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Abstract

In real-life problems such as incorporate or in industry, decision making is a continuous process.

The experts and the decision-makers (DMs), usually, have to suffer with uncertainty as well as

with hesitation, due to the complexity of the situations. The main reasons behind these com-

plexities are lack of good communications with all involved persons, error in data, understanding

of markets, unawareness of customers, etc.

So, the prediction of the parameters is a complex and challenging task. The classical methods

encounter great difficulty in dealing with uncertainty and complexity involved in such situations.

In general, the parameters of an optimization problem are considered as crisp numbers. These

crisp values are determined from past occurrences which are very uncertain since the systems

environment keep on changing. Therefore, some degree of uncertainty exists in such a determi-

nation. This led to the development of the fuzzy set (FS) theory by Zadeh [194]. In order to

handle the insufficient information, the fuzzy approach is used to model the problem and evalu-

ate the optimal solution. FS theory has been shown to be a useful tool to handle the situations

in which the data are imprecise by attributing a degree to which a certain object belongs to a

set. An FS is a generalization of an ordinary set in that it allows the degree of membership for

each element to range over the unit interval [0, 1]. Thus, the membership function of an FS maps

each element of the universe of discourse to its range space, which, in most cases, is assumed to

be the unit interval. Using an FS approach, quantities are represented by FSs. The member-

ship functions represent the uncertainties involved in various parameters of the problem. During

the last decades, FS theory played an important role in modeling uncertain and optimization

problems. Zimmermann [203] showed that the solutions of fuzzy linear programming problems

(FLPPs) are always efficient. Since the FS theory came into existence, many extensions of FSs

also appeared over time , e.g., L-FSs proposed by Goguen [80], interval-valued fuzzy set (IVFS)

proposed by Gorzalczany [81] represents the degree of membership of an element by an interval

rather than exact numerical value, intuitionistic fuzzy set (IFS) proposed by Atanassov [11] etc.

One among these extensions is IFS which is playing an important role in decision making under
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uncertainty and gained popularity in recent years. It helps more adequately to represent situa-

tions where DMs abstain from expressing their assessments. In this way, IFSs provide a richer

tool to grasp impression and ambiguity than the conventional FSs. These characteristics of

IFSs led to the extension of optimization methods in an intuitionistic fuzzy environment (IFE).

An application of IFSs to optimization problems is introduced by Angelov [9]. His technique is

based on maximizing the degree of membership, minimizing the degree of non-membership and

the crisp model is formulated using the IF aggregation operator.

In decision making, one chooses the best alternative from the given set of feasible alternatives.

There exist several processes in literature but there are mainly four stages required to choose

the best alternative: (i) Evaluate the set of feasible alternatives from the given information. (ii)

Determine the weight vector corresponding to alternatives or attributes which depend on DM.

(iii) Aggregate alternatives by taking the weight vector given by DM. (iv) Rank the alternatives

in the order of preferences and select the best one. During last decades, IFS theory played

an important role in modeling uncertain and vague systems, received much attention from the

researchers and meaningful results were obtained in the field of decision-making problems [138],

pattern recognition [54, 143] to name a few.

There are several information measures in IFE, such as divergence measures, similarity

measures, dissimilarity measures, and distance measures. They model uncertain and vague

information. The inclusion between two IFSs can be measured by the concept of inclusion mea-

sure [79] and the commonality between two IFSs can be measured by the concept of similarity

measure [95].

In fuzzy logic, the fuzzy implication is equally important from both the theoretical and

practical points of view. From the theoretical point of view, the development of algebra is done

and their properties are studied. From the practical point of view, the fuzzy implication is

used to study approximate reasoning and network problems, etc. (see [19, 106]). One among

the several extensions of FS is the IVFS. It has become very popular from both the theoretical

and practical aspects. It has become one of the most important operators in logic [174]. The

arithmetic operators in IVFS theory [55] and one can find theoretical articles concerned with

different classes of interval-valued logical connectives, like, interval-valued fuzzy negations [26],

interval-valued t-norms [56, 174], interval-valued fuzzy uninorms [57], interval-valued fuzzy im-

plications [5, 28, 111]. IF t-norms and t-conorms are noted in [59]. The expression, construction,

classification and several properties with applications of intuitionistic and interval-valued fuzzy

implications are given in [33] and [45]. IFIs [33, 45] and IF relations [146] are studied.

The main objectives of the thesis are as follows:
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(i) Modeling and analysis of optimization problems in IFE and development of algorithms for

solving such problems.

(ii) Analysis of duality theory in IFE.

(iii) Analysis and development of algorithms for selecting the best alternative from the given

set of feasible alternatives in decision-making problems in IFE.

(iv) Algebraic analysis of implication operators in IFE and their uses for solving distributive

equations and Boolean-like laws.

The thesis is organized into eight chapters. The chapter-wise summary of the thesis is as follows:

Chapter 1 is introductory in nature. In this chapter, basic definitions of FS and IFS,

various types of fuzzy and IF numbers, and their mathematical operations are introduced. A

ranking function is introduced. Ranking function transforms a fuzzy or IF number into an

equivalent real number. Also, basic definitions and axioms of implication operator, negation,

t-norm, t-conorm in fuzzy and IF environments are introduced. It also presents a brief review

of the research work done in the field of fuzzy and IF optimizations and implications.

In Chapter 2, the product of unrestricted LR-type IFNs is proposed. Then with the help

of the proposed product, an algorithm is proposed to find the optimal solutions of unrestricted

LR-type IFLPPs. A test example is given to support the proposed method and investigated the

applicability of existing approaches.

In Chapter 3, we introduce a pair of primal-dual LPPs in IFE and prove duality results

by using an aspiration level approach in which membership and non-membership functions are

taken in the form of reference functions. Since the fuzzy environment and IFE cause the duality

gap, we propose to investigate the impact of membership function governed by reference function

on duality gap. Also, the duality gap obtained by the approach has been compared with the

duality gap obtained by existing approaches.

In Chapter 4, the formulation of the multi-objective optimization problem (MOOP), accu-

racy index and value function in IFE are introduced. For resolving the mutual conflicting nature

of objectives in MOOP in IFE, we introduce the membership and non-membership functions

governed by reference function which do not depend on the upper and lower levels of acceptabil-

ity. An efficient algorithm is developed for solving MOOP in IFE from different viewpoints, viz.,

optimistic, pessimistic and mixed. The optimal solution obtained by the proposed approach is

compared with the solutions obtained by existing approaches.

In Chapter 5, the information measures are introduced in IFE to measure the uncertainty

and hesitancy. We introduce and study the continuity of considered measures. Next, we prove
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some results that can be used to generate measures for FSs as well as for IFSs and we also

prove some approaches to construct point measures from set measures in IFE. We define weight

set for one and many preference orders of alternatives and investigate the properties based on

these ordering. Based on the weight set, we develop the model for finding the uncertain weights

corresponding to attribute. Also, we develop the model to find attribute weights in a certain

environment by using attribute weights in an uncertain environment. An algorithm is developed

for choosing the best alternative according to the preference orders of alternatives.

In Chapter 6, a new type of implication on L, known as the residual implication, is derived

from powers of continuous t-norm T and satisfies certain properties of residual implications by

imposing some extra conditions. Moreover, some additional important properties are studied

and analyzed. The solutions of Boolean-like laws in IIT are obtained.

In Chapter 7, a new class of IFIs known as (fI, ω)-implications is introduced which is

a generalized form of Yager’s f-implications in IFE. Basic properties of these implications

are discussed in detail. The distributive equations II(T (u, v), w) = S(II(u,w), II(v, w)) and

II(u, T1(v, w)) = T2(II(u, v), II(u,w)) over t-representable t-norms and t-conorms generated

from nilpotent and strict t-norms in IFE are discussed.

Finally, in Chapter 8, conclusions are drawn based on the present study and future research

work is suggested in this direction.
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4.2 An orthogonal projection of an IFS ÃI . . . . . . . . . . . . . . . . . . . . . . . 101
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Chapter 1

Introduction

1.1 Fuzzy set theory

Advances in science and technology have made our modern society very complex and due to

this, the decision process has become increasingly vague and hard to analyze. The human

brain possesses some special characteristics that enable him to learn and reason in a vague and

fuzzy environment. It has the ability to arrive at a decision based on imprecise qualitative

data in contrast to formal mathematics and formed logic with imprecise and qualitative data.

Modern computers also possess the capacity of thinking but can not have the human like ability.

Undoubtedly, in many areas of cognition, human intelligence excels the computer intelligence

of today. The developments of fuzzy concepts proposed by Zadeh [194], is a step towards the

development of tools capable of handling humanistic type problems, though it may never be

equal to the logic and the intelligence of men in many respects. Most of the classes of objects

encountered in the real physical world are fuzzy and not sharply defined. They do not have

precisely defined criteria of membership. In such classes, an object need not necessarily either

belong to or not belong to a class, it may have an intermediate grade of membership. This is

the concept of fuzzy set (FS) which is a class with the continuum of grades of membership. An

FS is a generalization of the crisp set that has clearly defined the boundary. The FS theory is

based on the idea that each element of the set can take membership value in the interval [0, 1].

Because of this, FS theory has a much wider scope of applicability than the crisp set theory

in solving various kinds of real physical problems. FS theory is a powerful tool to deal with

uncertainty. The relationships between some extensions of FS theory are noted in [60].

In this section, the definitions of FS, α-cut, fuzzy number, triangular fuzzy number, and

arithmetic operations on triangular fuzzy numbers are presented.

1
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Definition 1.1.1. [194] Let X be a universe of discourse whose elements are denoted by x.

Then an FS M̃ in X is defined by a set of ordered pairs

M̃ = {(x, µM̃(x)) : x ∈ X},

where µM̃ : X → [0, 1] called the membership function and µM̃(x) called the grade of membership

of x being in M̃ .

Definition 1.1.2. [194] Let M̃ be a fuzzy set in X and α ∈ [0, 1]. Then the α-cut of the FS M̃

is the crisp set Aα defined by

Aα = {x ∈ X : µM̃(x) ≥ α}.

Definition 1.1.3. [204] A FS M̃ = {(x, µM̃(x)) : x ∈ R} is called a fuzzy number (FN) if the

following conditions hold:

(i) M̃ is a convex FS, i.e., µM̃(λ1x1 +λ2x2) ≥ min{µM̃(x1), µM̃(x2)}, λ1 +λ2 = 1, λ1, λ2 ≥ 0.

(ii) There exists only one m ∈ R such that µM̃(m) = 1 ( m is called the mean value of M̃).

(iii) µM̃ : R→ [0, 1] is piecewise continuous function given by

µM̃(x) =


g1(x), a < x < m,

1, x = m,

h1(x), m < x < b ,

0, otherwise.

Here m is the mean value of M̃ ; m − a and b − m are the left and right spreads of

membership function µM̃ respectively; g1 is piecewise continuous and increasing in (a,m);

h1 is piecewise continuous and decreasing function in (m, b); (a, b) is called the support of

M̃ . The FN M̃ is represented by M̃ = (m; a, b). The set of all FNs is denoted by F(R).

Definition 1.1.4 (Arithmetic operations on FNs). [204] Let M̃=(m; a, b), M̃1=(m1; a1, b1) and

M̃2=(m2; a2, b2) be the FNs. Then

(i) M̃1 + M̃2 is defined as a FN given by

M̃1 + M̃2 = (m1 +m2; a1 + a2, b1 + b2);

(ii) −M̃ is defined as a FN given by

−M̃=(−m; b, a);
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Figure 1.1: Graphical representation of a TFN.
Figure 1.2: Graphical representation of a
TrFN.

(iii) M̃1 − M̃2 is defined as a FN given by

M̃1 − M̃2 = M̃1 + (−M̃2) = (m1 −m2; a1 + b2, b1 + a2);

(iv) M̃1 × M̃2 is defined as a FN given by

M̃1 × M̃2 = (m; a, b),

where m = m1m2, a = m1m2−min{(m1−a1)(m2−a2), (m1−a1)(m2 +b2), (m1 +b1)(m2−
a2), (m1 + b1)(m2 + b2)}, b = max{(m1− a1)(m2− a2), (m1− a1)(m2 + b2), (m1 + b1)(m2−
a2)−m1m2;

(v) λM̃ is defined as a FN given by

λM̃ =

(λm;λa, λb), λ ≥ 0,

(λm;λb, λa), λ < 0.

.

Definition 1.1.5. [204] A triangular fuzzy number (TFN) M̃ is a FN with membership function

µM̃ given by

µM̃(x) =


x− a
b− a

, a < x ≤ b,

c− x
c− b

, b < x ≤ c,

0, otherwise.

The TFN M̃ is represented by M̃ = (a, b, c). Its pictorial representation is given in Figure

1.1.

Definition 1.1.6 (Arithmetic operations on TFNs). [204] Let M̃=(a, b, c), M̃1=(a1, b1, c1) and

M̃2=(a2, b2, c2) be the TFNs. Then
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(i) M̃1 + M̃2 is defined as a TFN given by

M̃1 + M̃2 = (a1 + a2, b1 + b2, c1 + c2);

(ii) −M̃ is defined as a TFN given by

−M̃=(−c,−b,−a);

(iii) M̃1 − M̃2 is defined as a TFN given by

M̃1 − M̃2 = M̃1 + (−M̃2) = (a1 − c2, b1 − b2, c1 − a2);

(iv) M̃1 × M̃2 is defined as a TFN given by

M̃1 × M̃2 ≈ (p1, p2, p3),

where p1 = min{a1a2, a1c2, c1a2, c1c2}, p2 = b1b2, p3 = max{a1a2, a1c2, c1a2, c1c2};

(v) M̃−1
1 is defined as a TFN given by

M̃−1
1 = (q1, q2, q3),

where q1 = min{1/a1, 1/c1, 1/a1, 1/c1}, q2 = 1/b1, q3 = max{1/a1, 1/c1, 1/a1, 1/c1}, pro-

vided a1 6= 0;

(vi) M̃1/M̃2 is defined as a TFN given by

M̃1/M̃2 ≈ (q1, q2, q3),

where q1 = min{a1/a2, a1/c2, c1/a2, c1/c2}, q2 = b1/b2, q3 = max{a1/a2, a1/c2, c1/a2, c1/c2},
provided a2 6= 0.;

(vii) λM̃ is defined as a TFN given by

λM̃ =

(λa, λb, λc), λ ≥ 0,

(λc, λb, λa), λ < 0.

.

Definition 1.1.7. [204] A trapezoidal fuzzy number (TrFN) M̃ is a FS in R with membership

function µM̃ given by

µM̃(x) =



x− a
b− a

, a < x ≤ b,

1, b < x ≤ c,

d− x
d− c

, c < x ≤ d,

0, otherwise.

The TrFN M̃ is denoted by M̃ = (a, b, c, d). Its pictorial representation is given in Figure

1.2.



5

Definition 1.1.8 (Arithmetic operations on TrFNs). Let M̃=(a, b, c, d), M̃1=(a1, b1, c1, d1) and

M̃2=(a2, b2, c2, d2) be the TrFNs. Then

(i) M̃1 + M̃2 is defined as a TrFN given by

M̃1 + M̃2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2);

(ii) −M̃ is defined as a TrFN given by

−M̃=(−d,−c,−b,−a);

(iii) M̃1 − M̃2 is defined as a TrFN given by

M̃1 − M̃2 = M̃1 + (−M̃2) = (a1 − d2, b1 − c2, c1 − b2, d1 − a2);

(iv) M̃1 × M̃2 is defined as a TrFN given by

M̃1 × M̃2 ≈ (p1, p2, p3, p4),

where p1 = min{a1a2, a1d2, d1a2, d1d2}, p2 = min{b1b2, b1c2, c1b2, c1c2},
p3 = max{b1b2, b1c2, c1b2, c1c2}, p4 = max{a1a2, a1d2, d1a2, d1d2};

(v) M̃1/M̃2 is defined as a TrFN given by

M̃1/M̃2 ≈ (q1, q2, q3, q4),

where q1 = min{a1/a2, a1/d2, d1/a2, d1/d2}, q2 = min{b1/b2, b1/c2, c1/b2, c1/c2},
q3 = max{b1/b2, b1/c2, c1/b2, c1/c2}, q4 = max{a1/a2, a1/d2, d1/a2, d1/d2}, provided a2 6= 0;

(vi) λM̃ is defined as a TrFN given by

λM̃ =

(λa, λb, λc, λd), λ ≥ 0,

(λd, λc, λb, λa), λ < 0.

.

1.2 Intuitionistic fuzzy set theory

In most of the cases of judgements, evaluation is done by human beings where certainly there

are limitations of knowledge, intellectual functionaries or availability of data due to some un-

controllable factors. Naturally, every decision-maker (DM) hesitates more or less on every

evaluation activity. This is the concept of intuitionistic fuzzy set (IFS) theory introduced by

Atanassov [11]. It can handle both uncertainty and hesitation in parameter prediction. The

major advantage of IFS over FS is that IFS separates the degree of membership and the degree

of non-membership of an element in the set. IFS theory is one of the interesting generalizations

of FS theory introduced by Zadeh [194]. Because of this generalization, IFS theory has a much
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wider scope of applicability than the usual FS theory in solving various kinds of real physical

problems. In [12–14], Atanassov gave different types of operations and point operators over the

IFSs. An application of IFSs in medical diagnosis is noted in [51]. Gau and Buehrer [74] gave

the concept of vague sets. But, vague sets are IFSs [37]. Burillo and Bustince [32] gave a point

operator, which associates a family of FSs with given IFS, and construction theorems of IFSs

from one FS and from two FSs also gave results to recover the FSs used in the construction

from the IFS constructed by means of different operators.

In this section, the definitions of IFS, level set, IFN, and their arithmetic operations are

presented.

Definition 1.2.1. [11] Let X be a universe of discourse. Then an IFS ÃI in X is defined by

the set

ÃI = {(x, µ
ÃI

(x), ν
ÃI

(x)) : x ∈ X},

where µÃI , νÃI : X → [0, 1] are functions such that 0 ≤ µÃI (x)+νÃI (x) ≤ 1 ∀ x ∈ X. The value

µÃI (x) is called the degree of membership and νÃI (x) is called the degree of non-membership of

x ∈ X being in ÃI . The hesitation degree of an element x ∈ X being in ÃI is denoted by πÃI (x)

and is defined by

πÃI (x) = 1− µÃI (x)− νÃI (x) ∈ [0, 1] ∀ x ∈ X.

Definition 1.2.2. [12] Let ÃI1 = {< x, µÃI1(x), νÃI1(x) >: x ∈ X} and ÃI2 = {< x, µÃI2(x), νÃI2(x) >:

x ∈ X} be two IFSs. Then

(i) the standard union of ÃI1 and ÃI2 is denoted by ÃI1 ∪ ÃI2 and is defined as an IFS given by

ÃI1 ∪ ÃI2 = {(x, µÃI1∪ÃI2(x), νÃI1∪ÃI2(x)) : x ∈ X},

where µÃI1∪ÃI2(x) = max{µÃI1(x), µÃI2(x)}, νÃI1∪ÃI2(x) = min{νÃI1(x), νÃI2(x)} ∀ x ∈ X;

(ii) the standard intersection of ÃI1 and ÃI2 is denoted by ÃI1 ∩ ÃI2 and is defined as an IFS

given by

ÃI1 ∩ ÃI2 = {(x, µÃI1∩ÃI2(x), νÃI1∩ÃI2(x)) : x ∈ X},

where µÃI1∩ÃI2(x) = min{µÃI1(x), µÃI2(x)}, νÃI1∩ÃI2(x) = max{νÃI1(x), νÃI2(x)} ∀ x ∈ X;

(iii) the standard complement of ÃI1 is denoted by Ã
′I
1 and is defined as an IFS given by

Ã
′I
1 = {(x, µÃ′I1 (x), νÃ′I1

(x)) : x ∈ X},

where µÃ′I1
(x) = νÃI1(x), νÃ′I1

(x) = µÃI1(x) ∀ x ∈ X;
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(iv) ÃI1 is defined as a subset of ÃI2, denoted by ÃI1 ⊆ ÃI2, if

µÃI1(x) ≤ µÃI2(x) and νÃI1(x) ≥ νÃI2(x) ∀ x ∈ X.

Definition 1.2.3. [127] An IFS ÃI in X is called a convex IFS if the following conditions hold:

• µÃI is quasi-concave over X, i.e.,

µÃI (λ1x1 + λ2x2) ≥ min(µÃI (x1), µÃI (x2)), λ1 + λ2 = 1, λ1, λ2 ≥ 0, ∀ x1, x2 ∈ X.

• νÃI is quasi-convex in X, i.e.,

νÃI (λ1x1 + λ2x2) ≤ max(νÃI (x1), νÃI (x2)), λ1 + λ2 = 1, λ1, λ2 ≥ 0, ∀ x1, x2 ∈ X.

Definition 1.2.4. [127] An IFS ÃI = {(x, µÃI (x), νÃI (x)) : x ∈ X} is called normal if ∃
x1, x2 ∈ X such that µÃI (x1) = 1, νÃI (x2) = 1.

Definition 1.2.5. (α-cut of IFS)[127] The α-cut of an IFS ÃI is denoted by AIα and is defined

by

AIα = {x ∈ X : µÃI (x) ≥ α} ∀ α ∈ [0, 1].

Remark 1.2.6. AI0 = X.

Definition 1.2.7. (β-cut of IFS)[127] The β-cut of an IFS ÃI is denoted by AI(β) and is defined

by

AI(β) = {x ∈ X : νÃI (x) ≤ β} ∀ β ∈ [0, 1].

Definition 1.2.8. ((α, β)-cut of IFS)[127] The (α, β)-cut of an IFS ÃI is denoted by AIα,β and

is defined by

AI(α,β) = {x ∈ X : µÃI (x) ≥ α, νÃI (x) ≤ β}, α, β ∈ [0, 1]; α + β ≤ 1.

Remark 1.2.9. (i) AI(0,1) = X. (ii) AI(α,β) = AIα ∩ AI(β), α + β ≤ 1; α, β ≥ 0.

Definition 1.2.10. [66, 189] Let ÃI be an IFS in X. Then the score and accuracy functions of

ÃI are denoted by SÃI (x) and AÃI (x) respectively and are defined by

SÃI (x) = µÃI (x)− νÃI (x), AÃI (x) = µÃI (x) + νÃI (x) ∀ x ∈ X.

Definition 1.2.11. [127] An IFS ÃI={< x, µÃI (x), νÃI (x) >: x ∈ R} is called an intuitionistic

fuzzy number (IFN) if the following conditions hold:

• ÃI is convex IFS in R;

• ∃ unique m ∈ R such that µÃI (m) = 1 (m is called the mean value of ÃI);
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• ∃ an n ∈ R such that νÃI (n) = 1;

• µÃI and νÃI are piecewise continuous functions from R to [0, 1].

Thus, mathematically, the membership function µÃI and non-membership function νÃI of an

IFN ÃI are of the following forms:

µÃI (x) =



g1(x), m− l < x < m,

1, x = m,

g2(x), m < x < m+ r,

0, otherwise,

where g1 and g2 are piecewise continuous, increasing and decreasing functions in (m− l,m) and

(m,m+ r) respectively, and

νÃI (x) =



h1(x), m− l′ < x < m; 0 ≤ g1(x) + h1(x) ≤ 1,

0, x = m,

h2(x), m < x < m+ r′; 0 ≤ g2(x) + h2(x) ≤ 1,

1, otherwise,

where h1 and h2 are piecewise continuous, decreasing and increasing functions in (m − l′,m)

and (m,m+ r′) respectively, l is called the left spread and r is called the right spread of µ
ÃI

, l′

is called the left spread and r′ is called the right spread of πÃI . The IFN ÃI is represented by

(m; l, r; l′, r′). The graphical representation of the IFN ÃI is given in Figure 1.3.

Definition 1.2.12 (Arithmetic operations on IFNs:). [127] Let ÃI=(m; l, r; l′, r′), ÃI1=(m1; l1, r1; l′1, r
′
1)

and ÃI2=(m2; l2, r2; l′2, r
′
2) be IFNs. Then

(i) ÃI1 ⊕ ÃI2 is defined as an IFN given by

ÃI1 ⊕ ÃI2 = (m1 +m2; l1 + l2, r1 + r2; l′1 + l′2, r
′
1 + r′2);

(ii) 	ÃI is defined as an IFN given by

	Ã2 = (−m; r, l; r′, l′);

(iii) ÃI1 	 ÃI2 is defined as an IFN given by

ÃI1 	 ÃI2 = ÃI1 ⊕ (	ÃI2) = (m1 −m2; l1 + r2, r1 + l2; l′1 + r′2, r
′
1 + l′2);

(iv) ÃI1 ⊗ ÃI2 is defined as an IFN given by

ÃI1 ⊗ ÃI2 = (m; l, r; l′, r′),
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Figure 1.3: Graphical representation of an
IFN.

Figure 1.4: Graphical representation of a
TIFN.

where m = m1m2, l = m1m2−min{(m1− l1)(m2− l2), (m1− l1)(m2 + r2), (m1 + r1)(m2−
l2), (m1 +r1)(m2 +r2)}, r = max{(m1− l1)(m2− l2), (m1− l1)(m2 +r2), (m1 +r1)(m2− l2)−
m1m2, l

′ = m1m2 −min{(m1 − l′1)(m2 − l′2), (m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2), (m1 +

r′1)(m2 + r′2)}, r′ = max{(m1− l′1)(m2− l′2), (m1− l′1)(m2 + r′2), (m1 + r′1)(m2− l′2)−m1m2;

(v) λÃI is defined as an IFN given by

λÃI =

(λm;λl, λr;λl′, λr′), λ ≥ 0,

(λm;−λr,−λl;−λr′,−λl′), λ < 0.
.

Definition 1.2.13. [127] An IFN ÃI denoted by (a, b, c; a′, b, c′) is called the triangular intu-

itionistic fuzzy number (TIFN), if its membership function µÃI and non-membership function

νÃI are given by

µÃI (x) =


x− a
b− a

, a < x ≤ b,

c− x
c− b

, b < x ≤ c,

0, otherwise,

and νÃI (x) =


b− x
b− a′

, a′ < x ≤ b,

x− b
c′ − b

, b < x ≤ c′,

1, otherwise,

where a′ ≤ a < b < c ≤ c′. b is called the mean value of ÃI , b − a is called the left spread and

c− b is called the right spread of µÃI , b− a′ is called the left spread and c′− b is called the right

spread of πÃI . The graphical representation of a TIFN is given in Figure 1.4.

Definition 1.2.14 (Arithmetic operations on TIFNs:). [127] Let ÃI = (a, b, c; a
′
, b, c

′
), ÃI1 =

(a1, b1, c1; a
′
1, b1, c

′
1) and ÃI2 = (a2, b2, c2; a

′
2, b2, c

′
2) be TIFNs. Then
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(i) ÃI1 ⊕ ÃI2 is defined as a TIFN given by

ÃI1 ⊕ ÃI2 = (a1 + a2, b1 + b2, c1 + c2; a
′
1 + a

′
2, b1 + b2, c

′
1 + c

′
2);

(ii) 	ÃI is defined as a TIFN given by

	Ã2 = (−c2,−b2,−a2;−c′2,−b2,−a
′
2);

(iii) ÃI1 	 ÃI2 is defined as a TIFN given by

ÃI1 	 ÃI2 = ÃI1 ⊕ (	ÃI2) = (a1 − c2, b1 − b2, c1 − a2; a
′
1 − c

′
2, b1 − b2, c

′
1 − a

′
2);

(iv) ÃI1 ⊗ ÃI2 is defined as a TIFN given by

ÃI1 ⊗ ÃI2 ≈ (p1, p2, p3; p
′
1, p2, p

′
3), where

p1 = min{a1a2, a1c2, c1a2, c1c2}, p2 = b1b2, p3 = max{a1a2, a1c2, c1a2, c1c2}, p
′
1= min{a′1a

′
2,

a
′
1c
′
2, c

′
1a
′
2, c

′
1c
′
2}, p

′
3= max{a′1a

′
2, a

′
1c
′
2, c

′
1a
′
2, c

′
1c
′
2};

(v) ÃI1 � ÃI2 is defined as a TIFN given by

ÃI1 � ÃI2 ≈ (q1, q2, q3; q
′
1, q2, q

′
3), where

q1 = min{a1/a2, a1/c2, c1/a2, c1/c2}, q3= max{a1/a2, a1/c2, c1/a2, c1/c2}, q2 = b1/b2, q
′
1=

min{a′1/a
′
2, a

′
1/c

′
2, c

′
1/a

′
2, c

′
1/c

′
2}, q

′
3= max{a′1/a

′
2, a

′
1/c

′
2, c

′
1/a

′
2, c

′
1/c

′
2} provided a′2 > 0 or

c′2 < 0;

(vi) λÃI is defined as a TIFN given by

λÃI =

(λa1, λb1, λc1;λa
′
1, λb1, λc

′
1), λ ≥ 0,

(λc1, λb1, λa1;λc
′
1, λb1, λa

′
1), λ < 0.

.

Definition 1.2.15. [127] A trapezoidal intuitionistic fuzzy number (TrIFN) ÃI is an IFS in

R, denoted by ÃI = (a, b, c, d; a
′
, b
′
, c
′
, d
′
), with membership function µÃI and non-membership

function νÃI given by

µÃI (x) =



x− a
b− a

, a < x ≤ b,

1, b < x ≤ c,

d− x
d− c

, c < x ≤ d,

0, otherwise,

and νÃI (x) =



b
′ − x
b′ − a′

, a
′
< x ≤ b

′
,

0, b
′
< x ≤ c

′
,

x− c′

d′ − c′
, c

′
< x ≤ d

′
,

1, otherwise,

where a
′ ≤ a ≤ b

′ ≤ b ≤ c ≤ c
′ ≤ d ≤ d

′
.

Particular Cases

Case 1. If b
′
= b, c

′
= c, then ÃI also represents a TrIFN. It is denoted by ÃI = (a, b, c, d; a

′
, b, c, d

′
).
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Case 2. If b
′
= b = c = c

′
, then ÃI represents a TIFN. It is denoted by ÃI = (a, b, d; a

′
, b, d

′
).

Case 3. If a
′

= a, b
′

= b, c
′

= c, d
′

= d, then ÃI represents TrFN. It is denoted by

ÃI = (a, b, c, d).

Case 4. If a
′

= a, b
′

= b = c
′

= c, d
′

= d, then ÃI represents a TFN. It is denoted by

ÃI = (a, b, d).

Case 5. If a
′
= a = b

′
= b, c

′
= c = d

′
= d , then ÃI represents the crisp interval [b, c].

Case 6. If a
′
= a = b

′
= b = c

′
= c = d

′
= d = m, then ÃI represents a real number m.

Definition 1.2.16 (Arithmetic operations on TrIFNs:). [127] Let ÃI = (a, b, c, d; a
′
, b
′
, c
′
, d
′
),

Ã1
I

= (a1, b1, c1, d1; a
′
1, b

′
1, c

′
1, d

′
1) and Ã2

I
= (a2, b2, c2, d2; a

′
2, b

′
2, c

′
2, d

′
2) be TrIFNs. Then

(i) ÃI1 ⊕ ÃI2 is defined as a TrIFN given by

ÃI1 ⊕ ÃI2 = (a1 + a2, b1 + b2, c1 + c2, d1 + d2; a
′
1 + a

′
2, b

′
1 + b

′
2, c

′
1 + c

′
2, c

′
1 + c

′
2);

(ii) 	ÃI is defined as a TrIFN given by

	Ã2 = (−d2,−c2,−b2,−a2;−d′2,−c
′
2,−b

′
2,−a

′
2);

(iii) ÃI1 	 ÃI2 is defined as a TrIFN given by

ÃI1 	 ÃI2 = ÃI1 ⊕ (	ÃI2) = (a1− d2, b1− c2, c1− b2, d1− a2; a
′
1− d

′
2, b

′
1− c

′
2, c

′
1− b

′
2, d

′
1− a

′
2);

(iv) ÃI1 ⊗ ÃI2 is defined as a TrIFN given by

ÃI1 ⊗ ÃI2 ≈ (p1, p2, p3, p4; p
′
1, p2

′, p
′
3, p4

′), where

p1 = min{a1a2, a1d2, d1a2, d1d2}, p2 = min{b1b2, b1c2, c1b2, c1c2}, p3= max{b1b2, b1c2, c1b2,

c1c2}, p4= max{a1a2, a1d2, d1a2, d1d2}, p
′
1= min{a′1a

′
2, a

′
1d
′
2, d

′
1a
′
2, d

′
1d
′
2}, p

′
2= min{b′1b

′
2,

b
′
1c
′
2, c

′
1b
′
2, c

′
1c
′
2}, p

′
3= max{b′1b

′
2, b

′
1c
′
2, c

′
1b
′
2, c

′
1c
′
2}, p

′
4= max{a′1a

′
2, a

′
1d
′
2, d

′
1a
′
2, d

′
1d
′
2};

(v) ÃI1 � ÃI2 is defined as a TrIFN given by

ÃI1 � ÃI2 ≈ (q1, q2, q3, q4; q
′
1, q2

′, q
′
3, q4

′), where

q1= min{a1/a2, a1/d2, d1/a2, d1/d2}, q2= min{b1/b2, b1/c2, c1/b2, c1/c2}, q3= max{b1/b2,

b1/c2, c1/b2, c1/c2}, q4= max{a1/a2, a1/d2, d1/a2, d1/d2}, q
′
1= min{a′1/a

′
2, a

′
1/d

′
2, d

′
1/a

′
2,

d
′
1/d

′
2}, q

′
2= min{b′1/b

′
2, b

′
1/c

′
2, c

′
1/b

′
2, c

′
1/c

′
2}, q

′
3= max{b′1/b

′
2, b

′
1/c

′
2, c

′
1/b

′
2, c

′
1/c

′
2}, q

′
4=

max{a′1/a
′
2, a

′
1/d

′
2, d

′
1/a

′
2, d

′
1/d

′
2}, provided a′2 > 0 or d′2 < 0;

(vi) λÃI is defined as a TrIFN given by

λÃI =

(λa1, λb1, λc1, λd1;λa
′
1, λb

′
1, λc

′
1, λd

′
1), λ ≥ 0,

(λd1, λc1, λb1, λa1;λd
′
1, λc

′
1, λb

′
1, λa

′
1), λ < 0.

.
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Figure 1.5: Graphical representation of an LR-
Type IFN.

Definition 1.2.17. [204] A function f : [0,∞)→ [0, 1] is said to be shape function or reference

function if it satisfies the following conditions:

(i) f(0) = 1,

(ii) f is continuous function on [0,∞),

(iii) f is decreasing on [0,∞),

(iv) lim
x→∞

f(x) = 0.

Definition 1.2.18. [83] An IFN ÃI is said to be of LR-type IFN if there exist shape functions

L and R, and real constants l > 0, r > 0, l′ > 0, r′ > 0 such that its membership function µ
ÃI

and non-membership function ν
ÃI

are given by

µÃI (x) =


L
(m− x

l

)
, x ≤ m,

R
(x−m

r

)
, x > m,

and νÃI (x) =


1− L

(m− x
l′

)
, x ≤ m,

1−R
(x−m

r′

)
, x > m,

where l ≤ l′, r ≤ r′ and 0 ≤ µÃI (x) + νÃI (x) ≤ 1 ∀ x ∈ R. m is called the mean value of ÃI , l

is called the left spread and r is called the right spread of µÃI , l
′ is called the left spread and r′

is called the right spread of πÃI . The LR-type IFN is represented by ÃI = (m; l, r; l′, r′)LR. The

graphical representation of an LR-type IFN is given in Figure 1.5.

Definition 1.2.19. [83] The LR-type representation of a TIFN ÃI = (a, b, c; a′, b, c′) is given

by ÃI = (b; b− a, c− b; b− a′, c′ − b)LR and is defined by

µÃI (x) =


L
(b− x
b− a

)
, x ≤ b,

R
(x− b
c− b

)
, x > b,

and νÃI (x) =


1− L

( b− x
b− a′

)
, x ≤ b,

1−R
(x− b
c′ − b

)
, x > b,
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where L(x) = R(x) = max{0, 1− x} and 0 ≤ µÃI (x) + νÃI (x) ≤ 1 ∀ x ∈ R.

1.3 Fuzzy optimization

In the recent past decades, traditional optimization techniques have been successfully applied for

solving a well-defined and precise structure/configuration problems. Such optimization problems

are usually well-formulated when objective functions and system of constraints are precise and

deterministic. Unfortunately, real-world situations are often not deterministic. There exist

various types of uncertainties in social, industrial and economic systems, such as randomness of

occurrence of events, imprecision and ambiguity of system data and linguistic vagueness, etc.

The FS theory introduced by Zadeh [194] has been applied successfully in various fields. The

use of FS theory became very rapid in the field of optimization after the pioneering work done

by Bellman and Zadeh [31], defined as the FS formed by the intersection of fuzzy objective

and constraint goals. According to the above definition and assuming that the constraints are

“non-interactive” the logical “and” corresponds to the intersection. The “decision” in a fuzzy

environment can, therefore, be viewed as the intersection of fuzzy constraints and fuzzy objective

function(s). The relationship between constraints and objective functions in a fuzzy environment

are therefore fully symmetric, i.e. there is no longer a difference between the former and the

latter. From this point of view, Tanaka et al. [171] introduced fuzzy mathematical programming

and Zimmermann [202] introduced fuzzy linear programming problem (FLPP) as conventional

LP. Zimmermann [202] considered LP problems with a fuzzy goal and fuzzy constraints, used

linear membership functions and the min operator as an aggregator for these functions, and

assigned an equivalent LP problem to FLP. Then many authors have used FS theory in various

real-life optimization problems, such as planning, scheduling, transportation, manufacturing,

etc.

Since real-world problems are very complex, experts and DMs frequently do not know the

values of parameters precisely. Therefore, it may be more realistic to take the knowledge of

experts or DMs about the parameters as fuzzy data. Thus the multi-objective fuzzy linear pro-

gramming problems (MOFLPPs) with fuzzy parameters would be viewed as more effective than

the conventional one in solving real physical problems. Zimmermann [203] and Werners [184]

proposed an approach for determining suitable values for the aspiration level and admissible

violation of the fuzzy goal of fuzzy programming and linear programming with several objec-

tive functions. Luhandjula [122] gave compensatory operators in fuzzy linear programming

with multiple objectives. Chanas [40] proposed fuzzy programming in multi-objective linear
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programming and it was solved by a parametric approach. Angelov [7] gave a parameterized

generalization of fuzzy mathematical programming problem. Angelov [8] gave an analytical

method for solving a type of fuzzy optimization problems. Stanciulescu et al. [164] gave multi-

objective fuzzy linear programming problems with fuzzy decision variables. Dutta et al. [69]

gave a single-period inventory model with fuzzy random variable demand. Hu et al. [94] in-

troduced a fuzzy goal programming approach to a multi-objective optimization problem with

priorities. Dutta et al. [70] gave an inventory model for single-period products with reordering

opportunities under fuzzy demand. Nagar et al. [136] gave an integrated supply chain model

for new products with imprecise production and supply under scenario dependent fuzzy random

demand. Kumar et al. [108] gave a new method for solving fully fuzzy linear programming prob-

lems. Kaur and Kumar [104] gave Mehar’s method for solving fully fuzzy linear programming

problems with LR-type fuzzy parameters. Khan et al. [105] gave a simplified novel technique

for solving fully fuzzy linear programming problems. Ebrahimnejad and Tavana [71] gave a

novel method for solving linear programming problems with symmetric trapezoidal fuzzy num-

bers. Saati et al. [160] gave a fuzzy linear programming model with fuzzy parameters and

decision variables. Li et al. [114] introduce dissimilarity functions and divergence measures

between FSs. Ghanbari [75] introduced solutions of fuzzy LR algebraic linear systems using

linear programs. Deng et al. [53] gave monotonic similarity measures between FSs and their

relationship with entropy and inclusion measures. Ranjan and Singh [152] gave an aggrega-

tion approach for system efficiency evaluation of homogeneous parallel production systems. In

[6, 24, 25, 84, 85, 125, 126, 150, 151, 159, 176, 185], the duality theory of fuzzy optimization

problems are given in different prospectives.

1.4 Intuitionistic fuzzy optimization

Intuitionistic fuzzy optimization (IFO) is relatively a recent field for research. The determin-

istic linear programming models miss to accommodating any kind of imprecision or vagueness

in those models. The crisp relations (inequalities or equalities) cannot always describe the con-

straints or objective functions completely. However, one may be able to express the constraints

and objective functions in an IFS context making the model more realistic and pragmatic. In-

tuitionistic fuzzy linear programming (IFLP) is developed on this basis. The advantage is that

this method can express the degree of acceptance and rejection of objectives and constraints. To

deal with uncertainty as well as hesitation, intuitionistic fuzzy (IF) modeling seems to be more

relevant which includes both uncertainty and hesitation. In IFSs, the degree of membership,
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the degree of non-membership and the degree of hesitancy are real values. An application of the

IFS to optimization problems is given by Angelov [9]. His technique is based on maximizing the

membership degree, minimizing the non-membership degree and the crisp model is formulated

using the IF aggregation operator. Mahapatra and Roy [127] gave reliability evaluation using

TIFNs arithmetic operations. Kumar et al. [107] gave a new approach for analyzing the fuzzy

system reliability using IFN. Dubey et al. [66] introduced fuzzy linear programming (FLP) un-

der interval uncertainty based on IFS representation. Nagoorgani and Ponnalagu [137] gave a

new approach to solving the IFLP problem (IFLPP). Garg et al. [73] introduced IFO technique

for solving multi-objective reliability optimization problems in interval environment. Suresh et

al. [165] introduced solution technique of IFLPPs by ranking function. Li and Liu [112] gave

a parameterized nonlinear programming approach to solve matrix games with payoffs of IFNs.

Wan et al. [178] gave an IFLP method for logistics outsourcing provider selection. Singh and

Yadav [163] introduced modeling and optimization of multi-objective non-linear programming

problem in the intuitionistic fuzzy environment (IFE). Nishad and Singh [139] introduced a

solution technique for multi-objective decision-making problem in IFE. Rani et al. [153] in-

troduced Multi-objective non-linear programming problem in IFE: Optimistic and pessimistic

viewpoint. Razmi et al. [156] introduced an IF goal programming approach for finding Pareto-

optimal solutions to multi-objective programming problems. Zhao et al. [199] gave interactive

IF methods for multilevel programming problems. Singh [162] gave IF DEA/AR model and its

application to flexible manufacturing systems.

1.5 Decision-making problems in fuzzy environment

The study of classical decision theory has been approached from different perspectives, includ-

ing philosophical, behavioral, biological, mathematical and computational approaches, yet a

large number of challenges remain in understanding this important of higher cognition. Classic

decision theory deals with

(i) a set of alternative states of nature (outcomes).

(ii) a set of alternative actions.

(iii) a relation indicating the state or outcome to be expected from each alternative action.

(iv) a utility objective function which orders the outcomes according to their desirability.

Selecting the best suitable alternative from the given set of feasible alternatives is called Multi-

criteria Decision-Making (MCDM)/Multi-attribute Decision-Making (MADM). MCDM/MADM
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analysis has some unique characteristics such as the presence of multiple and conflicting criteria,

different units of measurement among the criteria, and the presence of quite different alterna-

tives. Incredible efforts have been spent and significant advances have been made towards the

development of numerous MCDM/MADM methodologies for solving different types of problems.

Classical MCDM methods along the line of multi-attribute utility theory require the determi-

nation of alternative ratings and criteria weights by eliciting the DM’s judgments/preferences.

Crisp values are commonly used to represent these ratings and weights, which are implicitly or

explicitly aggregated by a utility function. The overall utility of an alternative represents how

well the alternative satisfies the DM’s objective. Alternatives with higher utilities are said to

be preferred. In practical applications, alternative ratings and criteria weights cannot always

be assessed precisely. Subjectiveness and vagueness are often involved which may come from

various sources, including unquantifiable information, incomplete information, unobtainable in-

formation and partial ignorance. Classical MCDM methods cannot effectively handle problems

with such imprecise information. Most of the decision-making problems involve uncertainty.

Hence one of the most important aspects for a useful decision aid is to provide the ability to

handle imprecise information such as large profit, cheap price, fast speed. For the last four

decades, FS theory proposed by Zadeh [194] has been used to tackle these qualitative terms and

played a significant role in decision making under uncertainty.

The application of FS theory to MCDM models provides an effective way of dealing with the

subjectiveness and vagueness of the decision-making process for the general MCDM problem

[145]. By using linguistic terms with fuzzy number representation, the DM can effectively ex-

press his/her subjective assessments. The DM’s preference in comparing alternatives or criteria

can be better modeled. Mostly fuzzy MCDM models based on classical utility theory involve

two phases

• The aggregation of the fuzzy assessment with respect to all criteria for each alternative

and

• The ranking of alternatives based on their aggregated overall assessments (fuzzy utilities).

Fan et al. [72] gave subsethood measure for selection of alternative in fuzzy MCDM problems.

Wei et al. [183] gave a compromise weight for multi-attribute group decision making with

individual preference. Park [144] introduced mathematical programming models for character-

izing dominance and potential optimality when multi-attribute alternative values and weights

are simultaneously incomplete. Rao et al. [154] gave preference structure on alternatives and

judges in a group decision problem by a fuzzy approach. Zhang and Zhang [198] gave hybrid
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monotonic inclusion measure and its use in measuring similarity and distance between FSs, He

et al. [93] gave TL-transitivity of fuzzy similarity measures and Bustince et al. [39] gave group-

ing, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons.

Mesiar et al. [131] gave OWA operator for decision-making problems in fuzzy environment. It

is used to order the alternatives in fuzzy decision making problems. Different types of methods

for solving decision-making problems are noted in [4, 87, 88, 91].

1.6 Decision-making problems in intuitionistic fuzzy en-

vironment

Decision-making models inherently have some level of imprecision and vagueness in the estima-

tion of model parameters. Such phenomena have been very well captured through FSs. There

can be situations in which the DM is endowed with a fuzzy decision function favoring an alter-

native. It is worthwhile to have some measure of knowledge as to how the alternative has not

been preferred. IF decision models can play a vital role in this context. Mańko [129] measured

the fuzziness and the non-fuzziness of IFSs. Chen [41], and Hong and Kim [97] established

the similarity measures between vague sets and between elements. Liu [115] gave new simi-

larity measures between IFSs and between elements. Dengfeng and Chuntian [54] and Szmidt

and Kacprzyk [168] gave similarity measures of IFSs and applied to pattern recognition and

in supporting medical diagnostic reasoning. Also, several types of distances between IFSs and

similarity measure of IFSs noted in [23, 38, 52, 78, 95, 96, 138, 143, 166, 167, 180]. It is used in

decision-making problems, comparative analysis from a pattern recognition point of view and

to the global comparison of images in IFE. Xu and Yager [187] introduced dynamic IF multi-

attribute decision-making problems. In [90, 92, 179, 181, 186, 188, 192, 197], authors worked on

solving decision-making problems in IFE with different prospectives. Montes et al. [133–135]

introduced divergence measures, local divergences and entropy measures for IFSs and they ap-

plied to decision-making and pattern recognition problems. Pal et al. [142] and later Das et al.

[50] gave information measures in the IF framework and their relationships. In [86, 119–121],

several types of aggregation operators are given to aggregate attributes corresponding to each

alternative in decision-making problems in IFE. Also, Gupta et al. [86] gave multi-attribute

group decision-making based on extended TOPSIS method under interval-valued IFE.
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1.7 Fuzzy implications

After Zadeh introduced the concept of FS in his pioneering work ([194], Zadeh 1965), a huge

amount of work in FS theory and fuzzy logic appeared, both theoretical and applied. There are

two main branches in the study of fuzzy logic, fuzzy logic in the narrow sense and fuzzy logic in

the broad sense [89, 140]. Fuzzy logic in the narrow sense is a form of many-valued logic [157]

constructed in the spirit of classical binary logic. It is symbolic logic concerned with syntax,

semantics, axiomatization, soundness, completeness, etc. [82, 89]. Fuzzy logic in the broad

sense can be seen as an extension of fuzzy logic in the narrow sense. It is a way of interpreting

the natural language to model human reasoning [140].

A very important part of research in fuzzy logic (both in the narrow sense and in the broad

sense) focuses on extending the classical binary logic operators negation (¬), conjunction (∧),

disjunction (∨) and implication (→) to fuzzy logic operators. The extension of implication (→)

to fuzzy logic is called fuzzy implication. Table 1.1 gives the truth table of the classical binary

implication ‘→′.

Table 1.1: Truth table of the classical binary implication
p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1

Definition 1.7.1. A function I : [0, 1]2 → [0, 1] is called an fuzzy implication if for x, x′, x′′, y, y′, y′′ ∈
[0, 1], it satisfies the following conditions:

• x′ < x′′ ⇒ I(x′, y) ≥ I(x′′, y), i.e., I(., y) is non-increasing,

• y′ < y′′ ⇒ I(x, y′) ≤ I(x, y′′), i.e., I(x, .) is non-decreasing,

• I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0, I(0, 1) = 1.

Let us first have an overview of the literature on fuzzy implications in fuzzy logic in the

broad sense.

The implication in classical binary logic work only on two truth values 0 and 1 while a fuzzy

implication is a [0, 1]2 → [0, 1] mapping. So besides the boundary condition, the first step to

work on fuzzy implications is naturally to determine which fundamental requirements a fuzzy
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implication should fulfill. Most considerations are taken either from the point of view that a

fuzzy implication is a generalization of the implication in classical binary logic [89, 140].

In the literature, there are different classes of fuzzy implications, like strong implications

(S-implications), residuated implications (R-implications), quantum logic implications (QL-

implications), etc. generated from the fuzzy logic operators negation, conjunction and dis-

junction proposed in [19, 106]. Also, Jenei [102] gave a more efficient method for defining fuzzy

connectives. S-implications and QL-implications are defined respectively based on

p→ q =¬p ∨ q (1.1)

p→ q =¬p ∨ (p ∧ q) (1.2)

in classical binary logic, where p and q are two propositions. R-implications are defined based

on the fact that the implication is residuated with and in the classical binary logic. These class

of implications are widely used in different areas, like approximate reasoning, Boolean like laws,

distributive equations, etc. (e.g., [19, 106]).

Besides S-, R- and QL- implications, there are many other classes of fuzzy implications which

are not generated from the fuzzy logic operators negation, conjunction and disjunction, like,

Yager’s new class of implications Jf [21], fuzzy implications determined by aggregation operators

[141], (g, min)-implications [196], fuzzy implications derived from generalized h-generators [117],

residual implications derived from overlap functions [65], Fuzzy implication functions based on

powers of the continuous t-norms [128, 177], etc. The Boolean-like laws over fuzzy implications,

like, I(x, I(y, x)) = 1, I(x, I(y, z)) = I(I(x, y), I(x, z)) are studied in [42, 43]. Trillas and Alsina

[172] studied the law [p ∧ q → r] = [(p → r) ∨ (q → r)] in fuzzy logic. The distributivity of

fuzzy implication operators over t-norm and t-conorm is studied by Balasubramaniam and Rao

[22]. The concept of distributivity of fuzzy implications in [22] is extended for nilpotent or strict

t-conorms by Baczyński and Jayaram [20], and for overlap and grouping functions by Qiao and

Hu [148]. Jenei [103] studied continuity of left-continuous triangular norms with strong induced

negations and their boundary condition. After that, the continuity of residuals of triangular

norms studied by Jayaram [100].

1.8 Intuitionistic fuzzy implications

The extension of fuzzy implication to IFE when each of propositional elements lies in L.

Atanassov and Gargov [15] introduced two versions of IF propositional calculus and a version

of IF predicate logic. Atanassov and Gargov [15] and later Deschrijver et al. [59] and Cor-

nelis et al. [45] presented the definition and properties of intuitionistic fuzzy implication (IFI),
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IF t-norm, IF t-conorm. Also, some properties of IFIs are given and studied by Baczyński

[16]. Bustince et al. [33] studied IF conditional interpretation and introduced and analyzed

the properties of IFIs generated by fuzzy implications, fuzzy complications, and aggregation

operator. After, Deschrijver and Kerre [62] gave triangular norms and related operators in

L. Several authors studied interval-valued implications, interval-valued aggregation operators,

interval-valued t-norms, interval-valued t-conorms, interval-valued negations and different class

of interval-valued implications [5, 61, 111, 118]. Van Gasse et al. [173] introduced a character-

ization of interval-valued residuated lattices. Bustince et al. [34] introduced the generation of

interval-valued fuzzy and Atanassov’s IF connectives from fuzzy connectives and from Kα oper-

ators based on laws for conjunctions and disjunctions, amplitude. Gorzalczany [81] and later Li

et al. [113] gave a method of inference in approximate reasoning based on interval-valued FSs

and robustness of interval-valued fuzzy inference. The distributivity of interval-valued fuzzy

implications over t-representable t-norms generated from strict t-norms and nilpotent t-norms

are noted in [17, 18]. Shi et al. [161] gave constructive methods for IFIs.

In this section, the definitions of IFIs, R -implications, (S ,N )-implications, axioms of IFIs,

IF t-norms, IF t-conorms and IF negations are presented.

Definition 1.8.1 (IFS Lattice:, [59]). Let L = {(u1, u2) : (u1, u2) ∈ [0, 1]2, u1 + u2 ≤ 1} be

an IFS and the operation ≤L be defined on L by

(u1, u2) ≤L (v1, v2)⇔ u1 ≤ v1, u2 ≥ v2 ∀ (u1, u2), (v1, v2) ∈ L.

For each nonempty set A ⊆ L, we have

sup A =(sup{u1 : (u1, u2) ∈ A}, inf{u2 : (u1, u2) ∈ A}),

inf A =(inf{u1 : (u1, u2) ∈ A}, sup{u2 : (u1, u2) ∈ A}).

Then (L,≤L) is a complete lattice [59]. Equivalently, this lattice can also be defined as an

algebraic structure (L,∨,∧), where the join operator ∨ and the meet operator ∧ are defined as

follows:

For u = (u1, u2), v = (v1, v2) ∈ L,

u ∨ v = (max(u1, v1),min(u2, v2)) and u ∧ v = (min(u1, v1),max(u2, v2)).

Remark 1.8.2. (i) Note that if for (u1, u2), (v1, v2) ∈ L, u1 < v1 and u2 < v2, then u and v

are incomparable w.r.t. ≤L , written as u‖Lv.

(ii) We denote the units 0L = (0, 1), 1L = (1, 0) for the set L.
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(iii) For each point x ∈ X, ÃI(x) = (µÃI (x), νÃI (x)) is an element of L.

Definition 1.8.3. [109] Let u = (u1, u2) and v = (v1, v2) be the elements of L and r > 0 be a

real number. Then

(i) the sum of u and v is denoted by u+ v and is defined as an element of L is given by

u+ v = (u1 + v1 − u1v1, u2v2),

(ii) the difference of u and v is denoted by u− v and is defined as an element of L given by

u− v =

(u1−v1
1−v1 ,

u2
v2

), u1 ≥ v1, u2 ≤ v2, v2 > 0, u2(1− v1) ≤ v2(1− u1);

0L , otherwise,

(iii) the product of u and v is denoted by uv and is defined as an element of L given by

uv = (u1v1, u2 + v2 − u2v2),

(iv) the division of u by v is denoted by u/v and is defined as an element of L given by

u/v =

(u1
v1
, u2−v2

1−v2 ), u1 ≤ v1, u2 ≥ v2, v1 > 0, u1(1− v2) ≤ v1(1− u2);

0L , otherwise,

(v) ru = (1− (1− u1)r, ur2),

(vi) ur = (ur1, 1− (1− u2)r).

Definition 1.8.4. [59] A function I : L2 → L is called an IFI if for u, u′, u′′, v, v′, v′′ ∈ L, it

satisfies the following conditions:

u′ <L u
′′ ⇒ II(u

′, v) ≥L II(u
′′, v), i.e., II(., v) is non-increasing (I1)

v′ <L v
′′ ⇒ II(u, v

′) ≤L II(u, v
′′), i.e., II(u, .) is non-decreasing (I2)

II(0L , 0L) = 1L , II(1L , 1L) = 1L , II(1L , 0L) = 0L , II(0L , 1L) = 1L (I3)

We also define the following set for further usage: D = {(u1, u2) : (u1, u2) ∈ L, u1 +u2 = 1},
and the first and second projection mappings pr1 and pr2 on L defined as pr1(u1, u2) = u1 and

pr2(u1, u2) = u2 for all (u1, u2) ∈ L. Some IFIs are given in Table 1.2.
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Table 1.2: List of some IFIs
Name Formula
Zadeh 1 IIZD1(u, v) =< max(u2,min(u1, v1)),min(u1, v2) >
Zadeh 2 IIZD2(u, v) =< max(u2,min(u1, v1)),min(u1,max(u2, v2)) >
Gödel IIGD(u, v) =< 1− (u1 − v1).sg(u1 − v1), v2.sg(u1 − v1) >
Gaines-Rescher IIGR(u, v) =< 1− sg(u1 − v1), v2.sg(u1 − v1) >
Lukasiewicz IILK(u, v) =< min(1, u2 + v1),max(0, u1 + v2 − 1) >
Fodor’s 1 IIFD1(u, v) =< sg(u1 − v1) + sg(u1 − v1) max(u2, v1), sg(u1 − v1)

min(u1, v2) >
Reichenbach IIRB(u, v) =< u2 + u1v1, u1v2 >
Kleene-Dienes IIKD(u, v) =< max(u2, v1),min(u1, v2) >
Wu IIWU(u, v) =< 1− (1−min(u2v1.sg(u1 − v1))),max(u1, v2)sg(u1−

v1).sg(v2 − u2) >
Willmott IIWM(u, v) =< min(max(u2, v1),max(u1, u2),max(v1, v2)),

max(min(u1, v2),min(u1, u2),min(v1, v2)) >
Atanassov 1 IIA1(u, v) =< 1− (1− v1).sg(u1 − v1), v2.sg(u1 − v1).sg(v2 − u2) >
Atanassov 2 IIA2(u, v) =< max(u2, v1), 1−max(u2, v1) >
Klir and Yuan 1 IIKY 1(u, v) =< u2 + u2

1v1, u1u2 + u2
1v2 >

Klir and Yuan 2 IIKY 1(u, v) =< v1.sg(1− u1) + sg(1− u1).(sg(1− v1) + u2.sg(1− v1)),
v2.sg(1− u1) + u1.sg(1− u1).sg(1− v1) >

Atanassov and Kolev IIAK(u, v) =< u2 + v1 − u2v1, u1v2 >
Atanassov and Trifonov IIAT (u, v) =< 1− (1− v1).sg(u1 − v1)− v2.sg(u1 − v1).sg(v2 − u2),

v2.sg(v2 − u2) >

Corollary 1.8.5. [59] IFI has the greatest and least elements II1L and II0L respectively given

by

II1L (u, v) =

1L , u <L 1L or v >L 0L ,

0L , u =L 1L and v =L 0L ,
and II0L (u, v) =

1L , u =L 0L or v =L 1L ,

0L , u >L 0L and v <L 1L ,

∀ u, v ∈ L.

Definition 1.8.6. An IFI II : L2 → L is said to satisfy

the left neutrality property (NP) if II(1L , v) = v ∀ v ∈ L; (NP)

the ordering property (OP) if u ≤L v ⇔ II(u, v) = 1L ∀ u, v ∈ L. (OP)

the identity principle (IP) if II(u, u) = 1L ∀ u ∈ L. (IP)

the exchange principle (EP) if II(u, II(v, w)) = II(v, II(u,w)) ∀ u, v, w ∈ L. (EP)

the left ordering property (LOP) if u ≤L v ⇒ II(u, v) = 1L ∀ u, v ∈ L. (LOP)
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the right ordering property (ROP) if II(u, v) = 1L ⇒ u ≤L v ∀ u, v ∈ L. (ROP)

the consequent boundary (CB) if v ≤L II(u, v) ∀ u, v ∈ L. (CB)

the sub-iterative Boolean Law (SIB) if II(u, II(u, v)) ≥L II(u, v) ∀ u, v ∈ L. (SIB)

the iterative Boolean Law (IB) if II(u, II(u, v)) = II(u, v) ∀ u, v ∈ L. (IB)

the strong boundary condition (SBC) for 0L , if u 6= 0L ⇒ II(u, 0L) = 0L ∀ u ∈ L. (SBC)

the left boundary condition (LBC) if II(0L , v) = 1L ∀ v ∈ L. (LBC)

the right boundary condition (RBC) if II(u, 1L) = 1L ∀ u ∈ L. (RBC)

Definition 1.8.7. [59] A function N : L → L is called an IF negation if

(N1) N (0L) = 1L ,N (1L) = 0L ,

(N2) N is non-increasing.

Moreover, an IF negation N is said to be

(N3) strict if, in addition,

• N is decreasing,

• N is continuous.

(N4) strong if it is an involution, i.e., N (N (u)) = u, u ∈ L.

(N5) non-vanishing if N (u) = 0L ⇔ u = 1L .

(N6) non-filling if N (u) = 1L ⇔ u = 0L .

The standard negation is denoted by Ns and defined by Ns(u1, u2) = (u2, u1) ∀ (u1, u2) ∈ L.

Definition 1.8.8. [45] A function T : L2 → L is called a triangular norm (t-norm) if for all

u, v, w ∈ L, it satisfies the following conditions:

T (u, v) = T (v, u) (T1)

T (u, T (v, w)) = T (T (u, v), w) (T2)

v <L w ⇒ T (u, v) ≤L T (u,w), i.e., T (u, .) is non-decreasing (T3)

T (u, 1L) = u (T4)
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Example 1.8.9. (i) The function TM : L2 → L given by

TM(u, v) = (min(u1, v1),max(u1, v1)) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-norm.

(ii) The function T : L2 → L given by

T (u, v) = (u1v1, 1− (1− u2)(1− v2)) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-norm.

(iii) The function T : L2 → L given by

T (u, v) = (max(0, u1 +v1−1),min(1, u2 +1−v1, v2 +1−u1)) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-norm (see [62]).

Definition 1.8.10. [45] A function S : L2 → L is called a triangular conorm (t-conorm) if for

all u, v, w ∈ L, it satisfies the following conditions:

S(u, v) = S(v, u) (S1)

S(u, S(v, w)) = S(S(u, v), w) (S2)

v <L w ⇒ S(u, v) ≤L S(u,w), i.e., S(u, .) is non-decreasing (S3)

S(u, 0L) = u (S4)

Example 1.8.11. (i) The function SM : L2 → L given by

SM(u, v) = (max(u1, v1),min(u1, v1)) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-conorm.

(ii) The function S : L2 → L given by

S(u, v) = (u1v1, u2 + v2 − u2v2) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-conorm.

(iii) The function S : L2 → L given by

S(u, v) = (min(1, u1 + 1−v2, v1 + 1−u2),max(0, u2 +v2−1) ∀ u = (u1, u2), v = (v1, v2) ∈ L

is a t-conorm (see [62]).
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Definition 1.8.12. [45]

(A). A t-norm T on L is called t-representable if there exists a t-norm T and a t-conorm S on

[0, 1] such that

T (u, v) = (T (u1, v1), S(u2, v2)) for u = (u1, u2), v = (v1, v2) ∈ L.

T and S are called the representants of T . We write T = (T, S).

(B). A t-conorm S on L is called t-representable if there exists a t-norm T ′ and a t-conorm S ′

on [0, 1] such that

S(u, v) = (S ′(u1, v1), T ′(u2, v2)) for u = (u1, u2), v = (v1, v2) ∈ L.

T ′ and S ′ are called the representants of S . We write S = (S ′, T ′).

Example 1.8.13. (i) Consider the functions T : L2 → L and S : L2 → L generated by the

t-norm and t-conorm on [0, 1]. Then the mappings T and S given by

T (u, v) = (min(u1, v1),max(u2, v2)) and S(u, v) = (1− (1− u2)(1− v2), u1v1)

for u = (u1, u2), v = (v1, v2) ∈ L are t-representable.

(ii) On the other hand, t-norm T given in Example 1.8.9 (iii) and t-conorm S given in Example

1.8.11 (iii) are not representable, though both of them are continuous and Archimedean.

Definition 1.8.14. [45] A function II : L2 → L is called an R -implication if there exists a

t-norm T such that

II(u, v) = sup{γ ∈ L : T (u, γ) ≤L v} ∀ u, v ∈ L.

If II is an R -implication generated by a t-norm T , then it is denoted by IIT .

Definition 1.8.15. [45] A function II : L2 → L is called an (S ,N )-implication if there exist a

t-conorm S and an IF negation N such that

II(u, v) = S(N (u), v) ∀ u, v ∈ L.

If N is a strong IF negation, then II is called a strong implication or S-implication. Moreover,

if II is an (S ,N )-implication generated by S and N , then it is denoted by II(S ,N ).
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1.9 Organization of Thesis

This thesis is organized as follows. It consists of eight chapters. The chapter-wise summary is

as follows:

The current chapter gives the literature survey related to FS and IFS theory, FS and IFS

optimization problems, decision making-problems in fuzzy and IF environments, fuzzy and IFIs.

In Chapter 2, the product of unrestricted LR-type IFNs based on the α-cut, β-cut and

(α, β)-cut is proposed. Then with the help of the proposed product, a new method is proposed

to find the optimal solutions of unrestricted LR-type IFLPPs. A test example is given to support

the proposed method and investigated the applicability of existing approaches.

In Chapter 3, we introduce a pair of primal-dual LPPs in IFE and prove duality results

in IFE by using an aspiration level approach in which membership and non-membership func-

tions are taken in the form of reference functions. Since the fuzzy environment and IFE cause

the duality gap, we propose to investigate the impact of membership function governed by

reference function on duality gap. This is specially meaningful for fuzzy and IF programming

problems, when the primal and dual objective values may not be bounded. Finally, the duality

gap obtained by the approach has been compared with the duality gap obtained by existing

approaches.

Chapter 4 investigates a new approach for finding efficient solutions of the multi-objective

optimization problem (MOOP) in IFE based on DM’s different views, viz., optimistic, pes-

simistic and mixed. The point operator Fα, which transforms IFS into equivalent FS, is intro-

duced and some desirable properties of Fα are studied. The formulation of MOOP, accuracy

index and value function in IFE are introduced. For resolving the mutual conflicting nature

of objectives in MOOP in IFE, we introduce the membership and non-membership functions

governed by reference function which do not depend on the upper and lower levels of accept-

ability. Then a new method is proposed to find the efficient solutions of MOOP in IFE based

on different viewpoints. Finally, a test example is given to demonstrate the practicality and

effectiveness of the proposed method.

Chapter 5 considers some information measures, such as, normalized divergence measure,

similarity measure, dissimilarity measure and normalized distance measure in IFE, which mea-

sure the uncertainty and hesitancy, and which can be applied to the selection of alternatives in

group decision problems. We introduce and study the continuity of considered measures. Next,

we prove some results that can be used to generate measures for FSs as well as for IFSs and we

also prove some approaches to construct point measures from set measures in IFE. We define
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the weight set for one and many preference orders of alternatives. We investigate the proper-

ties and results related to the weight set. Based on the weight set, we develop the model for

finding the uncertain weights corresponding to attribute. Also, we develop the model to finding

positive certain weights corresponding to each attribute by using uncertain weights. Finally,

an algorithm for choosing the best alternative according to the preference orders of alternatives

in decision making problems is proposed and its validity is shown with the help of numerical

example.

In Chapter 6, the powers of a t-norm T with identical tuple elements on L are introduced

and their properties are studied. More specifically, a new type of implication on L, known as

the residual implication is derived from powers of continuous t-norm T , which is denoted by

IIT and satisfies certain properties of residual implications by imposing some extra conditions.

Moreover, some additional important properties are studied and analyzed. These altogether

reveal that they do not intersect the most well-known classes of fuzzy implications. Finally, we

investigate the solutions of Boolean-like laws in IIT .

In Chapter 7, a new class of IFIs known as (fI, ω)-implications is introduced which is a

generalized form of Yagers f-implications in IFE. Basic properties of these implications are dis-

cussed in detail. It is shown that (fI, ω)-implications are not only the generalizations of Yagers f-

implications, but also the generalizations of R -, (S , N)- and QL-implications in IFE. The distribu-

tive equations II(T (u, v), w) = S(II(u,w), II(v, w)) and II(u, T1(v, w)) = T2(II(u, v), II(u,w))

over t-representable t-norms and t-conorms generated from nilpotent and strict t-norms in IF

set theory are discussed.

Finally, in Chapter 8, conclusions are drawn based on the present study and future research

work is suggested in this direction.
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Chapter 2

Unrestricted LR-type intuitionistic

fuzzy mathematical programming

problems

In this chapter, the product of unrestricted LR-type IFNs based on the α-cut, β-cut and (α, β)-

cut is proposed. Then with the help of the proposed product, a new method is proposed to find

the optimal solutions of unrestricted LR-type IFLPPs. A test example is given to support the

proposed method and investigated the applicability of existing approaches.

2.1 Introduction

In today’s highly competitive market, the pressure on an organization is to find better ways

to attain the optimal solution. In conventional optimization problems, it is assumed that the

DM is sure about the precise values of data involved in the model. However, in real-world

applications, all the parameters of the optimization problems may not be known precisely due

to uncontrollable factors. Such type of imprecise data is well represented by a fuzzy number

introduced by Zadeh [194]. Zimmermann [203] showed that the solutions of fuzzy linear pro-

gramming problems (FLPPs) are always efficient. Several researchers have developed different

types of methods for solving FLPPs [71], fully fuzzy linear programming problems (FFLPPs)

([105], [108]) and LR-type FFLPPs ([75], [104]).

In real life, a person may assume that an object belongs to a set to a certain degree, but it is

possible that he/she is not sure about it. In other words, there may be hesitation or uncertainty

about the membership degree. The main meaning is that the parameters’ demand across the

29
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problem is uncertain. However, they are known to fall within a prescribed uncertainty set with

some attributed degrees. In FS theory, there is no means to incorporate the hesitation in the

membership degree. To incorporate the hesitation in the membership degree, IFSs proposed

by Atanassov [11] can be used. It is an extension of the FS theory. Gau and Buehrer[74]

introduced the concept of vague set. Bustince and Burillo [37] proved that vague sets and

IFSs are the same. IFS is playing an important role in decision making under uncertainty

and has gained popularity in recent years. It helps more adequately to represent situations

where DMs abstain from expressing their assessments. In this way, IFSs provide a richer tool

to grasp impression and ambiguity than the conventional FSs. These characteristics of IFSs led

to the extension of optimization methods in IFE. An application of the IFSs to optimization

problems is introduced by Angelov[9]. His technique is based on maximizing the degree of

membership, minimizing the degree of non-membership and the crisp model is formulated using

the IF aggregation operator. The application of IFSs in medical diagnosis is given by De et

al. [51]. Mahapatra and Roy [127] introduced arithmetic operations on TIFNs and studied

reliability evaluation using TIFNs. The modeling and optimization of the multi-objective non-

linear programming problem in IFE are discussed in [163] with the usual approach and in [153]

with different approaches such as optimistic and pessimistic approaches. Subsequently, several

researchers have solved optimization problems in IFE such as matrix game with IF payoffs by

using non-linear mathematical programming approach [112], IFLPP by a new method [137],

IFLPPs by using the ranking function approach [165], multi-level programming problems by

interactive IF methods[199], finding Pareto-optimal solutions to multi-objective programming

problems by an IF goal programming approach [156].

The rest of the chapter is organized as follows: In Section 2.2, some basic definitions and

arithmetic operations on LR-type IFNs are presented. In Section 2.3, the product of unrestricted

LR-type IFNs is introduced. In Section 2.4, a new method is proposed to find the fuzzy optimal

solution of LR-type IFLPPs. In Section 2.5, an illustrative example is given to support the

proposed method and the managerial insights of this problem are discussed. In Section 2.6, the

advantages of the proposed method over the existing methods are given. Concluding remarks

are drawn in Section 2.7.

2.2 Basic definitions and arithmetic operations

Definition 2.2.1. Let ÃI = {(x, µÃI (x), νÃI (x)) : x ∈ R} be an IFN. Then the operators

Cµ : I(R)→ R+ and Cν : I(R)→ R+ of an ÃI are defined by
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Cµ(ÃI) =

∫ m

m−l
µÃI (x)dx+

1

2

∫ m+r

m−l
µÃI (x)dx (2.1)

Cν(Ã
I) =

∫ m

m−l′
νÃI (x)dx+

1

2

∫ m+r′

m−l′
νÃI (x)dx (2.2)

Lemma 2.2.2. Let AIα = [AILα, A
I
Rα], α ∈ (0, 1], and AIβ = [AILβ, A

I
Rβ], β ∈ [0, 1), be the α-cut

and β-cut respectively of an IFN ÃI = {(x, µÃI (x), νÃI (x)) : x ∈ R}. Then

Cµ(ÃI) =

∫ 1

0

AILαdα +
1

2

∫ 1

0

(AIRα − AILα)dα (2.3)

Cν(Ã
I) =

∫ 1

0

AILβdβ +
1

2

∫ 1

0

(AIRβ − AILβ)dβ (2.4)

Proof. There are several approaches to prove (2.3) and (2.4). The simplest way is assessing the

area of the curves AILα, AILβ and between the curves AILα and AIRα; AILβ and AIRβ.

Let f : R → R and g : R → R be piecewise continuous functions on a segment [a, b] such

that f(x) ≥ g(x) ∀ x ∈ [a, b]. Then the area of the curve y = f(x) and the area between curves

y = f(x) and y = g(x) (according to classical results of math analysis, e.g., [19]) are

S(f) =

∫ b

a

f(x)dx and S(f − g) =

∫ b

a

(f(x)− g(x))dx (2.5)

respectively.

Determination of the area under the curve µÃI (x), x ∈ (m− l,m), and half the area under

the curve µÃI (x), x ∈ (m − l,m + r), according to (2.1), includes all the possible curves for

values µÃI (m− l), µÃI (m+ r), e.g., if µÃI (m+ r) = α2 > 0. For the latest case,

AIRα = m+ r, α ∈ [0, α2]

Let function α = µÃI (x) has a discontinuous in the point x0. According to the property of

µÃI (x), µÃI (x) is a piecewise upper continuous function, therefore

α0 = µÃI (x0) = max

(
α1 = lim

x→x−0
µÃI (x), α2 = lim

x→x+0
µÃI (x)

)
.

Assume α0 = α1, then (as µÃI (x) is upper-continuous) AIRα = x0 for α ∈ (α2, α1]. Thus, as

in segment in [0, 1], AILα is a non-decreasing piecewise lower-continuous function, and AIRα is

a non-increasing piecewise upper-continuous function. The sum of the areas, i.e., the area of

the curve x = AILα and the half of area between the curves x = AIRα and x = AILα are assessed

based on the approach (2.5) is the required result (2.3).

Similarly, we can prove the result (2.4).
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Definition 2.2.3. Let ÃI ∈ I(R). Then the score and accuracy indices of ÃI are denoted by

IS(ÃI) and IA(ÃI) respectively and are defined by

IS(ÃI) = |Cµ(ÃI)− Cν(ÃI)|, IA(ÃI) = Cµ(ÃI) + Cν(Ã
I).

Definition 2.2.4. An LR-type IFN ÃI = (m; l, r; l′, r′)LR is called LR-type unrestricted IFN if

m is any real number.

Definition 2.2.5. An LR-type IFN ÃI = (m; l, r; l′, r′)LR is called non-positive if m + r′ ≤ 0

and non-negative if m− l′ ≥ 0.

Definition 2.2.6. An LR-type IFN ÃI = (m; l, r; l′, r′)LR is called negative if m + r′ < 0 and

positive if m− l′ > 0.

Theorem 2.2.7. Let ÃI = (a, b, c; a′, b, c′) be a TIFN. Then its (i) α−cut AIα, (ii) β−cut AI(β)

are given by

AIα =[a+ (b− a)α, c− (c− b)α] (2.6)

AI(β) =[b− (b− a′)β, b+ (c′ − b)β] (2.7)

for α ∈ (0, 1], β ∈ [0, 1).

Proof. (i). For α ∈ (0, 1],

µ
ÃI

(x) ≥ α ⇒ x− a
b− a

≥ α,
c− x
c− b

≥ α

⇒ x ≥ a+ (b− a)α, x ≤ c− (c− b)α

⇒ a+ (b− a)α ≤ x ≤ c− (c− b)α

Therefore,

AIα = [a+ (b− a)α, c− (c− b)α].

(ii). Now, for β ∈ [0, 1),

ν
ÃI

(x) ≤ β ⇒ b− x
b− a′

≤ β,
x− b
c′ − b

≤ β

⇒ x ≥ b− (b− a′)β, x ≤ b+ (c′ − b)β

⇒ b− (b− a′)β ≤ x ≤ b+ (c′ − b)β

Therefore,

AI(β) = [b− (b− a′)β, b+ (c′ − b)β].
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Theorem 2.2.8. Let ÃI = (a, b, c; a′, b, c′) be a TIFN. Then its (α, β)−cut AI(α,β) is given by

AI(α,β) = [a+ (b− a)α, c− (c− a)α] ∩ [b− (b− a′)β, b+ (c′ − b)β] (2.8)

for α, β ∈ (0, 1), α + β ≤ 1.

Proof. For α ∈ (0, 1], the α-cut of ÃI is given by (see (2.6))

AIα = [a+ (b− a)α, c− (c− b)α].

For β ∈ [0, 1), α + β ≤ 1, the β-cut of ÃI is given by (see (2.7))

AI(β) = [b− (b− a′)β, b+ (c′ − b)β].

Therefore, by Definition 1.2.8,

AI(α,β) = AIα ∩ AI(β) = [a+ (b− a)α, c− (c− a)α] ∩ [b− (b− a′)β, b+ (c′ − b)β]

for α, β ∈ (0, 1), α + β ≤ 1.

Theorem 2.2.9. Let ÃI = (m; l, r; l′, r′)LR be an LR-type IFN. Then its (i) α−cut AIα, β−cut

AI(β) are given by

AIα =[m− lL−1(α),m+ rR−1(α)], (2.9)

AI(β) =[m− l′L−1(1− β),m+ r′R−1(1− β)] (2.10)

for α ∈ (0, 1], β ∈ [0, 1).

Proof. (i) For α ∈ (0, 1],

µ
ÃI

(x) ≥ α ⇒ L
(m− x

l

)
≥ α,R

(x−m
r

)
≥ α

⇒ m− x
l
≤ L−1(α),

x−m
r
≤ R−1(α) (∵ L and R are decreasing functions)

⇒ x ≥ m− lL−1(α), x ≤ m+ rR−1(α)

⇒ m− lL−1(α) ≤ x ≤ m+ rR−1(α)

Therefore,

AIα = [m− lL−1(α),m+ rR−1(α)]. (2.11)

(ii) Now, for β ∈ [0, 1) and α + β ≤ 1,

ν
ÃI

(x) ≤ β ⇒ 1− L
(m− x

l′

)
≤ β, 1−R

(x−m
r′

)
≤ β

⇒ x ≥ m− l′L−1(1− β), x ≤ m+ rR−1(1− β)

⇒ m− l′L−1(1− β) ≤ x ≤ m+ rR−1(1− β)
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Therefore,

AI(β) = [m− l′L−1(1− β),m+ r′R−1(1− β)]. (2.12)

Theorem 2.2.10. Let ÃI = (m; l, r; l′, r′)LR be an LR-type IFN. Then its (α, β)−cut AI(α,β) is

given by

AI(α,β) = [m− lL−1(α),m+ rR−1(α)] ∩ [m− l′L−1(1− β),m+ r′R−1(1− β)] (2.13)

for α, β ∈ (0, 1), α + β ≤ 1.

Proof. For α ∈ (0, 1], the α-cut of ÃI is given by (see (2.9))

AIα = [m− lL−1(α),m+ rR−1(α)]

For β ∈ [0, 1), α + β ≤ 1, the β-cut of ÃI is given by (see (2.10))

AI(β) = [m− l′L−1(1− β),m+ r′R−1(1− β)].

Therefore, by Definition 1.2.8,

AI(α,β) = AIα ∩ AI(β) = [m− lL−1(α),m+ rR−1(α)] ∩ [m− l′L−1(1− β),m+ r′R−1(1− β)]

for α, β ∈ (0, 1), α + β ≤ 1.

Remark 2.2.11. Let ÃI=(m; l, r; l′, r′)LR be an LR-type IFN. Then, based on Definition 2.2.3,

the score and accuracy indices of ÃI are denoted by IS(ÃI) and IA(ÃI), respectively and are

given by

IS(ÃI) =
∣∣∣1
2

∫ 1

0

{(m− lL−1(α)) + (m+ rR−1(α))}dα

− 1

2

∫ 1

0

{(m− l′L−1(1− β)) + (m+ r′R−1(1− β))}dβ
∣∣∣

and

IA(ÃI) =
1

2

∫ 1

0

{(m− lL−1(α)) + (m+ rR−1(α))}dα

+
1

2

∫ 1

0

{(m− l′L−1(1− β)) + (m+ r′R−1(1− β))}dβ.

Theorem 2.2.12. (Score index of LR-type TIFN) Let ÃI=(b; b− a, c− b; b− a′, c′− b)LR be an

LR-type TIFN. Then

IS(ÃI) =
∣∣∣(a+ c)− (a′ + c′)

4

∣∣∣.
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Proof. By Remark 2.2.11,

IS(ÃI) =
∣∣∣1
2

∫ 1

0

{(b− (b− a)L−1(α)) + (b+ (c− b)R−1(α))}dα

− 1

2

∫ 1

0

{(b− (b− a′)L−1(1− β)) + (b+ (c′ − b)R−1(1− β))}dβ
∣∣∣ (2.14)

By Definition 1.2.19 for a TIFN,

L(x) = R(x) = max{0, 1− x} ∀ x ≥ 0.

Therefore,

L(α) = 1− α (∵ 0 < α ≤ 1)

⇒ L−1(α) = 1− α (2.15)

Similarly,

L−1(1− β) = β, R−1(α) = 1− α, R−1(1− β) = β (2.16)

Using (2.15) and (2.16) in (2.14), we have

IS(ÃI) =
∣∣∣1
2

∫ 1

0

{(b− (b− a)(1− α)) + (b+ (c− b)(1− α))}dα

− 1

2

∫ 1

0

{(b− (b− a′)β) + (b+ (c′ − b)β)}dβ
∣∣∣

=
∣∣∣(a+ c)− (a′ + c′)

4

∣∣∣.

Theorem 2.2.13. (Accuracy index of LR-type TIFN) Let ÃI=(b; b − a, c − b; b − a′, c′ − b)LR
be an LR-type TIFN. Then

IA(ÃI) =
(a+ c+ 4b+ a′ + c′)

4
.

Proof. By Remark 2.2.11,

IA(ÃI) =
1

2

∫ 1

0

{(b− (b− a)L−1(α)) + (b+ (c− b)R−1(α))}dα

+
1

2

∫ 1

0

{(b− (b− a′)L−1(1− β)) + (b+ (c′ − b)R−1(1− β))}dβ. (2.17)
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Using (2.15) and (2.16) in (2.17), we have

IA(ÃI) =
1

2

∫ 1

0

{(b− (b− a)(1− α)) + (b+ (c− b)(1− α))}dα

+
1

2

∫ 1

0

{(b− (b− a′)β) + (b+ (c′ − b)β)}dβ

=
(a+ c+ 4b+ a′ + c′)

4
.

Definition 2.2.14. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be two LR-type

IFNs.

(A) Then

(i) ÃI1 is defined as less than ÃI2, written as ÃI1 ≺ ÃI2, if IS(ÃI1) < IS(ÃI2),

(ii) ÃI1 is defined as greater than ÃI2, written as ÃI1 � ÃI2, if IS(ÃI1) > IS(ÃI2).

(B) Let IS(ÃI1) = IS(ÃI2). Then

(i) ÃI1 is defined as less than ÃI2, written as ÃI1 ≺ ÃI2, if IA(ÃI1) < IA(ÃI2),

(ii) ÃI1 is defined as greater than ÃI2, written as ÃI1 � ÃI2, if IA(ÃI1) > IA(ÃI2),

(iii) ÃI1 is defined as equal to ÃI2, written as ÃI1 ≈ ÃI2, if IA(ÃI1) = IA(ÃI2).

2.2.1 Arithmetic Operations on LR-type IFNs

In this subsection, the arithmetic operations on LR-type IFNs are presented.

Proposition 2.2.15. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be two LR-type

IFNs. Then

ÃI1 ⊕ ÃI2 = (m1 +m2; l1 + l2, r1 + r2; l′1 + l′2, r
′
1 + r′2)LR,

where 0 < l1 + l2 ≤ l′1 + l′2 and 0 < r1 + r2 ≤ r′1 + r′2.

Proof. The α and β-cuts of ÃI1 and ÃI2 are given by

AI1α = [m1 − l1L−1(α),m1 + r1R
−1(α)], AI2α = [m2 − l2L−1(α),m2 + r2R

−1(α)] (2.18)

AI1(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)], AI2(β) = [m2 − l′2L−1(1− β),m2 + r′2R

−1(1− β)]

(2.19)
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respectively.

From (2.18), we get

(ÃI1 ⊕ ÃI2)α = AI1α + AI2α = [m1 − l1L−1(α),m1 + r1R
−1(α)] + [m2 − l2L−1(α),m2 + r2R

−1(α)]

= [m1 +m2 − (l1 + l2)L−1(α),m1 +m2 + (r1 + r2)R−1(α)] (2.20)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique α0 ∈ (0, 1]

such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 ⊕ ÃI2)α0 = [m1 +m2 − (l1 + l2),m1 +m2 + r1 + r2] (2.21)

(2.21) gives left and right spreads of membership function of ÃI1 ⊕ ÃI2 are l1 + l2 and r1 + r2

respectively.

Putting α = 1 in (2.20), we obtain the modal point of ÃI1 ⊕ ÃI2 given by

(ÃI1 ⊕ ÃI2)1 = [m1 +m2,m1 +m2] = m1 +m2 (2.22)

From (2.19), we get

(ÃI1 ⊕ ÃI2)(β) = AI1(β) + AI2(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)]

+ [m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

= [m1 +m2 − (l′1 + l′2)L−1(1− β),m1 +m2 + (r′1 + r′2)R−1(1− β)].

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique β0 ∈ [0, 1)

such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 ⊕ ÃI2)(β0) = [m1 +m2 − l′1 − l′2,m1 +m2 + r′1 + r′2] (2.23)

(2.23) gives left and right spreads of non-membership function of ÃI1⊕ ÃI2 are l′1 + l′2 and r′1 + r′2

respectively.

Since ÃI1 and ÃI2 are an LR-type IFNs,

0 < l1 ≤ l′1, 0 ≤ l2 ≤ l′2, 0 < r1 ≤ r′1, 0 < r2 ≤ r′2.

Thus, 0 < l1 + l2 ≤ l′1 + l′2 and 0 < r1 + r2 ≤ r′1 + r′2.

From (2.21), (2.22) and (2.23), we have

ÃI1 ⊕ ÃI2 = (m1 +m2; l1 + l2, r1 + r2; l′1 + l′2, r
′
1 + r′2)LR,

where 0 < l1 + l2 ≤ l′1 + l′2 and 0 < r1 + r2 ≤ r′1 + r′2.
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Proposition 2.2.16. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be two LR-type

IFNs. Then

ÃI1 	 ÃI2 = (m1 −m2; l1 + r2, l2 + r1; l′1 + r′2, l
′
2 + r′1)LR,

where 0 < l1 + r2 ≤ l′1 + r′2 and 0 < l2 + r1 ≤ l′2 + r′1.

Proof. The α and β-cuts of ÃI1 and ÃI2 are given by

AI1α = [m1 − l1L−1(α),m1 + r1R
−1(α)], AI2α = [m2 − l2L−1(α),m2 + r2R

−1(α)] (2.24)

AI1(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)], AI2(β) = [m2 − l′2L−1(1− β),m2 + r′2R

−1(1− β)]

(2.25)

respectively.

From (2.24), we get

(ÃI1 	 ÃI2)α = AI1α − AI2α = [m1 − l1L−1(α),m1 + r1R
−1(α)]− [m2 − l2L−1(α),m2 + r2R

−1(α)]

= [m1 − l1L−1(α)−m2 − r2R
−1(α),m1 + r1R

−1(α)−m2 + l2L
−1(α)]

(2.26)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique α0 ∈ (0, 1]

such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 	 ÃI2)α0 = [m1 −m2 − l1 − r2,m1 −m2 + l2 + r1] (2.27)

(2.27) gives left and right spreads of membership function of ÃI1 	 ÃI2 are l1 + r2 and l2 + r1

respectively.

Putting α = 1 in (2.26), we obtain the modal point of ÃI1 	 ÃI2 given by

(ÃI1 	 ÃI2)1 = [m1 −m2,m1 −m2] = m1 −m2 (2.28)

From (2.25), we get

(ÃI1 	 ÃI2)(β) = AI1(β) − AI2(β) =[m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)]

−[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[m1 − l′1L−1(1− β)−m2 − r′2R−1(1− β),

m1 + r′1R
−1(1− β)−m2 + l′2L

−1(1− β)]

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique β0 ∈ [0, 1)

such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 	 ÃI2)(β0) = [m1 −m2 − l′1 − r′2,m1 −m2 + l′2 + r′1] (2.29)
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(2.29) gives left and right spreads of non-membership function of ÃI1	 ÃI2 are l′1 + r′2 and l′2 + r′1

respectively.

Since ÃI1 and ÃI2 are an LR-type IFNs,

0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1 and 0 < r2 ≤ r′2.

Thus, 0 < l1 + r2 ≤ l′1 + r′2 and 0 < l2 + r1 ≤ l′2 + r′1.

From (2.27), (2.28) and (2.29), we have

ÃI1 	 ÃI2 = (m1 −m2; l1 + r2, l2 + r1; l′1 + r′2, l
′
2 + r′1)LR,

where 0 < l1 + r2 ≤ l′1 + r′2 and 0 < l2 + r1 ≤ l′2 + r′1.

Proposition 2.2.17. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be two non-negative

LR-type IFNs. Then

ÃI1�ÃI2 = (m1m2;m1l2 +m2l1−l1l2,m1r2 +m2r1 +r1r2;m1l
′
2 +m2l

′
1−l′1l′2,m1r

′
2 +m2r

′
1 +r′1r

′
2)LR,

where 0 < m1l2+m2l1−l1l2 ≤ m1l
′
2+m2l

′
1−l′1l′2 and 0 < m1r2+m2r1+r1r2 ≤ m1r

′
2+m2r

′
1+r′1r

′
2.

Proof. The α and β-cuts of ÃI1 and ÃI2 are given by

AI1α = [m1 − l1L−1(α),m1 + r1R
−1(α)], AI2α = [m2 − l2L−1(α),m2 + r2R

−1(α)] (2.30)

AI1(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)], AI2(β) = [m2 − l′2L−1(1− β),m2 + r′2R

−1(1− β)]

(2.31)

respectively.

Since ÃI1 and ÃI2 are non-negative,

m1 − l′1 ≥ 0 and m2 − l′2 ≥ 0.

Thus, m1 − l′1L−1(1− β) ≥ 0 and m2 − l′2L−1(1− β) ≥ 0 ∀ β ∈ [0, 1).

From (2.30), we get

(ÃI1 � ÃI2)α = AI1αA
I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 − l1L−1(α))(m2 − l2L−1(α)), (m1 + r1R
−1(α))(m2 + r2R

−1(α))]

(2.32)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique α0 ∈ (0, 1]

such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 − l1)(m2 − l2), (m1 + r1)(m2 + r2)]

= [m1m2 −m2l1 −m1l2 + l1l2,m1m2 +m2r1 +m1r2 + r1r2] (2.33)
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(2.33) gives left and right spreads of membership function of ÃI1� ÃI2 are m2l1 +m1l2− l1l2 and

m2r1 +m1r2 + r1r2 respectively.

Putting α = 1 in (2.32), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.34)

From (2.31), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

+[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))].

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique β0 ∈ [0, 1)

such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) = [(m1 − l′1)(m2 − l′2), (m1 + r′1)(m2 + r′2)]

= [m1m2 −m1l
′
2 −m2l

′
1 + l′1l

′
2,m1m2 +m1r

′
2 +m2r

′
1 + r′1r

′
2] (2.35)

(2.35) gives left and right spreads of non-membership function of ÃI1� ÃI2 are m1l
′
2 +m2l

′
1− l′1l′2

and m1r
′
2 +m2r

′
1 + r′1r

′
2 respectively.

Since ÃI1 and ÃI2 are non-negative LR-type IFNs,

m1 − l′1 ≥ 0,m2 − l′2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1, 0 < r2 ≤ r′2,m1 − l′1
≤ m1 − l1,m2 − l′2 ≤ m2 − l2,m1 + r1 ≤ m1 + r′1,m2 + r2 ≤ m2 + r′2

⇒ (m1 − l′1)(m2 − l′2) ≤ (m1 − l1)(m2 − l2), (m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2)

⇒ m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2 ≤ m1m2 −m2l1 −m1l2 + l1l2, m1m2 +m2r1 +m1r2

+ r1r2 ≤ m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2

⇒ −m2l
′
1 −m1l

′
2 + l′1l

′
2 ≤ −m2l1 −m1l2 + l1l2,

m2r1 +m1r2 + r1r2 ≤ m2r
′
1 +m1r

′
2 + r′1r

′
2

⇒ m2l
′
1 +m1l

′
2 − l′1l′2 ≥ m2l1 +m1l2 − l1l2, m2r1 +m1r2 + r1r2 ≤ m2r

′
1 +m1r

′
2 + r′1r

′
2

Clearly, (m2l1 + m1l2 − l1l2) = l1(m2 − l2) + m1l2 > 0, (m2r1 + m1r2 + r1r2) > 0 (∵ ÃI1

and ÃI2 are non-negative )

From (2.33), (2.34) and (2.35), we have

ÃI1�ÃI2 = (m1m2;m1l2 +m2l1−l1l2,m1r2 +m2r1 +r1r2;m1l
′
2 +m2l

′
1−l′1l′2,m1r

′
2 +m2r

′
1 +r′1r

′
2)LR,



41

where 0 < m1l2 +m2l1− l1l2 ≤ m1l
′
2 +m2l

′
1− l′1l′2 and 0 < m1r2 +m2r1 + r1r2 ≤ m1r

′
2 +m2r

′
1 +

r′1r
′
2.

Proposition 2.2.18. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be non-positive and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be

non-negative LR-type IFNs. Then

ÃI1�ÃI2 = (m1m2;m2l1−m1l1 +r2r2,m2r1−m1l2−r1l2;m2l
′
1−m1l

′
1 +r′2r

′
2,m2r

′
1−m1l

′
2−r′1l′2)LR,

where 0 < m2l1−m1l1+r2r2 ≤ m2l
′
1−m1l

′
1+r′2r

′
2 and 0 < m2r1−m1l2−r1l2 ≤ m2r

′
1−m1l

′
2−r′1l′2.

Proof. The α and β-cuts of ÃI1 and ÃI2 are given by

AI1α = [m1 − l1L−1(α),m1 + r1R
−1(α)], AI2α = [m2 − l2L−1(α),m2 + r2R

−1(α)] (2.36)

AI1(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)], AI2(β) = [m2 − l′2L−1(1− β),m2 + r′2R

−1(1− β)]

(2.37)

respectively.

Since ÃI1 is non-positive and ÃI2 is non-negative,

m1 + r′1 ≤ 0 and m2 − l′2 ≥ 0.

Thus, m1 + r′1R
−1(1− β) ≤ 0 and m2 − l′2L−1(1− β) ≥ 0 ∀ β ∈ [0, 1).

From (2.36), we get

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 − l1L−1(α))(m2 + r2R
−1(α)),

(m1 + r1R
−1(α))(m2 − l2L−1(α))] (2.38)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique α0 ∈ (0, 1]

such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 − l1)(m2 + r2), (m1 + r1)(m2 − l2)]

= [m1m2 −m2l1 +m1r2 − l1r2,m1m2 +m2r1 −m1l2 − r1l2] (2.39)

(2.39) gives left and right spreads of membership function of ÃI1 � ÃI2 are m2l1 − m1r2 + l1r2

and m2r1 −m1l2 − r1l2 respectively.

Putting α = 1 in (2.29), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.40)
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From (2.37), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

+[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β))]

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique β0 ∈ [0, 1)

such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) = [(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2)]

= [m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − r′1l′2] (2.41)

(2.41) gives left and right spreads of non-membership function of ÃI1� ÃI2 are m2l
′
1−m1r

′
2 + l′1r

′
2

and m2r
′
1 −m1l

′
2 − r′1l′2 respectively. Since ÃI1 is non-positive and ÃI2 is non-negative LR-type

IFNs,

m1 + r′1 ≤ 0,m2 − l′2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1, 0 < r2 ≤ r′2,m1 − l′1 ≤ m1

− l1 < 0, 0 ≤ m2 − l′2 ≤ m2 − l2,m1 + r1 ≤ m1 + r′1 ≤ 0, 0 ≤ m2 + r2 ≤ m2 + r′2.

⇒ − (m1 − l′1)(m2 + r′2) ≥ −(m1 − l1)(m2 + r2) ≥ 0,

− (m1 + r1)(m2 − l2) ≥ −(m1 + r′1)(m2 − l′2) ≥ 0

⇒ −m1m2 +m2l
′
1 −m1l

′
1 + r′2r

′
2 ≥ −m1m2 +m2l1 −m1l1 + r2r2 ≥ 0,

−m1m2 −m2r1 +m1l2 + r1l2 ≥ −m1m2 −m2r
′
1 +m1l

′
2 + r′1l

′
2

⇒ m2l
′
1 −m1l

′
1 + r′2r

′
2 ≥ m2l1 −m1l1 + r2r2 ≥ 0,

m2r1 −m1l2 − r1l2 ≤ m2r
′
1 −m1l

′
2 − r′1l′2

Clearly, m2r1 − m1l2 − r1l2 = r1(m2 − l2) − m1l2 > 0 (∵ r1 > 0, l2 > 0,m2 − l2 ≥ 0, and

m1 ≤ 0 )

From (2.39), (2.40) and (2.41), we have

ÃI1�ÃI2 = (m1m2;m2l1−m1l1 +r2r2,m2r1−m1l2−r1l2;m2l
′
1−m1l

′
1 +r′2r

′
2,m2r

′
1−m1l

′
2−r′1l′2)LR,

where 0 < m2l1−m1l1 + r2r2 ≤ m2l
′
1−m1l

′
1 + r′2r

′
2 and 0 < m2r1−m1l2− r1l2 ≤ m2r

′
1−m1l

′
2−

r′1l
′
2.

Proposition 2.2.19. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be non-negative and ÃI2=(m2; l2, r2; l′2, r

′
2)LR

be non-positive LR-type IFNs. Then

ÃI1�ÃI2 ≈ (m1m2;m1l2−m2r1 +r1l2,m1r2−m2l1−l1r2;m1l
′
2−m2r

′
1 +r′1l

′
2,m1r

′
2−m2l

′
1−l′1r′2)LR,
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where 0 < m1l2−m2r1+r1l2 ≤ m1l
′
2−m2r

′
1+r′1l

′
2 and 0 < m1r2−m2l1−l1r2 ≤ m1r

′
2−m2l

′
1−l′1r′2.

Proof. The same as Proposition 2.2.18.

Proposition 2.2.20. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be both non-positive

LR-type IFNs. Then

ÃI1 � ÃI2 ≈(m1m2;−m1r2 −m2r1 − r1r2,−m1l2 −m2l1 + l1l2;−m1r
′
2 −m2r

′
1 − r′1r′2,−m1l

′
2

−m2l
′
1 + l′1l

′
2)LR,

where 0 < −m1r2 − m2r1 − r1r2 ≤ −m1r
′
2 − m2r

′
1 − r′1r

′
2 and 0 < −m1l2 − m2l1+ l1l2 ≤

−m1l
′
2 −m2l

′
1 + l′1l

′
2.

Proof. The same as Propositions 2.2.18 and 2.2.15.

Proposition 2.2.21. Let ÃI=(m; l, r; l′, r′)LR be non-negative LR-type IFN and λ be any real

number. Then

λÃI =

(λm;λl, λr;λl′, λr′)LR, λ ≥ 0,

(λm;−λr,−λl;−λr′,−λl′)LR, λ < 0.

Proof. The same as Propositions 2.2.15 and 2.2.17.

2.3 Proposed product for unrestricted LR-type IFNs

In this section, product for unrestricted LR-type IFNs is proposed.

Theorem 2.3.1. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 − l′1 < 0, m1 − l1 ≥ 0

and ÃI2=(m2; l2, r2; l′2, r
′
2)LR be another LR-type IFN, where m2−l′2, m2−l2, m2, m2+r2, m2+r′2

are real numbers. Then ÃI1�ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−
m1l2−m2l1+l1l2,m1m2−m1l2+m2r1−l2r1}, r = max{m1m2+m1r2+m2r1+r1r2,m1m2+m1r2−
m2l1− l1r2}−m1m2, l′ = m1m2−min{m1m2−m2l

′
1 +m1r

′
2− l′1r′2,m1m2 +m2r

′
1−m1l

′
2− l′2r′1},

r′ = max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2, and 0 < l ≤ l′, 0 <

r ≤ r′.

Proof. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR and ÃI2=(m2; l2, r2; l′2, r

′
2)LR be two LR-type IFNs in which

m1− l′1 < 0, m1− l1 ≥ 0, and m2− l′2,m2− l2,m2,m2 + r2,m2 + r′2 are real numbers. Then the

α and β-cuts of ÃI1 and ÃI2 are given by

AI1α = [m1 − l1L−1(α),m1 + r1R
−1(α)], AI2α = [m2 − l2L−1(α),m2 + r2R

−1(α)] (2.42)

AI1(β) = [m1 − l′1L−1(1− β),m1 + r′1R
−1(1− β)], AI2(β) = [m2 − l′2L−1(1− β),m2 + r′2R

−1(1− β)]

(2.43)
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respectively.

Since m1 − l′1 < 0 and m1 − l1 ≥ 0, m1 − l1L−1(α) ≥ 0 for α ∈ (0, 1], m1 − l′1L−1(1− β) ≤ 0 for

β ≤ (1− L(m1

l′1
)), m1 − l′1L−1(1− β) ≥ 0 for β ≥ (1− L(m1

l′1
)).

To find the product of ÃI1 and ÃI2, we need to consider the following six cases:

Case 1. If m2−l′2 ≥ 0, then m2−l2L−1(α) ≥ 0 and m2−l′2L−1(1−β) ≥ 0 ∀α ∈ (0, 1], β ∈ [0, 1).

(a) If m1 − l′1L−1(1− β) ≤ 0 and m2 − l′2L−1(1− β) ≥ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 − l1L−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.44)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 − l1)(m2 − l2), (m1 + r1)(m2 + r2)]

= [m1m2 −m2l1 −m1l2 + l1l2,m1m2 +m2r1 +m1r2 + r1r2] (2.45)

(2.45) gives left and right spreads of membership function of ÃI1� ÃI2 are m2l1 +m1l2− l1l2
and m2r1 +m1r2 + r1r2 respectively.

From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))] (2.46)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) = [(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 + r′2)]

= [m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2] (2.47)

(2.47) gives left and right spreads of non-membership function of ÃI1� ÃI2 are m2l
′
1−m1r

′
2 +

l′1r
′
2 and m2r

′
1 +m1r

′
2 + r′1r

′
2 respectively.
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(b) If m1 − l′1L−1(1− β) ≥ 0 and m2 − l′2L−1(1− β) ≥ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 − l1L−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.48)

Putting α = 1 in (2.48), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.49)

Since m1 − l′1 ≤ 0, m1 − l1 ≥ 0, m2 − l′2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1,

0 < r2 ≤ r′2,

(m1− l′1) ≤ (m1− l1), (m2− l′2) ≤ (m2− l2), (m1 +r1) ≤ (m1 +r′1) and (m2 +r2) ≤ (m2 +r′2)

⇒ (m1 − l′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2) ≤ (m1 − l1)(m2 − l2) and (m1 + r1)(m2 + r2) ≤
(m1 + r′1)(m2 + r′2) (∵ m2 − l′2 ≤ m2 + r′2,m1 − l′1 ≤ 0 )

⇒ m1m2−m2l
′
1 +m1r

′
2− l′1r′2 ≤ m1m2−m2l1−m1l2 + l1l2 and m1m2 +m2r1 +m1r2 +r1r2 ≤

m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2

⇒ m1m2 − (m1m2 − m2l
′
1 + m1r

′
2 − l′1r

′
2) ≥ m1m2 − (m1m2 − m2l1 − m1l2 + l1l2) and

(m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ (m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2)−m1m2

Clearly, m1m2 − (m1m2 −m2l1 −m1l2 + l1l2) = l2(m1 − l1) + m2l1 > 0, (m1m2 + m2r1 +

m1r2 + r1r2)−m1m2 > 0.

From (2.45), (2.47) and (2.49) of Case 1, we get

ÃI1�ÃI2 ≈ (m1m2;m1m2−(m1m2−m2l1−m1l2+l1l2), (m1m2+m2r1+m1r2+r1r2)−m1m2;

m1m2 − (m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2), (m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2)−m1m2)LR,

where 0 < m1m2 − (m1m2 −m2l1 −m1l2 + l1l2) ≤ m1m2 − (m1m2 −m2l
′
1 + m1r

′
2 − l′1r′2)

and 0 < (m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ (m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2)−m1m2.

Case 2. If m2 − l′2 < 0 and m2 − l2 ≥ 0, then m2 − l′2L−1(1− β) ≥ 0 for β ≥ (1− L(m2

l′2
)) and

m2 − l′2L−1(1− β) ≤ 0 for β ≤ (1− L(m2

l′2
)).

(a) If m1 − l′1L−1(1− β) ≤ 0 and m2 − l′2L−1(1− β) ≤ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 − l1L−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.50)
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Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 − l1)(m2 − l2), (m1 + r1)(m2 + r2)]

= [m1m2 −m2l1 −m1l2 + l1l2,m1m2 +m2r1 +m1r2 + r1r2] (2.51)

(2.51) gives left and right spreads of membership function of ÃI1� ÃI2 are m2l1 +m1l2− l1l2
and m2r1 +m1r2 + r1r2 respectively.

From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[min{(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β))},

max{(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))}] (2.52)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) =[min{(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2)},

max{(m1 − l′1)(m2 − l′2), (m1 + r′1)(m2 + r′2)}]

[min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2},max{m1m2 −m2l

′
1 −m1l

′
2

+ l′1l
′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2}] (2.53)

(2.53) gives left and right spreads of non-membership function of ÃI1 � ÃI2 are m1m2 −
min{m1m2−m2l

′
1+m1r

′
2-l′1r

′
2, m1m2+m2r

′
1-m1l

′
2-r′1l

′
2} and max{m1m2-m2l

′
1-m1l

′
2+l′1l

′
2, m1m2

+m2r
′
1+m1r

′
2+r′1r

′
2}-m1m2 respectively.

(b) If m1 − l′1L−1(1− β) ≥ 0 and m2 − l′2L−1(1− β) ≥ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 − l1L−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.54)
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Putting α = 1 in (2.54), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.55)

Since m1− l′1 < 0, m1− l1 ≥ 0, m2− l′2 < 0, m2− l′2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1

and 0 < r2 ≤ r′2,

(m1 − l′1) ≤ (m1 − l1), (m2 − l′2) ≤ (m2 − l2), (m1 + r1) ≤ (m1 + r′1), (m2 + r2) ≤ (m2 + r′2).

⇒− (m1 − l′1)(m2 + r′2) ≥ −(m1 − l1)(m2 − l2), (m1 − l1)(m2 − l2) ≥ (m1 − l1)(m2 − l′2)

≥ (m1 + r′1)(m2 − l′2) (∵ m2 − l2 ≤ m2 + r2,m2 − l′2 ≤ 0,m1 − l1 ≥ 0)

⇒m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2 ≤ m1m2 −m2l1 −m1l2 + l1l2, m1m2 −m2l1−

m1l2 + l1l2 ≥ m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2

⇒ m1m2 − (m1m2 −m2l1 −m1l2 + l1l2) ≤ m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2} (2.56)

Now, if (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2) (2.57)

If (m1 + r′1)(m2 + r′2) ≥ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) (2.58)

From (2.57) and (2.58), we get

(m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +

m1r
′
2 + r′1r

′
2} −m1m2.

Clearly, m1m2 − (m1m2 −m2l1 −m1l2 + l1l2) = l2(m1 − l1) + m2l1 > 0, (m1m2 + m2r1 +

m1r2 + r1r2)−m1m2 > 0.

From (2.51), (2.53) and (2.55) of Case 2, we get

ÃI1 � ÃI2 ≈(m1m2;m1m2 − (m1m2 −m2l1 −m1l2 + l1l2), (m1m2 +m2r1 +m1r2 + r1r2)−

m1m2;m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2)LR,

where 0 < m1m2 − (m1m2 − m2l1 − m1l2 + l1l2) ≤ m1m2-min{m1m2-m2l
′
1+m1r

′
2-l′1r

′
2,

m1m2+m2r
′
1 −m1l

′
2 − r′1l′2} and 0 < (m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ max{m1m2-

m2l
′
1-m1l

′
2+l′1l

′
2, m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2.
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Case 3. If m2−l2 < 0 and m2 ≥ 0, then m2−l2L−1(α) ≥ 0 for α ≤ L(m2

l2
) and m2−l2L−1(α) ≤ 0

for α ≥ L(m2

l2
).

(a) If m1− l1L−1(α) ≥ 0, m2− l2L−1(α) ≤ 0, m1− l′1L−1(1−β) ≤ 0 and m2− l′2L−1(1−β) ≤ 0,

then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 + r1R
−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.59)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 + r1)(m2 − l2), (m1 + r1)(m2 + r2)]

= [m1m2 +m2r1 −m1l2 − r1l2,m1m2 +m2r1 +m1r2 + r1r2] (2.60)

(2.60) gives left and right spreads of membership function of ÃI1�ÃI2 are −m2r1 +m1l2 +r1l2

and m2r1 +m1r2 + r1r2 respectively.

From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[min{(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β))},

max{(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))}] (2.61)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) =[min{(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2)},

max{(m1 − l′1)(m2 − l′2), (m1 + r′1)(m2 + r′2)}]

=[min{(m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2}] (2.62)

(2.62) gives left and right spreads of non-membership function of ÃI1 � ÃI2 are m1m2-

min{(m1m2-m2l
′
1+m1r

′
2-l′1r

′
2, m1m2+m2r

′
1-m1l

′
2-r′1l

′
2} and max{m1m2-m2l

′
1-m1l

′
2+l′1l

′
2, m1m2

+m2r
′
1+m1r

′
2+r′1r

′
2}-m1m2 respectively.
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(b) If m1− l1L−1(α) ≥ 0, m2− l2L−1(α) ≥ 0, m1− l′1L−1(1−β) ≥ 0 and m2− l′2L−1(1−β) ≥ 0,

then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 − l1L−1(α))(m2 − l2L−1(α)),

(m1 + r1R
−1(α))(m2 + r2R

−1(α))] (2.63)

Putting α = 1 in (2.63), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.64)

Since m1 − l′1 < 0, m1 − l1 ≥ 0, m2 − l2 < 0, m2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1,

0 < r2 ≤ r′2,

(m1− l′1) ≤ (m1− l1), (m2− l′2) ≤ (m2− l2), (m1 +r1) ≤ (m1 +r′1) and (m2 +r2) ≤ (m2 +r′2).

⇒ − (m1 − l′1)(m2 + r′2) ≥ −(m1 − l1)(m2 + r′2) ≥ −(m1 + r1)(m2 + r′2) ≥ −(m1 + r1)(m2

− l2),−(m2 − l′2)(m1 + r′1) ≥ −(m1 + r1)(m2 − l2) (∵ m2 − l2 ≤ 0,m1 − l1 ≥ 0)

⇒ m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2 ≤ m1m2 +m2r1 −m1l2 − r1l2,

m1m2 +m2r1 −m1l2 − r1l2 ≥ m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2

⇒ m1m2 − (m1m2 +m2r1 −m1l2 − r1l2) ≤ m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2} (2.65)

Now, if (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2) (2.66)

If (m1 + r′1)(m2 + r′2) ≥ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) (2.67)

From (2.66) and (2.67), we get

(m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +

m1r
′
2 + r′1r

′
2} −m1m2.

Clearly, m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) = r1(l2 −m2) + m1l2 > 0, (m1m2 + m2r1 +

m1r2 + r1r2)−m1m2 > 0.

From (2.60), (2.62) and (2.64) of Case 3, we get

ÃI1 � ÃI2 ≈(m1m2;m1m2 − (m1m2 +m2r1 −m1l2 − r1l2), (m1m2 +m2r1 +m1r2 + r1r2)

−m1m2;m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2

− r′1l′2},max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2 −m1m2}

−m1m2)LR,
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where 0 < m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) ≤ m1m2 − min{m1m2 −m2l
′
1 + m1r

′
2 −

l′1r
′
2,m1m2+m2r

′
1−m1l

′
2−r′1l′2} and 0 < (m1m2+m2r1+m1r2+r1r2)−m1m2 ≤ max{m1m2−

m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2 −m1m2} −m1m2.

Case 4. If m2 < 0 and m2+r2 ≥ 0, then m2−l2L−1(α) ≤ 0 for every α ∈ (0, 1], m2+r2R
−1(α) ≥

0 for α ≤ R( m2

−r2 ), m2 +r2R
−1(α) ≤ 0 for α ≥ R( m2

−r2 ), m2− l′2L−1(1−β) ≤ 0 for every β ∈ [0, 1),

m2 + r′2R
−1(1− β) ≤ 0 for β ≤ (1−R( m2

−r′2
)) and m2 + r′2R

−1(1− β) ≥ 0 for β ≥ (1−R( m2

−r′2
)).

(a) If m2 + r2R
−1(α) ≥ 0, m2 + r′2R

−1(1− β) ≥ 0 and m1 − l′1L−1(1− β) ≤ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 + r1R
−1(α))(m2 − l2L−1(α)), (m1 + r1R

−1(α))(m2 + r2R
−1(α))]

(2.68)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 + r1)(m2 − l2), (m1 + r1)(m2 + r2)]

= [m1m2 +m2r1 −m1l2 − r1l2,m1m2 +m2r1 +m1r2 + r1r2] (2.69)

(2.69) gives left and right spreads of membership function of ÃI1�ÃI2 are −m2r1 +m1l2 +r1l2

and m2r1 +m1r2 + r1r2 respectively.

From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[min{(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β))},

max{(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))}] (2.70)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique
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β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) =[min{(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2)},

max{(m1 − l′1)(m2 − l′2), (m1 + r′1)(m2 + r′2)}]

=[min{(m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,

m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2}] (2.71)

(2.71) gives left and right spreads of non-membership function of ÃI1 � ÃI2 are m1m2-

min{(m1m2-m2l
′
1+m1r

′
2-l′1r

′
2, m1m2+m2r

′
1-m1l

′
2-r′1l

′
2} and max{m1m2-m2l

′
1-m1l

′
2+l′1l

′
2, m1m2

+m2r
′
1+m1r

′
2+r′1r

′
2}-m1m2 respectively.

(b) If m2 + r2R
−1(α) ≤ 0, m2 + r′2R

−1(1− β) ≤ 0 and m1 − l′1L−1(1− β) ≥ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 + r1R
−1(α))(m2 − l2L−1(α)), (m1 − l1L−1(α))(m2 + r2R

−1(α))] (2.72)

Putting α = 1 in (2.72), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.73)

Since m1 − l′1 < 0, m1 − l1 ≥ 0, m2 < 0, m2 + r2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1,

0 < r2 ≤ r′2,

(m1−l′1) ≤ (m1−l1), (m2−l′2) ≤ (m2−l2), (m1 +r1) ≤ (m1 +r′1), and (m2 +r2) ≤ (m2 +r′2).

⇒ − (m1 − l′1)(m2 + r′2) ≥ −(m1 − l1)(m2 + r′2) ≥ −(m1 + r1)(m2 + r′2) ≥ −(m1 + r1)(m2

− l2),−(m2 − l′2)(m1 + r′1) ≥ −(m1 + r1)(m2 − l2) (∵ m2 ≤ 0,m1 − l1 ≥ 0)

⇒ m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2 ≤ m1m2 +m2r1 −m1l2 − r1l2,

m1m2 +m2r1 −m1l2 − r1l2 ≥ m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2

⇒ m1m2 − (m1m2 +m2r1 −m1l2 − r1l2) ≤ m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2} (2.74)

Now, if (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2) (2.75)
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If (m1 + r′1)(m2 + r′2) ≥ (m1 − l′1)(m2 − l′2), then

(m1 + r1)(m2 + r2) ≤ (m1 + r′1)(m2 + r′2) (2.76)

From (2.75) and (2.76), we get

(m1m2 +m2r1 +m1r2 + r1r2)−m1m2 ≤ max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +

m1r
′
2 + r′1r

′
2} −m1m2.

Clearly, m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) = r1(l2 −m2) + m1l2 > 0, (m1m2 + m2r1 +

m1r2 + r1r2)−m1m2 > 0.

From (2.69), (2.71) and (2.73) of Case 4, we get

ÃI1 � ÃI2 ≈(m1m2;m1m2 − (m1m2 +m2r1 −m1l2 − r1l2), (m1m2 +m2r1 +m1r2 + r1r2)−

m1m2;m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2)LR,

where 0 < m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) ≤ m1m2 − min{m1m2 −m2l
′
1 + m1r

′
2 −

l′1r
′
2,m1m2+m2r

′
1−m1l

′
2−r′1l′2} and 0 < (m1m2+m2r1+m1r2+r1r2)−m1m2 ≤ max{m1m2−

m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2.

Case 5. If m2 + r2 < 0 and m2 + r′2 ≥ 0, then m2 + r2R
−1(α) ≤ 0 for every α ∈ (0, 1],

m2 + r′2R
−1(1− β) ≤ 0 for β ≤ (1−R( m2

−r2 )) and m2 + r′2R
−1(1− β) ≥ 0 for β ≥ (1−R( m2

−r2 )).

(a) If m2 + r2R
−1(α) ≤ 0, m2 + r′2R

−1(1− β) ≥ 0 and m1 − l′1L−1(1− β) ≤ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 + r1R
−1(α))(m2 − l2L−1(α)), (m1 − l1L−1(α))(m2 + r2R

−1(α))] (2.77)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 + r1)(m2 − l2), (m1 − l1)(m2 + r2)]

= [m1m2 +m2r1 −m1l2 − r1l2,m1m2 −m2l1 +m1r2 − l1r2] (2.78)

(2.78) gives left and right spreads of membership function of ÃI1�ÃI2 are −m2r1 +m1l2 +r1l2

and −m2l1 +m1r2 − l1r2 respectively.
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From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[min{(m1 − l′1L−1(1− β))(m2 + r′2R
−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β))},

max{(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β)),

(m1 + r′1R
−1(1− β))(m2 + r′2R

−1(1− β))}] (2.79)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) =[min{(m1 − l′1)(m2 + r′2), (m1 + r′1)(m2 − l′2)},

max{(m1 − l′1)(m2 − l′2), (m1 + r′1)(m2 + r′2)}]

=[min{(m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,

m1m2 +m2r
′
1 +m1r

′
2 + r′1r

′
2}] (2.80)

(2.80) gives left and right spreads of non-membership function of ÃI1 � ÃI2 are m1m2-

min{(m1m2-m2l
′
1+m1r

′
2-l′1r

′
2, m1m2+m2r

′
1-m1l

′
2-r′1l

′
2} and max{m1m2-m2l

′
1-m1l

′
2+l′1l

′
2, m1m2

+m2r
′
1+m1r

′
2+r′1r

′
2}-m1m2 respectively.

(b) If m2 + r2R
−1(α) ≤ 0, m2 + r′2R

−1(1− β) ≤ 0 and m1 − l′1L−1(1− β) ≥ 0, then

AI1αA
I
2α = AI1αA

I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 + r1R
−1(α))(m2 − l2L−1(α)), (m1 − l1L−1(α))(m2 + r2R

−1(α))]

(2.81)

Putting α = 1 in (2.77), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.82)

Since m1 − l′1 < 0, m1 − l1 ≥ 0, m2 + r2 < 0, m2 + r′2 ≥ 0, 0 < l1 ≤ l′1, 0 < l2 ≤ l′2,

0 < r1 ≤ r′1, 0 < r2 ≤ r′2, (m1− l′1) ≤ (m1− l1), (m2− l′2) ≤ (m2− l2), (m1 +r1) ≤ (m1 +r′1),
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and (m2 + r2) ≤ (m2 + r′2).

⇒ − (m1 − l′1)(m2 + r′2) ≥ −(m1 − l1)(m2 + r′2) ≥ −(m1 + r1)(m2 + r′2) ≥ −(m1 + r1)(m2

− l2),−(m2 − l′2)(m1 + r′1) ≥ −(m1 + r1)(m2 − l2) (∵ m2 + r2 ≤ 0,m1 − l1 ≥ 0)

⇒ m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2 ≤ m1m2 +m2r1 −m1l2 − r1l2,

m1m2 +m2r1 −m1l2 − r1l2 ≥ m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2

⇒ m1m2 − (m1m2 +m2r1 −m1l2 − r1l2) ≤ m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,

m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2} (2.83)

Now, if (m1 + r′1)(m2 + r′2) ≤ (m1 − l′1)(m2 − l′2), then

(m1 − l1)(m2 + r2) ≤ (m1 − l′1)(m2 + r2) ≤ (m1 − l′1)(m2 − l′2) (∵ m2 + r2 ≤ 0,

m1 − l1 ≥ 0) (2.84)

If (m1 + r′1)(m2 + r′2) ≥ (m1 − l′1)(m2 − l′2), then

(m1 − l1)(m2 + r2) ≤ (m1 − l′1)(m2 + r2) ≤ (m1 − l′1)(m2 − l′2) ≤ (m1 + r′1)(m2 + r′2)

(2.85)

From (2.84) and (2.85), we get

(m1m2 −m2l1 + m1r2 − l1r2) −m1m2 ≤ max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 + m2r

′
1 +

m1r
′
2 + r′1r

′
2} −m1m2.

Clearly, m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) = r1(l2 −m2) + m1l2 > 0, (m1m2 −m2l1 +

m1r2 − l1r2)−m1m2 = −l1(m2 + r2) +m1r2 > 0.

From (2.78), (2.80) and (2.82) of Case 5, we get

ÃI1 � ÃI2 ≈(m1m2;m1m2 − (m1m2 +m2r1 −m1l2 − r1l2), (m1m2 −m2l1 +m1r2 − l1r2)−

m1m2;m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − r′1l′2},

max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2)LR,

where 0 < m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) ≤ m1m2 − min{m1m2 −m2l
′
1 + m1r

′
2 −

l′1r
′
2,m1m2+m2r

′
1−m1l

′
2−r′1l′2} and 0 < (m1m2−m2l1+m1r2−l1r2)−m1m2 ≤ max{m1m2−

m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2.

Case 6. If m2 + r′2 < 0, then m2 + r′2R
−1(1− β) ≤ 0 for every β ∈ [0, 1).

(a) If m1 − l′1L−1(1− β) ≤ 0 and m2 + r′2R
−1(1− β) ≤ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α = [m1 − l1L−1(α),m1 + r1R

−1(α)][m2 − l2L−1(α),m2 + r2R
−1(α)]

= [(m1 + r1R
−1(α))(m2 − l2L−1(α)), (m1 − l1L−1(α))(m2 + r2R

−1(α))] (2.86)
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Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

α0 ∈ (0, 1] such that L−1(α0) = R−1(α0) = 1. Hence

(ÃI1 � ÃI2)α0 = [(m1 + r1)(m2 − l2), (m1 − l1)(m2 + r2)]

= [m1m2 +m2r1 −m1l2 − r1l2,m1m2 −m2l1 +m1r2 − l1r2] (2.87)

(2.87) gives left and right spreads of membership function of ÃI1�ÃI2 are −m2r1 +m1l2 +r1l2

and −m2l1 +m1r2 − l1r2 respectively. From (2.43), we get

(ÃI1 � ÃI2)(β) = AI1(β)A
I
2(β) =[m1 − l′1L−1(1− β),m1 + r′1R

−1(1− β)]

[m2 − l′2L−1(1− β),m2 + r′2R
−1(1− β)]

=[(m1 + r′1R
−1(1− β))(m2 − l′2L−1(1− β)),

(m1 − l′1L−1(1− β))(m2 − l′2L−1(1− β))] (2.88)

Since L and R are decreasing functions on [0,∞) with L(0) = R(0) = 1, ∃ a unique

β0 ∈ [0, 1) such that L−1(1− β0) = R−1(1− β0) = 1. Hence

(ÃI1 � ÃI2)(β0) = [(m1 + r′1)(m2 − l′2), (m1 − l′1)(m2 − l′2)]

= [m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2,m1m2 −m2l

′
1 −m1l

′
2 + l′1l

′
2] (2.89)

(2.89) gives left and right spreads of non-membership function of ÃI1 � ÃI2 are −m2r
′
1 +

m1l
′
2 + r′1l

′
2 and −m2l

′
1 −m1l

′
2 + l′1l

′
2 respectively.

(b) If m1 − l′1L−1(1− β) ≥ 0 and m2 + r′2R
−1(1− β) ≤ 0, then

(ÃI1 � ÃI2)α = AI1αA
I
2α =[m1 − l1L−1(α),m1 + r1R

−1(α)]

[m2 − l2L−1(α),m2 + r2R
−1(α)]

=[(m1 + r1R
−1(α))(m2 − l2L−1(α)),

(m1 − l1L−1(α))(m2 + r2R
−1(α))] (2.90)

Putting α = 1 in (2.90), we obtain the modal point of ÃI1 � ÃI2 given by

(ÃI1 � ÃI2)1 = [m1m2,m1m2] = m1m2 (2.91)

Since m1 − l′1 ≤ 0, m1 − l1 ≥ 0, m2 + r′2 < 0, 0 < l2 ≤ l′2, 0 < r1 ≤ r′1, 0 < r2 ≤ r′2,
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m1 − l′1 ≤ m1 − l1, m2 − l′2 ≤ m2 − l2, m1 + r1 ≤ m1 + r′1, and m2 + r2 ≤ m2 + r′2.

⇒ − (m1 + r′1)(m2 − l′2) ≥ −(m1 + r1)(m2 − l2), (m1 − l1)(m2 + r2) ≤ (m1 − l′1)(m2 − l′2)

(∵ m2 + r′2 < 0,m1 − l′1 < 0,m1 − l1 ≥ 0)

⇒ m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2 ≤ m1m2 +m2r1 −m1l2 − r1l2,

m1m2 −m2l1 +m1r2 − l1r2 ≤ m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2

⇒ m1m2 − (m1m2 +m2r
′
1 −m1l

′
2 − r′1l′2) ≥ m1m2 − (m1m2 +m2r1 −m1l2 − r1l2),

(m1m2 −m2l1 +m1r2 − l1r2)−m1m2 ≤ (m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2)−m1m2

Clearly, m1m2 − (m1m2 + m2r1 −m1l2 − r1l2) = r1(l2 −m2) + m1l2 > 0, (m1m2 −m2l1 +

m1r2 − l1r2)−m1m2 = −l1(m2 + r2) +m1r2 > 0.

From (2.87), (2.89) and (2.91) of Case 6, we get

ÃI1 � ÃI2 ≈(m1m2;m1m2 − (m1m2 −m1l2 +m2r1 − r1l2), (m1m2 +m1r2 −m2l1 − l1r2)

−m1m2;m1m2 − (m1m2 −m1l
′
2 +m2r

′
1 − r′1l′2), (m1m2 −m2l

′
1 −m1l

′
2 + l′1l

′
2)

−m1m2)LR,

where 0 < m1m2 − (m1m2 −m1l2 + m2r1 − r1l2) ≤ m1m2 − (m1m2 −m1l
′
2 + m2r

′
1 − r′1l′2)

and 0 < (m1m2 +m1r2 −m2l1 − l1r2)−m1m2 ≤ (m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2)−m1m2.

From all six cases, we have

ÃI1�ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−m1l2−m2l1+l1l2,m1m2−
m1l2 +m2r1− l2r1}, r = max{m1m2 +m1r2 +m2r1 + r1r2,m1m2 +m1r2−m2l1− l1r2}−m1m2,

l′ = m1m2 −min{m1m2 −m2l
′
1 +m1r

′
2 − l′1r′2,m1m2 +m2r

′
1 −m1l

′
2 − l′2r′1}, r′ = max{m1m2 −

m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2, and 0 < l ≤ l′, 0 < r ≤ r′.

Theorem 2.3.2. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 − l1 < 0, m1 ≥ 0 and

ÃI2=(m2; l2, r2; l′2, r
′
2)LR be another LR-type IFN, where m2 − l′2, m2 − l2, m2, m2 + r2, m2 + r′2

are real numbers. Then ÃI1�ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−
m2l1+m1r2−l1r2,m1m2+m2r1−m1l2−l2r1}, r = max{m1m2−m2l1−m1l2+l1l2,m1m2+m2r1+

m1r2 +r1r2}−m1m2, l′ = m1m2−min{m1m2−m2l
′
1 +m1r

′
2− l′1r′2,m1m2 +m2r

′
1−m1l

′
2− l′2r′1},

r′ = max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2, and 0 < l ≤ l′, 0 <

r ≤ r′.

Proof. The same as Theorem 2.3.1.

Theorem 2.3.3. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 < 0, m1 + r1 ≥ 0 and

ÃI2=(m2; l2, r2; l′2, r
′
2)LR be another LR-type IFN, where m2 − l′2, m2 − l2, m2, m2 + r2, m2 + r′2
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are real numbers. Then ÃI1�ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−
m2l1+m1r2−l1r2,m1m2+m2r1−m1l2−l2r1}, r = max{m1m2−m2l1−m1l2+l1l2,m1m2+m2r1+

m1r2 +r1r2}−m1m2, l′ = m1m2−min{m1m2−m2l
′
1 +m1r

′
2− l′1r′2,m1m2 +m2r

′
1−m1l

′
2− l′2r′1},

r′ = max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2, and 0 < l ≤ l′, 0 <

r ≤ r′.

Proof. The same as Theorem 2.3.1.

Theorem 2.3.4. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 + r1 < 0, m1 + r′1 ≥ 0

and ÃI2=(m2; l2, r2; l′2, r
′
2)LR be another LR-type IFN, where m2−l′2, m2−l2, m2, m2+r2, m2+r′2

are real numbers. Then ÃI1�ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−
m2l1+m1r2−l1r2,m1m2+m1r2+m2r1+r1r2}, r = max{m1m2+m2r1−m1l2−l2r1,m1m2−m1l2−
m2l1 + l1l2}−m1m2, l′ = m1m2−min{m1m2−m2l

′
1 +m1r

′
2− l′1r′2,m1m2 +m2r

′
1−m1l

′
2− l′2r′1},

r′ = max{m1m2 −m2l
′
1 −m1l

′
2 + l′1l

′
2,m1m2 +m2r

′
1 +m1r

′
2 + r′1r

′
2} −m1m2, and 0 < l ≤ l′, 0 <

r ≤ r′.

Proof. The same as Theorem 2.3.1.

Theorem 2.3.5. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 + r′1 < 0 and ÃI2=(m2;

l2, r2; l′2, r
′
2)LR be another LR-type IFN, where m2 − l′2, m2 − l2, m2, m2 + r2, m2 + r′2 are real

numbers. Then ÃI1� ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−m2l1 +

m1r2− l1r2,m1m2 +m1r2 +m2r1 + r1r2}, r = max{m1m2 +m2r1−m1l2− l2r1,m1m2−m1l2−
m2l1 + l1l2}−m1m2, l′ = m1m2−min{m1m2−m2l

′
1 +m1r

′
2− l′1r′2,m1m2 +m1r

′
2 +m2r

′
1 + r′1r

′
2},

r′ = max{m1m2+m2r
′
1−m1l

′
2−l′2r′1,m1m2−m2l

′
1−m1l

′
2+l′1l

′
2}−m1m2, and 0 < l ≤ l′, 0 < r ≤ r′.

Proof. The same as Theorem 2.3.1.

Theorem 2.3.6. Let ÃI1=(m1; l1, r1; l′1, r
′
1)LR be LR-type IFN, where m1 − l′1 ≥ 0 and ÃI2=(m2;

l2, r2; l′2, r′2)LR be another LR-type IFN, where m2 − l′2, m2 − l2, m2, m2 + r2, m2 + r′2 are real

numbers. Then ÃI1� ÃI2 ≈ (m; l, r; l′, r′)LR, where m = m1m2, l = m1m2−min{m1m2−m1l2−
m2l1 + l1l2,m1m2−m1l2 +m2r1− l2r1}, r = max{m1m2 +m1r2 +m2r1 + r1r2,m1m2 +m1r2−
m2l1− l1r2}−m1m2, l′ = m1m2−min{m1m2−m1l

′
2−m2l

′
1 + l′1l

′
2,m1m2−m1l

′
2 +m2r

′
1− l′2r′1},

r′ = max{m1m2 +m1r
′
2 +m2r

′
1 + r′1r

′
2,m1m2 +m1r

′
2−m2l

′
1− l′1r′2}−m1m2, and 0 < l ≤ l′, 0 <

r ≤ r′.

Proof. The same as Theorem 2.3.1.

Example 2.3.7. Let ÃI1 = (2; 4, 5; 5, 6)LR and ÃI2 = (5; 4, 2; 7, 3)LR. Then to find the product

of ÃI1 and ÃI2.
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The product of ÃI1 and ÃI2, i.e., ÃI1 � ÃI2 is

ÃI1 � ÃI2 = (10; 24, 39; 34, 54)LR

Example 2.3.8. Let ÃI1 = (−2; 1, 2; 1, 3)LR and ÃI2 = (5; 3, 2; 6, 3)LR. Then to find the product

of ÃI1 and ÃI2.

The product of ÃI1 and ÃI2, i.e., ÃI1 � ÃI2 is

ÃI1 � ÃI2 = (−10; 11, 10; 14, 18)LR

Thus, it is clear that the proposed product is better to find the product of ÃI1 and ÃI2, when

the signs of ÃI1 and ÃI2 are known or not known.

2.4 Proposed Method for Fully Intuitionistic Fuzzy Pro-

gramming Problem (FIFPP)

In this section, a new method is proposed to find the optimal solution of FIFPP with LR-type

intuitionistic fuzzy parameters.

The problem is defined by

min /max z̃I =
n∑
j=1

c̃Ij � x̃Ij ,

subject to
n∑
j=1

ãIij � x̃Ij ≺,≈,� b̃Ii , i = 1, 2, 3, . . . ,m,

x̃Ij is LR-type unrestricted IFN, j = 1, 2, . . . , n.

The steps of the proposed method are as follows:

Step 1. Let ãIij= (aij; γij, δij; γ
′
ij, δ

′
ij)LR, x̃Ij= (xj; ρj, σj; ρ

′
j, σ
′
j)LR, b̃Ii= (bi; ηi, ϑi; η

′
i, ϑ
′
i)LR and

c̃Ij= (cj;κj, λj;κ
′
j, λ
′
j)LR.

Then FIFPP is reduced to

min/max z̃I =
n∑
j=1

((cj;κj, λj;κ
′
j, λ
′
j)LR � (xj; ρj, σj; ρ

′
j, σ
′
j)LR),

subject to
n∑
j=1

((aij; γij, δij; γ
′
ij, δ

′
ij)LR � (xj; ρj, σj; ρ

′
j, σ
′
j)LR) ≺,≈,� (bi; ηi, ϑi; η

′
i, ϑ
′
i)LR,

i = 1, 2, . . . ,m,

(xj; ρj, σj; ρ
′
j, σ
′
j)LR is LR-type unrestricted IFN, j = 1, 2, . . . , n.
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Step 2. Let (cj;κj, λj;κ
′
j, λ
′
j)LR � (xj; ρj, σj; ρ

′
j, σ
′
j)LR = (sj; τj, ωj; τ

′
j, ω

′
j)LR and (aij; γij, δij;

γ′ij, δ
′
ij )LR �(xj; ρj, σj; ρ

′
j, σ
′
j)LR = (mij; lij, rij; l

′
ij, r

′
ij)LR.

Then LR-type FIFPP in Step 1 is transformed to the following problem:

min/max z̃I =
n∑
j=1

(sj; τj, ωj; τ
′
j, ω

′
j)LR,

subject to
n∑
j=1

(mij; lij, rij; l
′
ij, r

′
ij)LR ≺,≈,� (bi; ηi, ϑi; η

′
i, ϑ
′
i)LR, i = 1, 2, . . . ,m,

(sj; τj, ωj; τ
′
j, ω

′
j)LR and (mij; lij, rij; l

′
ij, r

′
ij)LR are LR-type unrestricted IFNs,

i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Simplifying the above problem, we have

min/max z̃I = (
n∑
j=1

sj;
n∑
j=1

τj,
n∑
j=1

ωj;
n∑
j=1

τ ′j,
n∑
j=1

ω′j)LR,

subject to (
n∑
j=1

mij;
n∑
j=1

lij,
n∑
j=1

rij;
n∑
j=1

l′ij,
n∑
j=1

r′ij)LR ≺,≈,� (bi; ηi, ϑi; η
′
i, ϑ
′
i)LR,

i = 1, 2, . . . ,m,

(
n∑
j=1

sj;
n∑
j=1

τj,
n∑
j=1

ωj;
n∑
j=1

τ ′j,
n∑
j=1

ω′j)LR and (
n∑
j=1

mij;
n∑
j=1

lij,
n∑
j=1

rij;

n∑
j=1

l′ij,
n∑
j=1

r′ij)LR are LR-type unrestricted IFNs, i = 1, 2, . . . ,m.

Step 3. Applying score and accuracy indices and solve the following programming problems

min/max w1(IS(
n∑
j=1

sj;
n∑
j=1

τj,
n∑
j=1

ωj;
n∑
j=1

τ ′j,
n∑
j=1

ω′j)LR+

w2(IA(
n∑
j=1

sj;
n∑
j=1

τj,

n∑
j=1

ωj;
n∑
j=1

τ ′j,

n∑
j=1

ω′j)LR)

subject to IA(
n∑
j=1

mij;
n∑
j=1

lij,
n∑
j=1

rij;
n∑
j=1

l′ij,
n∑
j=1

r′ij)LR <,=, > IA(bi; ηi, ϑi; η
′
i, ϑ
′
i)LR,

i = 1, 2, . . . ,m,

w1 + w2 = 1, w1, w2 ≥ 0,
n∑
j=1

τ ′j ≥
n∑
j=1

τj,
n∑
j=1

ω′j ≥
n∑
j=1

ωj,
n∑
j=1

τj > 0,
n∑
j=1

ωj > 0,
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n∑
j=1

l′ij ≥
n∑
j=1

lij,

n∑
j=1

r′ij ≥
n∑
j=1

rij,

n∑
j=1

lij ≥ 0,
n∑
j=1

rij ≥ 0,

n∑
j=1

sj and
n∑
j=1

mij (i = 1, 2, . . . ,m) are real numbers.

Step 4. Solve the non-linear programming problem obtained in Step 3, to find the optimal

values s∗j , τ
∗
j , ω

∗
j , τ

′∗
j , ω

′∗
j and put their values in Step 2, i.e., in (cj;κj, λj;κ

′
j, λ
′
j)LR �

(xj; ρj, σj; ρ
′
j, σ
′
j)LR = (sj; τj, ωj; τ

′
j, ω

′
j)LR to find the optimal value of x̃Ij= (xj; ρj, σj; ρ

′
j, σ
′
j)LR.

Let it be x̃∗Ij = (x∗j ; ρ
∗
j , σ

∗
j ; ρ

′∗
j , σ

′∗
j )LR.

Step 5. Find the fuzzy optimal value of LR-type FIFPP by putting the optimal value x̃∗Ij in

z̃I =
n∑
j=1

c̃Ij � x̃Ij .

2.5 Numerical Example

Let us consider the following problem: A manufacturing company plans to produce a product

for next three consecutive months: January, February and March. The demands of the product

for January, February and March are around 520, 700 and 600 units respectively. However,

the demands fluctuate according to situations of the market. The company has 10 employees.

But to meet the fluctuating demands, company needs to hire or fire temporary employees. The

extra cost of hiring or firing is around Rs. 200 which also fluctuates according to availability

of workers at the market. A permanent worker can produce around 12 units per month and

a temporary worker, having lack of work efficiencies, only can produce around 10 units per

month. It is obvious that these production units depend on various uncontrollable factors such

as efficiency of machines, availability of resources, and efficiency of workers etc. The company

can produce more than needed in any month and carry the surplus over to the next month at a

holding cost of around Rs. 50 per unit per month. The general manager (GM) wants to develop

an optimal hiring/firing policy to minimize the total cost.

Mathematical Model: It is clear from the problem that the parameters involve uncertainty

as well as hesitation both due to the fluctuating nature of the market. So, it is more reliable to

denote the parameters with general IFNs (LR-type IFNs). The GM estimates the parameters

as given below by the past experiences and discussion with other fellow members.

The demand parameters:

˜520
I

= (520; 2, 3; 3, 5)LR, ˜700
I

= (700; 3, 4; 4, 5)LR and ˜600
I

= (600; 35, 23; 68, 55)LR.
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The cost parameters:

5̃0
I

= (50; 4, 5; 5, 6)LR and ˜200
I

= (200; 5, 6; 6, 7)LR

The production parameters:

1̃2
I

= (12; 1, 2; 2, 3)LR and 1̃0
I

= (10; 1, 1; 2, 2)LR.

Now,

Demand for January = ˜520
I 	 10(1̃2

I
) ≈ (520; 2, 3; 3, 5)LR 	 10(12; 1, 2; 2, 3)LR ≈ (400; 22,

13; 33, 25)LR units

Demand for February = ˜700
I 	 10(1̃2

I
) ≈ (700; 3, 4; 4, 5)LR 	 10(12; 1, 2; 2, 3)LR ≈ (580; 23,

14; 34, 25)LR units

Demand for March = ˜600
I 	 10(1̃2

I
) ≈ (600; 35, 23; 68, 55)LR 	 10(12; 1, 2; 2, 3)LR ≈ (480;

55, 33; 98, 75)LR units.

For i= 1, 2, 3,

x̃Ii = (xi;αi, βi;α
′
i, β
′
i)LR = Number of temporary workers at the start of Month ‘i’ after any

hiring or firing

s̃Ii = (si; ρi, σi; ρ
′
i, σ
′
i)LR = Number of temporary workers hired or fired at the start of Month ‘i’

ỹIi = (yi; γi, δi; γ
′
i, δ
′
i)LR = Units of ending inventory for Month ‘i’.

If temporary workers are hired, then s̃Ii is nonnegative and if fired, then s̃Ii is non-positive.

Thus s̃Ii is unrestricted LR-type IFN. Clearly, x̃Ii , and ỹIi are nonnegative. The objective of the

problem is to minimize the sum of total cost of hiring or firing and the total cost of holding

inventory from one month to the next.

Inventory holding cost = 5̃0
I � (ỹI1 ⊕ ỹI2) (∵ ỹI3 in the optimal solution)

Cost of hiring or firing = ˜200
I � (s̃I1 ⊕ s̃I2 ⊕ s̃I3)

Thus the inventory constraints are

10x̃I1 ≈ (400; 22, 13; 33, 25)LR ⊕ ỹI1 ,

ỹI1 ⊕ 10x̃I2 ≈ (580; 23, 14; 34, 25)LR ⊕ ỹI2 ,

ỹI2 ⊕ 10x̃I3 ≈ (480; 55, 33; 98, 75)LR,

where x̃I1, x̃I2, x̃I3, ỹI1 , and ỹI2 are nonnegative LR-type IFNs.

Now, other constraints depend on the model deal with inventory and hiring or firing are as

x̃I1 ≈ s̃I1,

x̃I2 ≈ x̃I1 ⊕ s̃I2,

x̃I3 ≈ x̃I2 ⊕ s̃I3,
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where x̃I1, x̃I2 and x̃I3 are nonnegative LR-type IFNs and s̃I1, s̃I2 and s̃I3 are unrestricted LR-type

IFNs.

The complete model is

min z̃I = 5̃0
I � (ỹI1 ⊕ ỹI2) ⊕ ˜200

I � (s̃I1 ⊕ s̃I2 ⊕ s̃I3),

subject to

10x̃I1 ≈ (400; 22, 13; 33, 25)LR ⊕ ỹI1 ,

ỹI1 ⊕ 10x̃I2 ≈ (580; 23, 14; 34, 25)LR ⊕ ỹI2 ,

ỹI2 ⊕ 10x̃I3 ≈ (480; 55, 33; 98, 75)LR,

x̃I1 ≈ s̃I1,

x̃I2 ≈ x̃I1 ⊕ s̃I2,

x̃I3 ≈ x̃I2 ⊕ s̃I3,

where x̃I1, x̃I2, x̃I3, ỹI1 , and ỹI2 are nonnegative LR-type IFNs and s̃I1, s̃I2 and s̃I3 are unrestricted

LR-type IFNs.

Applying the proposed product, we get

min z̃I = (50y1+50y2; 46γ1+46γ2+4y1+4y2, 45δ1+45δ2+5y1+5y2; 45γ′1+45γ′2+5y1+5y2, 44δ′1+

44δ′2 +6y1 +6y2)LR⊕(200s1 +200s2 +200s3; 200s1 +200s2 +200s3−min{195s1 +195s2 +195s3−
195ρ1 − 195ρ2 − 195ρ3, 206s1 + 206s2 + 206s3 − 206ρ1 − 206ρ2 − 206ρ3},max{206s1 + 206s2 +

206s3 +206σ1 +206σ2 +206σ3, 195s1 +195s2 +195s3 +195σ1 +195σ2 +195σ3}−200s1−200s2−
200s3; 200s1 +200s2 +200s3−min{194s1 +194s2 +194s3−194ρ′1−194ρ′2−194ρ′3, 207s1 +207s2 +

207s3 − 207ρ′1 − 207ρ′2 − 207ρ′3},max{207s1 + 207s2 + 207s3 + 207σ′1 + 207σ′2 + 207σ′3, 194s1 +

194s2 + 194s3 + 194σ′1 + 194σ′2 + 194σ′3} − 200s1 − 200s2 − 200s3)LR,

subject to

(10x1; 10α1, 10β1; 10α′1, 10β′1)LR ≈ (400 + y1; 22 + γ1, 13 + δ1; 33 + γ′1, 25 + δ′1)LR,

(y1+10x2; γ1+10α2, δ1+10β2; γ′1+10α′2, δ
′
1+10β′2)LR ≈ (580+y2; 23+γ2, 14+δ2; 34+γ′2, 25+δ′2)LR,

(y2 + 10x3; γ2 + 10α3, δ2 + 10β3; γ′2 + 10α′3, δ
′
2 + 10β′3)LR ≈ (480; 55, 33; 98, 75)LR,

(x1;α1, β1;α′1, β
′
1)LR ≈ (s1; ρ1, σ1; ρ′1, σ

′
1)LR,

(x2;α2, β2;α′2, β
′
2)LR ≈ (x1 + s2;α1 + ρ2, β1 + σ2;α′1 + ρ′2, β

′
1 + σ′2)LR,

(x3;α3, β3;α′3, β
′
3)LR ≈ (x2 + s3;α2 + ρ3, β2 + σ3;α′2 + ρ′3, β

′
2 + σ′3)LR,

where (x1;α1, β1;α′1, β
′
1)LR, (x2;α2, β2;α′2, β

′
2)LR, (x3;α3, β3;α′3, β

′
3)LR, (y1; γ1, δ1; γ′1, δ

′
1)LR, and

(y2; γ2, δ2; γ′2, δ
′
2)LR are nonnegative LR-type IFNs and (s1; ρ1, σ1; ρ′1, σ

′
1)LR, (s2; ρ2, σ2; ρ′2, σ

′
2)LR,

and (s3; ρ3, σ3; ρ′3, σ
′
3)LR are unrestricted LR-type IFNs.

Using min(a, b)=
1

2
(a+ b)− 1

2
|(a− b)|, max(a, b)=

1

2
(a+ b) +

1

2
|(a− b)|, we get

min z̃I = (50y1+50y2+200s1+200s2+200s3; 46γ1+46γ2+4y1+4y2−
1

2
(s1+s2+s3)+

401

2
(ρ1+ρ2+

ρ3)+
11

2
|s1+s2+s3−ρ1−ρ2−ρ3|, 45δ1+45δ2+5y1+5y2+

1

2
(s1+s2+s3)+

401

2
(σ1+σ2+σ3)+

11

2
|s1+
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s2+s3+σ1+σ2+σ3|; 45γ′1+45γ′2+5y1+5y2−
1

2
(s1+s2+s3)+

401

2
(ρ′1+ρ′2+ρ′3)+

13

2
|s1+s2+s3−ρ′1−

ρ′2−ρ′3|, 44δ′1+44δ′2+6y1+6y2+
1

2
(s1+s2+s3)+

401

2
(σ′1+σ′2+σ′3)+

13

2
|s1+s2+s3+σ′1+σ′2+σ′3|)LR,

subject to

(10x1; 10α1, 10β1; 10α′1, 10β′1)LR ≈ (400 + y1; 22 + γ1, 13 + δ1; 33 + γ′1, 25 + δ′1)LR,

(y1+10x2; γ1+10α2, δ1+10β2; γ′1+10α′2, δ
′
1+10β′2)LR ≈ (580+y2; 23+γ2, 14+δ2; 34+γ′2, 25+δ′2)LR,

(y2 + 10x3; γ2 + 10α3, δ2 + 10β3; γ′2 + 10α′3, δ
′
2 + 10β′3)LR ≈ (480; 55, 33; 98, 75)LR,

(x1;α1, β1;α′1, β
′
1)LR ≈ (s1; ρ1, σ1; ρ′1, σ

′
1)LR,

(x2;α2, β2;α′2, β
′
2)LR ≈ (x1 + s2;α1 + ρ2, β1 + σ2;α′1 + ρ′2, β

′
1 + σ′2)LR,

(x3;α3, β3;α′3, β
′
3)LR ≈ (x2 + s3;α2 + ρ3, β2 + σ3;α′2 + ρ′3, β

′
2 + σ′3)LR,

where (x1;α1, β1;α′1, β
′
1)LR, (x2;α2, β2;α′2, β

′
2)LR, (x3;α3, β3;α′3, β

′
3)LR, (y1; γ1, δ1; γ′1, δ

′
1)LR, and

(y2; γ2, δ2; γ′2, δ
′
2)LR are nonnegative LR-type IFNs and (s1; ρ1, σ1; ρ′1, σ

′
1)LR, (s2; ρ2, σ2; ρ′2, σ

′
2)LR

and (s3; ρ3, σ3; ρ′3, σ
′
3)LR are unrestricted LR-type IFNs.

Taking L(x) = R(x) = max{0, (1− x)}, and applying proposed method, we get

x̃I1 = (39.75; 5.04× 10−7, 5.0× 10−7; 6.05× 10−7, 6.10× 10−7)LR,

x̃I2 = (57.79; 0.21, 0.22; 0.29, 0.30)LR,

x̃I3 = (47.41; 0.15, 0.32; 0.20, 0.43)LR,

ỹI1 = (0; 0, 0.25; 4.64, 1.09)LR,

ỹI2 = (0.16; 0, 0.45; 4.24, 0.63)LR,

s̃I1 = (41.20; 0, 2.30; 16.78, 2.88)LR,

s̃I2 = (19.42; 0, 2.44; 16.22, 2.78)LR,

s̃I3 = (−8.89; 0, 2.64; 16.85, 2.65)LR.

The optimal solution is

z̃I = (10354.25; 259.41, 1841.10; 10210.68, 2158.05)LR.

The solution calls for hiring around 40 temporary employees in January, again hiring around

18 temporary employees in February and firing around 11 temporary employees in March. No

further hiring or firing is recommended until the end of March.

2.5.1 Managerial insights

By the discussions of the proposed models and results obtained, we find that the proposed

models allow uses of different types of LR functions. It is useful from a managerial point of

view to understand how the optimal solutions will be affected by changes in LR functions.
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Table 2.1: Advantage of proposed method

Existing models Proposed model
1. The existing methods ([9], [189]) can be
used only for solving IFLPPs in which all
the decision variables are represented by non-
negative crisp parameters.

1. The proposed method can also be used to
solve IFLPPs in which all the decision vari-
ables are represented by non-negative crisp
parameters.

2. The existing methods ([137], [165]) can
be used for solving FIFLPPs in which all
the decision variables are represented by non-
negative IFNs.

2. The proposed method can also be used to
solve FIFLPPs in which all the decision vari-
ables are represented by non-negative IFNs.

3. The existing models ([9], [10], [137], [165],
[189]) do not define the product of unre-
stricted LR-type IFNs.

3. The proposed model has introduced the
definition of the product of unrestricted LR-
type IFNs.

4. The existing methods ([9], [137], [165],
[189]) can not solve FIFLPPs in which some
or all the decision variables are represented
by unrestricted LR-type IFNs.

4. The proposed method can be used to
solve FIFLPPs in which some or all the deci-
sion variables are represented by unrestricted
LR-type IFNs.

As clear from the discussion of Numerical Ex., the manager may see what he/she should do

for better running of the manufacturing company, i.e., when and how many employees should

be hired/fired.

2.6 Advantages of the proposed method over existing

methods

The advantages of the proposed method over existing methods ([9], [10], [137], [165], [189]) for

solving FIFLPPs are summarized in Table 2.1.

2.7 Concluding remarks

In this chapter, firstly we defined the product of unrestricted LR-type IFNs with the help of

α-cut, β-cut, (α, β)- cut. We also defined the score and accuracy indices of LR-type IFNs and

derived some results based on these indices. Subsequently, a new method is proposed for solving

unrestricted LR-type FIFPPs. It can be observed that all the FIFLPPs which can be solved by

the existing methods [9, 137, 165, 189] can also be solved by the proposed method. However,

there exist several FIFLPPs which can not be solved by the existing methods but can be solved

by the proposed method. Hence, the proposed method is better than the existing methods

[9, 137, 165, 189] for solving FIFLPPs.



Chapter 3

Duality theory in intuitionistic fuzzy

mathematical programming problems:

Optimistic, pessimistic and mixed

approaches

In this chapter, we introduce a pair of primal-dual LPPs in IFE and prove duality results by

using an aspiration level approach in which membership and non-membership functions are

taken in the form of reference functions. Since fuzzy and IF environments cause duality gap,

we propose to investigate the impact of membership function governed by reference function on

the duality gap. This is specially meaningful for fuzzy and IF programming problems, when

the primal and dual objective values may not be bounded. Finally, the duality gap obtained by

the approach is compared with the duality gap obtained by existing approaches.

3.1 Introduction

In decision-making problems, crisp programming problem (CPP) plays an important role for

solving real-world problems. In CPP, if the number of constraints is greater than the number of

unknowns, then such problems can not be easily solved. In this situation, the duality theory is

useful. Duality means an optimization problem can be observed from either of two viewpoints,

the primal or dual problem. Generally, the value of objective function at a feasible solution of

primal problem (min) is an upper bound to the set of values of objective function at the feasible

solutions of dual problem (max), i.e., the objective function value at a feasible solution of primal

65
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problem and the objective function value at a feasible solution of dual problem may or may

not be equal. Their difference is called the duality gap. Duality gap is zero for convex CPP;

otherwise, it may or may not be zero. Input data used in CPP have complete certainty. However,

real-world situations are characterized by imprecision (fuzziness) rather than exactness. FS

theory developed by Zadeh [194] explains uncertainty. Bellman and Zadeh [31] gave an idea to

use FS theory in decision-making problems. A number of researchers worked on modeling and

applications of FS theory. Zimmermann [204] introduced the applications of FS theory to real-

life problems. Luhandjula and Rangoaga [123] gave a method for solving fuzzy multi-objective

programming problem.

Primal and dual objective values of the fuzzy optimization problems may be unbounded.

Duality theory developed by Rodder and Zimmermann [159] is useful for solving such type of

problems using aspiration level approach. Several researchers worked on solving fuzzy program-

ming problems using fuzzy duality theory [24, 176, 185]. Ramik [150, 151] introduced some new

concepts and results, possibility and necessary relations of duality in fuzzy linear programming.

Mahdavi-Amiri and Nasseri [125, 126] gave duality theory for solving fuzzy LPPs using ranking

and dual simplex method. The solutions of fuzzy primal-dual programming problems and du-

ality gap affected by taking different types of membership functions such as linear or non-linear

membership functions are studied. The most likely non-linear membership function is exponen-

tial membership function because it has flexibility in changing shape parameters. Gupta and

Mehlawat [85] studied Bector-Chandra [24] type duality in a fuzzy programming problem with

exponential membership function. Gupta and Danger [84] applied duality results of Gupta and

Mehlawat [85] model to fuzzy quadratic programming problem. Alidaee and Wang[6] introduced

the zero duality gap in the surrogate constraint optimization problem.

FS theory deals with uncertainties by assigning a degree of association, called the member-

ship degree or degree of belongingness, to an element x in the universal set X being Ã. The

degree by which an element x is not in Ã, is described as the non-membership degree or degree

of non-belongingness. If the sum of the degree of membership and degree of non-membership at

each point is 1, then the system contains only uncertainty which is explained by FS theory. If the

sum lies between 0 and 1 at each point, then system contains uncertainty as well as hesitation.

The degree of hesitation is given by 1- (degree of membership + degree of non-membership).

For example, when several scientists evaluate the strength of soil, some scientists are claiming

the soil strength as ‘good’, some scientists are claiming the soil strength as ‘bad’, and some

scientists fail to claim the soil strength as ‘good’ or ‘bad’. The claim in favor of ‘good’ describes

the membership degree and the claim in favor of ‘bad’ describes the non-membership degree,
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while the claim neither in favor of ‘good’ nor ‘bad’ describes the hesitation degree. Thus, the FS

theory explains the uncertainty but no hesitation. A new type of FS theory known as IFS theory

developed by Atanassov [11] explains uncertainty as well as hesitation by assigning membership

and nonmembership functions. Atanassov [12, 13] studied operations and properties of IFSs.

Angelov [9] applied IFS theory to optimization problems. Several researchers applied of IFS

theory to matrix game with IF goals and IF payoffs [1, 3]. The fuzzy linear programming under

interval uncertainty based on IFS is given in [66]. Aggarwal and Khan [2] studied Angelov’s

model in IFE for solving IF programming problems.

3.1.1 Motivation

Let Rn be the set of n tuples of real number (n dimensional Euclidean space). Consider the

following crisp primal (CP1) dual (CD1) pair of LPPs given by

(CP1) max (cTx) subject to Ax ≤ b, x ≥ 0,

(CD1) min(bTy) subject to ATy ≥ c, y ≥ 0

where c, x ∈ Rn, b, y ∈ Rm and A = (aij)m×n, and AT denotes the transpose of A.

Bector and Chandra[24] studied (CP1) and (CD1) in the fuzzy environment by taking linear

membership functions and proved to establish the duality relationship between them. After

that Gupta and Mehlawat [85] also studied (CP1) and (CD1) in the fuzzy environment by

taking exponential membership functions and calculated duality results using an aspiration level

approach and investigated the duality gap. Dubey et al. [66] used the pessimistic, optimistic

and mixed approaches for solving fuzzy linear programming under interval uncertainty based on

IFS representation and gave the significance of these approaches for solving IF LPPs. Aggarwal

et al.[1] proposed intuitionistic fuzzy primal (IFP) and intuitionistic fuzzy dual (IFD) problems

given by

(IFP ) Find x ∈ Rn such that,

cTx(IF ) � z0,

Ax(IF ) � b,

x ≥ 0,

(IFD) Find y ∈ Rm such that,

bTy(IF ) � w0,

ATy(IF ) � c,

y ≥ 0,
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where “ �” and “ �” represent the less than or equal to and greater than or equal to in the sense

of IFE respectively; z0 and w0 represent the aspiration levels for the IFP and IFD objective

functions respectively. They solved IF LPPs by taking the concept of primal (IFP) and dual

(IFD) problems.

The above facts have motivated us to take up the study of a pair of primal-dual LPPs in

IFE with different approaches, like pessimistic, optimistic and mixed.

The rest of the chapter is organized as follows: In Section 3.2, some basic concepts related to

IFSs, and meaning of fuzzy and IF inequality are presented. Duality in IF linear programming

under the pessimistic approach is introduced in Section 3.3. In Section 3.4, duality in IF linear

programming under the optimistic approach is introduced. Duality in IF linear programming

under the mixed approach is introduced in Section 3.5. In Section 3.6, two numerical examples

are given to verify the duality results. Concluding remarks are discussed in Section 3.7.

3.2 Basic concept

In this section, some basic concepts are presented which are helpful in understanding this

chapter.

3.2.1 Fuzzy inequality (x � a)

The inequality x � a, read as “x is greater than or equal to a in the fuzzy sense” [66]. The logical

meaning of x � a in terms of membership function is that if x ≥ a then the inequality is always

satisfied, i.e., the degree of membership is 1, if x ≤ a−p, where p > 0 is the maximum tolerance

(decided by the decision-maker), then � is never satisfied, i.e., the degree of membership is

0, and if x ∈ (a − p, a) then the inequality is governed by a piecewise continuously increasing

membership function. Thus, mathematically, the fuzzy inequality x � a is defined as follows:

µ(x) =


1, x ≥ a,

f(x), a− p < x < a,

0, x ≤ a− p,

where f is the piecewise continuous and increasing function in (a-p, a). The inequality should

be read in term of tolerance as “x is greater than or equal to a in fuzzy sense with tolerance p”.

The graphical representation of x � a is depicted in Figure 3.1.
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Figure 3.1: Graphical representation of x � a
in fuzzy approach.

Figure 3.2: Graphical representation of
x(IF ) � a in pessimistic approach.

Figure 3.3: Graphical representation of
x(IF ) � a in optimistic approach.

3.2.2 IF inequality (x � a)

It is denoted as x(IF ) � a in IF sense [66]. Though there is no general idea to describe

the meaning of x(IF ) � a, but three approaches are most likely to explain the meaning of

x(IF ) � a. These are named as the pessimistic approach, optimistic approach and mixed

approach.

3.2.2.1 The pessimistic approach

In this approach, the decision maker (DM) is possibly ready for extra acceptance, i.e., if the

degree of rejection of x is zero, the DM is not ready to accept fully. If there exist tolerances p,

q, 0 < q < p (depend on DM), its membership function µ(IF ) and non-membership function
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ν(IF ) are defined as follows:

µ(IF )(x) =


1, x ≥ a,

gP (x), a− p < x ≤ a,

0, x < a− p.

ν(IF )(x) =



1, x ≤ a− p,

hP (x), a− p < x ≤ a− p+ q;

0 ≤ gP (x) + hP (x) ≤ 1,

0, x > a− p+ q,

where gP and hP are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p, a-

p+q) respectively. It is noted, in the interval (a-p+q, a), the degree of rejection is zero but

the degree of acceptance is not one. Figure 3.2 shows graphical representation of x(IF ) � a in

pessimistic approach.

3.2.2.2 The optimistic approach

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of

acceptance of x is zero, the DM do not reject fully. Therefore, mathematically, for tolerances

p, q > 0, the membership function µ(IF ) and non-membership function ν(IF ) are defined as

follows:

µ(IF )(x) =


1, x ≥ a,

gO(x), a− p < x ≤ a,

0, x < a− p.

ν(IF )(x) =



1, x ≤ a− p− q,

hO(x), a− p− q < x ≤ a;

0 ≤ go(x) + ho(x) ≤ 1,

0, x > a,

where gO and hO are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p-q,

a) respectively. It is noted that, in the interval (a-p-q, a-p), the degree of acceptance is zero

but the degree of rejection is not one. The optimistic approach representation of x(IF ) � a is

shown in Figure 3.3.

3.2.2.3 The mixed approach

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Thus,

mathematically, for tolerances p, q, r > 0, r > q and r < p+ q, the membership function µ(IF )
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Figure 3.4: Graphical representation of x � a
in mixed approach.

Figure 3.5: Graphical representation of deci-
sion making in IFE.

and non-membership function ν(IF ) are defined as follows:

µ(IF )(x) =


1, x ≥ a,

gM(x), a− p < x < a,

0, x ≤ a− p.

ν(IF )(x) =



1, x ≤ a− p− q,

hM(x), a− p− q < x ≤ a− p− q + r;

0 ≤ gm(x) + hm(x) ≤ 1,

0, x > a− p− q + r,

where gM and hM are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p-q,

a-p-q+r) respectively. The graphical representation of x(IF ) � a in mixed approach is shown

in Figure 3.4.

3.2.3 Decision making in IFE

Let X be a universe of discourse. Let G̃I={(x, µG̃I (x), νG̃I (x)) : x ∈ X} and C̃I={(x, µC̃I (x), νC̃I (x)) :

x ∈ X} be the goal and constraint respectively in IFE. Then the decision D̃I = G̃I ∩ C̃I is an

IFS defined as D̃I = {(x, µD̃I (x), νD̃I (x)) : x ∈ X}, where µD̃I (x) = min{µG̃I (x), µC̃I (x)},
and νD̃I (x) = max{νG̃I (x), νC̃I (x)}. The relation between G̃I , C̃I and D̃I is depicted in Fig-

ure 3.5. More generally, suppose that we have ‘m’ goals G̃I
i={(x, µG̃Ii (x), νG̃Ii (x)) : x ∈ X},

i = 1, 2, . . . ,m, and ‘n’ constraints C̃I
j ={(x, µC̃Ij (x), νC̃Ij (x)) : x ∈ X}, j = 1, 2, . . . , n. Then the

decision D̃I = (G̃I
1 ∩ G̃I

2 ∩ . . . ∩ G̃I
m) ∩ (C̃I

1 ∩ C̃I
2 ∩ . . . ∩ C̃I

n) is an IFS defined by

D̃I = {(x, µD̃I (x), νD̃I (x)) : x ∈ X},

where µD̃I (x) = min
i,j
{µG̃Ii (x), µC̃Ij (x)} and νD̃I (x) = max

i,j
{νG̃Ii (x), νC̃Ij (x)} (see [31]).
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Definition 3.2.1. Let SD̃I (x)= µD̃I (x) − νD̃I (x), x ∈ X be the score function of the IFS

D̃I . An x̌ ∈ X is said to be an optimal decision in IFE if SÃI (x̌) ≥ SÃI (x) ∀ x ∈ X, i.e.,

SÃI (x̌) = max
x∈X

SÃI (x).

Let α and β denote the minimum degree of acceptance and the maximum degree of rejection

respectively. Then the IF decision problem is transformed into the following crisp optimization

problem [9]:

max (α− β),

subject to µG̃Ii (x) ≥ α, νG̃Ii (x) ≤ β, i = 1, 2, . . . ,m,

µC̃Ij (x) ≥ α, νC̃Ij (x) ≤ β, j = 1, 2, . . . , n,

α ≥ β ≥ 0, α + β ≤ 1, x ∈ Rn.

3.3 Duality in IF programming under pessimistic ap-

proach

Let p0 and q0 be the tolerances corresponding to membership function and non-membership

function of the objective function respectively, where 0 < q0 < p0. Let pi and qi be the toler-

ances corresponding to membership function and non-membership function of the ith constraint

respectively, where 0 < qi < pi for i = 1, 2, . . . ,m.

We take the following form of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of IFP problem:

µP (cTx) =



1, cTx ≥ z0,

L0

(
z0−cT x
p0

)
, z0 − p0 <

cTx < z0,

0, otherwise,

νP (cTx) =



1, cTx ≤ z0 − p0,

R0

(
cT x−(z0−p0)

q0

)
, z0 − p0 < cTx

< z0 − p0 + q0,

0, otherwise,

µP (Aix) =



1, Aix ≤ bi,

Ri

(
Aix−bi
pi

)
, bi < Aix

< bi + pi,

0, otherwise,

νP (Aix) =



1, Aix ≥ bi + pi,

Li

(
bi+pi−Aix

qi

)
, bi + pi − qi <

Aix < bi + pi,

0, otherwise,

where L0 and R0 are reference functions corresponding to the primal objective function such

that L0

(
z0−cT x
p0

)
+
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R0

(
cT x−(z0−p0)

q0

)
≤ 1 for z0 − p0 < cTx < z0 − p0 + q0; Li and Ri are reference functions

corresponding to the ith primal constraint such that Ri

(
Aix−bi
pi

)
+Li

(
bi+pi−Aix

qi

)
≤ 1 for bi+pi−

qi < Aix < bi + pi, i = 0, 1, 2, . . . ,m; and Ai is the ith row of A, i = 1, 2, . . . ,m.

Let s0 and t0 be the tolerances corresponding to the membership function and non-membership

function of the objective function respectively, where 0 < t0 < s0. Let sj and tj be the toler-

ances corresponding to the membership function and non-membership function of the jth dual

constraint respectively, where 0 < tj < sj for j = 1, 2, . . . , n.

We take the following form of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of IFD problem:

µP (bTy) =



1, bTy ≤ w0,

R0

(
bT y−w0

s0

)
, w0 < bTy

< w0 + s0,

0, otherwise,

νP (bTy) =



1, bTy ≥ w0 + s0,

L0

(
w0+s0−bT y

t0

)
, w0 + s0 − t0 <

bTy < w0 + s0,

0, otherwise,

µP (ATj y) =



1, ATj y ≥ cj,

Lj

(cj − ATj y
sj

)
, cj − sj <

ATj y < cj,

0, otherwise,

νP (ATj y) =



1, ATj y ≤ cj − sj,

Rj

(
ATj y−(cj−sj)

tj

)
, cj − sj < ATj y

< cj − sj + tj,

0, otherwise,

where L0 and R0 are reference functions corresponding to the dual objective function such that

R0

(
bT y−w0

s0

)
+L0

(
w0+s0−bT y

t0

)
≤ 1 for w0 + s0 − t0 < bTy < w0 + s0; Lj and Rj are reference

functions corresponding to the jth dual constraint such that Lj

(cj − ATj y
sj

)
+Rj

(
ATj y−(cj−sj)

tj

)
≤

1 for cj−sj < ATj y < cj−sj+tj, j = 0, 1, 2, . . . , n; and Aj is the jth column of A, j = 1, 2, . . . , n.

Let α1, β1 be the minimum degree of acceptance and maximum degree of rejection of IFP

problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem
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(CP2) as given below:

(CP2) max (α1 − β1)

subject to L0

(z0 − cTx
p0

)
≥ α1,

Ri

(Aix− bi
pi

)
≥ α1, i = 1, 2, . . . ,m,

R0

(cTx− (z0 − p0)

q0

)
≤ β1,

Li

(bi + pi − Aix
qi

)
≤ β1, i = 1, 2, . . . ,m,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ∈ Rn.

Simplifying the above problem, we get

(CP3) max (α1 − β1)

subject to z0 − cTx− p0L
−1
0 (α1) ≤ 0, (3.1)

Aix− bi − piR−1
i (α1) ≤ 0, i = 1, 2, . . . ,m, (3.2)

cTx− z0 + p0 − q0R
−1
0 (β1) ≥ 0, (3.3)

bi + pi − Aix− qiL−1
i (β1) ≥ 0, i = 1, 2, . . . ,m, (3.4)

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.

Let α2 and β2 be the minimum degree of acceptance and maximum degree of rejection of IFD

problem. The equivalent crisp dual problem (CD2) of the IFD problem as given below:

(CD2) max (α2 − β2)

subject to R0

(bTy − w0

s0

)
≥ α2,

Lj

(cj − ATj y
sj

)
≥ α2, j = 1, 2, . . . , n),

L0

(w0 + s0 − bTy
t0

)
≤ β2,

Rj

(ATj y − (cj − sj)
tj

)
≤ β2, j = 1, 2, . . . , n,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ∈ Rm
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Simplifying the above problem, we get

(CD3) max (α2 − β2)

subject to bTy − w0 − s0R
−1
0 (α2) ≤ 0, (3.5)

cj − ATj y − sjL−1
j (α2) ≤ 0, j = 1, 2, . . . , n, (3.6)

w0 + s0 − bTy − t0L−1
0 (β2) ≥ 0, (3.7)

ATj y − (cj − sj)− tjR−1
j (β2) ≥ 0, j = 1, 2, . . . , n, (3.8)

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.

Theorem 3.3.1. (Modified weak duality) Let (x, α1, β1) and (y, α2, β2) be feasible solutions of

(CP3) and (CD3) respectively. Then

(i)
m∑
i=1

R−1
i (α1)piyi+

n∑
j=1

L−1
j (α2)sjxj ≥ cTx− bTy,

(ii)
m∑
i=1

L−1
i (β1)qiyi+

n∑
j=1

R−1
j (β2)tjxj ≤ (b+ p)Ty − (c− s)Tx.

Proof. From (3.2), we have

Aix− bi − piR−1
i (α1) ≤ 0 ⇒ piR

−1
i (α1) ≥ Aix− bi

⇒
m∑
i=1

R−1
i (α1)piyi ≥

m∑
i=1

(Aix− bi)yi

⇒
m∑
i=1

R−1
i (α1)piyi ≥ (xTATy − bTy) (3.9)

From (3.6), we have

cj − ATj y − sjL−1
j (α2) ≤ 0 ⇒ sjL

−1
j (α2) ≥ cj − ATj y

⇒
n∑
j=1

L−1
j (α2)sjxj ≥

n∑
j=1

(cj − ATj y)xj

⇒
n∑
j=1

L−1
j (α2)sjxj ≥ (cTx− yTAx) (3.10)

Adding (3.9) and (3.10), we have

m∑
i=1

R−1
i (α1)piyi +

n∑
j=1

L−1
j (α2)sjxj ≥ (cTx− bTy) (∵ yTAx = (yTAx)T = xTATy) (3.11)
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which is the condition (i).

From (3.4), we get

m∑
i=1

L−1
i (β1)qiyi ≤ (b+ p)Ty − xTATy (3.12)

From (3.8), we get

n∑
j=1

R−1
j (β2)tjxj ≤ yTAx− (c− s)Tx (3.13)

Adding (3.12) and (3.13), we have

m∑
i=1

L−1
i (β1)qiyi +

n∑
j=1

R−1
j (β2)tjxj ≤ (b+ p)Ty − (c− s)Tx (3.14)

which is the condition (ii).

Remark 3.3.2. Adding (3.1) and (3.5), we get

L−1
0 (α1)p0 +R−1

0 (α2)s0 ≥ bTy − cTx+ z0 − w0 (3.15)

The (3.15) relates the relative difference of aspiration level z0 of cTx and w0 of bTy corresponding

to membership function in terms of their tolerance levels p0 and s0 respectively.

Adding (3.3) and (3.7), we get

R−1
0 (β1)q0 + L−1

0 (β2)t0 ≤ cTx− bTy + w0 − z0 + p0 + s0 (3.16)

The (3.16) relates the relative difference of aspiration level z0 of cTx and w0 of bTy corresponding

to non-membership function in terms of their tolerance levels p0, s0, q0 and t0 respectively.

Remark 3.3.3. Putting α1 = 1, β1 = 0, α2 = 1, β2 = 0 (∵ 0 ≤ β1 ≤ α1, α1 + β1 ≤ 1, 0 ≤ β2 ≤
α2, α2 + β2 ≤ 1), we get

cTx ≤ bTy ∀ x ≥ 0, y ≥ 0 (3.17)

qTy + tTx ≤ −cTx+ sTx+ bTy + pTy ∀ x ≥ 0, y ≥ 0 (3.18)

z0 − cTx ≤ w0 − bTy ∀ x ≥ 0, y ≥ 0 (3.19)

q0 + t0 ≤ cTx− bTy − z0 + w0 + p0 + s0 ∀ x ≥ 0, y ≥ 0 (3.20)

(3.17) represents the weak duality in CPPs. If 0 < α1, α2, β1, β2 < 1, then the Theorem 3.3.1

shows the weak duality in IFE.
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Theorem 3.3.4. Let (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) be feasible solutions of (CP3) and (CD3) respec-

tively such that

(i)
m∑
i=1

R−1
i (α̌1)piy̌i+

n∑
j=1

L−1
j (α̌2)sjx̌j = cT x̌− bT y̌,

(ii)
m∑
i=1

L−1
i (β̌1)qiy̌i+

n∑
j=1

R−1
j (β̌2)tjx̌j = (b+ p)T y̌ − (c− s)T x̌,

(iii) L−1
0 (α̌1)p0 +R−1

0 (α̌2)s0 = bT y̌ − cT x̌+ z0 − w0,

(iv) R−1
0 (β̌1)q0 + L−1

0 (β̌2)t0 = cT x̌− bT y̌ + w0 − z0 + p0 + s0,

(v) the aspiration levels z0 and w0 satisfy z0 − w0 ≤ 0,

(vi) qT y̌ + tT x̌+ q0 + t0 ≤ sT x̌+ pT y̌ − z0 + w0 + p0 + q0.

Then (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) are the optimal solutions of (CP3) and (CD3) respectively.

Proof. The proof of this theorem consists of two parts:

1st part: Let (x, α1, β1) and (y, α2, β2) be any feasible solutions of (CP3) and (CD3) respectively.

Then by Theorem 3.3.1, we have

m∑
i=1

R−1
i (α1)piyi +

n∑
j=1

L−1
j (α2)sjxj − (cTx− bTy) ≥ 0 (3.21)

From hypothesis (i), we have

m∑
i=1

R−1
i (α̌1)piy̌i +

n∑
j=1

L−1
j (α̌2)sjx̌j − (cT x̌− bT y̌) = 0 (3.22)

(3.21) and (3.22) imply that for any feasible solutions (x, α1, β1) and (y, α2, β2) of (CP3) and

(CD3) respectively, we get

m∑
i=1

R−1
i (α̌1)piy̌i +

n∑
j=1

L−1
j (α̌2)sjx̌j − (cT x̌− bT y̌) ≤

m∑
i=1

R−1
i (α1)piyi +

n∑
j=1

L−1
j (α2)sjxj

−(cTx− bTy).

⇒ (x̌, α̌1, y̌, α̌2) is the optimal solution of crisp primal problem (CP4) given below, whose
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maximum objective value is zero.

(CP4) max
[
−

m∑
i=1

R−1
i (α1)piyi −

n∑
j=1

L−1
j (α2)sjxj + (cTx− bTy)

]
,

subject to p0L
−1
0 (α1) ≥ z0 − cTx),

s0R
−1
0 (α2) ≥ bTy − w0),

piR
−1
i (α1) ≥ Aix− bi, i = 1, 2, . . . ,m,

sjL
−1
j (α2) ≥ cj − ATj y, j = 1, 2, . . . , n,

α1 ≤ 1, α2 ≤ 1, x ≥ 0, y ≥ 0, α1 ≥ 0, α2 ≥ 0.

From hypothesis (i), we have

m∑
i=1

R−1
i (α̌1)piy̌i +

n∑
j=1

L−1
j (α̌2)sjx̌j − (cT x̌− bT y̌) = 0 (3.23)

From hypothesis (iii), we have

L−1
0 (α̌1)p0 +R−1

0 (α̌2)s0 = bT y̌ − cT x̌+ z0 − w0 (3.24)

Adding (3.23) and (3.24), we get

L−1
0 (α̌1)p0 +

m∑
i=1

R−1
i (α̌1)piy̌i +R−1

0 (α̌2)s0 +
n∑
j=1

L−1
j (α̌2)sjx̌j + (w0 − z0) = 0 (3.25)

Each term in (3.25) is non-negative, we get

m∑
i=1

R−1
i (α̌1)piy̌i = 0,

n∑
j=1

L−1
j (α̌2)sjx̌j = 0, L−1

0 (α̌1)p0 = 0, R−1
0 (α̌2)s0 = 0.

Since L−1
0 (α1)p0 ≥ 0, R−1

0 (α2)s0 ≥ 0,

L−1
0 (α1)p0 ≥ L−1

0 (α̌1)p0, R
−1
0 (α2)s0 ≥ R−1

0 (α̌2)s0 (3.26)

Since L0, R0 are the reference functions,

α1 ≤ α̌1, α2 ≤ α̌2 (3.27)

2nd part: Let (x, α1, β1) and (y, α2, β2) be (CP1)-feasible and (CD1)-feasible respectively. Then

by Theorem 3.3.1, we have

m∑
i=1

L−1
i (β1)qiyi +

n∑
j=1

R−1
j (β2)tjxj − ((b+ p)Ty − (c− s)Tx) ≤ 0 (3.28)
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From hypothesis (ii), we have

m∑
i=1

L−1
i (β̌1)qiy̌i +

n∑
j=1

R−1
j (β̌2)tjx̌j − ((b+ p)T y̌ − (c− s)T x̌) = 0 (3.29)

(3.28) and (3.29) imply that for any feasible solutions (x, α1, β1) and (y, α2, β2) of (CP3) and

(CD3) respectively, we get

m∑
i=1

L−1
i (β1)qiyi +

n∑
j=1

R−1
j (β2)tjxj − ((b+ p)Ty − (c− s)Tx) ≤

m∑
i=1

L−1
i (β̌1)qiy̌i +

n∑
j=1

R−1
j (β̌2)tjx̌j

− ((b+ p)T y̌ − (c− s)T x̌) (3.30)

⇒ (x̌, β̌1, y̌, β̌2) is the optimal of the crisp dual problem (CD4) given below, whose maximum

objective value is zero.

(CD4) max
[ m∑
i=1

L−1
i (β1)qiyi +

n∑
j=1

R−1
j (β2)tjxj − ((b+ p)Ty − (c− s)Tx)

]
,

subject to q0R
−1
0 (β1) ≤ cTx− z0 + p0,

t0L
−1
0 (β2) ≤ w0 + s0 − bTy,

qiL
−1
i (β1) ≤ bi + pi − Aix, i = 1, 2, . . . ,m,

tjR
−1
j (β2) ≤ ATj y − (cj − sj), j = 1, 2, . . . , n,

β1 ≤ 1, β2 ≤ 1, x ≥ 0, y ≥ 0, β1 ≥ 0, β2 ≥ 0.

From hypothesis (ii), we have

m∑
i=1

L−1
i (β̌1)qiy̌i +

n∑
j=1

R−1
j (β̌2)tjx̌j − ((b+ p)T y̌ − (c− s)T x̌) = 0 (3.31)

From hypothesis (iv), we have

R−1
0 (β̌1)q0 + L−1

0 (β̌2)t0 − (cT x̌− bT y̌ + w0 − z0 + p0 + s0) = 0 (3.32)

Adding (3.31) and (3.32), we get

R−1
0 (β̌1)q0 +

m∑
i=1

L−1
i (β̌1)qiy̌i + L−1

0 (β̌2)t0 +
n∑
j=1

R−1
j (β̌2)tjx̌j

− pT y̌ − sT x̌+ (z0 − w0)− (p0 + s0) = 0.

⇒ (1−R−1
0 (β̌1))q0 +

m∑
i=1

(1− L−1
i (β̌1))qiy̌i + (1− L−1

0 (β̌2))t0 +
n∑
j=1

(1−R−1
j (β̌2))tjx̌j

− qT y̌ − tT x̌− q0 − t0 + pT y̌ + sT x̌− (z0 − w0) + (p0 + s0) = 0

(3.33)



80

Each term in (3.33) is non-negative, we get

(1−R−1
0 (β̌1))q0 = 0,

m∑
i=1

(1− L−1
i (β̌1))qiy̌i = 0,

(1− L−1
0 (β̌2))t0 = 0,

n∑
j=1

(1−R−1
j (β̌2))tjx̌j = 0.

Since (1−R−1
0 (β1))q0 ≥ 0, (1− L−1

0 (β2))t0 ≥ 0,

(1−R−1
0 (β1))q0 ≥ (1−R−1

0 (β̌1))q0, (1− L−1
0 (β2))t0 ≥ (1− L−1

0 (β̌2))t0 (3.34)

Since L0, R0 are the reference functions,

β1 ≥ β̌1, β2 ≥ β̌2 (3.35)

From (3.27) and (3.35), we have

α1 − α2 ≤ α̌1 − α̌2 and β1 − β2 ≤ β̌1 − β̌2.

This proves the result.

3.4 Duality in IF programming under optimistic approach

Let p0 > 0 and q0 > 0 be the tolerances corresponding to the membership and non-membership

functions of the primal objective function respectively. Let pi > 0 and qi > 0 be the tolerances

corresponding to the membership and non-membership functions of the ith primal constraint

respectively for i = 1, 2, . . . ,m.

We take the following forms of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFP

problem:

µO(cTx) =



1, cTx ≥ z0,

L0

(z0 − cTx
p0

)
, z0 − p0 <

cTx < z0,

0, otherwise,

νO(cTx) =



1, cTx ≤ z0

−p0,

R0

(cTx+ p0 + q0 − z0

p0 + q0

)
, z0 − p0 − q0

< cTx < z0,

0, otherwise,
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µO(Aix) =



1, Aix ≤ bi,

Ri

(Aix− bi
pi

)
, bi < Aix

< bi + pi,

0, otherwise,

νO(Aix) =



1, Aix ≥ bi+

pi + qi,

Li

(bi + pi + qi − Aix
pi + qi

)
, bi < Aix <

bi + pi + qi,

0, otherwise,

where L0 andR0 are reference functions corresponding to objective function such that L0

(z0 − cTx
p0

)
+R0

(cTx+ p0 + q0 − z0

p0 + q0

)
≤ 1 for z0 − p0 − q0 < cTx < z0; Li and Ri are reference functions

corresponding to the ith primal constraint such that Ri

(Aix− bi
pi

)
+Li

(bi + pi + qi − Aix
pi + qi

)
≤ 1

for bi < Aix < bi + pi + qi, i = 0, 1, 2, . . . ,m; where Ai is the ith row of A, i = 1, 2, . . . ,m.

Let s0 > 0 and t0 > 0 be the tolerances corresponding to the membership and non-

membership functions of the objective function respectively. Let sj > 0 and tj > 0 be the

tolerances corresponding to the membership and non-membership functions of the jth dual

constraint respectively for j = 1, 2, . . . , n.

We take the following form of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFD

problem:

µO(bTy) =



1, bTy ≤ w0,

R0

(bTy − w0

s0

)
, w0 < bTy

< w0 + s0,

0, otherwise,

νO(bTy) =



1, bTy ≥ w0+

s0 + t0,

L0

(w0 + s0 + t0 − bTy
s0 + t0

)
, w0 < bTy <

w0 + s0 + t0,

0, otherwise,

µO(ATj y) =



1, ATj y ≥ cj,

Lj

(cj − ATj y
sj

)
, cj − sj <

ATj y < cj,

0, otherwise,

νO(ATj y) =



1, ATj y ≤ cj

−sj − tj,

Rj

(ATj y + sj + tj − cj
sj + tj

)
, cj − sj−

tj < ATj y

< cj,

0, otherwise,
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where L0 andR0 are reference functions corresponding to objective function such thatR0

(bTy − w0

s0

)
+L0

(w0 + s0 + t0 − bTy
s0 + t0

)
≤ 1 for w0 < bTy < w0 + s0 + t0; Lj and Rj are reference func-

tions corresponding to constraints such that Lj

(cj − ATj y
sj

)
+Rj

(ATj y + sj + tj − cj
sj + tj

)
≤ 1 for

cj − sj − tj < ATj y < cj, j = 0, 1, 2, . . . , n; and Aj is the jth row of A, j = 1, 2, . . . , n.

Let α1, β1 be the minimum degree of acceptance and maximum degree of rejection of the IFP

problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem

(CP5) as given below:

(CP5) max (α1 − β1)

subject to L0

(z0 − cTx
p0

)
≥ α1,

Ri

(Aix− bi
pi

)
≥ α1, i = 1, 2, . . . ,m,

R0

(cTx+ p0 + q0 − z0

p0 + q0

)
≤ β1,

Li

(bi + pi + qi − Aix
pi + qi

)
≤ β1, i = 1, 2, . . . ,m,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ∈ Rn.

Simplifying the above problem, we get

(CP6) max (α1 − β1)

subject to z0 − cTx− p0L
−1
0 (α1) ≤ 0, (3.36)

Aix− bi − piR−1
i (α1) ≤ 0, i = 1, 2, . . . ,m, (3.37)

cTx− z0 + p0 + q0 − (p0 + q0)R−1
0 (β1) ≥ 0, (3.38)

bi + pi + qi − Aix− (pi + qi)L
−1
i (β1) ≥ 0, i = 1, 2, . . . ,m, (3.39)

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.

Let α2 and β2 be the minimum degree of acceptance and maximum degree of rejection of the
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IFD problem. The equivalent crisp dual problem (CD5) of the IFD problem as given below:

(CD5) max (α2 − β2)

subject to R0

(bTy − w0

s0

)
≥ α2,

Lj

(cj − ATj y
sj

)
≥ α2, j = 1, 2, . . . , n,

L0

(w0 + s0 + t0 − bTy
s0 + t0

)
≤ β2,

Rj

(ATj y + sj + tj − cj
sj + tj

)
≤ β2, j = 1, 2, . . . , n,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ∈ Rm

Simplifying the above problem, we get

(CD6) max (α2 − β2)

subject to bTy − w0 − s0R
−1
0 (α2) ≤ 0, (3.40)

cj − ATj y − sjL−1
j (α2) ≤ 0, j = 1, 2, . . . , n (3.41)

w0 + s0 + t0 − bTy − (s0 + t0)L−1
0 (β2) ≥ 0, (3.42)

ATj y − (cj − sj − tj)− (sj + tj)R
−1
j (β2) ≥ 0, j = 1, 2, . . . , n, (3.43)

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.

Theorem 3.4.1. (Modified weak duality) Let (x, α1, β1) and (y, α2, β2) be feasible solutions of

(CP6) and (CD6) respectively. Then

(i)
m∑
i=1

R−1
i (α1)piyi+

n∑
j=1

L−1
j (α2)sjxj ≥ cTx− bTy,

(ii)
m∑
i=1

L−1
i (β1)(pi + qi)yi+

n∑
j=1

R−1
j (β2)(tj + sj)xj ≤ (b+ p+ q)Ty − (c− s− t)Tx.

Proof. The same as Theorem 3.3.1.

Theorem 3.4.2. Let (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) be feasible solutions of (CP6) and (CD6) respec-

tively such that

(i)
m∑
i=1

R−1
i (α̌1)piy̌i+

n∑
j=1

L−1
j (α̌2)sjx̌j = cT x̌− bT y̌,
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(ii)
m∑
i=1

L−1
i (β̌1)(pi + qi)y̌i+

n∑
j=1

R−1
j (β̌2)(tj + sj)x̌j = (b+ p+ q)T y̌ − (c− s− t)T x̌,

(iii) L−1
0 (α̌1)p0 +R−1

0 (α̌2)s0 = bT y̌ − cT x̌+ z0 − w0,

(iv) R−1
0 (β̌1)(p0 + q0) + L−1

0 (β̌2)(t0 + s0) = cT x̌− bT y̌ + w0 − z0 + p0 + s0 + q0 + t0,

(v) the aspiration levels z0 and w0 satisfy z0 − w0 ≤ 0,

(vi) qT y̌ + tT x̌+ q0 + t0 ≤ sT x̌− z0 + w0 + pT y̌ + p0 + q0.

Then (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) are the optimal solutions of (CP6) and (CD6) respectively.

Proof. The same as Theorem 3.3.4.

3.5 Duality in IF programming under mixed approach

Let p0, q0 and r0 be the tolerances corresponding to the membership and non-membership

functions of the primal objective function respectively, where 0 < q0 < r0 and r0 < p0 + q0. Let

pi, qi and ri be the tolerances corresponding to the membership function and non-membership

functions of the ith primal constraint respectively, where 0 < qi < ri and ri < pi + qi for

i = 1, 2, . . . ,m.

We take the following forms of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFP

problem:

µM(cTx) =



1, cTx ≥ z0,

L0

(z0 − cTx
p0

)
, z0 − p0 <

cTx < z0,

0, otherwise,

νM(cTx) =



1, cTx ≤ z0

−p0 − q0,

R0

(cTx+ p0 + q0 − z0

r0

)
, z0 − p0 − q0

< cTx < z0−

p0 − q0 + r0,

0, otherwise,
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µM(Aix) =



1, Aix ≤ bi,

Ri

(Aix− bi
pi

))
, bi < Aix

< bi + pi,

0, otherwise,

νM(Aix) =



1, Aix ≥ bi+

pi + qi,

Li

(bi + pi + qi − Aix
ri

)
, bi + pi + qi

−ri < Aix <

bi + pi + qi,

0, otherwise,

where L0 and R0 are reference functions corresponding to the objective function such that

L0

(z0 − cTx
p0

)
+R0

(cTx+ p0 + q0 − z0

r0

)
≤ 1 for z0−p0−q0 < cTx < z0−p0−q0 +r0; Lj and Rj

are reference functions corresponding to constraints such thatRi

(Aix− bi
pi

))
+Li

(bi + pi + qi − Aix
ri

)
≤ 1 for bi + pi + qi − ri < Aix < bi + pi + qi, i = 0, 1, 2, . . . ,m; and Ai is the ith row of A,

i = 1, 2, . . . ,m.

Let s0, t0 and u0 be the tolerances corresponding to the membership and non-membership

functions of the dual objective function respectively, where 0 < t0 < u0 and u0 < s0 + t0. Let

sj, tj and uj be the tolerances corresponding to the membership and non-membership functions

of the jth dual constraint respectively, where 0 < tj < uj and uj < sj + tj for j = 1, 2, . . . , n.

We take the following forms of the membership function as well as non-membership functions

governed by reference functions for the objective function and all the constraints of the IFD

problem:

µM(bTy) =



1, bTy ≤ w0,

R0

(bTy − w0

s0

)
, w0 < bTy

< w0 + s0,

0, otherwise,

νM(bTy) =



1, bTy ≥ w0+

s0 + t0,

L0

(w0 + s0 + t0 − bTy
u0

)
, w0 + s0 + t0

−u0 < bTy <

w0 + s0 + t0,

0, otherwise,
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µM(ATj y) =



1, ATj y ≥ cj,

Lj

(cj − ATj y
sj

)
, cj − sj <

ATj y < cj,

0, otherwise,

νM(ATj y) =



1, ATj y ≤ cj−

sj − tj,

Rj

(ATj y + sj + tj − cj
uj

)
, cj − sj − tj

< ATj y < cj

−sj − tj + uj,

0, otherwise,

where L0 and R0 are reference functions corresponding to the objective function such that

R0

(bTy − w0

s0

)
+L0

(w0 + s0 + t0 − bTy
u0

)
≤ 1 for w0+s0+t0−u0b

Ty < w0+s0+t0; Lj and Rj are

reference functions corresponding to constraints such that Lj

(cj − ATj y
sj

)
+Rj

(ATj y + sj + tj − cj
uj

)
≤ 1 for cj − sj − tj < ATj y < cj − sj − tj + uj, j = 0, 1, 2, . . . , n; and Aj is the jth row of A,

j = 1, 2, . . . , n.

Let α1, β1 be the minimum degree of acceptance and maximum degree of rejection of the IFP

problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem

(CP7) as given below:

(CP7) max (α1 − β1)

subject to L0

(z0 − cTx
p0

)
≥ α1,

Ri

(Aix− bi
pi

)
≥ α1, i = 1, 2, . . . ,m,

R0

(cTx+ p0 + q0 − z0

r0

)
≤ β1,

Li

(bi + pi + qi − Aix
ri

)
≤ β1, i = 1, 2, . . . ,m,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ∈ Rn.

Simplifying the above problem, we get

(CP8) max (α1 − β1)

subject to z0 − cTx− p0L
−1
0 (α1) ≤ 0, (3.44)

Aix− bi − piR−1
i (α1) ≤ 0, i = 1, 2, . . . ,m, (3.45)

cTx− z0 + p0 + q0 − r0R
−1
0 (β1) ≥ 0, (3.46)

bi + pi + qi − Aix− riL−1
i (β1) ≥ 0, i = 1, 2, . . . ,m, (3.47)

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.
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Let α2 and β2 be the minimum degree of acceptance and maximum degree of rejection of the

IFD problem. The equivalent crisp dual problem (CD7) of the IFD problem as given below:

(CD7) max (α2 − β2)

subject to R0

(bTy − w0

s0

)
≥ α2,

Lj

(cj − ATj y
sj

)
≥ α2, j = 1, 2, . . . , n,

L0

(w0 + s0 + t0 − bTy
u0

)
≤ β2,

Rj

(ATj y + sj + tj − cj
uj

)
≤ β2, j = 1, 2, . . . , n,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ∈ Rm

Simplifying the above problem, we get

(CD8) max (α2 − β2)

subject to bTy − w0 − s0R
−1
0 (α2) ≤ 0, (3.48)

cj − ATj y − sjL−1
j (α2) ≤ 0, j = 1, 2, . . . , n, (3.49)

w0 + s0 + t0 − bTy − u0L
−1
0 (β2) ≥ 0, (3.50)

ATj y − (cj − sj − tj)− ujR−1
j (β2) ≥ 0, j = 1, 2, . . . , n, (3.51)

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.

Theorem 3.5.1. (Modified weak duality) Let (x, α1, β1) and (y, α2, β2) be feasible solutions of

(CP8) and (CD8) respectively. Then,

(i)
m∑
i=1

R−1
i (α1)piyi+

n∑
j=1

L−1
j (α2)sjxj ≥ cTx− bTy,

(ii)
m∑
i=1

L−1
i (β1)riyi+

n∑
j=1

R−1
j (β2)ujxj ≤ (b+ p+ q)Ty − (c− s− t)Tx.

Proof. The same as Theorem 3.3.1.

Theorem 3.5.2. Let (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) be feasible solutions of (CP8) and (CD8) respec-

tively such that
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(i)
m∑
i=1

R−1
i (α̌1)piy̌i+

n∑
j=1

L−1
j (α̌2)sjx̌j = cT x̌− bT y̌,

(ii)
m∑
i=1

L−1
i (β̌1)riy̌i+

n∑
j=1

R−1
j (β̌2)ujx̌j = (b+ p+ q)T y̌ − (c− s− t)T x̌,

(iii) L−1
0 (α̌1)p0 +R−1

0 (α̌2)s0 = bT y̌ − cT x̌+ z0 − w0,

(iv) R−1
0 (β̌1)r0 + L−1

0 (β̌2)u0 = cT x̌− bT y̌ + w0 − z0 + p0 + s0 + q0 + t0,

(v) the aspiration levels z0 and w0 satisfy z0 − w0 ≤ 0,

(vi) qT y̌ + tT x̌+ q0 + t0 ≤ sT x̌− z0 + w0 + pT y̌ + p0 + q0.

Then (x̌, α̌1, β̌1) and (y̌, α̌2, β̌2) are the optimal solutions of (CP8) and (CD8) respectively.

Proof. The same as Theorem 3.3.4.

3.6 Numerical example

Example 3.6.1. Consider the following primal-dual pair of LPPs ([24, 85]) as given below:

(CP) max 2x subject to x ≤ 1, x ≥ 0,

(CD) Min y subject to y ≥ 2, y ≥ 0.

Optimistic point of view: Let us apply optimistic approach. Now taking z0 = 1, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree

of vagueness, for (CP6), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(2x− 1),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(1− x),

q0 ln[β1(1− e−σ0) + e−σ0 ] + σ0(2x− 1 + p0 + q0) ≥ 0,

q1 ln[β1(1− e−σ1) + e−σ1 ] + σ1(1− x+ p1 + q1) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.

Using Mathematica 9.0, we solve (CP1) by taking p0 = 3, p1 = 5, q0 = 2, q1 = 4. The optimal

solution of (CP1) is obtained as x̌ = 0.99526, α̌1 = 1, β̌1 = 0 with max(α1 − β1)=(α̌1 − β̌1) = 1
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for ρ0 = 1, ρ1 = 2, σ0 = 1, σ1 = 2. Therefore, the optimal solution of (CP) is x̌ = 0.99526 with

max 2x = 2x̌ = 1.990520.

Now again taking w0 = 1, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD6), we get the following

problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(1− y),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(y − 2),

(s0 + t0) ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(1 + y + s0 + t0) ≥ 0,

(s1 + t1) ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(y − 2 + s1 + t1) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

Using Mathematica 9.0, we solve (DP1) for taking s0 = 3, s1 = 5, t0 = 2, t1 = 4. The optimal

solution of (DP1) is obtained as y̌ = 1.45984, α̌2 = 0.775288, β̌2 = 0.019986 with max(α2 −
β2)=(α̌2 − β̌2) = 0.755302 by taking φ0 = 1, φ1 = 2, ψ0 = 1, ψ1 = 2. Therefore, the optimal

solution of (DP) is y̌ = 1.45984 with min y = y̌ = 1.45984. For these optimal solutions, both

Table 3.1: Optimistic solutions result
Primal problem Dual problem Duality

ρ0 ρ1 σ0 σ1 α1 β1 x cTx φ0 φ1 ψ0 ψ1 α2 β2 w bTw gap
1 2 1 2 1 0 0.99526 1.990520 1 2 1 2 0.775288 0.019986 1.45984 1.45984 0.00687108
2 2 2 2 1 0 0.996817 1.993630 2 2 2 2 0.744179 0.023321 1.375 1.3375 0.004381
3 2 3 2 1 0 0.995358 1.990720 3 2 3 2 0.720569 0.025994 1.308590 1.308590 0.006068
3 5 3 5 1 0 0.990885 1.981770 3 5 3 5 0.595151 0.002244 1.485630 1.485630 0.013539
4 5 4 5 1 0 0.989429 1.978860 4 5 4 5 0.559571 0.002555 1.424700 1.424700 0.015054
5 5 5 5 1 0 0.982416 1.964830 5 5 5 5 0.527522 0.007620 1.379690 1.379690 0.037268
6 6 6 6 1 0 0.980898 1.961800 6 6 6 6 0.47105 0.001284 1.375000 1.375000 0.026262
6 8 6 8 1 0 0.994417 1.988830 6 8 6 8 0.410353 0.000228 1.443590 1.443590 0.008063
7 8 7 8 1 0 0.989763 1.979530 7 8 7 8 0.386719 0.000233 1.406550 1.406550 0.014398
8 5 8 5 1 0 0.976224 1.952450 8 5 8 5 0.480635 0.003367 1.274610 1.274610 0.030306

the hypotheses of Theorem 3.3.1; Inequalities (3.15) and (3.16) are satisfied. The solutions of

the fuzzy primal-dual problems with linear membership function, noted in [24] are as follows:

Fuzzy primal optimal solution is x = 0.5 and optimal value of objective function is 1, and fuzzy

dual optimal solution is y = 1.25 and optimal value of objective function is 1.25. The solutions

of the fuzzy primal-dual problems with exponential membership function, noted in [85] are as

follows: Fuzzy primal optimal solution is x = 0.9856906 and optimal value of objective function

is 1.971381; and fuzzy dual optimal solution is y = 1.194403 and optimal value of objective

function is 1.194403. The duality gaps in [24] and [85] are 0.625 and 0.017088 respectively.
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Using the proposed approach with exponential membership function in IFE, the duality gap is

0.006871 (the difference between the right hand side and left hand side of the condition (i) of

Theorem 3.3.1). Small duality gap implies that the primal and dual objective values in fuzzy

and IFE are closer to each other for a given tolerance. The solutions of primal and dual problems

in IFE with different values of shape parameters ρ0, ρ1, σ0, σ1, φ0, φ1, ψ0, ψ1 are given in Table

3.1.

Pessimistic point of view: Let us apply pessimistic approach. Now taking z0 = 1, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree

of vagueness, for (CP3), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(2x− 1),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(1− x),

q0 ln[β1(1− e−σ0) + e−σ0 ] + σ0(2x− 1 + p0) ≥ 0,

q1 ln[β1(1− e−σ1) + e−σ1 ] + (1 + p1 − x) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.

Now again taking w0 = 1, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD3), we get the following

problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(1− y),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(y − 2),

(s0 + t0) ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(1 + s0 + y) ≥ 0,

(s1 + t1) ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(y − 2 + s1) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for p0 = 3, p1 = 5, q0 = 2, q1 = 4,

s0 = 3, s1 = 5, t0 = 2, t1 = 4. The optimal solutions of (CP1) and (DP1) problems with

different values of shape parameters ρ0, ρ1, σ0, σ1, φ0, φ1, ψ0, ψ1 are given in Table 3.2.

Mixed point of view: Let us apply mixed approach. Now taking z0 = 1, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,
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Table 3.2: Pessimistic solutions result
Primal problem Dual problem Duality

ρ0 ρ1 σ0 σ1 α1 β1 x cTx φ0 φ1 ψ0 ψ1 α2 β2 w bTw gap
1 2 1 2 1 0 0.989852 1.979700 1 2 1 2 0.775271 0 1.459800 1.459800 0.014775
2 2 2 2 1 0 0.989852 1.979700 2 2 2 2 0.744201 0 1.375020 1.375020 0.013918
3 2 3 2 1 0 0.989852 1.979700 3 2 3 2 0.720560 0 1.308560 1.308560 0.013251
3 5 3 5 1 0 0.970791 1.941580 3 5 3 5 0.595151 0 1.485630 1.485630 0.043393
4 5 4 5 1 0 0.960719 1.921440 4 5 4 5 0.559571 0 1.424700 1.424700 0.055957
5 5 5 5 1 0 0.951880 1.903760 5 5 5 5 0.532109 0 1.375000 1.375000 0.066165
6 6 6 6 1 0 0.953798 1.907620 6 6 6 6 0.471055 0 1.375000 1.375000 0.063525
6 8 6 8 1 0 0.99389 1.998780 6 8 6 8 0.410353 0 1.443590 1.443590 0.008798
7 8 7 8 1 0 0.981114 1.962230 7 8 7 8 0.386719 0 1.406550 1.406550 0.026565
8 5 8 5 1 0 0.941133 1.882270 8 5 8 5 0.480635 0 1.274610 1.274610 0.075031

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree

of vagueness, for (CP8), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(2x− 1),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(1− x),

r0 ln[β1(1− e−σ0) + e−σ0 ] + σ0(2x− 1 + p0 + q0) ≥ 0,

r1 ln[β1(1− e−σ1) + e−σ1 ] + σ1(1− x+ p1 + q1) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x ≥ 0.

Now again taking w0 = 1, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD8), we get the following

problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(1− y),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(y − 2),

u0 ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(1 + y + s0 + t0) ≥ 0,

u1 ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(y − 2 + s1 + t1) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y ≥ 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for p0 = 3, p1 = 5, q0 = 2, q1 = 4, r0 =

4, r1 = 8, s0 = 3, s1 = 5, t0 = 2, t1 = 4, u0 = 4, u1 = 8. The optimal solutions of (CP1) and

(DP1) problems with different values of shape parameters ρ0, ρ1, σ0, σ1, φ0, φ1, ψ0, ψ1 are given

in Table 3.3.



92

Table 3.3: Mixed solutions result
Primal problem Dual problem Duality

ρ0 ρ1 σ0 σ1 α1 β1 x cTx φ0 φ1 ψ0 ψ1 α2 β2 w bTw gap
1 2 1 2 1 0 0.989852 1.979700 1 2 1 2 0.775271 0 1.459800 1.459800 0.014775
2 2 2 2 1 0 0.989852 1.979700 2 2 2 2 0.744201 0 1.375020 1.375020 0.013918
3 2 3 2 1 0 0.989852 1.979700 3 2 3 2 0.720560 0 1.308560 1.308560 0.013251
3 5 3 5 1 0 0.959388 1.918780 3 5 3 5 0.595151 0 1.485630 1.485630 0.060328
4 5 4 5 1 0 0.961500 1.923000 4 5 4 5 0.559571 0 1.424700 1.424700 0.054847
5 5 5 5 1 0 0.960324 1.920650 5 5 5 5 0.532115 0 1.375000 1.375000 0.054542
6 6 6 6 1 0 0.945316 1.890630 6 6 6 6 0.471055 0 1.375000 1.375000 0.045173
6 8 6 8 1 0 0.993890 1.998780 6 8 6 8 0.410353 0 1.443590 1.443590 0.008798
7 8 7 8 1 0 0.981114 1.962230 7 8 7 8 0.386719 0 1.406550 1.406550 0.026565
8 5 8 5 1 0 0.927700 1.855400 8 5 8 5 0.480635 0 1.274610 1.274610 0.092157

Example 3.6.2. Consider the following primal-dual pair of LPPs ([24, 85]) as given below:

(CP) max 3x1 + 4x2 subject to 4x1 + 2x2 ≤ 8, 3x1 + 5x2 ≥ 18, x1, x2 ≥ 0,

(CD) Min 8y1 + 18y2 subject to 4y1 + 3y2 ≥ 3, 2y1 + 5y2 ≥ 4, y1, y2 ≥ 0.

Optimistic point of view: Let us apply optimistic approach. Now taking z0 = 10, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree

of vagueness, for (CP6), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(3x1 + 4x2 − 10),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(8− (4x1 + 2x2)),

p2 ln[α1(1− e−ρ2) + e−ρ2 ] ≤ ρ2(18− (3x1 + 5x2)),

(p0 + q0) ln[β1(1− e−σ0) + e−σ0 ] + σ0(3x1 + 4x2 − 10 + p0 + q0) ≥ 0,

(p1 + q1) ln[β1(1− e−σ1) + e−σ1 ] + (8 + p1 + q1 − (4x1 + 2x2)) ≥ 0,

(p2 + q2) ln[β1(1− e−σ2) + e−σ2 ] + (18 + p2 + q2 − (3x1 + 5x2)) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x1, x2 ≥ 0.

Using Mathematica 9.0, we solve (CP1) by taking p0 = 4, p1 = 5, p2 = 6, q0 = 2, q1 = 3, q2 = 4.

The optimal solution of (CP1) is obtained as x̌ = 0.99526, α̌1 = 1, β̌1 = 0 with max(α1 −
β1)=(α̌1 − β̌1) = 1 for ρ0 = 1, ρ1 = 2, σ0 = 1, σ1 = 2. Therefore, the optimal solution of (CP)

is x̌ = 0.99526 with max 2x = 2x̌ = 1.990520.

Now again taking w0 = 15, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD6), we get the following
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problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(15− (8y1 + 18y2)),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(4y1 + 3y2 − 3),

s2 ln[α2(1− e−φ2) + e−φ2 ] ≤ φ2(2y1 + 5y2 − 4),

(s0 + t0) ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(15 + s0 + t0 − (8y1 + 18y2)) ≥ 0,

(s1 + t1) ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(4y1 + 3y2 − 3 + s1 + t1) ≥ 0,

(s2 + t2) ln[β2(1− e−ψ2) + e−ψ2 ] + ψ2(2y1 + 5y2 − 4 + s2 + t2) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y1, y2 ≥ 0.

Using Mathematica 9.0, we solve (DP1) for taking s0 = 3, s1 = 4, s2 = 5, t0 = 2, t1 = 3, t2 = 4.

The optimal solution of (DP1) is obtained as y̌ = 1.45984, α̌2 = 0.775288, β̌2 = 0.019986 with

max(α2 − β2)=(α̌2 − β̌2) = 0.755302 by taking φ0 = 1, φ1 = 2, ψ0 = 1, ψ1 = 2.

Table 3.4: Optimistic solutions result
Primal problem Dual problem Duality

ρ0 ρ1 ρ2 σ0 σ1 σ2 α1 β1 x1 x2 cTx φ0 φ1 φ2 ψ0 ψ1 ψ2 α2 β2 y1 y2 bTw gap
1 1 2 1 1 2 1 0 0.270886 3.435380 14.554200 1 1 2 1 1 2 1 0 0.722114 0.511742 14.988300 0.434100
1 2 2 1 2 2 1 0 0.265412 3.439120 14.552700 1 2 2 1 2 2 1 0 0.239925 0.723052 14.934300 0.381600
2 3 2 2 3 2 1 0 0.267347 3.437700 14.552800 2 3 2 2 3 2 1 0 0.353971 0.666587 14.830300 0.277500
2 3 5 2 3 5 1 0 0.273479 3.433530 14.554600 2 3 5 2 3 5 1 0 0.396253 0.650036 14.870700 0.316100
3 4 5 3 4 5 1 0 0.271385 3.434840 14.553500 3 4 5 3 4 5 1 0 0.414076 0.643125 14.888900 0.335400
3 5 5 3 5 5 1 0 0.271042 3.435100 14.553500 3 5 5 3 5 5 1 0 0.391158 0.655541 14.929000 0.375500
4 6 6 4 6 6 1 0 0.272029 3.434510 14.554100 4 6 6 4 6 6 1 0 0.347476 0.672630 14.887100 0.333000
4 6 7 4 6 7 1 0 0.266263 3.438830 14.554100 4 6 7 4 6 7 1 0 0.337171 0.671615 14.786400 0.232300
5 8 7 5 8 7 1 0 0.273619 3.433270 14.553900 5 8 7 5 8 7 1 0 0.439962 0.630069 14.860900 0.307000
5 8 5 5 8 5 1 0 0.274344 3.432700 14.553800 5 8 5 5 8 5 1 0 0.379998 0.657275 14.870900 0.317100

The solutions of primal and dual problems in IFE with different values of shape parameters

ρ0, ρ1, ρ2, σ0, σ1, σ2, φ0, φ1, φ2, ψ0, ψ1, ψ2 are given in Table 3.4.

Pessimistic point of view: Let us apply pessimistic approach. Now taking z0 = 10, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree
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of vagueness, for (CP3), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(3x1 + 4x2 − 10),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(8− (4x1 + 2x2)),

p2 ln[α1(1− e−ρ2) + e−ρ2 ] ≤ ρ2(18− (3x1 + 5x2)),

q0 ln[β1(1− e−σ0) + e−σ0 ] + σ0(3x1 + 4x2 − 10 + p0) ≥ 0,

q1 ln[β1(1− e−σ1) + e−σ1 ] + (8 + p1 − (4x1 + 2x2)) ≥ 0,

q2 ln[β1(1− e−σ2) + e−σ2 ] + (18 + p2 − (3x1 + 5x2)) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x1, x2 ≥ 0.

Now again taking w0 = 15, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD3), we get the following

problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(15− (8y1 + 18y2)),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(4y1 + 3y2 − 3),

s2 ln[α2(1− e−φ2) + e−φ2 ] ≤ φ2(2y1 + 5y2 − 4),

(s0 + t0) ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(15 + s0 − (8y1 + 18y2)) ≥ 0,

(s1 + t1) ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(4y1 + 3y2 − 3 + s1) ≥ 0,

(s2 + t2) ln[β2(1− e−ψ2) + e−ψ2 ] + ψ2(2y1 + 5y2 − 4 + s2) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y1, y2 ≥ 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for p0 = 4, p1 = 5, p2 = 6, q0 = 2, q1 =

3, q2 = 4, s0 = 3, s1 = 4, s2 = 5, t0 = 2, t1 = 3, t2 = 4. The optimal solutions of (CP1) and

(DP1) problems with different values of shape parameters ρ0, ρ1, ρ2, σ0, σ1, σ2, φ0, φ1, φ2, ψ0,

ψ1, ψ2 are given in Table 3.5.

Mixed point of view: Let us apply mixed approach. Now taking z0 = 10, L0(x) =
exp(−ρ0x)−exp(−ρ0)

1−exp(−ρ0)
, R0(x) = exp(−σ0x)−exp(−σ0)

1−exp(−σ0)
, Li(x) = exp(−σix)−exp(−σi)

1−exp(−σi) , Ri(x) = exp(−ρix)−exp(−ρi)
1−exp(−ρi) ,

where ρi, σi, 0 < ρi, σi <∞, i = 0, 1, 2, . . . ,m, are the shape parameters that measure the degree
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Table 3.5: Pessimistic solutions result
Primal problem Dual problem Duality

ρ0 ρ1 ρ2 σ0 σ1 σ2 α1 β1 x1 x2 cTx φ0 φ1 φ2 ψ0 ψ1 ψ2 α2 β2 y1 y2 bTw gap
1 1 2 1 1 2 1 0 0.235549 3.452670 14.517300 1 1 2 1 1 2 1 0 0.196655 0.745495 14.992200 0.474900
1 2 2 1 2 2 1 0 0.235549 3.452670 14.517300 1 2 2 1 2 2 1 0 0.378862 0.656541 14.848600 0.331300
2 3 2 2 3 2 1 0 0.252991 3.236590 13.705300 2 3 2 2 3 2 1 0 0.236272 0.727201 14.979800 1.274500
2 3 5 2 3 5 1 0 0.102331 3.375990 13.811000 2 3 5 2 3 5 1 0 0.300433 0.694823 14.910300 1.099300
3 4 5 3 4 5 1 0 0.135635 3.412880 14.058400 3 4 5 3 4 5 1 0 0.511328 0.603710 14.957400 0.899000
3 5 5 3 5 5 1 0 0.135635 3.412880 14.058400 3 5 5 3 5 5 1 0 0.489998 0.609919 14.898500 0.840100
4 6 6 4 6 6 1 0 0.032308 3.378290 13.610100 4 6 6 4 6 6 1 0 0.460125 0.621723 14.872000 1.261900
4 6 7 4 6 7 1 0 0.000475 3.403730 13.616300 4 6 7 4 6 7 1 0 0.413595 0.639218 14.814700 1.198400
5 8 7 5 8 7 1 0 0.025300 3.583920 14.411600 5 8 7 5 8 7 1 0 0.457740 0.627858 14.963400 0.551800
5 8 5 5 8 5 1 0 0.037432 3.573770 14.407400 5 8 5 5 8 5 1 0 0.644420 0.543996 14.947300 0.539900

of vagueness, for (CP8), we get the following problem (CP1):

(CP1) max (α1 − β1)

subject to p0 ln[α1(1− e−ρ0) + e−ρ0 ] ≤ ρ0(3x1 + 4x2 − 10),

p1 ln[α1(1− e−ρ1) + e−ρ1 ] ≤ ρ1(8− (4x1 + 2x2)),

p2 ln[α1(1− e−ρ2) + e−ρ2 ] ≤ ρ2(18− (3x1 + 5x2)),

r0 ln[β1(1− e−σ0) + e−σ0 ] + σ0(3x1 + 4x2 − 10 + p0 + q0) ≥ 0,

r1 ln[β1(1− e−σ1) + e−σ1 ] + (8 + p1 + q1 − (4x1 + 2x2)) ≥ 0,

r2 ln[β1(1− e−σ2) + e−σ2 ] + (18 + p2 + q2 − (3x1 + 5x2)) ≥ 0,

α1 ≥ β1 ≥ 0, α1 + β1 ≤ 1, x1, x2 ≥ 0.

Now again taking w0 = 15, L0(x) = exp(−ψ0x)−exp(−ψ0)
1−exp(−ψ0)

, R0(x) = exp(−φ0x)−exp(−φ0)
1−exp(−φ0)

, Lj(x) =
exp(−φjx)−exp(−φj)

1−exp(−φj) , Rj(x) =
exp(−ψjx)−exp(−ψj)

1−exp(−ψj) , where φj, ψj, 0 < φj, ψj < ∞, j = 0, 1, 2, . . . , n,

are the shape parameters that measure the degree of vagueness, for (CD8), we get the following

problem (CD1):

(DP1) max (α2 − β2)

subject to s0 ln[α2(1− e−φ0) + e−φ0 ] ≤ φ0(15− (8y1 + 18y2)),

s1 ln[α2(1− e−φ1) + e−φ1 ] ≤ φ1(4y1 + 3y2 − 3),

s2 ln[α2(1− e−φ2) + e−φ2 ] ≤ φ2(2y1 + 5y2 − 4),

u0 ln[β2(1− e−ψ0) + e−ψ0 ] + ψ0(15 + s0 + t0 − (8y1 + 18y2)) ≥ 0,

u1 ln[β2(1− e−ψ1) + e−ψ1 ] + ψ1(4y1 + 3y2 − 3 + s1 + t1) ≥ 0,

u2 ln[β2(1− e−ψ2) + e−ψ2 ] + ψ2(2y1 + 5y2 − 4 + s2 + t2) ≥ 0,

α2 ≥ β2 ≥ 0, α2 + β2 ≤ 1, y1, y2 ≥ 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for p0 = 4, p1 = 5, p2 = 6, q0 = 2, q1 = 3, q2 =

4, r0 = 4, r1 = 6, r2 = 8, s0 = 3, s1 = 4, s2 = 5, t0 = 2, t1 = 3, t2 = 4, u0 = 4, u1 = 6, u2 = 8. The
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optimal solutions of (CP1) and (DP1) problems with different values of shape parameters ρ0, ρ1,

ρ2, σ0, σ1, σ2, φ0, φ1, φ2, ψ0, ψ1, ψ2 are given in Table 3.6. The above examples (Examples 3.6.1

Table 3.6: Mixed solutions result
Primal problem Dual problem Duality

ρ0 ρ1 ρ2 σ0 σ1 σ2 α1 β1 x1 x2 cTx φ0 φ1 φ2 ψ0 ψ1 ψ2 α2 β2 y1 y2 bTw gap
1 1 2 1 1 2 1 0 0.235549 3.452670 14.517300 1 1 2 1 1 2 1 0 0.196655 0.745495 14.992200 0.474900
1 2 2 1 2 2 1 0 0.235549 3.452670 14.517300 1 2 2 1 2 2 1 0 0.378862 0.656541 14.848600 0.331300
2 3 2 2 3 2 1 0 0.252991 3.236590 13.705300 2 3 2 2 3 2 1 0 0.236272 0.727201 14.979800 1.274500
2 3 5 2 3 5 1 0 0.102331 3.375990 13.811000 2 3 5 2 3 5 1 0 0.451977 0.625542 14.875600 1.064600
3 4 5 3 4 5 1 0 0.135635 3.412880 14.058400 3 4 5 3 4 5 1 0 0.462231 0.622055 14.894800 0.836400
3 5 5 3 5 5 1 0 0.135635 3.412880 14.058400 3 5 5 3 5 5 1 0 0.579639 0.571855 14.930500 0.872100
4 6 6 4 6 6 1 0 0.032308 3.378290 13.610100 4 6 6 4 6 6 1 0 0.260274 0.713838 14.931300 1.321200
4 6 7 4 6 7 1 0 0.000475 3.403730 13.616300 4 6 7 4 6 7 1 0 0.419299 0.637305 14.825900 1.209600
5 8 7 5 8 7 1 0 0.025300 3.583920 14.411600 5 8 7 5 8 7 1 0 0.450945 0.626384 14.882500 0.470900
5 8 5 5 8 5 1 0 0.037432 3.573770 14.407400 5 8 5 5 8 5 1 0 0.421774 0.639529 14.885700 0.478300

and 3.6.2) are solved with different approaches like optimistic, pessimistic and mixed approaches

in IFE. The results of Examples 1 and 2 are depicted in Tables 3.1-3.6 in different approaches.

Based on the solutions with optimistic, pessimistic and mixed approaches in Examples 1 and

2, it is clear that optimistic solutions are good compared to pessimistic and mixed solutions

due to the duality gaps. The duality gaps in optimistic solutions are very less as compared to

pessimistic and mixed solutions. Also, the duality gaps in optimistic approaches for Examples

3.6.1 and 3.6.2 in IFE are very small compared to the methods given in [24, 85] in a fuzzy

environment.

3.7 Concluding remarks

In this chapter, we extended the primal-dual theories discussed in [24, 85] in IFE by taking

membership and non-membership functions governed by reference functions in different ap-

proaches, viz., pessimistic, optimistic and mixed. This extended theory carries a significant

contribution to scholarly research because it breaks new ground to allow researchers to further

seek and obtain the importance of uncertainty as well as hesitation in general LPP. We have

also compared duality gaps by illustrative numerical examples with different approaches and

existing approaches (see Tables 3.1-3.6). From Tables 3.1-3.6, we observe that, for the given

numerical Examples 3.6.1 and 3.6.2, the solutions are better in case of an optimistic approach

in terms of the duality gap.



Chapter 4

Multi-objective programming problems

in intuitionistic fuzzy environment:

Optimistic, pessimistic and mixed

approaches

This chapter investigates a new approach for finding efficient solutions of the multi-objective op-

timization problem (MOOP) in IFE based on DM’s different views, viz., optimistic, pessimistic

and mixed. The point operator Fα, which transforms IFS into equivalent FS, is introduced and

some desirable properties of Fα are studied. After that, the formulation of MOOP, accuracy

index and value function in IFE are introduced. For resolving the mutual conflicting nature

of objectives in MOOP in IFE, we introduce the membership and non-membership functions

governed by reference function which do not depend on the upper and lower levels of accept-

ability. Then a new method is proposed to find the efficient solutions of MOOP in IFE based

on different viewpoints. Finally, a test example is given to demonstrate the practicality and

effectiveness of the proposed method.

4.1 Introduction

MOOPs are concerned with mathematical optimization problems involving more than one ob-

jective function to be optimized simultaneously. MOOPs have been successfully applied to

different fields such as science, engineering, economics, and logistics where optimal decisions
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need to be taken in the presence of conflicting objectives. But most of the decisions such as en-

gineering or management decisions are generally made through available data and information

that are mostly vague, imprecise and uncertain in nature. Also, the subjective characteristics

of the alternatives are generally uncertain and need to be evaluated by the DM who is under

time pressure and has insufficient knowledge and judgments. The nature of this kind of vague-

ness and uncertainty is fuzzy rather than random, especially when subjective assessments are

involved in the decision-making process. To cope up with such situation, FS theory proposed

by Zadeh [194] has been a powerful tool for handling the uncertainties and vagueness of the

data by assigning a degree, called the membership degree. During the last decades, FS theory

played an important role in modeling uncertain and optimization problems. Zimmermann [203]

gave a method for solving fuzzy programming with several objective functions.

Several approaches have been proposed in the literature for solving fuzzy linear program-

ming with multiple objectives, such as compensatory operators technique [122], defuzzification

approach [164], a parametric approach [40], goal programming approach [94] to name a few.

There are some real-life situations where DM has hesitation in deciding membership grade. In

FS theory, there is no means to incorporate this hesitation. To incorporate the hesitation in

the membership degree, Atanassov [11] proposed IFS. IFS is an extension of FS [194] and is

characterized by a membership degree, a non-membership degree, and a hesitancy degree. Gau

and Buehrer [74] introduced the concept of vague set. But Bustince and Burillo [37] proved that

vague sets are IFSs. In IFSs, the degree of membership, the degree of non-membership and the

degree of hesitancy are real values. An application of the IFS to optimization problems is given

by Angelov [9]. His technique is based on maximizing the membership degree, minimizing the

non-membership degree and the crisp model is formulated using the IF aggregation operator

[31]. For solving optimization problems in IF, ranking function plays the key role, which trans-

forms IFN to crisp number. In [137, 165], the authors gave a ranking function for IFN and solved

IFLPPs by using the ranking function. Nishad and Singh [139] solved a real-life MOLPP in

IFE. The IF optimization technique for solving multi-objective reliability optimization problems

in interval environment is given in [73]. In [66], Dubey et al. proposed optimistic, pessimistic

and mixed approaches to solving the IFLPP. Singh and Yadav [163] developed the modeling

and optimization of the MONLPP in IFE. Based on the model in [163], Rani et al. [153] solved

the model with different approaches such as optimistic and pessimistic. The development of

interactive IF methods for solving multilevel programming problems noted in [199]. An IF goal

programming approach for finding Pareto-optimal solutions to multi-objective programming

problems is given in [156].
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The rest of the chapter is organized as follows. Section 4.2 introduces the basic concept

of accuracy index and useful theorems relevant to the proposed work. In Section 4.3, the

mathematical formulation of MOOP in IFE and its properties are presented. The limitations

of the existing methods for finding an optimal solution of the MOOP in IFE are pointed out in

Section 4.4. In Section 4.5, a new method for finding efficient solutions of the MOOP in IFE

with different viewpoints, viz., optimistic, pessimistic and mixed is proposed. In Section 4.6, an

illustrative example is given to demonstrate the practicality and effectiveness of the proposed

method. The comparative study of the proposed method with existing methods is given in

Section 4.7. In Section 4.8, the advantages of the proposed method with existing methods are

given. Finally, we conclude this paper in Section 4.9.

4.2 Accuracy index

Let ÃI be an IFN with (α, β)-cut AI(α,β) = [AILα, A
I
Rα]∩ [AIL(β), A

I
R(β)]. Then the accuracy index

of ÃI is denoted by IA(ÃI) and is given by

IA(ÃI) =

∫ 1

0
(AILα + AIRα)dα +

∫ 1

0
(AIL(β) + AIR(β))dβ

2
.

Theorem 4.2.1. The accuracy index IA of an IFN is a linear function.

Proof. Let ÃI1 and ÃI2 be two IFNs with (α, β)−cuts AI1(α,β) = [AI1Lα, A
I
1Rα]∩ [AI1L(β), A

I
1R(β)] and

AI2(α,β) = [AI2Lα, A
I
2Rα] ∩ [AI2L(β), A

I
2R(β)] respectively. We have the following four cases:

Case 1. λ1, λ2 ≥ 0. λ1Ã
I
1⊕λ2Ã

I
2 is an IFN with (α, β)−cut [λ1A

I
1Lα+λ2A

I
2Lα, λ1A

I
1Rα+λ2A

I
2Rα]∩

[λ1A
I
1L(β) + λ2A

I
2L(β), λ1A

I
1R(β) + λ2A

I
2R(β)]. Therefore,

IA(λ1Ã
I
1 ⊕ λ2Ã

I
2) =

∫ 1
0 (λ1AI1Lα+λ2AI2Lα+λ1AI1Rα+λ2AI2Rα)dα+

∫ 1
0 (λ1AI1L(β)

+λ2AI2L(β)
+λ1AI1R(β)

+λ2AI2R(β)
)dβ

2

=λ1

∫ 1
0 (AI1Lα+AI1Rα)dα+

∫ 1
0 (AI

1L(β)
+AI

1R(β)
)dβ

2
+ λ2

∫ 1
0 (AI2Lα+AI2Rα)dα+

∫ 1
0 (AI

2L(β)
+AI

2R(β)
)dβ

2

=λ1IA(ÃI1) + λ2IA(ÃI2).

Case 2. λ1 ≤ 0, λ2 ≥ 0. λ1Ã
I
1⊕ λ2Ã

I
2 is an IFN with (α, β)−cut is [λ1A

I
1Rα + λ2A

I
2Lα, λ1A

I
1Lα +

λ2A
I
2Rα] ∩ [λ1A

I
1R(β) + λ2A

I
2L(β), λ1A

I
1L(β) + λ2A

I
2R(β)]. Therefore,

IA(λ1Ã
I
1 ⊕ λ2Ã

I
2) =

∫ 1
0 (λ1AI1Lα+λ2AI2Lα+λ1AI1Rα+λ2AI2Rα)dα+

∫ 1
0 (λ1AI1L(β)

+λ2AI2L(β)
+λ1AI1R(β)

+λ2AI2R(β)
)dβ

2

=λ1

∫ 1
0 (AI1Lα+AI1Rα)dα+

∫ 1
0 (AI

1L(β)
+AI

1R(β)
)dβ

2
+ λ2

∫ 1
0 (AI2Lα+AI2Rα)dα+

∫ 1
0 (AI

2L(β)
+AI

2R(β)
)dβ

2

=λ1IA(ÃI1) + λ2IA(ÃI2).
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Case 3. λ1 ≥ 0, λ2 ≤ 0. λ1Ã
I
1 ⊕ λ2Ã

I
2 is an IFN with (α, β)−cut is [λ1A

I
1Lα + λ2A

I
2Rα, λ1A

I
1Rα +

λ2A
I
2Lα] ∩ [λ1A

I
1L(β) + λ2A

I
2R(β), λ1A

I
1R(β) + λ2A

I
2L(β)]. Therefore,

IA(λ1Ã
I
1 ⊕ λ2Ã

I
2) =

∫ 1
0 (λ1AI1Lα+λ2AI2Lα+λ1AI1Rα+λ2AI2Rα)dα+

∫ 1
0 (λ1AI1L(β)

+λ2AI2L(β)
+λ1AI1R(β)

+λ2AI2R(β)
)dβ

2

=λ1

∫ 1
0 (AI1Lα+AI1Rα)dα+

∫ 1
0 (AI

1L(β)
+AI

1R(β)
)dβ

2
+ λ2

∫ 1
0 (AI2Lα+AI2Rα)dα+

∫ 1
0 (AI

2L(β)
+AI

2R(β)
)dβ

2

=λ1IA(ÃI1) + λ2IA(ÃI2).

Case 4. λ1 ≤ 0, λ2 ≤ 0. λ1Ã
I
1 ⊕ λ2Ã

I
2 is an IFN with (α, β)−cut is [λ1A

I
1Rα + λ2A

I
2Rα, λ1A

I
1Lα +

λ2A
I
2Lα] ∩ [λ1A

I
1R(β) + λ2A

I
2R(β), λ1A

I
1L(β) + λ2A

I
2L(β)]. Therefore,

A(λ1Ã
I
1 ⊕ λ2Ã

I
2) =

∫ 1
0 (λ1AI1Lα+λ2AI2Lα+λ1AI1Rα+λ2AI2Rα)dα+

∫ 1
0 (λ1AI1L(β)

+λ2AI2L(β)
+λ1AI1R(β)

+λ2AI2R(β)
)dβ

2

=λ1

∫ 1
0 (AI1Lα+AI1Rα)dα+

∫ 1
0 (AI

1L(β)
+AI

1R(β)
)dβ

2
+ λ2

∫ 1
0 (AI2Lα+AI2Rα)dα+

∫ 1
0 (AI

2L(β)
+AI

2R(β)
)dβ

2

=λ1IA(ÃI1) + λ2IA(ÃI2).

From Cases 1, 2, 3 and 4, we conclude that ∀λ1, λ2 ∈ R,

IA(λ1Ã
I
1 ⊕ λ2Ã

I
2) = λ1IA(ÃI1) + λ2IA(ÃI2)

Therefore, A is a linear function.

Definition 4.2.2. Let ÃI1 and ÃI2 be two IFNs. Then

1. ÃI1 is defined as less than ÃI2 and is written as ÃI1 ≺ ÃI2 if IA(ÃI1) < IA(ÃI2),

2. ÃI1 is defined as greater than ÃI2 and is written as ÃI1 � ÃI2 if IA(ÃI1) > IA(ÃI2),

3. ÃI1 is defined as equal to ÃI2 and is written as ÃI1 ≈ ÃI2 if IA(ÃI1) = IA(ÃI2).

Definition 4.2.3. A square IF matrix H̃I = (ãIij)n×n is called symmetric if

IA(ãIij) = IA(ãIji) ∀ i, j = 1, 2, . . . , n.

Geometrical interpretation of IFS

In Figure 4.1, an expert is represented by a point P having coordinates (µÃI (x), νÃI (x), πÃI (x))

and experts A and B having co-ordinates (1, 0, 0) and (0, 1, 0) represent full acceptance and

full rejection of an idea respectively. The experts placed on the line segment AB decide their

points of view; their hesitation degrees are equal to zero on the line segment AB, so each expert

is convinced to the extent µÃI (x) against νÃI (x), and µÃI (x) + νÃI (x) = 1; the line segment AB
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represents a FS. Expert C having co-ordinates (0, 0, 1) is absolutely hesitant, i.e., undecided -

he/she is the most open to the influence of the arguments presented. Triangular region ABO

(Figure 4.2) is an orthogonal projection of the tetrahedron OABC (Figure 4.1). An element of an

IFS has coordinates (µÃI (x), νÃI (x), πÃI (x)), therefore the most natural representation of an IFS

is a tetrahedron bounded by µÃI (x) = 0, νÃI (x) = 0, πÃI (x) = 0 and µÃI (x)+νÃI (x)+πÃI (x) =

1 ∀ x ∈ X. Hence, the tetrahedron OABC (Figure 4.1) represents an IFS.

Figure 4.1: A three-dimension representation of an
IFS ÃI .

Figure 4.2: An orthogonal projection of
an IFS ÃI .

Distance between two IFSs:

Definition 4.2.4. (1). ([167]) Let ÃI1 = {(xj, µÃI1(xj), νÃI1(xj)) : xj ∈ X} and ÃI2 = {(xj,
µÃI2(xj), νÃI2(xj)) : xj ∈ X} be two IFSs in X = {x1, . . . , xj, . . . , xn}. Then the distance

between ÃI1 and ÃI2 is denoted by d(ÃI1, Ã
I
2) and is defined by

d(ÃI1, Ã
I
2) =

1

2n

n∑
j=1

(|µÃI1(xj)− µÃI2(xj)|+ |νÃI1(xj)− νÃI2(xj)|+ |πÃI1(xj)− πÃI2(xj)|) (4.1)

(2). ([168]) A similarity measure of IFSs ÃI1 and ÃI2 is denoted by ϑ1(ÃI1, Ã
I
2) and is defined by

ϑ1(ÃI1, Ã
I
2) =

d(ÃI1, Ã
I
2)

d(ÃI1, Ã
′I
2 )

(4.2)

The above formula considers not only the distance between two IFSs but also reflects the

fact that the compared IFSs are more similar or more dissimilar. Xu and Yager [188] improved

([167], [168]) results and developed the following similarity measure:

ϑ2(ÃI1, Ã
I
2) = 1− d(ÃI1, Ã

I
2)

d(ÃI1, Ã
I
2) + d(ÃI1, Ã

′I
2 )

=
d(ÃI1, Ã

′I
2 )

d(ÃI1, Ã
I
2) + d(ÃI1, Ã

′I
2 )

(4.3)
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Atanassov [12, 14] established a way of transforming an IFS into an ordinary FS by introducing

an operator Dα with parameter α, where α ∈ [0, 1]. This operator is the Atanassov’s point

operator and is defined as follows:

Figure 4.3: A geometrical interpreta-
tion of Dα(ÃI) and µDα(x) + νDα(x) =
1, x ∈ X.

Figure 4.4: A geometrical interpretation of Fα(ÃI)
and µFα(x) + νFα(x) = 1, x ∈ X.

Definition 4.2.5. [12, 14] Let I and F be the sets of IFSs and FSs on X. Then for each x ∈ X
and parameter α ∈ [0, 1], Dα : I → F is defined by

Dα(ÃI) = ÃDα ∈ F ∀ ÃI ∈ I,

where ÃDα ∈ F is defined by the membership function µÃDα given by

µÃDα (x) = µÃI (x) + απÃI (x) ∀ x ∈ X.

Thus

Dα(ÃI) = {(x, µÃI (x) + απÃI (x)) : x ∈ X}, α ∈ [0, 1].

The geometrical interpretation of the FS Dα(ÃI), α ∈ [0, 1] is shown in Figure 4.3. This

figure shows that every IFS ÃI is mapped onto the diagonal of unit triangular disc through the

Atanassov’s point operator Dα, α ∈ [0, 1].

In addition, this study introduces a new point operator Fα to transform an IFS into FS with

parameter α, where α ∈ [0, 1] and is defined as follows:

Definition 4.2.6. Let I and F be the sets of IFSs and FSs on X. Then for each x ∈ X and

parameter α ∈ [0, 1], Fα : I → F is defined by

Fα(ÃI) = ÃFα ∈ F ∀ ÃI ∈ I,
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where ÃFα ∈ F is defined by the membership function µÃFα given by

µÃFα (x) = µÃI (x) +
α(1− d((µÃI (x), νÃI (x), πÃI (x)), (0, 0, 1)))

d((µÃI (x), νÃI (x), πÃI (x)), (1, 0, 0)) + d((µÃI (x), νÃI (x), πÃI (x)), (0, 1, 0))

= µÃI (x) +
α(1− 1

2
(|µ

ÃI
(x)−0|+|ν

ÃI
(x)−0|+|π

ÃI
(x)−1|))

1
2

(|µ
ÃI

(x)−1|+|ν
ÃI

(x)−0|+|π
ÃI

(x)−0|)+ 1
2

(|µ
ÃI

(x)−0|+|ν
ÃI

(x)−1|+|π
ÃI

(x)−0|)

= µÃI (x) +

(
απÃI (x)

1 + πÃI (x)

)
∀ x ∈ X.

Thus

ÃFα = Fα(ÃI) =

{(
x, µÃI (x) +

(
απÃI (x)

1 + πÃI (x)

))
: x ∈ X

}
, α ∈ [0, 1].

Figure 4.4 presents a convenient geometrical interpretation of the FS Fα(ÃI). This figure

shows that every IFS ÃI is mapped onto the diagonal of unit triangular disc through the point

operator Fα, α ∈ [0, 1]. This operator is called optimistic point operator because of the non-

decreasing degree of membership, and non-increasing degrees of non-membership and hesitation

simultaneously. The family of all FSs associated with ÃI by the operator Fα will be denoted by

{Fα(ÃI)}α∈[0,1]. Now we shall prove {Fα(ÃI)}α∈[0,1] is a totally ordered family of FSs.

Lemma 4.2.7. If α1 ≤ α2 with α1, α2 ∈ [0, 1], then Fα1(Ã
I) ⊆ Fα2(Ã

I).

Proof. Since µÃI (x), νÃI (x), πÃI (x) ∈ [0, 1] for all x ∈ X and α1 ≤ α2 with α1, α2 ∈ [0, 1], by

Definition 4.2.6, we have

µÃI (x) +

(
α1πÃI (x)

1 + πÃI (x)

)
≤ µÃI (x) +

(
α2πÃI (x)

1 + πÃI (x)

)
⇒ µFα1 (ÃI)(x) ≤ µFα2 (ÃI)(x) ∀ x ∈ X

⇒ Fα1(Ã
I) ⊆ Fα2(Ã

I).

Lemma 4.2.7 implies that the membership function of the FS Fα(ÃI) increases as the α-value

increases.
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4.3 Mathematical formulation of MOOP in IFE

A conventional crisp MOOP is given by

max φk(x; ck), k = 1, 2, . . . , K1,

min φk(x; ck), k = K1 + 1, K1 + 2, . . . , K,

subject to ψl(x; al) ≤ bl, l = 1, 2, . . . , L1,

ψl(x; al) ≥ bl, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; al) = bl, l = L2 + 1, L2 + 1, . . . , L,

x ≥ 0,

(4.4)

where φk(.; ck), k = 1, 2, . . . , K are real valued linear or quadratic convex functions, i.e., φk(x; ck) =∑n
i=1 c

i
kxi = cTk x or

∑n
j=1

∑n
i=1 c

ij
k xixj = xTHx, ck = [c1

k, c
2
k, . . . , c

n
k ]T and H = (cijk )n×n is real

valued symmetric positive semi-definite matrix; ψl(.; al), k = 1, 2, . . . , L are real valued linear

functions, i.e., φk(x; al) =
∑n

i=1 a
i
lxi = aTl x and x is n-tuple decision vector x = [x1, x2, ..., xn]T .

Definition 4.3.1. Let Ω be the set of all feasible solutions of Problem (4.4). Then x∗ ∈ Ω is

said to be the efficient solution if there is no x ∈ Ω s.t. φk(x; ck) ≥ φk(x
∗; ck), k = 1, 2, . . . , K1

and φk(x; ck) > φk(x
∗; ck) for at least one k ∈ {1, 2, . . . , K1}; and φk(x; ck) ≤ φk(x

∗; ck), k =

K1 + 1, K1 + 2, . . . , K and φk(x; ck) < φk(x
∗; ck) for at least one k ∈ {K1 + 1, K1 + 2, . . . , K}.

Definition 4.3.2. An x̄ ∈ Ω is said to dominate x ∈ Ω if φk(x̄; ck) ≥ φk(x; ck), k = 1, 2, . . . , K1

and φk(x̄; ck) > φk(x; ck) for at least one k ∈ {1, 2, . . . , K1}; and φk(x̄; ck) ≤ φk(x; ck), k =

K1 + 1, K1 + 2, . . . , K and φk(x; ck) < φk(x
∗; ck) for at least one k ∈ {K1 + 1, K1 + 2, . . . , K}.

In a crisp MOOP, the objective functions as well as constraints data are certain. But in

most of the real world practical problems such as transportation, production, planning etc. the

objective functions as well as constraints data or information are mostly vague/imprecise and

hesitant in nature. For dealing with such a problem, we use IFS concept. An intuitionistic fuzzy

MOOP (IFMOOP) is given below:

max φ̃Ik(x; c̃Ik), k = 1, 2, . . . , K1,

min φ̃Ik(x; c̃Ik), k = K1 + 1, K1 + 2, . . . , K,

subject to ψ̃Il (x; ãIl ) � b̃Il , l = 1, 2, . . . , L1,

ψ̃Il (x; ãIl ) � b̃Il , l = L1 + 1, L1 + 2, . . . , L2,

ψ̃Il (x; ãIl ) ≈ b̃Il , l = L2 + 1, L2 + 2, . . . , L,

x ≥ 0,

(4.5)
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where φ̃Ik(.; c̃
I
k), k = 1, 2, . . . , K are IF functions and of the form φ̃Ik(x; c̃Ik) = (c̃Ik)

Tx, or xT H̃Ix,

ck = [(c̃Ik)
1, (c̃Ik)

2, . . . , (c̃Ik)
n]T and H̃I = ((c̃Ik)

ij)n×n is symmetric positive semi-definite matrix in

IFE (see Definition 4.2.3); ψ̃Il (.; ã
I
k), k = 1, 2, . . . , L are IF functions and of the form ψ̃Il (x; ãIk) =

(ãIl )
Tx and x is n-tuple decision vector x = [x1, x2, ..., xn]T .

Using the accuracy index IA, Problem (4.5) is transformed to the following crisp MOOP:

max φk(x; IA(c̃Ik)), k = 1, 2, . . . , K1,

min φk(x; IA(c̃Ik)), k = K1 + 1, K1 + 2, . . . , K,

subject to ψl(x; IA(ãIl )) ≤ A(b̃Il ), l = 1, 2, . . . , L1,

ψl(x; IA(ãIl )) ≥ A(b̃Il ), l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; IA(ãIl )) = A(b̃Il ), l = L2 + 1, L2 + 2, . . . , L,

x ≥ 0.

(4.6)

Let c′k = IA(c̃Ik), k = 1, 2, . . . , K; a′l = IA(ãIl ), l = 1, 2, . . . , L and b′l = IA(b̃Il ), l = 1, 2, . . . , L.

Then Problem (4.6) becomes

max φk(x; c′k), k = 1, 2, . . . , K1,

min φk(x; c′k), k = K1 + 1, K1 + 2, . . . , K,

subject to ψl(x; a′l) ≤ b′l, l = 1, 2, . . . , L1,

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, . . . , L,

x ≥ 0.

(4.7)

Theorem 4.3.3. An efficient solution x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T of Problem (4.7) is also an efficient

solution of Problem (4.5).

Proof. Since x∗ = [x∗1, x
∗
2, ..., x

∗
n]T is an efficient solution of Problem (4.7), x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T

is also its feasible solution, i.e.,

ψl(x
∗; a′l) ≤ b′l, l = 1, 2, . . . , L1,

ψl(x
∗; a′l) ≥ b′l, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x
∗; a′l) = b′l, l = L2 + 1, L2 + 2, . . . , L,

x ≥ 0,

(4.8)
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i.e.,

ψ̃Il (x
∗; IA(ãIl )) ≤ A(b̃Il ), l = 1, 2, . . . , L1,

ψ̃Il (x
∗; IA(ãIl )) ≥ A(b̃Il ), l = L1 + 1, L1 + 2, . . . , L2,

ψ̃Il (x
∗; IA(ãIl )) = A(b̃Il ), l = L2 + 1, L2 + 2, . . . , L,

x∗ ≥ 0,

(4.9)

Since IA is linear,

ψ̃Il (x
∗; ãIl ) � b̃Il , l = 1, 2, . . . , L1,

ψ̃Il (x
∗; ãIl ) � b̃Il , l = L1 + 1, L1 + 2, . . . , L2,

ψ̃Il (x
∗; ãIl ) ≈ b̃Il , l = L2 + 1, L2 + 2, . . . , L,

x∗ ≥ 0,

(4.10)

which implies that x∗ is a feasible solution of Problem (4.5).

Next, since x∗ is an efficient for Problem (4.7), @ any x = [x1, x2, . . . , xn]T s.t. φk(x; c′k) ≥
φk(x

∗; c′k), k = 1, 2, . . . , K1 and φk(x; c′k) > φk(x
∗; c′k) for at least one k ∈ {1, 2, . . . , K1}; and

φk(x; c′k) ≤ φk(x
∗; c′k), k = K1 + 1, K1 + 2, . . . , K and φk(x; c′k) < φk(x

∗; c′k) for at least one

k ∈ {K1 + 1, K1 + 2, . . . , K}. We have no x s.t. φ̃Ik(x; IA(c̃Ik)) ≥ φ̃Ik(x
∗; IA(c̃Ik)), k = 1, 2, . . . , K1

and φ̃Ik(x; IA(c̃Ik)) > φ̃Ik(x
∗; IA(c̃Ik)) for at least one k ∈ {1, 2, . . . , K1}; and φ̃Ik(x; IA(c̃Ik)) ≤

φ̃Ik(x
∗; IA(c̃Ik)), k = K1 + 1, K1 + 2, . . . , K and φ̃Ik(x; IA(c̃Ik)) < φ̃Ik(x

∗; IA(c̃Ik)) for at least one

k ∈ {K1 + 1, K1 + 2, . . . , K}. Since IA is linear, we have no x s.t. φ̃Ik(x; c̃Ik) ≥ φ̃Ik(x
∗; c̃Ik), k =

1, 2, . . . , K1 and φ̃Ik(x; c̃Ik) > φ̃Ik(x
∗; c̃Ik) for at least one k ∈ {1, 2, . . . , K1}; and φ̃Ik(x; IA(ck)) ≤

φ̃Ik(x
∗; IA(ck)), k = K1 + 1, K1 + 2, . . . , K and φ̃Ik(x; c̃Ik) < φ̃Ik(x

∗; c̃Ik) for at least one k ∈ {K1 +

1, K1 + 2, . . . , K}.
Hence x∗ is an efficient solution of Problem (4.5).

4.4 Existing models for finding an optimal solution of

the MOOP in IFE

Several papers in the literature have concentrated on developing programming models for de-

termining an IF efficient compromise solution to the MOOPs.

As the most pioneering attempt, Angelov [8] proposed a model to achieve this purpose. The
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model proposed by Angelov [8] is defined as follows:

max (λ− λ′),

subject to µUk(φk(x; c′k)) ≥ λ, k = 1, 2, . . . , K1,

νUk(φk(x; c′k)) ≤ λ′, k = 1, 2, . . . , K1,

µLk(φk(x; c′k)) ≥ λ, k = K1 + 1, K1 + 2, . . . , K,

νLk(φk(x; c′k)) ≤ λ′, k = K1 + 1, K1 + 2, . . . , K,

ψl(x; a′l) ≤ b′l, l = 1, 2, . . . , L1,

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, . . . , L,

0 ≤ λ′ ≤ λ, λ+ λ′ ≤ 1,

x ≥ 0.

(4.11)

The model presented in (4.11) is based on a straightforward extension of the model given by

Bellman and Zadeh [31] in fuzzy environment. This model associates a value function

fD̃I (x) = µD̃I (x)− νD̃I (x) (4.12)

with each decision D̃I = {< x, µ
D̃I

(x), ν
D̃I

(x) >: x ∈ X}. Then it obtains an IF efficient

solution x∗ ∈ X in a way such that fD̃I (x
∗) = max

x∈X
{fD̃I (x)}. Yager [189] pointed out the

drawback of the value function fD̃I (x) used in model (4.11). Consider two alternatives x and

y, where µD̃I (x) = 0.48, νD̃I (x) = 0.50, µD̃I (y) = 0.1 and νD̃I (y) = 0. Using the value function

fD̃I (x), we get fD̃I (x) = −0.02 and fD̃I (y) = 0.1. So the alternative y would be selected over the

alternative x. In this case, the membership degree of the alternative y is 0.1 and the hesitation

degree about this alternative is 0.9; while the membership degree of the alternative x is 0.48

and Yager [189] provides an alternative approach that overcomes such a difficulty. The value

function proposed by Yager [189] is defined as follows:

gD̃I (x) = µD̃I (x) + απD̃I (x) (4.13)

where α ∈ [0, 1] is the fuzzification parameter. A large value for the fuzzification parameter α

results in resolving hesitancy in favor of membership degree. On the contrary, a small value for

the fuzzification parameter α results in resolving hesitancy in favor of non-membership degree.

When α = 1/2, the same degree of emphasis is placed on the membership and non-membership

degrees.

Motivated by the approach proposed by Yager [189] and Dubey et al. [66] defined another

programming model for determining an IF efficient compromise solution to MOOPs. The model
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proposed by Dubey et al. [66] and Rani et al. [153] is given as follows:

max λ,

subject to (gω)Uk1(φk(x; c′k)) +MδUk ≥ λ, k = 1, 2, . . . , K1,

(gω)Uk2(φk(x; c′k)) +M(1− δUk) ≥ λ, k = 1, 2, . . . , K1,

(gω)Lk1(φk(x; c′k)) +MδLk ≥ λ, k = K1 + 1, K1 + 2, . . . , K,

(gω)Lk2(φk(x; c′k)) +M(1− δLk) ≥ λ, k = K1 + 1, K1 + 2, . . . , K,

ψl(x; a′l) ≤ b′l, l = 1, 2, . . . , L1,

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, . . . , L,

0 ≤ λ ≤ 1, 0 ≤ δLk ≤ δUk ≤ 1,

x ≥ 0,

(4.14)

where

(gω)Uk(φk(x; c′k)) = µUk(φk(x; c′k)) + απUk(φk(x; c′k)), k = 1, 2, . . . , K1 (4.15)

(gω)Lk(φk(x; c′k)) = µLk(φk(x; c′k)) + απLk(φk(x; c′k)), k = K1 + 1, K1 + 2, . . . , K (4.16)

0 ≤ α ≤ 1, M is a large positive value, (gω)Uk1(φk(x; c′k)) and (gω)Uk2(φk(x; c′k)) denote the

segments of the membership function (gω)Uk(φk(x; c′k)) ) in descending order of the related

sub-domains, (gω)Lk1(φk(x; c′k)) and (gω)Lk2(φk(x; c′k)) denote the segments of the membership

function (gω)Lk(φk(x; c′k)) ) in ascending order of the related sub-domains.

This model associates the value function given (4.13). Then it obtains an IF efficient solution

x∗ ∈ X in a way such that gD̃I (x
∗) = max

x∈X
{gD̃I (x)}. We find the drawback of the value function

gD̃I (x) for determining an IF efficient compromise solution to MOOPs as explained below.

Consider two alternatives x and y, where µD̃I (x) = 0.4, νD̃I (x) = 0.3, µD̃I (y) = 0.6, νD̃I (y) =

0.35 and α = 1. Using the value function gD̃I (x), we get gD̃I (x) = 0.7 and gD̃I (y) = 0.65. So the

alternative x would be selected over the alternative y. In this case, the membership degree of

alternative x is 0.4 and the hesitation degree about this alternative is 0.3; while the membership

degree of alternative y is 0.6 and we propose an alternative approach that overcomes such a

difficulty. The value function proposed is defined as follows

hD̃I (x) = µ
D̃I

(x) +

(
απ

D̃I
(x)

(1 + π
D̃I

(x))

)
(4.17)

where α ∈ [0, 1] is a fuzzification parameter. When the membership function and parameter α

increase while the nonmembership function decreases, then hD̃I (x) attains maximum value and

in that situation results in resolving hesitancy in favor of membership degree.
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Lemma 4.4.1. If the parameter α ∈ (0, 1] increases, then the value function h also increases.

Proof. The same as Lemma 4.2.7.

Lemma 4.4.2. The value function defined in (4.17) always lies in [0, 1] for every parameter

α ∈ (0, 1].

Proof. Let D̃I = {< x, µD̃I (x), νD̃I (x) >: x ∈ X} be IFS. Then

0 ≤ µD̃I (x), νD̃I (x) ≤ 1 and 0 ≤ µD̃I (x) + νD̃I (x) ≤ 1 ∀ x ∈ X.

For every α ∈ (0, 1] and x ∈ X, we have

0 ≤ απD̃I (x) ≤ (1− µD̃I (x)) (4.18)

0 ≤ µD̃I (x)πD̃I (x) ≤ πD̃I (x) (4.19)

From (4.18) and (4.19), we have

0 ≤ µD̃I (x)πD̃I (x) + απD̃I (x) ≤ πD̃I (x) + (1− µD̃I (x))

⇒ 0 ≤ µD̃I (x)(1 + πD̃I (x)) + απD̃I (x) ≤ (1 + πD̃I (x))

⇒ 0 ≤ µD̃I (x) +
απD̃I (x)

(1 + πD̃I (x))
≤ 1

⇒ 0 ≤ hD̃I (x) ≤ 1, ∀ x ∈ X. (4.20)

(4.20) shows that the value function defined in (4.17) for any IFS and any arbitrary α ∈ [0, 1]

lies in [0, 1].

Theorem 4.4.3. The IFS which has the larger membership degree and the smaller non-membership

degree should be given priority on the basis of value function h.

Proof. Let ÃI1 = {< x, µÃI1(x), νÃI1(x) >: x ∈ X} and ÃI2 = {< x, µÃI2(x), νÃI2(x) >: x ∈ X} be

two IFSs s.t. µÃI1(x) > µÃI2(x) and νÃI1(x) < νÃI2(x) for each x ∈ X. Then by (4.7), we have

hÃI1(x) = µÃI1(x) +
απÃI1(x)(x)

(1 + πÃI1(x))
and hÃI2(x) = µÃI2(x) +

απÃI2(x)

(1 + πÃI2(x))
∀ α ∈ (0, 1]

Let µÃI1(x)− µÃI2(x) = ∆1(x) and νÃI2(x)− νÃI1(x) = ∆2(x). Then we have

hÃI1(x) = µÃI1(x) +
α(1− µÃI1(x)− νÃI1(x))

(2− µÃI1(x)− νÃI1(x))
> µÃI1(x) +

α(1− µÃI1(x)− νÃI1(x))

(2− (µÃI1(x)−∆1(x))− νÃI1(x))

= µÃI1(x) +
α(1− µÃI1(x)− νÃI1(x))

(2− µÃI2(x)− νÃI1(x))
(4.21)
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hÃI2(x) = µÃI2(x) +
α(1− µÃI2(x)− νÃI2(x))

(2− µÃI2(x)− νÃI2(x))
= µÃI2(x) + α− α

(2− µÃI2(x)− νÃI2(x))

< µÃI2(x) + α− α

(2− µÃI2(x)− (νÃI2(x)−∆2(x)))
= µÃI2(x) + α− α

(2− µÃI2(x)− νÃI1(x))

= µÃI2(x) +
α(1− µÃI2(x)− νÃI1(x))

(2− µÃI2(x)− νÃI1(x))
< µÃI1(x) +

α(1− µÃI1(x)− νÃI1(x))

(2− µÃI2(x)− νÃI1(x))
(4.22)

From (4.18) and (4.22), we obtain

hÃI1(x) > µÃI1(x) +
α(1−µ

ÃI1
(x)−ν

ÃI1
(x))

(2−µ
ÃI2

(x)−ν
ÃI1

(x))
> hÃI2(x) (∵ µÃI1(x) > µÃI2(x), νÃI1(x) < νÃI2(x))

⇒ hÃI1(x) > hÃI2(x)

4.5 The proposed solution approach

In the literature, several authors solved IF MOOPs by using linear [139], S-shaped [66] and

parabolic ([163], [153] membership functions and utilized in a decision making process. These

membership functions are commonly used because of their simplicity. It is defined by fixing two

points, the upper and lower levels of acceptability of the decision variables. If general IFS theory

is considered, then such types of assumption is not justified always. Thus the justification in

the assumption is desirable according to fuzziness of the data. If the IFS theory is used to

model real decision making process and an assertion is made that the resulting models are the

real models, then some kinds of empirical justification for this assumption is necessary. From

this point of view, we have considered LR-type IFN for different approaches viz. optimistic,

pessimistic and mixed.

Let Lk be the aspiration level of achievement and Uk be the acceptable level of achievement for

the kth objective function φk, k = 1, 2, 3, . . . , K.

In order to find an efficient solution of an MOOP, different approaches such as optimistic,

pessimistic and mixed corresponding to objective functions have been taken. For each approach

and each objective, a membership and a non-membership functions have been constructed and

are described briefly as follows:

(i) Max objectives, (ii) Min objectives.

Case 1: Max objectives Firstly, consider K1 objectives φk(.; c
′
k); k = 1, . . . , K1 to be

maximized. The degree of DM’s satisfaction increases as each objective value approaches its

respective upper bound and he/she is fully satisfied if all the objectives assume their upper

bounds. But it is quite common that, practically, attaining of exact values of these upper

bounds is uncertain. Let qk > 0 be the respective tolerance for φk(.; c
′
k). For this, based on

the decision and judgement of the DM, the degrees of attainability and non-attainability of the
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upper bound Uk, have been interpreted in three different ways- the optimistic, pessimistic and

mixed approaches.

The optimistic approach:

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of

acceptance of x is zero, the DM do not reject fully. Then the membership function µUk and the

non-membership function νUk of the fuzzy goal assigned to the kth objective function φk(.; c
′
k)

in optimistic approach for maximization problem are of the following forms (see Figure 4.5)

µUk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk,

1, φk(x; c′k) ≥ Uk,

(4.23A)

and

νUk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk − qk,

R
(
φk(x;c′k)−(Lk−qk)

βk

)
, Lk − qk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.23B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Lk ≤ lk < rk ≤ Uk. We assume that µUk(lk) = δk and νUk(rk) = ηk (see Figure 7), where δk

and ηk are the real numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk + ηk < 1. Therefore,

αk and βk must fulfil the following relations:

αk =
Uk − lk
L−1(δk)

and βk =
rk − (Lk − qk)

R−1(ηk)
(4.23C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µUk and νUk are shown in Figure 4.5. From it, it is observed that there

is an interval (Lk − qk, lk) in which the membership degree of achieving the goal is zero but the

non-membership degree is not one.

The pessimistic approach:

In this approach, the DM is possibly ready for extra acceptance, i.e., if the degree of rejection

of x is zero, the DM is not ready to accept fully. Then the membership function µUk and the

non-membership function νUk of the fuzzy goal assigned to the kth objective function φk(.; c
′
k)
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Figure 4.5: Membership and non-
membership functions for maximizing
objective in optimistic approach.

Figure 4.6: Membership and non-
membership functions for maximizing
objective in pessimistic approach.

in pessimistic approach for maximization problem are of the following forms (see Figure 4.6)

µUk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk,

1, φk(x; c′k) ≥ Uk,

(4.24A)

and

νUk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk,

R
(
φk(x;c′k)−Lk

βk

)
, Lk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.24B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Lk ≤ lk < rk ≤ Lk + qk. We assume that µUk(lk) = δk and νUk(rk) = ηk (see Figure 8),

where δk and ηk are the real numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk + ηk < 1.

Therefore, αk and βk must fulfil the following relations:

αk =
Uk − lk
L−1(δk)

and βk =
rk − Lk
R−1(ηk)

, (4.24C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µUk and νUk are shown in Figure 4.6. From it, it is observed that there

is an interval (rk, Uk) in which the membership degree of achieving the goal is not one but the

non-membership degree is zero.

The mixed approach:

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Then

the membership function µUk and the non-membership function νUk of the fuzzy goal assigned
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Figure 4.7: Membership and non-
membership functions for maximizing
objective in mixed approach.

Figure 4.8: Membership and non-
membership functions for minimizing
objective in optimistic approach.

to the k-th objective function φk(.; c
′
k) in mixed approach for maximization problem are of the

following forms (see Figure 4.7)

µUk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk,

1, φk(x; c′k) ≥ Uk,

(4.25A)

and

νUk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk − qk,

R
(
φk(x;c′k)−(Lk−qk)

βk

)
, Lk − qk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.25B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Lk ≤ lk < rk ≤ Lk − qk + pk. We assume that µUk(lk) = δk and νUk(rk) = ηk (see Figure

9), where δk and ηk are the numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk + ηk < 1.

Therefore, αk and βk must fulfil the following relations:

αk =
Uk − lk
L−1(δk)

and βk =
rk − (Lk − qk)

R−1(ηk)
, (4.25C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µUk and νUk are shown in Figure 4.7.

Case 2: Min objectives Now, we consider the objectives φk(.; c
′
k); k = K1 + 1, . . . , K to

be minimized. The degree of DM’s satisfaction increases as each objective value approaches its

respective lower bound Lk and he/she is fully satisfied if all the objectives reach their lower

bounds. But it is quite common that, practically, attaining of the exact values of these upper

bounds is uncertain. Let pk > 0, qk > 0 be the respective tolerance for φk(.; c
′
k) such that
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qk < pk. For this, based on the decision and judgement of the DM, the degree of attainability

and non-attainability of Lk, respectively, have been interpreted in three different ways- the

optimistic, pessimistic and mixed approaches.

The optimistic approach:

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of

acceptance of x is zero, the DM do not reject fully. Then the membership function µLk and the

non-membership function νLk of the fuzzy goal assigned to the kth objective function φk(.; c
′
k)

in optimistic approach for minimization problem are of the following forms (see Figure 4.8)

µLk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk,

R
(
φk(x;c′k)−Lk

βk

)
, Lk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.26A)

and

νLk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk+qk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk + qk,

1, φk(x; c′k) ≥ Uk + qk,

(4.26B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Lk ≤ lk < rk ≤ Uk. We assume that µLk(lk) = δk and νLk(rk) = ηk (see Figure 10), where

δk and ηk are the real numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk+ηk < 1. Therefore,

αk and βk must fulfil the following relations:

αk =
Uk + qk − lk
L−1(δk)

and βk =
rk − Lk
R−1(ηk)

, (4.26C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µLk and νLk are shown in Figure 4.8. From it, it is observed that there

is an interval (rk, Uk + qk) in which the membership degree of achieving the goal is zero but the

non-membership degree is not one.

The pessimistic approach:

In this approach, the DM is possibly ready for extra acceptance, i.e., if the degree of rejection

of x is zero, the DM is not ready to accept fully. Then the membership function µLk and the

non-membership function νLk of the fuzzy goal assigned to the kth objective function φk(.; c
′
k)
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Figure 4.9: Membership and non-
membership functions for minimizing
objective in pessimistic approach.

Figure 4.10: Membership and non-
membership functions for minimizing ob-
jective in mixed approach.

in pessimistic approach for minimization problem are of the following forms (see Figure 4.9)

µLk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk,

R
(
φk(x;c′k)−Lk

βk

)
, Lk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.27A)

and

νLk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk,

1, φk(x; c′k) ≥ Uk,

(4.27B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Uk − qk ≤ lk < rk ≤ Uk. We assume that µLk(lk) = δk and νLk(rk) = ηk (see Figure 11),

where δk and ηk are the real numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk + ηk < 1.

Therefore, αk and βk must fulfil the following relations:

αk =
Uk − lk
L−1(δk)

and βk =
rk − Lk
R−1(ηk)

, (4.27C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µLk and νLk are shown in Figure 4.9. From it, it is observed that there

is an interval (Lk, lk) in which the membership degree of achieving the goal is not one but the

non-membership degree is zero.

The mixed approach:

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Then

the membership function µLk and the non-membership function νLk of the fuzzy goal assigned
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to the kth objective function φk(.; c
′
k) in mixed approach for minimization problem are of the

following forms (see Figure 4.10)

µLk(φk(x; c′k)) =


1, φk(x; c′k) ≤ Lk,

R
(
φk(x;c′k)−Lk

βk

)
, Lk ≤ φk(x; c′k) ≤ rk,

0, φk(x; c′k) > rk,

(4.28A)

and

νLk(φk(x; c′k)) =


0, φk(x; c′k) < lk,

L
(
Uk+qk−φk(x;c′k)

αk

)
, lk ≤ φk(x; c′k) ≤ Uk + qk,

1, φk(x; c′k) ≥ Uk + qk,

(4.28B)

where L and R are the reference functions. The values of lk and rk are the real numbers such

that Uk + qk − pk ≤ lk < rk ≤ Uk. We assume that µLk(lk) = δk and νLk(rk) = ηk (see Figure

12), where δk and ηk are the real numbers such that 0 ≤ δk < 1, 0 ≤ ηk < 1 and 0 ≤ δk+ηk < 1.

Therefore, αk and βk must fulfil the following relations:

αk =
Uk + qk − lk
L−1(δk)

and βk =
rk − Lk
R−1(ηk)

, (4.28C)

where L−1 and R−1 are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of µLk and νLk are shown in Figure 4.10.

Theorem 4.5.1. Let f : S→ R be a real valued function, where S ⊆ Rn is a convex set.

1. If f is a convex function over S, then {x ∈ S : f(x) ≤ c, c ∈ R} is a convex set.

2. If f is a concave function over S, then {x ∈ S : f(x) ≥ c, c ∈ R} is a convex set.

3. f is a quasi convex function over S iff the lower level set {x ∈ S : f(x) ≤ c, c ∈ R} is a

convex set.

4. f is a quasi concave function over S iff the upper level set {x ∈ S : f(x) ≥ c, c ∈ R} is a

convex set.

Remark 4.5.2. Obviously, if f is a convex function over S, then {x ∈ S : f(x) ≥ c, c ∈ R} is

not a convex set and if f is a concave function over S, then {x ∈ S : f(x) ≤ c, c ∈ R} is not

a convex set; if f is a quasi convex function over S, then {x ∈ S : f(x) ≥ c, c ∈ R} is not a

convex set and if f is a quasi concave function over S, then {x ∈ S : f(x) ≤ c, c ∈ R} is not a

convex set.
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Lemma 4.5.3. The function f(λ, λ′) = λ+α(1−λ−λ′)
2−λ−λ′ is a concave function for every λ, λ′ ∈ [0, 1],

λ+ λ′ ≤ 1, and α ∈ (0, 1].

Proof. For the proof of concavity of function f(λ, λ′), we have to show that the Hessian matrix

H of f(λ, λ′) is negative semi-definite. The Hessian matrix H of f(λ, λ′) is given by

Hf (λ, λ
′) =

−2α

(2− λ− λ′)3

(
1 1

1 1

)

which is negative semi-definite for every λ, λ′ ∈ [0, 1], λ + λ′ ≤ 1, and α ∈ (0, 1]. Hence, the

function f(λ, λ′) = λ + α(1−λ−λ′)
2−λ−λ′ is a concave function for every λ, λ′ ∈ [0, 1], λ + λ′ ≤ 1, and

α ∈ (0, 1].

Corollary 4.5.4. The sets {(λ, λ′) : λ + α(1−λ−λ′)
2−λ−λ′ ≥ η, λ + λ′ ≤ 1;λ, λ′ ≥ 0}, {φk(x; c′k) :

µUk(φk(x; c′k)) ≥ λ}, {φk(x; c′k) : µLk(φk(x; c′k)) ≥ λ}, {φk(x; c′k) : νUk(φk(x; c′k)) ≥ λ′} and

{φk(x; c′k) : νLk(φk(x; c′k)) ≥ λ′} are convex sets.

4.5.1 Auxiliary optimization problem

For solving Problem (4.7), we consider the following auxiliary optimization problem of Problem

(4.7):

max η,

subject to λ+
α(1− λ− λ′)

2− λ− λ′
≥ η,

µUk(φk(x; c′k)) ≥ λ, k = 1, 2, . . . , K1,

νUk(φk(x; c′k)) ≤ λ′, k = 1, 2, . . . , K1,

µLk(φk(x; c′k)) ≥ λ, k = K1 + 1, K1 + 2, . . . , K, (4.29)

νLk(φk(x; c′k)) ≤ λ′, k = K1 + 1, K1 + 2, . . . , K,

ψl(x; a′l) ≤ b′l, l = 1, 2, . . . , L1,

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, . . . , L,

0 ≤ λ′ ≤ λ, λ+ λ′ ≤ 1, 0 ≤ η ≤ 1

x ≥ 0,

Here, the meaning of the symbols in Problem (4.29) is given in Problem (4.7).

Since every crisp convex MOOP has unique efficient solution, Problem (4.29) has unique

efficient solution. Let us assume that x∗ is an efficient for Problem (4.7), i.e., @ any x =
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[x1, x2, . . . , xn]T s.t. φk(x; c′k) ≥ φk(x
∗; c′k), k = 1, 2, . . . , K1 and φk(x; c′k) > φk(x

∗; c′k) for at least

one k ∈ {1, 2, . . . , K1}; and φk(x; c′k) ≤ φk(x
∗; c′k), k = K1 + 1, K1 + 2, . . . , K and φk(x; c′k) <

φk(x
∗; c′k) for at least one k ∈ {K1 + 1, K1 + 2, . . . , K}.

Theorem 4.5.5. An optimal solution x∗ of Problem (4.29) is also an efficient solution for

Problem (4.7).

Proof. Let us assume that x∗ is not an efficient for Problem (4.7). Then ∃ an x = [x1, x2, . . . , xn]T

s.t. φk(x; c′k) ≥ φk(x
∗; c′k), k = 1, 2, . . . , K1 and φk(x; c′k) > φk(x

∗; c′k) for at least one k ∈
{1, 2, . . . , K1}; and φk(x; c′k) ≤ φk(x

∗; c′k), k = K1 + 1, K1 + 2, . . . , K and φk(x; c′k) < φk(x
∗; c′k)

for at least one k ∈ {K1 + 1, K1 + 2, . . . , K}.

Since the µUk and νUk are non-decreasing and non-increasing functions respectively with

the non-decreasing values of the corresponding objective φk(x; c′k); and µLk and νUk are non-

increasing and non-decreasing functions respectively with the non-decreasing values of the cor-

responding objective φk(x; c′k), we have µUk(φk(x; c′k)) ≥ µUk(φk(x
∗; c′k)) and νUk(φk(x; c′k)) ≤

νUk(φk(x
∗; c′k)) k = 1, 2, . . . , K1; and µLk(φk(x; c′k)) ≤ µLk(φk(x

∗; c′k)) and νLk(φk(x; c′k)) ≥
νLk(φk(x

∗; c′k)) k = K1 + 1, K2 + 2, . . . , K. Hence λ = min{µUk(φk(x; c′k)) : k = 1, 2, . . . , K1} ≥
min{µUk(φk(x∗; c′k)) : k = 1, 2, . . . , K1} = λ∗ (say) and λ′ = max{νUk(φk(x; c′k)) : k = 1, 2, . . . , K1} ≤
max{νUk(φk(x∗; c′k)) : k = 1, 2, . . . , K1} = λ∗ (say); and λ = min{µLk(φk(x; c′k)) : k =

K1 + 1, K2 + 2, . . . , K} ≤ min{µLk(φk(x∗; c′k)) : k = K1 + 1, K2 + 2, . . . , K} = λ∗ (say)

and λ′ = max{νLk(φk(x; c′k)) : k = K1 + 1, K2 + 2, . . . , K} ≥ max{νLk(φk(x∗; c′k)) : k =

K1 + 1, K2 + 2, . . . , K} = λ′∗ (say). This imply that η ≥ η∗ (Max) and η ≤ η∗ (Min), which is

contradict to the fact that x∗ is an optimal solution of Problem (4.29).

The overall solution can be summarized as follows:

Step 1. Model the IFMOOP (4.5) as the crisp MOOP (4.7) by using the accuracy index and

value function.

Step 2. Solve the single objective programming problem (SOPP) by considering one objective

function at a time and ignoring all others. Repeat the for all objective functions. Let

the optimal solutions obtained be X1, . . . , XK1 , . . . , XK respectively. Let X = {Xk, k =

1, . . . , K1, . . . , K}.

Step 3. Find the values of the objective functions φk(., c
′
k), k = 1, . . . , K1, . . . , K at each point

obtained in Step 2.
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Step 4. Find minimum and maximum values of each objective function over X. Let Lk be the

minimum and Uk be the maximum value of φk(., c
′
k) over X i.e., Lk = min{φk(x, c′k), x ∈

X} and Uk = max{φk(x, c′k), x ∈ X}.

Step 5. Construct the membership and non-membership functions for each objective functions

by using the techniques explained in (4.23) to (4.28) as per cases.

Step 6. Construct the auxiliary optimization problem as given in (4.29), and solve it for finding

the values of the decision variables and the levels of acceptance.

Step 7. The algorithm stops if the DM is satisfied with the obtained solution. Otherwise, the

key parameters, i.e., preferences of each objective function, the tolerances for each

objective etc. can be altered to meet the choice. The process is repeated until the DM

is satisfied with the obtained solutions.

4.6 Numerical example

A manufacturing factory produces three types of products A, B and C during a period (say

one month). Three types of resources R1, R2 and R3 are required to produce these products.

One unit of type A product needs around 3 units of R1, 2 units of R2 and 3 units of R3; One

unit of type B product needs around 4 units of R1, 3 units of R2 and 2 units of R3 and One

unit of type C product needs around 2 units of R1, 3 units of R2 and 3 units of R3. The

planned availabilities resource of R1 and R2 are around 320 and 350 units respectively with the

additional amount around 25 and 20 units in safety store for the emergency purpose which is

administrated by the General manager (GM). For better quality of the products at least amount

360 units approximately of resource R3 must be utilized with some allowed tolerance by the

managerial board. To reach the goals, assuming x1, x2 and x3 units are the planned production

quantities of A, B and C. The profit of selling each unit of products A, B and C are around

7, 10 and 8 rupees respectively and the estimated time requirements in producing each unit of

products A, B and C are around 3, 4 and 5 hours respectively. The GM wants to maximize

total profit and minimize total time requirement.

For better dealing with the uncertainties as well as hesitation of the problem, let us assume

that all the parameters of the problem are TIFNs. Then this problem can be formulated as
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follows:

max φ̃I1(x) = 7̃Ix1 + 1̃0
I
x2 + 8̃Ix3,

min φ̃I2(x) = 3̃Ix1 + 4̃Ix2 + 5̃Ix3,

subject to 3̃Ix1 + 2̃Ix2 + 3̃Ix3 ≤ ˜320
I
, (4.30)

4̃Ix1 + 3̃Ix2 + 2̃Ix3 ≤ ˜350
I
,

2̃Ix1 + 3̃Ix2 + 3̃Ix3 ≥ ˜360
I
,

x = (x1, x2, x3) ≥ 0,

We assume that all the estimated parameters taken by the manager are TIFNs. Let ˜320
I

=

(320, 320, 350; 320, 320, 355), ˜350
I

= (350, 350, 370; 350, 350, 375), ˜360
I

= (340, 360, 360; 340,

360, 360), 7̃I = (7, 7, 9; 6, 7, 10), 1̃0
I

= (9, 10, 11; 9, 10, 12), 8̃I = (7.5, 8, 8.5; 7, 8, 9), 2̃I = (1, 2,

3; 0.5, 2, 4), 3̃I = (2, 3, 4; 1.5, 3, 4), 4̃I = (3, 4, 5; 2, 4, 5), 5̃I = (4.5, 5, 6; 4, 5, 6.5).

Using accuracy index, Problem (4.30) is transformed into the following crisp MOOP.

max φ1(x) = 7.5x1 + 10.125x2 + 8x3,

min φ2(x) = 2.9375x1 + 3.8750x2 + 5.1250x3,

subject to 2.9375x1 + 2.0625x2 + 2.9375x3 ≤ 328.125, (4.31)

3.875x1 + 2.9375x2 + 2.0625x3 ≤ 355.625,

2.0625x1 + 2.9375x2 + 2.9375x3 ≥ 355,

x1, x2, x3 ≥ 0,

Solving the the LPPs by taking the Ist and 2nd objectives on using Mathematica 9.0, we get

the optimal solutions as X1 = (0, 84.09, 52.66), X2 = (0, 120.85, 0). The ideal and anti-ideal

values for each of the objectives are found to be L1 = 1223.62, U1 = 1272.69 and L2 = 468.30,

U2 = 595.73. The allowed tolerances given by the DM are p1 = 45, p2 = 90 and q1 = 35, q2 = 70.

Since φ1 is to be maximized and φ2 is to be minimized simultaneously, the MOOP (4.31) is solved

by using (4.29) with different approaches, viz., optimistic, pessimistic and mixed as follows:

The optimistic approach:

The MOOP (4.31) is solved using the reference functions L(x) = R(x) = max{0, 1− xt}, t > 0

and L(x) = R(x) = e−tx−e−t
1−e−t , t > 0 for different values of t with the help of Mathematica 9.0

software. The solutions for different values of t are given in Table 4.1. These solutions are

graphically shown in Figures 4.11 and 4.12.



121

Table 4.1: Optimistic approach solutions
L(x) = R(x) = 1− xt, t > 0, x ∈ [0, 1] L(x) = R(x) = e−tx−e−t

1−e−t , t > 0, x ∈ [0, 1]

t x1 x2 x3 φ1(x) φ2(x) η t x1 x2 x3 φ1(x) φ2(x) η
1 0 103.987 24.321 1247.440 527.595 0.862 1 0 103.073 25.6225 1248.59 530.723 0.8706
2 0 104.007 24.2941 1247.42 527.534 0.7 2 0 103.064 25.6307 1248.57 530.73 0.8461
3 0 104.284 23.9143 1247.19 526.661 0.7 3 0 103.061 25.6406 1248.62 530.769 0.8104
4 0 104.699 23.3315 1246.73 525.283 0.7 4 0 103.058 25.6452 1248.62 530.781 0.7774
5 0 106.149 21.269 1244.91 520.331 0.7 5 0 103.044 25.66 1248.60 530.803 0.7518

The pessimistic approach:

The MOOP (4.31) is solved using reference functions L(x) = R(x) = max{0, 1 − xt}, t > 0

and L(x) = R(x) = e−tx−e−t
1−e−t , t > 0 for different values of t with the help of Mathematica 9.0

software. The solutions for different values of t are given in Table 4.2. These solutions are

graphically shown in Figures 4.13 and 4.14.

Table 4.2: Pessimistic approach solutions
L(x) = R(x) = 1− xt, t > 0, x ∈ [0, 1] L(x) = R(x) = e−tx−e−t

1−e−t , t > 0, x ∈ [0, 1]

t x1 x2 x3 φ1(x) φ2(x) η t x1 x2 x3 φ1(x) φ2(x) η
1 0 100.55 29.2169 1251.8 539.368 0.9086 1 0 102.791 26.0246 1248.96 531.691 0.8831
2 0 100.55 29.2168 1251.8 539.367 0.8484 2 0 102.999 25.7288 1248.7 530.981 0.8527
3 0 100.55 29.2107 1251.75 539.336 0.7221 3 0 103.045 25.6629 1248.63 530.822 0.8144
4 0 100.678 29.063 1251.87 539.075 0.6999 4 0 103.254 25.4812 1249.3 530.7 0.7649
5 0 100.825 28.8828 1251.92 538.721 0.6999 5 0 103.4125 25.2453 1249.01 530.106 0.7397

The mixed approach:

The MOOP (4.31) is solved using the reference functions L(x) = R(x) = max{0, 1− xt}, t > 0

and L(x) = R(x) = e−tx−e−t
1−e−t , t > 0 for t = 2 with the help of Mathematica 9.0 software.

The solutions are x1 = 0, x2 = 103.052, x3 = 25.652, φ1 = 1248.770, φ2 = 530.655 when

L(x) = R(x) = max{0, 1 − xt}, t = 2, and x1 = 0, x2 = 103.054, x3 = 25.650, φ1 = 1248.622,

φ2 = 530.791, when L(x) = R(x) = e−tx−e−t
1−e−t , t = 2.

4.7 Comparative study

The above example is also solved with some other existing models like Zimmermann’s approach,

maximum additive operator and maximum product operator [203] by considering the nonlinear

membership and nonmembership functions for each of the objectives and constraints. The

comparison of the results obtained is given in Table 4.3.
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Figure 4.11: Graphical representation of
the solutions by optimistic approach when
L(x) = R(x) = max{0, 1 − xt}, t =
1, 2, 3, 4, 5.

Figure 4.12: Graphical representation of
the solutions by optimistic approach when
L(x) = R(x) = e−tx−e−t

1−e−t , t = 1, 2, 3, 4, 5.

Figure 4.13: Graphical representation of
the solutions by pessimistic approach when
L(x) = R(x) = max{0, 1 − xt}, t =
1, 2, 3, 4, 5.

Figure 4.14: Graphical representation of
the solutions by pessimistic approach when
L(x) = R(x) = e−tx−e−t

1−e−t , t = 1, 2, 3, 4, 5.
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Zimmemann’s approach:

max λ,

subject to µUk(φk(x)) ≥ λ, k = 1, 2, 3, . . . K1,

µLk(φk(x)) ≥ λ, k = K1 + 1, K1 + 2, K1 + 3, . . . , K,

ψl(x; a′l) ≤ b′l, l = 1, 2, 3, . . . , L1, (4.32)

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, L1 + 3, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, L2 + 3, . . . , L,

0 ≤ λ ≤ 1,

x ≥ 0.

Maximum additive operator:

max µUk(φk(x)) + µLk′ (φk′(x)), k = 1, 2, 3, . . . K1, k
′ = K1 + 1, K1 + 2, K1 + 3, . . . , K,

subject to 0 ≤ µUk(φk(x)) ≤ 1, k = 1, 2, 3, . . . K1,

0 ≤ µLk′ (φk′(x)) ≤ 1, k′ = K1 + 1, K1 + 2, K1 + 3, . . . , K,

0 ≤ µUk(φk(x)) + µLk′ (φk′(x)) ≤ 1, k = 1, 2, 3, . . . K1, k
′ = K1 + 1, K1 + 2,

K1 + 3, . . . , K,

ψl(x; a′l) ≤ b′l, l = 1, 2, 3, . . . , L1, (4.33)

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, L1 + 3, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, L2 + 3, . . . , L,

0 ≤ λ ≤ 1,

x ≥ 0.

Maximum product operator:

max (µUk(φk(x))) ∗ (µLk′ (φk′(x))), k = 1, 2, 3, . . . K1, k
′ = K1 + 1, K1 + 2,

K1 + 3, . . . , K,

subject to 0 ≤ µUk(φk(x)) ≤ 1, k = 1, 2, 3, . . . K1,

0 ≤ µLk′ (φk′(x)) ≤ 1, k′ = K1 + 1, K1 + 2, K1 + 3, . . . , K, (4.34)
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ψl(x; a′l) ≤ b′l, l = 1, 2, 3, . . . , L1,

ψl(x; a′l) ≥ b′l, l = L1 + 1, L1 + 2, L1 + 3, . . . , L2,

ψl(x; a′l) = b′l, l = L2 + 1, L2 + 2, L2 + 3, . . . , L,

0 ≤ λ ≤ 1,

x ≥ 0.

From Table 4.3, it is clear that the average of d1 and d2 values is minimum by the proposed

Table 4.3: Comparison table when L(x) = R(x) = max{0, 1− xt}, t = 2
Method φ1 φ2 Deviations from U1 (d1) Deviations from L2 (d2) Average of d1 and d2

Zimmermann’s Technique 1248.63 530.796 24.06 62.496 43.278
Maximum additive operator 1234.97 549.844 37.72 81.544 59.632
Maximum product operator 1248.36 530.069 24.33 61.769 43.0495
Proposed method 1247.42 527.534 25.27 59.234 42.252

method. Therefore, objective values obtained by the proposed method are better than those

obtained by the existing methods.

4.8 Advantages of the proposed method over the existing

methods

The advantages of the proposed method over existing methods ([9], [189], [66], [139], [163],

[153]) for solving IFMOOPs are summarized in Table 4.4.

4.9 Concluding remarks

In this chapter, we have developed an algorithm to solve the MOOP in IFE and illustrated the

same by solving a numerical problem. The membership and non-membership functions play

a vital role while designing a model in IFE. Most of the techniques in the existing literature

[9, 66, 139, 153, 163] are based on constructing the membership and non-membership functions

in which the lower and upper end points are fixed for the IF objectives/constraints. Moreover,

the membership and non-membership functions in which the lower and upper end points are also

fixed, do not deal with the mutual conflicting nature of the objectives and always do justice while

modeling a real-life decision model. So, the general membership and non-membership functions

governed by the reference functions are considered in this chapter from different viewpoints,
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Table 4.4: Advantages of the proposed method

Existing models Proposed model
1. Angelov [9] used a value function for
solving IFMOOPs which has draw backs as
pointed by Yager [189].

1. The proposed method proposes a new
value function for solving IFMOOPs which
is free from such draw backs.

2. Dubey et al. [66], Rani et al. [153] used
the value function proposed by Yager [189]
for solving IFMOOPs which has draw backs
as pointed by us (see Section 4).

2. The proposed method proposes a new
value function for solving IFMOOPs which
is free from such draw backs.

3. Singh and Yadav [163], Rani et al.
[153] have used only membership functions
for solving IFMOOPs; the nonmembership
functions are not used. But IF governed by
membership and nonmembership functions.

3. The proposed method has uses both the
membership and nonmembership functions
for solving IFMOOPs.

4. The methods developed by Angelov [9],
Dubey et al. [66], Nishad and Singh [139],
Rani et al. [153], Singh and Yadav [163] are
based on constructing the membership and
non-membership functions in which the lower
and upper end points are fixed for the IF
objectives or constraints. Also, then do not
deal with the mutual conflicting nature of the
objectives.

4. The proposed method defines the mem-
bership and non-membership functions gov-
erned by reference functions in which the
lower and upper end point are not fixed.
Also, they deal with the mutual conflicting
nature of the objectives.

viz., optimistic, pessimistic and mixed. The obtained results are found to be better and near

the ideal and anti-ideal values of each of the objectives.
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Chapter 5

Information measures in intuitionistic

fuzzy environment: analysis and some

relationships

This chapter considers some information measures, such as, normalized divergence measure,

similarity measure, dissimilarity measure and normalized distance measure in IFE, which mea-

sure the uncertainty and hesitancy, and which can be applied to the selection of alternatives

in group decision problems. We introduce and study the continuity of considered measures.

Next, we prove some results that can be used to generate measures for FSs as well as for IFSs

and we also prove some approaches to construct point measures from set measures in IFE. We

define the weight set for one and many preference orders of alternatives. After, we investigate

the properties and results related to the weight set. Based on the weight set, we develop the

model for finding the uncertain weights corresponding to attribute. Also, we develop the model

to finding positive certain weights corresponding to each attribute by using uncertain weights.

Finally, an algorithm for choosing the best alternative according to the preference orders of

alternatives in decision-making problems is proposed and its validity is shown with the help of

a numerical example.

5.1 Introduction

Most of the information present in the real-life is uncertain in nature. Generally, decision-maker

(DM) can not handle completely such complex information. Zadeh [194] introduced the concept

of FS theory to model uncertainty by assigning degree of association called the membership
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degree. Several authors have given different types of measures to deal the uncertain information

and have studied their theoretical properties and also established the interrelationship between

them [38, 48, 53, 72, 93, 114, 195, 198]. There are several kinds of information which contain

uncertainty as well as vagueness. Such information can not be modeled by FS theory. For

such situation, Atannasov [11] gave the concept of IFS which handle the uncertainty as well as

hesitation by assigning degrees known as membership degree and non-membership degree. If

the sum of membership and non-membership degrees at each point of the universe is one, then

the IFS becomes FS. If the sum of membership and non-membership degrees at each point of the

universe lies in (0, 1), then the IFS is called pure IFS. Atanassov [13] has also given the operations

on IFSs and their analysis. During last decades, IFS theory played an important role in modeling

uncertain and vague systems, received much attention from the researchers and meaningful

results were obtained in the field of decision-making problems [138], pattern recognition [54, 143]

to name a few. Decision making is one of the popular branches of Operations Research in which

the problem to choose the best alternative from the given set of feasible alternatives is considered.

There exist several processes in literature but there are mainly four stages required to choose

the best alternative: (i) Evaluate the set of feasible alternatives from given information. (ii)

Determine the weight vector corresponding to alternatives or attributes which depend on DM.

(iii) Aggregate alternatives by taking weight vector given by DM. (iv) Rank the alternatives in

order of preference and select the best one.

There are several information measures in IFE, such as divergences measures, similarity

measures, dissimilarity measures, and distance measures. They model uncertain and vague

information. The inclusion between two IFSs can be measured by the concept of inclusion mea-

sure [79] and the commonality between two IFSs can be measured by the concept of similarity

measure [95, 96]. Also, new similarity measures are constructed and used in pattern recognition

[54]. Moreover, several authors established the relationship between point similarity measures

and similarity measures [41, 97, 115]. The concept of distance measure in IFE and different

types of distance measures are given in [167]. The concept of H-max distance measure of IFSs

is given in [138] and it is used in decision-making problems. Grzegorzewski [77] gave distances

and orderings in a family of IF numbers. The comparative analysis between similarity measures

and distance measures in IFE are discussed from a pattern recognition point of view [143] and

theoretical point of view [166]. The concept of divergence measures, local divergence measures

and the relationship between distance, similarity and divergence measures are given in [133] and

[134]. The monotonic similarity measures between IFSs and their relationship with entropy and

inclusion measures given by Deng et al. [52]. Das et al. [50] gave information measures in the
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IF framework and their relationships.

The motivation and our contributions are of three folds. In the first fold, we were inspired

by the papers [45, 110] in which the authors have calculated the similarity measure between

2-vague values, n-vague values, 2-vague sets and n-vague sets, and also applied these concepts

for behavior analysis in an organization. Based on the relations in [45] and [110], we have

given the concept of continuity of measures in IFE, and we have constructed the point measures

derived from measures of IFSs. Moreover, we have analyzed the continuity relationship between

them. Further, several results concerning the point measures derived from the set of all IFSs

measures and aggregation operator, and the relationship between IF-measures and fuzzy point

measures are given in the form of theorems (see Sections 5.2 and 5.3). In the second fold, we

were inspired by the papers [182, 183, 190, 191] in which the authors have given the concept

of additive multi-attribute value models based on the weight-set to satisfy preference orders

of alternatives and to determine the compromise weights for group decision-making. Based on

the concepts of these papers, we have modeled the mathematical programming problem for

finding uncertain attribute weights when one and many preferences of alternatives are given.

Also, we have given the new concept of weight set corresponding to one and many preferences

of alternatives, and have studied and analyzed the properties and results related to the weight

set. After, we have modeled the mathematical programming problem to find the uncertain

attribute weights (see Sections 5.4, 5.5, 5.6, 5.7). In the third fold, we were inspired by the

papers [144, 145] in which the authors have given the concept of choosing the best alternative

in decision making problems when the weights information are incomplete. Motivated by the

facts in [144] and [145], we have modeled mathematical programming problem for finding the

positive certain attribute weights with the help of uncertain attribute weights (Section 5.7).

Further, an algorithm for solving multi-attribute decision making (MADM) problems is given.

Also, a test example is given to demonstrate the practicality and effectiveness of the introduced

measures and the proposed algorithm (see Section 5.8).

The rest of the chapter is organized as follows. In Section 5.2, we introduce some neces-

sary basic definitions. Section 5.3 contains the notion of continuity of IF-measures and the

relationship between point measures and the set of measures in IFE. The core of the chapter

is presented in Sections 5.4, 5.5, 5.6 and 5.7 concerning the formulation of decision-making

problem, the structure of weight set of one preference and many preferences simultaneously,

determination of attribute weights for given preferences of alternatives. In Section 5.8, an algo-

rithm for solving MADM problems and a test example are given. The chapter ends with Section

5.9 containing some concluding remarks.
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5.2 Preliminaries

Let I denote the set of IFSs over X = {x1, . . . , xj, . . . , xn}.

5.2.1 IF-difference

Definition 5.2.1. [134] Let ÃI , B̃I and C̃I ∈ I. Then an operator − : I×I → I is defined as a

difference operator for IFSs, called IF-difference operator, if it satisfies the following properties:

(D1) ÃI − B̃I = φ if ÃI ⊆ B̃I ;

(D2) B̃I − ÃI ⊆ C̃I − ÃI if B̃I ⊆ C̃I .

ÃI − B̃I is called the IF difference of ÃI and B̃I . The following are other interesting properties

that IF-differences may satisfy:

(D’1) (ÃI ∩ C̃I)− (B̃I ∩ C̃I) ⊆ ÃI − B̃I .

(D’2) (ÃI ∪ C̃I)− (B̃I ∪ C̃I) ⊆ ÃI − B̃I .

(D’3) ÃI − B̃I = φ ⇒ ÃI ⊆ B̃I .

Example 5.2.2. [134] Consider the function − : I × I → I given by

ÃI − B̃I = {(x, µÃI−B̃I (x), νÃI−B̃I (x)) : x ∈ X},

where µÃI−B̃I (x) = max(0, µÃI (x)− µB̃I (x)) and νÃI−B̃I (x) = 1− µÃI−B̃I (x) if νÃI (x) > νB̃I (x)

or νÃI−B̃I (x) = min(1 + νÃI (x)− νB̃I (x), 1− µÃI−B̃I (x)) if νÃI (x) ≤ νB̃I (x). Then

(i) ÃI ⊆ B̃I ⇒ µÃI (x) ≤ µB̃I (x) and νÃI (x) ≥ νB̃I (x). This implies that µÃI−B̃I (x) = 0 and

νÃI−B̃I (x) = 1. Therefore, ÃI − B̃I = φ.

(ii) B̃I ⊆ C̃I ⇒ µB̃I (x) ≤ µC̃I (x) and νB̃I (x) ≥ νC̃I (x). This implies that µB̃I−ÃI (x) ≤
µC̃I−ÃI (x) and νB̃I−ÃI (x) ≥ νC̃I−ÃI (x). Therefore, B̃I − ÃI ⊆ C̃I − ÃI .

Thus, the function ‘-’ is an IF-difference.

5.2.2 IF Normalized Distance Measure

Definition 5.2.3. [166] An operator Nd : I ×I → [0, 1] is said to be an IF normalized distance

measure if the following conditions are satisfied for every pair of IFSs ÃI and B̃I :

(d1) Nd(Ã
I , B̃I) = Nd(B̃

I , ÃI),
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(d2) Nd(Ã
I , B̃I) = 0 iff ÃI = B̃I ,

(d3) Nd(Ã
I , Ã

′I) = 1 if ÃI is a crisp set,

(d4) ÃI ⊆ B̃I ⊆ C̃I ⇒ Nd(Ã
I , B̃I) ≤ Nd(Ã

I , C̃I), Nd(Ã
I , C̃I) ≥ Nd(B̃

I , C̃I).

For example, the normalized Hamming and Euclidean distances as defined below are nor-

malized distance measures:

The normalized Hamming and the normalized Euclidean distances between ÃI1 and ÃI2 are given

as follows:

• The normalized Hamming distance [167]:

H(ÃI1, Ã
I
2) =

1

2n

n∑
j=1

[
|µÃI1(xj)− µÃI2(xj)|+ |νÃI1(xj)− νÃI2(xj)|+ |πÃI1(xj)− πÃI2(xj)|

]
(5.1)

• The normalized Euclidean distance [167]:

E(ÃI1, Ã
I
2) =

[ 1

2n

n∑
j=1

(µÃI1(xj)− µÃI2(xj))
2 + (νÃI1(xj)− νÃI2(xj))

2 + (πÃI1(xj)− πÃI2(xj))
2
]1/2
(5.2)

Definition 5.2.4. The operator Nd defined on L × L satisfying conditions (d1)-(d4) is called

IF normalized point distance measure.

Remark 5.2.5. An IF normalized distance measure Nd can be seen as a normalized point

distance measure whenever X is a singleton, X = {x1}.

5.2.3 IF Similarity Measure

Definition 5.2.6. [166] An operator Sm : I × I → [0, 1] is said to be an IF similarity measure

if the following conditions are satisfied for every pair of IFSs ÃI and B̃I :

(SM1) Sm(ÃI , B̃I) = Sm(B̃I , ÃI),

(SM2) Sm(ÃI , B̃I) = 1 iff ÃI = B̃I ,

(SM3) Sm(ÃI , Ã′) = 0 if ÃI is a crisp set,

(SM4) ÃI ⊆ B̃I ⊆ C̃I ⇒ Sm(ÃI , C̃I) ≤ Sm(ÃI , B̃I), Sm(ÃI , C̃I) ≤ Sm(B̃I , C̃I).

For example, the measures as defined below are similarity measures:

The similarity measures between ÃI1 and ÃI2 are given as follows:
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• Similarity measure proposed by Hung and Yang [95]:

SHY (ÃI1, Ã
I
2) = 1− 1

n

n∑
j=1

(|µÃI1(xj)− µÃI2(xj)| ∨ |νÃI1(xj)− νÃI2(xj)|) (5.3)

• Similarity measure proposed by Chen [41]:

SC(ÃI1, Ã
I
2) = 1− 1

2n

n∑
j=1

(|(µÃI1(xj)− µÃI2(xj))− (νÃI1(xj)− νÃI2(xj))|) (5.4)

• Similarity measure proposed by Hong and Kim [97]:

SHK(ÃI1, Ã
I
2) = 1− 1

2n

n∑
j=1

(|(µÃI1(xj)− µÃI2(xj))|+ |(νÃI1(xj)− νÃI2(xj))|) (5.5)

Definition 5.2.7. The operator Sm defined on L × L satisfying conditions (SM1)-(SM4) is

called IF point similarity measure.

5.2.4 IF Inclusion Measure

In IFS theory, the degree to which IFS ÃI is included in IFS B̃I , denoted as Inc(Ã
I , B̃I), is

called an IF inclusion measure. Mathematically, it can be defined as follows:

Definition 5.2.8. [79] An operator Inc : I × I → [0, 1] is said to be an IF inclusion measure if

the following conditions are satisfied for every IFSs ÃI , B̃I and C̃I :

(IM1) Inc(X,φ) = 0,

(IM2) ÃI ⊆ B̃I ⇒ Inc(Ã
I , B̃I) = 1,

(IM3) ÃI ⊆ B̃I ⊆ C̃I ⇒ Inc(C̃
I , ÃI) ≤ min(Inc(B̃

I , ÃI), Inc(C̃
I , B̃I)).

Definition 5.2.9. The operator Inc defined on L×L satisfying conditions (IM1)-(IM3) is called

IF point inclusion measure.

5.2.5 IF Normalized Divergence Measure

Definition 5.2.10. [134] An operator ND : I × I → [0, 1] is said to be an IF normalized

divergence measure if the following conditions are satisfied for every pair of IFSs ÃI and B̃I :

(DM1) ND(ÃI , B̃I) = ND(B̃I , ÃI),

(DM2) ND(ÃI , ÃI) = 0,
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(DM3) ND(ÃI , Ã′) = 1 if ÃI is a crisp set,

(DM4) ND(ÃI ∩ C̃I , B̃I ∩ C̃I) ≤ ND(ÃI , B̃I) ∀ C̃I ∈ I,

(DM5) ND(ÃI ∪ C̃I , B̃I ∪ C̃I) ≤ ND(ÃI , B̃I) ∀ C̃I ∈ I.

Definition 5.2.11. The operator ND defined on L × L satisfying conditions (DM1)-(DM5) is

called IF normalized point divergence measure.

5.2.6 IF Dissimilarity Measure

Definition 5.2.12. [134] An operator ds : I × I → [0,∞) is said to be an IF dissimilarity

measure if the following conditions are satisfied for every pair of IFSs ÃI and B̃I :

(diss1) ds(Ã
I , B̃I) = ds(B̃

I , ÃI),

(diss2) ds(Ã
I , ÃI) = 0,

(diss3) ÃI ⊆ B̃I ⊆ C̃I ⇒ ds(Ã
I , C̃I) ≥ max(ds(Ã

I , B̃I), ds(B̃
I , C̃I)).

Definition 5.2.13. The operator ds defined on L × L satisfying conditions (diss1)-(diss3) is

called IF point dissimilarity measure.

Example 5.2.14 (IF-dissimilarity measures that are also IF normalized divergences [97]). The

IF dissimilarity measures between ÃI1 and ÃI2 are given by

• dsH(ÃI1, Ã
I
2) =

1

2n

n∑
j=1

(|µÃI1(xj)− µÃI2(xj)|+ |νÃI1(xj)− νÃI2(xj)|) (5.6)

• dsL(ÃI1, Ã
I
2) =

1

4n

n∑
j=1

(|(SÃI1(xj)− SÃI2(xj))|+ |(SÃI1(xj) + SÃI2(xj))|) (5.7)

where SÃI1(xj) = |µÃI1(xj)−νÃI1(xj)| and SÃI2(xj) = |µÃI2(xj)-νÃI2(xj)|. These IF-dissimilarity

measures are also IF normalized divergence measures.

5.3 Continuity property for the measures of information

In this section, we define the continuity for the information measure in IFE and investigate their

properties.

In R2, the well-known metrics, like, the Euclidean distance and the Hamming distance are

defined as follows.
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• The Euclidean distance between u = (u1, u2) and v = (v1, v2) in R2 is given by

dE(u, v) =
√

(u1 − v1)2 + (u2 − v2)2.

• The Hamming distance between u = (u1, u2) and v = (v1, v2) in R2 is given by

dH(u, v) = |u1 − v1|+ |u2 − v2|.

If we restrict these distances to L, then we obtain the metric space (L, dE), where dE is the

Euclidean distance on L, and the metric space (L, dH), where dH is the Hamming distance on

L. Denote, for any u ∈ L, uπ = 1 − u1 − u2. Szmidt and Kacprzyk [167] have defined two

distances on L based on the Euclidean and the Hamming distances, where also uπ is used.

• The dEL between u = (u1, u2) and v = (v1, v2) in L is given by

dE(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + (uπ − vπ)2.

• The dHL between u = (u1, u2) and v = (v1, v2) in L is given by

dH(u, v) = |u1 − v1|+ |u2 − v2|+ |uπ − vπ|.

Deschrijver et. al [59] proved that these distances are topologically equivalent.

Definition 5.3.1. Let d : L×L → [0, 1] be the Euclidean distance or the Hamming distance. A

function Γ : I×I → [0, 1] is continuous if for every ε > 0 ∃ δ > 0 such that for every ÃI1, Ã
I
2 ∈ I,

|Γ(ÃI1, B̃
I) − Γ(ÃI2, B̃

I)| < ε for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi),

νÃI2(xi))) < δ.

Theorem 5.3.2. Let p = (p1, p2) ∈ L and ÃIp = {(xi, µÃI (xi) = p1, νÃI (xi) = p2) : xi ∈ X} ∈ I.

Let Υ : I × I → [0, 1] be an IF normalized divergence measure, IF inclusion measure, IF

similarity measure, IF dissimilarity measure or IF normalized distance measure. Then the

function γ : L × L → [0, 1] defined by

γ(p, q) = Υ(ÃIp, Ã
I
q) ∀ p, q ∈ L and ÃIp, Ã

I
q ∈ I (5.8)

is an IF normalized point divergence measure, IF point inclusion measure, IF point similarity

measure, IF point dissimilarity measure or IF normalized point distance measure respectively.

Proof. Let us suppose that Υ : I × I → [0, 1] is the IF normalized divergence measure. Then

(i) Υ(ÃIp, Ã
I
q) = Υ(ÃIq , Ã

I
p) ⇒ γ(p, q) = γ(q, p),
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(ii) γ(p, q) = 0 ⇔ Υ(ÃIp, Ã
I
q) = 0 ⇔ ÃIp = ÃIq ⇔ p = q,

(iii) Suppose ÃIp is crisp set, i.e., ÃIp = ∅ or X. Then Υ(∅, X) = 1 ⇔ γ(0L , 1L) = 1,

(iv) γ(p ∧ r, q ∧ r) = Υ(ÃI=p∧r, Ã
I
=q∧r) ≤ Υ(ÃIp, Ã

I
q) = γ(p, q),

(v) γ(p ∨ r, q ∨ r) = Υ(ÃI=p∨r, Ã
I
=q∨r) ≤ Υ(ÃIp, Ã

I
q) = γ(p, q).

Thus, γ : L × L → [0, 1] is an IF normalized point divergence measure.

Similarly, if Υ : I×I → [0, 1] is an IF inclusion measure, IF similarity measure, IF dissimilarity

measure or IF normalized distance measure, then we can easily prove that γ : L × L → [0, 1]

is an IF point inclusion measure, IF point similarity measure, IF point dissimilarity measure or

IF normalized point distance measure respectively.

Theorem 5.3.3. Let γ be an IF normalized point divergence measure, IF point similarity mea-

sure, IF point dissimilarity measure or IF normalized point distance measure respectively ob-

tained from the corresponding IF measure as given in Theorem 5.3.2. Then Υ is continuous iff

γ is continuous.

Proof. (⇒) Suppose Υ is continuous. Then for every ε
2
> 0 ∃ δ > 0 such that for every ÃI1, Ã

I
2 ∈

I, |Υ(ÃI1, B̃
I)−Υ(ÃI2, B̃

I)| < ε
2

for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi),

νÃI2(xi))) < δ. Therefore, for δ thus obtained, let p′, q′ be such that max{d(p, p′), d(q, q′)} < δ.

Let us take ÃI1 = ÃIq , Ã
I
2 = ÃIq′ and B̃I = ÃIp′ . Then

max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) = d(q, q′) < δ

and therefore, from the continuity of Υ, it follows that

|γ(p′, q′)− γ(p′, q)| = |Υ(B̃I , ÃI1)−Υ(B̃I , ÃI2)| < ε

2

Similarly,

|γ(p′, q)− γ(p, q)| < ε

2

Therefore,

|γ(p′, q′)− γ(p, q)| ≤ |γ(p′, q′)− γ(p′, q)|+ |γ(p′, q)− γ(p, q)| < ε.

Thus, γ is continuous.

(⇐) Since γ is continuous, for every ε > 0 ∃ δ > 0 such that |γ(q, p′) − γ(q′, p′)| < ε

whenever d(q, q′) < δ. Let us put ÃI1 = ÃIq , Ã
I
2 = ÃIq′ and B̃I = ÃIp′ . Then for every

ÃI1, Ã
I
2 ∈ I, |Υ(ÃI1, B̃

I) − Υ(ÃI2, B̃
I)| = |γ(q, p′) − γ(q′, p′)| < ε for every B̃I ∈ I whenever

max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) < δ.
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Definition 5.3.4. (i) ((α, β)-cut of IFS) The (α, β)-cut of an IFS ÃI is denoted by A(α,β) and

is defined by

A(α,β) = {x ∈ X : µÃI (x) ≥ α, νÃI (x) ≤ β},

where (α, β) ∈ L.

(ii) The (α, β)-cut of the complement of IFS ÃI is denoted by A′(α,β) and is defined by

A′(α,β) = {x ∈ X : νÃI (x) ≥ α, µÃI (x) ≤ β},

where (α, β) ∈ L.

(iii) A new type of IFS, derived from (α, β)-cut of a Ã
′I , is denoted by (α,β)A

′
(α,β) and is defined

by

(α,β)A
′
(α,β)(x) =

(α, β), x ∈ A′(α,β);

0L , otherwise.

For simplicity, we denote (α, β) := α̂ ∈ L.

Decomposition Theorem: For every IFS ÃI ,

ÃI = ∪
α̂∈L

α̂A
′
α̂,

where α̂A
′
α̂ is defined by Definition 5.3.4 and ∪ denotes the standard IF union.

Proof. For each point x ∈ X, ÃI(x) = (µÃI (x), νÃI (x)) is an element of L. Then(
∪
α̂∈L

α̂A
′
α̂

)
(x) = inf

α∈[0,1]

(
sup

β∈[0,1−α]
α̂A
′
α̂(x)

)
= max

(
inf

α∈[0,1]

(
sup

β∈[0,µ
ÃI

(x))
α̂A
′
α̂(x)

)
,

inf
α∈[0,1]

(
sup

β∈[µ
ÃI

(x),1−α]
α̂A
′
α̂(x)

))
= inf

α∈[0,1]

(
sup

β∈[µ
ÃI

(x),1−α]
α̂A
′
α̂(x)

)
= max

(
inf

α∈[0,ν
ÃI

(x)]

(
sup

β∈[µ
ÃI

(x),1−α]
α̂A
′
α̂(x)

)
, inf
α∈(ν

ÃI
(x),1]

(
sup

β∈[µ
ÃI

(x),1−α]
α̂A
′
α̂(x)

))
= inf
α∈[0,ν

ÃI
(x)]

(
sup

β∈[µ
ÃI

(x),1−α]
α̂A
′
α̂(x)

)
= (µÃI (x), νÃI (x))

=ÃI(x).

Since the same argument is valid for each x ∈ X, the theorem is proved.

Theorem 5.3.5. Let Λ : I × I → [0, 1] be an IF normalized divergence measure, IF inclusion

measure, IF similarity measure, IF dissimilarity measure or IF normalized distance measure.

Then the function λ : L × L → [0, 1] defined by

λ(α̂, ˆ̈α) = Λ(α̂A
′
α̂, ˆ̈αA

′
ˆ̈α
) ∀ α̂, ˆ̈α ∈ L and α̂A

′
α̂, ˆ̈αA

′
ˆ̈α
∈ I (5.9)
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is an IF normalized point divergence measure, IF point inclusion measure, IF point similarity

measure, IF point dissimilarity measure or IF normalized point distance measure respectively.

Proof. Suppose Λ : I × I → [0, 1] is an IF normalized divergence measure. Then

(i) Λ(α̂A
′
α̂, ˆ̈αA

′
ˆ̈α
) = Λ( ˆ̈αA

′
ˆ̈α
, α̂A

′
α̂) ⇒ λ(α̂, ˆ̈α) = λ( ˆ̈α, α̂),

(ii) λ(α̂, ˆ̈α) = 0 ⇔ Λ(α̂A
′
α̂, ˆ̈αA

′
ˆ̈α
) = 0 ⇔ α̂A

′
α̂ = ˆ̈αA

′
ˆ̈α
⇔ α̂ = ˆ̈α,

(iii) Suppose α̂A
′
α̂ is crisp set, i.e., α̂A

′
α̂ = ∅ or X. Then Λ(∅, X) = 1 ⇔ λ(0L , 1L) = 1,

(iv) λ(α̂ ∧ ˆ̌α, ˆ̈α ∧ ˆ̌α) = Λ(α̂∧ ˆ̌αA
′
α̂∧ ˆ̌α

, ˆ̈α∧ ˆ̌αA
′
ˆ̈α∧ ˆ̌α

) ≤ Λ(α̂A
′
α̂, ˆ̈αA

′
ˆ̈α
) = λ(α̂, ˆ̈α),

(v) λ(α̂ ∨ ˆ̌α, ˆ̈α ∨ ˆ̌α) = Λ(α̂∨ ˆ̌αA
′
α̂∨ ˆ̌α

, ˆ̈α∨ ˆ̌αA
′
ˆ̈α∨ ˆ̌α

) ≤ Λ(α̂A
′
α̂, ˆ̈αA

′
ˆ̈α
) = λ(α̂, ˆ̈α).

Thus, λ : L × L → [0, 1] is an IF normalized point divergence measure.

Similarly, if Λ : I×I → [0, 1] is an IF-inclusion measure, IF-similarity measure, IF-dissimilarity

measure or IF normalized distance measure, then we can easily prove that λ : L × L → [0, 1]

is an IF point inclusion measure, IF point similarity measure, IF point dissimilarity measure or

IF normalized point distance measure respectively.

Theorem 5.3.6. Let λ be an IF normalized point divergence measure, IF point similarity mea-

sure, IF point dissimilarity measure or IF normalized point distance measure respectively ob-

tained from the corresponding IF measure as given in Theorem 5.3.5. Then Λ is continuous iff

λ is continuous.

Proof. (⇒) Suppose Λ is continuous. Then for every ε
2
> 0 ∃ δ > 0 such that for every ÃI1, Ã

I
2 ∈

I, |Λ(ÃI1, B̃
I)−Λ(ÃI2, B̃

I)| < ε
2

for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi),

νÃI2(xi))) < δ. Therefore, for δ thus obtained, let α̂′, ˆ̈α′ be such that max{d(α̂, α̂′), d( ˆ̈α, ˆ̈α′)} < δ.

Let us take ÃI1 = ˆ̈αA
′
ˆ̈α
, ÃI2 = ˆ̈α′A

′
ˆ̈α′

and B̃I = α̂′A
′
α̂′ . Then

max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) = d( ˆ̈α, ˆ̈α′) < δ

and therefore, from the continuity of Υ, it follows that

|λ(α̂′, ˆ̈α′)− λ(α̂′, ˆ̈α)| = |Λ(B̃I , ÃI1)− Λ(B̃I , ÃI2)| < ε

2

similarly,

|λ(α̂′, ˆ̈α)− λ(α̂, ˆ̈α)| < ε

2
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Therefore,

|λ(α̂′, ˆ̈α′)− λ(α̂, ˆ̈α)| ≤ |λ(α̂′, ˆ̈α′)− λ(α̂′, ˆ̈α)|+ |λ(α̂′, ˆ̈α)− λ(α̂, ˆ̈α)| < ε

Thus, λ is continuous.

(⇐) Since λ is continuous, for every ε > 0 ∃ δ > 0 such that |λ( ˆ̈α, α̂′)−λ( ˆ̈α′, α̂′)| < ε whenever

d( ˆ̈α, ˆ̈α′) < δ. Let us put ÃI1 = ˆ̈αA
′
ˆ̈α
, ÃI2 = ˆ̈α′A

′
ˆ̈α′

and B̃I = α̂′A
′
α̂′ . Then for every ÃI1, Ã

I
2 ∈ I,

|Λ(ÃI1, B̃
I)−Λ(ÃI2, B̃

I)| ≤ |λ( ˆ̈α, α̂′)- λ( ˆ̈α′, α̂′)| < ε for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi),

νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) < δ.

Definition 5.3.7. A function M : [0, 1]n → [0, 1] is called an aggregation operator if it satisfies

the following conditions:

(i) M(0, 0, . . . , 0) = 0;

(ii) M(1, 1, . . . , 1) = 1;

(iii) M is monotonic non-decreasing in each arguments.

An aggregation operator M : [0, 1]2 → [0, 1] is called a binary aggregation operator.

Example 5.3.8. [76] Let x1, x2, . . . , xn ∈ [0, 1]. Then

(i) the weighted arithmetic mean of x1, x2, . . . , xn is defined as∑n
i=1 wixi, where 0 ≤ wi ≤ 1,

∑n
i=1 wi = 1.

(ii) the weighted geometric mean of x1, x2, . . . , xn is defined as∏n
i=1 x

wi
i , where 0 ≤ wi ≤ 1,

∑n
i=1 wi = 1.

(iii) the gamma operator of x1, x2, . . . , xn is defined as

( n∏
i=1

xi
)1−γ(

1−
n∏
i=1

(1− xi)
)γ
, γ ∈ [0, 1].

Remark 5.3.9. ([48], [53], [114], [198]) Different considered information measures introduced

in this chapter for IFS were originally introduced for FSs, using the same axiomatic.

Proposition 5.3.10. Let ψ1, ψ2 be two normalized point divergence measures, point inclusion

measures, point similarity measures, point dissimilarity measures or normalized point divergence

measures for FSs on X and let a map M : [0, 1]× [0, 1]→ [0, 1] be a binary aggregation operator.

Then the function Ψ : I × I → [0, 1] defined by

Ψ(ÃI , B̃I) = M(ψ1(µÃI (x), µB̃I (x)), ψ2(νB̃I (x), νÃI (x))) (5.10)
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∀ ÃI , B̃I ∈ I, x ∈ X, is an IF normalized divergence measure, IF-inclusion measure, IF-

similarity measure, IF-dissimilarity measure or IF normalized distance measure respectively.

Proof. Suppose ψ1, ψ2 are two normalized point fuzzy divergence measures and M : [0, 1] ×
[0, 1]→ [0, 1] is a binary aggregation operator. Then

(i) if ψ1, ψ2 are symmetric (i.e., all mentioned inform measures but not inclusion measures),

then obviously it holds Ψ(ÃI , B̃I) = Ψ(B̃I , ÃI),

(ii) Ψ(ÃI , ÃI) = M(0, 0) = 0,

(iii) Suppose ÃI is crisp set, i.e., ÃI = ∅ or X. Then Ψ(ÃI , Ã
′I) = M(1, 1) = 1,

(iv) Ψ(ÃI ∩ C̃I , B̃I ∩ C̃I) = M(ψ1(µÃI (x) ∧ µC̃I (x), µB̃I (x) ∧ µC̃I (x)), ψ2(νB̃I (x) ∨νC̃I (x),

νÃI (x) ∨ νC̃I (x)) ≤M(ψ1(µÃI (x), µB̃I (x)), ψ2(νB̃I (x), νÃI (x))) = Ψ(ÃI , B̃I), (iv) Ψ(ÃI ∪
C̃I , B̃I ∪ C̃I) = M(ψ1(µÃI (x) ∨ µC̃I (x), µB̃I (x) ∨ µC̃I (x)), ψ2(νB̃I (x) ∧ νC̃I (x), νÃI (x) ∧
νC̃I (x))) ≤ M(ψ1(µÃI (x), µB̃I (x)), ψ2(νB̃I (x), νÃI (x))) = Ψ(ÃI , B̃I).

Thus, Ψ : I × I → [0, 1] defined by (5.10) is an IF normalized divergence measure.

Similarly, if ψ1, ψ2 : I ×I → [0, 1] are the fuzzy point inclusion measures, fuzzy point similarity

measures, fuzzy point dissimilarity measures and fuzzy normalized point divergence measures

and M : [0, 1]2 → [0, 1] is a binary aggregation operator. Then the function Ψ : I × I → [0, 1]

defined by (5.10) is an IF inclusion measure, IF similarity measure, IF dissimilarity measure

and IF normalized distance measure respectively.

Theorem 5.3.11. Let Γ1,Γ2, . . . ,Γn : I × I → [0, 1] be the IF normalized divergence mea-

sures, IF inclusion measures, IF similarity measures, IF dissimilarity measures or IF normal-

ized distance measures, and M : [0, 1]n → [0, 1] be an aggregation operator. Then the function

Γ : I × I → [0, 1] defined by

Γ(ÃI , B̃I) = M(Γ1(ÃI , B̃I),Γ2(ÃI , B̃I), . . . ,Γn(ÃI , B̃I)) (5.11)

for all ÃI , B̃I ∈ I, is an IF normalized divergence measure, IF inclusion measure, IF similarity

measure, IF dissimilarity measure or IF normalized distance measure respectively.

Proof. Suppose Γ1,Γ2, . . . ,Γn : I × I → [0, 1] are the IF normalized divergence measures and

M : [0, 1]n → [0, 1] is an aggregation operator. Then

(i) the symmetricity of Γ1,Γ2, . . . ,Γn follows that Γ(ÃI , B̃I) = Γ(B̃I , ÃI),

(ii) Γ(ÃI , ÃI) = M(0, 0, . . . , 0) = 0,
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(iii) Suppose ÃI is crisp set, i.e., ÃI = ∅ or X. Then Γ(ÃI , Ã
′I) = M(1, 1, . . . , 1) = 1,

(iv) the each Γi is an IF normalized divergence measure and M is a non-decreasing correspond-

ing to each argument follow that Γ(ÃI ∩ C̃I , B̃I ∩ C̃I) ≤ Γ(ÃI , B̃I) for every C̃I ∈ I,

(v) the non-decreasing corresponding to each argument of M and each IF normalized diver-

gence measure Γi follow that Γ(ÃI ∪ C̃I , B̃I ∪ C̃I) ≤ Γ(ÃI , B̃I) for every C̃I ∈ I.

Thus, Γ : I × I → [0, 1] defined by (5.11) is an IF normalized divergence measure.

Similarly, if Γ1,Γ2, . . . ,Γn : I ×I → [0, 1] are the IF inclusion measures, IF similarity measures,

IF dissimilarity measures and IF normalized distance measures, and M : [0, 1]n → [0, 1] is an

aggregation operator. Then the function Γ : I × I → [0, 1] defined by (5.11) is an IF inclusion

measure, IF similarity measure, IF dissimilarity measure and IF normalized distance measure

respectively.

Theorem 5.3.12. Let Γ1,Γ2, . . . ,Γn : I × I → [0, 1] be continuous, and Γ : I × I → [0, 1]

be given by (5.11), where all symbols and notation are same as Theorem 5.3.11. Then Γ is

continuous iff M is continuous.

Proof. (⇒) The continuity of Γ1,Γ2, . . . ,Γn,M and (5.11) follow that Γ is continuous.

(⇐) Let’s see the converse. Since Γ is continuous, for every ε > 0 ∃ δ > 0 such that for every

ÃI1, Ã
I
2 ∈ I,

|Γ(ÃI1, B̃
I)− Γ(ÃI1, B̃

I)| = |M(Γ1(ÃI1, B̃
I),Γ2(ÃI1, B̃

I), . . . ,Γn(ÃI1, B̃
I))−M(Γ1(ÃI2, B̃

I),

Γ2(ÃI2, B̃
I), . . . ,Γn(ÃI2, B̃

I))| < ε

for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) < δ.

Putting Γi(Ã
I
1, B̃I) = ai and Γi(Ã

I
2, B̃I) = bi for every B̃I ∈ I. Then

|M(Γ1(ÃI1, B̃
I),Γ2(ÃI1, B̃

I), . . . ,Γn(ÃI1, B̃
I))−M(Γ1(ÃI2, B̃

I),Γ2(ÃI2, B̃
I), . . . ,Γn(ÃI2, B̃

I))|

= |M(a1, a2, . . . , an)−M(b1, b2, . . . , bn)| < ε

for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) < δ.

But from the continuity of each Γi, for every δ0 > 0 ∃ δ > 0 such that for every ÃI1, Ã
I
2 ∈ I,

|Γi(ÃI1, B̃I)− Γi(Ã
I
1, B̃

I)| = |ai − bi| < δ0

for every B̃I ∈ I whenever max
i=1,2,...,n

d((µÃI1(xi), νÃI1(xi)), (µÃI2(xi), νÃI2(xi))) < δ. The result

follows.



141

5.4 Formulation of Decision Making Problem

We check whether the newly constructed information measures, namely, IF normalized diver-

gence measure, IF normalized divergence measure, IF-dissimilarity measure or similar measures,

produce reasonable and reliable results, when they are applied in solving MADM/MCDM prob-

lems. Let Im = {1, 2, 3, . . . , i, . . . ,m} and Jn = {1, 2, 3, . . . , j, . . . , n}. Here, we take the MADM

problems with different preferences with IF values and alternatives weights. Mathematically,

let R̃ = (r̃ij)m×n be the IF values decision matrix, where each r̃ij = (aij, bij) is the value of

L corresponding to each alternative Ai(i ∈ Im) with respect to each attribute Cj(j ∈ Jn) and

let w = (w1, w2, . . . , wn)T be the weight vector of attributes, where
∑n

k=1 wk = 1, wk ≥ 0,

k = 1, 2, . . . , n.. We calculate the IF normalized distance measure, IF normalized divergence

measure, IF-dissimilarity measure or similar equivalent measures between r̃ij and (1/2, 1/2) and

naming its rij.

Let M be the weighted aggregation operator. For simplicity, here, we take M as additive or

multiplicative weighted aggregation operator, i.e.,
∑n

j=1 wjrij or
∏n

j=1 r
wj
ij .

Definition 5.4.1. The alternative Ak is preferred to the alternative Al , we write Ak �w Al, if

there are w1, w2, . . . , wn such that

M((w1, rk1), (w2, rk2), . . . , (wj, rkj), . . . , (wn, rkn))−

M((w1, rl1), (w2, rl2), . . . , (wj, rlj), . . . , (wn, rln)) ≥ 0,

where
∑n

t=1wt = 1, wt ≥ 0, t ∈ Jn, and M is the additive or multiplicative weighted aggregation

operator, i.e.,
∑n

j=1wjrij or
∏n

j=1 r
wj
ij .

5.5 Structure of the Weight-Set for one preference

The mathematical model for finding the lower and upper value of attribute weights, when the

one preference of alternates are given, namely, Ak �w Al, is given by

(CPL) =



min w

s.t. M((w1, rk1), (w2, rk2), . . . , (wj, rkj), . . . , (wn, rkn))−

M((w1, rl1), (w2, rl2), . . . , (wj, rlj), . . . , (wn, rln)) ≥ 0,∑n
t=1wt = 1, wt ≥ 0, t ∈ Jn,
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and

(CPU) =



max w

s.t. M((w1, rk1), (w2, rk2), . . . , (wj, rkj), . . . , (wn, rkn))−

M((w1, rl1), (w2, rl2), . . . , (wj, rlj), . . . , (wn, rln)) ≥ 0,∑n
t=1wt = 1, wt ≥ 0, t ∈ Jn,

where M is the additive or multiplicative weighted aggregation operator, i.e.,
∑n

j=1wjrij or∏n
j=1 r

wj
ij .

Remark 5.5.1. (i) Let M be the additive weighted aggregation operator, i.e., M((w1, ri1),

(w2, ri2), . . . , (wn, rin)) =
∑n

j=1wjrij. Then w(k, l) = {w : rw =
∑n

t=1 rtwt ≥ 0,
∑n

t=1wt =

1, wt ≥ 0, t ∈ Jn}, where r = (r1, r2, . . . , rn), rt = rkt − rlt, t ∈ Jn. w(k, l) is called the

weight-set for Ak �w Al corresponding to the additive weighted aggregation operator.

(ii) Let M be the multiplicative weighted aggregation operator, i.e., M((w1, ri1), (w2, ri2), . . . ,

(wn, rin)) =
∏n

j=1 r
wj
ij . Then w(k, l) = {w : rw =

∑n
t=1 rtwt ≥ 0,

∑n
t=1wt = 1, wt ≥ 0, t ∈

Jn}, where r = (r1, r2, . . . , rn), rt = ln rkt − ln rlt, t ∈ Jn. w(k, l) is called the weight-set

for Ak �w Al corresponding to the multiplicative weighted aggregation operator.

Lemma 5.5.2. The polyhedron w(k, l), given in Remark 5.5.1, is bounded and convex.

Proof. Since

w(k, l) ⊂ En
+ := {w : wt ≥ 0, t ∈ Jn},

and En
+ is bounded, w(k, l) is bounded.

Let w,w′ ∈ w(k, l). Then

rw =
n∑
t=1

rtwt ≥ 0,
n∑
t=1

wt = 1, wt ≥ 0, t ∈ Jn,

rw′ =
n∑
t=1

rtw
′
t ≥ 0,

n∑
t=1

w′t = 1, w′t ≥ 0, t ∈ Jn.

Now, ς

ςrw + ς ′rw′ =
n∑
t=1

ςrtwt + ς ′rtw
′
t

=
n∑
t=1

rt(ςwt + ς ′w′t) ≥ 0,
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where ς, ς ′ ≥ 0 and ς + ς ′ = 1.

n∑
t=1

ςwt + ς ′w′t =ς
n∑
t=1

rtwt + ς ′
n∑
t=1

rtw
′
t

=ς + ς ′ = 1.

Therefore, w(k, l) is convex.

Thus, w(k, l) is bounded and convex.

Lemma 5.5.3. [155] If w(k, l) 6= ∅, then w(k, l) has a finite number of extreme points.

Our aim is to determine attribute weights w1, w2, . . . , wn.

Let q1, q2, . . . , qs be the extreme points of w(k, l). Then w(k, l) can be written as a convex

linear combination of the extreme points [155], we have

w(k, l) =

{ s∑
h=1

qhξh :
s∑

h=1

ξh = 1, ξh ≥ 0, h = 1, 2, . . . , s

}
Consider the following constrained conditions:

w1 + w2 + · · ·+ wn = 1

r1w1 + r2w2 + · · ·+ rnwn ≥ 0

w1 ≥ 0, w2 ≥ 0, . . . , wn ≥ 0

 (5.12)

(5.12) can be written in the standard form as

w1 + w2 + · · ·+ wn = 1

r1w1 + r2w2 + · · ·+ rnwn − z = 0

w1 ≥ 0, w2 ≥ 0, . . . , wn ≥ 0, z ≥ 0.

 (5.13)

We need the following results to determine w1, w2, . . . , wn.

Lemma 5.5.4. [155] Every basic feasible solution of the system (5.13) is an extreme point of

the convex set of the feasible solutions and conversely.

Let

[
1 1

rt rt′

]−1

,

[
1 1

rt rt′

]−1 [
1

0

]
≥ 0; or

[
1 0

rt −1

]−1 [
1

0

]
≥ 0, t, t′ ∈ Jn, t < t′ exist. Then

a basic feasible solution (i.e., an extreme point) of w(k, l) can be obtained. Thus, we have the

following Lemmas 5.5.5 and 5.5.6.

Lemma 5.5.5. If rt 6= rt′ and rtrt′ < 0 for t < t′, t, t′ ∈ Jn, then q =
(
0, 0, . . . , 0,

rt′
rt′−rt

, 0, . . . ,

0, −rt
rt′−rt

, 0, . . . , 0
)T ∈ En is an extreme point of w(k, l), where

rt′
rt′−rt

and −rt
rt′−rt

are the t-th and

t′-th components of q respectively.
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Proof. Let RE =

[
1 1 . . . 1 . . . 1 . . . 1 0

r1 r2 . . . rt . . . rt′ . . . rn −1

]
,

wE =
[
w1 w2 . . . wt . . . wt′ . . . wn z

]
, where w1 ≥ 0, w2 ≥ 0, . . . , wn ≥ 0, z ≥ 0.

Then the w(k, l) is written as

REw
T
E =

[
1

0

]

Since rt 6= rt′ , t, t
′ ∈ Jn, t < t′, [

1 1

rt rt′

]−1

exist.

Since
rt′

rt′−rt
≥ 0, −rt

rt′−rt
≥ 0, t, t′ ∈ Jn, t < t′,

[
1 1

rt rt′

]−1 [
1

0

]
=

1

rt′ − rt

[
rt′ −1

−rt 1

]
=

 rt′
rt′−rt
−rt
rt′−rt

 ≥ [0

0

]
.

Thus, q =
(
0, 0, . . . , 0,

rt′
rt′−rt

, 0, . . . , 0, −rt
rt′−rt

, 0, . . . , 0
)T ∈ En is an extreme point of w(k, l).

Lemma 5.5.6. If rt ≥ 0, t ∈ Jn, then

q = et = (0, 0, . . . , 1, . . . , 0)T ∈ En

is an extreme point of w(k, l).

Proof. Since rt ≥ 0, t ∈ Jn,[
1 0

rt −1

]−1

exist, and

[
1 0

rt −1

]−1 [
1

0

]
=

[
1

rt

]
≥

[
0

0

]

. Thus, q = (0, 0, . . . , 1, . . . , 0)T ∈ En is an extreme point of w(k, l).

Lemma 5.5.7. If rt 6= rt′ , 1 ≤ k < l ≤ n, then the necessary and sufficient condition for
rt′

rt′−rt
≥ 0, −rt

rt′−rt
≥ 0 is rtrt′ ≤ 0.

Proof. (⇒) Suppose that
rt′

rt′−rt
≥ 0, −rt

rt′−rt
≥ 0. Then

rtrt′ ≤ 0.

(⇐) Suppose that rtrt′ ≤ 0. Then arises three cases:
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Case 1: If rt′ > 0, rt < 0, then rt′ − rt > 0. Thus,

rt′

rt′ − rt
> 0,

−rt
rt′ − rt

> 0.

Case 2: If rt′ < 0, rt > 0, then rt′ − rt < 0. Thus,

rt′

rt′ − rt
> 0,

−rt
rt′ − rt

> 0.

Case 3: If rt′ = 0 (or rt = 0), then rt 6= 0 (or rt′ 6= 0). Thus,

rt′

rt′ − rt
= 0

(
or

rt′

rt′ − rt
= 1

)
,
−rt

rt′ − rt
= 1

(
or
−rt

rt′ − rt
= 0

)
.

In the following Theorem 5.5.8 and Corollary 5.5.9, we give the necessary and sufficient

condition to judge whether the weight-set w(k, l) is empty.

Theorem 5.5.8. The necessary and sufficient condition for w(k, l) 6= ∅ is that either there exist

t and t′, where t ∈ Jn, rt 6= rt′, rtrt′ ≤ 0, or there exists t, where t ∈ Jn, rt ≥ 0.

Proof. From Lemmas 5.5.6 and 5.5.7, we have

rt 6= rt′ ,
rt′

rt′ − rt
> 0,

−rt
rt′ − rt

> 0.

which are equivalent to the conditions

rt 6= rt′ , rtrt′ < 0

If w(k, l) 6= ∅, there exist extreme points, and the extreme points of w(k, l) are given in the

forms of Lemmas 5.5.5 and 5.5.6.

Corollary 5.5.9. The sufficient and necessary condition for w(k, l) = ∅ is that there are no t

and t′, where t, t′ ∈ Jn and t < t′, rt 6= rt′, rtrt′ ≤ 0, or there is no t, where t ∈ Jn, rt ≥ 0.

A structure of the weight-set w(k, l) is given in Theorem 5.5.10.

Theorem 5.5.10. If w(k, l) 6= ∅, and q1, q2, . . . , qs are the extreme points of w(k, l) determined

either by Lemma 5.5.5 or 5.5.6, then the weight-set for Ak �w Al can be written as

w(k, l) = {
s∑

h=1

qhξh :
s∑

h=1

ξh = 1, ξh ≥ 0, h = 1, 2, . . . , s}
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Proof. Since w(k, l) 6= ∅, i.e. w(k, l) is a bounded convex polyhedron, w(k, l) can be written as

a convex combination of the extreme points [155].

Let us consider the following example. Example 5.5.11(ii) is a situation where the condition

of Theorem 5.5.8 is not satisfied, i.e., w(k, l) = ∅. Example 5.5.11(i) is a situation where

w(k, l) 6= ∅.

Example 5.5.11. The decision information of a MADM problem with four attributes (n = 4)

and four alternatives (m = 4) is given in Table 5.1.

(i) We consider A2 �w A3. Then from Table 5.1, we have

r̄1 = (0.2, 0,−0.1, 0.3). Since r1 = 0.2 > 0, r2 = 0, r3 = −0.1 < 0, r4 = 0.3 > 0, by

Lemmas 5.5.5 and 5.5.6, we get

q1 = (1, 0, 0, 0)T , q2 = (0, 1, 0, 0)T , q3 = (0, 0, 0, 1)T , q4 = (1/3, 0, 2/3, 0)T , q5 = (0, 0, 3/4, 1/4)T

(5.14)

are the extreme points of w(2, 3). Thus by theorem 5.5.10, we have

w(2, 3) = {
s∑

h=1

qhξh :
5∑

h=1

ξh = 1, ξh ≥ 0, h = 1, 2, 3, 4, 5}

where q1, q2, q3, q4, q5 are given in (5.14).

(ii) We consider A1 �w A2. Then from Table 5.1, we have

r̄1 = (−0.1,−0.3,−0.1,−0.1). Since r1 = −0.1 < 0, r2 = −0.3 < 0, r3 = −0.1 < 0,

r4 = −0.1 < 0, by Corollary 5.5.9, we get w(2, 3) = ∅. Thus, it is impossible to satisfy

A1 �w A2.

Table 5.1: Decision matrix
C1 C2 C3 C4

A1 0.3 0 0.2 0.3
A2 0.4 0.3 0.3 0.4
A3 0.2 0.3 0.4 0.1
A4 0.2 0.3 0.25 0.2

Table 5.2: Decision matrix in IFE
C1 C2 C3 C4

A1 (0.6, 0.2) (0.5, 0.5) (0.4, 0.3) (0.7, 0.2)
A2 (0.3, 0.3) (0.2, 0.6) (0.5, 0.2) (0.1, 0.8)
A3 (0.4, 0.4) (0.6, 0.2) (0.7, 0.1) (0.4, 0.5)
A4 (0.5, 0.3) (0.8, 0.2) (0.25, 0.75) (0.3, 0.7)

5.6 Structure of the Weight-Set for many preferences si-

multaneously

The mathematical models for finding the lower and upper value of attribute weights, when

the many preferences of alternatives are given, namely, Aih �w Ai′h , ih, i
′
h ∈ Im, ih 6= i′h,
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h = 1, 2, . . . , s, are given by

(CPL
A ) =



min w

s.t. M((w1, rih1), (w2, rih2), . . . , (wj, rihj), . . . ,

(wn, rihn))−M((w1, ri′h1), (w2, ri′h2), . . . ,

(wj, ri′hj), . . . , (wn, ri′hn)) ≥ 0, h = 1, 2, . . . , s,∑n
t=1 wt = 1, wt ≥ 0, t ∈ Jn,

and

(CPU
A ) =



max w

s.t. M((w1, rih1), (w2, rih2), . . . , (wj, rihj), . . . ,

(wn, rihn))−M((w1, ri′h1), (w2, ri′h2), . . . ,

(wj, ri′hj), . . . , (wn, ri′hn)) ≥ 0, h = 1, 2, . . . , s,∑n
t=1wt = 1, wt ≥ 0, t ∈ Jn.

We consider the weight-set for satisfying many preference orders of alternatives simultaneously.

Note that ih, i
′
h ∈ Im, ih 6= i′h, h = 1, 2, . . . , s, and the weight-set for Aih �w Ai′h is

w(ih, i
′
h) =

{
w :

n∑
t=1

rihtwt ≥
n∑
t=1

ri′htwt,
n∑
t=1

wt = 1, wt ≥ 0, t ∈ Jn
}
.

So the weight set for Aih �w Ai′h , h = 1, 2, . . . , s is

w(ih, i
′
h;h = 1, 2, . . . , s) ={w : Ai1 �w Ai′1 , Ai2 �w Ai′2 , . . . , Ait �w Ai′t}

=

{
w :

n∑
t=1

rihtwt ≥
n∑
t=1

ri′htwt, h = 1, 2, . . . , s,

n∑
t=1

wt = 1, wt ≥ 0, t = 1, 2, . . . , n

}
.

Let

r̄h =(ri1h , ri2h , . . . , ri
n
h
)− (ri′1h

, ri′2h
, . . . , ri′nh

)

=(ri1h − ri′1h , ri2h − ri′2h , . . . , rinh − ri′nh ), h = 1, 2, . . . , s.

We have

w(ih, i
′
h;h = 1, 2, . . . , s) = {w : āhw ≥ 0, h = 1, 2, . . . , s,

n∑
t=1

wt = 1, wt ≥ 0, t ∈ Jn},
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where w = (w1, w2, . . . , wn)T ∈ En.

First we consider the weight-set

w(i1, i
′
1) = {w : r̄1w ≥ 0,

n∑
t=1

wt = 1, wt ≥ 0, t ∈ Jn},

By Theorem 5.5.10, we have

w(i1, i
′
1) = {Q1ξ1 :

t1∑
t=1

ξ1
t = 1, ξ1

t ≥ 0, t = 1, 2, . . . , t1},

where Q1 = (q11, q12, . . . , q1t1)t0×t1 , t0 = n and q11, q12, . . . , q1t1 are the extreme points of

w(Ai1 �w Ai′1).
Now we consider

w(ih, i
′
h;h = 1, 2) ={w : r̄1w ≥ 0, r̄2w ≥ 0,

n∑
t=1

wt = 1, w ≥ 0}

={w : w ∈ w(i1, i
′
1), r̄2w ≥ 0}

={w : w = Q1λ1r̄2w ≥ 0,

t1∑
t=1

ξ1
t = 1, ξ1

t ≥ 0, t = 1, 2, . . . , t1}

={Q1ξ1 : (r̄2Q
1)ξ1 ≥ 0,

t1∑
t=1

ξ1
t = 1, ξ1

t ≥ 0, t = 1, 2, . . . , t1}

Let the convex polyhedron be

Ξ1 = {ξ1 : (r̄2Q
1)ξ1 ≥ 0,

t1∑
t=1

ξ1
t = 1, ξ1

t ≥ 0, t = 1, 2, . . . , t1}

We obtain Q2 in a similar method (see Lemmas 5.5.5–5.5.7), where Q2 = (q21, q22, . . . , q2t2)t1×t2

and q21, q22, . . . , q2k2 are the extreme points of Ξ1. Here we have

Ξ1 = {Q2ξ2 :

t2∑
t=1

ξ2
t = 1, ξ2

t ≥ 0, t = 1, 2, . . . , t2}

and

w(ih, i
′
h;h = 1, 2) ={Q1ξ1 : ξ1 ∈ Ξ1}

={Q1Q2ξ2 :

t2∑
t=1

ξ2
t = 1, ξ2

t ≥ 0, t = 1, 2, . . . , t2}.

Similarly, we have

w(ih, i
′
h;h = 1, 2, 3) = {Q1Q2Q3ξ3 :

t3∑
t=1

ξ3
t = 1, ξ3

t ≥ 0, t = 1, 2, . . . , t3},
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where Q3 = (q31, q32, . . . , q3t3)t2×t3 and q31, q32, . . . , q3t3 are the extreme points of Ξ2. Here we

have

Ξ2 ={ξ2 : (r̄3Q
1Q2)ξ2 ≥ 0,

t2∑
t=1

ξ2
t = 1, ξ2

t ≥ 0, t = 1, 2, . . . , t2}

={Q3ξ3 :

t3∑
t=1

ξ3
t = 1, ξ3

t ≥ 0, t = 1, 2, . . . , t3}.

Hence we obtain the weight-set for satisfying many preference orders of alternatives simultane-

ously (Ai1 �w Ai′1 , Ai2 �w Ai′2 , . . . , Ais �w Ai′s), i.e.,

w(ih, i
′
h;h = 1, 2, . . . , s) = {Q1Q2 · · ·Qsξs :

ts∑
t=1

ξst = 1, ξst ≥ 0, t = 1, 2, . . . , ts},

where Qt = (qs1, qs2, . . . , qsts)ts−1×ts and qs1, qs2, . . . , qsts are the extreme points of Ξs−1.

Ξp−1 ={ξp−1 : (r̄pQ
1Q2 · · ·Qp−1)ξp−1 ≥ 0,

tp−1∑
t=1

ξp−1
t = 1, ξp−1

t ≥ 0, t = 1, 2, . . . , tp−1}

={Qpξp :

tp∑
t=1

ξpt = 1, ξpt ≥ 0, t = 1, 2, . . . , tp} p = 1, 2, . . . , s.

Example 5.6.1. The decision information of a MADM problem with four attribute attribute (n

= 4) and four alternatives (m = 4) is given in Table 5.1. We consider A2 �w A3 and A1 �w A4.

Then from Table 5.1, we have

r̄1 = (0.2, 0,−0.1, 0.3) and r̄2 = (0.1,−0.3,−0.05, 0.1). From Example 5.5.11, we have Since

r1 = 0.2 > 0, r2 = 0, r3 = −0.1 < 0, r4 = 0.3 > 0, by Lemmas 5.5.5 and 5.5.6, we get

w(2, 3) ={w : r̄1w ≥ 0, w1 + w2 + w3 + w4 = 1, w1, w2, w3, w4 ≥ 0}

={
s∑

h=1

q1hξh :
4∑

h=1

ξh = 1, ξh ≥ 0, h = 1, 2, 3, 4, 5}

={Q1ξ1
h :

4∑
h=1

ξ1
h = 1, ξ1

h ≥ 0, h = 1, 2, 3, 4, 5},

where

q11 = (1, 0, 0, 0)T , q12 = (0, 0, 0, 1)T , q13 = (1/3, 0, 2/3, 0)T , q14 = (0, 0, 3/4, 1/4)T , q15 = (1, 0, 0, 0)T

and

Q1 =


1 0 1/3 0 0

0 0 0 0 0

0 0 2/3 3/4 0

0 1 0 1/4 1

 .
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Note that the weight-set for A2 �w A3 and A1 �w A4 is

w(2, 3; 1, 4) = {w : r̄1w ≥ 0, r̄2w ≥ 0, w1 + w2 + w3 + w4 = 1, w1, w2, w3, w4 ≥ 0}

= {Q1ξ1
h : (r̄2Q

1)ξ1
h ≥ 0,

4∑
h=1

ξ1
h = 1, ξ1

h ≥ 0, h = 1, 2, 3, 4, 5}

Let the convex polyhedron be

Ξ1 = {ξ1
h : (r̄2Q

1)ξ1
h ≥ 0,

4∑
h=1

ξ1
h = 1, ξ1

h ≥ 0, h = 1, 2, 3, 4, 5}.

We have r̄2Q
1 = (0.1,−0.3, 0,−0.0125, 0.1). Since 0.1 > 0,−0.3 < 0,−0.0125 < 0, by Lemma

5.5.6, we get

q21 = (1, 0, 0, 0, 0)T , q22 = (0, 0, 1, 0, 0)T , q23 = (0, 0, 0, 0, 1)T , q24 = (3/4, 1/4, 0, 0, 0)T ,

q25 = (1/9, 0, 0, 8/9, 0)T , q26 = (0, 1/4, 0, 0, 3/4)T , q24 = (0, 0, 0, 8/9, 1/9)T

are the extreme points of convex polyhedron Ξ1. We have

Ξ1 = {Q2ξ2
h :

4∑
h=1

ξ2
h = 1, ξ2

h ≥ 0, h = 1, 2, 3, 4, 5, 6, 7}

where

Q2 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
Finally, we have

w(2, 3; 1, 4) = {Q1Q2ξ2
h :

4∑
h=1

ξ2
h = 1, ξ2

h ≥ 0, h = 1, 2, 3, 4}

where Q1, Q2 are given above in this problem.

5.7 Determination of attribute weights for given prefer-

ences

In this section, we find the attribute weights in uncertain and certain environments.
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5.7.1 Determination of attribute weights in uncertain environment

Based on the structure of the weight-set, the uncertain weight for every attribute can be deter-

mined and used for decision analysis. Suppose that the weight-set for Ai �w Aj is

w(k, l) = {
t∑

k=1

qhξt :
t∑

k=1

ξt = 1, ξt ≥ 0, h = 1, 2, . . . , s},

where q1, q2, . . . , qt are the extreme points of w(k, l).

Let qh = (qk1 , q
k
2 , . . . , q

k
n)T , h = 1, 2, . . . , s. Note wLl and wUl are the lower bound and upper

bound of the l − th element wl in weight vector w such that Ai �w Aj, respectively. wLl and

wUl can be obtained by solving the following linear programming problems (PL) and (PU),

respectively,

(PL) =


min

∑t
k=1 q

k
l ξt

s.t.
∑t

k=1 ξt = 1,

ξt ≥ 0, h = 1, 2, . . . , s,

and

(PU) =


max

∑t
k=1 q

k
l ξt

s.t.
∑t

k=1 ξt = 1,

ξt ≥ 0, h = 1, 2, . . . , s.

Let λl = (λl1, λ
l
2, . . . , λ

l
t)
T and λ

l
= (λ

l

1, λ
l

2, . . . , λ
l

t)
T be the optimal solutions of (PL) and (PU),

respectively. Then wLl and wUl can be obtained by

wLl = min
{ t∑
k=1

qkl λ
l
k,

t∑
k=1

qkl λ
l

k

}
, wUl = max

{ t∑
k=1

qkl λ
l
k,

t∑
k=1

qkl λ
l

k

}
.

Thus, the uncertain weight vector w for Ai �w Aj can be obtained as

[wL1 , w
U
1 ], [wL2 , w

U
2 ], . . . , [wLn , w

U
n ]

5.7.2 Determination of attribute weights in certain environments

With the help of obtained uncertain attribute weights in previous section and decision matrix,

we model the programming problem for finding certain positive attribute weights, as given
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below:

(CW ) =



max w(M((w1, rk1), (w2, rk2), . . . , (wj, rkj), . . . , (wn, rkn)),

. . . ,M((w1, rm1), (w2, rm2), . . . , (wj, rmj), . . . , (wn, rmn)))

s.t. ε ≤ wLt ≤ w1 ≤ wUt , t ∈ Jn,∑n
t=1 wt = 1,

where ε > 0 is sufficiently small and M is the additive or multiplicative weighted aggregation

operator, i.e., M((w1, ri1), (w2, ri2), . . . , (wn, rin)) =
∑n

j=1wjrij or
∏n

j=1 r
wj
ij .

5.8 Selection of alternatives

The selection of alternatives, when one or more preferences of alternatives is given, is summa-

rized in Algorithm 1.

For the reasonability of the proposed algorithm, we consider a numerical example adapted

Algorithm 1 Selection of alternatives

Step 1. Calculate the IF normalized distance measure, IF normalized divergence measure, IF-
dissimilarity measure or similar equivalent measures of each r̃Iij from < 1/2, 1/2 >X and naming
it as rij.
Step 2. Let wj be the weighting value corresponding to the jth attribute.
Step 3. Model mathematical programming problems as problems (CPL) and (CPU) for given
one preference of alternatives, and (CPL

A ) and (CPU
A ) for given many preferences of alternatives.

Step 4. Model mathematical programming problems as problems (PL) and (PU).
Step 5. Calculate the uncertain attribute weights of the problems (PL) and (PU).
Step 6. Calculate each wj of the problem (CW ).
Step 7. Aggregate rij for each alternative into collective overall values ri by using Definition
5.3.7, Example 5.3.8 and positive attributes weight vector.
Step 8. Rank all the alternatives Ai(i = 1, 2, ...,m) according to the collective overall values
ri(i = 1, 2, ...,m).
Step 9. Select the best alternative from ranked alternatives (as done in Step 8).

from Das et al. [50]. An investment company wants to invest money in the best possible option.

The four possible alternatives to invest money are as follows: (i) A car company (A1). (ii) A

food company (A2). (iii) A computer company (A3). (iv) An arms company (A4).

The investment company must take a decision according to the following four attributes: The

risk analysis (C1), the growth analysis (C2), the environmental impact analysis (C3) and the

social, political impact analysis (C4). The four possible alternatives Ai (i = 1, 2, 3, 4) are to be

evaluated using the IF values information by the decision maker under the above four attributes

Cj (j = 1, 2, 3, 4) with preferences A2 �w A3 and A1 �w A4, as listed in the following matrix.
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Then, to find the most desirable alternative(s) based on proposed Algorithm 1.

Applying Algorithm 1 for the preferences A2 �w A3 and A1 �w A4, and taking normalized

hamming distance H (eq.(5.1)) and ε = 0.01, it is observed that used normalized hamming

distance H (eq.(5.1)) measure indicates that the alternatives ordering is A2 � A1 � A4 � A3.

It is confirmed that A2 is the best alternative from given set of alternatives {A1, A2, A3, A4}.

5.9 Concluding remarks

In this chapter, the definitions of normalized divergence, similarity, dissimilarity, inclusion and

normalized distance measures in IFE are analyzed the existing axiomatic. We have established

the following: (i) the IF point measures generated from the measures of the standard IFSs

constructed by level sets and other special set ÃIp (ii) the measures derived from point measures

(iii) aggregated measures from the set of measures, and studied the continuity relation rela-

tionship between them. We have given the concept of weights for one and many preferences of

alternatives. Also, we have modeled the mathematical programming problems for determining

the positive certain attribute weights. Finally, an algorithm is given for the selection of the

best alternative from the given set of feasible alternatives with given preferences. A numerical

example is given to demonstrate the effectiveness of the proposed algorithm.
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Chapter 6

Residual implications on L based on

powers of continuous t-norm

Residual implications constitute a special class of implications on L, which play important

roles from theoretical to practical aspects. Many authors investigated various properties of

different types of implications on L and established the interrelationships among them. In this

chapter, the powers of a t-norm T with identical tuple elements on L are introduced and their

properties are studied. More specifically, a new type of implication on L, known as the residual

implication is derived from powers of continuous t-norm T , which is denoted by IIT and satisfies

certain properties of residual implications by imposing some extra conditions. Moreover, some

additional important properties are studied and analyzed. These altogether reveal that they

do not intersect the most well-known classes of fuzzy implications. Finally, we investigate the

solutions of Boolean-like laws in IIT .

6.1 Introduction

The fuzzy implication is equally important from both the theoretical and practical points of

view. From the theoretical point of view, the development of algebra is done and their properties

are studied. From the practical point of view, the fuzzy implication is used to study approximate

reasoning and network problems, etc. (see [19, 106]). Several authors worked on fuzzy connec-

tivity [102], continuity on t-norms and residual implications [99, 101, 103], and fuzzy modeling

through grouping, overlap functions and generalized bientropic functions [39]. The concept of

Archimedean overlap functions, the ordinal sum of overlap functions and their limiting proper-

ties are given in [64]. The cancelation property is useful for t-norms and t-conorms and their

155



156

brief studies are given in [124]. Development of the powers of t-norms (powers acquire positive

real numbers) and their properties are studied for strict and nilpotent cases (see [177]). After

that, fuzzy implications have been derived from powers of continuous t-norms and studied their

properties in [128]. In [175], ~-composition of fuzzy implications are given and investigated

the properties over fuzzy implications. A special class of fuzzy implication operators known as

R-implications (residual implications) is derived from t-norm [11], overlap functions [65] and

aggregation operators[141] and properties are studied in brief. The distributive laws of fuzzy

implications over overlap and grouping functions are given in [148].

Nowadays, many different extensions of FSs are known e.g., L-FSs proposed by Goguen [80],

interval-valued FS proposed by Gorzalczany [81] represents the degree of membership of an

element by an interval rather than exact numerical value, intuitionistic fuzzy set (IFS) proposed

by Atanassov [11] etc. IFS characterized by membership function and nonmembership function

which model the non-determinacy occurs in the system because of the hesitation of decision

makers etc. Approximate reasoning on IFSs is studied by triple I method [200] and relating De

Morgan triples with intuitionistic De Morgan triples via automorphisms [46]. Mathematically,

interval-valued FS and IFS both are equivalent.

It has become one of the most important operators in logic [174]. The arithmetic operators

in interval-valued FS theory [55] and other theories, like, interval fuzzy negations [26], general-

ized interval-valued OWA operators with interval weights derived from interval-valued overlap

functions [29], interval additive generators of interval overlap functions and interval grouping

functions [147] are developed. The implications in interval valued FS with several properties

are developed in [28]. Implications based on binary aggregation operators in interval-valued

FS theory are given in [61]. Moreover, the algebraic structures of interval-valued fuzzy (S,

N)-implications are developed in [111]. IF t-norms and t-conorms are studied in [59]. The

expression, construction, classification and several properties with applications of intuitionistic

and interval-valued fuzzy implications are given in [33] and [45].

The following are main motivating facts behind the present work:

(i) In [128], the authors have proposed a new type of residual implication operator on [0, 1],

viz., the T-power based implication as follows:

Definition 6.1.1 ([128], Definition 4). An operator IT : [0, 1]2 → [0, 1] is called T-power

based implication if there is a continuous t-norm T on [0, 1] such that

IT (a, b) = sup{t ∈ [0, 1] : b
(t)
T ≥ a} ∀ a, b ∈ [0, 1] (6.1)
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Following this, the authors have shown that the T-power based implication is fuzzy implica-

tion operator (see, Proposition 4 in [128]). But do not necessarily satisfy certain properties

such as neutrality property, exchange principle, etc. satisfied by such residual implications,

i.e., weaker version of the residual implications. Moreover, they have studied the invariant

with respect to T -powers. Further, the authors have proved that they do not intersect the

most well-known classes of fuzzy implication operators.

(ii) In [65], the authors have given the new type of R-implication operator on [0, 1] generated

by an overlap function as follows:

Definition 6.1.2. [65] Let O be an overlap function on [0, 1]. Then the operator IO :

[0, 1]2 → [0, 1] called the implication operator derived from O is given by

IO(a, b) = max{c ∈ [0, 1] : O(a, c) ≤ b} ∀ a, b ∈ [0, 1] (6.2)

Moreover, IO is a fuzzy implication (see [65]). But this implication is weaker version of resid-

ual implication and satisfied certain properties over the residual implications by introducing

the some extra conditions.

(iii) In paper [100], the author has solved the long-standing problem related to the continuity

of residual implications derived from t-norm, and also have given special type of fuzzy

negation as follows:

Definition 6.1.3. [100] For any fixed b0 ∈ [0, 1), the non-increasing partial function

I(., b0) : [b0, 1] → [b0, 1], is denoted by gTb0. Observe that (i) gTb0(b0) = 1. (ii) gTb0(1) = b0.

(iii) gTb0 is non-increasing. I and T are the implication and t-norm on [0, 1] respectively. If

b0 = 0, then gT0 is the natural negation associated with the t-norm T.

(iv) In papers [42] and [43], the authors have given the following Boolean-like laws:

b ≤ I(a, b), I(a, I(b, a)) = 1, I(a, b) = I(a, I(a, b)),

I(a, I(b, c)) = I(I(a, b), I(a, c)) ∀ a, b, c ∈ [0, 1],

where I is the fuzzy implications and the solutions of these Boolean-like laws are obtained

in (S, N)-, R-, QL-, D-, (T, N)- and h-implications in fuzzy environment. The above

Boolean-like laws in IFE are as follows:

v ≤L II(u, v), II(u, II(v, u)) = 1L , II(u, v) = II(u, II(u, v)),

II(u, II(v, w)) = II(II(u, v), II(u,w)) ∀ u, v, w ∈ L (6.3)

where II is the IF implication.
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The above facts have motivated us to take up the study of residual implications on L generated

by powers of continuous t-norm T , denoted by IIT , and special negation by N α
IIT

and also find

the solutions of (6.3) in IIT .

In this work, we introduce a definition of the powers of continuous t-norm T with identical

tuple elements whose powers acquire positive real numbers or positive real numbers in [0, 1]

or members of L. Inspired by Definitions 6.1.1 and 6.1.2, we define and study T -power-based

implications.

The rest of the chapter is organized as follows. In Section 6.2, we introduce some basic

definitions needed throughout the chapter. Section 7.4 is devoted to some new definitions of

the powers with respect to continuous t-norm and their results; also some new inequalities,

linear translation of elements and powers. The core of the chapter is represented by Sections

6.4 and 6.5, concerning the development of T -power-based implication and the proofs of specific

results of T -power-based implications. Also, we investigate the solutions of Boolean-like laws

in T -power-based implication. Finally, the chapter ends with Section 6.6 containing concluding

remarks.

6.2 Preliminaries

In R2, the well-known metrics, like, the Euclidean distance and the Hamming distance are

defined as follows.

• The Euclidean distance between u = (u1, u2) and v = (v1, v2) in R2 is given by

dE(u, v) =
√

(u1 − v1)2 + (u2 − v2)2.

• The Hamming distance between u = (u1, u2) and v = (v1, v2) in R2 is given by

dH(u, v) = |u1 − v1|+ |u2 − v2|.

If we restrict these distances to L, then we obtain the metric spaces (L, dE) and (L, dH), where

dE and dH are the Euclidean and Hamming distances on L respectively. Denote, for any u ∈ L,

uπ = 1 − u1 − u2. Szmidt and Kacprzyk [167] have defined two distances on L based on the

Euclidean and the Hamming distances, where also uπ is used.

• The dEL between u = (u1, u2) and v = (v1, v2) in L is given by

dE(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + (uπ − vπ)2.



159

• The dHL between u = (u1, u2) and v = (v1, v2) in L is given by

dH(u, v) = |u1 − v1|+ |u2 − v2|+ |uπ − vπ|.

Deschrijver et. al [59] proved that these four distances are topologically equivalent. So, the

continuity with respect to one of these metric spaces is equivalent to the continuity with respect

to any other metric space.

Let G : L → L be an arbitrary mapping. Then G is called IF continuous if ∀ ε > 0 ∃ δ > 0 such

that, ∀ u, v ∈ L,

d(G(u), G(v)) < ε whenever d(u, v) < δ (6.4)

where d is any of the metric on L × L.

This metric d : L × L → R is extended for n-ary as:

nd((1u, 2u, . . . , nu), (1v, 2v, . . . , nv)) =
√

(d(1u, 1v))2 + (d(2u, 2v))2 + · · ·+ (d(nu, nv))2 (6.5)

for every (1u, 2u, . . . , nu), (1v, 2v, . . . , nv) ∈ Ln.

Let H : Ln → L be an arbitrary mapping. Then H is called continuous if ∀ ε > 0 ∃ δ > 0 such

that, ∀ (1u, 2u, . . . , nu), (1v, 2v, . . . , nv) ∈ Ln,

d(H((1u, 2u, . . . , nu)), H((1v, 2v, . . . , nv))) < ε whenever nd((1u, 2u, . . . , nu), (1v, 2v, . . . , nv)) < δ

(6.6)

where d and nd are metrics on L × L and Ln × Ln respectively.

Theorem 6.2.1. [[59], Theorem 2] Given a t-norm T and t-conorm S on [0, 1] satisfying

T (a, b) ≤ 1− S(1− a, 1− b) ∀ a, b ∈ [0, 1]. Then the mappings T and S defined by

T (u, v) = (T (u1, v1), S(u2, v2)), S(u, v) = (S(u1, v1), T (u2, v2)) for u = (u1, u2), v = (v1, v2) ∈ L

are a t-norm and a t-conorm on L respectively.

It is well known that associativity property of the t-norms allows to extend each t-norm in

IFE in a unique way to a n-dimensional operation as follows:

T (1u, . . . , nu) = T (1u, T (2u, . . . , T (n−1u, nu) · · · ) (6.7)

The unicity is in the sense that

T (1u, T (2u, . . . , T (n−1u, nu) · · · ) = T (T (· · · T (T (1u, 2u), . . . , n−1u), nu).
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6.3 Powers with respect to t-norm

This chapter is inspired by the papers [128, 158, 177] concerning the powers of t-norms, the fuzzy

implication operators based on powers of continuous t-norms in IFE. Based on these papers,

we introduce the powers of continuous t-norm in IFE and powers may be positive real numbers

and member of L.

From the associativity of any t-norm T , the positive integer powers with respect to T can be

defined as follows:

u
(n)
T =


T (u, u

(n−1)
T ), n ≥ 2, n ∈ Z+,

u, n = 1,

1L , n = 0,

for every u ∈ L.

Example 6.3.1. Let us consider a t-norm T : L2 → L, T (u, v) = (max(0, u1 + v1 − 1),

min(1, u2 + 1 − v1, v2 + 1 − u1)) ∀ u = (u1, u2), v = (v1, v2) ∈ L. Now we calculate, for

u = (u1, u2) ∈ L and n ∈ Z+, u
(n)
T

u
(n)
T =



0L , 0 ≤ u1 ≤ n−1
n
, 1 ≥ u2 ≥ max(0, (n

−1)u1 − (n− 2)), u1 + u2 ≤ 1;

(0, u2 + (n− 1)(1− u1)), 0 ≤ u1 ≤ n−1
n
, 0 ≤ u2 < (n− 1)u1

−(n− 2), u1 + u2 ≤ 1;

(nu1 − (n− 1), u2 + (n− 1)(1− u1)), 1 ≥ v1 >
n−1
n
, 0 ≤ u2 < (n− 1)u1

−(n− 2), u1 + u2 ≤ 1.

Lemma 6.3.2. Let T : L2 → L be a continuous t-norm and m,n ∈ Z+. Then T (u
(m)
T , u

(n)
T ) =

u
(m+n)
T ∀ u ∈ L.

Proof. Since T satisfies associativity, T (u, T (v, w)) = T (T (u, v), w) ∀ u, v, w ∈ L.

By using the definition of the positive integer powers of u with respect to T and the associative

property of T , we have

T (u
(m)
T , u

(n)
T ) =T (T (u

(m)
T , u), u

(n−1)
T ) = T (u

(m+1)
T , u

(n−1)
T ) = T (T (u

(m+1)
T , u), u

(n−2)
T )

=T (u
(m+2)
T , u

(n−2)
T ) = T (T (u

(m+2)
T , u), u

(n−3)
T ) = T (u

(m+3)
T , u

(n−3)
T )

= · · · = T (T (u
(m+n−2)
T , u), u

(1)
T ) = T (u

(m+n−1)
T , u)

=u
(m+n)
T .
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Thus,

T (u
(m)
T , u

(n)
T ) = u

(m+n)
T ∀ u ∈ L.

Definition 6.3.3. The n-th root power of an element u ∈ L with respect to a t-norm T is

denoted by u
( 1
n

)

T and is defined by

u
( 1
n

)

T = sup{w ∈ L : w
(n)
T ≤L u} ∀ n ∈ Z+ (6.8)

Definition 6.3.4. Let T : L2 → L be a continuous t-norm. Then we can defined x(t), for t > 0

(t is positive real constant), as follows:

u
(t)
T = sup{w ∈ L : i, j ∈ N0, w

(j)
T ≤L v, v = u

(i)
T and i/j ≤ t}.

Lemma 6.3.5. Let T : L2 → L be a continuous t-norm and m,n, k ∈ Z+. Then u
( km
kn

)

T =

u
(m
n

)

T ∀ u ∈ L.

Proof. Trivial

Lemma 6.3.6. Let T : L2 → L be an Archimedean continuous t-norm. Then, ∀ u ∈ L\{0L , 1L},
it holds that T (u, u) <L u.

Proposition 6.3.7. Let T : L2 → L be a continuous t-norm. Then the following properties

hold:

(i) For given t ∈ R+, u
(t)
T ≤L v

(t)
T ∀ u, v ∈ L such that u ≤L v.

(ii) For a given u ∈ L, u
(t)
T ≥L u

(t′)
T ∀ t, t′ ∈ [0, 1] such that t < t′.

Proof. Trivial

Corollary 6.3.8. Let T : L2 → L be a continuous t-norm. If u
(t)
T ≤L v, then u ≤L v

(1/t)
T ∀ t ∈

R+, u, v ∈ L.

Proof. For given t ∈ R+ and u, v ∈ L,

u
(t)
T ≤L v ⇒ u

(t)
T ≤L v

(1)
T

⇒ (u
(t)
T )

(1)
T ≤L (v

(1)
T )

(1)
T

⇒ (u
(t)
T )

(1/t)
T ≤L (v

(1)
T )

(1/t)
T (by Proposition 6.3.7(i))

⇒ u
(t/t)
T ≤L v

(1/t)
T (by (6.8))

⇒ u ≤L v
(1/t)
T .
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Definition 6.3.9. Let η = (η1, η2) ∈ L and T : L2 → L be a continuous t-norm. Then, for

every u ∈ L, the power u
(η)
T is defined by

u
(η)
T = (pr1(u

(1−η2)
T ), pr2(u

(η1)
T )) (6.9)

Theorem 6.3.10. The operator u
(η)
T defined by (6.9) is an element of L for every η, u ∈ L.

Proof. To show that u
(η)
T = (pr1(u

(1−η2)
T ), pr2(u

(η1)
T )) belongs to L for every η = (η1, η2), u =

(u1, u2) ∈ L.

We know that, for every v = (v1, v2), w = (w1, w2) ∈ L such that

v ≤L w ⇔ v1 ≤ w1, v2 ≥ w2 ⇔ pr1(v) ≤ pr1(w), pr2(v) ≥ pr2(w) (6.10)

Since η = (η1, η2) ∈ L, η1 ≤ 1− η2.

Now, by Proposition 6.3.7(ii), we have

u
(1−η2)
T ≤L u

(η1)
T ⇒ pr1(u

(1−η2)
T ) ≤ pr1(u

(η1)
T ), pr2(u

(1−η2)
T ) ≥ pr2(u

(η1)
T ) (6.11)

Further,

u = u
(1)
T ≤L u

(1−η2)
T ≤L u

(0)
T = 1L , u = u

(1)
T ≤L u

(η1)
T ≤L u

(0)
T = 1L

⇔ 0 ≤ u1 ≤ pr1(u
(1−η2)
T ) ≤ 1, 1 ≥ u2 ≥ pr2(u

(η1)
T ) ≥ 0 (6.12)

pr1(u
(1−η2)
T ) + pr2(u

(η1)
T ) ≤ pr1(u

(1−η2)
T ) + pr2(u

(1−η2)
T )

Since u
(1−η2)
T ∈ L,

pr1(u
(1−η2)
T ) + pr2(u

(1−η2)
T ) ≤ 1 (6.13)

From (6.12) and (6.13), we have

0 ≤ pr1(u
(1−η2)
T ) ≤ 1, 0 ≤ pr2(u

(1−η2)
T ) ≤ 1, pr1(u

(1−η2)
T ) + pr2(u

(1−η2)
T ) ≤ 1.

Thus,

u
(η)
T = (pr1(u

(1−η2)
T ), pr2(u

(η1)
T )) ∈ L.

Lemma 6.3.11. Let T : L2 → L be a t-norm satisfying T (u+ εI , v+ εI) ≤L T (u, v) + εI ∀ εI =

(ε1, ε2) ∈ L \ {0L , 1L}, u, v ∈ L. Then

(v + εI)
(n)
T ≤L v

(n)
T + εI ∀ v ∈ L;n ∈ Z+. (6.14)
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Proof. By induction, we prove that (v + εI)
(n)
T ≤L v

(n)
T + εI ∀ n ∈ Z+. First one has that

(v + εI)
(1)
T = v + εI = v

(1)
T + εI . This shows that (6.14) hold for n = 1. Now, suppose that

(v + εI)
(k)
T ≤L v

(k)
T + εI holds ∀ n = k and k ∈ Z+. For n = k + 1,

(v + εI)
(k+1)
T = T ((v + εI)

(k)
T , v + εI) ≤L T (v

(k)
T + εI , v + εI) ≤L T (v

(k)
T , v) + εI = v

(k+1)
T + εI .

This shows that (6.14) hold for n = k+1. Thus (v + εI)
(n)
T ≤L v

(n)
T + εI ∀ v ∈ L;n ∈ Z+.

Assumption 6.3.12. Let us suppose that the following results hold for the t-norm T : L2 → L:

(i) (v − εI)(w)
T ≤L v

(w)
T − εI ∀ v, w ∈ L,

(ii) (v − εI)(w−εI)
T ≤L v

(w)
T ∀ v, w ∈ L,

where εI = (ε1, ε2) ∈ L \ {0L , 1L}.

6.4 T -power based implications and their properties

After studying the papers [45, 59, 128] and previous section, we define the following T -power

based implication.

Definition 6.4.1. A function IIRT : L2 → L is called a T -power based implication if there

exists a continuous t-norm T : L2 → L such that

IIRT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} ∀ u, v ∈ L. (6.15)

If IIRT is a T -power based implication generated by a continuous t-norm T , then we will often

denote it by IIT .

Remark 6.4.2. Note that the set {γ ∈ L : v
(γ)
T ≥L u} is always non-empty because of any

continuous t-norm T , v
(0L )
T = 1L ≥L u ∀ u, v ∈ L.

Theorem 6.4.3. The operator IIT defined by (6.15) is an IFI.

Proof. The fact that IIT defined by (6.15) is an IFI can be seen from the following:

• Let u <L u′. Then, we have {γ ∈ L : v
(γ)
T ≥L u′} ⊂ {γ ∈ L : v

(γ)
T ≥L u}, and hence

sup{γ ∈ L : v
(γ)
T ≥L u′} ≤L sup{γ ∈ L : v

(γ)
T ≥L u} ⇒ IIT (u′, v) ≤L IIT (u, v), i.e., IIT

satisfies (I1).

• Once again, let v <L v′. Then, we have {γ ∈ L : v
(γ)
T ≥L u} ⊂ {γ ∈ L : v

′(γ)
T ≥L u}, and

hence sup{γ ∈ L : v
(γ)
T ≥L u} ≤L sup{γ ∈ L : v

′(γ)
T ≥L u} ⇒ IIT (u, v) ≤L IIT (u, v′), i.e., IIT

satisfies (I2).



164

• IIT (0L , 0L) = sup{γ ∈ L : (0L)
(γ)
T ≥L 0L} = sup(L) = 1L ;

IIT (1L , 1L) = sup{γ ∈ L : (1L)
(γ)
T ≥L 1L} = sup(L) = 1L ;

IIT (1L , 0L) = sup{γ ∈ L : (0L)
(γ)
T ≥L 1L} = sup(0L) = 0L ,

i.e., IIT satisfies (I3).

Thus, the operator IIT defined by (6.15) is an IFI.

6.4.1 Residuation Principle

We say that power of element in L w.r.t. T satisfies the residuation principle if and only if, for

every u, v, w ∈ L

v
(w)
T ≥L u ⇔ IIT (u, v) ≥L w (6.16)

where IIT denotes the T -power based implication generated by a continuous t-norm T .

Example 6.4.4. [62] Let T : L2 → L be a mapping defined by

T (u, v) = (max(0, u1 + v1 − 1),min(1, u2 + v2)) ∀ u = (u1, u2), v = (v1, v2) ∈ L.

Then, it is easily verified that T is a continuous t-norm. Now we calculate, for u = (u1, u2), v =

(v1, v2), w = (w1, w2) ∈ L and n ∈ Z+, v
(n)
T , v

(1/n)
T and v

(w)
T

v
(n)
T =


0L , 0 ≤ v1 ≤ n−1

n
, 1 ≥ v2 ≥ 1

n
, v1 + v2 ≤ 1;

(0, nv2), 0 ≤ v1 ≤ n−1
n
, 0 ≤ v2 <

1
n
, v1 + v2 ≤ 1;

(nv1 − (n− 1), nv2), 1 ≥ v1 >
n−1
n
, 0 ≤ v2 <

1
n
, v1 + v2 ≤ 1.

n ∈ Z+.

v
(1/n)
T =

(
v1 + (n− 1)

n
,
v2

n

)
∀ v ∈ L, n ∈ Z+.

v
(w)
T =(1− (1− w2)(1− v1), w1v2) ∀ v, w ∈ L.

Now, we have, for u = (u1, u2), v = (v1, v2), w = (w1, w2) in L

v
(w)
T ≥L u ⇔ (1− (1− w2)(1− v1), w1v2) ≥L (u1, u2)

⇔ 1− (1− w2)(1− v1) ≥ u1 and w1v2 ≤ u2

Hence,

IIRT (u, v) =


1L , u1 ≤ v1 < 1, u2 ≥ v2 > 0;(
u2
v2
, 1− 1−u1

1−v1

)
, 0 < v1 ≤ u1, 1 > v2 ≥ u2;(

u2
v2
, 0
)
, u1 ≤ v1 < 1, v2 ≥ u2 > 0,

u, v ∈ L.
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Clearly, for each u, v ∈ L, IIRT (u, v) ∈ L. From the above calculations it follows immediately

that v
(w)
T ≥L u if and only if IIT (u, v) ≥L w, and so the residuation principle holds for power of

element in L w.r.t. T .

Example 6.4.5. [62] Let T : L2 → L be a mapping defined by

T (u, v) = (max(0, u1 + v1 − 1),min(1, u2 + 1− v1, v2 + 1− u1)) ∀ u = (u1, u2), v = (v1, v2) ∈ L.

Then it is easily verified that T is a continuous t-norm. Now we calculate, for u = (u1, u2), v =

(v1, v2), w = (w1, w2) ∈ L and n ∈ Z+, v
(n)
T , v

(1/n)
T and v

(w)
T

v
(n)
T =



0L , 0 ≤ v1 ≤ n−1
n
, 1 ≥ v2 ≥ max(0, (n

−1)v1 − (n− 2)), v1 + v2 ≤ 1;

(0, v2 + (n− 1)(1− v1)), 0 ≤ v1 ≤ n−1
n
, 0 ≤ v2 < (n− 1)v1

−(n− 2), v1 + v2 ≤ 1;

(nv1 − (n− 1), v2 + (n− 1)(1− v1)), 1 ≥ v1 >
n−1
n
, 0 ≤ v2 < (n− 1)v1

−(n− 2), v1 + v2 ≤ 1.

n ∈ Z+.

v
(1/n)
T =

(
v1 + (n− 1)

n
, v2 −

(n− 1)(1− v1)

n

)
∀ v ∈ L, n ∈ Z+.

v
(w)
T =(1− (1− w2)(1− v1), v2 − (1− w1)(1− v1)) ∀ v, w ∈ L.

Now, we have, for u = (u1, u2), v = (v1, v2), w = (w1, w2) in L

v
(w)
T ≥L u ⇔ (1− (1− w2)(1− v1), v2 − (1− w1)(1− v1)) ≥L (u1, u2)

⇔ 1− (1− w2)(1− v1) ≥ u1, v2 − (1− w1)(1− v1) ≤ u2

Hence, ∀ u, v ∈ L.

IIRT (u, v) =


1L , u1 ≤ v1 < 1, u2 ≥ v2;(
1− v2−u2

1−v1 , 1−
1−u1
1−v1

)
, 0 < v1 ≤ u1, v2 ≥ u2;(

1− v2−u2
1−v1 , 0

)
, u1 ≤ v1 < 1, v2 ≥ u2.

Clearly, for each u, v ∈ L, IIRT (u, v) ∈ L. From the above calculations it follows immediately

that v
(w)
T ≥L u if and only if IIT (u, v) ≥L w, and so the residuation principle holds for power of

element in L w.r.t. T .

Lemma 6.4.6. Let T : L2 → L be a continuous t-norm satisfying the residuation principle.

Then, for any u, v, w ∈ L such that v
(w)
T = u, ∃ w′ ∈ L such that w′ ≥L w, and

v
(w′)
T = u and IIRT (u, v) = w′ (6.17)
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Proof. Let u, v and w be elements of L for which v
(w)
T = u. Then, by residuation principle,

it follows that w ≤L IIRT (u, v). Define w′ as w′ = IIRT (u, v). Then w ≤L w′. Since T holds

Proposition 6.3.7,

v
(w′)
T ≤L v

(w)
T ⇒ v

(w′)
T ≤L u

On the other hand, since w′ = IIRT (u, v), by residuation principle, it follows that v
(w′)
T ≥L u.

Hence, v
(w′)
T = u. Thus, (6.17) holds.

Lemma 6.4.7. Let T : L2 → L be a continuous t-norm satisfying the residuation principle,

and u, u′, v, w, w′ be the arbitrary elements of L. Assume w and w′ satisfy

v
(w)
T = u and IIRT (u, v) = w

v
(w′)
T = u′ and IIRT (u′, v) = w′.

(6.18)

Then u′ ≤L u if and only if w ≤L w
′.

Proof. Assume that u, u′, v, w, w′ satisfy the condition (6.18). If u′ = v
(w′)
T ≤L v

(w)
T = u, then,

since IIRT is non-increasing corresponding to first component, w = IIRT (u, v) ≤L IIRT (u′, v)

= w′, so w ≤L w
′. Conversely, u′ ≤L u follows immediately from w ≤L w

′, since T holds from

Proposition 6.3.7.

6.4.2 Properties of IIT

Proposition 6.4.8. Let IIT be a T -power based implication operator. Then

(i) IIT satisfies (OP) and (IP).

(ii) IIT does not satisfy (NP).

(iii) IIT satisfies (SBC), (LBC) and (RBC).

Proof. (i) For u, v ∈ L,

u ≤L v ⇔ IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} = 1L .

Thus, IIT satisfies (OP). Obviously, IIT also satisfies (IP).

(ii) Putting u = 1L in (6.15), we have

IIT (1L , v) = sup{γ ∈ L : v
(γ)
T ≥L 1L}.
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There are two cases:

Case 1: If v <L 1L , then

IIT (1L , v) = sup{γ ∈ L : v
(γ)
T ≥L 1L}

=0L .

Case 2: If v = 1L , then

IIT (1L , v) = sup{γ ∈ L : v
(γ)
T ≥L 1L}

=1L .

From Case 1 and Case 2, we conclude that

IIT (1L , v) =

0L , v <L 1L ,

1L , v = 1L .

This shows that IIT does not satisfy (NP).

(iii) Consider u 6= 0L . Then it follows that IIT (1L , v) = sup{γ ∈ L : (0L)
(γ)
T ≥L u} = 0L . This

implies that IIT satisfies (SBC). Obviously IIT also satisfies (LBC) and (RBC).

Example 6.4.9. Consider a continuous t-norm T defined by T (u, v) = (u1v1, 1− (1− u2)(1−
v2)) ∀ u = (u1, u2), v = (v1, v2) ∈ L. Then T -power based implication IIT is given by

IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u}

= sup{(γ1, γ2) ∈ L : (v1−γ2
1 , 1− (1− v2)γ1) ≥L (u1, u2)}

= sup{(γ1, γ2) ∈ L : v1−γ2
1 ≥ u1, 1− (1− v2)γ1 ≤ u2} (6.19)

Putting u = 1L in (6.19), we have

IIT (1L , v) = sup{γ ∈ L : v
(γ)
T ≥L 1L}

= sup{(γ1, γ2) ∈ L : (v1−γ2
1 , 1− (1− v2)γ1) ≥L (1, 0)}

= sup{(γ1, γ2) ∈ L : v1−γ2
1 ≥ 1, 1 ≤ (1− v2)γ1}

=

0L , v <L 1L ,

1L , v = 1L ,

i.e., IIT does not satisfy (NP).
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Proposition 6.4.10. The T -power based implication operator IIT satisfies (NP) if ∀ u ∈ L the

following two conditions hold:

(i) u
(w)
T <L 1L for any w >L u;

(ii) for every εI >L 0L there is u− εI <L w ≤L u such that u
(w)
T ≥L 1L .

Proof. Suppose conditions (i) and (ii) hold. Then prove that IIT satisfies (NP). Condition (i)

implies IIT (1L , u) ≤L u and condition (ii) implies IIT (1L , u) ≥L w >L u − εI from which we

obtain IIT (1L , u) ≥L u since εI is arbitrary. Thus IIT (1L , u) = u, i.e., IIT satisfies (NP).

Corollary 6.4.11. The T -power based implication operator IIT satisfies (NP) if and only if

u
(u)
T = 1L for every u ∈ L.

Proof. (⇒) Suppose IIT satisfies (NP). Then to prove that u
(u)
T = 1L for every u ∈ L. By the

(NP) of IIT , we have IIT (1L , u) = u ⇒ sup{γ ∈ L : u
(γ)
T = 1L} = u. Thus u

(u)
T = 1L for every

u ∈ L.

(⇐) Suppose u
(u)
T = 1L for every u ∈ L holds. Then prove that IIT satisfies (NP). Since

u
(u)
T = 1L for every u ∈ L, IIT (1L , u) = sup{γ ∈ L : u

(γ)
T = 1L} = u. Thus IIT (1L , u) = u, i.e.,

IIT satisfies (NP).

Proposition 6.4.12. The T -power based implication operator IIT satisfies (CB) if and only if

v
(w)
T ≥L u for every w <L v and u, v, w ∈ L.

Proof. (⇒) If possible let u0, v0, w0 ∈ L with w0 <L v0 such that v
(w0)
0T <L u0. This implies that

IIT (u0, v0) ≤L w0 <L v0, which is contradiction because of IIT satisfies (CB). Hence v
(w)
T ≥L u

for every w <L v.

(⇐) If v
(w)
T ≥L u for every w <L v, then {w ∈ L : 0L ≤L w <L v} ⊆ {w ∈ L : v

(w)
T ≥L u}.

This implies that sup{w ∈ L : 0L ≤L w <L u} ≤L sup{w ∈ L : v
(w)
T ≥L u}. Thus v ≤L IIT (u, v),

i.e., IIT satisfies (CB).

Proposition 6.4.13. Let IIT be a T -power based implication operator. Then IIT satisfies (SIB)

if and only if IIT satisfies (CB).

Proof. For every u, v, w ∈ L, IIT satisfies (CB), i.e.,

IIT (u, v) ≥L v ⇔ sup{w ∈ L : v
(w)
T ≥L u} ≥L v

⇔ {w ∈ L : v
(w)
T ≥L u} ⊆ {w ∈ L : (sup{z ∈ L : v

(z)
T ≥L u})(w)

T ≥L u}

⇔ sup{w ∈ L : v
(w)
T ≥L u} ≤L sup{w ∈ L : (IIT (u, v))

(w)
T ≥L u}

⇔ IIT (u, v) ≤L IIT (u, IIT (u, v)),

i.e., IIT satisfies (SIB).
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Corollary 6.4.14. Let IIT be a T -power based implication operator. Then the following state-

ments are equivalent:

(i) IIT satisfies (CB).

(ii) v
(w)
T ≥L u for every w <L v and u, v, w ∈ L.

(iii) IIT satisfies (SIB).

Proposition 6.4.15. Let IIT be a T -power based implication operator satisfying the Assumption

6.3.12. Then the following properties hold:

(i) IIT (u+ εI , v) ≥L IIT (u, v − εI) ∀ u, v, w ∈ L,

(ii) IIT (u, v) ≥L IIT (u, v − εI) + εI ∀ u, v, w ∈ L,

(iii) IIT (u+ εI , v + εI) ≥L IIT (u, v) ∀ u, v, w ∈ L.

Proof. Let T : L2 → L and IIT : L2 → L be a continuous t-norm and a T -power based

implication operator respectively. In view of Assumption 6.3.12, T satisfies results (i) and (ii)

of Assumption 6.3.12.

(i) For each εI ∈ L with εI >L 0L , (v − εI)(w)
T ≤L v

(w)
T − εI , we have

{w ∈ L : v
(w)
T ≥L u+ εI} ⊇ {w ∈ L : (v − εI)(w)

T ≥L u},

which implies that

sup{w ∈ L : v
(w)
T ≥L u+ εI} ≥L sup{w ∈ L : (v − εI)(w)

T ≥L u}.

Thus, IIT (u+ εI , v) ≥L IIT (u, v − εI).

(ii) For each εI ∈ L with εI >L 0L , (v − εI)(w−εI)
T ≤L v

(w)
T , we have

{w ∈ L : v
(w)
T ≥L u} ⊇ {w ∈ L : (v − εI)(w−εI)

T ≥L u},

which implies that

sup{w ∈ L : v
(w)
T ≥L u} ≥L sup{w ∈ L : (v − εI)(w−εI)

T ≥L u}, or

sup{w ∈ L : v
(w)
T ≥L u} ≥L sup{w ∈ L : (v − εI)(w)

T ≥L u}+ εI .

Thus, IIT (u, v) ≥L IIT (u, v − εI) + εI .
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(iii) For each εI ∈ L with εI >L 0L , v
(w)
T + εI ≤L (v + εI)

(w)
T , we have

{w ∈ L : (v + εI)
(w)
T ≥L u+ εI} ⊇ {w ∈ L : v

(w)
T ≥L u},

which implies that

sup{w ∈ L : (v + εI)
(w)
T ≥L u+ εI} ≥L sup{w ∈ L : v

(w)
T ≥L u}.

Thus, IIT (u+ εI , v + εI) ≥L IIT (u, v).

Remark 6.4.16. Note that, if u >L v, by Proposition 6.4.15(iii), for any εI >L 0L we have the

following string of inequalities:

IIT (u, v) ≤L IIT (u+ εI , v + εI) ≤L IIT (u+ 2εI , v + 2εI) ≤L · · · ≤L IIT (1L , 1L − u+ v).

Inspired by the paper [100], for any α ∈ L \ {1L}, the non-increasing partial function

IIT (., α) : L → L, which will be denoted by N α
IIT

. Observe that

(i) N α
IIT

(α) = 1L

(ii) N α
IIT

(1L) = α whenever two conditions hold:

• α(w)
T <L 1L for any w >L α;

• for every εI >L 0L there is α− εI <L w ≤L α such that α
(w)
T ≥L 1L .

(iii) N α
IIT

is non-increasing.

Remark 6.4.17. If we put α = 0L in N α
IIT

, then N α
IIT

is the natural negation of IIT .

Remark 6.4.18. (i) u is T −idempotent, i.e., T (u, u) = u iff IIT (u, v) = 0L ∀ v <L u.

(ii) For every continuous t-norm T , the natural negation of IIT is the Gödel negation, i.e.,

NIIT (u) = IIT (u, 0L) = sup{γ ∈ L : 0
(γ)
T ≥L u} =

1L , u = 0L ,

0L , u >L 0L .

Proposition 6.4.19. Let IIT be a T -power based implication operator. If IIT satisfies con-

trapositive property w.r.t. negation N , i.e., IIT (u, v) = IIT (N (v),N (u)), then the following

hold:

(i) The natural negation of IIT is the Gödel negation.
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(ii) N is decreasing.

(iii) If N is continuous, then u is T −idempotent iff N (u) is T −idempotent

Theorem 6.4.20. For α ∈ L \ {0L , 1L}, N α
IIT

is a continuous function.

Proof. Let us suppose that N α
IIT

is not continuous, i.e., there is α ∈ L \ {0L , 1L} such that

IIT (., α) is not continuous at some point u0 ∈ L. Thus there is a sequence {un} in L such that

un → u0 as n → ∞ but IIT (un, α) 9 p0 = IIT (u0, α), i.e., for some εI >L 0L and fixed N such

that p0 + εI <L IIT (un, α) or IIT (un, α) <L p0− εI for n ≥ N and un → u0. There are two cases:

Case 1: If p0 + εI <L IIT (un, α) for n ≥ N and un → u0, then

α
(p0+εI)
T ≥L un for n ≥ N

⇒ α
(p0+εI)
T ≥L u0

⇒ IIT (u0, α) ≥L p0 + εI ⇒ p0 ≥L p0 + εI

which contradicts the fact p0 <L p0 + εI .

Case 2: If IIT (un, α) <L p0 − εI for n ≥ N and un → u0, then

α
(p0−εI)
T <L un for n ≥ N

⇒ α
(p0−εI)
T <L u0

⇒ IIT (u0, α) <L p0 − εI ⇒ p0 <L p0 − εI

which contradicts the fact p0 >L p0 − εI .

From above two cases, it is clear that N α
IIT

is a continuous function for any α ∈ L \ {0L , 1L}.

Theorem 6.4.21. For α ∈ L \ 0L , N α
IIT

is decreasing.

Proof. We know that N α
IIT

is non-increasing for any fixed α ∈ L \ 0L . On the contrary, let us

suppose that N α
IIT

is constant on the u, u0 ≤L u ≤L v0, for some α <L u0 <L v0 <L 1L , i.e., ∃ q,
α ≤L q ≤L 1L , such that

N α
IIT

(u0) = N α
IIT

(v0) = q

For fix arbitrary w, u0 <L w <L v0, there are three cases:

Case 1: If q = 1L , then

N α
IIT

(w) = sup{γ ∈ L : α
(γ)
T ≥L z} = 1L .

Thus, α
(1L−εI)
T ≥L w for any εI ∈ L\{0L , 1L}. Since T is continuous, limεI→0+L

α
(1L−εI)
T ≥L w.

This implies that α ≥L w, which contradicts the fact that α <L w.
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Case 2: If q = α, then

N α
IIT

(w) = sup{γ ∈ L : α
(γ)
T ≥L z} = α.

Thus, α
(α+εI)
T <L w for any εI such that 0L <L εI <L 1L − εI . Since T is continuous,

limεI→0−L
α

(α+εI)
T <L w. This implies that α

(α)
T <L w, which is not uniformly true because

of α <L w. This can be shown with the help of example. Let us consider the continuous

t-norm T given by

T (u, v) = (u1v1, 1− (1− u2)(1− v2)) ∀u = (u1, u2), v = (v1, v2) ∈ L.

Taking α = (0.1, 0.2) and z = (0.2, 0.1). Clearly, α <L z. Now,

α
(α)
T = (0.10.1, 1− 0.80.2) = (0.794, 0.044) >L (0.2, 0.1), i.e., α

(α)
T >L w while α <L w.

Thus, our assumption is wrong.

Case 3: If α <L q <L 1L , then

N α
IIT

(w) = sup{γ ∈ L : α
(γ)
T ≥L w} = q.

Thus, α
(q−εI)
T ≥L w >L α

(q+εI)
T for any εI >L 0L such that q − εI ≥L α and q + εI ≤L 1L .

Since T is continuous, α
(q)
T = w. Now this happens for every q, α <L q <L 1L , which

contradicts the fact that T is a function itself.

Hence N α
IIT

is decreasing.

Theorem 6.4.22. Let T : L2 → L be a continuous t-norm and IIT be a T -power based impli-

cation. Then IIT is continuous iff N 0L
IIT

is continuous.

Proof. Suppose that N 0L
IIT

is continuous. We have to prove that IIT is continuous. By Theorem

6.4.20 and the continuity of N 0L
IIT

(u), it clear that IIT is continuous corresponding to first argu-

ment. We have only to show that IIT is continuous in its second argument. If not, then there

is u0 ∈ L such that IIT (u0, .) is not continuous at some v0 ∈ L, i.e., there is a sequence {vn} in

L such that vn → v0 as n → ∞ but IIT (u0, vn) 9 q0 = IIT (u0, v0), i.e., for some εI >L 0L and

fixed N such that q0 + εI <L IIT (u0, vn) <L q0− εI for n ≥ N and vn → v0. There are two cases:

Case 1: If q0 + εI <L IIT (u0, vn) for n ≥ N and vn → v0, then

v
(q0+εI)
nT ≥L u0 for n ≥ N

⇒ v
(q0+εI)
0T ≥L u0

⇒ IIT (u0, v0) ≥L q0 + εI ⇒ q0 ≥L q0 + εI

which contradicts the fact q0 <L q0 + εI .
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Case 2: If IIT (u0, vn) <L q0 − εI for n ≥ N and vn → v0, then

v
(q0−εI)
nT <L u0 for n ≥ N

⇒ v
(q0−εI)
0T <L u0

⇒ IIT (u0, v0) <L q0 − εI ⇒ q0 <L q0 − εI

which contradicts the fact q0 >L q0 − εI .

From above two cases, it is clear that IIT is continuous corresponding to second argument. Thus

IIT is continuous in both arguments. Since IIT is monotone, IIT is continuous.

Conversely, if N 0L
IIT

is not continuous, then IIT (x, 0L) is not continuous.

6.5 Solutions of Boolean-like Laws

In this section, we investigate the solutions of Boolean-like laws in a T -power based implication

operator IIT .

6.5.1 Solution of v ≤L II(u, v)

In this subsection, we will discuss the solution of the Boolean-like law:

v ≤L II(u, v) ∀ u, v ∈ L (6.20)

where II is an IFI.

Lemma 6.5.1. Every IIT satisfies (6.20) if IIT satisfies (NP), i.e., IIT follows the Proposition

6.4.10.

Proof. Since u ≤L 1L , by (I2) and (NP), we have IIT (u, v) ≥L IIT (1L , v) = v.

(6.20) is (CB) property. For all other solutions of (6.20), please see Propositions 6.4.12 and

6.4.13.

6.5.2 Solution of II(u, II(v, u)) = 1L

In this subsection, we will study the solution of the Boolean-like law:

II(u, II(v, u)) = 1L ∀ u, v ∈ L (6.21)

where II is an IFI.
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Theorem 6.5.2. Every IIT satisfies (6.21) iff u
(w)
T ≥L v for every w <L u and u, v, w ∈ L.

Proof. Let T be a continuous t-norm and IIT be a T − power based implication operator.

(⇒) Let us suppose that u
(w)
T ≥L v for every w <L u and u, v, w ∈ L. Then, by Proposition

6.4.12, IIT satisfies (CB) so IIT (v, u) ≥L u. Since IIT is non-decreasing corresponding to second

tuple, IIT (u, IIT (v, u)) ≥L IIT (u, u) = 1L . Thus IIT (u, IIT (v, u)) = 1L .

(⇐) Suppose IIT satisfies IIT (u, IIT (v, u)) = 1L . Since IIT satisfies (OP), IIT (u, IIT (v, u)) =

1L ⇒ u ≤L IIT (v, u). This implies that IIT satisfies (CB). Then by Proposition 6.4.12, it is

concluded that u
(w)
T ≥L v for every w <L u and u, v, w ∈ L.

Corollary 6.5.3. Every IIT satisfies (6.21) iff IIT satisfies (CB).

6.5.3 Solution of II(u, v) = II(u, II(u, v))

In this subsection, we find the solution of the Boolean-like law:

II(u, v) = II(u, II(u, v)) ∀ u, v ∈ L (6.22)

where II is an IFI.

Theorem 6.5.4. Every IIT satisfies (6.22) iff IIT (u, v) =

1L , 0L ≤L u ≤L v,

0L , 0L ≤L v <L u,
∀ u, v, w ∈ L.

Proof. Let T be a continuous t-norm and IIT be a T − power based implication operator.

(⇒) Let us suppose that IIT satisfies (6.22). Then we have to prove that IIT (u, v) =1L , 0L ≤L u ≤L v,

0L , 0L ≤L v <L u,
∀ u, v, w ∈ L. Firstly, we have to show that u

(u)
T = u for all u ∈ L \ 0L .

Obviously, when t, u ≤L t ≤L 1L , IIT (u, t) = 1L ≥L u holds by the (OP) of IIT . Let us suppose

that there exist t0, 0L ≤L t0 <L u such that IIT (u, t0) ≥L u. Then by (OP) of IIT , we have

IIT (u, IIT (u, t0)) = 1L . Using (6.22), we have IIT (u, t0) = IIT (u, IIT (u, t0)) = 1L . This implies

that u ≤L t0, which contradicts the fact 0L ≤L t0 <L u. Hence IIT (u, t0) <L u for all t0,

0L ≤L t0 <L u.

Now, when u ≤L t ≤L 1L ,

IIT (u, t) ≥L u ⇒ sup{γ ∈ L : t
(γ)
T ≥L u} ≥L u ⇒ t

(u)
T ≥L u (6.23)

Moreover, when 0L ≤L t0 <L u,

IIT (u, t0) <L u ⇒ sup{γ ∈ L : (t0)
(γ)
T ≥L u} <L u ⇒ (t0)

(u)
T <L u (6.24)
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Since T is the continuous, (6.23) and (6.24) are as

lim
t→u

t
(u)
T = u

(u)
T ≥L u (6.25)

lim
t0→u

(t0)
(u)
T = u

(u)
T <L u (6.26)

From (6.25) and (6.26), we have

u
(u)
T = u (6.27)

Taking 0L ≤L u ≤L v, we have

IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} = sup{1L} = 1L (6.28)

Taking 0L ≤L v <L u, we have

IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} = sup{0L} = 0L (6.29)

Combining (6.28) and (6.29), we have

IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L ,

(⇐) It is easy to see that the IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L ,

satisfies (6.22).

Corollary 6.5.5. Every IIT satisfies (6.22) iff u
(u)
T = u ∀ u ∈ L \ 0L .

Proof. Let T be a continuous t-norm and IIT be a T − power based implication operator.

(⇒) Let us suppose that IIT satisfies the (6.22). Then by using Theorem 6.5.4, we obtain

u
(u)
T = u ∀ u ∈ L \ 0L .

(⇐) Suppose u
(u)
T = u holds ∀ u ∈ L \ 0L . Then by Theorem 6.5.4, we get

IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L ,

∀ u, v, w ∈ L. It is easy to see that the IIT satisfies (6.22).
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6.5.4 Solution of II(u, II(v, w)) = II(II(u, v), II(u,w))

In this subsection, we find the solution of the Boolean-like law:

II(u, II(v, w)) = II(II(u, v), II(u,w)) ∀ u, v, w ∈ L (6.30)

where II is an IFI.

Theorem 6.5.6. Every IIT satisfies (6.30) iff IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L

∀ u, v, w ∈ L.

Proof. Let T be a continuous t-norm and IIT be a T − power based implication operator.

(⇒) Let us suppose that IIT satisfies the (6.30). Then we have to prove that IIT (u, v) =1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L

∀ u, v, w ∈ L. Firstly, we have to show that u
(u)
T = u ∀ u ∈ L \ 0L .

Obviously, when u ≤L t ≤L 1L , IIT (u, t) = 1L ≥L u holds by the (OP) of IIT . Let us

suppose that there exists t0, 0L ≤L t0 <L u such that IIT (u, t0) ≥L x. Then by (OP) of

IIT , we have IIT (u, IIT (u, t0)) = 1L . Using the (6.30), we have 1L = IIT (u, IIT (u, t0)) =

IIT (IIT (u, u), IIT (u, t0)). Since IIT satisfies (IP), 1L = IIT (IIT (u, u), IIT (u, t0)) = IIT (1L , IIT (u, t0)) ⇒
1L ≤L IIT (u, t0), by (OP) IIT , but 1L ≥L IIT (u, t0). Thus IIT (u, t0) = 1L . This implies that

u ≤L t0, which contradict the fact 0L ≤L t0 <L u. Hence IIT (u, t0) <L u for all t0, 0L ≤L t0 <L u.

Now, when u ≤L t ≤L 1L ,

IIT (u, t) ≥L u ⇒ sup{γ ∈ L : t
(γ)
T ≥L u} ≥L u ⇒ t

(u)
T ≥L u (6.31)

Moreover, when 0L ≤L t0 <L u,

IIT (u, t0) <L u ⇒ sup{γ ∈ L : (t0)
(γ)
T ≥L u} <L u

⇒ (t0)
(u)
T <L u (6.32)

Since T is the continuous, (6.31) and (6.32) imply that

lim
t→u

t
(u)
T = u

(u)
T ≥L u (6.33)

lim
t0→u

(t0)
(u)
T = u

(u)
T <L u (6.34)

From (6.33) and (6.34), we have

u
(u)
T = u (6.35)
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Taking 0L ≤L u ≤L v, we obtain that

IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} = sup{1L} = 1L (6.36)

Taking 0L ≤L v <L u, we have

IIT (u, v) = sup{γ ∈ L : v
(γ)
T ≥L u} = sup{0L} = 0L (6.37)

Combining (6.36) and (6.37), we have

IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L ,

(⇐) Easily, we see that the IIT (u, v) =

1L , v ≥L u ≥L 0L ,

0L , u >L v ≥L 0L

satisfies (6.30).

Corollary 6.5.7. Every IIT satisfies (6.30) iff u
(u)
T = u ∀ u ∈ L \ 0L .

6.6 Concluding remarks

In this chapter, T -power-based implications as a new class of implication operators on L was

introduced. We have studied the properties of these implications. We have observed that some

of the properties of fuzzy implications acting on the real unit interval [0, 1] are not satisfied

by related T -power-based implications acting on L. We have shown that the studied T -power-

based implications on L satisfy the discussed properties after addition of some extra conditions.

After that, the string of inequality of IIT has been established. We have also introduced a new

type of negation N α
IIT

based on IIT , continuity and strictly monotonicity of this negation has

been analyzed. Finally, we have investigated the solutions of Boolean-like laws (6.3) in IIT .
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Chapter 7

Distributivity of implication operators

on L over t-representable t-norms: The

case of strict and nilpotent t-norms

In this chapter, a new class of IFIs known as (fI, ω)-implications is introduced which is a gener-

alized form of Yager’s f-implications in IFE. Basic properties of these implications are discussed

in detail. It is shown that (fI, ω)-implications are not only the generalizations of Yager’s f-

implications, but also the generalizations of R -, (S , N)- and QL-implications in IFE. The distribu-

tive equations II(T (u, v), w) = S(II(u,w), II(v, w)) and II(u, T1(v, w)) = T2(II(u, v), II(u,w))

over t-representable t-norms and t-conorms generated from nilpotent and strict t-norms in IFS

theory are discussed. Also, one of the open problems posed by Baczyński [17, 18] is solved.

7.1 Introduction

In fuzzy logic, FIs have become one of the most important operators [19]. These implications

are derived from the new class of implications such as (g, min)-implications [116], generalized

h-generators [117] and (g, u)-implications [196] etc. Fuzzy implications are also very useful in

fuzzy connectivity ([44, 102, 172]). Nowadays, many different extensions of FSs are known as

L-FSs [80], interval-valued FS [81] which represents the degree of membership of an element by

an interval rather than exact numerical value and IFS [11] to model the non-determinacy which

occurs in the system because of the the hesitation of decision maker etc. An IFS is described

by a membership function and a non-membership function. It is proven to be a more suitable

tool than an FS to describe imprecise or uncertain information.
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Interval-valued FS theory has become very popular from both theoretical and practical

aspects. One can find theoretical articles connected with different classes of interval-valued

logical connectives like interval-valued fuzzy negations [26], interval-valued t-norms [56, 174],

interval-valued fuzzy uninorms [57], interval-valued fuzzy implications [5, 27, 28, 111], interval-

valued fuzzy implications based on binary aggregation operators [61, 118] and interval-valued

fuzzy relations [55, 173]. Similarly, one can find many articles with practical applications of

interval-valued FS theory to the robustness of interval-valued fuzzy inference and a representable

of cardinality (see [58, 113]).

IFSs have become very popular that are connected with different classes of intuitionistic

logical connectives like intuitionistic t-norms [59], IFIs [33, 45, 161] and intuitionistic fuzzy

relations (IF relations) [34, 146]. Atanassov’s intuitionistic De Morgan triple via automorphisms

is introduced and used in approximate reasoning (see [46, 200]).

7.1.1 Motivation

Combs and Andrews [44] attempted to exploit the equivalence

(j ∧ k)→ l ≡ (j → l) ∨ (k → l) (7.1)

towards eliminating combinatorial rule explosion in fuzzy systems. It is one of the four equations

given by Cox [49]. The remaining three equations are as follows:

(j ∨ k)→ l ≡(j → l) ∧ (k → l) (7.2)

j → (k ∧ l) ≡(j → k) ∧ (j → l) (7.3)

j → (k ∨ l) ≡(j → k) ∨ (j → l) (7.4)

Obviously, the above equivalences are tautologies in classical logic and their generalizations in

fuzzy logic lead to the distributivity of fuzzy implications over t-norms and t-conorms as given

below:

I(T (a, b), c) =S(I(a, c), I(b, c)) (7.5)

I(S(a, b), c) =T (I(a, c), I(b, c)) (7.6)

I(a, T1(b, c)) =T2(I(a, b), I(a, c)) (7.7)

I(a, S1(b, c)) =S2(I(a, b), I(a, c)) (7.8)

for a, b, c ∈ [0, 1], where I is a fuzzy implication; T, T1, T2 are t-norms and S, S1, S2 are t-

conorms in fuzzy environment. The above equations play an important role in lossless rule
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reduction in Fuzzy Rule Based Systems [21, 49]. Conditions under which eqs. (7.5)-(7.8) hold

for (S,N)-, R−, QL-implications can be found in [19, 22, 172]. Balasubramaniam [21] studied

the distributivity of Yager’s f -implications over t-norms and t-conorms. Baczyński and Jayaram

[20] investigated the implications that satisfy eqs. (7.5)-(7.8) for nilpotent or strict triangular

conorms.

Atanassov and Gargov [15] proposed the elements of IF logic. Obviously, the equivalences

(7.1)-(7.4) are tautologies in classical logic and their generalizations in IF logic lead to the

distributivity of IFIs over t-norms and t-conorms in IFE as given below:

II(T (u, v), w) =S(II(u,w), II(v, w)) (7.9)

II(S(u, v), w) =T (II(u,w), II(v, w)) (7.10)

II(u, T1(v, w)) =T2(II(u, v), II(u,w)) (7.11)

II(u, S1(v, w)) =S2(II(u, v), II(u,w)) (7.12)

for u, v, w ∈ L, where II is an IFI; T , T1, T2 are t-norms and S , S1, S2 are t-conorms in IF

environment. Now, we define Yager’s class of implications in fuzzy and IF environment.

Definition 7.1.1. [19] Let f : [0, 1]→ [0,∞] be a decreasing and continuous function satisfying

f(1) = 0. Then a function If : [0, 1]2 → [0, 1] defined by

If (a, b) = f (−1)(af(b)) ∀ a, b ∈ [0, 1] (7.13)

is called the Yager’s class of fuzzy implications generated by f.

Definition 7.1.2. Suppose that L = {(u1, u2) ∈ [0, 1]2 : u1 + u2 ≤ 1}. Let fI : L → [0,∞]2

be a decreasing and continuous function satisfying fI(1L) = 0L . Then a function IIfI : L2 → L

defined by

IIfI(u, v) = f
(−1)
I (ufI(v)) ∀ u, v ∈ L, (7.14)

is called the Yager’s class of IFIs generated by fI.

Motivated by the Definition 7.1.2, we propose new implications known as (fI, ω)-implications

which are generalized form of the Yager’s class of IFIs. Baczyński [17] solved distributive eqs.

(7.9) and (7.11) when t-norms are strict. The solutions of distributive eqs. (7.9) and (7.11)

have been obtained with the help of all the solutions of the following functional equation:

h(y1 + z1, y2 + z2) = h(y1, y2) + h(z1, z2), (y1, y2), (z1, z2) ∈ L∞ (7.15)

where L∞ = {(y1, y2) ∈ [0,∞]2 : y1 ≥ y2} and h : L∞ → [0,∞] is an unknown function. This

equation is related to the case with strict t-norms.
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In each of the distributive eqs. (7.9) and (7.11), there are 15 possible solutions corresponding

to the vertical section of II(u, .) and 15 possible solutions corresponding to the horizontal section

for a fixed u ∈ L. Thus, 225 different possible solutions of each of distributive eqs. (7.9) and

(7.11) are obtained. But all the possible solutions for the (7.9) and (7.11) are not correct

solutions. Baczyński [17] has posed the following open problem.

Problem 1. Characterize all of the correct solutions out of 225 different solutions of distributive

eq. (7.11) when t-norms are strict (for a fixed u ∈ L or a fixed v ∈ L).

On other hand, Baczyński [18] solved distributive eqs. (7.9) and (7.11) when the t-norms

are nilpotent. The solutions of distributive eqs. (7.9) and (7.11) are obtained with the help of

all the obtained solutions of the following functional equation, for fix real numbers a, b > 0,

h(min(y1 + z1, a),min(y2 + z2, a)) = min(h(y1, y2) + h(z1, z2), b), (y1, y2), (z1, z2) ∈ La (7.16)

where La = {(y1, y2) ∈ [0, a]2 : y1 ≥ y2} and h : La → [0, a] is an unknown function. This

equation is related to the case with nilpotent t-norms. In each of the distributive eqs. (7.9)

and (7.11), there are 9 possible solutions corresponding to the vertical section of II(u, .) and 9

possible solutions corresponding to the horizontal section for a fixed u ∈ L. Thus, 81 different

possible solutions of each of the distributive eqs. (7.9) and (7.11) are obtained. But all the

possible solutions for the (7.9) and (7.11) are not correct solutions. Baczyński [18] has posed

the following open problem.

Problem 2. Characterize all of the correct solutions out of 81 different solutions of distributive

eq. (7.11) when t-norms are nilpotent (for a fixed u ∈ L or a fixed v ∈ L).

After motivated by above facts, we solve the open problems posed by Baczyński [17, 18].

In this chapter, we have solved distributive eqs. (7.9) and (7.11) when the t-norms are

nilpotent and distributive eqs. (7.10) and (7.12) when the t-norms.

The rest of the paper is organized as follows. In Section 7.2, we introduce some basic defini-

tions needed throughout the whole paper. The core of the paper is represented by Sections 7.3

and 7.4 concerning to the development of the new class of IFI known as (fI, ω)-implication which

is a generalization of Yager’s f-implications in IFE, the discussion of some of their properties

and the proofs of specific results, and the solution of open problems related to the distributivity

of (fI, ω)-implication over t-representable t-norms in IFE. Finally, the paper ends with Section

7.5 containing conclusions.
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7.2 Preliminaries

Definition 7.2.1. [11]

1). L = {(u1, u2) : (u1, u2) ∈ [0, 1]2, u1 + u2 ≤ 1} be an IF interpretation triangle and the

operation ≤L be defined on L by

(u1, u2) ≤L (v1, v2)⇔ u1 ≤ v1, u2 ≥ v2, ∀ (u1, u2), (v1, v2) ∈ L.

For each nonempty set A ⊆ L, we have

sup A =(sup{u1 : (u1, u2) ∈ A}, inf{u2 : (u1, u2) ∈ A}),

inf A =(inf{u1 : (u1, u2) ∈ A}, sup{u2 : (u1, u2) ∈ A}).

Then (L,≤L) is a complete lattice [60]. Equivalently, this lattice can also be defined as an

algebraic structure (L,∨,∧) where the join operator ∨ and the meet operator ∧ are defined

as follows:

For x, y ∈ L,

u ∨ v = (max(u1, v1),min(u2, v2)), u ∧ v = (min(u1, v1),max(u2, v2)).

2). For an arbitrary number P in [1,∞), we define the sets

L≤P ={(u1, u2) : (u1, u2) ∈ [0, P ]2, u1 + u2 ≤ P},

L=P ={(u1, u2) : (u1, u2) ∈ [0, P ]2, u1 + u2 = P},

L≥P ={(u1, u2) : (u1, u2) ∈ [0,∞]2, u1 + u2 ≥ P}.

The operation ≤L≤P , for fixed P on L≤P , defined by

(u1, u2) ≤L≤P (v1, v2)⇔ u1 ≤ v1, u2 ≥ v2, ∀ (u1, u2), (v1, v2) ∈ L≤P .

For each nonempty set A ⊆ L≤P , we have

sup A =(sup{u1 : (u1, u2) ∈ A}, inf{u2 : (u1, u2) ∈ A}),

inf A =(inf{u1 : (u1, u2) ∈ A}, sup{u2 : (u1, u2) ∈ A}).

Clearly (L≤P ,≤L≤P ) is a complete lattice.

3). For an arbitrary number P in [1,∞), the operation ≤L≤≥P on L≤P ∪ L≥P defined by

(u1, u2) ≤L≤≥P (v1, v2)⇔ u1 ≤ v1, u2 ≥ v2 ∀ (u1, u2), (v1, v2) ∈ L≤P ∪ L≥P .

Then (L≤P ∪ L≥P ,≤L≤≥P ) is a lattice.
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4). The operations ≤∞ and <∞ on [0,∞]2 respectively defined by

(u1, u2) ≤∞ (v1, v2)⇔ u1 ≤ v1, u2 ≥ v2, (u1, u2) <∞ (v1, v2)⇔ u1 < v1, u2 > v2

∀ (u1, u2), (v1, v2) ∈ [0,∞]2.

Remark 7.2.2. (i) Note that if for (u1, u2), (v1, v2) ∈ L, u1 < v1 and u2 < v2, then u and v

are incomparable with respect to ≤L , written as u‖Lv.

(ii) Note that if for (u1, u2), (v1, v2) ∈ L≤P , u1 < v1 and u2 < v2, then u and v are incomparable

with respect to ≤L≤P , written as u‖L≤P v.

(iii) For p = 1, the set L≤p represents the set L.

(iv) We denote the units 0L = (0, 1), 1L = (1, 0) for the set L, and 0L≤P = (0, P ), 1L≤P = (P, 0)

for the set L≤P .

7.3 (fI, ω)-implications

Definition 7.3.1. A function fI : L → [0,∞]2 is said to be a decreasing generator on L if it

satisfies the following conditions:

(i) fI is decreasing,

(ii) fI is continuous,

(iii) fI(1L) = 0L .

Example 7.3.2. Consider the following mappings from L → L:

(i) f1I(u) = (u2, 1− u2),

(ii) f2I(u) = (1− u1 + u2, 1− u2),

∀ (u1, u2) ∈ L. It is easily verified that these are the decreasing generators on L.

Definition 7.3.3. Let fI : L → [0,∞]2 be a decreasing generator on L. Then the pseudo-inverse

f
(−1)
I : [0,∞]2 → L of fI is defined by

f
(−1)
I (v) = sup{u : u ∈ L, fI(u) >∞ v} ∀ v ∈ [0,∞]2.

Generally, ∃ a fI : L → [0,∞]2 mapping which is a decreasing generator on L but does not

satisfy the property f
(−1)
I (fI(u)) = u.
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Example 7.3.4. The pseudo-inverse of decreasing generators, given in Examples 7.3.2(i) and

(ii), are as follows:

(i) f
(−1)
I (v) = sup{u : u ∈ L, fI(u) >∞ v}, ∀ v ∈ [0,∞]2

= sup{u : u ∈ L, (u2, 1− u2) >∞ (v1, v2)}

= sup{u : u ∈ L, u2 > v1, 1− u2 < v2}

=(min{1, v2, 1− v1},max{v1, 1− v2}), ∀ v = (v1, v2) ∈ [0,∞]2.

(ii) f
(−1)
I (v) = sup{u : u ∈ L, fI(u) >∞ v}, ∀ v ∈ [0,∞]2

= sup{u : u ∈ L, (1− u1 + u2, 1− u2) >∞ (v1, v2)}

= sup{u : u ∈ L, 1− u1 + u2 > v1, 1− u2 < v2}

=(min{1, v2,
2− v1

2
},max{0, 1− v2}), ∀ v = (v1, v2) ∈ [0,∞]2.

Definition 7.3.5. A function ωf : L× ran(fI)→ [0,∞]2 is called a ω−operator of a decreasing

generator fI if it satisfies the following conditions:

ωf is non-decreasing in each argument (U1)

ωf(0L , v) = 0L ∀ v ∈ ran(fI) (U2)

ωf(1L , v) = v ∀ v ∈ ran(fI) (U3)

For simplicity, we use ω instead of ωf.

The non-decreasing meaning of ω in each argument is as follows:

(i) for a fixed v0 ∈ ran(fI), u <L u
′ ⇒ ω(u, v0) ≤∞ ω(u′, v0);

(ii) for a fixed u0 ∈ L, v <L≤≥fI(0L )
v′ ⇒ ω(u0, v) ≤∞ ω(u0, v

′),

for u, u′ ∈ L; v, v′ ∈ ran(fI).

Example 7.3.6. (i) If we take the fI-operator fI(u1, u2) = (u2, u1), then the function ω :

L × ran(fI)→ [0,∞]2 defined by

ω(u, v) = (u1v1, 1− (1− u2)(1− v2)) ∀ u = (u1, u2) ∈ L, v = (v1, v2) ∈ ran(fI).

satisfies the conditions (U1), (U2) and (U3) of Definitions 7.3.5. Thus, ω is the ω−operator

of a decreasing generator fI.
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(ii) Consider the decreasing generator fI(u1, u2) = (u2, u1) and the function ω : L×ran(fI)→
[0,∞]2 defined by

ω(u, v) =

(v1, v2), u = 1L , v = (v1, v2) ∈ ran(fI),

(u1, u2), u = (u1, u2) ∈ L \ {1L}, v = (v1, v2) ∈ ran(fI).

It is easily to verified that ω is the ω−operator of a decreasing generator fI.

Definition 7.3.7. A function II(fI,ω) : L2 → L defined by

II(fI,ω)(u, v) = f
(−1)
I (ω(u, fI(v))) ∀ u = (u1, u2), v = (v1, v2) ∈ L (7.17)

is called a (fI, ω)- implication generated by a decreasing generator fI in L and an ω−operator.

Here f
(−1)
I is the pseudo-inverse of fI (see Definition 7.3.3).

Example 7.3.8. (i) Consider the decreasing generator fI : L → L, fI(u) = (u2, u1) and its

ω−operator given by

ω(u, v) =



(
u21+v21

2
,
u22+v22

2

)
, u = (u1, u2) ∈ L \ {0L , 1L}, v = (v1, v2) ∈ ran(fI),

0L , u = 0L , v = (v1, v2) ∈ ran(fI),

v, u = 1L , v = (v1, v2) ∈ ran(fI).

Then (fI, ω)-implication generated by fI and ω is given by

II(fI,ω)(u, v) =


(
u22+v21

2
,
u21+v22

2
), u = (u1, u2) ∈ L \ {0L , 1L}, v = (v1, v2) ∈ ran(fI),

1L , u = 0L , v = (v1, v2) ∈ ran(fI),

v, u = 1L , v = (v1, v2) ∈ ran(fI).

(ii) Consider the decreasing generator fI : L → L, fI(u) = (1 − u1 + u2, 1 − u2) and its

ω−operator given by

ω(u, v) =



(v1, v2), u1 > v1, v2 > u2,

0L , u1 ≤ v1, v2 ≤ u2,

(1− v2, v2), u1 ≤ v1, v2 > u2,

(v1, 0), u1 > v1, v2 ≤ u2,

∀ u = (u1, u2) ∈ L, v = (v1, v2) ∈ ran(fI). Then (fI, ω)-implication generated from fI

and ω, with f
(−1)
I (v) = (min{1, v2,

2−v1
2
}, max{0, 1−v2}), ∀ v = (v1, v2) ∈ [0,∞]2, is given
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by

II(fI,ω)(u, v) =



(min{1, 1− v2,
1+v1−v2

2
},max{0, v2}), u1 > 1− v1 + v2, 1− v2 > u2,

1L , u1 ≤ 1− v1 + v2, 1− v2 ≤ u2,

(min{1, 1− v2},max{0, v2}), u1 ≤ 1− v1 + v2, 1− v2 > u2,

0L , u1 > 1− v1 + v2, 1− v2 ≤ u2.

The following theorem shows that the II(fI,ω) is an IFI in the sense of Definition 1.8.4.

Theorem 7.3.9. The operator II(fI,ω) defined by (7.17) is an IFI.

Proof. The fact that II(fI,ω) defined by (7.17) is an IFI can be seen from the following:

• Let u <L u′. Since fI is a decreasing on L, f
(−1)
I exists and ω is non-decreasing in each

argument on L × ran(fI). Then, we have ω(u, fI(v)) ≤L≤≥fI(0L )
ω(u′, fI(v)) for any v ∈ L,

and hence

II(fI,ω)(u, v) = f
(−1)
I (ω(u, fI(v))) ≥L f

(−1)
I (ω(u′, fI(v))) = II(fI,ω)(u

′, v), (7.18)

i.e., II(fI,ω) satisfies (I1).

• Let v <L v
′ for any u ∈ L. Then

fI(y) ≥L≤≥fI(0L )
fI(y

′) ⇒ ω(x, fI(y)) ≥L≤≥fI(0L )
ω(x, fI(y

′))

⇒ f
(−1)
I (ω(x, fI(y))) ≤L f

(−1)
I (ω(x, fI(y

′)))

⇒ II(fI,ω)(x, y) ≤L II(fI,ω)(x, y
′),

i.e., II(fI,ω) satisfies (I2).

• II(fI,ω)(0L , 0L) = f
(−1)
I (ω(0L , fI(0L))) = f

(−1)
I (0L) = 1L ,

II(fI,ω)(1L , 1L) = f
(−1)
I (ω(1L , fI(1L))) = f

(−1)
I (fI(1L)) = 1L ,

II(fI,ω)(1L , 0L) = f
(−1)
I (ω(1L , fI(0L))) = f

(−1)
I (fI(0L)) = 0L ,

i.e., II(fI,ω) satisfies (I3).

Theorem 7.3.10. Let fI, fI1, fI2 : L → [0,∞]2 be the decreasing generators and tI : L → L

be a decreasing function with tI(0L) = 1L and tI(1L) = 0L . If the ω-operator generated by tI

is given by ω(u, v) = tI(u)v, ∀ u ∈ L and ∀ v ∈ ran(fI), then the following statements are

equivalent:
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(i) II(fI1,ω)(u, v) = II(fI2,ω)(u, v).

(ii) ∃ a constant cL ∈ [0,∞]2 \ {0L ,∞L} such that fI2(u) = cLfI1(u), ∀ u ∈ L.

Proof. (i) ⇒ (ii) : Let fI1, fI2 be two decreasing generators on L such that II(fI1,ω)(u, v) =

II(fI2,ω)(u, v), ∀ u, v ∈ L. For any u ∈ L \ {0L},

II(fI1,ω)(u, v) = II(fI2,ω)(u, v) ⇔ f−1
I1 (ω(u, fI1(v))) = f−1

I2 (ω(u, fI2(v)))

⇔ f−1
I1 (tI(u)fI1(v)) = f−1

I2 (tI(u)fI2(v))

⇔ fI2 ◦ f−1
I1 (tI(u)fI1(v)) = tI(u)fI2 ◦ f−1

I1 (fI1(v)).

By the substitutions hI = fI2 ◦ f−1
I1 and w = fI1(v) for any v ∈ L, we obtain

hI(tI(u)w) = tI(u)hI(w) for u ∈ L \ {0L} and w ∈ [0,∞]2, (7.19)

where hI : [0,∞]2 → [0,∞]2 is continuous, increasing and bijection with hI(0L) = 0L . Taking

w = 1L in (7.19), we have

hI(tI(u)) = tI(u)hI(1L) for any tI(u) ∈ L \ {0L} and u ∈ L \ {0L}.

Fix arbitrarily w ∈ [0,∞]2. Then ∃ tI(u) ∈ L \ {0L} such that tI(u)w ∈ L \ {0L}. Therefore,

hI(tI(u)w) = tI(u)hI(w) ⇒ hI(w) = w.hI(1L).

Now, we have

fI2 ◦ f−1
I1 (w′) = w′(fI2 ◦ f−1

I1 (1L)) ⇒ fI2(u) = fI1(u)(fI2 ◦ f−1
I1 (1L)).

Let cL = fI2 ◦ f−1
I1 (1L) >L 0L . Then fI2(u) = cLfI1(u) for u ∈ L \ {0L}. Note that for 0L , we

also have fI2(u) = cLfI1(u). Since fI1(0L) = fI2(0L) =∞L , result (ii) is true for u ∈ L.

(ii) ⇒ (i) : Let fI1 be a decreasing generator on L and cL ∈ [0,∞]2 \ {0L ,∞L}. Define

fI2(u) = cLfI1(u), for all u ∈ L. Firstly, note that fI2 is a well defined decreasing generator on

L. Moreover, f−1
I2 (w) = f−1

I1 ( w
cL

) for every w ∈ ran(fI2). Now, for every u, v ∈ L, we have

u.cLfI1(v) ≤≤≥fI(0L ) cLfI1(v) = fI2(v) ≤≤≥fI(0L ) fI2(0L),

u.cLfI1(v)

cL
≤≤≥fI(0L ) ufI1(v) = fI1(v) ≤≤≥fI(0L ) fI1(0L).

Thus,

II(fI2,ω)(u, v) =f−1
I2 (tI(u)fI2(v)) = f−1

I2 (tI(u)cLfI1(v)) = f−1
I1

(tI(u)cLfI1(v)

cL

)
= f−1

I1 (tI(u)fI1(v))

=II(fI1,ω)(u, v), ∀ u, v ∈ L.
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In the continuation, we will discuss some of the properties of (fI, ω)-implications.

Theorem 7.3.11. Let fI and ω be a decreasing generator on L and an ω-operator on L ×
ran(fI) respectively. Then the (fI, ω)-implication II(fI,ω) defined by (7.17) satisfies the following

properties:

(i) II(fI,ω) satisfies (NP).

(ii) II(fI,ω) satisfies (IP) ⇔ ω(u, fI(u)) ≤≤≥fI(0L ) fI(1L), ∀ u ∈ L.

(iii) II(fI,ω) satisfies (OP)⇔ ω(u, fI(v)) ≤L fI(1L)⇔ fI(u) ≥≤≥fI(0L ) v, ∀ u ∈ L, v ∈ ran(fI).

(iv) II(fI,ω)(u, v) ≥≤≥fI(0L ) v holds ∀ u, v ∈ L.

Proof. Let fI be a decreasing generator and ω be an ω-operator of fI. Then

II(f,ω)(u, v) = f
(−1)
I (ω(u, fI(v))), ∀ u, v ∈ L.

(i) For any v ∈ L,

II(fI,ω)(1L , v) = f
(−1)
I (ω(1L , fI(v))) = f

(−1)
I (fI(v)) = v, i.e., II(fI,ω) satisfies (NP).

(ii) Suppose that II(fI,ω) satisfies (IP), i.e., for every u ∈ L, we have II(fI,ω)(u, u) = 1L . By

Definition 7.3.7, we obtain

II(fI,ω)(u, u) = 1L ⇔ f
(−1)
I (ω(u, fI(u))) ⇔ ω(u, fI(u)) ≤≤≥fI(0L ) fI(1L), ∀ u ∈ L.

The converse part is straightforward.

(iii) Suppose that II(fI,ω) satisfies (OP), i.e., ∀ α, β ∈ L, II(fI,ω)(α, β) = 1L iff α ≤L β, which

means the following equivalences hold:

f
(−1)
I (ω(α, fI(β))) = 1L ⇔ α ≤L β or ω(α, fI(β)) ≤≤≥fI(0L ) fI(1L) ⇔ α ≤L β.

Putting α = u, fI(β) = v, we get

ω(u, v) ≤≤≥fI(0L ) fI(1L) ⇔ u ≤L f
(−1)
I (v) ⇔ fI(v) ≥≤≥fI(0L ) v, ∀ u ∈ L, v ∈ ran(fI).

Conversely, assume that ∀ u ∈ L, v ∈ ran(fI). Then ω(u, v) ≤≤≥fI(0L ) fI(1L) ⇔
fI(u) ≥≤≥fI(0L ) v. For α, β ∈ L, suppose u = α, v = fI(β). Then u ∈ L, v ∈ ran(fI).

Thus

II(fI,ω)(α, β) = 1L ⇔ f
(−1)
I (ω(α, fI(β))) = 1L

⇔ ω(α, fI(β)) ≤≤≥fI(0L ) fI(1L)

⇔ ω(u, v) ≤≤≥fI(0L ) fI(1L)

⇔ fI(u) ≥≤≥fI(0L ) v ⇔ α ≤L β.
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(iv) For u, v ∈ L,

II(fI,ω)(u, v) = f
(−1)
I (ω(u, fI(v))) ≥L f

(−1)
I (ω(1L , fI(v))) = f

(−1)
I (fI(v)) = v.

The (fI, ω)-implication does not necessarily satisfy (EP). This can be shown with the help

of the following example:

Example 7.3.12. Consider the decreasing generator fI, fI(u) = (u2, u1) and its ω−operator

given by

ω(u, v) =


(u1

2
, u2+v2

2
), u = (u1, u2) ∈ L \ {0L , 1L}, v = (v1, v2) ∈ ran(f),

0L , u = 0L , v = (v1, v2) ∈ ran(fI),

v, u = 1L , v = (v1, v2) ∈ ran(fI).

Then (fI, ω)-implication generated from fI and ω is given by

II(fI,ω)(u, v) =


(u2

2
, u1+v2

2
), u = (u1, u2) ∈ L \ {0L , 1L}, v = (v1, v2) ∈ ran(fI),

1L , u = 0L , v = (v1, v2) ∈ ran(fI),

v, u = 1L , v = (v1, v2) ∈ ran(fI),

II(fI,ω)(u, v) = f−1
I (ω(u, fI(v))) = (1− (1− u2)(1− v1), u1v2), ∀u, v ∈ L.

For u = (0.4, 0.5), v = (0.3, 0.6) and w = (0.4, 0.6), we have

II(fI,ω)(u, II(fI,ω)(v, w)) = (0.25, 0.425),

while

II(fI,ω)(v, II(fI,ω)(u,w)) = (0.3, 0.4) 6= (0.25, 0.425).

This shows that II(fI,ω) does not satisfy (EP).

Theorem 7.3.13. Let tI : L → L be a strictly decreasing function with tI(0L) = 1L and

tI(1L) = 0L , and fI be a decreasing generator on L. If the ω-operator generated by tI is given

by ω(u, v) = tI(u)v, ∀ u ∈ L, v ∈ ran(fI), then II(fI,ω), given by II(fI,ω)(u, v) = f−1(t(u)f(v)),

satisfies (EP).

Proof. From Definition 7.3.7,

II(fI,ω)(u, v) = f−1
I (ω(u, fI(v))) = f−1

I (tI(u)fI(v)), ∀ u, v ∈ L.
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For u, v, w ∈ L, by (7.17), we have

II(fI,ω)(u, II(fI,ω)(v, w)) =f−1
I (tI(u).fI ◦ f−1

I (tI(v)fI(w))) = f−1
I (tI(u).tI(v)fI(w))

=f−1
I (tI(v).tI(u)fI(w)) = f−1

I (tI(v).fI ◦ f−1
I (tI(u)fI(w)))

=II(fI,ω)(v, II(fI,ω)(u,w)).

Hence II(fI,ω) satisfies (EP).

Theorem 7.3.14 ([59], Theorem 6.8). A function ΦI : L → L is a continuous, increasing and

bijection iff ∃ a continuous, non-decreasing and bijection ϕ : [0, 1]→ [0, 1] such that

ΦI(u) = (ϕ(u1), 1− ϕ(1− u2)), u = (u1, u2) ∈ L.

Proof. See Theorem 6.8 in [59] for its proof.

Let ΦI denote the family of all continuous, increasing and bijections from L to L. We say

that the function F,G : L2 → L are ΦI conjugate, if there exists ΦI ∈ ΦI such that G = FΦI
,

where

FΦI
(u, v) = Φ−1

I (F (ΦI(u), ΦI(v))), u, v ∈ L.

Theorem 7.3.15. If II(fI,ω) is a (fI, ω)-implication and ΦI : L → L is a continuous, non-

decreasing and bijection, then (II(fI,ω))ΦI
(u, v) = II(fI◦ΦI,ω)(ΦI(u), v).

Proof. Let ΦI ∈ ΦI, fI be an decreasing generator on L and ω be a ω-operator on L × ran(fI).

Then

(II(fI,ω))ΦI
(u, v) =Φ−1

I (II(fI,ω)(ΦI(u), ΦI(v))) = Φ−1
I (f−1

I (u(ΦI(u), fI(ΦI(v)))))

=(fI ◦ ΦI)
−1(ω(ΦI(u), fI ◦ ΦI(v))) = II(fI◦ΦI,ω)(ΦI(u), v),

for every u, v ∈ L.

Proposition 7.3.16. Let II : L2 → L be an IFI satisfying (NP). For a given fI generator, ∃
an ω-operator ω such that II(u, v) = II(fI,ω)(u, v), ∀ u, v ∈ L.

Proof. Let K = {(u, v) ∈ L2 : II(u, v) <L 1L}. Assume

α = u and β = fI(v)

transform the region K to K′ which is a subset of L × ran(fI), i.e., for any (u, v) ∈ K, ∃ a

(α, β) ∈ K′ such that

α = u and β = fI(v).
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Define a function ω : L × ran(fI)→ L by

ω(α, β) =



fI(II(α, f
−1
I (β))), (α, β) ∈ K′,

0L , α = 0L ,

fI(1L), α = 1L , β = fI(1L),

cL , otherwise,

where cL ∈ [0,∞]2 \ran(fI) is a constant. Obviously, ω is non-decreasing corresponding to each

argument. Further, we have ω(1L , β) = β since II satisfying (NP) and ω(0L , β) = 0L . Hence, ω

is a ω-operator of fI. In the following we will show that II = II(fI,ω).

For any u, v ∈ L, if II(u, v) <L 1L , then (u, fI(v)) ∈ K′. Thus,

II(fI,ω)(u, v) = f
(−1)
I (ω(u, fI(v))) = f−1

I (fI(II(u, f
−1
I (fI(v))))) = II(u, v).

If II(u, v) = 1L , then (u, fI(v)) ∈ L × ran(fI) \ K′. Thus,

II(fI,ω)(u, v) = f
(−1)
I (ω(u, fI(v))) = 1L = II(u, v). (7.20)

Since cL ∈ [0,∞]2 \ ran(fI), f
−1
I (cL) = 1L . Thus II(fI,ω)(u, v) = II(u, v).

Remark 7.3.17. From the previous proof, we can see that for a given decreasing generator fI

with fI(0L) = ∞L , the ω-operator of fI in the Proposition 7.3.16 will be uniquely determined

by II. However, in the case fI(0L) <L ∞L , ∃ an infinite number of ω-operators of fI such that

II = II(fI,ω), but in the region K′, ω is uniquely determined by II.

Example 7.3.18. Consider the Gaines-Rescher implication IIGR(u, v) =< 1−sg(u1−v1), v2.sg(u1−
v1) >, i.e.,

IIGR(u, v) =

(0, v2), u1 > v1,

1L , u1 ≤ v1,

and the fI-operator fI(u1, u2) = (u2, u1). For any fI-operator with fI(0L) <L ∞L , the coordinate

transformation α = u and β = fI(v) transform the region K = {(u, v) ∈ L2 : u1 ≤ v1} to

K′ = {(α, β) ∈ L2 : pr1(α) ≤ pr1(f−1
I (β))}. Now

ω(u, v) =

fI(0, pr2(f−1
I (β))), pr1(α) ≤ pr1(f−1

I (β)),

0L , otherwise,

then IIGR(u, v) = II(fI,ω).
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Definition 7.3.19. Let II : L2 → L be an IFI. Then the function NII : L → L, defined by

NII(u) = II(u, 0L), for all u ∈ L, is said to be the natural negation of II.

Theorem 7.3.20. Let fI be the decreasing generator on L, and ω be the ω−operator associated

with fI. Let II(fI,ω) be the (fI, ω)-IFI. Then

NII(fI,ω)
(u) =


1L , u = 0L ,

β, 0L <L u <L 1L ,

0L , u = 1L ,

where 0L ≤L β ≤L 1L .

Proof. Clearly, NII(fI,ω)
(u) = II(fI,ω)(u, 0L) = f

(−1)
I (ω(u, fI(0L))). If u = 1L , then NII(fI,ω)

(u) =

f−1
I (ω(1L , fI(0L))) = f−1

I (fI(0L)) = 0L . If u = 0L , then NII(fI,ω)
(u) = f−1

I (ω(0L , fI(0L))) =

f−1
I (0L) = 1L . If 0L <L u <L 1L , then 0L ≤L NII(fI,ω)

(u) = β ≤L 1L .

Example 7.3.21. (i) Let fI(u1, u2) = (u2, u1) and

ω(u, v) =

(u1, 1− u2), u ∈ L \ {1L},

(v1, v2), u = 1L .

Then NII(fI,ω)
(u) = (1− u1, u1).

(ii) Let fI(
1
u1
−1, 1−u2) = (u2, u1) with fI(1L) =∞L and ω(u, v) = (u1v1, 1−(1−u2)(1−v2)).

Then

NII(fI,ω)
(u) =

1L , u = 0L ,

(0, 1− u2), u 6= 0L .

7.4 Distributivity of (fI, ω) implications over t-representable

t-norms on L

Proposition 7.4.1 ([17], Proposition 3.2). Let L∞ = {(x1, x2) ∈ [0,∞]2 : x1 ≥ x2} and

h : L∞ → [0,∞] be a function. Then the following statements are equivalent:

(i) h satisfies the functional equation

h(x1 + y1, x2 + y2) = h(x1, x2) + h(y1, y2), (x1, x2), (y1, y2) ∈ L∞. (7.21)
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(ii) Either h = 0, h =∞,

h(x1, x2) =

0, x2 = 0,

∞, x2 > 0,
h(x1, x2) =

0, x2 <∞,

∞, x2 =∞,
h(x1, x2) =

0, x1 = 0,

∞, x1 > 0,

h(x1, x2) =


0, x1 = x2 <∞,

∞, x2 =∞

or x1 > x2,

h(x1, x2) =



0, x2 = 0,

x1 <∞,

∞, x2 > 0

or x1 =∞,

h(x1, x2) =

0, x1 <∞,

∞, x1 =∞,

there exists unique c ∈ (0,∞) such that

h(x1, x2) =cx2, h(x1, x2) =cx1, h(x1, x2) =

cx1, x1 = x2,

∞, x1 > x2,

h(x1, x2) =

cx2, x1 <∞,

∞, x1 =∞,
h(x1, x2) =

cx1, x2 = 0,

∞, x2 > 0,
h(x1, x2) =

c(x1 − x2), x2 <∞,

∞, x2 =∞,

or there exist unique c1, c2 ∈ (0,∞), c1 6= c2 such that

h(x1, x2) =

c1(x1 − x2) + c2x2, x2 <∞,

∞, x2 =∞,

for all (x1, x2) ∈ L∞.

Proposition 7.4.2 ([18], Proposition 5.2). Fix real a, b > 0. Let La = {(x1, x2) ∈ [0, a]2 : x1 ≥
x2} and h : L∞ → [0, a] be a function. Then the following statements are equivalent:

(i) h satisfies the functional equation

h(min(x1 + y1, a),min(x2 + y2, a)) = min(h(x1, x2) + h(y1, y2), b), (x1, x2), (y1, y2) ∈ La.
(7.22)

(ii) Either h = 0, h = b,

h(x1, x2) =

0, x2 = 0,

b, x2 > 0,
h(x1, x2) =

0, x1 = 0,

b, x1 > 0,

there exists unique c ∈ [ b
a
,∞) such that

h(x1, x2) = min(cx2, b), h(x1, x2) = min(cx1, b),

h(x1, x2) =

min(cx1, b), x1 = x2,

b, x1 > x2,
h(x1, x2) =

min(cx1, b), x2 = 0,

b, x2 > 0,
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or there exist unique c1, c2 ∈ [b/a,∞), c1 6= c2 such that

h(x1, x2) =

min(c1(x1 − x2) + c2x2, b), x1 < a,

b, x1 = a,

for all (x1, x2) ∈ La.

Lemma 7.4.3. If t : [0, 1] → [0,∞] is an additive generator of a t-norm T : [0, 1]2 → [0, 1],

then the function s : [0, 1]→ [0,∞] defined by

s(a) = t(1− a)

is an additive generator of the t-conorm S : [0, 1]2 → [0, 1].

Conversely, if s : [0, 1] → [0,∞] is an additive generator of a t-conorm S : [0, 1]2 → [0, 1],

then the function t : [0, 1]→ [0,∞] defined by

t(a) = s(1− a)

is an additive generator of the t-norm T : [0, 1]2 → [0, 1].

Remark 7.4.4. Interval-valued fuzzy t-representable t-norm and intuitionistic fuzzy t-representable

t-norm both are mathematically equivalent if t-norm T : [0, 1]2 → [0, 1] and t-conorm S :

[0, 1]2 → [0, 1] are dual of each other.

7.4.1 On the equation II(T (u, v), w) = S(II(u,w), II(v, w))

Theorem 7.4.5. Let II be the IFI satisfying (NP), and let t-norm T and t-conorm S on L be

the t-representable, i.e., T = (T, S) and S = (S, T ). Then the triple (II, T , S) satisfies eq. (7.9)

iff T = TM and S = SM .

Proof. (⇒) Distributive eq. (7.9) is given by

II(T (u, v), w) = S(II(u,w), II(v, w)), ∀ u, v, w ∈ L,

where II is an IFI, and t-norm T and t-conorm S on L are the t-representable, i.e., T = (T, S)

and S = (S, T ).

At this situation distributive eq. (7.9) has the following form

II((T (u1, v1), S(u2, v2)), (w1, w2)) =(S(pr1(II((u1, u2), (w1, w2))), pr1(II((v1, v2), (w1, w2)))),

T (pr2(II((u1, u2), (w1, w2))), pr2(II((v1, v2), (w1, w2))))),

(7.23)
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∀ u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ L.

Letting u = v = 1L in (7.23), we have

II((T (1, 1), S(0, 0)), (w1, w2)) =(S(pr1(II((1, 0), (w1, w2))), pr1(II((1, 0), (w1, w2)))),

T (pr2(II((1, 0), (w1, w2))), pr2(II((1, 0), (w1, w2))))).

Since, II(1L , w) = w, (w1, w2) = (S(w1, w1), T (w2, w2)), i.e., w1 = S(w1, w1) and w2 = T (w2, w2).

Hence T = TM and S = SM are the only idempotent t-norm and t-conorm respectively in fuzzy

environment.

(⇐) Suppose t-norm T and t-conorm S on L are the t-representable, i.e., T = (TM , SM) and

S = (SM , TM). Then to prove that II satisfies (7.9), i.e., mainly satisfies (7.23). Let u <L v,

i.e., u1 < v1, u2 > v2, for all u = (u1, u2), v = (v1, v2) ∈ L. Then II(u,w) ≥L II(v, w), i.e.,

pr1(II(u,w)) ≥ pr1(II(v, w)) and pr2(II(u,w)) ≤ pr2(II(v, w)), ∀ w ∈ L. It follows that the

two sides of (7.23) are equal. On the other hand, let u >L v, i.e., u1 > v1, u2 < v2, ∀ u =

(u1, u2), v = (v1, v2) ∈ L. Then II(u,w) ≤L II(v, w), i.e., pr1(II(u,w)) ≤ pr1(II(v, w)) and

pr2(II(u,w)) ≥ pr2(II(v, w)), for all w ∈ L. It follows that the two sides of (7.23) are equal.

We know that (7.23) is (7.9) when T and S are the t-representable. Thus II satisfies (7.9).

7.4.2 General method for solving distributive eq. (7.9):

Distributive eq. (7.9) is given by

II(T (u, v), w) = S(II(u,w), II(v, w)), ∀ u, v, w ∈ L, (7.24)

where II : L2 → L is the unknown function. The t-norm T and t-conorm S on L are the

t-representable, i.e., T = (T, S) and S = (S, T ).

At this situation distributive eq. (7.9) has the following form

II((T (u1, v1), S(u2, v2)), (w1, w2)) =(S(pr1(II((u1, u2), (w1, w2))), pr1(II((v1, v2), (w1, w2)))),

T (pr2(II((u1, u2), (w1, w2))), pr2(II((v1, v2), (w1, w2))))),

∀ u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ L.

As a consequence we obtain the following two equations

pr1(II((T (u1, v1), S(u2, v2)), (w1, w2))) = S(pr1(II((u1, u2), (w1, w2))), pr1(II((v1, v2), (w1, w2)))),

(7.25)

pr2(II((T (u1, v1), S(u2, v2)), (w1, w2))) = T (pr2(II((u1, u2), (w1, w2))), pr2(II((v1, v2), (w1, w2)))),

(7.26)
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∀ u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ L.

Now, let w = (w1, w2) ∈ L be arbitrary but fixed. Then we define two functions g1
(w1,w2),

g2
(w1,w2) : [0, 1]→ [0, 1] by

g1
(w1,w2)(.) := pr1 ◦ II(., (w1, w2)), g2

(w1,w2)(.) := pr2 ◦ II(., (w1, w2)), (7.27)

where ◦ represents standard composition of functions.

From (7.25), (7.26) and (7.27), we have

g1
(w1,w2)((T (u1, v1), S(u2, v2))) = S(g1

(w1,w2)(u1, u2), g1
(w1,w2)(v1, v2)), (7.28)

g2
(w1,w2)((T (u1, v1), S(u2, v2))) = T (g2

(w1,w2)(u1, u2), g2
(w1,w2)(v1, v2)). (7.29)

For simplicity, we put g1
(w1,w2) = g1 and g2

(w1,w2) = g2 in (7.28) and (7.29), we have

g1((T (u1, v1), S(u2, v2))) = S(g1(u1, u2), g1(v1, v2)), g2((T (u1, v1), S(u2,

v2))) = T (g2(u1, u2), g2(v1, v2)). (7.30)

Proposition 7.4.6. Let T = (T, S), S = (S, T ), where T and S are the strict t-norm and

t-conorm respectively such that T and S are dual of each other. For a function II : L2 → L, the

following statements are equivalent:

(i) The triple (T , S , II) satisfies functional eq. (7.9), ∀ u, v, w ∈ L.

(ii) For every fixed w ∈ L, II(., w) has one of the following forms:

II(u,w) = 1L , II(u,w) = 0L , II(u,w) =

0L , u2 < 1,

(0, 0), u2 = 1,
II(u,w) =

0L , u2 = 0,

(0, 0), u2 > 0,

II(u,w) = (0, 0), II(u,w) =

0L , u1 = 1,

(0, 0), u1 < 1,
II(u,w) =


0L , u1 = 1− u2 > 0,

(0, 0), u2 = 1 or

u1 < 1− u2,

II(u,w) =



0L , u2 = 0,

u1 > 0,

(0, 0), u2 > 0 or

u1 = 0,

II(u,w) =

0L , u1 > 0,

(0, 0), u1 = 0,
II(u,w) = (0, t−1(cs(u2)))

II(u,w) =

(0, 0), u1 < 1− u2,

(0, t−1(ct(1− u2))), u1 = 1− u2,
II(u,w) =

(0, t−1(cs(u2))), u1 > 0,

(0, 0), u1 = 0,
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II(u,w) =

(0, t−1(c(t(u1)))), u2 = 0,

(0, 0), u2 > 0,
II(u,w) =

(0, t−1(c(t(u1)− s(u2)))), u2 < 1,

(0, 0), u2 = 1,

II(u,w) = (0, t−1(ct(u1))), II(u,w) =


(0, 0), u2 = 1,

(0, t−1(c1(t(u1)−

s(u2)) + c2s(u2))), u2 < 1,

II(u,w) =

1L , u2 > 0,

(0, 0), u2 = 0,
II(u,w) =

1L , u2 > 0,

0L , u2 = 0,
II(u,w) =



1L , u2 > 0, u1 < 1,

u1 + u2 ≤ 1,

0L , u2 = 0, u1 = 1,

(0, 0), u2 = 0, u1 < 1,

II(u,w) =


1L , u2 > 0 or (u1 = 0, u2 > 0),

(0, 0), u1 = 0, u2 = 0,

0L , u2 = 0, u1 > 0,

II(u,w) =

1L , 0 < u2,

(0, t−1(ct(u1))), u2 = 0,

II(u,w) =

1L , u2 = 1,

(0, 0), u2 < 1,
II(u,w) =


1L , u2 = 1,

0L , u2 = 0,

(0, 0), 0 < u2 < 1,

II(u,w) =

1L , u2 = 1,

0L , u2 < 1,
II(u,w) =



1L , u1 = 0, u2 = 1,

0L , u1 = 1, u2 = 0,

(0, 0), u1 < 1, u2 < 1,

u1 + u2 ≤ 1,

II(u,w) =


1L , u2 = 1,

0L , u1 = 1− u2 > 0, u2 < 1,

(0, 0), u1 < 1− u2, u2 < 1,

II(u,w) =



1L , u2 = 1,

0L , u1 > 0, u2 = 0,

(0, 0), (u1 = 0, u2 < 1),

; or (0 < u2 < 1),

II(u,w) =



1L , u2 = 1,

0L , u1 > 0, u2 < 1,

u1 + u2 ≤ 1,

(0, 0), u1 = 0, u2 < 1,

II(u,w) =


1L , u2 = 1,

(0, t−1(c

s(u2))), u2 < 1,
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II(u,w) =


1L , u1 = 0, u2 = 1,

(0, 0), u2 < 1, u1 < 1− u2,

(0, t−1(ct(1− u2))), u2 < 1, u1 = 1− u2,

II(u,w) =

1L , u1 < 1,

(0, 0), u1 = 1,

II(u,w) =



1L , u1 = 0, u2 = 1,

(0, 0), u1 = 0, u2 < 1,

(0, t−1(cs(u2))), u1 > 0, u2 < 1,

u1 + u2 ≤ 1,

II(u,w) =


1L , u2 = 1,

(0, t−1(c(t

(u1)− s(u2))), u2 < 1,

II(u,w) =

1L , u2 = 1,

(0, t−1(ct(u1))), u2 < 1,
II(u,w) =


1L , u2 = 1,

(0, 0), 0 < u2 < 1,

(0, t−1(c(t(u1)))), u2 = 0,

II(u,w) =



1L , u2 = 1,

(0, t−1(c1

(t(u1)− s(u2))

+c2s(u2)), u2 < 1,

II(u,w) =


1L , u2 = 1 or

u1 < 1− u2,

(0, 0), u1 = 1− u2 > 0,

II(u,w) =



1L , (u1 = 0, u2 = 1) or

(u1 < 1− u2, u1 < 1),

0L , u1 = 1, u2 = 0,

(0, 0), u1 = 1− u2 > 0, 0 < u1 < 1,

II(u,w) =

1L , u1 < 1,

0L , u1 = 1,

II(u,w) =


1L , u2 = 1 or

u1 < 1− u2,

0L , u1 = 1− u2 > 0,

II(u,w) =


1L , (u1 = 0, u2 = 1),

or (u1 < 1− u2),

(0, t−1(c(t(1− u2)))), u1 = 1− u2 > 0,

II(u,w) =

1L , u1 = 0 or u2 > 0,

(0, 0), u2 = 0, u1 > 0,
II(u,w) =

1L , u1 = 0,

(0, 0), u1 > 0,

II(u,w) =



1L , (u1 = 0), or (u1 < 1,

u2 > 0, u1 + u2 ≤ 1),

0L , u1 = 1, u2 = 0,

(0, 0), 0 < u1 < 1, u2 = 0,

II(u,w) =

0L , u1 > 0, u2 = 0,

1L , u1 = 0 or u2 > 0,
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II(u,w) =


1L , u1 = 0,

(0, 0), 0 < u1 < 1,

0L , u1 = 1,

II(u,w) =


1L , (u1 = 0), or

(u2 > 0),

(0, t−1(c(t(u1)))), u1 > 0, u2 = 0,

II(u,w) =

1L , u1 = 0,

0L , u1 > 0,
II(u,w) =



1L , (u1 = 0, u2 = 1), or

(u1 = 0, u1 < 1− u2)

(0, t−1(ct(1− u2))), u1 = 1− u2, u1 > 0,

(0, 0), u1 < 1− u2, u1 > 0,

II(u,w) =

1L , u1 = 0,

(0, t−1(ct(u1))), u1 > 0,
II(u,w) =

1L , u1 = 0,

(0, t−1(cs(u2))), u1 > 0,

II(u,w) =



1L , (u1 = 0, u2 = 1), or

(u1 = 0, u1 < 1− u2),

0L , u1 > 0, u1 = 1− u2 > 0,

(0, 0), u1 = 0, u1 < 1− u2,

II(u,w) =



1L , u1 = 0,

0L , u1 > 0, u2 = 0,

(0, 0), u1 > 0, u2 > 0,

u1 + u2 ≤ 1,

II(u,w) =



1L , u1 = 0,

(0, t−1(ct(u1))), u1 > 0, u2 = 0,

(0, 0), u1 > 0, u2 > 0,

u1 + u2 ≤ 1,

II(u,w) =


1L , u1 = 0,

(0, t−1(c(t(u1)

−s(u2)))), u1 > 0, u2 = 0,

II(u,w) =


1L , u1 = 0,

(0, t−1(c1(t(u1)−

s(u2)) + c2s(u2))), u1 > 0, u2 = 0,

II(u,w) = (s−1(cs(u2)), 0),

II(u,w) =

(s−1(cs(u2)), 0), u2 > 0,

0L , u2 = 0,
II(u,w) =

(s−1(cs(u2)), 0), u1 < 1,

0L , u1 = 1,

II(u,w) =

(s−1(cs(u2)), 0), u1 = 0, or u2 > 0,

0L , u2 = 0, u1 > 0,
II(u,w) = (s−1(cs(u2)), t−1(cs(u2))),

II(u,w) =

(s−1(cs(u2)), t−1(ct(1− u2))), u1 = 1− u2,

(s−1(cs(u2)), 0), u1 < 1− u2,
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II(u,w) =

(s−1(cs(u2)), t−1(cs(u2))), u1 > 0,

(s−1(cs(u2)), 0), u1 = 0,

II(u,w) =

(s−1(cs(u2)), t−1(ct(u1))), u2 = 0,

(s−1(cs(u2)), 0), u2 > 0,

II(u,w) =


(s−1(cs(u2)), t−1(c(t(u1)

−s(u2)))), u2 < 1,

1L , u2 = 1,

II(u,w) = (s−1(cs(u2)), t−1(ct(u1))),


(s−1(cs(u2)), t−1(c1(t(u1)

−s(u2)) + c2s(u2))), u2 < 1,

1L , u2 = 1,

II(u,w) =

(s−1(ct(1− u2)), 0), u1 = 1− u2,

1L , u1 < 1− u2,

II(u,w) =


1L , u1 < 1− u2, u1 < 1,

(s−1(ct(1− u2)), 0), u1 = 1− u2, u1 < 1,

0L , u1 = 1, u2 = 0,

II(u,w) =

(s−1(ct(1− u2)), t−1(ct(1− u2))), u1 = 1− u2,

1L , u1 < 1− u2,

II(u,w) =

(s−1(cs(u2)), 0), u1 > 0,

1L , u1 = 1,
II(u,w) =


(s−1(cs(u2)), 0), 0 < u1 < 1,

1L , u1 = 0,

0L , u1 = 1,

II(u,w) =



1L , u1 > 0, u2 = 0,

(s−1(cs(u2)), 0), u1 > 0, u2 > 0,

u1 + u2 ≤ 1,

1L , u1 = 0,

II(u,w) =


(s−1(cs(u2)), t−1(ct(1− u2))), u1 = 1− u2, u1 > 0,

(s−1(cs(u2)), 0), u1 < 1− u2, u2 > 0,

1L , u1 = 0, u2 ≤ 1,
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II(u,w) =

(s−1(cs(u2)), t−1(cs(u2))), u1 > 0,

1L , u1 = 0,
II(u,w) =



(0, t−1(ct(u1))), u1 > 0, u2 = 0,

(s−1(cs(u2)), 0), u1 > 0, u2 > 0,

u1 + u2 ≤ 1,

1L , u1 = 0, u2 ≥ 0,

II(u,w) =


(s−1(cs(u2)), t−1(ct((u1)− s(u2)))), u1 > 0, u2 < 1,

u1 + u2 ≤ 1,

1L , u1 = 0, u2 ≤ 1,

II(u,w) =

(s−1(cs(u2)), t−1(ct(u1))), u1 > 0,

1L , u1 = 0,

II(u,w) =


(s−1(cs(u2)), t−1(c1(

t(u1)− s(u2)) + c2s(u2))), u1 > 0, u2 < 1, u1 + u2 ≤ 1,

1L , u1 = 0, u2 ≤ 1,

II(u,w) =

(s−1(ct(u1)), 0), u2 = 0,

1L , u2 > 0,

II(u,w) =



1L , u1 < 1, u2 > 0,

u1 + u2 ≤ 1,

(s−1(ct(u1)), 0), u1 < 1, u2 = 0,

0L , u1 = 1, u2 = 0,

II(u,w) =

(s−1(ct(u1)), t−1(cs(u2))), u2 = 0,

1L , u2 > 0,

II(u,w) =

(s−1(c(t(u1)− s(u2))), 0), u2 < 1,

(0, 0), u2 = 1,

II(u,w) =



(s−1(c(t(u1)− s(u2))), 0), u1 < 1, u2 < 1,

u1 + u2 ≤ 1,

1L , u1 = 0, u2 = 1,

0L , u1 = 1, u2 = 0,
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II(u,w) =

(s−1(c(t(u1)− s(u2))), t−1(cs(u2))), u2 < 1,

1L , u2 = 1,

II(u,w) =



(s−1(c(t(u1)− s(u2))),

t−1(ct(1− u2))), u1 = 1− u2, u2 < 1,

(s−1(c(t(u1)− s(u2))), 0), u1 < 1− u2, u2 < 1,

1L , u1 = 0, u2 = 1,

II(u,w) =


(s−1(c(t(u1)− s(u2))),

t−1(ct((u1)− s(u2)))), u2 < 1,

1L , u2 = 1,

II(u,w) =



(s−1(c(t(u1)− s(u2))), t−1(cs(u2))), u1 > 0, u2 < 1,

u1 + u2 ≤ 1,

(s−1(c(t(u1)− s(u2))), 0), u1 = 0, u2 < 1,

1L , u1 = 0, u2 = 1,

II(u,w) =


(s−1(c(t(u1)− s(u2))), 0), 0 < u2 < 1,

(s−1(c(t(u1))), t−1(c(t(u1)))), u2 = 0,

1L , u2 = 1,

II(u,w) =


(s−1(c(t(u1)− s(u2))),

t−1(ct(u1))), u2 < 1,

1L , u2 = 1,

II(u,w) =


(s−1(c(t(u1)− s(u2))), t−1(c1

(t(u1)− s(u2)) + c2s(u2))), u2 < 1,

1L , u2 = 1,

II(u,w) = (s−1(ct(u1)), 0),

II(u,w) =

(s−1(ct(u1)), 0), u1 < 1,

0L , u1 = 1,
II(u,w) = (s−1(ct(u1)), t−1(cs(u2))),

II(u,w) =

(s−1(ct(u1)), t−1(ct(1− u2))), u1 = 1− u2,

(s−1(ct(u1)), 0), u1 < 1− u2,
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II(u,w) =

(s−1(ct(u1)), t−1(cs(u2))), u1 > 0,

(s−1(ct(u1)), 0), u1 = 0,

II(u,w) =

(s−1(ct(u1)), t−1(ct(u1))), u2 = 0,

(s−1(ct(u1)), 0), u2 > 0,

II(u,w) =

(s−1(ct(u1)), t−1(c(t(u1)− s(u2)))), u2 < 1,

(s−1(ct(u1)), 0), u2 = 1,

II(u,w) = (s−1(ct(u1)), t−1(ct(u1))),

II(u,w) =

(s−1(ct(u1)), t−1(c1(t(u1)− s(u2)) + c2s(u2))), u2 < 1,

1L , u2 = 1,

II(u,w) =

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), 0), u2 < 1,

(0, 0), u2 = 1,

II(u,w) =



(s−1(c1(t(u1)− s(u2)) + c2s(u2)), 0), u1 < 1, u2 < 1,

u1 + u2 ≤ 1,

1L , u1 = 0, u2 = 1,

0L , u1 = 1, u2 = 0,

II(u,w) =

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(cs(u2))), u2 < 1,

1L , u2 = 1,

II(u,w) =


(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(ct(1− u2))), u1 = 1− u2, u2 < 1,

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), 0), u1 < 1− u2, u2 < 1,

1L , u1 = 0, u2 = 1,

II(u,w) =



(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(cs(u2))), u1 > 0, u2 < 1,

u1 + u2 ≤ 1,

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), 0), u1 = 0, u2 < 1,

1L , u1 = 0, u2 = 1,

II(u,w) =


(s−1(c1(t(u1)− s(u2)) + c2s(u2)), 0), 0 < u2 < 1,

(s−1(c1(t(u1))), t−1(c(t(u1)))), u2 = 0,

1L , u2 = 1,
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II(u,w) =

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(ct((u1)− s(u2)))), u2 < 1,

1L , u2 = 1,

II(u,w) =

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(ct(u1))), u2 < 1,

1L , u2 = 1,

or

II(u,w) =

(s−1(c1(t(u1)− s(u2)) + c2s(u2)), t−1(c1(t(u1)− s(u2)) + c2s(u2))), u2 < 1,

1L , u2 = 1.

Proof. Given that T and S are the t-representable on L such that T = (T, S) and S = (S, T ),

i.e., T (u, v) = (T (u1, v1), S(u2, v2)) S(u, v) = (S(u1, v1), T (u2, v2)), for all u, v ∈ L. Given that

t-norm T is strict, and T and S are dual of each other. It follows that t-conorm S is strict. Now,

from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7, given in [19], there exist a decreasing

continuous function t : [0, 1] → [0,∞] and a increasing continuous function s : [0, 1] → [0,∞]

such that t(0) = ∞, t(1) = 0, s(0) = 0 and s(1) = ∞ which are uniquely determined a

positive multiplicative constant such that, for all a, b ∈ [0, 1], T (a, b) = t−1(t(a) + t(b)) and

S(a, b) = s−1(s(a) + s(b)).

Let us prove that (ii) ⇒ (i).

(P1): Let II have the form II(u,w) = 1L . Then the LHS of (7.9) is equal to 1L , and the RHS

of (7.9) is equal to 1L .

(P2): Let II have the form II(u,w) = (0, 0). Then the LHS of (7.9) is equal to (0, 0), and the

RHS of (7.9) is equal to (0, 0).

(P3): Let II have the form II(u,w) = 0L . Then the LHS of (7.9) is equal to 0L , and the RHS

of (7.9) is equal to 0L .

(P4): Let II have the form II(u,w) =

0L , u2 = 0,

(0, 0), u2 > 0.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

(0L , S(u2, v2) = 0,

(0, 0), S(u2, v2) > 0.
=

0L , u2 = v2 = 0,

(0, 0), u2 > 0 or v2 > 0,
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and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

(0L , u2 = 0,

(0, 0), u2 > 0.
,

0L , v2 = 0,

(0, 0), v2 > 0.

)

=

0L , u2 = v2 = 0,

(0, 0), u2 > 0 or v2 > 0.

(P5): Let II have the form II(u,w) =

0L , u2 < 1,

(0, 0), u2 = 1.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

0L , S(u2, v2) < 1,

(0, 0), S(u2, v2) = 1.
=

0L , u2 < 1, v2 < 1,

(0, 0), u2 = 1 or v2 = 1,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

(0L , u2 < 1,

(0, 0), u2 = 1.
,

0L , v2 < 1,

(0, 0), v2 = 1.

)

=

0L , u2 < 1, v2 < 1,

(0, 0), u2 = 1 or v2 = 1,

(P6): Let II have the form II(u,w) =

0L , u1 = 1,

(0, 0), u1 < 1.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

0L , T (u1, v1) = 1,

(0, 0), T (u1, v1) < 1.
=

0L , u1 = v1 = 1,

(0, 0), u1 < 1 or v1 < 1,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

(0L , u1 = 1,

(0, 0), u1 < 1.
,

0L , v1 = 1,

(0, 0), v1 < 1.

)

=

0L , u1 = v1 = 1,

(0, 0), u1 < 1 or v1 < 1.

(P7): Let II have the form II(u,w) = (0, 1− s−1(ct(1− u2))).
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Then the LHS of (7.9) is equal to

II(T (u, v), w) = (0, 1− s−1(ct(1− S(u2, v2)))) =(0, 1− s−1(ct(T (1− u2, 1− v2))))

=(0, 1− s−1(c(t(1− u2) + t(1− v2)))),

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S((0, 1− s−1(ct(1− u2))), (0, 1− s−1(ct(1− v2))))

=(0, T (1− s−1(ct(1− u2)), 1− s−1(ct(1− v2))))

=(0, 1− S(s−1(ct(1− u2)), s−1(ct(1− v2))))

=(0, 1− s−1(c(t(1− u2) + t(1− v2)))).

Similarly we can verify the eq. (7.9) easily by all remaining forms of II.

Let us prove that (i) ⇒ (ii).

From (7.30),

g1(t−1(t(u1) + t(v1)), s−1(s(u2) + s(v2))) = s−1(s(g1(u1, u2)) + s(g1(v1, v2))),

g2(t−1(t(u1) + t(v1)), s−1(s(u2) + s(v2))) = t−1(t(g1(u1, u2)) + t(g1(v1, v2))).

Hence

s ◦ (g1(t−1(t(u1) + t(v1)), s−1(s(u2) + s(v2)))) = s(g1(u1, u2)) + s(g1(v1, v2)), (7.31)

t ◦ (g2(t−1(t(u1) + t(v1)), s−1(s(u2) + s(v2)))) = t(g1(u1, u2)) + t(g1(v1, v2)). (7.32)

Let us put t(u1) = x1, s(u2) = x2, t(v1) = y1 and s(v2) = y2. Of course x1, x2, y1, y2 ∈ [0,∞],

Moreover, u = (u1, u2), v = (v1, v2) ∈ L, thus u1 ≤ 1 − u2 and v1 ≤ 1 − v2. Since t and s are

decreasing generator and increasing generator respectively such that t(a) = s(1−a),∀a ∈ [0, 1],

x1 ≥ x2 and y1 ≥ y2. This implies that (x1, x2), (y1, y2) ∈ [0,∞]2. If we put

f 1(x1, x2) := s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)), f 2(x1, x2) := t ◦ pr2 ◦ II((t−1(x1),

s−1(x2)), (w1, w2)) ∀ (x1, x2) ∈ [0,∞]2

(7.33)

As a consequence we get the following two functional equations

f 1(x1 + y1, x2 + y2) =f 1(x1, x2) + f 1(y1, y2), (7.34)

f 2(x1 + y1, x2 + y2) =f 2(x1, x2) + f 2(y1, y2), (7.35)

where (x1, x2), (y1, y2) ∈ [0,∞]2.

Now, we find the possible solutions of (7.34) are as follows:

For x1, x2 ∈ [0,∞], x1 ≥ x2 and (w1, w2) ∈ L, we have
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(S1): f 1 = 0 ⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) = 0 ⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0.

(S2): f 1 =∞ ⇒ s◦pr1◦II((t−1(x1), s−1(x2)), (w1, w2)) =∞ ⇒ pr1◦II((u1, u2), (w1, w2)) =

1.

(S3): f 1(x1, x2) =

0, x2 = 0,

∞, x2 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x2 = 0,

∞, x2 > 0

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.

(S4): f 1(x1, x2) =

0, x2 <∞,

∞, x2 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x2 <∞,

∞, x2 =∞

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u2 < 1,

1, u2 = 1.

(S5): f 1(x1, x2) =

0, x1 = 0,

∞, x1 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x1 = 0,

∞, x1 > 0.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u1 = 1,

1, u1 < 1.
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(S6): f 1(x1, x2) =

0, x1 = x2 <∞,

∞, x2 =∞ or x1 > x2,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x1 = x2 <∞,

∞, x2 =∞ or x1 > x2.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u1 = 1− u2 > 0,

1, u2 = 1 or u1 < 1− u2.

(S7): f 1(x1, x2) =

0, x2 = 0, x1 <∞,

∞, x2 > 0 or x1 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x2 = 0, x1 <∞,

∞, x2 > 0 or x1 =∞.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u2 = 0, u1 > 0,

1, u2 > 0 or u1 = 0.

(S8): f 1(x1, x2) =

0, x1 <∞,

∞, x1 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x1 <∞,

∞, x1 =∞.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u1 > 0,

1, u1 = 0.

(S9): ∃ c ∈ (0,∞) such that

f 1(x1, x2) = cx2 ⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) = cx2

⇒ pr1 ◦ II((u1, u2), (w1, w2)) = s−1(cs(u2)).
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(S10): f 1(x1, x2) =

cx1, x1 = x2,

∞, x1 > x2,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

cx1, x1 = x2,

∞, x1 > x2.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(ct(1− u2)), u1 = 1− u2,

1, u1 < 1− u2.

(S11): f 1(x1, x2) =

cx2, x1 <∞,

∞, x1 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

cx2, x1 <∞,

∞, x1 =∞.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(cs(u2)), u1 > 0,

1, u1 = 0.

(S12): f 1(x1, x2) =

cx1, x2 = 0,

∞, x2 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

cx1, x2 = 0,

∞, x2 > 0.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(ct(u1)), u2 = 0,

1, u2 > 0.

(S13): f 1(x1, x2) =

c(x1 − x2), x2 <∞,

∞, x2 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

c(x1 − x2), x2 <∞,

∞, x2 =∞.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(c(t(u1)− s(u2))), u2 < 1,

1, u2 = 1.
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(S14): ∃ c ∈ (0,∞) such that

f 1(x1, x2) = cx1 ⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) = cx1

⇒ pr1 ◦ II((u1, u2), (w1, w2)) = s−1(ct(u1)).

(S15): ∃ c1, c2 ∈ (0,∞), c1 6= c2 such that

f 1(x1, x2) =

c1(x1 − x2) + c2x2, x2 <∞,

∞, x2 =∞,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

c1(x1 − x2) + c2x2, x2 <∞,

∞, x2 =∞.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(c1(t(u1)− s(u2)) + c2(s(u2))), u2 < 1,

1, u2 = 1.

Similarly, we can find the possible solutions of (7.35) are as follows:

For x1, x2 ∈ [0,∞], x1 ≥ x2 and (w1, w2) ∈ L, we have

(S’1): pr2 ◦ II((u1, u2), (w1, w2)) = 1.

(S’2): pr2 ◦ II((u1, u2), (w1, w2)) = 0.

(S’3): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u2 = 0,

0, u2 > 0.

(S’4): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u2 < 1,

0, u2 = 1.

(S’5): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u1 = 1,

0, u1 < 1.

(S’6): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u1 = 1− u2 > 0,

0, u2 = 1 or u1 < 1− u2.

(S’7): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u2 = 0, u1 > 0,

0, u2 > 0 or u1 = 0.
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(S’8): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u1 > 0,

0, u1 = 0.

(S’9): ∃ c ∈ (0,∞) such that

pr2 ◦ II((u1, u2), (w1, w2)) = t−1(cs(u2)).

(S’10): pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(ct(1− u2)), u1 = 1− u2,

0, u1 < 1− u2.

(S’11): pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(cs(u2)), u1 > 0,

0, u1 = 0.

(S’12): pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(ct(u1)), u2 = 0,

0, u2 > 0.

(S’13): pr1 ◦ II((u1, u2), (w1, w2)) =

t−1(c(t(u1)− s(u2))), u2 < 1,

0, u2 = 1.

(S’14): ∃ c ∈ (0,∞) such that

pr2 ◦ II((u1, u2), (w1, w2)) = t−1(ct(u1)).

(S’15): pr2 ◦ II((u1, u2), (w1, w2)) =

s−1(c1(t(u1)− s(u2)) + c2(s(u2))), u2 < 1,

0, u2 = 1.

Of course not every combination of the above solutions give a correct value in the set L. For ex-

ample when pr1◦II((u1, u2), (v1, v2)) = 0 and pr2◦II((u1, u2), (v1, v2)) = 1, for every (v1, v2) ∈ L,

then our (constant) solution is correct: II((u1, u2), (v1, v2)) = (0, 1) = 0L .

Also when pr1◦II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.
and pr2◦II((u1, u2), (w1, w2)) =

1, u2 = 0,

0, u2 > 0.

for every (v1, v2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2)) =

0L , u2 = 0,

1L , u2 > 0.

But if pr1 ◦II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.
and pr2 ◦II((u1, u2), (w1, w2)) =

1, u2 < 1,

0, u2 = 1,
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for every (v1, v2) ∈ L, then our solution is incorrect, since II((u1, u2), (v1, v2)) =


0L , u2 = 0,

1L , u2 = 1,

(1, 1), 0 < u2 < 1,

is not solution in L (since (1, 1) /∈ L).

Similarly, we can find the possible combinations of the above solutions give a correct value

in the set L is the required result (ii).

Remark 7.4.7. If we put α = u, β = fI(w) and II = II(fI,ω) in Proposition 7.4.6, then the

above possible forms of II(u,w), for fixed w ∈ L, convert into corresponding forms of ω(α, β).

Proposition 7.4.8. Let T = (T, S), S = (S, T ), where T and S are the nilpotent t-norm and

t-conorm respectively such that T and S are dual of each other. For a function II : L2 → L, the

following statements are equivalent:

(i) The triple (T , S , II) satisfies the functional eq. (7.9) ∀ u, v, w ∈ L.

(ii) For every fixed w ∈ L, II(., w) has one of the following forms:

II(u,w) = 1L , II(u,w) = (0, 0), II(u,w) = 0L , II(u,w) =

0L , u2 = 0,

(0, 0), u2 > 0,

II(u,w) =

0L , u1 = 1,

(0, 0), u1 < 1,
II(u,w) = (0, t−1(min(cs(u2), b))),

II(u,w) =


(0, t−1(min(

ct(u1), b))), u1 = 1− u2,

(0, 0), u1 < 1− u2,

II(u,w) =

(0, t−1(min(ct(u1), b))), u2 = 0,

(0, 0), u2 > 0,

II(u,w) = (0, t−1(min(ct(u1), b))), II(u,w) =


(0, t−1(min(c1(t(u1)−

s(u2)) + c2s(u2), b))), u1 > 0,

(0, 0), u1 = 0,

II(u, v) =

(0, 0), u2 = 0,

1L , u2 > 0,
II(u,w) =

0L , u2 = 0,

1L , u2 > 0,
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II(u,w) =



0L , u1 = 1, u2 = 0,

(0, 0), u1 < 1, u2 = 0,

1L , u1 < 1, u2 > 0

& u1 + u2 ≤ 1.

II(u,w) =

(0, t−1(min(ct(u1), b))), u2 = 0,

1L , u2 > 0,

II(u,w) =

(0, 0), u1 = 1,

1L , u1 < 1,
II(u,w) =

0L , u1 = 1,

1L , u1 < 1,
II(u,w) = (s−1(min(cs(u2), b)), 0),

II(u,w) =

0L , u2 = 0,

(s−1(min(cs(u2), b)), 0), u2 > 0,
II(u,w) =

0L , u1 = 1,

(s−1(min(cs(u2), b)), 0), u1 < 1,

II(u,w) = (s−1(min(cs(u2), b)), t−1(min(cs(u2), b))),

II(u,w) =


(s−1(min(cs(u2), b)),

t−1(min(ct(u1), b))), u1 = 1− u2,

(s−1(min(cs(u2), b)), 0), u1 < 1− u2,

II(u,w) =

(0, t−1(min(ct(u1), b))), u2 = 0,

(s−1(min(cs(u2), b)), 0), u2 > 0,

II(u,w) = (s−1(min(cs(u2), b)), t−1(min(ct(u1), b))),

II(u,w) =

(s−1(min(cs(u2), b)), t−1(min(c1(t(u1)− s(u2)) + c2s(u2), b))), u2 = 0,

(s−1(min(cs(u2), b)), 0), u1 = 0,

II(u,w) =

(s−1(min(ct(u1), b)), 0), u1 = 1− u2,

1L , u1 < 1− u2,

II(u,w) =


0L , u1 = 1, u2 = 0,

(s−1(min(ct(u1), b)), 0), u1 = 1− u2, u1 < 1,

1L , u1 < 1− u2, u1 < 1,

II(u,w) =


(s−1(min(ct(u1), b)),

t−1(min(c(t(u1), b)))), u1 = 1− u2,

1L , u1 < 1− u2,
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II(u,w) =

(s−1(min(ct(u1), b)), 0), u2 = 0,

1L , u2 > 0,

II(u,w) =


0L , u1 = 1, u2 = 0,

(s−1(min(ct(u1), b)), 0), u1 < 1, u2 = 0,

1L , u1 < 1, u2 > 0, u1 + u2 ≤ 1,

II(u,w) =

(s−1(min(ct(u1), b)), t−1(min(c(t(u1), b)))), u2 = 0,

1L , u2 > 0,

II(u,w) = (s−1(min(ct(u1), b)), 0),

II(u,w) =

0L , u1 = 1,

(s−1(min(ct(u1), b)), 0), u1 < 1,

II(u,w) = (s−1(min(ct(u1), b)), t−1(min(c(s(u2), b)))),

II(u,w) =


(s−1(min(ct(u1), b)),

t−1(min(c(t(u1), b)))), u1 = 1− u2,

(s−1(min(ct(u1), b)), 0), u1 < 1− u2,

II(u,w) =


(s−1(min(ct(u1), b)),

t−1(min(c(t(u1), b)))), u2 = 0,

(s−1(min(ct(u1), b)), 0), u2 > 0,

II(u,w) = (s−1(min(ct(u1), b)), t−1(min(c(t(u1), b)))),

II(u,w) =


(s−1(min(ct(u1), b)), t−1(min(c1

(t(u1)− s(u2)) + c2s(u2), b))), u1 > 0,

(s−1(min(ct(u1), b)), 0), u1 = 0,

II(u,w) =


(s−1(min(c1(t(u1)− s(u2))

+c2s(u2), b)), 0), u1 > 0,

1L , u1 = 0,
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II(u,w) =



0L , u1 = 1,

1L , u1 = 0,

(s−1(min(c1(t(u1)− s(u2))

+c2s(u2), b)), 0), 0 < u1 < 1,

or

II(u,w) =


(s−1(min(c1(t(u1)− s(u2)) + c2s(u2), b)),

t−1(min(c1(t(u1)− s(u2)) + c2s(u2), b))), u1 > 0,

1L , u1 = 0,

Proof. Given that T and S are the t-representable on L such that T = (T, S) and S = (S, T ),

i.e., T (u, v) = (T (u1, v1), S(u2, v2)) S(u, v) = (S(u1, v1), T (u2, v2)), for all u, v ∈ L. Given

that t-norm T is nilpotent, and T and S are dual of each other. It follows that t-conorm S

is nilpotent. Now, from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7 given in [19],

there exists a decreasing continuous function t : [0, 1] → [0,∞] and a increasing continuous

function s : [0, 1] → [0,∞] such that t(0) < ∞, t(1) = 0, s(0) = 0 and s(1) < ∞ which are

uniquely determined a positive multiplicative constant such that, for all a, b ∈ [0, 1], T (a, b) =

t−1(min(t(a) + t(b), t(0))) and S(a, b) = s−1(min(s(a) + s(b), s(1))).

Let us prove that (ii) ⇒ (i).

(P1): Let II have the form II(u,w) = 1L . Then the LHS of (7.9) is equal to 1L , and the RHS

of (7.9) is equal to 1L .

(P2): Let II have the form II(u,w) = (0, 0). Then the LHS of (7.9) is equal to (0, 0), and the

RHS of (7.9) is equal to (0, 0).

(P3): Let II have the form II(u,w) = 0L . Then the LHS of (7.9) is equal to 0L , and the RHS

of (7.9) is equal to 0L .

(P4): Let II have the form II(u,w) =

0L , u2 = 0,

(0, 0), u2 > 0.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

0L , S(u2, y2) = 0,

(0, 0), S(u2, v2) > 0.
=

0L , u2 = y2 = 0,

(0, 0), u2 > 0 or v2 > 0,
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and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

(0L , u2 = 0,

(0, 0), u2 > 0.
,

0L , v2 = 0,

(0, 0), v2 > 0.

)

=

0L , u2 = v2 = 0,

(0, 0), u2 > 0 or v2 > 0.

(P5): Let II have the form II(u,w) =

0L , v1 = 1,

(0, 0), v1 < 1.

Then the LHS of (7.11) is equal to

II(T (u, v), w) =

0L , T (u1, v1) = 1,

(0, 0), T (u1, v1) < 1.
=

0L , u1 = v1 = 1,

(0, 0), u1 < 1 or v1 < 1,

and the RHS of (7.11) is equal to

S(II(u,w), II(v, w)) =S

(0L , u1 = 1,

(0, 0), u1 < 1.
,

0L , v1 = 1,

(0, 0), v1 < 1.

)

=

0L , u1 = v1 = 1,

(0, 0), u1 < 1 or v1 < 1.

(P6): Let II have the form II(u,w) =

(0, 0), u2 = 0,

1L , u2 > 0.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

(0, 0), S(u2, v2) = 0,

1L , S(u2, v2) > 0.
=

(0, 0), u2 = v2 = 0,

1L , u2 > 0 or v2 > 0,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

((0, 0), u2 = 0,

1L , u2 > 0.
,

(0, 0), v2 = 0,

1L , v2 > 0.

)

=

(0, 0), u2 = v2 = 0,

1L , u2 > 0 or v2 > 0.

(P7): Let II have the form II(u,w) =

0L , u2 = 0,

1L , u2 > 0.

Then the LHS of (7.9) is equal to
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II(T (u, v), w) =

0L , S(u2, v2) = 0,

1L , S(u2, v2) > 0.
=

0L , u2 = v2 = 0,

1L , u2 > 0 or v2 > 0,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) = S

(0L , u2 = 0,

1L , u2 > 0.
,

0L , v2 = 0,

1L , v2 > 0.

)
=

0L , u2 = v2 = 0,

1L , u2 > 0 or v2 > 0.

(P8): Let II have the form II(u,w) =

(0, 0), u1 = 1,

1L , u1 < 1.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

(0, 0), T (u1, v1) = 1,

1L , T (u1, v1) < 1.
=

(0, 0), u1 = v1 = 1,

1L , u1 < 1 or v1 < 1,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S

((0, 0), u1 = 1,

1L , u1 < 1.
,

(0, 0), v1 = 1,

1L , v1 < 1.

)

=

(0, 0), u1 = v1 = 1,

1L , u1 < 1 or v1 < 1.

(P9): Let II have the form II(u,w) =

0L , u1 = 1,

1L , u1 < 1.

Then the LHS of (7.9) is equal to

II(T (u, v), w) =

0L , T (u1, v1) = 1,

1L , T (u1, v1) < 1.
=

0L , u1 = v1 = 1,

1L , u1 < 1 or v1 < 1,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) = S

(0L , u1 = 1,

1L , u1 < 1.
,

0L , v1 = 1,

1L , v1 < 1.

)
=

0L , u1 = v1 = 1,

1L , u1 < 1 or v1 < 1.

(P10): Let II have the form II(u,w) =


0L , u1 = 1, u2 = 0,

(0, 0), u1 < 1, u2 = 0,

1L , u1 < 1, u2 > 0, u1 + u2 ≤ 1.
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Then the LHS of (7.9) is equal to

II(T (u, v), w) =



0L , T (u1, v1) = 1, S(u2, v2) = 0,

(0, 0), T (u1, v1) < 1, S(u2, v2) = 0,

1L , T (u1, v1) < 1, S(u2, v2) > 0,

T (u1, v1) + S(u2, v2) ≤ 1.

=



0L , u1 = v1 = 1, u2 = v2 = 0,

(0, 0), (u1 < 1 or v1 < 1), u2 = v2 = 0,

1L , (u1 < 1 or v1 < 1), (u2 > 0 or

v2 > 0), u1 + u2 ≤ 1, v1 + v2 ≤ 1,

and the RHS of (7.9) is equal to

S(II(u,w), II(v, w)) =S





0L , u1 = 1, u2 = 0,

(0, 0), u1 < 1, u2 = 0,

1L , u1 < 1, u2 > 0,

u1 + u2 ≤ 1.

,



0L , v1 = 1, v2 = 0,

(0, 0), v1 < 1, v2 = 0,

1L , v1 < 1, v2 > 0,

v1 + v2 ≤ 1.



=



0L , u1 = v1 = 1, u2 = v2 = 0,

(0, 0), (u1 < 1 or v1 < 1), u2 = v2 = 0,

1L , (u1 < 1 or v1 < 1), (u2 > 0 or v2 > 0)

& u1 + u2 ≤ 1, v1 + v2 ≤ 1.

Let us prove that (i) ⇒ (ii).

From (7.30),

g1(t−1(min(t(u1) + t(v1), t(0))), s−1(min(s(u2) + s(v2), s(1))))

= s−1(min(s(g1(u1, u2)) + s(g1(v1, v2)), s(1))),

g2(t−1(min(t(u1) + t(v1), t(0))), s−1(min(s(u2) + s(v2), s(1))))

= t−1(min(t(g2(u1, u2)) + t(g2(v1, v2)), t(0))).
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Hence

s ◦ (g1(t−1(min(t(u1) + t(v1), t(0))), s−1(min(s(u2) + s(v2), s(1)))))

= min(s(g1(u1, u2)) + s(g1(v1, v2)), s(1)), (7.36)

t ◦ (g2(t−1(min(t(u1) + t(v1), t(0))), s−1(min(s(u2) + s(v2), s(1)))))

= min(t(g2(u1, u2)) + t(g2(v1, v2)), t(0)). (7.37)

Let us put t(u1) = x1, s(u2) = x2, t(v1) = y1, s(v2) = y2, t(0) = a and s(1) = b. Of course

x1, x2, y1, y2 ∈ [0,∞], Moreover, u = (u1, u2), v = (v1, v2) ∈ L, thus u1 ≤ 1− u2 and v1 ≤ 1− v2.

Since t and s are decreasing generator and increasing generator such that t(1− a) = t(0)− t(a)

and s(a) = t(0) − t(a), ∀ a ∈ [0, 1], x1 ≥ x2 and y1 ≥ y2. This implies that (x1, x2), (y1, y2) ∈
[0,∞]2. If we put

f 1(x1, x2) := s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)), f 2(x1, x2) := t ◦ pr2 ◦ II((t−1(x1),

(7.38)

s−1(x2)), (w1, w2)) ∀ (x1, x2) ∈ [0,∞]2

(7.39)

As a consequence we get the following two functional equations

f 1(min(x1 + y1, a),min(x2 + y2, a)) = min(f 1(x1, x2) + f 1(y1, y2), b), (7.40)

f 2(min(x2 + y2, a),min(x1 + y1, a)) = min(f 2(x1, x2) + f 2(y1, y2), b), (7.41)

where (x1, x2), (y1, y2) ∈ [0,∞]2

For x1, x2 ∈ [0,∞], x1 ≥ x2 and (w1, w2) ∈ L, we have

(S1): f 1 = 0 ⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) = 0 ⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0.

(S2): f 1 = b ⇒ s◦pr1◦II((t−1(x1), s−1(x2)), (w1, w2)) = b ⇒ pr1◦II((u1, u2), (w1, w2)) = 1.

(S3): f 1(x1, x2) =

0, x2 = 0,

b, x2 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x2 = 0,

b, x2 > 0.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.
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(S4): f 1(x1, x2) =

0, x1 = 0,

b, x1 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

0, x1 = 0,

b, x1 > 0.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

0, u1 = 1,

1, u1 < 1.

(S5): ∃ c ∈ [b/a,∞) such that

f 1(x1, x2) = min(cx2, b) ⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) = min(cx2, b)

⇒ pr1 ◦ II((u1, u2), (w1, w2)) = s−1(min(cs(u2), b)).

(S6): f 1(x1, x2) =

min(cx1, b), x1 = x2,

b, x1 > x2,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

min(cx1, b), x1 = x2,

b, x1 > x2.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(min(ct(u1), b)), u1 = 1− u2,

1, u1 < 1− u2.

(S7): f 1(x1, x2) =

min(cx1, b), x2 = 0,

b, x2 > 0,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

min(cx1, b), x2 = 0,

b, x2 > 0.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(min(ct(u1), b)), u2 = 0,

1, u2 > 0.

(S8): f 1(x1, x2) = min(cx1, b)⇒ pr1 ◦ II((u1, u2), (w1, w2)) = s−1(min(ct(u1), b)).
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(S9): ∃ c1, c2 ∈ [b/a,∞), c1 6= c2 such that

f 1(x1, x2) =

min(c1(x1 − x2) + c2x2, b), x1 < a,

b, x1 = a,

⇒ s ◦ pr1 ◦ II((t−1(x1), s−1(x2)), (w1, w2)) =

min(c1(x1 − x2) + c2x2, b), x1 < a,

b, x1 = a.

⇒ pr1 ◦ II((u1, u2), (w1, w2)) =

s−1(min(c1(t(u1)− s(u2)) + c2(s(u2)), b)), u1 > 0,

1, u1 = 0.

Similarly, we can find the possible solutions of (7.41) are as follows:

For x1, x2 ∈ [0,∞], x1 ≥ x2 and (w1, w2) ∈ L, we have

(S’1): pr2 ◦ II((u1, u2), (w1, w2)) = 1.

(S’2): pr2 ◦ II((u1, u2), (w1, w2)) = 0.

(S’3): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u2 = 0,

0, u2 > 0.

(S’4): pr2 ◦ II((u1, u2), (w1, w2)) =

1, u1 = 1,

0, u1 < 1.

(S’5): ∃ c ∈ [b/a,∞) s.t.

pr2 ◦ II((u1, u2), (w1, w2)) = t−1(min(cs(u2), b)).

(S’6): pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(min(ct(u1), b)), u1 = 1− u2,

0, u1 < 1− u2.

(S’7): pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(min(ct(u1), b)), u2 = 0,

0, u2 > 0.

(S’8): pr2 ◦ II((u1, u2), (w1, w2)) = t−1(min(ct(u1), b)).

(S’9): ∃ c1, c2 ∈ [b/a,∞), c1 6= c2 such that

pr2 ◦ II((u1, u2), (w1, w2)) =

t−1(min(c1(t(u1)− s(u2)) + c2(s(u2)), b)), u1 > 0,

0, u1 = 0.
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Of course not every combination of the above solutions give a correct value in the set L. For ex-

ample when pr1◦II((u1, u2), (v1, v2)) = 0 and pr2◦II((u1, u2), (v1, v2)) = 1, for every (v1, v2) ∈ L,

then our (constant) solution is correct: II((u1, u2), (v1, v2)) = (0, 1) = 0L .

Also when pr1◦II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.
and pr2◦II((u1, u2), (w1, w2)) =

1, u2 = 0,

0, u2 > 0.

for every (v1, v2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2)) =

0L , u2 = 0,

1L , u2 > 0.

But if pr1 ◦II((u1, u2), (w1, w2)) =

0, u2 = 0,

1, u2 > 0.
and pr2 ◦II((u1, u2), (w1, w2)) =

1, u2 < 1,

0, u2 = 1,

for every (v1, v2) ∈ L, then our solution is incorrect, since II((u1, u2), (v1, v2)) =


0L , u2 = 0,

1L , u2 = 1,

(1, 1), 0 < u2 < 1,

is not solution in L (since (1, 1) /∈ L).

Similarly, we can find the possible combinations of the above solutions give a correct value

in the set L is the required result (ii).

Remark 7.4.9. If we put α = u, β = fI(w) and II = II(fI,ω) in Proposition 7.4.8, then the

above possible forms of II(u,w), for fixed w ∈ L, convert into corresponding forms of ω(α, β).

7.4.3 General method for solving distributive eq. (7.11):

Distributive eq. (7.11) is given by

II(u, T1(v, w)) = T2(II(u, v), II(u,w)), ∀u, v, w ∈ L (7.42)

where II is the unknown function, and the t-norms T1 and T2 on L are the t-representable, i.e.,

T1 = (T1, T2) and T2 = (T2, S2).

At this situation distributive eq. (7.11) has the following form

II((u1, u2), (T1(v1, w1), S1(v2, w2))) =(T2(pr1(II((u1, u2), (v1, v2))), pr1(II((u1, u2), (w1, w2)))),

S2(pr2(II((u1, u2), (v1, v2))), pr2(II((u1, u2), (w1, w2))))),

∀ u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ L.
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As a consequence we obtain the following two equations

pr1(II((u1, u2), (T1(v1, w1), S1(v2, w2)))) = T2(pr1(II((u1, u2), (v1, v2))), pr1(II((u1, u2), (w1, w2)))),

(7.43)

pr2(II((u1, u2), (T1(v1, w1), S1(v2, w2)))) = S2(pr2(II((u1, u2), (v1, v2))), pr2(II((u1, u2), (w1, w2)))),

(7.44)

∀ u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ L.

Now, let u = (u1, u2) ∈ L be arbitrary but fixed. Then we define two functions g1
(u1,u2),

g2
(u1,u2) : [0, 1]→ [0, 1] by

g1
(u1,u2)(.) := pr1 ◦ II((u1, u2), .), g2

(u1,u2)(.) := pr2 ◦ II((u1, u2), .), (7.45)

where ◦ represents standard composition of functions.

From (7.43), (7.44) and (7.45), we have

g1
(u1,2)(T1(v1, w1), S1(v2, w2)) = T2(g1

(u1,u2)(v1, v2), g1
(u1,u2)(w1, w2)), (7.46)

g2
(u1,u2)(T1(v1, w1), S1(v2, w2)) = S2(g2

(u1,u2)(v1, v2), g2
(u1,u2)(w1, w2)). (7.47)

For simplicity, we put g1
(u1,u2) = g1 and g2

(u1,u2) = g2 in (7.46) and (7.47), we have

g1(T1(v1, w1), S1(v2, w2)) = T2(g1(v1, v2), g1(w1, w2)), g2(T1(v1, w1), S1(v2, w2))

= S2(g2(v1, v2), g2(w1, w2)). (7.48)

Proposition 7.4.10. Let T = (T, S), where T and S are the strict t-norm and t-conorm

respectively such that T and S are dual of each other. For a function II : L2 → L, the following

statements are equivalent:

(i) The triple (T1, T2, II) satisfies the functional eq. (7.11) ∀ u, v, w ∈ L.

(ii) For every fixed u ∈ L, II(u, .) has one of the following form:

II(u, v) = 1L , II(u, v) = (0, 0), II(u, v) = 0L , II(u, v) =

(0, 0), v2 = 0,

0L , v2 > 0,

II(u, v) =

(0, 0), v2 < 1,

0L , v2 = 1,
II(u, v) =

(0, 0), v1 = 1,

0L , v1 < 1,
II(u, v) =


(0, 0), v1 = 1− v2 > 0,

0L , v2 = 1 or

v1 < 1− v2,
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II(u, v) =

(0, 0), v2 = 0, v1 > 0,

0L , v2 > 0 or v1 = 0,
II(u, v) =

(0, 0), v1 > 0,

0L , v1 = 0,

II(u, v) = (0, s−1
2 (cs1(v2))), II(u, v) =

(0, s−1
2 (ct1(v1))), v1 = 1− v2,

0L , v1 < 1− v2,

II(u, v) =

(0, s−1
2 (cs1(v2))), v1 > 0,

0L , v1 = 0,
II(u, v) =

(0, s−1
2 (ct1(v1))), v2 = 0,

0L , v2 > 0,

II(u, v) =

(0, s−1
2 (c(t1(v1)− s1(v2)))), v2 < 1,

0L , v2 = 1,
II(u, v) = (0, s−1

2 (ct1(v1))),

II(u, v) =

(0, s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v2 < 1,

0L , v2 = 1,
II(u, v) =

1L , v2 = 0,

0L , v2 > 0,

II(u, v) =

1L , v2 = 0,

(0, 0), v2 > 0,
II(u, v) =

1L , v2 < 1,

(0, 0), v2 = 1,
II(u, v) =

1L , v1 = 1,

(0, 0), v1 < 1,

II(u, v) =

1L , v2 < 1,

0L , v2 = 1,
II(u, v) =


(0, 0), 0 < v2 < 1,

1L , v2 = 0,

0L , v2 = 1,

II(u, v) =


1L , v2 = 0,

(0, s−1
2 (c(s1

(v2)))), v2 > 0,

II(u, v) =

1L , v1 = 1,

0L , v1 < 1,

II(u, v) =



1L , v1 = 1, v2 = 0,

(0, 0), v1 < 1, v2 = 0,

0L , v1 < 1, v2 > 0,

v1 + v2 ≤ 1,

II(u, v) =



1L , v1 = 1, v2 = 0,

(0, 0), v1 < 1, v2 < 1,

v1 + v2 ≤ 1,

0L , v1 = 0, v2 = 1,

II(u, v) =


1L , v1 = 1, v2 = 0,

(0, 0), v1 < 1, v1 = 1− v2 > 0,

0L , v1 < 1, v1 < 1− v2,

II(u, v) =



1L , v1 = 1, v2 = 0,

(0, 0), 0 < v1 < 1, v2 = 0,

0L , (v1 = 0, v2 > 0),

or/; v1 = 0,
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II(u, v) =

1L , v1 = 1− v2 > 0,

(0, 0), v2 = 1 or v1 < 1− v2,
II(u, v) =


1L , v1 = 0,

(0, 0), 0 < v1 < 1,

0L , v1 = 1,

II(u, v) =


1L , v1 = 1,

(0, s−1
2 (cs1

(v2))), v1 < 1,

II(u, v) =


1L , v1 = 1, v2 = 0,

(0, s−1
2 (ct1(v1))), v1 < 1, v1 = 1− v2,

0L , v1 < 1, v1 < 1− v2,

II(u, v) =


1L , v1 = 1,

(0, s−1
2 (cs1(v2))), 0 < v1 < 1,

0L , v1 = 0,

II(u, v) =



1L , v1 = 1, v2 = 0,

(0, s−1
2 (ct1(v1))), v1 < 1, v2 = 0,

0L , v1 < 1, v2 > 0,

v1 + v2 ≤ 1,

II(u, v) =



1L , v1 = 1, v2 = 0,

0L , v1 = 0, v2 = 1,

(0, s−1
2 (c(t1(v1)− s1(v2)))), v1 < 1, v2 < 1,

v1 + v2 ≤ 1,

II(u, v) =



1L , v1 = 1, v2 = 0,

0L , v1 = 0, v2 = 1,

(0, s−1
2 (c1(t1(v1)− s1(v2)) + c2(s1(v2))), v1 < 1, v2 < 1,

v1 + v2 ≤ 1,

II(u, v) =

1L , v1 = 1,

(0, s−1
2 (c(t1(v1)))), v1 < 1,

II(u, v) =


1L , v1 = 1− v2 > 0, v2 < 1,

0L , v2 = 1,

(0, 0), v1 < 1− v2, v2 < 1,
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II(u, v) =

1L , v1 = 1− v2 > 0,

0L , (v2 = 1) or (v1 < 1− v2),
II(u, v) =



1L , v1 = 1− v2 > 0, v1 > 0,

(0, 0), (v1 > 0, v2 = 1),

or (v1 < 1− v2, v1 > 0)

0L , (v1 = 0, v2 = 1)

or (v1 = 0, v2 < 1),

II(u, v) =

1L , v1 > 0, v2 = 0,

0L , (v1 = 0, v2 > 0) or v2 > 0,
II(u, v) =

1L , v1 > 0, v2 = 0,

(0, 0), v1 = 0 or v2 > 0,

II(u, v) =

1L , v1 > 0,

(0, 0), v1 = 0,
II(u, v) =



1L , v1 > 0, v2 = 0,

(0, 0), (0 < v2 < 1) or

(v1 = 0, v2 < 1),

0L , (v2 = 1) or

(v1 = 0, v2 = 1),

II(u, v) =



1L , v1 = 1, v2 = 0,

0L , (v2 = 1) or (v1 = 0, v2

= 1) or (v1 < 1− v2, v2

> 0) or (v1 = 0, v2 < 1),

II(u, v) =

1L , v1 > 0, v2 = 0,

0L , v1 = 0 or v2 > 0,

II(u, v) =



1L , v1 > 0, v2 = 0,

0L , (v1 = 0, v2 > 0)

or (v1 = 0),

(0, 0), v1 > 0, v2 > 0,

v1 + v2 ≤ 1,

II(u, v) =

1L , v1 > 0 v2 = 0,

(0, s−1
2 (cs1(v2))), v1 = 0 or v2 > 0,

II(u, v) =



1L , v1 > 0 v2 = 0,

(0, s−1
2 (cs1(v2))), v1 > 0, v2 > 0,

v1 + v2 ≤ 1,

0L , (v2 > 0, v1 = 0)

or (v1 = 0),

II(u, v) =



1L , v1 > 0, v2 < 1,

v1 + v2 ≤ 1

(0, 0), v1 = 0, v2 < 1,

0L , v1 = 0, v2 = 1,
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II(u, v) =

1L , v1 > 0,

0L , v1 = 0,
II(u, v) = (t−1

2 (cs1(v2)), 0),

II(u, v) =

(t−1
2 (cs1(v2)), 0), v2 < 1,

0L , v2 = 1,
II(u, v) = (t−1

2 (cs1(v2)), s−1
2 (cs1(v2))),

II(u, v) =


(t−1

2 (cs1(v2)), s−1
2 (c(t1

(v1)− s1(v2)))), v2 < 1,

0L , v2 = 1,

II(u, v) = (t−1
2 (cs1(v2)), s−1

2 (ct1(v1))),

II(u, v) =


(t−1

2 (cs1(v2)), s−1
2 (c1(t1(v1)

−s1(v2)) + c2s1(v2))), v2 < 1,

0L , v2 = 1,

II(u, v) =

(t−1
2 (ct1(v1)), 0), v1 = 1− v2,

0L , v1 < 1− v2,

II(u, v) =


(t−1

2 (ct1(v1)), 0), v1 = 1− v2, v2 < 1,

(0, 0), v1 < 1− v2, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =


(t−1(ct(1− v2)), 0), v1 = 1− v2 > 0,

0L , (v1 = 0, v2 = 1)

or (v1 < 1− v2),

II(u, v) =



(t−1
2 (ct1(v1)), 0), v1 = 1− v2, v1 > 0,

(0, 0), v1 < 1− v2, v1 > 0,

0L , v1 = 0, v2 < 1,

1L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (cs1(v2))), v1 = 1− v2,

(0, s−1
2 (cs1(v2))), v1 < 1− v2,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (ct1(v1))), v1 = 1− v2,

0L , v1 < 1− v2,
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II(u, v) =



(t−1
2 (ct1(v1)), s−1

2 (cs1(v2))), v1 = 1− v2, v1 > 0,

(0, s−1
2 (cs1(v2))), v1 < 1− v2, v1 > 0,

0L , (v1 ≤ 1− v2, v1 = 0),

or (v1 = 0, v2 = 1),

II(u, v) =


(t−1

2 (ct1(v1)), s−1
2 (c(t1(v1)− s1(v2)))), v1 = 1− v2, v2 < 1,

(0, s−1
2 (c(t1(v1)− s1(v2)))), v1 < 1− v2, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (ct1(v1))), v1 = 1− v2,

(0, s−1
2 (ct1(v1))), v1 < 1− v2,

II(u, v) =


(t−1

2 (ct1(v1)), s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v1 = 1− v2, v2 < 1,

(0, s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v1 < 1− v2, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (cs1(v2)), 0), v1 > 0,

(0, 0), v1 = 0,
II(u, v) =



(t−1
2 (cs1(v2)), 0), v1 > 0, v2 < 1,

v1 + v2 ≤ 1,

(0, 0), v1 = 0, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (cs1(v2)), 0), v1 > 0,

0L , v1 = 0,
II(u, v) =


(t−1

2 (cs1(v2)),

s−1
2 (cs1(v2))), v1 > 0,

(0, s−1
2 (cs1(v2))), v1 = 0,

II(u, v) =

(t−1
2 (cs1(v2)), s−1

2 (cs1(v2))), v1 > 0,

0L , v1 = 0,

II(u, v) =



(t−1
2 (cs1(v2)), s−1

2 (c(t1(v1)− s1(v2)))), v1 > 0, v2 < 1,

v1 + v2 ≤ 1,

(0, s−1
2 (c(t1(v1)− s1(v2)))), v1 = 0, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (cs1(v2)), s−1

2 (ct1(v1))), v1 > 0,

0L , v1 = 0,
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II(u, v) =



(t−1
2 (cs1(v2)), s−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v1 > 0, v2 < 1,

v1 + v2 ≤ 1,

(0, s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v1 = 0, v2 < 1,

0L , v1 = 0, v2 = 1,

II(u, v) =

(t−1
2 (ct1(v1)), 0), v2 = 0,

(0, 0), v2 > 0,
II(u, v) =

(t−1
2 (ct1(v1)), 0), v2 = 0,

0L , v2 > 0,

II(u, v) =


(t−1

2 (ct1(v1)), 0), v2 = 0,

0L , v2 = 1,

(0, 0), 0 < v2 < 1,

II(u, v) =


(t−1

2 (ct1(v1)), 0), v2 = 0, v1 > 0,

0L , (v1 = 0, v2 = 0), or (v2 > 0)

or (v1 = 0, v2 > 0),

II(u, v) =


(t−1

2 (ct1(v1)), 0), v2 = 0, v1 > 0,

0L , v1 = 0, v2 ≥ 0,

(0, 0) v1 > 0, v2 > 0, v1 + v2 ≤ 1,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (cs1(v2))), v2 = 0,

(0, s−1
2 (cs1(v2))), v2 > 0,

II(u, v) =


(t−1

2 (ct1(v1)), s−1
2 (cs1(v2))), v2 = 0, v1 > 0,

0L , v1 = 0, v2 ≥ 0,

(0, s−1
2 (cs1(v2))) v1 > 0, v2 > 0, v1 + v2 ≤ 1,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (ct1(v1))), v2 = 0,

0L , v2 > 0,

II(u, v) =


(t−1

2 (ct1(v1)), s−1
2 (c(t1(v1)− s1(v2)))), v2 = 0,

0L , v2 = 1,

(0, s−1
2 (c(t1(v1)− s1(v2)))) 0 < v2 < 1,
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II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (ct1(v1))), v2 = 0,

(0, s−1
2 (ct1(v1))), v2 > 0,

II(u, v) =


(t−1

2 (ct1(v1)), s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v2 = 0,

0L , v2 = 1,

(0, s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))) 0 < v2 < 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), 0), v2 < 1,

(0, 0) v2 = 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), 0), v2 < 1,

0L v2 = 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), 0), v2 < 1, v1 > 0,

0L v1 = 0, v2 ≤ 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), s−1

2 (cs1(v2))), v2 < 1,

(0, s−1
2 (cs1(v2))) v2 = 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), s−1

2 (cs1(v2))), v1 > 0, v2 < 1,

(0, s−1
2 (cs1(v2))) v1 = 0, v2 ≤ 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), s−1

2 (c(t1(v1)− s1(v2)))), v2 < 1,

0L v2 = 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), s−1

2 (c(t1(v1)))), v2 < 1,

(0, s−1
2 (c(t1(v1)))) v2 = 1,

II(u, v) =

(t−1
2 (c(t1(v1)− s1(v2))), s−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v2 < 1,

0L v2 = 1,

II(u, v) = (t−1
2 (ct1(v1)), 0), II(u, v) =

(t−1
2 (ct1(v1)), 0), v2 < 1,

0L v2 = 1,

II(u, v) = (t−1
2 (ct1(v1)), s−1

2 (cs1(v2))),
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II(u, v) =

(t−1
2 (ct1(v1)), 0), v1 > 0,

0L v1 = 0,
II(u, v) =


(t−1

2 (ct1(v1)),

s−1
2 (cs1(v2))), v1 > 0,

0L v1 = 0,

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (c(t1(v1)− s1(v2)))), v2 < 1,

0L v2 = 1,

II(u, v) = (t−1
2 (ct1(v1)), s−1

2 (ct1(v1)))

II(u, v) =

(t−1
2 (ct1(v1)), s−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v2 < 1,

0L v2 = 1,

II(u, v) =

(t−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2)), 0), v2 < 1,

(0, 0) v2 = 1,

II(u, v) =

(t−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2)), 0), v2 < 1,

0L v2 = 1,

II(u, v) =


(t−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2)), 0), v1 > 0, v2 < 1,

v1 + v2 ≤ 1,

0L v1 = 0, v2 ≤ 1,

II(u, v) =


(t−1

2 (c1(t1(v1)− s1(v2))+

c2s1(v2)), s−1
2 (cs1(v2))), v2 < 1,

(0, s−1
2 (cs1(v2))) v2 = 1,

II(u, v) =



(t−1
2 (c1(t1(v1)− s1(v2))+

c2s1(v2)), s−1
2 (cs1(v2))), v1 > 0, v2 < 1,

v1 + v2 ≤ 1,

0L v1 = 0, v2 ≤ 1,

II(u, v) =


(t−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2)),

s−1
2 (c(t1(v1)− s1(v2)))), v2 < 1,

0L v2 = 1,
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II(u, v) =


(t−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2)),

s−1
2 (ct1(v1))), v2 < 1,

(0, s−1
2 (ct1(v1))) v2 = 1,

or II(u, v) =


(t−1

2 (c1(t1(v1)− s1(v2)) + c2s1(v2)),

s−1
2 (c1(t1(v1)− s1(v2)) + c2s1(v2))), v2 < 1,

0L v2 = 1,

Proof. Given that T1 and T2 are the t-representable on L, i.e., T1 = (T1, S1) and T2 = (S2, T2).

Also, given that t-norm T is strict, and T and S are dual of each other. It follows that t-conorm

S is strict. Moreover, T1 = T2. Now , from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and

2.2.7, given in [19], there exists a decreasing continuous function t : [0, 1] → [0,∞] such that

t(0) = ∞ and t(1) = 0 which are uniquely determined a positive multiplicative constant such

that T (a, b) = t−1(t(a) + t(b)), ∀ a, b ∈ [0, 1].

Let us prove that (ii) ⇒ (i).

(P1): Let II have the form II(u, v) = 1L . Then the LHS of (7.11) is equal to 1L , and the RHS

of (7.11) is equal to 1L .

(P2): Let II have the form II(u, v) = (0, 0). Then the LHS of (7.11) is equal to (0, 0), and the

RHS of (7.11) is equal to (0, 0).

(P3): Let II have the form II(u, v) = 0L . Then the LHS of (7.11) is equal to 0L , and the RHS

of (7.11) is equal to 0L .

(P4): Let II have the form II(u, v) =

(0, 0), v2 = 0,

0L , v2 > 0.

Then the LHS of (7.11) is equal to

II(u, T1(v, w)) =

(0, 0), S1(v2, z2) = 0,

0L , S1(v2, w2) > 0.
=

(0, 0), v2 = w2 = 0,

0L , v2 > 0 or w2 > 0,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

((0, 0), v2 = 0,

0L , v2 > 0.
,

(0, 0), w2 = 0,

0L , w2 > 0.

)

=

(0, 0), v2 = w2 = 0,

0L , v2 > 0 or w2 > 0.
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(P5): Let II have the form II(u, v) =

(0, 0), v2 < 1,

0L , v2 = 1.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

(0, 0), S1(v2, w2) < 1,

0L , S1(v2, w2) = 1.
=

(0, 0), v2 < 1, w2 < 1,

0L , v2 = 1 or w2 = 1,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

((0, 0), v2 < 1,

0L , v2 = 1.
,

(0, 0), w2 < 1,

0L , w2 = 1.

)

=

(0, 0), v2 < 1, w2 < 1,

0L , v2 = 1 or w2 = 1.

(P6): Let II have the form II(u, v) =

(0, 0), v1 = 1,

0L , v1 < 1.

Then the LHS of (7.11) is equal to

II(u, T1(v, w)) =

(0, 0), T1(v1, w1) = 1,

0L , T1(v1, w1) < 1.
=

(0, 0), v1 = w1 = 1,

0L , v1 < 1 or w1 < 1,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

((0, 0), v1 = 1,

0L , v1 < 1.
,

(0, 0), w1 = 1,

0L , w1 < 1.

)

=

(0, 0), v1 = w1 = 1,

0L , v1 < 1 or w1 < 1.

(P7): Let II have the form II(u, v) = (0, 1− t−1(ct(1− v2))).

Then the LHS of (7.11) is equal to

II(x, T1(y, z)) =(0, 1− t−1(ct(1− S1(v2, w2)))) = (0, 1− t−1(ct(T1(1− v2, 1− w2))))

=(0, 1− t−1(ctt−1(t(1− v2) + t(1− w2)))),

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2((0, 1− t−1(ct(1− v2))), (0, 1− t−1(ct(1− w2))))

=(0, S2(1− t−1(ct(1− v2)), 1− t−1(ct(1− w2))))

=(0, 1− T2(t−1(ct(1− v2)), t−1(ct(1− w2))))

=(0, 1− t−1(ctt−1(t(1− v2) + t(1− w2)))).
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Similarly we can verify eq. (7.11) easily by taking all remaining forms of II.

Let us prove that (i) ⇒ (ii).

From (7.48),

g1(t−1
1 (t1(v1) + t1(w1)), s−1

1 (s1(v2) + s1(w2))) = t−1
2 (t2(g1(v1, v2)) + t2(g1(w1, w2))),

g2(t−1
1 (t1(v1) + t1(w1)), s−1

1 (s1(v2) + s1(w2))) = s−1
2 (s2(g2(v1, v2)) + s2(g2(w1, w2))).

Hence

t2 ◦ g1(t−1
1 (t1(v1) + t1(w1)), s−1

1 (s1(v2) + s1(w2))) = t2(g1(v1, v2)) + t2(g1(w1, w2)),

s2 ◦ g2(t−1
1 (t1(v1) + t1(w1)), s−1

1 (s1(v2) + s1(w2))) = s2(g2(v1, v2)) + s2(g2(w1, w2)).

Let us put t1(v1) = y1, s1(v2) = y2, t1(w1) = z1 and s1(w2) = z2. Of course y1, y2, z1, z2 ∈ [0,∞],

Moreover u = (u1, u2), w = (w1, w2) ∈ L, thus v1 ≤ 1 − v2 and w1 ≤ 1 − w2. Since t1 and

s1 are decreasing generator and increasing generator respectively such that t1(a) = s1(1 − a),

∀a ∈ [0, 1], y1 ≥ y2 and z1 ≥ z2. This implies that (y1, y2), (z1, z2) ∈ [0,∞]2. If we put

f 1(y1, y2) := t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))), f 2(y1, y2) := s2 ◦ pr2 ◦ II((u1, u2),

(t−1
1 (y1), s−1

1 (y2))) ∀ (y1, y2) ∈ [0,∞]2

(7.49)

As a consequence we get the following two functional equations

f 1(y1 + z1, y2 + z2) =f 1(y1, y2) + f 1(z1, z2), (7.50)

f 2(y1 + z1, y2 + z2) =f 2(y1, y2) + f 2(z1, z2), (7.51)

where (y1, y2), (z1, z2) ∈ [0,∞]2.

Now, we find the possible solutions of (7.50) are as follows:

For y1, y2 ∈ [0,∞], y1 ≥ y2 and (v1, v2) ∈ L, we have

(S1): f 1 = 0 ⇒ t2◦pr1◦II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) = 0 ⇒ pr1◦II((u1, u2), (v1, v2)) = 1.

(S2): f 1 =∞ ⇒ t2◦pr1◦II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =∞ ⇒ pr1◦II((u1, u2), (v1, v2)) =

0.

(S3): f 1(y1, y2) =

0, y2 = 0,

∞, y2 > 0,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

0, y2 = 0,

∞, y2 > 0.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 = 0,

0, v2 > 0.
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(S4): f 1(y1, y2) =

0, y2 <∞,

∞, y2 =∞,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

0, y2 <∞,

∞, y2 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 < 1,

0, v2 = 1.

(S5): f 1(y1, y2) =

0, y1 = 0,

∞, y1 > 0,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

0, y1 = 0,

∞, y1 > 0.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v1 = 1,

0, v1 < 1.

(S6): f 1(y1, y2) =

0, y1 = y2 <∞,

∞, y2 =∞ or y1 > y2,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =

0, y1 = y2 <∞,

∞, y2 =∞ or y1 > y2.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v1 = 1− v2 > 0,

0, v2 = 1 or v1 < 1− v2.

(S7): f 1(y1, y2) =

0, y2 = 0, y1 <∞,

∞, y2 > 0 or y1 =∞,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =

0, y2 = 0, y1 <∞,

∞, y2 > 0 or y1 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 = 0, v1 > 0,

0, v2 > 0 or v1 = 0.
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(S8): f 1(y1, y2) =

0, y1 <∞,

∞, y1 =∞,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =

0, y1 <∞,

∞, y1 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v1 > 0,

0, v1 = 0.

(S9): ∃ c ∈ (0,∞) such that

f 1(y1, y2) = cy2 ⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) = cy2

⇒ pr1 ◦ II((u1, u2), (v1, v2)) = t−1
2 (cs1(v2)).

(S10): f 1(y1, y2) =

cy1, y1 = y2,

∞, y1 > y2,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

cy1, y1 = y2,

∞, y1 > y2.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (ct1(v1)), v1 = 1− v2,

0, v1 < 1− v2.

(S11): f 1(y1, y2) =

cy2, y1 <∞,

∞, y1 =∞,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

cy2, y1 <∞,

∞, y1 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (cs1(v2)), v1 > 0,

0, v1 = 0.

(S12): f 1(y1, y2) =

cy1, y2 = 0,

∞, y2 > 0,
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), t−1
1 (y2))) =

cy1, y2 = 0,

∞, y2 > 0.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (ct1(v1)), v2 = 0,

0, v2 > 0.
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(S13): f 1(y1, y2) =

c(y1 − y2), y2 <∞,

∞, y2 =∞,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =

c(y1 − y2), y2 <∞,

∞, y2 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (c(t1(v1)− s1(v2))), v2 < 1,

0, v2 = 1.

(S14): ∃ c ∈ (0,∞) such that

f 1(y1, y2) = cy1 ⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) = cy1

⇒ pr1 ◦ II((u1, u2), (v1, v2)) = t−1
2 (ct1(v1)).

(S15): ∃ c1, c2 ∈ (0,∞), c1 6= c2 such that

f 1(y1, y2) =

c1(y1 − y2) + c2y2, y2 <∞,

∞, y2 =∞,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), t−1

1 (y2))) =

c1(y1 − y2) + c2y2, y2 <∞,

∞, y2 =∞.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (c1(t1(v1)− s1(v2)) + c2(s1(v2))), v2 < 1,

0, v2 = 1.

Similarly, we can find the possible solutions of (7.51) are as follows:

For y1, y2 ∈ [0,∞], y1 ≥ y2 and (v1, v2) ∈ L, we have

(S’1): pr2 ◦ II((u1, u2), (v1, v2)) = 0.

(S’2): pr2 ◦ II((u1, u2), (v1, v2)) = 1.

(S’3): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 = 0,

1, v2 > 0.

(S’4): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 < 1,

1, v2 = 1.
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(S’5): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1.

(S’6): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 = 1− v2 > 0,

1, v2 = 1 or v1 < 1− v2.

(S’7): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 = 0, v1 > 0,

1, v2 > 0 or v1 = 0.

(S’8): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 > 0,

1, v1 = 0.

(S’9): ∃ c ∈ (0,∞) such that

pr2 ◦ II((u1, u2), (v1, v2)) = s−1
2 (cs1(v2)).

(S’10): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (ct1(v1)), v1 = 1− v2,

1, v1 < 1− v2.

(S’11): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (cs1(v2)), v1 > 0,

1, v1 = 0.

(S’12): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (ct1(v1)), v2 = 0,

1, v2 > 0.

(S’13): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (c(t1(v1)− s1(v2))), v2 < 1,

1, v2 = 1.

(S’14): ∃ c ∈ (0,∞) such that

pr2 ◦ II((u1, u2), (v1, v2)) = s−1
2 (ct1(v1)).

(S’15): ∃ c1, c2 ∈ (0,∞), c1 6= c2 such that

pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (c1(t1(v1)− s1(v2)) + c2(s1(v2))), v2 < 1,

1, v2 = 1.
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Of course not every combination of the above solutions give a correct value in the set L.

For example when pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 < 1,

0, v2 = 1.
and pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 < 1,

1, v2 = 1,
for every (w1, w2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2))

=

1L , v2 < 1,

0L , v2 = 1,
.

Also when pr1◦II((u1, u2), (v1, v2)) =

1, v1 = 1,

0, v1 < 1.
and pr2◦II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1.

for every (w1, w2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2)) =

1L , v1 = 1,

0L , v1 < 1.

But if pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 < 1,

0, v2 = 1.
and pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1.

for every (v1, v2) ∈ L, then our solution is incorrect, since II((u1, u2), (v1, v2)) =
1L , v1 = 1, v2 = 0,

1L , v1 = 0, v2 = 1,

(1, 1), 0 < v1 < 1, 0 < v2 < 1, v1 + v2 ≤ 1,

is not solution in L (since (1, 1) /∈ L). Similarly,

we can find the possible combinations of the above solutions give a correct value in the set L is

the required result (ii).

Remark 7.4.11. If we put α = u, β = fI(v) and II = II(fI,ω) in Proposition 7.4.10, then the

above possible forms of II(u, v), for fixed u ∈ L, convert into corresponding forms of ω(α, β).

Proposition 7.4.12. Let T = (T, S), where T and S are the nilpotent t-norm and t-conorm

respectively such that T and S are dual of each other. For a function II : L2 → L, the following

statements are equivalent:

(i) The triple (T1, T2, II) satisfies the functional eq. (7.11) ∀ u, v, w ∈ L.

(ii) For every fixed u ∈ L, II(u, .) has one of the following forms:

II(u, v) = 1L , II(u, v) = (0, 0), II(u, v) = 0L , II(u, v) =

1L , v1 = 1,

0L , v1 < 1,
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II(u, v) =

(0, 0), v2 = 0,

0L , v2 > 0,
II(u, v) =

(0, 0), v1 = 1,

0L , v1 < 1,
II(u, v) =

1L , v2 = 0,

(0, 0), v2 > 0,

II(u, v) =

1L , v2 = 0,

0L , v2 > 0,
II(u, v) =

1L , v2 = 0,

(0, 0), v2 > 0,
II(u, v) =



1L , v1 = 1, v2 = 0,

0L , v1 < 1, v2 > 0,

v1 + v2 ≤ 1,

(0, 0), v1 < 1, v2 = 0,

II(u, v) = (0, s−1
2 (min(cs1(v2), b))), II(u, v) =

(0, s−1
2 (min(cs1(v2), b))), v1 = 1− v2,

0L , v1 < 1− v2,

II(u, v) =

(0, s−1
2 (min(cs1(v2), b))), v2 = 0,

0L , v2 > 0,
II(u, v) = (0, s−1

2 (min(ct1(v1), b))),

II(u, v) =


(0, s−1

2 (min(c1(t1(v1)−

s1(v2)) + c2 − s1(v2), b))), v1 > 0,

0L , v1 = 0,

II(u, v) =

1L , v2 = 0,

(0, s−1
2 (min(cs1(v2), b))), v2 > 0,

II(u, v) =

1L , v1 = 1,

(0, s−1
2 (min(cs1(v2), b))), v1 < 1,

II(u, v) =


1L , v1 = 1, v2 = 0,

(0, s−1
2 (min(cs1(v2), b))), v1 = 1− v2, v1 < 1,

0L , v1 < 1− v2, v1 < 1,

II(u, v) =


1L , v1 = 1, v2 = 0,

(0, s−1
2 (min(ct1(v1), b))), v1 < 1, v2 = 0,

0L , v1 < 1, v2 > 0, v1 + v2 ≤ 1,

II(u, v) =

1L , v1 = 1,

(0, s−1
2 (min(ct1(v1), b))), v1 < 1,

II(u, v) =



1L , v1 = 1,

(0, s−1
2 (min(c1(t1(v1)−

s1(v2)) + c2 − s1(v2), b))), 0 < v1 < 1,

0L , v1 = 0,

II(u, v) = (t−1
2 (min(cs1(v2), b)), 0),
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II(u, v) = (t−1
2 (min(cs1(v2), b)), s−1

2 (min(cs1(v2), b))),

II(u, v) = (t−1
2 (min(cs1(v2), b)), s−1

2 (min(ct1(v1), b))),

II(u, v) =

(t−1
2 (min(ct1(v1), b)), 0), v1 = 1− v2,

(0, 0) v1 < 1− v2,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), s−1

2 (min(cs1(v2), b))), v1 = 1− v2,

(0, s−1
2 (min(cs1(v2), b))) v1 < 1− v2,

II(u, v) =


(t−1

2 (min(ct1(v1), b)),

s−1
2 (min(ct1(v1), b))), v1 = 1− v2,

0L v1 < 1− v2,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), s−1

2 (min(ct1(v1), b))), v1 = 1− v2,

(0, s−1
2 (min(ct1(v1), b))) v1 < 1− v2,

II(u, v) =



(t−1
2 (min(ct1(v1), b)), s−1

2 (min(c1(t1(v1)− s1(v2))

+c2 − s1(v2), b)))), v1 = 1− v2, v1 > 0,

(0, s−1
2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b)))), v1 < 1− v2, v1 > 0,

0L , (v1 = 0, v2 = 1) or

(v1 = 0, v1 < 1− v2),

II(u, v) =

(t−1
2 (min(ct1(v1), b)), 0), v2 = 0,

(0, 0) v2 > 0,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), 0), v2 = 0,

0L v2 > 0,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), 0), v2 = 0,

(0, s−1
2 (min(cs1(v2), b))) v2 > 0,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), s−1

2 (min(ct1(v1), b))), v2 = 0,

0L , v2 > 0,

II(u, v) =


(t−1

2 (min(ct1(v1), b)), s−1
2 (min(c1t1(v1), b))), v1 > 0, v2 = 0,

(0, s−1
2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b))), v1 > 0, v2 > 0, v1 + v2 ≤ 1,

0L , v1 = 0, v2 ≥ 0,
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II(u, v) = (t−1
2 (min(ct1(v1), b)), 0),

II(u, v) = (t−1
2 (min(ct1(v1), b)), s−1

2 (min(cs1(v2), b))),

II(u, v) = (t−1
2 (min(ct1(v1), b)), s−1

2 (min(ct1(v1), b))),

II(u, v) =

(t−1
2 (min(ct1(v1), b)), s−1

2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b))), v1 > 0,

0L , v1 = 0,

II(u, v) =

(t−1
2 (min(ct1(v1), b)), s−1

2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b))), v1 > 0,

(0, 0), v1 = 0,

II(u, v) =

(t−1
2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b)), s−1

2 (min(cs1(v2, b)))), v1 > 0,

(0, s−1
2 (min(cs1(v2, b)))), v1 = 0,

II(u, v) =

(t−1
2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b)), s−1

2 (min(ct1(v1, b)))), v1 > 0,

0L , v1 = 0,

or

II(u, v) =


(t−1

2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b)),

s−1
2 (min(c1(t1(v1)− s1(v2)) + c2 − s1(v2), b))), v1 > 0,

0L , v1 = 0,

Proof. Given that T1 and T2 are the t-representable on L, i.e., T1 = (T1, S1) and T2 = (S2, T2).

Also, given that t-norm T is nilpotent, and T and S are dual of each other. It follows that t-

conorm S is nilpotent. Now, from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7 given in

[19], there exist two decreasing continuous functions t1, t2 : [0, 1]→ [0,∞] such that t1(0), t2(0) <

∞ and t1(1) = t2(1) = 0 which are uniquely determined a positive multiplicative constant such

that T1(a, b) = t−1
1 (min(t1(a)+ t1(b), t1(0))) and T2(a, b) = t−1

2 (min(t2(a)+ t2(b), t2(0))), ∀ a, b ∈
[0, 1].

Let us prove that (ii) ⇒ (i).

(P1): Let II have the form II(u, v) = 1L . Then LHS of (7.11) is equal to 1L , and the RHS of

(7.11) is equal to 1L .

(P2): Let II have the form II(u, v) = (0, 0). Then LHS of (7.11) is equal to (0, 0), and the RHS

of (7.11) is equal to (0, 0).

(P3): Let II have the form II(u, v) = 0L . Then LHS of (7.11) is equal to 0L , and the RHS of

(7.11) is equal to 0L .
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(P4): Let II have the form II(u, v) =

(0, 0), v2 = 0,

0L , v2 > 0.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

(0, 0), S1(v2, z2) = 0,

0L , S1(v2, w2) > 0.
=

(0, 0), v2 = w2 = 0,

0L , v2 > 0 or w2 > 0,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

((0, 0), v2 = 0,

0L , v2 > 0.
,

(0, 0), w2 = 0,

0L , w2 > 0.

)

=

(0, 0), v2 = w2 = 0,

0L , v2 > 0 or w2 > 0.

(P5): Let II have the form II(u, v) =

(0, 0), v1 = 1,

0L , v1 < 1.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

(0, 0), T1(v1, w1) = 1,

0L , T1(v1, w1) < 1.
=

(0, 0), v1 = w1 = 1,

0L , v1 < 1 or w1 < 1,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

((0, 0), v1 = 1,

0L , v1 < 1.
,

(0, 0), w1 = 1,

0L , w1 < 1.

)

=

(0, 0), v1 = w1 = 1,

0L , v1 < 1 or w1 < 1.

(P6): Let II have the form II(u, v) =

1L , v2 = 0,

(0, 0), v2 > 0.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

1L , S1(v2, w2) = 0,

(0, 0), S1(v2, w2) > 0.
=

1L , v2 = w2 = 0,

(0, 0), v2 > 0 or w2 > 0,
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and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

(1L , v2 = 0,

(0, 0), v2 > 0.
,

1L , w2 = 0,

(0, 0), w2 > 0.

)

=

1L , v2 = w2 = 0,

(0, 0), v2 > 0 or w2 > 0.

(P7): Let II have the form II(u, v) =

1L , v2 = 0,

0L , v2 > 0.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

1L , S1(v2, w2) = 0,

0L , S1(v2, w2) > 0.
=

1L , v2 = w2 = 0,

0L , v2 > 0 or w2 > 0,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) = T2

(1L , v2 = 0,

0L , v2 > 0.
,

1L , w2 = 0,

0L , w2 > 0.

)
=

1L , v2 = w2 = 0,

0L , v2 > 0 or w2 > 0.

(P8): Let II have the form II(u, v) =

1L , v1 = 1,

(0, 0), v1 < 1.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

1L , T1(v1, w1) = 1,

(0, 0), T1(v1, w1) < 1.
=

1L , v1 = w1 = 1,

(0, 0), v1 < 1 or w1 < 1,

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) =T2

(1L , v1 = 1,

(0, 0), v1 < 1.
,

1L , w1 = 1,

(0, 0), w1 < 1.

)

=

1L , v1 = w1 = 1,

(0, 0), v1 < 1 or w1 < 1.

(P9): Let II have the form II(u, v) =

1L , v1 = 1,

0L , v1 < 1.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =

1L , T1(v1, w1) = 1,

0L , T1(v1, w1) < 1.
=

1L , v1 = w1 = 1,

0L , v1 < 1 or w1 < 1,
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and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) = T2

(1L , v1 = 1,

0L , v1 < 1.
,

1L , w1 = 1,

0L , w1 < 1.

)
=

1L , v1 = w1 = 1,

0L , v1 < 1 or w1 < 1.

(P10): Let II have the form II(u, v) =


1L , v1 = 1, v2 = 0,

0L , v1 < 1, v2 > 0, v1 + v2 ≤ 1,

(0, 0), v1 < 1, v2 = 0.

Then LHS of (7.11) is equal to

II(u, T1(v, w)) =



1L , T1(v1, w1) = 1, S1(v2, w2) = 0,

0L , T1(v1, w1) < 1, S1(v2, w2) > 0,

T1(v1, w1) + S1(v2, w2) ≤ 1,

(0, 0), T1(v1, w1) < 1, S1(v2, w2) = 0,

.

=



1L , v1 = w1 = 1, v2 = w2 = 0,

0L , (v1 < 1 or w1 < 1), (v2 > 0 or

w2 > 0), v1 + v2 ≤ 1, w1 + w2 ≤ 1,

(0, 0), (v1 < 1 or w1 < 1), v2 = w2 = 0.

and the RHS of (7.11) is equal to

T2(II(u, v), II(u,w)) = T2





1L , v1 = 1, v2 = 0,

0L , v1 < 1, v2 > 0,

v1 + v2 ≤ 1.

(0, 0), v1 < 1 v2 = 0.

,



1L , w1 = 1, w2 = 0,

0L , w1 < 1, w2 > 0,

w1 + w2 ≤ 1,

(0, 0), w1 < 1, w2 = 0.



=



1L , v1 = w1 = 1, v2 = w2 = 0,

0L , (v1 < 1 or w1 < 1), (v2 > 0 or w2 > 0)

& v1 + v2 ≤ 1, w1 + w2 ≤ 1,

(0, 0), (v1 < 1 or w1 < 1), v2 = w2 = 0.

Let us prove that (ii)⇒ (i).

Now from (7.48), we have
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From (7.48),

g1(t−1
1 (min(t1(v1) + t1(w1), t1(0))), s−1

1 (min(s1(v2) + s1(w2), s1(1))))

= t−1
2 (min(t2(g1(v1, v2)) + t2(g1(w1, w2)), t2(0))),

g2(t−1
1 (min(t1(v1) + t1(w1), t1(0))), s−1

1 (min(s1(v2) + s1(w2), s1(1))))

= s−1
2 (min(s2(g2(v1, v2)) + s2(g2(w1, w2)), s2(1))).

Hence

t2 ◦ g1(t−1
1 (min(t1(v1) + t1(w1), t1(0))), s−1

1 (min(s1(v2) + s1(w2), s1(1))))

= min(t2(g1(v1, v2)) + t2(g1(w1, w2)), t2(0)),

s2 ◦ g2(t−1
1 (min(t1(v1) + t1(w1), t1(0))), s−1

1 (min(s1(v2) + s1(w2), s1(1))))

= min(s2(g2(v1, v2)) + s2(g2(w1, w2)), s2(1)).

Let us put t1(v1) = y1, s1(v2) = y2, t1(w1) = z1, s1(w2) = z2, t1(0) = a and t2(0) = b.

Of course y1, y2, z1, z2 ∈ [0,∞], Moreover u = (u1, u2), w = (w1, w2) ∈ L, thus v1 ≤ 1 − v2

and w1 ≤ 1 − w2. Since t and s are decreasing generator and increasing generator such that

t(1− a) = t(0)− t(a) and s(a) = t(0)− t(a), ∀a ∈ [0, 1], y1 ≥ y2 and z1 ≥ z2. This implies that

(y1, y2), (z1, z2) ∈ [0,∞]2. If we put

f 1(y1, y2) := t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))), f 2(y1, y2) := s2 ◦ pr2 ◦ II((u1, u2),

(t−1
1 (y1), s−1

1 (y2))) ∀ (x1, x2) ∈ [0,∞]2

(7.52)

As a consequence we get the following two functional equations

f 1(min(y1 + z1, a),min(y2 + z2, a)) = min(f 1(y1, y2) + f 1(z1, z2), b), (7.53)

f 2(min(y1 + z1, a),min(y2 + z2, a)) = min(f 2(y1, y2) + f 2(z1, z2), b), (7.54)

where (y1, y2), (z1, z2) ∈ [0,∞]2.

Now, we find the possible solutions of (7.53) are as follows:

For y1, y2 ∈ [0,∞], y1 ≥ y2 and (v1, v2) ∈ L, we have

(S1): f 1 = 0 ⇒ t2◦pr1◦II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) = 0 ⇒ pr1◦II((u1, u2), (v1, v2)) = 1.

(S2): f 1 = b ⇒ t2◦pr1◦II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) = b ⇒ pr1◦II((u1, u2), (v1, v2)) = 0.
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(S3): f 1(y1, y2) =

0, y2 = 0,

b, y2 > 0
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), s−1
1 (y2))) =

0, y2 = 0,

b, y2 > 0

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 = 0,

0, v2 > 0.

(S4): f 1(y1, y2) =

0, y1 = 0,

b, y1 > 0
⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1

1 (y1), s−1
1 (y2))) =

0, y1 = 0,

b, y1 > 0

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

1, v1 = 1,

0, v1 < 1.

(S5): ∃ c ∈ [b/a,∞) such that

f 1(y1, y2) = min(cv2, b) ⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) = min(cy2, b)

⇒ pr1 ◦ II((u1, u2), (v1, v2)) = t−1
2 (min(cs1(v2), b)).

(S6): f 1(y1, y2) =

min(cy1, b), y1 = y2,

b, y1 > y2

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) =

min(cy1, b), y1 = y2,

b, y1 > y2

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (min(ct1(v1), b)), v1 = 1− v2,

0, v1 < 1− v2.

(S7): f 1(y1, y2) =

min(cy1, b), y2 = 0,

b, y2 > 0,

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) =

min(cy1, b), y2 = 0,

b, y2 > 0.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (min(ct1(v1), b)), v2 = 0,

0, v2 > 0.

(S8): f 1(y1, y2) = min(cy1, b)⇒ pr1 ◦ II((u1, u2), (v1, v2)) = t−1
2 (min(ct1(v1), b)).
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(S9): ∃ c1, c2 ∈ [b/a,∞), c1 6= c2 such that

f 1(y1, y2) =

min(c1(y1 − y2) + c2y2, b), y1 < a,

a, y1 = a

⇒ t2 ◦ pr1 ◦ II((u1, u2), (t−1
1 (y1), s−1

1 (y2))) =

min(c1(y1 − y2) + c2y2, b), y1 < a,

b, y1 = a.

⇒ pr1 ◦ II((u1, u2), (v1, v2)) =

t
−1
2 (min(c1(t1(v1)− s1(v2)) + c2(s1(v2)), b)), v1 > 0,

0, v1 = 0.

Similarly, we can find the possible solutions of (7.51) are as follows:

For y1, y2 ∈ [0,∞], y1 ≥ y2 and (v1, v2) ∈ L, we have

(S1): pr2 ◦ II((u1, u2), (v1, v2)) = 0.

(S2): pr2 ◦ II((u1, u2), (v1, v2)) = 1.

(S3): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 = 0,

1, v2 > 0.

(S4): pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1.

(S5): ∃ c ∈ [b/a,∞) such that

pr2 ◦ II((u1, u2), (v1, v2)) = s−1
2 (min(cs1(v2), b)).

(S6): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (min(ct1(v1), b)), v1 = 1− v2,

1, v1 < 1− v2.

(S7): pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (min(ct1(v1), b)), v2 = 0,

1, v2 > 0.

(S8): pr2 ◦ II((u1, u2), (v1, v2)) = s−1
2 (min(ct1(v1), b)).

(S9): ∃ c1, c2 ∈ [b/a,∞), c1 6= c2 such that

pr2 ◦ II((u1, u2), (v1, v2)) =

s
−1
2 (min(c1(t1(v1)− s1(v2)) + c2(s1(v2)), b)), v1 > 0,

1, v1 = 0.
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Of course not every combination of the above solutions give a correct value in the set L.

For example when pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 < 1,

0, v2 = 1.
and pr2 ◦ II((u1, u2), (v1, v2)) =

0, v2 < 1,

1, v2 = 1,
for every (u1, u2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2))

=

1L , v2 < 1,

0L , v2 = 1.

Also when pr1◦II((u1, u2), (v1, v2)) =

1, v1 = 1,

0, v1 < 1.
and pr2◦II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1,

for every (u1, u2) ∈ L, then our (constant) solution is correct: II((u1, u2), (v1, v2)) =

1L , v1 = 1,

0L , v1 < 1.

But if pr1 ◦ II((u1, u2), (v1, v2)) =

1, v2 < 1,

0, v2 = 1.
and pr2 ◦ II((u1, u2), (v1, v2)) =

0, v1 = 1,

1, v1 < 1.

for every (v1, v2) ∈ L, then our solution is incorrect, since II((u1, u2), (v1, v2)) =
1L , v1 = 1, v2 = 0,

1L , v1 = 0, v2 = 1,

(1, 1), 0 < v1 < 1, 0 < v2 < 1, v1 + v2 ≤ 1,

is not solution in L (since (1, 1) /∈ L). Similarly,

we can find the possible combinations of the above solutions give a correct value in the set L is

the required result (ii).

Remark 7.4.13. If we put α = u, β = fI(v) and II = II(fI,ω) in Proposition 7.4.12, then the

above possible forms of II(u, v), for fixed u ∈ L, convert into corresponding forms of ω(α, β).

7.5 Concluding remarks

In this chapter, a new type of IFI known as (fI, ω)-implication is introduced which is a general-

ized form of Yagers f-implications in IFE, and it is different from (S ,N )-, R -, QL-implications.

We have also discussed some properties of the (fI, ω)-implication. It is showed that the im-

plications that satisfy (NP) and the (fI, ω)-implication are equivalent. For flexibility and ap-

plications’ point of views, this implication is interesting as well as important. After that, the

distributivity of IFSs over t-representable t-norms and t-conorms for the cases of nilpotent and

strict t-norms are discussed corresponding to IFIs as well as (fI, ω)-implication. Also, we have
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solved the open problems posed by Baczyński [17, 18]. This work is useful for many application

areas, like, fuzzy control, approximate reasoning etc.
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Chapter 8

Conclusions and future research scope

This chapter configures the concluding part of the Thesis and also proposes some suggestions

towards which the present work can be further continued. It consists of two sections; Section

8.1 brings out the overall conclusions of the research work carried out in this thesis and in

Section 8.2 suggestions regarding the future research directions and possible extensions of the

work presented in the thesis are made.

8.1 Conclusion

The aim of the work is to develop new methodologies for solving various optimization problems

in IFE and to analyze the algebraic study of implication operators in IFE.

The overall conclusions of the thesis are as below:

• The product of unrestricted LR-type IFNs are proposed with the help of α−cut, β−cut

and (α, β)−cut.

• A new method is proposed for solving unrestricted LR-type FIFPPs with the help of the

proposed product of unrestricted LR-type IFNs, score index, and accuracy index.

• There exist several FIFLPPs which can not be solved by the existing methods but can be

solved by the proposed method. Hence, the proposed method is better than the existing

methods [9, 137, 165, 189] for solving FIFLPPs.

• The primal-dual problems, discussed in [24, 85], are extended in IFE by taking membership

and non-membership functions governed by reference functions in different approaches,

viz., pessimistic, optimistic and mixed.
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• Developed an algorithm to model and solve MOLPPs using accuracy index and value

function from different viewpoints, viz., optimistic, pessimistic and mixed, and compared

it with the Zimmermann’s technique, γ-connective and minimum bounded sum operator.

Such conflicting optimization problems arise very usually in manufacturing, planning and

scheduling systems.

• The definitions of normalized divergence, similarity, dissimilarity, inclusion, and normal-

ized distance measures in IFE are analyzed.

• We have established the following:

(i) the IF point measures generated from the measures of the standard IFSs constructed

by level sets and other special set ÃIp,

(ii) the measures derived from point measures,

(iii) aggregated measures from the set of measures and studied the continuity relationship

between them.

• We have given the concept of weights for one and many preferences of alternatives.

• We have modeled the mathematical programming problems for determining the positive

certain attribute weights.

• An algorithm is given for the selection of the best alternative from the given set of feasible

alternatives with given preferences.

• T -power-based implications as a new class of implication operators on L is introduced and

studied properties of these implications.

• We have observed that some of the properties of fuzzy implications acting on the real unit

interval [0, 1] are not satisfied by related T -power-based implications acting on L.

• We have shown that the studied T -power-based implications on L satisfy the discussed

properties by addition of some extra conditions. Also, the string of inequality of IIT has

been established.

• We have also introduced a new type of negation N α
IIT

based on IIT . Continuity and strict

monotonicity of this negation are analyzed.

• We have investigated the solutions of Boolean-like laws in IIT .
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• A new type of IFI known as (fI, ω)-implication is introduced which is a generalized form

of Yager’s f-implications in IFE, and shown that it is different from (S ,N )-, R -, QL-

implications.

• We have also discussed some properties of the (fI, ω)-implication. It is shown that the

implications that satisfy (NP) and the (fI, ω)-implication are equivalent.

• From flexibility and applications point of views, this implication is interesting as well as

important.

• We have solved distributive eqs. (7.9) - (7.12) over t-representable t-norms and t-conorms

for the cases of nilpotent and strict t-norms corresponding to (fI, ω)-implication.

8.2 Future scope

There are several interesting directions for further research and development based on the work

in this thesis. Some of the suggestions for future work are as follows:

• Work on unrestricted LR-type fully IF matrix equations based on the product of unre-

stricted LR-type IFNs.

• Work on group decision making problems in IFE based on the membership and non-

membership functions governed by the reference functions as well as point operator Fα.

• Investigation of all IF-measures based on implication operators on L and development of

interrelationships between them.

• Development of preference relations in IFE and to apply in decision making theory.

• The study of the implication operators from analytic and algebraic point of views, and

their applications to preference analysis.

• Application of implication operators to optimization problems in IFE.

• The study of the aggregation operator in IFE on the basis of decision making theory.

• Development of the implication operators based on aggregation operators in IFE and the

study of these relations from theoretical and practical point of views.

• Development of the powers of aggregation operators, the implications based on powers of

aggregation operator and their uses for MCDM / MADM problems in IFE.
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