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Abstract

This thesis investigates the role of spatial pattern formation in tumor–immune and

predator–prey systems. In the first half of the thesis, we have proposed spatiotempo-

ral mathematical models using a system of non-linear partial differential equations

(reaction-diffusion equations), to study the qualitative and quantitative analysis of

tumor–immune interaction, and predator–prey interaction, considering the role of

diffusion and other system parameters. The tumor–immune interaction consists

of two separate problems, namely, (i) interaction of solid tumor and effector cells

(ii) interaction of malignant gliomas and four immune components with the ad-

ministration of immunotherapeutic agent T11 target structure (T11TS). Using the

combination of analytical and numerical techniques, we investigate spatiotemporal

dynamics due to the effect of effector cells and T11 target structure on the growth

and spread of solid tumor and malignant gliomas respectively. However, Turing zone

is absent in both the problems.

The second half of the thesis consists of diffusive predator–prey system (i) with

hunting cooperation in predators and (ii) exhibiting herd behavior for prey with

linear and quadratic mortality. Using extensive numerical simulations, we obtain

complex patterns, namely, spotted pattern, stripe pattern and mixed pattern in the

Turing domain by varying (a) hunting cooperation parameter and (b) linear and

quadratic mortality’s rates respectively. We also have a non-Turing pattern that

exhibits spatiotemporal chaos. Thus, the study of the predator–prey system focusses

in many pattern dynamics and help in better understanding of their interaction in

real environment.
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Chapter 1

Introduction

The impact of space may be disregarded to a certain extent, particularly when the

population of a given species stay fixed in space at any moment of time. Albeit this

assumption is not completely realistic. Individuals of an ecological species do not

fixed at all times in space, and their dispersion in space changes incessantly by the

self-movement of individuals [98; 105; 120; 122; 125].

All of us are living in a spatial real world, and spatial patterns are found ev-

erywhere in nature, and these spatial patterns transform the non-spatial (temporal)

dynamical qualitative properties of densities of the population at a spectrum of

spatial scale. Spatial pattern formation is a dissipative procedure giving growth to

spatiotemporal behavior ruled by internal characteristics or external restrictions into

a model. The spatial pattern formation factor of ecological as well as tumor–immune

interplays have been recognized as an vital component, of how ecological commu-

nities and tumors are composed and is one of the pivotal subject of the natural

sciences [110; 114; 117; 143].

The idea of diffusion may be considered as the natural propensity for a cluster

of particles at the beginning, concentrated close to a location in space to spread

out in time, slowly occupying an ever sizable area close to the initial point. Here,

the word “particles” mention not only to physical portion of the matter, but to

biological populations or to any other recognizable elements as well. Moreover, the

word “space” does not mention only to general Euclidean n-space but can also be

an hypothetical living space (such as ecological space) [57; 98; 122; 125].

1
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Diffusion is a natural phenomenon where physical material move from an area

of high concentration to an area of low concentration, that is, diffusion is a natural

process by which the particle cluster as an entire dispersions according to the non-

uniform movement of every particle. Diffusion can be defined to be basically an

invariant process by which particle clusters, population, etc., diffuse inside a given

space according to individual random movement [125].

Reaction-diffusion systems can be used to represent mathematical models, which

describe how the individuals of one or more species distributed in space changes

under the effect of two procedures, first is local interaction, in which the species

interact with each other, and second is the diffusion, which causes the species to

spread out over a surface in space. Mathematically, reaction-diffusion systems take

the form of semi-linear parabolic partial differential equations [98; 110; 125].

Using mathematical modeling as a viable tool, complex biological processes are

studied. Mathematical modeling can be extremely helpful in analyzing factors

that may contribute to the complexity intrinsic in insufficiently understood tumor–

immune as well as predator–prey interactions. Likewise, the primary objective of

the mathematical modeling of tumor–immune and predator–prey models are, briefly,

the analysis of the interplay inside and between biological species and their artifi-

cial surrounding, and the examination of the temporal transformation of clusters of

individuals of different biological species. It is however true that space and time are

indivisible sibling co-ordinates and only when population densities (tumor–immune

system or predator–prey system) are contemplated in both space and time, actual

dynamics can be understood [9; 17; 52; 68; 98; 104; 108; 131; 194; 197].

Majority of models in mathematical ecology or tumor–immune interaction deal

with non-spatial variant. The rate of change of the number of individuals u in a

population may be manifested as the derivative with respect to time t, du/dt. The

model equations of a biological community of interacting individuals and their envi-

ronment are then founded by equating this derivative to another relation expressing

the effect of species interaction on population. Same is the situation with tumor–

immune interacting models. This type of straightforward analysis is not practicable

when spatial models are considered. Directly connected to species interplay is the
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net population via an arbitrary infinitesimal piece of space rather than the spa-

tial rate of change of the population itself, and thus a reasonable manifestation is

unreachable without knowledge of the mechanism of motion of the individuals.

1.1 Biological Preliminaries

1.1.1 What is Cancer?

Cancer is a disease which is caused by the abnormal function of our own cells [61;

156]. The growth, proliferation (or differentiation) and death of normal cells are

closely controlled and regulated by variety of genetic and biochemical processes.

When these processes are interrupted due to some factors, abnormal growth of cells

occurs. Cancer starts as an abnormal cell which grows with time into a mass of cells,

some of which can spread to the other locations in the body (metastasize), where

they grow and upset normal body functions. The causes of cancer may be the result

of inherited mutation or environmental factors such as tobacco products, ultraviolet

radiation, X-rays, chemicals, etc [156]. These environmental factors can change or

alter the genetic makeup of a cell, which may cause the abnormal functioning of

the cell. In cancerous cells, the normal control system that prevent abnormal cell

growth and differentiation and the invasion of other tissues and organs are disabled.

1.1.2 What are Gliomas?

Gliomas are one of the most generic kind of brain tumors that starts in the gluey

supportive tissue of the brain or spine. Gliomas can be gently growing (low category)

or rapidly growing (high category) [4; 27; 68]. There are three kinds of gliomas

that can generates by gluey supportive cells: astrocytoma, oligodendroglioma and

ependymoma, and a tumor that shows the amalgamation of these kinds is called

mixed glioma.

(I) Astrocytomas are brain tumors that arise from astrocyte cells, and astrocyte

cells are particular type of gluey supportive cells (star-structure brain tissue) in the

brain.

(II) Oligodendrogliomas are the rare kind of tumor that occurs in the brain.
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Oligodendrogliomas begins from oligodendrocyte cells of the brain.

(III) Ependymomas are special kind of tumors that originates from the ependy-

mal, a tissue of the central nervous system.

Figure 1.1: Various forms of gliomas in the brain (https://www.acco.org/brain-
cancers/).

1.1.3 The Immune System

The immune system is host’s natural defence mechanism comprising of many biolog-

ical structures and processes within an organism that protect our body by fighting

against pathogenic organisms and any other kind of diseases. Innate and adaptive

immune systems are two major components of the defence mechanisms of the human

body against external invaders, including cancer [4; 63].

The innate immune system is the first and foremost protector of our body from

external invaders and other pathogens. The system incorporate cells and mecha-

nisms that protect our body from infection by other foreign organisms and pathogens

in a non-specific manner and it reacts rapidly against foreign antigen and cancer-

ous cells. Most of the micro-organisms encountered by a healthy individual are

rapidly cleared within a few days by the innate immune system. Macrophages, cy-

totoxic T-lymphocytes, natural killer cells, cytokines, dendritic and mast cells are
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the principal components of innate immune system. The adaptive immune system

is stimulated and influenced by innate immune system of our body to produce a

stronger protection against any external pathogens.

The adaptive immune system is extremely specific to a particular pathogens and

cancerous cells, they can easily recognize one micro-organisms from the others and

non-self. The adaptive immunity, also called acquired immunity, uses particular

antigens to strategically mount an immune response. Unlike the innate immunity,

the adaptive immunity depends on small number of cells to carry out its tasks,

namely, B cells and T cells. Both B cells and T cells are lymphocytes that are

derived from specific types of stem cells, called multipotent hematopoietic stem cells,

in the bone marrow. After they are made in the bone marrow, they need to mature

and become activated. Each type of cell follows different paths to their final, mature

forms. Unlike antibodies, which can bind to antigens directly, T cell receptors can

only recognize antigens that are bound to certain receptor molecules, called major

histocompatibility complex class 1 (MHC-I) and class 2 (MHC-II). These MHC

molecules are membrane-bound surface receptors on antigen-presenting cells, like

dendritic cells and macrophages. CD4+ and CD8+ play a role in T cell recognition

and activation by binding to either MHC-I or MHC-II.

1.1.3.1 Effector Cells

In antitumor immunity, effector cells are actively involved in the destruction of

tumor cells. Key effector cells include natural killer (NK) cells, cytotoxic T cells,

and memory T cells. Natural killer cells are the primary cells of innate immunity.

The first responders of the immune system, NK cells interact with activating and

inhibitory signals from other cells. NK cells rapidly identify and attack tumor cells.

Cytotoxic T cells are the primary effector cells of adaptive immunity. Triggered by

specific threats, T cells are activated by antigen-presenting cells (APCs). Activated

T cells recognize and directly kill cells that produce the target antigen. Memory

T cells are derived from activated T cells. Providing sustained immune protection,

memory T cells are long-lived and antigen-experienced, and they quickly respond to

antigen recurrence. Memory T cells can differentiate into activated T cells, and can

provide long-term immunity [90; 91].
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1.1.3.2 Macrophages

Macrophages are the sizable leukocytes (white blood cells) that are the necessary

part of the immune system. The term macrophage exactly means big eater. A

macrophage has the capacity to search and consume viruses, bacteria, parasites,

including cancerous cells. The origin of the macrophage is the white blood cells,

called monocytes, which are framed by undifferentiated cells of multicellular organ-

isms in our bone marrow. Monocytes can also travel via the bloodstream and when

monocytes leave the blood, they convert into macrophages [1; 43].

Figure 1.2: Macrophage (https://www.spandidos-publications.com/ijo/).

1.1.3.3 Cytotoxic T-lymphocyte

Cytotoxic T-lymphocytes are one type of white blood cells, which is also known

as CD8+ T-Cells. It kills those cells which are infected, particularly with viruses,

including cancer, or the cells that are damaged in various ways. Maximum number of

the cytotoxic T cells express T cell receptors (TCRs), which can identify a particular

antigen. An antigen is a molecule which can stimulate an immune response, and is

generally produced by cancer cells or viruses. Antigens inside a cell are bound to

class-I molecules and carried to the cell surface by the class-I MHC molecule, where
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T-Cell recognizes them. While the TCR is specific for that antigen, it binds to the

complex of the class-I MHC molecule and T cell destroys the cell. In order for the

TCR for binding to the class-I MHC molecule, the former require to be accompanied

by a glycoprotein called CD8, which binds to the maximum portion of the class-I

MHC molecules. Hence, the T cells are called CD8+ T cells [29; 60].

Figure 1.3: Antigen presentation stimulates immature T cells to become cytotoxic
CD8+ cells (https://goo.gl/images/XyvxGg).

1.1.3.4 Transforming Growth Factor Beta (TGF-β)

TGF-β is a multi-functional cell protein that belongs to the large family of the trans-

forming growth factor. There are four distinct isoforms of TGF-β, viz., TGF-β1,

TGF-β2, TGF-β3 and TGF-β4. The growth inhibitors TGF-β, inhibit the devel-

opment of most cell kinds. They can affect cell proliferation and differentiation

via indirect procedures involving regulation of expression of cytokines, extracellular

matrix molecules and their respective receptors. They are dominant immunosup-

pressive representatives. They also propel the creation of connective tissue, thereby

stimulating lesion medication [50; 186].
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Figure 1.4: Transforming growth factor beta (TGF-β) (https://goo.gl/images/).

1.1.3.5 Interferon Gamma (IFN-γ)

IFN-γ is a cytokine, and the source of IFN-γ is cytotoxic T-lymphocytes. IFN-γ is es-

sential for immunity against pathogenic organisms as well as tumor control. IFN-γ is

a crucial activator of macrophages and inducer of type II Major-Histocompatibility-

Complex (MHC) molecules, and MHC is a group of the sequence of DNA or RNA

that codes for long string of amino acid residues, found on the cells surface that

support the immune system recognize exotic physical matters. Nevertheless, de-

viant IFN-γ expression has been connected with a number of auto-immune and

auto-incendiary diseases [155].

1.1.4 Predator–Prey System

Predator–prey system represents the functional dependence of one species on an-

other, where the first species depends on the second species for food. Predation is a

mode of life in which food is primarily obtained by killing and consuming organisms.

The prey is part of the predator’s habitat and if the predators do not get any prey

for food, then they become extinct. The functional dependence in general depends

on many factors, namely, the various species densities, the efficiency with which the

predator can search out and kill the prey, and the handling time [10; 57; 187].
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Figure 1.5: Interferon gamma (IFN-γ) (https://goo.gl/images/LQfNno).

1.1.4.1 Herd Behavior

The term ‘herd’ is used to describe a group of animals of the same species. The

herd may be a natural formation, as in the case of wild animals, or may be formed

by human intervention, as in the case of domestic animals like cattle. Herds offer

individual animal companionship, better foraging opportunities and more chances

for mating and reproduction. A herd also offers more protection against predators

than a solitary animal would otherwise have on its own. The individual animals in

the herd copy or imitate the behavior of the other animals in the herd, particularly

that of their closest neighbors. As a result, all the herd members behave in a related

fashion and this allows the entire herd to respond to an external circumstance in a

similar way, for example, when it moves in a certain direction to get away from an

attacking predator. Each individual animal tries to behave exactly as its neighbors

in order to protect itself, and tries to minimize the danger to itself by moving along

with the others and trying to get deeper into the herd.

The herd behavior of the preys is related to group defence, in which the preys

at the boundary of the group hurt most, from the attacks of the predators. The

number of preys remaining on the border of the group is proportional to the length

of the perimeter of the ground region occupied by the group [25], which in turn is

directly proportional to the square root of the area of that grounded region. Hence,
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it is reasonable and logical to use square root term for the prey population to portray

the model with herd behavior.

1.1.4.2 Hunting Cooperation

Hunting is one of the highly fascinating tactical natural instincts in the animal

kingdom. A successful hunt requires a great deal of cooperation and coordination

within the group. Hunting cooperation in animal kingdom are very frequent, for

example, group hunting enables lionesses to have greater success in capturing preys

and it involves both divisions of work and role specialization. It has been connected

to the social system of animal species and the evolution of society and thus provides

a unique approach to study cooperative behavior [5; 24; 37; 48; 67; 116; 150; 183;

185; 195].

1.2 Mathematical Preliminaries

Some mathematical methods and ideas have been depicted in this segment, which

are used to examine the nonlinear dynamics and pattern formation (spatiotemporal

models), introduced in this thesis. The details of the ideas are illustrated for non-

spatial (ordinary differential equations) as well as spatial (reaction-diffusion partial

differential equations) systems.

1.2.1 Stability Analysis

Let X(t) ∈ Rn depicts the states of a system at time t. The dynamics of the system

is ruled by a system of first order nonlinear ordinary differential equations:

Ẋ(t) = G(X(t), θ), X(0) = X0, (1.1)

where X = [x1, x2, ..., xn]T stands for the n state variables, θ holds the parameter

values and G is a nonlinear function of the state variables and parameter values. If

G(X∗) = 0, then X∗ ia a equilibrium solution of the system. Consider X0 to be its

neighboring point. The equilibrium solution X∗ is stable if for all ε > 0, there is a

δ > 0 such that

‖ X(t)−X∗ ‖< ε, whenever ‖ X∗ −X0 ‖< δ.
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That is, X∗ is stable if the equilibrium solutions go ahead to X∗ at a said time, stay

close to X∗ for each future time. X∗ is asymptotically stable if neighboring solutions

not only stay close, but also approach to X∗ as t goes to infinity, for each future

time, that is, X∗ is stable and

lim
t→∞

X(t) = X∗,

then the solution X∗ is asymptotically stable.

Asymptotic Stability⇒ Stability.

Stability of an equilibrium solution is a local property. An equilibrium solution X∗

which is not stable is called unstable.

1.2.1.1 Local Stability Analysis

The system of interacting populations

dXi(t)

dt
= Gi(X1, X2, ..., Xn), (1.2)

with initial conditions

Xi(0) = Xi0 ≥ 0, i = 1, 2, ..., n. (1.3)

Let us suppose that the function Gi is such that the solution of above system is

unique.

Let X(t) be any other solution in the vicinity of equilibrium solution X∗, then

X = X∗ + η, (1.4)

where η = (η1, η2, ..., ηn) is a perturbation from the equilibrium solution. Then, the

perturbation vector can be written as

dη

dt
=
∂G

∂X

∣∣∣∣
X=X∗

η ≡ Aη, (1.5)

where A = (aij)n×n is the variational matrix at the equilibrium solution X∗. Let

η(0) be the initial perturbation from the equilibrium solution X∗, then the formal

matrix solution to (1.5) can be given by

η(t) = eAtη(0). (1.6)
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The system is stable about the equilibrium solution X∗ if the perturbation η(t) goes

to zero as t tends to ∞. This is feasible only if the real parts of the characteristic

values of the variational matrix A, namely, Re{λi}, are negative for each i. If

Re{λi} > 0 for at least one value of i, then the equilibrium solution is unstable. Since

η(t) is the solution of linearized system (1.5), which is a close to actual nonlinear

system, the stability is referred to local/linear stability only.

Therefore, the characteristic values of the variational matrix decide whether the

equilibrium solution is linearly stable or unstable. The characteristic equation for

the variational matrix can be written as

det(A− λI) = a0λ
n + a1λ

n−1 + ...+ an = 0, a0 6= 0. (1.7)

The coefficients ai, i = 1, 2, ..., n of characteristic equation are all real. The system

(1.2) is locally stable about the equilibrium point if all of the eigenvalues have

negative real parts. On the other hand, the system is unstable if at least one of the

eigenvalues has positive real part. In other words, all the eigenvalues of Jacobian

matrix must lie in the left half of the complex plane. Accordingly, the necessary

condition (not sufficient) for all eigenvalues to have negative real part is

Trace (A) < 0.

In the special case, if Trace (A) = 0, then either at least one eigenvalue must lie in

the right half plane, or all eigenvalues must be purely imaginary (the pathological

case of neutral stability). Another necessary, but not sufficient, condition is

(−1)n det |A| > 0.

Routh-Hurwitz Criterion gives necessary and sufficient conditions to make cer-

tain that the real part of all characteristic roots are negative that is belongs to left

half complex plane. These conditions, collectively an > 0, are [121].

H1 = a1 > 0, H2 =

∣∣∣∣∣ a1 a3

1 a2

∣∣∣∣∣ > 0, H3 =

∣∣∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣ > 0,
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Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 . . . .

1 a2 a4 . . .

0 a1 a3 . . .

0 1 a2 . . .

. . . . . .

0 0 . . . ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0, k = 1, 2, 3, ..., n (1.8)

If the values of parameters are such that the above restrictions are simultaneously

satisfied, then the given system will be locally asymptotically stable at X∗.

1.2.2 Functional Responses

Functional response is the intake rate of a consumer as a function of food density.

The nonlinear functional response was on the basis of a extensive reason regarding

the distribution of time of a predator between two activity: prey searching and

prey handling. Functional response is framed in terms of behavior of a particular

predator, they are generally included at the level of population in systems that

incorporate breeding and demise. The term density is more suitable than functional

response since this describes the invasion conduct of the consumer for the natural

resources. Functional response is associated with the numerical response, which is

the rate of reproduction of a consumer as a function of food density. Following

Crawford Stanley Holling (1959), functional response are usually classed into four

types, type-I, II, III and IV [75; 76].

Let f(x) is the response of a predator with respect to the specific prey and it is

said to be a Holling type functional response if the following conditions hold

(i) f(0) = 0, i.e. all pass through the origin,

(ii) f
′
(x) ≥ 0, all are increasing.

Type-I: f(x) = ax, where a > 0. This linear functional response assume that the

attack rate of the particular consumer accelerates linearly with the density of prey

but then quickly and unexpectedly reaches a constant value when consumer is sat-

isfied.
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Type-II: f(x) = ax
1+bx

, where a > 0, b > 0. This functional response depicts the

attack rate accelerates at a decelerating rate with the density of prey until it be-

comes constant at saturation.

Type-III: f(x) = ax2

b2+x2
, where a > 0, b > 0. Type-III functional response in which

the attack rate increases initially and then decreases towards satiety. Type-III func-

tional response is naturalistic opponents, which easily move from one food species

to another and which concentrate their feeding in areas where definite resource are

plentiful.

Type-IV: f(x) = ax
x2

b
+x+c

, where a > 0, b > 0, c > 0. If b → ∞, then type-IV

functional response approaches to type-II. In type-IV functional response, the at-

tack rate initially accelerates gradually, reaches its peak and then decelerates to

zero. Such a circumstance may appear because of limitation in food availability for

multiple species but when providers of food are depleted, then nevertheless multiple

species the available food becomes very low.

1.2.3 Bifurcations

The theory of bifurcation is the mathematical study of sudden changes in the qualita-

tive behavior of the solutions of a nonlinear dynamical system. Bifurcation analysis

shows the long term dynamics of the interacting population depending on the sys-

tem parameters. In particular, equilibrium point(s) can be created, destroyed or

their stability can change due to change of parameter values. The parameter values

for which the bifurcation occurs are called bifurcating points. In this thesis, we

particularly focused on local bifurcations, which occur when a small change in the

parameter value of a given dynamical system causes a sudden change in the quali-

tative behavior of the system in the neighborhood of a critical point of the system.

Scientifically, they are important since they provide models of transitions and sta-

bilities as the control parameter is varied. Some different type of local bifurcations

are as follows:
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• Hopf bifurcation: Hopf bifurcation is that type of bifurcation at which a sta-

ble equilibrium point loses its stability at a threshold value and gives birth to a

limit cycle with the variation of the bifurcation parameter. The system experi-

ences Hopf bifurcation when a purely complex conjugate crosses the boundary

of stability. The Hopf bifurcation destroys the temporal symmetry of a system

and gives rise to oscillations, which are uniform in space and periodic in time.

Two types of Hopf bifurcation are observed, one is supercritical and other is

subcritical. Supercritical Hopf bifurcation is a phenomenon in which the un-

stable limit cycle becomes stable at the bifurcation point. Subcritical Hopf

bifurcation is a phenomenon in which the stable limit cycle become unstable

at the bifurcation point.

• Turing bifurcation: Turing bifurcation is the primary bifurcation that give

rise to spatiotemporal patterns, and crucial for almost all reaction-diffusion

type mathematical systems for pattern formation in embryology, ecology, epi-

demiology and to some other areas of biology, physics and chemistry [8; 105;

120; 122; 179]. The primary concept of the Turing bifurcation is that a uniform

steady-state solution can be stable to uniform spatiotemporal perturbations,

but unstable to definite spatiotemporally changing perturbations, leading to

the formation of patterns, that is, a spatial pattern. The straightforward

model to contemplate mathematically is fundamentally treated by Turing in

1952, viz, two reaction-diffusion type partial differential equations, the in-

teracting chemicals having distinct coefficients of diffusion. For appropriate

reaction kinetics, as the proportion of diffusivity increases (or decreases) from

unity, e.g., there is a critical value at which the homogenous equilibrium so-

lution becomes unstable to a particular spatiotemporal mode. Such kind of

bifurcation is called the Turing bifurcation.

1.3 Diffusive instability

Spatial patterns are formed via the diffusive instability of the uniform equilibrium

solution to small spatiotemporal perturbations. If the uniform equilibrium solution

is stable, then small spatiotemporal perturbations from the equilibrium state will



16

attract towards the equilibrium state. In 1952, Alan Mathison Turing, pointed

out how a reaction-diffusion system, showing such instabilities, can form diffusive

patterns [179].

Alan Turing, in 1952, demonstrated that the reaction-diffusion system may form

the spatial pattern, if the following two conditions holds

• the coexistence steady-state is linearly stable in the non-spatial (without dif-

fusion) system, and

• after adding the diffusion term in system, the coexistence steady-state is lin-

early unstable.

Proper mathematical analysis demonstrates that, in the beginning of instabil-

ity, the model initially becomes unstable with regard to a spatiotemporally non-

homogenous perturbation with a definite wave-number. Such type of instability is

called a Diffusive-Instability (Turing instability).

The mathematical foundation of diffusive instability is considered with two state

variables, X1 and X2, which are subject to one dimensional space, namely,

∂X1

∂t
= G1

(
X1, X2

)
+ d1

∂2X1

∂x2
,

∂X2

∂t
= G2

(
X1, X2

)
+ d2

∂2X2

∂x2
, (1.9)

where x is space coordinate and t is time. d1 and d2 are diffusion coefficients of

X1 and X2 respectively. G1

(
X1, X2

)
and G2

(
X1, X2

)
are the arbitrary interaction

terms of X1 and X2 respectively.

To understand the effect of diffusion in pattern formation we assume that in

absence of diffusion, that is, when solutions are well mixed, the system has some

positive spatially homogeneous steady state, (X∗1, X∗2). Mathematically, this means

that

∂X∗1
∂t

= 0 =
∂X∗2
∂t

,

∂2X∗1
∂x2

= 0 =
∂2X∗2
∂x2

, (1.10)

⇒ G1

(
X∗1 , X

∗
2

)
= 0 = G2

(
X∗1 , X

∗
2

)
. (1.11)
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Additionally, we assume that (X∗1, X∗2) is stable with respect to spatially uniform

perturbations, that is, system is stable without diffusion.

To examine the effects of small nonhomogeneous perturbation on the stability of

the system with respect to homogeneous steady state, we write

X1

(
t, x) = X∗1 +X

′

1(t, x),

X2

(
t, x) = X∗2 +X

′

2(t, x). (1.12)

It is assumed that the perturbations are sufficiently small, that is, we analyze the

local stability of the system. Substituting (1.12) into (1.9), using (1.10), and lin-

earizing the equations, we obtain

∂X
′
1

∂t
= a11X

′

1 + a12X
′

2 + d1
∂2X

′
1

∂x2
,

∂X
′
2

∂t
= a21X

′

1 + a22X
′

2 + d2
∂2X

′
2

∂x2
, (1.13)

where

a11 =
∂G1

∂X1

∣∣∣∣∣(
X∗1 , X

∗
2

), a12 =
∂G1

∂X2

∣∣∣∣∣(
X∗1 , X

∗
2

),
a21 =

∂G2

∂X1

∣∣∣∣∣(
X∗1 , X

∗
2

), a22 =
∂G2

∂X2

∣∣∣∣∣(
X∗1 , X

∗
2

), (1.14)

and X
′
1 and X

′
2 are perturbations from X∗1 and X∗2 . Equations (1.13) can be written

in the compact matrix form:

X
′

t = AX
′
+DX

′

xx, (1.15)

where

X
′

=

(
X
′
1(t, x)

X
′
2(t, x)

)
=

(
X1(t, x)−X∗1
X2(t, x)−X∗2

)
,

A =

(
a11 a12

a21 a22

)
,

D =

(
d1 0

0 d2

)
.
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For linear stability analysis, it is sufficient to assume solution of (1.13) in the

form

X
′

1 = exp (µt+ ikx),

X
′

2 = exp (µt+ ikx), (1.16)

where k and µ are the wavenumber and frequency, respectively. Corresponding

characteristic equation is∣∣∣∣∣ a11 − d1k2 − µ a12

a21 a22 − d2k2 − µ

∣∣∣∣∣ = 0. (1.17)

Solving for µ, we obtain

µ =
1

2

(
a11 + a22 − k2(d1 + d2)±√(

a11 + a22 − k2(d1 + d2)
)2
− 4
(

(a11 − d1k2)(a22 − d2k2)− a12a21
))

.

The condition k = 0 corresponds to the neglect of diffusion and, by definition,

perturbations of zero wavenumber are stable when diffusive instability sets in. It is

thus required that

a11 + a22 < 0,

a11a22 − a12a21 > 0. (1.18)

Diffusive instability sets in when at least one of the following conditions is violated

subject to the conditions (1.18):

a11 + a22 − (d1 + d2)k
2 < 0,

(a11 − d1k2)(a22 − d2k2)− a12a21 > 0. (1.19)

However, the first condition a11+a22−(d1+d2)k
2 < 0 is not violated as a11+a22 < 0,

due to stability of spatially homogenous system. Hence, only violation of the second

condition (a11 − d1k
2)(a22 − d2k

2) − a12a21 > 0 gives rise to diffusive instability.

Reversal of the second inequality of (1.19) yields

Q
(
k2
)

= d1d2k
4 −

(
d1a22 + d2a11

)
k2 + a11a22 − a12a21 < 0. (1.20)
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The minimum of Q
(
k2
)

occurs at k2 = k2m, where

k2m =
d1a22 + d2a11

2d1d2
> 0. (1.21)

Thus, a sufficient condition for instability is that Q
(
k2m
)

must be negative, implying,

(
a11a22 − a12a21

)
−
(
d1a22 + d2a11

)2
4d1d2

< 0. (1.22)

Combination of (1.18), (1.21), and (1.22) leads to the following final criterion for

diffusive instability:

d1a22 + d2a11 > 2
(
a11a22 − a12a21

) 1
2
(
d1d2

) 1
2 > 0. (1.23)

The critical conditions for the occurrence of the instability are obtained when the

first inequality of (1.23) is an equality.

1.4 Higher order instability

The stipulation for diffusion-driven instability and spatiotemporal pattern formation

in reaction-diffusion system is obtained with the help of local stability analysis of

dynamical model close to equilibrium state. As a consequence, the prediction for

spatial patterns away from linear system can not be formed with linear structure.

Also, the role of nonlinearity associated with reaction-diffusion system can not be

captured by linear analysis of the system. The procedure for higher order instability

in reaction-diffusion system is based on taking into account spatial perturbations

terms of higher order [56; 58; 152].

1.5 Spatiotemporal chaos

The concept of chaos originally came into existence in the context of non-spatial

dynamics of a spatially homogenous system. The consideration of space in the model

system makes the dynamics more complex and creates the possibility of getting chaos

even in those cases where it is almost impossible otherwise. This phenomenon is

termed as spatiotemporal chaos, to distinguish it from the purely non-spatial chaos

of a homogenous system. When the local kinetics of the system is oscillatory, for a
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extensive class of initial states, the evolution of the system leads to the formation

of a non stationary asymmetrical structures corresponding to spatiotemporal chaos.

First, the spatiotemporal chaos appears inside a subdivision of the whole domain

of the system. This subdivision of whole space then steadily get bigger with time

and, eventually, the spatiotemporal chaos occupies the entire domain, replacing the

steady pattern [9; 10; 39; 116; 133; 142].

1.6 Literature Review

The primary work of Alan Mathison Turing (1952) in the field of spatial pattern for-

mation was motivated by the nonlinear complexity of self-organizing models [179].

The impact of diffusion on pattern’s emergence in reaction-diffusion models has

been discussed extensively by Alan Turing. Turing introduced the diffusive insta-

bility, in which an initially stable steady state of a dynamical system can become

unstable if we contemplate diffusion in the dynamical system. If the parameter

value of diffusion coefficients reaches a critical value, the model will show Turing

bifurcation. The research work of Alan Turing in the area of spatial pattern forma-

tion, a subarea of mathematical biology. Turing’s patterns in biology has obtained

notability, when in 1972, Segel et al. gave a biologically equitable formulation of

a diffusive model and examined its properties with the help of numerical simula-

tions [157]. Spatial patterns formation in nature are ubiquitous, with illustrations

like zebra stripe patterns on animals skin, Turing patterns in a coherent quantum

field, language dispersal and competition in the community, or diffusive patterns in

predator–prey models [8; 122; 136; 157]. The spatial patterns formation factor of

ecological, and tumor–immune interplays has been recognized as an vital component

in how ecological communities are composed [19; 93; 110; 115; 122; 124; 130; 144].

Pioneering research work of Turing [179], the systematic investigation on spatial pat-

terns modeled by reaction-diffusion partial differential equations models, which gives

a general mathematical structure for depicting spatial pattern in models from vari-

ous field of study including but not restricted to chemistry [126; 182; 190], physics

[8; 16; 38; 78; 192], biology [19; 83; 96; 100; 110; 133; 134; 194], and so on, notably
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during the last several decades. Applications of Turing’s phenomenon in mathemat-

ical biology differ from modeling of the spatial dynamics of tumor–immune system

[108; 128] to the spatiotemporal complexity of predator–prey systems [141; 144; 157].

1.6.1 Tumor–immune systems

Tumor–immune system dynamics has a long history in mathematical biology. The

theoretical study of tumor–immune dynamics has been investigated by many re-

searchers [11; 12; 13; 27; 28; 33; 35; 46; 47; 59; 61; 62; 63; 68; 72; 73; 81; 82; 88; 90;

91; 95; 104; 106; 108; 119; 122; 123; 128; 131; 132; 135; 137; 145; 147; 148; 154; 160;

165; 167; 169; 176; 177; 178; 194]. We first look through some existing mathematical

models, where the authors have studied the interaction between tumor/cancer cells

and the host immune system through the mathematical modeling using the simplest

models to the more complicated models.

Tumors are well known for their potential for invasive proliferation as well as

their diffusive aggression of the normal appearing parenchyma peripheral to the

bulk lesion. The growth and progression of a solid tumor is a complex phenomenon,

incumbent on the interaction of several internal and external components, that is,

interactions between the tumor and the immune system components [61]. Several

tumors are solid and disperse factually by pressure effects induced by the increasing

number of tumor cells. Some tumor cells have the potential to migrate beyond the

domain boundary of the tumor growth, thus creating a diffusive tumor.

Over the last several decades, tumor evolution and the dynamics of the immune

system components have been a considerable focus for both experimentalists and

mathematical modelers. Mathematical modeling in this area stems from the early

chemical diffusion and differential equation models of Burton and Greenspan [27; 68]

and has grown into an extensive field of literature with studies presented using

ordinary and partial differential equations [27; 28; 35; 63; 68; 72; 73; 90; 91; 108;

128; 131; 145; 147; 148; 165; 167; 194], cellular automata [47; 59; 135] and many

statistically based studies [113; 139; 154; 176].

Burton [27] developed a diffusive model which investigated both the distribution

of oxygen in a spheroidal tumor where the blood supply is completely confined to the

surface and the resulting relative radius of the central zone to the total radius, which
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was then used to describe how the growth curve could fit a Gompertzian expression.

In [28], authors proposed a mathematical model to explain the growth of an avascular

tumor in response to an externally nutrient. The evolution of the tumor depends on

the equilibrium between expansive strengths caused by cell spreading and cell-cell

adhesion strengths which exist to maintain the tumor’s compactness. Greenspan

[68], proposed a simple mathematical model of tumor growth by diffusion, which is

constructed in order to examine and evaluate different hypotheses concerning the

evolution of a solid carcinoma. A primary objective of Greenspan’s study is to infer

the chemical source of growth inhibition from the most easily obtained data.

Kuznetsov and Knott [90] proposed a deterministic model where they describe

the mechanisms underlying tumor growth, suppression and regrowth and fit to data

on B-cell lymphoma. They indicated that either a modest change in the effectiveness

of killer suppression or the existence of a variant non-immunogenic clone of the

tumor cells can explain the regrowth of a tumor after initial suppression. Kuznetsov

et al. [91] proposed a mathematical model considering the interaction between

cytotoxic T-lymphocytes (termed as effector cells) and its response to the growth

of immunogenic tumor. They studied the immune-stimulating of tumor growth,

sneaking through of the tumor and formation of a tumor dormant state. From the

numerical simulation, using realistic parameter values, it has been predicted that

for a large set of system parameters that, the course of the growth of tumor and its

clinical manifestation have a recurrent profile with 3–4 months cycle. Banerjee et

al.[12] also presented a mathematical model for the interactions between the glioma

and the components of immune system, which objects in designing efficacious glioma

therapy. The system encompasses deliberations of the interactive dynamics of brain

tumor, macrophages, CD8+T-cells, TGFβ, IFNγ and the T11 target structures.

They discussed sensitivity analysis, and identify which variables are more sensitive

then the others and the parameters are computed from the published in-vivo data.

Numerical simulations were used for model validation and confirmation.

In [128], Owen and Sherratt presented a brief survey of the main properties and

interactions of such tumor associated macrophages, leading to the construction of

a mathematical model for the spatial interactions of tumor cells, macrophages and
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normal tissue cells, focusing on the ability of macrophages to kill tumor cells. Anal-

ysis of the homogeneous steady states shows that, normal tissue is unstable to the

introduction of mutant cells despite such an immune response, but that the com-

position of the resulting tumor can be significantly altered. Pettet et al. in [145],

proposed a mathematical model to explain the observed internalization of micro-

spheres and H-thymidine labeled cells in steady state multicellular spheroids. The

model uses the conventional ideas of nutrient diffusion and consumption by the cells.

The model accounts for the spatial and temporal variations in the cell categories

together with mitosis, conversion between categories and cell death. Numerical so-

lutions demonstrate that the model predicts the behavior similar to existing models

but has some novel effects.

Banerjee and Sarkar [154] proposed a predator–prey like tumor–immune inter-

action deterministic model by considering tumor cell as prey and cell mediated

immune system (cytotoxic T-lymphocytes) as predator. By allowing random fluc-

tuations around the positive interior equilibrium point, they extended their model

to a stochastic model and investigated its stability analytically as well as numeri-

cally. Tran et al. [176] proposed a stochastic model which describes subpopulation

emerging in heterogeneous tumors. They have used the Fokker-Planck or forward

Kolmogrov equation in their model. They observed from the numerical simulation

that the stochastic model describes the same basic dynamics as its counter part via

a convective component, but that for each simulation, a distribution of tumor size

mixes can also be derived from diffusion component in the model. These distri-

butions yield estimates for subpopulation extinction probabilities. Swanson et al.

[165] proposed a mathematical model of gliomas based on spreading and diffusion

rates to include the impacts of mobility of cell in white matter as compared to grey

matter. Numerical simulations of Swanson et al. model shows good understanding

with clinically observed solid tumor geometries and propose ways of tumor invasion

not noticeable on computed tomography or magnetic resonance imaging images. In

[194], authors assume that the diffusion is ubiquitous within cells, and it is com-

petent of propelling spontaneous spatial pattern in reaction-diffusion systems on a

spatially homogeneous domain. In this study, authors investigate the dynamics of a

diffusive cancer system controlled by microRNA and obtain the conditions that the
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system undergoes a Hopf-bifurcation and a Turing-bifurcation, and also obtain the

explicit condition on how the dynamics of the diffusive cancer network evolve.

1.6.2 Predator–prey systems

Mechanisms and scenarios characterizing the spatial population distribution of eco-

logical species in spatial habitat are a focus of special interest in population dynam-

ics. The spatial population distribution is affected by the proliferation capacity of

the species and interactions between individuals [184]. Spatial pattern formation of

predator–prey systems have started based upon the elementary work of Alan Turing

on morphogenesis [179]. The spatial predator–prey systems are studied to compre-

hend the role of random mobility of the prey and predator, inside their residence. A

fully comprehensive elucidation of the spatial impact on ecological species interplays

can be observed in the book, written by Okubo et.al. [125].

Spatial mathematical model is an appropriate tool for investigating fundamental

mechanism of complex spatiotemporal population dynamics. An appropriate math-

ematical structure to explain the spatial aspect of population dynamics is specified

by reaction–diffusion equations. Reaction–diffusion models were initial applied to

describe the ecological pattern formation by Segel and Jackson in 1972 [157], based

on the primary work of Alan Turing [179]. Over the last several decades, lot of

articles have been published on the spatial dynamics of predator–prey models based

on reaction–diffusion equations and different types of patterns have been depicted

for these models [8; 9; 10; 14; 18; 19; 34; 52; 53; 55; 70; 74; 99; 104; 105; 109; 114;

117; 120; 122; 125; 141; 142; 144; 152; 157; 159; 170; 180; 181; 183; 185; 187; 191;

193; 197].

Segel and Jackson [157] proposed a predator–prey mathematical model with dif-

fusion, and exhibit that in the existence of diffusion, it is feasible that small change

in the parameter values will bring about a interruption of the homogenous station-

ary state and the evolution of spatial nonhomogeneous densities distributions at a

definite wavelength. In [10], the authors contemplate spatial distribution of the den-

sities of preys and predators, in a ratio-dependent model. They also exhibits that

the model can evolve the diffusive patterns inside the Turing space. Banerjee et al.

[9], consider a improved spatial model of the non-spatial Holling–Tanner model, by
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introducing the diffusive terms. In this study, the authors analyzed in detail with

both Turing and non-Turing outlooks. Guan et al.[70] presented the spatiotem-

poral dynamics of improved LeslieGower predator–prey system. The authors also

performed numerical simulations and observed that the system demonstrates com-

plex spatial patterns, namely, spots patterns, stripes patterns and mixed patterns.

The spatiotemporal dynamics of a predator–prey model is delineated by reaction–

diffusion equations with logistic growth of the prey, and Holling type-II functional

response of the predator, by Petrovskii et al. in [142]. They also exhibits that ini-

tially the spatial pattern begins inside a small domain of the system, and this small

domain steadily evolves with time and, eventually, these spatial pattern occupy the

entire domain. Yuan et al. [193] proposed a predator–prey model with square-root

functional response and second order death term in predator population. They ob-

tained the conditions for spatial patterns by using linear stability analysis. Using

extensive numerical simulations, they found complex pattern replication, namely,

spotted pattern, stripe pattern and mixed pattern in the Turing domain, by varying

the death rate of predators.

Dubey et al. in [52] proposed a mathematical model for a predator–prey interplay

with self and cross-diffusion term. This model is analyzed with positive initial

condition and zero-flux boundary conditions. Conditions for local stability, global

stability and instability are acquired. The impact of the wavelength which can

drive a model to instability is explored. The impact of time-dependent diffusion

coefficients on the stability of the model is also investigated. Spatial heterogeneity in

few predator–prey systems has been noticed even though their surroundings habitat

appears homogeneous [114]. To describe this spatial heterogeneity phenomenon,

authors proposed a predator–prey interplay model with diffusive impacts. This

model can reasonably be applied to certain earthly plant-herbivore models. In [117],

Morozov et al. shows that, in this model, species spread through propagation of

population wave fronts, there exists an factually distinct invasion system which we

call a patchy (small isolated area) invasion. Authors show that the dynamics of this

model corresponds to spatial chaos and compute the primary Lyapunov exponent.

Eventually, the authors discuss the involvements of this phenomenon for invasive

species management and control. Wang et al. in [187], explore the emergence of
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predator–prey system with Michaelis Menten type functional response and reaction-

diffusion. The outcomes of numerical simulations show that the density distribution

dynamics of population transform is the emergence of stripe like or patched or

existence of both. This study exhibits that the spatial system has not only more

complex patterns in the space, but also chaos and spiral waves.

1.7 Organization of the Thesis

The aim of this thesis is to study mathematical models of interaction of tumor–

immune system, and predator–prey interaction system, when space is taken into

account. The main focus is on the analysis of the spatiotemporal dynamics of

tumor cells and immune cells, and complex pattern formation, namely, spotted

pattern, stripe pattern and mixed pattern in the predator–prey system by changing

different parameter of the system. The numerical simulations are carried out to

explore the heterogeneity and complexity in nonlinear mathematical models. This

thesis consists of six chapters and are organized as follows:

Chapter 1 : A brief introduction of tumor–immune system, and predator–prey

system, are given here. The necessary concepts of interaction of tumor–immune sys-

tem, and predator–prey system are highlighted. Mathematical preliminaries which

are required to analyze our models also stated here. Moreover, a brief literature

review is given to illuminate the idea presented in the thesis.

Chapter 2 : A mathematical model, consisting of a system of two coupled

reaction–diffusion equations describing the interaction between solid tumor and im-

mune system (termed as effector cells), is proposed here. The main focus is on

the analysis of the spatiotemporal dynamics of tumor cells and immune cells. The

resulting system is analyzed and numerical simulations are presented. Different

types of spatial patterns with respect to different initial conditions, and times are

observed. Their analysis and mechanism of spatiotemporal pattern formation in

immunogenic tumor are studied. Spatiotemporal perturbation around non-spatial

steady state beyond the linear regime are obtained based on the analysis of higher

order perturbation terms.
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Chapter 3 : Gliomas are well known for their potential for aggressive prolif-

eration as well as their diffusive invasion. A mathematical model, using reaction-

diffusion equations, is proposed to study dynamics of glioma cells, macrophages, cy-

totoxic T-lymphocytes, immuno-suppressive factor TGF-β and immuno-stimulatory

cytokine interferon-γ in spatiotemporal domain with the administration of immunot-

herapeutic agent T11 target structure (T11TS). First, we revisit the linear stability

analysis of the model in the temporal domain, followed by rigorous investigation of

the model in the spatiotemporal domain. Higher order stability is also discussed

in the spatiotemporal domain. Using the combination of analytical and numeri-

cal techniques, we investigate the effect of T11 target structure on the growth and

spread of malignant gliomas. It is observed that the immunotherapeutic agent T11

target structure along with the immune components, is able to control the aggressive

spread of the malignant gliomas.

Chapter 4 : In this chapter, we have investigated a spatial predator–prey model

with hunting cooperation in predators. Using linear stability analysis, we obtain the

condition for diffusive instability and identify the corresponding domain in the space

of controlling parameters. Using extensive numerical simulations, we obtain complex

patterns, namely, spotted pattern, stripe pattern and mixed pattern in the Turing

domain, by varying the hunting cooperation in predators and carrying capacity of

prey parameters. The results focus on the effect of hunting cooperation in pattern

dynamics of a diffusive predator–prey model and help us in better understanding of

the dynamics of the predator–prey interaction in real environment.

Chapter 5 : In this chapter, we have investigated a diffusive predator–prey

model exhibiting herd behavior for preys with linear and quadratic mortality term

for predators. Using linear stability analysis, we obtain the conditions for diffusive

instability and identify the corresponding Turing as well as non-Turing zone in the

space of control parameters. Using extensive numerical simulations, we obtain spa-

tiotemporal patterns for both non-Turing (model with linear mortality) and Turing

(model with quadratic mortality) cases by varying mortality rates, the search effi-

cacy of predators for preys and the rate of conversion of prey biomass to predator

biomass. The non-Turing pattern exhibits spatiotemporal chaos whereas the Turing

patterns focuses in many pattern dynamics and help us in the better understanding
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of the dynamics of the predator–prey interaction in real environment.

Chapter 6 : Finally, results from overall investigations are summarized in this

chapter along with a brief discussion on the scope for future research work.



Chapter 2

Spatiotemporal dynamics of

immunogenic tumors

2.1 Introduction

In recent years, there are evidences indicating that the immune system can recog-

nize and eliminate malignant tumors. The immune response to a tumor is usu-

ally cell mediated with cytotoxic T lymphocytes and natural killer cells, play-

ing a dominant role. A number of mathematical models of the interactions be-

tween the immune system and a growing tumor have been developed and stud-

ied [4; 42; 43; 44; 69; 101; 113; 139; 149; 151; 173; 174]. The kinetics of cell

mediated cytotoxicity in vitro have also been described by mathematical models

[29; 94; 103; 112; 138; 139; 172; 173; 174]. With such models, numerical estimates

of biologically significant parameters have been obtained, a number of phenom-

ena interpreted, and predictions made. Many researches have begun to explore

the mathematical modeling of different aspects of the spatial features associated

with the immune response to solid tumor, where partial differential equations have

been used considerably for the spatial aspects of tumor-immune system interactions

[108; 127; 186; 188]. Numerical simulation and bifurcation analysis of these models

have demonstrated diverse patterns of spatiotemporal dynamics of the immune and

tumor cells within tumor tissue, even in dormant tumors, which are being controlled

by cytotoxic T-lymphocytes.

29
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A mathematical model describing the growth of a solid tumor in the presence

of an immune system response is presented in [108], where the authors have stud-

ied the analysis of the spatiotemporal dynamics of tumor cells, immune cells and

chemokineses in an immunogenic tumor. In [127], Owen et al. investigated the role

of chemotaxis and chemokineses production, and the efficacy of macrophages as ve-

hicle for drug delivery to hypoxic tumor sites. The model is based upon a growing

avascular tumor spheroid, in which the volume is filled by tumor cells, macrophages

and extracellular material, tumor cell proliferation and death is regulated by nutrient

diffusion. In [188], Webb et al. developed a mathematical model to compare the re-

sponses of avascular tumor spheroids to two modes of action: either the macrophages

deliver an enzyme that activates an externally applied pro-drug (bystander model),

or they deliver cytotoxic factors directly (local model). The models Webb et al.

developed comprise partial differential equations for a multi-phase mixture of tumor

cells, macrophages and extracellular fluid, coupled to a moving boundary represent-

ing the spheroid surface. In [186], Wang et al. investigated the growth and motility

of oncogene-expressing human mammary epithelial cells under exposure to TGF-β.

In this chapter, a mathematical model depicting the spatial dynamics of a solid

tumor under the vigilance of the immune response (termed as effector cells), is

presented. The spatial model is an extension of the model in [91]. The dynamics of

the interplay between tumor cells and immune cells, in a solid tumor, at some stage

prior to angiogenesis are discussed.

2.2 The mathematical model

A mathematical model of tumor and generic effector cells interaction through the

system of nonlinear ordinary differential equations has already been studied in tem-

poral domain by Kuznetsov et al. [91]. Motivated from their work and to make the

model more realistic, we extend their model in a spatiotemporal domain to study

its spatial dynamics. Let E (X, Y, t) and T (X, Y, t) be the densities of generic effec-

tor cells and tumor cells, respectively, at any time t and at spatial location (X, Y )

within the square bounded domain Γ having boundary ∂Γ. The governing equations
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are

∂E (X, Y, t)

∂t
= s+

pET

g + T
−mET − dE +D1

(
∂2E

∂X2
+
∂2E

∂Y 2

)
,

∂T (X, Y, t)

∂t
= aT (1− bT )− nET +D2

(
∂2T

∂X2
+
∂2T

∂Y 2

)
, (2.1)

subjected to known non-negative initial distribution of populations,

E(X, Y, 0) = E0(X, Y ) ≥ 0, T (X, Y, 0) = T0(X, Y ) ≥ 0,

(X, Y ) ∈ Γ = [0, L]× [0, L], (2.2)

and zero-flux boundary conditions

∂E

∂ν
=
∂T

∂ν
= 0, (X, Y ) ∈ ∂Γ. (2.3)

Note: It is a well established fact that tumors secrete a diffusible chemical com-

pound known as tumor angiogenesis factor (TAF) into the surrounding tissue. This

stimulates nearby blood vessels to migrate towards and finally penetrate the tumor.

When a tumor is removed, the tumor angiogenesis factor (TAF) diffuses away natu-

rally over a certain period of time. To stop that, zero flux boundary conditions are

considered, which means neither tumor or immune components leave the domain.

In the model, the tumor grow logistically in absence of any immune system with

intrinsic growth rate a, that is, the maximal growth rate of the tumor cell population

is a. 1
b

is the utmost carrying competency of the biotic atmosphere of the tumor

cell population and n is the rate at which effector cell eradicates tumor cells and the

parameter m, is the rate of eradication of effector cell population by tumor cells. s

is the constant rate of flow of effector cell population and d is the natural decay of

the effector cells. The term pET
g+T

depicts the rate at which effector cell population

accumulates in the realm of tumor cell population (localization due to the presence

of the tumor), that is, immunogenicity. Here, the domain is assumed to be uniform,

that is, the system parameters do not depend on space or time. The parameters

D1, a, b, n, D2, s, p, g, m, d are all positive constants. D1 and D2 are diffusion

coefficient of the effector and tumor cells, respectively. The governing system can

be written in terms of dimensionless variables as follows:

∂u(x, y, τ)

∂τ
= σ +

ρuv

η + v
− µuv − δu+

(
∂2u

∂x2
+
∂2u

∂y2

)
,

∂v(x, y, τ)

∂τ
= αv(1− βv)− uv + κ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.4)
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where, u =
E

E0

, v =
T

T0
, σ =

s

nE0T0
, ρ =

p

nT0
, β = bT0,

η =
g

T0
, µ =

m

n
=
k3
k2
, δ =

d

nT0
, α =

a

nT0
, κ =

D2

D1

,

X =

√
D1

nT0
x, Y =

√
D1

nT0
y, t =

τ

nT0
,

subjected to the initial conditions

u (x, y, 0) = u0 (x, y) ≥ 0, v (x, y, 0) = v0 (x, y) ≥ 0, (x, y) ∈ Γ, (2.5)

and boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0, (x, y) ∈ ∂Γ. (2.6)

u, v are dimensionless effector and tumor cell densities, τ , x, y are dimensionless

time and space variables and κ (= D2/D1) is the ratio of diffusion coefficients.

2.3 Analysis of non-spatial system

Kuznetsov et al. [91] have done the detailed analysis of the non-spatial system. Here,

we highlight few results that we need for the analysis of spatiotemporal system.

(i) The system has two equilibria, namely,

(a) E1

(
σ
δ
, 0
)
, (tumor free state).

(b) Interior equilibrium E2 (u∗, v∗), where u∗ = α (1− βv∗) and v∗ be the root

of the following cubic equation

C3v
3 + C2v

2 + C1v + C0 = 0,

with coefficients

C0 = η
(σ
α
− δ
)
,

C1 =
σ

α
+ ρ− µη − δ + δηβ,

C2 = −µ+ (µη + δ − ρ) β,

C3 = µβ.
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The feasibility of the roots of above cubic equation can be checked using

Descartes’ rule of sign. Clearly, C3 > 0. Possible variations in signs of cu-

bic polynomial are as follows:

+ + + + → 0 positive roots

+ + + – → 1 positive roots

+ + – + → 2 positive roots

+ – + + → 2 positive roots

+ – – + → 2 positive roots

+ + – – → 1 positive roots

+ – + – → 3 positive roots

+ – – – → 1 positive roots

So, it is mathematically justified about the feasible existence of the interior

equilibrium points. With the parameter values, given in Table (2.1), we get

3 positive roots, which is one of the possibility, verified by Descartes’ rule of

sign.

(ii) The general Jacobian matrix corresponding to the system [91] is given by

J∗ =

(
a11 a12

a21 a22

)
,

where

a11 = ρv
η+v
−µv−δ, a12 = ρu

(η+v)
− ρuv

(η+v)2
−µu, a21 = −v, a22 = α−u−2αβv.

(iii) The eigenvalues of the Jacobian matrix J∗, corresponding to the equilibrium

point E1

(
σ
δ
, 0
)

are −δ, (αδ − σ) /δ. It is clear from the eigenvalues that the

equilibrium point E1

(
σ
δ
, 0
)

is asymptotically stable if αδ < σ and unstable if

αδ > σ.

(iv) The characteristics equation about the equilibrium point (u∗, v∗) is

λ2 −
(
α− δ − u∗ − 2αβv∗ − µv∗ +

ρv∗

η + v∗

)
λ+

u∗ [−ρv∗2 + δ(η + v∗)2]

(η + v∗)2

+
α(η + v∗)(−1 + 2βv∗){δ(η + v∗) + v∗ [−ρ+ µ(η + v∗)]}

(η + v∗)2
= 0.

The system is stable if
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α− δ − u∗ − 2αβv∗ − µv∗ + ρv∗

η+v∗
< 0

and
u∗[−ρv∗2+δ(η+v∗)2]+α(η+v∗)(−1+2βv∗){δ(η+v∗)+v∗[−ρ+µ(η+v∗)]}

(η+v∗)2
> 0.

(v) The system parameters have the values, shown in Table (2.1).

(vi) With these set of parameters, the system

(a) is unstable about the tumor free equilibrium (σ
δ
, 0)=(0.3155, 0).

(b) is stable about (u∗, v∗) = (1.6092, 8.1897) and (u∗, v∗) = (0.1729, 447.1)

equilibrium points. The third value (u∗, v∗) = (0.7598, 267.8) is unstable.

Parameters Values Parameters Values Source

s 1.3× 104 cells day−1 σ 0.1181 [91]
p 0.1245 day−1 ρ 1.131 [91]
g 2.019× 107 cells η 20.19 [91]
m 3.422× 10−10 day−1 cells−1 µ 0.00311 [91]
d 0.0412 day−1 δ 0.3743 [91]
a 0.18 day−1 α 1.636 [91]
b 2.0× 10−9cells−1 β 0.002 [91]
n 1.101× 10−7 day−1 cells−1 - 1.000 [91]
D1 1.0 units κ 2.5 -
D2 2.5 units - - -

Table 2.1: Parameter values used for numerical simulation.

2.4 Analysis of spatiotemporal system

Incorporating the diffusion terms into the growth equations for the effector and

tumor cell population, we now investigate the spread of both effector and tumor

cells in two dimensional domain. Taking the spatial perturbations about the interior

equilibrium point, we get,

u(x, y, τ) = u∗ + ε exp((kxx+ ky(y))i+ λkt),

v(x, y, τ) = v∗ + η exp((kxx+ ky(y))i+ λkt), (2.7)

where ε and η are chosen to be small and k =
√(

k2x + k2y
)

is the wave number.
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Substituting (2.7) in (2.4), and linearizing the model equations around interior

steady-state E2 (u∗, v∗), we obtain

wt = J∗ + D ∇2w, (2.8)

where wt =

[
ut

vt

]
, w =

[
u

v

]
and J∗ =

[
fu fv

gu gv

]
(u∗,v∗)

.

Now, using linear stability analysis, the system of PDEs (2.8) leads to the following

form of the spatial system

λw = J∗ w −D k2 w, (2.9)

where w(x,y, t) ≡ [u(x, y, t), v(x, y, t)]T , k is the wave number, J∗ is Jacobian matrix

of the spatially homogeneous model system (2.4) and D is the diffusion coefficients

matrix:

D =

(
1 0

0 κ

)
.

The eigenvalues (λ’s) of the system (2.9) are obtained from the following char-

acteristics equation ∣∣(J∗ −Dk2
)
− λI

∣∣ = 0.

Substituting the value of J∗ and D in the above equation, we obtain∣∣∣∣∣ a11 − k2 − λ a12

a21 a22 − κk2 − λ

∣∣∣∣∣ = 0.

System will be stable if a1(k
2) > 0 and a2(k

2) > 0. The spatial homogenous

steady-state will become unstable due to spatial perturbation when at least one

root of characteristic equation λ2 + a1(k
2) λ + a2(k

2) = 0 is positive. This requires

at least one of the following two inequalities to be violated:

(i) a1(k
2) = (1 + κ)k2 − a11 − a22 > 0,

(ii) a2(k
2) = κk4 − (a11κ+ a22)k

2 + a11a22 − a12a21 > 0. (2.10)

As κ and k2 are both positive and a11 + a22 < 0 (stability of the temporal steady

state), a1(k
2) > 0 always holds. Therefore, condition for diffusive instability about
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Figure 2.1: Plot of a2(k
2) against k for parameter values given in Table (2.1) and

different values of κ.

(u∗, v∗) is a2(k
2) < 0,

⇒ (α− u∗ − 2αβv∗) + κ

(
ρv∗

η + v∗
− µv∗ − δ

)
> 2

√
(α− u∗ − 2αβv∗)

(
ρv∗

η + v∗
− µv∗ − δ

)
+ v∗

(
ρu∗

η + v∗
− ρu∗v∗

(η + v∗)2
− µu∗

)
κ1/2,

and about tumor free steady state (u∗, 0) is

α− u∗ − κδ > 2
√
u∗δ − αδ κ1/2. (2.11)

The eigenvalues of the dispersion curve (characteristics polynomial) of non-trivial

equilibrium points E2(u
∗, v∗), cannot be determined analytically. Hence, we numer-

ically look into the quantitative analysis using the parameter values given in [91].

We plotted the dispersion curve, which clearly shows that after spatial perturbation,

the spatiotemporal dynamics remain stable, that is, Re(λ) < 0 (see Figure. (2.1)).

Tumor free steady state is also unstable after adding spatial perturbation from 2.11.

Hence, the Turing instability condition does not hold here. So, there is no possibility

of occurring the Turing pattern.
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2.5 Higher order stability analysis

In this section, we use higher order spatiotemporal perturbation term to check the

stability of the system [152], for this we have chosen a general two dimensional

reaction diffusion system with previous specific choice of parameter values. The

reaction diffusion partial differential equation system are described as follows:{
f ≡ ut = σ + ρuv

η+v
− µuv − δu+ uxx + uyy,

g ≡ vt = αv (1− βv)− uv + κ (vxx + vyy) ,
(2.12)

with zero-flux boundary conditions and initial condition of cells population within

two dimensional bounded spatial domain. The interior steady state points E2(u
∗, v∗)

for the temporal system corresponding to the system is a spatially homogenous

steady states point for the system. We assume that the equilibrium point E2(u
∗, v∗)

are locally stable for the non-spatial system. The spatial perturbations p(x, y, t) and

q(x, y, t) on the equilibrium point u∗ and v∗, which is defined by u = u∗+ p(x, y, t),

v = v∗+ q(x, y, t) and expanding the non-spatial part by Taylor series expansion up

to third order about equilibrium point, we get following expressions:

pt = fu p+ fv q +
fuu
2
p2 +

fvv
2
q2 + fuvpq +

fuuu
6
p3 +

fvvv
6
q3 +

fuuv
2
p2q +

fuvv
2
pq2

+pxx + pyy,

qt = gu p+ gv q +
guu
2
p2 +

gvv
2
q2 + guvpq +

guuu
6
p3 +

gvvv
6
q3 +

guuv
2
p2q +

guvv
2
pq2

+κ (qxx + qyy) ,

(2.13)

Expressing the spatiotemporal perturbations p(x, y, t) and q(x, y, t) as

p(x, y, t) = p(t) cos(kxx) cos(kyy),

q(x, y, t) = q(t) cos(kxx) cos(kyy),

with zero-flux boundary condition, system (2.13) reduces to

pt = fu p+ fv q +
fuu
2
p2 +

fvv
2
q2 + fuvpq +

fuuu
6
p3 +

fvvv
6
q3 +

fuuv
2
p2q +

fuvv
2
pq2

−k2p,

qt = gu p+ gv q +
guu
2
p2 +

gvv
2
q2 + guvpq +

guuu
6
p3 +

gvvv
6
q3 +

guuv
2
p2q +

guvv
2
pq2

−κk2q,

(2.14)
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where k2 = k2x + k2y. It is clear from (2.14) that the growth or decay of first order

perturbation terms depends on the second order perturbation terms. Further, we

need the dynamical system for second-order perturbation terms involved in (2.14).

Multiplying the first equation by 2p and second equation by 2q respectively in (2.14)

and neglecting third order perturbation term, we have the dynamical equation of

second order perturbations as(
p2
)
t

= 2fup
2 + 2fvpq + fuup

3 + fvvpq
2 + 2fuvp

2q − 2k2p2,(
q2
)
t

= 2gupq + 2gvq
2 + gvvq

3 + guup
2q + 2guvpq

2 − 2κk2q2, (2.15)

(pq)t = gup
2 + fvq

2 + (fu + gv) pq +
guu
2
p3 +

fvv
2
q3 +

(
fuu
2

+ guv

)
p2q

+
(gvv

2
+ fuv

)
pq2 − k2 (1 + κ) pq.

The dynamical equations for third order perturbation terms can be obtained from

(2.14) (neglecting fourth and fifth order terms) as follows:(
p3
)
t

= 3fup
3 + 3fvp

2q − 3k2p3,(
q3
)
t

= 3gvq
3 + 3gupq

2 − 3κk2q3,(
p2q
)
t

= gup
3 +

(
2fu + gv − 2k2 − κk2

)
p2q + 2fvpq

2, (2.16)(
pq2
)
t

= fvq
3 + 2gup

2q +
(
fu + 2gv − k2 − 2κk2

)
pq2.

The truncation of fourth and higher order terms in Taylor series expansion

and neglecting of fourth and higher order perturbation terms during derivation

of dynamical equations (2.14) to (2.16) leads to a closed system of equations for

p, q, p2, q2, pq, p3, q3, p2q, pq2, otherwise, one cannot avoid infinite hierarchy of

dynamical equations for perturbation terms. Truncation of higher order terms does

not affect the understanding of the role of leading order non-linearity. Applicability

and significance of the analysis can be justified with the perturbation terms up to

the order four, for the system (2.12) with the suitable choice of parameter values.

The dynamical equations (2.14–2.16) can be written into a compact matrix form

as follows:
dL

dt
= AL, (2.17)

where L = [p, q, p2, q2, pq, p3, q3, p2q, pq2]
T

and
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A =



a11 fv
fuu
2

fvv
2

fuv
fuuu
6

fvvv
6

fuuv
2

fuvv
2

gu a22
guu
2

gvv
2

guv
guuu
6

gvvv
6

guuv
2

guvv
2

0 0 a33 0 2fv fuu 0 2fuv fvv

0 0 0 a44 2gu 0 gvv guu 2guv

0 0 gu fv a55
guu
2

fvv
2

fuu
2

+ guv
gvv
2

+ fuv

0 0 0 0 0 a66 0 3fv 0

0 0 0 0 0 0 a77 0 3gu

0 0 0 0 0 gu 0 a88 2fv

0 0 0 0 0 0 fv 2gu a99



,

with a11 = fu − k2, a22 = gv − κk2, a33 = 2fu − 2k2, a44 = 2gv − 2κk2, a55 =

fu+gv−(1 + κ) k2, a66 = 3fu−3k2, a77 = 3gv−3κk2, a88 = 2fu+gv−(2 + κ) k2, a99 =

fu + 2gv − (1 + 2κ) k2.

We take the solution of system (2.17) in the form L(t) ∼ eλt, where λ’s ≡ λ(k)

are the eigenvalues of A and λ’s are the solution of the following equation

|A− λI| = 0, (2.18)

where I is the 9 × 9 unit matrix. Numerically, using the parameter values given in

Table 2.1, all the eigenvalues of the matrix A are −0.318348, −1.46982, −0.636696,

−2.93964, −1.78817, −0.955044,−4.40946,−2.10652,−3.25799. Therefore, the sys-

tem is stable about (u∗, v∗). However, tumor free steady state point is unstable

since the eigenvalues of A are −0.01, 1.310478, −0.02, 2.620956, 1.300478, −0.03,

3.931434, 1.290478, 2.610956 about (u∗, 0).

2.6 Numerical simulation

The spatiotemporal model (2.4) is solved numerically in two dimensional space with

the help of finite difference method for spatial derivatives. Euler method is utilized

for the reaction part and standard five point finite difference method is utilized

for the diffusion part. The numerical integration of the reaction-diffusion partial

differential equations (2.4) is employed by using splitting method. The value of time

step and space step have been chosen sufficiently small for avoiding the numerical
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Figure 2.2: Spatial distribution of densities of the effector cell (Panel A) and tumor
cell (Panel B) at times corresponding to 91, 182, 273 and 364 days respectively,
when αδ > σ. The parameter values are given in Table 2.1.

artifacts. We performed all the numerical simulations over the zero-flux boundary

condition with 200× 200 domain size and time-step ∆t = 0.002. The initial density

distribution of immune cells and tumor cells are chosen in such a way that they are

located at the center of the domain.

The model is numerically simulated, which shows the spatial distribution within

the tissue of effector and tumor cell densities.

Case 1. αδ > σ

Figure (2.2)A and (2.2)B show the spatial distribution within the tissue of

effector and tumor cell densities at time τ = 91, 182, 273 and 364 respectively.

Initially, the effectors cells are dense (panel A) but with time fails to control the

growth of tumor cells. Panel B shows that the density of tumor, which was in the

dormant stage, started to grow with time. This can be interpreted as tumor sneaking

through, which refers to a phenomena in which low dense of tumor cells can escape

immune surveillance and grow into large tumors.

Case 2. αδ < σ.

In this case, the tumor free equilibrium is stable and the interior equilibrium is

unstable. Figure (2.3)A and (2.3)B show the spatial distribution of the effector and
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Figure 2.3: Spatial distribution of densities of the effector cell (Panel A) and tumor
cell (Panel B) at times corresponding to 91, 182, 273 and 364 days respectively,
when αδ < σ. In this case, α = 0.2, δ = 0.3743, σ = 0.1181, κ = 2.5.

tumor cell densities within the tissue at times τ = 91, 182, 273 and 364 respectively.

The first panel (A) shows that the effector cells are less dense initially but quickly

recovers with time. On the other hand, the tumor cells are highly dense at initial

time but soon the effector cells eradicate them within an year.

Figure (2.4) shows the effect of carrying capacity on tumor dormancy. With

β = 0.002 (carrying capacity 1
β

= 500), the tumor is in dormant stage (panel A).

For β = 0.0002 (carrying capacity 1
β

= 5000) (panel B) and β = 0.00002 (carrying

capacity 1
β

= 50000) (panel C), the tumor relapses from the dormant stage and

started to grow. This shows that tumor cells can modify their micro-environment

such that it can sustain a large population, that is, they construct a niche, which

increases the carrying capacity of the population. Increased carrying capacity is

achieved through a number of mechanisms of which some are internal to the cell

and others, that are brought about by changing the micro-environment of the cell.
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Figure 2.4: Spatial distribution of densities of the tumor cell population from the
dormant stage at times τ = 91, 182, 273 and 364 days respectively, with increasing
carrying capacity: Panel A: β = 0.002 (carrying capacity 1

β
= 500); Panel B:

β = 0.0002 (carrying capacity 1
β

= 5000) and Panel C: β = 0.00002 (carrying

capacity 1
β

= 50000). The parameter values are obtained from Table 2.1.

2.7 Conclusion

In this chapter, we have focused our attention on a spatiotemporal mathematical

model describing the growth of a solid tumor in presence of an immune responses,

which is termed as effector cells. The proposed model is a modification of the non-

spatial model by Kuznetsov et al. [91], by extending it to a spatiotemporal one.

Local stability analysis of the spatiotemporal model reveals that the tumor free

equilibrium exists and is stable, when the intrinsic growth rate of the tumor is less

then the ratio of constant input of the effector cells and its decay rate (α < σ
δ
). The

interior equilibrium does not exist in this case. However, when α > σ
δ
, three interior
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equilibria (u∗, v∗) exist, of which two of them are stable. The immune system fails

to control the tumor growth in this case. The system is also subjected to higher

order spatiotemporal perturbation terms for stability check, but the results remains

same as obtained from linear stability analysis.

One interesting phenomenon of evolution of carrying capacity and expansion of

tumor cell population is observed. This observation allows us to relate the tumor’s

volumetric growth rate to the host organs’s functionality conveying composite in-

frastructure. When the carrying capacity of the primary host organ is about to be

exceeded, metastasis will be triggered. While the biological processes involved in

cancer expansion may lead to some upward adjustment of the carrying capacity,

presumably these parenchymal and stromal compensation mechanisms are limited

and tumor cells will eventually spread to distant sites.
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Chapter 3

Spatiotemporal dynamics of

malignant gliomas and immune

system considering the role of

immunotherapeutic agent T11

target structure

3.1 Introduction

Gliomas are highly diffusive heterogenous group of intracranial neoplasms account-

ing nearby 50% of primary brain tumors called by malignancy of gliomas. Gliomas

are difficult to treat due to its sequestered location beyond the blood-brain-barrier.

Gliomas vary from low-to high grade, namely glioblastomas, which constitute the

most malignant form of brain cancer, having an extremely poor prognosis. Glioblas-

toma has a survival rate from 6 month to 12 months [6; 84; 85]. Treatments like

chemotherapy, surgery, radiation therapy have limited success due to the gliomas’s

heterogeneity, genomic instability and the location of blood-brain-barrier. In par-

ticular, glioma is a rapidly evolving type of brain tumor, well known for its ag-

gressive and diffusive behavior [168]. This diffusive invasion has lead several re-

search efforts through mathematical modeling to explore the glioma’s proliferation

45
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with the aid of reaction-diffusion equations, aiming to predict its spatial evolution

[27; 30; 33; 47; 72; 108; 119; 122; 128; 131; 161; 164; 165; 166].

In our present study, we explore the spatiotemporal dynamics of the mathemat-

ical model developed by Banerjee et. al. [12; 79; 80]. In their model, interaction be-

tween malignant gliomas and immune components, namely, macrophages, cytotoxic

T-lymphocytes, TGF-β and IFN-γ, has been investigated using reaction-diffusion

equations, considering the constant infusion of exogenous immunotherapeutic drug

T11 target structure (T11TS). The aim of our work is to identify the Turing as well

as non-Turing zone due to added diffusion terms to the system and to numerically

simulate the system that will demonstrate the extent of invasion of the gliomas,

controlled by the immunotherapeutic drug T11 target structure. The analysis and

ramification present in this chapter will be a building block towards a comprehensive

study of the rudimentary mechanism in the spatiotemporal dynamics of gliomas.

Many literatures have explained the spatiotemporal dynamics of malignant glioma

growth in presence of immune system interaction with the help of reaction-diffusion

equations [23; 27; 31; 32; 33; 47; 72; 86; 87; 108; 119; 122; 128; 131; 146; 161;

164; 165; 166; 175]. Sherratt et al. [128] proposed a mathematical model through

reaction-diffusion equations by considering the spatiotemporal interactive dynamics

of mutant cells, macrophages and the normal tissue cells and by spatiotemporal dy-

namics, the authors investigated the existence of traveling-wave solutions of normal

tissues and growing tumor. Swanson et al. in [166], explored a mathematical model

for chemotherapy of malignant gliomas, which assumes the brain structure to be

inhomogeneous that makes diffusion process space dependent. Swanson et al. [167]

proposed a mathematical model of gliomas growth and aggressiveness with treat-

ment and without treatment strategy, using partial differential equations. Several

research papers have been published by Murray and Swanson on spatiotemporal

modeling of brain tumors [72; 122; 164; 165; 166; 167]. Stein et al. [161] developed

a continuum three dimensional reaction-diffusion mathematical model for brain tu-

mor invasion and dispersion to elucidate in vitro experiments. Their spatiotemporal

reaction-diffusion model qualitatively reproduces the experimental investigations,

and stipulates that the endogenous (wild-type) receptor (U87WT) invasive cells

have a stronger directional mobility bias. Stein et al. [161] claimed that a single
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gliomas population model studied by Swanson et al. [164; 167] is not sufficient to

reproduce these two kinetics since they exhibit different proliferative and dispersive

characteristics.

3.2 The mathematical model

A mathematical model of glioma and immune system interaction through the system

of nonlinear ordinary differential equations has been studied in non-spatial domain

with immunotherapeutic agent T11 target structure [12]. Motivated from the work,

we extend this model in spatiotemporal domain to study its spatial dynamics. Let

G, M, CT , Tβ and Iγ be the densities of glioma cells, macrophages, CD8+ T cells,

cytokine TGF-β and IFN-γ, respectively, at time t and at spatial location (x, y).

Malignant glioma grows logistically in absence of immune system with intrinsic

growth rate r1 and maximal glioma cells burden Gmax (carrying capacity) and the

glioma cells are eradicated by the immune-system components macrophages (M)

and activated cytotoxic T-lymphocytes (CT ) at the rates α1 and α2 respectively,

Michaelis-Menton term is being incorporated to bring out the accessibility of the

glioma cells to macrophages and CD8+ T cells, k being the half saturation con-

stant. The immuno-suppressive factor TGF-β secreted by malignant gliomas down-

regulates the activity of both the immuno-stimulatory components macrophages and

cytotoxic T-lymphocytes [50]. This explains the term 1
Tβ+e1

, e1 being the Michaelis

constant. Thus, the glioma’s density is

dG

dt
= r1G

(
1− G

Gmax

)
︸ ︷︷ ︸

growth term

−
(

1

Tβ + e1

)
(α1M + α2CT )

(
G

G+ k1

)
︸ ︷︷ ︸

elimination term

. (3.1)

The macrophages are highly heterogeneous in nature, in terms of its activation

and proliferation [1]. We assume that the macrophages grow logistically with in-

trinsic growth rate r2 and maximum carrying capacity Mmax. The macrophages are

activated by the immuno-stimulatory cytokine interferon-γ (IFN-γ) at the rate a1,

and it is down-regulated by immuno-suppressive factor transforming growth factor-

β (TGF-β), k4 and e2 being the saturation constants. The cell-count of macrophage
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population decreases due to the interaction with malignant gliomas at the rate α3

and their interactions follow the Michaelis-Menten saturation dynamics with half-

saturation constant k2. Thus, the equation for macrophage’s density is

dM

dt
= r2M

(
1− M

Mmax

)
︸ ︷︷ ︸

growth term

+ a1

(
Iγ

k4 + Iγ

)
︸ ︷︷ ︸
proliferation

(
1

Tβ + e2

)
︸ ︷︷ ︸
down−regulation

−α3

(
G

k2 +G

)
M︸ ︷︷ ︸

inactivation term

.

(3.2)

The recruitment of cytotoxic T-lymphocytes occurs due to direct presence of

malignant gliomas, a2 being the antigenicity of gliomas which triggers an immune

response. The recruitment of cytotoxic T-lymphocytes is inhibited by immunosup-

pressive cytokine TGF-β, where k5 is termed as inhibitory parameter. The clear-

ance of cytotoxic T-lymphocytes by glioma population occur through the Michaelis-

Menten saturation dynamics at the rate α4, k3 being the half saturation constant.

Thus, the equation for cytotoxic T-lymphocyte’s density is

dCT
dt

= a2G︸︷︷︸
recruitment term

(
1

k5 + Tβ

)
︸ ︷︷ ︸
inhibition term

− µ1CT︸ ︷︷ ︸
natural death

−α4

(
G

k3 +G

)
CT︸ ︷︷ ︸

inactivation term

. (3.3)

Glioma induced cytokine TGF-β, prostaglandin E2 and IL-10 suppress the ac-

tivity of immune system and stimulate the production of malignant glioma cells.

When the gliomas are small in size, it secretes small amount of TGF-β to obtain

ample nutrients from the neighboring tissues. But, when the gliomas are sufficiently

large resulting in lack of nutrients, oxygen and space, it begins to secrete TGF-β

to stimulate angiogenesis by down-regulating the production of immuno-stimulatory

components [50; 129]. TGF-β has a constant source rate s1 in the central nervous

system (CNS). The production of TGF-β is proportional to the glioma size, with

rate b1. TGF-β decays at the rate µ2. Thus, the equation for the TGF-β’s density

is

dTβ
dt

= s1 + b1G︸ ︷︷ ︸
growth term

− µ2Tβ︸︷︷︸
death term

. (3.4)

The source of IFN-γ is cytotoxic T-lymphocytes, at a linear production rate b2

per unit of cytotoxic T-lymphocytes density. The density of IFN-γ decays linearly
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at the rate µ3. Thus, the equation for IFN-γ’s density is

dIγ
dt

= b2CT︸︷︷︸
generation term

− µ3Iγ︸︷︷︸
decay term

. (3.5)

The external factor administration of immunotherapeutic agent T11 target struc-

ture, activates different anti-tumor immune system components including CD8+ T

cells and macrophages and we assume that this T11 target structure will have an

effect on the cell count of macrophages and CD+8 T cells [118]. In mathematical

terms, we represent the administration of T11 target structure by a constant input

Ts.

The mathematical model governing the spatiotemporal dynamics of the glioma

cell and immune system interaction with T11 target structure can be described by

the following system of reaction-diffusion equations:

∂G(x, y, t)

∂t
= r1G

(
1− G

Gmax

)
− (α1M + α2CT )G

(e1 + Tβ)(G+ k1)
+D1∇2G,

∂M(x, y, t)

∂t
= r2M

(
1− M

Mmax

)
+ a1

(
Iγ

k4 + Iγ

)(
1

Tβ + e2

)
− α3

GM

k2 +G
+

Ts +D2∇2M,
∂CT (x, y, t)

∂t
= a2G

1

k5 + Tβ
− µ1CT − α4

G

k3 +G
CT + Ts +D3∇2CT ,

∂Tβ(x, y, t)

∂t
= s1 + b1G− µ2Tβ +D4∇2Tβ,

∂Iγ(x, y, t)

∂t
= b2CT − µ3Iγ +D5∇2Iγ. (3.6)

Here, ∇2 is the Laplacian operator in cartesian coordinates. D1, D2, D3, D4 and D5

are diffusion coefficients for glioma, macrophages, cytotoxic T-lymphocytes, TGF-β

and IFN-γ respectively. All system parameters are positive. The zero-flux bound-

ary conditions and positive initial distribution of glioma and immune system are

described by

(i) for 1-dimension case
(
∇2 ≡ ∂2

∂x2

)
, initial conditions

G(x, 0) > 0, M(x, 0) > 0, CT (x, 0) > 0, Tβ(x, 0) > 0, Iγ(x, 0) > 0,

for x ∈ Ω1 = [0, L]. (3.7)



50

(ii) for 2-dimension case
(
∇2 ≡ ∂2

∂x2
+ ∂2

∂y2

)
, initial conditions

G(x, y, 0) = G0(x, y) > 0, M(x, y, 0) = M0(x, y) > 0,

CT (x, y, 0) = CT0(x, y) > 0, Tβ(x, y, 0) = Tβ0(x, y) > 0,

Iγ(x, y, 0) = Iγ0(x, y) > 0, for (x, y) ∈ Ω2 = [0, L]× [0, L], (3.8)

and zero flux (Neumann) boundary conditions

∂G

∂n
=
∂M

∂n
=
∂CT
∂n

=
∂Tβ
∂n

=
∂Iγ
∂n

= 0, on (x, y) ∈ ∂Ω2, t > 0. (3.9)

Here, L denotes the size of the system in the direction of (x, y), n is the outward

unit normal on the boundary Ω2.

3.3 Analysis of non-spatial system

Banerjee et al. [12; 79; 80] have done the detailed analysis of the non-spatial system

of the proposed model. Here, we highlight few results that we need for the analysis

of spatiotemporal system.

3.3.1 Analysis of non-spatial system without T11 target struc-

ture (Ts = 0)

(i) System (3.6) has three biologically relevant equilibrium states, namely,

(a) boundary homogenous steady-state, E1

(
0, 0, 0, s1

µ2
, 0
)

,

(b) glioma free homogenous steady-state, E2

(
0,Mmax, 0,

s1
µ2
, 0
)

,

(c) interior homogenous steady-state, E∗
(
G∗,M∗, C∗T , T

∗
β , I

∗
γ

)
.

The interior equilibrium E∗ is rather difficult to assess explicitly. By using the

set of parameter values given in Table 3.1, the unique positive interior fixed

point E∗ is approximately given by G∗ = 875419, M∗ = 943092, C∗T = 303.397,

T∗β = 9134.33, I∗γ = 0.303397.

(ii) The general Jacobian matrix corresponding to the system is given by
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J∗ =



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


, where

a11 = r1

(
1− 2G

Gmax

)
− k1(α1M+α2CT )

(Tβ+e1)(G+k1)2
, a12 = − α1G

(Tβ+e1)(G+k1)
, a13 = − α2G

(Tβ+e1)(G+k1)
,

a14 = G(α1M+α2CT )
(Tβ+e1)2(G+k1)

, a15 = 0, a21 = − α3k2M
(G+k2)2

, a22 = r2(1 − 2M
Mmax

) −
α3G
G+k2

, a23 = 0, a24 = − a1Iγ
(k4+Iγ)(Tβ+e2)2

, a25 = a1k4
(k4+Iγ)2(Tβ+e2)

, a31 =

a2
k5+Tβ

− α4k3CT
(G+k3)2

, a32 = 0, a33 = −µ1 − α4G
G+k3

, a34 = − a2G
(k5+Tβ)2

, a35 = 0,

a41 = b1, a42 = 0, a43 = 0, a44 = −µ2, a45 = 0, a51 = 0, a52 =

0, a53 = b2, a54 = 0, a55 = −µ3.

(iii) The eigenvalues of the Jacobian matrix J∗, corresponding to the homogenous

steady-state E1

(
0, 0, 0, s1

µ2
, 0
)

are r1, r2, −µ1, −µ2, −µ3. It is clear from

the eigenvalues that the homogenous steady-state E1 is hyperbolic saddle point

with two dimensional unstable manifold and three dimensional stable manifold.

(iv) The eigenvalues of the Jacobian matrix J∗, corresponding to the homogenous

steady-state E2

(
0,Mmax, 0,

s1
µ2
, 0
)

are r1− α1Mmaxµ2
k1(s1+e1µ2)

, −r2, −µ1, −µ2 and −µ3.

If r1 <
α1Mmaxµ2
k1(s1+e1µ2)

, E2 is locally asymptotically stable and if r1 >
α1Mmaxµ2
k1(s1+e1µ2)

, E2

is a saddle point. If r1 = α1Mmaxµ2
k1(s1+e1µ2)

, no definite conclusion is obtained about

the local stability of E2. From clinical point of view, E2 has an impact as it

gives an idea under what circumstances glioma free state can be obtained.

(v) The characteristics equation of the Jacobian matrix J∗ corresponding to the

homogenous steady-state E∗ is

λ5 + ρ1λ
4 + ρ2λ

3 + ρ3λ
2 + ρ4λ+ ρ5 = 0

where, ρ1 = −a11 − a22 − a33 − a44 − a55, ρ2 = −a12a21 + a11a22 − a13a31 +

a11a33 + a22a33 − a14a41 + a11a44 + a22a44 + a33a44 + a11a55 + a22a55 + a33a55 +

a44a55, ρ3 = a13a22a31+a12a21a33−a11a22a33+a14a22a41−a12a24a41+a14a33a41−
a13a34a41+a12a21a44−a11a22a44+a13a31a44−a11a33a44−a22a33a44+a12a21a55−
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a11a22a55+a13a31a55−a11a33a55−a22a33a55+a14a41a55−a11a44a55−a22a44a55−
a33a44a55, ρ4 = −a14a22a33a41 + a12a24a33a41 + a13a22a34a41 − a13a22a31a44 −
a12a21a33a44+a11a22a33a44−a12a25a31a53−a13a22a31a55−a12a21a33a55+a11a22a33a55−
a14a22a41a55+a12a24a41a55−a14a33a41a55+a13a34a41a55−a12a21a44a55+a11a22a44a55−
a13a31a44a55+a11a33a44a55+a22a33a44a55, ρ5 = −a12a25a34a41a53+a12a25a31a44a53+
a14a22a33a41a55−a12a24a33a41a55−a13a22a34a41a55+a13a22a31a44a55+a12a21a33a44a55−
a11a22a33a44a55.

(vi) The constant coefficients ρ1, ρ2, ρ3, ρ4 and ρ5 can be easily calculated from

the Jacobian matrix J∗. According to Routh-Hurwitz criteria [92], it follows

that the interior homogenous steady-state E∗ is locally stable if the following

conditions holds:

ρi > 0, i = 1, 2, 3, 4, 5,

ρ1ρ2ρ3 > ρ23 + ρ21ρ4,

(ρ1ρ4 − ρ5)(ρ1ρ2ρ3 − ρ23 − ρ21ρ4) > ρ5(ρ1ρ2 − ρ3)2 + ρ1ρ
2
5.

(vii) Using the parameter values in Table 3.1, the characteristic equation is given

by

λ5 + 7.48329λ4 + 3.92509λ3 + 0.634109λ2 + 0.0344307λ+ 0.000281034 = 0,

which satisfies the Routh-Hurwitz criteria. The eigenvalues are λ1 = −6.93,

λ2 = −0.311879, λ3 = −0.129576, λ4 = −0.101997 and λ5 = −0.00983845,

which implies that, the non-spatial system is locally asymptotically stable.

From the biological point of view, the interior homogenous steady-state E∗ is

important as it gives us an idea under what conditions glioma population can

persist.

3.3.2 Analysis of non-spatial system with T11 target struc-

ture (Ts 6= 0)

(i) The model (3.6) has two biologically relevant equilibrium states, namely,

(a) glioma free homogenous steady-state, ET1

(
0, M̃ , Ts

µ1
, s1
µ2
, b2Ts
µ1µ3

)
, where
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M̃ = 1
2

(
Mmax +

√
Mmax

2 + 4MmaxTs
r2

(
1 + a1b2µ2

(s1+e2µ2)(b2Ts+k4µ1µ3)

))
(b) interior equilibrium state, Ê =

(
Ĝ, M̂ , ĈT , T̂β, Îγ

)
.

Employing the parameter values given in Table 3.1, we obtain two interior equi-

librium points, viz, high density glioma steady state Ê1 = (860096, 2273300, 77

30000, 9135.63, 7730) and less dense glioma steady state Ê2 = (25077.8, 2291410

, 52040000, 9134.94, 52040).

(ii) The eigenvalues around Ê1 are−6.93, −0.129387, −0.102, −0.0542781, −0.0095,

all negative and real, that is, Ê1 is locally asymptotically stable. However,

eigenvalues around Ê2 are−6.93, −0.102, −0.0455234, −0.0217779, 0.00730967,

all real but not all negative, pointing that the system is unstable.

(iii) The glioma free equilibrium state ET1

(
0, M̃ , Ts

µ1
, s1
µ2
, b2Ts
µ1µ3

)
of the model (3.6) is

locally asymptotically stable if r1 <
µ2

k1(s1+e1µ2)

(
α1

2
M̃ + α2Ts

µ1

)
.

3.4 Analysis of the spatiotemporal model

3.4.1 Analysis of spatial model without T11 target structure

(Ts = 0)

We now concentrate on the spatial dynamics produced by model (3.6). We incor-

porate diffusion terms into the growth equations for the glioma, macrophage, cyto-

toxic T-lymphocyte, immuno-suppressive factor TGF-β and immuno-stimulatory cy-

tokine interferon-γ cell population, to investigate the spread of glioma, macrophage

and cytotoxic T-lymphocyte in one and two-dimensional domain. Taking the spa-

tiotemporal perturbations about the interior homogenous steady-state E∗=(G∗, M∗,
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Parameters Values Source

r1 0.01 h−1 [12]
Gmax 8.8265× 105 cell [12]
e1 104 pg [140]
α1 1.5 pg h−1 [12]
α2 0.12 pg h−1 [12]
k1 2.7× 104 cell [118]
r2 0.3307 h−1 [12]

Mmax 106 cell [71]
a1 0.1163 cell h−1 [12]
k4 1.05× 104 pg [163]
e2 104 pg [140]
α3 0.0194 h−1 [12]
k2 2.7× 104 cell [118]
a2 0− 0.5 h pg−1 [153]
k5 2× 103 pg [12]
µ1 0.0074 h−1 [12]
α4 0.1694 h−1 [12]
k3 3.34452× 105 cell [12]
s1 6.3305× 104 ph h−1 [12]
b1 5.70× 10−6 pg cell−1 h−1 [12]
µ2 6.93 h−1 [12]
b2 1.02× 10−4 pg cell−1 h−1 [12]
µ3 0.102 h−1 [12]

Table 3.1: Parameter values used for numerical simulation.

C∗T , T ∗β , I∗γ) as

G(x, y, t) = G∗ + ε exp(λkt+ (kxx+ kyy)i),

M(x, y, t) = M∗ + η exp(λkt+ (kxx+ kyy)i),

CT (x, y, t) = C∗T + ρ exp(λkt+ (kxx+ kyy)i), (3.10)

Tβ(x, y, t) = T ∗β + ξ exp(λkt+ (kxx+ kyy)i),

Iγ(x, y, t) = I∗γ + σ exp(λkt+ (kxx+ kyy)i),

where ε, η, ρ, ξ, σ are chosen to be real small numbers, k =
√
k2x + k2y is the wave

number. We substitute (3.10) into the model (3.6). It is possible to linearize (3.6)

about the homogenous steady state E∗, we obtain

Wt = J∗W + D ∇2W, (3.11)
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where, Wt =



Gt

Mt

CT t

Tβt

Iγt


, W =



G

M

CT

Tβ

Iγ


, J∗ =



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


(G∗,M∗,C∗T ,T

∗
β ,I
∗
γ )

.

Now, using linear stability analysis, the system of PDEs (3.11) leads to the following

form of the spatial system

λW = J∗W −D k2 W, (3.12)

where k is the wave number, J∗ is Jacobian matrix of the spatially homogeneous

system (3.6) and D is the diffusion coefficients matrix

D =



D1 0 0 0 0

0 D2 0 0 0

0 0 D3 0 0

0 0 0 D4 0

0 0 0 0 D5


.

The eigenvalues (λi, i = 1, 2, 3, 4, 5) of the system (3.12) are obtain by the solution

of the following characteristics equation

∣∣(J∗ −Dk2
)
− λI

∣∣ = 0.

In explicit form, we have,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 −D1k
2 − λ a12 a13 a14 a15

a21 a22 −D2k
2 − λ a23 a24 a25

a31 a32 a33 −D3k
2 − λ a34 a35

a41 a42 a43 a44 −D4k
2 − λ a45

a51 a52 a53 a54 a55 −D5k
2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

⇒ λ5 + a1(k
2) λ4 + a2(k

2) λ3 + a3(k
2) λ2 + a4(k

2) λ+ a5(k
2) = 0, (3.13)
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where ai(k
2), (i = 1, 2, 3, 4, 5) are evaluated with parameter values from Table 3.1.

The coefficients of characteristic equation (3.13) are as follows

a1(k
2) = 7.4837 + 3.012k2,

a2(k
2) = 3.9281 + 22.3811k2 + 2.0361k4,

a3(k
2) = 0.635297 + 10.7014k2 + 14.925k4 + 0.02406k6,

a4(k
2) = 0.0345 + 1.4451k2 + 5.8488k4 + 0.1561k6 + 0.00004k8,

a5(k
2) = 0.0003 + 0.05948k2 + 0.4434k4 + 0.0185k6 + 0.0001k8 + 2× 10−8k10

System will be stable if (apply Routh–Hurwitz stability criterion)

(i) ai
(
k2
)
> 0, i = 1, 2, 3, 4, 5,

(ii) h1
(
k2
)

= a1
(
k2
)
a2
(
k2
)
a3
(
k2
)
− a23

(
k2
)

+ a21
(
k2
)
a4
(
k2
)
> 0, (3.14)

(iii) h2
(
k2
)

=
(
a1
(
k2
)
a4
(
k2
)
− a5

(
k2
))(

a1
(
k2
)
a2
(
k2
)
a3
(
k2
)
− a23

(
k2
)
−

a21
(
k2
)
a4
(
k2
))
− a5

(
k2
)(
a1
(
k2
)
a2
(
k2
)
− a3

(
k2
))2

+ a1
(
k2
)
a25
(
k2
)
> 0.

The spatial homogenous steady state will become unstable due to spatial per-

turbation when at least one root of characteristic equation is positive. This re-

quires at least one out of the following inequalities (3.14) to be violated. As all

Di
′
s, (i = 1, 2, 3, 4, 5) and k2 are positive, ai(k

2) > 0, (i = 1, 2, 3, 4, 5) always holds.

Hence, conditions for diffusive instability about E∗ = (G∗,M∗, C∗T , T
∗
β , I

∗
γ) are either

h1(k
2) < 0 or h2(k

2) < 0 (Expression for h1(k
2) and h2(k

2) evaluated with parame-

ter values from Table 3.1 are given below).

h1(k
2) = 16.3378 + 332.416k2 + 1883.76k4 + 2960.48k6 + 1020.1k8 + 91.3793k10

+ 0.146606k12 (3.15)

and

h2(k
2) = 3.984 + 211.2k2 + 3922.18k4 + 31130.7k6 + 112578k8 + 176486k10 + 102

645k12 + 24400k14 + 2169.4k16 + 45.0705k18 + 0.0752648k20 + 0.0000178103k22

(3.16)
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The glioma free steady state E2

(
0,Mmax, 0,

s1
µ2
, 0
)

is unstable if

h3(k
2) = 3.5597× 1024 + 1.0596× 1026k2 + 4.526× 1025k4 + 4.296× 1024k6

+ 1.45763× 1017k8 + 1.11144× 109k10 + 0.1466k12 < 0 (3.17)

and

h4(k
2) = 6.0689× 1036 + 6.0185× 1040k2 + 1.8413× 1042k4 + 1.236× 1043k6

+5.0951× 1042k8 + 4.842× 1041k10 + 1.373× 1038k12 + 9.3× 1030k14 + 1.935

× 1023k16 + 1.223× 1015k18 + 2923× k20 + 0.00001k22 < 0.(3.18)

The eigenvalues of the dispersion curve (characteristics polynomial) of interior

homogenous steady-state E∗ = (G∗,M∗, C∗T , T
∗
β , I

∗
γ), cannot be determined analyt-

ically. Hence, we plot the dispersion curve (see Fig. 3.1), which clearly shows

that after spatiotemporal perturbation, the spatial dynamics remain stable, that is,

Re(λ) < 0. Tumor free steady state is unstable after adding spatial perturbation.

Hence, the Turing instability condition does not hold here. So, there is no possibility

of occurring Turing pattern.
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hk2

:=h1(k2)

:=h2(k2)

Figure 3.1: Dispersion curve
(
h1(k

2) & h2(k
2)
)

for the system (3.6) without T11

target structure (T11TS), against the wave number(k). The parameter values are
specified in Table 3.1.
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3.4.2 Analysis of spatial model with T11 target structure

(Ts 6= 0)

Proceeding in the same manner and taking spatiotemporal perturbations about the

interior homogenous steady-state Ê1 =
(
Ĝ, M̂ , ĈT , T̂β, Îγ

)
, we obtain the character-

istic equation for the spatial model, with the help of Jacobian matrix around Ê1,

as

λ5 + b1(k
2) λ4 + b2(k

2) λ3 + b3(k
2) λ2 + b4(k

2) λ+ b5(k
2) = 0, (3.19)

where

b1(k
2) = 8.36254 + 11k2,

b2(k
2) = 10.2299 + 32.0318k2 + 45k4,

b3(k
2) = 2.1142 + 29.3039k2 + 7.111k4 + 85k6,

b4(k
2) = 0.1281 + 3.21873k2 + 3.742k4 + 1.01592k6 + 74k8,

b5(k
2) = 0.0011 + 8.2257k2 + 3.427k4 + 3.4286k6 + 4.876k8 + 24k10.

The homogenous steady-state will become unstable due to spatiotemporal per-

turbation when at least one root of characteristic equation is positive. All diffu-

sion coefficients (Di
′
s, i = 1, 2, 3, 4, 5) and wave number (k2) are positive therefore

bi(k
2) > 0, (i = 1, 2, 3, 4, 5) always holds. This requires that at least one out of

following inequalities is violated, that is,

(i) m1(k
2) = b1(k

2)b2(k
2)b3(k

2) >
(
b3(k

2)
)2

+
(
b1(k

2)
)2
b4(k

2), (3.20)

and

(ii) m2(k
2) =

(
b1(k

2)b4(k
2)− b5(k2)

)(
b1(k

2)b2(k
2)b3(k

2)− (b3(k
2))2 − (b1(k

2))2

b4(k
2)
)
> b5(k

2)
(
b1(k

2)b2(k
2)− b3(k2)

)2
+ b1(k

2)
(
b5(k

2)
)2
, (3.21)

that is,

m1(k
2) = 2.5896× 104(3.87836 + 1.50986k2 + 2.29518k4 + 9.7175k6 + 6.1791k8 +

1.323k10 + k12) > 0

and

m2(k
2) = 1.64171× 105(2.60294 + 3.3661k2 + 1.3595k4 + 1.7524k6 + 2.7412k8 +

1.484k10 + 2.657k12 + 3.257k14 + 1.4335k16 + 2.9091k18 + 2.779k20 + k22) > 0
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The eigenvalues of the dispersion curve (characteristics polynomial (3.19)) of in-

terior homogenous steady-state Ê1 =
(
Ĝ, M̂ , ĈT , T̂β, Îγ

)
, cannot be determined an-

alytically. We plot the dispersion curve (see Fig. 3.2), which clearly shows that after

spatiotemporal perturbation the spatial dynamics remain stable, that is, Re(λ) <

0. Therefore, no possibility of occurring Turing bifurcation.
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Figure 3.2: Dispersion curve
(
m1(k

2) & m2(k
2)
)

for the system (3.6) with T11

target structure (T11TS), against the wave number(k). The parameter values are
specified in Table 3.1.

3.5 Higher order stability analysis

3.5.1 Higher order stability analysis without T11 target struc-

ture (Ts = 0)

In this section, we use higher order spatiotemporal perturbation term to check the

stability of the system [152], for this we have chosen with previous specific choice

of parameter values. The interior steady state points E∗ = (G∗,M∗, C∗T , T
∗
β , I

∗
γ)

for the non-spatial system corresponding to the system is a spatially homogenous

steady states point for the system. We assume that the homogenous steady-state

E∗ = (G∗,M∗, C∗T , T
∗
β , I

∗
γ) are locally stable for the non-spatial system. The spatial



60

perturbations p(x, y, t), q(x, y, t), r(x, y, t), m(x, y, t) and n(x, y, t) on the homoge-

nous steady-state G∗, M∗, CT
∗, Tβ

∗ and Iγ
∗ is defined by G = G∗ + p(x, y, t),

M = M∗+q(x, y, t), CT = CT
∗+r(x, y, t), Tβ = Tβ

∗+m(x, y, t), Iγ = Iγ
∗+n(x, y, t).

Expanding the non-spatial part by Taylor series expansion up to third order about

homogenous steady-state, we get following expressions:

pt = fG p+ fM q + fCT r + fTβ m+ fIγ n+
fGG

2
p2 +

fMM

2
q2 +

fCTCT
2

r2

+
fTβTβ

2
m2 +

fIγIγ
2

n2 + fGM pq + fMCT qr + fCTTβ rm+ fTβIγ mn+

fIγG np+D1 (pxx + pyy) ,

qt = gG p+ gM q + gCT r + gTβ m+ gIγ n+
gGG

2
p2 +

gMM

2
q2 +

gCTCT
2

r2

+
gTβTβ

2
m2 +

gIγIγ
2

n2 + gGM pq + gMCT qr + gCTTβ rm+ gTβIγ mn+

gIγG np+D2 (qxx + qyy) ,

rt = hG p+ hM q + hCT r + hTβ m+ hIγ n+
hGG

2
p2 +

hMM

2
q2 +

hCTCT
2

r2

+
hTβTβ

2
m2 +

hIγIγ
2

n2 + hGM pq + hMCT qr + hCTTβ rm+ hTβIγ mn+

hIγG np+D3 (rxx + ryy) ,

mt = uG p+ uM q + uCT r + uTβ m+ uIγ n+
uGG

2
p2 +

uMM

2
q2 +

uCTCT
2

r2

+
uTβTβ

2
m2 +

uIγIγ
2

n2 + uGM pq + uMCT qr + uCTTβ rm+ uTβIγ mn+

uIγG np+D4 (mxx +myy) ,

nt = vG p+ vM q + vCT r + vTβ m+ vIγ n+
vGG

2
p2 +

vMM

2
q2 +

vCTCT
2

r2

+
vTβTβ

2
m2 +

vIγIγ
2

n2 + vGM pq + vMCT qr + vCTTβ rm+ vTβIγ mn+

vIγG np+D5 (nxx + nyy) . (3.22)

Now, expressing the spatiotemporal perturbations p(x, y, t), q(x, y, t), r(x, y, t),

m(x, y, t) and n(x, y, t) as

p(x, y, t) = p(t) cos(kxx) cos(kyy),

q(x, y, t) = q(t) cos(kxx) cos(kyy),

r(x, y, t) = r(t) cos(kxx) cos(kyy),

m(x, y, t) = m(t) cos(kxx) cos(kyy),

n(x, y, t) = n(t) cos(kxx) cos(kyy),
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with zero-flux boundary condition, the system (3.22) reduces to

pt = fG p+ fM q + fCT r + fTβ m+ fIγ n+
fGG

2
p2 +

fMM

2
q2 +

fCTCT
2

r2 +

fTβTβ
2

m2 +
fIγIγ

2
n2 + fGM pq + fMCT qr + fCTTβ rm+ fTβIγ mn+

fIγG np−D1k
2p,

qt = gG p+ gM q + gCT r + gTβ m+ gIγ n+
gGG

2
p2 +

gMM

2
q2 +

gCTCT
2

r2 +

gTβTβ
2

m2 +
gIγIγ

2
n2 + gGM pq + gMCT qr + gCTTβ rm+ gTβIγ mn+

gIγG np−D2k
2q,

rt = hG p+ hM q + hCT r + hTβ m+ hIγ n+
hGG

2
p2 +

hMM

2
q2 +

hCTCT
2

r2 +

hTβTβ
2

m2 +
hIγIγ

2
n2 + hGM pq + hMCT qr + hCTTβ rm+ hTβIγ mn+

hIγG np−D3k
2r,

mt = uG p+ uM q + uCT r + uTβ m+ uIγ n+
uGG

2
p2 +

uMM

2
q2 +

uCTCT
2

r2 +

uTβTβ
2

m2 +
uIγIγ

2
n2 + uGM pq + uMCT qr + uCTTβ rm+ uTβIγ mn+

uIγG np−D4k
2m,

nt = vG p+ vM q + vCT r + vTβ m+ vIγ n+
vGG

2
p2 +

vMM

2
q2 +

vCTCT
2

r2 +

vTβTβ
2

m2 +
vIγIγ

2
n2 + vGM pq + vMCT qr + vCTTβ rm+ vTβIγ mn+,

vIγG np−D5k
2n, (3.23)

where k2 = k2x + k2y. It is clear from system (3.23) that the growth or decay of

first order perturbation terms depends on the second order perturbation terms.

Further, we need the dynamical system for second-order perturbation terms involved

in (3.23). Multiplying the first equation by 2p, second equation by 2q, third equation

by 2r, fourth equation by 2m and fifth equation by 2n respectively in (3.23) and

neglecting of third order perturbation term, we have the dynamical equation of
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second order perturbations as

(
p2
)
t

= 2fGp
2 + 2fMpq + 2fCT pr + 2fTβpm+ 2fIγpn− 2D1k

2p2,(
q2
)
t

= 2gGpq + 2gMq
2 + 2gCT qr + 2gTβqm+ 2gIγqn− 2D2k

2q2,(
r2
)
t

= 2hGpr + 2hMrq + 2hCT r
2 + 2hTβrm+ 2hIγrn− 2D3k

2r2,(
m2
)
t

= 2uGpm+ 2uMmq + 2uCTmr + 2uTβm
2 + 2uIγmn− 2D4k

2m2,(
n2
)
t

= 2vGpn+ 2vMnq + 2vCTnr + 2vTβnm+ 2vIγn
2 − 2D5k

2n2,

(pq)t = fMq
2 + gGp

2 + (fG + gM)qp+ fCT qr + gCT pr + fTβqm+ gTβmp

+ fIγqn+ gIγnp− k2(D1 +D2)pq,

(qr)t = hMq
2 + gCT r

2 + (gM + hCT )qr + hGqp+ hTβqm+ hIγqn+ gGrp

+ gTβrm+ gIγrn− k2(D2 +D3)rq,

(rm)t = uCT r
2 + hIγm

2 + (uTβ + hCT )rm+ uIγrn+ uGpr + uMqr + hGmp

+ hMqm+ hIγnm− k2(D3 +D4)rm,

(mn)t = vTβm
2 + uIγn

2 + (vIγ + uTβ)mn+ vGpm+ vMqm+ vCT rm+ uGnp

+ uMqn+ uCTnr − k2(D4 +D5)mn,

(np)t = fIγn
2 + vGp

2 + (vIγ + fG)pn+ fMqn+ fCT rn+ fTβmn+ vMqp

+ vCT rp+ vTmp− k2(D5 +D1)np. (3.24)

The truncation of third and higher order terms in Taylor series expansion and

neglecting third and higher order perturbation terms during derivation of dynamical

equations (3.23 – 3.24) leads to a closed system of equations for p, q, r, m, n, p2, q2,

r2, m2, n2, pq, qr, rm, mn, np, otherwise, one cannot avoid infinite hierarchy of

dynamical equations for perturbation terms. Truncation of higher order terms does

not affect the understanding of the role of leading order non-linearity. Applicability

and significance of the analysis can be justified with the perturbation terms up

to order three for the system (2.12) with the suitable choice of parameter values.

The dynamical equations (3.23–3.24) can be written into a compact matrix form as

follows:

dX

dt
= BX, (3.25)

where X = [p, q, r, m, n, p2, q2, r2, m2, n2, pq, qr, rm, mn, np]
T

and
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B =



b11 fM fCT fTβ fIγ
fGG
2

fGG
2

fCTCT
2

fTβTβ
2

fIγIγ
2

fGM fMCT fCTTβ fTβIγ fIγG
gG b22 gCT gTβ gIγ

gGG
2

gMM

2

gCTCT
2

gTβTβ
2

gIγIγ
2

gGM gMCT gCTTβ gTβIγ gIγG

hG hM b33 hTβ hIγ
hGG
2

hMM

2

hCTCT
2

hTβTβ
2

hIγIγ
2

hGM hMCT hCTTβ hTβIγ hIγG
uG uM uCT b44 uIγ

uGG
2

uMM

2

uCTCT
2

uTβTβ
2

uIγIγ
2

uGM uMCT uCTTβ uTβIγ uIγG
vG vM vCT vTβ b55

vGG
2

vMM

2

vCTCT
2

vTβTβ
2

vIγIγ
2

vGM vMCT vCTTβ vTβIγ vIγG
0 0 0 0 0 b66 0 0 0 0 2fM 0 0 0 2fIγ
0 0 0 0 0 0 b77 0 0 0 2gG 2gCT 0 0 0
0 0 0 0 0 0 0 b88 0 0 0 2hM 2hTβ 0 0
0 0 0 0 0 0 0 0 b99 0 0 0 2uCT 2uIγ 0
0 0 0 0 0 0 0 0 0 b1010 0 0 0 2vTβ 2vG
0 0 0 0 0 gG fM 0 0 0 b1111 fCT 0 0 gIγ
0 0 0 0 0 0 hM gCT 0 0 hG b1212 gTβ 0 0
0 0 0 0 0 0 0 uCT hIγ 0 0 uM b1313 hIγ 0
0 0 0 0 0 0 0 0 vTβ uIγ 0 0 vcT b1414 uG
0 0 0 0 0 vG 0 0 0 fIγ vM 0 0 fTβ b1515


with

b11 = fG − D1k
2, b22 = gM − D2k

2, b33 = hCT − D3k
2, b44 = uTβ − D4k

2, b55 =

vIγ −D5k
2, b66 = 2 (fG −D1k

2), b77 = 2 (gM −D2k
2), b88 = 2 (hCT −D3k

2), b99 =

2
(
uTβ −D4k

2
)
, b1010 = 2

(
vIγ −D5k

2
)
, b1111 = fG + gM − k2 (D1 +D2), b1212 =

gM + hCT − k2 (D2 +D3), b1313 = hCT + uTβ − k2 (D3 +D4), b1414 = uTβ + vIγ −
k2 (D4 +D5), b1515 = fG + vIγ − k2 (D1 +D5).

We take the solution of system (3.25) of the form X(t) ∼ eλt, where λ′s ≡ λ(k),

are the eigenvalues of B and λ′s are the solution of the following equation

|B − λI| = 0, (3.26)

where I is the 15 × 15 unit matrix. Numerically, using the parameter values given

in Table 3.1, all the eigenvalues of the matrix B are negative, namely, −13.86,

−7.06007, −7.032, −6.93, −0.623962, −0.442052, −0.321919, −0.311981, −0.260143,

−0.204, −0.130072, −0.1 11939, −0.102, −0.01, and −0.00993845. Therefore, the

system is stable about E∗ = (G∗,M∗, C∗T , T
∗
β , I

∗
γ). However, glioma free steady state

point is unstable since the eigenvalues of B are −13.86, −7.032, −6.9375, −6.93,

−0.6616, −0.3383, −0.3308, −0.323803, −0.204, −0.102, −0.0950034, −0.015, 0.0139933,

−0.0075, and 0.00699664 (one positive) about E2

(
0,Mmax, 0,

s1
µ2
, 0
)

.
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3.5.2 Higher order stability analysis with T11 target struc-

ture (Ts 6= 0)

Proceeding in the same manner as above subsection and using the parameter values

which are given in Table 3.1, all the eigenvalues of the matrix B are negative, that

is, −13.86, −7.05947, −7.032, −6.93, −2.38354, −1.32126, −1.20135, −1.19177,

−0.258942, −0.204, −0.129487, −0.111597, −0.102, −0.0191933, and −0.00958105.

Therefore, the system is stable about Ê1 =
(
Ĝ, M̂ , ĈT , T̂β, Îγ

)
. The system is also

stable about glioma free steady state ET1

(
0, M̃ , Ts

µ1
, s1
µ2
, b2Ts
µ1µ3

)
, since the eigenvalues

are −13.86, −7.032, −6.9375, −6.93, −2.39366, −1.22502, −1.20433, −1.19683,

−0.204, −0.130193, −0.102, −0.0563853, −0.0281927, −0.015, and −0.0075.

3.6 Numerical simulation

The spatiotemporal model (3.6) is solved numerically in one and two dimensional

space with the help of finite difference method for spatial derivatives. Euler method

is utilized for the reaction part and standard five point finite difference method is uti-

lized for the diffusion part. The numerical integration of the reaction-diffusion par-

tial differential equations (3.6) is employed by using splitting method. The value of

time step and space step have been chosen sufficiently small for avoiding the numer-

ical artifacts, so we have taken time step ∆t = 0.002 and space step ∆x = ∆y = 1.

We perform numerical simulations over the zero-flux boundary condition with do-

main size in one dimension [0, 1000] and 160× 160 units in two-dimensional spaces.

The initial density distribution of glioma, macrophage, cytotoxic T-lymphocyte,

TGF - β and IFN - γ are chosen in such a way that they are relevant biologically.

The biological motivation of this work is to study the heterogeneous patterns of

glioma cells and the immune system components, namely, macrophages and cyto-

toxic T-lymphocytes.

Figure 3.3 shows the snapshots of the numerical simulations of glioma density

distribution over space (1D). A periodic temporal behavior together with a smooth

spatial glioma distribution is observed for times t=50, 100, 150, 200, 300 and 400

days respectively (Figures 3.3(a–f)). Figure 3.4 shows similar dynamics when nu-
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Figure 3.3: The glioma cells density G(t, x) at time T = 50, 100, 150, 200, 300 and
400 days respectively, without T11TS in one dimensional space. Values of D1, D2,
D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter values are specified in
Table 3.1.
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Figure 3.4: The glioma cells density G(t, x, y) at time T = 50, 100, 150, 200, 300 and
400 days respectively, without T11TS in two dimensional space. Values of D1, D2,
D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter values are specified in
Table 3.1.
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merical simulation of glioma densities in two dimensional space is considered for

times t=50, 100, 150, 200, 300 and 400 days respectively. In the beginning, the

glioma spreads in small mass (Figures 3.4(a, b)) and then turns aggressive to invade

the entire domain (Figures 3.4(c–f)). At time T = 400, the initial clumps of glioma

cells reaches approximate at the boundary. We observe that the boundary domain

represents a zone of solid tissue that the gliomas density are powerless to infiltrate

due to zero-flux boundary conditions and hence begin to move in the backward

direction. The immune components fail to control the growth of malignant gliomas.

Figure 3.5 shows the snapshots of numerical simulation of density of macrophages

in one dimension space. Solitary traveling patches of macrophage density are seen

in Figures 3.5(a–f). The spread of the macrophages over space is via propagation

of a traveling pulse, which is nonstationary and propagates with constant speed.

However, the spread of macrophages are restricted due to high aggressive spread

of gliomas. In this case, the invasiveness is absent both in front of the pulse and

its wake, which means that invasion of macrophages have failed, implying that

macrophages have failed to control the growth and spread of malignant gliomas.

Figure 3.6 shows the snapshots of macrophage spread in 2D spaces at t=50, 100,

150, 200, 300 and 400 days respectively.

The snapshots in Figure 3.7 describes the one dimensional numerical simulations

of the cytotoxic T-lymphocytes density and in Figure 3.8 depicts the two dimensional

numerical simulations of the cytotoxic T-lymphocytes density at t=50, 100, 150, 200,

300 and 400 days respectively. It is clear that the rate of flow of malignant gliomas

is faster than the flow of cytotoxic T-lymphocytes. Therefore, the immune response

is too weak to control the growth of untreated gliomas.

Figure 3.9 shows the spatiotemporal dynamics of malignant gliomas after the

administration of T11 target structure. Figure 3.9(a) is the snapshot of the spread

of glioma, just two days after the administration of the immunotherapeutic drug T11

target structure. After t=10 days, the spread of malignant gliomas is curbed by the

drug (Figure 3.9(b)). Figures 3.9(c) and 3.9(d) show the snapshots of spatiotemporal

spread of the malignant gliomas after the administration of T11 target structure

respectively, in the span of six days each. Figure 3.10 shows the snapshots of the

spread of malignant gliomas after the second (Figure 3.10(a,b,c)) and third (Figure
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Figure 3.5: The macrophage cells density M(t, x) at time T = 50, 100, 150, 200, 300
and 400 days respectively, without T11TS in one dimensional space. Values of D1,
D2, D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter values are specified
in Table 3.1.
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Figure 3.6: The macrophage cells density M(t, x, y) at time T = 50, 100, 150, 200,
300 and 400 days respectively, without T11TS in two dimensional space. Values
of D1, D2, D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter values are
specified in Table 3.1.
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Figure 3.7: The cytotoxic T-lymphocytes cells density CT (t, x) at time T = 50, 100,
150, 200, 300 and 400 days respectively, without T11TS in one dimensional space.
Values of D1, D2, D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter values
are specified in Table 3.1.
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Figure 3.8: The cytotoxic T-lymphocytes cells density CT (t, x, y) at time T =
50, 100, 150, 200, 300 and 400 days respectively, without T11TS in two dimensional
space. Values of D1, D2, D3, D4, D5 are 4, 1, 2, 1, 3 respectively. Other parameter
values are specified in Table 3.1.
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Figure 3.9: The glioma cells density G(t, x, y) with T11TS. The parameter values
are specified in Table 3.1.

3.10(d,e,f)) administration of T11 target structure respectively, with increasing value

of diffusion coefficient (D1 = 4, 7, 10). In both the cases, the malignant gliomas fail

to spread in the domain, implying that T11 target structure succeeded in controlling

the growth of malignant gliomas.

3.7 Conclusion

A spatiotemporal mathematical model of interaction between malignant gliomas

and immune system, namely, macrophages, cytotoxic T-lymphocytes, IFN-γ and

TGF-β is studied in this chapter. To study the spatial aspect of the system, the

original model studied by Banerjee et. al. [12; 79; 80] is expressed as a reaction-

diffusion equation. The system is investigated before and after the administration
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Figure 3.10: Effect of diffusion on the glioma cells density G(t, x, y) after administra-
tion of T11 target structure. The upper panel is evaluated at T = 213 with diffusion
coefficient (D1) of gliomas as 4, 7, 10 respectively. The lower panel is evaluated
at T = 225 with diffusion coefficient (D1) of gliomas as 4, 7, 10 respectively. The
parameter values are specified in Table 3.1.

of the immunotherapeutic drug T11 target structure for better understanding of the

growth and invasion of glioma population.

Though extensive analytical study has been done on the proposed reaction-

diffusion model, it is difficult to predict its biological implications unless the results

are subjected to numerical data. Using the numerical data from Table 3.1, it is

observed that no Turing zone exists for both the cases T11 = 0 and T11 6= 0, imply-

ing that the system will have no Turing bifurcation and hence no Turing pattern.

Without the administration of T11 target structure, the non-Turing patterns for

gliomas indicate that the body’s own defense mechanism, that is, the natural im-

mune responses is too weak to control the growth and spread of malignant gliomas,

which leads to glioma invasion of the entire domain. This aggressive motility of the

gliomas restrict the propagation of the immune components, namely, macrophages

and cytotoxic T-lymphocytes. After the administration of T11 target structure,

the glioma cell proliferation is controlled by activating the phagocytic activity of

macrophages as well as cytotoxic efficacy of the cytotoxic T-lymphocytes.
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The spatiotemporal study of the effect of the immunotherapeutic drug T11 target

structure on malignant gliomas is relatively new and our study show that it may be

a promising therapeutic method to eradicate malignant gliomas. We sincerely hope

that mathematical technique, numerical simulations and biological interpretations

presented in this chapter would be helped to immunotherapy research with T11

target structure.



Chapter 4

Spatial aspects of hunting

cooperation in predators with

Holling type II functional response

4.1 Introduction

Spatial patterns formation in nature are ubiquitous, with illustrations like zebra

stripe patterns on animals skin, Turing patterns in a coherent quantum field, or

diffusive patterns in predator–prey models [7; 8; 122; 157]. The spatial factors of

species interplay has been recognized as a vital component as how ecological com-

munities are created and ecological interplay occurs over a broad limit of temporal

and spatial scale [51]. Spatial population distribution is of major importance in the

study of ecological systems [98; 104; 158]. Mechanisms and scenarios characteriz-

ing the spatial population distribution of ecological species in spatial habitat are a

focus of special interest in population dynamics. The spatial population distribu-

tion is affected by the proliferation capacity of the species and interactions between

individuals [184].

Spatial pattern formation of predator–prey systems have started based upon the

elementary work of A. M. Turing on morphogenesis [179]. The spatial predator–prey

systems are studied to comprehend the role of random mobility of the prey and

predator, inside their residence. A fully comprehensive elucidation of the spatial

75
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impact on ecological species interplays can be observed in the book, written by

Okubo et.al. [125].

Spatial mathematical model is an appropriate tool for investigating fundamental

mechanism of complex spatiotemporal population dynamics. An appropriate math-

ematical structure to explain the spatial aspect of population dynamics is specified

by reaction-diffusion equations. Reaction-diffusion models were initially applied to

describe the ecological pattern formation by Segel and Jackson in 1972 [157], based

on the primary work of Turing [179]. Over the last several decades, a lot of arti-

cles have been published on the spatial dynamics of predator–prey model based on

reaction-diffusion equations and different types of patterns have emerged for these

models [8; 9; 10; 15; 18; 70; 104; 105; 114; 117; 120; 125; 141; 142; 157; 187; 193; 197].

Cooperative behavior can stimulate a relation among the population density

and per capita population growth rate [45; 162]. Ecologists have accepted several

mechanisms for stimulating cooperative behavior in prey, namely cooperating repro-

duction, foraging capacity, etc. The cooperative behavior in prey may be generated

by predation or by procedure inborn to the prey lifespan history [162]. Theory has

pervasively pay attention to cooperative behavior in preys [2; 37; 54; 66; 67; 116;

150; 185; 195] and cooperative behavior in predators are less studied and poorly

understood [24; 48; 183], in particular when space is considered explicitly. A mathe-

matical model of prey and predator population interplay with cooperative behavior

in predators through the system of nonlinear ordinary differential equations has been

studied in non-spatial domain by Alves et.al. [5]. Motivated from their work, we

modify and extend the model in a spatial domain to study its spatial dynamics.

The objective of this current investigation is to create deep intuition into methods

of spatial pattern formation in predator–prey model with cooperative behavior in

predators. Here, we investigate how distinct intensity of cooperation rate, basic

reproduction number of the predator and diffusion coefficients affect the spatial

patterns of predator–prey interaction.
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4.2 Model description

By incorporating diffusion and Holling type II functional response in the predator–

prey system with cooperative behavior in predators [5], we obtain the following

diffusive predator–prey model as

∂X

∂t′
= rX

(
1− X

K

)
− (λ+ aY )XY

1 + h1 (λ+ aY )X
+ d1∇2X,

∂Y

∂t′
=

e (λ+ aY )XY

1 + h1 (λ+ aY )X
−mY + d2∇2Y, (4.1)

where X(t
′
) and Y (t

′
) are the densities of prey and predator population at time t

′

and location (X1, X2), respectively. Here, r is the intrinsic growth rate of the prey

and K is its carrying capacity. We consider a Holling type II functional response of

the form

(λ+ aY )X

1 + h1 (λ+ aY )X
, (4.2)

which depends on both prey and predator densities, thereby reflecting hunting coop-

eration (handling-driven). The parameter λ (λ > 0) is the attack rate per predator

and prey, a (a > 0) describes the predator cooperation in hunting (aY is coop-

eration term) and h1 is the predator’s handling time of a prey. The parameter e

is conversion efficiency and m is the per capita mortality rate of predators. The

non-negative constants d1 and d2 are the diffusion coefficients for prey and predator

densities respectively.

We now non-dimensionalized the model (4.1) by introducing the dimensionless

variables

u =
eλ

m
X, v =

λ

m
Y, t = mt

′
, x = X1

√
m

d2
, y = X2

√
m

d2
,

and dimensionless parameters

h =
m

e
h1, σ =

r

m
, C =

eλ

m
K, α =

am

λ2
, D =

d1
d2
,

and obtain the modified model as

∂u

∂t
= σu

(
1− u

C

)
− (1 + αv)uv

1 + h (1 + αv)u
+D ∇2u,

∂v

∂t
=

(1 + αv)uv

1 + h (1 + αv)u
− v +∇2v, (4.3)
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where the positive constant D is the ratio of diffusion coefficients of prey and preda-

tor densities and∇2
(

= ∂2

∂x2
+ ∂2

∂y2

)
is the usual Laplacian operator in two dimensional

space R = (x, y). To make certain that spatial patterns are governed by reaction-

diffusion equations, model (4.3) is to be analyzed with the following non-zero initial

conditions

2D : u(x, y, 0) > 0, v(x, y, 0) > 0, (x, y) ∈ Ω = [0, L]× [0, L] (4.4)

and zero-flux (Neumann) boundary conditions

∂u

∂N
=

∂v

∂N
= 0, (4.5)

where L denotes the size of the system in the direction of u and v. N is outward

unit normal on the boundary ∂Ω. Condition (4.5) implies that no individual species

leave the domain.

4.3 Analysis of the non-spatial model

In absence of diffusion the equilibrium points of the system are given by

σu
(

1− u

C

)
− (1 + αv)uv

1 + h (1 + αv)u
= 0,

(1 + αv)uv

1 + h (1 + αv)u
− v = 0. (4.6)

Clearly (0, 0), (C, 0) and (u∗, v∗) are the steady state solutions, where u∗ = 1
(1−h)(1+αv∗)

and v∗ is the solution of

A0v
3 + A1v

2 + A2v + A3 = 0, (4.7)

where

A0 = (h− 1)2Cα2,

A1 = 2 (h− 1)2Cα,

A2 = (h− 1)C (h− 1 + σα),

A3 = σ (1 + hC − C).

Note: Clearly, A0 and A1 are positive. We use Descartes’ rule of sign to find the

number of positive roots of equation (4.7), we get the following variations in signs
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of cubic polynomial are as follows:

+ + + + → 0 positive roots

+ + + – → 1 positive roots

+ + – + → 2 positive roots

+ + – – → 1 positive roots.

Therefore, the condition for one positive roots is A3 < 0 imply h < 1− 1
C

, which is

the condition for uniqueness of (u∗, v∗).

The existence of non zero equilibrium point implies h < 1. The variational

matrix about the equilibrium point (u∗, v∗) is given by σ − 2σu
C
− v(1+αv)

(1+h(u+αuv))2
−u(1+2αv+hu(1+αv)2)

(1+h(u+αuv))2

v(1+αv)
(1+h(u+αuv))2

−1−(−1+h)h(u+αuv)2+u(1+2αv−2h(1+αv))
(1+h(u+αuv))2


(u∗,v∗)

.

(i) At (0, 0), the variational matrix is

J1 =

[
σ 0

0 −1

]
,

whose eigenvalues are −1 and σ(> 0). Hence, the system is unstable at the origin.

(ii) At (C, 0), the variational matrix is

J2 =

[
−σ − C

1+hC

0 C(1−2h)−(h−1)hC2−1
(1+hC)2

]
,

whose eigenvalues are −σ and −1+ C
1+hC

. Hence, the system is asymptotically stable

if C
1+hC

< 1.

(iii) At (u∗, v∗), variational matrix is

J∗ =

 −(−1 + h)2v∗(1 + v∗α) + (2+(−1+h)C(1+v∗α))σ
(−1+h)C(1+v∗α)

−1+(−2+h)v∗α
1+v∗α

(−1 + h)2v∗(1 + v∗α) − (−1+h)v∗α
(1+v∗α)

 ,
and the corresponding characteristic equation is

λ2 +B1λ+B2 = 0,
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where

B1 = −2σ+(−1+h)C((−1+h)v∗(−1+h(1+v∗α)2−α(−1+v∗(2+v∗α)))−(1+v∗α)σ)
(−1+h)C(1+v∗α)

,

B2 = (−1 + h)2v∗(1 + v∗α) + v∗α(−2−(−1+h)C(1+v∗α))σ
C(1+v∗α)2

.

By Routh-Hurwitz criterion, system (4.3) will be asymptotically stable about

(u∗, v∗) if for all Bi > 0 (i = 1, 2). In the numerical simulation section, the specific

steady state under study has been mentioned.

4.4 Analysis of the spatiotemporal model

Interior equilibrium point (u∗, v∗) of non-spatial system (4.3) is spatially homogenous

steady state, that is, constant in space and time for the reaction-diffusion system

(4.3) (spatiotemporal model). We assume that (u∗, v∗) is stable in non-spatial sys-

tem (4.3) which means the spatially homogenous steady state is stable with respect

to spatially homogenous perturbations. Though the diffusion is often consider as

a stabilizing process, it is a well known fact that diffusion can make a spatially

homogenous steady state linearly unstable (Turing instability) with respect to het-

erogenous perturbations in a system of two interacting species [111; 157; 179]. The

condition for Turing instability may be obtained by introducing a small heterogenous

perturbation of the homogenous steady state as follows:

u (t, x, y) = u∗ + ε1 exp (λkt) cos (kxx) cos (kyy) ,

v (t, x, y) = v∗ + ε2 exp (λkt) cos (kxx) cos (kyy) , (4.8)

where ε1 and ε2 are two non-zero reals and k = (kx, ky), such that k2 =
(
k2x + k2y

)
,

is the wave number.

Substituting (4.8) into (4.3) and then linearizing it about interior equilibrium

point (u∗, v∗), we obtain the variational matrix as −(−1 + h)2v∗(1 + v∗α) + (2+(−1+h)C(1+v∗α))σ
(−1+h)C(1+v∗α)

−Dk2 −1+(−2+h)v∗α
1+v∗α

(−1 + h)2v∗(1 + v∗α) − (−1+h)v∗α
(1+v∗α)

− k2

 .
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The corresponding characteristic equation is

λ2 + C1(k
2)λ+ C2(k

2) = 0, (4.9)

where

C1(k
2) =

(
1 +D

)
k2 +

(−1+h)2v∗
(
−1+α−2v∗α−v∗2α2+h(1+v∗α)2

)
C+σ
(
−2−(−1+h)(1+v∗α)C

)
(−1+h)(1+v∗α)C ,

C2(k
2) =

Dk2
(
(−1+h)v∗α+k2(1+v∗α)

)
1+v∗α

+

(−1+h)3C(1+k2)v∗(1+v∗α)3−
(
2+(−1+h)C(1+v∗α)

)(
(−1+h)v∗α+k2(1+v∗α)

)
σ

(−1+h)C(1+v∗α)2
.

By Routh-Hurwitz criterion, the system (4.3) will be stable about (u∗, v∗) if

C1(k
2) > 0 and C2(k

2) > 0. As the parameters D and k2 are all positive and
(−1+h)2v∗

(
−1+α−2v∗α−v∗2α2+h(1+v∗α)2

)
C+σ
(
−2−(−1+h)(1+v∗α)C

)
(−1+h)(1+v∗α)C > 0 (by the stability of

the non-spatial model of (4.3)), C1(k
2) > 0 is always positive. Therefore, the condi-

tion for diffusive instability is C2(k
2) < 0.

The polynomial function C2(k
2) has a minimum for some value of k, say kmin,

where

k2min =
σ
(
2 + (−1 + h)(1 + v∗α)C

)
− (−1 + h)2v∗

(
Dα− (1 + v∗α)2 + h(1 + v∗α)2

)
C

2CD(h− 1)(1 + v∗α)
.

For this minimum value of k, Turing instability will occur when C2(k
2
min) < 0.

Therefore, substituting k2min in C2(k
2), we get the sufficient condition for Turing

instability as

2σ − C(h− 1)
(
D(h− 1)v∗α + (1 + v∗α) ((h− 1)2v∗(1 + v∗α)− σ)

)
C(h− 1)(1 + v∗α)

−

2C(h− 1)
√
D(1 + v∗α)

√
C(h−1)2v∗(1+v∗α)3+v∗α(−2−C(h−1)(1+v∗α))σ

C(1+v∗α)2

C(h− 1)(1 + v∗α)
> 0. (4.10)

The interval of the wave number for which Turing instability take place is (k−, k+)

and in this interval, we have C2(k
2) < 0, where

k− =
σ

CD(h− 1)(1 + v∗α)
− A

2D(1 + v∗α)
− 1

2D

√
B2 + 4CD(h− 1)2v∗E

C2(h− 1)2(1 + v∗α)2
,

k+ =
σ

CD(h− 1)(1 + v∗α)
− A

2D(1 + v∗α)
+

1

2D

√
B2 + 4CD(h− 1)2v∗E

C2(h− 1)2(1 + v∗α)2
,



82

and

A = (2ασ + C(h− 1)(1 + v∗α) (−(h− 1)(1 + v∗α)2 + ασ)),

B = C(h− 1) (D(h− 1)v∗α + (1 + v∗α) ((h− 1)2v∗(1 + v∗α)− σ))− 2σ,

E = 2ασ + C(h− 1)(1 + v∗α) (−(h− 1)(1 + v∗α)2 + ασ).

4.5 Numerical simulations

We will now investigate the numerical results of both non-spatial as well as spa-

tiotemporal models, namely (4.3). For numerical simulation, we set σ and h as

σ = 10.0, h = 0.1, and consider C and α, as controlling parameters. For these val-

ues of parameters, the positive equilibrium points are (0, 0), (0.8, 0), (0.5909, 1.5442)

and (0.6287, 1.3459). The steady state (0.5909, 1.5442) is stable and (0.6287, 1.3459)

is unstable. Hence, throughout our study in the spatiotemporal domain, we have

considered the stable steady state (0.5909, 1.5442). Figure 4.1 shows the dynamics

of preys and predators in the non-spatial domain.

Please note that the non-dimensional parameter C = eλ
m
K, comprising of the

dimensional carrying capacity, attack rate, per capita mortality rate of predators and

the conversion efficiency, can also be interpreted as the basic reproduction number of

the predator, which is defined as the average number of offspring produced by a single

predator during its life time, when introduced into the prey population at carrying

capacity. If C > 1, then the predator population survives and coexist with prey (see

the upper panel of Figure 4.1). However, if C < 1, then the predators go extinct

(see the lower panel of Figure 4.1). Both of these results are true for α = 0, that

is, without hunting cooperation. When C > 1 and with increasing α, the predator

density increases and the prey density decreases due to predation pressure. With

small values of cooperation rate (α = 0.05, 0.1, 0.4), predator population increases

due to better forage on prey and consequently the prey population decreases (see

the upper panel of Figure 4.1). However, the predator population decreases with

large values of cooperation rate (α = 0.7, 1.2) due to decrease in prey density (see

the upper panel of Figure 4.1). If C < 1 and the cooperation coefficient (α = 0.4) is

small, then the predator population go to extinct as the prey population is too small

to sustain them. However, for large value of cooperation rate (α = 0.7, 1.2), the
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Figure 4.1: Dynamics of preys(u) and predators(v) in the non-spatial domain of the
model (4.3) for fixed parameters σ = 10.0, h = 0.1 and different parameter values
of hunting cooperation rates (α) which are mentioned in figures. Upper panel for
C=1.2 and lower panel for C=0.8.

predator survives due to hunting cooperation behavior in predators (see the lower

panel of Figure 4.1).

We now simulate the spatiotemporal model in two dimensional space with the

help of finite difference scheme for spatial derivatives. The forward Euler’s numerical

method is used for the non-spatial part of model (4.3) and general finite difference

scheme of five point is used for the spatial part. The reaction-diffusion partial dif-

ferential equations, given by (4.3), is numerically solved by using splitting method

[49; 97]. The numerical values for the step sizes of time and space have been selected

adequately small for avoiding the numerical artifacts. In this study, we have em-

ployed statistically uncorrelated Gaussian white noise perturbation in space, which
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is mathematically denoted in two dimensional case as

u(xi, yj, 0) = u∗ + γ1εij,

v(xi, yj, 0) = v∗ + γ2ηij, (4.11)

where γ1 and γ2 are very small real numbers and εij and ηij are statistically uncorre-

lated Gaussian white noise perturbations with zero mean and fixed variance in two

dimensional space.

For spatiotemporal model, we perform all the numerical simulations of the system

(4.3) over the non-zero initial condition and zero-flux boundary conditions, in two

dimensional spatial domain. The domain size is 70× 70 with time-step ∆t = 0.001

and space-step ∆x = ∆y = 0.5. The parameter values of σ and h remain same

(σ = 10, h = 0.1) and C, α are used as the controlling parameter (just like the

non-spatial case).

Note: The Neumann zero-flux conditions are placed at boundary of the numer-

ical domain in two dimensional problems. The size of the domain is chosen large

enough so that the impact of the boundaries has been kept as small as possible

during the simulation time.

We now demonstrate diffusive induced instability (Turing instability) and the

corresponding pattern formation for the system (4.3). Although, the sufficient con-

ditions for Turing instability were obtained analytically in previous section, whether

they are satisfied with our corresponding set of parameter values, is yet to be tested.

In order to do so, we sketch the Turing instability condition (4.10) for distinct val-

ues of D (other parameter values are fixed, namely, σ = 10.0, α = 0.57, C = 0.8,

h = 0.1). The left snapshot of Figure 4.2 shows the zone for the emergence of

spatial patterns corresponding to Turing instability condition against the ratio of

diffusion coefficients (D). We observe that the sufficient condition of the diffusive

instability, that is, equation (4.10) holds, when D is adequately large, starting from

D = 32.76 (see the left panel of Figure 4.2). The spatial dispersion curve for this

particular model is shown in the right snapshot of Figure 4.2, and the dispersion re-

lation is represented by the real part of the largest eigenvalues of the spatial model.

The corresponding plot of real part of largest eigenvalue Re(λ) against the wave

number (k) is shown in the right panel of Figure 4.2. The real part of largest
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Figure 4.2: Emergence of spatial pattern corresponding to Turing instability condi-
tion; Characterization of the dispersal relation for D=40.

eigenvalue Re(λ) > 0 holds, the wave number (k) fit in the interval (k−, k+), that

is, (0.7799, 1.6925). Also, we obtain the controlling parameter space for Turing

instability via sufficient condition, which is shown in Figure 4.3.

controlling parameters zone

0.5 1.0 1.5 2.0 2.5 3.0 3.5
C

0.5

1.0

1.5

2.0

α

Figure 4.3: Controlling parameters space for Turing patterns corresponding to Tur-
ing instability condition in the region.

Figure 4.4 shows the non-Turing spatial distribution of densities of the prey

and predator population when C > 1 at time t = 500 with different cooperation

rates (α). With increase in the hunting cooperation rate (α = 0.7, 1.2), the prey
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density always decline (Figure 4.4(a,c)). With high hunting cooperation rates, the

predator population succeed in killing more preys, thereby resulting in the decrease

of spread of prey population and hence their population also decreases due to non-

availability of preys (Figure 4.4(b,d)). Figure 4.5 shows the Turing patterns for prey

and predator population distributed over two dimensional spatial domain obtain at

t = 500, for C > 1 and different values of α. The patterns arising in the large time

limit are shown in the Figure 4.5, which are typical results of Turing instability,

namely the spot (patch) like patterns.
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Figure 4.4: Non-Turing spatial distribution of densities of prey (left column) and
predator (right column) when C > 1 at time t = 500 with different cooperation
rates (α). Other parameter values are σ = 10.0, C = 1.2, h = 0.1, D = 1 and initial
distribution is given by (4.11).

Figure 4.6 shows the Non-Turing spatial distribution of densities of the prey and

predator population when C (= 0.8) < 1 at time t = 500 with different cooperation
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α = 0.7

0 20 40 60
Space (x)

0

10

20

30

40

50

60

70

S
pa

ce
 (

y)

(a)

0.3

0.35

0.4

0.45

0.5

0 20 40 60
Space (x)

0

10

20

30

40

50

60

70

S
pa

ce
 (

y)

(b)

0.5

1

1.5

2

2.5

3

3.5

4

α = 1.2

0 20 40 60
Space (x)

0

10

20

30

40

50

60

70

S
pa

ce
 (

y)

(c)

0.3

0.35

0.4

0 20 40 60
Space (x)

0

10

20

30

40

50

60

70

S
pa

ce
 (

y)

(d)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.5: Turing spatial distribution of densities of prey (left column) and predator
(right column) when C > 1 at time t = 500 with different cooperation rates (α).
Other parameter values are σ = 10.0, C = 1.2, h = 0.1, D = 40 and initial
distribution is given by (4.11).

rates (α). Other parameter values are σ = 10.0, h = 0.1 and initial distribu-

tion is given by (4.11). For small values of cooperation rates (α = 0.0, 0.4), the

predator population go extinct (no figure is drawn as the spatial scale is negligible),

which means that the predator population can not be sustained even if the hunting

cooperation is present (but small). However, for α = 0.7, 1.2, the hunting cooper-

ation behavior in predators is large enough to make their survival possible (Figure

4.6(b,d)). For all the values of hunting cooperation coefficients, the prey population

exist with steady decline (see non-spatial results in Figure 4.1, and spatial results

in the Figure 4.6(a,c)). Figure 4.7 shows the Turing patterns for prey and predator

population distributed over two dimensional spatial domain obtain at t = 500 and
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C < 1 and also different values of α. The patterns arising in the large time limit are

shown in the Figure 4.7. For some higher values of hunting cooperation coefficient

(α = 0.7, 1.2), both prey and predators population coexist and form the spatial

pattern of stripes type.
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Figure 4.6: Non-Turing spatial distribution of densities of prey (left column) and
predator (right column) when C < 1 at time t = 500 with different cooperation
rates (α). Other parameter values are σ = 10.0, C = 0.8, h = 0.1, D = 1 and initial
distribution is given by (4.11).

In Figure 4.8, we have illustrated the density distributions of prey (left column)

and predator (right column) which covers three kinds of spatial pattern namely

spots, mixed (spots-stripes) and stripes. The first two snapshots (upper panel)

in Figure 4.8 show the two dimensional stationary diffusive patterns of the model

(4.3) at time t = 500 and C = 0.8 with diffusion coefficient ratio D = 40 for the

prey and predator population respectively. In these snapshots, hexagonal patterns
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Figure 4.7: Turing spatial distribution of densities of prey (left column) and predator
(right column) when C < 1 at time t = 500 with different cooperation rates (α).
Other parameter values are σ = 10.0, C = 0.8, h = 0.1, D = 40 and initial
distribution is given by (4.11).

(spots) prevail over the entire habitat eventually. In Figure 4.8(a), it is observed

that the blue spots (minimum density of u) are distributed on a reddish background

(maximum density of u), that is, the preys are segregated with low population

density. On the other hand, Figure 4.8(b) consists of red spots on a blue background,

that is, the predators are isolated with high population density. As the C is increased

to 0.802, some patches split into stripes resulting in spots-stripes patterns in both

prey and predator population (Figure 4.8(c,d)). When C is increased to 0.804, the

dynamics of the model exhibits a decay in the spot and emergence in stripes pattern

only (Figure 4.8(e,f)). Thus, by increasing the control parameter C, a sequence

spots → spot-stripes → stripes is observed.
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C = 0.8
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Figure 4.8: 2D-spatial patterns of the prey (left column) and predator (right column)
at time moment t = 500 for different values of C. Other parameter values are σ = 10,
α = 0.57, h = 0.1, D = 40.
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α = 0.57
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Figure 4.9: 2D-spatial patterns of the prey (left column) and predator (right column)
at time moment t = 500 for different values of α. Other parameter values are σ = 10,
C = 0.8, h = 0.1, D = 40.
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Figure 4.10: 2D-spatial patterns of the prey (left column) and predator (right col-
umn) at time moment t = 500 for different values of diffusion coefficient D. Other
parameter values are σ = 10, α = 0.58, C = 0.8, h = 0.1.



93

C = 0.8 and Time t = 100
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C = 0.8 and Time t = 500
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Figure 4.11: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, α = 0.57, h = 0.1, D = 40.
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Figure 4.9 demonstrates the spatial patterns of prey (left column) and predator

(right column) with respect to different cooperation rates α. The first two snapshots

(upper panel) of Figure 4.9 show the two dimensional spatial patterns of the model

(4.3) at time t = 500 with cooperation rate α = 0.57 for the prey and predator

population respectively. In these snapshots, the spots pattern prevail over the entire

habitat. In Figure 4.9(a), it is observe that blue spots (minimum density of u) are

distributed on a reddish background (maximum density of u), that is, the preys are

segregated with low population density. On the other hand, in Figure 4.9(b) consists

of red spots on a blue background, that is, the predators are isolated with high

population density. As the cooperation rate α is increases to 0.575, some spots split

into stripes resulting in spots-stripes patterns in both prey and predator population

(Figure 4.9(c,d)). When α is increases to 0.58, the dynamics of the model exhibits

a decay in the spot and emergence in stripes pattern (Figure 4.9(e,f)). Thus, by

increasing the α (rate of hunting cooperation), a sequence spots → spot-stripes →
stripes is observed. Density distributions of prey (left column) and predator (right

column) have been illustrated in Figure 4.10 with changing D, the ratio of diffusion

coefficients. Figure 4.10 shows the two dimensional stationary diffusive patterns of

the model (4.3) at time t = 500 for the prey and predator population with different

values of D, other parameter values are σ = 10, α = 0.58, c = 0.8 and h = 0.1. As

D is changed to 50, 70 and 140, a sequence of mixed patterns is observed, which

ultimately gives rise to spot for large values of the diffusion coefficient D. It is

interesting to note that with increasing D, the patterns changes from stripes to

spots (Figure 4.10(a–f)).

Figure 4.11 shows the time evolution of spatial densities distribution of preys

(left column) and predators (right column) at different times, namely t = 100,

t = 200 and t = 500 with varying controlling parameter C. Figure 4.11 (left column)

shows the distribution of preys for fixed value of controlling parameter C = 0.8 at

times 100, 200 and 500 respectively. Similarly, Figures 4.11 (right column) show the

distribution of predators for fixed value of controlling parameter C = 0.8 at times

100, 200 and 500 respectively. We observe that the competitiveness between spots

and stripes for prey and predator population densities. The simulation begins with

uniform steady state (u∗, v∗) = (0.5909, 1.5442) and the random Gaussian white
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noise perturbations result in emergence of patterns, like, stripes and spots for both

the prey and predator densities. Ultimately, the spatial pattern becomes stationary

spots after a long time (Figure 4.11(e,f)). We now change the value of controlling

parameter C to 0.802 and then observe that the change in dynamics in the densities

of prey (left column) and predator (right column) at times, namely t = 100, t = 200

and t = 500. The random perturbations lead to the formation of spots-stripes ending

with the time independent spots-stripes patterns for both the prey (see left column

of Figure 4.12) and predator (see right column of Figure 4.12) densities. Figure 4.13

demonstrates the spatial patterns of both the prey and predator densities for the

fixed value of controlling parameter C = 0.804. The random perturbations leads

to the formation of stripes patterns only in both the species and with time these

stripes are time independent.

In Figures 4.14, 4.15, 4.16, we show the time evolution of spatial patterns of

preys and predators at different times with varying controlling parameter α. Figure

4.14 (left column) show the spatial distribution of preys for controlling parameter

α = 0.57 at times 100, 200 and 500 respectively. Similarly, Figure 4.14 (right

column) show the distribution of predators for controlling parameter α = 0.57 at

times 100, 200 and 500 respectively. We observe that the competitiveness between

spots and stripes for prey and predator population densities. The simulation begins

with uniform steady state (u∗, v∗) = (0.5909, 1.5442) and the random Gaussian

white noise perturbations result in emergence of patterns, like, stripes and spots

for both the prey and predator densities. Ultimately, the spatial pattern becomes

stationary spots after a long time (see lower panel of Figure 4.14). We now change

the value of controlling parameter α to 0.575 and then observe that the change in

dynamics in the densities of prey and predator at times, namely t = 100, t = 200 and

t = 500. The random perturbations lead to the formation of spots-stripes ending

with the time independent spots-stripes patterns for both the prey (see left column

of Figure 4.15) and predator (see right column of Figure 4.15) densities. Figure 4.16

demonstrates the spatial patterns of both the prey and predator densities for the

fixed value of controlling parameter α = 0.58. The random perturbations leads to

the formation of stripes patterns only in both the species and with time these stripes

are time independent.
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C = 0.802 and Time t = 100
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C = 0.802 and Time t = 200
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C = 0.802 and Time t = 500
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Figure 4.12: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, α = 0.57, h = 0.1, D = 40.
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C = 0.804 and Time t = 100
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C = 0.804 and Time t = 200
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C = 0.804 and Time t = 500
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Figure 4.13: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, α = 0.57, h = 0.1, D = 40.
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α = 0.57 and Time t = 100
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α = 0.57 and Time t = 200
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α = 0.57 and Time t = 500
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Figure 4.14: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, C = 0.8, h = 0.1, D = 40.



99

α = 0.575 and Time t = 100
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α = 0.575 and Time t = 200
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α = 0.575 and Time t = 500
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Figure 4.15: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, C = 0.8, h = 0.1, D = 40.
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α = 0.58 and Time t = 100
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α = 0.58 and Time t = 200
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α = 0.58 and Time t = 500
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Figure 4.16: Time evolution of patterns of the prey (left column) and predator (right
column) with parameters σ = 10, C = 0.8, h = 0.1, D = 40.
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4.6 Conclusion

In theoretical ecology, intensive studies of the mechanisms and scenarios of pattern

formation, in models of interacting populations, have always been an attraction, as

their perception help to enhance the understanding of real-world ecological systems.

In this chapter, we have considered a diffusive predator–prey model with hunting

cooperation in predators and type II functional response under non-zero initial con-

ditions and zero-flux boundary conditions. We have provided elaborate analysis

of both non-spatial and spatiotemporal models and studied possible scenarios of

pattern formation in the diffusive predator–prey model with hunting cooperation

in predators. While studying the spatiotemporal model, we first obtain the condi-

tion for diffusive instability and identified the corresponding domain in the space of

controlling parameters. The hunting cooperation coefficient α, the basic reproduc-

tion number of the predator (C) and the ratio of diffusion coefficient (D) are the

controlling parameters in our study. Using the parameter values from both Turing

and non-Turing domain, we investigate the properties of the system using extensive

numerical simulations.

Our model simulation has been categorized in two separate domains, namely,

the non-Turing and the Turing domains. We have highlighted the effect of hunting

cooperation in predators along with the basic reproduction number of the predators.

After simulated numerically, we confirmed that in the non-Turing domain, with C >

1, the predator population increased with slight hunting cooperation and decreased

with the increase in the hunting cooperation coefficient. Also, for C < 1, the

increase in the hunting cooperation in the predators, help them to survive. In the

Turing domain, with C < 1, the hunting cooperation in predators play a crucial

role in the coexistence. By varying the values of cooperation coefficient and basic

reproduction number, we get dissimilar types of diffusive patterns, namely, patchy

pattern (spots), stripe pattern and mixed pattern (spot-stripe). From the point of

view of population dynamics, one can observe that there exists the pattern formation

(spot) for preys implying that the preys are scattered with low density and the

remaining region is high dense, which means that the preys have segregated in very

small groups over the large area and are safe. Similarly, spot formation in predators

convey that with hunting cooperation, the predators are scattered and isolated but
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still survives. Large African predators like cheetah (Acinonyx jubatus), leopard

(Panthera pardus) and lion (Pathera leo) regularly predate ungulates, double their

mass with the possibility of injury or death to the predator during prey capture but

can easily be overcome by cooperative hunting, that may improve hunting success

rate [36].

The methods and consequences in the study may amplify the systematic inves-

tigation of spatial pattern formation in the predator–prey systems, and may nicely

enforce in some different research dimensions. Further analysis are important to

study the patterns dynamics of some more diffusive ecological models. It would be

interesting to study the traveling waves in the spatial predator–prey models with

hunting cooperation in predators with type III or type IV functional responses. This

work highlights a number of research areas for future consideration in spatial pattern

formation.



Chapter 5

Spatiotemporal model of a

predator–prey system with herd

behavior and quadratic mortality

5.1 Introduction

Predator–prey models in which the prey exhibits herd behavior, have been an area

of great interest in the last few years [3; 21; 22; 25; 65; 102; 107; 170; 189]. In herd

behavior, the predator interacts with prey along the outer corridor of the herd of

prey, as a mathematical consequence of which the interaction term for predator–prey

is the square root of prey population.

The herd behavior of the preys is related to group defence, in which the preys

at the boundary of the group hurt most, from the attacks of the predators. The

number of preys remaining on the border of the group is proportional to the length

of the perimeter of the ground region occupied by the group [25], which in turn is

directly proportional to the square root of the area of that grounded region. Hence,

it is reasonable and logical to use square root term for the prey population to portray

the model with herd behavior [170]. Also, herd behavior is about local interaction,

which is taken care by the power response function, basically it takes care of the

sort range interaction. By adding diffusion to the model, we are looking into the

dynamics when the herd is changing the habitat, basically the effect of long range

103
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diffusion.

Of many components that affect the dynamics of predator–prey interaction, one

of the vital component is the functional response. Extensively, the functional re-

sponse can be categorized into many distinct variants: Holling I–III variants [75; 76],

Crowley–Martin variant [40], Beddington–DeAngelis variant [20; 41] and the con-

verted structures of these types [77; 89; 196]. The functional response with square

root term for the prey population motivates us to study the spatial dynamics of

predator–prey system with herd behavior in prey, where we have considered Holling

type II functional response.

Mechanisms of spatial dynamics in predator–prey models with herd in predators

have been comparatively new and to the best of our knowledge, studied by few

[170; 193]. The objective of this current investigation is to create deep intuition into

methods of spatial pattern formation in predator–prey model with herd behavior in

preys. Here, we investigate how the rate of the biomass of the predators, handling

time of preys and mortality rate of predators, affect the spatial dynamics of predator–

prey interaction.

5.2 Model description

By incorporating diffusion and Holling type II functional response in the general

predator–prey system with herd behavior [3; 25; 102; 171], we obtain the following

diffusive predator–prey model as

∂U

∂t
= rU

(
1− U

K

)
− α

√
UV

1 + thα
√
U

+D1∇2U,

∂V

∂t
=

cα
√
UV

1 + thα
√
U
− sV +D2∇2V, (5.1)

where U(t) and V (t) are the densities of prey and predator population at time t and

location (X, Y ) respectively. Here, r is the intrinsic growth rate of the prey and K

is its carrying capacity. We consider a Holling type II functional response with herd

behavior in prey of the form

α
√
U

1 + thα
√
U
,
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which depends on prey densities. The parameter α is the search efficiency of predator

for preys, and th is predator’s average handling time of prey. The parameter s is

the natural mortality rate of the predator in the absence of prey, and c is the rate

of conversion of prey biomass to predator biomass. The non-negative constants D1

and D2 are the diffusion coefficients for prey and predator densities respectively.

We now non-dimensionalized the model (5.1) by introducing the dimensionless

variables

u =
U

K
, v =

αV

r
√
K
, τ = rt, x = X

√
r

D2

, y = Y

√
r

D2

,

and dimensionless parameters

m =
s

r
, γ = thα

√
K, β = c

α
√
K

r
, D =

D1

D2

.

We get the modified model as

∂u

∂τ
= u (1− u)−

√
uv

1 + γ
√
u

+D ∇2u,

∂v

∂τ
=

β
√
uv

1 + γ
√
u
−mv +∇2v, (5.2)

and in the line of the following references [19; 26; 64], we select the quadratic death

rate for predator population.

Note: In herd behavior of preys, group defence is involved. The predators could not

easily catch their preys which results in stress, overcrowding and intra-specific as

well as inter-specific competitions. Hence, it is justified to take quadratic mortality

in predators.

Then the above model (5.2) will be modified to the following form:

∂u1
∂τ

= u1 (1− u1)−
√
u1v1

1 + γ
√
u1

+D ∇2u1,

∂v1
∂τ

=
β
√
u1v1

1 + γ
√
u1
−mv12 +∇2v1, (5.3)

where the positive constant D is the ratio of diffusion coefficients of prey and preda-

tor densities for models (5.2) and (5.3) respectively, and ∇2
(

= ∂2

∂x2
+ ∂2

∂y2

)
is the

usual Laplacian operator in two dimensional space R = (x, y). To make certain that

spatial patterns are governed by reaction-diffusion equations, models (5.2) and (5.3)
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are to be analyzed with the following non-zero initial conditions

for model with linear mortality (model 5.2)

1D : u(x, 0) > 0, v(x, 0) > 0, x ∈ Ω = [0, L],

2D : u(x, y, 0) > 0, v(x, y, 0) > 0, (x, y) ∈ Ω = [0, L]× [0, L],

for model with quadratic mortality (model 5.3)

1D : u1(x, 0) > 0, v1(x, 0) > 0, x ∈ Ω1 = [0, L1],

2D : u1(x, y, 0) > 0, v1(x, y, 0) > 0, (x, y) ∈ Ω1 = [0, L1]× [0, L1],

and zero-flux (Neumann) boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0 (for model with linear mortality),

∂u1
∂ν1

=
∂v1
∂ν1

= 0 (for model with quadratic mortality), (5.4)

where L and L1 denotes the size of the system in the direction of (u, v) and (u1,

v1) respectively. ν and ν1 are outward unit normal on the boundary ∂Ω and ∂Ω1

respectively. Conditions (5.4) implies that no individual species leave the domain.

Note: Both the models (5.2) and (5.3) fail to maintain the positivity condition at

all the future time.

5.3 Analysis of the non-spatial model

5.3.1 Non-spatial dynamics of the predator–prey system with

linear mortality

In absence of diffusion, the equilibrium points of the system (5.2) are given by

u (1− u)−
√
uv

1 + γ
√
u

= 0,

β
√
uv

1 + γ
√
u
−mv = 0.

Clearly (0, 0), (1, 0) and (u∗, v∗) are the steady state solutions, where

u∗ =
m2

(β −mγ)2
, v∗ =

√
u∗(1− u∗)(1 + γ

√
u∗).
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The variational matrix about the equilibrium point (u∗, v∗) is given by 1− 2u− v

2
√
u
(
1+γ
√
u
)2 −

√
u

1+γ
√
u

βv

2
√
u
(
1+γ
√
u
)2 β

√
u

1+γ
√
u
−m


(u∗,v∗)

.

(i) At (1, 0), the variational matrix is[
−1 − 1

1+γ

0 β
1+γ
−m

]
,

whose eigenvalues are −1 and β
1+γ
− m. Therefore, the system is asymptotically

stable if β
1+γ

< m.

(ii) At (u∗, v∗), the variational matrix is 1− 2u∗ − 1−u∗
2(1+γ

√
u∗)

−
√
u∗

1+γ
√
u∗

β(1−u∗)
2(1+γ

√
u∗)

β
√
u∗

1+γ
√
u∗
−m

 ,
and the corresponding characteristic equation is

λ2 + A1λ+ A2 = 0,

where

A1 =
3u∗ − 1 + 4γu∗

3
2 − 2(β + γ)

√
u∗ + 2m(1 + γ

√
u∗)

2(1 + γ
√
u∗)

and

A2 =
2β
√
u∗(1− 2u∗) +m(3u∗ − 1− 2γ

√
u∗ + 4γu∗

3
2 )

2(1 + γ
√
u∗)

.

By Routh-Hurwitz criterion, system (5.2) will be asymptotically stable about (u∗, v∗)

if all Ai > 0 (i = 1, 2). In the numerical simulation section, the specific steady state

under study has been mentioned.

5.3.2 Non-spatial dynamics of the model predator–prey sys-

tem with quadratic mortality

In absence of diffusion, the equilibrium points of the system (5.3) are given by

u1 (1− u1)−
√
u1v1

1 + γ
√
u1

= 0,

β
√
u1v1

1 + γ
√
u1
−mv12 = 0.



108

Clearly (0, 0), (1, 0) and (u1
∗, v1

∗) are the steady state solutions, where v1
∗ =

β
m

( √
u1∗

1+γ
√
u1∗

)
and u1

∗ is the solution of

mγ2u1
∗2 −m(γ2 − 1)u1

∗ + 2mγ
√
u1∗(u1

∗ − 1) + (β −m) = 0.

The variational matrix about the equilibrium point (u1
∗, v1

∗) is given by 1− 2u1 − v1

2
√
u1

(
1+γ
√
u1

)2 −
√
u1

1+γ
√
u1

βv1

2
√
u1

(
1+γ
√
u1

)2 β
√
u1

1+γ
√
u1
− 2mv1


(u1∗, v1∗)

.

(i) At (1, 0), the variational matrix is[
−1 − 1

1+γ

0 β
1+γ

]
,

whose eigenvalues are −1 and β
1+γ

. Therefore, the system is unstable (since β
1+γ

is

always positive).

(ii) At (u1
∗, v1

∗), the variational matrix is

(
since v1

∗ = β
m

√
u1∗

1+γ
√
u1∗

)
 1− 2u1

∗ − β
2m(1+γ

√
u1∗)3

−
√
u1∗

1+γu1∗

β2

2m(1+γu1∗)3
− β

√
u1∗

1+γu1∗

 ,
and the corresponding characteristic equation is

λ2 +B1λ+B2 = 0,

where

B1 =
β + 2m(1 + γ

√
u1∗)

2
(

2u1
∗ − 1 + (β − γ)

√
u1∗ + 2γu1

∗ 3
2

)
2m(1 + γ

√
u1∗)3

and

B2 =
β
√
u1∗
(
β +m(2u1

∗ − 1)(1 + γ
√
u1∗)

3
)

m(1 + γ
√
u1∗)4

.

By Routh-Hurwitz criterion, system (5.3) will be asymptotically stable about (u1
∗,

v1
∗) if all Bi > 0 (i = 1, 2). In the numerical simulation section, the specific steady

state under study has been mentioned.

Note: The variational matrix is indeterminate at (0, 0) for both the models.
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5.4 Analysis of the spatiotemporal model

5.4.1 Spatial dynamics of the predator–prey system with

linear mortality

Interior equilibrium point (u∗, v∗) of non-spatial system is spatially homogenous

steady state, that is, constant in space and time for the reaction-diffusion system

(5.2) (spatiotemporal model). We assume that (u∗, v∗) is stable in non-spatial

system, which means the spatially homogenous steady state is stable with respect

to spatially homogenous perturbations. Though the diffusion is often consider as

a stabilizing process, it is a well known fact that diffusion can make a spatially

homogenous steady state linearly unstable (Turing instability) with respect to het-

erogenous perturbations in a system of two interacting species [111; 157; 179]. The

condition for Turing instability may be obtained by introducing a small heterogenous

perturbation of the homogenous steady states as follows:

u (x, y, τ) = u∗ + ε1 exp (λkτ) cos (kxx) cos (kyy) ,

v (x, y, τ) = v∗ + ε2 exp (λkτ) cos (kxx) cos (kyy) , (5.5)

where ε1 and ε2 are two non-zero reals and k = (kx, ky), such that k2 =
(
k2x + k2y

)
,

is the wave number.

Substituting (5.5) into (5.2) and then linearizing it about interior equilibrium

(u∗, v∗), we obtain the variational matrix as 1− 2u∗ − 1−u∗
2(1+γ

√
u∗)
−Dk2 −

√
u∗

1+γ
√
u∗

β(1−u∗)
2(1+γ

√
u∗)

β
√
u∗

1+γ
√
u∗
−m− k2

 , (5.6)

and the corresponding characteristic equation is

λ2 + C1(k
2)λ+ C2(k

2) = 0, (5.7)

where

C1(k
2) =

(
1 +D

)
k2 +

3u∗ − 1 + 4γu∗
3
2 − 2(β + γ)

√
u∗ + 2m(1 + γ

√
u∗)

2(1 + γ
√
u∗)
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and

C2(k
2) =

D
(

2k4(1 + γ
√
u∗) + 2k2(m− β

√
u∗ +mγ

√
u∗)
)

+ k2(3u∗ − 1)

2(1 + γ
√
u∗)

+
2β
√
u∗(1− 2u∗) + 2k2γ

√
u∗(2u∗ − 1) +m(3u∗ − 1− 2γ

√
u∗ + 4γu∗

3
2 )

2(1 + γ
√
u∗)

.

By Routh-Hurwitz criterion, system (5.2) will be asymptotically stable about (u∗, v∗)

if C1(k
2) > 0 and C2(k

2) > 0. As the parameters D and k2 are all positive and
3u∗−1+4γu∗

3
2−2(β+γ)

√
u∗+2m(1+γ

√
u∗)

2(1+γ
√
u∗)

> 0 (by the stability of the non-spatial model of

(5.2)), C1(k
2) is always positive. Therefore, the condition for diffusive instability is

C2(k
2) < 0.

The polynomial function C2(k
2) has a minimum for some value of k, say kmin,

where

k2min =
1− 3u∗ + 2γ

√
u∗(1− 2u∗)− 2D(m− β

√
u∗ +mγ

√
u∗)

4D(1 + γ
√
u∗)

.

Hence, the minimum value of k for which Turing instability will occur is C2(k
2
min) <

0. Therefore, substituting k2min in C2(k
2), we get the sufficient condition for Turing

instability as

1− 3u∗ + 2γ
√
u∗(1− 2u∗)− 2D(m− β

√
u∗ +mγ

√
u∗)

2(1 + γ
√
u∗)

−√√√√D
(

4β
√
u∗(1− 2u∗) + 2m(3u∗ − 1− 2γ

√
u∗ + 4γu∗

3
2 )
)

1 + γ
√
u∗

> 0. (5.8)

The interval of the wave number for which Turing instability take place is (k−, k+)

and in this interval, we have C2(k
2
min) < 0, where

k− =
A

4D(1 + γ
√
u∗)
− 1

4D

√
A2 − 8DB

(1 + γ
√
u∗)2

,

k+ =
A

4D(1 + γ
√
u∗)

+
1

4D

√
A2 − 8DB

(1 + γ
√
u∗)2

,

A = 1− 3u∗ + 2γ
√
u∗(1− 2u∗)− 2D(m− β

√
u∗ +mγ

√
u∗) and

B = (1 + γ
√
u∗)(2β

√
u∗(1− 2u∗) +m(3u∗ − 1− 2γ

√
u∗ + 4γu∗

3
2 )).
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5.4.2 Spatial dynamics of the predator–prey system with

quadratic mortality

Same analysis follows as discussed in the previous section, by introducing a small

heterogenous perturbation of the homogenous steady states (u1
∗, v1

∗), namely,

u1 (x, y, τ) = u1
∗ + ξ1 exp (λkτ) cos (kxx) cos (kyy) ,

v1 (x, y, τ) = v1
∗ + ξ2 exp (λkτ) cos (kxx) cos (kyy) , (5.9)

where ξ1 and ξ2 are non-zero real numbers and k = (kx, ky), such that k2 =
(
k2x + k2y

)
,

is the wave number.

Substituting (5.9) into (5.3) and linearizing it about interior equilibrium (u1
∗,

v1
∗), we obtain the variational matrix as 1− 2u1

∗ − β
2m(1+γ

√
u1∗)3

−Dk2 −
√
u1∗

1+γu1∗

β2

2m(1+γu1∗)3
− β

√
u1∗

1+γu1∗
− k2

 , (5.10)

and the corresponding characteristic equation is

λ2 +D1(k
2)λ+D2(k

2) = 0, (5.11)

where

D1(k
2) =

(
1 +D

)
k2 +

β
√
u1∗

1 + γ
√
u1∗

+
β + 2m(2u1

∗ − 1)(1 + γ
√
u1∗)

3

2m(1 + γ
√
u1∗)3

and

D2(k
2) =

β
√
u1∗(2u1

∗ − 1) + k2(2u1
∗ − 1 + (Dβ − γ)

√
u1∗ + 2γu1

∗ 3
2 )

1 + γ
√
u1∗

+
β2
√
u1∗

m(1 + γ
√
u1∗)4

+
βk2

2m(1 + γ
√
u1∗)3

+Dk.

Using Routh-Hurwitz criterion, system (5.3) will be asymptotically stable about

(u1
∗, v1

∗) if D1(k
2) > 0 and D2(k

2) > 0. As the parameters D and k2 are all positive

and

(
β+2m(2u1∗−1)(1+γ

√
u1∗)3

2m(1+γ
√
u1∗)3

+ β
√
u1∗

1+γ
√
u1∗

)
> 0 (by the stability of the non-spatial model

of (5.3)), D1(k
2) is always positive. Therefore, the condition for diffusive instability

is D2(k
2) < 0.
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The polynomial function D2(k
2) has a minimum for some value of k, is obtained

as

k2min =
1

4

(
2− 4u1

∗ − β
m(1+γ

√
u1∗)3

D
− 2β

√
u1∗

1 + γ
√
u1∗

)
.

Hence, the minimum value of k for which Turing instability will occur is D2(k
2
min) <

0 in the interval (k−, k+) and we get the sufficient condition for Turing instability

as

2m(1− 2u1
∗)(1 + γ

√
u1∗)

3 − β
2m(1 + γ

√
u1∗)3

− Dβ
√
u1∗

1 + γ
√
u1∗
−√√√√4D

(
β
√
u1∗(β +m(2u1∗ − 1)(1 + γ

√
u1∗)3)

)
m(1 + γ

√
u1∗)4

> 0, (5.12)

where

k− =
A

4Dm(1 + γ
√
u1∗)3

− 1

4Dm(1 + γ
√
u1∗)3

√
B2 − 16DC,

k+ =
A

4Dm(1 + γ
√
u1∗)3

+
1

4Dm(1 + γ
√
u1∗)3

√
B2 − 16DC,

A = 2m(1− 2u1
∗)(1 + γ

√
u1∗)

3 − 2Dmβ
√
u1∗(1 + γ

√
u1∗)

2 − β,

B = β + 2Dmβ
√
u1∗(1 + γ

√
u1∗)

2 + 2m(2u1
∗ − 1)(1 + γ

√
u1∗)

3,

C = mβ
√
u1∗(1 + γ

√
u1∗)

2(β +m(2u1
∗ − 1)(1 + γ

√
u1∗)

3).

5.5 Numerical simulations

We will now investigate the numerical results of both non-spatial as well as spa-

tiotemporal models, namely, (5.2) and (5.3). For numerical simulation, we set

γ = 0.01, β = 0.8, and consider m as controlling parameter in both models. For

these values of parameters, equilibrium points of model (5.2) are (0, 0), (1, 0) and

(0.7792, 0.1966) (m=0.7), and the equilibrium points of model (5.3) are (0, 0), (1,

0) and (0.1822, 0.3506) (m=0.97). The system (5.2) is stable about the positive

equilibrium point (0.7792, 0.1966) and predator free steady state (1, 0) with this

set of parameters is asymptotically stable. Also, the steady state solution (0.1822,

0.3506) of system (5.3) is asymptotically stable but the predator free steady state (1,

0) is always unstable. Figure 5.1 shows the dynamics of prey and predator densities
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in the non-spatial domain for linear and quadratic mortality respectively. When

mortality is linear, the predators go to extinction with increasing m (Figure 5.1(a)).

On the other hand, in the case of quadratic mortality, the prey and predator species

always exist (coexist), even when mortality rate is increased. However, the predator

density decreases as the mortality rate crosses the numerical value 1.28, but never

goes extinct (Figure 5.1(b)).
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Figure 5.1: (a) Dynamics of preys (u) and predators (v) in the non-spatial domain
of the model with linear mortality (model 5.2) for different mortality rate m; (b)
Dynamics of preys (u) and predators (v) in the non-spatial domain of the model
with quadratic mortality (model 5.3) for different mortality rate m. Other parameter
values are β = 0.8 and γ = 0.01.

We now simulate the spatiotemporal models (both with linear and quadratic mor-

tality) in one and two dimensional spaces with the help of finite difference scheme

for spatial derivatives. The forward Euler’s numerical method is used for the non-

spatial part of models and general finite difference scheme of five point is used for the

spatial part. The reaction-diffusion partial differential equations, given by (5.2), is

numerically solved by using splitting method [49; 97]. The numerical values for the

step sizes of time and space have been selected adequately small for avoiding the nu-

merical artifacts. In this study, we have employed (for both the models) statistically

uncorrelated Gaussian white noise perturbation in space, which is mathematically

denoted in one and two dimensional cases as

u(xi, 0) = u∗ + η1ξi,

v(xi, 0) = v∗ + η2χi, (5.13)
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and

u(xi, yj, 0) = u∗ + γ1εij,

v(xi, yj, 0) = v∗ + γ2ηij, (5.14)

where η1, η2, γ1 and γ2 are very small real numbers and ξi, χi, εij and ηij are

statistically uncorrelated Gaussian white noise perturbations with zero mean and

fixed variance, in one and two dimensional spaces respectively. Similar approach is

also considered for model (5.3) with quadratic mortality.

For spatiotemporal models, we perform numerical simulations of the systems

(5.2) as well as (5.3) over the non-zero initial condition and zero-flux boundary con-

ditions, in one and two dimensional spatial domain. The domain size for simulation

of model (5.2) (with linear mortality) in one dimension is [0, 4000] and in two di-

mension is 500 × 500 units. For the model with quadratic mortality, the domain

size for simulation in one dimension is [0, 1000] and for two dimensional space is

100 × 100 units with time-step ∆t = 0.001 and space-step ∆x = ∆y = 1. The

Neumann zero-flux conditions are placed at boundary of the numerical domain in

one and two dimensional problems. The size of the domain is chosen large enough

so that the impact of the boundaries has been kept as small as possible during the

simulation time.

Figure 5.2 shows the one dimensional non-Turing spatial distribution of densities

of the prey and predator population of model (5.2) at time t = 2500 with different

values of per capita mortality rate (m) of predator. With decrease in the per capita

mortality rate of predators (m = 0.47, 0.46, 0.45, 0.434), the amplitude of the

periodic solutions increases rapidly as m decreases from the Hopf-bifurcation value

(m = 0.46188), and the periodic solution branch terminates at some critical value

m∗ (> 0) of m. Note that the periodic solution branch only occurs over a narrow

range of the parameter m. Figure 5.2(a) shows non-spatial behavior of the predator

and prey with a smooth spatial population. Here, the approximations have evolved

into the spatially homogeneous stationary states. For a slightly changed value of the

mortality rate (m = 0.46, 0.45), a formation of a strongly irregular jagged dynamics

pattern inside a subdomain of the system is observed (Figures 5.2(b, c)). For fur-

ther decrease in the rate of mortality (m = 0.434), the size of the region occupied
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Figure 5.2: One dimensional non-Turing dynamic patterns of the model with linear
mortality (model 5.2) at time moment τ = 2500; solid blue line for prey and dashed
red line for predator. (a) m = 0.47; (b) m = 0.46; (c) m = 0.45; (d) m = 0.434.
Other parameter values are β = 0.8, γ = 0.01 and D = 1.0.

by this pattern steadily grows with time, so that finally irregular spatiotemporal

oscillations invade over the whole domain, pertaining to chaotic dynamics (Figure

5.2(d)), which is always growing until it occupies the entire domain. Figure 5.3

shows the snapshots of two dimensional non-Turing spatial distribution of densi-

ties of the prey and predator population at time t = 2500 with different values of

per capita mortality rate (m) of predator. The system dynamics follows a series of

patterns which qualitatively resembles the one dimensional case. At m = 0.46, the

population distribution is smooth and regular (Figures 5.3(a, d)), at m = 0.45 it

forms semi-spiral like structures (Figures 5.3(b, e)). The domain grows gradually

and finally chaotic pattern invades over the entire space, for both the preys and the
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Figure 5.3: Two dimensional non-Turing dynamic patterns of the model with linear
mortality (model 5.2) for prey (left panel) and predator (right panel) at time moment
τ = 2500. (a) and (d) m = 0.46; (b) and (e) m = 0.45; (c) and (f) m = 0.434.
Other parameter values are β = 0.8, γ = 0.01 and D = 1.0.
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predators (Figures 5.3(c, f)).

We now demonstrate diffusive induced instability (Turing instability) and the

corresponding pattern formation for the system (5.3) with quadratic mortality. Al-

though, the sufficient conditions for Turing instability were obtained analytically in

previous section, whether they are satisfied with our corresponding set of parame-

ter values, is yet to be tested. In order to do so, we sketch the Turing instability

condition (5.12) for distinct values of D (other parameter values are fixed, namely,

γ = 0.01, β = 0.8). Figure 5.4(a) shows the zone for the emergence of spatial

patterns corresponding to Turing instability condition against the ratio of diffusion

coefficients (D). We observe that the sufficient condition of the diffusive instability,

that is, equation (5.12) holds, when D is adequately small (D = 0.102318) (see

Figure 5.4(a)). The spatial dispersion curve for this particular model, and the cor-

responding plot of real part of largest eigenvalue Re(λ) against the wave number

(k) is shown in Figure 5.4(b). The real part of largest eigenvalue Re(λ) > 0 holds,

the wave number (k) fit in the interval (k−, k+), that is, (0.591509, 4.44236). Also,

the controlling parameter space, namely m− β spaces and m− γ spaces, for Turing

instability via sufficient condition, is shown in Figures 5.5(a) and 5.5(b).
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Figure 5.4: (a) Emergence of spatial pattern corresponding to Turing instability
condition of the model with quadratic mortality (model 5.3); (b) Characterization
of the dispersal relation for D=0.08 of the model with quadratic mortality (model
5.3).

In Figure 5.6, we have illustrated the one dimensional Turing dynamics of densi-

ties distribution of the prey and predator population of model (5.3) at time t = 2500

with different per capita mortality rate (m) of predator. In Figure 5.6(a), the ap-

proximations have evolved into the spatially homogenous stationary values u1
∗ and
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Figure 5.5: (a) Parameters zone for Turing pattern of the model with quadratic
mortality (model 5.3) with D = 0.08: m− β space; (b) Parameters zone for Turing
pattern of the model with quadratic mortality (model 5.3) with D = 0.08: m − γ
space.

v1
∗. Figure 5.6(b, c, d) show the response of the system after m is changed to 0.97,

1.25 and 2.0 at the moment t = 2500. For the parameter values allowing for Turing

instability, the periodic patterns begin to emerge in a certain subdomain, which am-

plifies and then decay, and eventually spreads over the whole area. Figure 5.7 shows

the Turing patterns for prey and predator population of the system (5.3) distributed

over two dimensional spatial domain obtain at t = 2500 for different values of m.

The patterns arising in the large time limits are shown in the Figures 5.7(a–f). For

some values of per capita mortality rate of predator m ( = 0.97, 1.25, 2.0), both prey

and predators population coexist and form the spatial pattern of two types, namely,

mixture of spots and stripes and then spots. Some values of per capita mortality

rate of predator m (=0.97, 1.25, 2.0), both prey and predators population coexist

and form the spatial pattern of two types, namely, mixture of spots and stripes and

then spots.

Figure 5.8 shows the Turing patterns for prey and predator population of the

system (5.3) distributed over two dimensional spatial domain obtain at t = 2500

for different values of γ, the search efficacy of predators for preys. The pattern

shows, namely, a mixture of stripe-spots (Figure 5.8(a, d)) and then spots (Figure
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Figure 5.6: One dimensional Turing dynamic patterns of the model with quadratic
mortality (model 5.3) for prey and predator at time moment τ = 2500; solid blue line
for prey and dashed red line for predator. (a) m = 0.93; (b) m = 0.97; (c) m = 1.25;
(d) m = 2.0. Other parameter values are β = 0.8, γ = 0.01 and D = 0.08.

5.8(b, e)). For γ = 0.02, the system is very close to the boundary that separates

the Turing zone from the non-Turing zone. It is a transition state from spots to

smooth and regular patterns. Figure 5.9 shows the Turing patterns of the system

(5.3) distributed over spatial domain obtain at t = 2500 for different values of β,

the rate of conversion of prey biomass to predator biomass. The patterns arising

in the large time limits are shown in the Figures 5.9(a–f). For some values of β (β

= 0.76, 0.78, 0.80), both prey and predators population coexist and show patchy

spatial pattern (spots).

Having thus established the Turing patterns in the system (5.3), by changing the

values of control parameters (m, γ, β), we proceed with the numerical simulation of

system (5.3), by changing the ratio of diffusion coefficients (D). Figure 5.10 shows
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Figure 5.7: Two dimensional Turing dynamic patterns of the model with quadratic
mortality (model 5.3) for prey (left panel) and predator (right panel) at time moment
τ = 2500. (a) and (d) m = 0.97; (b) and (e) m = 1.25; (c) and (f) m = 2.0. Other
parameter values are β = 0.8, γ = 0.01 and D = 0.08.
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Figure 5.8: Two dimensional Turing dynamic patterns of the model with quadratic
mortality (model 5.3) for prey (left panel) and predator (right panel) at time moment
τ = 2500. (a) and (d) γ = 0.005; (b) and (e) γ = 0.015; (c) and (f) γ = 0.02. Other
parameter values are β = 0.8, m = 1.25 and D = 0.08.
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Figure 5.9: Two dimensional Turing dynamic patterns of the model with quadratic
mortality (model 5.3) for prey (left panel) and predator (right panel) at time moment
τ = 2500. (a) and (d) β = 0.76; (b) and (e) β = 0.78; (c) and (f) β = 0.8. Other
parameter values are γ = 0.01, m = 1.25 and D = 0.08.
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D = 0.07

0 50 100
Space (x)

0

20

40

60

80

100

S
pa

ce
 (

y)

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100
Space (x)

0

20

40

60

80

100

S
pa

ce
 (

y)

(e)

0.28

0.3

0.32

0.34

0.36

0.38
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Figure 5.10: Two dimensional Turing dynamic patterns of the model with quadratic
mortality (model 5.3) for prey (left panel) and predator (right panel) at time moment
τ = 2500. (a) and (d) D = 0.04; (b) and (e) D = 0.07; (c) and (f) D = 0.1. Other
parameter values are γ = 0.01, β = 0.8 and m = 1.25.
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the Turing patterns for prey and predator population over the two dimensional

spatial domain at τ = 2500 for different D, the ratio of the diffusion coefficients.

In this case, the Turing patterns have already approached to their sizeable time

stationary limit. Although the spatial patterns stay qualitatively identical over the

span of parameters considered in Figure 5.10, it is easily seen that the size of the

patches tends to become elongated with an increase in D. The amplitude of the

density of the population shifts in the spatial patterns tends to rise slightly with the

diffusion coefficient D.

5.6 Discussion and conclusion

For several decades, factors and mechanisms resulting in complex spatiotemporal

population dynamics and ecological pattern formation have been a major focus in

ecology [9; 10; 17; 19; 52; 53; 99; 100; 109; 110; 116; 117; 143; 157; 170; 185; 187;

193; 197]. The aim of this chapter is to investigate the effect of linear and quadratic

mortality in a predator–prey system with herd behavior. The non-spatial study

reveals that the system with increasing linear mortality become extinct whereas

the system with quadratic mortality always coexist. In spatiotemporal model, the

predator–prey system with linear mortality display four basic dynamics, namely,

stationary, smooth oscillatory, intermittent chaos and chaos covering most of the

domain. The non-Turing pattern is smooth and regular, which grows gradually and

a chaotic pattern is observed for both the preys and the predators. No Turing pattern

is observed in this case. However, the system with quadratic mortality demonstrate

diffusive induced instability resulting in Turing patterns. By varying the mortality

rate, we get dissimilar types of diffusive patterns, namely, mixed pattern (spot-

stripe) and patchy pattern (spots), implying that there is a spot pattern replication,

where the prey is in a isolated zone with low density and remainder region is in high

density.

With increasing D, the rate of the diffusion coefficients, the pattern changes

from spot-stripe to spots, implying that the prey and the predator populations are

flocking together. The mobility of individuals for both species within their habitat

can promote the coexistence between the prey and the predators. The methods
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and results in the present chapter may enrich the research of pattern formation in

the predator–prey model with herd behavior and quadratic mortality and may will

explain many field observations.



126



Chapter 6

Conclusions and Future Research

Scope

6.1 Concluding Remarks

This thesis has primarily focused on the spatiotemporal analysis, namely, Turing and

non-Turing spatial distribution patterns, of tumor–immune and ecological systems

through mathematical modeling and numerical simulations, where an attempt has

been made to understand the effects of controlling parameters on the spatiotemporal

pattern formation of different mathematical models. The summary of the results

are given sequentially as follows:

• First, we have focused our attention on a spatiotemporal mathematical model

describing the growth of a solid tumor in presence of an immune responses,

which is termed as effector cells. The proposed model is a modification of the

non-spatial model by Kuznetsov et al. [91] by extending it to a spatiotemporal

one.

• Local stability analysis of the spatiotemporal model reveals that the tumor

free equilibrium exists and is stable, when the intrinsic growth rate of the

tumor is less then the ratio of constant input of the effector cells and its decay

rate (α < σ
δ
). The interior equilibrium does not exist in this case. However,

when α > σ
δ
, three interior equilibria (u∗, v∗) exist, of which two of them are

stable. The immune system fails to control the tumor growth in this case.
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• The system is also subjected to higher order spatiotemporal perturbation terms

for stability check, but the results remains same as obtained from linear sta-

bility analysis.

• One interesting phenomenon of evolution of carrying capacity and expansion

of tumor cell population is observed. This observation allows us to relate the

tumor’s volumetric growth rate to the host organs’s functionality conveying

composite infrastructure. When the carrying capacity of the primary host or-

gan is about to be exceeded, metastasis will be triggered. While the biological

processes involved in cancer expansion may lead to some upward adjustment

of the carrying capacity, presumably these parenchymal and stromal compen-

sation mechanisms are limited and tumor cells will eventually spread to distant

sites.

• Next, a spatiotemporal mathematical model of interaction between malignant

gliomas and immune system, namely, macrophages, cytotoxic T-lymphocytes,

IFN-γ and TGF-β is studied. The system is investigated before and after the

administration of the immunotherapeutic drug T11 target structure for better

understanding of the growth and invasion of glioma population.

• It is observed that no Turing zone exists for both the cases T11 = 0 and T11

6= 0, implying that the system will have no Turing bifurcation and hence no

Turing pattern.

• Without the administration of T11 target structure, the non-Turing patterns

for gliomas indicate that the body’s own defense mechanism, that is, the nat-

ural immune responses is too weak to control the growth and spread of malig-

nant gliomas, which leads to glioma invasion of the entire domain.

• The aggressive motility of the gliomas restrict the propagation of the immune

components, namely, macrophages and cytotoxic T-lymphocytes. After the

administration of T11 target structure, the glioma cell proliferation is con-

trolled by activating the phagocytic activity of macrophages as well as cyto-

toxic efficacy of the cytotoxic T-lymphocytes.
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• The spatiotemporal study of the effect of the immunotherapeutic drug T11

target structure on malignant gliomas shows that it may be a promising ther-

apeutic method to eradicate malignant gliomas.

• Next, we have investigated a spatial predator–prey model with hunting coop-

eration in predators.

• Using linear stability analysis, we obtain the condition for diffusive instability

and identify the corresponding domain in the space of controlling parameters.

Using extensive numerical simulations, we obtain complex patterns, namely,

spotted pattern, stripe pattern and mixed pattern in the Turing domain, by

varying the hunting cooperation in predators and carrying capacity of prey

parameters. The results focus on the effect of hunting cooperation in pattern

dynamics of a diffusive predator–prey model and help us in better understand-

ing of the dynamics of the predator–prey interaction in real environment.

• In our last problem, we have investigated a diffusive predator–prey model

exhibiting herd behavior for preys with linear and quadratic mortality term

for predators.

• Using linear stability analysis, we obtain the conditions for diffusive instability

and identify the corresponding Turing as well as non-Turing zone in the space

of control parameters. Using extensive numerical simulations, we obtain spa-

tiotemporal patterns for both non-Turing (model with linear mortality) and

Turing (model with quadratic mortality) cases by varying mortality rates, the

search efficacy of predators for preys and the rate of conversion of prey biomass

to predator biomass.

• The non-Turing pattern exhibits spatiotemporal chaos whereas the Turing

patterns focuses in many pattern dynamics and help us in the better under-

standing of the dynamics of the predator–prey interaction.
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6.2 Future Research Scope

The mathematical models proposed in this thesis has many forthcoming possibilities.

Some of the future perspectives are as follows:

• The entire thesis is focused on spatiotemporal dynamics through reaction-

diffusion partial differential equations. The stochastic aspect of the model

system is not introduced at all. How will the stochasticity has effect on the

dynamics of the tumor–immune and predator–prey systems? Will it generate

some new dynamics which may be able to explain the complex interactions?

• The cross–diffusion spatial aspect of the system can be studied by introducing

cross–diffusion terms to the model equations.

• Amplitude equations for pattern forming system, which describe slow modula-

tions in space and time of patterns occurring can be derived. Also, the physical

interpretation of more complicated solutions of the amplitude equations can

be discussed.
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[169] Szymańska Z., Analysis of immunotherapy models in the context of cancer dy-

namics, International Journal of Applied Mathematics and Computer Science,

13(3)(2003), 407–418.

[170] Tang X. and Song Y., Stability, Hopf bifurcations and spatial patterns in a

delayed diffusive predator–prey model with herd behavior, Applied Mathematics

and Computation, 254(2)(2015), 375–391.

[171] Tanner J. T., The stability and the intrinsic growth rates of prey and predator

populations, Ecology, 56(6)(1975), 855–867.

[172] Thoma J. A., Thoma G. J., Clark W., The efficiency and linearity of the ra-

diochromium release assay for cell–mediated cytotoxicity, Cellular Immunology,

40(2)(1978), 404–418.

[173] Thorn R. M. and Henney C. S., Kinetic analysis of target cell destruction by

effector T cell, The Journal of Immunology, 117(6)(1976), 2213–2219.

[174] Thorn R. M. and Henney C. S., Kinetic analysis of target cell destruction by

effector cells. II. Changes in killer cell avidity as a function of time and dose,

The Journal of Immunology, 119(6)(1977), 1973–1978.

[175] Tracqui P., Cruywagen G. C., Woodward D. E., Bartoo G. T., Murray J. D.,

Alvord E. C., A mathematical model of glioma growth: the effect of chemother-

apy on spatiotemporal growth, Cell Proliferation, 28(1)(1995), 17–31.

[176] Tran H., Michelson S., Ito K., Leith J. T., Stochastic models for subpopu-

lation emergence in heterogeneous tumors, Bulletin of Mathematical Biology,

51(6)(1989), 731–747.



149

[177] Tsygvintsev A., Evolutionary paradigm in cancer immunology, ESAIM: Pro-

ceedings and Surveys, 45(2)(2014), 285–289.

[178] Tsygvintsev A., Marino S., Kirschner D. E., A Mathematical Model of Gene

Therapy for the Treatment of Cancer, Mathematical Methods and Models in

Biomedicine, Springer, 367–385, 2013.

[179] Turing A. M., The chemical basis of morphogenesis, Philosophical Transac-

tions of the Royal Society of London B: Biological Sciences, 237(641)(1952),

37–72.

[180] Upadhyay R. K., Patra A., Dubey B., Thakur N. K., A predator–prey interac-

tion model with self-and cross-diffusion in aquatic systems, Journal of Biological

Systems, 22(4)(2014), 691–712.

[181] Upadhyay R. K., Thakur N. K., Dubey B., Nonlinear non-equilibrium pat-

tern formation in a spatial aquatic system: Effect of fish predation, Journal of

Biological Systems, 18(1)(2010), 129–159.

[182] Vanag V. K., Yang L., Dolnik M., Zhabotinsky A. M., Epstein I. R., Oscil-

latory cluster patterns in a homogeneous chemical system with global feedback,

Nature, 406(6794)(2000), 389–391.

[183] Verdy A., Modulation of predator–prey interactions by the Allee effect, Eco-

logical Modelling, 221(8)(2010), 1098–1107.

[184] Vinatier F., Tixier P., Duyck P. F., Lescourret F., Factors and mechanisms

explaining spatial heterogeneity: a review of methods for insect populations,

Methods in Ecology and Evolution, 2(1)(2011), 11–22.

[185] Wang J., Shi J., Wei J., Dynamics and pattern formation in a diffusive

predator–prey system with strong Allee effect in prey, Journal of Differential

Equations, 251(5)(2011), 1276–1304.

[186] Wang S. E., Hinow P., Bryce N., Weaver A. M., Estrada L., Artega C. L.,



150

Webb G. F., A mathematical model quantifies proliferation and motility ef-

fects of TGF–β on cancer cells, Computational and Mathematical Methods in

Medicine, 10(1)(2009), 71–83.

[187] Wang W., Liu Q. X., Jin Z., Spatiotemporal complexity of a ratio–dependent

predator–prey system, Physical Review E, 75(5)(2007), 051913–051922.

[188] Webb S. D., Owen M. R., Byrne H. M., Murdoch C., Lewis C. E., Macrophage–

based anti–cancer therapy: modeling different modes of tumour targeting, Bul-

letin of Mathematical Biology, 69(5)(2007), 1747–1776.

[189] Xu C., Yuan S., Zhang T., Global dynamics of a predator–prey model with

defense mechanism for prey, Applied Mathematics Letters, 62(1)(2016), 42–48.

[190] Yang L., Dolnik M., Zhabotinsky A. M., Epstein I. R., Pattern formation

arising from interactions between Turing and wave instabilities, The Journal of

Chemical Physics, 117(15)(2002), 7259–7265.

[191] Yi F., Wei J., Shi J., Bifurcation and spatiotemporal patterns in a homogeneous

diffusive predator–prey system, Journal of Differential Equations, 246(5)(2009),

1944–1977.

[192] Yochelis A., Hagberg A., Meron E., Lin A. L., Swinney H. L., Development

of standing–wave labyrinthine patterns, SIAM Journal on Applied Dynamical

Systems, 1(2)(2002), 236–247.

[193] Yuan S., Xu C., Zhang T., Spatial dynamics in a predator–prey model with

herd behavior, Chaos: An Interdisciplinary Journal of Nonlinear Science,

23(3)(2013), 033102–033113.

[194] Zheng Q. Q., Shen J. W., Dynamics and pattern formation in a cancer net-

work with diffusion, Communications in Nonlinear Science and Numerical Sim-

ulation, 27(1)(2015), 93–109.

[195] Zhou S. R., Liu Y. F., Wang G., The stability of predator–prey systems subject

to the Allee effects, Theoretical Population Biology, 67(1)(2005), 23–31.



151

[196] Zhang X. A., Lansun C., Avidan U. N., The stage-structured predator–prey

model and optimal harvesting policy, Mathematical Biosciences, 168(2)(2000),

201–210.

[197] Zhang X. C., Sun G. Q., Jin Z., Spatial dynamics in a predator–prey model with

Beddington-DeAngelis functional response, Physical Review E, 85(2)(2012),

021924–021938.



152



List of Publications

1. Singh T. and Banerjee S., Spatial aspects of hunting cooperation in predators

with Holling type II functional response, Journal of Biological Systems, World

Scientific, 26(4)(2018), 1–21.

2. Singh T. and Banerjee S., Spatiotemporal model of a predator–prey system with

herd behavior and quadratic mortality, International Journal of Bifurcation and

Chaos, World Scientific (Accepted).

3. Singh T. and Banerjee S., Spatiotemporal dynamics of malignant gliomas and

immune system considering the role of immunotherapeutic agent T11 target

structure, Computers and Mathematics with Applications, Elsevier (Under

review).

4. Singh T. and Banerjee S., Spatiotemporal dynamics of immunogenic tumors,

Indian Journal of Pure and Applied Mathematics, Springer (Under review).

153



154


