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Abstract

In this thesis, we investigate and analyze a special class of Boolean functions namely bent

functions. Using the existing techniques we derive the lower bounds of second-order non-

linearity and identify the affine inequivalent classes of bent functions. We further construct

some classes of generalized bent functions. We identify some classes of Boolean functions

having maximum possible second-order nonlinearity by using Gowers norm.

A class of cubic Maiorana–McFarland (M) bent functions having no affine derivative

was constructed by Canteaut and Charpin [5], thereby solving an open problem posed by

Hou [149]. We construct two classes of cubic M bent functions with no affine derivative

and show their mutual affine inequivalence.

Two (so-called C,D) classes of permutation-based bent Boolean functions were intro-

duced by Carlet [17] two decades ago, but without specifying some explicit construction

methods for their construction (apart from the subclass D0). We look in more detail at the

C class, and derive some existence and nonexistence results concerning the bent functions

in the C class for many of the known classes of permutations over F2n . Most importantly,

the existence results induce generic methods of constructing bent functions in class C which

possibly do not belong to the completed Maiorana–McFarland class. The question whether

the specific permutations and related subspaces we identify in this article indeed give bent

functions outside the completed Maiorana–McFarland class remains open.

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions f : Znq −→

Zq where q > 1 is a positive integer and A. C. Ambrosimov [4] proposed another generalized

bent functions over finite field. We consider functions from Fnp to Fp, and characterize the

subspace sum concept (depending upon the derivative) and give many of its properties. In

particular, it is shown that the subspace sum is an affine invariant. Further, we construct

two new classes of generalized bent functions (so-called Dp, Dp0 and Cp where Dp0 is a subclass
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of Dp). Also, we prove that the generalized Maiorana–McFarland bent functions and Dp

do not contain one another, and derive some existence and nonexistence results concerning

the bent functions in the Cp class for many of the known classes of permutations over Fnp .

Carlet [28] introduced a recursive lower bound on nonlinearity profile of Boolean func-

tions. We construct a class of cubic Maiorana–McFarland bent-negabent functions by using

Feistel functions and then obtain the lower bound of their second-order nonlinearities.

Gowers [126] introduced a new measure of functions which is called Gowers uniformity

norm. The Gowers U3 norm of a Boolean function is the measure of its resistance to

quadratic approximations. We compute Gowers U3 norms for some classes of Maiorana–

McFarland bent functions. In particular, we explicitly determine the value of the Gowers U3

norm of Maiorana–McFarland bent functions obtained by using APN permutations. Fur-

ther, it is proved that this value is always smaller than the Gowers U3 norms of Maiorana–

McFarland bent functions obtained by using differentially δ-uniform permutations, for all

δ ≥ 4. We compute the Gowers U3 norm for a class of cubic monomial functions, not

necessarily bent, and show that for n = 6, these norm values are less than that obtained

for Maiorana–McFarland bent function constructed by using APN permutations. Further,

we computationally show that there exist 6-variable functions in this class which are not

bent but achieve the maximum second-order nonlinearity for 6 variables.

ii
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Chapter 1

Introduction

A Boolean function in n variables maps binary string of length n to the set {0, 1}. These

functions are important in combinatorics, cryptography and coding theory, especially for de-

signing substitution boxes (S-boxes) for block ciphers and robust pseudo-random generators

for stream ciphers. For more details we refer to [3,8,36,108,117,122,123,135]. Boolean func-

tions that are used as cryptographic primitives must resist affine approximations, which is

achieved by having high nonlinearity. The bent functions defined on an even number of vari-

ables (although not directly usable as cryptographic primitives due to not being balanced)

have the maximum nonlinearity, that is, they offer maximum resistance to affine approxi-

mations. Bent functions are of interest among researchers, since they have maximum Ham-

ming distance from the set of all affine Boolean functions and have very nice combinatorial

properties. Several classes of bent functions were constructed by Dillon [56], Rothaus [86],

Carlet [17], and Dobbertin [49]. Further, we refer to [15,33,65,67,85,89,102,106,120,135].

The idea of first-order nonlinearity, usually referred to as nonlinearity, was introduced

by Rothaus [86]. The relationship between nonlinearity and explicit attack on symmetric

ciphers was discovered by Matsui [76]. The idea of higher order nonlinearity has been

used in cryptanalysis by Courtois, Golic, Iwata-Kurosawa, Knudsen-Robshaw, Maurer and

Millan [57,78,101,129,138,144]. More results related to nonlinearity of Boolean functions,

we refer to [20,27–29,31,40,44,46,50,58,81,95,99,110,113,114].

In 2001, Gowers [126] used an analytic technique to give a new proof of Szemerédi’s The-

orem, and in particular, initiates the study of new measure of functions. Gowers introduced

Gowers uniformity norm and it is applied in additive combinatorics [132]. The connection

1



2 1.1 Definitions and notations

between the Gowers uniformity norms and correlation of a function with polynomials with

a certain degree bound is described by results obtained by Gowers, Green and Tao [11,126].

For survey we refer to [11,12,139,143].

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions. Different

approaches for construction of generalized bent functions are introduced in [4,24,63,68,69,

82–84,140]. Generalized bent functions play an important role in combinatorial objects such

as partial difference sets, strongly regular graphs, association schemes (see [10, 155, 157])

and codes for Code Division Multiple Access (CDMA) [60,133].

The main goal in this thesis is to identify the classes of bent functions with the highest

possible second-order nonlinearity, and to analyze the different classes bent functions in

a more explicit way. Our techniques involve the use of Walsh–Hadamard transforms and

Gowers uniformity norms of Boolean functions. Also, we work on generalized Boolean

functions which are defined over finite field.

1.1 Definitions and notations

Let Z, Z+ and R be the set of integers, positive integers and real numbers respectively, and

F2 be the prime field of characteristic 2. Let Fn2 = {x = (x1, . . . , xn) : xi ∈ F2, for all i =

1, . . . , n}. We denote the extension field of degree n over F2 by F2n , and the unit group

therein by F∗2n . An element α ∈ F2n is said to be primitive element if α is a generator of

the unit group F∗2n . For any positive integer n, we always get a finite field with degree of

extension n over F2 by taking a primitive polynomial p(x) of degree n. We know that

F2n = F2[x]/〈p(x)〉 = {c0 + c1x+ . . .+ cn−1x
n−1 : ci ∈ F2, i = 0, 1, . . . , n− 1}.

Fn2 and F2n both are n dimension vector space over F2. Let B = {b1, b2, . . . , bn} be an F2

basic of F2n . Then any element a ∈ F2n can be written as

a = x1b1 + x2b2 + . . .+ xnbn
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where xi ∈ F2, i = 1, 2, . . . , n. Using the following mapping one can check that Fn2 and F2n

are vector isomorphism over F2:

x = (x1, x2, . . . , xn) 7−→ x1b1 + x2b2 + . . .+ xnbn

where {b1, b2, . . . , bn} is an F2 basic of F2n . With respect to the basic B defined as above,

the n-tuple vector (x1, x2, . . . , xn) is called the coordinates of x ∈ F2n .

Example 1.1.1. Let n = 3 and α be a root of the primitive polynomial x3 + x+ 1, that is,

α2 + α + 1 = 0. Then the one to one correspondence between F23 and F3
2 is given in Table

1.1 below.

F23 F3
2

0 (0, 0, 0)
1 (0, 0, 1)
α (0, 1, 0)
α2 (1, 0, 0)
α3 = α + 1 (0, 1, 1)
α4 = α2 + α (1, 1, 0)
α5 = α2 + α + 1 (1, 1, 1)
α6 = α2 + 1 (1, 0, 1)

Table 1.1: Correspondence between finite fields and vector spaces

For any set S, |S| denotes the cardinality of S. For any x ∈ Fn2 , the (Hamming) weight

of x is the integer sum wt(x) =
∑n

i=1 xi, that is, the number of 1’s it has. The Hamming

distance between two vectors x, y ∈ Fn2 , d(x, y), is defined as

d(x, y) = |{i : xi 6= yi, i = 1, 2, . . . , n}| = wt(x+ y).

The Hamming distance is a metric which represents the minimum number of necessary sub-

stitutions to transform a vector into another. Let x = (1, 1, 0, 0, 1, 0), y = (0, 1, 1, 0, 0, 1) ∈

F5
2. Then wt(x) = 3, wt(y) = 4 and d(x, y) = 4.



4 1.2 Boolean functions

1.2 Boolean functions

Any function f from Fn2 to F2 (or, equivalently from F2n to F2) is said to be a Boolean

function in n variables. The set of all Boolean functions in n variables is denoted by

Bn and the cardinality of Bn is 22n . For detailed study of Boolean functions we refer to

Carlet [29,31], Cusick and Stănică [135] and Mesnager [120].

There are several representations of a Boolean function. We study three standard repre-

sentations of Boolean functions, namely truth-table representation, algebraic normal form

(ANF) and trace representation. We describe in details these representations below.

Truth-table representation

In the truth-table representation we list the 2n elements of Fn2 in lexicographically increasing

order along with the corresponding functional values. Thus, any Boolean function f ∈ Bn
is a 2n length binary string of F2n

2 and it can be uniquely represented as

[f(0, 0, . . . , 0), f(0, 0, . . . , 1), f(0, 0, . . . , 1, 0), . . . , f(1, 1, . . . , 1)].

Example 1.2.1. Let n = 3. Suppose f ∈ B3 is a Boolean function and (1, 0, 0, 1, 1, 0, 1, 0)

is the truth-table of f . Since (1, 0, 0, 1, 1, 0, 1, 0) is an element of F8
2. The truth-table of f

is written in the right most column in Table 1.2.

x3 x2 x1 f

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Table 1.2: Truth-table of a Boolean function in 3 variables

Definition 1.2.2. The support of a Boolean function f ∈ Bn, supp(f), is defined by

supp(f) = {x ∈ Fn2 : f(x) 6= 0}.



Chapter 1: Introduction 5

The weight of a Boolean function f ∈ Fn2 , wt(f), is the cardinality of supp(f), i.e., the total

number of nonzero output.

Definition 1.2.3. The Hamming distance between two Boolean functions f, g ∈ Bn, d(f, g),

is defined by

d(f, g) = |{x ∈ Fn2 : f(x) 6= g(x)}| = wt(f + g)

=
1

2
{|(f(x) = g(x))|+ |(f(x) 6= g(x))|} − 1

2
{|(f(x) = g(x))| − |(f(x) 6= g(x))|}

= 2n−1 − 1

2

∑
x∈Fn2

(−1)f(x)+g(x).

(1.2.1)

Example 1.2.4. Let f, g be two Boolean functions on 3 variables with their truth-tables

(0, 1, 0, 1, 1, 1, 0, 1) and (1, 1, 0, 1, 1, 1, 0, 1),respectively. Then the weights of f and g are 5

and 6, respectively. The Hamming distance of f and g is d(f, g) = 1, i.e., changing only

one bit in truth-table we can transform one truth-table to another.

Algebraic normal form

Any Boolean function f in n variables can be expressed as a polynomial in F2[x1, . . . , xn]

/〈x2
1 +x1, . . . , x

2
n+xn〉. This form is called Algebraic normal form (ANF) of f and is written

as

f(x1, . . . , xn) =
∑

a=(a1,...,an)∈Fn2

λa

(
n∏
i=1

xaii

)

where λa ∈ F2. Each term of the form
∏n

i=1 x
ai
i is called a monomial. One can obtain

the algebraic normal form of a Boolean function from truth-table and vice-versa. Suppose

x � y means xi ≤ yi, for all i ∈ {1, 2, . . . , n} where x, y ∈ Fn2 . Then we have

λa =
∑
x�a

f(x),

for all a ∈ Fn2 which is the way to get ANF from truth-table of a Boolean function. If we

have the ANF of Boolean function then in the same way we get its truth-table as

f(x) =
∑
a�x

λa,
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for all x ∈ Fn2 .

Definition 1.2.5. The algebraic degree of f ∈ Bn, denoted by deg(f), is define as

deg(f) = max
a∈Fn2
{wt(a) : λa 6= 0}.

The degree of a monomial
∏n

i=1 x
ai
i is wt(a).

Definition 1.2.6. Boolean functions with algebraic degree at most 1 are said to be affine

functions. Precisely, an affine function ϕa,ε : Fn2 → F2 is of the form

ϕa,ε(x) = a1x1 + a2x2 + . . .+ anxn + ε, for all x ∈ Fn2 (1.2.2)

where a ∈ Fn2 and ε ∈ F2. If ε = 0 then ϕa,0 is a linear function. The total number of n

variables affine Boolean functions is 2n+1.

Let x, y ∈ Fn2 . The inner product of x, y ∈ Fn2 , x · y, is defined as

x · y = x1y1 + x2y2 + . . .+ xnyn,

and x · y ∈ F2. Thus, if we vary a all over Fn2 , we get all 2n linear function of the form ϕa,0.

Example 1.2.7. The algebraic normal form of the Boolean function in 3 variables given

in Table 1.2 is

f(x1, x2, x3) = (x1 + 1)(x2 + 1) + x1x2(x3 + 1) + (x1 + 1)x2x3

= 1 + x1 + x2 + x2x3.

Thus, the degree of f is 2. The nonzero coefficients in ANF are λ(0,0,0) = 1 = λ(0,0,1) =

λ(0,1,0) = λ(1,1,0).

Trace representation

First we discuss some basic definitions and properties of cyclotomic cosets and trace func-

tions. The cyclotomic coset of 2 modulo 2n − 1 containing j, C[j], is defined as

C[j] = {j, j2, j22, . . . , j2nj−1}
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where nj is the smallest positive integer such that j ≡ j2nj (mod 2n − 1). Conventionally,

the smallest element j modulo 2n−1 in the coset is called the coset leader and the cyclotomic

coset is denoted by C[j].

Example 1.2.8. Let n = 5 and j = 2. Since 2 ≡ 2 × 25 (mod 31). Then {2, 2 × 2, 2 ×

22, 2×23, 2×24} = {2, 4, 8, 16, 1} which is C[1] (operation over modulo 31). All the distinct

cyclotomic cosets modulo 31 are given below.

C[0] = {0}

C[1] = {1, 2, 4, 8, 16}

C[3] = {3, 6, 12, 24, 16}

C[5] = {5, 9, 10, 18, 20}

C[7] = {7, 14, 19, 25, 28}

C[11] = {11, 13, 21, 22, 26}

C[15] = {15, 23, 27, 29, 30}

Let j1, j2, . . . , jr ∈ Z2n−1 such that C[j1], C[j2], . . . , C[jr] are all distinct cyclotomic

cosets modulo 2n − 1. Then ∪ri=1C[ji] = Z2n−1. Some basic properties are given below.

• The cardinality of C[j] is either 1 or n.

• For a positive integer j, if gcd(j, 2n − 1) = 1 then the cardinality of C[j] is n.

• For any two positive integers i and j, C[i] and C[j] are either disjoint or identical.

Definition 1.2.9. Let n = kt, k ∈ Z+. The trace function from F2n to the subfield F2t,

Trnt , is defined as

Trnt (x) = x+ x2t + x22t

+ . . .+ x2(k−1)t

, for all x ∈ F2n .

If F2t is a prime field (i.e., t = 1) then the trace is called absolute trace and denoted by

Trn1 . The inner product of x, y ∈ F2n is denotes by Trn1 (xy). The basic properties of trace

function are given as follows:

• For all x, y ∈ F2n , Trn1 (x+ y) = Trn1 (x) + Trn1 (y).
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• For all c ∈ F2 and x ∈ F2n , Trn1 (cx) = cTrn1 (x).

• For all c ∈ F2, Trn1 (c) = nc.

• For all x ∈ F2n and for any r ∈ Z+, Trn1 (x2r) = Trn1 (x).

• For a ∈ F2n , Trn1 (a) = 0 if and only if a = α2 + α for some α ∈ F2n .

• Trace function satisfies transitivity property, i.e., if F2m is a subfield of F2n and F2t is

a subfield of F2m then

Trnt (x) = Trmt (Trnm(x)), for all x ∈ F2n .

From the first two properties we observe that trace is a linear mapping from F2n to F2. For

proof of the above results we refer to [41,103,120].

Any function f : F2n → F2n can be uniquely written as a univariate polynomial of

degree at most 2n − 1 of the form

f(x) = c0 + c1x+ c2x
2 + . . .+ c2n−1x

2n−1

where ci, x ∈ F2n , i = 0, 1, . . . , 2n − 1. If f(x)2 = f(x), for all x ∈ F2n then f is a Boolean

function and vice-versa. A function f is a Boolean function if and only if c0, c2n−1 ∈ F2

and c2i (mod 2n−1) = c2
i , i ∈ {1, 2, . . . , 2n− 2}. The univariate representation of any function

f ∈ Bn is

f(x) =
∑
j∈Γ(n)

Tr
nj
1 (αjx

j) + ε(1 + x2n−1)

where Γ(n) is the set of cyclotomic coset leaders modulo 2n − 1, nj is the size of the

cyclotomic class containing j, αj ∈ F2nj and ε =
∑

x∈F2n
f(x) (mod 2). For every j ∈

Z/(2n − 1)Z, we can write

j =
∑
s∈E

2s where E ⊆ {0, 1, . . . , n− 1}.

The cardinality of E is referred to as the 2-weight of j and written as w2(j). The algebraic

degree of f is deg(f) = maxj∈Γ(n){w2(j) : αj 6= 0}. Precisely, an affine function ϕa,ε : F2n →
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F2 is of the form

ϕa,ε(x) = Trn1 (ax) + ε, for all x ∈ F2n

where a ∈ F2n and ε ∈ F2 (if ε = 0 then ϕa,0 is a linear function). In general, it is difficult

to compute the algebraic degree of a Boolean function given in univariate form.

Example 1.2.10. Let n = 2t and α ∈ F∗2n. Then

• the degree of f(x) = Trn1 (αx2t+1) is 2;

• the degree of f(x) = Trn1 (αx2t−1) is t.

Suppose n ∈ Z+ and g(x1, . . . , xn) ∈ F2[x1, . . . , xn]. Then the n-variate representation

of a Boolean function f : Fn2 → F2 is

f(x1, . . . , xn) = Trn1 (g(x1, . . . , xn)), for all (x1, . . . , xn) ∈ Fm2 .

1.2.1 Walsh–Hadamard transform

The discrete Fourier transform of Boolean function is called Walsh–Hadamard transform

or Walsh transform. For the computation of many cryptographic properties of a Boolean

function it is needed to compute their Walsh–Hadamard transform.

Definition 1.2.11. The Walsh–Hadamard transform of f ∈ Bn at a ∈ Fn2 is defined as

Wf (a) =
∑
x∈Fn2

(−1)f(x)+a·x.

The multiset [Wf (a) : a ∈ Fn2 ] is said to be the Walsh–Hadamard spectrum of f . The

absolute value of the Walsh–Hadamard spectrum of f is at most 2n, i.e., −2n ≤ Wf (a) ≤ 2n,

for all a ∈ Fn2 . The weight distribution of Walsh–Hadamard spectrum of a Boolean function

f is the frequency distribution of the values in the Walsh–Hadamard spectrum of f . It is

also defined over the finite field F2n as

Wf (a) =
∑
x∈F2n

(−1)f(x)+Trn1 (ax), for all a ∈ F2n . (1.2.3)
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In the bivariate case, where f : F2
2t → F2, instead of Equation (1.2.3) we have

Wf (a, b) =
∑

(x,y)∈F2
2t

(−1)f(x,y)+Trt1(ax)+Trt1(by), for all (a, b) ∈ F2
2t .

If s ∈ F2 then we know that (−1)s = 1 − 2s. Using the inverse Walsh–Hadamard

transform, f can be recovered as below:

(−1)f(x) =
1

2n

∑
a∈Fn2

Wf (a)(−1)x·a, for all x ∈ Fn2 .

Let g(x) = ϕa,ε(x) be an affine function, for all x ∈ Fn2 . Then from Equation (1.2.1), we get

d(f, g) = 2n−1 − (−1)ε

2

∑
x∈Fn2

(−1)f(x)+a·x = 2n−1 − (−1)ε

2
Wf (a), (1.2.4)

which is the relation between distance and Walsh–Hadamard transform of two Boolean

functions. One can also compute the Walsh–Hadamard spectrum using the Hadamard

matrix. We consider the following recursive definition of Hadamard matrices:

H0 =
(

1
)

; H1 =

1 1

1 −1


and

Hm =

Hm−1 Hm−1

Hm−1 −Hm−1

 .

Here Hm is the tensor product Hm = H1⊗Hm−1. The walsh-Hadamard spectrum of f ∈ Bn
can be written as

(
Wf (α0), . . . ,Wf (α2n−1)

)
=
(

(−1)f(α0), . . . , (−1)f(α2n−1)

)
Hn

where αj ∈ Fn2 , j = 0, 1, . . . , 2n − 1. The Hadamard matrix H of order m is an m × m

square matrix of all entry ±1 such that

HH t = mIm
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where H t is the transpose of H and In is the identity matrix of order m×m.

Proposition 1.2.12 ( [135]). Any Boolean function f in n variables satisfies the following

identity ∑
a∈Fn2

W 2
f (a) = 22n.

This identity is called Parseval’s identity. Using the Parseval’s identity one can prove

that the absolute value of the Walsh–Hadamard spectrum of f ∈ Bn is at least 2n/2, that

is, max{|Wf (a)| : a ∈ Fn2} ≥ 2n/2.

Theorem 1.2.13 ( [100, Theorem 2.6]). Let E be an arbitrary subspace of Fn2 and E⊥ be

the dual of E, defined as

E⊥ = {a ∈ Fn2 : a · x = 0, for all x ∈ E}.

Then for any f ∈ Bn, we have

∑
a∈E

Wf (a) = |E|
∑
x∈E⊥

(−1)f(x).

The above equation between Wf and f is called the Poisson Summation Formula. Using

the above Theorem one can easily derive the next Corollary.

Corollary 1.2.14. For any f ∈ Bn

∑
a�b

Wf (a) = 2wt(b)
∑
a�b̄

(−1)f(a)

where a, b ∈ Fn2 and a � b means that ai ≤ bi, for all i ∈ {1, 2, . . . , n}.

Definition 1.2.15. Let E be the subspace of Fn2 and φE be a Boolean function in n variables,

defined as

φE(x) =

 1, if x ∈ E;

0, otherwise.

φE is called the indicator function of the space E.
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Let E be a subspace of Fn2 . Then for any a, b ∈ Fn2

∑
x∈b+E

(−1)a·x = |E|(−1)a·bφE⊥(a) (1.2.5)

where E⊥ is dual of E. The Walsh–Hadamard transform at any b ∈ Fn2 of an affine functions

ϕa,ε is

Wϕa,ε(b) =
∑
x∈Fn2

(−1)ϕa,ε(x)+b·x =

 0, if a 6= b;

2n(−1)ε, if a = b,

where ϕa,ε is defined as in Equation (1.2.2).

1.2.2 Cryptographic Boolean functions

In this section we discuss some properties of Boolean functions which have cryptographic

significance.

Algebraic Degree

The algebraic degree of Boolean function gives the linear complexity of the pseudo-random

generator. To resist the Berlekamp–Messey attack [8, 29, 59] and Rønjom–Helleseth at-

tack [124] of a cryptosystem it is needed that Boolean functions used in pseudo-random

generators posses optimal algebraic degree. From algebraic normal form of Boolean func-

tion we know that the maximum algebraic degree of a Boolean function in n variables is at

most n.

Balancedness

A Boolean function f in n variables is said to be balanced if the truth-table of f has equal

number of 1’s and 0’s, i.e., the cardinality of support of f , supp(f), is 2n−1. There are(
2n

2n−1

)
many balanced functions in Bn. Boolean functions used in a cryptosystem must be

balanced. Otherwise, cryptosystem unable to prevent the distinguishing attacks [30] as

the attacker gain some statistical information between plaintext and ciphertext of stream

cipher. If a Boolean function in n variables is balanced then the algebraic degree is at most

n− 1. It is to be noted that any nonconstant affine functions is balanced.
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Example 1.2.16. Let h1, h2 ∈ B3 such that the truth-table of h1 and h2 be (1, 1, 0, 0, 0, 0, 1, 1)

and (0, 0, 0, 0, 0, 1, 0, 1), respectively. Here h1 is balanced and h2 is not balanced.

Crosscorrelation and Autocorrealtion

Let f, g ∈ Bn. Then the crosscorrelation between f and g at α ∈ Fn2 , Cf,g(α), is defined by

Cf,g(α) =
∑
x∈Fn2

(−1)f(x)+g(x+α).

Two Boolean functions f and g in n variables are called uncorrelated of order r, 0 ≤ r ≤ n

if Cf,g(α) = 0, for all α ∈ Fn2 with 0 ≤ wt(α) ≤ r. If for all α ∈ Fn2 , Cf,g(α) = 0 then f and

g are perfectly uncorrelated. For details we refer to [96,120,135].

Example 1.2.17. Let f, g ∈ B3. Suppose the truth-table of f and g are (0, 0, 1, 0, 1, 1, 0, 0)

and (1, 1, 0, 1, 1, 1, 0, 0), respectively (consider the lexicographic order). Then the crosscor-

relation value at (0, 0, 1) of f and g is Cf,g(0, 0, 1) = 4.

The relation between crosscorrelatin value and Walsh–Hadamard spectrum of two

Boolean function f, g ∈ Bn is

(
Cf,g(α0), . . . , Cf,g(α2n−1)

)
=

1

2n

(
Wf (α0)Wg(α0), . . . ,Wf (α2n−1)Wg(α2n−1)

)
Hn

where αj ∈ Fn2 , j = 0, 1, . . . , 2n−1 and Hn is Hadamard matrix of order 2n. From Equation

(1.2.1), we get

d(f, g) = 2n−1 − 1

2
Cf,g(0),

which is the relation between Hamming distance and crosscorrelation of two Boolean func-

tions. The autocorrelation of f ∈ Bn at α ∈ Fn2 , Cf (α), is defined as

Cf (α) =
∑
x∈Fn2

(−1)f(x)+f(x+α).

It is obvious that if α = 0 then Cf (0) is equal to 2n. Moreover, the absolute value of

autocorrelation of any Boolean functions in n variables is at most 2n. If g = f then we get

(
Cf (α0), . . . , Cf (α2n−1)

)
=

1

2n

(
W 2
f (α0), . . . ,W 2

f (α2n−1)
)
Hn
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where αj ∈ Fn2 , j = 0, 1, . . . , 2n − 1 and Hn is Hadamard matrix of order 2n which is the

relation between autocorrelatin value and Walsh–Hadamard spectrum of a Boolean function

f ∈ Bn.

Nonlinearity

Nonlinearity of a Boolean function is one of the most important criterion as it measures the

distance between the Boolean function and the set of affine functions. From cryptographic

point of view this quantity must be as large as possible to resist the affine approximation

attacks [32].

Definition 1.2.18. Let f ∈ Bn. The nonlinearity of f , nl(f), is defined as

nl(f) = min{d(f, l) : l ∈ ϕa,ε}.

From Equation (1.2.4), we get the relation between Walsh–Hadamard spectrum and

nonlinearity of a Boolean function f in n variables as

nl(f) = 2n−1 − 1

2
max
α∈Fn2
|Wf (α)|. (1.2.6)

Using Parseval’s identity, we can calculate the upper bound of nonlinearity. The nonlin-

earity of an n-variable Boolean function is at most 2n−1 − 2
n
2
−1. Rothaus [86] introduced

the idea of nonlinearity and Matsui [76] discovered the relationship between nonlinearity

and explicit attack on symmetric ciphers. For results on constructions of Boolean functions

with high nonlinearity we refer to [29,31,40,58,75,81,86,95,113,114].

Definition 1.2.19. Suppose f ∈ Bn. For every r ∈ Z, 0 < r ≤ n, the minimum Hamming

distance of f from all the functions having algebraic degree at most r is said to be the

rth-order nonlinearity of the Boolean function f , i.e.,

nlr(f) = min{d(f, g) : g ∈ Bn and deg(g) ≤ r}.

The sequence of values nlr(f), for r ranging from 1 to n−1, is said to be the nonlinearity

profile of f . To construct a good cryptosystem, the rth-order nonlinearity of Boolean

function is must be optimal. Thus, a cryptosystem is secure against different low order
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approximations attacks [57, 62, 71, 130, 138, 144] when the Boolean functions used in it

possess high nonlinearity profile.

Following are some of the results proved by Carlet [28].

Proposition 1.2.20 ( [28, Proposition 2]). Let f ∈ Bn, r ∈ Z+ such that r < n and i be a

non-negative integer smaller than r. Then

nlr(f) ≥ 1

2i
max

a1,...,ai∈Fn2
nlr−i(Da1 . . . Daif).

In particular, for r = 2,

nl2(f) ≥ 1

2
max
a∈Fn2

nl(Daf).

Proposition 1.2.21 ( [28, Proposition 3]). Let f ∈ Bn and r ∈ Z+ such that r < n. We

have

nlr(f) ≥ 2n−1 − 1

2

√
22n − 2

∑
a∈Fn2

nlr−1(Daf).

If some lower bound on nl(Daf) is known for all a ∈ Fn2 , we have the following corollary.

Corollary 1.2.22 ( [28, Corollary 2]). Let f ∈ Bn and r ∈ Z+ such that r < n. Assume

that, for some non-negative integers M and m, nlr−1(Daf) ≥ 2n−1−M2m for every nonzero

a ∈ Fn2 . Then

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n.

It is known that any first derivative of a cubic Boolean function has algebraic degree

at most 2 and the Walsh–Hadamard spectrum of a quadratic Boolean function (degree 2

Boolean function) is completely characterized by the dimension of the kernel of the bilinear

form associated with it. Therefore, Propositions 1.2.20, 1.2.21 and Corollary 1.2.22 are

required for computation of the lower bounds of the second-order nonlinearities of cubic

Boolean functions.

Some results on higher-order nonlinearity are listed below.

Theorem 1.2.23 ( [110, Theorem 1]). Let n = 6r and d = 22r + 2r + 1. Suppose fλ(x) =

Trn1 (λxd), for all x ∈ F2n where λ ∈ F∗2n. Then

nl2(fλ) ≥ 2n−1 − 1

2

√
(2n − 1)2

n
2

+2r + 2n ≈ 2n−1 − 2
3n+4r−4

4 .
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Theorem 1.2.24 ( [110, Theorem 2]). Let n = 2t with n ≥ 6. Suppose f(x, y) =

Trt1(xy2i+1), for all x, y ∈ F2t and i ∈ Z such that 1 ≤ i < t, gcd(i, t) = e and

gcd(2t − 1, 2i + 1) = 1. Then

nl2(f) ≥ 2n−1 − 1

2

√
2

3n
2

+e − 2
3n
4

+ e
2 + 2n(2

n
4

+ e
2 − 2e + 1).

Lemma 1.2.25 ( [45, Lemma 5]). Let n = 4r and d = 22r + 2r + 1. Suppose fλ(x) =

Trn1 (λxd), for all x ∈ F2n where λ ∈ F∗2n. Then

nl(Daf) ≥

 0, if a ∈ F2r ;

24r−1 − 23r−1, if a 6∈ F2r .

Theorem 1.2.26 ( [45, Theorem 1]). Let n = 4r and d = 22r + 2r + 1. Suppose fλ(x) =

Trn1 (λxd), for all x ∈ F2n where λ ∈ F∗2n. Then

nl2(fλ) ≥ 24r−1 − 22r−1
√

23r + 2r − 1.

Let n = 2t and f ∈ Bn be a bent function belongs to PS class of the form

f(x, y) = Trt1

(
λx

y

)
, (1.2.7)

for all (x, y) ∈ F2t×F2t where λ ∈ F∗2t and Trt1(0) = 0 with convention that λx
0

= 0. Suppose

kt = max{|t1| : t1 ∈ [−2
t
2

+1 + 1, 2
t
2

+1 + 1] and t1 ≡ 0 (mod 4)}. (1.2.8)

Clearly, kt = 2
t
2

+1 when t is even.

Lemma 1.2.27 ( [37, Lemma 4]). Let f ∈ Bn be defined as in Equation (1.2.7) and

(a, b) ∈ F2t × F2t. Then

nl(D(a,b)f) =


0, if a = 0, b = 0;

2n−1 − 2t−s+1, if a ∈ F2t , b ∈ F∗2t ;

2n−1 − kt2t−1, if a ∈ F∗2t , b = 0,

where s ≡ t (mod 2) and kt is defined as in Equation (1.2.8).
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Theorem 1.2.28 ( [37, Theorem 1]). Let n = 2t and f ∈ Bn be a bent function defined as

in Equation (1.2.7). Then

nl2(f) ≥

 2n−1 − 1
2

√
2

3n
2

+1 − 2n + kt(2n − 2
n
2 ), if t ≡ 1 (mod 2);

2n−1 − 1
2

√
2

3n
2

+2 − 3 · 2n + 2
5n
4

+1 − 2
3n
4

+1, if t ≡ 0 (mod 2),

where kt is defined as in Equation (1.2.8).

Theorem 1.2.29 ( [37, Theorem 3]). Let n = 2t. Suppose g ∈ Bt and φ is an APN

(t, t)-function which is a permutation on Ft2. Then the second-order nonlinearity of the bent

function f(x, y) = x · φ(y) + g(y) satisfies

nl2(f) ≥ 2n−1 − 1

2

√
22n + 2n+2 − 2

3n
2

+2 − 2
∑

α∈Ft2,α 6=0

nl(α · φ).

Corollary 1.2.30 ( [37, Corollary 1]). Let n = 2t where t be an odd integer. Suppose g is

an arbitrary Boolean function on Ft2 and φ is an AB (t, t)-function which is a permutation

on Ft2. Then the second-order nonlinearity of the bent function f(x, y) = x · φ(y) + g(y)

satisfies

nl2(f) ≥ 2n−1 − 1

2

√
2

3n
2

+1 + 2
5n+2

4 − 2
3n+2

4 − 2n.

Algebraic Immunity

The measure of resistance against algebraic attacks is called the algebraic immunity of

Boolean functions. Algebraic attack was proposed by Courtois et al. [79, 80]. For cryp-

tographic primitives algebraic immunity of Boolean function should be large. For further

details we refer to [21,22,25,35,42].

Definition 1.2.31. Let f ∈ Bn. A nonzero Boolean function h ∈ Bn is said to be an

annihilator of f if f(x)h(x) = 0, for all x ∈ Fn2 and their set is denoted by AN (f).

Definition 1.2.32. The algebraic immunity of f ∈ Bn, AI(f), is defined as

AI(f) = min{deg(h) : h ∈ AN (f) ∪ AN (f + 1)}.

It is easy to see that AI(f) ≤ deg(f), for all f ∈ Bn as f(x)(1 + f(x)) = 0, x ∈ Fn2 .
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Example 1.2.33. Let f, h ∈ B4 such that f(x) = x1x2x3x4 and h(x) = x1 + x2 + x3 + x4.

Since for all x ∈ F4
2,

f(x)h(x) = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 = 0.

Thus, the algebraic immunity of f is equal to AI(f) = 1 as h is an annihilator of f with

degree 1.

We discuss some known results related to the bounds of algebraic immunity and relations

with the nonlinearity of Boolean function. Let f ∈ Bn and s ∈ Z+, 1 ≤ r ≤ n − 1. Then

the following conditions holds:

• From [80, Theorem 6.0.1], we have

AI(f) ≤ min{deg(f), dn
2
e}.

• If AI(f) ≤ r and f is balanced then [21, Proposition 1]

nlr(f) ≤ 2n−1 − 2n−r.

• If AI(f) ≥ r + 1 then [22, Theorem 1]

nlr(f) ≥ 2

AI(f)−r−1∑
j=0

(
n− r
j

)
.

• Let deg(f) be d. If nl(f) ≤
∑d

j=0

(
n
j

)
then [25, Theorem]

AI(f) ≤ d+ 1.

Correlation Immune and Resiliency

Correlation immunity of Boolean function can be defined in two equivalent ways.

Definition 1.2.34. A Boolean function in n variables is said to be correlation immune of

order r if any function obtain from it by fixing at most r variables is balanced. Equivalently,
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f ∈ Bn is said to be correlation immune of order r if

Wf (β) = 0, for all β ∈ Fn2 with 1 ≤ wt(β) ≤ r.

Definition 1.2.35. A balanced Boolean function in n variables with correlation immune of

order r is said to be resilient of order r.

For details we refer to [6, 13, 52, 74, 77, 90, 122,131,141,142,145,153]. Siegenthaler [131]

derived the relation between algebraic degree and correlation immunity of Boolean func-

tions. Let f ∈ Bn such that algebraic degree be d and correlation immunity be r. Then

from [131], we have r + d ≤ n. Maitra amd Sarkar [115] proved that

nl(f) ≤ 2n−1 − 2r+1

where f ∈ Bn with algebraic immunity r. This nonlinearity bound of Boolean function is

called Sarkar and Maitra’s bound.

1.2.3 Affine equivalence and Derivatives of Boolean functions

The general linear group of degree n over F2, GL(n,F2), is the group of invertible linear

transformations acting on F2n . For any A ∈ GL(n,F2) and x ∈ F2n we denote the action

of A on x by x 7→ xA. The affine general linear group, AGL(n,F2), is the set of all

transformations of the form x 7→ xA + b where b ∈ F2n . This group can be thought of as

the semidirect product GL(n,F2) n F2n , but we will not need that here.

Definition 1.2.36. Two Boolean functions f, g ∈ Bn are said to be affine equivalent if

there exists (A, b) ∈ AGL(n,F2) such that g(x) = f(xA+ b), for all x ∈ F2n.

For Boolean functions used as cryptographic primitives the notion of equivalence is

further generalized as follows.

Definition 1.2.37. Two Boolean functions f, g ∈ Bn are said to be extended affine equiv-

alent (EA-equivalent) if there exist (A, b) ∈ AGL(n,F2), a ∈ F2n and ε ∈ F2 such that

g(x) = f(xA+ b) + ϕa,ε(x), for all x ∈ F2n where ϕa,ε(x) = Trn1 (ax) + ε.

The computational complexity for direct verification of affine equivalence between given

two Boolean functions is O(2n
2
), which is computationally infeasible for n ≥ 7. If two
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Boolean functions f, g ∈ Bn have different algebraic degrees then they are EA-inequivalent.

Therefore, the algebraic degree serves as an EA-invariant. The multiset consisting of ab-

solute values of Walsh–Hadamard transforms of a function f is said to be its absolute

Walsh–Hadamard spectrum. If the absolute Walsh–Hadamard spectra of two Boolean func-

tions are different, which is possible even if their algebraic degrees are same, then we know

that they are EA-inequivalent. Thus, the absolute Walsh–Hadamard spectrum serves as a

more sophisticated EA-invariant. In fact, the autocorrelation spectrum which is another

invariant is also connected to Walsh–Hadamard spectra. For bent functions the absolute

Walsh–Hadamard spectrum is unique and flat, set to 2
n
2 where n is the number of vari-

ables. Thus, the invariants dependent on Walsh–Hadamard spectra are unable to decide

EA-inequivalence of bent functions.

The problem of deciding EA-inequivalence is completely solved for Boolean functions

having algebraic degrees at most 2, that is, for affine and quadratic Boolean functions.

We refer to MacWilliams and Sloane [41, Chapter 15] for detailed discussion on quadratic

Boolean functions including their affine inequivalence. In the absence of a general theory for

functions having algebraic degree three and above we address the problem by considering

derivatives of these functions.

Definition 1.2.38. The derivative of f ∈ Bn with respect to an m-dimensional F2-subspace

V of F2n, or the mth-(order) derivative, is the function DV f : F2n → F2 defined by

DV f(x) =
∑
a∈V

f(x+ a), for all x ∈ F2n .

The algebraic degree to DV f is at most deg(f) − m. If V is one-dimensional then

DV f(x) = f(x+ a) + f(x) where a ∈ V \ {0}, which is usually denoted by Daf(x). If V is

a 2-dimensional subspace of F2n we choose any pair of distinct elements a, b ∈ V \ {0} and

write

DV f(x) = Da,bf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b),

for all x ∈ F2n . Obviously the choice of (a, b) does not change the function DV f .

Dillon [56] proposed proving inequivalence of Boolean functions by considering their

mth-order derivatives over all distinct m-dimensional subspaces of F2n .

Theorem 1.2.39 ( [56, Theorem 2.1]). For any function f ∈ Bn; let Dk(f) denotes the
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multiset of all k-dimensional derivatives of f . If f, g ∈ Bn are affinely equivalent then so

are Dk(f) and Dk(g). If the nonsingular affine transformation A (operating on Bn) maps

f onto g then it also maps Dk(f) onto Dk(g).

Dillon proved the following corollary to Theorem 1.2.39.

Corollary 1.2.40. If P is any affine invariant for Bn then f −→ P{Dn(f)} is also an

affine invariant for Bn.

One can solve the affine inequivalent problem partially using the above invariant [109,

111].

1.2.4 Quadratic Boolean functions

Let V be the vector space of dimension n over F2r where r ∈ Z+. A function Q : V → F2r

is said to be a quadratic form [7] on V if

• Q(γx) = γ2Q(x), for all x ∈ V and γ ∈ F2r .

• B(x, y) = Q(0) +Q(x) +Q(y) +Q(x+ y) is bilinear on V .

Let EQ be the kernel of B(x, y), bilinear form of Q. Then EQ is a subspace of V defined by

EQ = {x ∈ V : B(x, y) = 0, for all y ∈ V }.

Suppose f ∈ Bn is a quadratic function. The bilinear form associated with f is defined by

B(x, y) = f(0) + f(x) + f(y) + f(x+ y). The kernel [7,41] of B(x, y) is the subspace of F2n

defined by

Ef = {x ∈ F2n : B(x, y) = 0, for all y ∈ F2n}.

Lemma 1.2.41 ( [7, Proposition 1]). Let V be a vector space over a field Fq of characteristic

2 and Q : V −→ Fq be a quadratic form. Then the dimension of V and the dimension of

the kernel of Q have the same parity.

Lemma 1.2.42 ( [7, Lemma 1]). Let f be any quadratic Boolean function. The kernel, Ef ,

is the subspace of F2n consisting of those a such that the derivative Daf is constant. That

is,

Ef = {a ∈ F2n : Daf = constant }.
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The Walsh–Hadamard spectrum of any quadratic function f ∈ Bn is given below.

Lemma 1.2.43 ( [7, 41]). If f : F2n → F2 is a quadratic Boolean function and B(x, y)

is the quadratic form associated with it then the Walsh–Hadamard Spectrum of f depends

only on the dimension of the kernel of B(x, y). Let the dimension of the kernel of B(x, y)

is dim(Ef ) = s. Then the weight distribution of the Walsh–Hadamard spectrum of f is

Wf (β) Number of β

0 2n − 2n−s

2(n+s)/2 2n−s−1 + (−1)f(0)2(n−s−2)/2

−2(n+s)/2 2n−s−1 − (−1)f(0)2(n−s−2)/2

1.2.5 Reed–Muller Code

In 1954, Muller and Reed introduced Reed–Muller codes. The problem of constructing

Boolean functions in n variables with highest possible rth-order nonlinearity is connected

to the covering radius problem of rth-order Reed–Muller codes. For more details we refer

to [27, 41, 43, 88]. In this section we discuss some basic definitions and properties of Reed–

Muller codes.

Definition 1.2.44. Suppose that F is a finite field and V = Fn is an n dimensional vector

space of F. Any subspace C of V of dimension k is said to be an [n, k]-linear code. Here n

and k are said to be the length and the dimension of the code, respectively.

Definition 1.2.45. The covering radius of code C of V is the smallest integer r such that

for each vector x ∈ V is covered by at least one codeword of C, that is,

ρ = max
x∈V

d(x,C) = max
x∈V

min
c∈C

d(x, c).

In other words the covering radius is the distance between the code and maximum

distance away vectors in the space.

Definition 1.2.46. Let 0 ≤ r ≤ n. The set of all Boolean functions in n variables having

algebraic degree at most r is called rth-order Reed–Muller code of length 2n, and denoted by

R(r, n).
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The Reed–Muller code of order r, R(r, n), is a linear code of length m = 2n with

dimension t =
∑r

j=0

(
n
j

)
. Reed–Muller code R(r, n) satisfies the following properties.

• R(r − 1, n) ⊂ R(r, n), i.e., the Reed–Muller codes are nested.

• Minimum distance of R(r, n) is 2n−r.

• For 0 ≤ r ≤ n− 1, R(n− r − 1, n) is the dual of R(r, n).

• Reed–Muller code is an extended cyclic code.

Example 1.2.47. Let f ∈ B5. Then all possible linear combinations of monomials in 5

variables namely x1, x2, x3, x4, x5 having degree at most 1 is R(1, 5). Thus, the cardinality

of R(1, 5) is 26 and any codeword R(1, 5) can be expressed as

b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5, for all bi ∈ F2, i = 0, 1, . . . , 5.

The rth-order nonlinearity of Boolean function f ∈ Bn can be defined as

nlr(f) = min
g∈R(r,n)

d(f, g) = 2n−1 − 1

2
max

g∈R(r,n)
|
∑
x∈Fn2

(−1)f(x)+g(x)|.

Thus, the covering radius of R(r, n) can be obtained from rth-order nonlinearity of f ∈ Bn
as

ρr,n = max
f∈Bn

min
g∈R(r,n)

d(f, g) = max
f∈Bn

nlr(f).

The bounds of covering radius for different Reed–Muller codes [43, page 252] are given in

Table 1.3. For s and t we refer to [147,148].

1.2.6 Bent functions

Boolean functions used as cryptographic primitives must resist affine approximation, which

is achieved by having high nonlinearity. The bent functions defined on an even number of

variables have the maximum nonlinearity, that is, they offer maximum resistance to affine

approximations. In this section we always consider n = 2t.

Definition 1.2.48. A Boolean function f ∈ Bn is said to be bent if its Walsh–Hadamard

spectrum consists of values of the set {−2n/2, 2n/2}, that is, |Wf (a)| = 2n/2, for all a ∈ Fn2 .
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r\m 1 2 3 4 5 6 7 8 9

1 0 1 2 6 12 28 56 120 240− 244
2 0 1 2 6 18i 40s − 44t 84s − 100 171c − 220
3 0 1 2 8 20s − 23t 43c − 67 111c − 167
4 0 1 2 8 22s − 31 58c − 98
5 0 1 2 10 23c − 41
6 0 1 2 10
7 0 1 2
8 0 1
9 0

Table 1.3: Bounds on the covering radius of Reed–Muller codes

From Equation (1.2.6), f ∈ Bn is said to be bent if and only if its nonlinearity is

maximum, that is,

nl(f) = 2n−1 − 2
n
2
−1.

Example 1.2.49. Let f be a Boolean function in 4 variables of the form f(x1, x2, x3, x4) =

1 + x1 + x2 + x1x3 + x2x4 + x3x4. Then f is a bent function as |Wf (a)| = 4, for all a ∈ F4
2

and nl(f) = 6.

An equivalent definition by using their autocorrelation spectra [54] is given below.

Definition 1.2.50. An n variables Boolean function f is said to be bent if and only if for

any nonzero α ∈ Fn2 ,

Cf (α) =
∑
x∈Fn2

(−1)f(x)+f(x+α) = 0.

Definition 1.2.51. A class of bent functions is complete if it is globally invariant under

the action of the general affine group and under the addition of affine functions.

Using fast Walsh–Hadamard transform one can efficiently compute it up to certain vari-

ables as the complexity of fast Walsh–Hadamard transform [51] is O(n2n). The properties

of bent functions are listed below.

• Let f be a bent function in n variables. Then n must be an even positive integer.

• For n = 2, the degree of bent function is 2 and for n ≥ 4, the degree of bent functions

is at most n
2

[54, Theorem 4.5].
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• Bent functions is invariant under the action of general affine group and addition of

affine functions, that is, if f(x) = h(xA+b), for all x ∈ Fn2 where (A, b) ∈ AGL(n,F2)

then f is bent if and only if h is bent. Also if f = h + g where g is an n variables

affine function then f is bent if and only if h is bent.

• Let f ∈ Bn be a bent function. Then for all α ∈ Fn2 ,

Wf (α) = 2
n
2 (−1)f̃(α)

where f̃ is also an n variables bent function, is called dual of f .

• The Hamming weight of a bent function f ∈ Bn is 2n−1 ± 2
n
2
−1. Therefore, bent

functions are not balanced.

• Let f ∈ Bn. Then f−1(0) = {x ∈ F2n : f(x) = 0} or f−1(1) = {x ∈ F2n : f(x) = 1} is

a Hadamard difference set in Fn2 .

• Let f ∈ Bn and g ∈ Bm be bent function, and h ∈ Bn+m such that h(x, y) =

f(x) + g(y), for all x ∈ Fn2 and y ∈ Fm2 . Then h is bent.

Compared to the set of Boolean functions, bent functions set are small. Langevin and

Leander [93] enumerated all the 8 variables bent functions and classified then under affine

equivalence. The number of 8 variables bent functions is

99270589265934370305785861242880

which is approximately equal to 2106.3. The number of n, 2 ≤ n ≤ 8, variables bent function

is given in the Table 1.4. Roughly, the number of bent functions in n variables is bounded

above by

21+(n1)+(n2)+...+( n
n/2) = 22n−1−1/2( n

n/2).

Let rn be the number of bent function in n variables.

Constructions of bent functions

In this section we focus on primary and some secondary constructions of bent functions.

For more details one may refer to [120,135]. Rothaus studied these functions in the 1960’s,
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n 2 4 6 8

rn 8 896 5425430528 99270589265934370305785861242880
≈ 232.3 2106.3

Table 1.4: Numbers of bent functions in n variables, 2 ≤ n ≤ 8

although his paper was not published until ten years later [86]. In print, bent functions

appear in a preprint authored by Dillon in 1972, and in his Ph.D. thesis [56]. The class

of bent functions found by Dillon is known as Partial Spread (PS) class, and a subclass

known as PSap allows an explicit mathematical description. The Maiorana–McFarland

(M) class introduced in [102] and further investigated in [56] is the other generic class of

bent functions discovered around the same time. Dobbertin [49] proposed another set of

bent functions which includes both M and PS. These three classes are also referred to

as the primary constructions, whereas the classes C and D were introduced by Carlet [17]

belong to secondary constructions obtained by modifying the class M.

Rothaus Construction:

In [86], Rothaus identified two large general classes of bent functions on Fn2 . Let x =

(x1, x2, . . . , xt), y = (y1, y2, . . . , yt) ∈ Fn2 . Then

f(x1, y1, x2, y2, . . . , xt, yt) =
t∑
i=1

xiyi + p(x)

is a bent function where p(x) is an arbitrary polynomial on Ft2. Rothaus constructed another

type of bent functions of the form

g(x1, x2, . . . , xt, xt+1, yt+1) = f1(x)f2(x) + f2(x)f3(x) + f1(x)f3(x) + [f1(x) + f2(x)]yt+1

+ [f1(x) + f3(x)]xt+1 + xt+1yt+1

where f1, f2 and f3 are bent functions such that f1 + f2 + f3 is bent. The dual of f , f̃ , is

defined as

f̃(x1, y1, x2, y2, . . . , xt, yt) =
t∑
i=1

xiyi + p(y).

Maiorana and McFraland Construction:

Let π : Ft2 → Ft2 be a permutation polynomial. Rothaus [86] proved that any function
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of the form

f : Ft2 × Ft2 → F2

f(x, y) = x · π(y) + g(y), for all (x, y) ∈ Ft2 × Ft2,
(1.2.9)

is bent where g ∈ Bt. These bent functions are said to be Maiorana–McFarland bent

functions [55,102], and their set is denoted by M. The dual of f , f̃ , is defined as

f̃(x, y) = y · π−1(x) + g(π−1(x)), for all (x, y) ∈ Ft2 × Ft2

where π−1 is inverse of π and f is defined as in Equation (1.2.9). For f ∈M with g = 0, the

algebraic degree is deg(f) = deg(π) + 1. Maiorana–McFarland construction provides a nat-

ural connection between permutations over finite fields and functions in M. Permutations

having algebraic degree 1 are said to be linearized permutations. Each linearized permuta-

tion on Ft2 generates a quadratic function in M. The complete Maiorana–McFarland class

is denoted by M∗. The completed class of M contains all the quadratic bent functions.

Proposition 1.2.52 ( [55]). A bent function f ∈ Bn belongs to the completed class of

Maiorana–MaFarland then there exists an n
2

dimensional subspace U in Fn2 such that all

second derivatives are vanish, i.e., for any nonzero u, v ∈ U with u 6= v

Du,vf(x, y) = f(x) + f(x+ u) + f(x+ v) + f(x+ u+ v) = 0.

Dillon Construction:

Dillon constructed an important class of bent functions referred to as the partial spreads

class. It is known that there are functions in the partial spreads class which are not M.

The partial Spreads class of bent functions is denoted by PS. PS is divided by two disjoint

classes, so-called PS+ and PS−. We first define the meaning of spreads and partial spreads.

In this section we takes n = 2t, t ∈ Z+.

Definition 1.2.53. Let {E1, E2, . . . , Er} be the set of subspace of Fn2 over F2. The set

{E1, E2, . . . , Er} is said to be a partial spread of F n
2 if

• Ei ∩ Ej = {0}, for all i 6= j,

• dim(Ei) = t, for all i ∈ {1, 2, . . . , r},
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i.e., the set of pairwise supplementary t-dimensional subspace of Fn2 . If ∪ri=1Ei = Fn2 then

it is called a spread of Fn2 over F2.

A Boolean function f ∈ Bn belongs to PS− class if f(0) = 0 and its support along with

0 is the union of 2t−1 elements of a partial spread of Fn2 , that is,

supp(f) ∪ {0} = ∪2t−1

i=1 Ei (1.2.10)

where {E1, E2, . . . , E2t−1} is a partial spread. Dillon proved that the Boolean function

defined as in Equation (1.2.10) is a bent function with algebraic degree t. Dillon constructed

another class of bent function so-called PSap, a subclass of PS−. Let Fn2 be identified as

Ft2 × Ft2. A Boolean function f ∈ Bn on Ft2 × Ft2 belongs to PSap if for all x, y ∈ Ft2

f(x, y) = g

(
x

y

)

where g ∈ Bn is Balanced such that g(0) = 0 with convention that x
0

= 0. The dual of

f ∈ PSap is f̃(x, y) = g( y
x
).

A Boolean function f ∈ Bn belongs to PS+ class if f(0) = 1 and its support is the

union of 2t−1 + 1 elements of partial spreads of Fn2 , that is,

supp(f) = ∪2t−1+1
i=1 Ei (1.2.11)

where {E1, E2, . . . , E2t−1+1} is a partial spread. Dillon also proved that the Boolean function

defined as in Equation (1.2.11) is a bent function with algebraic degree t. For, more details

and an new construction we refer to [14,23,24,94,119,150].

Dobbertin Construction:

Let g ∈ Bt be balanced and η, ψ : Ft2 → Ft2 such that η be one-to-one and ψ be arbitrary.

Suppose f is a Boolean function on Ft2 × Ft2 of the form

fg,η,ψ(x, η(y)) =

 g(x+ψ(y)
y

), if y 6= 0;

0, if otherwise.

Dobbertin [49] proved that fg,η,ψ ia a bent function which includes bothM and PS. Dob-

bertin also proved that if g is an affine function then the above function fg,η,ψ is belong to
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M, and fg,φFt2 ,0
is belong to Dillon’s classes where φFt2 is the identity on Ft2.

Carlet Construction:

Two new classes of bent functions were introduced by Carlet [17, 18]. Let E be a

subspace of Ft2. The class D consists of bent functions of the form

f(x, y) = x · π(y) + φE1(x)φE2(y) (1.2.12)

with π a permutation on Fn2 and E1, E2 two linear subspaces of Ft2 such that π(E2) = E⊥1

(φE is the indicator function of the space E defined as in Definition 1.2.15).

An explicit subclass of D, denoted by D0, contains all elements of the form

x · π(y) + δ0(x)

where δ0(x) is the Dirac symbol, which is 1 if x = 0, and 0, otherwise. It has been shown

that D0 strictly includes the M and PS classes [17, 49].

The second Carlet class C of bent functions (one we will concentrate on) contains all

functions of the form

f(x, y) = x · π(y) + φL⊥(x) (1.2.13)

where L is any linear subspace of Ft2 and π is any permutation on Ft2 such that φ(a+L) is

a flat (affine subspace), for all a ∈ Ft2 where φ := π−1. If L = Ft2 then the function belongs

to C is same as in D0. Thus, the class C contains D0, and so is not included in classes M

and PS.

1.2.7 Generalized Boolean functions

Let Fp, Fpn , and Fnp be the prime field of characteristic p, the extension field of degree n

over Fp and the set of all n-tuples of elements of Fp, respectively. For any x ∈ Fpn can be

written as

x = c1x1 + c2x2 + . . .+ cnxn

where xi ∈ Fp, i = 1, 2, . . . , n and c = {c1, c2, . . . , cn} is a basis of Fpn over Fp. A function

f : Fnp → Fp (or, equivalently f : Fpn → Fp) is called a generalized Boolean function in n

variables whose set is denoted by Bpn. For p = 2, we obtain the classical Boolean functions
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whose set is denoted by Bn. Any f ∈ Bpn can be uniquely expressed [151] as a polynomial

in Fp[x1, . . . , xn]/〈xp1 − x, . . . , xpn − x〉 of the form

f(x1, x2, . . . , xn) =
∑

a=(a1,...,an)∈Fnp

µa

(
n∏
i=1

xaii

)

where µa ∈ Fp and x = (x1, . . . , xn) ∈ Fnp . The algebraic degree of f , denoted by deg(f), is

defined as

deg(f) = max
a∈Fnp

{
n∑
i=1

ai : µa 6= 0

}
where a = (a1, . . . , an) ∈ Fnp , the sum is over Z. For details we refer to [4, 82, 83]. Let

ζ = e
2πı
p be the complex pth root of unity where ı2 = −1. The generalized Walsh–Hadamard

transform of f ∈ Bpn at a ∈ Fnp is defined by

Hf (a) =
∑
x∈Fnp

ζf(x)−a·x

where a · x denotes an inner product on Fnp . According to [98], a function f ∈ Bpn is called

a generalized bent function if

|Hf (a)| = p
n
2 , for all a ∈ Fnp .

Equivalently, a function f ∈ Bpn is said to be generalized bent function if for any nonzero

a ∈ Fnp , ∑
x∈Fnp

ζf(x+a)−f(x) = 0.

A bent function f is said to be regular if for any a ∈ Fnp , Hf (a) = p
n
2 ζ f̃(a) where f̃ ∈ Bpn is

called dual of f .

The group of all invertible Fp-linear transformations on Fnp is denoted by GL(n,Fp).

Two generalized Boolean functions f, g ∈ Bpn are said to be affine equivalent if and only if

there exist A ∈ GL(n,Fp) and b ∈ Fnp such that

g(x) = f(xA+ b), for all x ∈ Fnp .

The affine general linear group AGL(n,Fp) consists of all the elements of the form (A, b) ∈



Chapter 1: Introduction 31

GL(n,Fp) n Fnp . Two generalized Boolean functions f, g ∈ Bpn are said to be equivalent if

and only if there exist (A, b) ∈ AGL(n,Fp), u ∈ Fnp and ε ∈ Fp such that

g(x) = f(xA+ b) + u · x+ ε, for all x ∈ Fnp .

The derivative of f ∈ Bpn with respect to a ∈ Fnp , Daf , is the function Daf : Fnp → Fp
defined as

Daf(x) = f(x+ a)− f(x), for all x ∈ Fnp .

The kth-order derivative of f ∈ Bpn with respect to u1, u2, . . . , uk ∈ Fnp is defined by

Du1,u2,...,ukf(x) = Du1Du2 . . . Dukf(x), for all x ∈ Fnp .

1.3 Group ring

Let A be a group algebra of Fnp over Fp. An element x ∈ A can be written as

x =
∑
g∈Fnp

xgX
g where xg ∈ Fp.

For any x, y ∈ A and c ∈ Fp, addition and scalar multiplication can be defined as

x+ y =
∑
g∈Fnp

xgX
g +

∑
g∈Fnp

ygX
g =

∑
g∈Fnp

zgX
g where zg = xg + yg ∈ Fp,

and cx = c
∑
g∈Fnp

xgX
g =

∑
g∈Fnp

(cxg)X
g =

∑
g∈Fnp

wgX
g where wg = cxg ∈ Fp.

Using the polynomial multiplication XgXh = Xg+h, the multiplication in the group algebra

A is defined by

xy =
∑
g∈Fnp

xgX
g
∑
h∈Fnp

yhX
h =

∑
`∈Fnp

∑
g∈Fnp

xgy`−g

X`.
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Note that X0 is the multiplicative unit of A as X0a = aX0 = a, for all a ∈ A. Consider

the mapping ψ : A −→ Fp of the form

x =
∑
g∈Fnp

xgX
g 7−→

∑
gFnp

xg, for all x ∈ A.

Then the set

P = {x ∈ A : ψ(x) = 0} = {x ∈ A :
∑
g∈Fnp

xg = 0} (1.3.1)

is the unique maximal ideal of A, and

A = P0 ⊃ P ⊃ P2 ⊃ . . . ⊃ Pn(p−1) = Fp

where P iPj = P i+j and Pn(p−1)+1 = {0}. For more details we refer to [1, 39].

A generalized Boolean function f ∈ Bpn can be identified with the codeword Ωf =∑
g∈Fnp

f(g)Xg of length pn consisting of all values of f(x), x ∈ Fnp . The support of f ∈ Bpn,

denoted by supp(Ωf ), is defined by

supp(Ωf ) = {x ∈ Fnp : f(x) 6= 0}.

The generalized Reed–Muller code, Rp(r, n), is the set of codewords Ωf where f ∈ Bpn
with deg(f) ≤ r, 0 ≤ r ≤ n(p − 1). Let 1 ∈ Fnp be a vector contains all 1’s. Then

Rp(0, n) = 1Fp = 〈1〉 and Rp(n(p − 1), n) = Fpnp . The dimension of Rp(r, n), denoted by

dim(Rp(r, n)), is defined as

dim(Rp(r, n)) =
r∑
i=0

n∑
j=0

(−1)j
(
n

j

)(
i− jp+ n− 1

i− jp

)
,

for all 0 ≤ r ≤ n(p− 1). For example, dim(Rp(1, n)) is equal to 1 + n. For further details

we refer to [38,92].

1.4 Overview of the thesis

Chapter wise brief description of this thesis is given below:

Chapter 1. In this chapter, we give the introductory matter, some basic definitions,
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notations, representation of Boolean functions, Walsh–Hadamard transform, cryptographic

significant properties, Reed–Muller code and generalized Boolean functions. We further

discuss affine equivalence and derivatives of Boolean functions. Also we give a literature

survey on construction of bent Boolean function and the existence results on nonlinearity

profile of the Boolean functions. We provide some basic on finite fields and group ring

which is useful to our work.

Chapter 2. In this chapter, we construct two subclasses of cubic bent functions in M, fi

and g, of the form

1. fi(x, y) = Trt1(xy2i+1 + αxy2t−i+1)

2. g(x, y) = Trt1(xyTrtl(y) + βxy2),

for all (x, y) ∈ F2t × F2t by using two quadratic permutations which were introduced by

Blockhuis et al. [2]. We show that the functions in each of these classes have no affine

derivative. We prove that the functions in the different subclasses are affine inequivalent

by considering their second-derivative weight distributions. Thus, we extend the number

of known cubic bent functions in M with no affine derivative.

Chapter 3. The aim of this chapter is to obtain explicit construction of several subclasses

of bent functions in C for the first time. We are able to identify permutations corresponding

to which there are no C class bent functions. We investigate the choice of linear subspaces L

which may potentially give rise to bent functions in C for some specific permutations π and

later we extend the derived conditions for arbitrary π. The analysis uses more general bent

conditions (without requesting that the initial function is in M) given in [17, Theorem].

We consider

f ∗(x, y) = x · π(y) + φL(x, y)

where π(y) = yA is a linear permutation over Fn2 , L = E × Fn2 for some k-dimensional

linear subspace E, for 0 ≤ k ≤ n, and A is an invertible matrix over F2 of size n × n

(that is A ∈ GL(n,F2)). It is shown that f ∗ is always bent regardless the choice of E,

but nevertheless f ∗ is in the completed class M∗. Further, we consider those permutation

polynomials which can be factored (split) into linearized polynomials namely k-linear split

permutation, and look at C type bent functions associated to k-linear split permutations.

The main contribution of this chapter can be summarized as follows:



34 1.4 Overview of the thesis

• A classification of linear subspaces that may potentially give rise to bent functions in

the C class is given.

• A theoretical analysis related to the conditions that a permutation π and a linear

subspace L = E × Fn2 ⊂ F2n
2 satisfy the bent conditions is presented.

• It is shown that for several classes of permutations π there does not exist 2-dimensional

subspace L satisfying the bent conditions. For instance, C class bent functions asso-

ciate to Hou’s permutations [152, Theorem B] and certain trilinear split permutations.

• The existence of 2-dimensional linear subspaces satisfying the bent conditions have

been confirmed for certain classes of bilinear split permutations. Thus, some infinite

classes of bent functions in C have been specified.

Chapter 4. In this chapter, we consider the generalized Boolean functions from Fnp to Fp
where p is an odd prime integer and the set of all n variables generalized Boolean function

is denoted by Bpn. We further characterize the subspace sum concept (depending upon

the derivative) and give many of its properties; in particular, we show that it is an affine

invariant of generalized Boolean functions. First, we define the subspace sum of f ∈ Bpn
with respect to a subspace V of Fnp , SV f , as

SV f(x) =
∑
s∈V

f(x+ s), for all x ∈ Fnp .

We prove that

SV f(x) = DaDa . . . Da︸ ︷︷ ︸
(p−1)−times

f(x), for all x ∈ Fnp

where V = 〈a〉 is an one dimensional subspace of Fnp . We also prove that if f, h ∈ Bpn
are affine equivalent then so are Sk[f ] and Sk[h] where Sk[f ] denotes the multiset of all

subspace sum of f with respect to k-dimensional subspaces of Fnp , and we generalize a

result of Dillon [56]. We derive a necessary condition for generalized Maiorana-McFarland

bent functions.

Chapter 5. In this chapter, we consider m = 2n and construct two new classes of gener-

alized bent functions (so-called Dp, Dp0 and Cp where Dp0 is a subclass of Dp). We observe
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that if f ∈ Dp0 is an m-variable generalized Boolean function then m ≡ 0 (mod 4) and

f(x, y) = x · π(y) + εφE0(x, y) = x · π(y) + ε
n∏
i=1

p−1∏
j=1

(xi − j)

where (x, y) ∈ Fnp ×Fnp and E0 = {0}×Fnp , is a regular generalized bent function. We prove

that Mp and Dp0 ⊆ Dp are overlapping classes, but in general not included in one another.

For construction of Cp bent functions, it is needed to consider a permutation polynomial π

on Fnp such that π−1(a+ L) is a flat for any a ∈ Fnp where L is a linear subspace of Fnp . We

investigate these conditions for many classes of permutations and suitable linear subspaces

of the dimension less than and equal to 2 for p = 3.

Chapter 6. The main focus of this chapter is to compute the weights of their second

derivatives along with a lower bound of their second-order nonlinearities of cubic Maiorana–

McFarland bent-negabent functions constructed by using Feistel functions. We take m = 4t,

t ≥ 3 and construct a class of cubic Maiorana–McFarland bent-negabent functions by using

Feistel functions of the form

fi((x1, x2), (y1, y2)) = Trt1(x1y2 + x2y1 + x2y
2i+1
2 ),

for all xj, yj ∈ F2t , j = 1, 2 where gcd(2i + 1, 2t − 1) = 1, 1 ≤ i < t. We calculate that

the number of distinct 2-dimensional subspaces of F4
2t corresponding to constant second-

derivatives of fi is

(2t − 1)(25t+e−1(2e + 1) + (2t + 1)(24t−1 − 22t − 1))

3
,

which depends on e = gcd(i, t). Thus, by using an invariant proposed by Dillon [56], we

identify subclasses of inequivalent bent functions within this class. Further, we prove that

the second-order nonlinearity of fi, nl2(fi), satisfies the following inequality:

nl2(f) ≥ 2m−1 − 1

2

√
27t+e − 2

11t+e
2 + 26t(2

t+e
2 − 2e + 1).

Chapter 7. The purpose of this chapter is to locate some functions with low Gowers U3

norms, since this is also a measure of resistance to second-order approximation of Boolean
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functions. First, we derive formula to calculate the kth dimensional Gowers norm associated

to a Boolean function from the Fourier transform using derivatives. Further, we prove that

the Gowers U3 norms of a bent and its dual are equal and therefore they provide equal

“resistance” to quadratic approximations. We compute Gowers U3 norms of the character

form of some classes of Maiorana–McFarland bent functions of the form

Fi(x, y) = Trn1 (yx2i+1),

for all x, y ∈ F2n . In particular, we explicitly determine the value of the Gowers U3 norm

of the character form of Maiorana–McFarland bent functions obtained by using APN per-

mutations of the form

F (x, y) = Trn1 (φ(x) · y) + h(x),

for all x, y ∈ F2n where h ∈ Bn and φ is an APN permutation on F2n . We further prove

that this value is always smaller than the Gowers U3 norms of Maiorana–McFarland bent

functions obtained by using differentially δ-uniform permutations, for all δ ≥ 4. Also we

compute the Gowers U3 norm of the character form of a class of cubic monomial Boolean

functions of the form

Fr(x) = Trn1 (λx22r+2r+1),

for all x ∈ F23r and λ ∈ F∗2r , and show that for n = 6 its value is less than that obtained

for Maiorana–McFarland bent function constructed by using APN permutations. We then

computationally show that the corresponding function has higher second-order nonlinearity

that Maiaorana–McFarland bent functions. In fact the 6-variable function identified by us

has the maximum possible second-order nonlinearity.

Chapter 8. This chapter contains conclusion of the thesis and some open problems for

future work.



Chapter 2

Affine inequivalence of cubic

Maiorana–McFarland bent functions

with no affine derivative

2.1 Introduction

A class of cubic Maiorana–McFarland (M) bent functions having no affine derivatives

was constructed by Canteaut and Charpin [5], thereby solving an open problem posed by

Hou [149]. In [91], Charpin et al. derived a relation between polynomials with linear

structures and Maiorana–McFarland functions with an affine derivative. The experimental

evidences [110, Section 3] suggest that cubic bent functions having no affine derivatives

might be possessing higher second-order nonlinearity than the rest. Derivatives have been

used for this purpose by Carlet [17] and Canteaut and Charpin [5]. Second derivatives have

been used by Gangopadhyay [111] extensively to demonstrate affine inequivalence between

cubic bent functions in M which are in many ways similar to each other. The technique

can be summarized as follows:

1. For f ∈ Bn, construct the set

Sf = {wt(DV f) : V varies over all distinct two dimensional subspaces of Fn2}.

2. Construct the frequency distribution of the weights in Sf . We refer to Sf as the

37
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second-derivative weight distribution of f .

3. For any two f, g ∈ Bn, if the second-derivative weight distributions of f and g are

different then f and g are affine inequivalent.

In this chapter our goal is not only to identify some more classes of cubic bent functions in

M having no affine derivatives but also to prove affine inequivalence between the classes of

functions so obtained. We use Theorem 2.2.2 almost exclusively for that purpose.

2.2 Preliminary results

Recall the following well known facts from elementary number theory, which we use fre-

quently in this chapter. Suppose that ax ≡ b (mod n) where a, b, n ∈ Z and d = gcd(a, n).

Then

1. if d does not divide b, the congruence has no solution;

2. if d divides b then all solutions of the congruence are x0 + k n
d
, 0 ≤ k < d where x0 is

the unique solution to (a
d
)x ≡ ( b

d
) (mod n

d
).

Let t be a positive integer and gcd(t, i) = e. Then [105, page 2]

gcd(22i − 1, 2t − 1) = 2gcd(2i,t) − 1 =

 2e − 1, if t
e

is odd;

22e − 1, if t
e

is even.

Theorem 2.2.1 ( [105, Theorem 3.1]). Let ζ be a primitive element of F2t and gcd(t, i) = e.

For any a ∈ F∗2t, consider the equation a2ix22i
+ ax = 0 over F2t. Then:

1. If t
e

is odd then there are 2e solutions to this equation for any choice of a ∈ F∗2t.

2. If t
e

is even then there are two possible cases:

(a) if a = ζs(2
e+1) for some s then there are 22e solutions to the equation.

(b) if a 6= ζs(2
e+1) for any s then there exists one solution only, namely x = 0.

Gangopadhyay [111] identified subclasses of inequivalent bent functions within this class,

by using an invariant proposed by Dillon [56].
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Theorem 2.2.2 ( [111, Theorem 4]). Let n = 2t. If fi(x, y) = Trt1(xy2i+1) where x, y ∈ F2t,

n ≥ 6, i ∈ Z such that 1 ≤ i < t and gcd(2i + 1, 2t − 1) = 1 then the number of constant

functions among DV fi is

(2t − 1)(2t+e−1(2e + 1)− (2t + 1))

3

where gcd(t, i) = e.

Using this result, Gangopadhyay [111, Corollary 5] proved that if gcd(t, i) 6= gcd(t, j)

then fi and fj are not affine equivalent.

2.3 Maiorana–McFarland bent functions

Suppose n = 2t where t ∈ Z+. Any permutation π : F2t → F2t can be represented by a

polynomial π(x) =
∑2t−1

j=0 αjx
j where αj ∈ F2t , for all 0 ≤ j ≤ 2t − 1. The algebraic degree

of π is deg(π) = max{w2(j) : αj 6= 0}. Rothaus [86] proved that any function of the form

f : F2t × F2t → F2

f(x, y) = Trt1(xπ(y)) + g(y), for all (x, y) ∈ F2t × F2t

(2.3.1)

where g ∈ Bt, is bent. These bent functions are said to be Maiorana–McFarland bent

functions and their set is denoted byM. In this chapter we assume g to be identically zero.

For f ∈M with g = 0 the algebraic degree is deg(f) = deg(π) + 1.

Suppose that gcd(t, i) = e with t
e

is an odd positive integer. Let α ∈ F2t such that

α 6= ζm(2e−1) for any m ∈ Z, ζ be any primitive element of F2t . Blokhuis et al. [2] mentioned

that σj, j ∈ {1, 2, 3}, listed below are linearized permutations on F2t .

σ1(x) = x2i + αx,

σ2(x) = x22i

+ α2ix,

σ3(x) = x2i + α2ix.
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Some other linearized polynomials over F2t which will be used in the chapter are as follows:

σ4(y) = y22i

+ α22i

y,

σ5(y) = y22i

+ αy,

σ6(y) = y + α2iy2i ,

σ7(y) = y + α22i

y22i

,

σ8(y) = y + α22i

y2i .

The linearized function σ4(y) = 0 if and only if y = 0 or y22i−1 = α22i
. If y22i−1 = α22i

then(
α

2t−1
2e−1

)22i

= 1, since e | i, which implies α
2t−1
2e−1 = 1. This is a contradiction, since α

2t−1
2e−1 6= 1.

Thus, σ4 is a linearized permutation. Similarly, it can be proved that σj, j = 5, 6, 7, 8 are

linearized permutations.

Each function f(x, y) = Trt1(xσj(y)), 1 ≤ j ≤ 8, is a quadratic bent in M. Moreover,

the following two quadratic permutations were constructed by Blockhuis et al. [2]:

π1(y) = y2i+1 + αy2t−i+1,

π2(y) = y(Trt`(y) + αy)
(2.3.2)

where t = k`, k is an odd integer and ` > 1 is any positive integer (discussed later in

details in Section 2.4 on the parameter α). In this chapter, we use the functions of the form

fj(x, y) = Trt1(xπj(y)), 1 ≤ j ≤ 2 as a source of cubic bent functions and consider their

differential properties.

2.4 Cubic bent functions in M

Two subclasses of cubic bent functions in M are constructed by using the permutations

in Equation (2.3.2). We show that the functions in each of these classes have no affine

derivatives. We prove that the functions in the different subclasses are affine inequivalent

by considering their second-derivative weight distributions. Thus, we extend the number

of known cubic bent functions in M with no affine derivatives.
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2.4.1 Subclass associated to π1(y) = y2
i+1 + αy2

t−i+1

Let n = 2t, t ≥ 3 and ζ be a primitive element of F2t . Blokhuis et al. [2] proved that the

function π1 : F2t → F2t defined by

π1(y) = y2i+1 + αy2t−i+1,

for all y ∈ F2t where i ∈ Z such that 1 ≤ i < t is a permutation if the following conditions

are satisfied:

1. gcd(i, t) = e and t
e

is odd;

2. α 6= ζs(2
e−1) for any s ∈ Z.

Lemma 2.4.1. Under the above conditions, the cubic Maiorana–McFarland bent function

fi : F2t × F2t −→ F2 defined by

fi(x, y) = Trt1(xy2i+1 + αxy2t−i+1), for all (x, y) ∈ F2t × F2t , (2.4.1)

does not possess any affine derivative.

Proof. Let a, b ∈ F2t . Then the first derivative of fi at (a, b) ∈ F2t × F2t is

D(a,b)fi(x, y) = Trt1 (aπ1(y) + (x+ a)Dbπ1(y))

= Trt1

(
a
(
y2i+1 + αy2t−i+1

)
+(x+ a)

(
y2ib+ yb2i + b2i+1 + αy2t−ib+ αyb2t−i + αb2t−i+1

))
,

for all (x, y) ∈ F2t × F2t . If a 6= 0 then D(a,b)fi(x, y) is a quadratic function. If a = 0 and

b 6= 0 then

D(0,b)fi(x, y) = Trt1

(
x
(
y2ib+ yb2i + αy2t−ib+ αyb2t−i) + x(b2i+1 + αb2t−i+1

))
is an affine function if and only if

p(y) = y2ib+ yb2i + αy2t−ib+ αyb2t−i



42 2.4 Cubic bent functions in M

is constant, for all y ∈ F2t . Since p(0) = 0, then (simplifying by y above)

y2i−1 + b2i−1 + αy2t−i−1 + αb2t−i−1 = 0,

for all y ∈ F∗2t . For y = 1, we get b2i−1 + αb2t−i−1 = 1 + α, which renders

y2i−1 + αy2t−i−1 + 1 + α = 0. (2.4.2)

If α = 0 then the solution space of Equation (2.4.2) is F2e . Let α 6= 0. We know that for

y ∈ F2e , y
2i−1 = 1 = y2t−i−1, since e = gcd(i, t). Therefore, Equation (2.4.2) is identically

zero. Otherwise, substituting y = c ∈ F2t\F2e in Equation (2.4.2) c2i−1+αc2t−i−1+1+α = 0,

so α = c+c2
i

c+c2t−i
and then, α2i = (c+c2

i
)2i

(c+c2t−i )2i
= (c + c2i)2i−1, that is,

(
α

2t−1
2e−1

)2i

= 1, since e | i,

which implies α
2t−1
2e−1 = 1. This is a contradiction, since α

2t−1
2e−1 6= 1 (otherwise, the condition

α 6= ζs(2
e−1) would be violated). Thus, Equation (2.4.2) does not hold, for all y ∈ F2t .

Therefore, D(0,b)fi is not an affine function, and our lemma is shown.

Theorem 2.4.2. The number of distinct 2-dimensional subspaces corresponding to constant

second-derivatives of fi is

(2t − 1) (2t+e−1(2e + 1)− (2t + 1))

3

where fi is defined as in Equation (2.4.1).

Proof. Let V = 〈(a, b), (c, d)〉 be any 2-dimensional subspace of F2t×F2t . The second-order

derivative of fi is

DV fi(x, y) = fi(x, y) + fi(x+ a, y + b) + fi(x+ c, y + d) + fi(x+ a+ c, y + b+ d)

= Trt1((ad+ bc)y2i + (ad2i + cb2i)y + α(ad+ cb)y2t−i + α(ad2t−i + cb2t−i)y

+ γx+ (ad2i+1 + cb2i+1) + α(ad2t−i+1 + cb2t−i+1) + (a+ c)γ)

where γ = (bd2i + b2id) + α(bd2t−i + b2t−id).

Case 1: We first assume b = 0 and d = 0. Then DV fi(x, y) = 0, for all (x, y) ∈ F2t × F2t .

Thus, with respect to any 2-dimensional subspace of F2t × {0} the second-order derivative

of fi is 0. Therefore, the number of distinct 2-dimensional subspaces such that DV fi is

constant, is equal to (2t−1)(2t−1−1)
3

.
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Case 2: Let b = 0 but d 6= 0. Then

DV fi(x, y) = Trt1

(
(ad)y2i + (ad2i)y + α(ad)y2t−i + α(ad2t−i)y + (ad2i+1) + α(ad2t−i+1)

)
= Trt1

(
((ad)2t−i + ad2i + (αad)2i + αad2t−i)y

)
+ Trt1

(
ad2i+1 + αad2t−i+1

)
.

Thus, DV fi(x, y) is constant if and only if (ad)2t−i + ad2i + (αad)2i + αad2t−i = 0, and so,

0 = ((ad)2t−i + ad2i + (αad)2i + αad2t−i)2i

= ad+ a2id22i

+ (αad)22i

+ (αa)2id

= (a2i + (αa)22i

)d22i

+ (a+ (αa)2i)d,

which can be written as h2id22i
+ hd = 0 where h = a + (αa)2i . Thus, h 6= 0 as a 6= 0.

Then by Theorem 2.2.1, the above equation has 2e − 1 nonzero solutions for d in F2t .

Therefore, for any nonzero a ∈ F2t , it is possible to choose d in 2e − 1 ways, a can be

chosen in 2t − 1 ways and c in 2t ways. Since the subspace generated by {(a, 0), (c, d)}

is equal to the subspace generated by {(a, 0), (a + c, d)}. Therefore the total number of

distinct 2-dimensional subspaces such that the second derivative of fi is constant, is equal

to (2t − 1)2t−1(2e − 1).

Case 3: Let b 6= 0 and d 6= 0.

Subcase (i): Let b = d. Then the subspace generated by {(a, b), (c, d)} is equal to the

subspace generated by {(a + c, b + d), (c, d)} = {(a + c, 0), (c, d)}, which is the same as in

the previous case.

Subcase (ii): Let b 6= d. Then DV fi(x, y) is constant if and only if

Trt1

(
(ad+ bc)y2i + (ad2i + cb2i)y + α(ad+ cb)y2t−i + α(ad2t−i + cb2t−i)y

)
= 0 (2.4.3)

and

γ = 0. (2.4.4)

From Equation (2.4.4), we have b2i−1 + αb2t−i−1 = d2i−1 + αd2t−i−1, since b 6= 0 and d 6= 0.
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Again, from Equation (2.4.4),

0 = γ = γ2i = b2id22i

+ b22i

d2i + α2i(b2id+ bd2i) = (bd2i + b2id)2i + α2i(b2id+ bd2i).

Let z = bd2i + b2id. Then the above equation can be written as z2i + α2iz = 0, which has

the only solution z = 0, that is,

b2id+ bd2i = 0⇔
(
d

b

)2i−1

= 1, as b 6= 0 and d 6= 0,

and so,
d

b
∈ F∗2e , as gcd(t, i) = e.

Since b 6= d, for any nonzero b, there exist a nonzero λ ∈ F2e with λ 6= 1 such that

d = λb. Thus, d can be chosen in 2e − 2 ways and b in 2t − 1 ways.

Further, from Equation (2.4.3), we have

Trt1

(
(ad+ bc)y2i + α(ad+ cb)y2t−i + y

(
(ad2i + cb2i) + α(ad2t−i + cb2t−i)

))
= 0,

⇔ Trt1

(
(ad+ bc)y2i + α(ad+ cb)y2t−i + y(ad+ bc)(b2i−1 + αb2t−i−1)

)
= 0,

⇔ Trt1

((
(ad+ bc)2t−i + (α(ad+ cb))2i + (ad+ bc)(b2i−1 + αb2t−i−1)

)
y
)

= 0,

for all y ∈ F2t if and only if the following (equivalent) statements hold

(ad+ bc)2t−i + (α(ad+ cb))2i + (ad+ bc)(b2i−1 + αb2t−i−1) = 0,

⇔ b2t−i(aλ+ c)2t−i + b2i(α(aλ+ c))2i + (aλ+ c)(b2i + αb2t−i) = 0,

⇔ b2t−iw2t−i + b2i(αw)2i + w(b2i + αb2t−i) = 0 where w = aλ+ c,

⇔ (b2t−iw2t−i + b2i(αw)2i + w(b2i + αb2t−i))2i = 0,

⇔ bw + (αb)22i

w22i

+ (b22i

+ α2ib)w2i = 0,

⇔ w((αb)22i

w22i−1

+ (b22i

+ α2ib)w2i−1 + b) = 0.

Therefore, we infer that either w = 0 or (αb)22i
w22i−1 + (b22i

+ α2ib)w2i−1 + b = 0, which
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can be transformed into

(αb)22i

w(2i−1)(2i+1) + (b22i

+ α2ib)w2i−1 + b = 0,

⇔ α22i

b22i

µ2i+1 + b22i

µ+ α2ibµ+ b = 0 where w2i−1 = µ,

⇔ (α2iµ+ 1)2ib22i

µ+ (α2iµ+ 1)b = 0,

⇔ b(α2iµ+ 1)(b22i−1µ(α2iµ+ 1)2i−1 + 1) = 0,

α2iµ+ 1 6= 0, since the only solution of α2iw2i + w = 0 is w = 0 due to σ6(y),

⇔ b22i−1µ(α2iµ+ 1)2i−1 + 1 = 0, as b 6= 0 and α2iµ+ 1 6= 0,

⇔ b(2i+1)(2i−1)w2i−1(α2iw2i−1 + 1)2i−1 + 1 = 0,

⇔ (b2i+1(α2iw2i + w))2i−1 = 1,

⇔ b2i+1(α2iw2i + w) ∈ F∗2i ,

⇔ b2i+1(α2iw2i + w) ∈ F∗2e , as gcd(i, t) = e,

and thus

α2iw2i + w =
λ
′

b2i+1
, as b 6= 0 and λ

′ ∈ F2e . (2.4.5)

Since the homogeneous part of the above equation is a linear equation which has a unique

solution w = 0, then Equation (2.4.5) has a unique solution in F2t for each λ
′ ∈ F2e .

Thus, w can be chosen in 2e ways (including w = 0). For fixed a and b, c can be chosen

in 2e ways. Therefore, a can be chosen in 2t ways, b in 2t − 1 ways, d in 2e − 2 ways

and c in 2e ways. Each 2-dimensional subspace generated by a pair of vectors (a, b) and

(c, d) satisfying the above conditions, contains altogether 6 distinct bases satisfying these

conditions. Therefore, the total number of distinct two dimensional subspaces with bases

of this type is 2t+e(2t−1)(2e−2)
6

. Adding the counts from the above three cases we obtain the

total count (2t−1)(2t+e−1(2e+1)−(2t+1))
3

, and the theorem is shown.

Remark 2.4.3. If α = 0 then the cubic Maiorana–McFarland bent function defined as

in Equation (2.4.1) is fi(x, y) = Trt1(xy2i+1), for all (x, y) ∈ F2t × F2t. From Theo-

rem 2.2.2, we have the number of constant functions among the second-order derivative

of fi is (2t−1)(2t+e−1(2e+1)−(2t+1))
3

.

In Theorem 2.4.2, we proved that the number of distinct 2-dimensional subspaces cor-

responding to constant second-derivatives of fi depends on e = gcd(i, t). This immediately



46 2.4 Cubic bent functions in M

yields:

Corollary 2.4.4. If gcd(i, t) 6= gcd(j, t) then fi and fj are not equivalent where fi and fj

are defined as in Equation (2.4.1).

2.4.2 The subclass associated to π2(y) = y(Trt`(y) + αy)

We next consider a class of permutation polynomials constructed by Blokhuis [2] and re-

ferred to by Laigle-Chapuy [154].

Theorem 2.4.5 ( [2,154]). Let t = k` where k be an odd and ` > 1 be any positive integer.

Then the following polynomial is a bilinear permutation over F2t of the form

π(x) = x(Trt`(x) + αx)

where α ∈ F2` \ F2 and Trt`(x) =
k−1∑
i=0

x2`i.

Using this class of permutations we construct a class of cubic Maiorana–McFarland bent

functions. Let t = k` where k be an odd and ` > 1 be any positive integer. A function

g : F2t × F2t −→ F2 defined by

g(x, y) = Trt1
(
xyTrt`(y) + αxy2

)
, for all (x, y) ∈ F2t × F2t , (2.4.6)

is a cubic Maiorana–McFarland bent. We prove that if k > 1 then the functions g belonging

to this class do not have any affine derivative.

Theorem 2.4.6. Let t = k` where k be an odd and ` > 1 be any positive integer. If k > 1

then the cubic Maiorana–McFarland bent function g defined as in Equation (2.4.6) has no

affine derivative.

Proof. Let (a, b) be an any element of F2t × F2t .

D(a,b)g(x, y) = g(x, y) + g(x+ a, y + b)

= Trt1
(
xyTrt`(y) + (x+ a)(y + b)Trt`(y + b) + αxy2 + α(x+ a)(y + b)2

)
= Trt1

(
a
(
yTrt`(y) + αy2

)
+ (x+ a)

(
yTrt`(b) + bTrt`(y) + bTrt`(b) + αb2

))
.
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Let a 6= 0. Since yTrt`(y) + αy2 = 0 ⇔ y = 0 or Trt`(y) = αy ⇔ y = 0. Thus, if a 6= 0,

D(a,b)g is a quadratic function. Let us consider a = 0, so

D(0,b)g(x, y) = Trt1
(
x
(
yTrt`(b) + bTrt`(y)

)
+ x

(
bTrt`(b) + αb2

))
,

which is an affine function if and only if p(y) = yTrt`(b)+ bTrt`(y) is constant, for all y ∈ F2t .

If that is so, since p(0) = 0, then p(y) = yTrt`(b) + bTrt`(y) = 0, for all y, in particular, for

y = 1, we get b+ Trt`(b) = 0, that is,

yTrt`(b) + bTrt`(y) = 0 =⇒ y + Trt`(y) = 0 =⇒ y ∈ F2` .

Thus, p(y) is not a constant function for all y ∈ F2t . Therefore, g does not posses any affine

derivative.

Remark 2.4.7. If k = 1 then t = ` and for any (a, b) ∈ F2t × F2t,

D(a,b)g(x, y) = Trt1((1 + α)(xb2 + a(y + b)2)),

which is an affine function. Therefore, if k = 1 then a function g of the form as in

Equation (2.4.6) has affine derivatives. Thus, if k = 1, fi and g are affine inequivalent

where fi and g are defined as in Equation (2.4.1) and (2.4.6), respectively.

Theorem 2.4.8. Let n = 2t and g be defined as in Equation (2.4.6). The number of

distinct 2-dimensional subspaces corresponding to constant second derivatives of g is

2−3`−1
(
22(2`+t) + 24`+t+1 − 25`+t − 5 · 23`+2t + 25`+2t − 22(`+t) + 23`+1 + 24t

)
3

.

Proof. Let V = 〈(a, b), (c, d)〉 be any 2-dimensional subspace of F2t × F2t .

DV g(x, y) = g(x, y) + g(x+ a, y + b) + g(x+ c, y + d) + g(x+ a+ c, y + b+ d)

= Trt1
(
(ad+ bc)Trt`(y) +

(
aTrt`(d) + cTrt`(b)

)
y +

(
adTrt`(d) + cbTrt`(b)

)
+
(
bTrt`(d) + dTrt`(b)

)
x+ (a+ c)

(
bTrt`(d) + dTrt`(b)

)
+ α(ad2 + cb2)

)
.

Case 1: Let b = 0 and d = 0. Then DV g(x, y) = 0, for all (x, y) ∈ F2t × F2t . Thus, with
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respect to any 2-dimensional subspace of F2t × {0}, the second-order derivative of g is 0.

The number of such distinct 2-dimensional subspaces is (2t−1)(2t−1−1)
3

.

Case 2: Let b = 0 and d 6= 0. Then

DV g(x, y) = Trt1
(
adTrt`(y) + aTrt`(d)y + adTrt`(d) + αad2

)
. (2.4.7)

Since

Trt1
(
adTrt`(y)

)
= Trt1

(
ad
(
y + y2` + y22`

+ . . .+ y2(k−1)`
))

= Trt1

(
y
(
ad+ (ad)2(k−1)`

+ (ad)2(k−2)`

+ . . .+ (ad)2`
))

= Trt1
(
yTrt`(ad)

)
.

From (2.4.7), we have

DV g(x, y) = Trt1
(
(Trt`(ad) + aTrt`(d))y + adTrt`(d) + αad2

)
,

which is constant if and only if

Trt`(ad) + aTrt`(d) = 0. (2.4.8)

Subcase (i): Let a ∈ F2` . Then Equation (2.4.8) is satisfied for all d ∈ F2t . Therefore, d can

be chosen in 2t − 1 ways and a in 2` − 1 ways. Thus, the number of distinct 2-dimensional

subspaces on which the second-derivatives of g are constants is equal to (2`−1)2t−1(2t−1).

Subcase (ii): Let a ∈ F2t \ F2` . Then Trt`(ad) + aTrt`(d) = 0 if and only if Trt`(d) = 0 and

Trt`(ad) = 0. Since both are (k − 1)-dimensional F2`-subspaces of F2t , d can be chosen in

2t−2` ways and a in 2t−2` ways. Thus, the number of such distinct 2-dimensional subspaces

is (2t − 2`)2t−1(2t−2` − 1).

Case 3: Let b 6= 0 and d 6= 0 with b = d. Then the subspace generated by {(a, b), (c, d)} is

equal to the subspace generated by {(a+ c, b+ d), (c, d)} = {(a+ c, 0), (c, d)}, which is the

same as in the previous case.
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Case 4: Let b 6= 0 and d 6= 0 with b 6= d. Then DV g(x, y) is constant if and only if

bTrt`(d) + dTrt`(b) = 0, for all x ∈ F2t (2.4.9)

and we get the implications

Trt1((ad+ bc)Trt`(y) + (aTrt`(d) + cTrt`(b))y) = 0,

⇔ Trt1((Trt`(ad+ bc) + (aTrt`(d) + cTrt`(b)))y) = 0, for all y ∈ F2t ,

⇔ Trt`(ad+ bc) = aTrt`(d) + cTrt`(b).

(2.4.10)

Subcase (i): Let Trt`(b) = 0 and Trt`(d) = 0. The dimension of ker(Trt`) is t − ` where

ker(Trt`) = {x ∈ F2t : Trt`(x) = 0}. Thus, d can be chosen in 2t−`− 1 ways and b in 2t−`− 2

ways. From Equation (2.4.10), we get Trt`(ad + bc) = 0, so Trt`(ad) = Trt`(cb) = λ ∈ F2` .

For fixed b and d and for each λ ∈ F2` , a and c both can be chosen in 2t−` ways. Thus, the

number of such distinct 2-dimensional subspaces is 22t−`(2t−`−1)(2t−`−1−1)
3

.

Subcase (ii): Let Trt`(b) = 0 but Trt`(d) 6= 0 or Trt`(b) 6= 0 but Trt`(d) = 0. Then from

Equation (2.4.9), b = 0 or d = 0, respectively, which is impossible.

Subcase (iii): Let Trt`(b) 6= 0 and Trt`(d) 6= 0. From Equation (2.4.9), we get

d =
Trt`(d)

Trt`(b)
b, that is, d = βb where β =

Trt`(d)

Trt`(b)
∈ F∗2` and β 6= 1.

For each b ∈ F∗2t , d can be chosen in 2` − 2 ways. From Equation (2.4.10), we get

Trt`(b(aβ + c)) = (aβ + c)Trt`(b). (2.4.11)

Equation (2.4.11) has a solution if and only if aβ+ c ∈ F2` , so, c = aβ+ β1 where β1 ∈ F2` .

Then for any fixed a, c can be chosen in 2` ways. Therefore, the number of such distinct

2-dimensional distinct subspaces is 2t+`(2t−1)(2`−1−1)
3

. Adding all the cases we get our count.

In what follows we demonstrate affine inequivalence among the cubic bent functions

constructed above. To do this we use Theorem 2.2.2 proved in [111]. However, it is to

be remembered that the use of the properties of higher-order derivatives to decide affine
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inequivalence between bent function was introduced by Dillon [56] way back in the seventies.

Remark 2.4.9. Let n = 2t be a fixed positive integer. In Theorem 2.4.8, we proved that the

number of distinct 2-dimensional subspaces with respect to which the second-order deriva-

tives of g are constants depends on `. Thus, for any fixed n, for different choices of `

the number of distinct 2-dimensional subspaces to constant second-derivatives of the corre-

sponding functions are different. Therefore, for any fixed n, for different choices of ` the

corresponding cubic Maiorana–McFarland bent functions are affine inequivalent.

Example 2.4.10. Let n = 30. Then t = 15 and possible values of ` are 3, 5, and 15. If

` = 15 then k = 1, and the bent function corresponding to ` = 15 has an affine derivative.

Also from Table 2.1, we get the cubic bent functions corresponding to ` = 3, ` = 5 and

` = 15 are mutually affine inequivalent.

Let n = 2t, and n1(e) and n2(`) be the number of distinct 2-dimensional subspaces

of F2t × F2t on which the second-derivatives of fi and g (defined as in Equation (2.4.1)

and (2.4.6), respectively) are constants. Then

n1(e) =
(2t − 1)(2t+e−1(2e + 1)− (2t + 1))

3
(2.4.12)

and

n2(`) =
(2t − 1)(2t+`(2`−1 − 1) + 2t−1 − 1) + 22t−`(2t−` − 1)(2t−`−1 − 1)

3

+ 2t−1((2` − 1)(2t − 1) + (2t − 2`)(2t−2` − 1)).

(2.4.13)

Lemma 2.4.11. If ` ≥ e then n2(`) > n1(e) where n1(e) and n2(`) are defined as in

Equation (2.4.12) and (2.4.13), respectively.

Proof. We first compute the difference

n2(`)−n1(e) = (2` − 1)2t−1(2t − 1) + (2t − 2`)2t−1(2t−2` − 1)− (2t − 1)2t−1(2e − 1)+

22t−`(2t−` − 1)(2t−`−1 − 1)

3
+

2t+`(2t − 1)(2`−1 − 1)

3
− 2t+e(2t − 1)(2e−1 − 1)

3

= 2t−1(2t − 1)(2` − 2e) +
2t(2t − 1)(2`(2`−1 − 1)− 2e(2e−1 − 1))

3

+ (2t − 2`)2t−1(2t−2` − 1) +
22t−`(2t−` − 1)(2t−`−1 − 1)

3
.
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Case 1: If ` = e then t− 2` > 0 and n2(`)− n1(e) > 0.

Case 2: Let ` > e. Then

2t−1(2t − 1)(2` − 2e) > 0

and

2t(2t − 1)(2`(2`−1 − 1)− 2e(2e−1 − 1))

3
> 0.

If k = 1 then 2t − 2` = 0 and 2t−` − 1 = 0 as t = l. Again if k > 1 then 2t−2` − 1 > 0 as

t− 2` > 0, and so, n2(`)− n1(e) > 0.

Corollary 2.4.12. If ` ≥ e then fi and g are affine inequivalent where fi and g are defined

as in Equation (2.4.1) and (2.4.6), respectively.

We compare n1(e) and n2(`) in Table 2.1, for different values of n.

n = 6 n = 10 n = 12 n = 18
e = 1; ` = 3 e = 1; ` = 5 e = 2; ` = 2 e = 1; ` = 9 e = 3; ` = 3

n1(e) 35 651 12075 174251 3052203
n2(`) 651 174251 53675 11453115051 25287339

n = 20 n = 30
e = 2; ` = 2 e = 1; ` = 3 e = 3; ` = 5 e = 5; ` = 15

3142315 879630115 12526594731 188614879915
2831415467 3775311936432811 6052134955691 192153583564270240

Table 2.1: The number of distinct 2-dimensional subspaces on which the second derivative
of the cubic Maiorana–McFarland bent functions fi and g are constants.
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Chapter 3

An analysis of the C class of bent

functions

3.1 Introduction

In this chapter, we consider the C class bent functions, and derive some existence and

nonexistence results concerning them. The function f ′(x, y) = x · π(y) + φL⊥(x) belongs

to the class C provided the bent property (C) is satisfied, see Section 3.3. Certainly, as

indicated in Remark 3.3.2, one could construct bent functions in the C class, but such

an approach does not give us an explicit construction. The purpose of this chapter is

to fix a permutation (from some known classes of permutations) and investigate these

bent conditions in more detail, and to derive certain (non)existence results concerning the

possibility of selecting appropriate subspaces so that the bent functions in the C class

may be constructed. Most notably, for some classes of permutation polynomials there are

no suitable linear subspaces of certain dimension for which the modification of f ∈ M

would give a bent function f ∗ ∈ C. On the other hand, some explicit conditions and the

existence results could be derived for other classes of permutations. We also extend the

original analysis of bent conditions of Carlet in terms of the Walsh–Hadamard spectra and

show, for instance, that the modification (addition of the indicator of a linear subspace) of

quadratic bent functions inM only result in bent functions within the completed classM.

The main contributions in this chapter can be summarized as follows:

• A classification of linear subspaces that may potentially give rise to bent functions in

53
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the C class is given.

• A theoretical analysis related to the conditions that a permutation π and a linear

subspace L = E × Fn2 ⊂ F2n
2 satisfy the bent conditions is presented.

• It is shown that for several classes of permutations π there does not exist 2-dimensional

subspace L satisfying the bent conditions. For instance, Theorem 3.3.3 refers to

Hou’s permutations [152, Theorem B] and Corollary 3.5.10 to certain k-linear split

permutations.

• The existence of 2-dimensional linear subspaces satisfying the bent conditions have

been confirmed for certain classes of bilinear split permutations, see Theorem 3.5.5,

Theorem 3.5.6 and Theorem 3.5.7. Thus, some infinite classes of bent functions in C

have been specified.

3.2 Preliminaries

Two new classes of bent functions were derived by Carlet in [17] which are defined as in

Equations (1.2.12) and (1.2.13), respectively. Assuming that f is bent (not necessarily of

the form x · π(y)), two equivalent (and more general) conditions for the function f ∗(x) =

f(x) + φL(x) to be bent were given in [17, Theorem].

Theorem 3.2.1 ( [17, Theorem]). Let m = 2n and L = b+ L′ be any flat in Fm2 . Suppose

f ∈ Bm is a bent function. Then the function f ∗(x) = f(x) + φL(x) is bent if and only if

one of the following equivalent conditions is satisfied:

1. for any a ∈ Fm2 \ L′, f(x) + f(x+ a) is balanced on L, that is,

∑
x∈L

(−1)f(x)+f(x+a) = 0, for all a ∈ Fm2 \ L′.

2. for any λ ∈ Fm2 , the restriction of the function f̃(x) + b ·x to the flat λ+L′⊥ is either

constant or balanced.

Also, it was shown in [17, Theorem] that the dimension of L is necessarily larger or equal

to n if one of these conditions is satisfied. The following result due to Payne [121] restated by
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Berger, Canteaut, Charpin and Laigle-Chapuy [125] provides a complete characterization

of such linearized polynomials.

Theorem 3.2.2 ( [125, Theorem 6]). A polynomial in F2n [X] of the form

Q(X) =
n−1∑
i=1

ciX
2i−1, ci ∈ F2n

cannot be a permutation polynomial unless Q(X) = ckX
2k−1 with gcd(k, n) = 1 and ck ∈

F∗2n.

Let Supp(`) = {i : ai 6= 0} where ` ∈ L(n). Then P (X) = `(X)
X

is not a permutation if

any one of the following conditions are satisfied.

1. The cardinality of Supp(`), that is, |Supp(`)| ≥ 3.

2. The coefficient a0 = 0 and |Supp(`)| = 2.

3. The coefficient a0 6= 0 and Supp(`) = {0, k} where gcd(k, n) 6= 1.

Lemma 3.2.3 ( [16, Corollary 1]). Let d, n, s be positive integers satisfying gcd(n, s) = 1

and let

0 6= g(X) =
d∑
i=0

riX
2si ∈ F2n [X].

Then the equation g(X) = 0 has at most 2d solutions in F2n.

3.3 Towards an explicit specification of Carlet’s C-

class

The C class of bent function is defined as in Equation (1.2.13). Let L be any linear subspace

of Fn2 and π be any permutation on Fn2 . For construction of bent functions in C class, it is

needed to consider a permutation polynomial π on Fn2 such that:

(C) φ(a+ L) is a flat (affine subspace), for all a ∈ Fn2 where φ := π−1.

We will often say that (φ, L) has property (C).

Certainly, if L has dimension 1 then π−1(a+L) = φ(a+L) is always a one-dimensional

flat: if L = {0, u} is a one-dimensional subspace then φ(a + L) = {φ(a), φ(a + u)} =
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φ(a) +{0, φ(a) +φ(a+u)} where φ(a) +φ(a+u) 6= 0. So, we will assume from now on that

L has dimension ≥ 2. We will identify the vector space Fn2 with the finite field F2n , and we

denote φ := π−1. We have the following characterization of a subspace L of dimension ≤ 2.

Lemma 3.3.1. Suppose u, v, w, z ∈ F2n. A set L = {u, v, w, z} is a flat of F2n of dimension

≤ 2 if and only if u+ v + w + z = 0.

Proof. If L is a subspace then without loss of generality, we can assume that L = {0, u, v, u+

v}, which satisfies 0+u+v+u+v = 0. Reciprocally, we assume that the set L = {u, v, w, z}

satisfies u+v+w+z = 0, and so, z = u+v+w. It follows that u+L = {0, u+v, u+w, u+

(u+v+w) = v+w}, which is easily seen to be a subspace of dimension 0, if u = v = w(= z),

of dimension 1, if u 6= v = w, and of dimension 2, if v and w are independent.

Remark 3.3.2. For a particular value of n, one could take two subspaces L,M in Fn2 of

the same dimension and partition Fn2 into ∪a∈A(a+L) and ∪b∈B(b+M), with A,B subsets

of Fn2 of the same cardinality |A| = |B|, and then take any permutation φ that maps the

elements of {a + L | a ∈ A} onto the elements of {b + M | b ∈ B}. The pair (φ, L) would

satisfy property (C).

Although the above process works for specific values of n it does not amount to an

explicit construction of infinite sets of bent functions within the class C. It is not clear

what the explicit representation of these bent functions will be and how they relate to the

other known bent functions, like Maiorana–McFarland. For this reason, even after more

than two decades we have very little grasp on bent functions in C. We obtain explicit

construction of several subclasses of bent functions in C for the first time. We are also able

to identify permutations corresponding to which there are no C class bent functions.

We start with one specific class of permutations {φ} proposed by Hou [152, Theorem

B] and the nonexistence of any 2-dimensional linear subspace L for which the function

x · π(y) + φL⊥(x) is a bent function in C.

Theorem 3.3.3. Let n ≥ 1 and φ(x) = ax+bx2n+x2n+1−1 be a permutation polynomial over

F22n (see Hou [152, Theorem B] for explicit criteria). Then there exists no 2-dimensional

linear subspace, L, of F22n such that (φ, L) has property (C).

Proof. Suppose L = 〈u, v〉 is a 2-dimensional subspace of F22n . Then for any c ∈ F22n ,
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φ(c+ L) is a flat if and only if

0 = φ(c) + φ(c+ u) + φ(c+ v) + φ(c+ u+ v)

= ac+ bc2n + c2n+1−1 + a(c+ u) + b(c+ u)2n + (c+ u)2n+1−1

+ a(c+ v) + b(c+ v)2n + (c+ v)2n+1−1

+ a(c+ u+ v) + b(c+ u+ v)2n + (c+ u+ v)2n+1−1

= c2n+1−1 + (c+ u)2n+1−1 + (c+ v)2n+1−1 + (c+ u+ v)2n+1−1,

for all c ∈ F22n . Therefore, multiplying the above identity by c + u + v and using the

binomial theorem (in characteristic 2) we obtain

(u+ v)c2n+1−1 + v(c+ u)2n+1−1 + u(c+ v)2n+1−1

=
2n+1−2∑
j=0

(
v u2n+1−1−j + u v2n+1−1−j

)
cj = 0,

for all c ∈ F22n , implying that the polynomial

2n+1−2∑
j=0

(
v u2n+1−1−j + u v2n+1−1−j

)
Xj ∈ F22n [X]

has all of its coefficients 0, that is, v u2n+1−1−j + u v2n+1−1−j = 0, for all 0 ≤ j ≤ 2n+1 − 2.

In particular, for j = 2n+1 − 3,

u2v + uv2 = 0⇔ u2v = uv2 ⇔ u = v.

Thus, there is no 2-dimensional subspace, L, which satisfies the required property.

3.4 Some general bent conditions related to C and D

classes

In this section we investigate the choice of linear subspaces L which may potentially give

rise to bent functions in C for some specific permutations π and later we extend the de-

rived conditions for arbitrary π. The analysis uses more general bent conditions (without
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requesting that the initial function is in M) given in [17, Theorem].

The class D was derived using the result that for an n-dimensional subspace L of Fn2×Fn2
satisfying f(x, y) = x · π(y) = 0 for any (x, y) ∈ L, the function x · π(y) + φL(x, y) is bent

(cf. [17, Corollary 1]).

The subclass named D0 (which is not contained in M or in PS), deduced by Carlet,

corresponds to a special choice of L = {0} × Fn2 . Nevertheless, the fact that f ∗(x, y) =

x · π(y) + φL(x, y) is bent for L = {0} × Fn2 can also be easily deduced using the condition

related to the derivatives of f restricted to L. Indeed, for any a = (α, β) ∈ Fn2 ×Fn2 \L and

for f(x, y) = x · π(y) we have

∑
(x,y)∈L

(−1)f(x,y)+f(x+α,y+β) =
∑

x=0,y∈Fn2

(−1)f(0,y)+f(0+α,y+β) =
∑
y∈Fn2

(−1)α·π(y+β)) = 0

where we have used the fact that α 6= 0 and thus
∑

y∈Fn2
(−1)α·π(y+β)) = 0 since π is a

permutation of Fn2 , see [103, Theorem 7.7].

On the other hand, by taking L = Fn2 × {0}, it is obvious that the function

f ∗(x, y) = x · π(y) + φL(x, y)

= x · π(y) +
n∏
i=1

(yi + 1) = x · π(y) + g(y)

is bent, but no new bent functions can be obtained through this selection of L, since

f ∗ ∈ M. More generally, for the same reason the function f ∗(x, y) = x · π(y) + φL(x, y)

is also in M, for L = Fn2 × E where E is k-dimensional linear subspace of Fn2 , 0 ≤ k ≤ n.

Indeed, since for L = Fn2 ×E the indicator function φL(x, y) = g(y), for some g ∈ Bn, again

f ∗ ∈M. We formalize the above discussion in the following result.

Proposition 3.4.1. Let m = 2n and f ∈ Bm be a bent function given by f(x, y) = x · π(y)

where π is a permutation over Fn2 , and L = Fn2 × E where dim(E) = k, for k = 0, . . . , n.

Then f ∗(x, y) = f(x, y) + φL(x, y) is a bent function in class M.

Thus, the case L = Fn2 × E is of no interest to us and it is not treated further.
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3.4.1 The analysis for arbitrary π and L = E × Fn
2

Let us extend our investigation for f ∗(x, y) = x · π(y) + φL(x, y) to the case when π is any

permutation on Fn2 , and L = E × Fn2 . Notice that this particular choice of L implies that

φL(x, y) = φL(x) and therefore we are considering the class C. Assuming f(x, y) = x · π(y),

we have

0 =
∑

(x,y)∈L

(−1)f(x,y)+f(x+b,y+c)

=
∑

(x,y)∈L

(−1)x·π(y)+(x+b)·π(y+c)

=
∑
x∈E

∑
y∈Fn2

(−1)b·π(y+c)+x·(π(y)+π(y+c))

=
∑
y∈Fn2

∑
x∈E

(−1)x·(π(y)+π(y+c))+b·π(y+c). (3.4.1)

Notice that (b, c) 6= (0, 0) and in particular b 6= 0, whereas c can be equal to zero. We

consider two cases, namely c = 0 and c 6= 0. If c = 0 then the above sum becomes

∑
x∈E

∑
y∈Fn2

(−1)b·π(y), (3.4.2)

which is zero as b 6= 0, again using [103, Theorem 7.7].

If c 6= 0 then rewriting Equation (3.4.1) as

∑
y∈Fn2

(−1)b·π(y+c)
∑
x∈E

(−1)x·(π(y)+π(y+c)), (3.4.3)

one easily deduces the following result.

Lemma 3.4.2. Let f ∈ Bm be a bent function given by f(x, y) = x · π(y) where π is

a permutation over Fn2 , and L = E × Fn2 where dim(E) = k, for k = 1, . . . , n. Then a

sufficient condition that f ∗(x, y) = f(x, y) + φL(x, y) is a bent function in class C is that,

∑
y∈Fn2 :π(y)+π(y+c)∈E⊥

(−1)b·π(y+c) = 0,

for any (b, c) ∈ Fn2 × Fn2 \ L.
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Proof. The double sum in Equation (3.4.1) must be equal to zero for any (b, c) 6∈ L. The case

c = 0 yields (3.4.2) which equals to zero. The case c 6= 0 gives (3.4.3) which must be equal

to 0 for any (b, c) 6∈ L. We notice that if π(y) +π(y+ c) ∈ E⊥ then x · (π(y) +π(y+ c)) = 0

for any x ∈ E, thus the inner sum in (3.4.3) equals to |E| = 2k for any such y ∈ Fn2 . Thus,

a sufficient condition that Equation (3.4.3) equals to zero is as stated.

Remark 3.4.3. The above condition ensures that even though
∑

x∈E(−1)x·(π(y)+π(y+c)) 6= 0

for some fixed y ∈ Fn2 (which happens exactly when π(y) + π(y + c) ∈ E⊥) the double

sum (3.4.3) still equals to zero. The cases dim(E) ∈ {n−1, n} are trivial and correspond to

the indicator function which is constant (dim(E) = n) or affine function (dim(E) = n−1).

Remark 3.4.4. Though taking f(x, y) = x · π(y) is just a special case of considering f to

be a bent function in M, most notably the condition on balancedness of the derivatives on

E is now related to the balancedness of the derivatives of π on E⊥, as mentioned above.

Even though the condition of Lemma 3.4.2 appears to be hard one can find permutations

π and a suitable subspace E that satisfy the above condition. Nevertheless, to provide a

generic method of finding such permutations appears to be difficult.

Example 3.4.5. Let n = 3 and E = {000, 010} thus dim(E) = 1. Then E⊥ =

{000, 001, 101, 100}. Let us define a nonlinear permutation π : F3
2 → F3

2 and compute

the differentials for c = (001):

y3y2y1 π(y) π(y + 001) π(y) + π(y + 001)

000 000 001 001

001 001 000 001

010 011 010 001

011 010 011 001

100 111 110 001

101 110 111 001

110 101 100 001

111 100 101 001

This c is obviously a linear structure of π (thus π(y) + π(y + 001) = 001, for all y ∈ F3
2)
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and since (001) ∈ E⊥ we have:

∑
y∈Fn2 :π(y)+π(y+001)∈E⊥

(−1)b·π(y+001) =
∑
y∈Fn2

(−1)b·π(y+001) = 0

where the last equality is due to the fact that π is a permutation and b 6= 0. For other

(nonzero) values of c ∈ F3
2 it turns out that either Im(π(y) + π(y+ c)) ⊆ E⊥ or Im(π(y) +

π(y + c))∩E⊥ = ∅. For instance, one may check that Im(π(y) + π(y + 011)) = {010, 011}

and the intersection with E⊥ is the empty set.

In both cases
∑

y∈Fn2 :π(y)+π(y+c)∈E⊥(−1)b·π(y+c) = 0, thus f(x, y) = x · π(y) + φL(x, y)

where L = E × F3
2, is a bent function on F6

2. For instance, one may check that Im(π(y) +

π(y + 011)) = {010, 011}.

Given the fact that the class C is constructed by adding the indicator function of a special

subspace to a bent function, it may be of interest to investigate the relation between the

spectral values of f(x, y) = x · π(y) and f ∗(x, y) = f(x, y) + φL(x, y). Then requiring that

f ∗(x, y) is bent implies the following identity

Wf∗(u, v) =
∑

(x,y)∈Fn2×Fn2

(−1)x·π(y)+φL(x,y)+(u,v)·(x,y)

= Wf (u, v)− 2
∑

(x,y)∈L

(−1)x·π(y)+(u,v)·(x,y)

= ±2n − 2
∑

(x,y)∈L

(−1)x·π(y)+(u,v)·(x,y),

and if f ∗ is to be bent then we must have

Wf|L(u, v) =
∑

(x,y)∈L

(−1)x·π(y)+(u,v)·(x,y) ∈ {0,±2n},

for any (u, v) ∈ Fn2 × Fn2 . If L = E × Fn2 , we have

Wf|L(u, v) =
∑
x∈E

(−1)u·x
∑
y∈Fn2

(−1)x·π(y)+v·y

and Wf|L(u, 0) = 2n, for any u ∈ Fn2 . This is because for any fixed x 6= 0 and v = 0, the

inner sum
∑

y∈Fn2
(−1)x·π(y) = 0, unless x = 0 and the sum equals then to 2n.

The next result is now immediate.
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Proposition 3.4.6. Let f ∈ Bm be a bent function given by f(x, y) = x · π(y) where π is

a permutation over Fn2 . Let L = E × Fn2 . If f ∗(x, y) = f(x, y) + φL(x, y) is a bent function

then Wf (u, 0) = 2n, for any u ∈ Fn2 .

Proof. Assuming L = E × Fn2 , we only need to prove that Wf (u, 0) = 2n, for any u ∈ Fn2 ,

is always satisfied. Indeed,

Wf (u, 0) =
∑

(x,y)∈Fn2×Fn2

(−1)x·π(y)+(u,v)·(x,y)

=
∑
x∈Fn2

(−1)u·x
∑
y∈Fn2

(−1)x·π(y) = 2n,

which must be true for all u ∈ Fn2 . Notice that the inner sum
∑

y∈Fn2
(−1)x·π(y) = 0 for any

fixed x, unless x = 0 (since π is a permutation), and therefore Wf (u, 0) = 2n, for all u ∈ Fn2 .

3.4.2 The subcase when π is a linear permutation and L = E×Fn
2

In this section we consider f ∗(x, y) = x · π(y) + φL(x, y) where π(y) = yA is a linear

permutation over Fn2 , L = E × Fn2 for some k-dimensional linear subspace E, 0 ≤ k ≤ n,

and A is an invertible matrix over F2 of size n×n (that is A ∈ GL(n,F2)). It will be shown

that f ∗ is always bent regardless the choice of E, but nevertheless f ∗ is in the completed

class M∗.

Theorem 3.4.7. Let f ∗(x, y) = x ·π(y)+φL(x, y) be a function on Fn2×Fn2 and π(y) = yA,

A ∈ GL(n,F2), a linear permutation over Fn2 so that f(x, y) = x·π(y) is bent. Furthermore,

let L be of the form L = E × Fn2 where E is a k-dimensional linear subspace of Fn2 , for

0 ≤ k ≤ n. Then f ∗ is a bent function.

Proof. Since f ∗ is bent if and only if f(x, y) + f(x + b, y + c) is balanced on L = E × Fn2
for any (b, c) ∈ Fn2 × Fn2 \ L we have,

∑
(x,y)∈L

(−1)f(x,y)+f(x+b,y+c) =
∑

(x,y)∈L

(−1)x·π(y)+(x+b)·π(y+c)

=
∑

x∈E;y∈Fn2

(−1)x·yA+(x+b)·(yA+cA)
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=
∑
x∈E

(−1)(x+b)·cA
∑
y∈Fn2

(−1)b·yA

which must be equal to zero if f ∗ is bent. Now, since π(y) = yA is a permutation over

Fn2 then
∑

y∈Fn2
(−1)bA·y = 0, for any b 6= 0. Noticing that b 6= 0 since (b, c) 6∈ L, we have∑

(x,y)∈L(−1)f(x,y)+f(x+b,y+c) = 0, thus f ∗ is bent.

However, it turns out that the functions given by f ∗(x, y) = x · y + φL(x, y) (π being a

linear permutation) are embedded in M.

Theorem 3.4.8. Let f ∗(x, y) = x ·π(y)+φL(x, y) be a function on Fn2×Fn2 , and π(y) = yA

be a linear permutation over Fn2 . Furthermore, let L = E × Fn2 where E is a k-dimensional

linear subspace of Fn2 , 0 ≤ k ≤ n. Then f ∗ belongs to M∗.

Proof. It is well-known [56] that f ∈ M∗ on Fn2 × Fn2 if and only if there exists an n-

dimensional subspace, say U ⊂ F2n
2 , such that the second derivatives DαDβf(x, y) = 0, for

any α, β ∈ U .

Notice that since L = E × Fn2 , the support of φL does not depend on the y variables,

and so, φL(x, y) = φL(x). Now, for α = (a, b) and β = (c, d) where (a, b), (c, d) ∈ Fn2 × Fn2
we have,

DαDβ(x · yA) = Dβ(x · bA+ a · yA+ a · bA),

and taking the derivative with respect to β = (c, d) givesDαDβ(x·yA) = c·bA+a·dA. So it is

sufficient to show the existence of U such that both DαDβφL(x) = 0 and DαDβ(x ·yA) = 0,

for any α, β ∈ U . Taking U = {0} × Fn2 so that a = c = 0, we clearly have DαDβφL(x) = 0

and DαDβ(x · y) = b · c+ aA · d = 0, for any α, β ∈ U .

3.5 k-linear split permutations

In contrast to Theorem 3.3.3 which, for a particular class of permutations introduced by

Hou [152] shows the nonexistence of a 2-dimensional linear subspace L, in this section

we look for permutations π, and provide both necessary and sufficient conditions on the

subspace L, such that (π, L) satisfies the property (C).
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It is known that any permutation on a finite field can be written as a polynomial.

We consider those permutation polynomials which can be factored (split) into linearized

polynomials.

Definition 3.5.1. A linearized polynomial ` ∈ F2n [X] is a polynomial of the form

`(X) =
n−1∑
i=0

aiX
2i with ai ∈ F2n .

The set of all such polynomials is denoted by L(n).

The action of a pair of bijective linearized polynomials (`1, `2) ∈ L(n)×L(n) on F2n [X]

is defined as `1 ◦ φ ◦ `2 where φ ∈ F2n [X]. Two polynomials φ, ψ ∈ F2n [X] are said to be

linearly equivalent if there exist (bijective) `1, `2 ∈ L(n) such that `1 ◦ φ ◦ `2 = ψ.

Lemma 3.5.2. Suppose π and φ are two linearly equivalent permutations on F2n such that

φ = `1 ◦ π ◦ `2 where `1, `2 ∈ L(n), and L is a linear subspace of F2n. If π(a + L) is a flat

for all a ∈ F2n, φ(a+ `−1
2 (L)) is a flat for all a ∈ F2n.

Proof. For any a ∈ F2n , we have

φ(a+ `−1
2 (L)) = `1 ◦ π ◦ `2(a+ `−1

2 (L)) = `1 ◦ π(`2(a+ `−1
2 (L)))

= `1 ◦ π(`2(a) + L) = `1(π(`2(a) + L)).

Since π(`2(a) + L) is a flat and `1 is a linear permutation, `1(π(`2(a) + L)) is a flat.

Thus it is enough to consider C type constructions associated to linearly inequivalent

permutations. In the spirit of Blokhuis, Coulter, Henderson and O’Keefe [2] and Laigle-

Chapuy [154], we extend their construction in the next definition.

We call a polynomial φ ∈ F2n [X] a k-linear split polynomial if it is of the form

φ(X) = π1(X)π2(X) · · · πk(X) with πi ∈ L(n), 1 ≤ i ≤ k.

Blokhuis et al. [2] and Laigle-Chapuy [154] refer to the case k = 2 as a bilinear polyno-

mial (some authors prefer Dembowski-Ostrom polynomial), but the “bilinear” notion has

a different meaning in too many areas, so we prefer to insert “split” into the definition.
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Certainly, if the function associated to the polynomial φ is bijective, we will refer to φ as a

k-linear split permutation.

It is easy to see that using the transformation Y = π1(X), the polynomial φ is linearly

equivalent to one of the type

φ(Y ) = Y `1(Y ) · · · `k−1(Y ) where `i = πi ◦ π−1
1 ∈ L(n), (3.5.1)

so, we will only consider these forms from here on.

3.5.1 C type bent functions associated to bilinear split permuta-

tions

From our observation (3.5.1) (see also [2, Section 2]), it will be sufficient to investigate the C

type bent functions (in this case) associated to bilinear split permutations of the shape

X`(X) =
n−1∑
i=0

aiX
2i+1 with ai ∈ F2n .

The set of all such polynomials is denoted by B(n).

Theorem 3.5.3. Suppose φ : F2n → F2n is a permutation defined by φ(x) = x`(x) + `0(x),

for all x ∈ F2n where `, `0 ∈ L(n). Let L = 〈u, v〉 be a 2-dimensional subspace. Then (φ, L)

satisfies the (C) property if and only if `(u)
u

= `(v)
v

.

Proof. For L to satisfy the required condition for all a ∈ F2n , we must have

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a`(a) + `0(a) + (a+ u)`(a+ u) + `0(a+ u) + (a+ v)`(a+ v) + `0(a+ v)

+ (a+ u+ v)`(a+ u+ v) + `0(a+ u+ v)

= a`(a) + a`(a) + a`(u) + u`(a) + u`(u) + a`(a) + a`(v) + v`(a) + v`(v)

+ a`(a) + a`(u) + a`(v) + u`(a) + u`(u) + u`(v) + v`(a) + v`(u) + v`(v)

= u`(v) + v`(u) = 0.

Therefore, the necessary and sufficient condition that a 2-dimensional linear subspace L =

〈u, v〉 has the required property is that `(u)
u

= `(v)
v

.
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Corollary 3.5.4. Suppose φ : F2n → F2n, defined by φ(x) = x`(x) + `0(x), for all x ∈ F2n

where `(X) =
∑n−1

i=0 aiX
2i ∈ L(n). Then there exists a C type function associated to φ if

and only if the function x 7→ `(x)
x

on F∗2n is not a permutation.

Proof. If there exists a C type bent function then there exists a subspace L of dimension 2

generated by two vectors u, v such that (φ, L) satisfies (C). By Theorem 3.5.3, the map

λ : F∗2n → F∗2n defined by λ(x) = `(x)
x

is not one-to-one, and consequently not a permutation.

Conversely, if λ is not a permutation then it is not one-to-one, and consequently, there exist

two vectors u, v ∈ F∗2n with λ(u) = λ(v). Taking L = 〈u, v〉, again by Theorem 3.5.3, we

see that (φ, L) satisfies (C).

In addition to Remark 3.3.2, it is possible to obtain explicitly C type bent functions, for

a special class of explicit permutations. Thus, for effective construction of the functions in

C, there is a need to characterize linear subspaces such as L with respect to permutations

over F2n .

In Theorem 3.5.5 we consider the permutation φ(x) = x2t+1+1 + x3 + x, for all x ∈ F2n

where n = 2t+ 1 (see [48]).

Theorem 3.5.5. Suppose φ(x) = x2t+1+1 + x3 + x, for all x ∈ F2n where n = 2t + 1,

gcd(t, n) = 1. Then there exists at least one and at most 2(2n − 2) two dimensional linear

subspaces L such that φ(a+ L) is flat for all a ∈ F2n.

Proof. Since, φ(x)−x
x

is not a permutation, by Corollary 3.5.4 there exists at least one func-

tion in C associated to φ.

Let L = 〈u, v〉 be a 2-dimensional subspace of F2n . The set φ(a+L) is a flat if and only

if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = u2t+1

v + uv2t+1

+ u2v + uv2 = 0.

Exponentiating both sides of the above equation by 22t, we obtain

(u2t+1

v + uv2t+1

+ u2v + uv2)22t

= 0

i.e., u23t+1

v22t

+ u22t

v23t+1

+ u22t+1

v22t

+ u22t

v22t+1 = 0

i.e., (u22t+1

)2tv22t

+ u22t

(v22t+1

)2t + u22t+1

v22t

+ u22t

v22t+1 = 0

i.e., u2tv22t

+ u22t

v2t + uv22t

+ u22t

v = 0, since u, v ∈ F2n where n = 2t+ 1

i.e., (u2t + u)v22t

+ u22t

v2t + u22t

v = 0.
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Therefore,
2∑
i=0

civ
2it = 0 where c2 = u2t + u, c1 = c0 = u22t

. (3.5.2)

Since gcd(t, n) = 1 where n = 2t+1, the greatest common divisor gcd(2t−1, 22t+1−1) = 1.

Thus c2 = u2t + u = 0 if and only if u = 1. If u = 1 then Equation (3.5.2) reduces to

v2t + v = 0, which has only one solution v = 1. Equation (3.5.2) has at most 22 = 4

solutions if u 6= 1, by Lemma 3.2.3 among them one solution is v = 0 and another is v = u.

So, if u /∈ {0, 1} ⊆ F2n , we can obtain at most two values of v such that {u, v} is linearly

independent. Thus, we can obtain at most 2(2n− 2) many subspaces L such that φ(a+L)

is a flat, for all a ∈ F2n . If u = 1 then the only solution is v = u = 1; giving us no subspace

L. So the total number of two dimensional subspace L such that φ(a + L) is flat for all

a ∈ F2n is at most 2(2n − 2).

We now consider the case of a bilinear split permutation φ : F2n → F2n defined by

φ(x) = x2i+1, for all x ∈ F2n .

Theorem 3.5.6. Suppose φ(x) = x2r+1, for all x ∈ F2n where gcd(r, n) = e, n/e is odd

and gcd(2n − 1, 2r + 1) = 1.

(i) Then (φ, L) (where L is a subspace of dim(L) = 2) satisfies the (C) property if and

only if L = 〈u, cu〉 where u ∈ F∗2n and 1 6= c ∈ F∗2e.

(ii) We assume that e = gcd(n, r) > 1 and L = 〈u1, c1u1, . . . , cs−1u1〉, dim(L) = s,

ci ∈ F∗2e, 1 ≤ i ≤ s− 1, s ≥ 2, and u1 ∈ F∗2n . Then (φ, L) satisfies the (C) property.

Proof. We first show (i). Suppose that L = 〈u, v〉 is a 2-dimensional subspace of F2n . For

any a ∈ F2n , we have

a+ L = {a, a+ u, a+ v, a+ u+ v}.

The set φ(a+ L) is a flat if and only if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = 0.
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Therefore, we have

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a2r+1 + (a+ u)2r+1 + (a+ v)2r+1 + (a+ u+ v)2r+1

= a2r+1 + a2r+1 + au2r + a2ru+ u2r+1 + a2r+1 + av2r + a2rv + v2r+1

+ a2r+1 + a(u+ v)2r + a2r(u+ v) + (u+ v)2r+1

= uv2r + u2rv

= uv2r + u2rv = 0.

It follows that (uv−1)2r−1 = 1. Combining with this the fact that (uv−1)2n−1 = 1, for

u, v ∈ F∗2n , and gcd(2n−1, 2r−1) = 2e−1 we obtain (uv−1)2e−1 = 1. Therefore, L = 〈u, cu〉

where u ∈ F∗2n and c ∈ F∗2e .

We next show (ii). Assume that L = 〈u1, c1u1, . . . , cs−1u1〉 is of dimension s ≥ 2

where u1 ∈ F∗2n , ci ∈ F∗2e , gcd(2r − 1, 2n − 1) = 2e − 1. Then (φ, L) satisfies the (C)

property, which is equivalent to the fact that for any u, v ∈ L there exists w ∈ L such

that φ(a + u) + φ(a + v) + φ(a) + φ(a + w) = 0. To show this, we take u = αu1, v = βu1,

α, β ∈ F∗2e , and define w := u+ v = (α + β)u1 ∈ L. Then

φ(a+ u) + φ(a+ v) + φ(a) + φ(a+ w)

= (a+ u)1+2r + (a+ v)1+2r + a1+2r + (a+ u+ v)1+2r

= au2r + ua2r + av2r + va2r + a(u+ v)2r + (u+ v)a2r + uv2r + vu2r

= uv2r + vu2r = αu1(βu1)2r + βu1(αu1)2r

= αβu1+2r

1 + αβu1+2r

1 = 0

where we used that α2r = α, β2r = β, since both α, β ∈ F∗2e . The claim is shown.

From the above theorem we note that if e = 1 then there is no linear subspace of dimen-

sion 2 such that function in C can be constructed with respect to the class of permutations

under consideration.

The following bilinear split permutations (all are linearly equivalent to each other) are

constructed by Blokhuis et al. [2] on F2n where 0 < i < n and e = gcd(i, n) (see also

Laigle-Chapuy [154]):
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1. X2i+1 where n/e is odd.

2. X2i+1 + aX2n−i+1 where n/e is odd and a(2n−1)/(2e−1) 6= 1.

3. X22i+1 + (aX)2i+1 + aX2 where n = 3i and a(2n−1)/(2e−1) 6= 1.

By Theorem 3.5.6 and Lemma 3.5.2 we can derive explicit choices of L which yield C class

bent functions associated to the above permutations.

We consider bilinear split permutations of the form

φ(x) = x(Trnl (x) + ax) (3.5.3)

where l > 1, a ∈ F2l \ F2 and Trnl (x) =
k−1∑
i=0

x2li . For details we refer to [2, 154]. We show

here that bent functions in the C class, corresponding to φ, can be constructed by adding

indicator functions of subspaces of codimension 2. The number of such subspaces is also

obtained.

Theorem 3.5.7. Let n = kl where k be odd and l be any positive integer. Consider φ

as given in Equation (3.5.3). Then the total number of 2-dimensional linear subspaces of

F2n which satisfy the condition (C) required for the construction of C type bent functions is

(2n − 1)(2l − 2) + (2n−l − 1)(2n−l − 2).

Proof. Let L = 〈u, v〉 be any two dimensional subspace of F2n . We know that for any

c ∈ F2n , φ(c+L) is flat if and only if φ(c) + φ(c+ u) + φ(c+ v) + φ(c+ u+ v) = 0, that is,

c(Trnl (c) + ac) + (c+ u)(Trnl (c+ u) + a(c+ u)) + (c+ v)(Trnl (c+ v)

+a(c+ v)) + (c+ u+ v)(Trnl (c+ u+ v) + a(c+ u+ v)) = 0. (3.5.4)

Since a(c2 + (c+ u)2 + (c+ v)2 + (c+ u+ v)2) = 0 and Equation (3.5.4) can be rewritten as

0 = cTrnl (c) + cTrnl (c) + cTrnl (u) + uTrnl (c) + uTrnl (u) + cTrnl (c) + cTrnl (v) + vTrnl (c) +

vTrnl (v) + cTrnl (c) + c(Trnl (u) + Trnl (v)) + (u+ v)Trnl (c) + (u+ v)(Trnl (u) + Trnl (v))

= uTrnl (u) + vTrnl (v) + uTrnl (u) + uTrnl (v) + vTrnl (u) + vTrnl (v) = uTrnl (v) + vTrnl (u),

then φ(c+ L) is flat if and only if uTrnl (v) + vTrnl (u) = 0, that is,
Trnl (u)

u
=

Trnl (v)

v
.
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Therefore, C type functions associated to φ exist if and only if the function x 7→ Trnl (x)

x

is not a permutation on F2n . We know that a polynomial in F2n [x] of the form Q(x) =
n−1∑
i=0

cix
2i−1, ci ∈ F2n can not be a permutation polynomial unless Q(x) = ckx

2k−1 with

gcd(k, n) = 1 and ck ∈ F∗2n .

Let k = 1 then Trnl (x) = x. It is obvious that x 7→ Trnl (x)

x
= 1 is not a permutation. If

k ≥ 3 then it is not a permutation polynomial where k is odd. Thus, for the permutation

φ we can find at least one 2-dimensional subspace of F2n which satisfies the condition (C).

Let α = Trnl (u) and β = Trnl (v).

Case 1: Let α 6= 0 and β 6= 0. Then φ(c+ L) is flat if and only if αv + βu = 0⇒ v = β
α
u,

that is, v = λu where λ = β
α
∈ F∗

2l
and λ 6= 1 as u 6= v. Therefore, for any u ∈ F∗2n ,

we can choose v in 2l − 2 ways. Thus, the total number of 2-dimensional subspaces is

(2n − 1)(2l − 2).

Case 2: Let α = 0 and β 6= 0. Then αv + βu = 0 implies βu = 0, and thus u = 0 (since

β 6= 0), which is not possible. The case α 6= 0 and β = 0 implies that v = 0, which is also

not possible.

Case 3: Let α = 0 and β = 0. Then φ(c + L) is flat if and only if u, v ∈ ker(Trnl ) \ {0}

with u 6= v where ker(Trnl ) = {x ∈ F2n : Trnl (x) = 0}. Therefore, the dimension of ker(Trnl )

is kl − l. Thus, u can be chosen in 2kl−l − 1 ways and v in 2kl−l − 2 ways. Hence the total

number of 2-dimensional subspaces is (2kl−l − 1)(2kl−l − 2).

To summarize, for any value of l > 1, the total number of 2-dimensional subspaces of

F2n which satisfies the condition (C) required for the construction of C type bent functions

is (2n − 1)(2l − 2) + (2n−l − 1)(2n−l − 2).

Example 3.5.8. Let n = 2p where p is any odd prime, r = 2 and e = gcd(n, r) = 2.

Since n/e is odd, it is known that gcd(2r + 1, 2n − 1) = 1. Therefore, φ(x) = x2r+1 is a

permutation on F2n. Let ζ be a primitive element of F2n. Therefore, λ = ζ
2n−1
2e−1 = ζ

2n−1
3 is

a generator of F2e. Suppose that the permutation π(x) = φ−1(x) = xγ where γ(2r + 1) ≡ 1

(mod 2n−1). Given r and n, γ can be computed easily by the Euclidean algorithm. Consider

the Maiorana–McFarland bent f(x, y) = x · π(y). According to Theorem 3.5.6 if we choose

L = 〈1, λ〉 then the function f ∗(x, y) = x · π(y) + φL⊥(x) is in C. The bent function f ∗ can
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be explicitly written as

f ∗(x, y) = Trn1 (xyγ) + (Trn1 (x) + 1)(Trn1 (λx) + 1)

= Trn1 (xyγ) + Trn1 (x)Trn1 (λx) + Trn1 ((1 + λ)x) + 1.

Thus we have obtained an infinite class of bent functions in C other than D0. Whether

the bent functions obtained in this way are affine inequivalent to Maiorana–McFarland bent

functions seems to be a difficult problem, which we leave for future research.

3.5.2 C type bent functions associated to k-linear split permuta-

tions

We next look at C type bent functions associated to trilinear split permutations.

Theorem 3.5.9. Suppose φ : F2n → F2n is a permutation of the form φ(x) = x`1(x)`2(x),

for all x ∈ F2n where `1(X) =
∑n−1

i=0 aiX
2i , `2(X) =

∑n−1
i=0 biX

2i ∈ L(n) (ai, bi ∈ F2n), and

L = 〈u, v〉 is a 2-dimensional subspace of F2n. Then φ(a + L) is a flat for all a ∈ F2n if

and only if

∑
1≤i,j≤n−1

aibj

(
u2iv2j + v2iu2j

)
+

n−1∑
j=0

(a0bj + ajb0)
(
uv2j + u2jv

)
= 0,

n−1∑
j=0

(aibj + ajbi)
(
uv2j + u2jv

)
= 0, for all i = 1, . . . , n− 1,

∑
0≤i,j≤n−1

aibj

(
(u+ v)

(
u2iv2j + v2iu2j

)
+ uv2i+2j + vu2i+2j

)
= 0.

(3.5.5)

Proof. Using Lemma 3.3.1, we see that φ(a+ L) is a flat for all a ∈ F2n if and only if

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v)

= a[`1(u)`2(v) + `1(v)`2(u)] + `1(a)[u`2(v) + v`2(u)]

+ `2(a)[u`1(v) + v`1(u)] + u`1(u)`2(v) + u`1(v)`2(u)

+ u`1(v)`2(v) + v`1(u)`2(u) + v`1(u)`2(v) + v`1(v)`2(u) = 0,

(3.5.6)
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for all a ∈ F2n . Substituting `1, `2 in Equation (3.5.6) we obtain

(
n−1∑
i=0

n−1∑
j=0

(aibj + ajbi)u
2iv2j

)
a+

n−1∑
i=0

ai

(
n−1∑
j=0

(uv2j + u2jv)bj

)
a2i

+
n−1∑
i=0

bi

(
n−1∑
j=0

(uv2j + u2jv)aj

)
a2i

+ u`1(u)`2(v) + u`1(v)`2(u) + u`1(v)`2(v) + v`1(u)`2(u) + v`1(u)`2(v) + v`1(v)`2(u)

=

( ∑
0≤i,j≤n−1

(aibj + ajbi)u
2iv2j

)
a+

n−1∑
i=0

(
n−1∑
j=0

(uv2j + u2jv)

)
(aibj + ajbi) a

2i

+ (u+ v)
∑

0≤i,j≤n−1

aibju
2iv2j + (u+ v)

∑
0≤i,j≤n−1

aibju
2iv2j

+ u
∑

0≤i,j≤n−1

aibjv
2i+2j + v

∑
1≤i,j≤n−1

aibju
2i+2j

=

( ∑
1≤i,j≤n−1

(aibj + ajbi)u
2iv2j +

(
n−1∑
j=0

(uv2j + u2jv)

)
(a0bj + ajb0)

)
a

+
n−1∑
i=1

(
n−1∑
j=0

(uv2j + u2jv)

)
(aibj + ajbi) a

2i

+ (u+ v)
∑

0≤i,j≤n−1

aibj(u
2iv2j + v2iu2j) +

∑
0≤i,j≤n−1

aibj(uv
2i+2j + vu2i+2j) = 0,

for all a ∈ F2n . Thus, in order to construct C type bents associated to the permutation φ

with L = 〈u, v〉, we must obtain linearly independent vectors in u, v ∈ F2n satisfying the

system of Equations (3.5.5).

Corollary 3.5.10. Let us consider the case when φ(x) = x1+2r+2s, for all x ∈ F2n where

1 < r < s. Then there is no 2-dimensional subspace L = 〈u, v〉 satisfying the (C) property.

Proof. By the previous theorem, the system of Equations (3.5.5) reduces to

arbs(u
2rv2s + u2sv2r) = 0

(uv2s + u2sv)arbs = 0

(uv2r + u2rv)arbs = 0

u1+2rv2s + u1+2sv2r + uv2s+2r + u2s+2rv + u2rv1+2s + u2sv1+2r = 0.
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Since ar 6= 0 and bs 6= 0 we obtain the system

u2rv2s + u2sv2r = 0

uv2s + u2sv = 0

uv2r + u2rv = 0

u1+2rv2s + u1+2sv2r + uv2s+2r + u2s+2rv + u2rv1+2s + u2sv1+2r = 0,

(3.5.7)

that is, (uv−1)2n+s−r−1 = 1, (uv−1)2s−1 = 1 and (uv−1)2r−1 = 1. Let

gcd
(
2n − 1, 2n+s−r − 1, 2r − 1, 2s − 1

)
= 2e − 1

(it is immediate that if L exists then we must have e > 1). Then uv−1 ∈ F2e . Since e > 1,

there exists 1 6= c ∈ F∗2e such that v = cv. Substituting v = cu in the last equation of (3.5.7)

we obtain

cu1+2r+2s + cu1+2r+2s + c2u1+2s+2r + cu1+2s+2r + c2u1+2r+2s + c2u1+2r+2s = 0,

that is, (c+c2)u1+2r+2s = 0, implying c ∈ {0, 1}, which is a contradiction. Therefore, there is

no trilinear split permutation of the above form for which we can construct a 2-dimensional

subspace L = 〈u, v〉 with the required conditions.

We can extend the previous theorem to the general case of k-linear split permutations,

showing in our next theorem a nonexistence result.

Theorem 3.5.11. If φ(x) = x
∑k
i=0 2ri (k ≥ 2), for all x ∈ F2n where r0 = 0 < r1 < . . . <

rk < n then there is no 2-dimensional subspace L such that (φ, L) satisfies the (C) property.

Proof. We assume that L exists, and so, there exists u, v ∈ F2n that are F2–linearly in-

dependent such that (φ, L) satisfies the (C) property. For a subset A ⊆ {0, 1, . . . , k} (for

convenience, we write the set {0, 1, . . . , k} as [0, k]), we denote by RA :=
∑

i∈A 2ri and

Ā = [0, k] \ A, with the convention that if A = ∅ then RA = 0.

Since, φ(a+ L) is a flat, then φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) = 0, and so,

0 = aR[0,k] + (a+ u)R[0,k] + (a+ v)R[0,k] + (a+ u+ v)R[0,k]
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= aR[0,k] +
k∏
i=0

(a+ u)2ri +
k∏
i=0

(a+ v)2ri +
k∏
i=0

(a+ u+ v)2ri

= aR[0,k] +
k∏
i=0

(
a2ri + u2ri

)
+

k∏
i=0

(
a2ri + v2ri

)
+

k∏
i=0

(
a2ri + (u+ v)2ri

)
= aR[0,k] +

∑
A⊆[0,k]

aRAuRĀ +
∑

A⊆[0,k]

aRAvRĀ +
∑

A⊆[0,k]

aRA(u+ v)RĀ

=
∑

A&[0,k]

(
uRĀ + vRĀ + (u+ v)RĀ

)
aRA ,

for all a ∈ F2n . That is, the polynomial

∑
A&[0,k]

(
uRĀ + vRĀ + (u+ v)RĀ

)
XRA

has 2n roots, but its degree is R[0,k] =
∑k

i=0 2ri < 2n, and therefore all its coefficients must

be 0. Hence (replacing Ā by A, under the condition A 6= ∅), we have

uRA + vRA + (u+ v)RA = 0, for all A ⊆ [0, k], A 6= ∅. (3.5.8)

Now, taking A = {0, i}, 1 ≤ i ≤ k, and simplifying, we get

vu2ri + uv2ri = 0, for all 1 ≤ i ≤ k,

and so, vu−1 ∈ F∗2ri , 1 ≤ i ≤ k. Thus, if 2e − 1 = gcd(2n − 1, 2r1 − 1, . . . , 2rk − 1) (certainly,

if L of dimension 2 exists, it is necessary that e > 1) then v = cu, for some c ∈ F∗2e \ {1}.

Substituting v = cu in Equation (3.5.8) with A = {0, 1, 2}, we obtain

cu1+2r1+2r2 + cu1+2r1+2r2 + c2u1+2r2+2r1 + cu1+2r2+2r1 + c2u1+2r1+2r2 + c2u1+2r1+2r2 = 0,

that is,

(c+ c2)u1+2r1+2r2 = 0,

implying c ∈ {0, 1}, which is a contradiction. Therefore, there are no 2-dimensional sub-

spaces L for which we can construct C type bent functions corresponding to k-linear split

monomial permutations.
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For permutations on F2n of the form φ(x) = x
∑k
i=1 2ri (k ≥ 2), we can inquire whether

there are subspaces of dimension > 2 associated to C type bent functions. While in general

we cannot answer that question, we can certainly derive some necessary conditions.

Theorem 3.5.12. Let φ be a monomial permutation of degree k, that is, φ(x) = x
∑k
i=1 2ri ,

0 = r1 < . . . < rk < n, k ≥ 2. A necessary condition for (φ, L) (with L of dimension s ≥ 2)

to satisfy the (C) property is

∑
u∈L

uRA = 0, for all ∅ 6= A ⊆ [0, k]. (3.5.9)

Moreover, if (φ, L) with L of dimension s ≥ 2 satisfies the property (C) then both 2s−1, 2n−

2s must be in Np1 + · · ·+Np` where 2n− 1 =
∏`

i=1 p
ei
i is the prime power factorization (we

adopt the convention that 0 ∈ N).

Proof. Since for subspaces or flats of dimension s ≥ 2 the sum of all elements must be zero,

we can infer (as we have done in the proof of our previous theorem) that for all a ∈ F2n ,

0 =
∑
u∈L

φ(a+ u) =
∑
u∈L

k∏
i=1

(a+ u)2ri

=
∑
u∈L

∑
A⊆[0,k]

uRAaRĀ

=
∑

∅6=A⊆[0,k]

(∑
u∈L

uRA

)
aRĀ .

As before, the polynomial
∑

∅6=A⊆[0,k]

(∑
u∈L

uRA

)
XRĀ with degree < 2n and has 2n roots,

and so, all coefficients must be zero (the terms XRĀ are all distinct for different Ā by the

uniqueness of binary representations), from which we infer the first claim.

It is well-known (see Lam and Leung [136,137] and Sivek [47]) that a sum of k distinct

m-th roots of unity is zero (we say that m is k-balancing) if and only if both k and m− k

are in Np1 + · · · + Np` where m =
∏`

i=1 p
ei
i is the prime power factorization. Since the

elements u ∈ L ⊆ F2n are (2n − 1)-th roots of unity, condition (3.5.9) shows that (2n − 1)

is (2s − 1)-balancing (since the cardinality of L∗ is 2s − 1). Expressing 2n − 1 =
∏`

i=1 p
ei
i ,

then the previous result forces both 2s − 1 and 2n − 2s to be in Np1 + · · ·+ Np`.

Using some elementary number theory arguments, we can easily get several results
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regarding the nonexistence of subspaces as in property (C). Let p(N) denote the smallest

prime factor of N .

Corollary 3.5.13. With the notations of Theorem 3.5.12, the following statements are

true:

(i) If 1 < s < log2(p(2n − 1)), or log2 (2n − p(2n − 1)) < s < n then there are no pairs

(φ, L) satisfying the (C) property where dim(L) = s and φ is a monomial permutation.

(ii) Let n = P be a prime number. If 2n − 1 = p is a Mersenne prime, or 2n − 1 = p q, a

product of two primes then there are no subspaces of dimension 1 < s < n satisfying

the C type bent condition (C) for a monomial permutation φ of degree k ≥ 3.

Proof. The first claim follows easily observing that, by Theorem 3.5.12, if s < log2(p(2n−1))

then 2 ≤ 2s − 1 < p(2n − 1) ∈ {p1, . . . , p`}, and so, 2s − 1 6∈ Np1 + · · · + Np`; if s >

log2 (2n − p(2n − 1)) then 2n − 2s < p(2n − 1), and so, 2n − 2s 6∈ Np1 + · · ·+ Np`.

Regarding claim (ii), if 2n− 1 = p is a Mersenne prime then, by Theorem 3.5.12, 2n− 1

is (2s−1)-balancing, and so, one needs 2s−1 = ap and 2n−2s = Ap, for some nonnegative

integers a,A. Thus, 2n − 1 = (A + a)p = p, which implies that (a,A) ∈ {(0, 1), (1, 0)},

therefore, either s = 0, or s = n, which contradicts our assumption that 2 ≤ s < n.

To show the second part of claim (ii), observe that by Theorem 3.5.12, there exist

nonnegative integers a, b, A,B such that

2n − 1 = p q,

2s − 1 = ap+ bq,

2n − 2s = Ap+Bq,

from which we derive that (A+ a)p+ (B+ b)q = p q, and so, A+ a ≡ 0 (mod q), B+ b ≡ 0

(mod p). If ab 6= 0, since A,B, a, b are nonnegative and A < q, a < q,B < p, b < p then

A = q−a,B = p−b. But then, 2n−2s = Ap+Bq = 2pq−(ap+bq) = pq+(pq−2s+1) > 2n,

which is a contradiction. Thus, ab = 0, and without loss of generality, we assume that b = 0,

but then B = 0, as well. Thus, 2s − 1 = ap, 2n − 2s = (q − a)p. It is well-known that

gcd(2n−1, 2s−1) = 2gcd(n,s)−1. Since p|2n−1, p|2s−1 and n is prime (thus, for 2 ≤ s < n,

gcd(n, s) = 1), then p|2gcd(n,s) − 1 = 1, which is a contradiction.
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Permutation φ = π−1 where Condition for (φ, L) to satisfy (C).
f(x, y) = x · π(y) # of 2-dimensional subspaces L = τ

φ(x) = x2t+1+1 + x3 + x, 1 ≤ τ ≤ 2(2n − 2)
n = 2t+ 1, gcd(t, n) = 1.
φ(x) = x2r+1, gcd(r, n) = e, n/e odd, If and only if L = 〈u, cu〉,
gcd(2n − 1, 2r + 1) = 1 u ∈ F∗2n , 1 6= c ∈ F∗2e
φ(x) = x1+2r+2s , No 2-dimensional subspace
1 < r < s satisfying (C)

φ(x) = x
∑k
i=0 2ri , k ≥ 2, No 2-dimensional subspace

r0 = 0 < r1 < . . . < rk < n satisfying (C)
φ(x) = x(Trnl (x) + ax), τ = (2n − 1)(2l − 2)
l > 1, a ∈ F2l \ F2 +(2n−l − 1)(2n−l − 2)

Table 3.1: List of φ = π−1 where f(x, y) = x · π(y), along with the conditions for satisfying
property (C)
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Chapter 4

Subspace sum of generalized Boolean

function and their properties

4.1 Introduction

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions f : Znq −→ Zq
where q > 1 is a positive integer and gave constructions for every possible q and n, except

for n is odd and q ≡ 2 (mod 4). Later, generalized bent functions over a finite field Fpn was

studied by Ambrosimov [4]. There has been a flourish of new research in this area, with

new constructions being displayed, characterizations, and even connecting them to certain

combinatorial objects such as partial difference sets, strongly regular graphs and association

schemes (see [10,155,157]). For efficient wireless communication, generalized bent functions

are used for large signal sets with low maximum crosscorrelation [53, 112, 116, 127, 158].

Helleseth et al. [128] identified some monomial and quadratic bent functions over the finite

fields of odd characteristic. Budaghyan et al. [66] identified some non-quadratic generalized

bent functions which does not belong to complete Maiorana–McFarland class and proved

that the complete generalized Maiorana–McFarland class does not cover all quadratic bent

functions, which is not case for binary. In this chapter, we consider the generalized Boolean

functions from Fnp to Fp where p is prime and their set is denoted by Bpn. We characterize

the subspace sum of f ∈ Bpn with respect to a subspace V of Fnp (denoted by SV f). Also we

show that if f, h ∈ Bpn are affine equivalent then so are SV f and SV h where V is a subspace

of Fnp . Further, we extend to characteristic p > 2 a binary result of Dillon, concerning the

79
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vanishing subspace sum of any Maiorana–McFarland bent functions.

4.2 Preliminaries

In what follows, p denotes an (arbitrary, but fixed) odd prime number. Let A be a group

algebra of Fnp over Fp, defined as in Section 1.3. Suppose P is a maximal ideal of A, defined

as in Equation (1.3.1). We now state a generalization (due to Charpin [87,88]) of Berman’s

Theorem.

Theorem 4.2.1 ( [39, Theorem 5.19]). For any 0 ≤ r ≤ n(p − 1), Rp(r, n) = Pn(p−1)−r

where Rp(r, n) is a generalized Reed–Muller codes.

Let t = k(p− 1) where k be a positive integer. From [39, Corollary 4.12], we know that

P t is a subspace generated by the codewords whose support are k-dimensional subspaces

of Fnp . The basis of A was exploited by Jennings [107], and is now called a Jennings basis

of A.

Theorem 4.2.2 ( [39, Theorem 4.10]). Let g1, g2, . . . , gn be a basis of Fnp . Then the set

{
n∏
i=1

(xgi − 1)ki : (k1, k2, . . . , kn) ∈ Fnp

}

is a basis of A. Moreover,{
n∏
i=1

(xgi − 1)ki :
n∑
i=1

ki ≥ t, (k1, k2, . . . , kn) ∈ Fnp

}

form a basis of P t.

Theorem 4.2.3 ( [98, Theorem 1]). Let m = 2n and f : Fnp × Fnp → Fp be a generalized

Boolean function of the form

f(x, y) = x · π(y) + g(y)

where π be an arbitrary permutation polynomial over Fnp and g ∈ Bpn. Then f is a regular

bent and the dual function of f is f̃(x, y) = y · π−1(x) + g(π−1(x)). Also, we refer to [55].
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The class of bent functions defined as in Theorem 4.2.3 is called generalized Maiorana–

McFarland bent functions and their set is denoted byMp. In the binary case, the completed

Maiorana–McFarland class contains all quadratic bent functions which are the simplest and

best understood. However, this does not hold in the generalized case.

Fact 4.2.4 ( [128, Fact 1]). Let α be a primitive element of F36. Any ternary function f

from F36 to F3 of the form

f(x) = Tr6
1(α7x98)

is bent and not weakly regular bent.

4.3 Subspace sum of a function

Let f ∈ Bpn and V be any k-dimensional subspace of Fnp . Then there exists k linearly

independent elements a1, a2, . . . , ak ∈ Fnp such that

V = 〈a1, a2, . . . , ak〉 = {a ∈ Fnp : a =
k∑
i=1

ciai where ci ∈ Fp, 1 ≤ i ≤ k}.

Definition 4.3.1. The subspace sum of f ∈ Bpn with respect to a subspace V of Fnp is a

generalized Boolean function from Fnp to Fp, SV f , defined by

SV f(x) =
∑
v∈V

f(x+ v), for all x ∈ Fnp .

More precisely, SV f(x) is the sum of the values of f on the coset x+ V , which depends

on V only, not on the dimension of V .

Remark 4.3.2. Let j ∈ Fp and V = 〈a〉 be an one dimensional subspace of Fnp . Then

SV f(x) = SV f(x+ ja), for all x ∈ Fnp .

4.3.1 Derivative and subspace sum of a function

If p = 2, the subspace sum of a Boolean function with respect to a k-dimensional subspace

is same as the kth order derivative, and therefore our following results naturally extends

the binary case.
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Lemma 4.3.3. Let f ∈ Bpn and k be a positive integer less than or equal to p. Then for

any a ∈ Fnp ,

DaDa . . . Da︸ ︷︷ ︸
k−times

f(x) =
k∑
i=0

(−1)i
(
k

i

)
f(x+ (k − i)a), for all x ∈ Fnp . (4.3.1)

More precisely, if k = p then both sides are equal to 0.

Proof. Certainly, the result is true for k = 1, so we now let k = 2. Then for a ∈ Fnp ,

DaDaf(x) = f(x+ 2a)− 2f(x+ a) + f(x) =
2∑
i=0

(−1)i
(

2

i

)
f(x+ (2− i)a), for all x ∈ Fnp .

We assume the claim happens for an arbitrary positive integer r < p, that is,

DaDa . . . Da︸ ︷︷ ︸
r−times

f(x) =
r∑
i=0

(−1)i
(
r

i

)
f(x+ (r − i)a), (4.3.2)

for all x ∈ Fnp . Taking the derivative of both sides of Equation (4.3.2) with respect to a, we

get

DaDa . . . Da︸ ︷︷ ︸
(r+1)−times

f(x) = Da{DaDa . . . Da︸ ︷︷ ︸
r−times

f}(x)

=
r∑
i=0

(−1)i
(
r

i

)
f(x+ (r − i+ 1)a)−

r∑
i=0

(−1)i
(
r

i

)
f(x+ (r − i)a)

= f(x+ (r + 1)a) +
r∑
i=1

(−1)i
(
r

i

)
f(x+ (r − i+ 1)a)

+
r−1∑
i=0

(−1)i+1

(
r

i

)
f(x+ (r − i)a) + (−1)r+1f(x)

= f(x+ (r + 1)a) +
r−1∑
j=0

(−1)j+1

(
r

j + 1

)
f(x+ (r − j)a)

+
r−1∑
i=0

(−1)i+1

(
r

i

)
f(x+ (r − i)a) + (−1)r+1f(x), j = i− 1

= f(x+ (r + 1)a) +
r−1∑
i=0

(−1)i+1

{(
r

i+ 1

)
+

(
r

i

)}
f(x+ (r − i)a) + (−1)r+1f(x)
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= f(x+ (r + 1)a) +
r−1∑
i=0

(−1)i+1

(
r + 1

i+ 1

)
f(x+ (r − i)a) + (−1)r+1f(x)

= f(x+ (r + 1)a) +
r∑
j=1

(−1)j
(
r + 1

j

)
f(x+ (r + 1− j)a) + (−1)r+1f(x), j = i+ 1

=
r+1∑
i=0

(−1)i
(
r + 1

i

)
f(x+ (r + 1− i)a).

From elementary number theory we know that for a prime p

(
p

i

)
≡ 0 (mod p), i ∈ {1, 2, . . . , p− 1}.

Thus, if k = p then the right hand side of Equation (4.3.1) consists only f(x) and −f(x),

and the lemma is shown.

Theorem 4.3.4. Suppose V = 〈a〉 is an arbitrary 1-dimensional subspace of Fnp and f ∈ Bpn.

Then

SV f(x) = DaDa . . . Da︸ ︷︷ ︸
(p−1)−times

f(x), for all x ∈ Fnp .

Furthermore, for any r ∈ {0, 1, 2, . . . , p− 1}

rSV f(x) = Dra Da . . . Da︸ ︷︷ ︸
(p−2)−times

f(x), for all x ∈ Fnp .

Proof. Using the previous lemma and the known elementary number theory congruence

(
p− 1

j

)
≡ (−1)j (mod p)

where p is an odd prime and 0 ≤ j ≤ p− 1, we get the first claim.

Let r ∈ {0, 1, 2, . . . , p− 1} and V = 〈a〉 be an one dimensional subspace of Fnp . Suppose
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g(x) = DaDa . . . Da︸ ︷︷ ︸
(p−2)−times

f(x), for all x ∈ Fnp . Then

Dra Da . . . Da︸ ︷︷ ︸
(p−2)−times

f(x) = Drag(x) = g(x+ ra)− g(x)

= g(x+ ra)− g(x+ (r − 1)a) + . . .+ g(x+ a)− g(x)

= Dag(x+ (r − 1)a) +Dag(x+ (r − 2)a) + . . .+Dag(x)

= SV f(x+ (r − 1)a) + SV f(x+ (r − 2)a) + . . .+ SV f(x)

= SV f(x) + SV f(x) + . . .+ SV f(x), using Remark 4.3.2

= rSV f(x),

thus showing our second claim.

As an example, let p = 3 and V be an one dimensional subspace generated by a ∈ Fn3 .

Then

SV f(x) = f(x+ 2a) + f(x+ a) + f(x) = DaDaf(x)

2SV f(x) = 2DaDaf(x) = D2aDaf(x) = DaD2af(x).

Theorem 4.3.5. Let V = 〈a1, a2, . . . , ak〉 be a k-dimensional subspace of Fnp and f ∈ Bpn.

Then

SV f(x) = Da1 . . . Da1︸ ︷︷ ︸
(p−1)−times

. . . Dak . . . Dak︸ ︷︷ ︸
(p−1)−times

f(x), for all x ∈ Fnp .

Proof. Without loss of generality, let Vj = 〈a1, a2, . . . , aj〉, 1 ≤ j ≤ k, be a j-dimensional

subspace of Fnp and for j = k, Vk = V . The result is true for k = 1, so we now let k = 2.

Let

g(x) = Da2 . . . Da2︸ ︷︷ ︸
(p−1)−times

f(x) =

p−1∑
i2=0

f(x+ i2a2), for all x ∈ Fnp .

Then

Da1 . . . Da1︸ ︷︷ ︸
(p−1)−times

Da2 . . . Da2︸ ︷︷ ︸
(p−1)−times

f(x) = Da1 . . . Da1︸ ︷︷ ︸
(p−1)−times

g(x) =

p−1∑
i1=0

g(x+ i1a1)

=

p−1∑
i1=0

p−1∑
i2=0

f(x+ i2a2 + i1a1) = SV2f(x).
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We now assume that the result is true for k = r, that is,

SVrf(x) = Da1 . . . Da1︸ ︷︷ ︸
(p−1)−times

. . . Dar . . . Dar︸ ︷︷ ︸
(p−1)−times

f(x)

=

p−1∑
i1=0

. . .

p−1∑
ir=0

f(x+ irar + . . .+ i1a1),

for all x ∈ Fnp . Therefore,

Dar+1 . . . Dar+1︸ ︷︷ ︸
(p−1)−times

Da1 . . . Da1︸ ︷︷ ︸
(p−1)−times

. . . Dar . . . Dar︸ ︷︷ ︸
(p−1)−times

f(x) =

p−1∑
ir+1=0

SVrf(x+ ir+1ar+1)

=

p−1∑
ir+1=0

p−1∑
i1=0

. . .

p−1∑
ir=0

f(x+ ir+1ar+1 + irar + . . .+ i1a1) = SVr+1f(x),

and the theorem is shown.

4.3.2 Codes and subspace sum of a function

Proposition 4.3.6. Let V = 〈a1, a2, . . . , ak〉 be a k-dimensional subspace of Fnp and f ∈ Bpn
of degree r. Suppose h(x) = SV f(x), for all x ∈ Fnp . Then

(∑
v∈V X

v
)

Ωf is the associated

codeword of SV f , that is,

Ωh =

(∑
v∈V

Xv

)
Ωf .

Proof. Let f ∈ Bpn and a ∈ Fnp . Then

XaΩf = Xa
∑
g∈Fnp

f(g)Xg =
∑
g∈Fnp

f(g)Xg+a =
∑
g∈Fnp

f(g − a)Xg.

Since any v ∈ V can be written as v =
∑k

i=1 ciai where ci ∈ Fp, i ∈ {1, 2 . . . , k} and so,

(∑
v∈V

Xv

)
Ωf =

∑
g∈Fnp

(∑
v∈V

f(g − v)

)
Xg =

∑
g∈Fnp

(∑
v∈V

f(g + v)

)
Xg

=
∑
g∈Fnp

SV f(g)Xg = ΩSV f = Ωh.

Proposition 4.3.7. Let V be a k-dimensional subspace of Fnp and f ∈ Bpn of degree r. Then



86 4.3 Subspace sum of a function

the degree of SV f is less than or equal to r − k(p − 1). In particular, the subspace sum of

f with respect to any one dimensional subspace of Fnp have degree at most r − p+ 1.

Proof. Let V = 〈a1, a2, . . . , ak〉 be a k-dimensional subspace of Fnp and y =
∑

v∈V X
v be

the codeword of support V . Then

yΩf =

(∑
v∈V

Xv

)
Ωf =

∑
g∈Fnp

SV f(g)Xg.

Since the degree of f ∈ Bpn is r, and so, Ωf is in Pn(p−1)−r, which does not depend on

y. Moreover, dimV = k and y is a minimum codeword of Pk(p−1). Thus, the codeword

yΩf is in Pk(p−1)Pn(p−1)−r = Pn(p−1)−r+k(p−1), which is {0} for r ≤ k(p − 1) − 1. When

r = k(p− 1) + d, d ≥ 0, the degree of SV f is at most d = r − k(p− 1).

Proposition 4.3.8. Let V be a k-dimensional subspace of Fnp . Suppose that y =
∑

v∈V X
v

and V1 = V, V2, . . . , Vt are distinct cosets of V where t = pn−k. Let x =
∑

g∈Fnp
xgX

g ∈ A,

and for each i, denote by xi the restriction of x to Vi and Ni =
∑

g∈Vi xg. Then

xy =
t∑
i=1

(Ni (mod p))
∑
g∈Vi

Xg.

Furthermore,

1. xy = 0 if and only if Ni ≡ 0 (mod p), for all i, 1 ≤ i ≤ t and xy 6= 0 if and only if

there exists at least one 1 ≤ i ≤ t such that Ni 6≡ 0 (mod p).

2. wt(xy) = λ0p
k where λ0 is the number of xi for which Ni 6≡ 0 (mod p).

Proof. Since Fnp =
⋃t
i=1 Vi and let Vi = ai + V , for all i = 1, 2, . . . , t with a1 = 0. Then

x =
∑
g∈Fnp

xgX
g =

t∑
i=1

∑
g∈Vi

xgX
g =

t∑
i=1

Xai
∑
u∈V

xai+uX
u.
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Now

xy =

(
t∑
i=1

Xai
∑
u∈V

xai+uX
u

)(∑
v∈V

Xv

)
=

t∑
i=1

Xai
∑
u∈V

xai+u

(∑
v∈V

Xu+v

)

=
t∑
i=1

Xai

(∑
u∈V

xai+u

)(∑
v∈V

Xv

)
, as Xuy = y for any u ∈ V

=
t∑
i=1

(∑
v∈V

Xai+v

)(∑
u∈V

xai+u

)
=

t∑
i=1

(Ni (mod p))
∑
g∈Vi

Xg.

If Ni ≡ 0 (mod p) for all i, 1 ≤ i ≤ t, then xy = 0 and conversely. Since
∑

g∈Vi X
g is the

all one-vector of length pk and support Vi. Then wt(xy) = λ0p
k where λ0 is the number of

xi for which Ni 6≡ 0 (mod p).

4.3.3 Affine equivalence of subspace sums

In this section, we generalize a result of Dillon [56].

Theorem 4.3.9. Let f ∈ Bpn and Sk[f ] denotes the multiset of all subspace sum of f with

respect to k-dimensional subspaces of Fnp . If f, h ∈ Bpn are affine equivalent, so are Sk[f ]

and Sk[h]. Precisely, if the nonsingular affine transformation A (operating on Fnp) map f

onto h, it also maps Sk[f ] onto Sk[h].

Proof. Suppose that h(x) = f(xA + b), for all x ∈ Fnp where A ∈ GL(n,Fp) and b ∈ Fnp .

Let E be an arbitrary k-dimensional subspace of Fnp . For all x ∈ Fnp ,

SEh(x) =
∑
a∈E

g(x+ a) =
∑
a∈E

f(xA+ aA+ b)

=
∑
a∈E

f(xA+ b+ aA) =
∑
c∈E1

f(xA+ b+ c) where E1 = {c : c = aA, a ∈ E}

= SE1f(xA+ b),

since the maps a −→ aA is a permutation of the k-dimensional subspace E of Fnp . The

theorem is shown.

Corollary 4.3.10. If P is any affine invariant for Bpn then

f −→ P{Sk[f ]}
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is also an affine invariant for Bnp .

4.3.4 Maiorana–McFarland bent functions and subspace sums

In [66, Proposition 1], Budaghyan et al. proved that if f ∈ Bpn belongs to the complete

Maiorana–McFarland class then there exists an n
2
-dimensional subspace of Fnp such that

all second-order derivatives is 0 where n is even. We derive a necessary condition for

Maiorana–McFarland class bent functions.

Theorem 4.3.11. Let m = 2n and f be a generalized Maiorana–McFarland bent function

defined as in Theorem 4.2.3. Then there exists an n-dimensional subspace E of Fnp × Fnp
such that

1. the subspace sum of f with respect to any one dimensional subspaces of E is 0 if p is

odd.

2. the subspace sum of f with respect to any two dimensional subspaces of E is 0 if p = 2.

Proof. Let V be a subspace of Fnp × Fnp . The subspace sum of f with respect to V is

SV f(x, y) =
∑

(u,v)∈V

f(x+ u, y + v)

=
∑

(u,v)∈V

((x+ u) · π(y + v) + g(y + v)) .
(4.3.3)

Let v = 0. Then V is a subspace of E = Fnp × {0}. From Equation (4.3.3), we get

SV f(x, y) =
∑

(u,0)∈V

(x+ u) · π(y) + |V |g(y) =
∑

(u,0)∈V

(x+ u) · π(y).

Let p be an odd prime and V = 〈(a, 0)〉 be an one dimensional subspace of E. Then

SV f(x, y) = p

(
x+

p− 1

2
a

)
· π(y) = 0, for all (x, y) ∈ Fnp × Fnp .

Let p = 2 and V = 〈(a, 0), (c, 0)〉 be a two dimensional subspace of E, then

SV f(x, y) = 0, for all (x, y) ∈ Fnp × Fnp .
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Helleseth and Kholosha [128] verified the Fact 4.2.4 by computer calculations, however,

proving this result theoretically and probably finding the whole class of similar functions

remains an open problem. Using Theorem 4.3.11, it is shown that the function defined as

in Fact 4.2.4 does not belong to complete Mp class.

Theorem 4.3.12. The function f defined as in Fact 4.2.4 does not belong to the complete

Mp class.

Proof. Let f be equivalent to a function from class Mp. From Theorem 4.3.11, we have

there exists a 3-dimensional subspace E of F36 such that the subspace sum of f with respect

to any one dimensional subspace of E is 0. Let V = 〈a〉 where a ∈ F∗36 . Then

SV f(x) = f(x) + f(x+ a) + f(x+ 2a) = Tr6
1(α7(x98 + (x+ a)98 + (x+ 2a)98)). (4.3.4)

Since the 3-ary representation of 98 is (0, 1, 0, 1, 2, 2) as 98 = 34 + 32 + 2 · 3 + 2. Thus, all

the monomials in (x+ a)98 are of the form xd with

d = (0, d4, 0, d2, d1, d0) (4.3.5)

where d4, d2 ∈ {0, 1} and d1, d0 ∈ {0, 1, 2}. The coefficient of the monomial x2·3+2 in (x+a)98

is a34+32
. Thus, the coefficient of the monomial x2·3+2 in Equation (4.3.4) is

α7(a34+32

+ (2a)34+32

) = (1 + 234+32

)α7a34+32

= 2α7a34+32

as 234+32 ≡ 1 (mod 3). Since 3i(2 · 3 + 2) 6≡ 2 · 3 + 2 (mod 728), for all 1 ≤ i ≤ 5. It

is also obvious that, 3id 6≡ (0, 0, 0, 0, 2, 2) (mod 728), for all 1 ≤ i ≤ 5 where d is defined

as in Equation (4.3.5) with d 6= (0, 0, 0, 0, 2, 2). If SV f(x) = 0 for all x ∈ F36 then all the

coefficient of the monomial in Equation (4.3.4) must equal 0, and therefore 2α7a34+32
= 0,

which is a contradiction. Thus, we can not find a subspace E of F36 with dimension 3 such

that the subspace sum of f with respect to any one dimensional subspace of E is 0.
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Chapter 5

Construction of Dp, Dp0 and Cp classes

of bent functions

5.1 Introduction

In this chapter, we consider the generalized Boolean functions from F2n
p to Fp where p is

an odd prime integer. In binary case, Carlet [17] constructed two new classes (so-called C,

D) of bent functions by modifying the Maiorana–McFarland bent functions. In chapter 3,

we derived some existence and nonexistence results concerning the bent functions in the C

class for many of the known classes of permutations over F2n . We construct two new classes

of generalized bent functions, denoted by Dp, Dp0 and Cp. Here Dp0 is a subclass of Dp and

we observe that if f ∈ Dp0 is an m variables function then m ≡ 0 (mod 4). Further, we

prove that Mp and Dp0 ⊆ Dp are overlapping classes, but in general not included in one

another. We further derive some existence and nonexistence results concerning the bent

functions in Cp class for many classes of permutations and suitable linear subspaces of the

dimension less than and equal to 2 for p = 3.

5.2 Preliminaries

In what follows, p denotes an (arbitrary, but fixed) odd prime number.

Lemma 5.2.1 ( [17, Generalization of Lemma 1]). Let E be any linear subspace of Fnp and

91
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f ∈ Bpn be a regular bent, and the dual of f be f̃ . Then for any elements a, b ∈ Fnp , we have

∑
x∈−a+E

ζf(x)−b·x = pdimE−n
2 ζa·b

∑
x∈b+E⊥

ζ f̃(x)−a·x

where ζ = e
2πı
p is the pth complex root of unity, ı2 = −1.

If a = b = 0 and dimE = n
2

(dimE denotes the dimension of a vector space E) then

from Lemma 5.2.1, we get ∑
x∈E

ζf(x) =
∑
x∈E⊥

ζ f̃(x).

Therefore, if the restriction f/E of f to E is i then also the restriction f̃/E⊥ of f̃ to E⊥ is i

where i ∈ {0, 1, . . . , p− 1}. In [17, page 85], Carlet constructed a generalized bent function

in the following way. Let q be any even positive integer and Zq be the ring of integers

modulo q. Let E be any subgroup of order qn of Znq × Znq and π any permutation on Znq
such that x ·π(y) = 0, for any (x, y) ∈ E. Then the function f : Znq ×Znq −→ Zq, defined as

f(x, y) = x · π(y) +
q

2
φE(x, y), (5.2.1)

is bent.

5.3 Construction of Dp and Dp0 classes of bent functions

We modify the Carlet’s construction defined as in Equation (5.2.1) (for the environment

in consideration) in our next theorem where we further show that the functions are also

regular.

Theorem 5.3.1. Let E = E1 × E2 where E1, E2 ⊆ Fnp with dimE1 + dimE2 = n and

ε ∈ Fp. The generalized Boolean function f on Fnp × Fnp of the form

f(x, y) = x · π(y) + εφE(x, y)

is a regular generalized bent function where π is an arbitrary permutation polynomial over

Fnp such that π(E2) = E⊥1 .
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Proof. Let (a, b) ∈ Fnp × Fnp and ζ = e
2πı
p be the pth complex root of unity, ı2 = −1. From

Theorem 4.2.3, we have

∑
(x,y)∈Fnp×Fnp

ζx·π(y)−a·x−b·y = pnζ−b·π
−1(a),

so

Hf (a, b) =
∑

(x,y)∈Fnp×Fnp

ζx·π(y)+εφE(x,y)−a·x−b·y

=
∑

(x,y)∈Fnp×Fnp\E

ζx·π(y)−a·x−b·y + ζε
∑

(x,y)∈E

ζx·π(y)−a·x−b·y

=
∑

(x,y)∈Fnp×Fnp

ζx·π(y)−a·x−b·y + (ζε − 1)
∑

(x,y)∈E

ζx·π(y)−a·x−b·y

= pnζ−b·π
−1(a) + (ζε − 1)

∑
(x,y)∈E

ζ−a·x−b·y

= pn(ζ−b·π
−1(a) + (ζε − 1)φE⊥(a, b)).

(5.3.1)

Let (a, b) 6∈ E⊥. Then φE⊥(a, b) = 0, and so,

∑
(x,y)∈Fnp×Fnp

ζf(x,y)−a·x−b·y = pnζ−b·π
−1(a) = pnζ−b·π

−1(a)+εφ
E⊥ (a,b). (5.3.2)

Let (a, b) ∈ E⊥. Then b · π−1(a) = 0 (by Lemma 5.2.1) and φE⊥(a, b) = 1, and so,

∑
(x,y)∈Fnp×Fnp

ζf(x,y)−a·x−b·y = pnζε = pnζ−b·π
−1(a)+εφ

E⊥ (a,b). (5.3.3)

From (5.3.1), (5.3.2) and (5.3.3), we infer

Hf (a, b) = pnζ−b·π
−1(a)+εφ

E⊥ (a,b), for all (a, b) ∈ Fnp × Fnp .

Thus, f is a regular generalized bent Boolean function.

Remark 5.3.2. The dual of a function f as in Theorem 5.3.1 is

f̃(x, y) = y · π−1(x) + εφE⊥(x, y),
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for all (x, y) ∈ Fnp × Fnp , and the set of all such functions f is denoted by Dp.

Lemma 5.3.3. Let n = 2t be an even integer and p be an odd prime. Then for all

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnp ,

φE0(x, y) =
n∏
i=1

p−1∏
j=1

(xi − j)

where E0 = {0} × Fnp .

Proof. We know that

φE0(x, y) =

 1, if x = 0;

0, otherwise.

If x 6= 0, there exists at least one j ∈ {1, 2, . . . , n} such that xj 6= 0, so
n∏
i=1

p−1∏
j=1

(xi − j) = 0.

Assume now that x = 0. Then

n∏
i=1

p−1∏
j=1

(0− j) =
n∏
i=1

(p− 1)! = 1 = ((p− 1)!)n = ((p− 1)!)2t,

using Wilson’s Theorem, (p− 1)! ≡ −1 (mod p), which renders

n∏
i=1

q−1∏
j=1

(xi − j) = 1,

and the lemma is shown.

For the special case of Theorem 5.3.1, we let E1 = {0}, E2 = Fnp and E0 = {0} × Fnp
where n is even. Then the generalized Boolean functions on Fnp × Fnp of the form

f(x, y) = x · π(y) + εφE0(x, y) = x · π(y) + ε

n∏
i=1

p−1∏
j=1

(xi − j)

is a regular generalized bent function. This class of bent functions will be denoted by Dp0
and it is a subclass of Dp. Observe that if f ∈ Dp0 is an m variables Boolean function then

m ≡ 0 (mod 4).

The next theorem surprisingly shows that Mp and Dp0 ⊆ Dp are overlapping classes,

but in general not included in one another.



Chapter 5: Construction of Dp, Dp0 and Cp classes of bent functions 95

Theorem 5.3.4. In general, Dp0 and Dp are not included in the class Mp. Further, the

class Mp is in general not included in Dp0 and Dp classes.

Proof. Let f ∈ Dp written as

f(x, y) = x · π(y) + εφE(x, y) (5.3.4)

with ε ∈ Fp, E = E1×E2 where E1, E2 ⊆ Fnp of dimE1+dimE2 = n and π be a permutation

over Fnp such that π(E2) = E⊥1 .

Assume that f ∈Mp, and so, f can be expressed as

f(x, y) = x · π1(y) + g(y) (5.3.5)

where π1 is a permutation over Fnp and g ∈ Bpn. Putting x = 0 in both Equations (5.3.4)

and (5.3.5), we get g(y) = εφE(0, y), and so,

x · (π(y)− π1(y)) = ε(φE(0, y)− φE(x, y)). (5.3.6)

Observe now that the left hand part of Equation (5.3.6) is linear with respect to the variable

x, as opposed to the right hand part of Equation (5.3.6) which may not be linear with respect

to the variable x (by choosing a suitable nonlinear function φE(x, y) and ε 6= 0). Thus, in

general, the classes Dp0 and Dp are not included in class Mp.

For example, if p = 3 and n = 4, we let f : F4
3 × F4

3 → F3,

f(x, y) = x · π(y) + ε(x1 − 1)(x1 − 2)(x2 − 1)(x2 − 2)(x3 − 1)(x3 − 2)(x4 − 1)(x4 − 2)

where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ F4
3 and ε ∈ F∗3. The previous nonlinearity

condition on φE(0, y) − φE(x, y) is obviously satisfied, and so f ∈ Dp0 does not belong to

Mp.

Conversely, let f ∈ Mp, and assume that it also belongs to Dp. Thus, for all (x, y) ∈

Fnp × Fnp
f(x, y) = x · ψ(y) + g(y) = x · ψ1(y) + εφE(x, y)

where ψ and ψ1 are permutations over Fnp and E = E1×E2 where E1, E2 ⊆ Fnp of dimE1 +
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dimE2 = n and ψ1(E2) = E⊥1 . Then g(y) = εφE(0, y) ∈ {0, ε}, for all y ∈ Fnp , that is, the

range set of g contain at most two distinct elements. Therefore, if the range set of g contain

at least three distinct elements, the corresponding Mp functions f does not belong to Dp,

and our theorem is shown.

5.4 Construction of Cp class of bent functions

The C class of bent functions was constructed by Carlet [17], which is defined as in Equa-

tion (1.2.13). We now generalize Carlet’s result.

Theorem 5.4.1. Let L be any linear subspace of Fnp and π be any permutation on Fnp such

that for any element λ of Fnp , the set π−1(λ+L) is a flat. Then the function f on Fnp × Fnp
of the form

x · π(y) + εφL⊥(x)

is a generalized bent function where ε ∈ Fp.

Proof. Let E = L⊥ × Fnp and ζ = e
2πı
p be the pth complex root of unity, ı2 = −1. For any

(a, b) ∈ Fnp × Fnp , we have

Hf (a, b) =
∑

(x,y)∈Fnp×Fnp

ζx·π(y)+εφ
L⊥ (x)−a·x−b·y

=
∑
y∈Fnp

 ∑
x∈Fnp\L⊥

ζx·π(y)−a·x−b·y + ζε
∑
x∈L⊥

ζx·π(y)−a·x−b·y


=

∑
(x,y)∈Fnp×Fnp

ζx·π(y)−a·x−b·y + (ζε − 1)
∑

(x,y)∈L⊥×Fnp

ζx·π(y)−a·x−b·y

= pnζ−b·π
−1(a) + (ζε − 1)|L⊥|

∑
x∈a+L

ζ−b·π
−1(x), using Lemma 5.2.1

= pn

ζ−b·π−1(a) +
(ζε − 1)

|L|
∑

x∈π−1(a+L)

ζ−b·x

 .

(5.4.1)

Let Ea = {π−1(a + u) : u ∈ L}. If b /∈ E⊥a then
∑

x∈π−1(a+L)

ζ−b·x = 0, and from Equa-

tion (5.4.1) we get

Hf (a, b) = pn(−1)−b·π
−1(a) = pnζ

−b·π−1(a)+εφ
E⊥a

(b)
. (5.4.2)
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If b ∈ E⊥a then b · π−1(a) = 0 and
∑

x∈π−1(a+L)

ζ−b·x = |L|. From Equation (5.4.1) we get

Hf (a, b) = pnζε = pnζ
−b·π−1(a)+εφ

E⊥a
(b)
. (5.4.3)

Therefore, from Equations (5.4.1), (5.4.2) and (5.4.3) we get

Hf (a, b) = pnζ
−b·π−1(a)+εφ

E⊥a
(b)
, for all (a, b) ∈ Fnp × Fnp ,

and the theorem is shown.

The class of bent functions defined as in Theorem 5.4.1 will be denoted by Cp.

Corollary 5.4.2. In general, the class Cp is not included in the class Mp.

Proof. Let f ∈ Cp. If L = Fnp , the class Cp contains the class Dp0, and so, also Cp is not

included in the Mp class.

5.5 Existence and nonexistence of Cp classes of bent

functions

For construction of generalized bent functions defined as in Theorem 5.4.1, it is needed to

consider a permutation polynomial π on Fnp such that π−1(a+L) is a flat for any a ∈ Fnp . In

chapter 3, we derived some existence and nonexistence results concerning the bent functions

in the C class for many of the known classes of permutations over F2n . We investigate

below these conditions for many classes of permutations and suitable linear subspaces of

the dimension less than and equal to 2 for p = 3.

Lemma 5.5.1. Let u1, u2, u3 ∈ Fn3 . A set L = {u1, u2, u3} is flat of Fn3 of dimension ≤ 1 if

and only if u1 + u2 + u3 = 0.

Proof. If L is a subspace, without loss of generality, we may assume that L = {0, u1, 2u1},

which satisfies 0 + u1 + 2u1 = 0. Conversely let L = {u1, u2, u3} with u1 + u2 + u3 = 0, i.e.,

u3 = 2u1 + 2u2. It follows that 2u1 + L = {0, u2 + 2u1, u1 + 2u2} = 〈u1 + 2u2〉. The lemma

is proved.
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Theorem 5.5.2. Consider the permutation polynomial over F34, φ(x) = x+x17 [72]. Then

there is no 1-dimensional subspace L of F34 such that φ(a+ L) is flat for all a ∈ F34.

Proof. Let L = {0, u, 2u}, u ∈ F∗34 . Then for any a ∈ F34 , φ(a+ L) is flat if and only if

φ(a) + φ(a+ u) + φ(a+ 2u) = 0⇔ a17 + (a+ u)17 + (a+ 2u)17 = 0

⇔2a15u2 + 2a13u4 + 2a11u6 + 2a9u8 + a7u10 + a5u12 + a3u14 + au16 = 0.
(5.5.1)

Equation (5.5.1) holds for all a ∈ F34 if and only if u = 0, which contradicts dimL = 1.

Remark 5.5.3. We can certainly construct functions in C3. For example, consider the per-

mutation polynomial φ(x) = 1+x over F34 [104, Theorem 1.1]. Then for any 1-dimensional

subspace L of F34, φ(a + L) is flat for all a ∈ F34, since, for L = {0, u, 2u}, u ∈ F∗34, then

φ(a) + φ(a+ u) + φ(a+ 2u) = 0, for all a ∈ F34. If L = 〈u, v〉 is a 2-dimensional subspace

of F34 × F34 and a ∈ F34 then

φ(a+ L) = {φ(a), φ(a+ u), φ(a+ v), φ(a+ u+ v), φ(2u), φ(2v), φ(a+ 2u), φ(a+ 2v),

φ(a+ 2u+ v), φ(a+ u+ 2v), φ(a+ 2u+ 2v)} = 1 + a+ L.

Theorem 5.5.4. Let φ be a permutation polynomial defined as in [72] on F34 of the form

φ(x) = x(x16 + 1) = x17 + x.

Then there is no 2-dimensional subspace L = 〈u, v〉 such that φ(a+L) is flat for all a ∈ F34.

Proof. Let a ∈ F34 . If φ(a+ L) is a flat,

φ(a) + φ(a+ u) + φ(a+ v) + φ(a+ u+ v) + φ(a+ 2u) + φ(a+ 2v)+

φ(a+ 2u+ v) + φ(a+ u+ 2v) + φ(a+ 2u+ 2v) = 0.
(5.5.2)

The linear part of Equation (5.5.2) certainly sums to 0. Furthermore,

(a+u)17 = a17 + 2a16u+ a15u2 + 2a14u3 + a13u4 + 2a12u5 + a11u6 + 2a10u7 + a9u8

+ a8u9 + 2a7u10 + a6u11 + 2a5u12 + a4u13 + 2a3u14 + a2u15 + 2au16 + u17,

(a+v)17 = a17 + 2a16v + a15v2 + 2a14v3 + a13v4 + 2a12v5 + a11v6 + 2a10v7 + a9v8

+ a8v9 + 2a7v10 + a6v11 + 2a5v12 + a4v13 + 2a3v14 + a2v15 + 2av16 + v17,
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(a+u+ v)17 = a17 + 2a16(u+ v) + a15(u+ v)2 + 2a14(u+ v)3 + a13(u+ v)4

+ 2a12(u+ v)5 + a11(u+ v)6 + 2a10(u+ v)7 + a9(u+ v)8 + a8(u+ v)9 + 2a7(u

+ v)10 + a6(u+ v)11 + 2a5(u+ v)12 + a4(u+ v)13 + 2a3(u+ v)14 + a2(u+ v)15

+ 2a(u+ v)16 + (u+ v)17,

(a+2u)17 = a17 + 2a16(2u) + a15(2u)2 + 2a14(2u)3 + a13(2u)4 + 2a12(2u)5

+ a11(2u)6 + 2a10(2u)7 + a9(2u)8 + a8(2u)9 + 2a7(2u)10 + a6(2u)11

+ 2a5(2u)12 + 2a3(2u)14 + a2(2u)15 + 2a(2u)16 + (2u)17,

(a+2v)17 = a17 + 2a16(2v) + a15(2v)2 + 2a14(2v)3 + a13(2v)4 + 2a12(2v)5

+ a11(2v)6 + 2a10(2v)7 + a9(2v)8 + a8(2v)9 + 2a7(2v)10 + a6(2v)11

+ 2a5(2v)12 + a4(2v)13 + 2a3(2v)14 + a2(2v)15 + 2a(2v)16 + (2v)17,

(a+2u+ v)17 = a17 + 2a16(2u+ v) + a15(2u+ v)2 + 2a14(2u+ v)3 + a13(2u+ v)4

+ 2a12(2u+ v)5 + a11(2u+ v)6 + 2a10(2u+ v)7 + a9(2u+ v)8 + a8(2u+ v)9

+ 2a7(2u+ v)10 + a6(2u+ v)11 + 2a5(2u+ v)12 + a4(2u+ v)13 + 2a3(2u+ v)14

+ a2(2u+ v)15 + 2a(2u+ v)16 + (2u+ v)17,

(a+u+ 2v)17 = a17 + 2a16(u+ 2v) + a15(u+ 2v)2 + 2a14(u+ 2v)3

+ a13(u+ 2v)4 + 2a12(u+ 2v)5 + a11(u+ 2v)6 + 2a10(u+ 2v)7 + a9(u+ 2v)8

+ a8(u+ 2v)9 + 2a7(u+ 2v)10 + a6(u+ 2v)11 + 2a5(u+ 2v)12 + a4(u+ 2v)13

+ 2a3(u+ 2v)14 + a2(u+ 2v)15 + 2a(u+ 2v)16 + (u+ 2v)17,

(a+ 2u+ 2v)17 = a17 + 2a16(2u+ 2v) + a15(2u+ 2v)2 + 2a14(2u+ 2v)3

+ a13(2u+ 2v)4 + 2a12(2u+ 2v)5 + a11(2u+ 2v)6 + 2a10(2u+ 2v)7 + a9(2u+ 2v)8

+ a8(2u+ 2v)9 + 2a7(2u+ 2v)10 + a6(2u+ 2v)11 + 2a5(2u+ 2v)12 + a4(2u+ 2v)13

+ 2a3(2u+ 2v)14 + a2(2u+ 2v)15 + 2a(2u+ 2v)16 + (2u+ 2v)17.

Adding all these equations, and collecting powers of a, we obtain

9a17 = 0,

2a16 (u+ v + (u+ v) + 2u+ 2v + (2u+ v) + (u+ 2v) + (2u+ 2v)) = 0,

a15
(
u2 + v2 + (u+ v)2 + (2u)2 + (2v)2 + (2u+ v)2 + (u+ 2v)2 + (2u+ 2v)2

)
= 0,
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2a14
(
u3 + v3 + (u+ v)3 + (2u)3 + (2v)3 + (2u+ v)3 + (u+ 2v)3 + (2u+ 2v)3

)
= 0,

a13
(
u4 + v4 + (u+ v)4 + (2u)4 + (2v)4 + (2u+ v)4 + (u+ 2v)4 + (2u+ 2v)4

)
= 0,

2a12
(
u5 + v5 + (u+ v)5 + (2u)5 + (2v)5 + (2u+ v)5 + (u+ 2v)5 + (2u+ 2v)5

)
= 0,

a11
(
u6 + v6 + (u+ v)6 + (2u)6 + (2v)6 + (2u+ v)6 + (u+ 2v)6 + (2u+ 2v)6

)
= 0,

2a10
(
u7 + v7 + (u+ v)7 + (2u)7 + (2v)7 + (2u+ v)7 + (u+ 2v)7 + (2u+ 2v)7

)
= 0,

a9
(
u8 + v8 + (u+ v)8 + (2u)8 + (2v)8 + (2u+ v)8 + (u+ 2v)8 + (2u+ 2v)8

)
= a9(u6v2 + u4v4 + u2v6),

a8
(
u9 + v9 + (u+ v)9 + (2u)9 + (2v)9 + (2u+ v)9 + (u+ 2v)9 + (2u+ 2v)9

)
= 0,

2a7
(
u10 + v10 + (u+ v)10 + (2u)10 + (2v)10 + (2u+ v)10 + (u+ 2v)10 + (2u+ 2v)10

)
= 0,

a6
(
u11 + v11 + (u+ v)11 + (2u)11 + (2v)11 + (2u+ v)11 + (u+ 2v)11 + (2u+ 2v)11

)
= 0,

2a5
(
u12 + v12 + (u+ v)12 + (2u)12 + (2v)12 + (2u+ v)12 + (u+ 2v)12 + (2u+ 2v)12

)
= 0,

a4
(
u13 + v13 + (u+ v)13 + (2u)13 + (2v)13 + (2u+ v)13 + (u+ 2v)13 + (2u+ 2v)13

)
= 0,

2a3
(
u14 + v14 + (u+ v)14 + (2u)14 + (2v)14 + (2u+ v)14 + (u+ 2v)14 + (2u+ 2v)14

)
= 2a3(u12v2 + 2u10v4 + 2u4v10 + u2v12),

a2
(
u15 + v15 + (u+ v)15 + (2u)15 + (2v)15 + (2u+ v)15 + (u+ 2v)15 + (2u+ 2v)15

)
= 0,

2a
(
u16 + v16 + (u+ v)16 + (2u)16 + (2v)16 + (2u+ v)16 + (u+ 2v)16 + (2u+ 2v)16

)
= 2a(2u12v4 + u10v6 + u6v10 + 2u4v12),

u17 + v17 + (u+ v)17 + (2u)17 + (2v)17 + (2u+ v)17 + (u+ 2v)17 + (2u+ 2v)17 = 0.

From (5.5.2), we get that if φ(a+ L) is flat then

a(u12v4 + 2u10v6 + 2u6v10 + u4v12) + a3(2u12v2 + u10v4 + u4v10 + 2u2v12)+

a9(u6v2 + u4v4 + u2v6) = 0,

which is satisfied for all a ∈ F34 only when

u12v4 + 2u10v6 + 2u6v10 + u4v12 = 0,

2u12v2 + u10v4 + u4v10 + 2u2v12 = 0,

u6v2 + u4v4 + u2v6 = 0.



Chapter 5: Construction of Dp, Dp0 and Cp classes of bent functions 101

Since

u6v2 + u4v4 + u2v6 = 0

⇔ u4 + u2v2 + v4 = 0, as u, v 6= 0

⇔ (2u2 + v2)2 = 0 or (u2 + 2v2)2 = 0

⇔ u = v or u = 2v,

which is not possible as u and v are linearly independent.
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Chapter 6

Second-order Nonlinearity Bounds of

cubic MMF bent-negabent functions

constructed by using Feistel functions

6.1 Introduction

The nega–Hadamard transform of f ∈ Bn at a ∈ F2n is the complex valued function

Nf (a) = 2−
n
2

∑
x∈F2n

(−1)f(x)+Trn1 (ax)ıwt(x)

where ı2 = −1. The multiset [Nf (a) : a ∈ F2n ] is said to be the nega spectrum of f .

Definition 6.1.1. A function f ∈ Bn is said to be negabent if and only if |Nf (a)| = 1, for

all a ∈ F2n.

Note that all affine functions (both with an even and an odd numbers of variables) are

negabent. For an even number of variables, a negabent function is called bent-negabent

if it is also a bent function. The bent-negabent functions was introduced by Riera and

Parker [33]. Construction of bent-negabent functions was proposed by Parker and Pott [73],

and negabent functions in Maiorana–McFarland class was considered by Schmidt, Parker

and Pott [64].

A permutation φ : F2n → F2n is said to be complete mapping polynomial if x 7→ φ(x)+x

is also a permutation. A Feistel function π : F2t × F2t −→ F2t × F2t is defined as π(x, y) =

103
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(y, x+h(y)), for all x, y ∈ F2t where h is any function on F2t . It is proved by Markovski and

Mileva [118] that if h is a permutation then the Feistel function π is a complete mapping

permutation. Using the permutation π it possible to construct a Maiorana–McFarland type

bent functions

f : (F2t × F2t)× (F2t × F2t) −→ F2

defined by f((x1, x2), (y1, y2)) = (x1, x2) · π(y1, y2), for all xj, yj ∈ F2t , j = 1, 2. If h is

permutation then π is a complete mapping polynomial, which implies that the function f is

affine equivalent to a bent-negabent function (cf. [97]). The maximum algebraic degree of

π is t− 1 and therefore it is possible to obtain bent-negabent functions of algebraic degree

t by using this technique. For further details we refer to [9, 64,73,146]

In the next section we concentrate our effort on a particular class of cubic Maiorana–

McFarland bent-negabent functions and determine the weights of their second derivative

along with a lower bound of their second-order nonlinearities. Also we identify subclasses

bent-negabent functions within this class.

6.2 Main results

In this section we take m = 4t and t ≥ 3. Let h(y) = y2i+1, for all y ∈ F2t where gcd(t, i) = e

and i ∈ Z such that 1 ≤ i < t, gcd(2i + 1, 2t − 1) = 1. Since h is a permutation we obtain

cubic Maiorana–McFarland bent-negabent functions of the form

fi((x1, x2), (y1, y2)) = Trt1(x1y2 + x2y1 + x2y
2i+1
2 ), (6.2.1)

for all xj, yj ∈ F2t , j = 1, 2.

Lemma 6.2.1. The cubic Maiorana–McFarland bent-negabent function fi defined as in

Equation (6.2.1) has affine derivatives at ((a1, 0), (b1, 0)) where a1, b1 ∈ F2t.

Proof. Let ((a1, a2), (b1, b2)) ∈ (F2t × F2t)× (F2t × F2t). Then

D((a1,a2),(b1,b2))fi((x1, x2), (y1, y2)) = Trt1(a2y
2i+1
2 + (x2 + a2)(y2i

2 b2 + y2b
2i

2 ) + x2b
2i+1
2 +

x1b2 + a1y2 + x2b1 + a2y1) + fi((a1, a2), (b1, b2)).

(6.2.2)
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If a2 6= 0 then Equation (6.2.2) is quadratic. Suppose that a2 = 0. Then Equation (6.2.2)

is affine if and only if p(y2) = y2i

2 b2 + y2b
2i

2 is constant for all y2 ∈ F2t . Since p(0) is equal

to 0, that is, Equation (6.2.2) is affine if and only if for all y2 ∈ F2t ,

y2i

2 b2 + y2b
2i

2 = 0. (6.2.3)

If b2 = 0 then Equation (6.2.3) is identically zero. If b2 6= 0 then Equation (6.2.3) holds

only when y2 = αb2 where α ∈ F2e , and the lemma is shown.

6.2.1 Affine inequivalence subclasses

Theorem 6.2.2. Let V be any 2-dimensional subspace of (F2t × F2t) × (F2t × F2t). Then

the number of such distinct subspaces on which DV fi is constant is given by

(2t − 1)(25t+e−1(2e + 1) + (2t + 1)(24t−1 − 22t − 1))

3

where fi is defined as in Equation (6.2.1).

Proof. Let, V = 〈((a1, a2), (b1, b2)), ((c1, c2), (d1, d2))〉 be any 2-dimensional subspace of

(F2t × F2t)× (F2t × F2t). The second derivative of fi with respect to V is

DV fi((x1, x2), (y1, y2)) = Trt1((a1d2 + b2c1) + (a2d1 + b1c2) + ((a2d2 + b2c2) + (a2d
2i

2 +

b2i

2 c2)2i)y2i

2 + (a2 + c2)(b2i

2 d2 + b2d
2i

2 ) + (b2i

2 d2 + b2d
2i

2 )x2 + (a2d
2i+1
2 + b2i+1

2 c2)).

(6.2.4)

Case 1: Let (b1, b2)=(d1, d2)=(0, 0). Then V = 〈((a1, a2), (0, 0)), ((c1, c2), (0, 0))〉 and

DV fi((x1, x2), (y1, y2)) = 0, for all xj, yj ∈ F2t , j = 1, 2. Thus, with respect to any 2-

dimensional subspace of (F2t × F2t) × ({0} × {0}) the second derivative of fi is 0. The

number of such distinct 2-dimensional subspace is (22t−1)(22t−1−1)
3

.

Case 2: Let b2 = 0 and d2 6= 0. Then from Equation (6.2.4), we get

DV fi((x1, x2), (y1, y2)) = Trt1((a1d2 + (a2d1 + b1c2) + (a2d
2i+1
2 ) + (a2d2 + (a2d

2i

2 )2i)y2i

2 ),

which is constant if and only if a2d2 + (a2d
2i

2 )2i = 0.
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Subcase (i): Let a2 6= 0. Then a2d2 6= 0, and so,

a2d2 + (a2d
2i

2 )2i = 0⇔ a2i

2 d
22i

2 = a2d2

⇔ a2i−1
2 d22i−1

2 = 1, since a2 6= 0, d2 6= 0

⇔ (a2d
2i+1
2 )2i−1 = 1⇔ a2d

2i+1
2 ∈ F∗2i

⇔ a2d
2i+1
2 ∈ F∗2e as gcd(i, t) = e.

For any a2 ∈ F∗2t , it is possible to chose d2 in 2e − 1 ways. a1, b1, c1, c2, d1

can be chosen in 2t ways and a2 in 2t − 1 ways. Again the subspace generated by

{((a1, a2), (b1, 0)), ((c1, c2), (d1, d2))} is same as the subspace generated by {((a1, a2), (b1, 0)),

((a1 + c1, a2 + c2), (b1 +d1, d2))}. Therefore, the total number of distinct 2-dimensional sub-

space such that the second derivative of fi is constant is equal to 2t(2t−1)2t22t2t(2e−1)
2

=

25t(2t−1)(2e−1)
2

.

Subcase (ii): Let a2 = 0. Then DV fi((x1, x2), (y1, y2)) = Trt1(a1d2+b1c2), which is constant.

In this subcase, a1, b1, c1, c2, d1 can be chosen in 2t ways and d2 in 2t − 1 ways except

a1, b1 both are equal to 0. Therefore, the number of distinct 2-dimensional subspaces

corresponding to constant second-derivatives of fi is (22t−1)23t(2t−1)
2

.

Case 3: Let b2=0 and d2=0. From Equation (6.2.4), we get DV fi((x1, x2), (y1, y2)) =

Trt1(a2d1 + b1c2), which is constant.

Subcase (i): Let b1=0 and d1 6= 0. Since the subspace generated by {((a1, a2), (0, 0)),

((c1, c2), (d1, 0))} is same as the subspace generated by {((a1, a2), (0, 0)), ((a1 + c1, a2 +

c2), (d1, 0))}. Therefore, the number of distinct 2-dimensional subspaces corresponding to

constant second-derivatives of fi is (22t−1)22t(2t−1)
2

.

Subcase (ii): Let b1 6= 0 and d1 6= 0 with b1 6= d1. If b1 = d1 then the subspace generated

by {((a1, a2), (b1, 0)), ((c1, c2), (d1, 0))} is same as the subspace generated by {((a1 + c1, a2 +

c2), (b1 +d1, 0)), ((c1, c2), (d1, 0))}, i.e., {((a1 +c1, a2 + c2), (0, 0)), ((c1, c2), (d1, 0))}. Here a1,

a2, c1, c2, can be chosen in 2t ways, b1 in 2t − 1 ways and d1 in 2t − 2 ways. Therefore, the

number of distinct 2-dimensional subspaces corresponding to constant second-derivatives

of fi is 22t(2t−1)22t(2t−2)
6

= 24t(2t−1)(2t−2)
6

.

Case 4: Let b2 6= 0 and d2 6= 0 with b2 6= d2. If b2 = d2 then the subspace

generated by {((a1, a2), (b1, b2)), ((c1, c2), (d1, d2))} is same as the subspace generated by

{((a1 + c1, a2 + c2), (b1 + d1, b2 + d2)), ((c1, c2), (d1, d2))}, i.e., {((a1 + c1, a2 + c2), (b1 +
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d1, 0)), ((c1, c2), (d1, d2))}. From Equation (6.2.4), we get DV fi is constant if and only if

(a2d2 + b2c2) + (a2d
2i

2 + b2i

2 c2)2i = 0 and (b2i

2 d2 + b2d
2i

2 ) = 0.

Since

b2i

2 d2 + b2d
2i

2 = 0⇔
(
d2

b2

)2i−1

= 1 as b2 6= 0, d2 6= 0

⇔ d2

b2

∈ F∗2e as gcd(i, t) = e.

Let d2 = b2λ where λ ∈ F∗2e and λ 6= 1 as d2 6= b2. Thus, for each nonzero b2 ∈ F2t , it is

possible to choose d2 in 2e − 2 ways. From the first condition we obtain:

a2d2 + c2b2 + (a2d
2i

2 + c2b
2i

2 )2i = 0

⇔ b2(a2λ+ c2) + (b2i

2 (a2λ+ c2))2i = 0

⇔ (b2i+1
2 (a2λ+ c2))2i−1 = 1, if a2λ+ c2 6= 0

⇔ b2i+1
2 (a2λ+ c2) ∈ F∗2i

⇔ b2i+1
2 (a2λ+ c2) ∈ F∗2e , as gcd(i, t) = e

⇔ b2i+1
2 (a2λ+ c2) = λ′ ∈ F∗2e

⇔ c2 = a2λ+
λ′

b2i+1
2

.

Thus, a1, a2, b1, c1, d1 can be chosen in 2t ways, b2 in 2t−1 ways, c2 in 2e ways and d2 in 2e−2

ways (including the case for which a2λ + c2 = 0). Each 2-dimensional subspace generated

by a pair of vectors ((a1, a2), (b1, b2)), ((c1, c2), (d1, d2)), satisfying the above conditions,

contains altogether 6 distinct bases satisfying these conditions. Therefore, the number

of distinct 2-dimensional subspaces corresponding to constant second-derivatives of fi is

25t+e(2t−1)(2e−2)
6

.

Adding the all cases we get the result.

We obtain the following corollary form Theorem 1.2.39 and Theorem 6.2.2.

Corollary 6.2.3. If gcd(i, t) 6= gcd(j, t) then fi and fj are not equivalent where fi and fj

are defined as in Equation (6.2.1).
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6.2.2 Second-order nonlinearities

Theorem 6.2.4. Let m = 4t, t ≥ 3 and i, 1 ≤ i < t such that gcd(i, t) = e and gcd(2i +

1, 2t − 1) = 1. Let fi ∈ Bm be a function of the form given by Equation (6.2.1). Then

nl2(fi) ≥ 2m−1 − 1

2

√
27t+e − 2

11t+e
2 + 26t(2

t+e
2 − 2e + 1).

Proof. Let a = (a1, b1) and b = (b1, b2) where aj, bj ∈ F2t , j = 1, 2. To find nl2(fi) it is

need to find nonlinearity of D(a,b)fi, for all (a, b) ∈ (F2t × F2t)× (F2t × F2t). Let k(a, b) be

the dimension of the kernel of the bilinear form associated to D(a,b)fi, i.e., the dimension of

ED(a,b)fi . Since

ED(a,b)fi = {((c1, c2), (d1, d2)) ∈ (F2t × F2t)× (F2t × F2t) : D(c,d)D(a,b)fi = constant}

where c = (c1, c2), d = (d1, d2) and cj, dj ∈ F2t , j = 1, 2.

D(c,d)D(a,b)fi((x1,x2), (y1, y2)) = Trt1((a1d2 + b2c1) + (a2d1 + b1c2) + ((a2d2 + b2c2)+

(a2d
2i

2 + b2i

2 c2)2i)y2i

2 + (a2 + c2)(b2i

2 d2 + b2d
2i

2 ) + (b2i

2 d2 + b2d
2i

2 )x2+

(a2d
2i+1
2 + b2i+1

2 c2)).

(6.2.5)

Case 1: Let b2 = 0. From Equation (6.2.5), we get

D(c,d)D(a,b)fi((x1, x2), (y1, y2)) = Trt1((a1d2 + (a2d1 + b1c2) + (a2d2 + (a2d
2i

2 )2i)y2i

2 + a2d
2i+1
2 ),

which is constant if and only if a2d2 + (a2d
2i

2 )2i = 0.

Subcase (i): Let b2 = 0 but a2 6= 0. If d2 = 0 then D(c,d)D(a,b)fi((x1, x2), (y1, y2)) is constant,

for all xj, yj ∈ F2t , j = 1, 2. It is possible to choose c1, c2 and d1 in 2t ways. Thus, the total

number of ways in which ((c1, c2), (d1, 0)) can be chosen so that D(c,d)D(a,b)fi is constant is

23t.
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Again if d2 6= 0 then D(c,d)D(a,b)fi is constant if and only if

a2d2 + (a2d
2i

2 )2i = 0⇔ a2i

2 d
22i

2 = a2d2

⇔ (a2d
2i+1
2 )2i−1 = 1⇔ a2d

2i+1
2 ∈ F∗2i

⇔ a2d
2i+1
2 ∈ F∗2e as gcd(i, t) = e.

For each nonzero choice of a2, it is possible to choose d2 in 2e− 1 ways. c1,c2 and d1 can be

chosen in 2t ways. Thus, the total number of ways in which ((c1, c2), (d1, d2)) can be chosen

so that D(c,d)D(a,b)fi is constant is 23t(2e − 1) ways. If b2 = 0 and a2 6= 0 then the total

number of ways in which ((c1, c2), (d1, d2)) can be chosen such that D(c,d)D(a,b)fi is constant

is 23t(2e − 1) + 23t =23t+e.

Subcase (ii): Let b2 = 0 and a2 = 0. Then D(c,d)D(a,b)fi((x1, x2), (y1, y2)) = Trt1(a1d2 +b1c2),

which is constant. It is possible to choose c1, c2, d1, d2 in 2t ways. Thus, the total number

of ways in which ((c1, c2), (d1, d2)) can be chosen such that D(c,d)D(a,b)fi is constant is 24t.

Case 2: Let b2 6= 0. Then D(c,d)D(a,b)fi((x1, x2), (y1, y2)) is constant if and only if

b2i

2 d2 + b2d
2i

2 = 0 and (a2d2 + b2c2) + (a2d
2i

2 + b2i

2 c2)2i = 0.

Subcase (i): Let b2 6= 0 but d2 = 0. Then D(c,d)D(a,b)fi is constant if and only if

b2c2 + (b2i

2 c2)2i = 0⇔ c2i

2 b
22i

2 = c2b2

⇔ (c2b
2i+1
2 )2i−1 = 1, let c2 6= 0

⇔ c2b
2i+1
2 ∈ F∗2i ⇔ c2b

2i+1
2 ∈ F∗2e as gcd(i, t) = e.

For each choice of b2, it is possible to choose c2 in 2e ways (including c2 = 0). c1 and d1

can be chosen in 2t ways. Thus, the total number of ways in which ((c1, c2), (d1, 0)) can be

chosen so that D(c,d)D(a,b)fi is constant is 22t+e ways.

Subcase (ii): Let b2 6= 0 and d2 6= 0. Then D(c,d)D(a,b)fi is constant if and only if

b2i

2 d2 + b2d
2i

2 = 0 and (a2d2 + b2c2) + (a2d
2i

2 + b2i

2 c2)2i = 0.
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From the first part of the above equation, we get

b2i

2 d2 + b2d
2i

2 = 0⇔ b2i

2 d2 = b2d
2i

2

⇔
(
d2

b2

)2i−1

= 1⇔ d2

b2

∈ F∗2i

⇔ d2

b2

∈ F∗2e as gcd(i, t) = e

⇔ d2 = λb2 where λ ∈ F∗2e .

For each non zero b2 ∈ F2t , it is possible to choose d2 in 2e − 1 ways .

(a2d2 + b2c2) + (a2d
2i

2 + b2i

2 c2)2i = 0

⇔ b2(a2λ+ c2) + b22i

2 (a2λ+ c2)2i = 0

⇔ (b2i+1
2 (a2λ+ c2))2i−1 = 1, let a2λ+ c2 6= 0

⇔ b2i+1
2 (a2λ+ c2) ∈ F∗2e as gcd(i, t) = e.

So, c2 = a2λ+ λ′

b2
i+1

2

where λ′ ∈ F∗2e . Therefore, c1 and d1 can be chosen in 2t ways and c2 in

2e ways (including a2λ+c2 = 0). Thus, the total number of ways in which ((c1, c2), (d1, d2))

can be chosen so that D(c,d)D(a,b)fi is constant is 22t+e(2e − 1) ways.

If b2 6= 0 then the total number of ways in which ((c1, c2), (d1, d2)) can be chosen such

that D(c,d)D(a,b)fi is constant is 22t+e(2e − 1) + 22t+e =22t+2e.

So, the dimension of ED(a,b)fi is

k(a, b) = k((a1, a2), (b1, b2)) =



4t, if a2 = 0, b2 = 0;

3t+ e, if a2 6= 0, b2 = 0;

2t+ 2e, if a2 = 0, b2 6= 0;

2t+ 2e, if a2 6= 0, b2 6= 0.

Let F2t × F2t = F2
2t . The nonlinearity of D(a,b)fi is

nl(D(a,b)fi) = 2m−1 − 1

2
max

(u,v)∈F2
2t
×F2

2t

| WD(a,b)fi(u, v) |

= 2m−1 − 1

2
2
m+k(a,b)

2 .
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By Proposition 1.2.20, we get

nl2(fi) ≥
1

2
max

(a,b)∈F2
2t
×F2

2t

nl(D(a,b)fi) =
1

2
(2m−1 − 1

2
2
m+2t+2e

2 ). (6.2.6)

By Proposition 1.2.21, we get

nl2(fi) ≥ 2m−1 − 1

2

√
22m − 2

∑
(a,b)∈F2

2t
×F2

2t

nl(D(a,b)fi).

∑
(a,b)∈F2

2t
×F2

2t

nl(D(a,b)fi) =
∑

((a1,0),(b1,0))

nl(D(a,b)fi) +
∑

((a1,a2),(b1,0)),a2 6=0

nl(D(a,b)fi)+

∑
((a1,0),(b1,b2)),b2 6=0

nl(D(a,b)fi) +
∑

((a1,a2),(b1,b2)),a2 6=0,b2 6=0

nl(D(a,b)fi)

= 22t(2m−1 − 1

2
2
m+4t

2 ) + 22t(2t − 1)(2m−1 − 1

2
2
m+3t+e

2 )

+ 23t(2t − 1)(2m−1 − 1

2
2
m+2t+2e

2 )

= 28t−1 − 26t−1 +
1

2
(26t+e + 2

11t+e
2 − 27t+e − 2

13t+e
2 ).

Thus,

nl2(fi) ≥ 2m−1 − 1

2

√
27t+e − 2

11t+e
2 + 26t(2

t+e
2 − 2e + 1). (6.2.7)

Subtracting the lower bound obtained in Equation (6.2.6) from the lower bound obtained

in Equation (6.2.7), we get

2m−1−1

2

√
27t+e − 2

11t+e
2 + 26t(2

t+e
2 − 2e + 1)− 1

2
(2m−1 − 1

2
2
m+2t+2e

2 )

=
1

4
(2m + 2

3m
4

+e)− 1

2

√
2

7m
4

+e − 2
11m

8
+ e

2 + 2
3m
2 (2

m
8

+ e
2 − 2e + 1) ≥ 0

for sufficiently large m. Therefore, the lower bound obtained in Equation (6.2.7) is the

better lower bound than Equation (6.2.6), and the theorem is shown.
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Let m = 4t, t ≥ 3 and

nt,i(e) =
(2t − 1)(25t+e−1(2e + 1) + (2t + 1)(24t−1 − 22t − 1))

3
,

m1
t,i(e) =

1

2
(2m−1 − 1

2
2
m+2t+2e

2 ),

m2
t,i(e) = 2m−1 − 1

2

√
27t+e − 2

11t+e
2 + 26t(2

t+e
2 − 2e + 1)

where 1 ≤ i < t such that gcd(i, t) = e and gcd(2i + 1, 2t − 1) = 1. Since for any fixed

m, nt,i(e), m
1
t,i(e) and m2

t,i(e) depends on e only. We compute nt,i(e), m
1
t,i(e) and m2

t,i(e) in

Table 6.1, for different values of m and e.

m = 12 m = 20 m = 24 m = 28
t = 3; e = 1 t = 5; e = 1 t = 6; e = 1 t = 6; e = 2 t = 7; e = 1

nt,i(e) 271019 1218620075 79090592427 236930640555 5096560306859
m1
t,i(e) 768 245760 4063232 3932160 66060288

m2
t,i(e) 947 386478 6848097 6239867 116951970

m = 36
t = 9; e = 1 t = 9; e = 3

nt,i(e) 20981579529235115 218752935040559787
m1
t,i(e) 17112760320 16911433728

m2
t,i(e) 32180055793 30035054993

Table 6.1: The number of distinct 2-dimensional subspaces on which the second-derivative
is constant and the second-order nonlinearity bounds of the cubic MMF bent-negabent
functions fi.



Chapter 7

Gowers U3 norm of some classes of

bent Boolean functions

7.1 Introduction

The problem of constructing Boolean functions in n variables with highest possible second-

order nonlinearity is connected to the covering radius problem of second-order Reed–Muller

codes. Both these problems are difficult to solve. The Gowers U3 norm of a Boolean function

is a measure of its resistance to quadratic approximations. In this chapter, we compute

Gowers U3 norms for some classes of Maiorana–McFarland bent functions. In particular,

we explicitly determine the value of the Gowers U3 norm of Maiorana–McFarland bent

functions obtained by using APN permutations. We further prove that this value is always

smaller than the Gowers U3 norms of Maiorana–McFarland bent functions obtained by using

differentially δ-uniform permutations for all δ ≥ 4. We also compute the Gowers U3 norms

for a class of cubic monomial functions, not necessarily bent, and show that for n = 6,

these norm values are less than that of Maiorana–McFarland bent functions. Further, we

computationally show that there exist 6-variable functions in this class which are not bent

but achieve the maximum second-order nonlinearity for 6 variables.

113
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7.2 Preliminaries

In this chapter, we introduce a slightly different notations for convenience. Let [n] denotes

the set {1, 2, . . . , n}. Any function F from Fn2 (or, from F2n) to F2 is said to be a Boolean

function in n variables and their set is denoted by Bn. The character form associated to

F ∈ Bn, denoted by the corresponding lower case letter f , is defined by f(x) = (−1)F (x),

for all x ∈ Fn2 . For any a ∈ Fn2 , ϕa ∈ Bn is defined as ϕa(x) = a · x, for all x ∈ Fn2 . The

Walsh–Hadamard transform of F ∈ Bn at a ∈ Fn2 is defined as

F(F + ϕa) =
∑
x∈Fn2

(−1)F (x)+ϕa(x) =
∑
x∈Fn2

f(x)(−1)ϕa(x).

The Fourier transform of f at a ∈ Fn2 , denoted by f̂ , is defined as

f̂(a) =
1

2n

∑
x∈Fn2

f(x)(−1)ϕa(x) =
1

2n
F(F + ϕa).

The Walsh–Hadamard spectrum of F is the multiset [F(F + ϕa) : a ∈ Fn2 ] and the Fourier

spectrum of f (or, of F ) is [f̂(a) : a ∈ Fn2 ]. The derivative of F ∈ Bn with respect to a ∈ Fn2
is defined by DaF (x) = F (x+ a) + F (x), for all x ∈ Fn2 . If f(x) = (−1)F (x), for all x ∈ Fn2
then

Daf(x) = (−1)DaF (x) = (−1)F (x+a)+F (x) = f(x)f(x+ a).

Definition 7.2.1. A Boolean function F ∈ Bn (n even) is said to be bent if and only if

there exists another Boolean function F̃ ∈ Bn such that F(F + ϕa) = 2
n
2 (−1)F̃ (a), for all

a ∈ Fn2 . The Boolean function F̃ is said to be the dual of F and is also a bent function.

The first generic technique for constructing bent functions was proposed by Rothaus [86].

The functions so obtained are referred to as Maiorana–McFarland bent functions.

Definition 7.2.2. Suppose m = 2n where n ∈ Z+, π is a permutation on F2n and g ∈ Bn.

A function of the form F (x, y) = π(x) · y + g(x), for all (x, y) ∈ F2n × F2n, is said to be a

Maiorana–McFarland bent function.

The Walsh–Hadamard transform of a bent function F is related to the Walsh–Hadamard

transform of its dual F̃ as we see next.
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Proposition 7.2.3 ( [19, Lemma 2]). Let F be a bent function in n variables and F̃ be its

dual. Then for any a, b ∈ Fn2 , we have

F(DaF̃ + ϕb) = F(DbF + ϕa). (7.2.1)

7.3 Gowers uniformity norms

Let f : V → R be any function on a finite set V and B ⊆ V . Then Ex∈B[f(x)] :=

1
|B|
∑

x∈B f(x) is the average of f over B. The connection between the expected values of

F : Fn2 → F2 and its character form f is given in the lemma below.

Lemma 7.3.1. We have Ex∈B[f(x)] = 1− 2Ex∈B[F (x)].

Proof. Using the fact that (−1)b = 1− 2b, for b ∈ {0, 1} , we write

Ex∈B[f(x)] =
1

|B|
∑
x∈B

f(x) =
1

|B|
∑
x∈B

(−1)F (x)

=
1

|B|
∑
x∈B

(1− 2F (x)) = 1− 2Ex∈B[F (x)].

Definition 7.3.2 ( [143, Definition 2.2.1]). Let f : Fn2 → R. For every k ∈ Z+, we define

the kth-dimension Gowers uniformity norm (the Uk norm) of f to be

‖f‖Uk =

Ex,x1,...,xk∈Fn2

∏
S⊆[k]

f

(
x+

∑
i∈S

xi

) 1

2k

.

Gowers norms for k = 1, 2, 3 are explicitly presented below (cf. [132,143]).

‖f‖U1 =| Ex,h∈Fn2 [f(x)f(x+ h)] |1/2

=| Ex∈Fn2 [f(x)] | .

‖f‖U2 =| Ex,h1,h2∈Fn2 [f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)] |1/4

=| Eh1∈Fn2 | Ex∈Fn2 [f(x)f(x+ h1)] |2|1/4,

‖f‖U3 =| Ex,h1,h2,h3∈Fn2 [f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

× f(x+ h3)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3)] |1/8 .
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It is not difficult (and we will see some instances of this claim later) to see that one can

recursively define the Gowers norms by

‖f‖U1 = |Ex∈Fn2 [f(x)]|,

‖f‖Uk+1
=
(
Eh∈Fn2 [‖Dhf‖2k

Uk
]
)1/2k+1

.

The connection between the Gowers uniformity norms and correlation of a function with

polynomials with a certain degree bound is described by results obtained by Gowers, Green

and Tao [11,126]. For a survey we refer to Chen [143].

Theorem 7.3.3 ( [143, Fact 2.2.1]). Let k ∈ Z+, ε > 0. Let P : Fn2 → F2 be a polynomial

of degree at most k, and f : Fn2 → R. Suppose
∣∣Ex[f(x)(−1)P (x)]

∣∣ ≥ ε. Then ‖f‖Uk+1
≥ ε.

Theorem 7.3.3 implies that if a Boolean function has low Gowers Uk+1 norm then it has

low correlation with all the polynomials functions on Fn2 of degrees at most k. In other

words it has high kth-order nonlinearity.

It is known that the Uk, for k > 1, is a norm, that is, it is homogeneous, nonnegative,

nondegenerate and respects the triangle inequality. It is also known that the sequence of

norms {Uk}k is monotonically increasing, that is, ‖f‖Uk ≤ ‖f‖Uk+1
, k ≥ 0.

It is known that the Gowers U2 norm of a function is the `4 norm of its Fourier transform,

more precisely:

Theorem 7.3.4 ( [126,143]). Let f : Fn2 → R. Then

‖f‖4
U2

=
∑
x∈Fn2

f̂(x)4. (7.3.1)

The following is an extension of Theorem 7.3.4.

Theorem 7.3.5. Let k ∈ Z+, k ≥ 2. Let F ∈ Bn and f(x) = (−1)F (x), for all x ∈ Fn2 .

Then

‖f‖2k

Uk
=

1

2(k−2)n

∑
h1,...,hk−2∈Fn2

∑
x∈Fn2

̂Dh1,...,hk−2
f(x)4.

Proof. Let g = Dh1,...,hk−2
f where h1, . . . , hk−2 ∈ Fn2 . For any k ∈ Z+, the kth dimensional



Chapter 7: Gowers U3 norm of some classes of bent Boolean functions 117

Gowers uniformity norm of f is

‖f‖2k

Uk
= Ex,h1,...,hk∈Fn2

∏
S⊆[k]

f(x+
∑
i∈S

hi)


=

1

2(k+1)n

∑
x,h1,...,hk∈Fn2

g(x)g(x+ hk−1)g(x+ hk)g(x+ hk−1 + hk)

=
1

2(k+1)n

∑
h1,...,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

g(x)g(x+ hk−1)
∑
hk∈Fn2

g(x+ hk)g(x+ hk−1 + hk)

=
1

2(k+1)n

∑
h1,...,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

g(x)g(x+ hk−1)
∑
y∈Fn2

g(y)g(y + hk−1)

=
1

2(k−1)n

∑
h1,...,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

ĝ(x)2(−1)hk−1·x
∑
y∈Fn2

ĝ(y)2(−1)hk−1·y

=
1

2(k−1)n

∑
h1,...,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

∑
y∈Fn2

ĝ(x)2ĝ(y)2(−1)hk−1·(x+y)

=
1

2(k−1)n

∑
h1,...,hk−2∈Fn2

∑
x∈Fn2

∑
y∈Fn2

ĝ(x)2ĝ(y)2
∑

hk−1∈Fn2

(−1)hk−1·(x+y)

=
1

2(k−2)n

∑
h1,...,hk−2∈Fn2

∑
x∈Fn2

ĝ(x)4

=
1

2(k−2)n

∑
h1,...,hk−2∈Fn2

∑
x∈Fn2

̂Dh1,...,hk−2
f(x)4

where we used the fact (see [135]) that the autocorrelation

Cg(u) =
∑
x∈Fn2

g(x)g(x+ u) = 2n
∑
x

ĝ(x)2(−1)u·x, u ∈ Fn2 ,

as well as [135, Lemma 2.6] giving
∑

u∈Fn2
(−1)u·w = 2n if w = 0, and 0, if w 6= 0.

Theorem 7.3.6. Let F,G ∈ Bn be affine equivalent and k ∈ Z+. Suppose f(x) = (−1)F (x)

and g(x) = (−1)G(x) for all x ∈ Fn2 are the character form associated to F and G, re-

spectively. Then the kth-dimension Gowers uniformity norm of f and g are equal, that

is,

‖f‖Uk = ‖g‖Uk .
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Proof. Let G(x) = F (xA+ b), for all x ∈ Fn2 where A ∈ GL(n,F2) and b ∈ Fn2 .

‖g‖Uk =

Ex,h1,...,hk∈Fn2

∏
S⊆[k]

g(x+
∑
i∈S

hi)

 1

2k

=

 1

2(k+1)n

∑
h1,...,hk∈Fn2

∑
x∈Fn2

∏
S⊆[k]

g(x+
∑
i∈S

hi)

 1

2k

=

 1

2(k+1)n

∑
h1,...,hk∈Fn2

∑
x∈Fn2

∏
S⊆[k]

f(xA+
∑
i∈S

(hiA) + b)

 1

2k

=

 1

2(k+1)n

∑
a1,...,ak∈Fn2

∑
x∈Fn2

∏
S⊆[k]

f(xA+ b+
∑
i∈S

ai)

 1

2k

, let ai = hiA, i ∈ S

=

 1

2(k+1)n

∑
a1,...,ak∈Fn2

∑
y∈Fn2

∏
S⊆[k]

f(y +
∑
i∈S

ai)

 1

2k

, let y = xA+ b

= ‖f‖Uk .

The proof of the next corollary follows directly from Theorem 7.3.6.

Corollary 7.3.7. Let F,G ∈ Bn and there exists a k ∈ Z+ such that ‖f‖Uk 6= ‖g‖Uk where

f and g are the associated character form of F and G, respectively. Then F and G are

affine inequivalent.

It is more convenient to calculate the Gowers norms of a bent function for k = 1 and 2.

Let F ∈ Bn be a bent function and f(x) = (−1)F (x), for all x ∈ Fn2 . Then

1. ‖f‖U1 = 2−
n
2 .

2. ‖f‖U2 = 2−
n
4 , i.e., ‖f‖U1 = (‖f‖U2)2.

7.3.1 Gowers U3 norm of the dual of a bent function

It is known that the dual of a bent function is bent. However, it is not known whether a bent

function and its dual have the same second-order nonlinearity. We prove that the Gowers

U3 norms of a bent and its dual are equal and therefore they provide equal “resistance” to

quadratic approximations.
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Proposition 7.3.8. Let the character forms associated to a bent function F ∈ Bn and its

dual F̃ be f and f̃ , respectively. Then

‖f‖U3 = ‖f̃‖U3 .

Proof. The Gowers U3 norm of f is

‖f‖8
U3

=

∣∣∣∣∣∣ 1

24n

∑
h∈Fn2

∑
h1∈Fn2

∑
h2∈Fn2

∑
x∈Fn2

(−1)DhF (x)+DhF (x+h1)+DhF (x+h2)+DhF (x+h1+h2)

∣∣∣∣∣∣
=

1

2n

∑
h∈Fn2

1

2n

∑
h1∈Fn2

 1

2n

∑
x∈Fn2

(−1)DhF (x)+DhF (x+h1)

2

=
1

2n

∑
h∈Fn2

Eh1∈Fn2

[
Ex∈Fn2

[
(−1)DhF (x)+DhF (x+h1)

]2]
=

1

2n

∑
h∈Fn2

‖Dhf‖4
U2

=
1

2n

∑
h∈Fn2

∑
a∈Fn2

D̂hf(a)4, by (7.3.1)

=
1

25n

∑
h∈Fn2

∑
a∈Fn2

F(DhF + ϕa)
4 =

1

25n

∑
a∈Fn2

∑
h∈Fn2

F(DaF̃ + ϕh)
4, by (7.2.1)

= ‖f̃‖8
U3
.

7.3.2 Gowers U3 norm of Maiorana–McFarland bents of the form

Trn1(yx2
i+1)

Gangopadhyay et al. [110] employed the recursive framework developed by Carlet to identify

cubic Maiorana–McFarland bent functions having high second-order nonlinearities. Below

we describe the subclass of Maiorana–McFarland bent functions considered in [110] which

was originally constructed by Canteaut and Charpin [5]. It is shown in [110] that bent

functions on 10 variables having maximum known second-order nonlinearity exist within

this class.

Let m = 2n. We identify Fn2 with the finite field F2n and Fm2 with F2n × F2n . In the
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next theorem we consider cubic Maiorana–McFarland bent functions of the form

Fi(x, y) = Trn1 (yx2i+1) (7.3.2)

where x, y ∈ F2n , m ≥ 6, i is an integer such that 1 ≤ i < n, gcd(2n − 1, 2i + 1) = 1 and

gcd(i, n) = e.

Theorem 7.3.9. If Fi ∈ Bm is a function of the form given by Equation (7.3.2) and fi is

the associated character form then

‖fi‖8
U3

=
2m + 2n+e(2e + 1)(2n − 1)

22m
. (7.3.3)

Thus, the Gowers U3 norm is minimum if and only if e = 1.

Proof. For any function F ∈ Bm with f as the associated character form, the Gowers U3

norm can be written as

‖f‖8
U3

=

∣∣∣∣∣∣ 1

24m

∑
h,h1,h2,x∈Fm2

(−1)Dh,h1,h2
F (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

24m

∑
h1,h2∈Fm2

∑
h,x∈Fm2

(−1)Dh(Dh1,h2
F )(x)

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣
∑

h1,h2∈Fm2

∑
x∈Fm2

(−1)Dh1,h2
F (x)

2∣∣∣∣∣∣ .
Let S(h1, h2;F ) :=

∑
x∈Fm2

(−1)Dh1,h2
F (x). We note that S(h1, h2;F ) = 2m if either h1 = h2

or exactly one of h1, h2 is 0, so

‖f‖8
U3

=
1

24m

∣∣∣∣∣∣
∑

h1,h2∈Fm2

S(h1, h2;F )2

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m

 ∑
h1∈Fm2

1 +
∑

h2∈Fm2 \{0}
h1=0

1 +
∑

h1∈Fm2 \{0}
h2=0

1

+
∑

h1,h2∈Fm2 \{0}
h1 6=h2

S(h1, h2;F )2

∣∣∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m(3 · 2m − 2) +

∑
h1,h2∈Fm2 \{0}

h1 6=h2

S(h1, h2;F )2

∣∣∣∣∣∣∣∣ .
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Replacing F by Fi we note that, since Fi is a cubic function, S(h1, h2;Fi) is either 0 or

±2m. Therefore, we have to count the pairs (h1, h2) for which S(h1, h2;Fi) = ±2m. Similar

counting is performed in [110] and [111, Theorem 4]. However, for completeness we recall

the basic steps.

Let h1 = (b, a) and h2 = (d, c) where a, b, c, d ∈ F2n .

D(b,a),(d,c)Fi(x, y) = Trn1 (((ad+ cb) + (ad2i + cb2i)2i)x2i) + Trn1 ((bd2i + b2id)y)

+ Trn1 (ad2i+1 + cb2i+1) + Trn1 ((a+ c)(bd2i + b2id)).

Case 1: If b = d = 0 then D(b,a),(d,c)Fi(x, y) = 0, for all (x, y) ∈ F2n × F2n . The number of

such points is (2n − 1)(2n − 2).

Case 2: If b = 0 and d 6= 0 then

D(d,c),(0,a)Fi(x, y) = Trn1 ((ad+ (ad2i)2i)x2i) + Trn1 (ad2i+1),

which is constant if and only if

ad+ (ad2i)2i = ad+ a2id22i
= 0,

i.e., a2i−1d22i−1 = (ad2i+1)2i−1 = 1, since d 6= 0 and a 6= 0,

i.e., ad2i+1 ∈ F∗2e , as gcd(i, t) = e.

Thus, given any a ∈ F2n \{0}, c and d can be chosen in 2n and 2e−1 ways, respectively,

such that the second-derivative under consideration is constant. Therefore, among all the

derivatives of the form D(d,c),(0,a)Fi, exactly 2n(2n − 1)(2e − 1) are constants.

Similarly, if b 6= 0 and d = 0 among all the derivatives of the form D(0,c),(b,a)Fi then

exactly 2n(2n − 1)(2e − 1) are constants.

Case 3: Suppose b 6= 0 and d 6= 0.

Subcase (i): Let b = d. Then D(d,c),(b,a)Fi = D(0,c+a),(b,a)Fi = D(d,c),(0,a+c)Fi. In this case

a 6= c, since otherwise (b, a) = (d, c) which is already dealt with. Thus, among all the

derivatives of the form D(d,c),(b,a)Fi, exactly 2n(2n − 1)(2e − 1) are constants.

Subcase (ii): Let b 6= d. The second-derivative D(d,c),(b,a)Fi is constant if and only if

(ad+ cb) + (ad2i + cb2i)2i = 0 and bd2i + b2id = 0.

From the second condition we obtain (b−1d)2i−1 = 1. Since b, d ∈ F2n , (b−1d)2t−1 = 1.
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Combining these two we obtain (b−1d)2e−1 = 1, which implies that b−1d ∈ F∗2e . Thus,

d = γb where γ ∈ F∗2e . Since b 6= d, γ 6= 1. Therefore, for each choice of b it is possible to

choose d in 2e − 2 different ways. From the first condition we obtain:

ad+ cb+ (ad2i + cb2i)2i = b(aγ + c) + (b2i(aγ + c))2i = 0,

i.e., (b2i+1(aγ + c))2i−1 = 1, if aγ + c 6= 0.

i.e., b2i+1(aγ + c) = γ′ ∈ F∗2e , so, c = aγ + γ′

b2i+1
.

Note that a can be chosen in 2n ways, b in 2n − 1 ways, d in 2e − 2 ways and c in 2e ways

(including the case for which aγ+ c = 0). So the total number of ways in which (b, a), (d, c)

can be chosen is

2n+e(2n − 1)(2e − 2).

Combining all the above counts we obtain

‖fi‖8
U3

=
2m + 2n+e(2e + 1)(2n − 1)

22m
.

It is observed from Equation (7.3.3) that for e = 1, the Gowers U3 norm of Fi

‖fi‖8 =
7 · 2n − 6

23n

is minimum. It has been experimentally checked in [110, Section 3] that for m = 2n = 10,

1 ≤ i ≤ 4 (therefore, e = 1), the functions Fi’s have the largest known second-order

nonlinearity.

7.3.3 Gowers U3 norms of Maiorana–McFarland bent functions

constructed by using APN and differentially 4-uniform per-

mutations

A vectorial Boolean function φ : Fn2 → Fn2 , also referred to as an (n, n)-function, is said to

be differentially δ-uniform if

δ(a, b) = |{x ∈ Fn2 : φ(x) + φ(x+ a) = b}| ≤ δ,
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for all a, b ∈ Fn2 with a 6= 0. We denote the set {x ∈ Fn2 : φ(x)+φ(x+a) = b} by ∆(a, b), for

all a, b ∈ Fn2 with a 6= 0. If φ is differentially 2-uniform then it is said to be an almost perfect

nonlinear (APN) function. If φ is an APN function and a permutation then we refer to it as

an APN permutation on Fn2 . There are several applications of APN functions, but perhaps

the most significant is that if the S-box (vectorial Boolean function) is based upon an APN

function, the probability of success for the differential attack is minimized [30]. Certainly, in

block cipher design, invertibility is essential, so the S-boxes must be permutations. There

are very few classes of APN functions, like monomials APN, which are completely described,

and there are many APN questions still open (like the existence of APN permutations in

all even dimensions; in fact, we barely know of a single example in dimension 6). The

connection with linear codes is well-known via a result of Carlet, Charpin and Zinoviev [26],

stating that f : F2n → F2n with f(0) = 0 is APN if and only if the binary linear code with

parity check matrix of columns (αi, f(αi))T , 1 ≤ i ≤ 2n−1, has minimum distance 5 (α is a

primitive element of F2n). We refer the reader to the huge body of literature on differential

uniform and APN functions [30,31,61,70,134,156] and their references. Let

Ei = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = i},

for all nonnegative integers i. It is easy to see that Ei = ∅, if i ≡ 1 (mod 2).

Lemma 7.3.10. Suppose that φ : Fn2 → Fn2 is an APN function. Then the cardinality of

E2 = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = 2} is |E2| = 2n−1(2n − 1).

Proof. Let a ∈ Fn2 \ {0}. We know that Daφ(x) = Daφ(x + a) = b ∈ Fn2 , for all x ∈ Fn2 .

Therefore, the cardinality of the range of the function Daφ is at most 2n−1. Suppose that

{xi : i = 1, 2, . . . , 2n−1} ⊆ Fn2 such that xj 6= xi and xj 6= xi + a, for all i 6= j and

Daφ(xi) = Daφ(xi + a) = bi, for all i = 1, 2, . . . , 2n−1. Then

bi = bj ⇔ Daφ(xi) = Daφ(xj)

⇔ Da(φ(xi) + φ(xj)) = 0

⇔ Da(φ(xi) + φ(xi + b)) = 0 where b = xi + xj,

⇔ DaDbφ(xi) = 0,

which is not possible, since φ is APN (cf. [30, page 417]). Therefore, for each choice of
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a ∈ Fn2 \ {0} we obtain exactly 2n−1 distinct b’s in Fn2 \ {0} such that δ(a, b) = 2. Since a’s

can be chosen in 2n − 1 many ways, |E2| = 2n−1(2n − 1).

Lemma 7.3.11. Let φ be a differentially δ-uniform (n, n)-function where δ = 2k, and

E2i = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = 2i},

for all i ∈ {0, 1, . . . , k}. Then
k∑
i=1

i |E2i| = 2n−1(2n − 1).

Proof. For each a ∈ Fn2 \{0}, it is possible to find a set {x1, . . . , x2n−1} such that xi+a 6= xj,

whenever i 6= j, so that Fn2 = {x1, . . . , x2n−1} ∪ {(x1 + a), . . . , (x2n−1 + a)}. We construct a

list of differences as in Table 7.1.

No. Output differences

1 φ(x1) + φ(x1 + a) = b1

2 φ(x2) + φ(x2 + a) = b2

... . . .
j φ(xj) + φ(xj + a) = bj
... . . .

2n−1 φ(x2n−1) + φ(x2n−1 + a) = b2n−1

Table 7.1: List of (not necessarily distinct) output differences when the input difference
is a.

If δ(a, b) 6= 0 then (a, b) ∈ E2i for a unique i ∈ {1, . . . , k}, and we have a subset

S
(i)
(a,b) ⊆ {1, . . . , 2n−1}, with |S(i)

(a,b)| = i, such that φ(xj) + φ(xj + a) = bj = b, for all

j ∈ S(i)
(a,b). We say that i rows of S

(i)
(a,b) are covered by (a, b). If we consider the collection of

all tables like Table 7.1, one for each a ∈ Fn2 \ {0} then for each (a, b) ∈ E2i, i rows of S
(i)
(a,b)

are covered. It can be checked that S
(i)
(a,b) = S

(i′)
(a,b′) if and only if i = i′ and b = b′, otherwise,

S
(i)
(a,b) ∩ S

(i′)
(a,b′) = ∅.

The total number of rows covered (considering all the distinct 2n − 1 tables, one corre-

sponding to each a ∈ Fn2 \ {0}) if we vary (a, b) over the whole of E2i is i |E2i|. If we repeat

this process for each i ∈ {1, . . . , k}, eventually all the rows of all the 2n−1 tables will be

exhausted and the claimed identity is shown.

Theorem 7.3.12. Let F ∈ Bm be a Maiorana–McFarland bent function of the form

F (x, y) = φ(x) · y + h(x),
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for all x, y ∈ Fn2 where h ∈ Bn and φ is an APN permutation on Fn2 . Then the Gowers U3

norm of the character form f = (−1)F is

‖f‖8
U3

=
7 · 2n − 6

23n
. (7.3.4)

Proof. Using Theorem 7.3.5,

‖f‖8
U3

=
1

2m

∑
(α,β)∈Fn2×Fn2

∑
(a,b)∈Fn2×Fn2

D̂(α,β)f(a, b)4

=
1

25m

∑
(α,β)∈Fn2×Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)F (x,y)+a·x+b·y

4

=
1

25m
(A+B + C)

where

A =
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)F (x,y)+a·x+b·y

4

,

=
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)a·x+b·y

4

= 24m,

B =
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)F (x,y)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)β·φ(x)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

∑
x∈Fn2

(−1)β·φ(x)+a·x
∑
y∈Fn2

(−1)b·y

4

=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·φ(x)+a·x

4

= 22m
∑
β∈Fn2

∑
a∈Fn2

∑
x∈Fn2

(−1)β·φ(x)+a·x

4

− 22m
∑
a∈Fn2

∑
x∈Fn2

(−1)a·x

4

= 22m(3 · 24n − 2 · 23n − 24n), (cf. [30, page 418])

= 23m+n+1(2n − 1),
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C =
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)F (x,y)+a·x+b·y

4

=
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)+(φ(x)+φ(x+α)+b)·y

4

=
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

∑
x∈Fn2

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)
∑
y∈Fn2

(−1)(φ(x)+φ(x+α)+b)·y

4

= 22m
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
x∈∆(α,b)

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)

(−1)a·x+β·φ(x)+b·β+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)={xαb,xαb+α}

(−1)a·x+β·φ(x)+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(
(−1)a·xαb+β·φ(xαb)+h(xαb)+h(xαb+α)

+(−1)a·(xαb+α)+β·φ(xαb+α)+h(xαb+α)+h(xαb)
)4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(
(1 + (−1)a·α+b·β)(−1)a·xαb+β·φ(xαb)+h(xαb)+h(xαb+α)

)4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(8 + 8(−1)a·α+b·β)

= 22m
∑

(α,b)∈E2

∑
β∈Fn2

∑
a∈Fn2

8 + 22m+3
∑

(α,b)∈E2

∑
β∈Fn2

∑
a∈Fn2

(−1)b·β+α·a

= 23m+3 |E2| , since (α, b) 6= (0, 0), the sum
∑
β∈Fn2

∑
a∈Fn2

(−1)b·β+α·a = 0.

From Lemma 7.3.10, we have |E2| = 2n−1(2n − 1). So

‖f‖8
U3

=
1

22m
(2m + 2n+1(2n − 1) + 8 |E2|) =

7 · 2n − 6

23n
,

and the claim is shown.

Corollary 7.3.13. Let ‖fi‖8
U3

and ‖f‖8
U3

be defined as in Equation (7.3.3) and (7.3.4),

respectively. Then

‖fi‖8
U3
− ‖f‖8

U3
=

(2n − 1)(2e + 3)(2e − 2)

23n
.
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Therefore, ‖fi‖8
U3
≥ ‖f‖8

U3
, with equality holding only when e = 1, that is, gcd(n, i) = 1.

Theorem 7.3.14. Let G ∈ Bm be a Maiorana–McFarland bent function of the form

G(x, y) = ψ(x) · y + h(x),

for all x, y ∈ Fn2 where h ∈ Bn and ψ is a differentially 4-uniform permutation and not an

APN permutation on Fn2 . Then the Gowers U3 norm of the character form g = (−1)G is

‖g‖8
U3
>

7 · 2n − 6

23n
.

Proof. Using similar arguments as in the proof of Theorem 7.3.12,

‖g‖8
U3

=
1

25m
(A1 +B1 + C1)

where

A1 =
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)G(x,y)+a·x+b·y

4

= 24m,

B1 =
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)G(x,y)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·ψ(x)+a·x

4

≥ 23m+n+1(2n − 1), (cf. [30, page 415]),

C1 =
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)G(x,y)+a·x+b·y

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

2∑
i=1

∑
(α,b)∈E2i

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

= C11 + C12,

C11 = 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

= 23m+3|E2|,
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C12 = 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E4

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

.

For each (α, b) ∈ E4, there exist four distinct elements x1, x1 +α, x2, x2 +α ∈ Fn2 such that

Dαψ(xj) = Dαψ(xj + α) = b where j = 1 and 2. For j = 1 and 2,

Sj = (−1)a·xj+β·ψ(xj)+h(xj)+h(xj+α) + (−1)a·(xj+α)+β·ψ(xj+α)+h(xj+α)+h(xj)

= (1 + (−1)a·α+β·b)(−1)εj ,

where εj = a · xj + β · ψ(xj) + h(xj) + h(xj + α). Further,

C12 = 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(S1 + S2)4

= 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b)4((−1)ε1 + (−1)ε2)4

= 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(8 + 8(−1)a·α+β·b)(1 + (−1)ε1+ε2)4

= 22m+6
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b)(1 + (−1)ε1+ε2)

= 22m+6
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b + (−1)ε1+ε2 + (−1)a·α+β·b+ε1+ε2)

= 23m+6|E4|.

We note that,
∑

a∈Fn2
((−1)a·α+β·b+(−1)ε1+ε2 +(−1)a·α+β·b+ε1+ε2) = 0, since α 6= 0, x1+x2 6= 0

and x1 + x2 + α 6= 0.

C1 = C11 + C12 = 23m+3(|E2|+ 8|E4|)

= 23m+n+2(2n − 1) + 3 · 23m+4|E4| > 23m+n+2(2n − 1),

and the claimed inequality follows.

Corollary 7.3.15. The Gowers U3 norm of a Maiorana–McFarland bent function con-

structed by using a differentially 4-uniform permutation is always larger than the Gower

norm of any Maiorana–McFarland bent function obtained by using an APN permutation.

Proof. The proof is immediate from the results of Theorems 7.3.12 and 7.3.14.
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Theorem 7.3.16. Let K be a bent function on Fm2 ∼= Fn2 × Fn2 , m = 2n, defined by

K(x, y) = φδ(x) · y

where φδ is a differentially δ-uniform permutation on Fn2 , δ = 2t. The Gowers U3 norm of

k(x, y) = (−1)K(x,y), (x, y) ∈ Fn2 × Fn2 , is

‖k‖8
U3
≥ 7 · 2n − 6

23n
.

Proof. Using similar arguments as in Theorem 7.3.12,

‖k‖8
U3

=
1

25m
(A
′

1 +B
′

1 + C
′

1)

where

A
′

1 =
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)K(x,y)+a·x+b·y

4

= 24m,

B
′

1 =
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)K(x,y)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·φδ(x)+a·x

4

≥ 23m+n+1(2n − 1), (cf. [30, page 415]),

C
′

1 =
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)K(x,y)+a·x+b·y

4

= 22m
∑
a,β∈Fn2

t∑
i=1

∑
(α,b)∈E2i

 ∑
x∈∆(α,b)

(−1)a·x+β·φδ(x)

4

= C
′

11 + C
′

12 + . . .+ C
′

1t

where

C
′

1j = 22m
∑
a,β∈Fn2

∑
(α,b)∈E2j

 ∑
x∈∆(α,b)

(−1)a·x+β·φδ(x)

4

, 1 ≤ j ≤ t.
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Now we claim that, C
′
1j ≥ 23m+3(j|E2j|), for all j ∈ {1, 2, . . . , t}. Since C

′
11 = 23m+3|E2| and

C
′
12 ≥ 23m+3(2|E4|), for each (α, b) ∈ E2j, there exist 2j distinct elements x1, x1 +α, x2, x2 +

α, . . . , xj, xj + α ∈ Fn2 such that Dαφδ(xs) = Dαφδ(xs + α)=b, s ∈ {1, 2, . . . , j}. Let

Ss = (−1)a·xs+β·φδ(xs) + (−1)a·(xs+α)+β·φδ(xs+α) =
(
1 + (−1)a·α+b·β) (−1)εs

where εs = a · xs + β · φδ(xs), for all s ∈ {1, 2, . . . , j}. Thus,

C
′

1j = 22m
∑
a,β∈Fn2

∑
(α,b)∈E2j

(S1 + S2 + . . .+ Sj)
4

= 22m
∑
a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β)4

((−1)ε1 + (−1)ε2 + . . .+ (−1)εj)4

= 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β) ((−1)ε1 + (−1)ε2 + . . .+ (−1)εj)4 .

Since,

((−1)ε1 + (−1)ε2 + . . .+ (−1)εj)4

=
(
1 + (−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)4

=1 + 4
(
(−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)
+ 6

(
(−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)2

+ 4
(
(−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)3

+
(
(−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)4
.

Again,

(
(−1)ε1+ε2 + (−1)ε1+ε3 + . . .+ (−1)ε1+εj

)4

=
(
1 + (−1)ε2+ε3 + (−1)ε2+ε4 + . . .+ (−1)ε2+εj

)4

=1 + 4
(
(−1)ε2+ε3 + (−1)ε2+ε4 + . . .+ (−1)ε2+εj

)
+ 6

(
(−1)ε2+ε3 + (−1)ε2+ε4 + . . .+ (−1)ε2+εj

)2

+ 4
(
(−1)ε2+ε3 + (−1)ε2+ε4 + . . .+ (−1)ε2+εj

)3

+
(
(−1)ε2+ε3 + (−1)ε2+ε4 + . . .+ (−1)ε2+εj

)4
.
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After (j − 2) similar steps, we get,

(
(−1)εj−2+εj−1 + (−1)εj−2+εj

)4
=
(
1 + (−1)εj−1+εj

)4
= 8 + 8(−1)εj−1+εj .

Therefore, ((−1)ε1 + (−1)ε2 + . . .+ (−1)εj)4 = (j − 2) + 8 + P1 = j + P where P = P1 +

6 is the sum of some positive integer and terms of the form (−1)
∑
l∈E εl , E ⊆ [j] with

some multiplicity. Since for any E ⊆ [j],
∑

a∈Fn2
(−1)(

∑
l∈E xl)·a,

∑
a∈Fn2

(−1)(
∑
l∈E xl+α)·a,∑

β∈Fn2
(−1)(

∑
l∈E φδ(xl))·β and

∑
β∈Fn2

(−1)(
∑
l∈E φδ(xl)+b)·β are nonnegative integers,

C
′

1j = 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β) (j + P )

= 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

(
j + P + j(−1)a·α+b·β + P (−1)a·α+b·β)

= 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

j + 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

(
P + P (−1)a·α+b·β)

≥ 22m+3
∑
a,β∈Fn2

∑
(α,b)∈E2j

j = 23m+3(j|E2j|),

as
∑

a∈Fn2

∑
β∈Fn2

(
P + P (−1)a·α+b·β) ≥ 0. Thus,

C
′

1 = C
′

11 + C
′

12 + . . .+ C
′

1t

≥ 23m+3(|E2|+ 2|E4|+ . . .+ t|E2t|)

= 23m+n+2(2n − 1),

and the theorem follows.

The proof of the next corollary follows directly from Theorem 7.3.12 and 7.3.16.

Corollary 7.3.17. The Gowers U3 norm of a Maiorana–McFarland bent function defined

as in Theorem 7.3.16 is always larger than the norm of a Maiorana–McFarland bent function

obtained by using an APN permutation.

7.3.4 Gowers U3 norm for a class of cubic monomial function

This section is aimed at demonstrating how we envision the use of Gowers U3 norm to

identify the classes of functions with potentially high second-order nonlinearity. This section
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also shows that the largest second-order nonlinearity may not be observed within the class of

bent functions. We consider a class of cubic monomial function similar to those considered

by Canteaut, Charpin and Kyureghyan [7].

Theorem 7.3.18. Let m = 3r, r > 1 be a positive integer. Let Fr ∈ Bm be a cubic Boolean

function defined by

Fr(x) = Trn1 (λx22r+2r+1),

for all x ∈ F2m where λ ∈ F∗2r and fr(x) = (−1)Fr(x), for all x ∈ F2m. Then the Gowers U3

norm of fr is

‖fr‖U3 =
2m + 2r(2m − 1)

22m
. (7.3.5)

Proof. The Gowers U3 norm of fr can be written as

‖fr‖8
U3

=
1

24m

∣∣∣∣∣ ∑
a,b,h,x∈F2m

(−1)Da,b,hFr(x)

∣∣∣∣∣
=

1

24m

∣∣∣∣∣ ∑
a,b∈F2m

∑
h,x∈F2m

(−1)Da,bFr(x)+Da,bFr(x+h)

∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣
∑

a,b∈F2m

( ∑
x∈F2m

(−1)Da,bFr(x)

)2
∣∣∣∣∣∣

=
1

24m

∣∣∣∣∣∣∣∣2
2m

 ∑
a∈F2m

1 +
∑

b∈F2m\{0}
a=0

1 +
∑

a∈F2m\{0}
b=0

1

+
∑

a,b∈F2m\{0}
a6=b

( ∑
x∈F2m

(−1)Da,bFr(x)

)2

∣∣∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m(3 · 2m − 2) +

∑
a,b∈F2m\{0}

a6=b

( ∑
x∈F2m

(−1)Da,bFr(x)

)2

∣∣∣∣∣∣∣∣ .
Since deg(Da,bFr) is at most 1, Da,bFr is either balanced or constant. We find those nonzero

a, b ∈ F2m with a 6= b such that Da,bFr(x) is constant for all x ∈ F2m .

Da,bFr(x) = Trm1 (λ(a2rb+ab2r)x)+Trm1

(
λ
(

(a22r

b2r+1 + a2r+1b22r

) + (a22r

+ b22r

)(a2rb+ ab2r)
))

Da,bFr(x) is constant for all x ∈ F2m if and only if

λ
(
a2rb+ ab2r

)
= 0 ⇔ a2rb+ ab2r = 0 ⇔

(
b

a

)2r−1

= 1 ⇔ b

a
∈ F2r \ F2 ⇔ b = βa
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where β ∈ F2r \ F2. Thus, given any a ∈ F∗2m , b can be chosen in 2r − 2 ways. Therefore,

the total number of ways in which a, b can be chosen is (2m − 1)(2r − 2). Thus,

‖fr‖U3 =
2m + 2r(2m − 1)

22m
,

which shows the theorem.

We compare Gowers U3 norms of a cubic Maiorana–McFarland bent function, f say,

constructed by using APN permutations as in Theorem 7.3.12, and cubic monomial Boolean

functions considered above. Let m = 2n = 3r, i.e., n = 3r
2

.

‖fr‖8
U3
− ‖f‖8

U3
=

2m + 2r(2m − 1)

22m
− 7 · 2n − 6

23n

=
2m + 2m+r − 2r − 7 · 2m + 6 · 2n

22m

=
6 · 2n + 2m(2r − 6)− 2r

22m
.

It can be directly checked that if r = 2 then ‖fr‖8
U3
< ‖f‖8

U3
and if r ≥ 3 then ‖fr‖8

U3
>

‖f‖8
U3

. This suggests that the second-order nonlinearity of fr is greater than the one of f

if m = 6 and for m ≥ 10 such is not the case.

There are three known affine inequivalent classes of cubic bent functions in 6 vari-

ables [86]. It is also known that all the cubic bents are affine equivalent to Maiorana–

McFarland bent functions. By direct computation we have found that their second-order

nonlinearities are 8, 12 and 16. Motivated by the low Gowers U3 norm of F2, obtained by

substituting r = 2 in Equation (7.3.5), we have computed the second-order nonlinearity of

F2. We find that while it is not bent, having nonlinearity 22, its second-order nonlinearity

has the maximum possible value in B6, namely 18. However, the reversal of the inequality

sign for r ≥ 3 indicates that this trend will not extend to 12 variables, i.e., for r = 4.
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Chapter 8

Conclusion and Future scope

8.1 Conclusion

In this thesis, we analyze some classes of bent functions and derive results related to their

explicit constructions and affine equivalence. We further identify some Boolean functions

which have high second-order nonlinearity using the Gowers U3 norm and for the particular

case n = 6, we get a class of cubic Boolean functions possessing maximum second-order

nonlinearity.

We prove that cubic Maiorana–McFarland bent functions which are constructed by

using some known types of permutation polynomials (see [2,154]) have no affine derivative.

We have obtained many affine inequivalent classes of bent functions within the considered

functions.

The problem of specifying suitable linear subspaces of low dimension for some generic

classes of permutations related to the derivations of new bent functions in C has been

partially addressed. The results clearly indicate the hardness of this problem due to the

fact that whereas some “suitable” permutations may finally yield bent functions within

class C, for other permutations such functions simply cannot exist.

For the generalized case, that is, Boolean functions defined over any finite field, we

introduce the subspace sum concept (depending upon the derivatives) and prove many of

its properties. In particular, it is shown that the subspace sum is an affine invariant and,

consequently, a necessary condition is derived for the Maiorana–McFarland bent functions.

We construct two new classes of generalized bent functions (namely, Dp, Dp0 and Cp where

135
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Dp0 is a subclass of Dp). We derive some existence and nonexistence results concerning the

bent functions in Cp class for some known classes of permutations over Fnp .

We construct a class of cubic Maiorana–McFarland bent-negabent functions by using

Feistel functions, and prove that it has affine derivatives over a subspace. Then we calculate

weight distributions of second-derivatives and obtain the lower bound of their second-order

nonlinearities.

We locate some functions with low Gowers U3 norms. We explicitly compute the Gow-

ers U3 norm of cubic Maiorana–McFarland bent functions and demonstrate that the norm

depends on the differential property of the associated permutation rather than its algebraic

degree. Since the Gowers U3 norms are related to the second-order nonlinearity of the

Boolean functions, their dependence of differential properties rather than degree is note-

worthy. We also compute the Gowers U3 norms for a class of cubic monomial functions,

not necessarily bent, and show that for n = 6, these norm values are less than that of

Maiorana-McFarland bent functions. Further, we computationally show that there exist

6-variable functions in this class which are not bent but achieve the maximum second-order

nonlinearity for 6 variables.

8.2 Future scope

There are many open questions on Boolean functions and generalized Boolean functions

apart from the results given in this thesis. We summarize below some open problems which

immediately arise from our study.

• The challenge in this direction of research is to explicitly characterize all bent functions

for all dimensions. We mention here that the total number of bent functions is only

known for n ≤ 8 (see [120,135]). The problem is intractable since most of the methods

for counting bent functions rely on an incomplete set of invariants and search space

is doubly-exponential in n.

• Given any two Boolean functions, deciding whether they are equivalent or not is an

important open question. Direct verification requires computational complexity of

O(2n
2
). Finding out an appropriate set of invariants to distinguish bent functions

with better resolution is extremely important.



Chapter 8: Conclusion and Future scope 137

• It appears that additional efforts are needed for getting a better understanding and

for deriving more explicit subclasses within the C and D class. Also, the question

whether the classes of permutations specified and related subspaces indeed give rise

to bent functions outside M (and possibly outside PS as well) remains open.

• Using the subspace sum concept one can consider the generalized Boolean functions

and may be able to construct or identify new classes of generalized bent functions.

• The covering radius of rth order Reed–Muller codes and finding a Boolean function

having highest possible rth order nonlinearity are equivalent problems. Both are

difficult to solve. Applicability of the Gowers uniformity norms point to an interesting

direction of research.
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