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Abstract

Coding Theory deals with the construction and analysis of error-correcting codes for

the reliable and efficient transmission of information through noisy channels. Since

its inception, it has grown in to a large area, intersecting several disciplines and using

several sophisticated mathematical techniques. The branch of coding theory that

mainly uses algebraic tools is known as Algebraic Coding Theory. Initially, algebraic

codes were constructed as vector spaces over finite fields. However, later on many

rings have also been considered in place of fields, and codes were studied as modules

over finite rings. A recent addition to coding theory literature is skew codes, in

which algebraic codes are constructed using skew polynomial rings. Several results

have been obtained on these codes, and many new good codes have been obtained

in this setting.

This thesis deals with some families of codes in the setting of skew polynomial

rings over some extensions of Z4 and Fq, where Z4 is the ring of integers modulo

4 and Fq is a finite field. These are skew-cyclic codes, skew-constacyclic codes, 2D

skew-cyclic codes etc. In addition, quantum codes over F4 + uF4 have also been

studied.

In this context, we have defined a new class of skew-cyclic codes over the mixed

alphabet F3(F3 + vF3), v2 = v. We call these codes F3(F3 + vF3)-skew cyclic codes,

and they can be seen as a generalization of double cyclic codes [25] and Z2(Z2+uZ2)-

linear cyclic codes [6]. We have obtained a structure of skew-cyclic codes over

F3 +vF3 by defining a division algorithm on (F3 +vF3)[x, θ]. Using this structure, we

have obtained the structures of F3(F3 + vF3)-skew cyclic codes and their generating
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sets. The duals of these codes have also been studied. Also, we have studied a class

of skew-cyclic codes over Fp + wFp, w2 = 1, wherein the generating sets of these

codes have been obtained.

The extensions of Z4 such as Z4 + uZ4 have attracted the attention of a lot of

researchers in last few years. Some studies have shown that the codes over these

rings are promising and can produce codes with better parameters. However, there

has been a relatively little study on skew codes over these types of rings. We study

a class of skew-constacyclic codes over the ring Z4 + uZ4, u
2 = 0. By defining

an automorphism θ on Z4 + uZ4, we study these codes as left (Z4 + uZ4)[x, θ]-

submodules of (Z4+uZ4)[x,θ]
〈xn−α〉 , where α = 1 + 2u, a unit in Z4 + uZ4. A necessary

and sufficient condition for a skew-constacyclic code over Z4 +uZ4 to be principally

generated has been obtained. Duals of these codes have also been studied and these

codes have been further generalized to double skew-constacylic codes. By finding

the Gray images of these codes some new good Z4-linear codes having parame-

ters (6, 4422, 2L), (18, 4421, 10L), (18, 4422, 7L) and (18, 4424, 7L) have been obtained.

Moreover, we have reported these codes to the database of Z4-codes [8]. A class of

skew-cyclic codes over the ring GR(4, 2) + vGR(4, 2), v2 = v, has also been studied.

We have also studied skew codes in the more general setting of a skew-polynomial

ring with automorphism and derivation. In this context, we have studied a class of

skew-cyclic codes over Z4 + wZ4, w
2 = 1, with derivation. We denote these codes

by δθ-cyclic codes. These codes are studied as left (Z4 + wZ4)[x, θ, δθ]-submodules

of (Z4+wZ4)[x,θ,δθ]
〈xn−1〉 , where θ is an automorphism of Z4 + wZ4 and δθ a derivation on

Z4 + wZ4. Using a Gray map, some good linear codes over Z4, via residue codes

of these codes, have been obtained. A generator matrix of the dual code of a free

δθ-cyclic code of even length over Z4 + wZ4 has been obtained. These codes are

further generalized to double skew-cyclic codes with derivation. The classification

of these codes also led to some new good Z4-codes.

There is another generalization of cyclic codes, known as 2D cyclic codes. Re-

cently, Li & Li [65] have studied 2D skew-cyclic codes over a finite field Fq. We
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generalize the study of 2D skew-cyclic codes over Fq to 2D skew-cyclic codes over

Fq+wFq, w2 = 1. The structure of these codes has been obtained by defining a divi-

sion algorithm on the bivariate polynomial ring (Fq + wFq)[x, y, θ1, θ2], where θ1, θ2

are two commuting automorphisms of Fq + wFq. These codes have been studied

as left (Fq + wFq)[x, y, θ1, θ2]-submodules of (Fq+wFq)[x,y,θ1,θ2]
〈xl−1, ym−1〉 . A brief description of

the duals of these codes has also been given. A decomposition of these codes has

been presented, via which a generating set of a 2D skew-cyclic code over Fq + wFq
is determined using generating sets of its component 2D skew-cyclic codes over Fq.

The relationship between quantum information and classical information has

become a subject of much study in recent years. The construction of quantum codes

using classical linear codes was given by Calderbank et al. [31]. Motivated by the

recent progress in this field, we have studied quantum codes over F4+uF4, u
2 = 0. In

our study, we use the structure of cyclic codes of arbitrary length over F4+uF4 to find

out the conditions for these codes to contain their duals. By the CSS construction

and a Gray map, the parameters of the corresponding quantum codes over F4 have

been obtained. Also, using augmentation, we enlarge a code with dual containing

property to a new code having the same property, and we have got some good

quantum codes over F4 using this technique. A table showing some good quantum

codes that we have obtained over F4 is also given.
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Chapter 1

Introduction

1.1 Origins of coding theory

Communication is deeply rooted in the human behavior and is as old as the mankind

itself. Error-correcting codes, a part of the theory of communication, is still a young

subject that deals with the reliable transmission of data through noisy channels. The

secure and reliable transmission of information over noisy channels is a fundamental

requirement in digital communication, and coding theory plays a vital role in it.

Coding theory is the art of adding redundancy to the message analytically so that

if some error occurs during the transmission of the message it can still be recovered

due to the redundancy added.

Coding theory originated with the works of Hamming [49] and Shannon [88].

Hamming devised a way of encoding information so that if a single error occurs

during the transmission, it could be corrected. Shannon’s seminal work “A Math-

ematical theory of communication” [88] gave birth to coding theory and informa-

tion theory. Shannon proved that almost error-free communication can be achieved

through a channel at any rate below a number, known as the capacity of the chan-

nel. The approximation to this ideal has the property that if a digital signal is

altered in some reasonable way during the transmission, the original message can

still be recovered. However, Shannon’s results were probabilistic and existential but

not constructive. That is, any information regarding the construction of codes to

1
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achieve the channel capacity had not been given by him. Hamming was the first

to develop a family of codes, known as Hamming codes, which could correct single

errors. Although, these codes were not as good to achieve channel capacity given by

Shannon, they were considered important because they have shown the construc-

tion of such codes which fit in Shannon’s theory. Since then, most work in coding

theory is devoted to constructing codes that have efficient encoding and decoding

algorithms and which have good error correcting capability.

For the last seventy years, the theory of error-correcting codes has grown into an

area intersecting many scientific disciplines including electrical engineering, mathe-

matics and computer science having applications in almost all digital transmission

systems and devices such as compact disc recording, cellular telephone transmission,

data storage etc. Besides these, coding theory has applications in the field of cryp-

tography and design theory. The constructions of codes require techniques from a

surprisingly wide range of mathematics. The area of coding theory which mainly

uses algebraic tools for the analysis of codes is known as algebraic coding.

1.2 Development of the subject

Classically error correcting codes have been studied as subspaces of vector spaces

over finite fields. In 1957, Prange [80, 81] introduced cyclic codes over a finite

field Fq and characterized these codes with ideals in the ring Fq [x]
〈xn−1〉 , where n is the

length of code. This relationship between cyclic codes and ideals has facilitated the

construction of important families of codes such as BCH codes and Reed-Solomon

codes.

Coding theorists have studied various families of linear and cyclic codes in past

six decades. Different approaches and tools have been applied and many codes with

good parameters and properties have been produced [10, 11, 12, 55]. Recently, a

tremendous interest in codes over more general algebraic structure such as rings has

been seen, where the codes have been studied as modules over finite rings. The

study of codes using finite rings began with the works of Blake [20, 21], which
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were followed by the works of Spiegel [97, 98] and Shanker [87]. However, this

area generated the main interest of researchers after a landmark paper in 1994

by Hammons et al. [50], wherein they have shown that certain good non-linear

binary codes such as binary Kerdock codes, Preparata codes, Goethals codes and

Delsarte-Goethals codes are the Gray images of some linear codes over Z4. This was

shown by expoiting the isometry between (Z4
n, Lee distance) and (Z2

2n, Hamming

distance). Using the Gray map, a new set of linear and non-linear binary codes

have been constructed as the Gray images of some codes over Z4. This approach

has thus helped to view some non-linear binary codes as images of linear quaternary

codes. A lot of research has been done on codes over Z4 and other integer rings

[23, 32, 100, 34, 61, 47, 18, 78, 19, 44, 46, 92], as well as on codes over some more

general finite rings [22, 37, 82, 108, 103, 104, 68, 67, 13, 71, 72, 73]. Many good

codes over finite rings have been obtained.

The works described so far are in the commutative setting, i.e., the alphabet

and the polynomial algebra used to describe the codes are commutative. Recently,

Boucher et al. [26] have added a new direction in coding theory by studying codes

in the non-commutative setting of skew polynomial rings. In [26], they introduced

a new concept by defining cyclic codes using skew polynomial rings, and studied

skew-cyclic codes over a finite field Fq as ideals of Fq [x,θ]
〈xn−1〉 , where Fq[x, θ] is the skew

polynomial ring by automorphism over Fq, and θ is the corresponding automorphism.

This work has been further generalized in many ways [27, 28, 2, 58, 1, 16, 41, 48, 65].

In [27], skew-cyclic codes have been generalized to Galois rings, which is a more

general structure. Boucher et al. [28] have then studied skew codes as modules

over skew polynomial rings. Abualrub et al. [2] have generalized this class to skew

quasi-cyclic codes and Bhaintwal [16] has studied skew quasi-cyclic codes over Galois

rings. Jitman et al. [58] further generalized this work by studying a class of skew

constacyclic codes over finite chain rings. Aydin et al. [1] have introduced a class

of θ-cyclic codes over F2 + vF2. They have defined a division algorithm on the

skew polynomial ring (F2 + vF2)[x, θ], where θ is an automorphism of F2 + vF2, in
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a new way such that the generators of these codes and their duals can be obtained.

In [41] and [48], the some work on skew codes has been done on Fp + vFp and

Fq + vFq, respectively. The class of skew-cyclic codes has been further generalized

to 2D skew-cyclic codes over Fq by Li & Li in [65].

1.2.1 Motivation for our investigations

In this section, we present a short survey of the works from the literature that have

motivated our research.

A lot of ideas have been applied to construct different types of linear codes with

rich algebraic structures and good parameters. Cyclic codes form an important class

of linear codes with good algebraic structure and they are being investigated since

they were introduced by Prange [80]. Recently, codes using rings have attracted

the attention of many researchers and many good codes have been produced in this

class. In particular, cyclic codes and their generalizations such as constacyclic codes,

quasi-cyclic codes etc. have been studied extensively over rings. But this work was

restricted to codes defined over commutative algebraic structures.

Recently, there has been an interest on the study of codes over skew polynomial

rings which are, in general, non-commutative rings. Work in this direction was

initiated by Boucher et al. [26]. They studied codes of length n over a finite field Fq
as left ideals of the quotient ring Fq [x,θ]

〈xn−1〉 with |θ| dividing n, where Fq[x, θ] is the skew

polynomial ring over Fq and θ is the corresponding automorphism of Fq. Such codes

are known as skew-cyclic codes. If the condition that |θ| divides n is not imposed,

the resulting structure Fq [x,θ]
〈xn−1〉 is no more a ring because 〈xn − 1〉 need not be a two

sided ideal of F[x, θ]. For arbitrary f , n does not need such a restriction. The case

was generalized to the study of codes of length n as ideals of the rings Fq [x,θ]
〈f〉 , where

f is a central polynomial in F[x, θ] and 〈f〉 is the two sided ideal generated by f in

Fq[x, θ] [29]. Some good codes have been obtained in this class. This work has been

extended further by many researchers [27, 58, 2, 96]. In [96], Siap et al. removed the

restriction of |θ| dividing n and studied the structure of skew-cyclic codes over finite
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fields having arbitrary length. In this setting, the skew codes have been defined

as left Fq[x, θ]-submodules of left Fq[x, θ]-module Fq [x,θ]
〈f〉 , where f is any polynomial

in Fq[x, θ]. If f = xn − 1 and |θ| = m, then the skew-cyclic codes of length n

as left Fq[x, θ]-submodules of Fq [x,θ]
〈xn−1〉 give following relations. Skew-cyclic codes are

equivalent to cyclic codes, if (m,n) = 1, and they are equivalent to quasi-cyclic

codes of length n and index d, if (m,n) = d, where d is greater than 1.

The ring Fq[x, θ] is left and right Euclidean. Therefore the cyclic codes and skew-

cyclic codes over Fq share most properties. Since the polynomials in skew polynomial

rings possess more factors than in the commutative case, there are many ideals in

this setting. Therefore there are better possibilities of finding good codes. This

gives us a strong motivation for studying codes in this setting.

Most of the works discussed above are on finite fields and finite chain rings such

as Galois rings. Recently, skew-cyclic codes over some finite non-chain rings have

also been studied [1, 41, 48, 94, 43]. In [1], Abualrub et al. defined a class of skew-

cyclic codes over F2 + vF2 with v2 = v, and obtained a structure thereof. They

also presented some examples of optimal binary self-dual codes through this class.

In [41], Gao has studied principally generated skew-cyclic codes over Fp + vFp with

v2 = v. Gursoy et al. [48] presented a different approach to construct skew-cyclic

codes over Fq + vFq with v2 = v. The results of [48] have been generalized to

Fq + vFq + v2Fq, v2 = v, by Shi et al. [94]. Gao et al. [43] has studied a class of

skew constacyclic codes over Fq + vFq, v2 = v. Recently, some new types of codes

over rings have been proposed [4, 7, 6, 25, 9]. In [25], Borges et al. have studied Z2-

double cyclic code as Z2[x]-submodule of Z2[x]
〈xr−1〉×

Z2[x]
〈xs−1〉 . In [6], Abualrub et. al. have

studied linear cyclic codes as submodules of Zα2 × (Z2 + uZ2)β, which in polynomial

form are (Z2 + uZ2)[x]-submodules of Z2[x]
〈xα−1〉 ×

(Z2+uZ2)[x]
〈xβ−1〉 . However, the works given

in [4, 7, 6, 25, 9] have been done over commutative setting. These works, especially

[6], have motivated us to generalize such codes to the non-commutative setting of

skew-polynomial rings. This resulted into a new class of skew-cyclic codes, which we

termed as F3R-skew cyclic codes, R = F3 +vF3, v
2 = v. We have obtained a division
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algorithm on R[x, θ] using which we present the structure of a skew-cyclic code for

the different possibilities on the minimum degree polynomial in the code. Thus

F3R-skew cyclic codes have been studied as left (F3 + vF3)[x, θ]-submodules of the

left module F3[x]
〈xα−1〉 ×

(F3+vF3)[x,θ]
〈xβ−1〉 and their generators have been obtained. Further,

we have studied a class of skew-cyclic codes and a class of additive skew-cyclic codes

over Fp + wFp with w2 = 1. Chapter 3 covers these results.

The study of codes over Z4 always generated a special interest and have provided

many useful results. There has been a lot of work on codes over Z4 since the

realization in [50] that some binary non-linear codes with good parameters are Gray

images of some Z4- linear codes. Recently, Yildiz and Karadeniz [104] have studied

linear and self-dual codes over Z4 + uZ4, u
2 = 0. We have studied a class of skew

constacyclic codes over Z4 + uZ4, u
2 = 0. These results are presented in Chapter 4.

In the literature, many good codes have been obtained over Z4 via Gray images of

codes over the extensions of Z4 and these codes have been updated to the database of

Z4-codes [8] (maintained by Aydin and Asamov). Through skew-constacyclic codes

over Z4 +uZ4, we have obtained many new good codes over Z4, and these new codes

have been updated to the database of Z4-codes [8]. Further in Chapter 5, we have

generalized this work and studied a class of skew-cyclic codes over Z4 +wZ4, w
2 = 1

with derivation. In this class also, we have obtained some new Z4-linear codes.

Another family of codes that we have considered in this thesis is 2D-skew cyclic

codes. This class was first introduced by Ikai et al. [52] and then further studied by

Imai [54]. Recently, Li & Li [65] have introduced a generalization of 2D cyclic codes

over finite fields, wherein they have studied 2D skew-cyclic codes of length ml over

Fq as left Fq[x, y, θ1, θ2]-submodules of R[x,y,θ1,θ2]
〈xl−1, ym−1〉 , where θ1, θ2 are automorphisms

of Fq. Inspired by this work, we have generalized 2D skew-cyclic codes over Fq to

the ring R = Fq+wFq, w2 = 1. We have obtained the generating sets of these codes.

The results have been presented in Chapter 6.

Quantum error correcting codes have received much attention of coding theorists
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in recent years. Like classical information processing, a reliable quantum informa-

tion processing requires mechanisms to reduce the effects of internal (operational)

and external (environmental) noises. Fortunately, it is possible to facilitate the dam-

aging effects of decoherence by applying quantum error-correcting codes, so that one

can have more reliable quantum communication schemes and quantum computers.

Initially it was assumed that classical error-correction is not possible for quantum

information, as classical information can be duplicated but copying quantum infor-

mation is not possible due to the no-cloning theorem [102]. However, it was shown

that it is possible to encode quantum information so that errors can be corrected

[95]. The problem of finding good quantum codes has turned out to be the problem

of finding classical error-correcting codes that contain their duals [31].

Shor [95] discovered the first quantum error-correcting codes. Afterwards, the

construction of quantum codes using classical linear codes was given by Calderbank

et al. [31]. Construction of several quantum codes with good parameters have been

done using classical codes over finite fields with dual containing property [63, 64,

84, 59, 83]. The study of quantum codes using finite rings was initiated by Qian et

al. [84], wherein they have studied quantum codes using cyclic codes of odd length

over the ring F2 + uF2, u2 = 0. In [59], Kai and Zhu have used cyclic codes of odd

length over F4 + uF4, u2 = 0 to construct quantum codes over F4. Further, Qian

[83] has presented a construction of quantum codes via cyclic codes over F2 + vF2,

without the restriction on the length of the code. We have explored and generalized

this work in Chapter 7, in which we consider the ring R = F4 + uF4, u
2 = 0, for the

construction of quantum codes through cyclic codes having arbitrary length over

R. We have considered cyclic codes of both odd length and even length such that

they contain their duals, and corresponding to these codes we have obtained some

optimal quantum codes over F4.

Throughout the thesis, all the computations to find codes have been done with

MAGMA Computational Algebra System [101] .



Chapter 1: Introduction 8

1.3 Contribution and organization of the thesis

Objective: The objective of this thesis is to study and analyse different classes

of linear codes such as skew-cyclic codes, skew-constacyclic codes, additive skew

cyclic codes, double skew-cyclic codes etc. using univariate and bivariate (non-

commutative) skew polynomial rings over some extensions of Z4 and Fq. Further,

we also aim to obtain good codes over Z4 and Fq via the Gray images of such codes.

Brief description of our contribution:

• We have introduced a class of skew-cyclic codes over the mixed alphabets

F3(F3 + vF3), which is a generalization of double cyclic code and cyclic codes

over mixed alphabets in commutative setting.

• Cyclic codes over Z4+uZ4, u
2 = 0, are well studied. We have introduced a class

of skew-constacyclic codes over Z4 + uZ4, u
2 = 0, which is further generalized

to double skew-constacyclic codes over Z4+uZ4. Through these codes, we have

obtained (6,4422,2L), (18,4421,10L) and (18,4424,7L) linear codes over Z4

via Gray map, that improve the minimum Lee distances of existing codes by

1, 4 and 1, respectively. These new codes have been reported and added to the

database of Z4-codes [8].

• We have further generalized our work, given in Chapter 4, by introducing a

class of skew-cyclic codes over Z4 +wZ4, w
2 = 1 with an automorphism and a

derivation. In this class too, we have obtained some good codes over Z4.

• In the literature there has been a limited study on 2D cyclic codes. In par-

ticular, rings have not been considered as alphabet for these codes. We have

presented a class of 2D skew-cyclic codes over R = Fq+wFq, w2 = 1. By defin-

ing some properties of a skew polynomial ring in two variables R[x, y, θ1, θ2],

where θ1, θ2 are commuting automorphisms of R, we have presented a divi-

sion algorithm on R[x, y, θ1, θ2]. With the help of this, we have obtained the
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structure of a 2D skew-cyclic code over R. Some examples have been given to

illustrate the results.

• We have studied the construction of quantum codes over F4 through cyclic

codes. Cyclic codes over F4 + uF4, u
2 = 0 with dual containing property have

been studied for odd lengths only. We have studied a class of cyclic codes

of arbitrary length over F4 + uF4, u
2 = 0 such that these codes contain their

duals. Using these codes and a Gray map on F4 + uF4, the parameters of the

corresponding quantum codes over F4 have been obtained.

Organization of the Thesis

The main content of the thesis is contained in five chapters (Chapter 3 to Chapter

7). The thesis is organized as follows.

In Chapter 2, some preliminaries and basic concepts are discussed. This

forms the required background for later chapters.

In Chapter 3, we define a new class of skew-cyclic codes, termed as F3R-

skew cyclic codes, where R denotes the ring F3 + vF3, v
2 = v. Some structural

properties of skew-cyclic codes over R and F3R-skew cyclic codes have been

given in Section 3.3 and Section 3.4, respectively. The generator polynomials

of these codes are studied. Some examples are given to illustrate the results.

An optimal ternary code is obtained as the Gray image of an F3R-skew cyclic

code. We further study a class of skew-cyclic codes over Fp + wFp, w2 = 1 in

Section 3.5 .

Chapter 4 focuses on skew codes over Z4+uZ4. In Section 4.3, we characterize

the skew polynomial ring R[x, θ], where R = Z4 + uZ4, u
2 = 0 and θ is an

automorphism of R, and study a class of skew-constacyclic codes over R. We

determine the structural properties of these codes. They have been further

generalized to double skew-constacyclic codes over R in Section 4.5, through

which we have been able to obtain some good codes over Z4. Also, we have
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studied a class of skew-cyclic codes over GR(4, 2)+vGR(4, 2), v2 = v in Section

4.6.

In Chapter 5, we study skew-cyclic codes with derivation over R = Z4 +

wZ4, w
2 = 1. We present some structural properties of R and the skew poly-

nomial ring R[x, θ, δθ], where θ is an automorphism of R and δθ a derivation

on R. In Section 5.3, δθ-cyclic codes are studied. Their torsion codes and

residue codes have also been studied in the same section. In Section 5.4, the

duals of δθ-cyclic codes of even length over R have been obtained. In Section

5.5, we have generalized δθ-cyclic codes to double δθ-cyclic codes and obtained

some good codes over Z4 from this class also. Table 5.1 and Table 5.2 show

some good linear codes over Z4, which have been obtained as the Gray images

of the above mentioned codes over Z4 +wZ4 by using Magma Computational

Algebra System.

In Chapter 6, we extend skew codes to bivariate skew polynomial rings.

Section 6.2 includes some basic definitions and properties of the bivariate skew

polynomial ring R[x, y, θ1, θ2], where R = Fq + wFq, w2 = 1 and θ1, θ2 are two

commuting automorphisms of R. We introduce a class of 2D skew-cyclic codes

over R in Section 6.3, and by defining a division algorithm on R[x, y, θ1, θ2],

generating sets of these codes have been obtained. Their relation with skew-

cyclic codes over R has also been given in the same section. Section 6.4 presents

the duals of 2D skew-cyclic codes. A decomposition of a 2D skew-cyclic code

over R into 2D skew-cyclic codes over Fq has been given in Section 6.5.

Chapter 7 deals with the study of quantum codes over F4 obtained via cyclic

codes over F4+uF4. Our main aim is to find the conditions under which a cyclic

code over F4+uF4 contains its dual. We describe the structures and conditions

of cyclic codes of odd length and even length over R = F4 + uF4, u
2 = 0,

in Subsection 7.2.1 and Subsection 7.2.2, respectively, such that these codes

contain their duals. A Gray map is defined on (F4 + uF4)n to F2n
4 such that it
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preserves the dual containing property of a code. Using Gray map and CSS

construction, the parameters of corresponding quantum codes over F4 have

been obtained.

Chapter 8 presents conclusion and gives some possible directions for further

research based on the work done in this thesis.
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Chapter 2

Basic Concepts and Background

In this chapter, we give some preliminaries and basic results on coding theory that

are needed for the results in later chapters.

2.0.1 Block codes

We assume that the information from the source is coming in the form of a sequence

of symbols from an alphabet Σ with q distinct symbol. In block codes, the informa-

tion sequence is divided into blocks of length k. These blocks are called messages

or message blocks. Thus a message block m is an element of Σk. A redundancy is

added to each message block so that if some symbols of the message are corrupted

due to noise during transmission, we can still recover it from the redundancy added.

These new blocks of length n ≥ k are called the codewords. The set C of all such

codewords is called a block code. Thus C ⊆ Σn.

If a codeword x ∈ C is transmitted and y ∈ Σn is the received word such that

y 6= x, then we say that an error has occurred and the vector e = y − x is called

the error vector. To measure the error-correcting capability of a code C, a distance

function, called the Hamming distance, is defined on Σn. The Hamming distance

between two elements x, y ∈ Σn is defined as the number of positions in which x

and y differ, i.e.,

dH(x, y) = |{i | xi 6= yi, i = 1, 2, · · · , n}|.

13
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Definition 2.0.1. The minimum Hamming distance d(C) of a code C

is defined as

d(C) = min {d(x, y) : x, y ∈ C and x 6= y}.

The Hamming weight w(x) of a word x ∈ Σn is defined as the number of non-zero

coordinates of x, and the Hamming weight of code C is the minimum weight among

all the non-zero codewords in C. It is well known that if a code has the minimum

distance d then it has the capability to detect and correct up to d − 1 and bd−1
2 c

errors, respectively.

2.0.2 Codes over finite fields

2.0.2.1 Linear codes

Linear codes are the most studied class among all types of block codes since they

are easier to analyse, construct, encode, and decode. To introduce linear codes, we

let the alphabet Σ to be a finite field Fq with q = pr elements, where p is a prime.

Then Σn = Fnq is an n-dimensional vector space over Fq. A linear code C of length

n over Fq is a subspace of Fnq . We denote C an [n, k]-code, if it has dimension k. In

addition, if C has minimum distance d, we say that C is [n, k, d]-code. The rate of

code C is k/n.

One immediate advantage of linear codes is that the minimum distance and the

minimum weight of the code coincide, and so it is easy to determine the minimum

distance of a code. Another advantage of linear codes is that they can simply be

represented by matrices. An [n, k] code C can be represented either by a n × k

matrix G whose row space is C or by an (n− k)× n matrix H whose null space is

C. G is called a generator matrix of C and H is called a parity-check matrix of C.

Thus the rows of G forms a basis for C and H satisfies the conditions that it has

rank n − k and Hc⊥ = 0 ∀ c ∈ C. Obviously we have GHT = 0. After applying

some elementary row and column operations, G can be put in a unique form [Ik| A],
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where A is an k×(n−k) matrix. Such a generator matrix is known to be in standard

form. In this case, the parity check matrix for C is H = [−A⊥|In−k].

The dual code of an [n, k] code C over Fq is defined as

C⊥ = {v ∈ Fnq | u · v = 0 for all u ∈ C},

where u · v denotes the ordinary inner product of vectors u and v. If H is a parity

check matrix of C, then it is a generator matrix of C⊥. Similarly, a generator matrix

G of C is a parity-check matrix of C⊥.

The following result establishes a relation between the minimum distance of a

linear code and its parity-check matrix.

Theorem 2.0.2. ([79, Corollary 2.6]) “A linear code C has minimum distance d if

and only if its parity check matrix has a set of d linearly dependent columns but no

set of d− 1 linearly dependent columns.”

2.0.2.2 Cyclic codes

Cyclic codes are one of the most commonly used linear codes in practice. We present

here some basic definitions and fundamental properties of cyclic codes.

Definition 2.0.3. (Cyclic codes) A linear code C is said to be a cyclic code if it is

invariant under the operation of cyclic shift, i.e., whenever c = (c0, c1, · · · , cn−1) ∈

C, the cyclic shift (cn−1, c0, c1, · · · , cn−2) of c is also in C.

There is a bijection between Fnq and the residue class ring Fq [x]
〈xn−1〉 by the corre-

spondence c = (c0, c1, · · · , cn−1) ↔ c(x) = c0 + c1x + · · · + cn−1x
n−1. We use the

polynomial notation c(x) and c interchangeably. The element xc(x) in Fq [x]
〈xn−1〉 then

corresponds to the cyclic shift (cn−1, c0, · · · , cn−2) of (c0, c1, · · · , cn−1). Thus xc(x)

represents the cyclic shift of c(x). Let C be a cyclic code of length n over Fq. Then

C is invariant under cyclic shift operation, so xc(x), and hence xtc(x), t ≥ 0 are

in C. By linearity, it follows that a(x)c(x) ∈ C for all a(x) ∈ Fq[x]. Thus cyclic

codes are precisely the ideals of the quotient ring Rn = Fq [x]
〈xn−1〉 , and the study of
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cyclic codes of length n over Fq reduces to the study of ideals in Rn. Since Fq[x] is a

principal ideal domain, Rn is a principal ideal ring, and hence cyclic codes of length

n over Fq are the principal ideals of Rn. The following facts hold for a cyclic code

C of length n over Fq:

• there exists a unique minimal degree polynomial g(x) in C such that C =

〈g(x)〉,

• g(x) divides xn − 1.

g(x) is called a generator polynomial of C. The cyclic codes of length n over Fq are

thus completely determined by the factors of xn − 1 over Fq. If deg g(x) = k, then

the set {g(x), xg(x), ..., xn−k−1g(x)} forms a basis for C. Let xn − 1 = g(x)h(x).

Then h(x) is known as the check polynomial of C. Moreover, h∗(x) = xn−kh(x−1),

the reciprocal polynomial of h(x), is a generator polynomial for the dual code C⊥

of C.

Cyclic codes can also be defined in terms of roots of unity. Since g(x)|xn−1, the

roots of g(x) over Fq are nth roots of unity. Let the roots of g(x) be α1, α2, · · · , αk,

C can then be defined as

C = {v(x) ∈ Rn | v(αi) = 0 ∀ i = 1, 2, · · · , k}.

The set T = {αi | i = 1, 2, · · · , k} is called the defining set of C.

The following result is well known.

Theorem 2.0.4. (BCH bound) Let C be a cyclic code of length n over Fq, and let ζ

be a primitive nth root of unity in an extension field of Fq. If the zeros of C include

consecutive elements {ζ i | b ≤ i ≤ b+δ−2}, where δ > 1 and b ≥ 0, then d(C) ≥ δ.

2.0.2.3 Constacyclic codes

Constacyclic codes are an immediate and remarkable generalization of cyclic codes.

They were introduced by Berlekamp [15], and have been studied extensively [11, 51,

56, 57, 89].



17

Let λ be a unit in Fq, i.e., λ ∈ F∗q, the set of non-zero elements of Fq. Then we

define a map Γλ on Fnq as

Γλ((v0, v1, · · · , vn−1)) = (λvn−1, v0, v2, · · · , vn−2),

where (v0, v1, · · · , vn−1) ∈ Fnq . We call Γλ the λ-shift operator. A λ-constacyclic

code is a linear code C which is invariant under Γλ, i.e, Γλ(C) = C. In particular,

if λ = 1, then C is simply a cyclic code over Fq.

In polynomial form, a λ-constacyclic code of length n over Fq corresponds to an

ideal of the quotient ring Fq [x]
〈xn−λ〉 . The residue class ring Fq [x]

〈xn−λ〉 is a principal ideal ring

and so a λ-constacyclic code of length n over Fq is generated by a single element.

Many results of λ-constacyclic codes over Fq are similar to the case of cyclic codes

over Fq.

2.0.3 Local rings

Let R be a finite commutative ring with identity. An ideal M of R is said to be a

maximal ideal of R if M 6= R and M is not contained in any proper ideal of R.

Definition 2.0.5. “A ring R is said to be a local ring if R has a unique maximal

ideal.”

It is well known that R is a local ring if and only if all the non-units of R form

an ideal of R. If R has more than one maximal ideals then it is called a semi-local

rings.

Examples of commutative local rings are finite fields, Zpn , Galois rings etc.,

whereas the ring of matrices




a b c

0 a d

0 0 a


∣∣∣ a, b, c, d ∈ Zp

 forms a non-commutative

local ring over M3×3(Zp).

Definition 2.0.6. Let R be a finite commutative ring with identity. Then R is called

a finite chain ring if the lattice of all its ideals form a chain under set inclusion,
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i.e, if the ideals of R are of the form

〈0〉 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊆ R,

for some positive integer n.

The chain rings are principal ideal rings having unique maximal ideal, and hence

every chain ring is a local ring. For instance, Zpm , the ring of integers modulo pm, is

a finite chain ring. Let R be a finite chain ring with M = 〈λ〉 as its unique maximal

ideal. Let t be the nilpotency of λ. Then the ideals of R form the following chain:

〈0〉 = 〈λt〉 ( 〈λt−1〉 ( 〈λt−2〉 ( · · · ( 〈λ〉 ( 〈λ0〉 = R.

Theorem 2.0.7. [37, Proposition 2.1]) “For a finite commutative ring R the fol-

lowing conditions are equivalent:

1. R is a local ring and the maximal ideal of R is principal,

2. R is a local principal ideal ring,

3. R is a chain ring.”

Let R be a local ring with the unique maximal ideal M . Then the quotient ring
R
M

is a finite field, called the residue field of R and is denoted by R, i.e., R = R
M
.

Denote the projection map R → R by −. The image of an element a under this

map is denoted by a. In the usual way, the map − is extended to R[x]→ R[x].

Theorem 2.0.8. [37, Proposition 2.2] “Let R be a finite commutative chain ring

with maximal ideal M = 〈λ〉, and let t be the nilpotency of λ. Then

1. For some prime p and positive integers k, l(k ≥ l), |R| = pk, |R| = pl, and the

characteristic of R and R are powers of p.

2. For i = 0, 1, · · · , t, |〈λi〉| = |R|t−i. In particular, |R| = |R|t, i.e., k = lt.”
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2.0.3.1 Galois rings

Galois rings are a special case of finite commutative local rings. Let q = pr, p a

prime and r a positive integer. Galois rings are extensions of Zq, which are useful

to study codes over Zq.

Definition 2.0.9. “A polynomial f(x) over ring Zq[x] is said to be a basic irre-

ducible polynomial if f(x) (mod p) is an irreducible polynomial in Zp[x], and a basic

primitive polynomial if f(x) (mod p) is a primitive polynomial in Zp[x].”

We denote f(x)(mod p) by f(x). Consider the residue class ring GR(q,m) =
Zq [x]
〈f(x)〉 , where f(x) ∈ Zq[x] is a monic basic irreducible polynomial of degree m. Then

GR(q,m) is called the Galois ring of degree m over Zq having characteristic q and

cardinality qm. It is a local ring with maximal ideal 〈p〉 = pGR(q,m) and residue

field GR(q,m) = GR(q,m)/〈p〉 = Fpm .

Let ξ = x + 〈f(x)〉. Then ξ is a root of f(x) and GR(q,m) = Zq[ξ]. Moreover

GR(q,m) is a free module of rank m over Zq with basis {1, ξ, ξ2, · · · , ξm−1}. So, for

all c ∈ GR(q,m), we have c =
m−1∑
i=1

ciξ
i, where ci ∈ Zq. This is known as the additive

form of elements of GR(q,m).

Remark 2.0.9.1. The Galois rings of same order are isomorphic, as in the case of

finite fields.

There is an element η in GR(q,m) such that o(η) = pm− 1, so-called a primitive

element of GR(q,m). If η is root of a basic primitive polynomial f(x) of degree

m over Zq which divides xpm−1 − 1 in Zq[x], then every element c ∈ GR(q,m) =

Zq[x]/〈f(x)〉 can be expressed as

c = a0 + a1p+ a2p
2 + · · ·+ ar−1p

r−1

where a0, a1, · · · , ar−1 ∈ τ = {0, 1, η, · · · , ηpm−1}. τ is known as the Teichmüller

set of GR(q,m). This representation is called the p-adic representation of elements

of GR(q,m) and also known as the multiplicative forms of elements of GR(q,m).
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Set of all automorphisms on GR(q,m) form a group, denoted by Gal(GR(q,m))

and called Galois group of GR(q,m). This is a cyclic group of order m and generated

by the Frobenius automorphism φ : GR(q,m) → GR(q,m), defined by φ(c) =

ap0 + pap1 + p2ap2 + · · ·+ pr−1apr−1, where c ∈ GR(q,m) is expressed as c = a0 + pa1 +

p2a2 + · · ·+ pr−1ar−1. The elements fixed by the automorphism φ are precisely the

elements of the subring Zq.

2.0.4 Codes over finite rings

Let R be a finite commutative ring with identity. A subset C of Rn is said to be a

linear code of length n over R, if it is an R-submodule of Rn. Unlike in the case of

vector spaces, submodules may not be free. So C may not have a basis. However,

we can still define a generator matrix for C. A generator matrix of C is a matrix

whose rows form a minimal spanning set for C. As noted above, the rows of C may

not be linearly independent. The order of minimal spanning set of C is called the

rank of C. The free rank of C is maximum of the ranks of R-free submodules of C.

The Hamming weight and the Hamming distance on Rn can be defined similarly

as in the case of vector spaces. Other terminologies like, cyclic codes, constacyclic

codes, quasi cyclic codes, that are used over finite fields, can be generalized to R

in the usual way. For example, a cyclic code over R can be seen as an ideal of the

quotient ring R[x]
〈xn−1〉 . Dual of a code, self-dual codes, self orthogonal codes over R

are defined similarly as in the case of finite fields.

2.1 Skew polynomial rings

We start with a brief introduction to skew polynomial rings. The investigation of

skew polynomial rings is an important and active research area in non-commutative

algebra. A systematic study of these rings was done by Ore [76] in 1933, whereas

Noether and Schmeidler [75] were the first to consider these kinds of rings. Since

then, these rings have been studied extensively. Recently skew polynomial rings
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have been successfully applied in many areas, for example control theory and coding

theory. In this section we give some basic definitions and results on skew polynomial

rings and on linear codes over skew polynomial rings.

Definition 2.1.1. (Skew Polynomial Ring) “Let Fq be a finite field and θ an au-

tomorphism of Fq. The skew polynomial ring Fq[x, θ] is the set of polynomials over

Fq in which the addition is defined as the usual addition of polynomials and the

multiplication is defined by the rule

(axi)(bxj) = aθi(b)xi+j,

which is extended to the elements of Fq[x, θ] using associativity and distributivity.”

The ring Fq[x, θ] is a non-commutative ring. An element g(x) ∈ Fq[x, θ] is said

to be a right divisor of f(x) ∈ Fq[x, θ] if there exists q(x) ∈ Fq[x, θ] such that

f(x) = q(x)g(x). In this case, f(x) is called a left multiple of g(x). A left divisor

of f(x) can be defined similarly. We use the symbol a|b to denote that a is a right

divisor of b. In the sequel, division always means a right division. The ring Fq[x, θ]

is a right (left) Euclidean ring. The right (left) division is defined on Fq[x, θ] as

follows.

Lemma 2.1.2. [74] “Let f(x), g(x) ∈ Fq[x, θ]. Then

1. deg (f(x) + g(x)) ≤ max{deg f(x), deg g(x)}

2. deg f(x)g(x) = deg f(x) + deg g(x).

3. Fq[x, θ] has no nonzero zero-divisor.

4. The units of Fq[x, θ] are the units of Fq.”

Lemma 2.1.3. [74] “Let f(x), g(x) ∈ Fq[x, θ] be two arbitrary polynomials with

g(x) 6= 0 and deg g(x) < deg f(x). Then there exist q(x), r(x) ∈ Fq[x, θ] such that

f(x) = q(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x).”

The aforementioned result is the division algorithm with division on the right by

g(x). The left division algorithm can be obtained similarly.
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2.1.1 Coding with skew polynomial rings

Boucher et al. [26] introduced skew-cyclic codes using skew polynomial rings. Since

then a lot of work has been done on codes using skew polynomial rings. We present,

in this subsection, some important results about linear, cyclic, constacyclic, quasi-

cylic codes in the non-commutative setting of skew polynomial rings.

2.1.1.1 Skew codes over finite fields

Let Fq denote the finite field and θ an automorphism of Fq.

Definition 2.1.4. (Skew-cyclic code) “A linear code C of length n over Fq is said

to be a skew-cyclic code if for all v = (v0, v1, · · · , vn−1) ∈ C, the skew-cyclic shift

Tθ(v) = (θ(vn−1), θ(v0), θ(v1), · · · , θ(vn−2)) of c is also in C.”

Definition 2.1.5. (Central polynomial) “A polynomial f(x) ∈ Fq[x, θ] is said to be

a central polynomial if f(x)r(x) = r(x)f(x) for all r(x) ∈ Fq[x, θ].”

The ideal generated by a central polynomial f(x) ∈ Fq[x, θ] is a two sided ideal

of Fq[x, θ]. We use the notation |θ| for the order of the automorphism θ.

Lemma 2.1.6. [96] (xn − 1) ∈ Fq[x, θ] lies in the center Z(Fq[x, θ]) of Fq[x, θ] if

and only if |θ| | n.

Lemma 2.1.7. ([26], Lemma 1) “If n is a positive integer such that |θ| divides n,

then the ring Fq [x,θ]
〈xn−1〉 is a principal left ideal ring in which left ideals are generated by

g(x), where g(x) is a right divisor of xn − 1 in Fq[x, θ].”

Theorem 2.1.8. ([26], Theorem 1) “Let n be a positive integer such that |θ| divides

n. Then a code C is a θ-cyclic code if and only if C is a left ideal of the ring Fq [x,θ]
〈xn−1〉 .”

In [96], Siap et al. have defined skew-cyclic codes without imposing the restriction

that |θ| | n. If we remove the restriction that |θ| | n, then the ideal 〈xn − 1〉 is only

a left ideal of Fq[x, θ] and hence Fq [x,θ]
〈xn−1〉 is not a ring, it is only a left Fq[x, θ]-module.

A skew-cyclic code over Fq is then only a left submodule of Fq [x,θ]
〈xn−1〉 . We have the

following result.



23 2.1 Skew polynomial rings

Theorem 2.1.9. ([96], Theorem 10) “A code C in Rn = Fq [x,θ]
〈xn−1〉 is a skew-cyclic

code if and only if C is a left Fq[x, θ]-submodule of the left Fq[x, θ]-module Rn.”

Theorem 2.1.10. ([96], Theorem 12) “Let C = 〈f(x)〉 be a left submodule of Rn.

Then f(x) is a right divisor of xn − 1.”

Theorem 2.1.11. ([96], Theorem 13) “Let C = 〈g(x)〉 be a left submodule of Rn

where g(x) is a right divisor of xn − 1 of degree r, and xn − 1 = h(x)g(x). Then C

is a free left Fq-submodule with a basis B = {g(x), xg(x), x2g(x), · · · , xn−r−1g(x)},

and dim C = n− r.”

Further, if |θ| is coprime to n, then skew-cyclic codes over Fq coincide with cyclic

codes.

Theorem 2.1.12. ([96], Theorem 16) “Let C be a skew-cyclic code of length n over

Fq and let θ be an automorphism of Fq with |θ| = m. If (m,n) = 1, then C is a

cyclic code of length n.”

Another condition for a skew-cyclic code to coincide with a cyclic code has been

given by Boucher et al. [29].

Lemma 2.1.13. ([29], Lemma 4) “Suppose that f(x) = xn − 1 ∈ Fq[x, θ] generates

a two-sided ideal. A θ-cyclic code generated by a right divisor g(x) of f(x) of degree

less than n generates a cyclic code if and only if all the coefficients of g(x) are in

Fθq, the fixed field of θ in Fq.”

2.1.1.2 Skew codes over finite rings

Skew codes have been studied over finite rings by several researchers. Boucher et

al. [27] have studied a class of skew constacyclic codes over Galois rings. This

work has been generalized in many ways. Jitman et al. [58] have studied skew

constacyclic codes over finite chain rings, and Bhaintwal [16] has studied a class of

skew quasi-cyclic codes over Galois rings. Many other rings have been considered

to study skew-codes [41, 1, 48].
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Let R be a finite commutative ring with identity, and let θ be an automorphism

of R. Then, as in the case of fields, the set of polynomials R[x, θ] forms a skew

polynomial ring over R. R[x, θ] is in general a non-commutative ring and is no more

left or right Euclidean ring. Also, R[x, θ] is not a unique factorization ring. This is

shown by the following example.

Example 2.1.14. Let R = GR(ps,m) with p = s = m = 2, where GR(ps,m)

denotes a Galois ring. Let θ : GR(4, 2) → GR(4, 2) be such that θ(a + 2b) =

a2 + 2b2, where a, b ∈ T = {0, 1, ξ, ξ2}, the Teichmüller set of GR(4, 2). Two

distinct factorizations of x4−1 in GR(4, 2) are (x+1)(x+1)(x+2ξ+1)(x+2ξ+3)

and (x2 + 2ξ + 1)(x2 + 2ξ + 3).

Jitman et al. [58] have generalized the study of skew-cyclic codes to finite chain

rings. In particular, a finite chain ring Fpm + uFpm , u2 = 0, has been considered and

classification of skew constacyclic code over same has been done.

Definition 2.1.15. (Skew-quasi cyclic code) “Let R be a commutative finite ring

with identity. Let θ be an automorphism of R. Let n = ls such that order of θ

divides s. A linear code C over R is called a skew quasi-cyclic code of length n and

index l if

a =
 a0,0, a0,1, · · · , a0,l−1, a1,0, a1,1, · · · , a1,l−1,

· · · , as−1,0, as−1,1, · · · , as−1,l−1

 ∈ C
implies that

Tθ,l(a) =
 θ(as−1,0), θ(as−1,1), · · · , θ(as−1,l−1), θ(a0,0), θ(a0,1), · · · , θ(a0,l−1),
θ(a1,0), θ(a1,1), · · · , θ(a1,l−1), · · · , θ(as−2,0), θ(as−2,1), · · · , θ(as−2,l−1)

 ∈ C,
and l is the smallest positive integer satisfying this condition.”

In particular, if θ is the identity automorphism of R, then C is simply a quasi-

cyclic code over R. Further for l = 1, C is a skew-cyclic code over R.

In polynomial form, a skew quasi-cyclic code C of length ls and index l over R

is a left R[x,θ]
〈xs−1〉 -submodule of

[
R[x,θ]
〈xs−1〉

]l
.
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In [16], skew quasi-cyclic codes over GR(q,m) have been studied thoroughly. In

[1, 41, 48], skew-cyclic codes have been studied over F2 +vF2, Fp+vFp, and Fq+vFq,

respectively, in which mainly the results of [26, 27, 58] have been generalized.
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Chapter 3

Skew-cyclic Codes over Some
Extensions of Fp

3.1 Introduction

A recent development in coding theory is the study on codes over rings and more

general structures. The work in this direction attracted more attention especially

after a landmark paper of Hammons et al. [50]. Since then, different rings have

been considered and their Gray images have been determined to achieve good linear

and non-linear codes. In recent years, some new kinds of codes over rings have

been proposed [4, 7, 6, 25, 24, 9]. However, most of this work has been done over

commutative setting. Recently, there has been an interest on the study of codes

over skew polynomial rings, after Boucher et al. [26] introduced skew-cyclic codes.

Abualrub et al. [6] have studied Z2(Z2 + uZ2)-linear cyclic codes. These codes can

also be seen as a generalization of double cyclic codes [24].

Motivated from the works [6] and [24], we study a new class of skew-cyclic codes

over the mixed alphabet F3R, where R = F3 + vF3, v
2 = v. We call these codes

F3R-skew cyclic codes. We first define a division algorithm on R[x, θ] to obtain the

structure of skew-cyclic codes over R, and then using this we obtain the structure

of F3R-skew cyclic codes. Further, we have also studied a class of skew-cyclic codes

over S = Fp + vFp, v2 = 1, where p is a prime.

27
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3.2 Properties of the ring R = F3 + vF3 and R[x, θ]

Throughout the chapter, we denote R = F3 + vF3 = {0, 1, 2, v, 2v, 1 + v, 1 + 2v, 2 +

v, 2 + 2v}, v2 = v, where F3 = {0, 1, 2} is the finite field with 3 elements. R is a

semi-local ring with two maximal ideals 〈v〉 and 〈v+2〉. The units of R are 1, 2, 1+v,

and 2 + 2v. Moreover R = 〈v〉 ⊕ 〈v + 2〉.

Define θ : R→ R by

θ(a+ vb) = a+ (1− v)b, (3.1)

for all a+ vb ∈ R. One can easily check that θ is an automorphism of R. Moreover,

the order of θ is 2, since θ2(x) = x for all x ∈ R. With this automorphism, the skew

polynomial ring R[x, θ] over R is defined (see Definition 2.1.1).

The center Z(R[x, θ]) of R[x, θ]) is F3[x2]. We recall that the ring R[x, θ] may

not be a left or right Euclidean ring, but still the division algorithm can be applied

on certain elements of R[x, θ]. There is a version of division on R[x, θ], given below,

that directly follows from Theorem II.11 in [74].

Lemma 3.2.1 (Left division algorithm). [74] “Let f(x), g(x) ∈ R[x, θ] such that

the leading coefficient of g(x) is a unit. Then there exist two polynomials q(x) and

r(x) in R[x, θ] such that

f(x) = g(x)q(x) + r(x)

where r(x) = 0 or deg r(x) < deg g(x).”

The right division algorithm on R[x, θ] can similarly be defined.

The polynomials in R[x, θ] do not necessarily factorize uniquely as shown by the

following example.

Example 3.2.2. The factors of degree 2 of x4 − 1 in R[x, θ] are given by the ex-

pression

x4 − 1 = (ax2 + bx+ c)(dx2 + ex+ f),

where the possible values of a, b, c, d, e, f can be any row of the following table:
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rows a b c d e f

1 1 0 2 1 0 1
2 1 0 v + 1 1 0 2v + 2
3 1 v v + 1 1 2v 2v + 2
4 1 v + 2 v + 1 1 2v + 1 2v + 2
5 1 2v v + 1 1 v 2v + 2
6 1 2v + 1 v + 1 1 v + 2 2v + 2
7 2 0 v + 1 2 0 2v + 2
8 2 v v + 1 2 2v 2v + 2
9 2 v + 2 v + 1 2 2v + 1 2v + 2
10 2 2v v + 1 2 v 2v + 2
11 2 2v + 1 v + 1 2 v + 2 2v + 2

The above example shows that there are many right divisors of x4−1, and hence

more skew-cyclic codes of length 4 over R than cyclic codes over R with same length.

This indicates that there are more possibilities for getting better codes in the setting

of skew polynomial rings.

We define the Gray map on R, φ1 : R→ F2
3, as

φ1(a+ vb) = (b, a+ b).

Clearly φ1 is a linear map. The Gray weight wtG(x) of an element x ∈ R is defined

as wtG(x) = wtH(φ1(x)), where wtH denotes the Hamming weight. Thus the Gray

weights of elements of R are as follows:
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Element Gray weight

0 0
1 1
2 1
v 2
2v 2
1 + v 2
1 + 2v 1
2 + v 1
2 + 2v 2

The map φ1 is then extended componentwise to Rn as Φ1 : Rn → F2n
3 . The weight

of x = (x1, x2, · · · , xn) ∈ Rn is wtG(x) = ∑n
i=1 wtG(xi). Φ1 is a distance preserving

map, since for any x, y ∈ Rn, we have dG(x, y) = wtG(x − y) = wtH(Φ1(x − y)) =

wtH(Φ1(x)− Φ1(y)) = dH(Φ1(x),Φ1(y)).

3.3 Skew-cyclic codes over R

In this section, some structural properties and generating sets of skew-cyclic codes

over R have been discussed.

For arbitrary n, Rn = R[x,θ]
〈xn−1〉 is a left R[x, θ]-module with multiplication defined

as a(x)(f(x) + 〈xn − 1〉) = a(x)f(x) + 〈xn − 1〉 for any a(x) ∈ R[x, θ]. In this case,

〈xn−1〉 denotes the left ideal of R[x, θ] generated by xn−1. To associate the vectors

of Rn to the polynomials in Rn, we define an R-module isomorphism from Rn to Rn

as

(c0, c1, · · · , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.

A skew-cyclic code C over R can similarly be defined as in the case of fields, see

Definition 2.1.4. The following result is an immediate generalization of [96, Theorem

10]. The proof is omitted.
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Theorem 3.3.1. [96] “A code C of length n in Rn is a skew-cyclic code if and only

if C is a left R[x, θ]-submodule of the left R[x, θ]-module Rn.”

3.3.1 Generator polynomials of skew-cyclic codes over R

Now we discuss the form of generator polynomials of a skew-cyclic code over R

which is necessary for constructing the generator polynomials of F3R-skew cyclic

codes. We consider different cases that a skew-cyclic code over R may have, and

determine the generator polynomials for all these cases.

Let C be a skew-cyclic code over R. We have the following cases:

1. A code C has a minimal degree polynomial having its leading coefficient a

unit.

2. There is no polynomial in C which has its leading coefficient a unit.

3. There is a polynomial in C whose leading coefficient is a unit but it is not a

minimal degree polynomial in C.

In the first case, let there is a polynomial g(x) of minimal degree in C having the

leading coefficient a unit. Then by Lemma 3.2.1 we have, for any c(x) ∈ C there

exist q(x), r(x) ∈ R[x, θ], where deg r(x) < deg g(x) or r(x) = 0, such that

c(x) = q(x)g(x) + r(x).

This gives r(x) ∈ C and consequently r(x) = 0 as g(x) is a minimal degree polyno-

mial in C. Therefore C is generated by g(x).

Example 3.3.2. Let C be the skew-cyclic code of length 4 over R with generator

matrix  1 + v 0 1 0
0 2 + 2v 0 1

 .
Then C contains an element g(x) = x2 +1+v of minimal degree whose leading coef-

ficient is a unit, and so C = 〈g(x)〉. Moreover, we note that there is no polynomial

of degree less than 2 in C.
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Next we consider the case when there is no polynomial in C having its leading

coefficient a unit. We require following lemmas to address this case.

Lemma 3.3.3. Let g(x) be a minimal degree polynomial in R[x, θ] having its leading

coefficient a non-unit. Then g(x) will be of the type vg1(x) or (v+ 2)g2(x) for some

g1(x), g2(x) ∈ F3[x].

Proof: Let g(x) = g0 + g1x+ · · ·+ grx
r, where gr is a non-unit. The non-units of R

are of the type av or a(v+2), a = 1, 2. Suppose gr = av, a = 1 or 2. Then (v+2)g(x)

is a polynomial of degree less than that of g(x). But as g(x) is a minimal degree

polynomial, so (v+ 2)g(x) = 0, i.e., (v+ 2)gi = 0 for all i = 0, 1, 2 · · · , r. Thus each

gi = avg′i, for a = 1 or 2, and so g(x) = vg1(x), where g1(x) is a polynomial over

F3. Similarly, when g(x) has the leading coefficient a(v + 2) for a = 1 or 2, we can

prove that g(x) = (v + 2)g2(x) for some g2(x) ∈ F3[x]. �

Lemma 3.3.4. Let f(x), g(x) ∈ R[x, θ] be two polynomials with their leading coef-

ficients non-units. Then there exist q(x) and r(x) in R[x, θ] such that

f(x) = g(x)q(x) + r(x),

where r(x) = 0 or deg r(x) < deg g(x) or r(x) is a polynomial with its leading

coefficient a unit and having degree at most deg f(x).

Proof: Let f(x) = f0+f1x+· · ·+ftxt, ft 6= 0 and g(x) = g0+g1x+· · ·+gsxs, gs 6= 0,

and s ≤ t. Since gs is a non-unit, gs = av or a(v + 2), a = 1 or 2.

Suppose gs = av. We have two cases: t−s is odd or even. Suppose t−s is odd. Then

θt−s(gs) = θ(gs), as the order of θ is 2. Define a polynomial l1(x) = f(x)−axt−sg(x).

The leading coefficient of l(x) is ft−aθt−s(gs)= ft−a(a(1+2v))=ft−a2(1+2v)=ft−

(1 + 2v), as a2 = 1. The possible values of ft are v, 2v, v+ 2, 2v+ 1, and ft− (1 + 2v)

is either a unit or 0 for each value of ft except for ft = v + 2. If ft = v + 2, define

l2(x) = f(x)−(v+2)axt−sg(x). The leading coefficient of l2(x) is 0. So by combining

both the cases, we see that we have a polynomial l(x) = l1(x) or l2(x), whose leading
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coefficient is either a unit or 0. If the leading coefficient of l(x) is 0, then l(x) has

degree less than that of f(x). Therefore in either case, we have

f(x) = q(x)g(x) + l(x), (3.2)

where

q(x) =


axt−s for ft 6= v + 2

(v + 2)axt−s for ft = v + 2.

Now if the leading coefficient of l(x) is a unit, we are done. Suppose deg l(x) <

deg f(x). To prove the result we apply mathematical induction on the degree of f(x).

Consider t = 0. Then f(x) = f0 and g(x) = g0, and hence f(x) = q1(x)g(x) + r1(x),

where r1(x) is given by the following table, where the elements in the first row denote

the possible values of f , the elements in the first column denote the possible values

of g and the other elements in the table denote the corresponding value of r1(x).

g \ f v 2v 1 + 2v v + 2

v 0 0 1 2
2v 0 0 1 2
1 + 2v 1 2 0 0
v + 2 1 2 0 0

It is clear from the table that either r = 0 or r is a unit. Therefore the result is true

for t = 0. We assume that the result is true for every polynomial of degree k < t =

deg f(x) in R[x, θ]. Since deg l(x) < t, by induction hypothesis, l(x) = Q(x)g(x) +

S(x) for some Q(x), S(x) in R[x, θ] such that S(x) = 0 or deg S(x) < deg g(x) or

S(x) is polynomial of degree at most deg l(x), having its leading coefficient a unit.

By (6.3.12), we have f(x) = q(x)g(x)+Q(x)g(x)+S(x) = (q(x)+Q(x))g(x)+S(x),

where S(x) has the same conditions as above. Similarly, we can prove the result if

t− s is even. Further, the result can be proved similarly when gs = a(v + 2). �

Now we prove the following two theorems using Lemma 3.3.3 and Lemma 3.3.4.

Theorem 3.3.5. Let C be a skew-cyclic code over R such that there does not exist

any polynomial in C whose leading coefficient is a unit. Let g(x) be a minimal degree



Chapter 3: Skew-cyclic Codes over Some Extensions of Fp 34

polynomial in C. Then C = 〈g(x)〉. Moreover g(x) = vg1(x) or g(x) = (v + 2)g2(x)

for some g1(x), g2(x) ∈ F3[x].

Proof: Let c(x) ∈ C be a codeword. Let g(x) be a non-zero minimal degree

polynomial in C. Since c(x) and g(x) are two polynomials with leading coefficients

non-units, by Lemma 3.3.4, there exist q′(x) and r′(x) in R[x, θ] such that c(x) =

q′(x)g(x) + r′(x), where r′(x) = 0 or deg r′(x) < deg g(x) or r′(x) is a polynomial

of degree at most deg c(x), having its leading coefficient a unit. But the last two

cases do not arise, as g(x) is a minimal degree polynomial and C has no polynomial

with its leading coefficient a unit. Therefore C = 〈g(x)〉. Rest follows from Lemma

3.3.3. �

Example 3.3.6. Let C be the skew-cyclic code generated by the matrix 2v 0 v 0
0 v + 2 0 1 + 2v

 .
Then the corresponding code is given by

C =


(0, 0, 0, 0), (v, 0, 2v, 0), (v, v + 2, 2v, 2v + 1)

(2v, 2v + 1, v, v + 2), (2v, v + 2, v, 2v + 1), (v, 2v + 1, 2v, v + 2)
(0, 2v + 1, 0, v + 2), (2v, 0, v, 0), (0, v + 2, 0, 2v + 1)

 .

It can easily be verified that C is a skew-cyclic code which is not free and it does

not contain any codeword with corresponding polynomial having leading coefficient

a unit. Moreover C is generated by a minimal degree polynomial g(x) = vx2 + 2v.

Corollary 3.3.6.1. If g(x) = vg1(x) i.e., C = 〈vg1(x)〉, then g1(x)|xn − 1.

Proof: Since g1(x) is a polynomial over F3, and F3[x, θ] is a left Euclidean ring, we

have

xn − 1 = q(x)g1(x) + r(x)

for some q(x), r(x) in F3[x, θ] such that r(x) = 0 or deg r(x) < deg g1(x).

Suppose r(x) 6= 0. Let q1(x), q2(x) be two polynomials such that q1(x) contains

precisely the even power terms of q(x), and q2(x) contains the odd power term of
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q(x). Then xn − 1 = (q1(x) + q2(x))g1(x) + r(x), and so

v(xn − 1) = v(q1(x) + q2(x))g1(x) + vr(x)

= vq1(x)g1(x) + vq2(x)g1(x) + vr(x)

= q1(x)(1 + 2v)g1(x) + q2(x)vg1(x) + vr(x)

= (q2(x) + 2q1(x))vg1(x) + q1(x)g1(x) + vr(x)︸ ︷︷ ︸
Since deg r(x) < deg g1(x), and q1(x), g1(x) are polynomials over F3, so

q1(x)g1(x) + vr(x) is a polynomial with its leading coefficient a unit, which is a

contradiction. Therefore r(x) = 0 and so g1(x)|xn − 1. �

For example, in Example 2, we have g(x) = ag′(x) where a = v and g′(x) =

(x2 + 2), and (x2 + 2)|(x4 − 1).

Now we consider the case when there exist a polynomial in C with leading

coefficient a unit but is not of minimal degree in C.

Theorem 3.3.7. Let C be a skew-cyclic code over R having a polynomial with

leading coefficient a unit and no minimal degree polynomial in C has its leading

coefficient a unit. Let g(x) be a minimal degree polynomial in C and h(x) a minimal

degree polynomial in C among the polynomials with their leading coefficient a unit .

Then C = 〈g(x), h(x)〉.

Proof: Let c(x) ∈ C be any codeword. Then

c(x) = q(x)h(x) + r(x) (3.3)

for some q(x), r(x) ∈ R[x, θ], where r(x) = 0 or deg r(x) < deg h(x). If r(x) = 0,

then C ⊆ 〈g(x), h(x)〉. Suppose r(x) 6= 0. Then r(x) must have its leading coefficient

a non-unit, as h(x) is a minimal degree polynomial with its leading coefficient a unit.

Therefore by Lemma 3.3.4, we have

r(x) = q1(x)g(x) + r1(x) (3.4)

for some q1(x), r1(x) ∈ R[x, θ], where r1(x) = 0 or deg r1(x) < deg g(x) or r1(x)

has its leading coefficient a unit and degree at most deg r(x). If r1(x) = 0, then
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C ⊆ 〈g(x), h(x)〉 (by 3.3, 3.4). Other two cases do not arise, because g(x) is a

minimal degree polynomial in C, and r1(x) cannot have its leading coefficient a

unit as deg r1(x) < deg r(x) < deg h(x) and h(x) is a minimal degree polynomial

with leading coefficient a unit. It is obvious that 〈g(x), h(x)〉 ⊆ C. Hence C =

〈g(x), h(x)〉. �

Example 3.3.8. Let C be a skew-cyclic code of length 4 over R with a spanning set

S =

 (v, v, 0, 0), (0, 1 + 2v, 1 + 2v, 0), (0, 0, v, v)
(1 + 2v, 0, 0, 1 + 2v), (1, 1, 1, 1)

 .
Then the corresponding code is given by



(0, 0, v, v) (v + 2, v + 2, 2, 2) (2v, 2, v + 2, 0)
(2v + 2, 1, 1, 2v + 2) (2, 2, 2v + 2, 2v + 2) (1, 1, v + 1, v + 1)
(2v + 1, 0, 0, 2v + 1) (1, v, 0, 2v + 1) (0, v + 2, v + 2, 0)

(0, 0, 2v, 2v) (v, 1, v + 1, 2v) (2v, 2, 2v + 2, v)
(v + 1, v + 1, 2v + 1, 2v + 1) (2v, v + 1, 2v + 1, 0) (v + 1, 2v, 2v, v + 1)

(v + 2, 0, 0, v + 2) (v + 2, 2v + 1, 2v + 1, v + 2) (2v + 1, 0, v, 1)
(v, 2v + 2, v + 2, 0) (2, v + 1, 2v + 1, v + 2) (1, 2v + 2, v + 2, 2v + 1)
(2, 2, v + 2, v + 2) (1, 2v + 2, 2, v + 1) (v, 2v + 2, 2, 2v)

(1, 1, 2v + 1, 2v + 1) (v + 2, v + 2, 2v + 2, 2v + 2) (v + 2, 0, 2v, 2)
(v + 1, 2v, v, 1) (2v, 2v, v, v) (2, 2v, 2v, 2)

(2v + 2, 1, v + 1, 2) (2v + 1, 2v + 1, 1, 1) (12v + 2, 2v + 2, 1)
(2v, v + 1, v + 1, 2v) (2, 2v, v, 2v + 2) (2v, 2v, 2v, 2v)

(2v, 2v, 0, 0) (v + 1, 2v, 0, 2v + 1) (v, 2v + 2, 2v + 2, v)
(0, 0, 0, 0) (2, v + 1, v + 1, 2) (2, 2v, 0, v + 2)

(2v + 1, v + 2, v + 2, 2v + 1) (2, 2, 2, 2) (2v + 2, v, v, 2v + 2)
(v, 1, 1, v) (v + 2, v + 2, v + 2, v + 2) (2v + 1, v + 2, 2, v + 1)

(2v + 2, 1, 2v + 1, v + 2) (2v + 1, 2v + 1, v + 1, v + 1) (0, v + 2, 2, 2v)
(2v + 2, 2v + 2, 2, 2) (v + 2, 0, v, 2v + 2) (0, 2v + 1, v + 1, 2v)
(0, v + 2, 2v + 2, v) (2v, v + 1, 1, v) (2v + 2, 2v + 2, 2v + 2, 2v + 2)

(2v + 1, v + 2, 2v + 2, 1) (2v + 1, 2v + 1, 2v + 1, 2v + 1) (v + 2, 2v + 1, 1, 2v + 2)
(2, v + 1, 1, 2v + 2) (v, v, v, v) (v + 1, 2, v + 2, 2v + 1)
(2v + 1, 0, 2v, v + 1) (v + 1, 2, 2, v + 1) (v, v, 0, 0)

(1, v, 2v, v + 1) (v, v, 2v, 2v) (v + 1, v + 1, 1, 1)
(2v + 2, 2v + 2, v + 2, v + 2) (2v + 2, v, 2v, 2) (1, 1, 1, 1)

(v + 1, 2, 2v + 2, 1) (v + 1, v + 1, v + 1, v + 1) (v, 1, 2v + 1, 0)
(1, v, v, 1) (2v, 2, 2, 2v) (2v + 2, v, 0, v + 2)

(0, 2v + 1, 2v + 1, 0) (0, 2v + 1, 1, v) (v + 2, 2v + 1, v + 1, 2)



.

We can easily check that there is a codeword with associated minimal degree polyno-

mial g(x) = v+vx whose leading coefficient is a non-unit. Also h(x) = 1+x+x2+x3
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is a minimal degree polynomial in C with its leading coefficient a unit. The corre-

sponding codewords are highlighted. Therefore C can be written as C = 〈g(x), h(x)〉.

3.4 F3R-Skew cyclic codes

In this section, we determine the structure of F3R-skew cyclic codes.

A code C of length n is said to be an F3R-code if the coordinates of the codewords

are partitioned in two blocks of lengths α and β such that the set of the first blocks

are element of Fα3 and the set of the second blocks are elements of Rβ.

For convenience, we denote Fα3×Rβ by Fα3Rβ. Let π : R → F3 be the projection

map defined by π(r + vq) = r. It is clear that π is a ring homomorphism. For any

d ∈ R and v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ Fα3Rβ, we define

dv = (π(d)a0, π(d)a1, · · · , π(d)aα−1, db0, db1, · · · , dbβ−1). (3.5)

With this multiplication, Fα3Rβ is an R-module.

Let Θ be an automorphism of R.

Definition 3.4.1. A subset C of Fα3Rβ is called an F3R-skew cyclic code if

1. C is an R-submodule of Fα3Rβ and

2. For any v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ C, its αβ-skew cyclic shift,

which is (Θ(aα−1),Θ(a0),Θ(a1),Θ(aα−2),Θ(bβ−1),Θ(b0),Θ(b1), · · · ,Θ(bβ−2)),

is also in C.

In particular, if Θ is the identity map, then C is called an F3R-cyclic code.

For the rest of the chapter, we consider the F3R-skew cyclic codes with respect

to automorphism θ, defined in section 3.2.

Remark 3.4.1.1. θ(ai) = ai for 0 ≤ i ≤ α− 1, as ai ∈ F3 (the fixed field of θ).

In polynomial representation, an element c = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1)

in C can be identified with

c(x) = (a(x), b(x)),
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where a(x) = a0+a1x+· · ·+aα−1x
α−1 ∈ F3[x]

〈xα−1〉 and b(x) = b0+b1x+· · ·+bβ−1x
β−1 ∈

R[x,θ]
〈xβ−1〉 . This identification gives a one-to-one correspondence between Fα3Rβ and

Rα,β = F3[x]
〈xα−1〉 ×

R[x,θ]
〈xβ−1〉 . For convenience we denote (a(x), b(x)) by (a(x) | b(x)). We

define the multiplication of any r(x) ∈ R[x, θ] and (g1(x) | g2(x)) ∈ Rα,β as

r(x)(g1(x) | g2(x)) = (π(r(x))g1(x) | r(x)g2(x)),

where π(r(x))g1(x) is the ordinary multiplication of polynomials over F3 and

r(x)g2(x) is the multiplication of polynomials in R[x, θ]. With this multiplication,

Rα,β is a left R[x, θ]-module. It can easily be seen that if c(x) = (a(x) | b(x))

represents the codeword c, then xc(x) represents the αβ-skew cyclic shift of c.

Theorem 3.4.2. A code C is an F3R-skew cyclic code if and only if C is a left

R[x, θ]-submodule of the left module F3[x]/〈xα − 1〉 ×R[x, θ]/〈xβ − 1〉.

Proof: Let C be an F3R-skew cyclic code. Let c ∈ C, and let the associated

polynomial of c be c(x) = (a1(x) | a2(x)). As xc(x) is an αβ-skew cyclic shift of c,

so xc(x) ∈ C. By linearity of C, r(x)c(x) ∈ C for any r(x) ∈ R[x, θ]. So C is a left

R[x, θ]-submodule of Rα,β. Converse is straightforward. �

Theorem 3.4.3. An F3R-skew cyclic code is equivalent to an F3R-cyclic code if

α, β both are odd integers.

Proof: Let C be an F3R-skew cyclic code. Let γ = lcm(α, β). Then γ is odd,

and so gcd(γ, 2) = 1. Therefore there exist two integers a, b such that γa + 2b = 1

and so 2b = 1 − γa = 1 + γl for some l > 0, where l = −a (mod γ). Let c(x) =

(a(x) | b(x)) ∈ C, where a(x) = ∑α−1
i=0 aix

i and b(x) = ∑β−1
i=0 bix

i.
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Then

x2bc(x) = x2b

(
α−1∑
i=0

aix
i |

β−1∑
i=0

bix
i

)

=
(
α−1∑
i=0

aix
i+2b |

β−1∑
i=0

θ2b(bi)xi+2b

)

=
(
α−1∑
i=0

aix
i+1+γl |

β−1∑
i=0

θ2b(bi)xi+1+γl

)

=
(
α−2∑
i=0

aix
i+1+γl + aα−1x

α+γl |
β−2∑
i=0

aix
i+1+γl + aβ−1x

β+γl

)
, (as θ2(x) = x ∀ x ∈ R)

=
(
α−2∑
i=0

aix
i+1 + aα−1 |

β−2∑
i=0

aix
i+1 + aβ−1

)
, since xα = xβ = xγ = 1.

Thus x2bc(x) is just an αβ-cyclic shift of c(x). So C is an F3R-cyclic code. Hence

the result. �

Now we discuss the generator polynomials of F3R-skew cyclic codes. Recall that

an F3R-skew cyclic is a left R[x, θ]-submodule of Rα,β. We define two projection

maps πα and πβ on Rα,β such that for any v(x) = (a(x) | b(x)) ∈ Rα,β,

πα(v(x)) = a(x) and πβ(v(x)) = b(x).

Denote the restrictions of πα, πβ to a code C also by πα, πβ.

Lemma 3.4.4. Let C be an F3R-skew cyclic code of length n. Then πα(C) = Cα is

a cyclic code of length α over F3 and πβ(C) = Cβ is a skew-cyclic code of length β

over R.

Proof: Since C is a submodule of Rα.β, it is clear that πα(C) is an ideal of

F3[x]/〈xα − 1〉 and πβ(C) is an R[x, θ]-submodule of R[x, θ]/〈xβ − 1〉. The result

follows. �

Theorem 3.4.5. Let C be an F3R-skew cyclic code of length n = α + β. Then we

have the following cases:

1. If Cβ contains a minimal degree polynomial whose leading coefficient is a unit,

then C = 〈(g1(x) | 0), (l(x) | g2(x))〉, where g1(x) is a generator polynomial of

Cα and g2(x) is a generator polynomial of Cβ, and g1(x)|xα − 1, g2(x)|xβ − 1.
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2. If Cβ has no polynomial whose leading coefficient is a unit, then C =

〈(g1(x) | 0), (l(x) | g2(x))〉, where g1(x) is a generator polynomial of Cα
and g2(x) is a generator polynomial of Cβ, and g2(x) = vg′2(x) or g2(x) =

(v + 2)g′2(x) for some g′2(x) ∈ F3[x].

3. If Cβ does not contain any minimal degree polynomial whose leading coeffi-

cient is a unit, and if g2(x) is a minimal degree polynomial in Cβ, and h2(x)

is a minimal degree polynomial in Cβ among the polynomials having leading

coefficient a unit, then C = 〈(g1(x) | 0), (l1(x) | g2(x)), (l2(x) | h2(x))〉, where

g1(x) is a generator polynomial of Cα, and l1(x), l2(x) are some polynomials

in F3[x]
〈xα−1〉 .

Proof:

1. Let C be an F3R-skew cyclic code of length n. Then πα(C) is a cyclic code

over F3 and so an ideal of F3[x]
〈xα−1〉 . Define C ′ = {(a(x) | b(x)) ∈ C : b(x) = 0}.

Then πα(C ′) ∼= C ′. Clearly πα(C ′) is also an ideal of F3[x]
〈xα−1〉 . Let πα(C ′) be

generated by g1(x). Then C ′ is generated by (g1(x) | 0). Also Cβ is a skew-

cyclic code over R and there is a polynomial g2(x) of minimal degree in Cβ

with leading coefficient a unit. Therefore Cβ = 〈g2(x)〉. Since g2(x) ∈ Cβ,

there is an element (l(x) | g2(x)) ∈ C for some l(x) ∈ F3[x]
〈xα−1〉 . Now for any

(a(x), b(x)) ∈ C, we have b(x) = πβ((a(x) | b(x))) = λ(x)g2(x) for some

λ(x) ∈ R[x,θ]
〈xβ−1〉 .

Consider

(a(x) | b(x))− λ(x)(l(x) | g2(x)) = (a(x)− λ(x)l(x) | 0) (3.6)

Since (a(x)−λ(x)l(x) | 0) ∈ C ′, we have (a(x)−λ(x)l(x) | 0) = t(x)(g1(x) | 0)

for some t(x) ∈ F3[x]
〈xα−1〉 . Therefore by (3.6) we have

(a(x) | b(x)) = λ(x)(l(x) | g2(x)) + t(x)(g1(x) | 0)

and so C ⊆ 〈(g1(x) | 0), (l(x) | g2(x)〉. Also 〈(g1(x) | 0), (l(x) | g2(x)〉 ⊆ C is

obvious. Therefore C = 〈(g1(x) | 0), (l(x) | g2(x)〉.



41 3.4 F3R-Skew cyclic codes

2. This part directly follows from Theorem 3.3.5 and Part 1 above.

3. Let Cβ satisfy the given conditions. Then Cβ = 〈g2(x), h2(x)〉. Using the

same notation as in part 1, we see that any b(x) ∈ Cβ can be written as

b(x) = λ(x)g2(x)+γ(x)h2(x) for some λ(x), γ(x) ∈ R[x,θ]
〈xβ−1〉 . Since g2(x), h2(x) ∈

Cβ, there are two codewords (l1(x) | g2(x)), (l2(x) | h2(x)) ∈ C for some

l1(x), l2(x) ∈ F3[x]
〈xα−1〉 , respectively.

Now for any (a(x) | b(x)) ∈ C, we have

(a(x) | b(x))− (λ(x)(l1(x) | g2(x)) + γ(x)(l2(x) | h2(x))

= (a(x) | b(x))− (λ(x)l1(x) + γ(x)l2(x)) | λ(x)g2(x) + γ(x)h2(x))

= (a(x)− (λ(x)l1(x) + γ(x)l2(x)) | 0). (3.7)

Also, (a(x) − (λ(x)l1(x) + γ(x)l2(x)) | 0) ∈ C ′. So (a(x) − (λ(x)l1(x) +

γ(x)l2(x)) | 0) = s(x)(g1(x) | 0) for some s(x) ∈ F3[x,θ]
〈xα−1〉 . So by (3.7)

(a(x) | b(x)) = s(x)(g1(x) | 0) + λ(x)(l1(x) | g2(x)) + γ(x)(l2(x) | h2(x)).

Therefore C ⊆ 〈(g1(x) | 0), (l1(x) | g2(x)), (l2(x) | h2(x)〉. Hence the result.

�

Theorem 3.4.6. Let C1 be the repetition code of length α over F3 and C2 be the

repetition code of length β over R. Let g1(x) be a monic generator polynomial of

C1 and g2(x) be a monic generator polynomial of C2. Then the code C defined as

C = 〈(g1(x) | (1+v)g2(x))〉 is an F3R-skew cyclic code of length n = α+β. Moreover

C = C1 × C2, and the minimum distance of C is min(α, β).

Proof: We have g1(x) = 1+x+x2+· · ·+xα−1 and g2(x) = 1+x+x2+· · ·+xβ−1. Then

clearly C = 〈(g1(x) | (1+v)g2(x))〉 is an F3R-skew cyclic code with minimal spanning

set {(g1(x) | (1 + v)g2(x)), x(g1(x) | (1 + v)g2(x))}, since xigj(x) = gj(x), j = 1, 2,

and x2i(1 + v)g2(x) = (1 + v)g2(x) for all integers i as order of θ is 2.

Now to prove C = C1×C2, it is sufficient to show that C = 〈(g1(x) | 0), (0 | g2(x))〉.

Since C ⊆ 〈(g1(x) | 0), (0 | g2(x))〉 is obvious, we need only to show 〈(g1(x) | 0), (0 | g2(x))〉 ⊆
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C. Let a = (g1 | (1 + v)g2(x)) ∈ C. Then xa = x(g1(x) | (1 + v)g2(x)) =

(xg1(x) | x(1 + v)g2(x)) = (xg1(x) | (2 + 2v)xg2(x)) = (g1(x) | (2 + 2v)g2(x)).

Therefore a + xa = (g1(x) | (1 + v)g2(x)) + (g1(x) | (2 + 2v)g2(x)) = (2g1(x) | 0),

and so 2(2g1(x) | 0) = (g1(x) | 0) ∈ C. Also, 2a+ xa = (0 | (1 + v)g2(x)) ∈ C, and

so (1 + v)(0 | (1 + v)g2(x)) = (0 | g2(x)) ∈ C. Hence C = C1 × C2. Since minimal

distance of C1 is α and that of C2 is β, the minimal distance of C is min (α, β). �

Example 3.4.7. Let α = β = 2. Then C is an F3R-skew cyclic code with a

generator matrix  1 1 v + 1 v + 1
1 1 2 + 2v 2 + 2v

 ,
and the corresponding code is given by

(2, 2, 1, 1), (0, 0, v + 2, v + 2), (0, 0, v + 1, v + 1), (2, 2, 2v + 1, 2v + 1),
(1, 1, 2, 2), (2, 2, 0, 0), (1, 1, 2v, 2v), (0, 0, 2, 2),

(2, 2, v + 1, v + 1), (0, 0, 2v + 1, 2v + 1), (0, 0, 2v + 2, 2v + 2) (1, 1, 0, 0),
(0, 0, 1, 1), (1, 1, v, v), (0, 0, 0, 0), (2, 2, 2, 2),

(2, 2, v + 2, v + 2), (0, 0, 2v, 2v), (2, 2, v, v), (1, 1, v + 1, v + 1),
(1, 1, v + 2, v + 2), (2, 2, 2v, 2v), (0, 0, v, v), (1, 1, 1, 1),

(1, 1, 2v + 2, 2v + 2), (1, 1, 2v + 1, 2v + 1), (2, 2, 2v + 2, 2v + 2)


.

Also,

C = 〈(g1(x) | 0), (l(x) | (1+v)g2(x))〉 = 〈(l(x) | (1+v)g2(x))〉 = 〈(g1(x) | 0), (0 | g2(x))〉,

where g1(x) = x+ 1, l(x) = x+ 1 and g2(x) = x+ 1.

3.4.1 Duals of F3R-skew cyclic codes

We define an inner product on Fα3Rβ as follows:

Let x = (x1,0, x1,1, · · · , x1,α−1, x2,0, x2,1, · · · , x2,β−1), y = (y1,0, y1,1, · · · , y1,α−1,

y2,0, y2,1, · · · , y2,β−1) be two words in Fα3Rβ. Then the inner product of x and y is

defined by x · y = ∑α−1
i=0 x1,iy1,i + ∑β−1

j=0 x2,jy2,j, where the first sum is determined

over F3 and the second sum is determined over R.
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Definition 3.4.8. Let C be an F3R-skew cyclic code of length α+ β. Then its dual

is defined as

C⊥ = {x ∈ Fα3Rβ : x · c = 0 for all c ∈ C}.

Lemma 3.4.9. Let C be an F3R-skew cyclic code. Then for any x ∈ C⊥ and y ∈ C,

we have θ(x ·α,β T jθ (y)) = Tθ(x) ·α,β T j+1
θ (y).

Proof: Let x = (x1,0, x1,1, · · · , x1,α−1, x2,0, x2,1, · · · , x2,β−1) ∈ C⊥ and y =
(y1,0, y1,1, · · · , y1,α−1, y2,0, y2,1, · · · , y2,β−1) ∈ C. Then by definition α,βTθ(x) =
(θ(x1,α−1), θ(x1,0), · · · , θ(x1,α−2), θ(x2,β−1), θ(x2,0), · · · , θ(x2,β−2)) and α,βT j+1

θ (y) =
(θj+1(y1,α−j−1), θj+1(y1,α−j), θj+1(y1,α−j+1) · · · , θj+1(y1,α−j−2), θj+1(y2,β−j−1), θj+1(y2,β−j),
θj+1(y2,β−j+1) · · · , θj+1(y2,β−j−2)), where j is a fixed index, and indices are computed
modulo α and β for the two parts. Now
α,βTθ(x) ·α,β T j+1

θ (y) = θ(x1,α−1) · θj+1(y1,α−j−1) + θ(x1,0) · θj+1(y1,α−j)

+ · · ·+ θ(x1,α−2) · θj+1(y1,α−j−2) + θ(x2,β−1) · θj+1(y2,β−j−1)

+ · · ·+ θ(x2,β−2) · θ(y2,β−j−2)

= θ[x1,α−1 · θj(y1,α−j−1) + x1,0 · θj(y1,α−j) + · · ·+ x1,α−2 · θj(y1,α−j−2)

+x2,β−1 · θj(y2,β−j−1) + · · ·+ x2,β−2 · θj(y2,β−j−2)]

= θ[x ·α,β T jθ (y)].

Hence the result. �

Theorem 3.4.10. Let C be an F3R-skew cyclic code of length n = α+ β such that

β is even. Then C⊥ is also an F3R-skew cyclic code of same length.

Proof: Let γ = lcm(α, β). Then γ is even (since β is even). Therefore T γθ (v) = v

for all v ∈ C, and so any element c ∈ C can be written as c =α,β T jθ (b) for some

b ∈ C and 0 ≤ j ≤ γ − 1. Now to prove C⊥ is F3R-skew cyclic, we need to show that

for any x ∈ C⊥, α,βT (x) ∈ C⊥, i.e., α,βTθ(x)·α,βT jθ (b) = 0 for all b ∈ C, 0 ≤ j ≤ γ−1.

By Lemma 3.4.9, we have 0 = θ(0) = θ(x ·α,β T jθ (b)) =α,β Tθ(x) ·α,β T jθ (b). Hence the

result. �

3.4.2 Gray images

In this section, we define a Gray map on F3R, and then extend it to Fα3Rβ. We

discuss the Gray images of F3R-skew cyclic codes.
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Define a Gray map φ : F3R→ F3
3 by

φ(a, b+ vc) = (a, φ1(b+ vc)) = (a, c, b+ c),

where b+ vc ∈ R. φ can then be extended componentwise from Fα3Rβ to Fn3 as

Φ(a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) = (a0, a1, · · · , aα−1, φ1(b0), φ1(b1), · · · , φ1(bβ−1)),

for all (a0, a1, · · · , aα−1) ∈ Fα3 and (b0, b1, · · · , bβ−1) ∈ Rβ, where n = α + β.

Lemma 3.4.11. The Gray map Φ is an F3-linear map which preserves the distance

from Fα3Rβ to Fα+2β
3 , i.e., dG(x, y) = dH(Φ(x),Φ(y)) for x, y ∈ Fα3Rβ.

Proof: Consider

dG(x, y) = wG(x− y)

= wH(Φ(x− y))

= wH(Φ(x)− Φ(y))

= dH(Φ(x),Φ(y)).

Hence the result. �

Now we consider an example of an F3R-skew cyclic code and find out its Gray

image. The code so obtained is an optimal code over F3.

Example 3.4.12. Let C be an F3R-skew cyclic code of length 8 with the generator

matrix

G =



1 1 1 0 v + 1 v + 1 v v

0 1 1 1 1 + 2v 2v + 2 2v + 2 1 + 2v
1 0 1 1 v v v + 1 v + 1
1 1 0 1 2v + 2 1 + 2v 1 + 2v 2v + 2

 .

Then the Gray image Φ(C) of C is an optimal ternary linear code with parameters

[12, 7, 4].
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3.5 Skew-cyclic codes over S = Fp + wFp

In this subsection, we study and explore a class of skew-cyclic codes over Fp +

wFp, w2 = 1. In the rest of the chapter, we denote S = Fp + wFp with w2 = 1. S is

a semi-local ring with two maximal ideals namely 〈1 + w〉 and 〈1− w〉.

Theorem 3.5.1. An element a+ wb ∈ S is a non-unit if and only if a = ±b.

Proof: Suppose a = ±b. Then a + wb = a(1 ± w). Since a(1 ± w)(1 ∓ w) = 0, it

follows that a+wb is a non-unit. Conversely, suppose a+wb is a non-unit. Clearly

a 6= 0 and b 6= 0, for otherwise, a + wb will be a unit. Since S is a finite ring,

a + wb is a zero divisor. So there exists a non-zero element c + wd ∈ S such that

(a+wb)(c+wd) = 0. From this we get ac+ bd = 0 and bc+ad = 0. These relations

give us a2 = b2, noting that c 6= 0 and d 6= 0. Hence a = ±b. �

Corollary 3.5.1.1. An element of S is a non-unit if and only if it is of the form

a(1± w) for some a ∈ Fp.

We define a Gray map φ′ : S → Fp such that

φ′(a+ wb) = (b, a+ b).

φ′ can be extended componentwise to Φ′ : Sn → Fp2n. Φ′ is a weight preserving map,

i.e., wL(x) = wH(Φ′(x)), where wL denotes the Lee weight of x. In other words, for

any 0 6= x = (a+ wb) ∈ S,

wL(x) =


1, if b = 0 or a+ b = 0 (mod p)

2, otherwise
.

Also, wL(0) = 0.

For instance, if p = 3, then the Lee weights of elements of F3 +wF3 are as given

below:

x 0 1 2 w 2w 1 + w 1+2w 2 + w 2+2w
wL(x) 0 1 1 2 2 2 1 1 2
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3.5.1 Properties of S[x, σ]

We define a map σ : S → S such that

σ(a+ wb) = a− wb,

for all a+wb ∈ S. It is easy to check that σ is an automorphism of S. In particular

for p = 2, σ is the identity automorphism of S.

As discussed in Section 3.2, S[x, σ] forms a non-commutative skew polynomial

ring. Moreover, the left/right division can be defined on some elements of S[x, σ]

similarly as for R[x, θ]. This is stated as follows.

Lemma 3.5.2 (Right division algorithm). Let f(x), g(x) ∈ S[x, σ] such that g(x)

has its leading coefficient a unit. Then

f(x) = q(x)g(x) + r(x)

for some q(x), r(x) ∈ S[x, σ], where r(x) = 0 or deg r(x) < deg g(x).

We note that S[x, σ] is not a unique factorization ring, which can be seen from

the following example.

Example 3.5.3. Let p = 5. Then x2 − 1 can be factorized in S[x, σ] in following

different ways.

x2 − 1 = (4wx+ 3)(wx+ 3)

= (x+ 4)(x+ 1)

= (4wx+ 2)(wx+ 2).

Therefore polynomials in S[x, σ] possess more factors than in S[x].

Lemma 3.5.4. Let S be a left-submodule of left S[x, σ]-module S[x,σ]
〈xn−1〉 . Suppose

f(x) is a minimal degree polynomial in S such that its leading coefficient is a non-

unit. Then f(x) can always be written in the form f(x) = (1 + w)f ′(x) or f(x) =

(1− w)f ′′(x), where f ′(x), f ′′(x) are polynomials in Fp[x].
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Proof: Let f(x) = f0 +f1x+ · · · frxr such that fr is a non-unit. Then fr = a(1+w)

or fr = b(1 − w) for some a, b ∈ F∗p. Let fr = a(1 + w). Then ((p − 1)w + 1)f(x)

is a polynomial in S of degree less than that of f(x). But f(x) is a minimal degree

polynomial in S, so ((p− 1)w + 1)f(x) = 0. Therefore ((p− 1)w + 1)fi = 0 for all

i = 0, 1, · · · , r. Thus fi = bi(1 + w) for some bi ∈ Fp. Hence f(x) = (1 + w)f ′(x),

where f ′(x) ∈ Fp[x]. Similarly, if fr = b(1− w), we have f(x) = (1− w)f ′′(x). �

Theorem 3.5.5. Let S be a left-submodule of left S[x, σ]-module S[x,σ]
〈xn−1〉 . Suppose

f(x), g(x) are polynomials in S such that the leading coefficients of both the polyno-

mials are non-units. Then we have

f(x) = q(x)g(x) + r(x)

such that r(x) = 0 or deg r(x) < deg g(x) or r(x) is a polynomial with its leading

coefficient a unit and deg r(x) ≤ deg f(x).

Proof: Let f(x) = f0 +f1x+f2x
2 + · · ·+frx

r and g(x) = g0 +g1x+g2x
2 + · · · gsxs.

Without loss of generality, we may assume s ≤ r. Since gs is a non-unit, gs = a(1+w)

or gs = b(1 − w) for some a, b ∈ F∗p. Let gs = a(1 + w). Also fr is of the form

fr = c(1 + w) or fr = d(1 − w) for some c, d ∈ F∗p. If fr = c(1 + w), consider the

polynomial

l(x) =


f(x)− ab−1xr−sg(x), if r − s is even

f(x) + ab−1xr−sg(x), if r − s is odd.
Similarly, if fr = d(1− w), we can choose l(x) as follows:

l(x) =


f(x) + ab−1xr−sg(x), if r − s is even

f(x)− ab−1xr−sg(x), if r − s is odd.


We discuss only the case when fr = c(1 + w). The other case can similarly be

proved.

From above, we can write f(x) as

f(x) = q(x)g(x) + l(x) (3.8)
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for a suitable choice of q(x) according to the values of r − s. Then l(x) is either a

polynomial with degree less than that of f(x) or the leading coefficient of l(x) is a

unit. Now if the leading coefficient of l(x) is a unit, then we have

f(x) =


ab−1xr−sg(x) + l(x), if r − s is even

−ab−1xr−sg(x) + l(x) if r − s is odd,

and so we are done. Otherwise we apply induction on the degree of f(x). For r = 0,

we have s = 0, and so

f0 = q0g0 + r0 , where r0 = 0 and q0 = ca−1.

(If fr = d(1− w), then r0 = 2d and q0 = −da−1.)

Therefore the result is true for r = 0. We assume that the result is true for all polyno-

mials of degree less than r. Since l(x) has degree less than r, l(x) = Q(x)g(x)+R(x)

such that R(x) = 0 or deg R(x) <deg g(x) or R(x) has leading coefficient a unit

and degree at most deg l(x). Now by (3.8), we have

f(x) = (q(x) +Q(x))g(x) +R(x).

The result follows from this. Similarly, we can prove the result if gs = b(1− w) for

some b ∈ F∗p. �

Next we determine the structure of a skew-cyclic codes over S.

Lemma 3.5.6. [96] The set Sn = S[x,σ]
〈xn−1〉 forms a left S[x, σ]-module under the left

multiplication defined by

r(x)(f(x) + 〈xn − 1〉) = r(x)f(x) + 〈xn − 1〉

for all r(x) ∈ S[x, σ].

A skew-cyclic code C is a left S[x, σ]-submodule of S[x,σ]
〈xn−1〉 .

Now we present the structure of skew-cyclic codes over S. Theorem 3.5.7, The-

orem 3.5.9 and Theorem 3.5.11 below present this for different possibilities on the

minimal degree polynomial in a code.
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Theorem 3.5.7. Let C be a skew-cyclic code over S such that C contains a min-

imal degree polynomial g(x) with its leading coefficient a unit. Then C = 〈g(x)〉.

Moreover g(x) | xn − 1, and so C is a free code.

Proof: The proof follows from the minimality condition on g(x) and the division

algorithm (Lemma 3.5.2). �

Example 3.5.8. Let p = 3. Let C be a skew-cyclic code of length 4 over S with

generator matrix

 1 + w 0 1 + w 0
0 1− w 0 1− w

 .
Then the corresponding code is given by



(0, 0, 0, 0), (2w + 1, 1, 2w + 1, 1), (w + 1, 0, w + 1, 0)
(w + 2, 2w + 2, w + 2, 2w + 2), (2, w + 2, 2, w + 2), (1, 1, 1, 1)

(1, 2w, 1, 2w), (0, 2, 0, 2), (w + 1, 2w + 2, w + 1, 2w + 2)
(2w + 1, 0, 2w + 1, 0), (2w, 2w + 2, 2w, 2w + 2), (2w + 2, 2w + 2, 2w + 2, 2w + 2)

(w + 1, w + 1, w + 1, w + 1), (2w,w + 2, 2w,w + 2), (2w + 1, w + 2, 2w + 1, w + 2)
(w + 2, 2w,w + 2, 2w), (w + 2, 0, w + 2, 0), (w,w + 2, w, w + 2)

(2w + 1, 2w, 2w + 1, 2w), (1, w, 1, w), (w, 1, w, 1)
(w + 1, 2w + 1, w + 1, 2w + 1), (2w, 1, 2w, 1), (w,w,w,w)
(2w + 2, w + 1, 2w + 2, w + 1), (w, 2w,w, 2w), (2, 0, 2, 0)
(w + 2, w + 2, w + 2, w + 2), (1, w + 1, 1, w + 1), (1, 2, 1, 2)

(2w + 1, 2, 2w + 1, 2), (1, 2w + 2, 1, 2w + 2), (2w,w + 1, 2w,w + 1)
(1, w + 2, 1, w + 2), (0, w + 2, 0, w + 2), (0, 2w + 2, 0, 2w + 2)
(w + 2, 2, w + 2, 2), (0, w, 0, w), (2, 2, 2, 2)

(w, 2w + 1, w, 2w + 1), (w + 1, 2, w + 1, 2), (2w, 0, 2w, 0)
(2, 2w + 1, 2, 2w + 1), (w + 2, 1, w + 2, 1), (w + 1, w + 2, w + 1, w + 2)
(0, 2w + 1, 0, 2w + 1), (2w + 2, 1, 2w + 2, 1), (2, w + 1, 2, w + 1)

(0, 2w, 0, 2w), (2w + 1, 2w + 1, 2w + 1, 2w + 1), (w + 1, w, w + 1, w)
(2w, 2w + 1, 2w, 2w + 1), (0, w + 1, 0, w + 1), (w, 2, w, 2)
(2w + 1, w, 2w + 1, w), (2w + 1, w + 1, 2w + 1, w + 1), (2w + 2, 2w, 2w + 2, 2w)
(2, 2w + 2, 2, 2w + 2), (2w + 2, 0, 2w + 2, 0), (2w + 2, 2w + 1, 2w + 2, 2w + 1)

(w + 2, w + 1, w + 2, w + 1), (2w + 1, 2w + 2, 2w + 1, 2w + 2), (2w, 2, 2w, 2)
(2, 2w, 2, 2w), (2, w, 2, w), (0, 1, 0, 1)

(w, 2w + 2, w, 2w + 2), (w + 2, 2w + 1, w + 2, 2w + 1), (2w + 2, 2, 2w + 2, 2)
(2w,w, 2w,w), (w + 2, w, w + 2, w), (w, 0, w, 0)

(1, 2w + 1, 1, 2w + 1), (2w + 2, w + 2, 2w + 2, w + 2), (1, 0, 1, 0)
(w + 1, 1, w + 1, 1), (2, 1, 2, 1), (w + 1, 2w,w + 1, 2w)

(2w + 2, w, 2w + 2, w), (2w, 2w, 2w, 2w), (w,w + 1, w, w + 1)



.

C has a minimal degree polynomial g(x) = 1 +x2 with its leading coefficient a unit.
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Hence C can be written as C = 〈g(x)〉. Moreover 1 + x2 | x4 − 1, and hence C is a

free code.

Theorem 3.5.9. Let C be a skew-cyclic code over S such that it has no polynomial

with its leading coefficient a unit. Let f(x) be a minimal degree polynomial in C.

Then C = 〈f(x)〉.

Proof: The proof follows by the minimality condition on f(x) and the division

algorithm discussed in Theorem 3.5.5. �

Example 3.5.10. Let p = 5. Let C be a skew-cyclic code of length 2 over S

generated by the matrix:

 1 + w 0
0 1 + 4w

 .
Then C is given as



(0, 0), (0, 4w + 1), (0, w + 4), (2w + 2, 4w + 1), (4w + 4, 3w + 2)
(3w + 3, 4w + 1), (0, 2w + 3), (3w + 3, 2w + 3), (w + 1, w + 4), (3w + 3, 3w + 2)

(3w + 3, 0), (2w + 2, 3w + 2), (w + 1, 4w + 1), (4w + 4, 4w + 1), (w + 1, 0)
(4w + 4, w + 4), (w + 1, 2w + 3), (2w + 2, w + 4), (2w + 2, 2w + 3), (w + 1, 3w + 2)

(0, 3w + 2), (2w + 2, 0), (3w + 3, w + 4), (4w + 4, 2w + 3), (4w + 4, 0)


.

We note that C has no codeword with corresponding polynomial having its leading

coefficient a unit, and f(x) = 1 + w is a minimal degree polynomial in C. Hence

C = 〈f(x)〉.

Theorem 3.5.11. Let C be a skew-cyclic code over S such that it has a polynomial

with its leading coefficient a unit, but no minimal degree polynomial has its leading

coefficient a unit. Let f(x) be a minimal degree polynomial in C and g(x) be a min-

imal degree polynomial in C among the polynomials having their leading coefficients

a unit. Then C = 〈f(x), g(x)〉.

Proof: Let c(x) ∈ C be any codeword. Then by division algorithm (Lemma 3.5.2)

we have

c(x) = q1(x)g(x) + r1(x),
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where r1(x) = 0 or deg r1(x) < deg g(x) . If r1(x) = 0, then we are done. Let

r1(x) 6= 0. Then the leading coefficient of r1(x) must be non-unit, as deg r1(x) <

deg g(x). Again by division algorithm (Theorem 3.5.5), we have

r1(x) = q2(x)f(x) + r2(x),

where r2(x) = 0 or deg r2(x) < deg f(x) or the leading coefficient of r2(x) is unit.

The last two conditions cannot be true, as f(x) is a minimal degree polynomial in

C and deg r2(x) ≤ deg r1(x) < deg g(x). Therefore r2(x) = 0, and hence

c(x) = q1(x)g(x) + q2(x)f(x).

Hence C = 〈f(x), g(x)〉. �

Example 3.5.12. Let p = 3. Let C be a skew-cyclic code of length 4 over S spanned

by the rows of the following matrix:



1 + w 0 0 0
0 1− w 0 0
0 0 1 + w 0
0 0 0 1− w
1 1 1 1


.

We note that C has a minimal degree polynomial f(x) = 1 + w and a minimal

degree polynomial with its leading coefficient a unit in C is g(x) = 1 +x2. Therefore

C = 〈g(x), f(x)〉.

3.6 Additive skew-cyclic codes over S

In this section we define additive skew-cyclic codes over S. These codes are sub-codes

of skew-cyclic codes over S. However, they are still closed under the skew-cyclic shift

operation. We have obtained some good codes via this class.

Definition 3.6.1. A code C is said to be an additive skew-cyclic code of length n

over S if
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1. C is a subgroup of Sn, and

2. Tσ(c) = (σ(cn−1), σ(c0), σ(c1), · · · , σ(cn−2)) ∈ C, whenever c = (c0, c1, · · · , cn−1) ∈

C, where Tσ(c) denotes the skew-cyclic shift of c.

Lemma 3.6.2. A code C is an additive skew-cyclic code of length n over S if and

only if it is a left Fp[x]-submodule of left Fp[x]-module S[x,σ]
〈xn−1〉 .

Proof: Let C be an additive skew-cyclic code over S. Then for all c1(x), c2(x) ∈ C,

c1(x) + c2(x) ∈ C and xc1(x), which is the skew-cyclic shift of c(x), belongs to

C. Therefore r(x)c(x) ∈ C for all r(x) ∈ Fp[x] and c(x) ∈ C. Hence C is an

Fp[x]-submodule. Converse is straightforward. �

Now we give some examples of an additive skew-cyclic code and additive cyclic

code over S.

Example 3.6.3. Let p = 5. Let C1 = 〈1 + wx〉 be an additive skew-cyclic code of

length 2 over S with generator matrix as: 1 w

4w 1

 .
Then the corresponding code is given by

(0, 0), (w + 1, w + 4), (4w + 3, 3w + 1), (4w + 4, 4w + 1), (2w + 1, w + 3)
(2, 2w), (2w + 3, 3w + 3), (3w + 3, 3w + 2), (2w, 3), (4w + 2, 2w + 1)
(4w, 1), (w + 2, 2w + 4), (3w + 4, 4w + 2), (1, w), (3, 3w)
(w, 4), (2w + 4, 4w + 3), (4w + 1, w + 1), (4, 4w), (3w, 2)

(w + 3, 3w + 4), (3w + 1, w + 2), (3w + 2, 2w + 2), (w + 4, 4w + 4), (2w + 2, 2w + 3)


.

The parameters of Φ′(C1) are [4, 2, 3], which is an MDS code over F5.

Similarly, we consider the additive cyclic code C2 = 〈1 + wx〉 over S generated

by the matrix  1 w

w 1

 .
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The corresponding code is given by

(0, 0), (3, 3w), (4w + 1, w + 4), (w + 1, w + 1), (w + 3, 3w + 1)
(4w, 4), (4, 4w), (2w + 3, 3w + 2), (2w, 2), (w + 4, 4w + 1)

(3w + 3, 3w + 3), (2w + 1, w + 2), (2, 2w), (w, 1), (w + 2, 2w + 1)
(2w + 2, 2w + 2), (3w + 1, w + 3), (4w + 2, 2w + 4), (3w, 3), (1, w)
(3w + 2, 2w + 3), (4w + 4, 4w + 4), (2w + 4, 4w + 2), (3w + 4, 4w + 3), (4w + 3, 3w + 4)


.

The parameters of Φ′(C2) are [4, 2, 2]. We note that Φ′(C1) has improved parameters

as compared to Φ′(C2) even though the generator polynomials of C1 and C2 are same.

In the following example, we present a skew-cyclic code and an additive skew-

cyclic code over S having the same generator polynomial.

Example 3.6.4. Let p = 5. Let C1 = 〈wx + w〉 be a skew-cyclic code of length 2

over S having the generator matrix:

[
w w

]
.

Then the corresponding code is



(0, 0), (2w + 4, 2w + 4), (w,w), (w + 4, w + 4), (1, 1)
(4w + 1, 4w + 1), (3w + 2, 3w + 2), (3w + 4, 3w + 4), (2w + 2, 2w + 2), (w + 3, w + 3)

(3, 3), (4w, 4w), (3w + 1, 3w + 1), (4w + 3, 4w + 3), (3w + 3, 3w + 3)
(w + 2, w + 2), (2w + 1, 2w + 1), (4w + 2, 4w + 2), (w + 1, w + 1), (4, 4)

(4w + 4, 4w + 4), (3w, 3w), (2w + 3, 2w + 3), (2, 2), (2w, 2w)


.

The parameters of Φ′(C1) are [4, 2, 2].

Similarly, let C2 = 〈wx + w〉 be a additive skew-cyclic code of length 2 over S

having the generator matrix: [
w w

]
.

Then the corresponding code is given by

{
(0, 0), (3w, 3w), (w,w), (4w, 4w), (2w, 2w)

}
.

Here C2 is a sub-code of C1, which still satisfies the skew-cyclic shift property. The

parameters for Φ′(C2) are [4, 1, 4].
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Similarly, we give some more examples, and some good codes over Fp via skew-

cyclic and additive skew-cyclic codes over S are obtained. Here ∗ denotes optimal

code with those parameters.

1. Let p = 5. Let C1 = 〈1 + wx〉. Then

(a) if C1 is a skew-cyclic code, then Φ′(C1) is a [4, 4, 1]∗ code over F5.

(b) if C1 is an additive skew-cyclic code, then Φ′(C1) is a [4, 2, 3]∗ code over

F5.

2. Let p = 5. Let C2 = 〈(4w + 2)x+ w + 3〉. Then

(a) if C2 is a skew-cyclic code, then Φ′(C2) is an [8, 6, 2]∗ code over F5.

(b) if C2 is an additive skew-cyclic code, then Φ′(C2) is an [8, 3, 4] code over

F5.

3. Let p = 3. Let C3 = 〈(w + 2) + (w + 2)x+ (w + 1)x2 + 2x3〉. Then

(a) if C3 is a skew-cyclic code, then Φ′(C3) is an [8, 6, 2]∗ code over F3.

(b) if C3 is an additive skew-cyclic code, then Φ′(C3) is an [8, 4, 4]∗ code over

F3.

4. Let p = 3. Let C4 = 〈(w+ 2) + (w+ 2)x+ (w+ 2)x2 + (w+ 2)x3 + (2w+ 2)x5〉.

Then

(a) if C4 is a skew-cyclic code, then Φ′(C4) is a [12, 12, 1]∗ code over F3.

(b) if C4 is an additive skew-cyclic code, then Φ′(C4) is a [12, 6, 5] code over

F3.

3.7 Double skew-cyclic and double additive skew-

cyclic codes over S

Double skew-cyclic codes and additive double skew-cyclic codes over S are defined

as follows.
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Let C be a submodule of Sα+β. Then C is said to be double skew-

cyclic code if for any c = (a0, a1, · · · , aα−1 | b0, b1, · · · , bβ−1) in C, we have

(σ(aα−1), σ(a0), · · · , σ(aα−2) | σ(bβ−1), σ(b0), · · · , σ(bβ−2)) in C.

We define a double additive skew-cyclic code Ca if it is a subgroup of Sα+β, and

is invariant under the shift operator defined above.

In polynomial form, a double additive skew-cyclic code Ca over S is a left Fp[x]-

submodule of Fp[x]-module S[x,σ]
〈xα−1〉 ×

S[x,σ]
〈xβ−1〉 with respect to the multiplication

r(x)c(x) = r(x)(a(x) | b(x)) = (r(x)a(x) | r(x)b(x)),

for all r(x) ∈ Fp[x] and c(x) = (a(x) | b(x)) ∈ S[x,σ]
〈xα−1〉 ×

S[x,σ]
〈xβ−1〉 .

Example 3.7.1. Let p = 5. Let C be a double additive skew-cyclic code of length

4(= 2 + 2) over S generated by the matrix: 1 w 1 w

4w 1 4w 1

 .
Then the parameters of Φ′(C) are [8, 2, 6]∗, which is an optimal code over F5. The
parameters can be verified from the full code given below.

(0, 0, 0, 0), (4w, 1, 4w, 1), (w + 2, 2w + 4, w + 2, 2w + 4)
(3w + 2, 2w + 2, 3w + 2, 2w + 2), (3, 3w, 3, 3w), (2w + 3, 3w + 3, 2w + 3, 3w + 3)

(4, 4w, 4, 4w), (3w + 1, w + 2, 3w + 1, w + 2), (2, 2w, 2, 2w)
(4w + 2, 2w + 1, 4w + 2, 2w + 1), (4w + 4, 4w + 1, 4w + 4, 4w + 1), (3w + 4, 4w + 2, 3w + 4, 4w + 2)

(2w, 3, 2w, 3), (3w, 2, 3w, 2), (w + 3, 3w + 4, w + 3, 3w + 4)
(2w + 4, 4w + 3, 2w + 4, 4w + 3), (4w + 1, w + 1, 4w + 1, w + 1), (2w + 2, 2w + 3, 2w + 2, 2w + 3)

(1, w, 1, w), (w + 1, w + 4, w + 1, w + 4), (2w + 1, w + 3, 2w + 1, w + 3)
(3w + 3, 3w + 2, 3w + 3, 3w + 2), (w + 4, 4w + 4, w + 4, 4w + 4), (4w + 3, 3w + 1, 4w + 3, 3w + 1)

(w, 4, w, 4)


.

Example 3.7.2. Let p = 5. Let C be a double additive skew-cyclic code of length

6(= 2 + 4) over S having generator matrix:



1 w w + 3 −w + 2 0 0
−w 1 0 −w + 3 w + 2 0
1 w 0 0 w + 3 −w + 2
−w 1 w + 2 0 0 −w + 3

 .

Then Φ′(C) has the parameters [12, 4, 6].
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In a similar way, we have obtained some more codes over Fp through double skew-

cyclic and double additive skew-cyclic codes over S. These are given below.

1. Let p = 3. For α = 2 and β = 4, let C1 = 〈(w+wx | 2+(w+1)x+2x2+(w+1)x3)〉.

Then

(i) if C1 is a double skew-cyclic code over S, then Φ′(C1) is a [12, 4, 4] code over

F3.

(ii) if C1 is a double additive skew-cyclic code over S, then Φ′(C1) is a [12, 2, 8]

code over F3.

2. Let p = 5. For α = 2 and β = 4, let C2 = 〈(1 +wx | 1−wx+ (1 +w)x2 +wx3)〉.

Then

(i) if C2 is a double skew-cyclic code over S, then Φ′(C2) is a [12, 6, 3] code over

F5.

(ii) if C2 is a double additive skew-cyclic code over S, then Φ′(C2) is a [12, 3, 7]

code over F5.

3. Let p = 3. For α = 4 and β = 4, let C3 = 〈(w + x + x2| (w + 2) + (w + 2)x +

2x2 + (w + 1)x3)〉. Then

(i) if C3 is a double skew-cyclic code over S, then Φ′(C3) is a [16, 8, 4] code over

F3.

(ii) if C3 is a double additive skew-cyclic code over S, then Φ′(C3) is a [16, 4, 9]∗

code over F3.

4. Let p = 5. For α = 4 and β = 4, let C4 = 〈(1 − x + (1 + w)x2 + 2x3 | 2 + 2x +

(w + 2)x2 + wx3)〉. Then

(i) if C4 is a double skew-cyclic code over S, then Φ′(C4) is a [16, 8, 4] code over

F5.

(ii) if C4 is a double additive skew-cyclic code over S, then Φ′(C4) is a [16, 4, 10]

code over F5.
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3.8 Conclusion

In this chapter, we have studied F3R-skew cyclic codes, where R = F3 +vF3, v
2 = v.

By obtaining the structure of skew-cyclic codes over R using a new division algorithm

defined on R[x, θ], the structure for F3R-skew cyclic codes has been obtained. We

have also defined a class of skew-cyclic codes over S = Fp+wFp, and their generating

sets are obtained. Additive skew-cyclic codes over S have been studied as sub-codes

of skew-cyclic codes over S.
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Chapter 4

Skew-constacyclic and Skew-cyclic
Codes over Extensions of Z4

4.1 Introduction

Cyclic codes are one of the most studied linear codes. Constacyclic codes are an

immediate generalization of cyclic codes. They have been studied extensively over

finite fields as well as over some finite rings [11, 91, 90, 33, 85, 62, 107, 60, 36, 106,

82, 5], and many good codes have been obtained in this class. Recently this class

has been generalized to skew constacyclic codes [27, 58, 40, 38]. In this chapter we

study skew-constacyclic codes and skew-cyclic codes over some extension rings of

Z4.

It may be noted that two popular rings Z4 and F2 +uF2, u2 = 0, are not suitable

for defining skew codes as they do not have any non-trivial automorphism, and the

resulting skew codes coincide with simple linear codes. So different classes of skew

codes have been defined on some other structures such as F2 + vF2 [1], Fp + vFp [41]

and Fq+vFq [48] with v2 = v, where non-trivial automorphisms exist. Motivated by

the these works, we define a class of skew-constacyclic codes over Z4 + uZ4, u
2 = 0.

We characterize the skew polynomial ring R[x, θ], where R = Z4 + uZ4, u
2 = 0,

and θ is an automorphism of R, and introduce a class of skew-constacyclic codes

over R. Some structural properties of these codes are determined. These codes are

59
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further generalized to double skew-constacyclic codes, through which we have been

able to obtain some good codes over Z4. Also, a class of skew-cyclic codes over

GR(4, 2) + vGR(4, 2), v2 = v has also been studied in this chapter.

4.2 The ring R = Z4 + uZ4

We denote R = Z4 + uZ4, u
2 = 0. The ring R has the characteristic 4 and the

cardinality 16. Moreover R is isomorphic to the ring Z4[u]/〈u2〉. It can easily be

seen that the ideal 〈2, u〉 is the unique maximal ideal of R, and hence it is a local

ring. Its residue field is F2. An element a+ ub of R is a unit if and only if a is unit.

Thus the units of R are 1, 3, 1 +u, 1 + 2u, 1 + 3u, 3 +u, 3 + 2u, 3 + 3u. To know more

about the ring R, we refer to [104, 14].

4.2.1 Skew polynomial ring R[x, θ]

Define a map θ on R such that

θ(a+ ub) = a+ (u+ 2)b

for all a + ub ∈ R. Then θ is an automorphism of R of order 2. By Definition 3.2,

R[x, θ] forms a skew-polynomial ring.

Although, R[x, θ] is a non-commutative ring and not a left or right Euclidean

ring, the following result is true for R[x, θ].

Lemma 4.2.1. [74] Let f(x), g(x) ∈ R[x, θ] be such that the leading coefficient of

g(x) is a unit. Then there exist q(x), r(x) ∈ R[x, θ] such that f(x) = q(x)g(x)+r(x),

where r(x) = 0 or deg r(x) < deg g(x).

Lemma 4.2.2. The set Zf = {0, 1, 2, 3, 2u, 1+2u, 2+2u, 3+2u} is the fixed sub-ring

of R under θ.

The following result directly follows from the discussion on Page 25 of [74].

Theorem 4.2.3. The center Z(R[x, θ]) of R[x, θ] is Zf [x2].
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Corollary 4.2.3.1. Let f = xn − 1. Then f ∈ Z(R[x, θ]) if and only if n is even.

Further xn − α ∈ Z(R[x, θ]) if and only if n is even and α is fixed by θ.

If we do not assume that α is fixed by θ, then the result does not hold. For

instance, let n be even and α = 1 + u a unit in R, which is not fixed by θ. Then

(xn − (1 + u))ux = ux(xn − (u + 2)) 6= ux(xn − (1 + u)), and hence (xn − (1 + u))

is not a central element.

The following result is straightforward.

Theorem 4.2.4. Let n be a positive integer and α a unit in R. Then the following

statements are equivalent:

(i) xn − α is central in R[x, θ].

(ii) 〈xn − α〉 is a two sided ideal.

(iii) n is even and α is fixed by θ.

Since R[x, θ] does not have the unique factorization property, polynomials in

R[x, θ] may have many factors as compared to the commutative case. In particular,

xn − α, where α ∈ R is a unit, has in general more than one factorization. The

following example illustrates this.

Example 4.2.5. Let α = 1 + 2u. The factorization, up to non-associates, of x3 −

(1 + 2u) in R[x, θ] is given by

x3 − (1 + 2u) = (x+ (2u+ 3))(x2 + (2u+ 1)x+ 1)

= ((u+ 3)x+ u+ 3)((3u+ 1)x2 + (u+ 1)x+ (3u+ 1)).

Remark 4.2.5.1. For odd n, factorization in R[x] is unique [14], but as the above

example shows, the same is not true for R[x, θ].

The above example shows that there may be more (θ, α)-constacyclic codes over

R than α-constacyclic codes over R.
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4.2.2 Gray map

On Z4, the Lee weight (wL) is defined as wL(0) = 0, wL(1) = 1, wL(2) = 2, wL(3) =

1, and the Lee weight (wL) of a vector v ∈ Z4
2 is then defined as the rational sum

of the Lee weights of its coordinates. Define a Gray map φ : R→ Z4
2 such that

φ(a+ vb) = (b, a+ b),

and for any x ∈ R, we define wG(x) = wL(φ(x)), where wG(x) denotes the Gray

weight of x. Thus, the Gray weights of the elements of R are defined as:

x 0 1 2 3 v 2v 3v 1 + v

wG(x) 0 1 2 1 2 4 2 3

x 1 + 2v 1 + 3v 2 + v 2 + 2v 2 + 3v 3 + v 3 + 2v 3 + 3v
wG(x) 3 1 2 2 2 1 3 3

Remark 4.2.5.2. φ can be extended componentwise to Φ : Rn → Z4
2n. Also the

Gray weight of x ∈ Rn is then defined as the rational sum of Gray weights of its

coordinates.

Now onward, we write the parameters of a linear code over Z4 as (n, 4k12k2 , dL),

which is the standard form for parameters of codes over Z4.

4.3 Skew (1 + 2u)-constacyclic codes over R

To study constacyclic codes over R, we first consider some structural properties of

R[x, θ]/〈xn − α〉. Since the ring R[x, θ] is non-commutative, the ideals of R[x, θ]

may not be two sided ideals. In particular, the ideal 〈xn − α〉 of R[x, θ] is a two

sided ideal if and only if n is even and α is fixed by θ. In this case Rn = R[x,θ]
〈xn−α〉 is

therefore a residue class ring. If either n is odd or α is not fixed by θ, the set Rn

is only a left R[x, θ]-module with multiplication defined as r(x)(f(x) + 〈xn − α〉) =

r(x)f(x) + 〈xn−α〉 for any r(x), f(x) ∈ R[x, θ]. To associate the vectors of Rn with

the polynomials in Rn, we define an R-module isomorphism from Rn to Rn as

(c0, c1, · · · , cn−1) 7→ c0 + c1x+ · · ·+ cn−1x
n−1.
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We recall that, a subset C of Rn is called a (θ, α)-constacyclic code of length

n over R if C is an R-submodule of Rn and for any (c0, c1, · · · , cn−1) ∈ C, we

have (αθ(cn−1), θ(c0), · · · , θ(cn−2)) ∈ C. If we denote (θ, α)-constacyclic shift by

Tθ,α, then an R-submodule of Rn is a (θ, α)-constacyclic code if Tθ,α(C) = C. In

particular, if α = 1, then C is a skew-cyclic code over R.

Throughout the chapter, the notation (θ, α)-constacyclic codes can be read as

skew α-constacyclic codes. The following result can be proved easily.

Theorem 4.3.1. A code C of length n in Rn = R[x, θ]/〈xn − α〉 is a (θ, α)-

constacyclic code if and only if C is a left R[x, θ]-submodule of the left R[x, θ]-module

Rn.

Proof: Straightforward. �

Corollary 4.3.1.1. For even n and a unit α fixed by θ, a code C of length n over

R is a (θ, α)-constacyclic code if and only if C is a left ideal in Rn.

Proof: For given conditions, xn − α ∈ Z(R[x, θ]), and so Rn is a ring. The result

follows. �

Theorem 4.3.2. If C is a (θ, α)-constacyclic code of length n over R contain-

ing a minimal degree polynomial g(x) whose leading coefficient is a unit, then C

is a free code such that C = 〈g(x)〉 and g(x)|xn − α. Moreover C has a basis

{g(x), xg(x), . . . , xn−deg (g(x))−1} and |C| = |R|n−deg g(x).

Proof: Let g(x) be a minimal degree polynomial in C with its leading coefficient a

unit. Then the result that C = 〈g(x)〉 follows from the division algorithm (Lemma

4.2.1). Now again by the division algorithm, we get xn−α = q(x)g(x)+ r(x), where

r(x) = 0 or deg r(x) < deg g(x). Since xn−α corresponds to the codeword 0 in C, we

have r(x) = −q(x)g(x) ∈ C and so r(x) = 0, as g(x) is a minimal degree polynomial

in C. Therefore g(x)|xn − α. Now let xn − α = h(x)g(x) for some h(x) ∈ R[x, θ].

Since the leading coefficient of g(x) is a unit, the leading coefficient of h(x) must

also be a unit. Moreover if deg g(x) is n − k, the degree of h(x) must be k. Let
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h(x) = h0 + h1x + · · · + hkx
k, where hk is a unit. Then h(x)g(x) = 0(mod xn − α)

implies that h0g(x) + h1xg(x) + · · ·hkxkg(x) = 0 in Rn. Therefore xkg(x), and

hence xig(x) for i ≥ k, is a linear combination of g(x), xg(x), · · · , xk−1g(x), and so

A = {g(x), xg(x), · · · , xk−1g(x)} spans C. For independence of A, suppose a0g(x) +

a1xg(x) + · · · + ak−1x
k−1g(x) = 0 in Rn for some ai ∈ R, 0 ≤ i ≤ k − 1 , i.e.,

a(x)g(x) = 0, where a(x) = a0 + a1x + · · · ak−1x
k−1. Then in R[x, θ], we have

a(x)g(x) = e(x)(xn − α) for some e(x) ∈ R[x, θ]. The degree of the expression on

left hand side is n−1, which is possible only if e(x) is zero. Hence a(x) must also be

the zero polynomial, and so ai = 0 for all i. Therefore A is R-linearly independent,

and hence C is a free code. It immediately follows that |C| = |R|n−deg g(x). �

The converse of the above theorem is also true, and is given below.

Theorem 4.3.3. Let C be a principally generated free (θ, α)-constacyclic code of

length n over R. Then there exists a minimal degree polynomial g(x) ∈ C having its

leading coefficient a unit such that C = 〈g(x)〉 and g(x) | xn − α.

Proof: Since C is a principally generated free (θ, α)-constacyclic code of length n

over R, using similar arguments as in [17, Proposition 1], it follows that there exists

a monic polynomial g(x) in C such that C = 〈g(x)〉 and g(x) | xn − α. Further

as in the case of finite fields [69, pp. 191], it can easily be shown that for any

c(x) ∈ C, c(x) = a(x)g(x) in R[x, θ] for some a(x) ∈ R[x, θ]. Since g(x) is a monic

polynomial, deg c(x) ≥ deg g(x). Hence the result. �

Now onward, for this chapter only, we assume that α = 1 + 2u.

Example 4.3.4. Let C be a (θ, α)-constacyclic code generated by the following ma-

trix: [
1 + 3u 1 + u 1 + 3u

]
.
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The corresponding code is given by

(0, 0, 0), (2u+ 3, 3, 2u+ 3), (3u+ 3, u+ 3, 3u+ 3)
(2u+ 1, 1, 2u+ 1), (3u, 3u, 3u), (u+ 3, 3u+ 3, u+ 3)

(u+ 2, u+ 2, u+ 2), (u, u, u), (3u+ 1, u+ 1, 3u+ 1)
(2, 2, 2), (1, 2u+ 1, 1), (2u, 2u, 2u)

(3, 2u+ 3, 3), (3u+ 2, 3u+ 2, 3u+ 2), (u+ 1, 3u+ 1, u+ 1)
(2u+ 2, 2u+ 2, 2u+ 2)


.

The polynomial g(x) = (1+3u)x2 +(1+u)x+1+3u is a minimal degree polynomial

in C with its leading coefficient a unit. Hence C = 〈g(x)〉. Also g(x)|x3 − (1 + 2u),

and so the set {g(x)} forms a basis of C. Moreover Φ(C) is a Z4-linear code with

the parameters (6, 4220, 5L), which is a best known Z4-linear code [8].

Now we give an example of a code which has no minimal degree polynomial with

its leading coefficient a unit.

Example 4.3.5. Let C be a (θ, α)-constacyclic code with generator matrix

G =
 u u u

u+ 2 u+ 2 u+ 2

 .
Then the corresponding code is given by


(0, 0, 0), (3u+ 2, 3u+ 2, 3u+ 2), (2, 2, 2)

(2u, 2u, 2u), (u+ 2, u+ 2, u+ 2) (u, u, u)
(2u+ 2, 2u+ 2, 2u+ 2), (3u, 3u, 3u)

 .
In this example, C = 〈g(x)〉, where g(x) = u+ux+ux2. A minimal spanning set for

this code is {g(x), xg(x)}, however the set is not Z4-linearly independent. Hence C

is not a free code. Φ(C) is a Z4-linear code with the parameters (6, 4121, 6L), which

is a best known code with these parameters [8].

In the following example, we choose two non-associate factors f1(x) = x+ 2u+ 3

and f2(x) = ((u + 3)x + u + 3) of degree 1 of x3 − (1 + 2u) in R[x, θ]. Then we

calculate the parameters for two (α, θ)-constacyclic codes C1 and C2 generated by

f1(x) and f2(x), respectively. It turns out that C2 is a new good Z4-linear code.
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Example 4.3.6. C1 = 〈x + (2u + 3)〉. Then C1 is an (α, θ)-constacyclic code of

length 3 over R with the parameters (3, 162, 2L) and so Φ(C) is a (6, 4420, 2L) Z4-

linear code.

Next C2 = 〈(u+3)x+(u+3)〉. Then C2 is an (α, θ)-constacyclic code of length 3

over R with parameters (3, 16241, 2L) and so Φ(C) is a (6,4422,2L) Z4-linear code,

which is a new good linear code over Z4 with improved minimum distance by 1, when

compared to a code over Z4 with same length and cardinality [8].

This indicates that new codes can be obtained over Z4 through skew codes.

Theorem 4.3.7. Let C be a (θ, α)-constacyclic code of odd length n over R. Then

C is an α-constacyclic code over R.

Proof: Since n is odd, we have (n, 2) = 1. Therefore there exist two integers a, b

such that na+ 2b = 1 and so 2b = 1− na = 1 + nl, where l ≡ −a (mod n). Now

x2bc(x) = x2b(c0 + c1x+ · · ·+ cn−1x
n−1)

= θ2b(c0)x2b + θ2b(c1)x2b+1 + · · ·+ θ2b(cn−1)x2b+n−1

= θ2b(c0)x1+nl + θ2b(c1)x1+nl+1 + · · ·+ θ2b(cn−1)x(1+nl)+(n−1).

Since order of θ is 2 and xn = α in Rn, we have

x2bc(x) = c0α
lx+ c1α

lx2 + · · ·+ cn−2α
lxn−1 + cn−1α

l+1

= αl(c0x+ c1x
2 + · · ·+ cn−2x

n−1 + cn−1α).

Since α2l = 1, so αlx2bc(x) is an α-constacyclic shift of c(x). Hence the result. �

Theorem 4.3.8. Let C be a (θ, α)-constacyclic code of even length n generated by

a monic right divisor g(x) of xn − α. Then C is an α-constacyclic code over R if

and only if all the coefficients of g(x) are fixed by θ.

Proof: Let g(x) = g0 + g1x+ · · ·+ gr−1x
r−1 + xr be the generator polynomial of a

(θ, α)-constacyclic code C. Suppose all the coefficients of g(x) are fixed by θ. Then

clearly the corresponding generator matrix G of C will be the generator matrix of

an α-constacyclic code over R.
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Conversely, suppose C is also an α-constacyclic code. Then C, a left ideal of

R[x, θ]/〈xn−α〉, is an ideal of R[x]/〈xn−α〉 as well. Therefore, g(x)x ∈ C. Moreover

g(x)x − xg(x) ∈ C, as C is linear. This implies that gx − xg = (θ(g0) − g0)x +

(θ(g1) − g1)x2 + · · · + (θ(gr−1) − gr−1)xr is a multiple of g(x). Since the degrees of

g(x) and g(x)x − xg(x) are same, the latter must be a constant multiple of g(x).

But the constant term in g(x)x− xg(x) is zero, so we must have g(x)x− xg(x) = 0.

This implies that θ(gi) = gi for all i = 0, 1, 2, ..., r. Hence the result. �

Theorem 4.3.9. Let n be odd. Let Λ be a map from R[x,θ]
〈xn−1〉 to R[x,θ]

〈xn−α〉 such that

Λ(a(x)) = a(αx).

Then Λ is an ring isomorphism.

Proof: Since n is odd, we observe that αn = α. Now for any a(x), b(x) ∈ R[x, θ],

suppose a(x) = b(x)(mod xn − 1), i. e., a(x) − b(x) = q(x)(xn − 1) for some

q(x) ∈ R[x, θ]. Replacing x by αx, we get

a(αx)− b(αx) = q(αx)((αx)n − 1)

= q(αx)((αx)n − (α2)), as α2 = 1.

= q(αx)((αxn − (α2)), (αn = α and (αx)n = αnxn as θ(α) = α).

= q(αx)α(xn − α).

Therefore a(αx) = b(αx)(mod xn − α).

Thus a(x) = b(x)(mod xn − 1) is equivalent to a(αx) = b(αx)(mod xn − α).

Therefore Λ is one-one. Moreover since the map is between finite sets of same

cardinality, it is onto also. It is easy to verify that Λ is a homomorphism. Hence

the result. �

Thus it follows that, for odd n, both the rings R[x,θ]
〈xn−1〉 and R[x,θ]

〈xn−α〉 have same ideal

structure. Therefore the study of skew-constacyclic codes of odd lengths over R

coincides with the study of skew-cyclic codes of odd lengths over R.
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4.4 Duals of (θ, α)-constacyclic codes

In this section we study duals of (θ, α)-constacyclic codes over R.

Lemma 4.4.1. Let C be a code of length n over R, where n is even. Then C is a

(θ, α)-constacyclic code iff C⊥ is a (θ, α)-constacyclic code.

Proof: Let u = (u0, u1, · · · , un−1) ∈ C and v = (v0, v1, · · · , vn−1) ∈ C⊥

be two arbitrary elements. Since C is (θ, α)-constacyclic code, T n−1
θ,α (u) =

(θn−1(αu1), θn−1(αu2), · · · , θn−1(αun−1), θn−1(u0)) ∈ C. Then

0 = T n−1
θ,α (u) · v

= (θn−1(αu1), θn−1(αu2), · · · , θn−1(αun−1), θn−1(u0)) · (v0, v1, · · · , vn−1)

= α[(θn−1(u1), θn−1(u2), · · · , θn−1(un−1), θn−1(α−1u0))] · (v0, v1, · · · , vn−1)

= α[θn−1(α−1u0)vn−1 +
n−1∑
i=1

θn−1(ui)vi−1]

= α(u0θ(α−1vn−1)) +
n−1∑
i=1

uiθ(vi−1) (as θn = I, the identity map)

= α[Tθ,α−1(v) · u].

This implies that Tθ,α(v) ∈ C⊥, as α−1 = α. Therefore C is a (θ, α)-constacyclic

code. Conversely, if C⊥ is (θ, α)-constacyclic code, then C = (C⊥)⊥ is also a (θ, α)-

constacyclic code. Hence the result. �

Lemma 4.4.2. Let g(x), h(x) ∈ R[x, θ]. If g(x)h(x) is a monic central element of

R[x, θ], then g(x)h(x) = h(x)g(x).

Proof: Since g(x)h(x) is a central element, we have h(x)(g(x)h(x)) = (g(x)h(x))h(x)

for h(x) ∈ R[x, θ]. Therefore (h(x)g(x) − g(x)h(x))h(x) = 0, and so h(x)g(x) =

g(x)h(x), as h(x) is a regular polynomial. �

Lemma 4.4.3. Let C be a (θ, α)-constacyclic code of even length n over R generated

by a monic right divisor g(x) of xn − α. Then v(x) ∈ Rn = R[x,θ]
〈xn−α〉 is in C if and

only if v(x)h(x) = 0 in Rn, where xn − α = h(x)g(x).
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Proof: Suppose v(x) ∈ C. Then v(x) = a(x)g(x) for some a(x) ∈ Rn. So

v(x)h(x) = a(x)g(x)h(x) = a(x)h(x)g(x) = 0 in Rn, as g(x)h(x) = h(x)g(x) = xn−

α. Conversely, suppose v(x)h(x) = 0 in Rn for some v(x) ∈ Rn. Then there exists

r(x) ∈ R[x, θ] such that v(x)h(x) = r(x)(xn − α) = r(x)h(x)g(x) = r(x)g(x)h(x).

Since h(x) is regular, v(x) = r(x)g(x). Hence the result. �

Remark 4.4.3.1. If a code C is generated by a minimal degree polynomial g(x) with

its leading coefficient a unit, then there exists a minimal degree monic polynomial

g1(x) such that C = 〈g1(x)〉.

Theorem 4.4.4. Let C be a (θ, α)-constacyclic code of even length n generated

by the minimal degree monic polynomial g(x) = g0 + g1x + · · · + xn−k such that

xn−α = h(x)g(x) for some h(x) ∈ Rn. Let h(x) = h0 +h1x+h2x
2 + · · ·+xk. Then

the polynomial h∗(x) = 1 + θ(hk−1)x+ θ2(hk−2)x2 + · · ·+ θk(h0)xk generates C⊥.

Proof: Let c(x) ∈ C. Then c(x)h(x) = 0 in Rn. Therefore the coefficients of

xk, xk+1, · · · , xn−1 in [c0 + c1x+ c2x
2 + · · ·+ cn−2x

n−2 + cn−1x
n−1][h0 + h1x+ h2x

2 +

· · ·+ hk−1x
k−1 + xk] are all zero’s. Hence we have

c0 + c1θ(hk−1) + c2θ
2(hk−2) + · · ·+ ckθ

k(h0) = 0

c1 + c2θ
2(hk−1) + c3θ

3(hk−2) + · · ·+ ck+1θ
k+1(h0) = 0

c2 + c3θ
3(hk−1) + c4θ

4(hk−2) + · · ·+ ck+2θ
k+2(h0) = 0

... ... ...

cn−k−1θ
n−k−1(hk−1) + cn−kθ

n−k(hk−2) + · · ·+ cn−1θ
n−1(h0) = 0.

Let H∗ =

1 θ(hk−1) θ2(hk−2) · · · θk(h0) · · · · · · 0
0 1 θ2(hk−1) · · · · · · θk+1(h0) · · · 0
0 0 1 · · · · · · θk+1(h1) · · · 0
... ... ... ... ... . . .
0 0 · · · θn−k(hk−2) · · · · · · · · · θn−1(h0)


.



Chapter 4: Skew-constacyclic and Skew-cyclic Codes over Extensions of Z4 70

Then each row of H∗ is orthogonal to every element of C. Therefore each row

vector of H∗ is in C⊥. Since C is a Frobenius ring, |C||C⊥| = |R|n. Also |C| = |R|k,

as deg g(x) = n − k. Therefore |C⊥| = |R|n−k. The rows of H∗ are linearly

independent. So the cardinality of the row span of H∗ is |R|n−k. Therefore H∗ is a

generator matrix of C⊥. Since H∗ is a circular matrix, the corresponding polynomial

h∗(x) = 1 + θ(hk−1)x+ θ2(hk−2)x2 + · · ·+ θk(h0)xk is a generator polynomial of C⊥.

�

Example 4.4.5. Let C be a (θ, α)-constacyclic code of length 4 generated by the

monic polynomial g(x) = x2+(2u+2)x+3u+3 such that x4−α = (x2+(2u+2)x+u+

1)(x2+(2u+2)x+3u+3), where α = 1+2u. If we take h(x) = (x2+(2u+2)x+u+1),

then h∗(x) = 1 + θ(2u+ 2)x+ θ2(u+ 1)x2 = (u+ 1)x2 + (2u+ 2)x+ 1. h∗(x) is also

a right divisor of x4 − α, as by Lemma 4.4.2, we have

x4 − α = ((u+ 1)x2 + (2u+ 2)x+ 1)((3u+ 1)x2 + (2u+ 2)x+ 2u+ 3)

= ((3u+ 1)x2 + (2u+ 2)x+ 2u+ 3)((u+ 1)x2 + (2u+ 2)x+ 1).

Also as C is generated by a monic right divisor g(x) of x4−α, C is a free code with

basis {g(x), xg(x)}. Hence a generator matrix for C is

G =
 3u+ 3 2u+ 2 1 0

0 3u+ 1 2u+ 2 1

 .
Since h∗(x) = (u+ 1)x2 + (2u+ 2)x+ 1, the corresponding circular matrix is given

by

H =
 1 2u+ 2 u+ 1 0

0 1 2u+ 2 u+ 3

 .
It can easily be verified that the rows of H are R-linearly independent and GHT = 0.

Therefore H is a parity check matrix of C and hence a generator matrix of C⊥.

This shows that h∗(x) is a generator polynomial of C⊥ and C⊥ = 〈h∗(x)〉 is a

(θ, α)-constacyclic code over R.
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4.5 Double (θ, α)-constacyclic codes

In this section we study double (θ, α)-constacyclic codes over R.

For any d ∈ R and v = (a0, a1, · · · , an1−1, b0, b1, · · · , bn2−1) ∈ Rn1+n2 , we define

dv = (da0, da1, · · · , dan1−1, db0, db1, · · · , dbn2−1).

With this multiplication, Rn1+n2 is an R-module.

A double skew-linear code is an R-submodule of Rn1+n2 .

Definition 4.5.1. A double skew-linear code C is called double (θ, α)-constacyclic

code if for a vector v = (a0, a1, · · · , an1−1, b0, b1, · · · , bn2−1) ∈ C, its double (θ, α)-

shift, i.e., the vector (αθ(an1−1), θ(a0), θ(a1), θ(an1−2), αθ(bn2−1), θ(b0), θ(b1), · · · , θ(bn2−2))

is also in C.

We define the multiplication of any r(x) ∈ R[x, θ] and (g1(x) | g2(x)) ∈ Rn1,n2 =
R[x,θ]
〈xn1−α〉 ×

R[x,θ]
〈xn2−α〉 as

r(x)(g1(x) | g2(x)) = (r(x)g1(x) | r(x)g2(x)),

where r(x)g1(x) and r(x)g2(x) are the multiplication of polynomials in R[x, θ]. With

this multiplication, Rn1,n2 is a left R[x, θ]-module.

Theorem 4.5.2. A code C is a double (θ, α)-constacyclic code if and only if it is a

left R[x, θ]-submodule of the left module R[x, θ]/〈xn1 − α〉 ×R[x, θ]/〈xn2 − α〉.

Proof: Let C be a double (θ, α)-constacyclic code. Let c ∈ C, and let the associated

polynomial of c be c(x) = (a1(x) | a2(x)). As xc(x) is a double (θ, α)-shift of c, so

xc(x) ∈ C. By linearity of C, r(x)c(x) ∈ C for any r(x) ∈ R[x, θ]. So C is a left

R[x, θ]-submodule of Rn1,n2 . Converse is straightforward. �

Theorem 4.5.3. A double (θ, α)-constacyclic code is equivalent to a double α-

constacyclic code or double cyclic code if n1 and n2 both are odd integers.

Proof: Let C be a double (θ, α)-constacyclic code. Let γ = lcm(n1, n2). Then

γ is odd, and so gcd(γ, 2) = 1. Therefore there exist two integers a, b such that
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γa+ 2b = 1 and so 2b = 1− γa = 1 + γl for some l > 0, where l = −a (mod γ). Let

c(x) = (a(x) | b(x)) ∈ C, where a(x) = ∑n1−1
i=0 aix

i and b(x) = ∑n2−1
i=0 bix

i.
Then

x2bc(x) = x2b

(
n1−1∑
i=0

aix
i |

n2−1∑
i=0

bix
i

)
=
(
n1−1∑
i=0

θ2b(ai)xi+2b |
n2−1∑
i=0

θ2b(bi)xi+2b

)

=
(
n1−1∑
i=0

θ2b(ai)xi+1+γl |
n2−1∑
i=0

θ2b(bi)xi+1+γl

)

=
(
n1−2∑
i=0

aix
i+1+γl + an1−1x

n1+γl |
n1−2∑
i=0

aix
i+1+γl + an2−1x

n2+γl

)

=
(
n1−2∑
i=0

aix
i+1 + αan1−1 |

n2−2∑
i=0

aix
i+1 + αan2−1

)
,

(as xn1 = xn2 = xγ = α and xγl = 1 or α).

Thus x2bc(x) is a double α-constacyclic shift of c(x) if xγl = 1 or a double cyclic

shift if xγl = α. Hence the result. �

Theorem 4.5.4. Let C1 and C2 be two principally generated free (θ, α)-constacyclic

codes of lengths n1 and n2 over R having monic generator polynomials g1(x)

and g2(x), respectively, such that g1(x)|xn1 − α and g2(x)|xn2 − α. Then a code

C generated by g(x) = (g1(x) | g2(x)) is a double (θ, α)-constacyclic code and

A = {g(x), xg(x), · · · , xl−1g(x)} is a spanning set of C, where l = deg h(x) and

h(x) = lcm{h1(x), h2(x)}.

Proof: Let xn1 − α = h1(x)g1(x) and xn2 − α = h2(x)g2(x) for some monic

polynomial h1(x), h2(x) ∈ R[x, θ]. Also let h(x) = lcm{h1(x), h2(x)}. Then

h(x)g(x) = h(x)(g1(x)|g2(x)) = 0, as h(x)gi(x) = h′(x)hi(x)gi(x) = 0 for i = 1, 2.

Now let v(x) ∈ C be any non-zero codeword in C. Then v(x) = a(x)g(x) for some

a(x) ∈ R[x, θ]. By the division algorithm, we have a(x) = q(x)h(x) + r(x), where

r(x) = 0 or deg r(x) < deg h(x). Then v(x) = a(x)g(x) = r(x)g(x) = 0. Since

r(x) = 0 or deg r(x) < deg h(x), the result follows. �

In the following example, we use the Theorem 5.5.5 to combine two (θ, α)-

constacyclic codes of different lengths and obtain a double (θ, α)-constacyclic code

whose Gray image gives a new good Z4-linear code, and it improves the Lee distance

of the existing best code with comparable parameters.
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Example 4.5.5. Let C be a double (θ, α)-constacyclic code of length 9 over R with

n1 = 3 and n2 = 6 and with a generator matrix as follow:


1 1 + 2u 1 1 0 1 + 2u 0 1 0

1 + 2u 1 1 + 2u 0 1 0 1 + 2u 0 1
1 2u+ 1 1 2u+ 1 0 1 0 2u+ 1 0

 .

The spanning set of C is {(g1(x) | g2(x)), x(g1(x) | g2(x)), x2(g1(x) | g2(x))} which is
an R-linearly dependent set as 2(g1(x) | g2(x)) = 2x2(g1(x) | g2(x)), where g1(x) =
x2 + (1 + 2u)x + 1, g2(x) = x4 + (1 + 2u)x2 + 1 and g1(x)|x3 − α, g2(x)|x6 − α,
where α = 1 + 2u. The Gray image Φ(C) of C is a new good Z4- linear code with
parameters (18,4421,10L), and generator matrix

1 0 3 2 1 0 0 0 1 0 0 0 3 2 0 0 1 0
0 1 2 3 0 1 0 0 0 1 0 0 2 3 0 0 0 1
0 0 0 0 0 0 1 0 1 2 3 2 3 0 1 0 1 2
0 0 0 0 0 0 0 1 0 3 2 3 2 1 0 1 0 3
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2


,

which improves the minimum Lee distance by 4 when compared to the existing best

known code (18, 4421, 6L) [8].

4.5.1 Some more good codes

The following table shows the generator matrices and parameters of two more codes

over Z4.

Code Generator matrix Parameters (n, 4k12k2 , dL)

C1 G1 (18, 4422, 7)
C2 G2 (18, 4424, 7)
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where

G1 =



1 0 0 0 1 0 2 3 0 1 0 1 2 3 2 3 0 3
0 1 0 0 0 1 1 0 3 2 3 2 1 0 1 0 1 2
0 0 1 0 1 0 0 0 2 1 0 0 0 3 0 0 2 1
0 0 0 1 0 1 0 0 3 0 0 0 1 2 0 0 3 0
0 0 0 0 2 0 2 2 2 2 2 2 2 2 2 2 2 0
0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 0 2


and

G2 =



1 0 0 0 1 0 0 1 0 1 0 3 2 3 0 1 2 1
0 1 0 0 0 1 1 0 3 2 1 0 3 0 3 0 3 0
0 0 1 0 1 0 0 0 2 1 0 0 0 3 0 0 2 1
0 0 0 1 0 1 0 0 3 0 0 0 1 2 0 0 3 0
0 0 0 0 2 0 0 0 2 2 0 2 0 0 2 2 0 2
0 0 0 0 0 2 0 0 2 2 0 2 2 2 0 0 2 0
0 0 0 0 0 0 2 2 0 0 0 2 2 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0



.

The code C1 improves the Lee weight by 1 when compared to existing best

code with comparable parameters. Also C2 is a new code as there is no code with

comparable parameters in the database of Z4-codes, and it further improves C1 in

cardinality.

4.6 Skew-cyclic codes over R = GR(4, 2)+vGR(4, 2)

In this section, we study skew cyclic codes over the ring GR(4, 2)+vGR(4, 2), v2 = v,

where GR(4, 2) is the Galois ring extension of Z4 of degree 2.

4.6.1 About R[x,Θ]

We use the notation R = GR(4, 2) + vGR(4, 2), v2 = v. R is a commutative semi-

local ring with characteristic 4 and cardinality 162. It is isomorphic to the ring

GR(4, 2)[v]/〈v2 − v〉. The Galois ring GR(4, 2) is defined as GR(4, 2) ∼= Z4[x]
〈f(x)〉

∼=

Z4[ξ], where f(x) = 1 + x + x2 is a basic primitive polynomial of degree 2 over Z4
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and ξ is a root of f(x). Thus ξ is a primitive element of GR(4, 2). Every element a

of GR(4, 2) can uniquely be expressed as a = a1 + ξa2, where a1, a2 ∈ Z4. Therefore

an element a+ vb of R can be expressed as a+ vb = (a1 + vb1) + ξ(a2 + vb2), where

a1, a2, b1, b2 ∈ Z4.

Define a map Θ : R → R such that

Θ(a+ vb) = Θ((a1 + vb1) + ξ(a2 + vb2)) = (a1 + vb1) + ξ2(a2 + vb2)

for all a+vb ∈ R. One can easily verify that Θ is an automorphism of R which fixes

the ring Z4 + vZ4. Moreover, when restricted to GR(4, 2), Θ is the Frobenius auto-

morphism of GR(4, 2). The set R[x,Θ] forms a skew polynomial ring in which the

addition and multiplications are defined similarly as in the case of skew polynomial

rings over fields.

The following version of right division algorithm holds for R[x,Θ].

Lemma 4.6.1. [74] Let f, g ∈ R[x,Θ] be such that the leading coefficient of g is a

unit. Then there exist q, r ∈ R[x,Θ] such that f = qg+r, r = 0 or deg(r) < deg(g).

Theorem 4.6.2. The center Z(R[x,Θ]) of R[x,Θ] is (Z4 + vZ4)[x2].

Proof: We know Z4 + vZ4 is the fixed ring of Θ. Since the order of Θ is 2, for

any non-negative integer i, we have x2ia = Θ2i(a)x2i = ax2i for all a ∈ R. It

gives x2i ∈ Z(R[x,Θ]), and hence all polynomials of the form f = a0 + a1x
2 +

a2x
4 + · · · + atx

2t with ai ∈ Z4 + vZ4 are in the center. Conversely, for any f =

f0 + f1x + f2x
2 + · · · + fkx

k ∈ Z(R[x,Θ]) we have fx = xf which gives that all fi
are fixed by Θ, so that fi ∈ Z4 + vZ4. Further, choose a ∈ R such that Θ(a) 6= a.

Then it follows from the relation af = fa that fi = 0 for all odd indices i. Thus

f = a0 + a1x
2 + a2x

4 + · · ·+ atx
2t ∈ (Z4 + vZ4)[x2].

Corollary 4.6.2.1. Let f = xn − 1. Then f ∈ Z(R[x,Θ]) if and only if n is even.

We denote the skew-cyclic shift of a word c = (c0, c1, · · · , cn−1) ∈ Rn by TΘ(c)

and it is defined similarly as in the Definition 2.1.4. Thus a submodule C of Rn is

a skew-cyclic code if TΘ(C) = C.
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Definition 4.6.3. A skew-linear code C of length n over the ring R is a left R[x,Θ]-

submodule of left module R[x,Θ]
〈f(x)〉 , where f(x) is a polynomial of degree n over R[x,Θ].

Theorem 4.6.4. A code C of length n in Rn = R[x,Θ]/〈xn − 1〉 is a skew-cyclic

code if and only if C is a left R[x,Θ]-submodule of the left R[x,Θ]-module Rn.

Proof: Straightforward. �

Corollary 4.6.4.1. For even n, a skew-linear code of length n over R is a skew-

cyclic code if and only if C is a left ideal in Rn.

Proof: For even n, xn − 1 ∈ Z(R[x,Θ]), and so, Rn is a ring. The result follows.

Definition 4.6.5. A skew-cyclic code of length n is said to be principally generated

if it is a left cyclic submodule of Rn, i.e., there exists g(x) ∈ R[x,Θ] such that

C = Rg = 〈g(x)〉.

Next result shows a sufficient condition for a principally generated skew-cyclic

code over R to be free, and is a generalization of [16, Theorem 2].

Theorem 4.6.6. Let C be a skew-cyclic code of length n over R. If there exists a

monic polynomial g(x) of minimal degree in R. Then C = 〈g(x)〉 such that g(x) is

a right divisor of xn − 1 and C is a principally generated free skew-cyclic code of

length n over R.

Proof: The proof is similar to the proof of Theorem 4.3.2 in Section 4.3. �

Theorem 4.6.7. Let C be a skew-cyclic code of length n over R generated by a

monic polynomial g(x) which is a right divisor of xn − 1, i.e xn − 1 = h(x)g(x) for

some h(x) ∈ R[x,Θ]. Then a polynomial f(x) = p(x)g(x) will generate the same

code C if and only if p(x) and h(x) are right co-prime.

Proof: The proof is similar to the proof of [16, Theorem 3]. �

Theorem 4.6.8. Let C be a skew-cyclic code of odd length n over R. Then C is a

cyclic code over R.



77 4.6 Skew-cyclic codes over R = GR(4, 2) + vGR(4, 2)

Proof: The proof is similar to that of Theorem 4.3.7 in this chapter. �

Theorem 4.6.9. Let C be a free skew-cyclic code of even length n generated by a

monic right divisor g(x) of xn− 1. Then C is a cyclic code over R if and only if all

the coefficient of g(x) are fixed under the automorphism Θ of R.

Proof: The proof is similar to that of Theorem 4.3.8. �

Theorem 4.6.10. Let C be a skew-cyclic code of even length n over R. Then C is

equivalent to a quasi-cyclic code of index 2 over R.

Proof: By letting n = 2N , we can write c ∈ R as c = (c0,0, c0,1, c1,0, c1,1, · · · , cN−1,0, cN−1,1).

Since Θ2 is the identity map, and T iΘ(c) ∈ C for all i, so we have T 2
Θ(c) =

(cN−1,0, cN−1,1, c0,0, c0,1, · · · , cN−2,0, cN−2,1) ∈ C. Therefore C is equivalent to a

quasi-cyclic code of index 2.

4.6.2 Duals of skew-cyclic codes over R

Lemma 4.6.11. Let C be a skew-cyclic code of even length n over R. Then Θ(a ·

T jΘ(b)) = TΘ(a) · T j+1
Θ (b) for all a ∈ C⊥ and b ∈ C, for any j ≥ 0.

Proof: Let a = (a0, a1, · · · , an−1) ∈ C⊥ and b = (b0, b1, · · · , bn−1) ∈ C. By definition

TΘ(a) = (Θ(an−1),Θ(a0), · · · ,Θ(an−2)) and T j+1
Θ (b) = (Θj+1(bn−j−1),Θj+1(bn−j), · · · ,

Θj+1(bn−j−2)), where i, j are fixed indices. Therefore TΘ(a)·T j+1
Θ (b) = Θ(an−1)Θj+1(bn−j−1)+

Θ(a0)Θj+1(bn−j) + · · ·+ Θ(an−2)Θj+1(vi,n−j−2) = Θ[an−1Θj(bn−j−1) + a0Θj(bn−j) +

· · ·+ an−2Θj(bn−j−2)] = Θ(a · T jΘ(b)). Therefore Θ(a · T jΘ(b)) = TΘ(a) · T j+1
Θ (b).

Theorem 4.6.12. If C is skew-cyclic code of even length n over R, then C⊥ is also

skew-cyclic of length n over R.

Proof: Any element c of C can be expressed as T jΘ(b) for some integer 0 ≤ j ≤ n−1

and b ∈ C, as n is even, and so T nΘ(c) = c for all c in Rn. To show that C⊥

is also a skew-cyclic code, it is sufficient to show that for any a ∈ C⊥, we have

TΘ(a) · TΘ(c) = 0 for all c ∈ C. However this follows from Lemma 4.6.11, and the

fact that if a · c = 0, then Θ(a · c) = Θ(0) = 0. Hence the result.
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4.7 A decomposition of skew-cyclic codes over R

The ring R = R1[v]
〈v2−v〉 , where R1 = GR(4, 2) can be written as

R = vGR(4, 2) + (1− v)GR(4, 2)

by the Chinese Remainder Theorem.

Let C be a skew-linear code of length n over R. Define

C1 = {x ∈ Rn
1 | ∃ y ∈ Rn

1 , vx+ (1− v)y ∈ C}

C2 = {y ∈ Rn
1 | ∃ x ∈ Rn

1 , vx+ (1− v)y ∈ C}.

Clearly, C1 and C2 are skew-linear codes of length n overR1, and C can be expressed

as

C = vC1 ⊕ (1− v)C2.

Theorem 4.7.1. Let C = vC1 ⊕ (1 − v)C2 be a skew-linear code over R. Then C

is a skew-cyclic code over R if and only if C1, C2 are skew-cyclic codes over R1.

Proof: Let TΘ denote the skew-cyclic shift operator on C as well as on Ci for i = 1, 2.

For any c ∈ C, we have TΘ(c) = vTΘ(c1) + (1− v)TΘ(c2), where c = vc1 + (1− v)c2.

Suppose C1, C2 are skew- cyclic codes over R1. Then TΘ(ci) ∈ Ci for i = 1, 2 and so

TΘ(c) ∈ C.

Conversely, suppose C is a skew-cyclic code over R. Then TΘ(c) ∈ C for all

c ∈ C. This implies that vTΘ(c1) + (1− v)TΘ(c2) ∈ C, and so by the definitions of

C1 and C2, TΘ(c1) ∈ C1 and TΘ(c2) ∈ C2. Hence the result. �

The following Theorem is generalization of [42, Proposition 3].

Theorem 4.7.2. Let C be a skew-linear code of length n over R. Then C⊥ =

vC⊥1 ⊕ (v − 1)C⊥2 . Moreover,

(i) if C is a skew-cyclic code of length n over R, then C⊥ is also a skew-cyclic

code of length n over R.
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(ii) C is self-dual skew-cyclic code of length n over R if and only if C1 and C2 both

are self-dual skew-cyclic codes of length n over R1.

Proof: Define

A = {x ∈ R1
n | ∃ y ∈ R1

n, vx+ (1− v)y ∈ C⊥}

B = {y ∈ R1
n | ∃ x ∈ R1

n, vx+ (1− v)y ∈ C⊥}.

Clearly C⊥ = vA ⊕ (1− v)B. If x = va+ (1− v)b ∈ C and y = vc+ (1− v)d ∈ C⊥,

then x · y = 0 gives a · c = 0 and b · d = 0, as v2 = v. Therefore A ⊆ C1
⊥, since

for any c ∈ A, a · c = 0 for all a ∈ C1. In the reverse direction, let e ∈ C1
⊥ and

x = va + (1 − v)b ∈ C. Then ve · x = 0, and so, ve ∈ C⊥. Due to the unique

expression of elements of C⊥, we have e ∈ A. So A = C⊥1 . Similarly B = C2
⊥.

(i) Let C be a skew-cyclic code over R. Then C1 and C2 are skew-cyclic codes

over R1 by Theorem 7.1. Therefore C1
⊥ and C2

⊥ are skew-cyclic codes over R1,

since the dual of a skew-cyclic code overR1 is a skew-cyclic code. Again by Theorem

7.1 and the above discussion, C⊥ is a skew-cyclic code over R.

(ii) Suppose C1 and C2 are self-dual skew-cyclic codes over R1. Then C is a

self-dual skew-cyclic code over R, as C⊥ = vC⊥1 ⊕ (1 − v)C⊥2 . Conversely, if C is

a self-dual skew-cyclic code over R, then C1 and C2 are self orthogonal codes over

R1, i.e C1 ⊆ C1
⊥ and C2 ⊆ C2

⊥. Let e ∈ C1
⊥. Then there exists l ∈ R1 such that

ve + (1 − v)l ∈ C⊥ = C. By the uniqueness of the expressions of elements of C,

e ∈ C1, and so C⊥1 = C1. Similarly C2
⊥ = C2. Hence the result.

For any element a + vb ∈ R, where a, b ∈ GR(4, 2), define a Gray map ϕ :

R → GR(4, 2)2 by ϕ(a + vb) = (a + b, a). It can easily be proved that ϕ is a ring

isomorphism and can be extended (denoted by the same symbol ϕ) componentwise

to ϕ : Rn → GR(4, 2)2n. The Gray weight (wG) of any x = a + vb ∈ Rn is defined

as the Hamming weight of its Gray image, i.e., wG(x) = wH(ϕ(x)) = wH(a+ b, a).

Lemma 4.7.3. The Gray map ϕ : Rn → GR(4, 2)2n is a GR(4, 2)-linear and

distance preserving map.
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Proof: Let x = a+vb ∈ Rn and ϕ(x) = (a+b, a). Then clearly ϕ(x+y) = ϕ(x)+ϕ(y)

and ϕ(ex) = eϕ(x) for any e ∈ GR(4, 2). Therefore ϕ is GR(4, 2)-linear. Now

dG(x, y) = wG(x− y) = wH(ϕ(x− y)) = wH(ϕ(x)− ϕ(y)) = dH(ϕ(x), ϕ(y)). Hence

the result.

Theorem 4.7.4. Let C be a skew-linear code of length n over R. Then ϕ(C) =

C1 ⊗ C2 and |C| = |C1||C2|. Moreover ϕ(C) is also a skew-linear code of length 2n

over GR(4, 2).

Proof: Since C = vC1+(1−v)C2, where C1, C2 are as defined above. Let x ∈ ϕ(C).

Then there exists va+ (1− v)b ∈ C such that x = ϕ(va+ (1− v)b) = (a, b). It gives

x ∈ C1 ⊗ C2, and so ϕ(C) ⊆ C1 ⊗ C2.

Conversely, let (a, b) ∈ C1⊗C2. Since a ∈ C1 and b ∈ C2, we have x = av+ (1−

v)b ∈ C. Also ϕ(x) = (a, b), gives (a, b) = ϕ(x) ∈ ϕ(C). Hence ϕ(C) = C1 ⊗ C2.

Also |C| = |ϕ(C)|, so |C| = |C1||C2|.

For the second part, since ϕ is a linear map, so ϕ(C) is also a linear code. Also,

ϕ(C) is obviously a code of length 2n. �

Theorem 4.7.5. Let C be a skew-linear code of length n over R. If C is self-dual,

then ϕ(C) is a skew-linear self-dual code of length 2n over GR(4, 2).

Proof: Let x = va+ (1− v)b ∈ C and y = vc+ (1− v)d ∈ C⊥. Then x · y = 0, and

so a · c = 0 and b · d = 0. Also ϕ(x) · ϕ(y) = (a, b) · (c, d) = (a · c, b · d) = (0, 0).

It shows that ϕ(C⊥) ⊆ ϕ(C)⊥. Further, we have |C| = 16n, as C is self-dual and

|C||C⊥| = |R|n. Since |C| = |ϕ(C)|, we have |ϕ(C)| = |ϕ(C)⊥)| = 16n. Hence

ϕ(C) = ϕ(C)⊥. ϕ(C) is thus a self-dual code of length 2n over GR(4, 2).

Theorem 4.7.6. Let C be a skew-cyclic code of length n over R. Then ϕ(C) is a

skew-2-quasi cyclic code of length 2n over GR(4, 2).

Proof: Since ϕ(C) = C1 ⊗ C2, where both C1 and C2 are skew-cyclic codes over

GR(4, 2), therefore C1, C2 are left GR(4, 2)[x,Θ]-submodules of the left module
GR(4,2)[x,Θ]
〈xn−1〉 . Now by the definition of a 2-quasi cyclic code, and the fact that ϕ(C) is
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a GR(4, 2)[x,Θ]-submodule of the left module [GR(4,2)[x,Θ]
〈xn−1〉 ]

2
, it follows that ϕ(C) is

a skew 2-quasi cyclic code of length 2n over GR(4, 2).

4.8 Conclusion

We have studied a class of skew-constacyclic code over a ring Z4+uZ4, u
2 = 0. A new

good Z4-linear code (6,4422,2L) is obtained through this class. For even length,

dual of these codes are discussed and a relation between the generator polynomial

of a code and that of its dual is shown. These codes have been then generalized to

double skew-constacyclic codes, and we have obtained new good Z4-linear codes with

parameters (18,4421,10L), (18,4422,7L) and (18,4424,7L) via the Gray map.

Further, we have extended this study by defining a class of skew-cyclic codes over

GR(4, 2) + vGR(4, 2), v2 = v.
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Chapter 5

Skew-cyclic Codes over Z4 + wZ4

with Derivation

5.1 Introduction

After their introduction by Boucher et al. [26], skew-cyclic codes have been gener-

alized in many ways [27, 28, 29, 58, 96, 16, 48]. However, almost all this work has

been done in the setting of skew-polynomial rings with automorphism only. In [30],

Boucher et al. studied linear codes using skew-polynomial rings with automorphism

and derivation. In this chapter, we have considered a class of skew-cyclic codes in

the setting of the skew polynomial ring R[x, θ, δθ], where R = Z4 + wZ4, w
2 = 1; θ

is an automorphism of R, and δθ is a derivation on R.

5.2 Properties of R = Z4 + wZ4

In this section, we present some basic definitions and results that are necessary to

understand the further results.

We fix the notation R = Z4 + wZ4, w
2 = 1 for this chapter. Note that R ∼=

Z4[w]
〈w2−1〉 . An element a + wb ∈ R is a unit if and only if exactly one of a and b is a

unit. Therefore the units of R are

1, 3, w, 3w,w + 2, 2w + 3, 2w + 1, 3w + 2.

83
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In a finite ring, an element is either a unit or a zero divisor. Hence the non-units of

R are

0, 3w + 3, 2w + 2, w + 1, 2, 3w + 1, 2w,w + 3.

There are total 7 ideals of R (including the zero ideal), and they form a lattice with

inclusion operation whose (lattice) diagram is shown in Figure 5.2.
R

〈2w, 1 + w〉

〈2w〉
〈3 + w〉 〈1 + w〉

〈2 + 2w〉

〈0〉

Figure: 5.2

In Figure 5.2, we have

〈0〉 = {0},

〈2w〉 = {0, 2w, 2, 2 + 2w},

〈1 + w〉 = {0, 1 + w, 2 + 2w, 3 + 3w},

〈3 + w〉 = {0, w + 3, 2w + 2, 3w + 2},

〈2 + 2w〉 = {0, 2w + 2},

〈2w, 1 + w〉 = {3w + 3, 0, 2w + 2, w + 1, 2, 3w + 1, 2w,w + 3},

〈1〉 = R.

Thus R is a local-ring having 〈2w, 1 + w〉 its unique maximal ideal. To know more

about the ring R, we refer to [77, 93].

Define a map θ : R→ R such that

θ(a+ wb) = a+ (w + 2)b.

One can easily verify that θ is an automorphism of R. Moreover, since θ2(x) = x

for all x ∈ R, and θ is not the identity map, the order of θ is 2.
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Definition 5.2.1. Let R be a finite ring and Θ be an automorphism of R. Then a

map ∆Θ : R → R is said to be a derivation on R if

∆Θ(x+ y) = ∆Θ(x) + ∆Θ(y) and ∆Θ(xy) = ∆Θ(x)y + Θ(x)∆Θ(y).

We define a map δθ : R→ R such that

δθ(a+ wb) = (1 + w)(θ(a+ wb)− (a+ wb)).

That is, δθ(a+ wb) = (1 + w)(a+ wb+ 2b− a− wb) = 2b+ 2wb.

Theorem 5.2.2. The map δθ is a derivation on R.

Proof: Let x, y ∈ R. Then by definition,

δθ(x+ y) = (1 + w)(θ(x+ y)− (x+ y))

= (1 + w)(θ(x)− x) + (1 + w)(θ(y)− y)

= δθ(x) + δθ(y).

Also,

δθ(xy) = (1 + w)(θ(xy)− xy)

= (1 + w)θ(x)θ(y)− (1 + w)xy

= (1 + w)θ(x)θ(y)− (1 + w)xy + (1 + w)θ(x)y − (1 + w)θ(x)y

= (1 + w)θ(x)(θ(y)− y)− (1 + w)(x− θ(x))y

= θ(x)(1 + w)(θ(y)− y) + (1 + w)(θ(x)− x)y

= δθ(x)y + θ(x)δθ(y).

Thus δθ is a derivation on R. �

The following table gives images of elements of R under δθ.

x 0 1 2 3 w 2w 3w 1 + w

δθ(x) 0 0 0 0 2 + 2w 0 2 + 2w 2 + 2w

x 1 + 2w 1 + 3w 2 + w 2 + 2w 2 + 3w 3 + w 3 + 2w 3 + 3w
δθ(x) 0 2 + 2w 2 + 2w 0 2 + 2w 2 + 2w 0 2 + 2w

Remark 5.2.2.1. We note that for n ≥ 2, we have δθn(x) = 0 for all x ∈ R.
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5.2.1 Skew polynomial ring R[x,Θ,∆Θ]

Let R be a ring with automorphism Θ and derivation ∆Θ. Then the skew polynomial

ring R[x,Θ,∆Θ] is the set of all polynomials over R with addition as the ordinary

addition of polynomials and multiplication defined by

xa = Θ(a)x+ ∆Θ(a) (5.1)

for any a ∈ R, which is then extended to all elements of R[x,Θ,∆Θ] in the usual

manner. The following example illustrates it.

Example 5.2.3. Let f = x2 + a0x+ a1 and g = x+ b0 are in R[x, θ, δθ]. Then

f + g = x2 + (a0 + 1)x+ a1 + b0 = g + f.

Also,

fg = (x2 + a0x+ a1)(x+ b0)

= x2(x+ b0) + a0x(x+ b0) + a1(x+ b0)

= x3 + b0x
2 + a0x

2 + a0(θ(b0)x+ δθ(b0)) + a1x+ a1b0 (By Corollary 5.2.6.1)

= x3 + (b0 + a0)x2 + (a0θ(b0) + a1)x+ a0δθ(b0) + a1b0

and

gf = (x+ b0)(x2 + a0x+ a1)

= x(x2 + a0x+ a1) + b0(x2 + a0x+ a1)

= x3 + (θ(a0)x+ δθ(a0))x+ (θ(a1)x+ δθ(a1)) + b0x
2 + b0a0x+ b0a1

= x3 + (θ(a0) + b0)x2 + (δθ(a0) + θ(a1) + b0a0)x+ δθ(a1) + b0a1.

Therefore fg 6= gf . Thus R[x, θ, δθ] is a non-commutative ring.

Let Rθ = {0, 1, 2, 3, 2w, 1 + 2w, 3 + 2w, 2 + 2w}. Then Rθ is a subring of R,

fixed elementwise by θ, i.e., θ(a) = a for all a ∈ Rθ. Also δθ(a) = 0 for all a ∈ Rθ.

Therefore we have xa = ax for all a ∈ Rθ.

As usual R[x, θ, δθ] is not a unique factorization ring, we often have more factors

of a polynomial in R[x, θ, δθ] than in R[x] (shown in Example 5.3.12 below).
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Lemma 5.2.4. Let a ∈ R. Then θ(a)− a 6= δθ(b) for any b ∈ R unless a, b both are

fixed by θ.

Proof: Let θ(a) − a = δθ(b) for some arbitrary fixed values of a and b. The only

possible values of δθ(b) are 0 and 2w + 2. If δθ(b) = 0, then a and b both are fixed

by θ and we are done. Suppose δθ(b) = 2w + 2. But θ(a) − a does not contain w,

we get a contradiction. Hence the result. �

If we consider the skew polynomial ring over R with automorphism only, i.e.,

R[x, θ], then the center of R[x, θ] is Rθ[x2] [74]. However, in the present case, i.e.,

in R[x, θ, δθ], we have the following result.

Theorem 5.2.5. A polynomial f(x) ∈ R[x, θ, δθ] is a central element if and only

if f(x) ∈ Rθ[x] such that the coefficients of all odd powers of x belong to the set

S = {0, 2, 2w, 2 + 2w}.

Proof: We prove the result for a polynomial of odd degree. It can be proved

similarly for polynomials of even degree. Let f(x) = f0+f1x+· · ·+fkxk ∈ R[x, θ, δθ]

be a polynomial of odd degree. Suppose f(x) is a central element. Then

0 = xf(x)− f(x)x

= δθ(f0) +
k−1∑
i=0

(θ(fi) + δθ(fi+1))xi+1 + θ(fk)xk+1 −
k∑
i=0

fix
i+1.

Equating coefficients of all terms to zero we get

δθ(f0) = 0, (5.2)

(θ(fi)− fi + δθ(fi+1)) = 0 for i = 0, 1, 2, · · · , k − 1 (5.3)

θ(fk)− fk = 0. (5.4)

From Equations (3), (4), (5) and Lemma 5.2.4, we have all fi’s fixed by θ, i =

0, 1, · · · , k.

Again since f(x) is a central element, we have f(x)a = af(x) for all a ∈ R.
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Choose a ∈ R, which is not fixed by θ, i.e., θ(a) 6= a. Then

0 = af(x)− f(x)a

=
k∑
i=0

afix
i −

k−1
2∑
j=0

(f2ja+ f2j+1δθ(a))x2j −
k−1

2∑
l=0

f2l+1θ(a)x2l+1

=
k−1

2∑
j=0

(af2j − f2ja− f2j+1δθ(a))x2j +
k−1

2∑
j=0

(af2l+1 − f2l+1θ(a))x2l+1

=
k−1

2∑
j=0

(f2j+1δθ(a))x2j −
k−1

2∑
j=0

f2l+1(a− θ(a))x2l+1.

This implies that f2l+1(a−θ(a)) = 0 and f2j+1(δθ(a)) = 0 for all j, l = 0, 1, 2, · · · k−1
2 .

Since all fi are fixed, the coefficients f2l+1 which satisfy the above conditions are

precisely the elements of S. Combining both the cases we get the required result.

Conversely, suppose f(x) satisfies the given conditions. Then to show that

f(x)a(x) = a(x)f(x) for all a(x) ∈ R[x, θ, δθ], it is sufficient to show that

(aixi)(fjxj) = (fjxj)(aixi) for 0 ≤ i ≤ deg a(x) and 0 ≤ j ≤ deg f(x). We

have

(aixi)(fjxj) = aifjx
i+j, as all fi are fixed by θ. (5.5)

Also,

(fjxj)(aixi) =


fjaix

i+j, if j is even

fj(θ(ai)x+ δθ(ai))xi+j−1, if j is odd.
(5.6)

If j is odd and fj ∈ S, then fjδθ(a) = 0 and fjθ(a) = fja for all a ∈ R, and so (6)

gives

(fjxj)(aixi) = fj(θ(ai)x+ δθ(ai))xi+j−1 = fjaix
i+j. (5.7)

Therefore by (5), (6), (7), we have the required result. �

Lemma 5.2.6. For any element a ∈ R, δθ(θ(a)) + θ(δθ(a)) = 0. Also, x2a =

ax2 ∀ a ∈ R.

Proof: Let a = a′ + wb′ ∈ R. Then δθ(θ(a)) = δθ(a′ + (w + 2)b′) = 2b′ + 2wb′,

and θ(δθ(a)) = θ(2b′ + 2wb′) = 2b′ + 2wb′ = −(2b′ + 2wb′) = −δθ(θ(a)), which

proves the first part. Further, xa = θ(a)x + δθ(a). Multiplying both sides by
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x, we get x2a = xθ(a)x + xδθ(a) = [θ2(a)x + δθ(θ(a)]x + θ(δθ(a))x + δθ
2(a) =

ax2 + [δθ(θ(a)) + θ(δθ(a))]x + δθ
2(a) = ax2, using the first part of this lemma and

noting that δθ2(a) = 0 for all a ∈ R. �

Corollary 5.2.6.1. For any element a ∈ R,

xna =


(θ(a)x+ δθ(a))xn−1, if n is odd

axn, if n is even.

The ring R[x, θ, δθ] is not a left/right Euclidean ring, so division algorithm does

not hold in it. But we can still apply division algorithm on some particular elements

of R[x, θ, δθ]. This is given by the next result.

Theorem 5.2.7 (Right division algorithm). Let f(x), g(x) ∈ R[x, θ, δθ] be such that

g(x) has leading coefficient a unit. Then

f(x) = q(x)g(x) + r(x)

for some q(x), r(x) ∈ R[x, θ, δθ], where r(x) = 0 or deg r(x) <deg g(x).

Proof: Let f(x) = f0 +f1x+f2x
2 + · · ·+frxr and g(x) = g0 +g1x+g2x

2 + · · ·+gsxs,

where gs is a unit. If r < s, then f(x) = 0 · g(x) + f(x) gives the required result.

Suppose r ≥ s. We define a polynomial h(x) = f(x)− A(x)g(x), where

A(x) =


frθ(g−1

s )xr−s, if r − s is odd

frg
−1
s xr−s, if r − s is even

.

Clearly, h(x) is a polynomial of degree one less than the degree of f(x). We prove

the result by implementing induction on deg f(x). Assume that the result is true

for every polynomial having degree less than deg f(x). Obviously result is true for

deg f(x) = 0. So let deg f(x) > 0. Since deg h(x) < deg f(x), there exist q1(x),

r1(x) such that h(x) = q1(x)g(x) + r1(x), where r1(x) = 0 or deg r1(x) < deg g(x)

and so f(x) = q1(x)g(x) + r1(x) +A(x)g(x) = (q1(x) +A(x))g(x) + r1(x). Thus we

obtain f(x) = q(x)g(x) + r(x), where q(x) = q1(x) +A(x) and r(x) = r1(x). Hence

the result. �
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A left division algorithm can similarly be proved. In this chapter, division always

means a right division.

Example 5.2.8. Consider the polynomials f(x), g(x) ∈ R[x, θ, δθ] such that f(x) =

(1 + w)x2 + (2 + 2w)x + w and g(x) = wx + (1 + w). Here r = 2, s = 1, f2 =

1 + w, g1 = w. Let A(x) = f2θ(g−1
1 )x2−1 = (1 + w)(w + 2)x = (3w + 3)x. Then

A(x)g(x) = (3w + 3)x(wx+ (1 + w))

= (3w + 3)(θ(w)x+ δθ(w))x+ (3w + 3)(θ(1 + w)x+ δθ(1 + w))

= (3w + 3)((w + 2)x+ 2 + 2w)x+ (3w + 3)((w + 3)x+ 2 + 2w)

= (w + 1)x2 + 0.x+ 0.x+ 0

= (w + 1)x2

We define h(x) = f(x) − A(x)g(x) = (2 + 2w)x + w. Now repeating the above

argument on h(x), we get h(x) = (2+2w)g(x)+w, and so f(x) = h(x)+A(x)g(x) =

(2 + 2w)g(x) +w + (3w + 3)xg(x) = ((2 + 2w) + (3w + 3)x)g(x) +w. Therefore we

have f(x) = q(x)g(x) + r(x), where q(x) = (2 + 2w) + (3w + 3)x and r(x) = w.

5.2.2 Gray map

On Z4, the Lee weight (wL) is defined as wL(0) = 0, wL(1) = 1, wL(2) = 2, wL(3) =

1. The Lee weight wL(w) of a vector w ∈ Z4
2 is then defined as the rational sum of

the Lee weights of its coordinates. Define a Gray map φ : R→ Z4
2 such that

φ(a+ wb) = (b, a+ b).

For any x ∈ R, we define the Gray weight wG(x) of x as wG(x) = wL(φ(x)). The

Gray weights of the elements of R are as follows:

x 0 1 2 3 w 2w 3w 1 + w

wG(x) 0 1 2 1 2 4 2 3

x 1 + 2w 1 + 3w 2 + w 2 + 2w 2 + 3w 3 + w 3 + 2w 3 + 3w
wG(x) 3 1 2 2 2 1 3 3
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The map φ is extended componentwise to Φ : Rn → Z4
2n, and we define the

Gray weight of x ∈ Rn as the rational sum of Gray weights of its coordinates.

Now onward, we write the parameters of a linear code C over Z4 as (n, 4k12k2 , dL),

and say that the type of the code is 4k12k2 , where dL denotes the minimum Lee

distance of C.

Theorem 5.2.9. (Lee Distance Bound [39]) “If C is a linear code of length n over

Z4 with parameters (n, 4k12k2 , dL), then dL ≤ 2n− 2k1 − k2 + 1.”

A linear code over Z4 which satisfies the above bound with equality is called a

Maximum Lee Distance Separable (MLDS) code.

5.3 δθ-cyclic codes over R

In this section, we define a class of skew-cyclic codes over R and call them δθ-cyclic

codes over R.

A linear code of length n over R is a submodule of Rn. By identifying Rn

with R[x,θ,δθ]
〈f(x)〉 , where f(x) is an arbitrary polynomial of degree n over R, we can

associate a word a = (a0, a1, . . . , an−1) to the corresponding polynomial a(x) =

a0 + a1x+ . . .+ an−1x
n−1. Moreover R[x,θ,δθ]

〈f(x)〉 is a left R[x, θ, δθ]-module with respect

to the multiplication r(x)(a(x) + 〈f(x)〉) = r(x)a(x) + 〈f(x)〉.

Definition 5.3.1. A code C of length n over R is said to be a δθ-linear code if it

is a left R[x, θ, δθ]-submodule of R[x,θ,δθ]
〈f(x)〉 , where f(x) is an arbitrary polynomial of

degree n over R. In addition, if f(x) is a central polynomial in R[x, θ, δθ], we call

C a central δθ-linear code.

Definition 5.3.2 (δθ-cyclic code). A code C of length n over R is said to be δθ-cyclic

code over R if C is a δθ-linear code and whenever c = (c0, c1, . . . , cn−1) ∈ C, we have

Tδθ(c) = (θ(cn−1) + δθ(c0), θ(c0) + δθ(c1), θ(c1) + δθ(c2), . . . , θ(cn−2) + δθ(cn−1)) ∈ C,

where Tδθ is the δθ-cyclic shift operator.
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Lemma 5.3.3. If v(x) = v0 + v1x + v2x
2 + . . . + vn−1x

n−1 ∈ R[x,θ,δθ]
〈xn−1〉 represents

the word v = (v0, v1, . . . , vn−1) in Rn, then xv(x) represents the word (θ(vn−1) +

δθ(v0), θ(v0) + δθ(v1), θ(v1) + δθ(v2), . . . , θ(vn−2) + δθ(vn−1)) in Rn.

Proof: We have

xv(x) = x

(
n−1∑
i=0

vix
i

)
=

n−1∑
i=0

x(vixi) =
n−1∑
i=0

(θ(vi)x+ δθ(vi))xi

=
n−1∑
i=0

θ(vi)xi+1 +
n−1∑
i=0

δθ(vi)xi =
n∑
i=1

θ(vi−1)xi +
n−1∑
i=0

δθ(vi)xi

=
n−1∑
i=1

θ(vi−1)xi +
n−1∑
i=1

δθ(vi)xi + θ(vn−1)xn + δθ(v0)x0

=
n−1∑
i=1

(θ(vi−1) + δθ(vi))xi + (θ(vn−1) + δθ(v0)) (since xn = 1)

=
n−1∑
i=0

(θ(vi−1) + δθ(vi))xi,

where the indices are computed modulo n. Hence the result. �

Theorem 5.3.4. A code C of length n over R is a δθ-cyclic code if and only if C

is an R[x, θ, δθ]-submodule of Rn,δθ = R[x,θ,δθ]
〈xn−1〉 .

Proof: Suppose C is a δθ-cyclic code of length n over R. Then for any c(x) ∈ C,

the δθ-cyclic shift, xc(x) also belongs to C (by Lemma 5.3.3), and hence xic(x) ∈ C

for all i ∈ N. It follows that a(x)c(x) ∈ C for all a(x) ∈ R[x, θ, δθ]. Hence the result.

Converse is straightforward. �

Corollary 5.3.4.1. If C is a δθ-cyclic code of even length n, then C is an ideal of

Rn,δθ = R[x,θ,δθ]
〈xn−1〉 .

Proof: For even n, the ideal 〈xn − 1〉 is a two sided ideal and so Rn,δθ is a ring.

Hence the result. �

Remark 5.3.4.1. A δθ-cyclic code of an even length n over R is a central δθ-linear

code. However, the converse is not true. This is shown by the following example.
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Example 5.3.5. Let C be a code of length 4 over R generated by the right divisor

g(x) = (1+2w)x2−1 of f(x) = (2w+1)x4+(2w+2)x2+1 = (x2−1)((1+2w)x2−1).

Since f(x) is a central polynomial in R[x, θ, δθ], C is a central δθ-linear code. We

obtained, using MAGMA, that (3w + 1, 3w + 2, 3w + 1, w) ∈ C, but its δθ-cyclic

shift, i.e., (3w,w+ 1, w+ 2, w+ 1) is not in C. Hence C is not a δθ-cyclic code over

R.

Theorem 5.3.6. Let C be a δθ-cyclic code of length n over R. Then we have the

following results:

1. C is simply a cyclic code of length n over R, if n is odd.

2. C is a quasi-cyclic code of length n and index 2 over R, if n is even.

Proof:

1. Since n is odd, we have (n, 2) = 1. Therefore there exist two integers a, b

such that na + 2b = 1 and so 2b = 1 − na = 1 + nl, where l ≡ −a (mod n).

Let c(x) = c0 + c1x + · · · + cn−1x
n−1 be a codeword. Now by Lemma 5.2.6,

x2bc(x) = x2b(c0 + c1x+ · · ·+ cn−1x
n−1) = c0x

2b + c1x
2b+1 + · · ·+ cn−1x

2b+n−1.

Therefore x2bc(x) = c0x
1+nl+ c1x

1+nl+1 + · · ·+ cn−1x
(1+nl)+(n−1) = c0x+ c1x

2 +

· · ·+ cn−2x
n−1 + cn−1, which is the cyclic shift of c(x). Hence the result.

2. For any codeword c(x) in C, x2c(x) ∈ C and it represents the cyclic shift of c

by two positions (by Lemma 5.2.6). Also, in general, C is not cyclic. So 2 is

the smallest integer t such that xtc(x) ∈ C for any c(x) ∈ C. Therefore C is

quasi-cyclic code of index 2.

�

Theorem 5.3.7. Let C be a δθ-cyclic code of length n over R such that C contains

a minimum degree polynomial g(x) with its leading coefficient a unit. Then C =

〈g(x)〉. Moreover g(x) | (xn − 1) and the set {g(x), xg(x), . . . , xn−deg g(x)−1g(x)}

forms a basis for C.



Chapter 5: Skew-cyclic Codes over Z4 + wZ4 with Derivation 94

Proof: Since C contains a minimum degree polynomial having its leading coefficient

a unit, the proof follows from similar arguments as in the case of finite fields [96].

�

The converse of Theorem 5.3.7 is also true.

Theorem 5.3.8. Let C be a free δθ-cyclic code of length n over R. Then there exists

a minimum degree polynomial g(x) such that C = 〈g(x)〉 and g(x) | xn − 1.

Proof: Straightforward. �

Example 5.3.9. Let C be a δθ-cyclic code of length 6 over R generated by the right

divisor g(x) = (w+ 2)x3 + 2x2 + 3w of x6− 1. Then the set {g(x), xg(x), x2g(x)} =

{(w + 2)x3 + 2x2 + 3w,wx4 + 2wx3 + (3w + 2)x+ 2w + 2, (w + 2)x5 + 2x4 + 3wx2}

forms a basis for C. Therefore C has cardinality 163.

Now we present a form of the generator matrix of a free δθ-cyclic code of length

n over R.

Let C = 〈g(x)〉 be a δθ-cyclic code of length n over R generated by a right divisor

g(x) of xn − 1. Then the generator matrix of C is an (n− k)× n matrix

G =



g(x)
xg(x)
x2g(x)

...
xn−k−1g(x)


(n−k)×n

,

where g(x) = g0 + g1x+ g2x
2 + · · ·+ gkx

k. More precisely, if n− k is even, then G =


g0 g1 g2 · · · gk 0 · · · 0

δθ(g0) θ(g0) + δθ(g1) θ(g1) + δθ(g2) · · · θ(gk−1) + δθ(gk) θ(gk) · · · 0
0 0 g0 · · · gk−3 gk−2 · · · 0

· · · · · · · · ·
. . . · · ·

. . .
. . . · · ·

0 0 · · · δθ(g0) θ(g0) + δθ(g1) · · · θ(gk−1) + δθ(gk) θ(gk)
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and if n− k is odd, then

G =


g0 g1 g2 · · · gk 0 · · · 0

δθ(g0) θ(g0) + δθ(g1) θ(g1) + δθ(g2) · · · θ(gk−1) + δθ(gk) θ(gk) · · · 0
0 0 g0 · · · gk−3 gk−2 · · · 0

· · · · · · · · ·
. . . · · ·

. . .
. . . · · ·

0 0 · · · 0 g0 · · · gk−2 gk−1 gk

 .

For example, for the δθ-cyclic code C given in Example 5.3.9, the generator matrix

of C can be given as


3w 0 2 w + 2 0 0

2w + 2 3w + 2 0 2w w 0
0 0 3w 0 2 w + 2

 .

5.3.1 Residue and torsion codes

In this sub-section, we study the residue codes and torsion codes associated with

linear codes over R.

Definition 5.3.10. Let C be a linear code of length n over R. Then

Res(C) = {x : x+ wy ∈ C for some y ∈ Z4
n}

and

Tor(C) = {x : wx ∈ C}

are called the residue code and the torsion code, respectively, of C.

Res(C) and Tor(C) are linear codes of length n over Z4.

Theorem 5.3.11. Let C be a linear code of length n over R.

1. If x + wy ∈ C, then x, y ∈ Res(C), and hence Res(C) = {y | x + wy ∈

C for some x ∈ Z4
n}.

2. Tor(C) ⊆ C, hence min{dL(Tor(C))} ≥ min{dG(C)}.
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Proof: For first part, since x+wy ∈ C, we have wx+ y ∈ C as w2 = 1. This gives

y ∈ Res(C). Also x+ wy ∈ C implies x ∈ Res(C). The proof of the second part is

straightforward. �

Example 5.3.12. Let f(x) = x8 − 1. Then two different factorizations of f(x) are
as follows:

x8 − 1 = (x2 − 1)(x6 + x4 + x2 + 1)

= ((3w + 2)x2 + 2wx+ w + 2)((3w + 2)x6 + 2wx5 + (3w + 2)x4 + (3w + 2)x2 + 2wx+ 3w + 2).

Consider two distinct factors of degree 6 of x8 − 1 as f1 = x6 + x4 + x2 + 1, f2 =

(3w + 2)x6 + 2wx5 + (3w + 2)x4 + (3w + 2)x2 + 2wx + 3w + 2. Then we have δθ-

cyclic codes C1 = 〈f1〉 and C2 = 〈f2〉 of length 8 over R. A spanning set for Ci is

{fi, xfi} for i = 1, 2. Moreover, C2 exists due to the factor f2, which exists only in

R[x, θ, δθ], not in R[x] or R[x, θ]. Now Φ(C1) and Φ(C2) are linear codes of length

16 over Z4 having parameters (16, 44, 4), (16, 44, 8), respectively. Also Res(C1) has

the parameters (8, 42, 4) and Res(C2) has the parameters (8, 42, 8)∗, which is a good

linear code over Z4 [8].

Example 5.3.13. Let C be a δθ-cyclic code of length 9 over R generated by g(x) =
3x8+2wx7+(w+1)x6+(2w+2)x5+2wx4+(w+2)x3+2x2+(w+2)x+w+2. Consider
a subcode C1 of C having spanning set {g(x), xg(x), x2g(x), x3g(x), x4g(x)}. Now the
parameters of Φ(C1) are (18, 410, 4) and the parameters of Res(C1) are (9,4821,2).
Res(C1) is a new good linear code over Z4 and has twice as many codewords as in
the existing best known code with comparable parameters [8]. A generator matrix of
Res(C1) over Z4 is given by

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 2



.
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Further, let C2 = {(u | u + v) | u, v ∈ Res(C1)}. Then the parameters C2 are

(18,41622,2), which is a new good linear code over Z4 and improves the minimum

Lee distance of code by 1 when compared to existing best code with comparable pa-

rameters [8].

Example 5.3.14. Let C be a δθ-cyclic code of length 4 over R with generator matrix
1 + w w 1 0
2 + 2w 1 + 3w 2 + w 1

1 0 1 + w w

 .

Then Φ(C) has parameters (8, 46, 2), which is a best known linear code over Z4.

Also Res(C) has a generator matrix

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2

 .

The parameters for Res(C) are (4, 4321, 2), which is a best known good code over Z4.

Moreover Res(C) is an MLDS code. Now let C1 = {(u | u + v) | u, v ∈ Res(C)}.

Then C1 is an (8,4622,2) code over Z4, which is a new good linear code over Z4

and improves the minimum Lee distance by 1 when compared to existing best known

code with comparable parameters [8].

Table 5.1: Some good linear codes over Z4
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Φ(C) Res(C) C∗

Set of generators (n, 4k12k2 , dL) (n, 4k12k2 , dL) (n, 4k12k2 , dL)

{g1(x), xg1(x), x2g1(x)} (10, 46, 2) (5, 4421, 2)∗ (10,4822,2)∗∗

{g2(x), xg2(x), x2g2(x)} (20, 46, 8) (10, 46, 4)∗ (20, 412, 4)∗

{g3(x), xg3(x), x2g3(x)} (20, 46, 6) (10, 45, 6)∗ (20, 410, 6)

{g4(x), xg4(x), x2g4(x), x3g4(x)} (24, 48, 6) (12, 48, 4)∗ (24, 416, 4)∗

{g5(x), xg5(x), x2g5(x), x3g5(x)} (28, 48, 6) (14, 48, 5)∗ (28, 416, 5)∗

{g6(x), xg6(x), x2g6(x), x3g6(x)} (30, 48, 6) (15, 48, 6)∗ (30, 416, 6)

{g7(x), xg7(x), x2g7(x), x3g7(x)} (36, 48, 8) (18, 48, 8)∗ (36, 416, 8)∗

Table 5.1 shows some good linear codes that we have obtained over Z4 via the

Gray images and residue codes of skew-linear codes with derivation (not necessarily

δθ-cyclic codes) over R. In table 5.1, we have

C∗ = {(u | u+ v) : u, v ∈ Res(C)}, ∗ := Existing good code, ∗∗ := New good code,

and

g1(x) = 2wx4 + x3 + (w + 2)x2 + 2wx+ (w + 1)

g2(x) = wx9 + (w+ 1)x8 + 2wx7 + (w+ 2)x6 + 2x5 + (w+ 1)x4 + x2 +wx+ (w+ 1)

g3(x) = wx9 +(w+1)x8 +(3w+3)x7 +(2w+2)x6 +(3w+2)x5 +2x4 +x2 +wx+w+1

g4(x) = 2x11 + wx10 + 2x9 + (w + 1)x8 + 2wx7 + (w + 1)x6 + 2x5 + 2wx4 + (3w +

3)x3 + (2w + 3)x2 + (w + 2)x+ 2

g5(x) = 2wx13 + (w + 1)x12 + wx11 + (w + 2)x10 + 2x9 + (w + 1)x8 + 2wx7 + (w +

1)x6 + 2x5 + wx4 + (w + 3)x3 + 2x2 + 2x+ 2

g6(x) = (w + 1)x14 + 2x13 + (w + 1)x12 + 2x11 + wx10 + 2x9 + (w + 1)x8 + 2wx7 +

(w + 1)x6 + 2x5 + (2w + 3)x4 + 3x3 + (w + 2)x2 + 2x+ 2

g7(x) = 2x17 + 2x16 + 2x15 + (3w+ 3)x14 + (2w+ 2)x13 + (w+ 1)x12 + 2x11 +wx10 +
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2x9 + (w + 1)x8 + 2x7 + (w + 1)x6 + 2x5 + 2wx4 + (w + 2)x3 + wx2 + (w + 2)x+ 2

5.4 Duals of δθ-cyclic codes over R

In this section, we find the structure of the dual of a free δθ-cyclic code of even

length n over R.

To determine a generator matrix of the dual of a free δθ-cyclic code C, we need

to find the parity-check matrix of C. For this, we first require some lemmas.

Lemma 5.4.1. For even n, xn − 1 is a central element of R[x, θ, δθ], and hence

xn − 1 = h(x)g(x) = g(x)h(x) for some g(x), h(x) ∈ R[x, θ, δθ].

Proof: The proof is similar to the proof of Lemma 4.4.2 in Chapter 4. �

Remark 5.4.1.1. If C is a δθ-cyclic code generated by a minimum degree polynomial

g(x) with its leading coefficient a unit, then there exists a minimum degree monic

polynomial g′(x) in C such that C = 〈g′(x)〉.

Lemma 5.4.2. Let C be a δθ-cyclic code of even length n over R generated by

a monic right divisor g(x) of xn − 1. Then v(x) ∈ Rn,δθ is in C if and only if

v(x)h(x) = 0 in Rn,δθ , where xn − 1 = h(x)g(x).

Proof: Suppose v(x) ∈ C. Then v(x) = a(x)g(x) for some a(x) ∈ Rn,δθ . So

v(x)h(x) = a(x)g(x)h(x) = a(x)h(x)g(x) = 0 in Rn,δθ (by Lemma 5.4.1). Con-

versely, suppose v(x)h(x) = 0 in Rn,δθ for some v(x) ∈ Rn,δθ . Then there exists

q(x) ∈ R[x, θ, δθ] such that v(x)h(x) = q(x)(xn−1) = q(x)h(x)g(x) = q(x)g(x)h(x).

Since h(x) is regular, v(x) = q(x)g(x). Hence the result. �

Lemma 5.4.3. Let a ∈ R be a unit in R. Then θ(a) + δθ(b) is a unit for all b ∈ R.

Proof: Let d = θ(a)+δθ(b), where a, b ∈ R such that a is a unit. Let θ(a) = α+wβ.

Then α + wβ is a unit, and hence either α or β is a unit but not both. We know

δθ(b) is either 0 or 2w + 2 for all b ∈ R. If δθ(b) = 0, then we are done. Otherwise

d = (α + 2) + w(β + 2). Also, any c ∈ Z4 is a unit if and only if c + 2 is a unit.

Hence d is a unit. �
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Theorem 5.4.4. Let C = 〈g(x)〉 be a principally generated δθ-cyclic code of even

length n over R such that xn − 1 = h(x)g(x) for some h(x) = h0 + h1x + h2x
2 +

· · ·+ hkx
k ∈ R[x, θ, δθ], where k is odd. Then the matrix H =



hk θ(hk−1) + δθ(hk) hk−2 · · · θ(h0) + δθ(h1) · · · 0 0
0 θ(hk) hk−1 · · · h0 δθ(h0) · · · 0
0 0 hk hk−2 θ(hk−3) + δθ(hk−2) · · · · · · 0
...

...
. . . . . . . . . . . .

...
0 0 · · · hk θ(hk−1) + δθ(hk) · · · h1 θ(h0) + δθ(h1)


is a parity-check matrix for C.

Proof: Let c(x) ∈ C. Then by Lemma 5.4.2, we have c(x)h(x) = 0 in Rn,δθ .
Therefore the coefficients of xk, xk+1, · · · , xn−1 in [c0 + c1x+ c2x

2 + · · ·+ cn−2x
n−2 +

cn−1x
n−1][h0 + h1x+ h2x

2 + · · ·+ hk−1x
k−1 + hkx

k] are all zero. So we have

c0hk + c1(θ(hk−1) + δθ(hk)) + c2hk−2 + · · ·+ ck(θ(h0) + δθ(h1)) = 0

c1(θ(hk)) + c2hk−1 + c3(θ(hk−2) + δθ(hk−1)) + · · ·+ ck+1h0 + ck+2δθ(h0) = 0

c2hk + c3(θ(hk−1) + δθ(hk)) + c4hk−2 + · · ·+ ck+1h1 + ck+2(θ(h0) + δθ(h1)) = 0
...

cn−k−1hk + cn−k(θ(hk−1) + δθ(hk)) + · · ·+ cn−2h1 + cn−1(θ(h0) + δθ(h1)) = 0.

From these equations, it is clear that for any c ∈ C, cHT = 0, and hence GHT = 0.

Now each row of H is orthogonal to each c ∈ C, so span(H) ⊆ C⊥. Moreover,

H contains a square sub-matrix of order n − k (by taking first n − k coordinates

of each row) with non-zero determinant, as it is a lower triangular matrix with all

diagonal entries units (by Lemma 5.4.3). This implies that all rows of H are linearly

independent. Therefore |Span(H)| = |R|n−k. Also |C||C⊥| = |R|n and |C| = |R|k

give |C⊥| = |R|n−k. Hence Span(H) = C⊥, and so H is a parity check matrix of

C. �

The above result can similarly be proved for the case when k is even. In this

case, matrix H is given as:
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hk θ(hk−1) + δθ(hk) hk−2 · · · h0 δθ(h0) · · · 0
0 θ(hk) hk−1 · · · h1 θ(h0) + δθ(h1) · · · 0
0 0 hk · · · h2 θ(h1) + δθ(h2) · · · 0

...
...

. . .
. . .

. . .
. . .

...
0 0 · · · θ(hk) hk−1 · · · h1 θ(h0) + δθ(h1)

 .

Example 5.4.5. Let C be a δθ-cyclic code of length 6 generated by the polynomial

g(x) = (w+2)x3+2x2+3w such that x6−1 = (wx3+2wx2+w)((w+2)x3+2x2+3w).

Let h(x) = wx3 + 2wx2 + w. Then a parity check matrix of C (by Theorem 5.4.4)

is given by

H =


w 2 0 w + 2 0 0
0 w + 2 2w 0 w 2 + 2w
0 0 w 2 0 w + 2

 .
One may verify that GHT = 0 and the rows of H are linearly independent. Therefore

H forms a parity check matrix for C.

5.5 Double δθ-cyclic codes over R

In this section, we study double δθ-cyclic codes over R.

For any d ∈ R and v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ Rα+β, we define

dv = (da0, da1, · · · , daα−1, db0, db1, · · · , dbβ−1).

With this multiplication, Rα+β is an R-module.

Definition 5.5.1. For an element v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ Rα+β,

the δθ(α, β)-cyclic shift of v, denoted by αβTδθ(v), is defined as
αβTδθ(v) = (θ(aα−1) + δθ(a0), θ(a0) + δθ(a1), θ(a1) + δθ(a2), · · · , θ(aα−2) + δθ(aα−1),

θ(bβ−1) + δθ(b0), θ(b0) + δθ(b1), θ(b1) + δθ(b2), · · · , θ(bβ−2) + δθ(bβ−1)).

A double δθ-linear code is an R-submodule of Rα+β.
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Definition 5.5.2. A double δθ-linear code C is called double δθ-cyclic code if C is

invariant under the δθ(α, β)-cyclic shift αβTδθ .

In polynomial representation, Rα,β = R[x,θ,δθ]
〈xα−1〉 ×

R[x,θ,δθ]
〈xβ−1〉 is a left R[x, θ, δθ]-module.

It can easily be seen that if c(x) = (c1(x) | c2(x)) ∈ Rα,β represents the word

c ∈ Rα+β, then xc(x) represents the δθ(α, β)-cyclic shift of c.

Theorem 5.5.3. Let C be a δθ-linear code of length n = α+β over R. Then C is a

double δθ-cyclic code if and only if it is a left R[x, θ, δθ]-submodule of the left-module

R[x, θ, δθ]/〈xα − 1〉 ×R[x, θ, δθ]/〈xβ − 1〉.

Proof: Suppose C is a double δθ-cyclic code. Let c ∈ C, and let the associated

polynomial of c be c(x). As xc(x) is a δθ(α, β)-cyclic shift of c, so xc(x) ∈ C.

By linearity of C, r(x)c(x) ∈ C for any r(x) ∈ R[x, θ, δθ]. So C is left R[x, θ, δθ]-

submodule of Rα,β. Converse is straightforward. �

Theorem 5.5.4. A double δθ-cyclic code of length n = α+β is a double cyclic code

if α and β both are odd integers.

Proof: Let C be a double δθ-cyclic code. Let γ = lcm(α, β). Then γ is odd, and
so gcd(γ, 2) = 1. Therefore there exist two integers a, b such that γa + 2b = 1 and
so 2b = 1 − γa = 1 + γl for some l > 0, where l = −a (mod γ). Let c(x) =
(a(x) | b(x)) ∈ C, where a(x) = ∑α−1

i=0 aix
i and b(x) = ∑β−1

i=0 bix
i. Then

x2bc(x) = x2b

α−1∑
i=0

aix
i |

β−1∑
i=0

bix
i

 =

α−1∑
i=0

aix
i+2b |

β−1∑
i=0

bix
i+2b


=

α−1∑
i=0

aix
i+1+γl |

β−1∑
i=0

bix
i+1+γl


=

(
α−2∑
i=0

aix
i+1+γl + aα−1x

α+γl |
α−2∑
i=0

aix
i+1+γl + aβ−1x

β+γl
)

=

α−2∑
i=0

aix
i+1 + aα−1 |

β−2∑
i=0

aix
i+1 + aβ−1

 , (since xα = xβ = xγ = 1).

Thus x2bc(x) = (a′(x) | b′(x)), where a′(x), b′(x) are cyclic shifts of a(x) and b(x),

respectively. Hence C is a double cyclic code. �
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Theorem 5.5.5. Let C1 and C2 be two free δθ-cyclic codes of lengths n1 and n2

over R having monic generator polynomials g1(x) and g2(x), respectively, such that

g1(x)|xn1−1 and g2(x)|xn2−1. Then a code C generated by g(x) = (g1(x) | g2(x)) is

a double δθ-cyclic code and A = {g(x), xg(x), · · · , xl−1g(x)} is a spanning set of C,

where l = deg h(x) and h(x) is the least left common multiple of h1(x) and h2(x).

Proof: Let xn1 − 1 = h1(x)g1(x) and xn2 − 1 = h2(x)g2(x) for some monic poly-

nomials h1(x), h2(x) ∈ R[x, θ, δθ]. Then h(x)g(x) = h(x)(g1(x)|g2(x)) = 0, as

h(x)gi(x) = h′(x)hi(x)gi(x) = 0 for i = 1, 2. Now let v(x) ∈ C be any non-zero

codeword in C. Then v(x) = a(x)g(x) for some a(x) ∈ R[x, θ, δθ]. By the division

algorithm, we have a(x) = q(x)h(x) + r(x), where r(x) = 0 or deg r(x) < deg h(x).

Then v(x) = a(x)g(x) = r(x)g(x) = 0. Since r(x) = 0 or deg r(x) < deg h(x), the

result follows. �

Example 5.5.6. Let C be a double δθ-cyclic code of length n = 10(= 6 + 4) over R,

which is principally generated by g(x) = (g1(x)|g2(x)), where g1(x) = wx3+2wx2+w

and g2(x) = x2 + 2wx+ 1 such that g1(x)|x6 − 1 and g2(x)|x4 − 1. Now let h(x) be

the least left common multiple of h1(x) and h2(x). Then deg h(x) = 5. Therefore

the set {g(x), xg(x), x2g(x), x3g(x), x4g(x)} forms a spanning set for C. Hence a

generator matrix of C is



w 0 2w w 0 0 1 2w 1 0
2w + 2 w + 2 0 2 w + 2 0 0 1 2w 1

0 0 w 0 2w w 1 0 1 2w
w + 2 0 2w + 2 w + 2 0 2 2w 1 0 1

2w w 0 0 w 0 1 2w 1 0


.

The parameters for Φ(C) are [20, 49, 4]. Moreover, Res(C) and Tor(C) have the

parameters [10, 4521, 2] and [10, 4321, 4], respectively.

In Table 2, we present some good linear codes over Z4 as Gray images and residue
codes of double skew-linear codes with derivation (not necessarily δθ-cyclic codes)
over R.
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Table 5.2: Some good linear codes over Z4

Set of generators (n,M, dL) (n, 4k12k2 , dL) (n, 4k12k2 , dL)

{h0(x), xh1(x)} (10, 128, 2) (5, 4321, 2)∗ (10, 4622, 2)

{h1(x), xh1(x), x2h1(x)} (12, 4096, 2) (6, 4521, 2)∗ (12,41022,2)∗∗

{h2(x), xh2(x), x2h2(x), x3h2(x)} (14, 65536, 2) (7, 4621, 2)∗ (14, 41222, 2)

{h3(x), xh3(x), x3h2(x), x3h3(x)} (16, 65536, 4) (8,47,2)∗∗ (16,414,2)∗∗

In Table 5.2, we have C∗ = {(u | u + v) : u, v ∈ Res(C)}, ∗ := Existing good code,
∗∗ :=New good code, and

h0(x) = ((2 + 3w) + (1 + 2w)x+ wx2 | 2w + (2 + 2w)x),

h1(x) = ((3w + 2) + (1 + 2w)x+ wx2 | 2 + (1 + 2w)x+ 2wx2),

h2(x) = ((1 + w) + (1 + 2w)x+ (2 + w)x2 + wx3 | 1 + 2wx+ (w + 1)x2),

h3(x) = ((1 + w) + (1 + 2w)x+ (2 + w)x2 + wx3 | 1 + 2wx+ (w + 1)x2 + 2wx3).

Remark 5.5.6.1. The codes whose parameters are written in bold letters in Table

1 and Table 2 have improved the parameters of the existing codes having comparable

parameters.

5.6 Conclusion

We have studied a class of skew-cyclic codes over R = Z4 + wZ4, w
2 = 1 with

derivation. We have studied these codes as left R[x, θ, δθ]-submodules. A Gray map

is defined on R, and some good linear codes over Z4 via Gray images, residue codes

of these codes have been obtained. The generator matrix of the dual code of a free

δθ-cyclic code of even length over R is obtained. These codes are generalized to

double skew-cyclic codes with derivation. All new linear codes over Z4, obtained in

this paper, have been reported and added to the database of Z4-codes. It will be
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interesting to obtain criteria under which the dual of a free δθ-cyclic code of even

length over R is a δθ-cyclic code of same length.
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Chapter 6

2D-Skew Cyclic Codes over
Fq + wFq

6.1 Introduction

Cyclic codes have been generalized in many ways [7, 6, 9, 104, 27, 29, 28, 58]. One of

the generalizations of cyclic codes is 2D cyclic codes, which were first introduced by

Ikai et al. [52] and then further studied by Imai [54]. Some other authors have also

studied this class [53, 70, 105]. Recently, Li & Li [65] have introduced a generaliza-

tion of 2D cyclic codes over finite fields, wherein they have studied 2D skew-cyclic

codes of length ml over Fq as left Fq[x, y, θ1, θ2]-submodules of Fq [x,y,θ1,θ2]
〈xl−1, ym−1〉 , where

θ1, θ2 are two commuting automorphisms of Fq. In this chapter, we generalize this

work and study 2D skew-cyclic codes over the ring R = Fq +wFq, w2 = 1. We have

obtained the generating sets of all possible forms of these codes.

6.2 Properties of the skew polynomial ring (Fq +

wFq)[x, y, θ1, θ2]

Let R = Fq+wFq, w2 = 1, where q = pr, p a prime. R can be viewed as the quotient

ring Fq [w]
〈w2−1〉 and is a semi-local ring with two maximal ideals namely 〈1 + w〉 and

〈1− w〉.

107
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Theorem 6.2.1. An element a+ wb ∈ R is a non-unit iff a = ±b.

Proof: The proof is similar to that of Theorem 3.5.1 in Chapter 3. �

Corollary 6.2.1.1. An element of R is a non-unit iff it is of the form a(1±w) for

some a ∈ Fq.

We define a Gray map φ : R→ F2
q such that

φ(a+ wb) = (b, a+ b).

φ can be extended componentwise to Φ : Rn → Fq2n. Φ is a linear map. Further,

we define the Gray weight wG(x) of any x ∈ Rn as wG(x) = wH(Φ(x)), where wH
denotes the Hamming weight.

We define a bivariate skew polynomial ring over R = Fq + wFq, w2 = 1, and

study some properties of the same structure. For this, we first consider two types

of automorphisms θ and σi on R, defined as

θ(a+ wb) = a− wb,

and

σi(a+ wb) = ap
i + wbp

i

, i ≤ r, i | r .

One can easily verify that θ and σi are automorphisms of R and θσi = σiθ for all i.

We use the notation

E = {σi : i ≤ r, i | r} .

Further we have |σi| = r/i.

Let R be a finite commutative ring with identity and let θ1, θ2 be two auto-

morphisms of R such that θ1θ2 = θ2θ1. Then the bivariate skew polynomial ring

R[x, y, θ1, θ2] is the set of bivariate polynomials over R, i.e.,

R[x, y, θ1, θ2] =


l−1∑
i=0

m−1∑
j=0

ai.jx
iyj : ai,j ∈ R; m, l ∈ N

 ,
in which the addition is defined as the ordinary addition of polynomials but the

multiplication is defined by the rule

xiyja = θ1
iθ2

j(a)xiyj,
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which is then extended to all elements of R[x, y, θ1, θ2] in the usual way. Let

f(x, y), g(x, y) ∈ R[x, y, θ1, θ2]. Then g(x, y) ∈ R[x, y, θ1, θ2] is said to be a right

divisor of f(x, y) if there exists a q(x, y) ∈ R[x, y, θ1, θ2] such that f(x, y) =

q(x, y)g(x, y). In this case, f(x, y) is called a left multiple of g(x, y), and g(x, y)

is called a right divisor of f(x, y). In the sequel, division always means right divi-

sion.

Let � be the usual lexicographical order on Z×Z. Then for any (α, β), (α′, β′) ∈

Z × Z, we have (α, β) � (α′, β′) iff α < α′ OR α = α′, β ≤ β′. If (α, β) � (α′, β′)

and (α, β) 6= (α′, β′), we write (α, β) ≺ (α′, β′). � is a total order on Z× Z.

For any polynomial f(x, y) ∈ R[x, y, θ1, θ2], define

Vf = {(z1, z2) | f(x, y) contains a term axz1yz2 , a ∈ R, a 6= 0}.

We define the lex-degree of f(x, y) as the greatest element of Vf w.r.t the total order

� on Vf , and denote it by lexdeg f(x, y).

We extend the lexicographical order � to R[x, y, θ1, θ2] as follows. For any

f(x, y), g(x, y) ∈ R[x, y, θ1, θ2], we define f(x, y) � g(x, y) iff lexdeg f(x, y) � lexdeg

g(x, y). Further we consider the zero polynomial to be the smallest element in this

ordering.

The lex-leading term of a non-zero polynomial f(x, y) is the term of f(x, y)

corresponding to its lex-degree. The lex-leading coefficient of f(x, y) is the coefficient

of its lex-degree term.

We define another partial order ≤ on R[x, y, θ1, θ2] as follows. If lexdeg f(x, y) =

(α, β) and lexdeg g(x, y) = (α′, β′), then f(x, y) ≤ g(x, y) iff α ≤ α′ and β ≤ β′,

with the usual less than or equal to relation. The dual of the partial order ≤ on

R[x, y, θ1, θ2] is denoted by the usual notation ≥.
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6.3 2D skew-cyclic codes over R = Fq + wFq

Definition 6.3.1. Let R be a finite commutative ring with identity, and let Θ be an

automorphism of R. Then a code C is said to be a skew quasi-cyclic code of length

ml and index m over R if

1. C is an R-submodule of Rn, and

2. for any c = (c0,0, c0,1, · · · , c0,m−1, c1,0, c1,1, · · · , c1,m−1, · · · , cl−1,0, · · · , cl−1,m−1)

in C, we have (Θ(cl−1,0), · · · ,Θ(cl−1,m−1)),Θ(c0,0),

Θ(c0,1), · · · ,Θ(c0,m−1),Θ(c1,0),Θ(c1,1), · · · ,Θ(c1,m−1), · · · ,Θ(cl−2,0), · · · ,Θ(cl−2,m−1))

is also in C.

Let C be a linear code of length n over R, where n = ml. Let c =

(a0, a1, · · · , an−1) ∈ C. Then c can be represented as an l ×m matrix as follows.

c =



a0,0 a0,1 · · · · · · a0,m−1

a1,0 a1,1 · · · · · · a1,m−1
... ... . . . . . . ...

al−1,0 al−1,1 · · · · · · al−1,m−1


(l×m)

.

Define two codes C1 and C2 associated with C as follows:

C1 =

(a0,0, · · · , a0,m−1, · · · , al−1,0, · · · , al−1,m−1) : c =


a0,0 a0,1 · · · · · · a0,m−1

a1,0 a1,1 · · · · · · a1,m−1
...

...
. . .

. . .
...

al−1,0 al−1,1 · · · · · · al−1,m−1

 ∈ C


C2 =

(a0,0, · · · , al−1,0, · · · , a0,m−1, · · · , al−1,m−1) : c =


a0,0 a0,1 · · · · · · a0,m−1

a1,0 a1,1 · · · · · · a1,m−1
...

...
. . .

. . .
...

al−1,0 al−1,1 · · · · · · al−1,m−1

 ∈ C
 .

Definition 6.3.2. Let θ1 and θ2 be two commuting automorphisms of R. Then a

set C is said to be a 2D skew-cyclic code of length n (= ml) over R if

1. C is an R-submodule of Rn,
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2. the associated codes C1 and C2 of C are skew quasi-cyclic codes of indices m

and l with automorphisms θ1 and θ2, respectively, over R.

Remark 6.3.2.1. We denote a 2D skew-cyclic code over R, with automorphisms θ1

and θ2 by Cθ1,θ2. In particular, if θ2 is the identity map, we simply write Cθ1,1 = Cθ1.

In polynomial notation, to each word a ∈ Rn, where n = ml and

a =



a0,0 a0,1 · · · · · · a0,m−1

a1,0 a1,1 · · · · · · a1,m−1
... ... . . . . . . ...

al−1,0 al−1,1 · · · · · · al−1,m−1

 ,

in matrix form, we associate the polynomial a(x, y) = ∑l−1
i=0

∑m−1
j=0 ai,jx

iyj ∈

Rm,l = R[x,y,θ1,θ2]
〈xl−1, ym−1〉 . This gives a one-to-one correspondence between Rn and

Rm,l. The multiplication of two elements a(x, y) and b(x, y) in Rm,l is defined

as a(x, y)b(x, y) mod (xl − 1, ym − 1), where a(x, y)b(x, y) is the multiplication of

a(x, y) and b(x, y) in the bivariate skew polynomial ring R[x, y, θ1, θ2]. With this

multiplication, the set Rm,l forms a left R[x, y, θ1, θ2]-module.

Theorem 6.3.3. A linear code of length ml over R is a 2D skew-cyclic code over

R iff it is a left R[x, y, θ1, θ2]-submodule of R[x,y,θ1,θ2]
〈xl−1, ym−1〉 .

Proof: Let C be a 2D skew-cyclic code over R. Then for any c(x, y) ∈ C, xc(x, y)

and yc(x, y) are also in C. This implies that r(x, y)c(x, y) ∈ C for all r(x, y) ∈

R[x, y, θ1, θ2]. So C is a left R[x, y, θ1, θ2]-submodule of R[x,y,θ1,θ2]
〈xl−1, ym−1〉 . Converse is

straightforward. �

Theorem 6.3.4. Let C be a 2D skew-cyclic code of length ml over R. If the order

of θ1 divides l and the order of θ2 divides m, then the following hold.

1. The polynomials xl − 1, ym− 1 ∈ R[x, y, θ1, θ2] are in Z (R[x, y, θ1, θ2]), where

Z (R[x, y, θ1, θ2]) is the center of R[x, y, θ1, θ2].

2. C is an ideal of R[x,y,θ1,θ2]
〈xl−1, ym−1〉 .
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3. A right divisor of (xl − 1)(ym − 1) is also a left divisor of (xl − 1)(ym − 1).

Proof:

1. Straightforward.

2. By part 1, 〈xl−1, ym−1〉 is a two sided ideal, and so the quotient set R[x,y,θ1,θ2]
〈xl−1, ym−1〉

is a ring. Hence the result.

3. Let g(x, y) be a right divisor of (xl − 1)(ym − 1), so that (xl − 1)(ym − 1) =

h(x, y)g(x, y) for some h(x, y) ∈ R[x, y, θ1, θ2]. Since the lex-leading coefficient

of (xl−1)(ym−1) is a unit, g(x, y) and h(x, y) can be taken such that their lex-

leading coefficients are units. Now since (xl−1)(ym−1) is a central polynomial,

(xl−1)(ym−1)h(x, y) = h(x, y)(xl−1)(ym−1), and so h(x, y)g(x, y)h(x, y) =

h(x, y)h(x, y)g(x, y), which gives g(x, y)h(x, y) = h(x, y)g(x, y), as h(x, y) has

its lex-leading coefficient a unit and hence not a zero-divisor.

�

Now we consider 2D skew-cyclic codes over R = Fq + wFq, w2 = 1. Further we

take θ1 = θ and θ2 = σ, where σ ∈ E = {σi : i ≤ r, i | r}, σi as defined in Section

6.2.

We extend the definition of the consistent set, given in [65] for the case of finite

fields, to the present case as follows.

Definition 6.3.5. Let M be a left submodule of R[x,y,θ,σ]
〈xl−1, ym−1〉 . Then a minimal set

B = {f1, f2, · · · , fs} ⊆M is called a consistent set of M if it satisfies the following

conditions:

1. fi � fj, 1 ≤ i, j ≤ s, i 6= j , if the lex-leading coefficients of fi, fj are either

both unit or both non-units.

2. for any f ∈ M such that the lex-leading coefficient of f is a unit, there exists

some fi, 1 ≤ i ≤ s, with its leading coefficient a unit such that f ≥ fi.
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3. for any f ∈ M such that the lex-leading coefficient a non-unit, there exists

some fj ∈ S, 1 ≤ j ≤ s, such that f ≥ fj.

Theorem 6.3.6. Let f(x, y), g(x, y) be two polynomials in R[x, y, θ, σ] such that

f(x, y) ≥ g(x, y) and the lex-leading coefficient of g(x, y) is a unit. Then there exist

two polynomials q(x, y) and r(x, y) in R[x, y, θ, σ] such that

f(x, y) = q(x, y)g(x, y) + r(x, y),

where r(x, y) = 0 or r(x, y) � g(x, y).

Proof: The proof is similar to that of Theorem 2.7 in [65]. �

Theorem 6.3.7. Let C be a 2D skew-cyclic code of length ml over R. If C has a

consistent set B = {f1, f2, · · · , fs} such that the lex-leading coefficient of each fi is

a unit, then C = 〈f1, f2, · · · , fs〉.

Proof: After reordering the polynomials in B, if necessary, we may assume that

f1 � f2 � · · · � fs. This strict ordering is possible because fi � fj for i 6= j. Let

f(x, y) ∈ C. Then by the definition of the consistent set, there exists a polynomial

fi1 ∈ B such that f(x, y) ≥ fi1 . Since the lex-leading coefficient of fi1 is a unit, by

Theorem 6.3.6, there exist polynomials q1(x, y), r1(x, y) ∈ R[x, y, θ, σ] such that

f(x, y) = q1(x, y)fi1 + r1(x, y),

where r1(x, y) = 0 or r1(x, y) � fi1 . Now r1(x, y) ∈ C as C is a linear

code. Therefore there exists a polynomial fi2 ∈ B such that r1(x, y) ≥ fi2 .

Again from Theorem 6.3.6, there exist q2(x, y), r2(x, y) ∈ R[x, y, θ, σ] such that

r1(x, y) = q2(x, y)fi2 + r2(x, y) with r2(x, y) = 0 or r2(x, y) � fi2 . Repeat the above

process until we get rk(x, y) = 0 for some k. Then we have

f(x, y) = q1(x, y)fi1 + q2(x, y)fi2 + · · ·+ qk(x, y)fik .

Hence the result. �
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Example 6.3.8. Let R = F3 +wF3. Let θ1 = θ and θ2 be the identity map. Let Cθ
be a 2D skew-cyclic code of length 3× 2 generated by f(x, y) = x2y+ x+ 1, i.e., C =

〈x2y + x+ 1〉. Then a spanning set for C is

S = {f(x, y), xf(x, y), x2f(x, y), yf(x, y), xyf(x, y), x2yf(x, y)},

which is equivalent, in matrix form, to the set




1 0
1 0
0 1

 ,


0 1
1 0
1 0

 ,


1 0
0 1
1 0

 ,


0 1
0 1
1 0

 ,


1 0
0 1
0 1

 ,


0 1
1 0
0 1


 .

C has a subset B = {x + 2, 1 + y} which satisfies the properties of a consistent set

of C. Therefore B is a generating set for C, i.e., C = 〈x+ 2, 1 + y〉.

Example 6.3.9. Let R = F3 +wF3. Let Cθ be a 2D skew-cyclic code of length 2×2

generated by f(x, y) = (w + 1) + (w + 1)y + (w + 2)x+ wxy, i.e.,

C = 〈(w + 1) + (w + 1)y + (w + 2)x+ wxy〉.

Then a spanning set for C is

S = {f(x, y), yf(x, y), xf(x, y), xyf(x, y)} .

Now B = {x+ 1, 1− y} forms a consistent set of C, therefore B is a generating set

for C, i.e., C = 〈x+ 1, 1− y〉. Moreover Φ(C) has parameters [8,6,2], which is an

optimal code over F3.

In the next theorem we consider a special case of Theorem 6.3.7.

Theorem 6.3.10. Let C be a 2D skew-cyclic code of length ml over R. If C contains

a polynomial g(x, y) with its lex-leading coefficient a unit such that g(x, y) ≤ c(x, y)

for all c(x, y) ∈ C, then C = 〈g(x, y)〉 and g(x, y) | (xl−1)(ym−1). Moreover, the set

S =



g(x, y), xg(x, y), · · · , xl−a−1g(x, y)
yg(x, y), yxg(x, y), · · · , yxl−a−1g(x, y)

... ... . . . ...
ym−b−1g(x, y), ym−b−1xg(x, y), · · · , ym−b−1xl−a−1g(x, y)
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forms a basis for C, and hence |C| = |R|(l−a)(m−b), where (a, b) = lexdeg g(x, y).

Proof: Let c(x, y) ∈ C be an arbitrary element. Let lexdeg g(x, y) = (a, b). Since

g(x, y) ∈ C such that g(x, y) ≤ c(x, y), by Theorem 6.3.6, there exist polynomials

q(x, y), r(x, y) ∈ R[x, y, θ, σ] such that

c(x, y) = q(x, y)g(x, y) + r(x, y) ,

where r(x, y) = 0 or r(x, y) � g(x, y). Suppose r(x, y) 6= 0. Since C is a linear code,

r(x, y) ∈ C. But then g(x, y) � r(x, y) gives a contradiction. Therefore r(x, y) = 0.

Hence C ⊆ 〈g(x, y)〉. Also, 〈g(x, y)〉 ⊆ C is obvious. So C = 〈g(x, y)〉.

Again by applying Theorem 6.3.6 on (xl − 1)(ym− 1) and g(x, y), we have (xl−

1)(ym − 1) = Q(x, y)g(x, y) + L(x, y) for some Q(x, y), L(x, y) ∈ R[x, y, θ, σ], with

L(x, y) = 0 or L(x, y) � g(x, y). In Rm,l, the above relation reduces to L(x, y) =

−Q(x, y)g(x, y) ∈ C. Since g(x, y) has its lex-leading coefficient a unit, it follows

from L(x, y) � g(x, y) that L(x, y) = 0. Hence g(x, y) | (xl − 1)(ym − 1).

Now for any c(x, y) ∈ C, we have c(x, y) = q(x, y)g(x, y) for some q(x, y) ∈

R[x, y, θ, σ]. Since lexdeg c(x, y) ≤ (l− 1,m− 1) and lexdeg c(x, y) ≤ lexdeg q(x, y)

+ lexdeg g(x, y), it follows that lexdeg q(x, y) ≤ (l− a− 1,m− b− 1). This proves

that S spans C.

For R-linear independence of S, let a(x, y)g(x, y) = 0 (in Rm,l) for some a(x, y) =
l−a−1∑
i=0

m−a−1∑
j=0

ai,jx
iyj , ai,j ∈ R. Then, in R[x, y, θ, σ],

a(x, y)g(x, y) = a1(x, y)(xl − 1) + a2(x, y)(ym − 1) (6.1)

for some a1(x, y), a2(x, y) ∈ R[x, y, θ, σ] with lexdeg a1(x, y), lexdeg a2(x, y) ≤ (l −

a − 1,m − b − 1). Since the lex-degree of L.H.S of (6.1) is at most (l − 1,m − 1),

it follows that a(x, y) must be zero. Hence all ai,j = 0, and so S is R-linearly

independent. �

Example 6.3.11. Let R = F3 + wF3. Let Cθ be a 2D skew-cyclic code of length

6 = 3×2 over R, defined by Cθ = 〈2+2y+(w+1)x+(w+1)xy+2wx2y+2wx2y2〉.

Then the vector form of code Cθ is given by the following set.
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(0, 0, 0, 0, 0, 0), (w + 1, w + 1, 2w + 2, 2w + 2, 0, 0)
(2, 2w + 1, w + 1, 2w, 2w), (w + 2, w + 2, w + 1, w + 1, w, w)

(w,w,w,w,w,w), (w,w,w + 2, w + 2, w + 1, w + 1)
(w + 1, w + 1, w, w,w + 2, w + 2), (w,w, 2, 2, 2w + 1, 2w + 1)
(2w + 2, 2w + 2, 2, 2, w + 2, w + 2), (2w, 2w, 2, 2, w + 1, w + 1)

(0, 0, 1, 1, 2, 2), (2w, 2w, 2w + 1, 2w + 1, 2w + 2, 2w + 2)
(1, 1, 0, 0, 2, 2), (w + 1, w + 1, 0, 0, 2w + 2, 2w + 2)

(w + 2, w + 2, 2w + 2, 2w + 2, 2, 2), (1, 1, w + 2, w + 2, 2w, 2w)
(2w, 2w,w + 2, w + 2, 1, 1), (0, 0, 2w + 1, 2w + 1, w + 2, w + 2)
(1, 1, 2w, 2w,w + 2, w + 2), (2, 2, 2w, 2w,w + 1, w + 1)

(2w + 1, 2w + 1, 2w, 2w, 2w + 2, 2w + 2), (2, 2, 2, 2, 2, 2)
(w + 2, w + 2, 0, 0, 2w + 1, 2w + 1), (2w + 2, 2w + 2, 0, 0, w + 1, w + 1)

(w + 2, w + 2, 1, 1, 2w, 2w), (w + 2, w + 2, w, w,w + 1, w + 1)
(0, 0, w, w, 2w, 2w), (2, 2, 2w + 2, 2w + 2, w + 2, w + 2)

(2w, 2w, 1, 1, w + 2, w + 2), (2w + 1, 2w + 1, w + 2, w + 2, 0, 0)
(0, 0, w + 1, w + 1, 2w + 2, 2w + 2), (1, 1, w + 1, w + 1, 2w + 1, 2w + 1)
(2w + 2, 2w + 2, w + 1, w + 1, 0, 0), (w,w, 0, 0, 2w, 2w)
(w,w,w + 1, w + 1, w + 2, w + 2), (0, 0, w + 2, w + 2, 2w + 1, 2w + 1)

(w,w, 2w + 2, 2w + 2, 1, 1), (2w + 2, 2w + 2, w, w, 1, 1)
(1, 1, w, w, 2w + 2, 2w + 2), (2w, 2w, 2w + 2, 2w + 2, 2w + 1, 2w + 1)
(2w, 2w, 2w, 2w, 2w, 2w), (1, 1, 2w + 2, 2w + 2, w, w)

(2w + 2, 2w + 2, 2w + 2, 2w + 2, 2w + 2, 2w + 2), (2w + 2, 2w + 2, 1, 1, w, w)
(w + 1, w + 1, 2w + 1, 2w + 1, 1, 1), (w + 1, w + 1, w + 2, w + 2, w, w)

(w + 2, w + 2, w + 2, w + 2, w + 2, w + 2), (2, 2, 2w + 1, 2w + 1, w, w)
(2, 2, 1, 1, 0, 0), (2w + 1, 2w + 1, w, w, 2, 2)
(2w, 2w, 0, 0, w, w), (w,w, 2w + 1, 2w + 1, 2, 2)

(w + 1, w + 1, w + 1, w + 1, w + 1, w + 1), (0, 0, 2w + 2, 2w + 2, w + 1, w + 1)
(2w + 1, 2w + 1, 0, 0, w + 2, w + 2), (w + 2, w + 2, 2, 2, 2w + 2, 2w + 2)

(w + 2, w + 2, 2w, 2w, 1, 1), (1, 1, 2, 2, 0, 0)
(2w + 1, 2w + 1, 2w + 1, 2w + 1, 2w + 1, 2w + 1), (w + 1, w + 1, 2, 2, 2w, 2w)

(w + 1, w + 1, 2w, 2w, 2, 2), (2, 2, w + 2, w + 2, 2w + 2, 2w + 2)
(w + 2, w + 2, 2w + 1, 2w + 1, 0, 0), (w,w, 2w, 2w, 0, 0)

(2w + 2, 2w + 2, 2w, 2w, 2w + 1, 2w + 1), (0, 0, 2w, 2w,w,w)
(2w + 1, 2w + 1, 2w + 2, 2w + 2, 2w, 2w), (2w + 1, 2w + 1, 1, 1, w + 1, w + 1)

(0, 0, 2, 2, 1, 1), (1, 1, 2w + 1, 2w + 1, w + 1, w + 1)
(w + 1, w + 1, 1, 1, 2w + 1, 2w + 1), (2w + 1, 2w + 1, 2, 2, w, w)
(2w + 2, 2w + 2, w + 2, w + 2, 2, 2), (2w + 1, 2w + 1, w + 1, w + 1, 1, 1)

(2, 2, w, w, 2w + 1, 2w + 1), (2w, 2w,w + 1, w + 1, 2, 2)
(1, 1, 1, 1, 1, 1), (2, 2, 0, 0, 1, 1)

(2w, 2w,w,w, 0, 0), (w,w, 1, 1, 2w + 2, 2w + 2)
(2w + 2, 2w + 2, 2w + 1, 2w + 1, 2w, 2w)
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Cθ contains a monic polynomial g(x, y) = x − y − 1 + xy (underlined in the table)

such that g(x, y) ≤ c(x, y) for all c(x, y) ∈ Cθ. Therefore Cθ = 〈g(x, y)〉. Also

g(x, y) = x−y−1+xy = (x−1)(y+1), which divides (x3−1)(y2−1). By Theorem

6.3.10, a spanning set for Cθ is

S = {g(x, y), xg(x, y)} ,

which is equivalent, in matrix form, to the set

S =




−1 −1
1 1
0 0

 ,


0 0
−1 −1
1 1


 .

|Cθ| = |R|(3−1)(2−1) = 92 = 81. The parameters of Cθ and Φ(Cθ) are (6, 92, 2G) and

[12, 4, 2], respectively.

The next result presents a division algorithm when the lex-leading coefficient of

the divisor is not a unit.

Lemma 6.3.12. Let f(x, y), g(x, y) ∈ R[x, y, θ, σ] be two polynomials such that both

have their lex-leading coefficients non-units and g(x, y) ≤ f(x, y). Then there exist

two polynomials q(x, y), r(x, y) ∈ R[x, y, θ, σ] such that

f(x, y) = q(x, y)g(x, y) + r(x, y),

where r(x, y) = 0 or r(x, y) ≺ g(x, y) or r(x, y) has the lex-leading coefficient a unit

with lex-degree at most lexdeg f(x, y).

Proof: Let f(x, y) and g(x, y) have lex-degrees (k1, s1) and (k2, s2), respectively.

Since g(x, y) ≤ f(x, y), we have k2 ≤ k1, s2 ≤ s1. Now since the lex-leading coeffi-

cient of f(x, y) is a non-unit, it is either a(1 + w) or b(1 − w) for some a, b ∈ Fq.

Similarly, the lex-leading coefficient of g(x, y) is either c(1 +w) or d(1−w) for some

c, d ∈ Fq. Suppose the lex-leading coefficient of f(x, y) is a(1 + w) (the result can
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similarly be proved when the lex-leading coefficient of f(x, y) is b(1 − w)). Also

suppose that the lex-leading coefficient of g(x, y) is c(1 + w). Define a polynomial

H(x, y) = f(x, y)− l(x, y)g(x, y) , (6.2)

where

l(x, y) =


aσs1−s2(c−1)xk1−k2ys1−s2 , if k1 − k2 is odd

−aσs1−s2(c−1)xk1−k2ys1−s2 , otherwise.

(We can similarly choose l(x, y) for the case when the lex-leading coefficient of g(x, y)

is d(1−w)). Note that we have θ(α) = α for all α ∈ Fq, σ(w) = w, and if k1− k2 is

odd, θk1−k2(c(1 + w)) = c(1− w).

In (6.2), H(x, y) = 0 or H(x, y) has the lex-leading coefficient a unit or the lex-

leading coefficient of H(x, y) is a non-unit and H(x, y) ≺ f(x, y). Now (6.2) can be

written as

f(x, y) = l(x, y)g(x, y) +H(x, y). (6.3)

If H(x, y) = 0 or the lex-leading coefficient of H(x, y) is a unit, then we are done.

Now suppose H(x, y) ≺ f(x, y). If H(x, y) ≺ g(x, y), then we are done. Suppose

H(x, y) � g(x, y). Then replace f(x, y) by H(x, y) in (6.2), and repeat the process

to get a polynomial H1(x, y) such that

H(x, y) = q1(x, y)g(x, y) +H1(x, y),

where H1(x, y) = 0 or the lex-leading coefficient of H1(x, y) is a unit or the

lex-leading coefficient of H(x, y) is a non-unit and H1(x, y) ≺ H(x, y). Now if

H1(x, y) = 0 or the lex-leading coefficient of H1(x, y) is a unit, then substitute the

corresponding value of H(x, y) in (6.3), and we are done. Otherwise keep on re-

peating the process until we get Hk(x, y) such that f(x, y) = (q(x, y) + q1(x, y) +

q2(x, y) + · · · + qk(x, y))g(x, y) + Hk(x, y) with Hk(x, y) = 0 or Hk(x, y) has the

lex-leading coefficient a unit or Hk(x, y) ≺ g(x, y). Hence the result. �

Lemma 6.3.13. Let C be a 2D skew-cyclic code over R such that it does not contain

any polynomial with its lex-leading coefficient a unit. Let f(x, y), g(x, y) be any two
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polynomials in C such that g(x, y) ≤ f(x, y). Then there exist two polynomials

q(x, y) and r(x, y) such that

f(x, y) = q(x, y)g(x, y) + r(x, y),

where r(x, y) = 0 or r(x, y) ≺ g(x, y).

Proof: The proof is straightforward by Lemma 6.3.12 and the fact that there is no

polynomial in C with its lex-leading coefficient a unit. �

Theorem 6.3.14. Let C be a 2D skew-cyclic code of length ml in R[x, y, θ, σ] such

that it does not contain any polynomial with its lex-leading coefficient a unit. Let

B = {f1, f2, · · · , fm} be a consistent set of C. Then C = 〈f1, f2, · · · , fm〉.

Proof: We start as in the proof of Theorem 6.3.7. Let f(x, y) ∈ C. Then by the

definition of the consistent set, there exists a polynomial fi1 ∈ B such that f ≥ fi1 .

By Lemma 6.3.13, there exist q(x, y), r1(x, y) ∈ R[x, y, θ, σ] such that

f(x, y) = q(x, y)fi1 + r(x, y),

where r(x, y) = 0 or r(x, y) ≺ fi1 . Now r(x, y) ∈ C, as C is a linear code. Therefore

there exists a polynomial fi2 ∈ B such that r(x, y) ≥ fi2 . Again by Lemma 6.3.13,

there exist q1(x, y), r1(x, y) ∈ R[x, y, θ, σ] such that r(x, y) = q1(x, y)fi2 + r1(x, y),

with r1(x, y) = 0 or r1(x, y) ≺ fi2 . Repeat the above process until we get rs−1(x, y) =

0 for some s. Then we have

f(x, y) = q(x, y)fi1 + q1(x, y)fi2 + · · ·+ qs−1(x, y)fis .

Hence the result. �

Example 6.3.15. Let R = F3 + wF3. Let Cθ be the 2D skew-cyclic code of length

2 × 2 over R generated by f(x, y) = (w + 2) + (1 + 2w)y + (w + 1)x, i.e., Cθ =

〈(w + 2) + (1 + 2w)y + (w + 1)x〉. Therefore a spanning set for Cθ is

S = {f(x, y), yf(x, y), xf(x, y), xyf(x, y)} ,
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which is equivalent (in matrix form) to the set


 w + 2 2w + 1
w + 1 0

 ,
 2w + 1 w + 2

0 w + 1

 ,
 2w + 1 0

2w + 2 w + 1

 ,
 0 2w + 1
w + 1 2w + 2

 .
The corresponding code (in vector form) is given as



(2w + 1, 0, 0, 2w + 2), (w + 2, w + 2, 0, 2w + 2), (0, w + 2, 2w + 2, 0)
(2w + 1, 2w + 1, 2w + 2, 2w + 2), (0, w + 2, w + 1, w + 1), (0, 2w + 1, w + 1, 0),

(2w + 1, 0, 0, w + 1), (w + 2, w + 2, 0, w + 1), (w + 2, 0, w + 1, 2w + 2),
(0, 2w + 1, 2w + 2, 2w + 2), (2w + 1, 0, w + 1, w + 1), (2w + 1, 2w + 1, 0, 0),

(w + 2, 0, w + 1, 0), (2w + 1, w + 2, w + 1, 2w + 2), (w + 2, w + 2, 2w + 2, 0),
(0, 0, 2w + 2, w + 1), (w + 2, 0, 0, 2w + 2), (w + 2, 2w + 1, w + 1, w + 1),

(2w + 1, 2w + 1, 2w + 2, w + 1), (w + 2, 0, 0, w + 1), (0, w + 2, w + 1, 2w + 2),
(0, 2w + 1, 0, 0), (0, 2w + 1, 2w + 2, w + 1), (w + 2, w + 2, 2w + 2, 2w + 2),

(2w + 1, 2w + 1, 0, 2w + 2), (2w + 1, 0, w + 1, 2w + 2), (w + 2, 2w + 1, w + 1, 0),
(2w + 1, 2w + 1, 0, w + 1), (0, 0, w + 1, 0), (2w + 1, 0, 2w + 2, 0),

(0, 2w + 1, 0, 2w + 2), (w + 2, 2w + 1, w + 1, 2w + 2), (w + 2, w + 2, 0, 0),
(0, 0, 0, 2w + 2), (2w + 1, 2w + 1, 2w + 2, 0), (0, 2w + 1, 0, w + 1),

(w + 2, 0, 2w + 2, 2w + 2), (0, 0, 0, 0), (2w + 1, w + 2, 2w + 2, 2w + 2),
(0, 0, 0, w + 1), (w + 2, w + 2, 2w + 2, w + 1), (0, 0, w + 1, w + 1),

(0, 2w + 1, 2w + 2, 0), (2w + 1, 2w + 1, w + 1, w + 1), (0, w + 2, 2w + 2, 2w + 2),
(2w + 1, w + 2, w + 1, 0), (w + 2, 0, 2w + 2, 0), (w + 2, 2w + 1, 0, 2w + 2),
(0, 2w + 1, w + 1, w + 1), (w + 2, 0, 2w + 2, w + 1), (0, w + 2, w + 1, 0),

(2w + 1, w + 2, 0, 0), (2w + 1, 0, 2w + 2, 2w + 2), (2w + 1, w + 2, 2w + 2, w + 1),
(w + 2, 2w + 1, 0, w + 1), (0, 0, w + 1, 2w + 2), (0, w + 2, 0, 0),
(w + 2, w + 2, w + 1, 0), (w + 2, 2w + 1, 2w + 2, 2w + 2), (2w + 1, 2w + 1, w + 1, 2w + 2),
(0, w + 2, 2w + 2, w + 1), (w + 2, 2w + 1, 2w + 2, 0), (0, 2w + 1, w + 1, 2w + 2),

(0, 0, 2w + 2, 0), (w + 2, w + 2, w + 1, w + 1), (2w + 1, 0, 2w + 2, w + 1),
(2w + 1, w + 2, 0, 2w + 2), (w + 2, 0, 0, 0), (w + 2, 2w + 1, 0, 0),
(2w + 1, w + 2, 0, w + 1), (w + 2, 2w + 1, 2w + 2, w + 1), (w + 2, 0, w + 1, w + 1),

(2w + 1, 0, w + 1, 0), (0, w + 2, 0, 2w + 2), (2w + 1, w + 2, w + 1, w + 1),
(2w + 1, 2w + 1, w + 1, 0), (0, 0, 2w + 2, 2w + 2), (w + 2, w + 2, w + 1, 2w + 2),

(2w + 1, 0, 0, 0), (0, w + 2, 0, w + 1), (2w + 1, w + 2, 2w + 2, 0)


The set B = {w + 2} is a consistent set of Cθ. So Cθ = 〈w + 2〉, where w + 2 is

being considered as a constant bivariate polynomial over R.

The following theorem deals with the case when in a 2D skew-cyclic code C there

is a polynomial with its lex-leading coefficient a unit but the polynomial is not of

minimal lex-degree.
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Theorem 6.3.16. Let C be a 2D skew-cyclic code over R containing a mini-

mum lex-degree polynomial fk having its lex-leading coefficient a unit. Let S =

{f1, f2, · · · , fk, fk+1, fk+2, · · · , fk+s} ⊆ C such that fj ≺ fi for j > i and fi have

their lex-leading coefficients units for i = 1, 2, · · · , k and non-units otherwise. Also

S satisfies the following conditions:

1. for fi, fj, fi′ , fj′ ∈ S, fi � fj for i 6= j, 1 ≤ i, j ≤ k and fi′ � fj′ for i′ 6=

j′, k + 1 ≤ i′, j′ ≤ k + s .

2. for all f(x, y) ∈ C such that f(x, y) � fk, there exists fi ∈ S such that

f(x, y) ≥ fi for some i ≤ k.

3. for any f(x, y) ∈ C having its lex-leading coefficient a non-unit, there exists

fj ∈ S such that f(x, y) ≥ fj for some j > k.

Then S forms a generating set for C, i.e., C = 〈f1, f2, · · · , fk, fk+1, fk+2, · · · , fk+s〉.

Proof: Let c(x, y) ∈ C be any codeword.

Case 1: Suppose c(x, y) ≺ fk. Then the lex-leading coefficient of c(x, y) must

be a non-unit, as fk is a minimum lex-degree polynomial in C having its lex-leading

coefficient a unit. Therefore there exists fj1 , k + 1 ≤ j1 ≤ k + s, such that c(x, y) ≥

fj1 . By Theorem 6.3.12,

c(x, y) = Q1(x, y)fj1 +H1(x, y)

for some Q1(x, y), H1(x, y) ∈ R[x, y, θ, σ], where H1(x, y) = 0 or H1(x, y) ≺ fj1

or H1(x, y) has the lex-leading coefficient a unit with lex-degree at most lexdeg

c(x, y). Now proceeding as in Theorem 6.3.14, we get fj1 , · · · , fjk′ such that c(x, y) =

Q1(x, y)fj1 +Q2(x, y)fj2 + · · ·+Qk(x, y)fjk′ .

Case 2: Suppose c(x, y) � fk.

Subcase 1: Suppose c(x, y) has its lex-leading coefficient a unit. Then c(x, y) � fk,

and so there exist fi1 ∈ S, 1 ≤ i1 ≤ k such that c(x, y) ≥ fi1 . So by Theorem 6.3.6,

we have

c(x, y) = q1(x, y)fi1 + r1(x, y), (6.4)
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for some q1(x, y), r1(x, y) ∈ R[x, y, θ, σ] such that r1(x, y) = 0 or r1(x, y) � fi1 .

Subcase 2: Suppose c(x, y) has its lex-leading coefficient a non-unit. Then there

exists fi2 ∈ S, k + 1 ≤ i2 ≤ k + s such that c(x, y) ≥ fi2 , and so by Theorem 6.3.12,

we have

c(x, y) = q′1(x, y)fi2 + r′1(x, y), (6.5)

for some q′1(x, y), r′1(x, y) ∈ R[x, y, θ, σ] such that r′1(x, y) = 0 or r′1(x, y) ≺ fi2 or

r′1(x, y) has its lex-leading coefficient a unit. If r′1(x, y) = 0, then we are done. If

r′1(x, y) ≺ fi2 , then obviously r′1(x, y) ≺ fk, so go to Case 1. Suppose r′1(x, y) has

its lex-leading coefficient a unit. Then go back to Subcase 1 and repeat the steps

by replacing c(x, y) by r′1(x, y). After this, suppose we are left with a remainder

r2(x, y). Check whether r2(x, y) ≺ fk. If so, go to Case 1. Otherwise, repeat all

the steps from initial stage by replacing c(x, y) by r2(x, y) until we get a remainder

rs(x, y) ≺ fk such that

c(x, y) = q1(x, y)fi1 + q2(x, y)fi2 + · · ·+ qs(x, y)fis +H(x, y), (6.6)

where H(x, y) = rs(x, y). Now H(x, y) ≺ fk, and so by replacing c(x, y) by H(x, y)

in Case 1, we get H(x, y) = Q1(x, y)fj1 +Q2(x, y)fj2 + · · ·+Qk(x, y)fjk′ . The result

follows by substituting H(x, y) in (6.6).

�

Example 6.3.17. Let C be a 2D skew-cyclic code defined as C = 〈f(x, y), g(x, y)〉,

where g(x, y) = (w+2)+(2w+1)y+(w+1)x and f(x, y) = 1+y+x+xy. Therefore

the set

S = {f(x, y), g(x, y), yg(x, y), xg(x, y), yxg(x, y)}

forms a spanning set of C, which is equivalent (in matrix form) to the set

{[
1 1
1 1

]
,

[
w + 2 2w + 1
w + 1 0

]
,

[
2w + 1 w + 2

0 w + 1

]
,

[
1 + 2w 0
2 + 2w w + 1

]
,

[
0 1 + 2w

w + 1 1 + 2w

]}
.

Now C has a set S = {f1, f2}, where f1 = 1 + y, which is a minimal lex-degree poly-

nomial in C having its lex-leading coefficient a unit, and f2 = w + 2, the minimum
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lex-degree polynomial in C, having its lex-leading coefficient a non-unit. The set S

satisfies the properties of a consistent set of C. Therefore S is a generating set for

C, i.e, C = 〈1 + y, w + 2〉.

Theorem 6.3.18. Let C be a 2D skew-cyclic code of length ml over R such that

gcd(l, |θ|) = 1 and gcd(m, |σ|) = 1. Then C is a 2D-cyclic code of same length over

R.

Proof: Let C1 and C2 be the associated codes of C, as defined in the beginning

of this section. Then C1, C2 are skew quasi-cyclic codes over R of indices m and

l, respectively. To show C is a 2D-cyclic code over R, it suffices to show that C1

and C2 are quasi-cyclic codes over R. We prove the result for C1, the same can

similarly be proved for C2. Let c(x, y) = ∑l−1
i=0

∑m−1
j=0 ci,jx

iyj ∈ C and |θ| = k. Since

gcd(k, l) = 1, there exist two integers a and b such that al + bk = 1. Therefore

bk = 1− al. Now consider

xbkc(x, y) = xbk
l−1∑
i=0

m−1∑
j=0

ci,jx
iyj

=
l−1∑
i=0

m−1∑
j=0

θbk(ci,j)xi+1−alyj.

Therefore xbkc(x, y) = ∑l−1
i=0

∑m−1
j=0 ci,jx

i+1yj , since xl = 1 and θk(r) = r for all r ∈ R

(as the order of θ is k). Now xbkc(x, y) ∈ C shows that ∑l−1
i=0

∑m−1
j=0 ci,jx

i+1yj ∈ C

whenever ∑l−1
i=0

∑m−1
j=0 ci,jx

iyj ∈ C. So C1 is a quasi-cyclic code (of index m) over R .

Similarly we can prove that C2 is also a quasi-cyclic code (of index l) over R. Hence

C is a 2D-cyclic code over R. �

Lemma 6.3.19. Let C ′ be a left submodule of R[y,θσ]
〈yn−1〉 , where n = ml and let C be a

left submodule of R[x,y,θ,σ]
〈xl−1, ym−1〉 . Let a map π : C ′ → C be defined as

π

(
ml−1∑
i=0

aiy
i

)
=

l−1∑
j=0

m−1∑
k=0

aj,kx
jyk,

where ym = x and j = i (mod l), k = i (mod m). Then π is a bijection iff gcd(m, l) =

1.
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Proof: The proof follows from the fact that if a = b (mod n1) and a = b (mod n2),

then a = b (mod n1n2) iff gcd(n1, n2) = 1. �

Theorem 6.3.20. A 2D skew-cyclic code of length n (= ml) over R is equivalent

to a skew-cyclic code of length n if gcd(m, l) = 1.

Proof: Let gcd(m, l) = 1. Since C is a 2D skew-cyclic code of length ml over R, it

is a left submodule of R[x,y,θ,σ]
〈xl−1, ym−1〉 . Define a submodule C ′ of R[y,θσ]

〈yn−1〉 such that C ′ is

equivalent to C by Lemma 6.3.19. Let a(y) ∈ C ′ be an arbitrary polynomial, where

a(y) = ∑ml−1
i=0 aiy

i. To show C is equivalent to a skew-cyclic code, it suffices to show

that C ′ is a skew-cyclic code over R. Consider

ya(y) = y
ml−1∑
i=0

aiy
i

=
ml−1∑
i=0

yaiy
i

=
ml−1∑
i=0

θσ(ai)yi+1. (6.7)

Let π be the corresponding bijection between C and C ′. Then

π(ya(y)) = π(
ml−1∑
i=0

θσ(ai)yi+1)

=
l−1∑
j=0

m−1∑
k=0

θσ(aj,k)x(i+1) mod ly(i+1) mod m

=
l−1∑
j=0

m−1∑
k=0

xyaj,kx
i mod lyi mod m (as xya = θσ(a)xy)

= xy
l−1∑
j=0

m−1∑
k=0

aj,kx
i mod lyi mod m

= xyπ(a(y)).

Since π(a(y)) ∈ C, and C is a 2D skew-cyclic codes over R, xyπ(a(y)) ∈ C. There-

fore the pre-image of xyπ(a(y)), i.e., ya(y), which is a skew-cyclic shift of a(y) (by

(6.7)), will also belong to C ′. Hence C ′ is a skew-cyclic code of length n over R with

automorphism θσ. The result follows. �
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Corollary 6.3.20.1. Let C be a 2D skew-cyclic code of length ml over R. If

gcd(m, l) = 1 and θσ is the identity map on R, then C is equivalent to a cyclic

code of length ml over R.

6.4 Duals of 2D skew-cyclic codes over R

In this section, the duals of 2D skew-cyclic codes of length n (= ml) over R, when |θ|

divides l and |σ| divides m, have been studied. The subcodes of such codes, which

are themselves 2D skew-cyclic codes over R, are also studied.

Definition 6.4.1. Let C be a 2D skew-cyclic code of length n over R. Then its dual

C⊥ is defined as

C⊥ = {a ∈ Rn : a · c = 0 for all c ∈ C},

where a · c is the usual Euclidean inner product of a and c in Rn.

An element a ∈ Rml can be viewed as a = (a0, a1, · · · , al−1), where ai =

(ai,0, ai,1, · · · , ai,m−1) ∈ Rm. Let Tθ(a) = (θ(al−1), θ(a0), · · · , θ(al−2)), where θ(ai) =

(θ(ai,0), θ(ai,1), · · · , θ(ai,m−1)). Then C is a θ-skew quasi-cyclic code of length ml

and index m over R if Tθ(a) ∈ C for all a ∈ C.

Lemma 6.4.2. Let C be a θ-skew quasi-cyclic code of length ml and index m over

R. If a ∈ C and b ∈ C⊥, then θ(b · T jθ (a)) = Tθ(b) · T j+1
θ (a).

Proof: The proof is similar to the proof of Lemma 3.4.9 in Chapter 3. �

Lemma 6.4.3. Let |θ| | l. Let C be a θ-skew quasi-cyclic code of length ml and

index m over R. Then C⊥ is also a θ-skew quasi-cyclic code of length ml and index

m over R.

Proof: Let a ∈ C and b ∈ C⊥. Then T l−1
θ (a) · b = 0, as T l−1

θ (a) ∈ C. On applying

θ both sides and by Lemma 6.4.2, we get a · Tθ(b) = 0, as |θ| | l. So T lθ(a) = a. This

gives Tθ(b) ∈ C⊥. Hence C⊥ is a θ-skew quasi-cyclic code of index m. �
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Theorem 6.4.4. Let C be a 2D skew-cyclic code of length ml over R with the

associated automorphisms θ and σ such that |θ| | l and |σ| | m. Then C⊥ is also a

2D skew-cyclic code of same length over R.

Proof: Since C is equivalent to a θ-skew quasi cyclic code of index m and a σ-skew

quasi cyclic code of index l, the result directly follows from Lemma 6.4.3. �

The following discussion is similar to the one given in [27, Page 9].

The ring R[x, y, θ, σ] can be localized to the right at the multiplicative set S =

{xiyj | i, j ∈ N}. The existence of the localization of R[x, y, θ, σ] follows from [86,

Theorem 2], since S satisfies the following two necessary and sufficient conditions:

• (Right Ore condition:) For all xi1yj1 ∈ S and f(x, y) ∈ R[x, y, θ, σ], there exists

xi2yj2 ∈ S and g(x, y) ∈ R[x, y, θ, σ] such that f(x, y)xi1yj1 = xi2yj2g(x, y). To

prove this we note that the multiplication rule xiyja = θiσj(a)xiyj allows to

shift the powers of x and y from left to right by changing the coefficients.

• If for xi1yj1 ∈ S and f(x, y) ∈ R[x, y, θ, σ], we have xi1yj1f(x, y) = 0, then

there exists xi2yj2 ∈ S such that f(x, y)xi2yj2 = 0. Since xi2yj2 is not a

zero-divisor, f(x, y) must be zero.

This shows that the right localization R[x, y, θ, σ]S−1 exists. We have ax−1y−1 =

x−1y−1θσ(a), where x−1 and y−1 are inverses of x and y, respectively, in this

ring. Now we consider the ring T ⊂ R[x, y, θ, σ]S−1 consisting of the elements
l∑

i=0

m∑
j=0

x−iy−jai,j, where the coefficients are on the right and where the multiplica-

tion rule is given as ax−1y−1 = x−1y−1θσ(a). The ring T is isomorphic to the skew

polynomial ring R[x−1, y−1, θ−1, σ−1].

Define τ : R[x, y, θ, σ]→ T ⊂ R[x, y, θ, σ]S−1 as

τ

(
l−1∑
i=0

m−1∑
i=0

ai,jx
iyj
)

=
l−1∑
i=0

m−1∑
i=0

x−iy−jai,j

for all a(x, y) =
l−1∑
i=0

m−1∑
i=0

ai,jx
iyj. The map τ is a ring anti-isomorphism. For instance,

let P1 =
r∑
i=0

t∑
j=0

ai,jx
iyj and P2 =

r′∑
i′=0

t′∑
j′=0

bi,jx
i′yj

′ be two polynomials in R[x, y, θ, σ].
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Then we have τ(P1 + P2) = τ(P1) + τ(P2) and

τ(P1P2) = τ

 r∑
i=0

t∑
j=0

ai,jx
iyj

r′∑
i′=0

t′∑
j′=0

bi′,j′xi
′
yj

′

 = τ

r+r′∑
k1=0

t+t′∑
k2=0

 ∑
i+i′=k1
j+j′=k2

(
ai,jθ

iσj(bi′,j′)
)
xk1yk2




=
r+r′∑
k1=0

t+t′∑
k2=0

 ∑
i+i′=k1
j+j′=k2

(
x−k1y−k2ai,jθ

iσj(bi′,j′)
) =

r+r′∑
k1=0

t+t′∑
k2=0

 ∑
i+i′=k1
j+j′=k2

(
x−i′y−j′

x−iy−jθiσj(bi′,j′)ai,j
)

=
r+r′∑
k1=0

t+t′∑
k2=0

 ∑
i+i′=k1
j+j′=k2

(
x−i′y−j′

bi′,j′x−iy−jai,j

) = τ(P2)τ(P1).

Definition 6.4.5. Let f(x, y) =
r∑
i=0

s∑
i=0

fi,jx
iyj be of lex-degree (r, s) in R[x, y, θ, σ].

Then the skew-reciprocal polynomial f ∗(x, y) of f(x, y) is defined as f ∗(x, y) =

xrysτ(f(x, y)) =
r∑
i=0

s∑
i=0

xr−iys−jfi,j =
r∑
i=0

s∑
i=0

θr−iσs−j(fi,j)xr−iys−j.

Lemma 6.4.6. Let |θ| | l and |σ| | m. Let g(x, y) be a right divisor of (xl−1)(ym−1)

such that (xl − 1)(ym − 1) = h(x, y)g(x, y). Then h∗(x, y) is also a right divisor of

(xl − 1)(ym − 1).

Proof: Let lexdeg h(x, y) = (l−r,m−s). Applying τ on both sides of the equation

(xl − 1)(ym − 1) = h(x, y)g(x, y), we get

τ((xl − 1)(ym − 1)) = τ(h(x, y)g(x, y)).

So (x−l − 1)(y−m − 1) = τ(g(x, y))τ(h(x, y)). Multiplying both sides by xlym, we
get

(xl − 1)(ym − 1) = xlym(x−l − 1)(y−m − 1) = xlymτ(g(x, y))τ(h(x, y))

= τ(g(x, y))xlymτ(h(x, y)) (as |θ| | l, |σ| | m)

= τ(g(x, y))xrysxl−rym−sτ(h(x, y))

= τ(g(x, y))xrysh∗(x, y).

Hence the result. �

Corollary 6.4.6.1. In the above lemma, h∗(x, y) is also a left divisor of (xl−1)(ym−

1).
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Proof: The proof follows from Part 3 of Theorem 6.3.4. �

Theorem 6.4.7. Let C be a 2D skew-cyclic code of length n = lm over R with

|θ| | l and |σ| | m. Let C = 〈g(x, y)〉 with (xl − 1)(ym − 1) = h(x, y)g(x, y) . Then

C ′ = 〈h∗(x, y)〉 is also a 2D skew-cyclic code of same length over R. Moreover C ′ is

a sub-code of C⊥.

Proof: By Lemma 6.4.6, h∗(x, y) is also a right divisor of (xl−1)(ym−1), and hence

by Theorem 6.3.10, C ′ is a 2D skew-cyclic code over R. Also (h∗)∗(x, y) = h(x, y)

annihilates C, which implies that h∗(x, y) ∈ C⊥, and so C ′ ⊆ C⊥. �

Example 6.4.8. In Example 6.3.11, C = 〈(x− 1)(y + 1)〉. Define C ′ = 〈(x2 + x+

1)(y−1)〉. A spanning set for C ′ is {(x2+x+1)(y−1)} = {−1+y−x+xy−x2+x2y}.

The codewords of C ′ are:



(0, 0, 0, 0, 0, 0), (w + 2, 2w + 1, w + 2, 2w + 1, w + 2, 2w + 1)
(2w + 1, w + 2, 2w + 1, w + 2, 2w + 1, w + 2), (2, 1, 2, 1, 2, 1)
(2w + 2, w + 1, 2w + 2, w + 1, 2w + 2, w + 1), (w, 2w,w, 2w,w, 2w)

(2w,w, 2w,w, 2w,w), (1, 2, 1, 2, 1, 2)
(w + 1, 2w + 2, w + 1, 2w + 2, w + 1, 2w + 2)


.

Therefore the parameters for C ′ are (6, 91, 4G), where 4G is the minimum Gray

weight of C ′. It can easily be verified that C ′ ⊆ C⊥. Moreover C ′ is properly

contained in C⊥, as |C ′| = 9 and |C⊥| = 96/92 = 94.

6.5 A decomposition of 2D skew-cyclic codes over

R

Now onward, we consider p > 2. In this section, we decompose a 2D skew-cyclic

code over R into 2D skew-cyclic codes over Fq.

We define a map ξ′ : R→ R as follows:

ξ′(a+ wb) = (a+ b, a− b).
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ξ′ can be extended componentwise to ξ : Rn → Fq2n. ξ is a linear map. Further,

we define the Lee weight of x ∈ Rn as wL(x) = wH(ξ(x)), where wH(x) denotes the

Hamming weight of x.

Let C be a linear code of length n over R. Define two sets as follows:

C ′ = {(a+ b) : a+ wb ∈ C}

and

C ′′ = {(a− b) : a+ wb ∈ C}.

Then clearly C ′, C ′′ are linear codes of length n over R.

Theorem 6.5.1. Let C be a linear code of length n over R. Then ξ(C) = C ′ ×C ′′.

Proof: Let (a0, a1, · · · , an−1, b0, b1, · · · , bn−1) ∈ C ′×C ′′, where a = (a1, a2, · · · , an−1) ∈

C ′ and b = (b1, b2, · · · , bn−1) ∈ C ′′. Since 2a ∈ C ′ and 2b ∈ C ′′, by defi-

nitions of C ′, C ′′, there exist a codeword c = (c1, c2, · · · , cn−1) ∈ C such that

ci = (ai + bi) +w(ai − bi). Now 2−1ξ(c) = (a1, a2, · · · , an−1, b1, b2, · · · , bn−1) ∈ ξ(C).

Hence C ′×C ′′ ⊆ ξ(C). Conversely, suppose x = (a0, a1, · · · , an−1, b0, b1, · · · , bn−1) =

(a, b) ∈ ξ(C), so 2x ∈ ξ(C). Then by the definition of ξ(C), there exists

c = (c1, c2, · · · , cn−1) ∈ C such that ci = (ai + bi) + w(ai − bi), and consequently

by the definitions of C ′ and C ′′, we have 2a ∈ C ′ and 2b ∈ C ′′. Hence a ∈ C ′ and

b ∈ C ′′. This implies that ξ(C) ⊆ C ′ × C ′′, and so ξ(C) = C ′ × C ′′. �

Theorem 6.5.2. Let C be a linear code over R. Then C = (1 +w)C ′⊕ (1−w)C ′′,

where C ′ and C ′′ are two linear codes over Fq.

Proof: Let a ∈ C ′ and b ∈ C ′′. Then (a+ b) +w(a− b) = (1 +w)a+ (1−w)b ∈ C.

Therefore (1 +w)C ′ ⊕ (1−w)C ′′ ⊆ C. Moreover by Theorem 6.5.1, |C| = |ξ(C)| =

|C ′ × C ′′| = |(1 + w)C ′ ⊕ (1− w)C ′′|. Hence the result. �

Corollary 6.5.2.1. If C ′ = C ′′ in Theorem 6.5.2, then C ′ = C.

Proof: We have C = (1 + w)C ′ ⊕ (1 − w)C ′′ = 2C ′ = C ′, as 2 is an invertible

element of R. �
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Theorem 6.5.3. Let σ′, σ′′ ∈ E be two automorphisms of R. Let Cσ′,σ′′ = (1 +

w)C ′⊕(1−w)C ′′ be a linear code over R. Then C is a 2D skew-cyclic code of length

n over R iff C ′ and C ′′ are 2D skew-cyclic codes over Fq in which the corresponding

automorphisms are σ′, σ′′, restricted to Fq.

Proof: For convenience, we prove the result in polynomial form. Let c(x, y) ∈ C be

a codeword. Then c(x, y) can be written as c(x, y) = (1+w)c1(x, y)+(1−w)c2(x, y),

where c1(x, y) ∈ C ′ and c2(x, y) ∈ C ′′. Also we have xc(x, y) = x((1 + w)c1(x, y) +

(1− w)c2(x, y)) = (1 + w)xc1(x, y) + (1− w)xc2(x, y), as w is fixed by σ′, σ′′. Then

xc(x, y) ∈ C iff xc1(x, y) ∈ C ′ and xc2(x, y) ∈ C ′′. Similarly yc(x, y) ∈ C iff

yc1(x, y) ∈ C ′ and yc2(x, y) ∈ C ′′ . The result follows. �

Theorem 6.5.4. Let C = (1 +w)C ′ ⊕ (1−w)C ′′ be a 2D skew-cyclic code over R,

where C ′ and C ′′ are 2D skew-cyclic codes over Fq. Let A = {f1, f2, · · · , fk} be a

generating set of C ′ and B = {h1, h2, · · · , hl} be a generating set of C ′′. Then C is

generated by {(1+w)f1, (1+w)f2, · · · , (1+w)fk, (1−w)h1, (1−w)h2, · · · , (1−w)hl}.

Proof: Let c(x, y) = (1 + w)c1(x, y) + (1− w)c2(x, y) ∈ C, where c1(x, y) = a1f1 +

a2f2 + · · · + akfk ∈ C1 for some ai ∈ Fq[x, y, σ′, σ′′] and c2(x, y) = b1h1 + b2h2 +

· · · + blhl ∈ C2 for some bi ∈ Fq[x, y, σ′, σ′′]. Then obviously c(x, y) is a linear

combination of elements of the sets (1 +w)A and (1−w)B. On the other hand, let

v(x, y) = v1(1+w)f1 +v2(1+w)f2 + · · ·+vk(1+w)fk+w1(1−w)h1 +w2(1−w)h2 +

· · · + wl(1 − w)hl, where vi, wi ∈ R[x, y, σ′, σ′′], be an arbitrary linear combination

of the elements of the sets A and B. Also vi, wi can be written as vi = v′i + wv′′i

and wi = w′i + ww′′i for some v′i, v
′′
i , w

′
i, w

′′
i ∈ Fq[x, y, σ′, σ′′]. Then (1 + w)vi =

(1+w)(v′i+wv′′i ) = (1+w)(v′i+v′′i ) = (1+w)v′′′i and (1−w)wi = (1−w)(w′1+ww′′i ) =

(1−w)(w′1−w′′i ) = (1−w)w′′′i , where v′′′i = v′i + v′′i , w
′′′
i = w′1−w′′i ∈ Fq[x, y, σ′, σ′′].

Therefore v(x, y) = (1 +w)v′′′1 f1 + (1 +w)v′′′2 f2 + · · ·+ (1 +w)v′′′k fk + (1−w)w′′′1 h1 +

(1−w)w′′′2 h2 +· · ·+(1−w)w′′′l hl = (1+w)(v′′′1 f1 +v′′′2 f2 +· · ·+v′′′k fk)+(1−w)(w′′′1 h1 +

w′′′2 h2 + · · · + w′′′l hl) = (1 + w)v′′′(x, y) + (1− w)w′′′(x, y), where v′′′(x, y) ∈ C1 and

w′′′(x, y) ∈ C2. Thus v(x, y) ∈ C. Hence the result. �
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Example 6.5.5. Let R = F9 + wF9 and σ′ = σ′′ = σ, where σ is defined as

σ(a + wb) = a3 + wb3 for all a + wb ∈ R. Let C ′, C ′′ be the 2D skew-cyclic codes

of length 2 × 2 over F9 given by C ′ = 〈x + y〉 and C ′′ = 〈1 + x〉 with the restricted

automorphism σ on F9. Then the code C = (1 + w)C ′ ⊕ (1 − w)C ′′ is a 2D skew-

cyclic code of length 2 × 2 over R generated by 〈(1 + w)(x + y), (1 − w)(1 + x)〉.

Moreover |C ′| = |C ′′| = 94, and so |C| = 98. The parameters of C ′, C ′′ and ξ(C) are

[4, 2, 2], [4, 2, 2] and [8, 4, 2], respectively.

6.6 Conclusion

A class of 2D skew-cyclic codes has been studied over Fq +wFq, w2 = 1. We define a

division algorithm on bivariate polynomial ring R[x, y, θ, σ], using which the struc-

ture of a 2D skew-cyclic code has been obtained. The relation of a 2D skew-cyclic

code and a skew cyclic code is found under certain conditions. Duals of 2D skew-

cyclic codes over R have been studied. A decomposition of these codes has been

presented, and a generating set of a 2D skew-cyclic code over R is determined using

generating sets of its components.
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Chapter 7

Quantum Codes from Cyclic
Codes over F4 + uF4

7.1 Introduction

The existence of quantum codes was shown by Shor [95]. However, the construction

of quantum codes via classical linear codes was due to Calderbank et al. [31]. Since

then many coding theorists have considered studying quantum codes over finite

fields. Recently finite rings have also been used as alphabets to construct good

quantum codes over them. Through the Gray map, good quantum codes have been

obtained. In [84], Qian et al. have studied quantum codes over the ring F2 + uF2,

u2 = 0. In [59], Kai and Zhu have constructed quantum codes via cyclic codes over

F4 + uF4, u2 = 0. In [59] and [84], cyclic codes of odd length n have been used

to construct quantum codes through the factorization of xn − 1. Some other finite

rings have also been considered to obtain good quantum codes [35, 66].

In this chapter, we consider the ring R = F4 +uF4, u
2 = 0, for the construction of

quantum codes through cyclic codes. We have considered cyclic codes of both odd

length and even length over R, and through them we have obtained some optimal

quantum codes over F4. To discuss more about the cyclic codes over R, we have

used the structure given by Abualrub and Siap [3].

133
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7.2 Quantum codes via cyclic codes over F4 + uF4

Let R = F4 +uF4, u
2 = 0, and F4 = {0, 1, ω, 1 +ω}, ω3 = 1, ω2 = 1 +ω. Then R is a

local ring with characteristic 2 and cardinality 16 having the unique maximal ideal

〈u〉.

Let C be an R-linear code and C⊥ be the dual of C with respect to the usual

inner product. Then C is called self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

We define a Gray map on Rn as Φ : Rn → F2n
4 such that

Φ(x+ uy) = (y, x+ y),

where x, y ∈ Rn. Φ is an F4-module isomorphism. We define the Lee weight wL(a)

of a = x+uy ∈ Rn as wL(a) = wH(Φ(a)) = wH(y, x+ y), i.e., the Hamming weight

of its Gray image. The Lee distance dL of two vectors x, y ∈ Rn is defined as the

corresponding weight of x− y, i.e., dL(x, y) = wL(x− y). It is easy to show that Φ

is a linear isometry.

A quantum code over Fq whose length is n, dimension is k, and the minimum

distance is d, is denoted by [[n, k, d]]q.

The following result, known as the CSS construction, gives a crucial construction

of quantum-error correcting codes over finite fields:

Theorem 7.2.1. [31, 99] “Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be linear codes

over Fq with C⊥2 ⊆ C1. Furthermore, let d = min{d1, d2}. Then there exists a

quantum error-correcting code CQ = [[n, k1 + k2 − n, d]]q. In particular, if C is an

[n, k, d]q-linear code containing its dual, then there exists a quantum error-correcting

code CQ = [[n, 2k − n, d]]q.”

We first prove the following result, which is important for further discussion in

this section.

Theorem 7.2.2. Let C be a linear code of length n over R.

1. If C is self-orthogonal, then so is Φ(C).
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2. Φ(C⊥) = Φ(C)⊥, and hence if C is self-dual, then so is Φ(C).

3. If C⊥ ⊆ C, then Φ(C)⊥ ⊆ Φ(C).

Proof:

1. Let C be self-orthogonal. Let c1 = a1 +ub1 and c2 = a2 +ub2 be two codewords

in C, where a1, b1, a2, b2 ∈ Fn4 . Then

c1 · c2 = (a1 + ub1) · (a2 + ub2)

= a1 · a2 + u(a1 · b2 + a2 · b1).

Since C is self-orthogonal, c1 · c2 = 0. So we have a1 · a2 = a1 · b2 + a2 · b1 = 0.

Then Φ(c1) ·Φ(c2) = (b1, a1 + b1) · (b2, a2 + b2) = b1 · b2 + a1 · a2 + a1 · b2 + a2 ·

b1 + b1 · b2 = 0. Hence Φ(C) ⊆ Φ(C)⊥, and thus Φ(C) is self-orthogonal.

2. Let Φ(y) ∈ Φ(C⊥), y = c + ud ∈ C⊥. Then x · y = 0 for all x = a + ub ∈ C.

This implies that a · c = 0 and b · c + a · d = 0. This further implies that

Φ(y) · Φ(x) = 0 for all Φ(x) ∈ Φ(C). Therefore Φ(C⊥) ⊆ Φ(C)⊥.

Since R is a Frobenius ring, |C||C⊥| = |R|n = 16n. Then |Φ(C⊥)| = |C⊥| =
16n
|C| = 42n

|Φ(C)| = |Φ(C)⊥|. Hence Φ(C⊥) = Φ(C)⊥.

3. Follows from (1) and (2).

�

7.2.1 When n is odd

Now we present some existing results on cyclic codes over R [3]. By using the

same, we determine some more results on cyclic codes over R and then obtain the

parameters of the corresponding quantum codes.

Theorem 7.2.3. [3, Theorem 1] “Let C be a cyclic code of length n over R, where

n is odd. Then C = 〈f(x), ua(x)〉 = 〈f(x) + ua(x)〉 for some f(x), a(x) ∈ F4[x],

such that a(x) | f(x) | xn − 1. Moreover |C| = 16n−deg f(x)4deg f(x)-deg a(x).”
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Lemma 7.2.4. Let a(x) | f(x) | xn − 1. Then f̂(x) | â(x).

Proof: Since a(x) | f(x), f(x) = a(x)b(x). We have xn − 1 = f(x)f̂(x) =

a(x)b(x)f̂(x). This implies that â(x) = b(x)f̂(x). Therefore f̂(x) | â(x). �

Theorem 7.2.5. Let C = 〈f(x), ua(x)〉 : a(x) | f(x) | (xn−1) be a non-zero cyclic

code of odd length n over R. Then the annihilator of C is A(C) = 〈â(x), uf̂(x)〉.

Proof: Since A(C) itself is a cyclic code of length n over R, it can be expressed

as A(C) = 〈f1(x), ua1(x)〉, where a1(x) | f1(x) | (xn − 1). We have ua1(x)f(x) =

0 (mod xn − 1), as ua1(x) ∈ A(C) and f(x) ∈ C. This implies that ua1(x)f(x) =

(xn − 1)j(x) for some j(x) ∈ R[x]. This gives f̂(x) | a1(x). Also, (uf̂(x))f(x) = 0

and (uf̂(x))(ua(x)) = 0, which implies that uf̂(x) ∈ A(C), this further implies that

a1(x) | f̂(x). Therefore a1(x) = f̂(x).

Now ua(x)f1(x) = 0 implies that â(x) | f1(x). Since a(x) | f(x), so â(x)f(x) = 0.

This implies that â(x) ∈ A(C). Thus f1(x) | â(x). Therefore f1(x) = â(x). Hence

A(C) = 〈â(x), uf̂(x)〉. �

Corollary 7.2.5.1. Let C = 〈f(x), ua(x)〉 : a(x) | f(x) | (xn − 1) be a cyclic code

of odd length n over R. Then the dual of C is C⊥ = 〈â(x)∗, uf̂(x)∗〉.

Corollary 7.2.5.2. Let C = 〈f(x)〉, i.e., a(x) = 0 with f(x) | (xn − 1) be a cyclic

code of odd length n over R. Then the dual of C is C⊥ = 〈f̂(x)∗〉.

Lemma 7.2.6. Let a(x), b(x) ∈ R[x] be such that xn−1 = a(x)b(x) for b(x) ∈ R[x].

Then we have

1. (a(x)b(x))∗ = a∗(x)b∗(x)

2. â∗(x) = â∗(x)

Proof:

1. (a(x)b(x))∗ = xna( 1
x
)b( 1

x
) = xdeg(a(x))a( 1

x
)xdeg(b(x))b( 1

x
) = a∗(x)b∗(x).

2. Since xn − 1 = â(x)a(x), (xn − 1)∗ = â∗(x)a∗(x). This implies that â∗(x) =
xn−1
a∗(x) = â∗(x).
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�

Now we give a necessary and sufficient condition for a cyclic code of odd length

over R to contain its dual and vice versa.

Theorem 7.2.7. Let C = 〈f(x), ua(x)〉 : a(x) | f(x) | (xn − 1) be a cyclic code of

odd length n over R. Then

1. C⊥ ⊆ C if and only if f(x) | â∗(x).

2. C ⊆ C⊥ if and only if â∗(x) | f(x).

Proof:

1. Suppose that C⊥ ⊆ C. Then â∗(x) ∈ C. Therefore â∗(x) is a linear combina-

tion of f(x) and ua(x). Since â∗(x) ∈ F4[x], we get f(x) | â∗(x). Conversely,

assume that f(x) | â∗(x). Then â∗(x) ∈ C. Also we have a(x) | f̂ ∗(x) (by

Lemma 7.2.4). Therefore C⊥ = 〈â∗(x), uf̂ ∗(x)〉 ⊆ 〈f(x), ua(x)〉 = C.

2. This can be obtained by applying (1) on C⊥ and noting that (C⊥)⊥ = C.

�

Theorem 7.2.8. A cyclic code C of odd length n over R of the form C =

〈f(x), ua(x)〉 = 〈f(x) + ua(x)〉 with a(x) | f(x) | xn − 1 is a free code if and

only if C = 〈f(x)〉.

Proof: Since a(x) | f(x), deg a(x) ≤ deg f(x). If deg a(x) = deg f(x), then

a(x) = αf(x) for some non-zero element α ∈ F4, and hence C = 〈f(x)〉. Now let

deg a(x) < deg f(x). Suppose C is a free cyclic code over R. Then there exists

a minimal degree polynomial g(x) ∈ C such that C = 〈g(x)〉 and g(x)|xn − 1.

Since xn − 1 ∈ F4[x], g(x) can be chosen in such a way that it is a polynomial

over F4[x]. Therefore g(x) must be an associate of f(x) + ua(x). Let g(x) =

(c + ud)(f(x) + ua(x)) for some unit c + ud ∈ R. If d = 0, then clearly a(x) = 0.

If d 6= 0, then df(x) + ca(x) = 0, and so f(x) = cd−1a(x), which is a contradiction

as deg a(x) < deg f(x). Hence C = 〈f(x)〉. Conversely, since f(x) | xn − 1, so

C = 〈f(x)〉 is a free code. �
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Corollary 7.2.8.1. A free code C = 〈f(x)〉 such that f(x)g(x) = xn − 1 satisfies

C⊥ ⊆ C if and only if g(x)g(x)∗ = 0 (mod xn − 1).

Proof: Suppose C⊥ ⊆ C. Then f(x) | g(x)∗, i.e., g(x)∗ = f(x)p(x) for some p(x) ∈

R[x]. Therefore g(x)g(x)∗ = (xn − 1)p(x) and hence g(x)g(x)∗ = 0 (mod xn − 1).

The converse can be proved similarly. �

The following theorem presents the construction of quantum codes via cyclic

codes of odd lengths over R, using the CSS construction.

Theorem 7.2.9. Let C = 〈f(x), ua(x)〉 be cyclic code of odd length n over R

such that f(x) | â∗(x).Then C⊥ ⊆ C, and there exists a quantum code CQ with the

parameters [[2n, 2(n − k1 − k2), dL]]4, where k1 = deg f(x), and k2 = deg a(x), and

dL is the minimum Lee distance of C.

Proof: We have C = 〈f(x), ua(x)〉 = 〈f(x) + ua(x)〉 and f(x) | â∗(x). This

implies from Theorem 7.2.7 that C⊥ ⊆ C. This further implies from Theorem 7.2.2

that Φ(C)⊥ ⊆ Φ(C). Now from Theorem 7.2.3, |C| = 16n−k14k1−k2 . Therefore

|Φ(C)| = 42n−k1−k2 , and so the parameters of Φ(C) are [2n, 2n − k1 − k2, dL]4. By

CSS construction, the quantum code corresponding to Φ(C) has the parameters

[[2n, 2(2n− k1 − k2)− 2n, dL]]4, i.e., [[2n, 2(n− k1 − k2), dL]]4. �

Corollary 7.2.9.1. Let C be a free cyclic code of odd length n over R generated by

f(x). Then there exists a quantum code CQ with the parameters [[2n, 2n− 4k, dL]]4,

where k = deg f(x) and dL is the minimum Lee distance of C.

The following construction helps us to find some optimal quantum codes over F4.

In this construction, we find a new code which contains it dual by augmentation of

a code of smaller size and same length that contains its dual. This goes as follows.

Let C1 be an R-linear code such that C1 contains its dual, i.e., C1
⊥ ⊆ C1.

Construct a new code C2 such that C1 ⊂ C2 by adding some rows to the generator

matrix of C1. Since C1 ⊆ C2, we have C2
⊥ ⊆ C1

⊥. Then clearly

C2
⊥ ⊆ C1

⊥ ⊆ C1 ⊆ C2.
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Thus C2 is a dual containing code. We can then use the CSS construction to get the

quantum code over F4 corresponding to C2. Also the quantum code obtained from

C2 has larger size than the quantum code obtained from C1. This is illustrated by

the following example.

Example 7.2.10. Let F4 = {0, 1, ω, ω2}. Let C1 be a cyclic code of length 3 over

R such that C1 = 〈(x + 1)(x + ω), u(x + ω)〉. Let f(x) = (x + 1)(x + ω) and

a(x) = (x + ω). Then â∗(x) = (x + 1)ω2(x + ω) and the dual of C1 is C⊥1 =

〈(x+1)(ω2x+1), u(ω2x+1)〉. C1 is a self-dual cyclic code over R with the parameters

(3, 16141, 3). Therefore the parameters of Φ(C1) are [6, 3, 3], and the corresponding

quantum code has parameters [[6, 0, 3]]4.

Now we implement the above construction to find new quantum code from C1.

The generator matrix for C1 is:


ω + uω 1 + ω + u 1

1 ω + uω 1 + ω + u

1 + ω + u 1 ω + uω

 .
We construct a new code C2 with generator matrix:



ω + uω 1 + ω + u 1
1 ω + uω 1 + ω + u

1 + ω + u 1 ω + uω

1 + u 1 + u u

 .

Now as explained above, C2
⊥ ⊆ C2, and so Φ(C2)⊥ ⊆ Φ(C2). The parameters of

Φ(C2) are [6, 5, 2]. Therefore by CSS construction, we get a quantum code with

parameters [[6, 4, 2]]4, which is an optimal quantum code [45].

Example 7.2.11. Let C be a cyclic code of length 3 over R having its generator

matrix as  ω 1 0
0 ω 1

 .
Then C can be written as C = 〈f(x)〉 where f(x) = x + ω. Since x3 + 1 = (x +

ω)(x + 1)(x + ω2), C⊥ = 〈(x + 1)(ω2x + 1)〉. Let g(x) = (x + 1)(x + ω2). Then
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g∗(x) = (x+ 1)(xω2 + 1). Now gg∗ = (x+ 1)2(x+ω2)(xω2 + 1) = (x+ 1)(x+ 1)(x+

ω2)ω(x+ω) = (x3 +1)(ωx+ω) = 0 (mod x3 +1). From Corollary 7.2.8.1, C⊥ ⊆ C.

The parameters for Φ(C) are [6, 4, 2]. Therefore there exists a CSS-quantum code

with parameters [[6, 2, 2]]4.

Again let C2 be a linear code of length 3 over R having generator matrix:


ω 1 0
0 ω 1
0 u 0

 .
Then C2

⊥ ⊆ C2 and from the parameters of Φ(C2), i.e., [6, 5, 2]4, the parameters of

corresponding CSS-quantum codes are [[6, 4, 2]]4, which is an optimal quantum code

[45].

Remark 7.2.11.1. The weight enumerator of C1 (in Example 7.2.11) is given by

wC(x, y) = x6 + 18x4y2 + 12x3y3 + 81x2y4 + 108xy5 + 36y6.

By MacWilliams identity, i.e.,

wC⊥(x, y) = 1
|C|

wC(x+ 3y, x− y),

we have wC1(x, y) = x6 + 6x3y3 + 9y6. Therefore the parameters of C⊥1 over F4

are [3, 1, 3]. Similarly the weight enumerator for C2 is wC2(x, y) = x6 + 45x4y2 +

120x3y3 + 315x2y4 + 360xy5 + 183y6, and so wC⊥2 (x, y) = x6 + 3y6. Therefore the

parameters of C⊥2 are [6, 1, 6] over F4.

7.2.2 When n is even

In this part of the section, we present a necessary and sufficient condition for a cyclic

code C of even length n over R to contain its dual. This helps us to find quantum

codes via these codes, and makes searching of quantum codes over F4 easy.

Theorem 7.2.12. [3, Theorem 1,3,4] ”Let C be a cyclic code of even length n over

R.
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1. C = 〈f(x) + up(x)〉 and f(x) + up(x) | xn − 1. Moreover |C| = 16n−r and

C⊥ = 〈(g(x) + uq(x))∗〉, where xn − 1 = (f(x) + up(x))(g(x) + uq(x)). In this

case, C is a free cyclic code.

2. C = 〈f(x) + up(x), ua(x)〉 and a(x) | f(x) | xn − 1, a(x) | f̂(x)p(x).

Moreover |C| = 42n−r−t, where deg f(x) = r, deg a(x) = t and C⊥ =

〈â∗(x) + uxlm∗(x), uf̂ ∗(x)〉, where f̂(x)p(x) = a(x)m(x) and l = deg â(x)−

deg m(x).”

Theorem 7.2.13 and Theorem 7.2.14 below respectively present a necessary and

sufficient condition for a principally generated cyclic code of even length and a non-

principally generated cyclic code of even length over R to contain its dual.

Theorem 7.2.13. Let C = 〈f(x) + up(x)〉 be a free cyclic code of even length n

over R such that xn − 1 = (f(x) + up(x))(g(x) + uq(x)). Then C⊥ ⊆ C if and only

if (g(x) + q(x))(g(x) + q(x))∗ = 0 (mod xn − 1).

Proof: The proof is straightforward and similar to the odd length case. �

Theorem 7.2.14. Let C = 〈f(x) + up(x), ua(x)〉, where a(x) | f(x) | xn − 1,

a(x) | f̂(x)p(x) be a cyclic code of even length n over R. Then C⊥ ⊆ C if and only if

f(x) | â∗(x) and a(x) | (xlm∗(x)−p(x) â
∗(x)
f(x) ), where C⊥ = 〈â∗(x)+uxlm∗(x), uf̂ ∗(x)〉,

with f̂(x)p(x) = a(x)m(x) and l = deg â(x)− deg m(x).

Proof: First suppose that C⊥ ⊆ C. Then â∗(x)+uxlm∗(x) = (f(x)+up(x))(λ1(x)+

uλ2(x)) + ua(x)λ3(x), where λi(x) ∈ F4[x]. By comparing terms on either side, we

get

â∗(x) = f(x)λ1(x) (7.1)

and

xlm∗(x) = p(x)λ1(x) + f(x)λ2(x) + a(x)λ3(x). (7.2)

From (7.1), we get f(x) | â∗(x), and from (7.2) we get

â(x)xlm∗(x) = â(x)p(x)λ1(x) mod (xn − 1)

= â(x)p(x) â
∗(x)
f(x) mod (xn − 1).
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This implies that xn − 1 | â(x)(xlm∗(x) − p(x) â
∗(x)
f(x) ). This in turn implies that

a(x) | (xlm∗(x)− p(x) â
∗(x)
f(x) ), as a(x) | xn − 1.

Conversely, assume that f(x) | â∗(x) and a(x) | (xlm∗(x) − p(x) â
∗(x)
f(x) ). This

implies that â∗(x) = f(x)f ′(x), and a(x) | (xlm∗(x) − p(x) â
∗(x)
f(x) + f(x)f ′′(x)) for

some f ′(x), f ′′(x) ∈ F4[x] as a(x) | f(x). This further implies that xlm∗(x) −

p(x)f ′(x) + f(x)f ′′(x) = a(x)a′(x) for some a′(x) ∈ F4[x]. Thus

xlm∗(x) = p(x)f ′(x) + f(x)f ′′(x) + a(x)a′(x) (7.3)

Now,

â∗(x) + uxlm∗(x) = f(x)f ′(x) + u(p(x)f ′(x) + f(x)f ′′(x) + a(x)a′(x))

= f ′(x)(f(x) + up(x)) + uf(x)f ′′(x) + ua(x)a′(x)

= f ′(x)(f(x) + up(x)) + u(f(x) + up(x))f ′′(x) + ua(x)a′(x)

= (f(x) + up(x))(f ′(x) + uf ′′(x)) + ua(x)a′(x).

This implies that â∗(x)+uxlm∗(x) ∈ 〈f(x)+up(x), ua(x)〉 = C. Since f(x) | â∗(x),

a(x) | f̂ ∗(x) (from Lemma 7.2.4), and so uf̂ ∗(x) ∈ C. Hence C⊥ = 〈â∗(x) +

uxlm∗(x), uf̂ ∗(x)〉 ⊆ C. �

Theorem 7.2.15. 1. Let C = 〈f(x) + up(x)〉, with deg (f(x) + up(x)) = r and

f(x) + up(x) | xn − 1, be a cyclic code of length n over R such that C⊥ ⊆ C.

Then there exists a quantum code with the parameters [[2n, 2n−4r, dL]]4, where

dL is the minimum Lee distance of C.

2. Let C = 〈f(x) + up(x), ua(x)〉 with deg (f(x)) = r, deg (a(x)) = t and

a(x) | f(x) | xn − 1, be a cyclic code of length n over R such that C⊥ ⊆ C.

Then there exists a quantum code with the parameters [[2n, 2n− 2r− 2t, dL]]4,

where dL is the minimum Lee distance of C.

Proof: The proofs of both the statements directly follow from the Gray image of

C and Theorem 7.2.1. �
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Example 7.2.16. Let C be a cyclic code of even length 6 over R such that C =

〈(x+1)2(x+ω)(x+ω2)+u, u(x+ω)〉. Then f(x) = (x+1)2(x+ω)(x+ω2), p(x) = 1

and a(x) = x+ω. Since x6 +1 = (x3 +1)2 = (x+1)2(x+ω)2(x+ω2)2 over F4 +uF4.

This implies that â(x) = (x+ 1)2(x+ ω)(x+ ω2)2, m(x) = p(x) f̂(x)
a(x) = (x+ ω2), l =

deg (â(x))−deg (m(x)) = 4 and f̂(x) = (x+ ω)(x+ ω2). So

â∗(x) = (x+ 1)2(1 + ωx)(1 + ω2x)2

= ω2(x+ 1)2(x+ ω2)(x+ ω)2

= (ω2(x+ ω))(x+ 1)2(x+ ω2)(x+ ω)

= (ω2(x+ ω))f(x),

which implies that f(x) | â∗(x). Also,

xlm∗(x)− p(x) â
∗(x)
f(x) = x4(1 + xω2)− (x+ ω)ω2

= x4ω2(x+ ω)− ω2(x+ ω)

= (x+ ω)ω2(x4 − 1)

= a(x)ω2(x4 − 1).

It follows that a(x) | xlm∗(x)− p(x) â
∗(x)
f(x) . Therefore from Theorem 7.2.14, C⊥ ⊆ C,

where C⊥ = 〈((x + 1)2(x + ω2)(x + ω)2 + ux3(x + ω), u(x + ω)(x + ω2)〉. Now C

has the parameters (6, 16243, 4). Therefore the corresponding quantum code has the

parameters [[12, 2, 4]]4. Add the vector (1, 1, 1, 1, 1, 1) to the rows of the generator

matrix of C. The parameters of the new code, over R, are (6, 48, 3), and so there is

a CSS-quantum code CQ with parameters [[12, 4, 3]]4.

Example 7.2.17. Let C1 be a cyclic code of length 4 generated by the matrix:
1 u+ 1 0 0
0 1 u+ 1 0
0 0 1 u+ 1

 .

Then, in polynomial form, C1 can be written as C = 〈(u+ 1)x+ 1〉. Since x4 − 1 =

((u + 1)x3 + x2 + (u + 1)x + 1)((u + 1)x + 1), C1 is a free cyclic code over R of
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free rank 3 and parameters (4, 46, 2). C⊥ = 〈((u + 1)x3 + x2 + (u + 1)x + 1)∗〉 =

〈x3 +(u+1)x2 +x+u+1〉. Also, C1
⊥ ⊆ C1, as (u+1)x+1 | x3 +(u+1)x2 +x+u+1.

From Theorem 7.2.14, there exists a [[8, 4, 2]]4 CSS-quantum code. Now construct

a new code C2 by augmentation of C1 such that the generator matrix of C2 is



1 u+ 1 0 0
0 1 u+ 1 0
0 0 1 u+ 1
ω2 ω2 ω2 u+ ω2

 .

Then, as explained in Section 3, C⊥2 ⊆ C2. The parameters of Φ(C2) are [8, 7, 2].

Therefore there is a CSS-quantum code with parameters [[8, 6, 2]]4, which is an op-

timal quantum code over F4 [45].

Example 7.2.18. Let C = 〈1 + x, u〉 be a cyclic code of length 4 over R. Then

clearly C⊥ = 〈u(1 + x)3〉. In this case, f(x) = 1 + x and a(x) = 1. Moreover

f(x)|â(x)∗, therefore C⊥ ⊆ C. C is a (4, 47, 2) code over R. Therefore C is an

[[8, 6, 2]]4 CSS-quantum code, which is an optimal quantum code [45].

We present another necessary and sufficient condition for a cyclic code of even

length n over R to contain its dual.

Theorem 7.2.19. Let C = 〈f(x) + up(x), ua(x)〉 be a cyclic code of even length n

over R. Then C⊥ ⊆ C if and only if f(x) | a∗(x) and â(x)xlm∗(x) +m(x)â∗(x) = 0,

where C⊥ = 〈â∗(x) + uxlm∗(x), uf̂ ∗(x)〉, with f̂(x)p(x) = a(x)m(x) and l = deg

â(x)− deg m(x).

Proof: First suppose that C⊥ ⊆ C. Then â∗(x)+uxlm∗(x) = (f(x)+up(x))(λ1(x)+

uλ2(x)) + ua(x)λ3(x), where λi(x) ∈ F4[x]. By comparing the terms on either side,

we get

â∗(x) = f(x)λ1(x) (7.4)

and

xlm∗(x) = p(x)λ1(x) + f(x)λ2(x) + a(x)λ3(x). (7.5)
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Now we have (f(x) + up(x))(â(x) + um(x)) = 0, as â(x) + um(x)) = 0 ∈ C⊥.

This implies that

â(x)p(x) +m(x)f(x) = 0. (7.6)

Then we get

â(x)xlm∗(x) = â(x)p(x)λ1(x) (from (7.5))

= −m(x)f(x)λ1(x) (from (7.6))

= −m(x)â∗(x) (from (7.4)).

Conversely, assume that f(x) | â∗(x) and âxlm∗(x) + m(x)â∗(x) = 0. This

implies that â∗(x) = f(x)β1(x) for some β1(x) ∈ F4[x], and âxlm∗(x) = m(x)â∗(x).

This in turn implies that

â(x)xlm∗(x) = m(x)f(x)β1(x)

= â(x)p(x)β1(x) (from (7.6))

= â(x)(p(x)β1(x) + f(x)β2(x)) for some β2(x) ∈ F4[x].

Thus â(x)(xlm∗(x)− p(x)β1(x)− f(x)β2(x)) = 0. It follows that a(x) | (xlm∗(x)−

p(x)β1(x) − f(x)β2(x)), which implies that xlm∗(x) − p(x)β1(x) − f(x)β2(x) =

a(x)β3(x) for some β3(x) ∈ F4[x]. Therefore xlm∗(x) = p(x)β1(x) + f(x)β2(x) +

a(x)β3(x).

Now,

â∗(x) + uxlm∗(x) = f(x)β1(x) + up(x)β1(x) + uf(x)β2(x) + ua(x)β3(x)

= β1(x)(f(x) + up(x)) + uf(x)β2(x) + ua(x)β3(x)(x)

= β1(x)(f(x) + up(x)) + u(f(x) + up(x))β2(x) + ua(x)β3(x)(x)

= (f(x) + up(x))(β1(x) + uβ2(x)) + ua(x)β3(x).

This implies that â∗(x) + uxlm∗(x) ∈ 〈f(x) + up(x), ua(x)〉 = C. Since f(x) |

â∗(x), a(x) | f̂ ∗(x) (from Lemma 7.2.4). So uf̂ ∗(x) ∈ C. Hence C⊥ = 〈â∗(x) +

uxlm∗(x), uf̂ ∗(x)〉 ⊆ C. �

The following table shows the codes we obtained in examples of this chapter.
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Table 7.1: Quantum codes over F4

Generators

CSS-
Quantum
code
[[n, k, dL]]4

{f1(x), xf1(x), x2f1(x)} [[6, 0, 3]]4
{f1(x), xf1(x), x2f1(x)} ∪ {ux2 + (1 + u)x+ 1 + u} [[6, 4, 2]]∗4
{f2(x), xf2(x)} [[6, 2, 2]]4
{f2(x), xf2(x)} ∪ {ux} [[6, 4, 2]]∗4
〈x2 + wx+ 1, u〉 [[10, 6, 2]]4
{f3(x), xf3(x), x2f3(x)} [[8, 4, 2]]4
{f3(x), xf3(x), x2f3(x)} ∪ {1 + (1 + u)x+ ux2 + x3} [[8, 6, 2]]∗4
{f4(x), xf4(x), f5(x), xf5(x), x2f5(x)} [[12, 2, 4]]4
{f4(x), xf4(x), f5(x), xf5(x), x2f5(x)}∪{1+x+x2 +x3 +x4 +x5} [[12, 4, 3]]4

In the table 7.1, we have

f1(x) = (w + uw) + (1 + w + u)x+ x2,

f2(x) = x+ w,

f3(x) = (u+ 1)x+ 1,

f4(x) = (x+ 1)2(x+ w)(x+ w2) + u,

f5(x) = u(x+ w).

7.3 Conclusion

We have studied cyclic codes of both even length and odd length over F4 +uF4, u
2 =

0. In each case, a necessary and sufficient condition for a cyclic code to contain

its dual has been obtained. Using this, we have calculated the parameters of cor-

responding quantum codes. Some optimal quantum codes have been obtained by

augmentation. We have given some examples for illustration.
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Conclusions and Future Scope

The main purpose of this thesis is a systematic study of classes of linear codes

(cyclic, constacyclic, 2D-cyclic codes etc.) using non-commutative skew polynomial

rings and for searching of good codes over them. We conclude our thesis with the

following points:

• We have defined a new class of skew-cyclic codes over mixed alphabet F3R,

which we termed as F3R-skew cyclic codes, where R = F3 + vF3, v
2 = v. We

start by obtaining the generating sets of skew-cyclic codes over R using division

algorithm on R[x, θ], where θ is an automorphism of R, and then obtained the

structure of F3R-skew cyclic codes and their generating sets. Further, we have

studied skew-cyclic codes and additive skew-cyclic codes over Fp+wFp, w2 = 1.

• We have extended the study of codes over Z4+uZ4, u
2 = 0 to skew-constacyclic

codes over Z4 + uZ4. Further, these codes are generalized to double skew-

constacyclic codes. Using a Gray map, some new good linear codes over

Z4 have been obtained. The parameters of these codes are (6, 4422, 2L),

(18, 4421, 10L), (18, 4422, 7L) and (18, 4424, 7L). These new codes have been

updated to the database of Z4-codes.

• We have generalized the study of skew codes over rings to codes over more

general skew polynomial rings and studied a class of skew-cyclic codes over

147
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Z4 + wZ4, w
2 = 1, with derivation. The Gray images of the residue codes of

these codes have given us some good linear codes which are given in Table 5.1.

• We have studied a generalization of skew-cyclic codes over R = Fq+wFq, w2 =

1 using skew polynomial rings with two variables. These codes are known

2D skew-cyclic codes. These codes have been studied as left R[x, y, θ1, θ2]-

submodules of R[x,y,θ1,θ2]
〈xl−1, ym−1〉 , where θ1, θ2 are two commuting automorphisms

of R. A decomposition of these codes has been presented, and a generating

set of a 2D-skew cyclic code over R is obtained using generating sets of its

components.

• We have studied quantum codes over F4 + uF4, u
2 = 0. For this, we have used

the structure of cyclic codes over F4 +uF4 having arbitrary length, to find out

the conditions for these codes to contain their duals. Then the parameters

of corresponding quantum codes over F4 via CSS construction have been ob-

tained. Further, by augmentation, a code with larger size with dual containing

property is obtained from the original code which itself has the dual containing

property. We have given a table having some good quantum codes over F4.

8.1 Directions for future work

We give some possible research directions for the future work that are on the basis

of the results obtained in this thesis.

1. The study of skew-codes over non-chain extensions of Z4, given in Chapter 4

and Chapter 5, can be generalized to non-chain extensions of Zq, q a prime

power. The study over general ring Zq +uZq will be an interesting problem in

this direction and the resulting structure may lead one to get some new codes

with better parameters.

2. The study of quantum error-correction has attracted a lot of attention of re-

searchers in recent years. To study quantum codes using non-commutative
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setting of skew polynomial rings will be an interesting and challenging area of

research. One may choose the ring Z4 +uZ4 with non-commutative setting for

studying these codes.

3. One can also consider the rings of the form Z4 + uZ4 + vZ4 + uvZ4 with some

conditions on u and v, for studying skew-cyclic codes, or other classes like

skew constacyclic, skew quasi cyclic etc., over them. Further, the same work

can be generalized to Zq + uZq + vZq + uvZq.

4. To devise algorithms for finding all skew-cyclic codes of particular length and

dimension, over the structures discussed in this thesis, will be a rigorous but

an exciting and remarkable work.
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[61] Kanwar, P., and López-Permouth, S. R. Cyclic codes over the integers

modulo pm. Finite Fields and Their Applications 3, 4 (1997), 334–352.

[62] Karadeniz, S., and Yildiz, B. (1 + v)-constacyclic codes over F2 + uF2 +

vF2 + uvF2. Journal of the Franklin Institute 348, 9 (2011), 2625–2632.

[63] La, G., Giuliano, G., and Palazzo Jr, R. Constructions of new families

of nonbinary CSS codes. Discrete Mathematics 310, 21 (2010), 2935–2945.

[64] Li, R., and Li, X. Binary construction of quantum codes of minimum

distance three and four. IEEE Transactions on Information Theory 50, 6

(2004), 1331–1335.

[65] Li, X., and Li, H. 2-D skew-cyclic codes over Fq[x, y; ρ, θ]. Finite Fields and

Their Applications 25 (2014), 49–63.
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[72] Mart́ınez-Moro, E., and Rúa, I. F. On repeated-root multivariable codes

over a finite chain ring. Designs, Codes and Cryptography 45, 2 (2007), 219–

227.

[73] Mart́ınez-Moro, E., Szabo, S., and Yildiz, B. Linear codes over Z4[x]
〈x2+2x〉 .

International Journal of Information and Coding Theory 3, 1 (2015), 78–96.

[74] McDonald, B. R. Finite Rings with Identity. Marcel Dekker Incorporated,

1974.

[75] Noether, E., and Schmeidler, W. Moduln in nichtkommutativen bere-

ichen, insbesondere aus differential-und differenzenausdrucken. Mathematische

Zeitschrift 8, 1-2 (1920), 1–35.

[76] Ore, O. Theory of non-commutative polynomials. Annals of Mathematics

(1933), 480–508.

[77] Ozen, M., Uzekmek, F. Z., Aydin, N., and Ozzaim, N. T. Cyclic

and some constacyclic codes over the ring Z4[u]
〈u2−1〉 . Finite Fields and Their

Appications 38 (2016), 27–39.

[78] Parampalli, U., and Bonnecaze, A. Cyclic codes over a linear companion

of Z4. In Proceedings: IEEE International Symposium on Information Theory

(1998), pp. 398–398.

[79] Pless, V., Brualdi, R. A., and Huffman, W. C. E. Handbook of Coding

Theory. Elsevier Science Inc., 1998.

[80] Prange, E. Cyclic error-correcting codes in two symbols. Air Force Cam-

bridge Research Center-AFCRC-TN;57-103 (1957).



159 BIBLIOGRAPHY

[81] Prange, E. Some cyclic error-correcting codes with simple decoding algo-

rithms. Air Force Cambridge Research Center-TN-58-156 (1958).

[82] Qian, J. Constacyclic and cyclic codes over finite chain rings. The Journal of

China Universities of Posts and Telecommunications 16, 3 (2009), 122–125.

[83] Qian, J. Quantum codes from cyclic codes over F2 + vF2. Journal of Infor-

mation & Computational Science 10, 6 (2013), 1715–1722.

[84] Qian, J., Ma, W., and Guo, W. Quantum codes from cyclic codes over

finite ring. International Journal of Quantum Information 7, 06 (2009), 1277–

1283.

[85] Qian, J., Zhang, L., and Zhu, S. (1 + u)-constacyclic and cyclic codes

over F2 + uF2. Applied Mathematics Letters 19, 8 (2006), 820–823.

[86] Ribenboim, P. Sur la localisation des anneaux non commutatifs. Seminaire

Dubreil. Algebre et Theorie des Nombres 24 (1972), 1970–1971.

[87] Shankar, P. On BCH codes over arbitrary integer rings. IEEE Transactions

on Information Theory 25, 4 (1979), 480–483.

[88] Shannon, C. A mathematical theory of communication. Bell System Tech-

nical Journal (1948), 379–423 & 623–656.

[89] Sharma, A. Repeated-root constacyclic codes of length ltps and their dual

codes. Cryptography and Communications 7, 2 (2015), 229–255.

[90] Sharma, A., and Rani, S. On constacyclic codes over finite fields. Cryp-

tography and Communications 8, 4 (2016), 617–636.

[91] Sharma, A., and Rani, S. Repeated-root constacyclic codes of length

4lmpn. Finite Fields and Their Applications 40 (2016), 163–200.

[92] Sharma, A., and Sharma, A. K. Construction of self-dual codes over Z2m .

Cryptography and Communications 8, 1 (2016), 83–101.



BIBLIOGRAPHY 160

[93] Shi, M., Qian, L., Sok, L., Aydin, N., and Solé, P. On constacyclic
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