ON BOOLEAN BENT FUNCTIONS AND THEIR
GENERALIZATIONS

Ph. D. THESIS

BIMAL MANDAL

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE - 247 667 (INDIA)

JULY, 2017



ON BOOLEAN BENT FUNCTIONS AND THEIR
GENERALIZATIONS

A THESIS

Submitted in partial fulfilment of the
requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

MATHEMATICS

by

BIMAL MANDAL

DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE - 247 667 (INDIA)

JULY, 2017






OINDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2017
ALL RIGHTS RESERVED



INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “ON
BOOLEAN BENT FUNCTIONS AND THEIR GENERALIZATIONS” in partial fulfilment
of the requirements for the award of the Degree of Doctor of Philosophy and submitted in the
Department of Mathematics of the Indian Institute of Technology Roorkee, Roorkee is an
authentic record of my own work carried out during a period from July, 2013 to July, 2017 under
the supervision of Dr. Sugata Gangopadhyay, Associate Professor, Department of Computer
Science and Engineering, Indian Institute of Technology Roorkee, Roorkee.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other Institution.

(BIMAL MANDAL)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

(Sugata Gangopadhyay)
Supervisor

Date: July , 2017



Dedicated
fo

My Parents and Sister



Abstract

In this thesis, we investigate and analyze a special class of Boolean functions namely bent
functions. Using the existing techniques we derive the lower bounds of second-order non-
linearity and identify the affine inequivalent classes of bent functions. We further construct
some classes of generalized bent functions. We identify some classes of Boolean functions
having maximum possible second-order nonlinearity by using Gowers norm.

A class of cubic Maiorana—McFarland (M) bent functions having no affine derivative
was constructed by Canteaut and Charpin [5], thereby solving an open problem posed by
Hou [149]. We construct two classes of cubic M bent functions with no affine derivative
and show their mutual affine inequivalence.

Two (so-called C,D) classes of permutation-based bent Boolean functions were intro-
duced by Carlet [17] two decades ago, but without specifying some explicit construction
methods for their construction (apart from the subclass D). We look in more detail at the
C class, and derive some existence and nonexistence results concerning the bent functions
in the C class for many of the known classes of permutations over Fon. Most importantly,
the existence results induce generic methods of constructing bent functions in class C which
possibly do not belong to the completed Maiorana—McFarland class. The question whether
the specific permutations and related subspaces we identify in this article indeed give bent
functions outside the completed Maiorana—McFarland class remains open.

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions f : Zy —
Z, where g > 1 is a positive integer and A. C. Ambrosimov [4] proposed another generalized
bent functions over finite field. We consider functions from F} to F,, and characterize the
subspace sum concept (depending upon the derivative) and give many of its properties. In
particular, it is shown that the subspace sum is an affine invariant. Further, we construct

two new classes of generalized bent functions (so-called DP, Df and CP where Dj is a subclass



of DP). Also, we prove that the generalized Maiorana—McFarland bent functions and DP
do not contain one another, and derive some existence and nonexistence results concerning
the bent functions in the C? class for many of the known classes of permutations over F}.
Carlet [28] introduced a recursive lower bound on nonlinearity profile of Boolean func-
tions. We construct a class of cubic Maiorana—McFarland bent-negabent functions by using
Feistel functions and then obtain the lower bound of their second-order nonlinearities.
Gowers [126] introduced a new measure of functions which is called Gowers uniformity
norm. The Gowers Us norm of a Boolean function is the measure of its resistance to
quadratic approximations. We compute Gowers Us norms for some classes of Maiorana—
McFarland bent functions. In particular, we explicitly determine the value of the Gowers Us
norm of Maiorana—McFarland bent functions obtained by using APN permutations. Fur-
ther, it is proved that this value is always smaller than the Gowers Us norms of Maiorana—
McFarland bent functions obtained by using differentially d-uniform permutations, for all
0 > 4. We compute the Gowers Us norm for a class of cubic monomial functions, not
necessarily bent, and show that for n = 6, these norm values are less than that obtained
for Maiorana—McFarland bent function constructed by using APN permutations. Further,
we computationally show that there exist 6-variable functions in this class which are not

bent but achieve the maximum second-order nonlinearity for 6 variables.

i
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Chapter 1

Introduction

A Boolean function in n variables maps binary string of length n to the set {0,1}. These
functions are important in combinatorics, cryptography and coding theory, especially for de-
signing substitution boxes (S-boxes) for block ciphers and robust pseudo-random generators
for stream ciphers. For more details we refer to [3,8,36,108,117,122,123,135]. Boolean func-
tions that are used as cryptographic primitives must resist affine approximations, which is
achieved by having high nonlinearity. The bent functions defined on an even number of vari-
ables (although not directly usable as cryptographic primitives due to not being balanced)
have the maximum nonlinearity, that is, they offer maximum resistance to affine approxi-
mations. Bent functions are of interest among researchers, since they have maximum Ham-
ming distance from the set of all affine Boolean functions and have very nice combinatorial
properties. Several classes of bent functions were constructed by Dillon [56], Rothaus [86],
Carlet [17], and Dobbertin [49]. Further, we refer to [15,33,65,67,85,89,102,106, 120, 135].

The idea of first-order nonlinearity, usually referred to as nonlinearity, was introduced
by Rothaus [86]. The relationship between nonlinearity and explicit attack on symmetric
ciphers was discovered by Matsui [76]. The idea of higher order nonlinearity has been
used in cryptanalysis by Courtois, Golic, Iwata-Kurosawa, Knudsen-Robshaw, Maurer and
Millan [57,78,101,129,138,144]. More results related to nonlinearity of Boolean functions,
we refer to [20,27-29,31,40,44,46,50,58,81,95,99,110,113,114].

In 2001, Gowers [126] used an analytic technique to give a new proof of Szemerédi’s The-
orem, and in particular, initiates the study of new measure of functions. Gowers introduced

Gowers uniformity norm and it is applied in additive combinatorics [132]. The connection



2 1.1 Definitions and notations

between the Gowers uniformity norms and correlation of a function with polynomials with
a certain degree bound is described by results obtained by Gowers, Green and Tao [11,126].
For survey we refer to [11,12,139,143].

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions. Different
approaches for construction of generalized bent functions are introduced in [4,24,63, 68,69,
82-84,140]. Generalized bent functions play an important role in combinatorial objects such
as partial difference sets, strongly regular graphs, association schemes (see [10, 155, 157])
and codes for Code Division Multiple Access (CDMA) [60, 133].

The main goal in this thesis is to identify the classes of bent functions with the highest
possible second-order nonlinearity, and to analyze the different classes bent functions in
a more explicit way. Our techniques involve the use of Walsh-Hadamard transforms and
Gowers uniformity norms of Boolean functions. Also, we work on generalized Boolean

functions which are defined over finite field.

1.1 Definitions and notations

Let Z, Z+ and R be the set of integers, positive integers and real numbers respectively, and
Fy be the prime field of characteristic 2. Let Fy = {x = (21,...,2,) : x; € Fy, for all i =
1,...,n}. We denote the extension field of degree n over Fy by Fsn, and the unit group
therein by FF5,.. An element o € Fyn is said to be primitive element if « is a generator of
the unit group ;.. For any positive integer n, we always get a finite field with degree of

extension n over [Fy by taking a primitive polynomial p(x) of degree n. We know that
Fon = Fo[z]/(p(z)) = {co+cix+ ... +co 12" i €Fy,i=0,1,...,n—1}.

F? and Fon both are n dimension vector space over Fy. Let B = {by,bs,...,b,} be an [y

basic of Fan. Then any element a € Fon can be written as

a:l'lbl—i-l'gbg—i-...—l—l'nbn
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where x; € Fo, i = 1,2, ..., n. Using the following mapping one can check that Fy and Fon

are vector isomorphism over Fs:
T = (T1,%e,...,&y) —> T1by + xaby + ... + 2,0,
where {by,bs,...,b,} is an Fy basic of Fan. With respect to the basic B defined as above,

the n-tuple vector (z1,xs,...,x,) is called the coordinates of € Fon.

Example 1.1.1. Let n = 3 and « be a root of the primitive polynomial 23 + x + 1, that is,
a®+a+1=0. Then the one to one correspondence between Fgs and F3 is given in Table

1.1 below.

[Ty | F3 |
0 0,0,

1 0,

(0%

e N Nesl o Nen) Naw) N New)
~— | — | — == — | —

Table 1.1: Correspondence between finite fields and vector spaces

For any set S, |S| denotes the cardinality of S. For any = € F}, the (Hamming) weight
of z is the integer sum wt(z) = Y . | x;, that is, the number of 1’s it has. The Hamming

distance between two vectors z,y € Fy, d(x,y), is defined as

d(z,y)=[{i:x; £ yi,i=1,2,...,n}| = wt(x +y).

The Hamming distance is a metric which represents the minimum number of necessary sub-
stitutions to transform a vector into another. Let x = (1,1,0,0,1,0),y = (0,1,1,0,0,1) €
F3. Then wit(x) = 3, wt(y) = 4 and d(z,y) = 4.
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1.2 Boolean functions

Any function f from Fj to Fy (or, equivalently from Fon to Fy) is said to be a Boolean
function in n variables. The set of all Boolean functions in n variables is denoted by
B,, and the cardinality of B, is 22". For detailed study of Boolean functions we refer to
Carlet [29,31], Cusick and Stanica [135] and Mesnager [120].

There are several representations of a Boolean function. We study three standard repre-
sentations of Boolean functions, namely truth-table representation, algebraic normal form

(ANF) and trace representation. We describe in details these representations below.

Truth-table representation

In the truth-table representation we list the 2" elements of [F%; in lexicographically increasing
order along with the corresponding functional values. Thus, any Boolean function f € B,

is a 2" length binary string of F2" and it can be uniquely represented as

[£(0,0,...,0), £(0,0,...,1), £(0,0,...,1,0),..., f(1,1,...,1)].

Example 1.2.1. Let n = 3. Suppose f € Bs is a Boolean function and (1,0,0,1,1,0,1,0)
is the truth-table of f. Since (1,0,0,1,1,0,1,0) is an element of FS. The truth-table of f

15 written in the right most column in Table 1.2.

(23 @ [ [ f]
0 J0 |0 |1
0 [0 |10
0 [1]0 |0
0 [1 |1 |1
10 [0 |1
110 |10
1 (10 |1
T 1 |10

Table 1.2: Truth-table of a Boolean function in 3 variables

Definition 1.2.2. The support of a Boolean function f € B, supp(f), is defined by

supp(f) ={z € Fy : f(z) # 0}.
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The weight of a Boolean function f € F4, wt(f), is the cardinality of supp(f), i.e., the total

number of nonzero output.

Definition 1.2.3. The Hamming distance between two Boolean functions f,g € B, d(f,g),
18 defined by

d(f,g9) = H{z € Fy : f(z) # g(2)}| = wi(f + g)

= (@) = 9| + (7@ # o)} — 5417 () = g(@)] ~ |(F(2) # g(a))}
— on—1 _ (_1)f(z)+g(w)_

~—

N —

eFr

8
N3

(1.2.1)

Example 1.2.4. Let f,g be two Boolean functions on 3 variables with their truth-tables
(0,1,0,1,1,1,0,1) and (1,1,0,1,1,1,0, 1),respectively. Then the weights of f and g are 5
and 6, respectively. The Hamming distance of f and g is d(f,g) = 1, i.e., changing only

one bit in truth-table we can transform one truth-table to another.

Algebraic normal form

Any Boolean function f in n variables can be expressed as a polynomial in Fylxy, ..., ;)]
{234z, ..., 22 +x,). This form is called Algebraic normal form (ANF) of f and is written

as

flxy,...,z,) = Z Aa (H@‘z)

a=(ai,...,an)€FY
where A\, € Fy. Each term of the form [] , 2{* is called a monomial. One can obtain

the algebraic normal form of a Boolean function from truth-table and vice-versa. Suppose

r <y means x; < y;, for all i € {1,2,...,n} where z,y € F}. Then we have

/\a = Zf(l‘)7

r=a

for all @ € F} which is the way to get ANF from truth-table of a Boolean function. If we

have the ANF of Boolean function then in the same way we get its truth-table as

f@) = Aa,

a=x
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for all z € F3.

Definition 1.2.5. The algebraic degree of f € B, denoted by deg(f), is define as
deg(f) = m%x{wt(a) t Ao # 0}
acFy

The degree of a monomial [];, i is wt(a).

Definition 1.2.6. Boolean functions with algebraic degree at most 1 are said to be affine

unctions. Precisely, an affine function p, . : Fy — Fy is of the form
b 2
Vo) = arz1 + asxa + ... + apz, + €, for all x € Fy (1.2.2)

where a € Fy and € € Fy. If € = 0 then .0 is a linear function. The total number of n

variables affine Boolean functions is 2",

Let z,y € F}. The inner product of x,y € F}, x -y, is defined as
Ty =Ty + LYz + ...+ Tpln,

and z -y € Fy. Thus, if we vary a all over I}, we get all 2" linear function of the form ¢, .

Example 1.2.7. The algebraic normal form of the Boolean function in 3 wvariables given

i Table 1.2 is

flry,z0,23) = (x1 4+ 1) (2o + 1) + myza(xs + 1) + (21 + 1)z0ms

=142+ 22 + x273.

Thus, the degree of f is 2. The nonzero coefficients in ANF are X0 = 1 = Noo,1) =

A0,1,0) = A(1,1,0)-

Trace representation

First we discuss some basic definitions and properties of cyclotomic cosets and trace func-

tions. The cyclotomic coset of 2 modulo 2" — 1 containing j, C'[j], is defined as

Clj) = {.52.52% ...j2" "'}
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where n; is the smallest positive integer such that j = j2™ (mod 2" — 1). Conventionally,
the smallest element j modulo 2" —1 in the coset is called the coset leader and the cyclotomic

coset is denoted by C[j].

Example 1.2.8. Letn =5 and j = 2. Since 2 = 2 x 2° (mod 31). Then {2,2 x 2,2 x
22.2x 23 2x 24} = {2,4,8,16, 1} which is C[1] (operation over modulo 31). All the distinct

cyclotomic cosets modulo 31 are given below.

Clo] = {0}

C[1] ={1,2,4,8,16}

O3] = {3,6,12,24,16}

C[5] = {5,9,10, 18,20}

C[7] = {7,14,19, 25, 28}
C[11] = {11,13,21,22,26}

C[15] = {15,23,27, 29,30}

Let 71,72,...,Jr € Zgn_y such that C[ji],C[js],...,C[j.] are all distinct cyclotomic

cosets modulo 2" — 1. Then U]_,C[j;] = Zon_1. Some basic properties are given below.
e The cardinality of C|j] is either 1 or n.
e For a positive integer 7, if ged(j,2" — 1) = 1 then the cardinality of C[j] is n.
e For any two positive integers i and j, C[i] and C[j] are either disjoint or identical.

Definition 1.2.9. Let n = kt, k € Z". The trace function from Fon to the subfield For,
Try, is defined as

Tei(z) =z + 2% + 2% +.. .+ 22" for all © € Fon.

If Fy: is a prime field (i.e., ¢ = 1) then the trace is called absolute trace and denoted by
Tr}. The inner product of x,y € Fan is denotes by Tr}(xy). The basic properties of trace

function are given as follows:

e For all z,y € Fon, Tt (x +y) = Trl (x) + Trl (y).
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For all ¢ € Fy and = € Fon, Tr}(cz) = I} (2).

For all ¢ € Fy, Tr}(c) = nec.

For all # € Fyn and for any r € ZT, Tr}(z*) = Tr}(z).

For a € Fon, Tr}(a) = 0 if and only if a = a® + « for some a € Fan.

Trace function satisfies transitivity property, i.e., if Fom is a subfield of Fon and Fo: is

a subfield of Fym then

Tr} (x) = Try"(Tr) (z)), for all © € Fan.

From the first two properties we observe that trace is a linear mapping from Fon to Fy. For
proof of the above results we refer to [41,103,120].
Any function f : Fon — Fon can be uniquely written as a univariate polynomial of

degree at most 2" — 1 of the form

f(z) =co+crz+ cx® + ...+ con_yz”
where ¢;,x € Fon, i = 0,1,...,2" — 1. If f(2)? = f(z), for all x € Fy then f is a Boolean
function and vice-versa. A function f is a Boolean function if and only if ¢, con_1 € Fy
and ¢2; (mod 2n—1) = c2,i€{1,2,...,2" — 2}. The univariate representation of any function
feB,is

flz) =Y T (aya?) +e(l+2>")

J€l(n)
where I'(n) is the set of cyclotomic coset leaders modulo 2" — 1, n; is the size of the
cyclotomic class containing j, o; € Fyn; and € = er]F2n f(z) (mod 2). For every j €

Z](2" — 1)Z, we can write

j:ZQS where £ C {0,1,...,n—1}.

seE

The cardinality of E is referred to as the 2-weight of 7 and written as ws(j). The algebraic
degree of fis deg(f) = maxjerm){w2(j) : a; # 0}. Precisely, an affine function ¢, : Fon —
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I, is of the form

Yae(r) = Tr}(ax) + ¢, for all z € Fon

where a € Fon and € € Fy (if € = 0 then ¢, is a linear function). In general, it is difficult

to compute the algebraic degree of a Boolean function given in univariate form.
Example 1.2.10. Let n = 2t and o € F},.. Then

o the degree of f(z) = Tr(az®*1) is 2;

o the degree of f(z) = Tr"(az® 1) is t.

Suppose n € Z* and g(x1,...,x,) € Fao[z1,...,2,]. Then the n-variate representation

of a Boolean function f : F§ — F is

f(xy, .. xn) =Tl (g(21, ..., ), forall (xq,...,2,) € FY"

1.2.1 Walsh—Hadamard transform

The discrete Fourier transform of Boolean function is called Walsh-Hadamard transform
or Walsh transform. For the computation of many cryptographic properties of a Boolean

function it is needed to compute their Walsh-Hadamard transform.

Definition 1.2.11. The Walsh-Hadamard transform of f € B, at a € Fy is defined as

Wyla) = 3 (-1,
z€Fy
The multiset [Wy(a) : a € F%] is said to be the Walsh-Hadamard spectrum of f. The
absolute value of the Walsh-Hadamard spectrum of f is at most 2", i.e., —=2" < Wy(a) < 2",
for all a € F}. The weight distribution of Walsh-Hadamard spectrum of a Boolean function
f is the frequency distribution of the values in the Walsh—-Hadamard spectrum of f. It is
also defined over the finite field Fy» as

Wi(a) = Z (=1)f@FTE@) - for all g € Fan. (1.2.3)

xEan
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In the bivariate case, where f : F2, — Fy, instead of Equation (1.2.3) we have

Wila,b) = Y (—1)fCt e+ i) for all (a,b) € F..

(ﬂﬁ,y)eﬂ“;t

If s € Fy then we know that (—1)® = 1 — 2s. Using the inverse Walsh-Hadamard

transform, f can be recovered as below:

1
(-1)/® = — Z We(a)(—1)"?, for all x € F5.

Let g(x) = pq.(x) be an affine function, for all x € F3. Then from Equation (1.2.1), we get

d(f,g)=2"" — % $ (1) gt (_Ql)swf(a), (1.2.4)

z€Fy

which is the relation between distance and Walsh-Hadamard transform of two Boolean
functions. Omne can also compute the Walsh-Hadamard spectrum using the Hadamard

matrix. We consider the following recursive definition of Hadamard matrices:

1 -1
and
fL% _ E[m—l fﬂn—l
E[m—l —dim-—1

Here H,, is the tensor product H,, = H; ® H,,_1. The walsh-Hadamard spectrum of f € B,

can be written as

(Wia), - Wlamy)) = (=170, ... (~1)/en-) H,

where a; € Fy, 7 = 0,1,...,2" — 1. The Hadamard matrix H of order m is an m x m

square matrix of all entry +1 such that

HH' =ml,
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where H' is the transpose of H and I, is the identity matrix of order m x m.

Proposition 1.2.12 ( [135]). Any Boolean function f in n variables satisfies the following
wdentity

Z W3(a) = 2°".

acFp
This identity is called Parseval’s identity. Using the Parseval’s identity one can prove
that the absolute value of the Walsh-Hadamard spectrum of f € B, is at least 27/2, that
is, max{|W;(a)| : a € F3} > 2"/2,

Theorem 1.2.13 ( [100, Theorem 2.6]). Let E be an arbitrary subspace of Fy and E* be
the dual of E, defined as

Et={acFy:a-2=0, forallz € E}.

Then for any f € B,,, we have

D Wila) =B Yy (-1’

The above equation between Wy and f is called the Poisson Summation Formula. Using

the above Theorem one can easily derive the next Corollary.

Corollary 1.2.14. For any f € B,

S Wya) =270 37 (- 1)@

a=b a=b

where a,b € Fy and a < b means that a; < b;, for alli € {1,2,...,n}.

Definition 1.2.15. Let E be the subspace of Fy and ¢ be a Boolean function in n variables,

defined as
1, ifxek,
¢p(r) =

0, otherwise.

¢g is called the indicator function of the space E.
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Let E be a subspace of F}. Then for any a,b € F}

Y (1) = E(-1)""pi(a) (1.2.5)

rzeb+E

where E* is dual of E. The Walsh-Hadamard transform at any b € F% of an affine functions

Pa,e 18

. 0, if a # b;
W (6) = 3 (1)t = |
z€F? 2"(—1), ifa="b,
2

where ¢, . is defined as in Equation (1.2.2).

1.2.2 Cryptographic Boolean functions

In this section we discuss some properties of Boolean functions which have cryptographic

significance.

Algebraic Degree

The algebraic degree of Boolean function gives the linear complexity of the pseudo-random
generator. To resist the Berlekamp—Messey attack [8,29,59] and Rgnjom—Helleseth at-
tack [124] of a cryptosystem it is needed that Boolean functions used in pseudo-random
generators posses optimal algebraic degree. From algebraic normal form of Boolean func-
tion we know that the maximum algebraic degree of a Boolean function in n variables is at

most n.

Balancedness

A Boolean function f in n variables is said to be balanced if the truth-table of f has equal
number of 1’s and 0’s, i.e., the cardinality of support of f, supp(f), is 2"~'. There are
(2,2:1) many balanced functions in B,,. Boolean functions used in a cryptosystem must be
balanced. Otherwise, cryptosystem unable to prevent the distinguishing attacks [30] as
the attacker gain some statistical information between plaintext and ciphertext of stream
cipher. If a Boolean function in n variables is balanced then the algebraic degree is at most

n — 1. It is to be noted that any nonconstant affine functions is balanced.
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Example 1.2.16. Let hy, hy € B3 such that the truth-table of hy and hy be (1,1,0,0,0,0,1,1)
and (0,0,0,0,0,1,0, 1), respectively. Here hy is balanced and hy is not balanced.

Crosscorrelation and Autocorrealtion

Let f,g € B,,. Then the crosscorrelation between f and g at o € F3, Cy4(v), is defined by

Crala) = 3 (1)t

z€Fy

Two Boolean functions f and g in n variables are called uncorrelated of order r, 0 < r < n
if Csy(a) =0, for all @ € F} with 0 < wt(a) < r. If for all &« € F3, Cs4() = 0 then f and

g are perfectly uncorrelated. For details we refer to [96,120, 135].

Example 1.2.17. Let f, g € Bs. Suppose the truth-table of f and g are (0,0,1,0,1,1,0,0)
and (1,1,0,1,1,1,0,0), respectively (consider the lexicographic order). Then the crosscor-
relation value at (0,0,1) of f and g is Cs4(0,0,1) = 4.

The relation between crosscorrelatin value and Walsh—Hadamard spectrum of two

Boolean function f,g € B, is

1
(Cralan). - Crylam) =52 (Wilao)Wylao), .. Wz 1) Wy(az)) Hn
where o; € Fy, 7 =0,1,...,2" —1 and H,, is Hadamard matrix of order 2". From Equation

(1.2.1), we get
1
A(f,9) =2 = 5C1,(0),

which is the relation between Hamming distance and crosscorrelation of two Boolean func-

tions. The autocorrelation of f € B, at o € F, Cf(a), is defined as

Crla) = Z(—l)f("”)*f(”“).

zeFy

It is obvious that if v = 0 then C;(0) is equal to 2". Moreover, the absolute value of

autocorrelation of any Boolean functions in n variables is at most 2". If ¢ = f then we get

(crta0), - Crlam) = (Whao), - \Waz1)) Ho
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where a; € F3, 7 =0,1,...,2" — 1 and H,, is Hadamard matrix of order 2" which is the

relation between autocorrelatin value and Walsh—Hadamard spectrum of a Boolean function

feB,.

Nonlinearity

Nonlinearity of a Boolean function is one of the most important criterion as it measures the
distance between the Boolean function and the set of affine functions. From cryptographic
point of view this quantity must be as large as possible to resist the affine approximation

attacks [32].

Definition 1.2.18. Let f € B,,. The nonlinearity of f, nl(f), is defined as

nl(f) = min{d(f,1) : 1 € pa.}.

From Equation (1.2.4), we get the relation between Walsh-Hadamard spectrum and

nonlinearity of a Boolean function f in n variables as

nl(f) = 2 — L ima [y (a)]. (1.2.6)

2 a€F3

Using Parseval’s identity, we can calculate the upper bound of nonlinearity. The nonlin-
earity of an m-variable Boolean function is at most 2"~' — 227!, Rothaus [86] introduced
the idea of nonlinearity and Matsui [76] discovered the relationship between nonlinearity
and explicit attack on symmetric ciphers. For results on constructions of Boolean functions

with high nonlinearity we refer to [29,31,40,58,75,81,86,95,113,114].

Definition 1.2.19. Suppose f € B,,. For everyr € Z, 0 < r < n, the minimum Hamming
distance of f from all the functions having algebraic degree at most r is said to be the

rth-order nonlinearity of the Boolean function f, i.e.,

nl,(f) = min{d(f,g) : g € B, and deg(g) < r}.

The sequence of values nl,.(f), for r ranging from 1 to n—1, is said to be the nonlinearity
profile of f. To construct a good cryptosystem, the rth-order nonlinearity of Boolean

function is must be optimal. Thus, a cryptosystem is secure against different low order
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approximations attacks [57,62, 71,130, 138, 144] when the Boolean functions used in it
possess high nonlinearity profile.

Following are some of the results proved by Carlet [28].

Proposition 1.2.20 ( [28, Proposition 2]). Let f € B,,, r € Z* such that r <n and i be a

non-negative integer smaller than r. Then

nl.(f) > max _ nl._;(Da, ... Dg, f).

22 A1,y a; GF?

In particular, for r = 2,

nly(f) > %maxnl(Daf).

ackFy
Proposition 1.2.21 ( [28, Proposition 3|). Let f € B, and r € Z* such that r < n. We

have

nl,(f) > 21 — % \/an —2 3l (D).

aclFy
If some lower bound on nl(D, f) is known for all a € F4, we have the following corollary.
Corollary 1.2.22 ( [28, Corollary 2]). Let f € B,, and r € Z* such that r < n. Assume

that, for some non-negative integers M and m, nl,_1(Dyf) > 2"1—M2™ for every nonzero

a €y, Then

nl,(f) > 2t —3y/(2» — 1) M2m+1 4 2n,

It is known that any first derivative of a cubic Boolean function has algebraic degree
at most 2 and the Walsh-Hadamard spectrum of a quadratic Boolean function (degree 2
Boolean function) is completely characterized by the dimension of the kernel of the bilinear
form associated with it. Therefore, Propositions 1.2.20, 1.2.21 and Corollary 1.2.22 are
required for computation of the lower bounds of the second-order nonlinearities of cubic
Boolean functions.

Some results on higher-order nonlinearity are listed below.

Theorem 1.2.23 ( [110, Theorem 1]). Let n = 6r and d = 2*" + 2" + 1. Suppose fr(x) =
Tr}(A\x?), for all x € Fon where X € .. Then

1 p
nly(fr) > 2" — 5\/(271 —1)23F2 g on 2" 2

3n+4r—4
4
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Theorem 1.2.24 ( [110, Theorem 2|). Let n = 2t with n > 6. Suppose f(z,y) =
Te! (zy®*Y), for all z,y € Fy and i € Z such that 1 < i < t, ged(i,t) = e and
ged(2 — 1,2+ 1) = 1. Then

nly(f) > 2" 1——\/2“z”+e 2% s 4 2n(21F8 — 20 4+ 1),

Lemma 1.2.25 ( [45, Lemma 5]). Let n = 4r and d = 2* + 2" + 1. Suppose fr(z) =
Tr (Ax?), for all x € Fon where \ € F,.. Then

0, if a € For;

nl(Daof) 2
241"—1 _ 231"—1’ zfa g FT-

Theorem 1.2.26 ( [45, Theorem 1]). Let n = 4r and d = 2%" + 2" + 1. Suppose fi(z) =
Tr}(A\x?), for all x € Fon where X € .. Then

nly(fa) > 2771 =227 1/28r 4o — 1L

Let n =2t and f € B, be a bent function belongs to PS class of the form

o) =1 (), (127

Y

for all (z,y) € For x For where A € Fj, and Tr} (0) = 0 with convention that 4% = 0. Suppose
ky = max{|t;] 1 ¢, € [-277 4+ 1,22 4 1] and &, =0 (mod 4)}. (1.2.8)

Clearly, k; = 227 when ¢ is even.
Lemma 1.2.27 ( [37, Lemma 4]). Let f € B, be defined as in Equation (1.2.7) and

(a,b) € Fye X Foe. Then

0, ifa=0,b=0;
nl(Dapf) =19 2771 =251 ifa € For,b € Fy;
k27t ifa e, b=0,

where s =t (mod 2) and k, is defined as in Equation (1.2.8).
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Theorem 1.2.28 ( [37, Theorem 1]). Let n =2t and f € B, be a bent function defined as
in Equation (1.2.7). Then

2n71_%\/237"+1_2n+kt(2n_2%)’ ift=1 (mod 2);

nl2(f) 2 3n 5n 3n
2nl - 1/2% 42 3. on 4 2%+ 9% if =0 (mod 2),

where ky is defined as in Equation (1.2.8).

Theorem 1.2.29 ( [37, Theorem 3]). Let n = 2t. Suppose g € B; and ¢ is an APN

(t,t)-function which is a permutation on Fh. Then the second-order nonlinearity of the bent

function f(x,y) =z - ¢(y) + g(y) satisfies

1 n
nly(f) 2 2 - \/22n+2n+2—232+2-2 S nia-9).

ae]Fé,a;éO

Corollary 1.2.30 ( [37, Corollary 1]). Let n = 2t where t be an odd integer. Suppose g is
an arbitrary Boolean function on Ty and ¢ is an AB (t,t)-function which is a permutation
on FL. Then the second-order nonlinearity of the bent function f(x,y) = z - ¢(y) + g(y)

satisfies

5n+2 3n+2
4

1 [ o
nzg(f)z2"1—§\/232+1+2 2N o

Algebraic Immunity

The measure of resistance against algebraic attacks is called the algebraic immunity of
Boolean functions. Algebraic attack was proposed by Courtois et al. [79,80]. For cryp-
tographic primitives algebraic immunity of Boolean function should be large. For further

details we refer to [21,22,25,35,42].

Definition 1.2.31. Let f € B,. A nonzero Boolean function h € B, s said to be an
annihilator of f if f(x)h(x) =0, for all x € FY and their set is denoted by AN(f).

Definition 1.2.32. The algebraic immunity of f € B, AZ(f), is defined as
AZ(f) = min{deg(h) : h € AN(f)UAN(f +1)}.

It is easy to see that AZ(f) < deg(f), for all f € B, as f(x)(1 + f(z)) =0, z € F.
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Example 1.2.33. Let f,h € By such that f(x) = 1222324 and h(x) = 21 + x5 + 23 + 24.

Since for all x € 3,
f(z)h(x) = 1290314 + X103 4 + T1 222324 + T1222374 = 0.
Thus, the algebraic immunity of f is equal to AZ(f) =1 as h is an annihilator of f with

degree 1.

We discuss some known results related to the bounds of algebraic immunity and relations
with the nonlinearity of Boolean function. Let f € B, and s € Z*, 1 <r < n — 1. Then

the following conditions holds:

From [80, Theorem 6.0.1], we have

n

AZ(f) < min{deg(f), [51}

o If AZ(f) <r and f is balanced then [21, Proposition 1]

nl,(f) <2t —2m",

o If AZ(f) > r + 1 then [22, Theorem 1]

e
nl(f)>2 <:j )

j=0

Let deg(f) be d. If nl(f) < 327 (%) then [25, Theorem]

AZ(f) <d+1.

Correlation Immune and Resiliency

Correlation immunity of Boolean function can be defined in two equivalent ways.

Definition 1.2.34. A Boolean function in n variables is said to be correlation immune of

order r if any function obtain from it by fixing at most r variables is balanced. Equivalently,
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f € B, is said to be correlation immune of order r if
We(B) =0, for all B € Fy with 1 < wt(p) <.

Definition 1.2.35. A balanced Boolean function in n variables with correlation immune of

order r 1s said to be resilient of order r.

For details we refer to [6,13,52,74,77,90,122,131,141,142,145,153]. Siegenthaler [131]
derived the relation between algebraic degree and correlation immunity of Boolean func-
tions. Let f € B, such that algebraic degree be d and correlation immunity be r. Then

from [131], we have r + d < n. Maitra amd Sarkar [115] proved that
nl(f) < 2n71 o 2T+l

where f € B, with algebraic immunity . This nonlinearity bound of Boolean function is

called Sarkar and Maitra’s bound.

1.2.3 Affine equivalence and Derivatives of Boolean functions

The general linear group of degree n over Fo, GL(n,F,), is the group of invertible linear
transformations acting on Fon. For any A € GL(n,F) and x € Fyn we denote the action
of Aon z by x — xA. The affine general linear group, AGL(n,F,), is the set of all
transformations of the form x — xA + b where b € Fy». This group can be thought of as

the semidirect product GL(n,[Fy) x Fan, but we will not need that here.

Definition 1.2.36. Two Boolean functions f,g € B, are said to be affine equivalent if
there exists (A,b) € AGL(n,Fs) such that g(x) = f(xA+ D), for all x € Fan.

For Boolean functions used as cryptographic primitives the notion of equivalence is

further generalized as follows.

Definition 1.2.37. Two Boolean functions f,g € B,, are said to be extended affine equiv-
alent (EA-equivalent) if there exist (A,b) € AGL(n,Fs), a € Fon and ¢ € Fy such that
g(z) = f(xA+b) + pac(x), for all v € Fon where g, (x) = Tr](ax) +¢.

The computational complexity for direct verification of affine equivalence between given

two Boolean functions is @(2"), which is computationally infeasible for n > 7. If two
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Boolean functions f, g € B,, have different algebraic degrees then they are E'A-inequivalent.
Therefore, the algebraic degree serves as an F A-invariant. The multiset consisting of ab-
solute values of Walsh-Hadamard transforms of a function f is said to be its absolute
Walsh—Hadamard spectrum. If the absolute Walsh-Hadamard spectra of two Boolean func-
tions are different, which is possible even if their algebraic degrees are same, then we know
that they are E A-inequivalent. Thus, the absolute Walsh—Hadamard spectrum serves as a
more sophisticated E A-invariant. In fact, the autocorrelation spectrum which is another
invariant is also connected to Walsh-Hadamard spectra. For bent functions the absolute
Walsh-Hadamard spectrum is unique and flat, set to 22 where n is the number of vari-
ables. Thus, the invariants dependent on Walsh-Hadamard spectra are unable to decide
E A-inequivalence of bent functions.

The problem of deciding E A-inequivalence is completely solved for Boolean functions
having algebraic degrees at most 2, that is, for affine and quadratic Boolean functions.
We refer to MacWilliams and Sloane [41, Chapter 15] for detailed discussion on quadratic
Boolean functions including their affine inequivalence. In the absence of a general theory for
functions having algebraic degree three and above we address the problem by considering

derivatives of these functions.

Definition 1.2.38. The derivative of f € B,, with respect to an m-dimensional Fy-subspace

V' of Fan, or the mth-(order) derivative, is the function Dy f : Fon — Fy defined by

Dy f(x) = Zf(x +a), for all x € Fan.
acV
The algebraic degree to Dy f is at most deg(f) — m. If V is one-dimensional then
Dy f(x) = f(z 4+ a) + f(z) where a € V' \ {0}, which is usually denoted by D, f(x). If V is
a 2-dimensional subspace of Fon we choose any pair of distinct elements a,b € V' \ {0} and

write

Dy f(x) = Dapf(x) = f(z)+ f(x +a)+ f(x +b) + f(x +a+ D),

for all x € Fon. Obviously the choice of (a,b) does not change the function Dy f.
Dillon [56] proposed proving inequivalence of Boolean functions by considering their

mth-order derivatives over all distinct m-dimensional subspaces of Fan.

Theorem 1.2.39 ( [56, Theorem 2.1]). For any function f € B,; let Dx(f) denotes the
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multiset of all k-dimensional derivatives of f. If f,g € B, are affinely equivalent then so
are Di(f) and Dy(g). If the nonsingular affine transformation A (operating on B, ) maps
f onto g then it also maps Dy(f) onto Di(g).

Dillon proved the following corollary to Theorem 1.2.39.

Corollary 1.2.40. If P is any affine invariant for B, then f — P{D,(f)} is also an

affine invariant for B,.

One can solve the affine inequivalent problem partially using the above invariant [109,

111).

1.2.4 Quadratic Boolean functions

Let V be the vector space of dimension n over Fyr where r € ZT. A function Q : V — Fy:

is said to be a quadratic form [7] on V" if
e Q(vx) = v*Q(x), for all z € V and 7 € Fyr.

o B(z,y) = Q0) + Q(z) + Q(y) + Q(z +y) is bilinear on V.

Let & be the kernel of B(z,y), bilinear form of ). Then & is a subspace of V' defined by

Eog={r eV :B(z,y) =0, forally € V}.

Suppose [ € B, is a quadratic function. The bilinear form associated with f is defined by
B(x,y) = f(0)+ f(z) + f(y) + f(x +y). The kernel [7,41] of B(z,y) is the subspace of Fan
defined by

Er={x €Fay : B(x,y) =0, for all y € Fon}.

Lemma 1.2.41 ( [7, Proposition 1]). Let V' be a vector space over a field F, of characteristic
2 and QQ 1V — F, be a quadratic form. Then the dimension of V and the dimension of

the kernel of QQ have the same parity.

Lemma 1.2.42 ( [7, Lemma 1]). Let f be any quadratic Boolean function. The kernel, E,
1s the subspace of Fon consisting of those a such that the derivative D, f is constant. That
18,

Er={a€Fom :D,f = constant }.
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The Walsh-Hadamard spectrum of any quadratic function f € B, is given below.

Lemma 1.2.43 ( [7,41]). If f : Fon — Fy is a quadratic Boolean function and B(z,y)
is the quadratic form associated with it then the Walsh—Hadamard Spectrum of f depends
only on the dimension of the kernel of B(z,y). Let the dimension of the kernel of B(x,y)
is dim(&f) = s. Then the weight distribution of the Walsh-Hadamard spectrum of f is

We(B) Number of (3

0 on _ gn—s
2(n+s)/2 on—s—1 + (_1)f(0)2(n7872)/2

_2(n+s)/2 2n7571 o (_1)f(0)2(n7572)/2

1.2.5 Reed—Muller Code

In 1954, Muller and Reed introduced Reed—Muller codes. The problem of constructing
Boolean functions in n variables with highest possible rth-order nonlinearity is connected
to the covering radius problem of rth-order Reed—Muller codes. For more details we refer
to [27,41,43,88]. In this section we discuss some basic definitions and properties of Reed—

Muller codes.

Definition 1.2.44. Suppose that F is a finite field and V = TF" is an n dimensional vector
space of F. Any subspace C' of V' of dimension k is said to be an [n, k]-linear code. Here n

and k are said to be the length and the dimension of the code, respectively.
Definition 1.2.45. The covering radius of code C' of V' is the smallest integer r such that
for each vector x € V' is covered by at least one codeword of C, that is,

Pt dln O) = g )

In other words the covering radius is the distance between the code and maximum

distance away vectors in the space.

Definition 1.2.46. Let 0 < r < n. The set of all Boolean functions in n variables having
algebraic degree at most r is called rth-order Reed—Muller code of length 2", and denoted by
R(r,n).
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The Reed—Muller code of order r, R(r,n), is a linear code of length m = 2" with

dimension ¢ = Z;:o (?) Reed—Muller code R(r,n) satisfies the following properties.

e R(r—1,n) C R(r,n), i.e., the Reed-Muller codes are nested.
e Minimum distance of R(r,n) is 2" ".

e For 0 <r<n-—1,R(n—r—1,n) is the dual of R(r,n).

e Reed—Muller code is an extended cyclic code.

Example 1.2.47. Let f € Bs. Then all possible linear combinations of monomials in 5
variables namely x1, Ta, T3, T4, x5 having degree at most 1 is R(1,5). Thus, the cardinality

of R(1,5) is 25 and any codeword R(1,5) can be expressed as
bo + bix1 + oo + b3xs + byxy + b5$5, fOT’ all b; € Fg,i =0,1,...,5.
The rth-order nonlinearity of Boolean function f € B, can be defined as

nl,(f) = min d(f,g)=2""— 1 max | Z(_l)f(x)w(a:)‘_

eR(r, 2 geR(r,
gER(r,n) gER(r,n) +Fy

Thus, the covering radius of R(r,n) can be obtained from rth-order nonlinearity of f € B,
as

rn = max min d(f,g) = maxnl.(f).
Pr, fGB}ngR(r,n) (f g) fGB}rf (f)

The bounds of covering radius for different Reed—Muller codes [43, page 252] are given in
Table 1.3. For s and ¢ we refer to [147,148].

1.2.6 Bent functions

Boolean functions used as cryptographic primitives must resist affine approximation, which
is achieved by having high nonlinearity. The bent functions defined on an even number of
variables have the maximum nonlinearity, that is, they offer maximum resistance to affine

approximations. In this section we always consider n = 2t.

Definition 1.2.48. A Boolean function f € B, is said to be bent if its Walsh—-Hadamard
spectrum consists of values of the set {—2"/2 272} that is, |W;(a)| = 2"/2, for all a € F}.
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r\m |1][2]3[4]5 |6 |7 E IE |
1 ol1l2]6[127128 |56 120 240 — 244
2 0l1[2]6 |18 [40°—44" [ 845 —100 | 171¢ — 220
3 0112 |8 [20°—23"]43°—67 |111°—167
4 ol1 |2 |8 225 — 31 | 58 — 08

5 0 |1 |2 10 23¢ — 41

6 0 |1 2 10

7 0 1 2

8 0 1

9 0

Table 1.3: Bounds on the covering radius of Reed—Muller codes

From Equation (1.2.6), f € B, is said to be bent if and only if its nonlinearity is

maximum, that is,

Example 1.2.49. Let f be a Boolean function in 4 variables of the form f(x1,x9, x3,24) =
1+ 21 + g + 2123 + 2224 + x324. Then [ is a bent function as |Wy(a)| = 4, for all a € F3
and nl(f) =6.

An equivalent definition by using their autocorrelation spectra [54] is given below.

Definition 1.2.50. An n variables Boolean function f is said to be bent if and only if for

any nonzero o € [Fy,

Cf(()() _ Z(_l)f(z)+f(m+a) —0.

€y
Definition 1.2.51. A class of bent functions is complete if it is globally invariant under

the action of the general affine group and under the addition of affine functions.

Using fast Walsh—Hadamard transform one can efficiently compute it up to certain vari-
ables as the complexity of fast Walsh-Hadamard transform [51] is O(n2"). The properties

of bent functions are listed below.
e Let f be a bent function in n variables. Then n must be an even positive integer.

e For n = 2, the degree of bent function is 2 and for n > 4, the degree of bent functions

is at most § [54, Theorem 4.5].
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e Bent functions is invariant under the action of general affine group and addition of
affine functions, that is, if f(z) = h(xA+0), for all x € F} where (A,b) € AGL(n,Fy)
then f is bent if and only if A is bent. Also if f = h + g where ¢ is an n variables
affine function then f is bent if and only if A is bent.

o Let f € B, be a bent function. Then for all o € [,

where f is also an n variables bent function, is called dual of f.

e The Hamming weight of a bent function f € B, is 2! 4 22!, Therefore, bent

functions are not balanced.

e Let f € B,. Then f~1(0)={x €Fan: f(z) =0} or f71(1) ={x €Fon: f(x) =1} 1is

a Hadamard difference set in [F7.

e Let f € B, and g € B, be bent function, and h € B,,,, such that h(z,y) =
f(z) 4+ g(y), for all x € F} and y € F5*. Then h is bent.

Compared to the set of Boolean functions, bent functions set are small. Langevin and
Leander [93] enumerated all the 8 variables bent functions and classified then under affine

equivalence. The number of 8 variables bent functions is
99270589265934370305785861242880

which is approximately equal to 2!%63. The number of n, 2 < n < 8, variables bent function
is given in the Table 1.4. Roughly, the number of bent functions in n variables is bounded

above by
ol (D) +(B)++ () = 92771 =1/2(4))

Let r,, be the number of bent function in n variables.

Constructions of bent functions

In this section we focus on primary and some secondary constructions of bent functions.

For more details one may refer to [120,135]. Rothaus studied these functions in the 1960’s,
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n[2]4 [6 |8 |
r | 8 | 896 | 5425430528 | 99270589265934370305785861242550
~ 232.3 2106.3

Table 1.4: Numbers of bent functions in n variables, 2 <n <8

although his paper was not published until ten years later [86]. In print, bent functions
appear in a preprint authored by Dillon in 1972, and in his Ph.D. thesis [56]. The class
of bent functions found by Dillon is known as Partial Spread (PS) class, and a subclass
known as PS,, allows an explicit mathematical description. The Maiorana—McFarland
(M) class introduced in [102] and further investigated in [56] is the other generic class of
bent functions discovered around the same time. Dobbertin [49] proposed another set of
bent functions which includes both M and PS. These three classes are also referred to
as the primary constructions, whereas the classes C and D were introduced by Carlet [17]
belong to secondary constructions obtained by modifying the class M.

Rothaus Construction:

In [86], Rothaus identified two large general classes of bent functions on Fj. Let z =

(l’l,ﬂfz, s 7xt)ay = (ylayQa s >yt> € Fg Then
t
F1, 1,02, 92, - w,ye) = Y wiys + p(x)
=1

is a bent function where p(z) is an arbitrary polynomial on F%. Rothaus constructed another

type of bent functions of the form

91, 2, - T, T, Yer1) = [1(2) o) + fo() f3(2) + fi(2) f3(z) + [fi(2) + fol@)]yen

+ [fi(x) + f3(2)] 71 + Teayea

where f1, f> and f; are bent functions such that fi; + fo + f3 is bent. The dual of f, f, is
defined as

t
f@1, 91,22, Y2, 4) = Zl‘iyi +p(y)-
i=1

Maiorana and McFraland Construction:

Let 7 : F5, — F be a permutation polynomial. Rothaus [86] proved that any function
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of the form

fiF xF, > F
2o (1.2.9)

f(z,y) =z 7(y) + g(y), for all (z,y) € Fh x F,

is bent where g € B;. These bent functions are said to be Maiorana—McFarland bent

functions [55,102], and their set is denoted by M. The dual of f, f, is defined as
fla,y) =y -7 () + g(x'(2)), for all (z,y) € Fy x F}

where 771 is inverse of  and f is defined as in Equation (1.2.9). For f € M with g = 0, the
algebraic degree is deg(f) = deg(m)+ 1. Maiorana—McFarland construction provides a nat-
ural connection between permutations over finite fields and functions in M. Permutations
having algebraic degree 1 are said to be linearized permutations. Each linearized permuta-
tion on F} generates a quadratic function in M. The complete Maiorana—McFarland class

is denoted by M*. The completed class of M contains all the quadratic bent functions.

Proposition 1.2.52 ( [55]). A bent function f € B, belongs to the completed class of

n

Maiorana—MaFarland then there exists an 5

dimensional subspace U in F5 such that all

second derivatives are vanish, i.e., for any nonzero u,v € U with u # v
Dy,f(z,y) = f(x)+ flz+u)+ f(x +v)+ f(x +u+v) =0.

Dillon Construction:

Dillon constructed an important class of bent functions referred to as the partial spreads
class. It is known that there are functions in the partial spreads class which are not M.
The partial Spreads class of bent functions is denoted by PS. PS is divided by two disjoint
classes, so-called PST and PS~. We first define the meaning of spreads and partial spreads.

In this section we takes n = 2t, t € Z™.

Definition 1.2.53. Let {F4, Es, ..., E.} be the set of subspace of Fy over Fy. The set
{E1, Es, ..., E.} is said to be a partial spread of Fy' if

o E,NE; ={0}, for all i # j,

o dim(E;) =t, foralli € {1,2,...,r},
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i.e., the set of pairwise supplementary t-dimensional subspace of Fy. If Ul_ | E; = % then

it s called a spread of Fy over Fy.

A Boolean function f € B,, belongs to PS™ class if f(0) = 0 and its support along with

0 is the union of 2!=! elements of a partial spread of F%, that is,
supp(f) U {0} = UL, B, (1.2.10)

where {Ej, Es, ..., Ey—1} is a partial spread. Dillon proved that the Boolean function
defined as in Equation (1.2.10) is a bent function with algebraic degree ¢. Dillon constructed
another class of bent function so-called PS,,, a subclass of PS™. Let 3 be identified as

4 x Fh. A Boolean function f € B, on Fy x F} belongs to PS,, if for all z,y € F}

Fw) =g (5)

where g € B, is Balanced such that g(0) = 0 with convention that § = 0. The dual of
f €PSuyis flz,y) = g(¥).
A Boolean function f € B, belongs to PS* class if f(0) = 1 and its support is the

union of 28~ + 1 elements of partial spreads of Fy, that is,
supp(f) = UL, B, (1.2.11)

where {Ey, Fy, ..., Ey-1,,} is a partial spread. Dillon also proved that the Boolean function
defined as in Equation (1.2.11) is a bent function with algebraic degree t. For, more details
and an new construction we refer to [14,23,24,94, 119, 150].
Dobbertin Construction:

Let g € B; be balanced and 7, : Fy — F, such that  be one-to-one and ¢ be arbitrary.

Suppose f is a Boolean function on 4 x F% of the form

g(=e) if y £ 0;

0, if otherwise.

fonw (z,n(y)) =

Dobbertin [49] proved that f,, , ia a bent function which includes both M and PS. Dob-

bertin also proved that if g is an affine function then the above function f, 4 is belong to
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M, and fg4., o is belong to Dillon’s classes where ¢g: is the identity on IF.
2
Carlet Construction:
Two new classes of bent functions were introduced by Carlet [17,18]. Let E be a

subspace of FL. The class D consists of bent functions of the form

flz,y) =2 -7(y) + dp, (¥)dE, (y) (1.2.12)

with 7 a permutation on F§ and E), E; two linear subspaces of F4 such that 7(Ey) = Ef-
(¢ is the indicator function of the space E defined as in Definition 1.2.15).

An explicit subclass of D, denoted by Dy, contains all elements of the form
- m(y) + do(x)

where dp(z) is the Dirac symbol, which is 1 if z = 0, and 0, otherwise. It has been shown
that Dy strictly includes the M and PS classes [17,49].
The second Carlet class C of bent functions (one we will concentrate on) contains all

functions of the form

f(@y) =2-7(y) + o (x) (1.2.13)

where L is any linear subspace of F and 7 is any permutation on F% such that ¢(a + L) is
a flat (affine subspace), for all a € F, where ¢ := 7~!. If L = F% then the function belongs
to C is same as in Dy. Thus, the class C contains Dy, and so is not included in classes M

and PS.

1.2.7 Generalized Boolean functions

Let Iy, Fyn, and F} be the prime field of characteristic p, the extension field of degree n
over [F, and the set of all n-tuples of elements of I, respectively. For any « € [F,» can be
written as

T =CT1+ CTo+ ...+ Crxy,

where z; € Fp, i =1,2,...,nand ¢ = {c1,¢a, ..., ¢, } is a basis of Fj» over F,. A function
[y — T, (or, equivalently f : F,» — IFp) is called a generalized Boolean function in n

variables whose set is denoted by BP. For p = 2, we obtain the classical Boolean functions
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whose set is denoted by B,. Any f € B can be uniquely expressed [151] as a polynomial

in Fplzy,...,2,]/ (2] —x,..., 2P — x) of the form

flzy, 20, ... 2p) = Z g (Hx?>

a‘:(a‘l 7777 an)an

where ji, € F and x = (21,...,2,) € F. The algebraic degree of f, denoted by deg(f), is
defined as

deg(f) = max {Zai D g F 0}
Poli=1

where a = (ay,...,a,) € ), the sum is over Z. For details we refer to [4,82,83]. Let
(= ¢’ be the complex p*" root of unity where 1> = —1. The generalized Walsh-Hadamard

transform of f € BE at a € F) is defined by

) = 3
z€F}
where a - x denotes an inner product on Fy. According to [98], a function f € B is called

a generalized bent function if
|Hs(a)| = p2, for all a € Fy.

Equivalently, a function f € BP is said to be generalized bent function if for any nonzero
a € ]F;L,

Z Cf(l“+a)*f(w) —0.

z€FR

A bent function f is said to be regular if for any a € F;, H(a) = p%gf<a> where f € BP is
called dual of f.

The group of all invertible F-linear transformations on F} is denoted by GL(n,[F,).
Two generalized Boolean functions f,g € BE are said to be affine equivalent if and only if

there exist A € GL(n,F,) and b € F} such that
g(x) = f(xA+D), for all z € F}.

The affine general linear group AGL(n,F,) consists of all the elements of the form (A, b) €
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GL(n,F,) x Fy. Two generalized Boolean functions f,g € BE are said to be equivalent if

and only if there exist (A,b) € AGL(n,F,), u € F} and € € F,, such that
g(w) = f(xA+b) +u-z+e¢ foralz el

The derivative of f € Bl with respect to a € F)), D,f, is the function D,f : F} — F,
defined as
D.f(x) = f(x+a) — f(z), for all x € F.

The kth-order derivative of f € BE with respect to uy, ug, ..., ux € Fy is defined by

Dy g, [ () = Dy Dy, ... Dy, f(z), for all z € .

1.3 Group ring

Let A be a group algebra of ) over [, An element r € A can be written as

T = Z ry X9 where z, € F,.

geky

For any z,y € A and c € F, addition and scalar multiplication can be defined as

T4y = ngX-‘H—ZnggZ Zngg where z, =z, +y, € F,,

S geFn gEFy
_ 9 — 9 — 9 _
and cr=c E r, X9 = E (cxy) X9 = E wy XY where w, = czy € F,,.
geFy g€ely geFy

Using the polynomial multiplication X9 X" = X9+" the multiplication in the group algebra
A is defined by

Ty = Z x, XY Z y X" = Z Z TgYi—g X*

g€eFn heFy CeFn \ g€Fn
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Note that X is the multiplicative unit of A as X%a = aX° = a, for all a € A. Consider

the mapping ¢ : A — F,, of the form

T = Z:ngg — ng, for all x € A.

geky gFy

Then the set
P={recA:y@=0={rcA: > z,=0} (1.3.1)

gng

is the unique maximal ideal of A, and
A=P'>PoP?> .. . OP"w=F,

where PP/ = Pt and P*P~D+1 = {0}. For more details we refer to [1,39)].

A generalized Boolean function f € BE can be identified with the codeword 1y =
deF; f(g)X?7 of length p" consisting of all values of f(r),z € . The support of f € B,
denoted by supp(€2), is defined by

supp(§y) ={z € F}, : f(z) # 0}.

The generalized Reed-Muller code, R,(r,n), is the set of codewords Q; where f € BP
with deg(f) < r, 0 < r < n(p—1). Let 1 € F; be a vector contains all 1’s. Then
Rp(0,n) = 1F, = (1) and R,(n(p — 1),n) = F2". The dimension of R,(r,n), denoted by
dim(R,(r,n)), is defined as
T n ) s . 1
din(Ry(r.m) = - S0 (M) (T,
— =

t—Jp

for all 0 <r < n(p —1). For example, dim(R,(1,n)) is equal to 1 + n. For further details
we refer to [38,92].

1.4 Overview of the thesis

Chapter wise brief description of this thesis is given below:

Chapter 1. In this chapter, we give the introductory matter, some basic definitions,
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notations, representation of Boolean functions, Walsh—Hadamard transform, cryptographic
significant properties, Reed-Muller code and generalized Boolean functions. We further
discuss affine equivalence and derivatives of Boolean functions. Also we give a literature
survey on construction of bent Boolean function and the existence results on nonlinearity
profile of the Boolean functions. We provide some basic on finite fields and group ring
which is useful to our work.

Chapter 2. In this chapter, we construct two subclasses of cubic bent functions in M, f;

and g, of the form
L filw,y) = Tl (azy* ** + awy® ")

2. g(z,y) = Trl (xyTrj(y) + Bay?),

for all (z,y) € Fot x Fo by using two quadratic permutations which were introduced by
Blockhuis et al. [2]. We show that the functions in each of these classes have no affine
derivative. We prove that the functions in the different subclasses are affine inequivalent
by considering their second-derivative weight distributions. Thus, we extend the number

of known cubic bent functions in M with no affine derivative.

Chapter 3. The aim of this chapter is to obtain explicit construction of several subclasses
of bent functions in C for the first time. We are able to identify permutations corresponding
to which there are no C class bent functions. We investigate the choice of linear subspaces L
which may potentially give rise to bent functions in C for some specific permutations 7 and
later we extend the derived conditions for arbitrary 7. The analysis uses more general bent
conditions (without requesting that the initial function is in M) given in [17, Theorem].

We consider

[ (@, y) =z -7m(y) + ér(z,y)

where 7(y) = yA is a linear permutation over Fy, L = FE x F4 for some k-dimensional
linear subspace E, for 0 < k£ < n, and A is an invertible matrix over [y of size n x n
(that is A € GL(n,Fs)). It is shown that f* is always bent regardless the choice of FE,
but nevertheless f* is in the completed class M*. Further, we consider those permutation
polynomials which can be factored (split) into linearized polynomials namely k-linear split
permutation, and look at C type bent functions associated to k-linear split permutations.

The main contribution of this chapter can be summarized as follows:
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A classification of linear subspaces that may potentially give rise to bent functions in

the C class is given.

e A theoretical analysis related to the conditions that a permutation 7 and a linear

subspace L = E x F§ C F3" satisfy the bent conditions is presented.

e [t is shown that for several classes of permutations m there does not exist 2-dimensional
subspace L satisfying the bent conditions. For instance, C class bent functions asso-

ciate to Hou’s permutations [152, Theorem B| and certain trilinear split permutations.

e The existence of 2-dimensional linear subspaces satisfying the bent conditions have
been confirmed for certain classes of bilinear split permutations. Thus, some infinite

classes of bent functions in C have been specified.

Chapter 4. In this chapter, we consider the generalized Boolean functions from F) to F,
where p is an odd prime integer and the set of all n variables generalized Boolean function
is denoted by BE. We further characterize the subspace sum concept (depending upon
the derivative) and give many of its properties; in particular, we show that it is an affine
invariant of generalized Boolean functions. First, we define the subspace sum of f € BP

with respect to a subspace V' of I, Sy f, as

Syf(x)= Zf(x—i—s), for all z € IF).

seV

We prove that
Svf(x)=DuD,...D, f(x), for all z € F}
(p—1)—times
where V' = (a) is an one dimensional subspace of F,. We also prove that if f,h € B}
are affine equivalent then so are Si[f] and Si[h] where Si[f] denotes the multiset of all
subspace sum of f with respect to k-dimensional subspaces of F}, and we generalize a
result of Dillon [56]. We derive a necessary condition for generalized Maiorana-McFarland

bent functions.

Chapter 5. In this chapter, we consider m = 2n and construct two new classes of gener-

alized bent functions (so-called DP, D and C? where D} is a subclass of DP). We observe
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that if f € D} is an m-variable generalized Boolean function then m =0 (mod 4) and

n p—1

fwy) =z 7(y) + b, (w,y) = x - 7(y) +e | [ [[ (2 =)
i=1 j=1
where (7,y) € F} xF} and Ey = {0} x F}, is a regular generalized bent function. We prove
that MP and D C DP are overlapping classes, but in general not included in one another.
For construction of CP bent functions, it is needed to consider a permutation polynomial m
on 7 such that 7~'(a 4 L) is a flat for any a € F}; where L is a linear subspace of F!. We
investigate these conditions for many classes of permutations and suitable linear subspaces

of the dimension less than and equal to 2 for p = 3.

Chapter 6. The main focus of this chapter is to compute the weights of their second
derivatives along with a lower bound of their second-order nonlinearities of cubic Maiorana—
McFarland bent-negabent functions constructed by using Feistel functions. We take m = 4t,
t > 3 and construct a class of cubic Maiorana—McFarland bent-negabent functions by using

Feistel functions of the form

Fil(@r, ), (Y1, y2)) = T (2192 + Tayn + woyd ),

for all z;,y; € Far, j = 1,2 where ged(2" + 1,2 — 1) = 1, 1 < i < t. We calculate that
the number of distinct 2-dimensional subspaces of F%t corresponding to constant second-
derivatives of f; is

<2t _ 1)(25t+e—1(26 + 1) + (215 + 1)(24t—1 _ 22t _ 1))
3 )

which depends on e = ged(i,t). Thus, by using an invariant proposed by Dillon [56], we
identify subclasses of inequivalent bent functions within this class. Further, we prove that

the second-order nonlinearity of f;, nly(f;), satisfies the following inequality:

1 1lt4e tte
nly(f) 22"~ 5\/2”*6 — 2ME 4 264(2%° — 20 1 1),

Chapter 7. The purpose of this chapter is to locate some functions with low Gowers Us

norms, since this is also a measure of resistance to second-order approximation of Boolean



36 1.4 Overview of the thesis

functions. First, we derive formula to calculate the kth dimensional Gowers norm associated
to a Boolean function from the Fourier transform using derivatives. Further, we prove that
the Gowers Us norms of a bent and its dual are equal and therefore they provide equal
“resistance” to quadratic approximations. We compute Gowers Uz norms of the character

form of some classes of Maiorana—McFarland bent functions of the form
Fy(z,y) = Tv} (ya 1),

for all x,y € Fon. In particular, we explicitly determine the value of the Gowers Us norm
of the character form of Maiorana—McFarland bent functions obtained by using APN per-

mutations of the form

Fz,y) = Trf(¢(z) - y) + h(z),

for all z,y € Fon where h € B, and ¢ is an APN permutation on Fy.. We further prove
that this value is always smaller than the Gowers Us norms of Maiorana—McFarland bent
functions obtained by using differentially J-uniform permutations, for all § > 4. Also we
compute the Gowers Uz norm of the character form of a class of cubic monomial Boolean

functions of the form

F(z) = Tep (A 241,

for all x € Fosr and A € F3,, and show that for n = 6 its value is less than that obtained
for Maiorana—McFarland bent function constructed by using APN permutations. We then
computationally show that the corresponding function has higher second-order nonlinearity
that Maiaorana—McFarland bent functions. In fact the 6-variable function identified by us

has the maximum possible second-order nonlinearity.

Chapter 8. This chapter contains conclusion of the thesis and some open problems for

future work.



Chapter 2

Affine inequivalence of cubic
Maiorana—McFarland bent functions

with no affine derivative

2.1 Introduction

A class of cubic Maiorana-McFarland (M) bent functions having no affine derivatives
was constructed by Canteaut and Charpin [5], thereby solving an open problem posed by
Hou [149]. In [91], Charpin et al. derived a relation between polynomials with linear
structures and Maiorana—McFarland functions with an affine derivative. The experimental
evidences [110, Section 3| suggest that cubic bent functions having no affine derivatives
might be possessing higher second-order nonlinearity than the rest. Derivatives have been
used for this purpose by Carlet [17] and Canteaut and Charpin [5]. Second derivatives have
been used by Gangopadhyay [111] extensively to demonstrate affine inequivalence between
cubic bent functions in M which are in many ways similar to each other. The technique

can be summarized as follows:

1. For f € B, construct the set

Sy ={wt(Dyf) :V varies over all distinct two dimensional subspaces of Fj}.

2. Construct the frequency distribution of the weights in S;. We refer to Sy as the

37
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second-derivative weight distribution of f.

3. For any two f,g € B,, if the second-derivative weight distributions of f and g are

different then f and ¢ are affine inequivalent.

In this chapter our goal is not only to identify some more classes of cubic bent functions in
M having no affine derivatives but also to prove affine inequivalence between the classes of

functions so obtained. We use Theorem 2.2.2 almost exclusively for that purpose.

2.2 Preliminary results

Recall the following well known facts from elementary number theory, which we use fre-
quently in this chapter. Suppose that az = b (mod n) where a,b,n € Z and d = ged(a,n).
Then

1. if d does not divide b, the congruence has no solution;

2. if d divides b then all solutions of the congruence are o + k%, 0 < k < d where xg is

the unique solution to (4)z = (%) (mod 2).

Let ¢ be a positive integer and ged(t,i) = e. Then [105, page 2]

. , 2¢—1, if is odd;
ged(2 = 1,21 — 1) = 2930 1 -

1S even.

I+ @ |+

2% _ 1, if

Theorem 2.2.1 ( [105, Theorem 3.1]). Let ¢ be a primitive element of For and ged(t, i) = e.

*

For any a € F3,, consider the equation a? 2% + az = 0 over For. Then:
1. [fﬁ is odd then there are 2° solutions to this equation for any choice of a € F,.
2. [fﬁ 1s even then there are two possible cases:

(a) if a = C*%*Y for some s then there are 2% solutions to the equation.

(b) if a # 3 FY for any s then there exists one solution only, namely x = 0.

Gangopadhyay [111] identified subclasses of inequivalent bent functions within this class,

by using an invariant proposed by Dillon [56].
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Theorem 2.2.2 ( [111, Theorem 4]). Let n = 2t. If fi(z,y) = Tr' (xy* ™) where z,y € Fyr,
n > 6,1 € Z such that 1 <i <t and ged(2' + 1,2" — 1) = 1 then the number of constant
functions among Dy f; is

(2 —1)(2He (2 +1) — (28 + 1))
3

where ged(t, i) = e.

Using this result, Gangopadhyay [111, Corollary 5] proved that if ged(t,i) # ged(t, j)

then f; and f; are not affine equivalent.

2.3 Maiorana—McFarland bent functions

Suppose n = 2t where t € Z*. Any permutation 7 : Foe — Fo can be represented by a
polynomial 7(x) = Zf;l a7 where a; € Fyr, for all 0 < j < 2! — 1. The algebraic degree

of 7 is deg(m) = max{ws(j) : @; # 0}. Rothaus [86] proved that any function of the form

fIFQt XFQt —>F2

f(z,y) = Tl (a7 (y)) + g(y), for all (x,y) € For x Fa

(2.3.1)

where g € B, is bent. These bent functions are said to be Maiorana—McFarland bent
functions and their set is denoted by M. In this chapter we assume g to be identically zero.
For f € M with g = 0 the algebraic degree is deg(f) = deg(m) + 1.

Suppose that ged(t,i) = e with £ is an odd positive integer. Let o € Fa such that
a # (™27 for any m € Z, ¢ be any primitive element of Fy:. Blokhuis et al. [2] mentioned

that o, j € {1,2,3}, listed below are linearized permutations on Fy:.

o(z) = % + oz,
oo(z) = 22 + o'z,

o3(z) = 2¥ + o'z
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Some other linearized polynomials over Fo: which will be used in the chapter are as follows:

The linea2r_ized function oy(y) = 0 if and only if y = 0 or >~ = o, If y*"~' = a®" then
(aiiiy Z = 1, since e | 7, which implies a% = 1. This is a contradiction, since a% # 1.
Thus, 04 is a linearized permutation. Similarly, it can be proved that o;, 7 = 5,6,7,8 are
linearized permutations.

Each function f(z,y) = Tri(zo;(y)), 1 < j < 8, is a quadratic bent in M. Moreover,

the following two quadratic permutations were constructed by Blockhuis et al. [2]:

my) = ¥ ay? 232

ma(y) = y(Trg(y) + ay)

where t = kl, k is an odd integer and ¢ > 1 is any positive integer (discussed later in
details in Section 2.4 on the parameter ). In this chapter, we use the functions of the form
fi(z,y) = Tri(zm;(y)), 1 < j < 2 as a source of cubic bent functions and consider their

differential properties.

2.4 Cubic bent functions in M

Two subclasses of cubic bent functions in M are constructed by using the permutations
in Equation (2.3.2). We show that the functions in each of these classes have no affine
derivatives. We prove that the functions in the different subclasses are affine inequivalent
by considering their second-derivative weight distributions. Thus, we extend the number

of known cubic bent functions in M with no affine derivatives.
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2.4.1 Subclass associated to m(y) = y2i+1 + Ozy2t*i+1

Let n = 2t, t > 3 and ( be a primitive element of Fo. Blokhuis et al. [2] proved that the

function m; : For — Fy¢ defined by

2t—i+1

2t 41
+ + ay ,

m(y) =y

for all y € Fo: where ¢ € Z such that 1 < i <t is a permutation if the following conditions

are satisfied:
1. ged(i,t) = e and £ is odd;
2. a# ¢ for any s € Z.

Lemma 2.4.1. Under the above conditions, the cubic Maiorana—McFarland bent function

fi i Fot X For — Fy defined by
filz,y) = Tet (xy? T + axy® ), for all (z,y) € Far x Fo, (2.4.1)

does not possess any affine derivative.

Proof. Let a,b € Far. Then the first derivative of f; at (a,b) € For X Fo is

Doy fi(w,y) = Try (ami(y) + (v + a) Dymi(y))
= T} (a <y2i+1 + ay2t_i“)

+(x + a) (y?b + b + 0 4 ay® b+ ayh® + ozbzt_i“)) ,

for all (z,y) € Fyr x Fy. If a # 0 then Do) fi(x,y) is a quadratic function. If @ = 0 and
b # 0 then

Doy fi(z,y) = Tr (x <y2ib + bei + ozy2t_ib + ozbeH) + x(bT’Jrl + oszt_iH))
is an affine function if and only if

p(y) = ¥ b+ yb® +ay® b+ ayh®
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is constant, for all y € Fa:. Since p(0) = 0, then (simplifying by y above)
P o T b T =0,
for all y € F3,. For y = 1, we get b* ' + ab® '~! = 1 4 a, which renders
Pl o T l4a=0. (2.4.2)

If & = 0 then the solution space of Equation (2.4.2) is Fae. Let o # 0. We know that for
y € Foe, y* 1 =1 =14 ""1 since e = ged(i, t). Therefore, Equation (2.4.2) is identically
zero. Otherwise, substituting y = ¢ € Fo:\Fae in Equation (2.4.2) czi‘1+a62_t_i_1+1+a =0,

A o !
27 i 2y2° iNoi_ . 2t—1 . .
SO o = cf;;—i and then, o2 = —(c(it;—)")ﬂ — (c + 2 )2 17 that is, <Q2e,1) =1, since e | i,

which implies a1 = 1. This is a contradiction, since QT # 1 (otherwise, the condition
a # 527 would be violated). Thus, Equation (2.4.2) does not hold, for all y € Fa.

Therefore, Dy f; is not an affine function, and our lemma is shown. [ |

Theorem 2.4.2. The number of distinct 2-dimensional subspaces corresponding to constant

second-derivatives of f; is

(2t =1) (2" 120+ 1) — (2" + 1))
3

where f; is defined as in Equation (2.4.1).

Proof. Let V= ((a,b), (¢,d)) be any 2-dimensional subspace of Fot x F5¢. The second-order

derivative of f; is

Dy fi(z,y) = filz,y) + fiz + a,y +b) + filx + e,y +d) + filzx + a+c,y +b+d)
= Tt} ((ad + be)y® + (ad® + b )y + afad + b)y® " + a(ad® " +cb* )y

9z + (ad® ' + ) + alad® T+ BT + (a+ o))

where v = (bd?' + 0¥ d) + a(bd® " + b2 d).

Case 1: We first assume b = 0 and d = 0. Then Dy fi(z,y) = 0, for all (z,y) € Far x For.
Thus, with respect to any 2-dimensional subspace of Fo: x {0} the second-order derivative
of f; is 0. Therefore, the number of distinct 2-dimensional subspaces such that Dy f; is

constant, is equal to M’)&
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Case 2: Let b =0 but d # 0. Then

Dy file,y) = T ((ad)y” + (ad® )y + alad)y” ™ + a(ad )y + (ad ™) + afad )

=10} (((ad)”™" +ad® + (0ad)? + aad®")y) + T} (ad?*' + aad® 1)
Thus, Dy f;(x,y) is constant if and only if (ad)?® ™ + ad? + (cad)* + aad*™" =0, and so,

0=((ad)* " +ad® + (aad)* + aad® ")*
—ad+ a* & + (0ad)” + (0a)?d

=(a® + (aa)”)d*" + (a + (aa)?)d,

which can be written as h*d?” 4+ hd = 0 where h = a + (aa)¥. Thus, h # 0 as a # 0.
Then by Theorem 2.2.1, the above equation has 2° — 1 nonzero solutions for d in Fo:.
Therefore, for any nonzero a € Fy, it is possible to choose d in 2¢° — 1 ways, a can be
chosen in 2! — 1 ways and ¢ in 2" ways. Since the subspace generated by {(a,0), (c,d)}
is equal to the subspace generated by {(a,0),(a + ¢,d)}. Therefore the total number of
distinct 2-dimensional subspaces such that the second derivative of f; is constant, is equal
to (2t — 1)20-1(2¢ — 1).

Case 3: Let b # 0 and d # 0.

Subcase (i): Let b = d. Then the subspace generated by {(a,b),(c,d)} is equal to the
subspace generated by {(a + ¢,b+d), (¢,d)} = {(a + ¢,0), (¢,d)}, which is the same as in
the previous case.

Subcase (11): Let b # d. Then Dy f;(z,y) is constant if and only if
Tr! ((ad +be)y? + (ad® + b )y + alad + cb)y® " + alad® + cb2t7i)y> =0 (2.4.3)
and
v =0. (2.4.4)

From Equation (2.4.4), we have b ~! 4+ ab® ~' = @' + ad? "', since b # 0 and d # 0.
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Again, from Equation (2.4.4),
0=7=7" =0*d” + > d* + o® (B d+ bd*) = (bd* + b*'d)* + o (b*'d + bd*).

Let z = bd® + b*d. Then the above equation can be written as 22° + o2 z = 0, which has

the only solution z = 0, that is,

; ; AN
bzd—{—bdQ:O(:)(g) =1, as b#0 and d # 0,
d . ,
and so, 7 € Fi., as ged(t,i) =e.

Since b # d, for any nonzero b, there exist a nonzero A € Fye with A # 1 such that
d = \b. Thus, d can be chosen in 2¢ — 2 ways and b in 2! — 1 ways.
Further, from Equation (2.4.3), we have

Tr! ((ad +be)y? + alad + cb)y® " +y ((ain + b)) + alad® " + cb2t7i)>> =0,
& Tr} ((ad +be)y? + afad + cb)y® " + y(ad + be) (0¥~ + ab?”*l)) -0,

o T ((<ad 4 be)? T+ (alad + b)) + (ad + be) (B + ab2t_i*1)) y) ~0,
for all y € Fy¢ if and only if the following (equivalent) statements hold

(ad +be)* ™ + (alad + cb))* + (ad + be) (B~ + ab® 1) = 0,
b (@A ¢+ b (alah + )+ (ah o) (07 +ab® ) =0,
w87 (aw)” + w (B +ab®) = 0 where w = aX+c,
0w 0 (aw)? + w4+ ab® )P =0,

bw + (b)) w? + (¥ + o b)w? =0,

r ¢ ¢ 0

w((ab)®'w? " + (0¥ + ¥ bw? T +b) =0.

Therefore, we infer that either w = 0 or (ab)? " w?'~' + (b*" + a¥b)w* ' + b = 0, which
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can be transformed into

(ab)22iw(2i—1)(2i+1) + (b22i + a2ib)w2i_1 +b=0,

2V T 0 4 o b+ b = 0 where w? ! = g4,

i

(azzﬂ_'_ 1)2ib22i,u+ (am“_'_ )b =0,

3

b(a” p+ 1) M p(e® p+ 1)+ 1) =0,

i

o 1+1 40, since the only solution of o® w* +w = 0 is w = 0 due to o6(y),

& b22i’1u(042i,u +1)*14+1=0, as b#0 and o p+10,
= b(2i+1)(2i—1)w2i—1(Qinziq + 1)?—1 +1=0,
PN (b2i+1(a2iw2i + w))?_l =1,
& P (v +w) e FL,
s P w? +w) € F, as ged(i,t) =e,
and thus /
o w? +w = %, as b#0 and \ € Fy. (2.4.5)

Since the homogeneous part of the above equation is a linear equation which has a unique
solution w = 0, then Equation (2.4.5) has a unique solution in Fy for each N € Fo.
Thus, w can be chosen in 2¢ ways (including w = 0). For fixed a and b, ¢ can be chosen
in 2¢ ways. Therefore, a can be chosen in 2¢ ways, b in 2' — 1 ways, d in 2¢ — 2 ways
and c¢ in 2¢ ways. Each 2-dimensional subspace generated by a pair of vectors (a,b) and
(¢, d) satisfying the above conditions, contains altogether 6 distinct bases satisfying these
conditions. Therefore, the total number of distinct two dimensional subspaces with bases

w. Adding the counts from the above three cases we obtain the

2t—1)(2tte—1(2e4+1)— (28 +1)
3

of this type is

), and the theorem is shown. [ ]

total count

Remark 2.4.3. If a = 0 then the cubic Maiorana—McFarland bent function defined as
in Equation (2.4.1) is fi(x,y) = Tri(zy®+Y), for all (z,y) € Fy x Fo. From Theo-

rem 2.2.2, we have the number of constant functions among the second-order derivative

of f; is (2t—1)(2t+e—1gze+1)—(2t+1))'

In Theorem 2.4.2, we proved that the number of distinct 2-dimensional subspaces cor-

responding to constant second-derivatives of f; depends on e = ged(4,t). This immediately
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yields:

Corollary 2.4.4. If ged(i,t) # ged(j,t) then f; and f; are not equivalent where f; and f;
are defined as in Equation (2.4.1).

2.4.2 The subclass associated to m(y) = y(Trj(y) + ay)

We next consider a class of permutation polynomials constructed by Blokhuis [2] and re-

ferred to by Laigle-Chapuy [154].

Theorem 2.4.5 ( [2,154]). Let t = k{ where k be an odd and £ > 1 be any positive integer.

Then the following polynomial is a bilinear permutation over o of the form

7(z) = 2(Try(z) + az)

k=1
where o € Foe \ Fy and Trh(z) = 3 22",
i=0
Using this class of permutations we construct a class of cubic Maiorana—McFarland bent
functions. Let t = k¢ where k be an odd and ¢ > 1 be any positive integer. A function

g : Fot x Fyt — Fy defined by
g(z,y) = Tr} (zy Trj(y) + azy?®) , for all (z,y) € Far x Fo, (2.4.6)
is a cubic Maiorana—McFarland bent. We prove that if £ > 1 then the functions g belonging

to this class do not have any affine derivative.

Theorem 2.4.6. Let t = kl where k be an odd and { > 1 be any positive integer. If k > 1
then the cubic Maiorana—McFarland bent function g defined as in Equation (2.4.6) has no

affine derivative.
Proof. Let (a,b) be an any element of For X Fo:.
D(a,b)g(x7y) - g(l’,y) —|—g($ + a,y + b)

= Try (2yTr(y) + (x + a)(y + 0)Iri(y + b) + awy® + alz + a)(y + b)*)

=Tt} (a (yIri(y) + ay®) + (z + a) (yTrj(b) + bTr}(y) + bTIr(b) + ab®)) .
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Let a # 0. Since yTry(y) + ay?> =0 y =0 or Tri(y) = ay & y = 0. Thus, if a # 0,

D49 is a quadratic function. Let us consider a = 0, so

Dioyg(x,y) = Trf (z (yTry(b) + bTry(y)) + = (bTxy(b) + ab?)) ,

which is an affine function if and only if p(y) = yTr)(b) + bTr}(y) is constant, for all y € Fo.
If that is so, since p(0) = 0, then p(y) = yTr)(b) + bTr}(y) = 0, for all y, in particular, for
y =1, we get b+ Trl(b) = 0, that is,

yTrl(b) + bTrh(y) =0 =y + Trl(y) = 0 = y € Fy.

Thus, p(y) is not a constant function for all y € Fa:. Therefore, g does not posses any affine

derivative. n

Remark 2.4.7. If k =1 then t = ¢ and for any (a,b) € Fo: X Fo,

Diang(z,y) = Tri((1+ a)(zb* + aly +b)*)),

which is an affine function. Therefore, if k = 1 then a function g of the form as in
FEquation (2.4.6) has affine derivatives. Thus, if k = 1, f; and g are affine inequivalent
where f; and g are defined as in Equation (2.4.1) and (2.4.6), respectively.

Theorem 2.4.8. Let n = 2t and g be defined as in FEquation (2.4.6). The number of

distinct 2-dimensional subspaces corresponding to constant second derivatives of g is

9301 (22(2Z+t) 4 QAL 9Bttt _ 5 936420 | 950420 _ 92(E+t) 4 930+1 | 24t)

3

Proof. Let V = ((a,b), (c,d)) be any 2-dimensional subspace of Far x Fa:.

Dyg(z,y) =g(z,y) +9(x+a,y+b)+g9(x+cy+d) +g9(x+a+c,y+b+d)
=Tr} ((ad + be)Try(y) + (aTry(d) + cTry(b)) y + (adTry(d) + cbTry(b))
+ (bTr)(d) + dTrj(b)) z + (a + c) (bTx}(d) + dTr}(b)) + a(ad® + cb%)) .

Case 1: Let b = 0 and d = 0. Then Dyg(x,y) = 0, for all (x,y) € For x For. Thus, with
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respect to any 2-dimensional subspace of Fyt x {0}, the second-order derivative of g is 0.

@-nE1-1)

The number of such distinct 2-dimensional subspaces is 3 )

Case 2: Let b =0 and d # 0. Then

Dyg(z,y) = Tr] (adTx}(y) + aTrj(d)y + adTr}(d) + aad®) . (2.4.7)
Since

Tl“tl (adTrz(y)) = Tri (ad <y 4 yQé 4 y22z T yQ(k—l)é))
= (y (ad +(ad)* Y 4 (@) 4 (ad)#))

= T} (y Trj(ad)) .

From (2.4.7), we have

Dyvg(z,y) = Tr] ((Trj(ad) + aTr}(d))y + adTrj(d) + cad?),

which is constant if and only if

Tr)(ad) + aTr)(d) = 0. (2.4.8)

Subcase (i): Let a € Fye. Then Equation (2.4.8) is satisfied for all d € Fy:. Therefore, d can
be chosen in 2! — 1 ways and a in 2° — 1 ways. Thus, the number of distinct 2-dimensional
subspaces on which the second-derivatives of g are constants is equal to (2¢ —1)2!71(2! —1).
Subcase (ii): Let a € Fye \ Foe. Then Trj(ad) + aTrl(d) = 0 if and only if Trl(d) = 0 and
Tri(ad) = 0. Since both are (k — 1)-dimensional Fy.-subspaces of Fa:, d can be chosen in

2!=2¢ ways and a in 2 — 2 ways. Thus, the number of such distinct 2-dimensional subspaces

is (20 — 29)20-1(20726 — 1),
Case 3: Let b # 0 and d # 0 with b = d. Then the subspace generated by {(a,b), (¢,d)} is
equal to the subspace generated by {(a +¢,b+d), (c,d)} = {(a+¢,0), (¢,d)}, which is the

same as in the previous case.
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Case 4: Let b # 0 and d # 0 with b # d. Then Dy g(z,y) is constant if and only if

bTrl(d) + dTrl(b) = 0, for all x € Fy (2.4.9)
and we get the implications

Tr! ((ad + be) Trl(y) + (aTrj(d) + ¢Trh(b))y) = 0,
& Tr,((Trl(ad + be) + (aTrl(d) + c¢Trl(b)))y) = 0, for all y € For, (2.4.10)

& Trj(ad + be) = aTr)(d) + cTrl(b).

Subcase (i): Let Tri(b) = 0 and Tri(d) = 0. The dimension of ker(Tr}) is t — ¢ where
ker(Tr}) = {x € Fy : Trj(z) = 0}. Thus, d can be chosen in 2¢=¢ — 1 ways and b in 2:7¢ — 2
ways. From Equation (2.4.10), we get Tri(ad + bc) = 0, so Try(ad) = Trh(ch) = X € Fy.

For fixed b and d and for each A € Fy, a and ¢ both can be chosen in 2/=¢ ways. Thus, the

22t—€(2t—€71)(2t—[—171)
3 .

Subcase (ii): Let Trly(b) = 0 but Trjy(d) # 0 or Tri(b) # 0 but Tri(d) = 0. Then from

number of such distinct 2-dimensional subspaces is
Equation (2.4.9), b = 0 or d = 0, respectively, which is impossible.
Subcase (iii): Let Trl(b) # 0 and Tr}(d) # 0. From Equation (2.4.9), we get

_ Trl(d)
Tr}(b)

Tr'(d
b, that is, d = 3b where § = St € F and 8 # 1.

d
Tr}(b)

For each b € F3,, d can be chosen in 2¢ — 2 ways. From Equation (2.4.10), we get

Trl(b(aB + ¢)) = (af + c)Tr(b). (2.4.11)

Equation (2.4.11) has a solution if and only if af + ¢ € Fy, so, ¢ = af + ) where 3 € Fyr.

Then for any fixed a, ¢ can be chosen in 2¢ ways. Therefore, the number of such distinct

2t+E(2t_1)(2¢-1-1)
3

2-dimensional distinct subspaces is . Adding all the cases we get our count.

In what follows we demonstrate affine inequivalence among the cubic bent functions
constructed above. To do this we use Theorem 2.2.2 proved in [111]. However, it is to

be remembered that the use of the properties of higher-order derivatives to decide affine
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inequivalence between bent function was introduced by Dillon [56] way back in the seventies.

Remark 2.4.9. Let n = 2t be a fixed positive integer. In Theorem 2.4.8, we proved that the
number of distinct 2-dimensional subspaces with respect to which the second-order deriva-
tives of g are constants depends on £. Thus, for any fived n, for different choices of ¢
the number of distinct 2-dimensional subspaces to constant second-derivatives of the corre-
sponding functions are different. Therefore, for any fized n, for different choices of £ the

corresponding cubic Maiorana—McFarland bent functions are affine inequivalent.

Example 2.4.10. Let n = 30. Then t = 15 and possible values of ¢ are 3, 5, and 15. If
¢ =15 then k =1, and the bent function corresponding to £ = 15 has an affine derivative.
Also from Table 2.1, we get the cubic bent functions corresponding to £ = 3, { = 5 and

¢ =15 are mutually affine inequivalent.

Let n = 2t, and ny(e) and ny(¢) be the number of distinct 2-dimensional subspaces
of Fot x Fy: on which the second-derivatives of f; and g (defined as in Equation (2.4.1)
and (2.4.6), respectively) are constants. Then
2 -DE*@2+1) - (24 1)

ni(e) = 3 (2.4.12)

and

(2t o 1)(2t+€(2£71 - 1) + 2t71 o 1) + 22t7€(2t7€ . 1)(2t7£71 o 1)

3 (2.4.13)
+ 27125 = 1)(28 — 1) + (28 = 25 (2% —1)).

TLQ([) =

Lemma 2.4.11. If { > e then ny(f) > ni(e) where ni(e) and nyo(€) are defined as in
FEquation (2.4.12) and (2.4.13), respectively.

Proof. We first compute the difference

ny(£)—ny(e) = (2° — 1)271(2" — 1) + (2" — 2920712172 — 1) — (28 — 1)271(2° — 1)+
22t—€(2t—€ o 1)(2t—€—1 o 1) 2t+£(2t o 1)(26—1 o 1) 2t+e(2t o 1)(26—1 o 1)
3 * 3 a 3
2H(2t — 1)(24(2¢° — 1) — 2¢(2¢1 — 1))
3
22t—£(2t—£ _ 1)(2t—£—1 _ 1)

= 212 — 1)(2F — 29) +

4 <2t o 2@)2t71(2t725 o 1) 4
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Case 1: If £ = e then t — 2¢ > 0 and ny(¢) — ny(e) > 0.
Case 2: Let £ > e. Then

20712t —1)(2° —2°) > 0

and

2028 — 1)(2°(2 — 1) —2¢(2¢7 L = 1))

> 0.
3

If k=1then 28 — 2 =0and 2" =1 =0 as t = [. Again if K > 1 then 2" — 1 > 0 as
t —2¢ > 0, and so, ns(¢) —ny(e) > 0. [

Corollary 2.4.12. If ¢ > e then f; and g are affine inequivalent where f; and g are defined
as in Equation (2.4.1) and (2.4.6), respectively.

We compare n;(e) and ny(¢) in Table 2.1, for different values of n.

n==~06 n = 10 n =12 n =18
e=1=3 e=1{=5 e=2{=2 e=1{=9 e=3{=3
ni(e) 35 651 12075 174251 3052203
n(f) 651 174251 53675 11453115051 25287339
n =20 n =30
e=20=2 e=1;0=3 e=34=5 e=>5/¢=15
3142315 879630115 12526594731 188614879915

2831415467 3775311936432811 6052134955691  192153583564270240

Table 2.1: The number of distinct 2-dimensional subspaces on which the second derivative
of the cubic Maiorana—McFarland bent functions f; and ¢ are constants.
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Chapter 3

An analysis of the C class of bent

functions

3.1 Introduction

In this chapter, we consider the C class bent functions, and derive some existence and
nonexistence results concerning them. The function f'(x,y) = = - 7(y) + ¢ (z) belongs
to the class C provided the bent property (C) is satisfied, see Section 3.3. Certainly, as
indicated in Remark 3.3.2, one could construct bent functions in the C class, but such
an approach does not give us an explicit construction. The purpose of this chapter is
to fir a permutation (from some known classes of permutations) and investigate these
bent conditions in more detail, and to derive certain (non)existence results concerning the
possibility of selecting appropriate subspaces so that the bent functions in the C class
may be constructed. Most notably, for some classes of permutation polynomials there are
no suitable linear subspaces of certain dimension for which the modification of f € M
would give a bent function f* € C. On the other hand, some explicit conditions and the
existence results could be derived for other classes of permutations. We also extend the
original analysis of bent conditions of Carlet in terms of the Walsh-Hadamard spectra and
show, for instance, that the modification (addition of the indicator of a linear subspace) of
quadratic bent functions in M only result in bent functions within the completed class M.

The main contributions in this chapter can be summarized as follows:

e A classification of linear subspaces that may potentially give rise to bent functions in

53



54 3.2 Preliminaries

the C class is given.

e A theoretical analysis related to the conditions that a permutation 7 and a linear

subspace L = E x F§ C F2" satisfy the bent conditions is presented.

e It is shown that for several classes of permutations 7 there does not exist 2-dimensional
subspace L satisfying the bent conditions. For instance, Theorem 3.3.3 refers to
Hou’s permutations [152, Theorem B] and Corollary 3.5.10 to certain k-linear split

permutations.

e The existence of 2-dimensional linear subspaces satisfying the bent conditions have
been confirmed for certain classes of bilinear split permutations, see Theorem 3.5.5,
Theorem 3.5.6 and Theorem 3.5.7. Thus, some infinite classes of bent functions in C

have been specified.

3.2 Preliminaries

Two new classes of bent functions were derived by Carlet in [17] which are defined as in
Equations (1.2.12) and (1.2.13), respectively. Assuming that f is bent (not necessarily of
the form x - 7(y)), two equivalent (and more general) conditions for the function f*(z) =

f(z) + ¢r(x) to be bent were given in [17, Theorem)].

Theorem 3.2.1 ( [17, Theorem]|). Let m = 2n and L = b+ L' be any flat in FL'. Suppose
f € B, is a bent function. Then the function f*(x) = f(x) + ¢p(x) is bent if and only if

one of the following equivalent conditions is satisfied:

1. for any a € FP\ L', f(z) + f(z + a) is balanced on L, that is,

D (=)@ =0, for alla € Fy\ L.

zeL

2. for any X € FY', the restriction of the function f(x)+b-x to the flat A+ L'+ is either

constant or balanced.

Also, it was shown in [17, Theorem] that the dimension of L is necessarily larger or equal

to n if one of these conditions is satisfied. The following result due to Payne [121] restated by
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Berger, Canteaut, Charpin and Laigle-Chapuy [125] provides a complete characterization

of such linearized polynomials.
Theorem 3.2.2 ( [125, Theorem 6]). A polynomial in Fan[X] of the form

n—1

QX) =) eX* ! ¢ €Fan

i=1
cannot be a permutation polynomial unless Q(X) = e X2 with ged(k,n) =1 and ¢, €
Fs,.

Let Supp(€) = {i : a; # 0} where ¢ € £(n). Then P(X) = %X is not a permutation if

X

any one of the following conditions are satisfied.
1. The cardinality of Supp(¢), that is, |Supp(¢)| > 3.
2. The coefficient ap = 0 and |Supp(¢)| = 2.

3. The coefficient ay # 0 and Supp(¢) = {0, k} where ged(k,n) # 1.

Lemma 3.2.3 ( [16, Corollary 1]). Let d, n, s be positive integers satisfying ged(n, s) = 1

and let
d

0#g(X) =Y rX* €FulX].

=0

Then the equation g(X) = 0 has at most 2¢ solutions in Fon.

3.3 Towards an explicit specification of Carlet’s C-
class

The C class of bent function is defined as in Equation (1.2.13). Let L be any linear subspace
of F} and 7 be any permutation on Fj. For construction of bent functions in C class, it is

needed to consider a permutation polynomial 7 on F} such that:
(C) ¢(a+ L) is a flat (affine subspace), for all a € F} where ¢ := 71

We will often say that (¢, L) has property (C).
Certainly, if L has dimension 1 then 77 (a+ L) = ¢(a+ L) is always a one-dimensional

flat: if L = {0,u} is a one-dimensional subspace then ¢(a + L) = {¢(a),p(a + u)} =



56 3.3 Towards an explicit specification of Carlet’s C-class

#(a)+40, ¢(a) + ¢(a+u)} where ¢(a)+ P(a+u) # 0. So, we will assume from now on that
L has dimension > 2. We will identify the vector space F} with the finite field Fon, and we

denote ¢ := 7~1. We have the following characterization of a subspace L of dimension < 2.

Lemma 3.3.1. Suppose u,v,w,z € Fon. A set L = {u,v,w, z} is a flat of Fon of dimension

<2 ifand only ifu+v+w+ 2z =0.

Proof. 1f L is a subspace then without loss of generality, we can assume that L = {0, u, v, u+
v}, which satisfies 0+u+v+u+v = 0. Reciprocally, we assume that the set L = {u, v, w, 2z}
satisfies u+v—+w+z = 0, and so, z = u+v+w. It follows that u+ L = {0, u+v,u+w,u+
(u+v+w) = v+w}, which is easily seen to be a subspace of dimension 0, if u = v = w(= z),

of dimension 1, if u # v = w, and of dimension 2, if v and w are independent. |

Remark 3.3.2. For a particular value of n, one could take two subspaces L, M in FY of
the same dimension and partition Fy into Ugea(a+ L) and Upep(b+ M), with A, B subsets
of By of the same cardinality |A| = |B|, and then take any permutation ¢ that maps the
elements of {a + L|a € A} onto the elements of {b+ M |b € B}. The pair (¢, L) would
satisfy property (C).

Although the above process works for specific values of n it does not amount to an
explicit construction of infinite sets of bent functions within the class C. It is not clear
what the explicit representation of these bent functions will be and how they relate to the
other known bent functions, like Maiorana—McFarland. For this reason, even after more
than two decades we have very little grasp on bent functions in C. We obtain explicit
construction of several subclasses of bent functions in C for the first time. We are also able
to identify permutations corresponding to which there are no C class bent functions.

We start with one specific class of permutations {¢} proposed by Hou [152, Theorem
B] and the nonexistence of any 2-dimensional linear subspace L for which the function

z-7(y) + ¢ (x) is a bent function in C.

Theorem 3.3.3. Letn > 1 and ¢(x) = ax+bx?" +22" L be g permutation polynomial over
Fo2n (see Hou [152, Theorem B] for explicit criteria). Then there exists no 2-dimensional

linear subspace, L, of Fo2n such that (¢, L) has property (C).

Proof. Suppose L = (u,v) is a 2-dimensional subspace of Fyzn. Then for any ¢ € Faen,
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¢(c+ L) is a flat if and only if

0=20¢(c)+ odlc+u)+ d(c+v)+ dlc+u+v)

ontl_q1

—ac+ b+ vale+u) +ble+w)? + (c+u)

ontl_1

+a(c+v) +b(c+v)?" + (c+v)
talc+u+v)+be+u+v) +(c+utv)? !

_ ontl_gq on+1_1

=c Fle+uw) T e+ 0) T T (et uv) :

for all ¢ € Fy2n. Therefore, multiplying the above identity by ¢ + u + v and using the

binomial theorem (in characteristic 2) we obtain

(w+0) " Tt ole+u)?T T Fule+ o)
2ntl_2
= Y (o ) =0
=0

for all ¢ € Fy2n, implying that the polynomial

2ntl_2
> (v ) X € B[

=0

has all of its coefficients 0, that is, vu®"" 177 + 02" =19 =0, for all 0 < j < 271 — 2.

In particular, for j = 27+t — 3,
w?v +uv? =0 & v = w? S u=v.

Thus, there is no 2-dimensional subspace, L, which satisfies the required property. |

3.4 Some general bent conditions related to C and D
classes

In this section we investigate the choice of linear subspaces L which may potentially give
rise to bent functions in C for some specific permutations 7 and later we extend the de-

rived conditions for arbitrary 7. The analysis uses more general bent conditions (without
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requesting that the initial function is in M) given in [17, Theorem].

The class D was derived using the result that for an n-dimensional subspace L of Fj x FZ
satisfying f(x,y) = x - w(y) = 0 for any (x,y) € L, the function = - 7(y) + ¢r(x,y) is bent
(cf. [17, Corollary 1]).

The subclass named Dy (which is not contained in M or in PS), deduced by Carlet,
corresponds to a special choice of L = {0} x Fy. Nevertheless, the fact that f*(x,y) =
z-7(y) + ¢r(x,y) is bent for L = {0} x Fy can also be easily deduced using the condition
related to the derivatives of f restricted to L. Indeed, for any a = («a, 8) € Fy x F4 \ L and

for f(z,y) =« - 7(y) we have

Z (_1)f(f6,y)+f($+a,y+/3) — Z (_1)f(07y)+f(0+a,y+ﬁ) _ Z(_l)a~7r(y+ﬁ)) =0

(zy)eLl r=0,yeFy yery

where we have used the fact that a # 0 and thus > g (=1)*"W+8) = 0 since 7 is a

yeFry
permutation of F%, see [103, Theorem 7.7].

On the other hand, by taking L = FJ x {0}, it is obvious that the function

[ (@,y) =z 7(y) + ér(z,y)

=z -m(y) +H(yz~ +1)=x-7(y) +9(y)

is bent, but no new bent functions can be obtained through this selection of L, since
f* € M. More generally, for the same reason the function f*(z,y) = = - 7(y) + ¢r(z,y)
is also in M, for L = F} x E where E is k-dimensional linear subspace of Fy, 0 < k < n.
Indeed, since for L = F} x E the indicator function ¢ (z,y) = g(y), for some g € B,,, again

f* e M. We formalize the above discussion in the following result.

Proposition 3.4.1. Let m = 2n and f € B, be a bent function given by f(x,y) = x - 7(y)
where m is a permutation over By, and L = Fy x E where dim(E) = k, for k =0,...,n.

Then f*(z,y) = f(z,y) + ¢r(x,y) is a bent function in class M.

Thus, the case L = F} x E is of no interest to us and it is not treated further.
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3.4.1 The analysis for arbitrary m and L = E x [}

Let us extend our investigation for f*(x,y) =z - w(y) + ¢r(z,y) to the case when 7 is any
permutation on 4, and L = E x 3. Notice that this particular choice of L implies that
¢r(z,y) = ¢r(x) and therefore we are considering the class C. Assuming f(z,y) = z-7(y),

we have

0 = Z (_1)f(:v7y)+f(ﬂc+b7y+0)

(z,y)eL

= Z (—1)= @) o)
(z,y)EL

— Z Z (—1)Prrote(rly)trly+e)
zeFk yelFy

= Z Z y)+m(y+e))+bm(y+e) (3.4.1)
yeFy zekE

Notice that (b,¢) # (0,0) and in particular b # 0, whereas ¢ can be equal to zero. We

consider two cases, namely ¢ = 0 and ¢ # 0. If ¢ = 0 then the above sum becomes

> (=W, (3.4.2)

zeE yelFy

which is zero as b # 0, again using [103, Theorem 7.7].
If ¢ # 0 then rewriting Equation (3.4.1) as

S (1)) $ () o), (3.4.3)

yeFy zelL
one easily deduces the following result.

Lemma 3.4.2. Let f € B, be a bent function given by f(z,y) = x - w(y) where 7 is
a permutation over Fy, and L = E x F} where dim(E) = k, for k = 1,...,n. Then a
sufficient condition that f*(x,y) = f(z,y) + é1(x,y) is a bent function in class C is that,

> (=g,

yeFL:m(y)+m(y+c)e E+

for any (b,c) € F§ x Fy \ L.
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Proof. The double sum in Equation (3.4.1) must be equal to zero for any (b, ¢) & L. The case
¢ = 0 yields (3.4.2) which equals to zero. The case ¢ # 0 gives (3.4.3) which must be equal
to 0 for any (b,c) € L. We notice that if 7(y) +7(y +c¢) € E+ then z- (7(y) + 7(y+¢)) =0
for any x € E, thus the inner sum in (3.4.3) equals to |E| = 2* for any such y € F5. Thus,

a sufficient condition that Equation (3.4.3) equals to zero is as stated. ]

Remark 3.4.3. The above condition ensures that even though 3, p(—1)*TWtruTa) £
for some fived y € F3 (which happens exactly when w(y) + n(y + ¢) € E*) the double
sum (3.4.3) still equals to zero. The cases dim(FE) € {n—1,n} are trivial and correspond to

the indicator function which is constant (dim(E) = n) or affine function (dim(E) =n—1).

Remark 3.4.4. Though taking f(z,y) = = - w(y) is just a special case of considering f to
be a bent function in M, most notably the condition on balancedness of the derivatives on

E is now related to the balancedness of the derivatives of m on E*, as mentioned above.

Even though the condition of Lemma 3.4.2 appears to be hard one can find permutations
m and a suitable subspace F that satisfy the above condition. Nevertheless, to provide a

generic method of finding such permutations appears to be difficult.

Example 3.4.5. Let n = 3 and E = {000,010} thus dim(E) = 1. Then E+ =
{000,001,101,100}. Let us define a nonlinear permutation 7 : F3 — F3 and compute
the differentials for ¢ = (001):

ysyay1 | (y) | w(y +001) | 7(y) + m(y + 001)
000 | 000 001 001
001 | 001 000 001
010 | 011 010 001
011 | 010 011 001
100 | 111 110 001
101 | 110 111 001
110 | 101 100 001
111 | 100 101 001

This ¢ is obviously a linear structure of 7 (thus w(y) + n(y + 001) = 001, for all y € F3)
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and since (001) € E+ we have:

Z (_1)b-7r(y+001) _ Z (_1)b-7r(y+001) —0

yeFy 7 (y)+m(y+001)eEL yeFy

where the last equality is due to the fact that w is a permutation and b # 0. For other
(nonzero) values of ¢ € T3 it turns out that either Im(mw(y) +7(y+¢)) C B+ or Im(w(y) +
m(y+c)) N EL = 0. For instance, one may check that Im(m(y) + n(y + 011)) = {010,011}
and the intersection with E+ is the empty set.

In both cases Zyan +rr(y+c)eEl( 1w+ = 0, thus f(x,y) = o - 7(y) + oz, y)
where L = E x T3, is a bent function on FS. For instance, one may check that Im(w(y) +

m(y +011)) = {010,011}.

Given the fact that the class C is constructed by adding the indicator function of a special
subspace to a bent function, it may be of interest to investigate the relation between the
spectral values of f(z,y) =z -7(y) and f*(z,y) = f(z,y) + ¢r(x,y). Then requiring that
f*(z,y) is bent implies the following identity

Wf* (u7 ’U) = Z (_1)x'ﬂ'(y)"'—d)L(x’y)"'(u’v)'(x’y)

(x,y)€Fy xFY

= Wi(u,v) —2 Z 1)% @)+ w0) (@)

(z,y)eL

_ n_9 Z wﬂy)+uv)(ry)7

(z,y)EL

and if f* is to be bent then we must have
Wy, (wv) = > (=170 ¢ {0, 49m),
(z,y)eL

for any (u,v) € Fy x F3. If L = E x F}, we have

Wf\L(“’ U) = Z(_l)ux Z (_1)x.w(y)+v.y
) yeFy
and Wy, (u,0) = 2", for any u € 7. This is because for any fixed z # 0 and v = 0, the
inner sum Zyeﬂrg(—l)””(w = 0, unless z = 0 and the sum equals then to 2".

The next result is now immediate.
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Proposition 3.4.6. Let f € B,, be a bent function given by f(x,y) = x - w(y) where 7 is
a permutation over Fy. Let L = E x Fy. If f*(x,y) = f(x,y) + ¢or(x,y) is a bent function
then We(u,0) = 2", for any u € F5.

Proof. Assuming L = E x [}, we only need to prove that Wy(u,0) = 27, for any u € F7,

is always satisfied. Indeed,

Wi, 0)= 3 (-1t

(z,y)€Fy xFy

= Y () =2

zelFy yefy

which must be true for all u € F}. Notice that the inner sum > _..(=1)*"®) = 0 for any

yely
fixed x, unless x = 0 (since 7 is a permutation), and therefore Wy (u,0) = 2", for all u € F}.

3.4.2 The subcase when 7 is a linear permutation and L = E x [}

In this section we consider f*(x,y) = z - 7(y) + ¢r(z,y) where w(y) = yA is a linear
permutation over F3, L = E x [} for some k-dimensional linear subspace E, 0 < k < n,
and A is an invertible matrix over Fy of size n x n (that is A € GL(n,F5)). It will be shown

that f* is always bent regardless the choice of E, but nevertheless f* is in the completed

class M*.

Theorem 3.4.7. Let f*(z,y) = z-7(y)+ ¢r(z,y) be a function on Fy xFy and 7(y) = yA,
A € GL(n,Fy), a linear permutation over Fy so that f(z,y) = x-7(y) is bent. Furthermore,
let L be of the form L = E x F} where E is a k-dimensional linear subspace of Fy, for

0 <k<n. Then f* is a bent function.

Proof. Since f* is bent if and only if f(z,y) + f(x + b,y + ¢) is balanced on L = E x F}
for any (b,¢) € Fy x F3 \ L we have,

Z (—1)f @+ @tbyte) Z (—1)F "W+t myte)

(z,y)eL (z,y)EL
_ Z (_1)m-yA+(m+b)-(yA+cA)

zeR;yely
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_ Z(_l)(x—f—b)-cA Z (_1)b.yA

z€E yeFy

which must be equal to zero if f* is bent. Now, since m(y) = yA is a permutation over
F% then Zyem(—l)b“"y = 0, for any b # 0. Noticing that b # 0 since (b,c) € L, we have
> y)GL(—1)f($’y)+f($+b’y+c) =0, thus f* is bent. |

However, it turns out that the functions given by f*(x,y) = x -y + ¢r(x,y) (7 being a

linear permutation) are embedded in M.

Theorem 3.4.8. Let f*(x,y) = x-7(y)+ ¢r(x,y) be a function on Fy xFy, and n(y) = yA
be a linear permutation over 4. Furthermore, let L = E x Fy where E is a k-dimensional

linear subspace of F3, 0 < k <n. Then f* belongs to M*.

Proof. 1t is well-known [56] that f € M* on F} x F} if and only if there exists an n-
dimensional subspace, say U C F3", such that the second derivatives D,Dgf(z,y) = 0, for
any o, f € U.

Notice that since L = E x F5, the support of ¢ does not depend on the y variables,
and so, ¢r(z,y) = ¢r(z). Now, for o = (a,b) and 5 = (¢, d) where (a,b), (¢,d) € Fy x F4
we have,

D.Dg(x-yA) = Dg(z - bA+a-yA+a-bA),

and taking the derivative with respect to 5 = (¢, d) gives D,Dg(x-yA) = c-bA+a-dA. Soitis
sufficient to show the existence of U such that both D,Dg¢r(x) = 0 and D,Dg(z-yA) =0,
for any o, 8 € U. Taking U = {0} x F} so that a = ¢ = 0, we clearly have D,Dgér(z) =0
and D,Dg(x-y) =b-c+aA-d=0, for any o, 8 € U. [

3.5 k-linear split permutations

In contrast to Theorem 3.3.3 which, for a particular class of permutations introduced by
Hou [152] shows the nonexistence of a 2-dimensional linear subspace L, in this section
we look for permutations 7, and provide both necessary and sufficient conditions on the

subspace L, such that (7, L) satisfies the property (C).
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It is known that any permutation on a finite field can be written as a polynomial.
We consider those permutation polynomials which can be factored (split) into linearized

polynomials.

Definition 3.5.1. A linearized polynomial { € Fan[X] is a polynomial of the form

n—1
UX) = a;X” with a; € Fyn.

i=0
The set of all such polynomials is denoted by L(n).
The action of a pair of bijective linearized polynomials (¢1, f3) € L(n) x L(n) on Fon[X]

is defined as ¢; o ¢ o {5 where ¢ € Fon[X]|. Two polynomials ¢,1 € Fan[X] are said to be
linearly equivalent if there exist (bijective) ¢1, ¢y € L(n) such that 1 o ¢ o ly = 1.

Lemma 3.5.2. Suppose m and ¢ are two linearly equivalent permutations on Fon such that
¢ =Ly omoly where ly,ly € L(n), and L is a linear subspace of Fon. If m(a + L) is a flat
for all a € Fon, ¢(a+ €5 (L)) is a flat for all a € Fan.

Proof. For any a € Fan, we have
¢la+ ;" (L)) =Ll omoly(a+ l3' (L)) = by om(la(a+ (L))
=l om(ly(a) + L) = l1(w(la(a) + L)).
Since w(l3(a) + L) is a flat and ¢; is a linear permutation, ¢;(mw(¢s(a) + L)) is a flat. [

Thus it is enough to consider C type constructions associated to linearly inequivalent
permutations. In the spirit of Blokhuis, Coulter, Henderson and O’Keefe [2] and Laigle-
Chapuy [154], we extend their construction in the next definition.

We call a polynomial ¢ € Fan[X] a k-linear split polynomial if it is of the form
O(X) = m(X)me(X) - - mp(X) with m; € L(n),1 <i < k.

Blokhuis et al. [2] and Laigle-Chapuy [154] refer to the case k = 2 as a bilinear polyno-
mial (some authors prefer Dembowski-Ostrom polynomial), but the “bilinear” notion has

a different meaning in too many areas, so we prefer to insert “split” into the definition.
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Certainly, if the function associated to the polynomial ¢ is bijective, we will refer to ¢ as a
k-linear split permutation.
It is easy to see that using the transformation Y = 7;(X), the polynomial ¢ is linearly

equivalent to one of the type
oY) =Yl (Y) €1 (Y) where {; = ;0" € L(n), (3.5.1)

so, we will only consider these forms from here on.

3.5.1 C type bent functions associated to bilinear split permuta-

tions

From our observation (3.5.1) (see also [2, Section 2]), it will be sufficient to investigate the C

type bent functions (in this case) associated to bilinear split permutations of the shape

n—1
XUX) =) a;X**" with a; € Fan.

i=0
The set of all such polynomials is denoted by B(n).

Theorem 3.5.3. Suppose ¢ : Fon — Fon is a permutation defined by ¢(x) = xl(z) + lo(x),

for all x € Fon where £,0y € L(n). Let L = (u,v) be a 2-dimensional subspace. Then (¢, L)
L)

v

satisfies the (C) property if and only if e(u_u) =

Proof. For L to satisfy the required condition for all a € Fyn, we must have

d(a) + ¢p(a+u) + dla+v) + dla+u+v)
= al(a) + lo(a) + (a + u)l(a + u) + lo(a+ u) + (a + v)l(a + v) + Lo(a + v)
+(a+u+v)l(a+u+v)+lola+u+wv)
= al(a) + al(a) + al(u) + ul(a) + wl(u) + al(a) + al(v) + vl(a) + vi(v)
+ al(a) + al(u) + al(v) + ul(a) + ul(u) + ul(v) + vl(a) + vl(u) + vi(v)
— wl(v) + vl(u) =

Therefore, the necessary and sufficient condition that a 2-dimensional linear subspace L =

tu) _ L) n

v

(u,v) has the required property is that
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Corollary 3.5.4. Suppose ¢ : Fon — Fon, defined by ¢(x) = xl(x) + lo(x), for all € Faon

where £(X) = S0} a; X* € L(n). Then there exists a C type function associated to ¢ if
£(x)

and only if the function x — == on F3. is not a permutation.

Proof. If there exists a C type bent function then there exists a subspace L of dimension 2
generated by two vectors u,v such that (¢, L) satisfies (C'). By Theorem 3.5.3, the map
A 5, — . defined by A\(x) = @ is not one-to-one, and consequently not a permutation.
Conversely, if A is not a permutation then it is not one-to-one, and consequently, there exist

two vectors u,v € F5, with A(u) = A(v). Taking L = (u,v), again by Theorem 3.5.3, we
see that (¢, L) satisfies (C). ]

In addition to Remark 3.3.2, it is possible to obtain explicitly C type bent functions, for
a special class of explicit permutations. Thus, for effective construction of the functions in
C, there is a need to characterize linear subspaces such as L with respect to permutations
over Fon.

In Theorem 3.5.5 we consider the permutation ¢(z) = 22+ + 2% 4+ z, for all z € Fyn

where n = 2t + 1 (see [48]).

Theorem 3.5.5. Suppose ¢(z) = 22T g3 4 on for all v € Fon where n = 2t + 1,
ged(t,n) = 1. Then there exists at least one and at most 2(2" — 2) two dimensional linear

subspaces L such that ¢p(a + L) is flat for all a € Fan.

o(@)—=

T

Proof. Since, is not a permutation, by Corollary 3.5.4 there exists at least one func-
tion in C associated to ¢.
Let L = (u,v) be a 2-dimensional subspace of Fon. The set ¢(a+ L) is a flat if and only
if
d(a) + dla+u)+dla+v) +dla+u+v) =u® v+uw? +udv+w? =0

Exponentiating both sides of the above equation by 2%, we obtain

t+1 t+1 2t
(W v+ w T et +w?)? =0

. 3t+1 2t 2t 3t+1 2t+1 2t 2t 2t

e, u* 0¥ +ur ot +ur 0 w0t T =0
. 2t+1 t 2t 2t 2t+1 t 2t+1 2t 2t 2t

e, (w* )20 +ur (v ) +ur v +u? P T =0

. t o2t 2t ot 2t 2t .

ie., u?vr +u¥ v +w? +u¥ v=0, since u,v € Fon where n = 2t + 1

. t 2t 2t t 2t
e, (u* +u? +u* v +u? v=0.
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Therefore,
2

it t
g c;v? =0 where ¢y = v +u,¢; =co=u
i=0

2 (3.5.2)
Since ged(t,n) = 1 where n = 2t + 1, the greatest common divisor ged (2! — 1,241 —1) = 1.
Thus ¢; = u* +u = 0 if and only if u = 1. If u = 1 then Equation (3.5.2) reduces to
v? + v = 0, which has only one solution v = 1. Equation (3.5.2) has at most 22 = 4
solutions if u # 1, by Lemma 3.2.3 among them one solution is v = 0 and another is v = u.
So, if u ¢ {0,1} C Fon, we can obtain at most two values of v such that {u,v} is linearly
independent. Thus, we can obtain at most 2(2" — 2) many subspaces L such that ¢(a+ L)
is a flat, for all a € Fan. If u = 1 then the only solution is v = u = 1; giving us no subspace
L. So the total number of two dimensional subspace L such that ¢(a + L) is flat for all

a € Fon is at most 2(2" — 2). ]

We now consider the case of a bilinear split permutation ¢ : Fon — Fon defined by

o(x) = 2211, for all x € Fyn.

Theorem 3.5.6. Suppose ¢(x) = ¥+, for all v € Fon where ged(r,n) = e, n/e is odd
and ged(2" — 1,27+ 1) = 1.

(i) Then (¢, L) (where L is a subspace of dim(L) = 2) satisfies the (C') property if and
only if L = (u, cu) where w € F5, and 1 # ¢ € Fi..

(11) We assume that e = ged(n,r) > 1 and L = (uy,ciuy, ..., cs_qu1), dim(L) = s,

i €F, 1<i<s—1,5>2 anduy € F;. . Then (¢, L) satisfies the (C) property.

Proof. We first show (7). Suppose that L = (u,v) is a 2-dimensional subspace of Fy.. For
any a € Fyn, we have

a+ L ={a,a+u,a+v,a+u+uv}.

The set ¢(a + L) is a flat if and only if

d(a) + dla+u) + ola+v) + ¢la+u+v) =0.
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Therefore, we have

o(a) + ola+u)+ odla+v)+ ¢la+u+v)

=+ (a+u) T F(a+0) T+ (aFutv)P T

— CL2r—|-1 + CL2T+1 + auT + a2’"u + u2’“+1 + a2°"+1 + (M)2r + GQTU + ,UQT-I—I
+a* ™ +a(u+v)* +a (u+v) + (u+0)* T

= w® +u¥v

' '
= w? +u¥v=0.

It follows that (uv™)*~! = 1. Combining with this the fact that (uwv=!)*"~! = 1, for
u,v € F},, and ged (2" —1,2" —1) = 2°— 1 we obtain (uv™')*~! = 1. Therefore, L = (u, cu)
where u € F3, and ¢ € F3..

We next show (i7). Assume that L = (uy,ciuq,...,cs_quq) is of dimension s > 2
where u; € F}.,¢; € Fi, ged(2" — 1,2" — 1) = 2° — 1. Then (¢, L) satisfies the (C)
property, which is equivalent to the fact that for any w,v € L there exists w € L such
that ¢(a + u) + ¢(a+v) + ¢(a) + ¢(a + w) = 0. To show this, we take u = auy, v = Puy,
a, f € Fi., and define w := u+v = (o + B)u; € L. Then

dla+u) + édla+v) + o(a) + ¢la + w)
= (a+ )" +(a+ )" +a" +(a+u+o)t

2

r 2
= au” + ua

¥ v +alu+0)? + (ut+v)a® +w? +ou®

"4 av
= w? +ou? = ouy (Bur)? + Bui(awy)*

= afu;™ +afu™ =0

where we used that a®" = a, 5% = 3, since both «, 3 € F%.. The claim is shown. m

From the above theorem we note that if e = 1 then there is no linear subspace of dimen-
sion 2 such that function in C can be constructed with respect to the class of permutations
under consideration.

The following bilinear split permutations (all are linearly equivalent to each other) are
constructed by Blokhuis et al. [2] on Fon where 0 < i < n and e = ged(i,n) (see also
Laigle-Chapuy [154]):
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1. X2+ where n/e is odd.
2. X2 4 X%t where n/e is odd and a®"~1/-1) £ 1,
3. X2 4 (aX)? ! 4 aX? where n = 3i and "D/ £ 1,

By Theorem 3.5.6 and Lemma 3.5.2 we can derive explicit choices of L which yield C class
bent functions associated to the above permutations.

We consider bilinear split permutations of the form
o(x) = x(Tr} (z) + ax) (3.5.3)

k=1

where [ > 1, a € Fy \ Fy and TiP(z) = S 22", For details we refer to [2,154]. We show
i=0

here that bent functions in the C class, corresponding to ¢, can be constructed by adding

indicator functions of subspaces of codimension 2. The number of such subspaces is also

obtained.

Theorem 3.5.7. Let n = kl where k be odd and | be any positive integer. Consider ¢
as gwen in Equation (3.5.3). Then the total number of 2-dimensional linear subspaces of
Fon which satisfy the condition (C') required for the construction of C type bent functions is
2" —1)(2'=2)+ (2= 1) (2"t - 2).

Proof. Let L = (u,v) be any two dimensional subspace of Fy.. We know that for any

c € Fon, ¢(c+ L) is flat if and only if ¢(c) + ¢(c+u) + ¢(c +v) + ¢(c+u+v) = 0, that is,

(T} (c) + ac) + (¢ +u) (T (c + u) + alc + uw)) + (¢ + v)(Tr} (c + v)

+a(c+v))+ (c+u+v)(Trf(c+u+v)+alc+u+v)) =0. (3.5.4)
Since a(c® + (c+u)*+ (c+v)*+ (c+ u+v)?) = 0 and Equation (3.5.4) can be rewritten as

0 = T (c) + T} (c) + cTr) (u) + uTr) (¢) + uTr} (u) + ¢Tr)(e) + ¢Tr} (v) + T} (¢) +
T} (v) + T} () + (T (u) + T (v)) + (w4 v)Tr}' (¢) + (v + v)(Tr) (u) + T} (v))

= uTr](u) + T} (v) + uTr) (u) + uTr) (v) + oI (u) + T (v) = wTr)' (v) + T (u),

Tr} (u) Tr} (v)

v

then ¢(c + L) is flat if and only if uTr} (v) 4+ vTr}'(u) = 0, that is,
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Therefore, C type functions associated to ¢ exist if and only if the function x — %(I)

is not a permutation on Fy.. We know that a polynomial in Fan[z] of the form Q(z) =
E:l ¢;a? "1, ¢; € Fan can not be a permutation polynomial unless Q(z) = cpa? ! with
g:(()i(k,n) =1 and ¢, € F;..

Let k =1 then Tr}'(z) = z. It is obvious that z — %@) = 1 is not a permutation. If
k > 3 then it is not a permutation polynomial where k is odd. Thus, for the permutation
¢ we can find at least one 2-dimensional subspace of Fon which satisfies the condition (C).
Let a = Tr}'(u) and g = Tr}'(v).
Case 1: Let a # 0 and 5 # 0. Then ¢(c + L) is flat if and only if av 4+ fu=0= v = §u,
that is, v = Au where A = g € F5, and A # 1 as u # v. Therefore, for any u € F3,,
we can choose v in 2 — 2 ways. Thus, the total number of 2-dimensional subspaces is
(2n —1)(2' - 2).
Case 2: Let « = 0 and 8 # 0. Then av + fu = 0 implies fu = 0, and thus u = 0 (since
B # 0), which is not possible. The case a # 0 and § = 0 implies that v = 0, which is also
not possible.
Case 3: Let « = 0 and § = 0. Then ¢(c + L) is flat if and only if u,v € ker(Tt}") \ {0}
with u # v where ker(Tr}') = {x € Fan : Tr}'(2) = 0}. Therefore, the dimension of ker(Tr}")
is kI —I. Thus, u can be chosen in 2¥~! — 1 ways and v in 2"~! — 2 ways. Hence the total
number of 2-dimensional subspaces is (271 — 1)(2¥-! — 2).

To summarize, for any value of [ > 1, the total number of 2-dimensional subspaces of
Fan which satisfies the condition (C') required for the construction of C type bent functions

is (27— 1)(2' — 2) + (271 = 1)(2" 1 — 2). n

Example 3.5.8. Let n = 2p where p is any odd prime, r = 2 and e = ged(n,r) = 2.
Since n/e is odd, it is known that ged(2" 4+ 1,2" — 1) = 1. Therefore, ¢p(z) = 2> ™ is a

permutation on Fan. Let ¢ be a primitive element of Fon. Therefore, A = C% = CQ"&;1 18

a generator of Fae. Suppose that the permutation w(x) = ¢~ (z) = 27 where y(2" + 1) =1
(mod 2"—1). Givenr andn, vy can be computed easily by the Fuclidean algorithm. Consider
the Maiorana—McFarland bent f(x,y) = x - w(y). According to Theorem 3.5.6 if we choose
L = (1, \) then the function f*(z,y) = x-7(y) + ¢ (x) is in C. The bent function f* can
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be explicitly written as

[ (@,y) = Trf(zy?) + (T} (z) + 1)(Tr] (Az) + 1)
= Tr}(zy”) + Tr} (z) Tr}y (Ax) + Tey (1 + N)z) + 1.
Thus we have obtained an infinite class of bent functions in C other than Dy. Whether

the bent functions obtained in this way are affine inequivalent to Maiorana—McFarland bent

functions seems to be a difficult problem, which we leave for future research.

3.5.2 C type bent functions associated to k-linear split permuta-

tions

We next look at C type bent functions associated to trilinear split permutations.

Theorem 3.5.9. Suppose ¢ : Fon — Fon is a permutation of the form ¢(x) = xly(x)la(x),
for all x € Fon where £1(X) = 00 a; X% lo(X) = S0 b: X2 € L(n) (ai,b; € Fon), and
L = (u,v) is a 2-dimensional subspace of Fon. Then ¢(a + L) is a flat for all a € Fon if
and only if

[y

> aiby <u2iv2j + v2iu2j) + Y (agh; + a;by) <uv2j - u2jv) =0,

<i,j<n—1 J

,_.
Il
o

—_

S

(%@+%m<my+u%020,ﬁrmi:L”wn—L (3.5.5)

o

.

Z a;b; ((u +v) (uQiUQj + v2iu2j) Y 4 vu2i+2j> =0.

0<i,j<n—1

Proof. Using Lemma 3.3.1, we see that ¢(a + L) is a flat for all a € Fan if and only if

o(a) + ¢la+u) + ¢la+v) + ¢dla+ u+v)

= a[l;(u)lz(v) + £1(v)la(u)] + b1 (a)[uly(v) + vls(u)]

+ ly(a)[uly(v) 4+ vl (w)] + wly(u)la(v) 4+ wly (v)la(u)

+ uly (v)la(v) + vl (u)la(u) + vli(u)ly(v) + vli(v)la(u) = 0,

(3.5.6)
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for all a € Fan. Substituting ¢, ¢ in Equation (3.5.6) we obtain

n—1n—1 n—1 n—1
(Z > (aib; + a;b; ) +) a (Z(uv2j + u2jv)bj> a*
=0

=0 5=0 =0

n—1
+ Zb (Z (uv® + u2jv)aj> a®
7=0

+ uly (u)la(v) + wly (v)la(u) + uly (v)la(v) + vl (uw)la(u) + vl (u)la(v) + vl (v)la(u)

— ( Z (a;ib; + a;b)u ) a+ Z (”Z (uv? + u2jfu)> (a;b; + a;b;) a®

0<i,j<n—1

+ (u+v) Z abju® v? + (u+v) Z a;bju v?

0<i,j<n—1 0<i,j<n—1

Y ig9j
+u E aiijz +2 + v E aibju2 +2

0<i,j<n—1 1<i,j<n—1

= ( Z (aib; + a;b)uv¥ + (nZ(uvzj ~|—u2jv)> (aob; +ajb0)> a

Jj=0

n—1 /n—1
+ Z (Z w? +u¥v ) (aibj + ajb;) a®
i=1

+ (u+v) Z a;b; (¥ + 0¥ u?) + Z a;b; (uo?*+? +ou? ) =0,

0<i,j<n—1 0<i,j<n—1
for all @ € Fyn. Thus, in order to construct C type bents associated to the permutation ¢
with L = (u,v), we must obtain linearly independent vectors in u,v € Fon satisfying the

system of Equations (3.5.5). [

Corollary 3.5.10. Let us consider the case when ¢(x) = x1* 2" for all x € Fon where

1 < r < s. Then there is no 2-dimensional subspace L = (u,v) satisfying the (C) property.

Proof. By the previous theorem, the system of Equations (3.5.5) reduces to

aybs(u? v? +u* ) =0
(uv* +u*" v)a,b, = 0
(uv?” +u? v)ab, =0

T S S ' S ' S ™
u1+2 U2 _|_u1+2 1)2 —|—'LL’U2 +2 +U2 U +u ,Ul+2 +U2 ,Ul+2 =0.
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Since a, # 0 and by # 0 we obtain the system

w2 L2 =0
w? +u¥v=0
(3.5.7)

r r
w? +u¥v=0

T I L e I TR L IR e I 0 )
that is, (uv™")>""" "1 =1, (¥ ' =1 and (uv=')> ' = 1. Let
ged (2" —1,2"7 — 1,27 —1,2° - 1) =2° — 1

(it is immediate that if L exists then we must have e > 1). Then uv™' € Fye. Since e > 1,
there exists 1 # ¢ € 5. such that v = cv. Substituting v = cu in the last equation of (3.5.7)

we obtain

T S ' S S T S T T S T S
Cu1+2 +2 4 Cu1+2 +2 + 62u1+2 +2 4 Cu1+2 +2 + C2u1+2 +2 + 02u1+2 +2° _ O,

that is, (c+c?)ult? 2" = 0, implying ¢ € {0, 1}, which is a contradiction. Therefore, there is
no trilinear split permutation of the above form for which we can construct a 2-dimensional

subspace L = (u,v) with the required conditions. [ ]

We can extend the previous theorem to the general case of k-linear split permutations,

showing in our next theorem a nonexistence result.

Theorem 3.5.11. If ¢(x) = SR (k> 2), for all x € Fon where rg =0 <1 < ... <

ri < m then there is no 2-dimensional subspace L such that (¢, L) satisfies the (C) property.

Proof. We assume that L exists, and so, there exists u,v € Fon that are Fo-linearly in-
dependent such that (¢, L) satisfies the (C') property. For a subset A C {0,1,...,k} (for
convenience, we write the set {0,1,...,k} as [0,k]), we denote by Ry := >, ,2" and

A =10,k]\ A, with the convention that if A = () then R4 = 0.
Since, ¢(a + L) is a flat, then ¢(a) + ¢(a + u) + ¢(a +v) + ¢(a + u + v) = 0, and so,

0 = aR[O,k] + (a + u)R[O’k] —+ (a + /U)R[OJC] —+ (a +u + U)R[O,k]
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k k k

= a0+ [Ja+w)* +[J(a+v)*" + [J(a+u+v)*"
i=0 i=0 i=0
k
= 0k1+H ST +H o) + T (@ + (wt0)?)
= =0
= qaffom Z aftayfa 4 Z aftapfia 4 Z afs (u + v)"
AC[0,k] AC[0,k] AC[0,K]
= Z (w4 + v + (u+v)4) o',

AG[0,K]

for all a € Fon. That is, the polynomial

Z (w1 4 0" + (u+ v)ta) X4
AG[0,K]

has 2" roots, but its degree is Ry = Z?:o 2" < 2™ and therefore all its coefficients must

be 0. Hence (replacing A by A, under the condition A # (}), we have
ufa 4 ofa 4 (u+0)f4 =0, forall A C[0,k], A # 0. (3.5.8)
Now, taking A = {0,i},1 < i < k, and simplifying, we get
v+ u?t = 0, forall 1 <i <k,

and so, vu~! € F5,,,1 < i < k. Thus, if 2 — 1 = ged(2" — 1,2 —1,...,2™ — 1) (certainly,
if L of dimension 2 exists, it is necessary that e > 1) then v = cu, for some ¢ € F5. \ {1}.
Substituting v = cu in Equation (3.5.8) with A = {0, 1,2}, we obtain

UM L IR (2 T2 22T 2 T2 2 1420427

that is,

(C—|— C2)UJ1+2T1+2’“2 _ O,

implying ¢ € {0, 1}, which is a contradiction. Therefore, there are no 2-dimensional sub-
spaces L for which we can construct C type bent functions corresponding to k-linear split

monomial permutations. [ ]
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For permutations on Fan of the form ¢(z) = pZi=1 2 (k > 2), we can inquire whether
there are subspaces of dimension > 2 associated to C type bent functions. While in general

we cannot answer that question, we can certainly derive some necessary conditions.

Theorem 3.5.12. Let ¢ be a monomial permutation of degree k, that is, ¢(x) = :vZlem,
O0=mr <...<rp<n, k>2. Amnecessary condition for (¢, L) (with L of dimension s > 2)

to satisfy the (C') property is

> uft =0, forall § # A C0,k]. (3.5.9)

uel

Moreover, if (¢, L) with L of dimension s > 2 satisfies the property (C') then both 2°—1,2" —
2% must be in Npy + - - -+ Npy where 2" —1 = Hle p;’ is the prime power factorization (we
adopt the convention that 0 € N).

Proof. Since for subspaces or flats of dimension s > 2 the sum of all elements must be zero,

we can infer (as we have done in the proof of our previous theorem) that for all a € Fon,

0 = Z(b(a—l—u):ZH(a—l—u)Q”

u€L uel i=1
= 2 ) ufa
uelL AC[0,k]
= g ( E uRA> af*a.
0#AC[0,k] \u€L

As before, the polynomial Z (Z uRA> X4 with degree < 2" and has 2" roots,
P#ACO,K] .
and so, all coefficients must be zero (the terms X4 are all distinct for different A by the

uel

uniqueness of binary representations), from which we infer the first claim.

It is well-known (see Lam and Leung [136,137] and Sivek [47]) that a sum of & distinct
m-th roots of unity is zero (we say that m is k-balancing) if and only if both k£ and m — &
are in Np; + --- + Np, where m = Hle p;' is the prime power factorization. Since the
elements u € L C Fan are (2" — 1)-th roots of unity, condition (3.5.9) shows that (2" — 1)
is (2° — 1)-balancing (since the cardinality of L* is 2° — 1). Expressing 2" — 1 = Hlep?,
then the previous result forces both 2° — 1 and 2" — 2° to be in Np; + - - - + Npy. |

Using some elementary number theory arguments, we can easily get several results
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regarding the nonexistence of subspaces as in property (C). Let p(N) denote the smallest

prime factor of N.

Corollary 3.5.13. With the notations of Theorem 3.5.12, the following statements are

true:

(1) If 1 < s <logy(p(2™ — 1)), orlog, (2" — p(2" — 1)) < s < n then there are no pairs
(¢, L) satisfying the (C') property where dim(L) = s and ¢ is a monomial permutation.

(1i) Let n = P be a prime number. If 2" — 1 = p is a Mersenne prime, or 2" —1 =pgq, a
product of two primes then there are no subspaces of dimension 1 < s < n satisfying

the C type bent condition (C) for a monomial permutation ¢ of degree k > 3.

Proof. The first claim follows easily observing that, by Theorem 3.5.12, if s < log,(p(2"—1))
then 2 < 2° —1 < p(2" —1) € {p1,...,pe}, and so, 2° — 1 &€ Np; + --- + Np;; if s >
log, (2" — p(2" — 1)) then 2" — 2° < p(2" — 1), and so, 2" —2° € Np; + - - - 4+ Npy.

Regarding claim (i7), if 2" — 1 = p is a Mersenne prime then, by Theorem 3.5.12, 2" — 1
is (2° — 1)-balancing, and so, one needs 2* — 1 = ap and 2" — 2° = Ap, for some nonnegative
integers a, A. Thus, 2" — 1 = (A + a)p = p, which implies that (a, A) € {(0,1),(1,0)},
therefore, either s = 0, or s = n, which contradicts our assumption that 2 < s < n.

To show the second part of claim (ii), observe that by Theorem 3.5.12, there exist

nonnegative integers a, b, A, B such that

2"=1 = pq,
2°—1 = ap+bg,

2" —2° = Ap+ By,

from which we derive that (A+a)p+ (B+b)g =pgq, and so, A+a =0 (mod ¢),B+b=0
(mod p). If ab # 0, since A, B, a,b are nonnegative and A < ¢,a < ¢, B < p,b < p then
A =q—a,B =p—>. But then, 2" —2° = Ap+ Bq = 2pq— (ap+bq) = pg+(pg—2°+1) > 2™,
which is a contradiction. Thus, ab = 0, and without loss of generality, we assume that b = 0,
but then B = 0, as well. Thus, 2° — 1 = ap,2" — 2° = (¢ — a)p. It is well-known that
ged(2"—1,2° —1) = 2&°d03) 1. Since p|2" —1,p|2° — 1 and n is prime (thus, for 2 < s < n,
ged(n, s) = 1), then p|28°d(™s) — 1 = 1, which is a contradiction. [
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Permutation ¢ = 7~ where Condition for (¢, L) to satisfy (C).
flz,y) =z 7(y) # of 2-dimensional subspaces L = 7
¢(x> — I2t+1+1 + IB + x, 1 S T S 2(271 . 2)

n=2t+1, ged(t,n) = 1.
o(x) = 21 ged(r,n) = e, n/e odd, | If and only if L = (u, cu),

ged(2" —1,2"4+1) =1 u€Fs,, 1#£ceTF;

P(x) = 2122 No 2-dimensional subspace
l<r<s satisfying (C')

o(z) = 2Xi0? | > 2, No 2-dimensional subspace
ro=0<r <...<rp<n satisfying (C')

o) = (T (@) T az), = - D@ =7
[>1,a€Fy\TFy +(2r - 1) (2"t - 2)

Table 3.1: List of ¢ = 7! where f(x,y) = x-7(y), along with the conditions for satisfying
property (C)
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Chapter 4

Subspace sum of generalized Boolean

function and their properties

4.1 Introduction

In 1985, Kumar et al. [98] introduced the concept of generalized bent functions f : Zi — Z,
where ¢ > 1 is a positive integer and gave constructions for every possible ¢ and n, except
for n is odd and ¢ = 2 (mod 4). Later, generalized bent functions over a finite field F,» was
studied by Ambrosimov [4]. There has been a flourish of new research in this area, with
new constructions being displayed, characterizations, and even connecting them to certain
combinatorial objects such as partial difference sets, strongly regular graphs and association
schemes (see [10,155,157]). For efficient wireless communication, generalized bent functions
are used for large signal sets with low maximum crosscorrelation [53,112,116, 127, 158].
Helleseth et al. [128] identified some monomial and quadratic bent functions over the finite
fields of odd characteristic. Budaghyan et al. [66] identified some non-quadratic generalized
bent functions which does not belong to complete Maiorana—McFarland class and proved
that the complete generalized Maiorana—McFarland class does not cover all quadratic bent
functions, which is not case for binary. In this chapter, we consider the generalized Boolean
Junctions from F) to I, where p is prime and their set is denoted by Bf. We characterize
the subspace sum of f € B}, with respect to a subspace V' of I (denoted by Sy f). Also we
show that if f, h € BP are affine equivalent then so are Sy f and Sy h where V' is a subspace

of Fj. Further, we extend to characteristic p > 2 a binary result of Dillon, concerning the

79
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vanishing subspace sum of any Maiorana—McFarland bent functions.

4.2 Preliminaries

In what follows, p denotes an (arbitrary, but fixed) odd prime number. Let A be a group
algebra of ) over T, defined as in Section 1.3. Suppose P is a maximal ideal of A, defined
as in Equation (1.3.1). We now state a generalization (due to Charpin [87,88]) of Berman’s

Theorem.

Theorem 4.2.1 ( [39, Theorem 5.19]). For any 0 < r < n(p — 1), R,(r,n) = PrP-H-r

where R,(r,n) is a generalized Reed—Muller codes.

Let t = k(p — 1) where k be a positive integer. From [39, Corollary 4.12], we know that
Pt is a subspace generated by the codewords whose support are k-dimensional subspaces

of F. The basis of A was exploited by Jennings [107], and is now called a Jennings basis

of A.

Theorem 4.2.2 ( [39, Theorem 4.10]). Let g1, ga, ..., gn be a basis of F}). Then the set
{H(ng — D)% (ky ko, k) € Fg}
i=1

is a basis of A. Moreover,

{H(xgz — 1)k1 : Zkl >, (kl,k’g, .. ,kn) & IFZ}
=1

i=1
form a basis of P*.
Theorem 4.2.3 ( 98, Theorem 1]). Let m = 2n and f : Fy x F} — F, be a generalized

Boolean function of the form

flz,y) =z -7(y) +g(y)

where  be an arbitrary permutation polynomial over ¥} and g € BL. Then f is a regular

bent and the dual function of f is f(x,y) =y -7 '(z) + g(x~'(z)). Also, we refer to [55].
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The class of bent functions defined as in Theorem 4.2.3 is called generalized Maiorana—
McFarland bent functions and their set is denoted by MP. In the binary case, the completed
Maiorana—McFarland class contains all quadratic bent functions which are the simplest and

best understood. However, this does not hold in the generalized case.

Fact 4.2.4 ( [128, Fact 1]). Let a be a primitive element of Fzs. Any ternary function f
from Fss to F3 of the form
f(z) = Tri(a"a™)

15 bent and not weakly reqular bent.

4.3 Subspace sum of a function

Let f € B and V be any k-dimensional subspace of F;. Then there exists k linearly
independent elements a1, ag, ..., ax € F} such that
k
V =(ay,az,...,a;) ={a €F) :a= Zciai where ¢; € F,, 1 < i < k}.
i=1
Definition 4.3.1. The subspace sum of f € Bl with respect to a subspace V of F is a
generalized Boolean function from ¥} to ¥y, Sy f, defined by

Sy f(x) = Zf(x—i—v), for all x € F.

veV

More precisely, Sy f(x) is the sum of the values of f on the coset x + V', which depends

on V only, not on the dimension of V.

Remark 4.3.2. Let j € F, and V = (a) be an one dimensional subspace of F}. Then
Svf(x) =Sy f(x+ ja), for all z € F}.

4.3.1 Derivative and subspace sum of a function

If p = 2, the subspace sum of a Boolean function with respect to a k-dimensional subspace
is same as the kth order derivative, and therefore our following results naturally extends

the binary case.



82 4.3 Subspace sum of a function

Lemma 4.3.3. Let f € B2 and k be a positive integer less than or equal to p. Then for

any a € F},
k
D.D,...D, f(x) = Z(—l)i g flz+ (k—1)a), for all z € F}. (4.3.1)
a a ) — Z ) p
k—times =

More precisely, if k = p then both sides are equal to 0.

Proof. Certainly, the result is true for & = 1, so we now let k = 2. Then for a € F},

D.D,f(x) = f(x +2a) —2f(x 4+ a) + f(x) = Z(—l)i <3)f(x + (2 —i)a), for all z € F}.

We assume the claim happens for an arbitrary positive integer r < p, that is,

D,D,...D, f(z) = Z(—w‘ (:) flx+ (r—1ia), (4.3.2)
r—times =0

for all # € F};. Taking the derivative of both sides of Equation (4.3.2) with respect to a, we

get

DoDy ... Dy f(x) = Do{DyDs ... Dy f}(2)

(Z)ZH; ()0 . t:)) - Zﬁ;—l)i "
— fla+(r+Da Z () (w4 (r—i+1)a)

+§< 0 ()16 + = ) + (-1

— fla+(r+Da +§ v (D )i =)

+< D () e = o)+ (-1 (o), =i
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— f@+ (r+ Do +Z ”1(”1)f<x+<r—z’>a>+<—1>mf<:c>

:f(ﬂ:+(r+1)a>+Z(—1)j(r;1)f(x+(r+1—j)a)+(—1)’”“f(:v), j=itl
_ Z(_W(T j 1>f(a: +(r+1—1ia).

From elementary number theory we know that for a prime p

1

(P) =0 (modp), i€{1,2,....p—1}.

Thus, if £ = p then the right hand side of Equation (4.3.1) consists only f(z) and —f(x),

and the lemma is shown. ]

Theorem 4.3.4. Suppose V' = (a) is an arbitrary 1-dimensional subspace of Fy, and f € BY.
Then

Svf(x)=DuD,...D, f(x), for all x € F).

(p—1)—times

Furthermore, for anyr € {0,1,2,...,p—1}
1Sy f(x) = Do Dy...Dy f(x), for allz € F).
(p—2)—times

Proof. Using the previous lemma and the known elementary number theory congruence

(p - 1) = (—1) (mod p)

J

where p is an odd prime and 0 < 7 < p — 1, we get the first claim.

Let 7 € {0,1,2,...,p—1} and V = (a) be an one dimensional subspace of F};. Suppose
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g(x) = DD, ... D, f(x), for all x € Fy. Then

(p—2)—times

D,y Do...D, f(x) = Dyog(z) = g(x 4+ ra) — g(x)

(p—2)-times
=g(x+ra)—glx+(r—1a)+...+g(x+a) —g(z)
= Dog(z + (r — 1)a) + Dog(x + (r — 2)a) + ... + Dug(x)
=Svflz+(r—1)a)+Svflz+(r—2)a)+...+Svf(z)
=Svf(x) + Sy f(x)+ ...+ Syf(z), using Remark 4.3.2
=Sy f(x),
thus showing our second claim. n

As an example, let p = 3 and V be an one dimensional subspace generated by a € F3.

Then

Svf(z) = f(z+2a)+ f(x+a)+ f(z) = Do Do f(2)
28y f(x) = 2Dy D, f(x) = Doy Do f () = DyDoy f ().

Theorem 4.3.5. Let V = (ay,aq,...,ax) be a k-dimensional subspace of F) and f € B}.
Then
Svf(x) = Doy ... Dy, ... Day ... Dqy f(x), for allx € F).

- -~

(p—1)—times  (p—1)—times

Proof. Without loss of generality, let V; = (a1, a9,...,a;), 1 < j <k, be a j-dimensional
subspace of F}) and for j = k, Vi, = V. The result is true for £ = 1, so we now let k = 2.

Let

p—1

9(x) = Day ... Du, f(x) =Y f(z + izaz), for all z € Fy.
(r—1)—times 12=0

Then

p—1
Dy, ... Dy Doy ... Dy, f(x) = Dy ... Dy, g(x) = Zg(m +i1aq)

~~ ~\~ i1=0

(p—1)—times (p—1)—times (p—1)—times
p—1 p—1

= Z Z f(x + 19a9 + i1a1) = Ssz(@‘

11=012=0
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We now assume that the result is true for £ = r, that is,

Sv.f(x) =Dy, ...Dgy ... Dy, ...D,, f(z)

v~ ~~

(p—1)-times  (p—1)—times

p—1 p—1
:Z,,,Zf(m+irar+...+i1a1)>

i1=0 =0
for all x € ). Therefore,
p—1
Dayyy -+ Dayyy Day - Day o Doy - Do, f(2) =) Sv, f(2 4 irpaarsn)
(p71)2£imes (p—1)-times  (p—1)-times tr1=0

p—1 p-1 p—1

= Z Z cee Zf(x + ir+1ar+1 +irar +...+ i1a1> = SVr+lf(x)7

ipp1=0i1=0  ip=0

and the theorem is shown. n

4.3.2 Codes and subspace sum of a function

Proposition 4.3.6. Let V = (ay, as, ..., a;) be a k-dimensional subspace of Fy and f € BL

of degree r. Suppose h(x) = Sy f(z), for all x € Fy. Then (ZUEV X”) Qy is the associated
codeword of Sy f, that is,

Qp = (Z X“) Q.
veV

Proof. Let f € BL and a € F};. Then

X=X fl9)X7 = fl@X" =) flg—a)X’.

g€ely geFy g€ely

Since any v € V can be written as v = Zle c;a; where ¢; € F, i€ {1,2...,k} and so,

(ZX”) Q=Y (Zf(g—v)) X9="%" (Zf(g+v>> ¢

veV geFy \veV g€Fy \veV

= Svf(9)X? = Q55 =

geFy

Proposition 4.3.7. Let V' be a k-dimensional subspace of ¥} and f € B}, of degreer. Then
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the degree of Sy f is less than or equal to r — k(p — 1). In particular, the subspace sum of

J with respect to any one dimensional subspace of F)) have degree at most r —p + 1.

Proof. Let V' = (a1, ay,...,a;) be a k-dimensional subspace of F} and y = > ., X" be

veV

the codeword of support V. Then

Yy = (Z X”) Q= Svflg)X*

veV geFp

Since the degree of f € BP is r, and so, {); is in PP which does not depend on
y. Moreover, dimV = k and ¥ is a minimum codeword of P*®~1). Thus, the codeword
yQy is in PHE-Dpre-=r = prlp-L=r+k-1 " which is {0} for r < k(p — 1) — 1. When
r="k(p—1)+d,d >0, the degree of Sy f is at most d =r — k(p — 1). [

Proposition 4.3.8. Let V' be a k-dimensional subspace of F. Suppose that y = Y ovev X
and Vi =V, Va, ..., Vi are distinct cosets of V where t = p"*. Let x = dew r, X9 € A,

and for each i, denote by x; the restriction of x to V; and N; = . Then

geV; g

oy =Y (Ni (mod p)) 37 X7,

Furthermore,

1. zy = 0 if and only if N; =0 (mod p), for all i, 1 <i <t and xy # 0 if and only if
there exists at least one 1 < i <t such that N; # 0 (mod p).

2. wt(zy) = \op® where \g is the number of x; for which N; # 0 (mod p).

Proof. Since F) = U§:1 Viand let V; =a; + V, for alli =1,2,...,t with a; = 0. Then

T = ngX":ZngXg—ZX‘”Zwaﬂ

g€Fy i=1 geV; ueV
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Now

g (50) £rueee)

Ty =
ueV veV i=1 ueV veV
t
:ZX‘“ (Z%ﬁu) (ZX”) , as X'y =y forany ueV
i=1 ueV veV
t ¢
S (T (S ) - X ) T
=1 \weV uev i=1 9eVi
If Ni =0 (mod p) for all i, 1 <4 <, then xy = 0 and conversely. Since > ;. X9 is the

all one-vector of length p* and support V;. Then wt(zy) = A\gp* where )¢ is the number of
x; for which N; Z 0 (mod p). [ |

4.3.3 Affine equivalence of subspace sums

In this section, we generalize a result of Dillon [56].

Theorem 4.3.9. Let f € BY and Si[f] denotes the multiset of all subspace sum of f with
respect to k-dimensional subspaces of Fy. If f,h € BE are affine equivalent, so are Si[f]
and Sglh]. Precisely, if the nonsingular affine transformation A (operating on Fy) map f

onto h, it also maps Si[f] onto Sg[h].

Proof. Suppose that h(z) = f(zA +b), for all z € F where A € GL(n,F,) and b € F}.

Let E be an arbitrary k-dimensional subspace of Fy. For all z € F},

Sph(z) = Zg(x+a) = Zf(xA+aA+b)
acl ack
= Zf(acA—l—b—l—aA) = Zf(:vA+b+c) where By = {c:c=aA,a € E}
aclE ceby
=Sp f(zA+D),

since the maps a — aA is a permutation of the k-dimensional subspace E of F). The

theorem is shown. ]

Corollary 4.3.10. If P is any affine invariant for BE then

f— P{S[f]}
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is also an affine invariant for B .

4.3.4 Maiorana—McFarland bent functions and subspace sums

In [66, Proposition 1], Budaghyan et al. proved that if f € B belongs to the complete
Maiorana-McFarland class then there exists an F-dimensional subspace of F such that
all second-order derivatives is 0 where n is even. We derive a necessary condition for

Maiorana—McFarland class bent functions.

Theorem 4.3.11. Let m = 2n and f be a generalized Maiorana—McFarland bent function
defined as in Theorem 4.2.3. Then there exists an n-dimensional subspace E of Fy x F}

such that
1. the subspace sum of f with respect to any one dimensional subspaces of E is 0 if p is
odd.
2. the subspace sum of f with respect to any two dimensional subspaces of E is 0 if p = 2.
Proof. Let V' be a subspace of F}) x F. The subspace sum of f with respect to V' is

Svf(x,y)= > flz+uy+v)

(u,v)eV

= Y ((w+u)-wly+v)+g(y+v).
(u,v)eV

(4.3.3)

Let v = 0. Then V is a subspace of E' =T} x {0}. From Equation (4.3.3), we get

Svflw,y)= Y (w+u) 7)) +[Vlgly) = > (@+u) 7).

(u,0)€V/ (u,0)€V
Let p be an odd prime and V' = ((a,0)) be an one dimensional subspace of E. Then

Sy f(z,y) :p<x+p a) -m(y) =0, for all (z,y) € F) x F}.
Let p=2and V = ((a,0), (c,0)) be a two dimensional subspace of E, then

Sy f(z,y) =0, for all (z,y) € F) x F.
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Helleseth and Kholosha [128] verified the Fact 4.2.4 by computer calculations, however,
proving this result theoretically and probably finding the whole class of similar functions
remains an open problem. Using Theorem 4.3.11, it is shown that the function defined as

in Fact 4.2.4 does not belong to complete MP? class.

Theorem 4.3.12. The function f defined as in Fact 4.2.4 does not belong to the complete
MP class.

Proof. Let f be equivalent to a function from class MP?. From Theorem 4.3.11, we have
there exists a 3-dimensional subspace F of 36 such that the subspace sum of f with respect

to any one dimensional subspace of E is 0. Let V' = (a) where a € Fi;. Then
Svf(x) = f(z) + f(z +a) + f(z +20) = Y (0" (2™ + (z + a)" + (z + 20)™)).  (4.3.4)

Since the 3-ary representation of 98 is (0,1,0,1,2,2) as 98 = 3% + 32 +2-3 + 2. Thus, all

the monomials in (x + @)% are of the form x4 with

d = (0,dy,0,ds, dy, do) (4.3.5)

where dy, dy € {0,1} and dy, dy € {0, 1,2}. The coefficient of the monomial %32 in (x+a)%

34432 2.342 -

is a . Thus, the coefficient of the monomial « in Equation (4.3.4) is

a?(a34+32 + (2a)34+32) =(1+ 234+32)a7a34+32 — 207a3" %

as 2373 =1 (mod 3). Since 37(2-3+2) # 2-3+2 (mod 728), for all 1 < i < 5. It
is also obvious that, 3'd # (0,0,0,0,2,2) (mod 728), for all 1 < i < 5 where d is defined
as in Equation (4.3.5) with d # (0,0,0,0,2,2). If Sy f(z) = 0 for all x € F3s then all the
coefficient of the monomial in Equation (4.3.4) must equal 0, and therefore 2a7a* +3* = 0,
which is a contradiction. Thus, we can not find a subspace E of F3s with dimension 3 such

that the subspace sum of f with respect to any one dimensional subspace of E is 0. |
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Chapter 5

Construction of DP, Dg and CP classes

of bent functions

5.1 Introduction

In this chapter, we consider the generalized Boolean functions from IF]Q)" to I, where p is
an odd prime integer. In binary case, Carlet [17] constructed two new classes (so-called C,
D) of bent functions by modifying the Maiorana-McFarland bent functions. In chapter 3,
we derived some existence and nonexistence results concerning the bent functions in the C
class for many of the known classes of permutations over Fon. We construct two new classes
of generalized bent functions, denoted by DP, Db and CP. Here D} is a subclass of DP and
we observe that if f € Dj is an m variables function then m = 0 (mod 4). Further, we
prove that MP and D} C DP are overlapping classes, but in general not included in one
another. We further derive some existence and nonexistence results concerning the bent
functions in C? class for many classes of permutations and suitable linear subspaces of the

dimension less than and equal to 2 for p = 3.

5.2 Preliminaries

In what follows, p denotes an (arbitrary, but fixed) odd prime number.

Lemma 5.2.1 ( [17, Generalization of Lemma 1}). Let E be any linear subspace of Fy and

91
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f € B be a regular bent, and the dual of f be f. Then for any elements a,b € ), we have

Z Cf(:p)fb.g: _ pdimEfgga-b Z Cf(z),a.w

re€—a+FE zCb+EL
2w, th . 2
where ( = e » s the p™ complex root of unity, 1* = —1.

Ifa =b=0and dimE = § (dim E denotes the dimension of a vector space E) then

from Lemma 5.2.1, we get

ng(r) — Z ¢f@,

) zeREL

Therefore, if the restriction f,g of f to E is ¢ then also the restriction f /gL of ftoEtisi
where i € {0,1,...,p—1}. In [17, page 85], Carlet constructed a generalized bent function
in the following way. Let ¢ be any even positive integer and Z, be the ring of integers
modulo ¢g. Let E be any subgroup of order ¢" of Z; x Z; and 7 any permutation on Zy

such that z-7(y) = 0, for any (z,y) € E. Then the function f : Zj X Z; — Z,, defined as

fayy) = mly) + Jou(z.y) (5:21)

is bent.

5.3 Construction of D and D} classes of bent functions

We modify the Carlet’s construction defined as in Equation (5.2.1) (for the environment
in consideration) in our next theorem where we further show that the functions are also

regular.

Theorem 5.3.1. Let E = E; X Ey where Ey, Ey C ]FZ with dim Fy + dim Fy = n and

€ € F,. The generalized Boolean function f on F) x F of the form

flz,y) =2 -7(y) + edp(r,y)

18 a reqular generalized bent function where m is an arbitrary permutation polynomial over

F" such that w(Ey) = Ef.

p
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Proof. Let (a,b) € F} x F} and ¢ = 7" be the p" complex root of unity, 1> = —1. From

Theorem 4.2.3, we have

Z gx-w(y)—m—zfy — pnc—bvr*l(a)’

(z,y)€Fp xFn

SO

H(a,b) = Z (@) +etn(ey)—aa—by

(@,y)€Fp xFn

_ Z Cx —a-z—by _'_C Z CJBW —a-x—by

(z,y)EFp xXFP\E (z,y)EE
= Z C”W(y)—a'ﬂf—b'y + (CE _ 1) Z Cx~7r(y)—a-z—b~y (531)
(z,y)EFE xFp (z,y)EE
—p C—bﬁ (a) + Z C—ax by
(z,y)EE

PO 4 (¢~ 1) (a,])).

Let (a,b) ¢ E+. Then ¢z (a,b) =0, and so,

Y Jemmerthy — preb @) = b @t edp (48], (5.3.2)

(w,y)€FR xFR

Let (a,b) € EX. Then b- 7 !(a) = 0 (by Lemma 5.2.1) and ¢ (a,b) = 1, and so,

D S O (5.3.3)

(@,y)€FR xFR

From (5.3.1), (5.3.2) and (5.3.3), we infer
Hy(a,b) = p"¢0™ @F0er@h) for all (a,b) € Fy x Fr.

Thus, f is a regular generalized bent Boolean function. [ |

Remark 5.3.2. The dual of a function f as in Theorem 5.3.1 is

flay) =y 7' (2) + edp(z,y),
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for all (z,y) € F} x Fy, and the set of all such functions f is denoted by DP.

Lemma 5.3.3. Let n = 2t be an even integer and p be an odd prime. Then for all

= (21, 2n),y = Y1, .., Yn) € Fp,

n p—1

Pry(T,y) = HH(% )

i=1 j=1
where Ey = {0} x F}.

Proof. We know that

1, if x=0;
¢Eb(xay)::

0, otherwise.

n p—1

If # # 0, there exists at least one j € {1,2,...,n} such that z; # 0, so [[ [[(z; —j) = 0.
=1 j=1

Assume now that x = 0. Then

HH(O —Jj) = H(p —Di=1=(p-DY)" =(p-1H*,

using Wilson’s Theorem, (p — 1)! = —1 (mod p), which renders

- (vs —j) =1,

n q—1
=1 j=1

KA
and the lemma is shown. n

For the special case of Theorem 5.3.1, we let £y = {0}, Ey = F} and Ey = {0} x F}

where n is even. Then the generalized Boolean functions on F x [ of the form

n p—1

Fla,y) =2 7(y) + eomy(e.y) = 2 - 7(y) + e [ [ [T (@ - )
i=1 j=1
is a regular generalized bent function. This class of bent functions will be denoted by D}
and it is a subclass of DP. Observe that if f € Df is an m variables Boolean function then
m =0 (mod 4).
The next theorem surprisingly shows that MP? and D} C DP are overlapping classes,

but in general not included in one another.
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Theorem 5.3.4. In general, DY and DP are not included in the class MP. Further, the

class MP is in general not included in D}, and DP classes.

Proof. Let f € DP written as

flz,y) =2 -7(y) + edr(r,y) (5.3.4)

with e € F,, ¥ = E; x Ey where F;, Fy C IF]’; of dim F1+dim E5 = n and 7 be a permutation
over [y such that 7(FE,) = Ef-.

Assume that f € MP, and so, f can be expressed as

flx,y) =z -m(y)+ 9(y) (5.3.5)

where 7, is a permutation over F} and g € B. Putting z = 0 in both Equations (5.3.4)

and (5.3.5), we get g(y) = edr(0,y), and so,

z-(m(y) —m(y)) = e(or(0,y) — dr(r,y)). (5.3.6)

Observe now that the left hand part of Equation (5.3.6) is linear with respect to the variable
x, as opposed to the right hand part of Equation (5.3.6) which may not be linear with respect
to the variable x (by choosing a suitable nonlinear function ¢g(z,y) and € # 0). Thus, in
general, the classes DY and D? are not included in class MP.

For example, if p =3 and n = 4, we let f : Fj x Fi — Fj,
fley) =z -7(y) + ez — 1) (21 — 2)(22 — 1) (22 — 2) (25 — 1)(23 — 2)(24 — 1) (24 — 2)

where © = (21,79, 23,74),y = (Y1,Y2,Y3,y4) € Fs and € € F;. The previous nonlinearity
condition on ¢g(0,y) — ¢r(x,y) is obviously satisfied, and so f € D} does not belong to
MP.

Conversely, let f € MP, and assume that it also belongs to D?. Thus, for all (z,y) €
Fy < F)

flx,y) =2 -v(y) +9y) =2 Y1(y) + epp(z,y)

where v and v, are permutations over IF;} and F = E; X E5 where Eq, Fy C IF;} of dim F; +
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dim Ey = n and ¢ (E>) = Ef. Then g(y) = edp(0,y) € {0,€}, for all y € F7, that is, the
range set of g contain at most two distinct elements. Therefore, if the range set of g contain
at least three distinct elements, the corresponding MP functions f does not belong to D?,

and our theorem is shown. ]

5.4 Construction of C? class of bent functions

The C class of bent functions was constructed by Carlet [17], which is defined as in Equa-

tion (1.2.13). We now generalize Carlet’s result.

Theorem 5.4.1. Let L be any linear subspace of ¥ and m be any permutation on ¥} such
that for any element A of ), the set 7Y\ + L) is a flat. Then the function f on Fy x Fp
of the form

z-7(y) +epre ()
is a generalized bent function where € € .
Proof. Let E = L+ x F) and ¢ = ¢s" be the p" complex root of unity, 1> = —1. For any

a,b) € F* x F”, we have
( p p

Hy(a,b) = Z rT) s L (@) —a—by

(@,y)€FR xFR

— Z Z Cw-ﬂ(y)*a-w*b-y +Ce Z Cr-fr(y)fa-sz-y

yelFy \zeFp\L+ zelt
_ Z Caz-ﬂ(y)—a.a:—b-y + (Ce _ 1) Z gw-w(y)—a.x—b.y (54 1)
(z,y)€Fy xFR (z,y)e Lt xFp

= Pnffb'ﬂil(a) + (¢ = 1)L Z C*b'”ﬂ(m), using Lemma 5.2.1
r€a+L

— pn g—b~7r’1(a) + (CE - 1) Z C_b.x

|L| zen—(a+L)

Let B, = {mY(a+u) : u e L}. Ifb¢ EL then S>> (7" =0, and from Equa-
zen—1(a+L)
tion (5.4.1) we get

Hp(a,b) = p(=1) 707 @ = pr¢ 0T O Oeg O (54.2)
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Ifbe EXthenb-7(a)=0and 5. (%% =|L|. From Equation (5.4.1) we get

zer—1(a+L)
Hy(a,h) = e = ¢ OO ) (5.4.3)
Therefore, from Equations (5.4.1), (5.4.2) and (5.4.3) we get
Hy(a,b) = p"¢"" Tt O for all (a,b) € F2 x B2,

and the theorem is shown. [ ]
The class of bent functions defined as in Theorem 5.4.1 will be denoted by CP.
Corollary 5.4.2. In general, the class CP is not included in the class MP.

Proof. Let f € CP. It L = [y, the class C? contains the class D}, and so, also CP is not

included in the MP class. [ ]

5.5 Existence and nonexistence of C? classes of bent
functions

For construction of generalized bent functions defined as in Theorem 5.4.1, it is needed to
consider a permutation polynomial 7 on [} such that 7 1(a+ L) is a flat for any a € F2. In
chapter 3, we derived some existence and nonexistence results concerning the bent functions
in the C class for many of the known classes of permutations over Fon. We investigate
below these conditions for many classes of permutations and suitable linear subspaces of

the dimension less than and equal to 2 for p = 3.

Lemma 5.5.1. Let uy,us,ug € Fy. A set L = {uy, us,usz} is flat of By of dimension <1 if

and only if uy + us + uz = 0.

Proof. 1f L is a subspace, without loss of generality, we may assume that L = {0, u, 2u, },
which satisfies 0 + uy 4+ 2u; = 0. Conversely let L = {uy, ug, us} with u; +ug +us =0, i.e.,
ug = 2uq + 2ug. It follows that 2u; + L = {0, us + 2uq, ug + 2us} = (ug + 2uz). The lemma

is proved. [ |
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Theorem 5.5.2. Consider the permutation polynomial over Fsa, ¢(x) = x+ 27 [72]. Then
there is no 1-dimensional subspace L of Fz1 such that ¢(a + L) is flat for all a € Faa.

Proof. Let L = {0,u,2u}, v € F;,. Then for any a € Fs1, ¢(a + L) is flat if and only if

d(a) + dla+u) +ola+2u) =0 < a4+ (a +u)'" + (a+2u)'" =0 ( |
5.5.1
<200 + 2aut + 20’ + 2070 + a"u'? + a’u'? + @Pu't + au'® = 0.

Equation (5.5.1) holds for all a € F3 if and only if w = 0, which contradicts dimL =1. =

Remark 5.5.3. We can certainly construct functions in C3. For example, consider the per-
mutation polynomial ¢(x) = 1+x over Fza [104, Theorem 1.1]. Then for any 1-dimensional
subspace L of Fsa, ¢(a + L) is flat for all a € Fsa, since, for L = {0,u,2u}, u € Fi,, then
d(a) + dla+u)+ pla+2u) =0, for all a € Faa. If L = (u,v) is a 2-dimensional subspace
of F3s X F3a and a € F3a then

¢la+ L) ={d(a), ¢(a+u), ¢(a+v), ¢(a +u+v),d(2u), (2v), d(a + 2u), ¢(a + 2v),
ola+2u+v),p(a+u+2v),¢(a+2u+2v)} =1+a+ L.

Theorem 5.5.4. Let ¢ be a permutation polynomial defined as in [72] on Fz1 of the form
p(r) = (@ +1) =2 + 2.

Then there is no 2-dimensional subspace L = (u,v) such that ¢(a+ L) is flat for all a € Faa.

Proof. Let a € Fsa. If ¢(a + L) is a flat,

#a) + ¢la +u) + ¢(a +v) + dla+u+v) + ¢(a+ 2u) + ¢(a + 2v)+ (55.2)

dla+2u+v) + ¢la+u+2v) + ¢p(a+ 2u + 2v) = 0.

The linear part of Equation (5.5.2) certainly sums to 0. Furthermore,

(a—l—u)17 = a'" + 2a"%u + a"®u? + 203 + aPut + 26"’ + o' + 200U + au®

+ a®u® + 2a"u'® + aSu't + 2d°ut? + atult? + 2a3ut + aPut® + 2aul® + u”,
(a+v)17 =a'" + 2a'% + av? + 2a**0® + a3t + 2a'%0° + a8 + 2417 + %08

+ a®0? 4+ 24" + a®ot + 2a°0*2 + a*o? + 2a301 + a*o® 4 2a0'0 + v”,
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(a+u+0)" = a'" + 24" (u + v) + a®(u + v)* + 20" (u 4+ ) + aP(u+v)?
+2a"%(u+v)° + a' (u+v)® 4+ 2a"(u +v)" + @®(u + v)* + a®(u +v)? + 24" (u
+ )0+ ab(u 4 )" + 2a° (u +v)? + at(u +0)" + 20 (u + ) 4 a?(u +0)P?
+ 2a(u +v)"% + (u + )"

(a+2u)'" = a'" + 24" (2u) + a'®(2u)? + 20" (2u)?® + a3 (2u)* + 2a"?(2u)®
+a™ (2u)® + 24" (2u)" + a”(2u)® + a®(2u)? + 24" (2u)"" + a°(2u) "
+ 2a° (2u)'? + 203 (2u)™ + a*(2u)"® + 2a(2u)*® + (2u)",

(a+20)"" = a'" + 2a'%(20) + a'®(20)? 4 2™ (20)® + a*(20)* + 2a'%(2v)°
+a'(20)% + 24" (20)" 4 a”(20)° + a®(2v)? + 24" (20)"° + a®(20)"!

+ 2a°(20)*2 + a*(20)" + 203 (20)™ + a®(20)" + 2a(20)'® 4 (20)"7,

+ 26" (2u + v)° + a™ (2u + v)® + 20" (2u + v)" + a®(2u + v a®(2u + v)?

(
(a+2u +v)'7 = @' + 20 (2u + v) + a'®(2u + v)? + 20" (2u + v)® + a*(2u + v)?
)+
+2a" (2u + v)'° + a®(2u + V)" 4 26° (2u + v)'? + a* (2u + )" + 263 (2u + v)™
+ a®(2u + v)" + 2a(2u + v)'% + (2u + v)'"
(atu + 20)"" = " + 2a'%(u 4 2v) + a'®(u 4 20)? + 24" (u + 20)?
+ a®(u + 20)* + 2a"?(u + 20)° + a't (u + 20)° + 20" (u + 20)7 + a”(u + 20)®
+a®(u 4+ 20v)? + 2a" (u 4 20)" + a®(u + 20)" + 26° (u + 20)" + a*(u + 20)"
+2a® (u + 20)™ + a®(u + 2v)"° + 2a(u + 20)* + (u + 20v)"7,
(a4 2u+20)'" = a'" + 2a"%(2u + 20) + a"®(2u + 2v)? + 22" (2u + 2v)?
+ a'®(2u 4 20)* + 2a'?(2u + 2v)° + a (2u + 20)® + 2a'°(2u + 20)" + a®(2u + 2v)®
+a®(2u + 2v)? + 24" (2u + 20)*° + a®(2u + 2v)' + 2a° (2u + 20)*? + a*(2u + 2v)*?

+2a®(2u 4 20)" + a®(2u + 2v)" + 2a(2u + 20)'® + (2u + 20v)7
Adding all these equations, and collecting powers of a, we obtain

9a'" =0,
20" (u 4 v+ (u+v) + 2u + 20+ (2u +v) + (u + 2v) + (2u + 2v)) = 0,

B+ 07+ (u+0)” + (2u)’ + (20)* 4 (2u+v)* + (u+ 20)* + (2u + 2v)*) =0,
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20" (v + 0% + (u+0)° + (20)° + (20)* + (2u+v)* + (u+ 20)° + (2u + 20)?) =0,
a” (u* + v + (u+0)' + (2u) + (20)* + 2u+ v)* + (u+2v)* + (2u + 20)*) =0,
20" (v’ +0° + (u+0)° + (20)° + (20)° + (2u +v)° + (u+ 2v)° + (2u + 2v)°) =0,
a™ (u® 4+ 0% + (u+0)° + (2u)° + (20)° + (2u + v)® + (u+20v)° + (2u + 20)°) =0,
20" (" + 0"+ (u+ )"+ 2u) + (20) + u+v)" + (u+20)" + (2u+20)7) =0,
a” (u®+ 0% + (u+v)® + (2u)® + (20)° + 2u + v)® + (u + 20v)® + (2u + 20)°)

= a’ (u%v? + utv? + u?),
a® (u” + 07 + (u+0)? + (2u)? + (20)° + 2u +v)” + (u +20)° + (2u + 2v)?) =0,
24" (u" + 0" + (u+ )"+ 2u)" + (20)"° + 2u+v)"" + (u+20)" + (2u+ 20)") =0,
a® (u + o+ (wto) + 2w+ 20)" + Qut o)+ (u+20) + (2u+20)T) =0,
2a° (u? + 0 + (u+v)? + 2u)"? + (20)? + (2u + ) + (u+ 20)" + (2u + 20)"?) =0,
a* (u? + 0P+ (u+0)? + 20" + (20)" + 2u+0)? + (u+20)"° + 2u+20)") =0,
2a° (uM + 0™ + (u+0)" + (2u)" + (20)" + 2u+ v)" + (u+20)" + (2u + 20)™)

= 2a”(u?v? + 2u'%* + 200 + w?o'?),
@ (u® + 0P + (u+ ) + 2w + (20)° + 2u+ )" + (u+20)" + (2u+ 2v)"°) =0,
2a (u'® + 0" + (u+0)" + (2u)" + (20)"° 4+ (2u +v)" + (u 4 20)" + (2u + 2v)'°)

— 2a(2u20* + 0 4 w010 4 2utp12),

u'" + 0t + (w4 )T+ 2u)T + (20)7 + (2u+0) T+ (u+ 20)' + (2u + 20)'7 = 0.
From (5.5.2), we get that if ¢(a + L) is flat then

a(u?v* + 2u'%° + 20801 4+ wo'?) 4 a®(2u'0? + u't + ut'? + 20t +
a9(u6v2 4 u4v4 +u2 6) — 07
which is satisfied for all a € F3a only when
w2t + 200 + 20500 + uto'? =0,
20120 + 0t 4+ ut0'® + 2002 = 0,

ubv? + utot + u*0% = 0.



Chapter 5: Construction of DF, D}y and CP classes of bent functions 101
Since
ubv® + vt + v’ =0
s ut PP+t =0, as u,v #£0
s (22U +0H)2=0 or (uP+20%)*=0
S u=v or u=2v,
which is not possible as u and v are linearly independent. [ ]
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Chapter 6

Second-order Nonlinearity Bounds of
cubic MMF bent-negabent functions

constructed by using Feistel functions

6.1 Introduction

The nega-Hadamard transform of f € B,, at a € Fa» is the complex valued function

Ni(a) =272 Z (—1)f@+Ti} () ()

z€Fon
where 1 = —1. The multiset [NV;(a) : a € Fan] is said to be the nega spectrum of f.

Definition 6.1.1. A function f € B, is said to be negabent if and only if |[N¢(a)| =1, for

all a € Fon.

Note that all affine functions (both with an even and an odd numbers of variables) are
negabent. For an even number of variables, a negabent function is called bent-negabent
if it is also a bent function. The bent-negabent functions was introduced by Riera and
Parker [33]. Construction of bent-negabent functions was proposed by Parker and Pott [73],
and negabent functions in Maiorana—McFarland class was considered by Schmidt, Parker
and Pott [64].

A permutation ¢ : Fon — Fan is said to be complete mapping polynomial if z — ¢(x)+x

is also a permutation. A Feistel function 7 : For X For — For X Fye is defined as m(z,y) =

103
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(y,z+h(y)), for all x,y € Fy: where h is any function on Fa:. It is proved by Markovski and
Mileva [118] that if h is a permutation then the Feistel function 7 is a complete mapping
permutation. Using the permutation 7 it possible to construct a Maiorana-McFarland type

bent functions

f : (th X th) X (FQt X FQt) — FQ

defined by f((x1,22), (v1,92)) = (@1,22) - ©(y1,y2), for all z;,y; € For, j = 1,2. If h is
permutation then 7 is a complete mapping polynomial, which implies that the function f is
affine equivalent to a bent-negabent function (cf. [97]). The maximum algebraic degree of
7 is t — 1 and therefore it is possible to obtain bent-negabent functions of algebraic degree
t by using this technique. For further details we refer to [9,64,73,146]

In the next section we concentrate our effort on a particular class of cubic Maiorana—
McFarland bent-negabent functions and determine the weights of their second derivative
along with a lower bound of their second-order nonlinearities. Also we identify subclasses

bent-negabent functions within this class.

6.2 Main results

In this section we take m = 4t and t > 3. Let h(y) = y* !, for all y € Fy where ged(t,i) = e
and i € Z such that 1 <i < t, ged(2° +1,2" — 1) = 1. Since h is a permutation we obtain

cubic Maiorana—McFarland bent-negabent functions of the form

fil(z1,22), (y1,42)) = Tr§($1y2 + xoy1 + xzyii“), (6.2.1)

for all z;,y; € For, 7 =1,2.

Lemma 6.2.1. The cubic Maiorana—McFarland bent-negabent function f; defined as in

Equation (6.2.1) has affine derivatives at ((ay,0), (b1,0)) where ay,b; € For.
Proof. Let ((ay,az), (by,b2)) € (Fae x Fat) X (Fat X Faor). Then

Di(ara0). (01,00 fi (21, %2), (1, 92)) = Trt (agyd ™1+ (w9 + ag) (42 by + yob2 ) + ol Tt

T1be + a1ys + x2by + agyr) + fi((a1, az), (by, b)).
(6.2.2)
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If ay # 0 then Equation (6.2.2) is quadratic. Suppose that a; = 0. Then Equation (6.2.2)
is affine if and only if p(y) = y2 by + yob2' is constant for all 3, € Fye. Since p(0) is equal
to 0, that is, Equation (6.2.2) is affine if and only if for all yo € Fo,

Y3 by + b3 = 0. (6.2.3)

If by = 0 then Equation (6.2.3) is identically zero. If by # 0 then Equation (6.2.3) holds

only when y, = aby; where a € Fye, and the lemma is shown. ]

6.2.1 Affine inequivalence subclasses

Theorem 6.2.2. Let V be any 2-dimensional subspace of (Fat X Fat) x (Faor X For). Then

the number of such distinct subspaces on which Dy f; is constant is given by

(2t _ 1)(25t+€—1(26 + 1) + (2t + 1)(24t—1 _ 22t _ 1))
3

where f; is defined as in Equation (6.2.1).

Proof. Let, V. = (((a1,a2), (b1,b2)), ((c1,¢2),(d1,d2))) be any 2-dimensional subspace of
(Fat X Fat) x (Fgt X Fat). The second derivative of f; with respect to V' is

Dy fi((x1, ), (Y1, 92)) = Trt ((ardy + bacr) + (aady + bica) + ((asds + bacs) + (azd3 +
b3 ca)? )ys + (s + c2) (B3 da + bad3 ) + (b3 dy + bad3 ) + (and ™' + b3 en)).
(6.2.4)

Case 1: Let (by,be)=(d1,d2)=(0,0). Then V = {(((a1,as2),(0,0)),((c1,c2),(0,0))) and
Dy fi((x1,22), (y1,y2)) = 0, for all z;,y; € Fy, j = 1,2. Thus, with respect to any 2-

dimensional subspace of (Fyt x Fot) x ({0} x {0}) the second derivative of f; is 0. The

(22t_1)(22t—1_1)

number of such distinct 2-dimensional subspace is 3

Case 2: Let by = 0 and dy # 0. Then from Equation (6.2.4), we get
Dy fi((w1,w2), (41, 2)) = Trf ((arda + (asdy + brca) + (aad3 ) + (asdy + (a2d3)* )93,

which is constant if and only if axdy + (azd2)? = 0.
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Subcase (1): Let ag # 0. Then asdy # 0, and so,

N1 i 24
a2d2 + ((Igd% )2 =0« Qs dg = a2d2
& agi_ldgw_l =1, since ay # 0,dy # 0
& (a2 1 =1 & apd? T e

& aydd ' € F. as ged(iyt) = e.

For any a, € I, it is possible to chose dy in 2° — 1 ways. a1, by, ¢, ¢, dy
can be chosen in 2! ways and a, in 2 — 1 ways. Again the subspace generated by
{((a1,a2), (b1,0)), ((c1,ca), (d1,dz))} is same as the subspace generated by {((a1, as), (b1,0)),
((a1+c1,a9+¢2), (b1 +di,dz))}. Therefore, the total number of distinct 2-dimensional sub-

2t(20—1)2t22t2t(2¢—1)
5 =

space such that the second derivative of f; is constant is equal to

25%(2t—1)(2°-1)
—_—

Subcase (ii): Let ay = 0. Then Dy f;((x1, 22), (y1, y2)) = Tt (a1da+bicy), which is constant.
In this subcase, ai, b1, ¢, ¢, di can be chosen in 2¢ ways and dy in 2° — 1 ways except
a1, by both are equal to 0. Therefore, the number of distinct 2-dimensional subspaces
corresponding to constant second-derivatives of f; is (2%_1)22&

Case 3: Let by=0 and dy=0. From Equation (6.2.4), we get Dy fi((x1,x2), (y1,y2)) =
Tr! (ayd; + bicy), which is constant.

Subcase (i): Let bj=0 and d; # 0. Since the subspace generated by {((ai,az),(0,0)),
((e1,¢2),(dy,0))} is same as the subspace generated by {((ai,asz),(0,0)),((a1 + ¢1,as +
¢2), (dy,0))}. Therefore, the number of distinct 2-dimensional subspaces corresponding to
constant second-derivatives of f; is (2%_1)22&

Subcase (ii): Let by # 0 and dy # 0 with by # dy. If by = d; then the subspace generated
by {((a1,az), (b1,0)), ((c1,ca), (d1,0))} is same as the subspace generated by {((a1 + ¢1, a2+
¢2), (b1 +d1,0)), ((c1, ¢2), (d1,0))}, ie., {((a1+c1,a2+¢2),(0,0)), ((¢1,¢2), (d1,0)) }. Here ay,

s, C1, C2, can be chosen in 2! ways, b; in 28 — 1 ways and d; in 2! — 2 ways. Therefore, the

number of distinct 2-dimensional subspaces corresponding to constant second-derivatives

. 2t (ot _ 1192t (ot _ At (ot _ t_
of f; is 2 (2 1)62 (2t-2) _ 2%(2 é)(2 2)

Case 4: Let by # 0 and dy # 0 with by # dy. If by = dy then the subspace
generated by {((a1,as), (b1,b2)), ((c1,c2),(d1,d2))} is same as the subspace generated by
{((a1 + c1, a9 + CQ), (bl + dl,bg + dg)), ((61,02), (dl,dg))}, i.e., {((a1 + c1,a0 + 02), (bl +
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d1,0)), ((e1,¢2), (d1,ds))}. From Equation (6.2.4), we get Dy f; is constant if and only if
(asdy + bycy) + (agd? + b2'¢2)* = 0 and (b3'dy + bod?') = 0.
Since

) ; )\ >
Vedy + bod? =0 < (b—2> =1 as by #0,dy # 0
2

d
& b_2 € Fi. as ged(i,t) =e.
2

Let dy = bo A where A € Fi. and A # 1 as dy # by. Thus, for each nonzero by € Fyt, it is

possible to choose ds in 2¢° — 2 ways. From the first condition we obtain:

(Igdg + CQbQ + (agdgi + Czbgi)zi =0

& by(ash + ) + (B2 (ah + ¢2))*> =0

& BB aph+ )Y =1, if ash+ ey £0
& B2 (agh + ) € F

& B ao) + ) € FL, as ged(iyt) =e
& 2 agh + ¢p) = N € F

Sy = ag\ + /

2041"
b2

Thus, a1, as, by, ¢y, dy can be chosen in 2! ways, by in 2/ —1 ways, ¢, in 2¢ ways and dy in 2¢—2
ways (including the case for which asA 4+ ¢o = 0). Each 2-dimensional subspace generated
by a pair of vectors ((ai,az), (b1,b2)), ((c1,c2),(d1,ds)), satisfying the above conditions,
contains altogether 6 distinct bases satisfying these conditions. Therefore, the number

of distinct 2-dimensional subspaces corresponding to constant second-derivatives of f; is

25t+e(2t—1)(2°-2)
T —

Adding the all cases we get the result.

We obtain the following corollary form Theorem 1.2.39 and Theorem 6.2.2.

Corollary 6.2.3. If ged(i,t) # ged(j,t) then f; and f; are not equivalent where f; and f;
are defined as in Equation (6.2.1).
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6.2.2 Second-order nonlinearities

Theorem 6.2.4. Let m = 4t, t > 3 and i, 1 < i < t such that ged(i,t) = e and ged (2" +
1,2 — 1) = 1. Let f; € By, be a function of the form given by Equation (6.2.1). Then

t+e

2 —2¢41).

1 e
le(fZ> > 2m71 _ 5\/271‘/+e _ 211% + 2625(2

Proof. Let a = (ay,b1) and b = (by, by) where a;,b; € For, j = 1, 2. To find nly(f;) it is
need to find nonlinearity of D(qp)f;, for all (a,b) € (Fgt x Fa) X (Fat x Fat). Let k(a,b) be
the dimension of the kernel of the bilinear form associated to D4y f;, i.e., the dimension of

ED(gyy fi+ OlNCE
gD(a,b)fi = {((Cl, Cg), (dl, dg)) - (th X th) X (th X th) : D(c,d)D(a,b)fi = constant}
where ¢ = (¢1,¢2), d = (d1,dy) and ¢j,d; € Far, j =1, 2.

DcayDiap) fi((x1,22), (y1,y2)) = Tri((ards + bacy) + (asdy + bica) + ((azdy + baca)+
(asd3 + b3 ¢2)* Vg3 + (az + c2) (B2 do + bod3 ) + (b3 da + bad3 Yot
(asd2 ! + b2 ey)).

(6.2.5)

Case 1: Let by = 0. From Equation (6.2.5), we get
Die.ay Diay fi((21,22), (y1,92)) = T} (ards + (asds + bies) + (asds + (a2d3 )* )y3 + azds *),

which is constant if and only if aydy + (azd3 )% = 0.

Subcase (i): Let by = 0 but ag # 0. If dy = 0 then D qyDq ) fi((x1,%2), (y1, y2)) is constant,
for all x;,y; € For, j = 1,2. It is possible to choose ¢1, ¢ and d; in 2 ways. Thus, the total
number of ways in which ((c1, ¢2), (dq,0)) can be chosen so that D qyD,p) f; is constant is

23t
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Again if dy # 0 then D 4D qp)f; is constant if and only if

i\ oi i 92i
asds + (ang )2 =0« a% d% = aqds
o (E )P 21 & ad e

& apd? e T as ged(ist) =e.

For each nonzero choice of as, it is possible to choose ds in 2¢ — 1 ways. ¢, and d; can be
chosen in 2 ways. Thus, the total number of ways in which ((cy, ¢2), (d1, ds)) can be chosen
so that DcaDp fi is constant is 2%(2¢ — 1) ways. If by = 0 and ay # 0 then the total
number of ways in which ((c1, ¢2), (di,ds)) can be chosen such that D 4D, f; is constant
is 23¢(2¢ — 1) + 23t =93t+e,

Subcase (ii): Let by = 0 and ag = 0. Then D¢ ) D ap) fi((21, 22), (¥1,42)) = Tr! (aydy+bicy),
which is constant. It is possible to choose ¢y, ¢o, di, dy in 2" ways. Thus, the total number
of ways in which ((¢1, ¢2), (di,d2)) can be chosen such that D Dap)fi is constant is 2.
Case 2: Let by # 0. Then D g)D(ap) fi((21,%2), (y1,¥2)) is constant if and only if

b%ldg + bgd%l =0 and (U,ng + bQCQ) + (agdgi + b%iCZ)zi = 0.
Subcase (i): Let by # 0 but dy = 0. Then D qyDqp) f;i is constant if and only if

bQCQ + (bgiCQ)Qi =0« C;b%% = Cgbg
& (Cngurl)Qi_1 =1, let .o #0
& ol eFL o obdt e as ged(ist) =e.
For each choice of by, it is possible to choose ¢y in 2¢ ways (including c; = 0). ¢; and d;
can be chosen in 2 ways. Thus, the total number of ways in which ((cy, ¢2), (d1,0)) can be

chosen so that D q D, f; is constant is 27 ways.

Subcase (i1): Let by # 0 and dy # 0. Then D 4)D(qp) fi is constant if and only if

b2'dy 4 bed? =0 and (agds + baca) + (axd? + b c3)* = 0.
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From the first part of the above equation, we get

b3 dy + byd? = 0 < b3 dy = byd?

dy\ 2! dy
(52) ) -

d
& b—2 € Fl. as ged(i,t) =e
2

& dy = Aby where \ € ..

For each non zero by € Fy, it is possible to choose ds in 2° — 1 ways .

(axdsy + bacs) + (agd? + b)) =0
& bo(ag) + o) + bgm(ag)\ + 02)2i =0
e (B aA+ 2)* =1, let ash +cp # 0
& B ah + o) € Fi as ged(i,t) = e.
S0, co = as\+ bg’\ﬁ where X' € Fi.. Therefore, ¢; and d; can be chosen in 2° ways and ¢, in
2¢ ways (including as A+ ¢y = 0). Thus, the total number of ways in which ((¢1, ¢2), (d1, d2))
can be chosen so that DD,y f; is constant is 2%¢(2¢ — 1) ways.
If by # 0 then the total number of ways in which ((¢, ¢2), (di, dz)) can be chosen such
that D) Dap) fi is constant is 22+¢(2¢ — 1) + 220+e =22+2,

So, the dimension of Ep , , 7, 1s

4t, if ag = 0,by = 0;
3t+e, ifas#0,by=0;
2t + 2e, ifas =0,by #£ 0;
2t +2e, if ay # 0,by # 0.

k(a,b) = k((ay,az), (b1,b)) =

\

Let Fot x Fy: = F%t. The nonlinearity of D) f; is

nl(D(a:b)fi) = 2" — 1ax | WD(a,b)fi (u,v) |

(u,v) E]F;t X]th

m+k(a,b)

2 2

2m71

N — DN
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By Proposition 1.2.20, we get
L(fs) > 5 Hl(Diaiy ) = 5 (2 = 22" 5)
n i) = = max (a, [ .
? 2 (a,b)eF?, xF2, ? 2 (6.2.6)
By Proposition 1.2.21, we get
1
nly(f;) > 2m~t — 5 |2 =2 > nl(Dan k).
(a,b)E]th ><]F§t
Z nl(Dap) fi) = Z nl(Dap) fi) + Z nl(Dap) fi)+
(ll b)EFZ XFQ ((alvo)v(blvo)) ((a17a2)7(b170))7a2¢0
Z (D) fi) + Z nl(Diap) fi)
((alvo)v(blvbz))7b27é0 ((al7a2)7(b17b2))7a27£07b27£0
1 m 1 m €
= 22 (gm—1 _ 52 T) 42220 — )2 — 52#)
1 m t e
+2%(28 —1)(2m ! — 527”2“ )
— 98t=1 _ 9bt-1 4 1(26t+e 4QUEE _oTtte _ 2%)
5 .
Thus,
1 e
nly(f;) >2""" — \/ Tt+e — 955 4 960(2°5° — 2e 4 1), (6.2.7)

Subtracting the lower bound obtained in Equation (6.2.6) from the lower bound obtained
in Equation (6.2.7), we get

. 1\/27t+e— B g6r(9%t _9e 1) - ;(2”“ ;2'”*2;“8)

1 m e 3m m e
fz(z 427 te) \/27 te 9Nt HE L 0% (255 — 20 4 1) >0

for sufficiently large m. Therefore, the lower bound obtained in Equation (6.2.7) is the

better lower bound than Equation (6.2.6), and the theorem is shown [
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Let m =4t, t > 3 and

(2f — 1)(250Fe (28 + 1) + (20 + 1)(2%~1 — 2% — 1))
nyi(e) = 3 ;
1 1 m—1
mii(e) = 5(2n1 = D2,
1 t+e
m2,(e) = 2m1 — 5\/27t+e e 26t(2

X3

1 m—+42t+42e
— 2

t+e

2 —2¢41)

where 1 < 4 < ¢ such that ged(i,t) = e and ged(2° + 1,2 — 1) = 1. Since for any fixed
m, nyi(e), my;(e) and m7,;(e) depends on e only. We compute ny;(e), m;,;(e) and m7(e) in

Table 6.1, for different values of m and e.

m =12 m = 20 m =24 m = 28
t=3e=1 t=5e=1 t=6e=1 t=06e=2 t="Te=1
nei(e) 271019 1218620075 79090592427 236930640555 5096560306859

m%ﬂ-(e) 768 245760 4063232 3932160 66060288
m?}i(e) 947 386478 6848097 6239867 116951970
m = 36
t=9e=1 t=9e=3
nei(e)  20981579529235115  218752935040559787
mtl,i(e) 17112760320 16911433728
mfﬂ-(e) 32180055793 30035054993

Table 6.1: The number of distinct 2-dimensional subspaces on which the second-derivative
is constant and the second-order nonlinearity bounds of the cubic MMF bent-negabent

functions f;.



Chapter 7

Gowers U3 norm of some classes of

bent Boolean functions

7.1 Introduction

The problem of constructing Boolean functions in n variables with highest possible second-
order nonlinearity is connected to the covering radius problem of second-order Reed—Muller
codes. Both these problems are difficult to solve. The Gowers Us norm of a Boolean function
is a measure of its resistance to quadratic approximations. In this chapter, we compute
Gowers Uz norms for some classes of Maiorana—McFarland bent functions. In particular,
we explicitly determine the value of the Gowers Us norm of Maiorana—McFarland bent
functions obtained by using APN permutations. We further prove that this value is always
smaller than the Gowers Us norms of Maiorana—McFarland bent functions obtained by using
differentially d-uniform permutations for all § > 4. We also compute the Gowers Us norms
for a class of cubic monomial functions, not necessarily bent, and show that for n = 6,
these norm values are less than that of Maiorana—McFarland bent functions. Further, we
computationally show that there exist 6-variable functions in this class which are not bent

but achieve the maximum second-order nonlinearity for 6 variables.

113
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7.2 Preliminaries

In this chapter, we introduce a slightly different notations for convenience. Let [n] denotes
the set {1,2,...,n}. Any function F' from F} (or, from Fs.) to Fy is said to be a Boolean
function in n variables and their set is denoted by B,,. The character form associated to
F € B,, denoted by the corresponding lower case letter f, is defined by f(z) = (—1)®),
for all x € F§. For any a € Fy, ¢, € B, is defined as ¢,(z) = a - x, for all x € F}. The
Walsh-Hadamard transform of ' € B, at a € [F} is defined as

F(F+¢,) = Z(_ z)+pa(z) Z f(x

z€Fy z€Fy

The Fourier transform of f at a € F}, denoted by f, is defined as

= S @) = ZF(F ),
v€Fg
The Walsh-Hadamard spectrum of F' is the multiset [F(F + ¢,) : a € F3] and the Fourier
spectrum of f (or, of F') is [f(a) :a € FY]. The derivative of F' € B,, with respect to a € F4
is defined by D,F(z) = F(x 4 a) + F(z), for all z € F}. If f(x) = (—1)7® for all 2 € F}
then
Daf (@) = (=1)717 = (=)T 0 = f(a) f(x + a).

Definition 7.2.1. A Boolean function F' € B, (n even) is said to be bent if and only if
there exists another Boolean function F € B, such that F(F + ¢,) = 2%(—1)15(“), for all

a € Fy. The Boolean function F s said to be the dual of F' and is also a bent function.

The first generic technique for constructing bent functions was proposed by Rothaus [86].

The functions so obtained are referred to as Maiorana—McFarland bent functions.

Definition 7.2.2. Suppose m = 2n where n € Z*, 7 is a permutation on Fon and g € B,,.
A function of the form F(x,y) = w(x) -y + g(x), for all (z,y) € Fan X Fon, is said to be a

Maiorana—McFarland bent function.

The Walsh-Hadamard transform of a bent function F' is related to the Walsh-Hadamard

transform of its dual F as we see next.
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Proposition 7.2.3 ( [19, Lemma 2]). Let F be a bent function in n variables and F' be its

dual. Then for any a,b € Fy, we have

F(DoF +¢y) = F(DF + a). (7.2.1)

7.3 Gowers uniformity norms

Let f : V — R be any function on a finite set V and B C V. Then E,cp[f(z)] =
ﬁ > wep f(x) is the average of f over B. The connection between the expected values of

F : 3 — Fy and its character form f is given in the lemma below.
Lemma 7.3.1. We have E,cp[f(x)] =1 — 2E,ep[F(z)].

Proof. Using the fact that (—1)® =1 — 2b, for b € {0,1} , we write

Eacal0)) = 17 3 0) = 17 -

zeB

_ % Y (1 - 2F(2)) = 1 — 2E,ep[F(a).

zeB

Definition 7.3.2 ( [143, Definition 2.2.1]). Let f : F§ — R. For every k € Z*, we define

the kth-dimension Gowers uniformity norm (the Uy norm) of f to be

1
ok
||f||Uk = ]EI,I1 ,,,,, xkEFg H f (ZB + le> .

SCk] €S

Gowers norms for k = 1,2,3 are explicitly presented below (cf. [132,143]).

1 floy =| Bopery [f (@) f(z + h)] [V
=| Egery [f(2)] | -
£ llvs =1 Bapy noery [f () f (2 4+ Ba) f (@ + ha) f (2 + by + ho)] [V*
=| Eniery | Baery[f () f (z + )] P[4,
[ flos =] Eapy hohsery [f(2) f (@ + ha) f(2 + ho) (2 + b1 + ho)
w f(a + hg) f(@ + hy + ha) f (@ + ho + ha) f(z + by + ho + hy)] [V5 .
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It is not difficult (and we will see some instances of this claim later) to see that one can

recursively define the Gowers norms by

[flloy = Eaerg [f ()],

o\ 1/2FF1
1l = (Breeg IDWFIZ])

The connection between the Gowers uniformity norms and correlation of a function with
polynomials with a certain degree bound is described by results obtained by Gowers, Green

and Tao [11,126]. For a survey we refer to Chen [143].

Theorem 7.3.3 ( [143, Fact 2.2.1]). Let k € Z*, € > 0. Let P : Fy — Fy be a polynomial
of degree at most k, and f : Fy — R. Suppose !Em[f(:c)(—l)P(z)H > €. Then ||fllu,,, =€

Theorem 7.3.3 implies that if a Boolean function has low Gowers Uy, 1 norm then it has
low correlation with all the polynomials functions on 3 of degrees at most k. In other
words it has high kth-order nonlinearity.

It is known that the Uy, for k£ > 1, is a norm, that is, it is homogeneous, nonnegative,
nondegenerate and respects the triangle inequality. It is also known that the sequence of
norms {Uy}x is monotonically increasing, that is, || f|lv, < [|f|lv..., & > 0.

It is known that the Gowers U; norm of a function is the /4, norm of its Fourier transform,

more precisely:

Theorem 7.3.4 ( [126,143)). Let f : Fy — R. Then

£l = F) (7.3.1)

zelFy
The following is an extension of Theorem 7.3.4.

Theorem 7.3.5. Let k € Z*, k > 2. Let F € B, and f(z) = (—1)F@ for all x € F.
Then

k 1 —
1115, = SG—2m > ) Duy oS (@)

Proof. Let g = Dy, ., ,f where hy,... hy_o € F4. For any k € Z*, the kth dimensional

.....
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Gowers uniformity norm of f is

k
H.fHQUIC = CCh1 ..... th]F" H f ZL’+ Zh

SC[K] ies
1
~ 9k+)n Z g(x)g(x + hg—1)g(x + hi)g(x + hg—1 + hy)
z,h1,..., th]Fg
1
= o(+Dn > > D g@gl@+ ) Y gl@+hi)g(@ + by + hi)
Riyeery hk_QEFn hk—IEFn :EGF"’ thFg
1
~ 9k+)n Z Z Z 9(x)g(x + hp) Z 9(Yy)g(y + hi—1)
hi,..., h_ QE]F hp_ 1€F" mGF" yG]FQ
___1___ T -~ .
= SG—n > D> G (=0T Y Gy) (=)
hi,..., h_ QE]F h_ 1€]F xG]Fn ye]Fg

:gw%m Do D D D i@y -y

R,y hy— QE]FZ hy— 1E]Fn a:EIFg yEIF"

— o Y X Y Y (e

Riyeers hk_QEIFn CEGFS’ yGIF" hk_1€Fg

1
=MZZ

hi,..., hi_o EF" mGFn

where we used the fact (see [135]) that the autocorrelation

Cylu) =Y gla)glz +u) =2" ) §(x)*(~1)"", u € Fy,

z€Fy
as well as [135, Lemma 2.6] giving Zung(—l)“‘w =2"if w =0, and 0, if w # 0. n

Theorem 7.3.6. Let F,G € B, be affine equivalent and k € Z*+. Suppose f(x) = (—1)F'®)
and g(x) = (—=1)9@ for all x € F} are the character form associated to F and G, re-
spectively. Then the kth-dimension Gowers uniformity norm of f and g are equal, that
18,

“f”l@ ::HQHU}-
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Proof. Let G(x) = F(zA+), for all x € F} where A € GL(n,F,) and b € F}.

1
3
lgllv, = | Benrooneers | [] 9z + D ha)
SCIk] ics
_ 1
1 .
=5 22 2 [I[ o+ m)
hi....hi€F} z€Fy | SCIH ics
1 : 2
=g 2 2 |1 fea+ Y (ma)+)
hi,..., thFg .’EEF'S _Sg[k] ieS
1 : :
ai,...,ap€FY x€FY _Sg[k] €S
1 : .
= S Z Z Hf(erZai) et y=a2A+0b
a1,...ar€Fy yeFy | SC[k] ieS

The proof of the next corollary follows directly from Theorem 7.3.6.

Corollary 7.3.7. Let F,G € B,, and there exists a k € Z" such that || f||u, # ||gllu, where
f and g are the associated character form of F and G, respectively. Then F and G are

affine inequivalent.

It is more convenient to calculate the Gowers norms of a bent function for £ = 1 and 2.

Let F' € B, be a bent function and f(z) = (—1)"® for all 2 € F}. Then
L fllo, =27%.

2. 1 fllv, =271, e, [ flloy = (1F1lw)?

7.3.1 Gowers Uz norm of the dual of a bent function

It is known that the dual of a bent function is bent. However, it is not known whether a bent
function and its dual have the same second-order nonlinearity. We prove that the Gowers
U3 norms of a bent and its dual are equal and therefore they provide equal “resistance” to

quadratic approximations.
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Proposition 7.3.8. Let the character forms associated to a bent function F' € B,, and its

dual F be f and f, respectively. Then

1fllvs = 1F s

Proof. The Gowers Us norm of f is

HfH%g _ 24n Z Z Z Z DhF )+DpF(z+h1)+DpF(z+ha)+Dp F(z+hi+hsa)

hG]F h1€]F" th]F” IEF"
2

— QL Z QL Z 2i Z(_l)DhF($)+DhF($+h1)

heFy —  hi€Fy z€Fy
1 2
~on Z En,erp [Exeu?g [(—1)DhF(x)+DhF(I+h1)] }
heFy
1
= o > IDuflE, = on Z S Duf(a)t, by (7.3.1)
hEFn han ae]Fn
= o S FDF )t = o 30 ST F(DLF 4 o) by (721)
han aeIE'" aan hE]Fn
= |1 £11%,.

7.3.2 Gowers Us norm of Maiorana—McFarland bents of the form

Try (ya )

Gangopadhyay et al. [110] employed the recursive framework developed by Carlet to identify
cubic Maiorana—McFarland bent functions having high second-order nonlinearities. Below
we describe the subclass of Maiorana—McFarland bent functions considered in [110] which
was originally constructed by Canteaut and Charpin [5]. It is shown in [110] that bent
functions on 10 variables having maximum known second-order nonlinearity exist within

this class.

Let m = 2n. We identify F} with the finite field Fon and FJ* with Fon X Fon. In the
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next theorem we consider cubic Maiorana—McFarland bent functions of the form
Fy(x,y) = e} (ya™ ) (7.3.2)
where 2,y € Fon, m > 6, i is an integer such that 1 < i < n, ged(2" — 1,2+ 1) = 1 and

ged(i,n) =e.

Theorem 7.3.9. If F; € B, is a function of the form given by FEquation (7.3.2) and f; is

the associated character form then

om | gnte(2¢ 4 1)(20 — 1)
1 filler, = o . (7.3.3)

Thus, the Gowers Us norm is minimum if and only if e = 1.

Proof. For any function F' € B,, with f as the associated character form, the Gowers Us

norm can be written as

1 X
||f||8U3 = Sim Z (_1)Dh,h1,h2F( )

h,h1,ho,z€FY

_ % S ()PP
2 m

h1,ho€FJ* h,x€FD?

— 24% Z Z (_1)Dh1,h2F(x)

h1,h2€FF* \ z€Fy?

2

Let S(hy, ho: F) = 32, e (—1)Pr122F @ We note that S(hy, ho; F) = 2™ if either iy = hy

or exactly one of hq, hy is 0, so

1
1l = 5o | Do Sl hoy F?

hi,ha€FS

224% 227N+ Y 1+ Y [+ > S(h,hy F)

hi €F ha€F\{0} hi €F\{0} h1,ha €F\{0}
hi=0 ha=0 hi7hs
1
= oo 273 2" —2) + > S(hhay F)?.

h1,ho €F5"\{0}
hi#ho
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Replacing F' by F; we note that, since F; is a cubic function, S(hq, ho; F;) is either 0 or
+2™. Therefore, we have to count the pairs (hq, hy) for which S(hq, he; F;) = +2™. Similar
counting is performed in [110] and [111, Theorem 4]. However, for completeness we recall
the basic steps.

Let hy = (b,a) and hy = (d, ¢) where a,b,c,d € Fon.

Dipay.(a.oyFi(,y) = T (((ad + b) + (ad? + cb®)*)2?) + Te? ((bd? + b* d)y)

+ T2 (ad® T + b ) + TP ((a + ) (bd? + 0% d)).

Case 1: If b = d = 0 then Dy q) a0 Fi(z,y) = 0, for all (x,y) € Fon x Fan. The number of
such points is (2" — 1)(2" — 2).
Case 2: 1If b= 0 and d # 0 then

Diaey 0w Fi(x,y) = Trl((ad + (ad®)?)2® ) + Ti} (ad**Y),

which is constant if and only if
ad + (ad?)? = ad + a* d** =0,
e, a 1d¥ 1= (ad®™)¥1=1, sinced#0anda#0,
ie., ad** €T, as ged(i,t) = e.

Thus, given any a € Fan \ {0}, ¢ and d can be chosen in 2" and 2¢ — 1 ways, respectively,
such that the second-derivative under consideration is constant. Therefore, among all the
derivatives of the form Dq ) 0,0)Fi, exactly 2"(2" — 1)(2° — 1) are constants.

Similarly, if b # 0 and d = 0 among all the derivatives of the form Do) @»,qa)f; then
exactly 2"(2" — 1)(2° — 1) are constants.

Case 3: Suppose b # 0 and d # 0.

Subcase (i): Let b = d. Then D(qe) ,0)F5 = Do,cta),(b0)F5 = Dd,e),0,a+¢)F5- In this case
a # c, since otherwise (b,a) = (d,c) which is already dealt with. Thus, among all the
derivatives of the form Dq ) »,qa)F3, exactly 2"(2" — 1)(2° — 1) are constants.

Subcase (i1): Let b # d. The second-derivative D(q.) 5,0 F; is constant if and only if

(ad + cb) + (ad* + b*)* =0 and bd* +b*d =0.

From the second condition we obtain (b~'d)?~! = 1. Since b,d € Fyn, (b 'd)? ' = 1.
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Combining these two we obtain (b7'd)*~! = 1, which implies that b='d € Fj.. Thus,
d = b where v € Fi.. Since b # d, v # 1. Therefore, for each choice of b it is possible to
choose d in 2¢ — 2 different ways. From the first condition we obtain:
ad + cb + (ad* + cb*)* = b(ay + ¢) + (b* (ay +¢))* =0,

e, (B**Hay+e)?'=1,ifay+c#0.

ie., b*Tay+c) =9 €F}, 50, c=ay+ #
Note that a can be chosen in 2" ways, b in 2" — 1 ways, d in 2° — 2 ways and c in 2¢ ways
(including the case for which a7y +c¢ = 0). So the total number of ways in which (b, a), (d, ¢)

can be chosen is

2mre(2m —1)(2° - 2).
Combining all the above counts we obtain

3 2m + 2n+e(26 + 1)(271 _ 1)
||fi||U3 = 92m .

It is observed from Equation (7.3.3) that for e = 1, the Gowers Us norm of F;

7-2"—6
R

is minimum. It has been experimentally checked in [110, Section 3| that for m = 2n = 10,
1 < i < 4 (therefore, ¢ = 1), the functions F;’s have the largest known second-order

nonlinearity.

7.3.3 Gowers U; norms of Maiorana—McFarland bent functions
constructed by using APN and differentially 4-uniform per-

mutations

A vectorial Boolean function ¢ : Fy — F%, also referred to as an (n,n)-function, is said to

be differentially J-uniform if

§(a,b) = {z € F} : ¢(z) + ¢p(z + a) = b}| <6,
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for all a,b € F} with a # 0. We denote the set {z € F} : ¢(z)+¢(x+a) = b} by A(a,b), for
all a,b € Fy with a # 0. If ¢ is differentially 2-uniform then it is said to be an almost perfect
nonlinear (APN) function. If ¢ is an APN function and a permutation then we refer to it as
an APN permutation on F5. There are several applications of APN functions, but perhaps
the most significant is that if the S-box (vectorial Boolean function) is based upon an APN
function, the probability of success for the differential attack is minimized [30]. Certainly, in
block cipher design, invertibility is essential, so the S-boxes must be permutations. There
are very few classes of APN functions, like monomials APN, which are completely described,
and there are many APN questions still open (like the existence of APN permutations in
all even dimensions; in fact, we barely know of a single example in dimension 6). The
connection with linear codes is well-known via a result of Carlet, Charpin and Zinoviev [26],
stating that f : Fon — Fon with f(0) = 0 is APN if and only if the binary linear code with
parity check matrix of columns (o, f(a?))T, 1 < i < 2" —1, has minimum distance 5 (« is a
primitive element of Fon). We refer the reader to the huge body of literature on differential

uniform and APN functions [30,31,61,70,134,156] and their references. Let
E; ={(a,b) € Fy x F} : a # 0 and 6(a, b) = i},

for all nonnegative integers i. It is easy to see that E; =), if i =1 (mod 2).

Lemma 7.3.10. Suppose that ¢ : T3 — F2 is an APN function. Then the cardinality of
By ={(a,b) € F} x F} : a # 0 and 6(a,b) = 2} is |Ey| = 27 1(2" — 1).

Proof. Let a € Fy \ {0}. We know that D,¢(x) = D,p(xz 4+ a) = b € Fj, for all = € F3.
Therefore, the cardinality of the range of the function D,¢ is at most 2"~'. Suppose that
{; 1 =1,2,...,2"'} C Fy such that z; # x; and x; # z; + a, for all i # j and
D,o(x;) = Dotp(x; + a) = by, for all i = 1,2,...,2""1. Then

by =b; < D,d(x;) = Duo(x;)
& Da(d(x:) + d(z5)) =0

& Dy(o(z;) + ¢(x; + b)) = 0 where b = z; + ;,
= Dangb(xi) - 07

which is not possible, since ¢ is APN (cf. [30, page 417]). Therefore, for each choice of
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a € F% \ {0} we obtain exactly 2"~ distinct b’s in F5 \ {0} such that §(a,b) = 2. Since a’s

can be chosen in 2" — 1 many ways, |E,| = 2" 1(2" — 1). ]

Lemma 7.3.11. Let ¢ be a differentially 6-uniform (n,n)-function where 6 = 2k, and

Ey ={(a,b) € F} x F3 : a # 0 and §(a,b) = 2i},

k
for alli € {0,1,... k}. Then > i|Ey|=2"""(2"—1).
i=1
Proof. For each a € F3\ {0}, it is possible to find a set {z1, ..., zon-1} such that z;,+a # z;,

whenever i # j, so that F§ = {x1, ..., 201} U{(21 + @), ..., (xen—1 + a)}. We construct a

list of differences as in Table 7.1.

] No. \ Output differences ‘
1 o) +o(z1+a) = b
2 d(x2) + Plaxg+a) = by
j o(x;) + oz +a) = b
2n—1' ¢(l‘2n71) + QS(.CEanl —|—a) = an—l

Table 7.1: List of (not necessarily distinct) output differences when the input difference
is a.

If 6(a,b) # 0 then (a,b) € Ey for a unique i € {1,...,k}, and we have a subset
S((Z)’b) C {1,...,2"7'} with |S((2b)| = i, such that ¢(z;) + ¢(z; + a) = b; = b, for all
Jj € S((Zb). We say that ¢ rows of S((Z)’b) are covered by (a,b). If we consider the collection of
all tables like Table 7.1, one for each a € F4 \ {0} then for each (a,b) € Ey;, i rows of S((;)b)
are covered. It can be checked that S ((;{b) = S((Z%,) if and only if i =i and b = V', otherwise,

(4) @) _
Stap) NSy = 0.

The total number of rows covered (considering all the distinct 2™ — 1 tables, one corre-
sponding to each a € F4 \ {0}) if we vary (a,b) over the whole of Ey; is i |Ey;]|. If we repeat
this process for each i € {1,...,k}, eventually all the rows of all the 2"~ tables will be

exhausted and the claimed identity is shown. ]

Theorem 7.3.12. Let F' € B,, be a Maiorana—McFarland bent function of the form

F(x,y) = ¢(z) -y + h(x),
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for all x,y € FY where h € B, and ¢ is an APN permutation on Fy. Then the Gowers Us
norm of the character form f = (—=1)F is

7-2" -6

o (7.3.4)

I£11, =

Proof. Using Theorem 7.3.5,

1 _—
||f||?13,:2—m > > Dagflab)

(a,8)€FE XFY (a,b)€Fy xFy

(a,B8)€FE XF? (a,b)€FY xFL \ (z,y)€F} xF}

1

where
4
A= ( (_1)D(o,o)F(x,y)+a-x+b~y :
(a,b)EFExFy \ (z,y)EFY xF3
4
= ( (_ 1)a~a:+b-y 24m’
(a,b)€FE xF2  \ (x,y)€Fy xFy
4
B = Z Z Z (_1)D(0,3)F(x7y)+a-x+b~y
BEFI\{0} (a,b)€FT xFy \ (z,y)€Fy xFY
4
= Z (—1)Bo@) rawtby
BEFI\{0} (a,b)€F xFy \ (z,y)EFy xF
4
= Z<_1)5'¢(m)+a-x Z(_1>b-y
BEFI\{0} (a,b)€Fy xFy \ z€Fy yeFn
4
= (2" (_1)B-¢(x)+a~z
BEFT\{0} acFy z€FY

z€F} acFyp \ z€F3

— 92m Z Z ( (_1)5'¢($)+a'x _92m Z Z (_l)a-x
2

= 22m(3. 2% —2.2%" — 24 (cf. [30, page 418))

— 23m+n+1(2n . 1)7
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4

Z Z Z Z (—1)D<a,B)F(x7y)+a-x+b.y

a€F2\{0} BEFY (a,b)€FYxFY \ (z,y)€Fy xF?

= Z Z Z Z (_1)a-x+/3'¢(x+oz)+h(z)+h(m+a)+(¢(az)+¢(x+a)+b).y

a€F?\{0} BEFY (a,b)€FYxFY \ (z,y)€Fy xF?

= Z Z Z Z (—1)a-x+ﬁ-¢>(x+a)+h(£)+h(z+a) Z (_1)(¢(:Jc)+¢(x+a)+b).y

a€F3\{0} BEFY (a,b)€Fy xF2 \ z€Fy yery

4
— 92m Z Z Z Z (_1)a-x+6~¢(w+a)+h(m)+h(z+a)
a€F\{0} BEFY (a,b)eFE xFy \ z€A(a,b)
4
— 92m Z Z Z Z (_1)a-ac+,3~¢(w)+b-6+h(x)+h(z+a)
a€lFy BEFY (a,b)eEy \zEA(a,b)
4

_ 22m Z Z Z Z (_1)a-x+6~¢(z)+h(z)+h(z+a)

a€Fy BEFY (a,b)€Es \z€A(a,b)={zab,Tapta}

— 92m Z Z Z awab-l-ﬁ 3 (@ab) +h(ZTab) +h(Tap+a)

a€Fy BEFY (a,b)EE;

+ ( —1 ) a (Tapta)+B-¢(Tabta)+h(zap+a)+h(zas) ) 4

— 92m Z Z Z ((1 + (_1>a-a+b-6)(_1)a-xab+6~¢(zab)+h(xab)+h(arab+oc))4

a€Fy BEFY (a,b)EE;

=273 > (84 8(—1)" )

a€Fy BEFY (a,b)EE;

_ 92m Z ZZSJFQ%HS Z ZZ )bB+aca

(a,b)€Eo BEFY a€ly (a,b)€E> BEFY acFy

= 233 By|, since (a,b) # (0,0), the sum Z Z(—l)b'ma'a =0.

BEF} acFy
From Lemma 7.3.10, we have |Fy| = 2"71(2" — 1). So

7-2"—6

1 m n
£, = 5 @ + 2712 = ) + 8By = =,

and the claim is shown. ]

Corollary 7.3.13. Let ||fi||;, and ||f||}, be defined as in Equation (7.3.3) and (7.3.4),

respectively. Then

105, — 171, = DI )
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Therefore, || fil|5, = | fNI5,, with equality holding only when e = 1, that is, ged(n, 1) = 1.

Theorem 7.3.14. Let G € B,, be a Maiorana—McFarland bent function of the form

G(x,y) =¢(x) -y + h(x),

for all z,y € Fy where h € B, and v is a differentially 4-uniform permutation and not an

APN permutation on Fy. Then the Gowers Uz norm of the character form g = (—1)¢ is

7-2"—6
lallf, >~z

Proof. Using similar arguments as in the proof of Theorem 7.3.12,
8 1
lgllo, = 25_m(A1 + By + )

where

(a,b)EFExF2 \ (z,y)€Fp xF2
4

B, = Z Z Z (—1)PosCay)taatby

BEFZ\{0} (a,b)eFy xFy  \ (z,y)€Fg xFy

= Y [ rappees

BeFI\{0} a€FY z€Fy

4

> 98mEntlon _ 1) (cf. 30, page 415]),

Cl — Z Z Z Z (_1)D(a,B)G(m,y)+a-m+b-y

a€F\{0} BEFE (a,b)eFE xFy \ (z,y)€FY xF}

2
=23 NN Y S (<1 AvE) @ )

(ZGFS’ BEFS‘ =1 (a7b)€E2i -’EGA(a,b)

= Ch + Cha,

Cll _ 22m Z Z Z Z (_1)a~z+ﬁv1/1(x)+h(x)+h(z+a) _ 23m+3|E2’,

acly BeFy (a,b)€E2 \z€A(ad)

4
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4

Com20 Y5 Y (X (e

a€lFy BEFY (a,b)€Es \z€A(a,b)

For each («,b) € Ey, there exist four distinct elements x1, 1 + a, x9, 2 + « € F such that

Dyp(xj) = Dotp(z; + ) = b where j = 1 and 2. For j =1 and 2,

Sj — (_1)a-a;j+6-1j)($j)+h(azj)+h(.tj+a) + (_1)w(asj+oz)+ﬂ~7,b(xj+a)+h(a:j+a)+h(;tj)

= (1+ (1)) (1),

where €; = a-x; + - ¢¥(x;) + h(x;) + h(x; + «). Further,

012—22mz Z Z S1+S2

BEFY (a,b)EEy acFy

=23 N S (<) (1))

BEFY (a,b)EE, a€FY

AP PID D BICE L S (R

BEFY (a,b)EE, a€FY

— 92m+6 Z Z Z 1+ aa+ﬂ-b)(1+<_1)61+62>

BEFY (a,b)EE4 a€lFy

22m+6 Z Z Z 1_|_ aa+,8-b+(_1)61+62_|_(_1)a-a+,8-b+61+62>

BEFY (a,b)€E4 a€FY

— 23m+6|E4|'

We note that, ZGGFEL((—1)“'O‘+B'b+(—1)61+62+(—1)“'0‘+5‘b+51+62) =0, since a # 0, 1422 # 0
and z1 + x5 + a # 0.

Oy = Cyy + Ciy = 2°™3(| Ey| + 8| Ey)

— 23m+n+2<2n o 1) 4 3. 23m+4|E4’ > 23m+n+2(2n o 1)7

and the claimed inequality follows. ]

Corollary 7.3.15. The Gowers Us norm of a Maiorana—McFarland bent function con-
structed by using a differentially 4-uniform permutation is always larger than the Gower

norm of any Maiorana—McFarland bent function obtained by using an APN permutation.

Proof. The proof is immediate from the results of Theorems 7.3.12 and 7.3.14. |



Chapter 7: Gowers Us norm of some classes of bent Boolean functions 129

Theorem 7.3.16. Let K be a bent function on FJ* = F3 x FY, m = 2n, defined by
where ¢s is a differentially 6-uniform permutation on F3, 6 = 2t. The Gowers Us norm of
k(z,y) = (1), (2,y) € Fy x Fy, is

7-2"—6
il >
Proof. Using similar arguments as in Theorem 7.3.12,

1 / I !
||k||?13 = 25_m(A1 + B; + 01)

where
4
i- ¥ [ copemenn) pm
(a,b)€FG xFY  \ (z,y)€Fy xFy
4
B; _ Z Z Z (_1)D(07[3)K(m,y)+a-m+b-y
BEFZIN\{0} (a,b)eFL xFy \ (x,y)€Fy xFy
4
= Z Z on Z (_1)5'¢5(I)+a~1’
BEFZ\{0} a€Fy z€Fy
> 28mAntl(on 1), (cf. [30, page 415]),
4
B D vl B M G RLEE
a€F2\{0} BEFY (a,b)€FExFY \ (z,y)€F7 xF?
4
t
SO0 ol [DOREIEEE
a,B€FY i=1 (a,b)€Ey; \w€A(a,b)
=0 +Cp+...+ 0y
where

Cy=2" 30 3 | X (el ) i<

a,BEFy (a,b)eEo; \zeA(a,b)
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Now we claim that, Cy; > 2%"3(j|Ey)]), for all j € {1,2,...,t}. Since C}; = 2% 3| E,| and
C'y > 25mH3(2|E4|), for each (o, b) € E,;, there exist 25 distinct elements 1, 1+, Ta, T2+
a,...,z;,x; +a € Fy such that Dy¢s(zs) = Dags(xs + a)=b, s € {1,2,...,7}. Let

Ss — (_1)a.zs+ﬁ.¢5(zs) + (_1)a~(x5+a)+ﬁ-¢5(x5+a) _ (1 + (_1)a~a+b~5) (_1)65

where €, = a- x5+ 5 - ¢s(xs), for all s € {1,2,...,7}. Thus,

Cy=2"" 3" Y (Si+S+...+8)"

a,ﬁng (Oé,b)EEgj

=22m N N (1 () ) (1) (D)2 L+ (1))

a,BGFS (OQb)EEQj

=228 N N7 (L () ) (1) (1) L (1))

(Z,BEIFS (O{,b)EEQj

Since,
(D) + (=12 + ...+ (-1)9)"
e (1 ( 1 €1tez + ( 1)€1+€3 + o + (_1)61+E]‘)4
=14+ 4 ( €1+€2 + ( 1)61+63 o+ (_1)e1+ej)
6 ((—1)aFe 4 (~1)aFe 44 (—1)aF9)”
+4((-D)Fe 4 (=) 4+ (_1)61+6j)3
+ (1) 4 (=) L (=) )
Again,

1 €1+€2 _|_ 1)61+63 + ..+ (_1)61+6j)4
1 €3+€3 + ( 1)62+64 + ..+ (_1)62+6j)4

+ (=
( €2+€3 + ( 1)€2+€4 4+ (_1)€2+€j)
(=
(-1

((
(1
1

+4
+6 ( 1 €2t€3 + 1)62+E4 + .+ (_1)52+5j)2
( 62+e3 + 1)62+64 + ...+ (_1)€2+51)3

(N s ) S DA
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After (j — 2) similar steps, we get,

(1)t 4 (=1)97279) = (L (-1)579) = 84 8(=1)9 .

Therefore, ((—1) + (=1)2 + ...+ (=1)9)" = (j —2) + 8+ P, = j + P where P = P, +
6 is the sum of some positive integer and terms of the form (—1)>wee E C [j] with
some multiplicity. Since for any E C [j], Zang(—l)(zleE’”)'“, ZQGFS(—l)(ZleE”“‘)'“,
ZBGIF”( 1)Xier #5(@0)8 and ZB Fn( 1)Xier #5(@)+0)5 are nonnegative integers,

Cy=22" % Y (1L+(=)"™?) (i +P)

a,,BE]F” (a b)EEQj

_ 92m+3 Z Z j +P+] 1)a-a+b-5+P(_1)a-a+b-ﬁ)

a,B€Fy (a,b)eEoj

22m+3 Z Z j+22m+3 Z Z P+P )a-a—l—b-ﬁ)

a,B€Fy (a,b)€Eoj a,BE€Fy (o,b)E€FEy;

> 22NN = 2| By,

a,,BE]FS‘ (a,b)EEQj

as Zaeurg Zﬁg]yg (P + P(—l)a'o‘ﬂ’ﬂ) > 0. Thus,

Ci=Cp+Ch+...+C
> 253 (| By | + 2| Ey| + ...+ t| Eyl)
— 23m+n+2(2n o 1),
and the theorem follows. ]

The proof of the next corollary follows directly from Theorem 7.3.12 and 7.3.16.

Corollary 7.3.17. The Gowers Uz norm of a Maiorana—McFarland bent function defined
as in Theorem 7.3.16 is always larger than the norm of a Maiorana—McFarland bent function

obtained by using an APN permutation.

7.3.4 Gowers U norm for a class of cubic monomial function

This section is aimed at demonstrating how we envision the use of Gowers Uz norm to

identify the classes of functions with potentially high second-order nonlinearity. This section
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also shows that the largest second-order nonlinearity may not be observed within the class of
bent functions. We consider a class of cubic monomial function similar to those considered

by Canteaut, Charpin and Kyureghyan [7].

Theorem 7.3.18. Let m = 3r, r > 1 be a positive integer. Let F, € B,, be a cubic Boolean
function defined by
F.(z) = Tip(Aa” ),

for all © € Fom where X\ € F, and f.(z) = (—=1)"@), for all x € Fym. Then the Gowers Us

norm of f,. is
om 4 or(2m — 1)
”fT“Ua = 92m : (735)

Proof. The Gowers Us norm of f, can be written as

1 X
Hfr“%/3 = 24—m Z (_1)Da,b,hFr( )

a,b,h,zEFym

e DD SISt
2m

(L,bngm h,$€F2m

— 24% Z ( Z (_1)Da,bFr(x)>

a,beFom z€Fom

:24% N ISR T D E D Y Y (Z(—n%Fr(@)

a€Fom beFom \{0} a€Fom \{0} a,b€Fym\{0} \z€Fam
a=0 b=0 a#b

= 24% 27(3-2" —2) + Y ( > (—1)Da’bFr<x>) :

a,b€Fam\{0} \z€Fam
a#b

Since deg(D,pF) is at most 1, D, ,F, is either balanced or constant. We find those nonzero

a,b € Fom with a # b such that D, ,F,(z) is constant for all z € Fom.
DuyF,(x) = T (A(a? b+ab® )a)+Tur </\ ((&”b“l @) 4 (@ ) (@ b+ abﬂ’))>
D,y F(x) is constant for all x € Fom if and only if

. , , \ AN b
AMa*b+ab®) =0 & a”b+ab” =0 & (g) =1 & EGFQT\FQ & b= Ba
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where 5 € Fyr \ Fy. Thus, given any a € F5,., b can be chosen in 2" — 2 ways. Therefore,
the total number of ways in which a, b can be chosen is (2" — 1)(2" — 2). Thus,

2m 4 27(2m — 1)
1 fillos = 92m )

which shows the theorem. ]

We compare Gowers Us norms of a cubic Maiorana—McFarland bent function, f say,

constructed by using APN permutations as in Theorem 7.3.12, and cubic monomial Boolean

functions considered above. Let m = 2n = 3r, i.e., n = 337”
om 4 or(2m—1) T7-2"—6
1£elE = IF1IE, = 2m - o
M 4 QMAT 9T 7. 2™ 4 6.2
- 22m
620 +2m(2" —6) — 2"
- 22m :

It can be directly checked that if 7 = 2 then || f.||F, < ||f[|f;, and if » > 3 then || f.||7, >
| f113;,- This suggests that the second-order nonlinearity of f, is greater than the one of f
if m = 6 and for m > 10 such is not the case.

There are three known affine inequivalent classes of cubic bent functions in 6 vari-
ables [86]. It is also known that all the cubic bents are affine equivalent to Maiorana—
McFarland bent functions. By direct computation we have found that their second-order
nonlinearities are 8, 12 and 16. Motivated by the low Gowers Us norm of F5, obtained by
substituting r = 2 in Equation (7.3.5), we have computed the second-order nonlinearity of
F5. We find that while it is not bent, having nonlinearity 22, its second-order nonlinearity
has the maximum possible value in Bg, namely 18. However, the reversal of the inequality

sign for r > 3 indicates that this trend will not extend to 12 variables, i.e., for r = 4.
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Chapter 8

Conclusion and Future scope

8.1 Conclusion

In this thesis, we analyze some classes of bent functions and derive results related to their
explicit constructions and affine equivalence. We further identify some Boolean functions
which have high second-order nonlinearity using the Gowers Us norm and for the particular
case n = 6, we get a class of cubic Boolean functions possessing maximum second-order
nonlinearity.

We prove that cubic Maiorana-McFarland bent functions which are constructed by
using some known types of permutation polynomials (see [2,154]) have no affine derivative.
We have obtained many affine inequivalent classes of bent functions within the considered
functions.

The problem of specifying suitable linear subspaces of low dimension for some generic
classes of permutations related to the derivations of new bent functions in C has been
partially addressed. The results clearly indicate the hardness of this problem due to the
fact that whereas some “suitable” permutations may finally yield bent functions within
class C, for other permutations such functions simply cannot exist.

For the generalized case, that is, Boolean functions defined over any finite field, we
introduce the subspace sum concept (depending upon the derivatives) and prove many of
its properties. In particular, it is shown that the subspace sum is an affine invariant and,
consequently, a necessary condition is derived for the Maiorana—McFarland bent functions.

We construct two new classes of generalized bent functions (namely, DP, D and CP where

135
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Db is a subclass of D?). We derive some existence and nonexistence results concerning the
bent functions in C? class for some known classes of permutations over Fy.

We construct a class of cubic Maiorana—McFarland bent-negabent functions by using
Feistel functions, and prove that it has affine derivatives over a subspace. Then we calculate
weight distributions of second-derivatives and obtain the lower bound of their second-order
nonlinearities.

We locate some functions with low Gowers Uz norms. We explicitly compute the Gow-
ers Us norm of cubic Maiorana—McFarland bent functions and demonstrate that the norm
depends on the differential property of the associated permutation rather than its algebraic
degree. Since the Gowers Us norms are related to the second-order nonlinearity of the
Boolean functions, their dependence of differential properties rather than degree is note-
worthy. We also compute the Gowers Uz norms for a class of cubic monomial functions,
not necessarily bent, and show that for n = 6, these norm values are less than that of
Maiorana-McFarland bent functions. Further, we computationally show that there exist
6-variable functions in this class which are not bent but achieve the maximum second-order

nonlinearity for 6 variables.

8.2 Future scope

There are many open questions on Boolean functions and generalized Boolean functions
apart from the results given in this thesis. We summarize below some open problems which

immediately arise from our study.

e The challenge in this direction of research is to explicitly characterize all bent functions
for all dimensions. We mention here that the total number of bent functions is only
known for n < 8 (see [120,135]). The problem is intractable since most of the methods
for counting bent functions rely on an incomplete set of invariants and search space

is doubly-exponential in n.

e Given any two Boolean functions, deciding whether they are equivalent or not is an
important open question. Direct verification requires computational complexity of
0(2"2). Finding out an appropriate set of invariants to distinguish bent functions

with better resolution is extremely important.
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e [t appears that additional efforts are needed for getting a better understanding and
for deriving more explicit subclasses within the C and D class. Also, the question
whether the classes of permutations specified and related subspaces indeed give rise

to bent functions outside M (and possibly outside PS as well) remains open.

e Using the subspace sum concept one can consider the generalized Boolean functions

and may be able to construct or identify new classes of generalized bent functions.

e The covering radius of rth order Reed—Muller codes and finding a Boolean function
having highest possible rth order nonlinearity are equivalent problems. Both are
difficult to solve. Applicability of the Gowers uniformity norms point to an interesting

direction of research.
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