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Abstract

In the practical world of everyday life, full of complexities, we face baffling problem of making

the myriad of judgments. Every situation needs formulation of the problem under an appropriate

theoretical model followed by sifting and a careful analysis of the evidence leading to a conclusion

whose validity is based on reason. In the progression of scientific reasoning, statistical inference

provides the methodology developed to meet these requirements. In many practical situations it may

be of interest to select the best (or worst) of k (≥ 2) available populations (or options), where the

quality of a population is defined in terms of unknown parameters associated with it. In the statistical

literature, these type of problems are classified as “Ranking and Selection Problem”. A problem of

practical interest after selection of the best (or worst) population, using a given selection procedure,

is estimation of the worth of the selected population. In the statistical literature, these problems are

called “Estimation After Selection Problems”. In this thesis, we study this problem of estimating

parameters of the selected population(s) for certain distributions. An application of this theory is

shown in this thesis. Most of the previous works are studied under the squared error loss function.

In this thesis, some problems are studied under some other loss functions.

In this thesis, we study this problem of estimating parameters of the selected population(s) for

certain distributions. A brief summary of the thesis is give below.

In chapter 1, a review of available work on the problem of estimation after selection is given. A

summary of the results in the thesis is also given.

In Chapter 2, some basic definitions results and techniques are explained which are of use in

this thesis.

In Chapter 3, two normal populations with different unknown means and same known variance

are considered. The population with the smaller sample mean is selected. Various estimators are

constructed for the mean of the selected normal population. Finally, we are compared with respect

to the bias and Mean Squared Error (MSE) risks by the method of Monte-Carlo simulation and their

performances are analyzed with the help of graphs.

In Chapter 4, we consider two competing pairs of random variables (X ,Y1) and (X ,Y2) satis-

fying linear regression models with equal intercepts. We describe the model which connects the

i



ii

selection between two regression lines with the selection between two normal populations for es-

timating regression coefficients of the selected regression line. We apply this model to a problem

in finance which involves selecting security with lower risk. We assume that an investor being risk

averse always chooses the security with lower risk (or, volatility ) while choosing one of two secu-

rities available to him for investment and further is interested in estimating the risk of the chosen

security. We construct several estimators and apply the theory to real data sets. Finally, graphical

representation of the results is given.

In Chapter 5, independent random samples are drawn from two normal populations with same

unknown mean and different unknown variances. The population corresponding to the smallest sum

of the squared deviations from the mean is selected as the best population. We consider estimation

of quantiles of the selected population. Admissible class of estimators for the quantile of the selected

population is found in certain subclasses of estimators. The biases and mean squared error risks of

these estimators are compared numerically by Monte-Carlo simulation. Finally, the biases and risks

of different estimators are represented by graphs.

In Chapter 6, we consider independent random samples Xi1, . . . ,Xin drawn from k(k≥ 2) popula-

tion Πi, i = 1, ...,k. The observations from Πi follows Pareto distribution with an unknown scale (θi)

and common known shape parameters. In this chapter, estimation of an unknown scale parameter of

the selected population from the given k Pareto population are discussed. The uniformly minimum

risk unbiased (UMRU) estimator of scale parameter of the population corresponding to the largest

and smallest θi, are determined under the Generalized Stein loss function. Sufficient condition for

minimaxity of an estimator of θL(scale parameter of the population corresponding to the largest θi)

and θS (scale parameter of the population corresponding to the smallest θi) are given, and we de-

termine that the generalized Bayes estimator of θS is minimax for k = 2. Also, found the class of

linear admissible estimators of θL(θS). Further, we demonstrate that the UMRU estimator of θS is

inadmissible. Finally some results and discussions are reported.

In Chapter 7, we consider Π1, . . . ,Πk, k (≥ 2) independent populations, where Πi follows the

uniform distribution over the interval (0,θi) and θi > 0 (i = 1, . . . ,k) is an unknown scale parameter.

The population associated with the largest scale parameter is called the best population. The prob-

lem of estimating the scale parameter θL of the selected uniform population when sample sizes are

unequal and the loss is measured by the squared log error (SLE) loss function is considered. We

derive the uniformly minimum risk unbiased (UMRU) estimator of θL under the SLE loss function

and two natural estimators of θL are also studied. For k = 2, we derive a sufficient condition for

inadmissibility of an estimator of θL. Using these conditions, we conclude that the UMRU estimator

and natural estimator are inadmissible. Finally, the risk functions of various competing estimators of

θL are compared through simulation.
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In Chapter 8, k(≥ 2) independent uniform populations, over the interval (0,θi) and θi > 0 (i =

1, . . . ,k) be an unknown scale parameter, are considered . In this chapter, we consider the problem of

estimating the scale parameter θL of the selected uniform population when sample sizes are unequal,

and the loss is measured by the generalized stein loss (GSL) function. The uniformly minimum risk

unbiased (UMRU) estimator of θL is derived, and two natural estimators of θL are also studied under

the generalized stein loss (GSL) function. The natural estimator ξN,2 is proved to be the generalized

Bayes estimator with respect to a noninformative prior. For k = 2, we give a sufficient condition

for inadmissibility of an estimator of θL and show that the UMRU estimator and natural estimator

are inadmissible. A simulation study is also carried out for the performance of the risk functions of

various competing estimators. Finally some results and discussions are reported.

Finally, Chapter 9 presents the summary and concluding remarks of this thesis and the possible

directions of the future scope.
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Chapter 1

Introduction

1.1 Introduction

Let Π1, . . . ,Πk be k populations with associated probability distribution being characterized by the

parameters θ1, . . . ,θk respectively. Frequently, one is interested in selecting the best population or a

subset of populations containing the best. The population is termed the best according to some char-

acteristic such as the largest mean or the smallest variance etc. Some typical examples of practical

interest are:

1. Out of different surgical strategies offered for the treatment of a particular disease, a surgeon

would like to use that surgical methodology on patients that have the highest success rate.

Here, the success rate of the strategy is measured by the time required for the patient to ensure

the disease and be cured or on the proportion of the patients successfully recovered from the

disease.

2. A farmer having many choices of fertilizers accessible to him would like to pick the one which

can offer him the maximum yield.

3. An army chief will prefer to choose the most effective quality guns for his army, here the best

may be decided on the basis of the proportion of successful hits or simple maneuverability of

the gun carriage.

4. An investor would like to buy stocks of the companies which are expected to yield higher

returns over next few years.

5. There are number of organic and chemical fertilizers that can be used for some crop. An agri-

cultural farm proprietor wants to select a fertilizer for his /her crop that will provide maximum

yield and also preserve the soil quality over a period of time.

1
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In the statistical literature, these type of problems are commonly classified as Ranking and Selection

Problems. The initial formulation of the ranking and selection problem was given by Bechhofer [23]

and Gupta [48]. For a detailed discussion of the literature of these type of problems one may refer

to Gibbons et al. [43] and Gupta and Panchapakesan [54]. A complete bibliography of the literature

on these problems is given in Kulldorf [64] and Dudewicz and Koo [39]. Estimating parameters of

the selected population (representing the best population Πk) or to estimate a characteristic of the

selected subset of the populations (the subset that involves the best population Πk) is an important

practical problem. For example:

1. The surgeon, after selecting the best surgical strategies for the treatment of a particular disease,

would naturally be interested in having an estimate of the average success rate of the selected

surgical procedure.

2. The farmer whereas applying the most effective chosen fertilizer to the forthcoming crop,

would undoubtedly be keen to estimate the yield.

3. Similarly, the army chief would like to have an estimate of the effectiveness of the gun he has

selected.

4. An investor will like to know the estimated returns from his/her investments are the best se-

lected shares of the companies.

5. The farm proprietor will like to have an estimate of the expected yield if he/she is using the

best fertilizer.

Therefore, for all such real-life applications, there’s a requirement to develop estimators of

parameters of the selected population from the populations under consideration. These type of prob-

lems are commonly referred to as “Estimation After Selection”.

The problem of estimation after selection differs from the classical estimation problem in

some basic sense. In the classical estimation problem, we are to estimate the parameter of the given

population on the basis of a random sample from that population itself. The parameter to be estimated

is a fixed quantity, and so for an unbiased estimator T of g(θ) we must have Eθ (T ) = g(θ). However,

the parameter to be estimated in the estimation after selection problem is a random quantity say θJ ,

where θJ is parameter of the selected population. Therefore in the case of selection problem, for an

unbiased estimator T of θJ we must have E(T −θJ) = 0. Thus implying that the unbiased estimator

of θJ is nothing but the unbiased estimator of E(θJ) and a UMVUE of θJ is a UMVUE of E(θJ).

Moreover, In classical estimation problem, the mean squared error (MSE) of an unbiased estimator

say, U0 of θ0 is its variance. That is,
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MSE(U0,θ0) = Eθ0(U0−θ0)
2

= Vθ0(U0)

Therefore, if a UMVUE of θ0 exists, then it is uniformly better than any other unbiased estimator.

While in estimation after selection problem, the MSE of an unbiased estimator T of θJ is not same

as its variance. In fact

MSE(T,θJ) = E(T −θJ)
2

= Vθ (T )+Vθ (θJ)−2Cov(T,θJ),

where Cov(T,θJ) is the covariance between T and θJ .

For uniformity in our presentation we will adopt the following notations throughout the thesis:

(i) Φ(.): Distribution function of normal distribution with mean 0 and variance 1.

(ii) φ(.): Standard normal density function.

(iii) I(A): Indicator function of statement A, i.e.,

I(A) =

1 if A is true

0 otherwise

(iv) R: The real line, i.e., (−∞,∞).

(v) Rk: The k-dimensional Euclidean space.

(vi) R+: The positive real line, i.e., (0,∞).

(vii) R+
k: product space R+×·· ·×R+︸ ︷︷ ︸

k−times

, i.e., (0,∞)k.

1.2 A Review of the Literature

In this section, we present the literature survey, in brief on the problems of estimation after selection

that are related to our study. In this review, we have also included few papers which may not be

directly related to our study. The problem of estimation after selection was initially formulated and

investigated by Rubinstein [111, 112]. He studied the problem in the context of reliability estimation
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where the problem considered by him is in connection with a particular sequential scheme for select-

ing the components in a manufacturing process. The unbiased estimators were derived by him for

the failure rates of the selected components. The generalized method given by him obtains unbiased

estimators of selected Poisson parameters corresponding to a broad class of selection procedures.

1.2.1 Normal Population

The problem of estimating mean of the selected normal population was considered by Stein [122]

with independent normal populations having unknown means and common known variance. One

observation is taken from each of these k populations, and the population corresponding to the largest

observation was selected. He considered estimating mean of the selected normal population with

respect to the squared error loss function. He noted that X(1) is a generalized Bayes estimator when

the generalized prior distribution is the Lebesgue measure. For k = 2, Stein showed that X(1) =

max(X1,X2) is admissible as well as minimax estimator, where Xi is N(θi,1), i = 1, ...k. However,

Stein remarked for k = 2 and especially for k > 2, the estimator X(1) is positively biased and that

its bias tends to infinity where the means of the populations are equal or close. The inadmissibility

of X(1) was also conjectured in general for k ≥ 3. However, this conjecture was later disproved by

Brown in 1987. Brown proved that X(1) is admissible for any k.

Sarkadi [116] introduced the fixed-sample selection approach of one out of two populations

and derived the unbiased estimator for parameter of the selected Poisson population. He also dis-

cussed the estimation of mean M of the selected normal population. For this, he took two normally

distributed populations with common known variance and selected the one with the smallest sample

mean. For estimating mean M of the selected population, he proposed an estimator tc of the form

tc = Y2 +Y Φ

(
cY
σ

)
− cσφ

(
cY
σ

)
, c≥ 0,

where, c is an arbitrary constant, and Yi is the mean of the sample drawn from the normal population

N(θi,τ
2), i= 1,2. Y =Y1−Y2, σ2 =V (Y ) = 2τ2

n , and φ(x) and Φ(x) are the probability density func-

tion and cumulative distribution function of standard normal variate respectively. The expectation of

the estimator tc is given by

E(tc) = θ2 +θ Φ

(
θc

σ
√

1+ c2

)
,

where θ = θ1− θ2 is the mean of the variable Y . Also, he pointed out that E(tc) approaches to

E(M) = θ2 + θ Φ
(

θ

σ

)
where c approaches to a large value. Hence showed that the bias of tc as

an estimator of M can be controlled by making c large. Hence, for large values of c, tc becomes

unbiased estimator of M. Sarkadi also provided a lower bound for the mean squared error (MSE) of

the proposed estimators and stated that an exact expression is hard to obtain.
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Putter and Rubinstein [105] considered estimating mean of the selected normal population

studied out of k normal populations Π1,Π2, . . . ,Πk. Let Yi denote the mean of the random sample of

size n from the population Πi (i = 1,2, . . . ,k) and suppose the population corresponding to Ymax =

max(Y1,Y2, . . . ,Yk) is selected. Putter and Rubinstein showed that Ymax is a positively biased estimator

of M, the mean of the selected population. They also proved that the bias of Ymax for k = 2 is a

decreasing function of |θ1− θ2| for the symmetric location parameter family. Further, for the case

of two populations, they proved the non existence of unbiased estimator of M. The authors also

proposed estimators of the form

M̂λ = Ymax−λσφ

(
Y
σ

)
, λ ≥ 0,

which is just a decrement of Ymax by the λ multiple of its estimated bias. Also, it was shown that

Ymax is the unique minimax estimator of M under the MSE criterion, whose MSE never exceeds σ2.

Dahiya [36] also studied the problem of estimating mean of the selected normal population

under the same model as was considered by Sarkadi [116]. He selected the population corresponding

to the largest sample mean. He proposed some more estimators for the mean of the selected normal

population. Dahiya noticed that the maximum likelihood estimator (MLE) of E(M) = θ2 +θ Φ
(

θ

σ

)
is T = Y2 +Y Φ

(Y
σ

)
for estimating mean of the selected population. Motivated by the concept of

Putter and Rubinstein [105], used to obtain the estimator M̂λ from the estimator Ymax. Dahiya studied

a more general estimator Tλ :

Tλ = T −λ

[
φ

(
Y√
2σ

)
σ√

2
+Y

{
Φ

(
Y√
2σ

)
−Φ

(
Y
σ

)}]
,

where λ ≥ 0 is an arbitrary constant. The concept of estimator Tλ is similar to M̂λ . He obtained from

the estimator T by subtracting a λ multiple of the estimated bias Bθ (T ) of T from itself.

Blumenthal and Cohen [26] proposed an estimator Hc to estimate θmax =max(θ1,θ2) and some

times Hc is called the hybrid estimator. Dahiya [36] also studied the hybrid estimator Hc having the

form

Hc =

{
Y1+Y2

2 if |Y1−Y2|< cσ

Ymax if |Y1−Y2| ≥ cσ ,

where c ≥ 0 is an arbitrary constant. For c = 0, Hc reduces to Ymax, the same way as M̂λ reduces to

Ymax for λ = 0.

Dahiya also derived the exact expressions for the biases and MSE’S of the five estimators

tc ,M̂λ ,T ,Tλ and Hc and compared them numerically.

The above estimation problem was extended by Hsieh [58] for common but unknown variance

τ2. The author used the natural selection rule and selected the population yielding the largest sample
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mean and studied estimators similar to those in Dahiya [36]. Mainly, he modified the estimators of

Dahiya by replacing the minimum variance unbiased estimator (UMVUE) of σ in place of σ . The

modification of Tλ of Dahiya [36] was not included as there is no immediate justification for using

this estimator when τ2 is unknown. Derivations for the biases and MSE’s of the estimators were

obtained and compared numerically. His conclusions were close to those reported by Dahiya.

The problem of estimating mean of the selected normal population was extensively studied

by Cohen and Sackrowitz [34] for general k normal populations with the common known variance

σ2. Authors mainly studied for the cases k ≥ 3 and a family of estimators dk(x) has been produced,

where dk(x) is of the form

dk(x) =
k

∑
i=1

c(i),k x(i), (1.1)

with c(1),k ≥ c(2),k ≥ . . . ≥ c(k),k depending upon r̂i which are non-negative functions of xi+1− xi

and x(1) ≥ x(2) ≥ . . . ≥ x(k) are the ordered statistics of x1,x2, . . . ,xk. Authors also proved that the

estimators dk(x) as expressed in (1.1) possess some desirable properties. Further, they are empirical

Bayes estimators with respect to multivariate normal priors having the mean vector zero and the

covariance matrices members of a set of k possibilities. For every possible covariance matrix is such

that the means are correlated in a way to reflect the possibility that some or all of them are close

together. In particular, they considered six types of r̂i and numerically studied the corresponding six

estimators Ti (i = 1,2, . . . ,6) and X(1) with respect to the bias and MSE’s using Monte Carlo Method

for the values of k = 3(2)7. Based on numerical values, authors concluded that T2 is performs

better than any other estimator from several points of view and hence recommended it for practical

use. It was also shown that the risk of X(1) is maximized when the means θi’s are equal. For

k = 2 , the estimator M̂λ (by Putter Rubinstein) and the estimator Tλ (by Dahiya) were proved to be

inadmissible.

Further, a general problem of estimating mean of the selected normal population was intro-

duced by Hwang [60]. Actually, he completely studied on this problem. Let X(i) be the ith order

statistic and θ(i) the mean associated with X(i). He considered estimation of θ(i)’s and introduced

three natural selection criteria: the large sample consistency, the large population consistency and

the boundedness of the risk for any fixed k. It is detected that the existing estimators by Dahiya [36],

Hsieh [58] and Cohen and Sackrowitz [34] for θ(k) do not satisfy a minimum of one amongst these

three criteria. Hwang proposed an empirical Bayes estimators for θ(i) for the case of common known

variance σ2. The empirical Bayes estimator is given as follows

δ
EB
(i) = X̄ +

[
1− (k−3)σ2

Σ(Xi− X̄)2

]
+
(
X(i)− X̄

)
, (1.2)

where for any number a,a+ = max(a,0). The author showed that this empirical Bayes estimator
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satisfies all the three criteria as described above. Further author proved that when θ(i)’s are equal, the

estimator (1.2) has zero bias. That is, the estimator δ EB
(i) is the unbiased estimator when the means

are equal. Also, its performance is better than all the existing estimators for most of the parameter

values that he considered.

Venter [133] introduced a new problem for estimating mean of the selected population. He

considered k normal populations and ith population which is distributed N(θi,σ
2), i = 1, . . . ,k where

σ2 is known. He took a classical approach and proposed some new estimators. Let Xl denotes the

largest sample mean, where Xl = maxi Xi, where Xi denotes the sample mean of the ith population.

Then author reduced the bias of Xl by estimating the bias and then subtracting it from itself. This

leads to a new class of estimators of mean of the selected normal population and called bias reducing

(BR) estimators which are defined as Xl−b(X ,a), where

b(X ,a) = a
k

∑
i=1

∫
∞

−∞

zφ(z)Πr 6=iΦ(z+a(Xi−Xr))dz. (1.3)

These estimators depend upon the term b(X ,a) which in turn depends upon the constant ‘a’ as is

mentioned in (1.3). Therefore, the amount of bias reduction of Xl while using BR estimators is

controlled through the constant ‘a’. Constant ‘a’ also effects the mean squared error (MSE) of BR

estimators. For k = 2, Venter selected some values of ‘a’ such that the MSE of Xl−b(X ,a) did not

exceed by a preselected amount. The author also compared the MSE’s of BR estimators Xl−b(X ,a)

to that of cohen and sackrowitz’s estimators. Further, he reported that the performances of both the

classes of estimators are quite similar and no class dominates the other class.

Let X1,X2, . . . ,Xk be k independent random variables with distributions of X j ( j = 1, . . . ,k)

belonging to one parameter families fX j(x j,θ j) , j = 1,2, . . . ,k. Estimating mean of the selected pop-

ulation was introduced by Cohen and Sackrowitz [35] and derived some new estimators for the

problem under consideration. They selected the population corresponding to the maximum Xi. That

is, the population M is selected if XM = max(X1, . . . ,Xk). Estimators based on a two-stage sample

are offered that are conditionally unbiased where the conditioning is on the ordering of the sample

means (X1, . . . ,Xk) computed from the first stage of sampling. Conditionally unbiased estimators

are also unconditionally unbiased. Cohen and Sackrowitz [35] proposed a two-stage sample where

observations at stage two are taken from the selected population only. They obtained the uniformly

minimum variance conditionally unbiased estimators for the normal (with known and unknown vari-

ance) and gamma cases. Further, in one parameter family cases, they observed that the uniformly

minimum variance conditionally unbiased estimators depend only on X(1) and X(2).

The above estimation problem was continued to study by Sill and Sampson [118] for the bi-

variate normal distributions where mean vector µT
iµT
iµT
i = (µ1i,µ2i) and the covariance matrix is Σ/nA.

Let the vector XT
iXT
iXT
i = (X1i,X2i) denote the mean responses based upon nA experimental units from
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the population where A is called the first stage of data collection τi. Let M be the population corre-

sponding to the largest value of the sample means of the surrogate variables, X1i, i = 1 . . . ,k, which

is used for population selection. The population τM is selected if it yields the largest response, i.e.,

XM = max{X11,X12, . . . ,X1k}. After making this selection, nB the collected additional independent

observations from population M and B are called the second stage data collections. Let Y T
iY T
iY T
i = (Y1,Y2)

be the mean response from population τM in Stage B then that YYY follows the bivariate normal distri-

bution with mean vector µµµM = (µ1M,µ2M)T and the covariance matrix Σ/nB. They found the good

unbiased estimators of the parameter µ2M associated with the primary outcome variable, X2M.

Further, estimating mean of the selected population from two normal populations with un-

known means and common known variance has been addressed by Parsian and Farsipour [104]

under the criterion of bias and LINEX loss function. They proposed seven different estimators for

the mean of the selected population. They found expressions for the biases and risk functions of

these estimators and compared numerically. Their results were further extended by Misra and van

der Meulen [87]. They provided some admissibility results for a subclass of equivariant estima-

tors, and a sufficient condition for the inadmissibility of equivariant estimators. It was proved that

several estimators proposed by Parsian and Farsipour [104] were inadmissible and better estimators

were obtained. Some further work on normal populations has been done by Qomi et al. [106] and

Mohammadi and Towhidi [93].

1.2.2 Nonnormal Populations

The discussion so far was on normal populations only. The major work on estimating mean of

the selected negative exponential population was developed by Sackrowitz and Samuel-Cahn [113].

Suppose there are k observations Xi, i = 1, . . . ,k which are independent negative exponentially dis-

tributed with unknown expectations λi, i = 1, . . . ,k. They define the random variables J(X1, . . . ,Xk)

and M(X1, . . . ,Xk) of maximal and minimal observations, respectively. Authors considered estima-

tion of λJ and λM, which denote the scale parameters associated with the largest and the smallest of

the observations X1, ...,Xk. Authors also studied the class of linear estimators of the form

φ(XXX) = Σ
k
i=1αiX(i),

where α1, . . . ,αk are fixed constants. They also found that the estimator φ1(XXX) = X(1)− X(2) is

conditionally unbiased estimator as well as unique uniformly minimum variance unbiased estimator

of λJ , for k = 2. It is also shown that the estimator φ2(XXX) = kXM is the unique uniformly minimum

variance unbiased estimator for λJ and proved that no conditionally unbiased estimator for λJ exists.

Further, authors have investigated some admissibility and minimaxity results in a certain class of

estimators as well as discussed some other intuitively appealing estimators.
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Sackrowitz and Samuel-Cahn [114] developed some general results for Bayes and minimax

estimators of parameters of the selected population.

The problem of estimating mean of the selected uniform population has been investigated by

Vellaisamy et al. [130]. Let Πi be uniform population over the interval (0,θi), i = 1, . . . ,k. Random

sample of size n is drawn from each of the k populations and let Yi denotes the largest observation

of the sample drawn from the ith population. For selecting the best population, that is the one

associated with the largest θi, the natural selection rule is to select the population corresponding to

the largest Yi. They estimated mean M of the selected population and found that the natural estimator

T1(Y ) = (n1)Y(1)/2n is positively biased and derived the UMVUE of M using the (U,V ) method

of Robbins [110] and also studied its asymptotic distribution. They obtained a generalized Bayes

estimator of M and shown its minimaxity for the cases k ≤ 4 and a class of admissible estimators.

Further, the improvement over UMVUE was also found for the case k = 2. Song [121] extended the

minimaxity and inadmissibility results of [130] for the case k ≤ 2.

Nematollahi and Motamed-Shariati [102] estimated scale parameters of the selected uniform

population under the entropy loss function. They selected the population corresponding to the largest

as well as the smallest scale parameter. They generalized the (U,V ) methods of Robbins [110] as

well as derived the uniformly minimum risk unbiased (UMRU) estimators for both the cases. They

characterized the admissible estimators and derived minimax estimator, as well as inadmissibility

result for the scale-invariant estimator of θL (scale parameter of the selected population when the

population corresponding to the largest scale parameter is selected) and the dominated estimator was

obtained for the case k = 2. The risks of all proposed estimators were compared numerically.

The problem of estimating mean of the selected gamma population has been initiated by Vel-

laisamy and Sharma [131]. They considered two gamma populations Π1 and Π2 with unknown

scale parameters α1 and α2 and common shape parameter p where p is taken to be a known positive

integer. Let Yi denotes the sample mean based on a random sample of size n from the ith popula-

tion. Following natural selection rule, the population corresponding to the larger Yi is selected. The

problem considered is to estimate mean M of the selected population. Authors showed that Y(1) is

positively biased and obtained the UMVUE of M. Improvements over the natural estimator and the

UMVUE were obtained. Minimaxity and non-minimaxity of these estimators were also examined.

They proved that UMVUE is not minimax estimator.

Later on, these results are further generalized for k(> 2) gamma populations by Vellaisamy

and Sharma [132]. Further dominating estimators have been obtained in Vellaisamy [125]. He used

the method of differential inequalities to derive these estimators.

Vellaisamy [126] has also derived some general results concerning the UMVUE of the selected
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parameter. For the squared error loss, the conditions under which the UMVUE is also uniformly min-

imum mean squared error unbiased estimator (UMMSEUE), have been obtained. As an application,

the UMVUE of θI , the reciprocal of the natural parameter of the population selected from k indepen-

dent populations where densities were belonging to one parametric continuous exponential family,

has been also derived. Vellaisamy has found that the UMVUE of θI is a UMMSEUE. He also gave

some examples.

Misra et al. [88] considered the problem of estimating scale parameter of the selected gamma

population out of the gamma populations with unknown scale parameters and common known shape

parameter under the scale invariant squared error loss function. Authors characterized admissible

estimators within certain subclass of equivariant estimators. Sufficient conditions for the inadmissi-

bility of invariant estimators of selected scale parameters were obtained. As a consequence, various

natural estimators were found to be inadmissible and the sufficient conditions were used to improve

various natural estimators. Some problems have been continued the study by Misra et al. [89] under

the squared error loss function and analyzed results of Misra et al. [88].

Motamed-Shariati and Nematollahi [95] obtained the minimax estimator for scale parameter of

the selected gamma population under the scale-invariant squared error loss function , where the shape

parameter α > 0 is arbitrary. This is generalization of the result obtained by Vellaisamy and Sharma

[131] for integer value α . Estimating scale parameters of the selected gamma populations were

studied by Nematollahi and Motamed-Shariati [101] under the entropy loss function. The Uniform

Minimum Risk Unbiased (UMRU) estimator for the selected parameter was derived. For k=2, a

certain class of linear admissible estimators was investigated, and inadmissibility of UMRU estimator

was also proved. Qomi et al. [106] also considered the problem of estimating scale parameter of the

selected gamma population under the reflected normal loss function.

The problem of estimating scale parameter of the selected Pareto population has been inves-

tigated by Kumar and Kar Gangopadhyay [66]. They considered k Pareto distributed populations

with Πi having unknown scale parameter αi and known shape parameter βi; i = 1, . . . ,k and se-

lected the population with the largest Xi, where Xi is the smallest observation of the sample from the

ith population. Assuming the shape parameters to be equal, they derived the uniformly minimum

variance unbiased estimator(UMVUE) for the scale parameter αJ of the selected population. An

admissible class of linear estimators was derived in the class δc = cXJ with respect to the squared

error loss function. Further, they also proved a general inadmissibility result for the scale equivariant

estimators.

Al-Mosawi and Khan [5] studied the case of Pareto populations with the same known shape

parameter and different scale parameters. For the best population, they used the natural selection

rule, which selects the population associated with the largest Xi, where Xi is the smallest observation
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of the ith sample from the population Πi, i = 1, . . . ,k. They estimated the moments of the selected

population with respect to asymmetric scale invariant loss function. They showed that natural esti-

mators are consistent estimators and considered a class of linear estimators of the moments of the

selected population and derived the admissibility of natural estimators. Further, they investigated the

performance of the estimators through the simulation study and compared for the selected values of

the order of moments and shape parameter.

Nematollahi [99] has considered k independent Pareto populations with θi’s, unknown scale

parameters and β common known shape parameter and estimated parameter of the selected popu-

lation under the squared log error loss function. He found the uniformly minimum risk unbiased

(UMRU) estimator of selected parameters. A sufficient condition for minimaxity of estimators was

obtained for the case k = 2. It is also proved that the UMRU and natural estimators of θJ are minimax

estimators. He also studied a subclass of admissible linear estimators and derived the sufficient con-

dition for θJ and the UMRU estimator of θJ to be inadmissible. The risks of the proposed estimators

were compared numerically.

Tappin [123] has considered discrete distributions for the problem of estimation after selection.

She estimated the parameter of the selected binomial population. The selection rule considered is

to select the population with the greatest number of successes and, in the case of a tie, to follow

one of the two schemes: either choose the population with the smallest index or randomize among

the tied populations. Tappin employed the second stage of sampling scheme and took additional

observations on the selected population. She obtained the UMVUE under the first tie break scheme

and proved that no UMVUE exists under the second. Further, an unbiased estimator is found in the

case where no UMVUE exists.

Vellaisamy and Jain [129] have estimated parameter of the population selected from the dis-

crete exponential family under the ϑ -normalized squared error loss function. They considered the

estimation of θ(1) and θ(m+1) for the special cases ϑ = 0 and ϑ = 1, which respectively correspond

to squared error loss and normalized squared error loss. They proved that the natural estimators

are inadmissible as well as dominating estimators were obtained by solving certain difference in-

equalities. For special cases, the improved estimators for the selected Poisson and negative binomial

distributions were also produced.

Vellaisamy [128] established that the unbiased estimator of selected mean for normal popula-

tion and some other distributions belonging to a one-parametric exponential family do not exist. He

showed that whenever an unbiased estimator exists, it should be a function of order statistics. Further,

Al-Mosawi and Vellaisamy [7] have discussed estimation of parameter of the selected binomial pop-

ulation. Based on single- stage sample scheme, it is proved that neither unbiased nor risk-unbiased

estimator exit. They considered the situation where additional observations are available from the
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selected population, and an unbiased, risk-unbiased, and two-stage uniformly minimum variance

conditional unbiased (UMVCU) estimators were obtained. They compared the bias and the risk of

the derived estimators through the simulation study.

1.2.3 Estimation of Quantile

Sharma and Vellaisamy [117] first introduced the problem of estimating quantile of the selected

population. They considered the problem of estimating quantile of the selected normal population.

k normal populations with unknown means µi; i = 1, . . . ,k and common unknown variance σ2 were

considered. A quantile of the selected population is θJ = µJ+ησ , for η 6= 0. Sharma and Vellaisamy

selected the population corresponding to the largest sample mean. They considered two estimators,

one based on YJ and SJ and another one based on YJ and S. YJ and SJ are the sample mean and the

sum of squared deviations from the mean of the selected population respectively. SJ = S j if Yj ≥ Yi,

for j 6= i and S = Σk
i=1Si. The two estimators proposed by them are

T1 = YJ +η cn S1/2
J

and

T2 = YJ +η cν+1 S1/2 ,

with cm defined as

cm =
Γ(m/2)√

2Γ(m+1)/2
.

When η < 0, T2 always improves T1. However for η > 0, it is not the case. Sharma and Vellaisamy

also gave a sufficient condition for an estimator of θJ in a certain class to be inadmissible. As a

consequence, the natural estimator T2 of θJ is proved to be inadmissible.

Kumar and Kar [67] estimated quantiles of the selected normal population when the underlying

populations are normal with different unknown means and variances. The loss function is taken to

be squared error.

Estimating a quantile of the selected exponential population has been studied by Kumar and

Kar [68]. They considered k exponential populations with different scale parameters and a com-

mon location parameter. The population corresponding to the largest sample mean is selected. The

problem is to estimate a quantile of the selected population. Kumar and Kar derived the uniformly

minimum variance unbiased estimator (UMVUE) by using (U-V) method of Robbins [110] and Rao-

Blackwellization. Further, using the Brewster and Zidek technique [27], they improved the UMVUE

with respect to the squared error and the scale invariant loss functions. They also obtained a gen-

eral inadmissibility result for affine equivariant estimators. Further, the bias and risk functions of

proposed estimators were compared numerically.
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Vellaisamy [127] has studied the problem of estimating quantile of the selected exponential

population. He considered k exponential populations with Πi having an exponential distribution with

unknown location parameter ξi and common scale parameter σ . Let Xi denotes the minimum of a

random sample of size n from Πi and XJ = max{X1, . . . ,Xk}. The population corresponding to XJ is

selected. The problem is to estimate quantile θJ = ξJ + b σ ,b ≥ 0 of the selected population. It is

shown that the best affine equivariant estimator (BAEE) does not exist. The method of differential

inequalities has been used to derive a sufficient condition, for an estimator in the class of scale-

equivariant estimators to be inadmissible. As a special case, he obtained improved estimators over

the natural estimators of θJ , for all values of b≥ 0. For more results on quantile estimation one can

refer to Wang et al. [134].

1.2.4 Under Heteroscedasticity

Gupta and Miescke [52] have discussed the problem of selecting the normal population associated

with the largest mean under the heteroscedasticity (unequal vaiances) when the population variances

are known and unequal. Under the 0−1 loss function, the risk of a selection rule d is measured by

the probability of incorrect selection, i.e.,

R(θ ,d) = 1−Pθ (CS|d). (1.4)

Under the risk function R(θ ,d) in (1.4), Gupta and Miescke showed that the natural selection rule

dN is minimax if and only if σ2
1 = · · ·= σ2

k . Moreover, the minimax value of the problem is 1− 1
k . It

is observed that the natural selection rule dN is not minimax if the variances σ2
1 , . . . ,σ

2
k are unequal.

However, in this situation no alternative of dN is presented and Bayes rules with respect to various

priors are studied.

The selection problem involving k(≥ 2) binomial populations Π1, . . . ,Πk with unknown suc-

cess probabilities θ1, . . . ,θk and sample sizes n1, . . . ,nk was considered by Sobel and Huyett [120].

For n1 = · · · = nk = n (say), Sobel and Huyett [120] considered the goal of selecting the binomial

population associated with θk = max{θ1, . . . ,θk} under the indifference-zone approach of Bechhofer

[23]. They have suggested selecting the population corresponding to the largest observed frequency

of success, with ties broken at random. Hall [57] showed that Sobel and Huyett [120] selection rule

is minimax for equal sample sizes.

Risko [107] investigated the problem of selecting the better of two binomial populations for

unequal sample sizes n1 and n2, where the population associated with the larger probability of success

max{θ1,θ2}. Assume that the risk is measured by the probability of incorrect selection and the

selection problem is formulated under the indifference zone approach of Bechhofer [23]. The author
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has seen that the intuitive selection rule performs very bad when one sample size is large in relation

to the other. For this case, author procured a selection rule which is minimax in the limit as one

sample size goes to infinity while the other’s size is kept fixed. It is showed that this newly obtained

selection rule also gives a suitable alternative to the intuitive selection rule for samples whose sizes

differ slightly. For the cases where both the sample size are finite, a class D of the selection rules

is developed. The minimax selection rule in the class D , obtained here, is called restricted minimax

selection rule. In certain small sample configurations, and when one of the sample size is very large,

as demonstrated by them, this minimax selection rule is globally minimax.

The problem of finding a minimax selection rule for the selection of the better of two binomial

populations with unequal sample sizes are constructed by Dhariyal et al. [37]. The authors found

some necessary conditions for selection to be globally minimax and demonstrated that the restricted

minimax selection rule developed by Risko [107] satisfies these conditions.

Abughalous and Miescke [3] considered the problem of selecting the best binomial population

with unequal sample sizes n1, . . . ,nk where the population associated with the largest probability of

success is selected. The authors showed that under the 0−1 loss, the necessary and sufficient condi-

tion for natural selection rule of selecting the population that corresponding to the largest proportion

of successes (with ties broken at random) to be minimax is that n1 = · · ·= nk. This result is similar to

the result obtained by Gupta and Miescke [52]. The authors also discussed some properties of Bayes

selection rule for various prior distributions under the linear loss function and monotone permutation

invariant loss function.

Misra and Dhariyal [83] generalized the results of Gupta and Miescke [52] and Abughalous

and Miescke [3] to general probability distributions. Suppose that the observation Xi is from the

population Πi having a cumulative distribution function (c.d.f.) Fαi(x|θi), where θi being unknown

parameter and αi(i = 1, . . . ,k), known nuisance parameter. Misra and Dhariyal [83] considered

the goal of selecting the population associated with θ[k] = max{θ1, . . . ,θk}. The risk function of a

selection rule d ∈D assumed to be measured by the probability of incorrect selection as

R(θ ,d) = 1−Pθ (CS|d). (1.5)

Under the risk function (1.5) authors proved that the minimax value is 1− 1
k . The random variables

X1, . . . ,Xk are statistically independent and observations Xi is from Πi with cumulative distribution

function (c.d.f.) Fαi(x|θi) having stochastically increasing property. Under the risk function (1.5),

authors proved that the natural selection rule dN which selects the population corresponding to the

largest observation is minimax if and only if α1 = · · ·= αk. For k = 2, the natural selection rule dN

is minimax showing that the underlying distributions are symmetric.

The problem of selecting the population with the smallest scale parameter from k independent
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populations from gamma, exponential and Weibull populations have been studied by Abughalous

and Bansal [2]. The 0− 1 loss function is used (here loss is 0 if correct selection is made and

is 1 otherwise). The authors showed that the natural selection rule dN is minimax if and only if

n1 = · · ·= nk. Moreover the minimax value is 1− 1
k . Abughalous and Bansal [2] also discussed the

Bayes selection rule under the 0−1 loss function and linear loss function.

Misra and Arshad [82] examined the problem of selecting the better of two gamma popula-

tions with unequal shape parameter αi > 0 and unknown scale parameter θi > 0, i = 1,2. Under the

indifference zone approach of Bechhofer [23], the authors considerd the goal of selecting the popu-

lation associated with max{θ1,θ2}, when the quality of a selection rule is assessed in regard of the

infimum of the probability of correct selection over the preference-zone. This goal is equivalent to

deriving the minimax selection rule when (θ1,θ2) lie in the preference-zone and 0−1 loss function

is used (here loss is 0 if the correct selection is made and 1 if the correct selection is not made) for

decision-theoretic framework. The authors proposed a class of natural selection rules and derived

restricted minimax selection rule. This restricted minimax selection rule was proved to be globally

minimax, generalized Bayes and admissible. Various natural selection rules are outperformed by the

minimax selection rule, as can be observed by numerical comparison. Similar problem for the case

of two independent exponential populations have been considered by Arshad and Misra [10].

Arshad et al. [13] estimated the largest mean of the selected gamma population under the

assumption that the k populations have unequal known shape parameters. Arshad and Misra [9] ini-

tiated the work on estimation of the largest (smallest) mean of the selected uniform population. They

obtained the UMVU estimators and considerd the three natural estimators ϕN,1,ϕN,2 and ϕN,3 of se-

lected parameters, based on the maximum likelihood estimators, UMVU estimators, and minimum

risk equivariant estimators for component estimation problems. They proved that the natural esti-

mator ϕN,3 was the generalized estimator with respect to a non informative prior. Further, a general

result for improving scale-invariant estimator and some better estimators are discussed. The UMVU

estimator as well as natural estimator ϕN,2 are shown to be inadmissible.

Arshad et al. [12] derived the UMRU estimator under the entropy loss function and also

obtained some inadmissible results for largest scale parameter of selected uniform population.

Under the decision theoretic framework, although large literature by Bahadur and Goodman

[16], Hall [56, 57], Eaton [40], Mieseke [78, 79], Risko [107], Mulekar [96], Gupta and Miesecke

[52], Dhariyal et al. [37], Abughalous and bansal [1, 2], Misra and Dhariyal [84], Bansal et al. [20],

Miesecke and Park [81], Gupta and Liang [51], Mulekar and Matejcik [98], Bansal and Miescke

[18, 19], Miescke [80], Gupta and Li [50], Al-Mosawi and Shanubhogue [6], Misra and Gupta [90]

and Arshad and Misra [11] on the treatment of ranking and selection problems is available, still

not much work has been done involving heteroscedasticity (unequal sample size and /or unequal
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nuisance parameters). In this thesis we make an attempt in this direction. In Chapter 7, we have

considered the problem of selecting the uniform population under the squared log error (SLE) loss

function when sample sizes are unequal. In Chapter 8, we have considered the problem of selecting

the uniform population under the Generalized Stein Loss (GSL) function with unequal sample sizes.

1.3 A Summary of the Results in the Thesis

In this section, we give chapter wise brief description of this thesis. In Chapter 2, some basic

definitions, techniques and selection rule required for this thesis are presented.

In Chapter 3, suppose Xi1, . . . ,Xin, i= 1,2, be pair of random samples from populations which

are normally distributed with mean αi, and common known variance τ2 . The selection procedure is

that the population giving the smallest sample mean is selected. In this chapter, the aim is to examine

different estimators for the mean of the selected population from two normal populations. With the

help of Mote-Carlo simulation method, the bias and mean squared errors of the various estimators

are computed as well as their performances are compared with the help of graphs and tables.

In Chapter 4, two competing pairs of random variables (X ,Y1) and (X ,Y2) satisfying linear

regression models with equal intercepts are considered. The model which connects the selection

between two regression lines from two normal populations for estimating regression coefficients of

the selected regression line is described. This model is applied to a problem in finance which involves

selecting security with lower risk. We assume that an investor being risk averse always chooses the

security with lower risk (or, volatility ) while choosing one of two securities available to him for

investment and further is interested in estimating the risk of the chosen security. Several estimators

are constructed and their developed theory is applied to real data sets. The bias and mean squared

error (MSE) risk performances of the estimators of volatility of the selected security are numerically

compared, and the graphs representing the bias and MSE risks of the estimators are drawn. The

results has been discussed.

In Chapter 5, we take up the problem of estimating quantile of a selected normal popula-

tion. Suppose independent random samples (X11, . . . ,X1n1),n1 ≥ 2 and (X21, . . . ,X2n2),n2 ≥ 2 are

available from these two normal populations with same mean and different variances where both

are unknown. The population corresponding to the smallest sum of the squared deviations from the

mean is selected as the best population. We address estimation of quantiles of the selected popula-

tion. Several estimators are proposed. The problem is formulated and the admissibility of a natural

estimator within a class of linear estimators is proved. We consider a more general class of esti-

mators and found a class of admissible estimators. The biases and mean squared error risks of the

proposed estimators are compared numerically by Monte-Carlo simulation. Finally, the biases and
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risks of different estimators are represented by graph.

In Chapter 6 suppose Xi1, . . . ,Xin be an independent random sample drawn from k(k ≥ 2)

populations Πi, i = 1, ...,k having Pareto distributions with different and unknown scale and common

known shape parameters. Let Xi = min{Xi1, . . . ,Xin} , i = 1, . . . ,k and X(1) ≤ X(2) ≤ ·· · ≤ X(k) be the

order statistics of X1, . . . ,Xk. The population corresponding to the largest X(k)(or the smallest X(1))

is selected as the best population. In this chapter estimating scale parameter of a selected population

is considered under Generalized Stein loss (GSL) function. The uniformly minimum risk unbiased

(UMRU) estimator of scale parameter of the population corresponding to the largest and the smallest

θi’s, are obtained. Sufficient condition for minimaxity of an estimator of θL(scale parameter of the

population corresponding to the largest θi) and θS (scale parameter of the population corresponding

to the smallest θi) are obtained. We show that the generalized Bayes estimator of θS is minimax for

k = 2. Also, we have found the class of linear admissible estimators of θL(θS), respectively. The

technique of Brewster and Zidek [27] is employed to provide a sufficient condition for inadmissibility

of some scale and permutation invariant estimators of θS and the UMRU estimator of θS is shown to

be inadmissible and some better estimators are provided. Finally, the results have been discussed.

In Chapter 7 suppose Π1, . . . ,Πk be k (≥ 2) independent populations, where Πi denotes the

uniform distribution over the interval (0,θi) and θi > 0 (i = 1, . . . ,k) is an unknown scale parameter.

The population associated with the largest scale parameter is called the best population. For selecting

the best population, we use a selection rule based on the natural estimators of θi, i = 1, . . . ,k, for the

case of unequal sample sizes. Consider the problem of estimating scale parameter θL of the selected

uniform population when sample sizes are unequal and the loss is measured by the squared log error

(SLE) loss function. We derive the uniformly minimum risk unbiased (UMRU) estimator under the

SLE loss function. Two natural estimators ΨN,1 and ΨN,2, which are respectively the analogs of the

maximum likelihood estimator (MLE) and the UMRU estimator of θi’s for the component problem,

are studied. For k= 2, we derive a sufficient condition for inadmissibility of an estimator of θL. Using

these conditions, we show that the UMRU estimator and natural estimator ΨN,1 are inadmissible.

Some results for estimating scale parameter of the selected uniform population when the goal of

selection is to select a population associated with the smallest scale parameter are provided. Finally,

the risk functions of various competing estimators of θL are compared through simulation.

In Chapter 8 we consider k(≥ 2) independent uniform populations over the interval (0,θi)

and θi > 0 (i = 1, . . . ,k) be an unknown scale parameter. For selecting the best population associated

with the largest (or smallest) scale parameter, we have considered a class of selection rules based on

the natural estimators of θi, i = 1, ...,k. In this chapter, we have considered the problem of estimating

scale parameter θL of the selected uniform population when sample sizes are unequal, and the loss

is measured by the Generalized Stein Loss (GSL) function. The UMRU estimator of θL is derived.
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Two natural estimators ξN,1 and ξN,2, which are respectively the analogs of the maximum likelihood

estimator (MLE) and the UMRU estimators of θi’s for the component estimation problem, are stud-

ied. The natural estimator ξN,2 is proved to be the generalized Bayes estimator with respect to a

noninformative prior. For k = 2, we give a sufficient condition for inadmissibility of an estimator

of θL and show that the UMRU estimator and natural estimator ξN,1 are inadmissible. A simulation

study is also carried out for the performance of the risk functions of various competing estimators of

θL based on minimax selection rule, and it is found satisfactory. Finally some results and discussions

are reported.

In Chapter 9 the work of this thesis is concluded and the possible directions of the future

scope is provided.



Chapter 2

Some Basic Definitions and Techniques

2.1 Introduction

In this chapter, we discuss some of the basic definitions related to this study, results and techniques

which will be used in the sequel for estimating parameter(s) of the selected population. For more

study on these topics one may refer to Ferguson [41], Gupta and Panchapakesan [55], Lehmann [73],

Berger [24], Casella and Berger [30], Gibbons et al. [43] and Bain and Engelhardt [17].

2.2 The Standard Estimation or the Component Problem

In the theory of estimation, the fundamental problem is to make a presumption about the values of

a specific characteristic, called parameter, of a given population. Usually, presumption depends on

a sample from that population itself. Let XXX = (X1, . . . ,Xn) be a random sample from a population

with distribution Pθ , which is a member of the family of probability distribution P = {Pθ : θ ∈Ω}.
The set Ω is referred as the parameter space and the set of all possible values of the random variable

XXX is called the sample space and is denoted by χ , taken to be a finite dimensional Euclidean space.

In general, we are interested in estimating some function h(θ) of θ . The statistic δ (x) used to

estimate h(θ) is called an estimator of h(θ) and the particular value of δ (x) is known as an estimate

of h(θ). The estimates lie in a space A , which is usually taken as the convex closure of the set

{g(θ) : θ ∈ Ω}. A is the set of actions available to the statistician. The L(θ ,δ (x)) denotes the

loss incurred when h(θ) is estimated by δ (x), where x = (x1, . . . ,xn) is the observed value of the

sample. The loss function is assumed to be nonnegative. Usually the loss function is considered to

be a convex and increasing function of the Euclidean distance |h(θ)−δ (x)|. A loss function is said

to be convex if it is a convex function in the argument δ . Some examples of loss functions are as

follows:

19



20

1. The most widely used loss function is squared error

L1(g(θ),δ ) = (g(θ)−δ )2 (2.1)

2. Absolute error loss function

L2(g(θ),δ ) = |g(θ)−δ | (2.2)

3. Generalized stein loss (GSL) function

L3 (g(θ),δ ) =
(

δ

g(θ)

)p

− p ln
(

δ

g(θ)

)
−1, p 6= 0. (2.3)

4. Squared log error (SLE) loss function

L4 (g(θ),δ ) = (ln(δ )− ln(g(θ)))2 (2.4)

The expected value of L(θ ,δ (x)) with respect to probability distribution Pθ is known as the risk

function of the estimator δ (x) and its risk function is denoted by

R(θ ,δ ) = Eθ (L(θ ,δ (x))) (2.5)

At a given θ , the risk function is the average loss function that will be incurred if the estimator δ is

used. For squared error loss, the risk function (2.5) is called the mean squared error (MSE).

2.3 Criteria for Selecting an Estimator

The merit of an estimator is measured by its risk function and the estimator having the minimum

value of the risk is treated as the best estimator. That is why the statisticians like to find such an

estimator δ for which R(θ ,δ ) is minimum for all θ ∈Ω. This would mean that, regardless of the all

values of θ , the estimator δ will have a minimum expected loss. Unfortunately, this is not possible

in most of the practical cases, since it depends on the unknown parameter θ itself. But it may be

possible to determine such an estimator δ in a subclass of estimators. Let δ0 and δ1 be two estimators

for h(θ) and if the efficiency of these estimators are to be compared, then they will be analyzed by

comparing their risk functions. An estimator δ0 is said to be better estimator than δ1, if it satisfies

the following conditions

R(θ ,δ0)≤ R(θ ,δ1) for all θ ∈Ω (2.6)

and

R(θ∗,δ0)< R(θ∗,δ1) for some θ∗ ∈Ω. (2.7)
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This can also be interpreted that δ0 improves upon δ1, or that δ1 is dominated by δ0.

The two estimators δ0 and δ1 are said to be equivalent if the their risk functions are equal. That

is, if

R(θ ,δ0) = R(θ ,δ1) for all θ ∈Ω. (2.8)

Further, an estimator δ0 is said to be at lest as good as δ1 if either δ0 is better than δ1 or it is equivalent

to δ1.

2.3.1 Admissible Estimators

Let D denotes the class of all estimators for an estimation problem and C be a subclass of D .

Consider an estimator δ such that there exists no other estimator δ∗ in C which is better than δ .

Then, an estimator δ is said to be inadmissible in the class C if there exists another estimator δ∗ in

C such that R(θ ,δ∗) ≤ R(θ ,δ ) for all θ , with strict inequality holding for some θ . An estimator is

said to be inadmissible if it is not admissible. Thus if δ is an inadmissible estimator, then there must

exist at least one δ∗ which is better than δ .

2.3.2 Complete and Essentially Complete classes

The subclass C of class D is said to be complete (essentially complete) class of estimators if for

any estimator δ1 6∈ C , there exists an estimator δ2 ∈ C such that δ2 is better than (as good as) δ1.

Considerably naturally, in the problems of estimation, it is desirable to obtain complete (essentially

complete) classes of estimators, for we need not look outside these classes for obtaining good esti-

mators for the estimation problem in hand.

Let D∗ be the class of all nonrandomized estimators (one may refer Ferguson [41] for a defi-

nition of randomized estimators). When the loss function is convex, then D∗ is essentially complete

in D . Further, let T (X) be a sufficient statistic and D∗T denote the class of all nonrandomized

estimators based on T . Then D∗T is also essentially complete.

2.3.3 Minimaxity Criterion

An estimator δM is said to be minimax if

sup
θ∈Ω

R(θ ,δM) = inf
δ∈D

sup
θ∈Ω

R(θ ,δ ).

In other words an estimator δM is said to be minimax with respect to the risk function R(θ ,δ ) if δM

minimizes the maximum risk amongst all estimators in D . If δM is a minimax estimator than the
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values of supθ∈Ω R(θ ,δM) is said to have minimax value of the selection problem. The right side

portion in the above expression as the minimax value or the upper value of the estimation problem.

2.3.4 Bayes Criterion

A measure τ on (Ω,B(Ω)) is said to be proper prior if τ(Ω)< ∞, where B(Ω) is a σ -filed of subsets

of Ω. The measure τ is said to be improper prior if τ(Ω) = ∞ and∫
Ω

pθ (x)dτ(θ)< ∞ for almost all x.

Where, pθ (x) is the density of Pθ with respect to a σ - finite µ on the measurable space of X- values.

According to Bayes criterion, the parameter θ itself is assumed to be a random variable with some

known prior τ(θ). The conditional posterior probability distribution of θ given x is defined as

pθ (x)dτ(θ)∫
Ω

pθ (x)dτ(θ)

is known as the posterior or formal posterior distribution according as τ is proper or improper prior

respectively. The posterior or formal posterior risk of an estimator δ is then described as∫
Ω

L(θ ,δ (x))pθ (x)dτ(θ)∫
Ω

pθ dτ(θ)
.

An estimator δr which minimizes the above expression of risk is called the Bayes or formal Bayes

(or generalized Bayes) estimator with respect to the prior τ . The Bayes risk of an estimator δ with

respect to a prior τ is defined as

r(τ,δ ) = ErR(θ ,δ ).

If τ is defined as proper prior then δr also minimizes the Bayes risk

r(τ,δ ) =
∫

Ω

R(θ ,δ )dτ(θ).

Here, it should be noted that when the loss function is proportional to squared error loss function then

Bayes estimator is the mean of the posterior distribution and when the loss function is proportional to

absolute error then the Bayes estimator is the median of the posterior distribution. Next, we address

the property of invariance in estimation problems. It is one useful way of restricting the class of

possible estimators so that one can view for the best estimator in this class.

2.3.5 Invariance

Let G denote a group of transformations from the sample space into itself. The operation on the group

is considered to be the composition of functions. The family of distributions P = {Pθ : θ ∈ Ω} is
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said to be invariant under the group G, if for every g∈G and every θ ∈Ω there exits a unique θ ∗ ∈Ω

such that the distribution of g(X) is given by Pθ∗ whenever the distribution of X is given byPθ , where

θ ∗ is uniquely determined by g and is denoted by g(θ).

In estimation problem, if the family of distributions P = {Pθ : θ ∈ Ω} is invariant under the

group G, the loss function L(θ ,a) is said to be invariant under the G, if for every g ∈ G and every

a ∈A , there exits a unique a∗ ∈A such that

L(θ ,a) = L(g(θ),a∗) for all θ ∈Ω.

In this condition, the action a∗ is uniquely determined by g and is denoted by g̃(a).

Here, it is observed that if P is invariant under the group G, then set G = {g : g ∈ G} is a

group of transformations on Ω and G̃ = {g̃ : g ∈G} is a group of transformations on the action space

A .

An estimation problem is said to be invariant under the group G if the underlying family of

distributions and the loss function are invariant. For an invariant estimation problem, it is natural to

use estimators which show symmetry. A nonrandomized estimator δ ∈D∗ is said to be invariant if

δ (g(x)) = g(δ (x)), for all x ∈ χ,g ∈ G.

Let two points θ1 and θ2 belongs to parameter space Ω are said to be equivalent if there exits a g ∈G

such that θ2 = g(θ1). This is an equivalence relation and the partitions of the parameter space into

equivalence classes are called orbits. An important property of an equivariant estimator is that its

risk function is constant on orbits, that is,

R(θ ,δ ) = R(g(θ),δ ) for all θ ∈ θ and g ∈ G.

Thus if Ω has only one orbit, then the risk function of an equivariant estimator is independent of the

parameter.

A function T (x) is invariant with respect to the group G if

T (x) = T (g(x)) for all x and g ∈ G.

A function T (x) is maximal invariant if it is invariant and T (x1) = T (x2) implies x1 = g(x2) for some

g ∈ G. An important property of maximal invariants is that if g(θ) is maximal invariant under G,

then the distribution of T (x) depends on θ only through g(θ).
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2.4 The Brewster-Zidek Technique for Improving Estimators

An interesting and appropriate technique for improving on equivariant estimators have been pre-

sented by Brewster and Zidek [27]. However, their method as such can be employed in other sit-

uations also. The technique may be implemented on all the families of underlying distributions.

The loss function must satisfy a natural conditions but may otherwise be arbitrary. We discuss two

methods of using this technique.

Suppose we want to improve an estimator δ0 of g(θ), θ ∈ Ω. Consider a class of estima-

tors C = {δc : c is real}, where c = c0 corresponds to the estimator δ0. Minimize the risk function

R(θ ,δc) with respect to c for each θ ∈Ω. If the minimizing choice ĉ is independent of θ and ĉ 6= c0,

then clearly the estimator δĉ improve δ0. For instance, consider translation equivariant estimators of

the form X +c for estimating normal mean. Hear, clearly, c = 0 is the minimizing choice, say, when

the loss is squared error.

However, in most reasonable situations ĉ depends on θ , call it ĉ(θ). Improvement of δ0 is

still possible if R(θ ,δc) is strictly convex function of c and either c0 > supθ∈Ω ĉ or c0 < infθ∈Ω ĉ(θ).

Also the class of estimating {δc : inf ĉ(θ)≤ c≤ sup ĉ(θ)} is essentially complete in C.

This method can readily be generalized to cases, where we consider classes of estimators

characterized by two or more constants. The risk function need to be strictly bowl-shaped (For a

definition of bowl-shaped functions, refer to Brewster and Zidek [27]). A second approach involves

reducing the risk of an equivariant estimator on the orbits of some invariant statistics W . Usually W

is taken to be a maximum invariant estimator. Consider estimator of the form δφ(W ), where φ(W ) =

φ0(W ) corresponds to the estimator δ0. One can then apply the Brewster and Zidek technique as

described in the preceding paragraph on the conditional risk function of δφ(W ) given W = w, that is,

on

R(θ ,δφ(w)) = E
[
L
(
θ ,δφ(W )

)
|W = w

]
.

Let R(θ ,δφ(w)) be a strictly convex function of φ(w) and φ̂θ (w) be the choice of φ minimizing

R(θ ,δφ(w)) for given w and θ . Define φ∗(w) = infθ∈Ω φ̂θ (w) and φ∗(w) = supθ∈Ω φ̂θ (w). Then if

φ0(w)< φ∗(w), we have R(θ ,δφ0(w))>R(θ ,δφ∗(w)) and if φ0(w)> φ∗(w), R(θ ,δφ0(w))>R(θ ,δφ∗(w)).

This leads us to estimators δ
φ̃(W ), where

φ̃(w) = φ∗(w), if w ∈ A,

= φ
∗(w), if w ∈ B,

= φ0(w), otherwise
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and A and B are given by

A = {w : φ0(w)< φ∗(w)} and B = {w : φ0(w)> φ
∗(w)} .

Then the estimator δ
φ̃(W ) will improve upon δ0 if Pθ (A

⋃
B)> 0 for some θ ∈Ω.

2.5 The Problem of Selection

Let Πk, . . . ,Πk be k(≥ 2) independent populations such that the characteristic of the population Πi

described by a random variable Xi having the probability density function fXi(.|θi); where θi ∈Θ(i =

1, . . . ,k) is an unknown parameter. Saying that the populations Πk, . . . ,Πk are independent we mean

that the random observations from these populations are independent. Quite often, one is interested

in selecting the best population or a subset of populations containing the best population from among

the given k population. A population may be called the best according to some characteristic such

as the largest mean, the smallest variance, the largest quantile etc. For the goal of selecting the best

population, a most commonly used selection procedure is the “Natural Selection Rule”, which is

explained in the following subsequent section.

2.5.1 The Natural Selection Rule

Suppose we have k populations from Π1, . . . ,Πk being characterized by the parameters θ1, . . . ,θk. Let

Θ = (θ1, . . . ,θk) and g(.) is a real valued function such that g(θi) ≤ g(θ j) whenever θi ≤ θ j, i 6= j.

Suppose the problem of interest is to select the population associated with max
1≤i≤k

g(θi). Normally T =

(t1, . . . , tk) is an appropriately chose sufficient statistics based on a random sample from population

Π1, . . . ,Πk. Then the natural selection rule says to select the population Π j if t j is the unique largest

among t1, . . . , tk and chose populations Πi1,Πi2, . . . ,Πir each with probability 1
r if t− values equal to

max t j.

Bahadur [15] and Bahadur and Goodman [16] have analyzed the optimality properties of the

natural selection rule. They have discussed that the natural selection rule minimizes the risk in the

class of impartial decision rules or permutation invariant rule and proved that, for certain families

of distributions, the natural selection procedure uniformly minimizes the risk among all symmetric

procedures for a wide class of loss functions. Lehmann [72] provided alternative proof of this result

by applying some invariance arguments. He also indicated several other optimum properties of the

natural selection rule. Further, Eston [40] generalized the result by Lehmann [72] to cover the case

of distributions having a generalization of the monotone likelihood ratio property of densities.

In this thesis, we use natural selection rule for selecting the best population when the underly-

ing populations are Normal, Pareto and Uniform.
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2.6 The Problem of Estimation After selection

Let Π1,Π2, . . . ,Πk be k independent populations with Πi having associated the probability density

function f (x,θi), i = 1, . . . ,k. Suppose X be the sample observations from Π1, . . . ,Πk. Further

suppose I(X) denotes the selection procedure according to which a population is to be selected. The

selection procedure I(X) can be explained as follows:

I(X) is a discrete valued random variable such that

I(X) = j if X ∈ A j.

where A1,A2, . . . ,Ak is a partitions of the sample space of X . The population Π j is selected when

I(X) = j. The parameter corresponding to the selected population is denoted by θI . In the stan-

dard estimation problem presented in section 2.1, the parameter to be estimated is a fixed quantity,

whereas θI is a random quantity which depends upon the outcome of the selection procedure. An

estimator U(X) is said to be unbiased estimator of θI if it is unbiased for expectation of θI , that is if

satisfy

E(U(X)) = E(θI), for all θ = (θ1, . . . ,θk)

or equivalently if

Eθ (U(X)−θI), for all θ = (θ1, . . . ,θk).

Similarly, a uniformly minimum variance unbiased (UMVU)estimator of θI is actually a UMVU

estimator of E(θI). Also it is interesting to note that, as in case of component problem the mean

squared error (MSE) of the unbiased estimator is defined to be its variance, it is not the case in the

problem of estimation after selection, if U is the unbiased estimator of θI . Then,

MSE(U) = E(U−θI)
2 =V (U)+V (θI)−2Cov(U,θI),

where V (U) and V (θI) denotes the variance of U and θI , respectively.

For more discussion, on unbiased estimation following selection one may refer to Vellaisamy

[126, 128].

Now we present a general technique to derived unbiased estimators for the problem of estima-

tion after selection by Robbins [110]. We illustrate this technique underneath.

2.6.1 (U, V) Method of Robbins

This method is utilized to derive unbiased estimators of the random parameters of the selected pop-

ulation. For the component problem too, this method is used for detecting unbiased estimators of
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the random parameters. Let a random variable X with associated the probability density function

f (x,θ), θ ∈ Ω where f (x,θ) is a parametric probability density functions with respect to some

σ -finite measure µ , for a given function v(x), one must find a function u(x) such that

Eθ [u(X)] = θEθ [v(X)] , ∀ θ ∈Ω,

then u(X) is an unbiased estimator of θEθ (v(X)). For example, if we consider an exponential

distribution with scale parameter θ and location parameter zero, that is

f (x,θ) =
1
θ

e−
x
θ , x > 0, θ > 0. (2.9)

We can easily see that for a given function v(x), u(x) can be defined as

u(x) =
∫ x

0
v(t)dt.

Next, we generalize for the k populations. Suppose we have k populations Π1, . . . ,Πk with Πi having

the density function f (x,θi). We select the random sample Xi form Πi, i = 1, . . . ,k. We may be

interested in estimating

θI =
k

∑
i=1

vi(x)θi,

here vi(x), i = 1, . . . ,k are the functions of x = (x1, . . . ,xk). If we obtain functions ui(x) such that

Eθ ui(X) = θiEθ vi(X) for i= 1, . . . ,k, then ∑
k
i=1 ui(X) is an unbiased estimator of θI(x). For example,

Let X1, . . . ,Xk be exponential random variable with associate densities f (x,θ1), . . . , f (x,θk), where

f (x,θ) is defined in (2.9). Then for a given function vi(x), ui(x) defined as

ui(x) =
∫ x1

0
vi(x1, . . . ,xi−1, t,xi+1, . . . ,xk)dt.

satisfies the condition Eui(X) = θiEvi(X), hence ∑
k
i=1 ui(X) will be unbiased estimator of θI .
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Chapter 3

Estimation of Mean of the selected

Population

3.1 Introduction

Suppose we have two securities and we choose the security which is less risky. Then what can we

say about the estimate of the risk of the selected security? For tackling this kind of situation we

may consider the following model. Suppose we have two normal populations with means αi, i = 1,2

respectively, and each having the same variance τ2. A random sample of size n is drawn from each

of the populations. Let X11, . . . ,X1n and X21, . . . ,X2n be the two random samples drawn from the

first and second population respectively. Let Y1 and Y2 be the sample means of {X1 j} and {X2 j},
j = 1, . . . ,n respectively. Then the expectation of Yi is αi and the variance of Yi is τ2

n . Now we are

interested in selecting the normal population with the smaller mean. For this purpose we select the

population with smaller sample mean. The problem corresponding to higher mean was studied in

[36]. So, in the current problem the first population is selected if Y1 ≤ Y2 and the second population

is selected otherwise. Hence we define I1 and I2 as

I1 =

{
1 if Y1 ≤ Y2

0 otherwise

and I2 = 1− I1. Therefore, the mean of the selected population is

M = α1I1 +α2I2,

where Ymin = min(Y1,Y2).

In this chapter, we derive four various estimators and the improved estimator of the mean of the

selected population from two normal populations with unknown mean and common known variance

29



30

under the squared error loss function. In section 3.2, we present these estimators. In section 3.3, we

found the bias for the four estimators which are discussed in computable forms and also obtain MSE

for M̂λ , and determine the improved estimator in section 3.4. In section 3.5, the comparison of bias

and MSE risks of proposed estimators are analyzed through Monte- Carlo simulation technique.

3.2 Derivation of the estimators

In this section we consider the analogous estimators to the proposed estimators in [36]. The natural

estimator of M is Ymin.

The bias of Ymin as an estimator M is

B(Ymin) = E[Ymin−M],

= E[Ymin]−E[M], (3.1)

where

E[Ymin] = E[Y1I1 +Y2I2],

= E[Y1I1]+E[Y2I2],

=
∫

∞

−∞

∫ y2

−∞

I1y1 f (y1,y2)dy1dy2,+
∫

∞

−∞

∫ y1

−∞

I2y2 f (y1,y2)dy1dy2,

= A+B. (3.2)

Here, we evaluate A as

A =
∫

∞

−∞

∫ y2

−∞

y1√
2π

√
n

τ
exp

(
−(y1−α1)

2

2τ2

n

)
1√
2π

√
n

τ
exp

(
−(y2−α2)

2

2τ2

n

)
dy1dy2,

=
∫

∞

−∞

∫ y2

−∞

y1

√
n

τ
φ

(
y1−α1

τ√
n

)√
n

τ
φ

(
y2−α2

τ√
n

)
dy1dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[√
n

τ

∫ y2

−∞

y1φ

(
y1−α1

τ√
n

)
dy1

]
dy2.

Using the transformation y1−α1
τ√
n

= u, we obtain

A =

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[∫ y2−α1
τ√
n

−∞

(
u

τ√
n
+α1

)
φ(u)du

]
dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[
τ√
n

∫ y2−α1
τ√
n

−∞

uφ(u)du+α1

∫ y2−α1
τ√
n

−∞

φ(u)du

]
dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[
τ√
n

∫ y2−α1
τ√
n

−∞

u
(

1√
2π

exp
(
−u2

2

))
du+α1Φ

(
y2−α1

τ√
n

)]
dy2.
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Further Putting u2

2 = v, we get

A =

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

) 1√
2π

τ√
n

∫ 1
2

(
y2−α1

τ√
n

)2

∞

exp(−v)dv+α1Φ

(
y2−α1

τ√
n

)dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)− 1√
2π

τ√
n

exp

−1
2

(
y2−α1

τ√
n

)2
+α1Φ

(
y2−α1

τ√
n

)dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[
− τ√

n
φ

(
y2−α1

τ√
n

)
+α1Φ

(
y2−α1

τ√
n

)]
dy2.

Again letting y2−α2
τ√
n

= u and A simplifies to

A =− τ√
n

∫
∞

−∞

φ(u)φ
(

u+α

√
n

τ

)
du+α1

∫
∞

−∞

φ(u)Φ
(

u+α

√
n

τ

)
du,

where α = α2−α1.

For assessing the integral on the right side of A, we use the identity

φ(ax+b)φ(cx+d) = φ

((
a2 + c2)x+ab+ cd
√

a2 + c2

)
φ

(
ad−bc√

a2 + c2

)
. (3.3)

and the following integrals∫
∞

−∞

xΦ(a+bx)φ(x)dx =
b√

1+b2
φ

(
a√

1+b2

)
, (3.4)

∫
∞

−∞

Φ(a+bx)φ(x)dx = Φ

(
a√

1+b2

)
, (3.5)

and obtain A as

A =− τ√
n

∫
∞

−∞

φ

√2u+
α

τ

√
2
n

φ

 α

τ

√
2
n

du+α1Φ

 α

τ

√
2
n

 ,

=− 1√
2

τ√
n

φ

 α

τ

√
2
n

+α1Φ

 α

τ

√
2
n

 . (3.6)

Similarly, B can be obtained as

B =
∫

∞

−∞

∫ y1

−∞

y2
1√
2π

√
n

τ
exp

(
−(y1−α1)

2

2τ2

n

)
1√
2π

√
n

τ
exp

(
−(y2−α2)

2

2τ2

n

)
dy1dy2,

=− 1√
2

τ√
n

φ

 α

τ

√
2
n

+α2−α2Φ

 α

τ

√
2
n

 . (3.7)
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Addition of (3.6) and (3.7), because of (3.2), gives

E(Ymin) =−
1√
2

τ√
n

φ

 α

τ

√
2
n

+α1Φ

 α

τ

√
2
n

+α2−
1√
2

τ√
n

φ

 α

τ

√
2
n


−α2Φ

 α

τ

√
2
n

 . (3.8)

The expected value of the mean of the selected population is defined as

E[M] = E [α1I1 +α2I2] ,

= E [α1I1]+E [α2I2] ,

= α1P(Y1 < Y2)+α2P(Y1 > Y2) . (3.9)

where

P(Y1 < Y2) =
∫

∞

−∞

∫ y2

−∞

1√
2π

√
n

τ
exp

(
−(y1−α1)

2

2τ2

n

)
1√
2π

√
n

τ
exp

(
−(y2−α2)

2

2τ2

n

)
dy1dy2,

=
1√
2π

√
n

τ

∫
∞

−∞

exp

(
−(y2−α2)

2

2τ2

n

)[
1√
2π

√
n

τ

∫ y2

−∞

exp

(
−(y1−α1)

2

2τ2

n

)
dy1

]
dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[√
n

τ

∫ y2

−∞

φ

(
y1−α1

τ√
n

)
dy1

]
dy2.

Let u = y1−α1
τ√
n

, and dy1 =
τ√
ndu,

P(Y1 < Y2) =

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)[∫ y2−α1
τ√
n

−∞

φ(u)du

]
dy2,

=

√
n

τ

∫
∞

−∞

φ

(
y2−α2

τ√
n

)
Φ

(
y2−α1

τ√
n

)
dy2.

Again let u = y2−α2
τ√
n

, and dy2 =
τ√
ndu,

P(Y1 < Y2) =
∫

∞

−∞

φ(u)Φ
(

u+
α
√

n
τ

)
du,

= Φ

 α

τ

√
2
n

 , where α = α2−α1. (3.10)

Similarly, we obtain the expression for P(Y2 < Y1) as

P(Y2 < Y1) =
∫

∞

−∞

∫ y1

−∞

1√
2π

√
n

τ
exp

(
−(y1−α1)

2

2τ2

n

)
1√
2π

√
n

τ
exp

(
−(y2−α2)

2

2τ2

n

)
dy1dy2,

= 1−Φ

 α

τ

√
2
n

 . (3.11)
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Substituting the values of (3.10) and (3.11) in (3.9), we get the expected value of M as

E[M] = α1Φ

 α

τ

√
2
n

+α2−α2Φ

 α

τ

√
2
n

 . (3.12)

Using the equations (3.8) and (3.2), and (3.1) we get the bias of Ymin as

B(Ymin) =−
1√
2

τ√
n

φ

 α

τ

√
2
n

+α1Φ

 α
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√
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n

− 1√
2

τ√
n

φ
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2
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−α2Φ

 α
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√
2
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α1Φ

 α

τ

√
2
n

+α2−α2Φ

 α

τ

√
2
n
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2
τ√
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φ

 α

τ

√
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n

− 1√
2

τ√
n

φ

 α

τ

√
2
n

 ,

=− 2√
2

τ√
n

φ

 α

τ

√
2
n

 ,

=−
√

2
τ√
n

φ

 α

τ

√
2
n

 ,

=−σφ

(
α

σ

)
,

where σ = τ

√
2
n .

Now, we get the estimator M̂λ of the random variable M as

M̂λ = Ymin +λσφ

(
Y
σ

)
,

where Y =Y2−Y1 and λ ≥ 0 is an arbitrary constant. Note: Y∼N(α,σ2) and E[Y2−Y1] =α2−α1 =

α,Var(Y ) = 2τ2

n = σ2.

Next, we propose an estimator tc for the mean of the selected population according to Sarkadi

[116], is given by

tc = Y2−Y Φ

(
cY
σ

)
+ cσφ

(
cY
σ

)
,

where c > 0 is an arbitrary constant and Φ(u) is the standard normal cdf. Now

E [tc] = E
[
Y2−Y Φ

(
cY
σ

)
+ cσφ

(
cY
σ

)]
,

E [tc] = E [Y2]−E
[
Y Φ

(
cY
σ

)]
+E

[
cσφ

(
cY
σ

)]
, (3.13)
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where

E[Y2] = α2, (3.14)

and

E
[
Y Φ

(
cY
σ

)]
=

1√
2πσ

∫
∞

−∞

exp

(
−1

2

(
y−α

σ

)2
)

yΦ

(cy
σ

)
dy,

=
1
σ

∫
∞

−∞

φ

(
y−α

σ

)
yΦ

(cy
σ

)
dy.

=⇒ Let y−α

σ
= u, then dy = σdu,

E
[
Y Φ

(
cY
σ

)]
=
∫

∞

−∞

(σu+α)φ(u)Φ
(

cu+
cα

σ

)
du,

= σ

∫
∞

−∞

uφ(u)Φ
(

cu+
cα

σ

)
du+α

∫
∞

−∞

φ(u)Φ
(

cu+
cα

σ

)
,

=
σc√
1+ c2

φ

(
cα

σ
√

1+ c2

)
+αΦ

(
cα

σ
√

1+ c2

)
. (3.15)

Further, we obtain the expression of E
[
cσφ

(cY
σ

)]
as

E
[

cσφ

(
cY
σ

)]
=

1√
2πσ

∫
∞

−∞

exp

(
−1

2

(
y−α

σ

)2
)

cσφ

(cy
σ

)
dy,

= c
1√
2π

∫
∞

−∞

exp

(
−1

2

(
y−α

σ

)2
)

1√
2π

exp
(
−1

2

(cy
σ

)2
)

dy,

=
c

2π

∫
∞

−∞

exp
(
− 1

2σ2

(
y2 (1+ c2)+α

2−2yα
))

dy,

=
c

2π

∫
∞

−∞

exp

[
− 1

2σ2

{(
y
√

1+ c2− α√
1+ c2

)2

+
α2c2

1+ c2

}]
dy,

=
c

2π
exp
[
− 1

2σ2

(
α2c2

1+ c2

)]∫
∞

−∞

exp

[
− 1

2σ2

(
y
√

1+ c2− α√
1+ c2

)2
]

dy.

Let y
√

1+ c2 = u, and dy = 1√
1+c2 du, we obtain

E
[

cσφ

(
cY
σ

)]
=

c

2π
√

1+ c2
exp
[
− 1

2σ2

(
α2c2

1+ c2

)]∫
∞

−∞

exp

[
− 1

2σ2

(
u− α√

1+ c2

)2
]

du,

=
cσ√
1+ c2

φ

(
αc

σ
√

1+ c2

)[
1√

2πσ

∫
∞

−∞

exp

[
− 1

2σ2

(
u− α√

1+ c2

)2
]

du

]
,

=
cσ√
1+ c2

φ

(
αc

σ
√

1+ c2

)
. (3.16)
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From (3.13), (3.14), (3.15) and (3.16), we get expected value of tc as

E [tc] = α2−αΦ

(
cα

σ
√

1+ c2

)
.

So, we can say that estimator tc is an unbiased estimator of α2−αΦ

(
cα

σ
√

1+c2

)
, which approaches

to E [M] = α2−αΦ
(

α

σ

)
for large c. Hence, if c is large then the bias of tc as an estimator of M is

controlled.

Here, we can consider an estimator T of E [M] given by

T = Y2−Y Φ

(
Y
σ

)
(3.17)

and propose to use it to estimate M. The estimator T, actually, is a maximum likelihood estimator

of E [M] and its bias will be the same whether we can use it as an estimator of E [M] or M. A more

general estimator of this type is given by

Tλ = T −λ

[
Y
{

φ

(
Y
σ

)
−Φ

(
Y√
2σ

)}
− σ√

2
φ

(
Y√
2σ

)]
(3.18)

where λ ≥ 0 is an arbitrary constant. The estimator of Tλ is the same as that of M̂λ and is obtained

on subtracting a λ multiple of the estimated bias of T from itself.

Another estimator that we intend to investigate here is given by

Hc =


Y1+Y2

2 , if |Y1−Y2|< cσ

min(Y1,Y2), if |Y1−Y2| ≥ cσ .

(3.19)

where c ≥ 0 is an arbitrary constant. Note that for c=0 we get Ymin which is the same as M̂λ for

λ = 0. Then Hc is sometimes called an hybrid estimator. Finally, it may be mentioned that the Bayes

estimator of M, for squared error loss with uniform prior distribution on α1 and α2, turns out to be

min(Y1,Y2) which is the same as M̂λ for λ = 0.

3.3 Suitable formulae for Biases and MSE M̂λ

Since M is random variable, the general definition of the bias of an estimator M̂ of M as E(M̂)−M

has to be converted in a rather obvious way i.e. the Bias of estimator M̂ is defined as

B(M̂) = E(M̂−M)

and similarly, the MSE of estimator M̂ is defined as

MSE(M̂) = E(M̂−M)2.

In the following theorem, we present the bias of the proposed estimators.
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Theorem 3.3.1. The respective bias of M̂λ , tc, T and Hc are as follows

(a)

B(M̂λ ) =−σφ (γ)+
σλ√

2
φ

(
γ√
2

)
, (3.20)

(b)

B(tc) = γσ

[
Φ(γ)−Φ

(
cγ√

1+ c2

)]
, (3.21)

(c)

B(T ) = σ

[
γ

{
Φ(γ)−Φ

(
γ√
2

)}
− 1√

2
φ

(
γ√
2

)]
, (3.22)

(d)

B(Hc) =
σ

2
[γ {2Φ(γ)−Φ(γ− c)−Φ(c+ γ)}−φ (c− γ)−φ (c+ γ)] , (3.23)

where γ = α

σ
.

Proof. (a) The bias of M̂λ :

B
[
M̂λ

]
= E

[
M̂λ −M

]
= E

[
M̂λ

]
−E [M] . (3.24)

Now, we define expectation M̂λ

E
[
M̂λ

]
= E [Ymin]+E

[
λσφ

(
Y
σ

)]
. (3.25)

where

E
[

λσφ

(
Y
σ

)]
=

1√
2πσ

∫
∞

−∞

exp

[
−1

2

(
y−α

σ

)2
]

λσφ

( y
σ

)
dy,

=
λ√
2π

∫
∞

−∞

exp

[
−1

2

(
y−α

σ

)2
]

1√
2π

exp
[
− y2

2σ2

]
dy,

=
λ√

2π
√

2π

∫
∞

−∞

exp

[
− 1

2σ2

(√
2y− α√

2

)2

− 1
2

(
α√
2σ

)2
]

dy.

Let
√

2y = u, and dy = du√
2
, we obtain

E
[

λσφ

(
Y
σ

)]
=

λ√
2π
√

2π
exp

[
−1

2

(
α√
2σ

)2
]∫

∞

−∞

exp

[
− 1

2σ2

(
u− α√

2

)2
]

du√
2
,

=
1√
2

φ

(
α√
2σ

)
σλ√
2πσ

∫
∞

−∞

exp

[
− 1

2σ2

(
u− α√

2

)2
]

du,

=
σλ√

2
φ

(
α√
2σ

)
. (3.26)
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where ∫
∞

−∞

exp

[
− 1

2σ2

(
u− α√

2

)2
]

du = 1.

Using the equations (3.8) and (3.26) in the equation (3.25), we get the expectation of M̂λ as

E
[
M̂λ

]
=− τ√

2n
φ

α2−α1

τ

√
2
n

+α1Φ

α2−α1

τ

√
2
n

− τ√
2n

φ

 α

τ

√
2
n


+α2Φ

 α

τ

√
2
n

+
σλ√

2
φ

(
α√
2σ

)
. (3.27)

Using the expressions of the equations (3.12) and (3.27) in (3.25), we get the bias of M̂λ as

B
[
M̂λ

]
=− 2τ√

2n
φ

 α

τ

√
2
n

+
σλ√

2
φ

(
α√
2σ

)
,

=−σφ

(
α

σ

)
+

σλ√
2

φ

(
α√
2σ

)
, where σ

2 =
2τ2

n

B
[
M̂λ

]
=−σφ (γ)+

σλ√
2

φ

(
γ√
2

)
, where γ =

α

σ
.

(b) The bias of tc:

B [tc] = E [tc−M] = E [tc]−E [M] ,

= E
[
Y1−Y Φ

(
cY
σ

)
+ cσφ

(
cY
σ

)]
−E [M] ,

B [tc] = E [Y1]−E
[
Y Φ

(
cY
σ

)]
+E

[
cσφ

(
cY
σ

)]
−E [M] . (3.28)

Use equations (3.12), (3.14), (3.15) and (3.16) in (3.28), we obtain the bias of tc as

B [tc] = α

[
Φ

(
α

σ

)
−Φ

(
cα

σ
√

1+ c2

)]
,

B [tc] = γσ

[
Φ(γ)−Φ

(
cγ√

1+ c2

)]
, where γ =

α

σ
. (3.29)

(c) The bias of T :

B [T ] = E [T −M] = E [T ]−E [M] ,

= E
[
Y1−Y Φ

(
Y
σ

)]
−E [M] ,

B [T ] = E [Y1]−E
[
Y Φ

(
Y
σ

)]
−E [M] . (3.30)
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Now, we find the expression for E
[
Y Φ
(Y

σ

)]
as

E
[
Y Φ

(
Y
σ

)]
=

1√
2πσ

∫
∞

−∞

exp

[
−1

2

(
y−α

σ

)2
]

yΦ

( y
σ

)
dy,

=
1
σ

∫
∞

−∞

φ

(
y−α

σ

)
yΦ

( y
σ

)
dy.

Let u = y−α

σ
then we obtain

E
[
Y Φ

(
Y
σ

)]
=
∫

∞

−∞

(σu+α)φ (u)Φ

(
u+

α

σ

)
du,

= σ

[∫
∞

−∞

uφ (u)Φ(u+ γ)du+ γ

∫
∞

−∞

φ (u)Φ(u+ γ)du
]
,

where γ = α

σ
.

Use of equations (3.4) and (3.5) we yields

E
[
Y Φ

(
Y
σ

)]
= σ

[
1√
2

φ

(
γ√
2

)
+ γΦ

(
γ√
2

)]
. (3.31)

Using the equations (3.12), (3.14), (3.31) and (3.30), we lead to the bias of T as

B [T ] = α1−σ

[
1√
2

φ

(
γ√
2

)
+ γΦ

(
γ√
2

)]
−
[
α1−αΦ

(
α

σ

)]
,

B [T ] = σ

[
γ{Φ(γ)−Φ

(
γ√
2

)
}− 1√

2
φ

(
γ√
2

)]
, where γ =

α

σ
. (3.32)

(d) The bias of Hc:

B [Hc] = E [Hc−M] = E [Hc]−E [M] , (3.33)

Here,

Hc =

{
Y1+Y2

2 , if |Y1−Y2|< cσ

min(Y1,Y2), if |Y1−Y2| ≥ cσ .

where min(Y1,Y2) =
Y1+Y2

2 − |Y1−Y2|
2 .

Let Y ∼ Y1−Y2, and Y ∼ N(α,σ2), therefor E
[

Y1+Y2
2

]
= α1+α2

2 .

Now, we find the expectation,

E [Hc] = E
[

Y1 +Y2

2

]
−
∫ ∫

|Y1−Y2|≥cσ

|y1− y2|
2

f (y1,y2)dy1dy2,

=
α1 +α2

2
−
∫
|Y |≥cσ

| y |
2

fY (y)dy,

=
α1 +α2

2
− 1

2

[∫ −∞

cσ

y fY (y)dy−
∫ −cσ

−∞

y fY (y)dy
]
,

=
α1 +α2

2
− 1

2

[∫ −∞

cσ

y
σ

φ

(
y−α

σ

)
dy− 1

σ
−
∫ −cσ

−∞

yφ

(
y−α

σ

)
dy
]
.
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Next, let u = y−α

σ
,and dy = σdu, and we simplify

E [Hc] =
α1 +α2

2
− 1

2

[∫
∞

( cσ−α

σ )
(uσ +α)φ(u)du−

∫ −( cσ+α

σ )

−∞

(uσ +α)φ(u)du

]
,

=
α1 +α2

2
− 1

2

[
σ

∫
∞

( cσ−α

σ )
uφ(u)du+α

∫
∞

( cσ−α

σ )
φ(u)du−σ

∫ −( cσ+α

σ )

−∞

uφ(u)du

−α

∫ −( cσ+α

σ )

−∞

φ(u)du

]
.

Since, we solve the following integrals∫
∞

( cσ−α

σ )
uφ(u)du =

1√
2π

∫
∞

( cσ−α

σ )
ue−

u2
2 du,

Let, z = u2

2 , udu = dz,

1√
2π

∫
∞

( cσ−α

σ )
ue−

u2
2 du,=

1√
2π

∫
∞

1
2(

cσ−α

σ )
2 e−zdz,= φ

(
cσ −α

σ

)
.

Similarly

∫ −( cσ+α

σ
)

−∞

uφ(u)du =−φ(
cσ +α

σ
).

Using these integrals, we obtain

E [Hc] =
α1 +α2

2
− 1

2

[
σφ

(
cσ −α

σ

)
+α {Φ(u)}

∣∣∞
( cσ−α

σ )−σ

{
−φ

(
cσ +α

σ

)}
−α {Φ(u)}

∣∣−( cσ+α

σ )
−∞

]
.

As, Φ(−u) = 1−Φ(u),Φ(∞) = 1 and Φ(−∞), we obtain

E [Hc] =
α1 +α2

2
− σ

2
[φ (c− γ)+φ (c+ γ)− γ {Φ(c− γ)−Φ(c+ γ)}] , (3.34)

where γ =
α

σ
.

Using the equations (3.12) and (3.34) in (3.33), we obtain the bias of Hc,

B(Hc) =
σ

2
[γ {2Φ(γ)−Φ(γ− c)−Φ(c+ γ)}−φ (c− γ)−φ (c+ γ)] .

The proof of this theorem is complete.

For finding the MSE expression of the proposed estimator M̂λ we give the following theorem

and its proof.
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Theorem 3.3.2. The MSE of M̂λ is,

MSE
[
M̂λ

]
= σ

2

[
1
2
+

λ 2
√

6π
φ

(
γ
√

2√
3

)
−λφ

(
γ√
2

){
φ

(
γ√
2

)
+

3γ√
2

(
1
2
−Φ

(
γ√
2

))}]
.

Proof. First, we consider Ymin = Y − Y sgnY
2 and M = α − αsgnY

2 , where Y = y1+y2
2 , Y = y1− y2,

α = α1+α2
2 and

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0.

Therefor M̂λ = Ymin +λσφ
(Y

σ

)
= Y − Y sgnY

2 +λσφ
(Y

σ

)
, we have

MSE
[
M̂λ

]
=E
[
M̂λ −M

]2
,

=E
[
Y − Y sgnY

2
+λσφ

(
Y
σ

)
−
(

α− αsgnY
2

)]2

,

=E
[(

Y − Y sgnY
2
−α +

αsgnY
2

)
+λσφ

(
Y
σ

)]2

,

=E
[{(

Y −α
)
− (Y −α)

sgnY
2

}
+λσφ

(
Y
σ

)]2

,

=E
[(

Y −α
)
− (Y −α)

sgnY
2

]2

+λ
2
σ

2E
[

φ

(
Y
σ

)]2

+2λσE
[{(

Y −α
)
− (Y −α)

sgnY
2

}
φ

(
Y
σ

)]
,

=E
[(

Y −α
)2
]
+E

[{
(Y −α)

sgnY
2

}2
]
−2E

[(
Y −α

)
(Y −α)

sgnY
2

]
+λ

2
σ

2E
[

φ

(
Y
σ

)]2

+λσE
[{(

Y −α
)
− (Y −α)

sgnY
2

}
φ

(
Y
σ

)]
.

Since Y and Y are independent, so E
[(

Y −α
)

φ
(Y

σ

)]
= 0, then we obtain

MSE
[
M̂λ

]
=E
[(

Y −α
)2
]
+E

[{
(Y −α)

sgnY
2

}2
]
+λ

2
σ

2E
[

φ

(
Y
σ

)]2

−2λσE
[
(Y −α)

sgnY
2

φ

(
Y
σ

)]
. (3.35)
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we let Y
σ
= v and v∼ N (γ,1). Therefore, we evaluate the following expression

E
[

φ

(
Y
σ

)]2

= E [φ(v)]2 = E

φ

(
v
√

2
)

√
2π

 ,
=

1√
2π

∫
φ

(
v
√

2
)

φ (v− γ)dv,

=
1√
6π

φ

(
γ
√

2√
3

)
, (3.36)

and

E
[
Y −α

]2
=

σ2

4
, (3.37)

E
[
(Y −α)

sgnY
2

]2

= E [(Y −α)]2 ,

=
σ2

4
. (3.38)

E
[
(Y −α)φ

(
Y
σ

)
sgnY

2

]
=E
[
(σv−α)φ(v)

sgn(σv)
2

]
,

=
∫

∞

−∞

(σv−α)φ (v)φ (v− γ)
sgn(σv)

2
dv (we use the identity (3.3)),

=
∫

∞

−∞

(σv−α)φ

(√
2v− γ√

2

)
φ

(
γ√
2

)
sgn(σv)

2
,

=
σ

2

[∫
∞

−∞

vφ

(√
2v− γ√

2

)
φ

(
γ√
2

)
sgn(σv)dv

]
− α

2

[∫
∞

−∞

φ

(√
2v− γ√

2

)
φ

(
γ√
2

)
sgn(σv)dv

]
,

=
σ

2
φ

(
γ√
2

)[
−
∫ 0

−∞

vφ

(√
2v− γ√

2

)
dv+

∫
∞

0
vφ

(√
2v− γ√

2

)
dv
]

− α

2
φ

(
γ√
2

)[
−
∫ 0

−∞

φ

(√
2v− γ√

2

)
dv+

∫
∞

0
φ

(√
2v− γ√

2

)
dv
]
.

Let
√

2v− γ√
2
= u and dv = 1√

2
du, then

=
σ

2
φ

(
γ√
2

)[
−
∫ 0

−∞

vφ

(√
2v− γ√

2

)
dv+

∫
∞

0
vφ

(√
2v− γ√

2

)
dv
]

− α

2
√

2
φ

(
γ√
2

)[
−
∫ − γ√

2

−∞

φ(u)du+
∫

∞

− γ√
2

φ(u)du

]
,

=
σ

2
φ

(
γ√
2

)[
φ

(
γ√
2

)
− γ√

2
Φ

(
γ√
2

)
+

γ

2
√

2

]
− σγ

2
√

2
φ

(
γ√
2

)[
2Φ

(
γ√
2

)
−1
]
,

=
σ

2
φ

(
γ√
2

)[
φ

(
γ√
2

)
+

3γ√
2

(
1
2
−Φ

(
γ√
2

))]
. (3.39)
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Putting the expressions given in the equations (3.36), (3.37), (3.38) and (3.39) in the equation (3.35),

and simplifying it, then we get the following result

MSE
[
M̂λ

]
= σ

2

[
1
2
+

λ 2
√

6π
φ

(
γ
√

2√
3

)
−λφ

(
γ√
2

){
φ

(
γ√
2

)
+

3γ√
2

(
1
2
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3.4 Improvement upon M̂λ

Consider the group G = g(x)c = x+ c,c ∈ R of affine transformations. Under this transformation

:Xi j→ Xi j + c,Yi→ Yi + c and M→M+ c, if we take the the squared error loss L(d,M) = (d−M)2

then estimation problem is invariant.

Theorem 3.4.1. Let us consider the class of estimators of the form M̂λ = Ymin +λσφ
(Y

σ

)
. Further,

define the estimator M̂λ∗ by

M̂λ∗ = M̂λ , if λ ≤ γ ∗

= M̂γ∗, if λ > γ∗,

where γ∗=
√

3
2 . Then M̂λ∗ improves M̂λ with respect to the squared error loss if λ > γ∗> 0 for some

η = {α1,α2}.

Proof. The mean squared error risk of M̂λ is given by

MSE
[
M̂λ

]
σ2 =

E
[(

Ymin +λσφ
(Y

σ

)
−M

)2
]

σ2

=

[
1
2
+

λ 2
√

6π
φ

(
γ
√

2√
3

)
−λφ

(
γ√
2

){
φ

(
γ√
2

)
− 3γ√

2

(
Φ

(
γ√
2

)
− 1

2

)}]
= ψ(λ )

where γ = α

σ
.

Now ψ ′(λ ) =
[

2λ√
6π

φ

(
γ
√

2√
3

)
−φ

(
γ√
2

){
φ

(
γ√
2

)
− 3γ√

2

(
Φ

(
γ√
2

)
− 1

2

)}]
= 0 gives

λ =
φ

(
γ√
2

){
φ

(
γ√
2

)
− 3γ√

2

(
Φ

(
γ√
2

)
− 1

2

)}
2√
6π

φ

(
γ
√

2√
3

)
=

√
3

2
e−γ2+ 2γ2

3

1−
3γ√

2

(
Φ

(
γ√
2

)
− 1

2

)
φ

(
γ√
2

)


= f (γ)



43

which is the minima of ψ(λ ). We know Φ(0) = 1
2 . When γ is positive, Φ( γ√

2
) is greater than 1

2 ,

that is Φ

(
γ√
2

)
− 1

2 > 0. Thus, 3γ√
2
{Φ
(

γ√
2

)
− 1

2} is positive. If γ is negative, 3γ√
2
{Φ
(

γ√
2

)
− 1

2} is

positive. Therefore, f (γ) has the maximum value at γ = 0 and we obtain

f (γ)≤
√

3
2

e−γ2/3 ≤
√

3
2

.

Thus, Supγ∈R f (γ) =
√

3
2 = γ∗. According to Brewster-Zidek technique [27] we can say that if λ > γ∗

then M̂λ can be improved by M̂γ∗ as in that case the risk of M̂γ∗ will be less than that of M̂λ and this

completes the proof of the theorem.

3.5 Comparison of different estimators based on bias and MSE

The biases and mean squared error risks are calculated for the above estimators by the method of

Monte-Carlo simulation for different values of |γ|, where γ = α1−α2
σ

. The bias and MSE risks of M̂λ ,

Tλ , tc and Hc are calculated for several values of λ and c. Among these values the values of λ and

c which give better results are chosen to be presented in the thesis. The graphs of these biases and

MSE risks are drawn for the above estimators. In these graphs the X axis represents |γ| and Y axis

represents the bias or MSE risks. The bias performances of the above estimators are given in Table

3.1. From Table 3.1 we observe that as |γ| increases the value of absolute biases of all the estimators

decrease excluding the estimator Tλ . The MSE risks performances are given in Table 3.2. From

Table 3.2, it is observed that the risk performances of the estimators become better as the value of

|γ| increases. It should be noted that M̂λ reduces to Ymin for λ = 0 and the other suitable choices

of λ are
√

3/2, 4− 2
√

2 and
√

2. It is also observed that in most of the cases the risk of M̂λ , for

λ =
√

3/2 is lower than the other estimators. The bias and risk of Tλ are considered for the values

of λ =
√

3/2,1.0,1.25,1.50. From Table 3.1, it can be seen that for all values of |γ|, the estimator

Tλ has the best bias performance than M̂λ most of the cases when λ =
√

3/2. Also observed from

the Table 3.1 and Fig. 3.2, the estimator Tλ perform best for smaller values of |γ|, whereas estimator

T perform the best for moderate values of |γ|. From the graphs also it is clear that as the value of |γ|
tends to ∞ the bias and risk values tend to 0, hence, all the estimators are consistent. From the Fig.

3.6 and Table 3.2 it is observed that the risk performance of the estimator T is better than Tλ . In fact,

as the value of λ increases the bias and risk values increase. Bias and risk computations were made

for estimator tc for 1/3,1/2,1,
√

3, and for hybrid estimator Hc for c = 0.5,1,
√

2,2. From Table 3.1

and Fig. 3.3, it can be seen that for all values of |γ|, bias of the estimator tc decreases as c increases.

Other hand, From Table 3.2 and Fig 3.7, we see that the MSE of tc is increases for small values of |γ|,
whereas, for moderate and larger values of |γ|, the MSE of tc is decreases. Estimator tc with c =

√
3
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seem to be a good choice if bias of an estimator is the main criterion. On the other hand, if MSE risk

is the main criterion, Hc(c = 0.5) seem to be reasonable good choice. It is observed that the values

of |γ| ≤ 1.0 and c = 0.5 and c = 1.0, the bias performances of the estimator tc is better than estimator

Hc, whereas Hc performs better for moderate and large values of |γ|. When the values of |γ| takes

below 1.0, the MSE risk of the estimator Hc is decreases as c increases, whereas the MSE risk of the

estimator Hc is increases as c increases for all moderate and larger values of |γ|.
We present below the tables and graphs of biases and mean squared error risks of different

estimators.

Table 3.1: Bias performances of various estimators of M
M̂λ Tλ tc Hc

|γ| T λ = 0 λ =
√

3/2 λ = 4−2
√

2 λ =
√

2 λ =
√

3/2 λ = 1 λ = 1.25 λ = 1.5 c = 1/3 c = 1/2 c = 1 c=
√

3 c = 0.5 c = 1 c=
√

2 c = 2
0 -0.3622 -0.5077 -0.2048 -0.0979 -0.0130 -0.1710 -0.1414 -0.0862 -0.0310 -0.0059 -0.0078 -0.0124 -0.0163 0.7629 0.6950 0.6082 0.4810
0.5 -0.2230 -0.3369 -0.1048 -0.0229 0.0421 -0.0783 -0.0559 -0.0142 0.0276 0.0762 0.0656 0.0451 0.0336 0.4826 0.4643 0.4372 0.3843
1.0 -0.1190 -0.2008 -0.0499 0.0033 0.0455 -0.0313 -0.0177 0.0076 0.0329 0.1676 0.1274 0.0552 0.0183 0.3258 0.3384 0.3557 0.3671
1.5 -0.0391 -0.0991 -0.00069 0.0340 0.0616 0.0119 0.0198 0.0346 0.0493 0.2535 0.1844 0.0746 0.0255 0.2516 0.2753 0.3185 0.3742
2.0 0.0118 -0.0251 0.0285 0.0474 0.0625 0.0333 0.0366 0.0428 0.0490 0.2967 0.2026 0.0737 0.0295 0.1832 0.2037 0.2398 0.3186
2.5 0.0098 -0.0058 0.0148 0.0221 0.0279 0.0147 0.0154 0.0168 0.0182 0.2096 0.1269 0.0337 0.0109 0.0798 0.0848 0.0983 0.1364
3.0 0.0027 -0.0014 0.0035 0.0053 0.0067 0.0024 0.0024 0.0023 0.0022 0.1016 0.0524 0.0084 0.0014 0.0199 0.0206 0.0224 0.0295
3.5 -0.00005 -0.00056 0.00002 0.00022 0.00038 -0.00029 -0.00033 -0.0004 -0.00047 0.0229 0.0097 0.00062 -0.00034 0.0013 0.0013 0.0013 0.0016
4.0 -0.00002 -0.0001 -0.00001 0.00002 0.00004 -0.00012 -0.00013 -0.00016 -0.00019 0.0081 0.0028 0.00008 -0.00008 0.00019 0.00019 0.0002 0.00022
4.5 0.00001 0.00000 0.00001 0.00001 0.00001 -0.00001 -0.00001 -0.00002 -0.00002 0.0017 0.00049 0.00002 0.00000 0.00001 0.00001 0.00001 0.00001
5.0 -0.00002 -0.00002 -0.00002 -0.00002 -0.00002 -0.00003 -0.00003 -0.00003 -0.00003 0.00054 0.0001 -0.00002 -0.00002 0.00000 0.00000 0.00000 0.00001
6.0 0.00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.0001 0.00002 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000

Table 3.2: Risk performances of various estimators of M
M̂λ Tλ tc Hc

|γ| T λ = 0 λ =
√

3/2 λ = 4−2
√

2 λ =
√

2 λ =
√

3/2 λ = 1 λ = 1.25 λ = 1.5 c = 1/3 c = 1/2 c = 1 c=
√

3 c = 0.5 c = 1 c=
√

2 c = 2
0 0.6572 0.7767 0.6659 0.6776 0.7058 0.6432 0.6494 0.6671 0.6926 0.4249 0.4765 0.6523 0.8718 0.7629 0.6950 0.6082 0.4810
0.5 0.4331 0.4866 0.4479 0.4650 0.4901 0.4428 0.4494 0.4653 0.4859 0.3326 0.3627 0.4640 0.5818 0.4826 0.4643 0.4372 0.3843
1.0 0.3136 0.3239 0.3301 0.3472 0.3663 0.3364 0.3424 0.3551 0.3701 0.2932 0.3091 0.3597 0.4012 0.3258 0.3384 0.3557 0.3671
1.5 0.2594 0.2485 0.2759 0.2933 0.3100 0.2870 0.2925 0.3035 0.3156 0.2950 0.2985 0.3132 0.3139 0.2516 0.2753 0.3185 0.3742
2.0 0.1971 0.1804 0.2094 0.2228 0.2345 0.2187 0.2224 0.2298 0.2375 0.2665 0.2538 0.2403 0.2250 0.1832 0.2037 0.2398 0.3186
2.5 0.0858 0.0791 0.0888 0.0929 0.0964 0.0916 0.0926 0.0945 0.0965 0.1291 0.1154 0.0992 0.0902 0.0798 0.0848 0.0983 0.1364
3.0 0.0210 0.0198 0.0213 0.0219 0.0224 0.0216 0.0217 0.0219 0.0221 0.0334 0.0283 0.0229 0.0211 0.0199 0.0206 0.0224 0.0295
3.5 0.0013 0.0013 0.0013 0.0013 0.0014 0.0013 0.0013 0.0013 0.0013 0.0021 0.0017 0.0014 0.0013 0.0013 0.0013 0.0013 0.0016
4.0 0.0002 0.00019 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.00019 0.00031 0.00025 0.0002 0.00019 0.00019 0.00019 0.0002 0.00022
4.5 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
5.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
6.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Figure 3.1: Bias of M̂λ .
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Figure 3.2: Bias of Tλ .
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Figure 3.3: Bias of Tc.
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Figure 3.4: Bias of Hc.
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Figure 3.5: MSE of M̂λ .

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Values of |γ|

Th
e 

M
SE

 T
λ fo

r d
iff

er
en

t v
al

ue
s

 

 
λ=0
λ=√3/2
λ=1
λ=1.25
λ=1.5

Figure 3.6: MSE of Tλ .
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Figure 3.7: MSE of Tc.
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Figure 3.8: MSE of Hc.
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Chapter 4

Estimating Volatility of the Selected Security

4.1 Introduction

All through this chapter we assume that investors avoid risks while taking investment related deci-

sions and therefore when compelled to choose between two securities one with the lower volatility,

or risk, is chosen. Typically a selection rule is used for this purpose. Given two populations (e.g., the

two securities) and a selection rule, it is natural for the decision maker (in this case, the investor) to

look for an estimate of the parameters (e.g., volatility) of the population which is eventually selected

by using the specified selection rule. It is noteworthy that this estimate is computed before any actual

selection is made, by using the samples from both populations and the selection rule under consider-

ation. As an outcome of this exercise the investor gets an idea of the expected risk involved with the

selection rule employed on the populations under consideration.

In this chapter we use the model developed in Gangopadhyay et al. [42] a model is developed

for selecting the regression line with higher slope to estimate the risk of the security selected with

the goal of risk-minimization. For this purpose we use Capital Asset Pricing Model (CAPM). In this

model the rate of return (y) of a security relates to regression coefficient β of the security as given

below:

y− r f = β (x− r f )+ ε

where r f is the risk-free rate of return, for example, the return on short-term bonds, β is the market

risk of the security, x is the rate of return on the market portfolio and ε is the random error. Some

works related to regression models are available in Chaturvedi and Shalabh [31], Chaturvedi and

Wan [32], Singh et al. [119], Bastien et al. [21], Magnanensi et al. [75], Meyer et al. [77], Ageeva

and Kharin [4], Kharin [62], Maevskii and Kharin [74], Kumar et al. [65] and Misra et al. [91].
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In this chapter, the model is described in Section 4.2. Here we have discussed how the prob-

lem of selecting the regression line with lower slope is converted to the problem of selecting the

normal population with lower mean. In Section 4.3 this model is applied to the decision problem

of an investor in stocks considered in this chapter. Constructions of the estimators are described in

Section 4.4. Here, we construct the estimators for volatility of the selected security when the security

corresponding to lower volatility is selected. Finally in Section 4.5 the developed theory is applied

to real data. The bias and mean squared error risk performances of the estimators of volatility of the

selected security are numerically compared and the graphs representing the bias and MSE risks of

the estimators are drawn. Section 4.6 is the discussions of results.

4.2 Description of the model

Let X , Y1 and Y2 be three random variables. Suppose we choose n values x[1] < x[2] < .. . < x[n] of X .

The density function of Yi, where i ∈ {1,2}, given X = x[ j], where j ∈ {1,2, . . . ,n}, is denoted by fi| j

and the corresponding random variable by Yi| j. For each pair (i, j), fi| j is assumed to be normal with

mean µi| j and known standard deviation σ . We assume that the dependence of each Yi on X satisfies

the linear regression model with the regression line Yi = αi +βiX , for each i ∈ {1,2}. Consequently,

µi| j =αi+βix[ j], for all j ∈ {1,2, . . . ,n} and i∈ {1,2}. It is realistic to assume that Yi| j’s are mutually

independent.

Consider the problem of selecting the population having regression line with the lower slope

between two available populations. Therefore, our problem is to select the population corresponding

to lower βi. Further, we assume that the intercepts α1 = α2 = α . This assumption is acceptable

because in Capital Asset Pricing Model (CAPM) of the securities, which is our application domain,

the intercepts are the risk free rates of returns which are assumed to be the same for all the securities

under consideration. Suppose that we have independent random samples Yi1| j,Yi2| j, ...,Yim| j of size

m where i ∈ {1,2} and j ∈ {1,2, . . . ,n} from the two populations. Since each Yi| j is a normal variate

with mean µi| j and known standard deviation σ , the random variable Zi = Σm
t=1Σn

j=1Yit| j/m is normal

with mean ∑
n
j=1 µi| j and variance nσ2/m for i ∈ {1,2}. So, we can say that selecting the regression

line with lower slope is same as selecting the population with lower Σn
j=1µi| j where i ∈ {1,2}. That

means we have to select the normal population with lower mean for which we can use the results

obtained by Dahiya [36]. The connection between the problem of selecting the regression line corre-

sponding to higher regression coefficient and the problem considered in Dahiya [36] was established

by Gangopadhyay et al. [42]. The optimality properties of the natural selection rule are discussed in

Bahadur and Goodman [16], Lehmann[72] and Eaton [40]. The natural selection rule says that for

choosing the population corresponding to lower mean we have to select the population corresponding
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to lower sample mean because sample mean is the sufficient and complete statistic for the population

mean. Let us denote the population with mean Σn
j=1µi| j as Πi where i ∈ {1,2}. So, according to the

natural selection rule we select the population Π1 if Z1 ≤ Z2 and select the population Π2 otherwise.

Further, we have to estimate the regression coefficient of the selected population. So our parameter

of interest is

βJ, where J = 1 if Z1 ≤ Z2 and J = 2 otherwise.

In the next section we apply this model to the problem of estimating risk of the selected security.

4.3 Application to finance

Suppose that an investor decides to purchase common stocks or securities whose annual rates of

return can be related to the annual rate of return from a market portfolio (e.g., S&P BSE Sensex

Index[India], S&P 100 composite stock index etc.). Let Yi|t be the rate of return (in percentage) on

the ith security or common stock at time t and Xt be the rate of return (in percentage) on the market

portfolio at time t. In modern portfolio theory, the “characteristic line” relating these rates of return

for the ith security, i ∈ {1,2}, is of the form

Yi|t = αi +βiXt + εi|t , t = 1, . . . ,T, (4.1)

where the regression coefficients βi and αi are the slope coefficient and the intercept coefficient

respectively and εi|t is the random error. The regression coefficient βi is also referred to as the beta

coefficient of the ith security which is a measure of the market risk of a security.

Without loss of generality, we set the intercept term to zero. At this point, let us consider the

Capital Asset Pricing Model (CAPM) of modern portfolio theory which represents the relationship

between Yi|t and regression coefficient βi of security i as given below:

(Yi|t− r f ) = βi(Xt− r f )+ εi|t , t = 1, ...,T, i ∈ {1,2} (4.2)

where r f is the risk-free rate of return, for example, the return on short-term bonds, which is not

random. The intercept coefficient αi = 0 for i = 1,2 for the CAPM. For detailed discussion we refer

to [46][Pages 165–166]. The beta coefficient, βi is a measure of the systematic risk during time t

which cannot be eliminated or minimized by diversification. It also provides an idea of the strength

of the relationship between the security under consideration and the market portfolio. If the value of

beta is more than one, then the corresponding security is volatile, or aggressive, because in that case,

a one percent transformation in the market rate of return leads to more than one percent transforma-

tion in the ith security’s rate of return. If the value of beta is lower than one, then the corresponding
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security is conservative and if the value is equal to one, then the corresponding security is neutral.

An investor interested in choosing the security with the lower volatility chooses the one with the

least value of the beta coefficient according to the selection rule. The estimate of the beta coefficient

of the selected security is obtained by relating the technique developed in Gangopadhyay et al. [42]

to CAPM. This is reasonable, since CAPM is a linear regression model. Suppose that (rm j,ri| j) are

ordered pairs of observations with the rate of return on the market portfolio as the first coordinate and

the rate of return on ith security as the second coordinate at time j = 1, . . . ,n, for i = 1,2. Without

loss of generality, we can assume that all rm j’s are distinct, and our x[ j] = (rm j− r f ), j = 1, . . . ,n,

where r f = risk-free rate of return (eg. return on short-term bonds). Our Yi| j = (ri| j− r f ), which is

assumed to have the density function fi| j for each pair (i, j) where fi| j is normal with mean µi| j and

known standard deviation σ . Then according to equation (4.2), we can write

µi| j = βix[ j]

where i ∈ {1,2} and j ∈ {1, ...,n}. We assume that ri| j’s are mutually independent. So, Yi| j’s are also

mutually independent, because r f is a constant. From the above discussions it is clear that selecting

the security with lower regression coefficient is the same as selecting the security with lower µi| j.

Yi| jt , i = 1,2; j = 1, . . . ,n; t = 1, . . . ,m, an independent random sample of size m is drawn from each

of these two security returns. Then the “natural selection rule” in Bahadur and Goodman [16] for

selecting a security will be as follows:

“Select the security 1 if Z1 < Z2 and security 2, otherwise”.

Our objective is to estimate βJ, where J = 1, if Z1 ≤ Z2 and J = 2, otherwise. Since, each Yi| j

is normally distributed with mean µi| j and known standard deviation σ , the probability distribution

of the random variable Zi is normal with mean θi = ∑
n
j=1 µi| j = βiΣ

n
j=1x[ j] = cβi and variance τ2 =

nσ2/m, for i = 1,2.

4.4 Construction of the estimators

For finding the estimators of parameters of the selected population we always start with the com-

ponent problem, i.e. in case, we have only one population then we find the maximum likelihood

estimator, take the analogue of that estimator and call it a natural estimator. This approach is fol-

lowed by several previous investigations, such as Dahiya [36], Hsieh [58], Vellaisamy et al. [130],

Vellaisamy and Sharma [131], Vellaisamy [125], and Kumar and Gangopadhyay [66]. We consider

the component problem and obtain the maximum likelihood estimator of βi as follows

bi =
∑

n
j=1
(
Yi| j− 1

n ∑
n
k=1Yi|k

)(
x[ j]− 1

n ∑
n
k=1 x[k]

)
∑

n
j=1
(
x[ j]− 1

n ∑
n
k=1 x[k]

)2
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Let, c j = x[ j]−∑
n
k=1 x[k]/n and d = 1/∑

n
j=1
(
x[ j]− 1

n ∑
n
k=1 x[k]

)2
. Here, it is to be noted that ∑

n
j=1 c j =

0. Therefore we obtain

bi = d

[
n

∑
j=1

c jYi| j−
1
n

(
n

∑
j=1

c j

)(
n

∑
k=1

Yi|k

)]

= d

(
n

∑
j=1

c jYi| j

)

=
n

∑
j=1

w jYi| j, where w j = dc j

Therefore, we get a natural estimator of cβJ as ∑
m
t=1 ∑

n
j=1 w jYJt| j/m. Below we list the other estima-

tors of cβJ based on the derived estimators in Chapter 3.

1.

M̂λ = ZJ +λσzφ

(
Z
σz

)
where λ ≥ 0 is an arbitrary constant, Z = Z2 − Z1 and ZJ = Z1 if Z1 < Z2 and ZJ = Z2

otherwise, σ2
z = Var(Z) = 2τ2, and φ(x) is the standard normal density function given by

φ(x) = e−
x2
2 /
√

2π , where −∞ < x < ∞ and the bias of ZJ is E(ZJ)−E(βJ) = −σzφ(θ/σz),

where θ = θ2−θ1 . The estimator M̂λ is obtained by subtracting a λ multiple of the estimated

bias of ZJ from itself.

2. tc = Z2− ZΦ(cZ/σz) + cσzφ(cZ/σz), where c > 0 is an arbitrary constant and Φ(x) is the

standard normal cdf. The estimator tc is an unbiased estimator of θ2−θΦ

(
cθ

σz
√

1+c2

)
, which

approaches E[θJ] = E[θ1I1 +θ2I2] = E[θ1P(Z1 ≤ Z2)+θ2P(Z1 > Z2)] where θ = θ2−θ1 for

larger c. Hence the bias of tc as an estimator of θJ can be controlled by making c large.

3. The estimator T of E[θJ] given by

T = Z2−ZΦ

(
Z
σz

)
and propose to use it to estimate θJ . The estimator T , actually, is natural estimator of E[θJ]

and its bias will be the same whether we use it as an estimator of θJ or E[θJ].

4. Another estimator of this type is defined as

Tλ = T −λ

[
Z
{

φ

(
Z
σz

)
−Φ

(
Z√
2σz

)}
− σz√

2
φ

(
Z√
2σz

)]
where λ ≥ 0 is an arbitrary constant. The estimator Tλ is the same as that of M̂λ and is obtained

on subtracting a λ multiple of the estimated bias of T from itself.
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5. An hybrid estimator is considered as

Hc =


Z1+Z2

2 , if |Z1−Z2|< cσz

min(Z1,Z2), if |Z1−Z2| ≥ cσz.

where c≥ 0 is an arbitrary constant. Note that for c=0 we obtain ZJ which is the same as M̂λ

for λ = 0.

6. Finally we have an improved Estimator: Let us consider the class of estimators of the form

M̂λ = ZJ +λσzφ
(

Z
σz

)
. Further, define the estimator M̂λ∗ by

M̂λ∗ =


M̂λ , if λ ≤ γ∗

M̂γ∗, if λ > γ∗,

where γ∗=
√

3/2. Then M̂λ∗ improves M̂λ with respect to the squared error loss if λ > γ∗> 0

for some η = {θ1,θ2}.

Consider the group G = g(x)c = x+ c,c ∈ R of affine transformations. Under this transforma-

tion Xi j 7→ Xi j+c,Zi 7→ Zi+c and θJ 7→ θJ +c, if we take the squared error loss L(d,θJ) = (d−θJ)
2,

then the estimation problem is invariant.

Theorem 4.4.1. Let us consider the class of estimators of the form M̂λ = ZJ +λσzφ
(

Z
σz

)
. Further,

define the estimator M̂λ∗ by

M̂λ∗ =


M̂λ , if λ ≤ γ∗

M̂γ∗, if λ > γ∗,

where γ∗ =
√

3/2. Then M̂λ∗ improves M̂λ with respect to the squared error loss if λ > γ∗ > 0 for

some η = {α1,α2}.

Proof. We refer proof of Theorem 3.4.1 in Section 3.4.

4.5 Application to real data and comparison of estimators

We have considered the data for the returns of a market portfolio (rm j) (BSE SENSEX) and two

securities (Reliance Industrial Infrastructure Ltd (RIIL.BO) -BSE (r(1)j ) and Reliance Industries Ltd

(RELIANCE.NS)) (r(2)j ) from 07 July 2014 to 24 November 2014 for n = 20 weeks (data retrieved

from https://in.finance.yahoo.com). We take that the risk-free rate of return (r f ) is 8.50% according

to the current interest rate of short term bonds. We calculate that the value of β1 = 1.290 and β2
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=1.177 through the CAPM model for the considered data using the least squared error estimates.

We compare the bias and risk values of the estimators of βJ . For this purpose, we have generated

random samples of size m = 20 from both the normal populations with means β1x[ j] and β2x[ j],

respectively, for different known variances, where j = 1, ...,20. These samples are denoted by Y (i)
jt

for j = 1, ...,20; t = 1, ...,20; i = 1,2. We have calculated Zi = Σ20
t=1Σ20

j=1Y (i)
jt /20, i = 1,2. We repeat

this process 5000 times. The biases and mean squared error risks are calculated for all the above

estimators using Monte-Carlo simulation for different values of τ2, where τ2 = nσ2/m. The values of

λ and c are chosen in such a way that they give better results. The biases and mean square error risks

performances for the various estimators are given in Tables 4.1−4.2. The graphs representing biases

and mean squared error risks of the estimators mentioned above are displayed in Figure 4.1− 4.8.

In these graphs the X axis represents τ , which is the standard deviation of Zi, i = 1,2 and Y axis

represents the bias or MSE risks.

Tables and Graphs of Biases of different estimators:

From Figure 4.1− 4.4, the X axis represents τ , standard deviation of Zi, i = 1,2 and the Y axis

represents the bias values of the estimators. In the graphs of biases,we observe that with respect to

bias M̂λ for λ =
√

2, Tλ for λ = 1.5, Hc for c = 2 are better than other cases.

From Table 4.1, it can be observed that for all values of τ , the estimator Tλ is better than M̂λ for

λ =
√

3/2. The estimator M̂λ is dominated by T for λ = 0. From Table 4.1, it can be seen that for

all value of τ , the estimator Hc is dominated by estimator tc for values c = 0.5,1. Also observed from

Table 4.1, the bias performance of the estimator tc is better than all other estimators for all values of

τ . As we decrease the value of standard deviation then bias performances become better for all the

estimators. We see that the estimator tc is overall a good estimator based on the biases performances.

Graphs of Mean squared error risks of different estimators:

In Figure 4.5−4.8, the X axis represents τ , standard deviation of Zi, i = 1,2 and the Y axis represents

mean squared error risks of different estimators. In the graphs of mean squared error (MSE) risks,

we observe that with respect to risk M̂λ for λ =
√

3/2, Tλ for λ =
√

3/2, Tc for c = 1/3, Hc for c = 2

perform better among all cases.

From Table 4.2, it can seen that for all values of τ , the estimator Tλ is better than the estimator M̂λ

when value of λ =
√

3/2. From Table 4.2, we observe that for all values of τ , the estimator tc is

better than the estimator Hc for value c = 1/2 and 1. For all values of τ and for λ = 0, the estimator

M̂λ is dominated by T . From Table 4.2 it can be seen that for all values of λ , the estimator Tλ has

the smallest risk for all values of τ . From Table 4.2 we observe that the estimator Tc and Hc have

smaller risk for c=1/3 and c=2, respectively. As we decrease the value of standard deviation then risk

performances become better for all estimators.
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Figure 4.1: Bias of M̂λ for different values of λ .
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Figure 4.2: Bias of Tλ for different values of λ .
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Figure 4.3: Bias of tc for different values of c.
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Figure 4.4: Bias of Hc for different values of c.
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Figure 4.5: MSE of M̂λ for different values of λ .
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Figure 4.6: MSE of Tλ for different values of λ .
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Figure 4.7: MSE of tc for different values of c.
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Figure 4.8: MSE of Hc for different values of c.
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Table 4.1: Bias of various estimators

M̂λ Tλ tc Hc

τ T λ = 0 λ =
√

3/2 λ = 4−2
√

2 λ =
√

2 λ =
√

3/2 λ = 1 λ = 1.25 λ = 1.5 c = 1/3 c = 1/2 c = 1 c=
√

3 c = 0.5 c = 1 c=
√

2 c = 2
0.04 -0.01565 -0.02226 -0.00824 -0.00368 -0.00024 -0.00704 -0.00539 -0.00318 -0.00104 0.00054 0.00057 0.00016 -0.00056 -0.01960 -0.01319 -0.00798 -0.00246
0.08 -0.03223 -0.04542 -0.01722 -0.00747 -0.00193 -0.01483 -0.01156 -0.00633 -0.00343 -0.00015 0.00037 0.00033 -0.00233 -0.04032 -0.02729 -0.01628 -0.00701
0.12 -0.04695 -0.06667 -0.02692 -0.01103 -0.00291 -0.02085 -0.01833 -0.00939 -0.0053 0.00116 -0.00048 0.00065 -0.00344 -0.05859 -0.04180 -0.02354 -0.01060
0.20 -0.08050 -0.11374 -0.04356 -0.02017 -0.00667 -0.03708 -0.02882 -0.01774 -0.01058 -0.00017 -0.0001 -0.00109 -0.00761 -0.10082 -0.06758 -0.04303 -0.01893
0.28 -0.11570 -0.16146 -0.05387 -0.02423 -0.00106 -0.05517 -0.03351 -0.02045 -0.00687 -0.0028 0.00654 0.0029 -0.00183 -0.14307 -0.08818 -0.05461 -0.02000
0.36 -0.14334 -0.20277 -0.07659 -0.04113 -0.00571 -0.06503 -0.05016 -0.03637 -0.01248 0.00095 0.00477 -0.00632 -0.00706 -0.17939 -0.11871 -0.08112 -0.02938
0.50 -0.21392 -0.29624 -0.11316 -0.05436 -0.00018 -0.10563 -0.07718 -0.04694 -0.01061 -0.01262 -0.00386 -0.00515 0.00071 -0.26342 -0.17496 -0.10542 -0.04088
0.65 -0.25752 -0.36506 -0.15019 -0.05329 -0.00805 -0.11498 -0.10359 -0.04416 -0.02165 0.00104 -0.00571 0.01004 -0.00992 -0.32102 -0.23029 -0.12207 -0.05400
0.85 -0.35190 -0.49287 -0.18983 -0.08668 0.00357 -0.16809 -0.12831 -0.07698 -0.01259 -0.00941 -0.00485 -0.00629 0.00189 -0.43813 -0.29539 -0.18358 -0.06006
1.05 -0.41838 -0.59261 -0.23285 -0.10804 -0.01094 -0.18709 -0.15763 -0.09289 -0.03129 -0.00244 -0.00317 -0.00551 -0.01299 -0.52343 -0.36461 -0.22064 -0.08459

Table 4.2: Mean Squared Error of various estimators

M̂λ Tλ tc Hc

τ T λ = 0 λ =
√

3/2 λ = 4−2
√

2 λ =
√

2 λ =
√

3/2 λ = 1 λ = 1.25 λ = 1.5 c = 1/3 c = 1/2 c = 1 c=
√

3 c = 0.5 c = 1 c=
√

2 c = 2
0.04 0.00137 0.00160 0.00141 0.00146 0.00147 0.00135 0.00139 0.00144 0.00144 0.00092 0.00105 0.00142 0.00181 0.00158 0.00147 0.00132 0.00101
0.08 0.00543 0.00638 0.00547 0.00553 0.00583 0.00531 0.00537 0.00546 0.00573 0.00360 0.00402 0.00536 0.00721 0.00626 0.00574 0.00498 0.00399
0.12 0.01225 0.01434 0.01291 0.01278 0.01372 0.01210 0.01268 0.01261 0.01352 0.00819 0.00945 0.01239 0.01679 0.01416 0.01351 0.01159 0.00961
0.20 0.03452 0.04056 0.03325 0.03578 0.03765 0.03378 0.03251 0.03521 0.03723 0.02302 0.02423 0.03451 0.04609 0.03979 0.03474 0.03202 0.02613
0.28 0.06934 0.08117 0.06583 0.06851 0.07313 0.06838 0.06447 0.06754 0.07181 0.04500 0.04901 0.06637 0.09012 0.08004 0.06854 0.06051 0.05055
0.36 0.10924 0.12853 0.11227 0.11483 0.12275 0.10710 0.11005 0.11332 0.1209 0.07256 0.08193 0.11075 0.15017 0.12640 0.11687 0.10327 0.08578
0.50 0.21431 0.25306 0.21722 0.22258 0.22782 0.20658 0.21250 0.21932 0.22349 0.13857 0.15697 0.21458 0.28121 0.24766 0.22651 0.19611 0.15623
0.65 0.35659 0.41905 0.37881 0.37151 0.3992 0.34961 0.37152 0.36629 0.39196 0.23783 0.27503 0.36025 0.49084 0.41223 0.39467 0.32801 0.27855
0.85 0.61074 0.72300 0.63315 0.64077 0.66612 0.59561 0.61908 0.63040 0.65484 0.39492 0.46097 0.61739 0.81786 0.71149 0.65952 0.57034 0.46107
1.05 0.94372 1.10985 0.93801 0.97437 0.99851 0.92515 0.91811 0.96231 0.98031 0.62789 0.68408 0.94425 1.23441 1.09101 0.98044 0.86743 0.68601

4.6 Results and Discussions

From all the figures and tables, we observe that as τ increases the value of absolute biases and risks

of all the estimators increase. From Figure 4.5 we observe the risk performance of M̂λ for λ =
√

3/2

is lower than the other estimators in this class. As we decrease the value of standard deviation then

bias and risk performances become better for all the estimators. From Figure 4.7, we observe that

as we reduce the value of c the MSE risk performance of Tc becomes better. Figure 4.8 shows the

improvement of the risk performance of Hc as the value of c increases. Figure 4.1− 4.4 show that

the bias performance of M̂λ for λ =
√

2 is better than all the other estimators. Risk performance of

Tc for c = 1/3 and Hc for c = 2 are better than other estimators.
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Chapter 5

Estimating Quantile of the Selected Normal

Population

5.1 Introduction

Let Π1 and Π2 be two normal populations with unknown mean µ and unknown variances σ2
1 and σ2

2

respectively. Suppose independent random samples (X11, ..,X1n1),n1 ≥ 2 and (X21, ..,X2n2),n2 ≥ 2

are available from these two normal populations Π1 and Π2 respectively. Further, let the mean and

the sum of squared deviations from the mean for the two samples are denoted by X1 = 1
n1

Σ
n1
j=1X1 j

and S2
1 = Σ

n1
j=1(X1 j−X1)

2 and X2 =
1
n2

Σ
n2
j=1X2 j and S2

2 = Σ
n2
j=1(X2 j−X2)

2 respectively.

For the first population, (X1,S2
1) is the complete and sufficient statistic for (µ,σ2

1 ). Similarly,

for the 2nd population, (X2,S2
2) is the complete and sufficient statistic for (µ,σ2

2 ). X1 and X2 have

N(µ,σ2
1/n1) and N(µ,σ2

2/n2) distributions respectively. S2
1 and S2

2 have σ2
1 χ2

n1−1 and σ2
2 χ2

n2−1 dis-

tributions respectively. We would like to select the population with smaller variance. For this, we

select the population corresponding to the smallest S2
i , i = 1,2, that is, Π1 is selected if S2

1 ≤ S2
2 and

Π2 is selected if S2
2 < S2

1. In this chapter, we consider the problem of estimating a quantile of the

selected normal population.

θJ = µ +η σJ, (5.1)

where J = 1 if S2
1 ≤ S2

2 and J = 2, otherwise and η is any constant . For η 6= 0, the only works

available so far are Sharma and Vellaisamy [117], who have considered the case of different means

and equal variances and Kumar and Kar [67], who have considered the case of different means

and different variances. Some inadmissibility results of affine equivariant estimators of quantiles of

normal populations have been discussed by Kumar and Tripathy [69] and Tripathy and Kumar [124].

In this chapter, we consider the problem of estimating quantile of a selected normal population

61
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when mean is same and unknown but variances are unknown and different. In Section 5.2, several

estimators are proposed. In Section 5.3, we formulate the problem and prove the admissibility of a

natural estimator within a class of linear estimators. In Section 5.4, we consider a more general class

of estimators and found a class of admissible estimators. In Section 5.5, the numerical comparisons

of the estimators are obtained.

5.2 Some Improved Estimators

In this section, we propose several estimators for θJ = µ +η σJ , where J = 1 if S2
1 < S2

2 and J = 2,

otherwise and η is a constant.

It is to be noted here that the minimal sufficient statistic is not complete statistic. We consider

the problem of estimating a quantile θ1 = µ +ησ1 of the first population with respect to the scale

invariant loss function. The form of an affine equivariant estimator of θ1 is X1 +ηbS1 where b is

real. The choice of b minimizing the risk of X1 +ηbS1 is bn1 , where

bn1 =
Γ(n1

2 )√
2Γ(n1+1

2 )
.

The analogue of the best affine equivariant estimator is α1 = X1 + bnJ SJ , where nJ = n1 if

SJ = S1 and nJ = n2 if SJ = S2.

In this kind of situation, a natural estimator of µ is µ̂ =
S2

2X1+S2
1X2

S2
2+S2

1
, obtained and studied by

Graybill and Deal [45], Khatri and Shah [63], Brown and Cohen [29], Cohen and Sackrowitz [33],

and Moore and Krishnamoorthy [94]. We propose some estimators of θJ having smaller risk than α1

by replacing X1 by µ̂ and these estimators are as follows:

α2 =
n1(n1−1)S2

2X1 +n2(n2−1)S2
1X2

n1(n1−1)S2
2 +n2(n2−1)S2

1
+ηbnJ SJ,

α3 =
n1(n1−3)S2

2X1 +n2(n2−3)S2
1X2

n1(n1−3)S2
2 +n2(n2−3)S2

1
+ηbnJ SJ,

α4 = X1 +(X2−X1)

[
b1S2

1/n1(n1−1)
S2

1/n1(n1−1)+S2
2/(n2 +2)+(Y −X)2/(n2 +2)

]
+ηbnJ SJ,

α5 = X1 +(X2−X1)

[
b2n2(n2−1)S2

1
n2(n2−1)S2

1 +n1(n1−1)S2
2

]
+ηbnJ SJ,

where 0 < b1 < bmax(n1,n2), 0 < b2 < bmax(n1,n2−3) and bmax(n1,n2) =
2(n2+2)

n2E{max(V−1,V−2)} , where

it is seen that V has an F distribution with (n2 +2) and (n1−1) degrees of freedom.

α6 = (1−δn2H(y))X1 +δn2H(y)X2 +ηbnJ SJ,
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Where

δn2 =
(n2−5)2

(n2−1)2 , if n2 is odd

=
(n2−4)(n2−6)

n2(n2−2)
, if n2 is even

and

H(y) = F
(

1,1− n2

2
;
n2−1

2
,y
)
, if 0≤ y < 1

=
1
2
, if y = 1

=
(n2−3)
(n2−1)y

F
(

1,
3−n2

2
;
n2

2
,
1
2

)
, if y > 1

where F is the hypergeometric function(Lebedev, [70]) and denoted by 2F1, and y = S2
2

S2
1
.

α7 =

√
n1(n1−1)S2X1 +

√
n2(n2−1)S1X2√

n1(n1−1)S2 +
√

n2(n2−1)S1
+ηbnJ SJ,

α8 =

√
n1bn2−1S2X1 +

√
n2bn1−1S1X2√

n1bn2−1S2 +
√

n2bn1−1S1
+ηbnJ SJ,

and the estimator α9 depends on the grand mean,

α9 =
n1X1 +n2X2

n1 +n2
+ηbnJ SJ.

5.3 An Inadmissible Class of Estimators

Here, we consider the group G = {gc : gc(x) = x+ c,−∞ < c < ∞} of location transformations.

Under this transformation, X1→ X1 + c, X2→ X2 + c, S2
1→ S2

1, S2
2→ S2

2, µ → µ + c, σJ → σJ and

θJ → θJ + c. The estimation problem will be invariant if we consider the following loss function

L(δ ,θJ) =

(
δ −θJ

σJ

)2

. (5.2)

Under this loss function the equivariant estimator is given in this form

δφ = X1 +φ(Z), (5.3)

where, Z = (U,S2
1,S

2
2), U = X2−X1. We define the following functions for a function φ(z), z =

(u,s2
1,s

2
2)

φ0(z) = min{u,0}, if φ(z)< min{u,0},

= φ(z), if min{u,0} ≤ φ(z)≤max{u,0},

= max{u,0}, if φ(z)> max{u,0}, (5.4)
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φ1(z) = max{min{u,0},φ(z)}, (5.5)

and

φ2(z) = min{max{u,0},φ(z)}. (5.6)

Then we get the following inadmissibility result of estimators which are equivariant under location

groups of transformation.

Theorem 5.3.1. Let δφ be a location equivariant estimator of θJ . Let us define the functions φ0,φ1

and φ2 as in (5.4), (5.5) and (5.6) respectively. Then with respect to the loss function (5.2) or squared

error loss function we can show the following results.

(i) For η = 0, δφ is improved by δφ0 if Pβ (φ(z) 6= φ0(z))> 0 for some values of β .

(ii) For η > 0, δφ is improved by δφ1 if Pβ (φ(z)< min{U,0})> 0 for some values of β .

(iii) For η < 0, δφ is improved by δφ2 if Pβ (φ(z) > max{U,0}) > 0 for some values of β , where,

β = {µ,σ1,σ2}.

Proof. Let us consider the conditional risk function of the estimator δφ given Z = z,

R(β ,δφ |z) = E{(X1 +φ(Z)−θJ)
2|Z = z}. (5.7)

It is easily seen that, the right hand side of the above equation is a convex function of φ(Z). There-

fore, minimum choice of φ(Z) is attained at

φ(Z) =−E[(X1−θJ)|Z = z]. (5.8)

Since (X1,X2) and (S2
1,S

2
2) are independently distributed, the required conditional distribution of X1

given Z = z is same as that of X1 given U = u, which can be shown after some simplification to be

normal distribution with mean µ− u
1+λ

and variance σ2
2

n2(1+λ ) , where λ =
n1σ2

2
n2σ2

1
. This gives,

φ(z,β ) = ησ1 +
u

1+λ
, if S2

1 ≤ S2
2

= ησ2 +
u

1+λ
, otherwise (5.9)

Now, we find the infimum and supremum values of φ(z,β ) with respect to β for all choices of

η and z. After some calculations from equation (5.9), we get the following consequences.

Case-I: when η = 0,

infβ φ(z,β ) = min{u,0} and supβ φ(z,β ) = max{u,0}. (5.10)
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Case-II: when η > 0,

supβ φ(z,β ) = +∞,

and infβ φ(z,β ) = 0, if u≥ 0,

= u, if u < 0 (5.11)

Case-III: when η < 0,

infβ φ(z,β ) = −∞,

and supβ φ(z,β ) = u, if u≥ 0,

= 0, if u < 0 (5.12)

In Case-I to Case-III, we apply the orbit-by-orbit improvement technique of Brewster and Zidek

technique [27]. It proves the theorem.

We conclude this section with the following remark.

Remark 5.3.2. It is noted from theorem 5.3.1, a location equivariant estimator δφ as defined in (5.3)

lying outside the interval (min{X1,X2},max{X1,X2}) with a positive probability is inadmissible.

5.4 A general inadmissibility result for affine equivariant esti-

mators

In this section, we first discuss the idea of invariance to the problem of estimating quantiles under

the loss function (5.2) with the common location parameter µ . Also we show some inadmissibility

results for estimators which are equivariant under the location and affine group of transformations.

Let us define the affine group of transformations Ga,b = {ga,b : ga,b(x) = ax+b,a > 0,b ∈ R}.
Under ga,b, (X1,X2,S2

1,S
2
2)→ (aX1+b,aX2+b,a2S2

1,a
2S2

2),(µ,σ
2
1 ,σ

2
2 )→ (aµ+b,a2σ2

1 ,a
2σ2

2 ),θJ→
aθJ +b. The loss function (5.2) remains invariant under ga,b if δ → aδ +b. The estimation problem

is invariant if we choose the loss function (5.2). Therefore, an affine equivariant estimator satisfies

this relation,

d(aX1 +b,aX2 +b,a2S2
1,a

2S2
2) = ad(X1,X2,S2

1,S
2
2)+b.

The choice of b =−aX1 and then a = 1
S1

give us the form of an affine equivariant estimator for θJ as,

d(X1,X2,S2
1,S

2
2) = X1 +S1ϕ(U),

= dϕ (say), (5.13)
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where U = (U1,U2), U1 =
X2−X1

S1
and U2 =

S2
2

S2
1
.

Next, we apply the orbit-by-orbit improvement technique of Brewster and Zidek [27] to prove

a general result which provides a sufficient condition for the inadmissibility of an affine equivariant

estimator (5.13) under the loss function (5.2).

Theorem 5.4.1. Let dϕ = X1 +S1ϕ(U) be an affine equivariant estimator of θJ as in (5.13) for esti-

mating θJ and the affine invariant loss as defined in (5.2) is considered. Let us define the following

functions

ϕ0(u) = min{u1,0}, if ϕ(u)< min{u1,0},

= ϕ(u), if min{u1,0} ≤ ϕ(u)≤max{u1,0}

= max{u1,0}, if ϕ(u)> max{u1,0}, (5.14)

ϕ1(u) = max{min{u1,0}+ηbn1+n2,ϕ(u)}, (5.15)

and

ϕ2(u) = min{max{u1,0}+ηbn1+n2 ,ϕ(u)}. (5.16)

Then the following results can be shown:

(i) For η = 0, the estimator dϕ is improved by dϕ0 if Pβ (ϕ(U) 6= ϕ0(U))> 0 for some values of β .

(ii) For η > 0, the estimator dϕ is improved by dϕ1 if Pβ (ϕ(U) < min{U1,0}+ηbn1+n2) > 0 for

some values of β .

(iii) For η < 0, the estimator dϕ is improved by dϕ2 if Pβ (ϕ(U) > max{U1,0}+ηbn1+n2) > 0 for

some values of β .

Proof. Let us consider the conditional risk function of dϕ given U = u, given by

R(β ,dϕ |U) = E{dϕ −θJ)
2|U = u}.

= E{X1 +S1ϕ(U)−θJ)
2|U = u}. (5.17)

Being a convex function of ϕ(t) the above risk function attains its minimum value at

ϕ(u,β ) =
E{(θJ−X1)S1|U = u}

E{S2
1|U = u}

. (5.18)

It can be written in this form,

ϕ ∗ (u,λ ) =−
E(P1Q1/2

1 |U = u)√
n1E(Q1|U = u)

+η
E(σJ

σ1
Q1/2

1 |U = u)

E(Q1|U = t)
, (5.19)
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where, P1 =
√

n1(X1−µ)
σ1

, P2 =
√

n1(X2−µ)
σ1

, Q1 =
S2

1
σ2

1
, Q2 =

S2
1

σ2
1

, λ =
n1σ2

2
n2σ2

1
.

Here, we evaluate the conditional expectations in the above expression. For that, we are re-

quired the conditional density functions of (P1,Q1) given U = u and Q1 given U = u. It can be easily

seen that P1 follows the standard normal distribution, P2 follows the normal distribution with mean

zero and variance λ and Q1, Q2 follows the chi-square distribution with (n1−1) and (n2−1) degrees

of freedom, respectively. Let P1,P2,Q1 and Q2 are statistically independent random variables. So,

the joint density function of P1,P2,Q1,Q2 is given by

f (p1, p2,q1,q2) = Ke−
1
2 (p2

1+
p2
2

λ
+q1+q2)q

n1−3
2

1 q
n2−3

2
2 ,−∞ < p1 < ∞,−∞ < p2 < ∞,

q1 > 0,q2 > 0,

where

K =
1

√
λπ2

n1+n2
2 Γ(n1−1

2 )Γ(n2−1
2 ))

.

Let us consider the transformation U1 =
P2−P1
√

n1Q
1
2
1

, U2 =
n2λQ2
n1Q1

, U3 = Q1 and U4 = P1. Then making the

inverse transformation is P1 =U4, P2 =
√

(n1)U1U
1
2

3 +U4, Q1 =U3, and Q2 =
n1U2U3

n2λ
. The Jacobin of

the transformation is J = (n1u3)
3
2

n2λ
. Therefore, the joint probability density function of (U1,U2,U3,U4)

is given by

f (u1,u2,u3,u4) = K1

√
1+λ

2πλ
e−

1
2 (

1+λ

λ
)(u4+

√n1
1+λ

u1u
1
2
3 )2

e−
u3ν

2 u
n2−3

2
2 u

n1+n2−3
2

3 ,−∞ < t1 < ∞,

−∞ < u2 < ∞,u2 > 0,u3 > 0, (5.20)

where K1 =
Kn1

n
2

(n2λ )
n2−1

2

√
2πλ

1+λ
and ν =

n1u2
1

1+λ
+ n1t2

n2λ
+1.

Thus, we obtain marginal distributions of (U1,U2,U3) and (U1,U2) from (5.20), respectively as

f (u1,u2,u3) = K1e−
u3ν

2 u
n2−3

2
2 u

n1+n2−3
2

3 , −∞ < u1 < ∞,u2 > 0,u3 > 0,

and

f (u1,u2) = K12
n1+n2−1

2 Γ(
n1 +n2−1

2
)ν−(

n1+n2−1
2 ),−∞ < u1 < ∞,u2 > 0.

Therefore, we can easily verify that the conditional distribution of U4 given (U1,U2,U3)= (u1,u2,u3)

and U3 given (U1,U2) = (u1,u2) as

fU4|(U1,U2,U3)(u4|(u1,u2,u3)) =

√
1+λ

2πλ
e−

1
2 (

1+λ

λ
)(u4+

√n1
1+λ

u1u
1
2
3 )2

, (5.21)

−∞ < u1 < ∞,−∞ < u4 < ∞,u2 > 0,u3 > 0,
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and

fU3|(U1,U2)(u3|(u1,u2)) = (
ν

2
)

n1+n2−1
2

1

Γ(n1+n2−1
2 )

u
n1+n2−3

2
3 e−

u3ν

2 , (5.22)

−∞ < u1 < ∞,u2 > 0,u3 > 0.

respectively. Here the conditional density function of U4|(U1,U2,U3) follows normal distribution

function with mean −
√

n1u1u
1
2
3

1+λ
and variance λ

1+λ
. Also the conditional distribution of U3|((U1,U2) =

(u1,u2)) is gamma distribution with scale parameter 2
ν

and shape parameter n1+n2−1
2 . This gives

E (Q1|U = u) = E {U3|(U1,U2) = (u1,u2)}=
n1 +n2−1

ν
, (5.23)

E
{(

σJ

σ1

)
Q

1
2
1

∣∣U = u
}

= E
{(

σJ

σ1

)
U

1
2

3

∣∣(U1,U2) = (u1,u2)

}
,

=
n1 +n2−1√

ν
bn1+n2 if S2

1 ≤ S2
2,

=
σ2

σ1

n1 +n2−1√
ν

bn1+n2 otherwise (5.24)

E(P1Q
1
2
1 |U = u) = E(U4U

1
2

3 |U = u),

= EU3|U

[
E
{

U4U
1
2

3

∣∣(U1,U2,U3 = (u1,u2,u3))

}]
,

= −E
{√

n1u1

1+ τ
U3
∣∣U = u

}
,

= −
√

n1(n1 +n2−1)u1

ν(1+λ )
. (5.25)

Substituting the expressions from equations (5.23) , (5.24) and (5.25) in equation (5.19) , and sim-

plifying we have the minimizing choice as

ϕ ∗ (u,λ ) =
u1

1+λ
+η
√

νbn1+n2 if S2
1 ≤ S2

2

=
u1

1+λ
+η

σ2

σ1

√
νbn1+n2 otherwise (5.26)

where, ν =
n1u2

1
1+λ

+ n1u2
n2λ

+1. So, ϕ∗ can be rewritten as,

ϕ ∗ (u,λ ) =
u1

1+λ
+η
√

νbn1+n2 if S2
1 ≤ S2

2

=
u1

1+λ
+η
√

ν

√
n2λ

n1
bn1+n2 otherwise (5.27)

Now, we have to find the minimum and maximum values of ϕ∗ with respect to λ for all values of η

and u. The optimum choices for ϕ∗ give us the following cases:



69

Case-I: When η = 0,

infλ ϕ ∗ (u,λ ) = min{u1,0} and supλ ϕ ∗ (u,λ ) = max{u1,0}.

Case-II: When η > 0, u1 ≥ 0, ϕ ∗ (u,λ ) is a decreasing function of λ and so

infλ ϕ ∗ (u,λ ) = limλ→∞ ϕ ∗ (u,λ ) = ηbn1+n2 and supλ ϕ ∗ (u,λ ) = limλ→0 ϕ ∗ (u,λ ) = +∞.

Case-III: When η < 0, u1 < 0, infλ ϕ ∗ (u,λ )≥ u1 , (using lower bounds for both terms),

and supλ ϕ ∗ (u,λ )≥ u1 =+∞.

Case-IV: When η < 0, u1 > 0,

supλ ϕ ∗ (u,λ )≤ u1 +ηbn1+n2 , (using upper bounds for both terms),

and infλ ϕ ∗ (u,λ ) =−∞.

Case-V: When η < 0, u1 ≤ 0, ϕ ∗ (u,λ ) is an increasing function of λ and therefore,

infλ ϕ ∗ (u,λ ) =−∞ and supλ ϕ ∗ (u,λ )≤ u1 +ηbn1+n2 .

Using the above cases the orbit-by-orbit improvement technique of Brewster and Zidek [27] proves

the theorem.

Remark 5.4.2. Above results say that an affine equivariant estimators of the form (5.13) lying out-

side the interval (min{X1,X2}+ηbn1+n2S1,max{X1,X2}+ηbn1+n2S1) with a non zero probability

is inadmissible.

5.5 Numerical Comparisons

In this section, we numerically compare the bias and mean squared error risk values of the various

estimators αi (in section 2), i = 1,2, ...,9. It is easily seen that the bias and mean squared error

risk functions of estimators αi, i = 1, ...,9 depends on ρ = σ2
σ1
,n1,n2, and |η |. For simulation, we

consider various values of η and ρ , but results for selected values are reported here. Brown and

Cohen [29] have given maximum acceptable limits of b1 and b2 for the estimators α4 and α5. The

estimators α4, α5 of the maximum values b1 and b2 are improvements over X1 of bmax(n1,n2) and

bmax(n1,n2− 3), respectively. If we take the values of b1 and b2 close to zero, then estimators α4

and α5 tend to α1. If we can take the values of b2 close to one, the estimator α5 tends to α2. For

numerical comparisons, we select b1 and b2 as 1
2bmax(n1,n2) and 1

2bmax(n1,n2− 3), respectively.

The numerical values have been calculated using simulations based on 10,000 random samples of

size n1 and n2, from two normal populations N(µ,σ2
1 ), and N(µ,σ2

2 ) respectively. In Tables 5.1 and

5.4 the bias and risk values have been presented when n1 = n2. We notice that for equal sample size,

α2 = α3 and α7 = α8. In Tables 5.2-5.3 and 5.4-5.6, we report the biases and risk performances of
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estimators when sample sizes are unequal, i.e n1 6= n2. If n1 6= n2, then estimator α6 is not defined,

so, its bias and risk values are not reported for n1 6= n2. Furthermore, if n1 = n2 = 6 the coefficient

δn2 equals to zero, therefore the estimator α6 is the same as α1. In Tables 5.1 to 5.6, bias and risk

performances of the estimators αi, i = 1, ...,9 are presented. Three values in each cell represent bias

and risk values corresponding to three selection of choices of (n1,n2) mentioned above each table.

From tables we observe that all the absolute biases decrease as n1 and n2 increase. The absolute

bias values of the estimators αi, i = 1, ...,9 increase as the value of ρ increases. From the tables and

graphs it is also observed that all risk values decrease as both n1 and n2 increase. Risk values of the

estimators αi, i = 1, ...,9 increase as ρ increases. From Tables 5.1-5.6 and the graphs the following

conclusions can be made.

(a) (i) Absolute bias comparisons when sample sizes are equal (n1 = n2)

From Table 5.1 and corresponding Figure 5.1−5.3, it is observed that for small ρ(0 < ρ ≤ 1.5)

the absolute biases of the estimators are almost same. The bias curves are not visible separately.

But when the value of ρ > 1.5, the absolute bias performances are visible separately and it is

observed that for small ρ (0 < ρ ≤ 1) and sample sizes say n1 > 6, the absolute bias of the

estimator α2 is better than other estimators.

But when the value of ρ > 1, the absolute bias performance of α4 becomes better for n1 > 6. As

the values of ρ and n1 increase the performance of α7 becomes better and in fact for ρ > 1 it

performs better than other estimators according to absolute bias. Another observation is that for

1 < ρ ≤ 2 and n1 = 12 the performance of α9 is better than all the other estimators.

(ii) Absolute bias comparisons when sample sizes are unequal (n1 < n2)

From the Table 5.2 and Figure 5.4− 5.6, we observe that for small ρ the bias curves of all

the estimators coincide and are not visible separately. But as ρ increases they become visible

separately. It is also observe that for higher values of sample sizes and ρ is small then the

performances of α2 and α3 are better than other estimators. It is also observed that the estimator

α9 behaves better than other estimators in few cases as the value of ρ increases. When n1 and

n2 increase the variability of the bias performances of all the estimators increase. They become

zig-zag. For n1 = 18, n2 = 30 when 1 < ρ < 2.25 the bias of α1 is smaller than other estimators.

Further, we noticed for (n1,n2) = (12,20) as ρ increases from 3.5 the bias performance of α1

become better than other estimators.

(iii) Absolute biases comparisons when sample sizes are unequal (n1 > n2)

From Table 5.3 and Figure 5.7− 5.9, we see that when 0 < ρ < 3 the bias performances of all

the estimators are more or less same and so the curves are not visible separately in this range of
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all the cases of (n1,n2). It is also observe that as the value of ρ increases the performances of the

estimators α2, . . . ,α9 become better and in fact, for ρ > 1 the estimators α2, α3, α7, α8 and α9

perform better than other estimators. For (n1,n2) = (10,6), α1 and α6 are the same performance

for all the value of ρ .

(b) (i) Risk comparisons when sample sizes are equal (n1 = n2)

From Table 5.4 and Figure 5.10− 5.12, we observe that for 0 < ρ < 2.5 the performances of

all the estimators are more or less same and the curves coincide. We also observe that for small

values of ρ the estimator α2 performs better than other estimators. As the value of ρ increases the

performances of the estimators α7 and α9 become better and in fact, for ρ < 1.50 the estimator

α7 has smaller risk than other estimators in most of the cases. For 2 < ρ ≤ 4 the estimator α5

performs better than other estimators. This trend is observed for all three cases of (n1,n2).

(ii) Risk comparisons when sample sizes are unequal (n1 < n2)

From Table 5.5 and Figure 5.13−5.15, it is observed that for 0 < ρ < 2 the risk performances of

all the estimators are almost same and the curves coincide. It is also observed that for all values

of ρ the performances of α2 and α3 are good and in fact for small ρ they perform better than

the other estimators. But as ρ increases the performances of α7 and α8 become better and they

behave better than other estimators for 1 ≤ ρ ≤ 2. For ρ > 2.5 the risk values of α7, α8 and

α9 become larger than other estimators. In this range the risk performance of all the estimators

excluding α7, α8 and α9 are more or less same. As ρ increase the risk value of α9 becomes vary

high. This trend is observed for all three cases of (n1,n2).

(iii) Risk comparisons when sample sizes are unequal (n1 > n2).

From Table 5.6 and Figure 5.16−5.18, we find that for any ρ the estimators α2 and α3 perform

well and in fact for small ρ they perform better than other estimators. In general if we see, for any

ρ the estimators α2, . . . ,α6 perform better than other estimators. For ρ < 1.5 the performances

of α7, α8 and α9 are better than other estimators. As ρ increase the risk value of α9 becomes

vary high. This tendency is seen for all three cases of (n1,n2).

(c) Similar Risk and bias behavior are observed during simulation for various other values of n1,n2,ρ

and η . We omitted the tables and comments for the sake of brevity. The absolute biases and risks

of all estimators are plotted for equal and unequal sample sizes. It is noticed from the figures

5.1−5.18 that as the values of sample sizes increase the risks and absolute bias values decrease.
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Table 5.1: Bias values for (n1,n2)= (6,6), (12,12), (18,18), η = 1

ρ α1 α2 α4 α5 α6 α7 α9
0.25 -0.008464 -0.008620 -0.008496 -0.008486 -0.008464 -0.008561 -0.008522

-0.003694 -0.003439 -0.003683 -0.003562 -0.003591 -0.003505 -0.003524
-0.001966 -0.001942 -0.001961 -0.001951 -0.001952 -0.001946 -0.001950

0.50 -0.036403 -0.034263 -0.036068 -0.036100 -0.036403 -0.034417 -0.034584
-0.010745 -0.010064 -0.010587 -0.010393 -0.010472 -0.010187 -0.010338
-0.006716 -0.006333 -0.006629 -0.006472 -0.006490 -0.006405 -0.006510

0.75 -0.07715 -0.078017 -0.077421 -0.077273 -0.077150 -0.077621 -0.077070
-0.041462 -0.039372 -0.041191 -0.040381 -0.040652 -0.039511 -0.039662
-0.027363 -0.026472 -0.027261 -0.026795 -0.026850 -0.026580 -0.026695

1.00 -0.129924 -0.129845 -0.129923 -0.129913 -0.129924 -0.130103 -0.130335
-0.081513 -0.081521 -0.081471 -0.081517 -0.081501 -0.081575 -0.081633
-0.061168 -0.062342 -0.061290 -0.061917 -0.061837 -0.062318 -0.062294

1.25 -0.162436 -0.160816 -0.162212 -0.162207 -0.162436 -0.160998 -0.161284
-0.086936 -0.086802 -0.086914 -0.086866 -0.086887 -0.086781 -0.086726
-0.058719 -0.059444 -0.058770 -0.059182 -0.059104 -0.059523 -0.059602

1.50 -0.167978 -0.166697 -0.167794 -0.167797 -0.167978 -0.166637 -0.166924
-0.078275 -0.076475 -0.078132 -0.077344 -0.077654 -0.076226 -0.076144
-0.043995 -0.042951 -0.043927 -0.043329 -0.043440 -0.042490 -0.041925

1.75 -0.174916 -0.173440 -0.174778 -0.174707 -0.174916 -0.171989 -0.169846
-0.060646 -0.061128 -0.060720 -0.060896 -0.060838 -0.060815 -0.060355
-0.035611 -0.034476 -0.035548 -0.034886 -0.035008 -0.033837 -0.033006

2.00 -0.175163 -0.178630 -0.175443 -0.175654 -0.175163 -0.180133 -0.182130
-0.057495 -0.056359 -0.057424 -0.056907 -0.057116 -0.055666 -0.054909
-0.027501 -0.027527 -0.027501 -0.027517 -0.027511 -0.027533 -0.027478

2.25 -0.172052 -0.171405 -0.172075 -0.171960 -0.172052 -0.170051 -0.168733
-0.056142 -0.055510 -0.056078 -0.055815 -0.055921 -0.055547 -0.055879
-0.028608 -0.028609 -0.028594 -0.028608 -0.028600 -0.029027 -0.029663

2.50 -0.170321 -0.169440 -0.170204 -0.170196 -0.170321 -0.171371 -0.176265
-0.056161 -0.056027 -0.056155 -0.056091 -0.056116 -0.055447 -0.054163
-0.025318 -0.026295 -0.025371 -0.025942 -0.025835 -0.027060 -0.028092

3.00 -0.149662 -0.151044 -0.149749 -0.149858 -0.149662 -0.152188 -0.151752
-0.056717 -0.056565 -0.056697 -0.056639 -0.056663 -0.056927 -0.058129
-0.037370 -0.039008 -0.037448 -0.038415 -0.038225 -0.041483 -0.045563

3.50 -0.162461 -0.157308 -0.161814 -0.161731 -0.162461 -0.153834 -0.149550
-0.058882 -0.058272 -0.058837 -0.058566 -0.058674 -0.057475 -0.055502
-0.033778 -0.032104 -0.033691 -0.032710 -0.032896 -0.030670 -0.028943

4.00 -0.157353 -0.158004 -0.157352 -0.157446 -0.157353 -0.158861 -0.157696
-0.061539 -0.060918 -0.061486 -0.061217 -0.061321 -0.061185 -0.062013
-0.042517 -0.044561 -0.042617 -0.043821 -0.043589 -0.046715 -0.048939
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Table 5.2: Bias values for (n1,n2)= (6,10), (12,20), (18,30), η = 1

ρ α1 α2 α3 α4 α5 α6 α7 α8 α9
0.25 -0.003302 -0.004695 -0.004716 -0.003621 -0.003839 -0.003674 -0.004466 -0.004472 -0.004222

-0.002319 -0.001811 -0.001807 -0.002185 -0.002002 -0.002050 -0.001894 -0.001893 -0.001967
-0.002203 -0.001343 -0.001342 -0.001842 -0.001609 -0.001595 -0.001446 -0.001445 -0.001651

0.50 -0.026044 -0.024196 -0.024165 -0.025643 -0.025332 -0.025573 -0.024577 -0.024570 -0.024884
-0.005773 -0.007001 -0.007016 -0.006063 -0.006539 -0.006387 -0.006815 -0.006818 -0.006683
-0.003682 -0.003682 -0.003679 -0.003753 -0.003682 -0.003741 -0.003687 -0.003687 -0.003629

0.75 -0.068119 -0.065450 -0.065309 -0.067573 -0.067091 -0.067556 -0.065788 -0.065771 -0.065858
-0.035911 -0.033534 -0.033463 -0.035677 -0.034428 -0.035058 -0.033808 -0.033799 -0.033645
-0.019157 -0.019828 -0.019838 -0.019210 -0.019621 -0.019476 -0.019717 -0.019719 -0.019711

1.00 -0.110170 -0.111675 -0.111925 -0.110263 -0.110749 -0.110299 -0.111867 -0.111889 -0.112682
-0.069570 -0.068917 -0.068910 -0.069457 -0.069162 -0.069251 -0.069039 -0.069038 -0.069094
-0.053704 -0.053172 -0.053166 -0.053656 -0.053336 -0.053445 -0.053289 -0.053289 -0.053346

1.25 -0.133040 -0.134447 -0.134731 -0.133112 -0.133582 -0.133136 -0.134786 -0.134810 -0.135662
-0.071287 -0.070900 -0.070913 -0.071203 -0.071046 -0.071060 -0.071197 -0.071198 -0.071586
-0.049003 -0.050228 -0.050260 -0.049075 -0.049851 -0.049473 -0.050237 -0.050241 -0.050550

1.50 -0.131831 -0.132025 -0.131996 -0.131854 -0.131906 -0.131846 -0.131745 -0.131742 -0.131366
-0.056531 -0.056010 -0.055968 -0.056510 -0.056206 -0.056425 -0.055671 -0.055665 -0.054949
-0.028610 -0.029298 -0.029334 -0.028620 -0.029086 -0.028757 -0.029687 -0.029691 -0.030465

1.75 -0.119030 -0.121362 -0.121674 -0.119263 -0.119928 -0.119320 -0.121627 -0.121658 -0.122952
-0.045879 -0.046238 -0.046269 -0.045877 -0.046103 -0.045930 -0.046363 -0.046366 -0.046629
-0.022554 -0.023814 -0.023868 -0.022592 -0.023426 -0.022901 -0.024361 -0.024368 -0.025577

2.00 -0.123298 -0.119987 -0.119475 -0.123010 -0.122023 -0.122928 -0.119754 -0.119713 -0.118900
-0.047283 -0.046332 -0.046283 -0.047214 -0.046690 -0.047011 -0.046206 -0.046200 -0.045788
-0.023030 -0.024025 -0.024069 -0.023061 -0.023718 -0.023304 -0.024676 -0.024682 -0.026073

2.25 -0.126571 -0.123326 -0.123036 -0.126137 -0.125322 -0.126085 -0.123672 -0.123645 -0.123230
-0.046341 -0.046483 -0.046455 -0.046382 -0.046430 -0.046472 -0.045897 -0.045893 -0.045066
-0.032609 -0.030488 -0.030410 -0.032524 -0.031142 -0.031941 -0.029870 -0.029860 -0.028348

2.50 -0.125539 -0.123653 -0.123442 -0.125323 -0.124813 -0.125291 -0.123573 -0.123550 -0.122416
-0.049896 -0.047534 -0.047378 -0.049775 -0.048422 -0.049330 -0.046477 -0.046457 -0.043912
-0.034373 -0.034272 -0.034270 -0.034365 -0.034303 -0.034327 -0.034233 -0.034232 -0.034097

3.00 -0.122881 -0.123638 -0.123815 -0.122927 -0.123173 -0.122936 -0.122671 -0.122659 -0.118841
-0.058227 -0.053376 -0.053051 -0.057982 -0.055201 -0.057068 -0.051123 -0.051080 -0.046071
-0.033617 -0.034397 -0.034431 -0.033643 -0.034156 -0.033834 -0.035106 -0.035113 -0.036823

3.50 -0.125889 -0.123904 -0.123414 -0.125754 -0.125125 -0.125733 -0.122063 -0.122004 -0.117349
-0.058542 -0.059140 -0.059184 -0.058568 -0.058915 -0.058674 -0.059467 -0.059473 -0.060615
-0.038507 -0.036201 -0.036094 -0.038433 -0.036912 -0.037878 -0.033636 -0.033615 -0.027136

4.00 -0.127738 -0.127552 -0.127543 -0.127720 -0.127667 -0.127718 -0.127498 -0.127494 -0.123952
-0.052955 -0.056041 -0.056276 -0.053095 -0.054880 -0.053641 -0.059765 -0.059813 -0.069960
-0.043361 -0.043611 -0.043625 -0.043367 -0.043534 -0.043419 -0.044260 -0.044265 -0.045625
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Table 5.3: Bias values for (n1,n2)= (10,6), (20,12), (30,18), η = 1

ρ α1 α2 α3 α4 α5 α6 α7 α8 α9
0.25 -0.007091 -0.007325 -0.007319 -0.007127 -0.007129 -0.007091 -0.007304 -0.007304 -0.007185

-0.003136 -0.003677 -0.003673 -0.003326 -0.003435 -0.003362 -0.003600 -0.003599 -0.003353
-0.001334 -0.002083 -0.002079 -0.001569 -0.001834 -0.001800 -0.001963 -0.001962 -0.001645

0.50 -0.022872 -0.023270 -0.023227 -0.022972 -0.022937 -0.022872 -0.023257 -0.023254 -0.023141
-0.008830 -0.008436 -0.008441 -0.008739 -0.008612 -0.008657 -0.008516 -0.008517 -0.008671
-0.004564 -0.004700 -0.004698 -0.004597 -0.004655 -0.004652 -0.004679 -0.004679 -0.004627

0.75 -0.064712 -0.063960 -0.064055 -0.064558 -0.064590 -0.064712 -0.063870 -0.063880 -0.063978
-0.032263 -0.031337 -0.031365 -0.032111 -0.031751 -0.031782 -0.031433 -0.031437 -0.031730
-0.021177 -0.020586 -0.020596 -0.021104 -0.020782 -0.020727 -0.020637 -0.020638 -0.020814

1.00 -0.111381 -0.111484 -0.111468 -0.111327 -0.111398 -0.111381 -0.111594 -0.111591 -0.111626
-0.070306 -0.069636 -0.069677 -0.070254 -0.069935 -0.069840 -0.069481 -0.069486 -0.069575
-0.053460 -0.053155 -0.053170 -0.053451 -0.053256 -0.053087 -0.052933 -0.052936 -0.052873

1.25 -0.138266 -0.137758 -0.137789 -0.138200 -0.138184 -0.138266 -0.137960 -0.137961 -0.138217
-0.071055 -0.071143 -0.071147 -0.071073 -0.071103 -0.071051 -0.070979 -0.070980 -0.070869
-0.050957 -0.051066 -0.051067 -0.050973 -0.051030 -0.051003 -0.050902 -0.050903 -0.050766

1.50 -0.137209 -0.139476 -0.139123 -0.137396 -0.137577 -0.137209 -0.139504 -0.139477 -0.138784
-0.061067 -0.059947 -0.060021 -0.060975 -0.060447 -0.060271 -0.059209 -0.059221 -0.058956
-0.028101 -0.028454 -0.028439 -0.028121 -0.028337 -0.028507 -0.028751 -0.028748 -0.028916

1.75 -0.135426 -0.135457 -0.135359 -0.135374 -0.135431 -0.135426 -0.136632 -0.136609 -0.137576
-0.042238 -0.043873 -0.043774 -0.042382 -0.043143 -0.043390 -0.044747 -0.044732 -0.045119
-0.022115 -0.021298 -0.021335 -0.022073 -0.021569 -0.021138 -0.020511 -0.020518 -0.020074

2.00 -0.125822 -0.124019 -0.124348 -0.125587 -0.125530 -0.125822 -0.121946 -0.122006 -0.120421
-0.035953 -0.036249 -0.036236 -0.035985 -0.036116 -0.036121 -0.036223 -0.036222 -0.036076
-0.019032 -0.018998 -0.018998 -0.019029 -0.019009 -0.019028 -0.019205 -0.019204 -0.019519

2.25 -0.130787 -0.132194 -0.131914 -0.130942 -0.131015 -0.130787 -0.133397 -0.133357 -0.133955
-0.035683 -0.036058 -0.036027 -0.035705 -0.035891 -0.035982 -0.036745 -0.036737 -0.037396
-0.014677 -0.013159 -0.013224 -0.014592 -0.013663 -0.012954 -0.012080 -0.012090 -0.011764

2.50 -0.109167 -0.110303 -0.110111 -0.109284 -0.109351 -0.109167 -0.111542 -0.111505 -0.112956
-0.036525 -0.036074 -0.036104 -0.036492 -0.036275 -0.036160 -0.035133 -0.035144 -0.033635
-0.017960 -0.019731 -0.019649 -0.018051 -0.019144 -0.020142 -0.021951 -0.021933 -0.023550

3.00 -0.095615 -0.094135 -0.094430 -0.095509 -0.095375 -0.095615 -0.092944 -0.092984 -0.092848
-0.026985 -0.026303 -0.026343 -0.026928 -0.026608 -0.026530 -0.026054 -0.026059 -0.025964
-0.023927 -0.023752 -0.023759 -0.023917 -0.023810 -0.023747 -0.023790 -0.023791 -0.024004

3.50 -0.095304 -0.097202 -0.096812 -0.095423 -0.095612 -0.095304 -0.100323 -0.100239 -0.104164
-0.036275 -0.037663 -0.037557 -0.036375 -0.037043 -0.037421 -0.040036 -0.040008 -0.042621
-0.020150 -0.020855 -0.020820 -0.020184 -0.020621 -0.021111 -0.022940 -0.022926 -0.026114

4.00 -0.090968 -0.088980 -0.089305 -0.090829 -0.090646 -0.090968 -0.089689 -0.089696 -0.094040
-0.037401 -0.037206 -0.037225 -0.037391 -0.037293 -0.037180 -0.035226 -0.035245 -0.030129
-0.022520 -0.024099 -0.024021 -0.022598 -0.023576 -0.024646 -0.028507 -0.028477 -0.035465
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Table 5.4: Risk values for (n1,n2)= (6,6), (12,12), (18,18), η = 1

ρ α1 α2 α4 α5 α6 α7 α9
0.25 0.015795 0.001732 0.010373 0.012149 0.015795 0.002085 0.004726

0.007571 0.000708 0.00378 0.002309 0.003168 0.000865 0.002182
0.005154 0.000457 0.002524 0.001078 0.001273 0.000567 0.00148

0.50 0.026258 0.009974 0.020875 0.022026 0.026258 0.010082 0.011628
0.011852 0.003877 0.008900 0.005746 0.006762 0.004025 0.004848
0.007717 0.002361 0.005989 0.003084 0.003312 0.002496 0.003089

0.75 0.040138 0.024921 0.035421 0.035846 0.040138 0.023919 0.023744
0.019016 0.010956 0.016732 0.012703 0.013860 0.010750 0.010895
0.012590 0.007020 0.011364 0.007744 0.008035 0.006988 0.007160

1.00 0.070030 0.052461 0.064619 0.064606 0.070030 0.050290 0.049371
0.033905 0.024320 0.031620 0.026221 0.027813 0.023749 0.023559
0.021855 0.015491 0.020686 0.016076 0.016510 0.015205 0.015101

1.25 0.112517 0.093786 0.106749 0.106083 0.112517 0.090046 0.089236
0.052338 0.041949 0.050078 0.043589 0.045542 0.041125 0.041358
0.033270 0.026655 0.032187 0.027067 0.027594 0.026379 0.026662

1.50 0.157845 0.140465 0.151653 0.150549 0.157845 0.137214 0.141709
0.071167 0.061571 0.069038 0.062333 0.064318 0.061510 0.064910
0.045373 0.038314 0.044316 0.038654 0.039246 0.038386 0.040531

1.75 0.213531 0.203656 0.207712 0.206247 0.213531 0.201607 0.216380
0.089411 0.079563 0.087227 0.079841 0.081993 0.081070 0.090803
0.057703 0.050116 0.056640 0.050403 0.051039 0.051223 0.057665

2.00 0.277318 0.269186 0.271067 0.269268 0.277318 0.272184 0.312887
0.115343 0.104669 0.113044 0.104740 0.107118 0.108641 0.130613
0.072208 0.064409 0.071137 0.064534 0.065178 0.067673 0.083206

2.25 0.341344 0.335313 0.335399 0.333173 0.341344 0.343820 0.418437
0.137320 0.129145 0.135244 0.127861 0.129834 0.138650 0.183719
0.086572 0.079450 0.085559 0.079215 0.079782 0.086113 0.116046

2.50 0.401355 0.393206 0.394355 0.391812 0.401355 0.418073 0.570204
0.162435 0.151180 0.160144 0.151128 0.153685 0.163622 0.234294
0.103264 0.096742 0.102284 0.096120 0.096635 0.107504 0.158728

3.00 0.447051 0.446622 0.441195 0.438435 0.447051 0.490892 0.773488
0.188371 0.182913 0.186653 0.180270 0.181829 0.213103 0.378538
0.119065 0.113634 0.118247 0.112930 0.113352 0.133069 0.242797

3.50 0.515584 0.535883 0.510993 0.509292 0.515584 0.620946 1.178648
0.214208 0.209898 0.212681 0.206890 0.208262 0.253788 0.542979
0.142006 0.137212 0.141301 0.136535 0.136916 0.165588 0.361855

4.00 0.587802 0.604870 0.582242 0.580010 0.587802 0.735302 1.692821
0.249218 0.246472 0.247963 0.243304 0.244328 0.308911 0.784411
0.166128 0.161711 0.165484 0.161084 0.161432 0.201048 0.512820
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Table 5.5: Risk values for (n1,n2)= (6,10), (12,20), (18,30), η = 1

ρ α1 α2 α3 α4 α5 α6 α7 α8 α9
0.25 0.015472 0.001020 0.000999 0.008450 0.006604 0.008743 0.001352 0.001336 0.002760

0.007516 0.000421 0.000420 0.003259 0.001426 0.001686 0.000551 0.000548 0.001276
0.005251 0.000283 0.000282 0.002377 0.000763 0.000761 0.000376 0.000374 0.000893

0.50 0.024630 0.007057 0.006950 0.017956 0.01391 0.017698 0.007524 0.007488 0.008158
0.011213 0.002520 0.002513 0.008071 0.003803 0.004869 0.002783 0.002776 0.003168
0.007286 0.001475 0.001473 0.005509 0.002018 0.002463 0.001627 0.001624 0.001877

0.75 0.037807 0.018799 0.018607 0.031963 0.026084 0.031451 0.018783 0.018735 0.018410
0.018353 0.008360 0.008331 0.015918 0.009827 0.012034 0.008474 0.008463 0.008345
0.011317 0.004885 0.004881 0.010083 0.005491 0.006569 0.004981 0.004977 0.004950

1.00 0.063526 0.039643 0.039510 0.057189 0.048370 0.056419 0.038727 0.038680 0.038178
0.031040 0.018337 0.018307 0.028648 0.020133 0.023784 0.018171 0.018160 0.017879
0.020485 0.011938 0.011932 0.019278 0.012715 0.014763 0.011892 0.011888 0.011777

1.25 0.097406 0.069820 0.069920 0.090680 0.078972 0.089595 0.067105 0.067086 0.067247
0.045953 0.031324 0.031338 0.043592 0.033030 0.038000 0.030687 0.030685 0.031280
0.030525 0.020627 0.020619 0.029421 0.021508 0.024437 0.020329 0.020327 0.020612

1.50 0.136209 0.108786 0.109418 0.129870 0.116744 0.128687 0.104857 0.104924 0.110424
0.064572 0.048305 0.048349 0.062274 0.050043 0.056200 0.047255 0.047269 0.050337
0.041307 0.030603 0.030628 0.040221 0.031314 0.034842 0.030253 0.030261 0.032757

1.75 0.175592 0.149679 0.151807 0.169141 0.154605 0.167783 0.145031 0.145288 0.163732
0.083282 0.066727 0.066866 0.081104 0.068156 0.074938 0.065972 0.066020 0.075767
0.055012 0.043292 0.043338 0.053928 0.044006 0.048176 0.043227 0.043249 0.049993

2.00 0.221332 0.194637 0.198070 0.214641 0.198257 0.213123 0.191439 0.191932 0.233111
0.104804 0.087690 0.087982 0.102574 0.088649 0.096050 0.087889 0.087991 0.109731
0.069227 0.056691 0.056752 0.068162 0.057417 0.062181 0.057228 0.057269 0.071727

2.25 0.274996 0.247009 0.252354 0.267690 0.249609 0.266050 0.248650 0.249532 0.335855
0.129970 0.111204 0.111595 0.127675 0.112296 0.120662 0.114190 0.114368 0.158229
0.083367 0.072522 0.072686 0.082411 0.072514 0.076901 0.075025 0.075107 0.104427

2.50 0.331730 0.307564 0.314990 0.324715 0.306321 0.323015 0.313384 0.314694 0.453290
0.156888 0.139989 0.140570 0.154800 0.140074 0.148212 0.145344 0.145617 0.217730
0.102586 0.089960 0.090111 0.101571 0.090292 0.095510 0.094433 0.094549 0.143818

3.00 0.387588 0.367343 0.376571 0.381570 0.364354 0.379911 0.391112 0.393292 0.693887
0.178306 0.165346 0.166096 0.176679 0.164643 0.171373 0.179374 0.179828 0.328623
0.120676 0.111796 0.112050 0.119919 0.111400 0.115293 0.123058 0.123261 0.225988

3.50 0.452634 0.444953 0.457122 0.448086 0.434718 0.446823 0.491261 0.494560 1.031217
0.219954 0.205710 0.206412 0.218344 0.205625 0.212940 0.229508 0.230169 0.496192
0.145883 0.137662 0.137948 0.145186 0.137089 0.140846 0.155476 0.155775 0.339231

4.00 0.513660 0.510280 0.524454 0.509535 0.497625 0.508369 0.587909 0.592594 1.493094
0.248650 0.237772 0.238781 0.247224 0.236434 0.242461 0.277441 0.278406 0.720735
0.165830 0.156613 0.156799 0.165173 0.156714 0.160917 0.182036 0.182429 0.479984
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Table 5.6: Risk values for (n1,n2)= (10,6), (20,12), (30,18), η = 1

ρ α1 α2 α3 α4 α5 α6 α7 α8 α9
0.25 0.009409 0.001462 0.001499 0.006012 0.007042 0.009409 0.001660 0.001673 0.004113

0.004685 0.000687 0.000689 0.002595 0.001489 0.001993 0.000794 0.000797 0.002048
0.003118 0.000450 0.000450 0.001796 0.000740 0.000822 0.000519 0.000520 0.001356

0.50 0.016022 0.007543 0.007684 0.013028 0.013426 0.016022 0.007429 0.007448 0.009055
0.007489 0.003244 0.003256 0.006082 0.004072 0.004285 0.003266 0.003270 0.004120
0.004916 0.002203 0.002204 0.004180 0.002466 0.002361 0.002213 0.002214 0.002740

0.75 0.025768 0.018677 0.018726 0.023297 0.023267 0.025768 0.017895 0.017896 0.018097
0.012343 0.008323 0.008332 0.011314 0.009018 0.008918 0.008161 0.008162 0.008459
0.008267 0.005492 0.005494 0.007740 0.005752 0.005494 0.005417 0.005418 0.005629

1.00 0.047141 0.040409 0.040141 0.044565 0.044241 0.047141 0.039262 0.039205 0.038111
0.023038 0.018777 0.018760 0.022081 0.019299 0.018920 0.018510 0.018500 0.018205
0.014778 0.011857 0.011853 0.014311 0.012047 0.011703 0.011735 0.011731 0.011564

1.25 0.079046 0.073070 0.072382 0.076425 0.075835 0.079046 0.072378 0.072218 0.070475
0.034794 0.031329 0.031228 0.033938 0.031289 0.030876 0.031632 0.031596 0.031092
0.023433 0.020510 0.020487 0.022990 0.020572 0.020334 0.020747 0.020733 0.020457

1.50 0.115481 0.110384 0.109098 0.112527 0.111808 0.115481 0.111059 0.110731 0.109865
0.049883 0.044879 0.044810 0.048901 0.045323 0.044672 0.045992 0.045930 0.046522
0.029373 0.026404 0.026364 0.028945 0.026410 0.026360 0.027668 0.027638 0.028247

1.75 0.151629 0.147603 0.145740 0.148769 0.147875 0.151629 0.153188 0.152608 0.158176
0.060392 0.057566 0.057324 0.059616 0.056888 0.056475 0.061619 0.061489 0.065403
0.035400 0.032977 0.032909 0.035025 0.032751 0.032968 0.035600 0.035547 0.038172

2 0.195467 0.195539 0.192256 0.192592 0.191646 0.195467 0.208539 0.207519 0.224707
0.070657 0.069202 0.068836 0.069988 0.067760 0.067502 0.076623 0.076418 0.086485
0.041424 0.038705 0.038635 0.041035 0.038558 0.038913 0.043522 0.043441 0.050780

2.25 0.238609 0.242195 0.238033 0.236165 0.235049 0.238609 0.263541 0.262108 0.298954
0.079166 0.076614 0.076267 0.078399 0.075598 0.075275 0.088243 0.087954 0.109602
0.050036 0.046935 0.046874 0.049632 0.046884 0.047234 0.054091 0.053978 0.068826

2.50 0.281060 0.287455 0.282618 0.278291 0.277375 0.281060 0.318231 0.316269 0.383941
0.093216 0.089623 0.089296 0.092341 0.088994 0.088642 0.106360 0.105973 0.144480
0.061847 0.058546 0.058487 0.061436 0.058544 0.058994 0.068685 0.068531 0.094185

3.00 0.298901 0.301331 0.296859 0.296613 0.295152 0.298901 0.352237 0.349512 0.500422
0.110558 0.106652 0.106374 0.109726 0.106333 0.105940 0.132436 0.131872 0.218686
0.073995 0.071761 0.071673 0.073677 0.071523 0.072527 0.088675 0.088442 0.146123

3.50 0.345083 0.351117 0.344989 0.342627 0.341354 0.345083 0.434534 0.430469 0.723293
0.133090 0.130844 0.130524 0.132484 0.130040 0.129907 0.166140 0.165402 0.315817
0.086218 0.083606 0.083560 0.085914 0.083621 0.084248 0.105386 0.105089 0.207402

4.00 0.363403 0.367875 0.362398 0.361385 0.360035 0.363403 0.472602 0.467681 0.948421
0.150150 0.147671 0.147393 0.149573 0.147143 0.147109 0.196573 0.195587 0.457667
0.099292 0.097485 0.097409 0.099041 0.097294 0.098463 0.129095 0.128692 0.302410
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Graphs of absolute Bias values for n1 = n2, n1 < n2 and n1 > n2 with η = 1.
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Figure 5.1: Comparison of Bias values of different estimators for n1 = 6,n2 = 6.
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Figure 5.2: Comparison of Bias values of different estimators for n1 = 12,n2 = 12.
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Figure 5.3: Comparison of Bias values of different estimators for n1 = 18,n2 = 18.
.
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Figure 5.4: Comparison of Bias values of different estimators for n1 = 6,n2 = 10.
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Figure 5.5: Comparison of Bias values of different estimators for n1 = 12,n2 = 20.
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Figure 5.6: Comparison of Bias values of different estimators for n1 = 18,n2 = 30.
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Figure 5.7: Comparison of Bias values of different estimators for n1 = 10,n2 = 6.
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Figure 5.8: Comparison of Bias values of different estimators for n1 = 20,n2 = 12.
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Figure 5.9: Comparison of Bias values of different estimators for n1 = 30,n2 = 18.
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Graphs of Risk values for n1 = n2, n1 < n2 and n1 > n2 with η = 1.
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Figure 5.10: Comparison of Risk values of different estimators for n1 = 6, n2 = 6.
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Figure 5.11: Comparison of Risk values of different estimators for n1 = 12, n2 = 12.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ=σ
2
/σ

1

Th
e 

R
is

k 
va

lu
es

 o
f d

iff
er

en
t e

st
im

at
or

s

 

 

α
1

α
2

α
4

α
5

α
6

α
7

α
9

Figure 5.12: Comparison of Risk values of different estimators for n1 = 18, n2 = 18.
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Figure 5.13: Comparison of Risk values of different estimators for n1 = 6, n2 = 10.
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Figure 5.14: Comparison of Risk values of different estimators for n1 = 12, n2 = 20.
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Figure 5.15: Comparison of Risk values of different estimators for n1 = 6, n2 = 10.
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Figure 5.16: Comparison of Risk values of different estimators for n1 = 6, n2 = 10.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ=σ
2
/σ

1

Th
e 

Ri
sk

 va
lue

s o
f d

iffe
re

nt
 e

sti
m

at
or

s

 

 

α
1

α
2

α
3

α
4

α
5

α
6

α
7

α
8

α
9

Figure 5.17: Comparison of Risk values of different estimators for n1 = 12, n2 = 20.
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Figure 5.18: Comparison of Risk values of different estimators for n1 = 18, n2 = 30.
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Chapter 6

Admissible and Minimax Estimators of

Parameter of the Selected Pareto Population

under the Generalized Stein Loss Function

6.1 Introduction

The Pareto distribution has been commonly used for approximating the right tails of distributions

with positive skewness. This is also used to model the distribution of income, geophysical, migration,

size of cities and firms, engineering field, property values, insurance risk, word frequencies, business

mortality, etc. Such types of applications and estimation of parameters in the context of Pareto

distribution have been discussed by many authors such as Malik[76] and Kern [61], Asrabadi [14],

Amin [8], Dixit and Nooghabi [38], Bhattacharya et al. [25] and Mulekar and Fukasawa [97].

Let Π1, ...,Πk be k(≥ 2) populations with Πi having Pareto distribution, with associated prob-

ability density function(p.d.f.)

f (x|θi,β ) =
βθ

β

i

xβ+1 , θi < x < ∞, 0 < β , i = 1, ...,k, (6.1)

where, θi’s and β are unknown scale and the common known shape parameters respectively. Suppose

we have random sample Xi1, ...,Xin from the population Πi, i = 1, ...,k, and let Xi = min{Xi1, ...,Xin},
i= 1, ...,k. The statistic XXX = (X1, . . . ,Xk) is sufficient and complete statistics and the density of Xi has

the monotone likelihood ratio property in (θi,Xi). Then clearly Xi follows Pareto (θi,nβ ) distribution

and the corresponding density function is

g(x|θi,β ) =
nβθ

nβ

i

xnβ+1 , θi < x < ∞, 0 < β , i = 1, ...k. (6.2)

85
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Let X(1) ≤ X(2) ≤, ...,≤ X(k) represent the order statistics of {X1,X2, ...,Xk}. In this problem, for

selecting the best population, we use natural selection rule, according to which the population as-

sociated with the largest or smallest Xi is selected as the best population. Let θL(θS) be the scale

parameter of the selected population corresponding to the largest (smallest) Xi. We are interested in

estimating θL and θS, which can be written as

θL =
k

∑
i=1

θiI
(

Xi,max
j 6=i

X j

)
and θS =

k

∑
i=1

θiI
(

Xi,min
j 6=i

X j

)
. (6.3)

Here, we use the indicator function I(a,b) defined by

I (a,b) =


1, if a≥ b

0, if a < b.

For our convenience, throughout this chapter we denote the population corresponding to the largest

Xi as the largest population and the population corresponding to the smallest Xi as the smallest

population. Recently, some authors have carried out studies on estimating scale parameter of the

selected Pareto population under various loss functions. The Uniformly Minimum Variance Unbi-

ased (UMVU) estimator was obtained by Misra and van der Meulen [86] under squared error loss

function. They also compared performances of three natural estimators and UMVU estimator under

the mean squared error criterion. The UMVU estimator and an admissible class of linear estimators

of selected scale parameter, as well as a general inadmissibility results from Pareto family for the

scale-invariant estimators, were discussed by Kumar and Gangopadhyay [66] under squared error

loss function. Nematollahi [99] considered estimation of scale parameters of selected Pareto popu-

lation under the squared log error loss function. He obtained the UMVU estimator, and presented a

sufficient condition of minimaxity of an estimator of scale parameters, as well as proved that natural

estimators and UMRU estimator are minimax for smallest population. He has obtained the general

class of linear admissible estimators of selected scale parameters and obtained a general inadmis-

sibility result for the scale invariant estimators of the selected smallest population. Al-Mosawi and

Khan [5] considered the case k ≥ 2 Pareto populations and estimated the moments of the selected

population. They proposed minimum risk equivariant (MRE) estimator of the scale parameter for

the component problem when no selection is involved. They also constructed risk-unbiased esti-

mators and studied consistency and admissibility of the natural estimators under the asymmetric

scale-invariant loss function. For selected values of the order of moments and shape parameter, they

further obtained the biases and risks of the natural estimators and compared the performance of the

estimators through the simulation study as well.

Estimation after selection has been studied under various loss functions, either symmetric or

asymmetric. Quadratic , squared error, Scale invariant squared error loss functions have been used
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in the literature. These loss functions are symmetric about the parameter value. Symmetric loss

(Squared error loss) function assigns the same penalties to over-estimation and under-estimation of

the same magnitude (Gupta and Miescke [53]; Parsion and Sanjari Farsipour [104] etc.). The uti-

lization of the symmetric loss functions is not appropriate for estimation of the selected parameters,

because it is not a scale-invariant loss function. So, an asymmetric loss function is needed to be

applied (this kind of loss function has been implemented by some researchers such as Zellner[135],

Sadooghi-Alvandi [115], Basu and Ebrahimi [22], etc.). This loss is useful in situations where un-

derestimation appears to have greater significance than over-estimation. Zellner [135] expressed that

in the dam construction, an underestimation of the peak water level is commonly much more serious

than an overestimation. One famous asymmetric loss function that has been considered for handling

such situations is the generalized Stein loss (GSL) function given by

L(g(θ),Ψ) =

(
Ψ

g(θ)

)p

− p ln
(

Ψ

g(θ)

)
−1, p 6= 0. (6.4)

This loss function is not symmetric but convex in ∆ = Ψ

g(θ) when p=1 and quasi-convex otherwise,

and has a unique minimum at ∆ = 1, GSL is scale invariant and also is useful in situations where

under-estimation and over-estimation do not have the same penalty. The GSL function with negative

p values penalizes over-estimation more than under-estimation and with positive p values it acts

vice-versa. It is worth mentioning that near ∆ = 1,

(
Ψ

g(θ)

)p

− p ln
(

Ψ

g(θ)

)
−1≈ p2

2

(
Ψ

g(θ)
−1
)2

,

and for small |p| values,

(
Ψ

g(θ)

)p

− p ln
(

Ψ

g(θ)

)
−1≈ p2

2
(lnΨ− lng(θ))2 .

The remainder of the chapter is organized as follows. In Section 6.2, the uniform minimum risk

unbiased (UMRU) estimator of θL and θS are derived based on the results of Nematollahi and Jafari

Jozani [100]. In Section 6.3, we have proved a sufficient condition for minimaxity of estimators of

θL and θS, and shown that the generalized Bayes estimators of θS are minimax for k = 2. We have ob-

tained a class of admissible linear estimators of θL and θS in Section 6.4. The technique of Brewster

and Zidek [27] is employed to provide a sufficient condition for inadmissibility of some scale and

permutation invariant estimators of θS and the UMRU estimator of θS is shown to be inadmissible

and provided some dominated or better estimators. Finally, some results and discussions are given

in section 6.5.
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6.2 UMRU Estimation

In this section, we introduce the concept of the general form of uniformly minimum risk unbiased

(UMRU) estimator of θL and obtain the conditions for the risk-unbiased estimator under the GSL

function (6.4). Then we derive the UMRU estimators of θL and θS given in (6.3). The following

definition of risk-unbiased estimator is adopted from Lehmann [71].

Definition 6.2.1. [Lehmann [71]] An estimator Ψ(XXX) of the parameter g(θθθ) is said to be risk-

unbiased if it satisfies the inequality

Eθθθ [L(g(θθθ),Ψ(XXX))]≤ Eθθθ [L(g(θθθ
′
),Ψ(XXX))], for all θθθ 6= θθθ

′
.

A decision-theoretic approach of unbiasedness that mainly depends on the type of loss func-

tions is applied. Using the definition 6.2.1 and the GSL function (6.4), an estimator Ψ(XXX) is a

risk-unbiased estimator of the parameter g(θθθ), if it satisfies the following condition

Eθθθ [Ψ
p(XXX)] = gp(θθθ), for all θθθ . (6.5)

So, the condition for being risk-unbiased estimator of θL is given by

Eθθθ [Ψ
p(xxx)] = Eθθθ

[
θ

p
L
]
, for all θθθ .

Nematollahi and Jafari Jozani [100] introduced the concept of UMRU estimation for the random

parameter g(θ)(= θLor θS) under the general ξ -loss function

L(g(θ),Ψ) = (ξ (Ψ)−ξ (g(θ)))2,

while it has risk-unbiased condition Eθ [ξ (Ψ(XXX))] = Eθ [ξ (g(θ))]. They have shown that for Pareto

distribution under the ξ− loss function, the UMRU estimators of θL and θS are given by

Ψ
U
L (XXX) = ξ

−1

ξ (X(k))−
1

nβ

k

∑
i=1

ξ
′
(X(i))X(i)

(
X(i)

X(k)

)nβ
 (6.6)

and

Ψ
U
S (XXX) = ξ

−1

ξ (X(1))−ξ
′
(X(1))

X(1)

nβ

1−

(
X(1)

X(2)

)nβ
 (6.7)

respectively. Since the unbiased condition under GSL function, is equivalent to unbiased condition

under ξ -loss function with ξ (x) = xp, then from (6.6) and (6.7) the UMRU estimators of θL and θS

for Pareto population under the GSL function (6.4) are given by

Ψ
U
L (XXX) = X(k)

1− p
nβ

k

∑
i=1

(
X(i)

X(k)

)nβ+p
1/p

(6.8)
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and

Ψ
U
S (XXX) = X(1)

1− p
nβ

+
p

nβ

(
X(1)

X(2)

)nβ
1/p

(6.9)

respectively.

Remark 6.2.1. Let X[1] ≤ ·· · ≤ X[k] denote the ordered values of random variable X1,X2, ...,Xk. For

p =−1, it should be mentioned from (6.8) and (6.9), that the UMRU estimators of scale parameters

θL and θS under the entropy loss function are given by

Ψ
U
L (XXX) =

 nβX(k)

nβ +∑
k
i=1

(
X(i)
X(k)

)nβ−1

 (6.10)

and

Ψ
U
S (XXX) =

 nβX(1)

(nβ +1)−
(

X(1)
X(2)

)nβ

 (6.11)

respectively.

6.3 Minimax estimation

In this section, we deal with minimax estimation of selected scale parameters when we have two

independent populations Π1 and Π2, i.e. k = 2. We are able to provide a sufficient condition for

minimaxity of estimators of θL and θS under the GSL function as defined in (6.4), and next we prove

that generalized Bayes estimators of θS is minimax.

6.3.1 Sufficient condition for minimaxity

We use some results of Sackrowitz and Samuel-Cahn [114] for finding the sufficient condition of

minimax estimation. We state the following theorem for the desired sufficient condition.

Theorem 6.3.1. Suppose Xi1, . . . ,Xin denotes a random sample of size n from Pareto population and

having the density (6.1). Let X(i) =min(Xi1, ...,Xin), i= 1,2, and X(1)≤ X(2) are the ordered statistics

of X1,X2. An estimator Ψ∗(X1,X2) is minimax for g(θ) = θL or θS under the GSL function as defined

in (6.4) if its risk satisfies

R(g(θ),Ψ∗)≤ ln
(

nβ

nβ − p

)
− p

nβ
. (6.12)
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Proof. To establish the inequality (6.12), the consequences of Sackrowitz and Samuel-Cahn [114]

are applied to determine the minimax estimator in the component problem for θi, i = 1,2. Nematol-

lahi [99] considered the following prior for θi, i = 1,2,

Π
m
i (θi) =

θ
1
m−1

i

ma
1
m
, 0 < θi < a. (6.13)

Since Xi|θi has pareto pdf (6.2), the posterior density can be effortlessly obtained, that’s defined as

Π
m
i (θi|xi) =

(nβ + 1
m)θ

nβ+ 1
m−1

i

(a∗i )
nβ+ 1

m
, 0 < θi < min(xi,a) = a∗i . (6.14)

It is straightforward to see that the Bayes estimator of θi under the GSL function is identical to

ΨΠm
i
(xi) =

[
E
(

1
θ

p
i

∣∣xi

)]− 1
p

= a∗i

[
nβ − p+ 1

m

nβ + 1
m

] 1
p

(6.15)

and the posterior risk of ΨΠm
i
(Xi) is given by

r
(

xi,ΨΠm
i
(xi)
)
= E

[(
ΨΠm

i
(xi)

θi

)p

− p ln
(

ΨΠm
i
(xi)

θi

)
−1
∣∣xi

]

= ln
[

E
(

1
θ

p
i

∣∣xi

)]
+ pE

(
lnθi

∣∣xi
)

= ln

[
nβ + 1

m

nβ − p+ 1
m

]
− p

nβ + 1
m

Since the posterior risk does not depend on xi, therefore the Bayes risk of ΨΠm
i
(xi) is also

r∗
(

Π
m
i ,ΨΠm

i

)
= ln

[
nβ + 1

m

(nβ − p+ 1
m)

]
− p

nβ + 1
m

, i = 1,2. (6.16)

Now consider the Bayes estimator of θL and θS under the GSL function (6.4). Suppose θ1 and

θ2 are independently and identically distributed (i.i.d.) random variables with prior, whose density

is (6.13) with a = m. Then using the result of Sackrowitz and Samuel-Cahn [114] (from lemma 3.2)

and equation (6.15), the unique Bayes estimator of θL and θS under the GSL function, and the prior

Πm = (Π∗1,Π
∗
2) are given by

Ψ
m
1 (X1,X2) = min(X(2),m)

[
nβ − p+ 1

m

nβ + 1
m

] 1
p

(6.17)

and

Ψ
m
2 (X1,X2) = min(X(1),m)

[
nβ − p+ 1

m

nβ + 1
m

] 1
p

(6.18)
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respectively. Since the posterior risk of the component problem is independent of xxx = (x1,x2), there-

fore by using the result of Sackrowitz and Samuel-Cahn [114] (from Theorem 3.1), the Bayes risk

r∗i (Π
m,Ψm

i ) of Ψm
i (X1,X2) , i = 1,2, are the same as the one given in (6.16), i.e.,

r∗1(Π
m,Ψm

1 ) = r∗2(Π
m,Ψm

2 ) = r∗(Πm
i ,Ψ

m
i )

= ln

[
nβ + 1

m

(nβ − p+ 1
m)

]
− p

nβ + 1
m

, i = 1,2,

and hence

lim
m→∞

r∗i (Π
m,Ψm

i ) = ln
[

nβ

(nβ − p)

]
− p

nβ
, i = 1,2. (6.19)

Now, we apply result of Sackrowitz and Samuel-Cahn [114] (from Theorem 3.2), the estimator

ΨL(X1,X2) and ΨS(X1,X2) are minimax for θL and θS, respectively, if

R(θL,ΨL)≤ lim
m→∞

r∗1(Π
m,Ψm

1 ) = ln
[

nβ

(nβ − p)

]
− p

nβ
(6.20)

and

R(θS,ΨS)≤ lim
m→∞

r∗2(Π
m,Ψm

2 ) = ln
[

nβ

(nβ − p)

]
− p

nβ
, (6.21)

where R(θL,ΨL) and R(θS,ΨS) are the risk functions of ΨL and ΨS under the GSL function, re-

spectively. We should note that the limiting Bayes estimators Ψ∞
1 (X1,X2) = X(2)

(
nβ−p

nβ

) 1
p and

Ψ∞
2 (X1,X2) = X(1)

(
nβ−p

nβ

) 1
p of θL and θS are Generalized Bayes estimators of θL and θS under the

noninformative prior Πi(θ) =
1
θi
,θi > 0, i = 1,2.

6.3.2 Minimax estimators of Selected Parameters

Consider the assumption of Theorem 6.3.1 and with respect to the group of scale transformation

G = {gc : gc(x1,x2) = (cx1,cx2),c > 0}. It is easy to verify that the best invariant estimator of θi is

Ψ(Xi) = Xi

(
nβ−p

nβ

) 1
p
, i = 1,2. Therefore, the natural (generalized Bayes (GB)) estimators of θL and

θS are given as

Ψ
GB
L (XXX) = X(2)

(
nβ − p

nβ

) 1
p

and Ψ
GB
S (XXX) = X(1)

(
nβ − p

nβ

) 1
p

(6.22)

respectively. We further try to find that the the GB estimators of θS is minimax. We need the

following lemma, which will be helpful in acquiring the results.

Lemma 6.3.2. Under the assumptions of Theorem 6.3.1, let λ = min(θ1,θ2)/max(θ1,θ2) and nβ >

p then
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(a) E
[(

X(2)
θL

)p]
= (nβ )2λ nβ−p

(nβ−p)(2nβ−p) +
nβ

(nβ−p) −
nβλ nβ

(2nβ−p)

(b) E
[
ln
(

X(2)
θL

)]
= λ nβ

2

(
1

nβ
− ln(λ )

)
+ 1

nβ

(c) E
[(

X(1)
θS

)p]
= nβλ nβ

(2nβ−p) +
nβ

(nβ−p) −
(nβ )2λ nβ−p

(nβ−p)(2nβ−p)

(d) E
[
ln
(

X(1)
θS

)]
= λ nβ

2

(
ln(λ )− 1

nβ

)
+ 1

nβ

Proof. Let Y1 = θ1
X1

, Y2 = θ2
X2

, W = X1
X2

and W ∗ = Y1
Y2

. Then Y1 and Y2 are independent with pdf

fYi(yi) = nβynβ−1
i ,0 < yi < 1, i = 1,2. Let I(A) be the indicator function of the set A.

(a) If θ1 < θ2 ,i.e. λ = θ1
θ2

< 1, then

E
[(

X(2)

θL

)p]
=E
[(

X2

θ2

)p

I (W ≤ 1)
]
+E

[(
X1

θ1

)p

I (W > 1)
]

=E
[

1
Y p

2
I (λ ≤W ∗)

]
+E

[
1

Y p
1

I (λ >W ∗)
]

=
∫ 1

0
nβynβ−p−1

2

[∫ 1

λy2

nβynβ−1
1 dy1

]
dy2

+
∫ 1

0
nβynβ−1

2

[∫
λy2

0
nβynβ−p−1

1 dy1

]
dy2

=
∫ 1

0
nβynβ−p−1

2

nβ

(
ynβ

1
nβ

)1

λy2

dy2 +
∫ 1

0
nβynβ−1

2

nβ

(
ynβ−p

1
nβ − p

)λy2

0

dy2

=
∫ 1

0
nβynβ−p−1

2

(
1− (λy2)

nβ
)

dy2 +
(nβ )2λ nβ−p

nβ − p

∫ 1

0
y2nβ−p−1

2 dy2.

Integrating the terms and simplifying further we get

E
[(

X(2)

θL

)p]
=

(nβ )2λ nβ−p

(nβ − p)(2nβ − p)
+

nβ

(nβ − p)
− nβλ nβ

(2nβ − p)
.

Similarly, for θ1 > θ2 ,i.e. λ = θ2
θ1

> 1, we have

E
[(

X(2)

θL

)p]
=

(nβ )2λ nβ−p

(nβ − p)(2nβ − p)
+

nβ

(nβ − p)
− nβλ nβ

(2nβ − p)
.
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(b) If θ1 < θ2, i.e., θ1
θ2

< 1.

E
[

ln
(

X(2)

θL

)]
=E
[

ln
(

X2

θ2

)
I (W ≤ 1)

]
+E

[
ln
(

X1

θ1

)
I (W > 1)

]
=E
[

ln
(

1
Y2

)
I (λ ≤W ∗)

]
+E

[
ln
(

1
Y1

)
I (λ >W ∗)

]
=−

∫ 1

0
nβynβ−1

2 ln(y2)

[∫ 1

λy2

nβynβ−1
1 dy1

]
dy2

−
∫ 1

0
nβynβ−1

2

[∫
λy2

0
nβynβ−1

1 ln(y1)dy1

]
dy2

=−
∫ 1

0
nβynβ−1

2 ln(y2)

nβ

(
ynβ

1
nβ

)1

λy2

dy2

−
∫ 1

0
nβynβ−1

2

nβ

(
ln(y1)

ynβ

1
nβ
−

ynβ

1
(nβ )2

)λy2

0

dy2

=−
∫ 1

0
nβynβ−1

2 ln(y2)
[
1− (λy2)

nβ

]
dy2

−
∫ 1

0
nβynβ−1

2

[
(λy2)

nβ ln(λy2)−
(λy2)

nβ

nβ

]
dy2.

Integrating the terms and simplifying further we get

E
[

ln
(

X(2)

θL

)]
=

λ nβ

2

(
1

nβ
− ln(λ )

)
+

1
nβ

.

Similarly, for θ1 > θ2, i.e, λ = θ2
θ1

< 1, we have

E
[

ln
(

X(2)

θL

)]
=

λ nβ

2

(
1

nβ
− ln(λ )

)
+

1
nβ

.

(c) If θ1 < θ2, i.e. λ = θ1
θ2

< 1, we have

E
[(

X(1)

θS

)p]
=E
[(

X1

θ1

)p

I(W ≤ 1)
]
+E

[(
X2

θ2

)p

I(W > 1)
]
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=E
[

1
Y p

1
I(λ ≤W ∗)

]
+E

[
1

Y p
2

I(λ >W ∗)
]

=
∫ 1

0
nβynβ−1

2

[∫ 1

λy2

nβynβ−p−1
1 dy1

]
dy2 +

∫ 1

0
nβynβ−p−1

2

[∫
λy2

0
nβynβ−1

1 dy1

]
dy2

=
∫ 1

0
nβynβ−1

2

nβ

(
ynβ−p

1
nβ − p

)1

λy2

dy2 +
∫ 1

0
nβynβ−p−1

2

nβ

(
ynβ

1
nβ

)λy2

0

dy2

=
(nβ )2

(nβ − p)

∫ 1

0
ynβ−1

2 dy2−
nβλ nβ−p

(nβ − p)

∫ 1

0
y2nβ−p−1

2 dy2 +nβλ
nβ

∫ 1

0
y2nβ−p−1

2 dy2

=
(nβ )2

(nβ − p)

(
ynβ

2
nβ

)1

0

− nβλ nβ−p

(nβ − p)

(
y2nβ−p

2
2nβ − p

)1

0

+nβλ
nβ

(
y2nβ−p

2
2nβ − p

)1

0

.

Therefore, after the simplification, we give

E
[(

X(1)

θS

)p]
=

nβλ nβ

(2nβ − p)
+

nβ

(nβ − p)
− (nβ )2λ nβ−p

(nβ − p)(2nβ − p)
.

Similarly, if θ1 > θ2, λ = θ2
θ1

< 1, we have obtained

E
[(

X(1)

θS

)p]
=

nβλ nβ

(2nβ − p)
+

nβ

(nβ − p)
− (nβ )2λ nβ−p

(nβ − p)(2nβ − p)
.

(d) If θ1 < θ2, i.e., λ = θ1
θ2

< 1,

E
[

ln
(

X(1)

θS

)]
=E
[

ln
(

X1

θ1

)
I(W ≤ 1)

]
+E

[
ln
(

X2

θ2

)
I(W > 1)

]
=E
[

ln
(

1
Y1

)
I(λ ≤W ∗)

]
+E

[
ln
(

1
Y2

)
I(λ >W ∗)

]
=−

∫ 1

0
nβynβ−1

2

[∫ 1

λy2

nβynβ−1
1 ln(y1)dy1

]
dy2

−
∫ 1

0
nβynβ−1

2 ln(y2)

[∫
λy2

0
nβynβ−1

1 dy1

]
dy2

=−
∫ 1

0
nβynβ−1

2

nβ

(
ynβ

1 ln(y1)

nβ
−

ynβ

1
(nβ )2

)1

λy2

dy2

−
∫ 1

0
nβynβ−1

2 ln(y2)

nβ

(
ynβ

1
nβ

)λy2

0

dy2

=
∫ 1

0
ynβ−1

2 dy2 +nβλnβ ln(λ )
∫ 1

0
y2nβ−1

2 dy2−λ
nβ

∫ 1

0
y2nβ−1

2 dy2

=

(
ynβ

2
nβ

)1

0

+nβλ
nβ ln(λ )

(
y2nβ−1

2
2nβ

)1

0

−λ
nβ

(
y2nβ

2
2nβ

)1

0

.
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Therefore, after the simplification, we obtain

E
[

ln
(

X(1)

θS

)]
=

λ nβ

2

[
ln(λ )− 1

nβ

]
+

1
nβ

.

Similarly, if θ1 > θ2, λ = θ2
θ1

< 1, we have obtain

E
[

ln
(

X(1)

θS

)]
=

λ nβ

2

[
ln(λ )− 1

nβ

]
+

1
nβ

.

Theorem 6.3.3. Let X1 and X2 be two independent random variables where Xi having a Pareto

distribution defined in (6.2). Then, GB estimator ΨGB
S (XXX) defined in (6.22) is minimax estimator of

θS under the GSL function (6.4), when nβ > p.

Proof.

R
(

θS,Ψ
GB
S

)
=E

[(
ΨGB

S
θS

)p

− p ln

(
ΨGB

S
θS

)
−1

]

=E


X(1)

(
nβ−p

nβ

) 1
p

θS


p

− p ln

X(1)

(
nβ−p

nβ

) 1
p

θS

−1


=

(
nβ − p

nβ

)
E
(

X(1)

θS

)p

− pE
[

ln
(

X(1)

θS

)]
− ln

(
nβ − p

nβ

)
−1

=

(
nβ − p

nβ

)[
nβλ nβ

(2nβ − p)
+

nβ

(nβ − p)
− (nβ )2λ nβ−p

(nβ − p)(2nβ − p)

]

− p

[
λ nβ

2

(
ln(λ )− 1

nβ

)
+

1
nβ

]
+ ln

(
nβ

nβ − p

)
−1

= ln
(

nβ

nβ − p

)
− p

nβ
+λ

nβ

[
(nβ − p)
(2nβ − p)

− nβ

λ p(2nβ − p)
− p ln(λ )

2
+

p
2nβ

]
= ln

(
nβ

nβ − p

)
− p

nβ
+λ

nβ g(λ ).

We observed that g
′
(λ ) = p

λ

(
nβ

λ p(2nβ−p) −
1
2

)
> 0 for 0 < λ ≤ 1,2nβ > p, therefore g(λ ) is a strictly

increasing function of λ and g(λ )≤ g(1) = −p2

2nβ (2nβ−p) < 0. Thus it satisfies the following inequality

R
(

θS,Ψ
GB
S

)
< ln

(
nβ

nβ − p

)
− p

nβ
.

This, completes the proof of theorem.
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6.4 Admissibility of Estimators

Let random samples Xi1, ...,Xin, be available from the ith population Πi, i = 1,2, and having pdf (6.1)

as well as Xi = min(Xi1, ...,Xin) , i = 1,2,n≥ 2 and X(1) ≤ X(2) be the order statistics of X1,X2. In this

section we study the class of linear admissible estimators of the form cX(2) and cX(1) for θL and θS,

respectively. Also, we derive a sufficient condition for inadmissibility of a scale invariant estimator

of scale parameter θS under the GSL function (6.4).

6.4.1 Characterization of linear admissible estimators

Let GA = {gA : gA(x1,x2) = (cx1,cx2),c > 0} be a scale group of transformations. Under this trans-

formations (X1,X2)→ (cX1,cX2),c > 0. The given problem is invariant if we take the scale invariant

loss function (6.4). Then , we define the following subclasses

DL =
{

Ψ1c : Ψ1c(X1,X2) = cX(2),c > 0
}

(6.23)

and

DS =
{

Ψ2c : Ψ2c(X1,X2) = cX(1),c > 0
}

(6.24)

of invariant estimators for θL and θS, respectively. The following theorems, we characterize the

admissible estimators of θL and θS, that belongs to the class DL and DS, respectively.

Theorem 6.4.1. Under the assumptions of Theorem (6.3.1) and let d∗1 =
(
(nβ−p)(2nβ−p)

2(nβ )2

) 1
p
, d∗2 =(

(nβ−p)
nβ

) 1
p
, d∗3 =

(
1− p

2nβ

) 1
p

and d∗4 =
(
(nβ−p)

nβ

) 1
p
. Then under the GSL function (6.4) hold follow-

ing results,

(a) When c ∈ [d∗1 ,d
∗
2 ] and 2nβ > p, then the estimators Ψ1c(X1,X2) = cX(2) are admissible within

the class DL of invariant estimators of θL.

(b) When c ∈
[
d∗3 ,d

∗
4
]

and 2nβ > p, then the estimators Ψ2c(X1,X2) = cX(1) are admissible within

the class DS of invariant estimators of θS.

Proof. (a) Let us consider the risk function of Ψ1c = cX(2) which is defined as

R(θL,Ψ1c) =Eθ

[(
Ψ1c

θL

)p

− p ln
(

Ψ1c

θL

)
−1
]

=Eθ

[(
cX(2)

θL

)p

− p ln
(

cX(2)

θL

)
−1
]

=cpEθ

[(
X(2)

θL

)p]
− pEθ

[
ln
(

X(2)

θL

)]
− p ln(c)−1.
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For fixed λ , this risk function is a convex function of c, and takes its minimum at c = K(λ ),

where

K(λ ) =

[
E
(

X(2)

θL

)p]− 1
p

.

Using the Lemma (6.3.2), we have obtained

K(λ ) =

[
(nβ )2λ nβ−p

(nβ − p)(2nβ − p)
+

nβ

(nβ − p)
− nβλ nβ

(2nβ − p)

]− 1
p

.

It is to observe that K(λ ) is a continuous function of λ and is a strictly decreasing on (0,1].

Therefore, we have

inf
0<λ≤1

K(λ ) = K(1) =
(
(nβ − p)(2nβ − p)

2(nβ )2

) 1
p

= d∗1 ,

and

sup
0<λ≤1

K(λ ) = lim
λ→0+

K(λ ) =

(
(nβ − p)

nβ

) 1
p

= d∗2 .

It is clear that K(λ ) is continuous function of λ , it follows that K(λ ) assumes all values in the

interval [d∗1 ,d
∗
2). Therefore, any value of c ∈ [d∗1 ,d

∗
2) minimizes the risks function R(θL,Ψ1c),

for some values of 0 ≤ λ < 1, and hence such c corresponds to an admissible estimator. This

shows that the estimators Ψ1c are admissible within the subclass DL, for any c ∈ [d∗1 ,d
∗
2). The

admissibility of the estimator Ψ1d∗2 follows from the continuity of the risks function.

Notice that, for every fixed 0 ≤ λ < 1, the risk function R(θL,Ψ1c) is an increasing function

of c if c > K(λ ) and it is a decreasing function of c if c < K(λ ). Since d∗1 ≤ K(λ ) ≤ d∗2 , ∀
0 < λ ≤ 1, and can drew the conclusion that the estimators Ψ1c = cX(2), within the subclass DL,

for c ∈ (0,d∗1)
⋃
(d∗2 ,∞) are inadmissible in estimating θL, hence complete the proof.

(b) The proof is similar to the proof (a) and therefore is omitted here.

Remark 6.4.2. It follows from Theorem (6.4.1), and under the entropy loss function, i.e., p=−1 and

the estimators Ψ1c(X1,X2) = cX(2), for
(

2(nβ )2

nβ (2nβ+3)+1

)
≤ c≤

(
nβ

nβ+1

)
, are admissible in the class of

linear invariant estimators of θL, and the estimators Ψ2c(X1,X2) = cX(1), for
(

2nβ

2nβ+1

)
≤ c≤

(
nβ

nβ+1

)
are admissible in the class of linear invariant estimators of θS.

Remark 6.4.3. The above theorem basically tells that the natural estimators (GB estimators) ΨGB
L (X1,X2)

= X(2)

(
nβ−p

nβ

) 1
p

and ΨGB
S (X1,X2) = X(1)

(
nβ−p

nβ

) 1
p

of θL and θS are admissible within the class of

linear and invariant estimators DL and DS of θL and θS, respectively.
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6.4.2 Sufficient condition for inadmissibility

In this subsection, for k = 2, we will provide sufficient condition for inadmissibility of selected scale

parameter θS. Consider a general class of scale and permutation invariant estimators for θS, defined

as

DU =
{

Ψφ : Ψφ (X1,X2) = X(1)φ(Y )
}
,

where Y =
X(2)
X(1)

and φ(.) is some real valued function defined on [1,∞). Let T = X2
X1

, then

Ψφ (X1,X2) = X(1)φ(Y ) =


X1φ

(
X2
X1

)
, if X1 < X2,

X2φ

(
X1
X2

)
, if X1 ≥ X2,

=


X1φ (T ) , if T < 1,

X1T φ
( 1

T

)
, if T ≥ 1.

Therefore, Ψφ (X1,X2) = X1ψ(T ), where

ψ(T ) =


φ (T ) , if T < 1,

T φ
( 1

T

)
, if T ≥ 1.

Next, we use the idea of Brewster and Zidek [27] to obtain estimators of the from Ψφ∗ = X(1)φ∗(Y ) =

X1ψ∗(T ), which are dominate the estimators in class DU and Ψφ = X(1)φ(Y ) = X1ψ(T ). The fol-

lowing theorem provides a sufficent condition for inadmissiblity of the estimators Ψφ ∈ DU .

Theorem 6.4.4. Let X1 and X2 be two independent random variables where Xi has a pareto distri-

bution as defined in (6.2). Let Ψφ (X1,X2) = X1ψ(T ) ∈ DU be an invariant of θS. Define

ψ1(T ) =


T
(

2nβ−p
2nβ

) 1
p
, if 0 < T ≤ 1,(

2nβ−p
2nβ

) 1
p
, if T ≥ 1.

and Pθ (ψ(T )> ψ1(T )) > 0,∀θ = (θ1,θ2) ∈ R2
+ = (0,∞)2, then under GSL function the invariant

estimator Ψφ (X1,X2) =X1ψ(T ) is inadmissible for estimating θS and is dominated by Ψφ∗(X1,X2) =

X1ψ∗(T ), where ψ∗(T ) = min(ψ(T ),ψ1(T )).

Proof. Consider the risk difference of the Ψφ and Ψφ∗ is

∆ =R(θS,Ψφ )−R(θS,Ψφ∗)

=Eθ

[(
X1ψ(T )

θS

)p

− p ln
(

X1ψ(T )
θS

)
−1
]
−Eθ

[(
X1ψ∗(T )

θS

)p

− p ln
(

X1ψ∗(T )
θS

)
−1
]

=Eθ

[(
ψ

p(T )−ψ
p
∗ (T )

)(X1

θS

)p

− p ln
(

ψ(T )
ψ∗(T )

)]
=Eθ [Dθ (T )] ,
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where

Dθ (T ) =
(
ψ

p(T )−ψ
p
∗ (T )

)
Eθ

((
X1

θS

)p ∣∣T)− p ln
(

ψ(T )
ψ∗(T )

)
It is easy to find the conditional pdf of X1 given T = X2

X1
= t is given by

fX1|T (x1|t) =


2nβθ

2nβ

2

x2nβ+1
1 t2nβ

, if x1 >
θ2
t , 0 < t < θ2

θ1

2nβθ
2nβ

1

x2nβ+1
1

, if x1 > θ1,
θ2
θ1

< t.
(6.25)

Note that,

Eθ

[(
X1

θS

)p ∣∣T = t
]
=


1

θ
p
2

E
(
X p

1

∣∣T = t
)
, if t ≤ 1

1
θ

p
1

E
(
X p

1

∣∣T = t
)
, if t > 1.

(6.26)

From (6.25), we have

E
(
X p

1

∣∣T = t
)
=


∫

∞
θ2
t

2nβθ
2nβ

2

x2nβ−p+1
1 t2nβ

dx1, if 0 < t < θ2
θ1∫

∞

θ1

2nβθ
2nβ

1

x2nβ−p+1
1

dx1, if t > θ2
θ1
.

=


(

2nβ

2nβ−p

)(
θ2
t

)p
, if 0 < t < θ2

θ1(
2nβ

2nβ−p

)
θ

p
1 , if t > θ2

θ1
.

(6.27)

For θ1 > θ2

(
λ = θ2

θ1
< 1
)

, from (6.26) and (6.27), we conclude that

Eθ

[(
X1

θS

)p ∣∣T = t
]
=



2nβ

(2nβ−p)
1
t p , if 0 < t ≤ λ

2nβ

(2nβ−p)

( 1
λ

)p
, if λ < t ≤ 1

2nβ

(2nβ−p) , if t > 1.

(6.28)

Also note that, for θ1 < θ2

(
λ = θ1

θ2
< 1
)

, from (6.26) and (6.27), we conclude that

Eθ

[(
X1

θS

)p ∣∣T = t
]
=



2nβ

(2nβ−p)
1
t p , if 0 < t ≤ 1

2nβ

(2nβ−p)

( 1
tλ

)p
, if 1 < t ≤ 1

λ

2nβ

(2nβ−p) , if t > 1
λ
.

(6.29)
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In either cases, for p < 0, using (6.28) and (6.29), we get

sup
0<λ≤1

E
((

X1

θS

)p ∣∣∣T = t
)
=



2nβ

(2nβ−p)
1
t p , if 0 < t ≤ 1

2nβ

(2nβ−p) , if t > 1

=
1

ψ
p
1 (t)

. (6.30)

and for p > 0, we get

inf
0<λ≤1

E
((

X1

θS

)p ∣∣∣T = t
)
=



2nβ

(2nβ−p)
1
t p , if 0 < t ≤ 1

2nβ

(2nβ−p) , if t > 1

=
1

ψ
p
1 (t)

. (6.31)

It follows from (6.30) and (6.31) that, if ψ1(T )< ψ(T ) then

Dθ (T ) =
(
ψ

p(T )−ψ
p
∗ (T )

)
Eθ

[(
X1

θS

)p ∣∣T = t
]
− p ln

(
ψ(T )
ψ∗(T )

)
Dθ (T )≥

(
ψ

p(T )−ψ
p
1 (T )

) 1
ψ

p
1 (T )

− p ln
(

ψ(T )
ψ1(T )

)
.

=

(
ψ(T )
ψ1(T )

)p

− p ln
(

ψ(T )
ψ1(T )

)
−1

≥ 0,

with strict inequality holding for some θ = (θ1,θ2) ∈ R2
+.

If ψ1(T )≥ ψ(T ), then Dθ (T )=0. Therefore

R(θS,Ψφ )≥ R(θS,Ψφ∗), for all , θ = (θ1,θ2) ∈ R2
+,

where strict inequality holds for some θ . Hence, this completes the proof.

Corollary 6.4.5. For k = 2, the UMRU estimator ΨU
S (X), under the GSL function, is inadmissible

and dominated by

Ψ
D
S (X) = min

(
X(1)

(
2nβ − p

2nβ

) 1
p

,ΨU
S (XXX)

)
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Proof. Let

ψ(T ) =


T
((

1− p
nβ

)
+ p

nβ
T nβ

) 1
p
, if 0 < t ≤ 1((

1− p
nβ

)
+ p

nβ

1
T nβ

) 1
p
, if t > 1.

(6.32)

Then ΨU
S (XXX) = X(1)

((
1− p

nβ

)
+ p

nβ

(
X(1)
X(2)

)nβ
) 1

p

= X(1)ψ(T ) = Ψφ (X). Now, if (1
2)

1
nβ < T < 1

then T
((

1− p
nβ

)
+ p

nβ
T nβ

) 1
p
> T

(
2nβ−p

2nβ

) 1
p and if 1 < T < 2

1
nβ then

((
1− p

nβ

)
+ p

nβ

1
T nβ

) 1
p
>(

2nβ−p
2nβ

) 1
p . Therefore, from (6.30) and (6.31) and (6.32), P(ψ(T )> ψ1(T ))> 0, and from theorem

6.4.4, ΨU
S (XXX) = Ψφ (X) is inadmissible estimator and is dominated by

Ψ
D
S (XXX) =X1 min(ψ(T ),ψ1(T ))

=


X1 min

(
T
(

2nβ−p
2nβ

) 1
p
,T
((

1− p
nβ

)
+ p

nβ
T nβ

) 1
p
)
, if 0 < t ≤ 1

X1 min
((

2nβ−p
2nβ

) 1
p
,
((

1− p
nβ

)
+ p

nβ

1
T nβ

) 1
p
)
, if t > 1.

=X(1)min

(2nβ − p
2nβ

) 1
p

,

(1− p
nβ

)
+

p
nβ

(
X(1)

X(2)

)nβ
 1

p


=min

(
X(1)

(
2nβ − p

2nβ

) 1
p

,ΨU
S (XXX)

)
.

Thus the proof is completed.

6.5 Results and Discussions

In this chapter, we have considered the problem of estimating the scale parameter of the selected

population from Pareto population with respect to Generalized Stein loss function. Firstly, we have

studied Uniform minimum risk unbiased(UMRU) estimator, Bayes estimator, generalized Bayes es-

timator and limiting generalized estimator and also obtained sufficient conditions for minimaxity of

selected scale parameter from the Pareto population. It is shown that generalized Bayes estimator is

minimax of scale parameter θS for k = 2. we have also obtained some admissible all class of linear

estimators. Under the Generalized Satin loss function, the sufficient condition for inadmissibility of

some scale and permutation invariant estimator of selected scale parameter θS is obtained by Brew-

ster and Zidek [27] technique. It is also found that the UMRU estimator is inadmissible and is a

dominated estimator of θS. It should be noted that for p = 1, the GSL function converts to Stein loss
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function, and in this situation, we have reported the following results

(a)

Ψ
U
L (XXX) = X(k)

1− 1
nβ

k

∑
i=1

(
X(i)

X(k)

)nβ+1


is the UMRU estimator of θL.

(b)

Ψ
U
S (XXX) = X(1)

(1− 1
nβ

)
+

1
nβ

(
X(1)

X(2)

)nβ


is the UMRU estimator of θS.

(c) The natural estimators (generalized Bayes estimators) of θL and θS are given by

Ψ
GB
L (XXX) = X(2)

(
nβ −1

nβ

)
and Ψ

GB
S (XXX) = X(1)

(
nβ −1

nβ

)
respectively, and also noted that Generalized estimator of θS is minimax.

(d) The estimators Ψ1c(X1,X2) = cX(2), for (nβ−1)(2nβ−1)
(2nβ )2 ≤ c≤

(
nβ−1

nβ

)
, are admissible in the class

of linear invariant estimators of θL.

(e) The estimators Ψ1c(X1,X2) = cX(1), for
(

1− 1
2nβ

)
≤ c ≤

(
1− 1

nβ

)
, are admissible in the class

of linear invariant estimators of θS.

(f) For k = 2, the UMRU estimator of θS is inadmissible and dominated by

Ψ
D
S (XXX) = min

(
X(1)

(
2nβ −1

2nβ

)
,ΨU

S (XXX)

)
.

For the future research, one can consider another loss function and study all the results afresh.



Chapter 7

Estimating parameter of the selected

uniform population under the squared log

error loss function

7.1 Introduction

Let Π1, ...,Πk be k(≥ 2) independently and identically distributed uniform populations such that the

observation Xi from population Πi has the probability density function (p.d.f.)

g(x|θi) =


1
θi
, if 0 < x < θi

0, otherwise.
(7.1)

where θi > 0,(i = 1, ...,k) is an unknown scale parameter. The population Πi is called the best

population if θi > θ j, for all i, j, i 6= j i.e., the best population is a population corresponding to the

largest scale parameter θ[k] = max{θ1, ...,θk}. In case of tie, it is assumed that one of the populations

is arbitrarily selected as the best population. Let Xi1, ...,Xini denote a random sample of size ni from

the population Πi, i = {1, ...,k}. Let Xi = max{Xi1, . . . ,Xini}, therefore XXX = (X1, ...,Xk) is a complete

and sufficient statistic for θθθ = (θ1, ...,θk)∈Rk
+; here Rk

+ = {(x1, ...,xk)∈Rk : xi > 0 ∀ i= 1,2, ...,k}
denotes a subset of k− dimensional Euclidean space Rk. Clearly, X1, ...,Xk are independent random

variables and Xi has the following probability density function

fi(x|θi) =


nixni−1

θ
ni
i

, if 0 < x < θi

0, otherwise.
(7.2)

where θi > 0,(i = 1, ...,k) is an unknown scale parameter. It is appropriate to use the complete and

sufficient statistic XXX for selecting the best population, and for estimating parameter of the selected

103
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population. Now, we define a selection rule for selecting the best population. “A non-randomized

selection rule ddd = (d1, ...,dk) is defined on the sample space χ to {0,1}k such that ∑
k
i=1 di(xxx) = 1,

for all xxx ∈ χ”. For a given observation xxx, the selection rule ddd = (d1, ...,dk) selects the population Πi

as the best population if di(xxx) = 1 and d j(xxx) = 0 for j ∈ {1, ...,k}\{i}. For the goal of selecting the

best population, the natural selection rule is dddN(xxx) = (dN
1 ,d

N
2 , ...,d

N
k ), where

dN
i (xxx) =


1, if xi > max

j 6=i
x j

0, otherwise.

It is known that for n1 = n2 = · · · = nk, the natural selection rule dddN(xxx) is minimax under the 0−1

loss function (see Misra and Dhariyal [83]). Misra and Dhariyal [83] that have shown if the sample

sizes are unequal, then the natural selection rule dddN(xxx) is no longer minimax under the 0-1 loss

function, and has many undesirable properties. The problem of selecting the best population was

studied by Bechhofer [23], employing the indifference zone approach by Robbins [108, 109] using

empirical Bayes approach while by Gupta [47, 48] employing the subset selection approach. These

methodologies have been developed by many statisticians, one may refer to Gupta and Hsu [49],

Huang and Lai [59], Misra et al. [85] and Golparvar and Parsian [44]. Golparvar and Parsian[44]

developed empirical Bayes procedure for identifying the best exponential population under Type-II

progressive censored data. Recently, Arshad and Misra [13] have proposed a class C of selection

rules for selecting the best population when sample sizes are unequal. The form of the selection rule

is dddaaa(XXX) = (daaa
1 , ...,d

aaa
k ), where

daaa
i (XXX) =


1, if aiXi > max

j 6=i
a jX j

0, otherwise.
(7.3)

and aaa = (a1, ...,ak) ∈ Rk
+. For k = 2 and n1 6= n2, it follows from Arshad and Misra [11] that the

selection rule ddda∗ = (da∗
1 ,da∗

2 ), where

da∗
1 (XXX) =


1, if X1 > a∗X2

0, if X1 ≤ a∗X2.

; da∗
2 (XXX) =


1, if X1 ≤ a∗X2

0, if X1 > a∗X2.

and

a∗ ≡ a∗(n1,n2) =


(

n1+n2
2n2

) 1
n1 , if n1 ≤ n2(

2n1
n1+n2

) 1
n2 , if n1 > n2,

is generalized Bayes rule, admissible and minimax under the 0− 1 loss function. For selecting the

best population, we use a fixed selection rule dddaaa ∈C, defined in Eq. (7.3). Then, the scale parameter



105

θL of the selected population is given by

θL =
k

∑
i=1

θidddaaa
i (XXX).

For i = 1, ...,k, let Ai =
{

xxx ∈ χ : aixi > a jx j ∀ j 6= i, j = 1,2, ...,k
}

and let IA(.) be an indicator func-

tion of the set A. The scale parameter θL can be written as

θL =
k

∑
i=1

θiIAi(XXX). (7.4)

Most of the works have been done to construct a good estimator of scale parameters of se-

lected uniform populations under the various loss functions. For example, Vellaisamy et al. [130]

proved that the natural estimator is positively biased and inadmissible. They obtained the uniformly

minimum variance unbiased (UMVU) estimator and a generalized Bayes estimator of mean of the

selected population, when the sample sizes are equal. For k = 2, the UMVU estimator has been

improved under the squared error and scale-invariant squared error loss functions. Song [121] ex-

tended their results to k uniform population. Nematollahi and Motamed-Shariati [102] obtained the

uniformly minimum risk unbiased (UMRU) estimator under the entropy loss function. They shown

that the UMRU estimator is inadmissible and generalized Bayes estimator is minimax. Arshad and

Misra [13] extended the results of Vellaisamy et al. [130] and Song [121] by considering the prob-

lem of estimating the scale parameter of selected uniform population when sample sizes are unequal.

They derived UMVU estimator and a general result for improving a scale invariant estimator of se-

lected population under the scale invariant scale squared error loss function. They showed that a

subclass of natural estimators is inadmissible under the scaled-squared error loss function. Arshad

and Misra [12] obtained the uniformly minimum risk unbiased (UMRU) estimator under the en-

tropy loss function and also derived some inadmissible results for scale parameter of the selected

population. Mohammadi [92] obtained the UMRU estimator under the squared log error (SLE) loss

function, which is proposed by Brown [28] and is given by

L(g(θ),Ψ) = [ln(Ψ)− ln(g(θ))]2 =
[

ln
(

Ψ

g(θ)

)]2

, θθθ ∈Ω,Ψ ∈ C, (7.5)

where C denotes the class of all estimators of g(θ) which is some function of parameter θ . This loss

function is convex when Ψ

g(θ) ≤ e and concave otherwise, and has unique minimum at g(θ) = Ψ. The

SLE loss function is useful in situations where underestimation appears to have more significance

than overestimation. Mohammadi [92] also studied a class of linear estimators of scale parameter of

selected uniform population. Nematollahi [99] studied the problem of estimating the scale parameter

of selected Pareto population under the SLE loss function. They derived the UMRU estimator under

the SLE loss function. For k = 2, the minimaxity and inadmissibility of the UMRU estimator have
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been shown. It is worth to mention that the works of Mohammadi [92] and Nematollahi [99] have

done under the SLE loss function and in case of equal sample sizes. In this chapter, we address

the problem of estimating scale parameter of the selected uniform population, under the SLE loss

function, in case of unequal sample sizes.

For the component problem, the maximum likelihood estimator (MLE) and the UMRU esti-

mator under the SLE loss function of θi are Xi and e
1
ni Xi,(i = 1, ...,k), respectively. Consider two

natural estimators of the θL based on the these estimators, (under the SLE loss function) are given by

ΨN,1(XXX) =
k

∑
i=1

XiIAi(XXX), and ΨN,2(XXX) =
k

∑
i=1

e
1
ni XiIAi(XXX). (7.6)

In Section 7.2, we determine the UMRU estimator of θL under the SLE loss function. In Sec-

tion 7.3, we derive a sufficient condition for inadmissibility of scale parameter θL under the SLE

loss function and also shown that the natural estimator ΨN,1 and the UMRU estimator are inadmis-

sible for estimating θL. In Section 7.4, we provide some results for estimating scale parameter of

the selected uniform population when the goal of selection is to select a population associated with

the smallest scale parameter. A simulation study on performance of various competing estimators is

provided in section 7.5.

7.2 UMRU Estimator

In this section, we study uniformly minimum risk unbiased estimator of θL under the SLE loss

function (7.5). We first obtain the conditions for the risk-unbiased estimator under the SLE loss

function. The definition 6.2.1 is used to find the condition of the risk-unbiased estimator.

Using the Definition 6.2.1 and the SLE loss function (7.5), an estimator Ψ(XXX) is a risk-

unbiased estimator of the parameter g(θθθ), if it satisfies the following condition

Eθθθ [ln(Ψ(XXX))] = ln(g(θθθ)) , for all θθθ . (7.7)

Since θL depends on X1, ...,Xk, the modification to risk unbiased condition (7.7) is required. Follow-

ing Nematollahi and Jafari Jozani [100], the condition for the risk-unbiased estimator of θL is given

by

Eθθθ [ln(Ψ(xxx))] = Eθθθ [ln(θL)] , for all θθθ .

To find the UMRU estimator of θL, we use the following lemma given in Nematollahi and Jafari

Jozani [100].

Lemma 7.2.1. Suppose X1, ...,Xk be k independent random variables such that Xi has p.d.f. (7.2).

Let U1(XXX), ...,Uk(XXX) are k real valued functions on Rk
+ such that
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(i) Eθθθ [| ln(Xi)Ui(XXX)|]< ∞, for all θθθ ∈Ω, i = 1, ...,k.

(ii)
∫ xi

0 ln(xi)Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt < ∞, for all xxx ∈ Rk
+, i = 1, ...,k.

(iii) limxi→0
[
ln(xi)

∫ xi
0 Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt

]
= 0, for all xxx ∈ Rk

+, j 6= i, i = 1, ...,k.

Then, define the function Vi(XXX) such that

Vi(XXX) = ln(Xi)Ui(XXX)+
1

xni
i

∫ xi

0
Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt,

satisfy

Eθθθ

[
k

∑
i=1

Vi(XXX)

]
= Eθθθ

[
k

∑
i=1

ln(θi)Ui(XXX)

]
.

Theorem 7.2.2. Under the SLE loss given in (7.5), the uniformly minimum risk unbiased estimator

of the scale parameter θL of the selected population is given by

Ψ
L
U(XXX) = exp

 k

∑
i

ln(Xi)+
1
ni

1−

max
j 6=i

a jX j

aiXi

ni

 IAi(XXX)

. (7.8)

Proof. For i = 1, ...,k, let Vi(XXX) be a function defined on the sample space χ such that E [Vi(XXX)] =

E [ln(θi)IAi(XXX)].

Using Lemma 7.2.1, for i = 1, ...,k, we have

Vi(XXX) = ln(Xi)IAi(XXX)+
1

Xni
i

∫ Xi

0
IAi(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt

= ln(Xi)IAi(XXX)+
1

Xni
i

∫ Xi

max
j 6=i

a jX j
ai

tni−1dtIAi(XXX)

= ln(Xi)IAi(XXX)+
1
ni

1−

max
j 6=i

a jX j

aiXi

ni
 IAi(XXX)

=

ln(Xi)+
1
ni

1−

max
j 6=i

a jX j

aiXi

ni

 IAi(XXX).

Clearly,

ln
[
Ψ

L
U(XXX)

]
=

k

∑
i=1

Vi(XXX).

It follows that

Eθθθ

[
ln
(
Ψ

L
U(XXX)

)]
= Eθθθ

[
k

∑
i=1

Vi(XXX)

]

=
k

∑
i=1

Eθθθ [ln(θi)IAi(XXX)]

= Eθθθ [ln(θL)] .
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Hence, the estimator ΨL
U(XXX) is a risk unbiased estimator of θL.

Remark 7.2.3. Let X[1] ≤ ·· · ≤ X[k] denote the ordered values of random variable X1,X2, ...,Xk. For

a1 = a2 = · · · = ak = 1, and n1 = n2 = · · · = nk = n (say), it follows from Theorem 7.2.2 that the

UMRU estimator of scale parameter θL is given by

Ψ
L
U(XXX) = X(k)e

1
n

{
1−
(

X(k−1)
X(k)

)n}
.

This UMRU estimator depends only on two largest order statistics. This result is due to Mohammadi

[92] and also reported by Nematollahi [99].

7.3 Inadmissibility results for scale invariant estimators

In this section, for the case of k = 2 uniform populations, we will provide some sufficient conditions

for inadmissability of a scale invariant estimator of scale parameter θL under the SLE loss function

(7.5).

Definition 7.3.1. An estimator Ψ(X1,X2) of the scale parameter θL of the selected population is

scale-invariant if

Ψ(cX1,cX2) = cΨ(X1,X2) for all c > 0.

Let c = 1
X1

and let Y = X2
X1

. Then an invariant estimator Ψ(X1,X2) of θL can be written as

Ψ(X1,X2) = X1ψ(Y ),

where ψ(.) is a real valued function defined on R+. Now, we consider a general class DL =

{Ψψ : Ψψ(X1,X2) = X1ψ(Y )} of scale invariant estimators of θL. The following theorem provides

a sufficient condition for inadmissible of an estimator of θL under the SLE loss function for selected

populations.

Theorem 7.3.1. Suppose Ψψ(X1,X2) = X1ψ(Y ) ∈ DL is a scale-invariant estimator of θL, where

Y = X2
X1

and ψ(.) is a function defined on R+. Define the function ψ1 on R+ as

ψ1(Y ) =


e

1
n1+n2 , if 0 < Y < a

Ye
1

n1+n2 , if Y ≥ a.

where a = a1
a2

. If Pθθθ (ψ1(Y )> ψ(Y )) ≥ 0 for all θθθ = (θ1,θ2) ∈ R2
+, with strict inequality hold for

some θθθ ∈ R2
+. Then, under SLE loss function, the estimator Ψψ is inadmissible for estimating θL
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and is dominated by estimator Ψψ∗(X1,X2) = X1ψ∗(Y ), where

ψ∗(Y ) =


ψ1(Y ), if ψ(Y )≤ ψ1(Y )

ψ(Y ), if ψ(Y )> ψ1(Y ).
(7.9)

Proof. Consider the risk-difference of two estimators Ψψ and Ψψ∗

∆ = R(θθθ ,Ψψ)−R(θθθ ,Ψψ∗)

= Eθθθ

[
ln
(

X1ψ(Y )
θL

)]2

−Eθθθ

[
ln
(

X1ψ∗(Y )
θL

)]2

= Eθθθ [Dθθθ (Y )] ,

where, for y ∈ R+ and θ ∈ R2
+,

Dθθθ (y) =
[

ln
(

ψ(y)
ψ∗(y)

)][
2E
(

ln
(

X1

θL

)∣∣∣Y = y
)
+ ln(ψ(y)ψ∗(y))

]
. (7.10)

The conditional p.d.f. of X1, given Y = y, is given by

fX1|Y (x1|y) =


n1+n2

θ
n1+n2
1

xn1+n2−1
1 , if 0 < x1 < θ1, y < θ2

θ1

n1+n2

θ
n1+n2
2

yn1+n2xn1+n2−1
1 , if 0 < x1 <

θ2
y ,y≥

θ2
θ1

Let λ = θ2
θ1

, and let a = a1
a2

. In calculation of E
(

ln
(

X1
θL

)∣∣∣Y = y
)

, the following two cases arise:

Case-I: when y < a

E
(

ln
(

X1

θL

)∣∣∣Y = y
)
=


− 1

n1+n2
, if y < λ

ln(λ )− ln(y)− 1
n1+n2

, if y≥ λ .

Case-II: when y≥ a

E
(

ln
(

X1

θL

)∣∣∣Y = y
)
=


− 1

n1+n2
− ln(λ ), if y < λ

− ln(y)− 1
n1+n2

, if y≥ λ .

It follows from Case-I and Case-II that, for λ < a

E
(

ln
(

X1

θL

)∣∣∣Y = y
)
=


− 1

n1+n2
, if 0 < y < λ

ln(λ )− ln(y)− 1
n1+n2

, if λ ≤ y < a

− ln(y)− 1
n1+n2

, if 0 < a≤ y,

(7.11)
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and, for λ ≥ a

E
(

ln
(

X1

θL

)∣∣∣Y = y
)
=


− 1

n1+n2
, if 0 < y < a

− ln(λ )− 1
n1+n2

, if a≤ y < λ

− ln(y)− 1
n1+n2

, if 0 < λ ≤ y.

(7.12)

Now, using (7.11) and (7.12), we get

sup
λ∈(0,∞)

E
(

ln
(

X1

θL

)∣∣∣Y = y
)
=


− 1

n1+n2
, if 0 < y < a

− ln(y)− 1
n1+n2

, if a≤ y

=− ln(ψ1(y)). (7.13)

It follows from (7.9) and (7.10) that, if ψ1(y)≥ ψ(y) then

Dθθθ (y) =
[

ln
(

ψ(y)
ψ1(y)

)][
2Eθθθ

(
ln
(

X1

θL

)∣∣∣Y = y
)
+ ln(ψ(Y )ψ1(Y ))

]
≥
[

ln
(

ψ(y)
ψ1(y)

)]
[−2ln(ψ1(y))+ ln(ψ(y))+ ln(ψ1(y))]

=

[
ln
(

ψ(y)
ψ1(y)

)]2

≥ 0,

where strict inequality holds for some θθθ ∈ R2
+.

If ψ1(y)< ψ(y), then Dθθθ (y)=0. Therefore

R(θθθ ,Ψψ)≥ R(θθθ ,Ψψ∗), for all , θθθ ∈ R2
+,

where strict inequality holds for some θ . Hence, this complete the proof.

Corollary 7.3.2. For k = 2, under the SLE loss function (7.5), the UMRU estimator ΨU
L (X) is in-

admissible for estimating scale parameter θL of selected population and is dominated by ΨIU
L (X) =

X1 max{ψU(y),ψ1(y)}, where

ψ
U(y) =


e

1
n1
[1−( y

a )
n1], if 0 < y < a

ye
1

n2
[1−( a

y )
n2 ]
, if y≥ a.



111

and ψ1(y) is defined in Theorem 7.3.1.

Corollary 7.3.3. For k = 2, under the SLE loss function (7.5), the natural estimator ΨN,1(XXX), given

in (7.6), is inadmissible and is dominated by

Ψ
I
N,1(XXX) = e

1
n1+n2 ΨN,1(XXX).

Remark 7.3.4. For k = 2,n1 = n2 = n and a1 = a2 = 1, it follows from Corollary 7.3.2 that the

UMRU estimator of θL is inadmissible under the SLE loss function (7.5). This result is due to

Nematollahi [99]. Thus, Corollary 7.3.2 generalizes their result.

Remark 7.3.5. For k = 2, n1 = n2 = n and a1 = a2 = 1, it follows from Corollary 7.3.3 that the

natural estimator ΨN,1, corresponding to the largest MLE, of θL is inadmissible under SLE loss

function. This results is also reported in Nematollahi [99].

Theorem 7.3.6. Let c1 and c2 be two possible constants and let ccc = (c1,c2). Consider the natural

estimators

Ψccc(X1,X2) =

c1X1, if X ∈ A1

c2X2, if X ∈ A2.

Assume that ci ∈ (0,e
1

n1+n2 )
⋃
(e

1
ni ,∞), for i = 1,2. Then, the estimators Ψc are inadmissible under

the SLE loss function.

Proof. It is easy to see that the sufficient condition for inadmissibility given in Theorem 7.3.1 is

satisfied by the estimators Ψc, if ci ∈ (0,e
1

n1+n2 ), i = 1,2. Thus, it follows from Theorem 7.3.1 that

the estimators Ψc are inadmissible and are dominated by

Ψ
∗
ccc(XXX) =

e
1

n1+n2 X1, if X ∈ A1

e
1

n1+n2 X2, if X ∈ A2.

Further, assume that ci ∈ (e
1
ni ,∞) for i = 1,2. Note that the risk function of the estimator Ψc is a

function of λ = θ2
θ1
∈ (0,∞). The risk function of Ψc is given by

R(λ ,Ψc) = Eθθθ

[
ln
(

Ψc

θL

)]2

=
2

∑
j=1

R j(λ ,c j) (say),
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where

R j(λ ,c j) = Eθθθ

[(
ln
(

c jX j

θ j

)
IA j(X)

)2
]
, j = 1,2.

For a fixed λ ∈ (0,∞) and fixed ∈ {1,2}, R j(λ ,c j) takes its minimum at c∗j(λ ) = e−K j(λ ),

where

K j(λ ) =
E
(

ln(X1
θ j
)IA j(XXX)

)
E
(
IA j(XXX)

) , j = 1,2.

Using the p.d.f. of X j, given in (7.2), we get

K1(λ ) =


( λ

a )
n1
[

1
n1
−
(

n2
n1+n2

)
ln( λ

a )−
n1

(n1+n2)
2

]
− 1

n1

1−
(

n2
n1+n2

)
( λ

a )
n1

, if λ < a

− 1
(n1+n2)

, if λ ≥ a.

and

K2(λ ) =


( a

λ
)

n2
[

1
n2
−
(

n1
n1+n2

)
ln( a

λ
)− n2

(n1+n2)
2

]
− 1

n2

1−
(

n1
n1+n2

)
( a

λ
)

n2
, if λ ≥ a

− 1
(n1+n2)

, if λ < a.

It is easy to check that K1(λ ) and K2(λ ) are continuous and non-decreasing function of λ ∈ (0,∞).

Therefore, c∗1(λ ) and c∗2(λ ) are non-increasing functions of λ , and sup
λ∈(0,∞)

c∗1(λ )= e
1

n1 and sup
λ∈(0,∞)

c∗2(λ )=

e
1

n2 . Note that, for fixed λ ∈ (0,∞) and fixed j = {1,2}, R j(λ ,c) is a decreasing function of c∈ (0,c∗j)

and is an increasing function of c ∈ [c∗j ,∞) with c∗j ≤ e
1

n j . Therefore, for c j ≥ e
1

n j ,

R j(λ ,c j)> R j(λ ,e
1

n j ) ∀λ ∈ (0,∞)

This implies that

R(λ ,Ψc) =
2

∑
j=1

R j(λ ,c j)

>
2

∑
j=1

R j(λ ,e
1

n j )

= R(λ ,Ψd) ∀ λ ∈ (0,∞),

where

Ψddd(X1,X2) =

e
1

n1 X1, if X ∈ A1

e
1

n2 X2, if X ∈ A2.
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Hence the results follows.

Note: The choices of ci’s are arbitrary, so any value of ci in the interval (0,∞) correspond to an

estimator. It follows from the Theorem 7.3.6 that ci ∈
[

e
1

(n1+n2) ,e
1
ni

]
minimizes the risk function

R(λ ,Ψc) for some values of λ > 0. Therefore, under the SLE loss function, ci ∈
[

e
1

(n1+n2) ,e
1
ni

]
correspond to an admissible estimator within a class of linear estimators.

7.4 Results for the worst uniform population

In this section, we consider the problem of estimating the scale parameter of the selected uniform

population when the selection good is to select a population associated with the smallest scale pa-

rameter θ[1] = min{θ1, ...,θk}. We call the population associated with θ[1], the worst population. For

selecting the worst population, we consider a class D= {dddaaa : dddaaa = (daaa
1 , ...,d

aaa
k ),aaa ∈ Rk

+} of selection

rules, where

da
i (X) =


1, if biXi < min

j 6=i
b jX j

0, if biXi ≥min
j 6=i

b jX j,

and bbb = (b1, ...,bk). We estimate the scale parameter associated with the population selected by the

selection rule dddaaa ∈ D. Thus the scale parameter of the selected population is given by

θS =
k

∑
i=1

θiIBi(XXX),

where Bi = {xxx ∈ Rk
+ : bixi < b jx j,∀ j 6= i, j = 1, ...,k}, i = 1, ...,k.

Based on the MLE, a natural estimator of θS is given by

Ψ
S
N,1(XXX) =

k

∑
i=1

XiIBi(XXX). (7.14)

Similarly, another natural estimator of θS based on the UMRU estimator, under the SLE loss function

of θi, in component estimation problem, is given by

Ψ
S
N,2(XXX) =

k

∑
i=1

e
1
ni XiIBi(XXX). (7.15)

Now we will provide some results (without proofs) similar to the results derived in the above

section 7.2, and section 7.3. The following theorem is an analog of Theorem 7.2.2.

Theorem 7.4.1. Under the SLE loss function, the uniformly minimum risk unbiased estimator of the

scale parameter θS of the selected population is given by

Ψ
S
U(XXX) = exp

 k

∑
i=1

ln(Xi)IBi(XXX)+
1
ni

min

1,
min
j 6=i

a jX j

aiXi


ni

 . (7.16)
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Remark 7.4.2. Let X[1] ≤ ·· · ≤ X[k] denote the ordered values of random variables X1,X2, ...,Xk. For

a1 = a2 = · · · = ak = 1, and n1 = n2 = · · · = nk = n, it follows from Theorem 7.4.1 that the UMRU

estimator of scale parameter θS is given by

Ψ
S
U(XXX) = X(1)e

1
n ∑

k
i=1

(
X(1)
X(i)

)n

. (7.17)

This result is due to Nematollahi [99]. Thus, Theorem 7.4.1 generalizes their results.

The following theorem is an analogs of Theorem 7.3.1.

Theorem 7.4.3. Let Ψψ(X1,X2) = X1ψ(Y ) be a given scale-invariant estimator of scale parameter

of θS, where Y = X2
X1

and ψ(.) is a real -valued function defined on (0,∞). Define

ψ2(Y ) =


Ye

1
n1+n2 , if 0 < Y < b

e
1

n1+n2 , if Y ≥ b,

where b = b1
b2

. If Pθθθ (ψ(Y )< ψ2(Y )) ≥ 0 for all θθθ = (θ1,θ2) ∈ R2
+, with strictly inequality hold for

same θθθ ∈ R2
+. Then, under SLE loss function the scale-invariant estimator Ψψ is inadmissible for

estimation θS and is dominated by estimator Ψψ∗(X1,X2) = X1ψ∗(Y ) where

ψ∗(Y ) =


ψ2(Y ), if ψ(Y )≤ ψ2(Y )

ψ(Y ), if ψ(Y )> ψ2(Y ).
(7.18)

Corollary 7.4.4. For k = 2, under the SLE loss function (7.5), the natural estimator ΨS
N,1(XXX), given

in (7.14), is inadmissible and is dominated by

Ψ
IS
N,1(XXX) = e

1
n1+n2 Ψ

S
N,1(XXX). (7.19)

Remark 7.4.5. For k = 2, a1 = a2 = 1, and n1 = n2 = n, it follows from Corollary 7.4.4 that the

natural estimator ΨN,1, corresponding to the smallest MLE, of θS is inadmissible under the SLE loss

function.

7.5 Numerical Comparison

In this section, for k = 2, we compare the performances of UMRU estimator ΨU
L (XXX), the improved

estimator ΨUI
L (XXX) upon the UMRU estimator, natural estimators ΨN,1, ΨN,2 and the improved esti-

mator ΨI
N,1 upon natural estimator ΨN,1 of scale parameter θL of selected uniform population. For

the goal of selecting the best uniform population, we consider the minimax selection rule ddda∗ , where
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a∗ = a∗(n1,n2) defined in Section 7.1. It is easy to see that the minimax selection rule ddda∗ is not

same for different configurations of (n1,n2). We compare the risk functions of the five competing

estimators of θL for different values of λ = θ2
θ1

and different configurations of sample sizes. For nota-

tional convenience, let R1(λ )=R(λ ,ΨU
L (XXX)), R2(λ )=R(λ ,ΨUI

L (XXX)),R3(λ )=R(λ ,ΨN,1),R4(λ )=

R(λ ,ΨI
N,1) and R5(λ ) = R(λ ,ΨN,2) represent the risk functions of the various estimators. The risk

functions of these estimator are plotted for (n1,n2) ∈ {(2,3),(3,2),(4,5),(5,4)}. We observed from

the figures 7.1-7.4 that the the natural estimator ΨN,1 is dominated by all other estimators except

the natural estimator ΨN,2. The improved estimator ΨI
N,1 provide significant improvement over the

natural estimator ΨN,1. The improved estimator ΨUI
L provide marginal improvement over the UMRU

estimator ΨU
L . The performance of the improved estimator ΨI

N,1 is satisfactory and hence the im-

proved estimator ΨI
N,1 is recommended for practical applications.
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Figure 7.1: Risk performances of different estimators for (n1,n2) = (2,3).
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Figure 7.2: Risk performances of different estimators for (n1,n2) = (3,2).
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Figure 7.3: Risk performances of different estimators for (n1,n2) = (4,5).
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Figure 7.4: Risk performances of different estimators for (n1,n2) = (5,4).



Chapter 8

Estimating Parameter of the Selected

Uniform Population Under the Generalized

Stein Loss Function

8.1 Introduction

Let Xi1,Xi2, ...,Xini be independent random sample of size ni from the population Πi (i = 1,2 . . . ,k)

which are individually uniformly distributed over the interval (0,θi) with unknown scale parameter

θi > 0. Let Xi = max{Xi1, ...,Xini}, therefore XXX = (X1, ...,Xk) is a complete and sufficient statistic for

θθθ = (θ1, ...,θk) ∈ Rk
+; here Rk

+ = {(x1, ...,xk) ∈ Rk : xi > 0 ∀ i = 1,2, ...,k} denotes a subset of k−
dimensional Euclidean space Rk. Let X1, ...,Xk denote independent random variables and Xi has the

following probability density function

fi(x|θi) =


nixni−1

θ
ni
i

, if 0 < x < θi

0, otherwise.
(8.1)

where θi > 0,(i = 1, ...,k) are an unknown scale parameter. Then it may be interest to identify the

best populations. The population Πi is called the best population if θi > θ j, for all i, j, i 6= j i.e.,

the best population is a population associated with the largest scale parameter θ[k] = max{θ1, ...,θk}.
If more than one of the θi are tied at the largest value, it is assumed that one of the populations is

arbitrarily tagged as the best population.

According to Arshad and Misra [9] the natural selection rule for the goal of selecting the best

population is δδδ N(xxx) = (δ N
1 ,δ N

2 , ...,δ N
k ), where

117
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δ
N
i (xxx) =


1, if xi > max

j 6=i
x j

0, otherwise.

For samples of equal sizes i.e. n1 = n2 = · · · = nk, the natural selection rule δδδ N(xxx) is known to be

minimax under the 0−1 loss function (Misra and Dhariyal [83]). It follows from Misra and Dhariyal

[83] that if the sample sizes are unequal, then the natural selection rule δδδ N(xxx) is no longer minimax

under the 0-1 loss function, and has many undesirable properties. Recently, Arshad and Misra [9]

proposed a class C of selection rules for selecting the best population when sample sizes are unequal.

The from of the selection rule is δδδaaa(XXX) = (δaaa
1 , ...,δ

aaa
k ), where

δ
aaa
i (XXX) =


1, if aiXi > max

j 6=i
a jX j

0, otherwise.
(8.2)

and aaa = (a1, ...,ak) ∈ Rk
+. For k = 2 and n1 6= n2, it follows from Arshad and Misra [11] that the

selection rule δδδ a∗ = (δ a∗
1 ,δ a∗

2 ), where

δ
a∗
1 (XXX) =


1, if X1 > a∗X2

0, if X1 ≤ a∗X2.

;δ
a∗
2 (XXX) =


1, if X1 ≤ a∗X2

0, if X1 > a∗X2.

and

a∗ ≡ a∗(n1,n2) =


(

n1+n2
2n2

) 1
n1 , if n1 ≤ n2(

2n1
n1+n2

) 1
n2 , if n1 > n2,

and it is admissible and minimax under the 0− 1 loss function, and it is a generalized Bayes rule

with respect to non-informative prior.

In this chapter, we consider the problem of estimating the scale parameter θL associated with

the population selected by a selection rule δδδaaa given in (8.2). Let Ai =
{

xxx ∈ χ : aixi > a jx j ∀ j 6= i, j =

1,2, ...,k} and let IA(.) be the partition of sample space χ . Then scale parameter θL can be given by

θL =
k

∑
i=1

θiIAi(XXX). (8.3)

where IA(.) denotes the indicator function of the set A. Arshad and Misra [12] obtained the uni-

formly minimum risk unbiased (UMRU) estimator under the entropy loss function and also derived

some inadmissible results for scale parameter of the selected population. Pagheh and Nematollahi
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[103] obtained the UMRU estimator and also derived some inadmissible estimates for scale param-

eter of selected papulation, under the Generalized Stein (GSL) Loss function, which is given by

L(g(θ),ξ ) =
(

ξ

θ

)q

−q ln
(

ξ

θ

)
−1, θθθ ∈Ω,ξ ∈ C,q 6= 0, (8.4)

where C denotes the class of all estimators of g(θ) and g(θ) is some function of parameter θ . This

loss function is asymmetric and convex when ∆ = ξ

g(θ) and quasi concave otherwise, but its risk

function has unique minimum at ∆ = 1. Being scale invariant, the GSL function is suitable for

estimating a scale parameter. Further, it is useful where under estimation and over estimation are

assigned unequal penalties. In upcoming discussion, we exploit this property of GSL to estimate the

parameter of the selected uniform distribution from samples of unequal sizes.

For the component problem, we define two natural estimators of θL based on the maximum

likelihood estimator (MLE) and the UMRU estimator, under the GSL function of θi as Xi and(
ni+q

ni

) 1
q

Xi,(i = 1, ...,k), respectively. Therefore one may consider natural estimators of the θL of

the selected population as:

ξN,1(XXX) =
k

∑
i=1

XiIAi(XXX),and ξN,2(XXX) =
k

∑
i=1

(
ni +q

ni

) 1
q

XiIAi(XXX). (8.5)

The rest of this chapter is arranged as follows. In Section 8.2, we determine the UMRU and

prove that the natural estimator ξN,2(XXX) is the generalized Bayes estimator of θL under the GSL

function. In Section 8.3, we derive a sufficient condition for inadmissibility of scale parameter θL

under the GSL loss function and also show that the natural estimator ξN,1 and the UMRU estimator

are inadmissible for estimating θL. In Section 8.4, we conducted a simulation study on performance

of various competing estimators is provided. Finally some results and discussions are reported in

section 8.5.

8.2 UMRU Estimator and Generalized Bayes Estimator

In this section, we discuss the general form of uniformly minimum risk unbiased estimator of θL,

under the GSL function (8.4). We first introduce the concept of risk-unbiased estimator to our prob-

lem of estimating scale parameter θL under the GSL function. The definition given by Lehmann [71]

and presented in 6.2.1 is a key in obtaining the condition of risk-unbiased estimator of θL.

Using this Definition and the GSL function (8.4), an estimator ξ (XXX) is a risk-unbiased estima-

tor of the parameter g(θθθ), if it satisfies the following condition

Eθθθ [ξ
q(XXX)] = gq(θθθ), for all θθθ . (8.6)
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Since θL depends on X1, ...,Xk, the modification to risk unbiased condition (8.6) is required. Follow-

ing Nematollahi and Jafari Jozani [100], the condition for the risk-unbiased estimator of θL is given

by

Eθθθ [ξ
q(xxx)] = Eθθθ

[
θ

q
L
]

for all θθθ .

To find the UMRU estimator of θL, the following lemma is an application of the (u,v) method of

Robbins(1988) which is given in Nematollahi and Jafari Jozani [100].

Lemma 8.2.1. Suppose X1, ...,Xk be k independent random variables, where Xi has a probability

density function as given in (8.2). Let U1(XXX), ...,Uk(XXX) be k real valued functions on Rk
+ such that

(i) Eθθθ

[
|Xq

i Ui(XXX)|
]
< ∞, for all θθθ ∈Ω, i = 1, ...,k.

(ii)
∫ xi

0 xq
i Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt < ∞, for all xxx ∈ Rk

+, i = 1, ...,k.

(iii) limxi→0
[
xq

i
∫ xi

0 Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt
]
= 0, for all xxx ∈ Rk

+, j 6= i, i = 1, ...,k.

Then, the function Vi(XXX) defined as

Vi(XXX) = Xq
i Ui(XXX)+qxq−ni

i

∫ xi

0
Ui(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt,

satisfies

Eθθθ

[
k

∑
i=1

Vi(XXX)

]
= Eθθθ

[
k

∑
i=1

θ
q
i Ui(XXX)

]
.

Now, we propose and derive the UMRU estimator of θS under the Generalized Stein loss

function.

Theorem 8.2.2. Consider the GSL function, as defined in (8.4), then the uniformly minimum risk

unbiased estimator of the scale parameter θL of the selected population is given by

ξU(XXX) =
k

∑
i=1

Xi

1+
q
ni

1−

max
j 6=i

a jX j

aiXi

ni



1
q

IAi(XXX). (8.7)

Proof. For i = 1, ...,k, let Vi(XXX) be a function defined on the sample space χ such that E [Vi(XXX)] =

E
[
θ

q
i IAi(XXX)

]
.
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Using Lemma 8.2.1, for i = 1, ...,k, we have

Vi(XXX) = Xq
i IAi(XXX)+qXq−ni

i

∫ xi

0
IAi(x1, ...,xi−1, t,xi+1, ...,xk)tni−1dt

= Xq
i IAi(XXX)+qXq−ni

i

∫ Xi

max
j 6=i

a jX j
ai

tni−1dtIAi(XXX)

= Xq
i IAi(XXX)+

qXq
i

ni

1−

max
j 6=i

a jX j

aiXi

ni
 IAi(XXX)

= Xq
i

1+
q
ni

1−

max
j 6=i

a jX j

aiXi

ni

 IAi(XXX).

Clearly,

[
ξ

q
U(XXX)

]
=

k

∑
i=1

Vi(XXX).

It follows that

Eθθθ

[(
ξ

q
U(XXX)

)]
= Eθθθ

[
k

∑
i=1

Vi(XXX)

]

=
k

∑
i=1

Eθθθ

[
θ

q
i IAi(XXX)

]
= Eθθθ

[
θ

q
L
]
.

Since XXX = (X1, ...,Xk) is a complete and sufficient statistics. Hence, the estimator ξU(XXX) is a risk

unbiased estimator of θL.

Remark 8.2.3. Let X[1] ≤ ·· · ≤ X[k] denote the ordered values of random variables X1,X2, ...,Xk. For

a1 = a2 = · · · = ak = 1, and n1 = n2 = · · · = nk = n (say), it follows from Theorem 8.2.2 that the

UMRU estimator of scale parameter θL is given by

ξU(XXX) = X[k]

[
1+

q
n

{
1−

(
X[k−1]

X[k]

)n}] 1
q

.

This UMRU estimator depends only on two largest order statistics. This result is due to Pagheh and

Nematollahi [103].

Remark 8.2.4. Arshad and Misra [12] obtained UMRU estimator of θL under the entropy loss

function. Their result can be obtained from (8.7) by taking q =−1, i.e.,

ξU(XXX) =
k

∑
i=1

niXi[
(ni−1)+

(max
j 6=i

a jX j

aiXi

)ni]IAi(XXX). (8.8)
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In the following proposed theorem by us, we obtain the generalized Bayes estimators of θL

under the Generalized Stein loss function given in Eq. (8.4).

Theorem 8.2.5. Consider the GSL function (8.4), then the natural estimator ξN,2(XXX) is the general-

ized Bayes estimator of θL, with respect to the noninformative prior distribution

πθθθ (θ1, ...,θk) =


1

θ1,...,θk
, if θθθ ∈Ω

0, otherwise.
(8.9)

Proof. Consider the noninformative prior distribution (8.9) for θθθ = (θ1, ...,θk), then the posterior

distribution of θθθ , given XXX = xxx has the density function

π
p
θθθ
(θ1, ...,θk

∣∣xxx) =


πk
i=1

nix
ni
i

θ
ni+1
i

, if θi > xi, i = 1, ...,k

0, otherwise.
(8.10)

The posterior risk of an estimator ξ under the GSL function (8.4) which can be written as

rp(ξ ,xxx) = Eπ p

[{(
ξ

θL

)q

−q ln
(

ξ

θL

)
−1
}∣∣XXX = xxx

]
(8.11)

It is clear that the generalized Bayes estimator ξ GB(XXX), which minimizes the posterior risk (8.11), is

as follows

ξ
GB(xxx) =

k

∑
i=1

[
Eπ p

(
1

θ
q
i

∣∣XXX = xxx
)]− 1

q

IAi(XXX)

So, the generalized Bayes estimator of θL with respect to the posterior density (8.9) is obtained as

ξ
GB(xxx) =

n

∑
i=1

[
(q+ni)x

q
i

ni

] 1
q

IAi(XXX) = ξN,2(XXX).

Hence, the result follows.

8.3 Inadmissibility results for scale invariant estimators

In this section, for the case of two uniform populations (i.e. for k = 2), we will provide some

sufficient conditions for inadmissability of a scale invariant estimator of scale parameter θL under the

GSL function (8.4). It also gives dominated estimators in these cases where the sufficient conditions

of the results are satisfied. To do this, we employ the orbit-by-orbit improvement technique of

Brewster and Zidek [27].
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Using the definiation 7.3.1 and let c = 1
X2

and let Y = X1
X2

. Then an invariant estimator ξ (X1,X2)

of θL can be written as

ξ (X1,X2) = X2ψ(Y ),

where ψ(.) is a real valued function defined on R+. Now, we consider a general form of the class of

any scale invariant estimators of the scale parameter θL defined as

DL = {ξψ : ξψ(X1,X2) = X2ψ(Y )} .

The following theorem is to study sufficient condition for inadmissible of an estimator of θL under

the GSL function for selected populations.

Theorem 8.3.1. Consider that ξψ(X1,X2) =X2ψ(Y )∈DL is a scale-invariant estimator of θL, where

Y = X1
X2

and ψ(.) is a function defined on R+. Define the function ψ1 on R+ given by

ψ1(Y ) =


(

n1+n2+q
n1+n2

) 1
q
, if 0 < Y < a

Y
(

n1+n2+q
n1+n2

) 1
q
, if Y ≥ a.

where a = a2
a1

. If Pθθθ (ψ1(Y )> ψ(Y )) ≥ 0 for all θθθ = (θ1,θ2) ∈ R2
+, and strict inequality holds for

some θθθ ∈ R2
+. Then, under GSL function, the estimator ξψ is inadmissible for estimating θL, and is

dominated by estimator ξψ∗(X1,X2) = X2ψ∗(Y ), where

ψ∗(Y ) =


ψ1(Y ), if ψ(Y )≤ ψ1(Y )

ψ(Y ), if ψ(Y )> ψ1(Y ).
(8.12)

Proof. Consider the risk-difference of estimators ξψ and ξψ∗

∆ = R(θθθ ,ξψ)−R(θθθ ,ξψ∗)

= Eθθθ

[(
X2ψ(Y )

θL

)q

−
(

X2ψ∗(Y )
θL

)q

−q ln
(

ψ(Y )
ψ∗(Y )

)]
= Eθθθ

[(
X2

θL

)q (
ψ

q(Y )−ψ
q
∗ (Y )

)
−q ln

(
ψ(Y )
ψ∗(Y )

)]
= Eθθθ [Dθθθ (Y )] ,

where, for y ∈ R+ and θ ∈ R2
+,

Dθθθ (y) =
(
ψ

q(Y )−ψ
q
∗
)

Eθθθ

[(
X2

θL

)q ∣∣Y = y
]
−q ln

(
ψ(Y )
ψ∗(Y )

)
. (8.13)
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The conditional p.d.f. of X2, given Y = y, is given by

fX1|Y (x1|y) =


(n1+n2)x

n1+n2−1
2

θ
n1+n2
2

, if 0 < x2 < θ2, y < θ1
θ2

(n1+n2)yn1+n2xn1+n2−1
2

θ
n1+n2
1

, if 0 < x2 <
θ1
y ,y≥

θ1
θ2

Let λ = θ1
θ2

, and let a = a2
a1

. In calculation of Eθθθ

[(
X2
θL

)q ∣∣Y = y
]
, the following two cases arise:

Case-I: when y > a2
a1

E
((

X2

θL

)q ∣∣∣Y = y
)
=


n1+n2

n1+n2+q
1

λ q , if y < λ

n1+n2
n1+n2+q

1
yq , if y≥ λ .

Case-II: when y≤ a

E
((

X2

θL

)q ∣∣∣Y = y
)
=


n1+n2

n1+n2+q , if y < λ

n1+n2
n1+n2+q

(
λ

y

)q
, if y≥ λ .

It follows from Case-I and Case-II that, for λ < a

E
((

X2

θL

)q ∣∣∣Y = y
)
=



n1+n2
n1+n2+q , if 0 < y < λ

n1+n2
n1+n2+q

(
λ

y

)q
, if λ ≤ y < a

n1+n2
n1+n2+q

1
yq , if 0 < a≤ y,

(8.14)

and, for λ ≥ a

E
((

X2

θL

)∣∣∣Y = y
)q

=



n1+n2
n1+n2+q , if 0 < y < a

n1+n2
n1+n2+q

1
λ q , if a≤ y < λ

n1+n2
n1+n2+q

1
yq , if 0 < λ ≤ y.

(8.15)

In either cases, for q < 0 using (8.14) and (8.14), we get

inf
λ∈(0,∞)

E
((

X2

θL

)q ∣∣∣Y = y
)
=



n1+n2
n1+n2+q , if 0 < y < a

n1+n2
n1+n2+q

1
yq , if a≤ y

=
1

ψ
q
1 (y)

. (8.16)
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and for q > 0, we get

sup
λ∈(0,∞)

E
((

X2

θL

)q ∣∣∣Y = y
)
=



n1+n2
n1+n2+q , if 0 < y < a

n1+n2
n1+n2+q

1
yq , if a≤ y

=
1

ψ
q
1 (y)

. (8.17)

It follows from (8.12), (8.13), (8.16) and (8.17) that, if ψ1(y)≥ ψ(y) then

Dθθθ (y) =
(
ψ

q(Y )−ψ
q
∗
)

Eθθθ

[(
X2

θL

)q ∣∣Y]−q ln
(

ψ(Y )
ψ∗(Y )

)
Dθθθ (y) =

(
ψ

q(Y )−ψ
q
1 (y)

) 1
ψ

q
1 (y)
−q ln

(
ψ(Y )
ψ1(y)

)
.

≥
(

ψ(Y )
ψ1(Y )

)q

−q ln
(

ψ(Y )
ψ1(y)

)
−1

≥ 0,

and strict inequality holds for some θθθ ∈ R2
+.

If ψ1(y)< ψ(y), then Dθθθ (y)=0. Therefore

R(θθθ ,ξψ)≥ R(θθθ ,ξψ∗), for all , θθθ ∈ R2
+,

and strict inequality holds for some θ . This completes the proof.

Corollary 8.3.2. For k = 2, under the GSL function (8.4), the UMRU estimator ξU(X) is inad-

missible for estimating scale parameter θL of selected population and is dominated by ξ D
U (X) =

X2 max{ψU(y),ψ1(y)}, where

ψ
U(y) =


[
1+ q

n2

(
1−
( y

a

)n2
)] 1

q
, if 0 < y < a

y
[
1+ q

n1

(
1−
(

a
y

)n1
)] 1

q
, if y≥ a.

and ψ1(y) is defined in Theorem 8.3.1.

Corollary 8.3.3. For k = 2, under the GSL function (8.4), the natural estimator ξN,1(XXX), given in

(8.5), is inadmissible and is dominated by

ξ
ID
N,1(XXX) =

(
n1 +n2 +q

n1 +n2

) 1
q

ξN,1 (XXX) .
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Corollary 8.3.4. q< 0, For k = 2, under the GSL function (8.4), the natural estimator ξN,2(XXX), given

in (8.5), is inadmissible and is dominated by

ξ
ID
N,2(XXX) = X2 max{ξN,2(y),ψ1(y)}.

Remark 8.3.5. For k = 2,n1 = n2 = n and a1 = a2 = 1, it follows from Corollary 8.3.2 that the

UMRU estimator of θL is inadmissible and is dominated under the GSL loss function (5). This result

is due to Pagheh and Nematollahi [103]. Thus, Corollary 8.3.2 generalizes their result.

Remark 8.3.6. For k = 2,n1 = n2 = n and a1 = a2 = 1, it follows from Theorem 8.3.1 that the

UMRU estimator of θL is improved and dominates under the entropy loss function. This result is due

to Nematollahi and Motamed-Shariati [102]. Thus, their results can be derived from Theorem 8.3.1

by taking q =−1.

Remark 8.3.7. For k = 2, n1 = n2 = n and a1 = a2 = 1, it follows from Corollary 8.3.3 that the

natural estimator ξN,1, corresponding to the largest MLE, of θL is inadmissible under GSL function.

Theorem 8.3.8. Let n1+n2+q > 0. Let c1 and c2 be two possible real constants and let ccc = (c1,c2).

Suppose that ci ∈
(

0,
(

n1+n2+q
n1+n2

) 1
q
)⋃((ni+q

ni

) 1
q
,∞

)
, for i = 1,2. Define the natural-type estima-

tors

ξccc(X1,X2) =

c1X1, if X ∈ A1

c2X2, if X ∈ A2.

Then, under the GSL function (8.4), the natural-type estimators ξc are inadmissible for estimating

θL.

Proof. It is easy to see that the sufficient condition for inadmissibility given in Theorem 8.3.1 is

satisfied by the estimators ξc, if ci ∈
(

0,
(

n1+n2+q
n1+n2

) 1
q
)
, i = 1,2. Thus, it follows from Theorem

8.3.1 that the estimators ξc are inadmissible and are dominated by

ξ
∗
ccc (XXX) =


(

n1+n2+q
n1+n2

) 1
q

X1, if X ∈ A1(
n1+n2+q

n1+n2

) 1
q

X2, if X ∈ A2.

Now, assume that ci ∈
((

ni+q
ni

) 1
q
,∞

)
for i = 1,2. Note that the risk function of the estimator ξc is a

function of λ = θ1
θ2
∈ (0,∞). Therefore the risk function of ξc is given by

R(λ ,ξc) = Eθθθ

[(
ξc

θL

)q

−q ln
(

ξc

θL

)
−1
]
,q 6= 0

=
2

∑
j=1

R j(λ ,c j) (say),
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where

R j(λ ,c j) = Eθθθ

[{(
c jX j

θ j

)q

−q ln
(

c jX j

θ j

)
−1
}

IA j(X)

]
Note that the risk function is a convex function of c, for a fixed λ ∈ (0,∞) and fixed ∈ {1,2},

R j(λ ,c j) achieves its minimum at c∗j(λ ) = M j(λ ), where

M j(λ ) =

 E
(
IA j(XXX)

)
E
((

X1
θ j

)q
IA j(XXX)

)
 1

q

, j = 1,2.

Now, using the p.d.f. of X j, given in (2), we obtain,

M1(λ ) =



[
1−
(

n2
n1+n2

)
( a

λ
)

n1(
n1

n1+q

){
1−
(

n2
n1+n2+q

)
( a

λ
)

n1+q
}
] 1

q

, if λ > a

(
n1+n2+q

n1+n2

) 1
q
, if λ ≤ a.

and

M2(λ ) =



[
1−
(

n1
n1+n2

)
( λ

a )
n2(

n2
n2+q

){
1−
(

n1
n1+n2+q

)
( λ

a )
n2+q}

] 1
q

, if λ ≤ a

(
n1+n2+q

n1+n2

) 1
q
, if λ > a.

It is easy to check that M1(λ ) and M2(λ ) are continuous and non-increasing function of λ ∈ (0,∞).

Therefore, c∗1(λ ) and c∗2(λ ) are non-increasing functions of λ , and sup
λ∈(0,∞)

c∗1(λ ) =
(

n1+q
n1

) 1
q and

sup
λ∈(0,∞)

c∗2(λ ) =
(

n2+q
n2

) 1
q . Note that, for any fixed λ ∈ (0,∞) and fixed j = {1,2}, the risk function

of R j(λ ,c) is a decreasing function of c ∈ (0,c∗j) and is an increasing function of c ∈ [c∗j ,∞) with

c∗j ≤
(

n j+q
n j

) 1
q . Therefore, for c j ≥

(
n j+q

n j

) 1
q ,

R j(λ ,c j)> R j

(
λ ,

(
n j +q

n j

) 1
q
)
∀ λ ∈ (0,∞)

This implies that

R(λ ,ξc) =
2

∑
j=1

R j(λ ,c j)

>
2

∑
j=1

R j

(
λ ,

(
n j +q

n j

) 1
q
)

= R(λ ,ξd) ∀ λ ∈ (0,∞),
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where

ξddd(X1,X2) =


(

n1+q
n1

) 1
q

X1, if X ∈ A1(
n2+q

n2

) 1
q

X2, if X ∈ A2.

Hence, the proof of the theorem.

8.4 Numerical Comparison

In this section, we present a numerical study to evaluate and compare the risk functions among vari-

ous estimators under the GSL function. For k = 2 and λ = θ2
θ1

, it can be observed that the risk function

of all the estimators depend on (θ1,θ2). Here the risk function of the UMRU estimator ξU(XXX), the

improved estimator ξ D
U (XXX) upon the UMRU estimator, natural estimator ξN,1, the improved estimator

ξ ID
N,1 upon natural estimator ξN,1, natural estimator ξN,2 and the improved estimator ξ ID

N,2 upon natural

estimator ξN,2 of scale parameter θL are compared. For selecting the best population, we consider

the minimax selection rule ddda∗ , defined in Section 8.1. Recall that a∗ = a∗(n1,n2) is a function of n1

and n2. So a∗ depends on the different sample sizes n1 and n2. It is clear that the minimax selection

rule ddda∗ is not same for different configurations of (n1,n2). We compare the risk functions of the five

competing estimators of θL for different values of λ and different configurations of sample sizes.

R1(λ ) = R(λ ,ξU(XXX)), R2(λ ) = R(λ ,ξ D
U (XXX)),R3(λ ) = R(λ ,ξN,1(XXX)),R4(λ ) = R(λ ,ξ ID

N,1(XXX)), and

R5(λ ) = R(λ ,ξN,2(XXX)) denote the risk functions of the various estimators. The risk functions of

these estimator are plotted for (n1,n2) ∈ {(2,3),(3,2),(4,5),(5,4)}. The following conclusions can

be drawn from the figures 8.1−8.8 as well as table from 8.1−8.8.

(a) For q = 1, the natural estimator ξN,1 is dominated by all the other estimators.

(b) For q =−1, the natural estimator ξN,1 is dominated by all the other estimators except ξN,2.

(c) The improved estimator ξ D
U provides marginal improvement over the UMRU estimator ξU .

(d) The improved estimator ξ ID
N,1 provides significant improvement over the natural estimator ξN,1.

(e) For 0 < λ < 0.8, 1.4 < λ and q = 1, the estimator ξN,2 becomes better than all other estimators

for all values of n1,n2.

(f) For 0 < λ < 0.6, 1.6 < λ and q =−1, the estimator ξN,2 becomes better than all other estimators

when the values of n1 and n2 are (3,4) and (4,3).

(g) For 0 < λ < 0.8, 1.4 < λ and q =−1, the estimator ξN,2 performs better than other all estimators

when (n1,n2) is (5,8) and (8,5).
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(h) The estimators ξU ,ξ
D
U and ξ ID

N,1 perform better for moderate values of λ .

Here, it is noted from the over all performance of all the estimators that the performance of

ξ ID
N,1 is satisfactory. Therefor, estimator ξ ID

N,1 recommended for use in paretical applications.
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Figure 8.1: Risk performances of different estimators for (n1,n2) = (3,4) and q = 1.
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Figure 8.2: Risk performances of different estimators for (n1,n2) = (4,3) and q = 1.
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Figure 8.3: Risk performances of different estimators for (n1,n2) = (5,8) and q = 1.
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Figure 8.4: Risk performances of different estimators for (n1,n2) = (8,5) and q = 1.
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Figure 8.5: Risk performances of different estimators for (n1,n2) = (3,4) and q =−1.
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Figure 8.6: Risk performances of different estimators for (n1,n2) = (4,3) and q =−1.
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Figure 8.7: Risk performances of different estimators for (n1,n2) = (5,8) and q =−1.
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Figure 8.8: Risk performances of different estimators for (n1,n2) = (8,5) and q =−1.
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Table 8.1: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q = 1.

(n1,n2) = (3,4);a∗ = 0.9565
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.04416 0.04399 0.07833 0.05248 0.04189
0.4 0.03598 0.03520 0.06086 0.03748 0.02994
0.6 0.02600 0.02419 0.04094 0.02228 0.02040
0.8 0.01690 0.01445 0.02487 0.01227 0.01711
1.0 0.01188 0.01041 0.01769 0.00908 0.01726
1.2 0.01318 0.01128 0.01999 0.01011 0.01534
1.4 0.01572 0.01363 0.02471 0.01219 0.01442
1.6 0.01796 0.01634 0.02970 0.01505 0.01526
1.8 0.02022 0.01895 0.03356 0.01785 0.01701
2.0 0.02230 0.02124 0.03798 0.02086 0.01881

Table 8.2: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q = 1.

(n1,n2) = (4,3);a∗ = 1.0455
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.02773 0.02769 0.05062 0.03123 0.02724
0.4 0.02479 0.02427 0.04360 0.02525 0.02212
0.6 0.01927 0.01774 0.03137 0.01639 0.01625
0.8 0.01347 0.01138 0.02086 0.01018 0.01447
1.0 0.01209 0.01063 0.01824 0.00939 0.01732
1.2 0.01585 0.01339 0.02359 0.01158 0.01703
1.4 0.02043 0.01810 0.03080 0.01555 0.01762
1.6 0.02426 0.02234 0.03792 0.02010 0.01923
1.8 0.02892 0.02724 0.04580 0.02583 0.02235
2.0 0.03185 0.03051 0.05172 0.03026 0.02500
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Table 8.3: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q = 1.

(n1,n2) = (5,8);a∗ = 0.9593
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.01753 0.01753 0.03305 0.02306 0.01743
0.4 0.01696 0.01690 0.03102 0.02117 0.01575
0.6 0.01388 0.01352 0.02335 0.01466 0.01091
0.8 0.00781 0.00708 0.01174 0.00606 0.00649
1.0 0.00384 0.00332 0.00576 0.00287 0.00607
1.2 0.00441 0.00380 0.00713 0.00343 0.00440
1.4 0.00579 0.00539 0.00994 0.00510 0.00490
1.6 0.00665 0.00649 0.01209 0.00665 0.00595
1.8 0.00705 0.00697 0.01308 0.00745 0.00660
2.0 0.00692 0.00688 0.01312 0.00751 0.00665

Table 8.4: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q = 1.

(n1,n2) = (8,5);a∗ = 1.0424
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.00730 0.00730 0.01401 0.00825 0.00729
0.4 0.00710 0.00709 0.01365 0.00794 0.00702
0.6 0.00674 0.00659 0.01221 0.00680 0.00610
0.8 0.00475 0.00417 0.00773 0.00374 0.00436
1.0 0.00382 0.00331 0.00566 0.00285 0.00613
1.2 0.00704 0.00622 0.01038 0.00520 0.00624
1.4 0.01077 0.01015 0.01702 0.00974 0.00796
1.6 0.01333 0.01295 0.02217 0.01371 0.01030
1.8 0.01447 0.01422 0.02493 0.01600 0.01195
2.0 0.01549 0.01534 0.02761 0.01819 0.01340
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Table 8.5: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q =−1.

(n1,n2) = (3,4);a∗ = 0.9565
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.06931 0.06828 0.14297 0.08734 0.05885
0.4 0.05672 0.05410 0.10120 0.05575 0.04033
0.6 0.03794 0.03388 0.05882 0.02787 0.03015
0.8 0.02378 0.01952 0.03437 0.01493 0.02961
1.0 0.01644 0.01412 0.02420 0.01141 0.02989
1.2 0.01752 0.01472 0.02680 0.01225 0.02425
1.4 0.02091 0.01738 0.03342 0.01448 0.02087
1.6 0.02451 0.02141 0.04130 0.01841 0.02069
1.8 0.02726 0.02486 0.04800 0.02236 0.02208
2.0 0.03001 0.02793 0.05467 0.02637 0.02373

Table 8.6: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q =−1.

(n1,n2) = (4,3);a∗ = 1.0455
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.03704 0.03691 0.07942 0.04393 0.03524
0.4 0.03339 0.03194 0.06345 0.03242 0.02735
0.6 0.02546 0.02262 0.04328 0.01961 0.02119
0.8 0.01794 0.01474 0.02800 0.01230 0.02259
1.0 0.01608 0.01390 0.02382 0.01122 0.02987
1.2 0.02157 0.01764 0.03102 0.01351 0.03004
1.4 0.02931 0.02505 0.04336 0.01938 0.02954
1.6 0.03642 0.03224 0.05578 0.02612 0.02993
1.8 0.04241 0.03875 0.06792 0.03344 0.03153
2.0 0.04534 0.04243 0.07561 0.03846 0.03338
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Table 8.7: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q =−1.

(n1,n2) = (5,8);a∗ = 0.9593
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.02231 0.02231 0.04886 0.03275 0.02201
0.4 0.02175 0.02157 0.04328 0.02814 0.01892
0.6 0.01716 0.01656 0.02927 0.01719 0.01255
0.8 0.00976 0.00868 0.01460 0.00706 0.00863
1.0 0.00435 0.00374 0.00649 0.00306 0.00844
1.2 0.00517 0.00436 0.00838 0.00380 0.00543
1.4 0.00687 0.00634 0.01217 0.00589 0.00573
1.6 0.00769 0.00740 0.01443 0.00742 0.00660
1.8 0.00802 0.00788 0.01586 0.00841 0.00726
2.0 0.00830 0.00823 0.01666 0.00906 0.00779

Table 8.8: Risks of the UMRU estimator ξU(XXX), the estimator ξ D
U (XXX) improved upon the UMVUE,

and the natural estimators ξN,1, the estimator ξ ID
N,1 improved upon the natural estimator ξN,1 and ξN,2

at different values of λ = λ2
λ1

and q =−1.

(n1,n2) = (8,5);a∗ = 1.0424
λ R(λ ,ξU) R(λ ,ξ D

U ) R(λ ,ξN,1) R(λ ,ξ ID
N,1) R(λ ,ξN,2)

0.2 0.00846 0.00846 0.01783 0.00993 0.00846
0.4 0.00868 0.00864 0.01777 0.00991 0.00846
0.6 0.00790 0.00766 0.01535 0.00796 0.00688
0.8 0.00555 0.00481 0.00930 0.00422 0.00524
1.0 0.00437 0.00377 0.00655 0.00310 0.00845
1.2 0.00830 0.00724 0.01231 0.00567 0.00841
1.4 0.01279 0.01193 0.02033 0.01072 0.00956
1.6 0.01669 0.01597 0.02824 0.01631 0.01184
1.8 0.01895 0.01840 0.03340 0.02030 0.01414
2.0 0.02062 0.02020 0.03794 0.02381 0.01609
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8.5 Results and Discussions

In this chapter, we have addressed the problem of estimating the parameter of θL of the selected

uniform population under the GSL function. We have derived the UMRU and generalized Bayes

estimators for scale parameter of the selected uniform population under the GSL function. We have

shown that the scale invariant estimators are inadmissible. Also, UMRU and natural estimators are

inadmissible and dominated. Further, the risk of these estimators are compared numerically. In

the literature, some other types of loss functions are used to estimate parameters of the selected

population. These loss functions are considered for further research works. If we consider q = 1,

then GSL function becomes Stein loss function and using similar technique in this chapter, we can

conclude the following results

(i)

ξU(XXX) =
k

∑
i=1

Xi

1+
1
ni

1−

max
j 6=i

a jX j

aiXi

ni

 IAi(XXX)

is the UMRU estimator of θL.

(ii)

ξ
GB(xxx) =

n

∑
i=1

[
(1+ni)xi

ni

]
IAi(XXX)

are the generalized Bayes estimator and natural estimator ξN,2(XXX).

(iii) It should be noted here that we obtained the theorem 8.3.8, corollary 8.3.2 and corollary 8.3.3

in this case.

(iv) The natural estimators ξccc(X1,X2) which is defined in theorem 8.3.8, it is inadmissible for esti-

mating θL, if and only if n1+n2+1
n1+n2

≤ c≤ ni+1
ni

, for i = 1,2.

Remark 8.5.1. Let X[1] ≤ ·· · ≤ X[k] denote the ordered values of random variables X1,X2, ...,Xk. For

a1 = a2 = · · ·= ak = 1, and n1 = n2 = · · ·= nk = n (say), it follows from (i) that the UMRU estimator

of scale parameter θL is given by

ξU(XXX) =
X[k]

n

[
n+1−

(
X[k−1]

X[k]

)n]
.

This UMRU estimator depends only on two largest order statistics. This result was derived by Misra

and Mulen [86].
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Chapter 9

Conclusions and Directions for Future

Research

In this thesis, we have considered some problems on estimation after selection.

We have considered the problem of estimating mean of the selected population under the

squared error loss function when the underlying distributions are normal with unknown mean and

common known variance. The population yielding the smallest sample mean is selected. We have

derived four different estimators and an improved estimator for the mean of the selected population.

An application of this work is shown in finance, which is presented in the next chapter. We demon-

strate that selecting the security with lower risk is the same as the selection of the population with

the lower mean. We have obtained the estimators for the risk of the selected security and apply the

theory to real data sets. Moreover, it is shown that the improved estimator performs better than the

other estimators with respect to the bias and the mean squared error risk. It will be an interesting

practical problem if this problem can be studied further when there are k(≥ 2) securities.

We have considered the problem of estimating quantile of the selected normal population from

two normal populations with same mean and different variances where both are unknown. We have

proposed some estimators and obtained admissible classes estimators. A detailed simulation study

has been carried out in order to numerically compare the bias and risk performances of all proposed

estimators. Generalizing the above results for k(≥ 2) populations is an interesting problem for further

research.

The problem of estimating scale parameter of the selected Pareto population among k(≥ 2)

Pareto populations with common known shape parameter and different unknown scale parameters

is considered. The population corresponding to the largest (smallest) scale parameter is selected

and named as the largest (smallest) population. The uniformly minimum risk unbiased (UMRU)

estimators of θL and θS, scale parameters of largest and smallest populations respectively, are derived
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under the Generalized Stein loss function. Sufficient condition for minimaxity of estimators of θL and

θS are given, and it is shown that the generalized Bayes estimator of θS is minimax for k = 2. Also,

a class of linear admissible estimators of θL and θS are found. Further, it is shown that the UMRU

estimator of θS is inadmissible. Studying this problem when the shape parameters are different and

unknown is an open problem.

Next, we have considered k(≥ 2) independent uniform populations with unequal sample sizes

and an unknown scale parameter. For selecting the population associated with the largest scale

parameter, we have considered a class da(X) (see (7.3)) of natural selection rules. We have addressed

the problem of estimating scale parameter θL of the selected population by a fixed selection rule in

daaa(XXX) under the squared log error loss function. We obtain the uniformly minimum risk unbiased

(UMRU) estimator of θL and two natural estimators of θL are also studied. We have shown that

the UMRU estimator as well as natural estimator are inadmissible and better estimators are obtained.

Furthermore, we produce related results for the problem of estimating scale parameter of the selected

population when the selection goal is that of selecting the population corresponding to the smallest

scale parameter. Finally, the risk functions of various competing estimators of θL are compared

through simulation. Based on this simulation study the natural estimator ΨI
N,1 is recommended. One

may study the above problem for other populations.

In the last chapter, we have addressed the problem of estimating scale parameter of the selected

uniform population when sample sizes are unequal under the generalized Stein loss (GSL) function.

The UMRU estimator of scale parameter is obtained and two natural estimators ξN,1 and ξN,2 (see

Eq. (8.5)) are also studied. The natural estimator ξN,2 is shown to be the generalized Bayes estimator.

The UMRU estimator as well as natural estimators are inadmissible and dominating estimators are

also obtained. A numerical study on performance of various natural estimators is carried out. The

above problem for some other population and under some other loss function can be studied further.
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