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Abstract

The thesis reports a linear as well as weakly non-linear stability analysis of non-isothermal

parallel flow in a vertical channel filled with porous medium. The flow is induced by

external pressure gradient and buoyancy force due to maintenance of non-isothermal walls

of the channel. Two different boundary conditions are considered: (i) when both walls of

the channel are kept at constant but different temperatures (called as differentially heated),

and (ii) when the temperature of both walls varies linearly with respect to the vertical

coordinate. The non-Darcy model which gives rise to the volume averaged Navier-Stokes

(VANS) equation is used except for some comparative study where Darcy model is also

used. In porous medium, two different situations: local thermal equilibrium state (LTE) and

local thermal non-equilibrium state (LTNE) are possible to explain the mechanism of heat

transfer. Both these situations are considered in the thesis. The spectral method has been

adopted to solve the governing equations of the problem. The weakly nonlinear analysis of

parallel mixed convective flow in vertical channel filled with porous medium is developed

on the basis of pioneering work of Stuart [99, 100], Stuart and Stewartson [101] and Yao

& Rogers [130]. Motivation for the present study is based on the following three facts: (i)

mixed convection through wall bounded domain filled with porous medium has numerous

applications, (ii) stability analysis has not been extended to parallel mixed convective flow

in a differentially heated channel, (iii) there are subtle differences between parallel mixed

convective flow in a linearly heated channel and differentially heated channel.

The entire study is split into six chapters and a brief description of each chapter is given

below.

i
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The first chapter contains some basic concepts related to porous medium as well as

hydrodynamic stability, a brief state of the art in this direction, and a note on considered

models in this thesis is presented.

In Chapter 2, the linear stability of parallel mixed convective flow (PMCF) in a differ-

entially heated vertical channel filled with incompressible fluid saturated porous medium

is analyzed . Here, it is assumed that the two phases of porous medium: fluid and the solid

matrix are in LTE state. The flow is controlled by six governing parameters: Darcy number

(Da), ratio of Grashof number to Reynolds number (Gr′ = Gr/Re), Reynolds number (Re),

product of Forchheimer number and Reynolds number (F ′ = FRe), Prandtl number (Pr),

and porosity (ε). The stability analysis of PMCF is carried out after a partial reinvestiga-

tion of Kwok and Chen’s [62] numerical study which confirms that Gill’s [41] result on

stability of parallel natural convection flow (PNCF) is not valid when no-slip condition and

inertia impact are taken into account. Similar to the parallel flow due to linearly varying

wall temperature [5], in the present problem also the basic flow possesses three different

types of instability, namely thermal-shear, interactive, and thermal-buoyant, which depends

on controlling parameters, mainly Pr. The regimes of above three instabilities over the do-

main of Pr are functions of Da as well as Re. Stability analysis also reveals that when

Re is fixed at 1000, the appearance of point of inflection in the basic velocity for fluid

with Pr less than 30 acts as a necessary condition for instability for all considered values

of Da. For a very small range of Pr, in the vicinity of Pr = 0.01, velocity disturbances

are more responsible for the instability and kinetic energy production due to shear force

is most dominant in balancing the dissipation of disturbance kinetic energy (KE). So, for

these values of Pr the type of instability of the basic flow is thermal-shear. On the other

hand, for relatively larger values of Pr (i.e., water or heavy oil), the instability is primarily

due to the thermal disturbances and KE production due to buoyant term is most dominant

in the energy balance and results in thermal-buoyant instability of the flow. In contrast to

the flow in purely fluid medium, where the production of KE is solely suppressed by vis-

cous dissipation (Ed), in porous medium the KE can be suppressed by surface drag (ED),
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form drag (EF ) and viscous dissipation (Ed). For relatively low permeable medium (i.e.,

for Da = 10−4) dissipation through ED dominates in the entire range of Pr for Re = 1000.

From the influence of modified Forchheimer number it has been found that for Pr equal to

7 or 100 there exist a minimum value (Fo) of F ′ below which the effect of form drag on the

critical Gr′ as well as corresponding wave number is negligible and above this minimum

value F ′ stabilizes the flow. It is also found that form drag may destabilize the flow for

very less viscous (i.e., Pr <1) fluid. For the range of parameters considered in this study,

the scale analysis reveals that when the permeability of the medium is less than or equal

to 2.5× 10−6m2 and half width of the channel is 5cm, then the critical value of ∆T (i.e,

temperature difference between the channel walls) for PMCF of water is higher than the

same for PNCF (e.g., ∆T for PNCF and PMCF when K = 2.5× 10−6m2 are 8.58oC and

13.3oC, respectively), which may be the consequence of thermal-buoyant instability of the

flow. In the case of PMCF there exists an optimum value of Re, depending on Da and F ′,

at which the value of ∆T corresponding to critical Gr′ is least. Thus, the flow will remain

stable for all Re if the value of ∆T is less than this least value. Also it is expected that for a

given media permeability there will be a least value of Pr above which the instability of the

flow will take place for ∆T less than 20oC, i.e., results from linear stability analysis using

Boussinesq approximation will be more realistic.

Chapter 3 is an extension of the previous chapter by considering the two phases of

porous medium in LTNE state. This study is carried out to get a better perspective of how

two different modes, namely local thermal equilibrium and local thermal non-equilibrium,

of transfer of energy between solid and fluid phases inside the porous medium affect the

instability of the considered flow. The interphase heat transfer coefficient (H) and porosity

scaled thermal conductivity ratio of fluid and solid phases (γ) are new parameters in LTNE

state whose effects are analyzed. The linear instability boundary shows that for a given

value of Da, the interphase heat transfer coefficient has a stabilizing effect on the instability

of the flow. The relative change in critical Gr′ as a function of H for different values of Da

shows that the impact of local thermal non-equilibrium state is relatively higher in the case
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of high permeable porous medium. In comparison to the LTE state, the disturbance kinetic

energy balance at the critical level in LTNE state shows that shear instability is dominant

in larger range of Pr for all considered values of Da. For Pr = 7, the disturbance kinetic

energy balance shows that the contribution of Eb decreases whereas the contribution of Es

increases by almost 10% as compared to LTE state. The interphase heat transfer coefficient

affects the instability of the flow when quadratic form drag is relatively low, i.e., up to

F ′ = 100.

The finite amplitude instablity of stably stratified parallel mixed convective flow due

to linearly varying wall temperature in vertical channel filled with porous medium has not

been carried out yet. Thus, before studying the finite amplitude instability of the flow

considered in Chapter 2, we consider the finite amplitude instability of stably stratified par-

allel mixed convective flow of air as well as water in a vertical channel filled with porous

medium in Chapter 4. The objective of this study is to analyze the nature of bifurcation and

the finite amplitude behavior of unstable disturbances that occur beyond the linear instabil-

ity boundary, specially when the permeability of the medium and strength of the flow are

reasonably high. This is accomplished by reviewing the linear stability results, and then a

weakly nonlinear analysis is made to trace the evolution of finite amplitude perturbation.

From the review it has been checked through dimensional analysis that the non-isothermal

PMCF becomes unstable under mild heating conditions. For example, when the channel

is filled with water saturated porous medium with permeability equal to 10−7m2, PMCF

becomes unstable even when the temperature gradient, C, is equal to 3.7. In the case when

channel is filled with air saturated porous medium with permeability equal to 9×10−7m2,

PMCF becomes unstable when C = 13.9. The results obtained using Boussinesq approxi-

mation remains valid for a wide range of input parameters. To study the evolution of finite

amplitude perturbation, we have analyzed the variation of real part of Landau constant

((a1)r) and amplitude in the vicinity of the least linearly stable point as a function of Re

for air as well as water. Depending on the flow strength as well as media permeability,

the weakly nonlinear analysis predicts both supercritical and subcritical bifurcations for air
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and only supercritical bifurcation for water. In the case of air, an increase in Forchheimer

number or decrease in media permeability delays the shift of bifurcation from supercritical

to subcritical or vice versa in Reynolds number space. In general, compared to subcritical

bifurcation, the supercritical bifurcation occurs at relatively lower values of Re. The am-

plitude profile shows a peak, due to change in sign of (a1)r, at the Reynolds number where

the shift in bifurcation from supercritical to subcritical takes place. The similar character-

istic is also observed in physical quantities such as Nusselt number and friction coefficient,

which is a consequence of the distortion in basic flow velocity and temperature. For air,

when Da = 10−3, the nonlinear spectrum of kinetic energy in supercritical regime of Re

shows that due to change in the shape of fundamental wave, modification in the buoyant

production of KE (T11) becomes main destabilizing factor, however modification in the

gradient production (P110) as well as modification in the surface drag dissipation (K11) be-

come major stabilizing factors. On the other hand in the subcritical regime of Re, P110 is a

destabilizing factor along with T11. Furthermore, based on very small value of imaginary

part of complex linear eigenvalue (ci), we have analyzed the bifurcation away from the

critical point for particular choice of Re in super as well as subcritical regimes. It has been

found that for all the considered values of Da the supercritical bifurcation as a function of

Rayleigh number (Ra) remains supercritical whereas for Re in subcritical regime it may

change to supercritical one. Also, the heat transfer rate (skin friction) increases (decreases)

significantly and experiences jump in the neighbourhood of Ra where the change of bifur-

cation takes place. The nonlinear balance of kinetic energy for the finite disturbances also

supports the results obtained through Landau constant. It is important to mention here that

while studying mixed convection flow in vertical annulus, Rogers et. al. [88] have found

that the buoyant instability is supercritical at all wavenumbers whereas with the shear and

interactive (or mixed) instabilities, both subcritical and supercritical branches appear on the

neutral curves. In contrast to the above results it has been observed in the present study that

with the buoyant and mixed instabilities both subcritical and supercritical branches appear
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on the neutral curves. Finally, for values of Re in supercritical regime, the disturbance tem-

perature contours maintain the same shape but due to nonlinear interaction of waves they

move towards the center of the channel. In the case of Re in subcritical regime, the shape

of disturbance velocity as well as temperature contours gets changed drastically which in

turn enhances the destabilizing characteristic of T11.

In Chapter 5, we have analyzed the finite amplitude instability of fully developed mixed

convection flow in differentialy heated vertical channel filled with porous medium. The re-

sults are presented with respect to two different fluids with Prandtl number equal to 0.7 and

7 using non-Darcy model. In contrast to the non-isothermal flow in linearly heated chan-

nel where subcritical bifurcations were observed, in this case the finite amplitude analysis

predicts only supercritical bifurcation of the flow at and beyond the critical points for both

fluids as the sign of real part of Landau constant (a1)r is found to be negative for all the

considered values of Da. The magnitude of equilibrium amplitude experiences sharp fall

when the Reynolds number is increased form 0 to 1000 and remains almost constant beyond

Re = 1000 due to non-linear saturation. Also, only supercritical bifurcation is predicted in

the neighborhood of critical wavenumbers. Due to the interaction of different harmonics,

increased heat transfer rate is obtained for distorted flow as compared to the same for ba-

sic flow. Considering the importance of results in practical situations, higher order weakly

nonlinear stability analysis and direct numerical simulation could be used to further explore

the stability behavior of the present flow.

In the end, Chapter 6 presents the summary and concluding remarks of the thesis and

some possible directions for future work.
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Chapter 1

Introduction

The hydrodynamic stability of mixed convection in vertical ducts filled with porous medium

is of fundamental importance in practical applications. It is known that a steady and par-

allel flow may exist in a vertical channel bounded by impermeable and isothermal parallel

planes kept at different temperatures. The flow may be due to the action of buoyancy force

which in turn causes natural convection, or may be due to the action of both buoyancy force

as well as constant pressure gradient along the vertical direction resulting in mixed convec-

tion. The former flow is defined by parallel natural convective flow (PNCF) which takes

place with zero vertical mass flow rate, whereas the latter one is defined by parallel mixed

convective flow (PMCF) which is endowed with nonzero vertical mass flow rate. The sta-

bility analysis of this flow has directed intense research efforts toward its understanding.

These types of flow may be configured, with different features, either for a fluid filling the

channel or for a fluid-saturated porous slab/channel.

Due to the presence of inter-connected voids porous medium has large surface area to

volume fraction and are good candidates for heat transfer enhancement applications. One

of the major heat transfer applications is in the electronic industry. Use of porous medium

such as metal foam has attracted the attention of many researchers due to their desirable

flow and thermal characteristics. A metal foam consists of a solid matrix containing a

large volume fraction of voids or pores. Open cell metal foams have interconnected voids

1
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and are used for heat exchangers, compact electronics cooling, energy absorption, etc. For

example, in order to exchange the heat of an electronic device from the system to the

surrounding, a vertical rectangular duct filled with open cell metal foam can be considered

inside the system. The heat generated from the system can be treated as constant heat

flux or constant temperature on one of the surfaces of the duct. A steady fluid flow due

to an external pressure gradient can be considered through it to exchange the heat from

the system to the surrounding. For fast cooling one may enhance the velocity of steady

flow, or, increase the gap between the two channel (for rectangular cylinder) walls. In

this situation steady flow may not remain stable and the exchange of heat from the system

to surrounding may be affected due to mixing of different fluid layers. Therefore, before

installing such type of heat exchanger in the system it is essential to understand the fluid

flow and heat transfer mechanism through a channel filled with open cell metal foam or high

permeable porous medium, specially in the transition state. Understanding the dynamic

behavior of non-isothermal flow in porous media, especially flow-transition, is also a highly

active and challenging area of research due to its wide applications in geothermal systems,

building thermal insulation, nuclear waste disposal, thermal energy storage, cooling of

nuclear reactors during emergency shutdown, etc.

The understanding of nonlinear stability mechanism in porous media may be a spe-

cial interest because linear stability analysis cannot be accomplished when the larger am-

plitudes are obtained. Linear stability analysis is used to determine the point at which an

infinitesimal disturbance becomes unstable as well as to predict the form of developing

disturbances. There are shear flows in literature where the linear stability analysis cannot

predict remarkable results. For example, the well known result given by Orszag [79] that

the plane Poiseuille flow is linearly unstable at a Reynolds number of 5772, but in practice

the transition for this flow often occurs at very low Reynolds number. Apart from this, the

linear stability analysis addresses only the initial growth of the disturbance, however, when

the disturbance reaches such a size that Reynolds stresses (i.e., the mean force per unit area

imposed on the mean flow by turbulent fluctuation) affect the mean flow then it becomes
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difficult to explain the stability of the flow by means of linear theory.

1.1 Basic definitions and governing equations in porous

medium

In this section some important basic definitions related to porous media which are used for

this study are given. For theoretical treatment the physical quantities in porous medium are

measured over areas that cross many pores because these space-averaged (macroscopic)

quantities vary in a regular manner with respect to space and time. The laws governing

these macroscopic variables are derived by considering the standard equations obeyed by

the fluid and average them over volumes or areas containing many pores (i.e., representative

elementary volume (r.e.v.)). The r.e.v. is sufficiently large as compared to pore volume for

reliable volume averages. Once a continuum model is obtained, the differential equations

expressing conservation laws can be derived.

1.1.1 Porous medium

“By a porous medium we mean a material consisting of a solid matrix with an inter-

connected void” [76]. In this work we have assumed that the solid matrix is rigid non-

deformable medium. The flow of one or more fluids in the porous medium takes place

through the interconnnected voids or pores. We have assumed the simplest situation (i.e.,

single-phase flow) where the porous medium is saturated by a single fluid. Many natural

substances such as sand, wood, rocks, limestone, biological tissues (e.g. skin, bones) and

man made materials such as cements, metallic foams and ceramics can be considered as a

porous media. The porosity of a porous medium, denoted by ε , is defined as the fraction of

the total volume of the porous medium occupied by void spaces assuming that all the void

space is connected. The value of porosity can vary from 0 to 1. Generally, the porosity does

not exceed 0.6 in natural porous media. But, the porosity of man made porous medium such
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as metallic foams can be very close to 1. The permeability of a porous medium is simply its

ability to allow fluids to pass through it under some external pressure gradient. The value

of permeability (K) depends on the geometry of porous medium. For example, in the case

of beds of spherical particles with diameters in a narrow range, Carman-Kozeny gave the

relationship between permeability and porosity as

K =
D2

pε3

180(1− ε)2 , (1.1)

where, Dp is the effective average particle diameter.

1.1.2 Mass conservation equation

When the rate of increase of mass of the fluid within a representative elementary volume

(under the assumption of continuum model) of porous medium is equated with the net mass

flux into the volume, it results in the equation of continuity given as

ε
∂ρ f

∂ t
+∇.(ρ f v) = 0. (1.2)

Here, ρ f is the fluid density and v is the Darcy velocity (or, seepage velocity) which is

related to the intrinsic average velocity V by the Dupuit-Forchheimer relationship v = εV.

It should be noted that v is average of the fluid velocity over volume element of the porous

medium incorporating both fluid and solid phases, whereas V is average of the fluid velocity

over volume element consisting of fluid only.

1.1.3 Momentum conservation equation

The momentum conservation equation for fluid is well established and known as the Navier-

Stokes equation. But the governing equations of flow through porous media are not straight

forward and it is still a challenging problem to understand the dynamic behavior of fluid

flow through porous medium using a proper model. In fact, different approaches to the

formulation of the momentum balance equation for fluid flow in saturated porous medium
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have been proposed in the literature. A brief description of different models used in porous

medium is given below [76].

The Darcy’s law given by Henry Darcy (1856), is a proportionality between applied

pressure gradient and the flow rate for a steady unidirectional flow in a uniform porous

medium. The law was formulated by Henry Darcy based on results of experiments on the

flow of water through beds of sand. The Darcy’s law can be written as

∇P =−µ

K
v, (1.3)

where, P is the pressure, µ is the dynamic viscosity of the fluid, K is the permeability of

the medium and v is the Darcy velocity. It should be noted that unlike other conservation

equations, equation (1.3) does not represent balance of forces averaged over any represen-

tative elementary volume. Furthermore, Darcy model fails to satisfy the no-slip boundary

condition in physical problems where the porous medium is adjacent to a solid wall.

Brinkman, while deriving relationship between permeability and porosity, proposed

an equation of the form

∇P =−µ

K
v+ µ̃∇

2v. (1.4)

containing the Laplacian term which is important if a no-slip boundary condition is to be

satisfied. It has a significant effect in the boundary layer near a solid wall. The thickness

of boundary layer is of order (µ̃K/µ)1/2 which is much smaller than the macroscopic

length scale (L) of the problem. This is due to continuum hypothesis requiring K1/2 �

L. Lundgren [70] and Rubinstein [91] showed that such an equation is valid for porous

medium with ε > 0.6. It is a common practice to assume effective vicosity (µ̃) to be equal

to µ for high porosity cases.

The acceleration and other inertial effects were also incorporated into the Darcy

equation to account for non-linear development of the flow inside the porous medium.

Many authors, for example Wooding [124], added the convective term in the Darcy equa-

tion in analogy with the Navier-Stokes equation to get

ρ f

(
1
ε

∂v
∂ t

+
1
ε2 (v.∇)v

)
=−∇P− µ

K
v (1.5)
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But, this equation had severe flaws. First, it was inconsistent with slip boundary condition

as the order of differential equation with respect to spatial derivatives was raised. Second,

it could not explain the inertial effects arising in steady incompressible unidirectional flow

no matter how large the fluid velocity as in such cases (v.∇)v is identically zero. The

time derivative term is generally small as the transients decay rapidly in the case of a flow

in porous medium. However, the time derivative term is retained to study the temporal

stability of a flow in porous medium.

The Forchheimer term in the form of a quadratic drag generally dominates the (v.∇)v

term. This quadratic drag or form drag is due to solid obstacles inside the porous medium.

When it becomes comparable to surface drag due to friction on increasing the Reynolds

number (based on K1/2) up to 102, the smooth transition from Darcy flow to non-linear

drag takes place according to the equation

∇P =−µ

K
v−

cFρ f

K1/2 |v|v, (1.6)

where, cF is the form drag constant whose value vary with the nature of the porous medium.

For example, cF is close to 0.1 for metal foams.

Following the work of Vafai and Tien [120] and Whitaker [123], a generalized non-

Darcy model through volume-averaging method is given as

ρ f

[
1
ε

∂v
∂ t

+
1
ε2 (v.∇)v+

cF

K1/2 |v|v
]
=−∇P+ρg+ µ̃∇

2v− µ

K
v. (1.7)

where, g is the gravitational acceleration. The density (ρ) is obtained through Boussinesq

approximation as

ρ = ρ f {1−βT (T −T0)}, (1.8)

where, βT , T and T0 are volumetric thermal expansion coefficient, dimensional temperature

and reference temperature, respectively.

1.1.4 Energy equations in porous medium

The energy equation in a porous medium is derived by volume averaging method over a

representative elementary volume. This results in two different energy equations for an
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isotropic porous medium, one for the fluid phase and one for the solid phase given as

ε(ρcP) f
∂Tf

∂ t
+(ρcP) f v.∇Tf = εk f ∇

2Tf +h(Ts−Tf ), (1.9)

(1− ε)(ρc)s
∂Ts

∂ t
= (1− ε)ks∇

2Ts +h(Tf −Ts). (1.10)

Here, cp is the specific heat at constant pressure of the solid, c is the specific heat of the

solid, k is the thermal conductivity, h is the interphase heat transfer coefficient, the sub-

scripts s and f denote solid and fluid phases of the porous medium, respectively. The use of

two different energy equations, where Tf 6= Ts, is referred as local thermal non-equilibrium

(LTNE) state. A simple and widely used concept of heat transfer in porous medium is local

thermal non-equilibrium (LTE) state in which the local temperatures of the fluid and solid

phases of porous medium are assumed to be identical such that Ts = Tf = T , where Tf and

Ts are the temperatures of the fluid and solid phases respectively. The one energy equation

model under local thermal equilibrium state is obtained by assuming Ts = Tf and adding

equations (1.9) and (1.10). It is given as

(ρc)m
∂T
∂ t

+(ρc) f v.∇T = km∇
2T, (1.11)

where, (ρc)m is the overall heat capacity per unit volume, km is the overall thermal conduc-

tivity given by,

(ρc)m = (1− ε)(ρc)s + ε(ρcP) f , (1.12)

km = (1− ε)ks + εk f . (1.13)

1.2 Hydrodynamics Stability

In general, the ability of a dynamical system to remain unaffected to small disturbances

is called as stability. The stability of a dynamical system can be examined only after es-

tablishing the possibility of equilibrium. The problem of stability in fluid mechanics also

has these important features. First, using well defined initial/boundary conditions, a spe-

cific flow is fully determined through a proper choice of co-ordinate system. Then, a flow
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which is in equilibrium is identified. Such a flow should not be accelerated due to the

balance of forces involved, but it may be time dependent. This laminar and equilibrium

flow is called as base mean flow which is broadly categorized into parallel (e.g., channel

and pipe flows) or almost parallel (e.g., free shear and boundary layer flows) , with curved

streamlines (e.g., flow in concentric circular cylinder) and mean flow with zero value (e.g.,

Rayleigh-Benard flows). Notably, the important initial contributions to hydrodynamic sta-

bility theory and related experiments are due to Hagen (1855), Helmholtz (1868), Rayleigh

(1879), Kelvin (1880) and Reynolds (1883). It should be mentioned that whereas Kelvin

and Rayleigh used inviscid hypothesis in their theoretical work, Orr (on plane Couette flow)

and Sommerfeld (on plane Poiseuille flow) independently did their theoretical work on vis-

cous stability problem, later the combination formed the basic equation of hydrodynamic

stability theory using perturbation analysis known as Orr-Sommerfeld equation. The aim

of hydrodynamic stability is to find out the conditions under which a given laminar flow

may become unstable and how an unstable flow breaks down into some other laminar/non-

laminar flow. The rapid development of this theory in recent decades has resulted in huge

number of studies in various fields such as petroleum industries, chemical technology and

geophysical sciences, etc. Many important developments of stability theory are given in

literature ([25, 32]).

It is important to sketch the important physical mechanisms of instability. Instability

occurs when the equilibrium of external forces, inertia and viscous stresses on the fluid

gets disturbed. For example, the instability of plane Poiseuille flow is affected by the dual

nature of viscosity, inertia and the presence of solid boundaries. On applying some slight

disturbance to a basic flow, the disturbance may either die away, persist as a disturbance

of similar magnitude or grow so much that the basic flow becomes a different laminar or

turbulent flow. Broadly speaking, such disturbances are called (asymptotically) stable, neu-

trally stable or unstable respectively. The connection between laminar flow and turbulent

flow may not be a direct one, but more often than not laminar flow is a prelude to tran-

sition to turbulence. In the case of laminar flow, particles of fluid can be considered to
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travel along smooth continuous paths, i.e., no mixing between fluid layers occurs unlike a

turbulent flow (see few examples in figure 1.1).

Figure 1.1: Laminar and turbulent flow examples (pictures are taken from internet).

Mathematically, using the concept of stability of system of ordinary differential

equations, a basic flow is stable (in the sense of Liapounov) if, for any ε > 0, there

exists some positive number δ (depending upon ε) such that if || V (x,0)−V0(x,0) ||,

|| P(x,0)−P0(x,0) ||, etc. < δ , then ||V (x, t)−V0(x, t) ||, || P(x, t)−P0(x, t) ||, etc < ε for

all t ≥ 0, where V is the velocity field and P is the pressure field. This definition means that

the flow is stable if the perturbation remains small for all time provided it is small initially.

Some perturbations that might lead to instability arise from small changes in the boundary

conditions due to irregularities in nature or imperfections in laboratory equipment. The

mathematical treatment of these perturbations is closely related to that of a small initial

disturbance of the basic flow. Also, it must be recognized that an unstable basic flow free

of any disturbance can not instantaneously be set up in the laboratory or arise in nature.

Rather a stable basic flow evolves in space or time until it becomes unstable [32].
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Consider a steady basic flow and assume that the equations of motion and the bound-

ary conditions may be linearized for sufficiently small disturbances. The principle of

linearization is straightforward where the products of the increments v′(x, t) = (V −V0),

p′(x, t) = (P−P0) etc., that is, of the total velocity v(x, t) and pressure p(x, t) etc., of the

disturbed flow less their respective values for the basic flow, are neglected. This results in a

linear homogeneous system of partial differential equations and boundary conditions. The

coefficients in this system of equations may vary in space but not time because the basic

flow is steady. Our vast experience with the method of separation of variables and Laplace

transform for the solution of such systems suggests that in general the solutions can be ex-

pressed as the real parts of the integrals of components, each component varying with time

like est for some complex number s = σ + iw, also known as normal modes. The values of s

and the spatial variation of corresponding components are called as eigenvalues and eigen-

functions, determined from the linear system. If σ > 0 for a mode, then the corresponding

disturbance will be amplified, growing exponentially with time until it is so large that non

linearity becomes significant. If σ = 0 the mode is said to be neutrally stable, and if σ < 0

then asymptotically stable or stable. Thus a mode is unstable if σ > 0, and stable if σ ≤ 0

because then it remains small for all time. A small disturbance of the basic flow will in

general excite all modes, so that if σ > 0 for at least one mode then the flow is unstable.

Conversely, if σ ≤ 0 for all of a complete set of modes then the flow is stable. A mode is

marginally stable if σ = 0 for critical values of the parameters on which the eigenvalue s

depends but σ > 0 for some neighboring values of the parameters. Plane Poiseuille flow,

with basic velocity V =Vo(1− r2/a2 î) between rigid walls at z =±a, provides an example

of this.

1.3 Review of Literature

Despite theoretical and technological advancements in recent years, the flow mechanics and

heat transfer characteristics in porous media are still difficult to comprehend as they lack
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a unified governing theory. This is due to the presence of a wide range of length scales in

porous media and extremely complex boundary conditions at pore level. To treat a porous

medium as continuum, the appropriate set of governing equations in terms of volume av-

eraged dependent variables are derived using the method of volume averaging [55] where

primarily the large scale (macroscopic) behavior of the flow in porous regions is consid-

ered. The continuity, momentum and energy equations are integrated in a representative

elementary volume whose length scale is much larger than the average pore and particle

length but much smaller than the characteristic macroscopic length of the porous medium.

The energy equation can be volume averaged in two ways: (i) assuming local thermal equi-

librium (LTE) between the fluid and the solid phases, in which the volume averaged fluid

temperature is assumed to be equal to the solid phase, (ii) assuming local thermal non-

equilibrium (LTNE) between the fluid and the solid phases, in which the volume averaged

fluid temperature is assumed to be different from the solid phase. Chanpreet et. al. [28]

have given some experimental validation of above mentioned heat transfer models.

Let us first discuss about important applications of flow and heat transfer in porous

medium. Due to the presence of inter-connected voids porous medium has large surface

area to volume fraction and are good candidates for heat transfer enhancement applica-

tions. One of the major heat transfer applications is in the electronic industry. Starting with

micro-scale (due to the miniaturization of integrated circuits and the assemblage in small

volumes) electronics equipment [57] to macro-scale electrical Transformer [116] or giant

UPS, design of good heat transfer equipment has become a challenge to the industry. Mixed

convection in ducts (commonly channel, pipe and annulus) filled with porous medium is

relevant in many engineering systems such as geothermal systems, building thermal insu-

lation, nuclear waste disposal, thermal energy storage, transportation biofuels, etc. The

growing volume of work in this area is amply documented in the books by Nield and Bejan

[76] and Vafai [122]. Use of porous medium such as metal foam has attracted the attention

of many researchers due to their desirable flow and thermal characteristics [11, 17]. A metal

foam consists of a solid matrix containing a large volume fraction of voids or pores. Open
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cell metal foams have interconnected voids and are used for heat exchangers [33, 61, 131],

compact electronics cooling [10, 86], energy absorption [66], etc. For example, in order

to exchange the heat of an electronic device from the system to the surrounding, a vertical

rectangular duct filled with open cell metal foam can be considered inside the system. The

heat generated from the system can be treated as constant heat flux or constant temperature

on one of the surfaces of the duct. A steady fluid flow due to an external pressure gradient

can be considered through it to exchange the heat from the system to the surrounding. For

fast cooling one may enhance the velocity of steady flow, or, increase the gap between the

two channel (for rectangular cylinder) walls. In this situation steady flow may not remain

stable and the exchange of heat from the system to surrounding may be affected due to

mixing of different fluid layers. Therefore, before installing such type of heat exchanger in

the system it is essential to understand the fluid flow and heat transfer mechanism through

a channel filled with open cell metal foam or high permeable porous medium, specially in

the transition state.

Based on important applications (in microwave heating [34], in fuel cells [35], in

heat exchangers [52, 131] and references therein) convection in porous media under local

thermal non-equilibrium state becomes an area of intense research. Different important

works which utilize the local thermal non-equilibrium theory are well documented in the

literature (e.g., [1, 36, 76, 92, 109]). The regenerator used in Stirling cycle is an important

application of heat exchanger using porous medium in which thermal energy is stored and

reused at a later time. The transfer of heat from solid to fluid phase of the porous medium

inside the regenerator takes place under local thermal non-equilibrium state [109].

A comprehensive literature review is presented, first pertaining to local thermal equi-

librium theory and then local thermal non-equilibrium theory covering a wide range of

natural, forced and mixed convection flows mainly in vertical systems filled with porous

medium. It is known that a steady and parallel flow may exist in a vertical channel bounded

by impermeable and isothermal parallel planes kept at different temperatures. The flow may

be due to the action of buoyancy force which in turn causes natural convection, or may be
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due to the action of both buoyancy force as well as constant pressure gradient along the

vertical direction resulting in mixed convection. The former flow is defined by parallel nat-

ural convective flow (PNCF) which takes place with zero vertical mass flow rate, whereas

the latter one is defined by parallel mixed convective flow (PMCF) which is endowed with

non-zero vertical mass flow rate. These types of flow may be configured, with different

features, either for a fluid filling the channel or for a fluid-saturated porous slab/channel

[76].

A fundamental result from the analysis of natural convection in a vertical porous

slab governed by Darcy’s law was obtained by Gill [41]. Using linear stability analysis

the author has proved that the PNCF in a vertical porous slab is always stable. In spite

of this conclusion further investigations were carried out by other authors. For example,

Gill’s [41] problem was reinvestigated: using nonlinear analysis by Wolanski [125] and

Straughan [106], considering the no-slip condition by Kwok and Chen [62], including the

time derivative term in momentum balance equation by Rees [89], in a regime of very large

Darcy-Rayleigh numbers by Lewis et. al. [67]. Payne et. al. [83a] derived a priori bounds

for the Darcy equation when the Newton cooling type boundary condition is imposed on the

porous medium. Note that the main motivation for these studies was the suggestion stated

by Gill [41] at the end of his paper that possible instability could be obtained by including

inertial effects in the local momentum balance equation, i.e., by altering the classical formu-

lation. However, except the work of Kwok and Chen [62] where the basic flow is different

from the basic flow of Gill [41], all these investigations finally lead to the basic conclusion

reached by Gill [41]. Recently, Barletta, while studying natural convection in a vertical

channel [3] and the same as a limiting case of mixed convection [4], has found that Gill’s

finding does not remain valid even under Darcy model. Kwok and Chen [62] investigated

the effect of no-slip boundary conditions for velocity, implemented by Brinkman’s model

of momentum balance instead of Darcy’s law, and the effect of temperature-dependent vis-

cosity within Darcy’s law. In both the cases they considered a quadratic dependence of

the density on temperature. Through linear stability analysis the authors found that both
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no-slip conditions and variable viscosity are able to yield instability and, hence, modify the

conclusion implied by Gill’s proof. While studying the double-diffusive natural convection

in rectangular enclosure filled with anisotropic porous medium, Bera et. al. [15] found that

the permeability orientation angle has important effect on heat and mass transfer. Unsing

linear stability theory, the thermosolutal convection in a ferromagnetic fluid saturating a

porous medium has been studied by considering constant viscosity [40] and magnetic field

dependent viscosity [114].

The hydrodynamic stability of mixed convection in vertical ducts filled with porous

medium is of fundamental importance in practical applications. Although, several studies

in vertical channel/layer have already been made directly or indirectly in this direction but

most of these are restricted to laminar fluid flow and heat transfer only (e.g., with uniform

heating of walls [21, 48, 58, 63, 108], with differential heating: [47, 81, 118]), which are

well documented in the book by Nield and Bejan [76]. Studies related to transition state

are restricted to either linearly heating or imposing constant heat flux condition on the

walls. To gain a better perspective of results to be presented, we summarize their primary

conclusions.

A good number of articles [5–8, 19, 22, 23, 60] focus on linear stability of PMCF

due to linear variation of wall temperature and external pressure gradient to understand the

stability of the flow in various aspects. In these studies the non-Darcy volume-averaged

Navier-Stokes (VANS) equation was used and assumed that the solid porous matrix and

saturated fluid are in local thermal equilibrium (LTE) state. It has been reported that higher

media permeability results in lower stability of the flow, whereas induced form drag stabi-

lizes the flow. Fully developed flow can become unstable under mild heating condition [23].

Furthermore, it has also been pointed out that when buoyancy force acts in the direction

of forced flow, three different types of instability, namely shear (or thermal-shear), mixed

(or interactive), and buoyant (or thermal buoyant) are possible [5–7, 19, 60]. The type of

instability depends on the type of fluid, media permeability, strength of bulk velocity, as



15

well as on induced form drag. In the case when buoyancy force acts in the opposite direc-

tion of forced flow (i.e., buoyancy opposed flow) the fully developed flow has two types

of instabilities: Rayleigh-Taylor and buoyant (or, thermal buoyant) [6, 7]. Note that their

study for buoyancy opposed flow was limited to very low permeable porous media. Re-

cently, Bera and Khandelwal [9] have extended the linear stability analysis of above flow

with the assumption that the solid porous matrix and saturated fluid are in local thermal

non-equilibrium state with buoyancy force in the direction of forced flow. They have found

that higher value of interphase heat transfer coefficient results in more stable flow, i.e., in-

terphase heat transfer coefficient stabilizes the flow. Its stabilizing impact for fluid with

low Prandtl number becomes high when disturbance kinetic energy due to non-isothermal

effect is lost to the basic flow. For relatively low permeable medium thermal-buoyant in-

stability is the most dominant instability in the entire range of Prandtl number. Stability of

the mixed convection in the same geometry, where buoyant force is induced by symmetric

uniform heat flux on the vertical planes, is investigated by Barletta [2]. The details of these

studies can be found in Bera and Khandelwal [9].

Investigation of mixed convection in a differentially heated channel filled with porous

medium is carried out numerically by Hadim and Chen [47] as well as Umavathi et. al.

[118], and experimentally by Pu et. al. [81]. Hadim et. al. [47] have studied the mixed

convective flow in the developing region and have shown that on increasing the Darcy

number the distortions in the velocity profile result in an increased velocity near the walls

leading to increased heat transfer. Using perturbation method Umavathi et. al. [118] have

shown that the viscous dissipation enhances the flow reversal in the case of downward flow

while it counters the flow in the case of upward flow and the Darcy as well as inertial drag

terms suppress the flow. Pu et. al. [81] experimentally found the existence of a secondary

convective cell in the mixed-convection regime. Apart from these, Kamath et. al. [57] con-

ducted an experimental study of hydraulic performance and heat transfer in flow assisted

mixed convection (induced by external pressure gradient and constant heat flux on one ver-

tical side and maintenance of adiabatic condition on the other vertical side) on aluminium
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metal foams of high porosity. Through the results of the hydraulic experiments the authors

have shown, for the air velocity range used, that the metal foam characteristics deviate from

the Darcy flow. Apart from this the mixed convection flow and heat transfer phenomena

with various types of fluids are also available in the literature. For example, laminar mixed

convective flow and heat transfer in Newtonian and power law fluids have been investigated

by Dhiman et al. [37]. Also, Dhiman et al. [38] investigated the dependence of drag and lift

coefficients on Richardson number while studying the mixed convection across an isother-

mal square cylinder confined in a channel. Some computational studies of heat transfer

in a liquid-saturated porous annulus with a heated inner wall and a cold outer wall have

been reported by Muralidhar [73–75]. Using similarity analysis Partha et. al. [83] stud-

ied simultaneous thermal radiation and mixed convection in a porous medium. Bhargavi

et. al. [16] examined changes in physical quantities such as skin friction coefficient and

Nusselt number inside a channel with walls attached with porous layer. Further, Dey et.

al. [39] have presented an analytical study of unsteady flow through a channel lined with

asymmetric porous lining. Analysis of isothermal flow in flexible tube is also interesting

and complicated in the area of hydrodynamic stability. A rigorous study of such problems

can be found in the work of Shankar et. al. [112, 113] and Kumaran [113a]. The hydrody-

namic stability of channel flow with compliant boundaries has been studied by Sibanda et.

al. [45, 72, 111].

From the above literature review it is clear that the stability characteristic of PMCF

has not been extended to differentially heated channel. Furthermore, in a linearly heated

vertical channel the direction of pressure driven forced flow and the direction of buoy-

ancy force can be either same or opposite, i.e., fully developed parallel flow will be either

buoyancy assisted or buoyancy opposed flow. In the case of a differentially heated vertical

channel with the pressure driven forced flow from bottom to top, parallel flow can be either

buoyancy assisted or assisted near the hot wall but opposed near the cold wall. Therefore,

plausible different instability mechanism in a differentially heated channel is expected.

Being motivated from the applications, in the present thesis an attempt is made to
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understand the stability to small-amplitude perturbations of the parallel mixed convective

flow in a differentially heated vertical channel filled with fluid-saturated high permeable

porous medium. The flow is caused by a pressure gradient from the bottom of the channel

aided by buoyancy effects induced by heating of side walls. It is important to mention that

the flow instability characteristics depend on the boundary conditions at the walls of the

channel.

The temperature of fluid and solid phases of a porous medium are accounted sep-

arately when there is a significant between conductivities of the solid and fluid phases.

The flow dynamics as well as heat transfer mechanism in such a situation is governed by

a model of two medium treatment in the single phase flow, formulated by Carbonell and

Whitaker [24] which is well accepted in the literature [55]. These equations are coupled

with an additional term that models the mode of interfacial heat transfer between the two

phases. This situation is known as local thermal non-equilibrium (LTNE) state. Kaviany

[55] and many other authors (e.g., [17, 121]) have shown that when the porous medium is

under local thermal non-equilibrium state then mechanism of heat transfer and fluid flow

are different form the same under local thermal equilibrium state. When metal foams are

used with low-conductivity fluids like air or water then it is preferable to use LTNE hypoth-

esis.

Natural convection in high porosity metal foams was studied numerically and ex-

perimentally by, among others, Phanikumar and Mahajan [82]. The authors have found

that the LTNE model provides a more realistic description of heat transfer phenomena in

metal foams. Recently, Rees [90] has extended the work of Gill [41] by considering the

effect of local thermal nonequilibrium on the stability properties of natural convection in a

vertical porous channel heated and cooled from the sides. The flow is governed by Darcy’s

law and Boussinesq approximation. On using an energy stability analysis of the linearised

stability equations, the author has shown that the system remains unconditionally stable

to small-amplitude disturbances. Later, Scott and Straughan [104] studied the problem

considered by Rees [90] by using nonlinear energy stability theory to derive a Rayleigh
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number threshold below which convection will not occur no matter how large the initial

data. The authors have given a generalized nonlinear analysis to show that convection can-

not occur for any Rayleigh number provided the initial data is suitably restricted. Using

energy method, Sunil et. al. [115] have studied the nonlinear stability analysis of a rotating

thermoconvective magnetized ferrofluid layer using LTNE model.

In comparison to the natural convection in fluid-saturated vertical porous slab, the

theoretical investigation of parallel mixed convective flow in a differentially heated verti-

cal channel filled with porous medium under local thermal non-equilibrium state is largely

overlooked. Analysis of mixed convection in a vertical porous layer using non-equilibrium

model is investigated by Saeid [108]. He has found the total average Nusselt number de-

pends strongly on the thermal conductivity ratio parameter and depends slightly on the heat

transfer coefficient parameter i.e. increasing the thermal conductivity ratio leads to increase

in the total average Nusselt number Recently, Bera and Khandelwal [9] have studied the

linear stability analysis of PMCF with linearly varying wall temperatures of the channel

with the assumption that the solid porous matrix and saturated fluid are in local thermal

non-equilibrium state with buoyancy force in the direction of forced flow. They have found

that higher value of interphase heat transfer coefficient results in more stable flow, i.e., in-

terphase heat transfer coefficient stabilizes the flow. Its stabilizing impact for fluid with

low Prandtl number becomes high when disturbance kinetic energy due to non-isothermal

effect is lost to the basic flow. Al-Sumaily et. al. [1] investigated the effect of particle

diameter of a packed bed of spherical particles on forced convection about an embedded

cylinder numerically. They found that the agreement between experimental results and

numerical results under LTNE model is much better than the same between experimental

results and analytical results under LTE model. In this thesis, we have made an attempt to

understand the stability to infinitesimal perturbations of the parallel mixed convective flow

in a differentially heated vertical channel filled with fluid-saturated high permeable porous

medium under LTNE state.

The flow transition (laminar to turbulent) phenomena of non-isothermal Poiseuille
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flow in a vertical channel using direct numerical simulation is investigated by [26, 27]. The

flow transition phenomena in buoyancy assisted case [26] is supercritical and transition is

gradual. However, in buoyancy-opposed case [27] the transition is sudden and abrupt. Lin-

ear stability analysis is used to determine the point at which an infinitesimal disturbance

becomes unstable as well as to predict the form of developing disturbances. There are shear

flows in literature where the linear stability analysis cannot predict remarkable results. For

example, the well known result given by [79] that the plane Poiseuille flow is linearly un-

stable at a Reynolds number of 5772, but in practice the transition for this flow often occurs

at very low Reynolds number. The linear stability analysis gives only the initial growth of

the disturbance, but eventually the disturbance reaches such a size that Reynolds stresses

(i.e., the mean force per unit area imposed on the mean flow by turbulent fluctuation) affect

the mean flow and then it becomes difficult to explain the stability of the flow by linear

theory. Nonlinear stability analysis gives some important information about size of dis-

turbance and flow field that results from the linear instability. Weakly nonlinear theories

developed in [93, 100, 101, 127] have been shown to be very powerful tools for the analysis

of stability of various flows. These nonlinear analyses are centered around the derivation

of the Landau equation for the amplitude of disturbance wave.

From the best of our knowledge, though some attempts [84, 104] are made to un-

derstand the nonlinear stability problem in natural convection but it has not been extended

to mixed convection in vertical channel. Among them, [104] derived a threshold Raleigh

number below which convection will not occur regardless of how large the initial data may

be. Using a generalized nonlinear analysis they have also shown that convection cannot

occur for any Rayleigh number provided the initial data is suitably restricted.

The understanding of nonlinear stability mechanism in porous media may be a spe-

cial interest because linear stability analysis cannot be accomplished when the larger am-

plitudes are obtained. Especially, when the permeability of the medium and strength of the

flow are reasonably high then nonlinear interaction of different harmonic modes may have

significant role in the flow mechanism [30, 87, 98].
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As pointed out in the literature [50], in general, the transition from smooth laminar to

disorder turbulent flow can involve a sequence of instabilities in which the system realizes

progressively more complicated states [77] or it can occur suddenly [44, 49]. In the former

case, the complexity arises in well defined steps in the name of sequence of bifurcations

[12]. The prediction of wide band nature of sequence of instabilities of the detailed flow

pattern and temperature distribution at a point away from the critical is beyond the scope

of linear stability analysis. In this situation, a nonlinear analysis is required to trace the

evolution of finite amplitude perturbations. To analyze the nonlinear phenomena of a flow,

mainly two different approaches:(i) weakly nonlinear stability analysis, and (ii) direct nu-

merical simulation (DNS) can be used. The advantages of weakly nonlinear stability theory

using finite amplitude expansion method are relatively small computational cost and easy to

adopt. It tells us something significant when a full DNS calculation is infeasible. The role

of normal modes in nonlinear analysis is different from that in the linear analysis because

of the interaction of different harmonic modes. The nonlinear stability analysis modifies

the unbounded exponential growth predicted by the linear stability analysis. This analysis

is valid near the linear stability boundary, and it addresses the question of what happens to

an unstable flow.

The above literature review reveals that so far the investigation on stability of non-

isothermal parallel flow in a vertical channel filled with fluid saturated porous medium

is restricted to the linear theory only for both situations: (i) differentially heated channel

walls, and (ii) linearly varying temperature of channel walls. Apart from this, the instability

mechanism of above flow in a purely fluid medium [20] under linear theory predicts sig-

nificant different results from the same in a fluid-saturated porous medium [5, 19]. Conse-

quently, the nonlinear stability analysis made for purely fluid medium [59] may not predict

similar results when the channel is filled with porous medium. Being motivated from the

above applications and limitation of linear stability theory, in the present study we consider

a weakly nonlinear instability analysis of stably stratified (i.e., when buoyant force is in the
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direction of forced flow) non-isothermal parallel mixed convection flow (PMCF) in a verti-

cal channel filled with porous medium. The linear stability analysis of this flow is already

examined by some authors (for example, [5, 19, 60]). Here we determine the the nature of

bifurcation (supercritical/subcritical) and the finite amplitude behavior of disturbance that

occurs beyond the linear instability boundary. The present analysis is carried out using the

theory given in the references [59, 100, 101, 130] and therein. This nonlinear analysis is

centered around the derivation of the Landau equation to study the nonlinear interaction

of different harmonic waves. The mechanism behind subcritical transition has been ex-

plained by Brandt [14]. Samanta et. al. [107] have studied the effect of permeable wall

on secondary flow through porous duct. A comprehensive note on stability, receptivity and

sensitivity analysis of fluid systems is given by Schmid et. al. [110].

1.4 Motivation and Objective of the Study

As mentioned in the literature review, in comparison to the natural convection in fluid-

saturated vertical porous slab, the theoretical investigation of parallel mixed convective

flow in a vertical channel filled with porous medium especially when channel walls are

kept at different temperatures is largely overlooked. Motivation for the present study is

based on the following three facts:

1. Mixed convection through wall bounded domain filled with porous medium has nu-

merous applications in science and engineering.

2. Stability analysis has not been extended to parallel mixed convective flow in a differ-

entially heated channel.

3. There are subtle differences between the flow and heat transfer characteristics of a

parallel mixed convective flow in a linearly heated channel and differentially heated

channel.
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To gain a comprehensive knowledge of the stability characteristics of the flow being

considered, the objectives of the present study are as follows:

1. To analyze the stability characteristics of parallel mixed convective flow in a dif-

ferentially heated vertical channel filled with high permeable porous medium under

local thermal equilibrium state for a range of fluids including mercury, air, water and

heavy oils.

2. To find the appropriate non-isothermal parameter space as a function of Prandtl num-

ber, Reynolds number as well as Forchheimer number in which the parallel flow will

remain stable, and identify the type of instability through energy analysis.

3. Using dimensional analysis, find the critical temperature difference between the walls

of the channel below which the fully developed parallel flow will remain parallel and

stable.

4. To examine the mean flow characteristics in a vertical channel filled with porous

medium under LTNE state for fluids such as air and water.

5. To develop a cubic Landau equation to analyze the nature of bifurcation and ampli-

tude of most unstable wave at and beyond the critical value using a weakly nonlinear

stability theory for parallel mixed convective flow in a vertical channel filled with

porous medium under local thermal equilibrium state for both situations: (i) differ-

entially heated channel walls, and (ii) linearly varying temperature of channel walls.



Chapter 2

Linear stability of mixed convection flow

in differentially heated vertical channel

filled with porous-medium

Linear stability analysis is used to analyze the stability of parallel flow induced by external

pressure gradient and buoyancy force in a differentially heated vertical channel filled with

a fluid-saturated high permeable porous medium. In the case of a differentially heated

vertical channel with the pressure driven forced flow from bottom to top, parallel flow can

be either buoyancy assisted or assisted near the hot wall but opposed near the cold wall.

Therefore, plausible different instability mechanism in a differentially heated channel is

expected.

The objective of the present study is two folds. The first is to analyze the stabil-

ity characteristics of PMCF in a differentially heated channel filled with high permeable

porous medium for a range of fluids including mercury, air, water and heavy oils. Also,

we want to find the appropriate non-isothermal parameter space as a function of Prandtl

number, Reynolds number as well as Forchheimer number in which the parallel flow will

remain stable, and identify the type of instability through energy analysis. Second, using

scale analysis, to find the critical temperature difference between the walls of the channel

23
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Figure 2.1: Schematic of the physical problem.

below which the fully developed parallel flow will remain parallel and stable.

2.1 Mathematical Model

2.1.1 Problem definition and governing equations

The flow investigated in this paper is mixed convection in a long vertical channel of width

2L and filled with fluid saturated porous medium. It is driven by an external pressure gradi-

ent and buoyancy force due to a constant temperature difference between the two channel

walls. The right wall at x = L and the left wall at x =−L are maintained at constant temper-

atures T1 and T2 (T1 > T2) respectively, as shown in Figure 2.1. It is assumed that the fluid

and porous medium are everywhere in local thermal equilibrium state, the porous medium

is homogeneous and hydro-dynamically as well as thermally isotropic, and the fluid is
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incompressible. The thermo-physical properties of the fluid are assumed to be constant ex-

cept for the density dependence of the buoyancy term in the momentum equation which is

satisfied by the Boussinesq approximation, i.e., density varies linearly with temperature as

ρ = ρ f [1−βT (T −T0)], where T0 = (T1 +T2)/2. The gravitational force is aligned in the

negative y-direction. Following [9, 107, 117] the volume averaged Navier-Stokes (VANS)

equation derived by Whitaker [123] is used as the momentum balance equation for the

above flow.

The non-dimensional space coordinates (x∗,y∗,z∗), dependent variables (v∗,θ ,P∗)

and time t∗ are calculated after scaling the dimensional variables as follows:

(x∗,y∗,z∗) =
(x,y,z)

L
, v∗ =

v
V 0

, θ = (T −T0)/(T1−T2),

P∗ =
P

ρ fV
2
0

, t∗ =
tV 0

L

 , (2.1)

where, v∗ = (u∗,v∗,w∗), θ , P∗ and t∗ are the dimensionless Darcy velocity vector, tem-

perature, pressure and time, respectively. Furthermore, V 0 and ρ f are dimensional average

basic velocity (bulk velocity) and fluid density, respectively.

After dropping asterisk, the non-dimensional governing equations can be written as

∇.v = 0, (2.2)

1
ε

∂v
∂ t

+
1
ε2 (v.∇)v+Fv|v|=−∇P+

λ

Re
(∇2v)− 1

DaRe
v+

Gr
Re2 θ êy, (2.3)

σ
∂θ

∂ t
+(v.∇)θ =

1
PrRe

(∇2
θ). (2.4)

In the above equations Gr, Pr, Da, Re and F are Grashof number, Prandtl number, Darcy

number, Reynolds number and Forchheimer number, respectively. They are defined as

Gr =
gβT (T1−T2)L3

ν2 , Pr =
ν

k
, Da =

K
L2 , Re =

V 0L
ν

, and F =
CFL
|K|1/2 . (2.5)

Furthermore, g, êy, K, k, βT , ν , ε and CF denote the acceleration due to gravity, unit vec-

tor along y-direction, permeability of the porous medium, thermal diffusivity, volumetric
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thermal expansion coefficient, kinematic viscosity, porosity and dimensionless form-drag

constant, respectively. Also, λ is the ratio of effective viscosity to fluid viscosity (µ̃/µ f ),

whereas, σ is ratio of overall heat capacity per unit volume of the fluid saturated porous

medium to heat capacity at constant pressure per unit volume of the fluid ((ρcm)m/(ρcp) f ).

Here, (ρcm)m = (1− ε)(ρcs)s + ε(ρcp) f [76], where cs denotes specific heat of the solid

and cp denotes specific heat at constant pressure of the fluid. Due to lack of any specific

measured value of (ρcm)m in this study where porosity is high, σ = 1 is considered. Again,

different values have been reported for µ̃ in the literature [43, 55] leading to a λ other than

unity. However, in the absence of any specific measured value, λ = 1 has been taken in this

study.

2.1.2 Parallel mixed convective flow: Basic state

The basic flow whose stability analysis is going to be carried out is steady, fully developed,

and one dimensional, i.e., PMCF. Under these conditions the governing Equations (2.2)-

(2.4) are simplified into following coupled ordinary differential equations.

d2V0

dx2 −
1

Da
V0 +Gr′Θ0−F ′|V0|V0 = Re

dP0

dy
, (2.6)

d2Θ0

dx2 = 0. (2.7)

where, V0, Θ0 and P0 are the basic velocity, basic temperature and basic pressure, respec-

tively. Here, F ′ = FRe and Gr′ = Gr/Re. The boundary conditions for the above basic

state equations are given as:

V0 = 0 at x =±1, Θ0 =±1/2 at x =±1. (2.8)

To solve the Equations (2.6)-(2.8), the axial pressure gradient is determined using the global

mass conservation, ∫ 1

−1
V0dx = 2. (2.9)
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Note that the above basic flow can be solved in three different cases: (i) for Darcy flow,

i.e., dropping the second order derivative and quadratic terms in the momentum equation,

(ii) for Darcy-Brinkman flow without form drag, i.e., F = 0, and, (iii) for Darcy-Brinkman

flow with form drag. The basic temperature for all the three cases is given by

Θ0 = x/2. (2.10)

The basic flow velocity functions for the first two cases are given as,

V0 =


Gr′Da

(x
2

)
+1; (Darcy flow)

s
(

1− cosh(mx)
cosh(m)

)
+ Gr′Da

2

(
x− sinh(mx)

sinh(m)

)
; (when F= 0)

(2.11)

where, m =
1√
Da

and s = m
(

sinh(2m)

m(sinh(2m))− cosh(2m)+1

)
. However, in the third case,

the basic flow velocity is obtained numerically using spectral method by solving Equation

(2.6) along with Equations (2.8)-(2.10). The basic flow in the first two cases is governed by

Gr′Da while in the third case by {Gr′,Da,F ′}. To understand the stability of PMCF under

Darcy-Brinkman-Forchheimer model, a comparative study of the basic flow velocity under

the above three cases is made by considering three different values {10−2,10−3,10−4} of

Da. The velocity profiles for three different values 0.01, 2.4 and 3 of the product of Gr′

and Da are shown in Figures 2.2(a) to 2.2(c). From the observation of the above figures

following four interesting facts can be disclosed. First, irrespective of the value of Da as

well as the model, for Gr′Da = 10−2 the profile is free from back flow (or, negative flow)

and point of inflection, i.e., the temperature difference between the walls is so small that the

flow in the channel is mainly due to the external pressure gradient. Second, velocity profile

under the Darcy model is always free from point of inflection, which is a consequence of

it’s linear nature. However, it may have back flow depending on the product of Gr′ and Da.

Third, for Da = 10−2 and Gr′Da = 2.4 the non-Darcy velocity profile possesses point of

inflection without back flow for F ′ = 0. But, when F ′ = 0 is replaced by F ′ = 1000, the

profile becomes free from inflection point. Finally, for Gr′Da = 2.4 or 3, in contrast to the

case of Da = 10−4 where the non-Darcy velocity profile possesses point of inflection as
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Figure 2.2: Basic velocity profile: (a) Darcy flow, (b) F ′ = 0, (c) F ′ = 1000.
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F ′=0 F ′=1000
Da Gr′i Gr′b Gr′i Gr′b
10−2 223 248 2559 2765
10−3 2065 2134 4493 4669
10−4 20204 20428 22815 23066

Table 2.1: Values of minimum Gr′.

well as back flow for both F ′ = 0 as well as 1000, in the case of Da = 10−3 the point of

inflection as well as back flow characteristic of the non-Darcy velocity profile for F ′ = 0

gets completely removed on replacing F ′ = 0 by 1000. This indicates that the Forchheimer

term in the momentum equation has significant impact on the flow regime.

As it has been pointed out in the literature (ref. Yao and Rogers [129]), the point of

inflection in the velocity profile is a potential for instability, so we are curious to know the

minimum value of Gr′ for which non-Darcy flow will have point of inflection for a given

value of Da and how does it depend on the form drag of the medium. For this, the least

values of Gr′ for which the point of inflection and back flow appear in the velocity profile

have been calculated for different values of Da (considered in this paper) as well as F ′ and

shown in Table 2.1. Here, Gr′i and Gr′b denote the respective least values of Gr′ for which

point of inflection and back flow appear in the velocity profile. It can be seen from this

table that Gr′i < Gr′b. Above observations bring us to a crossroad: whether the appearance

of the point of inflection in the basic flow influence the stability boundary? Similar to the

purely fluid domain [129] does the back flow in the basic flow profile give an indication of

the instability of the flow?

2.1.3 Temporal linear stability

The linear stability of the above basic flow is investigated by imposing an infinitesimal

disturbance on it. So, the field variables are split into the basic state and an infinitesimal
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disturbance, as

(v,θ ,P) = (V0(x)êy,Θ0(x),P0(y))+(v′,θ ′, p′). (2.12)

These infinitesimal disturbances of corresponding field variables are separated into the nor-

mal mode form [32] as,

(v′,θ ′, p′) = (v̂(x), θ̂(x), p̂(x))ei(αy+β z−αct), (2.13)

where, α and β are the wavenumbers in streamwise and spanwise directions respectively,

and c = cr + ici is a complex wave speed. The sign of ci determines the growth or decay

of the disturbances, i.e., the disturbances are classified as stable, neutrally stable, or un-

stable depending on whether ci < 0, ci = 0, or ci > 0, respectively. On substituting the

Equations (2.12) and (2.13) into the governing Equations (2.2)-(2.4), and subtracting the

Equations (2.6)-(2.7), the linear equations for the infinitesimal disturbances are obtained

which are given in Appendix A. These equations form a generalized eigenvalue problem

with complex disturbance wavespeed as the eigenvalue.

2.1.4 Numerical method

The system of differential equations along with their boundary conditions in this paper are

discretized in the interval [−1,1] along x-direction at Gauss-Lobatto points by implement-

ing the Chebyshev spectral collocation method [18] that uses Chebyshev polynomials as

the basis functions.

The linear disturbance Equations (A.6)-(A.8) along with homogeneous boundary

conditions (A.9) are formulated as a generalized eigenvalue problem in the form

AX = cBX , (2.14)

where, c is the complex eigenvalue, X is the representation of the eigenfunction, and A

and B are the square complex matrices of order 3N + 3, where N represents order of the
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base polynomial in the collocation method. The eigenvalues of the above system are deter-

mined using the complex QZ algorithm [71] inbuilt in MATLAB. In the complete paper,

the integrals are calculated by Gauss-Chebyshev quadrature formula.

The validation of our numerical code is carried out in three different ways. First, by

performing a grid independence test of the least stable eigenvalue for the mixed convection

flow in a porous medium. Second, by making a comparison with published results in

vertical channel without porous medium for (i) natural convection, (ii) forced convection

(isothermal flow) and, (iii) mixed convection flow. Third, by ensuring that the balance of

disturbance kinetic energy and disturbance thermal energy at the critical level must be zero.

The convergence of the numerical scheme is checked by varying the number of terms

in the Chebyshev collocation method. Table 2.5 (see Appendix C) shows that the least

stable eigenvalue achieve 6-digit point accuracy with 51 terms at randomly selected values

for various parameters. The results remain consistent with increase in number of terms.

The same trend is observed with other values of parameters. It is observed that 51 terms

of Chebyshev polynomials, i.e. N = 51, are usually sufficient to perform the numerical

calculations with high accuracy.

In the case of natural convection flow of air, Lee and Korpela [68] have found the

critical value of Gr = 8038 and α = 2.8 by taking characteristic length as the width of

the channel. This result can be obtained exactly from our code when Re = 1, Da = 1010,

ε = 1, Pr = 0.7 and F = 0. Also, our definition of Gr needs to be modified by including

2L as characteristic length instead of L. In the case of isothermal channel flow without

porous medium the critical value of Reynolds number (Rec = 3848.13 based on average

velocity) and wavenumber (α=1.02) obtained by Orszag [79] for plane Poiseuille flow of

water matches exactly with the results of our code when Gr/Re = 0, Da = 1010, ε = 1,

Pr = 7 and F = 0. Some particular results of published work of Chen and Chung [23] in

mixed convection are also used to validate our numerical code. Again, we had to modify

our definition of Gr to include 2L instead of L to get the same critical value of Gr/Re .

Table 2.2 shows that the agreement is good. The final check is made by calculating energy
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Current results Chen and Chung [23]
Gr′c 115.20 115.25
αc 1.03 1.032

Table 2.2: Comparison of critical Gr′ and wavenumber with those obtained in Chen and
Chung[23] at Re = 1500, Pr = 7, Da = 1010, ε = 1, and F = 0.

growth rate around the critical point, which is discussed in Appendix B.

2.1.5 Energy spectra

As pointed out by Hart [46], the driving mechanisms of flow instability may be determined

by the production and dissipation of disturbance kinetic energy (hereafter, KE). Therefore,

to ascertain the role played by heat transfer during the flow instability, it is necessary to

keep track of KE. The balance of KE is given as,

Re
1
ε

∂

∂ t

〈
1
2
(u′2 + v′2 +w′2)

〉
=−Re

1
ε2

〈
u′v′

dV0

dx

〉
+Gr′

〈
v′θ ′
〉
−F ′

〈
|V0|(u′

2
+2v′2 +w′2)

〉
− 1

Da

〈
(u′2 + v′2 +w′2)

〉
−
〈
(∇u′)2 +(∇v′)2 +(∇w′)2〉

= Es +Eb +EF +ED +Ed (2.15)

where, the symbol <> imply integration over the volume: [−1,1]× [0,2π/α]× [0,2π/β ]

of the disturbance cell. The integrals in above equation can be evaluated using the eigen-

vectors from the linear stability analysis. On the curve of neutral stability, the disturbances

neither grow nor decay, and the left-hand side of equation (2.15) is zero. The first term

on the right-hand side represents the gain (loss) of the KE from(to) the mean flow through

Reynolds stress, referred to as shear production (destruction), represented as Es. The sec-

ond term represents the production of KE through work done by the fluctuating body force,

and defined as (Eb). The third term (EF ) represents the dissipation of KE due to form drag.

The fourth term (ED) represents the dissipation of KE energy due to work done by surface

drag. The last term (Ed) represents the dissipation of energy due to viscous effects. There-

fore, the Equation (2.15) represents a balance of the production of KE by buoyant and shear
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mechanism with the dissipation of KE by surface drag, form drag, and viscous action.

Similar to the KE balance, thermal energy balance is also defined by

σ
d
dt

〈
1
2

θ
′2
〉
=

1
RePr

〈
−
[(dθ ′

dx

)2
+
(dθ ′

dy

)2
+
(dθ ′

dz

)2
]〉

+

〈
−
(

θ
′v′

dθ0

dy

)〉
= Td +Tc

(2.16)

where, Tc and Td are production of disturbance thermal energy due to thermal convection

and dissipation of disturbance thermal energy due to diffusion, respectively. Since, at the

critical level, the sum of all KE components as well as the sum of all disturbance thermal

energy components must be equal to zero, therefore the relative errors of the kinetic and

thermal energy balance are defined by δK =
|Es +Eb +ED +EF +Ed|

|Es +Eb|
and δT =

|Tc +Td|
|Tc|

,

respectively. For all the calculations presented in the following study δK and δT are less

than 3%.

2.2 Importance of Prandtl number

It is to be noted that the PMCF is independent of Pr. Therefore, before addressing its effect

on the stability of the flow, the role played by Prandtl number in a non-isothermal flow

is first examined. It has been done by finding the first ten least stable eigenvalues of the

eigen-spectrum of system (2.14) when Gr′ is equal to zero and when it is equal to 10−3, for

different values of Pr keeping α equal to 1. For Gr′ = 0 the system (2.14) is solved without

energy equation. In this case each least stable mode is classified as kinetic (K) type. When

Gr′ = 10−3, the modes which have common eigenvalue with the spectrum corresponding

to Gr′ = 0 are classified as K type, whereas other modes are classified as thermal (T) type.

A comparative Table 2.3 is made when Re, F ′, and Da are fixed at 103, 103, and 10−3,

respectively. It can be seen from the above table that except the first three all other modes

are of K-type for Pr = 0.02. It is other way when Pr is replaced by 0.1, i.e., except the last

two all other modes are of T-type. For Pr = 0.7 all the first ten least stable modes are of

T-type which also holds for Pr > 0.7. Similar impact of Pr for other considered values of

Da as well as Re is also checked and it is observed that the impact of Pr on the first ten least
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Gr/Re = 0 Type Pr = 0.02 Type Pr = 0.1 Type Pr = 0.7 Type
0.01133-0.01820i K 0.01019-0.00173i T 0.01019-0.00034i T 0.01019-0.00004i T
0.01132-0.01827i K 0.01019-0.00543i T 0.01019-0.00108i T 0.01019-0.00015i T
0.01132-0.01838i K 0.01019-0.01160i T 0.01019-0.00232i T 0.01019-0.00033i T
0.01131-0.01853i K 0.01133-0.01820i K 0.01018-0.00404i T 0.01018-0.00057i T
0.01130-0.01873i K 0.01132-0.01827i K 0.01018-0.00626i T 0.01018-0.00089i T
0.01129-0.01897i K 0.01132-0.01838i K 0.01017-0.00898i T 0.01017-0.00128i T
0.01128-0.01925i K 0.01131-0.01853i K 0.01017-0.01219i T 0.01017-0.00174i T
0.01127-0.01958i K 0.01130-0.01873i K 0.01016-0.01589i T 0.01016-0.00227i T
0.01126-0.01995i K 0.01129-0.01897i K 0.01133-0.01820i K 0.01015-0.00287i T
0.01125-0.02036i K 0.01128-0.01925i K 0.01132-0.01827i K 0.01014-0.00354i T

Table 2.3: The first ten least stable eigenvalues of isothermal flow (Gr/Re = 0) and nearly
isothermal flow (Gr/Re→ 0).

stable modes is significant. So, from this analysis it can be concluded that an important role

of Prandtl number in the instability mechanism of the PMCF in the fluid saturated porous

medium is expected.

2.3 Stability boundary of PNCF

To understand the stability boundary of PMCF comparatively with that of PNCF, the results

of linear stability analysis of PNCF are also required. Therefore, a brief linear stability

results of PNCF that includes a revisit to the problem of Kwok and Chen [62] is given in

this section. Here, using non-Darcy model, first we have tried to reproduce the numerical

result of Kwok and Chen [62] in a differentially heated vertical porous layer ( a tall narrow

box 30cm high × 2cm wide × 11.5cm deep, filled with porous medium consisting of

3mm diameter glass beads saturated by distilled water) where permeability and porosity of

the medium are 0.85×10−8m2 and 0.4, respectively. Based on the depth of the box it is

assumed that the flow is independent of the direction of depth, i.e., the flow is considered

in a slender cavity. Following Kwok and Chen [62] we have also found the similar result,

i.e., PNCF is linearly unstable.

A note is made about the above results. We have reviewed the work done by Kwok
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and Chen [62] in three different ways. First, the problem of natural convection is solved

as proposed by them using Galerkin method. Second, the same problem is solved using

Chebyshev collocation method. Third, the natural convection flow (PNCF) is studied as a

limiting case of mixed convection flow (PMCF) in the limit Re→ 0 using Chebyshev col-

location method. In the third case the quadratic dependence of density on the temperature

in the Boussinesq approximation is also used and the coefficient 1/ε2 of advective term in

Equation (2.3) is replaced by 1/ε as given in their paper . The authors have mentioned that

the values of coefficients C2 and C3 in their momentum equation are of the order 10−4 but

as per their given data and the property values of water at 25oC the coefficients are found

to be equal to 9.2× 10−6 which is one order less than what they have reported. Also, the

authors have used a ten term Galerkin expansion to evaluate the critical Rayleigh number

(Ra) but we have found that it is not sufficient. Table 2.6 (see Appendix C) shows the

convergence of least stable eigenvalue at Ra = 308 and α = 2.6 for both Galerkin and Col-

location method. It can be seen that a reasonable convergence is achieved for N = 35 and

for this value of N the critical Ra is 3610 in both the cases which corresponds to a temper-

ature difference (∆T ) of 1100 oC across the walls. Also, when this problem is studied as a

limiting case of the present PMCF in the limit Re→ 0 the same value of ∆T is obtained.

For N = 10, which is considered by the above authors, ∆T is calculated and it is around

600oC. However, when the values of coefficients C2 and C3 are taken as 10−4 and N = 10

then the value of ∆T comes out to be 390oC which is very large as compared to the one

reported by them which is 135.9oC. Although, it is a non-realistic approximation since it is

far away from the experimental value of 29.2oC, but it reconfirms that inclusion of no-slip

condition causes instability of PNCF under linear stability analysis.

Apart from this, the instability boundary of PNCF as a limiting case of PMCF for

some other permeability and porosity are also calculated, where the quadratic relationship

between density and temperature in the body force term is replaced by the Boussinesq

approximation and the governing equations by VANS with F=0. For example, when the

permeability of the medium is replaced by 2.5×10−6m2 and the porosity by 0.9 then the
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critical values of ∆T for different half widths: 1.58cm, 5cm, and 15.8cm of the channel

are given as 4.18oC, 8.58oC, and 4.75oC, respectively, for water saturated porous medium

channel. Furthermore, when the half width of the channel is fixed at 5cm then the criti-

cal values of ∆T are 0.13oC, 8.58oC, and 150.4oC for media permeability 2.5×10−5m2,

2.5×10−6m2, and 2.5×10−7m2, respectively. This indicates that the decrease in media

permeability increases the critical value of ∆T . Similar results are also observed when the

porous medium is saturated by air.

2.4 Results and Discussion

The present work intends to offer a comprehensive account of linear stability analysis of

parallel mixed convective flow (PMCF) in a differentially heated vertical channel filled

with fluid saturated high permeable porous medium. Accordingly, the following analysis

is made when the channel is filled with metallic foam or any other porous medium having

permeability in the range of 10−5m2 to 10−7m2 in SI unit with porosity of 0.9. Rigorous

numerical computations reveal that the least stable mode is two-dimensional and spanwise

independent (i.e. β = 0). This is in agreement with the results obtained while studying the

linear stability of mixed convection with linearly varying wall temperature of the vertical

channel [5, 23]. Special attention is given on the influence of Prandtl number on instability

mechanism of the flow. We present the results for a wide range of Pr to describe the effect

of important parameters related to the porous medium such as Darcy number and modi-

fied Forchheimer number on the instability boundary along with scale analysis at the least

linearly stable point. It has been done by considering a wide range [10−2, 103] of Pr and

different values of Da. Furthermore, the range for parameters such as Re and F ′ considered

in this study are [100, 5000] and [0, 5×103], respectively. The results are described using

stability boundaries formed by critical modified Grashof number and wave numbers with

respect to Prandtl number, Reynolds number and modified Forchheimer number.
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Figure 2.3: Instability boundaries in (a) (Pr,Gr′)-plane and, (b) (Pr,α)-plane when Re =
1000 and, F ′ = 1000.

2.4.1 Influence of Prandtl number

To understand the relative influence of momentum diffusivity and thermal diffusivity on the

instability boundary points, we have discussed about the instability boundary as a function

of Pr for three different values (10−2, 10−3, 10−4) of Da when Re and modified Forch-

heimer number are fixed at 103. The instability boundary curves in (Pr,Gr′) and (Pr,α)

planes are shown in Figure 2.3. It can be seen from this figure that a higher value of Da

results in a lower value of critical Gr′, i.e., Da has a destabilizing effect on the flow. For

example, the basic flow becomes unstable even at Da = 10−2 and Gr′ around 849 when the

fluid is oil (Pr = 100). This may be the consequence of the fact that in a higher permeable

porous medium the velocity of the basic flow is high (see Figure 2.2), which can be made

unstable for a relatively smaller value of Gr′ (i.e., for a low temperature difference between

the walls). Furthermore, from the above figure as well as Table 2.1 it can be pointed out

that for Da = 10−2 the critical Gr′ < Gr′i(= 2560) for Pr > 30. This indicates that the

appearance of point of inflection in PMCF is necessary for instability when Pr≤ 30, which

is also true for Da = 10−3. For Da = 10−4, the critical value of Gr′ is less than 22815 for

Pr > 80, therefore the appearance of point of inflection acts as a necessary condition for
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instability when Pr ≤ 80.

A close inspection of the above graph (see inset Figure 2.3(a)) reveals an important

feature of the instability curve in the vicinity of Pr = 0.01, where a wavy characteristic

of the profile can be seen. Let this vicinity be defined as first regime. The length of

this regime is highly sensitive to Da. From our numerical experiments it has been found

that the first regime for Da equal to 10−2 sustains upto a threshold value of Pr (Pr = 2),

whereas the same for Da equal to 10−3 and 10−4 sustains upto Pr = 1.3 and Pr = 0.3,

respectively. Similar observation is also reported by Su and Chung [102] while studying the

linear stability analysis of mixed-convection flow in a vertical pipe. Note that the variation

of wavenumber also shows a wavy profile in the first regime (see inset Figure 2.3(b)). Let

the complement of the first regime of Pr be defined as second regime, where a monotonic

decrease in Gr′ on increasing Pr takes place.

To understand the instability mechanism in the above two regimes we recall that the

importance of momentum and thermal diffusions is measured by (Re)−1 and (RePr)−1,

respectively. So, the Prandtl number signifies the relative efficiency of momentum and

thermal diffusion. Hence, in general a low value of Pr causes an increase in the thermal

diffusivity which itself suppresses the thermal fluctuations in the flow field. As a result, the

flow remains stable even for larger values of Gr′. Although it gives a qualitative explanation

of destabilizing characteristic of Pr, i.e., an increase in Pr decreases the critical value of Gr′

which can be seen in the second regime; but it does not give any clue regarding the wavy

nature of the instability curve in the first regime and its dependence on media permeability.

To shed more light on the above results we have plotted the growth rate of disturbance

in the neighborhood (Gr′ = Gr′(1+ 0.01)) of the critical point in Figure 2.14. As can

be seen the growth rate in the first regime is sinuous for all Da, whereas in the second

regime, depending on the value of Da, initially the growth rate oscillates upto a small value

of Pr and beyond that it decreases smoothly with Pr. The characteristic of the instability

boundary curve in Figure 2.3 could be further explained through the plots of eigenfunctions

at the critical level for û, v̂, and θ̂ , specially for very low and high values of Pr. It is known
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Figure 2.4: Growth rate (αci) as a function of Pr for (a) Da = 10−2, (b) Da = 10−3 and,
(c) Da = 10−4.

from the literature [20, 102] that in purely fluid domain the instability in the liquids (Pr = 7)

or heavy oil (Pr = 100) is primarily due to thermal buoyant force or thermal disturbances

while velocity disturbances are more responsible for the instability in mercury (Pr = 0.02)

or gaseous fluids (Pr = 0.7).

Figure 2.5, which presents eigenfunction curves for four values 0.02, 0.7, 7, and 100

of Pr at Da = 10−3, gives similar impression for all the above mentioned fluids except for

fluid with Pr = 7, where the magnitude of the velocities is higher than the magnitude of

the temperature disturbance eigenfunction. The magnitude of the temperature disturbance

eigenfunction is much higher than those of the velocity for fluid with Pr = 100 and it is

reverse for fluid with Pr = 0.02. Apart from these, compared to Pr = 100 the eigenfunc-

tions for Pr = 0.02 or 0.7 or 7 are more wavy in nature, which may be the consequence

of the fact that the corresponding PMCF velocity profile contains point of inflection and

has back flow characteristic. Similar characteristics of eigenfunctions are also observed

for other two values 10−2 and 10−4 of Da but not shown here. The difference for Pr = 7

in Figure 2.5 may be justified through the suggestion by Yao and Rogers [129] that “for

larger-Prandtl number fluids, the flow becomes unstable mainly due to the disruption of the
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Figure 2.6: KE spectrum as a function of Pr for (a) Da = 10−2, (b) Da = 10−3, (c) Da =
10−4, when F ′ = 1000 and Re = 1000.

velocity profile, induced by the temperature fluctuation”, however it will be clarified via

energy spectrum analysis at critical level.

Note that the stability of the mixed convection flow depends on the suppression of

both thermal as well as kinetic fluctuations. Therefore, both kinetic as well as thermal

energy spectrum at the critical level must be analyzed. However, our numerical experiments

reveal that the terms Td and Tc in thermal energy balance Equation (2.16) are negative and

positive definite quantities respectively, and balance each other completely. So, we have

taken the help of KE spectrum to identify the type of instability as well as to understand

the instability mechanism. In contrast to the purely viscous medium, where the production

of KE is solely suppressed by viscous dissipation, in porous medium it can be suppressed

by surface drag, form drag as well as viscous dissipation.

The variation of KE as a function of Pr at the critical level for three different values

10−2, 10−3, 10−4 of Da is shown in Figures 2.6(a) to 2.6(c). Since the variation of insta-

bility boundary beyond Pr = 100 is similar in nature, so we have taken the domain of Pr

as [0.01, 100] to plot the KE. Before identifying the type of instability we define the three

possible types: thermal-shear, interactive, and thermal-buoyant instability. Here, the type
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of instability is defined on the basis of contribution of energy production (or, destruction)

by shear term (Es) and buoyant term (Eb). If in the energy balance, contribution of Es (Eb)

is more than 70% then the type of instability is defined as thermal-shear (thermal-buoyant)

else it is defined as interactive. As can be seen from Figure 2.6 that in a very small range

of Pr in the vicinity of Pr = 0.01 KE production due to shear force is most dominant in

balancing the dissipation of KE due to surface drag (ED), viscous dissipation (Ed), as well

as form drag (EF ). So similar to purely fluid domain in linearly heating case [102], here

also for these value of Pr the type of instability of the basic flow is thermal-shear. Based

on the value of Da the thermal-shear type of instability continues upto a least value of Pr.

Beyond that least value the contribution of both terms Es and Eb becomes equally impor-

tant giving rise to interactive type of instability. It continues upto a threshold value of Pr.

However, on increasing Pr beyond that threshold value the contribution of Es becomes less

than 30% and the type of instability becomes thermal-buoyant. Furthermore, the range of

Pr in which above types of instability appear is sensitive to the value of Da. For example,

the range of Pr in which thermal-shear type of instability appears for Da equal to 10−2,

10−3 and 10−4 are [0.01,0.05], [0.01,0.04] and [0.01,0.02], respectively. However, the cor-

responding range of Pr in which the type of instability is interactive are [0.06, 16], [0.05,

0.8] and [0.03, 0.1], respectively. Apart from these, a close inspection of the dissipation of

KE reveals three following important facts. First, on decreasing Da the dissipation of KE

through form drag (EF ) decreases and through surface drag (ED) increases, which may be

the consequence of fixing the value of F ′ for all the three considered values of Da and also

the fact that decreasing media permeability increases the surface drag. Second, the dissi-

pation of KE via viscous dissipation (Ed) is negligible for Da = 10−4. Third, for Da equal

to 10−2 or 10−3, dissipation of KE via form drag takes dominant role for Pr < 1 as well as

for Pr > 30, and dissipation of KE for 1 ≤ Pr ≤ 30 is not straight forward. Furthermore,

the contribution of viscous dissipation deceases on decreasing media permeability. For rel-

atively low permeable medium (i.e., for Da = 10−4) dissipation through ED dominates in

the entire range of Pr.
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Re = 1000 Re = 5000
Da Pr Gr′c αc Gr′c αc
10−2 104 0.083 1.7 0.022 1.2

105 0.011 2.0 0.015 1.4
106 0.015 0.7 0.005 0.3

10−3 104 4.249 7.4 1.101 1.5
105 0.214 4.0 0.102 1.4
106 0.015 2.7 0.011 1.4

10−4 104 136.8 2.5 9.817 4.1
105 8.292 2.1 1.246 5.7
106 0.243 16 0.027 8.7

Table 2.4: Critical Gr′ and critical wavenumber for extremely high Pr.

Above discussion does not give any clear cut hint about the physics behind sinuous

characteristic of the instability boundary curve in first regime. In general, fluid with Pr < 1

at a relatively high temperature is compressible in nature. Also, an increase in momentum

diffusion stabilizes the flow [85]. May be the incompressible hypothesis for such type

of fluid, when the temperature difference between the two walls is reasonably high, has

resulted in such type of sinuous profile of the instability boundary curve in the first regime.

2.4.1.1 Instability in extremely high Pr fluid flow

To understand the instability boundary as well as instability mechanism when Pr is ex-

tremely high (i.e., when the fluid is cane molasses, lava or engine oil (Pr = 104 ∼ 106 ) the

critical value of Gr′ for different values of Da at F ′ = 1000 is calculated and displayed in

Table 2.4. It shows that the fully developed flow in this case is unstable in a differentially

heated vertical porous medium channel even for Gr′ < 10. From this table it can also be

pointed out that the critical Gr′ tends to zero for relatively lower value of Pr for flow in a

high permeable porous medium. An increase in Reynolds number further reduces the value

of critical Gr′. This may be the consequence of the fact that fluid flow through a higher

permeable medium requires relatively lower momentum diffusion to be unstable.
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2.4.1.2 Scale analysis at critical level

It is important to check the minimum value of wall temperature difference (∆T ) for which

the mixed convective parallel flow will become unstable. From the scale analysis we have

∆T =
Grν2

gβT L3 . Using our numerical data set of instability curve we have calculated the criti-

cal value of ∆T for water at Re = 1000 and found that it is 16.7oC for Da equal to 10−3 and

168.6oC for Da equal to 10−4. Here, considered half width of the channel is 5cm. How-

ever, if the value L equal to 5cm is replaced by 10cm then the value of critical ∆T becomes

20oC for Da equal to 10−4. The critical value of ∆T for air is also calculated at same Re

for Da equal to 10−3 and 10−4. It has been found that the value of ∆T is 12oC and 178oC,

respectively when the value of L is taken as 25cm. However, by changing the value of L to

50cm the same for Da equal to 10−4 will be 22.32oC. Note that the temperature difference

between the channel walls has been calculated from the definition of Gr which involves the

characteristic length scale L. For a given value of Darcy number, the characteristic length is

determined by the permeability (K) of the porous medium. So, for a given fluid, the choice

of permeability decides the temperature difference which can be controlled by the experi-

mentalist to obtain realistic and feasible results within the Boussinesq limit. Here, we have

used the value of ν and βT for water as 8.7× 10−7m2/s and 2.5× 10−4/oC, respectively,

whereas for air as 1.5×10−5m2/s and 3.4×10−3/oC, respectively. As, this is a theoretical

study, so the choice of permeability is at our disposal to suit our requirements.

May be the value of ∆T would differ on changing the bulk velocity, i.e., on changing

the value of Re. Therefore, it is necessary to understand the variation of critical Gr′ in the

(Re,Gr′)-plane for different values of Pr, which is undertaken in the next subsection.

2.4.2 Influence of Reynolds number

From our rigorous numerical analysis we have found that for Da = 10−3 the saturation of

Gr′ as a function of Re could be achieved in the range [100, 5000] of Re. Consequently,

the value of F ′ is fixed at 103. Figure 2.7 shows the variation of instability boundary in
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Figure 2.7: Instability boundaries in (a) (Re,Gr′)-plane and, (b) (Re,α)-plane when F ′ =
1000 and Da = 10−3.

(Re,Gr′) and (Re,α)-planes. The first notable feature is that similar to the mixed convec-

tion in linearly heated channel flow (purely fluid medium [20], channel filled with porous

medium [6]) here also each instability boundary curve in (Re,Gr′)-plane shows a rapid de-

crease in Gr′ as Re is increased from very small value to a threshold value. However, as Re

is increased beyond this threshold value the change in Gr′ is gradual and negligible, and

finally leads to saturation. The corresponding wave profile also shows the same character-

istic of gradual decreasing (see Figure 2.7(b)). Here, the threshold value of Re is defined

by that value of Re beyond which the rate of change in the critical Gr′ as a function of Re

is less than 5%.

The second notable feature is that the saturation of instability curve with higher Pr

is achieved much earlier than the same with lower Pr. The rapid change in the critical

value of Gr′ for smaller values of Re is the consequence of following fact. When the

flow is slow then under the considered heating condition denser fluid from the left part

of the channel has the tendency to move into the lighter region. The denser fluid will

also carry its inertia when it moves into the region of lighter fluid which has a higher

velocity. This invites a change in the concavity of the velocity profile (see Figure 2.2)
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and introduces a local shear layer as well as surface drag. As a consequence, a point of

inflection appears in the velocity profile. In this situation, a mild increase in Re accelerates

the tendency of advection in the direction of the hot wall and more denser fluid can be

transported upward to destabilize the flow. Hence, the critical value of Gr′ falls drastically.

This mechanism is similar to the ‘lift-up’ mechanism in the boundary layer in the presence

of streamwise vortices [69]. Note that when the Reynolds number is higher than a certain

value, which is a function of other governing parameters, further increase will result in a

negligible change in the convection effect to destabilize the flow and the change in critical

Gr′ becomes negligible. This threshold value of Re is a function of Pr. Furthermore, it can

be pointed out from Figure 2.7(a) that the instability boundary curves of mercury as well

as air merged with each other beyond Re equal to 2500. The corresponding wave profiles

also give similar impression. To elucidate the type of instability as well as underlying

instability mechanism as a function of Re for mercury, air, water, and oil, Figure 2.8 is

plotted. From this figure three interesting observations can be highlighted. First, the type

of instability for mercury is thermal-shear, for water and heavy oil it is thermal-buoyant,

and for air it is interactive in the entire range of Re. Second, as Re is increased from 0 to

5000, the contribution of ED in the dissipation of disturbance KE for fluids with lower Pr

such as 0.02(mercury) and 0.7(air) increases, but for fluids with higher Pr, such as water

or oil, the contribution from ED decreases whereas EF increases and plays a dominant role

in the dissipation of the disturbance KE. Finally, though the contribution of Ed increases in

balancing the disturbance KE as a function Re but its maximum contribution remains less

than 25%. The characteristic of Ed is opposite for fluid with Pr = 100, whereas it depends

on Re for Pr = 7.

Before closing this subsection we have calculated the minimum value of ∆T as a

function of Re for which the PMCF will be unstable. It has been found that when Da is

equal to 10−3 the minimum ∆T for water is achieved at Re = 400 (see Figure 2.9) whereas

the same for air is achieved at Re= 1500 (figure not shown). The minimum values for these

two fluids are 13.3oC (when K = 2.5× 10−6m2) and 22.3oC (when K = 4× 10−5m2),
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respectively. We have also seen that the minimum values of ∆T for which the PNCF of

water and air become unstable are 8.58oC (when K = 2.5× 10−6m2) and 24.5oC (when

K = 4× 10−5m2), respectively. This indicates that the forced convection stabilizes the

flow in the case of water whereas it destabilizes the flow for fluid such as air. However, if

media permeability is changed to 2.5× 10−7m2 by considering Da = 10−4 our numerical

experiments reveal that the minimum value of ∆T for PMCF of water is 166oC which is

achieved at Re = 700, whereas the same for PNCF of water is achieved at 150.4oC. This

implies that the forced convection in this situation does not play significant role on the

stability of the flow. We have also checked that when instability of PMCF is characterized

by Es then the critical ∆T for PNCF is greater than the same for PMCF. So, it can be

generalized that when the type of instability is interactive or thermal-shear the minimum

critical ∆T for PMCF will be less than the same for PNCF and it will be other way when

the type of instability is thermal-buoyant.
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2.4.3 Influence of modified Forchheimer number

So far in our discussion we have fixed the value of F ′. But, the inertia due to form drag may

play a significant role in the flow dynamics as well as instability mechanism [60]. Apart

from this, it is also known that Forchheimer term alongside the Darcy term is appropri-

ate under such conditions where Brinkman’s (Laplacian) term looks incongruous. In the

present problem Brinkman’s term has been considered to satisfy the no-slip boundary con-

dition. Therefore, the appropriateness of Forchheimer term should be checked by studying

the flow regime with and without Forchheimer term in the momentum equation. Conse-

quently, the impact of form drag on the flow was seen in the parallel flow and basic state

subsection through Figure 2.2. It was found that the point of inflection in the flow profile

as well as back flow characteristic of the flow die out on incorporating the form drag in

the momentum balance equation. Of course, how fast the above characteristics of the flow

will damp out depends on the permeability of the medium. For relatively high permeable

medium the damping characteristic of F ′ will be relatively high. Now we are curious to

see this impact on the instability boundary. Furthermore, it is also expected that the inertia

force should depend on type of fluid. Therefore, in what follows, the effect of form drag

on the instability boundary for different Pr is discussed. Figures 2.10(a) and 2.10(b) show

the variation of critical Gr′ in (F ′,Gr′)-plane as well as critical α in (F ′,α)-plane, when

Da and Re are fixed at 10−3 and 103, respectively. Figure 2.10(a) discloses three important

findings. First, for Pr equal to 0.7, 7 or 100 there exist a minimum value (Fo) of F ′ below

which the effect of form drag on the critical Gr′ as well as corresponding wave number

is negligible. From the numerical data set we have found that the value of Fo is around

50. Second, depending on the value of Pr, there exist a threshold value of F ′ above which

F ′ stabilizes the flow. Third, it is not necessary that the inclusion of form drag into the

momentum balance equation will always stabilize the flow. It depends on the type of fluid.

As an example, for fluid as mercury, when F ′ is increased from 1 to 10 the critical value

of Gr′ decreases linearly with the relation: log Gr′ = -0.3743 log F ′ + 5.317. The critical

value of Gr′ also decreases on further increasing the value of F ′ upto 300. However, as



50

F

G
r

100 101 102 103
102

103

104

105

106

5x103

Pr = 0.02

Pr = 7

Pr = 100

Pr = 0.7

(a)

’

’

F

α

100 101 102 103
0

5

10

15

20

Pr = 100

Pr = 7

Pr = 0.7

Pr = 0.02

5x103

(b)

’

Figure 2.10: Instability boundaries in (a) (F ′,Gr′)-plane and, (b) (F ′,α)-plane when Da =
10−3 and Re = 1000.

F ′ is increased beyond 300 the scenario becomes reverse, i.e., increasing the value of F ′

increases Gr′. In the case of Pr = 0.7 it can be seen that the critical value of Gr′ decreases

as F ′ is increased from 50 to 300 and increases as F ′ is increased beyond 300.

To understand the variation of energy spectrum as a function of F ′ for above four

values of Pr, Figures 2.11(a) to 2.11(d) are drawn. As can be seen from this graph, the

type of instability for Pr equal to 7 or 100 is thermal-buoyant and remain unaffected by F ′,

however, the same for Pr equal to 0.02 or 0.7 is affected by F ′. The type of instability for

mercury is mainly thermal-shear except in a small neighborhood around F ′ = 100 where

it is interactive. In the case of air the flow instability is interactive for F ′ ≤ 50 and in a

small neighborhood around F ′ = 1000. The change of type of instability from interactive

to thermal-buoyant at F ′ = 51 is sudden, however, the same around F ′ = 1000 is gradual.

Note that the corresponding wavenumber profile changes smoothly as a function of F ′

except at F ′ = 51 where it experiences a sudden fall (see Figure 2.10(b)). Furthermore,

the energy spectrum of Pr = 0.02 also shows that in the region of F ′ in which the critical

logarithmic value of Gr′ decreases linearly with the logarithmic value of F ′, there is a

destruction of disturbance KE due to the action of buoyant force in the energy balance.
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Figure 2.11: KE spectrum as a function of F ′ for (a) Pr = 0.02, (b) Pr = 0.7, (c) Pr = 7,
(d) Pr = 100 when Re = 1000 and Da = 10−3.
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Note that in order to understand stability mechanism under non-Darcy model Volume

average Navier-Stoke’s (VANS) equation without convective term ρ f v.∇v/ε2 an attempt is

also made in Appnendix D.

2.5 Summary and Conclusions

We have analyzed the stability of parallel mixed convective flow (PMCF) in a differentially

heated vertical channel filled with incompressible fluid saturated porous medium. The

non-Darcy VANS equation is used to understand the stability mechanism of PMCF. The

flow is controlled by six governing parameters: Da, Gr′, Re, F ′, Pr, and ε . The stability

of the basic flow is examined primarily for the effect of Pr in the range of [0.01,1000].

The instability boundary for extremely large values of Pr is also investigated. The entire

study is made mainly for three different values (10−2, 10−3, 10−4) of Da with porosity

fixed at 0.9. Furthermore, the range of Re and F ′ considered in this study are [100, 5000]

and [0, 5000], respectively. The stability analysis of PMCF is carried out after a partial

reinvestigation of Kwok and Chen’s [62] numerical study. Reinvestigation of the Kwok

and Chen’s [62] numerical study confirms that Gill’s [41] result on stability of PNCF is not

valid when no-slip condition and inertia impact are taken into account.

Similar to parallel flow due to linearly varying wall temperature [5], in the present

problem also the basic flow possesses three different types of instability, namely thermal-

shear, interactive, and thermal-buoyant, which depends on controlling parameters, mainly

Pr. The regimes of above three instabilities over the domain of Pr are functions of Da as

well as Re. Stability analysis also reveals that when Re is fixed at 1000, the appearance of

point of inflection in the basic velocity for fluid with Pr less than 30 acts as a necessary

condition for instability for all considered values of Darcy number. For a very small range

of Pr, in the vicinity of Pr = 0.01, velocity disturbances are more responsible for the

instability and kinetic energy production due to shear force is most dominant in balancing

the dissipation of KE. So, for these values of Pr the type of instability of the basic flow
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is thermal-shear. On the other hand, for large values of Pr (i.e., in the case of water or

heavy oil), the instability is primarily due to the thermal disturbances and KE production

due to buoyant term is most dominant in the energy balance and results in thermal-buoyant

instability of the flow. The instability boundary for very larges value of Pr, say engine oil,

indicates that PMCF in the channel becomes unstable even for Gr′ < 10. In contrast to the

flow in purely fluid medium, where the production of KE is solely suppressed by viscous

dissipation, in porous medium the KE can be suppressed by surface drag, form drag and

viscous dissipation. For relatively low permeable medium (i.e., for Da = 10−4) dissipation

through ED dominates in the entire range of Pr for Re = 1000. From the influence of

modified Forchheimer number it has been found that for Pr equal to 7 or 100 there exist a

minimum value (Fo) of F ′ below which the effect of form drag on the critical Gr′ as well

as corresponding wave number is negligible and above this minimum value F ′ stabilizes

the flow. It is also found that form drag may destabilize the flow for very less viscous

(i.e., Pr <1) fluid. The type of instability for Pr equal to 7 and 100 is thermal-buoyant

and remains unaffected on varying F ′, however, the same for Pr equal to 0.02 and 0.7 gets

affected by F ′.

For the range of parameters considered in this study, the scale analysis reveals that

when the permeability of the medium is less than or equal to 2.5×10−6m2 and half width

of the channel is 5cm, then the critical value of ∆T for PMCF of water is higher than the

same for PNCF (e.g., ∆T for PNCF and PMCF when K = 2.5× 10−6m2 are 8.58oC and

13.3oC, respectively), which is the consequence of thermal-buoyant instability of the flow.

Note that in the case of PMCF there exists an optimum value of Re, depending on Da and

F ′, at which the value of ∆T corresponding to critical Gr′ is least (see Figure 2.9). Thus,

the flow will remain stable for all Re if the value of ∆T is less than the above mentioned

least value. Apart from these, when the type of instability is interactive or thermal-shear the

minimum critical ∆T for PMCF will be less than the same for PNCF and will be other way

when the type of instability is thermal-buoyant. Also it is expected that for a given media

permeability there will be a least value of Pr above which the instability of the flow will
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take place for wall temperature difference less than 20oC, i.e., results from linear stability

analysis using Boussinesq approximation will be more realistic. Overall, we hope that these

findings will motivate and act as a guideline for those who are interested to study mixed

convective flow through fluid saturated metallic foam or high permeable porous media used

as a heat exchanger in some realistic problems.

We have investigated the instability of fully developed mixed convective flow using

Boussinesq approximation along with the assumption that the solid porous matrix and sat-

urated fluid are in local thermal equilibrium state. However, the present study reveals that

when the porous medium is saturated by certain type of fluids the instability takes place

for very large value of wall temperature difference. So, in that situation non-Boussinesq

approximation along with local thermal non-equilibrium state between the two phases of

saturated porous medium will be more appropriate. Apart from this, the prediction of wide

band nature of sequence of instabilities of the detailed flow pattern and temperature dis-

tribution at a point away from the critical is beyond the scope of linear stability analysis.

Consequently, a weakly non-linear stability analysis or direct numerical simulation of the

present problem is required to understand the same, which could be worked out in the

framework of future studies.
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Appendix A: Linear disturbance equations

The governing linear equations for the infinitesimal disturbances are given as,

dû
dx

+ iα v̂+ iβ ŵ = 0, (A.1)
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)

û+Re
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and, after eliminating the pressure we get,

d4û
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dû
dx
−βGr′θ̂ −

(
d2η̂

dx2 − (α2 +β
2)η̂

)
+

1
Da

η̂

+iαRe
1
ε

(
1
ε

V0− c
)

η̂ +

(
β 2

α2 +β 2 +1
)

F ′|V0|η̂ = 0, (A.7)

dΘ0

dx
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where, η̂ = β v̂−αŵ. Boundary conditions on the velocity as well as temperature pertur-

bations are applied at both walls. The velocity fluctuations satisfy the no-slip condition at

the walls and the temperature perturbation satisfy the isothermal condition at the walls, i.e.,

û =
dû
dx

= θ̂ = η̂ = 0 at x =±1. (A.9)

Appendix B: Eenergy growth rate around the critical point

To see the variation of δK around the critical Gr′, the energy graph in (Gr′, δK) plane

for four different values (mercury, air, water, and oils) of Pr has been plotted in Figure

2.12, where Da, Re, and F ′ are fixed at 10−3, 103 and 103, respectively. Note that the

above graph is plotted at corresponding critical α . It is clear from the figure that for all

the above fluids, growth rate of KE is negative when Gr′ < Grc and equal to zero at Gr′c.

However, as Gr′ is increased further the growth rate becomes positive.

Gr
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Figure 2.12: δK as a function of Gr′ for Pr=0.02, 0.7, 7, 100 when Re = 1000, Da = 10−3,
and F ′ = 1000.
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Appendix C: Convergence of numerical methods

N Least stable eigenvalue
30 1.676468955047174 - 0.016075576125170i
40 1.676447163990309 - 0.016065443627865i
50 1.676447117345247 - 0.016065306170580i
51 1.676447163863406 - 0.016065361568882i
55 1.676447067018138 - 0.016065296350136i
60 1.676447157345265 - 0.016065362329521i

Table 2.5: Convergence of the least stable eigenvalue by Chebyshev collocation method for
PMCF. Here, Pr=7, Re=1000, Gr′=5000, F ′=1000, Da = 10−3, ε=0.9, α=1, β=0.

Least stable eigenvalue
N Galerkin method Chebyshev Collocation method
5 -0.252070700630408 - 0.028228437240528i -0.223186954854920 - 0.017936853498893i
10 -0.250547422539085 - 0.030461649384641i -0.247597084941830 - 0.028924833000287i
15 -0.249444380595507 - 0.030999795632102i -0.248961909113281 - 0.031218579850456i
20 -0.248515265197424 - 0.031295513726534i -0.248358581351306 - 0.031429730361078i
25 -0.248216361382521 - 0.031399358180723i -0.248234567013510 - 0.031429434415217i
30 -0.248183532738252 - 0.031407053725102i -0.248177272797637 - 0.031423269854840i
35 -0.248170353673825 - 0.031418483695819i -0.248171166586757 - 0.031423879120650i

Table 2.6: Convergence of the least stable eigenvalue by Galerkin and Chebyshev colloca-
tion method for the problem of Kwok and Chen [62]. Here, Ra=308, α=2.6.

Appendix D: Linear stability analysis

The prime intension in this section is to study the instability mechanism of fully de-

veloped mixed convection flow in a differentially heated vertical channel filled with porous

medium by using a model that does not contain convective term in the volume averaged

Navier-Stokes equations. Accordingly, we present the results to describe the effect of im-

portant parameters related to porous medium such as Darcy number and porosity on in-

stability boundary curve. It has been done mainly for two distinct category of fluids with

Pr = 7 (i.e., water) and 70 (i.e., oil), considering a wide range 10−7 to 10−2 of Da. The per-

meability of the medium is a function of porosity, consequently when 10−7 ≤ Da ≤ 10−5
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Figure 2.13: Variation of critical Gr′ as a function of Re when F ′ = 1.

porosity is fixed at 0.4 and when 10−4 ≤ Da ≤ 10−2 the same is fixed at 0.9. Following

the work by Bera et. al.[5, 6], the range of Reynold’s number considered in this appendix

for porosity 0.9 and 0.4 are [10,5× 103]. and [103, 5×104], respectively. Heat capacity

ratio is fixed at 1. Based on the media permeability, two situations: (i) HP and (ii) LP are

introduced. HP is defined as flow in high permeable porous medium (10−4 ≤ Da≤ 10−2)

with porosity equal to 0.9, whereas LP is defined as flow in relatively low permeable porous

medium (10−7≤Da≤ 10−5) with porosity equal to 0.4. Instability mechanism of the basic

flow under both situations is discussed subsequently.

The results are described using stability boundaries formed by critical (Gr′) as well

as critical wavenumber with respect to Reynolds number (Re). In the case of HP the linear

instability boundaries in the (Re,Gr′) plane are plotted in figure 2.13 for different values

Da and both values of Pr. As can be observed from the above figure, a higher value of Da

results in a lower value of critical Gr′. That is, the effect of increasing media permeability

destabilizes the flow. The basic flow becomes unstable even at very low values of Gr′, i.e.,

around 270(145) when fluid is water (oil) for Da = 10−2. The Pr = 70 case is very close to

that of Pr = 7 except that it is comparatively less stable for Pr = 70. Although the general

trend for Pr = 7 is similar to that of Pr = 70, but there is a fundamental difference between
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Figure 2.14: Variation of critical α as a function of Re: (a) Pr = 7 and (b) Pr = 70.

the instability of these two fluids. The basic laminar flow does contain point of inflection

for Pr = 7 becasue the least value of critical Gr′ as a function of Re is greater than Gr′i for

all the three values (10−2, 10−3, 10−4) of Da (see table 2.1). However, for Pr = 70 there

exist a minimum value of Re shown in table 2.1 beyond which the laminar basic flow does

not contain point of inflection even though the flow is linearly unstable. This fundamental

difference in the profile of the laminar base flow causes non-similar trends in the neutral

stability curves in (Re, α) plane for Pr = 7 and Pr = 70 for all the above values Da. This

is shown in figure 2.14.

Furthermore, each instability boundary curve in (Re,Gr′) plane also shows a rapid

decrease in critical Gr′ as Re is increased from very small value to a threshold value. How-

ever, as Re is increased beyond this threshold value the change in critical Gr′ is negligible.

The threshold value of Re is a function of Da as well as Pr. Quantitatively, when Re is fixed

at 100, a stepwise decrease in Da from 10−2 to 10−3 and 10−3 to 10−4 changes the critical

Gr′ from 707 to 41367 and 41367 to 3.2464×106, respectively. Hence, for the same order

of reduction in permeability of the porous medium, the critical Gr′ first increases by 58.5

times and then 78 times. However, when the critical Gr′ becomes almost independent of

Re (for 4000≤ Re≤ 5000) the increase in its value for the above stepwise decrease of Da
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Figure 2.15: Kinetic energy spectrum at the critical level for (a) Da= 10−2, (b) Da= 10−3,
and (c) Da = 10−4 when Pr = 7 and F ′ = 1.

is around 8 and 32 times, respectively.

The rapid change in critical Gr′ for smaller values of Re is best on the mechanism

similar to the ‘lift-up’ mechanism in the boundary layer in the presence of streamwise vor-

tices, which is already explained in the result section of this chapter. Note that when the

Reynolds number is higher than a certain value, which is a function of other governing

parameters, further increase will result in a negligible change in the convection to desta-

bilize the flow so that the change in critical Gr′ becomes negligible. As compared to the

disturbance energy due to shear, bouyant and viscous forces in fluid flow without porous

medium, a new source of disturbance energy caused by surface drag appears in the porous

medium. For the present flow, the appearance of point of inflection in the velocity profile is

a result of these three disturbance forces acting on the flow inside porous medium: viscous,

bouyant and surface drag. To shed more light on the instability mechanism as well as to

understand the role of Laplacian operator in it, kinetic energy spectrum at the critical level

as a function of Re is plotted in figure 2.15 for Pr = 7. As can be seen from the above

figure, first, the major part of dissipation in the whole domain of Re is due to surface drag.

Second, the contribution of viscous dissipation decreases on decreasing the permeability
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Figure 2.16: Variation of ∆T (oC) w.r.t. Re for various values of half width of the channel:
(a) Da = 10−2, (b) Da = 10−3 and (c) Da = 10−4 for Pr = 7.

of the porous medium. Although the contribution of Ed in balancing the kinetic energy

production decreases but its contribution even for Da equal to 10−3 is not negligible. Eb

is completely balanced by ED for Da equal to 10−4. Quantitatively, when Re = 100, the

percentages of contribution of Ed in balancing Eb for Da equal to 10−2, 10−3 and 10−4 are

25.5, 11 and 4.8 respectively, whereas the same when Re = 5000 are 42.4, 28.8 and 4.4,

respectively. The contribution of Ed and ED in balancing the buoyant production depends

on the values of Da as well as Re. Therefore we can conclude that for very low permeable

medium Eb will be completely balanced by ED.

As the density of fluid is approximated in the body force term by the Boussinesq

approximation, so appropriate length scale and permeability of the porous medium is found

out from dimensional analysis using the definition of Gr. Figure 2.16 shows what should

be the appropriate half width of the channel in order to maintain temperature difference

across the channel for laminar flow of water to take place under Boussinesq approximation

[64]. For Da = 10−2, corresponding to L = 2cm, the temperature difference across the

channel is less than 20 oC upto Re = 2000. The corresponding permeability of the porous

medium is 4×10−6m2. But, on increasing the Darcy number, channel with larger half width
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Figure 2.17: Variation of critical Gr′ as a function of Re: (a) Pr = 7 and (b) Pr = 70 for
Da = 10−5,10−6 and 10−7.

is required for Boussinesq approximation to hold. For example, when Da = 10−3 and 10−4

the corresponding half widths of the channel should be at least 4cm and 16cm, respectively.

In order to understand the variation of instability boundaries for relatively low per-

meable media (i.e., LP) figure 2.17 is plotted using Darcy model as well as VANS without

convective term. Qualitatively, here also the instability boundaries vary in a similar way

as in the case of HP. However, following important observations can be pointed out. For

Pr = 7, the instability curves under both models merge on each other for all the three con-

sidered values of Da. This result is also true for Pr = 70 except for Da = 10−7 (see figure

2.17b). In general, the basic flow is more stable under Darcy model than under Darcy-

Brinkmann model. For both models the instability curve possesses a jump for Pr = 70

when Da = 10−6 and 10−7.

So far we have discussed the role of Laplacian operator and instability mechanism

for different porous media with varying permeability but fixed porosity. Now we are in-

terested to analyze the instability mechanism and its dependence on porous media whose

permeability is varied with porosity. The critical Gr′ and critical α are calculated as a func-

tion of Da for two different cases: (i) constant porosity (CP) and (ii) variable porosity (VP).
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Figure 2.18: Variation of critical Gr′ for constant porosity (CP) and variable poristy (VP)
for (a) Pr = 7, and (b) Pr = 70 using Carman-Kozeny relation.

For case (ii), the well known expression relating the permeability of a porous medium with

its porosity called as Carman-Kozeny relation, i.e., K = D2
ρε3/180(1− ε)2 has been used.

Here, K is permeability of the medium, ε is porosity, and Dρ depends on the integration of

the density function for the distribution of particle diameters. The above relation is found to

give satisfactory results when the porous medium is filled with particles of approximately

spherical shape and whose diameters fall within a narrow range [76]. To analyse the effect

of varying porosity figure 2.18 is plotted for a relatively high and a low permeable porous

medium at Re equal to 500 and 50000, respectively. As can be seen from the above figure

that the instability curves for VP and CP in (Da,Gr′) plane almost merge on each other

when Pr = 7. However the difference between both curves for Pr = 70 is more as com-

pared to Pr = 7. It is also true for low permeable situation (LP) under Darcy model (figure

not shown). As it has been observed in figure 2.16 that the critical values of ∆T across

the channel width for relatively high permeable porous medium, i.e., when Da is equal to

10−2,10−3 and 10−4 are well within the Boussinesq limit. But the same for relatively low

permeable porous medium, i.e., when Da is equal to 10−5,10−6 and 10−7 is not true. This

shows that the basic flow is linearly stable as far as Boussinessq approximation holds. The
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length of half width of the channel or permeabilty required for validity of the Boussinesq

approximation is very high which is not feasible in realistic problems. Thus, the finite am-

plitude analysis by deriving a cubic Lanadu equation in the next section is carried out only

for Da equal to 10−2,10−3 and 10−4.

Some remarks:

Linear stability results for relatively high permeable porous medium show that the

basic flow becomes unstable under mild heating conditions such that the Boussinesq ap-

proximation holds. The half width of the channel required for fully developed mixed con-

vection flow to become unstable is 2cm, 4cm and 16cm when Da = 10−2,10−3 and 10−4,

respectively. In the case of Pr = 7 the basic flow contains point of inflection when the flow

is linearly unstable but in the case of Pr = 70 it is true only upto a certain value of Re. The

above results are produced by keeping the porosity fixed. But, the variation of porosity and

permeability by using the Carman-Kozeny relation showed negligible change in the linear

instabilty boundaries. The byouant instabililty is the dominant mode of instability and the

major part of dissipation in the whole domain of Re is due to surface drag.



Chapter 3

Linear stability of mixed convection flow

in differentially heated vertical channel

filled with porous-medium under LTNE

state

The linear instability of parallel flow induced by external pressure gradient and buoyancy

force in a differentially heated vertical channel filled with a fluid-saturated porous medium

under local thermal non-equilibrium state is analyzed. This study is conducted to get a

better perspective of how two different theories, namely local thermal equilibrium and

local thermal non-equilibrium, of transfer of energy between solid and fluid phases inside

the porous medium affect the instability of the considered flow. The interphase heat transfer

coefficient (H) and porosity scaled thermal conductivity ratio of fluid and solid phases (γ)

are new parameters in LTNE state whose effects are analyzed.

The objective of the present study is to analyze the stability characteristics of PMCF

in a differentially heated channel filled with high permeable porous medium under LTNE

state for fluids such as air and water. This analysis will be carried out in terms of inter-

phase heat transfer coefficient (H) and porosity scaled thermal conductivity ratio (γ). Also,

65
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Figure 3.1: Schematic of the physical problem.

we want to find the appropriate non-isothermal parameter space as a function of Prandtl

number, Reynolds number and Forchheimer number in which the parallel flow will remain

stable, and identify the type of instability through energy analysis.

3.1 Mathematical model

3.1.1 Problem definition and governing equations

The flow investigated in this paper is mixed convection in a long vertical channel of width

2L and filled with fluid saturated porous medium. It is driven by an external pressure

gradient and buoyancy force due to a constant temperature difference between the two

channel walls. The right wall at x = L and the left wall at x =−L are maintained at constant

temperatures T1 and T2 (T1 > T2) respectively, as shown in Figure 3.1. It is assumed that

the fluid and porous medium are in local thermal non-equilibrium state, the porous medium
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is homogeneous and hydro-dynamically as well as thermally isotropic, and the fluid is

incompressible. The thermo-physical properties of the fluid are assumed to be constant

except for the density dependence of the buoyancy term in the momentum equation which

is satisfied by the Boussinesq approximation, i.e., density varies linearly with temperature

as ρ = ρ f [1−βT (T −T0)], where T0 = (T1 +T2)/2. The gravitational force is aligned in

the negative y-direction. Following Nield and Bejan [76] and our work in LTE case, the

volume averaged Navier-Stokes (VANS) equation derived by Whitaker [123] is used as the

momentum balance equation and the evolution of temperature fields of the fluid and solid

phases of a rigid porous medium are given by two separate equations interconnected by

interphase heat transfer coefficient.

The non-dimensional space coordinates (x∗,y∗,z∗), dependent variables (v∗,θ ,P∗)

and time t∗ are calculated after scaling the dimensional variables as follows:

(x∗,y∗,z∗) =
(x,y,z)

L
, v∗ =

v
V 0

, θ f = (Tf −T0)/(T1−T2),

θs = (Ts−T0)/(T1−T2), P∗ =
P

ρ fV
2
0

, t∗ =
tV 0

L

 , (3.1)

where, v∗ = (u∗,v∗,w∗), θ f , θs, P∗ and t∗ are the dimensionless Darcy velocity vector, fluid

temperature, solid porous matrix temperature, pressure and time, respectively. Further-

more, V 0 and ρ f are dimensional average basic velocity (bulk velocity) and fluid density,

respectively.

After dropping asterisk, the non-dimensional governing equations can be written as

∇.v = 0, (3.2)

1
ε

∂v
∂ t

+
1
ε2 (v.∇)v+Fv|v|=−∇P+

λ

Re
(∇2v)− 1

DaRe
v+

Gr
Re2 θ êy, (3.3)

∂θ f

∂ t
+

1
ε
(v.∇)θ f =

1
PrRe

(∇2
θ f )+

H
PrRe

(θs−θ f ), (3.4)

Γ
∂θs

∂ t
=

1
PrRe

(∇2
θs)+

Hγ

PrRe
(θ f −θs). (3.5)
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Here, subscripts f and s attached to variables refer to fluid and solid properties. In the

above equations Gr, Pr, Da, Re, F , H, Γ and γ are Grashof number, Prandtl number, Darcy

number, Reynolds number, Forchheimer number, interphase heat transfer coefficient, ratio

of thermal diffusivities of fluid and solid phases, and porosity scaled thermal conductivity

ratio of fluid and solid phases respectively. They are defined as

Gr =
gβT (T1−T2)L3

ν2 , Pr =
ν

α f
, Da =

K
L2 , Re =

V 0L
ν

, F =
CFL
|K|1/2 ,

H =
hL2

εk f
, Γ =

α f

αs
, and γ =

εk f

(1− ε)ks
. (3.6)

Furthermore, g, êy, K, βT , ν , ε , CF , h, k f , ks, α f , αs denote the acceleration due to grav-

ity, unit vector along y-direction, permeability of the porous medium, volumetric thermal

expansion coefficient, kinematic viscosity, porosity, dimensionless form-drag constant, di-

mensional interphase heat transfer coefficient, thermal conductivity of the fluid, thermal

conductivity of the solid, thermal diffusivity of the fluid, and thermal diffusivity of the

solid phase, respectively. Also, λ is the ratio of effective viscosity to fluid viscosity (µ̃/µ f ).

Again, different values have been reported for µ̃ in the literature [43, 55] leading to a λ

other than unity. However, in the absence of any specific measured value, in this study

λ = 1 has been taken.

3.1.2 Parallel mixed convective flow: Basic state

The basic flow whose stability analysis is going to be carried out is steady, fully developed,

and one dimensional, i.e., PMCF. Under these conditions the governing equations (3.2)-

(3.4) are simplified into following coupled ordinary differential equations.

d2V0

dx2 −
1

Da
V0 +Gr′Θ f −F ′|V0|V0 = Re

dP0

dy
, (3.7)

d2Θ f

dx2 +H(Θs−Θ f ) = 0. (3.8)

d2Θs

dx2 +Hγ(Θ f −Θs) = 0. (3.9)
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where, V0, Θ f , Θs, and P0 are the basic velocity, basic fluid temperature, basic solid phase

temperature and basic pressure, respectively. Here, F ′ = FRe and Gr′ = Gr/Re. The

boundary conditions for the above basic state equations are given as:

V0 = 0 at x =±1, Θ f = Θs =±1/2 at x =±1. (3.10)

To solve the equations (3.7)-(3.10), the axial pressure gradient is determined using the

global mass conservation,

∫ 1

−1
V0dx = 2. (3.11)

Similar to the LTE case the above basic flow can be solved in three different cases: (i) for

Darcy flow, i.e., dropping the second order derivative and quadratic terms in the momentum

equation, (ii) for Darcy-Brinkman flow without form drag, i.e., F = 0, and, (iii) for Darcy-

Brinkman flow with form drag. The basic temperature for all the three cases is given by

Θ f = Θs = x/2. (3.12)

Thus, the basic flow velocity functions for the first two cases are same as the LTE case as

given below,

V0 =


Gr′Da

(x
2

)
+1; (Darcy flow)

s
(

1− cosh(mx)
cosh(m)

)
+ Gr′Da

2

(
x− sinh(mx)

sinh(m)

)
; (when F= 0)

(3.13)

where, m =
1√
Da

and s = m
(

sinh(2m)

m(sinh(2m))− cosh(2m)+1

)
. However, in the third case,

the basic flow velocity is obtained numerically using spectral method by solving equation

(3.7) along with equations (3.10)-(3.12). The basic velocity and basic temperature func-

tions in both LTE and LTNE cases are found to be equal. Similar to the LTE case, here also

it is expected that the point of inflection in the velocity profile is a potential for instability

of the basic flow. Hence, its linear stability analysis is carried out further through the use

of normal modes.
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3.2 Temporal linear stability

The linear stability of the above basic flow is investigated by imposing an infinitesimal

disturbance on it. So, the field variables are split into the basic state and an infinitesimal

disturbance, as

(v,θ f ,θs,P) = (V0(x)êy,Θ f (x),Θs(x),P0(y))+(v′,θ ′, p′). (3.14)

These infinitesimal disturbances of corresponding field variables are separated into

the normal mode form[32] as,

(v′,θ ′f ,θ
′
s, p′) = (v̂(x), θ̂ f (x), θ̂s(x), p̂(x))ei(αy+β z−αct), (3.15)

where, α and β are the wavenumbers in streamwise and spanwise directions respectively,

and c = cr + ici is a complex wave speed. The sign of ci determines the growth or decay of

the disturbances, i.e., the disturbances are classified as stable, neutrally stable, or unstable

depending on whether ci < 0, ci = 0, or ci > 0, respectively. On substituting the equations

(3.14) and (3.15) into the governing equations (3.2)-(3.4), and subtracting the equations

(3.7)-(3.9), the linear equations for the infinitesimal disturbances are obtained which are

given as,

dû
dx

+ iα v̂+ iβ ŵ = 0, (3.16)

iαRe
1
ε

(
1
ε

V0− c
)

û+Re
d p̂
dx
−λ

(
d2û
dx2 − (α2 +β

2)û
)
+

1
Da

û+F ′|V0|û = 0, (3.17)

iαRe
1
ε

(
1
ε

V0− c
)

v̂+Re
1
ε2

dV0

dx
û+ iαRep̂−λ

(
d2v̂
dx2 − (α2 +β

2)v̂
)
+

1
Da

v̂

+2F ′|V0|v̂−Gr′θ̂ = 0, (3.18)

iαRe
1
ε

(
1
ε

V0− c
)

ŵ+ iβRep̂−λ

(
d2ŵ
dx2 − (α2 +β

2)ŵ
)
+

1
Da

ŵ+F ′|V0|ŵ = 0, (3.19)
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1
ε

dΘ f

dx
û+ iα(

V0

ε
− c)θ̂ f −

1
PrRe

(
d2θ̂ f

dx2 − (α2 +β
2)θ̂ f

)
− H

PrRe
(θs−θ f ) = 0, (3.20)

−Γicαθ̂s−
1

PrRe

(
d2θ̂s

dx2 − (α2 +β
2)θ̂s

)
− Hγ

PrRe
(θ f −θs) = 0, (3.21)

and, after eliminating the pressure we get,

d4û
dx4 −2(α2 +β

2)
d2û
dx2 +(α2 +β

2)2û+ iαRe
1
ε2

d2V0

dx2 û+ i
αβ

α2 +β 2 F ′
d
dx

(|V0|η̂)

+

(
iαcRe

1
ε
− 1

Da
− iαRe

1
ε2V0

)[
d2û
dx2 − (α2 +β

2)û
]
+(α2 +β

2)F ′|V0|û

−F ′
(

α2

α2 +β 2 +1
)

d
dx

(
|V0|

dû
dx

)
− iαGr′

dθ̂

dx
= 0, (3.22)

βRe
1
ε2

dV0

dx
û+ i

αβ

α2 +β 2 F ′|V0|
dû
dx
−βGr′θ̂ −

(
d2η̂

dx2 − (α2 +β
2)η̂

)
+

1
Da

η̂

+iαRe
1
ε

(
1
ε

V0− c
)

η̂ +

(
β 2

α2 +β 2 +1
)

F ′|V0|η̂ = 0, (3.23)

1
ε

dΘ f

dx
û+ iα(

V0

ε
− c)θ̂ f −

1
PrRe

(
d2θ̂ f

dx2 − (α2 +β
2)θ̂ f

)
− H

PrRe
(θs−θ f ) = 0, (3.24)

−Γicαθ̂s−
1

PrRe

(
d2θ̂s

dx2 − (α2 +β
2)θ̂s

)
− Hγ

PrRe
(θ f −θs) = 0, (3.25)

where, η̂ = β v̂−αŵ. Boundary conditions on the velocity as well as temperature pertur-

bations are applied at both walls. The velocity perturbation satisfy the no-slip condition at

the walls and the temperature perturbation satisfy the isothermal condition at the walls, i.e.,

û =
dû
dx

= θ̂ f = θ̂s = η̂ = 0 at x =±1. (3.26)

These equations form a generalized eigenvalue problem with complex disturbance

wavespeed as the eigenvalue.
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3.2.1 Disturbance kinetic energy balance

As pointed out by Hart [46] the driving mechanisms of flow instability may be determined

by the production and dissipation of disturbance kinetic energy (KE). Therefore, to ascer-

tain the role played by heat transfer during the flow instability, it is necessary to keep track

of KE. The balance of KE is given as,

Re
1
ε

∂

∂ t

〈
1
2
(u′2 + v′2 +w′2)

〉
=−Re

1
ε2

〈
u′v′

dV0

dx

〉
+Gr′

〈
v′θ ′
〉
−F ′

〈
|V0|(u′

2
+2v′2 +w′2)

〉
− 1

Da

〈
(u′2 + v′2 +w′2)

〉
−
〈
(∇u′)2 +(∇v′)2 +(∇w′)2〉

= Es +Eb +EF +ED +Ed (3.27)

where, the symbol <> imply integration over the volume: [−1,1]× [0,2π/α]× [0,2π/β ]

of the disturbance cell. The integrals in above equation can be evaluated using the eigenvec-

tors from the linear stability analysis. On the curve of neutral stability, the disturbances nei-

ther grow nor decay, and the left-hand side of (3.27) is zero. The first term on the right-hand

side represents the gain (loss) of the KE from(to) the mean flow through Reynolds stress,

referred to as shear production (destruction), represented as Es. The second term represents

the production of KE through work done by the fluctuating body force, and is the buoyant

production term (Eb). The third term (EF ) represents the dissipation of KE due to form

drag. The fourth term (ED) represents the dissipation of KE energy due to work done by

surface drag. The last term (Ed) represents the dissipation of energy due to viscous effects.

Therefore, the equation (3.27) represents a balance of the production of KE by buoyant and

shear mechanism with the dissipation of KE by surface drag, form drag, and viscous action.

Since, at the critical level, the sum of all KE components must be equal to zero, therefore

the relative error in kinetic energy balance is defined by δK =
|Es +Eb +ED +EF +Ed|

|Es +Eb|
.

For all the calculations presented in the following study δK is less than 3%.
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3.3 Numerical method

The system of differential equations along with their boundary conditions in this paper are

discretized in the interval [−1,1] along x-direction at Gauss-Lobatto points by implement-

ing the Chebyshev spectral collocation method [18] that uses Chebyshev polynomials as

the basis functions. The collocation points are selected to be the extrema of the Nth-order

Chebyshev polynomial so that the truncation error is minimized. The Gauss-Lobatto points

of Nth-order Chebyshev polynomial are given as,

x j = cos
(

π j
N

)
, (3.28)

where, j = 0,1,2, . . .N and N represents order of the base polynomial. The linear dis-

turbance equations (3.22)-(3.25) along with homogeneous boundary conditions (3.26) are

formulated as a generalized eigenvalue problem in the form

AX = cBX , (3.29)

where, c is the complex eigenvalue, X is the representation of the eigenfunction, and A and

B are the square complex matrices of order 3N + 3, where N represents order of the base

polynomial in the collocation method. The eigenvalues of the above system are determined

using the complex QZ algorithm [71] inbuilt in MATLAB.

The numerical code developed for the LTE condition is extended for the present

problem by including the LTNE effects. Due to lack of numerical or experimental work in

this direction it is difficult to match the present results with special case of any published

work. However, the validation of our numerical code is carried out in two different ways.

First, by performing a grid independence test of the least stable eigenvalue for the mixed

convection flow in a porous medium. Second, by ensuring that the balance of disturbance

kinetic energy at the critical level must be zero.

The convergence of the numerical scheme is checked by varying the number of terms

in the Chebyshev collocation method. Table 3.1 shows that the least stable eigenvalue

achieve 6-digit point accuracy with 51 terms at randomly selected values for various pa-

rameters. The results remain consistent with increase in number of terms. The same trend
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N Least stable eigenvalue
30 0.0000018550 - 0.0006378001i
40 0.0000018460 - 0.0006377899i
50 0.0000018163 - 0.0006385373i
51 0.0000018156 - 0.0006385384i
55 0.0000019819 - 0.0006383742i

Table 3.1: Convergence of the least stable eigenvalue by Chebyshev collocation method.
Here, Pr=7, Re=1000, Gr′=5000, F ′=1000, Da = 10−3, ε=0.9, α=1, β=0, H=100, γ =
0.01.

is observed with other values of parameters. It is observed that 51 terms of Chebyshev

polynomials, i.e. N = 51, are usually sufficient to perform the numerical calculations with

high accuracy. The final check is made by calculating energy growth rate around the criti-

cal point for a set of randomly chosen parameters, which is discussed in fig 3.2. It is clear

from this figure that the growth rate of disturbance kinetic energy is negative when Gr′ is

less than its critical value (i.e., 6761) and equal to zero at the critical value. However, as the

value of Gr′ is increased further the growth rate becomes positive. This is true for other set

of parameters also. The critical values of parameters thus obtained through linear stability

analysis are used in the following section.

3.4 Results and discussion

It is to be noted that the basic flow (PMCF) under LTNE state is independent of the Prandtl

number. The role played by Prandtl number in the stability of non-isothermal flow under

LTE state has already been examined. As we have observed that the role of Pr in the

stability of PMCF under LTE state is significant. So, the same is expected under LTNE state

also. The present work intends to offer a comprehensive account of linear stability analysis

of parallel mixed convective flow (PMCF) in a differentially heated vertical channel filled

with fluid saturated high permeable porous medium under local thermal non-equilibrium

state. Accordingly, the following analysis is made when the channel is filled with metallic
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Figure 3.2: δK as a function of Gr′ for Pr = 7 when Re = 1000, Da = 10−3, F ′ = 1000,
H=100 and γ = 0.01.

foam or any other porous medium having permeability in the range of 10−8m2 to 10−6m2

in SI unit with porosity of 0.9. Rigorous numerical computations reveal that the least stable

mode is two-dimensional and spanwise independent. Thus, the linear stability boundaries

are plotted for β = 0. This is in agreement with the results obtained while studying the

linear stability of this mixed convection flow under LTE state as well as in the case of

vertical channel with linearly varying wall temperature under LTNE state [9].

We have already studied this problem under LTE state where special attention was

given on the influence of Prandtl number on instability mechanism of the flow. The re-

sults were presentd for a wide range of Pr to describe the effect of important parameters

related to the porous medium such as Darcy number and modified Forchheimer number

on the instability boundary. Now, we are interested to study the effect of LTNE state by

considering the same range of parameters for Pr, Da, F ′ and Re. So, the range for pa-

rameters such as Pr,Re and F ′ considered in this study are [10−2, 103], [100, 5000] and

[0, 5×103], respectively. Three different values (10−2,10−3,10−4) of Darcy number are

chosen to depict high permeable porous medium. Due to the assumption of LTNE state
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Figure 3.3: Variation of critical Gr′ as function of Pr for (a) Da = 10−2 and (b) Da = 10−3

and (c) Da = 10−4 when γ = 0.01, Re = 1000 and F ′ = 1000.

two new parameters are included namely H and γ . The practical values of these param-

eters for mixed convection and forced convection problems can vary in the range [1,103]

for H and [10−3,10−1] for γ . The results are described using stability boundaries formed

by critical modified Grashof number and wave numbers with respect to Prandtl number,

Reynolds number, modified Forchheimer number, interphase heat transfer coefficient and

porosity scaled thermal conductivity ratio of fluid and solid phases.

3.4.1 Influence of Prandtl number

To understand the relative influence of momentum diffusivity and thermal diffusivity on the

instability boundary points, we have discussed about the instability boundary as a function

of Pr. The instability boundary curves in (Pr,Gr′) and (Pr,α) planes are shown in Figure

3.3. From our numerical experiments we have observed that γ has very little impact on

the instability boundary with respect to Pr for a given value of other parameters. So, we

have fixed the value of γ equal to 10−2 considering the other parameteric values. Several

important observations can be made form the above figure. First, as in the case of LTE state,

here also the instability boundary decreases monotonically with Pr and the rate of decrease
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of critical Gr′ decreases as the value of Pr is increased. This is true for all the considered

values of H. Second, for a given value of Da, the interphase heat transfer coefficient has a

stabilizing effect on the instability of the flow. As the value of H is changed from 1 to 100,

the variation in instability boundary is negligible up to a certain value of Pr beyond which

a significant variation can be seen. When H is increased further up to 1000 then the critical

Gr′ is much higher as compared to case H = 1 or 100. The relative change in critical Gr′ as

a function of H for Da = 10−2 is higher than the same for Da = 10−3 or 10−4 which shows

that the impact of local thermal non-equilibrium state is relatively higher in high permeable

porous medium.

The instability mechanism in the above figure can be best understood by recalling

the definition of Prandtl number and interphase heat transfer coefficient. Also, from the

governing equations, we see that the strength of momentum and thermal diffusions is mea-

sured by (Re)−1 and (RePr)−1, respectively. So, the Prandtl number signifies the relative

strength of momentum and thermal diffusions. In general a low value of Pr causes an in-

crease in the thermal diffusivity which itself suppresses the thermal fluctuations in the flow

field. As a result, the flow remains stable even for larger values of Gr′. From the instability

boundary curve we have observed that when the Prandtl number is of O(1) then the thermal

fluctuations quickly smooth out and all the least stable modes are induced by kinetic dis-

turbances. This results in a rapid change in the critical value of Gr′ up to a threshold value

of Pr. But, with an increase in the value of Pr the corresponding relative momentum diffu-

sivity increases and becomes a deciding factor in the instability characteristic of the flow.

Also, an increase in the value of Pr increases the interaction between the porous substance

and the fluid particles resulting in the reduced flow strength in the channel. So, beyond the

above mentioned threshold value of Pr, a smooth and slow decreasing profile of instability

boundary curve is expected. This explains the monotonic decrease in the critical Gr′ as a

function of Pr.

When other parameters along with Da are fixed, increasing the value of H increases
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Figure 3.4: Variation of critical Gr′ as function of H for (a) Pr = 0.7 and (b) Pr = 7 when
Da = 10−3, Re = 1000 and F ′ = 1000.

the interphase heat transfer coefficient. Due to this increase in the value of H the tempera-

ture distribution in the flow evens out and the flow tends toward local thermal equilibrium

(LTE) state. Of course the rate at which this phenomenon takes place is a function of other

paramters, especially, Darcy number. As the temperature distribution of solid and fluid

phases gradually tends to local thermal equilibrium state on increasing the value of H, the

thermal fluctuations due to infinitesimal disturbances decay which in turn makes the flow

more stable. That is why the instability boundary curve for higher value of H is above

the instability boundary curve for lower value of H for a given Da in the above figure.

The above phenomena is also observed by Bera and Khandelwal [9] while studying the

instability mechanism of non-isothermal Poiseuille flow in a vertical channel filled with

porous-medium with linearly varying wall temperature.

To shed more light on the effect of H on the instability boundary figure 3.4 is plotted

for two different types of fluid: air and water. It can be seen from the above figure that the

instability boundary has a different trend for these fluids. For air, the instability boundary

decreases monotonically with H, whereas for water the same increases monotonically with

H. But the effect of γ is more significant for lower Prandtl number fluid such as air and



79

Pr

K
E

10-2 10-1 100 101 102-1

-0.5

0

0.5

1
Es

Eb

ED

EF

Ed

(b)

Pr

K
E

10-2 10-1 100 101 102-1

-0.5

0

0.5

1

Es

Eb

ED

EF

Ed

(c)

Pr

K
E

10-2 10-1 100 101 102-1

-0.5

0

0.5

1
Es

Eb ED

EdEF

(a)

Figure 3.5: KE spectrum as a function of Pr under LTNE state for (a) Da = 10−2 and (b)
Da = 10−3 and (c) Da = 10−4 when H = 1000, γ = 0.01, Re = 1000 and F ′ = 1000.

the deviation in instability boundaries for different values of γ start to occur as early as

H = 200. In the case of higher Pr such as water slight deviation can be observed at higher

values of H. On increasing the value of γ for a fixed value of H there is a reduction in

the conductivity of the solid porous material. This results in an increased fluid temeprature

which in turn enhances the fluid velocity. Thus, the flow becomes more unstable.

To gain a further insight into the instability mechanism of the parallel mixed convec-

tive flow under LTNE state, the balance of disturbance kinetic energy as a function of Pr

is shown in figure 3.5(a) to 3.5(c). The above figure is plotted at the critical level when

H = 1000 and γ = 10−2. Similar to the LTE state, here also we encounter three different

types of instabilities namely shear, mixed and buoyant defined on the basis of contribution

of energy production (or, destruction) by shear term (Es) and buoyant term (Eb). If in the

disturbance kinetic energy balance, contribution of Es (Eb) is more than 70% then the type

of instability is defined as thermal-shear (thermal-buoyant) else it is defined as interactive.

Similar to the LTE state, here also, the type of instability for lower values of Pr is shear. At

higher values of Pr the type of instability is buoyant. In between this two extremes there

exists a mixed type of instability. But the range of Pr in which these three different types
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of instabilities exist depends on the value of Da and other parameters. For Da = 10−2 the

shear instability is a dominant mode of instability in a larger range of Pr as compared to

Da = 10−3 and 10−4, whereas for Da = 10−4 the buoyant instability is dominant mode of

instability in most of the domain of Pr. The range of Pr in which these types of instabilities

occur for different values of Da is as follows. For Da = 10−2, the different range for shear,

mixed and buoyant instabilities are 0.01≤ Pr < 3, 3≤ Pr < 20 and 20≤ Pr≤ 100, respec-

tively. For Da−3, they are 0.01 ≤ Pr < 0.6, 0.6 ≤ Pr < 3 and 3 ≤ Pr ≤ 100, respectively.

Also, for Da−4, they are 0.01≤ Pr < 0.1, 0.1≤ Pr < 0.3 and 0.3≤ Pr≤ 100, respectively.

Thus, the range of Pr in which shear instability is dominant has increased for all considered

values of Da due to local thermal non-equilibrium effect.

3.4.2 Influence of Reynolds number

We have observed from figure 3.4 that the higher values interphase heat transfer coefficient

can have significant effect on the instability of the flow. But, it was seen only for Re =

1000. Figure 3.6 is plotted to show the effect of interphase heat transfer coefficient for the

complete range of Re. In this section also we checked the instability boundary curves for

all the three values 10−1,10−2 and 10−3 of γ . But the effect of γ on the istability curves,

for different values of Pr, with respect to Re was found to be negligible. So, the value of

γ is fixed at 10−2. The values of F ′ and Da are also fixed at 103 and 10−3, respectively.

Figure 3.6 shows the variation of instability boundary in (Re,Gr′)-plane when γ = 0.01,

Da = 10−3 and F ′ = 1000. Similar to the LTE state, here also the instability boundary

curves for different values 1,100,1000 of H in (Re,Gr′)-plane shows a rapid decrease in

critical Gr′ as Re is increased from very small value to a threshold value. However, as Re is

increased beyond this threshold value the rate of decrease in Gr′ is gradual and negligible.

As we have already observed in the previous section that higher value of H renders the

flow more stable. So, when the value of H increases from 1 to 100 the flow becomes more

stable and a significant change can be observed in the instability boundary curve when H is

changed to 1000. Moreover, the effect of H is significant in the case of Pr = 7 as compared
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Figure 3.6: Variation of critical Gr′ as function of Re for (a) Pr = 0.7 and (b) Pr = 7 when
Da = 10−3, γ = 0.01 and F ′ = 1000.

to Pr = 0.7. This can also be seen in the disturbance kinetic energy balance.

Figure 3.7 shows the disturbance KE balance w.r.t. Re for Pr = 0.7 and 7 when

H = 1000 and γ = 0.01. Clearly, the balance of Re for Pr = 0.7 shows no change from the

same under LTE state. But, when Pr = 7, it can be observed that the contribution of Eb has

decreased whereas the contribution of Es has increased by almost 10%. This may be the

consequence of the fact that a fluid with higher value of Pr is more viscous in nature and

hence it will generate higher internal shear stresses under mixed convection flow. These

shear stresses will tend to destabilize the flow.

3.4.3 Influence of modified Forchheimer number

The results in previous two subsections were presented for a fixed value of F ′. It is found

that the point of inflection in the basic flow profile as well as back flow characteristic of the

basic flow die out on incorporating the form drag in the momentum balance equation. So,

it is important to study the role of inertia due to form drag which may play a significant role

in the instability of the mixed convective flow under local thermal non-equilibriums state

in porous medium [60]. We have already studied the influence of modified Forchheimer
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Figure 3.7: KE spectrum as a function of Re under LTNE state for (a) Pr = 0.7 and (b)
Pr = 7 when H = 1000, γ = 0.01, Da = 10−3 and F ′ = 1000.

number under LTE state. Although from the discussion in previous two subsections we

know that H has a stabilizing effect on the considered flow. But, it may be interesting to

see the effect of H when the form drag in the system is changed. So, we have plotted the

variation of instability boundary w.r.t. F ′ in figure 3.8 for both fluids considered in this

study when γ = 0.01, Da = 10−3 and Re = 1000. For all the three values of H considered

here, unlike the situtaion under LTE state, the effect of form drag for Pr = 0.7 is upto

F ′ = 10 beyond which it is negligible. In the case of Pr = 7 the effect of form drag is

similar to the LTE state. As expected, an increase in H increases the stability of the flow.

This effect is more prominent for Pr = 7 and as the value of F ′ is increased the gap between

the instability boundaries corresponding to different values of H tends to decrease. Since,

the form drag itself has the tendency of stabilizing the flow. So, after a certain value of F ′,

the effect of interphase heat transfer coefficient may not be significant.
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3.5 Conclusion

We have analyzed the stability of parallel mixed convective flow (PMCF) under local ther-

mal non-equilibrium state in a differentially heated vertical channel filled with incompress-

ible fluid saturated porous medium. The entire study is made for a wide range of values

of interphase heat transfer coefficient (H) and porosity scaled thermal conductivity ratio of

fluid and solid phases (γ) to understand the effect of local thermal non-equilibrium state on

the instability of flow.

The linear instability boundary shows that for a given value of Da, the interphase

heat transfer coefficient has a stabilizing effect on the instability of the flow. The relative

change in critical Gr′ as a function of H for different values of Da shows that the impact

of local thermal non-equilibrium state is relatively higher in the case of high permeable

porous medium. The effect of γ on the istability of the flow was found to be negligible

in almost all the cases. In comparison to local thermal equilibrium state, the disturbance

kinetic energy balance at the critical level in local thermal non-equilibrium state showed

that shear instability is dominant in larger range of Pr for all considered values of Da.

For Pr = 7, the disturbance kinetic energy balance w.r.t. Re showed that the contribution
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of Eb decreased whereas the contribution of Es increased by almost 10% as compared to

LTE state. The interphase heat transfer coefficient affects the instability of the flow when

quadratic form drag is relatively low, i.e., up to F ′ = 100.



Chapter 4

Finite amplitude analysis of

non-isothermal parallel flow in a vertical

channel with linearly varying wall

temperature and filled with porous

medium

The finite amplitude analysis of stably stratified parallel mixed convection flow due to lin-

early varying wall temperature in vertical channel filled with porous medium has not been

carried out yet. Thus, before studying the finite amplitude instability of the flow considered

in Chapter 2, we consider the finite amplitude instability of stably stratified parallel mixed

convection flow in a vertical channel filled with porous medium in this chapter. The objec-

tive of this study is to analyze the nature of bifurcation and the finite amplitude behavior

of unstable disturbances that occur beyond the linear instability boundary, specially when

the permeability of the medium and strength of the flow are reasonably high. This is ac-

complished by reviewing the linear stability results, and then a weakly nonlinear analysis

is made to trace the evolution of finite amplitude perturbation. The linear stability analysis

85
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is inadequate to describe the instabilities in the flow. It gives only the initial growth of

the disturbance, but eventually it reaches such a size that Reynolds stresses (i.e., the mean

force per unit area imposed on the mean flow by turbulent fluctuation) affect the mean flow

and then it becomes difficult to explain the stability of the flow by linear theory. Nonlinear

stability analysis gives some important information about size of disturbance and flow field

that results from the linear instability. Here, we have developed a cubic Landau equation to

analyze the nature of bifurcation and amplitude of most unstable wave beyond the critical

value. Weakly nonlinear theories developed in [93, 100, 101, 127] have been shown to be

very powerful tools for the analysis of stability of various flows. These nonlinear analyses

are centered around the derivation of the Landau equation for the amplitude of disturbance

wave. A cubic Landau equation is derived to study the limiting value of growth of insta-

bilities under nonlinear effects. The nonlinear results are presented for air as well as water.

The influence of nonlinear interaction of different superimposed waves on heat transfer

rate, friction coefficient, nonlinear kinetic energy spectrum and disturbance flow is also

studied in both supercritical as well as subcritical regimes. The effect of superimposed

waves on the pattern of secondary flow, based on linear stability theory, is also studied.

4.1 Statement of the problem and governing equations

A pressure-driven non-isothermal flow in a vertical channel of width 2L filled with a porous

medium is shown in figure 4.1. The wall temperature of the channel is assumed to vary

linearly with y as Tw = T0 +Cy, where C is a positive constant and T0 is the upstream

reference temperature. The gravitational force is aligned in the negative y-direction. The

medium is assumed to be homogeneous and isotropic in permeability. The convective

flow through the porous medium is governed by a non-Darcy model. The heat transfer

equation is written under the assumption of local thermal equilibrium (LTE) state, i.e., the

local temperatures of the fluid and solid phases are assumed to be identical. The thermo-

physical properties of the fluid are assumed to be constant except for density dependence
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Figure 4.1: Schematic of the physical problem and coordinate system.

of the buoyancy term in the momentum equation, which is satisfied by the Boussinesq

approximation. Since the flows through porous medium reveal inconsistencies in the usage

of proper governing equations in the flow region, therefore a note on the considered model

and consideration of different terms in the momentum equation for the present problem is

made, which is given in Appendix A.

Following the discussion in above note, we consider non-Darcy volume averaged

Navier-Stokes equations for the present theoretical investigation. The non-dimensionalized

space coordinates (x∗,y∗,z∗), dependent variables (v∗,θ ,P∗) and time t∗ are calculated

after scaling the dimensional variables as follows:

(x∗,y∗,z∗) =
(x,y,z)

L
, v∗ =

v
V 0

, θ =
(T −Tw)

CLPrRe
,

P∗ =
P

ρ fV
2
0

, t∗ =
tV 0

L

 , (4.1)

where, v∗ = (u∗,v∗,w∗), θ , P∗ and t∗ are the dimensionless Darcy velocity vector,

temperature, pressure and time, respectively. Furthermore, V 0 is dimensional average basic
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velocity and ρ f is fluid density. The dimensionless governing equations for continuity,

momentum and energy, after dropping asterisks, can be written as

∇ ·v = 0, (4.2)

1
ε

∂v
∂ t

+
1
ε2 v.∇v+Fv|v|=−∇P+

Ra
Re

θey +
λ

Re
∇

2v− 1
DaRe

v, (4.3)

σ
∂θ

∂ t
+v.∇θ =

1
RePr

(∇2
θ − v). (4.4)

The dimensionless parameters appearing in the problem are Rayleigh number (Ra), Reynolds

number (Re), Prandtl number (Pr), Darcy number (Da), Forchheimer number (F) and vis-

cosity ratio (λ ). They are defined as

Ra =
gβTCL4

νk
, Re =

V 0L
ν

, Pr =
ν

k
, Da =

K
L2 , F =

CFL
K1/2 and λ =

µ̃

µ f
,

where, k is the thermal diffusivity, ν is the kinematic viscosity, βT is the thermal expansion

coefficient, ε is the porosity of the medium, CF is the form drag coefficient, K is the perme-

ability of the porous medium, g is gravitational acceleration, µ̃ is the effective viscosity, µ f

is the fluid viscosity and ey is the unit vector in y-direction. In equation (4.4), σ denotes the

ratio of the volumetric heat capacities of medium and fluid. It is important to mention here

that although the problem in this paper is that of heated upward flow in a vertical channel,

the results may also be used to the cooled downward flow in a vertical channel and vice

versa. This is because the equations governing heated upward flow are identical to those of

cooled downward flow, and the equations of cooled upward flow are identical to those of

heated downward flow.

4.2 Linear stability analysis

4.2.1 Steady non-isothermal parallel flow: basic state

We assume that the flow is steady, unidirectional and fully developed which give rise to

PMCF. Under these circumstances the above governing equations (4.2)-(4.4) are reduced
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into a set of ordinary differential equations, which are defined in the operator form as:

Ly(V0,Θ0,Ra,Da,F ′) =
d2V0

dx2 −
1

Da
V0 +RaΘ0−F ′|V0|V0 = Re

dP0

dy
, (4.5)

L(V0,Θ0) =
d2Θ0

dx2 −V0 = 0, (4.6)

with boundary conditions:

V0 = Θ0 = 0 at x =±1, (4.7)

where V0, Θ0 and P0 are the basic state velocity, basic state temperature and basic state

pressure, respectively and F ′ = FRe. The quantity RedP0
dy is determined by use of the global

mass conservation: ∫ 1

−1
V0dx = 2. (4.8)

The velocity profile contains points of inflection, which suggests a potential for the insta-

bility. But, these points of inflection in the velocity profile die out on decreasing the media

permeability (see figure 4.18 in Appendix B).

4.2.2 Linear disturbance equations

To investigate the stability of above basic flow, the classical normal mode analysis [32] is

used. The dependent variables are decomposed into basic state and infinitesimal distur-

bances. The velocity vector, temperature and pressure are written as:

v =V0(x)ey +v′, θ = Θ0(x)+θ
′, P = P0(y)+ p′. (4.9)

These infinitesimal disturbances of corresponding field variables are separated into

normal mode form as:

(v′,θ ′, p′)T = ei(αy+β z−αct)(v̂, θ̂(x), p̂(x))T (4.10)

where α and β are the wavenumbers in streamwise (y) and spanwise (z) directions, respec-

tively, and c = cr + ici is a complex wave speed. The growth or decay of the disturbance
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is determined from the sign of ci. The flow is stable or neutrally stable or unstable accord-

ingly as ci < 0 or ci = 0 or ci > 0, respectively. On substituting equations (4.9) and (4.10)

into the governing equations (4.2)-(4.4), the linearized disturbance equations are given in

operator form as:

Lo(α,β , û, v̂, ŵ) =
dû
dx

+ iα v̂+ iβ ŵ = 0, (4.11)

Lx(α,β ,c, û, p̂,V0,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

û−λ

(
d2û
dx2 − (α2 +β

2)û
)

+ Re
d p̂
dx

+
1

Da
û+F ′|V0|û = 0, (4.12)

Ly(α,β ,c, û, v̂, p̂, θ̂ ,V0,Ra,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

v̂−λ

(
d2v̂
dx2 − (α2 +β

2)v̂
)

+iαRep̂+Re
1
ε2

dV0

dx
û+

1
Da

v̂+2F ′|V0|v̂−Raθ̂ = 0, (4.13)

Lz(α,β ,c, ŵ, p̂,V0,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

ŵ−λ

(
d2ŵ
dx2 − (α2 +β

2)ŵ
)

+ iβRep̂+
1

Da
ŵ+F ′|V0|ŵ = 0, (4.14)

L (α,β ,c, û, v̂, θ̂ ,V0,Θ0) = −iαPrRe(V0−σc)θ̂ +

(
d2θ̂

dx2 − (α2 +β
2)θ̂ − v̂

)
− PrRe

dΘ0

dx
û = 0. (4.15)

The corresponding boundary conditions for the perturbed field variables are:

û = v̂ = ŵ = θ̂ = 0 at x =±1. (4.16)

The above equations are solved by eliminating the pressure terms along with no-slip and

impermeability condition of velocity and zero temperature perturbation on the walls. These

linear disturbance equations along with boundary conditions form a generalized eigenvalue

problem for a complex disturbance wavespeed (c), which is given as

AX = cBX , (4.17)
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where X is the representation of the eigenfunction, and A and B are square complex matri-

ces.

The linear stability theory is used to find the location of bifurcation point or critical

point (α,Ra) and predict the form of developing disturbances. It does not provide any

information about the actual size of the disturbances (amplitude) beyond the critical value.

To analyze the amplitude of such disturbances, a weakly nonlinear stability analysis is

required. The results of linear stability analysis are also required to carry out nonlinear

analysis. Therefore, a brief review of linear stability results is presented below.

4.2.3 Review of linear stability results

The linear stability analysis of the present problem was studied by some authors [5, 19, 60]

in the literature. In these studies, the rigorous numerical study of different controlling pa-

rameters as well as impact of drag forces and inertia on the stability of the PMCF were

carried out. The problem contains eight important parameters such as Reynolds number

(Re), Rayleigh number (Ra), Darcy number (Da), Prandtl number (Pr), modified Forch-

heimer number (F ′), porosity (ε), viscosity ratio (λ ) and heat capacity ratio (σ). The

objective of the present study is to investigate the influence of nonlinear interaction of dif-

ferent harmonic modes on the instability of flow through high permeable porous medium.

For this two fluids air (Pr = 0.7) and water (Pr = 7) are chosen. Apart from this, to avoid

too many parametric studies, we have fixed some parameters for the present study. The

porosity, viscosity ratio and heat capacity ratio are kept constant at 0.9, 1 and 1, respec-

tively. Here, three different values (10−2,10−3 and 10−4) of Darcy number along with

three different values (1, 102,103) of F ′ are taken to examine the present problem. The

chosen values of F ′ are based on the fact that the maximum value of CF is around 0.1.

We revisit the linear stability results for air (Pr = 0.7) as well as water (Pr = 7) in

(Re,Ra)-plane. The linear stability boundaries for three different values (1, 100, and 1000)

of F ′, when fluid is air (solid line) and water (dashed line) are plotted in figures 4.2(a),

4.2(b), and 4.2(c), respectively. For any of the considered values of Da, the critical value of
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Figure 4.2: Linear stability boundaries in (Re,Ra)-plane: (a) F ′ = 1, (b) F ′ = 100 and (c)
F ′ = 1000 where solid line is Pr = 0.7 and dashed line is Pr = 7.

Rayleigh number decreases with increasing Reynolds number and approaches a constant

value beyond a threshold value of Re, which is true for air as well as water. As compared

to the PMCF of air, the same of water is much more unstable. The instability boundaries

show a more stable flow with decreasing media permeability. Apart from these, the induced

form drag in the system delays the instability of the flow.

The disturbance kinetic energy (KE) balance corresponding to a neutral stability

curve also provides some insight on the transport mechanisms during the flow instabil-

ity. The mathematical details of the balance of KE can be seen in the paper by Bera and

Khalili [6]. The different energy terms of the KE balance for air and water are plotted in

figures 4.3(a) and 4.3(b), respectively for different values of Darcy number. Because of

similarity, the KE balance for F ′ = 1 and F ′ = 1000 are not shown here. As can be seen

from the figure that based on the media permeability the type of instability may be buoy-

ant, mixed, and shear. Here, the type of instability is defined on the basis of contribution

of energy production (or, destruction) by shear term (Es) and buoyant term (Eb). If, in the

energy balance, the contribution of Es (Eb) is more than or equal to 70% then the type of
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Figure 4.3: Linear disturbance kinetic energy (KE) balance at critical level: (a) Pr = 0.7
and (b) Pr = 7 when F ′ = 100.
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instability is defined as shear (buoyant) else it is defined as mixed. The kinetic energy pro-

duction for Da = 10−2, when fluid is air (water), shows three different types of instability:

buoyant for Re ≤ 1850 ( Re ≤ 5500 ), mixed for 1850 < Re ≤ 6500 ( 5500 < Re ≤ 6500)

and shear instability for Re > 6500 (Re > 6500). Similarly for Da = 10−3, it shows two

types of instability: buoyant for Re≤ 7000 and mixed for Re > 7000 in case of air, whereas

for water it is only buoyant type. For air as well as water, when Da = 10−4, KE production

due to buoyant term remains prominent in the entire range of Re considered in this study,

consequently buoyant instability is the only type of instability. The type instability also

depends on induced form drag in terms of F ′. In general, induced form drag decelerates to

attain mixed as well as shear instability of the flow (figure is not shown here). Note that for

Da equal to 10−3 and 10−4 KE production or destruction is mainly balanced by dissipation

of KE due to surface drag (ED). However, for Da = 10−2 it is different. Here, dissipation of

KE is made through ED as well as EF . So it can be concluded that even though inertia due

to convective term does not play any role in the basic flow but its impact on the instability

boundary for relatively high permeable medium is not negligible.

The overview of linear stability results provides some suggestions regarding develop-

ment of the disturbance. However, it can not provide any information about the amplitude

of such disturbances and quantitative information about a disturbed flow. The occurrence

of instability in a flow may lead to the replacement of the original laminar flow by a new

laminar flow due to the superimposition of finite disturbances. This flow may be expected

to persist for a certain range of Rayleigh number beyond the critical value and then become

unstable at some new Rayleigh number against a new (second) type of disturbance. A new

equilibrium flow, consisting of a mean flow with two superimposed modes of disturbance,

is then conceivable for a range of Rayleigh number above the second critical value. In

purely fluid domain, as the Rayleigh number is increased further, additional modes of dis-

turbance may appear successively until the turbulence is achieved. In this way a sequence

of instabilities may exist before it leads finally to turbulence [49]. Since turbulent flow

in wall bounded porous media is possible [53], therefore, above similar phenomena may
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Figure 4.4: Variation of temperature gradient w.r.t. Re: (a) Pr = 0.7 and (b) Pr = 7 when
F ′ = 100.

be expected in fluid flow through high permeable porous media. Therefore, a nonlinear

stability is necessary to study the structure of the flow field that results from linear stability.

Before closing this subsection and moving to finite amplitude analysis of the above

problem, we have calculated the minimum value of temperature gradient (C) for which

the PMCF will be unstable and checked for what sort of values of permeability as well

as Reynold’s number the linear stability results under the Boussinesq approximation will

remain valid. From the dimensional analysis we have C =
νkRa
gβT L4 . Using our numerical

data set of instability curve we have calculated the value of C at the critical points for

air and water as a function of Re for F ′ = 100 and shown in figures 4.4(a) and 4.4(b),

respectively. To identify the minimum value of Re above which the value of C will be
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less than or equal to 20oC per unit length (i.e., the flow remains valid under Boussinesq

approximation) a constant line C = 20 is also added in each sub-figure. Note that the value

of C has been calculated from the definition of Ra which involves the characteristic length

scale L. For a given value of Darcy number, the characteristic length is determined by

the permeability (K) of the porous medium. So, the choice of permeability decides the

temperature gradient which can be controlled by the experimentalist to obtain realistic and

feasible results within the Boussinesq limit. Here, we have used the value of ν , βT and k for

air as 1.5×10−5m2/s, 3.4×10−3/oC and 2.1×10−5m2/s, respectively, whereas for water

as 8.7× 10−7m2/s, 2.5× 10−4/oC and 1.5× 10−7m2/s, respectively. In the following, the

considered values of K are based on the fact that the metallic foam may have permeability

as large as 8×10−6m2 [76].

Figure 4.4(a), for Da = 10−2, shows that when fluid is air the value of C is less than

or equal to 20 for Re greater than or equal to 1720, 600 and 400 for K equal to 4×10−6m2,

9×10−6m2 and 1.6×10−5m2, respectively, or L equal to 2cm, 3cm and 4cm, respectively.

In case of Da= 10−3, C is less than or equal to 20 for Re greater than or equal to 4500, 2000

and 1500 for K equal to 9×10−7m2, 1.6×10−6m2 and 2.5×10−6m2, respectively. So, the

minimum value of Re, beyond which the results from Boussinesq approximation will be

appropriate, decreases on increasing the permeability of the medium. Similar observation

can also be made for Da = 10−4. However, when air is replaced by water then figure 4.4(b)

for Da = 10−2 shows that C is less than or equal to 20 for Re greater than or equal to 1000,

100 and 50 for K equal to 2.5× 10−7m2, 10−6m2 and 2.25× 10−6m2, respectively. For

Da = 10−3, C is less than or equal to 20 for Re greater than or equal to 500, 75 and 50 for

K equal to 10−7m2, 2.25× 10−7m2 and 4× 10−7m2, respectively. This indicates that the

domain of Re in which Boussinesq approximation remain valid for water even on reducing

media permeability by one order is larger than the same for air. The above analysis also

indicates the instability of PMCF in a high permeable porous medium under mild heating

condition and a significant role of the buoyant term in the flow instability.
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4.3 Formulation of finite amplitude equations

The nonlinear terms ignored in the linear stability analysis play a significant role when the

amplitude of disturbance becomes finite. In this situation the exponential linear growth

rate is modified by the nonlinearities in the governing equations. To study the nonlinear

dynamic behavior we must take into account the nonlinear interactions between the vari-

ous wave components. Therefore, a finite amplitude study using weakly nonlinear theory

is made to capture the nonlinear effects in the problem. In this study, the field variables

are separated into Fourier components of the most unstable linear wave, which is predicted

from linear stability theory. Again, we decompose the functions for each harmonic com-

ponent in terms of a suitable small parameter ci (imaginary part of least linearly stable

eigenvalue at critical point) and amplitude function. The amplitude expansion is given

based on the analysis of various authors [95, 101]. The Fourier expansion of y-direction

velocity component in separable form is:

v(x,y,z, t) = V (x,τ)E0 + v̂1(x,τ)E1 + v̂2(x,τ)E2 + ...+ c.c.

= E0 [V0(x)+ ci|B(τ)|2V1(x)+O((ci)
2)
]

+ E1[(ci)
1
2 Bv10 +(ci)

3
2 B|B|2v11 +O((ci)

5
2 )]

+ E2[ciB2v20 +O((ci)
2)]+ ...+ c.c., (4.18)

where E j = e j[iα(y−crt)+iβ z], j=0,1,2; α is the wavenumber corresponding to the crit-

ical Ra, and cr is the real part of the wavespeed of most unstable disturbance wave. B

denotes an amplitude function, which will be calculated from the Landau equation. c.c.

stands for complex conjugate.

The method of multiple time scales is used to derive an evolution equation for slowly

varying amplitude. Two types of timescales (fast timescale (t) & slow timescale (τ)) are

used in the nonlinear stability analysis of the flow. The choice of the fast timescale is

associated with the exponential development of the disturbance as in the linear stability

analysis. The nonlinear terms become important when disturbance attains a finite ampli-

tude. In this situation, the temporal behavior of the disturbances deviates from exponential



98

behavior. This is characterized by another timescale (slow timescale). The slow timescale

leads to stages when the growth/decay of the disturbances is affected by nonlinearities of

different order. The slow timescale τ = cit modifies the time derivative as:

∂

∂ t
→ ∂

∂ t
+ ci

∂

∂τ
. (4.19)

The multiple timescale approach is valid when the amplitude dynamics change substan-

tially as the disturbance develops. Similarly, we can write the expansions for the other

dependent variables in terms of ci and the amplitude function (B). The mathematical justi-

fication of perturbation expansion is as follows.

Stuart [99, 100] has shown that ci is proportional to the difference between the actual

and critical Rayleigh number (∆). The author has also shown that the square of equilib-

rium amplitude (to be discussed later) is proportional to ∆. Consequently, the equilibrium

amplitude is proportional to (ci)
1
2 . Hence, in α disturbance the amplitude of v̂1 is of order

(ci)
1
2 . Field variables that are expanded in higher wave numbers are scaled according to the

number of nonlinear interactions it takes to generate them. For example, 2α disturbances

require the interaction of two α-perturbations, thus the amplitude of v̂2 is of order (ci)
1. We

also assume that ∂

∂ t is never of greater magnitude than ci, which is its order of magnitude

according to the linear theory. The distortion of mean flow (V ) is of order ci, which arises

from the part of the Reynolds stress [101].

4.3.1 Derivation of cubic Landau equation

On substituting equation (4.18) into the governing equations (4.2)-(4.4) and separating the

harmonic components, the equations for the harmonic E0 are

Ly(V0,Θ0,Ra,Da,F ′) − Re
dP0

dy
+ ci|B|2

{
λ

d2V1

dx2 −
1

Da
V1 +RaΘ1−2F ′|V0|V1

− Re
dP1

dy
− Re

ε2

[
d
dx

(ṽ10u10 + v10ũ10)

]}
= O((ci)

2), (4.20)

L(V0,Θ0)+ ci|B|2
{

L(V1,Θ1)−RePr
[

d
dx

(ũ10θ10 +u10θ̃10)

]}
= O((ci)

2). (4.21)
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Similarly, the equation for the harmonic E1 are:

(ci)
1
2 B{Lo(α,β ,u10,v10,w10)}+(ci)

3
2 B|B|2 {Lo(α,β ,u11,v11,w11)}= O(c

5
2
i ), (4.22)

(ci)
1
2 B
{
Lx(α,β ,c,u10, p10,V0,Da,F ′)

}
+(ci)

3
2
{

B|B|2Lx(α,β ,c,u11, p11,V0,Da,F ′)

−B|B|2Gx +
Re
ε

dB
dτ

u10−
αBRe

ε
u10

}
= O(c

5
2
i ), (4.23)

(ci)
1
2 B
{
Ly(α,β ,c,u10,v10, p10,θ10,V0,Ra,Da,F ′)

}
+(ci)

3
2
{

B|B|2Ly(α,β ,c,u11,v11, p11,θ11,V0,Ra,Da,F ′)

−B|B|2Gy +
Re
ε

dB
dτ

v10−
αBRe

ε
v10

}
= O((ci)

5
2 ), (4.24)

(ci)
1
2 B
{
Lz(α,β ,c,w10, p10,V0,Da,F ′)

}
+(ci)

3
2
{

B|B|2Lz(α,β ,c,w11, p11,V0,Da,F ′)

−B|B|2Gz +
Re
ε

dB
dτ

w10−
αBRe

ε
w10

}
= O((ci)

5
2 ), (4.25)

(ci)
1
2 B{L (α,β ,c,u10,v10,θ10,V0,Θ0)}+(ci)

3
2
{

B|B|2L (α,β ,c,u11,v11,θ11,V0,Θ0)

−B|B|2G −RePr
dB
dτ

θ10 +αRePrBθ10

}
= O((ci)

5
2 ), (4.26)

where G ’s are defined as:

Gx = − Re
ε2

{
iαV1u10 +2iαu20ṽ10− iαv20ũ10 + ũ10

du20

dx

+ u20
dũ10

dx
− iβw20ũ10 +2iβ w̃10u20

}
, (4.27)

Gy = − Re
ε2

{
iαV1v10 +u10

dV1

dx
+ iαv20ṽ10 + ũ10

dv20

dx

+ u20
dṽ10

dx
− iβw20ṽ10 +2iβ w̃10v20

}
, (4.28)

Gz = − Re
ε2

{
iαV1w10 +2iαw20ṽ10− iαv20w̃10 + ũ10

dw20

dx
+u20

dw̃10

dx
+iβw20w̃10} , (4.29)
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G = RePr
{

iαV1θ10 +2iαθ20ṽ10− iαv20θ̃10 +u10
dΘ1

dx
+ ũ10

dθ20

dx

+u20
dθ̃10

dx
− iβw20θ̃10 +2iβ w̃10θ20

}
. (4.30)

The equations for the harmonic E2 are:

ciB2 {Lo(2α,2β ,u20,v20,w20)}= O((ci)
2), (4.31)

ciB2
{

Lx(2α,2β ,c,u20, p20,V0,Da,F ′) +
Re
ε2

(
iαu10v10 +u10

du10

dx
+ iβu10w10

)}
= O((ci)

2), (4.32)

ciB2
{

Ly(2α,2β ,c,u20,v20, p20,θ20,V0,Ra,Da,F ′) +
Re
ε2

(
iαv2

10 +u10
dv10

dx
+ iβv10w10

)}
= O((ci)

2), (4.33)

ciB2
{

Lz(2α,2β ,c,w20, p20,V0,Da,F ′) +
Re
ε2

(
iαv10w10 +u10

dw10

dx
+ iβw2

10

)}
= O((ci)

2), (4.34)

ciB2
{

L (2α,2β ,c,u20,v20,θ20,V0,Θ0) − RePr
(

iαv10θ10 +u10
dθ10

dx
+ iβw10θ10

)}
= O((ci)

2). (4.35)

Here ∼ denotes the complex conjugate. Consideration of higher order harmonics (E3,E4,

etc.) in equation (4.18) is not necessary to obtain the first Landau coefficient. Therefore,

these terms are not included in the series.

The systems of harmonic equations (4.20)-(4.35) can be solved sequentially in in-

creasing power of ci. At order (ci)
0, the harmonic E0 contains exactly the same basic

state equations (4.5)-(4.6). The unknown functions V0 and Θ0 are obtained from equations

(4.5)-(4.6). At order (ci)
1/2, the harmonic E1 contains linear stability equations and the

contribution of other harmonics (E0 and E1) is zero. The functions u10, v10, w10 and θ10

are given by the eigenfunctions of linear stability equations at a particular wave number



101

as well as Ra. At order (ci)
1, the harmonics E0 and E2 produce the non-homogeneous

equations for the basic flow distortion functions V1 and Θ1 as well as for the functions u20,

v20, w20 and θ20, respectively. The non-homogeneous part of these equations contains the

known variables u10, v10, w10, θ10 and their derivatives, which are calculated from lower

order analysis. At order (ci)
3/2, the equations of harmonic E1 become non-homogeneous.

The left hand sides of these equations contain linear stability operators operating on u11,

v11, w11, θ11 and p11, whereas, the right hand sides of these equations contain the terms

proportional to dB/dτ , B and B|B|2. The coefficients of these terms on the right-hand sides

are known from the lower-order analysis. The homogeneous form of the equations of E1 is

same as linear stability equations. For non-trivial solution of E1 equations, the integrability

condition can be used to determine the unknown amplitude function B. In order to formu-

late the integrability condition, the solution of homogeneous adjoint system corresponding

to linear stability problem (see Appendix C) is required. Therefore, the right-hand sides of

the non-homogeneous equations of E1 at order (ci)
3/2 must be orthogonal with the adjoint

field variables. In this manner, multiplying the above right hand side terms by the adjoint

field variables p∗, u∗, v∗, w∗, θ ∗, and enforcing the condition (4.59), the following Landau

equation results
dB
dτ

= αB+a1B|B|2, (4.36)

where,

a1 =
1

Re

∫ 1

−1
(Gxu∗+Gyv∗+Gzw∗+G θ

∗)dx, (4.37)

and known as Landau constant, which is the first correction to linear growth rate. Landau

equation (4.36) represents a modification to the exponential growth or decay of a distur-

bance predicted by linear theory.

In bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particu-

lar type of local bifurcation where the system transitions from one fixed point to three fixed

points. Based on the sign of real part of the Landau constant (a1) pitchfork bifurcations may

be supercritical or subcritical. If the real part of a1 is positive then we predict a subcritical

pitchfork bifurcation (or subcritical bifurcation), whereas, if it is negative then we predict
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a supercritical Pitchfork bifurcation (or supercritical bifurcation). Note that a supercritical

bifurcating solution is stable nonlinear states superimposed on the laminar flow to a small

disturbance, whereas a subcritical bifurcating solution is unstable to a small disturbance.

The supercritical bifurcating solution is a continuous process involving the smooth devel-

opment of new modes of motion. However, the subcritical bifurcating solution is attracted

to solution with larger amplitude. In short, we can say that a supercritical bifurcation makes

it possible to achieve the controlled transition through stable nonlinear secondary motions,

whereas a subcritical transition makes destabilizing influence of nonlinearities. The equi-

librium amplitude of supercritical and threshold amplitude of subcritical bifurcations are

given as [59]

Ae
2 =−αci/(a1)r

and At
2 = |αci/(a1)r| respectively, where (a1)r is the real part of a1. The actual value of

the Landau constant depends on the chosen normalization of eigenvectors obtained from

linear stability.

4.3.2 Non-linear kinetic energy spectrum

To gain further insight on the mechanism of supercritical/subcritical bifurcation, an inves-

tigation of the energy transfer in the parallel mixed convective flow is made. The Reynolds

stress has a significant impact on the basic flow in weakly nonlinear stability analysis. This

distortion of the basic flow modifies the rate of the transfer of energy from the basic flow

to the disturbance. The balance of kinetic energy for the fundamental disturbance is given
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as [59, 88],

∂

∂ t

〈
1
2

1
ε

[
u2

1 + v2
1 +w2

1

]〉
= − 1

ε2

〈
u1v1

∂V
∂x

〉
+

Ra
Re

〈
v1θ1

〉
− 1

DaRe

〈
u2

1 + v2
1 +w2

1

〉
− 1

Re

〈(
∂u1

∂x

)2

+

(
∂u1

∂y

)2

+

(
∂u1

∂ z

)2

+

(
∂v1

∂x

)2

+

(
∂v1

∂y

)2

+

(
∂v1

∂ z

)2

+

(
∂w1

∂x

)2

+

(
∂w1

∂y

)2

+

(
∂w1

∂ z

)2
〉

− 1
ε2

〈
u2

1
∂u2

∂x
+u1v1

∂u2

∂y
+u1w1

∂u2

∂ z
+u1v1

∂v2

∂x
+ v2

1
∂v2

∂y

+ v1w1
∂v2

∂ z
+u1w1

∂w2

∂x
+ v1w1

∂w2

∂y
+w2

1
∂w2

∂ z

〉
− F

〈
|V0|(u2

1 +2v2
1 +w2

1)
〉
. (4.38)

Here, bracket 〈〉 implies integration over the volume of disturbance wave and GH for some

field variables G and H is defined as GH̃ + G̃H. With the help of equation (4.36), the

balance of kinetic energy leads to an amplitude equation [88]

d|B|2

dτ
= 2α|B|2 +(P101 +E12 +P110 +T11 +D11 +K11 +F11)|B|4. (4.39)

The comparison of equations (4.36) and (4.39) shows that

2(a1)r = P101 +E12 +P110 +T11 +D11 +K11 +F11, (4.40)

where the right hand side quantities are defined as,

P101 =−
1

e0ε2

〈
u10v10

dV1

dx

〉
, (4.41)

E12 =−
1

e0ε2

〈
u2

10
∂u20

∂x
+u10v10

∂u20

∂y
+u10w10

∂u20

∂ z

+ u10v10
∂v20

∂x
+ v2

10
∂v20

∂y
+ v10w10

∂v20

∂ z

+ u10w10
∂w20

∂x
+ v10w10

∂w20

∂y
+w2

10
∂w20

∂ z

〉
, (4.42)
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P110 =−
1

e0ε2

〈
(u10v11 + v10u11)

dV0

dx

〉
, (4.43)

T11 =
1
e0

Ra
Re

〈
v10θ11 +θ10v11

〉
, (4.44)

D11 = − 1
e0

1
Re

〈
∂u10

∂x
∂u11

∂x
+

∂u10

∂y
∂u11

∂y
+

∂u10

∂ z
∂u11

∂ z

+
∂v10

∂x
∂v11

∂x
+

∂v10

∂y
∂v11

∂y
+

∂v10

∂ z
∂v11

∂ z

+
∂w10

∂x
∂w11

∂x
+

∂w10

∂y
∂w11

∂y
+

∂w10

∂ z
∂w11

∂ z

〉
, (4.45)

K11 =−
2

e0DaRe
〈u10u11 + v10v11 +w10w11〉 , (4.46)

F11 =−
2
e0

F 〈|V0|(u10u11 +2v10v11 +w10w11)〉 , (4.47)

and

e0 =
1

2ε

〈
u2

10 + v2
10 +w2

10

〉
. (4.48)

The physical interpretation of different terms in the equation (4.40) is as follows. The term

P101, which is an integral of the product of Reynold’s stress and the mean velocity gradient,

denotes the gradient production of disturbance kinetic energy due to the interaction between

the fundamental disturbance (quantities assigned with subscript 10) and the distorted mean

flow strain rate. The energy needed for the distortion of the mean flow is obtained from

the fundamental disturbance, consequently, the term will be negative. Hence, this term will

reduce the growth rate of disturbance. The second term E12 represents the transfer of the

disturbance energy from fundamental to the second harmonic wave (quantities assigned

with subscript 20). The other five terms P110, T11, D11, K11 and F11 account for the energy

exchange due to modification of the shape of the fundamental disturbance wave. The term

P110 arises because of modification in the gradient production of disturbance energy due
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to change of the disturbance shape. This term may have positive or negative sign. If the

term P110 is positive, the change in the shape of the disturbance will be more favorable

for shear production of the disturbance energy. The term T11 leads to the modification

in the buoyant production of disturbance kinetic energy due to change in the shape of the

fundamental wave. The term D11 represents a modification in the rate of viscous dissipation

of disturbance kinetic energy due to change in the disturbance shape. The term K11 denotes

a modification in the surface drag dissipation of disturbance kinetic energy due to change

in the disturbance shape. The last term F11 represents a modification in the dissipation of

disturbance kinetic energy due to form drag through change in the shape of the fundamental

wave. If T11 is positive, the modified disturbance shape will be more favorable for buoyant

production of the disturbance energy, whereas a positive value of D11, K11 and F11 will

imply a decrease in the viscous dissipation rate, surface drag and form drag dissipation of

the disturbance kinetic energy, respectively.

4.4 Numerical procedure

In the present work a spectral Chebyshev collocation method is employed to find the so-

lution of the basic state, linear stability and nonlinear stability equations. The equations

are discretized along x-direction by implementing the spectral collocation method that uses

Chebyshev polynomials as the basis functions. The governing equations are collocated at

Gauss-Lobatto points. The Gauss-Lobatto points of Nth-order Chebyshev polynomial are

given as

x j = cos
(

π j
N

)
, (4.49)

where j = 0,1,2, ......N and N represents order of the base polynomial. The details of

the spectral collocation technique can be seen in the book by Canuto et. al. [18]. The

discretized linear disturbance equations (4.11)- (4.15) along with the homogeneous bound-

ary conditions (4.16) are formulated as a generalized eigenvalue problem given by equation
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Published [59] Present

Re Rac αc (a1) Rac αc (a1)
100 41.65 0.875 -2.895 + 4.006i 41.647 0.875 -2.874 + 4.006i
500 32.65 1.22 -17.017+ 10.741i 32.65 1.22 -16.85+ 10.75i
1000 30.26 1.355 -29.188+ 7.55 30.26 1.34 -29.181+ 7.554i

Table 4.1: Comparison between published and present results.

(4.17). The square complex matrices A and B are of order 3N+3 (after elimination of pres-

sure term). The eigenvalues of the generalized eigenvalue problem (4.17) are calculated by

the QZ-algorithm of MATLAB software using eig command. The adjoint eigenfunctions

are used in the integrability condition to determine the first Landau coefficient. The set

of adjoint equations of the linear stability problem are also solved by the same spectral

method. For nonlinear stability analysis, we need to solve the related non-homogeneous

differential equations in A X = b form, where A = A− cB. In the case of E2 harmonic

component, the system A = A− cB is nonsingular as α and β in equations (4.31)-(4.35)

are replaced by 2α and 2β respectively, and complex wavespeed (c) of the fundamental

wave (E1) is not an eigenvalue of this system. So, the eigenvalues are not identical and there

is no theoretical difficulty in solving the equations of E2 harmonic component. For the cal-

culation of u11,v11,w11, p11 and θ11, we encounter a singular system of equations A x = b

which are solved by singular value decomposition (SVD) method which is in-built in the

MATLAB software. These set of equations are also discretized by the same spectral collo-

cation method and the integrals occurring everywhere are calculated by Gauss-Chebyshev

quadrature integration formula.

The numerical code developed in the earlier work [59] for the stability of the non-

isothermal Poiseuille flow in a vertical channel is extended for the present problem. The

accuracy and validity of the numerical scheme are checked by comparing our general re-

sults with published results [20, 59], by taking Da = 1012, F ′ = 0 and ε = 1 (see table

4.1).



107

The solution generated by the code is in excellent agreement with the published

results. Apart from this, the results remain consistent when the order of polynomial (N) is

50 or more (table not shown), which is determined after many preliminary tests. Therefore,

all the computations are reported by taking the order of polynomial as 50.

4.5 Results and discussion

To give an illustration, we carry out a finite amplitude instability analysis of stably stratified

PMCF in a vertical channel filled with a fluid saturated porous medium. The linear stability

results show that the two dimensional disturbance with β = 0 is the most unstable wave for

stably stratified flow. As a consequence of it, the present nonlinear stability results are

carried out for β = 0. The cubic Landau equation (4.36) derived in terms of the amplitude

function is used to identify the supercritical/subcritical bifurcation.

4.5.1 Landau constant in the neighborhood of the bifurcation point

The Landau constant is calculated at δRa = Ra/Rac−1 = 0 and at δRa = 0.01 (i.e., in the

vicinity of the critical Rayleigh number) with respect to the most unstable linear wave (with

critical wavenumber (αc)) for both values 0.7 and 7 of Pr. The calculated values of (a1)r

for both values (0 and 0.01) of δRa are almost identical for air, which is also true for water.

Therefore, in the following, to identify the nature of bifurcation the real part of the Landau

constant ((a1)r) as a function of Re is plotted at δRa = 0.01. The variation of (a1)r when

the porous medium is saturated by air is shown in figures 4.5(a), 4.5(b), and 4.5(c) for

Da equal to 10−2, 10−3 and 10−4, respectively. The sign of (a1)r is found to be negative

for Da = 10−2 with F ′ = 1, indicating the supercritical bifurcation (see figure 4.5(a)). The

magnitude of (a1)r increases on increasing the Reynolds number. The graph also shows su-

percritical bifurcation of PMCF when F ′ = 100 except in a small region 1900≤ Re≤ 2100

(positive value of (a1)r with very small magnitude) where the bifurcation is subcritical.

However, on replacing the value 100 of F ′ by 1000 the same figure shows supercritical
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bifurcation for Re < 3800 and subcritical bifurcation for Re≥ 3800. Furthermore, for each

value of F ′, figure 4.5(b) shows the existence of a minimum value of Re below which the

flow has supercritical bifurcation and above which it has subcritical bifurcation. Let Resb

denote the value of Re at which the shifting of bifurcation takes place. The values of Resb

for F ′ equal to 1, 100 and 1000 are 3678, 3952 and 5351, respectively. The shifting of

bifurcation also takes place for Da = 10−4 which can be seen from figure 4.5(c). For F ′

equal to 1, 100 and 1000 the corresponding values of Resb are 13650, 13700 and 14100,

respectively. Interestingly, Resb increases on increasing the value of F ′ as well as on de-

creasing the value of Da. It may be a consequence of the following fact. Since the decrease

in media permeability or increase in form drag in general stabilizes the flow (see figure

4.3), therefore to achieve a change of bifurcation in PMCF in a porous medium in which

permeability is relatively low or induced form drag is relatively high a relatively higher

disturbance shear production is required.

The corresponding equilibrium amplitude (Ae) or threshold amplitude (At) for Da

equal to 10−2, 10−3 and 10−4, are displayed in figures 4.5(d), 4.5(e) and 4.5(f), respec-

tively. Each of the above figures manifests an important feature. The notable feature is

an impulsive type of variation in the amplitude profile in the vicinity of Resb, where su-

percritical bifurcation changes to subcritical one or vice-versa. Partially, this may be the

consequence of very small value of (a1)r when the change of bifurcation takes place and Ae

or At is inversely proportional to the square root of (a1)r. Note that the unpredictable jump

in the amplitude profile shows a complex phenomena in the flow instability. More about

the possible justification of this unpredictable jump will be discussed later in this section.

From the above discussion and the discussion made in review of linear stability results, we

can conclude that for the shear instability of PMCF the bifurcation is supercritical whereas

for mixed or buoyant the same may be supercritical or subcritical.

To show the variation of (a1)r as a function of Re, when the porous medium is satu-

rated by water, figures 4.6(a), 4.6(b) and 4.6(c) are drawn for Da equal to 10−2, 10−3 and
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Figure 4.6: Variation of Landau constant ((a1)r) and equilibrium amplitude w.r.t. Re: (a,d)
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10−4, respectively. All these figures show only supercritical bifurcation. The correspond-

ing amplitude profiles shown in figures 4.6(d), 4.6(e) and 4.6(f) respectively vary smoothly

for all Da as well as F ′. Therefore, in the rest of this subsection we shall be restricted

to only air saturated porous medium. Above observations make us curious to know about

the variation of physical quantities like heat transfer rate in terms of Nusselt number and

friction coefficient as a function of Re specially at the point where change of bifurcation

takes place. As we have seen that in general F ′ delays the shifting whereas Da accelerates

it. Therefore, in the rest of the analysis in this subsection, we have fixed the value of Da at

10−3, F ′ at 100 and Pr at 0.7.
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Figure 4.7: Variation of Nusselt number and friction coefficient w.r.t. Re when Da = 10−3,
Pr = 0.7 and F ′ = 100. Solid line and dashed line represents basic state and distorted state
respectively.

4.5.1.1 Nusselt number and friction coefficient as a function of Re

The heat transfer rate in terms the Nusselt number is defined as

Nu =−2H1/H2,

where H1 and H2 are given by
∂Θ

∂x

∣∣∣∣
x=1

and
∫ 1
−1V Θdx/

∫ 1
−1V dx, respectively. The func-

tions V and Θ, calculated using the equilibrium amplitude, are given as V0 +Ae
2V1 and

Θ0 +Ae
2
Θ1, respectively. The functions V1 and Θ1 are the basic flow distortion functions.

Similarly, the friction coefficient at the wall is given as [94]

C f =−
2

Re
∂V
∂x

∣∣∣∣
x=1

.

The friction coefficient at the other wall of the channel (x = −1) is also same as the wall

x = 1.

The impact of disturbance growth/decay on heat transfer rate is examined in figure

4.7(a). Let, Nubs and Nuds be defined as Nusselt number predicted by the basic state (solid

line) and distorted state (dashed line) respectively, in figure 4.7(a). The results show that

the Nusselt number estimated with the help of weakly nonlinear stability is more or less
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same with the one calculated by the basic state except in the vicinity where the type of

bifurcation gets changed. The impact of nonlinear interaction between different harmonic

modes on the friction coefficient is displayed in figure 4.7(b). The solid and dashed lines in-

dicate the friction coefficient calculated by the basic state (C f bs) and distorted state (C f ds),

respectively. Similar to Nuds, the difference between C f ds and C f bs is negligible, but the

magnitude of C f ds increases drastically in the vicinity where change in bifurcation takes

place.

In the context of complex behavior of flow mechanism, where a change from super-

critical to subcritical (or reverse) bifurcation occurs, the basic flow (V0 & Θ0) and basic flow

correction distributions (V & Θ) in the region of supercritical bifurcation as well as in the

vicinity of Resb are examined. For this, we have chosen three different values 3000 (from

supercritical zone), 3950(from supercritical zone), 3962(subcritical zone) of Re. Basic as

well as distorted velocities and temperatures for above Re are shown in figures 4.8(a) and

4.8(b), respectively. We note that the mean flow correction (lines other than solid), mainly

in temperature (see figure 4.8(b)), loses the trend of the basic flow profile (solid line) in the

vicinity of Resb = 3952, whereas it remains almost unchanged at Re = 3000. Furthermore,

to understand the fluctuation of Nuds in the vicinity we have checked the variation of bulk

temperature (given as
∫ 1
−1V Θdy/

∫ 1
−1V dy) and shown in figure 4.8(c). As can be seen from

this figure the bulk temperature goes on changing sign from negative to positive and again

from positive to negative in the vicinity of Resb = 3952, resulting in the fluctuation of Nuds

in the vicinity.

It should be noted that above phenomena (rapid change of Nuds as well as C f ds and

negative Nuds) appearing in the vicinity of Resb was also reported for purely fluid medium

[103] while studying nonlinear stability of mixed convection flow under non-Boussinesq

condition in differentially heated channel. Thus we believe that the sudden appearance of

subcritical bifurcation in the flow leads to a transverse mixing of the fluid layers in the

transition mechanism. It is expected that the fluid motion near the bifurcation point will

remain steady and parallel due to nearby stable branch of the supercritical bifurcation.
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Figure 4.8: Variation of basic (solid line) and distorted (other lines) flow when Da = 10−3,
Pr = 0.7 and F ′ = 100: (a) velocity, (b) temperature and (c) bulk temperature.

4.5.1.2 Nonlinear energy spectrum as a function of Re

To understand the driving mechanisms of flow instability and change of bifurcation at a

neighboring point (δRa = 0.01) of the least linearly stable point, the nonlinear KE spec-

trum in supercritical regime and subcritical regime is shown in figures 4.9(a) and 4.9(b),

respectively. From the figure 4.9(a) following points can be noted down. The term P101 is

negative in this zone which implies that the gradient production of the KE for supercritical

flow always tends to stabilize. It also remains almost constant. However, its contribution

in the energy spectrum is negligible, i.e., gradient production through Reynolds stress is

negligible. The magnitude of the term E12 is very small, i.e., the transfer of disturbance

energy from fundamental to the harmonic wave is also negligible. The term T11 is positive

through out the range of Re, i.e., the modified disturbance shape is favorable for buoyant

production of the KE, whereas dissipation of KE through surface drag (K11), which is the

consequence of the change in the disturbance shape, is negative and increases as a function

of Re. The term P110 is negative, i.e., the change in the shape of the disturbance is not fa-

vorable for shear production of the disturbance energy. As a result, it stabilizes the flow. In

the subcritical zone, figure 4.9(b) shows that the terms P101, E12 and F11 are negative with
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Figure 4.9: Variation of KE w.r.t. Re for Da = 10−3, Pr = 0.7 and F ′ = 100: (a) Supercrit-
ical zone of Re, (b) Subcritical zone of Re.

very small magnitude, so their contribution in stabilizing the flow is almost negligible. In

the KE spectrum, the term T11 and P110 are positive, i.e., the modified disturbance shape is

favorable for buoyant production of the disturbance energy and the change in the shape of

the disturbance is favorable for shear production of the disturbance energy. However, T11

plays the dominant role over P110 in the KE spectrum. The most dominant stabilizing term

is K11. So, we can conclude that the change of bifurcation from supercritical to subcritical

is mainly due to the modification in the gradient production favorable for shear production

of the KE.

Furthermore, the mathematical analysis of the nonlinear energy spectrum shows that

the sum of different energy terms is twice the real part of Landau constant (see equation

4.40). Therefore, the type of bifurcation predicted by Landau constant can be reconfirmed

through the sum of different energy terms. Consequently, the sum is shown in both figures

4.9(a) and 4.9(b). As can be seen it supports the results obtained by Landau constant.
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4.5.2 Bifurcation as a function of Ra

Weakly nonlinear analysis is only valid near the linear stability boundary point [32] and it

addresses the question of what happens to an unstable flow. Rogers et. al. [88] have shown

that the cubic Landau equation gives the correct results when the magnitude of ci is small

by comparison with the results from the direct numerical simulation as well as high-order

weakly nonlinear results. They have also pointed out that the weakly nonlinear analysis

is asymptotically correct for larger values of the Rayleigh number beyond the bifurcation

point in the limit as ci approaches zero. Based on this fact, for a given Re, we have studied

the behavior of the Landau constant as well as equilibrium/threshold amplitude away from

the critical Ra, as a function of δRa. To check the transition mechanism at supercritical

state as well as in the vicinity where the change of bifurcation as a function of Re takes

place, two different values of Re one from supercritical zone and the other from subcritical

zone are considered for a given Da. Accordingly, for three values 10−2, 10−3 and 10−4

of Da three different respective values 1000, 1500 and 12000 of Re from the supercritical

zone and three respective values 2030, 5000 and 15000 of Re from the subcritical zone are

chosen. Here, F ′ is fixed at 100. From our numerical experiments we have checked that

the magnitude of ci for all the above values of Re is of the order of 10−2 in the considered

range of δRa (see figure 4.19 in Appendix B). Therefore, we also analyze the limiting

value of growth of instabilities under nonlinear effects (i.e, nonlinear saturation) for larger

values of the Rayleigh number beyond the bifurcation point (upto 3 times of critical Ra).

However, a complete picture of nonlinear saturation can only be confirmed by use of direct

numerical simulation, which is beyond the scope of the present work. Hence, a qualitative

characteristic of the nonlinear interaction of different harmonic modes for larger values of

Ra is also presented for the present problem. The variation of the Landau constant and

amplitude as a function of δRa for three values of Re chosen from super critical zone, are

shown in figures 4.10(a) and 4.10(b), respectively, whereas the same for Re chosen from

the subcritical zone are shown in figures 4.10(c) and 4.10(d), respectively. Figure 4.10(a)

shows that the sign of (a1)r is negative for all considered values of Da at and beyond



116

δ

(a
1)

r

0 0.2 0.4 0.6 0.8 1
-30

-20

-10

0

10

Da=10-2, Re=1000

10-3, 1500

10-4, 12000

(a)

Ra δ

A
e

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

Da=10-2

10-3

10-4

Ra

(b)

δ

(a
1)

r

0 0.4 0.8 1.2 1.6 2
-40

-30

-20

-10

0

10

20
Da=10-2, Re=2030

10-3, 5000

10-4, 15000

(c)

Ra δ

A
e
/A

t

0 0.4 0.8 1.2 1.6 2
0

0.1

0.2

0.3

0.4

0.5

10-4

10-3

Da=10-2

Ra

(d)

Figure 4.10: Variation of (a1)r and amplitude w.r.t. δRa when Pr = 0.7 and F ′ = 100:(a,b)
Supercritical zone of Re, (c,d) Subcritical zone of Re.



117

the critical point which leads to supercritical bifurcation. The value of Landau constant

decreases on increasing Ra. The corresponding equilibrium amplitude increases smoothly.

This indicates that the supercritical bifurcation of the flow remains supercritical even when

Ra is increased up to two times its critical value. Figure 4.10(c) shows that the sign of (a1)r

changes from positive to negative which leads to a change in bifurcation from subcritical

to supercritical. Here also the equilibrium amplitude experiences a drastic change in the

vicinity of point where change in bifurcation takes place (see figure 4.10(d)). Similar study

is also made when the medium is saturated with water. However, the variation of Landau

constant as a function of Ra predicts only supercritical bifurcation (see figure 4.20(a) in

Appendix B) and the corresponding amplitude changes smoothly (see figure 4.20(b) in

Appendix B). Therefore, in the rest of the section our analysis will be restricted to impact

of non-linear interaction on PMCF of air only.

To understand the nonlinear impact on heat transfer rate away from the bifurcation

point, figure 4.11(a) and 4.11(b) are drawn for Re equal to 1500 and 5000, respectively

for Da = 10−3. As can be seen from figure 4.11(a) that Nusselt number estimated with

the help of weakly nonlinear stability is more than the one calculated by the basic state.

The substantial increase in Nuds beyond the bifurcation point can be predicated due to

instability of the flow. Quantitatively, we have observed that the increase in Nu due to

nonlinear interaction is around 10% at δRa = 0.5. However, for Re in subcritical zone,

Nuds increases steadily upto a threshold value of δRa beyond which a fluctuation can be

seen where it experiences positive and negative values. The friction coefficient, C f , for

above two values of Re is shown in figure 4.11(c) and 4.11(d), respectively. The friction

coefficient due to nonlinear interaction is less compared to the same calculated by basic

state. It decreases as a function of Ra. Quantitatively speaking, the decrease in friction

coefficient due to nonlinear interaction at δRa = 0.5 is 4.8%. Similar to Nusselt number,

the profile of distorted state friction coefficient shows an abrupt change at larger values of

the Rayleigh number due to shifting of the bifurcation.

The nonlinear spectrum of KE away from the critical point for Da = 10−3 is shown
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in figure 4.12(a) for supercritical zone and in figure 4.12(b) for subcritical zone of Re. The

spectrum of KE in supercritical zone reveals that the term T11 is positive as a function of Ra,

i.e., the modified disturbance shape is favorable for buoyant production of the KE and it is

the main destabilizing factor. Although, the dissipation of KE through surface drag (D11) is

positive but it’s impact is negligible as compared to T11. The component K11, which is the

consequence of the change in disturbance shape, is negative and its magnitude decreases as

a function of Ra. The term P110 is negative and its magnitude increases as a function of Ra.

So it is not favorable for shear production of the disturbance energy. As a result, it is in favor

of stabilizing the flow. It is to be noted that in the case of purely fluid domain [59] T11 was

negative in supercritical zone and D11 was the main destabilizing factor. In the subcritical

zone, similar to figure 4.9(b) here also P110 is positive and in favour of destabilizing the

flow. The term K11 becomes the main stabilizing component (see figure 4.12(b)). So, we

see that here also the change of bifurcation from supercritical to subcritical mainly occurs

through the modification in the gradient production of disturbance energy due to the change

of the disturbance shape. Also, the balance of KE supports the results obtained by Landau

constant.



120

4.5.3 Bifurcation as a function of α

Since the lower-order weakly nonlinear analysis is asymptotically correct in the limit as ci

tends to zero, therefore the theory may be used to predict the behavior of the linear modes

at the least-stable values of Ra. The variation of the neutral stability curve with wavenum-

ber is also important because an instability that is supercritical for some wavenumber may

be subcritical or supercritical at other nearby wavenumber [88]. In this situation, any of

the potential unstable waves may grow and interact with other modes. Therefore, for the

present problem we have chosen two different values of Re, one from supercritical zone and

other from subcritical zone for a given Da. Accordingly, for three values 10−2, 10−3, and

10−4 of Da three different respective values 1000, 1500, and 12000 of Re from the super-

critical zone and three respective values 2030, 5000 and 15000 of Re from the subcritical

zone are chosen. Note that the corresponding critical points (α,Ra) for above chosen val-

ues of Re in supercritical zone are (1.76, 443.5), (1.42, 6701.3) and (1.4, 59067.2) and in

subcritical zone are (2.04, 292), (1.58, 1525.4) and (1.32, 44423.4), respectively. For the

above considered values of Re in supercritical as well as subcritical zone the type of insta-

bility is either buoyant or mixed (see figure 4.3(a)). The neutral stability curves (ci = 0) for

different values of Da are plotted in figure 4.13. Here, solid and dashed line represents vari-

ation of Ra with α for a given Re from the supercritical and subcritical zone, respectively.

It can be seen from the figure that, for Da = 10−3, a large band of wavenumbers exists in

which supercritical/subcritical bifurcation remains supercritical/subcritical. However, for

Da = 10−2 and Re = 1000, subcritical bifurcation can be seen for α < 0.9 and supercritical

for α ≥ 0.9. Similarly, for Re = 2030, supercritical bifurcation can be seen for α < 2.02

and subcritical for α ≥ 2.02. In the case of Da= 10−4, similar to Da= 10−3, here also sub-

critical bifurcation for Re = 15000 remains subcritical for a large band of α , however, for

Re = 12000 subcritical bifurcation can be seen for α < 1.3 and supercritical for α ≥ 1.3.

Note that for Re = 12000 the basic flow at the least linearly stable point (1.4, 59067.2) is

supercritically stable whereas the same at nearby neutral point (1.3, 59530) is subcritically

unstable. Similarly, for Da = 10−2 the basic flow which is subcritically unstable at the
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least linearly stable point (2.04, 291.9) is supercritically stable at the nearby neutral point

(2.02, 292). From the above analysis we can point out that with the buoyant and mixed

instabilities both subcritical and supercritical branches appear on the neutral curves.

4.5.4 Pattern of secondary flow

The overview of the above discussion suggests the existence of secondary flow with finite

amplitude beyond the bifurcation point. We have seen that depending on the value of in-

put parameter the bifurcation may be supercritical or subcritical. Apart from this, balance

of kinetic energy depicts a different result relative to purely fluid domain, in supercritical

zone. Therefore, nonlinear impact on secondary flow from linearly least stable wave is

analyzed in supercritical as well as subcritical zone. The secondary flow under linear sta-

bility analysis is obtained from eigen function associated to linearly least stable eigen value

and the same from weakly nonlinear analysis is calculated as a superposition of different

harmonics (here, E1 and E2 in equation (4.18)). Following Khandelwal and Bera [59], the

functions û1, û2, etc., for the secondary flow are calculated. The eigen function includes û,
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Figure 4.16: Pattern of secondary flow by (a) linear stability (b) non-linear stability when
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Figure 4.17: Pattern of secondary flow by (a) linear stability (b) non-linear stability when
Da = 10−3, Pr = 0.7, Re = 5000 and δRa = 0.01 as well as δRa = 0.5: (i) and (iii) disturbance
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v̂, and θ̂ . However, to avoid numerous figures the pattern of v̂ is not shown in the follow-

ing. We are interested to study the pattern of secondary flow very close to the bifurcation

point (δRa = 0.01) as well as far away from the bifurcation point (δRa = 0.5) under linear as

well as weakly nonlinear analysis. The patterns of secondary flow in supercritical regime,

when Re = 1000 and Da = 10−2, from linear stability theory and weakly non-linear sta-

bility theory are shown in figures 4.14(a) and 4.14(b), respectively. As can be seen from

the above figures that the difference between patterns of secondary flow using linear and

weakly nonlinear theories at δRa = 0.01 is negligible as compared to the same at δRa = 0.5.

However, magnitude wise it differs significantly at both values of δRa. To check the above

result for other value of Da we have plotted the same for Da = 10−3 when Re = 1500 in

figures 4.15(a) and 4.15(b), respectively. It also gives similar impression. In subcritical

zone for Da = 10−2, figures 4.16(a) and 4.16(b) show that the uni-cellular structure of û

from linear stability theory shift to deformed multicellular structure. Deformation of the

secondary cells under subcritical bifurcation accelerates as one moves away from the bi-

furcation point. In order to cross check the same when Da is changed to Da = 10−3, figure

4.17 is drawn for subcritical zone of Re = 5000. The remarks made for pattern deforma-

tion of the the secondary flow under linear stability theory due to non-linear interaction of

different harmonics at Da = 10−2 remains valid for this Darcy number too.

From the above analysis, we would like to mention that a jump in the amplitude

profile of a physical problem leads to an abrupt transition from supercritical to subcritical

flow and deformed the pattern of secondary flow under linear stability analysis drastically

(see figures 4.16 and 4.17). Of course this kind of abrupt change does not occur in the

laminar-transition. A higher order weakly nonlinear analysis may help to examine the

clear interpretation towards the repeated bifurcation in the flow, which is also beyond the

scope of present work. But in this situation we probably anticipate that similar to the

pipe flow [44, 49], here also the transition to disorder flow may occur suddenly. In other

situation, the deformation of pattern of secondary flow far away from the vicinity of Resb

(see figures 4.14 and 4.15) shows a slow and smooth change as a function Ra. Therefore,
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we can anticipate that, as in the case of pipe flow [77], here also the transition from smooth

laminar to disorder turbulent flow may involve a sequence of instabilities.

4.6 Summary and Conclusions

This study considers the weakly non-linear stability analysis of stably stratified PMCF of

air as well as water in a vertical channel filled with porous medium. The flow in the channel

is governed by the volume-averaged forms of the Naiver-Stokes and continuity equations

derived by Whitaker [123]. The purpose of this study is to analyze the nature of bifurcation

and the finite amplitude behavior of unstable disturbances that occur beyond the linear in-

stability boundary, especially when the permeability of the medium and strength of the flow

are reasonably high. This is accomplished by reviewing the linear stability results, and then

a weakly nonlinear analysis is made to trace the evolution of finite amplitude perturbation.

From the review it has been checked through dimensional analysis that the non-isothermal

PMCF becomes unstable under mild heating condition. For example, when the channel

is filled with water saturated porous medium with permeability equal to 10−7m2, PMCF

becomes unstable even when the temperature gradient C = 3.7. In the case when channel

is filled with air saturated porous medium with permeability equal to 9× 10−7m2, PMCF

becomes unstable when C = 13.9. The results obtained using Boussinesq approximation

remains valid for wide range of input parameters.

To study the evolution of finite amplitude perturbation, first we have analyzed the

variation of real part of Landau constant ((a1)r) and amplitude in the vicinity of the least

linearly stable point as a function of Re for air as well as water. Depending on the flow

strength as well as media permeability, the weakly nonlinear analysis predicts both su-

percritical and subcritical bifurcations for air and only supercritical bifurcation for water.

In the case of air, an increase in Forchheimer number or decrease in media permeability

delays the shift of bifurcation from supercritical to subcritical or vice versa in Reynolds

number space. In general, compared to subcritical bifurcation, the supercritical bifurcation
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occurs at relatively lower values of Re. The amplitude profile shows a peak, due to change

in sign of (a1)r, at the Reynolds number where the shift in bifurcation from supercritical

to subcritical takes place. The similar characteristic is also observed in physical quantities

such as Nusselt number and friction coefficient, which is a consequence of the distortion in

basic flow velocity and temperature.

For air, when Da = 10−3, the nonlinear spectrum of kinetic energy in supercritical

regime of Re shows that due to change in the shape of fundamental wave, modification in

the buoyant production of KE (T11) becomes main destabilizing factor, however modifica-

tion in the gradient production (P110) as well as modification in the surface drag dissipation

(K11) become major stabilizing factors. On the other hand in the subcritical regime of Re,

P110 is a destabilizing factor along with T11. Furthermore, based on very small value of

ci, we have analyzed the bifurcation away from the critical point for particular choice of

Re in super as well as subcritical regimes. It has been found that for all considered val-

ues of Da the supercritical bifurcation as a function of Ra remains supercritical whereas

in subcritical regime it may change to supercritical one. Also, the heat transfer rate (skin

friction) increases (decreases) significantly and experiences jump in the neighbourhood of

Ra where the change of bifurcation takes place. Furthermore, the analysis of nonlinear bal-

ance of kinetic energy for the disturbance also supports the results obtained through Landau

constant, i.e., if the bifurcation of PMCF is found to be supercritical/subcritical from the

Landau constant, then it also remains supercritical/subcritical under energy analysis. It is

important to mention here that while studying mixed convection flow in vertical annulus

Rogers et. al. [88] have found that the buoyant instability is supercritical at all wavenum-

bers whereas with the shear and interactive (or mixed) instabilities, both subcritical and

supercritical branches appear on the neutral curves. In contrast to the above results it has

been observed in the present study that with the buoyant and mixed instabilities both sub-

critical and supercritical branches appear on the neutral curves. Finally, for values of Re

in supercritical regime, the disturbance temperature contours maintain the same shape but

due to nonlinear interaction of waves they move towards the center of the channel and the
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maximum magnitude of all the disturbance field variables reduce significantly. In the case

of Re in subcritical regime, the shape of disturbance velocity as well as temperature con-

tours gets changed drastically which in turn enhances the destabilizing characteristic of T11

and changes the stabilizing nature of P110 in supercritical bifurcation into a destabilizing

nature in subcritical bifurcation.

The details of finite amplitude stability analysis for PMCF in a vertical porous-

medium channel are of much interest. Although we have explored some important fea-

tures including type of bifurcations, energy transfer and secondary flow. But the findings

can also be viewed in a broader context of the stability behavior of the present flow with

the help of higher order weakly nonlinear stability analysis and full numerical simulation.

These analyses are left for our future study.

Appendix A: A note about model equations

Due to lack of unified theory for transport in porous media, different models have

emerged based on empirical results (i.e., experimental data) as well as different theoreti-

cal approaches (i.e., volume-averaged analysis, matched asymptotic expansion, etc.). The

volume-averaged Navier-Stokes (VANS) equation derived by Whitaker [123] for an incom-

pressible viscous fluid flowing through a rigid, homogeneous, isotropic, porous medium is

of the form

ρ f

[
1
ε

∂v
∂ t

+
1
ε2 v.∇v+CFK−1/2|v|v

]
=−∇P+ρgey + µ̃∇

2v−µ f
v
K
, (4.50)

where v is the Darcy velocity, P is the pressure, ε is the porosity of the medium, CF is

the form drag coefficient, K is the permeability of the porous medium, g is gravitational

acceleration, µ̃ is the effective viscosity, µ f is the fluid viscosity, ρ f is fluid density, ρ

is fluid density given by equation of state, and ey is unit vector in the y-direction. In

this equation, the Darcy term (µ f v/K) represents a volume-averaged viscous drag, the

Brinkman term (µ̃∇2v) represents a volume-averaged viscous diffusion, the Forchheimer

term (CFK−1/2|v|v) represents form-drag due to inertial effects, and the convective term

(ρ f v.∇v/ε2) represents another drag which arises from inertial effects. It is important to

mention that volume averaging the convective term in the Navier-Stokes equation generates
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the terms ρ f v.∇v/ε2 and CFK−1/2|v|v when the difference between velocity of fluid and

volume average velocity of fluid is negligible. Whitaker [123] found that the contribution

of convective term ρ f v.∇v/ε2 is negligible in comparison with the dominant Forchheimer

term, CFK−1/2|v|v. However, without a convective term, there is no mechanism for de-

velopment of the flow field which leads to a physically flawed and unrealistic situation

[119]. The literature review reveals some inconsistencies in the proper form of equations

governing flow through porous media [42, 65, 123] but the form of equation by the volume-

averaged method is particularly useful in channel flow [117, 131]. Note that Vafai et. al.

[120] as well as Hsu et. al. [51] have also used volume averaging concept to derive porous

flow equations similar to the above equation. Without diminishing the importance of their

work, we also prefer the derivation of Whitaker [123] because it is, to the best of our

knowledge, the most complete and formal.

The contribution of different terms in the above equation depends mainly on (i) the

type of porous medium in which fluid flow is considered and (ii) the nature and strength of

the flow. Darcy model is limited to describe the fluid flow in a porous medium when the

Darcy velocity is small. It does not satisfy no-slip condition. To investigate the dynamics of

pressure driven flow in a channel, Brinkman term is required to satisfy the no-slip condition

[117]. Furthermore, if the porous medium is made of metallic foam then the Forchheimer-

extended Darcy law is valid for most of the metal foams [131]. If the permeability of the

medium is high and strength of the forced flow is also reasonably high then the contribution

of ρ f v.∇v/ε2 is expected in evaluating the instability boundary point or critical point of a

basic flow.

In this context a rigorous study is already reported by Kumar et. al. [60]. The au-

thors have shown that if the permeability of the medium is not high then the results (i.e.,

instability boundary curve) from model containing Darcy and Brinkman terms and model

containing Darcy, Brinkman and Forchheimer terms are same. Also, in this situation, re-

sults from model containing Darcy, Brinkman, and convective terms and model containing

Darcy, Brinkman, convective and Forchheimer terms are same. They have also shown that



131

all the four models give almost same result when the fluid is water. Apart from these, while

studying the effect of particle size of porous medium on forced convection from a circular

cylinder without assuming local thermal equilibrium between phases, Al-Sumaily et. al.

[1] have shown that the model containing all the four terms mentioned above gives a very

good approximation to the experimental result. The appropriateness of inclusion of differ-

ent terms in the momentum equation is still a matter of vital discussion in the literature.

Appendix B

B.1: Basic flow profiles

The basic velocity profile for different Da at F ′ = 1 and 100 are shown in figures

4.18(a) and 4.18(b), respectively. As can be seen from the above figure that for each

considered value of Da as well as F ′ the velocity profile contains point of inflection for

Ra = 500, which is consequence of (i) no slip condition on the wall, (ii) acceleration of

fluid near the wall due to buoyant term, and (iii) deceleration of the colder fluid near center

due to mass conservation. The point of inflection dies out on decreasing the value of Da as

well as F ′. Appearance of inflection point indicates a potential of instability.
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Figure 4.18: Basic velocity profile for different Da: (a) F ′ = 1 and (b) F ′ = 100 when
Ra = 500.

B.2: Growth rate of disturbance
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Figure 4.19: Variation of growth rate(αci) as a function of δRa.

The growth rate as a function of Ra in supercritical and subcritical regimes of Re is

shown in figures 4.19(a) and 4.19(b), respectively. Both figures show the validity of linear

variation of growth rate far away from the critical point for Da = 10−3 and 10−4. However,

in case of Da = 10−2 it is true for δRa ≤ 0.2 and δRa ≤ 0.08 for supercritical and subcritical

cases, respectively.

B.3: Variation of Landau constant and amplitude for water

The variation of real part of Landau constant and the corresponding ampltitude are

plotted in figures 4.20(a) and 4.20(b), respectively when the porous medium is saturated by

water. For all the three considered values of Da figure 4.20(a) shows that (a1)r is negative,

i.e., bifurcation at and beyond the critical point is supercritical. The corresponding equi-

librium amplitude profile for two values 10−3 and 10−4 of Da indicates a smooth increase

in magnitude, however the same for Da = 10−2 increases upto δRa = 1.1 and beyond it the

same decreases.

Appendix C: Linear adjoint equations

The solution of adjoint system of linear instability equations (4.11)-(4.15) is needed

to obtain the Landau constant. The definition of adjoint operator is given as [59]

〈LX ,X∗〉= 〈X ,L∗X∗〉 , (4.51)
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Figure 4.20: Variation of (a) (a1)r and (b) amplitude w.r.t. δRa when Pr = 7, Re = 1000
and F ′ = 100.

where X∗ = [u∗,v∗,w∗,θ ∗, p∗] is adjoint eigenfunction, L = [Lo,Lx,Ly,Lz,L ] is the lin-

ear stability operator and L∗ = [L ∗
o ,L

∗
x ,L

∗
y ,L

∗
z ,L

∗] is corresponding adjoint operator.

The inner product in this definition is the standard inner product given as

〈Y (x),Z(x)〉=
∫ 1

−1
Y ∗(x)Z(x)dx =

∫ 1

−1

5

∑
i=1

(y∗i (x)zi(x)dx, (4.52)

where the superscript ∗ denotes the adjoint eigenfunction. The corresponding adjoint equa-

tions of linear stability equations (4.11)-(4.15) are given as:

L ∗
o (α,β ,u∗,v∗,w∗) =

du∗

dx
− iαv∗− iβw∗ = 0, (4.53)

L ∗
x (α,β ,c,u∗,v∗, p∗,θ ∗,V0,Θ0,Da,F ′) = iαRe

1
ε

(
1
ε

V0− c
)

u∗+
Re
ε2

dV0

dx
v∗

−λ

(
d2u∗

dx2 − (α2 +β
2)u∗

)
− d p∗

dx
+

1
Da

u∗+F ′|V0|u∗−PrRe
dΘ0

dx
θ
∗ = 0. (4.54)

L ∗
y (α,β ,c,v∗, p∗,θ ∗,V0,Da,F ′) =iαRe

1
ε

(
1
ε

V0− c
)

v∗−λ

(
d2v∗

dx2 − (α2 +β
2)v∗

)
+ iα p∗+

1
Da

v∗+2F ′|V0|v∗−θ
∗ = 0, (4.55)
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L ∗
z (α,β ,c,w∗, p∗,V0,Da,F ′) =iαRe

1
ε

(
1
ε

V0− c
)

w∗−λ

(
d2w∗

dx2 − (α2 +β
2)w∗

)
+ iβ p∗+

1
Da

w∗+F ′|V0|w∗ = 0, (4.56)

L ∗(α,β ,c,v∗,θ ∗,V0,Ra) =− iαPrRe(V0−σc)θ ∗+
(

d2θ ∗

dx2 − (α2 +β
2)θ ∗

)
−Ra v∗ = 0. (4.57)

The above equations are solved by eliminating the pressure terms along with no-slip and

impermeability condition of velocity and zero temperature perturbation on the walls. The

corresponding boundary conditions for adjoint system are:

u∗ = v∗ = w∗ = θ
∗ = 0 at x =±1. (4.58)

These adjoint eigenfunctions are also normalized to satisfy the equation∫ 1

−1

[
1
ε
(ûu∗+ v̂v∗+ ŵw∗)−Prθ̂θ

∗
]

dx = 1. (4.59)



Chapter 5

Finite amplitude analysis of

non-isothermal parallel flow in a

differentially heated vertical channel

filled with porous medium

As it was observed in chapter 4 that based on the values of different controlling parameters,

both supercritical and subcritical bifurcations of non-isothermal parallel flow of air in verti-

cal channel are possible. So, here also we are interested to see whether that type of change

of bifurcation can take place or not when linearly heated vertical channel is replaced by

differentially heated vertical channel. Therefore, in this chapter, we have investigated the

finite amplitude stability of mixed convection flow in a differentially heated vertical channel

filled with porous medium whose linear stability results are already discussed in Chapter 2.

The results are presented with respect to two different fluids with Prandtl number equal to

0.7 and 7.

135
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5.1 Finite amplitude analysis

The basic flow equations in operator form are given as:

Ly(V0,Θ0,Gr′,Da,F ′) = λ
d2V0

dx2 −
1

Da
V0 +Gr′Θ0−F ′|V0|V0 = Re

dP0

dy
, (5.1)

L(Θ0) =
d2Θ0

dx2 = 0, (5.2)

with boundary conditions:

V0 = Θ0 = 0 at x =±1, (5.3)

The linearized disturbance equations in operator form are given as:

Lo(α,β , û, v̂, ŵ) =
dû
dx

+ iα v̂+ iβ ŵ = 0, (5.4)

Lx(α,β ,c, û, p̂,V0,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

û−λ

(
d2û
dx2 − (α2 +β

2)û
)

+ Re
d p̂
dx

+
1

Da
û+F ′|V0|û = 0, (5.5)

Ly(α,β ,c, û, v̂, p̂, θ̂ ,V0,Gr′,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

v̂−λ

(
d2v̂
dx2 − (α2 +β

2)v̂
)

+iαRep̂+Re
1
ε2

dV0

dx
û+

1
Da

v̂+2F ′|V0|v̂−Gr′θ̂ = 0, (5.6)

Lz(α,β ,c, ŵ, p̂,V0,Da,F ′) = iαRe
1
ε

(
1
ε

V0− c
)

ŵ−λ

(
d2ŵ
dx2 − (α2 +β

2)ŵ
)

+ iβRep̂+
1

Da
ŵ+F ′|V0|ŵ = 0, (5.7)

L (α,β ,c, û, θ̂ ,V0,Θ0) = −iαPrRe(V0−σc)θ̂ +

(
d2θ̂

dx2 − (α2 +β
2)θ̂

)
− PrRe

dΘ0

dx
û = 0. (5.8)

The corresponding boundary conditions for the perturbed field variables are:

û = v̂ = ŵ = θ̂ = 0 at x =±1. (5.9)
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As in the previous chapter, the Fourier expansion of the x-direction velocity in sepa-

rable form in terms of ci is given as [101]:

v(x,y,z, t) =V (x,τ)E0 + v̂1(x,τ)E1 + v̂2(x,τ)E2 + · · ·+ c.c.

=E0[V0(x)+ ci|B(τ)|2V1(x)+O((ci)
2)]+E1[(ci)

1/2Bv10 +(ci)
3/2B|B|2v11

+O((ci)
5/2)]+E2[ciB2v20 +O((ci)

2)]+ · · ·+ c.c. (5.10)

where, E = e[iα(y−crt)+iβ z]. The expansions for the other dependent variables can be written

in similar way. Substituting (5.10) into the governing equations (2.2)-(2.4) and separating

the harmonic components, the equations for the harmonic E0 (mean flow) are given as

Ly(V0,Θ0,Gr′,Da,F ′)−Re
dP0

dy
+ ci|B|2

{
d2V1

dx2 −
1

Da
V1 +Gr′Θ1−2F ′|V0|V1−Re

dP1

dy

}
= O((ci)

2), (5.11)

L(Θ0)+ ci|B|2
{

L(Θ1)−PrRe
[

∂

∂x
(u10θ̃10 + ũ10θ10)

]}
= O((ci)

2). (5.12)

The equations for harmonic E1 can be written as

(ci)
1/2B{Lo(α,β ,u10,v10,w10)}+(ci)

3/2B|B|2 {Lo(α,β ,u11,v11,w11)}= O((ci)
5/2), (5.13)

(ci)
1/2B

{
Lx(α,β ,c,u10, p10,V0,Da,F ′)

}
+(ci)

3/2{B|B|2Lx(α,β ,c,u11, p11,V0,Da,F ′)

−α

ε
ReBu10 +

Re
ε

dB
dτ

u10−B|B|2Gx

}
= O((ci)

5/2), (5.14)

(ci)
1
2 B
{
Ly(α,β ,c,u10,v10, p10,θ10,V0,Gr′,Da,F ′)

}
+(ci)

3
2
{

B|B|2Ly(α,β ,c,u11,v11, p11,θ11,V0,Gr′,Da,F ′)

−B|B|2Gy +
Re
ε

dB
dτ

v10−
αBRe

ε
v10

}
= O((ci)

5
2 ), (5.15)

(ci)
1/2B

{
Lz(α,β ,c,w10, p10,V0,Da,F ′)

}
+(ci)

3/2{B|B|2Lz(α,β ,c,w11, p11,V0,Da,F ′)

−α

ε
ReBw10 +

Re
ε

dB
dτ

w10−B|B|2Gz

}
= O((ci)

5/2), (5.16)
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(ci)
1/2B{L (α,β ,c,u10,θ10,V0,Θ0)}+(ci)

3/2{B|B|2L (α,β ,c,u11,θ11,V0,Θ0)+αRePrBθ10

−RePr
dB
dτ

θ10−B|B|2G
}
= O((ci)

5/2), (5.17)

where,

Gx = − Re
ε2

{
iαV1u10 +2iαu20ṽ10− iαv20ũ10 + ũ10

du20

dx

+ u20
dũ10

dx
− iβw20ũ10 +2iβ w̃10u20

}
, (5.18)

Gy = − Re
ε2

{
iαV1v10 +u10

dV1

dx
+ iαv20ṽ10 + ũ10

dv20

dx

+ u20
dṽ10

dx
− iβw20ṽ10 +2iβ w̃10v20

}
, (5.19)

Gz = − Re
ε2

{
iαV1w10 +2iαw20ṽ10− iαv20w̃10 + ũ10

dw20

dx
+u20

dw̃10

dx
+iβw20w̃10} , (5.20)

G = RePr
{

iαV1θ10 +2iαθ20ṽ10− iαv20θ̃10 +u10
dΘ1

dx
+ ũ10

dθ20

dx

+u20
dθ̃10

dx
− iβw20θ̃10 +2iβ w̃10θ20

}
. (5.21)

The equations for the harmonic E2 are:

ciB2 {Lo(2α,2β ,u20,v20,w20)}= O((ci)
2), (5.22)

ciB2
{

Lx(2α,2β ,c,u20, p20,V0,Da,F ′) +
Re
ε2

(
iαu10v10 +u10

du10

dx
+ iβu10w10

)}
= O((ci)

2), (5.23)

ciB2
{

Ly(2α,2β ,c,u20,v20, p20,θ20,V0,Gr′,Da,F ′) +
Re
ε2

(
iαv2

10 +u10
dv10

dx
+ iβv10w10

)}
= O((ci)

2), (5.24)

ciB2
{

Lz(2α,2β ,c,w20, p20,V0,Da,F ′) +
Re
ε2

(
iαv10w10 +u10

dw10

dx
+ iβw2

10

)}
= O((ci)

2), (5.25)
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ciB2
{

L (2α,2β ,c,u20,v20,θ20,V0,Θ0) − RePr
(

iαv10θ10 +u10
dθ10

dx
+ iβw10θ10

)}
= O((ci)

2). (5.26)

Here, tilde denotes the complex conjugate. Higher order harmonics (E3, E4, etc.) are

not considered in (5.10) as they are not necessary to obtain the first Landau coefficient. The

system of equations through (5.11)-(5.26) can be solved sequentially in increasing powers

of ci. At order (ci)
0, the harmonic E0 contains the basic state equations (5.1)-(5.2) at the

particular values of Gr′ and Da. At order (ci)
1/2, the E1 equations are those of linear-

instability where the functions u10, v10,w10 and θ10 are given by the eigenvectors of the

linear theory at the particular values of α and Ra. At order (ci), the harmonics E0 and

E2 produce the non-homogeneous equations for the distorted basic flow functions V1 and

Θ1 as well as for the functions u20, v20, w20 and θ20, respectively. The non-homogeneous

part of these equations contains the known variables u10, v10, w10 and θ10, and their deriva-

tives, which are obtained from the lower order analysis. At order (ci)
3/2, the equations of

harmonic E1 become non-homogeneous such that the linear-instability operators operate

on u11, v11, w11 and θ11 on the left-hand sides while the right-hand sides are functions of

B, dB
dτ

and B|B|2. As the homogeneous form of these equations admit non-trivial solutions

(linear theory), therefore, for non-trivial solution of non-homogeneous E1 equations the

right hand-sides of these equations must be orthogonal to the solution of the corresponding

homogeneous adjoint system of equations mentioned below.

The solution of adjoint system of linear instability equations is needed to obtain the

Landau constant. The definition of adjoint operator is given as [59]

〈LX ,X∗〉= 〈X ,L∗X∗〉 , (5.27)

where X∗ = [u∗,v∗,w∗,θ ∗, p∗] is adjoint eigenfunction, L = [Lo,Lx,Ly,Lz,L ] is the lin-

ear stability operator and L∗ = [L ∗
0 ,L

∗
x ,L

∗
y ,L

∗
z ,L

∗] is corresponding adjoint operator.

The inner product in this definition is the standard inner product given as

〈Y (x),Z(x)〉=
∫ 1

−1
Y ∗(x)Z(x)dx =

∫ 1

−1

5

∑
i=1

(y∗i (x)zi(x)dx, (5.28)



140

where the superscript ∗ denotes the adjoint eigenfunction. The corresponding adjoint equa-

tions of linear stability equations (5.4)-(5.8) are given as:

L ∗
0 (α,β ,u∗,v∗,w∗) =

du∗

dx
− iαv∗− iβw∗ = 0, (5.29)

L ∗
x (α,β ,c,u∗, p∗,θ ∗,V0,Θ0,Da,F ′) = −iαcRe

1
ε

u∗−λ

(
d2u∗

dx2 − (α2 +β
2)u∗

)
− d p∗

dx

+
1

Da
u∗+F ′|V0|u∗−PrRe

dΘ0

dx
θ
∗ = 0, (5.30)

L ∗
y (α,β ,c,v∗, p∗,V0,Da,F ′) =−iαcRe

1
ε

v∗−λ

(
d2v∗

dx2 − (α2 +β
2)v∗

)
+ iα p∗

+
1

Da
v∗+2F ′|V0|v∗ = 0, (5.31)

L ∗
z (α,β ,c,w∗, p∗,V0,Da,F ′) =−iαcRe

1
ε

w∗−λ

(
d2w∗

dx2 − (α2 +β
2)w∗

)
+ iβ p∗

+
1

Da
w∗+F ′|V0|w∗ = 0,

(5.32)

L ∗(α,β ,c,v∗,θ ∗,V0,Gr′) =−iαPrRe(V0−σc)θ ∗+
(

d2θ ∗

dx2 − (α2 +β
2)θ ∗

)
−Gr′v∗ = 0. (5.33)

The above equations are solved by eliminating the pressure terms along with no-slip and

impermeability condition of velocity and zero temperature perturbation on the walls. The

corresponding boundary conditions for adjoint system are:

u∗ = v∗ = w∗ = θ
∗ = 0 at x =±1. (5.34)

Now, if these adjoint eigenfunctions are normailized so as to satisfy the equation∫ 1

−1

[
1
ε
(ûu∗+ v̂v∗+ ŵw∗)−Prθ̂θ

∗
]

dx = 1. (5.35)
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then the orthogonal product of right-hand sides of non-homogeneous E1 equations and the

adjoint eigenfunctions results in the following Landau equation:

∂B
∂τ

= αB+a1B|B|2, (5.36)

where,

a1 =
1

Re

∫ 1

−1
(Gxu∗+Gyv∗+Gzw∗+G θ

∗)dx, (5.37)

If the real part of a1, i.e. (a1)r, is positive then we predict a subcritical bifurcation,

whereas, if it is negative then we predict a supercritical type of bifurcation. The equilibrium

amplitude of supercritical and threshold amplitude of subcritical bifurcations are |Ae|2 =

ci|B|2 =−αci/(a1)r and |At |2 = |αci/(a1)r|, respectively.

The effect of the disturbance on the heat transfer rate may also be determined. An

average Nusselt number at the right wall is defined as

Nu = 2
∂Θ

∂x
|x=1 (5.38)

The friction coefficient on the left and right channel walls is defined as

C f l =
2

Re
∂V
∂x
|x=−1 and C f r =−

2
Re

∂V
∂x
|x=1. (5.39)

The functions V and Θ in above equations are calculated using equilibrium amplitude

as V =V0+ |Ae|2V1 and Θ=Θ0+ |Ae|2Θ1. The numerical method is similar to the one used

in previous chapter.

5.2 Results

The present problem contains six important parameters: namely Gr, Pr, Da, Re, F and ε

which are Grashof number, Prandtl number, Darcy number, Reynolds number, Forchheimer

number and porosity, respectively. Since, we are interested to study the finite amplitude

stability of fully developed flow in a vertical channel filled with highly permeable porous

medium, therefore three different values 10−2,10−3 and 10−4 of Darcy number are chosen
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for a wide range (0, 5000) of Reynolds number. Although, we have mainly focused on

finite amplitude stability of a fully developed flow in porous medium saturated with air

or water, but other type of fluid has also been considered. To avoid numerous parametric

study, we have fixed porosity at 0.9. Furthermore, the range of F ′ considered in this study

is [0, 5×103].

Accordingly, the following analysis is made when the channel is filled with metallic

foam or any other porous medium having permeability in the range of 10−5m2 to 10−7m2

in SI unit with porosity of 0.9. The linear stability theory predicts the transition point de-

picted as a stability diagram in the (Re,Gr′) plane, as shown in Chapter 2. In the unstable

region of the diagram (above the neutral stability curve), the ignored nonlinear terms in the

linear stability analysis play significant role when the amplitude of disturbance becomes

large enough. In this situation, the exponential linear growth rate is modified by the nonlin-

earities in the governing equations. To give an illustration, we carry out a finite amplitude

analysis of the present problem. The linear stability results show that the two dimensional

disturbance with β = 0 is the most unstable wave for this mixed convective flow. As a

consequence, the present nonlinear stability results are carried out for β = 0. A cubic Lan-

dau equation (5.36) is derived in terms of the amplitude function to identify the type of

bifurcation.

5.2.1 Landau constant at and beyond the critical point

In order to understand the nature of bifurcation, the variation of Landau constant as a

function of Prandtl number is shown in figure 5.1(a), (b) and (c) for Da = 10−2, 10−3

and 10−4, respectively, where Re and F ′ are fixed at 1000. The above profile of (a1)r is

plotted at δGr′ = Gr′/Gr′c− 1 = 0.01. As can be seen from figure 5.1(a), (b) and (c), the

real part of the Landau constant is negative for all Da as well as Pr. This shows that the

type of bifurcation is supercritical at the critical point. Interestingly, for all three values of

Da, it shows that magnitude of (a1)r first increases rapidly up to a minimum value of Pr

and beyond that its magnitude decreases drastically and finally asymptotically converge to
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Figure 5.1: Variation of real part of Landau constant as a function of Pr for (a) Da = 10−2,
(b) Da = 10−3 and (c) Da = 10−4 when Re = 1000 and F ′ = 1000.

zero. as the value of Da decreases, the asymptotic convergence of the profile of (a1)r gets

delayed. The corresponding equilibrium amplitudes are shown in figure 5.1 (d), (e) and (f),

respectively. The equilibrium amplitude for all three above values of Da initially decreases

and then starts to increase as the value of Pr is increased.

In order to understand the nature of bifurcation, the variation of Landau constant as

a function of modified Forchheimer number for two values: 0.7 and 7 of Pr are plotted in

figure 5.2 (a) and (b), respectively when Da = 10−3 and Re = 1000. For both values of Pr,

the value of Landau constant is negative through out the range of F ′ predicting supercritical

bifurcation of the flow. Interestingly, the real part of a1 decreases drastically on increasing

F ′ up to a threshold value around 100 when the channel is filled with air saturated porous

medium. On further increase in F ′, the magnitude of (a1)r increases. Similar trend can be

seen for Pr = 7 when F ′ is around 5000.

The real part of the Landau constant (a1)r as a function of Re is plotted in figure

5.3 for a wide range of Reynolds numbers and both the fluids. The Landau constant is
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Figure 5.2: Variation of real part of Landau constant and equilibrium amplitude as a func-
tion of F ′ for (a,c) Pr = 0.7 and (b,d) Pr = 7 when Da = 10−3 and Re = 1000.

calculated at δGr′ = Gr′/Gr′c−1 = 0 and in the vicinity of the critical Gr′ (i.e., δGr′ = 0.01)

with respect to the most unstable linear wave. The calculated values of (a1)r for both

values 0 and 0.01 of δGr′ are almost identical. As a result, the profile of (a1)r is shown

only at δGr′ = 0.01 in the above figure. For both fluids, the sign of (a1)r is found to be

negative for all Da, indicating the supercritical bifurcation of the flow (see figures 5.3(a) and

5.3(b). The corresponding profiles of equilibrium amplitude (Ae) are shown in figure 5.3(c)

and 5.3(d). The equilibrium amplitude decreases sharply up to a threshold value of Re

and then converges asymptotically. Irrespective of the media permeability, the equilibrium

amplitude at very low Reynold’s number is very high due to very small magnitude of (a1)r

and it decreases on increasing the value of Re. The result is true for both fluids.

To identify the nature of bifurcation as well as variation of equilibrium amplitude far
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Figure 5.3: Variation of real part of Landau constant and equilibrium amplitude as a func-
tion of Re for (a,c) Pr = 0.7 and (b,d) Pr = 7.

away from the critical point, we have plotted the profiles of (a1)r and Ae as a function of

δGr′ = Gr′/Gr′c− 1 at Re = 1000, F ′ = 1000 and Da = 10−3 in figures 5.4(a) and 5.4(b),

respectively. The origin of the graphs shows the bifurcation point or critical point. The

range of δGr′ is based on the magnitude of ci. Rogers et al. [88] have shown that the cubic

Landau equation gives correct result when the magnitude of ci is small by comparison with

direct numerical simulation as well as high-order weakly nonlinear results. They have also

pointed out that the weakly nonlinear analysis is asymptotically correct for large values of

Gr′ beyond the bifurcation point in the limit as ci approaches zero. In the present analysis

the magnitude of ci is less than or equal to 10−3 in the range [0, 1] of δGr′ . Although

we analyze the nonlinear saturation (i.e., the limiting value of growth of instabilities under

nonlinear effects) for larger values of Gr′ beyond the bifurcation point (upto 2 times of



146

δ

A
e

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

Pr=0.7

Pr=7

(b)

Gr’δ

(a
1)

r

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

Pr=0.7

Pr=7

(a)

Gr’

Figure 5.4: Variation of (a) real part of Landau constant, and (b) equilibrium amplitude as
a function of Gr′ for Pr = 0.7 and Pr = 7 at Re = 1000, F ′ = 1000 and Da = 10−3.

critical Gr′), but a complete picture of nonlinear saturation can only be confirmed by use of

direct numerical simulation, which is beyond the scope of the present work. Therefore, this

analysis will present only a qualitative characteristic of the nonlinear interaction of different

harmonic modes for larger values of Gr′ beyond the bifurcation point. The bifurcation

diagram presented in figure 5.4(a) shows only supercritical bifurcation. The amplitude

profile increases smoothly with Gr′ (see figure 5.4(b)).

To understand the finite amplitude analysis of the above problem under the non-

Darcy model (VANS) without convective term an attempt is also taken and presented in

Appendix A.

5.3 Summary and Conclusion

We have analyzed the finite amplitude stability of fully developed mixed convection flow

in differentialy heated vertical channel filled with porous medium. The flow is governed

by four parameters: Prandtl number (Pr), Grashof number (Gr), Reynolds number (Re)

and Darcy number (Da). To illustrate the results, Pr = 0.7(air) and Pr = 7(water) are used
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along with a wide range of Da, F ′ and Re. It should be noted that Re and Gr′ = Gr/Re

based on half width of the channel are equivalent to Re
√

Da and Gr′Da, respectively. A

cubic Landau equation has been derived in terms of amplitude function to identify the type

of bifurcation. We have mainly analyzed (i) the variation of real part of Landau constant

as a function of Re, Gr′ and α to determine the type of bifurcation, (ii) the variation of

equilibrium amplitude.

The finite amplitude analysis predicts supercritical bifurcation of the flow at the crit-

ical point for both fluids as the sign of real part of Landau constant (a1)r is found to be neg-

ative for all Da. Also, the magnitude of equilibrium amplitude decreases for higher values

of Re. Also, only supercritical bifurcation is predicted in the neighborhood wavenumbers

of the critical wavenumber.

Appendix A

To understand the finite amplitude analysis of the above problem under the non-

Darcy model (VANS) without convective term, an attempt is made in this section. The

procedure to derive the cubic Landau equation is same as explained in the previous chapter.

A.1: Landau constant at and beyond the critical point

In order to understand the nature of bifurcation, the variation of Landau constant as

a function of modified Forchheimer number is analysed in figure 5.5. For all the consid-

ered values of Da and Pr, the value of Landau constant is positive throughout the range

of F ′ predicting supercritical bifurcation of the flow. It should be noted that this range of

F ′ covers a wide range of values of form drag coefficient (CF ) for high permeable porous

medium [11]. Since, the variation of F ′ predicts only supercritical bifurcation, so its value

is fixed as 1 in rest of the section. The real part of the Landau constant (a1)r as a function

of Re is plotted in figure 5.6 for a wide range of Reynolds numbers along with different

media permeability. The Landau constant is calculated at δGr′ = Gr′/Gr′c− 1 = 0 and in

the vicinity of the critical Gr′ (i.e., δGr′ = 0.01) with respect to the most unstable linear

wave. The calculated values of (a1)r for both values 0 and 0.01 of δGr′ are almost identical.

As a result, the profile of (a1)r is shown only at δGr′ = 0.01 in the above figure. For both
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fluids, the sign of (a1)r is found to be negative for all Da, indicating the supercritical bifur-

cation of the flow (see figures 5.6a and 5.6b). The corresponding profiles of equilibrium

amplitude (Ae) are shown in figure 5.7. Irrespective of the media permeability the equilib-

rium amplitude at very low Reynold’s number is very high due to very small magnitude

of (a1)r and it decreases on increasing the value of Re. The result is true for both fluids.

Consequently, the value of Pr is fixed at 7 in the rest of the analysis.

To identify the nature of bifurcation as well as variation of equilibrium amplitude far

away from the critical point, we have plotted the profiles of (a1)r and Ae as a function of

δGr′ = Gr′/Gr′c− 1 at Re = 1000 in figures 5.8a and 5.8b, respectively. The origin of the

graphs shows the bifurcation point or critical point. The range of δGr′ is based on the mag-

nitude of ci. Rogers et al. [88] have shown that the cubic Landau equation gives correct

result when the magnitude of ci is small by comparison with direct numerical simulation

as well as high-order weakly nonlinear results. They have also pointed out that the weakly

nonlinear analysis is asymptotically correct for large values of Gr′ beyond the bifurcation

point in the limit as ci approaches zero. In the present analysis the magnitude of ci is less

than or equal to 10−2 (for Da equal to 10−2) or 10−3 (for Da equal to 10−3 and 10−4) in the
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Figure 5.8: Variation of (a) real part of Landau constant, and (b) equilibrium amplitude as
a function of Gr′ for Pr = 7 at Re = 1000.

range [0, 2] of δGr′ . Although we analyze the nonlinear saturation (i.e., the limiting value

of growth of instabilities under nonlinear effects) for larger values of Gr′ beyond the bi-

furcation point (upto 3 times of critical Gr′), but a complete picture of nonlinear saturation

can only be confirmed by use of direct numerical simulation, which is beyond the scope

of the present work. Therefore, this analysis will present only a qualitative characteristic

of the nonlinear interaction of different harmonic modes for larger values of Gr′ beyond

the bifurcation point. The bifurcation diagram presented in figure 5.8a shows both types

(subcritical and supercritical) of bifurcation for larger values of Gr′. The linearly unstable

flow possesses a subcritical bifurcation for δGr′ ≥ 0.7, δGr′ ≥ 1.4 and δGr′ ≥ 1.3, for Da

equal to 10−2, 10−3 and 10−4, respectively. Furthermore, for Da = 10−4 the subcritical

bifurcation again becomes supercritical at δGr′ = 2. The amplitude profile shows an abrupt

jump at the point where a change from supercritical to subcritical bifurcation occurs due to

the change in sign of (a1)r (see figure 5.8b).

The variation of the neutral stability curve with wavenumber is also important be-

cause an instability that is supercritical for some wavenumber may be subcritical or super-

critical at other nearby wavenumber [88]. In this situation, any of the potential unstable
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waves may grow and interact with other modes. Thus, the profiles of (a1)r and Ae as a

function of δα = α/αc− 1 for different values of Da are plotted in figure 5.9. The origin

of the graphs shows the bifurcation point. From the numerical experiments we have found

that for δα < 1 the value of ci is less than 10−2 for all three values (10−2, 10−3, 10−4) of

Da. Consequently, the range of δα is [0, 1]. Figure 5.9 shows a large band of wavenumbers

for all the above values of Da in which the type of bifurcation is supercritical.

As the weakly non-linear analysis is asymptotically correct in the limit as ci ap-

proaches zero, so the behaviour of linear modes can be accurately predicted at the least

stable values of Gr′ and Re. Figure 5.6 shows supercritical instability at the least stable

wavenumbers for the linear instability in the entire range of Re. This is true for all the con-

sidered values of Darcy and Prandtl numbers. We have seen from kinetic energy balance

that the buoyant production of disturbance kinetic energy is dominant in the entire range

of Re for all the considered values of Da and Pr. This buoyant instability is supercritical

at all the nearby wavenumbers. This is illustrated in figure 5.10 for Re = 103. As can

be seen from this figure that for the above buoyant instability there exist a large group of

wavenumbers which are supercritically unstable for both considered fluids. This is true for
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all the Darcy numbers considered here. The observations made above must be considered

when one does complete simulation of this mixed convection flow.

A.2: Heat transfer rate and Friction coefficient

Since this is a non-isothermal flow, therefore the effect of interaction of different

harmonics on some physical characteristics of the disturbed flow like heat transfer rate and

friction coefficient on the hot wall of the channel for the region of supercritical bifurcation

must be understood. Consequently, the basic as well as distorted heat transfer rate as a func-

tion of Re as well as Gr′ are plotted in figures 5.11a and 5.11b, respectively. In figure 5.11,

Nubs and Nuds are defined as Nusselt numbers predicted by the basic state and distorted

state flow, respectively. Figure 5.11a is plotted at δRa = 0.01 in the region of supercritical

bifurcation, and figures 5.11b and 5.11c are plotted at Re = 1000 in the region of supercriti-

cal as well as subcritical bifurcation. The results show that the Nusselt number for distorted

flow is more than the same for basic flow. Whenever there is a shifting from supercritical

to subcritical bifurcation, Nuds profile also experiences a jump (see figure 5.11b) similar

to the amplitude profile. This indicates that the nonlinear interaction of different modes

causes a substantial increase in Nusselt number. Figure 5.11c shows that the coefficient of
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friction at the hot wall for distorted flow (C fds) as well as basic state (C fbs) are equal upto

a threshold value of Gr′ depending on the media permeability and beyond which (C fds)

becomes more than (C fbs).

A.3: Some important remarks

The finite amplitude analysis predicts supercritical bifurcation of the flow at the crit-

ical point for both fluids as the sign of real part of Landau constant (a1)r is found to be

negative for all Da. Also, the magnitude of equilibrium amplitude decreases for higher

values of Re. For a fixed value of Re, subcritical bifurcation is also observed as the value of

Gr′ is increased beyond the critical value. The corresponding amplitude profile as function

of Gr′ experiences sudden peaks when the supercritical bifurcation becomes subcritical.

Also, only supercritical bifurcation is predicted in the neighborhood wavenumbers of the

critical wavenumber. Due to interaction of different harmonics, increased heat transfer rate

and friction coefficient is obtained for distorted flow as compared to the same for basic

flow.
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Chapter 6

Conclusions and Future Scope

6.1 Conclusions

We have analyzed the stability of parallel mixed convection flow (PMCF) in a vertical

channel filled with incompressible fluid saturated porous medium under Boussinesq ap-

proximation. Two different boundary conditions, walls are linearly heated and walls are

differetially heated, are considered. The heat transfer and fluid flow mechanism of PMCF

in a differentially heated channel filled with porous medium and its linear stability under

local thermal equilibrium (LTE) state and under local thermal non-equilibrium (LTNE)

state are studied in Chapter 2 and Chapter 3, respectively. A finite amplitude analysis is

also carried out when the temperature of the walls of the channel vary linearly with the

vertical co-ordinate. This is given in Chapter 4. The extension of this analysis to the non-

isothermal parallel flow in differentially heated channel, whose linear stability is made in

Chapter 2, is presented in Chapter 5. The non-Darcy volume averaged Navier-Stokes equa-

tion (VANS) is used as the momentum equation except in some special cases where VANS

without convective term (see Appendix D of Chapter 2 and Appendix A of Chapter 5) as

well as Darcy model are also used. Two different numerical methods: spectral Cheby-

shev collocation and spectral Galerkin method have been used for the solution of basic

flow, linear disturbance equations and equations pertaining to non-linear analysis. A cubic

155
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Landau equation is derived to identify regions of subcritical and supercritical bifurcations

with the help of theories given by Stuart [100], Stewartson and Stuart [101] and Yao and

Rogers [130]. The different governing parameters invloved in the study are Rayleigh num-

ber (Ra), Grashof number (Gr), Darcy number (Da), Prandtl number (Pr), Forchheimer

number (F), Reynolds number (Re), porosity (ε), inter-phase heat transfer coefficient (H),

and porosity scaled thermal conductivity ratio (γ). The following conclusions have been

made in the end.

• The non-isothermal PMCF in a differetially heated channel possesses three different

types of instability, namely thermal-shear, interactive, and thermal-buoyant, which

depends on controlling parameters, mainly Pr. When Re is fixed at 1000, the appear-

ance of point of inflection in the basic velocity for fluid with Pr less than 30 acts as

a necessary condition for instability for all considered values of Darcy number.

• The linear instability boundary shows that for a given value of Da, the interphase

heat transfer coefficient has a stabilizing effect on the instability of the flow. The

effect of γ on the instability of the flow was found to be negligible.

• In contrast to the differentially heated channel filled with air saturated porous medium

where supercritical bifurcation is the only type of bifurcation, in linearly heated chan-

nel filled with air saturated porous medium the type of bifurcation may be supercrit-

ical or subcritical depending on the value of Darcy number as well as Forchheimer

number. However, in both the cases the type of bifurcation is always supercritical for

water.

• In both the cases (when walls are heated differentially as well as when walls are

heated linearly) heat transfer rate under distorted state as a function of Gr′ or Ra

increases and it is higher than the same under basic state, unless there is a change in

the type of bifurcation.

• The physical quantities like heat transfer rate as well as skin friction coefficient also
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experience a jump at the point wherever the type of bifurcation is changes from

supercritical to subcritical.

• In general non-linear interaction of different harmonics on the pattern of secondary

flow under supercritical bifurcation is negligible, whereas the same for subcritical

bifurcation is significant, whic in turn enhances the destabilizing characteristic of the

modification in the buoyant production of kinetic energy due to change in the shape

of fundamental wave.

• The PMCF of air in differentially heated channel is found to have super as well as

subcritical bifurcation far away from the critical point when VANS without convec-

tive term is used (see Appendix A in Chapter 5).

6.2 Scope for Further Research

The field of stability of the non-isothermal parallel mixed convective flow is a vast area.

This thesis has addressed only a few aspects of it. Some more potential extension of the

present work is also possible.

• The non-linear stability analysis could be further carried out for local thermal non-

equilibrium situation to get a complete picture of stability under both LTE and LTNE

theories.

• We have focused on the non-linear stability of stably stratified non-isothermal paral-

lel flow in a vertical channel with linearly varying wall temperature, but the present

analysis can be extended for unstably stratified flow too using higher order weakly

nonlinear analysis.

• The solution of complete governing equations by Direct Numerical Simulation is

also essential to get a clear picture of transition state.

These problems are left for a future study.



158



Bibliography

[1] Al-Sumaily, G. F., Nakayama, A., Sheridan, J. and Thompson, M. C., 2012, The effect

of porous media particle size on forced convection from a circular cylinder without

assuming local thermal equilibrium between phases, Intl J. Heat Mass Transfer, 55,

3366–3378.

[2] Barletta, A., 2013, Instability of mixed convection in a vertical porous channel with

uniform wall heat flux, Phys. Fluids, 25, 084108–1–14.

[3] Barletta, A., 2015, A proof that convection in a porous vertical slab may be unstable,

J. Fluid Mech., 770, 273–288.

[4] Barletta, A., 2016, Instability of stationary two-dimensional mixed convection across

a vertical porous layer, Phys. Fluids, 28, 014101–1–14.

[5] Bera, P. and Khalili, A., 2002, Stability of mixed convection in an anisotropic porous

channel, Phys. Fluids, 14, 1617–1630.

[6] Bera, P. and Khalili, A., 2006, Influence of Prandtl number on stability of mixed

convective flow in a vertical channel filled with a porous medium, Phys. Fluids, 18,

124103–1–10.

[7] Bera, P. and Khalili, A., 2007, Stability of buoyancy opposed mixed convection in a

vertical channel and its dependency on permeability, Adv. Water Res., 30, 2296–2308.

159



160

[8] Bera, P., Kumar, J. and Khalili, A., 2011, Hot springs mediate spatial exchange of

heat and mass in the enclosed sediment domain: A stability perspective, Adv. Water

Res., 34, 817–828.

[9] Bera, P. and Khandelwal, M. K., 2016, A thermal non-equilibrium perspective on

instability mechanism of non-isothermal Poiseuille flow in a vertical porous-medium

channel, Int. J. Thermal Sciences, 105, 159–173.

[10] Bhattacharya, A. and Mahajan, R.L., 2002, Finned metal foam heat sinks for elec-

tronics cooling in forced convection, ASME J. Elect. Packag., 124, 155–163.

[11] Bhattacharya, A., Calmidi, V. V. and Mahajan, R. L., 2002, Thermophysical proper-

ties of high porosity metal foams, Int. J. Heat and Mass Trans., 45, 1017–1031.

[12] Busse, F. H., 2003, The sequence-of-bifurcations approach towards understanding

turbulent fluid flow, Surveys in Geophysics, 24, 269–288.

[13] Borujerdi, A. N., Noghrehabadi, A. R. and Rees D. A. S., 2007, Onset of convection

in a horizontal porous channel with uniform heat generation using a thermal nonequi-

librium model, Trans. in Porous Media, 69, 343–357.

[14] Brandt, L., 2014, The lift-up effect: The linear mechanism behind transition and tur-

bulence in shear flows, European J. Mechanics B/Fluids., 47, 80–96.

[15] Bera, P., Eswaran, V. and Singh, P., 1998, Numerical study of heat and mass transfer

in an anisotropic porous enclosure due to constant heating and cooling, Numerical

Heat Transfer, Part A: Applications, 34, 887–905.

[16] Bhargavi, D., Satyamurty, V.V. and Raja Sekhar, G.P., 2009, Effect of porous fraction

and interfacial stress jump on skin friction and heat transfer in flow through a channel

partially filled with porous material, J. of Porous Media, 12, 1065–1082.

[17] Calmidi, V. V. and Mahajan, R. L., 2000, Forced convection in high porosity foams,

Trans. ASME J. Heat Transfer, 122, 557–565.



161

[18] Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., 1988, Spectral Method

in Fluid Dynamics, (Springer, New York Berlin Heidelberg).

[19] Chen, Y. C., 2004, Non-Darcy flow stability of mixed convection in a vertical channel

filled with a porous medium, Intl J. Heat Mass Transfer, 47, 1257–1266.

[20] Chen, Y. C. and Chung, J. N., 1996, The linear stability of mixed convection in a

vertical channel, J. Fluid Mech., 325, 29–51.

[21] Chen, Y. C., Chung, J. N., Wu, C. S. and Lue, Y. F., 2000, Non-Darcy mixed convec-

tion in a vertical channel filled with a porous medium, Intl J. Heat and Mass Transfer,

43, 2421–2429.

[22] Chen, Y. C. and Chung, J. N., 1998, Stability of shear flow in a vertical heated channel

filled with a porous medium, Proc. of Int. Heat Trans. conference 11, 435–440.

[23] Chen, Y. C. and Chung, J. N., 1998, Stability of mixed convection in a differentially

heated vertical channel, ASME J. of Heat Transfer, 120, 127–132.

[24] Carbonell, R. G. and Whitaker, S., 1984, Heat and Mass Transfer in Porous Media.

In: Bear J., Corapcioglu M.Y. (eds) Fundamentals of Transport Phenomena in Porous

Media, (NATO ASI Series (Series E: Applied Sciences), 82, Springer, Dordrecht).

[25] Criminale, W. O., Jackson, T. L., and Joslin, R. D., 2003, Theory and computation of

hydrodynamic stability, Cambridge University Press.

[26] Chen, Y. C. and Chung, J. N., 2003, A direct numerical simulation of transition phe-

nomenon in a mixed convection channel flow, Computer and Fluids, 32, 795-822.

[27] Chen, Y. C. and Chung, J. N., 2008, A direct numerical simulation of early transition

phenomenon in a buoyancy opposed vertical channel, Numerical Heat Trans. Part A,

53, 787-806.



162

[28] Chanpreet, S., Tathgir, R.G. and Muralidhar, K., 2006, Experimental validation of

heat transfer models for flow through a porous medium, Heat Mass Transfer, 43,

55–72.

[29] Davey, A. and Drazin, P. G., 1969, The stability of Poiseuille flow in a pipe, J. Fluid

Mech., 36, 209–218.

[30] Delache, A. and Ouarzazi, M. N., 2008, Weakly nonlinear interaction of mixed con-

vection patterns in porous media heated from below, Intl J. Thermal Sciences, 47,

709–722.

[31] Desaive, T., Lebon, G., and Hennenberg, M., 2001, Coupled capillary and gravity-

driven instability in a liquid film overlying a porous layer, Phys. Rev. E, 64, 066304-

1-8.

[32] Drazin, P. G. and Reid, W. H., 2004, Hydrodynamic Stability, (Cambridge University

Press).

[33] Dukhan, N., 2013, Metals Foams: Fundamentals and Applications, (DEStech publi-

cations).

[34] Dincov, D. D., Parrott, K. A. and Pericleous, K. A., 2004, Heat and mass transfer

in two-phase porous materials under intensive microwave heating, Journal of Food

Engineering, 65, 403–412.

[35] Damm, D. L. and Fedorov, A. G., 2006, Local thermal non-equilibrium effects in

porous electrodes of the hydrogen-fueled SOFC, J. Power Sources, 159, 1153–1157.

[36] Duval, F., Fichot. F. and Quintard, M., 2004, A local thermal non-equilibrium model

for two phase flow with phase change in porous media, Int. J. Heat Mass Trans., 47,

613–639.



163

[37] Dhiman, A. K., Anjaiah, N., Chhabra, R. P. and Eswaran, V., 2007, Mixed convection

from a heated square cylinder to Newtonian and power-law fluids, Journal of Fluids

Engineering (Trans ASME), 129, 506–513.

[38] Dhiman, A. K., Chhabra, R. P. and Eswaran, V., 2008, Steady mixed convection across

a confined square cylinder, Int. Comm. in Heat and Mass Trans., 35, 47–55.

[39] Dey, B. and Raja Sekhar, G.P., 2016, An analytical study on hydrodynamics of an

unsteady flow and mass transfer through a channel asymmetrically lined with de-

formable porous layer, European J. of Mechanics B/Fluids, 55, 71–87.

[40] Divya, Sharma, R. C. and Sunil, 2005, Thermosolutal convection in a ferromagnetic

fluid saturating a porous medium, Journal Porous Media, 8, 393–408.

[41] Gill, A. E., 1969, A proof that convection in a porous vertical slab is stable, J. Fluid

Mech., 35, 545–547.

[42] Giorgi, T., 1997, Derivation of the Forchheimer law via matched asymptotic expan-

sions, Transp. Porous Media, 29, 191–206.

[43] Givler, R. C. and Altobelli, S. A., 1994, A determination of the effective viscosity for

the Brinkman-Forchheimer flow model, J. Fluid Mech., 258, 355–370.

[44] Grossmann, S., 2000, The onset of sheer flow turbulence, Rev. Mod. Phys., 72, 603–

618.

[45] Gajjar, J.S.B. and Sibanda, P., 1996, The hydrodynamic stability of channel flow with

compliant boundaries, Theoretical and Computational Fluid Dynamics, 8, 105–129.

[46] Hart, J. E., 1971, Stability of the flow in a differentially heated inclined box, J. Fluid

Mech., 47, 547–576.

[47] Hadim, H. A. and Chen, G., 1994, Non-Darcy mixed convection in a vertical porous

channel with asymmetric wall heating, J. Thermophysics, 8, No.4, 805–808.



164

[48] Hadim, A. and Govindarajan, S., 1988, Development of laminar mixed convection in

a vertical porous channel, ASME HTD, 105, 145–153.

[49] Hof, B. et. al., 2004, Experimental observation of nonlinear travelling waves in tur-

bulent pipe flow, Science, 305, 1594–1598.

[50] Hof, B. et. al., 2006, Finite lifetime of turbulence in shear flows, Nature, 443, 59–62.

[51] Hsu, C. T. and Cheng, P., 1990, Thermal dispersion in a porous medium, Intl J. Heat

Mass Transfer, 33, 1587–1597.

[52] Hayes, A. M., Khan, J. A., Shaaban, A. H. and Spearing, I. G., 2008, The ther-

mal modelling of a matrix heat exchanger using a porous medium and the thermal

nonequilibrium model, Int. J. Therm. Sci., 47, 1306–1315.

[53] Jin, Y. and Kuznetsov, A. V., 2017, Turbulence modeling for flows in wall bounded

porous media: An analysis based on direct numerical simulations, Phys. Fluids, 29,

045102-1–18.

[54] Joseph, D. D., Nield, D. A. and Papanicolaou, G., 1982, Nonlinear equation governing

flow in a saturated porous medium, Water Res. Research, 18, 1049–1052.

[55] Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, (Springer, New

York).

[56] Khalili, A., Basu, A. J., Pietrzyk, U. and Raffel, M., 1999, An experimental study of

recirculating flow through fluid-sediment interfaces, J. Fluid Mech., 383, 229–247.

[57] Kamath, P. M., Balaji, C., and Venkateshan, S. P., 2011, Experimental investigation

of flow assisted mixed convection in high porosity foams in vertical channels, Int. J.

Heat Mass Transfer, 54, 5231–5241.

[58] Khandelwal, M. K. and Bera, P., 2012, A thermal non-equilibrium perspective on

mixed convection in a vertical channel, Int. J. of Thermal Sciences, 56, 23–34.



165

[59] Khandelwal, M. K. and Bera, P., 2015, Weakly nonlinear stability analysis of non-

isothermal Poiseuille flow in a vertical channel, Phys. Fluids, 27, 064103-1-24.

[60] Kumar, J., Bera, P. and Khalili, A., 2010, Influence of inertia and drag terms on the

stability of mixed convection in a vertical porous-medium channel, Intl J. Heat Mass

Transfer, 53, 5261–5273.

[61] Kurtbas, I. and Celik, N., 2009, Experimental investigation of forced and mixed con-

vection heat transfer in a foam-filled horizontal rectangular channel, Int. J. Heat Mass

Transfer, 52, 1313–1325.

[62] Kwok, L. P. and Chen, C. F., 1987, Stability of thermal convection in a vertical porous

layer, Trans. ASME J. Heat Transfer, 109, 889–893.

[63] Kou, H. S. and Lu, K. T., 1993, Combined boundary and inertia effects for fully

developed mixed convection in a vertical channel embedded in porous media, Int.

Comm. Heat Mass Transfer, 20, 333–345.

[64] Kizildag. D., Rodriguez. I., Oliva, A. and Lehmkuhl, O., 2014, Limits of the

Oberbeck-Boussinesq approximation in a tall differentially heated cavity filled with

water, Int. J. of Heat and Mass Trans., 68, 489-499.

[65] Lage, J. L., 1998, The fundamental theory of flow through permeable media from

Darcy to turbulence, Transport Phenomena in Porous Media (ed. D. B. Ingham & I.

Pop), Pergamon, , 1-30.

[66] Lefebvre, L. P., Banhart, J., and Dunand, D. C., 2008, Porous Metals and Metallic

Foams: Current Status and Recent Developments, Advanced Engineering Materials,

10, 775–787.

[67] Lewis, S., Bassom, A. P. and Rees, D. A. S., 1995, The stability of vertical thermal

boundary-layer flow in a porous medium, Eur. J. Mech. B/Fluids, 14, 395–407.



166

[68] Lee, Y. and Korpela, S. A., 1983, Multicellular natural convection in a vertical slot, J.

Fluid Mech., 126, 91–121.

[69] Landahl, M. T., 1975, Wave breakdown and turbulence, SIAM J. Appl. Math., 28,

735–756.

[70] Lundgren, T. S., 1972, Slow flow through stationary random beds and suspensions of

spheres, J. Fluid Mech., 51, 273–299.

[71] Moler, C. B. and Stewart, G. W., 1973, An algorithm for generalized matrix eigen-

value problems, SIAM J. Numer. Anal., 10, 241–256.

[72] Motsa, S. S. and Sibanda, P., 2003, On the stability analysis of thermally stratified

channel flow with a compliant boundary, International Journal of Heat and Mass

Transfer, 46, 939–948.

[73] Muralidhar, K., 1987, Stability of mixed convection flow, International Journal of

Heat and Mass Transfer, 8, 228–234.

[74] Muralidhar, K., 1989, Mixed convection flow in a saturated porous annulus, Interna-

tional Journal of Heat and Mass Transfer, 32, 881–888.

[75] Muralidhar, K., 1990, A review of free, forced and mixed convection flow in a satu-

rated porous annulus, Sadhana, 15, 1–41.

[76] Nield, D. A. and Bejan, A., 2013, Convection in Porous Media, (Springer, New York).

[77] Niemela, J. J., Skrbek, L., Sreenivasan, K. R. and Donnelly, R., 2005, Turbulent

convection at very high Rayleigh numbers, Nature, 404, 837–840.

[78] Nield, D. A., Kuznetsov, A. V. and Xiong, M., 2002, Effect of local thermal non-

equilibrium on thermally developing forced convection in a porous medium, Int. J.

Heat and Mass Transfer, 45, 4949–4955.



167

[79] Orszag, S. A., 1971, Accurate solution of the Orr-Sommerfeld stability equation, J.

Fluid Mech., 50, 689–703.

[80] Prasad, V., Kulacki, F. A. and Keyhani, M., 1985, Natural convection in porous media,

J. Fluid Mech., 150, 89–119.

[81] Pu, W. L., Cheng, P., and Zhao, T. S., 1999, Mixed-convection heat transfer in vertical

packed channels, J. Thermophysics and Heat Transfer, 13, No.4, 127–132.

[82] Phanikumar, M. S. and Mahajan, R. L., 2002, Non-Darcy natural convection in high

porosity metal foams, Int. J. Heat Mass Trans., 45, 3781–3793.

[83] Partha, M.K., and Raja Sekhar, G.P., 2005, Mixed convection heat and mass transfer

with thermal radiation in a non-Darcy porous medium, J. of Porous Media, 8, 541–

549.

[83a] Payne, L. E. and Straughan, B., 1998, Structural stability for the Darcy equations of

flow in porous media, Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 454, 1691–1698.

[84] Qin, Y., and Kaloni, P. N., 1993, A nonlinear stability problem of convection in a

porous vertical slab, Phys. Fluids A, 5, 2067–2069.

[85] Ramachandran, A., Saikia, B., Sinha, K., and Govindarajan, R., 2016, Effect of

Prandtl number on the linear stability of compressible Couette flow, Int. J. Heat

Fluid Flow, 61, 553–561.

[86] Rachedi, R., and Chikh, S., 2001, Enhancement of electronic cooling by insertion of

foam materials, Heat Mass Transf., 37, 371–378.

[87] Riahi, N., 1983, Nonlinear convection in a porous layer with finite conducting bound-

aries, J. Fluid Mech., 129, 153–171.



168

[88] Rogers, B. B., Moulic, S. G., and Yao, L. S., 1993, Finite-amplitude instability of

mixed convection, J. Fluid Mech., 254, 229–250.

[89] Rees, D. A. S., 1988, The stability of Prandtl-Darcy convection in a vertical porous

layer, Int. J. Heat Mass Transfer, 31, 1529–1534.

[90] Rees, D. A. S., 2011, The effect of local thermal nonequilibrium on the stability of

convection in a vertical porous channel, Transp. Porous Media, 87, 459–464.

[91] Rubinstein, J., 1986, Effective equations for flow in random porous media with a large

number of scales, J. Fluid Mech., 170, 379–383.

[92] Rees, D. A. S., Bassom, A. P. and Siddheshwar, P. G., 2008, Local thermal non-

equilibrium effects arising from the injection of a hot fluid into a porous medium, J.

Fluid Mech., 594, 379–398.

[93] Reynolds, W. C., Potter, M. C., 1967, Finite-amplitude instability of parallel shear

flows, J. Fluid Mech., 27, 465–492.

[94] Schlichting, H. and Gersten, K., 2004, Boundary layer theory, Springer 8th edition.

[95] Schmid, P. J. and Henningson, D. S., 2001, Stability and Transition in Shear Flows,

Springer.

[96] Slattery, J. C., 1969, Single-phase flow through porous media, AIChE J., 15, 866–872.

[97] Shukla, P. and Alam, M., 2011, Weakly nonlinear theory of shear-banding instability

in a granular plane Couette flow: analytical solution, comparison with numerics and

bifurcation, J. Fluid Mech., 666, 204–253.

[98] Straus, J. M., 1974, Large amplitude convection in porous media, J. Fluid Mech., 64,

51–63.

[99] Stuart, J. T., 1958, On the non-linear mechanics of hydrodynamic stability, J. Fluid

Mech., 4, 1–21.



169

[100] Stuart, J. T., 1960, On the non-linear mechanics of wave disturbances in stable and

unstable parallel flows. Part 1. The basic behavior in plane-Poiseuille flow, J. Fluid

Mech., 9, 353–370.

[101] Stewartson, K. and Stuart, J. T., 1971, A non-linear instability theory for a wave

system in plane Poiseuille flow, J. Fluid Mech., 48, 529–545.

[102] Su, Y. C. and Chung, J. N., 2000, Linear stability analysis of mixed-convection flow

in a vertical pipe, J. Fluid Mech., 422, 141–166.

[103] Suslov, S. A. and Paolucci, S., 1999b, Nonlinear stability of mixed convection flow

under non-Boussinesq condition: Part 2. Mean flow characteristics, J. Fluid Mech.,

398, 87–108.

[104] Scott, N. L. and Straughan, B., 2013, A nonlinear stability analysis of convection

in a porous vertical channel including local thermal nonequilibrium, J. Math Fluid

Mech., 15, 171–178.

[105] Scheele G.F. and Hanratty T.J., 1962, Effect of natural convection on stability of

flow in a vertical pipe, J. Fluid Mech., 14, 244–256.

[106] Straughan, B., 1988, A nonlinear analysis of convection in a porous vertical slab,

Geophys. Astrophys. Fluid Dyn., 42, 269–275.

[107] Samanta, A., Vinuesa, R., Lashgari, I., Schlatter, P. and Brandt, L., 2015, Enhanced

secondary motion of the turbulent flow through a porous square duct, J. Fluid Mech.,

784, 681–693.

[108] Saeid, N. H., 2004, Analysis of mixed convection in a porous layer using non-

equilibrium model, Int. J. Heat Mass Transfer, 47, 5619–5627.

[109] Singh, C., Tathgir, R. G. and Muralidhar, K., 2009, Energy storage in fluid saturated

porous media subjected to oscillatory flow, Heat Mass Transfer, 45, 427–441.



170

[110] Schmid, P. J. and Brandt, L., 2014, Analysis of fluid systems: stability, receptivity,

sensitivity, Applied Mechanics Reviews, 66, 024803.

[111] Sibanda, P., Motsa, S.S. and Shateyi, S., 2004, Linear stability of two-dimensional

flow to three-dimensional perturbations in a channel with a flexible wall, Archives of

Mechanics, 56, 293–311.

[112] Shankar, V. and Kumaran, V., 1999, Stability of non-parabolic flow in a flexible tube,

Journal of Fluid Mechanics, 395, 211–236.

[113] Shankar, V. and Kumaran, V., 2000, Stability of fluid flow in a flexible tube to non-

axisymmetric disturbance, Journal of Fluid Mechanics, 407, 291–314.

[113a] Kumaran, V., 1995, Stability of the viscous flow of a fluid through a flexible tube,

Journal of Fluid Mechanics, 294, 259–281.

[114] Sunil, Divya and Sharma, R. C., 2005, The effect of magnetic field dependent viscos-

ity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium,

Transport in Porous Media, 60, 251–274.

[115] Sunil, Sharma, P. and Mahajan, A., 2011, Onset of Darcy-Brinkman ferroconvec-

tion in a rotating porous layer using a thermal non-equilibrium model: A nonlinear

stability analysis, Transport in Porous Media, 88, 421–439.

[116] Tang, W. H., Wu, Q. H. and Richardson, Z. J., 2002, Equivalent heat circuit based

power transformer thermal model, IEE Pros. Electr. Power Appl., 149, 87–92.

[117] Tilton, N. and Cortelezzi, L., 2008, Linear stability analysis of pressure-driven flows

in channels with porous walls, J. Fluid Mech., 604, 411–445.

[118] Umavathi, J. C., Kumar, J. P., Chamkha, A. J. and Pop, I., 2005, Mixed convection

in a vertical porous channel, Transp. Porous Media, 61, 315–335.



171

[119] Vafai, K. and Kim, S. J., 1995, On the limitations of the Brinkman-Forchheimer-

extended Darcy equation, Intl J. Heat and Fluid Flow, 16, 11–15.

[120] Vafai, K. and Tien, C. L., 1981, Boundary and inertia effects on flow and heat trans-

fer in porous media, Intl J. Heat Mass Transfer, 24, 195–203.
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