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Abstract 

 

Heat transfer involving phase change phenomena in biological tissues is a complex 

process. It involves several mechanisms such as thermal conduction, convection, radiation, 

metabolic heat generation, blood perfusion and phase change. The analysis of many 

biological heat transfer applications by the physiologists, physicians and engineers in the 

field of bio-heat transfer have resulted in improvement of treatment, preservation, 

destroying tumors and the protection of humans from extreme environmental conditions. 

 Phase change heat transfer problems are also known as moving boundary problems 

which are encountered in many practical applications like metal casting, environmental 

engineering, thermal energy storage system, freezing and thawing of foodstuff, 

cryopreservation and cryosurgery etc. Cryosurgery is a therapeutic technique that uses 

extreme freezing to treat the diseased tissues. The basic feature of this technique is that it 

is low invasive and offer the advantages of less expensive, shorter hospitalization and 

recovery period. The objective of cryosurgery is to treat the affected tissues and minimize 

the damage of healthy tissues in the vicinity of the tumor tissues. A number of 

investigations have been carried out to study the applications of cryosurgery.  

 Various heat transfer models are used to analyze phase change phenomena in heat 

transfer problems. The purpose of most of the heat transfer models is to find the 

temperature field and heat flux in a biological tissue under the set of constraints: general 

heat equation, initial and boundary conditions and distribution of sources or sinks, etc. 

 During phase change, interface between the frozen and unfrozen regions is moving 

with time and the boundary conditions at this interface require specific treatment. Except 

initial and boundary conditions, two more conditions are needed on the moving boundary, 

one to determine the boundary itself and another to complete the solution of the heat 

equation in each region. The phase change problems are non-linear in nature due to the 

unknown position of the freezing front and the direction of ice growth. In advance, it is 

difficult to predict the position and velocity of moving interface. The required 

mathematical analysis is much more complicated, when the physical properties of the 

system are temperature dependent.  
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Phase change heat transfer problems have a limited number of analytical solutions, which 

are confined up to one-dimensional problems along with some simple boundary 

conditions. Therefore, for solving such type of problems it is essential to employ the 

numerical methods because they appear to offer a more practical perspective. Based on 

front tracking, non-front tracing and fixed domain approaches, various numerical methods 

have been proposed for the solution of phase change problems. Numerical methods based 

on enthalpy and effective heat capacity formulation are well known methods to solve 

phase change heat transfer problems.  

 The present thesis deals with some Mathematical models to study phase change 

heat transfer problems in biological tissues during cryosurgery. The study of the thermal 

gradient inside the tissue is an important issue for the optimization of cryosurgery. The 

transient temperature profiles in tumor and normal tissue are useful to diagnose whether 

the tumor is damage or not and also try to minimize injury to healthy tissues during 

cryosurgery. Numerical solutions are obtained using finite difference method based on 

temperature dependent enthalpy. A computer code has been developed using MATLAB 

software on “Intel core i5 processor @ 3.30 GHz with 6GB RAM”. Results obtained are 

interpreted in the graphical form. 

The present thesis is compiled in six chapters and the chapter wise description is given 

below. 

Chapter 1 is an introductory and contains some basic concepts of heat transfer. Different 

heat transfer models are also discussed in this chapter. It gives a brief description of 

freezing process of biological tissue during cryosurgery, mechanism and mathematical 

formulation of cryosurgery and the solution methodology. 

 In Chapter 2, a two-dimensional hyperbolic bio-heat model is developed by 

modifying the classical Pennes bio-heat model. Non-ideal property of tissue, metabolic 

heat generation and blood perfusion are also taken into consideration to study the phase 

change heat transfer during cryosurgery process of lung cancer. An enthalpy based finite 

difference scheme is adopted to solve the present model. We have examined the effect of 

different values of relaxation time on transient temperature, lower and upper interfaces 

during freezing process. Information obtained is useful to predict that the tumor tissue has 

been damaged or not and minimization of the damage of surrounding normal tissues by 

over-freezing, which could be helpful to improve the treatment planning. 
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In Chapter 3, a two-dimensional dual phase lag model is proposed to study the phase 

change heat transfer process during cryosurgery of lung tumor tissue. This model is based 

on dual phase lag constitutive relation and also includes the discontinuity of temperature at 

the frozen-unfrozen interface. The temperature dependent enthalpy formulation and finite 

difference method is used to solve the mathematical model. The effects of phase lag of 

heat flux and temperature gradient on temperature profiles and position of phase change 

interfaces have been studied numerically. The results of this study are significant for 

successful cryosurgical treatment.  

 In Chapter 4, we have studied the freezing behavior of triple layer skin tissue 

using a three-dimensional hyperbolic bio-heat model. The complexities of the problem are 

due to moving interface, discontinuity in the temperature at interface and triple layer skin 

tissue which has different thermal properties in different layers. The finite difference 

method is adopted to analyze the effect of relaxation time on freezing interfaces and 

temperature distribution in skin tissue. It is noted that relaxation time has important effect 

on phase change interfaces and temperature distribution. 

 In Chapter 5, to study the effects of two phase lags in triple layer skin tissue 

freezing, a three-dimensional dual phase lag model is proposed. The difficulties of the 

problem are temperature discontinuity and movement of freezing interfaces and different 

thermal properties of layers of skin tissue. The finite difference approximation based on 

temperature dependent enthalpy has been used to solve the dual phase lag model. 

Temperature profiles and motion of freezing interface are plotted to see the effects of both 

the phase lags in freezing procedure. It is found that the freezing is fast for small value of 

phase lag of heat flux.  

 Finally, Chapter 6 presents the conclusion drawn from the thesis and possible 

directions of the future scope. 
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Chapter 1 

General Introduction   

 

1.1 Introduction 

Mathematical modeling is the branch of mathematics through which we explain and 

predict real world behavior. Basically, it is a process which includes the transformation of 

real world problems into mathematical form, solving the mathematical problems and 

converting the solutions of these problems in the real world language [56]. In broad sense, 

a model is a simplified representation of an object or system that we want to investigate. 

Mathematical models are used in various disciplines like physics, biology, electrical 

engineering and the natural sciences etc. 

 In Mathematical Biosciences, we study the applications of mathematical modeling 

and mathematical techniques to get an insight into the problems of biosciences. 

Mathematical modeling of the lung, liver, skin tissue, conduction of current in nerve cells, 

exchange of oxygen and carbon dioxide in the human respiratory system,  functioning of 

various organs, infectious diseases and flow of fluid in human arteries, plays a dominant 

role in control of diseases of the above systems [40-41, 70, 74-76, 88-89]. 

 Mathematical models necessarily involves quantifiable phenomenon. Such a model 

will likely involve parameters, independent variables and dependent variables. In this 

thesis we have focused and investigated only mathematical models which represent the 

heat transfer involving phase change phenomena in biological tissues during cryosurgery. 

 Heat transfer concerns the exchange of thermal energy within the physical system 

or between the considered mediums. Heat transfer takes place from higher temperature to 

lower temperature region due to difference in temperature between the regions. The heat 

transfer can also take place within the system due to difference in temperature at various 

points inside the system. The temperature difference is considered to be potential that 

causes the transfer of heat. The problem of heat transfer is classified in three different 

modes: conduction, convection and radiation [107]. 
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Conduction: Fourier’s Law of Conduction 

Conduction is the mode of heat transfer in which flow of heat takes place through 

molecular transport of heat, there is not necessarily any motion in the conducting medium. 

Conduction is the most significant means of heat transfer within a medium or between two 

or more mediums which are in thermal contact with each other. Transfer of thermal energy 

occurs from a region of higher kinetic energy to that of lower kinetic energy region [107]. 

A temperature gradient is the continuously transfer of energy in the direction of decreasing 

temperature.  

The Fourier’s law of heat conduction is given as 

x

dT
q k

dx
                                                                                                                       (1.1)  

where, the heat flux, 
xq is the heat flow rate per unit area normal to the direction of heat 

flow, and k is the thermal conductivity of material. 

 

Convection: Newton’s Law of Cooling 

Convection is the transfer of energy between the solid and liquid surface. In convection 

heat transfer between solid and fluid occurs as a consequence of the motion of fluid 

relative to the solid surface. According to Newton’s law of cooling, flux in convection is 

directly proportional to the temperature difference between solid and surrounding fluid 

[107]. 

 s sq h T T                                                                                                                   (1.2) 

where, sq is surface heat flux, h is the heat transfer coefficient, sT  is temperature of the 

surface and T  is the surrounding fluid temperature. 

 

Radiation: Stefan-Boltzmann Law  

Radiation is the mode of heat transfer in which radiation energy is transferred through 

electromagnetic waves; it does not require a medium. These waves carry the energy away 

from the emitting object and it propagates best in a vacuum [107]. Stefan-Boltzmann law 

states that the radiant heat flux from a body is proportional to the fourth power of its 

absolute temperature 

4

b sq T
                                                                                                                           

(1.3) 

https://en.wikipedia.org/wiki/Thermal_contact
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where, 
bq is the radiant heat flux,   is the Stefan-Boltzmann constant; its value is  

8 2 45.67 10 /W m K     and 
sT  is the  absolute temperature.  

 

1.2 Freezing Process 

Freezing process is the phase transition process, in which one phase changes to another 

phase. One has to study the phenomena of heat extraction from the liquid region, as the 

phase transition can occur only by lowering of free energy of the system. The motion of 

interface between liquid and solid phase including the absorption or releasing effect of 

latent heat increased the complexity of heat conduction problem with phase change 

phenomena [24]. Phase change problems are also referred as ―Moving Boundary 

Problems‖. These problems are time dependent boundary value problems and moving 

interface has been determined by a function of time and space. Such type of problem was 

first studied by Stefan, therefore it is also called as ―Stefan problem‖ [138]. In his 

research, he had studied the thickness of polar ice. 

 Solidification of pure substance and solidification of impure substance are the two 

major categories of freezing process. In solidification of pure substance, freezing occurs at 

a discrete temperature and it gives a sharp liquid/solid interface. On the other hand in 

solidification of impure substance freezing occurs over an extended temperature range and 

it gives mixed phase region. The mixed phase region known as mushy region is a 

combination of liquid solute and solid crystals [3]. 

 There are two types of region in phase change problem, one is frozen region and 

other is known as unfrozen region. Interface between these two regions is moving with 

time and the boundary conditions at this interface require special attention. Except initial 

and boundary conditions, two more conditions are needed on the moving boundary, one to 

determine the boundary itself and another to complete the solution of the heat equation in 

each region. 

For one-dimensional phase change problem with cooling at 0x   and its moving 

interface, ( )x s t , energy equations are as follows [84]: 

In frozen region 

0 ( ) ,
f f

f f f

T T
c k x s t

t x x


  
   

   
        (1.4) 
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In unfrozen region 

( ) .u u
u u u

T T
c k s t x l

t x x


   
   

   
                                         (1.5) 

where, T is the temperature; L , latent heat;  , density; c , specific heat; k , thermal 

conductivity;  l , length of the whole region.  

 In phase change process, the interface between frozen and unfrozen phase moves 

with time and the interface boundary condition on moving boundary needs two more 

conditions other than initial and boundary conditions. One condition determines the 

boundary itself and another to complete the solution of heat equation in each region. 

Therefore, the energy balance conditions at moving interface are given as  

( )f u
f u

T T ds t
k k L

x x dt


 
 

 
                      at ( ) ,x s t                                                      (1.6a) 

    u f phT T T 
                                         

at ( ).x s t                                                      (1.6b) 

 Main applications of freezing process are in metal casting [155], environmental 

engineering [85], thermal energy storage system [49], aerodynamic ablation, freezing and 

thawing of foodstuff [26], cryopreservation [117], cryosurgery [31, 157] and numerous 

others. 

 

1.3  Heat Transfer in Biological Tissues 

Heat transfer in living biological tissues is a complex process. This complexity arises due 

to thermal conduction in tissues, convection, anisotropic blood flow in the network of 

arteries and veins, blood perfusion rate and variable metabolic heat generation and tissue 

physiological condition. Heat transfer in biological tissues is usually referred to as bio-heat 

equation. Various mathematical models have been formulated to describe the heat transfer 

within living biological tissues. The determination of temperature through these models 

has been generally used in several medical therapies and physiological studies. The nature 

of heat transfer in living tissue contains the basic elements of the process of heat transfer. 

 Heat transfer models for blood perfused tissues have been used in different 

applications in temperature regularization [101, 109-110, 140], tumor detection [50-51, 

98-99,111], cryosurgery [9, 11, 14, 35, 39, 68-69], etc. In order to describe the bio-heat 
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transfer, various mathematical models such as Pennes bio-heat model, Chen-Holmes 

model, Weinbaum, Jiji and Lemons model and Weinbaum-Jiji model have been proposed. 

 

1.3.1  Pennes Bio-heat Transfer Model  

In 1948, Harry H. Pennes [112] developed a bio-heat model for analysis of heat transfer in 

human forearm, which is given as 

( ) .b b b b m

T
c k T c w T T Q

t
 


    


           (1.7) 

where,  and c are the density and specific heat of the tissue, whereas b , wb and cb are the 

density, perfusion rate and specific heat of the blood, respectively. T is the temperature, Tb 

is the arterial temperature, t is the time and Qm is the metabolic heat generation due to 

organic process activity in body. The term k T   in equation (1.7) is referred as 

conduction term and ( )b b b bc w T T   as blood perfusion term. 

 According to Pennes model, heat transfer occurs in a tissue only in capillaries at 

arterial temperature. Since porous capillary beds supply blood to different tissues, 

therefore these capillaries provide larger area for heat transfer between blood and tissues. 

Pennes assumed that the arterial blood temperature Tb is uniform throughout the tissue, 

while he considered the vein temperature to be equal to the tissue temperature which is 

denoted by T at the same point. Due to simplicity and ease of application under certain 

conditions, this model has been used for various applications such as cryosurgery [124], 

tissue ablation [52] and therapeutic hyperthermia [123]. It is a continuum model, which 

considers the effect of blood flow in the conduction equation without consideration of 

flow of each vessel individually.  

 

1.3.2   Chen-Holmes Bio-heat Transfer Model 

Chen and Holmes [20] assumed that all tissue-arterial blood heat exchange occurs along 

the circulatory network after the blood flows through the terminal arteries and before it 

reaches the level of the arterioles. In Chen-Holmes model, total tissue control volume is 

subdivided to the solid tissue sub volume and blood sub volume and blood perfusion term 

takes into consideration the direction of blood flow and vascular geometry, which is given 

by the following equation  
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* *( ) .p b b b b b b p m

T
c k T c w T T c u T k T Q

t
  


        


                                (1.8)  

where, the term * *( )b b b bc w T T   is different to blood perfusion term of Pennes model 

because *

bw  is the rate of perfusion at the local generation of vessel branching and *

bT  is the 

temperature of blood upstream of the arterioles. The term pk T  , where pk is perfusion 

conductivity, represents conduction mechanisms associated with small temperature 

fluctuations in equilibrated blood. u  is the volumetric blood flow rate per unit area in 

particular direction and the term b bc u T  describes the energy convected due to 

equilibrated blood. 

 To apply the Chen-Holmes model, the detailed knowledge of the vascular network 

and blood perfusion is needed. Therefore, it is more difficult to use as compared to the 

Pennes bio-heat model. 

 

 

1.3.3  Weinbaum, Jiji and Lemons (WJL) Model  

Since the Chen-Holmes model does not explicitly address the modeling of countercurrent 

vascular system. In 1984, three researchers Weinbaum, Jiji and Lemons proposed a 

vascular bio-heat model based on the assumption that small arteries and veins are parallel 

and not with heat exchange at the capillaries level [55]. The blood flows in countercurrent 

direction which results in counterbalance of cooling–heating effect. The energy 

conservation equations for a thermally significant artery and vein neglecting axial 

conduction are as follows 

2( )
( ) 2 ( ) ,b a

b a b b a

d nr VT
c nq c nr gT

ds
                                               (1.9a) 

2( )
( ) 2 ( ) .b v

b v b b v

d nr VT
c nq c nr gT

ds
              (1.9b) 

 In equation (1.9), left side terms are heat convection terms along the path of 

arteries and veins respectively within the control volume, where br  is the vessel radius, n 

is the vessel number density and V  blood flow velocity within the vessel. The first term 

on the right side of equation represents the conduction process through the vessel wall and 

second term represents energy carried out, or into the blood vessel. The mass conservation 

law is given as 
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2( )
2 .b a

b

d nr VT
nr g

ds


                                                                                                   
 (1.10) 

Equation (1.9) can be simplified by substituting equation (1.10) in equation (1.9) for the 

tissue control volume and the following set of three coupled equations is obtained  

2( ) ,a
b b a

dT
c r V q

ds
                                                                                                 (1.11a) 

2( ) ,v
b b v

dT
c r V q

ds
                                                                                                 (1.11b) 

2 ( )
( ) ( ) ( ) .a v

b a v b b m

d T TT
c k T ng c T T n r c V Q

t ds
   

  
       

                         

(1.11c) 

The equations (1.11a) and (1.11b) represent the heat transfer in thermally significant artery 

and vein respectively. The equation (1.11c) represents the tissue surrounding the artery-

vein pair. The left hand side of equation (1.11c) represents the heat transfer in the tissue 

control volume. The first term of right side of equation (1.11c) represents the heat 

conducted in the direction of vessel path. The middle term of right side of equation (1.11c) 

refers the capillary bleed of energy exchange and net heat exchange between the tissue and 

artery-vein pair respectively. The second term on the right-hand side of equation (1.11c) is 

similar to perfusion term of Pennes except the bleed-off mass flow (g). 

WJL model is more significant in the deep muscles tissues because the countercurrent 

vessels are small in the peripheral tissue and contribute less in heat transfer.  

 This theoretical model lacks experimental validation due to its complexity and 

detailed description is required for associated vascular network to a meaningful 

application. These limitations make this model difficult to apply for most tissues or a 

variety of thermal conditions.  

 

1.3.4   Weinbaum and Jiji (WJ) Bio-heat Transfer Model  

The above three temperature models are more complex; therefore Weinbaum and Jiji 

[150] derived a simplified bio-heat model. This model considered the effect of number of 

countercurrent blood vessel pairs, blood vessel diameters and the blood velocity, while 

predicting temperature field in vascularized biological tissue.  

 The assumption of this model was that the tissue temperature is approximated by 

the average temperatures of the local artery and vein.  



 

8 

( )
.

2

a bT T
T


                                                                                                                (1.12a) 

Further they also assumed that heat conducted from arteries to the corresponding paired 

veins, such that 

( ).a v a vq q k T T                                                                                                       (1.12b)   

On substituting equation (1.12) in WJL model, it reduces to the following bio-heat 

equation as  

,eff m

T T
c k Q

t t x


   
  

   
                                                                                            (1.13)  

where, effk is the effective thermal conductivity of the tissue which is a function of 

different tissue-blood vessel configurations, and is given as  

 
2

2

2

( ) cos
1 .

.

b b

eff

n r c V
k k

k

  



 
  
 
 

 

 A review of the chronological development of mathematical models of bio-heat 

transfer has been given by Charny and Levin [19]. Computer simulated results obtained by 

Baish et al. and Wissler et al. [8, 151] show that the Weinbaum and Jiji model is 

applicable to muscle tissue that contains blood vessels with diameter, 0.2 .d mm  

 Hence, Weinbaum and Jiji model is not an accurate model to predict the 

temperature field. The Pennes model is still the most commonly used model for thermal 

energy transport in biological tissues because of its simplicity.  

 

1.4  Cryosurgery   

Cryosurgery is a medical technique to treat the tumor tissues, in which extremely low 

temperature is used to destroy the diseased tissues. It is also known as cryotherapy or 

cryoablation. Cryosurgery has many advantages over other medical treatments, such as 

less pain, less invasiveness, cheap price, safe, effective and less time hospital stay and 

recovery period [30, 72]. Besides this, one of the main advantages of cryosurgery is that it 

localizes the cell destruction, which in turn minimizes damage to the neighboring normal 

tissues. It is used in the treatment of many types of tumors, e.g., lung, liver, skin cancer, 
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bone tumors, hemorrhoids and prostate cancer, etc. The development of this technique was 

reported in the middle of 19
th

 century. The first successful treatment of cancer was done 

by James Arnott, an English physician, who used iced saline solution to treat malignant 

tumor [6].  

 The era of modern cryosurgery began in 1961, when Irving Cooper [23], an 

American neurosurgeon, developed a liquid nitrogen-based cryosurgical equipment [131]. 

In cryosurgery process, liquid nitrogen as a cryogen is introduced on or within the 

diseased tissues through an instrument known as cryoprobe. Cryoprobe is a hollow 

instrument made of specific metal. Although there are other cryogens like liquid argon     

(-187 
0
C), nitrogen oxide (-89.5 

0
C) and solid carbon dioxide (-79.5 

0
C) used in 

cryosurgery [10], but due to minimum boiling temperature (-196 
0
C), liquid nitrogen is 

most widely used as cryogen [4]. This cryogen has greatest freezing capability and it is 

non-toxic, cheap and easily available. A low temperature area in the effected tissue region 

is generated by the tip of cryoprobe. The cryoprobe removes heat from the t issue and 

freezing interface propagates from probe into the tissue surface damaging the diseased 

tissue along the way. The probe is removed after the desired region is frozen and leaves 

the frozen tissue for thawing [12]. 

 

1.4.1 Mechanism of Tissue Injury during Cryosurgery  

The physical effect of cryosurgery is cell destruction and it is directly related to in the 

formation of ice crystals. In cryosurgery process, water in the tissue gets crystallized when 

the tissue temperature falls into the freezing range. Immediate and delayed effects are the 

two major mechanisms (Figure 1.1) towards the destructive effect of freezing in 

cryosurgery [38]. The immediate effect occurs due to direct destruction of cells through 

the effect of cooling and freezing. Whereas the delayed effect of cell injury appears due to 

the progressive failure of microcirculation and vascular stasis, which can last up to many 

hours after the completion of cryosurgical procedure [38, 90-91]. The immediate 

mechanism of cell destruction is injurious effect of freezing. Gage et al. [38] have showed 

in their study that -50 
0
C is the cell death temperature. 
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Figure 1.1: Mechanism of Cryosurgery [21]. 

 

1.4.2 Extracellular and Intracellular Ice Crystallization  

Two biophysical changes in tissues during the freezing-induced cell injury in freezing 

process are extracellular ice formation (EIF) and intracellular ice formation (IIF). These 

two are important freezing response experienced by cells. Extracellular ice crystallization 

takes place when the cooling rate is slow. While at fast cooling rate, intracellular ice 

formation is achieved. The rates of freezing are high sufficient to induce intracellular ice 

formation (IIF) along with surrounding area of the cryoprobe. Formation of ice crystals 

begins in extracellular space, as the tissue temperature falls a few degree below to 0 
0
C. 

Therefore, solute concentration increases and water gets removed from the cells. As a 

result, the cells shrink and membrane and constituents get damaged [21]. 

 During the high cooling rate, the extracellular ice crystallization does not have 

enough time to form. In this situation, removal of water from the cells is not fast enough to 

achieve the equilibrium across the cell membrane. Therefore, osmotic equilibrium is 

maintained by intracellular crystallization of ice in both inside and outside of the cells. 

During freezing, the cell volume expands which damage the cell membrane i.e., causes 

destruction of cells [21].  

Mechnisims of Cell Destruction 

Immediate Cell Destruction Delayed Cell Destruction 

Cell Destruction by Freezing Cell Destruction by Cooling 

Vascular Stasis (cell death due 

to restriction of blood flow) 

Hyperthermia 

Extracellular Ice 

Crystallization 

Intracellular Ice 

Crystallization 

Lethal Temperature 

(-20 to -50 
0
C) 
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The difference between the intracellular and extracellular osmotic pressure increases with 

an increase in cooling rate. Hence, the difference in temperature between the actual 

temperature of the cytoplasm and its freezing point increases (the degree of under cooling 

in the cytoplasm increases). In both extracellular and intracellular ice crystallization, water 

is removed from the biological system and dehydration results in cell death. The fraction 

of unfrozen water is an important factor in cell death or survival. Moreover, the 

deleterious effect of cell shrinkage and expansion may be sufficient to explain cell death 

[90-91]. 

 

1.4.3 Mathematical Formulation of Cryosurgery 

For a cryosurgical treatment, the most desirable things are to compute the freezing 

propagation and effect of temperature inside the freezing surface. Computerized planning 

helps cryosurgeons in the pre-planning of cryosurgery. Imaging techniques like 

Ultrasound, Electrical Impedance Tomography (EIT) and Magnetic Resonance Imaging 

(MRI) are not able to provide the thermal history inside the frozen tissues, as these 

techniques only capture the outer freezing front. 

 Then mathematical models came into existence to predict the thermal information 

and extent of freezing within the subjected tissue. Heat transfer models based on bio-heat 

equation have been developed to explain cryosurgery process mathematically. During 

cryosurgery, it is assumed that heat transfer takes place only by conduction and classical 

Pennes bio-heat equation [112] is generally used to formulate the mathematical model in 

cryosurgery. It is given as 

 (a) In unfrozen region 

 
( , )

( , ) ( ( , )) ( )u
u u u u b b u m ub

T S t
c k T S t c w T T S t Q S D t

t
 


     


     (1.14) 

where, u , uc and uk  are density, specific heat and thermal conductivity of unfrozen 

region, b  is density of blood, bc  is specific heat of blood, bw is blood perfusion rate,  

mQ is the metabolic heat generation in tissue, ( , )uT S t  is the temperature in unfrozen 

region, bT  is the arterial blood temperature and ( )uD t denotes the unfrozen domain at time 

t. 
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(b) In frozen region 

Due to absence of blood perfusion and metabolism, the heat balance equation can be 

written as 

( , )
( , ) ( )

f

f f f f f

T S t
c k T S t S D t

t



  


                                   (1.15) 

where,
f , fc and 

fk  are density, specific heat and thermal conductivity of frozen region. 

( , )fT S t  is the temperature in frozen region and ( )fD t denotes the frozen domain at time t. 

(c) Conditions at interfaces are given by 

( , ) ( , ) ( , )u f phT S t T S t T S t                                                                                (1.16) 

( , ) ( , )f u
f u n

T S t T S t
k k Lv

n n


 
 

 
                                                                                 (1.17) 

where, phT , n , L , and nv  denote phase change temperature, unit outward normal, latent 

heat and normal velocity of phase change interface, respectively. 

 

1.5 Solution Methodology  

1.5.1 Introduction  

The moving boundary between solid and liquid phase is the characteristic of the freezing 

or solidification. The nature of these problems is non-linear due to the unknown position 

of freezing front and the direction of ice growth. The position of moving interface is found 

out by the continuation of solution of problem, as it is difficult to predict in advance. The 

physical properties of the system are temperature dependent therefore mathematical study 

becomes still more complicated. Many researchers have studied in this direction, their 

study is based on analytical as well as numerical techniques but restricted to some simple 

assumptions. 

 

1.5.2  Analytical Solutions 

The existing analytical solutions for phase change problem are limited to one-dimensional, 

semi-infinite and infinite region with simple boundary conditions. These solutions are 

usually in the form of similarity variable and are referred as similarity solutions. In 1860, 

Neumann [97] gave the solution of phase change problem in a semi-infinite region but his 
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work was not published until 1912. The earliest exact solution of phase change problem 

was given by Stefan [138]. In his work, he used freezing of semi-infinite liquid region. 

Carslaw and Jaegar [17] have further generalized the Neumann solution.  

 Formulation of moving boundary problems in terms of integral equations was also 

found useful. Evans et al. [37] obtained an integral form for one-phase moving boundary 

problems using Laplace transforms. Generalized Laplace transform for phase change 

problems was given by Ku and Chen [58]. Selim and Seagrave [126] used integral 

transform for the solution of plane cylindrical and spherical moving boundary. The 

solution of heat flow problems subjected to fixed boundary conditions with the use of 

Green’s function is well known.  Liu and Zhou [78] studied the freezing and thawing 

process of biological skin tissue using the Green’s function. This method is also used by 

Muehlbaur et al. [95] and Katiyar and Mohanty [57] in the transient heat transfer analysis 

of alloy solidification. 

 It is easy to obtain the solution of quasi-steady approximation of Stefan problem, 

but the validity of the solution is limited as the initial condition could not be taken in this 

method. Caldwell and Kwan [15] used perturbation method to solve quasi-steady 

approximation of Stefan problem. Jiji and Gaye [54] studied the freezing and melting of 

phase change materials with energy generation using quasi-steady approximation.  

 Some authors have studied analytically the heat transfer phenomena in biological 

tissues. Among them, Shih et al. [132] have performed analytical study of Pennes bio heat 

equation using Laplace transform assuming the sinusoidal heating on the surface of the 

skin. Their analysis showed that the temperature oscillation is unstable at the initial stage 

due to effect of the sinusoidal heat flux on the surface of skin tissue. An extensive study is 

made by Ahmadikia et. al. [1], they examined the heat transfer effect in skin tissue due to 

laser heating, and solved two bio-heat models analytically using Laplace transform 

method. Mahjoob and Vafai [86] investigated analytically bio-heat transfer phenomena 

within the biological tissue which arises in the therapeutic applications like hyperthermia 

treatment. 

 

1.5.3    Numerical Solution 

Since the moving boundary problems and phase change heat transfer phenomena are non-

linear, it is difficult to arrive at the solution by analytical methods. Therefore, for solving 

such type of problems it is necessary to employ the numerical method. In literature, 

different methods have been proposed for the numerical solution of phase change 
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problems [116, 118, 158, 156]. They differ primarily in the way that heat transfer on the 

phase boundary is modeled. Existing numerical methods have been categorized as follows 

 

Front Tracking Method 

Front tracking method is used to find the interface between liquid and solid phases using 

the Stefan condition and recognize the interface as boundary. In this method, boundary 

conditions at interface are fixed and different sets of conservation equations are solved. 

Front tracking method does not need initial information of the interfaces, and multiple 

fronts can also occur. Fixed finite difference grid methods, modified grid using variable 

space grids or variable time steps, adaptive grid methods and methods of lines are some 

examples of front tracking method [22, 43, 103]. 

 

Front Fixing Method 

In front fixing method boundaries of phase change are fixed by a change of variable which 

considerably simplifies the numerical computation. This method includes body-fitted 

curvilinear coordinates and isotherm migration methods.  

 

Fixed Domain Method 

In both front tracking and front fixing methods, it is required to satisfy the ―Stefan 

condition‖ on the moving boundary. Moreover, when the moving boundary does not move 

smoothly with time, sometimes it may be very difficult to find the position of moving 

boundary. The moving boundary may have double back, or sharp peaks or it may even 

disappear. Therefore, the problem is formulated in such a way that the Stefan conditions 

can be bound implicitly in the form of new equations, which applies over the whole of a 

fixed domain. This is fulfilled by introducing enthalpy function or effective heat capacity 

[36]. 

 

1.5.4 Enthalpy Method 

To solve the phase change problems in which the substance does not have a separate solid-

liquid interface, several researchers have used the enthalpy method. In this method an 

enthalpy function is used as dependent variable together with temperature and only a 

single energy equation works for both liquid and solid phases. Enthalpy method is 

applicable in different phase change problems and provide more exact solution than the 

other methods [145].  
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The basic feature of enthalpy method is that the evaluation of latent heat is computed by 

the enthalpy and its relation with temperature. The relationship is assumed to be step 

function and linear function for isothermal and non-isothermal phase change problems 

respectively, given as [24]. 

 (a) For isothermal phase change 

( )

( )

f m m

u m m

c T T T T
H

c T T L T T

 
 

                                                                           

(1.18a) 

(b) For non-isothermal phase change 

 
 
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
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
      


                              (1.18b) 

where, L stands for latent heat, Tml and Tms are temperature of liquid and solid phase 

respectively. 

Using enthalpy, H (Equation 1.18), the Stefan equations (1.4) – (1.6) reduces to a single 

equation 

.
H

k T
t




 


                                                                                                              (1.19)    

while equations (1.14) – (1.17) reduces to  

  ( )b b mb

H
k T c w T T Q

t
 


    


                    (1.20) 

Enthalpy formulation is used in various studies of phase change problems such as in metal 

casting, freezing and thawing of food, cryosurgery and thermal energy storage system [31, 

69, 71, 108, 127, 145-147]. 

The advantages of this method are following [145]: 

  (i) There are no conditions to be satisfied at the position of phase change interface. 

 (ii) There is no need to consider frozen and unfrozen regions separately. 
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(iii) There is no need to perfectly track the phase change boundary. 

(iv) One can fix the no. of grids for calculation purpose. 

 (v) It is easy to deal with the cases where phase change occurs over a wide range rather 

than at a single point. 

 In the above method whole region is divided into finite number of elements and the 

heat balance equations (1.19) and (1.20) give accurate value of the enthalpy of each 

element. After obtaining the enthalpy of an element, temperature can be evaluated by 

reverting equation (1.18). Equations (1.19) and (1.20) can be solved using many numerical 

methods such as finite difference method (FDM) [32-34, 69, 73, 116], finite element 

method (FEM) [46, 61, 83, 100,103, 149], boundary element method (BEM) [29, 48] and 

finite volume method (FVM) [64-66]. The finite element method, boundary element 

method and finite volume method successfully handle complex geometries, but it is found 

that they are consuming more time in computing and programming. On the other hand, 

finite difference techniques are still the most popular at present because of their simplicity 

and less time consumption in formulation and programming [32, 34, 62, 113].  

 

1.5.5 Finite Difference Method  

Finite difference methods are numerical methods which are used to solve the differential 

equations where the derivatives are approximated by finite difference equations. In the 

finite difference simulation, a physical problem containing the continuous variation of a 

field variable  , , ,f x y z t , is converted into an approximate value of f at nodes 

 , ,i i ix y z and the time level tn [148]. These methods approximate the solution of 

differential equations by replacing the derivatives of different order by suitable finite 

difference approximation [122, 106, 125, 137].  

The first derivative of a function T is 

0

( ) ( )
'( ) lim O( )

h

T x h T x
T x h

h

 
                                                                                (1.21) 

Neglecting the error term O(h) gives 

( ) ( )
'( )

T x h T x
T x

h

 
                                                                                                 (1.22) 
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Equation (1.22) is called a first order forward difference approximation to ' ( )T x . Similar 

formulae are used to replace derivative expressions in differential equations. 

 Let T be a function of the independent variable x and t. Subdivide the x - t plane 

into sets of equal rectangles of sides ,x h t k    by equally spaced grid lines parallel to 

OX , defined by xi=ih ,  i = 0,1,2,...,N and equally spaced grid lines parallel to OY, defined 

by tn = nk,  n = 0,1,2,…,N. The value of T at the representative mesh point T (ih, nk) = Ti,n, 

by Taylor’s theorem,  

2 31 1
( , ) ( , ) '( , ) ''( , ) '''( , )

2 6
T x h t T x t hT x t h T x t h T x t                                     (1.23) 

2 31 1
( , ) ( , ) '( , ) ''( , ) '''( , )

2 6
T x h t T x t hT x t h T x t h T x t                                     (1.24) 

Equation (1.23) gives forward difference approximation 

 ( , ) ( , )
'( , ) O( )

T x h t T x tT
T x t h

x h

 
  


                                                               (1.25) 

Equation (1.24) gives backward difference approximation 

 ( , ) ( , )
'( , ) O( )

T x t T x h tT
T x t h

x h

 
  


                                                                (1.26) 

Equations (1.23) and (1.24) give central difference approximation for first order derivative 

as 

  2
( , ) ( , )

'( , ) O( )
2

T x h t T x h tT
T x t h

x h

  
  


                                                         (1.27) 

Equations (1.23) and (1.24) give central difference approximation for second order 

derivative as 

 2
1, , 1, 2

2 2

2
''( , ) O( )

i n i n i nT T TT
T x t h

x h

  
  


                                                           (1.28) 

 2
, 1 , , 1 2

2 2

2
''( , ) O( )

i n i n i nT T TT
T x t k

t k

  
  


                                                            (1.29) 

 2
1, 1 1, 1 1, 1 1, 1

4

i n i n i n i nT T T TT

x t hk

         


 
                                                                      (1.30) 
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The central difference approximation to the third order derivative is 

 3
2, 1, 1, 2,

3 3

2 2

2( )

i n i n i n i nT T T TT

x x

     


                                                                             

(1.31) 

Similar approximation can be obtained to higher order derivatives. 

 

Finite difference methods using enthalpy formulation of phase change problems include 

explicit method, semi implicit method, and fully implicit method. The explicit method is 

conditionally stable, while others are unconditional stable [102].  

 

1.6 Objective of the Study  

Heat transfer with phase change in living biological tissues is an important area of 

research due to its wide applications in disease diagnostic, burn injury evaluation, 

cryosurgery, cancer hyperthermia and cryopreservation. At the present time, the controlled 

destruction of tissues by freezing is commonly used in medicine. Cryosurgery has become 

a well-established technique for the ablation of undesirable tissues.The motivation for this 

study is to improve the efficacy and safety of this technique. On the basis of available 

literature (see introduction of chapter 2), we have used the hyperbolic bio-heat model for 

the numerical study of phase change heat transfer during cryosurgical treatment of lung 

tumor tissue. The literature review also reveals that the numerical study of phase change 

heat transfer in cryosurgery of lung cancer can be explored further using dual phase lag 

model. Apart from this, the three-dimensional hyperbolic bio-heat model and dual phase 

lag model could be helpful in analyzing the freezing behavior of the triple layer skin 

tissue. Therefore, the objectives of the present thesis are 

 

 To study the effect of relaxation time on temperature distribution and phase change 

interfaces interface during cryosurgical treatment of lung tumor tissue, a two-

dimensional hyperbolic bio-heat model has been developed. 

 To examine the effect of phase lags in heat flux and temperature gradient on 

freezing interfaces and distribution of temperature during cryosurgery of lung 

cancer, a two-dimensional dual phase lag model has been presented. 

 To study the freezing behavior of triple layer skin tissue, a three-dimensional 

hyperbolic bio-heat model has been proposed. 
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 To study the effect of two phase lags in freezing of triple layer skin tissue using a 

three-dimensional dual phase lag model. 
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Chapter 2 

Hyperbolic Bio-heat Model for Phase Change Heat 

Transfer during Cryosurgery of Lung Cancer 

 

2.1 Introduction 

Lung cancer is one of the major causes of death among all types of cancer. Every year a 

large number of people die due to this cancer disease. Lung cancer is an uncontrolled 

growth of diseased or abnormal tissues in the lungs. As per the report of the World Health 

Organization (WHO), around 20 % people (1.59 million) die due to lung cancer every year 

[42]. According to cancer death report 2017 by the American Cancer Society [16], around 

222,500 cases of the lung cancer are expected in 2017. Out of these cases 155,870 are 

expected death cases in 2017. Cigarette smoking, passive smoking, air pollution, 

especially small particulates, asbestos, exposure to radon, some organic chemicals and 

genetic susceptibility are the main causes of lung cancer. There are many medical 

treatments like surgery, radiotherapy and chemotherapy, etc., available to cure lung cancer 

[121]. These treatments have some calamitous side effects. Cryosurgery is one of the 

important surgical techniques, which is safe and effective method of tumor treatment as 

compared to the other treatments. 

 The main aim of cryosurgery is to destroy the tumor tissue while minimizing the 

damage to healthy lung tissues. A good knowledge of temperature distribution and 

positions of phase change interface in lung-tumor tissue is required for a successful 

cryosurgical treatment. A brief description of literature in the direction of cryosurgery in 

biological tissues is given below.  

 To predict the thermal reaction of tumor and normal tissues in cryosurgical 

treatment, Hoffmann and Bischof [47] have proposed a cryosurgical model using a dorsal 

skin flap chamber. Chua et al. [21] have presented the detailed analysis of rate of cell 

destruction and temperature distribution in the tumor tissue during cryosurgery. In their 

study, they observed that in comparison with multiple cryoprobes, a single cryoprobe 

having large diameter works efficiently in destroying the tumor tissue while preserving the 

healthy tissues. 
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To see the freezing effect in tumor tissue, Nakayama et al. [96] have studied numerically 

the growth of ice-ball and location of freezing front with time and compared with 

analytical one. They reported the existence of a tumor tissue of limiting size, which can be 

frozen upto maximum by a single cryoprobe. Niu et al. [104] have made an experiment 

using different freeze-thaw cycles and analyze the lung necrosis during cryosurgery in 

lung cancer. They observed that for complete destruction of lung cancer cells, three freeze-

thaw cycles are required. Tarwidi [141] investigated the Cryosurgical simulation of lung 

cancer based on efficient freezing time. He reported that temperature distribution and 

solid-liquid interface in tissue can be used to maximize the damage rate of tumor tissue 

and minimize the injury to normal tissue. Recently, Hafid and Lacroix [44] presented an 

inverse heat transfer method for monitoring the motion of the freezing front in 

cryosurgery, with the help of a thermocouple inserted into the layer of diseased tissue. 

This information is then fed to the Pennes bio-heat equation that calculates the time-

varying temperature distribution inside the layer of tissue and predicts the motion of the 

freezing front. Results have shown that the proposed inverse method is a promising 

alternative to ultrasound and MRI for monitoring the motion of the freezing front. 

 In their studies, most of the above authors have used Pennes bio-heat model [112], 

which is given as 

  ,b b b b m

T
c q c w T T Q

t
 


     

                                                                              
(2.1) 

where  , , ,  , , ,  , b b b bc c w T t T   and Qm have the same meaning as in equation (1.7). This 

model is also called parabolic bio-heat model. 

The above Equation (2.1) is based on the Fourier’s law, 

   , ,q S t k T S t   ,                                                                                                    (2.2) 

where, k denotes the thermal conductivity of  tissue,  ,T S t and  ,q S t are temperature 

and heat flux at position  , ,S x y z at time t respectively. 

According to Fourier’s law of heat conduction, a thermal signal propagates with 

infinite speed in the medium [77]. Which is not true in reality, the propagation speed of a 

thermal signal is finite because biological tissues have non-homogeneous structure and 

they require a relaxation time to acquire a proper amount of energy to transfer to the 
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neighboring element [82]. The paradox which occurred in Pennes bio-heat transfer model 

was solved by Cattaneo [18] and Vernotte [144]. They simultaneously proposed a 

modified form of Fourier’s law as 

 ( , ) ,qq S t k T S t    ,                                                                                              (2.3)       

where, q stands for the relaxation time for heat flux. Using Taylor series expansion, the 

equation (2.3) can be written as follows  

 
 

 
,

, ,q

q S t
q S t k T S t

t



   


,                                                                              (2.4) 

Equation (2.4) is called as Cattaneo-Vernotte’s constitutive equation. Using equations 

(2.1) and (2.4), we get the following equation which is known as hyperbolic bio-heat 

equation, 

   
2 2 2

2 2 2q q b b b b b b b m

T T T T
c c c w k c w T T Q

t t x y
     

    
       

    
.                 (2.5) 

If q = 0, then the above equation is converted into parabolic bio-heat equation. 

 Many studies are available in the literature [5, 82, 134-135], in which researchers 

have used hyperbolic bio-heat model with freezing condition. Among others, Deng and 

Liu [28] have studied phase change heat transfer and thermal stress inside the skin tissue 

during freezing process. In their study, they have not included the discontinuous nature of 

temperature at the phase change interface. Zhou et al. [163] presented a two-dimensional 

non-Fourier bio-heat model to investigate the thermal damage and temperature distribution 

in laser-irradiated biological tissues. To describe non-Fourier effect of biological tissue 

during freezing process Ahmadikia and Moradi [2] studied hyperbolic heat conduction 

model along with discontinuous nature of temperature at liquid-solid interface but did not 

consider the heat source term due to blood perfusion and metabolic heat generation. 

Metabolic heat generation and blood perfusion also have significant effect on heat transfer 

in tissues [119-120]. In cryosurgery during freezing, some healthy tissues may also freeze. 

These frozen tissues can resume their state due to heat supply by body metabolism and 

blood perfusion. Negligence of these terms can result up to 20% error in the result. 

 In this chapter, a 2D hyperbolic bio-heat model is developed by modifying the 

classical Pennes bio-heat model. Non-ideal property of tissue, metabolic heat generation 
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and blood perfusion are also taken into account to study the cryosurgery process of lung 

cancer. A finite difference approximation based on enthalpy method is employed to solve 

the above model. To study the effect of relaxation time for heat flux on movement of 

interfaces and temperature distribution in the tissue are obtained for different values of 

relaxation time.  

 

2.2 Problem Description 

We have considered a tumor tissue of dimension 1.5   1.5 ,cm cm  which is embedded in 

a lung tissue of dimension 4.0   4.0 .cm cm  A cryoprobe is located at the position 0,x   

1.8 2.2 .cm y cm  The physical configuration of the present problem is given in          

figure 2.1 [69]. 

 

Figure 2.1:  Schematic diagram of physical problem. 

 

2.3 Mathematical Formulation 

2.3.1 Assumptions  

The following assumptions are considered to solve the two-dimensional hyperbolic bio-

heat transfer model. 

 Heat conduction in tissue takes place through non-Fourier conduction [2]. 
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 When tissue is in unfrozen state, heat generation occurs in tissue due to 

metabolism and blood perfusion [27, 29]. 

 The initial temperature of tissue is considered as an arterial temperature (37 
0
C). 

  Non-ideal property of tissue is used with upper and lower phase change interface 

at temperature -1
0
C and -8

0
C respectively [114]. 

 Outer boundary is far away from cryoprobe, so assumed at body core temperature 

(37 
0
C). 

 Thermo-physical properties of normal lung and tumor tissue are taken as 

 

( )

1
( ) ( ) ( ) ,

2

( )

f e ms

e f e u e ms ml

u e ml

k T T

k k k T T T

k T T





   





 

 

( )

1
( ) ( ) ( ) ,

2

( )

f e ms

e f e u e ms ml

u e ml

T T

T T T

T T



  







   





 

 

( )

1
( ) ( ) ( ) ,

2

( )

f e ms

e f e u e ms ml

u e ml

c T T

c c c T T T

c T T





   





 

where subscripts e = l and t are for lung and tumor respectively. 

 

2.3.2 Governing Equations 

The governing equations of 2D hyperbolic bio-heat model for lung tumor tissue for both 

the regions frozen and unfrozen are given as: 

2 2 2

2 2 2
,

f f f f

q f f f f f

T T T T
c c k

t t x y
  

    
        

                                                            (2.6) 

   
2 2 2

2 2 2
,u u u u

q u u u u q b b b u b b b b u m

T T T T
c c c w k c w T T Q

t t x y
     

    
       

    
    (2.7) 

respectively. The symbols used in above equations are already defined in the 

nomenclature. 

The conditions at phase change interface are given as  
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   , ,f u

f u n q n

T S t T S t
k k Lv Lv

n n
  

 
  

 
,                                               (2.8) 

   , ,u f phT S t T S t T  .                                                                             (2.9) 

where 

2

2
, ,n n

S S
v v

t t

 
 
 

n is the unit outward normal, L represents the latent heat of 

fusion.  

Using void fractioning volumetric averaging technique [84], macroscopic properties of 

lung are computed as [12] 

                                           

* *

* *

* *

l w w a a

l w w a a

l w w a a

f f

c c f c f

k k f k f

   

 

 
                                                                

(2.10) 

where, *f denotes fraction and subscripts l, w and a represent lung, tissue and air.  

To avoid the discontinuity of temperature at phase change interface and unknown position 

of the solid-liquid interface, we consider enthalpy formulation to solve the present model.  

Temperatures of frozen, mushy and unfrozen regions are expressed into enthalpies by 

using the definition of enthalpy, ( ) ,
r

T

T
H T c dT   where rT is the reference temperature: 

 

 (i) Frozen region ( msT T ): 

 .
ms

T

f f ms
T

H c dT c T T    

(ii) Mushy region ( ms mlT T T  ): 

 
 

   
 

1 1
.

2 2ms ms

T T

f u ms f u
T T

ml ms ml ms

L L
H c c dT dT T T c c

T T T T

  
       

   
   

(iii) Unfrozen region ( mlT T ): 

      
1 1

.
2 2

ml

ms ms

T T

f u u f u ml ms u ms
T T

H L c c dT c dT L c c T T c T T            
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Thus, tissue temperature and enthalpy can also be written in combined form as follows 

 

 

( )

1
( ) ,

2 ( )

1
( ) ( )

2

f ms ms

ms f u ms ml

ml ms

f u ml ms u ml ml

c T T T T

L
H T T c c T T T

T T

L c c T T c T T T T


 


 

       
 


     



                               (2.11) 

where, msT  and mlT  are solidus (-8 
0
C) and liquidus (-1 

0
C) temperatures. Using equation 

(2.11), equations (2.6) – (2.9) reduce to a single equation as 

 

 
2 2 2

2 2 2
.

q b b b

q b b b b m

w cH H T T
k w c T T Q

t c t x y

 
   

      
         

                  

(2.12) 

2.3.3 Initial and Boundary Conditions  

(a) The condition at initial time t = 0 as follows: 

0

0( , ,0) 37 fT x y T C  and  

0

0,
f

t

T

t






 

0( , ,0)uT x y T and  
0

0,u

t

T

t 





 

(b) The conditions on the boundary of the tissue are defined as follows: 

(i)  At  0x   and 1.8 2.2cm y cm   

           T(0, y, t) = Tc = -196 
0
C. 

(ii) At 0,x  0 1.8y cm   and 2.2 4.0cm y cm  , adiabatic condition has been        

assumed, i.e., 

( , , )
0.

T x y t

x




  

(iii)  At  y = 0, y = 4.0cm  and 0 4.0x cm  ;  x = 4.0 cm, 0 4.0y cm   

T (x, y, t) = 37 
0
C. 
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 (iv)  At y = 1.25 cm, y = 2.75 cm  and 0 1.5x cm  ;  x = 1.5 cm, 1.25 2.75cm y cm  , 

Continuity condition for heat flux and temperature at common boundary lung and 

tumor is given as 

( , , ) ( , , )t l
t l

T x y t T x y t
k k

x x

 


 
and t lT T

 

where, subscripts t and l stand for tumor and normal lung tissue, respectively. 

 

2.4 Numerical Solution 

Finite difference explicit approximation has been used to solve the presented model. 

Considering , ( )i j nx i x y j y x y and t n t        , where ,i j and n  are the space 

and time index respectively; ,x y  and t are the increment in x-axis, y-axis and time 

respectively. Applying forward difference approximation to first order time derivative and 

second order central difference approximation to time and space derivatives at point 

( , ,i j nx y t ) in equation (2.12), we get 

 1 1

, , , , , , , , , 1, 1, , , 1 , 1

, , , , ,

1 ( 4 )

( ) ,

n n n n n n n n n n n n n n

i j i j i j i j i j i j i j i j i j i j i j i j i j i j

n n n n n

i j i j b i j i j mi j

H A F H A F H D F T T T T T

E F T T F Q

 

          

  
    (2.13) 

where,

       

, , , ,

, , , , , ,2 2

, , ,

1
; ; ; ; .

n n n n

q i j i j q b b bi j i jn n n n n n

i j i j i j i j b b bi j i jn n n

i j i j i j

c w k
A B D E c w F

t c t A Bt x
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

  

  
      

  

 

Equation (2.13) gives the enthalpy at the (n+1)
th
 time level in terms of enthalpy and 

temperature at n
th

 time level. A stability criteria for numerical solution is used to manage 

the space and time increments, which is given as  

    
      

    
      

2 2 2 2

2 2

4 4
max , 1.

2 2

b b b b b b

q q b b b q q b b b

t k w c x t k w c y

x c c t w c t y c c t w c t

     

               

  
 

 
    

 

 

After finding the enthalpy at (n+1)
th  

time level, one can obtain the temperature at 

(n+1)
th  

time level by inverting the equation (2.11) as follows: 
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           (2.14) 

Once the new temperature field is known from the enthalpies, the procedure is repeated. 

The position of upper and lower phase change interfaces is given by isotherms at -1 
0
C and 

-8 
0
C. 

 

2.4.1 Numerical Code Validation 

The validity and accuracy of the numerical code for the present problem are checked by 

comparing our particular results with the published results [69]. Results are compared with 

parabolic bio-heat model as a special case ( 0q s  ). Solution generated by present code is 

in good agreement with the published results (see Table 2.1). Apart from this, grid 

independence of the solution is also checked for various grid sizes in the x and y 

directions. We found that the results remain consistent when the grid size is 40 x 40 or 

more. Therefore, all the computations are reported by taking the grid size as 40 x 40. 

 

Table 2.1: Comparison between published and present results at 0q s  . 

Published results [69]  Present results 

Time       

(s) 

Lower Interface 

(cm) 

Upper Interface 

(cm) 

 Lower Interface 

(cm) 

Upper Interface 

(cm) 

25 0.30 0.34  0.30 0.34 

50 0.40 0.43  0.39 0.42 

75 0.46 0.52  0.47 0.51 

100 0.51 0.56  0.52 0.57 

125 0.56 0.60  0.57 0.62 

150 0.59 0.65  0.60 0.66 

175 0.65 0.70  0.66 0.71 

200 0.67 0.71  0.69 0.73 
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2.5 Results and Discussion 

In this section, we illustrate the numerical results for hyperbolic bio-heat model with phase 

change during cryosurgical treatment of lung cancer. Present problem is solved with 

dimensional parameters. The values of dimensional parameters for both tumor and lung 

tissue based on equation (2.10) are given in Table 2.2 [12, 67, 69, 114]. The values of 

relaxation time for heat flux are considered as 0 ,1 ,5 ,10q s s s s 
 
and 15s  [2, 28, 77, 94].  

 To implement cryosurgery precisely, the temperature distribution and propagation 

of freezing interface in tissue are important to monitor the tumor damage and sparing 

healthy tissue. The effect of different values of relaxation time on temperature profiles and 

freezing interfaces has been obtained. 

 

Table 2.2: Thermo-physical properties of tissues [12, 67, 69, 114]. 

Parameter Units  Value 

Density of blood kg/m3 1005 

Density of tumor tissue (unfrozen) kg/m3 998 

Density of tumor tissue (frozen) kg/m3 921 

Density of lung tissue (unfrozen) kg/m3 161 

Density of lung tissue (frozen) kg/m3 149 

Thermal conductivity of tumor tissue (unfrozen)          W/m 0C 0.552 

Thermal conductivity of tumor tissue (frozen) W/m 0C 2.25 

Thermal conductivity of lung tissue (unfrozen) W/m 0C 0.11 

Thermal conductivity of lung tissue (frozen) W/m 0C 0.38 

Specific heat of tumor tissue (unfrozen) J/kg 
0
C 4200 

Specific heat of tumor tissue (frozen) J/kg 0C 1230 

Specific heat of lung tissue (unfrozen) J/kg 0C 4174 

Specific heat of lung tissue (frozen) J/kg 0C 1221 

Blood perfusion in tumor tissue ml/s/ml 0.002 

Blood perfusion in lung tissue ml/s/ml 0.0005 

Metabolic heat generation in tumor W/m3 672 

Metabolic heat generation in lung W/m3 42000 

Latent heat kJ/kg 333.00 

Arterial blood temperature 0C 37 
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Since the biological tissues show the non-ideal property, therefore phase change occurs 

over a wide range with upper phase change temperature -1 
0
C and lower phase change 

temperature -8 
0
C. Position of the interfaces (lower and upper interfaces) versus time in x-

direction at y = 2.0 cm for different values of relaxation time are presented in figures 2.2 

and 2.3, respectively. Figures 2.2 and 2.3 examine how freezing positions are affected due 

to change in the relaxation time. Phase change movement, i.e., slope of freezing position 

decreases on increasing the relaxation time and temperature gradient also decreases due to 

an increase in distance from the cryoprobe. In this situation, the relaxation time controls 

the behavior of thermal signal propagation. This shows that freezing position for 

hyperbolic solution moves slower than the parabolic one, which implies that phase change 

interface position for hyperbolic case at the same time is lower than that of parabolic case. 

For example, phase change interface position for 5q s 
 
and 10q s   are lower than 

0q s 
 
(see figures 2.2 and 2.3). Furthermore a decrease in freezing position is observed 

with an increase in the value of q . 

As can be observed from the figures 2.2 and 2.3 that both freezing interfaces 

suddenly accelerate as they move towards healthy lung tissue from tumor tissue, i.e., cross 

the lung-tumor boundary. This phenomenon can be explained by considering the densities 

and conductivities of healthy lung tissue and tumor tissue. Parameter values from Table 

2.2 shows that the healthy lung tissue has low density and smaller thermal conductivity as 

compared to the density and thermal conductivity of tumor tissue. This difference in the 

thermal-physical properties of healthy lung tissue and tumor tissue causes the freezing 

interfaces to suddenly accelerate as they cross the lung-tumor boundary. Bischof et al. [12] 

have also observed the similar kind of phenomena in their earlier work where they have 

studied the freezing in the special case of a solid tumor embedded in porous lung. Also, 

the hyperbolic model reduces to parabolic bio-heat model when 0q   which is studied in 

great detail by Kumar and Katiyar [69] in their previous work. 
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Figure 2.2:  Position of lower interface during freezing versus time at y = 2.0 cm 

for the value of 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s          

 

Figure 2.3: Position of upper interface during freezing versus time at y = 2.0 cm 

for the value of 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s          

 

Figures 2.4–2.8 are plotted for the temperature distribution within the tissue at time                               

t = 200 s, 400 s, 600 s and 800 s during cryosurgery for different values of relaxation time 

i.e., 0 ,1 ,5 ,10q s s s s 
 
and 15 .s We know that when the value of q tends to zero, hyperbolic 
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solution approaches to the parabolic solution. As can be seen from figures 2.4–2.5, the 

temperature distribution is almost similar for 0q s 
 
and 1q s  , i.e., the solutions of 

hyperbolic model and parabolic model predict almost same results for small value of the 

relaxation time. However, as we increase the relaxation time, both solutions differ 

significantly. Tissue temperature for hyperbolic model is higher than parabolic one at the 

same time. Temperature increases in the tissue with an increase in the relaxation time. A 

possible qualitative justification towards an increase in the temperature as follows. In the 

case of low relaxation time, heat diffuses into tissue much faster, hence tissue freezes 

quicker and its temperature decreases rapidly as compared to high relaxation time case. In 

addition to above, it can also be observed that in both hyperbolic and parabolic models, 

tissue temperature is much below the lethal temperature (- 30 
0
C ) after time t = 800 s. 

 

 

 

Figure 2.4: Temperature distribution along the tissue during freezing for 0q s 
 

at           

(a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 
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Figure 2.5: Temperature distribution along the tissue during freezing for 1q s 
 

at           

(a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 
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Figure 2.6: Temperature distribution along the tissue during freezing for 5q s 
 

at           

(a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 
 

 

 

Figure 2.7: Temperature distribution along the tissue during freezing for 10q s 
 
at         

(a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 
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Figure 2.8: Temperature distribution along the tissue during freezing for 15q s 
 
at         

(a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 

 

 

Figures 2.9–2.12 show the positions of lower and upper freezing interfaces at time             

t = 200 s, 400 s, 600 s and 800 s with respect to the distance x and y for different values of 

relaxation time. Results in figures 2.9–2.12 clearly show the direction of ice growth and 

ice-ball history. It can be observed from the above figures that the phase change interfaces 

for hyperbolic model move faster as the value of relaxation time ( q ) decreases. Freezing 

velocity of the thermal signals is retarded by relaxation time as it dominates the behavior 

of thermal signal propagation. Hence, the freezing is faster for smaller values of relaxation 

time for heat flux.  
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Figure 2.9: (a) Lower phase change interface and (b) Upper interface during freezing at    

t = 200 s, for 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s        
 

 

 

Figure 2.10: (a) Lower phase change interface and (b) Upper interface during freezing at   

t = 400 s, for 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s        
 

 

 

Figure 2.11: (a) Lower phase change interface and (b) Upper interface during freezing at  

t = 600 s, for 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s        
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Figure 2.12: (a) Lower phase change interface and (b) Upper interface during freezing at  

t = 800 s, for 0 , 1 , 5 , 10 , 15 .q q q q qs s s s s        
 

 

 

2.6 Conclusions 

In this chapter, we have analyzed numerically the phase change interface and temperature 

distribution in a lung tumor tissue during cryosurgery. Due to infinite speed of heat 

propagation in the Fourier’s law, a two-dimensional hyperbolic bio-heat model is 

considered. A comparison is also made between hyperbolic and parabolic models. By 

means of rigorous numerical experiments, we observe that relaxation time of heat flux has 

an important effect on freezing interfaces and temperature distribution. When the 

relaxation time tends to zero, the solution of hyperbolic model converges to the solution of 

the parabolic model. Phase change interface position decreases on increasing relaxation 

time, which implies that interface position for hyperbolic case at the same time is lower 

than that of parabolic case. Tissue temperature increases with an increase in the value of 

relaxation time. Hence non-Fourier effect becomes more effective as compared to Fourier 

effect. In the case of hyperbolic model freezing is fast for small values of relaxation time. 

 The above informations are important to know the extent of freezing in tumor 

necrosis. The knowledge of interface position and temperature distribution in biological 

tissue could be effective tool for a cryosurgeon to control the freezing in lung-tumor tissue 

within certain time period to minimize the damage to normal lung tissue. The present 

results may help in carrying out the cryosurgical treatment in lung cancer more effectively. 

The treatment can be so optimized that only the tumor tissue gets destroyed by freezing 

while causing least possible damage to the neighboring normal lung tissue due to over 

freezing.  
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Chapter 3 

 
Dual Phase Lag Model for Cryosurgery of Lung 

Cancer: Comparison of Three Heat Transfer Models 

 

3.1 Introduction 

Many studies are available in the literature [2, 28, 134-135, 163] in which hyperbolic bio-

heat model in biological tissues is used. Although a lot of experiments confirm that the 

hyperbolic bio-heat model produces more accurate and realistic results than the parabolic 

bio-heat model, it still creates an instantaneous behavior between heat transport and 

temperature gradient. It is also establishes that the temperature gradient is always the 

cause for heat flux while heat flux always effects the heat transfer process [142-143]. 

Further, hyperbolic model considers the micro scale response only in time, but it does not 

consider the micro scale response in space. Therefore, to consider the thermal behavior 

which is not captured by the Fourier’s law and to take into account the microstructural 

effect in space, a new bio-heat model is introduced by Tzou [143]. This model is called as 

dual phase lag (DPL) model and it is based on dual-phase lag constitutive relation, which 

is given as 

   , , ,q Tq S t k T S t                                                               (3.1) 

where, T  is the phase lag in temperature gradient. Using the Taylor’s series, first order 

approximation of equation (3.1) is given by  

( , ) ( , )
( , ) ( , ) ,q T

q S t T S t
q S t k T S t

t t
 

  
     

  
                                                   (3.2) 

Equation (3.2) is called the dual phase lag constitutive relation. Eliminating q from energy 

balance equation (2.1), the dual phase lag constitutive relation leads to the following 

equation: 

 
2

2

2

( , )
( , ) ( ) .q b b b q T b b b b m

T T T S t
c c w c k T S t w c T T Q

t t t
      

   
        

        

(3.3) 
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The above equation is known as a dual phase lag bio-heat equation. If phase lag in 

temperature gradient ( )T is equal to 0s, then it becomes hyperbolic bio-heat equation and 

if 0q T s    then parabolic bio-heat equation.  

 Dual phase lag model has been used by many researchers [80, 87, 161-162] 

without phase change. To investigate the non-Fourier heat conduction in processed meat, a 

dual phase lag model is proposed by Antaki [5]. Liu and Chen [80] have investigated the 

temperature rise behavior in biological tissues during hyperthermia treatment using the 

DPL model. They have ignored the effect of metabolic heat generation. To describe the 

heat transfer in living biological tissues, Zhou et al. [162] have used a 2D axisymmetric 

DPL model. In their study, they have obtained that the DPL bio-heat model shows a 

different thermal behavior from the other bio-heat models. Askarizadeh and Ahmadikia 

[7] have presented an analytical solution of DPL model to study the transient heat transfer 

in skin tissue.  Singh and Kumar [136] have proposed a DPL bio-heat model to examine 

the important effect of phase lags of temperature gradient and heat flux in triple layer skin 

tissue during cryosurgery. Moradi and Ahmadikia [94] have studied the freezing process 

in biological tissue using one dimensional DPL model with metabolic heat generation and 

blood flow. They have obtained the temperature distribution and phase change interface 

positions in biological tissue for different values of phase lag in heat flux and temperature 

gradient. A dual phase lag equation has been used by Mochnacki and Majchrzak [93] to 

study the thermal interactions between biological tissue and cylindrical cryoprobe. 

In this chapter, we propose a dual phase lag model to study the effect of two phase 

lags i.e., phase lag in heat flux and phase lag in temperature gradient on freezing process 

in cryosurgery. The model includes the discontinuity of temperature at the solid-liquid 

interface. For different values of phase lag in heat flux and temperature gradient, the graph 

of the temperature distribution and freezing interfaces in lung-tumor tissue are plotted. 

Cryosurgery in lung tumor tissue is performed by considering non-ideal property of tissue, 

blood perfusion and metabolism. The finite difference method is used to solve the 

enthalpy formulation of the dual phase lag bio-heat equation. A comparative study of 

DPL, parabolic and hyperbolic bio-heat models is thoroughly investigated. 
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3.2 Problem Description 

The problem consists of a lung tissue of dimension 4.0 4.0cm cm  in which a tumor 

tissue of dimension 1.5 1.5cm cm  is embedded. A cryoprobe is situated at position 

0,x  1.8 2.2 .cm y cm  The corresponding schematic diagram of the physical model is 

shown in figure 2.1 [69].  

 

3.3 Mathematical Formulation 

3.3.1 Assumptions  

 Heat conduction in tissue takes place through non-Fourier conduction law [2]. 

 The initial temperature of tissue is considered as an arterial temperature (37 
0
C). 

 Non-ideal property of tissue is used with upper and lower phase change interface at 

temperatures -1
0
C and -8

0
C, respectively [114]. 

 Heat source appears due to blood perfusion and metabolism when tissue is 

unfrozen [27, 29]. 

 Thermo-physical properties of normal lung and tumor tissue are different for both 

frozen and unfrozen regions. 

 

3.3.2 Governing Equations  

The governing equations of two-dimensional dual phase lag model in frozen and unfrozen 

regions are given as  

2 2 2 3 3

2 2 2 2 2
,

f f f f f f

q f f f f f T f

T T T T T T
c c k k

t t x y t x t y
   

        
                    

       (3.4) 
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        

          

  
            

(3.5)

 

respectively. The subscripts f, u and b stand for frozen, unfrozen and blood of tissue, 

respectively.  

Conditions at phase change interface are 
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2 2
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,                   (3.6) 

   , , .u f phT S t T S t T                                                           (3.7) 

Using enthalpy ( ) ,
r

T

T
H T c dT   where rT  is the reference temperature. Relation between 

enthalpy and temperature of tissue is given as  
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        (3.8) 

where, mlT  and msT  are upper (-1 
0
C) and lower (-8 

0
C) phase change temperatures. Using 

equation (3.8), equations (3.4) – (3.7) reduce into a single equation as 
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(3.9) 

 

3.3.3 Initial and Boundary Conditions      

(a) The condition at initial time  t = 0 as follows: 

0

0( , ,0) 37 fT x y T C  and  

0

0,
f

t

T

t






 

0( , ,0)uT x y T and  
0

0,u

t

T

t 





 

 (b) The conditions on the boundary of the tissue are defined as follows: 

(i)  At  x = 0  and 1.8 2.2cm y cm   

           T(0, y, t) = Tc = -196 
0
C. 
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(ii)  At  x = 0, 0 1.8y cm   and 2.2 4.0cm y cm  , adiabatic condition has been  

assumed, i.e., 

( , , )
0.

T x y t

x




  

(iii)  At  y = 0, y = 4.0 cm  and 0 4.0x cm  ;  x = 4.0 cm, 0 4.0y cm   

T (x, y, t) = 37 
0
C. 

(iv)  At y = 1.25 cm, y = 2.75 cm and 0 1.5x cm  ;  x = 1.5 cm, 1.25 2.75cm y cm                         

Continuity condition for heat flux and temperature at common boundary of lung and 

tumor is given as 

( , , ) ( , , )t l
t l

T x y t T x y t
k k

x x

 


 
and t lT T

 

where, subscripts t and l stand for tumor and normal lung tissue, respectively. 

 

 

3.4 Numerical Solution 

Taking , ( )i j nx i x y j y x y and t n t        , where i, j and n are the space and time 

index, respectively; ,x y   and t  are grid spacing along x-axis, y-axis and time 

respectively. In equation (3.9) using forward difference approximation to first order time 

derivative and second order central difference approximation to time and space derivatives 

at point (xi, yj, tn), the discretized form of the equation as follows 
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Equation (3.10) can be written as 
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                                                                                                                                      (3.11)

 where, 
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Enthalpy at (n+1)
th

 time level in terms of enthalpy and temperature at n
th

 time level is 

given by equation (3.11). A stability condition for numerical solution is used to manage 

the space and time increments, which is given as 

       
      

       
      

2 2

2 2

4 4 4 4
max , 1.

2 2

T b b b T b b b

q q b b b q q b b b

t k t k w c t x t k t k w c t y

x c c t w c t y c c t w c t

           

               

    
 

 
    

 

 

 Temperature at (n+1)
th 

time level can obtain from the enthalpy at (n+1)
th 

 time level 

by reverting the equation (3.8) as follows: 
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           (3.12) 

 Once the new temperature field is known from the enthalpies, the procedure is 

repeated for next time level. 
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3.4.1 Numerical Code Validation 

Before discussing the analysis of the present problem, a numerical code validation and 

accuracy are checked by comparing our general results with the published results [60]. 

The results are compared at 0q T s    (parabolic bio-heat model) as a special case. The 

results generated by present code are in good agreement with the published one (see Table 

3.1). We have also checked the grid independence test by varying the grid size in x and y 

directions and found that the results remain consistent when the grid size is 40 x 40 or 

more. Therefore, grid size as 40 x 40 is fixed for all the computations. 

 

Table 3.1: Comparison between published and present results at 0q T s   . 

Published results [60]  Present results 

Time 

(s) 

Lower Interface 

(cm) 

Upper Interface 

(cm) 
 

Lower Interface 

(cm) 

Upper Interface 

(cm) 

25 0.30 0.34  0.30 0.34 

50 0.39 0.42  0.40 0.43 

100 0.52 0.57  0.52 0.57 

150 0.60 0.66  0.61 0.66 

200 0.69 0.73  0.70 0.74 

250 0.79 0.85  0.79 0.85 

300 0.89 0.95  0.89 0.95 

350 0.98 1.05  0.98 1.05 

400 1.08 1.15  1.09 1.15 

450 1.23 1.29  1.23 1.30 

 

 

3.5 Results and Discussion 

In this section, the numerical results are shown for DPL, parabolic and hyperbolic bio-heat 

models with phase change during cryosurgery of lung cancer. Thermo–physical properties 

of lung tumor tissue are given in Table 2.2 [12, 69, 114]. The values of phase lag of heat 

flux (
q ) are considered as 0 ,5 ,10q s s s 

 
and 15s  and the values of phase lag in 

temperature gradient ( T ) are 0 ,5T s s 
 
and 10 s [77, 87, 94]. During the cryosurgical 

treatment of lung-tumor tissue, temperature distribution and interface position are 

important for the prediction of maximum damage to diseased tissue and minimum damage 

to healthy lung tissue. Therefore, we have examined position of phase change interfaces 

for different values of phase lag of heat flux and temperature gradient.  
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Since the lung-tumor tissue shows non-ideal behavior, therefore phase change occurs over 

a broad range with upper phase change temperature -1 
0
C and lower phase change 

temperature -8 
0
C. Positions of phase change interfaces versus time during the cryosurgery 

process for DPL, parabolic and hyperbolic models in x-direction at y = 2.0 cm, for 

different values of phase lag in heat flux and temperature gradient are shown in figures 3.1 

and 3.2, respectively. In figures 3.1 and 3.2 the freezing interfaces suddenly accelerate as 

they cross the lung-tumor boundary. This is because of the low density and smaller 

thermal conductivity of healthy lung tissue as compared to the density and thermal 

conductivity of tumor tissue. This phenomena is also observed in the earlier work of 

Bischof et al. [12], If both phase lag times related to heat flux and temperature gradient are 

zero ( 0q T s   ), DPL model reduces to parabolic bio-heat model which is also 

considered by Kumar et al. [60] and Kumar and Katiyar [69] in their previous work. It is 

also clear from the figures 3.1 and 3.2 that the freezing interfaces for DPL model move 

faster than the hyperbolic model but slower than the parabolic bio-heat model. That is, the 

time required to freeze the required region is minimum for parabolic while it is maximum 

for hyperbolic model. 

 

Figure 3.1: Position of lower interface during freezing versus time at y = 2.0 cm for DPL, 

parabolic and hyperbolic models. 
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Figure 3.2: Position of upper interface during freezing versus time at y = 2.0 cm for DPL, 

parabolic and hyperbolic models. 

 

Figures 3.3–3.5 show the temperature distribution in the subjected tissue at time, t = 200 s, 

400 s, 600 s and 800 s for DPL, parabolic and hyperbolic models with respect to distance x 

and y for different values of phase lag in heat flux ( 0 ,5 ,10q s s s  and15s ) and 

temperature gradient ( 0 ,5T s s  and10 s ). Here, we have observed that in all the three 

models: DPL, parabolic and hyperbolic, after time t = 800 s, temperature of tumor tissue is 

much below the lethal temperature (-30 
0
C). In figures 3.3–3.5, it is also observed that the 

tissue temperature for DPL model is higher than the parabolic model and hyperbolic 

model has higher temperature than the DPL model. This implies that heat flow in the 

tissue is fastest in parabolic case and slowest for hyperbolic one. 
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Figure 3.3: Temperature distribution along the tissue for DPL model 

( 10 & 10 )q Ts s    at (a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 
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Figure 3.4: Temperature distribution along the tissue for parabolic model 

( 0 & 0 )q Ts s   at (a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 

 
 

 

 

Figure 3.5: Temperature distribution along the tissue for hyperbolic model 

( 10 & 0 )q Ts s    at (a) t = 200 s, (b) t = 400 s, (c) t = 600 s and (d) t = 800 s. 

 

 

Figures 3.6–3.9 show the position of lower and upper freezing interfaces at time, t = 200 s,     

400 s, 600 s and 800 s for DPL, parabolic and hyperbolic models with respect to distance x 
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and y for different values of phase lag in heat flux and temperature gradient. The direction 

of ice growth and ice ball history are clearly shown in figures 3.6–3.9.  

 From the results, it is observed that for parabolic model freezing process is fast as 

compare to the other two models i.e., DPL and hyperbolic model. Since the parabolic 

model is based on the classical Fourier’s law so the thermal signal propagates through 

tissue without any delay. On the other hand for hyperbolic case at particular time t heat 

flux depends on the whole behavior of temperature gradient due to phase lag in heat flux. 

Therefore, freezing is slower for hyperbolic model than the parabolic model. In DPL 

model two phase lags 
q  and T  exist. Phase lag in temperature gradient ( T ) consider the 

microstructural effect and accounts diffusion like behavior and the characters of thermal 

wave decay in DPL model due to the phase lag in heat flux (
q ). Hence DPL model 

observed faster freezing than the hyperbolic model. 

 Position of lower and upper interfaces for DPL model at time t = 400 s and             

t = 600 s for a fixed value of phase lag in temperature gradient 5T s  and different values 

of phase lag in heat flux, 5 ,10q s s  and15s are shown in figures 3.10 and 3.11, 

respectively. It is observed that phase change interfaces for DPL model move faster with 

decreasing value of 
q . The phase lag 

q  slows down the freezing velocity of thermal 

signals as it dominates the behavior of thermal wave propagation, hence freezing is fast for 

small value of 
q .  

 

 
 

Figure 3.6: (a) Lower interface position and (b) Upper interface position for parabolic, 

hyperbolic and DPL model at t = 200 s. 
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Figure 3.7: (a) Lower interface position and (b) Upper interface position for parabolic, 

hyperbolic and DPL model at t = 400 s. 
 

 

Figure 3.8: (a) Lower interface position and (b) Upper interface position for parabolic, 

hyperbolic and DPL model at t = 600 s. 

 

 

Figure 3.9: (a) Lower interface position and (b) Upper interface position for parabolic, 

hyperbolic and DPL model at t = 800 s. 
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Figure 3.10: (a) Lower interface position and (b) Upper interface position for DPL model 

at t = 400 s for 5 ,10 ,15q s s s 
 
and 5T s  .   

 

 

Figure 3.11: (a) Lower interface position and (b) Upper interface position for DPL model 

at t = 600 s for 5 ,10 ,15q s s s 
 
and 5T s  .   

 

 

3.6 Conclusions 

The Pennes bio-heat model is based on Fourier’s law of heat conduction and it implies 

infinite speed of heat propagation which is unrealistic. Moreover, hyperbolic bio-heat 

model does not describe the microstructural interaction. Due to infinite speed and 

microstructural interaction effects, a dual phase lag model would be advantageous. By 

means of rigorous numerical experiments, it is found that the phase lags in temperature 

gradient and heat flux have significant effect on interface positions and temperature 

distribution. Phase change interfaces of three models, i.e., DPL, parabolic and hyperbolic 

accelerate at the lung-tumor boundary due to the change in thermo-physical properties of 

tissues and also the freezing interfaces for DPL case move faster than the hyperbolic case 

but slower than the parabolic one. It is observed that parabolic model gives lowest 

temperature in the tissue with comparison to DPL and hyperbolic model. The highest 
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temperature is obtained for hyperbolic model. It is also found in case of DPL model, at a 

fixed value of phase lag in temperature gradient and different values of phase lag in heat 

flux that the freezing is fast for small values of phase lag in heat flux. 

 Results obtained in this study regarding the phase change interface positions and 

temperature distribution in a lung tumor tissue may help in carrying out the cryosurgical 

treatment in lung cancer more effectively. Treatment can be optimized in a desired manner 

so that freezing process destroys only tumor tissue while the damage to neighboring 

normal lung tissues due to over freezing can be minimized.  
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Chapter 4 

Three dimensional study on Freezing of Skin Tissue: 

A Three Layer Model 

 

4.1 Introduction 

Human skin is one of the main parts of the body. It plays various important roles such as 

thermoregulation, sensory, synthesis of vitamin D, host defense and insulation, etc. 

Thermoregulation is the most important among these roles, which works as protecting 

barrier between inner body and outside conditions. Skin is a composition of three layers 

namely, epidermis, dermis and subcutaneous. The exterior part of the skin is known as 

Epidermis which includes living as well as non-living cells. The thickness of this layer lies 

between 0.75-0.150 mm and is composed of keratinocytes (95%) and non-keratinocytes 

(5%) cells. Dermis is the second layer of skin whose thickness (0.001-0.004 m) is more 

than the epidermis layer. This layer plays the important function of thermoregulation and 

it contains blood vessels, nerves, lymph vessel, sebaceous and sweat glands. Subcutaneous 

fat is the third layer and composed of loose fatty connective tissue, major blood vessels 

and nerves. It is also known as hypodermis or subcutis. Hypodermis contains 50% of body 

fat. These layers help the skin to regulate body temperature. To cure diseased skin tissue, 

different thermal therapeutic treatments have been used in medicine [152]. The objective 

of all these treatments is to stimulate thermal injury accurately without affecting the 

neighboring healthy tissues.   

 Basically, heat transfer within skin tissue takes place through conduction mode 

combined with physiological process such as sweating, circulation of blood and 

metabolism, etc. There are several applications like cryosurgery, cryopreservation, cancer 

hyperthermia, skin cancer and burn injury evaluation, etc., in which heat transfer has been 

used [101, 102, 128-130, 133, 136, 153-154].In literature, many studies are available in 

which hyperbolic bio-heat conduction model has been used [1, 52, 77, 81-82, 163]. Deng 

and Liu [28] have numerically investigated the thermal stress and phase change behavior 

in skin tissue during freezing using the hyperbolic bio-heat model. In their results they 

have shown that thermal stress is maximum for large value of relaxation time. They have 

not considered the discontinuity in temperature at the phase change interface. To 
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investigate the temperature distribution in a biological tissue with different heating source 

under relaxation time, an analytical study is made by Shit and Bera [133]. The authors 

have analyzed the effect of different heating source both qualitatively and quantitatively. 

To describe the non-Fourier effect in the tissue during freezing a one dimensional 

hyperbolic model was discussed by Ahamdikia and Moradi [2]. They have used isothermal 

and non-isothermal phase change models in solidification procedure in vitro and vivo 

study. Mitra et al. [92] experimentally investigated the nature of heat propagation in 

processed meat using hyperbolic heat conduction model. They obtained that for processed 

meat the value of relaxation time is of the order of 15s. 

 Singh and Kumar [135] have proposed a hyperbolic bio-heat model to examine the 

effect of relaxation time for heat flux in triple layer skin tissue during freezing. They have 

restricted for one-dimensional model. Since the skin tissue is multi dimensional in nature. 

Therefore to be more realistic, an extended analysis has been performed. In this chapter, 

we have considered a three-dimensional hyperbolic bio-heat model with blood perfusion, 

metabolic heat generation and non-ideal property of tissue to investigate the freezing 

behavior in triple layer skin tissue. The complexity of the problem is due to moving 

interface, temperature discontinuity at the interface of solid-liquid and triple layer skin 

tissue which has different thermal properties in different layers. The finite difference 

method is adopted to study the effect of relaxation time on the motion of freezing front 

and temperature distribution in skin tissue. It is noted that relaxation time has significant 

effect on phase change interfaces and temperature distribution. 

 
 

4.2 Problem Description 

The problem considered a triple layer skin tissue of dimension 1 1 1x y z  (x1=0.01208 m,           

y1 = 0.002 m and z1 = 0.001 m) and the dimension of epidermis, dermis and subcutaneous 

fat layers are 1 1 1l y z  , 2 1 1 1( )l l y z   and 2 1 1( ) ,l l y z   respectively, which is shown 

in figure 4.1 [136]. where, 1l = 0.00008 m, 2 1( )l l = 0.002 m and 2 1( )l l = 0.01 m. 
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Figure 4.1: Physical sketch of triple layer skin tissue.  

 

4.3 Mathematical Formulation 

4.3.1 Assumptions  

We consider the following assumptions to solve the three-dimensional hyperbolic bio-heat 

model. 

 Heat transfer follows the non-Fourier’s heat conduction. 

 Initial temperature of tissue is considered as arterial temperature (37 
0
C). 

 The upper and lower phase change interface occurs at temperatures -1 
0
C and -8 

0
C 

respectively [68, 114]. 

 The blood perfusion and metabolic heat generation are uniform through time and 

space. These phenomena vanish, however, in the frozen and in the mushy regions. 

 In both frozen and unfrozen regions the thermal properties of skin layers are 

different and temperature dependent [53, 115]. 

 Specific heat and thermal conductivity for all layers are same in frozen region. 

 

4.3.2 Governing Equations  

The governing equations of 3D hyperbolic model for skin tissue in frozen and unfrozen 

regions are given below 

2 2 2 2

2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ,

p f p f p f p f p f

q p f p f p f p f p f

T T T T T
c c k

t t x y z
  
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          

 

                                                                                                                                         (4.1) 
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 

 

   
                     (4.2)

 

In the above equations, subscripts p = e, d and s stand for epidermis, dermis and 

subcutaneous, respectively. 

The conditions at interface are 

   ( ) ( ( ), ) ( ) ( ( ), )
( ) ( ) ,

p f p u
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 
        (4.3) 

   ( ) ( ( ), ) ( ) ( ( ), ) ,p f p u phT S t t T S t t T 
                                                                         

(4.4) 

where, 
( )

n

S t
v

t





 and 

2

2

( )
n

S t
v

t

 



, n is the unit outward normal, L is the latent heat of 

fusion.  

We consider enthalpy formulation to avoid the discontinuity of temperature at phase 

change interface and unknown position of the solid-liquid interface. Defining 

enthalpy ( ) ,

r

T

T

H T cdT  equations (4.1) - (4.4) reduce to a single equation as 

2 2 2 2

2 2 2 2

( )

( ) ( ) .

p q b b p b p p p p

q p p p

p

b b p b b p mp

H w c H T T T
k

t c t x y z

w c T T Q

 
  



       
               

  
                               

(4.5)                                                                                                                               

The relation between tissue temperature and enthalpy is given as [13, 47]. 
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       (4.6) 

 

4.3.3 Initial and Boundary Conditions      

Here   x1= 0.01208 m, y1 = 0.002 m and z1 = 0.001 m. 
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(a) Initial conditions 

             At  t = 0, 

0

0

( , , , )
( , , ,0) and 0

p

p

t

T x y z t
T x y z T

t



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
 

where, 1 1 10 ; 0 ; 0 .x x y y z z       

(b) Boundary conditions 

 

 (i)  At  x = 0 plane,  i.e., 1 1(0 ; 0 )y y z z     

0(0, , , ) 196e cT y z t T C  
 

where, Tc is the cryoprobe temperature. 

(ii)  At  x = l  plane,     
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
 and                                                            
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(iv) At  z = 0  plane,    
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z
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 and                                                             

at  z = z1   plane,    
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(v) At interface boundary of epidermis and dermis, i.e., x = l1  and 

1 10 ; 0 .y y z z     

1 1

1 1
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(vi) At interface boundary of dermis and subcutaneous, i.e., x = l2  and 

1 10 ; 0 .y y z z     
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2 2
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4.4 Numerical Solution 

Explicit finite difference scheme is used to solve equation (4.5). Considering 

, , ( )i j k nx i x y j y z k z x y z and t n t            , where , ,i j k  and n  are the 

space and time index, respectively; , ,x y z    and t  are the grid spacing along x-axis,    

y-axis, z-axis and time respectively. Enthalpy at (n+1)
th

  time level is given by  
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Equation (4.7) can be re-written in the following form: 
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                                                                                                                                         (4.8) 

where,  

1
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The grid size and time step is considered in such a way that the following stability criteria 

is satisfied,  
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for numerical solution. After finding the enthalpy at (n+1)
th 

time level, one can obtain the 

temperature at (n+1)
th 

time level by reverting the equation (4.6) as follows: 

0
( )

2 ( ) 1
0 {( ) ( ) }( ).

{( ) ( ) }( ) 2 2

{( ) ( ) }( ) 1
{( ) ( ) }( )

( ) ( ) 2( ) 2

p

ms p

p f

p ml ms

p ms p p f p u ml ms

p f p u ml ms

p p f p u ml ms

ml p p f p u ml ms

p u p u p u

H
T H

c

H T T
T T H L c c T T

c c T T L

H c c T TL
T H L c c T T

c c c


 


 

      
  

  
       


                                                                                                                                         (4.9) 

Isotherms at -8
0
C and -1

0
C show the position of lower and upper phase change interfaces 

respectively. 

 

4.4.1 Numerical Code Validation 

The 3D hyperbolic model reduces to the 1D hyperbolic model at 0y z  . A validation 

of numerical code is made by comparing our particular results with the published results 

[135]. Results for interface positions are compared at relaxation time for heat 

flux, 1 .q s  Table 4.1 shows the comparison of present and published results. It can be 

seen that the agreement is good.  

 
 

Table 4.1: Comparison between published and present results at 1q s  . 

Published results [135]  Present results 

Time       

(s) 

    Upper Interface 

(m) 

    Lower Interface 

(m) 

     Upper Interface 

(m) 

    Lower Interface 

(m) 

50 0.0043 0.0040  0.0043 0.0039 

100 0.0062 0.0059  0.0063 0.0059 

150 0.0077 0.0073  0.0078 0.0072 

200 0.0089 0.0085  0.0090 0.0084 

250 0.0102 0.0098  0.0102 0.0097 
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4.5 Results and Discussion 

Results in this section illustrate the effects of relaxation time for heat flux on interfaces of 

phase change and temperature distribution during freezing process of triple layer skin 

tissue. The values of thermo-physical properties of skin tissue are given in Table 4.1 [136, 

160]. 0s,1s,3s and 5sq 
 
are the values of relaxation time for heat flux, which are taken 

for the present study [28, 77]. Numerical simulations were carried out for grid space of  

     0.00004 dx dy dz m    and time step of  0.002dt s . 

 At time 0t  , the cryogenic probe temperature is set equal to the freezing 

temperature Tc. As a result, heat is transferred from the diseased tissue to the cryoprobe. 

The temperature of the tissue decreases rapidly and starts freezing on the surface of the 

cryoprobe. As time passes, the thickness of the frozen layer increases. The freezing 

procedure continues until the entire layer of diseased tissue has been deeply frozen and its 

tumor cells destroyed. Figures 4.2 – 4.4 show the 3D temperature distribution in the skin 

tissue for hyperbolic bio-heat model at time, t = 100 s, 200 s and 300 s. Initially, the skin 

tissue does not freeze completely. The whole skin tissue freeze as time proceeds. This is 

due to the significant difference between the thermal conductivity and diffusivity of skin 

tissue in the frozen and unfrozen regions as in frozen region conductivity and diffusivity 

are high as compared to the unfrozen region.   

 

Table 4.2: Thermo-physical properties of triple layer skin tissue [136, 160] 

Thermal parameters                                        Units  
Values of three layers 

Epidermis Dermis Subcutaneous 

 

Density in frozen region                                 kg/m3 

Density in unfrozen region                             kg/m3 

Thermal conductivity in frozen region          W/m 0C 

Thermal conductivity in unfrozen region      W/m 0C 

Specific heat in frozen region                        J/kg 0C 

Specific heat in unfrozen region                    J/kg 0C 

Latent heat                                                     kJ/kg 

Metabolic heat generation                             W/m3 

Blood perfusion rate                                      kg/ m
3
 

Thickness of layer                                          m 

Specific heat of blood                                   J/kg 0C 

Arterial temperature                                      0C 

 

921.00 

1200 

2.0 

0.26 

1800 

3600 

250.00 

0 

0 

0.00008 

3770 

37 

 

921.00 

1200 

2.0 

0.52 

1800 

3400 

250.00 

2500.00 

0.5 

0.002 

 

 

921.00 

1000 

2.0 

0.21 

1800 

3060 

250.00 

2500.00 

0.5 

0.01 
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Figure 4.2: Temperature distribution along the skin tissue for relaxation time ( 1q s  ) at  

t =100 s. 

 

Figure 4.3: Temperature distribution along the skin tissue for relaxation time ( 1q s  ) at  

t =200 s. 
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Figure 4.4: Temperature distribution along the skin tissue for relaxation time ( 1q s  ) at  

t =300 s. 

 

Temperature distribution along the surface of skin tissue (at z = 0m) for different values of 

relaxation time for heat flux at different time, t = 100 s, 200 s and 300 s are given in 

figures 4.5 – 4.8. It is also observed that the tissue temperature increases with an increase 

in relaxation time for heat flux. The comparative study for hyperbolic and parabolic bio-

heat models shows that the highest temperature for the hyperbolic case and lowest for the 

parabolic case occurs at the same time. A qualitative explanation of tissue temperature is 

given as: diffusion of heat into the skin tissue is much faster for low relaxation time, hence 

tissue freezes at a rapid rate and its temperature decreases quickly.  
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(a)  

 

(b)  

 

(c)  

 

Figure 4.5: Temperature distribution along the skin tissue at z = 0 m for relaxation time 

( 5q s  ) at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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(a)  

 

(b)  

 

(c)  

 

Figure 4.6: Temperature distribution along the skin tissue at z = 0 m for relaxation time 

( 3q s  ) at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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(a)  

 

(b)  

 

(c)  

 

Figure 4.7: Temperature distribution along the skin tissue at z = 0 m for relaxation time 

( 1sq  ) at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 



 

68 

(a)  

 

(b)  

 

(c)  

 

Figure 4.8: Temperature distribution along the skin tissue at z = 0 m for relaxation time 

( 0q s  ) at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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Since the triple layer skin tissue is a non-ideal material, phase change occurs over a 

specific range with upper phase change at temperature -1 
0
C and lower phase change at 

temperature -8 
0
C. Figures 4.9 and 4.10 show the position of phase change interfaces 

versus time during the freezing process in x-direction at y = 0 m and z = 0 m for different 

values of 
q . How the relaxation time affects the freezing positions is examined in figures 

4.9 and 4.10. The slope of freezing position decreases with an increase in time and also the 

temperature gradient becomes smaller due to an increase in distance from the cooling 

boundary.  

 The total time required to cover the entire tissue at 0 ,1 ,3 and 5q s s s s  for upper 

phase change interface are t = 257 s, 268 s, 303 s and 332 s and for lower phase change 

interface are t = 272 s, 283 s, 311 s and 354 s, respectively. This shows that total time 

required to cover the whole tissue for both upper and lower interfaces increases with 

increasing value of relaxation time. In this situation behavior of thermal signal propagation 

is controlled by relaxation time and fast freezing process observed for small values of 

relaxation time. Therefore, we can say that the motion of phase change interface position 

is slow for hyperbolic model as compared to the parabolic model.   

 

Figure 4.9: Position of upper interface during freezing versus time at y = 0 m and z = 0 m 

for 0 ,1 ,3 and 5 .q s s s s   
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Figure 4.10: Position of lower interface during freezing versus time at y = 0 m and z = 0 m 

for 0 ,1 ,3 and 5 .q s s s s 
 

 

The above results show that freezing process is slower in hyperbolic bio-heat model than 

parabolic model. Since the parabolic model is based on the classical Fourier’s law of heat 

conduction, which assumes that the propagation speed of heat is infinite, i.e., heat passes 

through skin tissue without any delay. On the other hand, for the hyperbolic case at certain 

time t heat flux depends upon the complete history of temperature gradient. Due to 

relaxation time of heat flux, heat transfer takes place into skin tissue with delay. Therefore, 

freezing for parabolic bio-heat model is faster than the hyperbolic model.  

 

4.6 Conclusions 

In this work we have studied numerically the freezing procedure during cryosurgery in 

triple layer skin tissue using three-dimensional hyperbolic bio-heat model. We have more 

emphasis on the effect of relaxation time parameter for heat flux on interfaces of phase 

change and temperature profiles. Our study for hyperbolic and parabolic models conclude 

that the total time required for freezing the whole region is smaller in case of parabolic 

model as compared to the hyperbolic model. The non-Fourier effect becomes more 

dominant in case when the value of relaxation time for heat flux increases. Freezing 

interfaces accelerate with decreasing value of relaxation time for heat flux. If the value of 
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relaxation time for heat flux is kept small then the solution of hyperbolic model tends to 

the solution of the parabolic model.   

 As the triple layer skin tissue is multidimensional, so compared to 1D or 2D case, 

3D model provided the more detailed and realistic information of triple layer skin tissue 

behavior. The knowledge of heat transfer phenomena in soft skin tissues has great 

importance and contribution to the variety of medical treatment.   
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Chapter 5 

Three dimensional study on Dual Phase Lag Bio-heat 

Model for Triple Layer Skin Tissue Freezing 

 

5.1 Introduction 

Skin is the important part of our body and it helps to regulate the temperature of body and 

protects form pathogens, outdoor micro-organisms and excessive water loss. It functions 

thermally as a heat generator, transmitter, radiator, absorber, conductor and vaporizer. The 

thermal properties of skin vary in different layers.  

 Many researchers have used the dual phase lag model without phase change [80, 

87, 159, 161-162]. Ziaei Poor et al. [164] have presented the analytic solution for dual 

phase lag bio-heat equation in skin tissue. In their study, they obtained a major 

discrepancy between the predicted temperatures of three bio-heat transfer models for high 

rate of heat flux. To study the transient heat transfer in skin tissue, an analytic solution of 

DPL model is given by Askarizadeh and Ahmadikia [7]. The obtained results show the 

importance of DPL model for the blood perfusion rate and prediction of thermal damage 

in skin tissue. Talukdar et al. [139] study the heat transfer effect in human skin tissue 

subjected to radiant heat exposure and high intensity flame using dual phase lag model. 

They have assumed that blood perfusion rate in skin layers is temperature dependent. 

Their results are more realistic in comparison with the experimental analysis using Stoll’s 

criterion. Kumar et al. [63] have numerically studied the bio-heat transfer during 

hyperthermia treatment using dual phase lag model. They have also compared the dual 

phase lag model with Thermal wave and Pennes bio-heat model and found that large 

differences in the temperature at the hyperthermia position and time to achieve the 

hyperthermia temperature exist, when the value of phase lag in temperature gradient is 

increases. 

 Liu et al. [79] have also used DPL model to describe the non-Fourier heat 

conduction in tissue. Their results show that the inverse method can overcome the 

difficulties from the non-Fourier inverse heat conduction problem. Nobrega and Coelho 

[105] have used three bio-heat models to study the thermal therapy of skin tissue and 
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predicted that all three models have meaningful difference in thermal damage and 

temperature distribution. They showed that bio-heat model is more effective in 

comparison with laser effect modeling and thermal damage is higher for thermal wave 

model and lower in case of DPL model.  

 The present study is an extension of Singh and Kumar [136] in which they have 

considered one-dimensional DPL bio-heat model and analyze the freezing effect in triple 

layer skin tissue. Here, in this chapter we have taken three-dimensional model to study the 

effects of phase lags of temperature gradient and heat flux on temperature distribution and 

interface positions in skin tissue. The model includes the discontinuity of temperature at 

the solid-liquid interface using the enthalpy formulation. The finite difference method is 

used to solve the enthalpy formulation of the dual phase lag bio-heat equation. The effects 

of both the phase lags on temperatures profile and interface positions have been studied. A 

comparative investigation of three different models (DPL, hyperbolic and parabolic bio-

heat models) is also presented. 

 

5.2 Problem Description 

Figure 4.1 illustrates a schematic diagram of a triple layer skin tissue of dimension 

1 1 1x y z 
 
and the dimension of three layers, i.e., epidermis, dermis and subcutaneous are 

1 1 1l y z  , 2 1 1 1( )l l y z  
 

and 2 1 1( ) ,l l y z  
 

respectively, where, 
1l = 0.00008 m, 

2 1( )l l = 0.002 m  and 2 1( )l l = 0.01 m. 

 

5.3 Mathematical Formulation 

The prediction of the temperature distribution and freezing process that take place inside 

the skin tissue is carried out with a three-dimensional dual phase lag model that is based 

on the following assumptions: 

 Heat transfer follows the non-Fourier’s heat conduction. 

 Initial temperature of tissue is considered as arterial temperature (37 
0
C). 

 The upper and lower phase change interface occurs at temperatures -1 
0
C and -8 

0
C 

respectively [68, 114]. 
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 The blood perfusion and the metabolic heat generation are uniform through time 

and space. These phenomena vanish, however, in the frozen and in the mushy 

regions. 

 In both frozen and unfrozen regions the thermal properties of skin layers are 

different and temperature dependent [53, 115]. 

 Specific heat and thermal conductivity for all layers are same in frozen region. 

 

5.3.1 Governing Equations  

The governing equations of three-dimensional dual phase lag model for both frozen and 

unfrozen regions are given as 

2 2 2 2
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Conditions at phase change interface are 
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Using enthalpy ( )

r

T

T

H T cdT   where rT  is the reference value of temperature, enthalpy 

formulation of equations (5.1) – (5.4) gives 
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Enthalpy and tissue temperature are related as  
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5.3.2 Initial and Boundary Conditions      
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(b) Boundary conditions 

 

 (i)  At  x = 0 plane,  i.e., 1 1(0 ; 0 )y y z z     

0(0, , , ) 196e cT y z t T C  
 

(ii)  At  x = l  plane,     
( , , , )

0.
p

x l

T x y z t

x






 

 

(iii) At  y = 0  plane,    

0

( , , , )
0

p

y

T x y z t

y






 and                                                              

at  y = y1  plane,    

1

( , , , )
0.

p

y y

T x y z t

y






 

 

(iv) At  z = 0  plane,    

0

( , , , )
0

p

z

T x y z t

z






 and                                                             

at  z = z1  plane,    

1

( , , , )
0.

p

z z

T x y z t

z






 

 



 

77 

(v) At interface boundary of epidermis and dermis, i.e.,  x = l1  and 

1 10 ; 0 .y y z z     

1 1
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(vi) At interface boundary of dermis and subcutaneous, i.e., x = l2  and 
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2 2

2 2

( , , , ) ( , , , )

( , , , ) ( , , , ).

d s
d s

x l x l

d s

T x y z t T x y z t
k k

x x

T l y z t T l y z t

 

 


 



 

 

5.4 Numerical Solution 

Considering , , ( )i j k nx i x y j y z k z x y z and t n t            , where , ,i j k and 

n  are the space and time index, respectively; , ,x y z    and t  are the distance between 

grids along x-axis, y-axis, z-axis and time respectively. To discretize the equation (5.5), we 

have used the first-order forward difference for first order time derivative and second 

order central difference approximation for second order space and time derivatives at point 

(xi, yj, zk, tn), the discretized form of equation (5.5) is given as follows 
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The above equation (5.7) can be written as: 
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Equation (5.8) gives the value of enthalpy at (n+1)
th

 time level. To manage the space and 

time increments, a stability condition for numerical solution is used, which is given as 
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Temperature at (n+1)
th 

time level can be obtained from the enthalpy at (n+1)
th 

 time level 

by inverting the equation (5.6) as follows: 
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                                                                                                                                         (5.9) 

 

5.4.1 Numerical Code Validation 

At 0y z  , 3D dual phase lag model reduces to the 1D dual phase lag model. A 

numerical code validation is made by comparing the present results with published results 

[136], Results are compared for DPL model at 3  and 0.1q Ts s   , as a special case. 
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Solution generated by present code is in good agreement with published results. A 

comparison table is given below. 

 

Table 5.1: Comparison between published and present results at 3  and 0.1q Ts s   . 

Published results [136]  Present results 

Time       

(s) 

    Upper Interface 

(m) 

    Lower Interface 

(m) 

     Upper Interface 

(m) 

    Lower Interface 

(m) 

50 0.0038 0.0037  0.0038 0.0036 

100 0.0058 0.0056  0.0060 0.0055 

150 0.0070 0.0069  0.0071 0.0070 

200 0.0084 0.0081  0.0085 0.0082 

250 0.0098 0.0091  0.0098 0.0091 

 

 

5.5 Results and Discussion 

The results obtained for the two phase lag effects, namely phase lag in heat flux and phase 

lag of temperature gradient during the freezing process of triple layer skin tissue. For a 

subjected skin tissue, the thermo-physical properties used in the present simulation are 

listed in Table 4.1. For the numerical solution, values of the phase lag in heat                

flux are 5 ,3 ,1 ,0q s s s s   and values of the phase lag in temperature gradient are 

0.1 ,0T s s  [28, 60, 161-162]. Numerical simulations were carried out for grid space of 

     0.00002 dx dy dz m    and time step of  0.002dt s . The analysis of temperature 

distribution, upper and lower interfaces is important because of their significant role in 

freezing process. 

 The graphical representation of 3D temperature distribution in the skin tissue for 

DPL model at time, t = 100 s, 200 s and 300 s is shown in Figures 5.1–5.3. It is found that 

the end sections of skin tissue do not freeze at the start of freezing process. Due to the 

higher thermal conductivity and diffusivity of skin tissue in the frozen region, skin tissue 

solidifies as the time moves ahead. The thickness of the frozen layer increases with 

passage of time. 
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Figure 5.1: Temperature distribution along the skin tissue for DPL model 

( 3  and 0.1 )q Ts s   at t =100 s. 

 
Figure 5.2: Temperature distribution along the skin tissue for DPL model 

( 3  and 0.1 )q Ts s   at t =200 s. 
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Figure 5.3: Temperature distribution along the skin tissue for DPL model 

( 3  and 0.1 )q Ts s   at t =300 s. 

 

Figures 5.4 – 5.6 show the temperature distribution at the surface of skin tissue (at z = 0m) 

for DPL, hyperbolic and parabolic models at time level t = 100 s, 200 s and 300 s. For 

different values of phase lag in heat flux and temperature gradient, the prediction of 

temperature distribution shows similar behavior but differ at different values of and q T  . 

The comparative study of three bio-heat models, i.e., DPL, hyperbolic and parabolic, 

shows that the highest temperature of tissue for hyperbolic case and lowest for the 

parabolic case while moderate in case of DPL model at the same time.  
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(a) 

 

(b) 

 

(c) 

 

Figure 5.4: Temperature distribution along the skin tissue at z = 0 m for DPL model 

( 3  & 0.1 )q Ts s  
 
at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.5: Temperature distribution along the skin tissue at z = 0 m for hyperbolic model 

( 3  & 0 )q Ts s  
 
at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.6: Temperature distribution along the skin tissue at z = 0 m for parabolic model 

( 0  & 0 )q Ts s  
 
at time (a) t =100 s, (b) t =200 s and (c) t =300 s. 
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As the triple layer skin tissue shows the non-ideal behavior, phase transition from one 

phase to another occurs over a broad range with upper phase change temperature at -1 
0
C 

and lower phase change temperature at -8 
0
C. Upper and lower phase change interface for 

DPL, hyperbolic and parabolic models are plotted at y = 0 m and z = 0 m in figures 5.7 and 

5.8, respectively. Here it is observed that to cover the whole tissue for upper interface, 

total time taken are t = 284 s, 307 s, and 256 s and for lower interface are t = 302 s, 325 s, 

and 271 s at 5 ,3 ,1q s s s  for DPL, hyperbolic and parabolic models, respectively.  

 Figures 5.9 and 5.10 show the interface positions for DPL model for fixed value of 

phase lag in temperature gradient ( 0.1 )T s   and different values of phase lag in heat flux 

( 5 ,3 ,1 )q s s s   at different time. We observed that both upper and lower interface cover 

the whole skin tissue with total time, t = 300 s, 284 s, 267 s and t = 320 s, 303 s, 283 s, 

respectively. Therefore, interface positions of upper and lower interface decreases with 

increasing value of q . It implies that for small values of q , freezing is fast. This is due to 

dominance of phase lag in heat flux over the propagation of thermal signal. 

 

Figure 5.7: Position of upper interface during freezing versus time at y = 0 m and z = 0 m 

for DPL, hyperbolic and parabolic model.   
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Figure 5.8: Position of lower interface during freezing versus time at y = 0 m and z = 0 m 

for DPL, hyperbolic and parabolic model.   

 

Figure 5.9: Position of upper interface during freezing versus time at y = 0 m and z = 0 m 

for DPL model at 5 ,3 ,1  and 0.1 .q Ts s s s    
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Figure 5.10: Position of lower interface during freezing versus time at y = 0 m and z = 0 m 

for DPL model at 5 ,3 ,1  and 0.1 .q Ts s s s    

 

5.6 Conclusions 

In summary, the effect of phase lag in heat flux and phase lag in temperature gradient on 

heat transfer process during freezing of triple layered skin tissue has been analyzed using 

dual phase lag bio-heat model. The governing nonlinear partial differential equations are 

solved numerically using finite difference scheme. Comparison of the three bio-heat 

models has also been studied. Results show that among of the three models DPL, 

parabolic and hyperbolic models, the time taken for complete freezing of the tissue is (i) 

lowest in case of parabolic model (ii) highest in case of hyperbolic and (iii) moderate for 

DPL model. Both the phase lags have a significant effect on interface positions and 

temperature distribution. In DPL case, at fixed value of 
q  and different values of ,T  

freezing interface decreases with increasing value of phase lag in heat flux. Results 

obtained are expected to be helpful in preselecting the parameters to optimize the freezing 

protocols.  
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Chapter 6 

Conclusions and Future Scope 

 

6.1  Conclusions 

In the present thesis, an attempt has been made to understand the phase change heat 

transfer phenomena in biological tissues undergoing cryosurgery process. This work 

presents the mathematical models to study the effects of single phase lag (relaxation time 

for heat flux) and dual phase lag (phase lag of heat flux and phase lag of temperature 

gradient) parameters on interface positions and temperature distribution in subjected 

tissues. The finite difference method based on temperature dependent enthalpy has been 

adopted to solve the governing equations. We have focused on two types of problems: (i) 

phase change heat transfer in biological tissues using two and three-dimensional 

hyperbolic bio-heat model and (ii) phase change heat transfer in biological tissues using 

two and three-dimensional dual phase lag model. 

 In chapter 2, phase change heat transfer during cryosurgery of lung tumor tissue 

has been studied using two-dimensional hyperbolic bio-heat model. This chapter is mainly 

concerned with effects of relaxation time on temperature profiles and motion of freezing 

interfaces. In Chapter 3, a dual phase lag model is used to develop the constitutive relation 

to explore the effects of phase lag in heat flux and phase lag in temperature gradient on 

interface positions and temperature distribution in cryosurgery of lung cancer.  

To analyze the freezing behavior of triple layer skin tissue, a three-dimensional hyperbolic 

bio-heat model is given in Chapter 4. Temperature distribution and position of interfaces 

are calculated for different values of relaxation time.  The three-dimensional numerical 

study on dual phase lag model for freezing behavior of triple layer skin tissue is presented 

in Chapter 5. Temperature profiles and motion of freezing interfaces are plotted to see the 

effects of both the phase lags in freezing procedure. Since the triple layer skin tissue is 

multidimensional, 3D model gives more details of heat transfer, i.e., finer resolution of 

heat flow conditions within study area. 

The following conclusions have been drawn from this study: 

 Relaxation time for heat flux is an important factor which affects the temperature 

distribution and phase change interfaces. On comparing the two bio-heat models, it 
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is observed that hyperbolic solution reduces to parabolic solution for small value of 

relaxation time. The freezing interface decreases on increasing relaxation time for 

heat flux, which implies that interface position for hyperbolic model moves slower 

than the parabolic model.   

 The tissue temperature is also increased with increasing value of relaxation time, 

which makes the non-Fourier’s effect more dominant. Freezing is fast for small 

value of relaxation time in case of hyperbolic model.  

 In case of dual phase lag model from the results, it is observed that due to the 

effects of two phase lags, phase change interfaces for DPL model move faster than 

the hyperbolic model but slower than the parabolic model. Tissue temperature is 

lowest for parabolic model with comparison to DPL and hyperbolic model. The 

highest temperature is obtained for hyperbolic model. This shows that parabolic 

model gives fastest heat flow in the media while it is slowest for hyperbolic model. 

 It is observed that for different values of phase lag in heat flux and fixed value of 

phase lag in temperature gradient, freezing process is fast for small values of phase 

lag in heat flux. 

 For performing effective treatment, the above informations are very useful to 

control temperature level accurately at the target tumor tissue because over 

freezing of tissue may cause an irreversible injury to the surrounding normal 

tissues. 

 In triple layer skin tissue for hyperbolic model, the total time required for freezing 

the whole region is smaller in case of parabolic model as compared to the 

hyperbolic model.  

 Further, among of the three models DPL, parabolic and hyperbolic models, the 

time taken for complete freezing of the tissue is lowest for parabolic model, 

highest for hyperbolic and moderate in case of DPL model. 

 A successful understanding of parameters, which are responsible for tumor tissue 

damage, can help to develop suitable methodology for damage control of 

neighboring normal tissues.  

 The results of present work are beneficial to understand the heat transfer 

mechanism during cryosurgical treatment. 
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6.2  Scope for Further Research 

Research is an iterative and continuous process. The field of heat transfer with phase 

change in biological tissues is a vast area. This thesis has addressed only a few aspects of 

it. Some more potential extension of the work in this thesis is also possible. 

 Future research will focus on the extension of the 2D-model to multi-dimensional 

so as to predict the freezing of lung-tumor tissue. 

 Future efforts could also be made to develop the mathematical model for 

cryosurgery of tumor tissues with irregular domain or complex-shaped tumors.  

 Multidimensional study with detailed numerical analysis using others numerical 

methods like finite element, finite volume method and boundary element method 

on their efficiency, accuracy and convergence. 

 

These problems are left for the future study. 
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