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Abstract

In real-life problems such as incorporate or in industry, decision making is a continuous process.
The experts and the decision-makers (DMs), usually, have to suffer with uncertainty as well as
with hesitation, due to the complexity of the situations. The main reasons behind these com-
plexities are lack of good communications with all involved persons, error in data, understanding

of markets, unawareness of customers, etc.

So, the prediction of the parameters is a complex and challenging task. The classical methods
encounter great difficulty in dealing with uncertainty and complexity involved in such situations.
In general, the parameters of an optimization problem are considered as crisp numbers. These
crisp values are determined from past occurrences which are very uncertain since the systems
environment keep on changing. Therefore, some degree of uncertainty exists in such a determi-
nation. This led to the development of the fuzzy set (FS) theory by Zadeh [194]. In order to
handle the insufficient information, the fuzzy approach is used to model the problem and evalu-
ate the optimal solution. F'S theory has been shown to be a useful tool to handle the situations
in which the data are imprecise by attributing a degree to which a certain object belongs to a
set. An FS is a generalization of an ordinary set in that it allows the degree of membership for
each element to range over the unit interval [0, 1]. Thus, the membership function of an F'S maps
each element of the universe of discourse to its range space, which, in most cases, is assumed to
be the unit interval. Using an FS approach, quantities are represented by FSs. The member-
ship functions represent the uncertainties involved in various parameters of the problem. During
the last decades, F'S theory played an important role in modeling uncertain and optimization
problems. Zimmermann [203] showed that the solutions of fuzzy linear programming problems
(FLPPs) are always efficient. Since the F'S theory came into existence, many extensions of FSs
also appeared over time , e.g., L-FSs proposed by Goguen [80], interval-valued fuzzy set (IVFS)
proposed by Gorzalczany [81] represents the degree of membership of an element by an interval
rather than exact numerical value, intuitionistic fuzzy set (IFS) proposed by Atanassov [11] etc.

One among these extensions is IF'S which is playing an important role in decision making under
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uncertainty and gained popularity in recent years. It helps more adequately to represent situa-
tions where DMs abstain from expressing their assessments. In this way, [F'Ss provide a richer
tool to grasp impression and ambiguity than the conventional F'Ss. These characteristics of
IFSs led to the extension of optimization methods in an intuitionistic fuzzy environment (IFE).
An application of TFSs to optimization problems is introduced by Angelov [9]. His technique is
based on maximizing the degree of membership, minimizing the degree of non-membership and

the crisp model is formulated using the IF aggregation operator.

In decision making, one chooses the best alternative from the given set of feasible alternatives.
There exist several processes in literature but there are mainly four stages required to choose
the best alternative: (i) Evaluate the set of feasible alternatives from the given information. (ii)
Determine the weight vector corresponding to alternatives or attributes which depend on DM.
(iii) Aggregate alternatives by taking the weight vector given by DM. (iv) Rank the alternatives
in the order of preferences and select the best one. During last decades, IFS theory played
an important role in modeling uncertain and vague systems, received much attention from the
researchers and meaningful results were obtained in the field of decision-making problems [138],

pattern recognition [54, 143] to name a few.

There are several information measures in IFE, such as divergence measures, similarity
measures, dissimilarity measures, and distance measures. They model uncertain and vague
information. The inclusion between two IFSs can be measured by the concept of inclusion mea-
sure [79] and the commonality between two IFSs can be measured by the concept of similarity

measure [95].

In fuzzy logic, the fuzzy implication is equally important from both the theoretical and
practical points of view. From the theoretical point of view, the development of algebra is done
and their properties are studied. From the practical point of view, the fuzzy implication is
used to study approximate reasoning and network problems, etc. (see [19, 106]). One among
the several extensions of F'S is the IVFS. It has become very popular from both the theoretical
and practical aspects. It has become one of the most important operators in logic [174]. The
arithmetic operators in IVFS theory [55] and one can find theoretical articles concerned with
different classes of interval-valued logical connectives, like, interval-valued fuzzy negations [26],
interval-valued t-norms [56, 174], interval-valued fuzzy uninorms [57], interval-valued fuzzy im-
plications [5, 28, 111]. IF t-norms and t-conorms are noted in [59]. The expression, construction,
classification and several properties with applications of intuitionistic and interval-valued fuzzy

implications are given in [33] and [45]. IFIs [33, 45] and IF relations [146] are studied.

The main objectives of the thesis are as follows:
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(i) Modeling and analysis of optimization problems in IFE and development of algorithms for

solving such problems.
(ii) Analysis of duality theory in IFE.

(iii) Analysis and development of algorithms for selecting the best alternative from the given

set of feasible alternatives in decision-making problems in IFE.

(iv) Algebraic analysis of implication operators in IFE and their uses for solving distributive

equations and Boolean-like laws.

The thesis is organized into eight chapters. The chapter-wise summary of the thesis is as follows:

Chapter 1 is introductory in nature. In this chapter, basic definitions of FS and IF'S,
various types of fuzzy and IF numbers, and their mathematical operations are introduced. A
ranking function is introduced. Ranking function transforms a fuzzy or IF number into an
equivalent real number. Also, basic definitions and axioms of implication operator, negation,
t-norm, t-conorm in fuzzy and IF environments are introduced. It also presents a brief review
of the research work done in the field of fuzzy and IF optimizations and implications.

In Chapter 2, the product of unrestricted LR-type IFNs is proposed. Then with the help
of the proposed product, an algorithm is proposed to find the optimal solutions of unrestricted
LR-type IFLPPs. A test example is given to support the proposed method and investigated the
applicability of existing approaches.

In Chapter 3, we introduce a pair of primal-dual LPPs in IFE and prove duality results
by using an aspiration level approach in which membership and non-membership functions are
taken in the form of reference functions. Since the fuzzy environment and IFE cause the duality
gap, we propose to investigate the impact of membership function governed by reference function
on duality gap. Also, the duality gap obtained by the approach has been compared with the
duality gap obtained by existing approaches.

In Chapter 4, the formulation of the multi-objective optimization problem (MOOP), accu-
racy index and value function in IFE are introduced. For resolving the mutual conflicting nature
of objectives in MOOP in IFE, we introduce the membership and non-membership functions
governed by reference function which do not depend on the upper and lower levels of acceptabil-
ity. An efficient algorithm is developed for solving MOOP in IFE from different viewpoints, viz.,
optimistic, pessimistic and mixed. The optimal solution obtained by the proposed approach is
compared with the solutions obtained by existing approaches.

In Chapter 5, the information measures are introduced in IFE to measure the uncertainty

and hesitancy. We introduce and study the continuity of considered measures. Next, we prove
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some results that can be used to generate measures for FSs as well as for IFSs and we also
prove some approaches to construct point measures from set measures in IFE. We define weight
set for one and many preference orders of alternatives and investigate the properties based on
these ordering. Based on the weight set, we develop the model for finding the uncertain weights
corresponding to attribute. Also, we develop the model to find attribute weights in a certain
environment by using attribute weights in an uncertain environment. An algorithm is developed
for choosing the best alternative according to the preference orders of alternatives.

In Chapter 6, a new type of implication on £, known as the residual implication, is derived
from powers of continuous t-norm 7 and satisfies certain properties of residual implications by
imposing some extra conditions. Moreover, some additional important properties are studied
and analyzed. The solutions of Boolean-like laws in I1; are obtained.

In Chapter 7, a new class of IFIs known as (f1,w)-implications is introduced which is
a generalized form of Yager’s f-implications in IFE. Basic properties of these implications
are discussed in detail. The distributive equations I:(7 (u,v),w) = S(I1(u,w),I1(v,w)) and
Ir(u, (v, w)) = T(Ir(u,v),Ir(u,w)) over t-representable t-norms and t-conorms generated
from nilpotent and strict t-norms in IFE are discussed.

Finally, in Chapter 8, conclusions are drawn based on the present study and future research

work is suggested in this direction.
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Chapter 1

Introduction

1.1 Fuzzy set theory

Advances in science and technology have made our modern society very complex and due to
this, the decision process has become increasingly vague and hard to analyze. The human
brain possesses some special characteristics that enable him to learn and reason in a vague and
fuzzy environment. It has the ability to arrive at a decision based on imprecise qualitative
data in contrast to formal mathematics and formed logic with imprecise and qualitative data.
Modern computers also possess the capacity of thinking but can not have the human like ability.
Undoubtedly, in many areas of cognition, human intelligence excels the computer intelligence
of today. The developments of fuzzy concepts proposed by Zadeh [194], is a step towards the
development of tools capable of handling humanistic type problems, though it may never be
equal to the logic and the intelligence of men in many respects. Most of the classes of objects
encountered in the real physical world are fuzzy and not sharply defined. They do not have
precisely defined criteria of membership. In such classes, an object need not necessarily either
belong to or not belong to a class, it may have an intermediate grade of membership. This is
the concept of fuzzy set (F'S) which is a class with the continuum of grades of membership. An
FS is a generalization of the crisp set that has clearly defined the boundary. The FS theory is
based on the idea that each element of the set can take membership value in the interval [0, 1].
Because of this, F'S theory has a much wider scope of applicability than the crisp set theory
in solving various kinds of real physical problems. FS theory is a powerful tool to deal with

uncertainty. The relationships between some extensions of F'S theory are noted in [60].

In this section, the definitions of FS, a-cut, fuzzy number, triangular fuzzy number, and

arithmetic operations on triangular fuzzy numbers are presented.



Definition 1.1.1. [194] Let X be a universe of discourse whose elements are denoted by x.

Then an FS M in X is defined by a set of ordered pairs

M = {(z, py(x)) : @ € X7,

where py; : X — [0,1] called the membership function and () called the grade of membership
of z being in M.

Definition 1.1.2. [194] Let M be a fuzzy set in X and a € [0,1]. Then the a-cut of the FS M
is the crisp set A, defined by

Ay ={r e X :uy(x) > al.

Definition 1.1.3. [204] A FS M = {(z, uy(x)) : © € R} is called a fuzzy number (FN) if the

following conditions hold:
(i) M is a convez FS, i.e., fp (Mg + Aowa) > min{ (1), g (22)}, A+ A2 =1, Ay, Ay > 0.
(ii) There exists only one m € R such that ju(m) =1 ( 'm is called the mean value of M ).

(111) pyr: R —[0,1] is piecewise continuous function given by

p

) r=m,

gi(x), a<z<m,
pr(x) = (@),

hl $)

1
m<x<b,
0, otherwise.

\

Here m is the mean value of M ; m —a and b — m are the left and right spreads of
membership function puy; respectively; gy is piecewise continuous and increasing in (a,m);

hy is piecewise continuous and decreasing function in (m,b); (a,b) is called the support of

M. The FN M is represented by M = (m;a,b). The set of all FNs is denoted by F(R).

Definition 1.1.4 (Arithmetic operations on FNs). [204] Let M =(m; a,b), My=(m1;ay,by) and
MQ:(mQ; as,by) be the FNs. Then

(i) My + M, is defined as a FN given by
M, + M, = (m1 4+ ma;ay + ag, by +bo);

(ii) —M ‘s defined as a FN given by
—M:(—m; b,a);
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Figure 1.2: Graphical representation of a
Figure 1.1: Graphical representation of a TFN. TyFN.

(iii) My — My is defined as a FN given by
M, — M, = M; + (—M2) = (m1 — my;ay + ba, by + az);

(i) My x M, is defined as a FN given by
My x My = (m;a,b),
where m = myms, a = myme —min{(my —ay)(me —az), (Mmy —ay)(ma+bs), (my +by)(me —
az), (my+by)(ma+bo)}, b= max{(m; — a1)(ms — az), (my — ay)(ma + bz), (my +by)(mg —

az) — mimsa;

(v) MM ‘s defined as a FN given by

. (Am; Aa, Ab), A >0,
AM =

(Am; Ab, Aa), A <O.

Definition 1.1.5. [204] A triangular fuzzy number (TFN) M is a FN with membership function

Ly given by
x—a, a<x<hb,
b—a
c—x
() = , b<x<c,
c—>b
0, otherwise.

The TFN M is represented by M = (a,b,c). Its pictorial representation is given in Figure
1.1.

Definition 1.1.6 (Arithmetic operations on TFNs). [204] Let M =(a,b,c), My=(ay,by,c1) and
Mgz(ag,b2702> be the TENs. Then



(i) My + M, is defined as a TFN given by
My + M, = (ay 4 ag, by + by, c1 + c2);

(ii) —M ‘s defined as a TFN given by
_M:<_C7 _b7 —CL),'

(iii) My — My is defined as a TFN given by
M1 - Mz = ]\Zﬁ + (_MQ) = (a1 — ¢2,b1 — by, 1 — ap);

(iv) M, x My is defined as a TFN given by
Ml X MZ ~ (p17p27p3)7

where p; = min{aias, aica, c1az, c1¢2}, o = bibay, p3 = max{aias, aica, c1a2, c1¢2};

(v) M is defined as a TFN given by
Ml_l = (QI7qQ7Q3)7
where qu = min{l/ai,1/c1,1/a1,1/e1}, g2 = 1/b1, g3 = max{1/ay,1/c1,1/ar,1/er}, pro-

vided ay # 0;

(vi) My/Ms, is defined as a TFN given by
MI/M2 ~ (q17QQ7Q3)7
where g1 = min{ai/as, a1/ca, c1/az,c1/ca}, g2 = b1/be, g3 = max{ai/as,a1/ce, c1/as2,c1/co},

provided as # 0.;

(vii) AM is defined as a TFN given by

- (Aa, Ab, Xc), A >0,
AM =
(Ac, Aby Aa), A < 0.

Definition 1.1.7. [204] A trapezoidal fuzzy number (TrFN) M is a FS in R with membership

function py given by

(2 —a
, a<xz<hbh,
b—a
1, b<z<ec,
fp () = d—r
, c<ux<d,
d—c
0, otherwise.

\

The TrFN M is denoted by M = (a,b,c,d). Its pictorial representation is given in Figure
1.2.



Definition 1.1.8 (Arithmetic operations on TrFNs). Let M =(a, b, ¢, d), My=(ay, by, c1,dy) and
M2:(a2,b2,cg,d2) be the TrFNs. Then

(i) My + M, is defined as a TrFN given by
M, + M, = (a1 + ag, by + by, c1 + ¢z, dy + do);

(i1) —M is defined as a TrEN given by
—M=(—d, —c, —b,—a);

(117) M, — My is defined as a TrEN given by
M, — My = M, + (—Mz) = (a1 — da, b1 — 2,61 — by, dy — ay);

() My x M, is defined as a TrFN given by
M1 X MQ ~ (p1, P2, P3: P4),
where p; = min{aiaz, a1da, diag, dids}, pa = min{bibs, bica, c1be, c1c2},

p3 = ma${b1bz, bics, c1by, 0102},194 = max{amz, aids, dyas, d1d2};

(v) M,/ M, is defined as a TrFN given by
M1/M2 ~ (91, G2, 43, Qa),
where ¢ = min{ay /as, a1/ds, dy/as, di/da}, go = min{by /by, by/ca, ¢1/ba,c1/c2},
q3 = max{by /by, b1/ca,c1/ba, c1/Co}, @ = max{a;/as, a1 /dy, dy/as,dy/ds}, provided ay # 0

(vi) AM is defined as a TrEN given by

[ aab e ), A>0,
AM =
(A, \e, \b, Aa), A < 0.

1.2 Intuitionistic fuzzy set theory

In most of the cases of judgements, evaluation is done by human beings where certainly there
are limitations of knowledge, intellectual functionaries or availability of data due to some un-
controllable factors. Naturally, every decision-maker (DM) hesitates more or less on every
evaluation activity. This is the concept of intuitionistic fuzzy set (IFS) theory introduced by
Atanassov [11]. It can handle both uncertainty and hesitation in parameter prediction. The
major advantage of IFS over F'S is that IFS separates the degree of membership and the degree
of non-membership of an element in the set. IFS theory is one of the interesting generalizations

of FS theory introduced by Zadeh [194]. Because of this generalization, IFS theory has a much



wider scope of applicability than the usual F'S theory in solving various kinds of real physical
problems. In [12-14], Atanassov gave different types of operations and point operators over the
IFSs. An application of IFSs in medical diagnosis is noted in [51]. Gau and Buehrer [74] gave
the concept of vague sets. But, vague sets are IFSs [37]. Burillo and Bustince [32] gave a point
operator, which associates a family of FSs with given IFS, and construction theorems of IFSs
from one FS and from two FSs also gave results to recover the FSs used in the construction
from the IFS constructed by means of different operators.

In this section, the definitions of IF'S, level set, IFN, and their arithmetic operations are

presented.

Definition 1.2.1. [11] Let X be a universe of discourse. Then an IFS Al in X is defined by
the set

Al = {(I‘,/LA}($), Z/A]<£L'>> HEUES X}:

where pir, vz 2 X — [0,1] are functions such that 0 < pir(x)+vi(z) <1Vae € X. The value
par(x) is called the degree of membership and vz (x) is called the degree of non-membership of
x € X being in A'. The hesitation degree of an element x € X being in A' is denoted by 7 i1 ()
and s defined by

mi(x)=1—pu(z) —vyu(x)€l0,1] Voe X.

Definition 1.2.2. [12] Let Al = {< z, pr (), va(x) > o € X} and Al ={< z, (), v (@) >
x € X} be two IFSs. Then

(i) the standard union of Al and AL is denoted by AT U AL and is defined as an IFS given by
AT UAS = {(2, paroas (@), varoa (2) : @ € X},

where g, 34 (2) = max{u s (), iz (0)}, Vi (@) = minfv g (), vy ()} Vo € X;

(ii) the standard intersection of Al and A} is denoted by Al 0 AL and is defined as an IFS
given by
AL Ay = {(2, narnay (@), varaa (2) s @ € X,

where 151041 (x) = min{p g1 (x), par (@)}, varnap(x) = max{vg (2), vy (@)} Vo € X;

(111) the standard complement of fl{ is denoted by 121/11 and is defined as an IF'S given by

Al = {(&, g (@), v (@) s € X},

where ,uA;I(x) = v (), nglf(x) =pi(r) Vo eX;



() Al is defined as a subset of AL, denoted by Al C AL if
() < p () and vy (x) = vy(e) Vo e X.

Definition 1.2.3. [127] An IFS AT in X is called a convex IFS if the following conditions hold:

® [ij: 15 quasi-concave over X, i.e.,

far( Az + Xowa) > min(pzr(21), pgr(22)), M+ A =1, A\, A0 >0, Vg, 20 € X,

® v 1S quasi-convez in X, i.e.,

Vir(Mz1 + Aoxe) <max(vir(21), Vi (22)), M+ XA =1, A, A0 >0, Vg, 20 € X.

Definition 1.2.4. [127] An IFS A" = {(z,pz(z),vi(x)) : @ € X} is called normal if 3
x1, 9 € X such that pzi(x1) = 1, v (z) = 1.

Definition 1.2.5. (a-cut of IFS)[127] The a-cut of an IFS A’ is denoted by Al and is defined
by
Al ={z e X :pu(r) >a}Vaeclo1]

Remark 1.2.6. Aé = X.

Definition 1.2.7. (8-cut of IFS)[127] The B-cut of an IFS A’ is denoted by A{B) and is defined
by
Al ={re X vu(x)<p}vVEel01].

Definition 1.2.8. ((a, 8)-cut of IFS)[127] The (o, B)-cut of an IFS A’ is denoted by Al 5 and
15 defined by

A(Iaﬂ) ={reX:piu(x)>avi(x)<p}, o,f0€0,1; a+ <1
Remark 1.2.9. (i) Afy,) = X. (i) Al, 5 = ALNAlp, a+B8< 150,820

Definition 1.2.10. [66, 189] Let AL be an IFS in X. Then the score and accuracy functions of
A® are denoted by Sz (x) and Az () respectively and are defined by

Sir(@) = ir(e) — van (@), Agi(@) = jas(2) + viela) Vo € X,

Definition 1.2.11. [127] An IFS A'={< z, s/ (x), v (x) >: 2 € R} is called an intuitionistic
fuzzy number (IFN) if the following conditions hold:

o Al is convex IFS in R;

o 3 unique m € R such that p5,(m) = 1 (m is called the mean value of A");



e Jdann € R such that vy (n) = 1;
e (i and v are piecewise continuous functions from R to [0, 1].

Thus, mathematically, the membership function jz; and non-membership function vz of an

IFN AT are of the following forms:

gi(z), m—Il<z<m,

1, T =m,
par(e) =
g2(z), m<zx<m-+r,

0, otherwise,

where g1 and go are piecewise continuous, increasing and decreasing functions in (m—1,m) and

(m, m + 1) respectively, and

;

hi(xz), m—=0U<z<m; 0<g(z)+h(z) <1,
0, r=m,

vi(e) =
ho(x), m<z<m+r 0<go(x)+ ho(x) <1,

1, otherwise,

\

where hy and hy are piecewise continuous, decreasing and increasing functions in (m — ', m)
and (m,m +r') respectively, | is called the left spread and r is called the right spread of p ;;, I
is called the left spread and 1" is called the right spread of w4r. The IFN Al s represented by
(m;l,r;U',r"). The graphical representation of the IFN Al s given in Figure 1.5.

Definition 1.2.12 (Arithmetic operations on IFNs:). [127] Let AT=(m; 1, U',7"), Al=(mq; 1y, ;1 7)
and AL =(mq;ly, m9; 1y, 7%) be IFNs. Then

(i) AL @ AL is defined as an IFN given by
121{ D /E = (ma +ma; by + lo, 1 + 1231y + 15,77 +75);

(ii) ©A! is defined as an IFN given by
OAy = (—myr L 1);
(iii) Al & Al is defined as an IFN given by
Al o AL = Al @ (04}) = (my — mas Iy + 12,71 + b U + 1,7 + 1)

(i) Al @ AL is defined as an IFN given by
Af @ Af = (m; L1, 1),
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Figure 1.3: Graphical representation of an Figure 1.4: Graphical representation of a
IFN. TIFN.

where m = myma, L = mymg —min{(my — ) (ma — la), (my — l1)(ma + 1), (my +171) (M —
lg), (m1 +7’1)(m2—|—7“2)}, r = max{(ml—ll)(mg—lg), (m1 —ll)(m2+7’2), (m1 +T1)(m2—lg)—
mima, ' = mymg — min{(my — §)(mg — 1), (mq — 13)(ma +714), (my + 1)) (ma — 15), (my +

ri)(ma+ry)}, v’ = max{(my — 1) (m2 — 1), (m1 — 1) (m2 +15), (M1 +77) (ma — 15) — mama;
(v) NA! is defined as an IFN given by
(ms AL A A, M), A0,

AT =
(Am; —=Ar, =A=', =), A < 0.

Definition 1.2.13. [127] An IFN AT denoted by (a,b,c;a’,b,c) is called the triangular intu-
itionistic fuzzy number (TIFN), if its membership function pjir and non-membership function

vir are given by

T —a b—ux ,

T a<x<hb, T a <x<b,
pir(r) = c—:v’ b<zx<e and vi(z) = x_—b) b<ax<dc,

c—b d—b

0, otherwise, 1, otherwise,

where ! < a <b<c<dc. bis called the mean value of AT, b — a is called the left spread and
c—b is called the right spread of j15:, b—a’ is called the left spread and ¢ — b is called the right
spread of w ;1. The graphical representation of a TIFN is given in Figure 1.4.

Definition 1.2.14 (Arithmetic operations on TIFNs:). [127] Let A = (a,b,c;d,b,¢), Al =
(ay,bi,c1;ay, by, c;) and flé — (ag, by, c9; a4, by, ¢y) be TIFNs. Then
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(i) Al @ AL is defined as a TIFN given by
Al @ AL = (ay + ag, by + ba, c1 + o5a) + ay, by + by, € + ¢3);

(ii) ©A! is defined as a TIFN given by

e / /
OAy = (—cg, —by, —ag; —cy, —bo, —ay);

(iii) Al & AL is defined as a TIFN given by
Al o Al = Al @ (0AL) = (a1 — ca,by — ba, 1 — ag;a) — ¢y, by — by, ¢ — ay);

(iv) Al ® Al is defined as a TIFN given by
A o AL A oy !
Al ® AQ ~ (p17p27p37p17p27p3)7 where
. / . i !
p1 = mm{alag, a1C2, C102, 0102}; P2 = biby, p3 = max{alag, aiC2, C103, 0162}7 b= m1n{a1a2,
! / ! / / ! ’ . ! ’ ! / / / / ! .
1Cy, C1Gg, C1Cy}, P3= Max{a;dy, a;Cy, C1ay, C1Cy};
(v) AL @ Al is defined as a TIFN given by
AT o AT ~ o !
Al © AQ ~ (QI; 42,43, 41,42, Q3)7 where
. I
q1 = min{ay/as, a1 /cz, c1/az, c1/ca}, q3= max{ai/as, ar/ca, c1/as, c1/ca}, g2 = b1/ba, ¢;=
. ! ! ! ! ! I 7 ! ! ! ! ! ! ! 7 / ! . /
min{ay/a,, ay/cy, ¢1/ay, ¢/c}, q3= max{ay/ay, ay/cy, ¢/ay, ¢i/cy} provided ay > 0 or

cy < 0
(vi) NAT is defined as a TIFN given by
(Aag, Aby, Aeg; Aay, Aby, Acy), A >0,

M =
(Acr, Aby, Aag; Aep, Aby, Aay), A < 0.

Definition 1.2.15. [127] A trapezoidal intuitionistic fuzzy number (TrIFN) Al is an IFS in
R, denoted by Al = (a,b,c,d, a/,b/,cl,d/), with membership function pz: and non-membership

unction vi; given b
A1 g Y

(x_a (b/—.% ’ ’
2 , a<z<b 7 -, a <x<b,
—a
1, b<x<ec, 0, b <z <,
pa(e) =3 4 and vi(e) =1
T c<z<d, yar c <z <d,
\ 0, otherwise, \ 1, otherwise,

whered <a<b <b<c<c <d<d.
Particular Cases

Case 1. Ifb =b,c¢ = c, then AT also represents a TrIFN. It is denoted by Al = (a,b,c,d; a,b,e, d/).
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Case 2. Ifb =b=c=c, then A" represents a TIFN. It is denoted by A" = (a,b,d;a’,b,d).
Case 3. Ifd = ab = bc = ¢,d = d, then A’ represents TrEN. It is denoted by

Al = (a,b,c,d).
Case 4. Ifd = ab =b=c =c¢,d = d, then A" represents a TFN. It is denoted by
Al = (a,b,d).

Case 5. Ifd =a=0b =bc =c=d =d, then Al represents the crisp interval b, c].

Case 6. Ifd =a=0 =b=c =c=d =d=m, then A" represents a real number m.

Definition 1.2.16 (Arithmetic operations on TrIFNs:). [127] Let A" = (a,b,c,d;a’,b ¢, d),
All - (ala b17 C1, dl) alla b/la cllv dll) CLTLd AQI = (a27 bZa Ca, d27 al27 b/2’ CIQ? dl?) be TT[FNS Th€n

(i) Al @ AL is defined as a TrIFN given by
Al @ AL = (a1 + ag, by + by, c1 + co, dy + do; @) + ag, by + by, ¢) + Cyy ¢y + C);

(ii) ©AT is defined as a TrIFN given by
91212 = (_d27 —C2, _b27 —a2; _dl2> _C/27 _b/27 _QIQ);

(iii) Al & AL is defined as a TrIFN given by
A{ © Aé = A{ ©® (@Aé) = (al - d27 bl —C2,C1 — b27 dl — Q2; a’/l - d,27 bll - C/27 Cll - b/27 dll - al2>7'

(1v) fl{ ® flé is defined as a TrIFN given by
Al ®@ AL~ (p1,p2, ps, pa; Py, D2’ P, 4’), where
p1 = min{ayag, ayds, dyag, dids }, po = min{bybe, bica, c1be, c1¢o}, p3= max{bibs, bica, c1ba,
c1co}, pa= max{aiay, aydy, dyay, didy}, py= min{a,a,, a\dy, dyay, didy}, py= min{b,by,

! I ! ! i ! i i ! ! ! ! ! ! I ! ! ! I / / ! / /
biCy, C1by, 0102}; b= max{ble, biCy, C1by, 0102}: Py= max{a1a27 aydy, dyas, d1d2};

(v) Al @ AL is defined as a TrIFN given by
Al © Af &~ (q1, 42, 3, 945 41> @2’ @3, 44'), where
¢ = min{ay/ag, ay/ds,dy/as,di/ds}, go= min{b; /by, bi/ca, c1/ba, c1/c2}, g3= max{by /by,
bi/ca, c1/by, c1/ca}, qa= max{a,/as, ai/dy, di/ay, di/ds}, q;= min{a)/ay, a)/dy, dy/as,
dy/dy}, gy= min{by /by, by/cy, c1/by, c1/cr}, az= max{l; /by, Vi/cy, €1 /by, ci/cr}, dy=
max{a,/ay, ay/dy, dy/ay, dy/dy}, provided ab, > 0 or djy < 0;

(vi) NAT is defined as a TrIFN given by

N (Aa1, Aby, Acr, Mdy; Ay, Aby, Acy, Ady), A >0,
(Ady, e, Aby, Aag; Ay, Aep, Aby, Aay), A < 0.
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Figure 1.5: Graphical representation of an LR-
Type IFN.

Definition 1.2.17. [204] A function f : [0,00) — [0, 1] is said to be shape function or reference

function if it satisfies the following conditions:
(1) f0) =1,
(ii) fis continuous function on [0, 00),

(i1i) fis decreasing on [0, 00),

(i) lim f(x)=0.

T—00
Definition 1.2.18. [83/ An IFN Al is said to be of LR-type IFN if there exist shape functions
L and R, and real constants [ > 0,7 > 0,I' > 0,7 > 0 such that its membership function p ;
and non-membership function v ;; are given by

L(m_x), r<m, 1—L(m_x>, z<m,

/’LAI (x> - T _l m a’nd Z/AI ('/'C> - l,

R( " ), x>m, 1_R<x—m

where | <U', r <71 and 0 < pj(z) +vi(z) <1 Ve eR. mis called the mean value of AT, 1

), x >m,
r

is called the left spread and r is called the right spread of p 1, ' is called the left spread and 1’
is called the right spread of 7 4. The LR-type IFN 1is represented by Al = (m;l,r;U ") L. The
graphical representation of an LR-type IFN 1s given in Figure 1.5.

Definition 1.2.19. [83/ The LR-type representation of a TIFN A = (a,b,c;d’,b,c) is given
by AT = (b;b—a,c—b;b—d',d —b)pr and is defined by

and v () =
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where L(x) = R(x) = max{0,1 —z} and 0 < pz:(z) +viu(r) <1VzxeR.

1.3 Fuzzy optimization

In the recent past decades, traditional optimization techniques have been successfully applied for
solving a well-defined and precise structure/configuration problems. Such optimization problems
are usually well-formulated when objective functions and system of constraints are precise and
deterministic. Unfortunately, real-world situations are often not deterministic. There exist
various types of uncertainties in social, industrial and economic systems, such as randomness of
occurrence of events, imprecision and ambiguity of system data and linguistic vagueness, etc.
The FS theory introduced by Zadeh [194] has been applied successfully in various fields. The
use of F'S theory became very rapid in the field of optimization after the pioneering work done
by Bellman and Zadeh [31], defined as the FS formed by the intersection of fuzzy objective
and constraint goals. According to the above definition and assuming that the constraints are
“non-interactive” the logical “and” corresponds to the intersection. The “decision” in a fuzzy
environment can, therefore, be viewed as the intersection of fuzzy constraints and fuzzy objective
function(s). The relationship between constraints and objective functions in a fuzzy environment
are therefore fully symmetric, i.e. there is no longer a difference between the former and the
latter. From this point of view, Tanaka et al. [171] introduced fuzzy mathematical programming
and Zimmermann [202] introduced fuzzy linear programming problem (FLPP) as conventional
LP. Zimmermann [202] considered LP problems with a fuzzy goal and fuzzy constraints, used
linear membership functions and the min operator as an aggregator for these functions, and
assigned an equivalent LP problem to FLP. Then many authors have used FS theory in various
real-life optimization problems, such as planning, scheduling, transportation, manufacturing,
ete.

Since real-world problems are very complex, experts and DMs frequently do not know the
values of parameters precisely. Therefore, it may be more realistic to take the knowledge of
experts or DMs about the parameters as fuzzy data. Thus the multi-objective fuzzy linear pro-
gramming problems (MOFLPPs) with fuzzy parameters would be viewed as more effective than
the conventional one in solving real physical problems. Zimmermann [203] and Werners [184]
proposed an approach for determining suitable values for the aspiration level and admissible
violation of the fuzzy goal of fuzzy programming and linear programming with several objec-
tive functions. Luhandjula [122] gave compensatory operators in fuzzy linear programming

with multiple objectives. Chanas [40] proposed fuzzy programming in multi-objective linear
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programming and it was solved by a parametric approach. Angelov [7] gave a parameterized
generalization of fuzzy mathematical programming problem. Angelov [8] gave an analytical
method for solving a type of fuzzy optimization problems. Stanciulescu et al. [164] gave multi-
objective fuzzy linear programming problems with fuzzy decision variables. Dutta et al. [69]
gave a single-period inventory model with fuzzy random variable demand. Hu et al. [94] in-
troduced a fuzzy goal programming approach to a multi-objective optimization problem with
priorities. Dutta et al. [70] gave an inventory model for single-period products with reordering
opportunities under fuzzy demand. Nagar et al. [136] gave an integrated supply chain model
for new products with imprecise production and supply under scenario dependent fuzzy random
demand. Kumar et al. [108] gave a new method for solving fully fuzzy linear programming prob-
lems. Kaur and Kumar [104] gave Mehar’s method for solving fully fuzzy linear programming
problems with LR-type fuzzy parameters. Khan et al. [105] gave a simplified novel technique
for solving fully fuzzy linear programming problems. Ebrahimnejad and Tavana [71] gave a
novel method for solving linear programming problems with symmetric trapezoidal fuzzy num-
bers. Saati et al. [160] gave a fuzzy linear programming model with fuzzy parameters and
decision variables. Li et al. [114] introduce dissimilarity functions and divergence measures
between FSs. Ghanbari [75] introduced solutions of fuzzy LR algebraic linear systems using
linear programs. Deng et al. [53] gave monotonic similarity measures between FSs and their
relationship with entropy and inclusion measures. Ranjan and Singh [152] gave an aggrega-
tion approach for system efficiency evaluation of homogeneous parallel production systems. In
6, 24, 25, 84, 85, 125, 126, 150, 151, 159, 176, 185], the duality theory of fuzzy optimization

problems are given in different prospectives.

1.4 Intuitionistic fuzzy optimization

Intuitionistic fuzzy optimization (IFO) is relatively a recent field for research. The determin-
istic linear programming models miss to accommodating any kind of imprecision or vagueness
in those models. The crisp relations (inequalities or equalities) cannot always describe the con-
straints or objective functions completely. However, one may be able to express the constraints
and objective functions in an IF'S context making the model more realistic and pragmatic. In-
tuitionistic fuzzy linear programming (IFLP) is developed on this basis. The advantage is that
this method can express the degree of acceptance and rejection of objectives and constraints. To
deal with uncertainty as well as hesitation, intuitionistic fuzzy (IF) modeling seems to be more

relevant which includes both uncertainty and hesitation. In IFSs, the degree of membership,
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the degree of non-membership and the degree of hesitancy are real values. An application of the
IF'S to optimization problems is given by Angelov [9]. His technique is based on maximizing the
membership degree, minimizing the non-membership degree and the crisp model is formulated
using the IF aggregation operator. Mahapatra and Roy [127] gave reliability evaluation using
TIFNs arithmetic operations. Kumar et al. [107] gave a new approach for analyzing the fuzzy
system reliability using IFN. Dubey et al. [66] introduced fuzzy linear programming (FLP) un-
der interval uncertainty based on IFS representation. Nagoorgani and Ponnalagu [137] gave a
new approach to solving the IFLP problem (IFLPP). Garg et al. [73] introduced IFO technique
for solving multi-objective reliability optimization problems in interval environment. Suresh et
al. [165] introduced solution technique of IFLPPs by ranking function. Li and Liu [112] gave
a parameterized nonlinear programming approach to solve matrix games with payoffs of IFNs.
Wan et al. [178] gave an IFLP method for logistics outsourcing provider selection. Singh and
Yadav [163] introduced modeling and optimization of multi-objective non-linear programming
problem in the intuitionistic fuzzy environment (IFE). Nishad and Singh [139] introduced a
solution technique for multi-objective decision-making problem in IFE. Rani et al. [153] in-
troduced Multi-objective non-linear programming problem in IFE: Optimistic and pessimistic
viewpoint. Razmi et al. [156] introduced an IF goal programming approach for finding Pareto-
optimal solutions to multi-objective programming problems. Zhao et al. [199] gave interactive
IF methods for multilevel programming problems. Singh [162] gave IF DEA /AR model and its

application to flexible manufacturing systems.

1.5 Decision-making problems in fuzzy environment

The study of classical decision theory has been approached from different perspectives, includ-
ing philosophical, behavioral, biological, mathematical and computational approaches, yet a
large number of challenges remain in understanding this important of higher cognition. Classic

decision theory deals with

(i) a set of alternative states of nature (outcomes).
(ii) a set of alternative actions.
(iii) a relation indicating the state or outcome to be expected from each alternative action.

(iv) a utility objective function which orders the outcomes according to their desirability.

Selecting the best suitable alternative from the given set of feasible alternatives is called Multi-

criteria Decision-Making (MCDM)/Multi-attribute Decision-Making (MADM). MCDM/MADM
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analysis has some unique characteristics such as the presence of multiple and conflicting criteria,
different units of measurement among the criteria, and the presence of quite different alterna-
tives. Incredible efforts have been spent and significant advances have been made towards the
development of numerous MCDM /MADM methodologies for solving different types of problems.
Classical MCDM methods along the line of multi-attribute utility theory require the determi-
nation of alternative ratings and criteria weights by eliciting the DM’s judgments/preferences.
Crisp values are commonly used to represent these ratings and weights, which are implicitly or
explicitly aggregated by a utility function. The overall utility of an alternative represents how
well the alternative satisfies the DM’s objective. Alternatives with higher utilities are said to
be preferred. In practical applications, alternative ratings and criteria weights cannot always
be assessed precisely. Subjectiveness and vagueness are often involved which may come from
various sources, including unquantifiable information, incomplete information, unobtainable in-
formation and partial ignorance. Classical MCDM methods cannot effectively handle problems
with such imprecise information. Most of the decision-making problems involve uncertainty.
Hence one of the most important aspects for a useful decision aid is to provide the ability to
handle imprecise information such as large profit, cheap price, fast speed. For the last four
decades, FS theory proposed by Zadeh [194] has been used to tackle these qualitative terms and
played a significant role in decision making under uncertainty.

The application of F'S theory to MCDM models provides an effective way of dealing with the
subjectiveness and vagueness of the decision-making process for the general MCDM problem
[145]. By using linguistic terms with fuzzy number representation, the DM can effectively ex-
press his/her subjective assessments. The DM’s preference in comparing alternatives or criteria
can be better modeled. Mostly fuzzy MCDM models based on classical utility theory involve

two phases

e The aggregation of the fuzzy assessment with respect to all criteria for each alternative

and
e The ranking of alternatives based on their aggregated overall assessments (fuzzy utilities).

Fan et al. [72] gave subsethood measure for selection of alternative in fuzzy MCDM problems.
Wei et al. [183] gave a compromise weight for multi-attribute group decision making with
individual preference. Park [144] introduced mathematical programming models for character-
izing dominance and potential optimality when multi-attribute alternative values and weights
are simultaneously incomplete. Rao et al. [154] gave preference structure on alternatives and

judges in a group decision problem by a fuzzy approach. Zhang and Zhang [198] gave hybrid
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monotonic inclusion measure and its use in measuring similarity and distance between FSs, He
et al. [93] gave Tp-transitivity of fuzzy similarity measures and Bustince et al. [39] gave group-
ing, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons.
Mesiar et al. [131] gave OWA operator for decision-making problems in fuzzy environment. It
is used to order the alternatives in fuzzy decision making problems. Different types of methods

for solving decision-making problems are noted in [4, 87, 88, 91].

1.6 Decision-making problems in intuitionistic fuzzy en-

vironment

Decision-making models inherently have some level of imprecision and vagueness in the estima-
tion of model parameters. Such phenomena have been very well captured through FSs. There
can be situations in which the DM is endowed with a fuzzy decision function favoring an alter-
native. It is worthwhile to have some measure of knowledge as to how the alternative has not
been preferred. IF decision models can play a vital role in this context. Marnko [129] measured
the fuzziness and the non-fuzziness of IFSs. Chen [41], and Hong and Kim [97] established
the similarity measures between vague sets and between elements. Liu [115] gave new simi-
larity measures between IFSs and between elements. Dengfeng and Chuntian [54] and Szmidt
and Kacprzyk [168] gave similarity measures of IFSs and applied to pattern recognition and
in supporting medical diagnostic reasoning. Also, several types of distances between IFSs and
similarity measure of IFSs noted in [23, 38, 52, 78, 95, 96, 138, 143, 166, 167, 180]. It is used in
decision-making problems, comparative analysis from a pattern recognition point of view and
to the global comparison of images in IFE. Xu and Yager [187] introduced dynamic IF multi-
attribute decision-making problems. In [90, 92, 179, 181, 186, 188, 192, 197], authors worked on
solving decision-making problems in IFE with different prospectives. Montes et al. [133-135]
introduced divergence measures, local divergences and entropy measures for IFSs and they ap-
plied to decision-making and pattern recognition problems. Pal et al. [142] and later Das et al.
[50] gave information measures in the IF framework and their relationships. In [86, 119-121],
several types of aggregation operators are given to aggregate attributes corresponding to each
alternative in decision-making problems in IFE. Also, Gupta et al. [86] gave multi-attribute

group decision-making based on extended TOPSIS method under interval-valued IFE.
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1.7 Fuzzy implications

After Zadeh introduced the concept of F'S in his pioneering work ([194], Zadeh 1965), a huge
amount of work in F'S theory and fuzzy logic appeared, both theoretical and applied. There are
two main branches in the study of fuzzy logic, fuzzy logic in the narrow sense and fuzzy logic in
the broad sense [89, 140]. Fuzzy logic in the narrow sense is a form of many-valued logic [157]
constructed in the spirit of classical binary logic. It is symbolic logic concerned with syntax,
semantics, axiomatization, soundness, completeness, etc. [82, 89]. Fuzzy logic in the broad
sense can be seen as an extension of fuzzy logic in the narrow sense. It is a way of interpreting
the natural language to model human reasoning [140].

A very important part of research in fuzzy logic (both in the narrow sense and in the broad
sense) focuses on extending the classical binary logic operators negation (—), conjunction (A),
disjunction (V) and implication (—) to fuzzy logic operators. The extension of implication (—)
to fuzzy logic is called fuzzy implication. Table 1.1 gives the truth table of the classical binary

implication ‘ —'.

Table 1.1: Truth table of the classical binary implication

Plq|P—4q
0]0 1
01 1
110 0
111 1

Definition 1.7.1. A function I : [0,1]* — [0, 1] is called an fuzzy implication if for x, ', 2" y,y',y" €
[0, 1], it satisfies the following conditions:

o ' <" = Iz y) > 1(2",y), ie., I, y) is non-increasing,
o v <y = I(x,y) < I(z,y"), i.e., I(x, .) is non-decreasing,
o 1(0,0)=1,1(1, 1) = 1, I(1, 0) = 0, I(0, 1) = 1.

Let us first have an overview of the literature on fuzzy implications in fuzzy logic in the
broad sense.

The implication in classical binary logic work only on two truth values 0 and 1 while a fuzzy
implication is a [0,1]?> — [0, 1] mapping. So besides the boundary condition, the first step to

work on fuzzy implications is naturally to determine which fundamental requirements a fuzzy
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implication should fulfill. Most considerations are taken either from the point of view that a
fuzzy implication is a generalization of the implication in classical binary logic [89, 140].

In the literature, there are different classes of fuzzy implications, like strong implications
(S-implications), residuated implications (R-implications), quantum logic implications (QL-
implications), etc. generated from the fuzzy logic operators negation, conjunction and dis-
junction proposed in [19, 106]. Also, Jenei [102] gave a more efficient method for defining fuzzy

connectives. S-implications and QL-implications are defined respectively based on

p—q=-pVyq (1.1)
p—=q="pV(pAq) (1.2)

in classical binary logic, where p and q are two propositions. R-implications are defined based
on the fact that the implication is residuated with and in the classical binary logic. These class
of implications are widely used in different areas, like approximate reasoning, Boolean like laws,
distributive equations, etc. (e.g., [19, 106]).

Besides S-, R~ and QL- implications, there are many other classes of fuzzy implications which
are not generated from the fuzzy logic operators negation, conjunction and disjunction, like,
Yager’s new class of implications J; [21], fuzzy implications determined by aggregation operators
[141], (g, min)-implications [196], fuzzy implications derived from generalized h-generators [117],
residual implications derived from overlap functions [65], Fuzzy implication functions based on
powers of the continuous t-norms [128, 177], etc. The Boolean-like laws over fuzzy implications,
like, I(x, I(y, x)) = 1, I(x, Iy, z)) = I(I(x, y), I(x, z)) are studied in [42, 43]. Trillas and Alsina
[172] studied the law [p Aq — r] = [(p — 7) V (¢ — 7)] in fuzzy logic. The distributivity of
fuzzy implication operators over t-norm and t-conorm is studied by Balasubramaniam and Rao
[22]. The concept of distributivity of fuzzy implications in [22] is extended for nilpotent or strict
t-conorms by Baczynski and Jayaram [20], and for overlap and grouping functions by Qiao and
Hu [148]. Jenei [103] studied continuity of left-continuous triangular norms with strong induced
negations and their boundary condition. After that, the continuity of residuals of triangular

norms studied by Jayaram [100].

1.8 Intuitionistic fuzzy implications

The extension of fuzzy implication to IFE when each of propositional elements lies in L.
Atanassov and Gargov [15] introduced two versions of IF propositional calculus and a version
of IF predicate logic. Atanassov and Gargov [15] and later Deschrijver et al. [59] and Cor-

nelis et al. [45] presented the definition and properties of intuitionistic fuzzy implication (IFI),
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IF t-norm, IF t-conorm. Also, some properties of IFIs are given and studied by Baczynski
[16]. Bustince et al. [33] studied IF conditional interpretation and introduced and analyzed
the properties of IFIs generated by fuzzy implications, fuzzy complications, and aggregation
operator. After, Deschrijver and Kerre [62] gave triangular norms and related operators in
L. Several authors studied interval-valued implications, interval-valued aggregation operators,
interval-valued t-norms, interval-valued t-conorms, interval-valued negations and different class
of interval-valued implications [5, 61, 111, 118]. Van Gasse et al. [173] introduced a character-
ization of interval-valued residuated lattices. Bustince et al. [34] introduced the generation of
interval-valued fuzzy and Atanassov’s IF connectives from fuzzy connectives and from K, oper-
ators based on laws for conjunctions and disjunctions, amplitude. Gorzalczany [81] and later Li
et al. [113] gave a method of inference in approximate reasoning based on interval-valued FSs
and robustness of interval-valued fuzzy inference. The distributivity of interval-valued fuzzy
implications over t-representable t-norms generated from strict t-norms and nilpotent t-norms
are noted in [17, 18]. Shi et al. [161] gave constructive methods for IFIs.

In this section, the definitions of IFIs, ®-implications, (S, A)-implications, axioms of IFIs,

IF t-norms, IF t-conorms and IF negations are presented.

Definition 1.8.1 (IFS Lattice:, [59]). Let £ = {(u1,us) : (u1,us) € [0,1]%, uy + ug < 1} be
an IFS and the operation <, be defined on L by

(ur, uz) <p (v1,v2) & up <wp, ug > V2 V (U, up), (v1,v2) € L.
For each nonempty set 4 C L, we have

sup 4 =(sup{w : (u1, u2) € A}, inf{uy : (ur,us) € 4}),

inf 2 =(inf{uy : (u1,ug) € A}, sup{us : (ug, uz) € 4}).
Then (L,<.) is a complete lattice [59]. Equivalently, this lattice can also be defined as an
algebraic structure (L,V, ), where the join operator V' and the meet operator N\ are defined as

follows:

For u = (uy,ug), v = (v1,09) € L,
u Vv = (max(ui,vy), min(ug, v2)) and u A v = (min(uy, vy), max(uz, v2)).

Remark 1.8.2. (i) Note that if for (uy,uz), (v1,v2) € L, u; < v1 and uy < vy, then u and v

are incomparable w.r.t. <., written as u||,v.

(i1) We denote the units 0, = (0,1), 1, = (1,0) for the set L.
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(iii) For each point © € X, Al(z) = (uz (x), v (x)) is an element of L.

Definition 1.8.3. [109] Let u = (uy,u2) and v = (vy,vq) be the elements of L and r > 0 be a

real number. Then
(i) the sum of u and v is denoted by u + v and is defined as an element of L is given by

u~+ v = (u; + vy — uvy, Ugvs),

(ii) the difference of u and v is denoted by u — v and is defined as an element of L given by

(524, 32), wi > vn,up S 2,09 > 0, up(l —v1) < a1 —wy);
u—v=

0, otherwise,

(#i) the product of w and v is denoted by uv and is defined as an element of L given by

wv = (uyvy, Uy + Vo — UV3),

(iv) the division of u by v is denoted by u/v and is defined as an element of L given by

(4= gy < og,up > v, 01 > 0, un(1—v2) < or(1—uy);

u/v =
0, otherwise,

(v) ru=(1—=(1—u)",up),
(vi) u" = (u], 1 — (1 —uz)").

Definition 1.8.4. [59] A function I : £* — L is called an IFI if for u,u/,u",v,v',v" € L, it

satisfies the following conditions:

u < u" = I, v) >, I(u”,v),d.e., I1(.,v) is non-increasing (I1)
V< V" = I(u,v) <, Ii(u,v"),de., I1(u, .) is non-decreasing (I2)
II(OLaoL) = 1L7 II(lLa 1L> = 1L7 Il(lLaoL) = 0L> II<OLa 1L) = 1L (13)

We also define the following set for further usage: D = {(u1,us) : (u1,uz) € L, uy +us = 1},
and the first and second projection mappings pry; and pry on £ defined as pry(uq,us) = u; and

pra(ug, ug) = ug for all (uy,us) € L. Some IFIs are given in Table 1.2.



22

Table 1.2: List of some IFIs

Name Formula

Zadeh 1 I1zp1(u,v) =< max(ug, min(uy, vy)), min(uy, ve) >

Zadeh 2 I1zpo(u,v) =< max(ug, min(ug, v1)), min(uy, max(ug, v)) >

Godel Iigp(u,v) =< 1 — (ug — v1).89(u; — v1),v9.59(uy —v1) >

Gaines-Rescher Iigr(u,v) =<1 —sg(uy — v1),v2.59(ug —v1) >

Lukasiewicz Irpk(u,v) =< min(1, uy + v1), max(0,u; +ve — 1) >

Fodor’s 1 Iirpi(u,v) =< 3g(ug — v1) + sg(u; — v1) max(ug, v1), sg(uy — vy)
min(uy, ve) >

Reichenbach Iirp(u,v) =< ug + uyvy, ugvy >

Kleene-Dienes Ik p(u,v) =< max(ug, v1), min(ug, vg) >

Wu Itwu(u,v) =< 1 — (1 — min(ugvy.sg(ur — v1))), max(uy, ve)sg(u;—
v1).59(vy — ug) >

Willmott Irwn(u, v) =< min(max(ug, vy ), max(uy, us), max(vy, ve)),

Atanassov 1
Atanassov 2
Klir and Yuan 1
Klir and Yuan 2

max (min(uy, vq), min(uy, ug), min(vy, vy)) >
Irar(u,v) =<1 — (1 —wvy).59(us —v1),v2.59(ug — v1).59(ve — ug) >
I1a2(u,v) =< max(ug,vq1), 1 — max(ug,vy) >
IIKYl(u, U) =< U + u%vl, U Uy + U%Ug >
Iiky1(u,v) =< v1.35g(1 —uy) + sg(1 —uq).(5g(1 — v1) + ug.s9(1 — v1)),
v9.5¢(1 — uy) + uy.sg(1 — uy).sg(1 —vy) >

Atanassov and Kolev Trak (u,v) =< ug + vy — ugvy, ugvy >
Atanassov and Trifonov  Ipar(u,v) =<1— (1 —wv1).s9(ug — v1) — v9.5g(u; — v1).59(v2 — usg),
v9.8g(vg — ug) >

Corollary 1.8.5. [59] IFI has the greatest and least elements I1;, and Iy, respectively given
by

1L7 U<L 1LOIU>LOL5 1[,7 U,:LOLOI"U:L 1L7
and Igg,(u,v) =

OL7 UZL 1L andU:L OL7 0L7 U/>L OL andU<L 1L7

In,(u,v) =

Vu,ve L.

Definition 1.8.6. An IFI 1;: £? — L is said to satisfy

the left neutrality property (NP) if I;(1,,v)=vV v € L; (NP)
the ordering property (OP) if u <, v & Ii(u,v)=1,Yu,v € L. (OP)
the identity principle (IP) if I;(u,u) =1,V u € L. (IP)
the exchange principle (EP) if I;(u,Ir(v,w)) = I1(v,I1(u,w))V u,v,w € L. (EP)
the left ordering property (LOP) if v <, v = Ii(u,v)=1,Yu,v € L. (LOP)
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the right ordering property (ROP) if Ir(u,v)=1, = u<,vVu,v € L. (ROP)
the consequent boundary (CB) if v <, I;(u,v) Y u,v € L. (CB)
the sub-iterative Boolean Law (SIB) if Ir(u,Ir(u,v)) >, Ir(u,v)V u,v € L. (SIB)
the iterative Boolean Law (IB) if I1(u,Ir(u,v)) = I1(u,v)VY u,v € L. (IB)
the strong boundary condition (SBC) for 0,,if v # 0, = I;(u,0.)=0,Vue L. (SBC)
the left boundary condition (LBC) if I;(0,,v) =1,V v € L. (LBC)
the right boundary condition (RBC) if I;(u,1,)=1,YVu € L. (RBC)

Definition 1.8.7. [59] A function N : L — L is called an IF negation if

(NJ) N(OL) = 1L7N(1L) =0,

(N2) N is non-increasing.

Moreover, an IF negation N s said to be
(N3) strict if, in addition,

o A is decreasing,

o A is continuous.
(N4) strong if it is an involution, i.e., N.(N(u)) =u, u € L.
(N5) non-vanishing if N(u) =0, < u=1,.
(N6) non-filling if N(u) =1, < u=0,.
The standard negation is denoted by A; and defined by NG (w1, us) = (ug, u1) V (ug, uz) € L.

Definition 1.8.8. [/5] A function T : £L* — L is called a triangular norm (t-norm) if for all

u,v,w € L, it satisfies the following conditions:

T (u,v) = T(v,u) (T1)
T(u, T(v,w)) = T(T(u,v),w) (T2)
v<,w = T(u,v) <, T(u,w),i.e., T(u,.) is non-decreasing (T3)
T(u,1,) =u (T4)
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Example 1.8.9. (i) The function Ty : L> — L given by
T (u,v) = (min(uy, vy), max(uy,v1)) Vu = (ug,uz),v = (v1,v2) € L
18 a t-norm.
(11) The function T : £L* — L given by
T(u,v) = (uvy, 1 — (1 —ug)(1 —v2)) YV u = (ug,uz),v = (v1,02) € L
18 a t-norm.
(111) The function T : £L* — L given by
T (u,v) = (max(0,u; +v; — 1), min(1, ug+1—vy, v+ 1—uy)) ¥V u = (ug,u),v = (v1,v2) € L
is a t-norm (see [62]).

Definition 1.8.10. [45] A function S : £L* — L is called a triangular conorm (t-conorm) if for

all w,v,w € L, it satisfies the following conditions:

S(u,v) = 85(v,u)
S(u, $(v,w)) = 5(S(u, v), w)
v<,w = S(u,v) <, S(u,w),i.e.,S(u,.) is non-decreasing

S(u,0,) =u
Example 1.8.11. (i) The function Sy : L* — L given by
Sar(u, v) = (max(uy, v1), min(uy, vy)) ¥V u = (u1,uz),v = (v, v2) € L
18 a t-conorm.
(ii) The function S : L*> — L given by
S(u,v) = (ugv1, ug + vg — ugve) ¥ u = (ug,us),v = (v1,v3) € L
1$ a t-conorm.
(iii) The function S : L*> — L given by
S(u,v) = (min(1, ug + 1 —v9, 01 + 1 —ug), max(0, ug +ve — 1) Vu = (u1,u2),v = (v1,v2) € L

is a t-conorm (see [62]).



25

Definition 1.8.12. [/5]

(A). A t-norm T on L is called t-representable if there ezists a t-norm T and a t-conorm S on

[0, 1] such that
T(u,v) = (T(uy,v1), S(ug, v2)) for u = (uy,uz),v = (vy,v9) € L.
T and S are called the representants of T. We write T = (T, S).

(B). A t-conorm S on L is called t-representable if there exists a t-norm T' and a t-conorm S’

on [0, 1] such that
S(u,v) = (S (ug,v1), T (ug, v2)) for u = (uy, uz),v = (v1,v9) € L.
T" and S" are called the representants of S. We write S = (S",T").

Example 1.8.13. (i) Consider the functions T : £L* — L and S : L> — L generated by the
t-norm and t-conorm on [0, 1]. Then the mappings T and S given by

T (u,v) = (min(uy, v1), max(ug, v2)) and S(u,v) = (1 — (1 — uz)(1 — ve), usvy)
for u = (uy,us),v = (v1,v2) € L are t-representable.

(i) On the other hand, t-norm T given in Example 1.8.9 (iii) and t-conorm S given in Example

1.8.11 (iii) are not representable, though both of them are continuous and Archimedean.

Definition 1.8.14. [/5] A function 11 : L*> — L is called an R-implication if there erists a

t-norm T such that
Ir(u,v) =sup{y € L:T(u,vy) <,v}VuveL
If 11 1s an R-implication generated by a t-norm T, then it is denoted by L1y .

Definition 1.8.15. [/5] A function 11 : L? — L is called an (S, N))-implication if there exist a

t-conorm S and an IF negation N such that
Ir(u,v) = S(N(u),v) YV u,v € L.

If A\ is a strong IF negation, then 1: is called a strong implication or S-implication. Moreover,

if 11 is an (S, N)-implication generated by S and N, then it is denoted by Iy(s ).
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1.9 Organization of Thesis

This thesis is organized as follows. It consists of eight chapters. The chapter-wise summary is

as follows:

The current chapter gives the literature survey related to FS and IFS theory, FS and IFS

optimization problems, decision making-problems in fuzzy and IF environments, fuzzy and IFIs.

In Chapter 2, the product of unrestricted LR-type IFNs based on the a-cut, -cut and
(e, B)-cut is proposed. Then with the help of the proposed product, a new method is proposed
to find the optimal solutions of unrestricted LR-type IFLPPs. A test example is given to support
the proposed method and investigated the applicability of existing approaches.

In Chapter 3, we introduce a pair of primal-dual LPPs in IFE and prove duality results
in IFE by using an aspiration level approach in which membership and non-membership func-
tions are taken in the form of reference functions. Since the fuzzy environment and IFE cause
the duality gap, we propose to investigate the impact of membership function governed by
reference function on duality gap. This is specially meaningful for fuzzy and IF programming
problems, when the primal and dual objective values may not be bounded. Finally, the duality
gap obtained by the approach has been compared with the duality gap obtained by existing

approaches.

Chapter 4 investigates a new approach for finding efficient solutions of the multi-objective
optimization problem (MOOP) in IFE based on DM’s different views, viz., optimistic, pes-
simistic and mixed. The point operator F,,, which transforms IFS into equivalent F'S, is intro-
duced and some desirable properties of F,, are studied. The formulation of MOOP, accuracy
index and value function in IFE are introduced. For resolving the mutual conflicting nature
of objectives in MOOP in IFE, we introduce the membership and non-membership functions
governed by reference function which do not depend on the upper and lower levels of accept-
ability. Then a new method is proposed to find the efficient solutions of MOOP in IFE based
on different viewpoints. Finally, a test example is given to demonstrate the practicality and

effectiveness of the proposed method.

Chapter 5 considers some information measures, such as, normalized divergence measure,
similarity measure, dissimilarity measure and normalized distance measure in IFE, which mea-
sure the uncertainty and hesitancy, and which can be applied to the selection of alternatives in
group decision problems. We introduce and study the continuity of considered measures. Next,
we prove some results that can be used to generate measures for FSs as well as for IF'Ss and we

also prove some approaches to construct point measures from set measures in IFE. We define
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the weight set for one and many preference orders of alternatives. We investigate the proper-
ties and results related to the weight set. Based on the weight set, we develop the model for
finding the uncertain weights corresponding to attribute. Also, we develop the model to finding
positive certain weights corresponding to each attribute by using uncertain weights. Finally,
an algorithm for choosing the best alternative according to the preference orders of alternatives
in decision making problems is proposed and its validity is shown with the help of numerical
example.

In Chapter 6, the powers of a t-norm 7 with identical tuple elements on £ are introduced
and their properties are studied. More specifically, a new type of implication on £, known as
the residual implication is derived from powers of continuous t-norm 7, which is denoted by
I;; and satisfies certain properties of residual implications by imposing some extra conditions.
Moreover, some additional important properties are studied and analyzed. These altogether
reveal that they do not intersect the most well-known classes of fuzzy implications. Finally, we
investigate the solutions of Boolean-like laws in Iy;.

In Chapter 7, a new class of IFIs known as (f;,w)-implications is introduced which is a
generalized form of Yagers f-implications in IFE. Basic properties of these implications are dis-
cussed in detail. It is shown that (f1,w)-implications are not only the generalizations of Yagers f-
implications, but also the generalizations of ®-, (§,N)- and QL-implications in IFE. The distribu-
tive equations I1(7(u,v),w) = S(I1(u,w),I;(v,w)) and I(u, T (v,w)) = T(Ir(u,v), Ir(u,w))
over t-representable t-norms and t-conorms generated from nilpotent and strict t-norms in IF
set theory are discussed.

Finally, in Chapter 8, conclusions are drawn based on the present study and future research

work is suggested in this direction.
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Chapter 2

Unrestricted LR-type intuitionistic
fuzzy mathematical programming

problems

In this chapter, the product of unrestricted LR-type IFNs based on the a-cut, f-cut and (a, 3)-
cut is proposed. Then with the help of the proposed product, a new method is proposed to find
the optimal solutions of unrestricted LR-type IFLPPs. A test example is given to support the
proposed method and investigated the applicability of existing approaches.

2.1 Introduction

In today’s highly competitive market, the pressure on an organization is to find better ways
to attain the optimal solution. In conventional optimization problems, it is assumed that the
DM is sure about the precise values of data involved in the model. However, in real-world
applications, all the parameters of the optimization problems may not be known precisely due
to uncontrollable factors. Such type of imprecise data is well represented by a fuzzy number
introduced by Zadeh [194]. Zimmermann [203] showed that the solutions of fuzzy linear pro-
gramming problems (FLPPs) are always efficient. Several researchers have developed different
types of methods for solving FLPPs [71], fully fuzzy linear programming problems (FFLPPs)
([105], [108]) and LR-type FFLPPs ([75], [104]).

In real life, a person may assume that an object belongs to a set to a certain degree, but it is
possible that he/she is not sure about it. In other words, there may be hesitation or uncertainty

about the membership degree. The main meaning is that the parameters’ demand across the
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problem is uncertain. However, they are known to fall within a prescribed uncertainty set with
some attributed degrees. In F'S theory, there is no means to incorporate the hesitation in the
membership degree. To incorporate the hesitation in the membership degree, IFSs proposed
by Atanassov [11] can be used. It is an extension of the FS theory. Gau and Buehrer|[74]
introduced the concept of vague set. Bustince and Burillo [37] proved that vague sets and
IFSs are the same. IFS is playing an important role in decision making under uncertainty
and has gained popularity in recent years. It helps more adequately to represent situations
where DMs abstain from expressing their assessments. In this way, [F'Ss provide a richer tool
to grasp impression and ambiguity than the conventional F'Ss. These characteristics of IFSs led
to the extension of optimization methods in IFE. An application of the IFSs to optimization
problems is introduced by Angelov]9]. His technique is based on maximizing the degree of
membership, minimizing the degree of non-membership and the crisp model is formulated using
the IF aggregation operator. The application of IFSs in medical diagnosis is given by De et
al. [51]. Mahapatra and Roy [127] introduced arithmetic operations on TIFNs and studied
reliability evaluation using TIFNs. The modeling and optimization of the multi-objective non-
linear programming problem in IFE are discussed in [163] with the usual approach and in [153]
with different approaches such as optimistic and pessimistic approaches. Subsequently, several
researchers have solved optimization problems in IFE such as matrix game with IF payoffs by
using non-linear mathematical programming approach [112], IFLPP by a new method [137],
IFLPPs by using the ranking function approach [165], multi-level programming problems by
interactive IF methods[199], finding Pareto-optimal solutions to multi-objective programming
problems by an IF goal programming approach [156].

The rest of the chapter is organized as follows: In Section 2.2, some basic definitions and
arithmetic operations on LR-type IFNs are presented. In Section 2.3, the product of unrestricted
LR-type IFNs is introduced. In Section 2.4, a new method is proposed to find the fuzzy optimal
solution of LR-type IFLPPs. In Section 2.5, an illustrative example is given to support the
proposed method and the managerial insights of this problem are discussed. In Section 2.6, the
advantages of the proposed method over the existing methods are given. Concluding remarks

are drawn in Section 2.7.

2.2 Basic definitions and arithmetic operations

Definition 2.2.1. Let Al = {(v, (%), v5(z)) : @ € R} be an IFN. Then the operators
C,:Z(R) = R* and C, : Z(R) — R* of an A’ are defined by
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~ m 1 m+r
C.(A") = Z,UAI (z)dx + 5/ l i (z)dx (2.1)
B m 1 m4r’
(A7) = / i (o)de + v o (2)da (2.2)
m—l1’ m—1’

Lemma 2.2.2. Let Al = [A],, AR,], a € (0,1], and A} = [A] 5, Afgl, B € [0,1), be the a-cut
and B-cut respectively of an IFN A" = {(z, puz:(x), vz (x)) : o € R}. Then

. 1 1
C, (A1) = /O Afyda+ /0 (A, — AL )da (2.3)

5 1 1 1
Cud) = [ Az 5 [ Ay - 005 (2.4

Proof. There are several approaches to prove (2.3) and (2.4). The simplest way is assessing the
area of the curves AJ,,, A]; and between the curves A}, and AL,; Afz and Afg.

Let f: R — R and g : R — R be piecewise continuous functions on a segment [a,b] such
that f(x) > g(x) ¥V x € [a,b]. Then the area of the curve y = f(x) and the area between curves

y = f(z) and y = g(x) (according to classical results of math analysis, e.g., [19]) are

S(0) = [ f@ir and S(7-9) = [ (#@) - gl (2.5

respectively.
Determination of the area under the curve p;:(z), € (m — I, m), and half the area under
the curve pz(x), © € (m —1,m + r), according to (2.1), includes all the possible curves for

values g (m — 1), pir(m+r), e.g., if pir(m+1) = ay > 0. For the latest case,
AL . =m+r, a€0,a)

Let function o = p4:(z) has a discontinuous in the point xy. According to the property of
par(x), par(z) is a piecewise upper continuous function, therefore

ap = p15(z9) = max (al = lim pj(x), ar = lim+ufp(:c)>.

LL’—>$O $—>$O

Assume ag = oy, then (as pj(z) is upper-continuous) AL = xq for @ € (ag,a1]. Thus, as
in segment in [0, 1], Af  is a non-decreasing piecewise lower-continuous function, and AL is
a non-increasing piecewise upper-continuous function. The sum of the areas, i.e., the area of
the curve z = AL and the half of area between the curves z = AL and z = AL  are assessed
based on the approach (2.5) is the required result (2.3).

Similarly, we can prove the result (2.4). O
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Definition 2.2.3. Let Al € Z(R). Then the score and accuracy indices of AL are denoted by
Is(A") and I4(A") respectively and are defined by

Is(A") = |Cu(AT) = CL(A)], Ia(AT) = Cu(AT) + G, (AT).

Definition 2.2.4. An LR-type IFN A" = (m;1,7;1',7") 1k is called LR-type unrestricted IFN if

m is any real number.

Definition 2.2.5. An LR-type IFN A' = (m;1,7;1',7") g is called non-positive if m + ' < 0
and non-negative if m — I’ > 0.

Definition 2.2.6. An LR-type IFN Al = (m; L', r") LR is called negative if m + 1" < 0 and
positive if m — 1" > 0.

Theorem 2.2.7. Let A" = (a,b,c;d',b,¢) be a TIFN. Then its (i) a—cut AL, (i) 5—cut A{ﬂ)

are given by

Al =[a+ (b —a)a,c— (c — b)a] (2.6)
Algy =[b—(b—d)B,b+ (¢ —b)B] (2.7)

for a € (0,1],5 € [0,1).

Proof. (i). For a € (0,1],

r—a C—X
> «,

= z>a+ (b—a)a, z<c—(c—b

>«

fi(T) =2 o =

= a+(b—a)a<z<c—(c—ba
Therefore,

Al =[a+ (b—a)a,c— (c—b)al.

o

(ii). Now, for g € [0,1),

b—ux r—0
< <
b—a’_ﬁ’c’—b_ﬁ

r>b—(b—d)B, x<b+(d—b)s
=b—(b—d)p<z<b+(d-b)p

vi(lr) < B =

4

Therefore,

Al =b—(b—a)B,b+ ( —b)g].



33

Theorem 2.2.8. Let A = (a,b,c;d/,b,¢) be a TIFN. Then its («, 3)—cut A{aﬁ) is given by
ALy =[a+ b= a)a.c— (= a)a] 1o~ (b— )b+ (¢ — )] (2.8
fora,pe(0,1), a+B <1
Proof. For a € (0, 1], the a-cut of Al is given by (see (2.6))
Al =Ja+ (b—a)a,c— (c—b)al.
For B €[0,1),a+ 8 < 1, the B-cut of A7 is given by (see (2.7))
Aly = b= (b= ).+ (¢ — D],
Therefore, by Definition 1.2.8,
Aga,ﬁ) =Al'n A{ﬂ) =la+(b—a)a,c— (c—a)a]N[b—(b—d)B,b+ (¢ —b)I]
for a, 8 € (0,1), a+ 5 < 1. O

Theorem 2.2.9. Let AT = (m;l,r; U, 7" Lr be an LR-type IFN. Then its (i) a—cut AL, B—cut
Algy are given by
Ag =[m =1L (a),m +rR™H(a)], (2.9)
Aly =[m =L (1= B),m ++'R~'(1 - B)] (2.10)
for a € (0,1],5 € [0,1).

Proof. (i) For a € (0,1],

pi(r) > a #L(Q) 2@,R<x_m> >«

r
m—x r—m

< L7 (o),

= < R 'a) (. LandR are decreasing functions)

r
=z>m—IL"Ya), s <m+rR a)

=m—IL"a) <z <m+rR Y a)
Therefore,

Al = [m — 1L (a),m +rR™'(a)). (2.11)

(e

(ii) Now, for f € [0,1) and o + 5 < 1,

— X r—m

vp@) <8 =1-L("=) < B 1-R(*7) <6

sa2>m—-IL'(1-p), z<m+rR(1-p)

=m—IL(1-B) <z <m+rR(1-p)
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Therefore,
Algy=[m—=TUL7 (1= p),m+r"R7(1 - B)]. (2.12)
0

Theorem 2.2.10. Let A" = (m;1,7;1',7") g be an LR-type IFN. Then its (a, §)— cut A{aﬁ) is
given by

Al =Im—IL"Y(@),m+rR(a)]N[m—=IL™"(1—-B),m+ R (1-p)] (2.13)
fora,p € (0,1), a+ 5 <1.
Proof. For a € (0, 1], the a-cut of A is given by (see (2.9))

Al = m — 1LY a),m+rR(a)]
For B €[0,1),a+ 8 < 1, the B-cut of A7 is given by (see (2.10))
A{B) =m—-UL'1-8),m+rR*(1-p)
Therefore, by Definition 1.2.8,
Al =ALN Al =Im—IL7 (a),m+rR (o) N[m =L (1= 8),m+ R (1-p)]

for a, 5 € (0,1), a+ 5 < 1. O

Remark 2.2.11. Let flI:(m; Lyr ;1" g be an LR-type IFN. Then, based on Definition 2.2.3,
the score and accuracy indices of Al are denoted by Is(A') and 14(A"), respectively and are

given by
- 1 [t
Is(A) =[5 [ {om =127 (@) + (4 R (@) do
0
1
— 5 | A =127 = ) + (R0 )
and
- 1 [t
L) =5 [ {m =127 @) + (m -+ 7R (@)}
0
1
+ %/O {(m —UL7(1=3))+ (m+r"R'(1 - B))}ds.
Theorem 2.2.12. (Score index of LR-type TIFN) Let AT=(b:b—a,c—b;b—a', ¢ —b)pr be an
LR-type TIFN. Then

(a+c)—(d+7)
" |

Is(AT) =




35

Proof. By Remark 2.2.11,
Is(A%) _] /{b— (b—a)L (@) + (b + (c — )R\ (a)) }da
—-/ (b= (b—a) L' A=) + b+ (¢ ~HRIA- P8 (219)
By Definition 1.2.19 for a TIFN,

L(z) = R(z) = max{0,1 —z} Vx> 0.

Therefore,
L@)=1-a (+0<a<l)
=LY a)=1-a (2.15)
Similarly,
L7'(1-8)=8, R (a)=1-a, RT'(1-p)=7 (2.16)

Using (2.15) and (2.16) in (2.14), we have

To(AD) :‘1/{5— (b—a)(1—a)) + (b+ (c—b)(1 — ) }da
——/{b— —d)8) + (b+ (¢ — b)B)}dB

‘a%—c (a' + )
1 :

]

Theorem 2.2.13. (Accuracy index of LR-type TIFN) Let AT =(b;b—a,c —b;b—d,¢ —b) g
be an LR-type TIFN. Then

(a+c+4b+d + )

I (A = ;

Proof. By Remark 2.2.11,

/{b—b—a o)) + (b + (c — B)R"Y(a)) }da
/{b—b—a {1 B) 4+ b+ (d —BR1— AR (217)
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Using (2.15) and (2.16) in (2.17), we have

:1/ {(b—(b—a)(1—a))+ (b+ (c—b)(1 - a))}da
/{b— (b—a)B) + (b+ (¢ — b)B)}df

_(atc+4b+d + )
= ; _

[]

Definition 2.2.14. Let Al=(mq;ly,r: 10, 7)) e and AL=(ma;ly, m9; 1y, 7)) Lr be two LR-type
IFNs.
(A) Then

(i) Al is defined as less than AL, written as Al < AL, if Is(Al) < Ig(Al),
(ii) Al is defined as greater than AL, written as Al = AL, if Ig(Al) > Ig(Ab).
(B) Let I5(Al) = I5(Ab). Then

(i) Al is defined as less than AL, written as AT < AL if I,(Al) < I4(A}),
(ii) Al is defined as greater than AL, written as Al = AL, if 14(A) > I,(AY),

(iii) Al is defined as equal to A, written as Al ~ AL if I,(Al) = T,(AL).

2.2.1 Arithmetic Operations on LR-type IFNs

In this subsection, the arithmetic operations on LR-type IFNs are presented.

Proposition 2.2.15. Let Al=(my;ly,m: 0, 7)) g and AL=(ma;ly, 791, 7%) e be two LR-type
IFNs. Then

/I{@Aé = (m1 +m2;l1 +ZQ,7’1 +’f’2;l/1 +ll2,’l“/1 +Té)LR>
where 0 < Iy + 1o <Ii +1, and 0 < ry +1ry <71) + 1%,
Proof. The a and S-cuts of Al and Al are given by
Al =1[my —LL 7 (a),mi + R (a)], AL, = [mg — L™ (a), my +roR7(a)] (2.18)

Al = [my = BL7H 1 = B),my + R (1= B)], Aggy = [ma — LLTH(1 = B),ma + 15R (1 = B)]
(2.19)
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respectively.

From (2.18), we get

(/Nl{ P flé)a = A{a + Aéa =[mi — LL Y (a),m; + R ()] + [my — loL 7 (@), mg + 1o R ()]

= [m1 + mo — (ll + lQ)Lil(Oé), my + meo + (Tl + 7’2>R71<Oé>] (220)

Since L and R are decreasing functions on [0, 00) with L(0) = R(0) = 1, 3 a unique ay € (0, 1]
such that L™ (ap) = R~ () = 1. Hence

(Al ® A)ay = [m1 +ma — (I + 1), my + ma + 11 + 1) (2.21)

(2.21) gives left and right spreads of membership function of fl{ &) flé are l; + Iy and r| + 9
respectively.

Putting a = 1 in (2.20), we obtain the modal point of /H @ Ag given by
(Al @ AD)1 = [my + ma, my + my] = my + my (2.22)
From (2.19), we get

(Al & Af)p) = A{(,B) + Ag(,ﬁ) = [my = LL7 (1 = B),my + i R™H(1 = B)]
+ [me — L7 (1 = B),ma + R (1 = B)]
= [ — (I + )L (L= B),my +ma + (7] + ) RV(1 = ).

Since L and R are decreasing functions on [0, 00) with L(0) = R(0) = 1, 3 a unique S, € [0,1)
such that L='(1 — 8y) = R7'(1 — By) = 1. Hence

(A] @& Ab)(gy) = [m1 +ma — I — Iy, my + my + 1/ + 14 (2.23)

2.23) gives left and right spreads of non-membership function of A @ Al are I} + 1, and 7} + 7
1 2 14 11T
respectively.
Since Al and A are an LR-type IFNs,

0<l <I,0<<l5,0<r <r,0<ry <7

Thus, 0 <y + 1l <Il]+1land 0 < ry + 19 < 7] + 7).
From (2.21), (2.22) and (2.23), we have

Al @ AL = (my +mo; 1y + Lo, + 1 U+ 17 4+ 170 Lr,

where 0 <y + 1 <I{ + 15 and 0 < ry +1ry < 7) + 7%, =
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Proposition 2.2.16. Let Al=(my;li,m;15,7)rr and AL=(mo;la, 79315, 75) LR be two LR-type
IENs. Then
Al 6 A = (my — mas by + 12, o + 1151+ 70, 1+ 71 1,

where 0 < Iy + 1o < I +7h and 0 < Iy +1ry <y + 7).

Proof. The a and B-cuts of A and Al are given by

A{a = [m; — LL Y (a),m + 7R ()], Aéa = [my — LL Y (a),my + raR7 ()] (2.24)
Algy = [m1 = UL (1= B),my +riR™ (1 = B)], Al = [ma — 5L (1 = B),my + 4R (1 — )]
(2.25)
respectively.

From (2.24), we get

(Ale AD, = Al — Al =[mi—LL Ya),m +rR Ya)] = [my — lLL7 (), mgy + R ()]
=[my — llL_l(a) — My — TQR_l(a), my + rlR_l(a) — My + lgL_l(a)]
(2.26)

Since L and R are decreasing functions on [0, 0c0) with L(0) = R(0) = 1, 3 a unique «aq € (0, 1]
such that L™ (ag) = R () = 1. Hence

(Al © Aoy = [my —ma — Iy — 12, my — Mo + Iy + 71 (2.27)

(2.27) gives left and right spreads of membership function of fl{ O flé are [y +7r9 and Iy + 1
respectively.

Putting a = 1 in (2.26), we obtain the modal point of A{ o /g given by
(121{ ) Ag)l = [m1 — Mo, M1 — mg] =M — Ms (228)
From (2.25), we get
(A] © A)s) = Af(g) — Abg) =[m1 — LL (1 = B),m1 + iR (1 = B)]
—[mg — LL7H(1 = B),mg +ryR™' (1 = B)]
(1= p) —ma—rR7I(1 - B),
=) —my + LT = B)]

:[ml — l,

m1+r1

Since L and R are decreasing functions on [0, c0) with L(0) = R(0) = 1, 3 a unique S, € [0,1)
such that L=1(1 — 3y) = R7*(1 — 3y) = 1. Hence

(A] & AD) 5y = 1 — ma — 1 — 1, my —ma + 1 + 1] (2.29)
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(2.29) gives left and right spreads of non-membership function of A7 & AL are I} +r} and I, + 1/
respectively.

Since Al and Al are an LR-type IFNs,
0<l; <I;,0<y<15,0<r; <rjand 0 <ry <7l

Thus, 0 <li+re <lj+ryand 0 <ly+ry <1+ 7.
From (2.27), (2.28) and (2.29), we have

Ao AL = (my — my by + 1oy b+ r1s U+ 7 1y + 1) L,
WhereO<ll+r2gl’1+r’23nd0<12+r1§1/2+7»/1_ ]

Proposition 2.2.17. Let Al =(mq; 1y, r: 18, 7)) g and AL =(my; 1o, 79; 1y, 7%) LR be two non-negative
LR-type IFNs. Then

A{@Aé = (mlmQ; mllz +m211 —lllg, miTroy —i—mm +7"17’2; mll,2+mgl/1 —llll,z, mlr;—l—mgr’l +7"’17“/2)LR,
where 0 < myla+moly —lile < myly+moli =11 and 0 < myrg+mor;+rirey < myrh+meor +1rirs.

Proof. The a and B-cuts of Al and Al are given by

A{a =[m; — llL_l(oz),ml + TlR_l(a)], Aéa = [ms — lgL_l(Oé), me + TQR_I(O[)] (2.30)
Algy = [m1 —LL7 (1= B),my + iR (1 = B)], Al = [ma — LL7' (1 — B),ma+roR™ (1 — )]
(2.31)
respectively.

Since Al and Al are non-negative,
my — 13 > 0and mg — I > 0.
Thus, m; — L7 (1 =) > 0and my — LL7Y(1—8) >0V 3 €]0,1).
From (2.30), we get
(A} © A3)a = Al A5, = [my — LWL (@), my + 1R @)][me — LT (@), ma + 2R (a))

= [(m1 — hLL™(@))(ma — L7 (@), (my +11R™H () (ma + 2R (a))]

(2.32)

Since L and R are decreasing functions on [0, 00) with L(0) = R(0) = 1, 3 a unique «y € (0, 1]
such that L™ (ag) = R () = 1. Hence

(A} © Aoy = [(m1 — L) (ma — 12), (M1 + 71) (M2 + 72)]

= [mlmg — maly — mqly + lllz, mM1Meo + MoT1 + MqiTy + 7’17“2] (233)
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(2.33) gives left and right spreads of membership function of /H ® flg are moly +mqls — l1ly and
Mmory + myry + 1179 respectively.

Putting a = 1 in (2.32), we obtain the modal point of fi{ ® /Ig given by
(Af © AD1 = [mima, mima] = mims (2.34)
From (2.31), we get

(A} © A})(5) = Af(3)Ads) =lmy — LL7' (1 = B),my + r{R™'(1 - B)]
Hma — LT (L = B),ma + R (1 = )]
=[(m1 = LL7H(1 = B))(me — L,LTH(1 = B)),
(m1 + 7 R7H(1 = B))(ma + R (1 = B))].

Since L and R are decreasing functions on [0, c0) with L(0) = R(0) = 1, 3 a unique S, € [0,1)
such that L™'(1 — 8y) = R™'(1 — By) = 1. Hence

(A} © A gy = [(m1 — 1) (ma — 15), (ma +14) (ma + 15)]

= [mima — myly — maol} + 111y, mymag + marh + mar] + r175) (2.35)

(2.35) gives left and right spreads of non-membership function of AL ® AL are myly +mol} — 41}
and myry + mer] + rirh respectively.

Since fl{ and flg are non-negative LR-type IFNs,

my =1 >0,me—1,>0,0<l; <I1,0<l <U,0<r <r,0<ry<rym; —1]
<my —ly,mg — Uy <mg —lo,my +1r1 <y + 7, mg + 19 < 41,
= (my —17)(ma —15) < (my — 1) (ma — 12), (my +7r1)(ma +12) < (my +77) (Mg +15)
= mymg — maly — mayly + 1515 < mymg — maly — myly + l1la, mymae + mary + myry
+ rire < mymg + mar + myry 4+ iy
= —moly — myly + 1l < —moly — myly + Uils,
Mary + mary + riry < mory + myrh + v

= mglll + mll; — lllllz Z m2l1 + mllg - lllg, MoT1 -+ MT9 + 7179 S mgrll + mlré + 7“/17”%

Clearly, (m2l1 -+ m1l2 — lllg) = ll(mg — lg) + m1l2 > 0, (m27’1 + myrg + 7'17“2) >0 ( A{
and fg are non-negative )

From (2.33), (2.34) and (2.35), we have

A7 11 . . / / 17/ / / /W
A1®A2 = (m1m27m1l2+m2l1—l1l2,m1T2+m2T1 —|—7“1r2,m1l2—|—m2l1—l1l2,m1r2—|—m2r1 +7“17”2)LR7
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where 0 < myly +moly — lils < myly +mol] — 11l and 0 < myry + mory + 1119 < myrh +mor) +

! .0
TiT5. O

Proposition 2.2.18. Let Al=(mq; 1y, r1; 1, 7,) g be non-positive and AL=(mq;lo, m9; 1y, ) LR be

non-negative LR-type IFNs. Then
AL® AL = (mymag; maly —myly +rore, mory —myly —rily; moll, —may l +1hrly, mar| —mal, — 11 1)) L g,
where 0 < moly —myly +rore < moli —myli+7hrh and 0 < mory —malo—7r1le < mori—myly—ril).

Proof. The o and B-cuts of /H and fié are given by

Al =1my —LL ™ (a),m + R a)], AL, = [ma — l,L™ (a), my + 1R ()] (2.36)
Alg = [m1 —LL7 (1= B),my + iR (1 = B)], Algy = [ma — LL7' (1 — B8),ma+ryR™ (1 — )]
(2.37)
respectively.

Since A! is non-positive and A} is non-negative,
my + 77 < 0and my — I, > 0.

Thus, m; + /R~ (1—8) <0and my — LL7H (1 —B) >0V B3€[0,1).
From (2.36), we get

(/H ® flé)a = Al Al =Im; — L7 (a),my +r R (a)][me — LL ™ (@), my + raR™ ()]
=[(m1 — L L™ (@))(ma + 2R (@),
(my + 7R a))(mg — L™ ()] (2.38)

Since L and R are decreasing functions on [0, 00) with L(0) = R(0) = 1, 3 a unique aq € (0, 1]
such that L™ (ag) = R™'(ap) = 1. Hence

(A © Aoy = [(m1 — L) (ma +12), (M1 + 71) (M2 — 12)]

= [m1m2 — m2l1 + miro — llrg, 1My + moT1 — mllg — Tllg] (239)

(2.39) gives left and right spreads of membership function of fl{ ® flé are meol; — mqiry + l1ro
and mary — mqly — ryls respectively.

Putting o = 1 in (2.29), we obtain the modal point of Al ® Al given by

(A} © A})1 = [myma, mims] = mymy (2.40)
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From (2.37), we get

(A} © AD)(5) = Al Als) =[m1 — LT (1 = B),my + iR (1 — B)]
my — 1y L7 (1= ), my + ryR™H(1 = )]
(m1 = L7 (1 = B))(ma + R (1 = B)),

=|
(m1 +r R™H(1 = B))(me — [LL7H(1 = B))]

+

Since L and R are decreasing functions on [0, co) with L(0) = R(0) = 1, 3 a unique S, € [0,1)
such that L™*(1 — ) = R™*(1 — ) = 1. Hence
(A © ALYy = [(m1 — E)(ms +75), (ma + 73)(mz — )
= [mimg — maly + mqyry, — Iirh, mimo + maory — myly, — ryl5)] (2.41)
(2.41) gives left and right spreads of non-membership function of Al ® AL are myl} —myry + 17,
and mor|, — myly, — 11, respectively. Since Al is non-positive and A} is non-negative LR-type
IFNs,
my+r;<0,me—105>00<l; <U,0<l<l,0<r <r,0<ry<rhm —15 <my
—ll <O,O§m2—l’2 gmg—b,m1+r1 §m1+7“/1 §0,0§m2+7’2 §m2+r;.
= — (mq = 1) (ma+15) > —(mq — L) (me +1r3) >0,
— (m1 + Tl)(mg - lg) > —(m1 + T’l)(mg - l;) >0
= —mymgy +maoly —maly +ryrh > —mymg + maly — maly + rary > 0,
— myma — mary + maly + r1le > —myms — maor] + maly + il
= mglll — mll'l + T’é?“é > maly — myly + rore > 0,
mory — m1l2 — T’llg S mgrll — mll’2 — T,IZ,Q
Clearly, meor1 — m1l2 — T1l2 = rl(mQ — l2) — mllz >0 ( r > O,ZQ > 0,m2 — l2 > O, and

my S 0 )
From (2.39), (2.40) and (2.41), we have

Al Al i . ! ! W] / / 137
Al @A2 = (mlmg,mgll—mlll—‘—TgTQ,mQTl—m1l2—7"1l2,mgll—m1l1+T2T2,mng—m1l2—T1l2)LR,

where 0 < maly —mqly + 191y < moly —maly +7hrh and 0 < mory —myls — rily < morf —myl —
1. O

Proposition 2.2.19. Let Al=(my;li,r1;1;,7))1r be non-negative and Ab=(my;la,72; 1y, 75) 1R

be non-positive LR-type IFNs. Then

A7 Al . . / / /7! / /
A1®A2 ~ (mlmg,mllg—m2T1+r1l2,mﬂ’g—mgll—lﬂ"g,m1l2—m27"1—|—7“1l2,m17“2—m2l —1 TQ)LR7
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where 0 < mylo—mari+rile < myly—mori +rily and 0 < myrg—moly —lire < myrh—msli =17},
Proof. The same as Proposition 2.2.18. [

Proposition 2.2.20. Let /H =(ma;ly, ;0,7 LR and fléz(mg; la, 93Uy, 7h) LR be both non-positive

LR-type IFNs. Then
Al © AL ~(myma; —myrs — mary — rire, —myly — moly + lily; —marly — morh, — il —mal,
—maly + 1315 LR,
where 0 < —myry — mary — Ty < —myrhy — maory — rirhy and 0 < —myly — moli+ lily <
—maly — mol] + 141},
Proof. The same as Propositions 2.2.18 and 2.2.15. O]

Proposition 2.2.21. Let fl[:(m; LU, r")Lr be non-negative LR-type IFN and X\ be any real

number. Then

N (N XA NN g, A >0,
(Am; =Ar, =Ml =M, =M pr, A <O.
Proof. The same as Propositions 2.2.15 and 2.2.17. O

2.3 Proposed product for unrestricted LR-type IFNs

In this section, product for unrestricted LR-type IFNs is proposed.

Theorem 2.3.1. Let /H:(ml;ll,rl; l1,7)r be LR-type IFN, where my — 17 <0, my — {3 >0
and fléz(mg; la,ro; Uy, 1h) LR be another LR-type IFN, where mo—1y, ma—Ils, ma, ma+1s, ma—+1}h
are real numbers. Then /I{@fg ~ (m;l,r;U',r") g, where m = mymy, | = mymy —min{m;my —
malo—maly +1ile, mymo—mylo+maory—lori b, r = max{mymao+myro+maori+rire, miyme+myro—
moly — lire} — myma, I = mymsy — min{myms — mol] +mqrh — Irh, mymse + mory —maly — l5r1 },
r" = max{mimg — maly — mylly + I}, myms + mor| + myrh + rirk} —mimse, and 0 <1 <1,0 <
r<r.

Proof. Let Al=(my:ly,r; 15, 7)) 1r and Al=(my;ly, 79315, 7)) Lk be two LR-type IFNs in which
my — 1} <0, my —1; >0, and mg — I, mg — ly, Mo, mg + 13, My + 74 are real numbers. Then the

o and f-cuts of Al and Al are given by
Al =1[my — LL 7 (@), m1 +r R (a)], AL, = [my — I,L7 (@), my + ro R~ ()] (2.42)

Al = [my = BL7H (1 = B),my + R (1 = B)], Aggy = [ma — LLTH (1 = B),my +15R™ (1 = §)]
(2.43)
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respectively.
Since my — I} <0 and my —1; >0, m; — L™ (a) > 0 for a € (0,1], my — I{L71(1 — 3) <0 for
§< (1= L()), m— BLN(1 — §) 2 0 for 6 (1 L(2)).

iy

To find the product of A{ and flé , we need to consider the following six cases:

Case 1. If my—1, > 0, then my— I, L™ () > 0 and my—I,L71(1—5) > 0Va € (0,1], 3 € [0,1).

(a) If my — L7 (1 — B) <0 and my — I,L71(1 — B) > 0, then

([l{ ® /Nlé)a = Al AL =Imy — L7 a),my + R (a)][me — LL ™ (a), my + raR™ ()]
=[(m1 — L L™ (@) (mg — [, L7 (),
(my +r R (a))(my +reR7 ()] (2.44)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
oo € (0,1] such that L™ (ag) = R™*(ag) = 1. Hence

(A} © Aoy = [(m1 — L) (ma — 12), (1 + 71) (M2 + 72)]

= [m1m2 — m2l1 — m1l2 —+ l1l2, mqime + moT1 + (D) + 7“17’2] (245)

(2.45) gives left and right spreads of membership function of Al © AL are myly +mqly — L1y

and mary + mqre + 1175 respectively.

From (2.43), we get

(A1 © A3)(9) = Ai () Ay =lm1 — HLLT' (1 = B),ma + 1R (1 = B)]
[ma = I,L7H (1 = B),ma + 1R (1 = B)]
=[(m1 = BL7H (1 = B))(ma + 4R (1 = ),

(my + i R7(1 = B))(me + ryR™H (1 = B))] (2.46)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
Bo € [0,1) such that L=*(1 — By) = R™*(1 — ) = 1. Hence

(AL © AD)go) = [(ma = 1) (ma + 1), (ma + 74) (ma + 75)]

I / ! ! ! / ! 7
= [mymg — mal] + myry — [i7r5, mime + maory + myry + 7] (2.47)

(2.47) gives left and right spreads of non-membership function of A/ ® AL are mol| —mqrh+

il and mar] + mqry 4 rirh respectively.
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(b) If my — i L7'(1 —B) >0 and my — I,L71(1 — B) > 0, then

(Al AD), = Al AL —=[my — L,L7Y(a),m1 + R (a)][me — LL™Ya), my + roR™Y(a)]
=[(m1 — L™ (a))(my — LL™ (av)),
(my + TlR_l(a))(mg + TQR_l(a))] (2.48)

Putting o = 1 in (2.48), we obtain the modal point of Al ® A} given by
(A} © A1 = [mama, mima] = mamy (2.49)

Since my —l) <0, my —0; >0, me—1U,>0,0<l <U,0<ly <l 0<r <1,
0<ry <7,

(m1—1)) < (mi—1y), (ma—1}) < (ma—13), (m1+71) < (my+77) and (ma+12) < (ma+1%)
= (my = 1) (ma+74) < (my —15)(ma — 1) < (my —11)(mae —lz) and (mq +71)(mg + 1) <
(mi+7)(ma+715)  (omog—1U<mg+rhm —15<0)

= mymy —mol] +myry — i1l < mymo —maly —myla 411l and mymay +mory +mare+ 111 <
myma + mery + myry + rirh

= mimy — (mymg — moll + myrh, — 1) > myime — (myms — moly — myls + l1ls) and
(myma + mary + myre + rire) — myme < (mymg + mori + marh + rirh) — mymy

Clearly, mims — (mymg — maly — myls + l1ls) = lo(my — 1y) + maly > 0, (mymg + mory +
miry + 1r17r2) — mymg > 0.

From (2.45), (2.47) and (2.49) of Case 1, we get

ALy AL~ . .
Al @A2 ~ (mlmg, mlmQ—(mlmg—mgll—mllg—i—lllg), (m1m2+m2r1+m1r2+rlr2)—m1m2,

I / !/ / / VAN
mime — (mymg — moly + mqry — I75), (mymg + maory + myry + riry) — myms) g,

where 0 < mymg — (mymg — maly — myly + l1ls) < mymg — (mymy — maly + mayrh — Ui7})

and 0 < (mymg + maory + myre + r173) — myme < (Mmyma + meor + myrh + rirh) — myma.

Case 2. If my — I, < 0 and my — I, > 0, then my — I,L71(1 — 3) >0 for 8 > (1 —L(%)) and
mo — ILL7H (1 = 3) <0 for B < (1— L(Z2)).

15
(a) If my — I L7Y(1 —B) <0 and my — ILL7(1 — 3) <0, then
(Al AD), = Al AL —=[my — L,L7Y(a),mi + 1 R (a)][me — LL7 Y a), my + roR™Y(a)]

=[(m1 — LL7 (@) (mg — L™ (),
(my 4+ 7R a))(mg +roR7 ()] (2.50)
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Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
oo € (0,1] such that L™ (ag) = R™*(ag) = 1. Hence

(A © Aoy = [(m1 — L) (ma — 12), (1 + 71) (M2 + 72)]

= [m1m2 — m2l1 — m1l2 + l1l27 mi1meo + moT1 + mqTo + T‘ng] (251)

(2.51) gives left and right spreads of membership function of fl{ ® flé are mal; +mqly — 11y

and mary + mqre + 1173 respectively.

From (2.43), we get

(A © A5)(5) = Al()A3) =[m1 — LT (1 = B8),my +r{R™'(1 = B)]

[my — 1,17 (1 = B),ma +r5R™ (1 = §)]

[min{(m; — L7 (1 = 8))(ma + 4R (1 = ),

(my 4+ R7(1 = B))(my — I, L7 (1= B))},

max{(my — ;L (1 = B))(ma — LL™' (1 — B)),

(my +r RN (1= B))(my + R (1= B} (252)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
Bo € [0,1) such that L71(1 — 3y) = R~Y(1 — ) = 1. Hence

(A7 © AY) () =[min{(my — 1) (mo +13), (ma + 1) (ma — 1)},
max{(mi — 1) (ma2 — 1), (m1 + ry)(m2 + 75)}]
[min{mymgy — moly + myry — li75,
mymsg + mary —maly — rily}, max{myms — moly — myl;
+ 1415, mymag + mar| + mary + 1riry}] (2.53)
(2.53) gives left and right spreads of non-membership function of fl{ ® !15 are mimse —

: / N I / !/ !7/ / / 17!
min{myms—moli+myri-1yrh, mymot+mari-myly-ril5} and max{mimo-mali-mqly+141,, mims

+mar|+myry+rirh }-myms respectively.
(b) If my — L7 (1 — B) >0 and my — I,L71(1 — 8) > 0, then

(Al oAb, = AT Al —=[my — ,L7'(a),m1 + 1 R (a)][me — LL™ Y a), my + roR™Y(a)]
= [(m1 — L L7 (@) (mg — bL™(a)),
(m1 4+ 7R a))(mg + ro R )] (2.54)
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Putting o = 1 in (2.54), we obtain the modal point of fl{ ® flﬁ given by
(A{ © Ag)l = [m1m2, mlmz] = mimy (2.55)

Since m; —1] <0,m;—1; >0, mo—1, <0,mog—15>0,0<l; <I},0<l <Il,0<r <71}

and 0 < 7y <7,

(my —17) < (m1 — L), (ma —15) < (mg — L), (m1 +7r1) < (mq +71]), (ma + 1) < (mg +15).

= — (my — 1) (m2 +13) = —(m1 — L) (m2 — b2), (M1 — L) (me — b2) = (mq = ly)(ma — 1)
> (my 4 1) (mg — 1) (omg—ly <mg+re,my— 15 <0,my —1; >0)
=mymy — maly + myrh, — 1irh <mymy — maly — myly + lila, myme — mal;—
maly + lils > mymeo + maory — myly, — ril
= mymy — (myma — maly — myls + l1ls) < myme — min{myms — mol} + myrh — 1375,

myms + maory — maly, — 5} (2.56)
Now, if (my +77)(me + 15) < (my — 1})(mg — 1), then
(ma + r1)(ma + r2) < (my + 1)) (ma +715) < (my — 1) (ma2 — 1) (2.57)
If (my + 1) (me +75) = (my — 17)(m2 — 1), then
(m1 4 71)(mg + 132) < (Mg +77) (Mg + 715) (2.58)

From (2.57) and (2.58), we get

(myma + mary + myre + rire) — myme < max{mymey — mal; — myly + {1}, myme + mor] +
marh 4+ riry} — mima.

Clearly, myms — (mymg — maly — myls + lLils) = la(my — 1) + maly > 0, (mymg + mary +
mirg + 117r2) — mymg > 0.

From (2.51), (2.53) and (2.55) of Case 2, we get

A~ A _
Al ® A2 N(mlmg, mimeo — (mlmQ — m2l1 — m1l2 + lllz), (m1m2 + moT1 + miTro -+ 7’17“2)—
: / / !/ / / ! 7/
myme; myme — min{mymey — mal] + myry — liry, myme + mory — mqly, — rils},
/ / ! 7/ / / !
max{myms — maly — mqly + 1115, mims + maory + myry + riryt — mims) g,
: / / !,
where 0 < mimg — (Mmymg — maly — myls + lils) < mymo-min{mymo-mol+mqrh-Irh,

mime+meor, —mqlh — ril} and 0 < (mymeg + mary + myrg + 1112) — mymo < max{m ma-

!/ !/ 17/ / / ! a0
mall-myly+15 1, mymg + mory + marh + rirh} — mams.
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Case 3. If my—Iy < 0 and my > 0, then mo—Ilo L™ (o) > 0 for a < L(72) and mo—Il L7 a) <0
for @ > L(72).

(a) Ifmy —L L7 a) >0, my— L™ a) <0, m; — L7 (1—38) < 0and my —ILL7(1—- ) <0,
then
(Al o ADy = AL AL =[my — L7 (a), my + R (a)][mg — lLL 7 a), mg + 7R~ (a)]
=[(m1 +r R (a))(my — l,L (),
(my +r R (@) (my + R ()] (2.59)
Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
ag € (0,1] such that L™'(ag) = R™'(ag) = 1. Hence
(A © Aoy = [(ma +71)(ma — Ia), (my + 1) (ma + 72)]
= [mlmg + mory — m1l2 — 7”1[2, mqmmeo + moT1 + mqTo + 7”17”2] (260)
(2.60) gives left and right spreads of membership function of A ® AL are —mgry +malo+rily
and meory + mqry + riry respectively.

From (2.43), we get

=[m1 = {L7H 1 = B),my + R (1 = B)]

[my = 1,L7H(1 = B),ma + 15 R™H(1 = )]

=[min{(my — L7 (1 = B))(ma + R (1 = B)),

(m1 + R (1 = B))(me — lLL7H(1 = B))},

max{(my — L™ (1 = B))(mg — 5L~ (1 = 5)),

(m1 +7r R (1 = B))(me +r5R™H(1 = §))}] (2.61)

(A] © A5)(5) = A5 Ads)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
Bo € [0,1) such that L=*(1 — By) = R7*(1 — 3y) = 1. Hence
(Af © A)(go) =[min{(ma — [)(ma + r5), (ma +77) (ma — 1)},
max{(m1 — Iy)(ma — I3), (m1 + 1) (ma + r5)}]
=[min{(mims — mal] + myry — 175, myms + maor] — myly — 115},
max{myms — maly — mqly + 115, mymag + mary + mary + vy} (2.62)
(2.62) gives left and right spreads of non-membership function of Al ® Al are mymy-

min{ (mymo-mall +mqrh-Uirh, mymo+maori-mqly-ri 15} and max{mime-moli-my L+, mims

+mor|+myrh+rirh }-myms respectively.
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(b) Ifmy — L L~ Ya) >0, mg— oL (a) >0, m; — 'L~ (1= ) > 0 and my —I,L~*(1— ) > 0,
then
(A7 © A3)a = AL, A5, =[m1 — LL™ (), my + R~ (@)][ma — L™ (@), ma + 2R (a))]
[(m1 = LL7H(a))(me — L™ (),
(m1 + 7R (@) (mg + 1R ()] (2.63)

Putting a = 1 in (2.63), we obtain the modal point of A/ ® A given by
(A{ @ Ag)l = [mlmg, mlmg] = mi1Mms (264)
Sinceml—l’l<0,m1—l1ZO,mQ—l2<0,m220,0<l1§l’1,0<12§l§,0<r1Sr’l,
0<ry <7l
(m1—11) < (m1—11), (ma—15) < (ma—1la), (m1+71) < (my+7)) and (ma+7) < (Mo +13).
= — (my — 1)) (ma +715) > —(my — ly)(ma +15) > —(my +711)(ma +14) > —(my +71) (Mo
—1ly),—(ma = ly)(my +71) > —(my+r1)(ma— 1) (.ma—1y <0,mqg—1; >0)
= mymy — mal] + myry — 1y < mymg + mary — myly — r1ls,
mima + mary — maly — rily > mymag + mary — myly — ril,
= mymg — (mymag + mary — myly — r1lz) < mymy — min{mymeg — mal] + myry — lyry,
mymg + maory —maly — rily} (2.65)
Now, if (mq + r})(mg +15) < (mq — 1})(me — 1), then
(my +71)(ma 4 1r2) < (M +77)(ma +1y) < (my —17) (Mg — 1) (2.66)
IF (1 + 1) (s + 1) > (1 — 1) (s — 13), then
(my +71)(ma +19) < (my +77)(ma +15) (2.67)
From (2.66) and (2.67), we get
(mymg + mary + myre + rire) — myme < max{mymeo — mal; — mqly + {1}, mymo + mar] +
mirh + riry} —mims.
Clearly, mymy — (mymg + maory — myly — 11l2) = r1(ly — mg) +myly > 0, (mymy + maory +
miry + T‘17“2) — myme > 0.
From (2.60), (2.62) and (2.64) of Case 3, we get
A{ ® 1215 %(mlmg; mimeo — (m1m2 + Mmooy — m1l2 — 7“1[2), (m1m2 + mory +mire + 7“17’2)
— myma; mymg — min{myms — moly + myry — Iyry, myms + mary — myly
— rilh}, max{mymgy — maly — mqly + 1j15, mymag + maor| + myry + rirh — mimsa}

- mlmQ)LRa
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where 0 < mymg — (mimg + mary — maly — r1ls) < mymy — min{myms — mol} + myrh —
I, mima+maor; —maly,—rilh} and 0 < (mymo+meri+mire+rira) —mime < max{mims—

/ / /7! / / !,
molly — mally + 11, mimo + mor] + marh + rirh — myme} — myms.

Case 4. If my < 0 and mg+1y > 0, then my—l L™ (a) < 0 for every a € (0, 1], ma+r R~ () >
0 for a < R(™2), ma+ryR™ () < 0for a > R(Z2), my— 1L~ (1~ ) < 0 for every § € |
my + 1R (1 — ) <0 for 8 < (1— R( 732)) and mg + 4R (1—3) >0 for 8> (1 — R(Z

1),
))-

l\J -

b

oS

(a) If my+ 1R Ya) >0, mg+rbR7Y(1—8)>0and my — I, L7(1 — B) <0, then

([1{ ® Aé)a = A{aAéa =[my — llL_l(oz), my + rlR_l(a)][mg — ZQL_I(O[), me + rgR_l(oz)]

= [(my + 1R (@) (mg — L, L™ ), (my + R () (ma + reR™ ()]
(2.68)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
ag € (0,1] such that L™'(ag) = R™'(ag) = 1. Hence

(A} © Aoy = [(m1 +11) (M2 — 12), (M1 + 71) (M2 + 72)]

= [mlmg + mory — m1l2 — Tllg, mime + maoT + miroy + T1T2] (269)

(2.69) gives left and right spreads of membership function of fl{ @flé are —meory +myla+1r1ls

and mary + mqre + 1173 Tespectively.

From (2.43), we get
(A} © A3)5) = Al(s)Age) =lma = {LL7' (1 = B).ma + 1R (1 = )]
[ma — LLTH(1 = B),ma +15R7H(1 = B)]
=[min{(mi — L7 (1 = B))(ma + 1 R7H(1 = B)),
(my + R (1 = B))(m2 — LLTH(1 = B))},
max{(m — {L7 (1 = ) (ma — LL™H(1 = B)),
(m1 + 7 R (1= B))(me + 3R (1= 8)}] (2.70)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
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By € [0,1) such that L7'(1 — By) = R~*(1 — By) = 1. Hence

(AL © A3)(0) =[min{(my — 1) (mz +15), (m1 + 1) (m2 — )},
max{(my — 1) (ma2 — 1), (m1 + ry)(ma + 15)}]
=[min{(mymgy — moly + myry — Ii7},

mymsg + maory —maly — ril},

max{mlmg — mglll — mllé + llll/2,

mymsg + mary + myry + iy} (2.71)

(2.71) gives left and right spreads of non-membership function of Al © A% are mymy-
min{ (mymao-mol|+mqrh-lirh, mymo+mari-mqly-ril5} and max{mymo-myli-mylo+15 1}, mims

+mar|+myry+rirh }-myms respectively.
If moy + TzR‘l(a) <0, mg + r’QR—l(l — ) <0and m; — l’lL_l(l —3) >0, then

([1{ ® Aé)a = Al Al =[my — L LY (a),m +r R (a)][my — l.L7 (), my + o R ()]
= [(m1 + R (@) (mg — L)), (my — LL Y a))(my +reRHa))] (2.72)

Putting o = 1 in (2.72), we obtain the modal point of Al ® A} given by
(A] © AD)y = [mamy, mamy] = mym, (2.73)

Sinceml—l’l<0,m1—11ZO,m2<0,m2+7‘220,0<l1Sl’l,0<l2§l’2,0<r1§r’1,
0<ry <7l
(m1—11) < (m1—1), (ma—15) < (ma—1z), (mi+r1) < (my+7)), and (ma+73) < (Ma+15).

= — (mu = l)(m2+ry) = —(ma — ) (ma +13) = —(ma +ri)(ma +75) = —(ma + 1) (me
— 1), —(mgy = 15)(my+7]) > —(my+71)(ma — 1) ("my <0,my — 13 >0)

= mymg — mal] +myrh — 117y < mymg + mary — myly — 71ls,
mymg + mary — myly — rils > mymg + maory — maly — il

= mymg — (mymg + mary — myly — 71ls) < mymy — min{mymey — mal] + myry — Ij75,

mimg + mary —myly — rily} (2.74)
Now, if (my + 7)) (ma + 15) < (my — 1})(ma — 1), then

(my 4 r1)(ma + 1) < (my + 1) (Mg +15) < (my — 1)) (ma — 1) (2.75)
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If (my + 7)) (me + 1r5) > (my — I})(mg — 1)), then
(my +71)(me +19) < (my +77) (Mo +15) (2.76)

From (2.75) and (2.76), we get

(myma 4+ mary + myre + rire) — myme < max{mymey — mal| — mqly + {15, mymso + mar] +
marh + riry} — mims.

Clearly, mymg — (mymg + mary — mqly — r1la) = r1(la — ma) + myly > 0, (mymg + mar; +
miry + 1r1r2) — mymg > 0.

From (2.69), (2.71) and (2.73) of Case 4, we get

i~ i .
A} © A, =(mymg; mimg — (mymg + maory — myly — r1ly), (Myms + mory + mare + rira)—
. / / ! ! / / ! 7/
mimeo; mims — min{mymsy — maly + myry — 131, mymeo + mary — myly — il },

!/ / /7! / / !
max{mims — maly — myly + 115, mima + mar| + myrh + rirs} — mims) L,

where 0 < mymg — (mymg + mary — mqly — rily) < mymy — min{mymsy — mal} + myrh —
Il myme+maor; —maly,—rilh} and 0 < (myma+mari+myre+rira) —myme < max{mims—

mglll — mllé + llllé, mimeo + mgr’l + m17”/2 + 7"/17"5} — M1Mma.

Case 5. If my + 1y < 0 and my + 75 > 0, then my + roR7 () < 0 for every a € (0,1],
mo + 1R (1—53) <0for §<(1—R(22 2)) and my +rhR(1-8) >0 for 8> (1— R(22)).

(a) If mg +roR™ Y a) <0, mg+r4R™Y(1—3) >0 and my — L7 (1 — 3) <0, then

(fl{ ® flé)a = Al AL =[my—LL Y (a),m +r R (a)][my — loL™(a), my + o R~ ()]
= [(m1 + R (@) (mg — lLL™ ), (my — LL™ Y (a))(my +reR™Ha))] (2.77)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
ag € (0,1] such that L™'(ag) = R™'(ag) = 1. Hence

(A} © Aoy = [(m1 + 71)(ma — 12), (M1 — 1) (ma + 72)]

= [m1m2 + Moy — m112 — 7“1[2, mimeo — m211 + mqrg — 117”2] (278)

(2.78) gives left and right spreads of membership function of fl{ @flé are —meory +myla+1r1ls

and —msly + myre — l179 respectively.
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From (2.43), we get

(A} © A)(5) = Af(3)Ads) =lmy — UL (1 = B), my + r{R™'(1 - B)]
[my — ILL™H(1 — B),ma +15R™H(1 — B)]
=[min{(m; — [LL7H(1 = B))(ms + R~ (1 = B)),
(m1 + iR (1 = B))(m2 — L7 (1 = B))},
max{(m, — L7 (1 = 8))(ma — LL7H(1 = B)),
(m1 + 7 R (1 = B))(me +r5R™H(1 = §))}] (2.79)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
By € [0,1) such that L='(1 — 8y) = R~'(1 — By) = 1. Hence

(AT © A3)(gy) =[min{(my — 1) (ma +15), (m1 + 1) (m2 — )},
max{(my — I)(ma — 1), (ma + 1) (m2 +15)}]
=[min{(mymsy — moly + myry — li7,
mymsa + maory —maly — rylh},
max{myms — moly — mqly + 1715,

mymsg + maory + myrhy + i} (2.80)

(2.80) gives left and right spreads of non-membership function of Al ® AL are mymy-
min{ (mymo-moli+myrh-Uirh, mimo+mari-myly-ri 15} and max{mimq-moli-myly+1i15, mims

+mor|+myrh4rirh }-mims respectively.
(b) If my + roR () <0, my +75R™(1 — ) <0 and m; — {1 L' (1 — 8) > 0, then

A{aAéa = A{aAga = [m; — llLfl(a), my + rlRfl(a)][r@ — lgL’I(a), me + TgR’l(a)}

= [(my + 1R () (ma — L)), (m1 — LL Y a))(mg + ra R ()]
(2.81)

Putting a = 1 in (2.77), we obtain the modal point of A/ ® A given by
(A © A1 = [mama, mima] = mimy (2.82)

Sinceml—l’l <O, my — Iy ZO, Mo + T9 <O, m2—|—7”2 20,0<l1 Slll,0< Iy Slé,
0<r <r,0<ry <7l (m—1)) <(my—1y), (me—15) < (ma—1a), (my+ry) < (my+71}),
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and (mg +13) < (Mg +14).

= —(m1 =) (m2 +1y) = —(my — L) (ma +715) = —(ma + r1)(me +15) = —(m1 + r1)(me
—1ly),—(mo =) (my+ 7)) > —(my +711)(ma — o) (ma+12<0,my —1; >0)

= mymg — mpl| +myrh — 17y < mymy + mory — myly — 71l
mimsg + maory — myle — rils > mymeo + mory — myly, — ril

= mymy — (mymsa + mary — maly — r1ls) < myme — min{myms — mal| + myrh — 1375,

mamg + maory —maly — rily} (2.83)
Now, if (o + r4)(ms + 5) < (my — ) (ms — 1), then

(ml — ll)(mg + TQ) < (m1 — lll)(mg + 7”2) < (m1 — l’l)(mg — ZIQ) ( Mo + T < 0,

If (mq + 7)) (mg +15) > (my —1})(mg — 1)), then

(m1 — ) (ma +12) < (my — 1)) (ma2 +12) < (M — 1) (m2 — 1) < (ma +77) (M2 +13)
(2.85)
From (2.84) and (2.85), we get
(mimae — moly + myry — lirg) — mymay < max{mymsg — mal} — mqly + Ij15, mymay + mary +
marh 4+ riry} — myma.
Clearly, mimeo — (mlmg + meory — mllg — 7“1[2) = 7"1([2 — mg) + mllg > O, (m1m2 — m2l1 +
mire — lﬂ“g) — mime = _ll(mQ + 7"2) + mqry > 0.

From (2.78), (2.80) and (2.82) of Case 5, we get
A{ ® Ag %(mlmg; mimeo — (mlmQ + Mmory — mllg — T1l2>, (mlmg — m2l1 + mqre — lﬂ”g)—
myma; mime — min{mymeg — mal| + mqry — ljry, mymeg + mary — mqly — ril5},
max{myms — moly — mqly + ljl5, myma + mar| + myry + rirh} — mims) g,
where 0 < mymg — (mymg + mary — mqly — r1ly) < mymy — min{mymsy — mal} + myrh —

I, mima+mory —mqly—rilh} and 0 < (myme—moly +myre—Ilire) —myme < max{mimy—

mal] — mally + U1, mymg + mory + marh + rirh} — myms.

Case 6. If my + 15 < 0, then my + 4R (1 — ) < 0 for every 8 € [0, 1).

(a) Ifmy —{L7 (1 — B) <0 and my + rH,R™1(1 — 8) <0, then

(Alo A, = Al AL = [my — LL7Y (), my 4+ rR7Y(a)][ms — I L7 (@), my + R ()]
= [(m1 + 1R () (my — L7 (), (my — LL™ @) (mg + o R ()] (2.86)
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Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
oo € (0,1] such that L™ (ag) = R™*(ap) = 1. Hence

(A} © Aoy = [(m1 + 1) (M2 — 12), (M1 — ) (ma + 72)]

= [m1m2 + Mmooy — mllz — TllQ, mimeo — m211 + mqre — ll’l”g] (287)

I
—Mma
(2.87) gives left and right spreads of membership function of A @A are —meory +mqlo+rly

and —mgly + myre — [ respectively. From (2.43), we get

(Al © A5 = Alpy Al =[m1 — LL™H(1 = B),my + 7 R (1 = )]
[my = I,L7H(1 = ), my +15R™H(1 = B)]
=[(m1 +r RTH(1 = B))(ma — LLTH(1 = B)),
(m1 = BLTH 1 = B))(ma — L,LTH(1 — B))] (2.88)

Since L and R are decreasing functions on [0,00) with L(0) = R(0) = 1, 3 a unique
By € [0,1) such that L='(1 — 8y) = R~*(1 — By) = 1. Hence

(AT © A3) 50 = [(ma + 1) (mo — By), (my — 1) (mz — 1))

= [mymg + mar] — mqly — rily, mymge — maly — myly + 1115 (2.89)

(2.89) gives left and right spreads of non-membership function of Al ® Al are —myr} +

maly + rily and —mol] — mall + 151 respectively.

(b) If my — L7 (1 —B) > 0 and my + r4R~1(1 — ) <0, then

(A @ AY), = Al AL, =[mi — L L7 (a),m + 11 R ()]

[my — I, L™ (), ma + 1o R ()]
=[(m1 + R (a))(my — L™ (),
(my — L7 (@) (mg + R ()] (2.90)

Putting o = 1 in (2.90), we obtain the modal point of Al ® A} given by
(A © A1 = [mama, mima] = mimg (2.91)

Since my — 1] <0, my —10; >0, me+7,<0,0<l <l 0<r <r,0<r<7r,
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my =1 <my — 1y, mg— 1l <mg — 1o, my +11 <my + 1], and mg + ry < my + 7).

= — (ma +71)(m2 — 15) = —(my +11)(ma — bo), (M1 — l) (M2 +72) < (M — 1) (ma — 1)
(cma+ry <0,my — 1] <0,my —1; >0)
= mymsy + mar; — myly — rily < mymg + mary — myly — 71ls,
mymg — maly + myry — lire < mymg — moly — maly + 1715
= myimy — (myma + maory — myly — rily) > mymo — (myma + mary — myls — 11l),

(m1m2 — m211 + mireo — 117”2) — mM1Mme S (m1m2 — mglll — mll; + llll;) — mMi1Mme

Clearly, mimeo — (m1m2 + meor; — m1l2 — Tllg) = 7”1([2 — mg) + m1l2 > O, (m1m2 — mgll +
miryg — l1T2> — mimeo = _ll(mQ + 7"2) + mqyrg > 0.

From (2.87), (2.89) and (2.91) of Case 6, we get

AL AL ~ .
A} © Ay =(mymao; mims — (mymg — myls + maory — rily), (myma + myry — moly — ly13)
. / / ! 7/ / / Il
— myma; mimg — (myma — maly + maory — ril}), (mima — maoly — myly + 1115)

- mlmQ)LRy

where 0 < mymg — (mymy — myls + mory — r1ls) < mymg — (Mmymy — mylly, + mory — ril})

and 0 < (mymg + mire — maly — lire) — mymg < (mymg — mal — myly + I41}) — myms.

From all six cases, we have

/H@flé ~ (m;lr; U, 1) LR, where m = myma, | = myme—min{mymo—mylo—molyi+l1ly, myme—
m1l2 + moT1 — l27‘1}, r = max{m1m2 + mqTo + moT1 + 179, 1My + mirq — m2l1 — l17’2} —mimay,
' = myme — min{mymsy — mol| + mqyrh — lirh, mymg + mory — myly — U}, 7" = max{mymsy —
mol] — mally + 115, mymg + morl + marh + riry} —myme, and 0 < I < I',0 <r <7, O
Theorem 2.3.2. Let /Nllz(ml;ll,rl; I1,7)r be LR-type IFN, where my —l; < 0, my > 0 and
AL=(may; ly,79; 15, 7%) LR be another LR-type IFN, where my — Iy, my — la, Mg, my + 19, Mo + 7
are real numbers. Then A{@flé ~ (m;lr; U, r") R, where m = myms, I = mymo —min{myms —
m2l1 +m17"2—l17'2, m1m2+m27’1—m1l2—l27"1}, r = max{mlmg—m2l1—m1l2+lll2, mimeo-+mery+
mary+11ra} —mime, I = mymy —min{myme — mali +mqrh — lirh, myme +mory —mqlh — 151},
r" = max{mima — mol] — mqll + 115, mymg + maor] + myrh +riry} —mims, and 0 <1 <1',0 <

r<r.
Proof. The same as Theorem 2.3.1. O

Theorem 2.3.3. Let Al =(mq;ly,r1; 1%, 7)) g be LR-type IFN, where my < 0, my + 11 > 0 and

/E:(mg; lo, o515, 7) L r be another LR-type IFN, where mo — U, mg — ly, ma, mo + 19, mo + 14
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are real numbers. Then fl{@flé ~ (m;l,r; U, r") LR, where m = myms, | = mymg —min{mymsy —
m2l1 +m1r2—llr2, m1m2+m2T1—m1l2—l2T1}, r = max{mlmg—mgll—mllg—i—lllQ, mM1Mo+1MoT1+
mire +1rire} —mima, I = myme — min{mymsy — moli +mqrh — Uirh, mymeo +mory —mqly, — U1} },
r" = max{mima — mol] —mqly + 115, mymo + mor| +myrh +riry} —myma, and 0 <1 <1',0 <

r<r.
Proof. The same as Theorem 2.3.1. O]

Theorem 2.3.4. Let /H:(ml; li, ;0,7 Lr be LR-type IFN, where my +11 <0, my +71; >0
and AL=(my; ly, 7315, 7)) LR be another LR-type IFN, where my—1y, ma—1ly, Mo, ma—+1s, ma+1)
are real numbers. Then fl{@flg ~ (m;lr; U, r") LR, where m = mymsy, | = mymo —min{mymsy —
moly+myre—lire, mime+mire+mari+rire}, r = max{mymo+maor; —mqla—lor1, myme—mylo—
moly +l1lo} — myma, I = mymg — min{mymeg — mol| +mqrh — U1, mymg + mor, —mqlly — l4r} },
" = max{mimg — maly — mylly, + I\, myma + mor| + myrh + rirh} —mime, and 0 <1 < 1,0 <

r<r.
Proof. The same as Theorem 2.3.1. O

Theorem 2.3.5. Let Al=(my;1y,71;1%,7))Lr be LR-type IFN, where my + 7, < 0 and AL=(ms;
la, o5 U5, 5) LR be another LR-type IFN, where my — Iy, mo — lo, mo, mo + 19, mo + 14 are real
numbers. Then AL © AL~ (m;1, 71, 7") g, where m = myma, | = mymy — min{mymy — maly +
mary — lire, mima + myry + mory + rire}, r = max{mymsy + mary — mqly — lory, myms — myly —
moly + Uil } —myma, I = myme — min{mymsg — maol} +mqrh — lirh, mime + mqyrh +maor| + 115},

r" = max{mymao+mear| —myly—157", mimao—mal] —my b+ 11} —myime, and 0 < 1 < 1',0 <r <7/,
Proof. The same as Theorem 2.3.1. O

Theorem 2.3.6. Let Al=(my;ly,r1;1,7,) g be LR-type IFN, where my — 1, > 0 and AL=(ms;
la, ro; 15, 75) LR be another LR-type IFN, where mq — Iy, mg — la, ma, Mg + 19, mo + 1l are real
numbers. Then fl{ ® flé ~ (m;lr; U, r")Lr, where m = mymsy, | = mymy — min{mymsy — myls —
moly + lila, myme — myls +maory — lory }, v = max{mymsg + myre + maory + rire, myms + myry —
moly — lyra} — myma, I = mymg — min{myme — mqly — moly + U}15, mymg — mylly + mor| — Uyr} },
r" = max{mimeo + myry + maor] + riry, mims + mqrh — moly — lirh} —myms, and 0 <1 <10 <

r<r.
Proof. The same as Theorem 2.3.1. O]

Example 2.3.7. Let Al = (2;4,5;5,6),r and AL = (5:4,2:7,3),r. Then to find the product
of Al and AL,
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The product of Al and AL, i.e., Al ® AL is
Al AL = (10;24,39;34,54) .5

Example 2.3.8. Let A{ =(—2;1,2;1,3)r and Ag = (5;3,2;6,3)r. Then to find the product
of Al and AL
The product of Al and AL, i.e., Al ® AL is

Al o Al = (-10;11,10; 14, 18) .

Thus, it is clear that the proposed product is better to find the product of fl{ and flé , when

the signs of Al and AL are known or not known.

2.4 Proposed Method for Fully Intuitionistic Fuzzy Pro-
gramming Problem (FIFPP)

In this section, a new method is proposed to find the optimal solution of FIFPP with LR-type
intuitionistic fuzzy parameters.

The problem is defined by

n

min /max 2 = 6]1- ©) f;,

j=1
n

subject to deij]I- —<,%,>-l~)f,i: 1,2,3,...,m,
j=1

92’]1 is LR-type unrestricted IFN, 7 =1,2,... n.

The steps of the proposed method are as follows:

Step 1. Let al,= (aij;vij, 01370 0 ms = (555,05 0505 r, bl= (bi;mi, 95, 9;) Lk and
EJI: (Cj;/‘ﬁj,)\j;/'i;-,)\;-)LR.

Then FIFPP is reduced to

n

min/max 3 = Z((cj; Kis Aji m;,)\;)LR ® (xj;pj70j;p;,U;)LR>,
=1

subject to Y ((aiyi Vij» 615 Yy 04 ) Lr © (255 s 043 P, ) r) =~ = (bys i Vi ), V) s
=1

i=1,2,...,m,

(53 pj, 053 P}, 03) LR 18 LR-type unrestricted IFN, j =1,2,...,n.
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. ! / . . A / _ . - / . .
Step 2. Let (cj,/fj,)\j,/fj,)\j)LR © (xj,pj,aj,pj,aj)LR = (Sj,ijwijj;wj)LR and (aij, Yijs Oijs
/ / . .o / _ . ]! /
Vij» 04 Jer O(@55 pjs 055 P, 05) LR = (Magi Lig, 1iji U i) LR-

Then LR-type FIFPP in Step 1 is transformed to the following problem:

n
. =1 . R
min/max Z' = E (85 Tj» Wjs T, W) ) LR,
j=1
n
- : T ~ : VY, _
subject to E (mijs Lijy migi Uy i) or <o, = (b mis Vis i, 03 Lry 1 = 1,2, .00 m,
Jj=1

. ! !/ . .7/ / :
(85575, wy; 75, wi) Lr and (mg; lij, ri; ;5 7i5) Lr are LR-type unrestricted IFNs,

i=1,2....m j=12._..n.

Simplifying the above problem, we have

n n n n n
. ~T o . . / !/
mln/max 2 = (E 553 E Tj, E Wy, E Tjs E Wj)LRa
j=1 j=1 j=1 j=1 j=1

n n

n n
Lij, Z Tijs Z l§j7 Z ng)LR =&, = (b i, Dis 5, ;) s
1 j=1 j=1

Jj=1

n
subject to (Z mij;
Jj=1 J

i=1.2,....m,
n n n n n n n n
Qs 2 d_wi 3 Y humand (3 migs y lij, p 7
j=1 j=1 j=1 Jj=1 Jj=1 Jj=1 J=1 J=1
n n
Z Lij» Z ri;)or are LR-type unrestricted IFNs, ¢ = 1,2,...,m.
=1

j=1
Step 3. Applying score and accuracy indices and solve the following programming problems
min/max wl(IS(Z S5 Z T, Z wy; Z 7']/-, Z w;)LR—F
j=1 Jj=1 Jj=1 Jj=1 Jj=1
wa(Ta(d 85 Y 1 > wis D75 Y wh)LR)
j=1  j=1  j=1  j=1  j=1

n n n n n
subject to IA(Z mij; Zlij’ ZTU; Zlgj, ngj)LR <,=,> La(bi;ni, V551, 0% LR,
=1 e

Jj=1

i=1,2,...,m,

wy +we = 1, wy,we > 0,

n n n n n n

/ /
5 szg Tj,gwjzgwj,i Tj>0,ij>0,
j=1 j=1  j=1 j=1 j=1 j=1
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n

n n n n n
Zl;j > Zlij,ZT;j > Zri]‘,lej > O,Zrij >0,
=1 =t =1 =1 j=1

j=1

n n
E s; and E mi; (1 =1,2,...,m) are real numbers.
j=1 j=1

Step 4. Solve the non-linear programming problem obtained in Step 3, to find the optimal

/ / . . . .
values s7, 77, wj, 7;",w;” and put their values in Step 2, i.e., in (¢j3 ki, Ajs /{9, )\;-)LR O]
. A / — . p— / : ~I . N /
(25 pjs 053 0}, 0%) Lr = (853 Tj, Wy; Tj, W) g to find the optimal value of Z;= (;; p;, 05; 0}, 0% LR-

. ~x] __ *. % k., Jx Ix
Let it be Ty = (xj,,Oj,Uj,Pjyaj )LR-

Step 5. Find the fuzzy optimal value of LR-type FIFPP by putting the optimal value 92*;-‘1 in

=1 ] ~ ~1
2t = E cj®xj.

2.5 Numerical Example

Let us consider the following problem: A manufacturing company plans to produce a product
for next three consecutive months: January, February and March. The demands of the product
for January, February and March are around 520, 700 and 600 units respectively. However,
the demands fluctuate according to situations of the market. The company has 10 employees.
But to meet the fluctuating demands, company needs to hire or fire temporary employees. The
extra cost of hiring or firing is around Rs. 200 which also fluctuates according to availability
of workers at the market. A permanent worker can produce around 12 units per month and
a temporary worker, having lack of work efficiencies, only can produce around 10 units per
month. It is obvious that these production units depend on various uncontrollable factors such
as efficiency of machines, availability of resources, and efficiency of workers etc. The company
can produce more than needed in any month and carry the surplus over to the next month at a
holding cost of around Rs. 50 per unit per month. The general manager (GM) wants to develop

an optimal hiring/firing policy to minimize the total cost.

Mathematical Model: It is clear from the problem that the parameters involve uncertainty
as well as hesitation both due to the fluctuating nature of the market. So, it is more reliable to
denote the parameters with general IFNs (LR-type IFNs). The GM estimates the parameters
as given below by the past experiences and discussion with other fellow members.

The demand parameters:

520" = (520;2,3;3,5) 1k, 700" = (700;3,4:4,5).r and 600" = (600; 35, 23; 68, 55) 1 .
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The cost parameters:

50" = (50;4,5;5,6).r and 200" = (200;5,6;6,7).r
The production parameters:

12" = (12;1,2;2,3),z and 10" = (10;1,1;2,2)x.

Now,

Demand for January = 520" © 10(12') ~ (520;2,3:3,5) .0 © 10(12;1,2;2,3)r ~ (400; 22,
13; 33, 25) g units

Demand for February = 700" & 10(1~21) ~ (700;3,4;4,5),r ©10(12;1,2;2,3) . ~ (580; 23,
14; 34, 25) g units

Demand for March = 600" © 10(1~21) ~ (600;35,23;68,55),r © 10(12;1,2;2,3) g ~ (480;
55, 33; 98, 75) Lk units.

For i=1, 2, 3,

! = (5 a4, Bi; &, B)) Lr = Number of temporary workers at the start of Month ‘i’ after any
hiring or firing
51 = (s 01,04 0}, 01) L r = Number of temporary workers hired or fired at the start of Month ‘i’
g = (yi;vi, 033 7., 0)) Lr = Units of ending inventory for Month ‘i’.

If temporary workers are hired, then 3! is nonnegative and if fired, then s/ is non-positive.
Thus §! is unrestricted LR-type IFN. Clearly, !, and ¢/ are nonnegative. The objective of the
problem is to minimize the sum of total cost of hiring or firing and the total cost of holding
inventory from one month to the next.

Inventory holding cost = 50" @ (9l ® 9d) (.- y4 in the optimal solution)
Cost of hiring or firing = 200" © (31 @ sl @ sh)

Thus the inventory constraints are

1021 ~ (400;22,13;33,25) L5 ® 7.,
7l @ 108] ~ (580;23,14;34,25) .k @ 72,
Jh @ 10£L ~ (480; 55,3398, 75) L g,

where 71, 73, 71, gl and gf are nonnegative LR-type IFNs.

Now, other constraints depend on the model deal with inventory and hiring or firing are as

~T . ~I
.ﬁIZ’l ~~ 517

S S PN |
Ty R T D Sy,

S Y PN |
T3 & Ty D S3,
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where 71, 71 and 7! are nonnegative LR-type IFNs and 3!, 5] and 3. are unrestricted LR-type
IF'Ns.
The complete model is

min 2 = 50' © (7 @ §}) ® 200" © (5] & 3 @ 5},

subject to

1021 ~ (400; 22, 13;33,25) 5 © 7,

gl @ 102] ~ (580;23,14;34,25).r ® 72,

Jh @ 103L ~ (480; 55,33; 98, 75) g,

¥~ 81,

T~ il e sl

i~ il e sl
where 7!, 71, 7L ¢ and 7l are nonnegative LR-type IFNs and 5!, 5! and 5. are unrestricted
LR-type IFNs.

Applying the proposed product, we get

min 27 = (50y; +50ya; 4671 +467y2+4ys +4ys, 4501 +4502+ 5y +5ya; 45 +4575 +Dy1 + Hya, 446] +
4405+ 6y1 +6y2) Lr D (20051 + 20085 + 200s3; 20081 + 20082 + 20083 — min{ 19551 + 19555 + 19553 —
195p1 — 195p2 — 195p3, 20651 + 20655 + 20653 — 206p; — 206p2 — 2063}, max{206s; + 2065, +
20653 + 206071 4+ 20605 + 20603, 19551 + 19585 + 19583 + 19507 + 19509 + 19503 } — 20081 — 20082 —
200s3; 20081 420052 + 20053 —min{194s; + 19455 4+ 194s3 — 1940} — 194p,, — 194 %, 20751 + 20752+
207s3 — 207p) — 207py — 207p4}, max{207s; + 207sy + 207s3 + 2070 + 2070% + 2070%, 194s; +
19455 + 19453 + 19407 + 1940, + 19404} — 200s; — 200s2 — 200s3) 1R,
subject to
(10x1; 10avy, 10515 100y, 1087 ) Lr = (400 + y1;22 + 1, 13 + 61333 + 71, 25 + 6 ) LR,
(y1+1029; 71 +10a2, 81 +1082; 7, +10ak, 8 +1085) L = (580-+y2; 23472, 14-+02; 34+75, 25+85) LR,
(y2 + 1023572 + 10as, 92 + 1085; 4 + 1004, 05 + 1085) Lr =~ (480; 55, 33; 98, 75) g,
(z1; 01, Bu; &, B) L & (815 01,015 P4, 01) LR,
(w2; g, B2; Ay, By) Lr = (w1 + So5001 + pa, Br + 02501 + py, B + %) LR,
(235 3, B3; 3, B3) LR ~ (T2 + 83502 + p3, B2 + 03304 + p3, By + 03) LR,
where (z1; 1, B1; a1, B1) LR, (T2; a2, Ba; &, B5) LR, (T35 3, B3; a3, B3) LR, (Y1571, 01571, 01) LR, and
(y2; Y2, 02; V5, 05) Lr are nonnegative LR-type IFNs and (s1; p1, 01; 01, 1) LR, (S2; p2, 02; ph, 05) LR,
and (ss3; ps, 03; ps, 0%) g are unrestricted LR-type IFNs.

1 1 1 1
Using min(a, b)zé(a +b) — §|(a —b)|, max(a, b)zé(a +b) + 5\(@ —b)|, we get

1 401
min z = (50y; +50y2+200s; +200s5+200s3; 467, +46’yg+4y1+4y2—§(sl+32+53)+7(/}1+p2+

11 1 401 11
,03)—1-7|sl—|—52—|—53—p1—p2—p3|,4551+4552+5y1+5y2+§(51—|—52—|—83)—|—7(01—1—02—1—03)—1—?|51—|—
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, , 1 401, , , . 13 ,
S2+853+01+02403; 4571 +457,+5y1+5y2 — 5(81+82+33)+7 (P +P2+P3)+3 |s14s2+53—p) —

01,, , 513 e
(14524 83)+ =~ (01 F05+08)+ - |s1+ s+ 5301+, +05 ) g,

1
p/z—pg’, 4453+445§+6y1+6y2+— 9

2
subject to

(10z1; 10ar1, 10613 1004, 10581 Lr = (400 + y1; 22 + 1, 13 + 01; 33 + 71, 25 + 61 ) LR,

(t1+10z2; v1+1002, 014+108; 71 +100%, 61+1085) Lr ~ (580+y2; 23472, 144-02; 34475, 25+05) LR,
(y2 + 10235 72 + 10as, 92 + 1085; 4 + 1004, 05 + 1085) Lr ~ (480; 55, 33; 98, 75) g,

(z1; 01, Bu; &, BY) L & (813 p1, 013 P4, 01) LRs

(w2; iz, B2; Ay, By) Lr = (w1 + 89500 + pa, b1 + 0250 + py, B + %) LR,

(z3; 3, Bs; a3, B3) LR = (T2 + 835 Q2 + p3, B2 + 033 + P, B5 + 03) LR,

where (z1; 01, B1; 0y, B1) LR, (T2; g, Bo; &, B5) LR, (T35 3, B3; a3, B3) LR, (Y1571, 01571, 01) LR, and
(y2; Y2, 02; 75, 05) Lr are nonnegative LR-type IFNs and (s1; p1, 01; o1, 01) LR, (S2; p2, 02; ph, 05) LR
and (ss; ps, 03; ph, 0%)Lr are unrestricted LR-type IFNs.

Taking L(z) = R(x) = max{0, (1 — )}, and applying proposed method, we get

39.75:;5.04 x 1077,5.0 x 1077;6.05 x 1077, 6.10 x 10”7 R,
57.79;0.21,0.22;0.29,0.30) .z,

47.41;0.15,0.32;0.20, 0.43) . g,

0;0,0.25;4.64,1.09) 1z,

41.20;0,2.30;16.78,2.88) g,

=
=
=
=
= (0.16;0,0.45; 4.24,0.63) . r,
=
= (19.42;0,2.44;16.22,2.78) g,
= (=

8.89;0,2.64;16.85,2.65) . r.
The optimal solution is
# = (10354.25; 259.41, 1841.10; 10210.68, 2158.05) . &

The solution calls for hiring around 40 temporary employees in January, again hiring around
18 temporary employees in February and firing around 11 temporary employees in March. No

further hiring or firing is recommended until the end of March.

2.5.1 Managerial insights

By the discussions of the proposed models and results obtained, we find that the proposed
models allow uses of different types of LR functions. It is useful from a managerial point of

view to understand how the optimal solutions will be affected by changes in LR functions.
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Table 2.1: Advantage of proposed method

Existing models

Proposed model

1. The existing methods ([9], [189]) can be
used only for solving IFLPPs in which all
the decision variables are represented by non-
negative crisp parameters.

2. The existing methods ([137], [165]) can
be used for solving FIFLPPs in which all
the decision variables are represented by non-
negative IFNs.

3. The existing models ([9], [10], [137], [165],
[189]) do not define the product of unre-
stricted LR-type IFNs.

4. The existing methods ([9], [137], [165],
[189]) can not solve FIFLPPs in which some
or all the decision variables are represented
by unrestricted LR-type IFNs.

1. The proposed method can also be used to
solve IFLPPs in which all the decision vari-
ables are represented by non-negative crisp
parameters.

2. The proposed method can also be used to
solve FIFLPPs in which all the decision vari-
ables are represented by non-negative IFNs.

3. The proposed model has introduced the
definition of the product of unrestricted LR-
type IFNs.

4. The proposed method can be used to
solve FIFLPPs in which some or all the deci-
sion variables are represented by unrestricted
LR-type IFNs.

As clear from the discussion of Numerical Ex., the manager may see what he/she should do
for better running of the manufacturing company, i.e., when and how many employees should

be hired/fired.

2.6 Advantages of the proposed method over existing
methods

The advantages of the proposed method over existing methods ([9], [10], [137], [165], [189]) for
solving FIFLPPs are summarized in Table 2.1.

2.7 Concluding remarks

In this chapter, firstly we defined the product of unrestricted LR-type IFNs with the help of
a-cut, B-cut, (a, f)- cut. We also defined the score and accuracy indices of LR~type IFNs and
derived some results based on these indices. Subsequently, a new method is proposed for solving
unrestricted LR-type FIFPPs. It can be observed that all the FIFLPPs which can be solved by
the existing methods [9, 137, 165, 189] can also be solved by the proposed method. However,
there exist several FIFLPPs which can not be solved by the existing methods but can be solved
by the proposed method. Hence, the proposed method is better than the existing methods
9, 137, 165, 189] for solving FIFLPPs.



Chapter 3

Duality theory in intuitionistic fuzzy
mathematical programming problems:
Optimistic, pessimistic and mixed

approaches

In this chapter, we introduce a pair of primal-dual LPPs in IFE and prove duality results by
using an aspiration level approach in which membership and non-membership functions are
taken in the form of reference functions. Since fuzzy and IF environments cause duality gap,
we propose to investigate the impact of membership function governed by reference function on
the duality gap. This is specially meaningful for fuzzy and IF programming problems, when
the primal and dual objective values may not be bounded. Finally, the duality gap obtained by
the approach is compared with the duality gap obtained by existing approaches.

3.1 Introduction

In decision-making problems, crisp programming problem (CPP) plays an important role for
solving real-world problems. In CPP, if the number of constraints is greater than the number of
unknowns, then such problems can not be easily solved. In this situation, the duality theory is
useful. Duality means an optimization problem can be observed from either of two viewpoints,
the primal or dual problem. Generally, the value of objective function at a feasible solution of
primal problem (min) is an upper bound to the set of values of objective function at the feasible

solutions of dual problem (max), i.e., the objective function value at a feasible solution of primal

65
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problem and the objective function value at a feasible solution of dual problem may or may
not be equal. Their difference is called the duality gap. Duality gap is zero for convex CPP;
otherwise, it may or may not be zero. Input data used in CPP have complete certainty. However,
real-world situations are characterized by imprecision (fuzziness) rather than exactness. FS
theory developed by Zadeh [194] explains uncertainty. Bellman and Zadeh [31] gave an idea to
use F'S theory in decision-making problems. A number of researchers worked on modeling and
applications of FS theory. Zimmermann [204] introduced the applications of FS theory to real-
life problems. Luhandjula and Rangoaga [123] gave a method for solving fuzzy multi-objective

programming problem.

Primal and dual objective values of the fuzzy optimization problems may be unbounded.
Duality theory developed by Rodder and Zimmermann [159] is useful for solving such type of
problems using aspiration level approach. Several researchers worked on solving fuzzy program-
ming problems using fuzzy duality theory [24, 176, 185]. Ramik [150, 151] introduced some new
concepts and results, possibility and necessary relations of duality in fuzzy linear programming.
Mahdavi-Amiri and Nasseri [125, 126] gave duality theory for solving fuzzy LPPs using ranking
and dual simplex method. The solutions of fuzzy primal-dual programming problems and du-
ality gap affected by taking different types of membership functions such as linear or non-linear
membership functions are studied. The most likely non-linear membership function is exponen-
tial membership function because it has flexibility in changing shape parameters. Gupta and
Mehlawat [85] studied Bector-Chandra [24] type duality in a fuzzy programming problem with
exponential membership function. Gupta and Danger [84] applied duality results of Gupta and
Mehlawat [85] model to fuzzy quadratic programming problem. Alidaee and Wang[6] introduced

the zero duality gap in the surrogate constraint optimization problem.

FS theory deals with uncertainties by assigning a degree of association, called the member-
ship degree or degree of belongingness, to an element x in the universal set X being A. The
degree by which an element x is not in A, is described as the non-membership degree or degree
of non-belongingness. If the sum of the degree of membership and degree of non-membership at
each point is 1, then the system contains only uncertainty which is explained by F'S theory. If the
sum lies between 0 and 1 at each point, then system contains uncertainty as well as hesitation.
The degree of hesitation is given by 1- (degree of membership + degree of non-membership).
For example, when several scientists evaluate the strength of soil, some scientists are claiming
the soil strength as ‘good’, some scientists are claiming the soil strength as ‘bad’, and some
scientists fail to claim the soil strength as ‘good’ or ‘bad’. The claim in favor of ‘good’ describes

the membership degree and the claim in favor of ‘bad’ describes the non-membership degree,
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while the claim neither in favor of ‘good’ nor ‘bad’ describes the hesitation degree. Thus, the F'S
theory explains the uncertainty but no hesitation. A new type of F'S theory known as IF'S theory
developed by Atanassov [11] explains uncertainty as well as hesitation by assigning membership
and nonmembership functions. Atanassov [12, 13] studied operations and properties of IFSs.
Angelov [9] applied IFS theory to optimization problems. Several researchers applied of TFS
theory to matrix game with IF goals and IF payoffs [1, 3]. The fuzzy linear programming under
interval uncertainty based on IFS is given in [66]. Aggarwal and Khan [2] studied Angelov’s

model in IFE for solving IF programming problems.

3.1.1 Motivation

Let R™ be the set of n tuples of real number (n dimensional Euclidean space). Consider the

following crisp primal (CP1) dual (CD1) pair of LPPs given by

CP1 max (¢’ z) subject to Az < b, x>0,
( ]
(CD1) min(b”y) subject to ATy >¢, y>0

where ¢,z € R", b,y € R™ and A = (a;j)mxn, and AT denotes the transpose of A.

Bector and Chandra[24] studied (CP1) and (CD1) in the fuzzy environment by taking linear
membership functions and proved to establish the duality relationship between them. After
that Gupta and Mehlawat [85] also studied (CP1) and (CD1) in the fuzzy environment by
taking exponential membership functions and calculated duality results using an aspiration level
approach and investigated the duality gap. Dubey et al. [66] used the pessimistic, optimistic
and mixed approaches for solving fuzzy linear programming under interval uncertainty based on
IF'S representation and gave the significance of these approaches for solving IF LPPs. Aggarwal
et al.[1] proposed intuitionistic fuzzy primal (IFP) and intuitionistic fuzzy dual (IFD) problems
given by

(IFP) Find x € R" such that,

(IFD) Find y € R™ such that,
bIy(IF) < wy,
ATy(IF) = ¢,
y =0,
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where “ <7 and “ »” represent the less than or equal to and greater than or equal to in the sense
of IFE respectively; 2y and wq represent the aspiration levels for the IFP and IFD objective
functions respectively. They solved IF LPPs by taking the concept of primal (IFP) and dual
(IFD) problems.

The above facts have motivated us to take up the study of a pair of primal-dual LPPs in
IFE with different approaches, like pessimistic, optimistic and mixed.

The rest of the chapter is organized as follows: In Section 3.2, some basic concepts related to
[F'Ss, and meaning of fuzzy and IF inequality are presented. Duality in IF linear programming
under the pessimistic approach is introduced in Section 3.3. In Section 3.4, duality in IF linear
programming under the optimistic approach is introduced. Duality in IF linear programming
under the mixed approach is introduced in Section 3.5. In Section 3.6, two numerical examples

are given to verify the duality results. Concluding remarks are discussed in Section 3.7.

3.2 Basic concept

In this section, some basic concepts are presented which are helpful in understanding this

chapter.

3.2.1 Fuzzy inequality (z = a)

The inequality = > a, read as “x is greater than or equal to a in the fuzzy sense” [66]. The logical
meaning of x > a in terms of membership function is that if x > a then the inequality is always
satisfied, i.e., the degree of membership is 1, if x < a —p, where p > 0 is the maximum tolerance
(decided by the decision-maker), then > is never satisfied, i.e., the degree of membership is
0, and if € (a — p,a) then the inequality is governed by a piecewise continuously increasing

membership function. Thus, mathematically, the fuzzy inequality x > a is defined as follows:

; r 2 a,
wz)=9q f(z), a—p<z<a,

07 xga—p,

where f is the piecewise continuous and increasing function in (a-p, a). The inequality should
be read in term of tolerance as “x is greater than or equal to a in fuzzy sense with tolerance p”.

The graphical representation of x > a is depicted in Figure 3.1.
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Figure 3.1: Graphical representation of x > a

in fuzzy approach.
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Graphical representation of

z(IF) = a in pessimistic approach.

3.2.2 IF inequality (z > a)

A

u(IF)(x),

v(IF) 1
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v(IF)(x)

p(IF)

ap O

Figure 3.3:

Graphical representation of

z(IF) »= a in optimistic approach.

It is denoted as z(IF) = a in IF sense [66]. Though there is no general idea to describe

the meaning of z(IF) > a, but three approaches are most likely to explain the meaning of

x(IF) = a. These are named as the pessimistic approach, optimistic approach and mixed

approach.

3.2.2.1 The pessimistic approach

In this approach, the decision maker (DM) is possibly ready for extra acceptance, i.e., if the

degree of rejection of x is zero, the DM is not ready to accept fully. If there exist tolerances p,

q, 0 < ¢ < p (depend on DM), its membership function u(/F) and non-membership function
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v(IF) are defined as follows:

17 J:Sa—p,
hp(z), a—p<z<a-—p+g;

0 <gp(z)+hp(z) <1,

0, rT>a—p+gq,

where gp and hp are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p, a-
p+q) respectively. It is noted, in the interval (a-p+q, a), the degree of rejection is zero but
the degree of acceptance is not one. Figure 3.2 shows graphical representation of x(IF) = a in

pessimistic approach.

3.2.2.2 The optimistic approach

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of
acceptance of x is zero, the DM do not reject fully. Therefore, mathematically, for tolerances
p,q > 0, the membership function p(IF) and non-membership function v(IF') are defined as

follows:

1, r<a—p-—q,
ho(z), a—p—q<z<a;

0 < go(2) + hofx) < 1,

0, T > a,

where go and ho are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p-q,
a) respectively. It is noted that, in the interval (a-p-q, a-p), the degree of acceptance is zero
but the degree of rejection is not one. The optimistic approach representation of x(IF) = a is

shown in Figure 3.3.

3.2.2.3 The mixed approach

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Thus,

mathematically, for tolerances p,q,r > 0, r > ¢ and r < p + ¢, the membership function p(IF')
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A
uUF)(x), | v(IF)(x)

VUF) 1 ,u(IF) A

A 4

a-p-q ap O a-p-qgtr a x

Figure 3.4: Graphical representation of x = a  Figure 3.5: Graphical representation of deci-
in mixed approach. sion making in IFE.

and non-membership function v(/F') are defined as follows:

(
17 zga—p—q,

hyu(z), a—p—gq<z<a—p—q+r;

pIF)(x) = gu(z), a—p<z<a, VvUIF)(r)=
0 < gm(®) + hm(x) < 1,

\0’ r>a—p—q-+r,

where gy and hy, are piecewise continuous, increasing and decreasing in (a-p, a) and (a-p-q,
a-p-q+r) respectively. The graphical representation of z(IF') = a in mixed approach is shown

in Figure 3.4.

3.2.3 Decision making in IFE

Let X be a universe of discourse. Let G'={(x, g (), var (x)) - 2 € X} and C'={(z, par (2), v (2)) -
x € X} be the goal and constraint respectively in IFE. Then the decision DI =G'NnCTis an
IFS defined as D! = {(x, up:(x),vpi(x)) : @ € X}, where ppi(z) = min{ug: (), pe ()},
and vy, (r) = max{vg (), v (z)}. The relation between G, C! and D! is depicted in Fig-
ure 3.5. More generally, suppose that we have ‘m’ goals éf:{(x,uéf(x),uég(x)) cx € X}
i=1,2,...,m, and ‘n’ constraints é’f:{(m,uég(x), var(z)) sx e X}, j=1,2,...,n. Then the
decision D! = (GINnGin...nGLYN(CIN C’;I n... rjw C1) is an IFS defined by

D' = {(, s (), vps (2) : 2 € X,

where i () = min{ng; (o), ey (2)} and v () = max{vg (v), vy (o)} (see [31)).
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Definition 3.2.1. Let Sp(x)= pupr(xz) — vpi(z), © € X be the score function of the IFS
D'. An & € X is said to be an optimal decision in IFE if Sz (2) > Su(z) V x € X, i.e.,

SAI (Zi’) = I&&)?(SAI (ZL‘)

Let o and 8 denote the minimum degree of acceptance and the maximum degree of rejection
respectively. Then the IF decision problem is transformed into the following crisp optimization
problem [9]:

max (v — B),

subject to par(z) > o, var(z) < B, i=1,2,...,m,

3.3 Duality in IF programming under pessimistic ap-

proach

Let pg and ¢y be the tolerances corresponding to membership function and non-membership
function of the objective function respectively, where 0 < gy < po. Let p; and ¢; be the toler-
ances corresponding to membership function and non-membership function of the ith constraint
respectively, where 0 < ¢; < p; fort=1,2,...,m.

We take the following form of the membership function as well as non-membership function
governed by reference functions for the objective function and all the constraints of IFP problem:

( (

]-7 CTx > 205 17 CT'T < 2 — Do,
z2—c'z _ l'z—(20—po) _ T
up(cTas) _ LO( Opo )7 %0~ Po < I/p(CTx) _ RO( q0 )7 TP e
cl'e < 2, < 2o — Po + qo,
\ 0, otherwise, \ 0, otherwise,
( (
1a AZ:B S bi7 17 Alx Z b’L +p17
Rz<m>y bi < Ajx Li(w), bi+pi—qi <
pp(Asz) = z vp(Ar) = i
\O, otherwise, \0, otherwise,

where Ly and R, are reference functions corresponding to the primal objective function such
T

that Ly (55212 1

Ppo
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Ro (%”‘”) < 1for zg —py < cfx < 29 — po + qo; L; and R; are reference functions

corresponding to the ith primal constraint such that R; (A iZ—b; >—|—L (biﬂ”j’]ﬁ) <1 for b;+p; —
¢ < Aix <b;+p;,1=0,1,2,...,m; and A; is the ith row of A, i =1,2,...,m

Let sg and tg be the tolerances corresponding to the membership function and non-membership
function of the objective function respectively, where 0 < ¢y < so. Let s; and ¢; be the toler-
ances corresponding to the membership function and non-membership function of the jth dual

constraint respectively, where 0 < t; < s; for j =1,2,...,n

We take the following form of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of IFD problem:

17 bT?J S Wo, ]-7 bTy Z Wo + 50,
bT —w T wo+s 7bT
,UP(bTy) _ RO( _ySO 0), wy < b'y yP(bTy) _ LO(_O t(:) y>7 wo + 59— to <
< wop + So, bTy<’LU0+80,
\ 0, otherwise, \ 0, otherwise,
( T
1a AJ?JZC]a 1, A;FySC]—S],
Cj — ATy ATy—(cj—s;)
pup(Ajy) = Lj( Sj] ) GTES ATy = Rj(Jt—jjj)’ ¢ =5 < Ajy
A?y<0j, <Cj—8j+tj,
0, otherwise, L0, otherwise,

where Ly and Ry are reference functions corresponding to the dual objective function such that

Ro( 2 y 0 )+ L wotso—by ) < 1 for wo + 59 — ty < b'y < wy + so; L; and R; are reference
t Y j j

. . . ) Cj — A?y ATy—(cj—sj)

functions corresponding to the jth dual constraint such that L; (—) +R; <7t—> <

Sj

J

Lforc;—s; < ATy < cj—s;+t;,j =0,1,2,...,n; and A; is the jth column of A, j = 1,2,...,n

Let aq, £ be the minimum degree of acceptance and maximum degree of rejection of IFP

problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem
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(CP2) as given below:

(CPQ) max (011 — /61)

T
subject to Lo (M) > ar,
Po
Ai _bz
Rz( ’ >>OK1, 2_1727 , M,
Di
T.. _ _
RS Loy
do
bi i_Az .
Lz( +p x)SBl? Z_1727 , 1,
q;

ar > B >0,00+ 6 <1, x € R™

Simplifying the above problem, we get

(CP3) max (aq — (1)

subject to 2y — ¢’z — poLg ' (ay) <0, (3.1)
Aix — by —p; R () <0, i=1,2,...,m, (3.2)
cr'w— 20+ po— qRy*(B1) >0, (3.3)
bi +pi — A — ;L7 (1) >0, i=1,2,...,m, (3.4)

ap > 020,00+ 5 <1,z >0.

Let ag and (5 be the minimum degree of acceptance and maximum degree of rejection of IFD

problem. The equivalent crisp dual problem (CD2) of the IFD problem as given below:

(CD2) max (g — )

by —w
subject to R()(M) > o,

<
t() _627
ATy — (c; — s
RJ Jy t(lj J))<527 j71727 , 1,
J
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Simplifying the above problem, we get

(CD3) max (ag — [2)

subject to b7y — wy — soRy () <0, (3.5)
¢;j— ATy — ;L7 (ag) <0, j=1,2,...,n, (3.6)
wo + so — by — toLy ' (B2) > 0, (3.7)
A]Ty — (¢; — s5) — thj_l(BQ) >0, 7=1,2,...,n, (3.8)

ag > By > 0,00+ By <1,y > 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.

Theorem 3.3.1. (Modified weak duality) Let (z,aq, 1) and (y, as, B2) be feasible solutions of
(CP3) and (CD3) respectively. Then

(i) Z R (an)piyi+ ZLfl(a2)Sj$j > cle —bTy,

=1 j=1
(ii) Z LY (B)aiyi+ Z le(@)tj% <(0+p)y—(c—s)w
i=1 =1
Proof. From (3.2), we have
Air — b, —piR7 N ay) <0 = piR;Nay) > Az — b,
= Z RN on)piy: > Z(Azx — b))y
=1 i=1
= > RMon)piys > (2T ATy — b"y) (3.9)
i=1
From (3.6), we have
Cj — Afy — Sijl(ag) S 0 = SJ‘L;l(OQ) Z Cj — Ag—‘y
= > L' az)s;z; = Y (¢ — ATy)x;
J=1 j=1
= > L' (aw)sjz; = (e —y" Ax) (3.10)
j=1
Adding (3.9) and (3.10), we have

m

Y R M+ Y L as)syay > (Te = 0Ty) (oyT Az = (yT An)" = 2T ATy)  (3.11)

i=1 j=1
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which is the condition (i).
From (3.4), we get

m

Z LB gy < (b+p)Ty — 2T ATy

From (3.8), we get

Adding (3.12) and (3.13), we have

D LB+ Y BBty < (b +p) Ty — (e — )2

i=1 j=1

which is the condition (ii).
Remark 3.3.2. Adding (3.1) and (3.5), we get

Lgl(oq)po + R61<0é2)80 > by — o+ 20— wy

(3.12)

(3.13)

(3.14)

(3.15)

The (3.15) relates the relative difference of aspiration level zy of ¢f'x and wy of by corresponding

to membership function in terms of their tolerance levels py and sq respectively.

Adding (3.3) and (3.7), we get

Ry (B1)go + Ly (Ba)to < ¢z — 0"y + wo — 20 + po + S0

(3.16)

The (3.16) relates the relative difference of aspiration level zy of ¢f'x and wy of by corresponding

to non-membership function in terms of their tolerance levels pg, so, qo and ty respectively.

Remark 3.3.3. Puttmg ] = 1,61 = 0,0[2 = 1,/82 =0 ( 0< 51 < o, 1 + /81 < 1,0 < 62 <

g, o + By < 1), we get

chngy‘v’xZO,yZO
Fy+tTe < —cTo+sTo+b"y+p"yVae>0,y>0
zo—chﬁwo—bTnyEO,yZO

qo—l—toSch—bTy—zo—i-wg—i-po—l—sOszO,yz0

3.17

w
—_

8

w
—_

(3.17)
(3.18)
(3.19)
(3.20)

(8.17) represents the weak duality in CPPs. If 0 < aq,aq, f1, 82 < 1, then the Theorem 3.3.1

shows the weak duality in IFE.
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Theorem 3.3.4. Let (%, a4, 51) and (3, ds, 32) be feasible solutions of (CP3) and (CD3) respec-
tively such that

(i) Z Ry (ah )padi + Z L (ay)sa; = cTE — by,

i=1 =1
(i) i LY (O1)asdis + i RN (Ba)tyzy = (b+p)'y — (e — )T,
i=1 j=1
(i4i) Ly (ah)po + Ry (da)so = b7 — cTd + 20 — wy,
(iv) Ry (B1)qo + Lo ' (B2)to = & — b7 + wo — 20 + po + 5o,
(v) the aspiration levels zy and wy satisfy zg — wo < 0,
(vi) ¢ G+ 1" + g0+ to < sTE + p"§ — 20 + wo + po + qo-
Then (&,dy, B1) and (4, da, B2) are the optimal solutions of (CP3) and (CDS3) respectively.

Proof. The proof of this theorem consists of two parts:
1% part: Let (z,aq, 81) and (y, as, B2) be any feasible solutions of (CP3) and (CD3) respectively.
Then by Theorem 3.3.1, we have

m

Z R (on)psys + Z Lj_l(ag)sjycj — ("2 —b"y) >0 (3.21)

i=1 j=1

From hypothesis (i), we have

> RN a)pai + > Ly (d)sja; — (¢TE = bTg) =0 (3.22)
i=1 j=1

(3.21) and (3.22) imply that for any feasible solutions (x,aq, 81) and (y, ag, 52) of (CP3) and

(CD3) respectively, we get

m m

> RN an)pigi + > Ly Ndz)sia — (cTE = bTy) <R a)pai + Y Ly (o) sja;

i=1 j=1 i=1 j=1
—(cTx —b"y).

= (Z,dy,y,dy) is the optimal solution of crisp primal problem (C'P4) given below, whose
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maximum objective value is zero.

m n

(CP4) max [— Z R Yay)piyi — Z L ag)sja; + (c"z —by) |,
i=1 j=1
subject to poLg'(ay) > 2z — 1),

Oélg1aa2§17x20ay20aa1207a220-

From hypothesis (i), we have

> R M apai + Y Ly (d)sja; — (¢TE = bTg) =0
i=1 Jj=1

From hypothesis (iii), we have
Ly (ah)po + Ry H(dia)so = b1 — "2 + 29 — wo

Adding (3.23) and (3.24), we get

Lo'(cn)po+ Y Ry M(a)pagii + Ry (d)so + Y Ly (cia) ;5 + (wo — 20) = 0
=1

J=1

Each term in (3.25) is non-negative, we get

ZR (ah)piys = 0, ZL (diy)s;z; =0, Ly (al)po =0, RO (dlg)sp = 0.
i=1

Since Ly (ay)po > 0, Ry (an)sg > 0,
Ly (en)po > Ly (dh)po, Ry (a2)s0 > Ry (da)so

Since Lg, Ry are the reference functions,

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

2™ part: Let (x, oy, 81) and (y, s, B2) be (CP1)-feasible and (CD1)-feasible respectively. Then

by Theorem 3.3.1, we have

m

Z LN (By)aiys + Z R (Ba)tjz; — (b+p) 'y —(c—s)"2) <0

(3.28)



79

From hypothesis (ii), we have

m

Z L7 (B1)qiwis + Z Rﬁ(@ﬁj@' —(0+p)"g—(c—s)T7)=0 (3.29)

i=1 j=1
(3.28) and (3.29) imply that for any feasible solutions (z, a1, 1) and (y, as, B2) of (CP3) and
(CD3) respectively, we get

S oL Baw+ YR Bty — (b+p) Ty — (e = 9)2) < 37 LT (Bag + D By (Bt
i=1 j=1 =1 i=1

—((b+p)"y—(c—9)"7) (3.30)

= (&, 1,7, B2) is the optimal of the crisp dual problem (C'D4) given below, whose maximum

objective value is zero.

(CD4)  max [Z L7 (B)aiy: + Z Ry (Bo)tja; — (b+p)Ty — (¢ —s)"2)],

subject to qoRy (1) < c'x — 20 + po,
toLy " (B2) < wo + so — by,
GL7 N (B) <bi+pi— A, i=1,2,...,m,
thj_l(/Bg) < A]Ty —(¢j—s5), 7=1,2,...,n,
f1r<1,0<1,2>0,y>005 >0,05 >0.

From hypothesis (ii), we have

Z LY (B1)qiyi + Z R;1<B2)tj55j —((b+p)"5—(c—s)"E) = (3.31)

i=1
From hypothesis (iv), we have
Ry (B1)qo + L (B2)to — ("% — b4 + wo — 20 + po + s0) = 0 (3.32)
Adding (3.31) and (3.32), we get
Ry' (B)go + Y L (B1)aiwi + Lo (Bo)to + Y Ry (Bt
=1 j=1

—ply—sTa+ (z0 — wo) — (po + s0) = 0.

= (1—Ry"(51))q0 + Z(l — L7YB)qiwis + (1 — Ly (B2))to + Z(l — R (Bo))t o

—q"yg—t"E—qo—to+p Y+ 5% — (20— wo) + (po+ s0) =0
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Each term in (3.33) is non-negative, we get

m

(1— Ry*(51))a0 = 0, Z(l — L7Y(61))qivi = 0,

(1-Lg'(B)to =0, > (1= R;'(F))tsa; =0.

j=1

Since (1 — Rg'(B1))ao > 0, (1= Lg" (B2))to > 0,
(1= Ry'(B1)ao > (1= Ry (B1))aos (1= Ly (B2))to > (1 = Ly (52))to (3.34)
Since Lg, Ry are the reference functions,
b1 = B, B2 = Po (3.35)
From (3.27) and (3.35), we have
a—ay<dy—dy and By — B < By — P

This proves the result. [

3.4 Duality in IF programming under optimistic approach

Let pg > 0 and ¢o > 0 be the tolerances corresponding to the membership and non-membership
functions of the primal objective function respectively. Let p; > 0 and ¢; > 0 be the tolerances
corresponding to the membership and non-membership functions of the ith primal constraint
respectively for ¢t =1,2,...,m.

We take the following forms of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFP

problem:
.
p 1, T < 20
1, 'z > 2,
I (ZO o CT.T> _ . —Po,
po(clz) = Po vo(clz) = Ro( p0+ a0 0) 20 = Po — qo
CTZ’ < 20, Po do
<cl'z < 2,
0, otherwise,
N 0, otherwise,
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17 Azx S bi7
A;x — b, Di + i,
Ri<;>7 bi < Aix b, . A
/.LO(ATZ') = bi I/O(Aix) = Lz( . +pz _:_Qz Zx), bz < A,LQZ <
< bZ _I_pl’ p'l ql
b; + pi + 4,
0, otherwise,
. 0, otherwise,

\

T

where Ly and Ry are reference functions corresponding to objective function such that L (
Po
"'z 4 po+ qo — 2o

Do + Qo A ;
il — U
corresponding to the ith primal constraint such that R; (—> +L;

+R0< ) < 1for zg—po — qo < ¢’z < z; L; and R; are reference functions

(bi+pi+Qi —ANC) <1

Di + g
for b < A;x < b;+p; +q;, 1 =0,1,2,...,m; where A; is the ith row of A, i =1,2,...,m.

Let s > 0 and ty > 0 be the tolerances corresponding to the membership and non-
membership functions of the objective function respectively. Let s; > 0 and t; > 0 be the
tolerances corresponding to the membership and non-membership functions of the jth dual
constraint respectively for j =1,2,... n.

We take the following form of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFD

problem:
(
( 17 bTZ/ Z U)0+
]-7 bTy S Wo,
bTy — wy So + to,
po(b'y) = 50 vo(b"y) = LO( — +; y)7 wy < by <
< wWqo + So, 0 0
wWo + So + f}(),
0, otherwise,
N \0, otherwise,
(
1, A}Fy <g¢;
(
1, A?yZCj, —Sj—tj,
LA(M) oo R.<A?y+8j+tj—%’) o
ATy < ¢, tj < ATy
\0, otherwise, < ¢j,
0, otherwise,

Zp—Cc X

)
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by — wo)

where Ly and R, are reference functions corresponding to objective function such that R, (
So

U)o"‘So‘i‘to—bTy
So + 1o

+L0< > < 1 for wy < b’y < wo + so + to; L; and R; are reference func-

ATy + s+t —¢j

AL P
S; +t

cj—sj—tj<Ajy<cj,j:0,1,2,...,n;andAjisthejthrowofA,j:1,2,...,n

AT
tions corresponding to constraints such that L; (—Jy> +Rj(
Sj

Let aq, 81 be the minimum degree of acceptance and maximum degree of rejection of the IFP
problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem

(CP5) as given below:

(CP5)  max (ag — 1)

29— clx
subject to Ly 0

(o
Z<A’x_b) ay, i=1,2,....m,
(

> Qq,

Y

x4+ po+q— 20
Do + qo

(b +p; +q; — Aix>
P+

a; > 1> 0,00 +61 <1, ze R™

o

0

>§51,

h

<pBi, i=12,...,m,

Simplifying the above problem, we get

(CP6) max (a3 — f1)

w
wo
=)

subject to zy — ¢l x — poLyt(ar) <0,

Azx_bz_sz;1<al>§Oa i:1727"'7m7

@
o
e

"'z —z0+po+q — (po+q0) Ry (B1) >0,

gJO w
w wW
Ne) ~
—_ N ~— =

—~ o~ o~ o~

bi+pi+q — A — (pi + @)L (B) >0, i=1,2,...,m,

ar >0 20,0+ 61 <1,z >0.

Let ay and By be the minimum degree of acceptance and maximum degree of rejection of the
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IFD problem. The equivalent crisp dual problem (CD5) of the IFD problem as given below:
(CD5)  max (g — f2)
bT
< ) Qg,
¢ — ,
]( >>062,j:1,2,...,’n,,

subject to Ry

b(

0+So+t0—bT
So + 1o
A;‘Fy—l—sj—ktj
( Sj + 1t

ay> P2 >0,00+ 32 <1, yec R"

h

>§52;

0

=

Cj .
J >§/627 ]:1,2,...,TL,
Simplifying the above problem, we get

(CD6) max (ay — fa)

subject to bTy — wy — soRy* () <0,

w
M
—_

)

— ATy — ;L () <0, j=1,2,...,n

@
i~
S

wo + 8o+ tg — by — (80+t0)L51(ﬁ2) > 0,
Ajy—(cj—s5—t;) = (5 + )R (B2) 20, j=1,2,....n
ag > P2 > 0,00+ P2 <1,y > 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.
Theorem 3.4.1. (Modified weak duality) Let (z,aq, 1) and (y, as, B2) be feasible solutions of
(CP6) and (CD6) respectively. Then

(i) Z R (on)piyi+ ZL]'_I(OQ)ijj > o — b7y,

i=1 j=1
(ii) > L (B0 i+ a)vi+ Y R (Bo)(t + s5)z < (b+p+ )Ty —(c—s—1)x
i=1 j=1
Proof. The same as Theorem 3.3.1. O

Theorem 3.4.2. Let (&,dy, £1) and (i, da, B2) be feasible solutions of (CP6) and (CD6) respec-
tively such that

(1) Z R (ah)pigi+ Z L ay)sja; = T — by,
i=1 j=1
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(i) Z LB (i + @) i+ Z RMNBo)(tj+s5)i; = (b+p+q) 5 — (c—s—t)z,

(iti) Ly (cih)po + Ry (dia)so = 7§ — ¢'& + 29 — wy,
(iv) Ry (61)(po + qo) + Lo (B2) (to + s0) = " — b5 + wo — 20 + po + 0+ qo + Lo,
(v) the aspiration levels zq and wq satisfy zo — wo < 0,
(vi) "+ t"E 4 g0+ to < sTE — 20 + wo + pTY + o + Go-
Then (&,dy, B1) and (3, da, B2) are the optimal solutions of (CP6) and (CDG) respectively.

Proof. The same as Theorem 3.3.4. O]

3.5 Duality in IF programming under mixed approach

Let po, qo and 1y be the tolerances corresponding to the membership and non-membership
functions of the primal objective function respectively, where 0 < gy < ¢ and ro < pg + qo. Let
pi, ¢; and r; be the tolerances corresponding to the membership function and non-membership
functions of the ith primal constraint respectively, where 0 < ¢; < r; and r; < p; + ¢; for
i=1,2,...,m.

We take the following forms of the membership function as well as non-membership function

governed by reference functions for the objective function and all the constraints of the IFP

problem:
(
1, e <z
(
17 CT'ZU Z 20, —Po — qo,
T T
20— Cx C" T+ Ppo+qo— 20
L0< >, 20— po < Ro( >, 20 —Po — qo
par(cha Po va(clz) = 70
T T
c'r < 2z, << zp—
0, otherwise, Po — qo + 7o,
0, otherwise,




par(Aix) =

Aim S bi7

otherwise,

vy (Asx) =

Li<bi+pi+Qi_Aix>’

i
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Aix > b+
Di + 4,

bi + pi + 4
-, < Az <
bi + pi + qi,

otherwise,

where Ly and R, are reference functions corresponding to the objective function such that

T T

20— C X CT+po+q— %

Lo<0—>+Ro< Do T % 0) < 1for zo—po—qo < "z < 20—po—qo+70; L; and R;
Do To

are reference functions corresponding to constraints such that R;

Air — b, bi +pi +qi — A;
) ()
Di T
<lforb,+p+q —1r < Aix <b;+p;+q,i=0,1,2,...,m; and A; is the ith row of A,

1=1,2,...,m.

Let sp, to and ug be the tolerances corresponding to the membership and non-membership

functions of the dual objective function respectively, where 0 < tg < ug and ug < sg + to. Let

s, t; and u; be the tolerances corresponding to the membership and non-membership functions

of the jth dual constraint respectively, where 0 < ¢; < u; and u; < s; +t; for 5 =1,2,...,n.

We take the following forms of the membership function as well as non-membership functions

governed by reference functions for the objective function and all the constraints of the IFD

problem:

par (b y) = 3

bTy S Wo,
wo < by

< wp + So,

otherwise,

vy (b"y) =

wO+So+t0—bTy
L)
0

by > wo+
50 + lo,

wo + 8o + o
—uy < by <
wo + s + to,

otherwise,
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1, A;y S Cj_
(
17 Afy > Cj, Sj — tj,
¢ —Ajy ATy 45+t — ¢
- LJ< $~] >, ¢ —8; < T R]< J " ), Cj—Sj—tj
v (Ajy) = J vm(4;y) = J

ATy < ¢, <Aly <¢
kO, otherwise, —s; — tj + uj,

0, otherwise,

\

where Ly and Ry are reference functions corresponding to the objective function such that

by — to — b
Ry <M)+Lo<w0 + 50+t y) < 1 for wo+sp+to—ueb’y < wo+so+to; L;j and R; are
So Uo

AT ATy +sj+t;— ¢
) (A
S Uj
§1f0rcj—sj—tj<Ajy<cj—sj—tj+uj,j:0,1,2,...,n;andAjisthejthrowofA,

i=1,2,...,n

reference functions corresponding to constraints such that L (

Let oy, 81 be the minimum degree of acceptance and maximum degree of rejection of the IFP
problem. Angelov [9] transformed the IFP problem into the equivalent crisp primal problem
(CP7) as given below:

(CP7)  max (o — 61)

subject to Lo ———

c x+po—|—qo—zo> <3
> M1,

Li<bz +pi+q — Aix>

T

<pi, 1=1,2,...,m,
a; > B 20,00+ 5 <1, z e R".
Simplifying the above problem, we get
(CP8) max (ag — f1)

subject to 29 — ¢’ & — poLgy ' (ay) <0,

QOOO

=

S Ot
— N~ N~

(
Aix—bi—piRi_l(al)SO, i=1,2,...,m, (3.
' — 2+ po+q — Ry (B1) >0, (

(

bi +pi+q — A —r L7 (B) >0, i=1,2,...,m,

ap > 20,00 +6 <1,z>0.
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Let ap and By be the minimum degree of acceptance and maximum degree of rejection of the

IFD problem. The equivalent crisp dual problem (CD7) of the IFD problem as given below:

(CD7)  max (ay — fa)

bT
subject to R0< v wo) > g,

LJ(CJ >>a2, i=1,2,... n,

L0< o+50+t0—bT >§ﬁ2,
( y+8]+t >§62, i=12.. . n,
Qg > [y > 0a2+52<1 yeR™

Simplifying the above problem, we get

(CD8)  max (ay — fa)

subject to b'y — wy — soRy*(an) <0, (3.48)
cj — A?y - Sij_l(OéQ) <0, j=12,...,n (3.49)
wo + S0 + to — by — ugLy ' (B2) > 0, (3.50)
ATy —(cj—s;—t;) —u;R;'(B) >0, j=1,2,...,n, (3.51)

ag > P2 > 0,00+ P2 <1,y > 0.

The membership and non-membership functions, governed by reference functions, are flexible

because of the reference functions, which depend on DM.

Theorem 3.5.1. (Modified weak duality) Let (z,aq, 1) and (y, as, B2) be feasible solutions of
(CP8) and (CD8) respectively. Then,

(i) ZR (a1)piyi + ZL (g)sjr; > o — by,

(i) Z L7 (B)riyi+ Z Rj_l(ﬂQ)ujxj <b+p+q)ty—(c—s—t)x
i=1 j=1
Proof. The same as Theorem 3.3.1. O]

Theorem 3.5.2. Let (%, a1, 51) and (3, da, 32) be feasible solutions of (CP8) and (CD8) respec-
tively such that
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(i) Z R a)pigi+ Z L an)sja; = cTE — by,
i=1 =1

(1) Em: LY (B))ragi + i RABouszy = (b+p+q) "y — (c—s— )T
=1 j=1
(i1i) Lyt (ay)po + Ryt (da)so = b7 — ' + 20 — wy,
(iv) Ry (Br)ro+ Lo (Ba)uo = " — b7 + wo — 20 + po + 50 + go + to,
(v) the aspiration levels zy and wy satisfy zo — wo < 0,
(vi) ¢ g+ t7F + qo +to < 8TE — 29 + wo + PTG + po + qo-
Then (&,dy, f1) and (3, da, B2) are the optimal solutions of (CP8) and (CDS8) respectively.

Proof. The same as Theorem 3.3.4. O

3.6 Numerical example

Example 3.6.1. Consider the following primal-dual pair of LPPs ([24, 85]) as given below:

(CP) max2x  subjectto x <1, x>0,

(CD) Miny  subject to y>2,y>0.

Optimistic point of view: Let us apply optimistic approach. Now taking zo = 1, Lo(z) =

exp(—pox)—exp(— _ exp(—opx)—exp(—o0) ) _ exp(—o;z)—exp(—o;) _ exp(—p;z)—exp(—p;)
1—exp(— Po) RO( )= 1—exp(—0o0)  Li(z) = 1—exp(—0;)  Ri(x) = I—exp(—pi)
where p;, 04, 0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree

of vagueness, for (CP6), we get the following problem (CP1):

(CP1) max (o — (1)

subject to polnfay (1 —e ) +e ] < po(2z — 1),
prinfor (1 —e™?) + e ] < pi(1 — ),
qoIn[f1(1 —e™) + e "] + 00(22 — 1+ po + qo) = 0,
gInffi(1—e)+e ' +o(l—a+p1+aq) >0,

>0 >20,00+6<1,x>0.

Using Mathematica 9.0, we solve (CP1) by taking py = 3, p1 = 5, ¢o = 2,¢1 = 4. The optimal
solution of (CP1) is obtained as & = 0.99526, d, = 1, #; = 0 with max(a; — 1)=(d; — f1) = 1
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for po =1, p1 =2, 09 = 1, 01 = 2. Therefore, the optimal solution of (CP) is & = 0.99526 with

max 2z = 2% = 1.990520.
Now again taking uy = 1, Lo(r) = “SEeein, py(r) = soCamenton () =

exp(—a¢;x)—exp(—¢; exp(—vy;x)—exp(—; .
p(l_JeX;(_(;() d)J), Ri(x) = p(lﬁxi)(—wi() w]), where ¢;,1;, 0 < ¢j,1; < o0, j = 0,1,2,...,n,
are the shape parameters that measure the degree of vagueness, for (CD6), we get the following

problem (CD1):

(DP1) max (ag — f32)

subject to soInfag(l —e™%) + e %] < (1 —y),
silnfag(l — ™) +e7"] < di(y - 2),
(50 +to) In[Ba(1 — e70) + %] + 4ho(1 + vy + 5o + o) > 0,
(s1+ 1) In[Ba(1 —e ™)+ e ¥+ (y — 2+ s +11) >0,

ay > B2 > 0,00+ B2 < 1,y > 0.

Using Mathematica 9.0, we solve (DP1) for taking sy = 3,51 = 5, to = 2,t; = 4. The optimal
solution of (DP1) is obtained as § = 1.45984, ay = 0.775288, By = 0.019986 with max(ag —
By)=(dy — f2) = 0.755302 by taking ¢o = 1, ¢ = 2, g = 1, ¥y = 2. Therefore, the optimal
solution of (DP) is y = 1.45984 with miny = § = 1.45984. For these optimal solutions, both

Table 3.1: Optimistic solutions result

Primal problem Dual problem Duality
po p1 09 01 a1 [y X 'z $o ¢1 Yo U Qg B2 w b'w gap
12 1 2 1 0 099526 1990520 1 2 1 2 0.775288 0.019986 1.45984  1.45984 0.00687108
2 2 2 2 1 0 0996817 1993630 2 2 2 2 0.744179 0.023321 1.375 1.3375 0.004381
3 2 3 2 1 0 099358 1.990720 3 2 3 2 0.720569 0.025994 1.308590 1.308590  0.006068
3 5 3 5 1 0 0990885 1981770 3 5 3 5 0.595151 0.002244 1.485630 1.485630 0.013539
4 5 4 5 1 0 0989429 1.978360 4 5 4 5 0.559571 0.002555 1.424700 1.424700 0.015054
5 5 5 5 1 0 0982416 1964830 5 5 5 5 0.527522 0.007620 1.379690 1.379690  0.037268
6 6 6 6 1 0 0980898 1.961800 6 6 6 6 0.47105 0.001284 1.375000 1.375000 0.026262
6 8 6 8 1 0 0994417 1988830 6 8 6 8 0.410353 0.000228 1.443590 1.443590  0.008063
7T 8 7 8 1 0 0989763 1.979530 7 8 7 8 0.386719 0.000233 1.406550 1.406550  0.014398
8 5 8 5 1 0 0976224 1.952450 8 5 8 5 0.480635 0.003367 1.274610 1.274610 0.030306

the hypotheses of Theorem 3.3.1; Inequalities (3.15) and (3.16) are satisfied. The solutions of
the fuzzy primal-dual problems with linear membership function, noted in [24] are as follows:
Fuzzy primal optimal solution is x = 0.5 and optimal value of objective function is 1, and fuzzy
dual optimal solution is y = 1.25 and optimal value of objective function is 1.25. The solutions
of the fuzzy primal-dual problems with exponential membership function, noted in [85] are as
follows: Fuzzy primal optimal solution is x = 0.9856906 and optimal value of objective function
is 1.971381; and fuzzy dual optimal solution is y = 1.194403 and optimal value of objective
function is 1.194403. The duality gaps in [24] and [85] are 0.625 and 0.017088 respectively.
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Using the proposed approach with exponential membership function in IFE, the duality gap is
0.006871 (the difference between the right hand side and left hand side of the condition (i) of
Theorem 3.3.1). Small duality gap implies that the primal and dual objective values in fuzzy
and IFE are closer to each other for a given tolerance. The solutions of primal and dual problems
in IFE with different values of shape parameters pg, p1, 0o, 01, G0, 1, Vo, Y1 are given in Table
3.1.

Pessimistic point of view: Let us apply pessimistic approach. Now taking 2o = 1, Lo(z) =

exp(—poxz)—exp(—po) _ exp(—opx)—exp(—o0) ) _ exp(—oiz)—exp(—o;) ] _ exp(—p;z)—exp(—pi)
Fenlpo) 0 10(@) = T oo Lile) = Ty Bile) = TR

where p;, 04,0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree

of vagueness, for (CP3), we get the following problem (CP1):

(CP1) max (o — (1)

subject to polnfay (1 —e™) +e ] < po(22 — 1),
prInfai (1 —e ) + e 7] < pi(1 —2),
In[B1(1—e"°) 4+ e 7] + 09(22 — 1+ py) > 0,

( ]

[
¢ m[ﬁl l—e ™) +e ™

04126120,041+51§1,.T20.

Now again taking wo = 1, Lo(z) = 22 lei;(e};i) , Ro(z) = eXp(I‘ﬁzf(i)ze’;z()_%), Li(z) =
exp(fﬁiﬁfﬁ(;%), Ri(x) = eXp(IﬁXL(e}ig 1) where ¢;,1;, 0 < ¢j,1h; < 00, j = 0,1,2,....n

are the shape parameters that measure the degree of vagueness, for (CD3), we get the following

problem (CD1):

(DPl) max (Oég — 62)

subject to soInfag(l — e %) 4+ e~ ] < ¢o(1 — y),
silnfas(l — e @) +e "] < ¢ (y — 2),
(50 4+ to) In[Ba(1 — &™) + e %] + 1ho(1 + 89 + ) > 0,
(s1+ 1) In[Ba(1 —e ™) + e ) + i (y — 2+ 51) >0,

ag > P2 > 0,00+ P2 < 1,y > 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for py = 3,p1 = 5, @0 = 2,1 = 4,
So = 3,51 = b, to = 2,t; = 4. The optimal solutions of (CP1) and (DP1) problems with
different values of shape parameters pg, p1, 09, 01, ¢o, @1, Yo, Y1 are given in Table 3.2.

Mixed point of view: Let us apply mixed approach. Now taking zy = 1, Lo(x) =

exp(—poz) —exp(—po) _ exp(—oom)—exp(=00) [ ( \ _ exp(~oiz)—exp(~) _ exp(—piz)—exp(=p;)
o) Bol2) = =200 Lile) = =5 ipon s fl@) T—exp(—pi)
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Table 3.2: Pessimistic solutions result

Primal problem Dual problem Duality
po p1 00 or o Py X 'z g0 ¢ty o Ba w b 'w gap
1 2 1 2 1 0 0989852 1979700 1 2 1 2 0.775271 0 1.459800 1.459800 0.014775
2 2 2 2 1 0 0989852 1979700 2 2 2 2 0.744201 0O 1.375020 1.375020 0.013918
3 2 3 2 1 0 00989852 1979700 3 2 3 2 0.720560 O 1.308560 1.308560 0.013251
3 5 3 5 1 0 0970791 1.941580 3 5 3 5 0.595151 0O 1.485630 1.485630 0.043393
4 5 4 5 1 0 0960719 1.921440 4 5 4 5 0.559571 0 1.424700 1.424700 0.055957
5 5 5 5 1 0 095180 1.903760 5 5 5 5 0.532109 0 1.375000 1.375000 0.066165
6 6 6 6 1 0 0953798 1907620 6 6 6 6 0.471055 0O 1.375000 1.375000 0.063525
6 8 6 8 1 0 099389 1998780 6 8 6 & 0.410353 0O 1.443590 1.443590 0.008798
7T 8 7T 8 1 0 0981114 1.962230 7 & 7 8 0.38719 0 1.406550 1.406550 0.026565
8§ 5 8 5 1 0 0941133 1.882270 8 5 8 5 0.480635 0 1.274610 1.274610 0.075031

where p;, 04,0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree

of vagueness, for (CP8), we get the following problem (CP1):

(CP1) max (o — (1)

subject to poln[ai(1 —e ™) 4+ e ] < py(2x — 1),
prlnfaa(l—e™™) +e "] < pi(1 —z),
roln[fi(1 =€) + e 7] + 0o(2x — 1+ po + q) = 0,
rlnBi(1—e ) +e ] +o(l—a+p +q) >0,

ar > P20, + 6 <1,z >0.

Now again taking wy = 1, Lo(z) = exp 1¢Ziz)(e);%) , Ro(x) = exp(;m;i;@;z()—%)’ Lj(x) =

exp(—a¢;x)—exp(—¢; exp(—; ex
P Pl Ry() = SRLA ) where ¢;,10, 0 < 5,19 < 00, j = 0,1,2,.

are the shape parameters that measure the degree of vagueness, for (CD8), we get the follovvlng

problem (CD1):

(DP1) max (ag — [52)

subject to soInfag(1 — e ) 4+ e~ ] < ¢o(1 — y),
silnfas(l —e™™) +e7™] < di(y — 2),
upIn[Ba(1 — e7%0) + e %] + ho(1 + y + sp + o) > 0,
wInfBa(l—e ) +e ™ +hi(y—2+ s +11) >0,

ag > By > 0,00+ By <1,y > 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for py = 3,p1 = 5, @0 = 2,1 = 4,19 =
4,1y =8, 80 = 3,81 =5, tg = 2,t; = 4,ug = 4,u; = 8. The optimal solutions of (CP1) and
(DP1) problems with different values of shape parameters pg, p1, 0o, 01, G0, 1, o, Y1 are given
in Table 3.3.



92

Table 3.3: Mixed solutions result

Primal problem Dual problem Duality
Po p1 0o o1 a1 By X T ®o P11 Yo Qo Ba w b'w gap
1 2 1 2 1 0 098982 1979700 1 2 1 2 0.775271 0 1.459800 1.459800 0.014775
2 2 2 2 1 0 0989852 1979700 2 2 2 2 0.744201 0 1.375020 1.375020 0.013918
3 2 3 2 1 0 0989852 1979700 3 2 3 2 0.720560 0 1.308560 1.308560 0.013251
3 5 3 5 1 0 0959388 1918780 3 5 3 5 0.595151 0 1.485630 1.485630 0.060328
4 5 4 5 1 0 0961500 1.923000 4 5 4 5 0.559571 0 1.424700 1.424700 0.054847
5 5 5 5 1 0 0960324 1.920650 5 5 5 5 0.532115 0 1.375000 1.375000 0.054542
6 6 6 6 1 0 0945316 1.890630 6 6 6 6 0.471055 0 1.375000 1.375000 0.045173
6 8 6 8 1 0 0993890 1998780 6 8 6 8 0.410353 0 1.443590 1.443590 0.008798
7T 8 7 8 1 0 0981114 1962230 7 8 7 8 0.38719 0 1406550 1.406550 0.026565
8 5 8 5 1 0 0927700 1.855400 8 5 8 5 0.480635 0 1.274610 1.274610 0.092157

Example 3.6.2. Consider the following primal-dual pair of LPPs ([24, 85]) as given below:

(CP) max 3x; + 4xo subject to 4xy 4+ 2x9 < 8, 311 + Hxy > 18, 11, T2 > 0,

(CD)  Min 8y, + 18y, subject to 4y, + 3y > 3, 2y1 + 5y > 4, y1,42 > 0.

Optimistic point of view: Let us apply optimistic approach. Now taking zy = 10, Lo(z) =

exp(—pox)—exp(—po) _ exp(—oopz)—exp(—o0) ) _ exp(—o;z)—exp(—o;) _exp(—p;z)—exp(—p;)
1—exp(—po)  Ro(w) = 1—exp(—o0)  Lifz) = 1—exp(—03) , Ri(x) = 1—exp(—p;) ’
where p;, 04,0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree

of vagueness, for (CP6), we get the following problem (CP1):

(CP1) max (aq — 1)

subject to poln[ai(1 —e ) 4+ e 7] < po(3x; + 4a9 — 10),
prInfag (1 —e ) + e 7] < p1(8 — (day + 215)),
palnfag (1 —e ) + e 2] < po(18 — (31 + H12)),

(
(
(po + qo) In[B1(1 —e™°) + €7 7] + 09(321 + 422 — 10 + po + qo) > 0,
(P + @) I[Bi(1 — e ) + e 7+ (8 4+ p1 + @1 — (da1 + 222)) = 0,

(P2 + @2) In[f1(1 — e 7) + 7] + (18 4+ p2 + ¢2 — (31 + baz)) = 0,

aq Zﬁl Zoaal_}'ﬁl S 1,1’1,1‘2 ZO

Using Mathematica 9.0, we solve (CP1) by taking pg = 4,p1 = 5,p2 =6, g0 = 2,q1 = 3,q2 = 4.
The optimal solution of (CP1) is obtained as & = 0.99526, a; = 1, B = 0 with max(a; —
B1)=(dy — By) = 1 for py =1, py = 2, 09 = 1, 0y = 2. Therefore, the optimal solution of (CP)
is £ = 0.99526 with max 2z = 2 = 1.990520.

Now again taking uy = 15, Lo(e) = SEELCEfimi, Rofe) = SHREGEGES, Life) =
exp(zfﬁgﬁg(;%)’ Rj(x) = exp(zfzxz)(e);p() )’ where ¢;,%;, 0 < ¢;,9; <00, j =0,1,2,....n

are the shape parameters that measure the degree of vagueness, for (CD6), we get the following
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problem (CD1):

(DP1) max (ag — f2)

subject to soInfas(1 — ™) 4+ 7] < (15 — (81 + 18y2)),
syInfag(1 —e™) + e < ¢y (4ys + 3y2 — 3),
sy Infan(1 — e7%2) + e792] < ¢ (2y1 + Bya — 4),
(S0 + to) In[Ba(1 — €7¥) + e7¥°] + 4o (15 + 59 + to — (8y1 + 18ys)) > 0,
(s1+t)In[Ba(1 —e ) +e ) + 1 (4ys + 3ya — 3+ 81 + 1) >0,
(5o +t2) In[Ba(1 — e7%2) + 7] + 19 (2y1 + Sya — 4 + 89+ t2) > 0,

ay > B2 > 0,00+ B2 < 1,y1,52 > 0.

Using Mathematica 9.0, we solve (DP1) for taking so = 3,51 = 4,82 = 5, tg = 2,t; = 3,1y = 4.
The optimal solution of (DP1) is obtained as § = 1.45984, diy = 0.775288, By = 0.019986 with
max(as — Bo)=(dis — ) = 0.755302 by taking ¢o = 1, ¢, = 2, o = 1, ¢ = 2.

Table 3.4: Optimistic solutions result

Primal problem Dual problem Duality
Lo p1 P2 0o 01 02 a1 By 71 Tg 'z Po b1 P2 Yo U1 . an B Y1 Yo b 'w gap
1 1 2 1 1 2 1 0 0.270886 3.435380 14.554200 1 1 2 1 1 2 1 0 0.722114 0.511742 14.988300 0.434100
1 2 2 1 2 2 1 0 0265412 3439120 14552700 1 2 2 1 2 2 1 0 0.239925 0.723052 14.934300 0.381600
2 3 2 2 3 2 1 0 0.2067347 3.437700 14.552800 2 3 2 2 3 2 1 0 0.353971 0.666587 14.830300 0.277500
2 3 5 2 3 5 1 0 0273479 3.433530 14554600 2 3 5 2 3 5 1 0 0.396253 0.650036 14.870700 0.316100
3 4 5 3 4 5 1 0 027138 3.434840 14.553500 3 4 5 3 4 5 1 0 0.414076 0.643125 14.888900 0.335400
3 5 5 3 5 5 1 0 0.271042 3.435100 14.553500 3 5 5 3 5 5 1 0 0.391158 0.655541 14.929000 0.375500
4 6 6 4 6 6 1 0 0272029 3.434510 14554100 4 6 6 4 6 6 1 0 0.347476 0.672630 14.887100 0.333000
4 6 7 4 6 7 1 0 0.266263 3.438830 14.554100 4 6 7 4 6 7 1 0 0.337171 0.671615 14.786400 0.232300
5 8 7 5 8 7 1 0 0273619 3.433270 14.553900 5 8 7 5 8 7 1 0 0.439962 0.630069 14.860900 0.307000
5 8 5 5 8 5 1 0 0.274344 3.432700 14.553800 5 & 5 5 8 5 1 0 0.379998 0.657275 14.870900 0.317100

The solutions of primal and dual problems in IFE with different values of shape parameters

Po, P1, P2, 0o, 01, 02, ¢07 (bl? ¢27 wOJ wh ¢2 are given in Table 3.4.

Pessimistic point of view: Let us apply pessimistic approach. Now taking zo = 10, Lo(x) =

exp(—pox)—exp(—po) _ exp(—opx)—exp(—op) _ exp(—oz)—exp(—o;) ] _ exp(—p;z)—exp(—p;)
1—exp(—po) » Bo(a) = 1—exp(—00)  Li(2) 1—exp(—0y)  Ri(2) 1—exp(—pi) ’

where p;, 04, 0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree
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of vagueness, for (CP3), we get the following problem (CP1):

(CP1) max (o — (1)
subject to poIn[ai(1 — e ) 4+ e ] < po(3x; + 4ae — 10),
prlnfaq (1 —e ™) + e ] < pi(8 — (4oy + 222)),
palnfag (1 —e ) + e < po(18 — (321 + Hz2)),
goIn[f1(1 —e ) + e | 4+ 0¢(3z1 + 422 — 10+ po) > 0,
@ In[f1(1—e ) +e 7'+ (8 +p1 — (421 + 225)) > 0,
g 1n[B1 (1 — e77) + e 7] + (18 + ps — (3z1 + 522)) > 0,

ap > 1> 0,00 + 81 < 1,240,290 > 0.

Now again taking wg = 15, Lo(z) = eXp(lw(ég)(eﬁ;) , Ro(z) = e"p(}d)(;ii,fe’;i()’%), Lj(z) =
MU Ryw) = R, where 6,4, 0 < 65,4 < 00, j = 0,1,2,....m

are the shape parameters that measure the degree of vagueness, for (CD3), we get the following
problem (CD1):

(DP1) max (g — f32)

subject to soInfaa(1 — ™) 4+ %] < (15 — (Sy1 + 18y)),
s1nfas(1 — ™) + e < ¢y (4y1 + 3yz — 3),
sy Infas(1 — e7%) + e7%] < ¢y (2y1 + 5ya — 4),
(s0 4 to) In[Ba(1 — e7%°) + €] + 1o (15 + so — (8y1 + 18ys)) > 0,
(s1+ 1) In[By(1 — ™) + e + ¢ (4yr + 3y2 — 3+ 51) > 0,
(so +t2) In[By(1 — e7%2) + e7¥2] 4 b2y + 5ya — 4 + 52) > 0,

ay > By > 0,00+ B2 < 1,y1,92 > 0.

Using Mathematica 9.0, we solve (CP1) and (DP1) for pg = 4,p1 = 5,p2 = 6, o = 2,¢1 =
3,20 = 4, sg = 3,81 = 4,80 =5, tg = 2,t; = 3,t5 = 4. The optimal solutions of (CP1) and
(DP1) problems with different values of shape parameters pg, p1, p2, 0o, 01, 02, G0, ¢1, P2, Yo,
Y1, Yo are given in Table 3.5.

Mixed point of view: Let us apply mixed approach. Now taking zp = 10, Lo(z) =

exp(—pox)—exp(—po) _ exp(—opx)—exp(—o0) ] _ exp(—o;z)—exp(—o;) ] _ exp(—p;z)—exp(—p;i)
l—exp(=po) 7 Ro(x) = l—exp(—o0) Li(z) = l—exp(—0i)  ’ Ri(x) = I—exp(—pi)

where p;, 04, 0 < p;,0; < 00,1 =0,1,2,...,m, are the shape parameters that measure the degree
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Table 3.5: Pessimistic solutions result

Primal problem Dual problem Duality
P pL p2 09 01 03 a1 [ T To 'z Po P1 P2 Yo Y1 P2 ay B Y Y2 bw gap
11 2 1 1 2 1 0 0235549 3.452670 14.517300 1 1 2 1 1 2 1 0 0.196655 0.745495 14.992200 0.474900
12 2 1 2 2 1 0 0235549 3.452670 14.517300 1 2 2 1 2 2 1 0 0.378862 0.656541 14.848600 0.331300
2 3 2 2 3 2 1 0 0252991 3236590 13.705300 2 3 2 2 3 2 1 0 0.236272 0.727201 14.979800 1.274500
2 3 5 2 3 5 1 0 0102331 3375990 13.811000 2 3 5 2 3 5 1 0 0.300433 0.694823 14.910300 1.099300
3 4 5 3 4 5 1 0 0135635 3412880 14.058400 3 4 5 3 4 5 1 0 0.511328 0.603710 14.957400 0.899000
3 5 5 3 5 5 1 0 0.135635 3412830 14.058400 3 5 5 3 5 5 1 0 0.489998 0.609919 14.898500 0.840100
4 6 6 4 6 6 1 0 0.032308 3378290 13.610100 4 6 6 4 6 6 1 0 0460125 0.621723 14.872000 1.261900
4 6 7 4 6 7 1 0 0.000475 3.403730 13.616300 4 6 7 4 6 7 1 0 0413595 0.639218 14.814700 1.198400
5 8 7 5 8 7 1 0 0.025300 3583920 14.411600 5 8 7 5 8 7 1 0 0457740 0.627858 14.963400 0.551800
5 8 5 5 8 5 1 0 0.037432 3573770 14.407400 5 8 5 5 8 5 1 0 0.644420 0.543996 14.947300 0.539900

of vagueness, for (CP8), we get the following problem (CP1):

(CP1) max (o — )

< po(3z1 + 4y — 10),
< p1(8 — (4 + 21,)),
< pa(18 — (31 + 5x9)),

subject to polnfag (1 —e™?°
p1Infa; (1 — e
[

In

)

)+
oInfay (1 — e™72) + e 2

)+ 00(371 + 429 — 10+ po + qo) > 0,

)

(

(

[B1(1— e
H[B (
roln[fi(1 — e 72) 4 e~

oy > B> 0,00 4+ 61 < 1,271,292 > 0.

+
1 1 _01 —|— (8 —f-pl + q1 — (41’1 + 21’2)) Z 0,
+

(18 4+ po + g2 — (3x1 + 5xy)) > 0,

Now sgin aking w = 15 L) = SRS () = ST, L) -

SR OB0) | Ry(x) = SRR where ¢, 15, 0 < 5,1 < 00, j = 0,1,2,.

are the shape parameters that measure the degree of vagueness, for (CDS8), we get the followmg
problem (CD1):

(DP1) max (ag — f32)
(1 ) + e < go(15 — (8y1 + 18ys)),
( ) < ¢1(4y1 + 3y2 — 3),
soInfag (1l — ™) + €7 < da(2y1 + Bys — 4),
(1—e %) 4+ e %]+ ¢o(15 + 5o + to — (8y1 + 182)) > 0,
(1—e ) +e? N+ Y14y + 3y — 3+ 51+ 1) >0,
(L—e2) + e 2] + o (2y1 + 5ya — 4 + 89 + t2) > 0,
ay > 320,00 + o < 1,y1,92 > 0.
Using Mathematica 9.0, we solve (CP1) and (DP1) for pg = 4,p1 =5,p2 = 6,90 = 2,q1 = 3,¢2 =

4,7”0:4,7"1:677“2:8, 80:3,81 :4782:5, t0:2,t1:37t2:4,U0:4,U1 :6,U2:8. The
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optimal solutions of (CP1) and (DP1) problems with different values of shape parameters py, p1,
P2, 00, 01, 02, o, $1, P2, o, 1, Py are given in Table 3.6. The above examples (Examples 3.6.1

Table 3.6: Mixed solutions result

Primal problem Dual problem Duality
po p1 P2 0o 01 Oy ar B 1 2o Iz G0 &1 P2 Yo Y1 U2 az B Y1 Yo b 'w gap
1 1 2 1 1 2 1 0 0235549 3452670 14517300 1 1 2 1 1 2 1 0 0.196655 0.745495 14.992200 0.474900
12 2 1 2 2 1 0 0.235549 3.452670 14517300 1 2 2 1 2 2 1 0 0.378862 0.656541 14.848600 0.331300
2 3 2 2 3 2 1 0 0252991 3.236590 13.705300 2 3 2 2 3 2 1 0 0.236272 0.727201 14.979800 1.274500
2 3 5 2 3 5 1 0 0102331 3.375990 13811000 2 3 5 2 3 5 1 0 0451977 0.625542 14.875600 1.064600
3 4 5 3 4 5 1 0 0135635 3412880 14.058400 3 4 5 3 4 5 1 0 0.462231 0.622055 14.894800 0.836400
3 5 5 3 5 5 1 0 0.135635 3.412880 14.058400 3 5 5 3 5 5 1 0 0.579639 0.571855 14.930500 0.872100
4 6 6 4 6 6 1 0 0.032308 3.378290 13.610100 4 6 6 4 6 6 1 0 0.260274 0.713838 14.931300 1.321200
4 6 7 4 6 7 1 0 0.000475 3.403730 13.616300 4 6 7 4 6 7 1 0 0.419299 0.637305 14.825900 1.209600
5 8 7 5 8 7 1 0 0.025300 3.583920 14.411600 5 8 7 5 8 7 1 0 0.450945 0.626384 14.882500 0.470900
5 8 5 5 8 5 1 0 0.037432 3.573770 14407400 5 8 5 5 8 5 1 0 0421774 0.639529 14.885700 0.478300

and 3.6.2) are solved with different approaches like optimistic, pessimistic and mixed approaches
in IFE. The results of Examples 1 and 2 are depicted in Tables 3.1-3.6 in different approaches.
Based on the solutions with optimistic, pessimistic and mixed approaches in Examples 1 and
2, it is clear that optimistic solutions are good compared to pessimistic and mixed solutions
due to the duality gaps. The duality gaps in optimistic solutions are very less as compared to
pessimistic and mixed solutions. Also, the duality gaps in optimistic approaches for Examples
3.6.1 and 3.6.2 in IFE are very small compared to the methods given in [24, 85] in a fuzzy

environment.

3.7 Concluding remarks

In this chapter, we extended the primal-dual theories discussed in [24, 85] in IFE by taking
membership and non-membership functions governed by reference functions in different ap-
proaches, viz., pessimistic, optimistic and mixed. This extended theory carries a significant
contribution to scholarly research because it breaks new ground to allow researchers to further
seek and obtain the importance of uncertainty as well as hesitation in general LPP. We have
also compared duality gaps by illustrative numerical examples with different approaches and
existing approaches (see Tables 3.1-3.6). From Tables 3.1-3.6, we observe that, for the given
numerical Examples 3.6.1 and 3.6.2, the solutions are better in case of an optimistic approach

in terms of the duality gap.



Chapter 4

Multi-objective programming problems
in intuitionistic fuzzy environment:
Optimistic, pessimistic and mixed

approaches

This chapter investigates a new approach for finding efficient solutions of the multi-objective op-
timization problem (MOOP) in IFE based on DM’s different views, viz., optimistic, pessimistic
and mixed. The point operator F,, which transforms IF'S into equivalent F'S, is introduced and
some desirable properties of F, are studied. After that, the formulation of MOOP, accuracy
index and value function in IFE are introduced. For resolving the mutual conflicting nature
of objectives in MOOP in IFE, we introduce the membership and non-membership functions
governed by reference function which do not depend on the upper and lower levels of accept-
ability. Then a new method is proposed to find the efficient solutions of MOOP in IFE based
on different viewpoints. Finally, a test example is given to demonstrate the practicality and

effectiveness of the proposed method.

4.1 Introduction

MOOPs are concerned with mathematical optimization problems involving more than one ob-
jective function to be optimized simultaneously. MOOPs have been successfully applied to

different fields such as science, engineering, economics, and logistics where optimal decisions
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need to be taken in the presence of conflicting objectives. But most of the decisions such as en-
gineering or management decisions are generally made through available data and information
that are mostly vague, imprecise and uncertain in nature. Also, the subjective characteristics
of the alternatives are generally uncertain and need to be evaluated by the DM who is under
time pressure and has insufficient knowledge and judgments. The nature of this kind of vague-
ness and uncertainty is fuzzy rather than random, especially when subjective assessments are
involved in the decision-making process. To cope up with such situation, F'S theory proposed
by Zadeh [194] has been a powerful tool for handling the uncertainties and vagueness of the
data by assigning a degree, called the membership degree. During the last decades, F'S theory
played an important role in modeling uncertain and optimization problems. Zimmermann [203]

gave a method for solving fuzzy programming with several objective functions.

Several approaches have been proposed in the literature for solving fuzzy linear program-
ming with multiple objectives, such as compensatory operators technique [122], defuzzification
approach [164], a parametric approach [40], goal programming approach [94] to name a few.
There are some real-life situations where DM has hesitation in deciding membership grade. In
FS theory, there is no means to incorporate this hesitation. To incorporate the hesitation in
the membership degree, Atanassov [11] proposed IFS. IFS is an extension of FS [194] and is
characterized by a membership degree, a non-membership degree, and a hesitancy degree. Gau
and Buehrer [74] introduced the concept of vague set. But Bustince and Burillo [37] proved that
vague sets are [FSs. In IFSs, the degree of membership, the degree of non-membership and the
degree of hesitancy are real values. An application of the IFS to optimization problems is given
by Angelov [9]. His technique is based on maximizing the membership degree, minimizing the
non-membership degree and the crisp model is formulated using the IF aggregation operator
[31]. For solving optimization problems in IF, ranking function plays the key role, which trans-
forms IFN to crisp number. In [137, 165], the authors gave a ranking function for IFN and solved
IFLPPs by using the ranking function. Nishad and Singh [139] solved a real-life MOLPP in
IFE. The IF optimization technique for solving multi-objective reliability optimization problems
in interval environment is given in [73]. In [66], Dubey et al. proposed optimistic, pessimistic
and mixed approaches to solving the IFLPP. Singh and Yadav [163] developed the modeling
and optimization of the MONLPP in IFE. Based on the model in [163], Rani et al. [153] solved
the model with different approaches such as optimistic and pessimistic. The development of
interactive IF methods for solving multilevel programming problems noted in [199]. An IF goal
programming approach for finding Pareto-optimal solutions to multi-objective programming

problems is given in [156].
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The rest of the chapter is organized as follows. Section 4.2 introduces the basic concept
of accuracy index and useful theorems relevant to the proposed work. In Section 4.3, the
mathematical formulation of MOOP in IFE and its properties are presented. The limitations
of the existing methods for finding an optimal solution of the MOOP in IFE are pointed out in
Section 4.4. In Section 4.5, a new method for finding efficient solutions of the MOOP in IFE
with different viewpoints, viz., optimistic, pessimistic and mixed is proposed. In Section 4.6, an
illustrative example is given to demonstrate the practicality and effectiveness of the proposed
method. The comparative study of the proposed method with existing methods is given in
Section 4.7. In Section 4.8, the advantages of the proposed method with existing methods are

given. Finally, we conclude this paper in Section 4.9.

4.2 Accuracy index

Let;zll be an IFN with (~a, B)-cut A{a,,@) =[AL AL 1N [Ai(ﬁ), Ag(ﬂ)]. Then the accuracy index
of AT is denoted by I4(A’) and is given by

fol(Aia +A d + fo AI +AR(B))d6

I (A = 5

Theorem 4.2.1. The accuracy index 14 of an IFN is a linear function.

Proof. Let Al and A} be two IFNs with («, 3)—cuts A{(a,b’) = [Al,  Al. 1N [A{L(B), A{R(ﬁ)] and
Al apy = [Asra Abra) N [AY L 5 Alp(s)] Tespectively. We have the following four cases:
Case 1. \y, )\2 >0. LAl @)\QAI is an [FN with (o, 8)—cut [\ AT + X AL L M AT + X0 AL N

Jo CuAL XAl FNALp X AL Ddat [ AT g X AL o FMAT L o F A2 AL o)dB
2

1
lfo (Aot ARy )dat [y (Al L 5+ AT g5))dB T Jo (AL +ALR.) da+f0 Al HAsR(s))B
2

Ly MAT @ MAL) =

=\

=M IA(AD) + M T4 (AD).

Case 2. \; < 0,) > 0. M AL @ M\ AL is an IFN with (o, ) —cut is [\ AL, + XAL MAL L+
A2 Ajpa) N [)\114{3(5) + )\2A£L(5), AlA{L(,B) + )\gAéR(ﬁ)]. Therefore,

Jo QAL x2 AL AN AR oAl dort [y AL g +h2 AL o+ XA g o F A2 AL ))dB
2

1
=\ Jo (AL +AL g )dat [ ( Al H AL R(s))B SIBW Jo (A0t AsR,) da+f0 Ad s HAsR(s))B
2

LaMAT @ M\ AL) =
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Case 3. \; >0, ) < 0. M Al @ M\ AL is an IFN with (o, B)—cut is [\ AL, + A AL,  NALL +

I I I 1 I
)‘2A2La] N [/\1A1L(5) + )\QAQR(B)J )\lAlR(ﬂ) + )\2A2L(5 ] Therefore,
Jo QaAT Lo+ X2 AL +M AL g +A2 AL gy )t [y AT 5 A2 A4Sy 5y H M AT ) HA2 AD )
2

1
A Jo (Al Lo+ AL R, )dat [ ( 1L(B)+A1R(ﬂ))d6 fo Afp o+ AG g )dat [ (A58t A5 R(5)) 8
1 2 2

Iy AL @ N AL =

Case 4. \; <0,) < 0. M Al @ M\ AL is an TFN with (o, 8)—cut is [\ AL, + Mo Abp, M AL+
Ao AfL L) N [A1A{R(ﬁ) + /\gAgR(ﬁ), /\1A{L(5) + AgAéL(ﬁ)]. Therefore,

1
Jo Ou AL A2 AL +M AL XAl Vdat [ (AlA{L(5)+)‘2A£L(B)+)‘1A{R([3)+)‘2A£R(ﬂ))dﬁ
2

A Jo (Al oA RS) do“*‘fo L(ﬁ)_'_A{R(B))dﬁ fo A patAlRa) do“"fo (A51(5)HA5R(5)) 18

ANAT & VAL =

=MILa(AD) + M Ia(AD).
From Cases 1, 2, 3 and 4, we conclude that VA, Ay € R,
LAMAL @ XAL) = MIA(AD) + AoTa(AS)

Therefore, A is a linear function. n
Definition 4.2.2. Let Al and A} be two IFNs. Then

1. Al is defined as less than AL and is written as AL < A if I,(Al) < I4(Al),

2. Al is defined as greater than AL and is written as Al = AL if T1(Al) > I,(AD),

3. Al is defined as equal to AL and is written as Al ~ AL if T(Al) = I,(A}).
Definition 4.2.3. A square IF matriz H' = (a Q) )nxn 15 called symmetric if

La(@h) = Ia(@}) Vij=1,2....n

Geometrical interpretation of IFS

In Figure 4.1, an expert is represented by a point P having coordinates (p 4:(x), vz (), 751 (x))
and experts A and B having co-ordinates (1, 0, 0) and (0, 1, 0) represent full acceptance and
full rejection of an idea respectively. The experts placed on the line segment AB decide their
points of view; their hesitation degrees are equal to zero on the line segment AB, so each expert

is convinced to the extent p 4 () against v (), and p 4 (2) + v 4 (x) = 1; the line segment AB
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represents a F'S. Expert C having co-ordinates (0, 0, 1) is absolutely hesitant, i.e., undecided -
he/she is the most open to the influence of the arguments presented. Triangular region ABO
(Figure 4.2) is an orthogonal projection of the tetrahedron OABC (Figure 4.1). An element of an
IF'S has coordinates (1 4: (), v4: (), 7 41 (z)), therefore the most natural representation of an IFS
is a tetrahedron bounded by p () =0, v (z) =0, 74 (2) = 0 and p4r(x) + v () + 740 (x) =
1V z € X. Hence, the tetrahedron OABC (Figure 4.1) represents an IFS.

I 3
45(x)
c(0,0,1) v
AI
B(0, 1)
0,0,0 B(0,1,0) vg (x)
A (1,0,0)
10 (x) 0 (0, 0) AL O)  pg (1'5

Figure 4.1: A three-dimension representation of an  Figure 4.2: An orthogonal projection of
IFS A”. an IFS A’

Distance between two IFSs:

Definition 4.2.4. (1). ([167]) Let Al = {(@j, par(zy), var(z;) « x; € X} and Al = {(x,
ra(x;), var(z;) « oy € X} be two IFSs in X = {z1,...,x;,...,2,}. Then the distance
between Al and AL is denoted by d(AL, A) and is defined by

d(Af, A3) = % D (par () = s (@) + var () = var ()] + 7w () = wa0(2))]) (4.1)

j=1

(2). ([168]) A similarity measure of IFSs Al and AL is denoted by ¥1(Al, AL) and is defined by
oo d(AlL Al
oy(AL Afy = Udn2) (42)
d(A{7 A2[>
The above formula considers not only the distance between two IFSs but also reflects the
fact that the compared IFSs are more similar or more dissimilar. Xu and Yager [188] improved

([167], [168]) results and developed the following similarity measure:

o Al Al Al AT
Oa(A7, A3) =1 — ——= df L Z)NI e = d(l L 221 — (4.3)
d(Ah AZ) + d(Ala A2 ) d(AD AQ) + d<A17 A2 )
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Atanassov [12, 14] established a way of transforming an IFS into an ordinary FS by introducing
an operator D, with parameter «, where a € [0,1]. This operator is the Atanassov’s point

operator and is defined as follows:

VAF“
Vi, | ©.1)
0. 1) (0,1 —pg)] N

(0, vy +mgi) [~~~

0,1—pyg — —”é"—)
( L7 (1+ .17;}}

(0, vz) f----- G

. . 0.0 (ua,0) ' (L.0) gy,
O 0] (.0 (ug +72,0) (1L0) uz,

Tyl
(”ﬁl 5 -:H:r;,z)’o)

Figure 4.3: A geometrical interpreta- B
tion of D, (A") and up,(z) +vp,(z) = Figure 4.4: A geometrical interpretation of F,(A”)
1, z e X. and pp, () +vp(x)=1, x € X.

Definition 4.2.5. [12, 1] Let T and F be the sets of IF'Ss and FSs on X. Then for each x € X
and parameter o € [0,1], D, : T — F is defined by

Do (A= Ap, e FV Al € T,
where flpa € F s defined by the membership function gz, — giwen by
i, (x) =pa(z) +arg(z) Vo eX.

Thus
Do(AD) = {(z, 5 (z) + am i (x)) : x € X}, a €0,1].

The geometrical interpretation of the FS Do (AT), a € [0,1] is shown in Figure 4.3. This
figure shows that every IFS Al is mapped onto the diagonal of unit triangular disc through the

Atanassov’s point operator D, « € [0, 1].

In addition, this study introduces a new point operator F,, to transform an IFS into F'S with

parameter «, where v € [0, 1] and is defined as follows:

Definition 4.2.6. Let Z and F be the sets of [FSs and FSs on X. Then for each x € X and
parameter a € [0,1], F, : T — F is defined by

F A=Ay e FY Al €T,
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where AFQ € F is defined by the membership function pz— given by

a(l = d((par (), vz (x), 741 (x)), (0,0, 1))
] ()4
Poan, () = ) GG ), ). (1,0,00) + (i (), 300, 7 (), (0, 1,0))
= i (x) + a(l—5 (|l z1 (@)~ 0|+|1/A1(:c) 0l +|m 57 (z)—1]))
HAr (|.“AI(:I:) U+|v 41 (2)=0[+|7 51 (2)— 0|)+ (I 51 (2)=0[+|v 51 (x)—1|+|m 511 (x)—0])

o)+ (LY e

Thus

Ap, = Fo(Al) = {<x,%,(x) + (0‘“—(‘”))» Lz € X}, ael0,1].

1+ 7 (x

Figure 4.4 presents a convenient geometrical interpretation of the FS F,(A!). This figure
shows that every IFS A’ is mapped onto the diagonal of unit triangular disc through the point
operator F,, « € [0, 1]. This operator is called optimistic point operator because of the non-
decreasing degree of membership, and non-increasing degrees of non-membership and hesitation
simultaneously. The family of all FSs associated with A? by the operator F, will be denoted by
{Fa(AD} aepo.1]- Now we shall prove {F,(A’)}acoq is a totally ordered family of FSs.

Lemma 4.2.7. If oy < oy with oy, oy € [0,1], then F,, (A7) C F,,(A").

Proof. Since pjr(x),vi(x), 74 (x) € [0,1] for all z € X and oy < ag with a1, s € [0,1], by
Definition 4.2.6, we have

par(z) + (M) < par(r) + (M)

1+7TA1<.CC 1+7TAI($)
= g, (an(®) < b, gan(@) Vo € X
= Fo, (A") C F, (A

Lemma 4.2.7 implies that the membership function of the FS F,,(A’) increases as the a-value

Increases.
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4.3 Mathematical formulation of MOOP in IFE

A conventional crisp MOOP is given by

max or(x;cr), k=1,2,..., Ky,

min

Sy

k(:l:;ck), k=Ki+1,Ki+2,..., K,
subject to iy (z;a;) < b, 1 =1,2,..., Ly,

(4.4)
wl(x;al) > bl, l = L1+1,L1 —|—2,...,L2,
wl(x;al) :bl, l = L2—|—1,L2—|— 1,...,L,
x>0,
where ¢ (.;cx), k =1,2,. .., K are real valued linear or quadratic convex functions, i.e., ¢y (z; cx) =
S chr; = cix or D i1 Qi ey = aTHa, ¢ = [ch,cd, ..., )T and H = (¢ )pxp is eal
valued symmetric positive semi-definite matrix; ¢;(.;a;),k = 1,2, ..., L are real valued linear

functions, i.e., ¢x(z;a;) = > 1, ajx; = af x and x is n-tuple decision vector x = [z1, Tg, ..., T,)".

Definition 4.3.1. Let 2 be the set of all feasible solutions of Problem (4.4). Then x* € Q is
said to be the efficient solution if there is no x € Q s.t. ¢p(x;cr) > dp(x*¢), k =1,2,..., K4
and ¢(x;cr) > op(x*;c) for at least one k € {1,2,..., K1}; and ¢ (z;c) < op(x*;cr), k =
Ki+1,K+2,...,K and ¢p(x;cr) < or(a*;¢ck) for at least one k € {K; + 1, Ky +2,...,K}.

Definition 4.3.2. An z € Q is said to dominate x € Q if ¢r(T;c) > dp(x;cr), bk =1,2,..., K,
and ¢ (T;cr) > or(x;cr) for at least one k € {1,2,...,K1}; and ¢p(T;cr) < op(z;cp), k =
Ki+1,K+2,...,K and ¢p(x;cr) < or(a*;¢i) for at least one k € {Ky1 + 1, K, +2,...,K}.

In a crisp MOOP, the objective functions as well as constraints data are certain. But in
most of the real world practical problems such as transportation, production, planning etc. the
objective functions as well as constraints data or information are mostly vague/imprecise and
hesitant in nature. For dealing with such a problem, we use IFS concept. An intuitionistic fuzzy
MOOP (IFMOOP) is given below:

max ol(ziel), k=1,2,... K,
min (;é l’,éi), k:K1+17K1+27 7K7
subject to ¥ jBZI, [=1,2,..., Ly,

)
waf) =0, l=Li+1,L1+2,..., Ly,
Olzal)~ bl l=Ly+1,Ly+2,... L,
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where ¢L(.;é),k =1,2,..., K are IF functions and of the form ¢.(z;é&l) = (&))", or 2T Hz,
cr = [(eh)t, (eh)?, ..., ()" ] and H' = ((¢1)"),x is symmetric positive semi-definite matrix in

IFE (see Definition 4.2.3); @/Jl (;al),k=1,2,..., L are IF functions and of the form Q/NJII({L', al) =
(@l )"z and x is n-tuple decision vector z = [z1, T2, ..., z,]” .

Using the accuracy index I4, Problem (4.5) is transformed to the following crisp MOOP:

max or(z; Ia(C
min or(x; La(C
(o), 1=1,2,..., L,

b)), l=Li+1,Li+2,..., Lo,
— A, l=Lo+1,Ly+2,...,L,

(&)

(&)
subject to  y(x; 14(a;)) < (4.6)

(a))

(a))

Let ¢, = In(&h),k = 1,2,...,K; a) = I,(al),l = 1,2,...,L and b, = I4(b}),l = 1,2,...,L.
Then Problem (4.6) becomes

max or(z;c), k=1,2,... Ky,
min '

-

w(r;ey), k=K +1,K1+2,... K

subject to  Yy(z;a;) <b;, 1 =1,2,..., Ly,

(4.7)
wl({[' ) b;,l:L1+17L1+2,...,L2,
@Dl(l‘,(l)_b;, l:L2+1,L2+2,...,L,
x> 0.
Theorem 4.3.3. An efficient solution z* = [x},25,..., 2% of Problem (4.7) is also an efficient
solution of Problem (4.5).
Proof. Since z* = [z}, 23, ..., :]T is an efficient solution of Problem (4.7), z* = [z}, x5, ..., 25|
is also its feasible solution, i.e.,
Y(z*5a;) <by, 1=1,2,..., Ly,
wl<w*;a’;)2b27l:Ll+1aLl+27"'7L27 (48)

'le :U*;a/ :b” l:LQ—‘—l,LQ—‘—Q,...,L,
l l

x>0,
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ie.,
Ol (@ La(ay)) < A, 1=1,2,..., Ly,
Pl 1a(@))) > AN, 1= Ly +1,L1 +2,..., Ly, (49)
Dl 1a@@))) = AN, 1= Lo+ 1,Ly+2,..., L,
x>0,
Since 14 is linear,
¢ll(x*’&l1—) j 6{7 [ = 1727"'7[/17
Pl (a*al) = ol =Ly +1,0 +2,..., Ly, (410)
Sl a )y~ b l=Lo+1,Ly+2,....L, '
x* >0,
which implies that x* is a feasible solution of Problem (4.5).
Next, since z* is an efficient for Problem (4.7),  any @ = [11,1,...,2,])7 s.t. ¢p(x;¢)) >

or(x*; ),k = 1,2,..., Ky and ¢p(x;c)) > ér(z*;¢),) for at least one k € {1,2,..., K;}; and
or(z;c)) < op(z*;¢,), k= K1+ 1, K1 +2,..., K and ¢x(z;¢,) < ¢r(x*;¢),) for at least one
ke {Ki+1,K +2,...,K}. Wehave no = s.t. ¢L(x;I4(EL)) > oL(a* La(éh)), k=1,2,... K,
and ¢L(z; I4(¢h)) > oL(x*;14(eL)) for at least one k € {1,2,...,K,}; and &L(x;I4(éh)) <
OL(x* Ta(E)), k= Ky + 1, Ky 4+ 2,..., K and ¢k(x;14(EL) < ¢L(x*; 14(¢L)) for at least one
ke{K +1,K;+2,...,K}. Since I, is linear, we have no z s.t. éi(z,éé) > éi(z*;éi},k =
1,2,..., Ky and @L(z;¢l) > of(x*; &) for at least one k € {1,2,..., K1}; and @L(z; Ia(c)) <
OL(x*: La(er)), k=K, + 1, K, +2,... K and ¢l (z;¢&l) < ¢f(x*; &) for at least one k € {K; +
LKL +2,... K},

Hence z* is an efficient solution of Problem (4.5). O

4.4 Existing models for finding an optimal solution of

the MOOP in IFE

Several papers in the literature have concentrated on developing programming models for de-

termining an IF efficient compromise solution to the MOOPs.

As the most pioneering attempt, Angelov [8] proposed a model to achieve this purpose. The
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model proposed by Angelov [8] is defined as follows:
max (A=X)
subject to  py, )
N <N, k=1,2,... K,
pr(or(z;c)) >N k=K1 +1, K1+ 2,...,
)

K,
v (Or(z;c) <N, k=K1 +1,K1+2,...,K, (411)
Uz a)) <bj, 1=1,2,..., Ly,
U(zya) >0, l=L1+1,L1+2,..., Lo,
U(x;a) =b), l=Lo+1,Ly+2,...,L,
0<N <A A+NLT,
x> 0.

The model presented in (4.11) is based on a straightforward extension of the model given by

Bellman and Zadeh [31] in fuzzy environment. This model associates a value function

for(@) = ppi () = vpi(2) (4.12)

with each decision D! = {< T, s (w),v5 () > 2 € X} Then it obtains an IF efficient
solution z* € X in a way such that fp:(2*) = glgg{{fﬁf (x)}. Yager [189] pointed out the
drawback of the value function fzr(x) used in model (4.11). Consider two alternatives x and
y, where pp:(z) = 0.48, vp:(z) = 0.50, pp:(y) = 0.1 and vp:(y) = 0. Using the value function
fpi(x), we get fpr(x) = —0.02 and fz:(y) = 0.1. So the alternative y would be selected over the
alternative x. In this case, the membership degree of the alternative y is 0.1 and the hesitation
degree about this alternative is 0.9; while the membership degree of the alternative x is 0.48
and Yager [189] provides an alternative approach that overcomes such a difficulty. The value

function proposed by Yager [189] is defined as follows:

9p1(x) = ppr(x) + ampi (2) (4.13)

where o € [0, 1] is the fuzzification parameter. A large value for the fuzzification parameter o
results in resolving hesitancy in favor of membership degree. On the contrary, a small value for
the fuzzification parameter « results in resolving hesitancy in favor of non-membership degree.
When « = 1/2, the same degree of emphasis is placed on the membership and non-membership
degrees.

Motivated by the approach proposed by Yager [189] and Dubey et al. [66] defined another

programming model for determining an IF efficient compromise solution to MOOPs. The model
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proposed by Dubey et al. [66] and Rani et al. [153] is given as follows:

max A,
subject to + Moy, > N\, k=1,2,..., Ky,

M1 —by) >\ k=12 K,

(4.14)
U(z;a;) <by, 1=1,2,..., Ly,
U(zsa)) >0, l=L1+1,L1+2,..., Lo,
(z;a) =b), l=Lo+1,La+2,...,L,
0<A<L, 0< 4, <oy <1,
z >0,
where
(9)un (Dr(@; k) = b (Prlws k) + amy, (Pul@; cr)), k=1,2,..., K4 (4.15)

(gw)Lk(gZﬁk(tT; C;C)) = uLk(gbk(x; C;{)) + omLk(ék(x; C;)), k= K1 + 1, K1 + 2, . ,K (416)

0 < a <1, Mis a large positive value, (g,)uv,, (¢x(z;¢)) and (9u)u,, (¢x(z;¢),)) denote the
segments of the membership function (g, )u, (¢r(x;c))) ) in descending order of the related
sub-domains, (g,)r,,(¢x(x;c))) and (gu)r,,(¢r(x;¢).)) denote the segments of the membership
function (g,,)r, (¢x(z;¢))) ) in ascending order of the related sub-domains.
This model associates the value function given (4.13). Then it obtains an IF efficient solution
z* € X in a way such that g (z*) = r:?ee}%{gb[ (x)}. We find the drawback of the value function
gpi(z) for determining an IF efficient compromise solution to MOOPs as explained below.
Consider two alternatives x and y, where ppr(x) = 0.4, v5:(x) = 0.3, up:(y) = 0.6, vp:i(y) =
0.35 and o = 1. Using the value function gp:(z), we get g5r(x) = 0.7 and gp:(y) = 0.65. So the
alternative x would be selected over the alternative y. In this case, the membership degree of
alternative x is 0.4 and the hesitation degree about this alternative is 0.3; while the membership
degree of alternative y is 0.6 and we propose an alternative approach that overcomes such a
difficulty. The value function proposed is defined as follows
hpi(x) = pgs(x) + (Jfﬁ—%) (4.17)
where « € [0, 1] is a fuzzification parameter. When the membership function and parameter o
increase while the nonmembership function decreases, then hp;(x) attains maximum value and

in that situation results in resolving hesitancy in favor of membership degree.
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Lemma 4.4.1. If the parameter a € (0, 1] increases, then the value function h also increases.
Proof. The same as Lemma 4.2.7. O]

Lemma 4.4.2. The value function defined in (4.17) always lies in [0, 1] for every parameter
e (0,1].

Proof. Let D' = {< , upi(x),vpi(x) >: o € X} be IFS. Then
0<ppi(z),vpr(z) <land 0 < ppi(x) +vpi(zr) <1Vaee X.
For every a € (0,1] and x € X, we have

0 < ampi(a) < (1— upi(a)) (4.18)
0 < s (@)1 (2) < 750 (2) (4.19)

From (4.18) and (4.19), we have

0 < ppr(x)mpi(r) + amp(v) < mpi(z) + (1 — ppi())
= 0 < ppr(@)(L+ 75 (7)) + ampr(z) < (1 + 75 (7))

atpr ()
@+ mpea) =
=0<hp(zr)<1l, VrelX. (4.20)

=0<ppi(r)+

(4.20) shows that the value function defined in (4.17) for any IFS and any arbitrary « € [0, 1]
lies in [0, 1]. O

Theorem 4.4.3. The IFS which has the larger membership degree and the smaller non-membership

degree should be given priority on the basis of value function h.

Proof. Let Al = {< z, (), var(w) > o € X} and Al = {< z, (), v (w) > o € X} be
two IFSs s.t. pzr(2) > p g (x) and vy (z) < vy (x) for each 2 € X. Then by (4.7), we have

o emy@@ eyl
Let pg1(x) — par(x) = Ai(z) and v (z) — vz (x) = Az(x). Then we have
a1 = 1134(@) - v39(2)) a1 = p3y(@) — w30 (2))

P i@ @) T BTG - M) - v (@)
a(l = pgr(x) —va (e

(2= pa (@) —vilz)

)

= pa (@ (4.21)

)
)
)
)
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all —pg(r) —vale) o)t a
hAg(x) _#Aé('I)_I_ (Q—MA£<5U> _Vjé(x)) - IUAI( )‘l‘ (2_/1,41(*%) —VAg(l’))
R LR vy s s B Bl L C oot o ppyen 73}
el ) g ) el () — v ()
=) G @ @) T R T @ vy @) .
From (4.18) and (4.22(), we (olg)tain( .
hagle) > wag) + by > b)) > (o), vye) < vig(e)

4.5 The proposed solution approach

In the literature, several authors solved IF MOOPs by using linear [139], S-shaped [66] and
parabolic ([163], [153] membership functions and utilized in a decision making process. These
membership functions are commonly used because of their simplicity. It is defined by fixing two
points, the upper and lower levels of acceptability of the decision variables. If general IF'S theory
is considered, then such types of assumption is not justified always. Thus the justification in
the assumption is desirable according to fuzziness of the data. If the IFS theory is used to
model real decision making process and an assertion is made that the resulting models are the
real models, then some kinds of empirical justification for this assumption is necessary. From
this point of view, we have considered LR-type IFN for different approaches viz. optimistic,
pessimistic and mixed.

Let Ly be the aspiration level of achievement and U, be the acceptable level of achievement for
the kth objective function ¢, £ =1,2,3,..., K.

In order to find an efficient solution of an MOOP, different approaches such as optimistic,
pessimistic and mixed corresponding to objective functions have been taken. For each approach
and each objective, a membership and a non-membership functions have been constructed and
are described briefly as follows:

(i) Max objectives, (ii) Min objectives.

Case 1: Max objectives Firstly, consider K objectives ¢x(.;¢}); k = 1,..., K, to be
maximized. The degree of DM’s satisfaction increases as each objective value approaches its
respective upper bound and he/she is fully satisfied if all the objectives assume their upper
bounds. But it is quite common that, practically, attaining of exact values of these upper
bounds is uncertain. Let ¢ > 0 be the respective tolerance for ¢y(.;c,). For this, based on

the decision and judgement of the DM, the degrees of attainability and non-attainability of the
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upper bound Uy, have been interpreted in three different ways- the optimistic, pessimistic and

mixed approaches.

The optimistic approach:

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of
acceptance of x is zero, the DM do not reject fully. Then the membership function p, and the
non-membership function vy, of the fuzzy goal assigned to the kth objective function ¢y(.; ¢},)

in optimistic approach for maximization problem are of the following forms (see Figure 4.5)

0, (5 ¢) < i,
p (Pr (w5 ¢)) = L(%}f‘k)) I < di(;¢,) < Uy, (4.23A)
1, or(z;c},) = U,
and
1, dr(z;c)) < Ly — g,
v (¢r(5¢4)) = R(W) Li — qr < d(; &) < r, (4.23B)
0, or (x5 ¢)) > 1,

where L and R are the reference functions. The values of [, and r, are the real numbers such
that Ly < < rp < U. We assume that py, (Ix) = 0x and vy, (1) = i (see Figure 7), where 0y,
and 7, are the real numbers such that 0 < d, <1, 0 <n, <1 and 0 < 9, + nx < 1. Therefore,
ay and [ must fulfil the following relations:

- Uk—lk
L)

e — (Lk — qx)
R~ (nx)

and By = (4.23C)

6773

where L' and R™! are the inverse functions of L and R, respectively, in the proper interval.
The possible shapes of py, and vy, are shown in Figure 4.5. From it, it is observed that there
is an interval (Lg — g, ) in which the membership degree of achieving the goal is zero but the

non-membership degree is not one.

The pessimistic approach:

In this approach, the DM is possibly ready for extra acceptance, i.e., if the degree of rejection
of x is zero, the DM is not ready to accept fully. Then the membership function p, and the

non-membership function vy, of the fuzzy goal assigned to the kth objective function ¢x(.;c}.)
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Figure 4.5: Membership and non- Figure 4.6: Membership and non-
membership functions for maximizing membership functions for maximizing
objective in optimistic approach. objective in pessimistic approach.

in pessimistic approach for maximization problem are of the following forms (see Figure 4.6)

.

Oa ¢k<xa C;{;) < lka
po(n(; ) = § (=2 gy < gu(a: ) < U, (4.24A)
\1’ ¢kf(x’ C;ﬂ) Z Uk)
and )
17 (bk(xu C;q;) S Lk?
vy k(x5 cf)) = R(%) Ly, < éu(x:¢,) < 1, (4.24B)
0, br(;¢}) > 1y

\

where L and R are the reference functions. The values of [, and rj are the real numbers such
that Ly <l < 1 < L + qx. We assume that py, (Ix) = 0 and vy, (1) = 1y (see Figure 8),
where 0, and n; are the real numbers such that 0 < 6y <1, 0 < <l and 0 < 6 +mp < 1.
Therefore, oy and (55, must fulfil the following relations:

_Uk—lk Ty — Ly

ap = ————— and =)
F= Ty M T R

(4.24C)
where L' and R™! are the inverse functions of L and R, respectively, in the proper interval.
The possible shapes of gy, and vy, are shown in Figure 4.6. From it, it is observed that there
is an interval (74, Uy) in which the membership degree of achieving the goal is not one but the

non-membership degree is zero.

The mixed approach:

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Then

the membership function py, and the non-membership function vy, of the fuzzy goal assigned
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Figure 4.7: Membership and non- Figure 4.8: Membership and non-
membership functions for maximizing membership functions for minimizing
objective in mixed approach. objective in optimistic approach.

to the k-th objective function ¢(.;¢,) in mixed approach for maximization problem are of the

following forms (see Figure 4.7)

0, (5 ¢)) <,
po, (i (; ¢g) = L(%}f‘k)) I < oi(a;d,) < Us, (4.25A)
1, o (w5 ci) > U,
and
1, or(x;¢i) < Li — g,
vy, (on(2;c))) = R(W), L, — qr. < ¢r(z;¢),) < 1y, (4.25B)
0, on (5 ¢)) > 1

where L and R are the reference functions. The values of [, and rj are the real numbers such
that Ly <l <1, < Ly — q, + pr. We assume that py, (Ix) = 0 and vy, (1x) = ni (see Figure
9), where 0, and 7, are the numbers such that 0 < §; < 1, 0 < < 1 and 0 < &+ < 1.
Therefore, ay and (5 must fulfil the following relations:

Uk—lk Tk_(Lk_qk)
and =
- = T R

(4.25C)

where L~! and R~! are the inverse functions of L and R, respectively, in the proper interval.
The possible shapes of y1y7, and vy, are shown in Figure 4.7.

Case 2: Min objectives Now, we consider the objectives ¢i(.;¢;); k= K1+ 1,..., K to
be minimized. The degree of DM’s satisfaction increases as each objective value approaches its
respective lower bound Lj and he/she is fully satisfied if all the objectives reach their lower
bounds. But it is quite common that, practically, attaining of the exact values of these upper

bounds is uncertain. Let py > 0,¢; > 0 be the respective tolerance for ¢i(.;c}) such that
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qr < pr. For this, based on the decision and judgement of the DM, the degree of attainability
and non-attainability of Ly, respectively, have been interpreted in three different ways- the

optimistic, pessimistic and mixed approaches.

The optimistic approach:

In this approach, the DM takes a flexible way about rejection. Specially, if the degree of
acceptance of x is zero, the DM do not reject fully. Then the membership function iz, and the
non-membership function vy, of the fuzzy goal assigned to the kth objective function ¢(.; ¢},)

in optimistic approach for minimization problem are of the following forms (see Figure 4.8)

L, or(w; ) < L,
pin, (B ¢})) = R(a“w%) Li < du(;¢,) < 74, (4.26A)
0, or(x; ¢)) > 1,
and
0, or(z; ) < i,
v, (dn(z; ) = L(—U’ﬁq’“;fk(w@), I < or(x;0) < Uk + i, (4.26B)
L ¢k(5€; C;.c) > Uk + qx,

where L and R are the reference functions. The values of [, and rj, are the real numbers such
that Ly <l <1y < U,. We assume that pp, (Ix) = 6 and v, (%) = nx (see Figure 10), where
0, and ny, are the real numbers such that 0 < 0 <1, 0 < mp < 1 and 0 < .+, < 1. Therefore,
ar and (5 must fulfil the following relations:

U+ qe — Uy ry — Ly

ap = W and Bk’ = RT(W)’ (4260)

where L~! and R~! are the inverse functions of L and R, respectively, in the proper interval.
The possible shapes of py, and vy, are shown in Figure 4.8. From it, it is observed that there
is an interval (7%, Uy 4 &) in which the membership degree of achieving the goal is zero but the

non-membership degree is not one.

The pessimistic approach:

In this approach, the DM is possibly ready for extra acceptance, i.e., if the degree of rejection
of x is zero, the DM is not ready to accept fully. Then the membership function p, and the

non-membership function vy, of the fuzzy goal assigned to the kth objective function ¢(.;c})
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Figure 4.9: Membership and non- Figure 4.10: Membership and non-
membership functions for minimizing membership functions for minimizing ob-
objective in pessimistic approach. jective in mixed approach.

in pessimistic approach for minimization problem are of the following forms (see Figure 4.9)

(

]-7 ¢k(x76;€> S Lk7

(on(;c})) = < ok (@icy) — Ly o (4.27A)

MHry, ¢k ‘T7Cl€)) R Br, ) Lk S ¢k(x7ck) S Tk, .
\07 ¢k($70;€> > Tk,
and .

07 Qﬁk(wvcj’c) < lk7

v (o3 ¢,)) = 4 L(_Uk—@:x;cp), b < ol ¢}) < Uy, (4.27B)
17 ¢k($7c§c) 2 Uk7

\

where L and R are the reference functions. The values of [, and r, are the real numbers such
that Uy — qx < Iy < 1, < Ug. We assume that pp, () = 0, and vy, (ry) = nx (see Figure 11),
where 0 and 7, are the real numbers such that 0 < §, <1, 0 <7 < 1 and 0 < & + i < 1.

Therefore, o and £, must fulfil the following relations:

ap = — and [y = (4.27C)

where L~! and R™! are the inverse functions of L and R, respectively, in the proper interval.
The possible shapes of py, and vy, are shown in Figure 4.9. From it, it is observed that there
is an interval (Ly,[) in which the membership degree of achieving the goal is not one but the

non-membership degree is zero.

The mixed approach:

In this approach, the DM is not flexible to reject and is not capable for extra acceptance. Then

the membership function j7, and the non-membership function vy, of the fuzzy goal assigned
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to the kth objective function ¢(.; ¢}) in mixed approach for minimization problem are of the

following forms (see Figure 4.10)

1, ¢r(z;c),) < Ly,
pr, (Or(2;¢,)) = R(%ﬁ“), Ly < ¢r(x;¢),) <y, (4.28A)
0, or (5 ¢)) > 1,
and
0, or(x; c) <,
Vi (Or(361)) = L(—U’”q’“;f’“(“/“), b < dk(w;¢h) < U + (4.28B)
1, br(x;¢)) = Uk + q,

where L and R are the reference functions. The values of [, and r, are the real numbers such
that Uy + qx — pr < I < rp < Up. We assume that pup, (Ix) = 0 and v, (1x) = nx (see Figure
12), where & and 7 are the real numbers such that 0 < §;, < 1, 0 <7 < land 0 < 0+ < 1.
Therefore, oy and (5, must fulfil the following relations:

U+ g — U Ty — Ly

A = Lil((sk) and 6k = RT(nk), (4280)

where L~! and R™! are the inverse functions of L and R, respectively, in the proper interval.

The possible shapes of ;17, and vy, are shown in Figure 4.10.

Theorem 4.5.1. Let f : S — R be a real valued function, where S C R" is a convex set.
1. If f is a convex function over S, then {x € S: f(x) < c¢,c € R} is a convex set.

2. If f is a concave function over S, then {x € S: f(x) > ¢,c € R} is a convex set.

3. [ is a quasi convex function over S iff the lower level set {x € S : f(z) < ¢,c € R} is a

convex set.

4. fis a quasi concave function over S iff the upper level set {x € S : f(x) > ¢,c € R} is a

convex set.

Remark 4.5.2. Obviously, if [ is a convex function over S, then {x € S: f(x) > ¢,c € R} is
not a convex set and if f is a concave function over S, then {z € S : f(x) < ¢,c € R} is not
a conver set; if f is a quasi convex function over S, then {x € S: f(x) > ¢,c € R} is not a
convex set and if f is a quasi concave function over S, then {x € S: f(z) < c,c € R} is not a

convex set.
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Lemma 4.5.3. The function f(A\,N) = )\+°‘(21__/\—A__/\A,/) is a concave function for every A\, \' € [0, 1],
A+ N <1, and a € (0,1].

Proof. For the proof of concavity of function f(A, '), we have to show that the Hessian matrix

H of f(A\, X') is negative semi-definite. The Hessian matrix H of f(\, \) is given by

, —2« 11
wazm(l 1)

which is negative semi-definite for every A\, N € [0,1], A+ X < 1, and a € (0,1]. Hence, the

function f(A\, ) = X + %/\),‘) is a concave function for every A\, \' € [0,1], A+ X < 1, and

e (0,1]. 0

Corollary 4.5.4. The sets {(\,\) : A+ H > A+ N < AN >0}, {or(x; ) -

pog (Pr(@;¢)) = Ay, {on(w5 ) = (dn(esr)) = AL, Aw(@;6) = v (dr(z; ) = N} and

{t(z;¢,) v (P(z;¢,)) > N} are conver sets.

4.5.1 Auxiliary optimization problem

For solving Problem (4.7), we consider the following auxiliary optimization problem of Problem
(4.7):

max 1,

subject to A +

2)\, k:1,2,...,K1,

S
e
8
)
o~

)
VUk¢kx7/>
NN k=K +1L,K +2... K, (4.29)

=
h
<
-
=
8
o
AN

)
y< N, k=1,2,..., K,
) =
) <

v, (9r(2; ¢))
zbl(x,a <b,l=1,2,..., L,

k=K +1,K +2,... K,

)
a) >b, l=Li+1,L1+2,..., Lo,
a)=b,l=Ly+1,Ly+2,...,L,
<N AEN<1,0< <1

Here, the meaning of the symbols in Problem (4.29) is given in Problem (4.7).
Since every crisp convex MOOP has unique efficient solution, Problem (4.29) has unique

efficient solution. Let us assume that z* is an efficient for Problem (4.7), i.e., # any » =
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(21,29, ..., 2T st gp(z;cl) > dn(x*;c)), k=1,2,..., K and ¢p(x;¢),) > ¢(z*; ¢},) for at least
one k € {1,2,...,K1}; and ¢p(z;¢,) < dp(a*;¢,), k = K1+ 1, K1+ 2,..., K and ¢p(x;¢),) <
or(x*;¢) for at least one k € {K; +1,K; +2,...,K}.

Theorem 4.5.5. An optimal solution x* of Problem (4.29) is also an efficient solution for
Problem (4.7).

Proof. Let us assume that z* is not an efficient for Problem (4.7). Then Jan z = [z, T3, ..., 2,7

st. dk(z;c,) > ou(a™;c),k = 1,2,..., Ky and ¢p(x;¢)) > ¢r(a*;c,) for at least one k €
{1,2,...,K1}; and ¢p(z;¢) < dp(x*;¢,), k= K1+ 1, K1 + 2,..., K and ¢x(z;¢),) < dp(z*;¢))

for at least one k € {K; + 1, K; +2,...,K}.

Since the gy, and vy, are non-decreasing and non-increasing functions respectively with
the non-decreasing values of the corresponding objective ¢y (x;c}); and pr, and vy, are non-
increasing and non-decreasing functions respectively with the non-decreasing values of the cor-
responding objective ¢y(z; c,), we have iz (dx(z;c4)) > s, (Se(a" k) and vy (e(a: ) <
vu, (ok(z*5¢,)) k= 1,2,...,Ky; and pr, (or(z5¢,)) < pr, (or(x*;¢))) and v, (or(z;¢))) >
v (ok(z5¢,)) k=K +1,Ky+2,..., K. Hence A = min{uy, (¢r(z;¢;)) : k=1,2,..., K1} >
min{uy, (ox(z*;¢,)) k=1,2,..., K1} = X* (say) and X' = max{vy, (¢x(2z;¢,)) bk =1,2,..., K } <
max{vy, (op(x*;¢},)) + k = 1,2,..., K1} = X (say); and A\ = min{uy, (¢r(x;c})) : k =
Ky +1,Ky+2,....K} < min{ur, (op(z*5¢,)) + k = K1+ 1, Ky +2,...,K} = \* (say)
and N = max{vy, (¢(z;c},)) : k = K1+ 1,Ky + 2,..., K} > max{vy, (¢p(z*;¢})) : k =
Ky +1,Ky+2,...,K} = X* (say). This imply that n > n* (Max) and n < n* (Min), which is
contradict to the fact that z* is an optimal solution of Problem (4.29). [

The overall solution can be summarized as follows:

Step 1. Model the IFMOOP (4.5) as the crisp MOOP (4.7) by using the accuracy index and

value function.

Step 2. Solve the single objective programming problem (SOPP) by considering one objective
function at a time and ignoring all others. Repeat the for all objective functions. Let
the optimal solutions obtained be X7, ..., Xk, , ..., Xk respectively. Let X = { X}, k =

ooy Ky K

Step 3. Find the values of the objective functions ¢ (.,¢}),k =1,...,K,..., K at each point
obtained in Step 2.
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Step 4. Find minimum and maximum values of each objective function over X. Let L; be the
minimum and Uy, be the maximum value of ¢ (., ¢) over X i.e., Ly = min{¢x(z, ¢},),z €

X} and Uy, = max{¢x(z, ), x € X}.

Step 5. Construct the membership and non-membership functions for each objective functions

by using the techniques explained in (4.23) to (4.28) as per cases.

Step 6. Construct the auxiliary optimization problem as given in (4.29), and solve it for finding

the values of the decision variables and the levels of acceptance.

Step 7. The algorithm stops if the DM is satisfied with the obtained solution. Otherwise, the
key parameters, i.e., preferences of each objective function, the tolerances for each
objective etc. can be altered to meet the choice. The process is repeated until the DM

is satisfied with the obtained solutions.

4.6 Numerical example

A manufacturing factory produces three types of products A, B and C during a period (say
one month). Three types of resources R;, Ry and Rj3 are required to produce these products.
One unit of type A product needs around 3 units of Ry, 2 units of Ry and 3 units of R3; One
unit of type B product needs around 4 units of Ry, 3 units of Ry and 2 units of R3 and One
unit of type C product needs around 2 units of Ry, 3 units of Ry and 3 units of R3. The
planned availabilities resource of R; and Ry are around 320 and 350 units respectively with the
additional amount around 25 and 20 units in safety store for the emergency purpose which is
administrated by the General manager (GM). For better quality of the products at least amount
360 units approximately of resource R3; must be utilized with some allowed tolerance by the
managerial board. To reach the goals, assuming x;, x5 and z3 units are the planned production
quantities of A, B and C. The profit of selling each unit of products A, B and C are around
7, 10 and 8 rupees respectively and the estimated time requirements in producing each unit of
products A, B and C are around 3, 4 and 5 hours respectively. The GM wants to maximize

total profit and minimize total time requirement.

For better dealing with the uncertainties as well as hesitation of the problem, let us assume

that all the parameters of the problem are TIFNs. Then this problem can be formulated as
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follows:
max ol (x) = oy + 10"z, + 83,
min db(x) = 3ay + Ay + 5las,
subject to 3wy 4+ 27wy + 33 < 3?01, (4.30)

lel'l + ?)ISCQ + éll'g < 3501,
élxl + 311’2 + 311'3 > 3601,

x = (x1,29,23) >0,

We assume that all the estimated parameters taken by the manager are TIFNs. Let 330" =
(320, 320, 350; 320, 320, 355), 350" = (350, 350, 370; 350, 350, 375), 360" = (340, 360, 360; 340,
360, 360), 77 = (7,7,9:6,7, 10), 10" = (9,10,11;9,10,12), 8 = (7.5,8,8.5;7,8,9), 21 = (1, 2,
3;0.5,2,4), 31 =(2,3,4;1.5,3,4), 4" = (3,4, 5;2,4,5), 5’ = (4.5,5,6;4,5,6.5).

Using accuracy index, Problem (4.30) is transformed into the following crisp MOOP.

max ¢1(3§') = 75$1 -+ 10125$2 + 8.]73,
min ¢o(x) = 2.9375x1 + 3.8750x9 + 5.1250z3,
subject to 2.9375x1 + 2.0625x5 + 2.9375x3 < 328.125, (4.31)

3.875x1 + 2.937524 4 2.0625235 < 355.625,
2.0625x1 4 2.9375x9 + 2.9375x3 > 359,

Z1,T2,T3 Z 07

Solving the the LPPs by taking the Ist and 2nd objectives on using Mathematica 9.0, we get
the optimal solutions as X; = (0,84.09,52.66), Xy = (0,120.85,0). The ideal and anti-ideal
values for each of the objectives are found to be L; = 1223.62, U; = 1272.69 and L, = 468.30,
Uy = 595.73. The allowed tolerances given by the DM are p; = 45, ps = 90 and ¢; = 35, ¢ = 70.
Since ¢y is to be maximized and ¢, is to be minimized simultaneously, the MOOP (4.31) is solved

by using (4.29) with different approaches, viz., optimistic, pessimistic and mixed as follows:

The optimistic approach:

The MOOP (4.31) is solved using the reference functions L(z) = R(z) = max{0,1 —z'}, t >0

—tx _

and L(x) = R(x) = el_—ef,:t, t > 0 for different values of t with the help of Mathematica 9.0

software. The solutions for different values of t are given in Table 4.1. These solutions are

graphically shown in Figures 4.11 and 4.12.
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Table 4.1: Optimistic approach solutions
L(z)=R(z)=1—2" t >0, z €10,1] L(z) = R(z) = ¢

—tx_

<< t>0, ze€[0,1]

l—e—t

t o @ T3 P1(x)  Pa(w) not om @ T3 ¢1(z)  ¢o(z) n

1 0 103.987 24.321 1247440 527.595 0.862 1 0 103.073 25.6225 1248.59 530.723 0.8706
2 0 104.007 24.2941 124742 527534 0.7 2 0 103.064 25.6307 124857 530.73 0.8461
3 0 104.284 239143 1247.19 526.661 0.7 3 0 103.061 25.6406 1248.62 530.769 0.8104
4 0 104.699 23.3315 1246.73 525283 0.7 4 0 103.058 25.6452 1248.62 530.781 0.7774
5 0 106.149 21.269 124491 520331 0.7 5 0 103.044 25.66 1248.60 530.803 0.7518

The pessimistic approach:

The MOOP (4.31) is solved using reference functions L(z) = R(z) = max{0,1 — z'}, t > 0
and L(x) = R(x) = %, t > 0 for different values of t with the help of Mathematica 9.0

software. The solutions for different values of t are given in Table 4.2. These solutions are

graphically shown in Figures 4.13 and 4.14.

Table 4.2: Pessimistic approach solutions

—tr _

Lz)=R(x)=1-2"t>0, z€[0,1] L(z) = R(x) :%7 t>0, x€l0,1]
t oz T2 T3 o1(r)  da(x) n t o Ty T3 b1(x)  ¢a(x) n
1 0 100.55 29.2169 1251.8 539.368 0908 1 0 102.791 26.0246 1248.96 531.691 0.8831
2 0 100.55 29.2168 1251.8 539.367 0.8484 2 0 102.999 25.7288 1248.7 530.981 0.8527
3 0 100.55 29.2107 1251.75 539.336 0.7221 3 0 103.045 25.6629 1248.63 530.822 0.8144
4 0 100.678 29.063 1251.87 539.075 0.6999 4 0 103.254 25.4812 1249.3 530.7  0.7649
5 0 100.825 28.8828 1251.92 538.721 0.6999 5 0 103.4125 25.2453 1249.01 530.106 0.7397

The mixed approach:

The MOOP (4.31) is solved using the reference functions L(x) = R(x) = max{0,1—z'}, t > 0
and L(z) = R(z) = %, t > 0 for t = 2 with the help of Mathematica 9.0 software.
The solutions are xy = 0, x5 = 103.052, 3 = 25.652, ¢; = 1248.770, ¢ = 530.655 when
L(z) = R(z) = max{0,1 — 2'}, t = 2, and x; = 0, x5 = 103.054, x3 = 25.650, ¢; = 1248.622,

¢y = 530.791, when L(z) = R(z) = &= t = 2.

l—e—

4.7 Comparative study

The above example is also solved with some other existing models like Zimmermann’s approach,
maximum additive operator and maximum product operator [203] by considering the nonlinear
membership and nonmembership functions for each of the objectives and constraints. The

comparison of the results obtained is given in Table 4.3.



122

064
04d.t

A Pl

0.,
1248

126

1245

Figure 4.11: Graphical representation of
the solutions by optimistic approach when
max{0,1 — z'},

L(z) = R(z) =
1,2,3,4,5.

12519
12518

4

00 12517 5386

Figure 4.13: Graphical representation of
the solutions by pessimistic approach when
max{0,1 — '},

L(z) = R(z) =
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Figure 4.12: Graphical representation of
the solutions by optimistic approach when

L(z) = R(z) = <=5, t =1,2,3,4,5.
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max A,
subject to py, (¢r(z)) > A, k=1,2,3,... Ky,
pp (@) >N k=K +1, K, +2 K, +3,...,K,
Ui(z;a)) <b), 1=1,2,3,..., Ly, (4.32)
U(w;a)) > b, l=Ly+1,L1+2,L1+3,..., Lo,
Uilwsa) =Y, l=Lo+1,Lo+2,Ly+3,...,L,
0< A<,
x>0
Maximum additive operator:
max pw, (0r(2)) + po,, (ow(2)), k=1,2,3,.. . Ky, ¥ =K1+ 1, K1 +2, K1 +3,... K,
subject to 0 < uy, (Pp(x)) <1, k=1,2,3,... K,
0<ypp, (ow(x) <1, K=K +1,K +2,K +3,...,K,
0 < puo (k@) + p,, (G (2) <1, k=1,2,3,... Ky, K = K1+ 1, K1 + 2,
Ki+3,... K,
Uy(zya)) <0, 1=1,2,3,..., L, (4.33)
U(z;a) >0, l=L1+1,L;+2,L1+3,..., Lo,
Y(z;a) =b, l=Lo+1,Lo+2,Ly+3,...,L,
0< A<,
xz > 0.
Maximum product operator:
max (1w, (r(x))) * (p, (dw(2))), B =1,2,3,.. . Ky, K = K1 + 1, Ky + 2,
Ki+3,... K,
subject to 0 < uy, (Pr(x)) <1, k=1,2,3,... K,
0< pup, (dp(2) <1, K = Ky + 1, K +2, K1 +3,..., K, (4.34)



124

¢l($, a;) < b;a [ = 172737"'7[/1’
1/Jl(x;a2)2b2,l:L1+1,L1+2,L1—|—3,...,L2,
wl(l';a;):b;,l:L2+17L2+2,L2+3,...,L,

From Table 4.3, it is clear that the average of d; and dy values is minimum by the proposed

Table 4.3: Comparison table when L(z) = R(z) = max{0,1 — z'}, t = 2

Method N 105 Deviations from U; (d;) Deviations from Ly (dy) Average of d; and ds
Zimmermann’s Technique 1248.63  530.796 24.06 62.496 43.278
Maximum additive operator 1234.97 549.844 37.72 81.544 59.632
Maximum product operator 1248.36 530.069 24.33 61.769 43.0495
Proposed method 1247.42  527.534 25.27 59.234 42.252

method. Therefore, objective values obtained by the proposed method are better than those

obtained by the existing methods.

4.8 Advantages of the proposed method over the existing

methods

The advantages of the proposed method over existing methods ([9], [189], [66], [139], [163],
[153]) for solving IFMOOPs are summarized in Table 4.4.

4.9 Concluding remarks

In this chapter, we have developed an algorithm to solve the MOOP in IFE and illustrated the
same by solving a numerical problem. The membership and non-membership functions play
a vital role while designing a model in IFE. Most of the techniques in the existing literature
9, 66, 139, 153, 163] are based on constructing the membership and non-membership functions
in which the lower and upper end points are fixed for the IF objectives/constraints. Moreover,
the membership and non-membership functions in which the lower and upper end points are also
fixed, do not deal with the mutual conflicting nature of the objectives and always do justice while
modeling a real-life decision model. So, the general membership and non-membership functions

governed by the reference functions are considered in this chapter from different viewpoints,
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Table 4.4: Advantages of the proposed method

Existing models

Proposed model

1. Angelov [9] used a value function for
solving IFMOOPs which has draw backs as
pointed by Yager [189].

2. Dubey et al. [66], Rani et al. [153] used
the value function proposed by Yager [189]
for solving IFMOOPs which has draw backs
as pointed by us (see Section 4).

3. Singh and Yadav [163], Rani et al.
[153] have used only membership functions
for solving IFMOOPs; the nonmembership
functions are not used. But IF governed by
membership and nonmembership functions.
4. The methods developed by Angelov [9],
Dubey et al. [66], Nishad and Singh [139],
Rani et al. [153], Singh and Yadav [163] are
based on constructing the membership and
non-membership functions in which the lower
and upper end points are fixed for the IF
objectives or constraints. Also, then do not
deal with the mutual conflicting nature of the
objectives.

1. The proposed method proposes a new
value function for solving IFMOOPs which
is free from such draw backs.
2. The proposed method proposes a new
value function for solving IFMOOPs which
is free from such draw backs.

3. The proposed method has uses both the
membership and nonmembership functions
for solving IFMOOPs.

4. The proposed method defines the mem-
bership and non-membership functions gov-
erned by reference functions in which the
lower and upper end point are not fixed.
Also, they deal with the mutual conflicting
nature of the objectives.

viz., optimistic, pessimistic and mixed. The obtained results are found to be better and near

the ideal and anti-ideal values of each of the objectives.
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Chapter 5

Information measures in intuitionistic
fuzzy environment: analysis and some

relationships

This chapter considers some information measures, such as, normalized divergence measure,
similarity measure, dissimilarity measure and normalized distance measure in IFE, which mea-
sure the uncertainty and hesitancy, and which can be applied to the selection of alternatives
in group decision problems. We introduce and study the continuity of considered measures.
Next, we prove some results that can be used to generate measures for FSs as well as for IFSs
and we also prove some approaches to construct point measures from set measures in IFE. We
define the weight set for one and many preference orders of alternatives. After, we investigate
the properties and results related to the weight set. Based on the weight set, we develop the
model for finding the uncertain weights corresponding to attribute. Also, we develop the model
to finding positive certain weights corresponding to each attribute by using uncertain weights.
Finally, an algorithm for choosing the best alternative according to the preference orders of
alternatives in decision-making problems is proposed and its validity is shown with the help of

a numerical example.

5.1 Introduction

Most of the information present in the real-life is uncertain in nature. Generally, decision-maker
(DM) can not handle completely such complex information. Zadeh [194] introduced the concept

of FS theory to model uncertainty by assigning degree of association called the membership
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degree. Several authors have given different types of measures to deal the uncertain information
and have studied their theoretical properties and also established the interrelationship between
them [38, 48, 53, 72, 93, 114, 195, 198]. There are several kinds of information which contain
uncertainty as well as vagueness. Such information can not be modeled by FS theory. For
such situation, Atannasov [11] gave the concept of IFS which handle the uncertainty as well as
hesitation by assigning degrees known as membership degree and non-membership degree. If
the sum of membership and non-membership degrees at each point of the universe is one, then
the IF'S becomes FS. If the sum of membership and non-membership degrees at each point of the
universe lies in (0, 1), then the IFS is called pure IFS. Atanassov [13] has also given the operations
on IF'Ss and their analysis. During last decades, IFS theory played an important role in modeling
uncertain and vague systems, received much attention from the researchers and meaningful
results were obtained in the field of decision-making problems [138], pattern recognition [54, 143]
to name a few. Decision making is one of the popular branches of Operations Research in which
the problem to choose the best alternative from the given set of feasible alternatives is considered.
There exist several processes in literature but there are mainly four stages required to choose
the best alternative: (i) Evaluate the set of feasible alternatives from given information. (ii)
Determine the weight vector corresponding to alternatives or attributes which depend on DM.
(iii) Aggregate alternatives by taking weight vector given by DM. (iv) Rank the alternatives in

order of preference and select the best one.

There are several information measures in IFE, such as divergences measures, similarity
measures, dissimilarity measures, and distance measures. They model uncertain and vague
information. The inclusion between two IFSs can be measured by the concept of inclusion mea-
sure [79] and the commonality between two IFSs can be measured by the concept of similarity
measure [95, 96]. Also, new similarity measures are constructed and used in pattern recognition
[54]. Moreover, several authors established the relationship between point similarity measures
and similarity measures [41, 97, 115]. The concept of distance measure in IFE and different
types of distance measures are given in [167|. The concept of H-max distance measure of IFSs
is given in [138] and it is used in decision-making problems. Grzegorzewski [77] gave distances
and orderings in a family of IF numbers. The comparative analysis between similarity measures
and distance measures in IFE are discussed from a pattern recognition point of view [143] and
theoretical point of view [166]. The concept of divergence measures, local divergence measures
and the relationship between distance, similarity and divergence measures are given in [133] and
[134]. The monotonic similarity measures between IFSs and their relationship with entropy and

inclusion measures given by Deng et al. [52]. Das et al. [50] gave information measures in the
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IF framework and their relationships.

The motivation and our contributions are of three folds. In the first fold, we were inspired
by the papers [45, 110] in which the authors have calculated the similarity measure between
2-vague values, n-vague values, 2-vague sets and n-vague sets, and also applied these concepts
for behavior analysis in an organization. Based on the relations in [45] and [110], we have
given the concept of continuity of measures in IFE, and we have constructed the point measures
derived from measures of [F'Ss. Moreover, we have analyzed the continuity relationship between
them. Further, several results concerning the point measures derived from the set of all IFSs
measures and aggregation operator, and the relationship between IF-measures and fuzzy point
measures are given in the form of theorems (see Sections 5.2 and 5.3). In the second fold, we
were inspired by the papers [182; 183, 190, 191] in which the authors have given the concept
of additive multi-attribute value models based on the weight-set to satisfy preference orders
of alternatives and to determine the compromise weights for group decision-making. Based on
the concepts of these papers, we have modeled the mathematical programming problem for
finding uncertain attribute weights when one and many preferences of alternatives are given.
Also, we have given the new concept of weight set corresponding to one and many preferences
of alternatives, and have studied and analyzed the properties and results related to the weight
set. After, we have modeled the mathematical programming problem to find the uncertain
attribute weights (see Sections 5.4, 5.5, 5.6, 5.7). In the third fold, we were inspired by the
papers [144, 145] in which the authors have given the concept of choosing the best alternative
in decision making problems when the weights information are incomplete. Motivated by the
facts in [144] and [145], we have modeled mathematical programming problem for finding the
positive certain attribute weights with the help of uncertain attribute weights (Section 5.7).
Further, an algorithm for solving multi-attribute decision making (MADM) problems is given.
Also, a test example is given to demonstrate the practicality and effectiveness of the introduced

measures and the proposed algorithm (see Section 5.8).

The rest of the chapter is organized as follows. In Section 5.2, we introduce some neces-
sary basic definitions. Section 5.3 contains the notion of continuity of [F-measures and the
relationship between point measures and the set of measures in IFE. The core of the chapter
is presented in Sections 5.4, 5.5, 5.6 and 5.7 concerning the formulation of decision-making
problem, the structure of weight set of one preference and many preferences simultaneously,
determination of attribute weights for given preferences of alternatives. In Section 5.8, an algo-
rithm for solving MADM problems and a test example are given. The chapter ends with Section

5.9 containing some concluding remarks.
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5.2 Preliminaries

Let Z denote the set of IFSs over X = {zy,...,2;,...,2,}.

5.2.1 IF-difference

Definition 5.2.1. [134] Let A’, B' and C' € Z. Then an operator — : TxTI — T is defined as a
difference operator for IFSs, called IF-difference operator, if it satisfies the following properties:

(D1) AT — B' = ¢ if AT C B';
(D2) BF — Al c ¢l — Al if BT C C'.

Al — B! is called the IF difference of AT and B'. The following are other interesting properties
that IF-differences may satisfy:

(D'1) (AT NN — (B ACTy C Al — B
(D’2) (A'ul!)y—(B'uch)y Cc A - B,

(D’3) Al —-B'=¢ = A C B’

Example 5.2.2. [13}] Consider the function —:Z x T — T given by

AT = B = {(, s i (@), v (7)) 1 € X},

where puzr_pi(x) = max(0, pgr(x) — ppr(2)) and v _gi(x) =1 — par_pi(x) if vi(r) > vp(x)

orvi_pi(z) =min(l +vyu(r) —ve(z),l —pir_pr(x)) if vi(z) <vgi(z). Then

(i) A C B" = puzu(x) < ppi(x) and vy (x) > vg(z). This implies that pzi_gi(x) = 0 and
vir_pi(x) = 1. Therefore, AT — BT = ¢.

(ii) B C C' = pgi(r) < per(x) and vg(v) > ver(x). This implies that g (x) <
e () and v qi(x) > var si(x). Therefore, B — Al € 1 — Al

Thus, the function -’ is an IF-difference.

5.2.2 IF Normalized Distance Measure

Definition 5.2.3. [166] An operator Ng : Z x T — [0, 1] is said to be an IF normalized distance

measure if the following conditions are satisfied for every pair of IFSs AT and B! :

(d1) Ny (AT, BT) = Ny(B', A7),
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(d2) Ny(A',B") =0 iff AT = B,
(d3) Ny(A', ATy =1 if A" is a crisp set,
(d4) AT C BT C T = Ny(AT, B") < Ny(AT,CT), Ny(AT,CT) > Ny(B',C).

For example, the normalized Hamming and Euclidean distances as defined below are nor-
malized distance measures:
The normalized Hamming and the normalized Euclidean distances between Al and Al are given

as follows:

e The normalized Hamming distance [167]:

n

H(A{, A;) = % D lrar (@) = s (@) + var (25) = vag(@)] + |7 (25) = wa ()] (5.1)

j=1
e The normalized Euclidean distance [167]:

n

B AD) = [ S ag ) — pag (o) + (wagog) — vag )+ (mag () = mag ()]

Jj=1

(5.2)

Definition 5.2.4. The operator Ny defined on L X L satisfying conditions (d1)-(d4) is called

IF normalized point distance measure.

Remark 5.2.5. An IF normalized distance measure Ny can be seen as a normalized point

distance measure whenever X is a singleton, X = {x;}.

5.2.3 IF Similarity Measure

Definition 5.2.6. [166] An operator S, : T X T — [0, 1] is said to be an IF similarity measure
if the following conditions are satisfied for every pair of IFSs AT and B! :

(SM1) S,,(A', B") = S, (B!, A),

(SM2) S, (Al B) =1 iff A = B,

(SM3) S,,(Al, A') =0 if AL is a crisp set,

(SM4) Al Cc B! cC! = S,,(Al,C) < S, (Al BY), S,,(Al,C") < S,,(B',C").

For example, the measures as defined below are similarity measures:

The similarity measures between A! and Al are given as follows:
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e Similarity measure proposed by Hung and Yang [95]:

n

S (AL AL = 1= =S g = pag )l V lvgga) = vagle)) (53)

Jj=1

e Similarity measure proposed by Chen [41]:

n

1

SO(ALAp) =1~ o Z(!(MA{ (25) = pag(;)) = War(ey) —va(z)) - (5.4)

e Similarity measure proposed by Hong and Kim [97]:

n

1

SHE(A], Af) =1 - o Z(KMA{(%‘) — pap ()| + [(var(;) —va () (5.5)

Definition 5.2.7. The operator S, defined on L X L satisfying conditions (SM1)-(SM}) is

called IF point similarity measure.

5.2.4 IF Inclusion Measure

In IF'S theory, the degree to which IFS Al is included in IFS B!, denoted as Inc(fl[, BI), is

called an IF inclusion measure. Mathematically, it can be defined as follows:

Definition 5.2.8. [79] An operator I,,. : T x T — [0, 1] is said to be an IF inclusion measure if
the following conditions are satisfied for every IFSs AT, BT and C:

(IM1) I,,.(X,¢) =0,
(IM2) A € B! = I,.(A',B") =1,
(IM3) A’ C B! C C! = I,.(C', A") < min(I,.(B', A"), I,.(C', B")).

Definition 5.2.9. The operator I,,. defined on L X L satisfying conditions (IM1)-(IM3) is called

IF point inclusion measure.

5.2.5 IF Normalized Divergence Measure

Definition 5.2.10. [134] An operator Np : T x I — [0,1] is said to be an IF normalized

divergence measure if the following conditions are satisfied for every pair of IFSs AT and B! :
(DM1) Np(A!,B") = Np(B!, AY),

(DM2) Np(Af AN =0,
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(DM3) Np(AL,A') =1 if AL is a crisp set,

(DM4) Np(A'nCT,B'NCT) < Np(A',BHYY CT e T,

(DM5) Np(ATUC!, BTUC!) < Np(A,BHYY CT e T.

Definition 5.2.11. The operator Np defined on L x L satisfying conditions (DM1)-(DM5) is

called IF normalized point divergence measure.

5.2.6 IF Dissimilarity Measure

Definition 5.2.12. [13/] An operator ds : Z x I — [0,00) is said to be an IF dissimilarity

measure if the following conditions are satisfied for every pair of IFSs AT and B :
(diss1) d,(A’, BT) = d (B', A1),

(diss2) d,(A!, AT) =0,

(diss3) A’ C B' C CT = d (A',CT) > max(d,(A!, BY), d,(B', C")).

Definition 5.2.13. The operator ds defined on L x L satisfying conditions (diss1)-(diss3) is

called IF point dissimilarity measure.

Example 5.2.14 (IF-dissimilarity measures that are also IF normalized divergences [97]). The

IF dissimilarity measures between fl{ and Aé are given by

n

. don(A], Af) = % Z(WA{(%) — pan ()| + [var(x;) — v (x;)]) (5.6)
. dyr (A7, A7) = % Z(\(SA{(%’) — Sa(z)l + 1(Sar () + S 41 (x;))]) (5.7)

where Szi(x;) = [par(x;)—var ()| and Sz (x;) = |pai(x;)-va(x;)|. These IF-dissimilarity

measures are also IF normalized divergence measures.

5.3 Continuity property for the measures of information

In this section, we define the continuity for the information measure in IFE and investigate their
properties.
In R?, the well-known metrics, like, the Euclidean distance and the Hamming distance are

defined as follows.
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e The Euclidean distance between u = (u1,u3) and v = (v, vy) in R? is given by

dP(u,v) = /(uy — v1)? + (ug — vo)2.
e The Hamming distance between u = (uy, us) and v = (vy,v3) in R? is given by

d (u,v) = |uy — vi| + Jug — val.

If we restrict these distances to £, then we obtain the metric space (£,d”), where d¥ is the
Euclidean distance on £, and the metric space (£, d"), where d* is the Hamming distance on
L. Denote, for any v € L, uy = 1 — w3 — ug. Szmidt and Kacprzyk [167] have defined two

distances on £ based on the Euclidean and the Hamming distances, where also u, is used.

e The d¥ between u = (uy,us) and v = (vy,v2) in £ is given by

d” (u,v) = v/ (ug — v1)2 + (U2 — v9)? + (Ur — Vg)2
e The d between u = (uy,uz) and v = (vy,v9) in L is given by

A" (u,v) = |uy — vi] + |ug — va| + |ur — val.

Deschrijver et. al [59] proved that these distances are topologically equivalent.

Definition 5.3.1. Let d : L x L — [0,1] be the Euclidean distance or the Hamming distance. A
function T : TXZ — [0, 1] is continuous if for every e > 03§ > 0 such that for every fl{, flé ez,
IT(AL, BY) —T(AL, BY)| < € for every B! € T whenever _max d((par (), var(x), (par(e),

VAg(xi))) < 9. =1.2,...,

Theorem 5.3.2. Let p = (p1,p2) € L and fl; = {(@i, pir(x;) =pr,vi(z) =p2) iz, € X} €T
Let Y : T xZ — [0,1] be an IF normalized divergence measure, IF inclusion measure, IF
similarity measure, IF dissimilarity measure or IF normalized distance measure. Then the

function v : L x L — [0,1] defined by
v(p,q) = T(fl][), flé) V p,q € L and A}IO, flé el (5.8)

15 an IF normalized point divergence measure, IF point inclusion measure, IF point similarity

measure, IF point dissimilarity measure or IF normalized point distance measure respectively.

Proof. Let us suppose that Y : Z x Z — [0, 1] is the IF normalized divergence measure. Then

(i) T(AL Al =T (AL ALy = ~y(p,q) = (¢, p),
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(i) v(p.g) =0 & T(A,A)) =0 & AJ=A] & p=gq
(iii) Suppose flfo is crisp set, i.e., flé =0 or X. Then Y(0, X) =1 < ~(0.,1,) =1,
AL ) < T(AL Al = 4(p,q),

(iv) v(pAr,gAr) =T(AL .,

(v) v(pVrgVvr)=T(Al

:er?

Thus, v : £ x L — [0,1] is an IF normalized point divergence measure.

Similarly, if T : ZxZ — [0, 1] is an IF inclusion measure, [F similarity measure, IF dissimilarity
measure or [F normalized distance measure, then we can easily prove that v : £ x £ — [0, 1]
is an IF point inclusion measure, IF point similarity measure, IF point dissimilarity measure or

IF normalized point distance measure respectively. O

Theorem 5.3.3. Let v be an IF normalized point divergence measure, IF point similarity mea-
sure, IF point dissimilarity measure or IF normalized point distance measure respectively ob-
tained from the corresponding IF measure as given in Theorem 5.3.2. Then Y is continuous iff

Y 18 conlinuous.

Proof. (=) Suppose T is continuous. Then for every £ > 03 > 0 such that for every fl{, flé €

.....

ugé(xi))) < 0. Therefore, for ¢ thus obtained, let p’, ¢’ be such that max{d(p,p’),d(q,q")} <.
Let us take Al = Al A} = Al and B! = Al,. Then

izrf}gfind((lhi{(%),VA{(xi))a (Mgé(xi), Vgé(:vi))) =d(q,q) <6

and therefore, from the continuity of T, it follows that
Lo L €
(W' d) =)l = [T (B, A1) = T(B', A3)| < 5
Similarly,

€
@ q) —(p,q)| < 3

Therefore,

@, qd) =7, ) < W, d) =@ )l + 1@ ) — ()| < e

Thus, v is continuous.

(<) Since 7 is continuous, for every ¢ > 0 3 6 > 0 such that |y(q,p") — v(¢,p)| < €
whenever d(q,q') < 6. Let us put Al = Al Al = Aé, and B! = /Nlé,. Then for every
AlLAL € T, |7 (AL BY) — Y(AL BY| = |7(q,p') — v(d,p')| < € for every B! € T whenever
e d(egg (). vag (@), (@) (2)) <. 0

------
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Definition 5.3.4. (i) ((a, §)-cut of IFS) The (a, B)-cut of an IFS A" is denoted by A(a,p) and
1s defined by

Awp ={z e X pp(r) = avp(z) < B},
where (a, ) € L.
(ii) The (o, B)-cut of the complement of IFS Al is denoted by A/(a,,B) and 1is defined by
Aoy =z € X v (2) 2 a pu(z) < B,
where (o, f) € L.

(iii) A new type of IFS, derived from (o, §)-cut of a A7, is denoted by (a,8) A7

(a7

8 and is defined
by
(a,B), € Al g

0, otherwise.

(@8 A (T) =
For simplicity, we denote (o, 5) := & € L.
Decomposition Theorem: For every IFS A’
Al = U 4AL,
aeL
where 4 A/ is defined by Definition 5.3.4 and U denotes the standard IF union.

Proof. For each point z € X, A'(z) = (p4:(2), v1:(x)) is an element of £. Then

(AU dAg) (x) = inf ( sup aA;(x)) = max( inf ( sup dAg(x)),
aeL a€[0,1] \ ge[0,1-a] a€[0.1] \ ge[0,u 41 (2))
inf < sup aAfl(:c))) = inf ( sup aA;l@))
a€(0,1] BElu 51 (z),1-a] a€l0,1] BE[u 41 (2),1—]

:max( inf ( sup dA'd(x)), inf ( sup aA;@:)))
a€l0w 1 (@) \Be[u 41 (2),1-a] a€(v 1 ()1 \ Belu 41 (2),1-a]

ot (@) = ()

a€0,v 41 ()] BE[1 41 (),1—a]

=A! ().
Since the same argument is valid for each x € X, the theorem is proved. O

Theorem 5.3.5. Let A : T x Z — [0, 1] be an IF normalized divergence measure, IF inclusion
measure, IF similarity measure, IF dissimilarity measure or IF normalized distance measure.

Then the function X : L x L — [0,1] defined by

A&, &) = A(s AL, gAL) V &, G € Land 4Af, 3A; €T (5.9)

o Q)
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18 an IF normalized point divergence measure, IF point inclusion measure, IF point similarity
measure, IF point dissimilarity measure or IF normalized point distance measure respectively.
Proof. Suppose A : Z x T — [0,1] is an IF normalized divergence measure. Then

() Aladl, g45) = A(AL, AL) = A(@, &) = A(é, a),

(ii) )\(d,OAZ)ZO = A(dA/A A.A’&)ZO = &Ag: A

Q) & a“ g

& a=q,

(i) Suppose 4 A, is crisp set, i.e., 3A5 =0 or X. Then A0, X) =1 < A(0,,1,) =1,

(iV) )‘(d N &7 G A OC‘) = A(&/\&A;/\&a &/\&Alé}/\&) < A(&A/én &Aé) = )‘(dv OA‘)?
(V) )‘(OAé N OC‘: OAé v OC‘) = A(d\/&A,&\/&a &V&Ag‘\/&> S A<07Agn &A/&) = )‘(&7 CAV)

Thus, A : £ x £ — [0,1] is an IF normalized point divergence measure.

Similarly, if A : ZxZ — [0, 1] is an IF-inclusion measure, IF-similarity measure, IF-dissimilarity
measure or [F normalized distance measure, then we can easily prove that A : £ x £ — [0, 1]
is an IF point inclusion measure, IF point similarity measure, IF point dissimilarity measure or

IF normalized point distance measure respectively. O

Theorem 5.3.6. Let \ be an IF normalized point divergence measure, IF point similarity mea-
sure, IF point dissimilarity measure or IF normalized point distance measure respectively ob-
tained from the corresponding IF measure as given in Theorem 5.53.5. Then A is continuous iff

A 18 continuous.

Proof. (=) Suppose A is continuous. Then for every § > 0 3§ > 0 such that for every A{, flg €
Z, |A(AL, BY)— A(AL, BY)| < £ for every B! € T whenever _max d((par (), var (@), (ag (),
v1(2;))) < 6. Therefore, for § thus obtained, let &/, & be sucirljtlglat max{d(a, &), d(&, &)} < 6.
Let us take Al = &A%, Al = &A%, and B! = 4AL,. Then

!

max d((uar (), var (@), (s (x:), var (@) = d(é,8') < 6

i=1,2,....n
and therefore, from the continuity of T, it follows that

~

~1 oy ~A) & 7 1 ~ 't €
M@, d) =A@ @) = [A(B', A7) = A(B', A3)| < 5

similarly,
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Therefore,
IME, &) — Mé, &) < [ME, &) = ME, &)+ M, &) — Ma, @)| < e

Thus, A is continuous.
(<) Since A is continuous, for every e > 0 3§ > 0 such that |\(&, &) — M(/, &')| < € whenever
d(&, &) < 6. Let us put Al = aAL, Al = &AL, and B' = 4 A%, Then for every Al, Al € T,

-----

var (i), (mag (i), vag (i) < 9. O

Definition 5.3.7. A function M : [0,1]" — [0, 1] is called an aggregation operator if it satisfies

the following conditions:

i) M, o0, ...,0)=0;

@) M(1, 1, ..., 1) =1;

(iii) M is monotonic non-decreasing in each arguments.

An aggregation operator M : [0,1]*> — [0,1] is called a binary aggregation operator.
Example 5.3.8. [76] Let x1,xo,...,2, € [0,1]. Then

(1) the weighted arithmetic mean of xq,xs, ..., z, is defined as

Yo wixy, where 0 <w; <1, 3" w; = 1.

(ii) the weighted geometric mean of x1,xa, ..., %, is defined as
[T, 2, where 0 <w; <1, > w; =1
(iii) the gamma operator of x1,xa, ..., x, is defined as
n 1 n
([Tz) (=TI —=)" 7 € [0,1].
i=1 i=1

Remark 5.3.9. ([48], [53], [114], [198]) Different considered information measures introduced

in this chapter for IF'S were originally introduced for FSs, using the same axiomatic.

Proposition 5.3.10. Let 1/, 15 be two normalized point divergence measures, point inclusion
measures, point similarity measures, point dissimilarity measures or normalized point divergence
measures for FSs on X and let a map M : [0,1] x [0,1] — [0, 1] be a binary aggregation operator.
Then the function ¥ : T x T — [0,1] defined by

V(AL BY) = Mg (pr (@), pgi (2)), (v (), v 30 (2))) (5.10)
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VA, B! €I, z e X, is an IF normalized divergence measure, IF-inclusion measure, IF-

simalarity measure, IF-dissimilarity measure or I[F normalized distance measure respectively.

Proof. Suppose 11, 1y are two normalized point fuzzy divergence measures and M : [0, 1] x

[0,1] — [0, 1] is a binary aggregation operator. Then

(i) if 11,99 are symmetric (i.e., all mentioned inform measures but not inclusion measures),

then obviously it holds W(A’, BT) = w(B!, A7),
(i) w(A!, AT) = M(0,0) =0,
(iii) Suppose A’ is crisp set, i.e., AT = () or X. Then W(AT, AT = M(1,1) =1,

(iv) WA NCI BN CT) = My (par(x) A per(x), pgr(x) A per(x)), da(vg (@) Voe (),
var(@) V ver(@) < Mg (@), pg(@)), ¥o(vp(x), va(x))) = WAL BY), (iv) U(ATU
CLB'UCT) = M1 (par (@) V per (), ppr(@) V per (), ol
ver(2))) < MW (g (), ppn (), dolva(z), vi(x))) = WAL, BY).

Thus, ¥ : Z x Z — [0, 1] defined by (5.10) is an IF normalized divergence measure.

Similarly, if ¢, 19 : Z X Z — [0, 1] are the fuzzy point inclusion measures, fuzzy point similarity
measures, fuzzy point dissimilarity measures and fuzzy normalized point divergence measures
and M : [0,1]> — [0,1] is a binary aggregation operator. Then the function ¥ : Z x Z — [0, 1]
defined by (5.10) is an IF inclusion measure, IF similarity measure, IF dissimilarity measure

and IF normalized distance measure respectively. O

Theorem 5.3.11. Let I'y,Iy,..., ', : Z X Z — [0,1] be the IF normalized divergence mea-
sures, IF inclusion measures, IF similarity measures, IF dissimilarity measures or IF normal-

ized distance measures, and M : [0,1]" — [0,1] be an aggregation operator. Then the function
I':ZxT—[0,1] defined by

I(AL, By = M(T, (A%, BY), Ty (AT, BY),... T, (A, BY)) (5.11)

for all A, BT € T, is an IF normalized divergence measure, IF inclusion measure, IF similarity

measure, IF dissimilarity measure or I[F normalized distance measure respectively.

Proof. Suppose I'1, Ty, ..., T, : T x T — [0,1] are the IF normalized divergence measures and

M :[0,1]" — [0, 1] is an aggregation operator. Then
(i) the symmetricity of I'y,I's, ..., ', follows that ['(A!, B) = T'(B!, A"),

(i) D(A7, ATy = M(0,0,...,0) =0,
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(iii) Suppose A’ is crisp set, i.e., A = () or X. Then I'(A7, A") = M(1,1,...,1) =1,

(iv) the each I'; is an IF normalized divergence measure and M is a non-decreasing correspond-

ing to each argument follow that T'(A N CT, B' N CT) < T(A!, BY) for every C' € Z,

(v) the non-decreasing corresponding to each argument of M and each IF normalized diver-

gence measure I'; follow that T'(A’ U CT, B' U CT) < T'(A!, B) for every C' € T.

Thus, I' : Z x T — [0, 1] defined by (5.11) is an IF normalized divergence measure.

Similarly, if I'1, Iy, ..., I, : ZXZ — [0, 1] are the IF inclusion measures, IF similarity measures,
IF dissimilarity measures and IF normalized distance measures, and M : [0,1]" — [0,1] is an
aggregation operator. Then the function ' : Z x Z — [0, 1] defined by (5.11) is an IF inclusion
measure, [F similarity measure, IF dissimilarity measure and IF normalized distance measure

respectively. O

Theorem 5.3.12. Let I'1,I'y,..., I, : T X T — [0,1] be continuous, and I' : T x T — [0, 1]
be given by (5.11), where all symbols and notation are same as Theorem 5.3.11. Then T' is

continuous iff M is continuous.

Proof. (=) The continuity of I';, Ty, ..., 'y, M and (5.11) follow that I' is continuous.
(<) Let’s see the converse. Since I' is continuous, for every ¢ > 0 3 6 > 0 such that for every
Al AL eT,

IT(AL, By — T(AL BY)| = |M(Dy (AL, BY), To(AL BY), ... T.(AL B)) — M(Ty (AL, BY),
To(A3, BY), ..., T (AL, B)| < e

for every B! € T whenever max  d((par (@), var (i), (pag(@:), va (i) <.

,,,,,

Putting T';(A!, B) = a; and T';(AL, B") = b; for every B! € Z. Then

|M(F1<A{7 BI)7F2(A{7 BI)7 ce 7Fn<"4{7 BI)) - M<P1(A£’BI)7F2<A£’BI)7 ce 7Pn(A£’BI))|
= \M(al,ag,...,an) — M(bl,bg,...,bn>| <e€

77777

But from the continuity of each I';, for every 6y > 0 3 6 > 0 such that for every fl{ , 1215 ez,
Ti(Af, B") = Ti(A{, BY)| = |a; — bi| < &

for every B! € T whenever max d((par (i), var(w:)), (pag(zi), var(zi))) < é. The result

i=1,2,....,n

follows. O
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5.4 Formulation of Decision Making Problem

We check whether the newly constructed information measures, namely, IF normalized diver-
gence measure, [F normalized divergence measure, [F-dissimilarity measure or similar measures,
produce reasonable and reliable results, when they are applied in solving MADM /MCDM prob-
lems. Let I, = {1,2,3,...,4,...,m} and J, = {1,2,3,...,4,...,n}. Here, we take the MADM
problems with different preferences with IF values and alternatives weights. Mathematically,
let R = (Tij)mxn be the IF values decision matrix, where each 7;; = (a;;,b;;) is the value of
L corresponding to each alternative A;(i € I,,) with respect to each attribute C;(j € J,) and
let w = (wy,ws,...,w,)T be the weight vector of attributes, where Y ;_ wy = 1, wy > 0,
k=1,2,...,n.. We calculate the IF normalized distance measure, IF normalized divergence
measure, [F-dissimilarity measure or similar equivalent measures between 7;; and (1/2,1/2) and
naming its r;;.

Let M be the weighted aggregation operator. For simplicity, here, we take M as additive or
multiplicative weighted aggregation operator, i.e., > 7, wjri; or [[7_, ris.

Definition 5.4.1. The alternative Ay is preferred to the alternative A; , we write Ay = Ay, if

there are wy,ws, ..., w, such that

M((whrkl)a (w27rk2)7 ceey (wjvrkj)a sy (wnyrkn))_

M((wla 7hll)7 (w2a rl?)) ey (wjv le): LI (w'rw Tln)) 2 07

where Y ¢y wy =1, w, >0, t € J,, and M is the additive or multiplicative weighted aggregation

. wy
operator, i.e., Z?:l w;Ti; Or H?:l T -

5.5 Structure of the Weight-Set for one preference

The mathematical model for finding the lower and upper value of attribute weights, when the

one preference of alternates are given, namely, Ay >, A;, is given by

(
min w

st. M((wy,rin), (o, rr2), - oy (Wi, Tk5), - -+ (W, Ten) ) —
M((Ull,’l"ll), (w27r12)7' sy (wjalrlj)a- O (wnarln)) Z Oa

\Z?zlwt = 17 wy 2> 07 te Jna
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and

max w
st M((wy,rr1), (Wa, Th2), - ooy (W5, Thj)s - oy (Why Thn) ) —
M (w1, 1), (W2, m12), - oy (W), 715)s -+, (Wn, T1)) > 0,

\Z:;l Wi = ]_7 Wy 2 O, t e Jn,

(CPY) =

where M is the additive or multiplicative weighted aggregation operator, i.e., Z?:l w;r;; Or
| J r;;j .

Remark 5.5.1. (i) Let M be the additive weighted aggregation operator, i.e., M((wy,r:),
(wa,7i2), oy (Wn,y 7)) = Z;L:1 wjrij. Thenw(k,l) ={w:rw =737 rw, >0,> 0w =
Liw, > 0,t € J,}, where v = (rq,r9,...,7), 1t = Tk — T, t € Jp. w(k,l) is called the
weight-set for Ay =, Ay corresponding to the additive weighted aggregation operator.

(ii) Let M be the multiplicative weighted aggregation operator, i.e., M ((wy,ra), (we,742), - ..,
(W, min)) = [15, i Then w(k,1) = {w:rw =3 rawy > 0,50 jwy = 1wy > 0,t €
Jn}, where r = (ri,ro, ... 1rn), 7o = Inrgy — Inry, t € J,. w(k,l) is called the weight-set

for Ay = Ay corresponding to the multiplicative weighted aggregation operator.
Lemma 5.5.2. The polyhedron w(k,l), given in Remark 5.5.1, is bounded and convez.
Proof. Since
w(k,l) C EY ={w:w,>0,t € J,},

and E7 is bounded, w(k, 1) is bounded.
Let w,w’ € w(k,l). Then

n

rw:ZTtwt ZO,Zwt: 1wy >0,t € J,,

t=1 t=1
n

n
rw = Zrtwg > O,ng =1,w, > 0,t € J,.
=1

t=1
Now, ¢

n

srw +¢'ru’ = Z srywy + ¢'ryw;
=1

n
= Zrt(gwt + §/wl/5> > O,
t=1
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where ¢,¢’ > 0 and ¢ +¢ = 1.

n n n
Z sw; + ¢'wy =¢ Z rwy + ¢ Z W,
t=1 t=1 t=1
=c+¢ =1

Therefore, w(k, 1) is convex.

Thus, w(k,l) is bounded and convex. O
Lemma 5.5.3. [155] If w(k,l) # 0, then w(k,l) has a finite number of extreme points.

Our aim is to determine attribute weights wy, ws, ..., w,.
Let ¢', 4%, ..., q° be the extreme points of w(k,!). Then w(k,[) can be written as a convex

linear combination of the extreme points [155], we have

/LUUC,l) = {thgh : th: 17£h 20,h= 172a"'75}
h=1 h=1

Consider the following constrained conditions:

wy+we+ - +w, =1
wy > 0,we >0,...,w, >0

(5.12) can be written in the standard form as

w1+w2+~--+wn:1
rwy 4 rows 4 -+ rpw, — 2 =0 (5.13)
wy > 0,we >0,...,w, >0,z>0.

We need the following results to determine wq, wo, . .., w,.

Lemma 5.5.4. [155] Every basic feasible solution of the system (5.13) is an extreme point of

the convex set of the feasible solutions and conversely.

-1 -1 -1

1 1 1 1 1 1 0 1 )
Let , > 0; or >0,t,t €J, t <t exist. Then
Ty Ty Ty Ty O Tt —1 0

a basic feasible solution (i.e., an extreme point) of w(k,1) can be obtained. Thus, we have the

following Lemmas 5.5.5 and 5.5.6.

Lemma 5.5.5. Ifry £ ry and ryry <0 fort <t t,t' € J,, then ¢ = (0,0, 0, 0, ...,

Py —rt)?

0, —/,0,... ,O)T € E™ is an extreme point of w(k,l), where —— and — - are the t-th and

Tt
Y org—ry)? Ty =Tt T —Tt

t'-th components of q respectively.
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T ... 1 ... 1 ... 1 0
Proof. Let Rg = )
T Te ... Ty ... Ty ... T, —1
W = [wl Wy ... Wp ... Wy ... Wy, Z],WherewlZO,wQZO,...,wnZO,ZZO.

Then the w(k,[) is written as

Since ry # ry, t,t' € J,, t <1,

1 1 _
exist.
Ty Ty

Since —£— >0, =" >0, ¢, € J,, t <1,

Ty —Tt — Ty =Tt —

~1
1 1 1 1 | T 0
— — Ty —Tt Z .
Ty Ty 0 v =Tt | —ry 1 % 0
+/ Tt

Thus, ¢ = (0,0,...,0, —£-,0,...,0, =20, .. ,O)T € E™ is an extreme point of w(k,l). O

P =) Y=’

Lemma 5.5.6. Ifr, >0, t € J,, then
g=e,=(0,0,...,1,...,00f ¢ E"
is an extreme point of w(k,l).

Proof. Since r, >0, t € J,,,

-1 -1
1 0 ) 1 0 1 1 0
exist, and = >
Tt —1 Tt —1 0 Tt 0
. Thus, ¢ = (0,0,...,1,...,0)T € E™ is an extreme point of w(k,1). ]

Lemma 5.5.7. If r, # ry,1 < k < | < n, then the necessary and sufficient condition for
>0, = >0 45 1y < 0.

Ty—Tt — 7 Ty—Ty —

Proof. (=) Suppose that .~ >0, ="t > 0. Then
t/ t/

Tty S 0

(«<=) Suppose that r;ry < 0. Then arises three cases:
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Case 1: If ry > 0, r, < 0, then ry — r; > 0. Thus,

Ty —T¢

> 0, > 0.
Ty — T Ty — T
Case 2: If ry <0, r, > 0, then ry — r; < 0. Thus,
Ty —T
>0, Lo>o.
Ty — T Ty — T

Case 3: If rp =0 (or r, = 0), then 7, # 0 (or rp # 0). Thus,

Ty Ty —T —T¢
=0 [or =1/, =1 |or =0].
Ty — Ty Ty — Ty Ty — Ty Ty — Ty

[]

In the following Theorem 5.5.8 and Corollary 5.5.9, we give the necessary and sufficient

condition to judge whether the weight-set w(k,[) is empty.

Theorem 5.5.8. The necessary and sufficient condition for w(k,l) # 0 is that either there exist
t and t', wheret € J,, ry # ry, rry < 0, or there exists t, where t € J,, ry > 0.

Proof. From Lemmas 5.5.6 and 5.5.7, we have

Ty

T 7£ Ty,

9
Ty — Tt Ty — T

which are equivalent to the conditions
Ty # Ty, rry < 0

If w(k,l) # 0, there exist extreme points, and the extreme points of w(k,[) are given in the

forms of Lemmas 5.5.5 and 5.5.6. OJ

Corollary 5.5.9. The sufficient and necessary condition for w(k,l) = 0 is that there are no t
and t', where t,t' € J, andt <t', ry # ry, ryry <0, or there is no t, where t € J,, r; > 0.

A structure of the weight-set w(k, ) is given in Theorem 5.5.10.

Theorem 5.5.10. If w(k,l) # 0, and ¢*,¢%, ..., q° are the extreme points of w(k,l) determined
either by Lemma 5.5.5 or 5.5.6, then the weight-set for Ay =, A; can be written as

U)(k,’,l) = {thgh : Zgh: 17£h Zoah: 1727"'78}
h=1 h=1
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Proof. Since w(k,l) # 0, i.e. w(k,l) is a bounded convex polyhedron, w(k,[) can be written as

a convex combination of the extreme points [155]. O

Let us consider the following example. Example 5.5.11(ii) is a situation where the condition
of Theorem 5.5.8 is not satisfied, i.e., w(k,l) = (. Example 5.5.11(i) is a situation where
w(k,l) # 0.

Example 5.5.11. The decision information of a MADM problem with four attributes (n = /)

and four alternatives (m = 4) is given in Table 5.1.

(i) We consider Ay =, As. Then from Table 5.1, we have
1 = (0.2,0,—0.1,0.3). Sincer; =02 >0, r,=0,7r3 = —-01<0,r, =03>0, by
Lemmas 5.5.5 and 5.5.6, we get

¢ =(1,0,0,0)",¢* = (0,1,0,0)",¢* = (0,0,0, )", ¢* = (1/3,0,2/3,0)", ¢’ = (0,0,3/4,1/4)"
(5.14)
are the extreme points of w(2,3). Thus by theorem 5.5.10, we have

s 5
w(2,3) ={> _¢"64:> & =18 >0,h=1,234,5}

h=1 h=1

where ¢*, ¢%, ¢%, q*, ¢° are given in (5.14).

(ii) We consider Ay =, Aa. Then from Table 5.1, we have
. = (-0.1,-0.3,-0.1,—-0.1). Since ry = —0.1 < 0, 13 = =03 < 0, r3 = —0.1 < 0,
ry = —0.1 < 0, by Corollary 5.5.9, we get w(2,3) = (. Thus, it is impossible to satisfy

Aq = As.
Table 5.1: Decision matrix Table 5.2: Decision matriz in [FE
C, Cy C3 Oy Ci Cy Cs Cy
A 0.8 0 0.2 0.8 Ay (0.6,0.2) (0.5,0.5) (0.4,0.3) (0.7, 0.2)
Ay 0.4 0.3 0.8 0.4 Ay (0.3,0.3) (0.2,0.6) (0.5 0.2) (0.1, 0.8)
As 0.2 0.3 0.4 0.1 As (0.4, 0.4) (0.6,0.2) (0.7, 0.1) (0.4, 0.5)
Ay 0.2 0.8 0.25 0.2 Ay (0.5,0.3) (0.8, 0.2) (0.25, 0.75) (0.3, 0.7)

5.6 Structure of the Weight-Set for many preferences si-
multaneously

The mathematical models for finding the lower and upper value of attribute weights, when

the many preferences of alternatives are given, namely, A;, >, Aiﬁl s Anyty € Ly in # i,
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h=1,2,...,s, are given by

4

min w
s.t. M((wl,'f’ihl), (w27rih2>> R (wjv'rihj)a T
(CPj) = (wn7rihn)) - M((wlﬂ”i;g), (w2,7’i;l2)7 cee

(wjvri%J')? T (w”’rigln» >0, h=12,...,s,

\2?21 Wt = 1, Wt Z 0, t e Jn,

and
.

max w

s.t. M((wl,rihl), (wg,rihQ), ceey (wj,rihj), ey
U

(CPA) = (wna rihn)) - M((wla ri%l)a <w27 741'22)’ SR

(Wi, rir )5y (W i) 20, h=1,2,... s,

\Z?:lwt = 1, Wt Z O, t e Jn

We consider the weight-set for satisfying many preference orders of alternatives simultaneously.

Note that iy, i), € I, in # iy, h =1,2,..., s, and the weight-set for A4;, =, Ay is

n n n
w(ip, iy) = {w : Znhtwt > Zri%twt,Zwt =1,w; >0,t € Jn}.
t=1 t=1 t=1

So the weight set for A;, =, Ay, h=1,2,...,s1is
'Z,U('lh,'l;,”h = 1,27. . .,S) :{w . A’il >_’u1 Ai/17Ai2 >‘w A2/27 . 7Ait >‘w AZ{}

n n
—{w: E Tip Wy > E riiw, h=1,2,... s,

t=1 t=1

n

E Wy = 1,wt 2 O,t = ]_727...,71}.

t=1
Let

Tn :(ri}ll,rii, I 77,1";2) — (Ti;},ri;?, e ,7’1.;:,,)
:(T,L}L - ri’hl)/rii _TZ»’hQ, e ,TZ’;LI _/r‘z/hn)7 h — ]_727. . -,S.

We have

w(ih,iﬁl;h:1,2,...,3):{w:&hwZO,h:1,2,...,5,Zwt:1,wt20,t€ I},

t=1
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where w = (wy, ws, ..., w,)T € E™.

First we consider the weight-set

w(iy, i) = {w : Fiw > O,Zwt =1lw >0,t e J,},
t=1

By Theorem 5.5.10, we have

t1
wiiy, i) ={Q'¢" : > ¢ =1¢ >0t=12. 4},
t=1

where Q' = (¢'',¢"%, ..., ¢" )iyxty;,  to = n and ¢!, ¢"% ... ¢ are the extreme points of
'LU(AAZ1 = w Ai’l)'

Now we consider

w(ip, iy h =1,2) ={w : Hyw > 0, 7w > O,Zwt =1,w>0}
t=1
={w : w € w(iy,}), 2w > 0}

t1

={w:w=Q\NrRw>0,Y =1¢>0t=12,... .4
t t

t=1
={Q'¢" : (RQHE > 0,25} =1,¢ >0,t=1,2,...,t;}
t=1

Let the convex polyhedron be

[1]

t1
= (RQNE =0, g =1¢ >0t=12.. 1}
t=1

We obtain @ in a similar method (see Lemmas 5.5.5-5.5.7), where Q* = (¢*',¢*%, ..., ¢*?)¢, %1,

and ¢*', ¢*2, ..., ¢** are the extreme points of Z'. Here we have

[1]

to
! :{Q2§2Z§t2:17§t2 Zoat:1727"‘7t2}

t=1

and
w(ipn, iy h=1,2) ={Q'¢" : ¢ € '}

={Q'Q*¢*: igf =1, >0,t=1,2,...,1}.

t=1

Similarly, we have

ts
wlin, i h =1,2,3) ={Q'Q°Q°¢®: > & =1, >0,t=1,2,... 13},
t=1
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where Q® = (¢*',¢%%, ..., %), xt, and ¢!, ¢*2, ..., ¢* are the extreme points of Z2. Here we

have

t2
2 ={: (RmQ'QNE >0, & =1,>0,1=12, .., 1}
t=1

t3
={Q¢ ) & =1.>01t=12.. 1t}

t=1
Hence we obtain the weight-set for satisfying many preference orders of alternatives simultane-
OU.Sly (An ~w Az’17 AiQ ~w A'L’Za s 7Ais ~w Azg)a i'e-a
ts
wlin, ih;h=1,2,...,8) ={Q'Q*--- Q¢ > &=1>0t=12,... 1}
t=1

where Q' = (¢!, ¢%, ..., ¢**)s,_1xz, and ¢*', ¢*%,. .., ¢ are the extreme points of Z°71.

tp—1
2= (RPN 20,y T =L 20,0=12 . t,0)

t=1

tp

={Q: Y & =1,8>0t=12.. ..t} p=12..s

t=1
Example 5.6.1. The decision information of a MADM problem with four attribute attribute (n
= 4) and four alternatives (m = 4) is given in Table 5.1. We consider Ay =, As and Ay =, A4.
Then from Table 5.1, we have
™ = (0.2,0,—0.1,0.3) and 7, = (0.1,—-0.3,—0.05,0.1). From Ezample 5.5.11, we have Since
rr=02>0,r=0,r3=-0.1<0,r,=0.3>0, by Lemmas 5.5.5 and 5.5.6, we get

w(273) :{w P rw Z 07w1 + wo + w3 + wy = 17w17w2;w37w4 Z 0}

s 4
=) ¢"6 > & =18 >0h=1,234,5}
h=1

h=1
4
={Q'¢: D G =16 >0h=12345},
h=1

where
¢"' = (1,0,0,0)",¢"* = (0,0,0,1)",¢"* = (1/3,0,2/3,0)", ¢"* = (0,0,3/4,1/4)" ¢"° = (1,0,0,0)"
and

1/3 0
0 0
2/3 3/4
0 1/4

_ o O O
_ o O O

o o O
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Note that the weight-set for Ay =, Az and Ay =, Ay is
w(273) 174) = {w trw Z 07f2w Z Oawl + wo + w3z + wy = 17w17w27w37w4 Z O}

4
—{Q"¢: (RQME > 0,> & =1,6,>0,h=1,2,3,4,5}
h=1

Let the convex polyhedron be
4
2 ={&: (mQY& >0, & =1,6 >0,h=1,2,3,4,5}.
h=1

We have 75Q' = (0.1,-0.3,0,—0.0125,0.1). Since 0.1 > 0,—0.3 < 0,—0.0125 < 0, by Lemma
5.5.6, we get

¢*' = (1,0,0,0,0)",¢** = (0,0,1,0,0)",¢** = (0,0,0,0,1)", ¢** = (3/4,1/4,0,0,0)",
¢* =(1/9,0,0,8/9,0)",¢* = (0,1/4,0,0,3/4)",¢** = (0,0,0,8/9,1/9)"

are the extreme points of convex polyhedron =Z;. We have
4
B ={Q% Y & =1,6>0h=1,2,34,56,7}
h=1

where

o = O O
= o O O

o O O =
o O = O

Finally, we have
4
w(2,3;1,4) ={Q'Q°G : Y & =1, >0h=1,2,3,4}
h=1

where Q*, Q? are given above in this problem.

5.7 Determination of attribute weights for given prefer-

ences

In this section, we find the attribute weights in uncertain and certain environments.
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5.7.1 Determination of attribute weights in uncertain environment

Based on the structure of the weight-set, the uncertain weight for every attribute can be deter-

mined and used for decision analysis. Suppose that the weight-set for A; >, A; is

t t
wk, ) ={> ¢"¢: > &=14>0h=12 .5},
k=1 k=1

where ¢',¢%, ..., ¢" are the extreme points of w(k,1).
Let ¢" = (¢f,q5,...,¢%)T, h = 1,2,...,s. Note w} and w/ are the lower bound and upper
bound of the [ — th element w; in weight vector w such that A; >, A;, respectively. w} and

w! can be obtained by solving the following linear programming problems (PL) and (PY),

respectively,
min 22:1 TS
(P) = st S 6 =1,
gt 20, h:1,27...,8,
and

max Zizl qrée
(PU) = s.t. ZZ:]_ gt = 1,
£>0, h=1,2,...,s

Let A= (A4, A%, ..., 2D and N = (Xll,X;, e ,Xi)T be the optimal solutions of (PL) and (PY),

respectively. Then w/ and wY can be obtained by

t t t t
L . kyl kY U k! kY
w; :mln{qugk,qu /\k}, w; :maX{quAk,qu)\k}.
k=1 k=1 k=1 k=1
Thus, the uncertain weight vector w for A; =, A; can be obtained as

I:wf7 w?]? [w§7 wg]7 ) [wL wU]

n? n

5.7.2 Determination of attribute weights in certain environments

With the help of obtained uncertain attribute weights in previous section and decision matrix,

we model the programming problem for finding certain positive attribute weights, as given
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below:

max w(M ((w1,7x1), (W, Tk2), - -, (W), Thj)s - - oy (Wny Thn))s
ey M((w1, rmr ), (Way, T )y - ooy (Wi T )y v v oy (Why T

(oW = | (w1, 7m1), (w2, Tma2) (wj, Tmg) ( )
s.t.egthSwlSw?, te J,,

\Z?ﬁ wy = 1,

where € > 0 is sufficiently small and M is the additive or multiplicative weighted aggregation

operator, i.e., M((wy,7i), (w2, 1i2), - -, (Wn,7in)) = D5y wyry; or T, i

5.8 Selection of alternatives

The selection of alternatives, when one or more preferences of alternatives is given, is summa-
rized in Algorithm 1.

For the reasonability of the proposed algorithm, we consider a numerical example adapted

Algorithm 1 Selection of alternatives

Step 1. Calculate the IF normalized distance measure, I[F normalized divergence measure, 1F-
dissimilarity measure or similar equivalent measures of each 7; from < 1/2,1/2 >x and naming
it as Tij-

Step 2. Let w; be the weighting value corresponding to the jth attribute.

Step 3. Model mathematical programming problems as problems (C'PL) and (C'PY) for given
one preference of alternatives, and (C'P%) and (CPY) for given many preferences of alternatives.
Step 4. Model mathematical programming problems as problems (P*) and (PY).

Step 5. Calculate the uncertain attribute weights of the problems (P*) and (PY).

Step 6. Calculate each w; of the problem (C'W).

Step 7. Aggregate r;; for each alternative into collective overall values r; by using Definition
5.3.7, Example 5.3.8 and positive attributes weight vector.

Step 8. Rank all the alternatives A;(i = 1,2, ...,m) according to the collective overall values
ri(t=1,2,...,m).

Step 9. Select the best alternative from ranked alternatives (as done in Step 8).

from Das et al. [50]. An investment company wants to invest money in the best possible option.
The four possible alternatives to invest money are as follows: (i) A car company (A4;). (ii) A
food company (As). (iii) A computer company (Asz). (iv) An arms company (Ay).

The investment company must take a decision according to the following four attributes: The
risk analysis (C}), the growth analysis (Cy), the environmental impact analysis (C3) and the
social, political impact analysis (Cy4). The four possible alternatives A; (i =1, 2, 3, 4) are to be
evaluated using the IF values information by the decision maker under the above four attributes

C; (j =1, 2, 3, 4) with preferences Ay >, A3 and A; >, Ay, as listed in the following matrix.
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Then, to find the most desirable alternative(s) based on proposed Algorithm 1.

Applying Algorithm 1 for the preferences Ay >, A3z and A; =, A4, and taking normalized
hamming distance H (eq.(5.1)) and € = 0.01, it is observed that used normalized hamming
distance H (eq.(5.1)) measure indicates that the alternatives ordering is Ay = A; > Ag = As.
It is confirmed that A, is the best alternative from given set of alternatives {A;, As, Az, A4}

5.9 Concluding remarks

In this chapter, the definitions of normalized divergence, similarity, dissimilarity, inclusion and
normalized distance measures in I[FE are analyzed the existing axiomatic. We have established
the following: (i) the IF point measures generated from the measures of the standard IFSs
constructed by level sets and other special set flé (ii) the measures derived from point measures
(iii) aggregated measures from the set of measures, and studied the continuity relation rela-
tionship between them. We have given the concept of weights for one and many preferences of
alternatives. Also, we have modeled the mathematical programming problems for determining
the positive certain attribute weights. Finally, an algorithm is given for the selection of the
best alternative from the given set of feasible alternatives with given preferences. A numerical

example is given to demonstrate the effectiveness of the proposed algorithm.
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Chapter 6

Residual implications on £ based on

powers of continuous t-norm

Residual implications constitute a special class of implications on £, which play important
roles from theoretical to practical aspects. Many authors investigated various properties of
different types of implications on £ and established the interrelationships among them. In this
chapter, the powers of a t-norm 7 with identical tuple elements on £ are introduced and their
properties are studied. More specifically, a new type of implication on £, known as the residual
implication is derived from powers of continuous t-norm 7, which is denoted by I;; and satisfies
certain properties of residual implications by imposing some extra conditions. Moreover, some
additional important properties are studied and analyzed. These altogether reveal that they
do not intersect the most well-known classes of fuzzy implications. Finally, we investigate the

solutions of Boolean-like laws in I1s.

6.1 Introduction

The fuzzy implication is equally important from both the theoretical and practical points of
view. From the theoretical point of view, the development of algebra is done and their properties
are studied. From the practical point of view, the fuzzy implication is used to study approximate
reasoning and network problems, etc. (see [19, 106]). Several authors worked on fuzzy connec-
tivity [102], continuity on t-norms and residual implications [99, 101, 103], and fuzzy modeling
through grouping, overlap functions and generalized bientropic functions [39]. The concept of
Archimedean overlap functions, the ordinal sum of overlap functions and their limiting proper-

ties are given in [64]. The cancelation property is useful for t-norms and t-conorms and their

155
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brief studies are given in [124]. Development of the powers of t-norms (powers acquire positive
real numbers) and their properties are studied for strict and nilpotent cases (see [177]). After
that, fuzzy implications have been derived from powers of continuous t-norms and studied their
properties in [128]. In [175], ®-composition of fuzzy implications are given and investigated
the properties over fuzzy implications. A special class of fuzzy implication operators known as
R-implications (residual implications) is derived from t-norm [11], overlap functions [65] and
aggregation operators[141] and properties are studied in brief. The distributive laws of fuzzy
implications over overlap and grouping functions are given in [148].

Nowadays, many different extensions of FSs are known e.g., L-FSs proposed by Goguen [80],
interval-valued FS proposed by Gorzalczany [81] represents the degree of membership of an
element by an interval rather than exact numerical value, intuitionistic fuzzy set (IFS) proposed
by Atanassov [11] etc. IFS characterized by membership function and nonmembership function
which model the non-determinacy occurs in the system because of the hesitation of decision
makers etc. Approximate reasoning on IFSs is studied by triple I method [200] and relating De
Morgan triples with intuitionistic De Morgan triples via automorphisms [46]. Mathematically,
interval-valued FS and IFS both are equivalent.

It has become one of the most important operators in logic [174]. The arithmetic operators
in interval-valued FS theory [55] and other theories, like, interval fuzzy negations [26], general-
ized interval-valued OWA operators with interval weights derived from interval-valued overlap
functions [29], interval additive generators of interval overlap functions and interval grouping
functions [147] are developed. The implications in interval valued FS with several properties
are developed in [28]. Implications based on binary aggregation operators in interval-valued
FS theory are given in [61]. Moreover, the algebraic structures of interval-valued fuzzy (S,
N)-implications are developed in [111]. IF t-norms and t-conorms are studied in [59]. The
expression, construction, classification and several properties with applications of intuitionistic
and interval-valued fuzzy implications are given in [33] and [45].

The following are main motivating facts behind the present work:

(i) In [128], the authors have proposed a new type of residual implication operator on [0, 1],

viz., the T-power based implication as follows:

Definition 6.1.1 ([128], Definition 4). An operator IT : [0,1]> — [0,1] is called T-power

based implication if there is a continuous t-norm T on [0, 1] such that

1" (a,b) = sup{t € [0,1] : bgf) >a}Va,bel0,1] (6.1)



(i)

(iii)
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Following this, the authors have shown that the T-power based implication is fuzzy implica-
tion operator (see, Proposition 4 in [128]). But do not necessarily satisfy certain properties
such as neutrality property, exchange principle, etc. satisfied by such residual implications,
i.e., weaker version of the residual implications. Moreover, they have studied the invariant
with respect to T -powers. Further, the authors have proved that they do not intersect the

most well-known classes of fuzzy implication operators.

In [65], the authors have given the new type of R-implication operator on [0, 1] generated

by an overlap function as follows:

Definition 6.1.2. [65] Let O be an overlap function on [0, 1]. Then the operator I :

[0,1]% — [0,1] called the implication operator derived from O is given by

Io(a,b) = max{c € [0,1] : O(a,c) < b} ¥V a,b € [0,1] (6.2)

Moreover, I is a fuzzy implication (see [65]). But this implication is weaker version of resid-
ual implication and satisfied certain properties over the residual implications by introducing

the some extra conditions.

In paper [100], the author has solved the long-standing problem related to the continuity
of residual implications derived from t-norm, and also have given special type of fuzzy

negation as follows:

Definition 6.1.3. [100] For any fized by € [0,1), the non-increasing partial function
I(.,bo) : [bo, 1] — [bo, 1], is denoted by gl . Observe that (i) g} (bo) = 1. (ii) g (1) = bo.
(111) ngO is non-increasing. I and T are the implication and t-norm on [0, 1] respectively. If

bo = 0, then gl is the natural negation associated with the t-norm T.
In papers [42] and [43], the authors have given the following Boolean-like laws:
b<I(ab), I(a,I(b,a))=1, I(a,b) =1(a,I(a,b)),
I(a, I(b, ) = I(I(a,b), 1(a)) ¥ a,b,c € [0,1],

where I is the fuzzy implications and the solutions of these Boolean-like laws are obtained
in (S, N)-, R~, QL-, D-, (T, N)- and h-implications in fuzzy environment. The above
Boolean-like laws in IFE are as follows:
v <, I1(u,v), Ir(u, Ir(v,u)) = 1., Ir(u,v) = Ir(u, Ir(u,v)),
Ir(u, Ir(v,w)) = It(Ir(u,v), Ir(u, w)) VY u,v,w € L (6.3)

where I; is the IF implication.
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The above facts have motivated us to take up the study of residual implications on £ generated
by powers of continuous t-norm 7', denoted by I1s, and special negation by A;} and also find
the solutions of (6.3) in Iys.

In this work, we introduce a definition of the powers of continuous t-norm 7 with identical
tuple elements whose powers acquire positive real numbers or positive real numbers in [0, 1]
or members of L. Inspired by Definitions 6.1.1 and 6.1.2, we define and study 7-power-based
implications.

The rest of the chapter is organized as follows. In Section 6.2, we introduce some basic
definitions needed throughout the chapter. Section 7.4 is devoted to some new definitions of
the powers with respect to continuous t-norm and their results; also some new inequalities,
linear translation of elements and powers. The core of the chapter is represented by Sections
6.4 and 6.5, concerning the development of T-power-based implication and the proofs of specific
results of T-power-based implications. Also, we investigate the solutions of Boolean-like laws
in 7-power-based implication. Finally, the chapter ends with Section 6.6 containing concluding

remarks.

6.2 Preliminaries

In R?, the well-known metrics, like, the Euclidean distance and the Hamming distance are

defined as follows.

e The Euclidean distance between u = (uy,uz) and v = (v, v;) in R? is given by

dP(u,v) = /(uy — v1)? + (ug — vo)2.
e The Hamming distance between u = (uy, us) and v = (v1, v2) in R? is given by

d" (u,v) = |uy — vi| + Jug — val.

If we restrict these distances to £, then we obtain the metric spaces (£, d”) and (£, d"), where
d¥ and d are the Euclidean and Hamming distances on £ respectively. Denote, for any v € £,
Ur = 1 —up — up. Szmidt and Kacprzyk [167] have defined two distances on £ based on the

Euclidean and the Hamming distances, where also u, is used.

e The d¥ between u = (uy,uz) and v = (v1,v,) in L is given by

A (u,v) = \/(ug — v1)2 + (ug — v9)? + (Ugy — vg)2,
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e The d between u = (uy,us) and v = (vy,v9) in £ is given by

d? (u,v) = |uy — v1| + [ug — va| + |tx — vg|.

Deschrijver et. al [59] proved that these four distances are topologically equivalent. So, the
continuity with respect to one of these metric spaces is equivalent to the continuity with respect
to any other metric space.
Let G : L — L be an arbitrary mapping. Then G is called IF continuous if V ¢ > 0 3 6 > 0 such
that, V u,v € L,

d(G(u),G(v)) <€  whenever d(u,v)<d (6.4)

where d is any of the metric on £ X L.

This metric d : L x £ — R is extended for n-ary as:

md((Mu, 2, "), (P, 2, ") = (A, )2 4 (d(Ru, 20))2 A+ - (d(mu,m))2 (6.5)

for every (u,?u,...,"u), (*v,%v,...,"v) € L™
Let H : L™ — £ be an arbitrary mapping. Then H is called continuous if V¢ > 0 3 § > 0 such
that, vV (‘u,?u, ...,"u), (fv, %v,...,™) € L",

d(H((Mu,u,...,"w)), H((*v,?v,...,™))) < e whenever "d((*u,?u,...,"u),(*v,%v,...,"v)) < §

where d and "d are metrics on £ x £ and L™ x L" respectively.

Theorem 6.2.1. [[59], Theorem 2] Given a t-norm T and t-conorm S on [0, 1] satisfying
T(a,b) <1—-S(1—a,1—0)VYa,bel0,1]. Then the mappings T and S defined by

T(u,v) = (T(u1,v1), S(ug,v2)), S(u,v) = (S(ur,v1), T (ug,v2)) for u = (uy,us),v = (v1,v2) € L
are a t-norm and a t-conorm on L respectively.

It is well known that associativity property of the t-norms allows to extend each t-norm in

IFE in a unique way to a n-dimensional operation as follows:
T(tu, ..., u) =T, TCu, ..., T(" tu,"u)---) (6.7)
The unicity is in the sense that

Tu, TCu, ., T, u) ) = T(T(- - T(T(Fu, 2w, .. "), ).
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6.3 Powers with respect to t-norm

This chapter is inspired by the papers [128, 158, 177] concerning the powers of t-norms, the fuzzy
implication operators based on powers of continuous t-norms in IFE. Based on these papers,
we introduce the powers of continuous t-norm in IFE and powers may be positive real numbers
and member of L.
From the associativity of any t-norm 7, the positive integer powers with respect to 7 can be
defined as follows:

T(u,ul™), n>2 neZt

for every u € L.

Example 6.3.1. Let us consider a t-norm T : £*> — L, T(u,v) = (max(0,u; + v; — 1),
min(lLiug + 1 — vy, v+ 1 —wy)) V u = (u,us), v = (v1,v2) € L. Now we calculate, for
w=(ug,up) € £ and n € Z*, ul

)
0, 0<u <2=12>uy >max(0,(n

(0,u9 + (n— 1)(1 — uy)), 0<u <22 0<wuy < (n—1)wu

(nuy —(n—1),us +(n—1)(1 —uy)), 1>v > ”T_l,Oqu< (n—1)uy

\ —(n—2),u; +uy < 1.

Lemma 6.3.2. Let T : L* — L be a continuous t-norm and m,n € Z*. Then ‘I(u(Tm),u(Tn)) =

WYy e L

Proof. Since T satisfies associativity, T (u, T (v,w)) = T(T (u,v), w) V w,v,w € L.
By using the definition of the positive integer powers of u with respect to 7" and the associative

property of T, we have

m—+2 n—2 m—+2 n—3 m-3 n—3
=7 (uy" " uf ) = (T (™ ) ) = T )
= =TT ), ) = T )

="

m n m n—1 m+1 n—1 m-+1 n—2
T (™ u?) =T(T (), uf ™) = T ™) = T(T ), uf ™)
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Thus,
7w i) =l vy e L
O

Definition 6.3.3. The n-th root power of an element u € L with respect to a t-norm T is

denoted by u(f) and is defined by
1
uE[") =supfweL:wl <, u} VnezZt (6.8)

Definition 6.3.4. Let T : £? — L be a continuous t-norm. Then we can defined ), fort > 0

(t is positive real constant), as follows:

ul) = sup{w € £:4,j € No,wl <, v,0=u andi/j <t}.

km
Lemma 6.3.5. Let T : £?> — L be a continuous t-norm and m,n,k € Z*. Then u(T’“" =

u(ﬁ) VueL.

Proof. Trivial O]

Lemma 6.3.6. Let T : £L? — L be an Archimedean continuous t-norm. Then, ¥V u € £\{0,,1.},
it holds that T (u,u) <, u.

Proposition 6.3.7. Let T : £?> — L be a continuous t-norm. Then the following properties
hold:

(1) For givent € RY, ug) </ vff) YV u,v € L such that u <, v.
(ii) For a given u € L, u(;) >, u(;,) Vi, t' €10,1] such thatt <t
Proof. Trivial m

Corollary 6.3.8. Let T : £L* — L be a continuous t-norm. If ug) <, v, then u <, v,(rl/t) Vite
R, u,v € L.

Proof. For given t € R™ and u,v € L,

ug) <, :>ugf) < US[D

t 1 1 1
= WP <, WMHY

= (W <, (D (by Proposition 6.3.7(i))
= ull <, /Y (by (6.8))
= u<, v(;/t).
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Definition 6.3.9. Let 77 = (171,772) € L and T : L?> — L be a continuous t-norm. Then, for
every u € L, the power u is defined by

uy? = (pra(uy ™), prauif”)) (6.9)
Theorem 6.3.10. The operator u,(fn) defined by (6.9) is an element of L for every n,u € L.

Proof. To show that u((rn) = (pri(ug (=m2)y oy (uy ))) belongs to £ for every 5 = (M1, M), u =
(ul, UQ) € L.

We know that, for every v = (v, v2), w = (w1, ws) € £ such that
v<,w & v <wp, ve > wy & pri(v) < pri(w), pro(v) > pro(w) (6.10)

Since n = (1, m2) € L, 1 < 1 — .
Now, by Proposition 6.3.7(ii), we have

u(Tlfnz) <, UE[m) = pr(ul (1 772)) < pri(ul (m )) pra(ul] (1 172)) > pra(u (ﬁl)) (6.11)
Further,
u=u (1)§ u(l n2) <Lu(0)_1L7 u-ué) <Lu( )<Lug)_1L

S 0<u <pri@Wld ™) <1, 1> uy > praw™) >0 (6.12)

pri(ug ™) + pro(u™) < pro(uy ™) + pro(ug ™)
Since u(l " ¢ g,
pri(ud ") + pro(uf ™) < 1 (6.13)
From (6.12) and (6.13), we have
0 < prifuy ™) <1, 0<praulfd ™) < 1, priulf )+ pra(ui ) < 1.
Thus,
u = (pra(uy ™), pra(uy)) € L

]

Lemma 6.3.11. Let T : £> — L be a t-norm satisfying T(u+ep,v+e7) <, T(u,v) +e€; ¥V er =
(€1,€2) € L\A{0,,1,},u,v € L. Then

(v+61)(Tn) <, U(Tn)+61‘v’v€L;n€Z+. (6.14)
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Proof. By induction, we prove that (v + €)% <, v + ¢, ¥ n € Z*. First one has that
(v + 61),(1}) =v+e = v(Tl) + €;. This shows that (6.14) hold for n = 1. Now, suppose that

(w+e)® <, v 4 e holdsVn =k and k € Z*+. For n =k + 1,

(v+ ef)gﬁl) =T((v+ e[)g’c),v +er) <, ‘T(U,(Tk) +er,v+e€r) <, T(U(Tk),v) +e = U(TkH) + €5

This shows that (6.14) hold for n = k+1. Thus (v +¢,)™ <, v\ + ¢, Vv € £:n € Z+. O
Assumption 6.3.12. Let us suppose that the following results hold for the t-norm T : £L* — L:
(i) (w=—e)™ <, v — ¢, Vu,we L,

(ii) (v—e)™ D <, vV o,we L,

where €7 = (€1,€2) € L\ {0,,1.}.

6.4 T-power based implications and their properties

After studying the papers [45, 59, 128] and previous section, we define the following T-power

based implication.

Definition 6.4.1. A function I;pr : £L?> — L is called a T-power based implication if there

exists a continuous t-norm T : L?> — L such that
I1re(u,v) =sup{y € L: v(g) >, ufVu,ve L. (6.15)

If I1rs is a T-power based implication generated by a continuous t-norm T, then we will often

denote it by 1.

Remark 6.4.2. Note that the set {y € L : v,(;) >, u} is always non-empty because of any
continuous t-norm 7, U(EPL) =1,>,uVu,véE L
Theorem 6.4.3. The operator I1s defined by (6.15) is an IFI.

Proof. The fact that Iy defined by (6.15) is an IFT can be seen from the following:

o Let u <, u/. Then, we have {y € L : v((;) >, v} C {y e L: vr(;) >, u}, and hence

sup{y € £ : 0 >, '} <, sup{y € £ 0 >, 0} = I, v) < Tir(u,0), ie., Iig

satisfies (I1).

e Once again, let v <, v/. Then, we have {y € £ : v >, u} c {y € £: " >, u}, and

hence sup{y € L : ’U{(T’Y) >, u} <, sup{y € L: vif(v) >, ul = Ing(u,v) <, Ip(u,v'), e, Ing

satisfies (12).
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o I17(0.,0,) =sup{y e £:(0,)" >,0,} =sup(x) =
Irr(1.,1,) =sup{y€ L: (1L)§7) >, 1.} =sup(L)
Tir(1,,0,) =sup{y € £: (0,)% >, 1.} = sup(0,) = 0,
i.e., Iy satisfies (I3).

1.;
1;

Thus, the operator Irs defined by (6.15) is an IFL O

6.4.1 Residuation Principle

We say that power of element in £ w.r.t. 7 satisfies the residuation principle if and only if, for

every u,v,w € L
W > e Tip(uv) > w (6.16)
where I, denotes the T-power based implication generated by a continuous t-norm 7.
Example 6.4.4. [62] Let T : L?> — L be a mapping defined by
T(u,v) = (max(0,u; + v — 1), min(1,us + v9)) ¥V u = (ug, us),v = (vq1,v3) € L.

Then, it is easily verified that T is a continuous t-norm. Now we calculate, for u = (uy,us),v =

01, 02),w = (w1, ws) € £ and n € Z+, v, o™ and o)
T T T

OL7 0 S U1

IN

l1>w > 2o+ <1

o) = (0, nwa), 0 <y

IN

nl ) <wy <t +u<1;neZ’

V

(nvl_(n_]-)?nUQ)v 1>wv nT_l,OSU2<%,U1+U2§]_.

n —1
vg/):<$,%) VoerL neZ.

ve? =(1— (L= ws)(1 — v1),wiv) Yo,w € L.
Now, we have, for u = (uy,uz),v = (v1,v2), w = (wy,wy) in L
vr(rw) 2ou & (1= (1 —w)(l —v),wiva) = (w1, u2)

S 1—(1—wy)(l —wvy) > uy and wive < ugy

Hence,
L., up < vy < Lyug 2> v > 0;
Itpr(u,v) = (’;—;,1—1:—1;11), 0<v <up,l>wvy>ug; U,V E L.

(ﬂ 0), U1§U1<1,’U22U2>0,
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Clearly, for each uw,v € L, Iigs(u,v) € L. From the above calculations it follows immediately
that Uffw) >, wif and only if I17(u,v) >, w, and so the residuation principle holds for power of

element in L w.r.t. T.
Example 6.4.5. [62] Let T : L?> — L be a mapping defined by
T(u,v) = (max(0,u; +v; — 1), min(l,ug + 1 — vy, 00+ 1 —uy)) YV u = (ug,us),v = (v1,v2) € L.

Then it is easily verified that T is a continuous t-norm. Now we calculate, for u = (uy,us),v =

(v1,v9),w = (wy,wy) € L and n € 27, v(([n),vr(;/n) and vffw)

)
0, 0<wv <2212>wvy>max(0,(n

) _ ) (0,v2 + (n — 1)(1 — vy)), 0<v, <22 0<v<(n—1n

(nvy — (n—1),va+(n—1)(1 —wv)), 1>v > %,Ogvg < (n—1)n

—(n—2),v; + vy < 1.

\

—1 —1)(1 —
oM™ = ut(n ),vg— (n= 1D ) VoerL neZt.
7 n n

Ur(rw) =1 = (1 —w)(I —vy),v2 = (1 —wi)(1 —v1)) Vo,we L.
Now, we have, for u = (uy,us),v = (v1,v2),w = (wy,wsy) in L

W > u e (1= (1= we)(1—v1),ve — (1 —w)(1=v1)) =2 (ur,us)

S1—(1—w)(l—=v1) >up, vg— (1 —wp)(1l—wv1) < ug

Hence, ¥ u,v € L.

]-La Uq S v < 17U2 Z (N
IIRT(“” 'U) = (1 - U12::«12’ 1- i::jll)v 0< U1 S Uy, V2 Z U2;
(1_%70)7 u < v < 1,09 > us.

Clearly, for each u,v € L, Iigrs(u,v) € L. From the above calculations it follows immediately
that vsfw) >, wif and only if I1y(u,v) >, w, and so the residuation principle holds for power of
element in L w.r.t. T.

Lemma 6.4.6. Let T : £?> — L be a continuous t-norm satisfying the residuation principle.
Then, for any u,v,w € L such that U(Tw) =wu, dw € L such that w' >, w, and

o = and Tipe(u,v) =w' (6.17)
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Proof. Let u, v and w be elements of £ for which U,(Tw) = u. Then, by residuation principle,
it follows that w <, I1rs(u,v). Define w' as w' = Iigs(u,v). Then w <, w’. Since 7 holds

Proposition 6.3.7,

U(Twl) <, vffw) = v{(rw,) <, u

On the other hand, since w’ = I1rs(u,v), by residuation principle, it follows that U(Tw/) >, u.

Hence, v\ = w. Thus, (6.17) holds. O

Lemma 6.4.7. Let T : £L?> — L be a continuous t-norm satisfying the residuation principle,

and u,u',v,w,w" be the arbitrary elements of L. Assume w and w' satisfy

(w)
vy’ =u and Iipe(u,v) =w
N ' (6.18)
v(([w) =u and Ips(u,v)=w'
Then v’ <, w if and only if w <, w'.
Proof. Assume that w, v/, v, w,w’ satisfy the condition (6.18). If v’ = vffw/) < U,(fw) = wu, then,

since I1gs is non-increasing corresponding to first component, w = Irgs(u,v) <, Iigs (v, v)
=w', so w <, w'. Conversely, v’ <, u follows immediately from w <, w’, since T holds from

Proposition 6.3.7. O]

6.4.2 Properties of I;s

Proposition 6.4.8. Let 115 be a T-power based implication operator. Then
(i) 117 satisfies (OP) and (IP).
(ii) I1y does not satisfy (NP).
(i1i) Irq satisfies (SBC), (LBC) and (RBC).
Proof. (i) For u,v € L,
uw<, v & Ing(u,v) =sup{y e £: o5 >, u} =1,.
Thus, I, satisfies (OP). Obviously, I1s also satisfies (IP).
(ii) Putting w =1, in (6.15), we have

Iir(1,,v) =sup{y € L: vg) >, 1.}
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There are two cases:

Case 1: If v <, 1,, then

Irr(1.,v) =sup{y € L: US[’Y) >, 1.}
=0,.

Case 2: If v =1, then

Irr(1,,v) =sup{y € L: v,(g) >, 1.}

:1L'
From Case 1 and Case 2, we conclude that

O, v<.1
IIT(lmv) =

1L7 v = 1L'
This shows that I;; does not satisfy (NP).
(iii) Consider uw # 0,. Then it follows that I17(1,,v) = sup{y € L : (OL),(J) >, u} =0, This

implies that I;; satisfies (SBC). Obviously I1; also satisfies (LBC) and (RBC).
]

Example 6.4.9. Consider a continuous t-norm T defined by T(u,v) = (ujvy,1 — (1 — uz)(1 —

v9)) ¥V u = (uy,us),v = (v1,v2) € L. Then T-power based implication I1y is given by

I (u,v) =sup{y € L: vgj) >, u}

=sup{(71,72) € L: (v; ™, 1 — (1 —w)") >, (u,u2)}

—sup{(71,72) € L:v; ? >y, 1—(1—v)" < up} (6.19)

Putting uw = 1, in (6.19), we have

Iir(1,,0) =sup{y € £: v >, 1,}
=sup{(71,72) € L: (17 %, 1= (1 —0p)") >, (1,0)}
=sup{(71,72) € L:v] P >1, 1< (1—wy)"}
O, v<,1y,

1L7 U= ]-L7

i.e., Ity does not satisfy (NP).
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Proposition 6.4.10. The T-power based implication operator Iiqs satisfies (NP) if V. u € L the

following two conditions hold:
(i) ugw) <. 1, for any w >, ;

(i1) for every e; >, 0, there is u—e; <, w <, u such that u(;”) >, 1,.

Proof. Suppose conditions (i) and (ii) hold. Then prove that I;; satisfies (NP). Condition (i)
implies I1s(1.,u) <, u and condition (ii) implies Iyy(1,,u) >, w >, u — € from which we

obtain It (1,,u) >, u since €5 is arbitrary. Thus Iy (1., u) = u, i.e., I satisfies (NP). O

Corollary 6.4.11. The T-power based implication operator 1rs satisfies (NP) if and only if
u,(fu) =1, for every u € L.

Proof. (=) Suppose I1; satisfies (NP). Then to prove that uﬁ}‘) =1, for every u € L. By the
(NP) of Iy, we have Ipr(1,,u) =u = sup{y € £:ul) =1,} = u. Thus u{") = 1, for every
ue L.

(<)  Suppose usfu ) =1, for every u € £ holds. Then prove that I, satisfies (NP). Since

ug?‘) =1, for every u € £, I17(1,,u) = sup{y € L: ug) =1,} =wu. Thus Its(1.,u) = u, ie,

I17 satisfies (NP). O

Proposition 6.4.12. The T-power based implication operator I1; satisfies (CB) if and only if
U(Tw) >, u for every w <, v and u,v,w € L.

) < ug. This implies that

Proof. (=) If possible let ug, vg, wo € L with wy <, vy such that vé}”o
I17(ug, vo) <, wo <. vo, which is contradiction because of I1; satisfies (CB). Hence U(Tw) > u
for every w <, v.

(<) If U(Tw) >, u for every w <, v, then {w € £ : 0, <, w <, v} C{w € L: v,(rw) >, u}.
This implies that sup{w € £:0, <, w <, u} <, sup{w € L: v,(Tw) >, u}. Thus v <, Irq(u,v),

i.e., Iy satisfies (CB). O
Proposition 6.4.13. Let I, be a T-power based implication operator. Then Iy, satisfies (SIB)
if and only if 11 satisfies (CB).

Proof. For every u,v,w € L, I, satisfies (CB), i.e.,

(w

Irr(u,v) >, v < sup{w € L: vy, ) >, up >0
s {wer: o>, uC{wer: (sup{ze Lo >, uh >, u}
& sup{w e £: 0 >, u} <, sup{w € £: (Tgr(u,0)™ >, u}

A II'T(U’ U) SL IIT(“’? II‘T(ua U))v

i.e., I satisfies (SIB). O
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Corollary 6.4.14. Let I, be a T-power based implication operator. Then the following state-

ments are equivalent:
(i) 117 satisfies (CB).
(i1) U,(Tw) >, u for every w <, v and u,v,w € L.

(i11) Irq satisfies (SIB).

Proposition 6.4.15. Let 115 be a T-power based implication operator satisfying the Assumption

6.3.12. Then the following properties hold:
(Z) IIT(U+€I7U) ZL II‘T(U7U - 61) vu7vvw €L,
(7i) I17(u,v) >, Itg(u,v —€r) + € Vu,v,w € L,

(111) Irr(u+er,v+e€r) >, Iig(u,v) YV u,v,w € L.

Proof. Let T : £*> — £ and I;; : £2 — L be a continuous t-norm and a 7-power based

implication operator respectively. In view of Assumption 6.3.12, 7 satisfies results (i) and (ii)

of Assumption 6.3.12.

(i) For each ¢; € £ with e; >, 0., (v — e[)(Tw) <, v,(fw) — €7, we have

{w € L:vffw) >, u+e} D2{weL: (v—e;)ffw) >, ul,
which implies that
sup{w € L : vffw) >, u+terp > sup{we L (v— q)ffw) >, u}.
Thus, Itr(u+ €r,v) >, Iip(u,v — €r).
(ii) For each ¢; € £ with e; >, 0., (v — e])ﬁ;"‘”) </ vE[“’), we have
fwer: v > wydfwer:(v—e) >, ul,
which implies that
sup{w € £ : v >, u} >, sup{w e £: (v —e)" >, u},or

sup{w e £ : v >, ul >, sup{we £: (v—e) >, u} + e

Thus, Irs(u,v) >, I1z(u,v —€r) + €.
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(iii) For each €; € £ with e; >, 0, vffw) +er <, (v+ ej)gfw), we have
fwer:(w+e)™ > utey2{we ol >, ul,

which implies that

sup{w € L: (v+ 6[)‘(;1]) >, u+e€r} >, sup{w € L: U,(Tw) >, u}.

Thus, Iz (u+€r,v+€r) >, Ir(u,v).
]

Remark 6.4.16. Note that, if u >, v, by Proposition 6.4.15(iii), for any er >, 0, we have the

following string of inequalities:
Iir(u,v) <p Iir(u+er,v+er) <p Iip(u+2e,v 4+ 2¢p) <p - < Ipe(1e, 1, —u+0).

Inspired by the paper [100], for any o« € £\ {1.}, the non-increasing partial function
Irs(., ) : L — L, which will be denoted by AFY . Observe that

(ii) A%, (1) = a whenever two conditions hold:

° a,(rw) <, 1, for any w >, «;

e for every e; >, 0, there is a — €7 <, w <, « such that a(Tw) >, 1,.
(iii) AG is non-increasing.
Remark 6.4.17. If we put a =0, in NG, then NG is the natural negation of Irs.
Remark 6.4.18. (i) u is T—idempotent, i.e., T(u,u) = u iff I1z(u,v) =0,V v <, u.

(ii) For every continuous t-norm T, the natural negation of 11y is the Gddel negation, i.e.,

) 1y, u=0g
N, (u) = It (u,0,) =sup{y € L:0;” >, u} =
OL7 u >, OL-
Proposition 6.4.19. Let I1; be a T-power based implication operator. If 11y satisfies con-
trapositive property w.r.t. negation N, i.e., I1r(u,v) = Iz (N (v), N(u)), then the following
hold:

(i) The natural negation of I1; is the Gdodel negation.
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(i) N is decreasing.
(i5i) If N is continuous, then u is T—idempotent iff N(u) is T—idempotent
Theorem 6.4.20. For o€ £\ {0, 1.}, A, is a continuous function.

Proof. Let us suppose that Af% is not continuous, i.e., there is @ € £\ {0,,1,} such that
I17(., @) is not continuous at some point ug € L. Thus there is a sequence {u,} in £ such that
Uy — Ug a8 M — 00 but Iig(uy, @) - po = Iz (ug, @), ie., for some €; >, 0, and fixed N such

that po+e€; <, Irg(un, @) or Ity (upy, a) <, po—€r for n > N and u,, — ug. There are two cases:
Case 1: If pg + ¢; <, Irs(uy, ) for n > N and u,, — ug, then

aE[pOJrE’) >, u, forn > N

(po+er)

= o > Ug

= Iir(uo, ) 2. po+ €1 = Do >, po+€r
which contradicts the fact pg <, po + €;.
Case 2: If I1q(up, ) <, po— € for n > N and u,, — ug, then

oz((fo_el) <, u, forn>N

(po—er)

= (eh <, U

= Tir(uo, ) <. po—€r = po < Po— €1
which contradicts the fact pg >, po — €;.
From above two cases, it is clear that ;Y is a continuous function for any o € £\ {0,,1,}. O
Theorem 6.4.21. For a € £\ 0., A, is decreasing.

Proof. We know that A is non-increasing for any fixed o € £\ 0,. On the contrary, let us
suppose that A} is constant on the u, ug <, u <, vy, for some o <, ug <, vy <. 1, i.e., I g,

a<,q<,1,,such that
g, (o) = AL, (Vo) = ¢

For fix arbitrary w, ug <, w <, vy, there are three cases:

Case 1: If ¢ = 1., then

AE, (w) = sup{y € £:ay) >, 2} = 1.

Thus, aE}“’) >, wforanye; € £L\{0,,1,}. Since 7T is continuous, limqﬁor (x‘(rlﬁq) >, w.

This implies that a >, w, which contradicts the fact that a <, w.
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Case 2: If ¢ = «, then
AL, (w) = sup{y € L: Oé((g) >, 2} =a.

Thus, 04,(;”61) <, w for any €; such that 0, <, ¢; <, 1, — €;. Since 7 is continuous,

lim, - ozéw” ) <, w. This implies that ozgfa) <, w, which is not uniformly true because

of a <, w. This can be shown with the help of example. Let us consider the continuous

t-norm 7 given by
T(u,v) = (ugvg, 1 — (1 —ug)(1 — v2)) Yu = (ug, uz),v = (v1,v2) € L.
Taking o = (0.1,0.2) and z = (0.2,0.1). Clearly, a <, z. Now,
al® = (0.191,1 = 0.8°2) = (0.794,0.044) >, (0.2,0.1), i.e., &' >, w while a <, w.
Thus, our assumption is wrong.

Case 3: If a <, g <, 1., then

AG, (w) = sup{y € £: 0 >, w) =g
Thus, aE[q*éI) > w >, a,(rqﬂl) for any e; >, 0, such that ¢ —e; >, a and ¢+ ¢; <, 1,.
Since 7 is continuous, oz(TQ) = w. Now this happens for every q, o <, ¢ <, 1., which

contradicts the fact that 7 is a function itself.
Hence Af], is decreasing. O

Theorem 6.4.22. Let T : £?> — L be a continuous t-norm and Ity be a T-power based impli-

cation. Then I1s is continuous iff 9\[10;[ 18 continuous.

Proof. Suppose that 9\&% is continuous. We have to prove that I;; is continuous. By Theorem
6.4.20 and the continuity of 9\[&[ (u), it clear that I1; is continuous corresponding to first argu-
ment. We have only to show that I;s is continuous in its second argument. If not, then there
is ug € L such that I1s(ug,.) is not continuous at some vy € L, i.e., there is a sequence {v,} in
£ such that v, — vy as n — oo but Ity (ug,v,) - qo = I1s(uo,vp), i.e., for some e; >, 0, and

fixed N such that qo+€; <, I17(ug,vn) <. qo — €7 for n > N and v,, — vg. There are two cases:

Case 1: If o + ¢; <, I17(ug,vy,) for n > N and v, — vg, then

(go+er)

Vpr 0 >puforn >N
= 0T >y,

= I1r(uo,v0) >. Qo+ €1 = Qo >r Qo+ €1

which contradicts the fact go <, qo + €;.
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Case 2: If I14(ug,v,) <, qo — €7 for n > N and v,, — v, then

viqufo_q) < upforn >N

(q0—e€r)

:> UO‘T <L UO

= Irq(uo,v0) <. Qo — €1 = qo <. qo — €1
which contradicts the fact ¢o >, qo — €;.

From above two cases, it is clear that I1; is continuous corresponding to second argument. Thus
I;; is continuous in both arguments. Since I;; is monotone, I, is continuous.

Conversely, if 9\&2@ is not continuous, then Ir;(z,0,) is not continuous. ]

6.5 Solutions of Boolean-like Laws

In this section, we investigate the solutions of Boolean-like laws in a 7-power based implication

operator Iis.

6.5.1 Solution of v <, I(u,v)
In this subsection, we will discuss the solution of the Boolean-like law:

v <, Ii(u,v) Vu,v € L (6.20)
where I; is an IFI

Lemma 6.5.1. Every I1; satisfies (6.20) if 117 satisfies (NP), i.e., Ity follows the Proposition
6.4.10.

Proof. Since u <, 1., by (12) and (NP), we have Ity (u,v) >, Its(1.,0) = 0. O
(6.20) is (CB) property. For all other solutions of (6.20), please see Propositions 6.4.12 and

6.4.13.

6.5.2 Solution of It(u,I(v,u)) =1,

In this subsection, we will study the solution of the Boolean-like law:
Ir(u, It(v,u)) =1, Vu,v € L (6.21)

where I; is an IFL
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Theorem 6.5.2. Every I1; satisfies (6.21) iff u,([w) >, v for every w <, u and u,v,w € L.

Proof. Let T be a continuous t-norm and I, be a T— power based implication operator.

(=) Let us suppose that u(Tw) >, v for every w <, v and u,v,w € L. Then, by Proposition
6.4.12, I14 satisfies (CB) so I1s(v,u) >, u. Since I1q is non-decreasing corresponding to second
tuple, I1s(u, Irg(v,u)) >, Irp(u,u) = 1,. Thus Iq(u, Irg(v,u)) = 1,.

(<) Suppose Iy satisfies Ity (u, Itg(v,u)) = 1,. Since Iy satisfies (OP), Ity (u, Itg(v,u)) =
1, = wu <, I;z(v,u). This implies that I;; satisfies (CB). Then by Proposition 6.4.12, it is

concluded that uﬁ;”) >, v for every w <, u and u,v,w € L. O

Corollary 6.5.3. Fvery I1q satisfies (0.21) iff 114 satisfies (CB).

6.5.3 Solution of I1(u,v) = I(u,Ir(u,v))

In this subsection, we find the solution of the Boolean-like law:
Ir(u,v) = It(u, I1(u,v)) Vu,v € L (6.22)
where I; is an IFL

ly, 0L < u< v,
Theorem 6.5.4. Every I1; satisfies (6.22) iff I17(u,v) = Yu,v,w € L.

O, 0L<,v<,u,
Proof. Let T be a continuous t-norm and I, be a T— power based implication operator.
(=) Let us suppose that I;; satisfies (6.22). Then we have to prove that Ii;(u,v) =

gy, 0L < u< v, ) (u)
YV u,v,w € L. Firstly, we have to show that u,’ = w for all u € £\ 0,.

O, 0<,v<,u,
Obviously, when t, u <, t <, 1., Its(u,t) =1, >, u holds by the (OP) of I;;. Let us suppose
that there exist to, 0, <, tg <, w such that I;s(u,tg) >, u. Then by (OP) of I;s, we have
Irr(u, Irg(u,ty)) = 1,. Using (6.22), we have I1s(u,tg) = Iro(u, Itg(u,tp)) = 1,.. This implies
that u <, to, which contradicts the fact 0, <, t, <, u. Hence Is(u,tg) <, u for all ¢y,
0, <, ty <, u.

Now, when u <, t <, 1,
Irr(u,t) >, u = sup{y € L: tE}) >, up > u = t{(Tu) > u (6.23)
Moreover, when 0, <, tg <, u,

Irr(u,ty) <, u = sup{y € L: (to)?) > up < u = (tg)gf” < u (6.24)
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Since T is the continuous, (6.23) and (6.24) are as

) )
11£1_r}r;% Uy’ > U (6.25)
lim (t0)" = u <, u (6.26)
to—u
From (6.25) and (6.26), we have
u(Tu) =u (6.27)
Taking 0, <, u <, v, we have
Trr(u,v) = sup{y € £ : v >, u} =sup{1.} =1, (6.28)
Taking 0, <, v <, u, we have
Irr(u,v) =sup{y € L: v‘(g) >, u} =sup{0.} =0, (6.29)
Combining (6.28) and (6.29), we have
ly, vzouz>, 0,
II’T(u7 U) =

O, u>,v2>,0g,

ly, vzouz, 0,
(<) It is easy to see that the Ity (u,v) =

O, u>pv 2,0
satisfies (6.22). O

Corollary 6.5.5. Every 11 satisfies (6.22) iff ug) =uVueL\0,.

Proof. Let T be a continuous t-norm and I;; be a T— power based implication operator.

(=) Let us suppose that Ir; satisfies the (6.22). Then by using Theorem 6.5.4, we obtain
uf(;t) =uVueL\0,.

(<) Suppose u(([“) = wu holds Vu € £\ 0,. Then by Theorem 6.5.4, we get

1., v>,u>,0,,
Iy (u,v) =
O, u>,v2>,0,,

YV u,v,w € L. It is easy to see that the I, satisfies (6.22). O



176

6.5.4 Solution of I1(u,I(v,w)) = I1(I1(u,v),I(u,w))

In this subsection, we find the solution of the Boolean-like law:
Ir(u, It(v,w)) = It (I1(u,v), Ir(u,w)) YV u,v,w € L (6.30)
where I; is an IFL.

Iy, v>,uz>,0
Theorem 6.5.6. Every I1; satisfies (6.30) iff I1o(u,v) =

O, u>v2>,0,
Yu,v,we L.

Proof. Let T be a continuous t-norm and I;; be a 7— power based implication operator.
(=) Let us suppose that I, satisfies the (6.30). Then we have to prove that Iy (u,v) =

Iy, vZ2pu>p 04 . (w)
V u,v,w € L. Firstly, we have to show that u,’ = u ¥V u € L\ 0,.

O, u>,v2>,0,
Obviously, when v <, t <, 1,, Iis(u,t) = 1, >, u holds by the (OP) of I;;. Let us

suppose that there exists ¢y, 0, <, to <, w such that I;y(u,ty) >, x. Then by (OP) of
Iy, we have Irg(u,Irr(u,tp)) = 1,. Using the (6.30), we have 1, = Is(u,Irz(u,ty)) =
I1r (I (u, ), Itz (u, to)). Since Ipq satisfies (IP), 1, = I1q(I1q(u, u), Itr(u, to)) = I1r (1, Irr(u,to)) =
1, <, Iig(u,ty), by (OP) I1z, but 1, >, I1s(u,ty). Thus Irs(u,ty) = 1,. This implies that
u <, to, which contradict the fact 0, <, tg <, u. Hence I (u,ty) <, uforall ty, 0, <, to <, u.

Now, when u <, t <, 1,

Irr(u,t) >, u = sup{y € L: t(;) > up > u = t(Tu) > U (6.31)

Moreover, when 0, <, tg <, u,
Iir(u,tg) <, u = sup{y € L: (to)fg) > uf < u

= (to)y” <. u (6.32)

Since 7 is the continuous, (6.31) and (6.32) imply that

lim 8 = ul >, (6.33)
lim (t)™ = ul <, u (6.34)
to—u

From (6.33) and (6.34), we have
™ = (6.35)



Taking 0, <, u <, v, we obtain that

Trr(u,v) =sup{y € £: v >, u} =sup{l,} =1,
Taking 0, <, v <, u, we have

Iir(u,v) =sup{y € L: v?) >, u} =sup{0.} =0,
Combining (6.36) and (6.37), we have

1., v>2,u>,0,
IIT(U,U) =
O, u>,v2>,0,

Iy, vZzpuz, 0,
(<) Easily, we see that the Itz (u,v) =

O, u>,v2>2,0
satisfies (6.30).

Corollary 6.5.7. Every 11, satisfies (6.30) iff u(;) =uVueL\0,.

6.6 Concluding remarks
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(6.36)

(6.37)

In this chapter, T-power-based implications as a new class of implication operators on £ was

introduced. We have studied the properties of these implications. We have observed that some

of the properties of fuzzy implications acting on the real unit interval [0, 1] are not satisfied

by related T-power-based implications acting on £. We have shown that the studied 7-power-

based implications on L satisfy the discussed properties after addition of some extra conditions.

After that, the string of inequality of I1; has been established. We have also introduced a new

type of negation A;} based on Irs, continuity and strictly monotonicity of this negation has

been analyzed. Finally, we have investigated the solutions of Boolean-like laws (6.3) in Iy;.
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Chapter 7

Distributivity of implication operators
on L over t-representable t-norms: The

case of strict and nilpotent t-norms

In this chapter, a new class of IFIs known as (f1, w)-implications is introduced which is a gener-
alized form of Yager’s f-implications in IFE. Basic properties of these implications are discussed
in detail. It is shown that (fi,w)-implications are not only the generalizations of Yager’s f-
implications, but also the generalizations of ®-, (§,N)- and QL-implications in IFE. The distribu-
tive equations I1(7(u,v),w) = S(I1(u,w), I;(v,w)) and I;(u, T (v,w)) = T(I(u,v), Ir(u,w))
over t-representable t-norms and t-conorms generated from nilpotent and strict t-norms in IFS

theory are discussed. Also, one of the open problems posed by Baczynski [17, 18] is solved.

7.1 Introduction

In fuzzy logic, FIs have become one of the most important operators [19]. These implications
are derived from the new class of implications such as (g, min)-implications [116], generalized
h-generators [117] and (g, u)-implications [196] etc. Fuzzy implications are also very useful in
fuzzy connectivity ([44, 102, 172]). Nowadays, many different extensions of FSs are known as
L-FSs [80], interval-valued FS [81] which represents the degree of membership of an element by
an interval rather than exact numerical value and IFS [11] to model the non-determinacy which
occurs in the system because of the the hesitation of decision maker etc. An IFS is described
by a membership function and a non-membership function. It is proven to be a more suitable

tool than an F'S to describe imprecise or uncertain information.
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Interval-valued FS theory has become very popular from both theoretical and practical
aspects. One can find theoretical articles connected with different classes of interval-valued
logical connectives like interval-valued fuzzy negations [26], interval-valued t-norms [56, 174],
interval-valued fuzzy uninorms [57], interval-valued fuzzy implications [5, 27, 28, 111], interval-
valued fuzzy implications based on binary aggregation operators [61, 118] and interval-valued
fuzzy relations [55, 173]. Similarly, one can find many articles with practical applications of
interval-valued FS theory to the robustness of interval-valued fuzzy inference and a representable
of cardinality (see [58, 113]).

IFSs have become very popular that are connected with different classes of intuitionistic
logical connectives like intuitionistic t-norms [59], IFIs [33, 45, 161] and intuitionistic fuzzy
relations (IF relations) [34, 146]. Atanassov’s intuitionistic De Morgan triple via automorphisms

is introduced and used in approximate reasoning (see [46, 200]).

7.1.1 Motivation

Combs and Andrews [44] attempted to exploit the equivalence
GAK)=1l=0G—=DV(k—=1) (7.1)

towards eliminating combinatorial rule explosion in fuzzy systems. It is one of the four equations

given by Cox [49]. The remaining three equations are as follows:

(GVE)=1l=(—=>DANk=1) (7.2)
J=kAND)=(G—=k)N(G—]) (7.3)
j=kv)=(—k)V(Ei—0 (7.4)

Obviously, the above equivalences are tautologies in classical logic and their generalizations in

fuzzy logic lead to the distributivity of fuzzy implications over t-norms and t-conorms as given

below:
I(T(a,b),c) =S(I(a,c),1(b,c)) (7.5)
I(S(a,b),c) =T(I(a,c),I(b,c)) (7.6)
I(a,Ty(b,c)) =T5(I(a,b),I(a,c)) (7.7)
I(a, S1(b,c)) =S2(I(a,b),I(a,c)) (7.8)

for a,b,c € [0,1], where I is a fuzzy implication; T,7T;,T; are t-norms and S, S, Sy are t-

conorms in fuzzy environment. The above equations play an important role in lossless rule
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reduction in Fuzzy Rule Based Systems [21, 49]. Conditions under which egs. (7.5)-(7.8) hold
for (S, N)-, R—, QL-implications can be found in [19, 22, 172]. Balasubramaniam [21] studied
the distributivity of Yager’s f-implications over t-norms and t-conorms. Baczynski and Jayaram
[20] investigated the implications that satisfy eqgs. (7.5)-(7.8) for nilpotent or strict triangular
conorms.

Atanassov and Gargov [15] proposed the elements of IF logic. Obviously, the equivalences
(7.1)-(7.4) are tautologies in classical logic and their generalizations in IF logic lead to the

distributivity of IFIs over t-norms and t-conorms in IFE as given below:

I (7 (u, v), w) =8(Ir(u, w), Ir(v, w)) (7.9)
Ir(S(u, v),w) =T (Ir(u, w), Ir(v, w)) (7.10)
It (u, T (v, w)) =B (I1(u, v), Ir(u, w)) (7.11)
Ir(u, $1(v,w)) =82(I1(u, v), Ir(u, w)) (7.12)

for u,v,w € L, where I; is an IFIl; 7,7,7% are t-norms and §,5;,S, are t-conorms in IF

environment. Now, we define Yager’s class of implications in fuzzy and IF environment.

Definition 7.1.1. [19] Let f : [0,1] — [0, 00] be a decreasing and continuous function satisfying
f(1) =0. Then a function Iy : [0,1]> — [0, 1] defined by

I(a,b) = fTY(af (b)) ¥V a,b € [0,1] (7.13)

is called the Yager’s class of fuzzy implications generated by f.

Definition 7.1.2. Suppose that £ = {(u1,uz) € [0,1]* : uy + uy < 1}. Let £1 : L — [0, 00]?
be a decreasing and continuous function satisfying £1(1.) = 0,. Then a function I, : L* — L
defined by

Irs, (u,v) = fg_l)(ufl(v)) Yu,v€ L, (7.14)

15 called the Yager’s class of IFIs generated by f1.

Motivated by the Definition 7.1.2, we propose new implications known as (1, w)-implications
which are generalized form of the Yager’s class of IFIs. Baczynski [17] solved distributive eqs.
(7.9) and (7.11) when t-norms are strict. The solutions of distributive eqs. (7.9) and (7.11)

have been obtained with the help of all the solutions of the following functional equation:

h<y1 + 21,92 + 2’2) = h(y173/2) + h(zh 2’2)7 (3/173/2)7 (21, 22) € L™ (7-15)

where L>® = {(y1,v2) € [0,00]% : 41 > o} and h : L= — [0, 00] is an unknown function. This

equation is related to the case with strict t-norms.
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In each of the distributive egs. (7.9) and (7.11), there are 15 possible solutions corresponding
to the vertical section of I1(u,.) and 15 possible solutions corresponding to the horizontal section
for a fixed u € £. Thus, 225 different possible solutions of each of distributive eqgs. (7.9) and
(7.11) are obtained. But all the possible solutions for the (7.9) and (7.11) are not correct

solutions. Baczynski [17] has posed the following open problem.

Problem 1. Characterize all of the correct solutions out of 225 different solutions of distributive

eq. (7.11) when t-norms are strict (for a fited u € L or a fired v € L).

On other hand, Baczynski [18] solved distributive eqs. (7.9) and (7.11) when the t-norms
are nilpotent. The solutions of distributive eqs. (7.9) and (7.11) are obtained with the help of

all the obtained solutions of the following functional equation, for fix real numbers a,b > 0,

h(min(y; + 21, a), min(ys + 22, a)) = min(h(y1, y2) + h(21,22),0), (y1,v2), (21, 22) € L* (7.16)

where L* = {(y1,y2) € [0,a]*> : y1 > y2} and h : L* — [0,a] is an unknown function. This
equation is related to the case with nilpotent t-norms. In each of the distributive eqgs. (7.9)
and (7.11), there are 9 possible solutions corresponding to the vertical section of I;(u,.) and 9
possible solutions corresponding to the horizontal section for a fixed u € £. Thus, 81 different
possible solutions of each of the distributive egs. (7.9) and (7.11) are obtained. But all the
possible solutions for the (7.9) and (7.11) are not correct solutions. Baczyniski [18] has posed

the following open problem.

Problem 2. Characterize all of the correct solutions out of 81 different solutions of distributive

eq. (7.11) when t-norms are nilpotent (for a fived uw € L or a fivred v € L).

After motivated by above facts, we solve the open problems posed by Baczynski [17, 18].

In this chapter, we have solved distributive eqs. (7.9) and (7.11) when the t-norms are
nilpotent and distributive eqs. (7.10) and (7.12) when the t-norms.

The rest of the paper is organized as follows. In Section 7.2, we introduce some basic defini-
tions needed throughout the whole paper. The core of the paper is represented by Sections 7.3
and 7.4 concerning to the development of the new class of IFI known as (1, w)-implication which
is a generalization of Yager’s f-implications in IFE, the discussion of some of their properties
and the proofs of specific results, and the solution of open problems related to the distributivity
of (f1,w)-implication over t-representable t-norms in IFE. Finally, the paper ends with Section

7.5 containing conclusions.
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7.2 Preliminaries

Definition 7.2.1. [11]

1). £ = {(u,uz) : (ur,uz) € [0,1]%, uy +ug < 1} be an IF interpretation triangle and the

2),

3).

operation <, be defined on L by
(u1,uz) <p (v1,v2) & ur <y, ug > g, V (ur, uz), (v1,v2) € L.
For each nonempty set 4 C L, we have

sup 4 =(sup{uy : (u1, u2) € A}, inf{uy : (u1, u2) € 4}),

inf 2 =(inf{u; : (uy, ue) € A}, sup{us : (u1,uz) € 4}).

Then (L£,<.) is a complete lattice [60]. Equivalently, this lattice can also be defined as an
algebraic structure (L,V,\) where the join operator \/ and the meet operator A are defined
as follows:

Forxz,y e L,

u Vv = (max(uy,vy), min(ug, v2)), u Av = (min(u, vq), max(ug, v2)).

For an arbitrary number P in [1,00), we define the sets

Lep ={(uy,up) : (uy,up) € [0, P, uy + uy < P},
Lop ={(u1,uz) : (w1, u2) € [OaP]Qa uy +uy = P},

Lop ={(u1,us) : (ug,us) € [0,00]%, uy +uy > P}.
The operation <,_,, for fivzed P on L<p, defined by
(ur,uz) <, p (V1,02) & up S w1, ug > vy, V (U, uz), (v1,v2) € Lep.
For each nonempty set A C L<p, we have

sup 4 =(sup{u; : (uy,us) € A}, inf{uy : (ug,us) € 4}),
inf 2 =(inf{u; : (uy, ug) € A}, sup{us : (u1,uz) € 4}).
Clearly (L<p, SLSP) s a complete lattice.
For an arbitrary number P in [1,00), the operation <ieup ON Lep U Lsp defined by
(ur,ug) <;oop (V1,v2) & uy <wyp, ug > vy YV (ug,us), (v1,v2) € Lap U Lsp.

Then (L<p U Lsp, <,_.,) is a lattice.
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4). The operations <., and <., on [0,00]* respectively defined by

(u1,u2) <oo (V1,02) & up < vy, U > Vg, (U, Us2) <co (V1,02) & Uy < V1, U > Vg

V (uy, ug), (v1,v2) € [0, 00]?.

Remark 7.2.2. (i) Note that if for (uy,us), (v1,v2) € L, u; < vy and uy < vy, then u and v

are incomparable with respect to <., written as ul| v.

(ii) Note that if for (uy, us), (v1,v2) € L<p, uy < vy and us < vy, then u and v are incomparable

with respect to <,_,, written as ul|._,v.
(111) For p =1, the set L<, represents the set L.

(iv) We denote the units 0, = (0,1), 1, = (1,0) for the set L, and 0,_, = (0, P), 1,_, = (P,0)
for the set L<p.

7.3 (f1,w)-implications

Definition 7.3.1. A function f1 : £ — [0,00]? is said to be a decreasing generator on L if it

satisfies the following conditions:
(i) £1 is decreasing,
(ii) f1 is continuous,
(iii) £1(1,) = 0,.
Example 7.3.2. Consider the following mappings from L — L:
(1) f11(u) = (u2,1 — ua),
(ii) far(u) = (1 —uy + ug, 1 — ug),
Y (u1,us) € L. It is easily verified that these are the decreasing generators on L.

Definition 7.3.3. Let f1 : L — [0, 00]? be a decreasing generator on L. Then the pseudo-inverse

fg_l) 1 [0,00]2 — L of £1 is defined by
fg_l)(v) =sup{u:u € L, f1(u) >o v} Vv € [0,00]%

Generally, 3 a f; : L — [0, 00]*> mapping which is a decreasing generator on £ but does not

satisfy the property fg_l)(fl(u)) = u.
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Example 7.3.4. The pseudo-inverse of decreasing generators, given in Examples 7.3.2(i) and

(i1), are as follows:

(i) fg_l)(v) =sup{u:u € £, f1(u) >, v}, Vv € [0, 00]?
=sup{u:u € L, (uz,1 —uz) > (v1,02)}
=sup{u:u € L, ug > vy, 1 —uy < vy}

=(min{1, vy, 1 — v1}, max{vy, 1 —v5}), Vv = (v1,v2) € [0, 00]*.

(ii) fg_l)(v) =sup{u:u € L, f1(u) >, v}, Vv € [0,00]?
=sup{u:u € L, (1 —uy + uz, 1 —ug) > (v1,v2)}

=sup{u:u€ L, 1 —uy +us >vy,1 —uy < vy}

9 _
=(min{1, v, Tvl}, max{0,1 — vy}), Vv = (v1,v2) € [0, 00

Definition 7.3.5. A function ws : L x ran(£1) — [0, 00)? is called a w—operator of a decreasing

generator £1 if it satisfies the following conditions:

ws is non-decreasing in each argument (U1)
we(0.,v) =0, Vv € ran(fy) (U2)
we(ly,v) =v Vo€ ran(fs) (U3)

For simplicity, we use w instead of ws.

The non-decreasing meaning of w in each argument is as follows:
(i) for a fixed vy € ran(fr), u <, u' = w(u,vy) <oo w(u',vy);
(ii) for afixed up € L, v <, ), V' = w(ug,v) oo w(ug, V'),

for u,u’ € L;v,v" € ran(fy).

Example 7.3.6. (i) If we take the fi-operator f1(ui,us) = (ug,u1), then the function w :
L x ran(f;) — [0,00]? defined by

w(u,v) = (ugv, 1 — (1 —u2)(1 —v9)) Vu = (ur,uz) € L, v = (v1,v2) € ran(fy).

satisfies the conditions (U1), (U2) and (U3) of Definitions 7.3.5. Thus, w is the w—operator

of a decreasing generator f1.



186

(ii) Consider the decreasing generator £1(uy, us) = (ug,uy) and the function w : L X ran(fy) —
[0, 00]% defined by

(v1,v9), w=1,, v=(v1,v2) € ran(fy),

w(u,v) =
(ur,us), u=(up,ug) € L\{1.}, v=(v1,v2) € ran(fy).

It 1s easily to verified that w is the w—operator of a decreasing generator 1.

Definition 7.3.7. A function Iy, . : L* — L defined by
To(era) (U, 0) = £ (w(u, £1(0))) ¥V u = (ur, u), v = (v1,05) € £ (7.17)

is called a (f1,w)- implication generated by a decreasing generator £1 in L and an w—operator.

Here fgfl) is the pseudo-inverse of £1 (see Definition 7.3.3).

Example 7.3.8. (i) Consider the decreasing generator 1 : L — L, f1(u) = (ug2,u1) and its
w—operator given by
uitvf ui+ol — 0,.1 — £
ot =22 ) u = (ur,ug) € L\ {0, 1.}, v = (v1,v2) € ran(fy),
w(u,v) =9 0,, u=0.,v=(v,v9) € ran(fy),
v, u=1,v=(v1,v2) € ran(fy).
Then (f1,w)-implication generated by f1 and w is given by

(ugﬂf Ufﬂ%)
2 2 )

u = (u1,uz) € L\{0,,1.}, v = (v1,v2) € ran(£y),
Tr(erew)(u,v) =S 1,, u=0.,v=(v1,v2) € ran(fy),

v, u=1,,v=(v1,v9) € ran(f1).

(i) Consider the decreasing generator f1 : L — L, fr(u) = (1 — uy + ug, 1 — us) and its
w—operator given by

p
(Ul,'UQ), Uy > V1, V2 > U2,

O, up < v, v < Ug,
w(u,v) =
(1 —wvy,v2), uy < wy,vy > Uy,

\(01,0)7 up > vy, V2 < Uy,

Vu = (up,uy) € L, v = (v1,v2) € ran(fr). Then (f1,w)-implication generated from f1

and w, with fg_l)(v) = (min{1, v, 5=

2

b max{0,1—wy}), Vv = (v, v9) € [0,00]?, is given
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by
.
(min{l, 1-— Vo, H_MT_W}, maX{O,vg}), up >1—v + Vo, 1—vy > U2,
1., up <1 —v; + 09,1 — vy < uy,
II(ﬁ,w)(%”) =
(min{1, 1 — vy}, max{0, v }), up <1 —wvy +vy,1 — 09 > us,
O, up > 1—wv; + 2,1 — vy < up.

\

The following theorem shows that the Iy, ) is an IFI in the sense of Definition 1.8.4.
Theorem 7.3.9. The operator Iy, . defined by (7.17) is an IFI.

Proof. The fact that Iy, ) defined by (7.17) is an IFI can be seen from the following:
e Let u <, u'. Since f; is a decreasing on L, fg_l) exists and w is non-decreasing in each

argument on £ X ran(fr). Then, we have w(u, £1(v)) <.,

w(u',£1(v)) for any v € L,

and hence
Tr(er o) (1, 0) = £1 Y (w(u, £1(0)) >, 85 (W, £2(0)) = Trer (s v),  (7.18)
i.e., Iy ) satisfies (I1).

o Let v <, for any u € £. Then

£1(Y) Zresnio, 1Y) = w(@,51(Y) 2o, o, W@ E1(Y))
= £ (w(z, £1(y))) <. £V (w(z, £1(y)))

= II(fI,w) (x7y> < II(fI,w) (x,y'),

i.e., Iy ) satisfies (12).

o Triero)(0,00) = £5 7 (w(0,,£:(0,))) = £57V(0,) = 1,
II(fI,w)(1L> 1) = fi([71)<w<1LafI(1L)>) = fgil)(fl(lL)) =1,
Trpere(1e,00) = £57 Y (w(1,,£1(0,))) = £V (£2(0,)) = 0o,

i.e., Iy ) satisfies (I3).
]

Theorem 7.3.10. Let f1,fr,fo @ L — [0,00]? be the decreasing generators and t1 : L — L
be a decreasing function with t1(0.) = 1, and t1(1,) = 0.. If the w-operator generated by t:

is given by w(u,v) = tr(u)v, Y u € L and ¥V v € ran(f1), then the following statements are

equivalent:
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(1) Ta(enw)(u,v) = Trenw (U, v).
(ii) 3 a constant ¢, € [0,00]*> \ {0,,00.} such that f1a(u) = c f1;(u), Vu € L.

Proof. (i) = (i) : Let f11,f12 be two decreasing generators on £ such that Iy, oy(u,v) =
I1(tr) (U, v), Yu,v € L. For any u € £\ {0,},

II(fn,w)(uv U) = II(fI27w) (u7 U) A f;11 (w(uv fIl(“))) = f;Ql <w<u7 f12(v)))
& 1 (tr(w)En(v)) = £1 (t1(u)fr2(v))
& frp0 £ (t1(W)fn(v)) = tr(wfrz o £ (£ (v)).
By the substitutions h; = f15 0 7' and w = f1;(v) for any v € £, we obtain
hy(tr(u)w) = t1(u)hr(w) for u € £\ {0,.} and w € [0, 00)?, (7.19)
where h; : [0,00]> — [0, 00]? is continuous, increasing and bijection with hy(0,) = 0,. Taking
w =1, in (7.19), we have
hr(t(u)) = tr(w)hr(1,) for any tr(u) € £\ {0} and u € £\ {0,.}.
Fix arbitrarily w € [0, 00]?. Then 3 t1(u) € £\ {0.} such that t;(u)w € £\ {0.}. Therefore,
hI(tI(U)'UJ) = tI(u)hI(w) = hI(U}) = whl(lL)
Now, we have
fro0fp () =w'(fr20 5 (10)) = fro(u) = £ (u)(fr2 0 7' (12)).

Let ¢, = fro0 f7'(1.) >, 0.. Then fro(u) = ¢ f11(u) for u € £\ {0,}. Note that for 0., we
also have f1o(u) = ¢ fr1(u). Since £11(0,) = £12(0,) = oo, result (ii) is true for u € L.

(i) = (i) : Let f1; be a decreasing generator on £ and ¢, € [0,00]* \ {0,,00,}. Define
fro(u) = ¢ f11(u), for all u € L. Firstly, note that f15 is a well defined decreasing generator on

L. Moreover, f; (w) = f;ll(%) for every w € ran(f1z). Now, for every u,v € L, we have

u.c.f11(v) <<sep0,) CE11(v) = £12(v) <<>£100,) £12(02),

u.cofr(v
LC—H() <<oni(00) U (v) = £11(v) <<oi0,) £11(0)
L
Thus,
tr(u)e f11(v
Ii(tr00) (u,v) =f1_21(t1(U)f12(U)) = f1_21(t1(u)ch11(v)) - fl_ll(%) N fI_ll(tI(U)fH(U))

=T1(ep ) (U, 0), YV u,v e L
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In the continuation, we will discuss some of the properties of (f1,w)-implications.

Theorem 7.3.11. Let f1 and w be a decreasing generator on L and an w-operator on L X
ran(fr) respectively. Then the (f1,w)-implication Iy, . defined by (7.17) satisfies the following

properties:
(1) I1(¢,) satisfies (NP).
(ii) I1(e,w) satisfies (IP) < w(u, f1(w)) <<ss0,) f1(12), Yu € L.
(iii) Ty, satisfies (OP) < w(u, f1(v)) <, £f1(1,) & f1(u) ><>¢,0,) v, Yu € L, v € ran(f;).
(1) Ti(e;w) (U, V) ><>£00,) v holds V u,v € L.
Proof. Let f1 be a decreasing generator and w be an w-operator of £;. Then
Trgew)(u,0) = £1 2 (w(u, £1(v))), ¥ u, v € L.
(i) For any v € L,
Tigere (1e,0) = £ D (W(1,, £1(0) = £5V(£:(v)) = v, i, Tge,w satisfies (NP).
(ii) Suppose that Iys, . satisfies (IP), i.e., for every v € L, we have Iy, .)(u,u) = 1,. By
Definition 7.3.7, we obtain
e (u,u) =1, & £7 Y (w(u, £1(u)) & w(u, £1(1)) <cse,) £1(l.), Yu e L.
The converse part is straightforward.

(ili) Suppose that Iye, ., satisfies (OP), i.e., Vo, € L, Iy ) (a, B) = 1, iff o <, 3, which
means the following equivalences hold:
£V wla t1(9) = 1o & a <o forw(afi(8) Sconwn f1(le) & a <. f.
Putting a = u, £1(8) = v, we get
w(u,v) <<se00,) f1(1) & u <, fg_l)(v) & £1(v) 2<>509) v, YU € L, v € ran(fy).

Conversely, assume that V u € £, v € ran(f;). Then w(u,v) <<>¢0,) f1(l.) <
f1(u) ><>¢,0,) v- For o, f € £, suppose u = o, v = £1(8). Then u € £, v € ran(f;).
Thus
L (0, 8) = 1. & £V (wla, 11(8)) = 1
& wla, £1(8)) <100, f1(12)
& w(u,v) <<oe0,) £1(10)

=1 fI(U) ZngI(oL) vE a<, ﬁ



190

(iv) For w,v € L,
Tier) (1, 0) = £5 ) (w(u, £1(0))) >, £V (w(1e, £1(0)) = £5 D (£2(v)) = 0.

]

The (f1,w)-implication does not necessarily satisfy (EP). This can be shown with the help

of the following example:

Example 7.3.12. Consider the decreasing generator f1, f1(u) = (ug,uy) and its w—operator

given by
(W, 222y = (ug,up) € L\ {0, 1.}, v=(v1,v2) € ran(f),
w(u,v) =40, u="0.,v=(v1,v2) € ran(fy),

v, u=1,,v=(v1,v9) € ran(fy).

Then (f1,w)-implication generated from f1 and w is given by

(Y2, mte2) oy = (ug,ug) € L\ {0, 1.}, v = (v1,v2) € ran(fy),
Tr(erw)(u,v) =9 1,, u=0.,v=(v1,v2) € ran(fy),
v, u=1,,v=(v1,v2) € ran(f),

Tr(erw)(u,v) = £ (w(u, £1(v))) = (1 — (1 = ug)(1 — v1), u1v2), Yu,v € L.

For v = (0.4,0.5), v = (0.3,0.6) and w = (0.4,0.6), we have
II(fI,w) (U, II(fI,w) ('U, 'UJ)) = (025, 0425),

while
II(fI,w) (U, II(fI,w) (u7 ’LU)) = (03, 04) 7é (025, 0425)
This shows that Iy, ) does not satisfy (EP).

Theorem 7.3.13. Let t; : L — L be a strictly decreasing function with t1(0,) = 1, and
t1(1.) = 0,, and £1 be a decreasing generator on L. If the w-operator generated by t1 is given
by w(u,v) =tr(w)v, Vu € L, v € ran(fr), then Iys, w), given by Irs o (u,v) = £ (t(w)f(v)),
satisfies (EP).

Proof. From Definition 7.3.7,

I1(er)(u,v) = 7 w(u, £1(v))) = £7 (e (w)f1(v)), YV u,v € L.
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For u,v,w € L, by (7.17), we have

Tr(er) (U Trerw) (0, w)) =1 (t1(u).£1 0 £ (t1(0)fr(w))) = £1 ' (t1(u).tr(v)fr(w))
=17 (t2(v).tr(w)fr(w)) = £7 ' (e2(v) £1 0 £7 (tx(w)E1(w)))

=I1(f1,0) (U7 II(fI,w)(U’7 w))
Hence Iy, ., satisfies (EP). O

Theorem 7.3.14 ([59], Theorem 6.8). A function @1 : L — L is a continuous, increasing and

bijection iff 3 a continuous, non-decreasing and bijection ¢ : [0,1] — [0,1] such that

Pr(u) = (p(u1), 1 = p(1 —u2)), u = (u1,uz) € L.
Proof. See Theorem 6.8 in [59] for its proof. O

Let ®; denote the family of all continuous, increasing and bijections from £ to £. We say
that the function F,G : £? — L are &; conjugate, if there exists $; € ®; such that G = Fp,,

where
Fp,(u,v) = &7 H(F(P1(u), P1(v))), u,v € L.

Theorem 7.3.15. If Iy, s a (f1,w)-implication and @1 : L — L is a continuous, non-

decreasing and bijection, then (Ir(s;w))d; (U, V) = I1(tromyw)(P1(u),v).

Proof. Let &1 € &1, £1 be an decreasing generator on £ and w be a w-operator on £ X ran(£f1).

Then
(Tr(erw))a: (U, 0) =BT (T, ) (Pr(u), P1(v))) = D1 (£ (w(Pr(u), £1(P1(v)))))
=(f1 0 P1) M (w(P1(u), f1 0 P1(v))) = T1(sromrw)(Pr(u), v),
for every u,v € L. m

Proposition 7.3.16. Let 11 : £L* — L be an IFI satisfying (NP). For a given £1 generator, 3

an w-operator w such that I1(u,v) = Iy w)(u,v), Vu,v € L.
Proof. Let K = {(u,v) € £?: I1(u,v) <, 1.}. Assume
a=uand = 1£1(v)

transform the region K to K’ which is a subset of £ X ran(f;), i.e., for any (u,v) € K, 3 a
(cr, B) € K’ such that
a=uand = f1(v).
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Define a function w : £ X ran(f;) — L by

;

fr(Ir(e, £71(B))), (o, B) €K,
0L7 o = OL7
w(a, B) =
fI(lL)a a=1.08= fI(lL)a
Ce, otherwise,

where ¢, € [0, 00]?\ ran(£;) is a constant. Obviously, w is non-decreasing corresponding to each
argument. Further, we have w(1,, ) = (3 since I; satisfying (NP) and w(0,, 3) = 0,. Hence, w
is a w-operator of f1. In the following we will show that Iy = Ty, ).

For any w,v € £, if I1(u,v) <, 1, then (u,f:(v)) € K'. Thus,

Lres o) (0,0) = £ (w(u, £1(0))) = £ (£1(Tx(u, £ (£2(v))))) = Tr(u, 0).
If Ty(u,v) = 1., then (u, £1(v)) € £ x ran(f;) \ K. Thus,
Tn(era(,0) = £ (w(u, £2(v))) = 1, = Ir(u,v). (7.20)
Since ¢, € [0,00]? \ ran(£1), £7'(c,) = 1,. Thus Iy, . (u,v) = I1(u,v). O

Remark 7.3.17. From the previous proof, we can see that for a given decreasing generator f1
with £1(0,) = oo,, the w-operator of £1 in the Proposition 7.3.16 will be uniquely determined
by I1. However, in the case £1(0.) <, oco,, 3 an infinite number of w-operators of £1 such that

It = Iy(¢,), but in the region K', w is uniquely determined by I;.

Example 7.3.18. Consider the Gaines-Rescher implication Iigr(u,v) =< 1—sg(uy1—v1), va.59(u1—
Ul) >, 7;.6.7
(0,v2), wp >y,

IIGR(U,'U) =
]-Lu Uy S (%D

and the £1-operator £1(uy, us) = (ug,uy). For any f1-operator with £1(0,) <, co,, the coordinate
transformation « = u and 8 = £1(v) transform the region K = {(u,v) € £? : uy < v} to

K'={(a,8) € £ : pri(a) < pri(£17(8))}. Now

£2(0,pr2(£77(8))),  pra(e) < pri(£7'(8)),

0,, otherwise,

w(u,v) =

then I1gr(w, v) = I1gw)-
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Definition 7.3.19. Let I; : £? — L be an IFL. Then the function Ai, : L — L, defined by
Nt (u) = I1(u,0.), for all uw € L, is said to be the natural negation of Ir.

Theorem 7.3.20. Let £1 be the decreasing generator on L, and w be the w—operator associated

with f1. Let Ty, . be the (f1,w)-IFI. Then

1L7 U= 0L7
N[I(flvw)<u> = B) OL <L U <g 1[,’

0L7 U= 1L7

where 0, <, 6 <, 1,.

Proof. Clearly, At . (u) = Tr(;w)(u,0.) = fg_l)(w(u,fI(OL))). If w=1,, then Ag,,  (u) =
frli(w(l,,£1(0.))) = £7'(£1(0,)) = 0. If u = 0., then N‘qul,w)(u) = f1 Y (w(0.,£1(0,))) =
fI_1<0L) = 1L' If OL <L u <L 1L7 then OL SL MI(fI,w)(u) = /B SL 1L‘ D

Example 7.3.21. (i) Let £1(uy,us) = (uz,uy) and

(u1,1 —wug), we L\ {1},

(Ul,UQ), u:lL.

w(u,v) =

Then N, ., (u) = (1 —uy,uz).

1
u

Then

(it) Let £1(;-—1,1—us) = (uz,u1) with £1(1,) = oo, and w(u,v) = (u1v1, 1= (1 —uz)(1—vy)).

I, u =0,

%I(fl,w) (u) =
(0,1 —wug), uw##0,.

7.4 Distributivity of (f;,w) implications over t-representable

t-norms on L

Proposition 7.4.1 ([17], Proposition 3.2). Let L = {(z1,79) € [0,00]* : z1 > 3} and

h: L* —[0,00] be a function. Then the following statements are equivalent:

(i) h satisfies the functional equation

h(xy 4+ y1, 2 + y2) = h(z1, 22) + h(y1, y2), (21,22), (y1,y2) € L. (7.21)
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(i1) FEither h = 0, h = oo,

0, x2=0, 0, a2 < 00, 0, x1=0,
h(il?l,.TQ) = h(.Tl,ZCQ) = h(il?l,.TQ) =
00, X9 >0, 00, Ty = 00, oo, x1 >0,
(
0, To = O,
0, 1=z <00,
r1 < 00, 0, =z <oo,
h($17$2) =400, Ty=00 h($1,$2) = h($17$2) =
00, w9 >0 00, T = 00,
or ry > Xa,
\ or x; = 00,
there exists unique ¢ € (0,00) such that
CT1, I1 = T2,
h(z1, o) =cxa, h(zy, xo) =caq, h(xy,z9) =
oQ, T, > Xo,
cry, X1 < 00, cry, X9 =0, c(xy —x9), Ty < 0,
h(zy,z2) = h(zy,x2) = h(zy,x9) =
00, T = 00, 00, X9 >0, 00, Ty = 00,
or there exist unique ¢y, cy € (0,00), ¢1 # ¢o such that
c1(xy — xa) + caxg, X2 < 00,
]’L(ZEl,JZQ) =
o0, Ty = OQ,

for all (xy,x9) € L.

Proposition 7.4.2 ([18], Proposition 5.2). Fiz real a,b > 0. Let L* =

{(x1,29) €10,a]* : 2y >

zo} and h : L™ — [0,a] be a function. Then the following statements are equivalent:

(i) h satisfies the functional equation

h(min(zy + y1, a), min(zy + yo, a)) = min(h(xq, 22) + h(y1,42),b), (z1,22), (v1,y2) € L.

(i1) Either h = 0, h =b,

0, To = 0,
h([El,ZL‘Q) =

b, To > 0,
there exists unique c € [g, o0) such that
h(xy,x2) =min(cza, b),

min(cxy,b), 1 = xq,

h(l'l,l'g) =
b, r1 > To,

07 Ty = 07

h(zy,x9) =

b, x1 >0,

h(xy,z2) =min(cxq,b),

min(cxy,b),

h(l’l, 1'2) =

(7.22)

1’2:0,

b, x9 > 0,
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or there exist unique ¢y, ¢y € [b/a,00), ¢1 # ¢y such that

min(cy(x; — 22) + cx2,b0), 1 < a,
h(l’l, IQ) =
b, T =a,
for all (xy,x9) € L™
Lemma 7.4.3. Ift : [0,1] — [0,00] is an additive generator of a t-norm T : [0,1]* — [0,1],
then the function s : [0,1] — [0, 00| defined by
s(a) =t(1—a)

is an additive generator of the t-conorm S : [0,1]* — [0,1].
Conversely, if s : [0,1] — [0,00] is an additive generator of a t-conorm S : [0,1]> — [0,1],
then the function t : [0, 1] — [0, 00| defined by

t(a) = s(1 —a)
is an additive generator of the t-norm T : [0,1]* — [0, 1].

Remark 7.4.4. Interval-valued fuzzy t-representable t-norm and intuitionistic fuzzy t-representable
t-norm both are mathematically equivalent if t-norm T : [0,1]> — [0,1] and t-conorm S :

[0,1]* — [0,1] are dual of each other.

7.4.1 On the equation I:(7(u,v),w) = S(I1(u,w), I(v,w))

Theorem 7.4.5. Let I; be the IFI satisfying (NP), and let t-norm T and t-conorm S on L be
the t-representable, i.e., T = (T,S) and S = (S,T). Then the triple (I, T,S) satisfies eq. (7.9)

Proof. (=) Distributive eq. (7.9) is given by
I (T (u,v),w) = 8(I1(u,w),I(v,w)), Y u,v,w € L,

where I7 is an IFI, and t-norm 7 and t-conorm § on £ are the t-representable, i.e., T = (T, .5)
and § = (5,7).
At this situation distributive eq. (7.9) has the following form

Ir((T (u1, v1), S(ug, v2)), (w1, wa)) =(S(pri(Tr((u, ug), (wi, w2))), pri(Ir((vi, v2), (w1, ws)))),

)
T (pra(Ir((ur, uz), (w1, wz))), pra(Ir((vi, va), (w1, w2))))),
(7.23)
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Vu = (up,uz),v = (v1,v2),w = (wy,wy) € L.

Letting w = v = 1, in (7.23), we have

II((T(L 1)7 S<07 O))? (wh w2)) :(S<pr1(II((17 0)7 (wlv w2)))’pT1(II<<17 O)? (wh w2))))7
T(pTQ(L[((lv 0)7 (wh wg))),p”{’g(ll((l, 0)7 (wh wQ)))))

Since, I1(1,,w) = w, (w1, ws) = (S(wy, wy), T(we, ws)), i.e., w; = S(wy,w;) and wy = T (wq, ws).
Hence T' = Ty and S = S); are the only idempotent t-norm and t-conorm respectively in fuzzy
environment.

(<) Suppose t-norm 7 and t-conorm S on L are the t-representable, i.e., T = (Tys, Spr) and
S = (Su, Tw). Then to prove that I; satisfies (7.9), i.e., mainly satisfies (7.23). Let u <, v,
e, uy < vy, ug > vy, for all u = (uy,us),v = (v,v2) € L. Then Ii(u,w) >, Ii(v,w), ie.,
pri(Ir(u,w)) > pri(Ir(v,w)) and pro(Ir(u, w)) < pro(Ir(v,w)), ¥V w € L. Tt follows that the
two sides of (7.23) are equal. On the other hand, let u >, v, i.e., uy > vy, uy < v9, V u =
(ur,ug),v = (v1,v2) € L. Then Ir(u,w) <, Ir(v,w), ie., pri(I:(u,w)) < pri(I:(v,w)) and
prao(I1(u,w)) > pra(Ir(v,w)), for all w € £. It follows that the two sides of (7.23) are equal.
We know that (7.23) is (7.9) when 7 and $ are the t-representable. Thus I; satisfies (7.9). O

7.4.2 General method for solving distributive eq. (7.9):
Distributive eq. (7.9) is given by
I1(T (u,v),w) = S(I1(u, w), I1(v,w)), YV u,v,w € L, (7.24)

where I; : £? — £ is the unknown function. The t-norm 7 and t-conorm S on L are the
t-representable, i.e., T = (7, 5) and S = (S, T).
At this situation distributive eq. (7.9) has the following form

Lr((T'(ur, v1), S(ug, va)), (wi, wa)) =(S(pri(Ir((us, us), (w1, w2))), pri(Ir((ve, va), (w1, ws)))),
T(pro(Ir((u1, ua), (w1, w2))), pra(Ir((vi, v2), (w1, w2))))),

Vu = (uy,uz),v = (v1,v9),w = (wy,wsy) € L.

As a consequence we obtain the following two equations
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Vu=(uy,uz),v = (v1,09), w = (wy,ws) € L.
Now, let w = (w1, wp) € L be arbitrary but fixed. Then we define two functions g(lw1 w3)?

Iy ) + [0:1] = [0,1] by

g(lwl’m)(.) = pry o I (., (wy,ws)), g(le’m)(.) = prg o I1(., (wy,ws)), (7.27)

where o represents standard composition of functions.

From (7.25), (7.26) and (7.27), we have

Itwr wm) (T (1, 01), S (2,02))) = S(Glusy ) (W15 U2)s Gy ) (U1, V2)), (7.28)
Gy ) (T (w1, 01), S (2, 02))) = T(GF0, a0y (U1, U2 ) Gy iy (01, 02)). (7.29)
For simplicity, we put 9(1w1,w2) = ¢! and g?whw) = g% in (7.28) and (7.29), we have

9 ((T(uy,v1), S(ug,v2))) = S(g" (ur,u2), g* (v1,v2)), g*((T(ur,v1), S (us,
v2))) = T(g*(u1, us), g*(v1, v2)). (7.30)

Proposition 7.4.6. Let T = (T,S), s = (S,T), where T and S are the strict t-norm and
t-conorm respectively such that T and S are dual of each other. For a function I;: £L* — L, the

following statements are equivalent:
(i) The triple (T,S,11) satisfies functional eq. (7.9), ¥ u,v,w € L.

(ii) For every fized w € L, I1(.,w) has one of the following forms:

0L7 Uy < 17 OL7 Uz = 07
Ir(u,w) =1, Ir(u,w)=0, Ii(u,w)= Ir(u,w) =
(0,0), ug =1, (0,0), ug >0,
0[/7 Ulzl_u2>o,
OL; Uy = 17
II(U,U)) = (070)7 Il(uyw) = II(u7 ’UJ) = (0,0), U9y = 1or
(0,0), u < 1,
U <1-— U,
r
OLa Uy = 07
up > 0, 0., up > 0, 1
II(“’? ’LU) = II(U,"LU) = II(U,”LU) - (O7t (CS(UQ)))
(0,0), wuy>0or (0,0), wuy; =0,
Uy = 07
\
(0,0), u < 1— Uz, (Ovtil(CS(UQ)))a Uy > 07
II('LL,UJ) = II u,w) =

(Ovtil(Ct(l - Ug))), up =1 — uy, (07 O)a up =0,
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(0,7 He(t(w1)))), u2 =0, (0,7 (e(t(ur) — s(u2)))), w2 <1,
II<U,UJ) = II(u7 ’LU) -
(0,0), up > 0, (0,0), up = 1,
(070)7 Uy = 17
Ir(u,w) = (0,t (ct(wr))), Tr(u,w) = (0,¢ " (cy(t(uy)—
s(ug)) + cas(ug))), us <1,
(
1,, U2>O, u1<1,
1L> U2>0, 1L7 U,2>O, U1+U2§1,
II(U,U)> = II(U,U)) = Il(uaw) =
(070)7 Ug = 07 0L7 Ug = Oa OLa Uz = Oa Uy = 17
\(0,0), uy =0, u; <1,
1,, us > 0 or (uy = 0,uy > 0),
1L7 O < u2,
Ir(u,w) =4 (0,0), uy =0,us =0, Ir(u,w) =
(0,7 (ct(wr))), ua =0,
OL, UQZO, Uq >0,
]—L) Ug = 17
1L7 Ug = 17
II(U,U)) = II(U,U)> =94 0, uy =0,
(0,0), Uy < 1,
(0,0), 0<up <1,
(
1L7 Uy = 07 U = ]-7
]'LJ Ug = 17 0L7 Uy = 17 Ug = 07
Ir(u,w) = Ir(u,w) =
0., us <1, (0,0), u < 1, ug < 1,
\ up +up <1,
1L7 Uz = 17
]-La Uz = ]-7
0., up >0, ug =0,
II(U,U}): OL, ulzl—u2>0, U2<1, I:[('LL,’U)):
(0,0), (Ul = 0, Uy < 1),
(0,0), U < 1—1ug, ups <1,
\ sor (0 <wug < 1),
p
1La Uy = 17
]-L7 Ug = ]-7
0,, up >0, up < 1,
II(U,UJ) = II(U,U}) = (O,t_l(c
up +up <1,
s(ug))), wg <1,
(0,0), Uy = O, Uy < 1,
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p

1L7 Uy = 07 U = 17
1[,5 U,1 < 1,
II(uaw) = (O, 0), Uy < 1, up <1 — uo, II(U,IU) =
(Oa 0)7 Uy = 17
\(O,t‘l(ct(l —u9))), us <1, uy =1—uy,
(
1L7 Uy = Oa Uy = 17
1[,7 Uy = ]-a
(0,0), uy =0, ug < 1,
It(u,w) = Ip(u, w) = (0,47 (e(t
(0,7 es(ug))), wp >0, ug < 1,
(u1) = s(u2))), w2 <1,
\ up +up <1,
1L7 Uy = 17
1L7 Uy = 17
Ir(u,w) = Ir(u,w) = < (0,0), 0<uy <1,

(0,7 ct(ur))), wg <1,
(0,7 (c(t(wr)))), w2 =0,

(

1L7 Uy = 17
1., uy =1 or
(O,til(cl
Ii(u,w) = Ir(u, w) = up <1 —uy,
(t(u1) — s(uz))
(0,0), u =1—uy >0,
\+023(u2)), ug < 1,
(
1,, (up =0, ug =1) or
up <1 —wug, up <1), 1., wu <1,
Ir(u, w) = < (u 2 < 1) Ir(u,w) = o
0L7 ul - ]-7 u2 — 0) 0L7 ul - ]'7
\(0,0), Uy =1—uy >0, 0 <u; <1,

1L7 UQ:107’ 1L7 (ulzo, UQzl),
It(u,w) = up < 1 — uo, It(u,w) = or (up < 1—uy),
0, up=1—wuy >0, (0,7 c(t(1 —ug)))), wp =1—wuy >0,
1., uy =0 or us > 0, 1., u; =0,
Ir(u,w) = Ir(u,w) =
(0,0), Uy = 0, uy > O, (0,0), uy > 0,
(
1,, (up =0), or (uy <1,
UQ>0,U1+U2§1), O,, w1 >0, up =0,
Ir(u,w) = Ir(u,w) =
O, uy =1, ug =0, 1,, w3 =0o0ru; >0,
\(0,0), O<us <1, ug =0,
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1., up =0, 1,, (u; =0), or
Ir(u,w) = € (0,0), 0<uy <1, Ir(u,w)= (ug > 0),
0, up =1, (0, ¢ (e(t(ur)))), up > 0,us =0,
1,, (up =0, ug = 1), or
1,, u =0, up =0,u1 <1 —wu
Ii(u,w) = - ! Ii(u,w) = (1 ! 2)
0, u; >0, (0,7 (ct(1 —ug))), wy=1—1uy, uy >0,
\(0,0), up < 1—1ug, ug >0,
1., uy = 0, 1., uy = 0,
II(U,U)) - - 1 II(”? w) = ’ 1
(0,7 (ct(uy))), wuyp >0, (0,t7 1 (es(ug))), wuy >0,
( 4
1, (up = 0,us = 1), or 1,, up =0,
uy = 0,u1 <1 —uy), 0, uy > 0,up =0,
Ly (u, w) = =0 SONETOI I S
0, uy > 0,up =1 —wuy >0, (0,0), uy > 0,ug > 0,
\(070>7 U1:O,U1<1—u2, U1+'LL2§1,
1L7 Uy = 07
1 1L7 Uy = Oa
(0,7 (ct(u1))), w1 > 0,us =0,
Ii(u,w) = Ir(u,w) = (0,7 (c(t(uy)
(0,0), up > 0,up > 0,
—s(u2)))), up > 0,uy =0,
\ Uq +UQ S 1,
1L7 uy = 0,
Ir(u,w) = 4 (0, (er (t(wr)— I(u,w) = (s (cs(u2)), 0),
s(ug)) + cas(ug))), wuy > 0,uy =0,
(s7'(es(ug)),0), ug >0, (s7'(es(ug)),0), uy <1,
Ir(u,w) = Ir(u,w) =
0L7 Uo = 07 OLa Uy = 17
(s7(cs(u2)),0), wup =0, orug >0,
Ii(u,w) = Ty (u, w) = (s~ (es(uz)), t " (cs(uz))),
0L7 Uy = O,U1 > O,
(s (es(ug)), ™M (ct(1 —ug))), w1 =1—uy,
II(U,’LU) =
(s7H(es(ug)), 0), up < 1 —uo,
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Ir(u,w) =

{(51(cs(u2)),t1(cs(u2))), uy >0,
(57 (cs(u2)),0), u; =0,

Ir(u,w) =

{(s1<cs<u2>>,t1<ct<u1>>>, uy =0,
(s7(cs(uz)), 0), ug > 0,

(57 (es(uz)), £ (c(t(ur)
Li(u,w) = § —s(u2)))), up < 1, Tn(u,w) = (s7 (es(uz)),t™ (ct(w))),

1L7 Ug = 17

(s7Hes(ug)), t™(er (t(uy)
—s(ug)) + cas(uz))), uy < 1, In(u,w) = {

1L7 Uy = 17

(s7Hct(1 — up)),0), uy =1 — uy,

]-[,7 up < 11— Uz,

1L; U1<1—U2, U1<1,
Ir(u,w) = q (s~ ct(l —u2)),0), uy =1—ug, uy <1,

OL, Ulzl, UQZO,

Ir(u,w) =

{(sl(ct(l — )t et — ), s =1 — us,

1., up < 1 — uo,

(s7Y(es(u2)),0), 0<uy <1,

(Sil(cs(u2))7 0)7 uy > 07
I:[(U,w) = II(u7w) == 1L7 Uy = 07
1L7 Uy = 17
0L7 Uy = 17
)
1La Uy > O,UQ = 07
(s7(es(uz)),0), wug > 0,uy >0,
Ir(u,w) =
up + ug < 1,
lea Uy = Oa
(s7Hes(ug)), 7 ct(1 — ug))), u; =1—1uy, ug >0,
Ir(u,w) = (s~ (es(ug)), 0), up < 1—ug, us >0,

1La Uy = 07 U2 S 17



202

(0,7 (ct(u1))), w1 > 0,ug =0,
(57 (es(ug)), t7 (es(ug))), uy >0, (s7'(es(ug)),0), up > 0,ug > 0,
II(U,U)> - II(U,U)) =
1L7 ule, U1+U2§1,
le, 'LL1:O,UQZO,

(s Hes(ug)), t et ((ur) — s(uz)))), wuy > 0,uy <1,
II<U,U)): U1+U2§1,

1L7 u1:O,u2§1,

(s (es(u2)), t7" (ct(ua))), w1 >0,

1L7 Uy = 07

(57 (es(u)), t™ (e (
Ir(u,w) = Q tuy) — s(ug)) + c25(us))), g > 0,up < 1,uy +up < 1,

1L7 u1:0,u2§1,

(s7H(ct(uy)),0), wuy =0,

Ii(u,w) =
]-La U9 > 0,
r

1L7 U1 < 1, U9 > 0,

U1 +U2 S 1,

Ir(u,w) =

(S_l(Ct(ul))70)7 uy < 17 Uy = 07
0., uy =1, ug =0,

(s7H(ct(u)), 17 (es(ua))), up =0,

1L7 u2 >0,

(s7He(t(ur) = s(u2))), 0), ug <1,
(070)7 Ug = 17

(s7Hc(t(ur) — s(u2))),0), up <1, uy <1,

ur +ug <1,
Ir(u,w) =

1L, ule, U2:1,

OL, Uy = 1, Ug = O,
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t_l(Ct(l — u2)))7 Uy = 1-— Ug, Ug < 1,

(s7He(t(ur) — s(u2))),0), up <1 —1uy, upg <1,

1La Uy = 07 Ug = 17

(s7H(e(t(ur) — s(u2))),

Ir(u,w) = St (ct((ur) — s(ug)))), ug <1,

1L7 Ug = 1,
((sfl(c(t(ul) —s(u2))), t 7 es(ug))), up > 0,uy < 1,
up +up < 1,
Ir(u,w) =
(s e(t(uy) — s(ug))),0), uy = 0,u9 < 1,
\1L, up = 0,up = 1,
(s e(t(uy) — s(ug))),0), 0<uy <1,
Ir(u, w) = 9 (s7(c(t(u))), 7 (c(t(m)))), uz =0,
]_L, U = ]_,
(s (c(t(ur) — s(u2)))
It(u,w) =4 ¢ Yet(uy))) Uy < 1
1, ug =1
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Tr(u,w) = {(51(615(1L1)),151(cs(u2)))7 up > 0,
(s7(ct(w1)),0), u =0,

Tr(u, w) = {(51(Ct(ul)),t1(0t(u1))), us = 0,
(s (ct(ur)), 0), va >0,
Ty (u, w) = {(Sl(ct<u1)),t1(c(t(u1) — s(up)))), us <1,
(s7(ct(w1)),0), uy = 1,
Lo, w) = (s~ (ct(un), ¢ (ct(w)),
Ly (u, w) = {isl(ct(w)),tl(cl(t(ul) — s(ug)) + cas(ug))), uz j 1’

I (u, w) = {(81(Cl(t(u1) — s(ug)) 4 ¢25(uz)),0), uy < 1,
<O’ O)’ U9 = 1,

(

(s Her(t(ur) — s(ug)) + cas(uz)),0), up <1, uy <1,
up +up <1,
Ir(u,w) =
1L7 Uy = 07 Ug = 17
0L7 Uy = 17 Uy = 07

\

II(U,’LU) _ {(Sl(cl(t(ul) - S(UZ)) + CgS(Ug)),t_l(cs(uQ)))’ Uy < 1,

1L’ U9y = 1,

(s7Y(cr(t(ur) — s(ug)) + eas(ug)), ™ et(1 — ug))), wp =1 —uy, uy < 1,

Ir(u,w) = q (s~ (er(t(uy) — s(ug)) + cas(ug)),0), up < 1—ug, ug <1,
1., up =0, ug =1,
(s (er(t(ur) — s(ua)) + cos(uz)), t " (es(uz))), wr > 0,up <1,
Uy + U9 S 1,
Ir(u,w) = <
(s (ca(t(ur) — s(ug)) + cas(uz)), 0), uy = 0,uy < 1,
1L7 Uy = O,U2 - 17

(s7Her(t(ur) — s(ug)) + ca8(uz)),0), 0 <wuy <1,
Li(u,w) = 9 (s (ea(t(wn)), 7 (e(t(wn)))), u =0,

1[,’ Uy = 1’
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(s Her(t(ur) = s(ua)) + cas(uz)),t (ct((wr) — s(u2)))), w2 <1,

Ir(u,w) =
Lo Uy = 1,
(. w) = (57 (er (H(ur) — s(ua)) + cas(u2)), t (et (ur))), us < 1,
Le, uy = 1,
I (u, w) = (s7Her(t(ur) — s(uz)) + cas(ug)), t7Her(t(uy) — s(ug)) + cas(ug))), uz < 1,

1L7 U = 1

Proof. Given that 7 and § are the t-representable on £ such that 7 = (T,5) and § = (S, T),
ie., T(u,v) = (T(uy,v1),S(uz,v2)) S(u,v) = (S(ug,v1), T(ug,vq)), for all u,v € L. Given that
t-norm T is strict, and T and S are dual of each other. It follows that t-conorm S is strict. Now,
from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7, given in [19], there exist a decreasing
continuous function ¢ : [0,1] — [0, 00] and a increasing continuous function s : [0, 1] — [0, o0
such that t(0) = oo, t(1) = 0, s(0) = 0 and s(1) = oo which are uniquely determined a
positive multiplicative constant such that, for all a,b € [0,1], T(a,b) = t~(t(a) + t(b)) and
S(a,b) = s~ !(s(a) + s(b)).

Let us prove that (ii) = (7).

(P1): Let I; have the form I;(u,w) = 1,. Then the LHS of (7.9) is equal to 1., and the RHS
of (7.9) is equal to 1,.

(P2): Let I; have the form I;(u,w) = (0,0). Then the LHS of (7.9) is equal to (0,0), and the
RHS of (7.9) is equal to (0,0).

(P3): Let I; have the form I(u,w) = 0,. Then the LHS of (7.9) is equal to 0., and the RHS
of (7.9) is equal to 0.

OLa Uy = Oa
(P4): Let I; have the form Iy(u,w) =

(0,0), s > 0.
Then the LHS of (7.9) is equal to
0,, S(ug,v9) =0, 0, Uy = vy = 0,
R S S
(0,0), S(ug,v9) > 0. (0,0), wug > 0orwvy >0,
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and the RHS of (7.9) is equal to

0 ) Ug = 07 0 )
S(II(U,UJ),II(’U,w)) :5< : ) -

(0,0), wuy>0. |(0,0),

O, Uz = vg = 0,

(0,0), wug > 0orwvy > 0.

UQZO

OL, Uy < 1,
(P5): Let I; have the form Iy(u,w) =
(0,0), Ug = 1.
Then the LHS of (7 9) is equal to
I, ( UQ,UQ) < 1, O, Uy < 1, v9 < 1,
S(ug,ve) = 1. (0,0), uy=1orwvy =1,

and the RHS of (7. 9 is equal to

O, Uy < 1, 0., vy < 1,
S(II(U,U}), II(U7w)) :5< - ) -
(0,0), wp=1. |(0,0), v =1.
O, Uy < 1, v < 1,
(0,0), ug=1orwvy =1,
OL, Uy = ].7
(P6): Let I; have the form Iy(u,w) =
(0,0), up < 1.
Then the LHS of (7 9) is equal to
ulavl) - ]-7 0L7 Uy = v = 17
I:(7( =
T(ug,v) < 1. (0,0), u; <lorwv <1,
and the RHS of (7. 9 is equal to
0 5 Ul — 17 0 9 /Ul - 17
$(Lx(u,w), Ix(v,w)) =5< - Qe
(0,0), u; <1. |(0,0), v <1.

OL, Uy = v = 1,

(0,0), w3 <lorwv <1.

(P7): Let I have the form I;(u,w) = (0,1 — s (ct(1 — uy))).

)

vy > 0.

)

)
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Then the LHS of (7.9) is equal to
I (T (u,v),w) = (0,1 — s H(ct(1 — S(uy,v2)))) =(0,1 — s (ct(T(1 — ug, 1 — v))))
(0,1 = s7H(e(t(1 — ua) + t(1 = v2)))),

and the RHS of (7.9) is equal to

S(I1(u,w), Ir(v,w)) =5((0,1 — s (ct(1 — up))), (0,1 — s~ (ct(1 — v3))))

=(0,T(1 — s (ct(1l —up)), 1 — s *(ct(1 — 12))))
=(0,1 = S(s™(ct(1 —ug)),s ' (ct(1 — v2))))
=(0,1 — s H(c(t(1 — ug) + (1 —vy)))).

Similarly we can verify the eq. (7.9) easily by all remaining forms of I;.
Let us prove that (i) = (7).
From (7.30),
g (7 () +t(v1)), 57 (5(ua) + s(v2))) = 7 (s(g' (ur, u2)) + s(g" (v1, 1)),
G () +t(v1)), 57 (s(u2) + 5(v2))) = t7 (g (w1, uz)) + (g (v1, v2))).

Hence

s0 (g" (7 (t(ur) + t(vr)), 57 (5(ua) + 5(v2)))) = (g (ur, u2)) + s(g* (vi,v2)), (7.31)
to (g7 (t™ (t(ur) +t(v1)), 7' (s(u2) + s(v2)))) = t(g" (ur, u2)) +t(g" (v1,v2)). (7.32)
Let us put t(u1) = 1, s(u2) = x2,t(v1) = y1 and s(vy) = yo. Of course 1, x9, y1,y2 € [0,00],
Moreover, u = (uy,uz),v = (v1,v2) € L, thus u; <1 —uy and v; < 1 — vy, Since ¢ and s are
decreasing generator and increasing generator respectively such that ¢(a) = s(1 —a),Va € [0, 1],

x1 > x9 and y; > yo. This implies that (z1,x2), (y1, ) € [0, 00]?. If we put

fH 1, 20) = sopry o Ir((tHay), s (1)), (wy,ws)), f*(x1,22) :=topryoIr((t ! (xy),
51 (), (w1, ws)) ¥ (21, %) € [0, 00]

(7.33)

As a consequence we get the following two functional equations
FHay +yn, w2+ y2) =f (21, 22) + 1y, 1), (7.34)
FHr + g1, w0+ y) = (1, 22) + L2 (01, 12), (7.35)

where (21, 2), (y1,92) € [0, 00]%.
Now, we find the possible solutions of (7.34) are as follows:

For x1, 29 € [0, 00], 21 > 5 and (wy,wy) € L, we have
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(S1): f1=0 = soprioI((t7(zy1),s H(x2)), (wi,ws)) =0 = prioIr((ug,us), (wy,ws)) =
0.

(S2): fl=00 = soprioli((t71(z1),s  (2)), (w1, ws)) =00 = prioli((uy,us), (wy,ws)) =
1.

(S3): fHay, o) = bl

00, x>0,

1 1 0, To = O,
= soprioI((t7 (21),s (22)), (w1, w2)) =
00, T3>0

O, Uy = 0,
= pri o Ir((ur, ug), (wi,wy)) =
1, ug > 0.

0, x93 <00,
(S4):  flzr,20) = :

00, Xy = 00,

. ) 0, 9 <o0,
= soprioIi((t  (x1),s (22)), (wy,ws)) =
00, Ty = 00

0, wus <1,
= pry o It((ur, u2), (w1, we)) =
1, Uy = 1.

) Plana)=q0 0

oo, x1 >0,

1 1 0, T = 0,
= soprioI((t7 (21), s (z2)), (w1, wa)) =
oo, x1 > 0.

Oa Uy = 17
= prio II((ula u2)7 (wbw?)) =
1, w <1
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0, x1 =9 <00,
(S6):  flzr.a) = L

o0, To =00 0O X1 > Ta,

;) . 0, x1=z9 <00,
= sopryoI((t (x1), s  (22)), (w1, we)) =
00, Ty = 00 Or Xy > To.

0, uy=1—uy >0,
= pry o It((ur, us), (w1, we)) =

1, wo=1oru <1—us.

L 0, x22=0, 1 < o0,
(S7): [z, 20) =

00, x> 0o0rxz = 00,

. . 0, x2=0, 21 < o0,
= soprioIi((t (z1),s (72)), (wi,ws)) =
00, X9 >0orxr = 0.

0, up=0, up >0,
= pryo Ir((ur, ug), (W, ws)) =
1, uys >0o0ru; =0.

0, x1<o0,

00, X1 = 00,
. . 0, z1< o0,

= soprioIi((t7 (1), 57 (x2)), (w1, ws)) =
00, T] = 00.

0, wu; >0,

= pry o Ir((ug, uz), (w1, ws)) =
1, Uy = 0.

(S9): 3 ¢ € (0,00) such that

a1, 20) = cvy = soprioIr((t(wy), s H(x2)), (wi,ws)) = cao

= pryo I1((ug, ug), (wy, ws)) = s *(cs(uy)).
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Cr1, T1 = T2,
(S10): fl(xth) =
o0,  IT1 > Io,

_1 1 CT1, I1 = T2,
= soprioLi((t7 (1), s (22)), (w1, we)) =
o0, T, > To.

sTHet(1—ug)), up=1—uy,
= pry o It((ur, u2), (w1, we)) =
1, up < 1—us.

CTy, 1 < 00,
S11):  flana) =4 o

00, T = 00,

1 1 CTo, I1 < OQ,
= soprioIt((t7 (z1),s (22)), (w1, ws)) =
00, T = 00.

s es(ug)), uy >0,
= prio Ir((ur, uz), (w1, ws)) =

1, Uy = 0.

cry, X9 =0,
(512):  flanae) =4
00, X9 >0,

. . cry, 29 =0,
= soprioI((t (z1),s  (v2)), (w1, wa)) =
o0,  x9 > 0.

s ct(uy)), uy =0,
= pryo It((ur, us), (W, we)) =
1, Uy > 0.

(S13): fH g, m0) = c(21 = x2), w2 <00,

0, To = 00,

. . c(xy —x3), x2 < 00,
= soprioLi((t7 (z1), s (22)), (w1, w2)) =

= pryo It((ur, us), (W, we)) =



(S14): 3 ¢ € (0,00) such that

fH 1, 29) =crr = soprioI((tH(xy),s M), (wi,wy)) = cay

= prio Ir((uy, ug), (Wi, ws)) = s ' (ct(uy)).

(S15): F 1,62 € (0,00), ¢1 # ¢ such that

c1(x) — x3) + axg, Ty < 00
fHar,ma) = ’ ’

00, Lo = 00,

- B c1(x1 — x2) + k9, Ty < 00,
= soprioIi((t7 (z1), s (2)), (w1, w2)) =
00, Ty = 00.

s e (tH(uy) — s(us ca(s(ug))), we <1,
S pry o Ty((ur, ug). (wr, wg) = 1 (c1(t(ur) — s(uz)) + c2(s(uz))) jl

Similarly, we can find the possible solutions of (7.35) are as follows:

For X1,T2 € [0,00],]71 Z ) and (U)l,UJ2> € L’ we have
(S71): proo Ix((ur,u2), (wy,wz)) = 1.
(S'2): proo I((u1,us2), (wi,ws)) =0.

1, Uy = 0,
(8’3)2 pra © II((Uh U2)a (wl,wZ)) =
O, U > 0.

1, Uy < 1,
(S74): proo Ix((ur, us), (wr,ws)) =
O’ U = 1.

1, Uy = 1,
(S’5): pro o I((ug,us), (wy,ws)) =
u < 1.

1’ Uy = 1 — U9 > O,
(S°6): pra o It((u1,us), (wy,wy)) =
0, up=1oru <1—us.

1’ Uy = 0, uy > O,
(S'7): pra o It((ur,ug), (wy,wy)) =

— — — /=
=

0, us>00ru =0.

211
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: 1, uy > 0,
(S'8): proo Ir((uy,us), (wi,wy)) =
0, Uy =

(S9): 3 ¢ € (0,00) such that

pra o Tr((ug, ug), (wi, ws)) =t (es(uy)).

“et(l —wy)), w =1—u,
(S710): pro o Iy ((uy, us), (wy, ws)) = {t (ct( ))
0, up < 1 —us.
(S'11): pra o Ix((ur, uz), (wr, wp)) = {t st =
0, up = 0.
“ct(uy)), ug =0,
(S'12): pro o It((uy,us), (wy,ws)) = {t (ct(u1))
0, ugy > 0.
(S'13): pry o Ir((ug,us), (wy,ws)) = {; (c(t(ur) — s(ug))), ug < 1,

(S'14): 3 ¢ € (0, 00) such that
pro o Ir((ur, uz), (wi,wy)) =t~ (ct(uy)).

sTHer(t(ur) = s(u2)) + ca(s(u2))), w2 <1,
O, Ug = 1.

(S’15): pro o Ir((uy,us), (wy,ws)) =

Of course not every combination of the above solutions give a correct value in the set £. For ex-
ample when prioIr((uq,uz), (v,v2)) = 0 and prooIr((ug,usz), (v1,v9)) = 1, for every (vy,v2) € L,

then our (constant) solution is correct: I1((u1,us),(vi,v9)) = (0,1) =0,.

0, wuy =0, 1, uy =0,
Also when prioIy((uy,us), (Wi, ws)) = and prooIr((uy, us), (wy,ws)) =
1, uy > 0. 0, wue >0.
. . OL, U9 = 0,
for every (vq,v2) € L, then our (constant) solution is correct: Ir((uy,uz), (v1,v2)) =
1., wus > 0.
0, wuy =0, 1, wuy <1,

But if pry o I1((uq, uz), (wy, ws)) = and proo Ir((uy,us), (wy,ws)) =
1, wuy > 0. 0, wuy =1,
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0L7 Uy = 07
for every (vi,v2) € L, then our solution is incorrect, since It((u1,uz), (vi,v2)) = § 1,, uy = 1,
(1,1), 0<us <1,
is not solution in £ (since (1,1) ¢ L).
Similarly, we can find the possible combinations of the above solutions give a correct value

in the set £ is the required result (ii). O

Remark 7.4.7. If we put o = u, f = f1(w) and Iy = Iy, ) in Proposition 7.4.6, then the

above possible forms of I1(u,w), for fited w € L, convert into corresponding forms of w(«, 3).

Proposition 7.4.8. Let T = (T,S), S = (S,T), where T and S are the nilpotent t-norm and
t-conorm respectively such that T and S are dual of each other. For a function 11 : £L> — L, the

following statements are equivalent:
(i) The triple (T,S,11) satisfies the functional eq. (7.9) ¥ u,v,w € L.

(ii) For every fired w € L, I1(.,w) has one of the following forms:

OLa Ug = Oa
Ir(u,w) =1, Ir(u,w)=(0,0), Ir(u,w)=0, Ii(u,w)=
(0,0), wug >0,
0L7 ul - ]‘7 1
Ir(u,w) = Ir(u,w) = (0, (min(cs(uz),b))),
(0,0), U < 1,
(0, ¢! (min(

Ir(u,w) = ct(uy),b))), w =1—uy, Ir(u,w) =
(0,0), uz > 0,
(0,0), up <1 —wuy,
(0, t~ Y (min(cy (£(uy)—
II(”? w) - (07 t_l(min(6t<u1)7 b)))v II(U, w) - 3(“2)) + C2S(U2)7 b)))a up > 0,

(07 0)7 Uy = Oa

(07 0)7 Ug = 07 OL7 Ug = Oa

1L7 Ug > 07 ]-L7 Ug > Oa
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0L7 Uy = 17u2 - 0,
(0,0), w <1,us =0, (0,7 (min(ct(uq),b))), u =0,
II(UJ w) = II(UJ w) -
1L7 U1<1,U2>0 1L7 U2>0,
\ & Ul + Uo < 1.
(070)7 Uy = 17 0L7 Uy = 17 1 .
II(U,U)> - II(U,U)) - II(U,UJ) = (S_ (m1n(cs(u2), b))70)7
1L7 up < 17 1L7 up < 17
0 5 U :0, O y U = ]_7
Ir(uw) = U Lww) =4 " 1
(s7'(min(cs(uz),b)),0), wug >0, (s7!(min(cs(uz),b)),0), wu <1,

I1(u,w) = (s~ (min(es(ug), b)), t " (min(es(us), b)),
(s} (min(cs(uz), b)),
Ir(u,w) = § ¢t~ (min(ct(u,), b))), up =1 — ug,

(s7H(min(cs(uz),b)),0), wup <1 — uy,

Iy (u, w) = {(O,tl(min(ct(ul),b)))’ Uy = 0,
(s~} (min(es(uz),)),0), uy >0,

I1(u,w) = (s *(min(cs(ug), b)), t (min(ct(uy), b))),

Ii(u, w) = {(Sl(min(CS(UQ)a b))7t*1(min(c1(t(u1) — s(ug)) + cos(ug),b))), wus =0,
(s~ (min(es(uz), b)), 0), uy =0,

1[,; up < 1- Uz,

II(U,w) _ {(Sl(min(ct(u1), b)),0)7 u =1 — uy,

0L7 up = 1,uy = 07
Ir(u,w) = q (s~ (min(ct(uy),b)),0), w3 =1 —ug,uq < 1,

]-L7 U1<1—U,2,U1<1,

(s~ H(min(ct(uy), b)),
Ir(u,w) = § t~H(min(c(t(uq),b)))), wur =1 — ug,

]-L7 U < ]-_u27
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II(U, w) - {(sl(min(ct(ul), b)), O), Ug = O7

1L7 Ug > 07
0L7 Uy = 17u2 = 07
Ir(u,w) = (s~ (min(ct(uy),b)),0), uy < 1,uy =0,
1L7

u < 1,U2>0,U,1+U2 < 1,

Ty (u, w) — {(s1(min(ct(m),b)),t1(min(c(t(u1),b)))), Uy = 0,

1L7 u2 >O,

Ir(u,w) = (s *(min(ct(uy),b)),0),

0L7 Uy = 1,
Ir(u,w) = {
(s7t(min(ct(uy1),0)),0), u; <1,

I1(u,w) = (s (min(ct(uy), b)), t " (min(c(s(uy), b)))),
(s~ H(min(ct(uy), b)),

Ir(u,w) = t~H(min(c(t(uy),b)))),  uy = 1 — ug,

(s7Y(min(ct(u1),b)),0), u <1—ug,

(s~ H(min(ct(uy), b)),
Ir(u,w) = q t~H(min(c(t(u1),b)))), ug =0,

(s~ H(min(ct(uy),b)),0), uy >0,
Ir(u,w) = (s (min(ct(uy), b))t (min(e(t(u1), b)))),
(s~ (min(ct(uy),b)), ¢! (min(c;

Ir(u,w) = (Huy) — s(ug)) + c25(u2), b)),  uy >0,
(s~ (min(ct(u1), b)), 0), uy =0,

(s7H(min(cy (t(uy) — s(uz))
Ii(u, w) = § +eas(ug), b)), 0), uy >0,

1L7 Ui :0,
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0L7 Uy = 1’
1., up =0,
II(U,U)) = ’ 1
(s H(min(cy (t(uy) — s(uz))
\"—CQS(U/Q),b)),O), 0<u <1,

(s (min(cy (t(uy) — s(uz)) + cas(uz), b)),
Ir(u,w) = § ¢t~ (min(cy (t(uy) — s(ug)) + cas(ug), b)), up >0,

1L7 uy = O,

Proof. Given that 7 and § are the t-representable on £ such that 7 = (T,S) and § = (5,7,
e, T(u,v) = (T(uy,v1),S(ug,v2)) S(u,v) = (S(uy,v1), T (ug,v9)), for all u,v € L. Given
that t-norm T is nilpotent, and T and S are dual of each other. It follows that t-conorm 5
is nilpotent. Now, from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7 given in [19],
there exists a decreasing continuous function t : [0,1] — [0,00] and a increasing continuous
function s : [0,1] — [0, 00] such that #(0) < oo, t(1) = 0, s(0) = 0 and s(1) < oo which are
uniquely determined a positive multiplicative constant such that, for all a,b € [0, 1], T(a,b) =
t~Y(min(t(a) + t(b),t(0))) and S(a,b) = s~ (min(s(a) + s(b), s(1))).

Let us prove that (i7) = (1).

(P1): Let I; have the form I;(u,w) = 1,. Then the LHS of (7.9) is equal to 1., and the RHS
of (7.9) is equal to 1,.

(P2): Let I; have the form I;(u,w) = (0,0). Then the LHS of (7.9) is equal to (0,0), and the
RHS of (7.9) is equal to (0,0).

(P3): Let I; have the form I;(u,w) = 0,. Then the LHS of (7.9) is equal to 0., and the RHS
of (7.9) is equal to 0.

OLa Ug = Oa
(P4): Let I; have the form Iy(u,w) =

(0,0), s > 0.
Then the LHS of (7.9) is equal to
0, S(us, =0, 0, Uy = Yy = 0,
Ty (T (u, v), w) = L (u2, y2) _ L 2 = Y2
(0,0), S(ug,v9) > 0. (0,0), wug > 0orwvy >0,



217

and the RHS of (7.9) is equal to

0 5 Uy = 07 O 3 Vg = 07
S(Tr(u, w), Ir(v, w)) :s< : e )
(0,0), wuy>0. |(0,0), wvy>0.

O, Uy = vy = 0,

(0,0), ug > 0orwvy > 0.

OLa v = 17
(P5): Let I; have the form Iy(u,w) =
(O, 0)7 v < 1.
Then the LHS of (7.11) is equal to
0,, T(uy,v) =1, 0,, uy = v = 1,
U RO S B
(0,0), T(uy,vy) < 1. (0,0), up <lorw <1,

and the RHS of (7.11) is equal to

0., u =1, |0, vy =1,
S(Tr(u, w), T (v, w)) =s< - R )
(0,0), up < 1. (0,0), v < 1.

OL, Uy = v = ]_,

(0,0), w3 <lorw <1

(OJ 0)7 U2 = OJ
(P6): Let I have the form It(u,w) =

1L7 U/2 > O
Then the LHS of (7.9) is equal to
0,0), S(ug,v9) =0, 0,0), us =wvy =0,
14 (T (1, 0), 1) = (0,0),  S(uz, v2) _ 0,0, u=v,
1, S(ug,ve) > 0. 1, us > 0 or vy > 0,
and the RHS of (7.9) is equal to

S(Ir(u, w), Ir(v,w)) =

)

1L7 ug > 0. 1., vg > 0.

( (0,0), uy =0, |(0,0), 02:0,)
S

(070)7 Uy = Vg = 07

1., ug > 0 or vy > 0.
OL; Uy = 07
(P7): Let I have the form Iy(u,w)=
]_L, ug > 0.

Then the LHS of (7.9) is equal to
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0., S(ug,v9) =0, 0, us =19 =0,
(T (0 w) = L (u2,v2) _ )0 2 2
1., S(ug,vy) > 0. 1., wug>0orwvy >0,
and the RHS of (7.9) is equal to
07 UQIO, 07 UQIOJ 07 u2:U2:O7
5(Tx(u, w), Tr(v, w)) :s( ’ ’ ) ="
1., wuy > 0. 1., vy >0. 1., us > 0orwvy > 0.
<070>7 U = 17
(P8): Let I; have the form Ir(u,w) =
1L7 u1 < 1
Then the LHS of (7.9) is equal to
0,0), T(u,v) =1, 0,0), uy =v =1,
nyr(u, ) = 4 0 T oo
1L7 T(Ul,Ul) < 1. lL, u < loruv < 1,
and the RHS of (7.9) is equal to
(070)7 Uy = 17 (an)a V1 = 17
S(Il(u’w)’ll(v7w)) :5< )
1L7 up < 1. 1L, v < 1.
(070)7 Uy =01 = 17
1., up < lorwv <1.
OLa Uy = 17
(P9): Let I; have the form Iy(u,w) =
1., u <1
Then the LHS of (7.9) is equal to
0,, T(uy,v) =1, O, wp=v; =1,
R Y S
1., T(up,v) < 1. 1,, wyy<lorwv <1,
and the RHS of (7.9) is equal to
O, U1:1, O, ’01:1, 0, U1:111:1,
S(Iz(u, w), Iy (v, w)) :5( - - ) _
1., u <1. 1,, v <1. 1,, wp <lorwv <1.
0L7 Uy = 17 Uy = 07
(P10): Let Iy have the form Ir(u,w) = 4 (0,0), u; <1, uy =0,
1., up <1, uo >0, up +ug < 1.



Then the LHS of (7.9) is equal to

I (7T (u,v),w) =

O, up=v1 =1, ug = vy =0,
(0,0), (ug <lorwv <1), ug =wvy =0,
1,, (ug <lorwv <1), (ug>0or

and the RHS of (7.9) is equal to

0, uy =1, ug =0, [0, vy =1, vo =0,
S(Ly(u0), Ty (v, w)) =5 (0,0), u; <1, uy =0, | (0,0), v <1, vg =0,

1, u <1, ug >0, |1, v <1, vy >0,
\ up +ug < 1. \ vy + v < 1.

(OL, Uy =v1 =1, ug = v9 =0,

(0,0), (ug <lorwv <1), ug =1vy =0,

N 1,, (up <lorwv <1), (ug >0 orwvy>0)
\ &up+uy <1, vy +vy < 1.

Let us prove that (i) = (7).
From (7.30),

,£(0))), s
+5(g" (v1,v)),
,£(0))), s~
+t(g*(v1,v2)), £(0)))-

U2>0), U +us <1, vy +vy <1,

(

(min(s(uz) + 5(v2), 5(1))))
s(1))),
H(min(s(uz) + s(v2), 5(1))))

219
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Hence

so (gt (min(t(ur) + t(vy), (0)
= min(s(g" (u1, u2)) + s(g' (v1,v2
to (¢g*(t (min(t(uy) + t(v1),1(0))

)

)
),s(1)), (7.36)
)

(7.37)

Let us put t(uy) = x1,s(u2) = x2,t(v1) = y1, $(va) = Y2, t(0) = a and s(1) = b. Of course
T, T2, Y1, Y2 € [0, 00|, Moreover, u = (uy, us),v = (v1,v2) € L, thus u; <1—wug and vy <1 —vs.
Since t and s are decreasing generator and increasing generator such that t(1 —a) = ¢(0) — t(a)
and s(a) = t(0) — t(a), YV a € [0,1], 21 > 25 and y; > yo. This implies that (x,z2), (y1,y2) €
[0, 00]?. If we put

[y, m9) == soprio It ((tH(x1), s7Haa)), (w1, ws)), f2(z1,25) :=topryo I((t(zy),

(7.38)
s (x2)), (wi, wy)) V (21, 29) € [0, 00]?
(7.39)
As a consequence we get the following two functional equations
fHmin(zy +y1, @), min(zs + yo, @) =min(f* (21, 2) + f(y1,42),0), (7.40)
fA(min(zs + yo, a), min(ay +y1, @) =min(f*(z1, 2) + (41, 92),0), (7.41)

where (21, 72), (y1,2) € [0,00]2

For 1,5 € [0,00], 21 > 29 and (wy,wy) € L, we have

(S1): f1=0 = soprioI((t 1 (x1),s (22)), (wy,woe)) =0 = prioIr((uy,us), (wy,wy)) =
0.

(S2): fr=b = soprioIi((t7(zy1),s Hxa)), (wi,ws)) =b = prioIli((uy,us), (wy,ws)) = 1.

1 0, To = 0,
(S3):  fiz1, 1) =
b, To > 0,
1 1 0, To = 0,
= soprioIr((t (z1), 5™ (22)), (w1, wy)) =
b, x> 0.

O, Ug = 0,
= prio II((ula u2)7 (wl>w2)) =

1, uy > 0.



(S4):

1 0, T = 0,
f (1]1,132) -
b, x>0,
1 1 07 €T = 07
= soprioI((t7 (z1),s (x2)), (w1, ws)) =

b, x1 > 0.

0, Uy = 17
= pr1o Ix((ur, ug), (wi, wz)) =

1, u <1

(S5): 3 ¢ € [b/a,o0) such that

(S6):

(S7):

(S8): fY(zy,xs) = min(cxy,b) = prio Ir((uy, us), (wi,ws)) = s (min(ct(u1),b)).

(1, 22) = min(cry, ) = sopryoIr((t Hay),s ' (22)), (wy,wy)) = min(czy, b)

= prio Ir((ug, ug), (Wi, ws)) = s (min(es(uy), b)).

min(cxy,b), x1 = o,
fl(‘rl?x?) = {

b, T1 > T2,
= sopryoI((t ! (x1), s (z2)), (wi,ws)) = {

s Hmin(ct U1 ,b , U= 1 — Uy,
= prlOII((UhW),(wth)){ (min(ct(u1),b))

1, up < 1 — usg.

b, z9 >0,

min(czy,b), x9 =0,
fl(l'l,l’g){ ( 1 ) 2

min(czy,b), x5 =0,
= sopryoI((t ! (x1), s (z2)), (wy,ws)) = {

b, T9 > 0.

s~ (min(ct(uy),b)), us =0,
= pry o It((ur, us), (w1, we)) = { ( (ct(us),0))

1, us > 0.

min(cxl, b), T = Ta,

b, 1 > To.

221
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(S9

): dc1,c0 € [b/a,00), ¢1 # ¢y such that

) min(cy (1 — T2) + co9,b), 1 < a,
f (1'171'2 =

b, T, = a,

min(c;(z1 — x2) + w9, b), 1 < a,
= soprio It((t™ (z1), s (x2)), (w1, ws)) =
b, r1 = a.

s~ (min(ey (H(ur) — s(u2)) + e2(s(u2)), b)), w >0,

= pryo I1((ug, uz), (wy, we)) = {
1

3 Uy =

Similarly, we can find the possible solutions of (7.41) are as follows:

For 1,5 € [0,00], 21 > 29 and (wq,wy) € L, we have

(S'1): proo Ir((ug,us), (wy,ws)) = 1.

(S’2): proo Ir((uy,us), (wy,ws)) = 0.

1, Uy = 0,

(S'3): prg o Ir((ur, ug), (w1, w)) =

(S'4): pro o Ir((ur, uz), (wi,ws)) = {

0, U > 0.

1, Uy = 1,

0, wu <1.

(S’5): ce [b/a,) s.t.

(S76): pra o Ir((ur, uz), (wi,ws)) = {

(S'7): pra o Ir((ur, uz), (w1, ws)) = {

pro o Ir((uy, uz), (wy, ws)) = t~H(min(cs(uz), b)).
t~Y(min(ct(uy), b)), up =1 — us,

0, up < 1 —us.

t~H(min(ct(uy),b)), up =0,

0, ug > 0.

(S'8): pro o Ir((u1,us), (wy,wy)) =t~ H(min(ct(uy),b)).

(S'9): F¢1,¢0 € [b/a,00), ¢ # co such that

¢~ (min(ey (t(ur) = s(uz)) + ca(s(u2)), b)), w1 >0,

pra o Ix((ug, ug), (i, we)) =
07 Uy = 0.
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Of course not every combination of the above solutions give a correct value in the set £. For ex-
ample when prioIr((u1, uz), (v1,v2)) = 0 and prooIr((ur, uz), (v1,vs)) = 1, for every (vi,v2) € L,

then our (constant) solution is correct: Ir((u1,u2),(vi,v9)) = (0,1) =0,.

07 Uz = 07 ]_7 Ug = Oa
Also when prioIy((uy, us), (Wi, wsy)) = and prooIy((uy, us), (Wi, ws)) =
1, wuy > 0. 0, wuy>0.
: . OLa Ug = 07
for every (vy,v2) € L, then our (constant) solution is correct: I1((ug,us), (v1,v2)) =
1., wuy > 0.
. 0, wuy =0, 1, wuy <1,
But if pry o It ((uq, us), (wy,ws)) = and proo Ir((uy,us), (wy,ws)) =
1, wuy > 0. 0, uy =1,
0L7 Uy = 07
for every (vy,v2) € L, then our solution is incorrect, since It((u1,uz), (vi,v2)) = { 1,, Uy = 1,

(1,1), 0<uy <1,
is not solution in £ (since (1,1) & £).

Similarly, we can find the possible combinations of the above solutions give a correct value

in the set £ is the required result (ii). O

Remark 7.4.9. If we put o = u, = f1(w) and Iy = Iy, in Proposition 7.4.8, then the

above possible forms of I1(u,w), for fived w € L, convert into corresponding forms of w(«, f3).

7.4.3 General method for solving distributive eq. (7.11):
Distributive eq. (7.11) is given by
Ir(u, T (v, w)) = T(Ir(u,v), I1(u,w)), Yu,v,w € L (7.42)

where I; is the unknown function, and the t-norms 7; and % on L are the t-representable, i.e.,
(Zi = (T17T2) and ‘15 = <T27 SQ)
At this situation distributive eq. (7.11) has the following form

Tr((ur, ug), (T1(v1, w1), Si(ve, wa))) =(Ta(pri(Tr((ur, ug), (vi,v2))), pri(Ir((u, uz), (w1, w2)))),
So(pra(Tr((ur, uz), (v1,v2))), pra(Tr((ur, ua), (wi, ws))))),

Vou = (ug,u),v = (v1,09),w = (wy,ws) € L.



224

As a consequence we obtain the following two equations

Vu = (ug,uz),v = (v1,v9),w = (wy,wsy) € L.
Now, let u = (uy,us) € L be arbitrary but fixed. Then we define two functions g!

(u1,u2)?
g(zuhuz)) :10,1] — [0,1] by

g(1u17u2)(.) = pry o I1((ug, uz),.), g(gmm)(.) = prg o I1((uy, us),.), (7.45)

where o represents standard composition of functions.

From (7.43), (7.44) and (7.45), we have

g(lul,Q)(Tl(Uh wl); Sh (712, w2)) = Tz(g(luhw)(vl, Uz), g(lul,m)(’wb wz)% (7-46)
Ius iy (T1 (1, w1), S1(v2, w2)) = S2(GF01 ) (V15 V2), Gluy i) (W1, W2)). (7.47)

For simplicity, we put g(lu1 ) = g' and g7, ) = g% in (7.46) and (7.47), we have

g (T (v1, wr), S1(va, w2)) = To(g' (v1,v2), g (w1, ws)), ¢°(T1(v1,wy), Si(ve, w2))
= 552(g%(v1, v2), g% (w1, w)). (7.48)

Proposition 7.4.10. Let T = (T,S), where T and S are the strict t-norm and t-conorm
respectively such that T and S are dual of each other. For a function Iy : £? — L, the following

statements are equivalent:
(i) The triple (T, T, I1) satisfies the functional eq. (7.11) ¥ u,v,w € L.

(ii) For every fized u € L, It(u,.) has one of the following form:

(070)7 U2 :()7
Ir(u,v) =1, Ir(u,v)=(0,0), Ir(u,v) =0, I;(u,v)=

OL, Vo > O,

(0,0), v1=1—wy >0,
(0,0), <1, (0,0), o =1,
II(U7U) = II(”J”) = II(“u”) - OL, Vg = 1or
0L7 Vg = 17 0L7 v < 17
v <1 — vy,
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0,0), vy =0,v1 >0, 0,0), vy >0,
II(u7U) = ( ) ’ ' II(“?”) - ( ) :
O, vg > 0orvy =0, 0., v =0,

0752_1 cti(v1))), v1=1— 109,
Ty, ) = (0,53 (csa (02))), Tn(u,w) = 4 052 (1)

0,, v <1 — w9,
(0,85 (es1(v2))), w1 >0, (0,85 (ct1(v1))), o =0,
II(u7 U) = II(U7U> =
OL7 U1 = 07 0L7 Vg > 07

(0,55 (e(t(v1) = s1(v2))), w2 < 1,

I(u,v) = Ir(u,v) = (0,55 (ct1(v1))),
OLa Vg = 1a
(0, sgl(cl(tl(vl) — 81<1}2)) + 0281(1]2))), Vo < ]_, ]_L, Vg = 07
Ir(u,v) = Ir(u,v) =
0L7 Vo = ]-7 OLJ Uy > 07
1., v9 = 0, 1., Vg < 1, 1., v = 1,
Lwo)=4 " 7 L= 7 T nue) =47
(0,0), v, >0, (0,0), =1, (0,0), o <1,
(0,0, 0<uwy<1,
1L, Vo < 1,
Ir(u,v) = It(u,v) =< 1,, vy =0,
OLa Vg = 17
0L7 Vg = 1,
1L7 Uy = 07
]-L’ U1 = ]-7
Ir(u,v) = (0,55 (c(s1 It(u,v) =
OL, v < ].7
(UZ))))> Vg > 07
( (
1L7 U1:1, UQZO, 1L7 ’U1:17 ’U2:07
0,0), v1 <1, v9=0, 0,0), v <1, vy<1,
I TR T
OL, U1<1, U2>0, U1+U2§1,
L U1+U2§17 \0L7 U1:07 U2:17
(
1L7 U1 = 17 Vg = 07
1L7 U1 = 17 Vg = 07
(0,0), O<v <1, v9=0,
II(“:”) = (0,0), < 17 v=1—vy > 0, II(U,U) =
OL, (’Ul = 0, Vg > 0),
OL, ’01<1, ’01<1—U2,
or/;v; =0,
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1L7 U1 = 07
1L7 U1=1—U2>0,
Ii(u,v) = Ir(u,v) = 4 (0,0), 0<wv <1,
(0,0), vo=1orv <1—wy,
0L7 v = 1’
1L7 G ]-7 1L7 U1 = 17 V2 = 07
Ir(u,v) = < (0,55 (cs Ir(u,v) = 9 (0,55 (ct1(v1))), v1 <1, vy =1—0y,
(U2)>>7 U1 < 17 0L7 U1 < 1, U1 < 1 — V9,

]-L7 U1 = 17
Ir(u,v) = 9 (0,55 (cs1(12))), 0<wy <1,

OL) U1 = 07

/
1L7 v1:17v2:0,

(0,32_1(0151(1}1))), v < 1,v9 =0,

I(u,v) =
O, v < 1,vy >0,
L U1 —+ (%) S 1,
.
1., vy =1, v9 =0,
OL, 1)1:(), U2:1,
Ii(u,v) =
(0,32‘1(c(t1(v1) —s1(12)))), v <1, ve <1,
\ v +vy < 1,
4
1L> 'Ul:l, 'UQZO,
OL, v = 0, Vo = 1,
Ir(u,v) =
(0,82_1(01@1(2}1) — 81(?)2)) + 02(81(1)2>)), v < 1, Vg < 1,
\ v +vy < 1,
1., v =1—vy >0, vy <1,
1L7 ’Ul — 17
II(U7U> - II(U7U) = 0[,7 Vg = 1,

(0,55 (c(t1(v1)))), w1 <1,
(0,0), v <1—wy,v9 <1,
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1,, vi=1—vy >0, vy >0,

(070)7 (Ul > O, Vg = 1)7
1l,, v1=1—v,>0,
I1(u,v) = Ir(u,v) = or (v <1—1wy, v1 >0)
O, (ve=1)or (v; <1—19),
OL, ('Ul = O,Uz = 1)

or (v =0,v3 < 1),

1,, v1 >0, v9 =0, 1., v1 >0, vy =0,
Ir(u,v) = I:(u,v) =
0., (v1=0,v9>0)o0r vy >0, (0,0), v1=0o0r vy >0,
(
1L7 v > Oa Vg = Oa
(0,0), (0<wy<1)or
1L7 Ul > O,
II(UJU) = II(U7U) = (Ul = O Vg < 1)
(070)7 U1 207
OL7 (U2: )
L (Ul g g ]_)’
(
]-La V1 = 17 Vo = 07
0,, (ve=1)or (v =0, vy 1., v1 >0, v3=0,
Ir(u,v) = < Ii(u,v) =
=1)or (v <1—1vg, vy 0,, vi=0o0ruwvy >0,
\ >0)or (v =0, vy <1),
.
1L7 v > 07 Vg = 07
OL, (Ul = 0, Vg > 0)
1[,7 vy >0 vy = O,
Ir(u,v) = or (vy = 0), Ir(u,v) =
(0,55 (cs1(v2))), w1 =0o0r vy >0,
(0,0), vy >0, vy >0,
\ vy + vy <1,
)
1L7 vy > 0 Vg = 07 (
1., v1 > 0, v < 1,
(0,55 (cs1(v2))), w1 > 0,09 > 0,
V1 + U2 S 1
Ir(u,v) = v + vy < 1, It(u,v) =

(0,0, v =0, v <1,
OL7 (UQ > O,Ul = O)

0L7 V1 = O7 Vg = ].7

or (v1 =0), K
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1L7 Ul > 0, 1
II(U,U) - II(“?”) = (t2 (681<02))70)7
OLJ U1 = 07

t2_1 cs1(v2)),0), vy <1,
Ii(u,v) = (2 (e (02)).0) - Ir(u,v) = (t5 " (cs1(v2)), 55 (¢s1(v2))),

OLa Vg = 17

(5" (cs1(v2)), 55 (c(ta
Ii(u,v) = (1) = 51(v2)))), vy < 1, Ir(u,v) = (7 (es1(v2)), 53 ' (ctr (v1))),

OLJ Vo = 17

(' (es1(v2)), 55" (cx (tr(vr)
Ir(u,v) = § —s1(v2)) + c251(12))), vy < 1, Ir(u,v) =
O, v =1,

(

(tz_l(ctl(vl)),()), V1 = 1-— Vo, Vo < 1,
II(U,U) = (O, O), v <1 —1v9, 1o <1,
\OL’ 'U1:0, '02:17

(

(t7Hct(1 —19)),0), v =1—1vy >0,
II(U,’U) = 0L7 (Ul = 0, Vo = 1)
or (v; <1 —wy),

p
(tgl(Ctl(vl))aO)7 vy =1-— Vg, U1 > Oa

0,07 U<1—U,U >O’
Ir(u,v) = (0.0) 1 2, U1
OL; V1 = 0’ Vg < 1’

\1[/’ 'UIZO, ’U2: ]_7

(15 (ctr(01)), 55 " (cs1(v)), w1 =1 =g,
II(U,'U) g

(0,55 (cs1(va))), v < 1 — vy,

(ty (ct1(v1)), s5 (et (v1))), v =1 — vo,
II(U/, /U) e

OL, v <1-— V2,
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;

(t3 ' (cti(v1)), 83" (es1(v2)), w1 =1 = vy 01 >0,
(0, 85 (cs1(2))), v < 1—1w9,v7 >0,
Ir(u,v) =
0L7 (Ul S 1— V2,V = 0)7

or (vp =0,vy = 1),

(3" (cti(v1)), 53 (c(ta(v1) = s1(2)))), o1 =1 —v2,09 <1,
Ir(u,v) = 9 (0,55 (c(ti(v1) — 51(12)))), v < 1—wy,vy <1,
OLa U1 = O,Ug = 1,
(' (cti(v1)), 53" (cta(v1))), v1=1— 0y,

(0, 85" (ct1(v1))), v < 1 — g,

(ty 1 (ct1(v1)), 85 (e (tr(vy) — 51(v2)) + c251(v2))), v1 =1 —va, 19 <1,

II(ua U) = (O, 851(01<t1(U1> — 81(’02)) —+ CQSl(’UQ))), v <1-— Vo, Vg < 1,
OL7 U1 = 07U2 = 17
(
(ty ' (cs1(v2)),0), vy >0, vy <1,
t5 (cs1(v2)),0), vy >0, v+ vy < 1,
R (O A A -
(O, 0), V1 = O, (0,0), V1 = 0, Vo < 1,
kOL7 U1 = 07 Uy = 17
(5" (cs1(va)),

t;l cs1(v2)),0), v >0,
Ir(u,v) = (2 ((v2)).0) g Ir(u,v) = € 55 (es1 (), v >0,

OL7 U1 = 07 1
(0,557 (cs1(v2))), v1 =0,

(ty ' (cs1(v2)), 55" (es1(v2))), w1 >0,

I:(u,v) =
OL, V1 = 07
(ty ' (cs1(va)), 85 (c(ti(v1) — s1(12)))), w1 > 0,05 < 1,
v+ vy < 1,
II(U,'U) =
(0, 53 (c(t1(v1) = s1(12)))), vy = 0,0 < 1,
\OL, U1 :O,ngl,
(t3 (es1(v2)), 83" (cta(v1))), w1 >0,
Ir(u,v) =

0L7 U1 = Oa
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(

(t3 ' (cs1(v2)), 55" (e (tr(v1) — s1(v2)) + c251(12))), w1 > 0,05 <1,
v+ vy < 1,
Ir(u,v) =X
(O, S;l(C1<t1(U1) — 81(1}2)) + C281('U2))), v = O, Vo < 1,
\OL7 v = O,'UQ = 1,
(tgl(Ctl(,Ul))v 0)7 Vg = 07 (tgl(Ctl(vl))7 0)7 Vg = 07
Ty, v) = y(u,v) =
(0,0), Vo > 0, OL, Vo > O,
(7' (ct1(v1)),0), vy =0,
II(U7U) - OL7 Vg = 1,
(0,0), 0<wvg <1,
(t51<6t1(v1))70>7 vy = 0,01 >0,
Ir(u,v) = {0, (v1 =0,v3 = 0), or (v2 > 0)
or (vy = 0,v3 > 0),
(tz_l(Ctl(Ul)>,0), Vo = O,Ul > O,
Ir(u,v) =4 0,, vy = 0,0y >0,
(0,0) ’U1>O,’U2>0,’U1+U2§1,
(ty ' (ctr(v1)), 85 ' (es1(v2))), w2 =0,
Ir(u,v) =
(0,55 (es1(v2))), vy >0,
(ty(cti(v1)), 55" (es1(v2))), w2 = 0,01 >0,
II(U,’U) =4 0,, v1 =0,v9 > 0,
(0,55 (cs1(v2))) vy > 0,09 > 0,01 + vy <1,

(ty(cti(v1)), 53" (ctr(v1))), 2 =0,

OLa (%) > O,

I:(u,v) =

(ty " (ctr(v1)), 53 (e(tr(v1) = 51(v2)))), w2 =0,

II(“)”) = OL, Vg = 1,

(0, 53 (c(t1(v1) — s1(v2)))) 0 <wp <1,
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I(u,v) = {(t21(0t1(v1)), sy (cti(v1))), w2 =0,
(0,55 (ct1(v1))), vy > 0,

(3 (ctr(v1)), 55" (er(tr(v1) = s1(02)) + 251 (02))), w2 =0,
Ir(u,v) = O, vy =1,

(0,85 (c1(t1(v1) — 51(v2)) + ca81(12))) 0<wy <1,

I (u,v) = {(tgl(C(tl(Ul) —51(12))),0), vy <1,
(0,0) vy =1,

I (u,v) = {(tgl(C(tl(Ul) —51(12))),0), vy <1,

0c vy =1,

Iy(u, v) = {(tgl(C(h(m) —51(12))),0), vy <1,v;3 >0,

0, 7j1:()7v2§17

Ii(u, v) = {(t21(c(t1(”1) —51(v2))), 53 (es1(w2))), w2 < 1,
(0,55 (cs1(v2))) vy =1,

() = {(tgl(C(h(m) ()55 (esu (), 1> 0,0 < L,

(0, 55" (es1(v2))) vy = 0,09 <1,

Io(u,v) = {(t21(0(t1(01) —51(v2))), 55 (c(t1(vy) — 51(12)))), v < 1,

0, vy = 1.

To(u, v) {(tzl(c(tl(vl) — 51(12))), 55 (c(t1 (1)), vy < 1,
(0,53 (c(t1(v1)))) vy =1,

Iy(u, ) = {(t21(0<t1(vl) — 51(12))), 83 (e1(t1(v1) — 51(02)) + 281 (12))), 2 < 1,

0. —

Ii(u,v) = (t;" (ct1(11)), 0), =

I (u,v) = {(t21(ct1(111)),0)7 vy < 1,

OL ’1_}2 s ]_7

Ir(u,v) = (' (ctr(v1)), 55" (es1(v2))),
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(t5 " (cta(v1)),
t2_1 Ctl (1 ,O , U 07
Ir(u,v) = {(() (ct1(v1)),0) io Te(u,v) = { 53 (csy(12))), v > 0,
r L= 0, v =0,
II(u,v) _ {(tQ (Ctl(Ul)),Sg (C(tl(vl) — 81<U2)))), vy < 1,
O vy =1,

Ii(u,v) = (t;" (cta(v1)), 55 (cti(v1)))

Iy (. v) = {étz (ct1(v1)), 85 (c1(ti(vy) — s1(v2)) + cas1(v2))), v i 17

Ty(u,v) — {(tz (cr(ty(vr) — 51(v2)) + c251(12)),0), vy < 1,
(0,0) —

Ii(u, v) = {(tgl(cl(tl(vl) — 51(v2)) + c251(v2)),0), v <1,

(t;l(cl(tl(vl) — 51(v2)) + ¢251(v2)),0), v; > 0,vy < 1,
II(U,’U) - v + vy < 1,

0, vy = 0,09 <1,

(t2 (1 (ta(v1) = s1(v2))+
Ir(u,v) = 51 (1)), 55 (es1(12))), vy < 1,
(0, 53" (cs1(v2))) vy =1,

(

(3" (ca(tr(v1) — s1(v2))+

0251(212)),32_1(031(02))), v > 0,09 < 1,
Ir(u,v) =

v+ vy < 1,

0, vy = 0,09 <1,

(t5' (ci(tr(v1) — s1(v2)) + €281 (v2)),

Ir(u,0) = 4 55" (c(tr(v1) = 51(12)))), vy < 1,

0, Uy = 1,
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(3 ' (cr(tr(v1) — 51(v2)) + ca51(v2)),
Ir(u,v) = 55 (cty(v1))), vy < 1,

(0,55 (cta(v1))) vy =1,

(17 (er(ta(vr) = s1(v2)) + c251(v2)),
or Ii(u,v) = 32_1(01(251(1)1) — 51(v2)) + c251(v9))), vy < 1,

OL Vg = 1,

Proof. Given that 7; and T, are the t-representable on £, i.e., T} = (T3,57) and T, = (S, T5).
Also, given that t-norm T is strict, and T and S are dual of each other. It follows that t-conorm
S is strict. Moreover, T} = T5. Now , from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and
2.2.7, given in [19], there exists a decreasing continuous function ¢ : [0, 1] — [0, 00] such that
t(0) = oo and t(1) = 0 which are uniquely determined a positive multiplicative constant such
that T'(a,b) = t~'(t(a) + ¢(b)), ¥ a,b € [0,1].

Let us prove that (i7) = (7).

(P1): Let I have the form Iz(u,v) = 1,. Then the LHS of (7.11) is equal to 1., and the RHS
of (7.11) is equal to 1,.

(P2): Let I; have the form Ii(u,v) = (0,0). Then the LHS of (7.11) is equal to (0,0), and the
RHS of (7.11) is equal to (0,0).

(P3): Let I have the form Iz(u,v) = 0,. Then the LHS of (7.11) is equal to 0., and the RHS
of (7.11) is equal to 0.

(O) 0)7 V2 = Oa
(P4): Let I; have the form Ii(u,v)=
OL, Vo > 0.
Then the LHS of (7.11) is equal to
(O) 0)7 Sl(v27 22) = Oa (07 O)7 Vg = Wg = Oa
I:(u, T (v,w)) = =
O, Sl<U2,w2) > 0. 0,, v9 > 0 or wy > 0,

and the RHS of (7.11) is equal to

(07 0)7 Vo = 07 (07 0)7 Wy = 07
T(I1(u,v), Ir(u, w)) =‘T2< ;
0L7 Vg > 0. OL, Wy > 0.

(an)a Vg = Wy = 07

O, vy > 0 or wey > 0.
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(O, 0), vy < 1,
(P5): Let I; have the form I;(u,v) =

OL, Vo = 1.
Then LHS of (7.11) is equal to
(07 0)7 Sl(v27w2) < 17 (070)7 Vg < 17 wy < 17
Ir(u, I (v, w)) = =
0, S1(ve, we) = 1. 0, vy =1orwy, =1,
and the RHS of (7.11) is equal to

T(Ir(u,v), I1(u,w)) Z‘I2< (0,0), wa <1, | (0,0), wy < 17)

0L7 Vg = 1. 0L7 Wy = 1.

(0,0), vy < 1, wy < 1,

O, v9 = 1orwy = 1.

<07 0)7 v = ]-7
(P6): Let I have the form Ir(u,v) =

OL, v < 1.
Then the LHS of (7.11) is equal to
<07 0>7 Tl(vlawl) = 17 (070)7 V1 =W = 17
Ir(u, I (v,w)) = =
OL, Tl(vl,wl) < 1. OL, vy <lorw; < 1,
and the RHS of (7.11) is equal to

070, Ulz]_, 070’ wlzl,
T(Ir(u,v), I1(u,w)) :q‘2< (0,0) 7 (0,0) )

O, v < 1. 0., wy < 1.

(0,0), V] = Wy = 1,

OL, vy < lorw; <1.

(P7): Let I; have the form I;(u,v) = (0,1 —¢"'(ct(1 — vy))).
Then the LHS of (7.11) is equal to
(2, T(y, 2) =(0,1 —t H(ct(1 — Si(va, w2)))) = (0,1 — t H(ct(Ty(1 — va, 1 — wy))))
(0,1 — ¢~ (et (t(1 — va) + t(1 — wa)))),

and the RHS of (7.11) is equal to

B(Ir(u, v), Ir(u, w)) =H((0,1 =t~ (ct(1 = v2))), (0,1 = ¢ (ct(1 — w»))))
(
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Similarly we can verify eq. (7.11) easily by taking all remaining forms of I;.

Let us prove that (i) = (7).
From (7.48),

gt (8 (tr(vr) + tr(wr)), 57 (51(v2) + 51(w2))) =t (t2(g" (01, v2)) + ta(g' (w1, ws))),
Gt (tr(v1) + ta(wr)), 57 (51(v2) + 51(w2))) = 55 (s2(9% (01, v2)) + $2(9% (W, w2))).

Hence

ta o g'(t7 (t1(v1) + ta(wn)), 57" (51(v2) + s1(ws))) = ta(g (v1,v2)) + ta(g" (w1, w2)),

520 g2t (t1(v1) + ta(wr)), 57 (s1(va) + s1(wa))) = s2(g*(v1,v2)) + 52(g° (w1, w3)).
Let us put t1(v1) = y1, 51(v2) = Yo, t1(w1) = 21 and s1(w) = 22. Of course yi, y2, 21, 22 € [0, 00],
Moreover u = (uy,us), w = (wy,ws) € L, thus v; < 1 — vy and wy < 1 — wy. Since ¢; and
s are decreasing generator and increasing generator respectively such that ¢;(a) = s1(1 — a),

Va € [0,1], y1 > y2 and z; > 2. This implies that (yi,vys), (21, 22) € [0, 00]?. If we put

S W1, y2) == ta 0 pry o Tr((ug, ua), (6 (1), 51 (12))), f2(y1,92) := s2 0 pra o Tr((uy, us),
(7 (1), 51 (92)) ¥ (91, 92) € [0, 00]?

(7.49)

As a consequence we get the following two functional equations
Frn+ 202+ 22) = (1 y2) + f1 (21, 22), (7.50)
P+ 21,12+ 22) =2 (1, v2) + (21, 22), (7.51)

where (y1,¥2), (21, 22) € [0, 00]?.
Now, we find the possible solutions of (7.50) are as follows:

For y1,y2 € [0,00], 41 > yo and (v1,v2) € L, we have
(S1): f'=0 = tyoprioli((ur, uz), (t7 (11), 81 (12))) =0 = prioIr((uy,uz), (vi,v2)) = 1.

(S2>: fl =00 = tQOprloII«ul?uZ)» (tl_l(yl)>t1_1(y2))) =00 = pTloII((uhUJ?)? (U1>U2)) =
0.

07 Yz = 07 _ _ 07 Yz = 07
(S3): fH (v y2) = = tyopri o Ir((ur, uz), (17 (1), 17 (1)) =
00, Yo >0, o0,  Yg > 0.

1a Vo = 07
= pri o I1((u1, ug), (v1,v2)) =
0, vy >0.
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0,

(84)3 fl(?h;yz) =
007
1 O’

(S5): f (y1,92) =
O<>7

(S6):  fl(y1,2) =

Y2 < oo, _1 _1
= tyopryoIr((uy,uz), (t; (y1),t; (v2))) =
y2 = 007
1, vy <1,
= prio II((UbUQ)a (111,112)) =
0, Vg = 1.
n =0, —1 —1
= tyopryo Ir((ur,ug), (t7 (y1), 17 (y2))) =
A1 > 07
1, v = 1,
= pry o It((ur, ug), (v1,v2)) =
0, v <1

0, y1 =y <00,

00, Y2 =00 0Or Yy > Yz,

07 Y1 = Y2 < 00,

= taoprio II<<U1’ u2)7 (tl_l(yl)>t1_1(y2))) =

00, Y2 =00 Or Y1 > Yo

1, v =1—-1vy >0,

= pry o It((ur, uz), (v1,02)) =

0, vo=1orv <1—ws.

07 y2:oa Y1 < 00,

00, Yo >0 ory; = oo,

07 92:07 y1<007

= tlgopr;o II((ulv u2)7 (tl_l(yl)7t1_1(y2))) =

00, Y2 > 0ory = oo.

1, v =0, v; >0,

= prio II((UDUQ)? (U17U2>) -

0, vg>00ruv; =0.

0,

Yo < 00,

00, Yy = Q.

0,

oo,

y1:O7
y1 > 0.



O, Y1 < 00,
(88)3 fl(ylvyZ) =

oo, Y1 = 00,

1 1 07 Y1 < 00,
= tyoprioIr((ur,uz), (7 (y1), 11 (42))) =
00, Y = 00.

17 v > O,
= pry o It((ur, u2), (v1,02)) =
0, v;=0.

(S9): 3 ¢ € (0,00) such that

iy, ye) = cyo = taopri o Ir((ur, us), (¢ (1), 11 (42))) = cye

= prio Ir((ug, uz), (vi,v2)) = t5 ' (es1(v)).

CY1, Y1 = Yo, _ _
(S10): fH(y1,92) = = tyopry o Ir((uy,us), (¢ (v1),t; (y2))) =
0, A1 > Y2,
ty(cty(v1)),
= pr1 o Ir((ur, ug), (v1,v2)) = {
0,

CY2, Y1 < o0, _ _
(S11): fH(yn,92) = =ty 0 pry o Ir((ur, ua), (17 (1), 17 (1)) =
o, Y1 = 00,

ty ' (cs1(v2)),
= pry o Te((uy, ug), (v1,v5)) = {
0,
cyr, Y2 =0,
(S12): f'(y1,92) = = tyopryo Iy((uy,ua), (¢ (11), 87 (12))) =
o0, Yo >0,
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CYy1, Y1 = Y2,
o0, Y1 > Y.
U1 = 1- Vg,

v <1 —wvsq.

CY2, U1 < 00,

00, Y1 = 00.

v1 > 0,

v = 0.
ey, Y2 =0,
o0, Yo > 0.

ty ' (cti(v1)), va =0,

= pryo It((ur, ug), (v1,v2)) =
0,

vy > 0.
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(513): fl(yhyQ) — c(yr —12), Y2 < 00,

o0, Yo = OO,

_ _ c(yr — 1), Y2 < 00,
= tpoprio II((UbU?)a (t] 1(y1),t1 1(92))) =

00, Yo = 00.

tyH(c(ti(v1) = s1(v2))), w2 <1,

0, Vo = 1.

= pry o It((ur, ug), (v1,v2)) =

(S14): 3 ¢ € (0,00) such that

'y ye) =cpn = taoprioI((uy,ua), (87 (y1), 67 (12))) = enn

= pryo Ix((u1, ug), (v1,02)) = t5 ' (ct1(v1)).
(S15): F eq, 09 € (0,00), ¢1 # ¢o such that

ci(yn — y2) + coy2, Y2 < 00,
fl(yl,yg) =

0, Yo = OQ,

B - c1(y1 — y2) + c2ya, Yo < 00,
= ty0prio Ii((ur, u2), (7 (1), t7 (o)) =

o0, Yo = OQ.

ty (e (tr(vr) — s1(v2)) + ca(s1(v2))), w2 <1,
0, Vg = 1.

= pryo It((ur, uz), (v1,02)) =

Similarly, we can find the possible solutions of (7.51) are as follows:

For y1,y2 € [0,00], 1 > yo and (v1,vs) € L, we have

(S’1): proo Ir((uy,us), (v1,v2)) = 0.
(S'2): pro o Ir((ug,us), (v1,v9)) = 1.

07 Vg = 07

{1, vg > 0.

(S73): pro o Ir((u1, uz), (vi,v2)) =

0, vy <1,
(S'4): proo Ir((uy,us), (vi,ve)) =
17 Vg = 1.



(S'5):

(S’6):

(S’7):

(S’8):

(S9):

(5’10):

(S'11):

(5'12):

(S'13):

(S'14):

pro o Ir((ug, uz), (vi,v9)) =

pra © II((ulv UQ)’ (Ula ,02)) =

pro o Ir((ug, uz), (vi,v9)) =

0,
pra o Ir((ur, uz), (v1,v2)) = {

3 ¢ € (0,00) such that

v1=1—vy >0,

vo=1orvy <1-—uv,.

vy =0, v1 > 0,

vy > 0or vy =0.

v, > 0,

U1:O.

pra o Ir((uy, uz), (v1,v2)) = 557" (cs1(va)).

Sy

pra o I1((ug,u2), (vi,v2)) =
1,

pra o Ir((ug, u2), (v1,v9)) =

pra o I1((ug, us), (v1,v9)) =

pra o I1((ug, us), (v1,v2)) = {

L

3 ¢ € (0,00) such that

Sa

1(ct1(v1)), vy =1 — 9,

v <1 —vs.
1(051(1)2)), vy >0,

v = 0.
Yety(v)), w2 =0,

Vg > 0.

He(ty(v1) = s1(v2))), w2 <1,

UQZ]_.

pra o Tr((ug, ug), (v1,v2)) = 557" (ct1(vy)).

(S’15): ¢, ¢0 € (0,00), ¢1 # co such that

pra o Ir((uy, uz), (v1,v2)) = {
1

Y

sy (c1(ti(v1) = s1(v2)) + ca(s1(v2))),

vy < 1,

’U2:1.

239
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Of course not every combination of the above solutions give a correct value in the set L.

1, vy <1,
For example when pry o Ir((ug,uz), (v1,v2)) = and pro o I1((uy,us), (v1,v9)) =
O, Vg = 1.
0, vy <1, ) )
for every (wy, ws) € L, then our (constant) solution is correct: Ir((u1,us), (v1,vs))
1, Vg = 1,
1L7 Vg < 17
O, v2=1,
L, v =1, 0, v =1,
Also when prioIr((ug,uz), (v1,v2)) = and prooIy((uy, us), (v1,v2)) =
0, v <1. 1, v <1
. . 1L7 U1 =
for every (wy, wy) € L, then our (constant) solution is correct: It((uy,us), (v1,v2)) =
OL7 Ul <
) 1, vy <1, 0, v, =1,
But if pry o Ir((ug,us), (v1,v2)) = and pro o Ir((ug,us), (v1,v9)) =
0, wvy=1. 1, v <1
for every (vy,v2) € L, then our solution is incorrect, since I1((uy,us), (vy,v2)) =
1L7 v = 1702 = 07
1., v =0,v9 =1, is not solution in £ (since (1,1) ¢ £). Similarly,

(1,1), O0<v <1,0< v <1l,v1 v <1,
we can find the possible combinations of the above solutions give a correct value in the set L is

the required result (ii). O

Remark 7.4.11. If we put a = u, B = f1(v) and I; = Iy, ) in Proposition 7.4.10, then the

above possible forms of I1(u,v), for fited u € L, convert into corresponding forms of w(«, [3).

Proposition 7.4.12. Let T = (T,S), where T and S are the nilpotent t-norm and t-conorm
respectively such that T and S are dual of each other. For a function Iy : £L?> — L, the following

statements are equivalent:
(i) The triple (T, T, I1) satisfies the functional eq. (7.11) ¥ u,v,w € L.
(ii) For every fized u € L, I1(u,.) has one of the following forms:

1L7 U1 = 1a
Ir(u,v) =1,, Iz(u,v)=(0,0), Ii(u,v) =0, I;(u,v)=

0L7 1 < 1,
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0,0), v =0, 0,0), vy =1, 1., vg = 0,
Ir(u,v) = 0:.0) ’ Ir(u,v) = 0.0 1 It(u,v) = - ’
O, vg > 0, O, v < 1, (0,0), vy >0,
¢
1[,7 v = 1,”2 = 07
1L7 UQZO, ]-[,) UQZO, OL, Ul < ].,UQ >O,
I:(u,v) = I:(u,v) = I:(u,v) =
OL, Vo > O, (0,0), Vo > O, V1 + U9 < 1,
L(0,0)7 v < 1,v9 =0,

0,32_1 min(csi(v9),0))), v1 =1— vy,
Ir(u,v) = (0, s5 " (min(csi(v9),0))), Ir(u,v)= ( (min(csi(v2),b)))

OLa v < 1 - V2,
(0, sgl(min(csl(vg), b))), v =0,

I:(u,v) = I:(u,v) = (0, 85 (min(cty(vy),b))),
OL, Vo > O,

(0, 55 (min(cy (¢ (v1)—

1L7 Vg = 07
II<U,U) = 51(U2)> + Cco — 81(7}2), b))), (P 0, II(U,U) =
(0, 55 H(min(es1(vs), b)), vy >0,
0L7 U1 = 07
1., v = 1,
II(U,’U) = : 1
(0, s5 1 (min(esy (v2),b))), w1 < 1,
1L7 U1 = 17U2 = 07
Ir(u,v) = 1 (0,55 (min(esy (v2),0))), v1 =1 — vy, 01 < 1,
0,, ’U1<1—U2,Ul<1,
]'L7 U1 = ]-7U2 — 07

Ir(u,v) = 4 (0, s7 (min(cty(v1), b)), vy < 1,05 =0,

OL, U1<1,U2>O,U1+U2§17

1., v =1,
(0, 55 (min(cty(v1), b)), v <1,
1., v =1,

(0, 85 (min(cy (t; (v1)—

I1(u,v) = (t; ' (min(csi(v2), b)), 0),
s1(v2)) + c2 — s51(v2), b)), 0<wvy <1,

0[,7 V1 = O,

\
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Ii(u,v) = (t; " (min(esi (v2), ), 53" (min(esy (v2), b)),
y ' (min(esi(v2),0)), sy (min(cty (v1), b)),

Io(u,v) = {(7521(Df111[1(ct1(v1),b)),())7 v =1— v,
(0,0) el

L (u0) = {(t2l(min(ctl(vl),b)),321(min(csl(vg),b))), vy =1 — vy,
(0, 55 *(min(csy (va), b)) v < 1 — vy,
(t5 ' (min(cty (v1), b)),
Ir(u,v) = 9 sy (min(cty(v1), b)), v1 =1 — vy,

OL ’l)1<]_—?JQ7

L) = {(t21(min(ct1(v1),b)), sy H(min(cty (v1),0))), v1 =1 — vy,
(0, 55 *(min(ct1 (vy),b))) vy < 1 — v,
( (ty ' (min(ct1(v1), b)), sy ' (min(ey (¢ (v1) — s1(v2))
+co — s1(12),0)))), vy =1—wvy,v; >0,
Ir(u,v) = < (0, 55 1 (min(ey (¢ (v1) — 51(v2)) 4+ o — 51(12),0)))), v <1 —wvy,v1 >0,

U (v1 =0,v3 =1) or

) (v1 = 0,01 <1 —wy),

I:(u,v) = {(tgl(min(Ctl(Ul), b)),0), vy =0,
(0,0) vy > 0,

II(U, U) _ {(t21(min(0t1(1}1), b)), 0)7 Vg = 0,

{@%mﬂm@mwmm v =0,
(0, 55 (min(csy(v2), b)) vy >0,

OL? UQ > 0’

Ii(u,v) = {(tgl(min(ch(m), b)), 32—1(min(0t1(v1)7 b)), s =0,

(ty " (min(cty (v1), b)), s3 ' (min(citi(v1), b)), vy > 0,v2 =0,
Tx(1,0) = 4 (0,55 (min(er (b1 (02) = 1(22) + €2 = 51(02).8))), - 01> 0,0 > 0,01+ < 1,

O, v = 0,09 >0,
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I(u,v) = (ty *(min(ct,(vy1), b)), 0),
I1(u,v) = (t; *(min(cti(v1), b)), 55 (min(esi(v2), b)),

I:(u,v) = (t; *(min(cty(vy), b)), sy - (min(cty (v1), b)),

() = (t;l(min(Ch(m), b)), sgl(min(cl(tl(vl) —51(v2)) + ¢2 — 51(1), b)), v1 >0,
| 0L7 V1 = O,
Iy(uv) = (t; " (min(cty (v1), b)), s5  (min(ci (t; (v1) — 51(v2)) + 2 — 51(v2), b)), v >0,
| (0’ 0)7 V1 = O,
Ty(u,v) — {(t21(min(01(t1(01) — 51(v2)) + o — 51(v2), 1)), s5 ' (min(es; (v2,b)))), v > 0,
(0,55 (min(esa(12,)), o=,

() — {(tzl(min(c’l(tl(vl) — 51(1)) 4 2 — 51(w2), b)), s (min(cty (v, b)), 1 >0,
0L7 v = O,

(5 ' (min(ey (t1(v1) = 51(02)) + ¢ — s1(02), b)),
It(u,v) = sy - (min(cy (t1(v1) — s1(v2)) + o — 51(v2), b)), v1 > 0,

OLa U1 = 07

Proof. Given that 7; and T, are the t-representable on £, i.e., T} = (T3,57) and T, = (Sz, T5).
Also, given that t-norm T is nilpotent, and T and S are dual of each other. It follows that t-
conorm S is nilpotent. Now, from Theorems 2.1.5 and 2.1.7 and Remarks 2.2.6 and 2.2.7 given in
[19], there exist two decreasing continuous functions ¢y, 5 : [0, 1] — [0, 0o] such that ¢;(0), t2(0) <
oo and 1(1) = t9(1) = 0 which are uniquely determined a positive multiplicative constant such
that Ty (a,b) =t (min(t;(a) +t1(b), 1(0))) and Ty(a, b) = t,* (min(ts(a) +ta(b), t2(0))), ¥V a,b €
[0, 1].

Let us prove that (ii) = (7).

(P1): Let I; have the form I;(u,v) = 1,. Then LHS of (7.11) is equal to 1., and the RHS of
(7.11) is equal to 1.

(P2): Let I; have the form It(u,v) = (0,0). Then LHS of (7.11) is equal to (0,0), and the RHS
of (7.11) is equal to (0,0).

(P3): Let I; have the form I;(u,v) = 0,. Then LHS of (7.11) is equal to 0., and the RHS of
(7.11) is equal to 0.
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(0,0), v =0,
(P4): Let I; have the form I(u,v) =

OL, Vg > 0.
Then LHS of (7.11) is equal to

0,0), S , =0, 0,0), = =0,
II(u,‘Il(v,w)): ( ) 1(02 22) ( ) U2 = W2

OL, Sl(’UQ,'wz) > 0. OL,
and the RHS of (7.11) is equal to

)

(070)7 Vg = 07 (070)7
%(II(UH U)? II(ua w)) :r-r2
0L7 U2 > O 0L7

(070)7 Vo = W2 = 07

0., vy > 0 or wy > 0.

(Oa O)) v = ]-7
(P5): Let I; have the form Iy(u,v) =

OL, v < 1.
Then LHS of (7.11) is equal to
(Oa O)) Tl(vlvwl) - 17 (070)7 V1 = W1 = 17
I:(u, T (v,w)) = =
OLa Tl(Ul,wl) < 1. OL)

and the RHS of (7.11) is equal to

)

(070)7 U1 = 17 (070)7
%(II(U,'U),II(U,U])) :{Zé
0L7 U1 < 1 0L7

(0,0), V] = Wy = 1,

O, vy < lorw; <1.

1La Uy = Oa
(P6): Let I; have the form I(u,v) =

(0,0), s > 0.
Then LHS of (7.11) is equal to

1La Sl('UQ,wQ) = Oa 1L7 Vo2 = Wy = 07
Ir(u, T (v, w)) =

(0,0), Si(ve,wq) > 0. (0,0),

U)lzl,

wy < 1.

v9 > 0 or wy > 0,

’LUQIO,

’LU2>O.

v < 1orw <1,

vg > 0 or wy > 0,

)

)



and the RHS of (7.11) is equal to

1L7 Vo = 07 ]'LJ

To(Ir(u,v), Ir(u,w)) :‘Z‘2< ,
(0,0), vy > 0. (0,0),

1, vy = wy =0,

(0,0), wy > 0orwy > 0.

1L7 Vg = 07
(P7): Let I; have the form Ir(u,v) =
0L7 UQ > O
Then LHS of (7.11) is equal to
1L7 51(1127w2) = 07 1L7 Vg = W3 = 07
Ir(u, I (v,w)) = =
0., Si(ve,ws) > 0. 0,, vy >0orwy >0,

and the RHS of (7.11) is equal to

1L7 Uy = OJ 1L7 Wo = 07 1L7
B (11(u,v), Ir(u, w)) = Tz( , ) =
0L7 U2 > O 0L7 w2 > O OLy
1L7 U1 = 17
(P8): Let I have the form Ir(u,v) =
(0,0), v <1
Then LHS of (7.11) is equal to
1L7 Tl('Ul,'U)l) = 17 1L7 V1 =W = 17
It (u, T (v,w)) = =
(0,0), Tl(vl,wl) < 1. (0,0), vy <lorw <1,
and the RHS of (7.11) is equal to
1L7 U1 = 17 1L7 wr = 17
{IQ(II(U,'U),II(U,U})) :(T2< )
(0,0), v < 1. (0,0), wy < 1.

1, vy =wp =1,

(0,0), v <lorw;<1.

1L7 U1 = 17
(P9): Let I; have the form I;(u,v) =
0L7 v < 1.
Then LHS of (7.11) is equal to
1L7 Tl(vlawl) = 17 1L7 UV =Wy = 1a

Ir(u, T (v, w)) = =

0., Ti(vy,wy) < 1. O0,, vy <lorw <1,

’LUQZO,

wq > 0.

)

vy = wy = 0,

)
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v9 > 0 or we > 0.
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and the RHS of (7.11) is equal to

]-L7 U1 = 1a ]-L7 w1 = 1a 1L7
%(II(U,U),II(U,UJ)) = ‘Zé( ) )

O,, v1<1. 0,, wy <1, 0.,

1L7 U = 17 Vo = 07

(P10): Let I; have the form Ir(u,v) = ¢ 0,, v <1, v9>0, v 4+vy <1,

(070)7 v < 17 Uy = 0.
Then LHS of (7.11) is equal to

vlzwlzl,

vy < lorw; <1.

II(u,fZi<U,w)) = Ty

1, vy =wy =1, v = wy =0,
0, (v <lorw <1), (vy>0o0r

U)2>O), v+ v <1, w1+w2§1,

\(0,0), (v <lorw <1), vg=wy=0.

and the RHS of (7.11) is equal to

( (

1L7 U1 = 17 Vg = 07 1L7 wyr = 1a Wy = 07
0,, v <1, vy >0, 0,, wy < 1, wy >0,
‘TQ(II<U7U)>II<U7U)>) = (TZ )
vy +vy < 1 wy +wp <1,
\(0,0), v <1 vy=0. \(0,0), wy < 1, wy = 0.

.
1, vy =w; =1, vy = wy =0,

&vi+v <1, w +wy <1,

(0,0), (v1 <lorw <1), va=1ws=0.

Let us prove that (i) = (7).
Now from (7.48), we have

0, (v1 < 1lorw <1), (vg>0o0rwy>0)
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From (7.48),

g* (¢ (min(ty (v1) 4 t1(ws), £1(0))), 7' (min(sy (v2) + s1(w2), 51(1))))

=t51(mln(t2(91(v 2)) + ta(g' (w1, wa)), £2(0))),

ty(v1) + ta(wr), 11(0))), s7 ' (min(sy (v) + s1(w2), 51(1))))
(

= 55 ' (min(sa(g”(v1,v2)) + s2(g%(wr, w2)), 52(1))).

=
=,
=

—

2

Hence

), 57t (min(s (v) + s1(ws), 51(1))))
,12(0)),
), s1 ! (min(s1(vs) + s1(w), 51(1))))

ty 0 ¢!t (min(ty(v1) + t1(w1), £1(0))
= min(tz(g' (v1,v2)) + ta(g' (w1, w2))
S9 O 92 (tfl(min(tl(vl) + tl (wl), tl (0

= min(sy(g*(v1,v2)) + s2(g% (w1, wo

Let us put t1(v1) = y1,81(v2) = Yo, t1(w1) = 21, s1(w2) = 22, t1(0) = a and t5(0) = b.
Of course y1, Y2, 21, 22 € [0,00], Moreover u = (uy,us),w = (wy,wy) € L, thus v; < 1 — vy
and wy; < 1 — wsy. Since t and s are decreasing generator and increasing generator such that
t(1 —a) =t(0) — t(a) and s(a) = t(0) — t(a), Va € [0,1], y1 > y» and z; > 2. This implies that
(Y1,92), (21, 22) € [0, 00]%. If we put

S W1, y2) == ta 0 pry o Te((ug, ug), (6 (1), 51 (12))), f2(y1,42) := s2 0 pra o Ir((uy, ug),
(t (1), 51 (1)) ¥ (21, 23) € [0, 00]?

(7.52)

As a consequence we get the following two functional equations
fH(min(y; + 21, a), min(ys + 22, a)) =min(f* (y1, y2) + [ (21, 22), b), (7.53)
fA(min(y; + 21, a), min(ys + 22, a)) =min(f2(y1, y2) + f2(21, 22), b), (7.54)

where (y1,2), (21, 22) € [0, 00]?.
Now, we find the possible solutions of (7.53) are as follows:

For y1,y2 € [0,00], y1 > 2 and (v1,v2) € £, we have
(S1): f1=0 = tyoprioTy((us, us), (17 (11), 51 (12))) =0 = prioTr((ur, ua), (v1,v2)) = 1.

(S2): f'=0b = tyoprioI((ur, u), (t; (1), 57 (42))) =b = prioIr((uy,uz), (vi,v2)) = 0.
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07 Yo = 07 _ _ 07 Y2 = 07
(S3): [y, y2) = = ty0pryo Iy((uy,ua), (¢ (11), 57" (12))) =
b’ Y2 > 0 b7 Yo > 0
1, Vg = O,
= prioIr((ur,uz), (vi,v2)) =
0, v, >0.

07 Y1 = 07 07 Y1 = 07
(S4): [y y2) = =ty 0 pry o Ir((ur, ua), (17 (11), 57" (32))) =
b, Y1 > 0 b, Y1 > 0
17 U1 = 17
= prio Ir((ur, uz), (v1,v2)) =
0, vy<l1

(S5): 3 ¢ € [b/a,o0) such that

fH(y1,92) = min(cvy, b) = toopry o Ir((ur,us), (7 (y1), 57 (12))) = min(cys, b)

= pri o Ir((ug, uz), (vi,v2)) =ty  (min(cs; (vy), b)).

min(cy1,b), 1 = o,

(56): fl(y1,y2) =
b, Y1 > Yo
_ _ min(cyb b)a Y1 = Y2,
= 1o oprio II<<U17 u2)7 (tl 1(y1)7 S1 1(y2))) =
b, Y1 > Y2

t2_1 min Ctl U1 ,b , U1 = 1 — Vs,
= pﬁoII((ul,ug)’(Ul’W)){ (min(cti(v1),b))

0, v < 1— .

min(cyy, b), =0,
ST Pl = O
b7 Y2 > 07

_ _ min(cy;,b), y2 =0,
= ty0opri o Ii((ur, us), (t7 (1), 57" (v2))) =
b, 1y > 0.

t3 ' (min(cti (v1),b)), v2 =0,
= pri o II((U’17 u2)7 (Uli U2>> =
0’ Vg > 0.

(S8): fY(y1,y2) = min(cyy, b) = prio Ir((ur, uz), (vi,v2)) =ty (min(ct;(v1),b)).
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(S9): J ¢y, c0 € [b/a,00), ¢ # ¢y such that

) min(c(y1 — y2) + c2y2,0), 1 < a,
[y y2) =

a, Yy = a

B B min(c (y1 — y2) + c2y2,0), 1 < a,
= tyopry o Ir((u, uz), (¢ 1(1/1), S1 1(92))) =

ba Y1 = a.

ty (min(ey (t(v1) — s1(v2)) + ca(s1(v2)), b)), vy >0,

= pri o II((Ul, U,Q), (’U17/U2)) =
07 V1 = 0

Similarly, we can find the possible solutions of (7.51) are as follows:

For y1,y2 € [0,00], 1 > 2 and (v1,v2) € £, we have
(S1): prao Ix((ug,us), (v1,v2)) =0.

(S2): proo Ir((ug,us), (vy,ve)) = 1.

O, Vg = 0,
(83): prao Ir((u, us), (vi,v2)) =

1, vy >0.

O, v = 1,
(84) pra © II((Ul, ’UQ), (’Ul, 'UQ)) =

1, v < 1.

(S5): 3 ¢ € [b/a,0) such that

pra o Ir((ug, ug), (v1,v2)) = 55 (min(es;(vy), b)).

sgl(min(ctl(vl),b)), vy =1 — vy,

(S6): pra o Ir((ur, ua), (v1,02)) = {1

, v <1 —vs.

sy H(min(cty (v1),0)), vy =0,
(57 pmoh((ul,m)xvl,m)){1 miniet (v 0)

y Vg > 0.

(S8): pry o Ir((u1,us), (vi,v2)) = sy (min(cty (v1),b)).

(S9): 3 1,62 € [b/a,0), ¢1 # o such that

sy (min(es(t1(v1) — 51(v2)) + 2(s1(v2)), b)), v1 >0,
1

pra o I1((ur, u2), (vi,v2)) =
9 V1 = 0.
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Of course not every combination of the above solutions give a correct value in the set L.
1, vy <1,

For example when pry o Ir((ur,us), (vi,v2)) = and pro o Ir((u1,u2), (v1,v2)) =
O, Vg = 1.

0, vy <1,
P for every (uy,us) € £, then our (constant) solution is correct: Ir((uy,us), (v1,v2))

1, Vg = 1,

1L7 Vg < 17
0L7 Vg = 1.
L, v =1, 0, v=1,
Also when prioTr((u1, uz), (v1,v2)) = and praoIr((u1, u2), (v1,v2)) =
0, v <1 1, v <1,
. . 1L7 V1 = 17
for every (uy,us) € £, then our (constant) solution is correct: Ir((uy,us), (vy,v2)) =
OL, v <1
) 1, vy <1, 0, v, =1,
But if pry o Ir((u1, u2), (v1,v2)) = and pra o Ir((u1, u2), (v1,v2)) =
0, wvy=1. 1, v <1.
for every (vy,v2) € L, then our solution is incorrect, since I1((uy,us), (vy,v2)) =
1L7 U1 = 1702 = 07
1., v =0,v9 =1, is not solution in £ (since (1,1) ¢ £). Similarly,

(1,1), O<v <1,0< v <1l,v; vy <1,

we can find the possible combinations of the above solutions give a correct value in the set L is

the required result (ii). O

Remark 7.4.13. If we put a = u, B = f1(v) and I1 = Iy, ) in Proposition 7.4.12, then the

above possible forms of I1(u,v), for fited u € L, convert into corresponding forms of w(«, [3).

7.5 Concluding remarks

In this chapter, a new type of IFI known as (£1,w)-implication is introduced which is a general-
ized form of Yagers f-implications in IFE, and it is different from (S, A\))-, R-, QL-implications.
We have also discussed some properties of the (fr,w)-implication. It is showed that the im-
plications that satisfy (NP) and the (f1,w)-implication are equivalent. For flexibility and ap-
plications’ point of views, this implication is interesting as well as important. After that, the
distributivity of IF'Ss over t-representable t-norms and t-conorms for the cases of nilpotent and

strict t-norms are discussed corresponding to IFIs as well as (f1,w)-implication. Also, we have
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solved the open problems posed by Baczyniski [17, 18]. This work is useful for many application

areas, like, fuzzy control, approximate reasoning etc.
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Chapter 8
Conclusions and future research scope

This chapter configures the concluding part of the Thesis and also proposes some suggestions
towards which the present work can be further continued. It consists of two sections; Section
8.1 brings out the overall conclusions of the research work carried out in this thesis and in
Section 8.2 suggestions regarding the future research directions and possible extensions of the

work presented in the thesis are made.

8.1 Conclusion

The aim of the work is to develop new methodologies for solving various optimization problems
in IFE and to analyze the algebraic study of implication operators in IFE.

The overall conclusions of the thesis are as below:

The product of unrestricted LR-type IFNs are proposed with the help of a—cut, f—cut
and («, f)—cut.

e A new method is proposed for solving unrestricted LR-type FIFPPs with the help of the

proposed product of unrestricted LR-type IFNs, score index, and accuracy index.

e There exist several FIFLPPs which can not be solved by the existing methods but can be
solved by the proposed method. Hence, the proposed method is better than the existing
methods [9, 137, 165, 189] for solving FIFLPPs.

e The primal-dual problems, discussed in [24, 85], are extended in IFE by taking membership
and non-membership functions governed by reference functions in different approaches,

viz., pessimistic, optimistic and mixed.
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Developed an algorithm to model and solve MOLPPs using accuracy index and value
function from different viewpoints, viz., optimistic, pessimistic and mixed, and compared
it with the Zimmermann’s technique, y-connective and minimum bounded sum operator.
Such conflicting optimization problems arise very usually in manufacturing, planning and

scheduling systems.

The definitions of normalized divergence, similarity, dissimilarity, inclusion, and normal-

ized distance measures in IFE are analyzed.
We have established the following:

(i) the IF point measures generated from the measures of the standard IFSs constructed
by level sets and other special set fl}f;,
(ii) the measures derived from point measures,
(iii) aggregated measures from the set of measures and studied the continuity relationship
between them.

We have given the concept of weights for one and many preferences of alternatives.

We have modeled the mathematical programming problems for determining the positive

certain attribute weights.

An algorithm is given for the selection of the best alternative from the given set of feasible

alternatives with given preferences.

T-power-based implications as a new class of implication operators on £ is introduced and

studied properties of these implications.

We have observed that some of the properties of fuzzy implications acting on the real unit

interval [0, 1] are not satisfied by related 7-power-based implications acting on L.

We have shown that the studied T-power-based implications on £ satisfy the discussed
properties by addition of some extra conditions. Also, the string of inequality of I, has

been established.

We have also introduced a new type of negation Af2 based on Iry. Continuity and strict

monotonicity of this negation are analyzed.

We have investigated the solutions of Boolean-like laws in I1;.
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A new type of IFI known as (f1,w)-implication is introduced which is a generalized form
of Yager’s f-implications in IFE, and shown that it is different from (S5, N)-, R-, QL-

implications.

e We have also discussed some properties of the (f1,w)-implication. It is shown that the

implications that satisfy (NP) and the (f1,w)-implication are equivalent.

e From flexibility and applications point of views, this implication is interesting as well as

important.

e We have solved distributive egs. (7.9) - (7.12) over t-representable t-norms and t-conorms

for the cases of nilpotent and strict t-norms corresponding to (f,w)-implication.

8.2 Future scope

There are several interesting directions for further research and development based on the work

in this thesis. Some of the suggestions for future work are as follows:

e Work on unrestricted LR-type fully IF matrix equations based on the product of unre-
stricted LR-type IFNs.

e Work on group decision making problems in IFE based on the membership and non-

membership functions governed by the reference functions as well as point operator Fi,.

e Investigation of all IF-measures based on implication operators on £ and development of

interrelationships between them.
e Development of preference relations in IFE and to apply in decision making theory.

e The study of the implication operators from analytic and algebraic point of views, and

their applications to preference analysis.
e Application of implication operators to optimization problems in IFE.
e The study of the aggregation operator in IFE on the basis of decision making theory.

e Development of the implication operators based on aggregation operators in IFE and the

study of these relations from theoretical and practical point of views.

e Development of the powers of aggregation operators, the implications based on powers of

aggregation operator and their uses for MCDM / MADM problems in IFE.
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