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ABSTRACT 
 

 

The queueing theory and performance models have become the essential tools for the system 

designers/organizations to deal with unavoidable interruption of machining systems and also 

have potential industrial applications in computer and communication networks, traffic 

control, nuclear and power plants, distribution and power supply systems, production and 

assembly lines etc. In the industrial scenario, the primary objective of system designers is to 

design the machining system which may be fault tolerable. Many engineering systems which 

are prone to failures and operate in a machining environment can be improved by appropriate 

choice of redundancy as well as maintainability. Keeping in mind the vital role of queueing 

modeling of machining system with service interruptions due to unavailability of the server, 

in the present thesis some of queueing models for machining system with service interruption 

have been explored in different frameworks. In the present work our prime objective is to 

develop both transient as well as steady state queueing models for the repairable machining 

system with service interruption to investigate queueing and reliability indices of the 

concerned system. A variety of prominent features namely control policies, threshold 

policies, vacation, working vacation, server breakdown, provision of standby support, reboot 

and recovery process have been incorporated to dealt with the interruptions occurred in 

machining environment. Furthermore optimal system parameters have been obtained to 

determine the optimal cost of the system. 

The thesis is organized into 10 chapters including the first chapter devoted to general 

introduction on the relevant topics of work done in the thesis. The literature review, basic 

concepts and methodology used are also discussed in the first chapter. The chapters 2-8 and 

chapter 9-10 explore Markovian and non-Markovian models of machining system, 

respectively.  

 The study done is concluded by highlighting the noble features and future scope in the end 

of the thesis. The relevant references are listed in the alphabetical order. The investigation 

presented in the chapters 1-10 of the thesis are as follows: 

Chapter 1 entitled ‘General Introduction’ presents the motivation, the overview of the 

relevant research works, methodological aspects, solution techniques, survey of the literature 

and contents of the thesis. Chapter 2 deals with the time-dependent analysis of an M/M/1 

queueing model with state dependent rates and optional multiple working vacations. Chapter 

3 is concerned with admission control of maintenance for unreliable server machining system 



 
ii 

 

with working vacation. The chapter 4 presents the admission control policy for the fault 

tolerant system comprising of multi-components operating machines and multi types of 

warm standbys under the maintenance of single unreliable server. The concepts of F-policy 

which deals with the controlling of admission of failed machines and imperfect coverage are 

incorporated to make Markov model more realistic. Chapter 5 deals with the performance 

modeling of finite Markov M/M/1/L working vacation model for the fault tolerant machining 

system (FTMS). The concepts of redundancy along with the provision of dissimilar warm 

standbys are considered to maintain the pre-required high reliability of the system. In chapter 

6, Markov model of multi-component machining system comprising of two unreliable 

heterogeneous servers and mixed type of standby support has been studied.  In chapter 7, the 

performance prediction of fault tolerant machining system with imperfect coverage, reboot 

and server vacation is described. This study is concerned with the performance modeling of a 

fault tolerant system consisting of operating units supported by a combination of warm and 

cold spares. In chapter 8, Markovian model for FTS multi-component machining system 

with imperfect coverage, standby support and working vacation is investigated. In chapter 9, 

the availability analysis of M/G/1 FTS system for R-out-of-M: G configuration is described. 

The study of imperfect fault coverage and availability analysis of redundant machining 

system having the facility of recovery and replacement has been done. In chapter 10, the 

M/G/1 model for the multi-component fault tolerant machining system by incorporating the 

features of common cause shock failure and standby support has been investigated. Finally 

noble features and future scope of investigations done are presented in the conclusion section 

given after chapter 10. 

The queueing models developed in the present thesis provide valuable insights for the system 

design and may be successfully used in abundant congestion situations encountered in 

machining environment. Keeping in mind a variety of problems have been explored using 

different methodologies. It is hoped that the queueing models developed for machining 

systems in this thesis may be helpful to system analysts, developers, and practitioners to 

frame more optimal and efficient design of the concerned system. 



iii 
 

ACKNOWLEDGEMENTS 
 
 

 

“Strength does not come from winning. Your struggles develop your strengths. When you go 

through hardships and decide not to surrender, that is Strength”- Arnold Schwarzenegger 

First and foremost, I thank the incessant source of divine blessings, the almighty God, who 

always motivate me to move forward with his omens and love. 

 I would like to express my deepest gratitude and reverence to my supervisor Dr. Madhu 

Jain, Associate Professor, Department of Mathematics, Indian Institute of Technology 

Roorkee. I feel privileged to express my sincere regards to my guide for her valuable 

guidance, support and constant encouragement throughout the course of my research work. I 

consider myself extremely blessed to have worked under her scholarly guidance. Her truly 

scientific intuition and broad vision inspired and enriched my growth as a student and 

researcher.  The critical suggestions and valuable comments rendered by her during the 

discussions are deeply acknowledged. This work would have not been possible without her 

guidance, support and encouragement. Under her guidance I successfully overcome many 

difficulties and learned a lot. I humbly acknowledge a lifetime’s gratitude to her.  

I am thankful to Prof. V.K. Katiyar, Head of the Department of Mathematics, IIT Roorkee, 

for providing me with the basic facilities. I am also thankful to Prof. R.C. Mittal, former 

Head of the Department of Mathematics, Prof. S.P. Yadav, SRC Chairman, Prof. Kusum 

Deep, Internal Expert, Dr. R. Balasubramanian, External Expert for their support and helpful 

attitude during my Ph.D. program. I would also like to thank all the staff members in the 

department for creating the availing environment during the tenure of this work. 

I am highly indebted to Prof. G.C. Sharma, Ex. Pro. V.C., Dr. B. R. Ambedkar University, 

Agra who has always encouraged me to do my research work as good as possible. Moreover, 

his editing suggestions and discussions and precise sense of language contributed much to 

my research work. 

I would like to express sincerest thanks to my family who supported me throughout all the 

ups and downs in my life. I specially thank my uncle Mr. Bajarang Lal Meena who is the 

pillar of my strength. I wish to thank my mother and aunties for their love, care and affection. 

I would also like to thank my sisters Rachna, Manisha, Surbhi, Pallavi, Sonia and brothers 

Arun, Abhimanyu, Rajesh, Lokesh, Akshay and Deepak for their love and affection. I’d like 

to thank them all for fun and laughter that provided me such a wonderful childhood memory. 



iv 
 

I express my deepest thanks to my elder brother Maruti Meena for his unconditional support, 

careful and valuable guidance. He always motivated me to achieve my goals. Very special 

thanks to my elder brother Ashok Kumar Meena for his constant support and love. I thank 

him for everything he has done to assist me in the most ambitious endeavour of my career.  

I am very blessed to have some great friends who made my stay pleasant and happier. It’s my 

good fortune to gratefully acknowledge the support of some special individuals who were 

always there beside me during the happy as well as hard moments to push me and motivate 

me. I am thankful to Karmvir Phogat, Thota Vamsinadh, Navrattan Kaushik, Jasbir singh, 

Jitendra Saini, Gavendra Pandey, Sourav Das, Rajeev, Mayank Saxena, Tajender, Om 

Prakash, Nishant Gautam, Mohan Tiwari, Sudheer, Harish Chandra, Ankit Saxena, Manjari 

Sidharth, Tarul Garg, Neha, and Sheetal for their cooperation and support and for making my 

stay at IIT Roorkee a memorable one. Very special thanks to my lab colleagues Sudeep 

Singh Sanga, Pankaj Kumar, Mayank Singh, and Shobha Rani for providing their 

cooperation, support, healthy and progressive research environment.  

I owe my heartfelt thanks and gratitude to Dr. Lata Rana, who has always been a constant 

source of inspiration and helped me. She was always available whenever I needed her advice. 

I am honoured to have such a wonderful friend. I want to thank Dr. Chandra Shekhar, 

Associate Professor at BITS-Pilani for their valuable support in computational work. It’s my 

pleasure to express my gratitude to Dr. Richa Sharma, Dr. Versha Rani, Dr. Kamlesh Kumar, 

Dr. Amita Bhagat, and Dr. T. Manjula, for their guidance, encouragement and support.  

I would like to thank all the reviewers of research papers for providing many valuable 

suggestions and criticism which had major influence to improve the quality of this work. I 

pay my sincere and deep tributes to all the researchers in the world around, working for the 

development of science and technology for the betterment and enlightenment of the society. 

And being part of that community gives me a great pride and pleasure. 

I would like to acknowledge the contribution rendered by Ministry of Human Recourse 

Development (MHRD), by providing the necessary financial support in form of JRF/SRF to 

carry out this work. 

Finally, I wish to acknowledge all those whose names have not figured above, but have 

helped me in any form during the entire period of my research work. 

 

Rakesh Kumar Meena 



v 
 

LIST OF PUBLICATIONS 
 

 

International Journals/Conference Proceedings 

1. Madhu Jain, Chandra Shekhar and Rakesh Kumar Meena (2017): Admission 

control policy of maintenance for unreliable server machining system with working 

vacation, Arabian Journal for Science and Engineering 42:2993-3005 (Springer). 

2. Madhu Jain and Rakesh Kumar Meena (2017): Fault tolerant system with imperfect 

coverage, reboot and server vacation, Journal of Industrial Engineering International 

13:171-180 (Springer). 

3. Madhu Jain and Rakesh Kumar Meena (2017): Markovian analysis of unreliable 

multi-components redundant fault tolerant system with working vacation and F-

policy, Cogent Mathematics 4:1-17 (Taylor & Francis). 

4. Madhu Jain and Rakesh Kumar Meena (2017): Vacation model for Markov 

machine repair problem with two heterogeneous unreliable servers and threshold 

recovery, Journal of Industrial Engineering International, doi.org/10.1007/s40092-

017-0214-x (Springer). 

5. Madhu Jain, Sudeep Singh Sanga and Rakesh Kumar Meena (2016): Control F-

policy for Markovian retrial queue with server breakdowns, Proceeding of 1st IEEE 

International Conference on Power Electronics. Intelligent Control and Energy 

Systems (ICPEICES-2016), Delhi, 2016, pp. 1-5. 

6. Charan Jeet Singh, Madhu Jain, Sandeep Kaur and Rakesh Kumar Meena (2016): 

‘Retrial bulk queue with state dependent arrival and negative customers’,  In: Deep 

K. et al. (Eds) Proceedings of Sixth International Conference on Soft Computing for 

Problem Solving. Advances in Intelligent Systems and Computing, 547:290-301. 

Springer, Singapore. 

7. Madhu Jain and Rakesh Kumar Meena (2014): Optimal threshold policy for 

machining system with imperfect coverage reboot and vacation, Proceeding of 

International Conference on Emerging Trends in Global Management Practices – An 

Interdisciplinary Approach (INCONSYM 2014), Symbiosis Noida, 2014, pp. 728-

740. 

 

 

 



vi 
 

Research Paper communicated for publication 

1. Madhu Jain and Rakesh Kumar Meena (2017): Maintainability of R-out-of-N:G 

fault tolerant machining system with imperfect fault coverage,  

Communicated to Applied Mathematical Modelling, Elsevier. 

2. Madhu Jain, Rakesh Kumar Meena and Mayank Singh (2017): Availability 

Prediction of R-out-of-N: G configuration of multi-component fault tolerant 

machining system with common cause failure,  

Communicated to IEEE Transactions on Reliability. 

3. Madhu Jain, Richa Sharma and Rakesh Kumar Meena (2017): Performance 

modeling of fault tolerant machining system with working vacation and working 

breakdown, 

 Communicated to Arabian Journal of Science and Engineering, Springer. 

4. Azhagappan Arumugam, Madhu Jain and Rakesh Kumar Meena (2017): Transient 

analysis of a single server queue with state dependent rates and optional multiple 

working vacation, 

Communicated to Proceedings of National Academy of Science, Springer. 

Madhu Jain, Chandra Shekhar and Rakesh Kumar Meena (2017): Performance 

analysis and control F-policy for fault folerant system with working vacation, 

Communicated to OPSEARCH, Springer. 

5. Madhu Jain, Pankaj Kumar and Rakesh Kumar Meena (2017): Availability 

prediction of repairable fault tolerant system with imperfect coverage, reboot and 

common cause failure,  

Accepted for publication in proceeding (Springer) of Recent Trends in Operations 

Research and Statistics (RTORS-2017), 28-30 Dec. 2017, IIT Roorkee. 

 

 

 

 

 

 



vii 
 

PARTICIPATION IN CONFERENCES/WORKSHOPS 
 

 

Participation in Conference 

1. Participated and presented a paper entitled “Availability Prediction of M/G/1 Fault 

Tolerant Machining System with Common Cause Failure and Reboot” at OR 59 

Annual Conference of the OR society at Loughborough University, Loughborough 

United Kingdom, 12-14 September 2017.  

2. Attended an International Conference on “Recent Trends in Mathematical Analysis 

and its Applications” organized by the Department of Mathematics, IIT Roorkee 

during 21-23 Dec., 2014. 

3. Attended an International Conference on “Soft Computing for Problem Solving” 

organized by the Department of Mathematics, IIT Roorkee at Noida Campus, 

during 26-28 Dec., 2013. 

4. Participated and presented a paper entitled “Optimal threshold policy for machining 

system with imperfect coverage, reboot and vacation” at International Conference on 

Emerging Trends in Global Management Practices- An Interdisciplinary Approach 

organized by Symbiosis Centre for Management Studies Noida, during 7-8 March 

2014. 

5. Participated and presented a paper entitled “Transient Analysis of Machining System 

with vacation and Imperfect coverage” at National Conference on Recent Trends 

and Developments in Operations Research organized by the Department of 

Mathematics, BITS Pilani, Rajasthan during 22-2 Feb., 2014. 

6. Participated and presented a paper entitled “Queueing Analysis of Multi-Component 

Machining System with Spare Provisioning, vacation and Imperfect coverage” at 

National Conference on “Advances in Mathematical Sciences & Their 

Applications” organized by the Department of Mathematics, Hindu Girls College, 

Sonipat (Haryana) during 28-30 March., 2014. 

 

 

 

 

 



viii 
 

Participation in workshops 

1. Attended a workshop on ‘Applied Stochastic Models and Optimization’ organized 

by the Department of Mathematics IIT Roorkee, during 26-27th May, 2017. 

2. Attended a workshop on ‘Modeling, Optimization and Simulation of Stochastic 

Systems’ organized by the Department of Mathematics IIT Roorkee, during 26th 

Nov., 2016. 

3. Attended a workshop on ‘Optimization Technique for Solving Industrial 

Problems’ organized by the Department of Mathematics IIT Roorkee, during 15th 

Oct., 2016. 

4. Attended a workshop on ‘Author Workshop on Book Publishing’ organized by 

Mahatma Gandhi Central Library, IIT Roorkee in association with Elsevier, 26th 

Sep. 2016. 

5. Attended a workshop on ‘Optimization’ organized by the Industrial Engineering 

and Operations Research Department, IIT Bomabay, during 9-21 May, 2016. 

6. Attended a workshop on ‘Training Workshop on Reference Management 

Software-Mendeley’ organized by Mahatma Gandhi Central Library, IIT 

Roorkee, 20th Jan. 2016. 

7. Attended a workshop on ‘Introduction to Matlab and Mathematica’ organized by 

the Department of Mathematics IIT Roorkee, during 21-22 April, 2012. 

 

 

 

 

 



 
ix 
 

TABLE OF CONTENTS 
 

 

CANDIDATE’S DECLARATION         

ABSTRACT i 

ACKNOWLEDGEMENTS iii 

LIST OF PUBLICATIONS  v 

LIST OF PARTICIPATION IN CONFERENCE/WORKSHOPS vii 

TABLE OF CONTENTS ix 

LIST OF TABLES  xv 

LIST OF FIGURES xvii 

1. General Introduction 1-36 

 1.1 Motivation 1 

 1.2 Repairable Machining System   3 

  1.2.1 Machine repair system with redundancy 4 

  1.2.2 Machining system under control policies    6 

  1.2.3 Fault tolerant machining system 6 

 1.3 Queueing Model with Service Interruption    7 

  1.3.1 Unreliable server model       7 

  1.3.2 Vacation model 7 

 1.4 Methodological Aspects   8 

  1.4.1 Stochastic and Markov process 10 

  1.4.2     Analytical techniques    10 

  1.4.3     Numerical techniques   13 

  1.4.4     Optimization techniques   14 

  1.4.5     Adaptive-neuro fuzzy inference systems (ANFIS) model 15 

 1.5 Some Markovian Queueing Models of MRP 18 



 
x 
 

  1.5.1 M/M/R machine repair model with standby 18 

  1.5.2 Standby with switching failure 19 

  1.5.3 M/M/1 machining system with unreliable server 19 

  1.5.4 M/M/1 machining system with complete vacation 20 

  1.5.5 M/M/1 machining system with working vacation 20 

  1.5.6 M/M/1 machining system with F-policy 21 

  1.5.7 K-out-of-N: G machining system 22 

  1.5.8 Non-Markovian model for machining system  22 

  1.5.9 Fault tolerant  machining system  23 

 1.6 Survey  of Literature 23 

  1.6.1 Queueing modeling of machining system- A brief historical 

view point 

24 

  1.6.2 Machining system with standby 24 

  1.6.3 Queueing system with unreliable server 26 

  1.6.4 Machining system with vacation 26 

  1.6.5 Machining system with working vacation 27 

  1.6.6 Queueing system under F-policy 28 

  1.6.7 Machining system with imperfect coverage 29 

 1.7 Contents of the Thesis  30 

 1.8         Concluding Remarks   34 

2. State Dependent M/M/1 Queue with Optional Working Vacation 37-51 

 2.1 Introduction 37 

 2.2 Model Description   39 

 2.3 Model Governing Equations   40 

  2.3.1 Transient system size distributions 40 

  2.3.2 Stationary system size distribution    44 

  2.3.3 Special cases    44 



 
xi 
 

 2.4 System Performance Measures 45 

  2.4.1 Mean system size       45 

  2.4.2 Variance of system size 46 

  2.4.3 Throughput   46 

  2.4.4 Service station state probabilities   46 

  2.4.5 The cost function   46 

 2.5 Numerical Simulation   47 

3. F-policy for Unreliable Server Machining System with Working 

Vacation 

53-69 

 3.1 Introduction 53 

 3.2 Model Description   54 

 3.3 Mathematical Formulation and Analysis   55 

  3.3.1 Governing equations   56 

 3.4 System Performance Measures 59 

 3.5      Cost function and optimal parameters    60 

  3.5.1 Direct search method 61 

  3.5.2     Quasi-Newton method   61 

 3.6    Illustration and Numerical Simulation   62 

  3.6.1 Sensitivity of system parameters 63 

  3.6.2     Expected cost and optimal cost parameters 64 

4. Unreliable Server FTS with Working Vacation 71-83 

 4.1 Introduction 71 

 4.2 Model Description   73 

 4.3 Governing Equations   75 

 4.4 Performance Measures 78 

  4.4.1 Queueing indices   78 

  4.4.2     Long run-probabilities   79 



 
xii 
 

  4.4.3     Cost function   79 

 4.5 Numerical Results  80 

5. Unreliable Server FTS with Working Vacation and Working 

Breakdown 

85-98 

 5.1 Introduction 85 

 5.2 System Description   86 

 5.3 Governing Equations   87 

 5.4    The Mathematical Analysis   89 

 5.5 Performance Measures    93 

 5.6 Numerical Simulations   94 

6. MRP with Unreliable Server and Threshold Recovery 99-110 

 6.1 Introduction 99 

 6.2 Model Description   100 

 6.3 Governing Equations of the Model   101 

 6.4 Performance Measures    104 

  6.4.1 Queueing indices   104 

  6.4.2 Long-run system state probabilities   104 

  6.4.3     System cost   105 

  6.4.4     Neuro-fuzzy based ANFIS model   105 

 6.5 Numerical Simulation   106 

7. FTS with Imperfect Coverage, Reboot and Server Vacation 111-122 

 7.1 Introduction 111 

 7.2 Model Description   112 

 7.3       Model Governing Equations   114 

 7.4 Performance Indices 116 

 7.5  Cost function 117 

 7.6  Numerical Illustration 117 



 
xiii 

 

8. F-policy for FTS with Working Vacation 123-137 

 8.1 Introduction 123 

 8.2 Model Description   124 

 8.3 Model Governing Equations   126 

 8.4 Performance Measures    129 

  8.4.1 Transient state probabilities of different states   129 

  8.4.2 Queueing indices    130 

  8.4.3     Reliability indices   131 

 8.5 Sensitivity analysis 131 

 8.6    Numerical Simulation   132 

  8.6.1 Effect of parameters on performance indices    132 

  8.6.2     Sensitivity of system reliability   135 

  8.6.3     Sensitivity of throughput   135 

  8.6.4     Sensitivity and relative sensitivity of MTTF    136 

9. Availability of R-out-of-N:G FTS with Imperfect Fault Coverage 139-159 

 9.1 Introduction 139 

 9.2 Description of the Model 141 

 9.3 Governing Equations and Queue size distribution   142 

 9.4       Algorithm to Compute Steady State Probibailities   146 

 9.5 Availability Analysis of R-out-of-M:G Configuration System 146 

  9.5.1 Exponential repair time distribution   147 

  9.5.2    Deterministic repair time distribution    148 

  9.5.3 3-stage Erlang repair time distribution    149 

 9.6 System Performance Measures   150 

 9.7 Numerical Simulation   152 

  9.7.1 Application of M/G/1 FTS in manufacturing system 152 

  9.7.2     System availability   152 



 
xiv 

 

  9.7.3     Effect of system parameters on system indices   155 

  9.7.4     System cost analysis 155 

10. Availability of M/G/1 FTS with Common Cause Shock Failure 161-175 

 10.1 Introduction 161 

 10.2    Model Description 162 

 10.3 The Governing Equations and Queue size distribution  163 

 10.4    Availability Analysis of R-out-of-M: G Configuration 165 

  10.4.1 Exponential repair time distribution   165 

  10.4.2    Deterministic repair time distribution 166 

  10.4.3    3-stage Erlang repair time distribution    167 

 10.5 System Performance Measures and Cost Function   169 

  10.5.1     System cost     170 

 10.6 Numerical Simulation    170 

  10.6.1     Availability analysis   171 

  10.6.2     System cost analysis   171 

Conclusions 177-179 

References 181-194 

 



xv 
 

LIST OF TABLES 
 

 

 

Table Title Page 

2.1 Effect of arrival rate ( ) on system indices and total cost  48 

2.2 Effect of service rate ( )  on system indices and total cost  48 

2.3 Effect of service rate ( )v  on system indices and total cost  49 

2.4 Effect of set up rate ( )  on system indices and total cost  49 

2.5 Effect of set up rate ( )v  on system indices and total cost  49 

3.1 Variations in performance indices for different values of M and  65 

3.2 Variations in performance indices for different value of M and  66 

3.3 Variations in performance indices for different values of M and v  66 

3.4 Variations in performance indices for different values of M and  66 

4.1 Cost elements associated with various system indices 80 

4.2 Optimal repair rate *  and optimal cost ($) 80 

4.3 Linguistic values of the membership functions for input parameter    81 

4.4 Effect of λ and c on various system indices 82 

4.5 Effect of µ and c on various system indices 82 

5.1 Cost elements incurred with various system metrics 95 

5.2 Effect of service rate ( v ) on various performance indices 95 

5.3 Effect of service rate ( ) on various performance indices 95 

6.1 Variations in different system indices by varying time for different values 

of   

108 

6.2 Variations in different system indices by varying time for different    

values of   

108 

6.3 Cost elements (in $) associated with various system indices 108 

7.1 Effect of failure rate of operating unit (λ) on various performance indices 119 



xvi 
 

7.2 Effect of reboot rate (  ) on various performance indices `119 

7.3 Effect of failure rate of standby unit (α) on various performance indices 120 

8.1 Sensitivity analysis  t of MTTF 137 

8.2 Relative sensitivity analysis  t of MTTF 137 

9.1 Effect of r on the system availability of R-out-of 3: G configuration 153 

9.2 Effect of   on the system availability of R-out-of 3: G configuration 153 

9.3 System indices for three different repair time distributions with  

failure rate λ 

153 

9.4 System indices for three different repair time distributions with  

service rate µ 

153 

9.5 Cost elements associated to different states of the system 155 

9.6 The iterative results of quasi-Newton method for Exponential distribution 

for cost set I 

156 

9.7 The iterative results of quasi-Newton method for 3-stage Erlang 

distribution for cost set I 

156 

9.8 The iterative results of quasi-Newton method for Deterministic 

distribution for cost set I 

156 

9.9 The minimum cost TC (µ*) and corresponding optimal repair rate (µ*)  156 

10.1 The iterative results of QNM for different distributions and three  

cost sets 

174 

10.2 Minimum TC( *) and optimal repair rate  * for cost sets I, II and III 174 

 



xvii 
 

LIST of FIGURES 
 

 

Figure Title Page 

1.1 Formation of queue of failed machines at repair shop 4 

1.2 Classification of standby machines based on failure characteristic 5 

1.3 The basic queueing structure 9 

1.4 Finite birth-death process 11 

1.5 Neuro fuzzy network 17 

1.6 Standby switching failure  19 

1.7 Machining system with server breakdown 20 

1.8 Machining system with complete vacation 20 

1.9 Machining system with working vacation 21 

1.10 Machining system under F-policy 22 

1.11 1-out-of -2 Configuration 22 

1.12 State transition diagram  23 

2.1 State transition diagram of M/M/1/WV 40 

2.2 ( ( ))E N  for different value of (i) λ (ii) λ1 (iii)   50 

2.3 ( )TP  for different value of (i) µv (ii) µ (iii) 50 

2.4 The system cost TC(τ) and µ for (i) cost sets I (ii) cost sets II  

(iii) cost sets III 

51 

3.1 State transition diagram for M/M/1/WV model 56 

3.2 Expected number of failed machine E(N) by varying (i) λ (ii) µ (iii) α for 

different values of M 

67 

3.3 Expected number of failed machine E(N) by varying (i) ψ (ii) θv (iii) µv 

for different values of F 

67 

3.4 Expected waiting time of failed machines E(W) by varying  (i) λ (ii) µ (iii) 

α for different values of M 

68 

3.5 Expected waiting time of failed machines E(W) by varying (i) ψ (ii) θv 68 



xviii 
 

(iii) µv for different values of F   

3.6 Total cost of the system by varying F for different value of (i) µ (ii) µv 69 

3.7 Total cost of the system by varying F for different value of (i) λ (ii) ψ 69 

3.8 Total cost of the system by varying F for different value of (i) θ v (ii)      69 

4.1 State transition diagram 75 

4.2 Variation of TC with respect to  for different value of (i) and (ii)   82 

4.3 Membership functions for input variable   83 

4.4 Variation of (i) E(N) and (ii) E(S) with respect to λ  for different value of 

θ used in SOR and ANFIS 

83 

4.5 Variation of (i) MA and (ii) TP with respect to λ for different value of θ 

used in SOR and ANFIS 

83 

5.1 State transition diagram of M/M/1/WV FTS 87 

5.2 ( )EN  vs.   with variation in (i) λ (ii) µ and (iii) a 96 

5.3 ( )MA vs.   with variation in (i) λ (ii) µ and (iii) a 96 

5.4 ( )YR vs.   with variation in (i) λ (ii) µ and (iii) a 96 

5.5 Total system cost for various values of service rate µ with respect to time 

τ for (i) Cost set I (ii) Cost set II 

98 

5.6 Total system cost for various values of service rate µ with respect to time 

τ for (i) Cost set III (ii) Cost set IV 

98 

6.1 Membership function for input variable λ and   108 

6.2 ( )EN  vs.   for different value of (i)  and (ii)  109 

6.3 ( )MA  vs. t for different value of (i)  and (ii)   109 

6.4 TP(τ) Vs t for different value of (i)  and (ii)   109 

6.5 TC( ) for varying values of µ (i) Cost set I (ii) Cost set II  

(iii) Cost set III 

110 

7.1 State transition diagram of M/M/1 FTS 113 

7.2 Variation in ( )A t for different value of (i) (ii) a (iii) b (iv)   120 

7.3 Variation in ( )EN t  for different value of (i)  and (ii) c  121 



xix 
 

7.4 Membership function for , a  and b  121 

7.5 ( )A t vs. t  for different values of   121 

7.6 ( )A t vs. t  for different values of a  122 

7.7 ( )A t vs. t for different values of b  122 

8.1 Expected number of failed machines { ( )}E N t vs. t by varying parameters 

(i)   (ii) b  (iii) r   (iv)   (v) M  (vi) S  

133 

8.2 System reliability  YR t vs. t by varying parameters (i)  (ii) b (iii)  (iv) 

 (v) M (vi) S 

134 

8.3 Reliability sensitivity  t   and (ii) Relative sensitivity  t  
vs. t  for 

different system parameters
 

135 

8.4 (i) Sensitivity of throughput  t   and (ii) Relative sensitivity of the 

Throughput   t  

136 

8.5 Mean time to failure (MTTF) for (i) λ (ii) α (iii) β (iv) µb 136 

9.1 Transition state diagram for M/G/1 FTS 142 

9.2 System availability vs. λ for different distributions  

(i) Exponential (ii) 3-stage Erlang (iii) Deterministic 

154 

9.3 System availability vs. η for different distributions   

(i) Exponential (ii) 3-stage Erlang (iii) Deterministic 

154 

9.4 Effect of λ, σ and c on E[N] for different distributions 154 

9.5 TC vs. µ and c for different distributions (i) Exponential 

(ii) 3-stageErlang (iii) Deterministic, for cost set I 

158 

9.6 TC vs. µ and c for different distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic, for cost set II 

158 

9.7 TC vs. µ and c for different distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic, for cost set III. 

158 

9.8 TC vs. µ and η for different distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic, for cost set I 

159 

9.9 TC vs. µ and η for different distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic, for cost set II 

159 



xx 
 

9.10 TC vs. µ and η for different distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic, for cost set III 

159 

10.1 State transition diagram for M/G/1 FTS 163 

10.2 E(N) vs. (i) λ (ii) c and (iii) µ 172 

10.3 MA vs. (i) λ (ii) c and (iii) µ 172 

10.4 Variations in ( ) ( )R NAv    for different value of  for 

(i) Exponential, (ii) 3-stage Erlang and (iii) Deterministic distributions 

173 

10.5 Variations in ( )R NAv    for different value of  for 

(i) Exponential, (ii) 3-stage Erlang and (iii) Deterministic   distributions 

173 

10.6 TC vs. ( , ) c for cost set I and repair time distributions 

(i) Exponential (ii) 3-stage Erlang (iii) Deterministic 

175 

10.7 TC vs. ( , ) c  for cost set II and repair time distributions 

(i) Exponential (ii) 3-stage Erlang (iii) Deterministic 

175 

10.8 TC vs. ( , ) c  for cost set III and repair time distributions 

(i) Exponential (ii) 3-stage Erlang (iii) Deterministic 

175 

 



1 
 

Chapter 1 

General Introduction 
 
 

1.1 Motivation  

With the advancement in the technology, the machines have a significant impact on human 

life. Due to increase in just in time (JIT) demand, the size and complexity of machining 

systems have grown up extremely which also increase the occurrence of faults/failures in the 

machines causing interference in the operation of the systems. The occurrence of 

faults/failures in machining systems is quite common phenomenon but has adverse impact on 

the revenue as well as output of the concerned organization/industry. To avoid the failures 

and faults of the machining systems, the reliability, availability, maintainability (RAM) 

issues need to be predicted during the design, development and operation phases.  

In the real life scenarios, we all experience the queueing situations in day-to-day life 

including machining systems used at toll booth or traffic signal, automatic ticketing system at 

railway counters or bank ATM, supermarket automatic checkout system, automatic petrol-

refueling station, and many other places. The queueing theory and reliability models have 

become the essential tools for the system designers/organizations to deal with unavoidable 

interruption of machining systems and also have potential industrial applications in computer 

and communication networks, traffic control, nuclear and power plants, distribution and 

power supply systems, production and assembly lines, etc. The primary objective of the 

system designers is to design the machining system which may be fault tolerable. Many 

engineering systems operating in a machining environment can be improved by appropriate 

choice of redundancy as well as maintainability. Keeping in mind the vital role of queueing 

modeling of machining system with service interruptions due to unavailability of the server, 

a variety of queueing models for machining system with service interruption have been 

explored in different frameworks by several researchers working in the area of queueing and 

reliability theory. The spare provisioning and maintainability can help in reducing the risk of 

sudden breakdown of the system and increasing the life time of the concerned system. The 

server vacation or working vacation is also a kind of service interruption caused due to 

unavailability of the server and can be allowed to improve and enhance the quality of 

operation mode of any machining system. The performance prediction of repairable 
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redundant machining system with service interruption in different frameworks is the main 

objective of the research work presented in the thesis. 

In modern era of automated life style, the performance modeling of fault tolerance machining 

system has become more difficult job. In real-time machining systems, the sudden 

breakdown of machining components or server failure may cause interruptions in the service 

rendered by the system. There are several reasons of occurrence of interruption in the real 

time machining systems such as sudden breakdown of machines, server failure, 

unavailability of the server due to vacation and many others. Sometimes, these interruptions 

cause severe disaster on the production as well as goodwill of the concerned organizations. 

In queueing literature some research works can be found on the performance prediction of 

machining system with service interruption. However there is scarcity of performance 

models which deal with the fault tolerance and admission control issues to maintain the 

smooth functioning of machining systems for a long period of time. By literature survey, it is 

realized that much more research works has to be done in this direction so as to avoid the 

service interruption during operation phase of the machining system. To deal with these 

situations, we are interested to develop some queueing models for machining systems with 

service interruptions which may be of further used to analyze the performance of complex 

real time machining systems. 

From the queueing literature, it is seen that in the past few years, some articles on queueing 

modeling of repairable machining systems operating under optimal admission policy have 

appeared. However, there is urgent need of research works which can explore the 

performance metrics of the unreliable fault tolerant machining system in generic set up. The 

numerous versatile applications of optimal control policy for fault tolerant machining 

systems which are prone to failure have motivated us to study queueing modeling of 

machining system with service interruptions by incorporating the concepts of optimal control 

threshold policies. In the present study we shall investigate some queueing models for the 

performance prediction of repairable machining system by incorporating various realistic 

features such as unreliable server, vacation policies, threshold policies, standby support, 

reboot and recovery, etc. In the thesis work, our study is devoted to develop some queueing 

models for repairable multi-component systems in the general frameworks by including the 

noble concepts of service interruption under the assumptions of vacation, working vacation 

and unreliable server, etc. To deal with the performance metrics of real-time systems, we 

have developed the stochastic models under the assumption of F-policy, common cause 

shock failure, mixed type standby support, etc.  
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The prime objective of our investigation is to develop both transient as well as steady state 

queueing models for the multi-component machining systems with service interruption due 

to either unreliable server or vacation/working vacation. The current introductory chapter 

provides the basic concepts and overview of the methodology used for the modeling and 

performance analysis of various models of machining systems operating in Markovian or 

non-Markovian set up. The remaining contents of the ongoing introductory chapter are 

organized in the following manner. Section 1.2 describes some important aspects of queueing 

characterization of repairable machining system. The service interruption factors involved in 

queueing scenarios of machining systems are discussed in the Section 1.3. Some basic 

methodological aspects used to carry out the investigation in the thesis work are described in 

the Section 1.4. Some Markovian queueing models for performance prediction of MRP are 

presented in Section 1.5. Section 1.6 is devoted for the survey of literature of relevant topics 

concerned with the performance prediction of repairable machining systems in different 

frameworks. The content of the thesis work is described in the Section 1.7. Finally, in 

Section 1.8, the concluding remarks for highlighting the noble feature of work done are 

given. 

1.2 Repairable Machining Systems 

We are living in a high-tech and automated machining world, where our dependence on 

machines in various sphere of life cannot be denied. Since the machines may be prone to 

failures as such redundancy and maintenance issues are always involved in machining 

system. The queues formations in the context of repairable machining system are referred as 

finite source queues. In these systems, the calling population is the machines; an arrival 

corresponds to a machine breakdown and server corresponds to the repair facility. Due to 

fact that finite population models can be used for the modeling of wide range of real-time 

systems, noticeable works have been reported on finite population queueing models.  To 

resolve the problems of blocking and delay at machining system, the queueing theory 

approach as well as reliability, availability and maintainability (RAM) approaches can be 

used.  The pictorial view of repairable machining system with different stages of repair 

facility can be seen in Figure 1.1. 
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    Fig. 1.1: Formation of queue of failed machines at repair shop 

1.2.1 Machine repair system with redundancy 

The occurrence of fault and failures in real time machining environment is a quite common 

phenomenon which not only affects the desired output and efficiency of the system but cause 

increase in down time and economic loss. The system analysts can reduce the risk of fault 

occurrence and consequently enhancement in the reliability of the system with the standby 

support. In recent past, some queue theorists have studied finite population queues to 

facilitate the performance modeling of redundant machining system with standby support. 

There are several applications of queueing theory in the area of performance prediction of 

redundant machining system. Queueing theory can be used to analyze the effects of random 

failures on the functioning of machining system having facility of both redundancy and 

maintainability. The occurrence of faults in machining system not only affects the system 

production but also have the adverse effect on the revenue of the system. To avoid these 

inconvenient situations, the decision makers provide the facility of standby support and 

repair facility. There are several methods, techniques and terminologies for implementing the 

redundancy in repairable machining systems. The commonly used redundancy approaches in 

industries are (i) Standby redundancy, (ii) N Modular redundancy and (iii) K-out-of-N: G 

redundancy. Here in the thesis work, we have used standby redundancy and K-out-of-N: G 

redundancy. The brief descriptions of these redundancies are as follows: 

 Standby redundancy 

Standby redundancy is also known as backup redundancy and can be used when the system 

has some identical standby machines to back up the active failed machines.  The standby 

machines typically does not monitor the system, but can be used as a spare.   
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Standby
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(0 < λ < a)
Hot Standby

(λ = a)

Cold Standby

 (a=0)

 

      Fig. 1.2: Classification of standby machines based on failure characteristic 

The standby machines are broadly classified into three categories on the basis of their failure 

characteristics which are depicted in Figure 1.2. Here λ and a denote the failure rates of 

operating and standby machining components, respectively. 

(a) Hot standby machine: The failure rate of hot standby machine is equivalent to the failure 

rate of active machine i.e. a  . 

(b) Warm standby machine: The failure rate of warm standby machine is non-zero and less 

than failure rate of active machine i.e. 0 a   . 

(c)  Cold standby machine: The failure rate of cold standby machine is zero during inactive 

state i.e. 0a  . 

 K-out-of-N: G Redundancy 

A generalization of N parallel components occurs when a requirements exists for K-out-of-N 

identical and independent components to function for the system to be in operative state. In 

special cases, if K=1, complete redundancy occurs via parallel arrangement of the 

components and if K=N, the N components are arranged in series. In this case, the reliability 

is obtained by the binomial probability distribution. Thus reliability of K-out-of-N: G system 

is 

 
0

( ) 1 , whereR isa reliabilityof a component
N K

i N i

K out of N

i

N
R t R R

i




 



 
  

 
  (1.1) 

 N Modular redundancy 

N Modular redundancy is also known as parallel redundancy. In this redundancy, the systems 

have N units running in parallel. For software embedded system, all units are highly 

synchronized and receive the same input information at the same time. 

1.2.2 Machining system under control policies 

The control policies can be used to overcome the waste of valuable resources, time and 

money of an industry or company operating in machining environment. The past research 
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works dealing with the controlling of queueing situations can be divided in two broad 

categories, first one to control the service and other one to control the arrival. For any 

machining system, N-policy can be implemented for the economic utilization of the server.  

Threshold N-policy states that the server is turned on to render repair only when the 

workload of repair job of failed machines reaches to pre-defined threshold level N.  To 

control the arrivals, F-policy can be used. In case of F-policy, the customer’s entry is stopped 

in the system if it reaches its full capacity level. To allow again customers to join the system, 

the queue length should be ceases to a predefined threshold value ‘F’. 

1.2.3 Fault tolerant machining systems 

The operation and capacity of machining systems involved in computer or communication 

networks, manufacturing or production systems and many other systems are highly affected 

by the failure of machining components. The occurrence of sudden breakdown of machining 

systems may cause not only a loss of desired output and efficiency but also increase in the 

down time and cost.  To avoid these adverse situations, the system designers may be 

interested in reboot, recovery and provision of standbys which make the machining system 

fault tolerable. In the fault tolerant systems (FTSs), some units may fail, but still the system 

remains operative and continues to perform its assigned job due to the provision of 

maintainability, optimal control and standbys. In the present scenario of modern technology, 

computer controlled fault tolerant machining system has become the necessity and it brought 

a tremendous change in the system design to control the risk of machine failure. Now-a-days, 

the machines are equipped with an inbuilt fault-handling mechanism which automatically 

detects the failure of a component and recovers the system by replacing the failed operating 

unit by a standby unit, if available. In many software embedded systems, in the case when 

the fault handling mechanism fails to detect and recover the faults, the machines can also 

reconfigure temporarily by reboot process. But in some practical situations, the fault-

handling device may prove inadequate to recover a fault perfectly; this situation is known as 

imperfect coverage. 

1.3 Queueing Model with Service Interruptions 

The real time systems may undergo through the several types of service interruptions. There 

may be sudden occurrence of faults in machines or failure of the server or unavailability of 

server due to vacation. Here, in this thesis work we have considered the service interruption 

cause due to the sudden breakdown of server i.e. concept of unreliable server or due to the 
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failure of machines, or due to vacationing server. For the review work on queue with 

interruption we refer the notable survey work done by Krishnamoorthy et al. (2014) 

1.3.1 Unreliable server models 

In the real life situations, occurrence of faults or failure in machining environment is quite 

common phenomenon, which results most often in system breakdown. In the present 

scenario, we have noticed that most of the studies devoted to the queueing analysis of 

machining systems are restricted to reliable machining systems, but in real life, no systems or 

machines can be reliable as such the incorporation of an unreliable machining parts or 

unreliable server concept will be helpful to portray the more versatile queueing scenarios of 

real time system. In many queueing systems, the server may fail at any instant while 

rendering the service to the customers; thus by considering the server break down, the 

queueing model can be developed to depict more real-world situations. 

1.3.2 Vacation model 

Queueing systems with server vacation have many applications in machining systems 

working in industrial environments including manufacturing and production systems, 

computer and telecommunication networks, transportation and service sectors, 

manufacturing and inventory control systems and many others. In case when there is no 

work-load of failed machines, there may be issue of server being idle for a long period. The 

repairmen can utilize this time in rendering some other type of service which may be 

maintenance job, book keeping etc. in case of a machine interference problem. Over the last 

few decades, a substantial amount of works have been done for the performance prediction 

of queueing systems with vacations. The queueing modeling with vacationing server for the 

fault tolerant systems can also be done to deal with many realistic situations where the server 

may leave the system to go for vacation in case when the system becomes empty.  

There are various schemes to classify the server vacation queue; the most prominent way is 

service discipline. These service schemes are defined as 

(i) Exhaustive service scheme vacation 

In the context of exhaustive service, on completion of vacation period, the server renders 

repair to each failed machines which are waiting to get repair and commences another 

vacation only when no failed machines for repair job are available in the system.  

(ii) Gated service scheme vacation 

As the server returns back from the vacation, he renders repair only those failed machines 

that were queue up when the server arrived.  
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(iii) Limited service scheme vacation  

After completion of vacation period, the server renders repair to a fixed number of failed 

machines, say m, which is pre-defined. In this vacation scheme, the server renders repair to at 

most m failed machines on returning from vacation and then only server commences another 

vacation.  

If the server returns from vacation and finds the repair facility empty, the server follows one 

of the following three schemes:  

(i) Multiple vacations: Under the multiple vacations scheme, the server immediately takes 

another vacation if finds no job after returning back from vacation.  

(ii) Single vacation: Under the single vacation scheme, the server does not take another 

vacation in case he finds the repair facility empty on returning back from first vacation until 

the server renders repair at least one failed machine.  

(iii) Hybrid vacation: Under the hybrid single/multiple vacation scheme, after returning back 

from the first vacation, the server waits for a random duration and if still no failed machine 

joins the system, takes another vacation. 

In another way, the server vacation models can also categorized in the following two broad 

ways: 

(i) If the server will not render any service while on vacation period then this type of 

vacation period is termed as complete vacation.  

(ii) If the server renders service during vacation period with slower rate than that of normal 

busy period then the server is said to be on partially vacation or working vacation. In many 

service systems, the server while on vacation may not like to remain idle due to many 

reasons including the loss of profit in case when some jobs are expected to accumulate 

during the vacation period. The same is the case with the machine repair systems; in such 

case, when the failed machines join the system during vacation, the server rather than 

completely stopping the service provides repair to the failed machines at a different pace and 

is called on working vacation.  

1.4 Methodological Aspects 

The stochastic modeling of waiting lines or queues has become an efficient tool to resolve 

the congestion situations encountered in many machining systems. The blocking and delay 

problems due to service interruption in machining systems can be tackled using queueing 

modeling approaches. The system characteristics used to define the queueing structure is 

visualized in Figure 1.3.  
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Fig. 1.3: The basic queueing structure 

The basic queueing model can be developed using (i) Arrival process (ii) Service process (iii) 

Queue discipline (iv) System capacity (v) Number of service channels (vi) Number of 

service stages. 

A variety of analytical and numerical methodologies were developed by the queue theorists 

for the performance prediction of queueing systems. To analyze the machining system with 

service interruption, we have developed some stochastic models and derived several 

queueing and reliability metrics. The important indices established in various chapters 

include mean queue size, throughput, waiting time in the system, failure frequency, machine 

availability, etc. and others, by using the analytical and numerical techniques. For the 

transient analysis of queueing models for the machining systems, the analytical methods used 

includes generating function, modified Bessel function, continued fraction approach, spectral 

method, etc. The numerical technique namely Runge-Kutta-IV order method has also been 

used to solve the system of the differential equations governing the concerned model. The 

analytical techniques namely supplementary variable technique (SVT) and recursive 

techniques and numerical techniques viz. successive-over-relaxation (SOR) and matrix 

method have been used for the steady state analysis of machining systems. For the optimal 

design of repairable machining systems, optimization techniques namely quasi-Newton 

technique and heuristic search approach are used. The hybrid soft computing technique 

adaptive-neuro fuzzy inference system (ANFIS) is also employed to compare the numerical 

results obtained by analytical/numerical method for the concerned model. It is worthwhile to 

describe stochastic processes and some solution techniques in brief which we have been used 

to evaluate the performance metrics of some machining systems with service interruption.  
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1.4.1 Stochastic and Markov Processes 

The stochastic process is a family of random variables { ( ), }T   such that the state of the 

system is characterized at every instant over a finite or infinite interval. The set of all 

possible values of random variable { ( )}   is known as its state space. The state space is 

discrete if it contains a finite or denumerable infinity of points; otherwise, it is continuous. A 

stochastic process in continuous time { }T  may have either a discrete or a continuous 

state space. Some important contributions on stochastic processes to analyze the survival and 

density functions are due to Chaubey and Sen (1996), Chaubey et al. (2011), Chaubey and 

Zhang (2015) and many other. 

Markov process represents the stochastic phenomenon by permitting the output at any instant 

to be depended only on the outcome that precedes it and none before that. Thus in a Markov 

process ( )  , the past has no influence on the future if the present is specified.  

Given 1 2... m     , then the random process ( )m  represents Markov process if 

1 1 1 1[ ( ) / ( ), ( ),..., ( )] [ ( ) / ( )]m m m m m m mP x P x                 .  (1.2) 

If the state space is discrete i.e. finite or countable infinite, then Markov process is termed as 

Markov chain. The process of machining systems includes the failure and repair of machines 

as well as unavailability of the server which may be random in nature. Such processes can be 

represented by stochastic processes and in specific cases by Markovian processes also. The 

exponential distribution which is quite often used for the life time and repair time follows the 

Markovian property. 

1.4.2 Analytical techniques 

There are several powerful analytical techniques based on stochastic theory, which can be 

employed to evaluate the queue size distributions and other performance indices of 

machining systems. In the thesis work, we have used the stochastic process for analyzing 

both Markov and non-Markovian models by framing Chapman-Kolmogorov equations for 

the system states (Gross et al., 2008). For the performance analysis of machining system, 

several analytical techniques including Birth death process, generating function approach, 

recursive method, continued fraction method, modified Bessel’s function method, 

supplementary variable technique are used. The brief descriptions of analytical 

methodologies used are as follows: 

 Birth-Death process 

A special case of continuous time Markov process where the states represent the current size 

of population and where the transitions are limited to birth and deaths is governed by birth- 



11 
 

0 1 2

0 1 2 1
n 2

K

1n
n

3
21

n-1 n n+1

1
n


n

2
n1

n

K-1 K

1
K


K1

K

2
n

S-1 S S+1

1
S


S 1

S

2
S

1
S


S

2
S

1
S

 

Fig. 1.4: Finite birth-death process 
 

death process. The birth-death process has been widely used in queueing theory for the 

performance analysis of repairable machining systems. The finite population model called 

the machine interference problems can be analyzed using birth death process. The machine 

repair problem (MRP) can be formulated as birth death process for finite calling population 

K and is depicted in Figure 1.4. 

When a birth occurs i.e. a machine fails, the process goes from state n to n+1. When a death 

occurs i.e. a failed machine is repaired, the process goes from state n to state n-1. Let n and 

n be the birth and death rates of state ‘n’ (0 ≤ n ≤ K) and Pn(t) be the probability associated 

with state ‘n’ at time t. For finite capacity model, the birth-death process is given by  

0
0 0 1 1

( )
( ) ( )

dP t
P t P t

dt
            (1.3) 

1 1 1 1

( )
( ) ( ) ( ) ( ), 1 1n

n n n n n n n

dP t
P t P t P t n K

dt
                (1.4) 

1 1

( )
( ) ( )K

K K K K

dP t
P t P t

dt
            (1.5) 

 Probability Generating Function (PGF) 

The probability generating function is a powerful tool to deal with stochastic processes χ(t) 

and is based upon the convergent power series to solve the transient as well as steady state 

system of equations governing the concerned model to generate the corresponding 

probabilities. The probability generating function ( , )G z t  associated with probability 

( ) ( 0)nP t n   can be defined by  

1

( , ) ( ) n

n

n

G z t P t z




         (1.6a) 

provided, the series (1.6) converges in some interval. Here ( )nP t denotes the sequence of the 

state dependent probabilities of system being in state ‘n’at time t. 
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The mean E{X(t)} and variance Var{X(t)} of stochastic process χ(t) are obtained using PGF 

as follows 

1
0

{ ( )} ( ) lim ( , )n
z

n

E X t n P t G z t





 
      

(1.6b) 

  2 2{ ( )} { ( )} ( { ( )}) ,Var X t E X t E X t 
     

(1.6 c) 

 Continued fraction method 

Continued fraction is applicable when differential equation has the three-term recurrence 

structure. The approximations using continued fraction provide a good representation for 

transcendental functions. Continued fraction is much useful than the classical representation 

by power series. A systematic study of theory of continued fraction is presented in the book 

of Jones and Thron (1980).  

Continued fraction represents simple and mathematically an elegant method of obtaining 

transient solution. A continued fraction is given by 

1

2
1

3
2

3 ...

a

a
b

a
b

b






        (1.7) 

where , ,i ia b for 1,2,3,...i   are real or complex numbers. This fraction can be terminated by 

1 1 2 2, , , ,..., ,i ia b a b a b and dropping all the remaining 1 1, ,...i ia b  . Equivalently, it can be written 

as 

31 2

1 2 3

...,
aa a

b b b  
        (1.8) 

The number obtained by this operation is termed as ith convergent and is denoted by / .i iA B  

Recurrence relation plays an important role in the transient analysis of birth-death process. 

There is hardly a computational task which does not rely on recursive technique techniques 

at one time or another. Here both iA and iB  satisfy the recurrence relation  

2 1i i i i iU aU bU           (1.9) 

with initial value 0 0A  , 1 1A a , 0 1B  and 1 1B b . There is close connection between birth-

death processes and continued fraction. We have successfully applied continued fraction 

approach to find the time-dependent solution of the model developed in chapter 2. 

 Modified Bessel’s function 

The modified Bessel function of the first kind of order n, denoted by In(x), is defined as    
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 
2

0

( / 2)
, 0,

! ( 1)

k n

k

n

x
x n

k n
I

k





 
  

       (1.10) 

which is solution of the following Bessel modified equation  

2 2 2( ) 0, 0x y xy x n y n            (1.11) 

In particular,     , for 0n -nI x x= I n  . 

 Supplementary Variable Technique (SVT) 

The non-Markovian process associated with life time of machining parts and repair time 

make the performance analysis quite cumbersome from analysis point of view. To deal with 

non-Markovian queueing model, supplementary variable technique (SVT) can be used. In 

SVT, non-Markovian process is converted in to Markov process by introducing one or more 

supplementary variables. The state description of an M/G/1 machining system can be 

represented by bi-variate stochastic process{ ( ), ( )}t t   here ( )t represents the status of the 

server and ( )t  specifying the number of failed machines in the system at time t. Consider

( )U t as supplementary variable denoting the either elapsed service time or remaining service 

time. The technique was first introduced by Cox (1955) who used supplementary variable 

technique to study M/G/1 queue. For queueing and reliability modeling of machining system 

with general repair time in chapters 9 and 10, we have used the non-Markovian process 

which is tackled using supplementary variable corresponding to remaining repair time. 

1.4.3 Numerical techniques 

The performance prediction of complex machining systems by using classical analytical 

queueing techniques is quite tedious task; in such cases numerical techniques are quite 

useful. To obtain probabilities associated with the state space of governing model various 

numerical techniques such as Runge-Kutta (R-K), Matrix method, Successive over 

relaxation, etc can be employed. 

 Runge-Kutta 4th Order Method (R-K) 

This method is good choice for solving the set of linear ordinary differential equations 

governing the model. It is noticed that Runge-Kutta 4th order method is quite accurate, stable 

and easy to implement for obtaining the transient solution of queueing problem. Using 

MATLAB, Runge-Kutta method of 4th order is implemented to get the unknown probabilities 

associated with the system state space by using the “Ode 45” function. The iterative steps 

used to compute the transient probability vector   in chapters 6, 7 and 8 are as follows: 

1 1 2 3 4

1
( 2 2 )

6
i i K K K K            (1.12) 
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where  1 1 1( , )i iK h f t    ,
2 1 1 2

1 1
( , )

2 2
i iK h f t h K     ,  

3 1 1 1

1 1
( , , )

2 2
i iK h f t h K    ,  4 1 1 3( , )i iK h f t h K     .          

 (1.13) 

 Successive over relaxation (SOR) method 

By applying extrapolation to the Gauss-Seidel method, the successive over relaxation (SOR) 

method, is figured out. This extrapolation takes the form of a weighted average between the 

previous iterate and compute Gauss-Seidel iterate successively for each component by using 

( )( ) ( 1)(1 )
kk k

ii iX X X   , where iX  denotes a Gauss-Seidal iterate, and   is the 

extrapolation (or scaling) factor. The idea is to choose a value for   that will accelerate the 

rate of convergence of iterates to the solution. The SOR method is successfully employed to 

solve the set of Chapman-Kolmogorov equations governing the models developed in 

chapters 3 and 4. 

 Matrix method 

In this method to solve the difference differential equations, we first take Laplace transform 

of each of the governing equations system states and obtain the transient state queue size 

distributions by solving them taking inverse Laplace transform. Jain and Bhargawa (2009) 

have presented a transient solution for the degraded machine repair problem with unreliable 

server and mixed standby support. For studying the steady state behavior of any repairable 

machining system, the matrix method can be easily employed. The utility of matrix recursive 

technique for the machining system is that it can be employed for such a systems also which 

are represented with infinite states. The probability vector of system states can be obtained 

easily by solving the steady state governing equations.  

1.4.4 Optimization technique 

The cost function constructed for real time system is complex and highly non-linear in 

nature; therefore, it is not easy to obtain the optimum system cost analytically. For the 

optimal deign of fault tolerant machining systems, several researchers have used the 

analytical and fuzzy optimization methods so as to optimize the system cost by evaluating 

the optimal system parameters (Jha et al. 2009; Jha et al. 2011; Jha et al., 2014). To deal 

with the highly non-linear functions, numerous numerical methods are available in the 

literature such as Newton’s method, quasi-Newton approach, search approaches, which can 

be used for the cost optimization of machining system.   
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In the present investigation, we have used quasi-Newton and direct search methods for the 

optimization purpose. Quasi-Newton method can be easily used to find the global values of 

continuous decision variables ( )1 2 nx ,x ,...,x by minimizing the cost ( )1 2 nTC x ,x ,...,x which is 

a non-linear convex function and twice continuously differentiable. It is an iterative method 

with some stopping criterion depending on the tolerance limit. The main advantage for 

implementing this method is its fast convergence and affine invariance. The quasi-Newton 

method can be implemented for the optimal design of system in queueing environment 

(Wang et al., 2009). The theoretical basic iterative step of quasi-Newton method is defined 

as  

   
11 2i ix x t TC x TC x
                  (1.14) 

The following steps to implement quasi-Newton method are performed to reach the 

minimum value of 
1 2( )* * *

nTC x ,x ,...,x and the corresponding optimal parameters 1 2( )* * *

nx ,x ,...,x . 

(i) Let the initial value of decision variables  0 , 0
T

1 2 nx ,x ,...,x i    and set tolerance  . 

(ii) Set the initial trial solution for  
0  and compute

0TC( ) . 

(iii) Compute the cost gradient 
2

( ) , ,...,

i

i

1 n

TC TC TC
TC

x x x


   
    

   
and the cost Hessian     

matrix . 

2 2 2

2

2

2 2 2

2

2 2 2

2 2 2

2

2

...

...
( )

...

i

1 1 1 n

i 1 n

n 1 n n

TC TC TC

x x x x x

TC TC TC

H x x x x x

TC TC TC

x x x x x


   
 
    

 
   
 

       
 
 
   
 
     

 

(iv) Find the new trial solution    
i 1 i

1

i iH TC




       
 

. 

(v) Set 1i i   and repeat steps (iii) and (iv) until max
2

| |,| |, ...,| |
1 n

TC TC TC

x x x

   
  

   
. 

(vi) Find the global minimum value 1 2

* * * * *

n iTC (x ,x ,...,x ) TC ( ).   

1.4.5 Adaptive-neuro fuzzy inference system (ANFIS) model 

The combination of neural network and fuzzy logic presents an emerging soft computing 

technique ANFIS. It is widely used for the performance of complex systems for which 

analytical formulae cannot be framed. The use of soft computing technique for the 
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performance modeling plays a vital role due to its critical utility in decision analysis, 

automatic control, fault detection of complex machining systems detection/removable and 

many more. The noticeable works on ANFIS has been done by Jang (1993). Lin and Liu 

(2003) have proposed an adaptive Neuro-fuzzy inference system for the optimal analysis of 

chemical–mechanical polishing process parameters. They examined the machine parameters 

during the wafer flattering process by chemical polishing and adopted an ANFIS to predict 

the surface roughness in the absence of CMP experiment. Jain and Upadhyaya (2009) dealt 

with a multi-component machining system consisting of M operating units along with k types 

of spare machines. They also evaluated the performance indices by using ANFIS which can 

identify parameters by applying the supervised learning methods. Sharifian et al. (2011) have 

given a predictive and probabilistic load balancing algorithm for the cluster-based web 

server; this algorithm significantly improves both the throughput and mean response time in 

contrast of two existing load balancing algorithms. By using the feature of a neural network 

and fuzzy inference system, some researchers have developed the adaptive neuro-fuzzy 

inference system (ANFIS) controller for the performance analysis of various embedded 

systems in different frameworks (cf. Mucsi et al., 2011; Yang and Zhao, 2012). For the 

performance prediction of degraded multi-component system with standby switching failure 

and operating under N-policy and multiple vacations, Kumar and Jain (2013) used ANFIS to 

match the soft computing based results with the results obtained numerically using 

successive over relaxation (SOR). The performance analysis of machining system with F-

policy and retrial attempts has been done using the recursive method by Jain and Sanga 

(2017). They have compared the results obtained by recursive method with the results of 

ANFIS hybrid soft computing technique. 

The hybrid soft computing approach ANFIS is a neural network based representation of 

fuzzy systems equipped with learning capabilities. In fuzzy rule-based ANFIS, the rules can 

be formulated as  

                  IF 1u is 1A  AND 2u is 2A …AND nu is nA THEN 1 1( , ,..., )nv f u u u  

Here f  is a linear combination of the input variables 1 1( , ,..., ) ,nu u u and iA ’s are the 

associated fuzzy sets.  

Thus  

       1 1 0 1 1 2 2( , ,..., ) ...n n nf u u u w wu w u w u                (1.15) 

where 0 1, ,..., nw w w  are real constants. This is a particular case of the weighted average 

method of defuzzification.  
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Fig. 1.5: Neuro fuzzy network     

The ANFIS has a number of layers where each layer has a number of nodes. For FTS model, 

a fuzzy inference system with one input parameter (say )  and one output E(N) can be 

described by the following n rules (Takagi and Sugeno, 1985): 

        IF  is 1A THEN 1 1 1f p r   

        IF  is 2A THEN 2 2 2f p r   

                     … 

     … 

        IF  is nA THEN n n nf p r   

Let 
,l iQ be the output of node i  in layer l . Thus, the functionalities of the layered architecture 

(see Figure 1.5) of ANFIS can be explained briefly as follows: 

Layer 1: Each node in the 1st layer is an adaptive unit with output 

   1, ( ) , 1,2,...,  
ii A iO w i n                

Here iw is the firing strength of each node. The shape of membership function for each iA  

can be taken as Gaussian. 

Layer 2: Hidden layer ‘j’: For each node in hidden layer output is obtained using 

   ,

1

, 1,2,..., ; 1,2,..., 1
i

j i i n

i

i

w
O w i n j K

w


    


          (1.16) 

Layer 3: For each node in the layer 3, the output is obtained as  

   1, ( ), 1,2,..., ; 1,2,..., 1j i i i i i iO w f w p r i n j K                (1.17)  
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Layer 4: Considering the single node in output layer, the overall output is determined by 

  

1
1,1

1

1

n

i in
i

K i i n
i

i

i

w f

O w f

w








 





       (1.18)     

1.5 Some Markovian Queueing Models of MRP 

Here, in this section we provide a brief account of some Markovian models related to our 

investigation. 

1.5.1 M/M/R machine repair model with standby 

When we talk about the performance of machining system and its efficiency/availability, we 

can't ignore the fact that the machines are always prone to failures. These failures can 

interrupt the services being provided through these machines. To reduce the inconvenience 

due to failures, the system should be supported with the standbys. Whenever any machine 

breaks down, which may be due to its component failure or some common cause, it can be 

replaced by the available standby part.    

Consider the Markovian MRP with finite population M. Let the failure rate of operating 

(standby) machines be denoted by λ (a). Then the effective failure rates of (i) MRP without 

standbys, (ii) MRP with Y standbys and (iii) MRP with mixed standby support of i (1≤ i≤ k) 

types Si machines kth type of standby machines are respectively, are given by 

(i) For finite population model:  

( ) ; 0,1,2,...,m M m m M          (1.19) 

(ii) For MRP with cold standbys: 

,                  0

( ) ,   

0,                        

m

M m Y

M m Y Y m Y M

m Y M



 

 


     
        

(1.20) 

(iii) For MRP with mixed standbys: 

1 1 1
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1 1
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

  
       

 
  

          
 

 
         
 



 



 (1.21) 

where ia denotes the failure rates of ith type standbys. 

 



19 
 

1.5.2 Standby switching failure model  

The replacement from standby state to operating state is said to be the standby switching. 

The switching may be either manual or automatic (i.e through an automatic switching 

device). There is always a probability of imperfect switching i.e. after switching the machine 

may work or may not work; in case of automatic standby switching, the switching device 

may also fail due to any reason with some probability (see Figure1.6). 

 

Fig. 1.6: Standby switching failure  

Let us consider an example of any machining system, where the main concern is the 

uninterrupted power supply. When main power supply fails, an alternate power supply 

source whether it is generator or inverter, is switched on. There is always a possibility that 

the switching device may also fail with some probability and the interruption problem 

occurred due to power supply failure may not sorted out due to standby switching failure. 

1.5.3 M/M/1 machining system with unreliable server 

In finite population machining system, the server may fail at any instant while rendering the 

service to the failed machines. The state transition diagram of queueing model of machining 

system with service interruption due to server break down is depicted in Figure 1.7. The 

status of system with an unreliable server can be expressed by node (m, i),  where m 

(m=0,1,2,…,K)  denotes the number of failed machines in the system and i (i=0,1) denotes 

the status of the server.  
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Fig. 1.7: Machining system with server breakdown 

The state i=0(1) denotes the repair state (busy state) of the server. Here notations λn and µ 

denotes the state dependent failure rate and service rate, respectively. The life time and repair 

time of the server are assumed to be exponentially distributed with rate α and β, respectively. 

1.5.4 M/M/1 machining system with complete vacation 

The queueing modeling of machining system with vacationing server can also be done to 

deal with many realistic situations where the server may leave the system to go for vacation 

in case when the system becomes empty. The state transition diagram for multi-component 

machining system have M similar machines and having single reliable server and provision 

of complete vacation is shown in Figure 1.8. The states of system with complete vacation can 

be expressed by node (m, i),  where m (m=0,1,2,…,K)  denotes the number of failed 

machines in the system and i (i=0,1) denotes the status of the server. The state i=0(1) denote 

the complete vacation (busy state) of the server. Here θ denotes the vacation completion rate 

of the server. 

1 2 K-2 K-1 K

0 1 2 K-2 K-1 K

0 1 2 3K  2K  1K 

1 2 3K  2K  1K 



    

    

 

Fig. 1.8: Machining system with complete vacation 

1.5.5 M/M/1 queue with working vacation 

In many service systems, the server while on vacation may not like to remain idle due to 

many reasons including the loss of profit in case when some jobs accumulate during the 

vacation period. The same is the case with the machine repair systems; in such case, when 

the failed machines join the system during vacation, the server rather than completely  
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Fig. 1.9: Machining system with working vacation 

stopping the repair job, provides repair to the failed machines at a different pace and is called 

on working vacation. The transition flows among neighboring states for multi-component 

machining system having M similar machines, single reliable server and operating under 

working vacation is depicted in Figure 1.9. The states of system with working vacation can 

be expressed by node (m, i),  where m (m=0,1,2,…,K)  denotes the number of failed 

machines in the system and i (i=0,1) denotes the status of the server. The state i=0(1) 

denotes the working vacation state (busy state) of the server. Here θv and µv denote the 

vacation completion rate and service rate during vacation state, respectively. 

1.5.6 M/M/1 machining system operating under F-policy 

In real time machining systems, the provision of redundancy as well as maintainability of the 

failed components can be made so as the system can operate in spite of unpredictable failures 

of machining components. However, after a certain level, the flow of failed machines for the 

repair jobs may not be permitted due to capacity constraint of the repair job shop. In the 

context of real life applications, arrival control is one of the cost-effective as well as 

managerial efficient approaches which can be used for the optimal utilization of the capacity 

of the machining system. The system state can be denoted by node (m,i) where m 

(m=0,1,2,…,K)  represents the number of failed machines in the system and i (i=0,1) denotes 

the status of the server. Here i=1(0) represents the status of system when failed machines are 

allowed (not allowed) in the system. The rate transition diagram for machining system under 

F-policy and single reliable server is depicted in Figure 1.10. The notation γ denotes the set 

up rate for allowing the failed machines to enter into the system. 
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Fig. 1.10: Machining system under F-policy 

1.5.7 K-out-of-N:G machining system 

The K-out-of-N: G configuration in any machining system states that at least K out of total 

M machines should be in good condition for the normal functioning of the system. The 

reliability of K-out-of-N: G configuration is defined as 

1

2

 

    Fig. 1.11: 1-out-of -2 Configuration 

For the special case of 1-out-of -2: G configuration, the system consists of total two 

machines; one of which is in operating mode while other one acts as standby (see Figure 

1.11). When a failure occurs, it is repaired while the other one continues the operation. The 

system is said to be completely fails when both the machines fail.  

1.5.8 Non-Markovian model for machining system  

Consider a non-Markovian system consisting of ‘n’ similar components. Let lifetime and 

repair time of components are exponentially and general distributed, respectively. To deal 

with the non-Markovian repair time, we introduce a supplementary variable measuring the 

remaining repair time for each component at each of the system states. Let us define the 

system state by  0,1i i   which represents either operational ( 1)i   or failed ( 0)i   state.  

For the illustration purpose, we consider 2-i.i.d. components system in a standby 

configuration. When one of the components is operational, the other component is in standby 

mode i.e. the component first fails, then the other takes over the responsibility while the first 

is being repaired. It is assumed that the component failure rate   is constant and time-to-

repair of the component is general distributed having a cumulative distribution function 

 0u),u(B  and a probability density function  0u),u(b  with mean repair rate ‘b’. 
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         Fig. 1.12:  State transition diagram  

There may be the possibility of failure during switching from standby to operational state. 

We assume that ‘q’ is the probability of a switching failure. The state transition diagram for 

this system is shown in fig. 1.12.  

1.5.9 Fault  tolerant machining systems 

With the advancement of modern technology, computer controlled fault tolerant machining 

system has become the necessity and it brought a tremendous change in the system design to 

control the risk of machine failure. The operation and capacity of fault tolerant systems 

involved in software embedded machining systems are highly affected by the failure of 

machining components. The occurrence of faults may cause not only a loss of desired output 

and efficiency but also an increase in the down time and cost.  To avoid these adverse 

situations, the organizations or industries make provision of standbys and maintenance. In 

the fault tolerant systems (FTSs), some units may fail, but still the system remains operative 

and continues to perform its assigned job due to the provision of maintainability, optimal 

control and standbys. In many FTSs, machines are equipped with an inbuilt fault-handling 

mechanism which automatically detects the failure of a component and recovers the system 

by replacing the failed operating unit with a standby unit, if available. In the case when the 

fault handling mechanism fails to detect and recover the faults, the machines can also 

reconfigure temporarily by reboot process. But in some practical situations, the fault-

handling device may prove inadequate to recover a fault perfectly; this situation is known as 

imperfect coverage. 

1.6 Survey of Literature 

Due to wide spread applications of queueing theory in real life scenarios to deal with 

congestion situations, it has been a deep interest of subject in recent past year. The 

introductory work on queueing theory was due to a Danish mathematician A.K. Erlang, 

1909, who published “The Theory of Probabilities and Telephone Conversations”. The 
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waiting in queue phenomenon is not just an experience confined to human beings; the failed 

machines may also wait to be repaired. In this section, our prime objective is to review the 

significant contributions of queue theorists in the direction of performance modeling of 

machining systems in different frameworks which are relevant to the topics investigated in 

the present thesis work.  

1.6.1 Queueing Modeling of Machining System- A brief historical view point  

Noticeable works have been reported on finite population queueing models, due to fact that 

these can be used for the modeling of wide range of real-time systems.  From the historical 

view point, it’s worth-noting to have a look on the important past research works done for 

finite population queueing models. Early past contributions on machine repair problem 

(MRP) can be attributed to Palm (1943) who applied the probabilistic model for analyzing 

the textile problem. A lot of research works have been done on machine interference systems 

by eminent queue theorists; the notable contributions in this regards can be found in survey 

article of Haque and Armstrong (2007) and Jain et al. (2010). Now we shall provide a brief 

review of the literature related to our works over the past few decades up to recent 

contributions. Machines repair problems have been studied by many queue theorists for a 

variety of congestion situations. They have used different assumptions and approaches for 

this purpose. The significant contributions of researchers from historical development of the 

MRP can be attributed to  Ashcroft (1950), Taylor and Jackson (1954). The recent past 

works done by  Gross et al. (1977), Elsayed (1981), Chelst et al. (1981), Wang (1990), Wang 

and Hsu (1995), Shawky (1997) are worth noting in the area of MRP. Some Markovian 

models by including the concepts of re-attempts of jobs present in the retrial orbit have been 

studied by (Phung-Duc et al., 2010; Artalejo and Phung-Duc, 2013; Phung-Duc and 

Kawanishi, 2014). 

Wang et al. (2011) investigated a machine repair problem incorporating variable server 

under balking concept. They have used recursive approach to evaluate the steady state 

probabilities of system and carried out the sensitivity and cost analysis of the investigated 

model. Nobel (2013) analyzed the queueing model with retrial attempts using discrete time 

analysis for a fault tolerant server system. Recently, Shekhar et al. (2017) presented a survey 

article on queues in machining systems to compile the more recent works done from the 

2010 to 2017.  

1.6.2 Machining system with standby support 

The random failures of machining parts during the operation have adverse effects on the 

revenue and production of an industry/organization operating in machining environment. The 
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failure prone machines as well as unreliable server can interrupt not only the smooth 

functioning of the system but also result in the reputation loss and degradation in the quality 

of product. To ensure the pre-specified system reliability and to achieve the production goal, 

the system designers have paid their attentions towards the fault tolerant systems.  Therefore, 

the standby support has become the essential attribute to develop fault tolerant system (FTS) 

embedded in many industries such as computer/communication, manufacturing/production, 

transportation/electronic systems and many more industries. To ensure the high reliability of 

the machining system, the standby support is essential requirement, but the system 

designers/organizers can use a limited number of standby parts due to overloading, cost 

constraint, size limitations, weight and space problem, power consumption, and many other 

factors.  In the recent past, many researchers have attracted towards the reliability measures 

of the machining systems with different configurations having the maintenance and spare 

provisioning. In the recent past, the significant contributions on repairable machining 

systems with standby support have been done by Nakagawa and Osaki (1975), Murari and 

Goyal (1984), Goel et al. (1985), Singh and Srinivasu (1987a), Singh and Srinivasu (1987b) 

and many other. In recent years, finite population M/M/R Markovian models with 

redundancy and some more features viz. reneging and balking were examined by Wang et al. 

(2007) and Jain et al. (2008). Ke and Lin (2008) proposed Markov model to study the 

queueing characteristics of machining system with standby support for the manufacturing 

system. They carried out the sensitivity and profit analysis by developing two models with 

different service interruptions. The cost analysis of Markovian MRP can be seen in queueing 

models analyzed using recursive approach by Sivazlian and Wang (1989),  Wang and 

Sivazlian (1992) and Wang (1993). Wang (1995) used recursive method and direct search 

approach to study the performance of multi-component machining system supported by two 

types of spare. Hsieh and Wang (1995), Wang and Kuo (2000),  Wang and Ke (2003) and 

Jain et al. (2004) proposed matrix method to obtained various metrics including MTTF and 

reliability/availability of repairable redundant system. Chakravarthy and Gómez-Corral 

(2009) analyzed a repairable k-out-of-N system with spare part support. The performance and 

optimization analysis of machining system with standby switching failure have been carried 

out by Ke et al. (2016). Jain (2016) presented the transient study of machining system by 

incorporating some features, namely service interruption, priority and mixed standbys 

support. Recently, the reliability analysis of a repairable redundant machining system with 

standby support, switching failure and geometric reneging has been carried out by  Shekhar 

et al. (2017). 
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1.6.3 Queueing system with unreliable server 

The queueing model with server break down can be developed to depict more real-world 

machining systems. The queueing and reliability characteristics of machine repair problems 

where the server is subject to random failure have been modeled by several researchers for a 

various queueing situations. 

The concept of server breakdown in queueing theory was first introduced by White and 

Christie (1958).  Since then several queueing models in Markovian and non-Markovian set 

up have appeared in literature. Several contributors have dealt with the problem of sever 

breakdown in queueing system (Shogan, 1979;  Alam and Mani 1989; Wang, 1995, 

Wartenhorst, 1995; Ke and Wang 1999).   The significant contributions on unreliable server 

for non-Markovian queueing systems using supplementary variable techniques are due to 

Choudhury et al. (2009), Choudhury and Tadj (2009), Choudhury and Ke (2012) and Singh 

et al. (2013). Chakravarthy and Agarwal (2003) developed a MRP with an unreliable server 

and phase type repairs and services. Ke (2004) studied a like-queue production system under 

bi-level control policy by considering an unreliable server (machine) which operates under N 

policy with an early startup. Ke et al. (2009) developed a Markovian model having a finite 

buffer of the multi-server queueing system in which the servers are unreliable and allowed to 

go for vacation on the basis of (d, c) vacation policy. Hassan and Hoda Ibrahim (2013) 

proposed a multi-level queueing model with server breakdown. Yen et al. (2016) studied a 

repairable machining system by considering standby support, working breakdown and 

unreliable service station. Further, Kuo and Ke (2016) presented the performance results for 

MRM with standby, switching failure and unreliable server. 

1.6.4 Machining system with vacation  

In the recent past, the server vacation models have been studied to analyze the system 

performance in specific situations wherein the server becomes unavailable for some times. 

From the cost-economic point of view, it is beneficial to send the server on vacation as soon 

as he becomes idle or no repair job available in the system. Due to its critical applications, 

queueing model with server vacation can be applied in many systems operating in machining 

environment in different set up. In most of the machine repair queueing models, it is assumed 

that if any failed machine joins the queue, the server will be immediately activated for 

rendering the service. The important contributions on vacation queueing models in different 

contexts can be found in the survey work done by Doshi (1986), Takagi (1991), Selvam and 

Sivasankaran (1994), Tian and Zhang (2006) etc. Choudhury and Borthakur (2000) presented 

stochastic decomposition results using analytical approach for batch arrival queue, single and 
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multiple vacation. In recent past, some noticeable research works on queueing model with 

vacation in the context of performance modeling of machining system have appeared (cf. 

Gupta, 1997;  Jain et al., 2004;  Ke and Lin, 2005).  

 Under the assumption of vacation policy, Ke and Wang (2007) developed the machine 

repair model having two types of spares. In this study, they have used the matrix geometric 

method for the prediction of performance measures related to queueing characteristics. Jain 

and Upadhyaya (2009) investigated the performance of multi-component machining system 

with multiple vacations of the servers, multiple types of redundant components and operating 

under N-policy. They obtained the probabilities for the system states and various key metrics 

by implementing the matrix recursive method. Ke et al. (2011) obtained the various system 

performance measures and presented the cost analysis for the machine repair problem (MRP) 

with standby support under the assumption of server vacation. Ke and Wu (2012) developed 

Markovian multi-server machine repair models for the machining system with synchronous 

multiple vacation and standbys support by implementing the matrix analytical technique to 

determine the formulae for the performance prediction of the concerned system. A multi-

repairmen Markovian machine repair model with standby support and synchronous single 

vacation policy was proposed by Wu and Ke (2014). Wang et al. (2014) investigated M/M/1 

Markovian machining system with the provision of standby support, multiple-vacation and 

unreliable server.  Recently, Ke et al. (2017) investigated a M/M/c retrial queue with balking 

and vacation. The matrix-geometric method is used to evaluate the steady state probabilities 

of the system. A cost analysis is also done using three methods, namely quasi-Newton, 

Nelder-Mead Simplex, and simulated annealing method. 

1.6.5 Machining system with working vacation 

In many service systems, the server while on vacation may not like to remain idle due to 

many reasons including the loss of profit in case when some jobs accumulate during the 

vacation period. The same is the case with the machine repair systems; in such case, when 

the failed machines join the system during vacation, the server rather than completely 

stopping the service provides repair to the failed machines at a different pace and is called on 

working vacation. The introductory work on the working vacation model in the queueing 

literature was due to Servi and Finn (2002). They studied the M/M/1 queueing system by 

incorporating the feature of working vacation. Due to the enormous instances of MRPs with 

working vacation, the attention of queue theorists have diverted to this issue. A few research 

papers on working vacations in different contexts have appeared in which researchers have 

applied matrix geometric approach for the solution purpose (Tian et al., 2008; Lin and Ke, 
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2009;  Wang et al., 2009; Ayyappan et al., 2010;  Jain and Jain, 2010). The notable works 

have also been done on non-Markovian models with working vacation by Baba (2005) Jain 

and Agrawal (2007),  Banik et al. (2007) and many more.   

Lin and Ke (2009) proposed a MMR queueing model with working vacation and obtained 

the steady state queue size distribution using matrix-geometric method. Jain and Upadhyaya 

(2011) developed a unreliable finite buffer Markovian multi-server queueing model with 

discouragement and synchronous working vacation. Jain (2012) proposed a queueing model 

with second optional service by including the concepts of unreliable server and working 

vacation. As far as modeling of queueing system with MRP is concerned, some works related 

to working vacation can be seen in the queueing literature.  To analyze the Markovian queue 

with working vacation, Selvaraju and Goswami (2013) considered the phenomena of 

impatient customers. Jain and Preeti (2014) investigated a M/M/1 Markovian machine repair 

model with standby support, working vacation and server breakdown. They have used 

recursive matrix method to evaluate the steady state probabilities of the system. Yang and 

Wu (2015) investigated the N-policy for M/M/1 working vacation queueing model by 

considering the server breakdowns. They employed the particle swarm optimization 

algorithm to optimize the cost function and determined the optimal parameters. To study 

more versatile and real world situations, Liu et al. (2015) proposed Markov machine repair 

model with the provision of cold type spares, working vacations and interruption due to 

vacation. For developing the queueing model, they considered the phase-type (PH) 

distribution for the life time of the components and obtained several system indices by 

employing matrix- analytical approach. Further, Goswami and Selvaraju (2016) studied the 

phase type of arrival in multi-server queueing model by including the concept of working 

vacation. The queueing modeling of machining system under the control F-policy and 

working vacation has been investigated by Jain et al. (2016). 

1.6.6 Queueing system under F-policy 

To control the arrivals of the jobs in case of full capacity of a system, admission control 

policy based on threshold level ‘F’ was first introduced by Gupta (1995). This policy states 

that the customer’s entry is stopped in the system if it reaches to its full capacity level. To 

allow again customers to join the system, it is assumed that the queue length should drop to a 

predefined threshold value ‘F’. The machine repair model (MRM) with F-policy have been 

studied by a very few researchers working in the area of queueing models. It is worthwhile to 

cite some important past works related to queues operating under F-policy. In this area, the 

significant contributions of queue theorists are as follows. For non-Markovian queue, the 
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works done by Wang et al. (2007), Wang et al. (2008) are worth-mentioning. Ke et al. 

(2010) and Yang et al. (2010) studied single server finite Markovian model with F-policy by 

considering the optional service and working vacation, respectively. Chang et al. (2011) 

presented M/H2/1/K queue with F-policy, server startup and server breakdown. Huang et al. 

(2011) and Jain et al. (2012) investigated M/M/2/K queueing system under F-policy using 

genetic algorithm and matrix method, respectively. Jain et al. (2012) studied M/M/2/K 

queueing system under F-policy and N-policy. 

Kumar and Jain (2013) obtained the queue size distribution using recursive method for the 

Markovian repairable machining system operating under both F-policy and N-policy. Chang 

et al. (2014) presented a randomized arrival control policy for a finite capacity queueing 

model with an unreliable server. They constructed the cost function to determine the optimal 

control policy at minimum cost. Yang and Chang (2015) studied queueing system under F-

policy using fuzzy parameter approach. Recently, Shekhar et al. (2017) investigated a time-

sharing machining system for the optimal (N, F) policy.  

1.6.7 Machining systems with imperfect coverage 

In literature, a very few researchers have contributed towards the queueing and reliability 

analysis of repairable machining system with imperfect coverage. It is worth-noting to cite 

some prominent works in the recent past on repairable machining system with imperfect fault 

coverage  (cf. Pham, 1992; Shakil, 1994; Moustafa, 1997; Huang et al., 2006).  The 

reliability and availability analysis have been carried out for repairable systems with 

imperfect fault coverage by Wang and Chiu (2006),  Ke et al. (2008) and Ke et al. (2010). 

Optimal control policies for maximum profit in case of imperfect items under a variant 

assumptions has been proposed by many researchers (Jaggi et al., 2006; Jaggi et al., 2008; 

Jaggi et al., 2015). 

 Wang et al. (2012) investigated a repairable machining system using supplementary variable 

technique with the provision of standby support and imperfect coverage. Wang et al. (2013) 

proposed a Markovian model for MRP by incorporating the realistic assumptions of multiple 

types of imperfect coverage and state dependent service rate using the pressure conditions. 

To determine the optimal control parameters, they have used quasi- Newton method and 

particle swarm optimization (PSO) algorithm by constructing a profit function. The provision 

of multiple vacation and imperfect coverage for the performance modeling of a repairable 

machining system was proposed by Jain and Gupta (2013). Ke et al. (2013) presented the 

queueing analysis of unreliable multi-repairmen machining system comprising of operating 

machines and warm spares by incorporating the concept of imperfect coverage and reboot 
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action. They determined the queue size distributions by employing the matrix recursive 

approach. Hsu et al. (2014) incorporated the noble features of switching failure, reboot delay 

and standbys support to make their machine repair model closer to realistic machining 

scenarios. They employed the probabilistic global search Lausanne (PGSL) method for the 

profit analysis of the system. Jain et al. (2014) used matrix method to explore the optimal N-

policy for MRP by including some noble features such as unreliable server, imperfect 

coverage and reboot. Ke and Liu (2014) studied a repairable system operating in failure 

prone environment with reboot delay, repair facility and imperfect coverage. Wang et al. 

(2014) proposed an M/G/1 machine repair model with imperfect fault coverage. Kumar et al. 

(2015) investigated a computer system with imperfect fault detection of hardware. They have 

used the semi-Markov process and regenerative point approach for the evaluation of 

reliability measures of the concerned system. Jain (2016) presented a transient analysis of a 

repairable redundant system with the provision of mixed standby, imperfect repair, switching 

failure and reboot.  Recently, a recursive method based on supplementary variable technique 

was used by Kuo and Ke (2016) to develop an M/G/1 model for the repairable system with 

an unreliable server and switching failure. 

1.7 Contents of the Thesis 

Queueing models of machining system with service interruption accommodate the real-world 

queueing scenarios more closely. In the present thesis, we have developed some queueing 

models with interruptions for the performance prediction of machining systems in different 

contexts, either by developing unreliable or/and vacationing server. To study the transient as 

well as steady state behavior of the system, our prime objective is to develop some queueing 

model for machining system with service interruption.  The queue size distributions have 

been derived for evaluating the queueing and reliability indices. The analytical as well as 

numerical results are provided to explore how these models can be useful for the better 

design and operation of real-time machining systems. 

The thesis is organized into 10 chapters including the first chapter devoted to general 

introduction and overview of the topics covered in the thesis. Chapters 2-8 and chapters 9-10 

explore Markovian and non-Markovian models of machining system, respectively. The 

investigations done are arranged chapter wise as follows: 

Chapter 1: General introduction. 

Chapter 2: State dependent M/M/1 queue with optional working vacation. 

Chapter 3: F-policy for unreliable server machining system with working vacation. 
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Chapter 4: Unreliable server FTS with working vacation. 

Chapter 5: Unreliable server FTS with working vacation and working breakdown. 

Chapter 6: MRP with unreliable server and threshold recovery. 

Chapter 7: FTS with imperfect coverage, reboot and server vacation. 

Chapter 8: F-policy for FTS with working vacation. 

Chapter 9: Availability of R-out-of-N:G systems with imperfect fault coverage. 

Chapter 10: Availability of M/G/1 systems with common cause shock failure. 

 The chapter-wise brief outlines of the thesis are as follows: 

The ongoing Chapter 1 presents the some basic concepts related to queueing modeling of 

machining systems with service interruption, methodology used and overview of the works 

done. The survey of relevant literature and summary of the work done in the thesis have also 

been presented. Moreover, some preliminary concepts such as F-policy, unreliable server, 

vacation, working vacation, reboot and recovery process, switching failure are described 

briefly. Several techniques used for the performance analysis of various models presented in 

the thesis are discussed.  

Chapter 2 contains the transient analysis of Markovian single server queueing system by 

incorporating the state dependent rates and provision of complete and partial working 

vacations of the server. When the system becomes empty, the server has choice to go for 

either multiple complete vacations or multiple working vacations. The time-dependent 

system size probabilities are derived explicitly in closed form using generating function and 

continued fraction. Further, the explicit expressions for the stationary distributions are 

deduced from transient counterpart. Some important queueing measures and cost function are 

examined by taking numerical example.  

Chapter 3 is devoted to the performance analysis of machining system operating under the 

admission control policy. The server is prone to failure and under go for the working 

vacation in case when there is no repair job in the system. The failed machines are allowed to 

enter the system till the system capacity (K) is full; then after failed machines are not allowed 

to join the system until the system size again decreases to the pre-specified threshold level 

‘F’. At that instant, the server takes startup time in order to start allowing the failed machines 

to enter into the system for the repair job. A matrix method based on successive over 

relaxation (SOR) is applied to obtain the steady state probabilities and various performance 

indices including the cost function. Quasi-Newton method and direct search method are used 

to determine the optimal service rate and threshold parameter. 
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Chapter 4 is concerned with the performance evaluation of fault tolerant system (FTS) 

having multi-components operating machines and multi types of warm standby machines. 

The repair of failed machines is rendered by the server which is subject to breakdown and 

repair. The successive over relaxation (SOR) method is used to obtain the system state 

probabilities at the steady state which are further used to evaluate other system indices 

including the mean queue length of failed machines, mean number of standby machines, 

throughput, etc. By constructing the cost function in terms of various performance indices 

and associated cost elements, the optimal repair rate is determined so that the maintenance of 

the concerned failure prone FTS can be done in an economic manner. The hybrid soft 

computing approach based on a neuro-fuzzy inference (ANFIS) system is implemented to 

compare the numerical results obtained by SOR method and neuro-fuzzy approach.  

Chapter 5 presents the performance analysis of fault tolerant system (FTS) by developing 

M/M/1/L finite population queueing model with working vacation. There is facility of 

dissimilar type warm standby machines so as to replace the failed machines in order to 

continue the operation of the system in spite of failures of machines. The repairman is 

allowed to take a working vacation in case of no workload of broken down machines. The 

matrix method is implemented for evaluating the transient queue size distribution and closed 

form expressions of the performance metrics of multi-component FTS. Moreover, cost 

function is constructed which can be further used to control the system cost factors.  

In chapter 6, Markov model is developed to facilitate the performance analysis of multi-

component machining system operating under the care of two heterogeneous servers and 

with the facility of mixed type of spares.  The repair job of broken down machines are done 

on the basis of bi-level threshold policy for the activation of the servers. The server returns 

back to render repair job when the pre-specified workload of failed machines is build up. The 

first (second) repairman turns on only when the work load of N1 (N2) failed machines are 

accumulated in the system. The both servers may go for vacation in case when all the 

machines are in good condition and there are no pending repair jobs for the repairmen. 

Runge-Kutta method is implemented to solve the set of governing equations used to 

formulate Markov model. Various system metrics including the mean queue length, machine 

availability, throughput etc. are derived to determine the performance of the machining 

system. A cost function is also constructed to determine the optimal repair rate of the server 

by minimizing the expected cost incurred. The hybrid soft computing method is considered 

to develop the adaptive neuro-fuzzy inference system (ANFIS).  
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In chapter 7 studies the performance of fault tolerant machining system by incorporating the 

features of imperfect coverage and reboot. Markov model for machine repair problem with 

server vacation is developed under the assumption that the operating units can be replaced by 

the available cold/warm type standby unit. The on lines as well as warm standby units are 

subject to failures and are send for the repair to a repair station having single repairman 

which is prone to failure. If the failed unit is not detected, the system enters into an unsafe 

state from which it is cleared by the reboot and recovery action. The server is allowed to go 

for vacation if there is no failed unit present in the system. Runge-Kutta method is used to 

evaluate the system state probabilities and queueing measures. 

Chapter 8 contains the performance analysis of multi-component machining system by 

developing Markovian model by including the concepts of imperfect coverage, standby 

support and working vacation. The online and warm standby machines may fail and can be 

repaired by a single skilled repairman. When the system reaches to its full capacity, no more 

jobs of repairing of failed machines are accepted until the work load of repair jobs reduces to 

a threshold level ‘F’. Some realistic features such as working vacation, reboot and recovery 

processes are included for the formulation of governing equations. Before initiating the 

repair of the failed machines in case of coming back from the vacation state, the server 

requires the set up time. The various performance measures including the reliability indices 

are derived by using the transient probabilities evaluated using Runge-Kutta method. 

In chapter 9, R-out-of-M: G structure is investigated to analyze the M/G/1 model of FTS.  

The system state probabilities are used to   determine the availability of the concerned 

system. The noble concepts of imperfect fault coverage, recovery and replacement have been 

incorporated.  A recursive algorithm has been suggested for M/G/1 model to evaluate the 

steady state probabilities and various other indices by treating remaining repair time of the 

failed machines as supplementary variable. The system availability for R-out-of-M: G 

structure has been derived analytically for specific repair time distributions such as 

Exponential, Erlang and Deterministic. Furthermore, total cost is framed to obtain the 

optimal repair rate by using Newton-quasi method. 

Chapter 10 is dealt with the performance prediction of multi-component fault tolerant 

machining system with common cause shock by developing the M/G/1 model with standby 

provisioning. By taking the remaining service time as supplementary variable, the queue size 

distribution of the concerned system is obtained. By using recursive and supplementary 

variable approaches, the state probabilities and availability indices have been evaluated 

analytically for the R-out-of-N: G structure. For specific distributions such as Exponential, 3-
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stage Erlang and deterministic distribution, the explicit formulae for the availability are also 

established. The system performance for specific configurations has been examined by 

computing the numerical results for suitable illustration. For the optimal system design, the 

cost optimization has been done by using quasi-Newton approach to determine the optimal 

system descriptors. 

1.8 Concluding Remarks 

Queueing modeling of failure prone machining system done in the present study provides an 

effective and powerful tool that can help the system designers and organizers to achieve the 

pre-defined specific goals. This approach can be easily implemented and has several 

advantages including the good and rapid estimations of the system performance. Since 

machining systems are widely used in every sphere of human lives, the system performance 

can be enhanced by appropriate choice of standby provisioning and maintainability so that 

the system can operate smoothly without any hindrance. Increasing system utilization and 

decreasing waiting time can enhance the system productivity also. To improve the 

availability and efficiency of the machining systems, the provision of maintainability and 

standby support have been taken into consideration in several Markovian models.  

Markov model offers a systematic approach to machine repair problem and allows for the 

system characterization of an existing system using birth death process. In chapters 2-8, 

several models are successfully analyzed based on Markovian assumptions of life time and 

repair time distributions by using suitable birth and death rates. The governing equations of 

concerned queueing models have framed using birth death process to evaluate the 

performance metrics. The investigation done in the thesis may be extensively practiced or 

utilized in industrial settings to resolve the system failure problems and may be helpful for 

lower downing the cost due to unavailability of server either due to server break down or 

server being on vacation. The rising cost of the system failure can be attributed not only to 

the system failure but also production of items which are not up to the marks due to some 

unnoticed faults in the system operation.  

Queueing theoretic modeling proposed is an attempt to minimize the cost via improving the 

reliability and availability of the system. Various performance measures and cost function 

are established which are further validated by conducting the numerical simulations. 

Numerical simulation carried out provides the valuable insights for the sensitivity of several 

descriptors on the different indices such as the queue length of failed machines, throughput, 

machine availability, etc. The model developed in generic set up for the machining system 
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depicts the realistic scenarios of many real time systems due to incorporation of spare part 

support and common cause shock failure. To make investigation done applicable to many 

embedded systems, the non-Markovian models have also investigated in chapters 9 and 10 

by including the features of general repair time distribution.  

The integrating analytic formulism and numerical simulation done provides a strong base for 

the queue modeling of concerned machining system. The combined strengths of analytic and 

hybrid soft computing approach ANFIS to tackle queueing problems in research and in 

practice make our study more significant. The numerical simulation results carried out may 

be helpful to draw out the managerial insights for the understanding real-life machining 

systems.  

The fault tolerant systems studied have many practical applications including in defense 

where the equipments are prone to failure and high reliability is one of the key concerns of 

the system engineer. For such failure prone systems, queue theoretic quantitative assessment 

of performance indices is of vital importance to achieve the pre-specified reliability. We have 

developed the performance models of fault tolerant system supported by mixed standbys and 

repair facility. Some realistic concepts such as reboot, recovery, unreliable server and 

vacation are incorporated in order to develop generalized queueing models. 

The performance analysis of FTS presented have potential applications in industrial and 

manufacturing systems, computer and communications systems and many more real time 

systems.  The investigation done may provide the valuable insights to the system 

analysts/designers to enhance the performability, reliability and availability of the concerned 

failure prone systems operating in machining environment. The queueing models developed 

for the fault tolerant repairable redundant machining systems with service interruptions have 

enormous applications in the real-time systems such as power transmission lines, distributed 

data networks, nuclear power plants, data exchange systems, and aerospace applications, etc.   

The suggested optimal control policy for maintainability will provide the gainful insight to 

the system analysts and industrial engineers to design an economical system under some 

techno-economic constraints. In industrial scenario, the optimal control model for the 

machining systems can be used to provide the performance indices for the fault tolerant 

embedded systems wherein the server as well as machining components are failure prone. 

The optimal repair rate corresponding to minimum total expected cost determined using 

Newton-quasi method facilitates the valuable performance metrics which can be used in 

many real time systems to achieve the goal of mission availability and fault tolerance at 

minimum cost.  
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In many real time machining systems, the failure of machining components may not be 

detected or located as such immediate replacement of failed component with standby 

component cannot be done and the case of imperfect recovery arises. For fault tolerant 

systems, this situation can be tackled by reboot operation according to which the system 

restarts depending upon the complexity of system.  

Various performance measures viz. queue size distribution, long run probabilities, average 

queue length, etc. may be helpful to the system designers and decision makers for the 

improvement and enhancement of the existing systems operating in different machining 

frameworks. It is hoped that the investigations reported would likely to highlight the 

significance of queueing models with service interruption for the improvement of the design, 

development and configuration of machining systems. 
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Chapter 2 

State Dependent M/M/1 Queue with Optional Working Vacation 
 
 

 

2.1 Introduction 

In many machining systems involved in day-to-day activities as well as in industrial 

scenarios such as computer and communication networks, flexible manufacturing and 

production systems, service and distribution systems, etc., there may be situations where the 

server may not available for the service due to some faults or operator being on vacation. The 

period of server's unavailability in queueing scenarios can be treated as queue with service 

interruption. In some queueing systems, the server can do the secondary job during vacation 

by rendering service with different rate and is called on working vacation. In more general 

set up there may be vacation in which the servers after becoming idle have the choice either 

go for complete vacation i.e. remain idle during vacation or serve the jobs with slower rate 

who arrive during vacation and treated as on working vacation. If there is no customer 

waiting in the queue for the service while the server returns to the system from vacation, he 

may start another vacation. This process continues until he finds a customer to be arrived 

after returning back from the vacation/working vacation. This situation in the queueing 

system is treated as the server follows the multiple vacations. In multiple vacation queueing 

system, after returning back from the vacation or working vacation, if somebody is waiting in 

the queue, the busy period of the server starts. In the recent past a sufficient amount of 

research work has been done on vacation queueing models (Choudhury and Madan 2005; Ke 

and Lin 2005; Ke 2007). Due to applicability in many real-world queueing situations, 

recently many queue theorists have paid their attention and contributed significantly on the 

performance modeling of queueing system with vacation by  Jeyakumar and Senthilnathan 

(2012). 

Working vacation policy is beneficial for both system organizers as well as customers. When 

the system becomes empty, the service station resumes working vacation in which it can 

perform the secondary jobs and also available for rendering the service to the new jobs with a 

slower rate. In many queueing situations, it is noticed that the service station can renders 

service to the jobs with a service rate which is lower than the normal rate, instead of 

completely unavailable for the service as in complete vacation policy. Servi and Finn (2002) 
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initiated the working vacation concept for M/M/1 queueing model, where a customer 

receives service with a rate which is less than the usual one.  

The analysis of transient behavior in closed form which is computationally tractable is quite 

tedious as can be noticed in case of single server Markovian model with vacation. To predict 

the transient behavior of Markovian single server queue with multiple vacations, a limited 

effort has been done by using the combined generating function and continued 

fraction approaches. In this chapter, we derive the time-dependent queue size distributions in 

explicit form for the state-dependent Markovian queue wherein on finding no customers in 

the system, the server has the option to go either for vacation or working vacation. A very 

few research work have done  on transient analysis of queueing models (cf. Kumar and 

Arivudainambi, 2000; Parthasarathy and Selvaraju, 2001; Kumar and Madheswari, 2005; 

Kumar et al., 2007). Parthasarathy and Sudhesh (2007) derived the transient analytical 

results of system size probabilities for an M/M/1 retrial queueing model with state-dependent 

rates using a continued fraction. The modified Bessel function is used  for the transient 

analysis of Markovian queueing model (Al-Seedy et al., 2009; Kumar et al., 2009; Kalidass 

and Kasturi, 2011; Kalidass and Ramanath, 2012). The transient and stationary probability 

distributions and system indices are obtained in closed form for M/M/1 queue with working 

vacations by Sudhesh and Francis Raj (2012). Kalidass et al. (2014) analyzed an M/M/1 

queueing model where the server can resume multiple vacations.  They also computed the 

steady state as well as time-dependent probabilities, mean and variance of the system size 

and other indices. Recently, Sudhesh et al. (2017) investigated an M/M/1 queueing model 

with working vacation and customers' impatience in the transient counterpart where they 

have derived the system size probabilities for both single and multiple working vacation 

models. 

In this chapter, we analyze the transient behavior of multiple vacation M/M/1 queue with 

state-dependent rates and choice of server to avail either full vacation or go for working 

vacation in the case when the system becomes empty. The contents of the remaining chapter 

are arranged as follows. The single server queue having provision of vacation and optional 

working vacation and state-dependent rates is described in Section 2.2.  The transient 

probabilities are obtained in Section 2.3 explicitly by employing the generating function and 

continued fraction approaches. In Section 2.4, the system performance measures and cost 

function are computed. Numerical simulations are carried out in the next Section 2.5 to 

understand the influence of system parameters. 
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2.2   Model Description 

A single server queueing model with optional vacation/working vacation and state-dependent 

rates is considered. The in-flow and out-flow rates of the system states are shown in state 

transition diagram presented in figure 2.1. The assumptions to derive the queue size 

distribution at transient state are described as follows: 

 In M/M/1 queueing system, the jobs join according to Poisson arrival pattern with the 

rate . 

 The service of the jobs is rendered by single service station following the exponential 

distribution with mean 1  . 

 Whenever the service station becomes free, it may go either for working vacation 

with probability  or complete vacation with probability 1   . 

 During the complete vacation period, the arriving jobs are permitted to enter into the 

system according to Poisson fashion with the rate 1 . The vacation duration follows 

an exponential distribution with the rate . 

 During the working vacation period, the newly arriving jobs are also allowed to join 

into the system in Poisson fashion with rate 0  and are served following exponential 

distribution with mean 1

v
 , where v  . The working vacation is governed by the 

exponential distribution with parameter v . 

 We assume that the arrival and service times, vacation and working vacation times 

are all independent to each other. The service discipline is first come first served 

(FCFS). 

 We consider  the bivariate stochastic process{ ( ), ( )}     where{ ( ), 0}    denotes 

the system size and ( )  represents the service station state at time .  

Now we define 

0; the server is on working vacation at time ,

( ) 1; the server is busy in providing service to the customers at time ,

2; the server is on complete vacation and is idle at time .



  






 


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2, 0 2, 1 2, n

1, 11, 1 1, n1, n




1 1 1
1



2, 2

1, 21, 2

1

 

  

 

0, 0 0, 1 0, n

0 0 0 0

0, 2

0

v

(1 ) 

 

v v v

v v v v  

Fig. 2.1: State transition diagram of M/M/1/WV 

2.3 Model Governing Equations  

For the continuous time Markov chain { ( ), ( ), 0}      over the state space

(0,0) (2,0) {( , ) / 0or1or 2; 1,2,...},k n k n      we define the state probabilities as 

follows: 

0, ( ) { ( ) 0, ( ) }, 0,1,2,...,nP P n n         

1, ( ) { ( ) 1, ( ) }, 1,2,3,...,nP P n n         

2, ( ) { ( ) 2, ( ) }, 0,1,2,....nP P n n       
 

 The governing Equations for states , ( ), 0,1,2; 0,1,2,...,k nP k n   are constructed as follows: 

0,0 0 0,0 0,1 1,1( ) ( ) ( ) ( ),vP P P P                (2.1) 

0, 0 0, 0 0, 1 0, 1( ) ( ) ( ) ( ) ( ), 1,n v v n n v nP P P P n         
           (2.2) 

1,1 1,1 1,2 0,1 2,1( ) ( ) ( ) ( ) ( ) ( ),vP P P P P                    (2.3) 

1, 1, 1, 1 1, 1 0, 2,( ) ( ) ( ) ( ) ( ) ( ) ( ), 2,n n n n v n nP P P P P P n            
          (2.4) 

2,0 1 2,0 1,1( ) ( ) ( ),P P P               (2.5) 

2, 1 2, 1 2, 1( ) ( ) ( ) ( ), 1.n n nP P P n      
           (2.6) 

with 0,0 (0) 1.P 
 

2.3.1 Transient system size distribution 

We denote the Laplace transform of , ( )k nP  by ,
ˆ ( ).k nP s  The transient probabilities for various 

states are derived by solving the governing Equations (2.1)-(2.6). 

(i) Evaluation of 2, ( )nP   

Taking Laplace transforms of both sides of Equation (2.5) and after simplification, we get 

2,0 1,1

1

ˆ ˆ( ) ( )P s P s
s







        (2.7) 
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Laplace inversion of (2.7) yields 

1

2,0 1,1( ) ( )P e P           (2.8) 

Taking Laplace transform of (2.6) and after some algebra, we get 

1
2, 2,0

1

ˆ ˆ( ) ( )

n

nP s P s
s



 

 
  

  
       (2.9) 

On taking Laplace inversion of (2.9), we get  

1

1
( )

2, 1 2,0( ) * ( )
( 1)!


 



n
n

nP e P
n

   
                  (2.10) 

Thus, 
2, ( )nP  is expressed in terms of

2,0 ( )P  , and 
2,0 ( )P  is obtained in terms of

1,1( )P  . 

(ii) Evaluation of
1, ( )nP   

Let 
1,

1

( , ) ( ) n

n

n

G z P z 




 be the probability generating function (PGF) corresponding to

1, ( )nP  . Applying PGF on (2.3) and (2.4), we get 

1,1 0, 2,

1 1

( , )
( ) ( , ) ( ) ( ) ( )n n

v n n

n n

G z
z G z P P z P z

z

 
         



 

 

  
          

        (2.11) 

Solving Equation (2.11), we obtain 

 

( ) ( ) ( ) ( )

0, 1 2, 1,1

10 0

( , ) ( ) ( ) ( )

where ( ) ( )( ) and ( ) ( / )( ).

n

v n n

n

G z P u P u z e e du P u e e du

z z

 
          

           


 



    

     

 

      

(2.12) 

Denoting    and 





, we have 

[( / ) ] ( ) ( ),z z n

n

n

e z I    






              (2.13) 

Here ( )nI  denotes the 
thn order modified Bessel function of the first kind. 

Using (2.13) and (2.12) for 0n  , we get 

( )

1, 0, 2,

10

( )

1,1

0

( ) ( ) ( ) ( ( ))

( ) ( ( ))

n m

n v m m n m

m

n

n m

P P u P u I u e du

P u I u e du


 


 

     

   


 









    

 





       (2.14) 

For negative integer value of ,n Equation (2.14) holds but L.H.S. is zero. Also, we know that

( ) ( ), 1,2,3,...,.n nI x I x n    Thus we get for 1, 2, 3,...,.n      
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( )( )

0, 2,

10

( )( )

1,1

0

0 ( ) ( ) ( ( ))

( ) ( ( ))

n m

v m m n m

m

n

n

P u P u I u e du

P u I u e du


   


   

    

   


    





   

    

 




       

(2.15) 

For positive value of ,n from (2.14) and (2.15), we obtain 

( )

1, 0, 2,

10

( ) ( ) ( ) [ ( ( )) ( ( ))] .n m

n v m m n m n m

m

P P u P u I t I t e dt


        


 

 



             (2.16) 

Thus, 
1, ( )nP   is computed as a function of 

0, ( )nP  and 
2, ( )nP  , for 1,2,3,....n   

(iii) Evaluation of 
0, ( )nP  . 

Laplace transforms on (2.1) and (2.2) yield 

0,0

0,1 1,1

0

0,0 0,0

1ˆ ( )
ˆ ˆ( ) ( )

( )
ˆ ˆ( ) ( )

v

P s
P s P s

s
P s P s

  



  

          (2.17) 

Also for 0,n   

0, 0

0, 1 0, 1

0

0,

ˆ ( )

ˆ ˆ( ) ( )
( )

ˆ ( )

n

n n

v v v

n

P s

P s P s
s

P s



   
 



   

          (2.18) 

On simplification of (2.18), we get  

2 2

0

0, 0 0,0

0

ˆ ˆ( ) ( )

n

n

n

w w
P s P s

  
 
 
 





           (2.19) 

where 0 0 0, 2v v vw s           and 0 0 / .v    

Laplace inversion on (2.19) yields 

0( )1

0, 0 0 1 0 1 0 0,0( ) [ ( ) ( )] ( ).v vn

n n nP I I e P
            

            (2.20) 

(iv) Evaluation of 1,1( )P  . 

For 1n  , taking Laplace transform on (2.16), we get 

2 2

1,1 0, 2,

1

1ˆ ˆ ˆ( ) ( ) ( ) ,

m

v m m

m

p p
P s P s P s


 

 





  
    
   

 
         (2.21) 

where p s    . 

Using (2.19), (2.9) and (2.7) in (2.21) and after simplification, we obtain 
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2 2 2 2
0

1,1 0

1 0

2 2

1
0,0

0 11 1

ˆ ( )

1 ˆ( ) ( ).
( ) ( )

m m

mv

m

i
i

k k

k i
k i

w w p p
P s

p p
P s

s s

 


  


 

   





 

 

      
   

  
  

     
    
  



 
      

(2.22) 

Laplace inversion of (2.22) gives 

 

 

 

0

1

1

( )0
1,1 1 0 1 01

1 0

1
( )

1 11
0

*
1

( ) ( )

1 1 1 0,01
1

( ) ( ) ( )

( ) ( ) ( )
( 1)!

* ( ) ( ) * ( ).
( 1)!

v vv
m mm

m

k
k k

m mm
k

k
i

i

i ii
i

P I I e

I I e e
k

e I I e P
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   

   

     

 
    

 

 
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

 
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
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 
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

 
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




     

(2.23) 

(v) Evaluation of 
0,0 ( )P t . 

For 1n  , using (2.19), and (2.22) in (2.17) and after some mathematical manipulations, we 

get 

2 2

0

0,0 0 01
0 00 0

2 2 2 2
0

0 0,0

1 0

2 2

1

0 1 1

1ˆ ( ) ( ) ( )
( )

ˆ ( )

1
( )

( ) ( )

j
r

j r j

r
r j

m m

mv

m

k
i

i
k k

k i
k i

r w w
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w w p p
P s

p p
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
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 

 

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
 

   





 





 

 

   
         

           
   

   

      
     

  

 



 

( )r j


 
 
 

  

(2.24) 

Taking inverse Laplace transform of Equation (2.24), we obtain 
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(2.25) 

2.3.2  Stationary system size distribution  

By replacing the L.H.S. of Equations from (2.1) to (2.6) by zero, we get the steady-state 

distribution for this model. In this section, the stationary system size probabilities 
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0, 1, 2,, ,n n n    and 
0,0  are computed from their time-dependent counterparts. It is assumed 

that 0 v   and  1 1  for steady state. Let 

   
2

0 0 0

0

4

2

v v v v v

v

A
       



     
          (2.26) 

From (2.7), (2.9) and (2.22), we get 

1
2, 2, 0 0,0

0
11 1

ˆlim (s)




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 mv

n n
s

m

sP A
  

 
  

         (2.27) 

From (2.19), we obtain 

0, 0, 0 0,0
0

ˆlim (s) n

n n
s

sP A


              (2.28) 

Taking Laplace transform on (2.16) and using the expressions for
0,n and

2, ,n we get 

1
1, 1, 0 0 0,0

0
1 11 1

1ˆlim (s)
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(2.29) 

Using the normalizing condition  

0,0 0,n 1,n 2,n

1 1 0

1
  

  

     
n n n
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(2.30) 

we obtain the expression for 
0,0 0,0

0

ˆlim (s)
s

sP


 as  
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(2.31) 

2.3.3 Special cases 

Case (i): When 1 00, 0, 1, , v           , then  

  ( )( )

1, 0,

10

( ) ( ) ( ( )) ( ( )) ,n m u

n m n m n m

m

P P u I u I u e du 
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     


   

 



           (2.32) 

which coincides with the result (5.6) in Sudhesh et al. (2017) when 1 1,     . 

Case (ii): When 1 00, 0, 1, , v           then 

( )

1, 0,

10

( ) ( ) [ ( ( )) ( ( ))] ,n m

n m n m n m

m

P P u I u I u e du


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
 

 



          (2.33) 
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0( )1

0, 0 0 1 0 1 0 0,0( ) [ ( ) ( )] ( ),vn

n n nP I I e P
            

            (2.34) 

In this case Equations (2.33) and (2.34) coincide respectively with the results (2.11) and 

(2.16) in Sudhesh and Raj (2012). 

Case (iii): When 1 00, 0, 0, 1, , ,v v             then 

( )

1, 0,
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                                        (2.36) 

which on simplification coincides respectively with Equations (2.15) and (2.13) given in 

Kalidass and Ramanath (2014). 

2.4 System Performance Measures 

To predict the transient behavior of the developed model, we formulate some system indices 

such as mean system size, the variance of the system size, the throughput of the system and 

different state probabilities as follows: 

2.4.1 Mean system size 

Let { ( )}E X be the expected system size at the time . Now, 
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n
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



                (2.37) 

From (2.2), (2.3), (2.4) and (2.6), we obtain 
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Integrating (2.27), we get 
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      (2.39) 

 

 

2.4.2 Variance of system size 

To obtain the variance { ( )}Var X   of the system size at time , we use  
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2 2{ ( )} { ( )} ( { ( )}) ,Var X E X E X              (2.40) 
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On integrating Equation (2.39), we get 
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where 
0, ( )nP  , 

1, ( )nP  and 
2, ( )nP  , for 1,2,3,...,n  are given by (2.20), (2.16) and (2.10), 

respectively. 

2.4.3 The throughput  

 At time  , the throughput is obtained as 

1, 2,

1 0

( ) { ( )} { ( ( )}n v n

n n

TP P P
 

 

                 (2.43) 

2.4.4 Service station state probabilities 

The probabilities of different system status such as in normal busy, vacation and working 

vacation mode respectively, at time   are  

1,
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P P

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   .         (2.44) 

2.4.5 The cost function 

The cost function to determine the total expected cost ( )TC  incurred by the system, the 

following cost elements per unit time associated with different system states are considered: 

:HC  Per customer holding cost incurred on waiting in the queue for the service. 

:BC  Per customer cost incurred on a busy service station. 

:VC  Per customer cost incurred when the service station is availing the complete vacation. 

:WVC  Per customer cost incurred while the service station is on working vacation. 

1 :C  Cost involved in rendering the service by the service station with service rate . 

The cost function is formulated as 
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1( ) { ( )} ( ) ( ) ( )H B B V V WV WVTC C E X C P C P C P C                 (2.45) 

2.5 Numerical Simulation 

The numerical results of various performance indices for the concerned queueing model 

developed in previous sections are computed. The sensitivity of the system indices for 

various system descriptors is also explored by performing the numerical experiments using 

the Matlab software. For the numerical results, we choose the default system parameters as 

follows: 

1 00.6, 0.4, 0.2, 1.5, 1.0, 0.05, 0.03, 0.7v v                 

The numerical results are displayed in Tables 2.1-2.5 and Figures 2.2-2.10. In Tables 2.1-2.5, 

the effect of system descriptors on the transient system state probabilities { ( ),BP  ( ),VP 

( )WVP  } and system cost ( )TC  at different time epochs are summarized for varying values 

of parameters , , , ,and ,v v     respectively.  

The trends of various system indices for varying different parameters are as follows:  

(i) Effect of arrival rate ( ) and 1( ) : The normal busy state probability ( )BP  and total 

cost ( )TC  show the increasing trend for the increasing value of arrival rate ( )  but 

vacation state ( )VP  and working vacation state ( )WVP 
 
probabilities exhibit the reverse 

trend i.e. decrease as arrival rate ( ) increases. Figures 2.2-2.3 clearly show the increasing 

trend in mean queue length { ( )}E X   as arrival rates  and 1  grow up.  

(ii) Effect of service rate ( ) and ( )v : In Tables 2.2 and 2.3, the gradually decreasing trend 

of busy state probability ( )BP  for the increasing values of service rate  and v are seen. 

The vacation state probability ( )VP  and working vacation state probability ( )WVP 

increase as the service rate ( ) increases. From Figures 2.5 and 2.6, it is noted that the 

throughput ( )TP  of the system increases as   andv increase.  

(iii) Effect of set up rate ( ) and ( )v : The setup rates   andv also have significant effects 

on various system indices. The busy state probability ( )BP  and working vacation state 

probability ( )WVP   grow up with an increase in the value of setup rate ( ) . The vacation 

state probability ( )VP  and system total cost ( )TC  show significant decrement as the 

value of set up rate ( ) grow up. The impact of set up rate ( )v on various system indices 

seems to be negligible. Figure 2.4 clearly depicts the decreasing trends of mean queue 
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length { ( )}E X  . Figure 2.7 shows the increasing trend of throughput ( )TP  of the system 

for the growing value of setup rate ( ) . 

(iv) System cost ( )TC  : The computation of cost results of the developed model makes 

investigation quite productive, interesting and useful. We have evaluated total expected 

cost ( )TC  of the system by framing the cost function. The effect of various system 

parameters , , ,   v  
and v  on total expected cost ( )TC   are displayed in Tables 2.1-

2.5.  

To examine the cost function, the surface graphs are displayed in Figures 2.8-2.10 for three 

cost sets as given below: 

Set I: 190, 80, 60, 40, 45.H B V WVC C C C C      

     Set II: 180, 70, 60, 40, 40.H B V WVC C C C C      

     Set II: 190, 70, 65, 45, 40.H B V WVC C C C C    
 

Table 2.1: Effect of arrival rate ( ) on system indices and total cost  

    ( )BP   ( )VP   ( )WVP   ( )TC   

 

2 

0.6 

0.8 

1.0 

0.009076 0.986966 0.003958 162.91 

0.009385 0.986812 0.003803 163.04 

0.009681 0.986664 0.003655 163.17 

 

6 

0.6 

0.8 

1.0 

0.036845 0.925081 0.038074 225.51 

0.040386 0.923318 0.036296 226.82 

0.04405 0.921494 0.034456 228.37 

 

10 

0.6 

0.8 

1.0 

0.061441 0.849679 0.088881 275.25 

0.069683 0.845622 0.084695 278.36 

0.078822 0.841119 0.080059 282.28 

 

Table 2.2: Effect of service rate ( )  on system indices and total cost  

    ( )BP   ( )VP   ( )WVP   ( )TC   

 

2 

2 

4 

6 

0.007638 0.987685 0.004677 185.18 

0.004458 0.989275 0.006267 274.71 

0.003074 0.989967 0.00696 364.52 

 

6 

2 

4 

6 

0.027939 0.929507 0.042554 246.25 

0.013605 0.936621 0.049773 333.79 

0.008911 0.938948 0.052141 423.08 

 

10 

2 

4 

6 

0.044648 0.857904 0.097449 294.07 

0.020723 0.869576 0.109701 379.59 

0.013431 0.873122 0.113448 468.40 

Table 2.3: Effect of service rate ( )v  on system indices and total cost  

  
v  ( )BP   ( )VP   ( )WVP   ( )TC   
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2 

1 

3 

5 

0.009076 0.986966 0.003958 162.91 

0.009074 0.986966 0.00396 162.89 

0.009073 0.986966 0.003961 162.88 

 

6 

1 

3 

5 

0.036845 0.925081 0.038074 225.51 

0.03672 0.925012 0.038268 224.77 

0.036683 0.924986 0.038331 224.59 

 

10 

1 

3 

5 

0.061441 0.849679 0.088881 275.25 

0.060904 0.849202 0.089893 272.81 

0.060779 0.849049 0.090172 272.31 

 

Table 2.4: Effect of set up rate ( )  on system indices and total cost  

    ( )BP   ( )VP   ( )WVP   ( )TC   

 

2 

0.05 

0.1 

0.15 

0.009076 0.986966 0.003958 162.91 

0.017463 0.974829 0.007708 162.35 

0.025215 0.963521 0.011264 161.82 

 

6 

0.05 

0.1 

0.15 

0.036845 0.925081 0.038074 225.51 

0.064722 0.864779 0.070499 217.09 

0.085769 0.815988 0.098243 209.98 

 

10 

0.05 

0.1 

0.15 

0.061441 0.849679 0.088881 275.25 

0.097896 0.744559 0.157545 251.49 

0.118917 0.66981 0.211275 233.72 

 

Table 2.5: Effect of set up rate ( )v  on system indices and total cost  

  
v  ( )BP   ( )VP   ( )WVP   ( )TC   

 

2 

0.03 

0.09 

0.15 

0.009076 0.986966 0.003958 162.9116 

0.009087 0.986969 0.003944 162.912 

0.009097 0.986971 0.003931 162.9124 

 

6 

0.03 

0.09 

0.15 

0.036845 0.925081 0.038074 225.5066 

0.037255 0.92536 0.037385 225.5202 

0.037624 0.925619 0.036758 225.5326 

 

10 

0.03 

0.09 

0.15 

0.061441 0.849679 0.088881 275.2495 

0.062928 0.851333 0.085741 275.3111 

0.064182 0.852805 0.083015 275.3656 

 

 

 

 

 

 

 

(i)                                                                (i) 

 



50 
 

              

(ii)                                                                 (ii)                

              

(iii)                                         (iii) 

              
 

Fig. 2.2: ( ( ))E N for different value                  Fig. 2.3: ( )TP  for different value 

 of  (i) λ (ii) λ1 (iii)                                                 of (i) µv (ii) µ (iii)   

                           



51 
 

   

     (i) 

 

 

     (ii) 

 

   

           (iii) 

                         Fig. 2.4: The system cost ( )TC   and   for (i) cost sets I  

   (ii) cost sets II (iii) cost sets III. 
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Chapter 3 

F-policy for Unreliable Server Machining System with Working 

Vacation 
 
 

3.1 Introduction 

In the context of real queueing applications, controlling arrival is one of the cost-effective as 

well as managerial efficient approaches which can be used for the optimal utilization of the 

machining system. To control the arrivals of the jobs in case of full capacity of a system, F-

policy concept which was, first introduced by Gupta (1995) states that the arriving customers 

are not allowed to enter the system if it reaches its capacity level, but when the queue length 

again decreases to a predefined threshold value ‘F’, the customers are further allowed to 

enter the system to form a queue. The machine repair problems with F-policy, which is quite 

common phenomenon of real systems, have been rarely investigated in queueing literature.  

Yang et al. (2010) analyzed F-policy queueing system with exponential startup time and 

evaluated the optimal parameters by minimizing the cost function using quasi-Newton and 

direct search methods.  

In the queueing literature, it is noticed that most of the studies devoted to the performance 

analysis of queues with server vacation are restricted to reliable server model. However, this 

is not case in real life; no server can be perfect and as such the incorporation of the unreliable 

server concept for the performance modeling will be helpful to portrait the more versatile and 

realistic queueing scenarios. Excellent surveys on the queueing models with server 

breakdowns and other features were presented by Ke (2003, 2004, 2005) . Jain and Jain 

(2010) used matrix geometric approach to explore various system characteristics of an 

unreliable server queueing system with working vacation.  

From the literature survey, it is evident that in the past few years, a few research articles on 

the machine repair problem with vacation policy have appeared. It is noticed that no research 

work has been done to explore the performance metrics of the unreliable server machine 

repair problem by incorporating the realistic features of working vacation and F-policy 

together along with the startup time. Motivated by this fact, we have framed machine repair 

problem in the general framework by including the noble concepts of F-policy, working 

vacation, set up, and an unreliable server. The numerical technique based on successive over 

relaxation (SOR) method is used to determine the probabilities associated with different 

system states. To explore the impact of system parameters on the performance indices, 
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numerical simulation has been conducted by taking an illustration. The direct search method 

and quasi-Newton method have also been used to obtain the optimal values of the decision 

parameters. The rest of the chapter is organized in the following manner. In Section 3.2, we 

present the model description by mentioning the assumptions and mathematical notations. In 

Section 3.3, mathematical formulation and governing equations are constructed on the basis 

of birth-death process. In Section 3.4, various performance indices of the concerned 

queueing system are formulated explicitly in terms of steady state probabilities. By 

implementing the direct search and quasi-Newton methods, the cost analysis is carried out in 

Section 3.5. In Section 3.6, we present the numerical simulation results and sensitivity 

analysis. 

3.2 Model Description 

In order to investigate an unreliable fault tolerant machining system with working vacation 

under admission control F-policy, we develop a finite Markov M/M/1/K/WV model by using 

birth-death process. The governing steady state equations are framed for the system states on 

the basis of appropriate transition rates. To avoid the overload and stress on the machining 

system, the concept of admission control F-policy is incorporated so as to maintain the 

smooth functioning of the machining system. The concept of working vacation is added to 

enhance the maintainability and reliability of the machining system at optimum cost. For the 

model development, we assume that all the underlying processes involved in the 

mathematical formulation, i.e. arrival, service and vacation, are statistically independent. 

 The machining system consists of a finite number (say M ) of machines. The machine 

may fail according to a Poisson process with parameter 𝜆 so that the effective failure 

rate when there are ‘ ’n  failed machines in the system is ( )n M n    for 0 n K  , 

where 1K M m   . 

 For the smooth functioning of the machining system, the system is maintained by 

providing the repair to the failed machines. The repair time of failed machines is 

assumed to be exponentially distributed with rate µ. The failed machines arriving at 

the repair facility for their repair job, forms a single queue and repair rendering to the 

failed machine to restore its functioning is done according to first in first out (FIFO) 

discipline. 

 When there is no job for the repair in the queue after completion of the repair of last 

failed machine, the server goes for the working vacation. For being more productive 

and to increase the system capacity, during the vacation period rather than completely 

terminating the repair job, the server continues to render the repair job or do some 
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additional job such as maintenance, book keeping, etc. with slower rate v  in 

comparison to that of normal busy rate µ. The repair times of the failed machines 

follow the exponential distribution with rate v  when the server is providing service 

during the working vacation period. In case when any failed machine arrives in the 

system for the repair, the vacationing server returns back to the system with rate v .  

 In order to avoid the overload or stress of failed machines arriving for the repair in 

the system, the admission control following F-policy is quite useful. The overload of 

the system can be shared with outsource repair facility at extra cost incurred to get 

failed machines repaired timely. The capacity of the repair facility is assumed to be 

finite (say K). If the number of failed machines joining the repair facility reaches its 

full capacity (K), the entry of any new failed machines in the system is stopped until 

and unless the number of failed machines in the system decreases to the threshold 

value F, (0 F K 1)   . At that instant, the server requires the start-up time which is 

assumed to be exponentially distributed with the parameter ; then after the failed 

machines are allowed to join the system for the repair job.  

 The server is subject to breakdown; the server’s lifetime is exponentially distributed 

with parameter α. The broken down server is immediately sent for the repair job 

which is done according to an exponential distribution with rate 1 when failed in a 

normal busy period, and with rate 2 when failed during the working vacation period. 

3.3 Mathematical Formulation and Analysis       

Consider the working vacationing server queueing model operating under F - policy for the 

admission of failed machines by incorporating the realistic feature of unreliable server. In 

order to obtain the performance indices of the machining system, we frame the governing 

equations for the mathematical formulation of the finite population Markov queueing model. 

Using the notations and assumptions described in the previous Section 3.2, the model is 

formulated as follows: 

Consider Markov chain model of a bivariate stochastic process{ ( ), ( )}    where ( ) 

represents the status of the server at time and ( )  denotes the number of failed machines in 

the system at time . The steady state probabilities of the system for the state space  

 S [(j,n) | 0 j 7;1 n K 1] [( j,0) | j 1,3,5,7] [( j,K) | j 0,1,6,7]         
 

are represented 
j,nP . The state-transition diagram of continuous time Markov chain is 

depicted in figure 3.1. 
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Fig. 3.1: State transition diagram for M/M/1/WV model 

Now we define ( )  as  

0, Server is under repair when broken down during the normal busystateand the joining

of failed machinesare not allowed in thesystem;

1, Server is in normal busystateand the joining of failed machinesare not allowed in thesystem;

2

( )  

, Server is under repair when broken down during the normal busy stateand the joining

of failed machinesare allowed in thesystem;

3, Server is in normal busystateand the the joining of failed machines areallowed in thesystem;

4, Server is under repair when broken down during the working vacation state while the

joining of failed machinesareallowed in thesystem;

5, Server is in working vacation stateand the joining of failed machinesareallowed in thesystem;

6, Server is under repair when broken down during the working vacation stateand the joining

of failed machinesare not allowed in thesystem;

7, Server is in working vacation stateand the the joining of the failed machines are not allowed

in thesystem.


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

 

3.3.1 Governing equations 

For evaluating the probabilities associated with different system states, Chapman- 

Kolmogorov equations are constructed by using the appropriate rates of underlying birth-

death process. Based on the law of conservation of transition flow, the following difference 

equations for server’s different states ( )  are framed: 

(i) When ( ) 0   . 

By equating the out-flows from the state (0,n) having probability 
0,P (1 n K)n   with the 

in-flows from the state (1,n) and (2,n) , the governing equations for the states (0,n) for 

n 1,2,3,...,K are obtained as: 
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1 0,n 1,nP P ; 1 n K 1     
        

(3.1) 

1 0,K 1,K K 1 2,K 1P P P             (3.2) 

(ii) When ( ) 1   . 

The following equations are obtained by equating the in-flows and out-flows for the states

(1,n), 0 n K  :  

1,0 1,1 v 7,0P P P            (3.3) 

1,n 1 o,n 1,n 1 v 7,n( )P P P P ; 1 n F           (3.4) 

1,n 1 o,n 1,n 1 v 7,n( )P P P P ; F 1 n K 1       
     

(3.5) 

1,K 1 o,K K 1 3,K 1 v 7,K( )P P P P    
      (3.6) 

(iii)When ( ) 2   . 

For states (2,n), n 1,2,...,K 1,  the following equations are constructed using the law of 

conservation of total flows: 

1 1 2,1 3,1( )P P   
         

(3.7) 

1 n 2,n n 1 2,n 1 3,n( )P P P ; 2 n K 1               (3.8) 

(iv) When ( ) 3   . 

On equating the in-flows and out-flows for the system states (3,n), 0,1,2,..., 1 n K , we 

obtain the following governing equations: 

0 3,0 1,0 v 5,0P P P  
         

(3.9) 

n 3,n 1,n 1 2,n n 1 3,n 1 3,n 1 v 5,n( )P P P P P P ; 1 n F          
  

(3.10) 

n 3,n 1 2,n n 1 3,n 1 3,n 1 v 5,n( )P P P P P ; F 1 n K 2              (3.11) 

K 1 3,K 1 1 2,K 1 K 2 3,K 2 v 5,K 1( )P P P P               (3.12) 

(v) When ( ) 4   . 

For states (4,n), n 1,2,...,K 1,  following the law of conservation of flows, we get 

2 1 4,1 5,1( )P P   
         

(3.13) 

2 n 4,n n 1 4,n 1 5,n( )P P P ; 2 n K 1              (3.14) 

(vi) When ( ) 5   . 

On the basis of the law of conservation of flows, for states (5,n), 0 n K 1,   we obtain 

0 5,0 3,1 v 5,1 7,0( )P P P P           (3.15) 

n v 5,n 2 4,n n 1 5,n 1 v 5,n 1 7,n( )P P P P P ; 1 n F             (3.16) 

v n v 5,n 2 4,n n 1 5,n 1 v 5,n 1( )P P P P ; F 1 n K 2              (3.17) 



58 
 

v K 1 v 5,K 1 2 4,K 1 K 2 5,K 2( )P P P              (3.18) 

(vii) When ( ) 6   . 

On equating the in-flows and out-flows for the states (6,n),1 n K  , we get 

2 6,n 7,nP P ; 1 n K 1              (3.19) 

2 6,K 7,K K 1 4,K 1P P P             (3.20) 

(viii) When ( ) 7   .  

The following governing equations are constructed from states (7,n),0 n K :   

v 7,0 v 7,1( )P P (t)           (3.21) 

v v 7,n 2 6,n v 7,n 1( )P P P ; 1 n F           (3.22) 

v v 7,n 2 6,n v 7,n 1( )P P P ; F 1 n K 1             (3.23) 

v v 7,K K 1 5,K 1 2 6,K( )P P P             (3.24) 

By applying the classical analytical methods for solving the set of difference equations such 

as recursive method or probability generating function approach, the explicit results for the 

probability distribution are difficult to be derived, in particular when the numbers of states 

are large and flow rates are state dependent. In such situations, the numerical method can be 

easily implemented to solve the set of simultaneous linear difference equations.  Here we 

shall employ the numerical technique based on successive over relaxation (SOR) method to 

solve the system of Equations (3.1) to (3.24). It is to be worth noting that SOR method is an 

extrapolation to Gauss-Seidal method in which the convergence rate is accelerated by taking 

the relaxation parameter1 1.25  (cf. Jain et al. 2011,Hadjidimos 2000). This numerical 

approach is suitable for determining the solution of system of equations.  After evaluating the 

probabilities, we are in a position to analyze the system behavior by determining the different 

performance measures. The set of difference Equations (3.1)-(3.24) is solved for the 

probabilities for different states by converting in matrix form. We denote the coefficient 

matrix ' 'P which consists of coefficients of all the probabilities as described in Chapman- 

Kolmogorov Equations (3.1)-(3.24). Let π be a probability vector which consists of all the 

unknown probabilities 
j,nP  for feasible index set j, n . Now, we have 

Pπ = 0         (3.25) 

The normalizing condition is given by 

1πe=         (3.26) 

where ' 'e denotes the unit row vector of size (8K). Replacing the last row of the matrix 

Equation (3.25) by (3.26), we get new matrix equation as  
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 Qπ =B         (3.27) 

Here first (8K-1) rows of the coefficient matrix Q have same elements as that of P but the 

last
th(8K) row has all elements equal to 1. Also

T[0, 0, 0,...,0,1]B is column vector of size 

8K. The above Chapman-Kolmogorov differential-difference Equations (3.1)-(3.24) 

represent the continuous time Markov chain involved in the concerned model. Figure 3.1 

exhibits the feasible transitions with appropriate rates among neighboring states of the 

system for different events.  

3.4 System Performance Measures 

In order to explore the system characteristics and to examine the performance, we formulate 

the various performance indices in terms of steady state probabilities of the system states. 

The expressions for the expected number of failed machines in the system, expected waiting 

time of failed machines in the system, effective joining rate of the failed machines in the 

system, probabilities of the server being in different states and other performance indices are 

established as follows: 

(i) The expected number of failed machines in the system is 

  
1 K 5 K 1 K 1 K

j,n j,n 6,n 7,n

j 0 n 1 j 2 n 1 n 1 n 1

E(N) n P n P n P n P
 

     

          (3.28) 

(ii) The probability that the server being operative in normal and working vacation mode is

1 K 2 K 1

B 6 j 1,n 2 j 1,n

j 0 n 0 j 1 n 0

P P P


 

   

          (3.29) 

(iii) The probability that the server is in idle state is  

  
3

I 2 j 1,0

j 0

P P 



          (3.30) 

(iv) The probability that the server being in the broken down state is 

  
1 K 2 K 1

D 6 j,n 2 j,n

j 0 n 1 j 1 n 1

P P P


   

          (3.31) 

(v) The probability that the server in operating (inclusive working vacation) state is blocked 

for the joining of failed machines is 

  
1 K

L 6 j 1,n

j 0 n 0

P P 

 

         (3.32) 

(vi)  Once the system capacity is full, due to implementation the F-policy, the failed units are 

not allowed to enter into the system until the queue size of failed machines ceases to 

threshold level ‘F’. However, some set up time is needed to further allow the failed 

machines into the system as such there is chance that the repair job of some more 



60 
 

machines is completed after threshold level is reached. Thus the probability that the 

server starts to allow the failed machines entering into the system, is 

 
1 F

S 6 j 1,n

j 0 n 0

P P 

 


        

(3.33) 

(vii) The effective joining rate of failed machines in the system, is given by 

5 K 1

eff j,n

j 2 n 0

(M n) P


 

           (3.34) 

(viii) The expected waiting time of the failed machines in the system, is  

  
eff

E(N)
E(W) 


         (3.35) 

3.5 Cost Function and Optimal Parameters 

The system designer may be interested in determining the optimal parameters in order to 

reduce the total cost incurred in the system. Now, we construct the cost function by 

considering the three decision variables (F, , )   and various cost elements involved in 

different activities. Here variable ‘F’ is discrete whereas other two variables ( , )   are 

continuous.  The cost elements associated with different activities are considered to be linear 

and defined as follows: 

 HC : Holding cost per unit time for each failed machines present in the system. 

 BC : Cost per unit time to maintain the system in the operating state. 

 DC : Cost per unit time incurred on a failed server. 

 IC : Cost per unit time for an idle server. 

 LC : Fixed cost for every lost failed machines when the system is blocked. 

 SC : Start up cost per unit time incurred on the system to prepare it for allowing the 

failed machines to enter the system. 

 WC : Waiting cost per unit time of each failed machine while waiting for the service. 

 KC : The fixed cost incurred on the system capacity. 

 1C : Cost per unit time of the server for providing service during normal busy period. 

 2C : Cost per unit time of the server for providing service during a working vacation   

period. 

 3C : Cost per unit time associated with the startup time which is required for allowing 

the failed machine to enter the system as per F-policy. 
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Based on the definitions of the each cost element listed above and various system indices 

established in the previous section, the total expected cost per unit time is constructed as- 

v H B B I I D D S S L L

W K 1 2 v 3

TC(F, , ) C E(N) C P C P C P C P C P

C E(W) C K C C C

             

         
  (3.36) 

In order to determine the optimal control parameters * * *

v(F , , )  , we consider optimization 

problem: 

* * *

v vTC(F , , ) min TC(F, , )         (3.37) 

In long run, the various events get statistically stabilize. Thus, the expected total cost is 

considered in terms of different cost elements for per unit time. Due to the unstructured 

multivariate function vTC(F, , )  , it is not feasible to develop analytical results for the 

optimum parameter values using a classical optimization approach; however search method 

can be easily implemented. 

3.5.1  Direct search method 

The cost function is highly non-linear and complex. Therefore, in order to obtain minimum 

of the cost function, we perform some numerical computations; thus we can obtain a global 

minimum. To obtain the optimum value of discrete variable ‘ F ’, we first use direct 

substitution of successive values of 'F ' into the cost function. Based on the trend of the total 

cost with the changes in ‘ F ’, the optimal decision variable ‘ *F ’ is determined for different 

service rates and v .    

3.5.2 Quasi-Newton method 

 Quasi-Newton method can be easily used to find the global values of continuous decision 

variables v( , )  by minimizing the cost vTC(F , , )   which is a non-linear convex function 

and twice continuously differentiable. It is an iterative method with some stopping criterion 

depending on the tolerance limit. The main advantage for implementing this method is its 

fast convergence and affine invariance. The theoretical basic iterative step is defined as  

   
12x x t f x f x
         (3.38) 

The following steps to implement quasi-Newton method are performed to reach the 

minimum value of * * *

vTC (F , , )   and the corresponding optimal service rates
* *( , ). v  

(i) Let the initial value of decision variables  
T

0 v, , i 0      and the tolerance 610  . 

(ii) Set the initial trial solution for  
0  and compute

0TC( ) . 

(iii) Compute the cost gradient 

i

i

v

TC TC
TC( ) ,



  
    

  
 and the cost Hessian matrix  
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i

2 2

2

v

i 2 2

2

v

TC TC

H( )
TC TC



  
 
  

  
  
 
   

 

(iv) Find the new trial solution    
i 1 i

1

i iH TC




       
 

. 

(v) Set 1i i   and repeat steps (iii) and (iv) until max
v

TC TC
| |,| |
  

  
  

. 

(vi) Find the global minimum value
* * *

v iTC (F , , ) TC ( ).       

3.6 Illustration and Numerical Simulation 

The analytical results of the system characteristics are not sufficient to establish the 

worthiness of the model developed. To explore the practical applicability of the proposed 

M/M/1/WV model with F-policy and server breakdown in a real-time machining system, we 

consider the machine repair problem encountered in automated manufacturing systems, 

having total machine M=20 and a finite capacity (say K=19) repair shop. The failed 

machines arrive at the repair shop with rate 2   machines per day. Once the capacity is 

full, the failed machines are not allowed to join the system until the number of failed 

machines in the repair shop decreases to predefined threshold value say F=5 machines. The 

operator (i.e. server) takes startup time, before again allowing the failed machines to enter 

into the system for the repair job. During the normal busy state, the operator provides service 

with rate 25   machines per day. During the working vacation period, the operator also 

provides the service with lower rate v 20   machines per day. The Markov model deals 

with more realistic and practical scenario by assuming that the repairman is prone to be 

unpredictable breakdowns during any stage of service with rate  0.05  by noting that the 

operator is in broken down state on average 2 hours in a week of 5 days, while working 8 

hours in a day. For the smooth functioning of the system, there is the provision of recovery 

of failed operator by providing repair immediately; the average recovery time of the operator 

is 1 minutes 15 seconds and 1 minute while broken down during normal busy and working 

vacation period, respectively. For the cited illustration, the probabilities corresponding to 

8K=152 states are obtained using SOR method. Then, by using Equations (3.28)-(3.31) and 

(3.35), we compute performance indices E(N), BP , IP , DP and E(W) as follows:  

6E(N) 7.7 , BP 0.9179 , IP 0.0126 , DP 0.000669 and 0E W) 9( .31 . 
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3.6.1 Sensitivity of system descriptors with respect to performance indices 

In order to compute the numerical results for the probabilities for different states of the 

system, the coding of SOR program is done in MATLAB software. The numerical 

simulation has been done to explore the effect of varying parameters on different 

performance indices. 

In Tables 3.1-3.4 and Figures 3.2-3.5, different system performance indices are displayed for 

the default parameters set as- 

H B I S D L W 1 2 3

v 1 2M 20;F 5;m 2; 2; 2; 25; 20; 3; 0.05; 7

C 335;C 100;C 200;C 400;C 300;C 26;C 40;C 5;C

5; 60.

2;C 1;



         

                 
 

The trends of variations in different system indices viz. long run system state probabilities 

B D IP ,P ,P  and mean queue length E(N) and expected waiting time E(W)  by varying the 

different parameters are displayed in Tables 3.1 to 3.4 and Figures 3.2 to 3.5. Based on 

numerical results, we summarize the observations based on numerical results as follows: 

(i) Effect of number of machines and threshold parameter (M, F): It is noticed from the 

Tables 3.1-3.4 that on increasing the number of machines (M), performance indices namely 

expected number of failed machines E(N), expected waiting time in the system E(W) and 

state probability BP show an increasing trend, whereas probabilities IP and DP decrease. From 

Figures 3.2(i)-3.2(iii) and 3.4(i)-3.4(iii) we also notice that  expected system length E(N) and 

expected waiting time E(W) show increasing trend on increasing M. Figures 3.3(i)-3.3(iii) 

and 3.5(i)-3.5(iii) depict that on increasing the value of F, both E(N) and E(W) increase. The 

increasing trends in E(N) and E(W) by the increment in M and F are expected due to the fact 

that there are more failed machines in case of a large number of operative machines in the 

system. 

(ii) Effect of the failure rates of machines and the server (λ,α) : It is clear from Table 3.1 

and Figures 3.2(i) and 3.4(i) that the system indices namely expected number of failed 

machines in the system E(N), expected waiting time in the system E(W)  and long run 

probabilities B DP ,P  increase whereas the state probability of server being remained idle I(P )  

decreases on increasing the value of  . The effect of variation of  on E(N) as well as E(W) 

is almost negligible; this pattern can be attributed to the choice of a parameter (α)which is 

set very low by considering the realistic scenario that server rarely fails.  From Table 3.2 and 

Figures 3.2(iii) and 3.4(iii), it is also clearly noticed that the expected number of the failed 

machines E(N)  and expected waiting time of failed machines in the system E(W) increase 

slowly as the failure rate ( ) of server increases. For increasing value of failure rate (λ, a), 
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the increasing pattern in E(N) and E(W) are more prominent for the higher rates which match 

with the observations in many real-time systems. 

(iii) Effect of repair rates ( , ) v : 

Tables 3.3 and 3.4 show that on increasing the repair rate  and v , there is a decrement in 

the expected number of failed machines E(N) as well as in the expected waiting time of the 

failed machines. Figures 3.2(ii), 3.4(ii) and 3.3(iii), 3.5(iii) also depict the similar trends 

which match with our expectations. It is quite interesting finding that the expected number of 

failed machines E(N) and expected waiting time E(W) decrease up to a certain limit by 

improving the service rate and v . Figures 3.3(iii) and 3.5(iii) show that the expected 

number of failed machines E(N) and expected waiting time E(W) gradually decrease, on 

increasing the value of v  These types of variations tally with the realistic experience of 

machine repair problems of machining systems. 

(iv)  Effect of startup rate and vacation completion rate 
v(ψ,θ ) :  

Figure 3.3(i) displays that E(N) increases sharply in the beginning on increasing the value of 

  but for higher values of  , E(N) increases gradually. On increasing the value of v in the 

Figure 3.3(ii), the value of E(N) decreases sharply in the beginning but for further higher 

values of v , it attains almost constant value. In Figure 3.5(i) on increasing the value of  , 

the expected waiting time E(W) increases quickly for the lower value of F; however as F 

becomes large, it shows almost constant value. In the Figure 3.5(ii), for rising the value of 

v  expected waiting time E(W) initially decreases sharply, then after lowers down slowly. 

3.6.2  Expected cost and optimal cost parameters 

The cost function is evaluated by setting various cost elements and then optimal parameter 

value ‘F’ is determined by heuristic search approach. We first use direct substitution of 

successive values of F into the cost function given in the Equation (3.36) and examine the 

variations in the expected total cost with the increasing value of ‘ F ’. The value of ‘ F ’ 

corresponding to minimum expected cost is taken as ‘F*’. Then by using quasi-Newton 

method, the repair rates of failed machines during normal busy and working vacation states 

v( , )  are determined by minimizing the cost function *

vTC(F , , )  . Quasi-Newton 

approach is implemented by fixing the *F F to minimize the cost 
*

vTC(F , , )  until 

* * *

vTC(F , , )  is obtained. The implementation of quasi-Newton approach is done by fixing 

the maximum tolerance limit as10-6. For finding the global minimum of expected cost
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* *

vTC(F , , )  and the corresponding optimal parameters 
* and *

v , we assign following two 

sets of cost elements: 

    Case I: H B I S D L W K 1C =$50, C =$100,C =$200, C =$350,C =$400,C =$26, C =$40,C =$5,C =$3;  

    Case II: H B I S D L W K 1C =$25, C =$100,C =$100, C =$400,C =$500,C =$26, C =$35,C =$5,C =$3;  

For computing the cost function, other default parameters are chosen as-

 

v v 1 2M=16, m=2, =2, =2, =40, =20, =3, =0.05, 75, 60.         
 

For cost sets I and II, heuristic search based on the direct allocation of the threshold 

parameter F, yields the optimal values of F as *F 9 and *F 13 , respectively. It is clear 

from Table 3.5 that for fixing *F 9 , the optimal expected cost TC=$376.57 is achieved at 

optimal parameters 
* 29.47  and *

v 24.95  using the quasi-Newton method. 

For the cost set II in Table 3.6, it is observed that the minimum expected total cost converges 

to TC=$365.37 at the optimal parameters 
* * *

v(F , , ) (13,29.469,24.95).  
 For different 

values of F, the variations of the total cost of the system with other parameters *

v( , )  , ( , )   

and 
v( , )   are depicted in Figures 3.6(i-ii)-3.8(i-ii), respectively. It is observed from the 

Figures 3.6(i), 3.6(ii) and 3.7(ii) that TC is a convex function with respect to parameters 

and
*

v  respectively. From Figures 3.6(i-ii) and 3.7(i-ii), it is worth noting that the cost 

function is convex in nature for the chosen parameters. Thus the value of optimal parameters 

for minimum expected total cost can be evaluated with some classical, heuristic or meta-

heuristic techniques. It is observed that TC increases remarkably for the increasing value of 

the failure rate (see Fig. 3.7(i)) which indicates that the more often failures of machines are 

the costly affair which is quite common observation in real time system too. 

 

Table 3.1: Variations in performance indices for different values of M and  

 

 

 

 

 

 

 

 

 

M λ PB PI PD E(N) E(W) 

15 

1 0.2501 0.3786 0.000476 1.33 0.097 

2 0.6485 0.0776 0.000660 4.08 0.188 

3 0.8557 0.0526 0.000646 6.25 0.269 

20 

1 0.4034 0.2200 0.000582 2.39 0.136 

2 0.9179 0.0126 0.000669 7.76 0.319 

3 0.9456 0.0379 0.000644 10.59 0.442 

25 

1 0.6085 0.1057 0.000643 4.08 0.195 

2 0.9909 0.0025 0.000666 12.45 0.500 

3 0.9546 0.0356 0.000644 15.02 0.625 
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Table 3.2: Variations in performance indices for different value of M and  

 

 

 

 

 

 

             

 

Table 3.3: Variations in performance indices for different values of M and v  

 

 

 

 

 

 

 

 

 

Table 3.4: Variations in performance indices for different values of M and  

 

 

 

 

 

 

 

 

 

M α PB PI PD E(N) E(W) 

15 

0.05 0.6485 0.0776 0.00066 4.08 0.188 

0.10 0.6488 0.0761 0.00656 4.12 0.191 

0.15 0.6498 0.0629 0.06209 4.50 0.217 

20 

0.05 0.9179 0.0126 0.00067 7.76 0.319 

0.10 0.9146 0.0123 0.00665 7.82 0.323 

0.15 0.8804 0.0103 0.06259 8.39 0.366 

25 

0.05 0.9909 0.0025 0.00067 12.45 0.500 

0.10 0.9851 0.0026 0.00661 12.52 0.506 

0.15 0.9301 0.0036 0.06234 13.15 0.564 

M µv PB PI PD E(N) E(W) 

15 

4 0.7029 0.0527 0.0006717 5.16 0.278 

12 0.6870 0.0533 0.0006738 4.67 0.230 

20 0.6485 0.0776 0.0006600 4.08 0.188 

20 

4 0.9242 0.0109 0.0006697 8.12 0.347 

12 0.9234 0.0101 0.0006704 7.96 0.333 

20 0.9179 0.0126 0.0006693 7.76 0.319 

25 

4 0.9910 0.0025 0.0006656 12.49 0.504 

12 0.9911 0.0024 0.0006656 12.47 0.502 

20 0.9909 0.0025 0.0006656 12.45 0.500 

M µ PB PI PD E(N) E(W) 

15 

22 0.749 0.0584 0.000659 4.68 0.231 

25 0.648 0.0776 0.000660 4.08 0.188 

28 0.559 0.0959 0.000660 3.68 0.163 

20 

22 0.960 0.0097 0.000665 8.93 0.411 

25 0.918 0.0126 0.000669 7.76 0.319 

28 0.852 0.0204 0.000674 6.77 0.257 

25 

22 0.991 0.0053 0.000663 13.77 0.630 

25 0.991 0.0025 0.000666 12.45 0.500 

28 0.979 0.0025 0.000667 11.08 0.399 
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Fig. 3.2: Expected number of failed 

machine E(N) by varying (i) λ (ii) µ (iii) α 

for different values of M 

Fig. 3.3: Expected number of failed 

machine E(N) by varying (i) ψ (ii) θv (iii)     

µ v for different values of F 
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Fig. 3.4: Expected waiting time of failed 

machines E(W) by varying (i) λ (ii) µ (iii) α 

for different values of M 
 
 

Fig. 3.5: Expected waiting time of failed 

machines E(W) by varying (i) ψ (ii) θv (iii)     

µ v for different values of F 
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(i)               (i) 

         

Fig. 3.6: Total cost of the system by varying F for different value of (i) µ (ii) µ v 

(ii)                                                                       (ii) 

         

Fig. 3.7: Total cost of the system by varying F for different value of (i) λ (ii) ψ 

(iii)                                                                  (iii) 

         

              Fig. 3.8: Total cost of the system by varying F for different value of (i) θ v (ii)   
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Chapter 4 

Unreliable Server FTS with Working Vacation 
 
 

4.1 Introduction 

The finite population queueing models for the machining systems with standby support have 

been developed by many queue theorists due to its applicability in real time systems having 

failure prone components. For example, standby power equipment is required during the 

operation of a patient in any hospital due to random power breakdown. Many more instances 

of fault occurrence can be noticed in real time systems, such as power stations, 

manufacturing and production units, nuclear and power plant systems, call centers etc. Liu et 

al. (2015) studied a Markovian repairable system with cold standbys and having single 

repairman which is allowed to take working vacation and vacation interruptions after each 

repair according to Bernoulli rule. 

In any machining system while providing service, the server may break down; the service 

interruption due to server failure for a long time directly affects the profit/goodwill as well as 

the hindrance in achieving desired output. Excellent works on the machine repair problem 

with server breakdowns in different contexts were presented by (Shree et al., 2015; Kuo and 

Ke 2016), and many others.  

For the modeling of FTS, the neuro-fuzzy inference model having the provision of neural 

network trained by using the available input/output data sets can be developed. In the context 

of automated machine repair system, the adaptive neuro-fuzzy controller can be easily 

designed for the prediction of   optimal control parameters (Lin and Liu, 2003). Jain and 

Upadhyaya (2009) used ANFIS to match the soft computing based results with the analytical 

results obtained by matrix recursive method for the performance prediction of degraded 

multi-component machining system with switch over failure. They have developed Markov 

model under more realistic assumptions such as N-policy and multiple vacations. K-

heterogeneous servers and multiple vacations Markov model were proposed by Kumar and 

Jain (2013) to analyze the machining system having operating as well as inventory of 

standby machines. Further, they have matched their results obtained by SOR with ANFIS 

generated results.  

From the literature survey, it is evident that a very few research articles have appeared on the 

performance analysis of machining system with spare provisioning and operating under 
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vacation policy in particular when features of reboot and recovery are included to make 

system fault tolerant. It is noticed that there is a research gap in the area of MRP with the 

option of working vacation or complete vacation. In many real time systems, whenever 

server becomes idle, it may have the option to go for either complete vacation or working 

vacation. This situation of choice of vacation and working vacation can also be realized in 

machine repair systems. From the literature review, it is noticed that there is no work on 

queueing models developed so far by taking combination of vacation and working vacation. 

In this chapter, we are concerned with Markov analysis for the performance prediction of 

FTS by developing machine repair model with unreliable server and provision of standby 

machines. We have also incorporated the feature of server’s choice of either go for the 

complete vacation or opt for working vacation in case when the system becomes empty i.e. 

there is no repair job of failed machines. In case of no line up repair job, the server can either 

take complete vacation and remain idle or go for working vacation after taking set up time. 

The modeling of MRP with reboot and recovery processes can be implemented for the 

performance improvement of FTSs. To explore the performance metrics of the unreliable 

server machining system with standby support by incorporating assumptions of imperfect 

coverage, reboot and recovery along with the option of complete vacation or working 

vacation, a Markov model in general set up can be framed. Motivated by this fact, in the 

present chapter, we develop Markov model for the unreliable multi-component fault tolerant 

system by including the features of (i) multiple types of warm standbys, (ii) F-policy, (iii) 

optional working vacation, (iv) startup time (v) imperfect coverage. The noble feature of the 

present investigation is to allow the server, either to take full vacation or to continue the 

repairs to failed machines with lower rate (i.e. working vacation) during the vacation also. 

For the maintainability of FTS at optimum cost, the optimal value of control repair parameter 

is suggested. 

The successive over relaxation (SOR) method has been used to solve the set of equations 

governing the model in order to determine the steady state probabilities associated with 

different system states. After solving the set of equations governing the concerned FT model, 

the impact of system descriptors on the performance metrics is examined by taking an 

illustration and conducting numerical simulation. The hybrid soft computing technique 

known as adaptive neuro-fuzzy inference system (ANFIS) is implemented to compare the 

results obtained by SOR method. The remaining contents of the chapter are structured in 

different sections. In Section 4.2, we describe the model whereas in Section 4.3, difference 

equations are constructed on the basis of birth-death process. In Section 4.4, various system 
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performance metrics are formulated in terms of the steady state probabilities. In Section 4.5, 

we present the numerical simulation results and sensitivity analysis. 

4.2 Model Description 

Consider a finite population Markov M/M/1/K/V+WV model under admission control F-

policy for the performance analysis of the multi component fault tolerant system. The fault 

tolerant machining system consists of M identical operating machines and is supported with

k types of warm standbys and an unreliable server. There are (1 )iS i k  standby machines 

of type i  such that the total standby machines are ( )

1 2 ...k

kS S S S S     . It is assumed 

that (1 1)thi i k    type standbys are used before ( 1)thi  type standbys to replace the failed 

machines. The operating as well as standby machines are prone to failure. The life time of 

operating (standby) machines are assumed to be exponentially distributed with parameter

( )a . Whenever an operating machine breaks down, it is immediately replaced by the 
thi  type 

of standby machine, if available. If all the standby machines are used in replacing the failed 

machines and some more machines fail, then the system operates in short mode till there are 

( )m M operating machines in the system. The system fails with the failure of ( )thM S m 

machine, i.e. as soon as number of operating machines drops below .m  The switchover of 

failed machines is not perfect i.e. the switch over of the failed machine takes place by 

standby machine with the coverage probability c. Whenever the switchover of failed machine 

by standby machine is unsuccessful with probability (1 )c , the system goes to unsafe mode. 

The recovery as well as reboot processes are governed by the exponential distribution. We 

assume that in the unsafe mode, the system is automatically cleared by a reboot process with 

rate r . 

Once the system becomes empty, i.e. there is no job of repair, the server can take either 

complete vacation with probability ( 1 )p p  or working vacation with probability p , But 

before going for the vacation (working vacation), the system also needs some set up time 

which is exponentially distributed with rate 
0 ( ). The repair time of failed machines during 

normal busy period (working vacation) is assumed to be governed by exponential 

distribution with mean1/ (1/ )v  . The duration of the working vacation period (vacation 

period) follows the exponential distribution with mean 1

v
 . The server from vacation returns 

to working vacation (normal busy) mode with rate ( )v  after completing a random duration 
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which is exponential distributed. The life time and repair time of the server are assumed to be 

exponentially distributed with mean rate a and b , respectively. 

The control of the arrivals of failed machines in the system is done according to the F-

policy which states that when the system capacity becomes full, from the working vacation 

(normal busy period) the server moves to F-policy mode by taking set up time 1

w
 ( 1

b
 ). In 

F-policy mode, the system forbids any broken down machines from entering in the system 

until workload of repair job of failed machines ceases to a pre-specified threshold level

(0 1)F F K   .When the system again reaches to the threshold level ‘F’ of the queue 

length, the server takes a startup time governed by exponential distribution with parameter 

;  after completion of set up, the failed machines start to enter in the system. It is assumed 

that all the stochastic processes, associated with the set up and vacation (working vacation), 

reboot and recovery, and life time and repair times of machines, which are involved in the 

system, are independent and follow the Markovian property. 

The bivariate Markov process ( ) {( ( ), ( )); 0}        is used to develop the Markov 

model. Here ( )  and ( )   denote the number of failed machines in the system and the state 

of the server at time , respectively.  

0, Server ison vaction mode(VAC);

1, Server isoperating in working vaction mode(BWV);

2, Server is brokendown while failed from normal busy

modeand working vacation mode(DBW);

3, Server isoperating in normal busy (NOB);

4, Serve

ξ(τ)=

r isoperating in busy modeand the failed machinesare

not allowed due to F-policy (BNF);

5, Server is under repair when broken down during the busy mode

of theserver and the failed machinesare not allowed due to

F-policy (DBF);

6, Server is in recoverystateduring the vacation period (RCV);

7, Server is in reboot stateduring vacation (RBV);

8, Server is in recoverystateduring working vacation period (RCW);

9, Server is in reboot stateduring working vacation period (RBW);

10, Server is in recoverystateduring brokendown period (RCD);

11, Server is in reboot stateduring brokendown period (RBD);

12, Server is in recoverystate whileoperating in normal busy mode(RCB);

13, Server is under reboot state while rendering theservicein normal

busy mode(RBB);






























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Fig. 4.1: State transition diagram 

The steady state probabilities associated with state space (see Fig. 4.1.) 

{( , ) | 0,1,2,...,5; 0,1,..., } {( , ) | 6,7,...,13; 1,1,..., 1}i n i n K i n i n K         

are denoted by ,i nP = lim
t

 Prob. ( ) , ( )i n     . 

4.3 Governing Equations 

To evaluate the queue size distribution of the number of failed machines in the system, the 

governing equations are framed by setting the appropriate rates of underlying birth-death 

process. The law of flow balance is used to construct these equations. Now, we define the 

failure rate depending upon the number of failed machines as follows:  

 

 

 
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For the brevity, we have used the notation for failure rate of standby machines by 

 

 
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 

 
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(i) Server vacation (VAC) state when ( ) 0   : 

As soon as the server becomes free i.e. when there is no job of repairing of the failed 

machines in the system, it reaches to vacation state. Now, we frame Chapman-Kolmogorov 

equations for the states{(0, ); 0,1,..., }n n K as follows: 

0 0 0,0 1,0 0 3,0 0 4,0( )b va P P p P p P                (4.1) 

0, 1 0, 1 0, 1 0, 1( ) ; 1 1n n b n n n n na P a P P r P n S                 (4.2) 

0, 1 0, 1 0, 1 0, 1( )S b S S S S SP a P P r P                (4.3) 

0, 0, 1 0, 1( ) ; 1 1n b n n nP P r P S n K               (4.4) 

0, 1 0, 1( )b K K KP P             (4.5) 

(ii) Server working vacation (BWV) state when ( ) 1   : 

In case of working vacation state of the server, the following steady state equations hold: 

0 0 1,0 1,1 2,0 3,0 4,0 0,0( )v v va P P P p P p P P                    (4.6) 

1, 0, 1, 1 1, 1 1 1, 1

1, 1 2,

( )

;1 1

n n v v n n n n n n

v n n

a P P P r P a P

P P n S

     

 

   



       

         
(4.7) 

1, 0, 1, 1 1, 1 1 1, 1 1, 1 2,( )S v v S S S S N S v S SP P P r P a P P P                   
 

(4.8) 

1, 0, 1, 1 1, 1 1, 1 2,( ) ; 1 1n v v n n n n v n nP P P r P P P S n K                      (4.9) 

1, 0, 1 1, 1 2,( )w v K K K K KP P P P          
      

(4.10) 

(iii) Server broken down state (DBW) when ( ) 2   : 

When the server is under repair while broken down during working vacation ( ) 1J   and 

normal busy state ( ) 3   , for the states{(2, ); 0,1,2,..., }n n K , we frame the steady state 

equations as follows: 

0 0 2,0 1,0 3,0( 2 )a P P P              (4.11) 

2, 1, 3, 2, 1 2, 1 1 2, 1( 2 ) 1 1n n n n n n n n na P P P P r P a P n S                   (4.12) 

2, 1, 3, 2, 1 2, 1 1 2, 1( 2 )S S S S S S S SP P P P r P a P             
    

(4.13) 
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2, 1, 3, 2, 1 2, 1( 2 ) 1 1n n n n n nP P P P r P S n K                  (4.14) 

2, 1, 3, 1 2, 12 K K K K KP P P P       
       

(4.15) 

(iv) Server normal busy (NOB) state when ( ) 3   : 

When the server is operating in busy mode to provide the repair of the failed machines, the 

steady state equations are framed for the states{(3, ); 0,1,..., }n n K as follows: 

0 0 0 3,0 2,0 3,1 0,0 1,0( ) b va p p P P P P P              
    

(4.16) 

3, 0, 1, 2, 3, 1 3, 1 1 3, 1

3, 1 4,

( )

; 1 1

n n n b n v n n n n n n

n n

a P P P P P r P a P

P P n S

      

 

   



        

    
  

(4.17) 

3, 0, 1, 2, 3, 1 3, 1

1 3, 1 3, 1 4,

( )S S b S v S S S S

S S S S

P P P P P r P

a P P P

      

 

 

  

      

  
    

(4.18) 

3, 0, 1, 2, 3, 1 3, 1

3, 1 4,

( )

; 1

n n b n v n n n n

n n

a P P P P R r Q

P P S n F

     

 

 



      

    
    (4.19) 

3, 0, 1, 2, 3, 1

3, 1 3, 1

( )

; 1 1

n n n n v n n n

n n

a P P P P P

r P P F n K

      





 

      

     
    

(4.20) 

3, 3, 1, 2, 1 3, 1( )b K K v K K K KP P P P P           
     

(4.21) 

(v) Server is in normal busy state and the admission of failed machines is not allowed   

(BNF) when ( ) 4   : 

Here steady state equations are framed for the states ((4, ); 0,1,..., )n n K as 

0 4,0 4,1 5,0( ) fp p P P P               (4.22) 

4, 4, 1 5,( ) 1f n f n nP P P n F               (4.23) 

4, 4, 1 5,( ) 1 1f n f n nP P P F n K         
     

(4.24) 

4, 1, 3, 5,( )f K w K b K nP P P P       
       

(4.25) 

(vi) Server is in broken down state from busy state (DBF) when ( ) 5   : 

In this case for states ( ) 5   , the steady state equation is: 

5, 4, ; 0n nP P n K   
        

(4.26) 

(vii) Server is in recovery state when ( ) 6,8,10,12   : 

From ( ) 0,1,2,3    states, due to failure detection with probability c , the system can go to 

recovery state ( ) 6,8,10,12   . For the recovery states ( , )i n , the steady state equations are 

framed as: 
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6 2 , 1 , ; 0,1,2,3; 1 1i n n i nP c P i n K             (4.27) 

(viii) Server is in reboot state when ( ) 7,9,11,13   : 

From ( ) 0,1,2,3     state, due to unsuccessful failure detection with probability (1 )c , the 

system can go to reboot state i.e. ( ) 7,9,11,13   states. Here, the steady state equations are 

framed as: 

7 2 , 1 , ; 0,1,2,3; 1 1i n n i nr P c P i n K           (4.28) 

Chapman-Kolmogorov equations framed for the continuous Markov chain of concerned 

model are difficult to solve analytically due to cumbersome algebraic manipulation involved 

in recursive approach. However, numerical method can be easily implemented to obtain the 

probabilities associated with a large state space   for which steady sate equations are already 

constructed. In the present investigation, the steady state equations (4.1)-(4.28) are solved 

numerically by using well known successive over relaxation (SOR) method, which is a 

powerful tool for the computation purpose of set of equations. In this method, the 

convergence rate is accelerated by selecting the appropriate relaxation parameter lying in 

interval [1, 1.25]. 

4.4 Performance Measures 

The prime aim of determining probabilities in previous section is to formulate various 

metrics to examine the performances of the concerned fault tolerant system. The expressions 

for the mean queue length of the failed machines in the system, effective joining rate of 

failed machines, throughput of the system etc. are established as follows: 

4.4.1 Queueing indices 

(i) Mean queue size of failed machines E(N) is 

5 13 1

, ,

0 0 6 1

( )


   

  
K K

i n i n

i n i n

E N n P n P      (4.29) 

(ii) The throughput   is  

1 1

1, 3, 4,

1 1 1

K K K

v n n f n

n n n

TP P P P  
 

  

          (4.30) 

(iii) Average number of available standby machines is 

   
3 13

, ,

0 0 6 0

( )
S S

i n i n

i n i n

E S S n P S n P
   

         (4.31) 

(iv) The effective rate by which failed machines join the waiting queue, is given by 

 
3 1 3

, ,

0 0 0

S K

eff n n i n n S i n

i n i n S

a P P  




   

         (4.32) 
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(v) Machine availability is obtained using 

 
1

E N
MA

M S
 


        (4.33) 

4.4.2 Long run probabilities  

Now we establish long run probabilities associated with different states of the server which 

may be busy ( BP ), broken down and under repair ( BDP ), on vacation ( VP ) and on working 

vacation ( )WVP  respectively. Thus 

1 1

1, 3, 4,

1 1 1

K K K

B n n n

n n n

P P P P
 

  

           (4.34) 

1 1

2, 10, 11, 5,

0 1 1 0

K K K K

BD n n n n

n n n n

P P P P P
 

   

           (4.35) 

1 1

0, 6, 7,

0 1 1

K K K

V n n n

n n n

P P P P
 

  

           (4.36) 

1 1

1, 8, 9,

0 1 1

K K K

WV n n n

n n n

P P P P
 

  

           (4.37) 

4.4.3 Cost function 

To quantify per unit time total cost ( ) TC  spent for the system, the various cost factors 

related to several system indices of Markovian model of fault tolerant system are taken into 

consideration. Now, we define per unit cost related to different activities as follows: 

HC : Holdingcost per unit timeassociated witheachdown machine.  

BC : Cost per unit timeincurred when theserver isin normalbusystate. 

BDC : Cost per unit timeincurred when theserver isbrokendownandisunder repair. 

vC :  Cost per unit timeincurred when theserver ison vacation. 

wvC : Cost incurred when theserver isin working vacationstate.  

FC : Cost incurred for providingservice to thefailed machines when theadmission

of failed machinesarenot allowed.
 

AC : Cost incurred for providing the repair to thefailed machines when theadmission

of failed machinesareallowed.
 

The total cost per unit time incurred on the system is framed by summing different cost 

factors multiplied by respective system indices as follows: 

 

( ) ( )        H B B BD BD v V wv wv F f AC E N C P C P C P C P C CTC   (4.38) 



80 
 

 

4.5 Numerical Results 

To reveal the practical applicability of multi-component fault tolerant system operating in 

real time machining environment, numerical illustration is taken. To compute numerical 

results, we fix the various parameters as  

0

10, 8, 4, 2, 0.5, 0.2, 0.5, 4, 0.05, 2,

1, 1.5, 1.5, 1.5, 0.5, 0.5, 1.5, 1.0, 0.6.

f

v b w

K M S m c a

r p

    

       

          

         
 

The sensitivity of parameters has been examined to reveal the impact of varying system 

descriptors on different system metrics. The numerical results displayed in the form of 

graphs can be easily interpreted to understand the behavior of FTS system.  

Table 4.1: Cost elements associated with various system indices 

 

 

 

 

     Table 4.2: Optimal repair rate *  and optimal cost ($) 
 

The optimal repair rate and associated minimum total cost are obtained for the two sets of 

cost factors and are displayed in the Table 4.1.  

The optimal repair rate ' '  is obtained by computing the cost TC which is also depicted in 

Figures 4.2 (i-ii). Table 4.2 depicts the optimal repair rate and corresponding optimal total 

cost ( *)TC   for different sets of cost elements. 

The impact of system descriptors on different indices are examined by displaying the 

numerical results in Tables 4.4-4.5 and Figures 4.4(i-ii)-4.5(i-ii). The expected number of 

failed machines summarized in Tables 4.4-4.5 indicates that E(N) increases as   grows up 

but decreases as   increases. The long run probabilities ,BD BP P  and total cost incurred on 

the system also increases as   increases but lowers down as   increases. It is also found that 

Cost Set HC  
BC  

BDC  
VC  

WVC  
FC  

AC  

I $80 $20 $30 $5 $20 $1 $6 

II $70 $10 $10 $5 $20 $1 $6 

( ,  ) (0.5, 1) (1, 1) (1.5, 1) (1.5, 0.5) (1.5, 1.5) (1.5, 2.5) 

*  7.967 8.479 8.802 8.084 8.366 8.518 

Optimal cost 300.7518 295.1175 330.6238 330.6238 337.9267 343.4445 
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the mean number of standby machines decreases (increases) as  ( ) increases. From Tables 

4.4-4.5, we notice that the impact of c  on various system indices is also significant.  

Neuro-fuzzy technique is used to demonstrate the feasibility of soft computing approach 

for the quantitative assessment of various performance indices of the fault tolerant MRP in 

particular when input parameters are not crisp. The results by ANFIS approach have been 

computed by using neuro-fuzzy tool in Matlab software. The failure rate ( )  is treated as 

linguistic variable in the context of the fuzzy system. The membership function for the 

failure rate of operating machine ( )  is considered as Gaussian function.   

Table 4.3: Linguistic values of the membership functions for input parameter    

Input variable No. of membership 

functions 

Linguistic values 

Failure rate of operating unit 

  

5 
•  Very low •   Low• Average 

•  High  •  Very high 

Table 4.3 provides the linguistic values of membership functions corresponding to the input 

parameter . The shape of the corresponding membership function treated as Gaussian 

function is depicted in Figure 4.3. The numerical results corresponding to ANFIS are plotted 

by tick marks in Figures 4.4(i-ii)-4.5(i-ii) whereas the continuous curves are drawn for the 

results computed by using SOR method. 

From Figure 4.4(i), we see that as the rate of failed machine ( ) increases, E(N) initially 

increases rapidly and then after becomes almost constant. The trend of E(N) is plotted in 

Figure 4.4(i); a sharp increment is noticed up to 1  , and then after it becomes 

asymptotically stable as  grows. From Figures 4.4(ii) and 4.5(i), it is clear that the expected 

number of standby machines E(S) and machine availability (MA) decrease rapidly initially 

but as grows, these indices become almost constant i.e. the higher value of   has negligible 

impact on E(S) and machine availability ( )MA . From Figure 4.5(ii), it is clearly seen that as 

failure rate of operating unit ( ) grows up, the throughput of the system ( )TP increases 

rapidly initially and then after gradually becomes almost constant. 

The Figures 4.4(i-ii)-4.5(i-ii) exhibit almost coincident values for both analytical and 

ANFIS results. Based on critical and comparative analysis of graphs, we conclude that the 

SOR results are very close to the results shown by neuro-fuzzy results as such neuro-fuzzy 

controller can be developed for the FTS to track the performance of many real time 

embedded systems. 
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Table 4.4: Effect of λ and c on various system indices 

 

 

 

 

 

 

                     

Table 4.5: Effect of µ and c on various system indices 

 

 

 

 

 

 

 

 

             

(i)                                                                (ii) 

Fig. 4.2: Variation of TC with respect to  for different value of (i) and (ii)   

325

335

345

355

365

375

5 6 7 8 9 10 11 12 13 14 15

TC

µ

γ=0.5 γ=1.5 γ=2.5

280

290

300

310

320

330

340

5 6 7 8 9 10 11 12 13 14 15

TC

µ

θ=1 θ=1.5 θ=2

c λ E(N) E(S) BDP  BP  TC 

 

0.5 3.21 2.712 0.00938 0.1732 277.4 

0.3 1 4.11 2.042 0.01398 0.2241 322.5 

 

1.5 4.51 1.773 0.01668 0.2475 342.3 

 

0.5 3.21 2.710 0.00935 0.1722 277.4 

0.6 1 4.10 2.044 0.01393 0.2226 322.2 

 

1.5 4.49 1.779 0.01661 0.2457 341.6 

 

0.5 3.21 2.707 0.00933 0.1713 277.4 

0.8 1 4.10 2.046 0.01388 0.2211 321.8 

 

1.5 4.48 1.784 0.01654 0.2440 341.0 

c µ E(N) E(S) BDP  BP  TC 

 

2 5.082 0.868 0.0335 0.496 280.3 

0.3 3 4.732 1.293 0.0284 0.412 269.3 

 

4 4.631 1.496 0.0252 0.359 271.2 

 

2 5.076 0.869 0.0334 0.491 279.9 

0.6 3 4.722 1.296 0.0283 0.407 268.8 

 

4 4.618 1.501 0.0251 0.355 270.5 

 

2 5.070 0.871 0.0333 0.486 279.5 

0.8 3 4.713 1.299 0.0282 0.403 268.2 

 

4 4.606 1.506 0.0251 0.351 269.8 
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 Fig. 4.3: Membership functions for input variable   

 

       

(i)                                                            (ii)     

Fig. 4.4: Variation of (i) E(N) and (ii) E(S) with respect to λ for different value of θ 

used in SOR and ANFIS 
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Fig. 4.5:  Variation of (i) MA and (ii) TP with respect to λ for different value of θ 

used in SOR and ANFIS  
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Chapter 5 

Unreliable Server FTS with Working vacation and Working 

Breakdown 
 

5.1 Introduction 

In queueing literature, some works have been done for the finite population unreliable 

queueing models with standby support by many prominent researchers to analyze the 

reliability indices. Wang and Kuo (2000) studied a series system with the provision of the 

mixed standby support. They have evaluated MTTF and availability for four configuration of 

series system. Further, Jain et al. (2004) developed the finite population model by 

considering the N-policy for machine repair problems. They have used the concept of 

reneging and warm standby in order to evaluate MTTF and reliability indices of machining 

system. To make the system more closer to realistic scenarios, Jain (2016) studied a 

repairable redundant system by incorporating mixed standbys, imperfect repair, reboot and 

switching failure.  

The failure process of any machining system can be governed by ‘the statistical properties of 

the time between consecutive failures’. In many machining systems, it is assumed that upon a 

failure, the machining system stops service completely and goes under a repair process. Also, 

a failed component becomes operational again after it has been repaired. The concepts of 

failure prone machines in machining system maintained by repairman and supported by 

standbys, are worthwhile for the modeling of many real time systems. In queueing literature, 

there has been a growing interest in the Markov analysis of unreliable server machining 

system which has numerous applications in real time fault tolerant system. The related 

contributions of the queue theorists on the machining system with unreliable server can be 

seen in the works of (Ke et al., 2014; Yang and Chiang, 2014). Markov model for the 

machine repair problem for the manufacturing system with N-policy, imperfect coverage, 

reboot delay and server breakdown was proposed by Jain et al. (2014). They have used the 

matrix method to evaluate the queue size distribution for the repairable machining system.  

This chapter presents a finite population Markov machine repair model for the machining 

system with the provision of fault tolerance. The proposed model incorporates many realistic 

assumptions viz. (i) working breakdown of the server, (ii) warm standbys and (iii) working 

vacation. The performance model of the fault tolerant machining system can facilitate the 
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performance metrics which may be helpful in upgrading the maintainability and redundancy 

policies of the concerned system. The remaining contents of the chapter are structured in 

different sections. In Section 5.2, we describe the model whereas in Section 5.3, differential 

difference equations for the system states are formulated on the basis of birth-death process. 

The spectral theory based matrix method is employed in Section 5.4 to evaluate the queue 

size distribution. In Section 5.5, performance metrics are formulated in terms of transient 

probabilities. In Section 5.6, we provide numerical simulation by taking an illustration.  

5.2  System Description 

Consider a finite Markov model for multi-component machining system comprising of M 

operating and total 
1

( )
k

i

i

S S


 mixed standbys where thk  type of standby machines available 

are kS . The operating (standby) machines are assumed to be prone to breakdown with rate

( )a , where (0 )a   . The life time of operating (standby) machines are assumed to be 

exponentially distributed with rate ( )a . In case when the operating machine fails, it is 

immediately replaced with (1 )thi i k  type of standby machine ( )iS available. The replaced 

standby machines have the similar failure characteristic as that of operating machine. The 

system works in degraded mode, when the number of operating machine lowers down to

( )M l . 

The repair time of failed machines during operating state, working vacation and working 

breakdown are assumed to be governed by exponential distribution with rate v d, ,   , 

respectively. As soon as there is no repair job left in the system, the server goes for working 

vacation state with rate   and provides service with rate v   .The server is prone to failure 

during operation and working vacation state. When the server fails during the busy state, it 

can also repair the failed units with degraded repair rate d . The life time and repair time of 

the server are assumed to be exponentially distributed with mean rate and , respectively. 

The duration of the working vacation period follows the exponential distribution with mean

1/  . 

The bivariate stochastic process ( ) { ( ), ( ); 0}         is used to develop Markov model. 

Here ( )   denote the number of failed units in the system and ( )( ( ) 0,1,2,..., )L      and 

the state of the server respectively at time . Now we define ( )   as 



87 
 

0 1 2 L-1 L

0 1 2 L-1 L

00 11 22 L-1L-1 LL

0 1 2 L-1 L

1n  n 1n 

0 1 2 2n 1n
n 1n 2L

1L

0 1
2 2n

1n n 1n
2L

1L

0 1 2 2n
1n n ( ) 1kS 

 2L
1L

0 1 2 2n
1n n 1n

2L 1L

v v v v v v v v

       

d d d d d d d d

v v v
v v

v v

v v v v
v v v



     





























3

2

1

4

1n  n 1n 

1n  n 1n 

1n  n 1n 

( ) 

( ) 

    

Fig. 5.1: State transition diagram of M/M/1/WV FTS 

1, Server is in operatingstate;

2, Server is in working vacation state;

( ) 3, Server is under repair when broken down during working vacation state;

4, Server is under repair when broken down during operatingstateand

can perform repai

  

r job with degraded rate.







  

The failure rate of units depends upon the number of operating as well as available standby 

machines, and is given by: 

 

 

1 1 1

2

( ) ( 1) ( )

1

( ) ( ) ( )

( ) ; 0

; ; 2,3,4,...,

; ( 1)

k

i i

i

k
j j j

m j i i

i j

k k k

M S a S m a m S

M S m a S a S m S j k

M S m S m L M S l





 

  
       

 


        



        





  

5.3 Governing Equations 

To evaluate the system size distribution associated with the number of failed machines, and 

different value of ( ) 1,2,3,4   , the differential difference equations are framed by setting 

the appropriate rates of underlying birth-death process. We apply the law of flow balance to 

construct the following governing equations: 

(i) ( ) 1   : The server is in operating state. 

1,0

0 1,0 1,1 4,0

( )
( ) ( ) ( ) ( )

dP
P P P

d


        


     (5.1) 
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1,

1, 1 1, 1 2,

1, 1 4,

( )
( ) ( ) ( ) ( )

( ) ( ); 1 2

m

m m m m m

m m

dP
P P P

d

P P l L

 




         



           
(5.2) 

1, 1

1 1, 1 2 1, 2 2, 1 4, 1

( )
( ) ( ) ( ) ( ) ( )

L

L L L L L L

dP
P P P P

d



     


          

   
(5.3) 

1,

1 1, 1

( )
( )

L

L L

dP
P

d
 


  


        (5.4) 

(ii) ( ) 2   : The server is in working vacation state. 

2,0

0 2,0 2,1 3,0 1,0

( )
( ) ( ) ( ) ( ) ( )v v v

dP
P P P P

d


           


   (5.5) 

2,

2, 1 2, 1

2, 1 3,

( )
( ) ( ) ( )

( ) ( ); 1 2

m

m v v m m m

v m v m

dP
P P

d

P P l L

 




        



      

      (5.6) 

2, 1

1 2, 1 2 2, 2 3, 1

( )
( ) ( ) ( ) ( )

L

L v v L L L v L

dP
P P P

d



    


          


  (5.7) 

2,

1 2, 1

( )
( )

L

L L

dP
P

d
 


  


        (5.8) 

(iii) ( ) 3   : The server is broken down while failed during working vacation state.

3,0

0 3,0 2,0

( )
( ) ( ) ( )v v

dP
P P

d


      

       (5.9) 

3,

3, 1 3, 1 3,

( )
( ) ( ) ( ) ( ); 1 2

m

m v m m m v m

dP
P P P m L

d
 


           


  (5.10) 

3,

1 3, 1

( )
( )

L

L L

dP
P

d
 


  


        (5.11) 

(iv) ( ) 4   : The server partially broken down while failed during operating state 

                   and performing repair job in degraded mode. 

4,0

0 4,0 4,1 1,0

( )
( ) ( ) ( ) ( )d

dP
P P P

d


        

      
(5.12) 

4,

4, 1 4, 1 4, 1

4,

( )
( ) ( ) ( ) ( )

( ); 1 2

m

n d m m m d m

m

dP
P P P

d

P m L

  


        



         
(5.13) 

4, 1

1 4, 1 2 4, 2 4, 1

( )
( ) ( ) ( ) ( )

L

L d L L L L

dP
P P P

d



    


        


   (5.14) 

4,

1 4, 1

( )
( )

L

L L

dP
P

d
 


  


        (5.15) 
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5.4 The Mathematical Analysis 

In this section, we use spectral theory by employing the ‘matrix method’ for solving 

differential-difference Equations (5.1)-(5.15). First, we take Laplace transforms of Equations 

(5.1)-(5.15) and then put them in the form of block matrix equations.
 

Laplace transforms of Equations (5.1)-(5.15) yield the following set of equations:

 

(i) ( ) 1   : The server is in operating state. 

* * *

0 1,0 1,1 4,0 1,0( ) ( ) ( ) ( ) (0)s P s P s P s P          (5.16) 

* * * * *

1, 1 2, 1 2, 1, 1 4,

1,

( ) ( ) ( ) ( ) ( ) ( )

(0); 1 2

m m m m m m m

m

s P s P s P s P s P s

P m L

       

      
(5.17) 

* * * *

1, 1 2 2, 2 2, 1 4, 1 1, 1( ) ( ) ( ) ( ) ( ) (0)n L L L L L Ls P s P s P s P s P             (5.18) 

* *

1, 1 1, 1 1,( ) ( ) (0)L L L LsP s P s P          (5.19) 

(ii) ( ) 2   : The server is in working vacation state. 

* * * *

0 2,0 2,1 3,0 1,0 2,0( ) ( ) ( ) ( ) ( ) (0)v v vs P s P s P s P s P         (5.20)

* * * *

2, 1 2, 1 2, 1 3,

2,

( ) ( ) ( ) ( ) ( )

(0); 1 2

m v v m m m v m v m

m

s P s P s P s P s

P m L

        

      
(5.21) 

* * *

1 2, 1 2 2, 2 3, 1 2, 1( ) ( ) ( ) ( ) (0)L v v L L L v L Ls P s P s P s P              (5.22) 

* *

2, 1 2, 1 2,( ) ( ) (0)L L L LsP s P s P          (5.23) 

(iii) ( ) 3   : The server is broken down while failed during working vacation state. 

*

0 3,0 2,0 3,0( ) ( ) ( ) (0)v vs P s P t P          (5.24) 

* * *

3, 1 3, 1 3, 3,( ) ( ) ( ) ( ) (0); 1 1m v m m m v m ms P s P s P s P m L           (5.25) 

* *

3, 1 3, 1 3,( ) ( ) (0)L L L LsP s P s P          (5.26) 

(iv) ( ) 4   : The server partially broken down while failed during operating state  

                  and performing repair job in degraded mode. 
* * *

0 4,0 4,1 1,0 4,0( ) ( ) ( ) ( ) (0)ds P s P s P s P    
     

(5.27) 

* * * *

4, 1 4, 1 4, 1 4,

4,

( ) ( ) ( ) ( ) ( )

(0); 1 2

m d m m m d m m

m

s P s P s P s P s

P m L

      

       
(5.28) 

* * *

1 4, 1 2 4, 2 4, 1 4, 1( ) ( ) ( ) ( ) (0)L d L L L L Ls P s P s P s P             (5.29)

* *

4, 1 4, 1 4,( ) ( ) (0)L L L LsP s P s P  
       

(5.30) 
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The above set of Equations (5.16)-(5.30) can be written in matrix form as: 

 (s) (s) (0)*
Q P P         (5.31) 

where 

11 12 14

22 23

32 33

41 44

(s)

 
 
 
 
 
  

Λ Λ 0 Λ

0 Λ Λ 0
Q

0 Λ Λ 0

Λ 0 0 Λ

 

(s)Q is square matrix of order 4(L+1) and is constructed by taking coefficients of unknown 

probabilities. Here all sub matrices 
i j[ ] and null matrixes ‘0’ are of order (L 1)  and are 

given by 

0

1

0

2

1

11

1

1

0 ... 0 0

... 0 0

0 ... 0 0

;

0 0 0 ...

0 0 0 ...

L

L

s

s

s

s

s




 


 

 




 




 



 

Λ





   
  

   
  
   

   
 

       
  
 
 

       
 

  
     

  

 

12

0 0 ... 0 0

0 0 ... 0 0

0 0 ... 0 0

;
0 0 0 ... 0

0 0 0 ... 0 0









 
 
 
 
 
 
 
 
 
 
 
  

Λ

 

13 (L+1) 23 v (L+1) 32 v (L+1) 41 (L+1), , , ;    Λ I Λ I Λ I Λ I
 

where (L+1)I is unit matrix of order (L+1).  
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0

1

0

2

1

21

1

1

0 ... 0 0

... 0 0

0 ... 0

;

0 0 0 ...

0 0 0 ...

v

v

v

v

v

v

v

v

L v

v

v

v

L v

s

s

s

s

s






 
 

 

 
 

 

 


 



  

Λ





   
  

  
   
   

   
 

   
      

 
 

        
 
   

  
   

 
 

 

 
 

 

 

 

0

0 1

1 2

33

1

1

0 0 ... 0 0

0 ... 0 0

0 ... 0 0

;

0 0 0 ... 0

0 0 0 ...

v

v

v

L v

v

L

s

s

s

s

s

 

  

  

 




Λ





   
 

   
   
 

  
   
 

  
 
 

 

 0

1

0

2

1

44

1

1

0 ... 0 0

... 0 0

0 ... 0

;

0 0 0 ...

0 0 0 ...

d

d

d

d

d

L

d

d

dL

s

s

s

s

s

  


 

 


 

 




 





Λ





   
 

  
      

  
  

   
 
 

  
   

   
  
   

  
 
 

 

Also, denotes the unknown vector 
*(s)P in partitioned form as 

* * * * *

1, 2, 3, 4,P ( ) [P ( ),P ( ),P ( ),P ( )]T

m m m ms s s s s  

where 

* * * * * T

1,m 1,0 1,1 1,L-1 1,L(s) [ (s), (s),..., (s), (s)]P P P P P ;  
* * * * * T

2,m 2,0 2,1 2,L-1 2,L(s)=[ (s), (s),..., (s), (s)]P P P P P  

* * * * * T

3,m 3,0 3,1 3,L-1 3,L(s)=[ (s), (s),..., (s), (s)]P P P P P ; 
* * * * *

4,m 4,0 4,1 4,L-1 4,L(s)=[ (s), (s),..., (s), (s)]T
P P P P P . 

Here (4L 4) 1(0) [1,0,0,...,0,0,0,0,...,0,0,0,0,...,0]P   is an initial vector. 

Now, we apply Crammer’s rule on matrix )(sQ to compute the probabilities
*

,P ( ),i m s
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( 1,2,3,4; 0,1,..., )i m L  as: 

j+1*

i,m

det[ (s)]
(s) , ( ( 1)( 1) ; 1,2,3,4 0,1,2,..., )

det[ (s)]
j i L m i m L     

Q
P =

Q
  (5.32) 

where j+1(s)Q ( ( 1)( 1) 1; ,1,2,3,4 0,1,2,..., )j i L m i m L        is obtained by replacing 

thj column of det[ (s)Q ] with the elements of initial vector (0)P .  

To solve the Equation (5.31), we proceed to calculate the characteristic roots of matrix (s)Q . 

It is noted that 0s   is one of the roots. Let ( )s d  , so that we have 

Q   d ( Q d I )          (5.33) 

Now Equation (5.31) converts into 

* *( ) ( ) ( ) ( ) (0)Q d P s Q d P s P            (5.34) 

Suppose that other roots in which r are real roots and n are complex roots in pairs are 

denoted by: 

1 2, ,..., rd d d and
1 1 2 2( , ), ( , ),..., ( , ),r r r r r n r nd d d d d d     

respectively. 

Now, we get 

| (s) |Q
1 1

( ) ( )( ) 

 

   
      

   
 

r n

j r j r j

j j

s s d s d s d      (5.35) 

From Equations (5.32) and (5.35), we get 

*

,

j r+j r+j

j=1 j=1

| Q(s) |
(s) , =1, 2, 3, 4, =0,1,2,...,L

s (s+d ) (s+d )(s+d )

i m r n
P i m

   
   
   
 

  (5.36)     

Using partial fractions, we expand Equation (5.36), as follows 

* 0 1
,

1 +1 +1 + +

a b + ca a b + c
( ) + +...+ + +...+

+ d + d ( + d )( + d ) ( + d )( + d )

ss
=

s s s s s s s

n nr r r
i m

r r r r n r n

P s

 

(5.37) 

Here 0a  and qa ( 1,2,..., )q r  are real numbers calculated as:  

 

1

0 l

j l+j l+j

j=1 j=1

(s)
a

d d d




 
 
 

 

Q j

n

        (5.38) 

1 p

l

q j q l+j q l+j q

j=1 j=1
j¹q j¹q

(-d )
a ,q=1,2,..., .

(-d ) (d -d ) (d -d ) (d -d )

j

q

n

r
Q

=


   
   
   
      

 

    (5.39) 

Let complex characteristic root r pd  is a combination of real part pu and imaginary part pv .  
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Then  

p p

1 1

( )
b ( ) c ;

( ) ( ) ( )( )

1,2, ,



     

 
 


  

   
      
   
      

 

 

j r p

r m
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 (5.40)          

On taking inverse Laplace transform of Equation (5.37), we get 

p p-d t -u t -u tp p p

, 0 p p p

q=1 p=1 p

c -b u
(t) a + a e + b e cos(v t)+ e sin(v t) ;

v

1,2, 3, 4 0,1,2,....,

q

r n

i m qP

i n L

 
  

  

 

 

    

(5.41) 

where 0 , , , , ,p q p p pa a d b c u and pv all are real numbers. 

5.5 Performance Measures  

In this section, we determine various metrics for the FTS in order to analyze the system 

performance. For this purpose, we develop some system metrics in terms of transient 

probabilities as follows:  

(i) The expected number of failed machines in the system at time  

 

4

1,

0 0

( ) ( )
L

m

i m

EN mP
 

         (5.42) 

(ii) Machine availability at time is given by 

   
( )

( ) 1
EN

MA
M S

 



         (5.43) 

(iii) Throughput of the system at time  is as 

1, 2, 4,

1 1 1

( ) ( ) ( ) ( )
L L L

m v m d m

m m m

TP P P P
  

               (5.44) 

(iv) Reliability of  FTS at time   is given by 

  

4

,

1

( ) 1 ( )


   Y i L

i

R P         (5.45) 

(v) Mean time to system failure (MTTF) is obtained as 

  
4

0 ,

10

( ) lim [1/ ( )]







     Y s i L

i

MTTF R dt s P      (5.46)    

(vi) The probability of the server being busy in normal and working vacation mode are given 

by 

1,

0

( ) ( )
L

B m

m

P P


   and 
2,

1

( ) ( )



L

WV m

m

P P  , respectively.   (5.47) 
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(vii) The probability that the server is under repair while broken down during working 

vacation at time  

4,

0

( ) ( )
L

BD m

m

P P


          (5.48) 

(viii) The probability that the server is in working broken down state and under repair at time  

4,

0

( ) ( )
L

d m

m

P P


          (5.49) 

(ix)  System cost 

It is always beneficial to quantify the total cost incurred on the system so that the industrial 

engineer or system designers may get insight for the up gradation of future design of the 

system. The total expected system cost is composition of various cost elements associated to 

specific states or activities of the concerned system. The total cost incurred per unit time of 

the system is determined by framing the expected cost function ( )TC  . The cost elements are 

defined as follows. 

HC : Holdingcost associated witheach failedmachine.  

BC : Cost incurred when theserver isin normalbusystate. 

PC : Penaltycost incurred while theserver isunder brokendownstate.  

dC : Cost incurred when theserver isbrokendownandisunder repair.  

wvC : Cost incurred when theserver isin working vacationstate. 

  : Cost involved in the repair of each failed machine with service rate .mC  

The cost function is framed as follows: 

( ) ( ) ( ) ( ) ( ) ( )     H B B P BD d d wv wv mC EN C P C P C P C PT CC          (5.50)
 

5.6 Numerical Simulation  

In this section, to predict the various system metrics with respect to system parameters, 

numerical simulation is provided by taking a suitable illustration. The system behavior is 

examined by computing the numerical results which are displayed in Tables 5.2-5.3 and 

Figures 5.2-5.6. To illustrate the analytical results of FTMS derived in the earlier sections, 

we have developed the code for generating the numerical results in software ‘MATLAB’ 

using ‘Pentium IV’. For computation purpose, we fix the default parameter as follows: 

1 2

8, 6, 2, 2, 1, 0.5, 0.02, 4, 5,

3, 1, 0.03, 0.02, 0.3, 1.0.v d

L M S k l a b 

     

        

       
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Table 5.1: Cost elements incurred with various system metrics 

Cost Set HC  BC  pC  
dC  wvC  mC  

I $70 $30 $140 $180 $250 $20 

II $80 $30 $140 $150 $250 $15 

III $80 $30 $120 $160 $260 $20 

IV $70 $30 $140 $180 $250 $20 

 

Table 5.2: Effect of service rate ( v ) on various performance indices 

v    ( )EN   ( )MA   ( )YR   ( )WVP   ( )dP   TC(τ) 

 

2  

2 2.37 0.66 0.995 0.828 0.0022 388.90 

4 2.48 0.65 0.951 0.300 0.0043 346.28 

6 2.61 0.63 0.915 0.290 0.0046 356.15 

 

3  

2 2.12 0.70 0.996 0.906 0.0020 375.92 

4 2.32 0.67 0.961 0.344 0.0042 337.41 

6 2.46 0.65 0.929 0.317 0.0045 346.42 

 

4  

2 1.91 0.73 0.997 0.978 0.0019 365.59 

4 2.18 0.69 0.968 0.394 0.0041 330.95 

6 2.34 0.67 0.939 0.348 0.0044 339.38 

     

Table 5.3: Effect of service rate ( ) on various performance indices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    ( )EN   ( )MA   ( )YR   ( )WVP   ( )dP   TC(τ) 

 

2.5  

2 2.12 0.70 0.996 0.906 0.0020 375.92 

4 2.32 0.67 0.961 0.344 0.0042 337.41 

6 2.46 0.65 0.929 0.317 0.0045 346.42 

 

3.5  

2 2.03 0.71 0.997 0.744 0.0024 354.42 

4 2.23 0.68 0.965 0.285 0.0044 324.94 

6 2.38 0.66 0.935 0.270 0.0046 336.10 

 

4.5  

2 1.97 0.72 0.997 0.638 0.0026 340.23 

4 2.18 0.69 0.967 0.253 0.0045 318.40 

6 2.34 0.67 0.938 0.243 0.0047 330.46 
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(i)                                        (ii)                                             (iii) 

            

Fig. 5.2: ( )EN  vs   with variation in (i) λ (ii) µ and (iii) a  

(i)                                    (ii)                                             (iii) 

          

Fig. 5.3: ( )MA  vs   with variation in (i) λ (ii) µ and (iii) a 

(i)                                      (ii)                                             (iii) 

           
 

Fig. 5.4: ( )YR vs   with variation in (i) λ (ii) µ and (iii) a  
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Table 5.1 shows the different sets of cost elements which are used to determine the total cost 

of FTMS consisting of six operating machines and two different types of standby machines. 

Tables 5.2-5.3 demonstrate the effect of service and vacation rates on the expected number of 

failed machines, machine availability, reliability, system cost and long run probabilities of 

FTMS. From Tables 5.2-5.3, it is clearly observed that the expected number of failed 

machines ( )EN  and probability of working broken down state ( )dP  show the increasing 

trend as time ' ' grows. The decreasing trend is observed in the values of ( )EN  and ( )dP  for 

the increasing values of v and . Moreover, the system reliability ( )YR  , machine 

availability ( )MA  and the probability of server being on working vacation ( )WVP  decrease 

(increase) as we increase the values of ' '  (v and ). 

From Figures 5.2 (i-iii), we can clearly notice that the expected number of failed machines 

( )EN  shows the increasing trend with respect to time ' ' , and failure rate ( )a of operating 

machine (server). The accumulation of failed machines in case of high failure rate of both 

operating and standby machines is quite obvious. For increasing values of service rate ( ) , 

( )EN  decreases as expected and tally with many real life scenarios. The decreasing trend of 

machine availability ( )MA  has been observed from Figures 5.3 (i-iii) as ' ' attains the higher 

values. It can be realized in many machining systems, the machine availability ( )MA 

decreases as the value of failure rate of operating machine ( ) as well as failure rate of server

( )a grow up. On the other hand, ( )MA  shows increasing trend for the increasing value of 

service rate ( ) which can be treated as control parameter to enhance the system availability. 

The trend of reliability ( )YR  for different system parameters are depicted in Figures 4(i-iii). 

From these Figures, we found that ( )YR  decreases as time ' '  passes. Also, as and a grow 

up, the system reliability ( )YR  seems to decrease. The system reliability ( )YR  is higher for 

the higher value of service rate ( )  which is quite obvious. Thus, the service rate can play a 

critical role to achieve the pre-specified mission reliability in many complex systems. 

The combine effect of µ and  for the different sets of cost element provided in Table 1 are 

given in Figures 5.5 (i-ii)-6.6(i-ii). The total expected cost first decreases and then increases 

sharply for increasing values of time along with the service rate. The optimal value of service 

rate can be easily determined by using numerical optimization technique viz. quasi-Newton 
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approach. Finally, based on numerical experiment performed, we conclude our findings as 

follows. 

          

(i)                                                                         (ii) 

Fig. 5.5: Total system cost for various values of service rate µ with respect to time τ for 

(i) Cost set I (ii) Cost set II 

       

(i)                                                                            (ii) 

Fig. 5.6: Total system cost for various values of service rate µ with respect to time τ for 

(i) Cost set III (ii) Cost set IV 

 

By choosing the higher values of service rate, the system reliability of FTMS can be 

increased significantly, but simultaneously cost also increases. To resolve this situation, the 

optimal service rate can be evaluated at minimum cost. Also, the cost of considered FTMS 

can be further reduced by taking care of some other sensitive parameters such as repair rate 

of server and service rate during working vacation. 
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Chapter 6 

MRP with Unreliable Server and Threshold Recovery 
 

 

6.1 Introduction 

The threshold policy for starting of service can be used to overcome the waste of valuable 

resources, time and money of an industry or company operating in machining environment. 

For any single machine repair system, N-policy can be implemented for the economic 

utilization of the server.  Threshold N-policy states that the server is turned on to render 

repair only when the workload of repair job of failed machines reaches to pre-defined 

threshold level N.  To explore the performance of a Markovian machining system operating 

under N-policy, reneging and the provision of warm standbys, Jain et al. (2004) proposed a 

finite source queueing model. The matrix method is employed by Jain and Upadhyaya (2009) 

to evaluate the steady state probabilities and other system indices of a degraded system by 

including the realistic concepts of threshold N-policy, multiple vacations and multiple type 

spare support. Further, Yang and Chang (2014) examined Markov machine repair model 

with threshold recovery policy to facilitate the performance analysis by taking some realistic 

factors into account. They also developed the queueing model for the cost analysis of multi-

component machining system by particle swarm optimization. Recently, a time shared 

Markov study of machine repair problem having some realistic features such as threshold 

policy, additional repairman and mixed spares have been carried out by Jain, Shekhar and 

Shukla (2016). 

The provision of more servers is always helpful in reducing the work load and to 

facilitate the faster service. However, to keep the server active in case of less work load, is 

costly affair. In this chapter, we study the transient analysis of machine repair problem 

having mixed warm standby support, and two heterogeneous unreliable servers (Nobel and 

Tijms 2000). The first (second) server is activated only when workload of N1 (N2) failed 

machines is accumulated in the system. As soon as the server becomes idle, he goes for 

vacation. The organization of the chapter is structured as follows. The system description to 

formulate the mathematical model is presented in Section 6.2.  In Section 6.3, Chapman-

Kolmogorov equations at transient state are constructed. To predict the performance of the 

developed model, some metrics have been constructed. Furthermore, total expected cost 

function is also constructed to evaluate the optimal service rate in Section 6.4. The 
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architecture of ANFIS model is also briefly described. In Section 6.5, numerical illustration 

and cost analysis have been presented.  

6.2 Model Description 

Notations 

1

: The number of operating machines.

: The number of  warm standbys machines i.e. =  ( 1,2,3,..., ).

: The sum of both operating and warmstandby machines i.e. .

: The failure rate of operating 





 


k

j

j

M

S S S j k

K K M S



d

machines.

:The failure rate of  ( 1, 2,3,..., ) types of warm standby machines.

υ : Mean vacation rate by which the ( 1,2) server returns from the vacation. 

λ : Degraded failure rate of machine





th

j

th

i

a j j k

i i

s.

:  Mean service rate of ( 1,2) server

: The life time of ( 1,2) server.

β : Repair rate of ( 1,  2)server.







th

i

th

i

th

i

i i

i i

i i





 

To study the machine repair problem (MRP), we develop Markov machining system with 

vacation. For the maintenance purpose, there is provision of two unreliable servers and 

mixed type warm standbys. Markovian model is formulated considering the following 

assumptions: 

 The system consists of M operating and k-types of warm standbys machines having 

the failure characteristic. At least M operating machines are required for the normal 

operation of the system, however the system can operate in short mode with at least l 

(< M) operating machines. The operating machine may fail in Poisson pattern with 

failure rate  . The thj type of standbys machines fail according to Poisson process 

with rates 
ja  (j=1, 2,3,…,k). 

 The repair facility consists of two heterogeneous repairmen. The first (second) server 

becomes activate after taking exponentially distributed set up time 1( 1,2) i i  to 

render repair of failed machines when the workload of N1(N2) failed machines have 

accumulated in the system.  

 The repair job of the failed machines is done by the thi  (i=1, 2) repairman according 

to exponential distribution with repair rate i . The repairman follows first in first out 

(FIFO) discipline to render the repair to the failed machines and can repair only one 

failed machine at a time. 
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 The switchover time from standby state to operating or from repair to standby state is 

negligible and assumed to be perfect. 

 While rendering the service to the failed machine, the thi  (i=1, 2) server may fail 

following Poisson distribution with rate
i . 

 When the server fails during the busy period, the 
thi (i=1, 2) repair of the broken 

down server is done immediately by the repairman according to exponential 

distribution with rate 
i  (i=1, 2).  

The following indicator function ( )   is used to define the server status at time epoch ' ' : 

0, when both the servers are on vacation .

1, when theserver 1 is in busy state and server 2 is on vacation.

2, when theserver 1 is brokendown and server 2 is on vacation.

( )= 3, when both theservers are bu  sy.

4, when theserver 1 is brokendown and server 2 is busy.

5, when theserver 2 is brokendown and server 1 is busy.

6, when both theserversare brokendown.  













 

The transient state probabilities of the system states are defined as follows: 

0, ( )mP  : The probability that at time there are m (0≤ m ≤ K) failed machines in the 

system and both the servers are unavailable due to vacation.                       

, ( )i mP  :  The probability that at time there are m (1≤ m ≤ K) failed machines in the 

system and the server is in state ( ) ; 1 6.    i i  

6.3 Governing Equations of the Model 

To develop Markov model for the transient behavior of machining system described in 

previous section, the state dependent transition rates for all the system states are to be 

specified.  By using these rates, the governing Chapman-Kolmogorov differential difference 

equations can be easily constructed to formulate the model using birth-death process.  For 

notational convenience, we shall use (2)

1 2 ,     1 2    and
k

(k)

j

j 1

S S


 .The failure 

rate of operating machines m is given as 

1

( 1) ( )

( ) ( )

, 0

, , 2

( ) ,

0, otherwise



  


    
 

    



n

j j

n

m k k

d

M a m S

M a S m S j k

K n S m M S K







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where 

1 1 1

2

( ) ( 1) ( )

1

( ) , 0

( ) , , 2





 


   


 
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





k

i i

i

m k
j j j

j i i

i j

S m S m S

a

S m S S m S j k

 
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The repair rate ,i m depends upon the server status ' ( ) ', i   defined in previous section. 

Now we define  

(2)

, 1

2

; 2 , ( ) 3

; 1 , ( ) 1,5

; 1 , ( ) 4

  

   

  

   


   
   

i m

m K

m K

m K

  

The transient equations to frame the Markov model are constructed by following the flow 

conversation law. Now we frame the equations using the appropriate transition rates for 

different level i (0 ≤ i ≤ 6) as follows: 

(i) For ( ) 0   : When both servers are on vacation. 

0 0,0 1 1,1

0,0 ( )
( ) ( )  P P

dP

d
 


 


       (6.1) 
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n m m m
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P P m N
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d
 


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
    (6.2) 

0, 1 0, 1 1

0,
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m m m m
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P P N m K
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  


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    (6.3) 
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 
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P P
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 


        (6.4) 

(ii) For ( ) 1   : Busy state for server 1 while the server 2 is on vacation. 

1 1 1 1,1 1 1,2 1 2,1 2

1,1

3,2( )
( )

( ) ( ) ( ) ( )     P P P P
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d
     
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1 1 1, 1 1, 1 1 2, 0,

1,

2 1( )
( )

( ) ( ) ( ) ( )
 
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P P P P
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     
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
  (6.9) 

(iii) For ( ) 2   : Broken down state for server 1while the server 2 is on vacation. 

2,1

1 1 2,1 1 2,1
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(iv) For ( ) 3   : When both servers are busy. 
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(v) For ( ) 4   : When server 1 is broken down and server 2 is busy. 

4,2

2 1 2 4,2 2 4,3 1 3,2 2 6,2
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(vi)  For ( ) 5   : When server 2 is broken down and server 1 is busy. 

5,2

2 2 1 5,2 1 5,3 2 3,2 1 6,2
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 (6.21) 
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5,
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(vii)  For ( ) 6   : When both servers are broken down.  
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6.4 Performance Measures 

The performance of any real time system can be assessed in terms of metrics which reveal 

the system’s operating behavior in different scenarios.  

6.4.1 Queueing Indices 

To predict and explore the behavior of the system, we formulate transient performance 

indices viz. (i) Expected number of broken down machines ( )EN  , (ii) Machine availability

( )MA  , (iii) Carried load ( )eff  , and (iv) Throughput ( )TP  at time epoch ' '  as follows: 

(i) 
2 6

0, , ,

0 1 1 3 2

( ) ( ( )) ( ( )) ( ( ))
    

    
K K K

n i m i m

m i m i m

EN m P m P m P   
  

(6.26)  

(ii) 
( )

( ) 1 


EN
MA

M S




        
(6.27) 

(iii) 
2 6

0, , ,
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    

    
K K K

eff m m m i m m i m

m i m i m

P P P           (6.28) 

(iv) (2)

1 1, 3, 2 4, 1 5,

1 2 2 2

( ) ( ) ( ) ( ) ( )
   

      
K K K K

m m m m

n m m m

TP P P P P           (6.29)  

6.4.2 Long-run system sates probabilities           

The long run probabilities of the server being in different states i.e. (i) both servers being on 

vacation ( )vP  , (ii) only  server 1 being busy 1( )BP   , (iii) only  server 2 being busy 2 ( )BP  , 

(iv) both servers being busy ( )BP  , (v) only server 1 is under repair 1( )DP  , (vi) only server 

2 is under repair 2 ( )DP  , and (vii) both servers are broken down ( )DP   respectively, at time 

epoch  ' '  are constructed as follows:   

    
0,

0

( ) ( )
K

v m

m

P P 


          (6.30) 
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(i) 
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(ii) 
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(iii) 
3,

2

( ) ( )



K

B m

m

P P 
        

(6.33) 
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(v) 
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(vi) 
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P P 
        

(6.36) 

6.4.3 System cost  

To determine the cost incurred for the system operation, we formulate a cost function 

involving some cost elements associated to different states of the machining system. The 

various cost elements per unit time associated with different states of the system, are defined 

as follows: 

HC  :   Holding cost of one failed unit in the system. 

VC   :   Cost spent on the system when both servers are on vacation. 

1BC  :   Cost spent on the system when server 1 is busy. 

2BC  :  Cost spent on the system when server 2 is busy. 

BC   :   Cost spent on the system when both servers are busy. 

1DC  :  Cost spent on the system while only server 1 is under repair. 

2DC  :  Cost spent on the system while only server 2 is under repair. 

DC   :   Cost spent on the system when both the servers are under repair. 

Now we frame the cost function TC(t) which involves the total cost per unit time by 

considering the above cost elements and respective performance measures as follows: 

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

   

   

H V V B B B B

B B D D D D D D

TC C EN C P C P C P

C P C P C P C P

    

   
   (6.37) 

6.4.4 Neuro-fuzzy based ANFIS model 

 Now we outline a brief concept of ANFIS approach which is based on a neural network 

underlying the fuzzified parameters. 
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The fuzzy rules employed in ANFIS can be formulated as  

       IF 1(e is 1)E  AND 2(e is 2 )E …AND ( ne is )nE THEN 1 1( , ,..., ) nG F e e e . (6.38) 

Here F  is a linear combination of the input variables 1 2( , ,..., ) ,ne e e and iE ’s are the 

respective fuzzy sets. Now output is obtained by using weighted average for the 

defuzzification method, given by 

      1 2 0 1 1 2 2( , ,..., ) ...    n n nF e e e h h e h e h e     (6.39) 

where
ih represents the weights corresponding to input parameter ( 0,1,2,..., )ie i n .  

For our FTS model, an adaptive neuro-fuzzy inference system is constructed by considering 

the input parameters  and  to produce output ( )EN .   

6.5 Numerical Simulation 

The numerical results are presented to explore the sensitivity of the system descriptors for the 

various performance measures and to facilitate the cost analysis. The numerical computation 

has been done by using Runge-Kutta method to provide transient solution. For numerical 

simulation purpose, Runge- Kutta 4th order algorithm is implemented by using the ode 45 

function of MATLAB software. To characterize the system behavior for different system 

descriptors, the numerical results are presented in Tables 6.1-6.2 and Figures 6.2-6.4.  

In Tables 6.1 and 6.2, we display the trends of the mean number of failed machines ( )EN  , 

availability of machines ( )MA  , throughput ( )TP  and system state long run probabilities by 

varying different input parameters. The default parameters are chosen as:  

  1 25, 2, 2, 2, 2, 0.5, 0.02, 0.04,M l R k S a a         

1 2 1 2 1 20.5, 2, 3, 0.1, 0.3, 10, 8.      d        

As we expect, it is noted in Tables 6.1-6.2 that as time increases, both ( )EN  and ( )TP   

increase whereas ( )MA  decreases.  

To compute the ANFIS results, neuro-fuzzy tool in Matlab is used by considering Gaussian 

membership function for the input parameters ( and ). For fuzzification of  and , we opt 

the five members which are shown in Figure 6.1. The members taken for each  and are (i) 

very low (ii) low (iii) average (iv) high (v) very high. 

To plot the results evaluated by R-K method, the continuous lines are used, whereas the 

numerical results obtained by using ANFIS are depicted by tick marks in Figures 6.2-6.6.  

From Figures 6.2 (i-ii), it is noticed that as time grows up, the number of failed machines 

( )EN  increases; this trend matches with the realistic situation also.  From Figures 6.2 (i), we 
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see that as failure rate (λ) of machine increases, the number of failed machines ( )EN  also 

becomes higher. It is clear from Figure 6.2 (ii) that the average number of failed machine 

lowers down as the value of vacation rate   increases; the trend for increasing the values of 

time   is also observed in the figures. The Figures 6.3 (i-ii) show the decreasing trend for the 

system availability ( )MA  with respect to time  . The system availability ( )MA  significantly 

decreases (increases) as value of λ ( ) increases. The throughput ( )TP  plotted in Figures 

6.4 (i-ii), is significantly increases as λ and  increase. In these figures, it is quite clear that 

the effects of parameters λ and  on throughput ( )TP  are much prevalent as time   grows; 

however after a certain time, the impact seems to be stabilized. 

In Figures 6.2 (i-ii), Figures 6.3 (i-ii) and Figures 6.4 (i-ii) numerical results for ( )EN  , 

( )MA  and ( )TP  respectively are plotted by using both Runge-Kutta method (curve) and 

ANFIS (ticked marks) approach. From these figures, we can easily see that the ANFIS 

results are at par with the results obtained by Runge-Kutta method. Also, we conclude that 

the neuro-fuzzy controller can be developed for the quantitative assessment of metrics of 

unreliable machining system to track the system performance. 

The total expected cost incurred on the system TC(µ) can be minimized with respect to the 

decision parameter repair rate (µ)  of the failed machines using heuristic search approach. To 

search the optimal value of repair rate ‘µ*’, we choose three sets of cost elements (in $) as 

given in Table 6.3. To make the study more useful from the cost-benefit view point, the total 

cost function is plotted in Figures 6.5 (i-iii) for three cost sets I, II and III respectively and 

varying values of  and  . It is noticed that the TC(µ*)  is a convex function with respect to 

µ and both which can be seen in Figures 6.5 (i-iii). The results obtained are quite interesting 

and can be applied to any real-time machining systems for upgrading the system by suitable 

choice of service/repair rate.  

The minimum expected cost of the system is obtained as TC(µ*) = $190.59 at time  =1 and 

the corresponding optimal repair rate is µ*=1.54485 for cost set I. For cost set II, the 

minimum expected cost of the system obtained is TC(µ*) = $150.37 and the associated 

optimal repair rate is µ*=1.485456 at time  =1. The minimum expected cost of the system 

is TC(µ*) =$128.07 and the corresponding optimal repair rate is achieved µ*=1.24788 at 

time  =1 for the cost set III.  
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        Table 6.1: Variations in system indices by varying time for different values of α 

    ( )EN   ( )TP   ( )MA   ( )BP   ( )VP   ( )TC   

 

0.02 

2 0.549268 0.001812 0.921533 7.50E-07 0.998181 206.6814 

6 1.502964 0.057002 0.785291 3.36E-04 0.94283 275.096 

10 2.029223 0.163365 0.710111 2.85E-03 0.836967 302.3159 

 

0.04 

2 0.705696 0.003618 0.899186 2.91E-06 0.996354 218.9347 

6 1.878615 0.096852 0.731626 1.10E-03 0.902545 299.466 

10 2.400913 0.243451 0.657012 8.03E-03 0.757294 321.1928 

 

0.06 

2 0.861606 0.006133 0.876913 8.06E-06 0.993796 231.0421 

6 2.229894 0.141126 0.681444 2.59E-03 0.857623 321.2991 

10 2.72298 0.318345 0.611003 1.65E-02 0.683456 337.2844 
 

           Table 6.2: Variations in system indices by varying time for different values of   

    ( )EN   ( )TP   ( )MA   ( )BP   ( )VP   ( )TC   

 

1 

1 1.647587 0.030931 0.76463 5.01E-05 0.984513 312.5974 

3 3.971559 0.43216 0.432634 0.009167 0.787161 471.2221 

5 4.605148 0.827214 0.342122 0.042498 0.604173 499.1506 

 

5 

1 0.868953 0.012663 0.875864 2.00E-06 0.996826 292.0626 

3 2.30164 0.247366 0.671194 4.90E-04 0.938067 398.3246 

5 3.175741 0.609982 0.546323 5.43E-03 0.849098 456.0356 

 

9 

1 0.867817 0.017336 0.876026 1.47E-06 0.997103 332.0112 

3 2.26336 0.275525 0.676663 2.70E-04 0.953961 437.5128 

5 2.916208 0.51288 0.583399 1.30E-03 0.914607 484.2185 
 

            Table 6.3 Cost elements (in $) associated with various system indices 

Cost Set CH CV CB1 CB2 CB CD1 CD2 CD Cm 

I 170 70 50 60 70 80 90 130 30 

II 120 70 50 60 70 80 90 130 25 

III 80 70 50 60 70 80 90 130 20 

 

 

         Fig. 6.1: Membership function for input variable λ and   
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(i)              (ii) 

Fig. 6.2: ( )EN  Vs t for different value of (i)  and (ii)   

           

(i)          (ii) 

Fig. 6.3: ( )MA   Vs t for different value of (i)  and (ii)   

            

(i)        (ii) 

Fig. 6.4: TP(τ) Vs t for different value of (i)  and (ii)   
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(i) 

 

 

(ii) 

 

 

(iii) 

      

  Fig. 6.5: ( )TC   for varying values of µ (i) cost set I 

  (i) cost set II (iii) cost set III. 
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Chapter 7 

FTS with Imperfect Coverage, Reboot and ServerVacation 
 
 

 

7.1  Introduction 

For the smooth functioning and to achieve desired availability of the concerned machining 

system, the concepts of redundancy and maintainability have drawn the attention of 

practitioners as well as researchers. To reduce the maintainability and operating cost, the 

provision of server vacation is a key feature which has been included in many queueing 

models to analyze the congestion problems in different contexts. 

The timings of reboot operation may vary from a few seconds to long hours, depending upon 

the complexity of the machining system. In many industries, an extensive loss of production 

as well as cost occurs due to the failure of some malicious components if not tackled 

properly with the help of suitable mechanism. But in some practical situations, the fault 

handling device may prove inadequate to recover a fault perfectly. These types of situations 

are called as system with imperfect coverage. In literature, some research works can be found 

on the reliability analysis of the machine repair problems with imperfect fault coverage. In 

this context, we cite some recent works which are relevant to present investigation. The 

concept of the reboot was discussed by Trivedi (2002) for the analysis of some reliability 

models in his book on ‘Probability and Statistics with Reliability, Queueing and Computer 

Science’. Ke et al. (2008) has done the performance analysis of a repairable system by 

including the features of detection, imperfect coverage and reboot. A statistical model for a 

standby system involving reboot, switch failure and unreliable repair was presented by Hsu 

et al. (2011). The queueing and reliability indices of the machine repair systems with 

imperfect coverage and reboot have been studied by Jain et al.(2012), Jain (2013), Jain and 

Gupta (2013), Wang et al.(2013), and many others. Further, Ke and Liu (2014) investigated 

the machine repair system with imperfect coverage incorporating the reboot delay concept by 

taking the illustration of gamma and exponential time distributions. 

In the present investigation, we provide the performance indices of the machining system 

supported by a repair facility and mixed standby units operating under vacation policy. A 

few research papers on the machine repair problem with vacation policy in  different 

frameworks have appeared in the past few years as mentioned earlier. But to the best of 

authors’ knowledge, no research article explores the transient study of the machine repair 
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problem combined with vacation, mixed standbys, imperfect coverage and server 

breakdown. Further, the implementation of ANFIS technique to match soft computing results 

with the analytic results make our study to deal with complex dynamic behavior of the 

machining system in efficient computational manner by incorporating many realistic 

features.The remaining contents of the chapter are structured in different sections. In Section 

7.2, we provide notations and assumptions to formulate the Markov model. In Section 7.3, 

Chapman-Kolmogorov equations are constructed for the transient state to develop Markov 

model which are further solved numerically with the help of Runge-Kutta method. In Section 

7.4, some performance indices have been established explicitly by using the transient 

probabilities of the system states. In Section 7.5, the cost function is constructed. In Section 

7.6, numerical illustration and sensitivity analysis are provided. 

7.2 Model Description 

In this section, we develop a Markov queueing model by defining the appropriate transition 

rates of the concerned birth-death process for the performance analysis of fault tolerant 

system. The assumptions and notations used for developing the model are as follows: 

 The system consists of M operating and nS (1 )n l  of thn type standby units.  

 The operating units are prone to failure and have the life time exponentially distributed 

with mean 1/ . When an operating unit fails, it is immediately backed up by an available 

standby unit. When a standby unit moves into an operating state, it has the same failure 

characteristic as that of an operating on line unit. 

 The thn type standby unit may also fail; the life time of thn type unit follows the 

exponential distribution with mean 1/ n , (0 ).n    

 When all the spares are used, the system operates in short (i.e. degraded) mode with at 

least ( )m N  operating units and its failure rate becomes ( ).d   

 The failed units are repired by the repairman in the same order in which failure occurs, 

i.e. repaire is performed by following the FIFO service discipline. The repair of failed 

units is rendered by the server according to exponentially distribution with rate 𝜇. 

 The operating unit can be successfully recovered with probability c; the recovery time of 

operating unit is exponentially distributed with parameter . 

 The server is allowed to go for vacation if there is no work load of repair job of failed 

units in the system and returns back from the vacation as soon as any unit fails. 
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Fig. 7.1: Transition state diagram of M/M/1 FTS 

To develop the model, Markov process for the three mutually exclusive system states i.e. (i) 

operating state, (ii) recovery state and (iii) reboot state is taken into account. The transient 

probabilities of the failed units at time t for different states are defined for the scenarios when 

the server is in (i) vacation state, (ii) busy state, and (iii) broken down state. Let , , ( )i j kP t

denote the probability that there are , (1 )i i L   failed units when the server is in 

th ( 0,1,2)j j  state and the system is operating in kth ( 0,1,2)k  mode. Here indices 

0,1,2j  when the server is on vacation, busy and broken down states, respectively. Also 

indices 0,1,2k  represent the system status in operating state, recovery state and reboot 

state, respectively. 

The failure rate of the operating units which depends upon the number of already failed units, 

is given by 
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where ( ) ( )

1

l
l n

n

S S


 and d is the degraded failure rate. The failure rate of the standby units is 

given by 
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7.3 Model Governing Equations 

For evaluating the probabilities associated with different server states, Kolmogorov 

Chapman equations have been constructed using the transition flow rates of birth death 

process specifying the Markov model.The state transition for in-flow and out-flow rates of 

specific model when 1 25, 2, 1, 2, 1M S S l m      is shown in Figure 7.1. 

(i) Server vacation state when 0, 0 j k . 

As soon as the server becomes free when there is no job of repairing the failed machines in 

the system, it reaches to vacation state (0,0,0) . In this case, the server is in vacation state 

and reaches to other state using appropriate transition rates. Now, we frame the Chapman-

Kolmogorov equation for state (0,0,0) as follows: 

0,0,0

0 0 0,0,0 1,1,0

( )
( ) ( ) ( )

dP t
P t P t

dt
                   (7.3) 

The server returns back to busy state with rate  when a failed machine joins the system; in 

between, some more mahines may fail so that during vacation period, the system states  may 

be ( ,0,0), 1,2,...,i i L . Using appropriate in-flow and out-flow rates, we formulate the 

governing equations for ( ,0,0), 1,2,...,i i L as follows: 
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(ii) Server being in busy state when 1, 0j k  . 

When the server is busy in providing repair of the failed machines, the transient equations are 

framed by using appropriate transition rates for states ( ,1,0), 1,2,...,i i L  as follows: 
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(iii) The failed server is under repair state when 2, 0j k  . 

In this case the server is broken down and the repairman is performing the repair job to 

restore it. Now for states ( ,2,0), 1,2,...,i i L  the transient equations are framed by law of 

conservation of flows as follows: 
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(iv) For 1, 0,1,3 k j  when the system is in recovery state. 

From ( , ,0)i j state, due to perfect failure detection, the system can go to recovery state ( , ,1)i j

, for 1,2,..., 1i L  ; 0,1,2j  . For the recovery states, the transient equations are framed as: 

, ,1

, ,1 , ,0

( )
( ) ( ); 0,1,2; 1,2,..., 1.

i j

i j i i j

dP t
P t cP t j i L

dt
      

         
(7.18) 

(v) For 2, 0,1,3 k j , when the system is in reboot state. 

From ( , ,0)i j  state, due to imperfect failure detection, the system can go to reboot state 

( , ,2)i j , for 1,2,..., 1i L  ; 0,1,2j  . For these states, the transient equations are 

constructed as:
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, ,2

, ,2 , ,0
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i j i i j
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P t cP t j i L

dt
                (7.19) 

The Equations (7.3)-(7.19) have been solved numerically by using Runge-Kutta 4th  order 

method, which is a powerful tool to solve the ordinary differential equations of first order. It 

is a good choice to employ this technique to solve the set of differential equations governing 

the system state probabilities. It is worth noting that the Runge-Kutta method is quite 

accurate, stable and easy to implement in comparison to other methods available to solve the 

differential equations. For the coding purpose, we have chosen this particular method here 

and MATLAB’s ‘ode45’ function is exploited for the programming purpose. 

7.4  Performance Indices 

To analyze the transient system behavior, we derive various performance indices using the 

probabilities which can be evaluated as described in previous section. The expressions for the 

expected number of failed units in the system, failure frequency of the system, availability of 

the server and the system state probabilities for the server being in different states and other 

performance metrics are established as follows: 

(i) The average number of failed units in the system at time t is 
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(ii) Failure frequency of the server at time t is 
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(iii) System availability of the at time t is 
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(iv)   The transient probability that the system is in recovery state 
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(v) The transient probability that the system is in reboot state  
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(vi) The transient probability that the server is in broken down state  
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(vii) The transient probability that the server is in busy state 
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(viii) The transient probability that the serverbeing on vacation  state  
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7.5 Cost Function 

The system designer may be interested to determine the proper combination of the spares and 

repairmen so as the total cost incurred on the system should be minimum. While making 

such decisions, it should be kept in mind that the organization should not bear the burden of 

excessive costs of keeping the spares and repairmen.  To determine the optimal number of 

repairmen and spare machines, we construct the cost function by considering various cost 

elements involved in different activities. We denote the various cost elements incurred on 

different activities as follows: 

VC :    Cost per unit time of the server when he is on vacation; 

BC :    Cost per unit time of the server when he is in busy state; 

HC :    Holding cost of one failed unit per unit time in the system; 

BDC :   Cost of repairing of a broken down server per unit time. 

Now we evaluate the total cost function by considering the above cost elements and 

respective performance measures as follows: 

B HC(t) = C ( ) C ( ) C [ ( )] C ( )V V B BD BDP t P t E N t P t            (7.28) 

7.6 Numerical Illustration 

To reveal the practical applicability of the underlying model in real time machining system, 

we consider an illustration from flexible manufacturing systems where robots are used for 

the packing purpose.  In normal functioning mode, the system requires 5 robots, however, the 

system can work in degraded mode i.e. in short mode if there are less than 5 but at least one 

operating robot is in active state. The system has two types of standby robots which acts as 

back up unit in case of failure of any operating unit and immediately put in place of broken 

down robot. The failure rate of the operating robot is 0.1   robots per day. To maintain the 

desired level of availability, three standby robots having failure rate 0 10.7, 0.4,   and 

2 0.2   robots per day and 1 robot which cannot fail in active mode, are taken as warm and 

cold standby units, respectively. Whenever a robot fails, its failure is detected, diagnosed and 
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recovered with probability 0.5c  and recovery rate is assumed to be 0.8  .  If fault is not 

detected due to imperfect coverage, it is cleared by the reboot or reset operation with a rate 

10  per day. To evaluate the performance results, coding of the program is done in 

MATLAB software. The subroutine ode45 is employed for solving the set of equations 

associated with the probabilities of different system states. For the computation of results, we 

fixed the various parameters as  

Cost Set: $10, $100, $20, $200V B H BDC C C C   

1 2

0 1 2

5, 2, 1, 3, 1, 0.5, 0.02, 1, 2,

0.1, 0.07, 0.04, 0.02, 0.8, 10, 0.02

M S S l m c a b 

      

        

      
 

The sensitivity analysis has been done to explore the effect of varying parameters on 

different performance indices. The numerical results displayed in form of tables and graphs 

are quite easy to understand the behavior of system. The numerical results obtained have 

been displayed in graphs and tables. 

The numerical results for various performance indices for varying values of different 

parameters are presented in Tables 7.1-7.3. The effects of different parameters are examined 

by displaying the numerical results for the availability and average number of failed units in 

the system in Figures 7.2 (i-iv) and 7.3 (i-ii). From Figures 7.2 (i-iv), we observe that as time 

increases, the system availability initially decreases rapidly and then after becomes almost 

constant. In the case of  curves of ( )EN t plotted in Figures 7.3 (i-ii), sharp increment is 

noticed up to 20t  , then after it becomes asymptotically stable as time passes. 

The trends of various performance indices for varying different parameters are as follows: 

(i) Effect of failure rate of operating unit and repairman (λ, )a .  

From Figures 7.2 (i) and 7.2 (ii), it is noted that the availability of the system decreases as 

and a  increase. From Table 7.1, it is clear that the average number of failed units increases as

  increases. 

(ii) Effect of reboot rate and service rate ( , )  . 

 Table 7.2 displays that the average number of failed units ( )EN t exhibits the increasing trend 

as reboot rate  increases; on the contrary, the availability ( )A t  of the system decreases as 

reboot rate   increases. It is seen in Figure 7.2 (iv) that as   increases, the availability ( )A t

of the system increases while ( )EN t   decreases. 
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(iii) Effect of repair rate of repairman and coverage factor ( , )b c . 

From Figures 7.2 (iii) and 7.3 (ii), it is noticed that the availability ( )A t  of the system 

increases as repair rate ( b ) increases. The average number of failed machines ( )EN t  reveals 

the increasing trend as the coverage factor c  increases. 

Neuro-fuzzy technique is applied to compute the performance indices of the fault tolerant 

MRP. The membership function of input parameters ,a  andb are taken as trapezoidal 

function by taking the very low, low, average, high and very high values as depicted in 

Figure 7.4. The numerical results by ANFIS approach have been computed by using the 

neuro-fuzzy tool in Matlab software. To facilitate the comparison of results obtained by 

Runge-Kutta method with neuro-fuzzy results, we plot the availability by both approaches in 

Figures 7.5-7.7. 

The sensitivity of availability obtained by R-K method is depicted by continuous line for 

varying parameters ,a and b . The numerical results obtained by using neuro-fuzzy 

technique are shown by tick marks. From these figures, we notice that both R-K and ANFIS 

results are quite close to each other.  

 

Table 7.1: Effect of failure rate of operating unit ( ) on various performance indices 

 

Table 7.2: Effect of reboot rate (  ) on various performance indices 

𝛌 t PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) TC(t) 

0.1 

10 0.13 0.0094 0.00051 2.75 0.00049 0.99949 0.0289 67.6 

30 0.06 0.0045 0.00095 3.96 0.00085 0.99905 0.0486 93.9 

50 0.05 0.0041 0.00100 4.07 0.00088 0.99900 0.0506 96.2 

0.3 
10 0.14 0.0093 0.00090 4.08 0.00079 0.99910 0.0545 96.7 

30 0.07 0.0057 0.00156 4.41 0.00119 0.99844 0.0836 106.0 

50 0.07 0.0058 0.00156 4.41 0.00119 0.99844 0.0837 106.2 

0.5 
10 0.12 0.0073 0.00112 4.47 0.00096 0.99888 0.0731 106.1 

30 0.09 0.0074 0.00215 4.43 0.00152 0.99785 0.1238 110.2 

50 0.09 0.0075 0.00218 4.43 0.00153 0.99782 0.1250 110.3 

𝛽 t PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) TC(t) 

 

10 0.1255 0.0478 0.00049 2.6 0.00045 0.99951 0.0278 65.5 

2 30 0.0561 0.0222 0.00097 3.9 0.00083 0.99903 0.0494 93.3 

 

50 0.0501 0.0200 0.00102 4.0 0.00087 0.99898 0.0517 95.6 

 

10 0.1266 0.0157 0.00051 2.7 0.00049 0.99949 0.0287 67.3 

6 30 0.0567 0.0074 0.00096 4.0 0.00084 0.99904 0.0488 93.8 

 

50 0.0509 0.0068 0.00100 4.1 0.00088 0.99900 0.0508 96.1 

 

10 0.1268 0.0094 0.00051 2.7 0.00049 0.99949 0.0289 67.6 

10 30 0.0569 0.0045 0.00095 4.0 0.00085 0.99905 0.0486 93.9 

 

50 0.0510 0.0041 0.00100 4.1 0.00088 0.99900 0.0506 96.2 
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   Table 7.3: Effect of failure rate of standby unit ( ) on various performance indices 

 

           

(i)                                                               (ii) 

          

                       (iii)                                                                   (iv) 

    Fig. 7.2: Variation in ( )A t for different value of (i)   (ii) a (iii) b   (iv)   
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α T PRC(t) PR(t) PBD(t) EN(t) f(t) A(t) PB(t) TC(t) 

 
10 0.127 0.0094 0.00051 2.75 0.00049 0.99949 0.0289 67.64 

0.03 30 0.057 0.0045 0.00095 3.96 0.00085 0.99905 0.0486 93.90 

 
50 0.051 0.0041 0.00100 4.07 0.00088 0.99900 0.0506 96.23 

 
10 0.120 0.0088 0.00055 2.89 0.00053 0.99945 0.0310 70.79 

0.06 30 0.054 0.0043 0.00098 4.02 0.00087 0.99902 0.0498 95.03 

 
50 0.049 0.0039 0.00102 4.11 0.00090 0.99898 0.0517 97.18 

 
10 0.114 0.0084 0.00059 3.02 0.00056 0.99941 0.0329 73.41 

0.09 30 0.052 0.0041 0.00100 4.06 0.00089 0.99900 0.0510 95.97 

 
50 0.047 0.0038 0.00104 4.15 0.00092 0.99896 0.0527 97.98 
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                 (i)                                                                                  (ii) 

Fig. 7.3: Variation in ( )EN t  for different value of (i)   and (ii) c  

 

 

Fig. 7.4: Membership function for ,a  and b  

 

 

Fig. 7.5: ( )A t vs t for different values of   
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Fig. 7.6: ( )A t vs t for different values of a  

 

 

Fig. 7.7: ( )A t vs t for different values of b  
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Chapter 8 

F-policy for Fault Tolerant System with Working Vacation 
 

 

 

8.1 Introduction  

Machine failure is the common phenomenon in the realistic scenarios of automated 

machining systems. The fault tolerant system (FTS) designed for variant purposes, can 

automatically detect the fault of the component and may be capable to recover the system by 

switch over of the failed machine with standby machine, with coverage probabilityc . 

Sometimes the system is not able to switch over the failed machines; in that case the system 

reaches to unsafe mode with complementary probability 1 ,c c  and that can be cleared by 

the reboot process automatically. The queueing and reliability models by including the 

feature of imperfect coverage have attracted some researchers (Trivedi, 2002;Wang and 

Chiu, 2006; Wang et al. 2013). Jain and Gupta (2013) suggested an optimal policy for the 

maintainability of a repairable system by including the noble features of imperfect fault 

coverage and multiple vacations. Jain et al. (2014) proposed N-policy for Markovian 

machining system under the assumptions of unreliable server, imperfect coverage and reboot.  

Finite population Markovian modeling is commonly used to predict the reliability, MTTF 

and other performance indices and facilitates various realistic and more consistent queueing 

metrics in practice. In the present model, we consider Markovian models for the queueing 

and reliability prediction of fault tolerant machining system by incorporating many noble 

features which were not taken together by other researchers working on the same lines. The 

key concepts incorporated for the modeling of the concerned FTS are (i) dis-similar warm 

standby machines (ii) working vacation (iii) imperfect coverage (iv) reboot delay (v) time 

varying system, etc. Without loss of generality, we study the fault tolerant system operating 

in machining environment under the assumption of Markovian processes for the life and 

repair times of the failed machines. The recovery and reboot are taken into account to make 

the model to be applicable in real time systems. The remaining content of this chapter is 

structured in the following Sections. In Section 8.2, assumptions and notations are presented 

to model the multi-component machining problem of FTS. To analyze the FTS, Chapman-

Kolmogorov differential difference equations are constructed in Section 8.3. In Section 8.4, 

performance of the system is assessed by deriving some indices. The sensitivity and relative 
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sensitivity are presented in Section 8.5. The next Section 8.6 contains the numerical 

simulation results to check the sensitivity of the performance indices.  

8.2 Model Description  

In order to study the concept of threshold ‘F’ policy for the admission of failed machine for 

the repair job of the fault tolerant machining system, we develop Markovian model for the 

machining system with standby support and a single repairman. The finite population 

queueing model is formulated under the following assumptions: 

Consider a finite capacity ( )K  fault tolerant machining system comprising of M online 

machines and total ( )

1 2 ...    k

kS S S S S warm standby machines, where kS represents the 

thk  type of warm standby machine. To repair the failed machines, the system has the facility 

of single skilled failure prone repairman. When the repair system reaches to its full capacity, 

no more failed machines will be accepted for the repair job until the system capacity further 

reduces to level ‘F’. In case of failure of an operating machine, a standby unit of thi type {i 

min (1,2,..., )}k if available is used to replace the failed machine with probability c . The 

provision of reboot and recovery processes are taken into account while switch over of failed 

machine takes place. The server takes the startup time before initiating the repair job after 

returning from the vacation. 

The operating machines and standby machines are subject to breakdowns and have the life 

time governed by exponential distributions with mean 
1 and

1,a  respectively. When an 

operating machine breaks down, it is immediately switched-over by an available standby 

machine with probability c . If switchover of failed machines is not successfully completed, 

then the system goes to unsafe mode with probability c and the systems reconfigure itself by 

reboot process. The recovery time and reboot process are exponentially distributed with rates 

  and ,r  respectively. 

The server is also likely to go for working vacation on finding no failed machines in the 

system. The vacation duration of the server is exponentially distributed with mean parameter

1 . The time to serve the failed machines during working vacation and normal busy period 

are exponentially distributed with repair rates v  and b , respectively. The repair of the 

failed machines is done on the basis of FCFS discipline. 

To control the admission of failed machines, once the capacity (K) of the system is full, the 

joining of failed machines in the system is stopped and will be further initiated by taking 

some start up time   only when the queue size level of failed machines in the system drops 
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to level ( ).F K The life time and repair time of the repairman are exponentially distributed 

with mean parameter 1  and
1 . 

It is noted that ( (t), (t)) : t 0   is a bi-variate Markov process which is discrete in state 

space and continuous in time. The system at time t, is defined in terms of transient state 

probabilities associated with the random variables ( )t  and ( )t . 

( ) [{( , )| 0,2,3,4,7,8,10,12; 1,2,3,..., 1} {( , )| 5,9; 0,1,2,..., 1}

{( , )| 1,11; 0,1,2,..., 1, } {( , )| 6; 0,1,2,..., 1, }]

        

       

t i n i n K i n i n K

i n i n K K i n i n K K  

We define the probabilities of the system states at epoch t as follows: 

, ( )n iP t : Probability that there are n  failed machines in the system at time t at thi level  

( 0,1,2,..,12)i . 

0; Server is in under repair when broken down during normal busy mode 

and failed machines are not allowed to enter the system (DBN).

1; Server is in normal busy state when failed machines are not per

( ) t

mitted

to enter the system (NBN).

Server is in recovery state during normal busy mode(NBC)

3; Server is in normal busy mode(NBO).

Server is in reboot state during normal busy

2; .

4; .

5

 mode(NBR)

Server i; s in recovery state during broken down mode(BDC)

Server is in under repair when broken down during normal busy and 

working vacation state (BDD)

Server is in reboot state during broken down mode(BDR)

.

6;

.

7; .

8; Server is in recovery state during working vacation mode(WVC).

Server is on a working vacation period and the failed machines are  

allowed to enter the system ( ).

10;Server is in reboot state durin

9;

WVO

g working vacation mode(WVC)

Server is on a working vacation period and the failed machines are not 

allowed toenter the system (WVN).

12;Server is in under repair when broken down during

working vacatio

11;

n state (DWV).

.































 

The mean failure rate of online failed machine ( n ) and standby machine ( na ) are given by: 

 

 

 

1 1 1

2

1
( 1) ( 1) ( )

1

( ) ( 1) ( )

( ) ( ) ( )

( ) ; 0

; ; 2,3,4,..., 1

;

; ( 1)

k

i i

i

k
j j j

j i i
n i j

k k k

k

k k k

M S a S n a n S

M S n a S a S n S j k

M S n S n S

M S n S n K M S m





 






 







  
      
 


       

 


   

        




  
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For the brevity, we have used the notation for failure rate of standby machines by 

 

 

1 1 1

2

1
( 1) ( 1) ( )

1

( ) ( 1) ( )

( ) ; 0

; ; 2,3,4...., 1

;

k

i i

i

k
j j j

n j i i

i j

k k k

k

S S n n S

a S n S S n S j k

S n S n S

 

 






 







 
    

 


      

   







 
8.3 Model Governing Equations 

Chapman-Kolmogorov differential-difference equations for the transient probabilities 

associated with system states are constructed by taking in-flow and out-flow transition rates. 

For Markov modelling of the fault tolerant machining system, the governing equations for 

the states ( )t of the server at time t are framed as follows: 

(i) ( ) 0t  : When the server is under repair while broken down during busy state (DBN). 

,0

0, 1,

( )
( ) ( ); 1 1

n

n n

dP t
P t P t n K

dt
           (8.1) 

(ii) ( ) 1t  : When the server is in busy state and the entry of failed machines are not    

permitted     in the   system (NBN). 

 
1,

1, 0, 1, 1

( )
( ) ( ) ( ) ( ); 1       

n

b n n b n

dP t
P t P t P t n F

dt
       (8.2) 

 
1,

1, 0, 1, 1

( )
( ) ( ) ( ) ( ); 1 1        

n

b n n b n

dP t
P t P t P t F n K

dt
      (8.3) 

 
1,

1, 1 1,3

( )
( ) ( ) ( )     

K

b K K S K

dP t
P t P t

dt
        (8.4) 

(iii) ( ) 2t  : When the server is in recovery state for normal busy state (NBC). 

2,

2, 0 3,

( )
( ) ( ); 1    

n

n n

dP t
P t c P t n S

dt
       (8.5) 

2,

2, 3,

( )
( ) ( ); 1 1      

n

n n S n

dP t
P t c P t S n K

dt
      (8.6) 

(iv)  ( ) 3t  : When the server is in normal busy and the failed machines are permitted to 

enter the system (NBO). 

 
3,0

0 0 3,0 3,1 1,1 6,0

( )
( ) ( ) ( ( ) ( )) ( )       b

dP t
a P t P t P t P t

dt
        (8.7) 

3,

0 3, 1, 2, 1 4, 1

1 3, 1 9, 3, 1 6,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ); 1 1

 

  

       

      

n

b n n n n n

n n n b n n

dP t
a P t P t P t r P t

dt

a P t P t P t P t n S

    

  
  

(8.8) 
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3,

0 3, 1, 2, 1 4, 1

1 3, 1 3, 1 6, 9,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 

  

      

   

S

b S S S S

S S b S S S

dP t
P t P t P t r P t

dt

a P t P t P t P t

    

  
   

(8.9) 

3,

3, 1, 2, 1 4, 1

3, 1 6, 9,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ); 1

  



      

     

n

n S b n n n n

b n n n

dP t
P t P t P t r P t

dt

P t P t P t S n F

    

  
  

(8.10) 

3,

3, 2, 1 4, 1

3, 1 6, 9,

( )
( ) ( ) ( ) ( )

( ) ( ) ( ); 1 2

  



     

      

n

n S b n n n

b n n n

dP t
P t P t r P t

dt

P t P t P t F n K

   

  
   

(8.11) 

3, 1

1 3, 1 2, 2

4, 2 6, 1 9, 1

( )
( ) ( ) ( )

( ) ( ) ( )



   

  

    

  

K

K S b K K

K K K

dP t
P t P t

dt

r P t P t P t

   

 

    (8.12) 

(v) ( ) 4t  : When the server is in reboot state for normal busy mode (NBR). 

4,

4, 0 3,

( )
( ) ( ); 1    

n

n n

dP t
r P t c P t n S

dt
      (8.13) 

4,

4, 3,

( )
( ) ( ); 1 1      

n

n n S n

dP t
r P t c P t S n K

dt
     (8.14) 

(vi)  ( ) 5t  : When the server is in recovery state during break down (BDC) period. 

5,

5, 0 6,

( )
( ) ( ); 1    

n

n n

dP t
P t c P t n S

dt
       (8.15) 

5,

5, 6,

( )
( ) ( ); 1 1      

n

n n S n

dP t
P t c P t S n K

dt
      (8.16) 

(vii) ( ) 6t  : When the server is in breakdown state (BDD). 

 

6,0

0 0 6,0 3,0 9,0

( )
( 2 ) ( ) ( ) ( )     

dP t
a P t P t P t

dt
   

    
(8.17) 

 

6,

0 6, 1 6, 1 5, 1 7, 1

3, 9,

( )
( 2 ) ( ) ( ) ( ) ( )

( ) ( ); 1 1

         

    

n

n n n n n n

n n

dP t
a P t a P t P t r P t

dt

P t P t n S

  

 
  

(8.18)

6,

0 6, 5, 1 7, 1

3, 9, 1 6, 1

( )
( 2 ) ( ) ( ) ( )

( ) ( ) ( )

 

 

    

  

S

S S S

S S S S

dP t
P t P t r P t

dt

P t P t a P t

  

          
(8.19) 

6,

6, 5, 1 7, 1 3,

9,

( )
( 2 ) ( ) ( ) ( ) ( )

( ); 1 2

n

n S n n n n

n

dP t
P t P t r P t P t

dt

P t S n K

   



       

    
  

(8.20) 
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6, 1

1 6, 1 5, 2

7, 2 3, 1 9, 1

( )
( 2 ) ( ) ( )

( ) ( ) ( )



   

  

   

  

K

K S K K

K K K

dP t
c P t P t

dt

r P t P t P t

  

      
(8.21) 

6,

1 6, 1, 11,

( )
( ) ( ) ( )   

K

K S K K K

dP t
P t P t P t

dt
        (8.22) 

(viii) ( ) 7t   : When the server is in reboot state during break down period (BDR). 

,7

,7 0 ,6

( )
( ) ( ); 1

n

n n

dP t
r P t c P t n S

dt
    

     
(8.23) 

7,

7, 6,

( )
( ) ( ); 1 1

n

n n S n

dP t
r P t c P t S n K

dt
            (8.24) 

(ix)  ( ) 8t  : When the server is in recovery state during working vacation (WVC). 

8,

8, 0 9,

( )
( ) ( ); 1

n

n n

dP t
P t c P t n S

dt
     

     
(8.25) 

8,

8, 9,

( )
( ) ( ); 1 1

n

n n S n

dP t
P t c P t S n K

dt
             (8.26) 

(x) ( ) 9t  : When the server is in the working vacation and the failed machines are       

permitted to join the system (WVO). 

9,0

0 0 3,0 3,0 9,1 11,1 6,0

( )
( ) ( ) ( ) ( ( ) ( )) ( )       v

dP t
a P t P t P t P t P t

dt
    

  
(8.27) 

9,

0 9, 11, 8, 1 10, 1

1 9, 1 9, 1 6,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ); 1 1

n

v n n n n n

n n v n n

dP t
a P t P t P t r P t

dt

a P t P t P t n S

     

 

 

  

        

     
 

(8.28) 

9,

0 9, 11, 8, 1 10, 1

1 9, 1 9, 1 6,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

S

v S S S S

S S v S S

dP t
P t P t P t r P t

dt

a P t P t P t

     

 

 

  

       

  
  

(8.29) 

9,

9, 11, 8, 1 10, 1

9, 1 6,

( )
( ) ( ) ( ) ( ) ( )

( ) ( ); 1

n

n S v n n n n

v n n

dP t
P t P t P t r P t

dt

P t P t S n F

     

 

  



       

    
  

(8.30) 

9,

9, 8, 1 10, 1

9, 1 6,

( )
( ) ( ) ( ) ( )

( ) ( ); 1 2

n

n S v n n n

v n n

dP t
P t P t r P t

dt

P t P t F n K

    

 

  



      

     

    (8.31) 

9, 1

1 9, 1 8, 2 10, 2 6, 1

( )
( ) ( ) ( ) ( ) ( )



            
K

K S v K K K K

dP t
c P t P t r P t P t

dt
       (8.32) 

(xi) ( ) 10t  : When the server is in reboot state during working vacation (WVR). 

10,

10, 0 9,

( )
( ) ( ); 1

n

n n

dP t
r P t c P t n S

dt
          (8.33) 
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10,

10, 9,

( )
( ) ( ); 1 1

n

n n S n

dP t
r P t c P t S n K

dt
            (8.34) 

(xii) ( ) 11t  : When the server is on working vacation when no more failed machines can 

enter the system (WVN). 

11,

11, 12, 11, 1

( )
( ) ( ) ( ) ( ); 1

n

v n n v n

dP t
P t P t P t n F

dt
               (8.35) 

11,

11, 12, 11, 1

( )
( ) ( ) ( ) ( ); 1 1

n

v n n v n

dP t
P t P t P t F n K

dt
            

  
(8.36) 

11,

11, 1 9, 1

( )
( ) ( ) ( )

K

v K K S K

dP t
P t P t

dt
        

     
(8.37) 

(xiii) ( ) 12t  : When the server is under repair while breaks down during working 

vacation (DWV). 

12,

12, 11,

( )
( ) ( ); 1 1

n

n n

dP t
P t P t n K

dt
           (8.38) 

8.4 Performance Measures 

The system characteristics can be examined by deriving the performance indices by 

considering the transient state probabilities. These measures have played significant role in 

achieving the high reliability and can be used as useful tools by the industrial engineers and 

system managers for the improvement of the grade of service (GoS) by predicting the 

reliability and queueing indices of the concerned fault tolerant system.  

8.4.1 The transient probabilities at time ‘t’ of server being in broken down state  BDP t , 

server being busy  BP t , server rendering service during vacation period  BWP t , server 

being idle  IP t , server is in reboot state  RBP t , server is in recovery state  RCP t are 

obtained as follows: 

           
1 2 2 1

0, 5, 6, 7, 12,

1 0 0 0 1

K K K K K

BD n n n n n

n n n n n

P t P t P t P t P t P t
   

    

        
 

(8.39) 

     
1

1, 3,

1 0

K K

B n n

n n

P t P t P t


 

         (8.40) 

     
1

9, 11,

0 1

K K

BW n n

n n

P t P t P t


 

         (8.41) 

     3,0 9,0I
P t P t P t 

        
(8.42) 

        
1

4, 7, 10,

1

K

RB n n n

n

P t P t P t P t




  
     

(8.43) 



130 
 

        
1

2, 5, 8,

1

K

RC n n n

n

P t P t P t P t




        (8.44) 

8.4.2 Queueing indices 

The queueing characteristics can be used for the performance evaluation of the fault tolerant 

system (FTS). Now, using transient probabilities, we establish the various queueing indices 

such as mean queue length of failed machines present in the system, throughput, mean 

number of available standbys, expected delay time, expected waiting time, etc.  

(i) The mean queue length of failed machines in the system 

         

            

12 2

, 0, 1, 3, 6,

0 1

9, 11, 12, 1, 6, 11,

( ) ( 1)


 

     

     


K

j n K K K K

j n

K K K K K K

EN t n P t K P t P t P t P t

P t P t P t K P t P t P t
  

(8.45) 

(ii) The throughput can be obtained using  

       
1 1

1, 3, 9, 11,

1 1 1 1

( )
 

   

      
K K K K

b n b n v n v n

n n n n

TP t P t P t P t P t   
  

(8.46) 

(iii) Mean number of available standby machines 

       
10 12 1

,0 ,

2 2 1



  
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j j n

j j n

ES t SP t S n P t

     

(8.47) 

(iv)  Mean number of operating machines in the system is 

       
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(8.48) 

(v) The effective rate which is the overall rate of joining of failed machines in the system  
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(8.49) 

(vi) The expected waiting time for the failed machines in the system, is  

 
 


eff

EN t
EW t


 

        (8.50) 

(vii) The expected delay time is  

 
 { }

( )


E N t
ED t

TP t          
(8.51)  
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8.4.3 Reliability indices 

These measures can play significant role to increase the capacity and reliability of the fault 

tolerant system. The performance measures based on reliability issues are also helpful in 

improving the system availability during operational phase at time t. 

(i) Machine availability at time t 

 { }
( ) 1 



E N t
MA t

M S
        (8.52) 

(ii) Reliability of the system at time t is 

 
   6,1 Y KR t P t

        
(8.53) 

(iii) Mean time-to-failure (MTTF) is obtained using 

 

 
0



  YMTTF R t dt         (8.54) 

8.5 Sensitivity Analysis 

The system reliability, throughput of the system and MTTF for varying values of different 

system descriptor   which are taken specifically , , , ,b b     can be examined by using the 

derivatives of performance indices. Now, we obtain 
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where 
 



yR t
, 

( )



TP t
 and 

MTTF






are computed numerically.  

The relative sensitivity related to the reliability function, throughput of the system and MTTF 

are also presented by evaluating the following metrics: 

 
     

 
 
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. .
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Y Y
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    (8.60) 

.
MTTF MTTF MTTF

MTTF MTTF
 

 

  

 
    

 
   

(8.61) 



132 
 

8.6 Numerical Simulation 

The tractability and implementation of the suggested method are demonstrated by computing 

the various performance indices namely mean queue length of failed machines, reliability, 

mean number of available standby machines, cost function with respect to varying values of 

different parameters. The trends of performance indices based on numerical experiment have 

been display graphically. By conducting numerical experiment, we have also explored the 

sensitivity and relative sensitivity of some indices viz. the throughput, reliability and MTTF 

by varying values of different parameters. 

8.6.1 Effect of parameters on performance indices 

To visualize the impact of different parameters, the graphs of the queue length of failed 

machines, reliability and MTTF have been computed for the transient state. The sensitivity of 

the system indices with respect to different system descriptors , , , ,b v     is presented by 

varying time. We set the default system parameters as 25, 8, 4, 2,M F S m   

0.75, 5, 2,b vµ    0.5,  10,   10, 12, 1r    and the results computed are 

depicted in Figs. 8.1-8.2. It is observed that the mean queue length of failed machines ( )EN t  

increases with the increasing values of  but decreases with the increasing repair rate
b . 

There is no remarkable effect of β and
v on ( )EN t . The mean queue length of failed 

machines ( )EN t  increases for the higher value of the number of operating machines ( )M  as 

well as the standby machines ( )S . 

As we expect, the system reliability ( )YR t , lowers down with the increase in the failure rates

  of operating as well as standbys machines. The numerical results for the reliability match 

with our expectations, as clearly seen in Fig. 8.2(i) and 8.2(iii); the system reliability ( )YR t

decreases with the increase in the time for different values of  and  , respectively. Initially 

there is no effect of changing value of  and   but the decreasing effect with respect to 

and  becomes more prominent as time grows up. From Fig. 8.2 (ii), the system reliability 

( )YR t grows up as time passes for different values of repair rate of failed machines ( )b . 

Initially the system reliability ( )YR t shows no significant change for the different values of   

but later on shows increasing trend as time increases. The reliability of the system ( )YR t  

increases as the number of operating machines as well as standby machines increase.  
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(i)                                                              (ii) 

         
                                 

 

 (iii)                                                                    (iv) 

         

                   

            

                                       (v)                                                                     (vi) 

         

Fig. 8.1: Expected number of failed machines { ( )}E N t vs. t by varying parameters (i)    

(ii) b  (iii) r   (iv)   (v) M  (vi) S  
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(i)                                                                      (ii) 

         
                                    

 

                                    (iii)                                                                           (iv) 

       
 

 

(v)                                                                            (vi) 

         

Fig. 8.2: System reliability  YR t Vs. t  by varying parameters (i) λ (ii) b (iii)α (iv)    

(v) M (vi) S  
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8.6.2 Sensitivity of system reliability  

 

Fig. 8.3 (i) Reliability sensitivity  t   and (ii) Relative sensitivity  t vs. t for 

different system parameters                                             

The pattern of reliability function is depicted in Figure 8.2 for various system descriptors. 

The trend of the reliability for the varying values of the system parameters is depicted in 

Figure 8.2 by setting default parameters as M=25; F=8; S=4; m=2; λ=0.75; μb=5; µv=2; 

ν=0.5; c=0.4; θ=14; α=0.2; β=10; γ=10; σ=12; r=1. It can be easily seen that the reliability 

increases with the decrease in failure rates (λ and α) and increase in repair rate (μ and β). It is 

clear from the figure that the desired reliability can be easily achieved by improving the 

system repair facility which matches with the experience on real time systems. 

The reliability is examined by presenting sensitivity and the relative sensitivity as shown in 

Fig. 8.3(i) and 8.3(ii). It is noticed that the reliability is quit sensitive for λ while ν has least 

impact on the reliability. From the magnitude  t , we can conclude that for different 

parameters, the reliability is sensitive in order
b v

        . 

8.6.3 Sensitivity of throughput  

The sensitivity of throughput ( ) is depicted in Figure 8.4(i) with respect to the system 

parameters for default parameters fixed as M=25; F=8; S=4; m=2; λ=0.75; μb=5; µv=2; 

ν=0.5; c=0.4; θ=14; α=0.2; β=10; γ=10; σ=12; r=1.  

It can be seen that the throughout is highest sensitive to μ while least sensitive to ν. From the 

magnitude  t , we can conclude that throughput function with respect to different 

parameters is sensitive in order b v        . The relative sensitivity of throughput 

function  t is shown in Fig 8.4(ii). 
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Fig. 8.4: (i) Sensitivity of throughput  t   and (ii) Relative sensitivity of the 

throughput  t  

8.6.4   Sensitivity and relative sensitivity of MTTF              

            

 

      

Fig. 8.5: Mean time to failure (MTTF) for (i) λ (ii) α (iii) β (iv) µb 
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Table 8.1: Sensitivity analysis  t of MTTF 

 

 

 

 

Table 8.2: Relative sensitivity analysis  t of MTTF 

To explore the sensitivity of MTTF, we set the default parameters as M=20; F=8; S=4; m=2; 

λ=01.3; μb=5; µv=3; ν=0.5; c=0.4; θ=14; α=0.2; β=10; γ=10; σ=12; r=1. Numerical results 

for the MTTF are depicted in Figure 8.5 for varying different parameters. It is noted from 

Figs 8.5(i)-8.5(ii) that the MTTF grows up as the number of operating as well as standby 

machines increases. On the contrarily MTTF decreases as F increases. Moreover, there is 

increment in MTTF as value of M increases. In Tables 8.1-8.2, we display the sensitivity

(t) and relative sensitivity (t) of MTTF for varying values of different system 

parameters. It is evident that magnitude of MTTF  t is sensitive in the following order of 

parameters b v        when 15,20,25.M  Moreover, the order of magnitude of 

relative sensitivity of MTTF  t is b v        when 15,20,25.M   

M       b  v  

15 -4005.64 17.43 -789.51 177.29 -0.10 

20 -4733.27 20.54 -815.64 180.15 -0.06 

25 -5396.58 23.37 -831.84 180.93 -0.04 

M       b  
v  

15 -9.90739E-01 3.44864E-01 -1.95274E+00 1.75404E+00 -1.28475E-04 

20 -9.90948E-01 3.43960E-01 -1.70760E+00 1.50861E+00 -6.13667E-05 

25 -9.90993E-01 3.43258E-01 -1.52754E+00 1.32901E+00 -3.65608E-05 
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Chapter 9 

Availability of R-out-of-M:G FTS with Imperfect Fault Coverage 
 
 

 

9.1 Introduction 

The automated machining systems can be upgraded by using the fault tolerant mechanism 

which reduces the risk of immediate breakdowns and improves the system availability. The 

prime objective of system developers is to design redundant and repairable systems by 

incorporating all those features which helps to upgrade the efficiency, reliability as well as 

availability related metrics of concerned machining system. In queueing and reliability 

literature, several studies are devoted to the performance analysis of the redundant machining 

systems in Markovian frameworks (cf. Sivazlian and Wang, 1989; Wang and Kuo, 1997; 

Wang and Ke, 2003; Karmeshu and Sharma, 2006; Haque and Armstrong, 2007;  Ke and 

Wu, 2012; Hsu et al., 2014) and many others. To enhance the performability of the 

machining systems, the concept of non-exponential distribution for life time/repair time 

distributions should be used. From the queue management point of view, Singh et al. (2015) 

and Karmeshu et al. (2017) contributed significantly to analyze the finite buffer queue and 

adaptive mean queue size, respectively. 

The performance prediction via non-Markovian queueing analysis of fault tolerable 

machining system has attracted a few authors due to its critical applications in several real 

time systems. In the present study, we implement supplementary variable and recursive 

approaches to determine the availability and the performance metrics of the machining 

system operating in fault tolerant environment by developing M/G/1 model and treating the 

remaining repair time as a supplementary variable. The supplementary variable technique to 

solve the non-Markovian systems was first introduced by Cox (1951) which later on, 

implemented by many researchers to analyze the service systems in different frameworks (cf. 

Hokstad, 1975; Choi and Park, 1990; Gupta and Srinivasa Rao, 1994; Gupta and Srinivasa 

Rao, 1996; Nobel and Tijms, 2000; Madan, 2000; Wang and Ke, 2000; Ke and Wang, 2002; 

Ke, 2003) . The notable contributions on M/G/1 model for the repairable machining system 

via supplementary variable technique can be found in work of (Yamashiro, 1981; Goel and 

Gupta, 1983; Goel et al., 1983; Gupta and Agarwal, 1984; Mahmoud et al., 1987;  Mahmoud 

et al., 1988;  Srinivasa Rao and Gupta, 2000; Jain et al., 2004; Wang et al., 2005; Wang and 
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Chiu, 2006).  By incorporating many important features viz. N-policy and vacation, Ke 

(2003) developed a G/M/1 queueing model to study the probability distribution at steady 

state to compute average queue size by using supplementary variable technique. Wang et al. 

(2005) carried out the availability analysis of three different redundant machining system 

configurations for the recovery of failed components by employing supplementary variable 

technique. The M(n)/G/1/K queueing model with state dependent arrival rate and removal 

server has been studied by Chao and Rahman (2006). They have obtained the steady state 

queue size distributions of system state using recursive and supplementary variable 

technique. The finite capacity non-Markovian queueing systems combined with F-policy 

have been studied in Wang et al. (2007) by employing the supplementary variable technique. 

Wang and Chen (2009) studied and compared the availability of three different systems 

incorporating reboot delay and switching failure. They have used supplementary variable 

approach to evaluate the stationary explicit expressions for the availability of three 

configurations. The availability prediction of a repairable system with imperfect fault 

coverage and common cause failure have been investigated using supplementary variable 

technique by Jain (2013). The availability prediction of K-out-of-(M+W) configuration was 

studied by Ke et al. (2013) of a repairable retrial system with the provision of standby 

support. Wang et al. (2014) presented a steady state analysis of a M/G/1 machining system 

using supplementary variable technique.  Ke et al. (2016) proposed the queueing model for 

the analysis of a machining system with standbys support and imperfect switch over facility. 

In this study, they have used the recursive method based on supplementary variable 

technique and carried out cost analysis using Probabilistic Global Search Lausanne method 

(PGSLM). Recently, Jain and Sanga (2017) have used supplementary variable technique for 

the steady state analysis of fault tolerant machining system under the control F-policy. 

In the available works on M/G/1 queue with redundancy and imperfect fault coverage, the 

provision of replacement along with recovery of failed machines has not made. However, in 

many systems, the failed components can be replaced due to fact that repair process may not 

adequate for the recovery of failed components. Sometime replacement seems to good option 

in comparison to repair due to techno-economic reason. The M/G/1 queueing model for the 

fault tolerant machining system is considered by including the features of repair, reboot, 

recovery and replacement processes to deal with more versatile and realistic scenarios of 

real-time systems. The queueing and availability analysis of fault tolerant machining system 

is presented by using recursive method to solve the difference differential equations 

obtained, after introducing the supplementary variable corresponding to remaining repair 
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time. The cost optimization is also done by Newton-quasi method. Furthermore, numerical 

experiments are conducted to explore the sensitivity of parameters on the system availability 

and various other performance metrics. The contents of rest of the chapter are managed in the 

following manner. In Section 9.2, the notations and assumptions for formulating the model 

are presented. Section 9.3 provides the queue size distribution of the system. The solution 

algorithm to compute the steady state probabilities associated to different states of the system 

is described in Section 9.4. The system availability analysis is carried out for R-out of-M: G 

configuration in Section 9.5. In Section 9.6, various system indices are established to 

characterize the system reliability aspects and system cost function is formulated. The 

numerical simulation is performed to study the sensitivity of system descriptors on 

performance indices in Section 9.7.  

9.2 Description of the Model  

The M/G/1 queueing model is considered for the performance modeling and availability 

analysis of fault tolerant repairable system consisting of M identical operating machines. The 

operating machine may fail in Poisson fashion with rate . The repair time of failed 

machines is assumed to be independent and identically distributed (i.i.d.) random variable 

with cumulative distribution function ( ) ( 0)G u u , probability density function ( ) ( 0)g u u , 

and mean repair rate g . The failed machines are repaired by the single server in order of their 

breakdowns i.e. following the first in first out (FIFO) discipline. The failure of operating 

machine is detected with probability c and after detection recovered successfully with 

probability p by rate . In case if with probability  1 c , the failure of the operating 

machine is not recovered successfully then the system will immediately takes reconfiguration 

operation to restore its functioning by reboot processes with rate r . When the fault is not 

recovered successfully with probability  1 p , the failed machine is replaced with rateby a 

new machine to maintain the functioning of the fault tolerant machining system.  

Let { ( ), ( ); 0}        be a continuous time stochastic process where ( )  denotes the 

number of failed machines in the system at time   and ( )  denotes the operation mode of the 

system at time which takes values 0, 1, 2, 3 when the system is in operating, reboot, 

recovery and replacement modes, respectively. For the analysis of non-Markovian process, 

the supplementary variable is introduced. Let ( )U  represents the supplementary variable 

corresponding to remaining time of repair of the failed machines at time  . 
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0 1 M-2 M-12 M

m

m

p p p p p

   

0c 1c
1m c 2M c



( )g u( )g u( )g u( )g u( )g u( )g u

0 c 1c
1m c 2M c

r r r r

p p p p

 

Fig. 9.1: Transition state diagram for M/G/1 FTS 

The system state probabilities at time  for different system modes from operation view point 

are defined as follows (See fig. 9.1): 

(i) Operating state:      ( , ) Pr .{ ( ) , ( ) 0, ( ) }; 0             mP u du ob m u U u du m M  

(ii) Reboot state:           ( ) Pr .{ ( ) , ( ) 1};1 1mQ ob m m M            

(iii) Recovery state:       ( ) Pr .{ ( ) , ( ) 2}; 1 1mR ob m m M            

(iv) Replacement state: ( ) Prob.{ ( ) , ( ) 3};1 1mW m m M            

It is assumed that initially all the machines are in good state. The state dependent failure rate 

n for component of the fault tolerant repairable system is given as 

( ) , 0,1,2,..., 1.m M m m M     
 

9.3 Governing Equations and Queue Size Distribution 

The transient state Chapman-Kolmogorov equations for state space 

[(0,0) {( , ), 0,1,2,3; 1,2,3,..., 1} (0, )]i m i m M M     are constructed using the 

appropriate birth and death rates. After introducing the supplementary variable, the 

governing equations are framed using the state-transition rate relating to the individual states 

of the system at time   and d   as follows:  

     0 0 0 1 1( ) , 0, ( )p

d
P P u P W

dt
                (9.1) 

 

1 1

, ( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (0, ), 1 2,

m n n n

n n

P u M n P u p g u Q g u R
u

g u W g u P m M

      


   

  
     

  

    

  (9.2) 

 1 1 1, ( , ) ( ) ( ) ( ) ( ) ( ) (0, )M M n M MP u P u p g u Q b u R g u P
u

       


  

  
      

    

(9.3) 
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  1, ( , )M MP u P u
u

  




  
  

  
       (9.4) 

1( ) ( ) ( ( 1)) ( ), 1 1m m m

d
R R M m cP m M

dt
               (9.5) 

1( ) ( ) ( ( 1)) ( ), 1 1m m m

d
Q Q M m cP m M

dt
              (9.6) 

( ) ( ) (1 ) ( ), 1 1m m m

d
W W p R m M

dt
              (9.7) 

For the steady state, the system state probabilities are denoted by 

( ) lim ( , ), 0 ;m mP u P u m M


   
     

lim ( ), 1 1;m mQ Q m M


      

lim ( ), 1 1;m mR R m M


    
       

lim ( ), 1 1m mW W m M


     . 

lim ( ), 0 ;


   m mP P m M  

The transient Equations (9.1)–(9.7) can be written in steady state form as follows:  

0 1 10 (0)M P W P            (9.8) 

1 1

0 ( ) ( ) ( ) ( ) ( )

( ) ( ) (0), 1 2,

m m m m

m m

d
P u M m P u r g u Q p g u R

du

g u W g u P m M 

      

    

    (9.9) 

1 1 1 10 ( ) ( ) ( ) ( ) ( ) (0),M M M M M

d
P u P u r g u Q p b u R g u P

du
        

  
(9.10) 

10 ( ) ( )M M

d
P u P u

du
          (9.11) 

10 ( ( 1)) (1 ) , 1 1m mM m c P Q m M              (9.12) 

10 ( ( 1)) , 1 1m mM m cP R m M              (9.13) 

0 (1 ) , 1 1m mp R W m M      
       

(9.14) 

Solving (9.12), (9.13) and (9.14), we obtain  

1

( 1) (1 )
, 1 1m m

M m c
Q P m M

r


   
          (9.15) 

1

( 1)
, 1 1m m

M m c
R P m M

  
   


      (9.16) 

1

( 1)(1 )
, 1 1m m

M m p c
W P m M

   
   


     (9.17) 

In particular when m=1, we have  
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1 0

(1 )M p c
W P

 



         (9.18) 

Now, using (9.1) and (9.10), we get 

1 0(0) (1 (1 ))   P M c p P        (9.19) 

Denote the following Laplace-Stieltjes transforms (LST) of CDF G(τ) and probabilities as 

*

0 0

{ ( )} ( ) ( ) ( )

 

    
su suL G t G s e dG u e g u du     (9.20) 

and * *

0 0

( ) ( ) ; (0) ( )

 

   
su

m m m mP s e P u du P P P u du     (9.21) 

Taking Laplace-Stieltjes transforms of (9.9)-(9.11), we obtain 

* * *

1

* *

1

*

1

0 ( ) (0) ( ) ( ) ( 1) ( )

( 1) (1 ) ( ) (1 )( ) ( )

( ) (0), 1 2,

m m m m

m m

m

sP s P M m P s p M m cG s P

M m c G s P p M m cG s P

G s P m M







        

        

       

(9.22) 

* * *

1 1 1 1

* *

1

0 ( ) (0) ( ) ( 1) ( )

( 1) (1 ) ( ) ( ) (0),

M M M m

m M

sP s P P s p M m cG s P

M m c G s P G s P

   



      

     
   (9.23) 

* *

10 ( ) (0) ( )M M MsP s P P s          (9.24) 

Setting 0s  in (9.22), we obtain 

*

1 10 (0) (0) ( ) ( (1 ) 1) (0) ( 1) ( (1 )) ,

1 2,

m m n mP P M m c p P M m cp c P

m M

             

    

(9.25) 

Using (9.8) and (9.21) in (9.25) for 1,2,..., 1m M  , we find 

1(0) ( ) (1 (1 )) , 1 1        m mP M m c p P m M      (9.26) 

Setting ( )s M m   in (9.22), we obtain 

*

1

* *

1

*

1

0 (0) ( 1)) {( ) }

( 1))(1 ) {( ) } (1 )( 1)) {( ) }

{( ) } (0), 1 2,

m m

m m

m

P p M m cG M m P

M m c G M m P p M m cG M m P

G M m P m M







      

             

     

(9.27) 

Using (9.26) in (9.27), we get 

0 , 1 2m mP f P m M   
       

(9.28) 

where  
*

*
1

(1 (1 )) (1 {( ) })
; 1 2.

( ) {( ) }

m m

m

i

M c p G M i
f m M

M m G M i

    
   

  


  

(9.29) 

Using (9.20), (9.22) and (9.24) in (9.12), we obtain 

0 , 1 1m mQ g P m M            (9.30) 
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where 
*

*
1

( 1)(1 (1 )) (1 ) (1 {( ) })
; 1 2.

( ) {( ) }

        
   

  


m m

m

i

M M m c p c G M i
g m M

r M m G M i
 

(9.31) 

Using (9.20), (9.22) and (9.24) in (9.13), we obtain 

0 , 1 1m mR h P m M            (9.32) 

where 
*

*
1

( 1))(1 (1 )) (1 {( ) })
.

( ) {( ) }

m m

m

i

M M m c p c G M i
h

M m G M i

       


   
    (9.33) 

Using (9.20), (9.22) and (9.24) in (9.14), we obtain 

0 , 1 1m mW w P m M            (9.34) 

where 
*

*
1

( 1)(1 (1 )) (1 ) (1 {( ) })
.

( ) {( ) }

m m

m

i

M M m c p p c G M i
w

M m G M i

        


   
   (9.35) 

 Setting s  in (9.23), we get 

* *

2 2 10 (1 (1 )) ((1 ) ) ( ) (1 (1 )) ( )            M M Mc p P c cp G P c p G P
 

(9.36)  

Solving (9.36) using (9.26), we obtain 

1 1 0 M MP f P           (9.37) 

where 
* 2 *2

1 * *
1

(1 ( )) (1 (1 )) (1 {( ) })
.

( ) 2 {( ) }

M M

M

i

G M c p G M i
f

G G M i

 





      


  
    (9.38) 

Now, differentiating (9.23) and (9.24) w. r. t. ' 's  and then setting 0s  , we get 

1*

1 1 2[1 (1 (1 ))] 2 ((1 ) )] ,M M MP c p P c cp P               (9.39) 

1*

1,M MP P             (9.40) 

Using (9.28), (9.37) and (9.39) in (9.40), we obtain 

0M MP f P           (9.41) 

where 
* 2 *2

* *
1

(1 ( )) [1 {( ) }]
2 [1 ] .

( ) 2 {( ) }

M M

M

i

G Md G M i
f d d

G G M i

 



     
    

   
   (9.42) 

The normalizing condition is used to determine 0P . Thus, we obtain 

1
1

0 1 1

1

1 ( ) .




 



 
       
 

M

m m m m M M

m

P f g h w f f      (9.43) 
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9.4 Algorithm to Compute Steady State Probabilities  

In this section, we outline the computational algorithm to evaluate the state probabilities 

using recursive approach as: 

Input parameters: M, , , , , r,c,andp.     

Step I:    Evaluate , , and ( 1,2,..., 2)m m m mf g h w m M   using (9.29), (9.31), (9.33), and 

(9.35), respectively.  

Step II:   Evaluate
1Mf  using (9.38) and

Mf using (9.42). 

Step III:  Evaluate
0P  using (9.43). 

Step IV: For 1m   compute 1(0)P using (9.19). Also evaluate (0)( 2,3,..., )mP m M using 

(9.26). 

Step V:   Evaluate for 1, , , for (1 2)and ,  m m m m M MP Q R W n M P P using (9.28), (9.30), 

(9.32), (9.34), (9.37) and (9.41), respectively. 

9.5 Availability Analysis of R-out-of-M:G Configuration System 

In this section, availability evaluation of R-out-of-M: G structure for multi-component 

machining system is determined for specific distribution of repair times. Now, for 

illustration, consider a machining system comprising of total M=3 operative machines. For 

parallel configuration, the system works if and only if at least 1 out of total 3 machines are 

working, and is called a 1-out-of-3: G system. We consider a machining system consisting of

M machines; the system works if and only if at least R out of total M machines are working. 

For the special case when 3M  , we evaluate the explicit results for the availability indices 

by considering series and parallel configuration also. To demonstrate the working procedure 

of evaluating the availability of the system, three different repair time distributions viz. (i) 

Exponential (ii) deterministic and (iii) 3-stage Erlang are taken into account. For series 

configuration, all units will be in working mode as such we have 3-out-of-3: G system. In 

case of 2-out-of-3: G structure, the system will work if at least 2 out of 3 units are working. 

For brevity, we use the following notations to evaluate the analytical results for the 

availability: 

, (1 (1 )), 3d c p a d


      
  
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9.5.1  Exponential repair time distribution 

Consider the exponential distribution for the repair with pdf, CDF and LST of repair time 

given by
*( ) , ( ) 1 and ( )  

     


x xg u e G u e G , respectively. 

For R-out-of-M: G structure, the availability is obtained using  

    0

1

( )
M R

(R-M) m m

m

A P P R




         (9.44) 

The system availability and steady state probabilities associated to different states of the 3 

unit system are evaluated by setting M=3 in previous section as follows: 

(a) Operating state probabilities. 

 2 2

1 0 2 0 3 03 ; 3 ; 6 3 3P aP P a P P a a a P            (9.45) 

(b) Reboot state probabilities. 

2

1 0 2 0

9 (1 ) 12 (1 )
;

c a c a
Q P Q P

r r

   
        (9.46) 

(c) Recovery state probabilities. 

2

1 0 2 0

9 12
;

c a c a
R P R P

 
 

 
      (9.47) 

(d) Replacement state probabilities. 

2

1 0 2 0

9 (1 ) 12 (1 )
;

c p a c p a
W P W P

   
 

 
     (9.48) 

Here, for M=3, 0P can be determined using normalizing condition given in (9.43) 

1

2 2

0

(1 ) (1 )
1 3 6 3 3 (3 4 )



   
          

   

c c c p
P a a a a a

r
  (9.49) 

The system availability for R-out-of-3: G (R=1, 2, 3) configuration is determined using 

  
1

(1 3)

2 2

1

1 3 3

( )
(1 ) (1 )

1 3 6 3
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   (9.50) 

  
(2 3)

2 2

1

3
1 3 1

( )
(1 ) (1 )

1 3 6 3



 
  

  
  

      
  

c
a

A
c c c p

a a a B
r

   (9.51) 
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(9.52) 

where 1 3 (3 4 )B a a   . 

9.5.2  Deterministic repair time distribution  

The system state probabilities and availability of R-out-of-3:G configurations system for 

deterministic repair time distribution are obtained by taking the LST of CDF G( ) of repair 

time defined as  

          *( )G e



  . 

(a) Operating state probabilities. 
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(b) Reboot state probabilities. 
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(c) Recovery state probabilities. 
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(d) Replacement state probabilities. 
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(9.56) 

Also 0P
 
is given by 

2 3 2 2 1

0

3 (1 ) (1 ) 3
[ 1 ( (1 ) (1 )) 3 ( )( 1)( 2 ( 1))]

2 2

       
             

 

c c c p
P d a e e e e d e d e

r
  (9.57) 

The system availability of R-out-of-3:G (R=1, 2, 3) structure is evaluated as 
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(9.58) 
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(9.59) 
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where  2

2

3
3 1 2 ( 1)

2
B d e d e  

     
 

. 

9.5.3 3-stage Erlang repair time distribution  

The system state probabilities and availability of R-out-of-3:G (R=1, 2, 3) configuration for 

3-stage Erlang distribution for repair time are obtained by taking the LST of CDF G( ) for 

repair time as 

3
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 (9.61) 

(b) Reboot state probabilities. 
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    (9.62) 

(c) Recovery state probabilities 
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(d) Replacement state probabilities. 
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Using normalizing condition, 0P is obtained as 
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where 
c c p c

r
  
 

, 1 3 4 2 4a a      ,
2

2

4
11 2

27


    . 

The system availability are obtained as 
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(9.68) 

9.6 System Performance Measures 

To explore the queueing and reliability characteristics of an M/G/1 fault tolerant machining 

system at steady state, we formulate various performance indices which can be further used 

to characterize the system behavior. Now we establish the formulae in terms of steady state 

probabilities which are already determined in Section 3. Furthermore, the cost function is 

also established.  

(i) Expected number of failed machines in the system is 
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(ii) The long run probabilities that the system is in reboot state, recovery state and replacement 

state   
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(iii) System Cost Optimization 

The total cost incurred per unit time of the system is determined by framing the expected cost 

function by treating repair rate ( )  as decision variable (Wang and Yang 2009). The cost 

function ( )TC is minimized in order to find the optimal repair rate
*( ) . The cost elements 

associated with different system metrics are used to frame the cost function ( )TC . The 

following cost elements per unit time constitute the cost function: 

:HC  Holding cost incurred on each failed machine waiting for the repair. 

:RBC  Reboot cost incurred to the one unit of the system. 

:RCC  Cost associated with the recovery of single failed machines. 

:RPC  Cost associated with the replacement of one failed machine.  

:mC  Cost involved in the repair of each failed machine with repair rate . 

:cC  Cost incurred in detecting each failed machine.  

We formulate the cost function as follows: 

The optimization problem is 

*

( ) ( )

( ) min. ( )

subject to : 0 and 0 1.
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H RC RC RB RB RP RP m cTC C E N C P C P C P C cC

TC TC

c    

(9.73) 

The analytical result for the optimal value of  is not easy to derive due to fact that the total 

cost TC( ) is non-linear in nature. Quasi-Newton technique is applied to obtain the optimal 

value of continuous decision variable ( )  until the minimum value of cost function TC( ) , 

say *TC( ) is attained. Quasi-Newton method is an iterative method with some stopping 

criterion depending on the tolerance limit and can be used to find the µ*. The main advantage 

for implementing this method is its fast convergence and affine invariance. The iterative 

steps to implement Newton-quasi method are as follows: 

(i) Set the initial value of decision variable as 0 for i 0 and the tolerance 710  . 

(ii) Compute total cost 0TC( ) for initial value of 0 . 

(iii) Evaluate the cost gradient 
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(iv) Determine new trial solution    
1

i 1 i i iH TC


         . 

(v) Set 1i i   and repeat steps (iii) and (iv) until max
TC

| |
 

  
 

. 

(vi) Find the global minimum value
iTC( ) TC( )   . 

9.7 Numerical Simulation 

In this section, we present numerical simulation and cost optimization results by taking 

numerical illustration of the fault tolerant M/G/1machining system with imperfect coverage. 

For a specific problem of manufacturing system, we consider the application of packing with 

the help of robots. 

9.7.1  Application of M/G/1 fault tolerant system in manufacturing system 

The practical applicability of imperfect coverage and replacement processes in fault tolerant 

M/G/1 machining system is demonstrated by taking an illustration of manufacturing system 

where robots are used for packing purpose. The normal functioning of the system is done 

with the help of M operating robots whose failure rate is assumed to be robots per day.  

Whenever any fault occurs in the robots, its fault is detected and diagnosed. Then after, the 

recovery of failed robots are done with probability c and recovery rate ; if failed robots are 

not recovered successfully with probability (1 ) p  then replacement of the failed robot is 

done with rate . If fault is not detected due to imperfect coverage, it is cleared by reboot or 

reset operation with rate r . To maintain the pre-requisite level of availability of robots in the 

system, we provide the repair to the failed robots with mean repair rate  per day. 

9.7.2 System availability 

This section explores the numerical results of availability for specific configuration R-out-of-

M: G (R=1,2,3). For facilitating the computational results, we consider the repair time 

governed the Exponential, Deterministic and 3-stage Erlang distributions. For the numerical 

computations, software ‘MATLAB’ is used by fixing default system parameters as: 

M 3, 0.6, 10, 2, 0.6, r 0.7, c 0.5, p 0.6.              

From the Tables 9.1-9.2, it can be clearly seen that the availability for each of the three 

configurations  R-out-of-3: G (R=1, 2, 3) for exponential, deterministic and 3-stage Erlang 

distributions grows up as the value of reboot rate (r) and repair rate (µ) increase. From 

figures 9.2(i-iii)-9.3(i-iii), it is seen that the availability 3( ) ( 1,2,3)RA R   shows decreasing 

trend as failure rate of operating machines increases. 
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Table 9.1: Effect of r on the system availability of R-out-of 3: G configuration 

Systm 

config. 

1-out-of-3 

(Parallel) 

2-out-of-3 

(Series) 

3-out-of-3 

(Series) 

r Exp 
3E  D Exp 

3E  D Exp 
3E  D 

2.0 0.6182 0.6171 0.6165 0.6087 0.6072 0.6064 0.4661 0.4631 0.4615 

2.5 0.6415 0.6403 0.6396 0.6317 0.6300 0.6292 0.4837 0.4805 0.4789 

3.0 0.6581 0.6568 0.6561 0.6480 0.6462 0.6453 0.4962 0.4929 0.4912 

3.5 0.6705 0.6691 0.6683 0.6601 0.6583 0.6574 0.5055 0.5021 0.5003 

4.0 0.6800 0.6786 0.6778 0.6696 0.6677 0.6667 0.5127 0.5093 0.5074 

Table 9.2: Effect of   on the system availability of R-out-of 3: G configuration 

System 

config. 

1-out-of-3 

(Parallel) 

2-out-of-3 

(Series) 

3-out-of-3 

(Series) 

µ Exp 
3E  D Exp 

3E  D Exp 
3E  D 

3.0 0.6340 0.6249 0.6195 0.5935 0.5798 0.5717 0.3709 0.3496 0.3370 
3.5 0.6475 0.6398 0.6353 0.6131 0.6019 0.5954 0.3981 0.3803 0.3700 
4.0 0.6586 0.6520 0.6482 0.6288 0.6195 0.6142 0.4206 0.4055 0.3969 
4.5 0.6678 0.6621 0.6589 0.6416 0.6338 0.6293 0.4394 0.4266 0.4193 
5.0 0.6756 0.6707 0.6679 0.6522 0.6455 0.6418 0.4554 0.4444 0.4381 

 

Table 9.3: System indices for three different repair time distributions with failure rate λ 

 

λ 

 E[N]  
RBP

 RPP
 

 Exp 3E
 

D Exp 3E
 

D Exp 3E
 

D 

0.5 0.7473 1.1255 1.2119 0.0447 0.0611 0.0617 0.2233 0.3054 0.3087 

1 1.2052 1.5598 1.7105 0.0630 0.0697 0.0695 0.3148 0.3486 0.3473 

1.5 1.4580 1.7878 1.9413 0.0699 0.0731 0.0730 0.3496 0.3656 0.3651 

2 1.6152 1.9173 2.0545 0.0735 0.0754 0.0755 0.3675 0.3771 0.3774 

 

Table 9.4: System indices for three different repair time distributions with failure rate 

µ 

 

µ 

 
E[N] 

 
RBP

 RPP
 

 Exp 3E
 

D Exp 3E
 

D Exp 3E
 

D 

1 1.3254 1.6747 1.8411 0.0583 0.0624 0.0620 0.2914 0.3121 0.3101 

2 0.7473 1.1255 1.2119 0.0447 0.0611 0.0617 0.2233 0.3054 0.3087 

3 0.4573 0.8697 0.9162 0.0322 0.0580 0.0590 0.1609 0.2899 0.2952 

4 0.3015 0.7291 0.7588 0.0233 0.0545 0.0556 0.1164 0.2724 0.2778 

5 0.2109 0.6380 0.6594 0.0173 0.0511 0.0521 0.0864 0.2556 0.2607 



 

154 
 

      

  (i)                  (ii)            (iii)      

Fig. 9.2: System availability vs λ for different distributions (i) Exponential 

 (ii) 3-stage Erlang (iii) Deterministic 

 

    

(i)    (ii)                      (iii)      

Fig. 9.3: System availability vs η for different distributions (i) Exponential  

(ii) 3-stage Erlang (iii) Deterministic 

 

    

(i)                   (ii)       (iii) 

Fig. 9.4: Effect of λ, σ and c on E[N] for different distributions. 
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Based on distributions and configuration wise the availability trends obtained are

3 3 3( ) ( ) ( ) ( 1,2,3)E Er D

R R RA A A R        , which can be clearly seen in Tables 9.1-9.2 and 

Figures 9.2(i-iii)-9.3(i-iii).       

9.7.3 Performance indices of the system 

In this section, the system indices by computing different state probabilities are obtained to 

characterize the system behavior by fixing default system parameters as

M 5, 0.5, 6, 2, 3, r 2, c 0.7, p 0.6.           Table 9.1 indicates the increasing 

trend of mean queue length E[N] of the failed machines in the system with the increase in 

failure rate λ. Figure 9.4(i) depicts that the mean queue length E[N] increases rapidly initially 

for the increasing value of failure rate of machine from 0   to 4 . But beyond that, the 

mean queue length gradually increases for the further increment in the failure rate of machine 

from 4 to 5 . From Table 9.1, it can be noticed that the probabilities of reboot and 

replacement (
RBP and

RPP ) increase with the increase in the failure rate λ.  As we expect, on 

increasing the repair rate of any real time system, the number of failed machines lowers 

down. The results obtained in Table 9.2 for E[N] with reference to repair rate µ matches with 

our expectations. The Table 9.2 clearly depicts the decreasing trend of probabilities of reboot 

and replacement ( RBP and RPP ) with the increase in repair rate (µ). The impact of fault 

coverage probability (c) can be seen in Figure 9.4(ii) for all the three distributions; The mean 

queue length of failed machines E[N] lowers down with an increment in the fault coverage 

probability (c). The Figure 9.4(iii) clearly shows that the mean queue length E[N] slightly 

decreases on increasing the value of recovery rate (σ). 

9.6.4 System cost analysis 

The cost function ( )TC   seems to be non-linear and complex in nature; therefore it is quite 

tedious task. to optimize such a function analytically. Here, we determine the optimal repair 

rate (
* ) to minimize the cost function ( )TC  of the concerned system. The Matlab software 

is used to minimize the cost function by employing quasi-Newton approach. To minimize the 

total cost of the concerned system, three sets of cost elements are taken in to consideration as 

given in Table 9.5. For the computation purpose, the set of default parameters chosen are as 

5, 0.1, 2.5, 0.9, 1.8, 1.5, 0.8, 0.6.M r c p                

Table 9.5: Cost elements associated to different states of the system 

    

 

 

 

Cost set 
CH CRB CRC CRP Cm Cc 

I $20 $10 $15 $12 $8 $5 

II $25 $15 $15 $12 $9 $5 

III $30 $15 $15 $12 $10 $5 
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Table 9.6: The iterative results of quasi-Newton method for Exponential  

                  distribution for cost set I. 

 

 

 

 

 

 

 

Table 9.7: The iterative results of quasi-Newton method for 3-stage Erlang  

                  distribution for cost set I. 

 

 

 

 

 

 

  

Table 9.8: The iterative results of quasi-Newton method for Deterministic  

                  distribution for cost set I 

 

 

 

 

 

 

 

  Table 9.9: The minimum cost TC (µ*) and corresponding optimal repair rate (µ*)  

 

Cost set 

Exp E3 D 

µ*, TC(µ*) µ*, TC(µ*) µ*, TC(µ*) 

I 1.1474, $26.93 1.1837, $29.55 1.2346, $29.98 

II 1.1944, $30.56 1.2380, $33.80 1.2892, $34.28 

III 1.2318, $34.55 1.2819, $38.43 1.3333, $38.97 

Iteration ( i ) 
i  ( )iTC   First order optimality 

0 2.5 33.9958 7.1908 

1 1.5 27.8062 4.2477 

2 1.3557 27.2793 2.9757 

3 1.1488 26.9395 0.0254 

4 1.147 26.9394 0.0083 

5 1.1474 26.9394 1.610-5 

6 1.1474 26.9394 2.0810-7 

Iteration ( i ) 
i  ( )iTC   First order optimality 

0 2.5000 35.7608 6.6962 

1 1.5000 30.1888 3.5314 

2 1.0773 29.6591 2.0640 

3 1.2332 29.5744 0.7645 

4 1.1911 29.5555 0.1204 

5 1.1832 29.5550 0.0087 

6 1.1837 29.5550 9.1810-5 

7 1.1837 29.5550 2.0110-7 

Iteration ( i ) 
i  ( )iTC   First order optimality 

0 2.5000 35.8385 6.6252 

1 1.5000 30.4456 3.1240 

2 1.1574 30.0364 1.4219 

3 1.2645 29.9908 0.4727 

4 1.2378 29.9837 0.0527 

5 1.2345 29.9836 0.0023 

6 1.2346 29.9836 1.0410-5 

7 1.2346 29.9836 3.8610-7 
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The quasi-Newton approach is implemented using software Matlab to optimize the cost 

function. The minimum total costs obtained are presented in Tables 9.6-9.9 and Figs 9.5(i-

iii)-9.10(i-iii). From Table 9.6, it is noticed that the optimal repair rate (µ*) for Exponential 

distribution (E) is 1.1474 and corresponding minimum cost is TC (µ*) = $26.93 for cost set I. 

For 3-stage Erlang (Er) and Deterministic (D) distributions, the optimal repair rate and 

associated minimum cost obtained are (1.1837, 1.2346) and ($29.56, $29.98) respectively for 

cost set I. For the cost set II, the optimal repair rate (µ*) to the system are 1.1944, 1.2380 and 

1.2892 and the corresponding minimum cost incurred are $30.56, $33.80 and $34.29, 

respectively for Exponential, 3-stage Erlang and Deterministic distributions, respectively.  

In Table 9.9, the optimal repair rate (µ*) and associated minimum cost for cost set III are also 

displayed for each of the three distributions (i) Exponential, (ii) 3-stage Erlang (Er) and (iii) 

Deterministic (D) distributions. The trends of the cost results obtained for cost set III is 

depicted in Figures 9.7(i), 9.7(ii) and 9.7(iii) for Exponential, 3-stage Erlang (Er) and 

Deterministic (D) distributions, respectively. 

The surface graphs are plotted for the cost results to makes cost study more clear and useful 

for real time systems. The trends of the total cost TC by varying parameters µ, c and η are 

depicted in Figures 9.5(i-iii)-9.10(i-iii) for all three cost sets and repair time distributions 

taken as Exponential, 3-stage Erlang (Er) and Deterministic (D). It is noticed from the 

Figures 9.5-9.10, that the cost function has the convex nature with respect to the repair rate 

µ.  

The comparative study of optimal repair rate (µ*) and associated minimum cost TC (µ*) is 

done among the three distributions considered and the trend found is Exponential (E) < 3-

stage Erlang (Er) < Deterministic (D). 
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(i)           (ii)           (iii) 

Fig. 9.5: TC vs µ and c (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set I 

 

   

(i)      (ii)             (iii) 

Fig. 9.6: TC vs µ and c (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set II 

 

   

 (i)                (ii)     (iii) 

 

Fig. 9.7: TC vs µ and c (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set III 
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(i)                   (ii)          (iii) 

Fig. 9.8: TC vs µ and η (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set I 

 

    

(i)                      (ii)         (iii) 

Fig. 9.9: TC vs µ and η (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set II 

 

   

(i)       (ii)            (iii) 

Fig. 9.10: TC vs µ and η (i) Exponential distribution (ii) 3-stage Erlang distribution  

(iii) Deterministic distribution, for cost set III 
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Chapter 10 

Availability of M/G/1 FTS with Common Shock Cause Failure 
 
 

 

10.1 Introduction 

Due to sudden shock, the catastrophic failure may occur in the machining system; the reason 

of shock may be voltage fluctuation, humidity lightening, human error, thermal issues, etc. 

The increasingly modern technology of fault tolerance is expected to provide more 

functionality by maintenance in spite of unavoidable individual and common cause shock 

failure. The reliability modeling of machining systems exposed to a random shock 

environment provides more realistic performance metrics for the availability prediction 

(Lehmann, 2009; Caballé et al., 2015). For electronic equipments which are prone to 

degradation and shock failure, Amy et al. (2009) presented a review article on the reliability 

modeling. Some reliability models under the assumptions of both degradation and random 

shocks called degradation-threshold-shock models have been developed to study the 

reliability measures by some researchers (Li and Pham, 2005; Ye et al., 2011; Wang and 

Pham, 2012;  Chakravarthy, 2012).  Song et al. (2016) developed reliability models for the 

performance analysis of machining system having multi-components in series by considering 

the shock effects for both hard and soft failures. 

In the queueing and reliability literature on machining system, there is no work related to 

system performability by incorporating shock failure and partially active state in case of 

minor fault. The non-Markovian models deal with more realistic situation of maintainability 

as suitable distribution as a specific case of general repair time distribution can be fitted in 

real time system. The scope of generic non-Markovian model in many real time embedded 

machining system has motivated us to develop M/G/1 multi-component fault tolerant 

machining system subject to individual and shock failures by considering the concept of 

partially active state.  

The contents of rest part of the chapter are presented in different sections as follows. The 

system notations and model description are presented in Section 10.2. In Section 10.3, the 

probabilities which are further used to design the system metrics, have been obtained using 

combination of both approaches namely, supplementary variable and recursive method by 

considering the remaining repair time as supplementary variable. The availability results are 
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presented in Section 10.4 whereas the other system indices and cost function are designed to 

predict the behaviors of the system in Section 10.5. Next Section 10.6 is devoted to 

numerical results and evaluation of optimal repair rate using quasi-Newton approach.  

10.2  Model Description 

The finite capacity M/G/1 fault tolerant machining system comprising of M operating and S  

warm standby machines is considered by taking the features of partial active and shock 

failure into account. The assumptions and notations used to develop of the non-Markovian 

fault tolerant machining model are described as follows. 

The operating (warm standby) machines are subjected to failure following Poisson process 

with parameter ( )a . The switching time of the failed operating machine to warm standby 

after repair is assumed to be negligible. As operating machine fails, it is replaced by the 

standby machine if available and the replaced standby machines is assumed to have same 

characteristic as that of failed operating machine. When the fault occurred in the system, it is 

covered by detaching the failed machine with coverage probability c . In case when the fault 

is not covered due to imperfect detachment of failed machine, the system goes to partially 

active state with probability c  . From partial active state, the fault is recovered i.e. the failed 

machine is removed following the exponential distribution with parameter  . The machining 

system may also fail due to common cause shock failure with rate p  and is recovered from 

it after repair. To maintain the functioning of the fault tolerant machining system from shock 

failure, the immediate repair is provided; the shock repair time follows the exponential 

distribution with parameter p . The repair time of operating machine is assumed to govern 

by general distribution with cumulative distribution function ( ) ( 0)B u u  , probability density 

function ( ) ( 0)b u u  , and mean repair rate . The repairs of failed operating machines are 

done according to their failure order i.e. first come first serve (FCFS) basis.   

To analyze the non-Markovian M/G/1 fault tolerant multi-component system, we implement 

supplementary variable technique by introducing ( )U t as supplementary variable for the 

remaining repair time.  

Let { ( ), ( ); 0}t t t   be a continuous time bi-variate stochastic process where ( )t denotes the 

number of failed machines in the system at time t  and ( )t represents the status of the system 

at time ,t which holds values 0,1and 2 for operating, partially active and shock failure mode 

of the system, respectively. The state transition diagram depicting the in-flow and out-flow 

rates is shown in Figure 10.1. 
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   

p p p p p

p p p p p

 

Fig. 10.1: State transition diagram for M/G/1 FTS 
 

Let us define the probabilities of different states as follows: 

(i) Active state: ( , ) Prob.{ ( ) , ( ) 0, ( ) }; 0nQ u t du t n t u U t u du n N M S             

(ii) Partially active state: ( ) Prob.{ ( ) , ( ) 1};1 1nR t t n t n N         

(iii) Common cause shock failure state: ( ) Prob.{ ( ) , ( ) 2}; 0 1.nP t t n t n N         

The state dependent failure rate n  of the operating machine is defined as:  

   

( ) , 0

( ),

0, Othewise

n

M S n a n S

M n S S n M S

   


     





            

10.3  The Governing Equation and Queue Size Distribution  

Chapman-Kolmogorov equations governing the states of the M/G//1 model are framed using 

the state-transition rate relating to the individual states of the system at time t  and t dt  as 

follows:  

     0 0 0 1 0( ) 0,p p

d
Q t Q t Q t P

dt
             (10.1) 

     

 

1 1

1

, ( ) , ( ) , ( ) ( )

( ) ( ) ( ) 0, , 1 1

n n p n n n p n

n n

Q u t Q u t c b u Q u t b u P t
t u

b u R t b u Q t n N

   



 



  
      

  

    
 

(10.2)    

   1 1, ( ) ,N N NQ u t b u Q u t
t u

 

  
  

  
       (10.3)  

1 1( ) (1 ) ( ) ( ), 1 1n n n n

d
R t c Q t R t n N

dt
            (10.4)    

( ) ( ) ( ), 0 1n p n p n

d
P t P t Q t n N

dt
           (10.5)   
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Define the steady state probabilities as follows:   

  ( ) lim , , lim ( ) 0 ;n n n n
t t

Q u Q u t Q Q t for n N
 

   

 

lim ( ), 1 1; lim ( ), 0 1n n n n
t t

R R t n N P P t n N
 

       
 

Also, 

( ) ( ) , 0n nQ u b u Q n N  
 

Laplace-Stieltjes transforms (LST) of CDF ( )B t is denoted by *( )B s , so that
 

*

0 0

{ ( )} ( ) ( ) ( )su suL B t B s e dB u e b u du

 

         (10.6) 

Also  * *

0 0

( ) ( ) ; (0) ( )su

n n n nQ s e Q u du Q Q Q u du

 

       (10.7) 

For different states, the transient Equations (10.1)–(10.6) can be written in steady state form 

as follows: 

 0 0 1 00 ( ) 0p pQ Q P      
       

(10.8) 

     

 

1 1

1

( ) ( ) ( )

( ) ( ) 0 , 1 1

n n p n n n p n

n n

d
Q u Q u c b u Q u b u P

du

b u R b u Q n N

   



 



     

    

   (10.9) 

  1 1( )N N N

d
Q u b u Q

du
           (10.10)    

1 10 (1 ) , 1 1n n nc Q R n N       
      

(10.11) 

0 , 0 1p n p nP Q n N            (10.12)     

Taking Laplace–Stieltjes transform (LST) on both sides of (10.9)–(10.10) and using (10.8), 

(10.11) and (10.12), we obtain 

   * * * *

1 1 1[ ( ) (0)] ( ) ( ) 0 , 1 1n n n n n n nsQ s Q Q s B s Q B s Q n N           
 

(10.13) 

* *

1 1[ ( ) (0)] ( )N N N NsQ s Q B s Q           (10.14) 

Setting 0s  in (10.13), we obtain 

 1 0 n n nQ Q          (10.35) 

Setting ns    in (10.13) and using (10.15),  

*

1
1*

[1 ( )]
, 1 1

( )

n n
n n

n n

B
Q Q n N

B

 

 





          (10.16) 

Using (10.16), we have 
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*

0
0*

1

[1 ( )]
, 1 1

( )

n
i

n
i

n i

B
Q Q n N

B

 

 


           (10.17) 

Differentiating (10.13) and (10.14) with respect to s and then setting 0s  , we get 

1*

1 1 1(0) (0)n n n n n nQ Q Q Q             (10.18) 

1 1N N NQ Q   where 
1* (0)B         (10.19) 

Now, Equation (10.14) and (10.16) yield 

 
*

0 0*
1

[1 ( )]

( )

n
i

N
i

i

B
Q Q

B


 





        (10.20) 

0Q can be evaluated by using normalizing condition given by 

1 1

0

1 0

( ) ( ) 1
N N

n n n N

n n

Q Q R P Q
 

 

 
     
 
         (10.21)    

10.4 Availability Analysis of R-out-of-N: G Configuration 

The structure R-out-of-N: G specifies that if R machines out of total N machines are in good 

condition, then the system will be in good (i.e. operating) state. The availability of R-out-of-

N: G configuration of concerned model is obtained using 

1

( ) 0

1 1

( )




 

    
N N

R N n n

n n

A Q Q R       (10.22) 

For the illustration purpose, the availability of R-out-of-5: G structures are analytically 

evaluated for three specific repair time distributions viz. Exponential (Exp), 3-stage Erlang 

(E3) and Deterministic (D). 

10.4.1 Exponential repair time distribution (Exp): 

The CDF and LST for exponential distributed repair time are *( ) 1 and ( )xB u e B s 
  


, 

respectively. For specific R-out-of-5: G configuration, we find 

  

4 3

( 5) 0

1 1

( )R n n

n n

A Q Q R

 

    
 

     (10.23) 

For the availability analysis of 5 unit machining system, the steady state probabilities of 

different states of the system are determined as follows: 

(a) Active  state probabilities 

0 0 1 0 1 2 0 1 2 3
1 0 2 0 3 0 4 02 3 4

, , ,Q Q Q Q Q Q Q Q
         

   
   

  (10.24a) 
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(b) Partially active state probabilities 

0 0 1 0 1 2
1 0 2 0 3 02

(1 ) (1 ) (1 )
, ,

c c c
R Q R Q R Q

        
  

   
   (10.24b) 

(c) Common cause shock failure state probabilities 

    
0 0 1 0 1 2

0 0 1 0 2 0 3 02 3
, , ,

p p p p

P P P P

P Q P Q P Q P Q
         

   
      

   (10.24c) 

For the brevity, we use notations 

   , 0 4i
i i


   


and .

p

p

p


 


      

 
Now 0Q  can be determined using normalizing condition given in (10.21), as 

1

0
0 0 1 2 3 0 1 2 0 1 0 1 2 11 (1 )( ) (1 )(1 )p pQ c


              




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 (10.25) 

The system availability for R-out-of-5: G for R=1, 2, 3, 4, 5 are obtained as  
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(ii) 0
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(iii) 0
(3 5) 0 1 0 0( ) 1 (1 )A c Q

  
       

 
     (10.26c) 

(iv)  (4 5) 0 0( ) 1A Q            (10.26d) 

(v) (5 5) 0( )A Q            (10.26e) 

10.4.2 Deterministic repair time distribution  

In case of deterministic repair time distribution, the LST of CDF of repair time is defined as  

         *( )B s e



       (10.27) 

Now, we obtain the system probabilities as 

(a) Active state probabilities 
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(b) Partially active state probabilities 
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(d) Common cause shock failure state probabilities 
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Also 0Q
 
is given by 
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(10.29) 

The system availability of R-out-of-5: G structure by taking R=1, 2, 3, 4, 5 structure is 

evaluated as 
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A e Q        (10.30d)

(5 5) 0( )  A Q           (10.30e) 

10.4.3 3-stage Erlang repair time distribution  

The system state probabilities and availability of R-out-of-5:G configuration for 3-stage 

Erlang distribution for repair time are obtained by using 
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(a) Active state probabilities 
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(10.32a) 

(b) Partial active state probabilities 
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(e) Common cause shock failure state probabilities 
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Using normalizing condition, 0Q
 
is obtained as 
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(10.33) 

The system availability for different system configurations are obtained as 
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10.5  System Performance Measures and Cost Function  

To study and predict the behavior of multi-component fault tolerant machining system, the 

system performance measures such as mean queue length of failed machines, availability and 

long run probabilities of different status of the system are formulated.  

(i) The mean queue length of failed machines in the system is 
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(ii)  The system availability is  
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(iii) The long run probability of the system being in failed state due to shock failure, 

normal busy state and reboot state respectively, are  
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10.5.1 System cost 

Now, we construct a cost function to analyze the cost associated with different activities of 

the machining system. To make machining system cost-economic, it is necessary to optimize 

the system parameters of the concerned system. The cost elements incurred per unit time on 

different activities of the system are considered as: 

:HC  Holding cost incurred on each failed machine waiting for the repair. 

:RBC  Reboot cost incurred per machine of the system. 

:CC  Cost incurred on the repair per machine failed due to shock failure. 

:mC  Cost involved on the repair per failed machine with repair rate . 

:cC  Cost incurred in detecting each failed machine.  

We construct the cost function TC(  ) by considering repair rate   as decision variable.  

The cost function is given by 

  ( ) ( )H C C RB RB m cTC C E N C P C P C cC         (10.38) 

Now we formulate the cost optimization problem (OP) as follows:  

(OP) *( ) min. ( )TC TC    

    subject to: 0 and 0< <1.c    

It is quite tedious task to optimize TC( )  analytically due to highly complex and non-linear 

nature of the cost function. Therefore, we employ the numerical approach of optimization 

viz. Newton-quasi method to determine the minimum expected total cost *TC( ) and 

corresponding optimal value of decision variable *' ' . The iterative steps described in chapter 

9 to implement Newton-quasi method are implemented.

 10.6  Numerical Simulation 

To reveal the practical applicability of developed M/G/1 model for fault tolerant multi-

component machining system, the numerical simulation has been carried out using Matlab 

software. For the purpose of numerical computations, the default parameters chosen are as 

follows: 

1 20.5, 0.2, 0.01, 0.02, 3, 3, 4, 2, 2, 0.6, 2.p p N M S c r                

 
The numerical results are depicted in Figures 10.2-10.3 to explore the ( )E N and machine 

system availability respectively for (i) Exponential (Exp), (ii) 3-stage Erlang (E3) and (iii) 

Deterministic (D) distributions for varying values of system parameters  ,c and  . 
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It is observed from Figure 10.2 (i) that as failure rate   of machine grows, the mean queue 

length ( )E N shows significant increment which is quite similar trends as can be noticed in 

real time machining system. It is also true due to the fact that with the increment in the 

failure rate of machines, the number of failed machines increases. In Figure 10.2 (ii), the 

mean queue length ( )E N shows slight increment as value of c  increases. The decreasing 

trend of mean queue length ( )E N depicted in Figure 10.2 (iii) is quite significant for lower 

values of repair rate   i.e. the mean queue length ( )E N decreases sharply as repair rate  

increases but deceasing trend diminishes for higher values of   and finally ( )E N  becomes 

almost constant. The system availability (MA) plotted in Figure 10.3 (i-iii) exhibits the 

reverse trend for varying value of parameter ,c  and   respectively, i.e. MA decreases 

(increases) as ,c  ( ) increases.  

10.6.1 Availability analysis 

In this section, the computational tractability of steady state availability ( )R NAv    is 

validated for three distributions i.e. Exponential (Exp), 3-stage Erlang (E3) and Deterministic 

(Det). The default parameters chosen for the numerical results are defined as follows: 

1 20.2, 0.04, 0.03, 0.02, 1.5, 1, 4, 2, 2, 0.9, 0.6.p p N M S c r                
 

The numerical results of the availability ( )R NAv   are displayed in Figures 10.4 and 10.5 for 

varying values of  and  respectively, for different system configuration. 

10.6.2 System cost analysis  

The cost benefit analysis plays a significant role to improve the future system design. To 

determine the economic system cost, we shall obtain the optimal repair rate 
* using quasi-

Newton method for the following cost sets: 

Cost Set I: 70, 20, 30, 40, 45,H B P C mC C C C C      

Cost Set II: 80, 40, 30, 40, 50,H B P C mC C C C C      

Cost Set III: 80, 45, 30, 70, 55.H B P C mC C C C C    
 

The results obtained by implementing quasi-Newton method for three cost sets are 

summarized in Tables 10.1-10.2 and displayed in Figures 10.6-10.8. The minimum expected 

and corresponding optimal repair rate (
* ) for cost sets I, II and III are obtained using quasi-

Newton method.  
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(i)                                                                  (i) 

           

 

(ii)                                                                  (ii) 

         

 

(iii)                                                                   (iii) 

          
 

Fig. 10.2: E(N) vs. (i) λ (ii) c and (iii) µ         Fig. 10.3: MA vs. (i) λ (ii) c and (iii) µ 

 

 



173 
 

(i)                                                                         (i) 

         

(ii)                                                                    (ii) 

         

(iii)                                                                 (iii) 

         

                                                                                                               

 

 

 

 

 

Fig. 10.4: Variations in ( ) ( ) R NAv  for 

different value of  for (i) Exponential, 

(ii) 3-stage Erlang and (iii) Deterministic 

distributions 

Fig. 10.5: Variations in ( )R NAv    for 

different value of  for (i) Exponential, 

(ii) 3-stage Erlang and (iii) Deterministic 

distributions 
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Table 10.1: The iterative results of QNM for different distributions and three cost sets
 

Cost Sets 

Dist. 
Cost Set I Cost Set II Cost Set III 

 
Itet. 

(i) 
µi TC(µi) 

Ist Order 

Optimality µi TC(µi) 
Ist Order 

Optimality µi TC(µi) 
Ist Order 

Optimality 

 

 

Exp 

0 3.00 185.85 33.41507 3.00 205.99 35.0327 3.00 234.55 40.7449 

1 2.00 162.74 6.292147 2.00 183.85 1.272956 2.00 206.27 8.002101 

2 1.89 162.38 0.002514 1.98 183.84 2.89E-06 1.89 205.80 0.003269 

3 1.89 162.38 0.000221 - - - 1.89 205.80 0.000301 

4 1.89 162.38 0 - - - 1.89 205.80 1.01E-06 

 

 

 E3 

0 3.00 231.49 24.8619 3.00 266.01 24.96106 3.00 291.25 30.71783 

1 2.00 216.64 0.4357 2.00 252.92 3.863119 2.00 272.32 1.999172 

2 1.98 216.64 0.2975 2.13 252.81 2.052461 1.93 272.30 1.450335 

3 1.99 216.64 0.0018 2.09 252.76 0.100149 1.96 272.28 0.033077 

4 1.99 216.64 0 2.09 252.76 0.002781 1.96 272.28 0.000528 

5 - - - 2.09 252.76 3.66E-06 1.96 272.28 3.89E-06 

 

 

 

D 

0 3.00 234.44 23.1001 3.00 269.70 22.84805 - - - 

1 2.00 222.40 3.7382 2.00 259.93 8.720655 3.00 294.81 28.63223 

2 2.14 222.28 1.9388 2.28 259.29 3.524157 2.00 279.19 2.876093 

3 2.09 222.23 0.0947 2.20 259.14 0.359621 2.09 279.14 1.585545 

4 2.09 222.23 0.0026 2.19 259.14 0.017306 2.06 279.11 0.0491 

5 2.09 222.23 0 2.19 259.14 8.19E-05 2.06 279.11 0.000879 

6 - - - 2.19 259.14 3.49E-06 2.06 279.11 1.85E-06 

 

Table 10.2. Minimum 
*( )TC and optimal rate

* for cost sets I, II and III 

Distributions Cost set I 

( *( )TC  , * ) 

Cost set II 

( *( )TC  , * ) 

Cost set III 

( *( )TC  , * ) 

Exponential 

(Exp) 
(162.38, 1.89) (183.84, 1.98) (205.80, 1.89) 

Deterministic 

(D) 
(216.64, 1.99) (252.76, 2.09) (272.28, 1.96) 

3-stage Erlang 

(E3) 
(222.23, 2.09) (259.14, 2.19) (279.11, 2.06) 

 

The iterative procedure of QNM to examine the iteration counts and minimum cost along 

with optimal repair rate (
* *TC( ),  ) are summarized in Tables 10.1 and 10.2, respectively. 

The convex nature of TC with respect to service rate is clearly visible in all Figures 10.6-

10.8. 
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Fig. 10.6: TC vs ( , ) c  for cost set I and repair time distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic 

 

     

Fig. 10.7: TC vs ( , ) c  for cost set II and repair time distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic 

  

   

Fig. 10.8: TC vs ( , ) c  for cost set III and repair time distributions (i) Exponential 

(ii) 3-stage Erlang (iii) Deterministic 
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CONCLUSIONS 
 

 

The occurrence of service interruption in machining environment is quite common 

phenomenon. The queueing models developed for repairable machining system with service 

interruption have enormous applications in the real-time systems such as computer and 

communications, nuclear power plants, data exchange systems, and automobile repair shops, 

etc. The research work presented in the thesis will provide a valuable insight to the system 

analysts/designers to enhance the performability, reliability and availability of the concerned 

unreliable systems operating in machining environment. To analyze the machining system 

with service interruption, several queueing and reliability metrics including mean queue size, 

throughput, waiting time in the system, failure frequency, machine availability, delay time, 

effective arrival rate, etc. have been established. The highlights of the noble features of work 

done in the present thesis work are as follows: 

 Vacation of the server may be useful to maintain the functioning of real time machining 

system for a longer time. It is worth noting that the concept of server vacation is taken 

into account of all the models developed in chapters 2-8. 

 The feature of working vacation queueing models have been considered in chapters 2-5, 

and 8 which have numerous applications in real life situations such as computer and 

communication systems, manufacturing and many others. 

 The provision of standby support in machining systems is taken into account to maintain 

the smooth function of any real time systems over a long period of time. Based on cost 

and other physical constraints, the standby support is more effective means and is 

incorporated in models investigated chapters 4-8 and 10. 

 The control policies in the real life scenarios play a crucial role to optimize both time and 

money. Here in the present thesis work we have incorporated a concept of admission 

control policy i.e F-policy to control arrivals which are discussed in chapters 3, 4 and 8.  

 The sudden breakdown of server has adverse impact on production and efficiency of any 

machining system. Therefore, unreliability of server cannot be neglected and thus 

queueing systems with unreliable server are more consistent enough with the real time 

machining systems. The concept of unreliable server presented in chapters 3-8 portrays 

the modeling of real time machining systems. 
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 The repair of broken down server is key issue in order to continue the service of the 

customers waiting in the queue. Threshold based recovery policy can be used by 

technicians and maintenance engineers to repair the broken down server. This policy is 

incorporated in chapter 6. 

 To make machining system fault tolerable, the provision of reboot and recovery are done 

by the system designers. The fault tolerable machines are capable of performing its 

functions even some faults occurred which reduce the risk of sudden breakdown of 

system production. Here, in the present thesis work we have incorporated fault tolerant 

system feature in chapters 4, 5, 7 and 8. 

 The feature of common cause shock failure can be realized in many machining systems 

due to humidity, temperature change, voltage fluctuation, etc. The concept of common 

cause failure is some time crucial and should be incorporated while evaluating the system 

availability or reliability. The common cause shock failure feature is included to 

formulate model in the chapter 10. 

 The transient analysis is desirable but essential to system designers to understand the 

nature of system operation at a particular instant of time. Therefore, in the present 

doctoral work, we have presented transient study of machining system in chapter 2, 5, 6, 

7 and 8. 

 The hybrid soft computing technique ANFIS employed to compare the numerical results 

may be used for the design of server controller to provide online performance metrics.  

 For the optimal design of repairable machining systems, optimization techniques namely 

quasi-Newton technique and heuristic search approach are used successfully which reveal 

the computational tractability to determine the optimal parameters. 

 Our investigation of queueing models developed for machining systems with service 

interruption will provide a valuable insights and also helpful to design and built highly 

complex and sophisticated real time systems which are used to resolve many real life 

congestion situations occurred in real time machining systems.  

The repairable machining system can be noticed in almost every sphere of life from daily 

routine activities to various complex real life situations. The queueing modeling of repairable 

machining systems with service interruption presented in the thesis work have incorporated 

many realistic features. However, there is scope to enrich the models developed in the 

present thesis work by incorporating bulk failure/repair.  For the optimal design of machining 
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systems developed, we can further extended our study by implementing soft computing 

techniques for the optimization purpose of system cost and to determine corresponding 

optimal system parameters. We can also enrich present investigation presented in the thesis 

by considering the general distribution for life/repair time of the machining parts. The work 

done in the thesis will be of great importance not only from theoretical point of view but will 

strongly reflect the practical and managerial implementation. 
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