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Abstract

In this thesis, we study quasigroups with minimum number of associative triples. It is known

the number of associative triples are connected to the security criteria of quasigroups based

hash function. With the help of the permutations we implement the existing quasigroups

and derive the counts on associative triples. We further evolve quasigroups with relatively

small number of associative triples by using Genetic algorithm.

Drápel and Kepka [46] have shown that upper bound for associative triples of quasigroup

Q isotopic to group A(Q) ≤ |Q|3−4|Q|2+6|Q|, when |Q| ≥ 3 and A(Q) ≤ |Q|3−4|Q|2+8|Q|,

when |Q| is even, where A(Q) is the set of associative triples of quasigroup Q. Gros̆ek and

Horák [64] state that best known upper bound for associative triples of any quasigroup Q is

less than or equal to 2|Q|2. We set a(Q) for minimum value of A(Q), they also proved that

for any quasigroup a(Q) ≥ 2|Q| − |I(Q)|, where I(Q) is the set of all idempotent elements

of Q. Only Kotzig and Reischer [87] provided the infinite class of quasigroups with less

than |Q|2.

Gligoroski et al. [61] represented quasigroups as vectorial Boolean functions also called

substitution boxes (S-boxes). In vectorial Boolean functions, each coordinate function is a

Boolean function. First we evolve the balanced Boolean functions by Simulated annealing

with best profile (n, d, nl, ac) [31]. Markovski and Mileva [104] generated huge quasigroups

from small nonlinear bijections by extended Feistel functions. Snášel et al. [154] also evolved

huge quasigroups by Genetic algorithm which are isotopic to modular subtraction quasi-

groups. For given a quasigroup Q along with three bijections (i.e., permutations) on Q,

we can define the isotopic quasigroup. We proposed a new cost function and find the opti-

mized permutations (i.e., isotopy) via Genetic algorithm which give the quasigroups with

low number of associative triples.

Markovski and Mileva [104] defined the quasigroups via Feistel network and shown the
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outcomes of Feistel network especially as relative to bijection from Fn2 to Fn2 . They inden-

tified that Feistel network based quasigroup is highly non-associative with respective to

the governing equations obtained from the associativity condition. We solve these equa-

tions for different kinds of permutations, i.e., linear permutations, quadratic permutations,

APN (almost perfect nonlinear) permutations, differentially 4-uniform permutations and

differentially δ-uniform permutations over Fn2 and derive the counts on associative triples.

Further we identify the relation between the cryptographic characterstics, i.e., nonlinear-

ity, differential uniformity and Strict Avalanche Criteria (SAC), of bijection mapping and

Feistel network based quasigroup.

Kotzig and Reischer [87] proposed the construction of quasigroups by finite commuta-

tive ring, but not necessarily associative or unitary. We implement this construction by

two different permutations over F2n and derive the counts on associative triples which is

satisfy the best known upper bound. Further we also examine how the cryptographic char-

acterstics, i.e., nonlinearity and differential uniformity, affect the quasigroups and using

permutations.

Complete mapping permutations are used to construct quasigroups (equivalently, latin

squares) which in turn show promise of being applied to design hash functions and block ci-

phers. Construction of complete mapping permutations by using Feistel structure has been

proposed by Markovski and Mileva [104], they used the complete mapping permutations

to construct huge quasigroups. Complete mapping permutations have been extensively

studied in [8, 34, 93, 123, 162]. Stănică et al. [158] also used the complete mapping per-

mutations to construct a new class of bent-negabent functions. We construct complete

mapping permutations by using XS-circuits and give the total counts for particular order.

We also construct K-complete mapping permutation which can be used to define uniformly

distributed sequences. We find a recursive constrictions that extend a complete mapping

of dimension r to a complete mapping of dimension n, where r ≤ n.
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Chapter 1

Introduction

A quasigroup (Q, ∗) is a set Q equipped with a closed binary operation ∗ on Q and when we

choose any two elements from Q, the third element is determined by the equation x ∗ y = z

uniquely. Hence the multiplication table of any quasigroup is equivalent to a Latin square.

Many important results on quasigroups are discovered by Euler [51–53], Cayley [25, 26],

Schröder [69] and Moufang [125]. These results made a strong relationship between the

area of Algebra and Combinatorics. From the algebraic point of view quasigroups were

intensively studied by Norton [127], Drápel [44, 46], Jez̆ek and Kepka [71], Kotzig and

Reischer [87] and recently by Gros̆ek and Horák [64]. On further discussion on quasigroups

we refer some books [76,148,151]. Therefore quasigroups inspired the people all throughout

20th and 21st centuray. We are interested in quasigroups from the cryptographic point of

view.

Cryptographic primitives are based on the concept of Number theory, Group theory,

Finite field theory and Boolean algebra and Boolean functions. All these mathematical

structres are commutative and associative. Besides these quasigroups are non-associative.

Non-associative mathematical structures also play a important role in cryptology [37, 39,

75, 112]. A science in which we study both parts cryptography and cryptanalysis is called

cryptology.

• Cryptography: It is an art and science which deals the designing part of a cryptosys-

tems in such a way when adversaries can’t get any information.

• Cryptanalysis: It is an art and science which deals the breaking part of a cryptosystems

in such a way when adversaries get the information without knowing the secret key.

1



2 1.1 Definitions and notations

Thus cryptology plays an extensive role in the protection of information and data that

is either in transit or in storage. Hence in order to maintain and increase the privacy,

integrity, and protection of such information and computing systems against adversaries

in an era of rapidly advancing technology with cyber warfare [4, 70] and numerous cyber

security threats [15,88,165,169] the theory and practice of cryptology must be thoroughly

researched and developed via the scientific method and the mathematical method. The

methods of cryptography have become increasingly complex with a rapidly expanding ap-

plication domain. Modern cryptography is based heavily on the disciplines of mathematics,

computer science and electrical engineering. The design of a cryptographic algorithm is

based on assumptions of computational hardness, where the primary objective is to make

such cryptographic systems computationally infeasible for an attacker. Although it is the-

oretically feasible to break such a cryptographic system, it must be practically infeasible to

do so in any known workable situation or context; in this case, the system is considered to

be computationally secure.

The computational security of a cryptographic system depends greatly on the underlying

algebraic structures and operations that are used to build its algorithm and implementation.

Finite groups and Galois fields [56, 96] are fundamental algebraic structures that are used

to construct cryptographic systems. Therefore in order to assess the degree of protection,

strength, and reliability that such a system offers, it is crucial to rigorously evaluate the

underlying finite groups and Galois fields via the scientific method and the mathematical

method.

Thus the structure of any finite group is encoded with a Cayley table (a corresponding

latin square) and the structure of a Galois field is encoded with two Cayley tables (two

corresponding latin squares), then many key properties of a given finite group or Galois

field can be obtained by evaluating its representative latin square(s). This implies that latin

squares are essential to cyber security because they can be directly utilized to evaluate the

computational security of cryptographic systems.

1.1 Definitions and notations

Let N, Z and R be the set of natural numbers, integers and real numbers, respectively. The

cartesian product of sets S1, S2, . . . , Sn is the set of all ordered n−tuples (a1, a2, . . . , an),
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where ai ∈ Si, and its set denoted by

S1 × S2 × · · · × Sn =
n∏
i=1

Si.

If S1 = S2 = · · · = Sn = S, this implies that S × S × · · · × S = Sn = {(a1, a2, . . . , an)|ai ∈

Si, 1 ≤ i ≤ n}. A binary relation on a set Q is any subset of the set Q×Q.

Definition 1.1.1. Let Q be a set. A binary operation on Q is a function that assigns each

ordered pair of elements of Q to an element of Q.

Example 1.1.2. Define ∗ : Z× Z → Z by n ∗m = n + m for all n,m ∈ Z. Then ∗ is an

binary operation on Z.

Definition 1.1.3. A binary groupiod (Q, ∗) is a non-empty set Q together with a binary

operation ∗.

Example 1.1.4. Let Q = {a, b, c}, then groupiod (Q, ∗) is defined by Cayley table

∗ a b c

a b a c

b a c b

c a b c

1.2 Quasigroup

A pair (Q, ∗) is called a quasigroup if the operation ∗ is closed on Q and the equations:

a ∗ x = b,

x ∗ a = b.

have unique solution for every a, b ∈ Q.

Example 1.2.1. The set of integers Z with subtraction forms a quasigroups.

Example 1.2.2. The set of all rational numbers Q∗ or real numbers R∗ forms a quasigroup

with respect of division as the binary operations.



4 1.3 Latin square

Example 1.2.3. More generally, the set of nonzero elements of any division algebra form

a quasigroup.

Moreover, we can also define the quasigroup with the help of modular subtraction.

Definition 1.2.4. Suppose that n is any positive integer and a and b in Z is said to be

congruent to b, written as a ≡ b mod(n) if n|(b− a).

Definition 1.2.5. Let n(> 0) and a be integers. The congruence class of a modulo n is the

set of all integers which have the remainder equal to a when a divided by n. It is defined by

[a]n = {x ∈ Z|x ≡ a mod(n)}.

The collection of all congruence classes modulo n is called the set of integers modulo n,

denoted by Zn. The any element [a]n of Zn, we denoted by a.

Example 1.2.6. Let Q = Z4 = {0, 1, 2, 3} and ∗ : Q×Q→ Q be defined as:

x ∗ y = x− y mod (4).

Then (Q, ∗) is a quasigroup, and the Cayley table of Q is given by

∗ 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

The Cayley table of the quasigroup given in Example 1.2.6. is equivalent to Latin square.

1.3 Latin square

A latin rectangle of oreder k × n is a k × n matrix such that the entries in each row and

each column are distinct. A latin square of order n is an n× n latin rectangle.

Definition 1.3.1. A Latin square of order n is an n×n array filled with n different symbols,

each ocurring exactly once in each row and exactly once in each column.
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Example 1.3.2. The corresponding equivalent latin square for Example 1.2.6 is as follows

0 3 2 1

1 0 3 2

2 1 0 3

3 2 1 0

Quasigroups differ from groups mainly in that they need not be associative. A quasigroup

with an identity element is called a loop.

Proposition 1.3.3. Let Q be a set and ∗ be a binary operation on Q. The following

statements are equivalent:

(i) Q is an associative quasigroup.

(ii) Q is an associative loop.

(iii) Q is a group.

Proof. We will prove this in the following direction (i)⇒ (ii)⇒ (iii)⇒ (i).

(i) ⇒ (ii). Let x ∈ Q, and xl, xr ∈ Q such that (xl ∗ x) ∗ xr = xl ∗ (x ∗ xr). This implies

that xl ∗ x = x = x ∗ xr. So x ∗ x2r = x ∗ xr = x, which shows that x2r = xr. Let a ∈ Q be

such that xr ∗ a = x. Then xl ∗ xr ∗ a = xl ∗ x = x = xr ∗ a, so that xl ∗ xr = xr = x2r,

or xl = xr. Set e = xr. For any y ∈ Q, we have e ∗ y = e2 ∗ y, so y = e ∗ y. Similarly,

y ∗ e = y ∗ e2 implies y = y ∗ e. This shows that e is an identity of Q.

(ii)⇒ (iii). First note that all of the group axioms are automatically satisfied in Q under

∗, except the existence of an (two-sided) inverse element, which we are going to verify

presently. For every x ∈ Q there are unique elements y and z such that x ∗ y = z ∗ x = e.
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Then y = e ∗ y = (z ∗ x) ∗ y = z ∗ (x ∗ y) = z ∗ e = z. This shows that x is the inverse

element for both y and z. Therefore G is a group under ∗.

(iii)⇒ (i). Every group is clearly a quasigroup and the binary operation is associative.

1.4 Associative triples in quasigroups

In quasi group (Q, ∗), Let A(Q) and B(Q) be defined as

A(Q) = {(x, y, z) ∈ Q3 : (x ∗ y) ∗ z = x ∗ (y ∗ z)},

B(Q) = Q3 − A(Q).

Let a(Q) = |A(Q)| and b(Q) = |B(Q)|. If Q is finite with n = |Q| then

a(Q) + b(Q) = n3.

There exist a unique left identity al and a unique right identity ar ∀ a ∈ Q. Thus we get

al ∗ a = a,

a ∗ ar = a.

Hence the triple (al, a, ar) is associative for each a ∈ Q and the lower bound for a(Q) is

a(Q) ≥ n, we refer to [71]. Therefore n ≤ a(Q) ≤ n3.

A quasigroup is said to be di-associative if exactly two of elements among x, y and z

are distinct in A(Q) and mono-associative when all three elements x, y and z are equal in

A(Q).

The following theorems are proven by Norton [127].

Theorem 1.4.1. [127, Theorem II] Let (Q, ∗) be a quasigroup for which both Q and

Q2 = {q ∗ q : ∀q ∈ Q} contain a “sufficient number” of elements, then Q is di-associative.

Theorem 1.4.2. [127, Theorem III] If a quasigroup (Q, ∗) satisfy the constraint x∗(x∗y) =

(x ∗ x) ∗ y when x 6= y ∈ Q, then Q is mono-associative.

For any quasigroup, we can say that

Associativity (tri-associativity) =⇒ di-associativity =⇒ mono-associativity.
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Our target is to reduce the upper bound of a(Q) and find out the exact number of a(Q) for

given quasigroup (Q, ∗) of order n.

1.5 Boolean functions

Any function f from Fn2 to F2 is said to be a Boolean function in n variables. The set of all

n variables Boolean functions is denoted by Bn and its cardinality is 22n . Boolean functions

were extensively studied by more references. For Cusick and Stănică and Mesnager, we

refer to their books [18,20,33,111].

There are three standard representations of Boolean functions, namely truth-table rep-

resentation, algebraic normal form (ANF) and trace representation. These are as follows:

Truth-table representation

Boolean function is also defined by truth table, i.e., f(x1, x2, . . . , xn) over Fn2 is represented

by a binary string of length 2n,

[f(0, . . . , 0, 0), f(0, . . . , 0, 1), f(0, . . . , 1, 0), . . . , f(1, . . . , 1, 1)].

Example 1.5.1. Boolean function in 3 variables defined as in Table 1.1 in its truth table

form as [f(0, . . . , 0, 0), f(0, . . . , 0, 1), f(0, . . . , 1, 0), . . . , f(1, . . . , 1, 1)]

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1.1: Truth-table of a Boolean function in 3 variables
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Definition 1.5.2. The Hamming weight of an n variables Boolean function f is the number

of 1′s in the truth table and it is denoted by wt(f). For a Boolean function on Fn2 , let

Ωf = {x ∈ Fn2 : f(x) = 1} be the support of f .

Definition 1.5.3. The Hamming distance between two Boolean functions f, g : Fn2 −→ F2,

denoted by d(f, g), is defined as

d(f, g) = |{x ∈ Fn2 : f(x) 6= g(x)}| = wt(f ⊕ g).

Example 1.5.4. Suppose f and g ∈ B3 are Boolean functions with outputs (1, 0, 1, 0, 0, 0, 0, 1)

and (0, 1, 1, 1, 0, 0, 1, 0) respectively. Then

wt(f) = 3, wt(g) = 4 and d(f, g) = 5.

Algebraic normal form

Any Boolean function f ∈ Bn can be uniquely expressed as a polynomial in F2[x1, x2, . . . , xn]/
〈
x21+

x1, . . . , x
2
n + xn

〉
. This form is called Algebraic normal form (ANF) of f , defined as:

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn2

µa(
n∏
i=1

xaii ), (1.5.1)

where µa ∈ F2. Each term of the form
∏m

i=1 x
ai
i is called a monomial.

Definition 1.5.5. The algebraic degree of Boolean function f ∈ Bn is defined by number

of variables in the highest order monomial with nonzero coefficient in its (ANF), denoted

by deg(f).

deg(f) = max
a∈F2

{wt(a) : µa 6= 0}.

The degree of a monomial
∏m

i=1 x
ai
i is wt(a).

Definition 1.5.6. A linear Boolean function is denoted by

Lw(x) = w1x1 ⊕ w2x2 · · · ⊕ wnxn,

where w ∈ Fn2 and wixi denotes the bitwise and operation of the i-th bit of w and x, ⊕

denotes bitwise xor operation where addition is over Fn2 .
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Definition 1.5.7. The affine functions are defined by the set of linear functions and their

complements:

Aw,c(x) = Lw(x) + c, where c ∈ F2.

The set of all afine functions An is define by

An = {Aw,c(x) : w ∈ Fn2 , c ∈ F2}.

For two vectors u, v ∈ Fn2 , the canonical dot product is defined as:

u · v =
n∑
i=1

uivi.

Thus we get the set of all 2n linear functions, i.e., Aw,0 = Lw, when w varies all over Fn2 .

Example 1.5.8. The algebraic normal form (ANF) of f given in Table 1.1 is

f(x1, x2, x3) = x3x2 + x3x1 + x3 + x2.

Thus the degree of f is 2.

We denote the extention field of degree n over F2 by F2n and the unit group therein by F∗2n .

Let p(x) be a primitive polynomial of degree n then F2n is defined as

F2n = F2[x]/
〈
p(x)

〉
= {c0 + c1x+ · · ·+ cn−1x

n−1 : ci ∈ F2, i = 0, 1, . . . , n− 1}.

Fn2 and F2n both are n dimension vector spaces over F2. Let B = {b1, b2, . . . , bn} be an F2

a basis of F2n . Then any element a ∈ F2n can be written as

a = x1b1 + x2b2 + · · ·+ xnbn

where xi ∈ F2, i = 1, 2, . . . , n. Using the following mapping one can check that Fn2 and F2n

are vector isomorphism over F2:

x = (x1, x2, . . . , xn) −→ x1b1 + x2b2 + · · ·+ xnbn
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where {b1, b2, . . . , bn} is an F2 basis of F2n . With respect to the basis defined as above, the

n-tuple vector (x1, x2, . . . , xn) is called the coordinates of x ∈ F2n .

Example 1.5.9. Let α be a root of primitive polynomial x3 + x + 1 = 0, then the one to

one correspondance between F3
2 and F23 is given by

F23 F3
2

0 (0, 0, 0)
1 (0, 0, 1)
α (0, 1, 0)
α2 (1, 0, 0)

α3 = α + 1 (0, 1, 1)
α4 = α2 + α (1, 1, 0)

α5 = α2 + α + 1 (1, 1, 1)
α6 = α2 + 1 (1, 0, 1)

Table 1.2: Correspondance between finite fields and vector spaces

Definition 1.5.10. The trace function trn1 : F2n → F2 is defined by

trn1 (x) = x+ x2 + x2
2

+ · · ·+ x2
n−1

, for all x ∈ F2n .

Given any x, y ∈ F2n, trn1 (xy) is an inner product of x and y. For any w ∈ F2n, Lw ∈ Bn
denotes the linear function defined by Lw(x) = trn1 (wx) for all x ∈ F2n.

A Boolean function f ∈ Bn is said to be a monomial Boolean function if there exits λ ∈ F2n

and a positive integer d such that f(x) = trn1 (λxd) for all x ∈ F2n . The positive integer d

is said to be the exponent defining the function f , whereas deg(f) = wt(d).

Walsh-Hadamard transform

The discrete Fourier transform of Boolean function is called Walsh-Hadamard transform,

Walsh transform or Walsh spectrum. Walsh-Hadamard transform are involved for deter-

mining the many cryptographic properties of Boolean functions.

Definition 1.5.11. The Walsh transform of a Boolean function f on Fn2 is the mapping

Wf : Fn2 −→ R, defined as

Wf (w) =
∑
x∈Fn2

(−1)f(x)+Lw(x)
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It expresses a Boolean function in terms of its cross correlation to all linear functions. We

denote the maximum absolute value by

WHmax(f) = max
w∈Fn2

| Wf (w) | . (1.5.2)

The multiset [Wf (w) : w ∈ Fn2 ] is said to be the Walsh spectrum of f . The absolute value

of the Walsh spectrum of f is at most 2n. It is also related to the nonlinearity of f .

It is also defined over the finite field F2n as

Wf (w) =
∑
x∈Fn2

(−1)f(x)+tr
n
1 (wx) for all w ∈ F2n . (1.5.3)

Proposition 1.5.12. [33, Corollary 2.19] Any Boolean function f ∈ Bn satisfies the fol-

lowing identity ∑
w∈Fn2

W 2
f (w) = 22n. (1.5.4)

This identity is called Parseval’s identity. It can be shown that max{|Wf (w)| : w ∈ Fn2} ≥

2n/2.

1.5.1 Cryptographic characteristics of Boolean functions

There are following cryptographic significance of Boolean functions.

Algebraic Degree

The algebraic degree of Boolean function gives the linear complexity of the pseudo-random

generator. To resist the Berlekamp-Messey attack [18, 105, 110] and Rønjom-Helleseth at-

tack [141] of a cryptosystem it is needed that Boolean function used in pseudo-random

generators posses optimal algebraic degree. From the algebraic normal form of a Boolean

function we know that the maximum algebraic degree of a Boolean function in n variables

is at most n.

Balancedness

A Boolean function f ∈ Bn is said to be balanced if the truth-table of f has equal number of

1’s and 0’s, i.e., wt(f) = 2n−1. There are many balanced functions in Bn. Boolean functions



12 1.5 Boolean functions

used in a cryptosystem must be balanced otherwise a cryptosystem is unable to prevent

the distinguishing attacks [20] as the attacker gain some statistical information between

plaintext and ciphertext of a stream cipher. If a Boolean function is balanced then the

algebraic degree is at most n− 1. It is to be noted that any nonconstant affine function is

balanced.

Example 1.5.13. Suppose f, g ∈ B3 are Boolean functions with outputs (1, 0, 1, 0, 0, 0, 0, 1)

and (0, 1, 1, 1, 0, 0, 1, 0) respectively. Here g is balanced and f is not balanced.

Crosscorrelation and Autocorrelation

Let f, g ∈ B3. Then the crosscorrelation between f and g at w ∈ Fn2 , Cf,g(w) is defined as

Cf,g(w) =
∑
x∈Fn2

(−1)f(x)+g(x+w).

Two Boolean functions f and g in n variables are called uncorrelated of order r, 0 ≤ r ≤ n

if Cf,g(w) = 0, for all w ∈ Fn2 with 0 ≤ wt(w) ≤ r. If for all w ∈ Fn2 , Cf,g(w) = 0 then f and

g are perfectly uncorrelated, we refer to [33,111,145].

Example 1.5.14. Suppose f and g ∈ B3 are Boolean functions with outputs (1, 0, 1, 0, 0, 0, 0, 1)

and (0, 1, 1, 1, 0, 0, 1, 0) respectively. Then the crosscorelation value of f and g is Cf,g(w) =

6.

The autocorrelation of f ∈ Bn at w ∈ Fn2 , Cf (w), is defined as

Cf (w) =
∑
x∈Fn2

(−1)f(x)+f(x+w).

It is obvious that if w = 0 then Cf (w) is equal to 2n.

Nonlinearity

The nonlinearity nl(f) of a Boolean function f ∈ Bn is its minimum distance to any affine

function. Nonlinearity of an n variables Boolean function f represents the dissimilarity

between f and the set of n variables affine functions, An, that of f bears closest bitwise

similarity which is measured by hamming distance between f and An. To resist the affine

approximation attacks [41] this value is as large as possible nonlinearity and Walsh spectrum

of f is related as follows:



Chapter 1: Introduction 13

nl(f) = 2n−1 − 1

2
max
w∈Fn2
|Wf (w)|. (1.5.5)

Using Parseval’s identity, we can conclude the upper bound of nonlinearity. The nonlin-

earity of an Boolean function is at most 2n−1 − 2
n
2
−1. Rothaus [142] introduced the idea of

nonlinearity and Matsui [106] discovered the relationship between nonlinearity and explicit

attack on stream ciphers. For a detailed study we refere to [12,18,20,72,74,85,142,144].

Bent functions

Boolean functions used as cryptographic premitives must resist affine approximation, which

is achieved by having high nonlinearity. The bent functions defined on n variables have the

maximum nonlinearity, i.e., they offer maximum resistance to affine approximation.

Definition 1.5.15. A Boolean function f ∈ Bn is said to be a bent if

Wf (w) = ±2
n
2 for all w ∈ Fn2 .

From Equation (1.5.5), f ∈ Bn is said to be bent if and only if its nonlinearity is maximum,

i.e.,

nl(f) = 2n−1 − 2
n
2
−1.

Example 1.5.16. Suppose f ∈ B4 are Boolean functions with ANF f(x1, x2, x3, x4) =

1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. Then f is a bent function as |Wf (w)| = 4 for

all w ∈ Fn2 and nl(f) = 6.

Similarly Almost bent functions and semi-bent function can be defined as follows, we refer

to [23] [58] [63].

• Almost bent Functions (AB): If n is odd

Wf (w) ∈ {0,±2
n+1
2 } for all w ∈ Fn2 .

Example 1.5.17. Suppose f ∈ B3 is Boolean functions with outputs (0, 1, 1, 0, 1, 0, 1, 0).

Then f is a almost bent function because its Walsh-hadamard spectrum is (0, 4, 0,−4, 0,−4, 0,

−4).
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• Semi-bent Functions:

If n is even

Wf (w) ∈ {0,±2
n+2
2 } for all w ∈ Fn2 .

If n is odd

Wf (w) ∈ {0,±2
n+1
2 } for all w ∈ Fn2 .

Example 1.5.18. Suppose f ∈ B4 are Boolean functions with outputs (0, 1, 1, 0, 1, 0, 1, 0, 0,

1, 1, 0, 1, 0, 1, 0). Then f is a semi bent function because its Walsh-hadamard spectrum is

(0, 8, 0,−8, 0,−8, 0,−8, 0, 0, 0, 0, 0, 0, 0, 0).

1.5.2 Vectorial Boolean functions

Let f0, f1, ..., fm−1 ∈ Bn and a Boolean mapping F : Fn2 −→ Fm2 is defined as:

F(x) = (f0(x), f1(x), ..., fm−1(x)),

is called a vectorial Boolean function and f0, f1, ..., fm−1 are called coordinate functions,

where fk : Fn2 −→ F2 and fk ∈ Bn, k = 0, 1, . . . ,m−1. The set of (n,m) variables vectorial

Boolean functions is denoted by Bn,m and its cardinality is 2m2n .

Walsh-Hadamard transform of vectorial Boolean function

Besides the coordinates, all linear combinations of the coordinates are involved for deter-

mining the cryptographic properties of a vectorial Boolean function, in the sense of the

following definition.

Definition 1.5.19. Let F be a vectorial Boolean function from Fn2 into Fm2 . The Boolean

components of F are the n variables Boolean functions

Fλ : x→ λ · F(x),

for any λ ∈ Fm2 . The component corresponding to λ = 0 is called the zero (or trivial)

component.

Definition 1.5.20. The nonlinearity nl(F) of an (n,m) variables vectorial Boolean func-

tion is the minimum nonlinearity of all the component functions x ∈ Fn2 7→ λ · F(x), λ ∈
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Fm2 , λ 6= 0.

The Walsh transform of a vectorial Boolean function F ∈ Bn,m is the mapping WF :

Fn2 × Fm2 −→ Z, defined as:

WF(a, b) =
∑
x∈Fn2

(−1)a.x+b.F(x).

Moreover, the linearity [16] of F is

L(F) = max
b∈(Fn2 )∗

L(Fb) = max
a∈Fn2 ,b∈(Fn2 )∗

| WF(a, b) |,

and the nonlinearity [19] of F is

nl(F) = 2n−1 − 1

2
(L(F)),

or

nl(F) = 2n−1 − 1

2
max

a∈Fn2 ,b∈(Fn2 )∗
| WF(a, b) | .

The vectorial Boolean functions also defined over finite fields. Let F be a vectorial Boolean

function from F2n into F2m . Then the above definitions are transform as follows:

Definition 1.5.21. Let F be an vectorial Boolean function from F2n into F2m. The Boolean

components of F are the n variables Boolean functions

Fλ : x→ trm1 (λF(x)),

for any λ ∈ F2m. The component corresponding to λ = 0 is called the zero (or trivial)

component.

Definition 1.5.22. The nonlinearity nl(F) of an (n,m) variables vectorial Boolean func-

tion is the minimum nonlinearity of all the component functions x ∈ F2n 7→ trm1 (λF(x)), λ ∈

F2m , λ 6= 0.

In the bivariate case, where f : F2n × F2n −→ F2, insted of Equation (1.5.3) we have

Wf (u, v) =
∑
x∈Fn2

(−1)f(x,y)+tr
n
1 (ux)+tr

n
1 (vx) for all (u, v) ∈ F2n × F2n .
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Differential uniformity

The derivative of the vectorial Boolean function F ∈ Bn,m in the direction of a ∈ Fn2 is

defined as

DF(a) = F(x+ a) + F(x).

Definition 1.5.23. [129, Differential uniformity] Let F be a vectorial Boolean function

from Fn2 into Fn2 . The derivative of F for differences pair (a, b) in Fn2 is defined as:

DF(a→ b) = {x ∈ Fn2 |F(x⊕ a)⊕F(x) = b}.

The cardinality of the DF(a→ b) is correspond to the entry at (a, b) in the difference table

of F . It is denoted by δF(a, b).

In addition, the diffrential uniformity of F is given by

δ(F) = max
a6=0,b

δF(a, b).

Therefore the differential uniformity of a vectorial Boolean function is always even or

δ(F) ≥ 2.

Condition for Differential uniformity:

The differential uniformity is achieved based on the value of m and n. The vectorial Boolean

function F : Fn2 7→ Fm2 has

Case-1 [128, Theorem 3.2]: for n > m the minimum differential uniformity 2n−m is

reached if and only if 2m ≤ n and n is even. For n/2 < m < n the minimum differential

uniformity is unknown.

Case-2 [131, Section 3]: for n ≤ m the minimum differential uniformity is 2. A function

which reaches this bound is called almost perfect nonlinear (APN).

Case-3 [130, Section 3]: for n < m the minimum differential uniformity is 2 and can be

reached by simple modification of APN function.

Example 1.5.24. Suppose F ∈ B3,3 is vectorial Boolean function with F(x1, x2, x3) =

(x1x3 + x2x3 + x2, x1 + x2 + x1x3, x1 + x2 + x3 + x1x2). Then differential uniformity of F

is 2 so it is APN.
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(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)

(0,0,0) - - - - - - - -

(0,0,1) - {(0, 0, 0), (0, 0, 1)} - {(1, 1, 0), (1, 1, 1)} - {(0, 1, 0), (0, 1, 1)} - {(1, 0, 0), (1, 0, 1)}

(0,1,0) - - {(1, 0, 1), (1, 1, 1)} {(0, 0, 1), (0, 1, 1)} - - {(1, 0, 0), (1, 1, 0)} {(0, 0, 0), (0, 1, 0)}

(0,1,1) - {(1, 0, 1), (1, 1, 0)} {(0, 0, 0), (0, 1, 1)} - - {(1, 0, 0), (1, 1, 1)} {(0, 0, 1), (0, 1, 0)} -

(1,0,0) - - {(0, 1, 0), (1, 1, 0)} {(0, 0, 0), (1, 0, 0)} {(0, 1, 1), (1, 1, 1)} {(0, 0, 1), (1, 0, 1)} - -

(1,0,1) - {(0, 1, 0), (1, 1, 1)} {(0, 0, 1), (1, 0, 0)} - {(0, 0, 0), (1, 0, 1)} - - {(0, 1, 1), (1, 1, 0)}

(1,1,0) - - - - {(0, 1, 0), (1, 0, 0)} {(0, 0, 0), (1, 1, 0)} {(0, 1, 1), (1, 0, 1)} {(0, 0, 1), (1, 1, 1)}

(1,1,1) - {(0, 1, 1), (1, 0, 0)} - {(0, 1, 0), (1, 0, 1)} {(0, 0, 1), (1, 1, 0)} - {(0, 0, 0), (1, 1, 1)} -

Table 1.3: The Difference Distribution Table of given F

In finite field case, the above F is equal to F(x) = x5 on F23 .

Completeness [83, Definition 2] For any positive integer n, c
(n)
1 , c

(n)
2 , ..., c

(n)
n ∈ Fn2 are

defined as:

c
(n)
1 = [0, 0, ..., 1]

c
(n)
2 = [0, ..., 1, 0]

...

c(n)n = [1, 0, ..., 0].

A function from F : Fn2 → Fm2 is complete if and only if

∑
x∈Fn2

F(x)⊕F(x⊕ c(n)i ) > (0, 0, ..., 0),

for all i (1 ≤ i ≤ n), where both the greater-than and the summation are componentwise

over Fm2 .

Avalanche effect [83, Definition 3] A function from F : Fn2 → Fm2 shows the avalanche

effect if and only if ∑
x∈Fn2

wt(F(x)⊕F(x⊕ c(n)i )) = m2n−1,

for all i (1 ≤ i ≤ n), where wt() denotes the Hamming weight function.
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Strict Avalanche Criteria

If a function F : Fn2 → Fm2 satisfies the following equations:

∑
x∈Fn2

F(x)⊕F(x⊕ c(n)i ) = (2n−1, 2n−1, ..., 2n−1)

for all i (1 ≤ i ≤ n). We say that F satisfies SAC ( [83], Definition 4) or F is said to be a

strong S-box. When a single bit of the input vector is complemented then each output bit

should be changed with 50%. Therefore a strong S-box is complete and shows the avalanche

effect.

Example 1.5.25. Suppose f ∈ B3 is Boolean function with output (1, 1, 1, 0, 0, 1, 1, 1).

Then f satisfies SAC

Input Output c(1) Output c(2) Output c(3) Output

(0, 0, 0) 1 (0, 0, 1) 1 (0, 1, 0) 1 (1, 0, 0) 0
(0, 0, 1) 1 (0, 0, 0) 1 (0, 1, 1) 0 (1, 0, 1) 1
(0, 1, 0) 1 (0, 1, 1) 0 (0, 0, 0) 1 (1, 1, 0) 1
(0, 1, 1) 0 (0, 1, 0) 1 (0, 0, 1) 1 (1, 1, 1) 1
(1, 0, 0) 0 (1, 0, 1) 1 (1, 1, 0) 1 (0, 0, 0) 1
(1, 0, 1) 1 (1, 0, 0) 0 (1, 1, 1) 1 (0, 0, 1) 1
(1, 1, 0) 1 (1, 1, 1) 1 (1, 0, 0) 0 (0, 1, 0) 1
(1, 1, 1) 1 (1, 1, 0) 1 (1, 0, 1) 1 (0, 1, 1) 0

Table 1.4: 3 variables Boolean function which satisfies SAC

If all coordinate functions of F ∈ Bn,m satisfy the SAC then F satisfies SAC or F is said

to be a strong S-box.

1.6 Quasigroups as vectorial Boolean functions

For any quasigroup (Q, ∗) of order |Q| = 2d, we can define a bijective mapping from the set

of quasigroup to the set of binary strings of length d. Let α be a bijective mapping and it

is defined as:

α : Q→ Fd2

q1 7→ (x1, x2, ..., xd).
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Then

∗α : Fd2 × Fd2 → Fd2

(α(q1), α(q2)) 7→ α(q1 ∗ q2).

Let α(q1 ∗ q2) = (x1, x2, ..., xd) ∗α (xd+1, xd+2, ..., x2d) = (z1, z2, ..., zd). Here we see that

each zi is presented as 2d−ary Boolean function fi(x1, x2, ..., x2d), where fi : Fd2 → F2 is

determined by ∗.

Lemma 1.6.1. [54, Lemma 1] For any quasigroup (Q, ∗) of order |Q| = 2d, let α : Q→ Fd2
be any bijective mapping. Then there exist an unique vectorial Boolean function ∗α and

2d-ary Boolean functions f1, f2, ..., fd uniquely determined by d. For all a, b and c in Q, we

have:

a ∗ b =c

⇓

(x1, x2, ..., xd) ∗α (xd+1, xd+2, ..., x2d) =(f1(x1, x2, ..., x2d), f2(x1, x2, ..., x2d), . . . ,

fd(x1, x2, ..., x2d)).

Example 1.6.2. Let Q = Z4 = {0, 1, 2, 3} and we use the integer notation 0 ≡
〈
0, 0
〉
,

1 ≡
〈
0, 1
〉
, 2 ≡

〈
1, 0
〉
, 3 ≡

〈
1, 1
〉
. The quasigroup (Q, ∗) given in Example 1.2.6 can be

represented by the following vectorial Boolean function:

F(x1, x2, x3, x4) =
〈
x1 + x3 + x4 + x2x4, x2 + x4

〉
The binary representation of the following quasigroup is as follows:

∗
〈
0, 0
〉 〈

0, 1
〉 〈

1, 0
〉 〈

1, 1
〉〈

0, 0
〉 〈

0, 0
〉 〈

1, 1
〉 〈

1, 0
〉 〈

0, 1
〉〈

0, 1
〉 〈

0, 1
〉 〈

0, 0
〉 〈

1, 1
〉 〈

1, 0
〉〈

1, 0
〉 〈

1, 0
〉 〈

0, 1
〉 〈

0, 0
〉 〈

1, 1
〉〈

1, 1
〉 〈

1, 1
〉 〈

1, 0
〉 〈

0, 1
〉 〈

0, 0
〉
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1.7 Isotopic quasigroups

Using any quasigroup with algebraic operation and three bijections (isotopism) over the

elements of that quasigroup, we can construct other quasigroups which are known as isotopic

quasigroups having relatively different algebraic properties. The isotopy in quasigroup is

defined as follows,

Definition 1.7.1. Let (Q, ∗) and (K, ?) be two quasigroups of the same order. An ordered

triple (α, β, γ) of bijections α, β, γ of the set Q onto the set K is called an isotopy or

isotopism of (Q, ∗) upon (K, ?) if α(x) ? β(y) = γ(x ∗ y) for all x, y ∈ Q. The quasigroups

(Q, ∗) and (K, ?) are then said to be isotopic. If (Q, ∗) = (K, ?) then (α, β, γ) is called an

autotopy or autotopisms of Q.

When γ is chosen as identity mapping, then

x ∗ y = α(x) ? β(y),

for each x, y ∈ Q. It is called the principal isotopism and denoted by (Qα,β, ∗). For given

(K, ?), the set of all permutation is denoted by SK .

In example 1.2.6 we defined a modular subtraction quasigroup, we take as (K, ?). The

isotopic quasigroup (Qα,β,γ, ∗) to the (K, ?) is defined as:

x ∗ y = γ−1((α(x)− β(y))mod n).

Let α = [0 2 1 3]; β = [0 1 2 3] and γ−1 = [0 1 2 3], then Caley table of isotopic quasigroup

is as follows:

∗ 0 1 2 3

0 0 3 2 1

1 2 1 0 3

2 1 0 3 2

3 3 2 1 0

We see that quasigroup (K, ?) with order 4 for which a(K) = 32 and isotopic quasigroup

(Qα,β,γ, ∗) with order 4 for which a(Qα,β,γ) = 16. The associativity index of isotopic quasi-

group depends on the combinations of isotopism.
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1.8 Complete mapping permutations

Definition 1.8.1. Suppose Q is an additive group and I is the identity mapping on Q.

Then, θ : Q → Q is called a complete mapping permutation if both θ and θ − I are

permutations. A group Q is admissible if there is a complete mapping θ : Q→ Q.

Example 1.8.2. Let Q = Z4 = {0, 1, 2, 3} and we use the integer notation 0 ≡
〈
0, 0
〉
,

1 ≡
〈
0, 1
〉
, 2 ≡

〈
1, 0
〉
, 3 ≡

〈
1, 1
〉
. Define θ : Q→ Q by

θ(
〈
x1, x2

〉
) =

〈
x2 + 1, x1 + x2 + 1

〉
.

Then we see that θ and θ + I both are bijective.

x θ I + θ〈
0, 0
〉 〈

1, 1
〉 〈

1, 1
〉〈

0, 1
〉 〈

0, 0
〉 〈

0, 1
〉〈

1, 0
〉 〈

1, 0
〉 〈

0, 0
〉〈

1, 1
〉 〈

0, 1
〉 〈

1, 0
〉

The following proposition is proved by Sade [143].

Proposition 1.8.3. [143, 14] Let (Q,+) be an admissible group with complete mapping θ.

Then, ∗ : Q×Q→ Q is defined as:

x ∗ y = θ(x− y) + y

where x, y ∈ Q. Then (Q, ∗) is a quasigroup.

Example 1.8.4. The derived quasigroup of order 4 given by complete mapping permutation

in Example 1.7.2 is

∗ 0 1 2 3

0 3 1 0 2

1 0 2 3 1

2 2 0 1 3

3 1 3 2 0
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1.9 Hash function and its security criteria

Hash functions are functions that compress an input of arbitrary length to a result with a

fixed length. A cryptographic hash function can provide assurance of data integrity. Let x

be a binary string of arbitrary length, then the corresponding hash value or message digest

is defined as y = h(x). Suppose that the pair (x, y) can be transmitted over an insecure

channel from Alice to Bob. When Bob receives the pair (x, y), he can varify it. If it is sat-

isfied the condition, then he is confident that neither x nor y was changed by an adversary.

Therefore the corresponding hash function is secure. Keyed hash functions are also useful

and oftenly used as a message authentication code (MAC).

Hash function

A hash family is a four-tuple (X ,Y ,K,H) where the following conditions are satisfied :

• X is a set of possible messages.

• Y is set of finite messages.

• K is set of finite possible keys, is called keyspace.

• For each k ∈ K, there is a hash function hk ∈ H such that hk : X → Y .

If X is a finite set, a hash function is sometimes called a compression function. Let |X | = n,

Y = m and the set of all functions fom X to Y be defined as FX ,Y . Obviously, |FX ,Y | = mn.

Any hash family H ⊆ FX ,Y is termed an (n,m)−hash family.

Security of Hash function

A hash function is said to be secure if these three problems are difficult to solve:

Preimage

Instance : A hash function h : X → Y and an element y ∈ Y .

Find : x ∈ X such that h(x) = y.

Second preimage

Instance : A hash function h : X → Y and an element x ∈ X .

Find : x′ ∈ X such that x′ 6= x and h(x′) = h(x).
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Collision

Instance : A hash function h : X → Y .

Find : x, x′ ∈ X such that x′ 6= x and h(x′) = h(x).

To illustrate an example, let hash function h : Zn × Zn → Zn be defined as

h(x, y) = ax+ by mod(n),

a, b ∈ Zn and n ≥ 2. Suppose that we have

h(x1, y1) = z1 and h(x2, y2) = z2.

Let r, s ∈ Zn, then

h(rx1 + sx2 mod(n), ry1 + sy2 mod(n)) =a(rx1 + sx2) + b(ry1 + sy2) mod(n)

=r(ax1 + by1) + s(ax2 + by2) mod(n)

=rh(x1, y1) + sh(x2, y2) mod(n).

From the given hash values at (x1, y1) and (x2, y2) we can evaluate its value at various

other point without evaluating h at those points. Therefore a hash function h : X → Y

is choosen randomly from FX ,Y and the only assurance for h is oracle acess. Bellare and

Rogaway introduced a model for hash functions which is independent from the mathematical

formula or algorithm called as random oracle model. The only way to compute a value h(x)

is to query the oracle. A true random oracle model does not exist in real life. Whenever

a well-defined hash function satisfy the following property which is equivalent to random

oracle model.

Theorem 1.9.1. [159, Theorem 4.1] Suppose that h ∈ FX ,Y is choosen randomly, and let

X0 ⊆ X . Suppose that the values h(x) have been determined (by querying an oracle for h)

if and only if x ∈ X0. Then Pr[h(x) = y] = 1/m for all x ∈ X \ X0 and all y ∈ Y.

Example 1.9.2. [159, Example 4.1] Suppose

X = Y = Z3

and

K = Z3 × Z3.
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For each K = (a, b) ∈ K and each x ∈ X , define

h(a,b)(x) = ax+ b mod(3)

and then define

H = {h(a,b) : (a, b) ∈ Z3 × Z3}.

The authentication matrix of the hash family (X ,Y ,K,H) is given by

key 0 1 2

(0,0) 0 0 0

(0,1) 1 1 1

(0,2) 2 2 2

(1,0) 0 1 2

(1,1) 1 2 0

(1,2) 2 0 1

(2,0) 0 2 1

(2,1) 1 0 2

(2,2) 2 1 0

Any value of x for which adversary queries the tag y and for any pair (x′, y′) (where x′ 6= x),

adversary determines a value as his forgery. For each choice of (x′, y′) (where x′ 6= x), there

is only one key out of three possible keys under which y′ is the correct authentication tag

for x′. Then Pr[h(x′) = y′] = 1/3.

1.9.1 Hash function in cryptography

The cryptographic hash functions can be used to protect information authenticity and to

protect against the threat of repudiation. It is also used in password’s identification and

encryption algorithm.

Information authentication

Mainly cryptographic hash function reduce the protection of the authenticity of information

of arbitrary length to the protection of the authenticity of quantities of fixed length. First,

a distinction will be made between protection of authentication with and without secrecy.
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The second option is whether the protection of authenticity will depend on the secrecy

and authenticity of a key or on the authenticity of an information dependent hashcode.

As authentication without secrecy, there is only a plaintext available, which significantly

reduces the number of options. If both authentication and secrecy are protected, this can

be used in certain cases to simplify the overall system. For an outsider, an attack on the

scheme becomes in general harder, as his knowledge decreases. The additional protection

offered by the encryption is dependent on the encryption algorithm and on the mode of the

encryption algorithm.

Threat of repudiation

The technical term non-repudiation of origin denotes a service whereby the recipient is given

guarantee of the messages authenticity, in the sense that the recipient can subsequently

prove to a third party that the message is authentic even if its originator subsequently

revokes it.

1.10 Construction of Hash function using quasigroups

Let (Q, ∗) be a quasigroup and Q? be a set of all finite strings over Q by the elements

mi ∈ Q, 1 ≤ i ≤ k. Let (m1m2...mk) be the finite string and the hash function [64] is

defined as:

H : Q×Q? → Q

H(a,m1m2...mk) = a ∗ (m1 ∗ (m2 ∗ ... ∗ (mk−1 ∗mk))),

where a ∈ Q is fixed. We can also write

H(a,m1m2...mk) = Ha(m1,m2, ...,mk),

for simplicity.

Security criteria

A hash function h : X → Y is said to be collision resistant if it computationally infeasible

to fine x, x′ ∈ X such that x′ 6= x and h(x′) = h(x). Now, we check if our designed hash

function is collision resistant or not. If (mk−1, x, y) satisfies associativity axiom in Q and
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mk = x ∗ y then we choose (m1,m2,m3, ...,mk−1,mk) and (m1,m2,m3, ...,mk−1 ∗ x, y) two

arbitrary finite strings over Q so that:

Ha(m1,m2,m3, ...,mk−1,mk) = a ∗ (m1 ∗ (m2 ∗ (m3 ∗ (... ∗ (mk−1 ∗mk)))))

= a ∗ (m1 ∗ (m2 ∗ (m3 ∗ (... ∗ (mk−1 ∗ (x ∗ y))))))

= a ∗ (m1 ∗ (m2 ∗ (m3 ∗ (... ∗ ((mk−1 ∗ x) ∗ y)))))

= Ha(m1,m2,m3, ...,mk−1 ∗ x, y),

or

Ha(m1,m2,m3, ...,mk−1,mk) = Ha(m1,m2,m3, ...,mk−1 ∗ x, y).

Hence the messages (m1m2m3...mk−1mk) and (m1m2m3...mk−1 ∗ xy) in Q such that

(m1,m2,m3, ...,mk−1,mk) 6= (m1,m2,m3, ...,mk−1 ∗ x, y),

but both have the same hash value. Here we see that the problem of collision depends on

associative triples in Q. If we have less number of associative triples in Q then our hash

function is more secure.

1.11 Literature review

The algebra of quasigroup was extensively studied by Drápal [44–48], Norton [127], Jez̆ek

and Kepka [71,77–82,126]. To facilitate our discussion we set a(n)=min{a(Q)}, where the

minimum is taken over all quasigroups Q of order n. Let Q be a finite non-associative

quasigroup of order n isotopic to a group. Then Drápel and Kepka [46] proved that

a(Q) ≤n3 − 4n2 + 6n, provided n ≥ 3,

a(Q) ≤n3 − 4n2 + 8n, provided n is even.

To our knowledge, the only infinite class of quasigroups Q with a(Q) < n2 was provided

in [87].
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Proposition 1.11.1. [87, Proposition 8] For every even integer n ≤ 6, n ≡ 0, 2 (mod 6)

there exist a non-commutative idempotent quasigroup Q with a(Q) < n2.

Kotzig and Reischer [87] also proved that for each n ≡ 0, 2 (mod 6) there exist a quasigroup

with a(Q) = n2 − 3n+ 3. Then Gros̆ek and Horák [64] showed that lim inf a(n) is at most

n1.5131 which is significantly lower.

As to upper bounds on a(n), the best bound so far states that a(n) ≤ 2n2. The following

corollary is proven by Kotzig and Reischer [87].

Corollary 1.11.2. [87, Corollary] For a commutative quasigroup we have a(Q) ≥ n2. This

lower bound is sharp for every n 6≡ 2 (mod 4). For n ≡ 2 (mod 4) there is a commutative

quasigroup with associativity index a(Q) = 2n2.

Further some useful results on quasigroups are given below.

Proposition 1.11.3. [87, Proposition 7] For every n odd there exist a commutative idem-

potent quasigroup Q with a(Q) = n2.

Proposition 1.11.4. [87, Proposition 10] For every n < 7 every anticommutative idem-

potent quasigroup Q has associative index a(Q) = n2.

For every n ≥ 1 the set of the numbers a(Q) denote by assspec(n), where Q runs over the

quasigroups of order n. This set, called the associativity spectrum of n, is contained in

{n, n+ 1, ..., n3}. Jez̆ek and Kepka [71] defined the associativity spectrum:

assspec(1) = {1}

assspec(2) = {8}

assspec(3) = {9, 27}

assspec(4) = {16, 24, 32, 64}

assspec(5) = {15, ..., 57, 59, 62, 63, 74, 79, 80, 89, 125}

assspec(6) = {16, 19, ..., 114, 116, 117, 118, 120, 121, 122, 124, ..., 128, 130, ...

..., 137, 141, 142, 144, 148, 152, 160, 162, 168, 172, 184, 189, 216},

and also illustrated inequity for a(n):

n ≤a(n) ≤ n2 for n ≥ 3, n 6= 4k + 2,



28 1.11 Literature review

n ≤a(n) ≤ 2n2 for every n ≥ 3.

If Q is a quasigroup of order n ≥ 3 such that a(Q) = n, then Q is idempotent and not

isotopic to a group [77]. An element a ∈ Q with the property a ∗ a = a is called an

idempotent. Denote by I(Q) the set of all idempotent elements of Q and set i(Q) = |I(Q)|.

Gros̆ek and Horák [64] provided new lower bound:

Theorem 1.11.5. [64, Theorem 1.1] Let Q be a quasigroup of order n. Then a(Q) ≥

2n− i(Q).

Therefore if there were a quasigroup Q of order n with a(Q) = n, then Q would have to

be an idempotent quasigroup. Based on a supporting evidence, which includes extensive

computational experiments, we strongly believe that the following conjecture is true:

Conjecture: [64, Conjecture 1.2] For all n ∈ N, it holds a(n) ≥ n+ 1.

In spite of an intensive effort we were not able to prove the conjecture for any signifi-

cant subclass of idempotent quasigroups although our computation results indicate that a

quasigroup Q of order n with a(Q) = a(n) is not an idempotent quasigroup. Up to now

there has been described no infinite series of quasigroups Q for which the value of a(Q)

would be linear in n = |Q|.

There are several examples of quasigroups of order n with n2 associative triples. More

concretely, for each n 6= 10(mod 12), there is a quasigroup Q of order n with a(Q) ≤ n2.

The best asymptotic construction presented in [64], which is obtained by taking products

of a quasigroup Q of order 5, 6 and 7 with the least possible number of associative triples,

which are claimed to be 15, 19 and 19 respectively. This gives

a(Q) =


|Q|1.6826 when |Q| = 5m, m ∈ N,

|Q|1.5474 when |Q| = 6m, m ∈ N,

|Q|1.5131 when |Q| = 7m, m ∈ N.

Later Valent [163] updated the above results for quasigroup Q of order 5, 6, 7 and 8 with

the least possible number of associative triples, which are claimed to be 15, 16, 17 and 21
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respectively as follows:

a(Q) =



|Q|1.6826 when |Q| = 5m, m ∈ N,

|Q|1.5474 when |Q| = 6m, m ∈ N,

|Q|1.4559 when |Q| = 7m, m ∈ N,

|Q|1.4641 when |Q| = 8m, m ∈ N.

As far we know, the only lim inf a(Q) is at most |Q|1.4641 when |Q| = 8m, m ∈ N.

The associativity index of isotopic quasigroups is studied by Drápel and Valent [48].

Valent [163] has shown that the average number of associative triples in the set of all

isotopisms of any quasigroup (K, ?) of order n is given by:∑
α,β,γ∈SK a(Qα,β,γ)

(n!)3
=

n3

(n− 1)
= n2 ·

(
1 +

1

n− 1

)
.

Valent [163] also described that this average number is independent of using operation ? of

quasigroup. We see that this average number is always constant for many quasigroups with

different operation but having same order. For n ≥ 2, it can be regarded as a new upper

bound on a(n).

Now we are discussing some results on balanced Boolean functions. The quadruplet

entry (n, d, nl, ac) indicates that a Boolean function on n variables with algebraic degree

d, nonlinearity nl and autocorrelation ac. We plan to evolve the best profile (n, d, nl, ac)

using simulated annealing. Clark et al. [31] have best achieved profiles (8, 7, 116, 24) and

(8, 5, 112, 16). Later Kavut and Yücel [73] have best achieved profiles (8, 7, 116, 24) and

(8, 5, 114, 16) using simulated annealing. Comparing the nonlinearity of 8 variables balanced

Boolean functions:

Nonlinearity Autocorrelation
Lowest Upper Bound 118 Zhang and Zheng [170] 24

Best known Example ( [135], [68]) 116 Maitra Construction [98] 24
Dobertin’s Conjecture [42] 116 Maitra Conjecture [98] 24

Bent Concatenation 112
Random 112

Random Plus Hill-Climb 114
Genetic Algorithms ( [122]) 116

Table 1.5: Nonlinearity table of 8 variables balanced Boolean functions
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1.12 Overview of the thesis

A chapter wise brief description of this thesis is given below:

Chapter 1. It is the introductory chapter of the thesis, containing mathematical notations

and definitions with examples. A brief literature review is also given to illuminate the idea

presented in the thesis. The necessary concepts of quasigroups in cryptography and its

formations by complete mapping permutations are highlighted. Some cryptographic char-

acteristics, i.e., nonlinearity, differential uniformity and Strict Avalanche Criteria (SAC),

which are required to analyze existing and implemented quasigroups are stated here. We

provide some basics on finite fields which is useful to our work.

Chapter 2. In this chapter, we describe two heuristic techniques, i.e., simulated annealing

and Genetic algorithm, for the purpose of evolving balanced Boolean functions and quasi-

groups with low associative index respectively. We have best achieved profile (8, 7, 114, 32)

for 8 variables balanced Boolean function by simulated annealing. For evolving quasigroups,

we propose a new cost function which is inspired by Valent’s result [163]. By using our

Genetic technique and proposed cost function we find the quasigroups whose associative

indeces are relatively less than the square of their order.

Chapter 3. Markovski and Mileva [104] have shown that the quasigroup defined by Feis-

tel function is highly non-associative, since Feistel function works as complete mapping

permutation when using function is bijective. They believe that any bijection can hardly

statisfies the governing equations of associativity. We solve these equations by using linear

permutations, quadratic permutations, APN (almost perfect nonlinear functions) permuta-

tions, differentially 4-uniform permutations and differentially δ-uniform permutations over

Fn2 . We prove that the number of associative triples for any such quasigroups Q is equal

to the square of |Q|, where Q is the order of quasigroup, except the quadratic permuta-

tions. For quadratic permutations, we prove the lower bound for any such quasigroups Q is

equal to 2|Q|2. We further identify the relation between the cryptographic characteristics,

i.e., nonlinearity, differential uniformity and Strict Avalanche Criteria (SAC), of bijective

mapping and Feistel network based quasigroup.

Chapter 4. The main focus of this chapter is to construct the quasigroups using permuta-

tions over finite fields. Kotzig and Reischer [87] proposed the construction of quasigroups

by finite commutative, but not necessarily associative or unitary, rings. We implement
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this construction by using two different permutations over finite fields. We further obtain

the equations satisfy by associativity condition. We solve these equations by using linear

permutations, affine permutations, quadratic permutations and linear complete mapping

permutations over F2n . For some permutations we prove that lower bound of associative

index is equal to 2|Q|2 and for some permutations we get associative index exactly |Q|2.

Chapter 5. The purpose of this chapter is to construct the complete mapping permuta-

tions. Construction of complete mapping permutations by using Feistel structure has been

proposed by Markovski and Mileva [104] which they used to construct large quasigroups.

The theory of XS-circuits as proposed by Agievich [2] is described in this chapter. First

we construct complete mapping permutations from functions over finite fields by using

XS-circuits and give the counts for particular order. We enumerate for the order 2, 3, 4

and 5. Winterhof [167] described the concept of K-complete mapping permutation which

can be used to define uniformly distributed sequences. Uniform distribution is a desirable

feature of a sequence for both Monte Carlo-methods and cryptography. Therefore we fur-

ther construct K-complete mapping permutations by using XS-circuits. Later we extend

the XS-circuits, we see its peculiar behave. By using extended model we find a recursive

constrictions that extend a complete mapping of dimension r to a complete mapping of

dimension n, where r ≤ n. We also enumerate the total counts of complete mapping per-

mutations for r = 2 and n = 4.

Chapter 6. This chapter concludes the thesis and presents some open problems for future

work.
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Chapter 2

Quasigroups as vectorial Boolean

functions and their heuristics

techniques of evolving

2.1 Introduction

The security of any stream cipher depends upon the cryptographic properties of Boolean

function. The Boolean function used as a nonlinear filter function and combiner function

for generating the key stream sequence for stream cipher with strong cryptographic prop-

erties. Since the total search space for any n variables Boolean function is 22n , the problem

of finding cryptographically strong Boolean function is considered as an NP hard problem.

There are three different ways to construct a Boolean function such as algebraic construc-

tion, random generation and heuristic optimization. There are lot of research had already

done using algebraic techniques and heuristic technique to construct a cryptographically

strong Boolean function. But, heuristic technique is not able to find the result that is

achieved by the algebraic construction. So there are lot of scope to improve the heuristic

technique to make it more efficient in terms of both performance and results. We apply

simulated annealing to construct 8 variable Boolean function with high nonlinearity and

low autocorrelation.

In 1983 Kirkpatrick et al. [84] suggested a new heuristic search technique simulated

annealing motivated by the cooling processes of molten metals. He implemented the ap-

33



34 2.1 Introduction

propriate Metropolis algorithm into simulated annealing of a combinatorial optimization

problem. In optimization problem, an objective function is either a minimizing function

(cost function) or maximizing function (fitness function). Clark and Jacob [29] showed that

the power of optimization methods for the synthesizing of Boolean functions is affected by

choice of cost function. In particular, they showed simulated annealing conjugate with

a new cost function motivated by Parseval’s identity. Those Boolean functions showing

strong cryptographic characteristics to be included in the design of secure cryptosystems

with essential cryptographic primitive. Clark et al. [31] have been identified many desirable

properties for Boolean functions with cryptographic purpose and obtained compromising

exchange among such properties. First we use simulated annealing based on [84]. We

demonstrate how to evolve an optimizing Boolean function with best profile. We shall also

show how the capabilities of different cost functions invariant and nonlinearity Boolean

functions can be enhanced by random shifting (permutations) their positions in truth ta-

ble. In Section 2.3, we describe the important definition to understand the cost function

and than how to use simulated annealing algorithm for evolution of optimizing Boolean

functions.

In Section 2.2, we extend our Boolean function construction into quasigroup to be

treated as an vectorial or multi-output Boolean function. Quasigroup is an algebraic struc-

ture which is used for the designing of secure hash function. In introductory chapter [Section

1.10, Chapter 1] we already discussed importance of associative triple of quasigroups when

it is used as construction of hash functions. Then we focus on to evolve quasigroups with

relatively minimum number of associative triples. Gros̆ek and Horák [64] state that best

known upper bound for the number of associative triples of any quasigroup Q is less than

or equal to 2|Q|2, where |Q| is the cardinality of the set Q. Up to till now the only infinite

class of quasigroups Q with associative triples less than |Q|2 was provided by Kotzig and

Reischer [87]. Therefore, our concern is to evaluate the counts of associative triples less than

the previous known. The avarage number of associative triples in the set of all isotopisms

of quasigroup is proved by Valent [163]. This number depends solely upon |Q| rather than

the isotopisms. By Genetic algorithm, Snášel et al. [154] also evolved isotopic quasigroups

where used fittness function was not completely motivated by associative triples of iso-

topic quasigroups. They considered only those triples as associative triples from all distinct

combinations of three elements out of |Q| whose satisfy the associativie axiom under same
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operation. But any quasigroup not only has those triples as associative triples it has more.

In Section 2.4, we propose a new cost function for evolving the isotopic quasigroups which

is motivated by Valent’s result [221, Lemma 3.6] and than how to use Genetic algorithm

for evolution of isotopic quasigroups with low number of associative triples, usally we get

associativity index less than the square of quasigroups’s order.

2.2 Preliminaries

Isotopy in Quasigroups

Using any quasigroup with algebraic operation and three bijections (isotopism) over the

elements of that quasigroup, we can construct other quasigroups which are known as isotopic

quasigroups having relatively different algebraic properties. The isotopy in quasigroup is

defined as follows,

Definition 2.2.1. Let (Q, ∗) and (K, ?) be two quasigroups of the same order. An ordered

triple (α, β, γ) of bijections α, β, γ from Q onto K is called an isotopy or isotopism of

(Q, ∗) upon (K, ?) if α(x) ? β(y) = γ(x ∗ y) for all x, y ∈ Q. The quasigroups (Q, ∗) and

(K, ?) are then said to be isotopic. If (Q, ∗) = (K, ?) then (α, β, γ) is called an autotopy or

autotopisms of Q.

When γ is chosen as identity mapping, then

x ∗ y = α(x) ? β(y)

for each x, y ∈ Q. It is called the principal isotopism and denoted by (Qα,β, ∗). For given

(K, ?), the set of all permutation is denoted by SK .

Let (K, ?) be a quasigroup with finite order n, i.e., |K| = n. The operation ? : K×K → K

is defined as:

x ? y = (x− y)mod n.

Then (K, ?) is a quasigroup.

Suppose that K = {0, 1, 2, 3, 4, 5, 6, 7}, i.e., |K| = 8, then the Caley table of (K, ?) is given

by
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? 0 1 2 3 4 5 6 7

0 0 7 6 5 4 3 2 1

1 1 0 7 6 5 4 3 2

2 2 1 0 7 6 5 4 3

3 3 2 1 0 7 6 5 4

4 4 3 2 1 0 7 6 5

5 5 4 3 2 1 0 7 6

6 6 5 4 3 2 1 0 7

7 7 6 5 4 3 2 1 0

Associative axiom:

(x ? y) ? z = x ? (y ? z),

i.e., ((x− y)mod n) ? z = x ? ((y − z)mod n),

i.e., 2 · z = (0)mod n.

The above congruence has exactly e solutions, where e = gcd(2, n). If x and y may be

chosen from K, then the associative triples of (K, ?) is given by

a(Q) =

n
2 when n odd,

2n2 when n even.

The isotopic quasigroup (Qα,β,γ, ∗) to the (K, ?) is defined as:

x ∗ y = γ−1((α(x)− β(y))mod n).

Let α = [0 1 4 5 2 3 6 7]; β = [0 2 4 6 1 3 5 7] and γ−1 = [0 2 1 3 4 6 5 7], then Caley table

of isotopic quasigroup is as follows:
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∗ 0 1 2 3 4 5 6 7

0 0 5 4 1 7 6 3 2

1 2 7 6 3 0 5 4 1

2 4 1 0 5 3 2 7 6

3 6 3 2 7 4 1 0 5

4 1 0 5 4 2 7 6 3

5 3 2 7 6 1 0 5 4

6 5 4 1 0 6 3 2 7

7 7 6 3 2 5 4 1 0

Associative axiom:

(x ∗ y) ∗ z = x ∗ (y ∗ z),

i.e., γ−1((α(x)− β(y))mod n) ∗ z = x ∗ γ−1((α(y)− β(z))mod n),

i.e., (α(γ−1((α(x)− β(y))mod n))− β(z))mod n = (α(x)− β(γ−1((α(y)− β(z))mod n)))

mod n.

The solution of the above congruence depends upon α, β and γ in SK . It varies according

to the different combinations of α, β and γ in SK . As for above example, a(Qα,β,γ) = 64.

Therefore we can obtain many isotopic quasigroups (Qα,β,γ, ∗) from the modular subtraction

quasigroup (K, ?) by choosing permutations α, β and γ in SK with different combination.

Interesting fact is that we do not need Cayley table for evaluting the associative triples.

Binary representations of Quasigroup elements

We know that there are n! (factorial of a non-negative integer n) different permutation

for n elements. The total search space for isotopisms (α, β, γ) is equal to n! · n! · n!.

When n > 25, 26, . . . , it is difficult to handle. That’s why we convert all elements of the

quasigroups into bit strings. When |K| = 2m, we need only m bit to represent all elements

of the quasigroups. The binary representation of K = {0, 1, 2, 3, 4, 5, 6, 7} is as follows:
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Q 3 bit

0 → 000

1 → 001

2 → 010

3 → 011

4 → 100

5 → 101

6 → 110

7 → 111

The bit permutation [154] is an efficient way of implementing permutations over K. Al-

though only few log2(n)! · log2(n)! · log2(n)! isotopisms are constructed but a chance to meet

the criteria of less associativity.

Example 2.2.2. Let |Q| = 23, then we need 3 bit to represent all elements of the quasi-

groups. All permutations of the bit are as follows:

(1 2 3), (1 3 2), (2 3 1), (2 1 3), (3 2 1), (3 1 2).

The corresponding elements of the quasigroups are permuted as follows:

123
000
001
010
011
100
101
110
111

132
000
010
001
011
100
110
101
111

231
000
010
100
110
001
011
101
111

213
000
001
100
101
010
011
110
111

321
000
100
010
110
001
101
011
111

312
000
100
001
101
010
110
011
111

Table 2.1: All combinations of output for 3 bit.

Bit Permutation as Permutations over Fm2
We get the algebraic normal form for the combination (1 3 2) which is denoted by

f(1 2 3)(x1, x2, x3)

f(1 2 3)(x1, x2, x3) = (x1, x2, x3).
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Similarly we get

f(1 3 2)(x1, x2, x3) = (x1, x3, x2),

f(2 3 1)(x1, x2, x3) = (x2, x3, x1),

f(2 1 3)(x1, x2, x3) = (x2, x1, x3),

f(3 2 1)(x1, x2, x3) = (x3, x2, x1),

f(3 1 2)(x1, x2, x3) = (x3, x1, x2).

Therefore we can also use algebraic normal form (ANF) instead of bit strings representa-

tion. It is known that Fm2 and F2m (i.e., finite fields) both are isomorphic under vector

isomorphism over F2.

Theorem 2.2.3. [96, Theorem 7.8]

(i) Every linear polynomial over F2m is a permutation polynomial of F2m.

(ii) The monomial xr is a permutation polynomial of F2m if and only if gcd(r, 2m− 1) = 1.

Example 2.2.4. Let f(x) = x2 over F23 and s be a primitive element in F23. Then we

have

F23 = {0, 1, s, s2, s3, s4, s5, s6}.

Using the irreducible polynomial s3 + s+ 1 = 0, which can also be represented as

F23 = {0, 1, s, s2, s+ 1, s2 + s, s2 + s+ 1, s2 + 1}.

Then f(x) = x2 over F23 are permuted as follows:

x f(x) = x2

0 → 0

1 → 1

s → s2

s2 → s2 + s

s+ 1 → s2 + 1

s2 + s → s

s2 + s+ 1 → s+ 1

s2 + 1 → s2 + s+ 1
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Then binary representation of f(x) = x2 over F3
2 is as follows:

x = (x1, x2, x3) f(x)
(0,0,0) → (0,0,0)
(0,0,1) → (0,0,1)
(0,1,0) → (1,0,0)
(0,1,1) → (1,0,1)
(1,0,0) → (1,1,0)
(1,0,1) → (1,1,1)
(1,1,0) → (0,1,0)
(1,1,1) → (0,1,1)

Table 2.2: Bit representation of f(x) = x2 over F3
2.

By Equation (1.5.1) the algebraic normal form of f(x) = x2 over F3
2 is written as

f(x1, x2, x3) = (x1 + x2, x1, x3).

Similarly we have x3, x4, x5 and x6 monomials over F3
2. In Table 3, we showed the binary

representation of all possible monomials over F3
2.

f(x) = x
000
001
010
011
100
101
110
111

f(x) = x2

000
001
100
101
110
111
010
011

f(x) = x3

000
001
011
100
101
110
111
010

f(x) = x4

000
001
110
111
010
011
100
101

f(x) = x5

000
001
111
010
011
100
101
110

f(x) = x6

000
001
101
110
111
010
011
100

Table 2.3: Bit representation of all possible monomials over F3
2.

Now we have total (3!+5)·(3!+5)·(3!+5) isotopisms for |Q| = 8 by Table 1 and 3. Berger et

al. [11] and Mandi [100] defined the special class of permutations (quadratic permutations,

APN permutation, e.t.c.) over Fm2 (or, equivalently F2m). To enhance the search space for

isotopisms we use such type of permutations, we refer to [92,108,124,140,149].

2.3 Heuristic optimization of Boolean function

It is a class of artificial intelligence which is defined by concerned algorithms. These algo-

rithms are called evolutionary algorithms based on Darwinian principle. The characteristics
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of these algorithms are varied and repeated attempts until the success or stops trying. Thats

why it can be considered as a global optimization method with heuristic search. Evolution-

ary computation used iterative process because of growth and development of population.

During the process we select a random search for achieving the targeted result. Essentially,

this computation is inspired by biological mechanism of evolution. Some evolutionary meth-

ods are very useful for solving cryptographic problems with the help of heuristic techniques

like as hill climbing, simulated annealing and Genetic algorithm.

Cost function

We want to improve nonlinearity of Boolean function. It is known that its depend on the

WHmax(f) by Equation (1.5.2). Hence our optimizing parameter is defined as

Optpara(f̂) = WHmax(f).

Essentially, we seek to minimize this Optpara(f̂) say cost value. By simulated annealing, we

consider the effect of a move only on those values of Wf (w) where the values are maximum

or near to maximum for the current solution. There is an indirect approach for that given

by Parseval’s identity (1.5.4)

∑
w∈Fn2

|Wf (w)|2 = 22n.

It can be shown that |Wf (w)| ≥ 2n/2 and WHmax(f) = maxw∈Fn2 |Wf (w)| to be at least

2n/2. When |Wf (w)| .= 2n/2 for each w would get the upper bound but in practice it may be

impossible. Bent Boolean functions achieve this bound and only exist for even value of n.

If some |Wf (w)| values are greater than upper bound then some other |Wf (w)| values must

be less than it because of Parseval’s identity. When we seek to minimize the spectrum

of absolute values of |Wf (w)|, we would seem to be a possible means of achieving high

nonlinearity. Thus a suggested cost function is defined as

∑
w∈Fn2

||Wf (w)| − 2n/2|. (2.3.1)

This suggested cost function is required for attacking nonlinearity. In the above cost func-
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tion, there is a chance to achieve |Wf (0)| = 2n/2. It is known that balanced Boolean func-

tions haveWf (0) = 0 and bent Boolean functions are not balanced. Clark et al. [31] modified

this cost function for evolving highly nonlinear balanced Boolean functions. Therefore the

plausible Equation (2.3.1) consider as cost function for Nonlinearity Targeted (NLT):

cost(f̂) =
∑
w∈Fn2

||Wf (w)| −X|R. (2.3.2)

Here X and R are two parameter which is provide accessibility to experiment. It is too

much tough to say which values of X and R for imposing a balance requirement and how

much effected with odd n. The Autocorrelation Targeted (ACT) technique was adopted

only after it was noticed that the NLT approach generated Boolean functions with high

autocorrelation.

Related to Autocorrelation function

The autocorrelation function Cf (w) is defined as

Cf (w) =
∑
x∈Fn2

(−1)f(x)+f(x+w)

We shall write Cf (w) if there is no danger of confusion. Note that Cf (0) equals 2n. Then

cost functions for ACT is given by

cost(f̂) =
∑
w∈Fn2

||Cf (w)| −X|R. (2.3.3)

Heuristic search

If classical methods are too slow for finding an approximate result or any exact solution

then we use heuristic search algorithms for the problems. It is more quick rather than any

other techniques for solving a problem and provide a best result. The characteristics of

the techniques are trading optimality, accuracy and legitimacy of speed. The fundamental

axioms of heuristic techniques as follows:

• gives the authentication for a good solution in required time,

• the efficiency always increases because of avoiding completeness,

• this technique is useful for such type of problems when problems,
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◦ could not be solved by any classical methods,

◦ computationally hard,

Now, we are demonstrating one kind of heuristic search algorithm called as simulated

annealing.

2.3.1 Simulated annealing for evolving Boolean functions

This search techniques is implementation of hill climbing [120] techniques. In hill climbing,

we accept only best moves and avoid the worst moves but in simulated annealing techniques

we accept worst moves also with some probability which is randomly generated between

0 to 1. Essentially, simulated annealing merges with hill climbing through probabilistic

acceptance of worst moves. Now, we are get rid of plateau and ridge conditions effect and

exploring the whole space which is less sensitive from the initial point. We seek to mini-

mization rather than creating maxima and use objective function rather than heuristic.

The simplest way to implement simulated annealing is as follows:

• Evaluate the truth table of Boolean function [f(0, . . . , 0, 0), f(0, . . . , 0, 1), f(0, . . . , 1, 0), . . . ,

f(1, . . . , 1, 1)] of given length n as current state.

• If |Wf (w)| .= 2n/2 for each w would get the upper bound then quit otherwise make the

current state this initial state and proceed.

• Generate all 2-neighborhood strings from the current state

• Choose one string among them randomly say neighborhood state

• If this neighborhood state is attained the upper bound then quit

• Set stopping criteria according to result perfection

• Repeat

◦ δ, Evaluate difference between the cost value of current state and neighborhood states

(N(S))

◦ Now, check the conditions

◦ If δ < 0 than this state makes the current new state which is better function compar-

atively previous current state

◦ If it is not better then make it better with probability p, where p = exp(−δ/T ). Now,

we generate a random number U between 0 to 1 and comparing it with p. If U is greater

than p do nothing and if it is less then p accept this state as the next current state.
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◦ Revise T with multiply by α ∈ (0, 1), because during annealing schedule is dependent

on a number of moves (Moves in Inner Loop, MIL) to the new states.

Until a solution is found or no more new states.

• Return with the best answer.

Algorithm 1: Simulated annealing algorithm:

1 S = S0

T = T0

while do

2 for int i = 0; i < MIL; i+ + do

3 Select Y ∈ N(S)

δ = f(Y )− f(S)

if δ < 0 then

4 S = Y

else

5 Generate U = U(0, 1)

if U = exp(−δ/T ) then

6 S = Y

7 end

8 end

9 end

10 end

11 T = T × α

Until stopping criteria is met;

12 end

2.3.2 Experimental details

We evolved Boolean function for 8 variables using cost function by Equation (2.3.2) for

R = 3 and X = 3 in Matlab. The value R is positive mostly R = 3 and range of X from

−16 to 30 used [31]. The cubic power puts the more impact on any large deviation of a

term rather than the small deviation. That means cubic term has more chance of being
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minimized or maximized comparatively the other powers.

n d nl ac

8 7 116 16

Now we take the value of R = 4 and X = 0. Then we show that with two different

parameters we got the same optimizing Boolean function with same characteristics. This

result also unique for us.

n d nl ac

8 7 116 16

After getting this optimizing Boolean function, we have to check its balancedness. Using

“Sage” we have found the positions of 0s and 1s of the given function and count also. After

replacing either 0s or 1s which are more and make the given optimum function balanced

with high nonlinearity among the all. We have to find the other characteristics also. These

are the characteristics of the evolved balanced Boolean function:

n d nl ac

8 7 112 40

Now we generate the random permutation (randperm() in Matlab) of a number which is

equal to the length of the truth table. Basically, this is a vector of the random permutations

of a number say r. If we choose first two element of r than change the corresponding indices

of the truth table of evolved balanced Boolean function and check the nonlinearity. If our

result not improved than take next two (omit the first element) of r and so on. This process

follow up to when we will not get improved result. Thus we find the better result rather

than the previous one.

These are the updated characteristics of the evolved balanced Boolean function:

n d Previous nl New nl ac

8 7 112 114 32

2.4 Heuristic optimization of quasigroups

Proposed Cost Function

Valent [163] has shown that the average number of associative triples in the set of all
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isotopisms of any quasigroup (K, ?) of order n is given by:∑
α,β,γ∈SK a(Qα,β,γ)

(n!)3
=

n3

(n− 1)
= n2 ·

(
1 +

1

n− 1

)
.

Valent [163] also described that this avarage number is independent of using operation ?

of quasigroup. We see that this average number is always constant for many quasigroups

with different operation but having same order. It is possible that for some α, β and γ in

SK , the value of a(Qα,β,γ) is given by

a(Qα,β,γ) ≥ n2 ·
(

1 +
1

n− 1

)
,

and for some α, β and γ in SK , the value of a(Qα,β,γ) is given by

a(Qα,β,γ) ≤ n2 ·
(

1 +
1

n− 1

)
. (2.4.1)

Here we focus on finding the quasigroups with low associative triples. Therefore the above

inequality [Equation (2.4.1)] can be regarded as an upper bound on a(Qα,β,γ), when n ≥ 2.

For any quasigroup (Q, ∗) we get the new upper bound for associative triples

a(Q) ≤ n2 ·
(

1 +
1

n− 1

)
.

So we find the best combination of α, β and γ in SK which provide the least value of

a(Qα,β,γ). According to the cost function, the following form of Equation (2.4.1) is used:

cost(Q) = min
α,β,γ∈SK

(
a(Qα,β,γ)− n2 ·

(
1 +

1

n− 1

))
.

Take λ = (1 + 1
n−1) and 2 assign as a variable k, then modified form is as follows:

cost(Q) = min
α,β,γ∈SK

(a(Qα,β,γ)− λ · nk),

or, cost(Q) = min
α,β,γ∈SK

|a(Qα,β,γ)− λ · nk|.

To analyse the values of λ and k for achieving the minimum cost value, i.e., cost(Q) = 0 as

follows:
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• When λ = 1 and k = 1, we get

a(Q) = n,

which is annihilated the given conjecture [93, Conjecture 1.2], i.e., a(Q) ≥ n+ 1. Up

to now there has not been described any quasigroup with a(Q) = |Q|.

• When λ = 1, we get the different combinations of k

a(Q) =



n1.6826 when n = 5m, m ∈ N,

n1.5474 when n = 6m, m ∈ N,

n1.4559 when n = 7m, m ∈ N,

n1.4641 when n = 8m, m ∈ N.

which are shown by Valent [163].

• When λ = 1, we get the different combinations of k

a(Q) =


n1.6826 when n = 5m, m ∈ N,

n1.5474 when n = 6m, m ∈ N,

n1.5131 when n = 7m, m ∈ N.

which are shown by Gros̆ek and Horák [64].

• When λ ∈ (0, 1) and k = 2, we get

a(Q) < n2,

which is shown by Kotzig and Reischer [87].

• When λ ∈ (0, 2] and k = 2, we get

a(Q) ≤ 2 · n2,

which is the best bound so far [64].

In the experiment reported here, we use quasigroups with modular subtraction operation.
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First, we check the associative triples for small order |Q| = 3, 4, . . . , 10 and later for large

order |Q| = 23, 24, . . . , 28. We see that our achieved optimal results are quiet similar to

Kotzig and Reischer’s results [87].

2.4.1 Genetic algorithm for evolving isotopic quasigroups

The Genetic algorithm presented in this chapter uses random keys to encode the solutions.

The use of random keys is described in [155] and is useful for problems that require permu-

tations of the integers and for which crossover presents feasibile conditions. The technique

is best illustrated with an example.

Consider a permutation (5 3 2 1 4), the solution 5 3 2 1 4 represents 4→ 3→ 2→ 5→ 1,

not 5 → 3 → 2 → 1 → 4. In one-point crossover, may result in children with some nodes

visited more than once and others not visited at all.

For example, the parents

5 3 2 1 4

1 5 4 2 3

For example, the children

5 3 2 2 3

1 5 4 1 4

In the random key method, we assign each gene a random number drawn uniformly from

[0,1). To decode the chromosome, we visit the nodes in ascending order of their genes. For

example:

Random key: 0.25 0.31 0.03 0.87 0.69

Decodes as: 2 3 1 5 4

Nodes that early in the tour tend to evolve genes closer to 0 and those come later tend

to evolve genes closer to 1. By this technique, crossover will generate children that are

guaranteed to be feasible.

Encoding and Decoding for Isotopisms

Bean [9] suggests encoding for generalized traveling salesman problem (GTSP) as follows:
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Suppose that set V has a gene consisting of an integer part (drawn from {1, ..., |V |}) and a

fractional part (drawn from [0, 1)). The integer part indicates which node from the cluster

is included on the tour, and the nodes are sorted by their fractional part as described

above. For example, consider a instance with V = {1, ..., 20} and breaks into clusters of

four as V1 = {1, ..., 5}, V2 = {6, ..., 10}, V3 = {11, ..., 15}, V4 = {16, ..., 20}. The random

key encoding is written as:

1.4130 4.5979 5.9808 2.7727

decodes as the tour 1 → 9 → 17 → 15: the integer parts of the genes represent the

indexes of the elements from sets V1, . . . , V4 respectively, i.e., 1st element from the set V1,

4th element from the set V2, 5th element from the set V3 and 2nd element from the set V4.

The fractional parts is sorted by random key method which define that selected elements

should be visited in the order 1→ 2→ 4→ 3.

Similarly we can consider three clusters V1, V2 and V3 for permutations α, β and γ in SK

respectively. Each cluster has n! permutations, so the integral part for random key encoding

is drawn from {1, 2, . . . , (n!−1), n!} and fractional part is drawn from [0, 1). Now step-wise

description of using Genetic algorithm is as follows:

Initial Populations: The initial population is created by generating N chromosomes (say,

N = 20), each chromosomes has three genes for V1, V2 and V3 respectively. The integer

part of each gene is drawn randomly from {1, 2, . . . , (n!− 1), n!} and fractional part drawn

randomly from [0, 1). We improved this population by choosing the best combination among

all via cost value.

GA Operator: At each generation, 20% of the population comes directly from the pre-

vious population via reproduction; chromosomes with crossover rate 0.5 are spawned via

crossover; and genes from the selected chromosomes with mutation rate 0.1 are generated

via mutation. We describe each of these operators next.

Reproductions: Our algorithm uses an elitist strategy of copying the best solutions in the

population to the next generation. This guarantees monotonic non-degradation of the best

solution from one generation to the next and ensures a constant supply of good individuals

for mating.
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Algorithm 2: The workflow of the using Genetic algorithms is as follows:

13 Form intial population (N) by using the technique described above;

14 i← 0

while Number of generations do

15 Compute the cost value of each chromosome by using cost function;

16 Select best 20% of the population (which does not take part into crossovering):

{P1, P2, . . . , Pk} is selected with index {p1, p2, . . . , pk}, where k = N of 20%;

17 Apply crossover strategy according to Section 2.4.1 on remaining population:

Select (P1, P2) with index (pi, pj)

Cross(P1, P2) = (C1, C2)

Define X = {C1, C2, SC1, SC2}

m = cost(C1)

Y = X \ {C1}

i← 0

while i < size(Y ) do

18 c = cost(Y [i])

if c > m then

19 m = c

New chromosome=Y [i]

20 end

21 i = i+ 1

22 end

23 migrate (New chromosome) → Npi ;

24 Apply mutation strategy according to Section 2.4.1 on updated population;

25 New chromosomes = {Np1 , Np2 , . . . , Npk , chromosomes after mutation};

26 i = i+ 1

27 end

Crossover: We use parametrized uniform crossover [156] to generate offspring. First, two

parents are chosen at random from the old population and the number of mate chromo-

somes is controlled by crossover rate (δ). Suppose we set that the crossover rate at 50%,
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then chromosome number i will be selected for crossover if random generated value (R is

generated from 0 to 1) for chromosome i is below 0.50. The following pseudocode is to

select the parents for crossovering:

begin

i← 0

while (i < N of 80%) do

Generate R = R(0, 1)

if (R < δ) then

Parent = chromosome[i]

end

i = i+ 1

end

end

The crossovering technique is described in the above workflow chart from step 17 to 23.

One child is generated from the two parents, and it inherits each gene from parent 1 with

probability 0.7 and from parent 2 with probability 0.3.

Mutation: A small number of new individuals (Number of genes in choromosome × (N

of 80%) × Mutation rate) are created in each generation, this mutation process helps to

ensure a diverse population. Mutation process is done by generating a random integer

between 1 and total genes (Number of genes in choromosome × (N of 80%)). If random

generated value (R is generated from 0 to 1) is smaller than mutation rate (δ′) then marked

the position of gene in chromosomes. The pseudocode for mutation is as follows:

begin

Total Genes = Number of genes in choromosome × (N of 80%)

Mutated Genes = floor(Mutation rate × Total Genes)

Generate U = [1, . . . ,Total Genes]

P = {U1, U2, . . . , UMutated Genes}

while (i < size(P )) do

Generate R = R(0, 1)

if (R < δ′) then

Find the position of gene Ui,
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Gene[Ui] = (n!) ·R + 1

end

i = i+ 1

end

2.4.2 Comparison of results

Snášel et al. [154] constructed isotopic quasigroups to the quasigroup of modular subtraction

by Genetic algorithm. Suppose that (Q, ∗) is isotopic quasigroup to the given quasigroup

(K, ?), let X be the set of distinct triplets where elements are taken from K and Y be the

set of distinct elements pairs where elements are taken from K, where the order does not

matter and the repetitions are not allowed. They used the following fitness function for

evolution:

f(n, na, nc, α) = α
n2 − nc
n2

+ (1− α)
n3 − na
n3

,

where n = |K|, n3 = |X|, i.e., C(n, 3), n2 = |Y |, i.e., C(n, 2) and

na =|{(x, y, z) in X : (x ∗ y) ∗ z = x ∗ (y ∗ z)}| (i.e., associativity),

nc =|{(x, y) in Y : x ∗ y = y ∗ x}| (i.e., commutativity).

The coefficient α ∈ [0, 1] is used to prioritize between commutativity and associativity.

After 10 independent runs, they achieved the average value of best profile (n, na, nc, α) by

setting:

Parameters Values

Population size 20

Selection operator Elitist

Crossover rate 0.8

Mutation rate 0.02

Number of generations 1000

By using their fitness function and our Genetic approach, we get the following profile

We see that isotopic quasigroup to the modular subtraction quasigroup (K, ?) also implies

di-associativity and mono-associativity. By given isotopic quasigroup (In Section 2.2), we
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Snášel et al. [154] (32,127.9, 4.3, 0.5) (64,543, 5, 0.5) (128,2593, 24, 0.5)
Our Algorithm (32,117, 9.1, 0.5) (64,531.7, 19.6, 0.5) (128,2512.6, 63, 0.5)

Table 2.4: Results for average value of na over 10 independent runs.

also get (0, 6, 0), (1, 3, 1), (0, 0, 0), (2, 2, 2) as associative triples and there also exist many

more. Therefore we can not compare all associative triples of (K, ?) with n3.

On the purpose of finding all associative triples, we can not use the above fitness function

for the evolution of isotopic quasigroups with minimum associative triples. In contrast, our

proposed cost function is designed to reduce the upper bound of associative triples. Now

we describe the exprimental details of proposed cost function and Genetic algorithm.

2.4.3 Exprimental details

We implemented the algorithm in MATLAB programming. Upto |K| = 10, we can easily

carried out all permutations. However, the search space of all possible permutations is too

large for an exhaustive search. Using proposed cost function and Genetic algorithm, we get

the optimal isotopisms among all after carrying out many runs. For small orders, the best

optimal value of associative triples is recorded in Table 2.5.

The permutations are generated for large order of quasigroups (25, 26, . . . ) by the tech-

nique described in Section 2.2. For large orders, the optimal value of associative triples is

recorded in Table 2.6. The settings of Genetic algorithm are as follows:

Parameters Values

Population size 20

Selection operator Elitist

Crossover rate 0.5

Mutation rate 0.1

Number of generations 1000
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|K| a(Qα,β,γ) |K|2
3 9 9
4 16 16
5 20 25
6 26 36
7 40 49
8 48 64
9 70 81
10 94 100

Table 2.5: Associativity index of small quasigroups.

|K| a(Qα,β,γ) |K|2
24 240 256
25 944 1024
26 3556 4096
27 14890 16384
28 60800 65536
29 245964 262144

Table 2.6: Associativity index of large quasigroups.



Chapter 3

The cryptographic properties of

Feistel network based quasigroups

3.1 Introduction

The algebra of quasigroups was extensively studied by Drápal [44], Norton [127], Jez̆ek

and Kepka [71]. There are numerous applications of quasigroups in cryptography. The

quasigroup structures and their properties are applied to many areas like: authentication

schemes, secret sharing schemes, DES block cipher, pseudo random number generators and

cryptographic hash functions for some applications we refer to ( [7], [54], [61], [97], [153])

and for more details see [86, 147]. Gligoroski et al. [61] defined quasigroups as Boolean

functions, Markovski and Mileva [104] generated huge quasigroups from small non-linear

bijections via extended Feistel network. Mihajloska and Gligoroski [113] proposed a tech-

nique for constructing cryptographically strong 4 bit S-boxes via quasigroups of order 4.

S-boxes ( [17], [95]) were also constructed by use of Feistel and MISTY structures. In [94],

Leander and Poschmann classified all optimal 4 bit S-boxes on the cryptographic point of

view. For preventing many attacks on the ciphers, S-boxes are required to satisfy certain

cryptographic properties ( [107], [128], [130], [161]) for example having high nonlinearity,

low differential uniformity and strict avalanche criteria (SAC) etc.

In introductory chapter [Section 1.10, Chapter 1] we already discussed importance of

associative triple of quasigroups when it is used as construction of hash functions. In this

chapter, we define the Feistel network based quasigroups. To evaluate the associative triples

55
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for the corresponding quasigroups we obtain system of equations, and show that these equa-

tions depend on a certain permutation polynomial. Mollin and Small [124], Rivest [140],

Singh and Maity [149] seek conditions on the coefficients of a polynomial which are neces-

sary and sufficient for it to represent a permutation polynomial over finite fields. Therefore

using different permutations over finite fields we solve these equations and get the counts

for associative triples. Then we give the representation of Feistel network based quasi-

groups as vectorial Boolean functions. In the last Section, we find the relation between the

cryptographic characterstics, i.e., nonlinearity, differential uniformity and SAC, of bijective

mapping from Fn2 to Fn2 and Feistel network based quasigroups.

3.2 Preliminaries

Definition 3.2.1. Suppose f is a bijective mapping from Fn2 to Fn2 and F is defined as:

F : Fn2 × Fn2 → Fn2 × Fn2
F (l, r) = (r, l + f(r)) ∀ (l, r) ∈ Fn2 × Fn2 .

This is known as Feistel network, where F is also a bijective on Fn2 × Fn2 for n ∈ N.

The following proposition is proved by Sade [143].

Proposition 3.2.2. [143, 14] Let (Q,+) be an admissible group with complete mapping θ.

Then, ∗ : Q×Q→ Q is defined as:

x ∗ y = θ(x− y) + y,

where x, y ∈ Q. Then (Q, ∗) is a quasigroup.

Proof. From the definition of quasigroup,

x ∗ a = b =⇒ θ(x− a) + a = b,

i.e., θ(x− a) = b− a =⇒ x− a = θ−1(b− a),

or, x = a+ θ−1(b− a).

Because θ is complete mapping then θ−1 is also permutation. Similarly

a ∗ y = b =⇒ θ(a− y) + y = b
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i.e., θ(a− y) + y − a = b− a =⇒ θ(a− y)− (a− y) = (b− a)

i.e., (θ − I)(a− y) = (b− a).

Since θ is complete mapping then φ and φ−1 both are also permutations, where (θ− I) = φ

and φ−1 = ϕ.

φ(a− y) = (b− a) =⇒ a− y = ϕ(b− a),

or, y = a− ϕ(b− a) ∀ a, b ∈ Q.

Here x and y are unique. Thus (Q, ∗) is a quasigroup.

Lemma 3.2.3. [104, Definition 3.1] The Feistel network F is bijective with inverse

F−1(l, r) = (r + f(l), l).

Proof. Since

F (l, r) = (r, l + f(r)).

We define the function F−1 : Fn2 × Fn2 → Fn2 × Fn2 by

F−1(l, r) = (r + f(l), l).

We have

F−1 ◦ F (l, r) = F−1(r, l + f(r)) = (l + f(r) + f(r), r)

= (l, r)

Similarly,

F ◦ F−1(l, r) = F (r + f(l), l) = (l, r + f(l) + f(l))

= (l, r)

We have F ◦ F−1 = F−1 ◦ F = I, i.e., F and F−1 both are bijective. Here we see that the

bijection of F does not depend on f but for complete mapping it is required that f should

be bijective.

Lemma 3.2.4. [104, Theorem 3.1] If F is Feistel network created by bijection f then F is

a complete mapping.
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Proof. Let Ω = F − I where I is an identity mapping on Fn2 × Fn2 . Then

Ω : Fn2 × Fn2 → Fn2 × Fn2

Ω(l, r) = (r + l, l + r + f(r)) ∀ (l, r) ∈ Fn2 × Fn2 .

We have to show Ω is also permutation with inverse

Ω−1(l, r) = (l + f−1(l + r), f−1(l + r)).

Then

Ω−1 ◦ Ω(l, r) = Ω−1(r + l, l + r + f(r))

= (r + l + f−1(r + l + l + r + f(r)), f−1(r + l + l + r + f(r)))

= (r + l + r, r) = (l, r).

Similarly,

Ω ◦ Ω−1(l, r) = Ω(l + f−1(l + r), f−1(l + r))

= (f−1(l + r) + l + f−1(l + r), l + f−1(l + r) + f−1(l + r) + f(f−1(l + r))

= (l, l + l + r) = (l, r).

We have Ω ◦ Ω−1 = Ω−1 ◦ Ω = I, i.e., Ω and Ω−1 both are bijective mapping.

Therefore (F2n
2 ,+) is admissible with a complete mapping F . Let Q = Fn2 × Fn2 . Then,

∗ : Q×Q→ Q is defined as a binary operation on Q as follows:

∗ : F2n
2 × F2n

2 → F2n
2

x ∗ y = F (x+ y) + y.

Then Q is also a quasigroup with respect to ∗ by Proposition 3.2.2. It is shown that

quasigroups derived from additive groups or (F2n
2 ,+) in Example 1.8.4 for n = 2.
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3.3 Equations satisfied by associativity condition

In this section, we estimate the number of associative triples a(Q) based on the different

selection of f . We have to find those triples x, y and z in Q which satisfy

(x ∗ y) ∗ z = x ∗ (y ∗ z).

Let x = (l1, r1), y = (l2, r2), z = (l3, r3), then

((l1, r1) ∗ (l2, r2)) ∗ (l3, r3) = (l1, r1) ∗ ((l2, r2) ∗ (l3, r3)). (3.3.1)

First of all we solve for

(l1, r1) ∗ (l2, r2) = F ((l1, r1) + (l2, r2)) + (l2, r2)

= F (l1 + l2, r1 + r2) + (l2, r2)

= (r1 + r2, l1 + l2 + f(r1 + r2)) + (l2, r2)

= (l2 + r1 + r2, l1 + l2 + r2 + f(r1 + r2)),

or

(l1, r1) ∗ (l2, r2) = (l2 + r1 + r2, l1 + l2 + r2 + f(r1 + r2)). (3.3.2)

From Equation (3.3.2) we solve

((l1, r1) ∗ (l2, r2)) ∗ (l3, r3) = (l2 + r1 + r2, l1 + l2 + r2 + f(r1 + r2)) ∗ (l3, r3)

= F ((l2 + r1 + r2, l1 + l2 + r2 + f(r1 + r2)) + (l3, r3)) + (l3, r3)

= F (l2 + l3 + r1 + r2, l1 + l2 + r2 + r3 + f(r1 + r2)) + (l3, r3)

= (l1 + l2 + r2 + r3 + f(r1 + r2), l2 + l3 + r1 + r2+

f(l1 + l2 + r2 + r3 + f(r1 + r2))) + (l3, r3)

= (l1 + l2 + l3 + r2 + r3 + f(r1 + r2), l2 + l3 + r1 + r2 + r3+

f(l1 + l2 + r2 + r3 + f(r1 + r2))),
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or

((l1, r1) ∗ (l2, r2)) ∗ (l3, r3) = (l1 + l2 + l3 + r2 + r3 + f(r1 + r2), l2 + l3 + r1 + r2 + r3+

f(l1 + l2 + r2 + r3 + f(r1 + r2))).

(3.3.3)

Similarly, firstly we solve for

(l2, r2) ∗ (l3, r3) = F ((l2, r2) + (l3, r3)) + (l3, r3)

= F (l2 + l3, r2 + r3) + (l3, r3)

= (r2 + r3, l2 + l3 + f(r2 + r3)) + (l3, r3)

= (l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3)),

or

(l2, r2) ∗ (l3, r3) = (l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3)), (3.3.4)

then from Equation (3.3.4)

(l1, r1) ∗ ((l2, r2) ∗ (l3, r3)) = (l1, r1) ∗ (l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3))

= F ((l1, r1) + (l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3)))+

(l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3))

= F (l1 + l3 + r2 + r3, l2 + l3 + r1 + r3 + f(r2 + r3))+

(l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3))

= (l2 + l3 + r1 + r3 + f(r2 + r3), l1 + l3 + r2 + r3 + f(l2 + l3+

r1 + r3 + f(r2 + r3)) + (l3 + r2 + r3, l2 + l3 + r3 + f(r2 + r3))

= (l2 + 2l3 + r1 + r2 + 2r3 + f(r2 + r3), l1 + l2 + 2l3 + r2+

2r3 + f(r2 + r3) + f(l2 + l3 + r1 + r3 + f(r2 + r3)),

or

(l1, r1) ∗ ((l2, r2) ∗ (l3, r3)) = (l2 + 2l3 + r1 + r2 + 2r3 + f(r2 + r3), l1 + l2 + 2l3 + r2+

2r3 + f(r2 + r3) + f(l2 + l3 + r1 + r3 + f(r2 + r3)).

(3.3.5)
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With the help of Equations (3.3.3) and (3.3.5) we simplify Equation (3.3.1)

((l1, r1) ∗ (l2, r2)) ∗ (l3, r3) = (l1, r1) ∗ ((l2, r2) ∗ (l3, r3)).

Doing component-wise comparison, the first component gives us

l1 + l2 + l3 + r2 + r3 + f(r1 + r2) = l2 + 2l3 + r1 + r2 + 2r3 + f(r2 + r3)

f(r1 + r2) + f(r2 + r3) = l1 + l3 + r1 + r3

f(r1 + r2) + f(r2 + r3) = l1 + l3 + (r1 + r2) + (r2 + r3). (3.3.6)

Now, the second component gives us

l2 + l3 + r1 + r2 + r3 + f(l1 + l2 + r2 + r3 + f(r1 + r2))

= l1 + l2 + 2l3 + r2 + 2r3 + f(r2 + r3) + f(l2 + l3 + r1 + r3 + f(r2 + r3)),

or

l1+l3+r1+r3+f(r2+r3)+f(l2+l3+r1+r3+f(r2+r3))+f(l1+l2+r2+r3+f(r1+r2)) = 0,

or

l1 + l3 = (r1 + r2) + (r2 + r3) + f(r2 + r3) + f(l2 + l3 + r1 + r3 + f(r2 + r3)) + f(l1 + l2+

r2 + r3 + f(r1 + r2)).

(3.3.7)

So, finally we get two Equations (3.3.6) and (3.3.7)

f(r1 + r2) + f(r2 + r3) = l1 + l3 + (r1 + r2) + (r2 + r3)

l1 + l3 = (r1 + r2) + (r2 + r3) + f(r2 + r3) + f(l2 + l3 + r1 + r3 + f(r2 + r3)) + f(l1 + l2+

r2 + r3 + f(r1 + r2)).

Now we choose X = r1+r2 and Y = r2+r3 such that X+Y = r1+r3 then the modified

form of Equations (3.3.6) and (3.3.7) for fix L = l1 + l3 and M = l1 + l2 are as follows :

f(X) + f(Y ) = X + Y + L (3.3.8)

and

L = X + Y + f(Y ) + f(l2 + l3 +X + Y + f(Y )) + f(l1 + l2 + Y + f(X)),
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monomials

using Equation (3.3.8) we get

L = L+ f(X) + f(l2 + l3 + L+ f(X)) + f(l1 + l2 + Y + f(X))

f(X) = f(l1 + l2 + f(X)) + f(l1 + l2 + Y + f(X)),

or

f(X) = f(M + f(X)) + f(Y +M + f(X)). (3.3.9)

3.4 Counting the number of associative triples for lin-

ear and quadratic permutation monomials

Theorem 3.4.1. [96, Theorem 7.8]

(i) Every linear polynomial over F2n is a permutation polynomial of F2n.

(ii) The monomial xn is a permutation polynomial of F2n if and only if gcd(n, 2n − 1) = 1.

It is known that F2n and Fn2 both are isomorphic under vector isomorphism over F2.

Case 1. In general, a linear application will not change the properties of the function.

Here we introduced the polynomial corresponding to linear applications. Let f(X) = X2i

where X ∈ F2n . By Equation (3.3.8) we get

X2i + Y 2i = X + Y + L (3.4.1)

and by Equation (3.3.9) we get

X2i = (M +X2i)2
i

+ (M + Y +X2i)2
i

= (M)2
i

+ (X2i)2
i

+ (M)2
i

+ (Y )2
i

+ (X2i)2
i

= Y 2i

i.e., X = Y

r1 + r2 = r3 + r2

r1 = r3.

By Equation (3.4.1) we get L = 0⇒ l1 + l3 = 0⇒ l1 = l3.
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So, (l1, r1) ≡ (l3, r3).

Thus the number of associative triples are exactly N2, where N = 2n × 2n.

Case 2. Now we check for quadratic permutation polynomials. Let f(X) = X2i+1 where

X ∈ F2n . By Equation (3.3.9) we get

X2i+1 = (M +X2i+1)2
i+1 + (M +X2i+1 + Y )2

i+1

= (M +X2i+1)2
i+1 + (M +X2i+1)2

i+1 + (M +X2i+1)2
i

Y + (M +X2i+1)Y 2i + Y 2i+1

X2i+1 + Y 2i+1 = (M +X2i+1)2
i

Y + (M +X2i+1)Y 2i

M2iY + (X2i+1)2
i

Y +MY 2i + (X2i+1)Y 2i = X2i+1 + Y 2i+1

M2iY +MY 2i = X2i+1 + Y 2i+1 + (X2i+1)2
i

Y + (X2i+1)Y 2i .

Suppose that X2i+1 + Y 2i+1 + (X2i+1)2
i
Y + (X2i+1)Y 2i = C is fixed in Fn2 , then

M2iY +MY 2i = C. (3.4.2)

If C = 0 then

M2iY +MY 2i = 0 =⇒ M2i−1 = Y 2i−1

M ∈ Y (G\{0}).

Where G is the subfield of F2n of order 2e, e = gcd(i, n). Thus the number of choices for

M is at most 2e that satisfy the homogeneous part of Equation (3.3.9) for fixed Y in F2n .

If C 6= 0, the solutions of Equation (3.4.2) is either zero or equal to same number of

solutions of homogeneous part. Therefore we have at most 2e solutions of Equation (3.4.2)

in any case. When e = 1, then Equation (3.4.2) works as almost perfect nonlinear (APN)

functions and when e = 2, then Equation (3.4.2) works as inverse functions. Thus the

maximum number of solutions of Equation (3.3.9) is 2e · 2n−1 · 2n · 2n · 2n or 2e−1 ·N2, where

N = 2n · 2n.
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3.5 Counting the number of associative triples for var-

ious permutation monomials

With the help of these equations we can count the number of associative triples a(Q) for

taking different types of permutations. In this Section we found the value of a(Q) after

using almost perfect nonlinear (APN) permutations, differentially 4-uniform functions and

differentially δ-uniform functions over Fn2 .

3.5.1 APN permutations over Fn
2

Definition 3.5.1. [100, Definition 1.2.6] Let f is mapping from Fn2 to Fn2 . For 0 6= a ∈ Fn2 ,

Da(f) is defined as :

Da(f) = {f(x) + f(x+ a) : x ∈ Fn2}.

Then, f is APN (almost perfect nonlinear) if |Da(f)| = 2n−1 for all 0 6= a ∈ Fn2 .

as well as:

Definition 3.5.2. [100, Definition 1.2.7] A function f is APN if and only if the system of

equations  x+ y = a

f(x) + f(y) = b

has 0 or 2 solutions (x, y) for any 0 6= a ∈ Fn2 and b ∈ Fn2 .

However, these functions correspond to APN permutations and the number of solutions

of the above equations is always even number for any f on Fn2 .

We have two Equations (3.3.8) and (3.3.9)

f(X) + f(Y ) = X + Y + L (3.5.1)

and

f(X) = f(M + f(X)) + f(Y +M + f(X)). (3.5.2)

Suppose z = M + f(X). Then from Equation (3.5.2), we get

f(z) + f(z + Y ) = f(X). (3.5.3)
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With the help of these Equations (3.5.1) and (3.5.3) we can count the number of associative

triples after putting the condition over Y .

Case-1: Let Y = 0, then from Equation (3.5.3)

f(X) = 0.

Hence X = 0 because f is bijective. If Y = 0 and X = 0 then L = 0 by Equation

(3.5.1). That means X = r1 + r2 = 0 ⇒ r1 = r2, Y = r2 + r3 = 0 ⇒ r2 = r3 and

L = l1 + l3 = 0⇒ l1 = l3. So,

(l1, r1) ≡ (l3, r3),

and only l2 is fixed in Fn2 . Thus the number of possible solutions of the Equations (3.5.1)

and (3.5.3) is N.
√
N .

Case-2: Let Y 6= 0, then from Equation (3.5.3), f is APN (almost perfect nonlinear) with

DY (f) = {f(z + Y ) + f(z) : z ∈ Fn2},

|DY (f)| = 2n−1 for all 0 6= Y ∈ Fn2 . The system of Equations (3.5.1) and (3.5.3) for every

(Y, f(X)) 6= (0, 0) have 0 or 2 solutions. Here X, Y, f(X) and f(Y ) are fixed, so L is also

fix by Equation (3.5.1) in Fn2 . Thus the number of possible solutions of these equations are

2 · (2n − 1) · (2n−1) · 2n · 2n or

N2 −N ·
√
N .

Hence the total number of counts for APN over Fn2 are a(Q) = N2−N ·
√
N+N ·

√
N = N2,

where N = 2n × 2n.

3.5.2 Differentially 4-uniform permutations

Similarly, let f be differentially 4-uniform, i.e., for any 0 6= a ∈ Fn2 and b ∈ Fn2 , the equation

f(x+ a) + f(x) = b

has at most 4 solutions.
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Definition 3.5.3. A function f is differentially 4-uniform if and only if the system of

equations  x+ y = a

f(x) + f(y) = b

has at most 4 solutions (x, y) for any 0 6= a ∈ Fn2 and b ∈ Fn2 .

From Equation (3.5.3), 0 6= Y ∈ Fn2 that means Y takes value (2n− 1) and we vary z in Fn2

f(zi) + f(zi + Y ) = f(X) , where i = 0, 1, 2, . . . , 2n−1.

Let n1 combination of right hand side of this equation goes to 2 solution and n2 combination

goes to 4 solution. The total number of possibilies are

2n1 + 4n2 = 2n,

n1 + 2n2 = 2n−1.

Here X, Y, f(X) and f(Y ) are fixed, so L is also fix by Equation (3.5.1) in Fn2 . Thus the

number of possible solutions of these equations is

{(2n − 1)n1 · 2 + (2n − 1)n2 · 4}2n · 2n,

2 · (2n − 1){n1 + 2 · n2}2n · 2n,

2 · (2n − 1) · 2n−1 · 2n · 2n,

N2 −N ·
√
N.

Hence the total number of counts for differentially 4-uniform over Fn2 is same as APN

pemutations a(Q) = N2 −N ·
√
N +N ·

√
N = N2, where N = 2n × 2n.

3.5.3 Differentially δ-uniform permutations

Let f be differentially δ-uniform, i.e., for any 0 6= a ∈ Fn2 and b ∈ Fn2 , the equation

f(x+ a) + f(x) = b

has at most δ solutions.
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Definition 3.5.4. A function f is differentially δ-uniform if and only if the system of

equations  x+ y = a

f(x) + f(y) = b

has at most δ solutions (x, y) for any 0 6= a ∈ Fn2 and b ∈ Fn2 .

From Equation (3.5.3), 0 6= Y ∈ Fn2 that means Y takes value (2n− 1) and we vary z in Fn2

f(zi) + f(zi + Y ) = f(X) , where i = 0, 1, 2, . . . , 2n−1.

Let n1 combination of right hand side of this equation goes to 2 solution, n2 combination

goes to 4 solution, n3 combination goes to 6 solution and so on nδ combination goes to δ

solution. The total number of possibilies are

2n1 + 4n2 + 6n3 + ...+ δnδ = 2n,

n1 + 2n2 + 3n3 + ...+ (δ/2)nδ = 2n−1.

Here X, Y, f(X) and f(Y ) are fixed, so L is also fix by Equation (3.5.1) in Fn2 . Thus the

number of possible solutions of these equations is

{(2n − 1)n1 · 2 + (2n − 1)n2 · 4 + (2n − 1)n3 · 6 + · · ·+ (2n − 1)nδ · δ}2n · 2n,

2 · (2n − 1){n1 + 2n2 + 3n3 + · · ·+ (δ/2)nδ}2n · 2n,

2 · (2n − 1) · 2n−1 · 2n · 2n,

N2 −N ·
√
N.

Hence the total number of counts for differentially δ-uniform over Fn2 is same as APN

permutations a(Q) = N2 −N ·
√
N +N ·

√
N = N2, where N = 2n × 2n.

3.6 Cryptographic properties for Feistel network based

quasigroup

In this Section, we give details proof of the results, using Canteaut et al. [17] technique

which shows the dependency of the cryptographic properties (nonlinearity, differential uni-

formity and SAC) of the resulting G (Feistel network based quasigroup) on the f (bijective



68 3.6 Cryptographic properties for Feistel network based quasigroup

mapping). We can write the Feistel network based quasigroup as vectorial Boolean function

using that x ≡ (xl, xr) and y ≡ (yl, yr) and let G be its corresponding representation as

vectorial Boolean function. Then, From Definition 3.2.1 we get

x ∗ y = F ((xl, xr) + (yl, yr)) + (yl, yr)

= F (xl + yl, xr + yr) + (yl, yr)

= (xr + yr, xl + yl + f(xr + yr)) + (yl, yr)

= (xr + yl + yr, xl + yl + yr + f(xr + yr)),

or, we can write

G(xL, xR) = G(xL‖xR) = (xr ⊕ yl ⊕ yr, xl ⊕ yl ⊕ yr ⊕ f(xr ⊕ yr)).

The generalized results and their proofs are given in the following section.

3.6.1 Nonlinearity

Proposition 3.6.1. Let f be an n bit vectorial Boolean function and G be an 2n bit func-

tion defined by Feistel network. Then, we get:

WG((a, b) ‖ (c, d), e ‖ k) =


23n ·Wf (b⊕ e, k) if a⊕ k = 0, c⊕ e⊕ k = 0

and b⊕ d⊕ k = 0,

0 else.

for all a, b, c, d, e and k in Fn2 . Moreover, the linearity of f is

L(f) = max
b⊕e∈Fn2 ,k∈(Fn2 )∗

| Wf (b⊕ e, k) | .

When a⊕ k = 0, c⊕ e⊕ k = 0 and b⊕ d⊕ k = 0, we get

L(G) > L(f),

and

nl(G) < nl(f).
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Proof. The Walsh transform of G is the mapping WG : (F2n
2 × F2n

2 )× F2n
2 → Z, defined as

WG((u1, u2), v) =
∑

(x,y)∈(F2n
2 ×F2n

2 )

(−1)(u1,u2)·(x,y)⊕v·G(x,y)

or

WG(u1‖u2, v) =
∑

(x,y)∈(F2n
2 ×F2n

2 )

(−1)(u1‖u2)·(x‖y)⊕v·G(x‖y).

Let u1 ≡ (a, b), u2 ≡ (c, d) and v ≡ (e, k), the following result corresponding to the

Figure 3.1: Blue values indicate linear masks.

configurations depicted on 3.1.

WG((a, b) ‖ (c, d), e ‖ k) =
∑

(xl,xr,yl,yr)∈(Fn2 )4
(−1)((a,b)‖(c,d))·((xl,xr)‖(yl,yr))⊕(e,k)·G(xL‖xR)

=
∑

(xl,xr,yl,yr)∈(Fn2 )4
(−1)(a,b,c,d)·(xl,xr,yl,yr)⊕(e,k)·(xr⊕yl⊕yr,xl⊕yl⊕yr⊕f(xr⊕yr))

=
∑

(xl,xr,yl,yr)∈(Fn2 )4
(−1)a·xl⊕b·xr⊕c·yl⊕d·yr⊕e·xr⊕e·yl⊕e·yr⊕k·xl⊕k·yl⊕k·yr⊕k·f(xr⊕yr)

We set xr = yr⊕ z and observe that, for any fixed yr, z takes all possible values in Fn2 when

xr varies, implying that

WG((a, b) ‖ (c, d), e ‖ k) =
∑

xl∈Fn2
(−1)(a⊕k)·xl

∑
yl∈Fn2

(−1)(c⊕e⊕k)·yl∑
yr∈Fn2

(−1)(b⊕d⊕k)·yr
∑

z∈Fn2
(−1)(b⊕e)·z⊕k·f(z)



70 3.6 Cryptographic properties for Feistel network based quasigroup

WG((a, b) ‖ (c, d), e ‖ k) =
∑

xl∈Fn2
(−1)(a⊕k)·xl

∑
yl∈Fn2

(−1)(c⊕e⊕k)·yl∑
yr∈Fn2

(−1)(b⊕d⊕k)·yrWf (b⊕ e, k).

If w ∈ Fn2 , we have ∑
u∈Fn2

(−1)u·w =

2n if w = 0,

0 else.

Then we drive the following bound

WG((a, b) ‖ (c, d), e ‖ k) =


23n ·Wf (b⊕ e, k) if a⊕ k = 0, c⊕ e⊕ k = 0

and b⊕ d⊕ k = 0,

0 else.

3.6.2 Differential uniformity

Proposition 3.6.2. Let f be an n bit vectorial Boolean function and G be an 2n bit function

defined by Feistel network. Then, we get:

δG((a, b) ‖ (c, d), e ‖ k) = δf (b⊕ d→ a⊕ b⊕ e⊕ k)

for all a, b, c, d, e and k in Fn2 .

Proof. The following result corresponding to the configurations depicted on 3.2.

Then, (xL, xR) satisfies G(xL‖xR) ⊕ G((xL ⊕ u1)‖(xR ⊕ u2)) = e‖k, where u1 ≡ (a, b)

and u2 ≡ (c, d), if and only if

xr ⊕ yl ⊕ yr ⊕ xr ⊕ b⊕ yl ⊕ c⊕ yr ⊕ d = e,

xl ⊕ yl ⊕ yr ⊕ f(xr ⊕ yr)⊕ xl ⊕ a⊕ yl ⊕ c⊕ yr ⊕ d⊕ f(xr ⊕ b⊕ yr ⊕ d) = k.

⇔

b⊕ c⊕ d = e,

f(xr ⊕ yr)⊕ f(xr ⊕ yr ⊕ b⊕ d) = a⊕ c⊕ d⊕ k.

Equivalently
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Figure 3.2: Red values indicate differences.

xr ⊕ yr ∈ Df (b⊕ d→ a⊕ c⊕ d⊕ k) or xr ⊕ yr ∈ Df (b⊕ d→ a⊕ b⊕ e⊕ k),

or

yr ∈ xr ⊕Df (b⊕ d→ a⊕ b⊕ e⊕ k).

Hence, for any fixed xr in Fn2 , a unique value of yr is determined by above condition.

Therefore the number of (xL, xR) satisfying the differential is exactly 1 · 1 · 1 · δf (b ⊕ d →

a⊕ b⊕ e⊕ k) or δf (b⊕ d→ a⊕ b⊕ e⊕ k).

3.6.3 Strict Avalanche Criteria (SAC)

Proposition 3.6.3. Let f be an n bit vectorial Boolean function and G be an 2n bit function

defined by Feistel network. Then even if f satisfies SAC, G can never satisfy SAC.

Proof. We have

G(xL‖xR) = (xr ⊕ yl ⊕ yr, xl ⊕ yl ⊕ yr ⊕ f(xr ⊕ yr)).

Here we see that the left part of G has n-coordinate functions and each coordinate function

is either linear or affine. Kim et al. ( [83], Theorem 1) proved that the affine functions

can not satisfy SAC. Hence the left part of G never satisfies SAC even the right part of G

somehow satisfies. Therefore G can never be satisfied SAC.
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Chapter 4

Constructions of quasigroups via

permutations over F2n and their

cryptographic characteristics

4.1 Introduction

In this chapter, we propose an efficient construction of quasigroups which are based on

two different permutations over F2n inspired by Kotzig and Reischer’s construction [87]

of quasigroups which is based on finite commutative, but not necessarily associative and

unitary, ring. We see that the algebraic properties of this construction extensively depend

on using permutations. It is known that number of associative triples or associativity

index are connected to a security criterion of a quasigroup when used as a hash function.

Therefore we investigate the counts of associative triples for different permuatations, i.e.,

linear permutations, affine permutations, quadractic permutations and complete mapping

permutations over F2n .

It is also known that quasigroups of order 2n are represented as vectorial Boolean func-

tions f : F2n
2 → Fn2 , for further details we refer to [61]. Later we also investigate how

the cryptographic characteristics, i.e., nonlinearity and differential uniformity affect the

obtained quasigroups and using permutations as vectorial Boolean functions.

73
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4.2 Construction of quasigroups inspired by Kotzig

and Reischer

The following construction was proposed by Kotzig and Reischer [87]. Let R = (Q,+, ·) be

a finite commutative, but not necessarily associative and unitary, ring. Let R′ = {r ∈ Q :

rx = 0⇔ x = 0}. For r, s ∈ R′ and t ∈ Q, let define Rr,s,t = (Q, ∗) where

x ∗ y = rx+ sy + t,

for all x, y ∈ Q. Clearly Rr,s,t is a quasigroup [87].

Lemma 4.2.1. Rr,s,t is a group if and only if R is unitary and r = s = 1R.

Proof. We say Rr,s,t is a group under this operation if the following three properties, i.e.,

associativity, existence of identity and inverse are satisfied.

Associativity. The operation is associative, i.e., x ∗ (y ∗ z) = (x ∗ y) ∗ z,∀ x, y, z ∈ Q. So

we get,

(r2 − r) · x− (s2 − s) · z = (s− r) · t (4.2.1)

Identity. There is an element e (called the identity) in Q, such that x∗e = e∗x = x,∀ x ∈

Q. So we get,

r · (x− e) = s · (x− e) {by Cancellation property}

r = s

Inverses. For each element x in Q, there is an element x′ in Q (called an inverse of x)

such that x ∗ x′ = x′ ∗ x = e. So we get

r · (x− x′) = s · (x− x′) {by Cancellation property}

r = s

Put r = s in Equation (4.2.1), then we get

(r2 − r) · (x− z) = 0
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r[(r − 1) · (x− z)] = 0

(r − 1) · (x− z) = 0 {by definition of R′}

r · (x− z) = 1 · (x− z)

r · (x− z) = (x− z) · r = 1 · (x− z) = (x− z) · 1 = (x− z)

We know that the multiplicative indentity in ring is unique. Then r = 1 = s. Therefore R

is unitary.

Let order of quasigroup be |Q| = N . The set a(Q) of associative triples of Rr,s,t is

a(Q) = {(x, y, z) ∈ Q3 : (r2 − r)x− (s2 − s)z = (s− r)t}.

Since y is not involved in the defining relation, the associativity index a(Q) equals m · N

where m denotes the number of solutions (x1, z1) of the linear equation

(r2 − r)x1 − (s2 − s)z1 = (s− r)t.

In particular, if at least one of r2 − r and s2 − s belongs to R′ then

(r2 − r)x1 = (s2 − s)z1 + (s− r)t.

Let φ be a mapping Q to Q and defined as

φ(x1) = (r2 − r)x1.

It is clear that φ is linear mapping Thus

ker(φ) = {x1 ∈ Q : φ(x1) = 0},

= {x1 ∈ Q : (r2 − r)x1 = 0},

= {0}.

Hence m = |Q| = N and a(Q) = N2.

Theorem 4.2.2. Suppose F2n = Q is the extension field of degree n over F2. Let π and π′
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be permutations on F2n. For t ∈ F2n\{0}, let Fπ,π′,t = (Q, ∗) where

x ∗ y = π(x) + π′(y) + t,

for all x, y ∈ Q. Then Fπ,π′,t is a quasigroup.

Proof. For any a, b ∈ Q, consider the equation

a ∗ x = b

π(a) + π′(x) + t = b

π′(x) + π(a) + t+ b = 0

π′(x) + c = 0,

where π(a) + t + b = c ∈ Q. Suppose x1 and x2 both are solutions to our equation. Then

we have:

π′(x1) + c = 0,

and

π′(x2) + c = 0.

Adding the above equations, we get

π′(x1) = π′(x2)⇔ x1 = x2.

Here we see that considered equation has unique solution. Obviously, y ∗ a = b also has

unique solution. Therefore both equations have unique solution for every a, b ∈ Q. Thus

(Q, ∗) is a quasigroup.

Fπ,π′,t is a group if we choose π = π′ = I, where I is identity mapping. We are interested

to investigate the associativity index of Fπ,π′,t for π and π′.

Theorem 4.2.3. Let π and π′ be permutations on F2n. For t ∈ F2n\{0}, Fπ,π′,t = (Q, ∗)

defined as x ∗ y = π(x) +π′(y) + t, for all x, y ∈ Q. Then the following statements are true:



Chapter 4: Constructions of quasigroups via permutations over F2n and their
cryptographic characteristics 77

i) If π′(x) = π(x) = x2
i
, x ∈ F2n, then a(Q) = 2e ·N2, where e = gcd(i, n) and N = 2n.

ii) If π(x) = x or identity mapping and π′(x) = x2
i

then a(Q) = 2e · N2, where

e = gcd(i, n) and N = 2n.

iii) If π(x) = x2
i

and π′(x) = x2
j

then a(Q) = 2e ·N2, where e = gcd(i, n) and N = 2n.

Proof. i) If (x, y, z) ∈ A(Q), then

π(π(x) + π′(y) + t) + π′(π(y) + π′(z) + t) = π(x) + π′(z). (4.2.2)

Since π′(x) = π(x) = x2
i
,

π(x2
i

+ y2
i

+ t) + π(y2
i

+ z2
i

+ t) = x2
i

+ z2
i

(x2
i

+ y2
i

+ t)2
i

+ (y2
i

+ z2
i

+ t)2
i

= x2
i

+ z2
i

(x2
i

+ z2
i

)2
i

= x2
i

+ z2
i

(x2
i

+ z2
i

)2
i−1 = 12i−1

it follows that

π(x) + π(z) ∈ G\{0},

where G is the subfield of F2n of order 2e and e = gcd(i, n). Hence given π(x) in F2n the

set of all possible values for π(z) is π(x) + G of cardinality 2e. Therefore, a(Q) = 2e · N2

where N = 2n.

ii) Since π is identity and π′(x) = x2
i
, by Equation (4.2.2)

π(x+ y2
i

+ t) + π′(y + z2
i

+ t) = x+ z2
i

x+ y2
i

+ t+ (y + z2
i

+ t)2
i

= x+ z2
i

y2
i

+ (y + z2
i

+ t)2
i

+ t = z2
i

(z2
i

+ z)2
i

= t2
i

+ t
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z2
i

+ z = (t2
i

+ t)2
n−i
.

It is clear that

z2
i

+ z = v,

where v = (t2
i
+ t)2

n−i
= t+ t2

n−i
has always a particular solution.

Now z2
i
+ z = 0 has kernel F2e where e = gcd(n, i). So for all values of t the equation

z2
i

+ z = v,

has exactly 2e many solutions. Therefore, a(Q) = 2e ·N2 where N = 2n.

iii) Since π(x) = x2
i

and π′(x) = x2
j
, by Equation (4.2.2)

(x2
i

+ x)2
i

+ (z2
j

+ z)2
j

= t2
i

+ t2
j

.

If the above equation is consistent in F2n . Since this equation is independent of y. Then

a(Q) equals m·n·N where m and n are the number of choices for x and z in F2n respectively.

If z is fixed in F2n . Then for any t in F2n\{0}, we get

(x2
i

+ x)2
i

=(z2
j

+ z)2
j

+ t2
i

+ t2
j

(x2
i

+ x)2
i

=v

x2
i

+ x =v2
n−i
,

where v = (z2
j

+ z)2
j

+ t2
i
+ t2

j
has always a particular solution.

Now x2
i
+ x = 0 has kernel F2e where e = gcd(n, i). So for all values of t the equation

z2
i

+ z = v2
n−i
,

has exactly 2e many solutions. Therefore, a(Q) = 2e ·N2 where N = 2n.

Similarly we do all cases for affine permutations, i.e., π(x) = x2
i
+ c where c is constant

in F2n and we got the same associativity index for all cases.
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Lemma 4.2.4. If we choose π(x) = x2
i
+x2

j
+ c is special type of affine permutations over

F2n, where c is constant and π′(x) = x, i.e., identity mapping. Then a(Q) = N2, where

N = 2n.

Proof. If (x, y, z) ∈ A(Q), then

π(π(x) + π′(y) + t) + π′(π(y) + π′(z) + t) = π(x) + π′(z).

Since π(x) = π′(x) = x2
i
+ x2

j
+ c,

π(x2
i

+ x2
j

+ c+ y + t) + π′(y2
i

+ y2
j

+ c+ z + t) = x2
i

+ x2
j

+ c+ z

(x2
i

+x2
j

+ c+ y+ t)2
i

+ (x2
i

+x2
j

+ c+ y+ t)2
j

+ c+ y2
i

+ y2
j

+ c+ z+ t = x2
i

+x2
j

+ c+ z

(x2
i

+ x2
j

)2
i

+ (x2
i

+ x2
j

)2
j

+ x2
i

+ x2
j

= t2
i

+ t2
j

+ t+ c2
i

+ c2
j

+ c

(x2
i

+ x)2
i

+ (x2
i

+ x)2
j

= t2
i

+ t2
j

+ t+ c2
i

+ c2
j

+ c.

When y and z are chosen independently in F2n , then above equation has uniuqe solution.

Therefore, a(Q) = N2 where N = 2n.

Lemma 4.2.5. Suppose π and π′ are special type of affine permutations on F2n. Let π′(x) =

π(x) = x2
i
+ x2

j
+ c, where c ∈ F2n, be the permutations on F2n. Then a(Q) is equal to the

size of the set

{(x, y, z) ∈ A(Q); (x2
i

+ x)2
i

+ (x2
j

+ x)2
j

+ (z2
i

+ z)2
i

+ (z2
j

+ z)2
j

= 0}

if the above equation is consistent in F2n.

Proof. If (x, y, z) ∈ A(Q), then

π(π(x) + π′(y) + t) + π′(π(y) + π′(z) + t) = π(x) + π′(z).

Since π(x) = π′(x) = x2
i
+ x2

j
+ c,

π(x2
i

+x2
j

+c+y2
i

+y2
j

+c+t)+π′(y2
i

+y2
j

+c+z2
i

+z2
j

+c+t) = x2
i

+x2
j

+c+z2
i

+z2
j

+c

π(x2
i

+ x2
j

+ y2
i

+ y2
j

+ t) + π′(y2
i

+ y2
j

+ z2
i

+ z2
j

+ t) = x2
i

+ x2
j

+ z2
i

+ z2
j
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(x2
i

+ x2
j

+ y2
i

+ y2
j

+ t)2
i

+ (x2
i

+ x2
j

+ y2
i

+ y2
j

+ t)2
j

+ c+ (y2
i

+ y2
j

+ z2
i

+ z2
j

+ t)2
i

+(y2
i

+ y2
j

+ z2
i

+ z2
j

+ t)2
j

+ c = x2
i

+ x2
j

+ z2
i

+ z2
j

(x2
i

+ x2
j

+ y2
i

+ y2
j

+ t)2
i

+ (x2
i

+ x2
j

+ y2
i

+ y2
j

+ t)2
j

+ (y2
i

+ y2
j

+ z2
i

+ z2
j

+ t)2
i

+(y2
i

+ y2
j

+ z2
i

+ z2
j

+ t)2
j

= x2
i

+ x2
j

+ z2
i

+ z2
j

(x2
i

)2
i

+ (y2
i

)2
i

+ (x2
j

)2
j

+ (y2
j

)2
j

+ (y2
i

)2
i

+ (z2
i

)2
i

+ (y2
j

)2
j

+ (z2
j

)2
j

= x2
i

+ x2
j

+ z2
i

+ z2
j

(x2
i

)2
i

+ (x2
j

)2
j

+ (z2
i

)2
i

+ (z2
j

)2
j

= x2
i

+ x2
j

+ z2
i

+ z2
j

(x2
i

+ x)2
i

+ (x2
j

+ x)2
j

+ (z2
i

+ z)2
i

+ (z2
j

+ z)2
j

= 0.

If the above equation is consistent and say m is the number of solutions for above equation

in F2n . Then a(Q) = m ·N .

Since the above equation is independent of y. Then a(Q) equals m · N where m is

the number of solutions for above equation in F2n . Using SageMath for calculation, we

calculate for individual n and see that the solutions of this equation have very peculiar

behavior. Then the value of m for different n as follows:

n = 3, either 2 ·N or 2n ·N,

n = 4, either 2 ·N or 4 ·N,

n = 5, exactly 2 ·N,

n = 6, either 2 ·N, 4 ·N, 8 ·N, 8 · 2 ·N or 8 · 23 ·N,

n = 7, either 2 ·N or 8 · 2 ·N,

n = 8, either 2 ·N, 4 ·N or 8 · 2 ·N,

n = 9, either 2 ·N or 8 ·N,

n = 10, either 2 ·N, 4 ·N or 8 · 22 ·N,

n = 11, exactly 2 ·N,

and so on.

Theorem 4.2.6. Suppose π and π′ are the same quadratic permutations on F2n. π(x) =

π′(x) = x2
i+1 for all x ∈ F2n. Then the maximum number of associative triples for Fπ,π′,t
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is 2e ·N2 where e = gcd(i, n) and N = 2n.

Proof. If (x, y, z) ∈ A(Q), then

π(π(x) + π′(y) + t) + π′(π(y) + π′(z) + t) = π(x) + π′(z).

Since π(x) = π′(x) = x2
i+1,

π(x2
i+1 + y2

i+1 + t) + π(y2
i+1 + z2

i+1 + t) = x2
i+1 + z2

i+1

(x2
i+1 + y2

i+1 + t)2
i+1 + (y2

i+1 + z2
i+1 + t)2

i+1 = x2
i+1 + z2

i+1

(x2
i+1 + y2

i+1 + t)(x2
i+1 + y2

i+1 + t)2
i

+ (y2
i+1 + z2

i+1 + t)(y2
i+1 + z2

i+1 + t)2
i

= x2
i+1 + z2

i+1

(x2
i+1)x2

i(2i+1) + (y2
i+1)x2

i(2i+1) + (t)x2
i(2i+1) + (x2

i+1)y2
i(2i+1) + (y2

i+1)y2
i(2i+1) + (t)y2

i(2i+1)

+(x2
i+1)t2

i

+(y2
i+1)t2

i

+t2
i+1+(y2

i+1)y2
i(2i+1)+(z2

i+1)y2
i(2i+1)+(t)y2

i(2i+1)+(y2
i+1)z2

i(2i+1)

+(z2
i+1)z2

i(2i+1) + (t)z2
i(2i+1) + (y2

i+1)t2
i

+ (z2
i+1)t2

i

+ t2
i+1 = x2

i+1 + z2
i+1

(x2
i+1)x2

i(2i+1) + (y2
i+1)x2

i(2i+1) + (t)x2
i(2i+1) + (x2

i+1)y2
i(2i+1) + (x2

i+1)t2
i

+ (z2
i+1)y2

i(2i+1)

+(y2
i+1)z2

i(2i+1) + (z2
i+1)z2

i(2i+1) + (t)z2
i(2i+1) + (z2

i+1)t2
i

= x2
i+1 + z2

i+1

(x2
i+1+y2

i+1+t)x2
i(2i+1)+(y2

i+1+z2
i+1+t)z2

i(2i+1)+(x2
i+1)y2

i(2i+1)+(x2
i+1)t2

i

+(z2
i+1)y2

i(2i+1)

+(z2
i+1)t2

i

= x2
i+1 + z2

i+1

(x2
i+1+y2

i+1+t)x2
i(2i+1)+(y2

i+1+z2
i+1+t)z2

i(2i+1)+x2
i+1(y2

i(2i+1)+t2
i

+1)+z2
i+1(y2

i(2i+1)

+t2
i

+ 1) = 0

(x2
i+1 +y2

i+1 + t)x2
i(2i+1) +(y2

i+1 +z2
i+1 + t)z2

i(2i+1) +(x2
i+1 +z2

i+1)(y2
i(2i+1) + t2

i

+1) = 0.

If x = z fixed in F2n then we get exactly N2 solutions.

Suppose x 6= z is fixed in F2n and let x2
i+1 + z2

i+1 = A (say) and x2
i+1 + z2

i+1 + x2
i+1 ·

x2
i(2i+1) + z2

i+1 · z2i(2i+1) = B (say) in F2n . Then

(y2
i+1 + t)(x2

i+1 + z2
i+1)2

i

+ (y2
i+1 + t)2

i

(x2
i+1 + z2

i+1)
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= x2
i+1 + z2

i+1 + x2
i+1 · x2i(2i+1) + z2

i+1 · z2i(2i+1),

or

(y2
i+1 + t)(A)2

i

+ (y2
i+1 + t)2

i

(A) = B. (4.2.3)

If B = 0 then

(y2
i+1 + t)(A)2

i

+ (y2
i+1 + t)2

i

(A) = 0,

or equivalently,

(π(y) + t)2
i−1 = A2i−1

or,

(π′(y) + t)2
i−1 = A2i−1

it follows that

π(y) + t ∈ A(G\{0})

or

π(y) ∈ A(G\{0}).

From above equation we get exactly 2e many value for π(y), where G is the subfield of F2n

of order 2e and e = gcd(i, n). Thus the number of choices for π(y) is at most 2e that satisfy

the homogeneous part of Equation (4.2.3) for fixed A in F2n .

If B 6= 0, the solutions of Equation (4.2.3) is either zero or equal to same number of

solutions of homogeneous part. Therefore we have at most 2e solutions of Equation (4.2.3)

for any choice of B in F2n . Therefore, a(Q) = 2e ·N2 where N = 2n.

Theorem 4.2.7. If we choose π′ is identity mapping and π is a quadratic permutation on

F2n. π(x) = x2
i+1 for all x ∈ F2n. Then the maximum number of associative triples for

Fπ,π′,t is 2e ·N2 where e = gcd(i, n) and N = 2n.

Proof. If (x, y, z) ∈ A(Q), then

π(π(x) + π′(y) + t) + π′(π(y) + π′(z) + t) = π(x) + π′(z).

Since π′(x) = x and π(x) = x2
i+1,

π(x2
i+1 + y + t) + π′(y2

i+1 + z + t) = x2
i+1 + z
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(x2
i+1 + y + t)2

i+1 + y2
i+1 + z + t = x2

i+1 + z

(x2
i+1 + y + t)2

i+1 + y2
i+1 + t = x2

i+1.

Here we get the associativity index a(Q) = m · N , where m is the number of solutions of

the above equation. We further solve the equation

(x2
i+1 + y + t)(x2

i+1 + y + t)2
i

+ y2
i+1 + t = x2

i+1

(x2
i+1 + t+ y)((x2

i+1 + t)2
i

+ y2
i

) + y2
i+1 + t = x2

i+1

(x2
i+1 + t)2

i+1 + (x2
i+1 + t)2

i

y + (x2
i+1 + t)y2

i

+ y2
i+1 + y2

i+1 + t = x2
i+1

(x2
i+1 + t)2

i+1 + (x2
i+1 + t)2

i

y + (x2
i+1 + t)y2

i

+ x2
i+1 + t = 0

(x2
i+1 + t)2

i+1 + (x2
i+1 + t)2

i

y + (x2
i+1 + t)(y2

i

+ 1) = 0.

For given t, we say x is fixed in F2n then x2
i+1 + t = A (say). Then

A2i+1 + A2iy + A(y2
i

+ 1) = 0,

or equivalently,

Ay2
i

+ A2iy + A(A2i + 1) = 0.

Let B = A(A2i + 1), then

Ay2
i

+ A2iy +B = 0. (4.2.4)

If B = 0, then

Ay2
i

+ A2iy = 0

or equivalently,

y2
i−1 = A2i−1

it follows that

y ∈ A(G\{0}).

From above equation we get exactly 2e many value for y, where G is the subfield of F2n of

order 2e and e = gcd(i, n). Thus the number of choices for y is at most 2e that satisfy the
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homogeneous part of Equation (4.2.4) for fixed A in F2n .

If B 6= 0, the solutions of Equation (4.2.4) is either zero or equal to same number of

solutions of homogeneous part. Therefore we have at most 2e solutions of Equation (4.2.4)

for any choice of B in F2n . Hence we get the associativity index a(Q) = 2e ·N ·N . Therefore,

a(Q) = 2e ·N2 where N = 2n.

Similarly we do for π(x) = x2
i+1 and π′(x) = x2

j+1 in F2n and we get quadratic equation

in y

(z2
j+1 + t)2

j

y2
i+1 + (y2

i+1)2
j

y2
i+1 + (x2

i+1 + t)2
i

y2
j+1 + (y2

j+1)2
i

y2
j+1 + (x2

i+1 + t)(y2
j+1)2

i

+ (z2
j+1 + t)(y2

i+1)2
j

= x2
i+1 + z2

j+1 + (x2
i+1 + t)2

i+1 + (z2
j+1 + t)2

j+1.

Using SageMath for calculation, we get exactly N3 solutions of the above equation. There-

fore the number of associative triples is N3.

Now we investigate the associative index by using complete mapping polynomials on

F2n that constitute a special class of permutation polynomials [92] [96].

Lemma 4.2.8. If we choose π is linear complete mapping permutation and π′ is any per-

mutation then we get associative index exactly N2, where N = 2n.

Proof. By Equation (4.2.2)

π(π(x) + π′(y) + t) + π′(z) =π(x) + π′(π(y) + π′(z) + t)

π(π(x)) + π(π′(y)) + π(t) + π′(z) =π(x) + π′(π(y) + π′(z) + t)

π(π(x)) + π(x) =π(π′(y)) + π(t) + π(π′(z)) + π′(π(y) + π′(z) + t)

(π + I)π(x) =π(π′(y)) + π(t) + π(π′(z)) + π′(π(y) + π′(z) + t)

π(x) =(π + I)−1(π(π′(y)) + π(t) + π(π′(z)) + π′(π(y) + π′(z)

+ t))

x =π−1{(π + I)−1(π(π′(y)) + π(t) + π(π′(z)) + π′(π(y)+

π′(z) + t))}.

Then y and z are free to choose in F2n . Hence we get exactly N2 number of solution of the

above equation.
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In the following table we list the values of a(Q) for different choices of π and π′ over F2n .

π(x) π′(x) a(Q)

x2
i

x2
i

2e ·N2

Identity x2
i

2e ·N2

x2
i

x2
j

2e ·N2

x2
i
+ c x2

i
+ c 2e ·N2

Identity x2
i
+ c 2e ·N2

x2
i
+ c x2

j
+ c 2e ·N2

x2
i
+ x2

j
+ c x2

i
+ x2

j
+ c ≤ 2 ·N2

x2
i
+ x2

j
+ c Identity N2

x2
i+1 x2

i+1 2e ·N2

x2
i+1 Identity 2e ·N2

x2
i+1 x2

j+1 N3

Linear complete mapping Any permutation N2

where e = gcd(i, n) and N = 2n. When e = 1, we get the best known lower bound for

associative triples [64].

4.3 Fπ,π′,t - quasigroups as vectorial Boolean functions

We already have explained F2n and Fn2 are vector isomorphism over F2. Therefore we can

be considered Fπ,π′,t : F2n × F2n → F2n as vectorial Boolean function and defined by

Fπ,π′,t(x, y) = π(x) + π′(y) + t,

where x, y ∈ F2n and t ∈ F2n\{0}. Now we can check the cryptographic characteristics of

obtained vectorial Boolean function.

4.4 Walsh-Hadamard transform and nonlinearity of

Fπ,π′,t

Besides the coordinates, all linear combinations of the coordinates are usually involved for

determining the cryptographic properties of a vectorial Boolean function, in the sense of
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the following definition.

The Walsh-Hadamard transform of Fπ,π′,t is the mapping WFπ,π′,t
: (F2n×F2n)×F2n −→ R,

defined as

WFπ,π′,t
((u1, u2), v) =

∑
(x,y)∈F2n×F2n

(−1)tr
n
1 (vFπ,π′,t)+tr

n
1 (u1x)+tr

n
1 (u2y)

(4.4.1)

Moreover, the linearity [16] of Fπ,π′,t is

L(Fπ,π′,t) = max
v∈F∗2n

L((Fπ,π′,t)v) = max
u1,u2∈F2n ,v∈F∗2n

| WFπ,π′,t
((u1, u2), v) | (4.4.2)

and the nonlinearity [19] of Fπ,π′,t is

nl(Fπ,π′,t) = 2n−1 − (1/2)(L(Fπ,π′,t)),

or

nl(Fπ,π′,t) = 2n−1 − (1/2) max
u1,u2∈F2n ,v∈F∗2n

| WFπ,π′,t
((u1, u2), v) | .

From Equations (4.4.1) and (4.4.2) we get

WFπ,π′,t
((u1, u2), v) =

∑
(x,y)∈F2n×F2n

(−1)tr
n
1 (vFπ,π′,t)+tr

n
1 (u1x)+tr

n
1 (u2y)

=
∑

(x,y)∈F2n×F2n

(−1)tr
n
1 (v(π(x)+π

′(y)+t))+trn1 (u1x)+tr
n
1 (u2y)

=
∑

(x,y)∈F2n×F2n

(−1)tr
n
1 (vπ(x))+tr

n
1 (vπ

′(y))+trn1 (vt)+tr
n
1 (u1x)+tr

n
1 (u2y)

=
∑

(x,y)∈F2n×F2n

(−1)tr
n
1 (vπ(x))+tr

n
1 (u1x)+tr

n
1 (vπ

′(y))+trn1 (u2y)+tr
n
1 (vt)

= (−1)tr
n
1 (vt)

∑
x∈F2n

(−1)tr
n
1 (vπ(x))+tr

n
1 (u1x)

∑
y∈F2n

(−1)tr
n
1 (vπ

′(y))+trn1 (u2y)

= (−1)tr
n
1 (vt)Wπ(u1, v)Wπ′(u2, v),
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or

WFπ,π′,t
((u1, u2), v) = (−1)tr

n
1 (vt)Wπ(u1, v)Wπ′(u2, v).

The linearity of Fπ,π′,t is given by

L(Fπ,π′,t) = max
u1,u2∈F2n ,v∈F∗2n

| (−1)tr
n
1 (vt)Wπ(u1, v)Wπ′(u2, v) | .

The nonlinearity of Fπ,π′,t is given by

nl(Fπ,π′,t) = 2n−1 − (1/2) max
u1,u2∈F2n ,v∈F∗2n

| (−1)tr
n
1 (vt)Wπ(u1, v)Wπ′(u2, v) | .

F is bent, almost bent and semi-bent if and only if all of its component functions, i.e.,

trm1 (λF(x)) for any λ ∈ F2m , are bent, almost bent and semi-bent respectively.

• Bent Functions: Only when n is even

WFλ(u, v) = ±2n/2 for any λ ∈ F2m and u ∈ F2n , v ∈ F∗2m .

• Almost bent Functions (AB): Only when n is odd

WFλ(u, v) ∈ {0,±2(n+1)/2} for any λ ∈ F2m and u ∈ F2n , v ∈ F∗2m .

• Semi-bent Functions:

When n is even

WFλ(u, v) ∈ {0,±2(n+2)/2} for any λ ∈ F2m and u ∈ F2n , v ∈ F∗2m .

When n is odd

WFλ(u, v) ∈ {0,±2(n+1)/2} for any λ ∈ F2m and u ∈ F2n , v ∈ F∗2m .

For more details we refer to [23] [58] [63]. Let the component functions of Fπ,π′,t be de-

noted by F λ
π,π′,t for any λ ∈ F2n . Then we get the relationship between Wπλ , Wπ′λ

and
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WFλ
π,π′,t

((u1, u2), v) for any λ ∈ F2n as follows:

Wπλ Wπ′λ
WFλ

π,π′,t
((u1, u2), v) Property of WFλ

π,π′,t
((u1, u2), v)

Almost Bent Almost Bent {0,±2(2n+2)/2} Can’t say
Semi-bent (n even) Semi-bent (n even) {0,±2(2n+4)/2} Can’t say

This gives us information about the Walsh spectrum of Fπ,π′,t. Bent, almost bent and semi-

bent functions are studied in cryptography because, besides having low Walsh spectrum

which provides protection against fast correlation attacks [109] and linear cryptanalysis

[106], they can possess desirable properties in addition to the propagation criterion and low

additive autocorrelation, such as resiliency and high algebraic degree. On the cryptographic

point of view, we choose π and π′ either bent functions or semi-bent functions over F2n .

4.5 Differential profile of Fπ,π′,t

The differential uniformity of π, π′ : F2n −→ F2n is defined by

Dπ(u1, v1) = {x ∈ F2n|π(x+ u1) + π(x) = v1} (4.5.1)

δ1 = max
u1 6=0,v1

|Dπ(u1, v1)| = max
u1 6=0,v1

|{x ∈ F2n|π(x+ u1) + π(x) = v1}|,

and

Dπ′(u2, v2) = {x ∈ F2n|π′(x+ u2) + π′(x) = v2} (4.5.2)

δ2 = max
u2 6=0,v2

|Dπ(u2, v2)| = max
u2 6=0,v2

|{x ∈ F2n|π′(x+ u2) + π′(x) = v2}|.

Similarly Differential uniformity for Fπ,π′,t is defined by

DFπ,π′,t
((w1, w2), v) = {(x, y) ∈ F2n × F2n|Fπ,π′,t((x, y) + (w1, w2)) + Fπ,π′,t(x, y) = v}

(4.5.3)

and

δ = max
(w1,w2) 6=(0,0),v

|DFπ,π′,t
((w1, w2), v)|

= max
(w1,w2) 6=(0,0),v

|{(x, y) ∈ F2n × F2n|Fπ,π′,t((x, y) + (w1, w2)) + Fπ,π′,t(x, y) = v}|.
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From Equation (4.5.3) we get

DFπ,π′,t
((w1, w2), v) = {(x, y) ∈ F2n × F2n|Fπ,π′,t((x, y) + (w1, w2)) + Fπ,π′,t(x, y) = v}

= {(x, y) ∈ F2n × F2n|π(x+ w1) + π′(y + w2) + t+ π(x) + π′(y)

+ t = v}

= {(x, y) ∈ F2n × F2n|π(x+ w1) + π′(y + w2) + π(x) + π′(y) = v}

= {(x, y) ∈ F2n × F2n|π(x+ w1) + π(x) + π′(y + w2) + π′(y) = v}

DFπ,π′,t
((w1, w2), v) = {(x, y) ∈ F2n × F2n|π(x+ w1) + π(x) + π′(y + w2) + π′(y) = v}.

(4.5.4)

It is shown in [128] that for n > m the minimum differential uniformity 2n−m for F ∈ Bn,m
is reached if and only if 2m ≤ n and n is even. Here we have (2n, n) variables vectorial

Boolean function, so, the possibility of achieving minimum bound is fair.

(APN) Power Functions:

More results on the APN property are known when we focus on the family of power

functions, i.e., F : x → xd over F2n . For instance, if there is h which divides n and

d = k(2h − 1) + 2r for some k and r then F is not APN [28] [21]. Berger et al. [11]

presented above result, indicated by Dobbertin [43], in a more general context.

Proposition 4.5.1. [11, Proposition 3] Let r be a divisor of n and F be any function on

F2n. Assume that F ∈ F2n [x]. If F satisfies for some a ∈ F2r

F (y) + F (y + a) = β, β ∈ F2r

for some y such that y 6∈ F2r and y2
r

+ y + a 6= 0, then F is not APN .

Consequently, if F is APN with F (x) = xd, then gcd(d, 2n − 1) = 1 for odd n and for even

n, we get gcd(d, 2n − 1) = 3.

For instance, π(x) = x3 and π′(x) = x5 over F23 both are APN permutations. Using the

irreducible polynomial α3 +α+ 1 = 0, we have the following Difference Distribution Table:
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Table 4.1: For π(x) = x3 over F23

0 α α2 α+1 α2 + α α2 + α+1 α2+1 1

0 - - - - - - - -

α - {α2, α2 + α} {α2 + α + 1, α2 + 1} {0, α} - - {α + 1, 1} -

α2 - - {α, α2 + α} - {α + 1, α2 + α + 1} {α2 + 1, 1} {0, α2} -

α + 1 - {α, 1} {0, α + 1} - - {α2, α2 + α + 1} - {α2 + α, α2 + 1}

α2 + α - {α + 1, α2 + 1} - {α2 + α + 1, 1} {α, α2} {0, α2 + α} - -

α2 + α+1 - {0, α2 + α + 1} - - {α2 + α, 1} - {α, α2 + 1} {α2, α + 1}

α2+1 - - {α2, 1} {α + 1, α2 + α} {0, α2 + 1} - - {α, α2 + α + 1}

1 - - - {α2, α2 + 1} - {α, α + 1} {α2 + α, α2 + α + 1} {0, 1}

Table 4.2: For π′(x) = x5 over F23

0 α α2 α+1 α2 + α α2 + α+1 α2+1 1

0 - - - - - - - -

α - {α2 + α + 1, α2 + 1} - {α + 1, 1} {α2, α2 + α} {0, α} - -

α2 - {α, α2 + α} {α + 1, α2 + α + 1} {0, α2} - - {α2 + 1, 1} -

α + 1 - {0, α + 1} - - {α, 1} - {α2, α2 + α + 1} {α2 + α, α2 + 1}

α2 + α - - {α, α2} - {α + 1, α2 + 1} {α2 + α + 1, 1} {0, α2 + α} -

α2 + α+1 - - {α2 + α, 1} {α, α2 + 1} {0, α2 + α + 1} - - {α2, α + 1}

α2+1 - {α2, 1} {0, α2 + 1} - - {α + 1, α2 + α} - {α, α2 + α + 1}

1 - - - {α2 + α, α2 + α + 1} - {α2, α2 + 1} {α, α + 1} {0, 1}

By Equations (4.5.1), (4.5.2) and (4.5.4) we get

DFπ,π′,t
((u1, u2), v1 + v2) = {(x, y) ∈ F2n × F2n|π(x+ u1) + π(x) + π′(y + u2)+

π′(y) = v1 + v2}.
(4.5.5)

With the help of Table 4.1 and Table 4.2,

• When u1 = α, u2 = α, v1 = α, and v2 = α, then

DFπ,π′,t
((α, α), 0) = {(α2, α2+α+1), (α2, α2+1), (α2+α, α2+α+1), (α2+α, α2+1)}.

• When u1 = α, u2 = α, v1 = α, and v2 = α2, then

DFπ,π′,t
((α, α), α + α2) = ∅.
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• When u1 = α, u2 = α, v1 = α2 + α, and v2 = α, then

DFπ,π′,t
((α, α), α2) = ∅.

• When u1 = α, u2 = α2, v1 = α, and v2 = α2, then

DFπ,π′,t
((α, α2), α2+α) = {(α2, α+1), (α2, α2+α+1), (α2+α, α+1), (α2+α, α2+α+1)}.

Similarly we can find for the other values of u1, u2, v1 and v2. Here we see that 4 is the

maximum value in Difference Distribution Table of Fπ,π′,t when π and π′ both are unequal

APN permutations.

If π(x) = π′(x) = x3 over F23 both are equal APN permutations. Then from Equation

(4.5.5)

DFπ,π′,t
((u1, u2), v1 + v2) = {(x, y) ∈ F2n × F2n|π(x+ u1) + π(x) + π(y + u2)+

π(y) = v1 + v2}.

With the help of Table 4.1,

• When u1 = α, u2 = α, v1 = α, and v2 = α, then

DFπ,π′,t
((α, α), 0) = {(α2, α2), (α2, α2 + α), (α2 + α, α2), (α2 + α, α2 + α)}.

• When u1 = α, u2 = α, v1 = α, and v2 = α2 + α, then

DFπ,π′,t
((α, α), α2) = {(α2, α2+α+1), (α2, α2+1), (α2+α, α2+α+1), (α2+α, α2+1)}.

• When u1 = α, u2 = α2, v1 = α, and v2 = α, then

DFπ,π′,t
((α, α2), 0) = ∅.
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• When u1 = α, u2 = α2, v1 = α, and v2 = α2, then

DFπ,π′,t
((α, α), α2) = {(α2, α), (α2, α2 + α), (α2 + α, α), (α2 + α, α2 + α)}.

Similarly we can find for the other values of u1, u2, v1 and v2. Again 4 is the maximum value

in Difference Distribution Table of Fπ,π′,t when π and π′ both are equal APN permutations.

If we choose π and π′ both with either equal or unequal differentially 4-uniform then

we get 4 · 4 is the maximum value in Difference Distribution Table of Fπ,π′,t. Hence for

both π and π′ differentially δ1-uniform we get δ1 · δ1 is the maximum value in Difference

Distribution Table of Fπ,π′,t.

Theorem 4.5.2. Let π be differentially δ1-uniform and π′ be differentially δ2-uniform.

Then Fπ,π′,t is differentially (δ1 · δ2)-uniform.

Proof. We have

DFπ,π′,t
((w1, w2), v) = {(x, y) ∈ F2n × F2n|π(x+ w1) + π(x) + π′(y + w2) + π′(y) = v}.

Let π be differentially δ1-uniform then for particular w1 and v1 in F2n we get

DFπ,π′,t
((w1, w2), v + v1) = {(x1, y), (x2, y), . . . , (xδ1 , y), y ∈ F2n|π′(y + w2) + π′(y) = v + v1}.

(4.5.6)

• When v can be split into v1 + v2, then Equation (4.5.6)

DFπ,π′,t
((w1, w2), v2) = {(x1, y), (x2, y), . . . , (xδ1 , y), y ∈ F2n|π′(y + w2) + π′(y) = v2}

i.e., DFπ,π′,t
((w1, w2), v2) ={(x1, y1), (x1, y2), . . . , (x1, yδ2), (x2, y1), (x2, y2), . . . ,

(x2, yδ2), . . . , (xδ1 , y1), (xδ1 , y2), . . . , (xδ1 , yδ2)}.

• When v = v1, then Equation (4.5.6)

DFπ,π′,t
((w1, w2), 0) = {(x1, y), (x2, y), . . . , (xδ1 , y), y ∈ F2n|π′(y + w2) + π′(y) = 0}
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i.e., DFπ,π′,t
((w1, w2), v2) =∅.

• When v can be split into v1 + β, where β ∈ F2n , then Equation (4.5.6)

DFπ,π′,t
((w1, w2), β) = {(x1, y), (x2, y), . . . , (xδ1 , y), y ∈ F2n|π′(y + w2) + π′(y) = β}

i.e., DFπ,π′,t
((w1, w2), v2) =∅.

Therefore Fπ,π′,t is differentially (δ1 · δ2)-uniform.

APN functions [100] and differentially 4-uniform functions (inverse function) [168] are

used in DES and AES cipher to resistance against differential cryptanalysis. When π and

π′ both are APN permuations then we get Fπ,π′,t differentially 4-uniform.
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Chapter 5

XS-circuits in Quasigroups

5.1 Introduction

A permutation π on F2n is said to be a complete mapping permutation if π + I is also a

permutation where I is the identity permutation on F2n . Complete mapping permutations

are used to construct quasigroups (equivalently, Latin squares) which in turn show promise

of being applied to design hash functions and block ciphers. Construction of complete

mapping permutations by using the Feistel structure has been proposed by Markovski and

Mileva [104] which they used to construct large quasigroups. Complete mapping permuta-

tions have been extensively studied in [8,34,93,123,162]. Stănică et al. [158] used complete

mapping permutations to construct a new class of bent-negabent functions.

Markovski and Mileva [104] proved that a Feistel function is a complete mapping permu-

tation if the “inner” vectorial Boolean function is a permutation. Thus, they provide a way

to construct complete mapping permutations from ordinary permutations. In this Chapter,

we demonstrate that XS-circuits can be used to construct complete mapping permutations

and under some very reasonable conditions it is possible to construct complete mapping

permutations from any vectorial Boolean function. We also show how the question of

counting the number of such complete mapping permutations is connected to counting the

linear orthomorphisms over finite fields and counting the points on curves of intersections

of certain bilinear forms over finite fields.

Later we construct K-complete mapping permutation which can be used to define uni-

formly distributed sequences. We also find a recursive constrictions that extend a complete

95
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mapping permutation of dimension r to a complete mapping permutation of dimension n,

where r ≤ n.

5.2 XS-circuits

The theory of XS-circuits as proposed by Agievich [2] is described in this section. Let

Fn2 = {(z1, . . . , zn) : zi ∈ F2, i ∈ [n]} where F2 the prime field of characteristic 2 and

[n] = {1, . . . , n}. Let a = (a1, . . . , an), c = (c1, . . . , cn) ∈ Fn2 and B = (bij)n×n, where

bij ∈ F2, for all i, j ∈ [n], be an n × n matrix over F2. Let S : Fm2 → Fm2 be a vectorial

Boolean function on Fm2 . The output y = (y1, . . . , yn) ∈ (Fm2 )n of the XS-circuit (a,B, c|S)

for an input x = (x1, . . . , xn) ∈ (Fm2 )n is defined by

y = xB + S(xaT )c, (5.2.1)

where aT is the transpose of the vector a. Since the entries of the vectors x and y are

from the vector space Fm2 whereas the entries in a, c, B are from F2, for the sake of clarity

we discuss the multiplications in details. The first term in the right-hand-side of Equation

(5.2.1) is

xB = (x1, . . . , xn)(bij)n×n

=

(∑
i∈[n]

xibi1, . . . ,
∑
i∈[n]

xibin

)
.

The second term is

S(xaT )c = S(xaT )(c1, . . . , cn)

= (S(xaT )c1, . . . , S(xaT )cn).

Thus, Equation (5.2.1) can be explicitly written as

(y1, . . . , yn) =

(∑
i∈[n]

xibi1, . . . ,
∑
i∈[n]

xibin) + (S(xaT )c1, . . . , S(xaT )cn

)

=

(∑
i∈[n]

xibi1 + S(xaT )c1, . . . ,
∑
i∈[n]

xibin + S(xaT )cn

)
.
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It is to be noted carefully that xi, yi, S(xaT ) ∈ Fm2 , whereas ai, ci, bij ∈ F2, for all i ∈ [n].

Generalized XS-circuits

We can easily extend the model. Let F = Fm2 be a base field, r ≤ n and B, A, C be

matrices over F of dimension n×n, n× r, r×n respectively. Let S be a mapping from F r

to F r. The tuple (A,B,C|S) determines the mapping F n → F n:

x 7→ y = xB + S(xA)C.

Comparing to the current model, we enrich S transferring its action from F to F r and,

correspondently, replace the vectors a, c by the matrices A, C. Due to the enrichment of

S, we can use m = 1 (that is, make all matrices binary).

An n × 1 matrix over F2 with all entries equal to zero is denoted by 0n. The n × n

identity matrix is denoted by In, its dimension is understood from the context.

5.3 A construction of a class of complete mapping per-

mutations

Complete mapping permutations can be used to construct large quasigroups [104] as well

as bent-negabent Boolean functions [158]. Feistel function is a special case of XS-circuits

with n = 2, S : Fm2 → Fm2 , and

B =

 0 1

1 0

 , and a = c = (0, 1).

It is well known that Feistel function is a permutation irrespective of whether S is a bijective

mapping or not. Markovski and Mileva [104] proved that if S is bijective then the above

Feistel function is a complete mapping permutation. Thus Markovski and Mileva could

associate a class of complete mapping permutations on F2m
2 to the class of permutations

on Fm2 , to which S belongs. Our question is to characterize XS-circuits which are complete

mapping permutations for all functions S : Fm2 → Fm2 .

Theorem 5.3.1. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is
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any function on Fm2 . Then

y = xB + S(xaT )c

is a complete mapping permutation if the following conditions are satisfied:

1. B and B + I both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0 and c(B + I)−1aT = 0.

Proof. In order to be a complete mapping permutation both

y = xB + S(xaT )c (5.3.1)

and

y = x(B + I) + S(xaT )c. (5.3.2)

have to be invertible. Following arguments are due to Agievich [2] which we recall for

completeness. Since B is invertible

yB−1 = x+ S(xaT )cB−1

i.e., yB−1aT = xaT + S(xaT )cB−1aT

i.e., xaT = yB−1aT + S(xaT )cB−1aT

i.e., xaT = yB−1aT , since cB−1aT = 0.

Substituting xaT = yB−1aT above

yB−1 = x+ S(yB−1aT )cB−1

i.e., x = yB−1 + S(yB−1aT )cB−1.

Therefore, Equation (5.3.1) is invertible, if B is invertible and cB−1aT = 0. Similarly,

Equation (5.3.2) is invertible, if B + I is invertible and c(B + I)−1aT = 0.

Theorem 5.3.1 provides us a connection between any function on Fm2 to a complete
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mapping permutation on (Fm2 )n.

Example 5.3.2. Suppose

B =


0 1 1

0 0 1

1 0 0

 , B + I =


1 1 1

0 1 1

1 0 1

 and a = (0, 1, 0), c = (1, 1, 1).

It can be directly checked that

B−1 =


0 0 1

1 1 0

0 1 0

 , (B + I)−1 =


1 1 0

1 0 1

1 1 1

 ,

and

cB−1aT = 0, c(B + I)−1aT = 0.

Thus, y = xB + S(xaT )c is a complete mapping permutation on (Fm2 )3, for any positive

integer m and any function S on Fm2 .

Theorem 5.3.3. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any bijective function on Fm2 . Then

y = xB + S(xaT )c

is a complete mapping permutation if the following conditions are satisfied:

1. The ranks of B and B + I are n and n− 1, respectively.

2. There exist a, c, α ∈ F n
2 \ {0} such that

cB−1aT = 0, (B + I)αT = 0n and cαT = 1.

Proof. When B is invertible, It was already described in Theorem 5.3.1. Consider the case

when B + I is non-invertible. To determine x from y = x(B + I) + S(xaT )c it is necessary

to get the response S(xaT ) of S. This response can be obtained either directly from y or

indirectly by determining xaT from y and then using the query xaT to S.



100 5.3 A construction of a class of complete mapping permutations

1. To determine xaT from y there must exist a row vector α ∈ F n
2 such that (B+I)αT =

aT , cαT = 0 and consequently xaT = yαT . After determining u = xaT we can find

v = S(u) and obtain the equations x(B + I) = y + vc and xaT = u in x. Both

equations can have more than one soultions since the matrix
(
B + I aT

)
have full

rank. Indeed, B + I is non invertible and aT = (B + I)αT is a linear combination of

columns of (B + I).

2. Suppose that S(xaT ) can be determined by y. Then α has to satisfy the equations

(B + I)αT = 0n and cαT = 1 which can be used to calculate v = S(xaT ) = yαT and

u = xaT = S−1(v). After determining u, we again obtain the equation x(B + I) =

y + vc and xaT = u. In order that this equation has a unique solution, the matrix(
B + I aT

)
has to have full rank. If rank

(
B + I aT

)
= n then rank

(
B + I

)
=

n − 1. Therefore, all nonzero row vectors β ∈ F n
2 such that (B + I)βT = 0n are

collinear to α. Since cαT = 1 and consequently cβT 6= 0 , rank

B + I

c

 = n.

Example 5.3.4. Suppose

B =


0 0 1

0 1 0

1 0 1

 , B + I =


1 0 1

0 0 0

1 0 0

 and a = (0, 0, 1), c = (0, 1, 0).

It can be directly checked that

B−1 =


1 0 1

0 1 0

1 0 0

 , cB−1aT = 0,

and there exist α = (0, 1, 0)

(B + I)αT = 0n, cαT = 1.

Thus, y = xB + S(xaT )c is a complete mapping permutation on (Fm2 )3, for any positive

integer m and any bijective function S on Fm2 .
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Corollary 5.3.5. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any bijective function on Fm2 . Then

y = xB + S(xaT )c

is a complete mapping permutation if the following conditions are satisfied:

1. The ranks of B and B + I are n− 1 and n, respectively.

2. There exist a, c, α ∈ F n
2 \ {0} such that

c(B + I)−1aT = 0, BαT = 0n and cαT = 1.

Example 5.3.6. Suppose

B =


0 0 0

0 0 1

0 1 1

 , B + I =


1 0 0

0 1 1

0 1 0

 and a = (1, 1, 0), c = (1, 1, 1).

It can be directly checked that

(B + I)−1 =


1 0 0

0 0 1

0 1 1

 , c(B + I)−1aT = 0,

and there exist α = (1, 0, 0)

BαT = 0n, cαT = 1.

Thus, y = xB + S(xaT )c is a complete mapping permutation on (Fm2 )3, for any positive

integer m and any bijective function S on Fm2 .

Corollary 5.3.7. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any bijective function on Fm2 . Then

y = xB + S(xaT )c

is a complete mapping permutation if the following conditions are satisfied:
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1. Both B and B + I have same rank n− 1.

2. There exist a, c ∈ F n
2 \ {0} such that(

B aT
)

,

B
c

,
(
B + I aT

)
and

B + I

c

 have same rank n.

Example 5.3.8. Suppose

B =


0 0 1

0 0 1

0 1 0

 and a = (0, 1, 0), c = (1, 0, 0).

It can be directly checked that

(
B aT

)
=


0 0 1 0

0 0 1 1

0 1 0 0

 ,

B
c

 =


0 0 1

0 0 1

0 1 0

1 0 0


and

B + I =


1 0 1

0 1 1

0 1 1

 ,
(
B aT

)
=


1 0 1 0

0 1 1 1

0 1 1 0

 ,

B
c

 =


1 0 1

0 1 1

0 1 1

1 0 0

 .

Thus, y = xB + S(xaT )c is a complete mapping permutation on (Fm2 )3, for any positive

integer m and any bijective function S on Fm2 .

Theorem 5.3.1 provides us a connection between any function on Fm2 to a complete

mapping permutation on (Fm2 )n. In this context we raise the following question:

Given any pair of positive integers n, m estimate the total number of complete

mapping permutations obtained from Theorems 5.3.1 and 5.3.3, Corollaries

5.3.5 and 5.3.7

Dai et al. [34] defined an iterative formula for computing the number of all linear ortho-

morphisms for n ≥ 2. Let N1 = 1, Ni = (2n − 2i−1)Ni−1, 2 ≤ i ≤ n, and let |O0(F2)| = 1



Chapter 5: XS-circuits in Quasigroups 103

and |O1(F2)| = 0, then:

|On(F2)| =
n∑
r=2

2r−2Nr2
r(n−r)|On−r(F2)| (5.3.3)

where |On(F2)| = {σ|σ ∈ B, σ is complete mapping permutation}.

The cardinality of B and B + I, described in Theorem 5.3.1, are calculated by Equation

(5.3.3) with the particular choices of B, B + I and c how many a exist in Fn2 \ {0} is

estimated when,

cB−1aT = 0 and c(B + I)−1aT = 0

where cB−1 and c(B + I)−1 are non-zero 1× n. Therefore, we define

Ker(cB−1) = {a ∈ Fn2 \ {0}|cB−1aT = 0}

Ker(c(B + I)−1) = {a ∈ Fn2 \ {0}|c(B + I)−1aT = 0}.

From rank-nullity theorem we get

dim{Ker(cB−1)} = n− 1 and dim{Ker(c(B + I)−1)} = n− 1.

If Ker(cB−1) and Ker(c(B + I)−1) have common vectors, then

dim{Ker(cB−1) ∩Ker(c(B + I)−1)} ∈ {n− 1, n− 2},

i.e., dim{Ker(cB−1) ∩Ker(c(B + I)−1)} ≥ n− 2.

For positive integers m, we get the bound for complete mapping permutations (CMP)

2m×2
m × (2n−2 − 1) ≤ CMP ≤ 2m×2

m × (2n−1 − 1).

Therefore total estimate of complete mapping permutations is given by

|On(F2)|×2m·2
m×(2n−2−1)×(2n−1) ≤ Total CMP ≤ |On(F2)|×2m·2

m×(2n−1−1)×(2n−1).

We calculated the total number of matrices B and B + I, described in Theorem 5.3.3,
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which satisfy the ranks n and n− 1 respectively by MATLAB, for certain values of n. For

particular B, B + I and α how many a and c exist in Fn2 \ {0} is estimated when,

(B + I)αT = 0 and cαT = 1,

where rank of B + I is n− 1. Therefore, we define

Ker(B + I) = {α ∈ Fn2 \ {0}|(B + I)αT = 0}.

By rank-nullity theorem we get

dim{Ker(B + I)} = 1.

Since α is non-zero. Then space Ker(B + I) has only one vector. For this α, we get 2n−1

number of c vectors. For particular c ∈ Fn2 \ {0}, we define

Ker(cB−1) = {a ∈ Fn2 \ {0}|cB−1aT = 0}.

By rank-nullity theorem we get

dim{Ker(cB−1)} = n− 1.

For positive integers m, we get counts for complete mapping permutations (CMP)

CMP = 2m!× (2n−1)× (2n−1 − 1).

Therefore total estimate of complete mapping permutations is given by

CMP = M × 2m!× (2n−1)× (2n−1 − 1),

where M is total number of matrices which satisfies the given condition. Similarly, we get

the same estimation for Corollary 5.3.5.

There is no formula for the cardinality of B and B + I, described in Corollary 5.3.7, which
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satisfy the condition for complete mapping permutation. We calculated the total number

of matrices B and B + I who satisfy the same rank n − 1, respectively by MATLAB. Let

r1, r2, . . . , rn be the rows of B. Then the span of its row vectors or row space is defined as

RowB = {u1r1 + u2r2 + · · ·+ unrn : u1, u2, . . . , un ∈ F2}.

Similarly, the column space is defined as

ColB = {u1s1 + u2s2 + · · ·+ unsn : u1, u2, . . . , un ∈ F2}

where s1, s2, . . . , sn are the columns of B. Now we define the same for matrix B + I

RowB+I = {u1rI1 + u2rI2 + · · ·+ unrIn : u1, u2, . . . , un ∈ F2}

and

ColB+I = {u1sI1 + u2sI2 + · · ·+ unsIn : u1, u2, . . . , un ∈ F2}.

The dimension of the all spaces is n− 1 and all spaces are subspaces of Fn2 . So we get

dim{RowB ∩RowB+I} ∈ {n− 1, n− 2},

Similarly, dim{ColB ∩ ColB+I} ∈ {n− 1, n− 2}.

Then the possible choices for choosing c ∈ Fn2 \ {0} are exactly

2n−2 ≤ Cardinality of c - vectors ≤ 2n−1.

Similarly for a ∈ Fn2 \ {0}, we get the same estimation. These choices of a and c are

independent from the corresponding spaces. Therefore total estimate of complete mapping

permutations is given by

M × 2m!× (2n−2)× (2n−2) ≤ Total CMP ≤M × 2m!× (2n−1)× (2n−1),

where M is total number of matrices which satisfies the given condition.
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We summerized the total counts on complete mapping permutations for any value of m and

n = 2, 3, 4, 5 as follows:

n By Theorem 5.3.1 By Theorem 5.3.3
|GL(n,F2)| |On(F2)| dim{Ker(cB−1) ∩Ker(c(B + I)−1)} Total CMP B is invertible, B + I’s rank is n− 1 Total CMP

2 6 2 n-2=0 0 (LB) 3 2m!×6
3 168 48 n-2=1 2m2m×336 (LB) 98 2m!×1176
4 20160 5824 n-2=2 2m2m×262080 (LB) 11640 2m!×651840
5 9999360 2887680 n-2=3 2m2m×626626560 (LB) 5775424 2m!×1386101760

Table 5.1: Counts of complete mapping permutations obtained from Theorems 5.3.1 and
5.3.3

n By Corollary 5.3.5 By Corollary 5.3.7
B + I is invertible, B’s rank is n− 1 Total CMP Both B,B + I have rank n− 1 Total CMP

2 3 2m!×6 6 2m!×6 (LB)
3 98 2m!×1176 168 2m!×672 (LB)
4 11640 2m!×651840 21840 2m!×349440 (LB)
5 5775424 2m!×1386101760 11189760 2m!×716144640 (LB)

Table 5.2: Counts of complete mapping permutations obtained from Corollaries 5.3.5 and
5.3.7

5.4 A construction of a class of K-complete mapping

permutations

Let Fq be the finite field of q elements and f(x) ∈ Fq[x] a permutation polynomial over

Fq. For k = 0, 1, 2, . . . , the k-th iteration of f(x), i.e. f (k)(x), is defined by the following

recurrence relation

f (0)(x) = x, f (k)(x) = f(f (k−1)(x)), k = 1, 2, . . .

For a finite set of s positive integers K = {k1, . . . , ks} we call f(x) a K-complete mapping

permutation if

fK(x) = x+
∑
k∈K

f (k)(x)

is also a permutation polynomial. The concept of K-complete mapping permutation unifies

several kinds of mappings studied before in view of applications to cryptography, coding

theory and combinatorics, we refer to [167]. For K = {1}, suppose f (0) = I is the identity

transformation.
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Theorem 5.4.1. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {2}-complete mapping permutation if the following conditions are satisfied:

1. B and (B +B−1) both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(B +B−1)−1aT = 0 and cB−1(B +B−1)−1aT = 0.

Proof. In order to be a complete mapping permutation both

y = xB + S(xaT )c (5.4.1)

and

y = x+ (xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c (5.4.2)

have to be invertible. We alredy proved Equation (5.4.1) is invertible, if B is invertible and

cB−1aT = 0. For Equation (5.4.2), since B is invertible

yB−1 = xB−1 + xB + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1

i.e., yB−1 = x(B +B−1) + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1.

Let (B +B−1) be also invertible, then

yB−1(B +B−1)−1 = x+ S(xaT )c(B +B−1)−1 + S((xB + S(xaT )c)aT )

cB−1(B +B−1)−1

i.e., yB−1(B +B−1)−1aT = xaT + S(xaT )c(B +B−1)−1aT + S((xB + S(xaT )c)aT )

cB−1(B +B−1)−1aT

i.e., xaT = yB−1(B +B−1)−1aT + S(xaT )c(B +B−1)−1aT+

S((xB + S(xaT )c)aT )cB−1(B +B−1)−1aT

i.e., xaT = yB−1(B +B−1)−1aT , since c(B +B−1)−1aT = 0 and
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cB−1(B +B−1)−1aT = 0.

Substituting xaT = yB−1(B+B−1)−1aT above and in the place of xB, for each a ∈ Fn2 \{0}

there exist a β ∈ Fn2 \ {0} such that

B =aTβ =⇒ xB = xaTβ,

i.e., xB =yB−3(B +B−3)−1aTβ,

express uniquely. Then we get

yB−1(B +B−1)−1 = x+ S(xaT )c(B +B−1)−1 + S((xB + S(xaT )c)aT )

cB−1(B +B−1)−1

i.e., x = yB−1(B +B−1)−1 + S(yB−1(B +B−1)−1aT )c(B +B−1)−1+

S((yB−1(B +B−1)−1aTβ + S(yB−1(B +B−1)−1aT )c)aT ).

Therefore, Equation (5.4.2) is invertible, if B and (B+B−1) both are invertible and c(B+

B−1)−1aT = 0, cB−1(B +B−1)−1aT = 0.

Theorem 5.4.1 provides us a connection between any function on Fm2 to a {2}-complete

mapping permutation on (Fm2 )n.

Example 5.4.2. Suppose

B =


0 0 0 1

0 0 1 0

0 1 0 1

1 0 1 0

 and a = (0, 0, 0, 1), c = (0, 0, 0, 1).

It can be directly checked that

B−1 =


0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

 , B +B−1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,
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(B +B−1)−1 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (B−1)(B +B−1)−1 =


1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0


and

cB−1aT = 0, c(B +B−1)−1aT = 0 and cB−1(B +B−1)−1aT = 0.

Thus, y = xB+S(xaT )c is a {2}-complete mapping permutation on (Fm2 )4, for any positive

integer m and any function S on Fm2 .

Theorem 5.4.3. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {1, 2}-complete mapping permutation if the following conditions are satisfied:

1. B and (I +B +B−1) both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(I +B +B−1)−1aT = 0 and cB−1(I +B +B−1)−1aT = 0.

Proof. In order to be a complete mapping permutation

y = xB + S(xaT )c (5.4.3)

y = (xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c (5.4.4)

and

y = x+ xB + S(xaT )c+ (xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c (5.4.5)

have to be invertible. We alredy proved Equation (5.4.3) is invertible, if B is invertible

and cB−1aT = 0. Similarly Equation (5.4.4) is also invertible under same conditions. For
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Equation (5.4.5), since B is invertible

yB−1 = xB−1 + x+ S(xaT )cB−1 + xB + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1

i.e., yB−1 = x(I +B +B−1) + S(xaT )cB−1 + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1.

Let (I +B +B−1) be also invertible, then

yB−1(I +B +B−1)−1 = x+ S(xaT )cB−1(I +B +B−1)−1 + S(xaT )c(I +B+

B−1)−1 + S((xB + S(xaT )c)aT )c(I +B +B−1)−1

i.e., yB−1(I +B +B−1)−1aT = xaT + S(xaT )cB−1(I +B +B−1)−1aT + S(xaT )c(I+

B +B−1)−1aT + S((xB + S(xaT )c)aT )c(I +B +B−1)−1aT

i.e., xaT = yB−1(I +B +B−1)−1aT + S(xaT )cB−1(I +B +B−1)−1aT + S(xaT )c(I+

B +B−1)−1aT + S((xB + S(xaT )c)aT )c(I +B +B−1)−1aT

i.e., xaT = yB−1(I +B +B−1)−1aT since cB−1(I +B +B−1)−1aT = 0 and

c(I +B +B−1)−1aT = 0.

Substituting xaT = yB−1(I + B + B−1)−1aT above and in the place of xB, for each a ∈

Fn2 \ {0} there exist a β ∈ Fn2 \ {0} such that

B =aTβ =⇒ xB = xaTβ,

i.e., xB =yB−3(B +B−3)−1aTβ,

express uniquely. Then we get

yB−1(I +B +B−1)−1 = x+ S(xaT )cB−1(I +B +B−1)−1 + S(xaT )c(I +B+

B−1)−1 + S((xB + S(xaT )c)aT )c(I +B +B−1)−1

i.e., x = yB−1(I +B +B−1)−1 + S(yB−1(I +B +B−1)−1aT )cB−1(I +B +B−1)−1

+ S(yB−1(I +B +B−1)−1aT )c(I +B +B−1)−1 + S((yB−1(I +B +B−1)−1

aTβ + S(yB−1(I +B +B−1)−1aT )c)aT )c(I +B +B−1)−1.

Therefore, Equation (5.4.5) is invertible, if B and (I + B + B−1) both are invertible and
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cB−1aT = 0, c(I +B +B−1)−1aT = 0 and cB−1(I +B +B−1)−1aT = 0.

Theorem 5.4.3 provides us a connection between any function on Fm2 to a {1, 2}-complete

mapping permutation on (Fm2 )n.

Example 5.4.4. Suppose

B =


0 0 1

0 1 0

1 0 0

 and a = (0, 1, 0), c = (0, 0, 1).

It can be directly checked that

B−1 =


0 0 1

0 1 0

1 0 0

 , (I +B +B−1)−1 =


1 0 0

0 1 0

0 0 1

 ,

(B−1)(I +B +B−1)−1 =


0 0 1

0 1 0

1 0 0


and

cB−1aT = 0, c(I +B +B−1)−1aT = 0 and cB−1(I +B +B−1)−1aT = 0.

Thus, y = xB + S(xaT )c is a {1, 2}-complete mapping permutation on (Fm2 )3, for any

positive integer m and any function S on Fm2 .

In this context we raise the following question:

Given any pair of positive integers n, m estimate the total number of {2}-

complete mapping permutations and {1, 2}-complete mapping permutations ob-

tained from Theorems 5.4.1 and 5.4.3.

There is no formula for the cardinality of B and B + B−1, described in Theorem 5.4.1,

which satisfy the condition for {2}-complete mapping permutation. We calculate the total

number of {2}-complete mapping permutations, i.e., Total {2}-CMP, by MATLAB.

There is no formula for the cardinality of B and I +B +B−1, described in Theorem 5.4.3,

which satisfy the condition for {1, 2}-complete mapping permutation. We calculate the total
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number of {1, 2}-complete mapping permutations, i.e., Total {1, 2}-CMP, by MATLAB.

We summerized the total counts on {2}-complete mapping permutations and {1, 2}-

complete mapping permutations for any value of m and n = 2, 3, 4, 5 as follows:

n By Theorem 5.4.1 By Theorem 5.4.3
B and (B +B−1) both are invertible Total {2}-CMP B and (I +B +B−1) both are invertible Total {1, 2}-CMP

2 2 0 4 6
3 48 0 112 504
4 5824 2m2m×100800 13888 2m2m×315840
5 2887680 2m2m×279982080 6888448 2m2m×749952000

Table 5.3: Counts of {2}-complete mapping permutations and {1, 2}-complete mapping
permutations obtained from Theorems 5.4.1 and 5.4.3

Similarly we can drive the expression for {r}-complete mapping permutations, r = 3

and 4. With factor {3} and {4}, we have the combinations as follows:

With factor {3} With factor {4}
{3}-CMP {4}-CMP
{1, 3}-CMP {1, 4}-CMP
{2, 3}-CMP {2, 4}-CMP
{1, 2, 3}-CMP {3, 4}-CMP

{1, 2, 4}-CMP
{1, 3, 4}-CMP
{2, 3, 4}-CMP
{1, 2, 3, 4}-CMP

Table 5.4: All combinations of complete mapping permutations

Here we are interested only to drive the expression for {3}, {1, 2, 3}, {4} and {1, 2, 3, 4}-

complete mapping permutations. The following theorems and corollaries are as follows:

Theorem 5.4.5. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {3}-complete mapping permutation if the following conditions are satisfied:

1. B and (B +B−2) both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(B +B−2)−1aT = 0, cB−1(B +B−2)−1aT = 0

and cB−2(B +B−2)−1aT = 0.
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Proof. In order to be a complete mapping permutation both

y = xB + S(xaT )c (5.4.6)

and

y = x+ ((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)B + S(((xB + S(xaT )c)B

+ S((xB + S(xaT )c)aT )c)aT )c
(5.4.7)

have to be invertible. We alredy proved Equation (5.4.6) is invertible, if B is invertible and

cB−1aT = 0. For Equation (5.4.7), since B is invertible

yB−1 = xB−1 + (xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c+

S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )cB−1

i.e., yB−2 = xB−2 + xB + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1+

S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )cB−2.

Let (B +B−2) be also invertible, then

yB−2(B +B−2)−1 = x+ S(xaT )c(B +B−2)−1 + S((xB + S(xaT )c)aT )cB−1

(B +B−2)−1 + S(((xB + S(xaT )c)B + S((xB + S(xaT )c)

aT )c)aT )cB−2(B +B−2)−1

i.e., yB−2(B +B−2)−1aT = xaT + S(xaT )c(B +B−2)−1aT + S((xB + S(xaT )c)aT )

cB−1(B +B−2)−1aT + S(((xB + S(xaT )c)B + S((xB+

S(xaT )c)aT )c)aT )cB−2(B +B−2)−1aT

i.e., xaT = yB−2(B +B−2)−1aT + S(xaT )c(B +B−2)−1aT + S((xB + S(xaT )c)aT )

cB−1(B +B−2)−1aT + S(((xB + S(xaT )c)B + S((xB+

S(xaT )c)aT )c)aT )cB−2(B +B−2)−1aT

i.e., xaT = yB−2(B +B−2)−1aT , since c(B +B−2)−1aT = 0,

cB−1(B +B−2)−1aT = 0 and cB−2(B +B−2)−1aT = 0.

Substituting xaT = yB−2(B+B−2)−1aT above and in the place of xB, for each a ∈ Fn2 \{0}
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there exist a β ∈ Fn2 \ {0} such that

B =aTβ =⇒ xB = xaTβ,

i.e., xB =yB−3(B +B−3)−1aTβ,

express uniquely. Then we get

yB−2(B +B−2)−1 = x+ S(xaT )c(B +B−2)−1 + S((xB + S(xaT )c)aT )cB−1

(B +B−2)−1 + S(((xB + S(xaT )c)B + S((xB + S(xaT )c)

aT )c)aT )cB−2(B +B−2)−1

i.e., x = yB−2(B +B−2)−1 + S(yB−2(B +B−2)−1aT )c(B +B−2)−1 + S((yB−2

(B +B−2)−1aTβ + S(yB−2(B +B−2)−1aT )c)aT )cB−1(B +B−2)−1+

S(((yB−2(B +B−2)−1aTβ + S(yB−2(B +B−2)−1aT )c)B + S((yB−2(B +B−2)−1

aTβ + S(yB−2(B +B−2)−1aT )c)aT )c)aT )cB−2(B +B−2)−1.

Therefore, Equation (5.4.7) is invertible, if B and (B + B−2) both are invertible and

cB−1aT = 0, c(B +B−2)−1aT = 0, cB−1(B +B−2)−1aT = 0 and cB−2(B +B−2)−1aT = 0.

Theorem 5.4.5 provides us a connection between any function on Fm2 to a {3}-complete

mapping permutation on (Fm2 )n.

Theorem 5.4.6. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {4}-complete mapping permutation if the following conditions are satisfied:

1. B and (B +B−3) are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(B +B−3)−1aT = 0, cB−1(B +B−3)−1aT = 0,

cB−2(B+B−3)−1aT = 0 and cB−3(B +B−3)−1aT = 0.
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Proof. In order to be a complete mapping permutation both

y = xB + S(xaT )c (5.4.8)

and

y = x+ (((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)B + S(((xB + S(xaT )c)B+

S((xB + S(xaT )c)aT )c)aT )c)B + S((((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)B

+ S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )c)aT )c

(5.4.9)

have to be invertible. We alredy proved Equation (5.4.8) is invertible, if B is invertible and

cB−1aT = 0. For Equation (5.4.9), since B is invertible

yB−1 = xB−1 + ((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)B + S(((xB+

S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )c+ S((((xB + S(xaT )c)B+

S((xB + S(xaT )c)aT )c)B + S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )

c)aT )c)aT )cB−1

i.e., yB−2 = xB−2 + (xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c+ S(((xB + S(xaT )

c)B + S((xB + S(xaT )c)aT )c)aT )cB−1 + S((((xB + S(xaT )c)B + S((xB+

S(xaT )c)aT )c)B + S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )c)aT )cB−2

i.e., yB−3 = xB−3 + xB + S(xaT )c+ S((xB + S(xaT )c)aT )cB−1 + S(((xB + S(xaT )

c)B + S((xB + S(xaT )c)aT )c)aT )cB−2 + S((((xB + S(xaT )c)B + S((xB+

S(xaT )c)aT )c)B + S(((xB + S(xaT )c)B + S((xB + S(xaT )c)aT )c)aT )c)aT )cB−3.

Let (B +B−3) be also invertible, then

yB−3(B +B−3)−1 = x+ S(xaT )c(B +B−3)−1 + S((xB + S(xaT )c)aT )cB−1(B +B−3)−1

+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )cB−2(B+B−3)−1+S((((xB+S(xaT )c)B+

S((xB+S(xaT )c)aT )c)B+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )c)aT )cB−3(B+B−3)−1,

i.e., yB−3(B+B−3)−1aT = xaT+S(xaT )c(B+B−3)−1aT+S((xB+S(xaT )c)aT )cB−1(B+B−3)−1aT
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+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )cB−2(B+B−3)−1aT+S((((xB+S(xaT )c)B+

S((xB+S(xaT )c)aT )c)B+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )c)aT )cB−3(B+B−3)−1aT

i.e., xaT = yB−3(B +B−3)−1aT , since c(B +B−3)−1aT = 0, cB−1(B +B−3)−1aT = 0,

cB−2(B +B−3)−1aT = 0 and cB−3(B +B−3)−1aT = 0.

Substituting xaT = yB−3(B+B−3)−1aT above and in the place of xB, for each a ∈ Fn2 \{0}

there exist a β ∈ Fn2 \ {0} such that

B =aTβ =⇒ xB = xaTβ,

i.e., xB =yB−3(B +B−3)−1aTβ,

express uniquely. Then we get

yB−3(B +B−3)−1 = x+ S(xaT )c(B +B−3)−1 + S((xB + S(xaT )c)aT )cB−1(B +B−3)−1

+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )cB−2(B+B−3)−1+S((((xB+S(xaT )c)B+

S((xB+S(xaT )c)aT )c)B+S(((xB+S(xaT )c)B+S((xB+S(xaT )c)aT )c)aT )c)aT )cB−3(B+B−3)−1

i.e., x = yB−3(B+B−3)−1+S(yB−3(B+B−3)−1aT )c(B+B−3)−1+S((yB−3(B+B−3)−1aTβ

+S(yB−3(B+B−3)−1aT )c)aT )cB−1(B+B−3)−1+S(((yB−3(B+B−3)−1aTβ+S(yB−3(B+B−3)−1

aT )c)B+S((yB−3(B+B−3)−1aTβ+S(yB−3(B+B−3)−1aT )c)aT )c)aT )cB−2(B+B−3)−1+

S((((yB−3(B +B−3)−1aTβ + S(yB−3(B +B−3)−1aT )c)B + S((yB−3(B +B−3)−1aTβ+

S(yB−3(B+B−3)−1aT )c)aT )c)B+S(((yB−3(B+B−3)−1aTβ+S(yB−3(B+B−3)−1aT )c)B

+S((yB−3(B +B−3)−1aTβ + S(yB−3(B +B−3)−1aT )c)aT )c)aT )c)aT )cB−3(B +B−3)−1.

Therefore, Equation (5.4.9) is invertible, if B and (B + B−2) both are invertible and

cB−1aT = 0, c(B +B−2)−1aT = 0, cB−1(B +B−2)−1aT = 0 and cB−2(B +B−2)−1aT = 0.

Theorem 5.4.6 provides us a connection between any function on Fm2 to a {4}-complete
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mapping permutation on (Fm2 )n.

Corollary 5.4.7. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {1, 2, 3}-complete mapping permutation if the following conditions are satisfied:

1. B and (I +B +B−1 +B−2) both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(I +B +B−1 +B−2)−1aT = 0, cB−1(I +B +B−1 +B−2)−1aT = 0,

and cB−2(I +B +B−1 +B−2)−1aT = 0.

Corollary 5.4.8. Suppose x, y ∈ (Fm2 )n, a, c ∈ Fn2 , B = (bij)n×n where bij ∈ F2, and S is

any function on Fm2 . Then

y = xB + S(xaT )c

is a {1, 2, 3, 4}-complete mapping permutation if the following conditions are satisfied:

1. B and (I +B +B−1 +B−2 +B−3) both are invertible.

2. There exist a, c ∈ F n
2 \ {0} such that

cB−1aT = 0, c(I+B+B−1+B−2+B−3)−1aT = 0, cB−1(I+B+B−1+B−2+B−3)−1aT = 0,

cB−2(I+B+B−1+B−2+B−3)−1aT = 0 and cB−3(I+B+B−1+B−2+B−3)−1aT = 0.

In this context we raise the following question:

Given any pair of positive integers n, m estimate the total number of {3}-

complete mapping permutations, {1, 2, 3}-complete mapping permutations, {4}-

complete mapping permutations and {1, 2, 3, 4}-complete mapping permutations

obtained from Theorems 5.4.5 and 5.4.6, Corollaries 5.4.7 and 5.4.8 respectively.

Similarly we can estimate the total counts by MATLAB.
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5.5 Extension on a complete mapping permutation S of dimension r to a complete

mapping permutation of dimension n

5.5 Extension on a complete mapping permutation S

of dimension r to a complete mapping permuta-

tion of dimension n

Definition 5.5.1. Let S : F r → F r and the mapping S+ : F r → F r be defined as S+(z) =

S(z) + z for all z ∈ F r. In particular, S is a complete mapping if and only if S and S+

both are bijective.

Theorem 5.5.2. Suppose x, y ∈ (F2)
n, A = (aij)n×r, C = (cij)r×n, B = (bij)n×n where

aij, bij, cij ∈ F2, and S is permutation on (F2)
r, where n = 2r. Then

y = xB + S(xA)C

is a complete mapping permutation on (F2)
n if the following conditions are satisfied:

1.
(
B A

)
and B + I both are invertible.

2. There exist non-zero matrices D = (dij)n×r and E = (eij)n×r, where dij, eij ∈ F2 such

that

BD = On×r, CD = Ir , CE = 0r and (B + I)E = A.

Proof. In order to be a complete mapping permutation both

y = xB + S(xA)C (5.5.1)

and

y = x(B + I) + S(xA)C (5.5.2)

have to be invertible. Following arguments are due to Agievich [2] which we recall for

completeness. Let D be a matrix of dimension n× r such that

yD = xBD + S(xA)CD

i.e., yD = S(xA)Ir, since BD = On×r and CD = Ir

i.e., xA = S−1(yD).
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Since S is complete mapping permutation, xA can be uniquely determined from yD. After

determining xA, we get

xB = y + yDC

i.e., x
(
B A

)
=
(
y + yDC S−1(yD)

)
since

(
B A

)
is invertible.

Therefore, Equation (5.5.1) is invertible, if
(
B A

)
is invertible, S is bijective and there

exist a non-zero matrix D such that BD = On×r and CD = Ir. Similarly we check for

Equation (5.5.2) with same B, A and C, let E be a matrix of dimension n× r such that

yE = x(B + I)E + S(xA)CE

i.e., yE = xA, since (B + I)E = A and CE = 0r.

After determining xA, we get

y = x(B + I) + S(yE)C

i.e., x = y(B + I)−1 + S(yE)C(B + I)−1 since (B + I) is invertible.

Therefore, Equation (5.5.2) is invertible, if B + I is invertible and there exist a non-zero

matrix E such that (B + I)E = A and CE = Or. We see that by rank properties:

rank(C) = rank(D) = r, i.e., rank(B) ≤ n− r and rank(E) ≤ n− r.

Since rank(B + I) = n and rank
(
B A

)
= n, then

rank(B + I) + rank(E) ≤ rank(A) + n,

rank(E) ≤ rank(A).

This inequality holds only when n = 2r.

Theorem 5.5.2 provides us a connection between permutation on (F2)
r to a complete

mapping permutation on (F2)
n.
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5.5 Extension on a complete mapping permutation S of dimension r to a complete

mapping permutation of dimension n

Example 5.5.3. Suppose

B =


1 1 1 1

1 1 1 0

0 0 0 1

1 1 1 0

 , A =


0 0

0 0

1 0

0 1

 and C =

 0 1 1 1

1 1 0 1

 .

There exist D and E

D =


1 0

1 1

0 1

0 0

 and E =


0 1

1 0

0 1

1 1

 .

It can be directly checked that

(B + I) ∗ E =


0 0

0 0

1 0

0 1

 , BD = On×r, CD = Ir and CE = 0r.

Thus, y = xB + S(xA)C is a complete mapping permutation on (F2)
4, for permutation S

on (F2)
2.

Corollary 5.5.4. Suppose x, y ∈ (F2)
n, A = (aij)n×r, C = (cij)r×n, B = (bij)n×n where

aij, bij, cij ∈ F2, and S is complete mapping permutation on (F2)
r, where n = 2r. Then

y = xB + S(xA)C

is a complete mapping permutation on (F2)
n if the following conditions are satisfied:

1.
(
B A

)
and B + I both are invertible.

2. We choose matrices B, A and C such that

BA = On×r and CA = Ir.
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Corollary 5.5.4 provides us a connection between any complete mapping permutation

on (F2)
r to a complete mapping permutation on (F2)

n.

Example 5.5.5. Suppose

B =


0 1 0 0

1 0 1 1

0 0 0 0

1 0 1 1

 , A =


0 1

0 0

1 1

1 0

 and C =

 0 1 0 1

0 0 1 1

 .

It can be directly checked that

B ∗ A =


0 0

0 0

0 0

0 0

 and C ∗ A =

 1 0

0 1

 .

Thus, y = xB + S(xA)C is a complete mapping permutation on (F2)
4, for any complete

mapping permutation S on (F2)
2.

In this context we raise the following question:

Given any permutation and complete mapping permutations on (F2)
r obtained

complete mapping permutation from Theorem 5.5.2 and Corollary 5.5.4 respec-

tively.

We summerized the total counts on complete mapping permutations for r = 2 and n = 4

as follows:

n By Theorem 5.5.2 By Corollary 5.5.4
r Total CMP r Total CMP

4 2 725760 2 107520

Table 5.5: Counts of complete mapping permutation obtained from Theorem 5.5.2 and
Corollary 5.5.4
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5.6 Huge quasigroups obtained by a chain of general-

ized XS-circuits

The following proposition is proved by Sade [143].

Proposition 5.6.1. [143, 14] Let (Q,+) be an admissible group with complete mapping θ.

Then ∗ : Q×Q→ Q is defined as:

x ∗ y = θ(x− y) + y, (5.6.1)

where x, y ∈ Q. Then (Q, ∗) is a quasigroup.

Note that S is a permutation or complete mapping permutation on (F2)
r when r ≥ 2,

so XS-circuits is a complete mapping permutation on (F2)
n where n = 2r. Define

(A,B,C|S)(1) = (A,B,C|S) and let (A,B,C|S)(t), t ≥ 1, be defined. Then, for some

B, A, C be matrices over F2 of dimension (t+ 1)× (t+ 1), (t+ 1)× r, r × (t+ 1) respec-

tively, define (A,B,C|S)(t+1) to be the generalized XS-circuits created by the permutation

or complete mapping permutation (A,B,C|S)(t). Note that (A,B,C|S)(t) is a complete

mapping permutations on (F2)
r2t for each t ≥ 1. Hence we have defined inductively a chain

of complete mapping permutations {(A,B,C|S)(t)|t = 1, 2, 3, . . . } in the corresponding

groups. Now we can construct quasigroup of order 2r2
t

on the set (F2)
r2t for each n ≥ 1.

A class of huge quasigroups of order 22k can be designed as follows. Take S : (F2)
2t →

(F2)
2t , where t < k is a small positive integer (t = 1, 2, 3). Choose B, A, C be matrices

over F2 of dimension 2t+i×2t+i, 2t+i×2t, 2t×2t+i respectively, 1 ≤ i ≤ k− t, and construct

iteratively the complete mapping permutation (A,B,C|S) = (A,B,C|S)k−t : (F2)
2k →

(F2)
2k . Define a quasigroup operation ∗ on the set (F2)

2k . By Equation (5.6.1) we get

x ∗ y = (A,B,C|S)(x+ y) + y for every x, y in (F2)
2k .

Note that we need only k − t iterations for getting the quasigroups of required order.

Construct a quasigroup of order 227 , for instance:

Example 5.6.2. We can use the complete mapping permutation S : F2
2 → F2

2 for Example

1.8.2. So t = 1, we choose B, A, C be matrices over F2 of dimension 2t+i× 2t+i, 2t+i× 2t,
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2t× 2t+i respectively, i = 1, 2, . . . , 6. Now we can construct the following complete mapping

permutations, where xi, yi ∈ (F2)
i, i = 4, 8, 16, . . . :

S : (F2)
2 → (F2)

2, (A,B,C|S)(1) as

x4 7→ y4 = x4B4×4 + S(x4A4×2)C2×4

where B4×4, A4×2 and C2×4 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

(A,B,C|S)(1) : (F2)
4 → (F2)

4, (A,B,C|S)(2) as

x8 7→ y8 = x8B8×8 + (A,B,C|S)(1)(x8A8×4)C4×8

where B8×8, A8×4 and C4×8 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

(A,B,C|S)(2) : (F2)
8 → (F2)

8, (A,B,C|S)(3) as

x16 7→ y16 = x16B16×16 + (A,B,C|S)(2)(x16A16×8)C8×16

where B16×16, A16×8 and C8×16 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

(A,B,C|S)(3) : (F2)
16 → (F2)

16, (A,B,C|S)(4) as

x32 7→ y32 = x32B32×32 + (A,B,C|S)(3)(x32A32×16)C16×32

where B32×32, A32×16 and C16×32 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

(A,B,C|S)(4) : (F2)
32 → (F2)

32, (A,B,C|S)(5) as

x64 7→ y64 = x64B64×64 + (A,B,C|S)(4)(x64A64×32)C32×64

where B64×64, A64×32 and C32×64 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

(A,B,C|S)(5) : (F2)
64 → (F2)

64, (A,B,C|S)(6) as
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x128 7→ y128 = x128B128×128 + (A,B,C|S)(5)(x128A128×64)C64×128

where B128×128, A128×64 and C64×128 satisfied by Theorem 5.5.2 or Corollary 5.5.4.

To store a small amount of memory for S, we get the huge quasigroup of order 22k . The

complexity of this construction is O(log(log n)), since n = 22k .

5.7 Associative condition on quasigroups obtained by

XS-circuits

In quasigroup (Q, ∗), it must be shown that knowledge of any two of x, y, z in Q, then

x ∗ y = z

specifies the third uniquely.

Suppose that Q = (Fm2 )n, x = (x1, . . . , xn), y = (y1, . . . , yn) and z = (z1, . . . , zn) ∈ (Fm2 )n.

Then the elements of quasigroup ( i.e., ∗ : (Fm2 )n× (Fm2 )n → (Fm2 )n ) obtained by XS-circuit

(a, b, c|S) as complete mapping permutation is written as:

(z1, . . . , zn) = (
∑
i∈[n]

(xi + yi)bi1, . . . ,
∑
i∈[n]

(xi + yi)bin) + (
∑
i∈[r]

sici1, . . . ,

∑
i∈[r]

sicin) + (y1, . . . , yn)

= (
∑
i∈[n]

(xi + yi)bi1 +
∑
i∈[r]

sici1 + y1, . . . ,
∑
i∈[n]

(xi + yi)bin+

∑
i∈[r]

sicin + yn),

where (s1, s2, . . . , sr) = S(
∑

i∈[n](xi + yi)ai1,
∑

i∈[n](xi + yi)ai2, . . . ,
∑

i∈[n](xi + yi)air).

Associative axiom:

(x ∗ y) ∗ z = x ∗ (y ∗ z).
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First, we demostrate the associative condition for L.H.S., let p = (p1, . . . , pn) ∈ (F2)
n be

the output of L.H.S.

(p1, . . . , pn) = (
∑
i∈[n]

(xi + yi)bi1 +
∑
i∈[r]

sici1 + y1, . . . ,
∑
i∈[n]

(xi + yi)bin+

∑
i∈[r]

sicin + yn) ∗ (z1, . . . , zn)

i.e., (p1, . . . , pn) = (
∑
i∈[n]

(ui + zi)bi1 +
∑
i∈[r]

s
(1)
i ci1 + z1, . . . ,

∑
i∈[n]

(ui + zi)bin+

∑
i∈[r]

s
(1)
i cin + un),

where (u1, u2, . . . , ur) = (
∑

i∈[n](xi + yi)bi1 +
∑

i∈[r] sici1 + y1, . . . ,
∑

i∈[n](xi + yi)bin +∑
i∈[r] sicin + yn) and (s

(1)
1 , s

(1)
2 , . . . , s

(1)
r ) = S(

∑
i∈[n](ui + zi)ai1,

∑
i∈[n](ui + zi)ai2, . . . ,∑

i∈[n](ui + zi)air). Similarly, we demostrate the associative condition for R.H.S., let

q = (q1, . . . , qn) ∈ (F2)
n be the output of R.H.S.

(q1, . . . , qn) = (x1, . . . , xn) ∗ (
∑
i∈[n]

(yi + zi)bi1 +
∑
i∈[r]

s
(2)
i ci1 + z1, . . . ,

∑
i∈[n]

(yi + zi)bin+

∑
i∈[r]

s
(2)
i cin + zn)

i.e., (q1, . . . , qn) = (
∑
i∈[n]

(xi + vi)bi1 +
∑
i∈[r]

s
(3)
i ci1 + v1, . . . ,

∑
i∈[n]

(xi + vi)bin+

∑
i∈[r]

s
(3)
i cin + vn).

where (s
(2)
1 , s

(2)
2 , . . . , s

(2)
r ) = S(

∑
i∈[n](yi + zi)ai1,

∑
i∈[n](yi + zi)ai2, . . . ,

∑
i∈[n](yi + zi)air),

(v1, v2, . . . , vr) = (
∑

i∈[n](yi+zi)bi1+
∑

i∈[r] s
(2)
i ci1+y1, . . . ,

∑
i∈[n](yi+zi)bin+

∑
i∈[r] s

(2)
i cin+

yn) and (s
(3)
1 , s

(3)
2 , . . . , s

(3)
r ) = S(

∑
i∈[n](yi + zi)ai1,

∑
i∈[n](yi + zi)ai2, . . . ,

∑
i∈[n](yi + zi)air).

It can be checked that the quasigroup (Q, ∗) is associative if and only if the following

equality is satisfied in ((Fm2 )n,⊕n)

(p1, . . . , pn) = (q1, . . . , qn). (5.7.1)

This equation shows that the obtained quasigroups is highly non-associative, since by Theo-

rems 5.3.1 and 5.3.3, Corollaries 5.3.5 and 5.3.7 function S on Fm2 and a, c in Fn2 can hardly
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satisfies the Equation (5.7.1) for given elements x, y, z in Q. Among those quasigroups

which one have minimum associative triples for particular S, a and c to be estimated by

Equation (5.7.1). In Chapter 3, we solved similar equations for diiferent kinds of permuta-

tions, i.e., linear permutations, quadratic permutations, APN permutations, Differentially

4-uniform permutations and Differentially δ-uniform permutations and get the counts of

associative triples.



Chapter 6

Conclusions

6.1 Conclusion

In this thesis, we have studied quasigroups with minimum number of associative triples

and find associative index of some implemented quasigroups which are derived from Feistel

function and permutation over finite fields. We futher evolved quasigroups with low as-

sociative triples by Genetic algorithms. Quasigroups are represented as vectorial Boolean

function, since each coordinate function of a vectorial Boolean function is a Boolean func-

tion. We also evolved balanced Boolean function by simulated annealing with profile (n,

d, nl, ac), i.e., n variables Boolean function with algebraic degree d, nonlinearity nl and

autocorrelation ac.

We evolve balanced Boolean function with profile (8, 7, 114, 32) which is equivalent to

random plus hill-climb algorithm result [31] and Kavut and Yücel’s result [73]. Using

Genetic algorithm, we further evolve isotopic quasigroups with small order, 4, 5, . . . , 10

and also with large order 24, 25, . . . , 28 whose associative indeces are relatively less than

the square of their order. We propose a new cost function for this evolving.

Markovski and Mileva [104] proved that if f : Fn2 → Fn2 is bijective then the Feistel

network

F : Fn2 × Fn2 → Fn2 × Fn2
F (l, r) = (r, l + f(r)) ∀ (l, r) ∈ Fn2 × Fn2 .

is a complete mapping permutation. They indentified that Feistel network based quasi-

group is highly non-associative with respective to the governing equations obtained from

127
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the associativity condition. We solve these equations for linear permutation, quadratic

permutation, APN (almost perfect nonlinear) permutations and differentially δ-uniform

permutations over Fn2 and get the counts of associative triples. We see that linear permuta-

tions, APN permutations, differentially 4-uniform permutations and differentially δ-uniform

permutations over Fn2 provide the associative index which is equal to the square of quasi-

group’s order. For quadratic permutation, we get the lower bound is 2|Q|2, where |Q| is

the order of quasigroup. Later we identify the relation between the cryptographic charac-

teristics, i.e., nonlinearity, differential uniformity and Strict Avalanche Criteria (SAC), of

bijective mapping and Feistel network based quasigroup.

Kotzig and Reischer [87] proposed the construction of quasigroups by finite commuta-

tive, but not necessarily associative or unitary, ring. We implement this construction by

two different permutations over F2n and get the counts of associative triples by using linear

permutations, affine permutations, quadratic permutations and linear complete mapping

permutations over F2n which are satisfy the best known upper bound. We further also ex-

amine how the cryptographic characteristics, i.e., nonlinearity and differential uniformity,

affect the quasigroups and using permutations.

The theory of XS-circuits is proposed by Agievich [2]. Construction of complete mapping

permutations by using Feistel network has been proposed by Markovski and Mileva [104]

which they used to construct huge quasigroups. We construct complete mapping permuta-

tions from functions over finite fields by using XS-circuits and give the counts for particular

order. We also construct K-complete mapping permutation which can be used to define uni-

formly distributed sequences. We also find a recursive constrictions that extend a complete

mapping of dimension r to a complete mapping of dimension n, where r ≤ n.

6.2 Some open problems

There are many open questions of Quasigroups and Boolean function apart from the results

given in this thesis. We summarize below some open problems which immediately arise from

our study.

• Up to now there has been described no infinite series of quasigroups (Q, ∗) with order

n for which the value of a(Q) would be linear in |Q| = n.
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• There has been described only one infinite series of quasigroups (Q, ∗) with order n

for which a(Q) < n2, and that was done by Kotzig and Reischer [87]. The other

algebraic construction of quasigroups (Q, ∗) with order n for which a(Q) < n2, is a

challenge for us.

• Drápal and Valent [48] analysed that each quasigroup Q that is isotopic to an abelian

group G there exist transformations or permutations α, β, γ of G such that

α + β + γ = 0 and a(Q) = |{(x, y, z) ∈ G3 : α(x) + β(y) + γ(z) = 0}|.

To find the minimum value of a(Q) is an open problem. On the heuristic search point

of view it is more suitable for further research.

• Specifically we focus on an open problem for n = 8 balanced Boolean function with

profile (8, 5, 118, 16).
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