, designing the mi-

crochannel configuration is a notable concern for achieving effective and efficient mixing.

In recent past several numerical and experimental studies have been performed by various

research groups around the world to improve passive mixing ability by manipulating the chan-

nel geometry [39, 134, 143]. In this regard different channel shapes have been introduced by

the researchers like T/Y junctions [80, 110, 166], E shaped channels [60], H-shaped sub chan-

nels [198], placing of obstacle/ ribs within the channels [5, 36, 190, 276], patterned grooved

structures [6,265], convergent-divergent channel geometry [2], zig-zag channels [252], wavy and

serpentine geometry [58, 59, 109] etc. In addition of geometric modulations, irregular distribu-

tion of surface charge density (or ζ potential), caused by manufacturing defects or by creating

surface potential heterogeneity manually using standard fabrication techniques [144,279], mix-

ing efficiency can be notably enhanced [28, 84, 189]. Although, the passive mixing schemes

mentioned above are capable to improve the mixing efficiency effectively, but all are restricted

to Newtonian fluid model only. However, many of the chemical (e.g., colloidal suspensions and
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polymer solutions) and biological (e.g., blood, saliva, and DNA solutions) fluids are actually

complex, exhibiting non-Newtonian characteristics [78,156,289]. In this regard a number of non-

Newtonian fluid models in mixing applications have been proposed, mentioned in the previous

chapter [Chapter 5]. Compared to the other non-Newtonian models, power-law model is the

most preferred and popular due to it’s simplicity and ability to characterize a wide range of non-

Newtonian fluids [289, 290]. In last decade a number of analytical and numerical studies have

been performed on rectangular and cylindrical micro channels based on Poisson-Boltzmann (PB)

model [15,16,76,81,197,282,287,289–291,293]. Recently Nekoubin [193] performed a numerical

study for a power-law fluid in a curved rectangular micro-channel with high zeta potential. The

results have shown that the increment in channel aspect ratio leads to an significant enhance-

ment in the circulation strength for shear thinning fluid flows. Several studies have been done

on electrokinetic mixing analysis for power-law fluid in micro domains with surface heterogene-

ity [17, 100, 101] and wall modulation [63–66]. However, to the best knowledge of the authors,

the non-Newtonian electrokinetic flow mixing in circular tubes with surface modulation (sudden

expansion/ constriction of channel radius) and potential non-homogeneity has not been inves-

tigated in literature. In the present chapter, the most general Poisson-Nernst-Planck model is

considered for comparative mixing analysis, rather than using Poisson-Boltzmann model which

have some limitations [169]. In addition, average pressure drop is investigated together with

mixing efficiency enhancement to find the optimum parameters to get a maximum possible mix-

ing with minimum pressure drop. This chapter is organized as follows: Section 2 presents the

formulation of the problem with two parallel configurations for comparative mixing analysis.

Also the mathematical formulation based on power-law model is described. In Section 3, the

numerical schemes associated with this chapter is presented. The validation of our numerical

scheme with the previously published literatures is described in this section. Section 4 contains

a detail discussion on flow mixing and pressure drop for both the configurations for a wide range

of power-law index, wave amplitude of the deflected region and non-homogenous potential patch

strength. At the last section of this chapter concluding remarks are made.

6.2 Problem Formulation

In this chapter, a steady comparative mixing in two axisymmetric cylindrical tubes with sudden

(i) constriction and (ii) expansion are considered and presented in Fig. 6.1. The considered

cylindrical channels are of diameter 2r0 and length L are filled with aqueous non-Newtonian

(power-law) incompressible electrolyte in isothermal flow environment. The external electric
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Figure 6.1: Schematic diagram of the flow geometry. Cylindrical channel with sudden (a)
constriction and (b) expansion. (c) Arrangement of charges of EDL in the non-corrugated
region.

field is considered to be acted along the streamwise direction, whereas the surface potential (ζ-

potential) is assumed to be distributed uniformly with constant magnitude, except the deflected

region (i.e. the region of constriction / expansion). It is also assumed that overpotential patches

of strength ζp (with opposite sign of wall ζ- potential of homogenous part) are placed along the

deflected regions to create surface heterogeneity. The geometry of the axisymmetric micro tubes

with sudden constriction / expansion are defined as

r∗(z∗) = R∗0(z∗) =


r0 ∓ α∗

[
1 + cos

(
2πz∗

r0

)]
; −z∗0 ≤ z∗ ≤ z∗0

r0 ; otherwise,

where “∓” signs stand for constricted (−) and expanded (+) channels respectively. Here r0, α∗,

z∗0 denote the radius of the tube (in non-deflected cross sections), the dimensional amplitude

and the half length of the deflected regions respectively. In this chapter, z∗0 is considered to

be r0/2. By scaling the the coordinates with the radius r0 (i.e. z = z∗/r0, r = r∗/r0), the

expression of the constricted / expanded tube becomes
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r(z) = R0(z) =

1∓ α[1 + cos(2πz)] ; −0.5 ≤ z ≤ 0.5

1 ; otherwise,

where α = 1
r0
α∗ and R0(z) = 1

r0
R∗0(z∗). In this chapter, the rheology of the aqueous solution,

used to describe the fluid flow and mixing enhancement is characterized by non-Newtonian flow

behavior and is considered to follow power-law model. Considering power-law model, the func-

tional dependence between shear stress and rate-of-strain can be written as [17,193]

τ ∗ = 2µ∗a(γ̇
∗)γ̇∗ (6.1)

with

γ̇∗ =

√
1

2
(γ̇∗ : γ̇∗) (6.2)

where τ ∗ and γ̇∗ denote the shear stress tensor and the rate-of-strain tensor respectively. Here

µ∗a is the apparent viscosity, which can be expressed as [192,193]

µ∗a(γ̇
∗) = m(γ̇∗)n−1 (6.3)

where m is the flow consistency index and n is the flow behavior index. It is mentioned that

n < 1 and n > 1 correspond to pseudoplastic (shear- thinning) and dilatant (shear-thickening)

fluids respectively, whereas Newtonian rheology is followed for n = 1.

In this framework of power-law model, the dimensional apparent viscosity in cylindrical

coordinates for axisymmetric flow takes the form [193]

µ∗a = m

[
2

{(
∂u∗r
∂r∗

)2

+

(
u∗r
r∗

)2

+

(
∂u∗z
∂z∗

)2
}

+

{
∂u∗r
∂z∗

+
∂u∗z
∂r∗

}2
]n−1

2

(6.4)

where u∗r, u
∗
z are the velocity components in the radial and axial direction respectively. The

equations for the transport of aqueous non-Newtonian electrolyte in axisymmetric flow field,

governed by the equation of continuity and the Cauchy momentum equation can be expressed

as [34,97,193]

• continuity:

1

r∗
∂

∂r∗
(r∗u∗r) +

∂u∗z
∂z∗

= 0 (6.5)
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• z momentum:

ρ

(
u∗r
∂u∗z
∂r∗

+ u∗z
∂u∗z
∂z∗

)
= −∂p

∗

∂z∗
−
[

1

r∗
∂

∂r∗
(r∗τ ∗rz) +

∂

∂z∗
(τ ∗zz)

]
− ρ∗e

∂Φ∗

∂z∗
(6.6)

• r momentum:

ρ

(
u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

)
= −∂p

∗

∂r∗
−
[

1

r∗
∂

∂r∗
(r∗τ ∗rr) +

∂

∂z∗
(τ ∗zr)−

τ ∗θθ
r∗

]
− ρ∗e

∂Φ∗

∂r∗
(6.7)

where τ ∗rr = −µ∗a
(

2∂u
∗
r

∂r∗

)
, τ ∗θθ = −µ∗a

(
2u
∗
r

r∗

)
, τ ∗zz = −µ∗a

(
2∂u

∗
z

∂z∗

)
, τ ∗zr = τ ∗rz = −µ∗a

(
∂u∗r
∂z∗

+ ∂u∗z
∂r∗

)
are the components of the shear stress tensor τ ∗. Although the flow is axisymmetric, the shear

stress component τ ∗θθ appears in the radial component of the momentum equation because of

the appearance of u∗r/z
∗ [97, 193]. Here ρ∗e = Σzien

∗
i is the net charge density, where e, zi and

n∗i denote the elementary charge, valance and the number concentration of the ith species. In

this regard Φ∗ is the total potential which is the linear superposition of external potential (ψ∗)

and induced potential (φ∗).

The following parameters are used to non-dimensionalise the flow governing equations. t =

t∗

(r0/Us)
, r = r∗

r0
, z = z∗

r0
, ur = u∗r

Us
, uz = u∗z

Us
, p = p∗

(mUn
s /r

n+1
0 )

, τ = τ∗

m(Us/r0)n
, ni =

n∗i
n0

, φ = φ∗

φ0
, ψ = ψ∗

φ0
.

Here n0 is the bulk ionic number concentration, Us is the generalized Helmoholtz-Smoluchowski

velocity which is defined as US = nκ
1−n
n

(
− εeE0φ0ζ

m

)1/n
[193]. The reciprocal of the Debye layer

thickness is defined as κ =
√

2en0/εeφ0, where εe denotes the permittivity of the medium, and

φ0 (= RT/F ) is the thermal potential. Here R, T and F stand for universal gas constant,

absolute temperature and Faraday’s constant respectively.

A suitable coordinate transformation is used to map the physical domain with constriction

/ expansion zones into a simpler non-deflected geometry as

ξ = z, η =
r

R0(z)
.

Under the above mentioned transformation, the continuity and momentum equations can be

expressed as

∂uz
∂ξ
− ηR0

R′0
∂uz
∂η

+
1

R0

∂ur
∂η

+
1

R0

ur
η

= 0 (6.8)

Re

[
∂

∂ξ
(u2

z)− η
R′0
R0

∂

∂η
(u2

z) +
1

R0

∂

∂η
(uzur) +

1

R0

uzur
η

]
= −∂p

∂ξ
+ η
R′0
R0

∂p

∂η
−
[

1

R0η

∂

∂η
(ητξη)

+

{
∂

∂ξ
− ηR

′
0

R0

∂

∂η

}
(τξξ)

]
+

(κr0)n+1

2Λζnn
ρe

[(
∂φ

∂ξ
+
∂ψ

∂ξ

)
− ηR

′
0

R0

(
∂φ

∂η
+
∂ψ

∂η

)]
(6.9)
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Re

[
∂

∂ξ
(uruz)− η

R′0
R0

∂

∂η
(uruz) +

1

R0

∂

∂η
(u2

r) +
1

R0

u2
r

η

]
= − 1

R0

∂p

∂η
−
[

1

R0η

∂

∂η
(ητηη)

+

{
∂

∂ξ
− ηR

′
0

R0

∂

∂η

}
(τηξ) + 2

µa

R0
2

u2
r

η2

]
+

(κr0)n+1

2Λζnn
ρe

1

R0

(
∂φ

∂η
+
∂ψ

∂η

)
(6.10)

where τξξ = −2µa
1
R0

∂ur
∂η

, τηξ = τξη = −µa
{
∂ur
∂ξ
− ηR

′
0

R0
+ 1
R0

∂uz
∂η

}
and τξξ = −2µa

{
∂ur
∂ξ
− ηR

′
0

R0

∂uz
∂η

}
with

µa = m

[
2

{(
∂uz
∂ξ
− ηR

′
0

R0

∂uz
∂η

)2

+

(
1

R0

∂ur
∂η

)2

+

(
1

R0

ur
η

)2}
+

{
∂ur
∂ξ
− ηR

′
0

R0

∂uz
∂η

}2]n−1
2

.

For simplicity, in this chapter we consider a binary and symmetric electrolyte (e.g. NaCl+

H2O ) with valance zi (i = 1, 2) = ±1. Thus the non-dimensionless charge density becomes

ρe = (n1 − n2), scaled by en0. The dimensionless parameters namely Reynolds number (Re),

and dimensionless external field strength Λ are defined as Re = U2−n
S rn0/m and Λ = E0r0/φ0

respectively.

The non-dimensional form of the Nernst-Planck equation governing the ion transport of the

ith ionic species in the transformed (ξ − η) domain is given by [33]

Pe(q · ∇ni) = ∇2ni + zi∇ni · ∇Φ− (κr0)2

2
ziniρe, (6.11)

where

∇ ≡
(
∂

∂ξ
− ηR

′
0

R0

∂

∂η
,

1

R0

∂

∂η

)
and

∇2 ≡ ∂2

∂ξ2
− 2η

R′0
R0

∂2

∂ξ∂η
+

[
η2

(
R′0
R0

)2

+
1

R2
0

]
∂2

∂η2
+

[
2η

(
R′0
R0

)2

− ηR
′′
0

R0

+
1

ηR2
0

]
∂

∂η
,

with R′0 = dR0

dz
and R′′0 = d2R0

dz2
. This model (Poisson-Nernst-Planck model) has the flexibility

to handle multivalent ionic species. In this chapter, for the sake of simplicity, the diffusivity for

both the ionic species (cation and anion) is considered to be same, i.e. Di (i = 1, 2) = D. The

non-dimensional number Pe (Peclet number for charged species) measures the ratio of advective

to diffusive transport and is defined as Pe = r0US/D.

The driving momentum in EOF is achieved due the linear interaction between local electric

field (due to EDL) and applied electric field (due to external power sources). The equation for

induced potential in dimensionless form is represented as

∇2φ = −(κr0)2

2
ρe. (6.12)
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The distribution of external electric potential described by the solution of ∇2ψ = 0 with in-

sulated wall boundary condition i.e. ∇ψ · n = 0, where n represents the unit normal to the

corresponding surface pointing towards the liquid.

A fully developed boundary condition, i.e. gradients of flow variables (ur, uz, φ, n1, n2) with

respect to z is zero is considered along the upstream and downstream of the channel. The zeta

potential is assumed to be homogenous except the region of sudden constriction / expansion,

where a constant surface potential of opposite sign (of homogeneous region) is placed, thus

φ =

ζp ; −0.5 ≤ z ≤ 0.5

ζ ; otherwise,

where ζp is the potential patch placed in the deflected part of the channel. In addition, no-slip

and no-ion penetration condition is considered along the channel boundary (r = R0) for velocity

and ion distribution respectively which can be expressed as

q = 0; (∇ni + zini∇φ) · n = 0.

Along the centerline of the channel (r = 0) a symmetric boundary condition is considered i.e.
∂ϕ
∂r

= 0, where ϕ = (ur, uz, φ, n1, n2).

6.2.1 Transport of Uncharged Mixing Species

The transport of the uncharged eluted species in absence of chemical reaction and species

absorption is governed by advection-diffusion equation which is represented in dimensionless

form as

(q · ∇)C − 1

PeS
∇2C = 0, (6.13)

where C is the non-dimensional species concentration scaled by Cref and PeS (= r0US/DS)

represents the Peclet number for eluted species which measures the ratio of convective to diffusive

transport of solutes. Here DS stands for the diffusion coefficient of the solute. To obtain

mixing efficiency at different levels of the channel, no mass flux (∇C · n = 0) is considered

along the channel wall (r = R0) and a symmetric condition (∂C
∂r

= 0) is considered along the

centerline (r = 0) as boundary conditions. At the inlet of the channel a step-like concentration

distribution is assumed, i.e. C = 1 in the lower half (0 ≤ r ≤ r0/2) and C = 0 in the upper half

(r0/2 < r ≤ r0). In addition ∂C
∂z

= 0 is assumed along the downstream of the channel.
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As like rectangular channels, a measure of species mixing at different levels of the deflceted

circular tubes can be defined by a parameter σ, called mixing efficiency which is defined as

[84,190]

σ(z) =

[
1−

∫ R0

0
|C − C∞|dr∫ R0

0
|C0 − C∞|dr

]
× 100%,

where C∞ and C0 indicate the concentrations in the fully mixed (C∞ = 0.5) and totally unmixed

(C0 = 0 or 1) states, respectively. Therefore, σ = 100% represents fully mixing stage and σ = 0%

for no mixing.

6.3 Numerical Method

The coupled set of non-linear equations [6.8-6.13] for fluid flow, ionic species, electric po-

tential and uncharged eluted species are solved numerically using a control volume approach

[89,159–163] based on staggered grid arrangement. The discretized form of the governing equa-

tions are obtained by integrating the respective control volumes. At each control volumes, the

QUICK (Quadratic Upstream Interpolation for Convective Kinematics) scheme, proposed by

Leonard [145], is used to discretize the convective terms in the mass transfer and momentum

equations in order to achieve sharp gradients for fluid velocity, ion concentration, electrostatic

potential near channel walls. In addition, a second order central difference scheme is considered

to discretize the diffusion term, while an implicit first-order scheme is used for transient terms.

The QUICK scheme uses a quadratic interpolation / extrapolation between three successive

nodal values to estimate the flow variables at the interface of each control volume. A detailed

description of QUICK scheme is presented in the introductory chapter (Chapter I). In perform-

ing the simulations Newton’s linearization technique is adopted to cope with the non-linearity

in the governing equations. In this chapter a time marching numerical methodology is adopted

with time step ∆t = 0.001. It is to be mentioned that the ionic concentration, electric potential,

species concentration and velocity field achieves a steady state after a transient state and this

steady state is independent of the initial conditions prescribed. The discretized equations are

solved through SIMPLE algorithm [210], which is based on a cyclic guess-and-correct opera-

tion. The pressure link between the momentum and continuity equations are accomplished by

transforming the discretized continuity equation into a Poisson equation for pressure correction

which is solved iteratively using a SOR (Successive over relaxation) scheme until getting a de-

sired accuracy.
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The detailed structure of the numerical algorithm used in this chapter are as follows.

Different control volumes are used (see Fig. 6.2) to discretize the different equations. In-

tegration of the z− momentum equation (Eq. 6.9) at the (n + 1)th time step over the (j, k)th

control volumes for uz yields

auzj u
n+1
zj−1,k

+ buzj u
n+1
zj,k

+ cuzj u
n+1
zj+1,k

= duzj −
(
pn+1
j+1,k − p

n+1
j,k

)
∆ηk +

1

8
ηk

(
R0
′

R0

)
j

(
pn+1
j,k+1

+pn+1
j+1,k+1 − p

n+1
j,k−1 − p

n+1
j+1,k−1

)
(∆ξj + ∆ξj+1) (6.14)

Similarly on integrating the r− momentum equation (Eq. 6.10) at the (n + 1)th time step

over the (j, k)th control volumes for uz gives

aurj u
n+1
rj−1,k

+ burj u
n+1
rj,k

+ curj u
n+1
rj+1,k

= durj −
(

1
R0

)
j

(
pn+1
j,k+1 − p

n+1
j,k

)
∆ξj (6.15)

The mole-fraction equations for the species (counter ion and co-ion) at the (n + 1)th time step

over the (j, k)th scalar control volume gives

an1
j n

n+1
1j−1,k

+ bn1
j n

n+1
1j,k

+ cn1
j n

n+1
1j+1,k

= dn1
j

an2
j n

n+1
2j−1,k

+ bn2
j n

n+1
2j,k

+ cn2
j n

n+1
2j+1,k

= dn2
j

 (6.16)

Here n1 and n2 stand for mole-fraction of counter and co-ions respectively. For a fixed value of

k, the system of equations can be expressed in a matrix form as

AjX
n+1
j−1 +BjX

n+1
j + CjX

n+1
j+1 = Dj, (6.17)

where the coefficient matrices (Aj, Bj, Cj) the known vector (Dj) and the vector of unknown

variables (Xj) are given by

Aj =


auzj 0 0 0

0 aurj 0 0

0 0 an1
j 0

0 0 0 an2
j

 ; Bj =


buzj 0 0 0

0 burj 0 0

0 0 bn1
j 0

0 0 0 bn2
j

 ; Cj =


cuzj 0 0 0

0 curj 0 0

0 0 cn1
j 0

0 0 0 cn2
j

 ;
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Figure 6.2: Schamatic of different control volumes. (a) Scalar control volume, (b) uz control
volume, (c) ur control volume.

Dj =



duzj −
(
pn+1
j+1,k − p

n+1
j,k

)
∆ηk + 1

8
ηk

(
R0
′

R0

)
j

(
pn+1
j,k+1 + pn+1

j+1,k+1

−pn+1
j,k−1 − p

n+1
j+1,k−1

)
(∆ξj + ∆ξj+1)

durj −
(

1
R0

)
j

(
pn+1
j,k+1 − p

n+1
j,k

)
∆ξj

dn1
j

dn2
j


; Xj =


un+1
zj,k

un+1
rj,k

nn+1
1j,k

nn+1
2j,k

 .

Thus the system of equation can be written in a matrix from as

AX = D, (6.18)

where A represents a block tridiagonal matrix, each element of which is a square matrix of

order four. Here X, D stand for the vector of unknown variables and the vector of known

quantities respectively. The matrix equation is solved using block elimination Varga’s Algorithm

(Appendix).

On integrating the continuity equation over (j, k)th scalar control volume, we have(
un+1
zj,k
− un+1

zj−1,k

)
ηk∆ηk −

ηk
4

(
R0
′

R0

)
j

(
un+1
zj−1,k+1

+ un+1
zj,k+1

− un+1
zj−1,k−1

− un+1
zj,k−1

)
ηk∆ξj

+

(
1

R0

)
j

(
un+1
rj,k
− un+1

rj,k−1

)
ηk∆ξj +

(
1

R0

)
j

un+1
rj,k

∆ξj∆ηk = 0. (6.19)

The pressure link between the continuity and momentum equations are accomplished by

transforming the discretized continuity equation into a Poisson’s equation for pressure correc-

tion. This pressure correction equation implements a divergence free velocity field.
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At each control volume pj,k are unknown at initial stage. To get a solution for Eq. 6.18,

a guessed pressure field pcj,k is assumed. Corresponding to this guessed pressure field p∗j,k, the

velocity field (u∗j,k, v
∗
j,k) determined form Eq. 6.18 is denoted as (u∗j,k, v

∗
j,k). Since u∗j,k and v∗j,k

satisfy Eq. 6.14 and Eq. 6.15, then

auzj u
∗
zj−1,k

+ buzj u
∗
zj,k

+ cuzj u
∗
zj+1,k

= duzj −
(
p∗j+1,k − p∗j,k

)
∆ηk +

1

8
ηk

(
R0
′

R0

)
j

(
p∗j,k+1

+p∗j+1,k+1 − p∗j,k−1 − p∗j+1,k−1

)
(∆ξj + ∆ξj+1) (6.20)

aurj u
∗
rj−1,k

+ burj u
∗
rj,k

+ curj u
∗
rj+1,k

= durj −
(

1
R0

)
j

(
p∗j,k+1 − p∗j,k

)
∆ξj (6.21)

Since the velocity field (u∗zj,k , u
∗
rj,k

), corresponding to the guessed pressure p∗j,k may not satisfy

the continuity equation (Eq. 6.19), a correction of velocity field is needed. The correction of

the velocity field can be made through a pressure correction. The pressure link between the

momentum and continuity equations is accomplished by transforming the continuity equation

(Eq. 6.19) into a pressure Poisson equation. Let pcj,k be the pressure correction at (j, k)th cell

and (uczj,k , u
c
rj,k

) be the corresponding correction in velocity field. Thus the updated pressure

and velocity field can be expressed as

pn+1
j,k = p∗j,k + pcj,k

un+1
zj,k

= u∗zj,k + uczj,k

un+1
rj,k

= u∗rj,k + ucrj,k

 . (6.22)

Substituting Eq. 6.20 from Eq. 6.14 and Eq. 6.21 from Eq. 6.15, we get a relation between

pressure correction and velocity correction as

auzj u
c
zj−1,k

+ buzj u
c
zj,k

+ cuzj u
c
zj+1,k

= −
(
pcj+1,k − pcj,k

)
∆ηk + 1

8
ηk

(
R0
′

R0

)
j

(
pcj,k+1+

pcj+1,k+1 − pcj,k−1 − pcj+1,k−1

)
(∆ξj + ∆ξj+1)

aurj u
c
rj−1,k

+ burj u
c
rj,k

+ curj u
c
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Ignoring, the neighboring small correction components as
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(6.24)
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Substituting the corrected velocity field (uzj,k , urj,k) into the continuity equation, the following

Poisson’s equation for pressure correction is obtained as

pcj−1,k

[
− αuzηk
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1

8
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where
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Here αu and αv are relaxation factors corresponding to axial and transverse velocity corrections

respectively. The Eq. 6.25 is solved using a Gauss-Seidel iterative method with successive over

relaxation (SOR) technique (Appendix) to achieve the pressure correction (pcj,k) at each cell of

the flow domain. For rapid convergence, the pressure field is under-relaxed as

pn+1
j,k = p∗j,k + αpp

c
j,k, (6.27)

where αp is the under-relaxation factor. The relaxation factor is taken between 0 and 1, so that

guessed pressure field can be added in a fraction of the corrected pressure field pc, in order to
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Figure 6.3: Comparison of axial velocity in the present study for uniform zeta potential in a
cylindrical micro-channel with the analytic results obtained by Zhao et al. [290] for (a) different
power-law index (n = 0.4, 0.7, 1.6) with κr0 = 10 and (b) different EDL thickness (κr0 =
1, 5, 10, 20) with n = 0.5. Here r0 = 20 µm, E0 = 104 V m−1, ζ = −1.

improve iteration process to carry forward. Similarly, the velocity components un+1
zj,k

and un+1
zj,k

are under-relaxed in the following manner:

un+1
zj,k

= u∗zj,k + αuzu
c
zj,k

un+1
rj,k

= u∗rj,k + αuru
c
rj,k

 . (6.28)

In this chapter a rapid convergence is found for αp = 0.6 and αuz = 2/3 = αur . Same sequential

steps are adopted which have been discussed in Chapter 1 (Scetion 1.8)

6.3.1 Code Validation

We have developed an inhouse computer code based on the algorithm as outlined above. In order

to validate our algorithm, we have compared our results with the existing results. To capture the

sharp gradients near channel walls (mainly in the regions of surface modulation with potential

non-homogeneity) a non-uniform grid spacing is taken in radial direction, whereas an uniform

spacing is considered in axial direction. The grid spacing in η direction is varied from 0.005 to

0.01. Moreover, an under-relaxation scheme is introduced for apparent viscosity to avoid the

divergence as [101]

µa = αnµ
new
a + (1− αn)µolda ; 0.2 < αn < 0.5. (6.29)

A grid independence test is performed to make a balance between numerical cost and numerical

convergence. In order to access the accuracy of our numerical scheme, we have compared our
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results for axial velocity distribution with Zhao et al. [290] (Fig. 6.3). In Fig 6.3(a) we made

a comparison of velocity distribution for wide range of power-law index (n = 0.4, 0.7, 1.6) in a

cylindrical channel with uniform ζ- potential and shows an excellent agreement. In Fig. 6.3(b) a

comparison for axial velocity is made for different EDL thickness with power-law index n = 0.5.

We found a good matching of our computed axial velocity profiles with Zhao et al. [290] for the

variation of power-law index and Debye length.

6.4 Results and Discussions

In this chapter, we discuss the effect of corrugation height, flow behavior index, overpotential

patch strength in terms of mixing efficiency enhancement and pressure drop. For simulation

purpose, the non-deflected radius of the cylindrical tube is considered as r0 = 20 µm with

length L = 120 µm. In this chapter the externally applied field is set as 104 V m−1 and the zeta

potential in the homogenous part of the channel is considered to be ζ∗ = −25.6 mV (i.e. ζ =

−1). The zeta potential at the regions of potential heterogeneity is considered to vary from

12.8 mV (i.e. ζp = 0.5) to 64 mV (i.e. ζp = 2.5). We assume that the diffusion coefficients

for both the ionic species (cation and anion) are same as D1 = D2 = 1 × 10−9 m2 s−1. The

other physical properties are specified as follows: fluid density, ρ = 103 kg m−3; fluid viscosity,

µ = 10−3 kg m−1 s−1; flow consistency index, m = 10−3 Pa sn; Faraday’s constant, F =

96485 C mol−1; universal gas constant, R = 8.314 J mol−1 K−1; Boltzmann’s constant, kB =

1.38 × 10−23 m2 kg s−2 K−1; absolute temperature, T = 300 K and elementary charge, e =

1.602 × 10−19 C. In addition, the ionic strength of the electrolyte concentration is taken into

consideration as 2.3×10−5 mM (n0 = 1.38×1019 ions/m3) which corresponds the Debye-Hückel

parameter as κr0 = 10. Moreover, the diffusion coefficient for the uncharged eluted species is

considered as Ds = 1× 10−11 m2 s−1 [44, 92].

6.4.1 Effect of Flow Behavior Index

In this section we depict the effect of flow behavior index (n) on comparative mixing analysis

between two cylindrical corrugated configurations. Fig. 6.4(a) and Fig. 6.4(b) present the

streamlines pattern for constricted and expanded geometry respectively. It can be observed

that, flow lines away from the geometric and potential non-homogeneity follows parallel pattern

and no flow deviation takes place. It is also found that flow lines are started to follow a flow

reversal near the wall corrugation due to the combined effect of wall constriction/ expansion

and surface potential heterogeneity. Moreover from Fig. 6.4(a) we find that, irrespective of flow
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Figure 6.4: Streamlines for (a) constricted, (b) expanded channel for different power-law index
(n), when r0 = 20 µm, α = 0.1, κr0 = 10, ζ = −1, ζp = 1, E0 = 104 V m−1.
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Figure 6.5: Concentration contour for (a) constricted, (b) expanded channel for different power-
law index (n), when r0 = 20 µm, κr0 = 10, α = 0.1, ζ = −1, ζp = 1, E0 = 104 V m−1.

z

σ

-3 -2 -1 0 1 2 3
0

10

20

30

40

50

60

70
Constricted channel
Expanded channel

n=1.6

n=1.0

n=0.7

(a)

r

D
o

w
n

st
re

am
 c

o
n

ce
n

tr
at

io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

n=1.6

n=0.7

n=1.0

Constricted channel
Expanded channel

(b)

Figure 6.6: Distribution of (a) mixing efficiency along the channel length and (b) downstream
concentration profile for constricted and expanded circular channels as a function of power-law
index (n), with r0 = 20 µm, κr0 = 10, α = 0.1, ζ = −1, ζp = 1, E0 = 104 V m−1.
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Figure 6.7: Streamlines for (a) constricted and (b) expanded channel for different wave ampli-
tude (α) with n = 1.5. Here r0 = 20 µm, κr0 = 10, ζ = −1, ζp = 1, E0 = 104 V m−1.

configurations, the vortical zone near the wall corrugation expands in size with the increment

of flow behavior index (n). As n decreases, the effective viscosity near the wall decreases which

in turn creates stronger electric body force near EDL to drive the flow. Thus by reducing

the value of n, the flow reversal zones are reduced in size (for pseudoplastic fluids). On the

otherhand, it can be concluded that with the increment of flow behavior index, the fluid streams

experience more tortuous path when passing through the constricted/ expanded zones. In order

to show the inter mixing of two fluid streams of different concentrations, concentration contours

are shown in Fig. 6.5 for both the configurations with the variation of n. It is observed

from Fig. 6.5 that the sample streams are totally unmixed in the channel inlet where two

different concentrations C = 0 (represented by blue color) and C = 1 (takes red colour) are

injected through the respective inlets. It is evident from the figure that the inlet streams

approach to the saturated concentrated level (C = 0.5, represented by green color) towards

the downstream irrespective of n and geometric configuration. For higher values of n (for

dilatant fluids), the sample streams are allowed more folded paths due to stronger recirculating

eddies which in turn causes improved diffusion flux due to longer retention (since for n > 1

mixing becomes diffusion dominated [17]) time which is the cause of better mixing along the

channel downstream. Fig. 6.6(a) and Fig. 6.6(b) present the mixing efficiency along the

channel length and downstream normalized concentration profile respectively as a function of

flow behavior index and geometric configurations. It is evident from Fig. 6.6 that, for n = 0.7

the mixing efficiency at the downstream for both the configurations do not differ much, but for

Newtonian and dilatant fluids, the constricted geometry shows much better mixing performance

as compared to expanded one.
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Figure 6.8: Concentration contour for (a) constricted and (b) expanded channels for different
wave amplitude (α) with n = 1.5. Here r0 = 20 µm, κr0 = 10, ζ = −1, ζp = 1, E0 = 104 V m−1.
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Figure 6.9: Distribution of (a) mixing efficiency along the channel length and (b) downstream
concentration profile for constricted expanded channels with different wave amplitude (α =
0.10, 0.20, 0.25) with n = 1.5. Here r0 = 20 µm, κr0 = 10, ζ = −1, ζp = 1, E0 = 104 V m−1.

6.4.2 Effect of Wave Amplitude

The above discussions suggest that the mixing efficiency is higher for constricted channel irre-

spective of flow behavior index, and the mixing efficiency in the channel downstream is improved

with the increment of flow behavior index for both the configurations due to the dominance of

diffusive transport over convection. In this section we discuss the effect of the amplitude of de-

flected zones (for a fixed n = 1.5 and fixed φp = 1). The streamline pattern and concentration

contours are presented in Fig. 6.7 and Fig. 6.8 respectively both for constricted and expanded

domains. It can be observed from the streamlines pattern (Fig. 6.7(a) and Fig. 6.7(b)) that

higher value of wave amplitude causes more stronger flow reversal zones which enhances the
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Figure 6.10: Streamlines for (a) constricted and (b) expanded channels for different overpotential
patch strength (ζp) with n = 1.6. Here r0 = 20 µm, κr0 = 10, α = 0.2, ζ = −1, E0 = 104 V m−1.
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Figure 6.11: Concentration contour for (a) constricted and (b) expanded channels for different
overpotential patch strength (ζp) with n = 1.6. Here r0 = 20 µm, κr0 = 10, α = 0.2, ζ = −1,
E0 = 104 V m−1.

effective contact area between different flow streams to get improved downstream mixing. Bet-

ter mixing for higher values of wave amplitude can be verified by the respective concentration

contours (Fig. 6.8(a) and Fig. 6.8(b)). The mixing efficiency along the channel length and

the downstream concentration profile are shown in Fig. 6.9(a) and Fig. 6.9(b) respectively for

α = 0.10, 0.20, 0, 25 with n = 1.5 and ζp = 1.0. The mixing efficiency distribution along the

streamwise direction shows that the downstream mixing efficiency for the constricted config-

uration is improved from 65% to 71% for the increment of wave amplitude from α = 0.10 to

α = 0.25 (for n = 1.5 and ζp = 1.0), whereas for the other configuration it varies from 58%

(for α = 0.10) to 64% (for α = 0.25).
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Figure 6.12: Distribution of (a) mixing efficiency along the channel length and (b) downstream
concentration profile for constricted expanded channels for different patch potential (ζp) with
n = 1.6. Here r0 = 20 µm, κr0 = 10, α = 0.2, ζ = −1, E0 = 104 V m−1.

6.4.3 Effect of Overpotential Patch Strength

This section involves the effect of non-homogenous surface potential strength on mixing effi-

ciency enhancement. The above mentioned discussions show mixing efficiency can be improved

by the increment of n and α. In this section, our motivation is to improve downstream mixing

by regulating the strength of the overpotential patch, placed in the constricted/ expanded zones

of the cylindrical tube. Fig. 6.10 illustrates the flow line pattern for two configurations with

different patch strength φp = 0.50 and φp = 2.5. With the increment of φp, the ions near the

walls of potential heterogeneity achieves negative momentum to create stronger flow reversal

which is observed in streamlines pattern. The size of the eddies, formed in the constricted/

expanded zone is expanded with the increment of φp. The average flow rate is decreased due

to the increment of patch strength which in turn increases the retention time together with the

contact area between solute species to get more diffusion flux which improves the downstream

mixing. This phenomena can be verified by the concentration contours (Fig. 6.11) for both the

configurations. It is important to notice that, the mixing efficiency at the downstream is higher

for constricted configuration compared to the other (under same flow condition).

The parametric dependence of mixing efficiency, discussed above is summarized in Fig. 6.13.

It is evident from the figure that mixing efficiency follows a proportional relationship with power-

law index (n), wave amplitude (α) and potential patch strength (φp) irrespective of geometric

configuration. Moreover, it can be observed that mixing efficiency is quiet better in case of

constricted geometry as compared to the other.
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Figure 6.13: Variation of mixing efficiency at channel downstream for constricted and expanded
channels as a function of power-law index (n) and wave amplitude (α) with a fixed value of
over-potential patch strength ζp = 1. The inset shows the dependence mixing efficiency as a
function of overpotential patch strength (ζp) and power-law index (n) for a fixed wave amplitude
α = 0.25. Here κr0 = 10, ζ = −1, r0 = 20 µm, E0 = 104 V m−1.

6.4.4 Pressure Drop and Mixing Enhancement Factor

Another important parameter to analyze the mixing capability of a passive micromixer is the

pressure drop associated with the configuration. Since the overall performance of a micromixer

is determined by the maximum mixing efficiency and minimum pressure drop, estimation of

pressure drop is necessary besides calculating mixing efficiency to design a novel efficient and

effective micromixer [194]. In this context we have calculated the average pressure drop (∆p)

along the channel length which is defined as ∆p = pinletavg − poutletavg [17], where pinletavg and poutletavg

denote the average pressure at upstream and downstream of the channel respectively. Fig.

6.14 illustrates the effect of power-law index (n), overpotential patch strength (ζp) and wave

amplitude (α) for both the configurations. It is evident from Fig. 6.14 (a) and 6.14 (b) that

the magnitude of the average pressure drop is higher for the constricted geometry as compared

to the other for a wide range of parameters n, α and ζp, though the mixing efficiency is quiet

better for the earlier one. It can also be reported that the increment of n and ζp causes higher

average pressure drop for both the configurations but the increment of α shows a different

characteristic. As the wave amplitude is increased, the average pressure drop in the constricted

configuration becomes higher due to the narrower passage whereas in case of the expanded

channel, the respective pressure drop is reduced with higher wave amplitude due to expanded

channel area.
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Figure 6.14: Variation of pressure drop (∆p) for (a) constricted, (b) expanded channel with the
variation of power-law index (n) for different wave amplitude (α = 0.10, 0.15, 0.20, 0.25) and for
a fixed ζp (= 1.0). The insets show the variation of pressure drop (∆p) as a function of (n) and
overpotential patch strength (ζp = 1.0, 2.0, 2.5). Here κr0 = 10, α = 0.25, r0 = 20 µm, ζ = −1,
E0 = 104 V m−1.

Increasing pressure drop may increase the difficulty in micromixing integration. Thus to

design a novel micromixer, for optimum output (i.e. maximum mixing efficiency with minimum

pressure drop), mixing enhancement factor (χ), the ratio of mixing efficiency (σ) and pressure

drop (∆p) [71, 244] are evaluated. The effectiveness of the mixing performance with regard to

the pressure drop is evaluated by mixing enhancement factor (χ) for different configurations.

Higher value of χ signifies better overall performance of the system [151]. Fig. 6.15 depicts

the parametric relationship between mixing enhancement factor (χ) and power-law index as a

function of potential patch strength and wave amplitude. It can be observed that for a wide

parameter range, expanded configuration gives better overall performance due to lower pressure

drop, though the mixing efficiency is quite better for the other configuration. In addition,

it is also noticed that, for constricted geometry, the mixing enhancement factor is increased

both for shear thinning and Newtonian fluid (irrespective of ζp and α) due to the dominance

of mixing efficiency over pressure drop (Fig. 6.15 (a)). As the power-law index increased

(approximately n = 1.4), mixing performance factor graph becomes parallel to the horizontal

axis for the constricted geometry. On the other hand, it is evident from Fig. 6.15 (b) that

the mixing performance factor (χ) for the expanded configuration is increased upto n = 1.2

(approximately) and then it is decreased due to higher pressure drop. Therefor, from Fig. 6.15

it is evident that the expanded configuration is better in term of mixing performance factor

as compared to the other, although the downstream mixing efficiency is better for constricted

configuration.
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Figure 6.15: Variation of mixing performance factor (χ = σ/∆p) for (a) constricted, (b)
expanded channel with the variation of power-law index (n) for different wave amplitude
(α = 0.10, 0.15, 0..20, 0.25) and for a fixed ζp (= 1.0). The insets show the variation of mixing
performance factor (χ = σ/∆p) as a function of power-law index (n) and overpotential patch
strength (ζp = 1.0, 2.0, 2.5). Here κr0 = 10, r0 = 20 µm, α = 0.25, E0 = 104 V m−1.

6.5 Conclusions

In this chapter, a comparative mixing enhancement and pressure drop is analyzed in a cylin-

drical tube, filled with power-law electrolyte with sudden constriction/ expansion. Results are

presented in order to achieve an effective mixing enhancement with minimum pressure drop for

a wide range of power-law index, wave amplitude and overpotential patch strength. The main

findings of this chapter can be summarized as follows :

• It is found that the mixing efficiency is increased proportionally with power-law index

irrespective of geometric configuration. In case of pseudoplastic fluid, the mixing efficiency

difference for both the configurations are negligible, whereas for Newtonian and dilatant

fluids mixing efficiency is higher in case of constricted geometry.

• As the wave amplitude of the constricted/ expanded zone is increased, the fluid experi-

ences more stretched and folded paths which enhance effective diffusive flux to improve

downstream mixing for both the cases.

• In case of higher overpotential patch strength, flow recirculation strength in the deflected

zone is increased which causes improved mixing.

• Besides mixing efficiency, average pressure drop is an important parameter to evaluate

the overall preformance of the system. It can be seen that the average pressure drop
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(∆p) is increased with higher values of power-law index and overpotential patch strength

irrespective of channel configuration and the magnitude of ∆p is observed to be higher for

the constricted one. It is also evident that the increment of wave amplitude create more

pressure drop for the constricted channel, whereas in case of expanded channel a reverse

characteristic is followed.

• However, the constricted configuration produces better mixing efficiency as compared to

the other for a wide range of parametric values, but the constricted geometry is not the

best choice from the point of view of mixing enhancement factor because of higher pressure

drop. In case of expanded configuration, mixing efficiency is moderate with very lower

pressure drop which is compatible to a integrate an efficient micromixer.

• Although the increment of power-law index causes effective mixing efficiency enhancement

irrespective of channel geometry for a wide range of potential patch strength and wave

amplitude, mixing enhancement factor does not increase after a certain power-law index

due to the dominance of pressure drop increment over mixing efficiency enhancement.



Chapter 7

Summary and Future Scope

7.1 Overall Summary

This thesis dealt with the electrokinetic mixing and pressure drop in rectangular and circular

micro/ nano channels for Newtonian and non-Newtonian electrolytes based on Poisson-Nernst-

Planck model. Major contribution of the thesis includes:

• Combined effect of geometric modulation and surface heterogeneity on solute mixing in

micro and nano domains.

• Impact of wall corrugation on flow reversal in absence of surface potential heterogeneity.

• Effect of power-law index on mixing enhancement in rectangular and circular corrugated

channels.

• Effect of power-law index, potential heterogeneity and geometric modulation on pressure

drop and mixing enhancement factor.

In Chapter 2, the electroosmotic flow and mixing of uncharged species of two different

concentrations are studied in a nano-fluidic system. The channel is modulated with a non-

conducting block, embedded on the lower wall of the channel with surface potential hetero-

geneity. The results are presented in terms of electric field lines, streamlines, mixing efficiency

and concentration contours by solving a coupled set of non-linear PDE’s involving Maxwell’s

equation for electric potential, Nernst-Planck equation for ion transport, Navier-Stokes equa-

tion for momentum transport and advection-diffusion equation for uncharged species transport.

The simulated results are shown for the variation of block height, over-potential patch strength,

external electric field and block location. The effective diffusion flux is increased due to the
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increment of patch potential strength and block height which provides an improved mixing. On

the other hand, it is concluded that higher external electric field strength increases the overall

flow rate resulting a reduction in mixing efficiency. Last section of this chapter includes mixing

of two different streams of fluid and it is concluded that maximum mixing efficiency is achieved

along the downstream of the channel, when the block is placed close to the inlet.

In Chapter 3, a comparative study on EOF mixing and charge transport is conducted

based on Poisson-Nernst-Planck model. Two different configurations are considered to create

geometric and surface modulation. In the first configuration (Case I), a non conducting block

with overpotential patch is embedded on the lower wall of the channel and two overpotential

patches are placed on the upper wall asymmetrically. In Case II, two blocks with potential

heterogeneity are placed on the lower wall and two overpotential patches are attached on the

upper wall symmetrically at the same axial locations. An analytical estimation for pressure and

velocity is made at the far away from heterogenous region. The simulated results concluded that

a larger pressure drop is developed in Case II as a consequence of higher effective circulation

strength due to the presence of block-patch. The fluid streams experience more stretched and

folded paths in Case-II which causes better downstream mixing as compared to case-I.

In Chapter 4, a numerical simulation is performed for EOF mixing and flow reversal in

a symmetric modulated microchannel. The side walls of this micromixer is composed of two

sinusoidal wave functions. In the first section of this chapter, a parametric estimation for flow

reversal is discussed in terms of wave amplitude, external electric field and ratio of EDL thick-

ness to channel height. The flow reversal diagram revels that the critical wave amplitudes for

flow reversal is increased with the increment of external electric field and solution strength. In

the last section of the chapter, the criterion for mixing enhancement is discussed for a wide

range of above mentioned parameters. An improved mixing is found with the increment of wave

amplitudes and decrement in external electric field & solution strength.

In Chapter 5, a numerical study of electrokinetic mixing and pressure drop is presented

in a wavy patterned microchannel with different phase shifts. The rheological behaviour of

the electrolyte is described by power-law model. The wall zeta potential is assumed to vary

sinusoidally with same wave length that of wall structures for this chapter. The first part of the

chapter dealt with the parametric study on EOF mixing to choose the best choice of phase shift

for achieving a good mixing with minimum pressure drop for Newtonian fluid. The discussions
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for pseudoplastic (shear thinning) and dilatant (shear thickening) fluids are made using the best

chosen phase shift (π/2) to observe the differences. The results depicted that the mixing effi-

ciency remarkably increases with the increment of wavy nature of the wall and higher power-law

index, but the pressure drop is found to be increased accordingly. Thus to achieve an effec-

tive and controllable mixing, mixing performance factor (ratio of mixing efficiency and pressure

drop) is included along with the mixing efficiency. It is found that, higher values of power-law

index is not always beneficial for the mixing enhancement factor. Mixing performance factor is

found to decrease after a certain value of power law index (here n = 1.3) due to the dominance

of pressure drop over mixing efficiency.

In Chapter 6, a comparative numerical study on non-Newtonian fluid (power-law) mix-

ing is performed in a cylindrical channel with sudden constriction / expansion with surface

potential heterogeneity. The overpotential patches are placed in the region of constriction /

expansion zones. The simulated results are presented in terms of mixing enhancement factor

and pressure drop. The result shows that the mixing efficiency is increased with the incre-

ment of power-law index and wave amplitudes for both these cases. It is important to mention

here that, irrespective of flow controlling parameters (such as, patch potential strength, wave

amplitude of the deflectrd zones and power-law index), constricted configuration gives better

mixing as compared to the other, but a reverse characteristic is followed for mixing enhance-

ment factor due to higher pressure drop in case of the earlier one. Hence, it is concluded that,

for mixing purpose, constricted configuration is quite better, but for overall performance, i.e.

for maximum possible mixing with minimum pressure drop, expanded structure is more suitable.

7.2 Future Scope

In this thesis, the study is restricted to binary monovalent symmetric electrolytes in DC electric

field. However, the work can be extended to multiple ionic species in presence of AC electric

field. In addition, the non-Newtonian mixing analysis is restricted to the power-law model

in isothermal flow environment due to its simplicity. These works can also be extended for

Casson, Bingham, Herschel-Bulkley, CarreauYasuda and generalized Maxwell model with non-

isothermal flow conditions. We can highlight some of the proposed extensions of the work made

in the thesis are as follows:

• One can directly extend the present model for multi-valent ions to study the combined
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EOF-pressure driven flow mixing with non-zero wall temperature gradient and tempera-

ture dependent properties.

• The effect of hydrophobicity on mixing enhancement in semi active micromixers for dif-

ferent non-Newtonian models.

• The mixing enhancement due to the presence of conducting obstacles of different shapes

under a combined effect of direct and alternating electric fields.

• The comparative study on flow enhancement due to slip effect in corrugated micro channels

for different non-Newtonian models.

• The slippage and thermo-electrokinetc behaviour for multi phase flow.



Appendix A

Successive Over Relaxation (SOR)

The relaxation technique is a finite-difference method particularly suited for the solution of

elliptic partial differential equations. Successive over-relaxation (SOR) is a technique which can

be used in an attempt to accelerate any iteration procedure but we will propose it here primarily

as a refinement to the Gauss-Seidel method. As we apply Gauss-Seidel iteration to a system of

simultaneous algebraic equation, we expect to make several recalculations or iterations before

convergence to an acceptable level is achieved. A major disadvantage of the otherwise attractive

Gauss-Seidel method is that its convergence is too slow, especially when a large number of grid

points are involved. The reason for the slowness is easy to understand; the method transmits

the boundary condition information at a rate of one grid interval per iteration.

In the iterative solution of the algebraic equation or in the overall iterative scheme employed

for handing nonlinearity, it is often desirable to speed up or to slow down the changes. This

process is called over-relaxation or under-relaxation depending on whether the variable changes

are accelerated or slowed down. An arbitrary correction to the intermediate values of the

unknowns from any iteration procedure according to the form

uk+1′

i,j = ωuk+1
i,j + (1− ω)uk

′

i,j (A.1)

is known as over-relaxation or successive over-relaxation (SOR).

Here, k denotes iteration level and uk+1
i,j is the most recent value of ui,j calculated from the

Gauss-Seidel procedure, uk
′
i,j is the value from the previous iteration as a adjusted by previous

application of this formula if the over-relaxation is being applied successively and uk+1′

i,j is newly

adjusted for ui,j at the k+1 iteration level. ω is the relaxation parameter whose value is usually

found by trail-and-error experimentation for a given problem. For over-relaxation, generally the

value of ω is bounded by 1 < ω < 2 and for under-relaxation, ω is bounded by 0 < ω < 1.
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Appendix B

Tridiagonal Matrix Algorithm

Suppose we have to solve a linear system of algebraic equations

AV = D (B.1)

where

A =



b1 c1

a2 b2 c2

. . .

ai bi ci

. . .

aN−1 bN−1 aN−1

aN bN



is a N ×N tri-diagonal matrix,

V =



v1

v2

.

vi

.

vN−1

vN


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is the vector of unknowns and

D =



d1

d2

.

di

.

dN−1

dN


is the known vector. All elements in A, other than those shown, are zero.

The Thomas algorithm for solving (B.1) consists of two parts. First (B.1) is manipulated

into the form 

1 c1
1

1 c1
2

. .

1 c1
i

. .

1 c1
N−1

1





v1

v2

.

vi

.

vN−1

vN


=



d1
1

d1
2

.

d1
i

.

d1
N−1

d1
N


i.e., the ai coefficients have been eliminated and the bi coefficients normalized to unity.

For the first equation

c1
1 =

c1

b1

, d1
1 =

d1

b1

(B.2)

and for the general equation

c1
i =

ci
bi − aic1

i−1

, d1
i =

di − aid1
i−1

bi − aic1
i−1

The equation are modified as in (C.2). The second stage consists of a back substitution

vN = d1
N , vi = d1

i − vi+1c
1
i

The Thomas algorithm is particularly economical, it requires only 5N − 4 operations (mul-

tiplications and divisions ). But to present ill conditioning, it is necessary that

|bi| > |ai|+ |ci|
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Block Tridiagonal Matrix Algorithm

A block tri-diagonal system of equations can be written as

AV = D (C.1)

where

A =



B1 C1

A2 B2 C2

. . .

Ai Bi Ci

. . .

AN−1 BN−1 CN−1

AN BN


is a block tri-diagonal matrix, each element being a third order square matrix. Let

V1 = (0, 0, 0)T , VN = (0, 0, 0)T

V = (V2, V3, ..., VN−1)T

is the vector of unknowns vectors and

D = (D2, D3, ..., DN−1)T

is the vector of known vectors. The matrix equation (C.1) can be solved using Varga’s Algorithm.
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The algorithm is as follows

Vn = −EnVn+1 + Jn, 2 ≤ n ≤ N − 1

where

En = (Bn − AnEn−1)−1Cn, 2 ≤ n ≤ N − 1

Jn = (Bn − AnEn−1)−1(Dn − AnJn−1), 2 ≤ n ≤ N − 1

E1 = EN =


0 0 0

0 0 0

0 0 0



J1 = V1, JN = VN .
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