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Abstract

Optimization is the process of finding the best alternate solution among a given set of solution under

some given constraints. The process of finding maximum or the minimum possible value, which a

function can attain in its domain, is known as optimization.

One of the most striking trend that emerged in the optimization field is the simulation of natural pro-

cesses as efficient global search methods. The natural processes or phenomena are firstly analyzed

mathematically and then coded as computer programs for solving complex nonlinear real world prob-

lems. The resulting methods are called “Nature Inspired Algorithms” that can often outperform classic

methods. The advantages of these methods are their ability to solve various standard or application

based problems successfully without any prior knowledge of the problem space. Moreover, these al-

gorithms are more likely to obtain the global optima of a given problem. They do not require any

continuity and differentiability of the objective functions. Also, they work on a randomly generated

population of solutions instead of one solution. They are easy to programme and can be easily imple-

mented on a computer. Some of the examples of Nature Inspired Optimization Techniques are Genetic

Algorithm, Particle Swarm Optimization, Artificial Bee Colony Optimization and Ant Colony Opti-

mization.

Harmony Search (HS) is a musicians behavior inspired metaheuristic algorithm developed in 2001,

though it is a relatively new meta heuristic algorithm, its effectiveness and advantages have been

demonstrated in various applications like traffic routing, multi objective optimization, design of mu-

nicipal water distribution networks, load dispatch problem in electrical engineering, rostering prob-

lems, clustering, structural design, classification and feature selection to name a few.

The aim of this PhD Thesis is to improve the efficiency and reliability of Harmony Search algorithm

in the context of solving real life problems. The organization of this thesis is as follows.

Chapter 1 is introductory in nature it states the definitions and underlines the objectives and motivation

behind this Thesis. It also reviews the available literature. The chapter closes with a brief summary of

the work presented in this Thesis.

Chapter 2 introduces a novel algorithm based on hybridization of Harmony search and Simulated

Annealing called HS-SA to inherit their advantages in a complementary way and overcome their limi-

tations. Taking the inspiration from Simulated Annealing the proposed HS-SA algorithm accepts even

the inferior harmonies, compared to the harmonies already stored in Harmony Memory, with probabil-

ity determined by parameter called Temperature. The Temperature parameter is initially kept high to
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favour exploration of search space and is linearly decreased to gradually shift focus to exploitation of

promising search areas. The performance of HS-SA is analyzed and compared with Harmony Search

algorithm and Simulated Annealing on IEEE CEC 2014 benchmark functions. The numerical results

demonstrate the superiority of the proposed algorithm on multimodal benchmark functions. The per-

formance of HS-SA is particularly outstanding on composition problems. Composition functions are

combined, rotated, shifted, and biased version of other unimodal and multi-modal test functions and

mimic the difficulties of real search spaces by providing a massive number of local optima and differ-

ent shapes for different regions of the search space.

Chapter 3 introduces Two Phase Harmony Search (TPHS) algorithm that attempts to strikes a bal-

ance between exploration and exploitation by concentrating on diversification in the first phase using

catastrophic mutation and then switches to intensification using local search in the second phase.

Catastrophic mutation allows the evolutionary algorithm to increase diversity in the population on the

cost of decreasing convergence speed so as to escape the local optimal. The key differences between

standard HS and TPHS are:

1. In TPHS both PAR and BW are linearly decreased whereas both PAR and BW remain constant

in standard HS (where PAR is the Pitch adjustment rate and BW is the Bandwidth).

2. The Harmony Memory is re initialized except the elite (catastrophic mutation) if the best har-

mony is not updated in L generations, where L is predefined number of generations.

3. Towards the end of the execution the algorithm shifts focus to exploitation by performing local

search around the best solutions.

The performance of TPHS is analyzed and compared with 15 state-of-the-art metaheuristic algorithms

namely Standard HS, Improved Harmony Search Algorithm, Global Best Harmony Search Algorithm,

Self-adaptive Global Best Harmony Search Algorithm, Evolution Strategy with Covariance Matrix

Adaptation, Comprehensive Learning PSO, Adaptive Particle Swarm Optimization, Dynamic Neigh-

bourhood Learning PSO, Heterogeneous Comprehensive Learning PSO, Social Learning PSO, Self

Regulating PSO, Social Spider Optimization Algorithm, Differential Evolution, Differential Evolu-

tion With Successful Parent Selecting Framework, Dynamic Multi-swarm Particle Swarm Optimizer

with Harmony Search on IEEE CEC 2014 benchmark functions. The numerical results demonstrate

the superiority of the proposed TPHS algorithm in terms of accuracy particularly on multimodal func-

tions.

Chapter 4 introduces Shrinking Memory Harmony Search (SMHS) algorithm, the SMHS attempts to
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strike a balance between exploration and exploitation by concentrating on diversification in the be-

ginning using extended memory and broad Bandwidth and then gradually switching to intensification

by shrinking harmony memory and utilizing local search operator. The performance of SMHS is

compared with nineteen state-of-the-art metaheuristic algorithms (four HS variants, five PSO variants,

eight DE variants, and one variant each of GA and ES). The numerical results demonstrate the superi-

ority of the proposed SMHS algorithm on multimodal function and its performance is outstanding on

composition functions.

In Chapter 5 the performance of the three proposed algorithms namely HS-SA, TPHS & SMHS is

compared on IEEE CEC 2014 benchmark suite and a real life problem called Camera Calibration.

The problem of camera calibration has been studied extensively in photogrammetry and computer

vision community because of its important applications such as vehicle guidance, robotic navigation

and 3D-reconstruction. Camera calibration problem deals with finding the geometrical relationship

between the 3D scene and its 2D images taken by two cameras. It defines exactly how the scene has

been projected by the camera to result in the given image(s). Camera calibration involves:

1. Determination of the orientation and position of the camera with respect to the scene which is

specified by extrinsic parameters.

2. Determination of the internal geometric and optimal characteristics of the camera, which is

specified by intrinsic parameters.

It is established SMHS is the better performing algorithm on all categories of benchmark functions &

Camera Calibration problem.

The development of hybrid procedures for optimization focuses on enhancing the strength and com-

pensating for the weakness of two or more complementary approaches. The goal is to intelligently

combine the key elements of the competing methodologies to create a superior solution procedure. The

objective of Chapter 6 is to explore the hybridization between Harmony Search (HS) and Hill Climb-

ing (HC) algorithm by utilizing the exploration power of the former and exploitation power of the latter

in the context of solving Sudoku which is a well-known hard Combinatorial Optimization problem.

We call this hybrid algorithm Harmony Search Hill Climber (HSHC). In order to extend the explo-

ration capabilities of HSHC it is further modified to create three different algorithms namely Retriev-

able Harmony Search Hill Climber (RHSHC), Global Best Retrievable Harmony Search Hill Climber

(GB-RHSHC) and Random Best Retrievable Harmony Search Hill Climber (RB-RHSHC). RHSHC

perform significantly better than standard Harmony Search algorithm and standard Hill Climber algo-
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rithm. On comparing RHSHC with the Genetic Algorithm it has been concluded that former outper-

forms latter both in terms of effectiveness and efficiency particularly on Hard and Expert level puzzles.

Comparing RHSHC and hybrid AC3-tabu search algorithm it has been concluded that RHSHC is very

competent to hybrid AC3-tabu search algorithm.

The maximum clique problem (MCP) is to determine a complete sub graph (clique) of maximum car-

dinality in a given graph. MCP is conspicuous for having real world applications and for its potentiality

of modelling other combinatorial problems and is one of the most studied NP-hard problems. Chapter

7 investigates the capabilities of Harmony Search algorithm for solving maximum clique problem.

We propose and compare two different instantiations of a generic HS algorithm namely Harmony

Search for MCP (HS MCP) and Harmony Search with idiosyncratic harmonies for MCP (HSI MCP)

for this problem. HS MCP has better exploitation and inferior exploration capabilities than HSI MCP

whereas HSI MCP has better exploration and inferior exploitation capabilities than HSI MCP, it has

been concluded that former performs better than latter by testing them on all the instances of DIMACS

benchmark graphs. HS MCP has been compared with a recently proposed Harmony search based al-

gorithm for MCP called Binary Harmony search (BHS) and the simulation results show that HS MCP

significantly outperforms BHS in terms of solution quality.

Skin, rich in lycopene, is an important component of waste originating from tomato (lycopersicon

esculentum) paste manufacturing plants. Lycopene belongs to the carotenoid family, is a bright red

pigment that has received great interest due to its various biological activities. Lycopene is a potent

antioxidant and has been found effective in reducing the risk of chronic diseases by protecting cells

against oxidative damage. Various studies have shown that lycopene is associated with decreasing the

risk of breast and prostate cancer. According to the World Processing Tomato Council 1,200,000 tons

of tomato processing waste is produced worldwide. One of the main components of tomato processing

waste is skin. At present, the tomato processing waste is either discarded or used as animal fodder,

but its abundance in lycopene makes it a promising prospect as a sustainable, alternative and low-cost

source of this nutraceutical compound. Chapter 8 deals with Optimization of Lycopene extraction

from tomato processing waste skin using Harmony Search Algorithm.

The Thesis concludes with the Chapter 9. It derives the overall conclusions of this Thesis. It outlines

the limitations and scope of the proposed algorithms. Later it suggests future scope and new directions

of research in this area.
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Chapter 1

Introduction

This introductory Chapter states the definitions and underlines the objectives and motivation behind

this Thesis. It also reviews the available literature. The chapter closes with a brief summary of the

work presented in this Thesis as well as future research directions.

1.1 Optimization

Optimization is the methodology of choosing “the best” alternatives(s) among a specified set of avail-

able options. This approach of determining “the largest”/“the smallest” possible value, that a given

mathematical expression can attain in its specified domain of definition, is called optimization. The

mathematical expression that has to be optimized could be linear, nonlinear, integer, geometric or

fractional. In some situations, explicit mathematical formulation of the function is not readily defined

or may not be available. Many times the mathematical function which needs to be optimized has re-

strictions in the form of inequality or equality constraints. Therefore, the process of optimization can

be considered as a problem of finding those values of the independent variables which do not violate

the inequality and equality constraints in such a way to provide an optimal value of the mathematical

function being optimized. In other words, the mathematical techniques for determining the optimal

value or values (“the greatest possible value” or “the least possible value”) of a mathematical function

are called “Optimization Techniques”. Determining the solution of most realistic problems may not be

possible in the absence of robust optimization techniques. In literature, numerous books are available

based on mathematical concepts of optimization and some of the references are: (Bertsekas, 2014,

2015; Boyd and Vandenberghe, 2004; Chandra et al., 2009; Himmelblau, 1972; Kapur et al., 2011;

Mohan and Deep, 2009; P C Jha, 2011; Rao, 2009) .

1.2 Definition of an Optimization Problem

Mathematically speaking, the most general formulation of single objective optimization problem is:
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Minimize or Maximize f(x) (1.1)

x = (x1, x2, . . . , xD)

Subject to x ∈ F, usually defined byF = {x ∈ RD} s.t.

hi(x) = 0; i = 1, 2, ...,m (1.2)

gj(x) ≥ 0; j = m+ 1,m+ 2, ..., p (1.3)

ai ≤ xi ≤ bi; i = 1, 2, 3..., D (1.4)

Where f, h1, h2, ..., hm, gm+1, gm+2, ..., gp are real valued functions on RD.

Function f(x) that is to be optimized (maximized or minimized) is called the ‘objective function’.

Equations hi(x) = 0 for i = 1, 2, ...,m are known as the equality constraints and gj(x) ≥ 0; for j =

m + 1,m + 2, ..., p are called inequality constraints. Inequality constraint of the type gj(x) ≥ 0

can be written as −gj(x) ≤ 0. It is desired to determine those values of the independent variables

x1, x2, ..., xD, which optimize the objective function f(x) without violating any of the restrictions im-

posed in equation (1.2), (1.3) and (1.4). The variables xi’s are known as ‘decision variables’. ai’s

are the lower bounds and bi’s are the upper bounds of the decision variables. A decision vector

x = (x1, x2, ...xD) ∈ RD which satisfies all the constraints is called a ‘feasible solution’. A feasible

solution which optimizes the objective function is called a feasible optimal solution.

On the basis of presence of constraints, there are two types of optimization problems named uncon-

strained optimization problems and constrained optimization problems. Unconstrained optimization

problems involve an objective function given by equation (1.1) or lower or upper bounds on variables

given by equation (1.4). Constrained optimization problems involve an objective function given in

equation (1.1), the box constraints given by equation (1.4) and linear and/or non-linear, equality con-

straints given by equation (1.2) and/or inequality constraints given by equation (1.3). Due to presence

of equality and inequality constraints, constrained optimization problems are more difficult to solve.

1.3 Local and Global Optimal Solutions

Let F denote the feasible region of the solution vector that satisfies all the constraints of an optimiza-

tion problem. Then, in case of a minimization problem, if for x̄ ∈ F there exists an ε neighborhood

Nε(x̄) around x̄ such that f(x) ≥ f(x̄) for each x ∈ F ∩Nε(x̄) then x̄ is known as a ‘local minimum

solution’. However, if, x̄ ∈ F and f(x) ≥ f(x̄) for all x ∈ F then x̄ is known as a ‘global minimum

solution’ of the optimization problem at hand. Figure 1.1 shows local and global optimum solutions
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of a mathematical function. In general it may happen that there are either no optimal solutions, or

Figure 1.1: Demonstration of Local optima and Global optima.

a unique optimal solution or several optimal solutions, for a given nonlinear optimization problem.

In case a problem has a single local optimal solution then it is also the global optimal solution. If,

however, the optimization problem has several local optimal solutions, then, in general, one or more

of them could be the global optimal solutions. In a Linear Programming Problem, it is for sure that,

every local optimal solution is the global optimal solution. On the contrary, in case of a Non Lin-

ear Optimization Problem, if the objective function is convex (for minimization case) and its feasible

domain is also convex, then it is guaranteed that the local optimal solution is also the global optimal

solution.

In many nonlinear optimization problems, it is usually desirous to determine a global optimal solution

instead of a local optimal solution. But, in general, it is often difficult to obtain the global optimal

solution of a nonlinear optimization problem, rather than finding the local optimal solution. However,

due to its practical significance, it becomes necessary to determine the global optimal solution.

For a mathematical function which is twice-differentiable, there exist conditions which may be used

to determine a local optimal solution. In case the test fails, then due to the property of continuous

differentiability of function a solution with a lesser objective function value can be determined in its

neighborhood. Thus, a sequence of solutions can be constructed which converge to the local optimal

solution. However, in general, such tests are not sufficient. It may be said that, a global optimization
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problem is not solvable in a finite number of steps. Therefore any given solution cannot be guaranteed

as a solution of global minima without evaluating the objective function at least at one solution of its

neighborhood. But, the neighborhoods of a solution may be unbounded; therefore, an infinite numbers

of steps are required to attain the global minima.

1.4 Methods for Global Optimization

Global optimization focuses on determining the best (minimum) of the local minima. Designing global

optimization techniques is not an easy task since, in general, there is no criterion for deciding whether

a global optimal solution has been achieved or not. In view of the practical necessity and with the

availability of fast and readily computing machines, many computational techniques are now being

reported in literature for solving nonlinear optimization problems. The methods currently available in

literature for solving nonlinear global optimization problems may be broadly classified as determinis-

tic methods and probabilistic methods.

The deterministic methods try to guarantee that a neighborhood of the global optima is attained. Such

methods do not use any stochastic techniques, but rely on a thorough search of the feasible domain.

However, they are applicable only to a restricted class of functions. On the other hand, probabilistic

methods are used to find the near optimal solution. This is achieved by assuming that the good solu-

tions are near to each other in the search space. This assumption is valid for most real life problems

(Omran, 2005). The probabilistic methods make use of probabilistic or stochastic approach to search

for the global optimal solutions. Although probabilistic methods do not give an absolute guarantee,

these methods are sometimes preferred over the deterministic methods because they are applicable to

a wider class of functions.

1.5 Nature Inspired Computing Techniques

One of the most striking trend that emerged in the optimization field is the simulation of natural pro-

cesses as efficient global search methods. The natural processes or phenomena are firstly analyzed

mathematically and then coded as computer programs for solving complex nonlinear real world prob-

lems. The resulting methods are called ‘Nature Inspired Algorithms (NIA)’ that can often outperform

classic methods. The advantages of these methods are their ability to solve various standard or ap-

plication based problems successfully without any prior knowledge of the problem space. Moreover,

these algorithms are more likely to obtain the global optima of a given problem. They do not require

any continuity and differentiability of the objective functions and / or constraints. Also, they work on

a randomly generated population of solutions instead of one solution. They are easy to programme
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and can be easily implemented on a computer.

The most primitive example of nature inspired optimization techniques is that of Genetic Algorithms

(Holland, 1975). It is based on the Darwin’s Theory of Evolution which is based on the property of

inheritance and survival of the fittest in living organisms. The decision parameters are encoded into

a encoded space (Binary / Real / Octal, etc.) and crossover, mutation and elitism is performed over a

number of generations until a pre specified stopping criteria is attained. A local search based Genetic

Algorithms has been proposed in (Sawyerr et al., 2014). Genetic Algorithms has been applied to many

real world problems including (Ganjidoost et al., 2016; Kiran et al., 2016; Singh and Bhukya, 2011;

Valente et al., 2011)

Genetic Programming (Poli et al., 2008) is one of a number of population-based evolutionary algo-

rithms inspired by natural evolution and is widely used in machine learning. It allows a computer to

automatically solve predefined tasks without requiring users to know or specify the form or structure

of the solution in advance. Genetic Programming has been applied to many real world problems in-

cluding (Bhardwaj et al., 2016, 2014; Liu et al., 2016; Purohit et al., 2010). Differential Evolution

proposed in (Storn and Price, 1997) uses only the mutation operator on a target vector. (Ali and Zhu,

2013) proposes extended Differential Evolution for constrained optimization using penalty function.

Another important development is the introduction of Particle Swarm Optimization by Kennedy and

Eberhart in (Kennedy, 2011). It mimics the behavior of a flock of birds or school of fish. All the

solution or particles of the swarm fly through the search space using their personal best position in

history as well as the global best position of the entire swarm. In (Ali and Kaelo, 2008) an improved

PSO is proposed to obtain faster convergence. Particle Swarm Optimization has been applied to many

real world problems like (Bedi et al., 2011, 2013; Nayak et al., 2015; Nwankwor et al., 2013; Roula

et al., 2015; Rout et al., 2016; Shourian et al., 2008b)

Glow Worm Swarm Optimization (Krishnanand and Ghose, 2006, 2009) mimics the behavior of glow

worms which emit light in order to attract the others in the group for mating. It is particularly designed

to capture multiple local and global optima.

Artificial Bee colony optimization (Karaboga, 2005) is based on Self-organization and division of

labor. That is, it is based on inspecting the behaviors of bees on finding nectar and sharing the in-

formation of food sources to the bees in the hive, by the employed bees, onlooker bees and scouts.

Artificial Bee colony optimization has been applied to many real world problems including (Bhat-

tacharjee et al., 2011)

Another Swarm Intelligence based algorithm is the Spider Monkey Algorithm given by Bansal et. al.
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in (Bansal et al., 2014). It is based on the foraging behavior and fission-fusion social structures of

spider monkeys.

Ant Colony Optimization (Dorigo et al., 2006) is proposed wherein the pheromone left behind ants

and their ability to change their path as and when an obstacle is encountered on their path, is mimicked

into the design of Ant colony optimization. Ant Colony Optimization has been applied to many real

world problems like (Bedi et al., 2009)

The behavior of the growth of bacteria forms a basis of Bacterial Foraging Optimization Algorithm

(Passino, 2002).

Grey Wolf Optimizer (Mirjalili et al., 2014) is a relatively new nature inspired optimization technique

which mimics the leadership hierarchy and hunting mechanism of grey wolves. Four types of grey

wolves such as alpha, beta, delta and omega are employed for simulating the leadership hierarchy by

incorporating the three steps of hunting namely searching for prey, encircling the prey and attacking

the prey.

Some methods draw their inspiration from the physical laws of nature. For example Gravitational

Search Algorithm is based on gravitational interaction between masses (Rashedi et al., 2009). It arti-

ficially simulates the Newton’s Theory, Newtonian laws of gravitation and motion. Similarly, Central

Force Optimization (Formato, 2009) is based on gravitational kinematics.

Inspired by biological neural networks, Artificial Neural Networks (ANN) are massively parallel com-

puting systems consisting of an extremely large number of simple processors with many interconnec-

tions. ANN have found diverse applications including (Shourian et al., 2008a; Verma, 2012; Verma

et al., 2010; Wang, 1998; Wang et al., 2008b).

1.6 The No Free Lunch Theorem

A major and interesting result in numeric optimization literature was the presentation of the “No Free

Lunch (NFL) theorem” given in (Wolpert and Macready, 1997; Wolpert et al., 1995). This theorem

states “that the performance of all optimization (search) algorithms, amortized over the set of all

possible functions, is equivalent.” The theorem has far reaching implications, because it implies that

“no algorithm can be designed so that it will be superior to a linear enumeration of the search space,

or even a purely random search”. Although, the theorem is defined over finite search spaces only,

however, it is not proved if the result is applicable to infinite search spaces, e.g. RD. All computer

implementations of search algorithms will, in general, operate on finite search spaces; therefore the

theorem is applicable to all existing algorithms. The NFL Theorem states that all search algorithms
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perform equally well over all functions, it does not necessarily hold for all subsets of this set. The set

of all functions over a finite domain includes the set of all the permutations of this domain.

1.7 Harmony Search Algorithm

Harmony Search (HS) (Geem et al., 2001)is a musician’s behavior inspired evolutionary algorithm

developed in 2001, though it is a relatively new meta heuristic algorithm, its effectiveness and advan-

tages have been demonstrated in various applications.

Weyland (Weyland, 2012) raised an issue regarding the novelty of Harmony Search algorithm by

declaring it a special case of (µ+1)−ES, however the pitch adjustment operator used in HS is entirely

different than the mutation operator used in ES. Further HS utilizes the pitch adjustment operator (lo-

cal search) probabilistically in contrast to ES’s mutation operator and thus the two can’t be considered

same. Ample evidence has been provided in (Saka et al., 2016) to show HS is not a special case of

(µ+ 1)− ES even though superficially they seem to be identical.

In order to explain the Harmony Search in detail, let us first idealize the improvisation process by a

skilled musician. When a musician is improvising there are three possible choices:

1. Play any piece of music exactly from his memory.

2. Play something similar to a known piece.

3. Compose new or random notes.

Geem et al. (Geem et al., 2001) formalized these three options into quantitative optimization process

and the three corresponding components become usage of harmony memory (HM), pitch adjusting,

and randomization. The usage of HM is similar to the choice of the best fit individuals in genetic

algorithms. In order to use this memory effectively, it is typically assigned a parameter called har-

mony memory considering rate (HMRC ∈ [0, 1]). If this rate is low (near 0), only few best harmonies

are utilized and thus convergence of algorithm is slow. If this rate is very high (near 1), it results

in exploitation of the harmonies in the HM, thus the solution space is not explored properly leading

to potentially inefficient solutions. Typically HMRC ∈ [.7, .95] is used. The second component is

pitch adjustment determined by a pitch bandwidth (BW) and a pitch adjusting rate (PAR), it corre-

sponds to generating a slightly different solution in the HS algorithm. Pitch can be adjusted linearly

or nonlinearly however most often linear adjustment is used. So we have

Hnew
i = Hold

i + BW × ri where ri ∈ [−1, 1] and 1 ≤ i ≤ D (1.5)
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Where Hold
i is the ith component of the existing harmony or solution and Hnew

i is the ith component of

new harmony after the pitch adjusting action. The Equation (1.5) essentially produces a new solution

around the existing solution by altering it slightly by a very small random amount. Here ri is a random

number generated in the range of [-1, 1] and D is total number of components in the harmony. The

pitch adjusting rate (PAR) controls the degree of adjustment. A low pitch adjusting rate with a narrow

bandwidth can slow down the convergence of HS because of limitation in exploration of only a small

subspace of the whole search space. On the other extreme a very high PAR with a wide bandwidth may

cause the algorithm to swing around some optimal solution. Thus the recommended value of PAR ∈

[.1, .5]. The third component of the HS is the randomization, which is used to increase the exploration

of the search space. Although pitch adjustment plays a some what similar role, but it is confined

to close neighborhood of harmony and thus corresponds to local search. The use of randomization

pushes the algorithm further to explore diverse search areas to find the global optima. The pseudo

code of harmony search is shown as Algorithm 1. In the pseudo code H represents a potential solution

or harmony, rand ∈ [0, 1] is a uniformly distributed random number generator, rand int(1, HMS)

generates a uniformly distributed integer random number between 1 and HMS, HMS is the size of

harmony memory and D is the dimension of problem.

1.7.1 Harmony Search variants based on handling of parameter

In order to enhance the performance of the standard HS algorithm several variants of HS algorithm

have been proposed in literature. The parameters- HMCR, PAR and BW remain constant in standard

HS. In order to strike a balance between exploration and exploitation the parameters of HS are dy-

namically altered giving rise to different variations of the HS algorithm. A detailed survey on variants

of HS can be found in (Mohd Alia and Mandava, 2011).

1.7.1.1 Improved Harmony Search

Mahdavi et al. proposed dynamic adaptation of both pitch adjustment rate (PAR) and bandwidth

(BW), the algorithm is known as Improved Harmony Search (IHS) (Mahdavi et al., 2007). In Im-

proved Harmony Search PAR is linearly increased in each iteration using Equation (1.6) and BW is

exponentially decreased in each iteration using Equation (1.7).

PARgn = PARmin +
(PARmax − PARmin)

NI
× (gn− 1) (1.6)

where PARgn is pitch adjusting rate for each generation, PARmin is the minimum pitch adjusting

rate, PARmax is the maximum pitch adjusting rate, NI is the Maximum number of generations, gn is
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Algorithm 1 HARMONY SEARCH ALGORITHM (HSA)
1: Let f() be the given Objective function.

2: Define harmony memory consideration rate (HMCR).

3: Define pitch adjustment rate (PAR) and bandwidth(BW).

4: Define Harmony Memory Size (HMS).

5: Initialize Harmony Memory (HM).

6: while (Stopping Criteria Not Reached) do

7: Find current Worst and Best harmonies in HM.

8: for i = 1 to D do

9: if (rand ≤ HMCR) then

10: Hi = HM j
i where j=rand int(1,HMS)

11: if (rand ≤ PAR) then

12: Hi = Hi ± rand×BW

13: end if

14: else

15: Generate Hi randomly within the allowed bounds.

16: end if

17: end for

18: if (H is better than worst Harmony in HM) then

19: Update HM by replacing WORST harmony by H.

20: end if

21: end while

22: print Best Harmony as obtained solution.

generation number.

BWgn = BWmax × exp(c× (gn− 1)) where c =
Ln(BWmin

BWmax
)

NI
(1.7)

In Equation (1.7) BWgn represents bandwidth for each generation, BWmin and BWmax are respec-

tively the minimum and maximum bandwidth. All the other steps in IHS are similar to that of standard

Harmony Search algorithm.

It has been rightly pointed out in (Taherinejad, 2009) that increasing the PAR and decreasing the BW

in IHS is conspicuous because initially when the BW is high, the low value of PAR keeps it under uti-

lized and finally when the PAR becomes high, the low value of BW seizes it to improve the harmony
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significantly.

1.7.1.2 Global Best Harmony Search

Inspired from Particle Swarm Optimization paradigm Omran and Mahdavi introduced another im-

portant modification to Harmony Search algorithm referred as Global-best Harmony Search (GHS)

algorithm (Omran and Mahdavi, 2008). In GHS the parameter PAR is linearly increased as in IHS

algorithm, however the concept of BW has completely been removed and thus pitch adjustment step

(Step 12 of Algorithm 1) has been modified as Equation (1.8).

In order to generate ith component of the harmony H, in pitch adjustment step, kth component of the

best harmony in HM is assigned to it.

Hi = HMBest
k where i, k ∈ {1, 2, ..., D} and D is the dimension of harmony. (1.8)

Assigning the kth component of the best harmony to the ith component of the new harmony in Equa-

tion (1.8) is disputable because most of the times different components of problem dimension are

independent of each other and second there may be vast differences in search ranges from one dimen-

sion to another. Further directing the search towards the best harmony in HM causes a serious side

effect of premature convergence due to lack of diversity in HM.

1.7.1.3 Adaptive Harmony Search algorithm

A new adaptation for HS was proposed in (Hasançebi et al., 2009; Saka and Hasancebi, 2009) by

changing HMCR and PAR dynamically during the execution of Harmony Search algorithm. Initially

HMCR and PAR are respectively set to HMCR(0) and PAR(0) then the dynamic calculation of these

parameters is adapted as follows:

HMCRk = (1 +
1−HMCR

′

HMCR′
× e−γ·N(0,1))−1 (1.9)

PARk = (1 +
1− PAR′

PAR′
× e−γ·N(0,1))−1 (1.10)

where HMCRk and PARk are the sampled values of the adapted parameters for a new harmony

vector. N(0, 1) is a normally distributed random number in the range of 0 to 1, γ is called learning

rate recommended to be in range of [0.25, 0.50]. HMCR
′ and PAR

′ are the average values of

improvisation parameters obtained by averaging the corresponding values of all the solution vectors

within the HM matrix i.e.

HMCR
′
=

∑HMS
i=1 HMCRi

HMS
(1.11)
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PAR
′
=

∑HMS
i=1 PARi

HMS
(1.12)

1.7.1.4 Self-adaptive Harmony Search

Self adaptive Harmony Search was proposed by Wang et al. in (Wang and Huang, 2010). The authors

of Self adaptive Harmony Search introduced three modifications in standard HS. In the initialization

step a low discrepancy sequence is used to have more uniformly initialized harmonies in the HM. The

second important alteration is to decrease PAR during execution rather than increasing it, to prevent

overshooting and oscillation around the optimal solution. The third modification is the removal of BW

parameter and changing the pitch adjustment step (step 12 of Algorithm 1) as shown below.

triali = (max(HM i)− triali)× ran[0, 1) (1.13)

triali = (triali −min(HM i))× ran[0, 1) (1.14)

where ran[0, 1) is a uniformly distributed random number ranging from 0 to less than 1, triali is the

ith variable selected from HM, and max(HM i) and min(HM i) are respectively highest and lowest

values of the ith variable in the HM. In each step one of the Equations (1.13) or (1.14) is randomly

selected to adjust the current pitch.

1.7.1.5 Self-adaptive Global Best Harmony Search

Pan et al. modified the GHS algorithm to create Self-adaptive Global Best Harmony Search (SAGHS)

algorithm (Pan et al., 2010b). The main difference between GHS and SAGHS is that pitch adjustment

step (Step 12 of Algorithm 1) has been modified as Equation (1.15).

Thus to generate ith component of the harmony H, in the pitch adjustment step ith component of the

best harmony in HM is assigned to it.

Hi = HMBest
i where i ∈ {1, 2, ..., D} ,

D is the dimension of harmony and Best is the index of best harmony in HM. (1.15)
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In order to increase diversity in HM, the harmony memory consideration step (Step 10 of Algorithm

1) is modified as Equation (1.16). Further the BW is dynamically updated in the algorithm as Equation

(1.17).

Hi = HM j
i ± rand×BW where i ∈ {1, 2, ..., D}, j ∈ {1, 2, ..., HMS}

D is the dimension of harmony and HMS is the size of HM. (1.16)

BWgn =

BWmax − BWmax−BWmin

NI
× 2(gn− 1) if gn < NI

2

BWmin if gn ≥ NI
2

(1.17)

In Equation (1.17) BWgn represents bandwidth for each generation, BWmin and BWmax is the

minimum and maximum bandwidth respectively.

1.7.1.6 Other variants of Harmony Search based on handling of parameters

Cheng et al. (Cheng et al., 2008) developed Modified Harmony Search (MHS), which is based on the

idea of selecting better harmony with higher probability. Pan et al. proposed a local best Harmony

Search algorithm with dynamic sub populations (DLHS) in (Pan et al., 2010a). In DLHS the HM is

divided into many small sized sub HMs and then independent evolution is performed on each sub-HM.

The sub HMs are regrouped frequently to exchange information and maintain diversity. Explorative

Harmony Search (EHS) algorithm proposed by Das et. al. eliminates the limitation of tuning the BW

parameter by making it proportional to the population variance in HM (Das et al., 2011). Another vari-

ant of HS based on the idea of increasing the PAR rather than decreasing it so as to favor exploration

in the beginning of the algorithm has been proposed in (Taherinejad, 2009). An Intelligent Tuned

Harmony Search algorithm has been proposed in (Yadav et al., 2012) and an Improved Global-best

harmony search algorithm has been introduced in (El-Abd, 2013).

1.7.2 Variants based on hybridization of HS with other metaheuristic algorithms

Harmony Search has been successfully hybridized with other metaheuristic algorithms. The goal of

hybridization is to improve the capabilities of the optimization algorithms to solve complex problems

(Blum and Roli, 2008; Grosan and Abraham, 2007). The inception of the ability of HS algorithm to

be integrated with other metaheuristic return to the relative ease and flexible structure of HS.

Geem (Geem, 2009) hybridized the Harmony search with Particle swarm optimization algorithm to
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create an efficient algorithm for solving water network design problem. A modified HS by integrat-

ing a component from Dispersed particle swarm optimization (Cai et al., 2008) is proposed in (Dos

Santos Coelho and De Andrade Bernert, 2009) and has been utilized for synchronization of discrete

time chaotic systems. Wang et al. (Wang et al., 2009) improved the performance of HS by integrating

it with Clonal Selection Algorithm (CSA) (De Castro and Von Zuben, 2000). All the harmonies in

the HM were updated by using Clonal Selection Algorithm. Even though this approach resulted in in-

creases of computational time, however it improved the effectiveness of HS to deal with the premature

convergence. In (Lee and Zomaya, 2009) three metaheuristic algorithms namely Simulated Anneal-

ing (SA), GA and Artificial Immune System (AIS) were used to enhance the quality of the harmonies

stored in HM and thus increase the convergence speed and at the same time preventing the HS from

getting stuck in the local optima. To enhance exploitation capabilities of HS it has been hybridized

with Sequential Quadratic Programming (SQP) that acts as a local search operator in (Fesanghary

et al., 2008). SQP is applied with a probability of Pc to improve the quality of the new improvised

vector. Also as a final step once the HS meets the stopping criteria SQP is applied to the best harmony

so that its quality can further be improved. Jang et al. (Jang et al., 2008) proposed a hybrid framework

that combined HS with Nelder Mead Simplex Algorithm a local search component to improve the

quality of stored harmony memory vectors in HM. A hybrid HS and Differential Evolution has been

proposed in (Gao et al., 2008).

1.7.3 Applications of Harmony Search Algorithm

The number of applications of HS is too diverse and large to allow for a complete enumeration. In this

paragraph some of the recent applications of HS are listed as: Dynamic relocation of mobile base sta-

tion in wireless sensor networks (Mohd Alia, 2017), Optimization of buttressed earth-retaining walls

((Molina-Moreno et al., 2017)), Supervised learning (Elola et al., 2016), Resource Leveling Problem

with minimal lags (Ponz-Tienda et al., 2017), Optimization of renewable energy charging with en-

ergy storage system ((Geem and Yoon, 2017)), Water quality prediction (Jaddi and Abdullah, 2017),

Water distribution system design(Jung et al., 2017), Gene selection for cancer classification (Elyasigo-

mari et al., 2017), Integrated production and transportation scheduling in MTO manufacturing (Guo

et al., 2017), Feature selection for high dimensional imbalanced class data (Moayedikia et al., 2017),

Multi-objective optimization (Valaei and Behnamian, 2017), Kurdish character recognition (Zarro and

Anwer, 2016), Day-ahead scheduling problem of a microgrid with consideration of power flow con-

straints (Zhang et al., 2016), Optimizing urban traffic light scheduling problem (Gao et al., 2016),
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Nearest Neighbor realization of quantum circuits on a 2-Dimensional grid (Alfailakawi et al., 2016),

economic load dispatch problem in electrical engineering (Al-Betar et al., 2016; Wang and Li, 2013),

Optimization of truss structure (Cheng et al., 2016), Remodularization for object-oriented software

systems (Chhabra et al., 2017), Fine tuning of Deep Belief Networks (Papa et al., 2016), Image re-

construction from projections (Ouaddah and Boughaci, 2016), Epileptic seizure detection (Zainuddin

et al., 2016), Project Portfolio Selection (Esfahani et al., 2016), Stock price prediction (Dash and Dash,

2016), Optimal power flow for power system security enhancement ((Pandiarajan and Babulal, 2016)),

unit commitment problem (Kamboj et al., 2016), Energy-efficient routing algorithm for wireless sen-

sor networks (Zeng and Dong, 2016), clustering (Hoang et al., 2014), Optimization of Hydropower

Storage Projects (Mousavi et al., 2017),classification and feature selection (Diao and Shen, 2012; Fat-

tahi et al., 2015). A detailed survey on applications of HS can be found in (Manjarres et al., 2013; Yoo

et al., 2014).

1.8 Motivation and Objectives of the Thesis

The efficiency of a metaheuristic algorithms depend on the extent of balance between diversification

and intensification during the course of the search. An ideal metaheuristic algorithm must have effi-

cient exploration in the beginning of execution and enhanced exploitation towards the end. In order to

strike a balance between the two contradictory properties of exploration and exploitation two variants

of HS are proposed namely Two Phase Harmony Search and Shrinking Memory Harmony Search.

The HS algorithm is hybridized with another established metaheuristic algorithm namely Simulated

Annealing. The HS algorithm is hybridized with Hill Climbing operator to solve a combinatorial op-

timization problem.

This Thesis is computationally dominant and interdisciplinary in nature. The objectives of this Thesis

in brief are:

1. To design efficient and reliable Harmony Search based algorithms.

2. To test the algorithms on benchmark problems appearing in literature.

3. To use the algorithms for solving real life optimization problems arising in various fields of

science and engineering.

1.9 Organization of the Thesis

The chapter wise summary of the Thesis is given below:

Chapter 1 is introductory in nature. Besides stating the relevant definitions it gives an introduction to
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Harmony Search Algorithm and existing literature review.

Chapter 2 introduces a novel algorithm based on hybridization of Harmony search and Simulated

Annealing called HS-SA to inherit their advantages in a complementary way. The performance of

HS-SA is analyzed and compared with Harmony Search algorithm and Simulated Annealing on IEEE

CEC 2014 benchmark functions. The numerical results demonstrate the superiority of the proposed

algorithm on multimodal benchmark functions.

Chapter 3 introduces Two phase Harmony search (TPHS) algorithm that attempts to strikes a bal-

ance between exploration and exploitation by concentrating on diversification in the first phase using

catastrophic mutation and then switches to intensification using local search in the second phase. The

performance of TPHS is analyzed and compared with 15 state-of-the-art metaheuristic algorithms on

all the 30 IEEE CEC 2014 benchmark functions. The numerical results demonstrate the superiority of

the proposed TPHS algorithm in terms of accuracy particularly on multimodal functions.

Chapter 4 introduces Shrinking Memory Harmony search (SMHS) algorithm, the SMHS attempts to

strike a balance between exploration and exploitation by concentrating on diversification in the be-

ginning using extended memory and broad Bandwidth and then gradually switching to intensification

by shrinking harmony memory and utilizing local search operator. The performance of SMHS is

compared with nineteen state-of-the-art metaheuristic algorithms (four HS variants, five PSO variants,

eight DE variants, and one variant each of GA and ES) on all the 30 IEEE CEC 2014 benchmark

functions. The numerical results demonstrate the superiority of the proposed SMHS algorithm on

multimodal function and its performance is outstanding on composition functions.

In Chapter 5 the performance of the three proposed algorithms is compared on IEEE CEC 2014 bench-

mark suite and a real life problem called Camera Calibration (a highly non linear, 12 dimensional op-

timization problem from the field of computer vision). It is established SMHS is the better performing

algorithm not only on all categories of benchmark functions but also on Camera Calibration problem.

Chapter 6 introduces a specialized Memetic algorithms created by hybridization of Harmony Search

Algorithm and Hill Climbing operator to solve Sudoku puzzles, a well known NP-Complete combi-

natorial optimization problem.

In Chapter 7 Harmony search is utilized to solve Maximum Clique problem a well known NP-Hard

combinatorial optimization problem.

In Chapter 8 extraction of lycopene from tomato pomace is formulated as a five dimensional nonlinear

optimization problem and HS algorithm is used to determine the optimal setting of parameters for

extraction of lycopene from tomato pomace.
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The Thesis concludes with the Chapter 9. It derives the overall conclusions of this Thesis. It outlines

the limitations and scope of the proposed algorithms. Later it suggests future scope and new directions

of research in this area.
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Chapter 2

A Hybrid Harmony Search and Simulated Annealing

Algorithm for Continuous Optimization

2.1 Introduction

Harmony search is a powerful metaheuristic algorithm with excellent exploitation capabilities but suf-

fers a limitation of premature convergence if one or more initially generated solutions/harmonies are

in the vicinity of local optima. In order to take care of this limitation this chapter proposes a novel

algorithm based on hybridization of Harmony Search and Simulated Annealing called HS-SA to in-

herit their advantages in a complementary way. Taking the inspiration from Simulated Annealing the

proposed HS-SA algorithm accepts even the inferior harmonies, compared to the harmonies already

stored in Harmony Memory, with probability determined by parameter called Temperature. The Tem-

perature parameter is initially kept high to favor exploration of search space and is linearly decreased

to gradually shift focus to exploitation of promising search areas. The performance of HS-SA is an-

alyzed and compared with Harmony Search algorithm and Simulated Annealing on IEEE CEC 2014

benchmark functions. The numerical results demonstrate the superiority of the proposed algorithm on

multimodal benchmark functions. The performance of HS-SA is particularly outstanding on compo-

sition problems which are generally very challenging test beds for meta-heuristic algorithms.

The organization of this chapter is as follows. Section 2.2 provides an introduction to Simulated An-

nealing algorithm, Section 2.3 provides a detailed description about the proposed HS-SA algorithm,

Section 2.4 provides detail about numerical experimentation and analysis of results and the chapter

concludes with Section 2.5.

2.2 Simulated Annealing

Simulated Annealing (SA) is an iterative meta-heuristic for solving nonlinear and non-convex opti-

mization problems. It was introduced in (Kirkpatrick et al., 1983) based on the Metropolis algorithm

(Metropolis et al., 1953) and different variations were introduced later in (Xinchao, 2011) and (Garcı́a-

Martı́nez et al., 2012). SA has been extensively used in problems such as Traveling Salesman Problem

(Geng et al., 2011), packing problem (Hopper and Turton, 2001), supply chain management (Subra-

manian et al., 2013), vehicle routing (Tam and Ma, 2004), machine scheduling (Jin et al., 2009),
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timetabling (Schaerf, 1999) and Neural Networks (Wang and Smith, 1998).

A typical SA algorithm for a minimization problem is given as Algorithm 2. The algorithm starts

from an initial randomly selected solution S (step 2) and temperature parameter denoted as T is set to

its initial value T0 (step 3). The cost of the initial solution S is calculated (step 4) and the following

steps are repeated until the stopping criterion is satisfied. A neighbor solution S ′ of S is generated and

its fitness is calculated (step 7). The Neighbor() function is used to generate a new solution of S by

changing the value of one or more components. A better solution is always accepted and an inferior

solution is also accepted with a probability determined by its fitness and current temperature T (step

12). The temperature is initially kept high so as to favor inferior moves and is gradually decreased by

a factor α (step 16) to lower the probability of accepting inferior moves.

Algorithm 2 SIMULATED ANNEALING (SA)

1: Let f() be the given Objective function.

2: Initialize S, T0 and L

3: T ← T0

4: Cost Current = f(S)

5: while (Stopping Criteria Not Reached) do

6: S ′ ← Neighbor(S)

7: Cost New = f(S ′)

8: M Cost = Cost New − Cost Current

9: if (M Cost < 0) then

10: S = S ′ and Cost Current = Cost New

11: else

12: if (rand(0, 1) < e
−MCost

T ) then

13: S ← S ′ and Cost Current = Cost New

14: end if

15: end if

16: After every L iterations Set T = αT

17: end while
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2.3 Proposed Hybrid Harmony Search and Simulated Annealing (HS-SA) algorithm

Harmony Search is a powerful metaheuristic algorithm with excellent exploitation capabilities, how-

ever it has serious limitation of getting stuck in local optimal usually referred as premature conver-

gence if the initially selected harmonies are in the vicinity of local optima. In order to remove this

limitation HS algorithm is hybridized with SA by proposing HS-SA algorithm so as to increase ex-

ploration particularly in the beginning of execution to escape local optima.

The success of a meta heuristic algorithm depends on the extent of balance between exploration and

exploitation. An ideal meta heuristic algorithm must have greater exploration capabilities in the earlier

generations and enhanced exploitation capabilities towards the later generations Yadav et al. (2012).

In HS-SA an attempt has been made to achieve this goal. Taking the inspiration from SA, the HS-SA

algorithm accepts even inferior harmonies with probability determined by a parameter called Temper-

ature (T). The Temperature parameter is initially kept high to favor inferior moves and hence increase

capability of escaping local optima and is linearly decreased to gradually shift focus to exploitation

of good harmonies. The pseudo code of HS-SA for a minimization problem is shown as Algorithm

3. The HS-SA and standard HS share the same structure, with the exception that even inferior har-

monies are accepted in HS-SA. Step 2 initializes the algorithmic parameters and it can be observed

that three extra parameters of Simulated Annealing (T0, α, L) are also required in HS-SA. Step number

7 to 16 generate a new harmony as in standard HS. In step 18 not only the superior harmonies (com-

pared to worst harmony ) are always accepted but the inferior harmonies are accepted with probability

determined by the fitness of the new harmony and the current temperature. The temperature param-

eter is gradually decreased in step 21 so as to reduce the probability of accepting inferior harmonies

and hence favour exploitation of good harmonies. In Algorithm 3 rand is a uniform random number

generator generating random numbers between 0 and 1.

2.4 Numerical Experiments on CEC 2014 benchmark suite

In this section, the performance of the proposed HS-SA algorithm is evaluated on IEEE CEC 2014

Benchmark functions (Liang et al., 2013). The HS-SA algorithm is compared with standard HS and

Simulated Annealing. The experimentation has been carried out on all the IEEE CEC 2014 Bench-

mark functions using 30 dimensions. As per the instructions of test suite every problem is tested with

51 independent runs.

The parameter setting adopted for standard HS has been taken from (El-Abd, 2013) and is shown in

Table 2.1 along with the parameter setting of SA and HS-SA algorithm. Obtaining an optimal pa-
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Algorithm 3 HYBRID HARMONY SEARCH SIMULATED ANNEALING (HS-SA)

1: Let f() be the given Objective function

2: Initialize Parameters HMCR, PAR, BW, HMS, T0, α, L

3: Initialize Harmony Memory (HM)

4: Set T = T0, L = 3×D

5: while (Stopping Criteria Not Reached) do

6: Find current Worst harmony and Best harmony in HM

7: for i = 1 to D do

8: if (rand ≤ HMCR) then

9: Hi = HM j
i where j=rand int(1,HMS)

10: if (rand ≤ PAR) then

11: Hi = Hi ± rand×BW

12: end if

13: else

14: Generate Hi randomly within the allowed bounds

15: end if

16: end for

17: M Cost = f(H)− f(Worst)

18: if (M Cost < 0 OR rand < e
−MCost

T ) then

19: Update HM by replacing Worst harmony by H

20: end if

21: After every L iterations Set T = αT

22: end while

23: print Best Harmony as obtained solution

rameter setting for a metaheuristic algorithm is a hyper optimization problem, however the parameter

setting shown in Table 2.1 was found out to be appropriate for most, if not all the problem instances.

Parameter T0 for every function has been calculated by using Equation (2.1). Where Worst and Best

in Equation (2.1) respectively refer to the worst and best function value obtained after evaluating the

function for ten random vectors, β is the initial acceptance rate and is taken as 0.95.

T0 =
Worst−Best

log(β)
(2.1)
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All the algorithms have been implemented in Dev C++ 5.0 and the experimentation has been carried

out on a laptop with Windows 10 operating system, intel core i3 processor and 4GB of RAM.

Table 2.1: Parameter setting of algorithms used in this study.

Algorithm HMS HMCR PAR BW T0 α L

HS (Geem et al., 2001) 5 .9 .3 .001 - - -

SA (Kirkpatrick et al., 1983) - - - - * 0.99 3×D

HS-SA 5 .9 .3 .001 * 0.99 3×D

* indicates that T0 has been calculated as explained in section titled Numerical Experi-

ments and - indicated the parameter is not applicable.

2.4.1 IEEE CEC 2014 Benchmark suite

The IEEE CEC 2014 Benchmark suite is a collection of 30 unconstrained continuous optimization

problems with varying difficulty levels. The functions 1 through 3 are unimodal, 4 through 16 are

simple multimodal functions, 17 through 22 are hybrid functions and 23 through 30 are composition

functions. The search range for each function is [−100, 100]D where D is the dimension of the prob-

lem.

Each problem is tested with 51 independent runs and the error values obtained in 51 runs are sorted

from the smallest (best) to the largest (worst) and then best, worst, mean, median and standard vari-

ance of error values for each function is presented. MaxFES is the maximum number of function

evaluations allowed and is equal to 104 ×D.

2.4.2 Analysis of results

The results reported in this chapter are in the format as specified and required in IEEE CEC 2014

benchmark suite. Tables 2.2, 2.3 and 2.4 show the results on 30 dimensional problems, the best results

are highlighted in bold font. The recorded results are the minimum, maximum, mean, median, and

standard deviation of the error value obtained as specified in IEEE 2014 Benchmark suite. The error

value is the absolute difference between obtained objective function value by the algorithm and the

known function value.

For unimodal functions SA reports the best results and the best mean results in two instances and HS
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obtained the best result and best mean result in one instance. In case of simple multimodal functions

HS-SA, HS and SA reported the best results in 5, 4 and 3 instances respectively, and reported the best

mean results in 6, 4 and 2 instances respectively. In case of six instances of hybrid multimodal func-

tions all the three algorithms produced best results in two instances; HS-SA, SA and HS respectively

produced the best mean results in 7, 3, 2 instances. In case of composition multimodal functions HS-

SA, HS and SA produced the best mean results in 5, 2, 1 instances respectively and the best results in

6, 1, 1 instances respectively.

From the above discussion it can be concluded that HS-SA algorithm outperforms its competitors

on multimodal functions, the superior performance of HS-SA is particularly evident on composition

functions, which are the shifted, rotated, expanded, and combined variants of the classical functions

and hence offer the greatest complexity.

2.4.2.1 Convergence Behaviour

The convergence graphs of all the benchmark functions are plotted in Figures 2.1, 2.2, 2.3 and 2.4 to

study the convergence behavior of algorithms. The horizontal axis represents the number of function

evaluations and the vertical line represents the mean of absolute error of 51 runs in logarithmic scale.

As is evident from most of the convergence graphs SA shows slow convergence in the beginning

compared to both HS and SA, however it makes steep progress towards the end. Comparing HS and

HS-SA they almost follow same trajectory however in most of the cases HS-SA produces better results

compared to HS. Since HS-SA has enhances exploration capabilities compared to HS, thus making it

capable to escape local optima and hence it shows better performance.

2.4.3 Wilcoxon rank test analysis

The paired Wilcoxons rank-sum test is conducted at the 5% significance level to judge if the difference

in performance between the HS-SA and the competing algorithm is statistically significant, the results

are reported in Table 2.5. The cases are respectively marked as ’+’, ’-’ and ’=’ when the performance

of HS-SA is significantly better than, worse than, or similar to the competing algorithm. Table 2.5

reveals that in most of the cases the difference in performance is statistically significant and there are

only a few instances where the difference is not significant.

For unimodal functions HS outperformed HS-SA on one instance whereas the difference is statistically

insignificant in the remaining two instances. In case of simple multimodal functions HS-SA signifi-

cantly outperformed HS on eight instances whereas latter outperformed former on three instances and

the difference is statistically insignificant in the remaining two instances. On hybrid functions HS-SA
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significantly outperformed HS on five instances whereas latter outperformed former in the remaining

one instances. In case of composition functions HS-SA significantly outperformed HS on five in-

stances whereas latter outperformed former on two and in the remaining one instance the difference is

not statistically significant.

For unimodal functions HS-SA outperformed SA on one instance whereas latter outperformed for-

mer in the remaining two instances. In case of simple multimodal functions HS-SA significantly

outperformed SA on eight instances whereas latter outperformed former on four instances and the

difference is statistically insignificant in the remaining one instance. On hybrid functions HS-SA and

SA significantly outperformed each other on three instances. In case of composition functions HS-SA

significantly outperformed HS on six instances whereas latter outperformed former on one instances

and in the remaining one instance the difference is not statistically significant.

2.4.3.1 Algorithm Complexity

The time complexity of algorithms is computed as per the requirements laid down in IEEE CEC

2014 Benchmark suite. The complexity is represented in terms of three parameters T0, T1 and T2.

T0 is the time complexity of a specified test program provided in IEEE CEC 2014 Benchmark suite

reproduced as Algorithm 4. T1 is the computing time for 2× 105 function evaluations of function 18

with dimension D and T2 is the computing time taken by the algorithm when the stopping criteria is

2×105 function evaluations of function 18 with dimension D. The time complexity for 30 dimensional

problem is shown as Figure 2.5.

It is evident from Figure 2.5 the time complexity of the algorithms shows the following order.

SA < HS < HS − SA

HS-SA has to re adjust the temperature parameter during execution resulting in slightly higher time

complexity compared to HS.

Algorithm 4 TEST PROGRAM (T0)
for i = 1 to 1000000 do

x=0.5+(double) i

x=x + x; x=x/2; x=x*x; x=sqrt(x); x=log(x); x=exp(x); x=x/(x+2);

end for
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2.5 Conclusion

This article introduces a hybrid variant of Harmony Search algorithm for continuous optimization

problems with the aim to exhibited the desired behavior of exploring the search space at the earlier

iterations and exploiting good solutions towards the later iterations. This was achieved by initially

setting the parameter Temperature to a high value so as to favor inferior moves. The Temperature

parameter is linearly reduced to gradually shift the focus from exploration of search space to exploita-

tion of promising search areas. The performance of proposed HS-SA algorithm is evaluated as per the

specifications laid down in IEEE CEC 2014 benchmark suite and it is established by statistical tests

that the proposed algorithm is highly efficient on multimodal function.
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Table 2.2: Error values obtained by HS, SA and HS-SA on Function number 1

through 10.

Function Algorithm Mean Median Best Worst Std Dev

HS 1.2898E+07 1.1256E+07 1.2757E+06 3.7050E+07 8.5380E+06

1 SA 6.5497E+05 5.6590E+05 1.1262E+05 1.9510E+06 4.1818E+05

HS-SA 1.2617E+07 8.5402E+06 1.5442E+06 4.0779E+07 1.0093E+07

HS 1.0748E+04 5.8189E+03 1.4352E+02 3.4211E+04 1.1490E+04

2 SA 6.8042E+03 4.3200E+03 1.6228E+01 2.9534E+04 7.5039E+03

HS-SA 1.2802E+04 1.2407E+04 1.2917E+02 3.3934E+04 1.0268E+04

HS 4.6459E+03 3.9072E+03 8.6021E+00 2.1796E+04 4.1211E+03

3 SA 2.7893E+04 2.7115E+04 7.8582E+03 4.4693E+04 9.2701E+03

HS-SA 6.1764E+03 4.4345E+03 2.4125E+02 1.7541E+04 4.8560E+03

HS 1.1612E+02 1.2484E+02 6.3859E+01 1.5181E+02 3.0220E+01

4 SA 2.3841E+00 4.4402E-01 6.6404E-02 6.9998E+01 1.0170E+01

HS-SA 1.1738E+02 1.2605E+02 6.0184E+00 2.0606E+02 4.1858E+01

HS 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 3.8090E-05

5 SA 2.0000E+01 2.0000E+01 2.0000E+01 2.0007E+01 1.4842E-03

HS-SA 2.0000E+01 2.0000E+01 2.0000E+01 2.0002E+01 2.6141E-04

HS 1.4421E+01 1.4553E+01 9.8893E+00 1.9776E+01 2.0702E+00

6 SA 3.5211E+01 3.5751E+01 2.6362E+01 4.5260E+01 4.0480E+00

HS-SA 1.2055E+01 1.2013E+01 9.8626E+00 1.9544E+01 2.1116E+00

HS 1.5451E-02 7.8050E-03 1.5700E-04 8.3465E-02 1.8883E-02

7 SA 2.2008E-02 1.5028E-02 8.3000E-05 8.8494E-02 1.9567E-02

HS-SA 1.4292E-02 1.2552E-02 1.9900E-04 9.7968E-02 2.0653E-02

HS 4.3647E-05 4.4000E-05 2.6000E-05 5.6000E-05 6.6622E-06

8 SA 3.9893E+02 3.9599E+02 2.4277E+02 5.8702E+02 8.0111E+01

HS-SA 4.6588E-05 4.7000E-05 2.6000E-05 6.4000E-05 8.0053E-06

HS 6.8566E+01 6.6662E+01 4.2633E+01 9.7506E+01 1.4704E+01

9 SA 5.6210E+02 5.6711E+02 2.7950E+02 8.9842E+02 1.2471E+02

HS-SA 6.5356E+01 6.5647E+01 3.6814E+01 9.1536E+01 1.3080E+01

HS 2.0355E-01 2.0977E-01 1.0515E-01 3.3868E-01 5.5092E-02

10 SA 4.6142E+03 4.5796E+03 3.4108E+03 6.0320E+03 6.3234E+02

HS-SA 2.0148E-01 1.9047E-01 8.5307E-02 2.9387E-01 4.6566E-02

25



Table 2.3: Error values obtained by HS, SA and HS-SA on Function number 11

through 20.

Function Algorithm Mean Median Best Worst Std Dev

HS 2.0271E+03 2.0486E+03 1.0901E+03 2.9462E+03 4.0440E+02

11 SA 4.5791E+03 4.5506E+03 3.2777E+03 6.0769E+03 5.4029E+02

HS-SA 1.9899E+03 1.9559E+03 6.3470E+02 3.3266E+03 4.9702E+02

HS 1.6681E-01 1.5897E-01 6.1356E-02 2.6858E-01 5.0019E-02

12 SA 2.4637E-02 2.0439E-02 8.4100E-03 6.4771E-02 1.2607E-02

HS-SA 1.6853E-01 1.6566E-01 6.1270E-02 3.0058E-01 5.2063E-02

HS 5.4085E-01 5.4299E-01 3.0465E-01 8.7141E-01 1.1932E-01

13 SA 5.4220E-01 5.3973E-01 3.6364E-01 7.5985E-01 1.0655E-01

HS-SA 5.3161E-01 5.2862E-01 3.0982E-01 8.0228E-01 1.1346E-01

HS 4.4240E-01 3.5203E-01 2.4030E-01 1.0571E+00 2.2474E-01

14 SA 2.9681E-01 2.8557E-01 2.0912E-01 3.9718E-01 4.6954E-02

HS-SA 4.0668E-01 3.4310E-01 2.0409E-01 1.0504E+00 2.0518E-01

HS 1.4252E+01 1.3387E+01 5.5428E+00 2.7132E+01 5.5849E+00

15 SA 9.1952E+00 8.4518E+00 3.9489E+00 1.5876E+01 2.6056E+00

HS-SA 1.4155E+01 1.2918E+01 4.8635E+00 2.9317E+01 5.7329E+00

HS 9.4670E+00 9.5518E+00 7.8243E+00 1.1028E+01 6.5864E-01

16 SA 1.4192E+01 1.4272E+01 1.2597E+01 1.4848E+01 4.1428E-01

HS-SA 9.4563E+00 9.4030E+00 8.0110E+00 1.1269E+01 7.6297E-01

HS 1.8725E+06 1.1507E+06 6.5245E+04 7.8273E+06 1.6072E+06

17 SA 3.7270E+05 3.2775E+05 5.0462E+04 9.4757E+05 1.9633E+05

HS-SA 2.0083E+06 1.6854E+06 1.3187E+05 6.8902E+06 1.4732E+06

HS 6.2863E+03 2.5298E+03 7.2457E+01 2.8773E+04 7.8468E+03

18 SA 3.2887E+03 1.8619E+03 1.3694E+02 2.1540E+04 3.9771E+03

HS-SA 6.1800E+03 4.6128E+03 4.0631E+01 2.4763E+04 6.2672E+03

HS 2.9814E+01 9.3142E+00 5.9647E+00 1.1896E+02 3.5770E+01

19 SA 2.1447E+01 1.2027E+01 9.0321E+00 7.3727E+01 2.1834E+01

HS-SA 2.0454E+01 9.2266E+00 5.8494E+00 1.3300E+02 3.3613E+01

HS 6.3997E+03 5.6052E+03 1.7248E+02 2.4392E+04 4.9723E+03

20 SA 4.0537E+04 4.0253E+04 5.6433E+03 1.0063E+05 2.0853E+04

HS-SA 6.2076E+03 6.1032E+03 8.0318E+02 2.6505E+04 5.5557E+03
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Table 2.4: Error values obtained by HS, SA and HS-SA on Function number 21

through 30.

Function Algorithm Mean Median Best Worst Std Dev

HS 7.4351E+05 6.5937E+05 6.9129E+04 2.2859E+06 5.3016E+05

21 SA 4.5160E+05 4.5294E+05 2.0710E+04 1.0308E+06 2.3946E+05

HS-SA 6.5564E+05 5.0706E+05 8.1763E+04 2.1329E+06 5.2939E+05

HS 4.7430E+02 4.8986E+02 4.0511E+01 7.6838E+02 1.6864E+02

22 SA 1.1004E+03 1.1054E+03 2.9535E+02 1.5805E+03 2.6886E+02

HS-SA 4.5885E+02 4.8636E+02 1.6711E+02 9.4424E+02 1.8586E+02

HS 3.1542E+02 3.1534E+02 3.1493E+02 3.1666E+02 3.7407E-01

23 SA 3.1524E+02 3.1524E+02 3.1524E+02 3.1524E+02 1.7983E-04

HS-SA 3.1563E+02 3.1560E+02 3.1524E+02 3.1697E+02 3.6749E-01

HS 2.3340E+02 2.3168E+02 2.2666E+02 2.4891E+02 5.0111E+00

24 SA 3.5520E+02 2.9313E+02 2.4826E+02 8.2182E+02 1.2077E+02

HS-SA 2.3032E+02 2.3009E+02 2.2663E+02 2.4624E+02 4.9981E+00

HS 2.0729E+02 2.0699E+02 2.0427E+02 2.1326E+02 1.7382E+00

25 SA 2.2085E+02 2.2064E+02 2.0322E+02 2.5340E+02 1.3047E+01

HS-SA 2.0503E+02 2.0595E+02 2.0425E+02 2.1227E+02 1.6913E+00

HS 1.3069E+02 1.0064E+02 1.0034E+02 3.3391E+02 5.2147E+01

26 SA 1.6399E+02 1.0070E+02 1.0030E+02 1.0479E+03 1.3431E+02

HS-SA 1.2486E+02 1.0063E+02 1.0033E+02 2.0154E+02 4.8889E+01

HS 6.3111E+02 6.1789E+02 4.0264E+02 8.1322E+02 6.9457E+01

27 SA 1.0175E+03 1.2241E+03 4.0137E+02 1.5153E+03 4.6734E+02

HS-SA 6.0663E+02 6.0815E+02 4.0136E+02 8.8188E+02 1.5391E+02

HS 1.0206E+03 9.9931E+02 8.1043E+02 1.4169E+03 1.2232E+02

28 SA 6.3822E+03 6.3662E+03 2.6346E+03 1.1300E+04 1.8660E+03

HS-SA 1.0009E+03 9.9930E+03 7.9611E+02 2.2693E+03 2.6564E+02

HS 1.4609E+03 1.3822E+03 6.1623E+02 2.7196E+03 4.3376E+02

29 SA 1.1862E+06 1.4408E+03 8.0681E+02 1.8308E+07 4.1591E+06

HS-SA 1.7137E+05 1.2378E+03 5.6384E+02 8.6704E+06 1.2019E+06

HS 4.1742E+03 4.1078E+03 1.5014E+03 8.3453E+03 1.4848E+03

30 SA 3.0790E+03 2.9167E+03 1.7383E+03 8.0588E+03 1.0475E+03

HS-SA 5.2030E+03 4.8460E+03 1.5169E+03 1.3999E+04 2.3352E+03
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Figure 2.1: Convergence graphs of function number 1 through 8.
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Figure 2.2: Convergence graphs of function number 9 through 16.
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Figure 2.3: Convergence graphs of function number 17 through 24.
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Figure 2.4: Convergence graphs of function number 25 through 30.
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Table 2.5: Wilcoxon rank test results between the HS-SA and the competing

algorithms.

FUNCTION NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HS-SA/HS = = - - = + + - + + + - + = +

HS-SA/SA - - + - = + + + + + + - + - -

FUNCTION NO. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

HS-SA/HS + - + + + + + = + + + + + - -

HS-SA/SA + - - + + - + = + + + + + + -

Figure 2.5: Time complexity of Algorithms in seconds for 30 Dimensional prob-

lem.
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Chapter 3

A Two Phase Harmony Search Algorithm for

Continuous Optimization

3.1 Introduction

The efficiency of a meta heuristic algorithms depend on the extent of balance between diversifica-

tion and intensification during the course of the search. An ideal meta heuristic algorithm must have

efficient exploration in the beginning and enhanced exploitation towards the end. In this Chapter a

Two Phase Harmony Search (TPHS) algorithm is proposed that attempts to strikes a balance between

exploration and exploitation by concentrating on diversification in the first phase using catastrophic

mutation and then switches to intensification using local search in the second phase. The perfor-

mance of TPHS is analyzed and compared with four state-of-the-art HS variants on all the 30 IEEE

CEC 2014 benchmark functions. The numerical results demonstrate the superiority of the proposed

TPHS algorithm in terms of accuracy particularly on multimodal functions when compared with other

state-of-the-art HS variants, further comparison with state-of-the-art evolutionary algorithms reveal

excellent performance of TPHS on composition functions. Composition functions are combined, ro-

tated, shifted, and biased version of other unimodal and multi-modal test functions and mimic the

difficulties of real search spaces by providing a massive number of local optima and different shapes

for different regions of the search space.

The organization of this chapter is as follows. Section 3.2 provides a detailed description about the

proposed TPHS algorithm, Section 3.3 provides detail about numerical experimentation, analysis of

results and comparison with other state-of-the-art metaheuristic algorithms and finally the chapter

concludes with Section 3.4.

3.2 Proposed Two Phase Harmony Search (TPHS) Algorithm for Continuous Optimization

The observation that the standard HS algorithm shows little or no progress particularly towards the

end of execution, in most of the problems led us to the development of Two Phase harmony search

(TPHS) algorithm. Since towards the end of program execution all the harmonies in HM are already

of good quality, thus the probability of improving them using recombination is very less resulting

in slow convergence of standard HS towards its end. In order to remove this limitation of standard
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HS we propose TPHS algorithm in this chapter. The TPHS algorithm consists of two phases: Phase I

concentrates on diversification by utilizing the concept of Catastrophic mutation from GA and Phase II

shifts focus to intensification by using local search. The pseudo code of TPHS is shown as Algorithm

5 and from the pseudo code it is evident that during the initial (3/4)th of execution time the algorithm

executes Phase I and during the last quarter of program execution the algorithm executes Phase II.

Even though the break point between Phase I and Phase II has been arbitrary chosen as (3/4)th of

execution time, however it can be adjusted depending on the problem in hand.

As pointed out in (Taherinejad, 2009; Wang and Huang, 2010) the value of the parameter PAR and BW

should be decreased with time to prevent overshoot and oscillations. This would help the algorithm

to diversify the search space of the solution vectors and prevent the solution from getting trapped in

local optimal. Thus it seems reasonable that decreasing the value of the parameter PAR and BW with

iterations could fine tune the final solutions. Therefore PAR and BW are linearly decreased (as per

Equation (3.1) & (3.2) respectively) in step number 4 and 5 of Algorithm (5).

PARgn = PARmax +
(PARmax − PARmin)

NI
× (gn− 1) (3.1)

where

PARgn is pitch adjusting rate for each generation,

PARmin and PARmax is the minimum and maximum pitch adjusting rate respectively,

NI is the maximum number of generations,

gn is generation number.

BWgn = BWmax × exp(c× (gn− 1)) where c =
Ln(BWmin

BWmax
)

NI
(3.2)

In Equation (3.2) BWgn represents bandwidth for each generation, BWmin and BWmax are respec-

tively the minimum and maximum bandwidth.

Taking the inspiration from (Jin and Li, 1997) the concept of catastrophic mutation from GA has been

used to increase the exploration capabilities of the TPHS algorithm in Phase I. Catastrophic mutation

allows the evolutionary algorithm to increase diversity in the population on the cost of decreasing

convergence speed so as to escape the local optimal. The Phase I of TPHS is the standard HS algo-

rithm with the exception that all the harmonies (except the elite) in HM are re initialized (Catastrophic

mutation) , if the best harmony is not updated in L iterations. This results in exploration of new search

areas and therefore helps the algorithm to escape local optimal. The Phase II of TPHS is the stan-

dard HS algorithm with the addition that in each iteration of the algorithm one of the harmonies is
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randomly selected from HM for local search (exploitation) and in case the harmony produced after

local search (referred as TEMP in Algorithm 5) is better than parent harmony, the parent harmony is

replaced by this new harmony (TEMP). The local search is performed in step 30 of Algorithm (5) by

slightly altering each component of the selected harmony within the bounds specified by parameter

BW2. It must be noted that the new harmony produced after local search (i.e. TEMP) is compared

with the parent harmony and not the worst one so as to maintain the diversity in the HM. Towards

the end of execution all the harmonies in the HM are of good quality, therefore it seems reasonable to

concentrate on different promising search areas (Harmonies) for exploitation rather than a single area

around the best harmony. Thus in step number 28 of Algorithm (5) one of the harmonies from HM

is randomly selected for exploitation. Whenever any dimension of the harmony moves out of bounds

it is randomly generated within the bounds ( in step no. 12, 15 and 31 of Algorithm (5)) rather than

assigning minimum/maximum value so as to maintain diversity in HM.

In Algorithm (5) PARmin, PARmax,BWmin,BWmax respectively denote minimum pitch adjustment

rare, maximum pitch adjustment rare, minimum bandwidth and maximum bandwidth. Bandwidth 2

(BW2) controls the degree of exploitation of TEMP. The other parameters are the same as already

defined for Algorithm (1). The key differences between standard HS and TPHS are:

1. In TPHS both PAR and BW are linearly decreased as per Equation (3.1) and (3.2) respectively

whereas both PAR and BW remain constant in standard HS.

2. The Harmony Memory is re initialized except the elite (catastrophic mutation) if the best har-

mony is not updated in L generations.

3. Towards the end (last quarter in this chapter) of the execution the algorithm shifts focus to

exploitation, by performing local search around the best harmonies/solutions stored in HM.

3.3 Numerical Experiments

In this section performance of the proposed TPHS algorithm is evaluated on IEEE CEC 2014 Bench-

mark functions (Liang et al., 2013). The IEEE CEC 2014 Benchmark suite has been explained in

Section (2.4.1) of Chapter 2.

3.3.1 Comparison of TPHS with some state-of-the-art HS variants

The TPHS algorithm has been compared with Standard HS (Geem et al., 2001) and its three state-

of-the-art variants: Improved Harmony Search (Mahdavi et al., 2007), Global best Harmony Search

(Omran and Mahdavi, 2008) and Self-adaptive Global Best Harmony Search (Pan et al., 2010b). The
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experimentation has been carried out on all the IEEE CEC 2014 Benchmark functions using 30 di-

mension. As per the instructions of test suite every problem is tested with 51 independent runs.

The parameter setting adopted for standard HS, GHS, IHS has been taken from (El-Abd, 2013) and is

shown in Table 3.1. Obtaining an optimal parameter setting for a metaheuristic algorithm is a hyper

optimization problem, however the parameter setting shown in Table 3.1 for TPHS was found out to

be optimal for most if not all the problem instances. All the algorithms have been implemented in Dev

C++ 5.0 and the experimentation has been carried out on a laptop with Windows 10 operating system,

intel core i3 processor and 4GB of RAM.

Table 3.1: Parameter setting of algorithms.

Algorithm HMS HMCR PAR BW

HS (Geem et al., 2001) 5 .9 .3 .001

GHS (Omran and Mahdavi, 2008) 5 .9 PARmin = 0.01, PARmax = 0.99 —

IHS (Mahdavi et al., 2007) 5 .95 PARmin = 0.01, PARmax = 0.99 BWmin = .00001, BWmax = UB−LB
20

SAGHS (Pan et al., 2010b) 5 HMCRm = 0.98 PARm = 0.9 BWmin = .00005, BWmax = UB−LB
10

TPHS 5 .9 PARmin = 0.3, PARmax = 0.99 BWmin = .001, BWmax = UB−LB
20

, BW2 = 1

and L = .05×MaxFES

3.3.1.1 Analysis of results

The results reported in this chapter are in the format as specified and required in IEEE CEC 2014

benchmark suite. Tables 3.2, 3.3 and 3.4 show the results on 30 dimensional problems, the best results

are highlighted by bold font. The recorded results are the minimum, maximum, mean, median, and

standard deviation of the error value obtained as specified in IEEE 2014 Benchmark suite. The error

is the absolute value of difference between obtained objective function value by the algorithm and the

actual function value.

For unimodal functions HS, IHS and SAGHS reports the best results in one instances each. SAGHS,

HS obtained the best mean results in two and one instances respectively. In case of simple multimodal

functions HS, IHS, SAGHS and TPHS produced the best mean results in 2, 5, 4 and 4 instances re-

spectively and produced the best results in 3, 6, 4 and 4 instances respectively. For Hybrid multimodal

functions TPHS produced the best mean results in all the 6 instances and obtained the best results in 5

functions. For composition multimodal functions TPHS obtained the best mean results and the best re-
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sults in 6 instances followed by SAGHS obtaining best mean results in 2 instances. Thus even though

the performance of the TPHS algorithm is not very satisfactory on unimodal functions, however it has

significantly outperformed its variants on multimodal functions particularly hybrid and composition

functions which are considered to be harder than simple multimodal functions.

3.3.1.2 Convergence Behavior

The convergence graphs of all the benchmark functions are plotted in Figures 3.1, 3.2, 3.3 and 3.4 to

study the convergence behavior of algorithms. The horizontal line represents the number of function

evaluations and the vertical line represents the mean of absolute error of 51 runs in logarithmic scale.

As is evident from most of the convergence graphs the TPHS algorithm exhibits slow convergence

speed in the beginning of execution, the reason being frequent re initialization of Harmony Memory,

however it helps TPHS to explore vast search space and hence increase exploration initially. Due to the

exploitation of the harmonies by performing random search around the best harmony (Local search)

in the second phase most of the graphs (particularly evident for Functions 6, 17, 18, 19, 20, 21, 24,

25, 26, 27 and 28) depict that TPHS makes steep progress even towards the end of execution. Thus

dividing the TPHS into two phases enhances exploration in the beginning and exploitation towards the

end. This fact can be verified from convergence graph of function 18 TPHS makes slow progress in

the first phase (3
4

th of execution time) compared to other algorithms, however it makes steep progress

in the second phase (1
4

th of execution time) and overtakes all other algorithms.

TPHS consists of two operators catastrophic mutation applied in the beginning of execution and lo-

cal search applied towards the end of execution. In order to study the effect of these two operators

individually we have selected function 24 with dimension 10. The mean error of 51 runs is respec-

tively 123.6, 118.2 and 111.8 when only catastrophic mutation is applied, only local search is applied

and when both operators are applied. The results obtained where found statistically significant using

Wilcoxon rank test at 5% level of significance. Thus it can be concluded that catastrophic mutation

has increased exploration in the beginning whereas local search operator has increased exploitation

towards the end.

3.3.1.3 Algorithm Complexity

The complexity of algorithms is computed as per the requirements laid down in IEEE CEC 2014

Benchmark suite and has been explained in Section 2.4.3.1. The time complexity for 30 dimensional

problem is shown as Figure 3.5 and it can be observed that the complexity of HS, IHS, GHS and TPHS

is almost same however the time complexity of SAGHS is slightly higher than others.
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3.3.2 Comparison of TPHS with some state-of-the-art meta heuristic algorithms

In this section the performance of TPHS is compared with some state-of-the-art meta heuristic algo-

rithms for continuous optimization like Evolution Strategy with covariance matrix adaptation (CMA-

ES) (Hansen and Ostermeier, 2001), Comprehensive Learning PSO (CL-PSO) (Liang et al., 2006),

Adaptive particle swarm optimization (APSO) (Zhan et al., 2009), Dynamic Neighborhood Learn-

ing PSO (DNL-PSO) (Nasir et al., 2012), Heterogeneous Comprehensive Learning PSO (HCL-PSO)

(Lynn and Suganthan, 2015), Social Learning PSO (SL-PSO) (Cheng and Jin, 2015) , Self Regu-

lating PSO (SR-PSO) (Tanweer et al., 2015), Social Spider Optimization Algorithm (SSO) (Cuevas

et al., 2013), Differential Evolution (DERAND1BIN) (Guo et al., 2015), Differential Evolution with

successful parent selecting framework (DERAND1BIN-SPS) (Guo et al., 2015) and Dynamic multi-

swarm particle swarm optimizer with harmony search (DMS-PSO-HS) (Zhao et al., 2011) on 30 di-

mensional IEEE CEC 2014 benchmark problems as per the guidelines laid down in the benchmark

suite, the results are reported in Tables 3.5, 3.6, 3.7, 3.8. The results of competing algorithm are

highlighted by bold if it performs better than TPHS. The parameter setting adopted for all competing

algorithms is same as given in the respective reference.

CL-PSO outperformed TPHS on all the three unimodal functions. In case of simple multimodal

functions, TPHS outperformed CL-PSO on three instances whereas latter outperformed former in the

remaining ten instances. TPHS outperformed CL-PSO on four instances of hybrid functions whereas

latter outperformed former in the remaining two instances. In case of composition function TPHS out-

performed CL-PSO on five instances and the results are vice versa in the remaining three instances.

Thus in unimodal and simple multimodal functions CL-PSO is the winner whereas in case of hybrid

and composition functions proposed TPHS is the winner.

TPHS outperformed APSO on all the three instances of unimodal, on all the thirteen instances of

simple multimodal and on all the six instances of hybrid functions. In case of composition functions

TPHS outperformed APSO on two instances whereas latter outperformed former in the remaining six

instances.

DNL-PSO outperformed TPHS on all the three instances of unimodal functions. DNL-PSO outper-

formed TPHS on seven instances of simple multimodal functions and the result is vice versa in the

remaining remaining six instances. In four instances of hybrid functions TPHS is the winner whereas

in the remaining two instances DNL-PSO is the winner. TPHS outperformed DNL-PSO on four in-

stances of hybrid functions whereas latter outperformed former in the remaining two instances. In

composition functions TPHS outperformed DNL-PSO on five instances whereas latter outperformed
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former in the remaining three instances. Thus in case of unimodal and simple multimodal functions

DNL-PSO is the winner whereas in case of hybrid and composition functions proposed TPHS is the

winner.

HCL-PSO outperformed TPHS on all the three instances of unimodal functions. HCL-PSO outper-

formed TPHS on eleven instances of simple multimodal functions and the result is vice versa in the

remaining two instances. In two instances of hybrid functions TPHS is the winner whereas in the

remaining four instances HCL-PSO is the winner. In composition functions TPHS outperformed

HCL-PSO on six instances whereas latter outperformed former in the remaining two instances.

SL-PSO outperformed TPHS on two instances of unimodal functions and on the remaining one in-

stance TPHS is the winner. SL-PSO outperformed TPHS on eight instances of simple multimodal

functions and the result is vice versa in the remaining five instances. Both TPHS and SL-PSO has out-

performed each other in three instances of hybrid functions. In composition functions TPHS outper-

formed SL-PSO on six instances whereas latter outperformed former on the remaining two instances.

SR-PSO outperformed TPHS on all the three instances of unimodal functions. SR-PSO outperformed

TPHS on eight instances of simple multimodal functions and the result is vice versa in the remaining

remaining five instances. In five instances of hybrid functions SR-PSO is the winner whereas in the

remaining one instances TPHS is the winner. In composition functions TPHS outperformed SR-PSO

on seven instances whereas latter outperformed former in the remaining one instances.

CMA-ES outperformed TPHS on two instances of unimodal functions whereas latter outperformed

former in the remaining one instance. CMA-ES outperformed TPHS on six instances of simple mul-

timodal functions and the result is vice versa in the remaining remaining seven instances. In three

instances of hybrid functions TPHS is the winner whereas in the remaining three instances CMA-ES

is the winner. In composition functions TPHS outperformed CMA-ES on five instances whereas latter

outperformed former in the remaining three instances.

The proposed TPHS algorithm outperformed SSO on all the thirty instances.

The standard Differential Evolution (DERAND1BIN) outperformed TPHS on two instances of uni-

modal functions and on the remaining one instance TPHS is the winner. TPHS outperformed DE-

RAND1BIN on ten instances of simple multimodal functions whereas latter is the winner in the re-

maining three instances. TPHS outperformed DERAND1BIN on five instances of hybrid functions

whereas latter is the winner in just one instance. In composition functions TPHS outperformed DE-

RAND1BIN on six instances whereas latter outperformed former on the remaining two instances.

DERAND1BIN-SPS outperformed TPHS on two instances of unimodal functions and on the re-
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maining one instance TPHS is the winner. TPHS outperformed DERAND1BIN-SPS on eight in-

stances of simple multimodal functions whereas latter is the winner in the remaining five instances.

DERAND1BIN-SPS outperformed TPHS on five instances of hybrid functions whereas latter is the

winner in just one instance. In composition functions TPHS outperformed DERAND1BIN-SPS on

four instances whereas latter outperformed former on the remaining four instances.

DMS-PSO-HS outperformed TPHS on two instances of unimodal functions and on the remaining one

instance TPHS is the winner. DMS-PSO-HS outperformed TPHS on ten instances of simple multi-

modal functions whereas latter is the winner in the remaining three instances. TPHS outperformed

DMS-PSO-HS on all the instances of hybrid and composition functions.

In this section TPHS was compared with eleven state-of-the-art metaheuristic algorithms for contin-

uous optimization. TPHS showed excellent performance on composition functions, out of the eleven

competing algorithms only one algorithm namely APSO managed to outperform TPHS on composi-

tion functions. It is worth to mention even though the performance of APSO is slightly better than

TPHS on composition functions, however TPHS outperformed APSO on all the instances of uni-

modal, simple multimodal and hybrid functions. Note that Composition functions are combined,

rotated, shifted, and biased version of other unimodal and multi-modal test functions and mimic the

difficulties of search spaces offerer by real life problems by providing a massive number of local op-

tima and different shapes for different regions of the search space, an algorithm must exhibit a proper

balance between exploration and exploitation to tackle such problems.

3.3.3 Wilcoxon rank test analysis

The paired Wilcoxons rank-sum test is conducted at the 5% significance level to judge if the difference

in performance between the TPHS and the competing algorithm is statistically significant, the results

are reported in Table 3.9. The cases are respectively marked as ’+’, ’-’ and ’=’ when the performance

of TPHS is significantly better than, worse than, or similar to the competing algorithm. Table 3.9

reveals that in most of the cases the difference in performance is statistically significant and there are

only a instances where the difference is not significant.

3.4 Conclusion

This chapter introduced a new variant of Harmony Search algorithm for continuous optimization prob-

lems. The proposed algorithm called TPHS exhibited the desired behavior of exploring the search

space at the beginning and then exploiting good solutions towards the end. This was achieved by

dividing TPHS into two phases. The first phase concentrates mainly on exploration using catastrophic

mutation and in the second phase the focus shifts to exploitation using local search. The search area
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was gradually decreased by decreasing the BW and PAR with time.

TPHS algorithm has been compared with fifteen state-of-the-art metaheuristic algorithms. The bases

of performance is the set of 30 benchmark functions proposed in IEEE CEC 2014. All the criterion

laid down in the benchmark suite are adopted to produce the required analysis metrics. Based on the

numerical results it is established even though performance of TPHS is not very satisfactory on uni-

modal functions however it outperforms HS variants on multimodal functions. The performance of

TPHS is particularly outstanding on composition functions when compared to state-of-the-art meta-

heurisctic algorithms for continuous optimization. Note that Composition functions are combined,

rotated, shifted, and biased version of other unimodal and multi-modal test functions and mimic the

difficulties of search spaces offerer by real life problems by providing a massive number of local op-

tima and different shapes for different regions of the search space, an algorithm must exhibit a proper

balance between exploration and exploitation to approximate the global optimal of such problems.
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Algorithm 5 TWO PHASE HARMONY SEARCH ALGORITHM (TPHS)
1: Define HMCR,PARmin, PARmax, BWmin, BWmax, HMS,BW2.
2: Initialize Harmony Memory (HM).
3: while NOF ≤Max FES do
4: Adjust PAR as per Equation (3.1).
5: Adjust BW as per Equation (1.17).
6: Find Worst and Best harmonies in HM.
7: for i = 1 to D do
8: if (rand ≤ HMCR) then
9: Hi = HM j

i where j=rand int(1,HMS)
10: if (rand ≤ PAR) then
11: Hi = Hi ± rand×BW
12: Generate Hi randomly within the allowed bounds if it moves out side bound after Pitch

adjustment.
13: end if
14: else
15: Generate Hi randomly within the allowed bounds.
16: end if
17: end for
18: Evaluate harmony H
19: NOF++ /* NOF is a counter representing number of function evaluations performed*/
20: if (H is better than Worst Harmony in HM) then
21: Update HM by replacing Worst harmony by H.
22: end if
23: if NOF ≤ .75×Max FES then
24: {Phase I for exploration}
25: If the BEST harmony does not change in L iterations re initialize all the harmonies in the

HM except the elite. /* Catastrophic mutation for diversification*/
26: else
27: {Phase II for exploitation}
28: TEMP=HMK where K=rand int(1,HMS) /* Select random harmony from HM for intensifi-

cation */
29: for i = 1 to D do
30: TEMPi = TEMPi ±BW2× rand /* Local search for intensification */
31: Generate TEMPi randomly within the allowed bounds if it moves out side bound after

adjustment.
32: end for
33: Evaluate harmony TEMP
34: NOF++
35: if TEMP is better than HMK then
36: HMK = TEMP /*Replace parent harmony by new one*/
37: end if
38: end if
39: end while
40: print Best Harmony obtained by the algorithm as solution.
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Table 3.2: Error values obtained by HS, GHS, IHS, SAGHS and TPHS on Func-
tion number 1 through 10.

Function Algorithm Mean Median Best Worst Std Dev
HS 1.2898E+07 1.1256E+07 1.2757E+06 3.7050E+07 8.5380E+06

GHS 5.5304E+08 5.5251E+08 2.2774E+08 8.9384E+08 1.3331E+08
1 IHS 5.1117E+06 3.8814E+06 7.5670E+05 2.2954E+07 4.1204E+06

SAGHS 3.5401E+06 3.1267E+06 6.7670E+05 9.0978E+06 1.7926E+06
TPHS 1.0342E+07 9.5660E+06 4.3612E+06 3.0861E+07 4.9993E+06

HS 1.0748E+04 5.8189E+03 1.4352E+02 3.4211E+04 1.1490E+04
GHS 5.1074E+10 5.0526E+10 4.1518E+10 6.2548E+10 4.6701E+09

2 IHS 1.3405E+04 1.0105E+04 1.2369E+00 3.6883E+04 1.2150E+04
SAGHS 1.3070E+04 9.5449E+03 5.5077E+00 5.1221E+04 1.2816E+04
TPHS 1.0658E+06 1.0937E+06 6.0514E+05 1.4416E+06 1.8124E+05

HS 4.6459E+03 3.9072E+03 8.6021E+00 2.1796E+04 4.1211E+03
GHS 7.7427E+04 7.3782E+04 4.7596E+04 1.5279E+05 1.8602E+04

3 IHS 1.0165E+04 6.5060E+03 5.0759E+02 5.5072E+04 1.1198E+04
SAGHS 2.2834E+03 1.7112E+03 2.3510E+01 7.9129E+03 1.9046E+03
TPHS 2.4343E+03 2.1490E+03 2.8063E+02 6.9590E+03 1.5892E+03

HS 1.1612E+02 1.2484E+02 6.3859E+01 1.5181E+02 3.0220E+01
GHS 6.8740E+03 6.9255E+03 3.9398E+03 9.7943E+03 1.1909E+03

4 IHS 6.9072E+01 7.5569E+01 1.0632E+00 1.4873E+02 3.7522E+01
SAGHS 4.6127E+01 2.8905E+01 5.8500E+00 9.8818E+01 2.6781E+01
TPHS 1.1659E+02 1.2044E+02 6.8637E+01 1.6753E+02 2.4942E+01

HS 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 3.8090E-05
GHS 2.0936E+01 2.0946E+01 2.0789E+01 2.1046E+01 5.6890E-02

5 IHS 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 1.1113E-05
SAGHS 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 1.2778E-05
TPHS 2.0931E+01 2.0939E+01 2.0709E+01 2.1033E+01 6.3582E-02

HS 1.4421E+01 1.4553E+01 9.8893E+00 1.9776E+01 2.0702E+00
GHS 3.8602E+01 3.9094E+01 3.3271E+01 4.1335E+01 1.5711E+00

6 IHS 1.3630E+01 1.3630E+01 7.5007E+00 1.8956E+01 2.5875E+00
SAGHS 1.3963E+01 1.3942E+01 7.3736E+00 1.9469E+01 2.3539E+00
TPHS 2.8907E+00 2.9377E+00 1.7516E+00 4.9279E+00 8.1642E-01

HS 1.5451E-02 7.8050E-03 1.5700E-04 8.3465E-02 1.8883E-02
GHS 3.1877E+02 3.0622E+02 2.3989E+02 4.3520E+02 5.1026E+01

7 IHS 8.5438E-03 7.3960E-03 0.0000E+00 3.4336E-02 9.1937E-03
SAGHS 3.3846E-02 1.9720E-02 0.0000E+00 1.6434E-01 3.4615E-02
TPHS 9.0903E-01 9.1778E-01 7.4936E-01 9.7793E-01 5.1068E-02

HS 4.3647E-05 4.4000E-05 2.6000E-05 5.6000E-05 6.6622E-06
GHS 2.9940E+02 3.0089E+02 2.3775E+02 3.4806E+02 2.4578E+01

8 IHS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
SAGHS 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
TPHS 1.9839E+00 1.7699E+00 3.5319E-01 5.5341E+00 1.2307E+00

HS 6.8566E+01 6.6662E+01 4.2633E+01 9.7506E+01 1.4704E+01
GHS 3.3998E+02 3.3731E+02 3.0224E+02 4.0221E+02 2.1684E+01

9 IHS 7.7371E+01 7.4674E+01 4.3778E+01 1.1243E+02 1.7341E+01
SAGHS 9.6145E+01 9.4521E+01 5.9697E+01 1.5585E+02 2.1113E+01
TPHS 1.4776E+02 1.2890E+02 8.9750E+01 2.0689E+02 3.4546E+01

HS 2.0355E-01 2.0977E-01 1.0515E-01 3.3868E-01 5.5092E-02
GHS 6.3799E+03 6.3880E+03 5.7062E+03 7.0003E+03 3.2841E+02

10 IHS 3.2345E-01 2.5943E-01 1.5125E-01 1.2848E+00 2.3837E-01
SAGHS 1.9548E-01 1.8737E-01 1.2492E-01 3.5393E-01 5.2196E-02
TPHS 1.9780E+01 2.0051E+01 9.9087E+00 2.7334E+01 4.2670E+00
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Table 3.3: Error value obtained by HS, GHS, IHS, SAGHS and TPHS on Func-
tion number 11 through 20.

Function Algorithm Mean Median Best Worst Std Dev
HS 2.0271E+03 2.0486E+03 1.0901E+03 2.9462E+03 4.0440E+02

GHS 7.0700E+03 7.1401E+03 6.0754E+03 7.6881E+03 3.4849E+02
11 IHS 2.0043E+03 2.0085E+03 8.3726E+02 3.3345E+03 5.0644E+02

SAGHS 2.3526E+03 2.4471E+03 1.2628E+03 3.3160E+03 5.0402E+02
TPHS 4.1312E+03 4.1517E+03 5.7415E+02 6.7373E+03 1.6932E+03

HS 1.6681E-01 1.5897E-01 6.1356E-02 2.6858E-01 5.0019E-02
GHS 2.3749E+00 2.4272E+00 1.3879E+00 3.0444E+00 3.2126E-01

12 IHS 8.2523E-02 7.9840E-02 2.5872E-02 1.8604E-01 3.7921E-02
SAGHS 1.2286E-01 1.1364E-01 6.0261E-02 2.4778E-01 4.1331E-02
TPHS 2.4943E+00 2.4910E+00 1.8035E+00 3.0691E+00 2.6679E-01

HS 5.4085E-01 5.4299E-01 3.0465E-01 8.7141E-01 1.1932E-01
GHS 5.8505E+00 5.8931E+00 5.0164E+00 6.8080E+00 4.1574E-01

13 IHS 5.2125E-01 5.0641E-01 2.5694E-01 8.0457E-01 1.2618E-01
SAGHS 5.1663E-01 5.0089E-01 3.0362E-01 8.0925E-01 1.1867E-01
TPHS 3.7631E-01 3.5977E-01 2.1373E-01 5.6539E-01 9.1385E-02

HS 4.4240E-01 3.5203E-01 2.4030E-01 1.0571E+00 2.2474E-01
GHS 1.4829E+02 1.4912E+02 1.2060E+02 1.7370E+02 1.4049E+01

14 IHS 4.4064E-01 3.4738E-01 2.0361E-01 9.8340E-01 2.3195E-01
SAGHS 4.3648E-01 3.1858E-01 1.3886E-01 1.0572E+00 2.5262E-01
TPHS 3.1817E-01 3.1202E-01 1.6756E-01 4.2938E-01 5.5921E-02

HS 1.4252E+01 1.3387E+01 5.5428E+00 2.7132E+01 5.5849E+00
GHS 5.3442E+04 3.7607E+04 1.2241E+04 4.9159E+05 7.0130E+04

15 IHS 1.1973E+01 1.0533E+01 3.5509E+00 3.1311E+01 5.0716E+00
SAGHS 6.7818E+00 6.2194E+00 3.7810E+00 1.3669E+01 2.0976E+00
TPHS 1.7448E+01 1.7476E+01 1.4544E+01 1.9963E+01 1.0298E+00

HS 9.4670E+00 9.5518E+00 7.8243E+00 1.1028E+01 6.5864E-01
GHS 1.2894E+01 1.2950E+01 1.2030E+01 1.3255E+01 2.7413E-01

16 IHS 9.7692E+00 9.6238E+00 7.8164E+00 1.1303E+01 6.9112E-01
SAGHS 1.0035E+01 1.0063E+01 8.3375E+00 1.1544E+01 7.2495E-01
TPHS 8.4200E+00 8.3470E+00 7.2800E+00 9.5521E+00 4.8655E-01

HS 1.8725E+06 1.1507E+06 6.5245E+04 7.8273E+06 1.6072E+06
GHS 1.7787E+07 1.7106E+07 4.1156E+06 3.7052E+07 6.2113E+06

17 IHS 3.2222E+05 2.7595E+05 4.9077E+04 1.3522E+06 2.2660E+05
SAGHS 5.9517E+05 5.7166E+05 6.3973E+04 1.8089E+06 3.7610E+05
TPHS 3.1185E+05 2.7201E+05 8.5087E+03 1.0751E+06 2.4092E+05

HS 6.2863E+03 2.5298E+03 7.2457E+01 2.8773E+04 7.8468E+03
GHS 8.6656E+08 8.8799E+08 1.1087E+08 1.5049E+09 3.0575E+08

18 IHS 4.8757E+03 2.5367E+03 5.0858E+01 1.8914E+04 4.8932E+03
SAGHS 5.1710E+03 2.5884E+03 6.9119E+01 3.1256E+04 5.9942E+03
TPHS 2.9688E+03 1.9882E+03 3.8090E+02 1.4099E+04 2.8869E+03

HS 2.9814E+01 9.3142E+00 5.9647E+00 1.1896E+02 3.5770E+01
GHS 2.2127E+02 2.2418E+02 1.3347E+02 2.7965E+02 3.0520E+01

19 IHS 1.3346E+01 1.0597E+01 3.6172E+00 8.7776E+01 1.4399E+01
SAGHS 2.0974E+01 1.3931E+01 5.5005E+00 8.3078E+01 2.1603E+01
TPHS 6.7812E+00 6.7391E+00 4.8215E+00 9.4500E+00 9.8160E-01

HS 6.3997E+03 5.6052E+03 1.7248E+02 2.4392E+04 4.9723E+03
GHS 3.8663E+04 3.2773E+04 8.3942E+03 1.0930E+05 2.3295E+04

20 IHS 6.6755E+03 5.6384E+03 4.1518E+02 2.6303E+04 5.7149E+03
SAGHS 1.2179E+03 6.1255E+02 6.5699E+01 6.5438E+03 1.4115E+03
TPHS 9.5134E+02 6.5674E+02 2.6539E+02 3.2450E+03 7.0946E+02
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Table 3.4: Error value obtained by HS, GHS, IHS, SAGHS and TPHS on Func-
tion number 21 through 30.

Function Algorithm Mean Median Best Worst Std Dev
HS 7.4351E+05 6.5937E+05 6.9129E+04 2.2859E+06 5.3016E+05

GHS 4.8848E+06 4.2238E+06 7.8191E+05 1.0705E+07 2.3543E+06
21 IHS 1.8529E+05 1.2740E+05 1.0835E+04 7.7702E+05 1.6187E+05

SAGHS 3.2397E+05 2.3415E+05 2.8262E+04 1.3063E+06 2.4493E+05
TPHS 1.5138E+05 1.0916E+05 1.0296E+04 5.1142E+05 1.2235E+05

HS 4.7430E+02 4.8986E+02 4.0511E+01 7.6838E+02 1.6864E+02
GHS 1.2795E+03 1.3099E+03 8.0160E+02 1.5477E+03 1.8188E+02

22 IHS 4.9181E+02 4.8962E+02 2.9915E+01 8.6093E+02 1.9143E+02
SAGHS 4.7914E+02 4.9418E+02 2.7009E+01 8.5830E+02 2.0031E+02
TPHS 1.5578E+02 1.4972E+02 2.3576E+01 5.0357E+02 1.0842E+02

HS 3.1542E+02 3.1534E+02 3.1493E+02 3.1666E+02 3.7407E-01
GHS 5.8552E+02 5.6517E+02 4.7610E+02 7.9607E+02 7.2078E+01

23 IHS 3.1421E+02 3.1415E+02 3.1402E+02 3.1485E+02 1.6504E-01
SAGHS 3.1524E+02 3.1524E+02 3.1524E+02 3.1524E+02 9.6367E-06
TPHS 3.1400E+02 3.1398E+02 3.1393E+02 3.1417E+02 5.1837E-02

HS 2.3340E+02 2.3168E+02 2.2666E+02 2.4891E+02 5.0111E+00
GHS 2.1671E+02 2.0701E+02 2.0010E+02 2.9787E+02 2.3504E+01

24 IHS 2.3147E+02 2.2916E+02 2.2512E+02 2.4749E+02 6.1227E+00
SAGHS 2.3099E+02 2.2923E+02 2.2451E+02 2.4408E+02 5.6198E+00
TPHS 2.1155E+02 2.1286E+02 2.0009E+02 2.1609E+02 3.9617E+00

HS 2.0729E+02 2.0699E+02 2.0427E+02 2.1326E+02 1.7382E+00
GHS 2.2494E+02 2.3057E+02 2.0001E+02 2.6928E+02 2.3910E+01

25 IHS 2.0549E+02 2.0485E+02 2.0300E+02 2.1384E+02 2.0823E+00
SAGHS 2.0112E+02 2.0115E+02 2.0042E+02 2.0163E+02 2.3373E-01
TPHS 2.0040E+02 2.0013E+02 2.0000E+02 2.0200E+02 4.4645E-01

HS 1.3069E+02 1.0064E+02 1.0034E+02 3.3391E+02 5.2147E+01
GHS 1.1176E+02 1.0619E+02 1.0459E+02 2.0330E+02 2.2759E+01

26 IHS 1.4743E+02 1.0068E+02 1.0029E+02 3.5485E+02 6.2448E+01
SAGHS 1.3764E+02 1.0063E+02 1.0025E+02 3.4782E+02 6.1227E+01
TPHS 1.1019E+02 1.0038E+02 1.0012E+02 2.0053E+02 2.9747E+01

HS 6.3111E+02 6.1789E+02 4.0264E+02 8.1322E+02 6.9457E+01
GHS 7.9858E+02 7.9513E+02 6.1348E+02 9.2713E+02 4.2917E+01

27 IHS 7.4407E+02 7.5930E+02 4.0189E+02 8.4764E+02 7.3896E+01
SAGHS 4.1657E+02 4.0420E+02 4.0266E+02 7.7062E+02 6.2092E+01
TPHS 3.8579E+02 3.8998E+02 3.4221E+02 5.5816E+02 3.8756E+01

HS 1.0206E+03 9.9931E+02 8.1043E+02 1.4169E+03 1.2232E+02
GHS 3.0923E+03 3.0154E+03 2.1470E+03 4.5924E+03 4.6842E+02

28 IHS 1.0521E+03 1.0045E+03 8.3999E+02 2.1851E+03 2.3466E+02
SAGHS 7.1793E+02 4.8252E+02 4.0378E+02 2.6649E+03 5.2086E+02
TPHS 7.1194E+02 7.1797E+02 5.6402E+02 7.7076E+02 3.6876E+01

HS 1.4609E+03 1.3822E+03 6.1623E+02 2.7196E+03 4.3376E+02
GHS 7.3746E+07 6.7510E+07 2.7276E+07 1.5847E+08 3.0567E+07

29 IHS 1.5692E+03 1.2843E+03 4.3703E+02 5.7513E+03 8.1797E+02
SAGHS 2.1350E+02 2.1325E+02 2.0940E+02 2.1840E+02 2.0596E+00
TPHS 2.0231E+03 1.9218E+03 1.4897E+03 2.8963E+03 3.3445E+02

HS 4.1742E+03 4.1078E+03 1.5014E+03 8.3453E+03 1.4848E+03
GHS 7.9341E+05 8.0434E+05 3.2141E+05 1.3284E+06 2.4945E+05

30 IHS 1.6444E+03 1.5555E+03 1.0291E+03 2.5541E+03 3.6630E+02
SAGHS 7.7142E+02 7.6262E+02 4.2766E+02 1.1588E+03 1.7935E+02
TPHS 3.4871E+03 3.5835E+03 1.2875E+03 5.3605E+03 1.0256E+03
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Figure 3.1: Convergence graphs of function number 1 through 8.
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Figure 3.2: Convergence graphs of function number 9 through 16.
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Figure 3.3: Convergence graphs of function number 17 through 24.
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Figure 3.4: Convergence graphs of function number 25 through 30.
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Figure 3.5: Complexity of Algorithms in seconds for 30 Dimensional problem.
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Table 3.5: Mean and Standard Deviation of error value obtained by TPHS, CL-
PSO, APSO and DNL-PSO on IEEE CEC 2014 benchmark functions.

TPHS CL-PSO APSO DNL-PSO

Function Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 1.03E+07 5.00E+06 2.62E+06 1.21E+06 2.69E+09 3.28E+08 1.47E+06 1.16E+06

2 1.07E+06 1.81E+05 2.34E+02 1.01E+03 1.02E+11 2.29E+09 1.78E+00 4.18E+00

3 2.43E+03 1.59E+03 5.86E+01 8.21E+01 1.19E+06 1.25E+06 9.40E+01 1.35E+02

4 1.17E+02 2.49E+01 5.20E+01 3.44E+01 2.49E+04 1.54E+03 7.31E+00 1.01E+01

5 2.09E+01 6.36E-02 2.00E+01 7.44E-03 2.13E+01 5.61E-02 2.09E+01 5.72E-02

6 2.89E+00 8.16E-01 9.72E+00 1.98E+00 4.80E+01 1.79E+00 4.59E+00 2.05E+00

7 9.09E-01 5.11E-02 1.45E-04 1.03E-03 1.06E+03 3.85E+01 1.06E-02 1.10E-02

8 1.98E+00 1.23E+00 7.22E-01 1.12E+00 5.03E+02 3.02E+01 4.36E+01 1.16E+01

9 1.48E+02 3.45E+01 4.52E+01 1.00E+01 4.78E+02 6.30E+00 5.07E+01 1.39E+01

10 1.98E+01 4.27E+00 3.24E+01 7.35E+01 9.30E+03 5.68E+02 1.50E+03 4.26E+02

11 4.13E+03 1.69E+03 1.85E+03 3.22E+02 9.24E+03 4.86E+02 2.98E+03 7.52E+02

12 2.49E+00 2.67E-01 1.32E-01 3.35E-02 5.91E+00 1.32E+00 2.14E+00 3.91E-01

13 3.76E-01 9.14E-02 3.00E-01 3.93E-02 1.03E+01 7.53E-01 3.32E-01 8.99E-02

14 3.18E-01 5.59E-02 2.40E-01 3.30E-02 3.95E+02 2.22E+01 4.58E-01 2.39E-01

15 1.74E+01 1.03E+00 4.68E+00 1.03E+00 1.05E+06 0.00E+00 3.71E+00 1.15E+00

16 8.42E+00 4.87E-01 9.58E+00 5.33E-01 1.42E+01 2.37E-01 1.18E+01 7.26E-01

17 3.12E+05 2.43E+05 5.51E+05 3.82E+05 2.86E+08 1.28E+08 1.81E+05 1.24E+05

18 2.97E+03 2.89E+03 2.46E+02 2.55E+02 8.75E+09 3.11E+09 4.21E+04 7.76E+04

19 6.78E+00 9.82E-01 6.61E+00 8.84E-01 8.45E+02 1.15E+02 5.67E+00 1.91E+00

20 9.51E+02 7.09E+02 1.78E+03 2.09E+03 1.59E+07 1.37E+07 1.68E+03 1.26E+03

21 1.51E+05 1.22E+05 1.56E+05 1.26E+05 1.33E+08 7.50E+07 1.55E+05 1.89E+05

22 1.56E+02 1.08E+02 2.43E+02 1.06E+02 1.31E+04 9.38E+03 3.88E+02 1.93E+02

23 3.14E+02 5.18E-02 3.15E+02 1.71E-13 2.00E+02 0.00E+00 3.14E+02 1.71E-13

24 2.11E+02 4.58E+00 2.23E+02 5.96E+00 2.00E+02 0.00E+00 2.35E+02 8.78E+00

25 2.00E+02 7.12E-01 2.06E+02 1.02E+00 2.00E+02 0.00E+00 2.01E+02 2.63E-01

26 1.11E+02 4.34E+01 1.04E+02 1.94E+01 1.86E+02 2.68E+01 1.00E+02 1.05E-01

27 3.86E+02 3.88E+01 4.37E+02 8.14E+01 2.00E+02 0.00E+00 4.13E+02 4.68E+01

28 7.12E+02 3.69E+01 9.46E+02 1.42E+02 2.00E+02 0.00E+00 4.04E+02 2.19E+01

29 2.02E+03 3.34E+02 1.08E+03 1.79E+02 2.00E+02 0.00E+00 2.06E+02 1.71E+00

30 3.49E+03 1.03E+03 2.38E+03 5.69E+02 2.00E+02 0.00E+00 9.24E+02 2.33E+02
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Table 3.6: Mean and Standard Deviation of error value obtained by TPHS, HCL-
PSO, SL-PSO and SR-PSO on IEEE CEC 2014 benchmark functions.

Function TPHS HCL-PSO SL-PSO SR-PSO

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 1.03E+07 5.00E+06 2.61E+05 1.95E+05 3.67E+05 2.36E+05 1.44E+06 1.89E+06

2 1.07E+06 1.81E+05 8.73E+01 1.92E+02 1.03E+04 1.02E+04 2.18E+02 4.08E+02

3 2.43E+03 1.59E+03 1.45E+02 1.63E+02 6.86E+03 5.96E+03 1.75E+01 2.66E+01

4 1.17E+02 2.49E+01 4.04E+01 3.26E+01 3.26E+01 2.98E+01 1.03E+02 3.70E+01

5 2.09E+01 6.36E-02 2.02E+01 4.98E-02 2.09E+01 4.22E-02 2.09E+01 4.30E-02

6 2.89E+00 8.16E-01 3.82E+00 1.70E+00 9.03E-01 1.01E+00 3.16E+00 1.62E+00

7 9.09E-01 5.11E-02 3.16E-04 7.79E-04 9.18E-04 3.20E-03 1.06E-02 1.41E-02

8 1.98E+00 1.23E+00 2.47E-13 8.33E-14 1.64E+01 4.26E+00 3.51E+01 9.10E+00

9 1.48E+02 3.45E+01 4.20E+01 9.10E+00 2.47E+01 2.06E+01 4.25E+01 1.15E+01

10 1.98E+01 4.27E+00 4.96E+00 2.32E+01 3.79E+02 2.23E+02 8.02E+02 3.24E+02

11 4.13E+03 1.69E+03 1.84E+03 3.01E+02 8.81E+02 4.82E+02 2.12E+03 5.49E+02

12 2.49E+00 2.67E-01 1.80E-01 5.07E-02 2.30E+00 5.34E-01 1.82E+00 7.15E-01

13 3.76E-01 9.14E-02 2.29E-01 5.60E-02 1.78E-01 3.21E-02 2.06E-01 4.06E-02

14 3.18E-01 5.59E-02 2.19E-01 2.90E-02 4.01E-01 7.93E-02 2.01E-01 3.69E-02

15 1.74E+01 1.03E+00 3.95E+00 1.19E+00 5.12E+00 3.87E+00 3.83E+00 9.48E-01

16 8.42E+00 4.87E-01 9.53E+00 6.81E-01 1.21E+01 2.51E-01 1.05E+01 6.60E-01

17 3.12E+05 2.43E+05 7.99E+04 7.15E+04 1.11E+05 7.38E+04 1.52E+05 1.17E+05

18 2.97E+03 2.89E+03 1.23E+02 7.32E+01 2.05E+03 3.47E+03 2.71E+03 3.06E+03

19 6.78E+00 9.82E-01 5.61E+00 1.28E+00 7.16E+00 1.26E+00 6.35E+00 1.57E+00

20 9.51E+02 7.09E+02 9.33E+02 8.87E+02 2.13E+04 1.20E+04 4.13E+02 2.84E+02

21 1.51E+05 1.22E+05 2.51E+04 1.73E+04 7.90E+04 6.01E+04 5.22E+04 4.17E+04

22 1.56E+02 1.08E+02 2.13E+02 8.40E+01 1.69E+02 9.92E+01 3.10E+02 1.21E+02

23 3.14E+02 5.18E-02 3.15E+02 3.46E-12 3.15E+02 1.71E-13 3.15E+02 6.47E-02

24 2.11E+02 4.58E+00 2.25E+02 1.15E+00 2.30E+02 5.76E+00 2.07E+02 1.02E+01

25 2.00E+02 7.12E-01 2.05E+02 1.53E+00 2.06E+02 1.80E+00 2.06E+02 1.06E+00

26 1.11E+02 4.34E+01 1.00E+02 5.93E-02 1.12E+02 3.22E+01 1.32E+02 4.48E+01

27 3.86E+02 3.88E+01 4.02E+02 1.46E+00 3.66E+02 6.09E+01 4.40E+02 7.96E+01

28 7.12E+02 3.69E+01 8.83E+02 5.38E+01 9.16E+02 9.19E+01 1.13E+03 3.06E+02

29 2.02E+03 3.34E+02 9.11E+02 9.63E+01 1.68E+03 5.53E+02 5.27E+05 2.61E+06

30 3.49E+03 1.03E+03 1.82E+03 3.55E+02 3.03E+03 8.60E+02 2.22E+03 7.96E+02
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Table 3.7: Mean and Standard Deviation of error value obtained by TPHS,
DERAND1BIN, DERAND1BIN-SPS, and DMS-PSO-HS on IEEE CEC 2014
benchmark functions.

TPHS DERAND1BIN DERAND1BIN-SPS DMS-PSO-HS

Function Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 1.03E+07 5.00E+06 8.81E+07 1.88E+07 3.28E+07 9.55E+06 4.61E+06 3.09E+06

2 1.07E+06 1.81E+05 1.72E+03 4.93E+02 1.55E+03 4.18E+02 8.44E-01 1.99E+00

3 2.43E+03 1.59E+03 2.55E+01 5.04E+00 1.90E+01 2.97E+00 3.74E+03 4.73E+03

4 1.17E+02 2.49E+01 1.23E+02 5.77E+00 8.97E+01 6.70E+00 3.58E+01 3.63E+01

5 2.09E+01 6.36E-02 2.09E+01 5.77E-02 2.09E+01 5.51E-02 2.01E+01 1.00E-02

6 2.89E+00 8.16E-01 3.03E+01 1.08E+00 4.59E+00 1.40E+00 1.05E+01 5.97E+02

7 9.09E-01 5.11E-02 4.34E-02 7.93E-02 1.05E-03 7.41E-04 3.13E-02 1.20E-02

8 1.98E+00 1.23E+00 1.20E+02 6.53E+00 8.65E+01 1.13E+01 0.00E+00 0.00E+00

9 1.48E+02 3.45E+01 1.95E+02 8.96E+00 1.78E+02 1.16E+01 3.16E+01 8.92E+02

10 1.98E+01 4.27E+00 3.91E+03 2.38E+02 2.42E+03 2.66E+02 8.09E-01 9.99E+02

11 4.13E+03 1.69E+03 6.55E+03 2.48E+02 6.19E+03 2.71E+02 1.69E+03 8.95E+02

12 2.49E+00 2.67E-01 2.08E+00 2.05E-01 9.36E-01 3.52E-01 1.93E-01 1.20E+03

13 3.76E-01 9.14E-02 4.88E-01 4.56E-02 4.15E-01 5.06E-02 2.49E-01 1.30E+03

14 3.18E-01 5.59E-02 2.94E-01 3.77E-02 2.68E-01 2.98E-02 6.42E-01 1.40E+03

15 1.74E+01 1.03E+00 1.90E+01 1.13E+00 1.73E+01 9.07E-01 5.95E+00 1.50E+03

16 8.42E+00 4.87E-01 1.25E+01 2.23E-01 1.20E+01 2.59E-01 8.82E+00 1.60E+03

17 3.12E+05 2.43E+05 2.40E+06 5.69E+05 7.71E+05 2.91E+05 9.31E+05 9.47E+05

18 2.97E+03 2.89E+03 2.88E+04 1.53E+04 1.51E+03 1.66E+03 9.73E+03 9.30E+03

19 6.78E+00 9.82E-01 1.06E+01 5.81E-01 5.77E+00 2.43E-01 8.34E+00 1.90E+03

20 9.51E+02 7.09E+02 4.58E+02 8.33E+01 2.01E+02 2.85E+01 3.79E+03 5.95E+02

21 1.51E+05 1.22E+05 1.89E+05 6.88E+04 3.93E+04 1.74E+04 1.93E+05 1.07E+05

22 1.56E+02 1.08E+02 2.10E+02 7.23E+01 1.00E+02 8.53E+01 3.13E+02 2.09E+03

23 3.14E+02 5.18E-02 3.15E+02 8.08E-05 3.15E+02 8.31E-05 3.15E+02 2.30E+03

24 2.11E+02 4.58E+00 2.09E+02 3.63E+00 2.04E+02 4.93E-01 2.26E+02 2.40E+03

25 2.00E+02 7.12E-01 2.23E+02 2.80E+00 2.10E+02 1.69E+00 2.07E+02 2.50E+00

26 1.11E+02 4.34E+01 1.00E+02 4.77E-02 1.00E+02 3.87E-02 1.58E+02 2.48E+01

27 3.86E+02 3.88E+01 3.89E+02 3.73E+01 3.33E+02 3.74E+00 5.75E+02 2.64E+01

28 7.12E+02 3.69E+01 9.77E+02 2.78E+01 7.99E+02 1.87E+01 9.25E+02 2.77E+03

29 2.02E+03 3.34E+02 1.18E+04 3.05E+03 2.46E+03 2.82E+02 4.20E+06 4.85E+06

30 3.49E+03 1.03E+03 5.59E+03 8.73E+02 2.55E+03 5.23E+02 1.09E+04 1.07E+04
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Table 3.8: Mean and Standard Deviation of error value obtained by TPHS,
CMA-ES and SSO on IEEE CEC 2014 benchmark functions.

TPHS CMA-ES SSO

Function Mean Std Dev Mean Std Dev Mean Std Dev

1 1.03E+07 5.00E+06 0.00E+00 0.00E+00 3.87E+09 1.21E+09

2 1.07E+06 1.81E+05 0.00E+00 0.00E+00 1.42E+11 2.21E+10

3 2.43E+03 1.59E+03 5.30E+04 1.60E+05 1.12E+07 1.57E+07

4 1.17E+02 2.49E+01 3.10E-01 1.00E+00 4.40E+04 1.03E+04

5 2.09E+01 6.36E-02 2.00E+01 7.20E+01 2.14E+01 7.98E-02

6 2.89E+00 8.16E-01 3.20E+01 8.30E+00 4.92E+01 2.77E+00

7 9.09E-01 5.11E-02 1.20E-03 3.40E+03 1.29E+03 1.89E+02

8 1.98E+00 1.23E+00 4.40E+02 8.20E+01 5.22E+02 3.21E+01

9 1.48E+02 3.45E+01 6.50E+02 1.50E+02 6.41E+02 3.84E+01

10 1.98E+01 4.27E+00 5.10E+03 6.20E+02 9.42E+03 4.27E+02

11 4.13E+03 1.69E+03 5.00E+03 7.60E+02 9.60E+03 5.11E+02

12 2.49E+00 2.67E-01 4.60E-02 2.90E+02 6.74E+00 1.42E+00

13 3.76E-01 9.14E-02 3.30E-01 2.00E+01 1.11E+01 1.44E+00

14 3.18E-01 5.59E-02 5.30E-01 2.20E+01 4.38E+02 6.62E+01

15 1.74E+01 1.03E+00 3.60E+00 9.10E+01 3.74E+07 2.26E+07

16 8.42E+00 4.87E-01 1.40E+01 4.20E+01 1.43E+01 2.13E-01

17 3.12E+05 2.43E+05 2.00E+03 4.70E+02 4.15E+08 2.10E+08

18 2.97E+03 2.89E+03 2.80E+02 1.30E+02 1.04E+10 3.43E+09

19 6.78E+00 9.82E-01 9.40E+00 1.90E+00 1.53E+03 5.75E+02

20 9.51E+02 7.09E+02 2.00E+04 9.50E+04 2.42E+07 2.53E+07

21 1.51E+05 1.22E+05 1.00E+03 3.10E+02 2.22E+08 1.13E+08

22 1.56E+02 1.08E+02 4.20E+02 2.30E+02 4.26E+04 4.90E+04

23 3.14E+02 5.18E-02 3.15E+02 3.50E+13 2.27E+03 5.91E+02

24 2.11E+02 4.58E+00 3.10E+02 2.40E+02 5.59E+02 3.63E+01

25 2.00E+02 7.12E-01 2.00E+02 2.30E+03 4.97E+02 7.14E+01

26 1.11E+02 4.34E+01 1.10E+02 5.90E+01 3.67E+02 1.41E+02

27 3.86E+02 3.88E+01 4.50E+02 1.20E+02 2.09E+03 3.65E+02

28 7.12E+02 3.69E+01 4.60E+03 3.20E+03 8.79E+03 7.61E+02

29 2.02E+03 3.34E+02 2.00E+02 1.70E+00 8.96E+08 2.53E+08

30 3.49E+03 1.03E+03 9.50E+02 3.30E+02 1.44E+07 8.93E+06
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Table 3.9: Wilcoxon rank test results between the TPHS and 15 compared algo-
rithms.

FUNCTION NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TPHS/HS = - + = - + - - - - - - + + -

TPHS/GHS + + + + = + + + + + + = + + +
TPHS/IHS - - + - - + - - - - - - + + -

TPHS/SAGHS - - = - - + - - - - - - + = -
TPHS/CL-PSO - - - - - + - - - + - - - - -
TPHS/APSO + + + + + + + + + + + + + + +

TPHS/DNL-PSO - - - - = + - + - + - - - + -
TPHS/HCL-PSO - - - - - + - - - - - - - - -
TPHS/SL-PSO - - + - = - - + - + + - - + -
TPHS/SR-PSO - - - - = = - + - + - - - - -
TPHS/CMA-ES - - + - - + = + + + + - = + -

TPHS/SSO + + + + + + + + + + + + + + +
TPHS/DERAND1BIN + - - = + + - + + + + - + - +

TPHS/DERAND1BIN-SPS - + + - + + - + - + + - + - -
TPHS/DMS-PSO-HS - - + - - + - - - - - - - + -

FUNCTION NO. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TPHS/HS + + + + + + + + + + + + + - +

TPHS/GHS + + + + + + + + + + + + + + +
TPHS/IHS + = = + + = + + + + + + + - -

TPHS/SAGHS + + + + = + + + + + + + + - -
TPHS/CL-PSO + + - = + = + + + = = + + - -
TPHS/APSO + + + + + + + - - = + - - - -

TPHS/DNL-PSO + - + - + = + + + + - + + + -
TPHS/HCL-PSO + - - - = - + + + + - + + + -
TPHS/SL-PSO + - - = + - = + + + - = + + -
TPHS/SR-PSO + - = = - - + = + = = + + + -
TPHS/CMA-ES + - - + + - + + + + = + + - -

TPHS/SSO + + + + + + + + + + + + + + +
TPHS/DERAND1BIN + + + + - + + + - + - + + + +

TPHS/DERAND1BIN-SPS + + - - - - - + + + = - + + -
TPHS/DMS-PSO-HS + - - - - - - - - - - - - - -
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Chapter 4
Shrinking Memory Harmony Search Algorithm for
Continuous Optimization

4.1 Introduction

The efficiency of meta heuristic algorithms depend on the extent of balance between diversification

and intensification during the course of the search. Intensification also called exploitation is the ability

of an algorithm to exploit the search space in the vicinity of the current good solution while diversifi-

cation also called exploration is the process of exploring the new regions of a large search space thus

allows dissemination of the new information into the population. Proper balance between these two

contradicting characteristics is a must to enhance the performance of the algorithm.

A large Harmony Memory size although increases the exploration of the HS algorithm however re-

duces its exploitation capabilities particularly towards the end of execution and on the other hand

small size of Harmony memory reduces its capabilities to escape local optimal. Based on the idea of

balanced intensification and diversification a new Harmony Search variant called Shrinking Memory

Harmony Search algorithm (SMHS) is proposed in this chapter. SMHS attempts to strike a balance

between exploration and exploitation by concentrating on diversification in the beginning using ex-

tended memory and broad Bandwidth and then gradually switching to intensification by shrinking

harmony memory and utilizing local search operator. The performance of SMHS is compared with

nineteen state-of-the-art meta heuristic algorithms (four Harmony Search, five Particle Swarm opti-

mization , eight Differential evolution and one variant each of Genetic Algorithm and Evolutionary

Strategies) on all the 30 IEEE CEC 2014 benchmark functions (Liang et al., 2013). The numerical

results demonstrate the superiority of the proposed SMHS algorithm on multimodal function and its

performance is outstanding on composition functions. Composition functions are combined, rotated,

shifted, and biased version of other unimodal and multi-modal test functions and mimic the difficulties

of real search spaces by providing a massive number of local optima and different shapes for different

regions of the search space. The proposed SMHS has not only outperformed several state-of-the-art

algorithms like EPSDE, SaDE, CL-PSO, DNL-PSO, CoDE in terms of accuracy of results but is also

4900%, 4300%, 4000%, 2000%, 1088% respectively computationally efficient than them.

The organization of this chapter is as follows. Section 4.2 provides a detailed description about the

proposed SMHS algorithm, Section 4.3 provides detail about numerical experimentation, analysis of
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results and comparison with other state-of-the-art metaheuristic algorithms and finally the chapter

concludes with Section 4.4.

4.2 Proposed Shrinking Memory harmony search (SMHS) algorithm

The observation that small value of Harmony Memory Size (HMS) seizes standard HS to escape local

optimal and on the other hand a large size of Harmony memory reduces its exploitation capabilities

led us to the development of SMHS. The SMHS dynamically shrinks the size of Harmony Memory,

uses dynamically adjusting BW/PAR, a new mechanism of generating harmony and a simple local

search operator to create a balance between exploration and exploitation.

The pseudo code of SMHS is shown as Algorithm 6. Line no. 9 to 25 generate a new harmony using

HM or randomization however there is a significant difference adopted by standard HS and the SMHS

in generating new harmony. if the ith component of the new harmony is generated using HM in stan-

dard HS, ith component of some random harmony from HM is assigned to it however in SMHS either

the ith component of some random harmony from HM is assigned to it (step 14) or mean of ith com-

ponent of two randomly selected harmonies from HM (step 12) is assigned to it. The ith component

of harmony if generated using HM is slightly altered (determined by BW parameter) with probability

PAR in step 17 (Pitch adjustment). Incase the Pitch adjustment causes the harmony to move outside

the specified bounds, it is set at bounds in step 18 and 19. The newly generated harmony (H) replaces

the worst harmony in HM if H is better than it (step 28 and 29). The step 32 to 45 constitutes the local

search operator. The ith component of the best harmony is slightly altered (within the range deter-

mined by parameter BW2) with probability P. The new harmony produced after local search (refereed

as TEMP) replaces the parent harmony in case it is better than it. Even though in this algorithm the

local search operator is executed towards the last quarter of algorithm execution however it can be

adjusted depending on the problem in hand. After every L iterations the size of Harmony Memory

shrinks by deleting the worst harmony from it and adjusting the HMS parameter accordingly.

Wang and Huang (Wang and Huang, 2010) suggested that the value of the parameter PAR and BW

should be decreased with time to prevent overshoot and oscillations. This would help the algorithm

to diversify the search space of the solution vectors and prevent the solution from getting trapped in

local optimal. Thus it seems reasonable that decreasing the value of the parameter PAR and BW with

iterations could fine tune the final solutions. Therefore PAR and BW are linearly decreased in step

number 6 and 7 of Algorithm (6).

It is easy to verify the asymptotic time complexity of the proposed SMHS algorithm remains same

as that of standard HS i.e. O(N.D) where D is the dimension of the problem in hand and N is the
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number of function evaluations allowed.

In Algorithm (6) PARmin, PARmax, BWmin, BWmax, HMSmin respectively denote minimum pitch

adjustment rate, maximum pitch adjustment rate, minimum bandwidth, maximum bandwidth mini-

mum size of Harmony memory. P is the probability of altering ith component of harmony selected for

local search and BW2 controls the degree of exploitation around it. The other parameters are the same

as already defined for Algorithm (1). The key differences between standard HS and proposed SMHS

are:

1. In SMHS both PAR and BW are linearly decreased as per Equation (4.1) and (4.2) respectively

whereas both PAR and BW remain constant in standard HS.

PARgn = PARmax +
(PARmax − PARmin)

NI
× (gn− 1) (4.1)

where PARgn is pitch adjusting rate for each generation, PARmin and PARmax is the minimum

and maximum pitch adjusting rate respectively, NI is the maximum number of generations, gn

is generation number.

BWgn = BWmax −
BWmax −BWmin

NI
× (gn− 1) (4.2)

where BWgn is band width for each generation, BWmin and BWmax is the minimum and maxi-

mum bandwidth respectively, NI is the maximum number of generations, gn is generation num-

ber.

2. The Harmony Memory is gradually shrieked by deleting worst harmony from HM after every L

generations.

3. The ith component of new harmony is either generated by using ith component of some random

harmony from HM or by taking mean of ith component of two random harmonies from HM.

4. Towards the end (last quarter in this chapter) of the execution the algorithm shifts focus to

exploitation by parallely performing local search around the best harmony.

4.3 Numerical Experiments

In this section performance of the proposed SMHS algorithm is evaluated on 30 dimensional IEEE

CEC 2014 Benchmark functions (Liang et al., 2013). The IEEE CEC 2014 Benchmark suite has

already been explained in Chapter 2, Section 2.4.1.

The SMHS algorithm has been compared with nineteen state-of-the-art algorithms including four

59



Algorithm 6 SHRINKING MEMORY HARMONY SEARCH ALGORITHM (SMHS)
1: Define HMCR,PARmin, PARmax, BWmin, BWmax, BW2.
2: Set HMS = 100×D, HMSmin = 5, L = D, P = 0.3
3: Initialize Harmony Memory (HM).
4: NOF=HMS /* NOF is a counter representing number of function evaluations performed*/
5: while NOF ≤Max FES do
6: Adjust PAR as per Equation (4.1).
7: Adjust BW as per Equation (4.2).
8: Find Worst harmonies in HM.
9: for i = 1 to D do

10: if (rand ≤ HMCR) then
11: if (rand ≤ 0.5) then
12: Hi = (HM j

i +HMk
i )/2 where j=rand int(1,HMS) and k=rand int(1,HMS)

13: else
14: Hi = HM j

i where j=rand int(1,HMS)
15: end if
16: if (rand ≤ PAR) then
17: Hi = Hi ± rand×BW
18: Set Hi = LBi if Hi < LBi

19: Set Hi = UBi if Hi > UBi

20: /* LBi and UBi are respectively upper and lower bounds of dimension i*/
21: end if
22: else
23: Generate Hi randomly within the allowed bounds.
24: end if
25: end for
26: Evaluate harmony H
27: NOF++
28: if (H is better than Worst Harmony in HM) then
29: Update HM by replacing Worst harmony by H.
30: end if
31: if NOF ≥ .75×Max FES then
32: /* Perform local search in the last quarter of execution */
33: TEMP=HMBest /* Select Best harmony for intensification */
34: for i = 1 to D do
35: if rand ≤ P then
36: TEMPi = TEMPi ±BW2× rand /* Local search by slightly altering best harmony

*/
37: end if
38: Set TEMPi = LBi if TEMPi < LBi

39: Set TEMPi = UBi if TEMPi > UBi

40: end for
41: Evaluate harmony TEMP
42: NOF++
43: if TEMP is better than HMBest then
44: HMBest = TEMP /*Update Best harmony*/
45: end if
46: end if
47: if HMS ≥ HMSmin then
48: Reduce size of HM by deleting Worst harmony and Set HMS=HMS-1 after every L iterations
49: end if
50: end while
51: print Best Harmony in HM as solution.
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variants of Harmony search, five variants of Particle Swarm optimization, Eight Differential Evolution

variants, one variant each of Genetic Algorithm and Evolutionary strategies. The experimentation has

been carried out as per the instructions laid down in IEEE CEC 2014 Benchmark suite.

4.3.1 Comparison of SMHS with some state-of-the-art Harmony Search variants

In this section SMHS is compared with four variants of HS algorithm namely standard Harmony

search (HS) (Geem et al., 2001), Global Best Harmony Search (GHS) (Omran and Mahdavi, 2008)

, Improved Harmony Search (IHS) (Mahdavi et al., 2007) and Self-adaptive Global Best Harmony

Search (SAGHS) (Pan et al., 2010b). The parameter setting adopted for standard HS, GHS, IHS has

been taken from (El-Abd, 2013) and is shown in Table 4.1. Obtaining an optimal parameter setting

for a metaheuristic algorithm is a hyper optimization problem, however the parameter setting shown

in Table 4.1 for SMHS was found out to be optimal for most if not all the problem instances.

Table 4.1: Parameter setting of algorithms.

Algorithm HMS HMCR PAR BW

HS 5 .9 .3 .001

GHS 5 .9 PARmin = 0.01, PARmax = 0.99 —

IHS 5 .95 PARmin = 0.01, PARmax = 0.99 BWmin = .00001, BWmax = UB−LB
20

SAGHS 5 HMCRm = 0.98 PARm = 0.9 BWmin = .00005, BWmax = UB−LB
10

SMHS - .9 PARmin = 0.3, PARmax = 0.99 BWmin = .00001, BWmax = UB−LB
20

, BW2 = 1

HMS = 100×D, HMSmin = 5, L = D, P = 0.3

The results reported in this chapter are in the format as specified and required in IEEE CEC 2014

benchmark suite. Tables 4.2, 4.3 and 4.4 show the results obtained by the five algorithms on 30 di-

mensional IEEE 2014 Benchmark functions. The recorded results are the minimum, maximum, mean,

median, and standard deviation of the error value obtained as specified in IEEE 2014 Benchmark suite.

The error is the absolute value of difference between obtained objective function value by the algo-

rithm and the actual function value. In all the Tables (4.2 through 4.4) the best result obtained are

highlighted by bold font.

A pair wise Wilcoxons rank-sum test at 5% level of significance is used to statistically compare the

performance of the five competing algorithms to confirm if the difference in results is statistically

significant. The sampling data used for applying the statistical test has been obtained by performing

51 independent runs of each algorithm. The mean results of the best performing algorithm has been
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superscripted by ? if the results produced are statistically significant comparing with other algorithms.

The presence of ? on two or more algorithms for a function indicates a tie when compared using sta-

tistical testing e.g. The presence of ? on SAGHS and IHS for function 5 (Table 4.2) indicates SAGHS

and IHS have performed significantly better than all other algorithms on function 5 however there is

no significant difference between the two.

For unimodal functions (1 through 3) SMHS produced the best results in two instances and best mean

results with minimum standard deviation in two instances (statistically significant in both cases). The

worst results produced by SMHS are better than worst results of all other algorithms. Thus SMHS

has outperformed other algorithms both in terms of efficiency and reliability on unimodal functions.

In case of 13 simple unimodal functions SMHS, IHS, SAGHS produced the best mean results in 8

(statistically significant in 7 cases), 3, 3 instances respectively and produced the best results in 7, 5,

2 instances respectively. SMHS produced better worst results compared to others in 6 instances fol-

lowed by HS, SAGHS and IHS in 3,2,4 instances respectively. SMHS produced the best mean results

with minimum standard deviation in 6 instances followed by IHS, SAGHS in 3, 2 instances respec-

tively. Thus proposed SMHS has significantly outperformed its variants both in terms of accuracy and

stability on simple multimodal functions. In case of hybrid multimodal functions proposed SMHS

algorithm produced significantly best mean results with minimum standard deviation in all the six

instances. In composition functions SMHS has obtained significant best mean results in 6 instances

followed by SAGHS and GHS in 1 instance each. SMHS produced the best mean results with mini-

mum standard deviation in 4 instances followed by SAGHS in 2 instances.

Table 4.5 displays the rank obtained by SMHS when compared with HS variants, it further shows

the average rank on unimodal, multimodal and composition functions. The SMHS algorithm outper-

formed all other HS variants on both unimodal and multimodal functions with average rank 1.66 and

1.73 respectively followed by SAGHS with average rank 2 on unimodal functions and 2.57 on mul-

timodal functions. On composition functions the performance of SMHS is outstanding with average

rank of 1.57 followed by SAGHS with average rank 2.28. Friedman test conducted at 5% level of sig-

nificance confirms that the obtained ranking is statistically significant on multimodal and composition

functions with P value of 4.148E-11 and 4.1E-3 respectively.

Thus the proposed SMHS algorithm outperformed other competing algorithms on all classes of func-

tions. The performance of SMHS is particularly outstanding on hybrid and composition functions

wherein it obtained the average rank of 1 and 1.57 respectively. The hybrid and composition functions

are considered to be harder than simple multimodal functions.
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4.3.1.1 Convergence Behavior

The convergence graphs of all the benchmark functions are plotted in Figures 4.1, 4.2, 4.3 and 4.4 to

study the convergence behavior of algorithms. The horizontal line represents the number of function

evaluations and the vertical line represents the mean of absolute error of 51 runs in logarithmic scale.

As is evident from most of the convergence graphs the SMHS algorithm exhibits slow convergence

speed in the beginning of execution, the reason being large size of Harmony Memory used, however it

helps SMHS to explore vast search space and hence increase exploration initially. Due to the exploita-

tion of the harmonies by performing random search around the best harmony (Local search) towards

the end of execution most of the graphs (particularly evident for Functions 1, 2, 3, 4, 5, 6, 7, 9 10,

11, 12, 15, 17, 18, 20, 28, 29, 30) depict that SMHS makes steep progress even towards the end of

execution. Thus gradually decreasing the size of harmony memory and using the local search operator

creates a balance between exploration and exploitation and hence increases the performance of the

proposed SMHS on most of the benchmark functions.
4.3.2 Comparison of SMHS with some state-of-the-art metaheuristic Algorithms

In this section proposed SMHS algorithm is compared with five state-of-the-art variants of PSO al-

gorithm, Eight Differential Evolution variants, one GA variant and one ES variant on 30 dimensional

IEEE CEC 2014 benchmark problems. The mean and standard deviation of 51 runs is reported in Ta-

bles 4.6, 4.7, 4.9, 4.10, 4.11, 4.13 . The results of all the algorithms has been obtained by coding them

as per CEC 2014 benchmark specifications and adopting the parameter setting as given in respective

papers. In all the six Table (4.6, 4.7, 4.9, 4.10, 4.11, 4.13) the mean results of all algorithm are in bold

face if the corresponding algorithm performs better than SMHS algorithm. The paired Wilcoxons

rank-sum test is conducted at 5% significance level to judge the significant difference of performance

between the proposed SMHS algorithm and competing algorithm. The cases are marked with +, -, and

= when the performance of SMHS is significantly better than, worse than, or similar to the competing

algorithm. The Wilcoxons rank-sum test value is represented as column W.
4.3.2.1 Comparison of SMHS with PSO variants

In this section proposed SMHS algorithm is compared with state-of-the-art PSO variants namely

: Comprehensive Learning PSO (CL-PSO) (Liang et al., 2006), Dynamic Neighborhood Learning

PSO(DNL-PSO) (Nasir et al., 2012), Heterogeneous Comprehensive Learning PSO (HCL-PSO) (Lynn

and Suganthan, 2015), Social Learning PSO (SL-PSO) (Cheng and Jin, 2015), Self Regulating PSO

(SR-PSO) (Tanweer et al., 2015) on 30 dimensional IEEE CEC 2014 benchmark problems and the

results are reported in Tables 4.6 and 4.7 .
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On unimodal functions CL-PSO obtained significantly better results on two instances whereas SMHS

obtained significantly better results on one instance. For simple multimodal functions SMHS obtained

better results on eight instances compared to CL-PSO that managed to obtain better results on three

instances and on the remaining one instance the difference is not statistically significant. In case of hy-

brid multimodal functions out of six instances SMHS obtained better results on five instances whereas

on the remaining one instance the difference is not statistically significant. In case of composition

functions SMHS outperformed CL-PSO on seven instances and on the remaining one instances the

difference is not significant.

On unimodal functions both SMHS and DNL-PSO outperformed each other on one instance whereas

on the remaining one instance the difference is not statistically significant. On simple multimodal

functions SMHS outperformed DNL-PSO on ten instances whereas latter outperformed former on

just one instance and in remaining two cases the difference is not statistically significant. In case of

hybrid multimodal functions SMHS significantly outperformed DNL-PSO on all the six instances. In

case of composition functions SMHS outperformed DNL-PSO on six instances whereas DNL-PSO

outperformed SMHS on two instances.

On unimodal functions both SMHS and HCL-PSO outperformed each other on one instance whereas

on the remaining one instance the difference is not statistically significant. On simple multimodal

functions SMHS outperformed HCL-PSO on five instances whereas HCL-PSO outperformed SMHS

on five instances and on remaining three instances the difference is not statistically significant. In

case of hybrid multimodal functions SMHS outperformed HCL-PSO on three instances and on the re-

maining three instances the difference is not statistically significant. In case of composition functions

SMHS outperformed HCL-PSO on seven instances and on remaining one instance the difference is

not statistically significant.

On unimodal functions SMHS outperformed SL-PSO on two instance whereas on the remaining one

instance the difference is not statistically significant. On simple multimodal functions SMHS outper-

formed SL-PSO on eight instances whereas the latter outperformed former on three instance and on

remaining two cases the difference is not statistically significant. In case of six hybrid multimodal

functions SMHS outperformed SL-PSO on five instances and on the remaining one instance the dif-

ference is not statistically significant. In case of composition functions SMHS outperformed SL-PSO

on seven instances and on the remaining one instance the difference is not statistically significant.

On unimodal functions SR-PSO outperformed SMHS on two instance whereas latter outperformed

former on one instance. On simple multimodal functions SMHS outperformed SR-PSO on nine in-
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stances whereas SR-PSO outperformed SMHS on two instances and on remaining two cases the dif-

ference is not statistically significant. In case of hybrid multimodal functions SMHS significantly

outperformed SR-PSO on all the six instances. In case of composition functions SMHS outperformed

SR-PSO on seven instances whereas SR-PSO outperformed SMHS on just one instance.

Table 4.8 displays the rank obtained by SMHS when compared with PSO variants, it further shows

the average rank on unimodal, multimodal and composition functions. In terms of average ranking

on unimodal functions SR-PSO and HCL-PSO performed better than SMHS; SL-PSO and CL-PSO

performed inferior whereas performance of DNL-PSO and SMHS is same. SMHS with average rank

1.96 outperformed all variants of PSO on multimodal functions followed by HCL-PSO with average

rank of 2.67. The performance of SMHS is particulary impressive on composition functions where its

average rank is 1.625 followed by DNL-PSO with average rank 2.625. Friedman test conducted at 5%

level of significance confirms that the obtained ranking is statistically significant on multimodal and

composition functions with P value 1.5568E-6 and 2.6E-3 respectively.

It can be concluded even though the performance of SMHS is not very impressive on unimodal func-

tions however it has significantly outperformed all variants of PSO on multimodal functions. SMHS

with average rank of 1.96 has outstanding performance on composition functions.

4.3.2.2 Comparison of SMHS with DE variants

In this section proposed SMHS is compared with eight state-of-the-art variants of Differential algo-

rithm namely: Standard DE (derand1bin) (Guo et al., 2015), jDE (Brest et al., 2006), JADE (Zhang

and Sanderson, 2009), SaDE (Qin et al., 2009), EPSDE (Mallipeddi et al., 2011), CoDE (Wang et al.,

2011), derand1bin-SPS (Guo et al., 2015), MPEDE (Wu et al., 2016) and the results are reported in

Tables 4.7, 4.9 and 4.11.

On unimodal functions derand1bin significantly outperformed SMHS on two instances whereas SMHS

obtained better results on one instance. For simple multimodal functions SMHS outperformed de-

rand1bin on twelve instances and on the remaining one instance the difference is not statistically

significant. In case of hybrid multimodal functions SMHS obtained better results on five instances

whereas on the remaining one instance the difference is not statistically significant. In case of com-

position functions SMHS outperformed derand1bin on seven instances whereas derand1bin outper-

formed SMHS on just one instance.

jDE significantly outperformed SMHS on all the three instances of unimodal functions. On simple

multimodal functions SMHS outperformed jDE on eight instances whereas jDE outperformed SMHS

on five instances. jDE significantly outperformed SMHS on five out of six instances of hybrid multi-
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modal functions. In case of composition functions SMHS significantly outperformed jDE on all the

eight instances .

JADE significantly outperformed SMHS on all the three instances of unimodal functions. On sim-

ple multimodal functions SMHS outperformed JADE on four instances whereas JADE outperformed

SMHS on six instances and on the remaining three instances the difference is not statistically signif-

icant. JADE outperformed SMHS on three instances of hybrid multimodal functions whereas latter

outperformed former on two instances and in the remaining two cases the difference is not statistically

significant. In case of composition functions SMHS outperformed JADE on seven instances and on

the remaining one instance the difference is not statistically significant.

In case of unimodal functions SaDE outperformed SMHS on two instances whereas SMHS outper-

formed SaDA on one instance. On simple multimodal functions SMHS outperformed SaDE on seven

instances whereas SaDE outperformed SMHS on three instances and on the remaining two instances

the difference is not statistically significant. SaDE outperformed SMHS on one instances of hybrid

multimodal functions whereas latter outperformed former on three instances and in the remaining two

instances the difference is not statistically significant. In case of composition functions SMHS signif-

icantly outperformed SaDE on all the eight instances.

In case of unimodal functions EPSDE outperformed SMHS on all the three instances. On simple

multimodal functions SMHS outperformed EPSDE on eight instances whereas EPSDE outperformed

SMHS on five instances. In case of hybrid multimodal functions both EPSDE and SMHS outper-

formed each other on two instances whereas on remaining two instances the difference is not statis-

tically significant. In case of composition functions SMHS outperformed EPSDE on four instances

whereas EPSDE outperformed SMHS on three instance and in the remaining one instances the differ-

ence is not statistically significant.

In case of unimodal functions CoDE outperformed SMHS on all the three instances. On simple mul-

timodal functions SMHS outperformed CoDE on four instances whereas CoDE outperformed SMHS

on six instances and on remaining three instances the difference is not statistically significant. In case

of hybrid multimodal functions CoDE outperformed SMHS on five instances and on the remaining

one instance the difference is not statistically significant. In case of composition functions SMHS

significantly outperformed CoDE on seven and on the remaining one instances the difference is not

statistically significant.

In case of unimodal functions derand1bin-sps outperformed SMHS on two instances whereas lat-

ter outperformed former on one instance. On simple multimodal functions SMHS outperformed
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derand1bin-sps on eleven instances whereas derand1bin-sps outperformed SMHS on one instances

and on remaining one instances the difference is not statistically significant. In case of hybrid mul-

timodal functions SMHS outperformed derand1bin-sps on five instances whereas latter outperformed

former on just one instance. In case of composition functions SMHS significantly outperformed

derand1bin-sps on seven instances whereas derand1bin-sps outperformed SMHS on just one instance.

In case of unimodal functions MPEDE outperformed SMHS on all the three instances. On simple

multimodal functions SMHS outperformed MPEDE on four instances whereas MPEDE outperformed

SMHS on six instances and on the remaining two instances the difference is not statistically signifi-

cant. In case of hybrid multimodal functions MPEDE outperformed SMHS on all the six instances.

In case of composition functions SMHS significantly outperformed MPEDE on six instances whereas

MPEDE outperformed SMHS on two instance.

Table 4.12 displays the rank obtained by SMHS and DE variants on benchmark functions along with

average rank on unimodal, multimodal and composition functions. The performance of SMHS is very

poor as it ranks last but one on unimodal functions. However on multimodal functions with an av-

erage rank of 3.48 the algorithm outperforms all variants of DE except MPEDE having average rank

3.19 whereas CoDE ranks third. In terms of time complexity SMHS is 169% faster than MPEDE and

is 1088% faster than CoDE. On composition functions the performance of SMHS is outstanding as

it ranks first with an average rank of 1.88 followed by MPEDE with average rank 3.63. Friedman

test conducted at 5% level of significance confirms that the obtained ranking is statistically signifi-

cant on unimodal, multimodal and composition functions with P value 0.0152, 4.711E-16 and 0.0005

respectively.

4.3.2.3 Comparison of SMHS with GA and ES variant

In this section the proposed SMHS algorithm is compared with state-of-the-art variant of Genetic Al-

gorithm (GL-25) (Garcı́a-Martı́nez et al., 2008) and Evolutionary Strategies (CMA-ES) (Hansen and

Ostermeier, 2001) and the results are reported in Table 4.13.

In case of unimodal functions GL-25 significantly outperformed SMHS on two instances whereas

latter outperformed former on one instance. On simple multimodal functions SMHS outperformed

GL-25 on eleven instances whereas GL-25 outperformed SMHS on just one instances and in remain-

ing one instance the difference is not statistically significant. In case of hybrid multimodal functions

SMHS significantly outperformed GL-25 on four instances and on the remaining two cases the dif-

ference in not statistically significant. In case of composition functions SMHS outperformed GL-25

on five instances whereas GL-25 outperformed SMHS on two instance and on the remaining one in-
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stances the difference is not statistically significant.

In case of unimodal functions CMA-ES significantly outperformed SMHS on all the three instance.

On simple multimodal functions SMHS outperformed CMA-ES on nine instances whereas CMA-ES

outperformed SMHS on three instances and on the remaining one instance the difference is not sta-

tistically significant. In case of hybrid multimodal functions SMHS outperformed CMA-ES on five

instances whereas latter outperformed former on one instance and on the remaining one instances the

difference in not statistically significant. In case of composition functions SMHS significantly outper-

formed CMA-ES on all the eight instances.

It is evident from Table 4.14 that in terms of average ranking the proposed SMHS algorithm ranked

first with average rank of 1.41 followed by CMA-ES (with average rank 2.26) and GL-25 (with av-

erage rank 2.3) respectively on multimodal functions. On composition functions the performance of

SMHS is outstanding as it ranks first with an average rank of 1.25 followed by CMA-ES with average

rank 2.0. Friedman test conducted at 5% level of significance confirms that the obtained ranking on

multimodal and composition functions is statistically significant with P value of 0.0008 and 0.0137

respectively.

4.3.3 Algorithm Complexity

The time complexity of all the algorithms is computed as per the requirements laid down in IEEE CEC

2014 Benchmark suite as explained in Section 2.4.3.1 and is given in Table 4.15.

Comparing with PSO variants SR-PSO is computationally less expensive (29%)than SMHS whereas

all the other algorithms are computationally much expensive than SMHS. SMHS is 4000% computa-

tionally efficient than CL-PSO and is 2000%, 1800% and 280% faster than DNL-PSO, HCL-PSO and

SL-PSO respectively.

Comparing with DE all the variants except jDE are computationally expensive than SMHS algorithm.

SMHS is 4900%, 4300%, 1088%, 696%, 671%, 169%, 46% respectively faster than EPSDE, SaDE,

CoDE, derand1bin-sps, derand1bin, MPEDE, JADE.

SMHS outperforms both CMA-ES and GL-25 in terms of time complexity as it is 687% faster than

CMA-ES and is 2947% faster than GL-25.

4.4 Conclusion

This chapter introduced a new variant of Harmony Search algorithm for continuous optimization prob-

lems. The proposed algorithm called SMHS exhibited the desired behavior of exploring the search

space at the beginning and exploiting good solutions towards the end. This was achieved by gradually

shrinking the size of harmony memory, modifying the method of new harmony generation and per-
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forming local search towards the end. The search area was gradually decreased by decreasing the BW

and PAR with time.

The proposed SMHS algorithm is compared with nineteen state-of-the-art evolutionary algorithms.

The bases of performance is the set of 30 benchmark functions proposed in IEEE CEC 2014. All the

criterion laid down in the benchmark suite are adopted to produce the required analysis metrics. Based

on the numerical results and statistical tests it is established that SMHS outperforms all variants of HS

algorithm on all categories of benchmark functions. SMHS outperformed all PSO variants on mul-

timodal functions. Except MPEDE proposed SMHS has outperformed all variants of DE algorithm

along with GL-25 and CMA-ES on multimodal functions. SMHS has shown outstanding performance

on composition functions by outperforming all the nineteen competing algorithms.

Baring two HS variants (HS & GHS) the proposed SMHS algorithm has outperformed all the al-

gorithms except jDE and SR-PSO in terms of time complexity. The highlights are EPSDE, SaDE,

CL-PSO, DNL-PSO, CoDE which are not only inefficient in terms of accuracy when compared with

SMHS but are 4900%, 4300%, 4000%, 2000%, 1088% respectively slower than the proposed SMHS

algorithm.
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Table 4.2: Error values obtained by HS, GHS, IHS, SAGHS and SMHS on
Function number 1 through 10.

Function Algorithm Mean Median Best Worst Std Dev
1 HS 12898393.24 11255923.52 1275742.852 37049559.42 8537988.248

GHS 553041042.4 552511218 227743276.5 893837505.7 133305128.1
IHS 5111743.106 3881430.548 756695.3035 22954475.51 4120366.238

SAGHS 3540053.152 3126725.561 676698.0242 9097762.17 1792631.959
SMHS 213023.5073? 208385.3916 80011.32734 435815.8459 64339.08784

2 HS 10747.65256? 5818.946263 143.523898 34210.70203 11490.37171
GHS 51074437927 50525661022 41517688491 62548437082 4670086400
IHS 13404.55454? 10104.81313 1.23685 36883.301 12149.68661

SAGHS 13069.93494? 9544.947033 5.507739 51220.7409 12816.30864
SMHS 11738.06579? 12230.94873 2662.934099 17669.45523 2701.945614

3 HS 4645.883677 3907.232285 8.602066 21795.92305 4121.066791
GHS 77427.47655 73782.12306 47596.07342 152794.6573 18602.35023
IHS 10165.06983 6506.020454 507.586263 55071.91822 11197.86017

SAGHS 2283.423074 1711.209265 23.510212 7912.869444 1904.61988
SMHS 73.74878692? 54.557035 1.594621 330.902643 64.08100845

4 HS 116.1209097 124.843786 63.858588 151.810694 30.22002157
GHS 6873.958106 6925.479665 3939.804568 9794.289035 1190.891016
IHS 69.07221918 75.569381 1.063157 148.728518 37.52153128

SAGHS 46.12697376 28.905198 5.849951 98.817704 26.78086338
SMHS 5.498342922? 1.497448 0.956326 69.181075 15.77162381

5 HS 20.0001781 20.000181 20.0001 20.000263 3.80903E-05
GHS 20.93591163 20.945665 20.789115 21.045615 0.056889952
IHS 19.99999631? 20 19.999924 20 1.11135E-05

SAGHS 19.99999478? 19.999999 19.999939 20 1.27776E-05
SMHS 20.01340376 20.012851 20.006312 20.060855 0.007176906

6 HS 14.42079782 14.553111 9.889294 19.775678 2.070182661
GHS 38.601612 39.094041 33.27127 41.334606 1.571050892
IHS 13.62951998 13.63003 7.500701 18.956444 2.587514228

SAGHS 13.9625838 13.942381 7.373615 19.468567 2.353850259
SMHS 4.416854647? 4.324486 1.952183 6.937839 1.15386537

7 HS 0.015450569 0.007805 0.000157 0.083465 0.018882591
GHS 318.7682459 306.216442 239.893687 435.19595 51.02624576
IHS 0.008543765? 0.007396 0 0.034336 0.009193675

SAGHS 0.033846412 0.01972 0 0.164343 0.034615109
SMHS 0.018747784 0.014623 0.002915 0.064336 0.014264143

8 HS 4.36471E-05 0.000044 0.000026 0.000056 6.66222E-06
GHS 299.3966623 300.891308 237.747273 348.061379 24.57763546
IHS 0? 0 0 0 0

SAGHS 0? 0 0 0 0
SMHS 1.922145961 1.991083 0.000407 4.981983 1.332264855

9 HS 68.56553465 66.66222 42.63296 97.505583 14.70353103
GHS 339.9753958 337.307034 302.235313 402.211249 21.68426804
IHS 77.37083616 74.674224 43.778077 112.429944 17.34141875

SAGHS 96.14477645 94.520848 59.697402 155.852986 21.11349873
SMHS 26.90473286? 26.866657 16.915199 38.804829 5.683187425

10 HS 0.203551608? 0.209773 0.105149 0.33868 0.055092209
GHS 6379.864173 6388.030002 5706.171649 7000.342841 328.4144327
IHS 0.323453412 0.259432 0.151246 1.28479 0.238371758

SAGHS 0.195483373? 0.187373 0.124916 0.353928 0.052196404
SMHS 6.989729157 6.45606 2.606772 11.669273 2.357008632
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Table 4.3: Error values obtained by HS, GHS, IHS, SAGHS and SMHS on
Function number 11 through 20.

Function Algorithm Mean Median Best Worst Std Dev
11 HS 2027.080108 2048.614204 1090.134144 2946.196146 404.4026456

GHS 7070.026547 7140.110076 6075.412077 7688.125781 348.489945
IHS 2004.250884 2008.451785 837.262591 3334.502214 506.4423186

SAGHS 2352.570445 2447.141552 1262.78901 3315.981056 504.0230796
SMHS 1805.600182? 1573.515363 865.926792 4753.75715 857.7162758

12 HS 0.16681349 0.158972 0.061356 0.268577 0.050018689
GHS 2.374949922 2.427165 1.387925 3.04436 0.321263496
IHS 0.082523078? 0.07984 0.025872 0.186043 0.037921337

SAGHS 0.122863667 0.113641 0.060261 0.247777 0.041330693
SMHS 0.625223745 0.612016 0.156168 1.09193 0.190783827

13 HS 0.540846059 0.542993 0.304645 0.871414 0.119321937
GHS 5.850542824 5.893115 5.016382 6.807992 0.415742818
IHS 0.521251902 0.50641 0.25694 0.804571 0.126179498

SAGHS 0.516630176 0.500885 0.303623 0.809245 0.118666333
SMHS 0.18662198? 0.183684 0.10202 0.298234 0.039571128

14 HS 0.442398745 0.352029 0.240295 1.057127 0.224739131
GHS 148.2893225 149.122914 120.60311 173.699911 14.04855252
IHS 0.440639039 0.347378 0.203606 0.983402 0.231951897

SAGHS 0.436484627 0.318582 0.138859 1.057207 0.252619023
SMHS 0.20902598? 0.210331 0.12922 0.290887 0.037121302

15 HS 14.25183516 13.386853 5.542791 27.13197 5.584896209
GHS 53442.27954 37607.24159 12241.04067 491585.2736 70129.66734
IHS 11.97256022 10.532876 3.550865 31.3114 5.071632477

SAGHS 6.781837863 6.219424 3.780967 13.668984 2.097646724
SMHS 3.901825804? 3.770978 2.079053 7.706382 1.160102074

16 HS 9.466967745? 9.551849 7.824325 11.027997 0.658644472
GHS 12.89389518 12.950327 12.0298 13.255343 0.274134003
IHS 9.769183725? 9.623785 7.816398 11.302884 0.691121273

SAGHS 10.03466557? 10.062951 8.337515 11.543517 0.724948835
SMHS 9.416664588? 9.542452 7.577889 11.17894 0.719343406

17 HS 1872455.054 1150714.85 65245.29172 7827324.942 1607209.857
GHS 17786962.93 17106287.63 4115632.923 37051843.72 6211276.262
IHS 322217.286 275952.662 49076.7676 1352171.361 226598.5551

SAGHS 595172.2906 571663.3701 63973.37375 1808868.527 376098.5264
SMHS 29252.04161? 29949.78783 12225.04603 44817.02614 7461.684854

18 HS 6286.288995 2529.802758 72.45676 28773.28667 7846.793695
GHS 866563213.4 887991906.2 110874540.9 1504905850 305745139.9
IHS 4875.709344 2536.737544 50.857977 18914.12268 4893.203143

SAGHS 5170.971233 2588.407522 69.118786 31255.83507 5994.194634
SMHS 164.9463745? 137.047333 46.878659 517.083324 100.9456214

19 HS 29.81384718 9.314233 5.964728 118.961093 35.77007601
GHS 221.2664664 224.180508 133.467578 279.652268 30.51975
IHS 13.3460691 10.596594 3.617235 87.776488 14.39915309

SAGHS 20.9736938 13.931164 5.500482 83.077851 21.60309993
SMHS 4.40011? 4.402149 4.122914 7.39868 1.253168106

20 HS 6399.684901 5605.206108 172.482507 24391.98067 4972.295895
GHS 38662.83332 32772.73234 8394.155391 109300.9111 23294.68409
IHS 6675.48685 5638.377426 415.183357 26302.77468 5714.862651

SAGHS 1217.869568 612.552866 65.698978 6543.778255 1411.543191
SMHS 133.9134672? 123.79357 55.901024 298.428824 53.74761146
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Table 4.4: Error value obtained by HS, GHS, IHS, SAGHS and SMHS on Func-
tion number 21 through 30.

Function Algorithm Mean Median Best Worst Std Dev
21 HS 743513.9241 659366.3933 69129.07749 2285912.755 530164.7687

GHS 4884804.492 4223776.471 781910.5889 10704996.07 2354320.695
IHS 185293.2851 127396.1153 10835.18363 777016.9621 161869.8105

SAGHS 323971.8709 234153.4984 28262.18029 1306293.626 244930.6569
SMHS 27589.97734? 27898.50361 13913.97038 45909.00805 5849.117544

22 HS 474.3012613 489.861004 40.51064 768.378022 168.6369286
GHS 1279.455167 1309.890051 801.598218 1547.729524 181.8802168
IHS 491.8082253 489.619135 29.915167 860.929376 191.4266893

SAGHS 479.1369292 494.178812 27.008538 858.303043 200.3122931
SMHS 201.0627432? 153.189069 140.924194 500.815824 88.44076938

23 HS 315.4197806 315.341833 314.932119 316.66243 0.374068396
GHS 585.5150125 565.169431 476.102695 796.066091 72.07819599
IHS 315.2441 315.2441 315.2441 315.2441 0

SAGHS 315.2441233 315.244121 315.244109 315.244149 9.63669E-06
SMHS 314.2139646? 314.151317 314.023479 314.850163 0.165042007

24 HS 233.402739 231.678696 226.661674 248.910545 5.011128284
GHS 216.7086231? 207.012698 200.096649 297.866707 23.50419288
IHS 231.4708485 229.160944 225.115663 247.485571 6.122655755

SAGHS 230.9868523 229.231748 224.505952 244.083832 5.61981002
SMHS 223.5529364 223.76708 221.359778 224.863774 0.875821903

25 HS 207.2921108 206.994387 204.271347 213.259391 1.738213126
GHS 224.9444395 230.56587 200.006862 269.27625 23.91023736
IHS 205.492629 204.852315 203.000073 213.835901 2.082258816

SAGHS 201.1192975 201.14822 200.417256 201.629896 0.233726723
SMHS 200.0149112? 200.0146 200.010982 200.020977 0.002094303

26 HS 130.689059 100.640222 100.344593 333.907232 52.14705699
GHS 111.7605673 106.188353 104.590445 203.301147 22.75896703
IHS 147.4301095 100.677159 100.289159 354.850807 62.44768405

SAGHS 137.6414507 100.631273 100.248868 347.820504 61.22686766
SMHS 100.2432175? 100.235868 100.160609 100.362343 0.045565105

27 HS 631.1097115 617.887475 402.635132 813.217812 69.4571261
GHS 798.584023 795.134636 613.477271 927.126278 42.91659415
IHS 744.0677306 759.300689 401.885097 847.637132 73.89595062

SAGHS 416.5739448 404.200142 402.663585 770.616986 62.09240929
SMHS 325.703752? 323.46806 311.802915 376.054565 12.33567324

28 HS 1020.619369 999.30626 810.427072 1416.928016 122.3162145
GHS 3092.27368 3015.439564 2147.014276 4592.394606 468.4237471
IHS 1052.110489 1004.450247 839.985652 2185.129095 234.6577668

SAGHS 717.9256325 482.517605 403.780821 2664.908141 520.8586495
SMHS 320.4685211? 301.325745 300.848013 831.068543 95.16088826

29 HS 1460.934144 1382.166198 616.225827 2719.629464 433.7608047
GHS 73746205.69 67509668.12 27276490.96 158474932.1 30566978.14
IHS 1569.225437 1284.334529 437.029571 5751.302264 817.9743332

SAGHS 213.5011533? 213.246657 209.403796 218.398893 2.059574806
SMHS 640.3656 645.356707 550.042563 1241.214908 100.0886119

30 HS 4174.195026 4107.780848 1501.448255 8345.342409 1484.76458
GHS 793405.7188 804339.4469 321407.5252 1328381.927 249451.853
IHS 1644.421618 1555.504891 1029.097929 2554.079213 366.3027769

SAGHS 771.4193602 762.619792 427.661795 1158.771434 179.3532807
SMHS 683.2017? 690.420883 617.843155 1234.492046 265.5031526
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Table 4.5: Rank obtained by HS, GHS, IHS, SAGHS, SMHS on IEEE CEC
2014 benchmark problems.

Function HS GHS IHS SAGHS SMHS

1 4 5 3 2 1

2 4 5 1 2 3

3 3 5 4 2 1

4 4 5 3 2 1

5 3 5 1 2 4

6 4 5 2 3 1

7 2 5 1 4 3

8 3 5 1 1 4

9 2 5 3 4 1

10 2 5 3 1 4

11 2 5 3 4 1

12 3 5 1 2 4

13 4 5 3 2 1

14 2 5 3 4 1

15 4 5 3 2 1

16 1 5 3 4 2

17 4 5 2 3 1

18 3 5 2 4 1

19 4 5 3 2 1

20 4 5 3 2 1

21 4 5 2 3 1

22 3 5 4 2 1

23 4 5 2 1 3

24 5 1 4 3 2

25 4 5 3 2 1

26 4 2 5 3 1

27 3 5 2 4 1

28 3 5 4 2 1

29 3 5 4 1 2

30 4 5 3 2 1

Avg. Rank Unimodal 3.66 5 2.66 2 1.66
Avg. Rank Multimodal 3.23 4.73 2.69 2.57 1.73
Avg. Rank Composition 3.71 4 3.42 2.28 1.57
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Figure 4.1: Convergence graphs of function number 1 through 8.
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Figure 4.2: Convergence graphs of function number 9 through 16.

75



0 500 30,000 150,000 250,000
10

5

10
6

10
7

10
8

10
9

10
10

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(a) Function 17

0 500 30,000 150,000 250,000
10

2

10
4

10
6

10
8

10
10

10
12

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(b) Function 18

0 500 30,000 150,000 250,000
10

0

10
1

10
2

10
3

10
4

10
5

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(c) Function 19

0 500 30,000 150,000 250,000
10

2

10
4

10
6

10
8

10
10

10
12

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(d) Function 20

0 500 30,000 150,000 250,000
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(e) Function 21

0 500 30,000 150,000 250,000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(f) Function 22

0 500 30,000 150,000 250,000
10

2

10
3

10
4

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(g) Function 23

0 500 30,000 150,000 250,000
10

2

10
3

10
4

Function Evaluations

Er
ro

r V
al

ue

 

 

HS
GHS
IHS
SAGHS
SMHS

(h) Function 24

Figure 4.3: Convergence graphs of function number 17 through 24.
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Figure 4.4: Convergence graphs of function number 25 through 30.
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Table 4.6: Mean and Standard Deviation of error value obtained by SMHS,
CL-PSO, DNL-PSO and HCL-PSO on IEEE CEC 2014 benchmark problems.

SMHS CL-PSO DNL-PSO HCL-PSO

Function Mean Std Dev Mean Std Dev W Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 2.62E+06 1.21E+06 + 1.47E+06 1.16E+06 + 2.61E+05 1.95E+05 =

2 1.17E+04 2.70E+03 2.34E+02 1.01E+03 - 1.78E+00 4.18E+00 - 8.73E+01 1.92E+02 -

3 7.37E+01 6.41E+01 5.86E+01 8.21E+01 - 9.40E+01 1.35E+02 = 1.45E+02 1.63E+02 +

4 5.50E+00 1.58E+01 5.20E+01 3.44E+01 + 7.31E+00 1.01E+01 + 4.04E+01 3.26E+01 +

5 2.00E+01 7.18E-03 2.00E+01 7.44E-03 + 2.09E+01 5.72E-02 + 2.02E+01 4.98E-02 +

6 4.42E+00 1.15E+00 9.72E+00 1.98E+00 + 4.59E+00 2.05E+00 = 3.82E+00 1.70E+00 -

7 1.87E-02 1.43E-02 1.45E-04 1.03E-03 - 1.06E-02 1.10E-02 - 3.16E-04 7.79E-04 -

8 1.92E+00 1.33E+00 7.22E-01 1.12E+00 - 4.36E+01 1.16E+01 + 2.47E-13 8.33E-14 -

9 2.69E+01 5.68E+00 4.52E+01 1.00E+01 + 5.07E+01 1.39E+01 + 4.20E+01 9.10E+00 +

10 6.99E+00 2.36E+00 3.24E+01 7.35E+01 = 1.50E+03 4.26E+02 + 4.96E+00 2.32E+01 -

11 1.81E+03 8.58E+02 1.85E+03 3.22E+02 + 2.98E+03 7.52E+02 + 1.84E+03 3.01E+02 +

12 6.25E-01 1.91E-01 1.32E-01 3.35E-02 - 2.14E+00 3.91E-01 + 1.80E-01 5.07E-02 -

13 1.87E-01 3.96E-02 3.00E-01 3.93E-02 + 3.32E-01 8.99E-02 + 2.29E-01 5.60E-02 +

14 2.09E-01 3.71E-02 2.40E-01 3.30E-02 + 4.58E-01 2.39E-01 + 2.19E-01 2.90E-02 =

15 3.90E+00 1.16E+00 4.68E+00 1.03E+00 + 3.71E+00 1.15E+00 = 3.95E+00 1.19E+00 =

16 9.42E+00 7.19E-01 9.58E+00 5.33E-01 = 1.18E+01 7.26E-01 + 9.53E+00 6.81E-01 =

17 2.93E+04 7.46E+03 5.51E+05 3.82E+05 + 1.81E+05 1.24E+05 + 7.99E+04 7.15E+04 +

18 1.65E+02 1.01E+02 2.46E+02 2.55E+02 = 4.21E+04 7.76E+04 + 1.23E+02 7.32E+01 =

19 4.40E+00 1.25E+00 6.61E+00 8.84E-01 + 5.67E+00 1.91E+00 + 5.61E+00 1.28E+00 +

20 1.34E+02 5.37E+01 1.78E+03 2.09E+03 + 1.68E+03 1.26E+03 + 9.33E+02 8.87E+02 +

21 2.76E+04 5.85E+03 1.56E+05 1.26E+05 + 1.55E+05 1.89E+05 + 2.51E+04 1.73E+04 =

22 2.01E+02 8.84E+01 2.43E+02 1.06E+02 + 3.88E+02 1.93E+02 + 2.13E+02 8.40E+01 =

23 3.14E+02 9.64E-06 3.15E+02 1.71E-13 + 3.14E+02 1.71E-13 - 3.15E+02 3.46E-12 +

24 2.24E+02 8.76E-01 2.23E+02 5.96E+00 = 2.35E+02 8.78E+00 + 2.25E+02 1.15E+00 +

25 2.00E+02 2.09E-03 2.06E+02 1.02E+00 + 2.01E+02 2.63E-01 + 2.05E+02 1.53E+00 +

26 1.00E+02 4.56E-02 1.04E+02 1.94E+01 + 1.00E+02 1.05E-01 + 1.00E+02 5.93E-02 =

27 3.26E+02 1.23E+01 4.37E+02 8.14E+01 + 4.13E+02 4.68E+01 + 4.02E+02 1.46E+00 +

28 3.20E+02 9.52E+01 9.46E+02 1.42E+02 + 4.04E+02 2.19E+01 + 8.83E+02 5.38E+01 +

29 6.40E+02 1.00E+02 1.08E+03 1.79E+02 + 2.06E+02 1.71E+00 - 9.11E+02 9.63E+01 +

30 6.83E+02 3.66E+02 2.38E+03 5.69E+02 + 9.24E+02 2.33E+02 + 1.82E+03 3.55E+02 +
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Table 4.7: Mean and Standard Deviation of error value obtained by SMHS,
SL-PSO and SR-PSO on IEEE CEC 2014 benchmark problems.

SMHS SL-PSO SR-PSO

Function Mean Std Dev Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 3.67E+05 2.36E+05 + 1.44E+06 1.89E+06 +

2 1.17E+04 2.70E+03 1.03E+04 1.02E+04 = 2.18E+02 4.08E+02 -

3 7.37E+01 6.41E+01 6.86E+03 5.96E+03 + 1.75E+01 2.66E+01 -

4 5.50E+00 1.58E+01 3.26E+01 2.98E+01 + 1.03E+02 3.70E+01 +

5 2.00E+01 7.18E-03 2.09E+01 4.22E-02 + 2.09E+01 4.30E-02 +

6 4.42E+00 1.15E+00 9.03E-01 1.01E+00 - 3.16E+00 1.62E+00 -

7 1.87E-02 1.43E-02 9.18E-04 3.20E-03 - 1.06E-02 1.41E-02 -

8 1.92E+00 1.33E+00 1.64E+01 4.26E+00 + 3.51E+01 9.10E+00 +

9 2.69E+01 5.68E+00 2.47E+01 2.06E+01 + 4.25E+01 1.15E+01 +

10 6.99E+00 2.36E+00 3.79E+02 2.23E+02 + 8.02E+02 3.24E+02 +

11 1.81E+03 8.58E+02 8.81E+02 4.82E+02 - 2.12E+03 5.49E+02 +

12 6.25E-01 1.91E-01 2.30E+00 5.34E-01 + 1.82E+00 7.15E-01 +

13 1.87E-01 3.96E-02 1.78E-01 3.21E-02 = 2.06E-01 4.06E-02 +

14 2.09E-01 3.71E-02 4.01E-01 7.93E-02 + 2.01E-01 3.69E-02 =

15 3.90E+00 1.16E+00 5.12E+00 3.87E+00 = 3.83E+00 9.48E-01 =

16 9.42E+00 7.19E-01 1.21E+01 2.51E-01 + 1.05E+01 6.60E-01 +

17 2.93E+04 7.46E+03 1.11E+05 7.38E+04 + 1.52E+05 1.17E+05 +

18 1.65E+02 1.01E+02 2.05E+03 3.47E+03 + 2.71E+03 3.06E+03 +

19 4.40E+00 1.25E+00 7.16E+00 1.26E+00 + 6.35E+00 1.57E+00 +

20 1.34E+02 5.37E+01 2.13E+04 1.20E+04 + 4.13E+02 2.84E+02 +

21 2.76E+04 5.85E+03 7.90E+04 6.01E+04 + 5.22E+04 4.17E+04 +

22 2.01E+02 8.84E+01 1.69E+02 9.92E+01 = 3.10E+02 1.21E+02 +

23 3.14E+02 9.64E-06 3.15E+02 1.71E-13 + 3.15E+02 6.47E-02 +

24 2.24E+02 8.76E-01 2.30E+02 5.76E+00 + 2.07E+02 1.02E+01 -

25 2.00E+02 2.09E-03 2.06E+02 1.80E+00 + 2.06E+02 1.06E+00 +

26 1.00E+02 4.56E-02 1.12E+02 3.22E+01 = 1.32E+02 4.48E+01 +

27 3.26E+02 1.23E+01 3.66E+02 6.09E+01 + 4.40E+02 7.96E+01 +

28 3.20E+02 9.52E+01 9.16E+02 9.19E+01 + 1.13E+03 3.06E+02 +

29 6.40E+02 1.00E+02 1.68E+03 5.53E+02 + 5.27E+05 2.61E+06 +

30 6.83E+02 3.66E+02 3.03E+03 8.60E+02 + 2.22E+03 7.96E+02 +
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Table 4.8: Rank obtained by SMHS, CL-PSO, DNL-PSO, HCL-PSO, SL-PSO
and SR-PSO on IEEE CEC 2014 benchmark problems.

Function SMHS CL-PSO DNL-PSO HCL-PSO SL-PSO SR-PSO

1 1 6 5 2 3 4

2 6 4 1 2 5 3

3 3 2 4 5 6 1

4 1 5 2 4 3 6

5 1 2 4 3 5 6

6 4 6 5 3 1 2

7 6 1 5 2 3 4

8 3 2 6 1 4 5

9 2 5 6 3 1 4

10 2 3 6 1 4 5

11 2 4 6 3 1 5

12 3 1 5 2 6 4

13 2 5 6 4 1 3

14 2 4 6 3 5 1

15 3 5 1 4 6 2

16 1 3 5 2 6 4

17 1 6 5 2 3 4

18 2 3 6 1 4 5

19 1 5 3 2 6 4

20 1 5 4 3 6 2

21 2 6 5 1 4 3

22 1 4 6 3 2 5

23 2 3 1 5 3 6

24 3 2 6 4 5 1

25 1 6 2 3 4 5

26 2 4 3 1 5 6

27 1 5 4 3 2 6

28 1 5 2 3 4 6

29 2 4 1 3 5 6

30 1 5 2 3 6 4

Avg. Rank Unimodal 3.33 4.00 3.33 3.00 4.67 2.67
Avg. Rank Multimodal 1.96 4.04 4.19 2.67 3.89 4.22

Avg. Rank Composition 1.63 4.25 2.63 3.13 4.25 5.00
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Table 4.9: Mean and Standard Deviation of error value obtained by SMHS,
Standard-DE, jDE and JADE on IEEE CEC 2014 benchmark problems.

FUNCTION SMHS derand1bin jDE JADE

Mean Std Dev Mean Std Dev W Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 8.81E+07 1.88E+07 + 1.07E+05 1.08E+05 - 4.18E+02 1.07E+03 -

2 1.17E+04 2.70E+03 1.72E+03 4.93E+02 - 2.23E-15 7.64E-15 - 2.01E-14 1.30E-14 -

3 7.37E+01 6.41E+01 2.55E+01 5.04E+00 - 1.56E-14 2.54E-14 - 4.14E-04 2.01E-03 -

4 5.50E+00 1.58E+01 1.23E+02 5.77E+00 + 3.78E+00 1.25E+01 - 8.36E-14 4.26E-14 -

5 2.00E+01 7.18E-03 2.09E+01 5.77E-02 + 2.03E+01 3.50E-02 + 2.03E+01 2.78E-02 +

6 4.42E+00 1.15E+00 3.03E+01 1.08E+00 + 1.05E+01 4.36E+00 + 8.92E+00 2.46E+00 +

7 1.87E-02 1.43E-02 4.34E-02 7.93E-02 = 6.46E-14 5.63E-14 - 1.11E-14 3.38E-14 -

8 1.92E+00 1.33E+00 1.20E+02 6.53E+00 + 0.00E+00 0.00E+00 - 0.00E+00 0.00E+00 -

9 2.69E+01 5.68E+00 1.95E+02 8.96E+00 + 4.61E+01 7.29E+00 + 2.52E+01 3.92E+00 =

10 6.99E+00 2.36E+00 3.91E+03 2.38E+02 + 1.22E-03 4.90E-03 - 6.53E-03 1.13E-02 -

11 1.81E+03 8.58E+02 6.55E+03 2.48E+02 + 2.48E+03 2.75E+02 + 1.58E+03 2.63E+02 =

12 6.25E-01 1.91E-01 2.08E+00 2.05E-01 + 4.42E-01 5.58E-02 - 2.63E-01 3.62E-02 -

13 1.87E-01 3.96E-02 4.88E-01 4.56E-02 + 2.96E-01 4.01E-02 + 2.25E-01 3.53E-02 +

14 2.09E-01 3.71E-02 2.94E-01 3.77E-02 + 2.87E-01 2.77E-02 + 2.35E-01 4.13E-02 +

15 3.90E+00 1.16E+00 1.90E+01 1.13E+00 + 5.72E+00 5.86E-01 + 3.13E+00 4.03E-01 -

16 9.52E+00 7.19E-01 1.25E+01 2.23E-01 + 9.98E+00 2.98E-01 + 9.41E+00 3.36E-01 =

17 2.93E+04 7.46E+03 2.40E+06 5.69E+05 + 2.39E+03 2.43E+03 - 1.15E+03 3.82E+02 -

18 1.65E+02 1.01E+02 2.88E+04 1.53E+04 + 1.75E+01 7.11E+00 - 2.44E+02 1.16E+03 +

19 4.40E+00 1.25E+00 1.06E+01 5.81E-01 + 4.65E+00 6.81E-01 + 4.42E+00 7.04E-01 -

20 1.34E+02 5.37E+01 4.58E+02 8.33E+01 + 1.12E+01 3.16E+00 - 3.45E+03 2.55E+03 +

21 2.76E+04 5.85E+03 1.89E+05 6.88E+04 + 3.00E+02 2.37E+02 - 1.68E+04 4.33E+04 -

22 2.01E+02 8.84E+01 2.10E+02 7.23E+01 = 1.29E+02 5.92E+01 - 1.69E+02 5.60E+01 =

23 3.15E+02 9.64E-06 3.15E+02 8.08E-05 + 3.15E+02 1.71E-13 + 3.15E+02 1.71E-13 +

24 2.24E+02 8.76E-01 2.09E+02 3.63E+00 - 2.24E+02 1.32E+00 + 2.26E+02 3.47E+00 +

25 2.00E+02 2.09E-03 2.23E+02 2.80E+00 + 2.03E+02 6.53E-01 + 2.04E+02 1.29E+00 +

26 1.00E+02 4.56E-02 1.00E+02 4.77E-02 + 1.00E+02 3.69E-02 + 1.02E+02 1.38E+01 =

27 3.26E+02 1.23E+01 3.89E+02 3.73E+01 + 3.68E+02 6.54E+01 + 3.48E+02 4.83E+01 +

28 3.20E+02 9.52E+01 9.77E+02 2.78E+01 + 7.88E+02 2.35E+01 + 7.95E+02 3.94E+01 +

29 6.40E+02 1.00E+02 1.18E+04 3.05E+03 + 8.04E+02 7.61E+01 + 7.34E+02 1.18E+02 +

30 6.83E+02 3.66E+02 5.59E+03 8.73E+02 + 1.46E+03 6.48E+02 + 1.51E+03 6.65E+02 +
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Table 4.10: Mean and Standard Deviation of error value obtained by SMHS,
SADE and EPSDE on IEEE CEC 2014 benchmark problems.

FUNCTION SMHS SADE EPSDE

Mean Std Dev Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 3.78E+05 2.57E+05 + 2.39E+04 8.41E+04 -

2 1.17E+04 2.70E+03 1.73E-14 5.46E-14 - 5.68E-14 4.61E-14 -

3 7.37E+01 6.41E+01 2.15E+01 8.74E+01 - 2.37E-11 5.30E-11 -

4 5.50E+00 1.58E+01 3.17E+01 3.95E+01 + 3.72E+00 2.29E+00 -

5 2.00E+01 7.18E-03 2.05E+01 4.22E-02 + 2.03E+01 4.93E-02 +

6 4.42E+00 1.15E+00 4.96E+00 1.90E+00 = 1.89E+01 2.28E+00 +

7 1.87E-02 1.43E-02 8.53E-03 1.32E-02 - 2.22E-03 6.13E-03 -

8 1.92E+00 1.33E+00 1.17E-01 3.21E-01 - 1.95E-02 1.38E-01 -

9 2.69E+01 5.68E+00 3.71E+01 8.14E+00 + 4.31E+01 7.53E+00 +

10 6.99E+00 2.36E+00 4.04E-01 7.22E-01 - 2.45E-01 3.32E-01 -

11 1.81E+03 8.58E+02 3.20E+03 7.20E+02 + 3.58E+03 6.25E+02 +

12 6.25E-01 1.91E-01 8.10E-01 1.09E-01 + 5.12E-01 5.81E-02 -

13 1.87E-01 3.96E-02 2.68E-01 4.70E-02 + 2.65E-01 4.38E-02 +

14 2.09E-01 3.71E-02 2.34E-01 3.83E-02 + 2.86E-01 8.40E-02 +

15 3.90E+00 1.16E+00 4.07E+00 1.18E+00 = 5.54E+00 7.22E-01 +

16 9.52E+00 7.19E-01 1.10E+01 2.56E-01 + 1.13E+01 3.95E-01 +

17 2.93E+04 7.46E+03 1.27E+04 1.15E+04 - 4.86E+04 5.96E+04 =

18 1.65E+02 1.01E+02 4.02E+02 6.86E+02 + 1.03E+03 4.36E+03 =

19 4.40E+00 1.25E+00 4.11E+00 8.31E-01 - 1.30E+01 1.23E+00 +

20 1.34E+02 5.37E+01 1.69E+02 4.04E+02 = 5.70E+01 6.85E+01 -

21 2.76E+04 5.85E+03 4.01E+03 7.75E+03 - 1.32E+04 2.39E+04 -

22 2.01E+02 8.84E+01 1.46E+02 6.42E+01 = 2.64E+02 8.63E+01 +

23 3.15E+02 9.64E-06 3.15E+02 1.71E-13 + 3.14E+02 1.71E-13 -

24 2.24E+02 8.76E-01 2.27E+02 3.23E+00 + 2.28E+02 5.50E+00 +

25 2.00E+02 2.09E-03 2.09E+02 2.84E+00 + 2.00E+02 3.72E-01 +

26 1.00E+02 4.56E-02 1.12E+02 3.21E+01 + 1.00E+02 3.90E-02 =

27 3.26E+02 1.23E+01 4.14E+02 3.79E+01 + 8.57E+02 8.96E+01 +

28 3.20E+02 9.52E+01 8.94E+02 3.67E+01 + 3.93E+02 1.23E+01 +

29 6.40E+02 1.00E+02 1.12E+03 2.42E+02 + 2.14E+02 1.34E+00 -

30 6.83E+02 3.66E+02 1.61E+03 5.23E+02 + 5.58E+02 1.27E+02 -
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Table 4.11: Mean and Standard Deviation of error value obtained by SMHS,
CoDE, derand1bin-sps and MPEDE on IEEE CEC 2014 benchmark problems.

FUNCTION SMHS CoDE derand1bin-sps MPEDE

Mean Std Dev Mean Std Dev W Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 2.97E+04 2.73E+04 - 3.28E+07 9.55E+06 + 1.10E-03 7.79E-03 -

2 1.17E+04 2.70E+03 0.00E+00 0.00E+00 - 1.55E+03 4.18E+02 - 1.67E-15 6.69E-15 -

3 7.37E+01 6.41E+01 0.00E+00 0.00E+00 - 1.90E+01 2.97E+00 - 4.01E-14 2.59E-14 -

4 5.50E+00 1.58E+01 1.27E+00 9.01E+00 - 8.97E+01 6.70E+00 + 1.24E+00 8.79E+00 -

5 2.00E+01 7.18E-03 2.00E+01 7.43E-02 = 2.09E+01 5.51E-02 + 2.04E+01 4.88E-02 +

6 4.42E+00 1.15E+00 2.13E+00 1.90E+00 - 4.59E+00 1.40E+00 = 6.01E-01 7.83E-01 -

7 1.87E-02 1.43E-02 2.90E-04 1.44E-03 - 1.05E-03 7.41E-04 - 3.38E-04 1.69E-03 -

8 1.92E+00 1.33E+00 3.90E-02 1.93E-01 - 8.65E+01 1.13E+01 + 8.92E-15 3.06E-14 -

9 2.69E+01 5.68E+00 3.98E+01 1.14E+01 + 1.78E+02 1.16E+01 + 2.81E+01 7.93E+00 =

10 6.99E+00 2.36E+00 4.51E-01 3.81E-01 - 2.42E+03 2.66E+02 + 1.19E+00 5.56E-01 -

11 1.81E+03 8.58E+02 1.74E+03 4.51E+02 = 6.19E+03 2.71E+02 + 2.36E+03 3.84E+02 +

12 6.25E-01 1.91E-01 5.58E-02 2.89E-02 - 9.36E-01 3.52E-01 + 4.98E-01 8.12E-02 -

13 1.87E-01 3.96E-02 2.46E-01 5.43E-02 + 4.15E-01 5.06E-02 + 2.11E-01 2.98E-02 +

14 2.09E-01 3.71E-02 2.47E-01 3.70E-02 + 2.68E-01 2.98E-02 + 2.40E-01 2.86E-02 +

15 3.90E+00 1.16E+00 3.10E+00 7.50E-01 + 1.73E+01 9.07E-01 + 3.91E+00 6.84E-01 =

16 9.52E+00 7.19E-01 9.23E+00 7.47E-01 = 1.20E+01 2.59E-01 + 1.00E+01 4.37E-01 +

17 2.93E+04 7.46E+03 1.62E+03 1.56E+03 - 7.71E+05 2.91E+05 + 1.96E+02 1.43E+02 -

18 1.65E+02 1.01E+02 1.60E+01 5.61E+00 - 1.51E+03 1.66E+03 + 1.45E+01 6.25E+00 -

19 4.40E+00 1.25E+00 2.68E+00 4.38E-01 - 5.77E+00 2.43E-01 + 3.73E+00 5.26E-01 -

20 1.34E+02 5.37E+01 1.14E+01 5.52E+00 - 2.01E+02 2.85E+01 + 9.33E+00 3.17E+00 -

21 2.76E+04 5.85E+03 2.11E+02 1.75E+02 - 3.93E+04 1.74E+04 + 1.20E+02 8.92E+01 -

22 2.01E+02 8.84E+01 1.88E+02 1.06E+02 = 1.00E+02 8.53E+01 - 1.06E+02 7.17E+01 -

23 3.15E+02 9.64E-06 3.15E+02 2.27E-13 + 3.15E+02 8.31E-05 + 3.15E+02 1.71E-13 +

24 2.24E+02 8.76E-01 2.25E+02 2.20E+00 + 2.04E+02 4.93E-01 - 2.25E+02 2.18E+00 +

25 2.00E+02 2.09E-03 2.03E+02 5.25E-01 + 2.10E+02 1.69E+00 + 2.00E+02 4.11E-03 +

26 1.00E+02 4.56E-02 1.00E+02 4.58E-02 = 1.00E+02 3.87E-02 + 1.00E+02 2.99E-02 +

27 3.26E+02 1.23E+01 3.80E+02 3.87E+01 + 3.33E+02 3.74E+00 + 3.65E+02 4.68E+01 +

28 3.20E+02 9.52E+01 8.28E+02 3.74E+01 + 7.99E+02 1.87E+01 + 8.32E+02 4.23E+01 +

29 6.40E+02 1.00E+02 7.86E+02 1.25E+02 + 2.46E+03 2.82E+02 + 6.38E+02 1.90E+02 -

30 6.83E+02 3.66E+02 9.35E+02 3.94E+02 + 2.55E+03 5.23E+02 + 6.80E+02 3.15E+02 -
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Table 4.12: Rank obtained by SMHS, Standard-DE,jDE, JADE, SaDE, EPSDE,
CoDE, derand1bin-sps and MPEDE on IEEE CEC 2014 benchmark problems.

Function SMHS Standard-DE jDE JADE SaDE EPSDE CoDE derand1bin-sps MPEDE

1 6 9 5 2 7 3 4 8 1

2 9 8 3 5 4 6 1 7 2

3 9 8 2 5 7 4 1 6 3

4 6 9 5 1 7 4 3 8 2

5 1 9 4 3 7 5 2 8 6

6 3 9 7 6 5 8 2 4 1

7 8 9 2 1 7 6 3 5 4

8 7 9 1 1 6 4 5 8 3

9 2 9 7 1 4 6 5 8 3

10 7 9 1 2 4 3 5 8 6

11 3 9 5 1 6 7 2 8 4

12 6 9 3 2 7 5 1 8 4

13 1 9 7 3 6 5 4 8 2

14 1 9 8 3 2 7 5 6 4

15 3 9 7 2 5 6 1 8 4

16 3 9 4 2 6 7 1 8 5

17 6 9 4 2 5 7 3 8 1

18 4 9 3 5 6 7 2 8 1

19 4 8 6 5 3 9 1 7 2

20 5 8 2 9 6 4 3 7 1

21 7 9 3 6 4 5 2 8 1

22 2 8 4 6 5 9 7 1 3

23 2 9 3 3 3 1 7 8 3

24 3 2 4 7 8 9 5 1 6

25 1 9 5 6 7 3 4 8 2

26 3 7 5 8 9 4 2 6 1

27 1 7 5 3 8 9 6 2 4

28 1 9 3 4 8 2 6 5 7

29 2 9 6 4 7 1 5 8 3

30 2 9 5 6 7 1 4 8 3

Avg. Rank Unimodal 8.00 8.33 3.33 4.00 6.00 4.33 2.00 7.00 2.00

Avg. Rank Multimodal 3.48 8.48 4.41 3.78 5.85 5.33 3.56 6.67 3.19

Avg. Rank Composition 1.88 7.63 4.50 5.13 7.13 3.75 4.88 5.75 3.63
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Table 4.13: Mean and Standard Deviation of error value obtained by SMHS,
GL-25, and CMA-ES on IEEE CEC 2014 benchmark problems.

FUNCTION SMHS GL-25 CMA-ES

Mean Std Dev Mean Std Dev W Mean Std Dev W

1 2.13E+05 6.43E+04 9.35E+05 7.80E+05 + 2.70E-14 1.13E-14 -

2 1.17E+04 2.70E+03 1.77E+03 2.65E+03 - 5.29E-14 2.11E-14 -

3 7.37E+01 6.41E+01 2.09E-01 6.04E-01 - 1.07E-13 4.31E-14 -

4 5.50E+00 1.58E+01 9.59E+01 1.42E+01 + 1.07E-13 5.11E-14 -

5 2.00E+01 7.18E-03 2.10E+01 3.63E-02 + 2.00E+01 1.57E-02 +

6 4.42E+00 1.15E+00 4.91E+00 2.99E+00 = 4.20E+01 1.06E+01 +

7 1.87E-02 1.43E-02 1.04E-10 4.88E-10 - 2.66E-03 4.65E-03 -

8 1.92E+00 1.33E+00 2.44E+01 5.95E+00 + 4.29E+02 9.03E+01 +

9 2.69E+01 5.68E+00 6.04E+01 5.89E+01 + 6.37E+02 1.59E+02 +

10 6.99E+00 2.36E+00 1.00E+03 6.15E+02 + 5.15E+03 8.13E+02 +

11 1.81E+03 8.58E+02 5.96E+03 1.40E+03 + 5.14E+03 7.61E+02 +

12 6.25E-01 1.91E-01 2.49E+00 2.80E-01 + 2.82E-01 2.61E-01 -

13 1.87E-01 3.96E-02 2.72E-01 3.89E-02 + 2.35E-01 5.87E-02 +

14 2.09E-01 3.71E-02 2.58E-01 3.39E-02 + 3.60E-01 7.16E-02 +

15 3.90E+00 1.16E+00 1.21E+01 4.87E+00 + 3.52E+00 1.06E+00 =

16 9.52E+00 7.19E-01 1.16E+01 7.00E-01 + 1.43E+01 3.67E-01 +

17 2.93E+04 7.46E+03 1.57E+05 8.01E+04 + 1.65E+03 3.68E+02 -

18 1.65E+02 1.01E+02 1.65E+02 1.65E+02 = 1.35E+02 4.10E+01 =

19 4.40E+00 1.25E+00 5.11E+00 6.67E-01 + 9.88E+00 1.95E+00 +

20 1.34E+02 5.37E+01 1.98E+02 1.60E+02 + 2.63E+02 1.11E+02 +

21 2.76E+04 5.85E+03 6.02E+04 3.23E+04 + 1.10E+03 3.28E+02 +

22 2.01E+02 8.84E+01 1.59E+02 3.04E+01 = 3.10E+02 1.79E+02 +

23 3.15E+02 9.64E-06 3.15E+02 1.71E-13 + 3.15E+02 1.71E-13 +

24 2.24E+02 8.76E-01 2.22E+02 4.95E-01 - 2.98E+02 3.80E+02 +

25 2.00E+02 2.09E-03 2.08E+02 1.74E+00 + 2.04E+02 2.99E+00 +

26 1.00E+02 4.56E-02 1.00E+02 4.32E-02 = 1.02E+02 1.38E+01 +

27 3.26E+02 1.23E+01 3.03E+02 9.65E-01 - 4.17E+02 1.75E+02 +

28 3.20E+02 9.52E+01 8.81E+02 3.21E+01 + 3.98E+03 3.09E+03 +

29 6.40E+02 1.00E+02 9.99E+02 8.73E+01 + 8.01E+02 9.49E+01 +

30 6.83E+02 3.66E+02 1.20E+03 3.01E+02 + 2.55E+03 6.60E+02 +
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Table 4.14: Rank obtained by SMHS, GL-25 and CMA-ES on IEEE CEC 2014
benchmark problems.

Function SMHS GL-25 CMA-ES

1 2 3 1

2 3 2 1

3 3 2 1

4 2 3 1

5 2 3 1

6 1 2 3

7 3 1 2

8 1 2 3

9 1 2 3

10 1 2 3

11 1 3 2

12 2 3 1

13 1 3 2

14 1 2 3

15 2 3 1

16 1 2 3

17 2 3 1

18 2 3 1

19 1 2 3

20 1 2 3

21 2 3 1

22 1 2 3

23 1 2 2

24 2 1 3

25 1 3 2

26 1 2 3

27 2 1 3

28 1 2 3

29 1 3 2

30 1 2 3

Avg. Rank Unimodal 2.67 2.33 1.00
Avg. Rank Multimodal 1.41 2.30 2.26

Avg. Rank Composition 1.25 2.00 2.63
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Table 4.15: Time complexity in seconds (Dimension 10).

Algorithm T0 T1 T̂2
T̂2−T1
T0

HS 0.187 0.296 0.5954 1.601069519

GHS 0.187 0.296 0.5936 1.59144385

IHS 0.187 0.296 0.6562 1.926203209

SAGHS 0.187 0.296 0.7718 2.544385027

SMHS 0.187 0.296 0.61 1.679144385

CL-PSO 0.121886 0.603636 9.102916 69.73138835

DNL-PSO 0.121886 0.603636 5.4368482 39.65354676

SR-PSO 0.121886 0.603636 0.7489106 1.191889142

SL-PSO 0.121886 0.603636 1.3932988 6.478699769

HCL-PSO 0.121886 0.603636 4.5066256 32.02163989

derand1bin 0.121886 0.603636 1.4222552 6.716269301

MPEDE 0.121886 0.603636 1.1551446 4.524790378

CODE 0.121886 0.603636 3.0349978 19.94783486

EPSDE 0.121886 0.603636 10.9371618 84.78025204

JADE 0.121886 0.603636 0.904352 2.467190654

jDE 0.121886 0.603636 0.6612136 0.472388954

SaDE 0.121886 0.603636 9.7029524 74.65431961

derand1bin-sps 0.121886 0.603636 1.4530082 6.968578836

CMA-ES 0.121886 0.603636 2.2149718 13.22002363

GL-25 0.121886 0.603636 6.8400168 51.16568597
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Chapter 5
Comparison of Proposed HS-SA, TPHS and SMHS
Algorithms

In this chapter the algorithms proposed in previous three chapters namely HS-SA, TPHS and SMHS

are analyzed and compared on IEEE CEC 2014 benchmark functions and a real life problem called

Camera Calibration problem, a highly non linear twelve dimensional optimization problem from the

field of computer vision.

The organization of this chapter is as follows. Section 5.1 compares the performance of the proposed

algorithms on IEEE CEC 2014 benchmark suite. Section 5.2 introduces the camera calibration prob-

lem. Section 5.3 provides description about solving Camera Calibration problem using HS algorithm.

Section 5.4 describes numerical experimentation on Camera Calibration problem. Section 5.5 com-

pares the performance of proposed algorithms on Camera Calibration problem and finally the chapter

concludes with Section 5.6.

5.1 Comparison on IEEE CEC 2014 benchmark suite

Tables 5.1, 5.2 and 5.3 compare the performance of the three proposed algorithms (HS-SA, TPHS and

SMHS) on 30 dimensional IEEE CEC 2014 benchmark functions. The best results are highlighted in

bold font. The recorded results are the minimum, maximum, mean, median, and standard deviation of

the error value obtained as specified in IEEE 2014 Benchmark suite. The error value is the absolute

difference between obtained objective function value by the algorithm and the known function value.

In case of unimodal functions SMHS reports the best mean results with minimum standard deviation

on all the three instances and reported the best results in two instances followed by HS-SA on one

instance.

In case of simple multimodal functions SMHS, HS-SA and TPHS reports the best mean results in 6,

5 and 2 instances respectively and reported the best results in 5, 7 and 1 instances respectively.

In case of hybrid multimodal functions SMHS and TPHS reports the best mean results in 5, 1 instances

respectively (whereas HS-SA failed to produce best mean results).

In case of composition multimodal functions SMHS reported the best mean results in 6 instances

followed by TPHS in 2 instances whereas HS-SA failed to produce best mean results. SMHS reported

the best results in 5 instances followed by TPHS in 3 instances.

Thus SMHS has outperformed the other two competing algorithms on all categories of problems viz

a viz unimodal, simple multimodal, hybrid multimodal and composition multimodal functions.
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5.1.1 Algorithm Complexity

The time complexity of all the three competing algorithms is computed as per the requirements laid

down in IEEE CEC 2014 Benchmark suite, as explained in Section 2.4.3.1 and is given in Table 5.4.

All the three proposed algorithms have slightly higher time complexity than the standard HS and hence

the order of the four algorithms in terms of time complexity is:

SMHS > HS-SA > TPHS > HS

5.2 Camera Calibration

The problem of camera calibration has been studied extensively in photogrammetry and computer

vision community because of its important applications such as vehicle guidance, robotic navigation

and 3D-reconstruction. Camera calibration problem deals with finding the geometrical relationship

between the 3D scene and its 2D images taken by two cameras. It defines exactly how the scene has

been projected by the camera to result in the given image(s). Camera calibration involves:

1. Determination of the orientation and position of the camera with respect to the scene which is

specified by extrinsic parameters.

2. Determination of the internal geometric and optimal characteristics of the camera, which is

specified by intrinsic parameters.

Given a point in a scene extrinsic parameters transform its 3-D world coordinates into 2-D camera

coordinates, which are then transformed to 2-D image coordinates using intrinsic parameters.

The existing methods for camera calibration can be broadly categorized as linear (Abdel-Aziz, 1971;

Duane, 1971; Faig, 1975; Gennery, 1979; Okamoto, 1981; Paquette et al., 1990; Wong, 1975) and

non-linear (Paquette et al., 1990; Sobel, 1974) approaches. In linear methods lens distortion is not

taken into consideration, thus calibration accuracy is very low to meet the requirements of commer-

cial machine vision application. Even though nonlinear approaches provide more precise solution,

however they have the limitation of being computationally extortionate and require precise initial es-

timates. Other standard procedure for camera calibration is ”two-step” method (Weng et al., 1992),

in the first step linear approach is used to generates an approximate solution, which is improved by

using a non linear iterative process in the second step. The first step (linear approach) is key to the

success of this procedure. Approximate solution provided by the linear technique must be precise

enough for the subsequent nonlinear techniques to converge correctly . The existing linear techniques

are notorious for their lack of accuracy and robustness because of being susceptible to noise in image
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coordinates (Wan and Xu, 1996). Haralick et al. (Haralick et al., 1989) showed that when the noise

level exceeds a threshold or the number of control points is low these methods become extremely

unstable and are error prone. This problem can be alleviated by use of more control points, however

fabrication of more control points is an expensive, difficult and time consuming process. In case of

applications with small number of control points (close to minimum required ), it is not possible for

linear procedures to consistently provide good initial solution for the subsequent non linear methods

to find the optimal solution.

Another limitation is that virtually all nonlinear techniques use variants of conventional optimization

techniques like conjugate gradient, gradient descent or Newton method. They therefore all inherent

well known problems associated with these traditional methods of optimization namely sensitivity of

getting trapped in local extrema and slow convergence. The problem is more prominent if objective

function landscape contains isolated valleys or broken ergodicity. Camera calibration objective func-

tion involves 12 parameters and thus leads to complex error surface with the global minimum hidden

among numerous local extrema. Therefore the risk of obtaining local rather than global optimum is

very high with conventional methods.

To alleviate the problem with the conventional camera calibration techniques many metaheuristc al-

gorithms have been proposed. Hati et.al. (Hati and Sengupta, 2001) has used a binary coded genetic

algorithm for solving camera calibration, whereas real coded genetic algorithm has been used in (Ji

and Zhang, 2001; Kumar et al., 2008). Even though impressive results have been shown in (Ji and

Zhang, 2001) both in terms of parameter values and pixel error, however the authors have not taken

lenes distortion into consideration.

In this chapter music inspired Harmony Search (HS) algorithm (Geem et al., 2001) is used for camera

calibration. The reason for choosing Harmony Search is: it requires only few free parameters to ad-

just, converges quickly and has been proven to be robust in solving a variety of non linear optimization

problems. The algorithm proposed in this chapter takes lenes distortion into consideration and hence

results in 12 dimensional highly non linear search space with a number of local optima.

Researchers have used Artificial neural networks to solve the problem of calibration in (Ahmed et al.,

1999; Xing et al., 2007), however the main drawback of employing neural networks to solve this prob-

lem is estimation of good initial value of weight vector of network. Particle swarm algorithm has been

utilized to solve camera calibration problem in (Wang et al., 2008a; Ze-Tao et al., 2008; Zhang et al.,

2012). A hybrid technique based on differential evolution and PSO has been utilized in (Deng et al.,

2016) to solve the same problem and recently Biogeography based optimization algorithm has been
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Figure 5.1: Stereo camera calibration model.

used to address the problem of camera calibration in (Garg and Deep, 2016).

5.2.1 Perspective Geometry

In this section the camera model defining the geometry of the image formation is presented. Figure

1 shows the pinhole model for two cameras. The stereo camera system consists of five coordinate

frames: a world reference frame (X, Y, Z), two camera frames (Xci, Yci, Zci) and two image frames

(ui, vi), i = 1, 2. The origins O1 and O2 of the cameras coordinate systems coincide with their cor-

responding optical centers and their Z coordinate axes are collinear with corresponding optical axes,

which are perpendicular to corresponding image planes and intersect them in their principal points.

The image plane of each camera is at a distance fi, i = 1, 2 (its focal length) apart from the corre-

sponding optical center. The transformation of 3-D world coordinates into 2-D image coordinates by

a camera involves following four steps .

1. Equation (5.1) transforms the 3-D world coordinates to 2-D camera coordinates:


Xc

Yc

Zc

 = R.


X

Y

Z

+ T, (5.1)
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R is a 3× 3 rotation matrix used to represents the orientation of the camera relative to the world

coordinate system and T is the translation vector used to represent position of the camera relative

to world coordinate system. Further, R and T may be expressed as

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , T =


Tx

Ty

Tz


The elements rij of the matrix R can further be expressed in terms of swing, tilt and pan angle

(α, β, γ) as

r11 = cosα cosβ

r12 = sinα cosγ + cosα sinβ sinγ

r13 = sinα sinγ − cosα sinβ cosγ

r21 = −sinα cosβ

r22 = cosα cosγ − cosα sinβ sinγ

r23 = cosα sinγ − sinα sinβ cosγ

r31 = sinβ

r32 = −cosβ sinγ

r33 = cosβ cosγ

2. The 3-D camera coordinates (Xc, Yc, Zc) are then transformed into ideal retinal coordinates

(Xu, Yu) of the camera using perspective projection equations:

Xu = f
Xc

Zc
, Yu = f

Yc
Zc

(5.2)

3. The ideal retinal coordinates (Xu, Yu) are then transformed into actual retinal coordinates (Xd, Yd)

by considering lens radial distortion coefficient k:

Xd = Xu(1 + kr2)−1, Yd = Yu(1 + kr2)−1 (5.3)

The distance between the image center and the actual retinal coordinates is denoted by r.
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4. Then the actual retinal coordinates (Xd, Yd) are transformed into pixel coordinates (u,v):

u = XdNx + u0, v = YdNy + v0 (5.4)

where (u0, v0) represents the pixel coordinates of the image center; Nx and Ny is the number

of pixels that are contained in the unit distance of the image plane along the X and Y axes,

respectively.

Combining the above four steps the image formation process of a 3-D point P(X,Y,Z) can be written

as:

Ns


u

v

1

 = Q


X

Y

Z

1

 (5.5)

whereNs is a 3×3 matrix representing scaling factor and matrix Q is decomposable into two matrices

as: Q = AD with D = [RT ], and A being a 3 × 3 matrix called the intrinsic matrix and can be

expressed fully in terms of the intrinsic parameters of camera (f, k,Nx, Ny, u0, v0). The matrix Q can

be formulated as follows:

Q = [qT1 q
T
2 q

T
3 ] (5.6)

where qTi , (i = 1, 2, 3) represent the rows of Q. Using Equations (5.5) and (5.6),the pixel coordinates

(u,v) can be represented as

u =
qT1 P

qT3 P
, v =

qT2 P

qT3 P
(5.7)

Using Equation (5.7), the 3-D world coordinates of a point P(X, Y, Z) can be transformed into pixel

coordinates (u, v) for a single camera. This process being irreversible i.e. the 3-D position of point

P cannot be uniquely determined from its pixel coordinates (u, v). However, from its stereo images,

pl(ul, vl) and pr(ur, vr), taken by two cameras (or a single camera in two different positions) a point

P(X, Y, Z) in the 3-D world can be uniquely determined .
5.2.2 Mathematical formation of Camera calibration problem

The camera calibration problem is mathematically expressed as a nonlinear optimization problem

in which the objective is to minimize the square root of the sum of squares of Euclidean distances

between the observed pixel positions and their corresponding calculated pixel positions. Thus, the

camera calibration problem can be stated as follows:
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Given N number of control points whose world coordinates Pi(Xi, Yi, Zi) and observed pixel positions

are known with high precision, the problem is to determine the optimal values of 12 decision variables

(uo, vo, Nx, Ny, f, k, α, β, γ, Tx, Ty, Tz) that minimize the objective function given by equation 5.8:

F =

√√√√ N∑
i=1

[(
qT1 P

qT3 P
− u
)2

+

(
qT2 P

qT3 P
− v
)2

(5.8)

Based on the knowledge of camera any suitable range for decision variables can be chosen, as an

example we can choose β ∈ [−π, π].

5.3 Solving Camera calibration problem using HS algorithm

For solving the camera calibration problem with HS algorithm, let H denote a vector consisting of the

unknown intrinsic and extrinsic parameters of the camera, that is

H = (uo, vo, Nx, Ny, f, k, α, β, γ, Tx, Ty, Tz) (5.9)

For convenience we may write H = (h1, h2, h3, . . . , h12), with hi, i = 1, 2, . . . , 12 representing the

camera parameters in the same order as given in Equation (5.9). Then vector H with all its components

within their bounds represents a potential solution to the problem.

The HS algorithm starts by initializing all the harmonies in the Harmony memory, each harmony in the

HM represents a potential solution and has the same structure as defined for H in Equation (5.9). Every

component of the harmony is randomly initialized within the allowed bounds. Once the initialization

phase is over potential solutions in HM are evaluated using fitness function defined as Equation (5.8).

Equation (5.8) gives the error value (i.e. difference between the actual and obtained coordinated) of

the control points and thus the objective of the algorithm is to minimize Equation (5.8).

While generating the ith component of the new harmony say H i.e. Hi, 1 ≤ i ≤ 12 either the ith

component of some existing harmony from HM is selected with probability HMCR (step 9 to 13 of

Algorithm 1) or it is randomly generated within the allowed bounds (step 15 of Algorithm 1). In

case the ith component of new harmony is selected from HM, it is further adjusted within the allowed

Band width (BW) range with probability PAR (step 11, 12 of Algorithm 1).The new harmony H is

evaluated using Equation (5.8) and replaces the worst harmony of HM, if it is better than it (step 18,

19 of Algorithm 1).
5.4 Experimentation on Camera Calibration

This section presents extensive experiments with HS algorithm so as to evaluates its performance on

camera calibration problem. The simulations has been carried out using varying number of control
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points. The accuracy is evaluated by calculating camera errors and pixel errors. Pixel error is defined

as the root mean square Euclidean distance between the observed pixel positions and the correspond-

ing re projected pixel positions calculated using estimated parameters values, whereas camera error

is defined as the mean Euclidean distance between the ground truth and the estimated value of that

parameter.

The stopping criteria for all the algorithm is 100000 function evaluations of objective function (Equa-

tion 5.8). The algorithms has been implemented in Dev C++ 5.0 and the experimentation has been

carried out on a laptop with Windows 10 operating system, intel core i3 processor and 4GB of RAM.

5.4.1 Generation of synthetic data

In order to generate the synthetic data a calibration chart shown as Figure 5.2, having 8× 8 grids in X

and Y directions has been utilized to obtain 64 grid points. This calibration chart is shifted on eleven

different positions along Z direction to get a total of 704 points Pi(Xi, Yi, Zi) in 3-D space. The values

of intrinsic and extrinsic parameters that were used for calculating the 2-D image coordinates from the

3-D grid points are called the ground truth values. The ground truth values for camera along with the

parameter bounds used in the experimentation is shown as Table 5.5.

Figure 5.2: Calibration chart

5.5 Comparison on HA-SA, TPHS, SMHS on Camera Calibration problem

The simulations are performed for 5, 10, 50, 100, 200, 300, 400, 500 control points (represented as N)

and the experiment is repeated 50 times for each control point. It is not possible to show the results of

parameter values of all the experiments in tabular form or graphically, so the result of best run in terms
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of parameter values of the three competing algorithms HS-SA, TPHS, SMHS is respectively shown in

Tables 5.6, 5.7, 5.8. Most of the parameter values obtained in Tables 5.6, 5.7, 5.8 are close to ground

values. However no specific observation can be made regarding the effect of number of control points

on accuracy of parameter values, further no concrete conclusion can be drawn about the performance

of competing algorithms by just compering parameter values because on some parameters one algo-

rithm is better whereas on other parameters some other algorithm is better. Thus the algorithms have

been compared in terms of pixel error. Tables 5.9, 5.10, 5.11, 5.12 respectively show the results in

terms of pixel error for HS, HS-SA, TPHS, SMHS . The reported results are mean, maximum, min-

imum and standard deviation of pixel error for various number of control points along with average

calibration time in seconds. For all the four algorithms it can be observed that the increase in number

of control points results in the decreases of average pixel error .

Comparing HS with the three proposed algorithms (HS-SA, TPHS, SMHS) in terms of average pixel

error it can be observed from Tables 5.9, 5.10, 5.11 & 5.12 that all the three proposed algorithms out-

performed standard HS irrespective of the number of control points used for calibration. In order to

create a balance between exploration and exploitation the proposed algorithms inherit some additional

complexity compared to standard HS & hence results in slightly higher calibration time for these al-

gorithms.

Irrespective of the number of control points used, SMHS is the best performer amongst the proposed

algorithms. Tables 5.9, 5.10, 5.11 & 5.12 reveals with the increase in number of control points the

average pixel error decreases. Calibrating with control points as few as 5, all the algorithms shows

very small pixel error and thus are effective even at smaller number of control points. This is an impor-

tant achievement because creating the control points is difficult and time consuming job in practice.

Increase in number of control points results in decrease of pixel error.

For the best performing SMHS algorithm, the minimum and mean of pixel error is respectively 0.102

and 2.213 when the number of control points is 5 with the increase in number of control points it gets

reduced and finally becomes 0.015 and 0.602 when the number of control points is 500. With the

increase in number of control points the complexity of objective function increases (Equation 5.8) and

hence the execution time also increases.

Since HS-SA is the hybridized version of Harmony Search and Simulated Annealing, thus it has also

been compared with SA algorithm. From Tables 5.9 and 5.13 it can be observed that HS-SA outper-

forms SA in terms of mean pixel error irrespective of the number of control points used. The simpler

structure of SA provides it slight advantage over HS-SA in terms of time complexity.
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5.6 Conclusion

This chapter compared the proposed three algorithms namely HS-SA, TPHS & SMHS on IEEE CEC

2014 benchmark suit and camera calibration problem, a highly nonlinear twelve dimensional opti-

mization problem from the field of computer vision. SMHS outperformed the other two competing

algorithms on all categories of problems viz a viz unimodal, simple multimodal, hybrid multimodal

and composition multimodal functions. The comparison on camera calibration problem revels su-

perior performance of all the proposed HS variants compared to standard HS algorithm irrespective

of the number of control points used for calibration. Amongst the three proposed variants SMHS

revealed the superiority in solving camera calibration problem.
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Table 5.1: Error value obtained by HS-SA, TPHS and SMHS on Function num-
ber 1 through 10.

Function Algorithm Mean Median Best Worst Std Dev

HS-SA 1.2600E+07 8.5400E+06 1.5400E+06 4.0800E+07 1.0100E+07

1 TPHS 1.0300E+07 9.5700E+06 4.3600E+06 3.0900E+07 5.0000E+06

SMHS 2.1302E+05 2.0839E+05 8.0011E+04 4.3582E+05 6.4339E+04

HS-SA 1.2800E+04 1.2400E+04 1.2900E+02 3.3900E+04 1.0300E+04

2 TPHS 1.0700E+06 1.0900E+06 6.0500E+05 1.4400E+06 1.8100E+05

SMHS 1.1738E+04 1.2231E+04 2.6629E+03 1.7669E+04 2.7019E+03

HS-SA 6.1800E+03 4.4300E+03 2.4100E+02 1.7500E+04 4.8600E+03

3 TPHS 2.4300E+03 2.1500E+03 2.8100E+02 6.9600E+03 1.5900E+03

SMHS 7.3749E+01 5.4557E+01 1.5946E+00 3.3090E+02 6.4081E+01

HS-SA 1.1700E+02 1.2600E+02 6.0200E+00 2.0600E+02 4.1900E+01

4 TPHS 1.1700E+02 1.2000E+02 6.8600E+01 1.6800E+02 2.4900E+01

SMHS 5.4983E+00 1.4974E+00 9.5633E-01 6.9181E+01 1.5772E+01

HS-SA 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 2.6100E-04

5 TPHS 2.0900E+01 2.0900E+01 2.0700E+01 2.1000E+01 6.3600E-02

SMHS 2.0013E+01 2.0013E+01 2.0006E+01 2.0061E+01 7.1769E-03

HS-SA 1.2100E+01 1.2000E+01 9.8600E+00 1.9500E+01 2.1100E+00

6 TPHS 2.8900E+00 2.9400E+00 1.7500E+00 4.9300E+00 8.1600E-01

SMHS 4.4169E+00 4.3245E+00 1.9522E+00 6.9378E+00 1.1539E+00

HS-SA 1.4300E-02 1.2600E-02 1.9900E-04 9.8000E-02 2.0700E-02

7 TPHS 9.0900E-01 9.1800E-01 7.4900E-01 9.7800E-01 5.1100E-02

SMHS 1.8748E-02 1.4623E-02 2.9150E-03 6.4336E-02 1.4264E-02

HS-SA 4.6600E-05 4.7000E-05 2.6000E-05 6.4000E-05 8.0100E-06

8 TPHS 1.9800E+00 1.7700E+00 3.5300E-01 5.5300E+00 1.2300E+00

SMHS 1.9221E+00 1.9911E+00 4.0700E-04 4.9820E+00 1.3323E+00

HS-SA 6.5400E+01 6.5600E+01 3.6800E+01 9.1500E+01 1.3100E+01

9 TPHS 1.4800E+02 1.2900E+02 8.9800E+01 2.0700E+02 3.4500E+01

SMHS 2.6905E+01 2.6867E+01 1.6915E+01 3.8805E+01 5.6832E+00

HS-SA 2.0100E-01 1.9000E-01 8.5300E-02 2.9400E-01 4.6600E-02

10 TPHS 1.9800E+01 2.0100E+01 9.9100E+00 2.7300E+01 4.2700E+00

SMHS 6.9897E+00 6.4561E+00 2.6068E+00 1.1669E+01 2.3570E+00
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Table 5.2: Error value obtained by HS-SA, TPHS and SMHS on Function num-
ber 11 through 30.

Function Algorithm Mean Median Best Worst Std Dev

HS-SA 1.9899E+03 1.9559E+03 6.3470E+02 3.3266E+03 4.9702E+02

11 TPHS 4.1312E+03 4.1517E+03 5.7415E+02 6.7373E+03 1.6932E+03

SMHS 1.8056E+03 1.5735E+03 8.6593E+02 4.7538E+03 8.5772E+02

HS-SA 1.6853E-01 1.6566E-01 6.1270E-02 3.0058E-01 5.2063E-02

12 TPHS 2.4943E+00 2.4910E+00 1.8035E+00 3.0691E+00 2.6679E-01

SMHS 6.2522E-01 6.1202E-01 1.5617E-01 1.0919E+00 1.9078E-01

HS-SA 5.3161E-01 5.2862E-01 3.0982E-01 8.0228E-01 1.1346E-01

13 TPHS 3.7631E-01 3.5977E-01 2.1373E-01 5.6539E-01 9.1385E-02

SMHS 1.8662E-01 1.8368E-01 1.0202E-01 2.9823E-01 3.9571E-02

HS-SA 4.0668E-01 3.4310E-01 2.0409E-01 1.0504E+00 2.0518E-01

14 TPHS 3.1817E-01 3.1202E-01 1.6756E-01 4.2938E-01 5.5921E-02

SMHS 2.0903E-01 2.1033E-01 1.2922E-01 2.9089E-01 3.7121E-02

HS-SA 1.4155E+01 1.2918E+01 4.8635E+00 2.9317E+01 5.7329E+00

15 TPHS 1.7448E+01 1.7476E+01 1.4544E+01 1.9963E+01 1.0298E+00

SMHS 3.9018E+00 3.7710E+00 2.0791E+00 7.7064E+00 1.1601E+00

HS-SA 9.4563E+00 9.4030E+00 8.0110E+00 1.1269E+01 7.6297E-01

16 TPHS 8.4200E+00 8.3470E+00 7.2800E+00 9.5521E+00 4.8655E-01

SMHS 9.4167E+00 9.5425E+00 7.5779E+00 1.1179E+01 7.1934E-01

HS-SA 2.0083E+06 1.6854E+06 1.3187E+05 6.8902E+06 1.4732E+06

17 TPHS 3.1185E+05 2.7201E+05 8.5087E+03 1.0751E+06 2.4092E+05

SMHS 2.9252E+04 2.9950E+04 1.2225E+04 4.4817E+04 7.4617E+03

HS-SA 6.1800E+03 4.6128E+03 4.0631E+01 2.4763E+04 6.2672E+03

18 TPHS 2.9688E+03 1.9882E+03 3.8090E+02 1.4099E+04 2.8869E+03

SMHS 1.6495E+02 1.3705E+02 4.6879E+01 5.1708E+02 1.0095E+02

HS-SA 2.0454E+01 9.2266E+00 5.8494E+00 1.3300E+02 3.3613E+01

19 TPHS 6.7812E+00 6.7391E+00 4.8215E+00 9.4500E+00 9.8160E-01

SMHS 4.4001E+00 4.4021E+00 4.1229E+00 7.3987E+00 1.2532E+00

HS-SA 6.2076E+03 6.1032E+03 8.0318E+02 2.6505E+04 5.5557E+03

20 TPHS 9.5134E+02 6.5674E+02 2.6539E+02 3.2450E+03 7.0946E+02

SMHS 1.3391E+02 1.2379E+02 5.5901E+01 2.9843E+02 5.3748E+01
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Table 5.3: Error value obtained by HS-SA, TPHS and SMHS on Function num-
ber 21 through 30.

Function Algorithm Mean Median Best Worst Std Dev

HS-SA 6.556E+05 5.071E+05 8.176E+04 2.133E+06 5.294E+05

21 TPHS 1.514E+05 1.092E+05 1.030E+04 5.114E+05 1.224E+05

SMHS 2.759E+04 2.790E+04 1.391E+04 4.591E+04 5.849E+03

HS-SA 4.589E+02 4.864E+02 1.671E+02 9.442E+02 1.859E+02

22 TPHS 1.558E+02 1.497E+02 2.358E+01 5.036E+02 1.084E+02

SMHS 2.011E+02 1.532E+02 1.409E+02 5.008E+02 8.844E+01

HS-SA 3.156E+02 3.156E+02 3.152E+02 3.170E+02 3.675E-01

23 TPHS 3.140E+02 3.140E+02 3.139E+02 3.142E+02 5.184E-02

SMHS 3.142E+02 3.142E+02 3.140E+02 3.149E+02 1.650E-01

HS-SA 2.303E+02 2.301E+02 2.266E+02 2.462E+02 4.998E+00

24 TPHS 2.116E+02 2.129E+02 2.001E+02 2.161E+02 3.962E+00

SMHS 2.236E+02 2.238E+02 2.214E+02 2.249E+02 8.758E-01

HS-SA 2.050E+02 2.060E+02 2.043E+02 2.123E+02 1.691E+00

25 TPHS 2.004E+02 2.001E+02 2.000E+02 2.020E+02 4.465E-01

SMHS 2.000E+02 2.000E+02 2.000E+02 2.000E+02 2.094E-03

HS-SA 1.249E+02 1.006E+02 1.003E+02 2.015E+02 4.889E+01

26 TPHS 1.102E+02 1.004E+02 1.001E+02 2.005E+02 2.975E+01

SMHS 1.002E+02 1.002E+02 1.002E+02 1.004E+02 4.557E-02

HS-SA 6.066E+02 6.082E+02 4.014E+02 8.819E+02 1.539E+02

27 TPHS 3.858E+02 3.900E+02 3.422E+02 5.582E+02 3.876E+01

SMHS 3.257E+02 3.235E+02 3.118E+02 3.761E+02 1.234E+01

HS-SA 1.001E+03 9.993E+03 7.961E+02 2.269E+03 2.656E+02

28 TPHS 7.119E+02 7.180E+02 5.640E+02 7.708E+02 3.688E+01

SMHS 3.205E+02 3.013E+02 3.008E+02 8.311E+02 9.516E+01

HS-SA 1.714E+05 1.238E+03 5.638E+02 8.670E+06 1.202E+06

29 TPHS 2.023E+03 1.922E+03 1.490E+03 2.896E+03 3.345E+02

SMHS 6.404E+02 6.454E+02 5.500E+02 1.241E+03 1.001E+02

HS-SA 5.203E+03 4.846E+03 1.517E+03 1.400E+04 2.335E+03

30 TPHS 3.487E+03 3.584E+03 1.288E+03 5.361E+03 1.026E+03

SMHS 6.832E+02 6.904E+02 6.178E+02 1.234E+03 2.655E+02
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Table 5.4: Time complexity in seconds (Dimension 30)

Algorithm T̂2
T̂2−T1
T0

HS 2.28 4.11

TPHS 2.35 4.46

HS-SA 2.37 4.8

SMHS 2.372 4.83

Table 5.5: Camera parameter bounds and Ground Truth values for camera.

Parameter Ground Truth Bounds

f 10 [5, 15]

Nx 200 [170, 230]

Ny 200 [170, 230]

u0 20 [15, 25]

v0 19 [15, 25]

K 0.15152 [0, 0.5]

Tx 60 [20, 80]

Ty 35 [25, 45]

Tz 1210 [1000, 1400]

α 0 [−π/2, π/2]

β 0 [−π/2, π/2]

γ 0 [−π/2, π/2]
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Table 5.6: Best Parameter values obtained in 50 runs (HS-SA).

Parameters N=5 N=10 N=50 N=100 N=200 N=300 N=400 N=500

f 8.253 7.06 9.924 12.397 15 12.314 11.861 7.643

Nx 217.986 209.671 214.286 212.658 184.347 188.408 220.348 221.912

Ny 230 206.564 216.72 213.266 186.513 188.791 225.93 222.688

u0 20.927 15.656 15.812 19.831 24.769 21.664 22.64 15.313

v0 22.181 23.051 24.212 18.475 21.495 17.959 18.754 19.42

K 0.174 0.024 0.191 0.379 0.374 0.214 0.297 0.103

Tx 48.173 79.541 76.334 66.077 79.399 65.158 60.469 61.69

Ty 39.664 31.662 41.447 25 27.465 41.67 40.733 31.985

Tz 1002.058 1000.33 1226.186 1004.9 1157.501 1331.794 1335.615 1004.411

α 0.00104 0.0008 -0.00065 -0.00152 -0.00193 0.00056 0.0016 -0.00082

β -0.00934 0.00836 0.00525 0.00352 0.01813 0.00533 0.00283 -0.00453

γ -0.00663 -0.0026 -0.01049 0.00731 0.002 -0.00317 -0.00372 0.00139

Table 5.7: Best Parameter values obtained in 50 runs (TPHS).

Parameters N=5 N=10 N=50 N=100 N=200 N=300 N=400 N=500

f 13.77 13.65 15 15 13.884 15 11.995 15

Nx 203.92 176.069 175.918 178.143 224.194 212.93 215.02 192.42

Ny 174.86 203.005 173.941 214.136 193.235 210.607 214.082 171.825

u0 20.667 23.882 25 22.053 16.111 20.485 15.391 23.692

v0 15.295 24.077 22.436 24.998 23.214 22.225 19.981 23.964

K 0.282 0.477 0.273 0.366 0.366 0.496 0.282 0.331

Tx 39.412 41.965 21.179 63.31 34.083 63.943 66.378 39.169

Ty 37.029 35.954 39.865 38.947 32.622 40.759 37.435 39.057

Tz 1144.108 1098.257 1246.541 1181.174 1374.711 1052.596 1237.953 1254.143

α -0.13499 -0.05958 -0.01421 0.01034 -0.06361 -0.0159 0.11631 -0.011

β -0.00808 -0.01868 -0.0172 0.0029 -0.02019 0.00375 0.00046 -0.00699

γ 0.00205 -0.00494 -0.00911 -0.01246 -0.00201 -0.00757 -0.00303 -0.00728
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Table 5.8: Best Parameter values obtained in 50 runs (SMHS).

Parameters N=5 N=10 N=50 N=100 N=200 N=300 N=400 N=500

f 9.231 8.126 9.724 10.173 12.121 11.231 11.112 8.612

Nx 216.816 207.162 212.223 212.489 192.321 190.189 215.381 223.126

Ny 223 208.749 217.722 211.231 192.314 189.145 223.913 213.814

u0 21.974 17.216 19.890 19.457 23.914 22.147 23.464 17.934

v0 22.881 21.475 22.247 18.8875 20.478 19.59 19.746 21.242

K 0.123 0.074 0.182 0.315 0.324 0.217 0.247 0.112

Tx 55.45 71.465 72.469 63.485 77.449 62.785 61.475 62.973

Ty 34.567 33.478 40.157 27.98 26.425 42.167 41.123 33.784

Tz 1012.18 1002.133 1206.26 1011.19 1137.321 1311.214 1315.757 1014.221

α 0.00024 0.00015 -0.000215 -0.00132 -0.0018 0.000416 0.0012 -0.00062

β -0.00412 0.00816 0.00542 0.00312 0.013 0.003 0.00312 -0.00412

γ -0.00643 -0.00116 -0.0102 0.00842 0.0031 -0.00312 -0.00362 0.00143

Table 5.9: Statistics of Pixel Error for varying number of control points (HS).

Control Points (N) Mean Pixel Error Min. Pixel Error Max. Pixel Error SD Pixel Error Calibration Time(s)

5 2.81 0.499 3.997 0.756 0.519

10 1.995 0.233 3.471 0.801 0.554

50 1.761 0.369 3.216 0.711 0.746

100 1.51 0.341 3.05 0.73 1.006

200 1.32 0.192 3.04 0.709 1.507

300 1.213 0.164 3.09 0.742 2.014

400 0.917 0.018 2.76 0.795 2.52

500 0.876 0.03 2.788 0.729 3.028
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Table 5.10: Statistics of Pixel Error for varying number of control points (HS-
SA).

Control Points (N) Mean Pixel Error Min. Pixel Error Max. Pixel Error SD Pixel Error Calibration Time(s)

5 2.428 0.106 3.553 0.83 0.549

10 1.752 0.327 3.473 0.885 0.58

50 1.45 0.216 3.104 0.639 0.779

100 1.347 0.07 3.104 0.642 1.056

200 1.198 0.153 2.921 0.525 1.585

300 1.093 0.223 3.105 0.716 2.111

400 0.85 0.066 2.559 0.71 2.652

500 0.802 0.023 2.592 0.679 3.179

Table 5.11: Statistics of Pixel Error for varying number of control points
(TPHS).

Control Points (N) Mean Pixel Error Min. Pixel Error Max. Pixel Error SD Pixel Error Calibration Time(s)

5 2.368 0.572 4.068 0.819 0.7

10 1.71 0.568 3.602 0.762 0.718

50 1.435 0.647 2.517 0.432 0.973

100 1.39 0.567 2.471 0.459 1.292

200 1.30 0.701 2.605 0.427 1.929

300 1.20 0.516 2.335 0.378 2.657

400 0.901 0.565 2.336 0.425 3.355

500 0.861 0.501 2.534 0.498 4.069

Table 5.12: Statistics of Pixel Error for varying number of control points
(SMHS).

Control Points (N) Mean Pixel Error Min. Pixel Error Max. Pixel Error SD Pixel Error Calibration Time(s)

5 2.213 0.102 3.013 0.72 0.552

10 1.602 0.315 3.10 0.785 0.590

50 1.40 0.204 3.002 0.612 0.782

100 1.322 0.05 2.804 0.635 1.071

200 1.175 0.146 2.721 0.516 1.592

300 1.064 0.215 2.505 0.519 2.120

400 0.78 0.051 2.449 0.72 2.663

500 0.602 0.015 2.122 0.549 3.213
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Table 5.13: Statistics of Pixel Error for varying number of control points (SA).

Control Points (N) Mean Pixel Error Min. Pixel Error Max. Pixel Error SD Pixel Error Calibration Time(s)

5 2.658 0.158 4.062 0.921 0.217

10 1.775 0.221 3.512 0.67 0.229

50 1.652 0.011 3.076 0.788 0.333

100 1.38 0.095 3.299 0.728 0.46

200 1.252 0.17 2.887 0.713 0.717

300 1.116 0.032 2.822 0.768 0.973

400 0.945 0.104 2.548 0.717 1.233

500 1.016 0.101 2.663 0.647 1.531
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Chapter 6
Harmony Search based Memetic Algorithms for
Solving Sudoku

The development of hybrid procedures for optimization focuses on enhancing the strength and com-

pensating for the weakness of two or more complementary approaches. The goal is to intelligently

combine the key elements of the competing methodologies to create a superior solution procedure.

The objective of this chapter is to explore the hybridization between Harmony Search (HS) and Hill

Climbing (HC) algorithm by utilizing the exploration power of the former and exploitation power of

the latter in the context of solving Sudoku which is a well-known hard Combinatorial Optimization

problem. We call this hybrid algorithm Harmony Search Hill Climber (HSHC). In order to extend

the exploration capabilities of HSHC it is further modified to create three different algorithms namely

Retrievable Harmony Search Hill Climber (RHSHC), Global Best Retrievable Harmony Search Hill

Climber (GB-RHSHC) and Random Best Retrievable Harmony Search Hill Climber (RB-RHSHC).

Comparing the four algorithms proposed in this chapter RHSHC outperforms its three variations in

terms of effectiveness. Experimental results demonstrate that RHSHC perform significantly better

than standard Harmony Search algorithm and standard Hill climber algorithm. On comparing RHSHC

with the genetic algorithm it has been concluded that former outperforms latter both in terms of effec-

tiveness and efficiency particularly on Hard and Expert level puzzles. Comparing RHSHC and hybrid

AC3-tabu search algorithm it has been concluded that RHSHC is very competent to hybrid AC3-tabu

search algorithm.

The organization of this chapter is as follows. Section 6.1 is introductory in nature. Section 6.2

introduces the related work in the context of solving Sudoku. Section 6.3 describes the proposed al-

gorithms. Section 6.5 compares the proposed HSHC with other metaheuristic algorithms and finally

the chapter concludes with Section 6.6.

6.1 Introduction

Sudoku is a Japanese puzzle which consists of an N × N square that is divided into
√
N sub-squares,

each of size
√
N ×

√
N . Here N is a perfect square and is known as the order of the Sudoku. In

the beginning, there are some static numbers (called givens or fixed) in the puzzle. The game is to

fill all non givens such that each row, column and sub-square contains integers from 1 to N exactly

once. Sudoku is a well-known NP complete problem (Takayuki and Takahiro, 2003). The difficulty

level of the Sudoku puzzle is determined by around twenty factors and the number of initial givens
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has no or little role in it(Mantere and Koljonen, 2006). Figure 6.1 is an example of a Sudoku puzzle

of order 9 along with its solution. In the solution, each row, column and sub-square contains integers

from 1 to 9 exactly once, further the givens remain intact. Sudoku is linked to real world applications

including conflict free wavelength routing in wide band optical networks, statistical design and error

correcting codes, as well as timetabling and experimental design(Jones et al., 2008). Another closely

related problem to sudoku is generating threshold matrix for halftoning grayscale images (Mantere

and Koljonen, 2006).

HS has demonstrated several advantages like simplicity, flexibility, adaptability, generality,and scal-

ability over traditional optimization techniques (Al-Betar et al., 2012) and has been particularly suc-

cessful on combinatorial optimization problems where it has outperformed other meta heuristic algo-

rithms like genetic algorithm as well as the traditional branch and bound method (Geem, 2005) . HS

works by generating a new vector that encodes a candidate solution, after considering the selection of

all existing quality vectors. This forms a contrast with conventional evolutionary approaches such as

GAs that consider only two (parent) vectors in order to produce a new (child) vector. It increases the

exploration capabilities of HS (Diao and Shen, 2012) and hence has been preferred over other global

search techniques like GA in this chapter.

Hill climbing is a local search optimization operator. It is an iterative algorithm that starts with an

arbitrary solution of a problem, then explores to find a better solution by incrementally changing a

single component of the solution. If the change produces a better solution, the new solution is ac-

cepted, repeating until no further improvements can be found.

Memetic Algorithms (MA) are a class of stochastic global search heuristics in which population based

Evolutionary algorithms are hybridized with problem specific solvers, typically local search heuristic

techniques to improve the quality of the solution (Ong et al., 2006a). The name is inspired by Richard

Dawkinś concept of meme, which represents a unit of cultural evolution that can represent local re-

finement (Dawkins, 2006). MAs have arisen as a reciprocation to the problem encountered in the

conventional evolutionary algorithms which are good at global exploration of the search space how-

ever can take relatively large time to find the optimal with sufficient precision (Ong et al., 2006b). This

often limits the practicality of evolutionary algorithms in many real world problems where computa-

tional time is of paramount importance. This hybridization between global and local search methods

refereed to as MA has been shown to be more efficient (i.e., requiring orders of magnitude fewer

evaluations to converge) and effective (i.e., identifying high quality solutions that would otherwise be

unreachable by evolutionary algorithm or local search alone) than traditional evolutionary algorithms
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on several problem domains (Al-Betar et al., 2012). MA are successful and popular for solving opti-

mization problems in many contexts (Acampora et al., 2015; Al-Betar et al., 2012; Bansal et al., 2013;

Chan et al., 2012; Ishibuchi et al., 2003; Jadon et al., 2015; Lin et al., 2016; Sharma et al., 2013, 2016).

Hart et. al. (Hart et al., 2004) gives an elaborate review of MAs.

Many attempts have been made in literature to solve Sudoku puzzles these include exact search meth-

ods such as constraint programming (Moon and Gunther, 2006) and Boolean satisfiability (Lynce and

Ouaknine, 2006) to heuristic and metaheuristic based algorithms including Simulated Annealing (SA)

(Lewis, 2007), GA (Mantere and Koljonen, 2006), Ant Systems (Mullaney, 2006), Differential Evo-

lution(DE) (Boryczka and Juszczuk, 2012) to name a few. Other less traditional techniques in this

context such as Sinkhorn balancing (Moon et al., 2009), rewriting rules (Moon et al., 2009) and en-

tropy minimization (Gunther and Moon, 2012) has also been proposed to tackle this problem.

The objective of this chapter is to create an algorithm namely Harmony Search Hill Climber (HSHC)

by hybridizing HS and Hill Climbing operator with an aim to solve Sudoku. In order to increase the

exploration capabilities of HSHC, three variations of HSHC have been proposed. Since the proposed

algorithms use hill climbing operator they can be termed to fall in the category of memetic algorithms.

(a) Sudoku Puzzle (b) Solution

Figure 6.1: A Sudoku Puzzle with 26 givens and its solution.
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6.2 Related work

Deterministic algorithms based on branch and bound strategy have been used to solve Sudoku, since

Sudoku is an NP-complete problem, thus we cannot find a polynomial time algorithm for all possible

problem instances, unless P = NP (Garey, 1979). Thus researchers have made efforts to solve Sudoku

puzzles using various meta heuristic algorithms.

For instance Mantere and Koljonen have used Genetic Algorithm (GA) to solve Sudoku puzzle in

(Mantere and Koljonen, 2006). The algorithm is extension of the one devoted to solve magic square

problems. In the algorithm each chromosome is represented as an integer array with size 81. Each

chunk of 9 digits starting from left corrosponds to 3 × 3 sub block of Sudoku. Each sub block is

initialized with numbers from 1 to 9 such that there is no repetition of digits and givens remain intact.

The crossover site is only at the boundary of sub blocks, the mutation used is: swap mutation, 3-swap

mutation and insertion mutation and is allowed only within the sub block. The algorithm has been

tested on different categories of Sudoku puzzles although good performance have been exhibited in

solving easy and medium type Sudoku however the success rate for challenging, difficult and super

difficult puzzles is 30%, 4% and 6% respectively.

Das et.al.(Das et al., 2012) have proposed Retrievable GA algorithm by modifying the GA algorithm

proposed in (Mantere and Koljonen, 2006). The main difference between Retrievable GA and the one

proposed in (Mantere and Koljonen, 2006) is that in former population is re initialized after certain

number of generations (which depend on difficulty level of puzzle). Experimental results demonstrate

that Retrievable GA performs better than the one proposed in (Mantere and Koljonen, 2006) both in

terms of effectiveness and efficiency (Das et al., 2012). The success rate shown by Retrievable GA

in solving easy and medium puzzles is 100% and for difficult and superdifficult puzzles it is 16% and

9% respectively.

Nicolau and Ryan (Nicolau and Ryan, 2006) have used Genetic algorithm using Grammatical Evolu-

tion (GAuGE) for solving sudoku, GAuGE uses position independent representation. Each phenotype

variable is encoded as a genotype string along with an associated phenotype position to learn linear

relationships between variables. The GAuGE algorithm has shown promising results for majority of

test puzzles, however as reported in (Nicolau and Ryan, 2006) there were some test puzzles on which

the algorithm failed completely.

Li and Deng (Li and Deng, 2011) have modified the various important operators of GA in a bold way

so that the algorithm has higher reliability, quicker convergence and better stability. Sato and Inoue

(Sato and Inoue, 2010) have proposed a hybrid GA local search algorithm to tackle the sudoku puzzles
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and have shown good performance particularly for solving difficult puzzles. In (Deng and Li, 2013)

a hybrid GA has been utilized to solve Sudoku. The proposed algorithm was able to solve majority

of easy puzzles however the success rate for difficult and superdifficult was 17% and 0% respectively.

In order to accelerate the speed of Genetic algorithms for sudoku solving a parallel GA has been pro-

posed in (Sato et al., 2013).

Hill Climbers have been tested to solve sudoku puzzle in (Moraglio et al., 2006). In order to restrict the

search space explored by Hill Climber the concept of Smart Square Mutation has been applied. This

mutation applies the most obvious constraint to the possible values Sudoku can take. For example if a

row has a fixed ’9’ then ’9’ is removed from the set of possible values of that row, the same concept

is extended to columns and sub squares. Though the proposed Hill climbing algorithm powered by

Smart Square Mutation succeeded in solving easy type puzzles however it completely failed in solving

medium and hard ones.

In (Lewis, 2007) a simulating annealing algorithm has been presented to solve sudoku, however the

approach is mainly centered on creating solvable problems than solving hard Sudoku puzzles.

A hybrid tabu search algorithm has been proposed to solve the Sudoku puzzle in (Soto et al., 2015)

and the algorithm has shown very promising results for solving difficult and superdifficult puzzles.

In (Boryczka and Juszczuk, 2012) Differential Evolution(DE) has been tested on sudoku puzzles, the

authors have further tested the algorithm on classifying the Sudoku puzzles depending on their diffi-

culty level. Though encouraging results have been reported however the algorithm has been tested on

only few puzzles.

An evolutionary algorithm employing filtered mutations have been proposed in (Wang et al., 2015) to

tackle Sudoku puzzle, the algorithm has been tested on 6 puzzles (2 each of type easy, medium, diffi-

cult and super difficult) and has shown good results particularly in solving difficult and super difficult

puzzles.

A hybrid AC3-tabu search algorithm for solving sudoku has been proposed in (Soto et al., 2013). The

algorithm has been created by combining tabu search with an arc-consistency 3 (AC3) algorithm that

acts as a domain reducer. This integration reduces the number of tabu search iterations thus increases

the convergence speed of the algorithm. As illustrated in (Simonis, 2005) Sudoku can be represented

as constraint network, thus consequence techniques from constraint satisfaction can be applied on

them. Arc-consistency is one of the most utilized filtration technique in constraint satisfaction for

reducing the search space of combinatorial problems. Arc-consistency is formally defined as local

consistency within the constraint programming field (Rossi et al., 2006). A local consistency defines

111



properties that the constraint problem must satisfy after constraint propagation. The hybrid AC3-tabu

search algorithm has shown excellent performance on all types of Sudoku puzzles and has been com-

pared with genetic algorithm proposed in (Mantere and Koljonen, 2007). The simulation results show

that former is significantly effective than later particularly on hard Sudoku puzzles.

In (Soto et al., 2014) a Cuckoo Search Algorithm with Geometric Operators has been utilized for solv-

ing Sudoku Problems. The algorithm was able to solve easy and medium sudoku with approximately

100% success rate and hard puzzles with approximately 65% success rate in 10,000 iterations and if

allowed to run for unlimited iterations the success rate for all types of puzzles was 100%.

HS algorithm has been used to solve Sudoku puzzle in (Geem, 2007) however there are three main

limitations in that article.

1. In order to carry out experimentation only two Sudoku puzzles one of type Easy another of type

Hard has been used to conclude that the algorithm solves easy problem very efficiently and fails

to solve the hard problem, however in randomized algorithms one can’t jump on conclusion by

taking such a small example set.

2. There are different types of Sudoku puzzles like Beginner, Easy, Medium, Hard, and Expert

however only Easy and Hard problem has been attempted.

3. The fitness function used is

Minimize Z =
9∑
i=1

∣∣∣∣∣
9∑
j=1

xij − 45

∣∣∣∣∣+
9∑
j=1

∣∣∣∣∣
9∑
i=1

xij − 45

∣∣∣∣∣+
9∑

k=1

∣∣∣∣∣∣
∑

(l,m)∈Bk

xlm − 45

∣∣∣∣∣∣
where Xij ∈ {1, 2 . . . 9} is the (i, j)th element of Sudoku (6.1)

The first term in equation (6.1) represents the penalty function for each horizontal row; the second

term for each vertical column; and the third term for each block. The solution is reached when there

is no violation (i.e. repeating number) in rows, columns and blocks thus for solution equation (6.1)

evaluates to Zero.
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There are two main disadvantages with this fitness function (equation 6.1).

1. Even if the fitness function evaluates to zero it is not guaranteed that the solution has been found.

A detailed discussion on the limitations of the above mentioned fitness function (equation 6.1)

can be found in (Weyland, 2015).

2. It gives more penalty to repetition of higher face value digits than lower face value digits. Let

us assume there are two potential solutions A and B such that in solution A, the digit ’9’ occurs

twice in some row and in solution B, the digit ’1’ occurs thrice in some row. Then according to

the fitness function (equation 6.1) solution A is better than solution B, although solution A has

more violation than solution B.

Thus there is a scope to modify the basic HS algorithm proposed in (Geem, 2007), so that it can be

effective on all categories of Sudoku puzzles viz. Beginner, Easy, Medium, Hard and Expert.

6.3 Proposed HSHC Algorithm

In this chapter a hybrid algorithm of Harmony search and Hill Climbing has been proposed, namely

Harmony Search Hill Climber (HSHC). In order to increase the exploration potentiality of HSHC three

variants of HSHS have been proposed, namely Retrievable Harmony Search Hill Climber (RHSHC),

Global Best Retrievable Harmony Search Hill Climber (GB-RHSHC) and Random Best Retrievable

Harmony Search Hill Climber (RB-RHSHC).

Algorithm 7 is the Pseudo code of HSHC algorithm. In Algorithm 7 the parameters HMS, HMCR,

NH SIZE respectively denote Harmony Memory size, Harmony Memory Consideration Rate and Size

of neighborhood to be explored by Hill Climbing operator.

6.3.1 Detailed Description of the proposed HSHC Algorithm

The working of HSHC (Algorithm 7) is described in the following steps.

Step 1

In this step the free parameters of algorithm like Harmony Memory Size (HMS), Harmony Memory

Consideration Rate (HMCR) and Neighborhood Size (NH SIZE) to be explored by Hill Climber op-

erator are initialized.

Step 2

Initialization of harmony memory (HM) is performed in this step. So far as the structure of the har-

mony is concerned, each harmony represents a complete Sudoku. Thus harmony is represented by a
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vector of dimension N × N where N is the order of the Sudoku puzzle. Harmony Memory (HM) is an

array of such vectors with dimension HMS. Mathematically the structure of HM is

H1 =



h111 h112 . . . h
1
1N

h121 h122 . . . h
1
2N

. . . . . . . .

h1N1 h1N2 . . . h
1
NN



H2 =



h211 h212 . . . h
2
1N

h221 h222 . . . h
2
2N

. . . . . . . .

h2N1 h2N2 . . . h
2
NN


...

HHMS =



hHMS
11 hHMS

12 . . . hHMS
1N

hHMS
21 hHMS

22 . . . hHMS
2N

. . . . . . . . . . .

hHMS
N1 hHMS

N2 . . . hHMS
NN


WhereHn is the nth harmony, f(Hn) is the fitness value of the nth harmony and hnij is cell at row i and

column j in the nth harmony of HM. While initializing the harmonies a constraint is defined such that

each row in the harmony contain numbers from 1 to N exactly once without repetition. Mathematically

(i, j)th element of harmony n denoted by hnij must satisfy following constraints

for each ith row, (1 ≤ i ≤ N), hnij 6= hnik, k 6= j, 1 ≤ j, k ≤ N, n ∈ {1, 2, . . . HMS} (6.2)

If all the elements in a harmony satisfy above constraints (equation 6.2) it is guaranteed that the fre-

quency of occurrence of each number in the harmony is N. This is an important achievement because

in a valid Sudoku solution frequency of occurrence of each number must be exactly N. Line number 15

through 27 of Algorithm 7 constitute the hill climbing operator, where neighbors of a given harmony

are generated by exchanging cell values and this operator will never converge to solution if the above

mentioned constraint on frequency of occurrence of digits is not obeyed by harmony. Therefore during

random initialization of HM it is made sure that each row in the harmony must obey the constraint
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represented by equation (6.2). Though there are many ways to achieve it, let us consider following

two ways.

Consider the pseudo code given as Algorithm 8. In Algorithm 8 line number 3* generates random

number from 1 to N and assigns it to r, line number 5* compare already assigned numbers in row i of

H with r if any of the numbers happen to be same as that of r otherwise r gets regenerated. H[i][j] is

assigned r where H is the harmony with dimension N × N and H[i][j] is the (i, j)th element of H . It

is easy to verify that the worst case time complexity of Algorithm 8 is atleast O(N3) where N is the

order of the Sudoku.

Another algorithm to obtain randomization in an array is called Richard Durstenfeld algorithm (Dursten-

feld, 1964). Pseudo code of the algorithm for random initialization of Sudoku using Richard Dursten-

feld algorithm is given as Algorithm 9. In Algorithm 9 line number 2* and 3* sequentially assigns

numbers from 1 to N to row i of H, then in line number 6* and 7* one of the numbers is randomly

picked and shifted to end, the loop in line number 5* repeats this process for all the N numbers. Since

the complexity of Algorithm 9 is O(N2) so it is considered for random initialization of harmony in

HM. Further it must be noted during initialization no special care is provided to givens/fixed cells,

rather they are also initialized randomly and for any violation of givens the harmony will be penalized

by fitness function.

Step 3

In this step each Harmony is evaluated to determine its fitness. The limitation of fitness function used

in (Geem, 2007) has already been discussed in section 6.2, so fitness function proposed in (Das et al.,

2012) has been used with slight modification. The fitness function proposed in this chapter consists

of four parts, namely row-fitness, column-fitness, sub-square-fitness and givens violation fitness. The

first three fitness terms have equal weightage, however the last one has W times more weightage than

first three terms. Thus the overall fitness function becomes

Fitness function = Row fitness+ Column fitness +

Subsquare fitness−W ×Givens violation (6.3)

The fitness function (equation 6.3) attains the maximum possible value when the solution is reached.

Each row entry is compared with all the remaining entries to its right, If the two entries are not

equal row fitness value is incremented by one otherwise it remains same. Thus in the solution the

contribution from each row is N(N − 1)/2 (sum of first N-1 natural numbers). Hence for N rows it is

N2(N − 1)/2. Similar results hold for columns and sub squares. Hence for an N ×N Sudoku puzzle
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the maximum possible fitness value is 3N3(N−1)/2. It must be noted that the contribution of penalty

for violating givens will be zero in the solution. The fitness value for the solution of a 9 × 9 Sudoku

puzzle is 972. Thus when the fitness function attains its maximum possible value it is guaranteed that

solution has been obtained. Expressing this concept in mathematical form

f(i, j, k, l) =

0 if (i, j) = (k, l)

1 otherwise

Where (i,j) and (k,l) refer to two entries of N × N Sudoku puzzle. The fitness function for each row is

defined as

Row fitness =
N∑
i=1

N−1∑
j=1

N∑
l=j+1

f(i, j, i, l) (6.4)

The fitness function for each column is defined as

Column fitness =
N∑
j=1

N−1∑
i=1

N∑
l=i+1

f(i, j, l, j) (6.5)

The fitness function for each sub square is defined as

Sub Square fitness =

N∑
i=1

[ √
N∑

q=1

{
q
√
N−1∑

j=1+

(q−1)
√
N

q
√
N∑
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∑

r=1+(q−1)
√
N

i 6=t
√
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i+
√
N−

i(mod
√
N)∑
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q
√
N∑

s=1+
(q−1)

√
N

f(i, r, k, s)

}]
(6.6)

The fitness function for violating fixed/givens is defined as

Givens violation =
N∑
i=1

N∑
j=1

l(i, j) (6.7)

where l(i, j) =

1 if flag(i, j) 6= 0 and (i, j) 6= flag(i, j))

0 otherwise

Where flag is an N × N matrix whose (i, j)th element is 0 if (i, j)th element is not given otherwise it

is equal to given/fixed (i, j)th element and Z+ is the set of all positive integers.

Hence from equation (6.3) the fitness function is the sum of equations (6.4), (6.5), (6.6) minus W

times equation (6.7). After thorough experimentation the value for W in equation (6.3) was fixed as 8.

Step 7

This step is executed with probability HMCR and in this step a new harmony say Hnew is produced
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either by selecting an existing harmony from HM with probability P or by combing the harmonies in

HM with probability 1-P. While producing a new harmony using existing harmonies a simple mech-

anism is used. While generating ith (1 ≤ i ≤ N ) row of Hnew, one of the harmonies from HM is

randomly selected and its ith row is added to Hnew. The above procedure is repeated for all the N

rows of Hnew. The optimum value of P was found out to be .95 after thorough experimentation.

Step 9

The aim of this step is to speedup convergence by incorporating problem specific knowledge in har-

mony creation. This step must be executed with very low probability because it increases the proba-

bility of being stuck in local optimal. In this step a harmony is randomly generated however during

random harmony creation two facts are kept in mind one the givens must remain intact another there

must be no repetition of numbers in rows and columns. However repetition of numbers in blocks is

allowed. Mathematically hij the (i, j)th element of Hnew must satisfy following constraints if it is not

fixed.

for each element hij, hij 6= hik (j 6= k) and hij 6= hlj (l 6= i), (i, j, k, l) ∈ {1, 2 . . . N} (6.8)

Steps 15 through 27 of Algorithm 7 constitute the Hill Climbing operator where a neighbor of a Har-

mony is generated by exchanging contents of two cells having different values.

Step 20

In this step NBR is compared with the best Harmony and in case NBR is better than or slightly in-

ferior than BEST, NBR becomes ROOT. The reason for this move is that since NBR seems to be

very promising as it can compete with the best Harmony it is reasonable to concentrate on this new

harmony by exploring it further. If the difference between the fitness value of BEST and NBR is less

than 3 it is considered to be marginally inferior to BEST and thus eligible to be explored further. After

through experimentation the optimal value of T was found out to be 3.

Steps 23 and 24

If any harmony say NBR produced during hill climbing is better than the WORST Harmony in Har-

mony Memory, the WORST harmony in HM is replaced by that harmony.

One of the main disadvantages of evolutionary algorithms (including HS) is premature convergence

due to lack of diversity in population, so in order to overcome this issue the concept of catastrophic

mutation form GA (Jin and Li, 1997) has been adopted in HSHC and three new algorithms namely

RHSHC, GB-RHSHC and RB-RHSHC are proposed depending on how Catastrophic mutation is ap-
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plied. In Catastrophic mutation the population is unsettled by very high mutation rate (typically greater

than 0.8) so as to recover the population diversity and thus avoid premature convergence in GA.

In this chapter catastrophic mutation is applied by re initializing the harmony memory (HM) if the

best Harmony does update in 150,000 function evaluations. In GB-RHSHC catastrophic mutation is

performed by re initializing all the harmonies in the HM except the best one, whereas in RB-RHSHC

catastrophic mutation is performed by re initializing all the harmonies in the HM except one randomly

selected harmony. In RHSHC catastrophic mutation is performed by re initializing the entire HM.

The time complexity of fitness function (Equation 6.3) is O(N3) and hence the overall time com-

plexity of HSHC is O(KN3) where N is the order of sudoku and K is the allowed number of fitness

function evaluations. It should be noted that the time complexity of GB-RHSHC, RB-RHSHC and

RHSHC remains same as that of HSHC.

6.4 Computational Experiment

In order to check the effectiveness and efficiency of the proposed algorithms a set of 25 Sudoku puz-

zles (of order 9) five each of type Beginner, Easy, Medium, Hard and Expert have been taken from

the web site www.sudoku.com and each problem has been tested 30 times. Determining the optimal

setting for free parameters in a meta heuristic algorithm is a hyper optimization problem, however

after thorough experimentation following parameter setting was found out to be effective for most if

not all the cases: HMS=40, HMCR=0.99 and NH SIZE=120. The stopping criteria for a run is either

the solution is found or maximum execution time of 35 Seconds is attained. The experimentation was

carried out on a laptop having specification- Intel CORE i3 processor, 4GB of RAM and Windows 8.1

Operating System.

Tables 6.1, 6.2, 6.3, 6.4 demonstrate the performance of the proposed algorithms HSHC, RHSHC,

GB-RHSHC and RB-RHSHC respectively. The columns of all the four tables from left to right repre-

sent: Puzzle type (PUZZLE TYPE), Percentage of runs that are able to find solution of a given puzzle

(SP), Minimum execution time (MINT), Maximum execution time (MAXT), Average execution time

(AVGT), Standard deviation of execution time (SDT), Minimum number of fitness Function Evalua-

tions performed (MINFE), Maximum number of fitness Function Evaluations performed (MAXFE),

Average number of fitness Function Evaluations performed(AVGFE) and Standard Deviation of num-

ber of fitness Function Evaluations performed (SDFE).The above statistics in terms of execution time

and number of fitness function evaluations required have been obtained for successful runs only.

Figure 6.2a compare the performance of proposed four algorithms in terms of success rate on different
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types of Sudoku puzzles. Figure 6.3a, 6.3b and 6.3c respectively compare the performance of the four

algorithms in terms of Minimum, Maximum and Average execution time required for successful runs

. Figure 6.3d, 6.3e and 6.3f respectively compare the performance of the four algorithms in terms of

Minimum, Maximum and Average number fitness function evaluations required to find the optimal.

Note that success rate is the percentage of runs able to solve the Sudoku puzzle. It is very much

evident from Figure 6.2a that the order followed by four algorithms in terms of success rate is:

RHSHC > RB-RHSHC > GB-RHSHC > HSHC

Except for Beginner type puzzles the algorithms follow the same order in terms of execution time

of successful runs. Now let us analyse the behavior of these algorithms. The reason for highest

success rate and execution time of RHSHC is while trying to figure out global optima the algorithm

extensively reinitialize its HM thus increasing the probability of escaping from local optima but at

the same time increasing its execution time because the algorithm is not using its previous experience

while further exploring the search space. While trying to escape from local optima by reinitializing

HM the GB-RHSHC algorithm preserves the best harmony obtained so far and thus utilizes the best

of its experience while as RB-RHSHC preserves one of the good harmonies and not necessarily the

best thus former increases the probability of fast convergence than latter on the cost of increasing

the probability of being stuck in local optima. HSHC never performs catastrophic mutation (i.e.,

does not unsettle its HM by reinitialization) thus increasing its convergence speed but at the same

time decreasing the probability of escaping from local optima. Since beginner type Sudoku puzzles

comparatively take less number of function evaluations as a result frequency of HM reinitialization is

decreased, so all the four algorithms have almost same execution time for such type of problems.

6.5 Comparison with other Heuristic Algorithms

The best performing RHSHC has been compared with the standard Harmony Search algorithm (Geem,

2007), Hill Climber algorithm (Moraglio et al., 2006), Retrievable Genetic algorithm (Das et al., 2012)

and hybrid AC3-tabu search algorithm (Soto et al., 2013) for solving sudoku. A brief introduction of

the above mentioned algorithms has already been provided in Section 6.2. Retrievable Genetic algo-

rithm has been compared with Genetic algorithm proposed in (Mantere and Koljonen, 2006) and it

has been established that former is superior to latter both in terms of effectiveness and efficiency so

we have not compared our results with latter.

Since the fitness function proposed in this chapter is different as used in (Geem, 2007) further the

mechanism for generating new Harmony whether by memory consideration or by randomization is
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also different here, so in order to keep the comparison fair all the programs have been run for equal

amount of time (35 seconds). It has been found that the HS algorithm to solve Sudoku proposed in

(Geem, 2007) was not able to solve a single problem from the set of 25 Sudoku puzzles, thus all the

four algorithms proposed in this chapter (HSHC, RHSHC, GB-RHSHC, RB-RHSHC) significantly

outperformed it.

The Hill climber algorithm proposed in (Moraglio et al., 2006)is able to solve Easy sudoku puz-

zles with 100% success rate however completely failed in solving Medium and Hard puzzles. Thus

RHSHC is very effective than standard Hill climber algorithm proposed in (Moraglio et al., 2006)

particularly for Medium, Hard and Expert level puzzles.

In order to keep the comparison fair between RHSHC and Retrievable GA (Das et al., 2012), Retriev-

able GA have been tested on same set of 25 sudoku puzzles, with the same stopping criteria and on the

same machine on which RHSHC was executed. Further Retrievable GA algorithm is tested 30 time

on each puzzle as was done with RHSHC algorithm.

Figures 6.2b and 6.3g compare the two algorithms (RHSHC & Retrievable GA) in terms of success

rate and execution time respectively. As is evident from Figure 6.2b the success rate of both algorithms

is almost same for Beginner and Easy level puzzles however for Medium, Hard and Expert level puz-

zles RHSHC significantly out performs Retrievable GA. The difference is more evident in Expert level

puzzles where the success rate of RHSHC is approximately 80% and that of Retrievable GA is only

7%. In terms of execution time Retrievable GA outperforms RHSHC for Beginner and Easy type

puzzles, however for Medium, Hard and Expert level puzzles RHSHC outperforms Retrievable GA

(Figure 6.3g). Thus RHSHC is the better performing algorithm (in terms of effectiveness as well as

efficiency) than Retrievable GA particularly for Medium, Hard and Expert level puzzles whereas for

Beginner and Easy level puzzles there performance is almost same.

Hybrid AC3-tabu search algorithm and RHSHC algorithm has been tested on the same set of 25 Su-

doku puzzles, run on same machine and with same stopping criteria. Figures 6.2c and 6.3h compare

the two algorithms (RHSHC & Hybrid AC3-tabu search) in terms of success rate and execution time

respectively. As is evident from Figure 6.2c the success rate of both algorithms is almost same for Be-

ginner level puzzles. RHSHC is slightly better than Hybrid AC3-tabu algorithm on Easy level puzzles

whereas on Medium, Hard and Expert level puzzles hybrid AC3-tabu search algorithm has slight ad-

vantage over RHSHC. In terms of time complexity (Figure 6.3h) hybrid AC3-tabu search outperforms

RHSHC on all category of puzzles, except for Easy type puzzles were both take approximately same

time .
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6.5.1 Wilcoxon’s rank-sum test

A pair wise Wilcoxon’s rank-sum test at 5% level of significance is used to statistically compare the

performance of the competing algorithms. The sampling data used for applying the test has been ob-

tained by performing 30 independent runs of each algorithm. The Wilcoxon’s rank-sum test revealed

that there is no statistically significant difference between RHSHC and Retrievable GA on Beginner

and Easy type puzzles, however the superior performance of RHSHC over Retrievable GA is statisti-

cally significant on Medium, Hard and Expert level puzzles. Comparing the performance of RHSHC

and Hybrid AC3-tabu search algorithm Wilcoxon’s rank-sum test revealed that there is no statistically

significant difference on Beginner, Medium and Hard type puzzles, however the better performance

of RHSHC over AC3-tabu search algorithm is statistically significant on Easy type puzzles similarly

the better performance of AC3-tabu search over RHSHC is statistically significant on Expert level

puzzles.

6.6 Conclusion

This chapter introduces a specialized Memetic algorithm namely HSHC created by hybridization of

Harmony Search Algorithm and Hill Climbing operator to solve Sudoku puzzles. In order to increase

exploration capabilities of HSHC algorithm three variations of basic HSHC are introduced. All the

four proposed algorithms performed significantly better than the standard Harmony Search algorithm

and standard Hill Climber algorithm. RHSHC outperformed its three variations (HSHC, GB-RHSHC,

RB-RHSHC) in terms of success rate and was able to solve Beginner and Easy type problems with

100% success, further it also performed extremely well in solving Medium, Hard and Expert level

puzzles. Comparing RHSHC and Retrievable GA, it was established that former significantly out-

performed latter in terms of effectiveness and efficiency particularly for Medium, Hard and Expert

level puzzles. Experimental results demonstrate that RHSHC is competent (if not better) to recently

proposed hybrid AC3-tabu search algorithm.
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Table 6.1: HSHC Performance

PUZZLE TYPE SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

BEGINNER 70.67 0.251 32.911 4.892 2.734 40041 4979069 703649.7 445102.9

EASY 66 0.436 28.805 4.221 2.847 67853 4645532 657033.3 433648.7

MEDIUM 33.33 0.796 32.674 5.073 2.022 126055 4803732 792300.5 290206.2

HARD 33.33 0.719 29.014 6.895 2.399 116955 4759383 1114436 392600.2

EXPERT 30.67 0.945 28.009 5.804 2.921 144262 3647316 830308.3 355427.8

Table 6.2: RHSHC Performance

PUZZLE TYPE SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

BEGINNER 100.00 0.260 29.121 3.103 2.301 41435 4358130 672271.0 635898.0

EASY 100.00 0.340 32.653 6.034 2.575 53750 4751663 634465.2 608455.6

MEDIUM 93.33 0.691 31.370 10.196 2.582 107590 4700497 1926207.5 1152346.3

HARD 88.67 1.029 31.267 12.771 1.798 157017 4954494 2025149.5 303393.9

EXPERT 80.00 1.025 33.828 13.579 1.301 159260 4868901 1911467.8 252190.1

Table 6.3: GB-RHSHC Performance

PUZZLE TYPE SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

BEGINNER 81.33 0.296 22.399 3.289 3.186 47244 3581089 505804.7 477320.1

EASY 66.00 0.396 34.037 4.945 4.196 58969 4858880 766863.1 622109.7

MEDIUM 57.33 0.750 33.158 7.861 5.297 121566 4857597 1196316.0 772401.0

HARD 49.33 0.780 28.082 8.222 1.739 109090 4170662 1237255.9 248678.5

EXPERT 42.67 0.846 34.154 11.091 2.914 120754 4975036 1678574.1 450827.2
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Algorithm 7 Harmony Search Hill Climber (HSHC)
1: Initialize Algorithm parameters HMS, HMCR, NH SIZE.

2: Initialize Harmony Memory.

3: Evaluate each harmony of harmony memory using fitness function (Equation 6.3).

4: while Stopping Condition Not Reached do

5: Find BEST and WORST Harmony in HM.

6: if rand(0, 1) is less than HMCR then

7: With probability P select randomly one of the Harmony from HM otherwise generate a new

harmony using the harmonies in HM, name it ROOT.

8: else

9: Generate a Harmony Randomly, name it ROOT.

10: end if

11: Evaluate ROOT using fitness function (Equation 6.3).

12: if ROOT is solution then

13: STOP.

14: end if

15: for i = 1 TO NH SIZE do

16: Select randomly two cells of ROOT with different values, swap their contents to obtain a

neighbor of ROOT, name it NBR.

17: if NBR is Solution then

18: STOP.

19: end if

20: if NBR is better than or marginally inferior to BEST then

21: set ROOT=NBR.

22: end if

23: if NBR is better than worst Harmony then

24: update Harmony Memory by replacing WORST Harmony by NBR.

25: end if

26: end for

27: end while
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Algorithm 8 Random Initialization of Sudoku
1* for i=1 to N do

2* for j=1 to N do

3* r=rand(1,N)

4* for l=1 to j-1 do

5* if H[i][j]=r then

6* GOTO Line 3*

7* H[i][j]=r

8* end if

9* end for

10* end for

11* end for

Algorithm 9 Richard Durstenfeld Algorithm for Random Initialization of Sudoku
1* for i=1 to N do

2* for j=1 to N do

3* H[i][j]=j

4* end for

5* for k=N down to 1 do

6* r=rand(1,k)

7* swap H[i][r] and H[i][k]

8* end for

9* end for

Table 6.4: RB-RHSHC Performance

PUZZLE TYPE SP MINT MAXT AVGT SDT MINFE MAXFE AVGFE SDFE

BEGINNER 84.00 0.287 32.235 3.052 1.402 45830 4000409 665515.9 415526.8

EASY 76.67 0.331 26.951 5.445 1.580 51823 4522048 828088.2 695742.7

MEDIUM 72.67 0.682 31.621 8.002 2.614 106805 5767232 1345171.3 538997.8

HARD 52.67 0.904 32.141 10.374 3.333 143274 5832768 1826020.3 490699.8

EXPERT 45.33 0.895 31.804 11.539 2.699 123038 4916839 1886465.3 307100.5
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(a) HSHC and Variants.

(b) RHSHC and Retrievable GA

(c) RHSHC and Hybrid AC3-Tabu Search

Figure 6.2: Success rate.
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(a) Minimum Execution Time. (b) Maximum Execution Time.

(c) Average Execution Time. (d) Minimum Function Evaluations.

(e) Maximum Function Evaluations. (f) Average Function Evaluations.

(g) Average Execution Time. (h) Average Execution Time.

Figure 6.3: Execution Time and Function Evaluations
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Chapter 7

A Heuristic Based Harmony Search Algorithm for

Maximum Clique Problem

The maximum clique problem (MCP) is to determine a complete subgraph (clique) of maximum

cardinality in a given graph. MCP is conspicuous for having real world applications and for its poten-

tiality of modeling other combinatorial problems and is one of the most studied NP-hard problems.

This chapter investigates the capabilities of Harmony Search (HS) algorithm, a music inspired meta

heuristic for solving maximum clique problem. We propose and compare two different instantiations

of a generic HS algorithm namely Harmony Search for MCP (HS MCP) and Harmony Search with

idiosyncratic harmonies for MCP (HSI MCP) for this problem. HS MCP has better exploitation and

inferior exploration capabilities than HSI MCP whereas HSI MCP has better exploration and inferior

exploitation capabilities than HSI MCP, it has been concluded that former performs better than latter

by testing them on all the instances of DIMACS benchmark graphs. HS MCP has been compared

with a recently proposed Harmony search based algorithm for MCP called Binary Harmony search

(BHS) and the simulation results show that HS MCP significantly outperforms BHS in terms of solu-

tion quality. The asymptotic time complexity of HS MCP is O(G × N3) where G is the number of

generations and N is the number of nodes in the graph. A glimpse of effectiveness of some state-of-

the-art exact algorithms on MCP has also been provided.

The organization of this chapter is as follows. Section 7.1 is introductory in nature. Section 7.2 de-

scribes the proposed algorithms. Section 7.3 describes the numerical experimentation and compares

the proposed algorithm with other algorithms and finally the chapter concludes with Section 7.4.

7.1 Introduction

Given a simple undirected graph G = (V,E) where V = {1, 2, . . . , N} is the vertex set and E =

V ×V , is the edge set. A clique C is the complete sub graph of G i.e. all the vertices of C are pairwise

adjacent. The size of clique is the number of vertices in it and the maximum clique is the one having

maximum cardinality.

MCP is one of the most studied combinatorial optimization problems because it has wide range of

practical applications in numerous fields like coding theory (Etzion and Ostergard, 1998), bioinfor-
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matics and chemo informatics (Gomez Ravetti and Moscato, 2008; Malod-Dognin et al., 2010), exam-

ination planning (Carter and Johnson, 2001; Carter et al., 1996), scheduling (Dorndorf et al., 2008),

financial networks (Boginski et al., 2006), social network analysis (Balasundaram et al., 2011; Pat-

tillo et al., 2012), signal transmission analysis (Chen et al., 2010), telecommunication and wireless

networks (Balasundaram and Butenko, 2006; Jain et al., 2005), combinatorial auctions (Wu and Hao,

2015b), visual feature matching (San Segundo and Artieda, 2015), community detection (Pattabira-

man et al., 2015), computer vision and information retrieval (Pardalos and Xue, 1994).

In addition to these applications, the MCP is tightly related to some important combinatorial optimiza-

tion problems such as clique partitioning, graph clustering, graph vertex coloring, max-min diversity,

optimal winner determination, set packing and sum coloring (Wu and Hao, 2015a). These problems

can either be directly formulated as a MCP or has a sub problem which requires to find a maximum

clique.

MCP is highly untractable and its decision version is among the first 21 NP-complete problems pre-

sented in Karp’s seminal paper on computational complexity (Karp, 1972) . A problem that is NP-

complete has the property that it can be solved in polynomial time if and only if all other NP-complete

problems can be solved in polynomial time. If an NP-Hard problem can be solved in polynomial time,

then all NP-complete problems can be solved in polynomial time. All NP-complete problems are NP-

Hard, but some NP-Hard problems are not known to be NP-complete Horowitz and Sahni (1978).

Even the approximation of MCP within a constant factor are NP-Hard (Feige et al., 1991). There is

no polynomial time algorithm for approximating the MCP within a factor of n1/4−ε for any ε > 0

unless P = NP and it is not approximable within n1−ε for any ε > 0 unless co-RP=NP (Håstad,

1996), where n is the number of nodes of the graph. As pointed out in (Wu and Hao, 2015a) the

current best-known polynomial-time approximation algorithm achieves only an approximation guar-

antee of O(n(loglogn)2/(logn)3) (Feige, 2004). On the other hand, the study in (Engebretsen and

Holmerin, 2003) shows that the MCP is not approximable within a factor of n/2O(log(n)/
√
loglogn) un-

der the assumption that NP ⊆ ZPTIME(2O(logn(loglogn)3/2). An improved result shows that MCP is

not approximable within n1−ε for any ε > 0 unless NP=P (Zuckerman, 2006). A detailed survey on

MCP can be found in (Bomze et al., 1999; Pardalos and Xue, 1994; Wu and Hao, 2015a).

Given the practical relevance and theoretical importance of MCP, considerable efforts have been de-

voted for the development of various algorithms for this problem. On the one hand, effective exact

methods have been developed mainly based on the general branch and bound framework (Batsyn et al.,

2014; Carraghan and Pardalos, 1990; Li and Quan, 2010; Maslov et al., 2014; McCreesh and Prosser,
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2015; Östergård, 2002; San Segundo et al., 2016). These methods have the theoretical advantage of

guaranteeing the optimality of the solution found. However, due to the inherent computational com-

plexity of the MCP, exact methods can require a prohibitive computing time in general case and are

often applicable to problems of small sizes. On the other hand, to handle problems whose optimal

solutions cannot be reached within reasonable time using exact methods various heuristic and meta

heuristic algorithms have been developed. The most effective heuristic algorithms for MCP are local

search based, some of them worth mentioning are Reactive Local search (Battiti and Protasi, 2001), k-

opt local search (Katayama et al., 2005), Phased local search (Pullan, 2006), Cooperating local search

(Pullan et al., 2011), breakout local search (Benlic and Hao, 2013) and a very recent general swap

based tabu search (Jin and Hao, 2015). A hybrid heuristic methods for MCP has been used in (Singh

and Gupta, 2006). Early attempts of using Genetic algorithms (GA) for MCP date back to 1990s.

However as concluded in (Carter and Park, 1993) pure GA are not effective for MCP, so this approach

is often enhanced by incorporating other techniques like local search optimization. An example is the

Heuristic based genetic algorithm proposed in (Marchiori, 1998) which uses GA operators (crossover

and mutation) and a local search technique to enhance the quality of obtained solution. A hybrid evo-

lutionary algorithm with guided mutation for MCP is introduced in (Zhang et al., 2005) and a Reactive

evolutionary algorithm that used concept of guided mutation and Reactive local search can be found

in (Brunato and Battiti, 2011). Other popular heuristics for the MCP include Simulated Annealing

(Geng et al., 2007), Artificial Neural Networks (Yang et al., 2009), Ant Colony Optimization (Solnon

and Fenet, 2006) and Biomolecular Filtering (Ordóñez-Guillén and Martı́nez-Pérez, 2015).

It must be understood that exact and heuristic methods constitute two complementing (rather than

competing) solution approaches which can be applied in different situations to fulfill different objec-

tives or combined in a complementary way to enhance the quality of the solution.

Since the second DIMACS implementation challenge dedicated to MCP, Graph Coloring and Satisfi-

ability organized during 1992-1993 studies on these NP-hard problems are becoming more and more

intense. In this chapter an attempt has been made to solve MCP using Harmony search (HS) algo-

rithm. HS is a musicians inspired meta heuristic algorithm developed in 2001 (Geem et al., 2001). It

is worth mentioning that to the best of our knowledge there is only one article available in literature

in which an attempt has been made to solve MCP using HS based algorithm namely Binary Harmony

Search (BHS) (Afkhami et al., 2013), however BHS has been tested on only 18 out of 80 instances of

DIMACS benchmark graphs for MCP and further the results obtained are not very satisfactory.
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7.2 Proposed Algorithms

This section gives a detailed description of the proposed algorithm namely Harmony Search Algorithm

for Maximum Clique Problem (HS MCP). The pseudo code of the proposed algorithm is given as

Algorithm 10.

7.2.1 Representation and Fitness Evaluation

Let G = {V,E} be an undirected graph of N vertices where V={1, 2, 3, ... N} be the set of

nodes and E ⊆ V × V is a set of edges. Each harmony H ⊆ V is represented as a string H =

{V1, V2, V3, ...VN} ∈ {0, 1}N where Vi = 1 if and only if Vi is included in H and Vi = 0 otherwise.

Therefore the search space is Ω = {0, 1}N . The fitness of H is defined as the number of vertices

included in H if it represents a valid clique. Since the new harmony generated by HS Algorithm may

not be a clique it is repaired so that it becomes a clique and therefore H always represents a valid

clique, thus there is no need to define fitness for infeasible solutions. Harmony memory (HM) is a

vector of harmonies having size HMS.

7.2.2 Harmony Memory initialization

With a randomly initialized Harmony Memory, the probability of each harmony representing a valid

clique is very less due to very large search space of the problem compared to its solution space.

So a heuristic approach is utilized to initialize the harmony memory. The algorithm generates each

harmony in the HM as follows. Initially a vertex Vi ∈ V is randomly picked and put in a subset named

C. Then a vertex Vj is randomly selected from C’s adjacency list P. Vj is added to C and all the nodes

in P that are not adjacent to Vj are deleted. Thus P contains only those vertices that are adjacent to

all nodes of C. The process is repeated until P becomes empty. Therefore set C represents a clique.

Finally harmony H is initialized by assigning 1 to the position corresponding to the vertices in C and

otherwise 0. All the harmonies in the HM are initialized following the above procedure. The pseudo

code for HM initialization is given as Algorithm 11.

Step number 2 and 3 are executed M times and hence have the time complexity of O(M) whereas the

time complexity of step 4 if O(MN). The complexity of step 6 and 7 is O(MN) whereas the worst

case complexity of step 8 is O(MN2). In the worst scenario, step 10 is executed O(MN) times.

Thus the time complexity of Harmony Memory initialization is determined by step 8 of algorithm and

is O(MN2) in worst case. Note that M is equal to HMS the size of harmony memory and N is the

number of nodes in the graph.
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Algorithm 10 Harmony Search Algorithm for MCP (HS MCP)
1: Initialize Algorithm parameters HMS and HMCR.

2: Initialize Harmony Memory.

3: Evaluate each harmony of harmony memory using fitness function.

4: while Stopping Condition Not Reached do

5: Find Best and Worst Harmony in HM.

6: for i = 1 TO N do

7: if rand(0, 1) less than HMCR then

8: r=rand int(1, N).

9: New Harmony[i]=HM[r][i].

10: else

11: if rand(0, 1) ≤ Pi then

12: New Harmony[i]=1.

13: else

14: New Harmony[i]=0.

15: end if

16: end if

17: end for

18: New Harmony=Heuristic Repair(New Harmony)

19: Evaluate New Harmony.

20: if New Harmony is better than WORST harmony in HM, update HM by replacing WORST

harmony by New Harmony.

21: if New Harmony is better than BEST harmony in HM, filter all nodes having degree less than

size of clique represented by New Harmony.

22: /* Step 23 is a Local Search Operator to be executed towards the end of program execution*/

23: Randomly select a harmony say k from HM ( i.e. HM[k] ), Find a node Vi in HM[k] such that

deletion of Vi enables us to add two new nodes to HM[k] such that it still remains a clique.

Repeat this step until no such Vi can be found.

24: end while

25: Print BEST harmony as obtained clique.
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Algorithm 11 Harmony Memory Initialization Pseudo code
1: for k = 1 TO HMS do

2: C = ∅, P = ∅

3: Randomly select Vi from V , C = C ∪ Vi
4: P = Vertices that are adjacent to Vi

5: while P ∼ ∅ do

6: Randomly select a vertex Vj from P

7: C = C ∪ Vj
8: P = vertices in P that are adjacent to Vj

9: end while

10: HM[k] = C

11: end for

7.2.3 New Harmony Generation

While generating the ith component of the new harmony (represented as New harmony) either the

ith component of some existing harmony stored in HM is used with probability HMCR or a randomly

generated 1 or 0 (with probability Pi and 1−Pi respectively) is assigned to the ith component of New

harmony. Pi is the probability of vertex Vi ∈ HM . The above procedure is depicted by step number

6 through 17 of Algorithm 10. Once the new harmony (New Harmony) is generated it is very much

likely that New Harmony won’t represent a clique so it is passed as an argument to Heuristic Repair

procedure (step 18 of Algorithm 10) and its job is to convert an arbitrary subgraph into a clique. The

pseudo code of Heuristic Repair procedure is shown as Algorithm 12. Note that in the pseudo code

rand ∈ [0, 1] is a uniformly distributed random number generator and rand int ∈ [L, U] generates an

integer random number between L and U following uniform distribution.

7.2.4 Heuristic Repair

The heuristic repair algorithm used in this chapter is proposed in (Marchiori, 1998) and is presented

as Algorithm 12. The algorithm has three phases- Enlarge, Extraction and Extension. During Enlarge

phase some vertices are randomly added to New Harmony and hence its time complexity is O(N).

In the Extraction phase for all nodes in the New Harmony either delete the node with probability α

or delete all the nodes in the New Harmony that are not adjacent to it. Thus the time complexity of

Extraction phase is O(N2) in worst case. Generally speaking α must be very small otherwise the

clique obtained will be very small due to removal of lot of nodes so we have chosen α = .1. Finally
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in the extension phase a node that is not in New Harmony is added to New Harmony if it is adjacent

to all nodes of New Harmony. The above process is repeated for all the nodes of the graph that are

not in New Harmony. The time complexity of Extension phase is O(N2) in worst case. Thus it is

guaranteed that New Harmony is a clique once returned from the Heuristic Repair procedure. The

overall time complexity of the procedure Heuristic Repair is O(N2) .

7.2.5 Filter Vertices & Local Search operator

Degree of a vertex provides an upper bound on size of the clique the particular vertex can belong to.

If the algorithm has already found clique of size say L then all the vertices having degree less than

L can’t be the part of the clique having size greater than or equal to L. So whenever the size of the

largest clique is improved all the vertices having degree less than the size of best clique obtained are

filtered out in step number 21 of Algorithm 10 and thus are not considered further while exploring the

search space. The performance of this step is not very visible in dense graphs however it can show

significant performance in sparse graphs.

The degree of all the nodes in the graph can be calculated with time complexity O(N2) in the begin-

ning of algorithm using adjacency matrix and hence the time complexity of filtration step is O(N).

The step 23 of Algorithm 10 essentially performs local search around a randomly selected harmony

from HM by finding a node whose deletion can enable us to add two nodes thus increasing the size of

the clique by 1. Once a node is deleted from the harmony in order to determine if a particular node

can be added (so that the harmony still remains a valid clique) requires O(N) comparisons since there

are N nodes in the graph thus the complexity becomes O(N2). In the worst scenario we may have to

check for deletion of all the nodes in the harmony and thus resulting in time complexity of O(N3).

The start of execution of the local search operator depends on the problem in hand, however throughout

the experimentation the operator has been executed toward the last five percent of execution time. It

was found executing this step from the beginning increases the convergence speed initially but causes

the algorithm to get stuck in local optimal and hence deteriorate the quality of solution.

Pitch adjustment in a harmony can be achieved by adding or deleting few nodes from it. However

the same thing is done in the Heuristic Repair procedure so performing pitch adjustment is a redun-

dant step and has been avoided.

133



7.2.6 Time complexity of proposed algorithm

The worst case asymptotic time complexity of the proposed algorithm HS MCP has already been dis-

cussed in respective section and is summarized in Table 7.1. In Table 7.1 N, M and G respectively

denote the number of nodes in the graph, size of harmony memory and maximum number of genera-

tions allowed. As is evident from Table 7.1 the worst case time complexity of the proposed algorithm

is O(G × N3). In order to increasing exploration capabilities of HS MCP (by reducing exploitation

Table 7.1: Time Complexity of HS MCP (Algorithm 7).

Step Number Time Complexity

Step 1 O(1)

Step 2 (Initialization of Harmony Memory) O(MN2)

Step 3 O(MN)

Step 4 O(G)

Step 5 O(GM)

Step 6 through 17 (Generating New Harmony) O(GN)

Step 18 (Heuristic Repair) O(G×O(N2))

Step 19 (Evaluate Harmony) O(G×N)

Step 20 (Compare and Update HM) O(G×N)

Step 21 (Filter Nodes) O(G×N)

Step 23 (Local Search) O(G×N3)

potentiality) it has been modified to create another algorithm namely Harmony Search Algorithm with

idiosyncratic harmonies for MCP (HSI MCP). The only difference between HS MCP and HSI MCP

is that in HSI MCP redundant harmonies are not allowed in Harmony Memory, so during initialization

step Harmony memory is initialized with idiosyncratic harmonies only and also a New Harmony is

allowed to be added to HM if it is not already present in it. Thus enhancing the exploration capabili-

ties of the algorithm at the cost of reduction in exploitation. Generating HMS number of idiosyncratic

harmonies is a time consuming step particulary for graphs having large cliques with respect to their

size so during initialization of HM in HMI MCP, at most N attempts are made to fill HM and incase

the HM is not completely filled in N attempts what ever the number of harmonies in HM, is finalized

as HMS.
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7.3 Experiments Results

In this section proposed algorithms namely HS MCP and HSI MCP has been studied experimen-

tally on DIMACS benchmark graphs. These graphs provide a valuable source for evaluating the

performance of algorithms for MCP as they arise from different areas of application. More specifi-

cally, eighty different graph instances belonging to eleven different families are provided as DIMACS

benchmark instances and are available at http://dimacs.rutgers.edu/Challenges. The Brock graphs are

generated in such a way that the expected maximum clique is much smaller than the real one. The Cx.y

and DSJCx.y are random graphs of size x and density y. The CFat graphs arise from fault diagnosis

problems and Gen are artificially generated graphs with large known embedded cliques. The Johnson

and Hamming graphs are from coding theory problems and Keller graphs are based on Keller’s con-

jecture on tilings using hypercubes. The Mann family of graphs is from set covering problems and

PHat graphs are randomly generated graphs with large variation in the node degree distribution and

large cliques than the random graphs, the San and Sanr graphs are random graphs with known cliques.

The proposed algorithms HS MCP and HSI MCP have been implemented in C programming lan-

guage and run on a laptop with specifications- windows 10 operating system, core i3 processor and

4GB of RAM. In order to check the efficiency and reliability of the proposed algorithms each problem

has been tested 50 times. Finding the optimal setting for free parameter in a meta heuristic algorithm

is in itself a challenging task however after through experimentation the following parameter setting

for both the algorithms was found out to be effective in majority if not all the cases: HMCR=.95,

HMS=15 and the stopping criteria for both the algorithms is 20,000 function evaluations to determine

size of the clique.

Figure 7.1 displays the average of the largest clique obtained in fifty independent runs for different

settings of HMCR when HMS is set as 15 on the DIMACS benchmark problem C1000.9 (a random

graph with 1000 nodes and 0.9 density) and Figure 7.2 displays the average of the largest clique ob-

tained in fifty independent runs for different settings of HMS when HMCR is set as 0.95 on the same

graph. It can be observed in Figure 7.1 the average clique size obtained increases with increase in

HMCR and once the HMCR touches the value of 0.95 it then starts gradually decreasing. We can

observe in Figure 7.2 that the average clique size obtained increases with increase in HMS value and

once the HMS touches the value of 15 it then starts gradually decreasing.

In most of the graphs the size of maximum clique contained in it is much smaller than the size of the

graph itself and thus the probability of a random node of the graph belonging to maximum clique is

very low, if the value of HMCR is low many nodes are randomly added to harmony and the clique ob-
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tained during Repair phase of Heuristic Repair() procedure (Algorithm 12) is suboptimal. Increasing

the value of HMS (beyond 15) causes reduction in exploitation of promising areas of search space and

thus HS MCP performs better for higher value of HMCR (0.95) and lower value of HMS (15).

Figure 7.1: Effect of HMCR on average clique size (HS MCP).

Figure 7.2: Effect of HMS on average clique size (HS MCP).

7.3.1 Performance of HS MCP Algorithm

Tables 7.2 & 7.3 summarizes the the performance of the two proposed algorithms. The first three

columns labeled as Instance, Order and Density indicate the graph name, Number of nodes and Den-

sity of graph respectively and and the fourth column with label ω(G) contains the exact or best known
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solution. Columns labeled as HS Best, HS Avg and HS SD indicate the best, average and standard

deviation of the clique size obtained by HS MCP algorithm in fifty runs and the column with label

HS Time is the average execution time in seconds. The entries in column HS Best are bold where the

algorithm was able to produce exact or best known results.

As depicted in Tables 7.2 & 7.3 the performance of HS MCP algorithm is very satisfactory on CFat

and Johnson graphs as it was able to find the best known solution with 100% success rate for all the

instances in less than 0.2 and .005 seconds respectively. Similarly the algorithm performed very sat-

isfactory on Hamming graphs where in five out of six instances it was able to find the best solution

with 100% success rate and in the sixth instance though the success rate was not 100% but it was able

to find the best known solution. Note that success rate is the percentage of runs that were able to find

global optimal or best known results.

On four out of five instances the algorithm was able to hit the best known solution in less than 2 sec-

onds on Gen type graphs and on two instances out of three the algorithm was able to find the best

known solution in Keller graphs, however on third instance (keller6 which is considered to be a very

difficult graph ) the algorithm was not able to find the best known solution (58) but still the solution

(56) found is close to it.

For Dsjc type graphs the algorithm was able to hit the best known solution for both instances. For

Mann family of graphs on two instances out of four the algorithm was able to find the best known

solution and for remaining two instances the obtained solution is very close to global optimal.

For Brock family of graphs the performance of the algorithm is satisfactory on instances with 200

nodes, where in all the four instances the algorithm was able to hit the global optimal and for in-

stances with 400 and 800 nodes it is unsatisfactory.

The performance is satisfactory on graphs of type Cx.y as on four out of seven instances the algorithm

was able to hit best known solution and in the remaining three cases the solution obtained is close to

best known solution. For Phat family of graphs with 300, 700 and 1500 nodes the algorithm performed

satisfactory as it was able to find best known results on all the 12 instances of these graphs, however

for Phat graphs with 500 and 1000 nodes the performance was unsatisfactory as there is significant

difference between the best known results and the results obtained.

For San graphs with 200 nodes the algorithm performance is satisfactory where in four out of five

instances the best known results were obtained and for San graphs with 400 nodes the performance

is unsatisfactory because in only one out of five instances the best known solution was found and in

the remaining four instances there is significant difference between the best known results and the

137



obtained results.

For Sanr graphs in only one instance out of four best solution was found and in remaining three in-

stanced there is significant difference between the best known and obtained solution.

In summary the algorithm is able to find the best known results in 50 out of 80 instances of DIMACS

graphs, further in terms of time complexity the only time consuming graph is MANN a81 taking

around 6.5 minutes to converge and for 79 remaining instances the algorithm always converges in less

than 36 seconds.

7.3.2 Performance of HSI MCP Algorithm

Tables 7.4 & 7.5 summarize the performance of HSI MCP algorithm. The columns with label HSI

Best, HSI Avg, HSI SD respectively denote the Best, Average and Standard deviation of the clique

size obtained by HSI MCP algorithm in fifty runs and the column with label HSI Time indicated the

average execution time in seconds. The entries in column HSI Best are bold where the algorithm was

able to produce exact or best known results.

As depicted in Tables 7.4 & 7.5 the performance of HSI MCP algorithm is very satisfactory on John-

son and Cfat graphs where the best known results were obtained in all the eleven instances with 100%

success rate, and on Hamming graphs the performance is also satisfactory where in 5 out of 6 instances

the global optimal was obtained with 100% success rate.

For Mann type graphs the performance is rather satisfactory where in 2 out of 4 instances best known

results were obtained and for remaining 2 instances the obtained results are close to best known re-

sults.

For Dsjc graphs the performance is rather satisfactory where in one instance out of two best known

results are obtained and in another instance the difference between the exact and obtained solution is

just 2.

For Cx.y and Gen graphs the performance is unsatisfactory as in both the families the global optimal

was hit just in one instance and in other instances the difference between the obtained and exact solu-

tion is significantly large.

For Keller type graphs the global optimal is found in one instance out of three and in second instance

the difference between the actual and the obtained result is just 1, however for third instance (keller3)

the difference between the best known result (58) and the obtained result (52) is 6.

For Brock family of graphs the performance is unsatisfactory as in just one instance best known results

are obtained and in remaining eleven instances the obtained results are very inferior to actual results,

similarly for Phat graphs even though best known results are obtained in four instances however in
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remaining 11 instances the performance is unsatisfactory.

For San type of graphs the exact solution was hit in just one instance and for remaining instances the

results obtained are not satisfactory and in Sanr type of graphs the exact solution was never hit and the

results obtained are very inferior to actual results.

7.3.3 Comparison of HS MCP and HSI MCP

Comparing the performance of the two proposed algorithms it is very much evident from Table 7.4

& 7.5 that HS MCP has out performed HSI MCP in all families of graphs both in terms of solution

quality and time complexity. In HS MCP there is no constraint on uniqueness of harmonies as a result

multiple copies of best harmonies are kept in HM and thus increasing the exploitation of the promising

search areas on the other hand due to uniqueness constraint on harmonies in HM the exploration of

the search space is increased on the cost of reducing exploitation of the promising search areas.

As is evident from the obtained results the algorithm having better exploitation capabilities rather than

exploration has produces better results for this particular problem.

Generating idiosyncratic harmonies to fill HM is a time consuming process particularly for graphs

having large cliques with respect to their size and that is the reason for higher time complexity of

HSI MCP comparing to HS MCP e.g MANN a81 graph has the biggest maximum clique with respect

to its size and HSI MCP approximately took 242 times more time than HS MCP to converge for this

problem.

7.3.4 Comparison of HS MCP and Binary Harmony Search

Since HS MCP is the better performing algorithm than HSI MCP, it has been compared with Binary

Harmony Search (BHS) algorithm proposed in (Afkhami et al., 2013). The stopping criteria for both

BHS and HS MCP is 20,000 function evaluations to determine size of the clique. Table 7.6 summa-

rizes the comparison between HS MCP and BHS on all the 18 graph instances on which BHS has

been tested in (Afkhami et al., 2013). The columns labeled as instance and ω(G) respectively indicate

name of the graph and exact or best known result, the column with label BHS Best and BHS Avg,

respectively denote the best and average of the clique size obtained by BHS algorithm. The columns

with label HS Best and HS Avg respectively denote the best and average of the clique size obtained

by HS MCP algorithm in fifty independent runs. The columns with label BHS Time and HS Time

denote the average time taken in seconds by BHS and HS MCP algorithm respectively. The entries

in the column HS Best and BHS Best have been made bold where the corresponding algorithms have

produced the exact or best known results, further the entries in HS Best and HS Avg have been marked

by * where the results are better than corresponding BHS Best and BHS Avg results respectively sim-
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ilarly the entries in BHS Best and BHS Avg have been marked with * where the results are better than

corresponding HS Best and HS Avg results.

Comparing the best results (HS Best, BHS Best) obtained by the two algorithms HS MCP has out-

performed BHS in 10 instances and in the remaining 6 instances both algorithms has produced same

results, thus there is not a single instance in which HS MCP has been outperformed by BHS, further

HS MCP was able to find the best known results in 16 out of 18 instances whereas BHS was able

to find the best known results in only 8 instances. Comparing the average results in 10 instances

HS MCP has outperformed BHS and in 6 instances BHS has outperformed HS MCP. Even though

BHS has been run on a machine with better specifications (i7 processor, 4GB RAM) than the one on

which HS MCP was run still in 7 instances HS MCP has out performed BHS algorithm in terms of

time complexity. Thus it can be concluded that HS MCP has significantly outperformed BHS partic-

ularly in terms of solution quality.

7.3.5 Comparison of HS MCP with exact algorithms

In order to provide a glimpse of effectiveness of exact algorithms on MCP a recently developed state-

of-the-art exact algorithm proposed by McCreesh and Prosser (McCreesh and Prosser, 2013) has been

chosen and we call it Multi threading MCS (MTMCS). The Multi threading MCS is based on series

of branch and bound algorithm proposed by Tomita (Tomita and Kameda, 2007; Tomita and Seki,

2003; Tomita et al., 2010) and is an efficient parallel algorithm that has reported super linear speed

up for most of the DIMACS benchmark graphs. To the best of our knowledge MTMCS is the only

exact algorithm that has been tested on large DIMACS graphs having nodes greater than 2,000 and

has shown promising results. Table 7.7 shows the performance of MTMCS algorithm on selected

DIMACS graphs. The first column in Table 7.7 represents the graph instance, second column is the

maximum clique and the third column is the time taken by MTMCS algorithm along with the spec-

ifications of the machine on which it was run. As already reported MTMCS has shown super linear

speed up for most of the benchmark graphs (and at least near linear speedup otherwise) the algorithm

will defiantly take much more time if run on a sequential machine.

Our HS MCP algorithm though run on a rather less powerful machine is able to find global optimal in

gen400 p0.9 65 in only few seconds compared to 4.93 hours taken by MTMCS algorithm, similarly

it is able to find global optimal in p hat1500-3 in only few seconds compared to 128 days taken by

MTMCS algorithm. HS MCP is able to find very competitive results in C4000.5 (16 rather than 18) in

few seconds only compared to MTMCS taking 19 days similarly HS MCP is able to find competitive

results in mann a81 (1096 rather than 1100) in few minutes whereas MTMCS took 128 days.
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In (Tomita et al., 2010) execution time reported for solving gen400 p0.9 65 using exact algorithms

MCR (Tomita and Kameda, 2007) and MCS (Tomita et al., 2010) is greater than 115 days and 1.75

days respectively and for gen400 p0.9 75 it is greater than 115 days and 3.4 days respectively on a

machine with Pentium4 3.6 GHz processor, compared to our HS MCP algorithm obtaining global op-

timal in only few seconds for these two instances. The results of other three graph instances in Table

III have not been reported in (Tomita et al., 2010).

Exact and heuristic methods must be considered as complementing rather than competing methodolo-

gies and each can be used in different situations to fulfill different objectives, these to methodologies

can even be combined to produce superior procedures for problem solving, an excellent example in

context of MCP is the recently proposed branch and bound based exact algorithm by Batsyn et al.

(Batsyn et al., 2014) (we call it Improved MCS). In Improved MCS algorithm ILS heuristic (Andrade

et al., 2012) is used to obtain an initial high quality solution which is then used to prune branching

in branch and bound based MCS algorithm (Tomita et al., 2010). Improved MCS has been compared

with MCS algorithm on DIMACS benchmark graphs and tremendous improvement has been reported

particularly on big and dense graphs.

7.4 Conclusion

In this chapter a harmony search based algorithms namely HS MCP has been proposed to address the

computational limitation of classic methods for solving maximum clique problem particularly in large

graphs. To increasing exploration capabilities of HS MCP (by reducing exploitation potentiality) it

has been modified to create another algorithm namely HSI MCP. Since HS MCP has significantly

outperformed HSI MCP on all DIMACS benchmark graphs leading to the conclusion that exploita-

tion of promising search areas produces better results rather than exploration of the search space for

MCP. Further it has been concluded that HS MCP is very effective on problems of type Johnson, Ham-

ming, Cfat, Gen, MANN and Keller. The results of HS MCP has been compared with BHS algorithm

proposed in (Afkhami et al., 2013) and it has been concluded that HS MCP is the better performing

algorithm particularly in terms of solution quality. On comparing HS MCP with exact algorithm it

has been concluded that heuristic and meta heuristic algorithms have a very significant role in solving

MCP. Most of the algorithms for MCP including the algorithms proposed in (Afkhami et al., 2013;

Batsyn et al., 2014; Brunato and Battiti, 2011; Katayama et al., 2005; Marchiori, 1998; Ordóñez-

Guillén and Martı́nez-Pérez, 2015; Solnon and Fenet, 2006; Zhang et al., 2005) have reported results

only on selected benchmark graphs however in this chapter we have been reported results on all the

DIMACS benchmarks graphs so that not only the strength but also weakness of the proposed algo-
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rithms is highlighted, so that researchers in future can focus on weak spots and make the algorithms

more efficient. In this chapter the focus was on Harmony Search algorithm and thus literature review

on meta heuristic like genetic algorithms, tabu search, ACO, simulated annealing for MCP has not

been given in detail.
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Algorithm 12 Heuristic Repair Algorithm
Procedure Heuristic Repair(New Harmony)
1. Relax:(Enlarge the subgraph)
Add few new vertices randomly chosen from the graph to New Harmony.
2. Repair:(Extract the clique)
Choose a random position Pos with 1 ≤ pos ≤ N
for i = Pos TO N do

if New Harmony[i]=1 then
if rand(0, 1) less than α then

Set New Harmony[i]=0
else

for j = i+ 1 TO N do
Set New Harmony[j]=0 if jth vertex belongs to the New Harmony and jth vertex is not
connected to ith vertex.

end for
for j = 1 TO i− 1 do

Set New Harmony[j]=0 if jth vertex belongs to the New Harmony and jth vertex is not
connected to ith vertex.

end for
end if

end if
end for
for i = Pos− 1 downto 1 do

if New Harmony[i]=1 then
if rand(0, 1) less than α then

Set New Harmony[i]=0
else

for j = i− 1 downto 1 do
Set New Harmony[j]=0 if jth vertex belongs to the New Harmony and jth vertex is not
connected to ith vertex.

end for
for j = N TO i+ 1 do

Set New Harmony[j]=0 if jth vertex belongs to the New Harmony and jth vertex is not
connected to ith vertex.

end for
end if

end if
end for
3. Extend:(Enlarge the clique)
Choose a random position Pos with 1 ≤ pos ≤ N
for j = Pos TO N do

add jth vertex if it is not in New Harmony and is connected to all nodes of New Harmony.
end for
for j = 1 TO Pos− 1 do

add jth vertex if it is not in New Harmony and is connected to all nodes of New Harmony.
end for
return New Harmony
End Procedure
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Table 7.2: Performance of HS MCP on DIMACS benchmark Graphs.

Instance Order Density ω(G) HS Best HS Avg HS SD HS Time
brock200 1 200 0.745 21 21 20 0.775 0.575
brock200 2 200 0.496 12 12 10.7 0.9 0.441
brock200 3 200 0.605 15 15 11.3 0.64 0.58
brock200 4 200 0.658 17 17 16.10 0.300 0.628
brock400 1 400 0.748 27 21 20 0.632 1.208
brock400 2 400 0.749 29 25 24.1 0.3 1.517
brock400 3 400 0.748 31 22 20.9 0.7 1.247
brock400 4 400 0.749 33 25 24 0.447 1.51
brock800 1 800 0.649 23 11 10.4 0.49 1.925
brock800 2 800 0.651 24 20 19.3 0.458 2.722
brock800 3 800 0.649 25 10 9.8 0.4 1.904
brock800 4 800 0.65 26 20 18.9 0.7 2.753

c125.9 125 0.898 34 34 33.6 0.917 0.672
c250.9 250 0.899 44 44 42.7 0.9 1.005
c500.9 500 0.9 57 57 53.9 1.044 2.586

c1000.9 1000 0.901 68 66 62.70 1.418 5.444
c2000.5 2000 0.5 16 16 14.7 0.458 7.524
c2000.9 2000 0.9 77 71 68.4 2.01 12.567
c4000.5 4000 0.5 18 16 15.40 0.490 15.358

c-fat2001 200 0.077 12 12 12 0 0.001
c-fat2002 200 0.163 24 24 24 0 0.005
c-fat2005 200 0.426 58 58 58 0 0.016
c-fat5001 500 0.036 14 14 14 0 0.003
c-fat5002 500 0.073 26 26 26 0 0.01
c-fat5005 500 0.186 64 64 64 0 0.048
c-fat50010 500 0.374 126 126 126 0 0.177
dsjc500.5 500 0.5 13 13 12.1 0.3 1.529

dsjc1000.5 1000 0.5 15 15 13.70 0.64 3.464
gen200 p0.9 44 200 0.9 44 44 39 2.569 0.854
gen200 p0.9 55 200 0.9 55 55 45.9 7.476 0.63
gen400 p0.9 55 200 0.9 55 41 39.7 0.64 1.467
gen400 p0.9 65 400 0.9 65 65 50 5.099 1.793
gen400 p0.9 75 400 0.9 75 75 55.8 9.724 1.624

hamming6-2 64 0.905 32 32 32 0 0.002
hamming6-4 64 0.349 4 4 4 0 <0.001
hamming8-2 256 0.969 128 128 128 0 0.033
hamming8-4 256 0.639 16 16 16 0 0.003
hamming10-2 1024 0.99 512 512 512 0 1.325
hamming10-4 1024 0.829 40 40 38.3 2.002 2.571

144



Table 7.3: Performance of HS MCP on DIMACS benchmark Graphs.

Instance Order Density ω(G) HS Best HS Avg HS SD HS Time
johnson8-24 28 0.556 4 4 4 0 <0.001
johnson8-44 70 0.768 14 14 14 0 0.001

johnson16-24 120 0.765 8 8 8 0 <0.001
johnson32-24 496 0.879 16 16 16 0 0.004

keller4 171 0.649 11 11 11 0 0.002
keller5 776 0.751 27 27 26.4 0.8 1.644
keller6 3361 0.818 58 56 52.9 1.758 16.792

mann a9 45 0.927 16 16 16 0 <0.001
mann a27 378 0.99 126 126 125.4 0.49 3.087
mann a45 1035 0.996 345 343 342.2 0.6 35.618
mann a81 3321 0.999 1100 1096 1094.9 2.663 392.149
p hat300-1 300 0.244 8 8 8 0 0.089
p hat300-2 300 0.489 25 25 24.8 0.4 0.245
p hat300-3 300 0.744 36 36 34.2 1.249 0.899
p hat500-1 500 0.253 9 6 6 0 1.384
p hat500-2 500 0.505 36 15 15 0 1.358
p hat500-3 500 0.752 50 35 33.7 1.616 1.649
p hat700-1 700 0.249 11 11 9.4 0.663 1.701
p hat700-2 700 0.498 44 44 43 1 1.664
p hat700-3 700 0.748 62 62 61 0.447 3.236

p hat1000-1 1000 0.245 10 5 5 0 2.412
p hat1000-2 1000 0.49 46 13 13 0 2.493
p hat1000-3 1000 0.744 68 23 22.9 0.3 2.612
p hat1500-1 1500 0.253 12 12 10.80 0.600 4.630
p hat1500-2 1500 0.506 65 65 63.1 1.3 7.126
p hat1500-3 1500 0.754 94 94 92.4 0.917 9.223
san200 0.7 1 200 0.7 30 18 18 0 0.678
san200 0.7 2 200 0.7 18 18 17.7 0.9 0.618
san200 0.9 1 200 0.9 70 70 65.6 8.8 0.269
san200 0.9 2 200 0.9 60 60 46.5 8.857 0.747
san200 0.9 3 200 0.9 44 44 38.3 2.865 0.903
san400 0.5 1 400 0.5 13 8 8 0 0.989
san400 0.7 1 400 0.7 40 18 18 0 1.11
san400 0.7 2 400 0.7 30 15 15 0 1.089
san400 0.7 3 400 0.7 22 15 14.8 0.4 1.117
san400 0.9 1 400 0.9 100 100 78.4 21.625 1.122

san1000 1000 0.502 15 9 9 0 2.487
sanr200 0.7 200 0.697 18 11 11 0 0.55
sanr200 0.9 200 0.898 42 42 41 0.447 0.965
sanr400 0.5 400 0.501 13 7 7 0 1.027
sanr400 0.7 400 0.7 21 18 16.3 0.781 1.133
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Table 7.4: Performance of HSI MCP on DIMACS benchmark Graphs.

Instance Order Density ω(G) HSI Best HSI Avg HSI SD HSI Time
brock200 1 200 0.745 21 19 15 1.897 0.11
brock200 2 200 0.496 12 12 8.2 1.536 0.077
brock200 3 200 0.605 15 12 3.5 3.956 0.072
brock200 4 200 0.658 17 16 11.1 1.921 0.097
brock400 1 400 0.748 27 20 15.3 1.792 0.208
brock400 2 400 0.749 29 22 17.9 1.972 0.346
brock400 3 400 0.748 31 21 11.9 7.368 0.214
brock400 4 400 0.749 33 24 18 2.366 0.34
brock800 1 800 0.649 23 11 2.7 3.466 0.218
brock800 2 800 0.651 24 18 14.3 1.792 0.98
brock800 3 800 0.649 25 10 1.9 2.7 0.211
brock800 4 800 0.65 26 18 14.7 1.418 0.997

c125.9 125 0.898 34 34 26.2 2.993 0.089
c250.9 250 0.899 44 41 33.4 3.04 0.302
c500.9 500 0.9 57 53 39.7 4.562 1.39

c1000.9 1000 0.901 68 59 45.5 4.674 6.97
c2000.5 2000 0.5 16 14 10.4 1.356 4.267
c2000.9 2000 0.9 77 65 51.7 4.649 34.74
c4000.5 4000 0.5 18 15 12.5 1.36 17.349

c-fat2001 200 0.077 12 12 12 0 0.026
c-fat2002 200 0.163 24 24 24 0 0.068
c-fat2005 200 0.426 58 58 58 0 0.333
c-fat5001 500 0.036 14 14 14 0 0.133
c-fat5002 500 0.073 26 26 26 0 0.442
c-fat5005 500 0.186 64 64 64 0 2.391
c-fat50010 500 0.374 126 126 126 0 8.86
dsjc500.5 500 0.5 13 13 9.4 1.685 0.287

dsjc1000.5 1000 0.5 15 13 9.9 1.375 1.012
gen200 p0.9 44 200 0.9 44 44 33.4 6.053 0.194
gen200 p0.9 55 200 0.9 55 39 30.7 3.378 0.209
gen400 p0.9 55 200 0.9 55 41 16.1 15.514 0.351
gen400 p0.9 65 400 0.9 65 51 37.8 4.771 0.838
gen400 p0.9 75 400 0.9 75 52 39.7 4.818 0.885

hamming6-2 64 0.905 32 32 32 0 0.006
hamming6-4 64 0.349 4 4 4 0 <0.001
hamming8-2 256 0.969 128 128 128 0 0.75
hamming8-4 256 0.639 16 16 16 0 0.021
hamming10-2 1024 0.99 512 512 512 0 128.771
hamming10-4 1024 0.829 40 36 21.9 5.108 1.848
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Table 7.5: Performance of HSI MCP on DIMACS benchmark Graphs.

Instance Order Density ω(G) HSI Best HSI Avg HSI SD HSI Time
johnson8-24 28 0.556 4 4 4 0 <0.001
johnson8-44 70 0.768 14 14 14 0 0.004

johnson16-24 120 0.765 8 8 8 0 0.005
johnson32-24 496 0.879 16 16 16 0 0.211

keller4 171 0.649 11 11 11 0 0.012
keller5 776 0.751 27 26 17.3 2.968 0.788
keller6 3361 0.818 58 52 35.1 6.139 35.485

mann a9 45 0.927 16 16 16 0 0.003
mann a27 378 0.99 126 126 121.7 3.348 4.792
mann a45 1035 0.996 345 342 333.6 3.072 1188.198
mann a81 3321 0.999 1100 1096 1088.00 8 94766.219
p hat300-1 300 0.244 8 8 7.3 1.187 0.101
p hat300-2 300 0.489 25 25 25 0 0.133
p hat300-3 300 0.744 36 34 22.5 4.5 0.265
p hat500-1 500 0.253 9 6 1.8 1.661 0.123
p hat500-2 500 0.505 36 15 4.7 4.961 0.152
p hat500-3 500 0.752 50 35 15.4 12.314 0.333
p hat700-1 700 0.249 11 9 6.3 1.187 0.316
p hat700-2 700 0.498 44 44 26.2 8.506 1.469
p hat700-3 700 0.748 62 62 38.2 12.335 2.348

p hat1000-1 1000 0.245 10 5 1.7 1.418 0.269
p hat1000-2 1000 0.49 46 13 2.2 3.6 0.283
p hat1000-3 1000 0.744 68 23 3.2 6.6 0.377
p hat1500-1 1500 0.253 12 10 7.2 1.249 1.131
p hat1500-2 1500 0.506 65 64 30.6 11.456 9.856
p hat1500-3 1500 0.754 94 92 49.8 14.421 16.489
san200 0.7 1 200 0.7 30 18 12.6 4.543 0.098
san200 0.7 2 200 0.7 18 17 17 0 0.812
san200 0.9 1 200 0.9 70 70 55 15.925 0.296
san200 0.9 2 200 0.9 60 41 32.8 4.069 0.215
san200 0.9 3 200 0.9 44 36 28.2 2.993 0.188
san400 0.5 1 400 0.5 13 8 2.2 2.441 0.125
san400 0.7 1 400 0.7 40 18 4.2 6.416 0.119
san400 0.7 2 400 0.7 30 15 3.8 5.6 0.126
san400 0.7 3 400 0.7 22 15 5.7 5.832 0.143
san400 0.9 1 400 0.9 100 55 45.1 7.713 1.206

san1000 1000 0.502 15 9 2.4 2.835 0.299
sanr200 0.7 200 0.697 18 11 4 3.847 0.062
sanr200 0.9 200 0.898 42 41 31.2 4.308 0.207
sanr400 0.5 400 0.501 13 7 2.5 2.335 0.098
sanr400 0.7 400 0.7 21 15 9.1 5.394 0.15
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Table 7.6: Comparison of HS MCP and BHS algorithms on DIMACS Bench-
mark Graphs.

Instance ω(G) HS Best HS Avg HS Time BHS Avg BHS Best BHS Time

brock200 2 12 12 10.7 0.441 11.23∗ 12 0.04

brock200 4 17 17∗ 16.10∗ 0.628 14.1 15 0.06

brock400 2 29 25∗ 24.1∗ 1.517 20.3 21 0.14

brock400 4 33 25∗ 24∗ 1.51 21 21 0.31

c125.9 34 34 33.6 0.672 34∗ 34 1.01

c500.9 57 57∗ 53.9∗ 2.586 45.5 46 0.47

gen200 p0.9 44 44∗ 44∗ 39 0.854 39.4∗ 40 11.89

gen200 p0.9 55 55 55 45.9 0.63 55∗ 55 13.8

hamming8-4 16 16 16∗ 0.003 15.9 16 0.05

hamming10-4 40 40∗ 38.3∗ 2.571 31.5 32 0.54

keller4 11 11 11 0.002 11 11 0.02

keller5 27 27∗ 26.4∗ 1.644 23 24 0.7

mann a27 126 126∗ 125.4∗ 3.087 105.9 106 0.87

p hat300-1 8 8 8 0.089 8 8 0.05

p hat300-2 25 25 24.8 0.245 25∗ 25 8

p hat300-3 36 36 34.2 0.899 36∗ 36 21.72

p hat700-1 11 11∗ 9.4∗ 1.701 9 9 0.22

p hat700-2 44 44∗ 43∗ 1.664 42 42 31.9

Table 7.7: Performance of Multi threading MCS algorithms on DIMACS
Benchmark Graphs.

Instance ω(G) MTMCS Time

C4000.5 18 19 days using 32 threads on a 16-core hyper-threaded dual Xeon E5-2660 shared with other users

gen400 p0.9 65 65 4.99 days when run sequentially and 4.93 hours using 24 threads on a 12-core hyper-threaded dual Xeon E5645

gen400 p0.9 75 75 2.86 days when run sequentially on a computer with two 2.4GHz Intel Xeon E5645 processors

mann a81 1100 31 days using 24 threads on a 12-core hyper-threaded dual Xeon E5645 shared with other users

p hat1500-3 94 128 days using 32 threads on a 16-core hyper-threaded dual Xeon E5-2660 shared with other users
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Chapter 8
Optimization of Lycopene extraction from tomato
processing waste skin using Harmony Search
Algorithm

Skin, rich in lycopene, is an important component of waste originating from tomato (lycopersicon

esculentum) paste manufacturing plants. The lycopene content present in the skin fraction of tomato

pomace is about 5 times higher than in the pulp . According to the World Processing Tomato Council

1,200,000 tons of tomato processing waste is produced worldwide annually. In this chapter a cen-

tral composite design with five independent variables, namely solvent/meal , number of extractions ,

temperature, particle size, extraction time is used to study their effects on the extraction of lycopene

from tomato skin. Prior art response surface analysis has been used to optimize the lycopene yield

with respect to the above mentioned five independent variables and the maximum yield predicted was

1.99 mg/100 g. In this study music inspired Harmony Search (HS) metaheuristic algorithm is used to

optimize the lycopene production and the maximum lycopene (4.8 mg/100 g) was predicted when the

solvent/meal ratio, number of extractions, temperature, particle size and extraction time is 20:1 (v/w),

5, 60◦C, 0.43 mm and 4 minutes, respectively.

The organization of this chapter is as follows. Section 8.1 provides the background art and Section

8.2 describes the methods and material used. The formulation of problem is described in Section 8.3.

Section 8.4 describes the proposed procedure for solving the optimization problem at hand using HS

algorithm and finally Section 8.5 provides conclusion & claim.

8.1 Literature Review

Lycopene belongs to the carotenoid family, is a bright red pigment that has received great interest due

to its various biological activities. Lycopene is a potent antioxidant and has been found effective in

reducing the risk of chronic diseases by protecting cells against oxidative damage (Rao and Agarwal,

1999). Various studies have shown that lycopene is associated with decreasing the risk of breast and

prostate cancer (Chalabi et al., 2006; Holzapfel et al., 2013). Studies have also revealed its preventive

effect on cardiovascular and coronary heart diseases. Lycopene exhibits anti-inflammatory activity

by inhibiting the activation of inducible nitric oxide syntheses proteins (Rafi et al., 2007). Lycopene

prevents low density lipoprotein oxidation and thus helps to reduce blood cholesterol levels (Rao and

Agarwal, 1999). In food industry lycopene is used as a food additive to enhance nutritional properties
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and storage stability (Østerlie and Lerfall, 2005).

According to the World Processing Tomato Council 1,200,000 tons of tomato processing waste is pro-

duced worldwide annually (Zuorro et al., 2011). One of the main components of tomato processing

waste is skin. The lycopene content present in the skin fraction of tomato pomace is about 5 times

higher than in the pulp (Papaioannou and Karabelas, 2012). In common variants of tomato lycopene

is found at a concentration of 4-14.3mg/100g (Kaur et al., 2006). At present, the tomato processing

waste is either discarded or used as animal fodder, but its abundance in lycopene makes it a promising

prospect as a sustainable, alternative and low-cost source of this nutraceutical compound.

Kaur et al. studied the effect of five independent values namely solvent/meal ratio, number of extrac-

tions, temperature, particle size and extraction time on lycopene extraction (Kaur et al., 2008). The

optimal yield of lycopene predicted using Response Surface Analysis is 1.97mg/100g and the optimal

yield experimentally obtained is 1.99mg/100g (Kaur et al., 2008). Poojary and Passamonti studied

the effect of using acetone/n-hexane mixtures at different ratios (1:3, 2:2 and 3:1, v/v) and at different

temperatures (30, 40 and 50◦C) on lycopene extraction and the yield obtained was in the range 3.47-

4.03mg/100g (Poojary and Passamonti, 2015) .

European Patent EP 1103579 discloses a method of extracting lycopene from tomato pomace, pink

grapefruit, watermelon, guava and papaya. The process consists of removing the impurities and water

from the product by subjecting the product to at least one washing with boiling ethanol having water

content from 20% to 30%, then high content of hot ethanol is used to extract lycopene. Although this

extraction process is relatively simple, it leads to low yield of lycopene due to very low solubility of

lycopene in ethanol.

U.S. Pat. No. 5837311 discloses a process of obtaining oleoresin containing lycopene, including

crushing tomato as raw material, pulping extracting with solvent and other processes. This process

uses tomatoes as raw material without the treatment of dehydration, resulting in a low yield; a large

amount of solvent is needed in this process, resulting in high cost and making large scale production

unsuitable.

Chinese Patent Application Publication No. CN101449801A discloses processes for extracting ly-

copene as: Tomato skins are taken as raw material, followed by crushing the material with colloid

grinder, then dehydrating with ethanol and extracting with organic solvent to produce lycopene.

Chinese Patent Application Publication Nos. CN1799674, CN1334328A and CN101298618A re-

spectively disclose processes for extracting lycopene using tomato skins as raw material and applying

supercritical carbon dioxide extraction. The use of supercritical extraction device increases the cost
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and affects the industrial scale of producing lycopene.

Chinese Patent Application Publication No. CN101121631A discloses that tomatoes and tomato po-

mace are taken as raw materials, and extracted by using ultra-sound/microwave synergistic technol-

ogy associated with solvent to obtain lycopene. Although the yield of lycopene may be relatively

high using this process, it cannot be used in large scale industrial production due to use of ultra-

sound/microwave technology, resulting in less practicability.

8.2 Material and methods

The method for extracting lycopene in this chapter is exactly the same as defined in (Kaur et al., 2008)

and is briefly introduced in this section.

8.2.1 Material

Tomato pomace was obtained from a tomato past manufacturing unit located in Haridwar, Uttarakhand

(India).

8.2.2 Sample Preparation

Skin was separated from pomace, obtained from tomato paste manufacturing unit by a continuous

floatation-cum-sedimentation system. The separated skin was dried in a cabinet dryer according to

the methods of (Kaur et al., 2006). The dried skin was ground in a mixer and then passed through

different sieves of size 0.05, 0.15, 0.25, 0.35 and 0.43 mm.

8.2.3 Proximate Analysis

Moisture, ash, crude protein, crude fibre and crude fat content were determined according to (AoA,

1990). Carbohydrates are computed by subtracting percent content of all the above components from

one hundred.

8.2.4 Pigment Extraction

Sample (1g) was extracted using solvent (hexane:acetone:alcohol 2:1:1) containing 0.05% (w/v) buty-

lated hydroxytoluene (BHT). Cold distilled water (15 ml) was added and the suspension was agitated.

The solution was then allowed to stand for 15 minutes for separation of polar and non-polar layers

(Figure 8.1). The polar layer, containing lycopene was obtained and the absorbance was measured

using a UV visible spectrophotometer (Figure 8.2) at 471 nm and expressed as mg/100 g using an

extinction coefficient of 17.2× 104 mol cm−1.

8.3 Problem Formulation

The object of this chapter is to provide optimal setting of five input parameters for production of

lycopene from tomato skin obtained as a waste originating from tomato paste manufacturing plants.
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The effects of five independent variables X1 (solvent/meal ratio), X2 (number of extractions), X3

(temperature), X4 (particle size) and X5 (time) on lycopene extraction is studied in (Kaur et al., 2008)

and in this section the process is briefly introduced. Table 8.1 shows the independent variables and

their levels used for central composite design in (Kaur et al., 2008). Thirty two combinations of

the independent variables along with their experimental and predicted yield are shown in Table 8.2

(reproduced from (Kaur et al., 2008)). Data pertaining to five independent variables and one response

variable were analyzed to get a quadratic regression equation of the form of Equation 8.1 and the

regression equation is given as Equation 8.2 (Kaur et al., 2008).

Y = b0 +
5∑

n=1

bnXn +
5∑

n=1

bmnX
2
n +

5∑
n<m

bmnXnXm (8.1)

where Y is the lycopene yield (mg/g), b0 is the value for the fixed response at the central point of the

experiment. bn, bm, bnm are the linear, quadratic and cross product coefficients, respectively.

Y = 0.8615− 0.0384X1 + 0.1078X2 + 0.0805X3 + 0.0669X4 + 0.0619X5 + 0.11920011X2
1

+0.1155X2
2 + 0.1452X2

3 − 0.0127X2
4 + 0.0468X2

5 − 0.1133X1X2 − 0.0687X1X3

−0.0019X1X4 + 0.0204X1X5 + 0.0985X2X3 + 0.0019X2X4 + 0.0167X2X5

+0.0761X3X4 − 0.0798X3X5 − 0.0204X4X5 (8.2)

The predicted values of lycopene content were calculated using the regression model and compared

with experimental values. The value for the coefficient of determination (R2) was 0.99 which indi-

cates the adequacy of the applied model. The statistical analysis of data revealed that linear, quadratic

and interaction coefficients were significant. In (Kaur et al., 2008) the levels of independent variables

for optimal extraction conditions of lycopene content were determined using response surface graphs

plotted between two independent variables while remaining independent variables were kept at zero

level and optimal predicted lycopene yield using response surface analysis is 1.97 mg/100g at param-

eter setting 30:1 v/w solvent/meal ratio, four extractions, 50◦C temperature, 0.15 mm particle size and

8 minutes extraction time.

In this study we optimized the regression model given as Equation 8.2 developed in (Kaur et al.,

2008) using Harmony search metaheuristic algorithm and the optimal value lycopene predicted is

4.8mg/100g (rather than 1.97 predicted using response surface analysis in (Kaur et al., 2008)). The

predicted optimal parameter setting for the five independent variables is 20:1 for solvent/meal ratio (

v/w), five extractions, 60 ◦C temperature, 0.43 mm particle size and 4 minutes extraction time. In order

to verify the claim experiential yield of lycopene obtained at this parameter setting was 4.75mg/100g.
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In the next section a detailed description of how HS has been utilized to solve the problem at hand is

provided.

Table 8.1: Independent variables and their levels used for central composite
design.

Independent variables Symbol Coded variable levels

-2 -1 0 1 2

Solvent/meal ratio (v/w) X1 20 30 40 50 60

Number of extractions X2 1 2 3 4 5

Temperature (◦C) X3 20 30 40 50 60

Particle Size (mm) X4 0.05 0.15 0.25 0.35 0.43

Time (minutes) X5 4 8 12 16 20

8.4 Proposed methodology of Optimizing Lycopene extraction using Harmony Search algorithm

The value of HMCR and PAR adopted for HS (Algorithm 1) in this experimentation is respectively set

as 0.9 and 0.3 (same as in Chapter 2), however it was observed small value of HMS produces inferior

results occasionally and hence HMS was set as 100. The objective function to be maximized is given

as Equation 8.2. Each harmony is a five dimensional vector such that the first dimension corresponds

to independent variable X1 (solvent/meal ratio, v/w), second dimension corresponds to X2 (number

of extractions), third dimension corresponds to X3 (temperature, ◦C), fourth dimension corresponds

to X4 (particle size, mm) and fifth dimension corresponds to X5 (time, minutes). The range of all the

five independent variables is from -2 to 2 in coded form as given in Table 8.1.

The Harmony Memory is initialized such that each component of the harmony/solution is within the

bounds from -2 to 2. Note that the third component of harmony corresponding to X3 (No. of ex-

tractions) can take only integer values. Each component of the new harmony represented as Hi is

generated either using HM or randomization and is slightly altered in step 12 (Algorithm 1) deter-

mined by parameter Bandwidth (BW). The value of BW for each component of harmony except X3

is 0.04 (i.e. ( 1
100

)th of variable bounds) and for X3 it is 1. Once the new harmony (H) is generated it is

evaluated using objective function and replaces the worst harmony in HM incase it is better than the

worst harmony. The procedure is repeated for 5000 generations.

The optimal yield of lycopene predicted using HS algorithm is 4.8mg/100g at parameter setting 20:1

(v/w solvent/meal ratio), five extractions, 60 ◦C temperature, 0.43 mm particle size and 4 minutes
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extraction time. In the coded form the optimal value of independent variables X1, X2, X3, X4 and

X5 obtained using HS is respectively -2, 2, 2, 2 and -2, hence at these value the objective function

(Equation 8.2) evaluates to 4.8. The program was run for 50 independent runs and the yield predicted

was exactly same (4.8mg/100g) in each run and thus the standard deviation is zero. The program was

run on the machine whose specifications are given in Section 2.4 and the execution time was approx-

imately 0.18 seconds. Figure 8.3 graphically shows lycopene yield predicted by HS with respect to

function evaluations.

The optimal parameter setting obtained by HS is 20:1 (v/w solvent/meal ratio), five extractions, 60 ◦C

temperature, 0.43 mm particle size and 4 minutes extraction time. In order to verify the claim exper-

imentation was carried out at this parameter setting, the experiment was repeated three times and the

lycopene yield obtained is shown in Table 8.3. The average yield of lycopene obtained at the optimal

parameter setting is 4.75mg/100g experiential. Note that the experimental procedure adopted for ly-

copene extraction in this study is exactly same as given in (Kaur et al., 2008) and has been described

in Section 8.3.

The variants of HS algorithm (HS-SA, TPHS, SMHS) proposed in previous chapters were also tested

on the problem at hand and produced exactly same results as that of standard HS algorithm.

8.5 Conclusion & Claim

In this chapter the regression expression depicting the relation between five independent variables

namely solvent/meal ratio, number of extractions, temperature, particle size and time was optimized

using music inspired Harmony Search algorithm. The optimal yield of lycopene predicted using HS

algorithm is 4.8mg/100g when the parameter setting adopted is 20:1 (v/w solvent/meal ratio), five

extractions, 60 ◦C temperature, 0.43 mm particle size and 4 minutes extraction time. whereas the opti-

mal parameter setting predicted by response surface analysis gives a yield of only 1.97 mg/100g (Kaur

et al., 2008). In order to verify the claim experiment was carried out at the above mentioned optimal

parameter setting obtained by HS, the lycopene yield obtained experimentally was 4.75mg/100g. Thus

the optimal setting predicted by HS is quite in tune with the experimental results.
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Figure 8.1: Polar and Non polar layer.

Figure 8.2: HPLC system and Absorption spectrum of Lycopene.
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Table 8.2: Central composite arrangement for independent variables X1, X2,
X3, X4, X5 & their response (lycopene yield, mg/100 g).

Run Variables levels (uncoded) Lycopene yield (mg/100 g)

X1 X2 X3 X4 X5 Experimental Predicted

1 -1(30) -1(2) -1(30) -1(0.35) 1(16) 1.19 1.18

2 1(50) -1(2) -1(30) -1(0.35) -1(8) 1.19 1.18

3 -1(30) 1(4) -1(30) -1(0.35) -1(8) 1.13 1.13

4 1(50) 1(4) -1(30) -1(0.35) 1(16) 1.32 1.33

5 -1(30) -1(2) 1(50) -1(0.35) -1(8) 1.04 1.04

6 1(50) -1(2) 1(50) -1(0.35) 1(16) 1.06 1.02

7 -1(30) 1(4) 1(50) -1(0.35) 1(16) 1.65 1.64

8 1(50) 1(4) 1(50) -1(0.35) -1(8) 1.17 1.16

9 -1(30) -1(2) -1(30) 1(0.15) -1(8) 0.951 0.949

10 1(50) -1(2) -1(30) 1(0.15) 1(16) 1.44 1.44

11 -1(30) 1(4) -1(30) 1(0.15) 1(16) 1.38 1.4

12 1(50) 1(4) -1(30) 1(0.15) -1(8) 0.936 0.954

13 -1(30) -1(2) 1(50) 1(0.15) 1(16) 1.23 1.21

14 1(50) -1(2) 1(50) 1(0.15) -1(8) 1.35 1.33

15 -1(30) 1(4) 1(50) 1(0.15) -1(8) 1.98 1.97

16 1(50) 1(4) 1(50) 1(0.15) 1(16) 1.48 1.48

17 -2(20) 0(3) 0(40) 0(0.25) 0(12) 1.4 1.42

18 2(60) 0(3) 0(40) 0(0.25) 0(12) 1.25 1.26

19 0(40) -2(1) 0(40) 0(0.25) 0(12) 1.06 1.11

20 0(40) 2(5) 0(40) 0(0.25) 0(12) 1.56 1.54

21 0(40) 0(3) -2(20) 0(0.25) 0(12) 1.31 1.28

22 0(40) 0(3) 2(60) 0(0.25) 0(12) 1.55 1.6

23 0(40) 0(3) 0(40) -2(0.25) 0(12) 0.639 0.677

24 0(40) 0(3) 0(40) 2(0.05) 0(12) 0.962 0.945

25 0(40) 0(3) 0(40) 0(0.43) -2(4) 0.907 0.925

26 0(40) 0(3) 0(40) 0(0.25) 2(20) 1.16 1.17

27 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.921 0.862

28 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.892 0.862

29 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.832 0.862

30 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.862 0.862

31 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.847 0.862

32 0(40) 0(3) 0(40) 0(0.25) 0(12) 0.847 0.862
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Table 8.3: Lycopene yield (mg/100 g) obtained at optimal setting.

Run Variables levels (uncoded) Lycopene yield (mg/100 g)

X1 X2 X3 X4 X5 Experimental

1 -2(20) 2(5) 2(60) 2(0.43) -2(4) 4.78

2 -2(20) 2(5) 2(60) 2(0.43) -2(4) 4.72

3 -2(20) 2(5) 2(60) 2(0.43) -2(4) 4.76

Average 4.75
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Figure 8.3: Predicted Lycopene yield w.r.t. no. of function evaluations.
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Chapter 9
Concluding Observations

This is the concluding Chapter of this Thesis. It is organized as follows. In Section 9.1 the conclusions

based on this study are outlined and in Section 9.2 some future research directions are proposed.

9.1 Conclusions

The aim of this Thesis is to enhance the balance between exploration and exploitation of the Harmony

Search Algorithm, with a view to improve its efficiency and reliability to solve real life problems. To

achieve this objective the HS algorithm is modified to create TPHS & SMHS algorithms, further HS

is hybridized with a well known metaheuristic algorithm called simulated annealing to create HS-SA

algorithm. The performance of HS and the three proposed variants is evaluated on IEEE 2014 bench-

mark problems and a real life problem from the field of computer vision called camera calibration

problem- a highly non linear 12 dimensional unconstrained optimization problem from the field of

computer vision. The HS algorithm enhanced by local search operator is used to solve sudoku and

maximum clique problem, two well known combinatorial optimization problems. The chapter wise

summary of this Thesis is given below:

Chapter 1 is introductory in nature. Besides relevant definitions, this Chapter discusses in details lit-

erature review on the related subject. Finally it outlines the Chapter-wise contents of the Thesis.

Chapter 2 introduces a novel algorithm based on hybridization of Harmony search and Simulated

Annealing called HS-SA to inherit their advantages in a complementary way and overcome their

limitations. HS suffers a limitation of premature convergence if one or more initially generated so-

lutions/harmonies are in the vicinity of local optimal. In order to remove this limitation, taking the

inspiration from Simulated Annealing the proposed HS-SA algorithm accepts even the inferior har-

monies, compared to the harmonies already stored in Harmony Memory, with probability determined

by parameter called Temperature. The Temperature parameter is initially kept high to favor exploration

of search space and is linearly decreased to gradually shift focus to exploitation of promising search

areas. The performance of HS-SA is analyzed and compared with Harmony Search algorithm and

Simulated Annealing on IEEE CEC 2014 benchmark functions. The numerical results demonstrate

the superiority of the proposed algorithm on multimodal benchmark functions, which are generally

very challenging test beds for metaheuristic algorithms. Moreover, the local optima avoidance of an

algorithm can be examined due to the massive number of local optima in such test functions.

Chapter 3 introduces Two phase Harmony search (TPHS) algorithm that attempts to strikes a balance
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between exploration and exploitation by concentrating on diversification in the first phase using catas-

trophic mutation and then switches to intensification using local search in the second phase, further

the search area was gradually decreased by decreasing the BW and PAR with time.The performance of

TPHS is analyzed and compared with 15 state-of-the-art metaheuristic algorithms on all the 30 IEEE

CEC 2014 benchmark functions. Based on the numerical results it is established even though perfor-

mance of TPHS is not very satisfactory on unimodal functions however it outperforms HS variants on

multimodal functions. The performance of TPHS is particularly outstanding on composition functions

when compared to state-of-the-art metaheurisctic algorithms for continuous optimization.

Chapter 4 introduces Shrinking Memory Harmony search (SMHS) algorithm, the SMHS attempts

to establish a balance between the contradictory property of exploration and exploitation by concen-

trating on diversification in the beginning using extended memory and broad Bandwidth and then

gradually switching to intensification by shrinking harmony memory and utilizing local search oper-

ator. The performance of SMHS is compared with nineteen state-of-the-art metaheuristic algorithms

(four HS variants, five PSO variants, eight DE variants, and one variant each of GA and ES) on all the

30 IEEE CEC 2014 benchmark functions. The numerical results demonstrate the superiority of the

proposed SMHS algorithm on multimodal function and its performance is outstanding on composition

functions.

In Chapter 5 the performance of the three proposed algorithms namely HS-SA, TPHS & SMHS is

compared on IEEE CEC 2014 benchmark suite and a real life problem called Camera Calibration (a

highly non linear 12 dimensional optimization problem from the field of computer vision). It is estab-

lished SMHS is the better performing algorithm on all the four categories of benchmark functions viz

a viz unimodal, simple multimodal, hybrid multimodal and composition multimodal functions, further

the performance of SMHS is excellent on Camera Calibration problem.

Chapter 6 explore the hybridization between Harmony Search (HS) and Hill Climbing (HC) algo-

rithm by utilizing the exploration power of the former and exploitation power of the latter in the

context of solving Sudoku which is a well-known hard Combinatorial Optimization problem. The

hybrid algorithm is referred as Harmony Search Hill Climber (HSHC). In order to extend the explo-

ration capabilities of HSHC it is further modified to create three different algorithms namely Retriev-

able Harmony Search Hill Climber (RHSHC), Global Best Retrievable Harmony Search Hill Climber

(GB-RHSHC) and Random Best Retrievable Harmony Search Hill Climber (RB-RHSHC). Compar-

ing the four proposed algorithms proposed in this chapter RHSHC outperforms its three variations

in terms of effectiveness. Experimental results demonstrate that RHSHC perform significantly better
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than standard Harmony Search algorithm and standard Hill climber algorithm. On comparing RHSHC

with the genetic algorithm it has been concluded that former outperforms latter both in terms of effec-

tiveness and efficiency particularly for Hard and Expert level puzzles. Comparing RHSHC and hybrid

AC3-tabu search algorithm it has been concluded that RHSHC is very competent to hybrid AC3-tabu

search algorithm.

Chapter 7 investigates the capabilities of Harmony Search algorithm for solving maximum clique

problem, a well known NP-Hard combinatorial optimization problem. Two different instantiations

of a generic HS algorithm namely Harmony Search for MCP (HS MCP) and Harmony Search with

idiosyncratic harmonies for MCP (HSI MCP) are proposed for this problem. HS MCP has better

exploitation and inferior exploration capabilities than HSI MCP whereas HSI MCP has better explo-

ration and inferior exploitation capabilities than HSI MCP, it has been concluded that former performs

better than latter by testing them on all the instances of DIMACS benchmark graphs. HS MCP has

been compared with a recently proposed Harmony search based algorithm for MCP called Binary

Harmony search (BHS) and the simulation results show that HS MCP significantly outperforms BHS

in terms of solution quality. The asymptotic time complexity of HS MCP is O(G × N3) where G is

the number of generations and N is the number of nodes in the graph. A glimpse of effectiveness of

some state-of-the-art exact algorithms on MCP has also been provided.

In Chapter 8 the regression expression depicting the relation between five independent variables

namely solvent/meal ratio, number of extractions, temperature, particle size and time was optimized

using Harmony Search algorithm. The optimal yield of lycopene predicted using HS algorithm is

4.8mg/100g when the parameter setting adopted is 20:1 (v/w solvent/meal ratio), five extractions, 60
◦C temperature, 0.43 mm particle size and 4 minutes extraction time. Prior art response surface analy-

sis has been used to optimize the lycopene yield with respect to the above mentioned five independent

variables and the maximum yield predicted was 1.99 mg/100 g. In order to verify the claim experiment

was carried out at the above mentioned optimal parameter setting obtained by HS, the lycopene yield

obtained experimentally was 4.75mg/100g. Thus the optimal setting predicted by HS is quite in tune

with the experimental results.

The Thesis concludes with Chapter 9. It derives the overall conclusions of this Thesis and it outlines

the limitations and scope of the proposed algorithms. Later it suggests future scope and new directions

of research in this area.
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9.2 Future Research Directions

Research is a never ending process. In order to carry out research in this direction, the following is

suggested:

1. The proposed algorithms can be enhanced by using different constraint handling techniques

available in literature so as to solve constraint optimization problems.

2. The efficiency of the proposed algorithms can be tested in solving multi objective optimization

problems.

3. The proposed algorithms should be parallelized so that they can be used to solve optimization

problems which have a costly objective function.

4. The proposed variants can be applied to more complex real life optimization problems.
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Saka, M., Hasançebi, O., and Geem, Z. W. (2016). Metaheuristics in structural optimization and

discussions on harmony search algorithm. Swarm and Evolutionary Computation, 28:88–97.

Saka, M, P. and Hasancebi, O. (2009). Adaptive harmony search algorithm for design code optimiza-

tion of steel structures. In Harmony Search Algorithms for Structural Design Optimization, pages

79–120. Springer.

San Segundo, P. and Artieda, J. (2015). A novel clique formulation for the visual feature matching

problem. Applied Intelligence, 43(2):325–342.

San Segundo, P., Lopez, A., and Pardalos, P. M. (2016). A new exact maximum clique algorithm for

large and massive sparse graphs. Computers & Operations Research, 66:81–94.

Sato, Y., Hasegawa, N., and Sato, M. (2013). Acceleration of genetic algorithms for sudoku solution

on many-core processors. In Massively Parallel Evolutionary Computation on GPGPUs, pages

421–444. Springer.

179



Sato, Y. and Inoue, H. (2010). Solving sudoku with genetic operations that preserve building blocks.

In Computational Intelligence and Games (CIG), 2010 IEEE Symposium on, pages 23–29. IEEE.

Sawyerr, B. A., Adewumi, A. O., and Ali, M. M. (2014). Real-coded genetic algorithm with uniform

random local search. Applied Mathematics and Computation, 228:589–597.

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127.

Sharma, H., Bansal, J. C., and Arya, K. (2013). Power law-based local search in differential evolution.

International Journal of Computational Intelligence Studies, 2(2):90–112.

Sharma, H., Bansal, J. C., Arya, K. V., and Yang, X.-S. (2016). Lévy flight artificial bee colony
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Appendix A
Sample Sudoku puzzles used for experimentation
Figures A.1, A.2, A.3, A.4 and A.5 respectively shows the sodoku puzzles of level Beginner, Easy,

Medium, Hard and Expert used for numerical experimentation in this Thesis.
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Figure A.1: Beginner level sudoku puzzles.
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Figure A.2: Easy level sudoku puzzles.
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Figure A.3: Medium level sudoku puzzles.
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Figure A.4: Hard level sudoku puzzles.
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Figure A.5: Expert level sudoku puzzles.
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