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ABSTRACT 

The contribution of this thesis is the proposal of four new SMO algorithms for solving  

continuous unconstrained and constrained optimization problems with a view to apply them in 

solving benchmark problems as well as real world optimization problems. 

The applicability of SMO over non-linear continuous constrained optimization problems 

is investigated. A new version of SMO called Constrained Spider Monkey Optimization 

(CSMO) algorithm has been designed by using Deb’s technique for handling constraints. The 

performance of proposed CSMO has been investigated over the constrained benchmark 

problems of IEEE CEC sessions 2006 and 2010. In order to assess the competitiveness of 

CSMO in solving constrained benchmark problems, it has been compared with three state-of-

the-art algorithms namely ABC, DE and PSO on various performance metrics. The results 

have in presented numerically and graphically. The results have also been validated 

statistically by using a statistical test.  

In order to further improve the performance of basic SMO, a new Tournament selection 

based SMO (TS-SMO) has been designed for solving non-linear continuous unconstrained 

optimization problems. The performance of proposed TS-SMO has been tested over a 

benchmark set of 46 benchmark problems and results are compared with basic SMO. For 

comparing the results, various performance metrics have been taken into account to justify the 

favourable effect of proposed modification. The results have been compared numerically, 

graphically and statistically. 

One more modification of basic SMO named as Quadratic approximation based SMO 

(QASMO) has been designed for solving non-linear continuous unconstrained optimization 

problems. The performance of proposed QASMO has been tested over a benchmark set of 46 

benchmark problems and results are compared with original SMO. For comparing the results, 

various performance metrics have been taken into account to justify the favourable effect of 

proposed modification. The results have been compared numerically, graphically and 

statistically. 

Also, a new quadratic approximation based CSMO (QACSMO) has been designed. The 

performance of proposed QACSMO has been investigated over the constrained benchmark 

problems of IEEE CEC sessions 2006 and 2010 and the results have been compared with 
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CSMO on various performance metrics. The results have in presented numerically and 

graphically. The results have also been validated statistically by using a statistical test.  

The main objective behind the development of these algorithms is to apply them over real 

life optimization problems; hence the applicability of proposed algorithms has been 

investigated over two real life optimization problems of Lennard-Jones problem and Portfolio 

Optimization problem.  

Finally, the thesis is concluded with the overall conclusions, limitations and scope of the 

proposed algorithms. Also, the future scope and new directions for research in this area have 

been suggested. 
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CHAPTER 1 

INTRODUCTION 

Most of the real world problems in science, engineering, economics, finance etc. can be 

modelled as optimization problems. However, the mathematical models of these optimization 

problems are characterized by the properties like non-linearity, high dimensionality, 

multimodality etc. which make them difficult to be solved by traditional optimization 

methods. Consequently, non-traditional optimization methods/algorithms come into play to 

deal with such optimization problems which can solve them efficiently at a low computational 

cost. The present thesis is an attempt to understand the concept and to design different 

versions of a recently proposed non-traditional optimization algorithm called Spider Monkey 

Optimization (SMO) for solving different types of optimization problems. The aim is to 

evaluate the performance of SMO in solving different types of benchmarks as well as real 

world optimization problems. The scope of the thesis is limited to single objective 

unconstrained and constrained continuous global optimization problems only. 

The present chapter is introductory in nature. It provides some basic definitions of the 

terms and concepts that would be used in the thesis. It also highlights the motivation and 

objectives to carry out this work. Further, it enumerates the major contributions of the thesis. 

At the end, chapter wise summary of the thesis is provided. 

1.1 WHAT IS OPTIMIZATION 

In the most general terms, optimization refers to the art of performing a task in the most 

efficient manner with the use of available limited resources. It may have a variety of 

implications depending upon the context. For example, for a businessman, optimization may 

refer to maximizing his profit while minimizing the cost of production. For a student, 

optimization may refer to minimizing the study hours while maximizing the productive 

outcome.  

Mathematical optimization refers to the approach of determining “the maximum”/ “the 

minimum” possible value that a given mathematical expression can attain in its specified 

domain. “The maximum”/ “the minimum” value is known as the optimal value of the function 

to be optimized. The mathematical expression that has to be optimized could be either linear, 
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nonlinear, integer, geometric or may be fractional. In some situations, it may happen that the 

explicit mathematical formulation of the function is not readily defined or may not be 

available. Many times the mathematical function which needs to be optimized has restrictions 

in the form of inequality or inequality constraints. Therefore, the process of optimization can 

be considered as a problem of finding those values of the decision variables which satisfy all 

the inequality and equality constraints in such a way to provide an optimal value of the 

mathematical function being optimized. The mathematical techniques for determining the 

optimal value or value(s) ("the greatest possible value" or "the least possible value") of a 

mathematical function are called ‘Optimization Techniques’. Determining the solution of the 

most realistic optimization problems may not be possible in the absence of robust 

optimization techniques. In literature, numerous books are available based on mathematical 

concepts of optimization. To name a few: Himmelblau [76], Chandra and Jayadeva [26], Jha 

and Hoda [81] etc. 

1.2 DEFINITION OF AN OPTIMIZATION PROBLEM 

The most general mathematical model of single objective optimization problem is as follows: 

P (1.1)  Minimize (or maximize) 𝑓(𝒙);   𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐷) 

Subject to 𝒙 ∈ 𝐹, usually defined by 

                                       𝐹 = {𝒙 ∈ 𝑅𝐷/ℎ𝑖(𝒙) = 0; 𝑎𝑛𝑑 𝑔𝑗(𝒙) ≥ 0}                              (1.1)       

𝑖 = 1,2, … , 𝑚 and 𝑗 = 𝑚 + 1, 𝑚 + 2, … 𝑝 

Where, 1 2 1 2, , ,..., , , ,...,m m m pf h h h g g g   are real valued functions defined on 𝑅𝐷. 

F is the feasible domain. Function f that is to be optimized (maximized or minimized) is 

called the ‘objective function’. Equations ℎ𝑖(𝒙) = 0 are known as the equality constraints and 

inequalities 𝑔𝑗(𝒙) ≥ 0 are called the inequality constraints (Inequality constraint of the type 

𝑔𝑗(𝒙) ≥ 0can be written as −𝑔𝑗(𝒙) ≤ 0). It is desired to determine those values of the 

independent variables Dxxx ,....,, 21 , which optimize the objective function 𝑓(𝒙) without 

violating any of the restrictions imposed in problem P (1.1). The variables sxi ' are known as 

‘decision variables’. A decision vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐷) which satisfies all the constraints 

is called a ‘feasible solution’. A feasible solution x which optimizes the objective function  f  
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is called a feasible optimal solution. 

When all the functions 𝑓, ℎ𝑖 , 𝑔𝑗  appearing in the optimization problem are linear, the 

problem is called a ‘Linear Programming Problem’ (LPP). However if one or more of these 

functions are nonlinear, then the problem is called a ‘Nonlinear Optimization Problem’ or a 

‘Nonlinear Programming Problem’ (NLPP). 

If the decision variables of the optimization problem are continuous, then it is said be a 

‘Continuous Optimization Problem’ otherwise it is called a ‘Combinatorial Optimization 

Problem’. If there is an additional condition that the decision variables should be integers, 

then it is called an ‘Integer Programming Problem’ (IPP). If some of the variables are 

restricted to be integers while others are real, then it is called a ‘Mixed Integer Programming 

Problem’ (MIPP). 

If the constraints defining the range of the decision variables are the only constraints 

present in the optimization problem, then the problem is called ‘Unconstrained Optimization 

Problem’ otherwise it is called ‘Constrained Optimization Problem’. 

1.3 LOCAL AND GLOBAL OPTIMAL SOLUTION 

Let F denote be the feasible region of the solution vector x that satisfies all the constraints of 

an optimization problem. Then, in case of a minimization problem, if for �̅� ∈ 𝐹, there exists  

an -neighbourhood N(�̅�) around �̅� such that 𝑓(𝒙) ≥ 𝑓(�̅�) for each 𝒙 ∈ 𝐹 ∩ 𝑁(�̅�) then �̅� is 

known as a ‘local optimal solution’ However, if,  �̅� ∈ 𝐹 and 𝑓(𝒙) ≥ 𝑓(�̅�) for all 𝒙 ∈ 𝐹 then �̅� 

is known as a ‘global optimal solution’ of the optimization problem at hand. Similar 

conditions hold in the case of maximization problem with inequalities reversed.   Figure 1.1 

shows local and global optimum solutions of a mathematical function. 

In general, it may happen that there are either no optimal solutions, or a unique optimal 

solution or several optimal solutions, for a given optimization problem. In case, a problem has 

a single local optimal solution then it is also the global optimal solution. If, however, the 

optimization problem has several local optimal solutions, then, in general, one or more of 

them could be the global optimal solutions. In a Linear Programming Problem, it is for sure 

that, every local optimal solution is the global optimal solution. On the contrary, in case of a 

nonlinear optimization problem, it local optimal solution may not be global optimal solution 

always. But if the objective function is convex (for minimization case) and its feasible domain 
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is also convex, then it is guaranteed that the local optimal solution is also the global optimal 

solution. 

 

Figure 1.1: Demonstration of Local Maxima and Global Maxima 

In many nonlinear optimization problems, it is usually desirous to determine a global 

optimal solution instead of a local optimal solution. But, in general, it is often difficult to 

obtain the global optimal solution of a nonlinear optimization problem, rather than finding the 

local optimal solution. However, due to its practical significance, it becomes necessary to 

determine the global optimal solution. 

1.4 METHODS FOR GLOBAL OPTIMIZATION 

Global optimization [43] focuses on determining the best (minimum) of the local optimal 

solutions. Some real world global optimization problems can be found in [24; 69; 157; 158; 

163; 175] Designing global optimization techniques is not an easy task since, in general, there 

is no criterion for deciding whether a global optimal solution has been achieved or not. In 

view of the practical necessity and with the availability of fast and readily computing 

machines, many computational techniques are now being reported in literature for solving 

nonlinear optimization problems. The methods currently available in literature for solving 

nonlinear global optimization problems may be broadly classified as deterministic methods 

and probabilistic methods. 

The deterministic methods try to guarantee that a neighbourhood of the global optima is 

attained. Such methods do not use any stochastic techniques, but rely on a thorough search of 

the feasible domain. However, they are applicable only to a restricted class of functions. On 

the other hand, probabilistic methods are used to find the near optimal solution. This is 

achieved by assuming that the good solutions are near to each other in the search space. This 
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assumption is valid for most real life problem. The probabilistic methods make use of 

probabilistic or stochastic approach to search for the global optimal solutions. Although 

probabilistic methods do not give an absolute guarantee, these methods are sometimes 

preferred over the deterministic methods because they are applicable to a wider class of 

functions. 

1.5 METAHEURISTIC FOR GLOBAL OPTIMIZATION PROBLEMS 

Unlike traditional optimization methods, metaheuristics [45; 67; 85; 110; 183] are population 

based optimization methods. Metaheuristics have been applied to solve global optimization 

problems [8; 132]. In the recent decades, it is observed that biological systems are  the 

inspiration of many of metaheuristic
1
 search algorithms including Simulated Annealing [94], 

Ant Colony Optimization [46; 113], Genetic Algorithms [29; 39; 77], Artificial Bee Colony 

[16; 18; 59; 60; 143; 156; 189], Harmony Search [62; 166], Biogeography Based 

Optimization [79; 160; 161], Tabu Search [30; 65; 159], CMA-ES [71], Bacterial Foraging 

Optimization Algorithm (BFOA) [139; 117], Artificial Immune System [53], Central Force 

Optimization [54; 55; 56; 68], Glow Worm Swarm Optimization [96; 97; 98], Particle Swarm 

Optimization [5; 7; 28; 49; 90; 99; 105; 111; 144; 147; 170; 171; 173; 181; 185; 187], 

Differential Evolution [6; 10; 48; 80; 84; 114; 133; 142; 186], Gravitational Search Algorithm 

[91; 146], Evolutionary Membrane Algorithm [70], Vortex Search Algorithm [44], Kill Herd 

[57], Cuckoo search algorithm [66], Kidney Inspired Algorithm [78], Optics Inspired 

Optimization [88], Grey wolf optimizer [124], Invasive Weed Optimization [129; 130], 

Teaching Learning Based Optimization Algorithm [145],  Water Cycle Algorithm [149], 

Water wave optimization [188],  Lion optimization algorithm [184]. 

1.6 APPLICATIONS 

The metaheuristics have many real world applications like Vehicle Routing Problem [150; 

176], Predicting Colorectal Cancer [151], Pipe Network Design [63; 134], Water Network 

Design [61], Aeronautical and Aerospace Engineering [12], Biometric Authentication [19], 

Image Hiding Scheme [20], Breast Cancer Diagnosis [21; 22], Synthesis of AI/SiC 

nanocomposite [52], Wireless Sensor Networks [24], Distribution System [95], Data 

                                                 
1
 A heuristic approach to a problem is an empirical search or optimization method that often works at solving the 

problem, but doesn't have any of the rigorous proof that people like physicists and mathematicians expect. 

Nobody knows if it will always give the best answer to the problem. Meta-heuristic is a top level general strategy 

which guides other heuristics to search for feasible solutions in domains where the task is hard. 
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Clustering [174], Promotional Effort Allocation[114], Image Segmentation [9; 103], 

Construction of Classifiers [141], RIFD based Positioning System [104], Parameter 

Extraction of MESFET [148], Synthesis of Antenna Arrays [42; 64; 162 ], Economic 

Dispatch [48; 93], Optimal Reactive Power Dispatch [92; 182]. 

1.7 WHY FURTHER RESEARCH IS REQUIRED? 

From the above discussion, it can be seen that a large number of metaheuristics have been 

designed and developed in the past by taking inspiration from almost every natural 

phenomenon. Still the research on designing and developing new metaheuristics is going on. 

Following are the reasons for ever expanding research in this direction. 

1.7.1 MAIN ISSUES WITH METAHEURISTICS 

Following are some of the issues which demand continuous attention from the research 

community to work on the development of these algorithms. 

 Premature convergence 

Premature convergence refers to convergence of the population to a local optimal solution. 

In such a situation, though new solutions are generated in the population, but the fitness 

value of the global best solution does not get improved. This phenomenon is called 

stagnation of the swarm which causes the problem of premature convergence.  

 Loss of diversity of the swarm 

Diversity of the swarm is related to the spread of the swarm in the search space. It 

measures how well the solutions are distributed over the search space. So, in order to find 

global optimal solution of complex landscapes, the diversity of the population must be 

maintained for most part during the run of the algorithm. Most of the metaheuristics lose 

diversity even during the initial runs making almost every solution in the population 

similar. It is one of the issues to be tackled efficiently. 

 Setting of control parameters 

Every metaheuristic algorithm has some parameters associated with it. The performance 

of these algorithms heavily depends on the setting of their control parameters. Bad setting 

of the parameters can deteriorate the performance of the algorithm. The optimal setting of 
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these control parameters is itself an optimization problem which needs extra 

computational cost.  

 Long solution time 

Metaheuristics are applied to find satisfactory solutions of many real world optimization 

problems in science, engineering, finance, agriculture, economics etc. But these 

algorithms take much time in solving the problem due to their iterative and population 

based nature. Also, the search space of the problem increases with the increase in the 

number of decision variables, which require higher computational time to solve the 

problem. 

So, there is the need to develop such optimization algorithms which can handle most of the 

above mentioned problems efficiently with minimal efforts. 

1.7.2 NO FREE LUNCH THEOREM 

A major and interesting result in optimization theory was the presentation of the "No Free 

Lunch (NFL) theorem". There are two versions of “No Free Lunch (NFL) theorem” [179; 

180].  The version present by [180] is applied to the field of optimization. This theorem states 

"that the performance of all optimization (search) algorithms, amortized over the set of all 

possible functions, is equivalent." It means that improvement in the performance of an 

optimization algorithm over a class of optimization problems is exactly paid-off by its 

performance on the rest of the optimization problems. For example, we have two algorithms 

say algorithm A and algorithm B. If algorithm A performs better than algorithm B for some 

set of optimization problems, then the reverse will be true for rest of the optimization 

problems. The theorem has far reaching implications. One is that it states that no algorithm 

can be designed which is superior to all the other algorithms for all the optimization problems. 

Other implication is that given an optimization problem, one can’t say which algorithm is the 

best to solve this problem. So, it is an issue of concern for the practitioners to decide which 

algorithm should be used from a huge class of optimization algorithms to solve the problem at 

hand. Although, the theorem is defined over finite search spaces only, however, it is not 

proved if the result is applicable to infinite search spaces, e.g. D . All computer 

implementations of search algorithms will, in general, operate on finite search spaces, 

therefore the theorem is applicable to all existing algorithms.  
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1.8 MOTIVATION AND OBJECTIVES OF THE THESIS 

The scope of this Thesis is Spider monkey optimization (SMO), a recently developed 

metaheuristic for global optimization problems. It is important to understand the usefulness of 

working on this new metaheuristic when there are already well established metaheuristics for 

solving different types of optimization problems. The reasons can be the increasing 

complexity of modern world optimization problems which demands for the development of 

efficient search techniques for solving them at low computational cost. Also, No Free Lunch 

theorem makes room for the development of new algorithms by stating that there is no best 

algorithm for all the optimization problems. So, a new algorithm showing competitive 

performance in comparison to other state-of-the-art algorithms on most of the optimization 

problems in the benchmark set deserves to be explored and developed. Moreover, the main 

question is why to use SMO for optimization purpose? The advantage of SMO over other 

well established metaheuristics like PSO, ABC and DE is that it has the provision to handle 

problems like stagnation or premature convergence in its original design. Such mechanism is 

not present in the original designs of other metaheuristics like PSO, ABC and DE. Though 

these algorithms have been improved enough to handle these problems very well. In simple 

words, we can say, advanced versions of PSO, ABC and DE are available which can handle 

the problem of stagnation or premature convergence very efficiently. But not every user who 

needs to solve an optimization problem has enough knowledge to deal with these algorithms. 

They do not even know about the occurrence of such problems (stagnation or premature 

convergence) during the execution of these algorithms. Even if they do know about these 

problems, they may not know which version to select in order to avoid the problem of 

stagnation or premature convergence. So, SMO is beneficial for such users who are not 

having much knowledge about metaheuristics and want to use basic version of a metaheuristic 

to solve an optimization problem using black box approach.  

Also, all the modified versions of SMO proposed in literature are meant to solve 

unconstrained continuous optimizations problems only. No attempt has been made to solve 

the constrained optimization problems using SMO. Moreover, the performance of SMO has 

not been evaluated on standard benchmark problems like IEEE CEC benchmark problems.  

Based on these observations, the following objectives for the thesis have been defined: 

 To design different versions of Spider Monkey Optimization Algorithm for solving 

unconstrained and constrained continuous optimization problems. 
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 To test the performance of proposed algorithms for solving benchmarks as well as real 

world optimization problems. 

1.9 MAJOR CONTRIBUTIONS OF THE THESIS 

The major contributions of the thesis can be summarized as: 

 Two new versions of SMO namely Tournament Selection based Spider Monkey 

Optimization (TS-SMO) and Quadratic Approximation based Spider Monkey 

Optimization (QASMO) have been designed for solving unconstrained continuous 

optimization problems. The performance of these proposed versions has been tested over a 

benchmark set of 46 unconstrained optimization problems and results are compared with 

basic SMO.  

 Two new versions of SMO namely Constrained Spider Monkey Optimization (CSMO) 

and Quadratic Approximation based Constrained Spider Monkey Optimization 

(QACSMO) have been designed for solving constrained continuous optimization 

problems. The performance of proposed versions has been investigated over the 

constrained benchmark problems of IEEE CEC sessions 2006 and 2010 and results have 

been compared with some state-of-the-art algorithms.  

 The applicability of proposed algorithms has been investigated over two real world 

optimization problems. One is Lennard-Jones problem which is an unconstrained 

continuous optimization problem from computational chemistry and the other is portfolio 

optimization problem which is a constrained continuous optimization problem from 

finance. 

1.10 ORGANIZATION OF THE THESIS 

In order to give a general overview of the contents of this thesis, brief description of each 

chapter is given below: 

CHAPTER 1. INTRODUCTION: The current chapter is introductory in nature. It gives a 

brief introduction to optimization problems, optimization methods, metaheuristic algorithms 

followed by motivation, objectives and contributions of the thesis. 
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CHAPTER 2. SPIDER MONKEY OPTIMIZATION: CONCEPT, DEVELOPMENT 

AND LITERATURE REVIEW: This chapter provides the motivation behind the 

development of Spider Monkey Optimization (SMO) algorithm, its working and a brief 

review of the literature available on it. 

CHAPTER 3. NOVEL SPIDER MONKEY OPTIMIZATION ALGORITHM FOR 

CONSTRAINED OPTIMIZATION: This is the actual start of our thesis. In this chapter, a 

modified version of SMO has been proposed for solving constrained continuous optimization 

problems. The proposed algorithm is named as Constrained Spider Monkey Optimization 

(CSMO). Deb’s technique based on tournament selection has been used for handling 

constraints. The performance of CSMO is evaluated on constrained benchmark problems of 

varying difficulty level defined in IEEE CEC 2006 and CEC 2010. The results have been 

compared with constrained versions of Artificial Bee Colony (ABC), Differential Evolution 

(DE) and Particle Swarm Optimization (PSO). The conclusion made after comparing the 

results on numerical (tables), graphical (convergence graphs) and statistical (Wilcoxon’s rank 

sum test) grounds proves the supremacy of CSMO in optimizing the constrained benchmark 

functions over other algorithms in comparison. 

CHAPTER 4. TOURNAMENT SELECTION BASED SPIDER MONKEY 

OPTIMIZATION ALGORITHM FOR UNCONSTRAINED OPTIMIZATION: In this 

chapter, a modified version of basic SMO called as Tournament Selection based Spider 

Monkey Optimization (TS-SMO) has been proposed for solving unconstrained continuous 

optimization problems. In order to improve the exploration ability of basic SMO, tournament 

selection based probability scheme has been used in TS-SMO in place of fitness based 

probability scheme in basic SMO. The performance of TS-SMO is evaluated on a benchmark 

set of 46 unconstrained continuous optimization problems broadly classified as scalable and 

non-scalable problems and the results have been compared with basic SMO. The comparison 

of results on numerical (tables), graphical (convergence graphs and performance index) and 

statistical (t-test) grounds states that TS-SMO performs better than SMO over most of the 

scalable optimization problems, while its performance is moderate on non-scalable problems. 

CHAPTER 5. QUADRATIC APPROXIMATION BASED SPIDER MONKEY 

OPTIMIZATION ALGORITHM FOR UNCONSTRAINED OPTIMIZATION: In this 

chapter, a modified version of SMO called as Quadratic Approximation based Spider Monkey 

Optimization (QASMO) has been proposed. The aim of this proposed approach is to improve 
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the exploitation ability of SMO by incorporating quadratic approximation operator in it. The 

performance of QASMO is evaluated on the same benchmark set with the same evaluation 

criteria as mentioned in section 4.3 of chapter 4 and the results have been compared with 

basic SMO. The comparison of results on numerical (tables), graphical (convergence graphs 

and performance index) and statistical (t-test) grounds states that QASMO performs better 

than SMO over most of the scalable optimization problems, while its performance is moderate 

SMO over non-scalable problems. At the end of the chapter, the comparison has been made 

among SMO, TS-SMO and QASMO and it has been found that QASMO performs best 

among all the three on most of the optimization problems in the benchmark set. 

CHAPTER 6. QUADRATIC APPROXIMATION BASED CONSTRAINED SPIDER 

MONKEY OPTIMIZATION ALGORITHM: In this chapter, a modified version of CSMO 

has been proposed. This modified version is named as Quadratic Approximation based Spider 

Monkey Optimization (QACSMO). This proposed approach is motivated from QASMO 

proposed chapter 5. The reason behind the incorporation of Quadratic approximation is the 

conclusion made at the end of the chapter 5 which states that QASMO performs better than 

SMO and TS-SMO. The performance of QACSMO has been evaluated over constrained 

benchmark problems and results are compared with CSMO. 

CHAPTER 7. APPLICATION OF SPIDER MONKEY OPTIMIZATION TO SOLVE 

LENNARD-JONES PROBLEM: Lennard-Jones (L-J) problem is an optimization problem 

from computational chemistry which deals with finding the relative position of atoms in a 

cluster in the three dimensional Euclidean space in such a way that that potential energy is 

minimum. The main obstacles in solving L-J problem is the non-linearity and non-convexity 

of the objective function and exponentially increasing number of local minima with increase 

in the number of dimensions. Despite these difficulties, solution of this problem is very 

important to facilitate drug design, synthesis and utilization of pharmaceutical products. In 

this chapter, clusters of 3 to 10 atoms have been considered for the experiment. SMO, TS-

SMO and QASMO have been applied to solve Lennard-Jones problem and the results have 

been compared numerically (tables), graphically (convergence graphs and performance 

indices) and statistically (t-test). The conclusion of the results implies two things. One is that 

all the three algorithms applied here to solve L-J problem attain the solution close to the 

optimal solution. Second is that QASMO performs best among all the three algorithms.   
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CHAPTER 8. APPLICATION OF CONSTRAINED SPIDER MONKEY 

OPTIMIZATION TO SOLVE PORTFOLIO OPTIMIZATION PROBLEM: Portfolio 

optimization is an optimization problem from finance which deals with deciding the 

proportion of wealth to be invested in a portfolio such that the return is maximized and the 

risk can be minimized. In this chapter, we have considered the Markowitz’s Mean Variance 

portfolio optimization model for the experiment and the data has been taken from National 

Stock Exchange (NSE), Mumbai. Data of 11 retail industries listed on NSE for the financial 

year 2015-16 has been taken for the experiment. CSMO has been applied to solve portfolio 

optimization problem. The results have been presented numerically (tables) and graphically 

(Efficient Frontier). The conclusion of the results shows that CSMO solves this problem 

efficiently. 

CHAPTER 9. CONCLUSION AND FUTURE SCOPE: This chapter provides the chapter 

wise summary as well as concluding remarks of the proposed algorithms. At the end, some 

future directions are suggested to carry out research on this algorithm. 

There are 4 Appendices in the thesis. The contents of these Appendices are given below: 

Appendix I: LIST OF CONSTRAINED BENCHMARK PROBLEMS FROM IEEE CEC 

2006 

Appendix II: LIST OF CONSTRAINED BENCHMARK PROBLEMS FROM IEEE CEC 

2010 

Appendix III: LIST OF UNCONSTRAINED BENCHMARK PROBLEMS 

Appendix IV: PERFORMANCE INDEX (PI) 
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CHAPTER 2 

SPIDER MONKEY OPTIMIZATION: CONCEPT, 

DEVELOPMENT AND LITERATURE REVIEW 

SMO is a new member of the class of swarm intelligent optimization algorithms. It is inspired 

by the social behaviour of spider monkeys. SMO was first introduced by Bansal et al. [17]. 

This algorithm is easy to understand and implement. It is based on the learning, information 

sharing and position updating strategy adopted by spider monkeys for the search of their food. 

It can be used to solve various kinds of function optimization problems or the problems which 

can be transformed to function optimization problems. SMO has been designed in such a way 

that it can handle the problem of stagnation or premature convergence very efficiently.  

The present chapter has been divided into following sections: Section 2.1 provides an 

introduction to swarm intelligent optimization algorithms. In section 2.2, social behaviour of 

spider monkeys and the development of SMO have been discussed. Section 2.3 provides 

comprehensive literature review on the advancement and applications of SMO. The chapter 

has been concluded in section 2.4. 

2.1 SWARM INTELLIGENT OPTIMIZATION ALGORITHMS 

Swarm intelligent optimization algorithms belong to the class of metaheuristics. The term 

swarm refers to the group of creatures like birds, ants, animals etc. The members of the 

swarm are known as agents. There is no central authority to supervise the behaviour of these 

agents. Each of these agents learns from the surrounding agents and makes advances 

according to this learning. This social learning and adaptation lead exhibit a kind of intelligent 

behaviour known as swarm intelligence. Swarm intelligence (SI) is defined as the collective 

intelligent behaviour of decentralized and self-organized swarms. Commonly known 

examples of such behaviour are bird flocks and social insects like ants, bees, termites etc. The 

intelligence emerges from the pattern of interaction among these agents and the environment. 

According to Bonabeau, swarm intelligence is “any attempt to design algorithms or 

distributed problem solving devices inspired by the collective behaviour of social insect 

colonies and other animal societies” [23]. Self-organization and division of labour have been 

stated as key features of swarm systems in [23].  
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Self-organization: It is a process where a global pattern takes place by local interactions 

among agents. There is no central authority to regulate the swarm. Therefore, the whole 

structure of the swarm is decentralized and distributed among all the agents. In [23], four 

following characteristics of self-organisation in a swarm have been defined: 

1. Positive feedback: It refers to deriving the information from the output and reapplying it 

as input for the further process. It helps in creating the convenient structures based on the 

information received. 

2. Negative feedback: It counterbalances the effect produced by positive feedback and 

keeps the system stabilized. It helps in avoiding the saturation caused by the positive 

feedback. 

3. Fluctuations: It refers to the random changes being made in the swarm including random 

walks, random task switching among the members of the swarm. Randomness is 

significant with a view to improve creativity as it facilitates the discovery of new 

solutions. 

4. Multiple interactions: It refers to a way of learning by sharing the information among the 

individuals of the swarm and thus helps in increasing the combined intelligence of every 

individual involved in the interaction. 

Division of labour: It refers to dividing the whole task into different smaller tasks and 

assigning those different smaller tasks to specialized agents of the swarm. The objective 

behind the division of labour is to improve the overall efficiency by getting those smaller 

tasks done from the specialized agents. It is believed that simultaneous task performance by 

the cooperation of specialized individuals improves the overall work efficiency in comparison 

to the same task performed sequentially by the unspecialized agents. 

There are various types of swarms exist in this world. It is not possible to consider all of 

them as intelligent. The first and foremost condition to develop a swarm intelligence based 

optimization algorithm is to see whether the collective behaviour exhibit by the swarm of 

creatures is intelligent or not. According to Millonas [121], the following five principles 

should be satisfied in order to consider swarm behaviour as intelligent: 

1. The proximity principle: The swarm should be able to do basic space and time 

computation. 
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2. The quality principle: The swarm should be able to compute quality factors in the 

environment like quality of the food stuff, safety of locations etc. 

3.  The principle of diverse response: The swarm should maintain diversity in the 

allocation of its resources in order to gain insurance against the sudden changes may be 

due to environmental fluctuations. 

4. The principle of stability: The swarm should not change its mode of behaviour in 

response to every environmental fluctuation as it may not produce worthy results every 

time. 

5. The principle of adaptability: The swarm must be able to change its mode of behaviour 

if it results in something worthy. 

Swarm intelligent optimization algorithms are developed by simulating the social or foraging 

behaviour of the swarm of creatures like birds, ants, animals etc. Social learning and 

adaptation behaviour of these creatures are the motivation behind the development of swarm 

intelligent algorithms which are meant to solve various types of complex optimization 

problems. Some established swarm intelligent optimization algorithms are Particle Swarm 

Optimization (PSO) [49], Artificial Bee Colony (ABC) [86], Ant Colony Optimization (ACO) 

[46] etc. The main reason behind the growing interest of researchers from multiple fields in 

the development of swarm intelligent optimization algorithms is the naturally intelligent 

swarm performing the tasks (dividing the labour among the members of the swarm, sharing 

the information about the food source among each other etc.) which can be similar to the 

problem solving techniques in real world optimization problems. Some recently proposed 

swarm intelligent optimization algorithms include [11; 122; 123]. 

2.2 SPIDER MONKEY OPTIMIZATION 

2.2.1 SOCIAL AND FORAGING BEHAVIOUR OF SPIDER MONKEYS 

Spider monkeys belong to the class of fission-fusion social structure (FFSS) [172] based 

animals. They live in a group of 40-50 individuals. The animals in the category of fission-

fusion social structure change the size and composition of their social group from time to 

time. For example, they split the group (fission) for food foraging and merge the group 

(fusion) for sleeping in one place.                                                                                                                                                  
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Spider monkeys live in tropical rain forests of central and South America and in northern 

parts of Maxico. They are called spider monkeys because they look like spiders when they 

hang upside down from their tails with their arms and legs dangling. Tail is the most 

prominent feature of spider monkeys. They have a very long and gripping tail which is used 

as a fifth limb to facilitate their movement through the dense vegetation. They are social 

animals which belong to the category of fission-fusion structure based social animals. Being a 

part of fission fusion social structure, they live in groups and divide themselves into different 

subgroups to search for their food in different directions and then come together to share the 

food with the whole group. Spider monkeys survive mainly on plant based food like fruits, 

seeds, nuts and flowers. When fruits are not available, they eat bird’s eggs and insects. They 

are active during day and sleep during the night. Spider monkeys mainly live on treetops and 

very less on ground. They sleep on trees to avoid predators. They communicate through 

different sounds. They can survive up to 22 to 25 years in the wild and 35 years in captivity. It 

is also a species which is in danger as people hunt them for their food. Also, their living space 

is shrinking. 

There is a female leader of the group known as global leader who is responsible for the 

availability of food to the group members. During the scarcity of food, the female leader 

divides the group into smaller subgroups. Each of these subgroups has a leader known as local 

leader. The spider monkeys in each subgroup search for food in different directions under the 

guidance of their local leader. Then these monkeys gather at a place to share the food they 

have collected with their group and sleep at night. All the above information regarding spider 

monkeys have been taken from [17; 167]. 

In case of spider monkeys, the four characteristics of self-organization can be expressed as 

follows: 

1. Positive feedback: All the members a subgroup move in the direction of their local leader 

and the global leader. 

2. Negative feedback: The exploitation process of poor food source is stopped by spider 

monkeys. 

3. Fluctuations: Stagnated subgroups are redirected for discovering new food sources. 

4. Multiple interactions: Local leaders and global leader share their information about food 

sources with other members of the group. 
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The foraging behaviour of spider monkeys has been re-examined and it has been found that it 

satisfies all the principles of a swarm intelligent behaviour stated by Millonas [121].  

2.2.2 BASIC DEFINITIONS  

Definition 1: Search space: It is the set of all the possible solutions of an optimization 

problem. 

Definition 2: Swarm: The collection of solutions which perform the search for the optima in 

the search space. 

Definition 3: Spider Monkey: An agent of the swarm who carries out the search process by 

keeping the track of its position in each iteration (generation). 

Definition 4: Position Vector: A D-dimensional vector which represents the position of a 

spider monkey in the search space. Position of a spider monkey represents a solution of an 

optimization problem. 

Definition 5: Swarm size: It is the total number of spider monkeys in the swarm. 

Definition 6: Fitness value: It is the measure of the quality of the current position of the 

spider monkey. It indicates the quality of the solution which is represented by the position of 

a spider monkey. 

Definition 7: Fitness function: It is a mathematical function 𝑓 ∶  𝑅𝐷 → 𝑅 which provides the 

fitness value of the position of a spider monkey. 

2.2.3 ALGORITHMIC STRUCTURE OF SMO 

In SMO, solution swarm is compared to the swarm of spider monkeys. Search space of 

solutions is the food searching area of the spider monkeys. A solution of the optimization 

problem is represented by the position of a spider monkey. Position of a food source 

represents the optimal solution to the problem and amount of food available at the food source 

corresponds to the quality of the associated solution. Movement of the swarm of spider 

monkeys in the search region is equivalent to the improvement in the quality of the solutions 

in the search space. The objective is to move in the search space in such a way that the food 

source is found or equivalently the optimal solution is to be found. 
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The nomenclature used for the SMO algorithm is given below: 

Nomenclature 

𝑁   Swarm size 

D   no. of dimensions  

U(a,b)   uniformly generated random number between a and b 

NG            number of groups in the current swarm 

MG            maximum number of groups allowed in the swarm 

Pr              perturbation rate 

GS[k]            number of members in the k
th

 group  

G[k][0]       index of the first member of the k
th

 group in the swarm 

G[k][1]       index of the last member of the k
th

 group in the swarm 

𝑆𝑀𝑖                    position vector of i
th

 spider monkey in the swarm 

𝑆𝑀𝑛𝑒𝑤   a trial vector for creating a new position of a spider monkey 

𝑆𝑀𝑛𝑒𝑤𝑙𝑜𝑐𝑎𝑙 a trial vector for creating a new position of a spider monkey in Local 

Leader Phase 

𝑆𝑀𝑛𝑒𝑤𝑔𝑙𝑜𝑏𝑎𝑙 a trial vector for creating a new position of a spider monkey in Global 

Leader Phase 

𝑆𝑀𝑟   position vector of randomly selected member of the group 

𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙 position vector of worst member of the swarm in Global Leader 

Learning  Phase 

𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑙𝑜𝑐𝑎𝑙 position vector of worst member of a group in Local Leader Learning 

Phase 

𝐿𝐿𝑘   position vector of local leader of k
th

 group 



CHAPTER 2: SPIDER MONKEY OPTIMIZATION: CONCEPT, DEVELOPMENT AND LITERATURE REVIEW 

 

19 
 

𝐺𝐿   position vector of global leader of the swarm 

𝑠𝑚𝑚𝑖𝑛𝑗  lower bound on the j
th 

decision variable 

𝑠𝑚𝑚𝑎𝑥𝑗  upper bound on the j
th

 decision variable 

𝑠𝑚𝑖𝑗   j
th

 decision variable of i
th

 spider monkey 

𝑠𝑚𝑛𝑒𝑤𝑗  j
th

 decision variable of new trial position of spider monkey 

𝑓𝑖𝑡𝑖   fitness of the position of i
th

 spider monkey 

𝑚𝑎𝑥𝑓𝑖𝑡  best fitness value in the group 

𝑝𝑟𝑜𝑏𝑖   probability of the position of i
th

 spider monkey 

𝐺𝐿𝑙𝑡   global leader limit 

𝐿𝐿𝑙𝑡   local leader limit 

𝐺𝐿𝐶              limit count of global leader 

𝐿𝐿𝐶𝑘   limit count of local leader of k
th

 group 

SMO has been developed by simulating the food searching behaviour of spider monkeys. 

There are four control parameters of SMO namely perturbation rate (Pr), Maximum number 

of groups (MG), Global Leader Limit (GLlt) and Local Leader Limit (LLlt). 

1. Perturbation rate (Pr): It decides the amount of change in the current solution. 

2. Maximum number of groups (MG): It decides the maximum number of groups that can 

be formed in the entire swarm. 

3. Global leader limit (GLlt): It checks for stagnation in the swarm. 

4. Local leader limit (LLlt): It checks for stagnation in the local groups. 

In addition to initialization of the swarm, SMO has six iterative steps namely Local 

Leader Phase (LLP), Global Leader Phase (GLP), Global Leader Learning Phase (GLLP), 

Local Leader Learning Phase (LLLP), Local Leader Decision Phase (LLDP) and Global 

Leader Decision Phase (GLDP). 
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Before the description of each step of the algorithm in detail, here are some of the terms 

which have been used during iterative steps in different phases. A D-dimensional trial vector 

say  𝑆𝑀𝑛𝑒𝑤 = (𝑠𝑚𝑛𝑒𝑤1, 𝑠𝑚𝑛𝑒𝑤2, … , 𝑠𝑚𝑛𝑒𝑤𝐷) for creating a new position of a spider monkey. 

𝐿𝐿𝑘 = (𝑙𝑙𝑘1, 𝑙𝑙𝑘2, … , 𝑙𝑙𝑘𝐷) is the position vector of the local leader of the 𝑘𝑡ℎ group and  

𝐺𝐿 = (𝑔𝑙1, 𝑔𝑙2, … 𝑔𝑙𝐷) is the position vector of the global leader of the entire swarm. Also, it 

should be noted that updation in the position of a spider monkey is done dimension wise. If 

during updation process, value of a decision variable is out of predefined limits (lower and 

upper bounds), then the value of that decision variable can be set to the predefined limit or 

randomly between the predefined limits. Detailed description of each phase is given below: 

Initialization of the swarm 

During initialization of the swarm, SMO generates a uniformly distributed D-dimensional 

initial positions vectors of N spider monkeys. The position 𝑆𝑀𝑖 = (𝑠𝑚𝑖1, 𝑠𝑚𝑖2, … , 𝑠𝑚𝑖𝐷)  of 

𝑖𝑡ℎ spider monkey is initialized using the following equation: 

                               𝑠𝑚𝑖𝑗 =  𝑠𝑚𝑚𝑖𝑛𝑗 + 𝑈(0,1) × (𝑠𝑚𝑚𝑎𝑥𝑗 − 𝑠𝑚𝑚𝑖𝑛𝑗)                              (2.1) 

Local Leader Phase 

In this phase, a new trial position say 𝑆𝑀𝑛𝑒𝑤 = (𝑠𝑚𝑛𝑒𝑤1, 𝑠𝑚𝑛𝑒𝑤2, … , 𝑠𝑚𝑛𝑒𝑤𝐷)  is generated 

for each Spider Monkey based on the information of its current position, local leader’s 

experience as well as local group members’ experience. The fitness value of the newly 

generated position of the 𝑖𝑡ℎ spider monkey is compared with that of its old position. If the 

fitness of the newly generated position is higher than that of old position, then the spider 

monkey updates its position with the new one, otherwise it retains its old position. 

Position update equation in this phase is given below: 

               𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 + 𝑈(0,1) × (𝑙𝑙𝑘𝑗 − 𝑠𝑚𝑖𝑗) + 𝑈(−1,1) × (𝑠𝑚𝑟𝑗 − 𝑠𝑚𝑖𝑗)        (2.2) 

Here, 𝑆𝑀𝑟 = (𝑠𝑚𝑟1, 𝑠𝑚𝑟2, … 𝑠𝑚𝑟𝐷) is the position of the randomly selected member of the 

current group. Though, it is a randomly selected member of the group, yet it should be 

different from the member of the group which has to be updated. The execution steps of this 

phase are given in Algorithm 2.1. 
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Begin 

       For k = 1 to NG Do 

            For i = G[k][0] to G[k][1] Do 

        For j = 1 to D Do 

    If U(0, 1) ≥ Pr Then 

𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 + 𝑈(0,1) × (𝑙𝑙𝑘𝑗 − 𝑠𝑚𝑖𝑗) + 𝑈(−1,1) × (𝑠𝑚𝑟𝑗 − 𝑠𝑚𝑖𝑗) 

                           Else 

                                      𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 

                            End If 

                        End For 

                        If (𝑓𝑖𝑡𝑛𝑒𝑤 > 𝑓𝑖𝑡𝑖) 

                             𝑆𝑀𝑖 = 𝑆𝑀𝑛𝑒𝑤 

                       End If 

             End For 

        End For 

End 

 

Algorithm 2.1: Local Leader Phase 

 

Global Leader Phase 

In this phase, a new trial position is created for each spider monkey using its own experience 

as well as the information from the experience of the global leader and other members of the 

group. In this phase, a spider monkey gets a chance to update its position based on its 

probability which is directly proportional to the fitness of its current position. 

The probability of the 𝑖𝑡ℎ spider monkey in the swarm has been calculated using 

following expression  

               𝑝𝑟𝑜𝑏𝑖 = 0.9 ∗ (
𝑓𝑖𝑡𝑖

𝑚𝑎𝑥𝑓𝑖𝑡
) + 0.1                                              (2.3) 

The position update process of this phase is given in Algorithm 2.2. From the update process 

in this phase, it is clear that spider monkeys having higher fitness values will have better 

chance to improve their position as compared to other members of the swarm. 
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Begin 

       For k = 1 to NG Do 

           let count = 1; 

             While count < GS[k] Do 

                  For i = G[ k][0] to G[k][1] Do 

                       If (U(0, 1) < prob[i]) Then 

                                count = count + 1. 

                                Randomly select j ∈ {1...D}. 

                                Randomly select 𝑆𝑀𝑟 from k
th

 group s.t. r ≠ i 

                                𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 + 𝑈(0,1) × (𝑔𝑙𝑗 − 𝑠𝑚𝑖𝑗) + 𝑈(−1,1) × (𝑠𝑚𝑟𝑗 − 𝑠𝑚𝑖𝑗) 

                         End If 

                         If (𝑓𝑖𝑡𝑛𝑒𝑤 > 𝑓𝑖𝑡𝑖) 

                             𝑆𝑀𝑖 = 𝑆𝑀𝑛𝑒𝑤 

                         End If 

                  End For 

                  If ( i = G[k][1]) Then 

                         i = G[k][0] 

                  End If 

             End While 

       End For 

 End 

 

Algorithm 2.2: Global Leader Phase 

 

Global Leader Learning Phase 

In this phase, position of the global leader is updated by applying greedy selection in the 

swarm. A spider monkey whose position is having best fitness value will be updated as global 

leader of the swarm and the position of global leader will be known as the global best 

solution. This phase has been described in Algorithm 2.3. GLC records how many times 

position of the global leader has not been updated since last updation. This information is 

useful to check if there is stagnation in the group. 
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Begin  

     //update position of the global leader of the swarm by applying greedy selection 

      If(position of global leader is updated from previous position) Then 

           GLC = 0 

      Else 

           GLC = GLC + 1 

     End If 

End 

 

Algorithm 2.3: Global Leader Learning phase 

 

Local Leader Learning Phase 

In this phase, position of every local leader is updated by applying greedy selection in the 

group it belongs. A spider monkey whose position is having best fitness value in the group 

will be updated as local leader of that group. This phase has been described in Algorithm 2.4. 

𝐿𝐿𝐶𝑘 records how many times position of the local leader of 𝑘𝑡ℎ group has not been updated 

since last updation. 

Begin 

      For k=1 to NG Do 

         //update position of the leader of the group 

           If(position of local leader is updated from previous position) Then 

               𝐿𝐿𝐶𝑘= 0 

           Else 

               𝐿𝐿𝐶𝑘 = 𝐿𝐿𝐶𝑘 + 1 

           End If 

       End For 

End 

 

Algorithm 2.4: Local Leader Learning phase 
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Local Leader Decision Phase 

If the limit count of the local leader of 𝑘𝑡ℎ group (𝐿𝐿𝐶𝑘) exceeds its local leader limit (LLlt), 

then all the members of the group will be re-initialized. Local Leader Limit is predefined. 

Algorithm 2.5 shows the Re-initialization process in the Local Leader decision phase.  

Begin 

     For k = 1 to NG Do 

If (𝐿𝐿𝐶𝑘> LLlt) Then 

                       𝐿𝐿𝐶𝑘 = 0 

                           For i =G[k][0] to G[k][1] Do 

                                  For j =1 to D Do 

                                          If (U(0, 1) ≥ Pr) Then 

                                                𝑠𝑚𝑖𝑗 = 𝑠𝑚𝑚𝑖𝑛𝑗 + 𝑈(0,1) × (𝑠𝑚𝑚𝑎𝑥𝑗 − 𝑠𝑚𝑚𝑖𝑛𝑗) 

                                           Else 

                                                    𝑠𝑚𝑖𝑗 =  𝑠𝑚𝑖𝑗 + 𝑈(0,1) × (𝑔𝑙𝑗 − 𝑠𝑚𝑖𝑗) + 𝑈(0,1) × (𝑠𝑚𝑖𝑗 − 𝑙𝑙𝑘𝑗) 

                                          End If 

                                 End For 

                             End For 

   End If 

       End For 

  End 

 

Algorithm 2.5: Local Leader Decision phase 

 

Global Leader Decision Phase 

If the limit count of the global leader of the swarm (GLC) exceeds its global leader limit 

(GLlt), then the swarm is divided into groups. Global leader limit is predefined. This 

procedure has been explained in Algorithm 2.6.  

Pseudocode for SMO has been provided in Algorithm 2.7. 
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Begin 

        If (GLC > GLlt) Then 

            GLC = 0 

             If (NG < MG) Then 

                    NG = NG+1 

             Else 

                    NG = 1 

             End If 

             Apply Local Leader Learning Phase 

       End If 

End 

 

Algorithm 2.6: Global Leader Decision phase 

 

 

Begin 

    Initialize the swarm using equation (2.1) 

    Initialize LLlt, GLlt, Pr, MG 

    Iteration = 0 

    Calculate fitness value of the position of each spider monkey in the swarm 

    Select global leader and local leaders by applying greedy selection 

    While (termination criterion is not satisfied) do 

          //Local Leader Phase 

         //Calculate Probability of each spider monkey 

         //Global Leader Phase 

         //Global Leader Learning Phase 

         //Local Leader Learning Phase 

         //Local Leader Decision Phase 

         //Global Leader Decision Phase 

         Iteration = iteration +1 

     End While 

 End 

 

Algorithm 2.7: Pseudocode for SMO 
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2.3 LITERATURE REVIEW ON SMO 

SMO is very easy to understand and implement. So, it can be applied directly to solve 

optimization problems. It has been shown in Bansal et al. [17] that SMO has been very 

effective in producing competitive results at low computational cost. Such results have been a 

source of inspiration for the researchers to explore more about the potential of SMO. So, 

many studies have been carried out after the initial publication on SMO. The number of 

publications on SMO is increasing every year showing the rising interest of research 

community in this algorithm. These publications can be grouped together in three categories: 

modifications and comparisons, hybridisation with other algorithms and applications. The 

literature on SMO is reviewed under these subtitles. In the entire thesis, the first version of 

SMO [17] has been called as basic SMO. 

2.3.1 MODIFICATIONS AND COMPARISONS 

In its original form, SMO has been designed to solve unconstrained continuous optimization 

problems. Therefore, the objective of the first studies on SMO was to evaluate its 

performance on a set of unconstrained continuous benchmark problems and to compare it 

with other well-established stochastic optimization algorithms such as DE [168], PSO [32], 

ABC [86] and CMA-ES [72]. A benchmark set of 26 scalable and non-scalable problems was 

considered for the experiment. The results were compared numerically and statistically and it 

was concluded that SMO is a strong competitor of the algorithms used for comparison.  

Exploitation and exploration are two important characteristics of a metaheuristic 

algorithm. Exploration facilitates the search of new random solutions in different regions of 

the search space, while exploitation helps to refine the quality of the current solution by 

searching for better solutions in its neighbourhood. These two features seem to be 

contradictory in nature and performance of a metaheuristic algorithm depends heavily on the 

balance between them. Though, SMO has been designed in such a manner to maintain a 

proper balance between these two, still modifications have been made to improve its 

performance by working on its exploration and exploitation ability. 

Kumar and Kumari [100] proposed first modified version of SMO with an objective to 

enhance its performance by using golden section search. This proposed version was named as 

Modified Position Update in Spider Monkey Optimization (MPU-SMO). Modifications were 

made in the position update equations in Local Leader Phase and Global Leader Phase by 
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adding a new component in them. This new component contained a variable whose value was 

determined by using golden section search method. Same parameter setting was adopted for 

MPU-SMO as described for SMO in Bansal et al. [17]. The performance of proposed 

algorithm was tested over a benchmark set of nine unconstrained continuous optimization 

problems and results were compared with basic SMO.  

Kumar et al. [101] proposed another modification of SMO with the name Self-adaptive 

Spider Monkey Optimization (SaSMO). Modifications were made in the Local Leader Phase, 

Global Leader Phase and Local Leader Decision Phase. The performance of the proposed 

algorithm was tested on a benchmark set of 42 optimization problems. Results were compared 

with basic SMO [17] and MPU-SMO [100].  

Kumar et al. [102] proposed a fitness based location update strategy in SMO to improve 

its exploitation ability. The proposed version was named Fitness Based Position Update in 

SMO (FPSMO) as it updates position of the individuals based on their fitness. Position update 

equations in Local Leader Phase, Global Leader Phase and Local Leader Decision Phase were 

modified to implement the proposed strategy. The objective behind choosing the fitness based 

position update scheme was to increase the convergence speed of SMO. The performance of 

FPSMO was tested over a benchmark set of 19 unconstrained continuous optimization 

problems and the results were compared with basic SMO.  

Singh and Salgotra [163] proposed MSMO to improve the performance of basic SMO. 

The proposed algorithm was tested on a benchmark set 19 optimization problems. 

Modifications were made in Local Leader Phase, Global Leader Phase and Local Leader 

Decision Phase. The results showed that MSMO performed better than other state-of-the-art 

algorithms used for comparison.  

Sharma et al. [153] proposed variant of SMO named as Ageist Spider Monkey 

Optimization (ASMO) algorithm. This proposed variant was inspired from the idea that a 

group of spider monkeys contains members of different age groups which looked more 

practical in biological terms. Age was a prominent factor in deciding the performance of a 

spider monkey. Experiments with different parameter settings were carried out and the best 

suitable parameter setting was chosen. Two variants of SMO named as ASMO and AMSMO 

were proposed. In ASMO, modification was made only in Local Leader Phase and in 

AMSMO, modifications were made in Local Leader Phase and Global Leader Phase. The 

results of ASMO and AMSMO were compared with basic SMO. Results demonstrated the 
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improvement in convergence rate of SMO with these modifications. Though it can be 

observed proposed variants converged much faster than the original SMO, there is not much 

difference among the variants (ASMO and AMSMO). AMSMO with 4 mini groups turned 

out to be the best from the results and hence been chosen as a base for statistical comparison. 

Also, AMSMO is compared with five state-of-the art algorithms and significance of results 

was validated by Wilcoxon signed rank test. Also, AMSMO was compared with two newly 

proposed variants of SMO namely MPU-SMO [100] and SaSMO Kumar et al. [101]. Also, 

AMSMO was compared with MVMO which is the winner of CEC2014 on nine benchmark 

functions. Conclusion of results demonstrated the positive effect of considering age factor in 

the movement of spider monkeys.  

Sharma et al. [155] proposed Limacon inspired Spider Monkey Optimization (LSMO) for 

function optimization. In LSMO, there was one more phase in addition to the phases of 

original SMO. This phase was executed after Global Leader Decision Phase. The results had 

been compared with some state-of-the-art algorithms.  

Sharma et al. [154] used power law based local search strategy (PLSS) in SMO to 

improve the exploitation ability of basic SMO. The proposed version was named as power 

law based SMO (PLSMO). There were seven phases in PLSMO. PLLS was introduced after 

Global Leader Decision Phases. The performance of PLSMO was tested over a benchmark 

suite of 20 problems and results were compared with basic SMO. Results demonstrated that 

the PLSS made a positive effect on the performance of SMO.  

Agarwal and Jain [1] proposed fast convergent spider monkey optimization algorithm 

(FCSMO) by using a new acceleration coefficient based strategy with an objective to improve 

the exploitation ability of basic SMO. Modifications were made in the update equations in 

Global Leader Phase and Local Leader Decision Phase. The performance of FCSMO was 

tested over 14 benchmark functions. The results were compared with basic SMO and it was 

concluded that the proposed variant is a better version of basic SMO. 

Hazrati et al. [74] proposed SMO based on metropolis principle (SMOM) with an 

objective to improve the exploration ability of basic SMO. The performance of the proposed 

algorithm was evaluated on a set of 12 benchmark problems and results were compared with 

self-adaptive spider monkey optimization (SaSMO) and particle swarm optimization (PSO). It 

was concluded that the proposed variant is a better version of basic SMO. 
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Hazrati et al. [73] proposed Adaptive size based Spider Monkey Optimization (AsSMO) 

algorithm with modifications proposed in Global Leader Phase and Global Leader Decision 

Phase. Update equations were modified in both the phases with an objective to have better 

solutions. The performance of the proposed algorithm was evaluated on 15 benchmark 

problems and results were compared with SMO and AsSMO. The results concluded that the 

proposed modification had positive impact on the performance of SMO. 

Dhar and Arora [41] proposed a cooperative Spider Monkey Optimization algorithm. The 

proposed strategy dealt with implementing SMO in a cooperative framework with two slight 

modifications known as steady state update and re-initialization of least performing monkeys. 

The performance of the proposed algorithm was validated by its application on a real life 

problem. 

The success of SMO for solving continuous optimization problems has motivated the 

researchers to extend its use to solve other types of optimization problems also.  Singh et al. 

[164] proposed a variant of SMO called binSMO for solving binary optimization problems. 

This variant made use of logical operators to represent the solutions. This proposed version 

was applied to optimize the thinning of concentric circular antenna arrays. The results were 

compared with six state-of-the-art algorithms and it was concluded that binSMO performed 

better than the other algorithms.  

Arora et al. [13] made conceptual comparison among basic SMO [17], HPSOWM [108] 

and Krill Herd [57]. 

2.3.2  HYBRIDIZATION 

In order to improve the efficiency of SMO, Agrawal et al. [2] hybridized SMO with GA, 

which is an evolutionary algorithm. Two hybridized versions of SMO and GA namely 

SMOGA (SMO followed by GA) and GASMO (GA followed by SMO) were proposed. The 

performances of the proposed algorithms were compared with GA and basic SMO. 

2.3.3 APPLICATIONS  

SMO has been applied to solve many real world optimization problems in different areas. 

Researchers have used original versions and its modified version to solve these real world 

optimization problems. Kumar et al. [101] employed SaSMO to solve four real world 

problems namely Pressure Vessel Design Problem, Lennard-Jones Problem, Parameter 
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estimation for frequency-modulated sound wave and Compression Spring Problem.  FPSMO 

[102] was applied to solve pressure vessel design problem. The objective was to minimize the 

overall cost of the manufacturing of cylinders. Later, Lenin et al. [106] proposed a variant of 

SMO called Modified Monkey Optimization (MMO), but the modification proposed in this 

algorithm was exactly the same as proposed by Kumar and Kumari [100] using golden section 

search, so, it cannot be considered as a new modification. MMO was applied to solve the 

optimal reactive dispatch problem on standard IEEE 30 bus test system. Further, Pal et al. 

[135] applied SMO to the problem of multilevel thresholding segmentation. Standard images 

were used to test the performance of SMO and results were compared with PSO. Al- azza et 

al. [3] applied SMO for solving antenna optimization problem and it was found that SMO was 

most efficient in reaching the optima as compared to other algorithms reported in the 

literature to solve this problem. Singh and Salgotra [163] used MSMO to solve the problem of 

synthesis of linear antenna array for three different cases. Singh et al. [164] employed 

binSMO to optimize the thinning of concentric circular antenna arrays. Sharma et al. [154] 

made use of the PLSMO to solve lower order system modelling problem. Further, Sharma et 

al. [155] employed LSMO to solve problem of optimal placement and sizing of capacitors. 

Cheruku et al. [31] designed SMO based ruler miner called as SM-RuleMiner for diabetes 

classification. Mittal et al. [125] used Boolean SMO in Wireless sensor networks to improve 

the network lifetime with an objective to extend the stability period of the network. Selvam 

and Kumar [152] used a combination of ley flights and SMO for optimizing the gains of PI 

controllers employed in the frequency regulating circuit of micro grid. The proposed strategy 

had been validated by two case studies. Sivalingam and Chinnamuthu [165] used hybrid 

SaSMO for designing PID controllers for automatic generation control.  The results were 

compared with DE and SMO. Ali [4] used MDSMO for economic load dispatch optimization 

problem. Kaur et al. [89] used a combination of PSO and SMO for image compression 

problem. Dhar and Arora[41] applied cooperative SMO to optimize a fuzzy rule base.  

2.4 CONCLUSIONS 

From the discussion in section 2.3, it can be concluded that the growth of this field has 

exceeded the expectations, despite the fact that SMO is just three years old. By looking at the 

literature available on this topic, it can be concluded that the core of the work on SMO has 

focused on algorithmic and application aspects, it should be mentioned that there is still much 

more to do in this area. We believe that some topics are worth investigating within the next 

years. Particularly, self-adaptation of control parameters and theoretical studies are the first 
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topics to be interested in. The design of SMO with no parameters that have to be fine-tuned 

by the user is another topic which is worth studying. There is not much theoretical work on 

SMO in general and the lack of research on theoretical aspects of SMO is, by no means, 

surprising. It would be interesting to perform a theoretical study of the run-time and 

convergence properties of a SMO. Other aspects such as the fitness landscapes and dynamics 

of a SMO are also very attractive theoretical research topics. 
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CHAPTER 3 

NOVEL SPIDER MONKEY OPTIMIZATION 

ALGORITHM FOR CONSTRAINED OPTIMIZATION 

Most of the real world optimization problems are constrained in nature. Solving such 

optimization problems involves finding the values of a set of decision variables such that the 

objective function value is optimized while satisfying all the constraints and variable bounds. 

Constrained nonlinear optimization problems are more difficult to solve in comparison to 

unconstrained optimization problems because of the presence of additional conditions called 

constraints. In constrained optimization problems, the aim is not only to find the optimal 

solution but also to keep the focus on the feasibility of the solutions. Due to the inability of 

the traditional optimization algorithms to solve these complex problems, metaheuristics have 

been applied in the past to solve constrained optimization problems [15; 25; 51; 58; 75; 82; 

83; 116; 119; 120; 127; 140; 169; 191]. 

 In Bansal et al. [17], it has been concluded that SMO is showing good performance in 

solving unconstrained optimization problems. So, its ability should be extended for solving 

constrained optimization problems. In this chapter, an attempt has been made in this direction 

by designing a modified version of basic SMO for solving constrained optimization problems. 

To the best of author’s knowledge, this is the first attempt to design a version of SMO to 

solve constrained optimization problems. The proposed algorithm is named as Constrained 

Spider Monkey Optimization (CSMO). The performance of CSMO is investigated on well-

defined constrained optimization problems of IEEE CEC2006 and CEC2010 benchmark sets. 

The results of the proposed CSMO are compared with constrained versions of Particle Swarm 

Optimization (PSO), Artificial Bee Colony (ABC) and Differential Evolution (DE) using 

various performance metrics. The chapter is organized as follows: Section 3.1 gives brief 

description about constraint handling techniques. Section 3.2 discusses the proposed 

algorithm. Section 3.3 provides the details of experimental setup. Section 3.4 discusses the 

experimental results of the tested algorithms based on various evaluation criteria. The chapter 

is closed with concluding remarks in section 3.5.  
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3.1 CONSTRAINT HANDLING TECHNIQUES 

Search algorithm and constraint handling technique both play an important role in solving 

constrained optimization problems. Since metaheuristics are formulated in a way in their 

indigenous design that they are suitable only for unconstrained optimization, various 

constraint handling techniques have been developed over the decades to be incorporated in 

these algorithms to remove this deficiency. Though the method for handling constraints is 

different in all the constraint handling techniques, yet the objective of mostly all of these 

techniques is same. The objective is to prefer feasible solutions over infeasible solutions. This 

objective is the key force to drive the search towards feasible region of the search space. Each 

constrained handling technique has its own advantages and disadvantages. So, which 

constrained handling technique is the most suitable for a particular metaheuristic algorithm is 

still an open research problem. Coello [33] presents a comprehensive survey of different 

constraint handling techniques which has been developed to incorporate constraint handling 

mechanism in metaheuristics. In [33], constraint handling techniques have been divided into 

five categories: 1) penalty approach, 2) special representations and operators, 3) repair 

algorithms, 4) separation of objective function and constraints and 5) hybrid methods. Each 

technique has been discussed in detail along with its usage in different metaheuristics. There 

is a vast literature available in which several constraint handling techniques have been 

proposed and developed, but there are only few constraint handling techniques which have 

been proved competitive in solving constrained optimization problems. Since its inception, 

Deb’s technique is one of the most widely used constraint handling technique because of its 

ease of implementation and parameter free approach. Though, penalty approach is still 

popular in handling constraints, but requirement of additional penalty parameter sometimes 

make it difficult to implement. GA is the oldest, yet one of the most popular choices among 

researchers these days too.  Mostly used constraint handling mechanism with GA is the 

penalty approach. Most popular constraint handling technique with DE is Deb’s feasibility 

rules. Also, with swarm intelligent techniques like PSO and ABC, Deb’s technique for 

constrained optimization is the most popular one.  

3.2 CONSTRAINED SPIDER MONKEY OPTIMIZATION (CSMO)  

Deb’s technique [35] has been used for constraint handling in CSMO. In spite of having so 

many constraint handling techniques existing in literature, there are some reasons for using 

Deb’s technique in CSMO. This technique is easy to understand and implement. Since its 
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inception, it is the most widely used constraint handling technique [33]. It has been used with 

various metaheuristics and has shown its potential over other constraint handling techniques. 

It does not require additional parameters. Also, it retains the original characteristics of the 

search algorithm in which it is used as a constraint handling mechanism. 

3.2.1 DEB’S TECHNIQUE FOR CONSTRAINT HANDLING 

Deb’s technique is based on the following three rules, popularly known as Three feasibility 

Rules: 

 A feasible solution is always preferred over an infeasible solution. 

 Between two feasible solutions, the one having higher fitness value is preferred. 

 Between two infeasible solutions, the one having less constraint violation is preferred.  

Here, the constraint violation 𝑣𝑖𝑜𝑙𝑖  of any solution 𝑥 for the constrained optimization problem 

P (1.1) defined in chapter 1 is calculated as follows: 

𝑣𝑖𝑜𝑙𝑖 = ∑ 𝐺𝑗(𝒙𝒊)
𝑝
𝑗=1 + ∑ 𝐻𝑗(𝒙𝒊)

𝑚
𝑗=𝑝+1                       (3.1)                                   

            

such that  

 𝐺𝑗(𝒙𝒊) =  {
𝑔𝑗(𝒙𝒊)         𝑖𝑓 𝑔𝑗(𝒙𝒊)  > 0 

0             𝑖𝑓 𝑔𝑗(𝒙𝒊)  ≤ 0
    

   𝐻𝑗(𝒙𝒊) =  {
|ℎ𝑗(𝒙𝒊)|             𝑖𝑓 |ℎ𝑗(𝒙𝒊)| − ℇ > 0 

0                       𝑖𝑓 |ℎ𝑗(𝒙𝒊)| − ℇ ≤ 0  
 

Where, ℇ is the tolerance limit for equality constraints. 

                             Mean violation at 𝒙𝒊 = 
(∑ 𝐺𝑗(𝒙𝒊)+∑ 𝐻𝑗(𝒙𝒊)𝑚

𝑗=𝑝+1
𝑝
𝑗=1 )

𝑚
                         (3.2)                     

            

Where, m is the total number of constraints. 
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3.2.2 THE PROPOSED CONSTRAINED SPIDER MONKEY OPTIMIZATION 

(CSMO) ALGORITHM 

The proposed CSMO differs from basic SMO only in two ways: calculation of fitness value 

and selection of the better solution while comparing two solutions.  In basic SMO, fitness of a 

solution is based on its objective function value while in CSMO; fitness of a solution is based 

on whether the solution is feasible or infeasible. Steps for calculating fitness value in CSMO 

are given in Algorithm 3.1.  

Begin 

For i = 1 to N Do 

If (𝑣𝑖𝑜𝑙𝑖 = 0) Then 

𝑓𝑖𝑡𝑖 = 𝑓(𝑆𝑀𝑖) 

Else 

𝑓𝑖𝑡𝑖 =  𝑓𝑤𝑜𝑟𝑠𝑡 + ∑ 𝑣𝑖𝑜𝑙𝑖

𝑚

𝑖=1

 

End If 

End For 

   

End 

 

 Algorithm 3.1: Steps for calculating fitness of solutions 

 

In basic SMO, the comparison of two solutions is done on the basis of their objective function 

value. In CSMO, the comparison of two solutions is done on the basis of Deb’s Three 

feasibility rules mentioned in subsection 3.2.1. Execution steps of the proposed algorithm are 

given below: 

Initialization: This is the first step in the execution of the algorithm. CSMO does not make 

any assumption about the feasibility of the initial swarm as initialization of the swarm with 

feasible solutions may require high computational cost depending on the size of the feasible 

region. Also, it is near to impossible to generate initial feasible population in some cases 

where the ratio of feasible region to its search space is very small. So, in CSMO, initial swarm 

is randomly generated between lower and upper bounds of the decision variables using 
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uniform distribution accepting both feasible and infeasible solutions. Initialization process is 

CSMO is same as that of basic SMO provided in eq. (2.1) in chapter 2. 

Local Leader Phase: Local Leader Phase in CSMO is same as in basic SMO except the 

selection of better solution during comparison. In CSMO, position updating of spider 

monkeys is based on Deb’s three rules of feasibility. New position and current position of a 

spider monkey are compared according to these rules and then updating or retaining of the 

current position of the spider monkey is performed. Working steps of Local Leader Phase is 

provided in Algorithm 3.2. 

Begin 

For k = 1 to NG Do 

For i = G[k][0] to G[k][1] Do 

For j = 1 to D Do 

    If U(0, 1) ≥ Pr Then 

                                                                  𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 + 𝑈(0,1) × (𝑙𝑙𝑘𝑗 − 𝑠𝑚𝑖𝑗) 

                                                                                     +𝑈(−1,1) × (𝑠𝑚𝑟𝑗 − 𝑠𝑚𝑖𝑗) 

                                                Else 

                                             𝑠𝑚𝑛𝑒𝑤𝑗 = 𝑠𝑚𝑖𝑗 

                                                End If 

End For 

Apply the selection process between  𝑆𝑀𝑛𝑒𝑤 and 𝑆𝑀𝑖  based on Deb’s 

Three Feasibility Rules 

End For 

End For 

 End 

 

Algorithm 3.2: Local Leader Phase 

 

Global Leader Phase: In this phase, a solution gets a chance to be updated based on its 

probability. Probability of a solution is based on its fitness value. In CSMO, fitness of every 

solution is calculated in a manner such that feasible solution will always get the preference 

over the infeasible solutions. Execution steps of Global Leader Phase are provided in 

Algorithm 3.3.           
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Global Leader Learning Phase: In this phase, a solution having best fitness value in the 

swarm is found using the three feasibility rules and updated as global leader of the swarm. 

Procedure of selecting global leader is provided in Algorithm 3.4. 

Local Leader Learning Phase: In this phase, local leader selection is performed in every 

group. In each group, the local leader of the group is selected by applying three feasibility 

rules. The member of the group having best fitness is selected as the local leader of that 

group. Selection procedure of local leaders is provided in Algorithm 3.5. 

Begin 

For k = 1 to NG Do 

GS = 𝑘𝑡ℎ  group size 

t = 0, i = 1 

While (t<N) Do 

For i = 1 to GS Do 

If (U(0,1)< 𝑝𝑟𝑜𝑏𝑖) Then 

t = t+1 

Randomly select j from {1,2,…, D} 

Randomly select 𝑆𝑀𝑟 from 𝑘𝑡ℎ group 

Generate 𝑠𝑚𝑛𝑒𝑤𝑗 using eq.(4) 

End If 

Apply the selection process between  𝑆𝑀𝑛𝑒𝑤 and 𝑆𝑀𝑖  based on 

Deb’s Three Feasibility Rules 

End For 

i = i+1 

If (i = N) Then  

i = 1 

End If 

End While 

End For 

End 

 

Algorithm 3.3: Global Leader Phase 
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Local Leader Decision Phase: This phase helps in the re-initialization of a group if its local 

leader is not updating its position for the specified local leader limit. Re-initialization of the 

group may cause the member of the group to enter into infeasible region from a feasible 

region. But it is also necessary sometimes if the feasible regions of the search space are 

disjoint and optimum lies in the other feasible region. This phase maintains the exploration 

capability of the algorithm. The execution steps of this phase are same as explained in 

Algorithm 2.5 in chapter 2. 

Begin  

          //update position of the global leader of the swarm by applying Deb’s  

            Three Feasibility Rules 

If (position of global leader is updated from previous position) Then 

GLC = 0 

Else 

GLC = GLC +1 

End If 

End 

 

Algorithm 3.4: Global Leader Learning Phase 

 

Begin 

For k =1 to NG do 

                       //update position of the leader of the group Deb’s Three Feasibility Rules 

If (position of local leader is updated from previous position) Then 

𝐿𝐿𝐶𝑘 = 0 

Else 

𝐿𝐿𝐶𝑘= 𝐿𝐿𝐶𝑘 + 1 

End If 

End For 

End 

 

Algorithm 3.5: Local Leader Learning Phase 
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Global leader decision phase: In this phase, the whole swarm is divided into groups if the 

global leader is not updated for the specified global leader limit. Execution steps of this phase 

are same as provided in Algorithm 2.6 in chapter 2. 

Pseudocode of CSMO is provided in Algorithm 3.6. 

Begin 

    Initialize the swarm using eq. (2.1)  

    Initialize LLlt, GLlt, Pr, MG 

    Iteration = 0 

    Calculate fitness value of the position of each spider monkey in the swarm using  

    Algorithm 3.1 

    Select Global Leader and Local Leaders by applying Deb’s Three feasibility rules 

    while (termination criterion is not satisfied) Do 

          //Local Leader Phase (Algorithm 3.2) 

         //Calculate Probability of each spider monkey (using eq. (2.3)) 

         //Global Leader Phase (Algorithm 3.3) 

         //Global Leader Learning Phase (Algorithm 3.4) 

         //Local Leader Learning Phase (Algorithm 3.5) 

         //Local Leader Decision Phase (Algorithm 2.5) 

        //Global Leader Decision Phase (Algorithm 2.6) 

         Iteration = Iteration +1 

     end while 

  End 

 

Algorithm 3.6 Pseudocode for CSMO 

 

3.3 EXPERIMENTAL SETUP 

3.3.1 BENCHMARK PROBLEMS AND EVALUATION CRITERIA 

In this chapter, IEEE CEC2006 [107] and CEC2010 [112] benchmark sets have been 

considered for evaluating the performance of the algorithms. Both the sets contain single 

objective constrained optimization problems. These two sets have also been used for 

experimentation in [14; 138].  
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In CEC2006 benchmark set, there are 24 problems g01-g24. The number of design 

variables is different for each optimization problem. The mathematical definition of each 

problem has been given in Appendix I. Classification of problems on the basis of type of 

constraints has been provided in Table 3.1. As per the instruction given in CEC 2006 

benchmark set, 25 independent runs have been performed for every problem. The stopping 

criteria is when 5, 00,000 number of function evaluations have been performed. For 

comparison of results, the feasibility rate and success rate is recorded. The formulas for 

calculating them are given below: 

                        𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑢𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
× 100                                    (3.3) 

A run is said to be a ‘feasible run’ if atleast one feasible solution is found. 

𝑠𝑢𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
× 100                                    (3.4) 

A run is declared as ‘successful’ if  |𝑓(𝑥) − 𝑓(𝑥∗)| ≤ 0.0001, where 𝑓(𝑥)  is the objective 

function value of the global leader and 𝑓(𝑥∗) is the known global optimal value. 

Some statistical measures have been used for the comparison of results as suggested in 

[107]. For this purpose, best, median, worst, average and standard deviation of the function 

error values |𝑓(𝑥) − 𝑓(𝑥∗)| for the objective function value of global leader after 5,00,000 

function evaluations in 25 runs are recorded. The method for sorting error values of achieved 

best solutions of all the runs is given below: 

 Feasible solutions are given priority over infeasible solutions. 

 Feasible solutions are sorted in an increasing order according to their function error 

value |𝑓(𝑥) − 𝑓(𝑥∗)|   

 Infeasible solutions are sorted in an increasing order according to their mean value of 

the violations of all constraints given in eq. (3.2).  

 

Also, the best, median, worst, average and standard deviation of the number of function 

evaluations for the successful runs have been recorded. 

There are 18 problems C01-C18 in CEC2010 benchmark set. The mathematical definition 

of each problem in this benchmark set has been given in Appendix II. Table 3.2 provides a 

classification of problems on the basis of type of constraints. Unlike CEC2006, in CEC2010, 
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all the problems are of same dimension. In CEC2010, results have been taken for 10 

dimensions and 30 dimensions. Optimal value of the test problems has not been provided. 

Fixed number of function evaluations for 10 dimensions and 30 dimensions are 2, 00,000 and 

6, 00,000 respectively following the instructions given in CEC 2010 benchmark set. A total of 

25 independent runs have been conducted for each problem.  For comparison of results, 

feasibility rate and best, median, worst, average and standard deviation of objective function 

values of global leader in 25 runs have been calculated. Following criterion has been adopted 

to sort the objective function values of achieved best solutions obtained in 25 runs: 

 Feasible solutions are given priority over infeasible solutions. 

 Feasible solutions are sorted in an increasing order according to their objective 

function value 

 Infeasible solutions are sorted in an increasing order according to their mean value of 

the violations of all constraints given in eq. (3.2). 

Definition of mean value of constraints violations and feasibility rate is same for CEC2010 

benchmark problems as mentioned in eq. (3.2) and eq. (3.3) respectively. 

3.3.2 STATE-OF-THE-ART ALGORITHMS USED FOR COMPARISON OF 

RESULTS 

The results of CSMO have been compared with ABC [87], CHDE [118] and PESO [128]. All 

the algorithms have been implemented in C. ABC, DE and PSO are some of the most widely 

used algorithms for solving constrained optimization problems and SMO has some features 

similar to these algorithms. These factors led to the selection of constrained versions of these 

algorithms (ABC, CHDE and PESO) for comparison with constrained SMO. 

Since the performance of a metaheuristic is highly sensitive to the constraint handling 

technique used, it will be more appropriate to compare the performance of SMO with those 

versions of these algorithms which have used Deb’s technique for handling constraints. The 

constraint handling technique used in the algorithms selected for comparison is also Deb’s 

technique. Using the same constraints handling technique helps to maintain the consistency in 

the comparison of algorithms and to access the potential of an algorithm. 
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3.3.3 SETTING OF CONTROL PARAMETERS 

Search efficiency of an algorithm is highly sensitive to the choice of its control parameters. 

The set of parameters which produces optimal solution for a particular problem may result in 

a complete failure for the other problem. So, optimal parameter setting is also an important 

issue while considering the performance of different algorithms. Parameter setting also 

requires analysis to be performed in order to find optimal parameter setting.  In this chapter, 

such an analysis has been avoided and none of the algorithm has been meta optimized to 

improve its performance on a particular benchmark problem as the aim of this chapter is not 

to the find best algorithm for a particular benchmark problem, but to get an idea of search 

potential of CSMO for solving constrained optimization problems.  

Parameter setting for every algorithm used for the experiment has been adopted as it is 

mentioned in their respective papers except the population size or swarm size and it is 

provided in Table 3.3. The parameter setting for CSMO has been kept same as that of basic 

SMO [17]. The population size or swarm size is kept same for all the algorithms for a fair 

comparison.  

3.4 DISCUSSION OF EXPERIMENTAL RESULTS 

The results of algorithms on both the benchmark sets (CEC2006 and CEC2010) have been 

discussed separately. First, the performance of algorithms have been analyzed on CEC2006 

benchmark problems and then on CEC2010 benchmark problems. Results have been 

presented in the form of tables and graphs. In order to observe whether the results are 

significantly different or not, Wilcoxon rank sum test at 5% (𝛼 = 0.05) significance level is 

performed between CSMO-ABC, CSMO-CHDE and CSMO-PESO for both CEC2006 and 

CEC2010 benchmark sets. The null hypothesis assumed for this statistical test is “if there is 

no difference in the performance of the algorithms” and alternative hypothesis being “there is 

a difference in the performance of the algorithms”. The test has been applied to the sample 

containing results of 25 independent runs performed by each algorithm for each benchmark 

problem. The output of the applied test has been presented in tabular form. If there is no 

significant difference between the results, ‘=’ sign appears and both the algorithms are  
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considered equivalent. When there is significant difference between the results, ‘+’ or ‘-’ sign 

appears based on CSMO is performing better or worse than the other algorithm. 

Tables 3.4-3.21, Tables 3.22-3.32 and Tables 3.33-3.43 present the results for CEC2006 

benchmark problems, CEC2010 benchmark problems for 10 dimensions and CEC2010 

benchmark problems for 30 dimensions respectively. The entries in the cells of these tables 

contain both feasible and infeasible solutions. Infeasible solutions are the entries which are 

followed by a parenthesis. Number in the parenthesis indicates the number of constraints 

violated by that infeasible solution. N.A. entry in a cell indicates non-availability of results. 

Pairwise comparison of CSMO has been done with ABC, CHDE and PESO on all the 

performance metrics considered for the evaluation of results. Summary of pairwise 

comparison is provided in the form of tables. Better, equal and worse in the summary table 

indicates the number of problems on which CSMO is better, equal or worse respectively than 

the compared algorithm. This pairwise comparison is inspired from Karaboga and Akay [87]. 

Also, the reason of doing pairwise comparison is that the aim of this experimental study is not 

to find the best algorithm for solving CEC2006 and CEC2010 benchmark problems but to 

access the performance of CSMO in comparison to other three algorithms. Convergence 

graphs for CEC 2006 and CEC2010 benchmark problems have been plotted in Figures 3.1-

3.9. The graphs have been plotted using logarithmic scale as the range of values is very large. 

3.4.1 DISCUSSION OF RESULTS FOR CEC2006 BENCHMARK PROBLEMS 

Tables 3.4 and 3.5 present the results obtained by CSMO on CEC2006 benchmark problems. 

From Table 3.4, it can be seen that CSMO has 100 percent feasibility rate in seventeen 

problems (g01, g02, g03, g04, g06, g07, g08, g09, g10, g11, g12, g14, g15, g16, g18, g19, 

g24) and zero percent feasibility rate in three (g20, g21, g22) problems. In the problems 

having inequality constraints only (g01, g02, g04, g06, g07, g08, g09, g10, g12, g16, g18, 

g19, g24), CSMO has obtained 100 percent feasibility rate. Also, CSMO has good feasibility 

rate on the problems with equality constraints only (g03, g11, g13, g14, g15, g17). The 

problems where CSMO has failed completely to enter the feasible region in any run (g20, 

g21, g22) are the problems having both equality and inequality constraints. From Table 3.5, it 

can be seen CSMO has 100 percent success rate in six problems (g01, g04, g08, g12, g16, 

g24). Though, CSMO successfully enters the feasible region in the problems having equality 

constraints, it fails to obtain near optimal solution in any of these problems (zero percent 

success rate) except the problem g11. Among the problems, where CSMO has positive 



CHAPTER 3: NOVEL SPIDER MONKEY OPTIMIZATION ALGORITHM FOR CONSTRAINED OPTIMIZATION PROBLEMS 

 

45 

 

success rate are the ones having inequality constraints only except problem g11. Table 3.6 

presents the feasibility rate and success rate of all the algorithms. It can be seen that all the 

algorithms have 100 percent feasibility rate on nine (g1, g2, g3, g4, g8, g12, g16, g19 and 

g24) and 100 percent success rate on two (g8 and g12) problems. g21 and g22 can be 

considered as difficult problems for these algorithms as all the algorithms fail to reach the 

feasibility region in all the runs. All the algorithms have zero percent success rate on eight 

(g3, g5, g10, g13, g15, g17, g21 and g22) problems. Summary of pairwise comparison of 

CSMO against each of ABC, CHDE and PESO in terms of feasibility rate and success rate 

has been provided in Table 3.7 which shows that CSMO has better feasibility rate than ABC 

and CHDE, but it performs inferior to PESO. The performance of all the algorithms is 

equivalent in terms of success rate. So, from the pairwise comparison of CSMO with all the 

algorithms in terms of feasibility rate and success rate, it can be concluded that though CSMO 

performs better than ABC and CHDE in locating the feasible region, it performs almost equal 

to these two in locating a near optimal solution. But this is just an observation which needs 

further experimentation. Tables 3.8-3.10 present the best, median and worst of function error 

values respectively obtained by all the algorithms in 25 runs. Tables 3.11 and 3.12 provide the 

mean and standard deviation of function error values obtained with feasible runs only. 

Summary of pairwise comparison of CSMO with ABC, CHDE and PESO on the basis of 

best, median, worst, mean and standard deviation values have been provided in Table 3.13 

which shows that CSMO performs better than ABC, CHDE and PESO in terms of function 

error values on all the comparisons criteria.  

Tables 3.14-3.18 show the best, median, worst, mean and standard deviation respectively 

of the number of function evaluations for successful runs of all the algorithms. Summary of 

pairwise comparison of CSMO with ABC, CHDE and PESO on the basis of number of 

function evaluations is provided in Table 3.19. From this table, it can be concluded that 

CSMO performs better than ABC, worse than CHDE and almost equivalent to PESO 

respectively. 

Results of Wilcoxon rank sum test for CEC 2006 problems based on function error value 

is provided in Table 3.20. It can be observed from the outcome of Wilcoxon rank sum test that 

CSMO performs equivalent or significantly better than other algorithms on most of the 

problems. 
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Table 3.21 provides the average execution (in seconds) taken per run by all the 

algorithms. From this table, it can be observed that the time taken by all the algorithms is very 

small. It means all the algorithms solve the CEC2006 benchmark problems at a low 

computational cost. Also, there is a very small difference in the execution time of all the 

algorithms for each benchmark problem, so the comparison of these algorithms on the basis 

of execution time can be avoided. This table can be considered for information purpose rather 

than comparison purpose. 

Convergence graphs for problems g01-g24 have been plotted in Figures 3.1-3.3. In the 

convergence graphs, value on the horizontal axis represents the number of iterations and the 

vertical axis shows the function error value. The logarithmic graphs have been plotted as the 

range of the function error values of the benchmark problems is large. The sudden rise in the 

graph indicates that the solution has entered the feasible region. 

3.4.2 DISCUSSION OF RESULTS FOR CEC2010 BENCHMARK PROBLEMS FOR       

10 DIMENSIONS 

Results obtained by CSMO on CEC2010 problems for 10 dimensions have been presented in 

Table 3.22. From this table, it can be seen that CSMO has 100 percent feasibility rate in 

twelve problems (C01, C02, C03, C07, C08, C12, C13, C14, C15, C16, C17, C18). In three 

problems (C05, C06 and C11), CSMO fails to enter the feasible region in any run.  CSMO has 

100 percent feasibility rate in all the problems having inequality constraints only (C01, C07, 

C08, C13, C14, C15) and both inequality and equality constraints (C02, C12, C16, C17, C18). 

CSMO has either low or zero percent feasibility rate on the problems having equality 

constraints only (C03, C04, C05, C06, C09, C10, C11). Feasibility rate of all the algorithms 

has been provided in Table 3.23. Summary of pairwise comparison of CSMO against ABC, 

CHDE and PESO in terms of feasibility rate has been provided in Table 3.24. This table 

demonstrates that CSMO has higher feasibility rate in more number of problems than ABC 

and CHDE, while PESO outperforms CSMO. 

Tables 3.25-3.27 present the best, median and worst of objective function values obtained 

by all the algorithms in 25 runs. Tables 3.28-3.29 present the mean and standard deviation of 

objective function values for feasible runs only.  Summary of pairwise comparison of best, 

median, worst, mean and standard deviation of objective function value is provided in Table 

3.30 and it can be seen from it that CSMO outperforms the other three algorithms. Results of 

Wilcoxon rank sum test based on  objective function value for 10 dimensions problems is 
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presented in Table 3.31. It shows CSMO performs significantly better than other algorithms 

on most of the problems. 

Table 3.32 provides the average execution (in seconds) taken per run by all the 

algorithms. It can be seen from the table that the time taken by all the algorithms is almost 

similar. So, this table should be considered for information purpose rather than comparison 

purpose. 

Convergence graphs for problems C01-C18 for 10 dimensions have been plotted in 

Figures 3.4-3.6. In the graphs, the fitness value of the global best solutions of all the 

algorithms at any iteration is plotted for all the algorithms. The fitness value here denotes the 

constraint violation if the global best solution lies in the infeasible region and the objective 

function value once the global best solution enters the feasible region. The sudden rise in the 

graph indicates that the solution has entered the feasible region.  

3.4.3 DISCUSSION OF RESULTS FOR CEC2010 BENCHMARK PROBLEMS FOR 

30 DIMENSIONS 

Table 3.33 presents the result obtained by CSMO on CEC2010 problems for 30 dimensions. 

CSMO has 100 percent feasibility rate in ten problems (C01, C02, C07, C08, C13, C14, C15, 

C16, C17, C18). These are the problems with inequality constraints only and both inequality 

and equality constraints. Table 3.34 presents the feasibility rate of all the algorithms obtained 

for 30 dimensions. From Table 3.35, it can be seen that CSMO outperforms ABC and CHDE 

while performs inferior to PESO. 

Tables 3.36-3.38 present the results for best, median and worst of objective function 

values in 25 runs respectively. Tables 3.39-3.40 present the mean and standard deviation of 

objective function values obtained in feasible runs only.  From Table 3.41 which provides the 

summary of comparison, it is clear that CSMO perform better than the other three algorithms 

in terms of objective function values for 30 dimensions also.  

Table 3.42 provides outcome of Wilcoxon rank sum test for 30 dimension problems 

showing CSMO performing significantly better than other algorithms on most of the 

problems.  

Average execution time taken by all the algorithms for 30 dimensions has been given in 

Table 3.43. From this table, it can be seen that all the algorithms are taking more time for 
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execution as compared to 10 dimensions because of the obvious reasons of increase in the 

dimension as well as more number of function evaluations. But there is not much difference 

among the four algorithms on most of the problems. So, this table should be considered for 

information purpose rather than comparison purpose. 

Convergence graphs for problems C01-C18 for 30 dimensions have been plotted in 

Figures 3.7-3.9.  

3.5 CONCLUSIONS 

In this chapter, a constrained version of SMO named as CSMO has been proposed. Results 

have been compared against PESO [128], ABC [87] and CHDE [118] on CEC2006 and 

CEC2010 benchmark problems. Most of the results demonstrate supremacy of CSMO over 

compared algorithms. For both CEC2006 and CEC2010 benchmark sets, it can be concluded 

that CSMO enters the feasibility region in every run in the problems having inequality 

constraints only. But it finds it difficult to reach the feasibility region in problems having 

equality constraints only. Even if it enters, it fails to locate the near optimal solution as in case 

of CEC2006 problems. But this is just an observation which cannot be generalized. From the 

discussion of results, it can be observed that increase in the dimensions (10 to 30) does not 

deteriorate the performance of CSMO. CSMO has shown good performance on 30 

dimensions even with the same population size. It is a general notion that performance of an 

algorithm generally deteriorates (though not always) with increase in the dimensions. This is 

commonly known as curse of dimensionality. But if we observe carefully, for problems C09, 

C10 and C11, feasibility rate though it is still less than 20 percent, has been improved. So, no 

comments can be made about the performance of CSMO if it is not performing well on lower 

dimensions, then it will not be performing well on higher dimensions too.  

Such an insight into the performance of CSMO is important for its further development. 

CSMO has been developed with least possible modification in the basic structure of SMO 

without involving any additional parameters other than those of basic SMO. In future efforts, 

effect of different constraint handling mechanism on the performance of SMO can be 

investigated to find out most compatible constraint handling mechanism for SMO while 

solving a particular class of optimization problems.  
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Figure 3.1: Convergence graphs of problems g01-g08 
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Figure 3.2: Convergence graphs of problems g09-g16 
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Figure 3.3: Convergence graphs of problems g17-g24 
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Figure 3.4: Convergence graphs of problems C01-C08 (10 dimensions) 
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Figure 3.5: Convergence graphs of problems C09-C16 (10 dimensions) 
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Figure 3.6: Convergence graphs of problems C017-C18 (10 dimensions) 
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Figure 3.7: Convergence graphs of problems C01-C08 (30 dimensions) 
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Figure 3.8: Convergence plots of problems C09-C16 (30 dimensions) 
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Figure 3.9: Convergence plots of problems C17-C18 (30 dimensions) 
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Table 3.1: Classification of problems in CEC2006 benchmark set on the basis of the type of 

constraints 

Type of Constraints Problems 

Only Equalities g03, g11, g13, g14, g15, g17 

Only Inequalities 
g01, g02, g04, g06, g07, g08, g09, g10, g12, g16, g18, g19, 

g24 

Both Equalities and 

Inequalities 
g05, g20, g21, g22, g23 

 

 

 

 

 

 

Table 3.2: Classification of problems in CEC2010 benchmark set on the basis of the type of 

constraints 

Type of Constraints Problems 

Only Equalities C03, C04, C05, C06, C09, C10, C11, 

Only Inequalities C01, C07, C08, C13, C14, C15, 

Both Equalities and Inequalities C02, C12, C16, C17, C18 
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Table 3.3: Parameter setting for CSMO, ABC, CHDE, PESO 

Algorithm Parameter setting 

CSMO 

Perturbation rate (Pr) = linearly increasing ([0.1, 0.4]) 

Maximum number of groups(MG)  = 5 

Local leader limit = 1500 

Global leader limit = 50 

ABC 

Modification Rate (MR) = 0.8 

Maximum Cycle Number (MCN) = (Maximum number of function 

evaluations)/100 

Limit = 0.5× ss × D, where ss is the swarm size and D is the dimension of the 

problem 

SPP = 0.5× ss × D 

CHDE 

F = generated randomly between [0.3, 0.9] per run using a uniform distribution 

CR = generated randomly between [0.8, 1.0] per run using a uniform 

distribution 

PESO 

c1 = 0.1 

c2 = 1 

inertia weight (w) =  generated randomly between [0.5,1] using uniform 

distribution 
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Table 3.4: Feasibility Rate (F.R.) and Best, Median, Worst, Mean and Standard Deviation 

(Stdev) of the function error values obtained by CSMO with 25 independent runs on 

CEC2006 Benchmark Problems 

Problems F.R. Best Median Worst Mean Stdev 

g01 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g02 100 2.55E-05 1.12E-02 4.96E-02 1.54E-02 1.52E-02 

g03 100 2.39E-01 4.88E-01 8.86E-01 4.91E-01 1.45E-01 

g04 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g05 80 4.79E-02 5.49E+02 5.30E-03(1) 3.68E+02 3.92E+02 

g06 100 2.79E-08 6.93E-07 2.40E-04 1.43E-05 4.80E-05 

g07 100 3.05E-02 2.81E-01 7.18E-01 3.01E-01 2.09E-01 

g08 100 4.16E-17 4.16E-17 4.16E-17 4.16E-17 6.29E-33 

g09 100 6.75E-04 5.10E-03 1.07E-02 5.27E-03 2.99E-03 

g10 100 1.70E+01 2.06E+02 9.91E+02 2.69E+02 2.20E+02 

g11 100 5.99E-06 1.55E-02 2.50E-01 8.49E-02 1.03E-01 

g12 100 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 88 4.91E-01 9.09E-01 2.14E-04(1) 8.58E-01 1.46E-01 

g14 100 5.10E-01 4.09E+00 6.09E+00 3.90E+00 1.43E+00 

      g15 100 1.66E-03 6.46E-01 1.06E+01 2.98E+00 3.65E+00 

g16 100 6.49E-12 6.68E-10 1.49E-07 9.79E-09 3.13E-08 

g17 96 5.49E+01 1.59E+02 8.49E-05(1) 2.21E+02 1.39E+02 

g18 100 4.34E-05 1.94E-04 2.42E-03 3.47E-04 4.74E-04 

g19 100 1.30E+00 5.95E+00 1.49E+01 6.33E+00 3.77E+00 

g20 0 3.72E-03(6) 1.84E-02(11) 3.04E-02(15) N.A. N.A. 

g21 0 1.51E-03(2) 5.44E-03(3) 1.71E-02(3) N.A. N.A. 

g22 0 2.31E-01(16) 5.06E+00(10) 4.26E+0419) N.A. N.A. 

g23 16 4.00E+02 7.36E-04(4) 8.32E-03(4) 4.00E+02 0.00E+00 

g24 100 1.24E-14 1.24E-14 1.24E-14 1.24E-14 3.22E-30 
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Table 3.5: Success Rate (S.R.) and Best, Median, Worst, Mean and Standard Deviation 

(Stdev) of the number of function evaluations obtained by CSMO with successful runs out of 

25 independent runs on CEC2006 Benchmark Problems 

Problems S.R. Best Median Worst Mean Stdev 

g01 100 8950 10750 28150 13714 6026 

g02 8 217736 255548 293361 255548 53474 

g03 0 N.A. N.A. N.A. N.A. N.A. 

g04 100 17550 21850 30150 22690 2973 

g05 0 N.A. N.A. N.A. N.A. N.A. 

g06 96 165267 201324 326597 216177 42756 

g07 0 N.A. N.A. N.A. N.A. N.A. 

g08 100 650 950 1250 934 146 

g09 0 N.A. N.A. N.A. N.A. N.A. 

g10 0 N.A. N.A. N.A. N.A. N.A. 

g11 24 274204 359310 476918 374996 80233 

g12 100 350 1050 1650 1026 274 

g13 0 N.A. N.A. N.A. N.A. N.A. 

g14 0 N.A. N.A. N.A. N.A. N.A. 

g15 0 N.A. N.A. N.A. N.A. N.A. 

g16 100 12850 26050 80724 34930 20422 

g17 0 N.A. N.A. N.A. N.A. N.A. 

g18 20 219036 372280 476428 348277 109348 

g19 0 N.A. N.A. N.A. N.A. N.A. 

g20 0 N.A. N.A. N.A. N.A. N.A. 

g21 0 N.A. N.A. N.A. N.A. N.A. 

g22 0 N.A. N.A. N.A. N.A. N.A. 

g23 0 N.A. N.A. N.A. N.A. N.A. 

g24 100 2950 4250 5850 4258 796 
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Table 3.6: Comparison of CSMO against ABC, CHDE and PESO in terms of Feasibility Rate 

(F.R.) and Success Rate (S.R.) on CEC2006 Benchmark Problems 

Feasibility Rate (F.R.) Success Rate (S.R.) 

Problems CSMO ABC CHDE PESO CSMO ABC CHDE PESO 

g01 100 100 100 100 100 100 56 88 

g02 100 100 100 100 8 52 12 0 

g03 100 100 100 100 0 0 0 0 

g04 100 100 100 100 100 100 92 100 

g05 80 0 0 72 0 0 0 0 

g06 100 100 92 100 96 100 80 100 

g07 100 4 12 100 0 0 4 0 

g08 100 100 100 100 100 100 100 100 

g09 100 40 40 100 0 0 36 0 

g10 100 0 0 100 0 0 0 0 

g11 100 0 0 100 24 0 0 88 

g12 100 100 100 100 100 100 100 100 

g13 88 0 0 100 0 0 0 0 

g14 100 0 96 80 0 0 40 0 

g15 100 0 0 100 0 0 0 0 

g16 100 100 100 100 100 100 76 28 

g17 96 0 0 100 0 0 0 0 

g18 100 100 96 100 20 12 88 12 

g19 100 100 100 100 0 0 48 0 

g20 0 0 0 72 0 0 0 36 

g21 0 0 0 0 0 0 0 0 

g22 0 0 0 0 0 0 0 0 

g23 16 28 56 24 0 0 16 0 

g24 100 100 100 100 100 100 96 100 
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Table 3.7: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in      

terms of Feasibility Rate (F.R.) and Success Rate (S.R.) on CEC2006 benchmark problems 

CSMO vs. Criteria Better Equal Worse 

ABC Feasibility Rate (F.R.) 9 14 1 

 
Success Rate (S.R.) 2 19 3 

 
Total 11 33 4 

CHDE Feasibility Rate (F.R.) 11 12 1 

 
Success Rate (S.R.) 6 11 7 

 
Total 17 23 8 

PESO Feasibility Rate (F.R.) 2 18 4 

 
Success Rate (S.R.) 4 17 3 

 
Total 6 35 7 
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Table 3.8: Comparison of CSMO against ABC, CHDE and PESO in terms of Best of 

function error values obtained with 25 independent runs on CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g02 2.55E-05 3.00E-05 9.23E-08 1.27E-02 

g03 2.39E-01 5.14E-01 3.86E-01 4.85E-02 

g04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g05 4.79E-02 2.02E-05(1) 2.01E-05(1) 1.06E-01 

g06 2.79E-08 1.18E-11 1.18E-11 1.18E-11 

g07 3.05E-02 8.81E-02 1.81E-13 7.66E-01 

g08 4.16E-17 4.16E-17 4.16E-17 4.16E-17 

g09 6.75E-04 2.72E-03 0.00E+00 1.94E-03 

g10 1.70E+01 2.11E-05(1) 2.14E-04(1) 5.35E+01 

g11 5.99E-06 3.38E-04(1) 1.37E-04(1) 4.99E-09 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 4.91E-01 3.34E-05(1) 3.35E-05(1) 9.06E-02 

g14 5.10E-01 4.51E-05(1) 2.13E-14 4.16E+00 

g15 1.66E-03 5.00E-05(1) 5.15E-05(1) 1.29E-03 

g16 6.49E-12 4.88E-15 4.88E-15 4.88E-15 

g17 5.49E+01 2.61E-05(1) 2.55E-05(1) 9.97E+01 

g18 4.34E-05 3.61E-05 3.33E-16 7.22E-06 

g19 1.30E+00 1.40E+00 2.13E-14 4.36E+00 

g20 3.72E-03(6) 8.46E-03(7) 7.19E-03(5) 3.20E-03 

g21 1.51E-03(2) 2.56E-04(2) 1.71E-05(1) 2.59E-04(2) 

g22 2.31E-01(16) 3.54E+03(19) 3.98E+00(6) 1.99E+01(11) 

g23 4.00E+02 4.00E+02 0.00E+00 3.26E+02 

g24 1.24E-14 1.24E-14 1.24E-14 1.24E-14 
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Table 3.9: Comparison of CSMO against ABC, CHDE and PESO in terms of Median of 

function error values obtained with 25 independent runs on CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.00E+00 0.00E+00 1.78E-15 1.44E-13 

g02 1.12E-02 1.02E-04 2.58E-02 5.15E-02 

g03 4.88E-01 8.15E-01 8.17E-01 5.56E-01 

g04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g05 5.49E+02 2.41E-05(1) 2.89E-05(1) 9.86E+02 

g06 6.93E-07 2.36E-11 1.18E-11 1.18E-11 

g07 2.81E-01 2.96E-01(1) 3.84E-01(1) 3.57E+00 

g08 4.16E-17 4.16E-17 4.16E-17 4.16E-17 

g09 5.10E-03 1.64E+00(1) 2.51E+00(1) 8.34E-02 

g10 2.06E+02 9.34E-03(1) 8.90E-03(1) 1.52E+03 

g11 1.55E-02 1.35E-02(1) 6.09E-03(1) 4.82E-06 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 9.09E-01 4.26E-05(1) 4.76E-05(1) 7.65E-01 

g14 4.09E+00 1.41E-03(3) 1.46E-03 1.03E+01 

g15 6.46E-01 5.14E-05(1) 7.62E-05(1) 4.14E+00 

g16 6.68E-10 4.88E-15 4.88E-15 1.64E-03 

g17 1.59E+02 3.08E-03(3) 3.21E-05(1) 1.72E+02 

g18 1.94E-04 7.50E-04 1.11E-11 2.47E-03 

g19 5.95E+00 1.93E+00 2.73E-05 8.61E+00 

g20 1.84E-02(11) 1.71E-02(15) 9.14E-03(6) 3.60E-02 

g21 5.44E-03(3) 1.63E-03(2) 3.25E-05(1) 4.07E-02(1) 

g22 5.06E+00(10) 6.71E+04(19) 6.50E+05(19) 2.04E+05(11) 

g23 7.36E-04(4) 3.18E-03(1) 4.00E+02 1.11E-01(1) 

g24 1.24E-14 1.24E-14 1.24E-14 1.24E-14 
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Table 3.10: Comparison of CSMO against ABC, CHDE and PESO in terms of  Worst of 

function error values obtained with 25 independent runs on CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.00E+00 0.00E+00 6.00E+00 3.00E+00 

g02 4.96E-02 1.10E-02 3.44E-01 1.02E-01 

g03 8.86E-01 9.24E-01 9.97E-01 1.00E+00 

g04 0.00E+00 0.00E+00 1.43E+02 3.64E-12 

g05 5.30E-03(1) 3.81E-03(1) 1.40E-04(3) 5.40E-03(1) 

g06 2.40E-04 4.76E-10 1.10E+00(2) 1.55E-11 

g07 7.18E-01 1.59E+00(2) 2.73E+00(4) 1.91E+01 

g08 4.16E-17 4.16E-17 5.55E-17 5.55E-17 

g09 1.07E-02 4.80E+01(2) 3.95E+01(2) 2.64E-01 

g10 9.91E+02 1.04E-01(3) 1.09E-01(2) 2.52E+03 

g11 2.50E-01 1.18E-01(1) 1.18E-01(1) 2.50E-01 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 2.14E-04(1) 7.36E-04(1) 1.30E-04(1) 5.32E+00 

g14 6.09E+00 2.19E-03(3) 6.23E-02(1) 6.67E-05(1) 

g15 1.06E+01 8.15E-05(1) 3.50E-04(2) 1.06E+01 

g16 1.49E-07 6.88E-15 4.42E-01 3.34E-03 

g17 8.49E-05(1) 2.73E-02(3) 1.58E-04(2) 4.59E+02 

g18 2.42E-03 3.25E-03 2.05E+00(7) 2.14E-01 

g19 1.49E+01 2.70E+00 4.15E+02 3.78E+01 

g20 3.04E-02(15) 1.98E-02(20) 3.45E-02(7) 8.30E-02(1) 

g21 1.71E-02(3) 2.20E-02(2) 8.18E-03(3) 1.22E-01(1) 

g22 4.26E+04(19) 1.69E+05(19) 2.38E+06(19) 1.07E+06(13) 

g23 8.32E-03(4) 7.40E-02(3) 1.48E+00(1) 5.83E-01(2) 

g24 1.24E-14 1.24E-14 2.35E-02 1.24E-14 
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Table 3.11: Comparison of CSMO against ABC, CHDE and PESO in terms of Mean of 

function error values obtained with feasible runs out of 25 independent runs on CEC2006 

Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.00E+00 0.00E+00 1.34E+00 2.80E-01 

g02 1.54E-02 1.62E-03 6.32E-02 5.13E-02 

g03 4.91E-01 8.01E-01 7.69E-01 5.49E-01 

g04 0.00E+00 0.00E+00 7.26E+00 4.37E-13 

g05 3.68E+02 N.A. N.A. 5.96E+02 

g06 1.43E-05 6.45E-11 9.10E+00 1.22E-11 

g07 3.01E-01 8.81E-02 1.04E-03 5.27E+00 

g08 4.16E-17 4.16E-17 4.22E-17 4.72E-17 

g09 5.27E-03 6.55E-03 1.52E+00 8.99E-02 

g10 2.69E+02 N.A. N.A. 1.42E+03 

g11 8.49E-02 N.A. N.A. 1.00E-02 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 8.58E-01 N.A. N.A. 8.51E-01 

g14 3.90E+00 N.A. 8.09E-01 1.01E+01 

g15 2.98E+00 N.A. N.A. 4.69E+00 

g16 9.79E-09 5.68E-15 2.32E-02 1.52E-03 

g17 2.21E+02 N.A. N.A. 2.53E+02 

g18 3.47E-04 8.56E-04 8.02E-03 1.50E-02 

g19 6.33E+00 1.92E+00 2.34E+01 1.07E+01 

g20 N.A. N.A. N.A. 4.84E-02 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 4.00E+02 4.00E+02 2.30E+02 5.76E+02 

g24 1.24E-14 1.24E-14 9.40E-04 1.24E-14 

  



CHAPTER 3: NOVEL SPIDER MONKEY OPTIMIZATION ALGORITHM FOR CONSTRAINED OPTIMIZATION PROBLEMS 

 

68 

 

 

Table 3.12: Comparison of CSMO against ABC, CHDE and PESO in terms of Standard 

Deviation of function error values obtained with feasible runs out of 25 independent runs on 

CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.00E+00 0.00E+00 1.97E+00 7.92E-01 

g02 1.52E-02 3.04E-03 8.82E-02 2.69E-02 

g03 1.45E-01 1.09E-01 2.03E-01 3.40E-01 

g04 0.00E+00 0.00E+00 2.93E+01 1.21E-12 

g05 3.92E+02 N.A. N.A. 4.39E+02 

g06 4.80E-05 9.73E-11 3.92E+01 1.23E-12 

g07 2.09E-01 N.A. 1.70E-03 4.84E+00 

g08 6.29E-33 6.29E-33 2.78E-18 6.95E-18 

g09 2.99E-03 2.91E-03 4.81E+00 7.08E-02 

g10 2.20E+02 N.A. N.A. 7.28E+02 

g11 1.03E-01 N.A. N.A. 5.00E-02 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 1.46E-01 N.A. N.A. 9.70E-01 

g14 1.43E+00 N.A. 1.32E+00 3.52E+00 

g15 3.65E+00 N.A. N.A. 3.94E+00 

g16 3.13E-08 1.00E-15 8.95E-02 1.36E-03 

g17 1.39E+02 N.A. N.A. 1.20E+02 

g18 4.74E-04 7.57E-04 3.90E-02 4.25E-02 

g19 3.77E+00 3.03E-01 8.63E+01 7.21E+00 

g20 N.A. N.A. N.A. 6.34E-02 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 0.00E+00 0.00E+00 1.82E+02 2.39E+02 

g24 3.22E-30 3.22E-30 4.70E-03 3.22E-30 
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Table 3.13: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Best, Median, Worst, Mean and Standard Deviation (Stdev) of function error values 

on CEC2006 benchmark problems 

CSMO vs. Criteria Better Equal Worse 

ABC Best 14 6 4 

 
Median 13 5 6 

 
Worst 13 5 6 

 
Mean 3 6 5 

 
Stdev 2 6 5 

 
Total 45 28 26 

CHDE Best 9 5 10 

 
Median 12 4 8 

 
Worst 20 1 3 

 
Mean 11 1 3 

 
Stdev 12 1 2 

 
Total 64 12 26 

PESO Best 9 5 10 

 
Median 16 4 4 

 
Worst 17 4 3 

 
Mean 16 2 3 

 
Stdev 16 2 3 

 
Total 74 17 23 
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Table 3.14: Comparison of CSMO against ABC, CHDE and PESO in terms of Best of 

number of function evaluations obtained with successful runs out of 25 independent runs on 

CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 8950 23850 9150 17300 

g02 217736 316453 154950 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 17550 65050 7900 15950 

g05 N.A. N.A. N.A. N.A. 

g06 165267 159380 5250 29600 

g07 N.A. N.A. 70100 N.A. 

g08 650 950 250 1700 

g09 N.A. N.A. 17200 N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 274204 N.A. N.A. 31100 

g12 350 850 1600 800 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. 40300 N.A. 

g15 N.A. N.A. N.A. N.A. 

g16 12850 41050 8200 13850 

g17 N.A. N.A. N.A. N.A. 

g18 219036 422568 16300 21800 

g19 N.A. N.A. 64500 N.A. 

g20 N.A. N.A. N.A. 8900 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. 95850 N.A. 

g24 2950 7151 2150 6800 
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Table 3.15: Comparison of CSMO against ABC, CHDE and PESO in terms Median of 

number of function evaluations obtained with successful runs out of 25 independent runs on 

CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 10750 24950 14100 83825 

g02 255548.5 376953 290100 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 21850 77150 9950 17450 

g05 N.A. N.A. N.A. N.A. 

g06 201324 175484 6500 33200 

g07 N.A. N.A. 70100 N.A. 

g08 950 1950 1100 3050 

g09 N.A. N.A. 29250 N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 359310 N.A. N.A. 86750 

g12 1050 2450 4300 2300 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. 77775 N.A. 

g15 N.A. N.A. N.A. N.A. 

g16 26050 45250 12650 14600 

g17 N.A. N.A. N.A. N.A. 

g18 372280 427268 81375 23000 

g19 N.A. N.A. 165750 N.A. 

g20 N.A. N.A. N.A. 12200 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. 196775 N.A. 

g24 4250 12151 2925 9350 
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Table 3.16: Comparison of CSMO against ABC, CHDE and PESO in terms Worst of number 

of function evaluations obtained with successful runs out of 25 independent runs on CEC2006 

Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 28150 27250 20300 366800 

g02 293361 441355 372900 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 30150 85451 35750 97100 

g05 N.A. N.A. N.A. N.A. 

g06 326597 218293 9150 53600 

g07 N.A. N.A. 70100 N.A. 

g08 1250 2750 1650 4550 

g09 N.A. N.A. 54800 N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 476918 N.A. N.A. 329300 

g12 1650 4950 6450 3500 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. 323750 N.A. 

g15 N.A. N.A. N.A. N.A. 

g16 80724 53050 43600 20150 

g17 N.A. N.A. N.A. N.A. 

g18 476428 465770 236350 23000 

g19 N.A. N.A. 437950 N.A. 

g20 N.A. N.A. N.A. 192500 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. 267900 N.A. 

g24 5850 14650 4600 10850 

  



CHAPTER 3: NOVEL SPIDER MONKEY OPTIMIZATION ALGORITHM FOR CONSTRAINED OPTIMIZATION PROBLEMS 

 

73 

 

 

Table 3.17: Comparison of CSMO against ABC, CHDE and PESO in terms Mean of number 

of function evaluations obtained with successful runs out of 25 independent runs on CEC2006 

Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 13714 25198 14642 120840 

g02 255548 379636 272650 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 22690 76624 11165 21038 

g05 N.A. N.A. N.A. N.A. 

g06 216177 179669 6830 33992 

g07 N.A. N.A. 70100 N.A. 

g08 934 1886 1086 3068 

g09 N.A. N.A. 30311 N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 374996 N.A. N.A. 115400 

g12 1026 2526 4142 2264 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. 113065 N.A. 

g15 N.A. N.A. N.A. N.A. 

g16 34930 45022 14402 15457 

g17 N.A. N.A. N.A. N.A. 

g18 348277 438535 94531 22600 

g19 N.A. N.A. 173146 N.A. 

g20 N.A. N.A. N.A. 37450 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. 189325 N.A. 

g24 4258 11878 3064 9116 
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Table 3.18: Comparison of CSMO against ABC, CHDE and PESO in terms Standard 

Deviation of number of function evaluations obtained with successful runs out of 25 

independent runs on CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 6026 869 3308 99405 

g02 53474 37772 110017 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 2973 4726 5623 16017 

g05 N.A. N.A. N.A. N.A. 

g06 42756 15270 1131 4401 

g07 N.A. N.A. N.A. N.A. 

g08 146 396 338 813 

g09 N.A. N.A. 13775 N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 80233 N.A. N.A. 75240 

g12 274 1092 1181 673 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. 84753 N.A. 

g15 N.A. N.A. N.A. N.A. 

g16 20422 2879 7981 2159 

g17 N.A. N.A. N.A. N.A. 

g18 109348 23702 75516 692 

g19 N.A. N.A. 98839 N.A. 

g20 N.A. N.A. N.A. 59787 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. 70820 N.A. 

g24 796 2062 542 987 
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Table 3.19: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Best, Median, Worst, Mean and Standard Deviation (Stdev) of number of function 

evaluations with successful runs out of 25 independent runs on CEC2006 Benchmark 

Problems 

CSMO vs. Criteria Better Equal Worse 

ABC Best 8 0 1 

 
Median 8 0 1 

 
Worst 5 0 4 

 
Mean 8 0 1 

 
Stdev 4 0 5 

 
Total 33 0 12 

CHDE Best 2 0 7 

 
Median 4 0 5 

 
Worst 4 0 5 

 
Mean 4 0 5 

 
Stdev 4 0 5 

 
Total 18 0 27 

PESO Best 5 0 4 

 
Median 4 0 5 

 
Worst 5 0 4 

 
Mean 4 0 5 

 
Stdev 5 0 4 

 
Total 23 0 22 
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Table 3.20: Wilcoxon Rank sum test based on function error values with a significance level 

of 𝛼 = 0.05 for CEC2006 Benchmark Problems (‘+’ indicates CSMO is significantly better, 

‘-’ indicates CSMO is significantly worse and ‘=’ indicates there is no significant difference) 

Problems 
Pairwise comparison of CSMO versus 

ABC CHDE PESO 

g01 = + + 

g02 - + + 

g03 + + = 

g04 = + = 

g05 + + = 

g06 - + - 

g07 = - + 

g08 = = + 

g09 + + + 

g10 + + + 

g11 = = - 

g12 = = = 

g13 + + - 

g14 + - + 

g15 + + + 

g16 - + + 

g17 + + = 

g18 + + + 

g19 - + + 

g20 * * = 

g21 * * * 

g22 * * * 

g23 = = + 

g24 = = = 

* represents that there is no comparison available 
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Table 3.21: Average execution time per run (in seconds) on CEC2006 Benchmark Problems 

Problems CSMO ABC CHDE PESO 

g01 0.41768 0.56896 0.36908 0.97888 

g02 6.40724 6.78896 6.88476 9.9992 

g03 0.35684 0.41096 0.33932 0.60008 

g04 0.21896 0.24388 0.20716 0.41756 

g05 0.4378 0.45488 0.91476 1.0518 

g06 0.2148 0.25324 1.021 0.84124 

g07 0.36836 0.44588 0.32352 0.65116 

g08 1.03548 1.3826 1.35944 1.0588 

g09 1.30812 1.35272 1.71036 2.15828 

g10 0.31108 0.4072 0.26892 0.5256 

g11 0.13656 0.14232 0.12696 0.12892 

g12 3.90484 3.36936 3.65544 3.49316 

g13 1.35976 1.372 1.24464 1.4324 

g14 0.34888 0.41824 0.44376 0.9868 

g15 1.65564 1.72408 2.27784 1.99696 

g16 1.88088 2.27888 2.613 2.48844 

g17 2.35924 2.43636 3.49396 2.92316 

g18 9.66048 9.66428 9.76708 9.81096 

g19 4.32468 3.62732 4.35808 4.86152 

g20 1.12376 1.32712 0.95596 3.83296 

g21 1.50956 1.34956 1.13352 1.48948 

g22 2.59196 2.42244 1.78892 2.99968 

g23 0.34364 0.39484 0.2788 0.62116 

g24 3.0542 3.45708 3.6466 3.65356 
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Table 3.22: Feasibility Rate (F.R.) and Best, Median, Worst, Mean and Standard Deviation 

(Stdev) of the objective function values obtained by CSMO with 25 independent runs on 

CEC2010 Benchmark Problems for 10 dimensions 

Problems F.R. Best Median Worst Mean Stdev 

C01 100 -7.47E-01 -7.47E-01 -7.47E-01 -7.47E-01 0.00E+00 

C02 100 4.96E-01 2.10E+00 3.55E+00 2.22E+00 9.03E-01 

C03 100 1.29E+08 2.73E+12 5.22E+14 4.82E+13 1.16E+14 

C04 16 1.55E-03 9.02E-04(2) 2.28E+00(2) 7.00E+00 8.08E+00 

C05 0 3.08E-04(2) 5.92E-03(2) 1.73E-02(2) N.A. N.A. 

C06 0 6.02E-04(2) 9.14E-03(2) 2.31E-02(2) N.A. N.A. 

C07 100 6.37E-02 1.57E+00 7.20E+01 9.63E+00 1.88E+01 

C08 100 4.12E-05 1.06E+01 1.02E+03 6.27E+01 2.03E+02 

C09 8 1.35E+12 3.90E-04(1) 5.79E-03(1) 1.50E+13 1.93E+13 

C10 8 3.15E+11 5.29E-04(1) 2.88E-03(1) 4.68E+11 2.16E+11 

C11 0 7.24E-04(1) 8.53E-01(1) 1.89E+01(1) N.A. N.A. 

C12 100 -5.70E+02 -2.62E+02 2.14E+01 -2.94E+02 2.75E+02 

C13 100 -6.84E+01 -6.74E+01 -6.23E+01 -6.66E+01 2.21E+00 

C14 100 4.95E-03 5.43E-01 7.42E+00 1.34E+00 1.95E+00 

C15 100 8.23E+10 1.15E+12 8.53E+12 1.90E+12 2.27E+12 

C16 100 8.33E-01 1.02E+00 1.05E+00 9.96E-01 5.27E-02 

C17 100 8.19E+01 3.04E+02 1.01E+03 3.83E+02 2.33E+02 

C18 100 2.32E+03 6.78E+03 1.70E+04 7.48E+03 3.54E+03 
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Table 3.23: Comparison of CSMO against ABC, CHDE and PESO in terms Feasibility Rate 

obtained on CEC2010 Benchmark Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 100 100 100 100 

C02 100 0 0 100 

C03 100 0 44 88 

C04 16 0 44 4 

C05 0 0 0 100 

C06 0 0 0 100 

C07 100 100 100 100 

C08 100 100 100 100 

C09 8 0 0 100 

C10 8 0 0 100 

C11 0 0 60 12 

C12 100 56 76 36 

C13 100 100 100 100 

C14 100 12 16 100 

C15 100 0 0 100 

C16 100 0 0 100 

C17 100 0 0 100 

C18 100 0 0 100 

 

 

 

Table 3.24: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Feasibility Rate (F.R.) on CEC2010 benchmark problems for 10 dimensions 

CSMO vs. Criteria Better Equal Worse 

ABC Feasibility Rate (F.R.) 11 7 0 

CHDE Feasibility Rate (F.R.) 10 6 2 

PESO Feasibility Rate (F.R.) 3 10 5 
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Table 3.25: Comparison of CSMO against ABC, CHDE and PESO in terms of Best of 

objective function values obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -7.47E-01 -7.47E-01 -7.47E-01 -7.37E-01 

C02 4.96E-01 3.40E-05(1) 3.53E-05(1) -1.69E-02 

C03 1.29E+08 1.02E-02(1) 0.00E+00 2.58E+09 

C04 1.55E-03 1.48E-04(2) -1.00E-05 9.22E-04 

C05 3.08E-04(2) 9.80E-03(2) 5.25E-05(1) 1.80E+02 

C06 6.02E-04(2) 3.55E-02(2) 5.55E-05(1) 3.88E-01 

C07 6.37E-02 9.24E-02 0.00E+00 9.16E-06 

C08 4.12E-05 7.24E-03 0.00E+00 2.34E-05 

C09 1.35E+12 1.00E-04(1) 1.82E-04(1) 2.82E+12 

C10 3.15E+11 1.64E-04(1) 4.57E-04(1) 4.45E+12 

C11 7.24E-04(1) 1.15E-03(1) -1.52E-03 -1.17E-03 

C12 -5.70E+02 -1.99E-01 -3.05E+02 -1.99E-01 

C13 -6.84E+01 -6.84E+01 -6.84E+01 -6.56E+01 

C14 4.95E-03 2.70E+11 3.50E+00 4.57E-07 

C15 8.23E+10 5.40E-03(1) 3.40E-01(1) 4.02E+12 

C16 8.33E-01 5.28E-05(2) 5.15E-05(2) 7.14E-01 

C17 8.19E+01 3.40E-05(1) 3.57E-05(1) 1.77E+02 

C18 2.32E+03 2.07E-08(1) 3.32E-06(1) 4.15E+03 
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Table 3.26: Comparison of CSMO against ABC, CHDE and PESO in terms of Median of 

objective function values obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -7.47E-01 -7.47E-01 -7.47E-01 -6.69E-01 

C02 2.10E+00 5.10E-05(1) 1.27E-04(1) 3.78E+00 

C03 2.73E+12 3.36E-01(1) 1.01E-04(1) 8.99E+13 

C04 9.02E-04(2) 2.98E-03(4) 2.60E-05(1) 6.77E-02(3) 

C05 5.92E-03(2) 1.16E-01(2) 1.62E-01(2) 5.06E+02 

C06 9.14E-03(2) 2.83E-01(2) 2.28E-01(2) 3.88E-01 

C07 1.57E+00 3.44E+00 2.31E-19 1.21E-01 

C08 1.06E+01 2.12E-01 1.06E+01 4.51E+01 

C09 3.90E-04(1) 2.66E-03(1) 8.22E-03(1) 1.71E+13 

C10 5.29E-04(1) 4.45E-03(1) 5.48E-03(1) 1.86E+13 

C11 8.53E-01(1) 3.16E+00(1) -1.52E-03 4.34E-01(1) 

C12 -2.62E+02 -1.68E-01 -1.99E-01 1.41E+01(1) 

C13 -6.74E+01 -6.82E+01 -6.84E+01 -6.23E+01 

C14 5.43E-01 2.34E+00(1) 1.59E+00(1) 3.99E+00 

C15 1.15E+12 1.03E+00(1) 2.08E+00(1) 8.29E+13 

C16 1.02E+00 1.38E-04(2) 2.93E-04(2) 1.05E+00 

C17 3.04E+02 6.97E-05(1) 1.19E-04(1) 5.93E+02 

C18 6.78E+03 1.49E-05(1) 1.18E-04(2) 1.38E+04 
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Table 3.27: Comparison of CSMO against ABC, CHDE and PESO in terms of Worst of 

objective function values obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -7.47E-01 -7.47E-01 -3.27E-01 -5.05E-01 

C02 3.55E+00 1.10E-04(1) 1.28E-03(1) 5.35E+00 

C03 5.22E+14 2.86E+01(1) 1.27E+04(1) 3.56E+00(1) 

C04 2.28E+00(2) 2.63E-02(4) 9.83E+00(4) 3.65E+00(2) 

C05 1.73E-02(2) 2.76E-01(2) 1.09E+00(2) 5.93E+02 

C06 2.31E-02(2) 7.00E-01(2) 6.75E-01(2) 3.88E-01 

C07 7.20E+01 6.07E+00 5.39E+04 1.54E+02 

C08 1.02E+03 4.16E+01 1.79E+06 1.60E+04 

C09 5.79E-03(1) 1.33E-02(1) 6.54E-02(1) 3.03E+13 

C10 2.88E-03(1) 1.61E-02(1) 5.80E-02(1) 2.85E+13 

C11 1.89E+01(1) 6.13E+00(1) 1.13E+06(1) 1.08E+03(1) 

C12 2.14E+01 2.71E-02(1) 3.15E+07(2) 5.75E+02(2) 

C13 -6.23E+01 -6.56E+01 -6.21E+01 -5.96E+01 

C14 7.42E+00 4.70E+01(2) 2.54E+01(1) 5.62E+04 

C15 8.53E+12 1.46E+02(1) 3.47E+01(1) 3.61E+14 

C16 1.05E+00 9.75E-04(2) 7.50E-03(2) 1.13E+00 

C17 1.01E+03 2.26E-04(1) 2.99E-03(1) 4.92E+02 

C18 1.70E+04 7.25E-05(1) 2.43E-02(1) 3.81E+04 
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Table 3.28: Comparison of CSMO against ABC, CHDE and PESO in terms of Mean of 

objective function values obtained with feasible runs out of 25 independent runs on CEC2010 

Benchmark Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -7.47E-01 -7.47E-01 -7.15E-01 -6.41E-01 

C02 2.22E+00 N.A. N.A. 3.34E+00 

C03 4.82E+13 N.A. 9.64E-07 1.90E+14 

C04 7.00E+00 N.A. -9.51E-06 9.22E-04 

C05 N.A. N.A. N.A. 4.82E+02 

C06 N.A. N.A. N.A. 3.88E-01 

C07 9.63E+00 3.34E+00 2.23E+03 1.84E+01 

C08 6.27E+01 2.53E+00 7.16E+04 8.36E+02 

C09 1.50E+13 N.A. N.A. 1.58E+13 

C10 4.68E+11 N.A. N.A. 1.88E+13 

C11 N.A. N.A. -1.52E-03 -4.24E-04 

C12 -2.94E+02 -1.84E-01 -4.87E+01 1.10E+00 

C13 -6.66E+01 -6.79E+01 -6.62E+01 -6.09E+01 

C14 1.34E+00 3.82E+11 4.95E+00 8.13E+03 

C15 1.90E+12 N.A. N.A. 1.18E+14 

C16 9.96E-01 N.A. N.A. 1.03E+00 

C17 3.83E+02 N.A. N.A. 6.43E+02 

C18 7.48E+03 N.A. N.A. 1.43E+04 
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Table 3.29: Comparison of CSMO against ABC, CHDE and PESO in terms of Standard 

Deviation of objective function value obtained with feasible runs out of 25 independent runs 

on CEC2010 Benchmark Problems for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 0.00E+00 0.00E+00 8.44E-02 7.46E-02 

C02 9.03E-01 N.A. N.A. 1.33E+00 

C03 1.16E+14 N.A. 3.20E-06 3.74E+14 

C04 8.08E+00 N.A. 1.62E-06 N.A. 

C05 N.A. N.A. N.A. 1.05E+02 

C06 N.A. N.A. N.A. 5.67E-17 

C07 1.88E+01 1.62E+00 1.08E+04 4.38E+01 

C08 2.03E+02 8.32E+00 3.58E+05 3.18E+03 

C09 1.93E+13 N.A. N.A. 8.50E+12 

C10 2.16E+11 N.A. N.A. 9.42E+12 

C11 N.A. N.A. 2.24E-19 8.29E-04 

C12 2.75E+02 1.80E-02 7.84E+01 3.27E+00 

C13 2.21E+00 8.11E-01 2.63E+00 2.77E+00 

C14 1.95E+00 1.06E+11 1.30E+00 1.84E+04 

C15 2.27E+12 N.A. N.A. 1.02E+14 

C16 5.27E-02 N.A. N.A. 7.22E-02 

C17 2.33E+02 N.A. N.A. 2.62E+02 

C18 3.54E+03 N.A. N.A. 7.79E+03 
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Table 3.30: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Best, Median, Worst, Mean and Standard Deviation (Stdev) of objective function 

values on CEC2010 benchmark problems for 10 dimensions 

CSMO vs. Criteria Better Equal Worse 

ABC Best 16 2 0 

 
Median 15 1 2 

 
Worst 12 1 5 

 
Mean 2 1 3 

 
Stdev 1 1 4 

 
Total 46 6 14 

CHDE Best 9 2 7 

 
Median 12 2 4 

 
Worst 18 0 0 

 
Mean 6 0 2 

 
Stdev 4 0 4 

 
Total 49 4 17 

PESO Best 9 0 9 

 
Median 12 0 6 

 
Worst 13 0 5 

 
Mean 14 0 1 

 
Stdev 12 0 2 

 
Total 60 0 23 
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Table 3.31: Wilcoxon Rank sum test based on objective function value with a significance 

level of 𝛼 = 0.05 for CEC2010 Benchmark Problems for 10 dimensions (‘+’ indicates CSMO 

is significantly better, ‘-’ indicates CSMO is significantly worse and ‘=’ indicates there is no 

significant difference) 

 Pairwise comparison of CSMO versus 

Problems ABC CHDE PESO 

C01 = + + 

C02 + + + 

C03 + - = 

C04 = - = 

C05 * * - 

C06 * * - 

C07 - + + 

C08 - = + 

C09 + + + 

C10 + + + 

C11 = - = 

C12 + + + 

C13 = = + 

C14 + + + 

C15 + + + 

C16 + + + 

C17 + + + 

C18 + + + 

* represents that there is no comparison available 
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Table 3.32: Average execution time per run (in seconds) on CEC2010 Benchmark Problems 

for 10 dimensions 

Problems CSMO ABC CHDE PESO 

C01 1.57704 1.55108 1.7424 1.90884 

C02 0.62848 0.68408 0.62172 0.73736 

C03 2.99672 2.27116 3.56624 3.48196 

C04 2.26852 2.32996 2.27464 2.35688 

C05 0.66564 0.7434 0.67532 0.76536 

C06 0.9182 1.03692 0.96604 1.033 

C07 4.56004 4.54504 3.87796 4.6046 

C08 3.45228 3.12884 3.44736 3.27608 

C09 0.39936 0.45472 0.3972 0.58512 

C10 0.6866 0.77276 0.78496 0.87532 

C11 4.61672 4.67012 4.6762 4.74156 

C12 2.44728 2.4662 2.47104 2.53948 

C13 0.69888 0.71472 0.73828 0.82768 

C14 2.34368 1.02048 2.62536 3.36856 

C15 1.22948 1.3252 3.11072 1.36908 

C16 0.8308 0.89376 0.894 0.95584 

C17 0.41632 0.45752 0.55272 0.57392 

C18 0.67808 0.75412 0.983 0.81752 
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Table 3.33: Feasibility Rate (F.R.) and Best, Median, Worst, Mean and Standard Deviation 

(Stdev) of the objective function values obtained by CSMO with 25 independent runs on 

CEC2010 Benchmark Problems for 30 dimensions 

Problems F.R. Best Median Worst Mean Stdev 

C01 100 -8.18E-01 -8.18E-01 -8.04E-01 -8.17E-01 2.80E-03 

C02 100 1.38E+00 3.03E+00 4.05E+00 2.97E+00 6.29E-01 

C03 0 1.12E-03(1) 2.61E+01(1) 4.53E+02(1) N.A. N.A. 

C04 0 4.14E-03(3) 4.27E-02(3) 1.22E+00(4) N.A. N.A. 

C05 0 2.32E-04(2) 9.78E-04(2) 2.22E-03(2) N.A. N.A. 

C06 0 3.52E-04(2) 2.04E-03(2) 4.22E-03(2) N.A. N.A. 

C07 100 4.72E-04 1.37E+01 1.03E+02 2.60E+01 3.50E+01 

C08 100 2.11E-03 7.99E+01 1.51E+04 1.09E+03 3.23E+03 

C09 16 1.78E+13 3.36E-04(1) 1.26E-03(1) 3.36E+13 2.15E+13 

C10 12 1.05E+12 3.06E-04(1) 1.53E-03(1) 2.59E+13 2.33E+13 

C11 4 2.61E-04 6.91E+00(1) 1.38E+02(1) 2.61E-04 - 

C12 92 -8.85E+02 -1.99E-01 3.23E-01(1) -4.19E+02 4.20E+02 

C13 100 -6.75E+01 -6.40E+01 -6.19E+01 -6.43E+01 1.27E+00 

C14 100 1.30E-02 1.28E+01 2.87E+03 1.85E+02 5.85E+02 

C15 100 7.57E+12 2.60E+13 2.22E+13 2.32E+13 1.10E+13 

C16 100 1.06E+00 1.11E+00 1.17E+00 1.11E+00 2.48E-02 

C17 100 8.09E+02 1.36E+03 2.44E+03 1.43E+03 3.33E+02 

C18 100 1.80E+04 2.63E+04 3.52E+04 2.65E+04 4.57E+03 
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Table 3.34: Comparison of CSMO against ABC, CHDE and PESO in terms of Feasibility 

Rate obtained on CEC2010 Benchmark Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 100 100 100 100 

C02 100 0 0 100 

C03 0 0 0 0 

C04 0 0 0 0 

C05 0 0 0 100 

C06 0 0 0 100 

C07 100 100 100 100 

C08 100 100 100 100 

C09 16 0 0 100 

C10 12 0 0 100 

C11 4 0 24 0 

C12 92 48 36 32 

C13 100 100 100 100 

C14 100 0 24 100 

C15 100 0 0 100 

C16 100 0 0 100 

C17 100 0 0 100 

C18 100 0 0 100 

 

 

 

Table 3.35: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Feasibility Rate (F.R.) on CEC2010 benchmark problems for 30 dimensions 

CSMO vs. Criteria Better Equal Worse 

ABC Feasibility Rate (F.R.) 10 8 0 

CHDE Feasibility Rate (F.R.) 9 8 1 

PESO Feasibility Rate (F.R.) 2 12 4 
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Table 3.36: Comparison of CSMO against ABC, CHDE and PESO in terms of Best of 

objective function values obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -8.18E-01 -8.22E-01 -8.18E-01 -7.23E-01 

C02 1.38E+00 3.34E-05(1) 3.63E-05(1) 2.85E+00 

C03 1.12E-03(1) 1.74E+01(1) 1.00E-04(1) 3.38E+01(1) 

C04 4.14E-03(3) 5.04E-02(4) 2.50E-05(1) 5.41E-02(3) 

C05 2.32E-04(2) 1.19E-03(2) 5.45E-05(1) 3.12E+02 

C06 3.52E-04(2) 2.52E-02(2) 7.95E-05(1) 6.16E-01 

C07 4.72E-04 1.61E+01 0.00E+00 1.02E+01 

C08 2.11E-03 2.23E+01 0.00E+00 1.15E+01 

C09 1.78E+13 1.43E-04(1) 2.20E-04(1) 1.67E+13 

C10 1.05E+12 1.06E-04(1) 4.97E-04(1) 1.66E+13 

C11 2.61E-04 2.08E+01(1) -3.92E-04 1.37E+01(1) 

C12 -8.85E+02 -1.98E-01 -1.99E-01 -1.96E-01 

C13 -6.75E+01 -5.55E+01 -6.76E+01 -6.24E+01 

C14 1.30E-02 9.65E-03(1) 1.49E-12 1.72E+01 

C15 7.57E+12 1.05E-02(1) 2.59E-01(1) 4.53E+13 

C16 1.06E+00 5.30E-05(2) 5.45E-05(2) 1.08E+00 

C17 8.09E+02 3.45E-05(1) 3.50E-05(1) 8.05E+02 

C18 1.80E+04 1.30E-07(1) 5.70E-07(1) 1.59E+04 
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Table 3.37: Comparison of CSMO against ABC, CHDE and PESO in terms of Median of 

objective function values obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -8.18E-01 -8.20E-01 -7.30E-01 -6.51E-01 

C02 3.03E+00 4.23E-05(1) 7.37E-05(1) 4.15E+00 

C03 2.61E+01(1) 4.36E+02(1) 4.13E+00(1) 1.20E+03(1) 

C04 4.27E-02(3) 4.39E-01(4) 4.55E-02(2) 1.70E+00(3) 

C05 9.78E-04(2) 4.97E-02(2) 4.49E-02(2) 5.67E+02 

C06 2.04E-03(2) 8.23E-02(2) 9.00E-02(2) 6.16E-01 

C07 1.37E+01 2.35E+01 1.33E+01 2.57E+01 

C08 7.99E+01 2.49E+01 7.29E+01 3.04E+02 

C09 3.36E-04(1) 1.12E-03(1) 2.41E-03(1) 5.65E+13 

C10 3.06E-04(1) 1.55E-03(1) 4.32E-03(1) 4.78E+13 

C11 6.91E+00(1) 2.24E+01(1) 6.79E+00(1) 2.83E+01(1) 

C12 -1.99E-01 5.01E-05(1) 3.19E-01(1) 4.91E-02(1) 

C13 -6.40E+01 -5.03E+01 -6.33E+01 -5.96E+01 

C14 1.28E+01 1.13E-01(1) 7.40E+00(1) 1.17E+04 

C15 2.60E+13 1.07E-01(1) 1.64E+01(1) 1.90E+14 

C16 1.11E+00 4.46E-04(2) 1.45E-04(2) 1.17E+00 

C17 1.36E+03 4.86E-05(1) 5.90E-05(1) 2.25E+03 

C18 2.63E+04 6.56E-06(1) 5.10E-05(1) 3.94E+04 
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Table 3.38: Comparison of CSMO against ABC, CHDE and PESO in terms of Worst of 

objective function value obtained with 25 independent runs on CEC2010 Benchmark 

Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -8.04E-01 -8.16E-01 -4.25E-01 -5.42E-01 

C02 4.05E+00 8.51E-05(1) 4.83E-03(1) 5.06E+00 

C03 4.53E+02(1) 1.89E+03(1) 5.94E+04(1) 1.64E+04(1) 

C04 1.22E+00(4) 3.10E+00(4) 3.13E+02(4) 1.36E+01(3) 

C05 2.22E-03(2) 9.35E-02(2) 2.46E-01(2) 5.93E+02 

C06 4.22E-03(2) 1.94E-01(2) 3.32E-01(2) 6.16E-01 

C07 1.03E+02 4.83E+01 5.58E+08 3.00E+02 

C08 1.51E+04 1.83E+02 3.63E+08 1.10E+04 

C09 1.26E-03(1) 7.30E-03(1) 1.17E-01(1) 1.10E+14 

C10 1.53E-03(1) 9.74E-03(1) 3.16E-01(1) 1.30E+14 

C11 1.38E+02(1) 2.67E+01(1) 8.02E+07(1) 1.14E+03(1) 

C12 3.23E-01(1) 5.70E-01(1) 6.95E+09(1) 1.52E+01(1) 

C13 -6.19E+01 -4.53E+01 -5.65E+01 -6.34E+01 

C14 2.87E+03 9.89E-01(1) 7.37E+01(1) 2.75E+05 

C15 2.22E+13 6.67E-01(1) 1.73E+02(1) 5.62E+14 

C16 1.17E+00 4.80E-03(2) 7.95E-03(2) 1.28E+00 

C17 2.44E+03 9.15E-05(1) 4.00E-04(1) 4.58E+03 

C18 3.52E+04 2.46E-05(1) 1.48E-03(2) 1.07E+05 
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Table 3.39: Comparison of CSMO against ABC, CHDE and PESO in terms of Mean of 

objective function values obtained with feasible runs out of 25 independent runs on CEC2010 

Benchmark Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 -8.17E-01 -8.19E-01 -7.01E-01 -6.51E-01 

C02 2.97E+00 N.A. N.A. 4.09E+00 

C03 N.A. N.A. N.A. N.A. 

C04 N.A. N.A. N.A. N.A. 

C05 N.A. N.A. N.A. 5.36E+02 

C06 N.A. N.A. N.A. 6.16E-01 

C07 2.60E+01 2.43E+01 3.26E+07 5.74E+01 

C08 1.09E+03 4.13E+01 2.82E+07 1.57E+03 

C09 3.36E+13 N.A. N.A. 5.72E+13 

C10 2.59E+13 N.A. N.A. 5.11E+13 

C11 2.61E-04 N.A. -3.85E-04 N.A. 

C12 -4.19E+02 -1.64E-01 -1.88E-01 2.46E+00 

C13 -6.43E+01 -5.05E+01 -6.31E+01 -5.95E+01 

C14 1.85E+02 N.A. 1.07E+13 4.03E+04 

C15 2.32E+13 N.A. N.A. 2.41E+14 

C16 1.11E+00 N.A. N.A. 1.17E+00 

C17 1.43E+03 N.A. N.A. 2.35E+03 

C18 2.65E+04 N.A. N.A. 4.27E+04 
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Table 3.40: Comparison of CSMO against ABC, CHDE and PESO in terms of Standard 

Deviation of objective function values obtained with feasible runs out of 25 independent runs 

on CEC2010 Benchmark Problems for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 2.80E-03 1.80E-03 1.12E-01 4.84E-02 

C02 6.29E-01 N.A. N.A. 6.56E-01 

C03 N.A. N.A. N.A. N.A. 

C04 N.A. N.A. N.A. N.A. 

C05 N.A. N.A. N.A. 8.15E+01 

C06 N.A. N.A. N.A. 2.27E-16 

C07 3.50E+01 5.46E+00 1.14E+08 6.96E+01 

C08 3.23E+03 4.07E+01 7.95E+07 3.06E+03 

C09 2.15E+13 N.A. N.A. 2.64E+13 

C10 2.33E+13 N.A. N.A. 2.52E+13 

C11 N.A. N.A. 1.13E-05 N.A. 

C12 4.20E+02 4.27E-02 3.34E-02 5.05E+00 

C13 1.27E+00 2.76E+00 2.66E+00 1.89E+00 

C14 5.85E+02 N.A. 2.55E+13 6.67E+04 

C15 1.10E+13 N.A. N.A. 1.45E+14 

C16 2.48E-02 N.A. N.A. 4.08E-02 

C17 3.33E+02 N.A. N.A. 1.03E+03 

C18 4.57E+03 N.A. N.A. 1.98E+04 
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Table 3.41: Summary of pairwise comparison of CSMO against ABC, CHDE and PESO in 

terms of Best, Median, Worst, Mean and Standard Deviation (Stdev) of objective function 

values on CEC2010 benchmark problems for 30 dimensions 

CSMO vs. Criteria Better Equal Worse 

ABC Best 17 0 1 

 
Median 16 0 2 

 
Worst 14 0 4 

 
Mean 2 0 3 

 
Stdev 1 0 4 

 
Total 50 0 14 

CHDE Best 8 1 9 

 
Median 14 0 4 

 
Worst 18 0 0 

 
Mean 6 0 1 

 
Stdev 5 0 1 

 
Total 51 1 15 

PESO Best 13 0 5 

 
Median 14 0 4 

 
Worst 12 0 6 

 
Mean 13 0 0 

 
Stdev 11 0 2 

 
Total 63 0 17 
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Table 3.42: Wilcoxon Rank sum test based on objective function value with a significance 

level of 𝛼 = 0.05 for CEC2010 problems for 30 dimensions (‘+’ indicates CSMO is 

significantly better, ‘-’ indicates CSMO is significantly worse and ‘=’ indicates there is no 

significant difference) 

 Pairwise comparison of CSMO vs. 

Problems ABC CHDE PESO 

C01 - + + 

C02 + + + 

C03 * * * 

C04 * * * 

C05 * * - 

C06 * * - 

C07 - = + 

C08 - = + 

C09 + + + 

C10 + + + 

C11 + = + 

C12 = + + 

C13 + + + 

C14 + = + 

C15 + + + 

C16 + + + 

C17 + + + 

C18 + + + 

* represents that there is no comparison available 
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Table 3.43: Average execution time per run (in seconds) on CEC2010 Benchmark Problems 

for 30 dimensions 

Problems CSMO ABC CHDE PESO 

C01 13.98664 11.241 13.85604 16.2862 

C02 5.37496 5.9204 5.30348 6.27464 

C03 21.386 21.62612 21.82664 22.037 

C04 23.29676 23.873 23.15528 24.15784 

C05 5.84628 6.40672 5.7782 6.73036 

C06 11.7292 12.75652 11.82968 12.77468 

C07 43.1298 42.76172 41.29888 43.70084 

C08 39.4982 29.24572 39.3022 38.12704 

C09 3.42036 3.9872 3.29032 5.52212 

C10 9.17212 10.08184 9.29888 11.2724 

C11 47.38996 47.8688 47.46912 48.34676 

C12 23.08752 23.1898 22.77252 24.19908 

C13 6.16084 5.73776 6.45248 7.24744 

C14 36.29884 9.06128 25.17796 33.4856 

C15 14.20968 15.05268 29.57508 15.2528 

C16 7.28812 7.85596 7.93124 8.78128 

C17 3.55688 3.9724 4.41244 5.5216 

C18 5.92072 6.40328 8.52552 7.33484 
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CHAPTER 4 

TOURNAMENT SELECTION BASED SPIDER 

MONKEY OPTIMIZATION ALGORITHM FOR 

UNCONSTRAINED OPTIMIZATION 

In this chapter, a modified version of basic SMO [17] namely Tournament selection based 

Spider Monkey Optimization (TS-SMO) has been proposed for solving unconstrained 

continuous optimization problems. The objective is to improve the exploration ability of basic 

SMO by implementing tournament selection based probability scheme in it. Investigation has 

been made on the performance of the proposed algorithm by testing it over a set of 46 

unconstrained benchmark problems and results are compared with the basic version SMO 

[17]. The chapter is organised as follows: In section 4.1, the motivation behind proposing this 

new algorithm is discussed.  In section 4.2, the proposed algorithm is described. In Section 

4.3, details of experimental setup are provided.  In section 4.4, experimental results are 

discussed in order to examine the performance of the proposed algorithm and the chapter is 

concluded in section 4.5. 

4.1 MOTIVATION 

There are mainly two manipulation phases in basic SMO namely Local Leader Phase and 

Global Leader Phase, which are responsible for updating the swarm. In Local Leader Phase, 

all the members of the swarm get equal chance to update themselves, but in Global Leader 

Phase, members of the swarm get a chance to update themselves on the basis of their 

probability. The probability scheme used in basic SMO is fitness proportionate, which is 

similar to roulette wheel selection in Genetic Algorithm [77]. Due to the use of fitness based 

probability scheme, the members with higher fitness value have better chance to update their 

position as compared to the members with lower fitness value. Sometimes, even less fit 

members may contain some very important and useful information, but not given a chance to 

update due to their low fitness, this useful information is lost. Also, focussing the search on 

best solutions only due to their high fitness may sometimes lead to premature convergence. In 
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this chapter, an attempt has been made to overcome these issues by using tournament 

selection based probability based scheme. 

4.2 THE PROPOSED TOURNAMENT SELECTION BASED SPIDER 

MONKEY OPTIMIZATION 

4.2.1 TOURNAMENT SELECTION BASED PROBABILITY SCHEME 

Tournament selection is one the famous selection operators in GA. Unlike, roulette wheel 

selection, in which only highly fit solutions are preferred, low fit solutions are also given a 

chance in tournament selection. Instead of fitness proportionate probability scheme in SMO, 

tournament selection based probability scheme has been used in TS-SMO. This probability 

scheme will help in increasing the exploration ability of SMO by reducing the biasness 

towards highly fit solutions and thus handling the problem of premature convergence by 

increasing diversity in the population. 

4.2.2 IMPLEMENTATION STRATEGY OF TOURNAMENT SELECTION BASED 

PROBABILITY SCHEME IN SMO 

TS-SMO differs from basic SMO in the use of probability scheme only. The fitness 

proportionate probability scheme of SMO has been replaced with tournament selection based 

probability scheme.  Probability of a solution is used in the Global Leader Phase to update the 

position of spider monkeys. Higher the probability, higher the chances of that spider monkey 

to update its position. In TS-SMO, all the steps for executing the algorithm are same as that of 

basic SMO except the calculation of probability. 

The steps for calculating the tournament selection based probability of solutions in the 

swarm is provided in Algorithm 4.1. From this algorithm, it can be observed that tournament 

selection has nothing to do with the magnitude of the fitness of the solutions. While the 

fitness proportionate probability scheme described in chapter 2 has to deal with the actual 

fitness of the solution, tournament selection only deals with the ranking of the solution in 

terms of fitness. The rank of a solution in terms of fitness is a number which indicates the 

superiority of the solution over other solutions in the population. For example, if the rank of a 

solution is 5, it means this solution is better than five other solutions in the population. Both 

the fitness proportionate probability scheme and tournament selection based probability 

scheme perform almost similar if there is not much variation in the lowest and highest fitness 
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value of the swarm. But if there is much variation, both will behave in a different manner. 

Pseudocode for TS-SMO is given in Algorithm 4.2. 

Begin 

    Let 𝑎𝑖 be the rank of 𝑖𝑡ℎ spider monkey 

 For i = 1 to N Do 

𝑎𝑖 = 0 

  For j = 1 to N Do 

                          If (𝑓𝑖𝑡𝒊 ≥ 𝑓𝑖𝑡𝑗)Then 

𝑎𝑖 = 𝑎𝑖 + 1 

End If 

End For 

End For 

 For i = 1 to N Do 

 𝑝𝑟𝑜𝑏𝑖 =
𝑎𝑖

∑ 𝑎𝑖
𝑛
𝑖=1

 

End For 

End 

 

    Algorithm 4.1: Steps for calculating probability in TS-SMO 

 

4.3 EXPERIMENTAL SETUP 

4.3.1 BENCHMARK PROBLEMS 

In order to check the performance of the proposed algorithm TS-SMO, experiments have been 

performed over a large set of 46 benchmark problems.  This benchmark set includes 26 

problems considered for experiment in [17] as well as some additional benchmark problems 

from the literature for an extensive analysis of the performance of the proposed algorithm. 

This benchmark set is large enough to include problems having objective functions of 

different characteristics like unimodal, multimodal, separable, non-separable, discontinuous 

etc. The optimization problems in the benchmark set are broadly divided into two categories 

namely scalable and non-scalable. Out of these 46 problems, first 30 problems are scalable 

and rest of the problems are non-scalable. The dimension of all the scalable problems is same 

and is fixed to be 30. All the problems in the benchmark set are of minimization type.  List of 
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problems along with their search range and objective function is provided in the Appendix III. 

For scalable problems, lower and upper bounds on the decision variables are same for each 

dimension of the solution. Also, lower and upper bounds of each decision variable are same in 

non-scalable problems except two cases: problem no.32 and problem no. 36.  

Begin 

    Initialize the swarm using equation (2.1) 

    Initialize LLlt, GLlt, Pr, MG 

    Iteration=0 

    Calculate fitness value of the position of each spider monkey in the swarm 

    Select Global Leader and Local Leaders by applying Greedy Selection 

    While (termination criterion is not satisfied) Do 

          //Local Leader Phase (Algorithm 2.1) 

          //Calculate Probability of each spider monkey (Algorithm 4.1) 

         //Global Leader Phase (Algorithm 2.2) 

         //Global Leader Learning Phase (Algorithm 2.3) 

         //Local Leader Learning Phase (Algorithm 2.4) 

         //Local Leader Decision Phase (Algorithm 2.5) 

         //Global Leader Decision Phase (Algorithm 2.6) 

          Iteration = Iteration +1 

     End While 

 End 

 

Algorithm 4.2: Pseudocode for TS-SMO 

 

4.3.2  SETTING OF CONTROL PARAMETERS AND TERMINATION CRITERIA 

TS-SMO contains one more parameter in addition to the parameters of basic SMO. The 

parameter associated with tournament selection is the size of the tournament. This size 

indicates the number of solutions which will participate in the tournament. Tournament of 

size two has been used in TS-SMO. The reason for taking size two is to keep the tournament 

selection process simplest. The performance of TS-SMO has been compared with basic SMO. 

In order to maintain the consistency, same parameter setting has been adopted for both the 

algorithms. 
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The setting of parameters is given below: 

Swarm size =150 

perturbation rate (Pr) = linearly increasing ([0.1, 0.4]) 

maximum number of groups (MG) = 5 

local leader limit (LLlt) = 100 

global leader limit (GLlt) = 50 

Total number of runs  = 100 

Maximum number of iteration = 4000 

Acceptable error = 10−5 

Termination criterion = either maximum number of iterations are performed or acceptable 

error is achieved. 

Here, error is the absolute difference between the global optimal solution and the 

objective function value of the global leader. In order to make fair comparison between the 

two algorithms, both the algorithms start with the same initial swarm in every run.  

4.3.3 PERFORMANCE EVALUATION CRITERIA 

In order to access the impact of using tournament selection probability scheme, TS-SMO has 

been compared with basic SMO using various performance metrics. Comparison of SMO and 

TS-SMO has been made on the basis of reliability, efficiency and accuracy. Reliability is 

measured in terms of success rate. The formula for success rate is same as mentioned in eq. 

(3.4) in subsection 3.3.1 of chapter 3. A run is considered to be successful if error value of the 

global leader is less than or equal to the acceptable error which is set to be 10−5 here. If a run 

is successful for a particular problem, the problem is said to be solved in that particular run. 

Efficiency is the measured in terms of average number of  function evaluations for successful 

runs and accuracy is the degree of precision in locating the global optima and it is measured 

in terms of error values obtained in all the runs.  For comparison of these two algorithms, 

success rate, average number of function evaluations of successful runs and best, average and 

worst of error values obtained in 100 independent runs has been recorded. Results of scalable 
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and non-scalable problems have been discussed separately followed by overall conclusion of 

the performance of both the algorithms. 

Results of both the algorithms have been analyzed in three ways. First, the impact of using 

Tournament selection based probability scheme in SMO has been studied individually in 

terms of success rate, average number of function evaluations for successful runs and best, 

average and worst of error values obtained in 100 runs. For this purpose, two comparison 

criteria have been defined.  

Criterion 1 is used to compare the reliability and efficiency of both the algorithms. 

Comparison according to this criterion has been made on the basis of following information. 

 Success rate 

 Average number of function evaluations for successful runs 

Solving a problem is important, so first preference is given to the success rate. The criterion 1 

is only applied when atleast one of the algorithm is said to have positive number of successful 

runs. There can be three cases: 

Case1: When both the algorithms have different success rate 

In this case, algorithm with higher success rate is the winner and is said to perform strictly 

better than the other. 

Case 2: When both algorithms have same success rate and different average number of 

function evaluations for successful runs. 

In this case, algorithm with less average number of function evaluations for successful runs is 

the winner and is said to perform better than the other. 

Case 3: In extreme case, where both the algorithms have same success rate as well as same 

number of average function evaluations for successful runs, both the algorithms is considered 

equivalent. 

Criterion 2 is employed to compare the accuracy of both the algorithms. Comparison has 

been done on the basis of following: 

 Best, average and worst of the error values obtained in 100 runs 
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Following cases are possible for comparison: 

Case 1: When an algorithm say A has all the three (best, average and worst) error values less 

than the other algorithm say B. Then algorithm A is said to be strictly better than algorithm B. 

Case 2: When best and average error values of A is strictly less than those of B, and the worst 

error value of A is equal to that of B, then A is said to perform better then B. 

Case 3: When both A and B have same best, average and worst error values, then both A and 

B are said to be equivalent. 

Second method of analysis is to check the performance of the algorithms statistically. For 

this purpose, paired t-test at 0.05 level of significance has been used. T-test has been applied 

to those benchmark problems where the algorithms satisfy case 2 of criterion 1 to see if there 

is significant difference in the average number of function evaluations of these problems. In 

other words, t-test has been applied to the average number of function evaluations for 

successful runs of those problems where both the algorithms have same success rate to see if 

the difference between the average number of function evaluations for successful runs is 

significant or not. To apply t-test, we start with null hypothesis that “there is no difference 

between algorithms”. The alternative hypothesis is that “there is a difference”. Average 

number of function evaluations of successful runs is taken for each algorithm as a sampling 

data and the results have been presented for both scalable and non-scalable problems in 

tabular form. “=” in the table indicates there is no significant difference between the average 

of function evaluations of two algorithms and “+” and “-” indicates that TS-SMO performs 

significantly better and worse than SMO respectively. 

Third method of analysis is to compare the relative performance of two algorithms on the 

basis of performance index (PI’s) described in Appendix IV. The weight given to the success 

rate increases from 0 to 1 while the weight for average number of function evaluations 

decreases from 1 to 0. 

4.4 EXPERIMENTAL RESULTS AND DISCUSSION 

Tables 4.1-4.4 and Tables 4.5-4.8 present the results for scalable and non-scalable 

problems respectively. Better entries in the tables appear in bold. N.A. in the tables 

represents the non-availability of results. 
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4.4.1 DISCUSSION OF RESULTS FOR SCALABLE PROBLEMS 

From Table 4.1, it can be observed that out of 30 problems, both SMO and TS-SMO have 100 

percent success rate in twenty two problems (No.’s 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 

19, 23, 24, 25, 26, 27, 29, 30). In two problems (No.’s 11 and 22), TS-SMO performs strictly 

better than SMO according to criterion 1 (case 1). Out of these twenty two problems, where 

both the algorithms have 100 percent success rate, TS-SMO performs better than SMO in 

twenty problems (No.’s 1, 2, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 23, 24, 25, 26, 27, 29, 30) 

according to criterion 1 (case 2). Also, it can be observed from Table 4.1 that TS-SMO has 

better success rate than SMO in two problems (No.’s 11 and 22) though it comes at the cost of 

more number of function evaluations. Five problems (No.’s 4, 15, 17, 20, and 28) are not 

solved by any of the two algorithms. 

Table 4.2 presents the t-test results for TS-SMO against SMO which clearly shows that 

TS-SMO performs significantly better than SMO on most of the problems. Only in problem 

no. 5, TS-SMO has worse performance comparatively. In two problems (No.’s 3 and 29), 

there is no significant difference between the performances of both the algorithms. 

To check the solution quality obtained by both the algorithms, best, average and worst of 

the error values have been provided in Table 4.3. For best error values, TS-SMO is better than 

SMO over fifteen problems (No.’s 4, 7, 8, 9, 11, 13, 17, 18, 22, 23, 24, 25, 26, 28, 30) and in 

two problems (No.’s 15 and 19), both the algorithms have same best error value. For average 

error values, TS-SMO is better than SMO over fifteen problems (No.’s 2, 4, 6, 8, 9, 10, 17, 

18, 21, 24, 25, 27, 28, 29, 30) and there are two problems (No.’s 1 and 19) where both TS-

SMO and SMO have same average error. For worst error values, TS-SMO is better than SMO 

over eleven problems (No.’s 3, 7, 14, 15, 16, 17, 21, 24, 25, 26, 27) and both the algorithms 

have same worst error value on seven problems (No.’s 1, 2, 9, 10, 13, 19 and 30). There are 

three problems (No.’s 17, 24 and 25), where TS-SMO is strictly better than SMO according to 

criterion 2 (case 1). There are two problems (No.’s 9 and 30) where TS-SMO performs better 

than SMO according to criterion 2 (case 2). Both the algorithms perform identically on 

problem no. 19 according to criterion 2 (case 3). In three problems (No.’s 5, 12 and 20), SMO 

performs strictly better than TS-SMO. 

From Tables  4.1 and 4.3, it can be concluded that in five problems (No.’s 4, 15, 17, 20, 

and 28)  where both the algorithms fail to solve the problem, average error value obtained by 

TS-SMO is better than the average error value obtained by SMO except two problems (No.’s 
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15 and 20). Also, it can be seen for problem no. 19, global optima is obtained by both the 

algorithms. 

Table 4.4 shows that average execution time taken (in seconds) by both the algorithms per 

run for solving scalable problems of 30 dimensions. From this table, it can be observed that 

the time taken by both the algorithms is very small and there is not much difference in the 

execution time of both the algorithms. So, the comparison of algorithms on the basis of 

execution time has been avoided. So, this table should be considered for information purpose 

rather than comparison purpose. 

Also, in order to analyse the superiority of one algorithm over the another, performance  

index graph has been drawn for scalable problems in Figure 4.1 from which it is clear that the 

performance of TS-SMO is better than SMO for all the values of weight w (from 0 to 1).  

Also, it can be observed that the performance index value for both the algorithms decreases 

with the increase in the weight given to the success rate.  

The convergence graphs for all the scalable problems have been provided in Figures 4.2-

4.5. The horizontal axis represents the number of iterations and vertical axis represents the 

function error value. Some convergence graphs, where the range of error values is very large 

have been plotted using logarithmic scale. In these graphs, the function error value is labelled 

as log of error value. 

4.4.2 DISCUSSION OF RESULTS FOR NON-SCALABLE PROBLEMS 

Table 4.5 provides the success rate and average number of function evaluations for successful 

runs of non-scalable problems. From this table, it can be seen that SMO is strictly better than 

TS-SMO on problem no. 32 according to criterion 1 (case 1). Both SMO and TS-SMO have 

100 percent success rate in twelve problems (No.’s 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 

46).  In six problems (No.’s 31, 34, 35, 36, 37 and 40), TS-SMO is better than SMO 

according to criterion 1 (case 2). In six problems (No.’s 33, 38, 39, 42, 44 and 46), SMO is 

strictly better than TS-SMO. Both the algorithms failed to solve three problems (No.’s 41, 43 

and 45) i.e. both the algorithms have zero percent success rate on these three problems.  

Table 4.6 presents the t-test results for TS-SMO against SMO which shows a mixed 

response. Out of twelve problems (No.’s 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46), there 

are only three problems (No.’s 34, 35 and 40) where TS-SMO performs significantly better 

than SMO. There are four problems (No.’s 33, 38, 39 and 46), where performance of TS-
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SMO is worse and there is no significant difference in the performance of both the algorithms 

on four problems (No.’s 31, 36, 37 and 44). 

Best, average and worst of the error values obtained by both the algorithms have been 

listed in Table 4.7. For best values, TS-SMO is better than SMO over nine problems (No.’s 

31, 33, 34, 36, 37, 38, 40, 44, 46). Out of these nine problems, both the algorithms have same 

best error values in four problems (No.’s 39, 41, 43 and 45) and SMO is better than TS-SMO 

over three problems (No.’s 32, 35 and 42). For average error values, TS-SMO is better than 

SMO over seven problems (No.’s 31, 33, 35, 37, 38, 40 and 44), both have same average error 

value on problem no. 45 and SMO is better than TS-SMO over eight problems (No.’s 32, 34, 

36, 39, 41, 42, 43 and 46). For worst error values, TS-SMO outperforms SMO over six 

problems (No.’s 31, 34, 35, 38, 39 and 40) and SMO outperforms TS-SMO over seven 

problems (No.’s 33, 36, 41, 42, 43, 44 and 46). Both the algorithms have same worst error 

values in three problems (No.’s 32, 37 and 45).  In three problems (No.’s 31, 38 and 40), TS-

SMO performs strictly better than SMO according to criterion 2 (case 1). 

The average execution time taken (in seconds) by both the algorithms per run for solving 

non-scalable problems is given in Table 4.8. From this table, it can be observed that the time 

taken by both the algorithms is very small and there is not much difference in the execution 

time of both the algorithms. 

The performance index graph for non-scalable problems has been provided in Figure 4.6. 

From the graph, it is clear that the performance of SMO is better than TS-SMO for all the 

values of w (from 0 to 1). Also, it can be observed that the performance index value increases 

with the increase in the weight given to the success rate. The convergence graphs for all the 

non-scalable problems have been provided in Figures 4.7-4.8. 

From the above discussion on the results of both scalable and non-scalable problems, it 

can be concluded that though TS-SMO is showing good performance on scalable problems 

(listed in benchmark set) in terms of reliability, efficiency and accuracy as compared to SMO, 

its performance is moderate on non-scalable problems. 

4.5 CONCLUSIONS  

In this chapter, a new version of SMO named as Tournament Selection based Spider Monkey 

Optimization (TS-SMO) has been proposed. The novelty of this version lies in the use of 
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tournament selection based probability scheme instead of fitness proportionate probability 

scheme which has been used in basic SMO. Maintaining a high level diversity while 

preserving convergence speed are two contradictory and necessary features of a metaheuristic 

and the numerical results show that TS-SMO does a good job in balancing both the features 

by performing well on scalable problems.  But it shows only moderate performance on non-

scalable problems. In future, other modifications can be proposed to improve the performance 

of TS-SMO on non-scalable problems also. The question may arise why TS-SMO has been 

compared only with SMO, not with other metaheuristics as in chapter 3? The answer is that 

the basic SMO has already been compared with other metaheuristics in [17]. The results 

demonstrated the competitiveness of SMO in solving unconstrained optimization problems in 

comparison to other algorithms used for the experiment. The purpose of this chapter is only to 

see whether the incorporation of tournament based probability scheme has any positive 

impact on the performance of basic SMO. Therefore, it has been compared with basic SMO 

only.   

 

 

 

  

Figure 4.1: Performance Index graph for Scalable problems for success rate versus average 

number of function evaluations for successful runs 
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Figure 4.2: Convergence graphs for Problem No.1-Problem No.8  
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Figure 4.3: Convergence graphs for Problem No.9-Problem No.16  
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Figure 4.4: Convergence graphs for Problem No.17-Problem No.24  
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Figure 4.5: Convergence graphs for Problem No.25-Problem No.30 
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Figure 4.6: Performance Index graph for Non-Scalable problems for success rate versus 

average number of function evaluations for successful runs 
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Figure 4.7: Convergence graphs for Problem No.31-Problem No.38 
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Figure 4.8: Convergence graphs for Problem No.39-Problem No.46 
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Table 4.1: Success Rate and Average number of function evaluations for successful runs 

(Scalable problems-30 dimensions) 

Problem 

No. 

Success Rate 
Average number of function  

evaluations for successful runs 

SMO TS-SMO SMO TS-SMO 

1 100 100 33192 32128 

2 100 100 26566 25923 

3 100 100 103625 108601 

4 0 0 N.A. N.A. 

5 100 100 229495 254951 

6 100 100 63917 61660 

7 100 100 189827 149630 

8 100 100 24027 19040 

9 100 100 37701 34987 

10 100 100 25421 24404 

11 47 61 650570 682431 

12 100 100 58502 56807 

13 100 100 32220 31231 

14 100 100 62664 60888 

15 0 0 N.A. N.A. 

16 100 100 38287 37013 

17 0 0 N.A. N.A. 

18 100 100 14002 13294 

19 100 100 22628 22437 

20 0 0 N.A. N.A. 

21 7 2 1051267 1117825 

22 83 85 354061 349233 

23 100 100 48381 47167 

24 100 100 30839 29457 

25 100 100 30695 29586 

26 100 100 39151 37892 

27 100 100 44665 43394 

28 0 0 N.A. N.A. 

29 100 100 106373 101093 

30 100 100 63980 61938 
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Table 4.2: T-test results for problems having identical success rate for SMO and TS-SMO 

(Scalable problems-30 dimensions) 

Problem No. Sign Problem No. Sign 

1 + 14 + 

2 + 16 + 

3 = 18 + 

5 - 19 + 

6 + 23 + 

7 + 24 + 

8 + 25 + 

9 + 26 + 

10 + 27 + 

12 + 29 = 

13 + 30 + 
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Table 4.3: Best, Average and Worst of error values obtained in 100 runs (Scalable problems-

30 dimensions) 

Problem No. 
Best Average Worst 

SMO TS-SMO SMO TS-SMO SMO TS-SMO 

1 6.01E-06 6.33E-06 8.72E-06 8.72E-06 9.99E-06 9.99E-06 

2 3.12E-06 4.25E-06 8.03E-06 7.98E-06 9.99E-06 9.99E-06 

3 3.70E-06 5.80E-06 8.52E-06 8.73E-06 9.99E-06 9.98E-06 

4 1.57E-02 2.36E-03 1.63E+01 1.62E+01 8.08E+01 8.30E+01 

5 2.17E-06 5.40E-06 8.42E-06 9.05E-06 9.97E-06 1.00E-05 

6 7.58E-06 7.86E-06 9.43E-06 9.35E-06 9.98E-06 9.99E-06 

7 7.68E-06 7.67E-06 9.36E-06 9.47E-06 9.99E-06 9.98E-06 

8 7.54E-09 7.12E-11 5.11E-06 5.09E-06 9.98E-06 9.99E-06 

9 6.42E-06 1.31E-07 8.92E-06 8.49E-06 9.99E-06 9.99E-06 

10 5.15E-06 5.36E-06 8.85E-06 8.68E-06 1.00E-05 1.00E-05 

11 7.36E-06 5.72E-06 4.17E+00 4.73E+00 4.62E+01 5.80E+01 

12 5.62E-06 5.72E-06 8.74E-06 8.75E-06 9.98E-06 9.99E-06 

13 5.87E-06 4.78E-06 8.71E-06 8.79E-06 9.99E-06 9.99E-06 

14 7.44E-06 7.78E-06 9.30E-06 9.37E-06 9.99E-06 9.98E-06 

15 2.00E-01 2.00E-01 5.85E-01 6.02E-01 1.05E+01 9.47E+00 

16 5.36E-06 6.02E-06 8.63E-06 8.79E-06 9.99E-06 9.98E-06 

17 9.38E-03 2.72E-04 1.49E+00 1.38E+00 8.67E+00 4.34E+00 

18 2.74E-06 1.38E-06 7.60E-06 7.09E-06 9.97E-06 9.98E-06 

19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

20 7.73E+00 8.11E+00 9.73E+00 9.78E+00 1.22E+01 1.74E+01 

21 7.78E-06 9.50E-06 1.34E+00 1.12E+00 4.73E+00 2.97E+00 

22 7.58E-08 2.64E-08 1.54E+02 5.44E+03 1.45E+04 5.44E+05 

23 6.17E-06 5.14E-06 8.60E-06 8.71E-06 9.93E-06 1.00E-05 

24 6.17E-06 5.34E-06 8.77E-06 8.59E-06 9.99E-06 9.97E-06 

25 5.98E-06 4.95E-06 8.78E-06 8.65E-06 1.00E-05 9.96E-06 

26 5.97E-06 5.22E-06 8.80E-06 8.86E-06 9.99E-06 9.95E-06 

27 5.67E-06 6.38E-06 8.79E-06 8.67E-06 1.00E-05 9.95E-06 

28 1.24E+05 1.22E+05 1.91E+05 1.88E+05 2.41E+05 2.51E+05 

29 3.94E-06 4.54E-06 8.67E-06 8.57E-06 9.97E-06 9.99E-06 

30 7.83E-06 7.12E-06 9.42E-06 9.33E-06 9.99E-06 9.99E-06 

 

 



CHAPTER 4: TOURNAMENT SELECTION BASED SPIDER MONKEY OPTIMIZATION ALGORITHM FOR UNCONSTRAINED 

OPTIMIZATION 

120 

 

 

 

 

 

 

 

 

Table 4.4: Average execution time per run (in seconds) (Scalable problems-30 dimensions) 

Problem No. SMO TS-SMO Problem No. SMO TS-SMO 

1 0.06337 0.15394 16 0.07646 0.1767 

2 0.05144 0.12519 17 106.9177 99.91294 

3 0.63335 1.02872 18 0.54852 0.51132 

4 2.20541 5.80021 19 0.2067 0.24968 

5 0.95737 1.81293 20 56.79807 56.42279 

6 0.27407 0.44748 21 12.82866 13.96821 

7 0.74151 1.02674 22 22.34735 20.51262 

8 1.80296 1.50035 23 0.25422 0.33242 

9 0.15978 0.25221 24 0.29362 0.28435 

10 0.04684 0.1165 25 0.29653 0.28497 

11 1.90559 4.60357 26 1.66475 1.51592 

12 0.10578 0.26914 27 0.13941 0.21441 

13 2.10971 2.14213 28 7.6486 9.40759 

14 0.11883 0.2964 29 1.01688 0.9486 

15 51.89418 56.31783 30 0.45603 0.45293 
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Table 4.5: Success Rate and Average number of function evaluations for successful runs 

(Non-Scalable problems) 

Problem No. 
Success Rate 

Average number of function  

evaluations for successful runs 

SMO TS-SMO SMO TS-SMO 

31 100 100 3738 3636 

32 98 93 430014 465326 

33 100 100 18801 19552 

34 100 100 3585 3415 

35 100 100 256584 211382 

36 100 100 3304 3199 

37 100 100 131394 131171 

38 100 100 26119 33359 

39 100 100 2009 2281 

40 100 100 3071 2793 

41 0 0 N.A. N.A. 

42 100 100 24508 45553 

43 0 0 N.A. N.A. 

44 100 100 13458 13519 

45 0 0 N.A. N.A. 

46 100 100 10737 12525 

 

Table 4.6: T-test results for problems having identical success rate for SMO and TS-SMO 

(Non-Scalable problems) 

Problem no. sign Problem no. sign 

31 = 38 - 

33 - 39 - 

34 + 40 + 

35 + 42 - 

36 = 44 = 

37 = 46 - 
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Table 4.7: Best, Average and Worst of error values obtained in 100 runs (Non-Scalable 

problems) 

Problem No. 
Best Average Worst 

SMO TS-SMO SMO TS-SMO SMO TS-SMO 

31 8.53E-08 1.42E-08 4.82E-06 4.61E-06 9.99E-06 9.96E-06 

32 6.79E-08 8.20E-08 1.11E-05 2.24E-05 2.87E-04 2.87E-04 

33 1.21E-07 5.02E-08 4.87E-06 4.69E-06 9.48E-06 9.98E-06 

34 1.74E-07 2.22E-08 4.35E-06 4.74E-06 9.98E-06 9.91E-06 

35 1.22E-06 1.88E-06 7.24E-06 6.92E-06 1.00E-05 9.96E-06 

36 9.26E-08 3.21E-08 4.37E-06 4.39E-06 9.75E-06 9.98E-06 

37 2.41E-06 1.77E-06 7.95E-06 7.78E-06 9.99E-06 9.99E-06 

38 1.42E-06 6.44E-07 6.25E-06 6.11E-06 9.91E-06 9.88E-06 

39 3.75E-06 3.75E-06 4.99E-06 5.31E-06 9.96E-06 9.91E-06 

40 1.88E-08 1.53E-08 4.26E-06 3.92E-06 9.94E-06 9.93E-06 

41 3.75E-04 3.75E-04 3.88E-04 2.41E-02 1.28E-03 1.19E-01 

42 1.01E-06 1.44E-06 5.77E-06 6.43E-06 9.88E-06 9.93E-06 

43 5.96E-05 5.96E-05 5.96E-05 6.12E-05 5.96E-05 2.20E-04 

44 1.74E-08 3.21E-09 4.48E-06 3.89E-06 9.92E-06 9.93E-06 

45 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01 

46 5.60E-08 2.58E-08 3.65E-06 4.47E-06 9.70E-06 9.93E-06 

 

Table 4.8: Average execution time per run (in seconds) (Non-Scalable problems) 

Problem No. SMO TS-SMO Problem No. SMO TS-SMO 

31 0.01315 0.01949 39 0.00136 0.00757 

32 1.32419 2.97114 40 0.00194 0.00934 

33 0.06098 0.1135 41 1.20498 5.84051 

34 0.01496 0.02244 42 0.58038 1.19203 

35 2.09645 2.20515 43 47.63118 49.03274 

36 0.00553 0.01419 44 0.70029 0.68856 

37 1.95449 2.17146 45 14.31415 17.63867 

38 0.00934 0.10548 46 0.01287 0.05063 

 



The content of this chapter contributes to the paper entitled: 

Gupta, K., Deep, K., & Bansal, J. C. (2017). Improving the local search ability of spider monkey optimization 

algorithm using quadratic approximation for unconstrained optimization. Computational Intelligence. (IF. 

0.964), 33(2), 210-240. 
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CHAPTER 5 

QUADRATIC APPROXIMATION BASED SPIDER 

MONKEY OPTIMIZATION ALGORITHM FOR 

UNCONSTRAINED OPTIMIZATION 

The present chapter introduces a new version of basic SMO after incorporating Quadratic 

Approximation (QA) operator in it. The objective of this modification is to improve the local 

search ability of basic SMO. QA has been applied to make efficient use of the available 

information about the current global leader and local leaders. The neighbourhood of these 

solutions have been searched for better solutions using QA operator. Investigation has been 

made on the performance of the proposed algorithm by testing it over a set of 46 benchmark 

problems and results are compared with basic SMO. The chapter is organised as follows: In 

section 5.1, motivation behind using QA in SMO is presented. In section 5.2, the proposed 

algorithm is presented. In section 5.3, experimental setup has been provided. In section 5.4, 

experimental results have been discussed. In section 5.5, comparison has been made among 

SMO, TS-SMO and QASMO. Finally, the chapter has been concluded in section 5.6. 

5.1 MOTIVATION 

The motivation for applying QA in SMO comes from its successful incorporation in various 

metaheuristic algorithms like CR (Controlled Random Search), GA (Genetic Algorithm), PSO 

(Particle Swarm Optimization), DE (Differential Evaluation) etc. in past few years. The same 

operator is used with the name Quadratic Approximation (QA) in some papers and with 

Quadratic Interpolation (QI) in others available in the literature. In the present chapter, it has 

been used with the name Quadratic Approximation (QA) operator. QA has been implemented 

in different metaheuristics in different ways. In Mohan and Shanker [126], QA has been used 

in the local phase of random search technique to replace worst feasible solution of the 

population. In Pant et al. [137], QA has been used as a nonlinear crossover operator to 
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produce an offspring from three feasible solutions say two randomly selected particles and 

best particle of the swarm. In Deep and Das [38], QA has been used as an additional operator 

in GA. After every cycle of GA operators is completed, QA operator has been used to gain 

local refinements. In Deep and Bansal [37], QA has been used with two variants of PSO 

namely PSO-W (PSO with time varying inertia weight) and PSO-C (PSO with constriction 

factor). In Pant et al. [136], QA named as Quadratic interpolation (QI) has been used to 

initialize the population in Differential Evolution algorithm. In Liu et al. [109], QI has been 

used with global version of orthogonal learning based PSO (QIOLPSO-G). 

5.2 THE PROPOSED QUADRATIC APPROXIMATION BASED 

SPIDER MONKEY OPTIMIZATION 

5.2.1 WORKING OF QA OPERATOR 

QA has been incorporated in the basic version of SMO with the objective to improve its local 

search ability. QA provides the point of minima of the quadratic curve passing through three 

solutions. QA works in the following manner: 

First, three solutions say, A (𝑎1, 𝑎2, … , 𝑎𝐷) with the best fitness value, B (𝑏1, 𝑏2, … , 𝑏𝐷) 

and C (𝑐1, 𝑐2, … , 𝑐𝐷) are randomly chosen such that A, B and C all are distinct. Then a new 

solution P (𝑝1, 𝑝2, … , 𝑝𝐷), which is the point of minima of the quadratic curve passing through 

A, B and C is given by:  

          𝑝[𝑗] = 
1

2

(𝑏𝑗
2−𝑐𝑗

2)𝑓(𝐴)+(𝑐𝑗
2−𝑎𝑗

2)𝑓(𝐵)+(𝑎𝑗
2−𝑏𝑗

2)𝑓(𝐶)

(𝑏𝑗−𝑐𝑗)𝑓(𝐴)+(𝑐𝑗−𝑎𝑗)𝑓(𝐵)+(𝑎𝑗−𝑏𝑗)𝑓(𝐶)
     ∀ 𝑗 = 1,2, … , 𝐷          (5.1) 

Where, f (A), f (B) and f (C) are the values of the objective function f at A, B and C 

respectively. 

5.2.2 IMPLEMENTATION STRATEGY OF QA IN SMO 

QA has been implemented in Global Leader Learning Phase and Local Leader Learning Phase 

of the basic SMO. In Global Leader Learning Phase, the three solutions will include global 

leader and two randomly selected members from the swarm. In Local Leader Learning Phase, 

these three solutions will include the local leader of the group and two randomly selected 

members from the same group. The reason for selecting these two phases for incorporating 

QA is that in these two phases, we get updated positions of the global leader and local leaders 
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and the probability of getting better solutions in the neighbourhood of good solutions is higher 

as compared to other solutions. Changes made in the Global Leader Learning Phase and Local 

Leader Learning Phase have been described in Modified Global Leader Learning Phase and 

Modified Local Leader Learning Phase respectively. 

Modified Global Leader Learning Phase:  First update the position of the global leader of 

the swarm. Next, find the position say 𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙 of the worst member (solution having 

the minimum fitness value) of the swarm.  Now choose three solutions A, B and C from the 

swarm, where A= GL (position of the global leader), B and C are the positions of two 

randomly chosen members of the swarm. Generate a new position using eq. (5.1). If the 

fitness value of the newly generated position is better than that of 𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙, then update 

the worst position with new one. Pseudocode for this modified phase is given in Algorithm 

5.1. 

Modified Local Leader Learning Phase: First update the position of the local leader of the 

𝑘𝑡ℎ group. Next, find the position say 𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑙𝑜𝑐𝑎𝑙 of the worst member (solution having the 

minimum fitness value) of the group.  Now, choose three solutions A, B and C from the 

group, where A= 𝐿𝐿𝑘 (position of the local leader of the 𝑘𝑡ℎ group), B and C are positions of 

randomly chosen members of the group. Generate a new position using eq. (5.1). If the fitness 

value of the newly generated position is better than that of 𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙, then update the 

worst position with new one. The above mentioned procedure repeats for every group. 

Algorithm 5.2 provides pseudocode of position update process in this phase. 

Pseudocode of QASMO has been provided in Algorithm 5.3. 

5.3 EXPERIMENTAL SETUP 

In order to evaluate the performance of QASMO, the set of benchmark problems, setting of 

control parameters and termination criteria and performance evaluation criteria is same as 

mentioned in section 4.3 of chapter 4. First, the impact of incorporating QA in basic SMO has 

been studied by compared it with basic SMO numerically, statistically and graphically for 

both scalable and non-scalable problems. Then, comparison has been made among basic 

SMO, TS-SMO and QASMO to find out the best version of SMO among these three 

algorithms. This comparison will be fair if we use same parameters for all the three 

algorithms. This is the reason of choosing the same experimental setup for QASMO which 

has been used for SMO and TS-SMO in chapter 4. 



CHAPTER 5: QUADRATIC APPROXIMATION BASED SPIDER MONKEY OPTIMIZATION ALGORITHM FOR 

UNCONSTRAINED OPTIMIZATION 

126 

 

 

Begin 

      Update the position of the global leader in the swarm 

       find 𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡 

 For i = 1 to 1000 Do 

Select A= GL, B and C are positions of randomly chosen members of the 

swarm such that A, B, C all are distinct 

//generate P using equation (5.1) 

  If (fitness(P) > fitness(𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡)) Then 

                           𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡 = P 

                           Terminate the loop 

               End if 

              End For 

              If (fitness(P) > fitness(GL)) 

                GL = P 

              End If 

              If (position of global leader is updated from previous position) Then 

                 GLC = 0 

             Else 

                 GLC = GLC + 1 

              End If 

    End 

 

Algorithm 5.1: Modified Global Leader Learning Phase 

 

5.4 DISCUSSION OF EXPERIMENTAL RESULTS 

In this section, the impact of incorporating QA in basic SMO has been analyzed by comparing 

the performance of QASMO with basic SMO. Tables 5.1-5.4 present the numerical and 

statistical results of scalable problems for 30 dimensions. Tables 5.5-5.8 present the numerical 

and statistical results for non-scalable problems. Better entries in the tables appear in bold.  
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Begin 

  For k = 1 to NG Do 

   Update the position of the local leader in the swarm 

   Find 𝑺𝑴𝒍𝒐𝒄𝒂𝒍𝒘𝒐𝒓𝒔𝒕 

   For i = 1 to 1000 Do 

//Select A = 𝐿𝐿𝑘 , B and C are positions of randomly chosen members  

of the groups  

   such that A, B, C are all distinct                   

   //generate P using eq. (5.1) 

    If (fitness(P) > fitness(𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡)) Then 

                                                𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡= P 

     Terminate the loop 

    End If 

                End For 

                If (fitness(P) > fitness(𝐿𝐿𝑘)) Then 

                    𝐿𝐿𝑘=P 

                End If 

                If (position of local leader is updated from previous position) Then 

                   𝐿𝐿𝐶𝑘 = 0 

               Else 

                𝐿𝐿𝐶𝑘 = 𝐿𝐿𝐶𝑘+ 1 

                End If 

       End For 

   End 

 

Algorithm 5.2: Modified Local Leader Learning Phase 

 

5.4.1 DISCUSSION OF RESULTS FOR SCALABLE PROBLEMS  

Table 5.1 presents the success rate and average number of function evaluations for successful 

runs. From this table, it can be observed that out of thirty problems, SMO and QASMO have 

100 percent success rate in twenty two (No.’s 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 
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23, 24, 25, 26, 27, 29, 30) and twenty four problems (No.’s 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

14, 16, 18, 19, 22, 23, 24, 25, 26, 27, 29, 30) respectively. In three problems (No.’s 11, 21 and 

22), QASMO performs strictly better than SMO according to criterion 1 (case 1). Out of 

twenty two problems where both the algorithms have 100 percent success rate, QASMO 

performs better than SMO in seventeen problems (No.’s 1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 16, 

18, 19, 23, 24, 26, 27, 30) according to criterion 1 (case 2). Also, it can be observed from 

Table 5.1 that QASMO has better success rate than SMO in two problems (No.’s 21 and 22) 

though it comes at the cost of more number of function evaluations. Five problems (No.’s 4, 

15, 17, 20, and 28) are not solved by any of the two algorithms. 

Begin 

    Initialize the swarm using equation (2.1) 

    Initialize LLlt, GLlt, Pr, MG 

    Iteration = 0 

    Calculate fitness value of the position of each spider monkey in the swarm 

    Select Global Leader and Local Leaders by applying Greedy Selection 

 While (termination criterion is not satisfied) Do 

            //Local Leader Phase (Algorithm 2.1) 

           //Calculate Probability of each spider monkey using eq. (2.3) 

          //Global Leader Phase (Algorithm 2.2) 

          //Modified Global Leader Learning Phase (Algorithm 5.1) 

          //Modified Local Leader Learning Phase (Algorithm 5.2) 

         //Local Leader Decision Phase (Algorithm 2.5) 

          //Global Leader Decision Phase (Algorithm 2.6) 

            Iteration = Iteration +1 

      End While 

 End 

 

Algorithm 5.3: Pseudocode for QASMO 

 

Table 5.2 provides t-test results for the average number of function evaluations of 

successful runs for the problems where both the algorithms identical success rate. T-test 

results convey that there is a significant difference in the average number of function 

evaluations in twenty one problems (No.’s 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 23, 
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24, 26, 27, 29, 30) out of twenty two problems. QASMO performs significantly better than 

SMO in terms of average number of function evaluations for successful runs in seventeen 

problems (No.’s 1, 2, 6, 7, 9, 10, 12, 13, 14, 16, 18, 19, 23, 24, 26, 27, 30). There are four 

problems (3, 5, 8, 29) where the performance of QASMO is significantly worse than SMO 

To check the solution quality obtained by both the algorithms, best, average and worst of 

the error values obtained in 100 independent runs have been provided in Table 5.3. For best 

error values, QASMO is better than SMO in eighteen problems (No.’s 3, 4, 5, 7, 9, 11, 13, 15, 

16, 18, 20, 21, 22, 24, 25, 26, 27, 28) and in problem no. 19, both the algorithms have same 

error value. For average error values, QASMO is better than SMO in twenty one problems 

(No.’s 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30) and there are 

three problems(1, 3, 19) where both QASMO and SMO have same average error. For worst 

error values, QASMO is better than SMO in thirteen problems (No.’s 1, 2, 4, 8, 11, 13, 15, 16, 

17, 22, 25, 27, 28) and both the algorithms have same worst error value on eight problems 

(No.’s 3, 5, 6, 10, 14, 19, 24, 26). QASMO is strictly better than SMO in eight problems 

(No.’s 4, 11, 15, 22, 25, 26, 27 and 28) according to criterion 2 (case 1). There are three 

problems (No.’s 3, 5, and 24) where QASMO performs better than SMO according to 

criterion 2 (case 2). Both the algorithms perform identically on problem no. 19 according to 

criterion 2 (case 3).   

From Tables 5.1 and 5.3, it can be concluded that in five problems (No.’s 4, 15, 17, 20, 

28) where both the algorithms fail to solve the problem (zero percent success rate), average 

error value obtained by QASMO is better than the average error value obtained by SMO 

except problem no. 17. Also, it can be seen for problem no. 19, global optima is obtained by 

both the algorithms. 

Table 5.4 shows that average execution time taken (in seconds) by both the algorithms per 

run for solving scalable problems of 30 dimensions. From this table, it can be observed that 

the time taken by both the algorithms is very small and there is not much difference in the 

execution time on most of the problems. But there are some problems (No.’s 15, 17, 20, 21, 

28), where there is much difference between the execution time taken by both the algorithms. 

These are the problems where success rate is zero or very low. On these problems, QASMO 

takes much more time than SMO. The reason for this is the iterative loop inside the Modified 

Global Leader Learning Phase and Modified Local Leader Learning Phase in QASMO. So, 

each iteration in QASMO is taking more time than those in SMO.   
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The performance index graph for scalable problems is provided in Figure 5.1 which shows 

SMO performs relatively better than QASMO when the weight varies from 0 to 0.6 while 

QASMO performs better when the weight is greater than or equal to 0.6. Also, it can be 

concluded from the graph that SMO performs better when priority is given to function 

evaluations over success rate while QASMO is preferred when priority is given to the success 

rate over function evaluations. Also, the graph illustrates that the PI value increase when the 

more weight is given to the success rate as compared to function evaluations. The 

convergence graphs for all the scalable problems have been provided in Figures 5.2-5.5. 

5.4.2 DISCUSSION OF RESULTS FOR NON-SCALABLE PROBLEMS 

From Table 5.5, it can be seen that success rate of SMO is either identical or better than 

QASMO. SMO and QASMO have 100 percent success rate in eleven (No.’s 31, 34, 35, 36, 

37, 38, 39, 40, 42, 44, 46) and eight (No.’s 31, 34, 35, 36, 38, 39, 40, 46) problems 

respectively.  In four problems (No.’s 32, 37, 42 and 44), SMO is strictly better than QASMO 

according to criterion 1(case 1). Both the algorithms failed to solve four problems (No.’s 33, 

41, 43, and 45) in all the runs. QASMO performs better than SMO over seven problems 

according to criterion 1(case 2). 

Table 5.6 contains t-test results of average number of function evaluations. It can be seen 

from the table that out of eight problems, where both the algorithms have identical success 

rate, QASMO performs significantly better than SMO over six problems (No.’s 31, 34, 35, 

36, 40, 46). 

Best, average and worst of the error values obtained by both the algorithms have been 

listed in Table 5.7. For best values, QASMO is better than SMO in seven problems (No.’s 31, 

33, 34, 35, 37, 38, 40), both the algorithms have same best error values in four problems (39, 

41, 43, 45) and SMO is better than QASMO in five problems (No.’s 32, 36, 42, 44, 46). For 

average values, QASMO is better than SMO in seven problems (No.’s 31, 33, 35, 36, 38, 39, 

40), same error value in problem no. 45 and SMO is better than QASMO in eight problems 

(No.’s 32, 34, 37, 41, 42, 43, 44, 46). For worst error values, QASMO outperforms SMO in 

six problems (No.’s 31, 34, 35, 39, 40, 46) and SMO outperforms QASMO in eight problems 

(No.’s 33, 36, 37, 38, 41, 42, 43, 44). Both the algorithms have same worst error values in two 

problems. In three problems (No.’s 31, 35 and 40), QASMO performs strictly better than 

SMO according to criterion 2 (case 1).  
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From Table 5.5 and Table 5.7, it can be concluded that out of four problems (No.’s  33, 

41,43 and 45),  where both SMO and QASMO has zero percent success rate, average error 

value obtained by SMO is better than that obtained by QASMO in two problems (No.’s 41and 

43). No clear conclusion can be drawn about the performance of two algorithms on non-

scalable problems considered in the benchmark set. In some cases, SMO is performing better, 

while in other, QASMO is better.  

Table 5.8 shows that average execution time taken (in seconds) by both the algorithms per 

run for solving non-scalable problems. From this table, it can be observed that like scalable 

problems, the time taken by both the algorithms on non-scalable problems is very small and 

there is not much difference in the execution time on most of the problems. But there are 

some problems (No.’s 32, 41, 42, 43, 45), where there is much difference between the 

execution time taken by both the algorithms. These are the problems where success rate is 

zero or low except problem no. 42. On these problems, QASMO takes much more time than 

SMO. The reason for this is again the iterative loop inside the Modified Global Leader 

Learning Phase and Modified Local Leader Learning phase in QASMO. So, each iteration in 

QASMO is taking more time than in SMO.  

The performance index graph for non-scalable problems is provided in Figure 5.6 which 

shows that the performance of SMO is better than QASMO for all the values of w. Also, it 

can be observed that the performance index value increases with the increase in the weight 

given to the success rate. The convergence graphs for all the non-scalable problems have been 

provided in Figures 5.7-5.8. 

From the above discussion on the results of both scalable and non-scalable problems, it 

can be concluded that though QASMO is showing good performance on scalable problems 

(listed in benchmark set) in terms of reliability, efficiency and accuracy as compared to SMO, 

its performance is reasonable on non-scalable problems. Incorporation of quadratic 

approximation operator has positive impact on the performance of SMO. 

5.5 COMPARISON AMONG SMO, TS-SMO AND QASMO 

In this section, the comparison has been made among basic SMO, TS-SMO and QASMO to 

find the best version of SMO on the set of benchmark problems given in Appendix III. TS-

SMO and QASMO are proposed to improve the exploration and exploitation respectively in 

basic SMO. Discussion of results in chapters 4 and 5 show that they both are performing 
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better than basic SMO. In this section, a comparison has been made among SMO, TS-SMO 

and QASMO. Numerical results have been shown in Tables 5.9- 5.16. Table 5.17 provides the 

summary of comparison and it is clear that QASMO is better than SMO and TS-SMO on 

most of the scalable problems on all the performance metrics used for evaluating the 

performance. On non-scalable problems, results are in the favour of all the three.  

5.6 CONCLUSIONS 

In this chapter, a modified version of basic SMO is proposed. Local search ability of SMO is 

improved by incorporating QA operator in it which is definitely helpful for SMO to explore 

the surrounding regions of current global and local leaders. To check the robustness of 

proposed algorithm, its performance has been tested over a benchmark set of 46 problems 

including both scalable and non-scalable problems. Though results are showing improvement 

in terms of function evaluations, success and quality of the solution attained on scalable 

problems, it is performing moderately on non-scalable problems. Also, the comparison has 

been made among SMO, TS-SMO and QASMO. Results show that QSMO is better than 

SMO and TS-SMO on scalable problems. For non-scalable problems, the conclusion is not 

inclined towards a single algorithm. In future, other modifications can be proposed to improve 

the exploration and exploitation of SMO. 

 

 

  

Figure 5.1: Performance Index graph for Scalable problems for success rate versus average 

number of function evaluations for successful runs 
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Figure 5.2: Convergence graphs for Problem No.1-Problem No.8 
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Figure 5.3: Convergence graphs for Problem No.9-Problem No.16 
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Figure 5.4: Convergence graphs for Problem No.17-Problem No.24 
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Figure 5.5: Convergence graphs for Problem No.25-Problem No.30  
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Figure 5.6: Performance Index graph for Non-Scalable problems for success rate versus 

average number of function evaluations for successful runs 
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Figure 5.7: Convergence graphs for Problem No.31-Problem No.38  
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Figure 5.8: Convergence graphs for Problem No.39-Problem No.46  
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Table 5.1: Success Rate and Average number of function evaluations of successful runs for 

SMO and QASMO (Scalable Problems-30 dimensions) 

Problem  

No. 
Success Rate 

Average number of function  

evaluations for successful runs 

 
SMO QASMO SMO QASMO 

1 100 100 33192 30626 

2 100 100 26566 23254 

3 100 100 103625 407833 

4 0 0 N.A. N.A. 

5 100 100 229495 1176179 

6 100 100 63917 59159 

7 100 100 189827 85764 

8 100 100 24027 56411 

9 100 100 37701 33967 

10 100 100 25421 23371 

11 47 100 650570 218639 

12 100 100 58502 53700 

13 100 100 32220 29952 

14 100 100 62664 58450 

15 0 0 N.A. N.A. 

16 100 100 38287 35335 

17 0 0 N.A. N.A. 

18 100 100 14002 11860 

19 100 100 22628 20988 

20 0 0 N.A. N.A. 

21 7 42 1051267 5794852 

22 83 100 354061 764419 

23 100 100 48381 44862 

24 100 100 30839 27865 

25 100 100 30695 30961 

26 100 100 39151 36457 

27 100 100 44665 41482 

28 0 0 N.A. N.A. 

29 100 100 106373 563615 

30 100 100 63980 59646 
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Table 5.2: T-test results for problems having identical success rate for SMO and QASMO 

(Scalable Problems-30 dimensions) 

Problem No. sign  Problem No. sign 

1 +  14 + 

2 +  16 + 

3 -  18 + 

5 -  19 + 

6 +  23 + 

7 +  24 + 

8 -  25 = 

9 +  26 + 

10 +  27 + 

12 +  29 - 

13 +  30 + 
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Table 5.3: Best, average and worst of error values obtained in 100 independent runs (Scalable 

Problems-30dimensions) 

Problem No. Best Average Worst 

 
SMO QASMO SMO QASMO SMO QASMO 

1 6.01E-06 6.56E-06 8.72E-06 8.72E-06 9.99E-06 9.98E-06 

2 3.12E-06 4.91E-06 8.03E-06 7.85E-06 9.99E-06 9.83E-06 

3 3.70E-06 2.06E-18 8.52E-06 8.52E-06 9.99E-06 9.99E-06 

4 1.57E-02 1.74E-03 1.63E+01 7.90E+00 8.08E+01 2.08E+01 

5 2.17E-06 1.14E-13 8.42E-06 7.36E-06 9.97E-06 9.97E-06 

6 7.58E-06 7.92E-06 9.43E-06 9.28E-06 9.98E-06 9.98E-06 

7 7.68E-06 7.32E-06 9.36E-06 9.26E-06 9.99E-06 1.00E-05 

8 7.54E-09 1.46E-07 5.11E-06 4.99E-06 9.98E-06 9.97E-06 

9 6.42E-06 4.44E-16 8.92E-06 8.41E-06 9.99E-06 1.00E-05 

10 5.15E-06 6.30E-06 8.85E-06 8.70E-06 1.00E-05 1.00E-05 

11 7.36E-06 7.24E-06 4.17E+00 9.32E-06 4.62E+01 1.00E-05 

12 5.62E-06 5.97E-06 8.74E-06 8.81E-06 9.98E-06 9.99E-06 

13 5.87E-06 5.76E-06 8.71E-06 8.81E-06 9.99E-06 9.94E-06 

14 7.44E-06 7.52E-06 9.30E-06 9.33E-06 9.99E-06 9.99E-06 

15 2.00E-01 9.99E-02 5.85E-01 4.84E-01 1.05E+01 4.11E+00 

16 5.36E-06 5.01E-06 8.63E-06 8.77E-06 9.99E-06 9.98E-06 

17 9.38E-03 5.03E-01 1.49E+00 2.10E+00 8.67E+00 7.75E+00 

18 2.74E-06 1.34E-06 7.60E-06 6.77E-06 9.97E-06 9.98E-06 

19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

20 7.73E+00 6.86E+00 9.73E+00 8.59E+00 1.22E+01 1.43E+01 

21 7.78E-06 0.00E+00 1.34E+00 2.10E+00 4.73E+00 1.61E+01 

22 7.58E-08 3.63E-08 1.54E+02 4.89E-06 1.45E+04 9.89E-06 

23 6.17E-06 6.21E-06 8.60E-06 8.44E-06 9.93E-06 9.98E-06 

24 6.17E-06 4.38E-06 8.77E-06 8.74E-06 9.99E-06 9.99E-06 

25 5.98E-06 7.29E-08 8.78E-06 8.50E-06 1.00E-05 9.98E-06 

26 5.97E-06 4.77E-06 8.80E-06 8.68E-06 9.99E-06 9.99E-06 

27 5.67E-06 5.47E-06 8.79E-06 8.51E-06 1.00E-05 9.99E-06 

28 1.24E+05 1.20E+05 1.91E+05 1.86E+05 2.41E+05 2.40E+05 

29 3.94E-06 4.80E-06 8.67E-06 8.66E-06 9.97E-06 9.99E-06 

30 7.83E-06 7.89E-06 9.42E-06 9.33E-06 9.99E-06 1.00E-05 
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Table 5.4: Average execution time per run (in seconds) (Scalable problems-30 dimensions) 

Problem No. SMO QASMO Problem No. SMO QASMO 

1 0.06337 0.06223 16 0.07646 0.07397 

2 0.05144 0.04986 17 106.9177 1139.253 

3 0.63335 2.80771 18 0.54852 0.42603 

4 2.20541 2.48634 19 0.2067 0.17335 

5 0.95737 5.78111 20 56.79807 360.9763 

6 0.27407 0.30021 21 12.82866 51.45583 

7 0.74151 0.40411 22 22.34735 30.18972 

8 1.80296 4.59815 23 0.25422 0.20357 

9 0.15978 0.168 24 0.29362 0.21724 

10 0.04684 0.04887 25 0.29653 0.23696 

11 1.90559 0.46502 26 1.66475 1.39955 

12 0.10578 0.10896 27 0.13941 0.12459 

13 2.10971 2.08317 28 7.6486 500.9501 

14 0.11883 0.12553 29 1.01688 6.34944 

15 51.89418 139.093 30 0.45603 0.41899 
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Table 5.5: Success Rate and Average number of function evaluations of successful runs for 

SMO and QASMO (Non-Scalable problems) 

Problem 

No. 
Success Rate 

Average number of function 

evaluations of successful runs 

 
SMO QASMO SMO QASMO 

31 100 100 3738 3492 

32 98 49 430014 4374449 

33 0 0 N.A. N.A. 

34 100 100 3585 3200 

35 100 100 256584 55756 

36 100 100 3304 3050 

37 100 96 131394 180988 

38 100 100 26119 542972 

39 100 100 2009 1936 

40 100 100 3071 2913 

41 0 0 N.A. N.A. 

42 100 96 24508 317022 

43 0 0 N.A. N.A. 

44 100 99 13458 29208 

45 0 0 N.A. N.A. 

46 100 100 10737 8753 

 

 

 

Table 5.6: T-test results for problems having identical successful rate for SMO and QASMO 

(Non-Scalable problems) 

Problem No. sign Problem No. sign 

31 + 38 - 

34 + 39 = 

35 + 40 + 

36 + 46 + 
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Table 5.7: Best, average and worst of error values obtained in 100 independent runs (Non-

Scalable problems) 

Problem No. Best Average Worst 

 
SMO QASMO SMO QASMO SMO QASMO 

31 8.53E-08 1.86E-08 4.82E-06 4.38E-06 9.99E-06 9.91E-06 

32 6.79E-08 2.40E-07 1.11E-05 1.39E-04 2.87E-04 2.87E-04 

33 1.21E-07 1.04E-08 4.87E-06 4.17E-06 9.48E-06 9.92E-06 

34 1.74E-07 3.97E-08 4.35E-06 4.61E-06 9.98E-06 9.86E-06 

35 1.22E-06 8.66E-07 7.24E-06 6.92E-06 1.00E-05 9.96E-06 

36 9.26E-08 1.46E-07 4.37E-06 3.97E-06 9.75E-06 9.91E-06 

37 2.41E-06 1.21E-06 7.95E-06 4.41E-05 9.99E-06 9.16E-04 

38 1.42E-06 4.66E-07 6.25E-06 6.24E-06 9.91E-06 9.95E-06 

39 3.75E-06 3.75E-06 4.99E-06 4.83E-06 9.96E-06 9.94E-06 

40 1.88E-08 3.74E-09 4.26E-06 3.32E-06 9.94E-06 9.89E-06 

41 3.75E-04 3.75E-04 3.88E-04 5.65E-02 1.28E-03 1.52E-01 

42 1.01E-06 1.55E-06 5.77E-06 2.02E-01 9.88E-06 5.05E+00 

43 5.96E-05 5.96E-05 5.96E-05 1.05E-01 5.96E-05 5.27E+00 

44 1.74E-08 4.54E-08 4.48E-06 5.36E-02 9.92E-06 5.36E+00 

45 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01 4.82E-01 

46 5.60E-08 2.20E-07 3.65E-06 4.75E-06 9.70E-06 9.57E-06 

 

 

Table 5.8: Average execution time per run (in seconds) (Non-Scalable problems) 

Problem No. SMO QASMO Problem No. SMO QASMO 

31 0.01315 0.00954 39 0.00136 0.00093 

32 1.32419 17.22715 40 0.00194 0.00062 

33 0.06098 0.03591 41 1.20498 68.24806 

34 0.01496 0.01309 42 0.58038 11.56375 

35 2.09645 0.43897 43 47.63118 252.6167 

36 0.00553 0.00502 44 0.70029 4.8148 

37 1.95449 4.48995 45 14.31415 114.0719 

38 0.00934 1.06005 46 0.01287 0.01589 
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Table 5.9: Success Rate and Average number of function evaluations for successful runs of 

SMO, TS-SMO and QASMO (Scalable problems-30 dimensions) 

Problem 

No. 
Success Rate 

Average number of function evaluations for 

successful runs 

 
SMO TSMO QASMO SMO TSMO QASMO 

1 100 100 100 33192 32128 30626 

2 100 100 100 26566 25923 23254 

3 100 100 100 103625 108601 407833 

4 0 0 0 N.A. N.A. N.A. 

5 100 100 100 229495 254951 1176179 

6 100 100 100 63917 61660 59159 

7 100 100 100 189827 149630 85764 

8 100 100 100 24027 19040 56411 

9 100 100 100 37701 34987 33967 

10 100 100 100 25421 24404 23371 

11 47 61 100 650570 682431 218639 

12 100 100 100 58502 56807 53700 

13 100 100 100 32220 31231 29952 

14 100 100 100 62664 60888 58450 

15 0 0 0 N.A. N.A. N.A. 

16 100 100 100 38287 37013 35335 

17 0 0 0 N.A. N.A. N.A. 

18 100 100 100 14002 13294 11860 

19 100 100 100 22628 22437 20988 

20 0 0 0 N.A. N.A. N.A. 

21 7 2 42 1051267 1117825 5794852 

22 83 85 100 354061 349233 764419 

23 100 100 100 48381 47167 44862 

24 100 100 100 30839 29457 27865 

25 100 100 100 30695 29586 30961 

26 100 100 100 39151 37892 36457 

27 100 100 100 44665 43394 41482 

28 0 0 0 N.A. N.A. N.A. 

29 100 100 100 106373 101093 563615 

30 100 100 100 63980 61938 59646 
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Table 5.10: Best of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Scalable problems-30 dimensions) 

Problem No. SMO TS-SMO QASMO 

1 6.01E-06 6.33E-06 6.56E-06 

2 3.12E-06 4.25E-06 4.91E-06 

3 3.70E-06 5.80E-06 2.06E-18 

4 1.57E-02 2.36E-03 1.74E-03 

5 2.17E-06 5.40E-06 1.14E-13 

6 7.58E-06 7.86E-06 7.92E-06 

7 7.68E-06 7.67E-06 7.32E-06 

8 7.54E-09 7.12E-11 1.46E-07 

9 6.42E-06 1.31E-07 4.44E-16 

10 5.15E-06 5.36E-06 6.30E-06 

11 7.36E-06 5.72E-06 7.24E-06 

12 5.62E-06 5.72E-06 5.97E-06 

13 5.87E-06 4.78E-06 5.76E-06 

14 7.44E-06 7.78E-06 7.52E-06 

15 2.00E-01 2.00E-01 9.99E-02 

16 5.36E-06 6.02E-06 5.01E-06 

17 9.38E-03 2.72E-04 5.03E-01 

18 2.74E-06 1.38E-06 1.34E-06 

19 0.00E+00 0.00E+00 0.00E+00 

20 7.73E+00 8.11E+00 6.86E+00 

21 7.78E-06 9.50E-06 0.00E+00 

22 7.58E-08 2.64E-08 3.63E-08 

23 6.17E-06 5.14E-06 6.21E-06 

24 6.17E-06 5.34E-06 4.38E-06 

25 5.98E-06 4.95E-06 7.29E-08 

26 5.97E-06 5.22E-06 4.77E-06 

27 5.67E-06 6.38E-06 5.47E-06 

28 1.24E+05 1.22E+05 1.20E+05 

29 3.94E-06 4.54E-06 4.80E-06 

30 7.83E-06 7.12E-06 7.89E-06 
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Table 5.11: Average of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Scalable problems-30 dimensions) 

Problem No. SMO TS-SMO QASMO 

1 8.72E-06 8.72E-06 8.72E-06 

2 8.03E-06 7.98E-06 7.85E-06 

3 8.52E-06 8.73E-06 8.52E-06 

4 1.63E+01 1.62E+01 7.90E+00 

5 8.42E-06 9.05E-06 7.36E-06 

6 9.43E-06 9.35E-06 9.28E-06 

7 9.36E-06 9.47E-06 9.26E-06 

8 5.11E-06 5.09E-06 4.99E-06 

9 8.92E-06 8.49E-06 8.41E-06 

10 8.85E-06 8.68E-06 8.70E-06 

11 4.17E+00 4.73E+00 9.32E-06 

12 8.74E-06 8.75E-06 8.81E-06 

13 8.71E-06 8.79E-06 8.81E-06 

14 9.30E-06 9.37E-06 9.33E-06 

15 5.85E-01 6.02E-01 4.84E-01 

16 8.63E-06 8.79E-06 8.77E-06 

17 1.49E+00 1.38E+00 2.10E+00 

18 7.60E-06 7.09E-06 6.77E-06 

19 0.00E+00 0.00E+00 0.00E+00 

20 9.73E+00 9.78E+00 8.59E+00 

21 1.34E+00 1.12E+00 2.10E+00 

22 1.54E+02 5.44E+03 4.89E-06 

23 8.60E-06 8.71E-06 8.44E-06 

24 8.77E-06 8.59E-06 8.74E-06 

25 8.78E-06 8.65E-06 8.50E-06 

26 8.80E-06 8.86E-06 8.68E-06 

27 8.79E-06 8.67E-06 8.51E-06 

28 1.91E+05 1.88E+05 1.86E+05 

29 8.67E-06 8.57E-06 8.66E-06 

30 9.42E-06 9.33E-06 9.33E-06 
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Table 5.12: Worst of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Scalable problems-30 dimensions) 

Problem No. SMO TS-SMO QASMO 

1 9.99E-06 9.99E-06 9.98E-06 

2 9.99E-06 9.99E-06 9.83E-06 

3 9.99E-06 9.98E-06 9.99E-06 

4 8.08E+01 8.30E+01 2.08E+01 

5 9.97E-06 1.00E-05 9.97E-06 

6 9.98E-06 9.99E-06 9.98E-06 

7 9.99E-06 9.98E-06 1.00E-05 

8 9.98E-06 9.99E-06 9.97E-06 

9 9.99E-06 9.99E-06 1.00E-05 

10 1.00E-05 1.00E-05 1.00E-05 

11 4.62E+01 5.80E+01 1.00E-05 

12 9.98E-06 9.99E-06 9.99E-06 

13 9.99E-06 9.99E-06 9.94E-06 

14 9.99E-06 9.98E-06 9.99E-06 

15 1.05E+01 9.47E+00 4.11E+00 

16 9.99E-06 9.98E-06 9.98E-06 

17 8.67E+00 4.34E+00 7.75E+00 

18 9.97E-06 9.98E-06 9.98E-06 

19 0.00E+00 0.00E+00 0.00E+00 

20 1.22E+01 1.74E+01 1.43E+01 

21 4.73E+00 2.97E+00 1.61E+01 

22 1.45E+04 5.44E+05 9.89E-06 

23 9.93E-06 1.00E-05 9.98E-06 

24 9.99E-06 9.97E-06 9.99E-06 

25 1.00E-05 9.96E-06 9.98E-06 

26 9.99E-06 9.95E-06 9.99E-06 

27 1.00E-05 9.95E-06 9.99E-06 

28 2.41E+05 2.51E+05 2.40E+05 

29 9.97E-06 9.99E-06 9.99E-06 

30 9.99E-06 9.99E-06 1.00E-05 
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Table 5.13: Success Rate and Average number of function evaluations for successful runs of 

SMO, TS-SMO and QASMO (Non-Scalable problems) 

Problem 

No. 
Success Rate 

Average number of function evaluations for 

successful runs 

 
SMO TS-SMO QASMO SMO TS-SMO QASMO 

31 100 100 100 3738 3636 3492 

32 98 93 49 430014 465326 4374449 

33 0 0 0 N.A. N.A. N.A. 

34 100 100 100 3585 3415 3200 

35 100 100 100 256584 211382 55756 

36 100 100 100 3304 3199 3050 

37 100 100 96 131394 131171 180988 

38 100 100 100 26119 33359 542972 

39 100 100 100 2009 2281 1936 

40 100 100 100 3071 2793 2913 

41 0 0 0 N.A. N.A. N.A. 

42 100 100 96 24508 45553 317022 

43 0 0 0 N.A. N.A. N.A. 

44 100 100 99 13458 13519 29208 

45 0 0 0 N.A. N.A. N.A. 

46 100 100 100 10737 12525 8753 
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Table 5.14: Best of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Non-Scalable problems) 

Problem No. SMO TSMO QASMO 

31 8.53E-08 1.42E-08 1.86E-08 

32 6.79E-08 8.20E-08 2.40E-07 

33 1.21E-07 5.02E-08 1.04E-08 

34 1.74E-07 2.22E-08 3.97E-08 

35 1.22E-06 1.88E-06 8.66E-07 

36 9.26E-08 3.21E-08 1.46E-07 

37 2.41E-06 1.77E-06 1.21E-06 

38 1.42E-06 6.44E-07 4.66E-07 

39 3.75E-06 3.75E-06 3.75E-06 

40 1.88E-08 1.53E-08 3.74E-09 

41 3.75E-04 3.75E-04 3.75E-04 

42 1.01E-06 1.44E-06 1.55E-06 

43 5.96E-05 5.96E-05 5.96E-05 

44 1.74E-08 3.21E-09 4.54E-08 

45 4.82E-01 4.82E-01 4.82E-01 

46 5.60E-08 2.58E-08 2.20E-07 
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Table 5.15: Average of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Non-Scalable problems) 

Problem No. SMO TSMO QASMO 

31 4.82E-06 4.61E-06 4.38E-06 

32 1.11E-05 2.24E-05 1.39E-04 

33 4.87E-06 4.69E-06 4.17E-06 

34 4.35E-06 4.74E-06 4.61E-06 

35 7.24E-06 6.92E-06 6.92E-06 

36 4.37E-06 4.39E-06 3.97E-06 

37 7.95E-06 7.78E-06 4.41E-05 

38 6.25E-06 6.11E-06 6.24E-06 

39 4.99E-06 5.31E-06 4.83E-06 

40 4.26E-06 3.92E-06 3.32E-06 

41 3.88E-04 2.41E-02 5.65E-02 

42 5.77E-06 6.43E-06 2.02E-01 

43 5.96E-05 6.12E-05 1.05E-01 

44 4.48E-06 3.89E-06 5.36E-02 

45 4.82E-01 4.82E-01 4.82E-01 

46 3.65E-06 4.47E-06 4.75E-06 
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Table 5.16: Worst of error values obtained in 100 independent runs of SMO, TS-SMO and 

QASMO (Non-Scalable problems) 

Problem No. SMO TSMO QASMO 

31 9.99E-06 9.96E-06 9.91E-06 

32 2.87E-04 2.87E-04 2.87E-04 

33 9.48E-06 9.98E-06 9.92E-06 

34 9.98E-06 9.91E-06 9.86E-06 

35 1.00E-05 9.96E-06 9.96E-06 

36 9.75E-06 9.98E-06 9.91E-06 

37 9.99E-06 9.99E-06 9.16E-04 

38 9.91E-06 9.88E-06 9.95E-06 

39 9.96E-06 9.91E-06 9.94E-06 

40 9.94E-06 9.93E-06 9.89E-06 

41 1.28E-03 1.19E-01 1.52E-01 

42 9.88E-06 9.93E-06 5.05E+00 

43 5.96E-05 2.20E-04 5.27E+00 

44 9.92E-06 9.93E-06 5.36E+00 

45 4.82E-01 4.82E-01 4.82E-01 

46 9.70E-06 9.93E-06 9.57E-06 
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Table 5.17: Summary of results for Scalable and Non-Scalable problems of SMO, TS-SMO 

and QASMO 

Scalable Problems 

Performance metric SMO TS-SMO QASMO 

Success Rate 22 22 24 

Highest Success Rate 0 0 3 

Lowest number of function evaluations for successful runs 3 4 18 

best error value 7 7 15 

Average error value 5 5 19 

Worst error value 9 12 12 

Total 46 50 91 

Non-Scalable Problems 

Performance metric SMO TS-SMO QASMO 

Success Rate 11 11 8 

Highest Success Rate 1 0 0 

Lowest number of function evaluations for successful runs 4 2 6 

best error value 3 5 5 

Average error value 6 3 5 

Worst error value 6 2 4 

Total 31 23 28 
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CHAPTER 6 

QUADRATIC APPROXIMATION BASED 

CONSTRAINED SPIDER MONKEY OPTIMIZATION 

ALGORITHM  

The present chapter introduces a new version of Constrained Spider Monkey Optimization 

(CSMO) proposed in chapter 3. This new version is named as Quadratic Approximation 

Based Constrained Spider Monkey Optimization (QACSMO) algorithm. The motivation 

behind the proposed algorithm is the improvement in the performance of basic SMO for 

unconstrained continuous optimization problems after incorporating QA operator in it in 

chapter 5. Further, the comparison among basic SMO, TS-SMO and QASMO demonstrates 

the superiority of QASMO over the other two. So, in this chapter an attempt has been made to 

incorporate QA in constrained version of SMO to study its impact in solving constrained 

continuous optimization problems. Investigation has been made on the performance of the 

proposed algorithm by testing it over IEEE CEC2006 and CEC2010 benchmark problems and 

results are compared with the results of CSMO. The chapter is organised as follows: In 

section 6.1, the proposed algorithm is presented. In section 6.2, experimental setup has been 

provided. In section 6.3, experimental results have been discussed. Finally, the chapter has 

been concluded in section 6.4. 

6.1 THE PROPOSED QUADRATIC APPROXIMATION BASED 

CONSTRAINED SPIDER MONKEY   OPTIMIZATION 

The implementation strategy of QA in CSMO is same as described for QA in SMO in 

subsection 5.2.2 of chapter 5. QA operator has been incorporated in Global Leader Learning 

Phase and Local Leader Learning Phase in CSMO with an objective to obtain better solutions 

in the neighbourhood of the global and local leaders. These two phases have been modified as 

follows: 

Modified Global Leader Learning Phase: First, the position of the global leader and the 

worst member of the swarm are found using Deb’s three feasibility rules mentioned in 

subsection 3.1.1 in chapter 3. Best member of the swarm is updated as the global leader. Then 

QA operator mentioned in subsection 5.2.1 in chapter 5 is applied to generate a new solution 



CHAPTER 6: QUADRATIC APPROXIMATION BASED CONSTRAINED SPIDER MONKEY OPTIMIZATION ALGORITHM  

156 

 

using three solutions. Among these three solutions, one is the global leader and other two are 

randomly selected members of the swarm. New solutions are created using QA operator until 

we get a solution which is better than the worst member say 𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡 of the swarm. 

Pseudocode of Modified Global Leader Learning Phase is given in Algorithm 6.1. 

Begin 

      Update the position of the global leader in the swarm 

       find 𝑆𝑀𝑤𝑜𝑟𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙 

 For i = 1 to 1000 Do 

Select A = GL, B and C are positions of randomly chosen members of the 

swarm such that A, B, C all are distinct 

//generate P using equation (5.1) 

 Compare the fitness of P and 𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡 using Deb’s three feasibility rules 

  If (fitness(P) > fitness(𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡)) Then 

                           𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑤𝑜𝑟𝑠𝑡 = P 

                           Terminate the loop 

                End if 

              End For 

              If (fitness(P) >fitness(GL)) 

                GL = P 

              End If 

              If (position of global leader is updated from previous position) Then 

                 GLC = 0 

             Else 

                 GLC = GLC + 1 

              End If 

    End 

 

Algorithm 6.1: Modified Global Leader Learning Phase 

 

Modified Local Leader Learning Phase: In every group, select the local leader and the 

worst member of the group using Deb’s three feasibility rules. Then QA operator mentioned 

in subsection 5.2.1 in chapter 5 is applied using three solutions. Among these three solutions, 
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one is the local leader and other two are randomly selected members of that group. The 

process is repeated till we get a solution which is better than worst member say 𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡 

of that group. Pseudocode for Modified Local Leader Learning Phase is given in Algorithm 

6.2. 

Begin 

For k = 1 to NG 

        Update the position of the local leader in the group 

         find 𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡 

  For i = 1 to 1000 Do 

Select A= 𝐿𝐿𝑘  , B and C are positions of randomly chosen members of the 

swarm such that A, B, C all are distinct 

//generate P using equation (5.1) 

 Compare the fitness of P and 𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡 using Deb’s three feasibility rules 

   If (fitness(P) > fitness(𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡)) Then 

                           𝑆𝑀𝑙𝑜𝑐𝑎𝑙𝑤𝑜𝑟𝑠𝑡 = P 

                           Terminate the loop 

                           End if 

                          End For 

                          If (fitness(P)>fitness(𝐿𝐿𝑘)) Then 

                𝐿𝐿𝑘= P 

                          End If 

                          If (position of local leader is updated from previous position) Then 

                                   𝐿𝐿𝐶𝑘 = 0 

                          Else 

                         𝐿𝐿𝐶𝑘  = 𝐿𝐿𝐶𝑘  + 1 

                          End If 

     End For 

End 

 

Algorithm 6.2: Modified Local Leader Learning Phase 

 

Pseudocode for QACSMO is provided in Algorithm 6.3. 
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Begin 

    Initialize the swarm using eq. (2.1)  

    Initialize LLlt, GLlt, Pr, MG 

    Iteration=0 

    Calculate fitness value of the position of each spider monkey in the swarm  

    using Algorithm 3.1 

    Select Global Leader and Local Leaders by applying Deb’s Three feasibility rules 

    While (termination criterion is not satisfied) Do 

          //Local Leader Phase (Algorithm 3.2) 

         //Calculate Probability of spider monkeys (using eq. (2.3)) 

         //Global Leader Phase (Algorithm 3.3) 

         //Modified Global Leader Learning Phase (Algorithm 6.1) 

         //Modified Local Leader Learning Phase (Algorithm 6.2) 

         //Local Leader Decision Phase (Algorithm 2.5) 

         //Global Leader Decision Phase (Algorithm 2.6) 

         Iteration = Iteration +1 

     End While 

  End 

 

Algorithm 6.3: Pseudocode for QACSMO 

 

6.2 EXPERIMENTAL SETUP  

The performance of the proposed QACSMO has been evaluated on CEC2006 [107] and 

CEC2010 [112] benchmark problems given in Appendix I and Appendix II respectively and 

the results have been compared with CSMO proposed in chapter 3. In order to have fair 

comparison, same benchmark problems and evaluation criteria has been adopted for 

QACSMO as mentioned for CSMO in subsections 3.3.1 and 3.3.3 of section 3.3 in chapter 3.  

6.3 DISCUSSION OF EXPERIMENTAL RESULTS 

Tables 6.1-6.8 present the results for CEC2006 benchmark problems and Tables 6.9-6.14 and 

Tables 6.15-6.20 present the results for CEC2010 benchmark problems for 10 dimensions and 

30 dimensions respectively. In order to observe whether the results are significantly different 
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or not, Wilcoxon rank sum test at 5% (𝛼 = 0.05) significance level is performed between 

QACSMO-CSMO for both CEC2006 and CEC2010 benchmark sets. The null hypothesis 

assumed for this statistical test is “if there is no difference in the performance of the 

algorithms” means both the algorithms are equivalent and alternative hypothesis being “there 

is a difference in the performance of the algorithms”. The test has been applied to the sample 

containing results of 25 independent runs performed by each algorithm for each benchmark 

problem. The output of the applied test has been presented in tabular form. If there is no 

significant difference between the results, ‘=’ sign appears and when there is significant 

difference between the results, ‘+’ or ‘-’ sign appears based on QACSMO is performing better 

or worse than CSMO. 

6.3.1 DISCUSSION OF RESULTS FOR CEC2006 BENCHMARK PROBLEMS 

The feasibility rate and success rate of both the algorithms have been provided in Table 6.1. 

From this table, it can be seen that QACSMO has better performance than CSMO on three 

problems (g05, g13, g17) in terms of feasibility rate and both the algorithms have same 

feasibility rate on rest of the problems. In terms of success rate, CSMO has better 

performance than QACSMO on five problems (g02, g04, g06, g16 and g18) and QACSMO 

has better performance only on g15. Table 6.2 present the best, median and worst of function 

error values obtained in 25 runs. Table 6.3 present mean and standard deviation of function 

error values of feasible runs only. Table 6.4 and Table 6.5 present the best, median, worst, 

mean and standard deviation of the number of function evaluations for successful runs 

obtained in 25 runs. The summary of comparison of QACSMO against CSMO has been 

provided in Table 6.6. From this table, it can be seen that QACSMO is better than CSMO 

only in terms of feasibility rate. On rest of the performance metrics, CSMO is performing 

better than QACSMO. 

Results of Wilcoxon rank sum test based on function error value is presented in Table 6.7 

which shows QACSMO is either equivalent or significantly worse than CSMO on all the 

problems except problem g08. Table 6.8 presents the average execution time taken by both 

the algorithms per run. This table shows there is not much difference in the execution time of 

both the algorithms. So, this table should be considered for information purpose only. 

Convergence graphs for problems g01-g24 has been plotted in Figures 6.1-6.3. In the 

convergence graphs, value on the horizontal axis represents the number of iterations and the 

vertical axis shows the function error value. The logarithmic graphs have been plotted as the 
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range of the problems was large. Sudden rise in some graphs show that the solution has 

entered the feasible region. 

6.3.2 DISCUSSION OF RESULTS FOR CEC2010 BENCHMARK PROBLEMS FOR 

10 DIMENSIONS AND 30 DIMENSIONS 

Table 6.9 presents the feasibility rate of CEC2010 benchmarks for 10 dimensions only. It 

shows that CSMO performs better than QACSMO on eight (C02, C03, C04, C09, C12, C16, 

C17, C18) problems, while QACSMO performs better on two (C06 and C10) problems. Also, 

from Tables 6.10 and 6.11, it can be seen that CSMO performs better than QACSMO on most 

of the problems. The summary of comparison of QACSMO against CSMO has been provided 

in Table 6.12. This table shows that QACSMO performs worse than CSMO on all the 

performance metrics. Results of  Wilcoxon rank sum test based on objective function value 

for 10 dimensions problems is presented in Table 6.13. This table shows that QACSMO 

performs equivalent or significantly worse than CSMO on all the problems. Average 

execution time of both the algorithms is presented in Table 6.14. From this table, it can be 

seen that there is not much difference in the execution time of both the algorithms.   

Table 6.15 presents feasibility rate of CSMO and QACSMO for CEC2010 benchmark 

problems for 30 dimensions. CSMO outperforms QACSMO five problems (C11, C12, C16, 

C17, C18) in terms of feasibility rate. Tables 6.16 and 6.17 show CSMO outperforms 

QACSMO on most of the problems. The summary of results for 30 dimensions has been 

provided in Table 6.18. Results of Wilcoxon rank sum test based on objective function value 

for 30 dimensions problems is presented in Table 6.19 which shows QACSMO is either 

equivalent or significantly worse than CSMO on all the problems except problem C18.. The 

average execution time taken by both the algorithms is presented in Table 6.20.  

6.4 CONCLUSIONS 

This chapter proposes a new version of CSMO named as QACSMO after incorporating 

quadratic approximation operator in it. The performance of QACSMO is evaluated on IEEE 

CEC2006 and CEC2010 benchmark problems and results are compared with CSMO. 

Discussion of results demonstrates that incorporation of quadratic approximation operator has 

negative impact on the performance of CSMO. Since it is an experimental study, the actual 

reason of the performance deterioration cannot be figured out. But the possible reason can be 

the decrease in the number of iterations because of the consumption of more number of 
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function evaluations in each iteration in Modified Global leader learning phase and Modified 

Local Leader Learning Phase of QACSMO. Termination criteria adopted for both the 

algorithms is the fixed number of function evaluations. Consumption of high number of 

function evaluations in Modified Global Leader Learning Phase and Modified Local Leader 

Learning Phase result in less number of iterations for QACSMO than CSMO. Less number of 

iterations may interrupt the algorithm in the exploration of the search space. So, the 

conclusion is quadratic approximation operator which improves the performance of SMO for 

solving unconstrained optimization problems is not able to perform well for solving 

constrained optimization problems. Though, algorithms are modified with an objective to 

improve the performance of the algorithm and better results are expected with these 

modifications. But the presentation of bad results is also necessary to save the user who wants 

to solve constrained problems using SMO from wasting time. User can think that if quadratic 

approximation operator is going well with SMO for unconstrained optimization problems, 

then it will also go well with constrained optimization problems without testing it, but this is 

not the case. Also, it may be noted that whatever the conclusion has been made, it is made for 

CEC2006 and CEC2010 benchmark problems. Also, it shows that we cannot conclude if a 

modification is working well for unconstrained optimization problems, it does not guarantee 

that it will work for constrained optimization problems also. In future, other modifications 

will be tried to improve the performance of CSMO. 
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Figure 6.1: Convergence graphs of problems g01-g08 
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Figure 6.2: Convergence graphs of problems g09-g16 
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Figure 6.3: Convergence graphs of problems g17-g24 

 

 

 

 

0.E+00

2.E+03

4.E+03

6.E+03

8.E+03

1.E+04

1
2

4
4

7
7

0
9

3
1

1
6

1
3

9
1

6
2

1
8

5
2

0
8

2
3

1
2

5
4

2
7

7
3

0
0

3
2

3

er
ro

r 
va

lu
e 

iterations 

g17 

CSMO

QACSMO

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1
2

6
5

1
7

6
1

0
1

1
2

6
1

5
1

1
7

6
2

0
1

2
2

6
2

5
1

2
7

6
3

0
1

3
2

6
3

5
1

lo
g 

o
f 

er
ro

r 
va

lu
e

 

iterations 

g18 

CSMO

QACSMO

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1
5

0
9

9
1

4
8

1
9

7
2

4
6

2
9

5
3

4
4

3
9

3
4

4
2

4
9

1
5

4
0

5
8

9
6

3
8

6
8

7

lo
g 

o
f 

er
ro

r 
va

lu
e

 

iterations 

g19 

CSMO

QACSMO

0.E+00

5.E+01

1.E+02

2.E+02

2.E+02

1
3

6
7

1
1

0
6

1
4

1
1

7
6

2
1

1
2

4
6

2
8

1
3

1
6

3
5

1
3

8
6

4
2

1
4

5
6

4
9

1

er
ro

r 
va

lu
e 

iterations 

g20 

CSMO

QACSMO

0.E+00

5.E+01

1.E+02

2.E+02

2.E+02

3.E+02

1
5

1
1

0
1

1
5

1
2

0
1

2
5

1
3

0
1

3
5

1
4

0
1

4
5

1
5

0
1

5
5

1
6

0
1

6
5

1
7

0
1

er
ro

r 
va

lu
e 

iterations 

g21 

CSMO

QACSMO

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

1.E+10

1
4

8
9

5
1

4
2

1
8

9
2

3
6

2
8

3
3

3
0

3
7

7
4

2
4

4
7

1
5

1
8

5
6

5
6

1
2

6
5

9

lo
g 

o
f 

er
ro

r 
va

lu
e

 

iterations 

g22 

CSMO

QACSMO

0.E+00

1.E+02

2.E+02

3.E+02

4.E+02

5.E+02

6.E+02

1
2

9
5

7
8

5
1

1
3

1
4

1
1

6
9

1
9

7
2

2
5

2
5

3
2

8
1

3
0

9
3

3
7

3
6

5
3

9
3

er
ro

r 
va

lu
e 

iterations 

g23 

CSMO

QACSMO

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

lo
g 

o
f 

er
ro

r 
va

lu
e 

iterations 

g24 

CSMO

QACSMO



CHAPTER 6: QUADRATIC APPROXIMATION BASED CONSTRAINED SPIDER MONKEY OPTIMIZATION ALGORITHM  

165 

 

 

 

Table 6.1: Comparison of Feasibility Rate and Success Rate for CEC2006 Benchmark 

Problems 

Problems 
Feasibility Rate Success Rate 

CSMO QACSMO CSMO QACSMO 

g01 100 100 100 100 

g02 100 100 8 0 

g03 100 100 0 0 

g04 100 100 100 92 

g05 80 88 0 0 

g06 100 100 96 0 

g07 100 100 0 0 

g08 100 100 100 100 

g09 100 100 0 0 

g10 100 100 0 0 

g11 100 100 24 24 

g12 100 100 100 100 

g13 88 100 0 0 

g14 100 100 0 0 

g15 100 100 0 8 

g16 100 100 100 16 

g17 96 100 0 0 

g18 100 100 20 4 

g19 100 100 0 0 

g20 0 0 0 0 

g21 0 0 0 0 

g22 0 0 0 0 

g23 16 16 0 0 

g24 100 100 100 100 
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Table 6.2: Comparison of Best, Median and Worst of function error values obtained with 25 

independent runs for CEC2006 Benchmark Problems 

Problems Best Median Worst 

 CSMO QACSMO CSMO QACSMO CSMO QACSMO 

g01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g02 2.55E-05 3.88E-02 1.12E-02 1.77E-01 4.96E-02 3.00E-01 

g03 2.39E-01 2.16E-02 4.88E-01 8.68E-01 8.86E-01 9.74E-01 

g04 0.00E+00 3.64E-12 0.00E+00 6.18E-11 0.00E+00 2.62E+00 

g05 4.79E-02 8.72E-02 5.49E+02 2.43E+02 5.30E-03(1) 2.28E-03(1) 

g06 2.79E-08 1.98E-03 6.93E-07 5.88E-01 2.40E-04 2.02E+01 

g07 3.05E-02 4.58E-02 2.81E-01 1.15E+00 7.18E-01 9.41E+00 

g08 4.16E-17 1.39E-17 4.16E-17 2.78E-17 4.16E-17 4.16E-17 

g09 6.75E-04 4.43E-03 5.10E-03 1.18E-01 1.07E-02 4.25E-01 

g10 1.70E+01 1.65E+01 2.06E+02 3.85E+02 9.91E+02 1.51E+03 

g11 5.99E-06 5.14E-08 1.55E-02 8.28E-04 2.50E-01 1.55E-01 

g12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

g13 4.91E-01 1.54E-01 9.09E-01 9.32E-01 2.14E-04(1) 1.33E+00 

g14 5.10E-01 2.50E+00 4.09E+00 4.91E+00 6.09E+00 9.64E+00 

g15 1.66E-03 1.00E-05 6.46E-01 1.02E+00 1.06E+01 1.05E+01 

g16 6.49E-12 1.41E-06 6.68E-10 7.86E-03 1.49E-07 2.43E-01 

g17 5.49E+01 2.30E+01 1.59E+02 1.06E+02 8.49E-05(1) 3.85E+02 

g18 4.34E-05 9.41E-05 1.94E-04 6.92E-03 2.42E-03 2.12E-01 

g19 1.30E+00 1.49E+01 5.95E+00 4.34E+01 1.49E+01 7.21E+01 

g20 3.72E-03(6) 1.90E-02(9) 1.84E-02(11) 2.70E-02(9) 3.04E-02(15) 3.13E-02(8) 

g21 1.51E-03(2) 1.38E-03(1) 5.44E-03(3) 1.23E-02(2) 1.71E-02(3) 8.40E-02(2) 

g22 2.31E01(16) 1.61E+00(19) 5.06E+00(10) 1.33E+03(19) 4.26E+04(19) 2.96E+05(18) 

g23 4.00E+02 3.33E+02 7.36E-04 7.52E-02(1) 8.32E-03(4) 4.00E-01(3) 

g24 1.24E-14 3.29E-14 1.24E-14 3.29E-14 1.24E-14 5.68E-14 
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Table 6.3: Comparison of Mean and Standard Deviation of function error values obtained 

with feasible runs out of 25 independent runs for CEC2006 Benchmark Problems 

Problems Mean Stdev 

 
CSMO QACSMO CSMO QACSMO 

g01 0.00E+00 0.00E+00 0 0 

g02 1.54E-02 1.63E-01 0.015199 0.070354 

g03 4.91E-01 7.85E-01 0.144542 0.218356 

g04 0.00E+00 1.16E-01 0 0.524738 

g05 3.68E+02 3.24E+02 392.0755 328.2717 

g06 1.43E-05 2.05E+00 0.000048 4.16957 

g07 3.01E-01 1.85E+00 0.208882 2.201276 

g08 4.16E-17 2.83E-17 6.29E-33 4.86E-18 

g09 5.27E-03 1.35E-01 0.002991 0.108808 

g10 2.69E+02 5.04E+02 219.6704 438.4481 

g11 8.49E-02 2.68E-02 0.103121 0.050794 

g12 0.00E+00 0.00E+00 0 0 

g13 8.58E-01 8.35E-01 0.146289 0.277501 

g14 3.90E+00 4.90E+00 1.431023 1.649259 

g15 2.98E+00 3.16E+00 3.6463 3.433578 

g16 9.79E-09 3.54E-02 3.13E-08 0.06049 

g17 2.21E+02 1.94E+02 139.4337 126.7075 

g18 3.47E-04 5.10E-02 0.000474 0.084862 

g19 6.33E+00 4.24E+01 3.771037 16.4541 

g20 N.A. N.A. N.A. N.A. 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 4.00E+02 4.35E+02 0 147.5678 

g24 1.24E-14 3.50E-14 3.22E-30 6.59E-15 
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Table 6.4: Comparison of Best, Median and Worst of the number of function evaluations for 

successful runs obtained with 25 independent runs for CEC2006 Benchmark Problems 

Problems 
Best Median Worst 

CSMO QACSMO CSMO QACSMO CSMO QACSMO 

g01 8950 8610 10750 12307 28150 40675 

g02 217736 N.A. 255548.5 N.A. 293361 N.A. 

g03 N.A. N.A. N.A. N.A. N.A. N.A. 

g04 17550 13474 21850 26405 30150 141786 

g05 N.A. N.A. N.A. N.A. N.A. N.A. 

g06 165267 N.A. 201324 N.A. 326597 N.A. 

g07 N.A. N.A. N.A. N.A. N.A. N.A. 

g08 650 459 950 780 1250 970 

g09 N.A. N.A. N.A. N.A. N.A. N.A. 

g10 N.A. N.A. N.A. N.A. N.A. N.A. 

g11 274204 9271 359310 53018 476918 229429 

g12 350 255 1050 907 1650 1454 

g13 N.A. N.A. N.A. N.A. N.A. N.A. 

g14 N.A. N.A. N.A. N.A. N.A. N.A. 

g15 N.A. 7607 N.A. 8997 N.A. 10388 

g16 12850 8098 26050 12448 80724 32107 

g17 N.A. N.A. N.A. N.A. N.A. N.A. 

g18 219036 364579 372280 364579 476428 364579 

g19 N.A. N.A. N.A. N.A. N.A. N.A. 

g20 N.A. N.A. N.A. N.A. N.A. N.A. 

g21 N.A. N.A. N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. N.A. N.A. 

g23 N.A. N.A. N.A. N.A. N.A. N.A. 

g24 2950 2711 4250 3467 5850 4049 
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Table 6.5: Comparison of Mean and Standard Deviation of the number of function 

evaluations for successful runs obtained with 25 independent runs for CEC2006 Benchmark 

Problems 

Problems 
Mean Stdev 

CSMO QACSMO CSMO QACSMO 

g01 13714 17251 6026 9680 

g02 255548 N.A. 53474 N.A. 

g03 N.A. N.A. N.A. N.A. 

g04 22690 44916 2973 39397 

g05 N.A. N.A. N.A. N.A. 

g06 216177 N.A. 42756 N.A. 

g07 N.A. N.A. N.A. N.A. 

g08 934 786 146 121 

g09 N.A. N.A. N.A. N.A. 

g10 N.A. N.A. N.A. N.A. 

g11 374996 82512 80233 85497 

g12 1026 893 274 266 

g13 N.A. N.A. N.A. N.A. 

g14 N.A. N.A. N.A. N.A. 

g15 N.A. 8997 N.A. 1966 

g16 34930 16275 20422 10845 

g17 N.A. N.A. N.A. N.A. 

g18 348277 364579 109348 N.A. 

g19 N.A. N.A. N.A. N.A. 

g20 N.A. N.A. N.A. N.A. 

g21 N.A. N.A. N.A. N.A. 

g22 N.A. N.A. N.A. N.A. 

g23 N.A. N.A. N.A. N.A. 

g24 4258 3421 796 372 
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Table 6.6: Summary of comparison of QACSMO against CSMO for CEC2006 Benchmark 

Problems 

QACSMO vs. CSMO 

Criteria Better Equal Worse 

Feasibility rate 3 21 0 

Success rate 1 19 4 

Function error values 

Criteria Better Equal Worse 

Best 9 2 13 

Median 4 2 18 

Worst 5 3 16 

Mean 6 2 13 

Stdev 4 2 15 

Number of function evaluations for successful runs 

Criteria Better Equal Worse 

Best 7 0 1 

Median 6 0 2 

Worst 5 0 2 

Mean 5 0 3 

Stdev 3 0 3 
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Table 6.7: Wilcoxon Rank sum test based on function error values with a significance level 

of 𝛼 = 0.05 for CEC2006 Benchmark Problems (‘+’ indicates QACSMO is significantly 

better, ‘-’ indicates QACSMO is significantly worse and ‘=’ indicates there is no significant 

difference) 

Problems Sign Problems Sign 

g01 = g13 = 

g02 - g14 = 

g03 - g15 = 

g04 - g16 - 

g05 = g17 = 

g06 - g18 - 

g07 - g19 - 

g08 + g20 - 

g09 - g21 = 

g10 = g22 - 

g11 = g23 - 

g12 = g24 - 

 

 

Table 6.8: Average time per run (in seconds) for CEC2006 Benchmark Problems 

Problems CSMO QACSMO Problems CSMO QACSMO 

g01 0.41768 0.97928 g13 1.35976 0.42004 

g02 6.40724 2.74136 g14 0.34888 0.65752 

g03 0.35684 0.655 g15 1.65564 0.3144 

g04 0.21896 0.37756 g16 1.88088 0.61992 

g05 0.4378 0.54464 g17 2.35924 0.68696 

g06 0.2148 0.17312 g18 9.66048 1.0168 

g07 0.36836 0.69132 g19 4.32468 1.37668 

g08 1.03548 0.24876 g20 1.12376 1.97204 

g09 1.30812 0.54604 g21 1.50956 0.75236 

g10 0.31108 0.53376 g22 2.59196 1.52636 

g11 0.13656 0.17436 g23 0.34364 0.62092 

g12 3.90484 4.55596 g24 3.0542 0.32632 
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Table 6.9: Feasibility Rate for CEC2010 Benchmark Problems (10 dimensions) 

Problems CSMO QACSMO Problems CSMO QACSMO 

C01 100 100 C10 8 20 

C02 100 44 C11 0 0 

C03 100 0 C12 100 72 

C04 16 0 C13 100 100 

C05 0 0 C14 100 100 

C06 0 16 C15 100 100 

C07 100 100 C16 100 80 

C08 100 100 C17 100 56 

C09 8 4 C18 100 84 
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Table 6.10: Best, Median and Worst of objective function values obtained with 25 

independent runs for CEC2010 Benchmark Problems (10 dimensions) 

Problems Best Median Worst 

  CSMO QACSMO CSMO QACSMO CSMO QACSMO 

C01 -7.47E-01 -7.47E-01 -7.47E-01 -7.47E-01 -7.47E-01 -6.18E-01 

C02 4.96E-01 8.31E-01 2.10E+00 4.17E-05(1) 3.55E+00 1.20E-04(1) 

C03 1.29E+08 2.16E-04(1) 2.73E+12 4.39E-04(1) 5.22E+14 1.04E-03(1) 

C04 1.55E-03 1.53E-03(2) 9.02E-04(2) 7.23E-03(3) 2.28E+00(2) 4.10E+00(3) 

C05 3.08E-04(2) 6.00E-03(2) 5.92E-03(2) 7.33E-02(2) 1.73E-02(2) 1.67E-01(2) 

C06 6.02E-04(2) 3.05E-01 9.14E-03(2) 6.35E-02(2) 2.31E-02(2) 2.18E-01(2) 

C07 6.37E-02 1.86E-01 1.57E+00 2.12E+00 7.20E+01 8.16E+01 

C08 4.12E-05 4.90E-02 1.06E+01 1.10E+01 1.02E+03 7.71E+02 

C09 1.35E+12 1.43E+13 3.90E-04(1) 6.58E-03(1) 5.79E-03(1) 2.16E-02(1) 

C10 3.15E+11 4.00E+11 5.29E-04(1) 4.42E-03(1) 2.88E-03(1) 3.46E-02(1) 

C11 7.24E-04(1) 8.27E-02(1) 8.53E-01(1) 1.35E+00(1) 1.89E+01(1) 4.74E+00(1) 

C12 -5.70E+02 -3.31E+01 -2.62E+02 1.56E-01 2.14E+01 3.04E+02(1) 

C13 -6.84E+01 -6.84E+01 -6.74E+01 -6.35E+01 -6.23E+01 -6.12E+01 

C14 4.95E-03 4.81E-01 5.43E-01 1.11E+02 7.42E+00 3.88E+06 

C15 8.23E+10 7.69E+11 1.15E+12 1.22E+13 8.53E+12 5.07E+14 

C16 8.33E-01 9.92E-01 1.02E+00 1.03E+00 1.05E+00 1.96E-04(2) 

C17 8.19E+01 6.18E+01 3.04E+02 6.76E+02 1.01E+03 2.58E-04(1) 

C18 2.32E+03 2.41E+03 6.78E+03 7.92E+03 1.70E+04 2.83E-04(2) 
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Table 6.11: Mean and Standard Deviation of objective function values obtained with feasible 

runs out of 25 independent runs for CEC2010 Benchmark Problems (10 dimensions) 

Problems Mean Stdev 

 
CSMO QACSMO CSMO QACSMO 

C01 -7.47E-01 -7.35E-01 0.00E+00 3.08E-02 

C02 2.22E+00 3.48E+00 9.03E-01 1.45E+00 

C03 4.82E+13 N.A. 1.16E+14 N.A. 

C04 7.00E+00 N.A. 8.08E+00 N.A. 

C05 N.A. N.A. N.A. N.A. 

C06 N.A. 3.05E-01 N.A. 0.00E+00 

C07 9.63E+00 1.22E+01 1.88E+01 2.42E+01 

C08 6.27E+01 1.05E+02 2.03E+02 1.94E+02 

C09 1.50E+13 1.43E+13 1.93E+13 N.A. 

C10 4.68E+11 2.77E+12 2.16E+11 3.40E+12 

C11 N.A. N.A. N.A. N.A. 

C12 -2.94E+02 -1.38E+00 2.75E+02 8.06E+00 

C13 -6.66E+01 -6.46E+01 2.21E+00 2.59E+00 

C14 1.34E+00 6.37E+05 1.95E+00 1.45E+06 

C15 1.90E+12 4.54E+13 2.27E+12 1.03E+14 

C16 9.96E-01 1.03E+00 5.27E-02 1.93E-02 

C17 3.83E+02 3.44E+02 2.33E+02 2.06E+02 

C18 7.48E+03 8.49E+03 3.54E+03 5.93E+03 
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Table 6.12: Summary of comparison of QACSMO against CSMO for CEC2010 Benchmark 

Problems (10 dimensions) 

QACSMO vs. CSMO 

Criteria Better Equal Worse 

Feasibility rate 2 8 8 

Function error values 

Criteria Better Equal Worse 

Best 2 14 2 

Median 0 1 17 

Worst 2 0 16 

Mean 2 0 11 

Stdev 3 0 9 

 

 

 

Table 6.13: Wilcoxon Rank sum test based on objective function value with a significance 

level of 𝛼 = 0.05 for CEC2010 Benchmark Problems (10 dimensions) (‘+’ indicates CSMO 

is significantly better, ‘-’ indicates QACSMO is significantly worse and ‘=’ indicates there is 

no significant difference) 

Problems Sign Problems Sign 

C01 = C10 - 

C02 - C11 = 

C03 - C12 - 

C04 = C13 - 

C05 - C14 - 

C06 - C15 - 

C07 = C16 = 

C08 - C17 - 

C09 - C18 = 
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Table 6.14: Average time per run (in seconds) for CEC2010 Benchmark Problems (10 

dimensions) 

Problems CSMO QACSMO Problems CSMO QACSMO 

C01 1.57704 0.6316 C10 0.6866 0.77816 

C02 0.62848 0.78756 C11 4.61672 0.63064 

C03 2.99672 0.3194 C12 2.44728 0.53316 

C04 2.26852 0.54132 C13 0.69888 0.78688 

C05 0.66564 0.6808 C14 2.34368 0.92004 

C06 0.9182 0.98948 C15 1.22948 1.18256 

C07 4.56004 0.54628 C16 0.8308 0.85876 

C08 3.45228 0.83192 C17 0.41632 0.4794 

C09 0.39936 0.47128 C18 0.67808 0.685 

 

 

 

Table 6.15: Feasibility Rate for CEC2010 Benchmark Problems (30 dimensions) 

Problems CSMO QACSMO Problems CSMO QACSMO 

C01 100 100 C10 12 28 

C02 100 100 C11 4 0 

C03 0 0 C12 92 52 

C04 0 0 C13 100 100 

C05 0 4 C14 100 100 

C06 0 16 C15 100 100 

C07 100 100 C16 100 84 

C08 100 100 C17 100 64 

C09 16 16 C18 100 96 

 

 

 

 

 

 



CHAPTER 6: QUADRATIC APPROXIMATION BASED CONSTRAINED SPIDER MONKEY OPTIMIZATION ALGORITHM  

177 

 

 

 

 

 

Table 6.16: Best, Median and Worst of objective function values obtained with 25 

independent runs for CEC2010 Benchmark Problems (30 dimensions) 

Problems Best  Median  Worst  

 CSMO QACSMO CSMO QACSMO CSMO QACSMO 

C01 -8.18E-01 -8.18E-01 -8.18E-01 -8.07E-01 -8.04E-01 -6.61E-01 

C02 1.38E+00 2.93E+00 3.03E+00 4.58E+00 4.05E+00 5.48E+00 

C03 1.12E-03(1) 1.25E-02(1) 2.61E+01(1) 3.96E+01(1) 4.53E+02(1) 1.94E+02(1) 

C04 4.14E-03(3) 1.71E-02(3) 4.27E-02(3) 1.34E-01(3) 1.22E+00(4) 1.33E+00(4) 

C05 2.32E-04(2) 2.64E+02 9.78E-04(2) 6.15E-03(1) 2.22E-03(2) 3.05E-02(2) 

C06 3.52E-04(2) 1.44E+00 2.04E-03(2) 1.07E-02(2) 4.22E-03(2) 4.49E-02(2) 

C07 4.72E-04 2.29E-01 1.37E+01 1.49E+01 1.03E+02 9.04E+01 

C08 2.11E-03 1.19E-01 7.99E+01 1.99E+02 1.51E+04 6.44E+03 

C09 1.78E+13 5.96E+12 3.36E-04(1) 3.91E-03(1) 1.26E-03(1) 1.79E-02(1) 

C10 1.05E+12 3.60E+12 3.06E-04(1) 1.68E-03(1) 1.53E-03(1) 1.37E-02(1) 

C11 2.61E-04 5.83E-02(1) 6.91E+00(1) 4.03E+00(1) 1.38E+02(1) 6.87E+01(1) 

C12 -8.85E+02 -2.03E+02 -1.99E-01 1.29E+01 3.23E-01(1) 2.27E+00(1) 

C13 -6.75E+01 -6.43E+01 -6.40E+01 -5.91E+01 -6.19E+01 -5.71E+01 

C14 1.30E-02 7.15E-02 1.28E+01 7.01E+01 2.87E+03 5.02E+07 

C15 7.57E+12 1.28E+12 2.60E+13 5.14E+13 2.22E+13 2.32E+14 

C16 1.06E+00 1.06E+00 1.11E+00 1.12E+00 1.17E+00 1.15E-04(2) 

C17 8.09E+02 5.28E+02 1.36E+03 1.40E+03 2.44E+03 1.66E-04(1) 

C18 1.80E+04 1.39E+04 2.63E+04 2.20E+04 3.52E+04 1.13E-05(1) 
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Table 6.17: Mean and Standard Deviation of objective function values obtained with 25 

independent runs for CEC2010 Benchmark Problems (30 dimensions) 

Problems Mean Stdev 

 
CSMO QACSMO CSMO QACSMO 

C01 -8.17E-01 -7.91E-01 2.80E-03 3.86E-02 

C02 2.97E+00 4.47E+00 6.29E-01 7.04E-01 

C03 N.A. N.A. N.A. N.A. 

C04 N.A. N.A. N.A. N.A. 

C05 N.A. 2.64E+02 N.A. N.A. 

C06 N.A. 1.44E+00 N.A. 0.00E+00 

C07 2.60E+01 2.14E+01 3.50E+01 2.61E+01 

C08 1.09E+03 1.10E+03 3.23E+03 1.81E+03 

C09 3.36E+13 2.44E+13 2.15E+13 3.07E+13 

C10 2.59E+13 1.46E+13 2.33E+13 7.44E+12 

C11 2.61E-04 N.A. N.A. N.A. 

C12 -4.19E+02 -1.16E+01 4.20E+02 5.77E+01 

C13 -6.43E+01 -6.01E+01 1.27E+00 1.95E+00 

C14 1.85E+02 2.16E+06 5.85E+02 1.00E+07 

C15 2.32E+13 6.37E+13 1.10E+13 5.76E+13 

C16 1.11E+00 1.12E+00 2.48E-02 3.29E-02 

C17 1.43E+03 1.07E+03 3.33E+02 3.77E+02 

C18 2.65E+04 2.53E+04 4.57E+03 1.29E+04 
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Table 6.18: Summary of comparison of QACSMO against CSMO for CEC2010 Benchmark 

Problems (10 dimensions) 

QACSMO vs. CSMO 

Criteria Better Equal Worse 

Feasibility rate 3 10 5 

Function error values 

Criteria Better Equal Worse 

Best 6 2 10 

Median 2 0 16 

Worst 4 0 14 

Mean 5 0 8 

Stdev 4 0 9 

 

 

 

Table 6.19: Wilcoxon Rank sum test based on objective function value with a significance 

level of 𝛼 = 0.05 for CEC2010 Benchmark Problems (30 dimensions) (‘+’ indicates CSMO 

is significantly better, ‘-’ indicates QACSMO is significantly worse and ‘=’ indicates there is 

no significant difference) 

Problems Sign Problems Sign 

C01 - C10 - 

C02 - C11 = 

C03 = C12 - 

C04 = C13 - 

C05 - C14 - 

C06 - C15 - 

C07 = C16 = 

C08 = C17 - 

C09 - C18 + 
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Table 6.20: Average time per run (in seconds) for CEC2010 problems (30 dimensions) 

Problems CSMO QACSMO Problems CSMO QACSMO 

C01 13.98664 5.1734 C10 9.17212 10.52392 

C02 5.37496 7.01812 C11 47.38996 9.16544 

C03 21.386 1.97136 C12 23.08752 4.614 

C04 23.29676 4.02116 C13 6.16084 6.48596 

C05 5.84628 5.97224 C14 36.29884 7.97916 

C06 11.7292 12.37252 C15 14.20968 14.20876 

C07 43.1298 4.36836 C16 7.28812 7.4746 

C08 39.4982 10.51492 C17 3.55688 4.2032 

C09 3.42036 4.13772 C18 5.92072 5.96916 
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CHAPTER 7 

APPLICATION OF SPIDER MONKEY 

OPTIMIZATION TO SOLVE LENNARD-JONES 

PROBLEM 

Determination of Molecular confirmation is one of the most challenging problems of 

computational chemistry which can be modelled as a global optimization problem. A 

molecular conformation problem deals with finding the global minimum of a suitable 

potential energy function, which depends on relative positions of atoms. Minimization of this 

energy provides maximum stability for atomic clusters [47].  This energy is the sum of several 

factors including energy caused by the interaction of two non-bonding atoms. Vander waals 

interaction is a contributing factor in the energy of interaction between two non-bonding 

atoms. Vander waals interaction is characterized by the Lennard Jones (L-J) potential 

function. The main obstacle in solving Lennard-Jones (L-J) problem is the non-linearity and 

non-convexity of the objective function and exponentially increasing number of local minima 

with increase in the number of dimensions. Despite these difficulties, solution of this problem 

is very important to facilitate drug design, synthesis and utilization of pharmaceutical 

products. So, in the past few years, this problem has attracted several researchers from the 

field of global optimization to apply their algorithms to solve this problem. In Wille and 

Vennik [178], it has been shown that complexity of determining global minimum energy of 

the L-J cluster makes this problem fall in the category of NP-hard problems. This observation 

has been proved as a motivation for applying metaheuristics to this problem because of their 

success in solving NP-hard problems in the past few decades. In Deep et.al. [40], L-J problem 

is solved by applying different variants of Real coded genetic algorithms. In Deep and 

Madhuri [36], an attempt has been made to solve L-J problem using a variant of PSO named 

as Globally adaptive inertia weight PSO. In this chapter, L-J problem is solved using SMO, 

TS-SMO and QASMO. To the best of author’s knowledge, this is the first attempt to solve L-

J optimization problem using SMO. Search space for the different clusters has been taken 

from Deep and Madhuri [36]. The chapter is organised as follows: In section 7.1, a brief 

introduction to L-J problem is provided. In section 7.2, experimental setup is provided. In 

section 7.3, the experimental results have been discussed. The chapter is concluded with 

future scope in section 7.4. 
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7.1 LENNARD-JONES (L-J) PROBLEM 

A system containing more than one atom, whose Van der Waals interaction can be  described 

by L-J potential is called a L-J cluster. L-J problem deals with finding the relative position of 

atoms in a cluster in the three dimensional Euclidean space in such a way that that potential 

energy is minimum. Given a cluster of n atoms, L-J problem can be defined mathematically 

as below [36]: 

   V= ∑ ∑ (
1

𝑟𝑖𝑗
12 −

2

𝑟𝑖𝑗
6)

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                (7.1) 

Where 𝑟𝑖𝑗 is the Euclidean distance between two distinct atoms i and j. Each atom is 

characterized by a 3-dimensional vector say (a,b,c). So, dimension of each solution of L-J 

problem will be 3n, where n is the number of atoms in the cluster. Here target is to minimize 

V. The Potential repels two atoms when they come too close to each other and this behaviour 

requires a special treatment in molecular dynamics simulation. 

7.2 EXPERIMENTAL SETUP  

Setting for the experiment is given below: 

Swarm size = 150 

Perturbation rate (Pr) = linearly increasing ([0.1, 0.4]) 

Maximum number of groups (MG) =5 

local leader limit = 100 

global leader limit = 50 

Total number of runs = 100 

Maximum number of iterations = 4000 

Acceptable error = 1.0e-05 

Stopping criterion = maximum number of iterations or acceptable error (whichever is 

achieved earlier) 
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Tournament size for TS-SMO = 2 

Here, error is the absolute difference between the optimal solution and the objective 

function value of the global leader. In order to make fair comparison between the two 

algorithms, both the algorithms start with the same initial swarm. 

The search space for different number of atoms has been provided in Table 7.1.  The 

problem has been solved using SMO, TS-SMO and QASMO. For comparing the results, 

success rate, average number of function evaluations for successful runs, best, average and 

worst of function error values has been recorded.  

Table 7.1: Dimension and search space for different number of atoms 

Number of atoms dimension search space 

3 9 [-0.52, 0.45]
9
 

4 12 [-0.52, 0.62]
12

 

5 15 [-0.75, 0.75]
15

 

6 18 [-0.75, 0.75]
18

 

7 21 [-0.96, 0.87]
21

 

8 24 [-0.9, 1.022]
24

 

9 27 [-2, 2]
27

 

10 30 [-2, 2]
30

 

    

7.3 DISCUSSION OF EXPERIMENTAL RESULTS 

The numerical and statistical results of the experiment for SMO, TS-SMO and QASMO have 

been provided in Tables 7.2-7.7. Best entries in the table appear in bold.  

Table 7.2 provides the success rate and average number of function evaluations for successful 

runs. From this table, it can be seen that QASMO has highest success rate among all the three 

algorithms. It has 100 percent success rate in all the clusters except for the cluster of 9 atoms, 

while SMO and TS-SMO have 100 percent success rate in two clusters (atoms 3 and 6) and 

three clusters (atoms 3, 4 and 6) respectively. Also, for average number of function 

evaluations, QASMO has better performance in six clusters (atoms 3, 4, 5, 6, 7 and 8), while 

in two clusters (atoms9 and 10), TS-SMO has the better performance.  
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Tables 7.3-7.5 provide the best, average and worst of function error values of SMO, TS-

SMO and QASMO obtained in 100 independent runs. From Table 7.3, it can be seen that 

SMO has best value in three clusters (atoms 3, 8 and 10) and QASMO has best value in five 

clusters (atoms 4, 5, 6, 7 and 9). In case of average error values (Table 7.4), SMO has best 

value for one cluster (atoms 3), TS-SMO for one cluster (atoms 6) and QASMO for 6 clusters 

(atoms 4, 5, 7, 8, 9, 10). 

By concluding the results from Tables 7.2-7.5, it is observed that QASMO has best 

performance among all the three algorithms in terms of success rate and function error values. 

Further to see if there is significant difference in the average number of function evaluations 

for successful runs where all the three algorithms have same success rate (atoms 3 and 6), 

paired t-test at significance level 0.05 has been applied. The null hypothesis says “there is a 

not a difference” and alternate hypothesis says “there is a difference”. Pairwise t-test has been 

applied between QASMO vs. SMO and QASMO vs. TS-SMO because QASMO has best 

performance among all the three. T-test results have been provided in Table 7.6. “+” sign in 

the cells indicates there is a significant difference between the performance of the two 

algorithms. Average execution time taken by all the three algorithms has been provided in 

Table 7.7. It can be observed from the table that the time taken by QASMO is less as 

compared to other two algorithms on most of the clusters.  

PI graph for success rate and average number of function evaluations has been given in 

Figure 7.1. It can be seen from it that performance of QASMO is better than SMO and TS-

SMO for all the values of w. Also, it can be observed that the performance index value 

increases with the increase in the weight given to success rate.   

From the above discussion of results, we can conclude that QSMO is performing better 

than SMO and TS-SMO in solving Lennard jones problem.  

7.4 CONCLUSIONS 

In this chapter, Lennard-Jones potential problem for 3 to 10 atoms cluster is solved using 

SMO, TS-SMO and QASMO and the results are compared. Results are best for QASMO for 

solving L-J problem among the three versions of SMO. In literature, L-J problem has been 

solved using clusters of large number of atoms. But in this chapter, the clusters of very small 

number of atoms have been used for the experiment and the results have not been compared 

with any other metaheuristic algorithm used for solving L-J problem. The reason is the aim of 
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this chapter is to introduce SMO as an optimization tool to the researchers working in the area 

of chemistry. Moreover, in order to compare the results with any other metaheuristic 

algorithms, the parameter setting of all the algorithms used for comparison should be same. 

The performance of metaheuristic algorithms depends heavily on the setting of these control 

parameters and these parameters can be fine-tuned to perform well on a particular 

optimization problem. The process of fine tuning the parameters of an optimization algorithm 

is called meta optimization and such an experiment is avoided here. Because the aim of this 

chapter is not to find the best algorithm to solve L-J problem, but to see the performance of 

SMO in solving this problem. Such an experiment will be helpful in analyzing the 

performance of SMO so that in future, it can be modified in a way to solve L-J problem more 

efficiently. Also, in future, L-J problem for large number of atoms will be solved using 

improved versions of SMO and results will be compared with other metaheuristic algorithms 

also, 

 

 

  

Figure 7.1: Performance Index graphs for clusters of atoms 
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Figure 7.2: Convergence graphs for clusters of atoms 
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Table 7.2: Success Rate and Average number of function evaluations for successful runs for 

SMO, TS-SMO and QASMO (Lennard-Jones problem) 

Number of atoms Success Rate 
Average number of function evaluations 

for successful runs 

 
SMO TS-SMO QASMO SMO TS-SMO QASMO 

3 100 100 100 31486 21860 22154 

4 98 100 100 189065 137827 36624 

5 18 21 100 1177457 450678 50135 

6 100 100 100 144074 123027 57802 

7 97 95 100 385681 403569 62017 

8 94 80 100 378044 483973 140117 

9 58 47 99 974105 744380 1075422 

10 80 54 100 764331 709669 852578 

 

 

 

 

Table 7.3: Best of error values obtained in 100 independent runs (Lennard-Jones problem) 

 Number of atoms SMO TS-SMO QASMO 

3 1.56E-07 9.55E-07 6.01E-07 

4 3.07E-06 3.90E-06 2.33E-06 

5 4.87E-06 3.27E-06 1.96E-06 

6 7.02E-08 1.05E-07 5.03E-08 

7 2.79E-07 4.26E-07 2.04E-07 

8 5.35E-08 2.41E-07 1.40E-07 

9 2.26E-07 2.16E-07 7.75E-09 

10 9.62E-08 6.52E-07 1.60E-07 
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Table 7.4: Average of error values obtained in 100 independent runs (Lennard-Jones 

problem) 

Number of atoms SMO TS-SMO QASMO 

3 5.93E-06 6.31E-06 6.22E-06 

4 9.85E-06 8.06E-06 7.57E-06 

5 6.34E-03 2.29E-03 8.02E-06 

6 5.12E-06 4.88E-06 6.50E-06 

7 9.52E-06 2.33E-03 6.49E-06 

8 1.34E-02 9.37E-03 5.03E-06 

9 1.86E-01 1.80E-01 9.24E-03 

10 1.24E-01 3.33E-01 4.86E-06 

 

 

 

 

Table 7.5: Worst of error values obtained in 100 independent runs (Lennard-Jones problem) 

Number of atoms SMO TS-SMO QASMO 

3 9.92E-06 9.99E-06 9.98E-06 

4 1.61E-04 9.96E-06 1.00E-05 

5 1.43E-01 3.38E-02 9.98E-06 

6 9.91E-06 9.93E-06 1.00E-05 

7 2.39E-04 1.95E-01 1.00E-05 

8 9.59E-01 3.78E-01 9.96E-06 

9 2.93E+00 1.43E+00 9.24E-01 

10 4.11E+00 1.41E+01 9.98E-06 
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Table 7.6: T-test results for problems having identical success rate for SMO, TS-SMO and 

QASMO 

Number of atoms QASMO vs. SMO QASMO vs. TS-SMO 

3 + + 

6 + + 

 

 

 

 

 

Table 7.7: Average execution time per run (in seconds) 

No. of atoms SMO TS-SMO QASMO 

3 0.62409 0.46143 0.44426 

4 7.36452 5.191 1.43584 

5 76.16252 70.32987 3.26166 

6 13.9424 10.93795 5.55685 

7 52.12204 54.60527 8.4648 

8 66.66463 105.2772 25.43765 

9 224.8 216.8756 250.1304 

10 215.5962 257.3145 254.4484 
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CHAPTER 8 

APPLICATION OF CONSTRAINED SPIDER MONKEY 

OPTIMIZATION TO SOLVE PORTFOLIO 

OPTIMIZATION PROBLEM 

Portfolio optimization problem has attracted the attention of researchers since ages because of 

its practical application. This problem is constrained in nature and deals with answering the 

question what amount of wealth should be invested in a particular asset. In this chapter, an 

attempt has been made to solve portfolio optimization problem using CSMO proposed in 

chapter 3. The objective behind this work is the application of CSMO for solving a real world 

optimization problem.  For the experiment purpose, basic mean variance optimization model 

is considered. To the best of author’s knowledge, this is the first attempt to apply SMO for 

solving a problem in finance. 

The chapter is organised as follows: In section 8.1, a brief introduction to portfolio 

optimization problem is provided. In section 8.2, mean-variance optimization model has been 

discussed. In section 8.3, experimental setup is provided. In section 8.4, the experimental 

results have been discussed. The chapter is concluded in section 8.5. 

8.1 PORTFOLIO OPTIMIZATION PROBLEM 

A portfolio is a collection of two or more risky/riskless assets held by an institution or an 

individual. Suppose a user wants to invest money in n assets. Then its portfolio is represented 

by n-tuple (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 denotes the amount of fund to be invested in the 𝑖𝑡ℎ asset. 

Each of the assets in a portfolio has a return and risk associated with them. Portfolio 

optimization problem deals with maximizing the profitable returns while minimizing the 

associated risk of the portfolio. Markowitz [115] was the first to develop an optimization 

model based on this idea. Since then, various optimization models which are variations of 

basic Markowitz’s model have been developed. Different optimization methods like 

stochastic optimization method, fuzzy optimization method and robust optimization methods 

have been applied to solve portfolio optimization problem using these optimization models. 

Various metaheuristics have been applied to solve different models of portfolio optimization 

problem [27; 34; 50; 131; 177; 190]. 
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8.2 MEAN-VARIANCE MODEL 

Markowitz mean-variance model [69] is the basic model for solving portfolio optimization 

problem. Mathematical formulation for the mean-variance model is given below: 

Let return of the i
th  

asset is denoted by a random variable say 𝑅𝑖, 𝑥𝑖 is the amount of fund 

to be invested in i
th

 asset.  

Asset return is the amount of return which can be calculated for a given period of time. 

Mathematically it may be defined as 

Return = (closing price of current period – closing price of previous period + dividend 

collect during the period)/ (closing price of previous period) 

𝑟𝑖𝑡 =
(𝑝𝑖𝑡) − (𝑝𝑖𝑡−1) + (𝑑𝑖𝑡)

(𝑝𝑖𝑡−1)
 

Where 𝑝𝑖𝑡 is the closing price of the asset during the period t 

𝑑𝑖𝑡 is the dividend collected during the period 

The aim is to maximize the expected return on the portfolio and minimize the risk.      

𝑟(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐸[ ∑ 𝑅𝑖𝑥𝑖
𝑛
𝑖=1 ] = ∑ 𝐸[𝑅𝑖]𝑥𝑖 = ∑ 𝑟𝑖𝑥𝑖

𝑛
𝑖=1 ,𝑛

𝑖=1                     (8.1) 

Where 𝑟𝑖 is the expected return on the i
th   

asset and 𝑟𝑖 = 𝐸[𝑅𝑖] 

  𝑟𝑖 = 𝐸[𝑅𝑖] =
1

𝑇
∑ 𝑟𝑖𝑡

𝑇
𝑡=1                                      (8.2) 

The covariance  𝜎𝑖𝑗 between the asset returns 𝑅𝑖 and 𝑅𝑗 can be expressed as follows: 

                            𝜎𝑖𝑗 = 𝐸[(𝑅𝑖 − 𝐸[𝑅𝑖])(𝑅𝑗 − 𝐸[𝑅𝑗])] =
1

𝑇
∑ (𝑟𝑖𝑡 − 𝑟𝑖)

𝑇
𝑡=1 (𝑟𝑗𝑡 − 𝑟𝑗)               (8.3) 

The portfolio risk is characterized by the variance of returns on that portfolio. The variance of 

return on a portfolio is then expressed as follows: 

𝑣(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ ∑ 𝜎𝑖𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1                           (8.4) 

The mathematical formulation of the Markowitz’s mean variance optimization model is given 

in model M (8.1). 
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M(8.1)      min 𝑓(𝒙) = ∑ ∑ 𝜎𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1
 

Subject to 

∑ 𝑟𝑖𝑥𝑖
𝑛
𝑖=1 = 𝑟0                                                (8.5) 

∑ 𝑥𝑖
𝑛
𝑖=1 = 1                                                    (8.6) 

    𝑥𝑖 ≥ 0,    𝑖 = 1,2, … , 𝑛                                           (8.7) 

From the model of the problem M (8.1), it can be seen that it is a constrained optimization 

problem with equality constraints only. Objective function f is actually the risk 

𝑣(𝑥1, 𝑥2, … , 𝑥𝑛).  𝑟0 in constraint (8.4) denotes the amount of return desired by the investor.  

The constraint (8.4) makes sure that the expected portfolio return should be equal to the 

amount of return desired by the investor. Constraint (8.5) represents the capital budget 

constraint on the assets. Constraint (8.6) makes sure that the value of proportion to be 

invested in an asset should be non-negative. From these constraints, it can be concluded that 

the value of 𝑟0 cannot be chosen arbitrarily. Though a high portfolio return is always 

desirable, but aspiring it to be very high can make the problem infeasible. The value of 𝑟0 lies 

between 𝑟𝑚𝑖𝑛 and  𝑟𝑚𝑎𝑥 . Here, 𝑟𝑚𝑖𝑛 is the portfolio return corresponding to the minimum 

risk. This value can be obtained by solving the problem M (8.1) after removing the constraint 

represented by the eq. (8.5). 𝑟𝑚𝑎𝑥 is the maximum feasible value of 𝑟0 and it is given by the 

maximum mean return among the mean return of all the assets. 

8.3 EXPERIMENTAL SETUP 

8.3.1 PARAMETER SETTING AND TERMINATION CRITERIA 

Swarm size = 50 

perturbation rate (Pr) = linearly increasing ([0.1, 0.4]) 

Maximum number of groups (MG) = 5 

local leader limit = 1500 

global leader limit = 50 
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Total number of runs = 25 

Stopping criterion = 20000 function evaluations 

8.3.2 OPTIMIZATION MODEL AND INPUT DATA 

The mean variance model described in section 8.2 has been taken for the experiment. In order 

to understand the working of this portfolio optimization model, the data of a real world 

problem has been taken for illustration purpose. The retail industry has been chosen for 

experiment because it contributes a big percentage in the gross domestic income. The 11 retail 

companies, listed on National Stock Exchange (NSE) have been selected as assets to construct 

portfolios.  The list of these companies has been provided in Table 8.1. Our sample data 

includes the closing prices of these 11 assets from April 1, 2015 to March 31, 2016. The 

reason behind choosing these particular 11 companies is that our sample data has been 

extracted from Capitaline and these were the only companies listed on NSE during the 

financial year 2015-16 whose data was available. 

Average monthly returns of these 11 assets are provided in Table 8.2. The expected return, 

variance and covariance for these assets have been provided in Tables 8.3-Table 8.4 

respectively. 

Using the optimization model M (8.1) and entries in Tables 8.2-8.4 as input data, the 

optimization model M (8.2) is formulated: 

M(8.2)  min f(x)  = 

1.28733𝑥1𝑥1+0.32512𝑥1𝑥2+0.96732𝑥1𝑥3+0.30506𝑥1𝑥4+0.44927𝑥1𝑥5+0.39730𝑥1𝑥6+0.33890

𝑥1𝑥7+0.20332𝑥1𝑥8+0.22915𝑥1𝑥9+0.42335𝑥1𝑥10+0.31637*𝑥1𝑥11+0.84620*𝑥2𝑥2+0.08426*

𝑥2𝑥3+0.04178𝑥2𝑥4+0.16766𝑥2𝑥5+0.32539𝑥2𝑥6+0.02563𝑥2𝑥7+0.27929𝑥2𝑥8-0.20748𝑥2𝑥9-

0.03959𝑥2𝑥10+0.07751𝑥2𝑥11+ 

1.24506𝑥3𝑥3+0.53418𝑥3𝑥4+0.51028𝑥3𝑥5+0.09637𝑥3𝑥6+0.27569𝑥3𝑥7+0.11821𝑥3𝑥8+0.2392

6𝑥3𝑥9+0.19023𝑥3𝑥10-0.04089𝑥3𝑥11+ 

0.51375𝑥4𝑥4+0.41437𝑥4𝑥5+0.13632𝑥4𝑥6+0.03128𝑥4𝑥7+0.10967𝑥4𝑥8+0.09818𝑥4𝑥9+0.2444

5𝑥4𝑥10+0.00358𝑥4𝑥11+0.45578𝑥5𝑥5+0.24846𝑥5𝑥6+0.07455𝑥5𝑥7+0.26494𝑥5𝑥8+0.07977𝑥5𝑥9

+0.28799𝑥5𝑥10+0.11858𝑥5𝑥11+0.64313𝑥6𝑥6+0.04808𝑥6𝑥7+0.02623𝑥6𝑥8+0.00280𝑥6𝑥9+0.35

585𝑥6𝑥10+0.42780𝑥6𝑥11+0.14967𝑥7𝑥7+0.07379𝑥7𝑥8+0.15905𝑥7𝑥9+0.03754𝑥7𝑥10+0.09046

𝑥7𝑥11+0.84003𝑥8𝑥8+0.00414*𝑥8𝑥9+0.40828𝑥8𝑥10+0.05099𝑥8𝑥11+0.31191𝑥9𝑥9+0.06612 
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𝑥9𝑥10+0.12249𝑥9𝑥11+0.97290𝑥10𝑥10+0.30167𝑥10𝑥11+0.44687𝑥11𝑥11 

Such that 

                    𝑥1 + 𝑥2+ 𝑥3 + 𝑥4 +𝑥5+ 𝑥6 + 𝑥7 + 𝑥8+ 𝑥9+ 𝑥10+ 𝑥11 = 1                       (8.8) 

0.1617𝑥1+ 0.2972𝑥2+ 0.4546𝑥3 + 0.1723𝑥4 + 0.1189𝑥5+ 0.0486𝑥6  

                      -0.0329𝑥7+0.3958𝑥8 + 0.0515𝑥9 + 0.2553𝑥10 -0.0561𝑥11= 𝑟0             (8.9) 

 𝑥𝑖 ≥ 0,    𝑖 = 1,2, … , 𝑛                                                     (8.10) 

8.4  DISCUSSION OF EXPERIMENTAL RESULTS 

In order to solve the model M (8.2), the expected value of return i.e. 𝑟0 should be assigned. In 

section 8.2, it has been mentioned that value of 𝑟0 lies between 𝑟𝑚𝑖𝑛 and  𝑟𝑚𝑎𝑥. So, the above 

problem has been solved in two parts. 

In solution phase I, the range of 𝑟0 is determined. 𝑟𝑚𝑖𝑛 is calculated by omitting the 

constraint represented by eq.(8.6) from model M(8.2) and solving the remaining model using 

CSMO by using the parameter setting and termination criterion described in subsection 8.3.1 

of section 8.3. The computational result has been provided in Table 8.5 and based on this 

result, the value of 𝑟𝑚𝑖𝑛 can be calculated using the eq. (8.6). 𝑟𝑚𝑖𝑛 is 0.114457. From Table 

8.3, it can be seen that 𝑟𝑚𝑎𝑥 is 0.4546. Thus, we have obtained the range in which 𝑟0 lies. 

In solution phase II, the objective function value i.e. risk has been minimized for different 

values of 𝑟0 between 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 . Ten uniform random numbers have been generated in 

[𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]. These ten random numbers give ten different values of 𝑟0. By using these 10 

values of 𝑟0 in eq. (8.6) one by one, 10 different portfolios have been generated by solving the 

model M (8.2) using CSMO and the results have been summarized in Table 8.6. This table 

contains the expected portfolio return, the proportion of fund to be invested in a particular 

asset and the associated risk. It can be observed that the portfolio risk level increases with an 

increase in the expected portfolio return. This relationship always holds in portfolio 

optimization problem. The average execution time taken by CSMO per run (in seconds) is 

given in table 8.7. From the table, it can be seen that the execution time for generating these 

10 portfolios is very small.  
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The efficient frontier of the obtained portfolios has been shown in Fig.8.1. X-axis 

represents the different values of expected returns i.e. 𝑟0 and Y-axis represents the associated 

risk presented in Table 8.7. It can also be seen that as the level of expected return increases, 

the level of risk also increases.  

8.5 CONCLUSIONS 

CSMO has been applied to solve Markowitz’s mean-variance model. The above explained 

procedure to solve the portfolio optimization problem can be helpful in two ways. First, if the 

investor has a particular choice for the expected return in advance without having the concern 

for the associated risk, then the optimal portfolios can be generated directly using the solution 

phase II. If the investor does not have a particular choice and want to see different possible 

portfolio returns with associated risks, then the problem can be solved using the above 

method in which various portfolios can be generated and the investor can choose any portfolio 

according to his/her choice. In Markowitz’s mean variance model, variance has been taken as 

a measure for risk. In future, other optimization models based on different risk measures can 

be considered for experiment.  

In this chapter, the results of CSMO have not been compared with any other metaheuristic 

algorithms. The reason which is explained in the forthcoming lines depends upon the case 

when the investor does not have a predefined choice of portfolio return. It can be seen from 

the solution procedure explained in section 8.4 that the final solution is obtained after solution 

phase II and the input for the solution phase II is generated from the results of solution phase 

I. So, we can’t compare different algorithms here because the results generated by different 

algorithms after solution phase I will be different. Consequently, different algorithms will 

have different input values for solution phase II and it is not fair to compare the results if the 

input values are different. But if an investor has a particular expected return in mind, then 

comparison can be made among different algorithms. But this case has been avoided here 

because it can be seen as biasness towards the selection of input value. 

Also, the model considered for solving portfolio optimization model is the Markowitz’s 

mean variance model which is the most basic model which has limitations also [69]. There are 

various other advanced models which overcome the limitations of this basic portfolio 

optimization model with better risk measures for solving portfolio optimization problems [27; 

34; 50; 131; 177; 190]. But there are few reasons for choosing this optimization model for 

experiment in comparison to various other advanced versions of portfolio optimization 
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models. Portfolio optimization problem is one of most prominent optimization problem with 

varying complexities depending upon the portfolio optimization model under consideration. 

So, application of SMO for solving it will introduce it to the researchers working in the field 

of finance for using this algorithm for different types of financial optimization problems. 

Moreover, in order to develop SMO as a powerful tool for solving portfolio optimization 

problems, it is necessary to study its behaviour on the basic portfolio optimization models. 

This study will help in recognizing the strengths and limitations of SMO in solving these 

problems. These limitations can be overcome and better versions of SMO can be designed for 

solving different types of financial problems. 

 

 

Table 8.1: List of retail companies (assets) 

Company NSE Name 
Allocation of   

funds 

Aditya Birla Fashion & Retail Ltd ABFRL 𝑥1 

Cantabil Retail India Ltd CANTABIL 𝑥2 

Future Enterprises-DVR FELDVR 𝑥3 

Future Enterprises Ltd FEL 𝑥4 

Future Lifestyle Fashions Ltd FLFL 𝑥5 

Provogue (India) Ltd PROVOGE 𝑥6 

Shoppers Stop Ltd SHOPERSTOP 𝑥7 

Store One Retail India Ltd SORILINFRA 𝑥8 

Trent Ltd TRENT 𝑥9 

V2 Retail Ltd V2RETAIL 𝑥10 

V-Mart Retail Ltd VMART 𝑥11 
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Table 8.3: Expected return of assets 

Company Average Monthly Return 

ABFRL 0.16171 

CANTABIL 0.29716 

FELDVR 0.45460 

FEL 0.17230 

FLFL 0.11887 

PROVOGE 0.04858 

SHOPERSTOP -0.03290 

SORILINFRA 0.39580 

TRENT 0.05153 

V2RETAIL 0.25534 

VMART -0.05611 
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Table 8.5: Result of portfolio selection using variance 

risk allocation value 

0.12251 

𝑥1  0 

 𝑥2  0.03842 

𝑥3   0 

𝑥4   0.22077 

𝑥5   0.02689 

𝑥6   0.03302 

𝑥7   0.28191 

𝑥8   0.09185 

𝑥9   0.03031 

𝑥10   0.1512 

𝑥11   0.12555 
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Table 8.7: Average execution time taken by CSMO per run (in seconds) 

Portfolio Execution time 

Portfolio 1 0.14 

Portfolio 2 0.13624 

Portfolio 3 0.13688 

Portfolio 4 0.14124 

Portfolio 5 0.13688 

Portfolio 6 0.13816 

Portfolio 7 0.13812 

Portfolio 8 0.14008 

Portfolio 9 0.14064 

Portfolio 10 0.14376 

 

 

 

 

Figure 8.1: Efficient Frontier 
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CHAPTER 9 

CONCLUSIONS AND FUTURE SCOPE 

This chapter forms the concluding part of the thesis as well as proposes possible future 

directions to continue the research in the present work. The chapter has been divided into two 

sections: Section 9.1 presents the conclusions obtained from the overall research work done 

in the present thesis and section 9.2 suggests the possible future directions based on those 

conclusions. 

9.1 CONCLUSIONS 

The primary goal of the thesis is to propose new versions of basic SMO for solving 

constrained optimization problems, to improve the performance of basic SMO for 

unconstrained optimization problems, and to apply the proposed versions for solving real 

world unconstrained and constrained optimization problems. This thesis proposes four 

version of SMO including two versions for unconstrained optimization problems and other 

two for constrained optimization problems.  

The basic SMO had been designed for solving unconstrained optimization problems. In 

order to extend its ability for solving constrained optimization problems, a new version of 

SMO called Constrained Spider Monkey Optimization (CSMO) algorithm has been proposed 

which uses Deb’s technique as a constraint handling mechanism. CSMO has been designed 

with minimal modifications in basic SMO in such a way that the original structure of SMO 

remains intact. CSMO has been investigated over the constrained benchmark problems of 

IEEE CEC sessions 2006 and 2010. For comparison, three state-of-the-art algorithms namely 

ABC, DE and PSO have been used. The results have been discussed in various aspects. 

Rigours analysis has been done for both the benchmark sets separately. The results have been 

presented numerically and graphically. Also, a statistical test is employed to validate the 

significance of results. It has been concluded that CSMO has outperformed all the other three 

algorithms on both the benchmark sets. Such an outcome of results demonstrates that CSMO 

is a good global optimizer for constrained optimization problems. 

Two new versions of basic SMO have been proposed to improve its performance for 

unconstrained optimization problems. The first version namely TS-SMO is proposed by 
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replacing the fitness based probability scheme in basic SMO with tournament selection based 

probability scheme with an objective to make the exploration ability of basic SMO stronger. 

In fitness based probability scheme, the selection of the solution to be updated is always 

biased towards the highly fit individuals thus leading to the problem of premature 

convergence. But, in tournament selection based probability scheme this problem is avoided. 

The results have been discussed to check the reliability, efficiency and accuracy of the 

proposed algorithm and it has been concluded that the proposed modification has a positive 

impact on the performance of SMO. The second version namely QASMO has been designed 

by implementing quadratic approximation operator in it. The objective of this modification is 

to improve the exploitation ability of basic SMO. QA has been incorporated in global leader 

learning phase and local leader learning phase as a local search method. The discussion of 

results demonstrates that incorporation of QA has a positive impact on the performance of 

basic SMO. Also, a comparison has been made among SMO, TS-SMO and QASMO and it 

has been concluded that QASMO is outperforming the other two algorithms on the 

benchmark set of problems under consideration.  

Based on the conclusion made for unconstrained optimization problems, QA has been 

incorporated in CSMO also to study its impact for solving constrained optimization 

problems. The discussion of results shows that incorporation of QA has negative impact on 

the performance of CSMO. From this, we can conclude that we cannot generalize the results 

for different types of optimization problems.  

Below is the overall conclusion of the proposed algorithms over the set of benchmark 

functions under consideration: 

CSMO: A good constrained optimizer for scalable as well as non-scalable problems. 

TS-SMO: A good optimizer with better exploration ability than basic SMO for 

unconstrained optimization problems. 

QASMO: a good optimizer with better exploitation ability than basic SMO for 

unconstrained optimization problems. 

QACSMO: not a good optimizer for constrained optimization problems. 
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Real life applications of the proposed algorithms have been carried out. SMO, TS-SMO 

and QASMO have been applied to solve Lennard-Jones problem, which is a real world 

unconstrained optimization problem. This problem deals with finding the position of atoms in 

a cluster so that the overall potential energy is minimum. For the experiment purpose, clusters 

of atoms ranging from 3 to 10 atoms have been considered. Comparison has been made 

among SMO, TS-SMO and QASMO and it has been concluded that QASMO performs better 

than SMO and TS-SMO. CSMO has been applied to solve portfolio optimization problem 

which is a real world constrained optimization problem. Markowitz model has been 

considered for portfolio optimization problem.  

9.2 FUTURE SCOPE 

Research is an ever evolving process and the work presented in this thesis can be expanded 

further. The possible future directions are given below: 

9.2.1 ON CSMO 

 Deb’s technique has been used as a constraint handling mechanism. Different 

constraint handling techniques can be employed. 

 It has problems while solving benchmark problems with equality constraint, 

modifications can be made to improve its performance for solving these type of 

problems. 

9.2.2 ON TS-SMO 

 A different probability scheme can be employed for the better selection of solutions. 

9.2.3 ON QASMO 

 A different local search operator can be employed to improve the exploitation ability   

of SMO. 

9.2.4 ON QACSMO 

 Different ways can be employed to improve the performance. 
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In addition to the aforementioned future directions, following aspects of SMO can also be 

explored. 

 Till yet, SMO has been applied for solving single objection optimization problems 

only. New versions of SMO can be developed for solving multi-objective optimization 

problems. 

 No theoretical study has been performed on SMO so far. Work can be done in this 

direction. 

 SMO can be hybridized with other metaheuristic algorithms like GA, PSO, ABC, DE 

etc. 

 So far, modifications in SMO have been proposed without finding its limitations. So, 

limitations of SMO are needed to be pointed out so that work can be done on those 

limitations to improve the performance of SMO. 

 SMO can be applied to solve various real world optimization problems arising in 

industry, science, engineering, economics etc. 

Although SMO has great potential, it was clear to the scientific community that some 

modifications to the original structure are still necessary in order to significantly improve its 

performance. And also SMO can be used as an evolutionary framework into which different 

traditional or modern heuristic algorithmic components are integrated. SMO can be also 

applied for optimization in dynamic and uncertain environments. In order to improve the 

performance of SMO in terms of convergence, new neighbour production mechanisms can be 

proposed.   
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APPENDIX I 
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where  20n   and  0 10  1,. . . ..,ix i n   . The global minimum *x   

3.16246061572185,  3.12833142812967,  3.09479212988791,  3.06145059523469,  
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3
 disjoint spheres. A point 1 2 3,  ,( ) x x x  is feasible if and only if there exist , ,p q r

such that the above inequality holds. The optimum is located at  5,5,5x  where 1minf   . 

The solution lies within the feasible region. 

 

Problem g13 

Minimize 1 2 3 4 5( )
( )

x x x x x
f x e  

Subjectto: 

 
 
 

2 2 2 2 2

1 1 2 3 4 5

2 2 3 4 5
3 3

3 1 2

10 0,

5 0,

1 0,

h x x x x x x

h x x x x x

h x x x

      

  

   

 

where  2.3 2.3  1,2ix i     and    3.2 3.2  3,4,5 .ix i    The optimum solution is 

* 1.71714224003,1.59572124049468,1.8272502406 1( 27 ,x    

  0.763659881912867, 0.7636598673 8)649  with   0.053941514041898.minf   

 

Problem g14 

Minimize 
10

10
1 1

( ) ln i
i i

i j j

x
f x x c

x 

 
   

 

 

Subjectto: 

 
 
 

1 1 2 3 6 10

2 4 5 6 7

3 3 7 8 9 10

2 2 2 0,

2 1 0,

2 1 0,

h x x x x x x

h x x x x x

h x x x x x x

      

     

      

 

where the bounds are  0 10  1,  . . . ,10ix i    and 1 26.089, 17.164,c c     

3 4 5 6 7 8 9  34.054,   5.914,   24.721,   14.986,   24.1,   10.708, 26.662,c c c c c c c             

10 22.179c   . The best known solution is at   * 0.0406684113216( 282,x 

0.147721240492452, 0.783205732104114,0.00141433931889084,0.485293636780388,

0.000693183051556082,0.0274052040687766,  0.0179509660214818,  0.0373268186859717,

 0.0968844604336845  with  47.7648884594915.) minf  
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Problem g15 

Minimize   2 2 2

1 2 3 1 2 1 31000 2f x x x x x x x x       

Subjectto: 

 
 

2 2 2

1 1 2 3

2 1 2 3

25 0,

8 14 7 56 0,

h x x x x

h x x x x

    

    
 

where the bounds are  0 10  1,2,3ix i   . The best known solution is at 

 * 3.51212812611795133,  0.216987510429556135,  3.55217854929179921x   

with 961.715022289961minf  . 

 

Problem g16 

Minimize 

  17 14 13 16

15 2
12 5

16 12

0.0000005843 0.000117 0.1365 0.00002358 0.000001502

0.0321  0.004324 37.48

f x y y y y
c y

y y
c c

    





 
 

Subject to: 

 

 

 

 
 
 
 
 
 
 

1 4

2 3 2

2
3

12

5 1

6 1

7 2

8 2

5

9 3

10

1

4

7

3

4

1

1

1

0.28
0,

0.72
1.5 0,

3496 21 0

213.1 0,

 405.23  0,

17.505 0,

6

1053.6667  0,

11.275 0,

35.03 0,

 214.228 0

2212
( ) 110

,

.6 0

g x y y

g x x x
y

g x
c

g x y

g x

g x y
c

y

g x y

g x y

g x y

g x y

g x y

g

 



  

  

  

  

  

  

 



 



 





  

 
 
 
 
 
 
 

12 4

13 5

14 5

15 6

16 6

17 7

18 7

  665.585  0,

 7.458 0,

  584.463  0,

 0.961 0,

  265.916  0,

 1.612 0,

  7.046  0,

x y

g x y

g x y

g x y

g x y

g x y

g x y
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19 8

20 8

21 9

22 9

23 10

24 10

25 11

26 11

27 12

28 12

 0.146 0,

 0.222  0,

 107.99 0,

  273.366  0,

 922.693 0,

  1286.105  0,

 926.832 0,

  1444.046  0,

 18.766 0,

  537.141  0

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

  

  

  

  

  

  

  

  

  

  

 
 
 
 
 
 
 
 
 
 

29 13

30 13

31 14

32 14

33 15

34 15

35 16

36 16

37 17

38

,

 1072.163 0,

  3247.039  0,

 8961.448 0,

  26844.086  0,

 0.063 0,

  0.386  0,

 71084.33 0,

  140000  0,

 2802713 0,

  121

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x y

g x

  

  

  

  

  

  

  

  

  

 1746108  0,y 
 

where: 

1 2 3

1 4

2

1
2

2 1 1 2 1

3 1 2 1

2
3

3

4 3

1 3
4 1 3 4 3

2

5 2

1

2

6

 41.6,
0.024 4.62,
12.5

12,

 0.0003535  0.5311  0.08705 ,
 0.052  78  0.002377 ,

,

19 ,

0.1956  
0.04782  0.6376 1.594 ,

 100

)

,

( )
(

y x x
c x

y
c

c x x y x
c x y x

c
y

c
y y

x y
c x y y y

x
c x
c x

  
 

 

  
  






    


 3 4

5 6 7

6 1 5 4 3

8 5 4

8
7

1

4
7

5

8
8

  ,

,

0

   ,
 0

.950 ,

.995,

,

,
3798

( )

y y

y c c
y x y y y
c y y

c
y

y

y

c

c

c
c
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7
9 7

8

9 1

9

10 5 4 3 6

11 1 4 3

10

11 2 1

12 10

11
12 10 1

12

13 12 2

14

0.0663
0.3153,

96.82
0.321 ,

 1.29  1.258  2.29  1.71 ,
 1.71 0.452  0.580 ,
12.3

752.3
 1.75 0.995 ,
 0.995  1998,

,

1.

( )( )

75 ,

y
c y

y

y y
c

y y y y y
y x y y

c

c y x
c y

c
y c x

c
y c y

y

  

 

   
  




 

 

 

2 3

9 5

13 10 2 4 14

13
15

13

16 15 13 15 13

14 10 2

14
17 10 11

12

13
15

15

143612
 3623  64.4  58.4 ,

 0.995  60.8  48 0.1121 5095,

,

 148000 331000  40 61 ,
 2324 28740000

 14130000 1328 531

,

,

x x
y x

c y x x y
y

y
c

y y y y y
c y y

c
y y y

c
y y

c
y

   


    



   
 

   

  13

16 15

17 9 5

,
0.52

 1.104 0.72 ,
,

c y
c y x

 
 

 

and where the bounds are 1 2704.4148 906.3855,  68.6 288.88,x x   

3 4 50 134.75,193  287.0966 and 25  84.1988x x x      . The best known solution is at 

* 705.174537070090537,  68.5999999999999943,  102.89999999999 1,( 999x   

282.324931593660324,  37.5841164258054832  with  1.90515525853479.) minf    

 

Problem g17 

Minimize   1 2( )  ( )f x f x f x   

where 

 1 1
1 1

1 1

30 0 300
 

31 300 400
( )

x x
f x

x x
 


 

 

2 2

2 2 2 2

2 2

28 0 100
( ) 29 100 200

30 200 1000

x x
f x x x

x x

 
  

 

 

Subject to: 
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2

3 4 3
1 1 6

2

3 4 4
2 2 6

2

3 4 4
3 5 6

0.90798
( ) 300 cos(1.48477 ) cos(1.47588),

131.078 131.078
0.90798

( ) cos(1.48477 ) cos(1.47588),
131.078 131.078

0.90798
( ) sin(1.48477 ) sin(1.47

131.078 131.078

x x x
h x x x

x x x
h x x x

x x x
h x x x

     

    

    

2

3 4 3
4 6

588),

0.90798
( ) 200 sin(1.48477 ) sin(1.47588),

131.078 131.078

x x x
h x x   

 

where the bounds are 1 2 3 40 400,  0 1000,  340 420,  340 420,x x x x       

51000  1000x    and 60  0.5236.x  The best known solution isat 

* 201.784467214523659,  99. 9999999999999005,  383.071034852773266,( 420,x   

10.9076584514292652,  0.073148231208428 )7128 where   8853.53967480648f x   

 

Problem g18 

Minimize   1 4 2 3 3 9 5 9 5 8 6 7( 0.5 )f x x x x x x x x x x x x x        

Subject to: 

 
 
 
 
 
 
 
 
 

2 2

1 3 4
2

2 9
2 2

3 5 6
2 2

4 1 2 9
2 2

5 1 5 2 6
2 2

6 1 7 2 8
2 2

7 3 5 4 6
2 2

8 3 7 4 8

9

 1 0,

 1 0,

 1 0,

   1 0,

     1 0,

     1 0,

     1 0,

  

( )

( ) ( )

( ) ( )

( ) ( )

( ) (   1 0) ,

 

g x x x

g x x

g x x x

g x x x x

g x x x x x

g x x x x x

g x x x x x

g x x x x x

g x

   

  

   

    

     

     

     

     



 
 
 
 

2 2

7 8 9

10 2 3 1 4

11 3 9

12 5 9

13 6 7 5 8

  1 0,

  0,

 0,  

 0,

  0

( )

,

x x x

g x x x x x

g x x x

g x x x

g x x x x x

   

  

  

 

  

 

where the bounds are  10 10 1,. . .,8ix i     and 90 20.x   The best known -solution is 

at 0.657776192427943163, 0.153418773482438542, 0.323413871675240938,(x     

0.946257611651304398, 0.657776194376798906, 0.753213434632691414,    

0.323413874123576972, 0.346462947962331735,0.59979466285 )217542  

where 0.866025403784439.minf    

 

Problem g19 

Minimize 
5 5 5 10

3

(10 ) (10 ) (10 )
1 1 1 1

( ) 2ij i j j j i i
j i j i

f x c x x d x b x  
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Subject to: 

5 10
2

(10 ) (10 )
1 1

( ) 2 3 0, 1,...,5.j ij i j j j ij i
i i

g x c x d x e a x j 
 

         

where  40, 2, 0.25, 4, 4, 1, 40, 60,5,1b           and the remaining data is on Table B.1. The 

bounds are  0 10 1,  . . . ,15ix i  . The best known solution is at 

* 1.66991341326291344 17,  3.95378229282456509 16,  3.94599045143233784,
1.06036597479721211 16,3.2831773458454161,9.99999999999999822,1.1282941467
1605333 17,1.2026194599794709   17,  2.5070627 0

(

6 00

x e e
e

e e

  


  769697  15,  2.2462412298
7970677 15,  0.370764847417013987,0.278456024942955571,0.523838487672241171,
0.388620152510322781,  0.29815676497467857 )9

e
e




with minf = 32.6555929502463. 

Table B.1: Data set for test problem g19 

 

 

 

 

 

 

j 1 2 3 4 5 

ej -15 -27 -36 -18 -12 

c1j 30 -20 -10 32 -10 

c2j -20 39 -6 -31 32 

c3j -10 -6 10 -6 -10 

c4j 32 -31 -6 39 -20 

c5j -10 32 -10 -20 30 

dj 4 8 10 6 2 

a1j -16 2 0 1 0 

a2j 0 -2 0 0.4 2 

a3j -3.5 0 2 0 0 

a4j 0 -2 0 -4 -1 

a5j 0 -9 -2 1 -2.8 

a6j 2 0 -4 0 0 

a7j -1 -1 -1 -1 -1 

a8j -1 -2 -3 -2 -1 

a9j 1 2 3 4 5 

a10j 1 1 1 1 1 



241 

 

Problem g20 

Minimize  
24

1

 i i
i

f x a x


   

Subject to: 

 

 

 

 

 

( 12)

24
1

( 3) ( 15)

24
1

( 12)

24 12
13 1( 12)

24
1

12 24

1
4

13

13

1

( )
 0, 1,2,3

( )
 0, 4,5,6

 0, 1,...,12,

40

1 0,

1.671 0,

i i

j j i

i i

j j i

i i i

j j

j ji i

j j

i i

i i

i

i
i i

i

i

i

x x
x i

x e

x x
x i

x e

x c x
x i

x

g

g

h

h

h

x
b b

b b

x x
x x

x k
d b





 





 



 


  




  


   

 

  

    

 

where
14.7

k= (0.7302)(530)
40

 
 
 

and the data set is detailed on Table III.2. The bounds 

are  0 10 1,. . . , 24ix i   . The best known solution is at  

*x  (1.28582343498528086 e-18, 4.83460302526130664 e-34, 0, 0, 6.30459929660781851 

e-18, 7.57192526201145068 e-34, 5.03350698372840437 e-34, 9.28268079616618064 e-34, 

0, 1.76723384525547359 e-17, 3.55686101822965701 e-34, 2.99413850083471346 e-34, 

0.158143376337580827, 2.29601774161699833 e-19, 1.06106938611042947 e-18, 

1.3196834431950 e-18, 0.530902525044209539, 0, 2.89148310257773535e - 18, 

3.34892126180666159 e-18, 0, 0.310999974151577319, 5.41244666317833561 e-05, 

4.84993165246959553 e-16). 

This solution is a little infeasible and no feasible solution is found so far. 

 

Problem g21 

Minimize   1f x x  

Subject to: 

 
 
 
 
 
 

0.6 0.6

1 1 2 3

1 3 5 6 4 5 4 6 3 4

2 2 4 7 2 4 4 7

3 5 4

4 6 4

5 7

  35  35 0,

 300  7500 7500 25  25  0,

  100  155.365  2500  25 15536.5  0

(

,

   900   0,

   300   0,

)

(

  

)

g x x x x

h x x x x x x x x x x

h x x x x x x x x

h x x ln x

h x x ln x

h x x ln

    

       

      

     

    

   42  70( )0   0,x  

 

where the bounds are 1 2 3 40   1000,  0 ,   40,  100   300,x x x x      56.3   6.7,x   

65.9   6.4x  and 74.5   6.25x  .  The best known solution is at  
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*x  (193.724510070034967, 5.56944131553368433e-27, 

17.3191887294084914,100.047897801386839, 6.68445185362377892, 

5.99168428444264833,6.21451648886070451)where minf  193.724510070035. 

Table B.2: Data set for test problem g20 

1 0.0693 44.094 123.7 31.244 0.1 

2 0.0577 58.12 31.7 36.12 0.3 

3 0.05 58.12 45.7 34.784 0.4 

4 0.2 137.4 14.7 92.7 0.3 

5 0.26 120.9 84.7 82.7 0.6 

6 0.55 170.9 27.7 91.6 0.3 

7 0.06 62.501 49.7 56.708  

8 0.1 84.94 7.1 82.7  

9 0.12 133.425 2.1 80.8  

10 0.18 82.507 17.7 64.517  

11 0.1 46.07 0.85 49.4  

12 0.09 60.097 0.64 49.1  

13 0.0693 44.094    

14 0.0577 58.12    

15 0.05 58.12    

16 0.2 137.4    

17 0.26 120.9    

18 0.55 170.9    

19 0.06 62.501    

20 0.1 84.94    

21 0.12 133.425    

22 0.18 82.507    

23 0.1 46.07    

24 0.09 60.097    

 

 

Problem g22 

Minimize   1f x x  

Subject to: 
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0.6 0.6 0.6

1 1 2 3 4
7

1 5 8

2 6 8 9
7

3 7 9
7

4 5 10
7

5 6 11
7

6 7 12

 0,

 100000  1 10  0,

  100000 100000 0,

    100000 5 10  0,

  100000 3.3 10 0,

    100000 4.4 10 0,

    100000 6.6 10

g x x x x x

h x x x

h x x x x

h x x x

h x x x

h x x x

h x x x

     

    

   

    

    

    

    

 
 
 
 
 
 
 
 
 

7 5 2 13

8 6 3 14

9 7 4 15

10 8 11 16

11 9 12 17

12 18 10

13 19 8

14 20 16

15 21

0,

   120  0,

 80  0,

 40  0,

   0,

   0,

( )

( )

( )

(

  100   0,

   300   0,

    0,

  

h x x x x

h x x x x

h x x x x

h x x x x

h x x x x

h x x ln x

h x x ln x

h x x ln x

h x x ln

  

  

  

   

   

    

     

   

   

 
 
 
 

9

16 22 17

17 8 10 13 18 13 19

18 8 9 11 14 20 14 21

19 9 12 15 15 22

 400   0,

    0,

    400  0,

     400  0,

  4.60517  100

)

( )

  0,

x

h x x ln x

h x x x x x x x

h x x x x x x x x

h x x x x x x

 

   

      

      

     
 

 

where the bounds are 6 7

1 2 3 4 5 6 70 20000,  0 , , 1 10 ,0 , , 4 10 ,x x x x x x x    

8 9 10 11 12100 299.99,100 399.99,100.01 300, 100 400,100 600,x x x x x         

13 14 150 , , 500,x x x  16 17 18 19 20 21 220.01 300,  0.01 400,  4.7 ,  ,  ,  ,  6.25.x x x x x x x     

The best known solution is at  *x  (236.430975504001054, 135.82847151732463, 

204.818152544824585, 6446.54654059436416, 3007540.83940215595, 

4074188.65771341929, 32918270.5028952882, 130.075408394314167, 

170.817294970528621, 299.924591605478554, 399.258113423595205, 

330.817294971142758, 184.51831230897065, 248.64670239647424, 127.658546694545862, 

269.182627528746707, 160.000016724090955, 5.29788288102680571, 

5.13529735903945728, 5.59531526444068827, 5.43444479314453499, 

5.07517453535834395) where minf  236.430975504001. 

 

Problem g23 

Minimize   5 8 1 2 6 7 9 15  6  16 1 ) (0f x x x x x x x        

Subject to: 
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1 9 3 6 5

2 9 4 7 8

1 1 2 3 4

2 1 2 9 3 4

3 3 6 5

4 4 7 8

  0.02 0.025 0,

    0.02 0.015 0,

      0,

  0.03  0.01    0,

   0,  

   0,

( )

g x x x x x

g x x x x x

h x x x x x

h x x x x x x

h x x x x

h x x x x

   

   

    

    

   

   

 

where the bounds are 1 2 6 3 5 7 4 80 ,  ,  300,  0 ,  ,  100,  0 ,  200x x x x x x x x   and

90.01 0.03x  . The best known solution is at *x  (0.00510000000000259465, 

99.9947000000000514, 9.01920162996045897e - 18, 99.9999000000000535, 

0.000100000000027086086, 2.75700683389584542e -14, 99.9999999999999574, 

2000.0100000100000100008) where minf  -400.055099999999584. 

 

Problem g24 

Minimize 1 2( )f x x x    

Subject to: 

4 3 2

1 1 1 1 2
4 3 2

2 1 1 1 1 2

( ) 2 8 - 8 2 0,

( ) 4 32 88 96 36 0,

g x x x x x

g x x x x x x

   

  



  




 

The bounds on the variables are 1 20 3,  0 4x x    . This problem has one global minima at 

*x   (2.32952019747762, 3.17849307411774) with minf  -5.50801327159536.  
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APPENDIX II 

LIST OF CONSTRAINED BENCHMARK PROBLEMS 

FROM IEEE CEC 2010 

  

Problem C01 

𝑀𝑖𝑛 𝑓(𝑥) =  − ||
∑ 𝑐𝑜𝑠4(𝑧𝑖) − 2∏ 𝑐𝑜𝑠2(𝑧𝑖)

𝐷
𝑖=1

𝐷
𝑖=1

√∑ 𝑖𝑧𝑖
2𝐷

𝑖=1

|| ,    𝑧 = 𝑥 − 𝑜 

𝑔1(𝑥) = 0.75 − ∏𝑧𝑖

𝐷

𝑖=1

 ≤ 0 

𝑔2(𝑥) =  ∑𝑧𝑖

𝐷

𝑖=1

− 7.5𝐷 ≤ 0 

𝑥 ∈  [0, 10]𝐷 

 

Problem C02 

𝑀𝑖𝑛 𝑓(𝑥) = max(𝑧) ,                         𝑧 = 𝑥 − 𝑜, 𝑦 = 𝑧 − 0.5 

𝑔1(𝑥) = 10 − 
1

𝐷
∑[𝑧𝑖

2 − 10 cos(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

 ≤ 0 

𝑔2(𝑥) =  
1

𝐷
∑[𝑧𝑖

2 − 10 cos(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

− 15 ≤ 0 

ℎ(𝑥) =  
1

𝐷
∑[𝑦𝑖

2 − 10 cos(2𝜋𝑦𝑖) + 10]

𝐷

𝑖=1

− 20 = 0  

𝑥 ∈  [−5.12, 5.12]𝐷 

 

Problem C03 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 − 𝑜 
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ℎ(𝑥) =  ∑(𝑧𝑖
2 − 𝑧𝑖+1)

2

𝐷−1

𝑖=1

= 0 

𝑥 ∈  [−1000, 1000]𝐷 

 

Problem C04 

𝑀𝑖𝑛 𝑓(𝑥) = max(𝑧) ,                         𝑧 = 𝑥 − 𝑜 

ℎ1(𝑥) =  
1

𝐷
∑(𝑧𝑖𝑐𝑜𝑠 (√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

ℎ2(𝑥) =  ∑ (𝑧𝑖 − 𝑧𝑖+1)
2

(𝐷 2)−1⁄

𝑖=1

= 0 

ℎ3(𝑥) =  ∑ (𝑧𝑖
2 − 𝑧𝑖+1)

2

𝐷−1

𝑖=(𝐷 2⁄ )+1

= 0 

ℎ4(𝑥) =∑𝑧

𝐷

𝑖=1

= 0  

𝑥 ∈  [−50, 50]𝐷 

 

Problem C05 

𝑀𝑖𝑛 𝑓(𝑥) = max(𝑧) ,                         𝑧 = 𝑥 − 𝑜 

ℎ1(𝑥) =  
1

𝐷
∑(−𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

ℎ2(𝑥) =  
1

𝐷
∑(−𝑧𝑖𝑐𝑜𝑠 (0.5√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−600, 600]𝐷 

 

Problem C06 

𝑀𝑖𝑛 𝑓(𝑥) = max(𝑧) 

𝑧 = 𝑥 − 𝑜, 𝑦 = (𝑥 + 483.6106156535 − 𝑜)𝑀−  483.6106156535   

ℎ1(𝑥) =  
1

𝐷
∑(−𝑦𝑖𝑠𝑖𝑛 (√|𝑦𝑖|))

𝐷

𝑖=1

= 0 
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ℎ2(𝑥) =  
1

𝐷
∑(−𝑦𝑖𝑐𝑜𝑠 (0.5√|𝑦𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−600, 600]𝐷 

 

Problem C07 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = 𝑥 − 𝑜 

𝑔(𝑥) = 0.5 − 𝑒𝑥𝑝

(

 −0.1√
1

𝐷
∑𝑦𝑖

2

𝐷

𝑖=1
)

 − 3𝑒𝑥𝑝 (
1

𝐷
∑cos(0.1𝑦)

𝐷

𝑖=1

) + exp(1) ≤ 0 

𝑥 ∈  [−140, 140]𝐷 

 

Problem C08 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = (𝑥 − 𝑜)𝑀 

𝑔(𝑥) = 0.5 − 𝑒𝑥𝑝

(

 −0.1√
1

𝐷
∑𝑦𝑖

2

𝐷

𝑖=1
)

 − 3𝑒𝑥𝑝 (
1

𝐷
∑cos(0.1𝑦)

𝐷

𝑖=1

) + exp(1) ≤ 0 

𝑥 ∈  [−140, 140]𝐷 

 

Problem C09 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = 𝑥 − 𝑜 

ℎ(𝑥) =  ∑(𝑦𝑖𝑠𝑖𝑛 (√|𝑦𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−500, 500]𝐷 

 

Problem C10 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = (𝑥 − 𝑜)𝑀 
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ℎ(𝑥) =  ∑(𝑦𝑖𝑠𝑖𝑛 (√|𝑦𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−500, 500]𝐷 

 

Problem C11 

𝑀𝑖𝑛 𝑓(𝑥) =  
1

𝐷
∑(−𝑧𝑖𝑐𝑜𝑠 (2√|𝑧𝑖|))

𝐷

𝑖=1

     𝑧 = (𝑥 − 𝑜)𝑀, 𝑦 = 𝑥 + 1 − 𝑜 

ℎ(𝑥) =  ∑(100 (𝑦𝑖
2 − 𝑦𝑖+1)

2 + (𝑦𝑖 − 1)
2)

𝐷−1

𝑖=1

= 0 

𝑥 ∈  [−100, 100]𝐷 

 

Problem C12 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

,     𝑧 = 𝑥 − 𝑜 

ℎ(𝑥) = ∑(𝑧𝑖
2 − 𝑧𝑖+1)

2

𝐷−1

𝑖=1

= 0 

𝑔(𝑥) =  ∑(𝑧 − 100 cos(0.1𝑧) + 10)

𝐷

𝑖=1

 ≤ 0 

𝑥 ∈  [−1000, 1000]𝐷 

 

Problem C13 

𝑀𝑖𝑛 𝑓(𝑥) =  
1

𝐷
∑(−𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

,     𝑧 = 𝑥 − 𝑜 

𝑔1(𝑥) = −50 + 
1

100𝐷
∑𝑧𝑖

2

𝐷

𝑖=1

≤ 0 

𝑔2(𝑥) =
50

𝐷
∑𝑠𝑖𝑛 (

1

50
𝜋𝑧)

𝐷

𝑖=1

≤ 0 

𝑔3(𝑥) = 75 − 50 (∑
𝑧𝑖
2

4000

𝐷

𝑖=1

− ∏cos (
𝑧𝑖

√𝑖
)

𝐷

𝑖=1

+ 1)  ≤ 0 
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𝑥 ∈  [−500, 500]𝐷 

 

Problem C14 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = 𝑥 − 𝑜 

𝑔1(𝑥) =  ∑(−𝑦𝑖𝑐𝑜𝑠 (√|𝑦𝑖|))

𝐷

𝑖=1

− 𝐷 ≤ 0 

𝑔2(𝑥) =  ∑(𝑦𝑖𝑐𝑜𝑠 (√|𝑦𝑖|))

𝐷

𝑖=1

− 𝐷 ≤ 0 

𝑔3(𝑥) =  ∑(𝑦𝑖𝑠𝑖𝑛 (√|𝑦𝑖|))

𝐷

𝑖=1

− 10𝐷 ≤ 0 

𝑥 ∈  [−1000, 1000]𝐷 

 

Problem C15 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(100 (𝑧𝑖
2 − 𝑧𝑖+1)

2 + (𝑧𝑖 − 1)
2)

𝐷−1

𝑖=1

,   𝑧 = 𝑥 + 1 − 𝑜, 𝑦 = (𝑥 − 𝑜)𝑀 

𝑔1(𝑥) =  ∑(−𝑦𝑖𝑐𝑜𝑠 (√|𝑦𝑖|))

𝐷

𝑖=1

− 𝐷 ≤ 0 

𝑔2(𝑥) =  ∑(𝑦𝑖𝑐𝑜𝑠 (√|𝑦𝑖|))

𝐷

𝑖=1

− 𝐷 ≤ 0 

𝑔3(𝑥) =  ∑(𝑦𝑖𝑠𝑖𝑛 (√|𝑦𝑖|))

𝐷

𝑖=1

− 10𝐷 ≤ 0 

𝑥 ∈  [−1000, 1000]𝐷 

 

Problem C16 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑
𝑧𝑖
2

4000

𝐷

𝑖=1

− ∏cos (
𝑧𝑖

√𝑖
)

𝐷

𝑖=1

+ 1 ,        𝑧 = 𝑥 − 𝑜 

𝑔1(𝑥) =∑[𝑧𝑖
2 − 100 cos(𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

 ≤ 0 
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𝑔2(𝑥) =∏𝑧𝑖

𝐷

𝑖=1

 ≤ 0 

ℎ1(𝑥) =  ∑(𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

ℎ2(𝑥) =  ∑(−𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−10, 10]𝐷 

 

Problem C17 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(𝑧𝑖 − 𝑧𝑖+1)
2

𝐷−1

𝑖=1

,          𝑧 = 𝑥 − 𝑜 

𝑔1(𝑥) =∏𝑧𝑖

𝐷

𝑖=1

 ≤ 0 

𝑔2(𝑥) =∑𝑧𝑖

𝐷

𝑖=1

 ≤ 0 

ℎ(𝑥) =  ∑(𝑧𝑖𝑠𝑖𝑛 (4√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−10, 10]𝐷 

 

Problem C18 

𝑀𝑖𝑛 𝑓(𝑥) =  ∑(𝑧𝑖 − 𝑧𝑖+1)
2

𝐷−1

𝑖=1

,          𝑧 = 𝑥 − 𝑜 

𝑔(𝑥) =
1

𝐷
∑(−𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

≤ 0 

ℎ(𝑥) =
1

𝐷
∑(𝑧𝑖𝑠𝑖𝑛 (√|𝑧𝑖|))

𝐷

𝑖=1

= 0 

𝑥 ∈  [−50, 50]𝐷 
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APPENDIX III 

LIST OF UNCONSTRAINED BENCHMARK 

PROBLEMS 

 

SCALABLE PROBLEMS 

Problem 1: Sphere Function 

𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝐷

𝑖=1
 

𝑥 ∈ [−5.12,5.12]𝐷 

Optimal value = 0 

 

Problem 2: De Jong’s Function 

𝑓2(𝑥) = ∑ 𝑖𝑥𝑖
4𝐷

𝑖=1   

𝑥 ∈ [−5.12,5.12]𝐷  

Optimal value = 0 

 

Problem 3: Griewank Function 

𝑓3(𝑥) = ∑
𝑥𝑖

2

4000
− ∏ cos (

𝑥𝑖

√𝑖
) + 1𝐷

𝑖=1
𝐷
𝑖=1   

𝑥 ∈ [−600,600]𝐷  

Optimal value = 0 

 

Problem 4: Rosenbrock Function 

𝑓4(𝑥) = ∑ [100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)2]𝐷
𝑖=1   

𝑥 ∈ [−100,100]𝐷  

Optimal value = 0 

 

Problem 5: Rastrigin Function 

𝑓5(𝑥) = ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)𝐷

𝑖=1
  

𝑥 ∈ [−5.12,5.12]𝐷  

Optimal value = 0 

 

Problem 6: Ackley Function 
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𝑓6(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
) 

-exp(
1

𝐷
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝐷
𝑖=1 ) + 20 + 𝑒 

𝑥 ∈ [−30,30]𝐷  

Optimal value = 0 

 

Problem 7: Alpine Function 

𝑓7(𝑥) = ∑ |𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|
𝐷
𝑖=1   

 𝑥 ∈ [−10,10]𝐷 

Optimal value = 0 

 

Problem 8: Michalewicz Function 

𝑓8(𝑥) = −∑ 𝑠𝑖𝑛(𝑥𝑖) [
𝑠𝑖𝑛(𝑖𝑥𝑖

2)

𝜋
]
20

𝐷
𝑖=1 𝑥 ∈ [−100,100]𝐷  

𝑥 ∈ [0, 𝜋]𝐷  

Optimal value = 0 

 

Problem 9: Cosine Mixture Function 

𝑓9(𝑥) = ∑ 𝑥𝑖
2 − 0.1∑ cos(5𝜋𝑥𝑖)

𝐷
𝑖=1

𝐷
𝑖=1   

𝑥 ∈ [−1,1]𝐷  

Optimal value = 0 

 

Problem 10: Exponential Function 

𝑓10(𝑥) = −𝑒𝑥𝑝(−0.5∑ 𝑥𝑖
2𝐷

𝑖=1 )  

𝑥 ∈ [−1,1]𝐷  

Optimal value = -1 

 

Problem 11: Zakharov Function 

𝑓11(𝑥) = ∑ 𝑥𝑖
2 + (

1

2
∑ 𝑖𝑥𝑖

𝐷
𝑖=1 )

2
𝐷
𝑖=1 + (

1

2
∑ 𝑖𝑥𝑖

𝐷
𝑖=1 )

4

  

𝑥 ∈ [−5.12,5.12]𝐷   

Optimal value = 0 

 

Problem 12: Cigar Function 
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𝑓12(𝑥) = 𝑥1
2 + 100000 ∑ 𝑥𝑖

2𝐷
𝑖=2   

𝑥 ∈ [−10,10]𝐷   

Optimal value = 0 

 

Problem 13: Brown3 Function 

𝑓13(𝑥) = ∑ [(𝑥𝑖
2)(𝑥𝑖+1

2 +1) + (𝑥𝑖+1
2 )(𝑥𝑖

2+1)]𝐷−1
𝑖=1   

𝑥 ∈ [−1,4]𝐷   

Optimal value = 0 

 

Problem 14: Schewel Function 

𝑓14(𝑥) = ∑ |𝑥𝑖|
𝐷
𝑖=1 + ∏ |𝑥𝑖|

𝐷
𝑖=1   

𝑥 ∈ [−10,10]𝐷  

Optimal value = 0 

  

Problem 15: Salomon Function 

𝑓15(𝑥) = 1 − 𝑐𝑜𝑠 (2𝜋√∑ 𝑥𝑖
2

𝐷

𝑖=1
) + 0.1√∑ 𝑥𝑖

2
𝐷

𝑖=1
 

𝑥 ∈ [−100,100]𝐷  

Optimal value = 0 

 

Problem 16: Axis Parallel Hyperellipsoid Function 

𝑓16(𝑥) = ∑ 𝑖𝑥𝑖
2

𝐷

𝑖=1
 

𝑥 ∈ [−5.12,5.12]𝐷  

Optimal value = 0 

 

Problem 17: Pathological Function 

𝑓17(𝑥) = ∑

[
 
 
 

0.5 +
𝑠𝑖𝑛2√100𝑥𝑖

2 + 𝑥𝑖+1
2 − 0.5

1 + 0.001(𝑥𝑖
2 + 𝑥𝑖+1

2 − 2𝑥𝑖𝑥𝑖+1)2

]
 
 
 𝐷−1

𝑖=1
 

𝑥 ∈ [−100,100]𝐷  

Optimal value = 0 
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Problem 18: Sum of Different Powers 

𝑓18(𝑥) = ∑ |𝑥𝑖|
𝑖

𝐷

𝑖=1
 

𝑥 ∈ [−1,1]𝐷  

Optimal value = 0 

 

Problem 19: Step Function 

𝑓19(𝑥) = ∑ (⌊𝑥𝑖 + 0.5⌋)2
𝐷

𝑖=1
 

𝑥 ∈ [−100,100]𝐷  

Optimal value = 0 

 

Problem 20: Quartic Function 

𝑓20(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)𝐷

𝑖=1   

𝑥 ∈ [−1.28,1.28]𝐷  

Optimal value =0 

 

Problem 21: Inverted Cosine Wave Function Function 

𝑓21(𝑥) = −∑ 𝑒𝑥𝑝 (−(
𝑥𝑖

2+𝑥𝑖+1
2 +0.5𝑥𝑖𝑥𝑖+1

8
))𝐷−1

𝑖=1 ∗ 𝑐𝑜𝑠 (4√𝑥𝑖
2 + 𝑥𝑖+1

2 + 0.5𝑥𝑖𝑥𝑖+1)  

𝑥 ∈ [−5,5]𝐷  

Optimal value =-D+1 

 

Problem 22: Neumaier3 Problem 

𝑓22(𝑥) = |∑ (𝑥𝑖 − 1)2 − ∑ 𝑥𝑖
𝐷
𝑖=1 𝑥𝑖+1

𝐷
𝑖=1 |  

𝑥 ∈ [−900,900]𝐷  

Optimal value =0 

 

Problem 23: Rotated Hyper Ellipsoid Function 

𝑓23(𝑥) = ∑ 𝑥𝑖
2𝐷

𝑖=1   

𝑥 ∈ [−65.539,65.536]𝐷  

Optimal value =0 

 

Problem 24: Levi Montalvo 1 Function 
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𝑓24(𝑥) =
𝜋

𝐷
[10𝑠𝑖𝑛2(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2(1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)) + (𝑦𝐷 − 1)2𝐷−1

𝑖=1   

Where 𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1) 

𝑥 ∈ [−10,10]𝐷  

Optimal value =0 

 

Problem 25: Levi Montalvo 2 Function 

𝑓25(𝑥) = 0.1(𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ [(𝑥𝑖 − 1)2(1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))]
𝐷−1
𝑖=1 ) + (𝑥𝐷 − 1)2(1 +

𝑠𝑖𝑛2(2𝜋𝑥𝐷))  

𝑥 ∈ [−5,5]𝐷  

Optimal value =0 

 

Problem 26: Ellipsoidal Function 

𝑓26(𝑥) = ∑ (𝑥𝑖 − 𝑖)2𝐷
𝑖=1   

𝑥 ∈ [−D, D]𝐷  

Optimal value = 0 

 

Problem 27: Shifted Parabola CEC 2005 Function 

𝑓27(𝑥) = ∑ 𝑧𝑖
2𝐷

𝑖=1 + 𝑏𝑖𝑎𝑠  

z=(x-o),   x=[𝑥1, 𝑥2, … , 𝑥𝐷],   O=[𝑜1, 𝑜2, … , 𝑜𝐷] 

𝑥 ∈ [−100,100]𝐷  

Optimal value = -450 

 

Problem 28: Shifted Schwefel CEC 2005 Function 

𝑓28(𝑥) = ∑ (∑ 𝑧𝑗
𝑖
𝑗=1 )

2𝐷
𝑖=1 + 𝑏𝑖𝑎𝑠  

z=(x-o),   x=[𝑥1, 𝑥2, … , 𝑥𝐷],   O=[𝑜1, 𝑜2, … , 𝑜𝐷] 

𝑥 ∈ [−100,100]𝐷  

Optimal value = -450 

 

Problem 29: Shifted Greiwank CEC 2005 Function 

𝑓29(𝑥) = ∑
𝑧𝑖

2

4000
− ∏ cos (

𝑧𝑖

√𝑖
) + 1 + 𝑓𝑏𝑖𝑎𝑠

𝐷
𝑖=1

𝐷
𝑖=1   

z=(x-o),   x=[𝑥1, 𝑥2, … , 𝑥𝐷],   O=[𝑜1, 𝑜2, … , 𝑜𝐷] 

𝑥 ∈ [−600,600]𝐷  
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Optimal value = -180 

 

Problem 30: Shifted Ackley CEC 2005 Function 

𝑓30(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝐷
∑ 𝑥𝑖

2
𝐷

𝑖=1
) 

-exp(
1

𝐷
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝐷
𝑖=1 ) + 20 + 𝑒+𝑓𝑏𝑖𝑎𝑠 

z=(x-o),   x=[𝑥1, 𝑥2, … , 𝑥𝐷],   O=[𝑜1, 𝑜2, … , 𝑜𝐷] 

𝑥 ∈ [−32,32]𝐷  

Optimal value = -140 

 

NON-SCALABLE PROBLEMS 

Problem 31: Goldstein Price Function 

𝑓31(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 4𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2)]

× [30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

𝑥 ∈ [−2,2]𝐷 

D = 2 

Optimal value = 3 

 

Problem 32: Six Hump Camel Function 

𝑓32(𝑥) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (4𝑥2
2 − 4)𝑥2

2𝑥1 ∈ [−3,3] 

𝑥1 ∈ [−3,3] 

𝑥2 ∈ [−2,2]  

D = 2 

Optimal value = -1.0316 

 

Problem 33: Easom's Function 

𝑓33(𝑥) = −𝑐𝑜𝑠(𝑥1)𝑐𝑜𝑠(𝑥2)𝑒𝑥𝑝[−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2]  

𝑥 ∈ [−100,100]𝐷  

D = 2 

Optimal value = -1 

 

Problem 34: Beale Function  
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𝑓34(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)
2 + (2.25 − 𝑥1 + 𝑥1𝑥2

2)2 + (2.625 − 𝑥1 + 𝑥1𝑥2
3)2 

𝑥 ∈ [−4.5,4.5]𝐷  

D = 2 

Optimal value = 0 

 

Problem 35: Colville Function 

𝑓35(𝑥) = 100(𝑥1 − 𝑥2
2)2 + (1 − 𝑥1)

2 + 90(𝑥4 − 𝑥3
2)2 + (1 − 𝑥3)

2 + 10.1((𝑥2 − 1)2 +

(𝑥4 − 1)2) + 19.8(𝑥2 − 1)(𝑥4 − 1)  

𝑥 ∈ [−10,10]𝐷  

D = 4 

Optimal value = 0 

 

Problem 36: Branin Rcos Function 

𝑓36(𝑥) = (𝑥2 −
5.1𝑥1

2

4𝜋2 +
5𝑥1

𝜋
− 6)

2

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠(𝑥1) + 10  

𝑥1 ∈ [−5,10]  

𝑥2 ∈ [0,15]  

D = 2 

Optimal value = 0.3979 

 

Problem 37: Kowalik Function 

 𝑓37(𝑥) = [𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

]
2

 

Where a= {0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 

0.0235,0.0246} 

b= {4.0, 2.0, 1.0, 0.5, 0.25, 0.1667, 0.125, 0.1, 0.0833, 0.07143, 0.0625} 

 𝑥 ∈ [−5,5]𝐷 

D = 4 

Optimal value = 0.000307486 

 

Problem 38: 2D Tripod Function  

𝑓38(𝑥) = 𝑝(𝑥2)(1 + 𝑝(𝑥1)) + |𝑥1 + 50𝑝(𝑥2)(1 − 2𝑝(𝑥1))| + |𝑥2 + 50(1 − 2𝑝(𝑥2))| 

With: {
𝑝(𝑢) = 1𝑖𝑓𝑠𝑖𝑔𝑛(𝑢) ≥ 0

= 0𝑖𝑓𝑠𝑖𝑔𝑛(𝑢) < 0
 

𝑥 ∈ [−100,100]𝐷  
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D = 2 

Optimal value = 0 

 

Problem 39: Shekel foxholes Function 

𝑓39(𝑥) = [
1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝐴𝑖𝑗)
62

𝑖=1

25
𝑗=1 ]

−1
 

𝑥 ∈ [−65.536,65.536]𝐷  

D = 2 

Optimal value = 0.998 

 

Problem 40: Hartman3 Function 

𝑓40(𝑥) = -∑ 𝛼𝑖𝑒𝑥𝑝 [−∑ 𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
23

𝑗=1 ]4
𝑖=1  

𝑥 ∈ [0, 1]𝐷  

D = 3 

Optimal value = -3.86278 

 

Problem 41: Hartman6 Function 

𝑓41(𝑥) = -∑ 𝛼𝑖𝑒𝑥𝑝 [−∑ 𝐴𝑖𝑗(𝑥𝑗 − 𝑃𝑖𝑗)
26

𝑗=1 ]4
𝑖=1  

𝑥 ∈ [0,1]𝐷   

D = 6 

Optimal value = -3.32237 

 

Problem 42: Shekel5 Function 

𝑓42(𝑥) = -∑ [∑ (𝑥𝑖 − 𝐶𝑖𝑗)
2
+ 𝛽𝑗

4
𝑖=1 ]

−1
5
𝑗=1  

𝑥 ∈ [0,10]𝐷   

D = 4 

Optimal value = -10.1532 

 

Problem 43: Shekel7 Function 

𝑓43(𝑥) = -∑ [∑ (𝑥𝑖 − 𝐶𝑖𝑗)
2
+ 𝛽𝑗

4
𝑖=1 ]

−1
7
𝑗=1  

𝑥 ∈ [0, 10]𝐷   

D = 4 
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Optimal value = -10.4029 

 

Problem 44: Shekel10 Function 

𝑓44(𝑥) = -∑ [∑ (𝑥𝑖 − 𝐶𝑖𝑗)
2
+ 𝛽𝑗

4
𝑖=1 ]

−1
10
𝑗=1  

𝑥 ∈ [0,10]𝐷  

D = 4 

Optimal value = -10.5364 

  

Problem 45: Dekkers and Aarts Function 

𝑓45(𝑥) = 105𝑥1
2 + 𝑥2

2 − (𝑥1
2 + 𝑥2

2)2 + 10−5(𝑥1
2 + 𝑥2

2)4 

𝑥 ∈ [−20,20]𝐷  

D = 2 

Optimal value = -24777 

 

Problem 46: Shubert Function 

𝑓46(𝑥) = -∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 1)∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥2+1)
5
𝑖=1

5
𝑖=1  

𝑥 ∈ [−10, 10]𝐷  

D = 2 

Optimal value = -186.7309 
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APPENDIX IV 

PERFORMANCE INDEX (PI) 

In order to compare the relative performance of algorithms, the Performance Index (PI) defined 

in [39] has been used. This index gives weighted importance to success rate and average number 

of function evaluations for successful runs. Formula for calculating the values of PI’s for both the 

algorithms have been given below: 

𝑃𝐼 =  
1

𝑁𝑃
∑ (𝑘1𝛼1

𝑖 + 𝑘2𝛼2
𝑖 )

𝑁𝑃
𝑖=1 , 

 

Where  𝛼1
𝑖 =  

𝑆𝑟𝑖

𝑇𝑟𝑖
 , and   𝛼2

𝑖 = {

𝑀𝑓𝑖

𝐴𝑓𝑖   𝑖𝑓   𝑆𝑟𝑖 > 0

0      𝑖𝑓   𝑆𝑟𝑖 = 0
 

 

 

 i = 1, 2, …, 𝑁𝑃 
 

𝑆𝑟𝑖                   number of successful runs of i
th

 problem 

 

𝑇𝑟𝑖  total number of runs of i
th 

problem 

 

𝑀𝑓𝑖 minimum of average number of function evaluations of successful runs used by 

both the algorithms for obtaining the solution of the i
th 

problem 

 

𝐴𝑓𝑖  average number of function evaluations of successful runs used by an algorithm 

for obtaining solution of the i
th

 problem 

 

𝑁𝑃 total number of problems evaluated 

 

 

𝑘1 and 𝑘2 are the weights corresponding success rate and  average number of  function 

evaluations respectively such that 0≤ 𝑘1, 𝑘2 ≤ 1 and 𝑘1 + 𝑘2 = 1. The PI graph is plotted by 

taking 𝑘1 = 𝑤, 𝑤 = 0, 0.2, 0.4, 0.6, 0.8, 1. Hence, 𝑘2 = 1 − 𝑘1 = 1 − 𝑤.  
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