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Abstract

This thesis is concerned with the study of qualitative properties of dynamical systems such

as controllability, stability, stabilization and synchronization/anti-synchronization with or

without delay.

There are nine chapters in the thesis. Chapter 1 contains introductory matter and liter-

ature survey related to stability of first order systems, controllability, stability and chaotic

synchronization of fractional-order systems. Preliminaries and some basic definitions are

given in Chapter 2, which are required in subsequent chapters.

Chapter 3 concerns the development of asymptotic stability and stabilizability of a class

of nonlinear dynamical systems with fixed delay in state variable. New sufficient conditions

are established in terms of the system parameters such as the eigenvalues of the linear

operator, delay parameter, and bounds on the nonlinear parts. Finally, examples are given

to testify the effectiveness of the proposed theory.

In Chapter 4 the stability analysis of a class of fractional order bimodal piecewise non-

linear system is presented. The existence and uniqueness of solution of the system is

established by assuming continuity condition involving the state variable and Lipschitz

continuity of the nonlinear function with respect to the state variable. Then suitable suffi-

cient conditions for the asymptotic stability of the system has been proposed. Finally, two

examples with numerical simulations are given to empirically testify the proposed stability

conditions.

In Chapter 5, we consider a class of nonlinear fractional-order control system with delay

in state variable. Existence and uniqueness of solution is shown by using method of steps.

Then the sensitivity of the state is shown with respect to the initial state and perturbed

nonlinear function of the system. Finally, numerical examples are given to validate the
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analytical results.

Chapter 6, deals with the development of synchronization and anti-synchronization of

a fractional-order delay financial system with market confidence by using an active con-

trol approach. Firstly, a Gauss-Seidel like predictor-corrector scheme is proposed to solve

fractional-order delay systems. Then numerical comparisons of this scheme with the exist-

ing two schemes are shown via an example. Furthermore, numerical simulations are given to

show that the financial system has chaotic behaviours for different values of time-delay and

fractional-order. Then a suitable active control for synchronization/anti-synchronization

of the system has been proposed. Finally, the effectiveness and validity of the proposed

control are shown with the help of two numerical simulations for different fractional orders

and time-delays.

In Chapter 7, a class of fractional-order α ∈ (1, 2] semilinear control systems with

delay in Banach space is considered. Sufficient condition for exact controllability has been

established by using Sadovskii’s fixed point theorem and the theory of strongly continuous

α-order cosine family. An example is given to illustrate the result.

Chapter 8, is concerned with trajectory controllability of a class of fractional-order

α ∈ (1, 2] semilinear control systems with delay in state variable. The nonlinearity is

considered with respect to both state and control variables. Firstly, the existence and

uniqueness of the system is proved under suitable conditions on the nonlinear term involving

state variable. Then the trajectory controllability of this class of systems is studied using

Mittag-Leffler functions and Gronwall-Bellman inequality. Finally, examples are given to

illustrate the proposed theory.

The conclusion of the thesis and possible directions of future work is given in Chapter 9.
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Chapter 1

Introduction

1.1 General introduction

A system is a set of entities which interact with each other and produce various outputs in

response to different inputs. Dynamical system is a natural or man made system whose

instantaneous description or state changes with respect to time or some variable. Aircraft,

automobile, population dynamics, financial and economic forecasting, biological system etc.

are some well known dynamical systems. In general, the study of dynamical systems fall

into three categories, namely, to predict, to explain and to understand the phenomena.

In first category, the aim is to predict a future state of the system from observations of

its past/present states. In second, the aim is to diagnose what possible past states of the

system might have led to the present state of the system. In the third category, the aim

is neither to predict the future nor explain the past but rather to provide a theory for the

physical phenomena.

Mathematical control theory is a branch of mathematics that deals with the behavior of

dynamical systems. In real world problems the underlying dynamics may not predict desired

future state or explain the past state. To achieve our desired future or explain past states,

we need to change behavior of the dynamics by adding suitable inputs or observations of the

dynamical systems. Such dynamical systems are called control systems. In our everyday

life we encounter several control systems. For examples, our body controls its temperature

continuously. It may increase or decrease its temperature when it finds that it is too cold

1



Chapter 1: Introduction 2

or too hot. Predator populations are known to increase or decrease in response to prey

availability. This relationship between prey availability and carnivore populations is one of

the delicate balance maintained by nature. There are several man made control systems

such as refrigerator, automatic water heater, washing machine, motor vehicles, missiles, etc,

which are being used in our everyday life. However, whether a control system is natural

or man made, their main aim is to control or regulate a particular variable within certain

operating limits.

The concepts of controllability, stability and stabilization plays crucial roles in control

theory. A system is said to be controllable if by means of an input one can transfer

the system from any initial state to any other state in a finite time. A critical point of a

dynamical system is said to be stable, if every solution which is initially close to it remains

close to it for all times. For a control system, one can characterize two types of controls,

namely open-loop control and closed-loop control or feedback control. In practice, feedback

control is widely used. A linear time invariant control system is said to be stabilizable if

all the unstable states can be made to have stable dynamics by choosing suitable feedback

control.

Delay naturally occurs in most of the real world problems. So dynamical systems rep-

resented by ordinary or partial differential equations with delay seems appropriate to model

the real world problems. The occurrence of delay in a dynamical system may influence the

stability property of the system. As time-delay plays an important role in the stability

of dynamical system, the stability and stabilizability analysis of delay systems are also

important current topics of research in control theory.

On the other hand fractional-order systems are generalization of the classical integer-

order systems. In recent years, many researchers believe that fractional-order systems are

more appropriate to model the real world problems. In the following, an example is shown

to depict the importance of fractional-order systems. Let us consider the following simple

population dynamics

CDα
t x(t) = cx(t), x(t0) = x0, 0 < α ≤ 1, (1.1.1)
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where x(t) represents the population at time t, x0 is the initial population at t = t0,

c = (birth rate−death rate), and CDα
t is the Caputo fractional derivative of order 0 < α ≤ 1

[see Definition 2.2.3]. The solution of the system (1.1.1) can be written as follows:

x(t) = Eα,1[c(t− t0)α]x0, 0 < α ≤ 1 (1.1.2)

where Eα,1[c(t− t0)α] is the Mittag-Leffler function [see Definition 2.2.4], which will reduce

to exponential function ec(t−t0) when the fractional-order α = 1. Suppose that z1 is the

actual population for the year t1. Then the estimated population for the same year t1 using

(1.1.2) with α = 1 (integer-order) may not be close to represents the actual population

z1. However, by taking the fractional-order 0 < α < 1 in the equation (1.1.2), one can

get a suitable α such that x(t1) is equal to z1, using (1.1.2). Using this α one may be

able to predict to some extent, future population. This illustrates that models based on

fractional-order systems will yield better results than the integer-order systems. Therefore,

fractional-order systems with delay considered to be natural to model some real world

problems. Because of this, controllability and stability of fractional-order delay systems are

also important current topics of research in control theory.

The general mathematical formulation of finite dimensional nonlinear delay control sys-

tem is of the form

CDα
t x(t) = Ax(t) +Bu(t) + F (t, x(t), x(t− τ)), p− 1 < α ≤ p, t > 0, (1.1.3)

where p is a positive integer, x(t) = φ(t), t ∈ [−τ, 0] and x(i)(0) = xi, (i = 1, 2, . . . p − 1)

denotes the ith derivative of x. Here x(t) ∈ Rn for each t > 0 is the state vector, u(t) ∈ Rm is

the control, A is a constant n×n matrix, B is a constant n×m matrix, F : R×Rn×Rn → Rn

is a nonlinear vector function such that F (t, 0, 0) = 0, τ > 0 is a real constant and φ is a

continuous vector valued history function defined on the interval [−τ, 0]. Here the notation

CDα
t represent the Caputo fractional derivative of order α ∈ (p− 1, p].
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The solution of (1.1.3) is given by

x(t) = Eα,1[Atα]φ(0) +

p−1∑
i=1

tiEα,i+1[Atα]xi

+

∫ t

0

(t− s)α−1Eα,α[A(t− s)α][Bu(s) + F (s, x(s), x(s− τ))]ds,

where Eα,i[·], i = 1, 2, . . . , p are the Mittag-Leffler functions with two parameters.

Motivation of the thesis

Many real life problems can be modeled by fractional-order systems with or without delay

in finite or infinite dimensional spaces. Most of the systems that arise in practice are

nonlinear to some extent, at least over a specific range. Since linear systems are much

easier to handle mathematically, the first step in dealing with a nonlinear system is usually,

if possible, to linearize it around some nominal operating point. A better approximation

to nonlinear system is the semilinear system, that is, a system consisting of a linear part

as well as a nonlinear part and can be derived from a general nonlinear system by making

a local approximation about some nominal trajectory. There are various properties of the

system such as existence, uniqueness and regularity of the solutions, stability of equilibrium

points etc. Controllability and stability are important areas of study in Control Theory. In

many applications the objective of the control action is to drive the system from one state

to another in an optimal fashion. However, before we formulate the question of optimality

it is necessary to pose the more fundamental question of whether or not it is possible

to reach the final state from any arbitrary initial state. Similarly, for the stability, the

question arise if every solution which is initially close to zero solution remains close to zero

solution for ever or not. Synchronization of two dynamical systems is an important area

of research related to stability theory. In most of the real world problems it is difficult to

synchronize trajectories of two identical chaotic systems when they start at nearby initial

points encompassed by a small region in phase space. The controllability, stability and

synchronization are somehow related concepts in control theory. Exhaustive literature is

available on controllability and stability of linear systems. However in case of systems
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involving nonlinearity, delay, fractional derivatives or impulsive conditions there are lot of

scope for improvement of existing results as well as for exploring new directions. So, the

above facts gives the motivation to study the controllability, stability and synchronization

of different kinds of dynamical systems.

1.2 Literature survey

In this section, firstly we give short literature review on existence, uniqueness of solution and

numerical schemes for fractional-order systems. Subsequently, detailed literature review on

stability, controllability and chaotic synchronization of several kinds of dynamical systems

is given.

1.2.1 Fractional-order systems

The applications of fractional-order systems are in many fields like signal processing, eco-

nomics, population dynamics, viscoelastic materials, astrophysics and control theory (see,

Bagley and Torvik [5], Kilbas et al [61] and Rivero et al [106]). The existence and unique-

ness of solutions and numerical schemes for solution of fractional-order dynamical systems

can be found in Pitcher and Sewell [103], Diethelm [34], Miller and Ross [90] and Pod-

lubny [104]. In nature a nonzero time delay occurs always between the instants at which

a cause and its effects take place. There are many papers available in literature on delay

systems. Fractional-order systems with delay have been studied by many authors. In 2008,

Benchohra et al [9], in 2008, Lakshmikantham [74], and in 2008, Maraaba et al [87] pre-

sented an existence and uniqueness theorem for fractional-order differential equations with

delay. In 2011, Bhalekar and Gejji [11] provided a numerical scheme for fractional-order

differential equations with delay.

1.2.2 Stability of dynamical systems

The origin of stability theory starts from Russian Mathematician Lyapunov’s doctoral the-

sis work “The general problem of the stability of motion”, Moscow University, 1892. In
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1966, the translated version of his thesis from Russian to French then French to English is

published in [82]. Lyapunov proposed two methods for demonstrating stability. The first

method developed the solution in a series which was then proved convergent within limits.

Second method (direct method) demonstrates stability of a system using a scalar function

with some analogies. Later this type of scalar functions are termed as Lyapunov functions.

In 1958, Razumikhin [105] extended Lyapunov’s second method to the delay sys-

tems. He obtained sufficient conditions for stability of the n-dimensional delay system

ẋ = f(t, x(t), x(t− τ)) with f(t, 0, 0) = 0 on the basis of first approximation of the system,

where f(t, x(t), x(t − τ)) is a holomorphic function of the variables x(t) and x(t − τ). In

1963, Krasovskii [66] generalized Lyapunov’s second method and also extended Lyapunov’s

second method to the delay systems.

In 1974, Winston [127], studied asymptotic stability of an one-dimensional time varying

semilinear perturbed system using a direct method of Razumikhin.

In 1976, LaSalle [75] provided an invariant principle which improves the stability condi-

tions obtained through Lyapunov’s direct method for the case of nonlinear nonautonomous

systems.

In 1983, Mori et al [93] studied stabilizability of linear systems with state delay using

linear feedback and Lyapunov functional. Based on this work, in 1994, Lehman and Shujaee

[76] presented delay independent sufficient conditions for stability of nonlinear time-varying

functional differential equations.

In 1989, Cheres et al [23], in 1999, Hou et al [50] and in 2006, Aleksandrov and Zhabko [4]

discuss the stability and stabilization of delay systems with nonlinear perturbations by using

the method of Lyapunov functions in the form of Razumikhin.

In the following papers the authors analyze stability of the delay systems based on the

structural properties of the systems. In 1985, Mori [94] obtained several sufficient conditions

(delay dependent) for the asymptotic stability of linear time-delay systems. In 2009, Choi

[24] obtained sufficient condition for delay independent global asymptotic stability of a class

of delay systems. In 2014, Liu et al [78] established a new generalized Halanay inequality

and using this they studied asymptotic stability of a class of delay differential systems with

time-varying structures and delays.
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In many papers Lyapunov-Krasovskii functional has been used to analyse the stability

of delay systems. For example, in 1994, Trinh and Aldeen [122], in 1998, Győri et al. [45]

and in 2002, Ni and Er [99], presented sufficient conditions for asymptotic stability of linear

systems with delayed perturbations using Lyapunov functional. In 2002, Fridman [39] ob-

tained necessary and sufficient conditions for singularly perturbed linear systems with delay.

In 2004, Haddad and Chellaboina [46] established asymptotic stability conditions for linear

and nonlinear non-negative dynamical systems with delay. In 2010, Syed Ali and Balasub-

ramaniam [115] investigated global exponential stability and the exponential convergence

rate for time-delay systems with nonlinear uncertainties. In 2014, Thuan et al [119] stud-

ied exponential stabilization of time-varying delay systems with nonlinear perturbations.

In 2015, Liu [79] established sufficient condition for asymptotic stability of interval time-

varying delay systems with nonlinear perturbations. In 2016 and 2017 Lakshmanan and

his coworkers [71–73] addressed stability of several time–delay systems.

A switching system consists of a collection of continuous-time subsystems with a switch-

ing law that switches the system dynamics in such a way that only one of the subsystem

is active at each time instant. It is desirable to get continuous, piecewise smooth trajec-

tories. Bimodal piecewise linear systems are a class of switching systems with two linear

subsystems and a state dependent switching law. Last two decades onwards many authors

studied various aspects of linear bimodal piecewise systems. For instance, in 2015, Sahan

and Edlem [27] studied necessary and sufficient conditions for well-posedness (the existence

and uniqueness of solutions) of a class of bimodal piecewise linear systems. In 2004 and

2008, Camblibel et al [17,18] and in 2014, Eren et al [36] established necessary and sufficient

conditions for quadratic stability and stabilization of bimodal piecewise linear system in

terms of linear matrix inequalities.

For the stability of fractional-order sytems in 2008, Wen et al [126], in 2012, Chen et

al [21] and in 2015, Zhang et al [131] studied sufficient conditions for the local asymptotic

stability and stabilization of fractional-order 0 < α < 2 systems by using Gronwall-Bellman

lemma. In 2010, Li et al [77] introduced Mittag–Leffler stability and generalized Mittag–

Leffler stability and investigated stability of fractional-order nonlinear systems using Lya-

punov direct method. In 2010, Sabatier et al [107] presented three linear matrix inequality
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(LMI) conditions based on stability domain deformation, characterization of the instabil-

ity convex domain and generalized LMI framework, respectively. In 2013, HosseinNia et

al [49], obtained two sufficient conditions for stability of fractional-order switching systems

in terms of LMIs. First one based on common Lyapunov functions which are generalized

to fractioal-order systems and the second one based on frequency domain approach.

1.2.3 Controllability of dynamical systems

In 1960–1963 Kalman [54–56] introduced the concept of controllability for the linear finite

dimensional system using a rank condition which depends on controllability grammian

matrix.

In 1967, Tarnove [118] introduced a method to obtain controllability of nonlinear sys-

tems by investigating the existence of a fixed point of a certain set-valued mapping. He

used a fixed-point theorem due to Bohnenblust-Karlin to obtain sufficient conditions for

A-controllability of the nonlinear system ẋ = f(t, x, u), where A is a nonempty, bounded,

closed convex subset of continuous functions. Subsequently this idea was used by Dauer [29]

in 1972 to obtain a set of sufficient conditions for controllability of the nonlinear control sys-

tem of the form ẋ = g(t, x)+k(t, u) over a bounded interval [t0, t1] in the finite dimensional

space using Ky-Fan fixed point theorem.

In 1966, Fattorini [38] generalize the controllability of finite dimensional linear system

to a class of control systems in Banach space with the state operator (operating on state

variable) as an elliptic partial differential operator in a bounded domain of Euclidean space.

In 1972, Lukes [81] has shown that if a linear system ẋ(t) = A(t)x(t) + B(t)u(t) is

controllable then the perturbed nonlinear system ẋ(t) = A(t)x(t)+B(t)u(t)+f(t, x(t), u(t))

is also controllable provided the nonlinear function f is continuous and bounded. He used

Schauder’s fixed-point theorem to show controllability results. For the case where the

nonlinear function f is independent of control parameter u, Vidyasagar [123] arrived the

same conclusion with the condition lim‖x‖→∞ ‖f(t, x)‖/‖x‖ = 0. Modifying Vidyasagar’s

approach in 1976, Dauer [30] showed that Vidyasagar’s condition can be further relaxed. In

1990, Do [35] modified the conditions of Dauer and proved a theorem under which Dauer
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results easily followed.

A system ẋ = f(x, u) is symmetric means that f(x,−u) = −f(x, u). In 1974, Brunovsky

[16] proved local controllability for a kind of symmetric nonlinear systems.

For the controllability of a class of nonlinear systems, in 1975 Hirschom [47], obtained

an explicit expression for the reachable set.

In 1975, Triggiani [120] extended the classical controllability and observability results

in finite-dimensional spaces to the linear abstract systems defined on infinite-dimensional

Banach spaces, under the assumption that the operator acting on the state was bounded.

Then in 1977, [121] he has proved that exact controllability in finite time for linear control

systems given on an infinite dimensional Banach space in integral form (mild solution) can

never arise using locally L1-controls, if the associated C0 semigroup is compact for all t > 0.

Based on Triggiani’s work in 1983, Louis and Wexler [80] revealed some further restrictive

features of the exact controllability concept in the setting of evolution equations in Hilbert

spaces.

In 1987, Naito [97] studied approximate controllability of a class of nonlinear systems us-

ing Schauder’s degree theorem with assumption that the nonlinear function F is uniformly

bounded. In 1989, Naito [96] studied approximate controllability of a class of nonlinear sys-

tems by replacing uniformly bounded condition on the nonlinear operator F to a inequality

condition 1− kTM‖P‖ exp(kTM) > 0 along with the conditions F (0) = 0 and kT is suffi-

ciently small, where k > 0 is a Lipschitz constant of the function F , T > 0 is a control time,

M > 1 is a bound of the semigroup S(t), P is a projective type operator introduced by

estimating the control efficiency of the operator B. In 1989, Naito and Park [98] extended

this results to a delay Volterra control system.

In 1995, George [41] obtained set of sufficient conditions to the approximate controlla-

bility for the time-varying system using the theory of monotone operators and operators of

type (M). In 2007, Sharma and George [109] provided a necessary and sufficient condition

to the controllability of matrix second-order control systems and presented a numerical

scheme for the computation of control.

In 1996, Klamka [62] formulated sufficient conditions for constrained exact local control-

lability of nonlinear infinite dimensional control system. He proved controllability results
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using generalized open mapping theorem. In 2008, [63] he presented necessary and sufficient

conditions for different kinds of controllability to the control systems considered in both

finite and infinite dimensional settings. In 2009, he extended in [64] his earlier results on

constrained controllability to the delay systems.

In 2004, Dauer and Mahmudov [31] obtained approximate controllability conditions for

the semilinear evolution systems using Rothe’s fixed point theorem with assumption that

the operator acting on the state is compact. Then in the same paper they obtained exact

controllability conditions for semilinear systems with nonlinearity having small Lipschitz

constants using Banach fixed point theorem. For this case they assumed the operator acting

on the state is not compact. In 2008, Mahmudov [84] studied approximate controllability

of semilinear control systems with nonlocal conditions in Hilbert spaces using Schauder

and Nussbaum fixed point theorems with the assumption that the linearized system is

approximate controllable.

In 2005, Joshi and Kumar [52] examined computation of optimal control for the exact

controllability problem governed by the linear parabolic differential equations. Based on this

work, in 2007 Kumar et al. [67] provided computation of optimal control for the nonlinear

parabolic differential equations. In 2014, Sonawane et al [111] obtained a set of sufficient

conditions for the exact controllability of the wave equation with multiplicative controls.

The controllability of fractional-order systems with or without delay have been studied

by many authors. In particular, in 2008, Adams and Hartley [1] studied the finite time

controllability of fractional-order systems under the condition that lead to a system output

remaining at zero with zero input. In 2013, Surendra Kumar and Sukavanam [69] stud-

ied controllability of fractional-order system using integral contractor which is a weaker

condition than the Lipschitz condition. In 2012, Balachandran and Kokila [7] obtained

sufficient conditions for controllability of linear and nonlinear fractional dynamical systems

in finite dimensional spaces using Schauder’s fixed point theorem. In 2014, Mahmudov

and Zorlu [85] extended their earlier results on approximate controllable of semilinear evo-

lution systems to the semilinear fractional-order evolution systems using Schauder fixed

point theorem. In 2014, Zhang and Liu [132] studied the controllability of fractional func-

tional differential equations with nondense domain using integrated semigroup theory and
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Schauder’s fixed point theorem. In 2012, Wei [125] obtained necessary and sufficient condi-

tions for the controllability of fractional linear control systems with control delay. In 2012,

Surendra Kumar and Sukavanam [68] studied the existence and uniqueness of mild solution

of a class of semilinear fractional-order control systems with delay in state variable using

contraction principle and the Schauder fixed point theorem. In 2013, Debbouche and Tor-

res [32] presented existence of solution and approximate controllability of a class of delay

fractional systems with nonlocal initial condition in a Hilbert space using Schauder’s fixed

point theorem. In 2013, Kamaljeet and Bahuguna [57] studied the controllability of the im-

pulsive finite time-delay fractional-order systems with nonlocal condition in Banach spaces.

They obtained controllability results using condensing operator and Sadovskii’s fixed point

theorem via semigroup theory. In 2016, Kamaljeet and Bahuguna [58] and Kamaljeet et

al [59] studied approximate controllability of a class of delayed fractional-order control sys-

tems with nonlocal condition in Hilbert spaces using Krasnoselskii’s fixed point theorem.

For the controllability of fractional systems of order α ∈ (1, 2] with nonlocal conditions: in

2013, Kexue et al [60] used Sadovskii’s fixed point theorem to establish sufficient conditions.

In 2015, Shukla et al [110] studied sufficient conditions for approximate controllability of

the delay fractional systems of order α ∈ (1, 2] using sequential approach.

A system is said to be trajectory controllable if and only if it is possible, by means of an

input, to transfer the system from any initial state to any other desired state along a pre-

scribed trajectory. Therefore trajectory controllability is stronger notion of controllability.

In recent years many authors studied trajectory controllability of various kind of dynamical

systems. In particular, in 2010, Chalishajar et al. [19] studied trajectory controllability of

abstract nonlinear integro–differential system in finite and infinite dimensional space set-

tings. In 2013, Bin and Liu [12] studied trajectory controllability of semilinear evolutions

equations with impulses and delay. In 2015, Klamka et al. [65] investigated the trajectory

controllability of finite–dimensional semilinear systems with point delay in control and in

nonlinear term. In 2016, Govindaraj et al [43] discussed the trajectory controllability of

fractional–order α ∈ (0; 1] systems.



Chapter 1: Introduction 12

1.2.4 Synchronization of chaotic systems

Synchronization (anti-synchronization) of two systems means that the trajectories of one of

the systems will converge to the same values (same values with opposite sign) as the other

and they will remain in step with each other in due course [102]. Applications of chaos

and synchronization are in many fields like secure communication, modeling brain activity,

chemical reactions, ecological systems and financial systems. In literature several types of

synchronization have been proposed. Some of them are adaptive feedback control (Zhu and

Cao [134] and Odibat [101]), active control (Ho et al [83] and Yassen [129]), back-stepping

design method (Wu and Lu [128]) and sliding mode control (Yau [130] and Faieghi and

Delavari [37]). In the last few decades many authors focused their research on chaos and

synchronization of fractional–order systems with or without time-delay. In particular, in

2010, Bhalekar and Gejji [10], in 2011, Taghvafard and Erjaee [116], in 2013, Agrawal et

al [3] and in 2014, Srivastava et al [114] studied synchronization of different fractional–

order chaotic systems using active control method. In 2012, Agrawal et al [2] studied

synchronization of two different pairs of fractional-order systems namely (i) Lotka-Volterra

chaotic system (master system) and Newton-Leipnik chaotic system (slave system) and (ii)

Lotka–Volterra chaotic system (master system) and Lorenz chaotic system (slave system),

respectively using an active control approach. In 2016, Soukkou et al [113] proposed a

fractional–order prediction based feedback control scheme to stabilize unstable equilibrium

points and to synchronize the fractional–order chaotic systems. In 2005, Tang [117] stud-

ied synchronization of different fractional–order time delayed systems using active control

approach.

A history of eccentric behaviours may affect present and future states of the economic

dynamical system. Therefore, considering fractional-order financial system with state de-

lay seems more realistic to model a economic problem. Recently, in 2008, Chen [22] in-

vestigated dynamic behaviours of a fractional-order financial system. In 2017, Huang and

Cao [51] discussed synchronization and anti–synchronization of fractional–order financial

system with market confidence using active control strategy. In 2011, Zhen et al [133] in-

vestigated complex dynamical behaviours of the fractional–order financial delay system for
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different fractional–orders and time–delay by numerical simulations, in which they consider

the dynamics involving the variables interest rate, investment demand and price index.

In this thesis some results on controllability, stability, stabilization and synchronization/anti-

synchronization of dynamical systems with or without delay are presented.

1.3 Organization of the thesis

This thesis consists of nine chapters. Chapter 1 contains introductory matter and litera-

ture survey related to controllability, stability, stabilization and chaotic synchronization of

various dynamical systems. Preliminaries and some basic definitions are given in Chapter

2, which are required in subsequent chapters.

In Chapter 3, we focus on asymptotic stability and stabilization of a class of nonlinear

delay systems of the form

ẋ(t) = Ax(t) + f(x(t− τ)) + g(x(t)), t > 0

x(t) = φ(t), t ∈ [−τ, 0],


where x(t) ∈ Rn is the state vector, A is a constant n × n matrix, f, g : Rn → Rn are

the nonlinear vector functions, τ > 0 is a real constant, φ is the continuous vector valued

history function defined on [−τ, 0]. In general, Lyapunov–Krasovskii stability theory and

Razumikhin stability theory are the common approaches to study stability of nonlinear

delay systems. Suppose the Lyapunov candidates are simple quadratic functionals, one

can easily check negativity of the derivative of Lyapunov candidates using linear matrix

inequalities. Constructions of Lyapunov functionals which give stability conditions become

very difficult for systems having complicated nonlinear functions. To overcome these dif-

ficulties, in this study, we use Gronwall-Bellman lemma and some simple inequalities to

obtain sufficient conditions for the delay dependent asymptotic stability and stabilization

of some systems. The stability conditions given in this chapter are new and improves some

results available in literature for certain class of nonlinearity. These sufficient conditions are

established in terms of the system parameters such as the eigenvalues of the linear operator

A, delay parameter τ , and bounds on the nonlinear parts f and g. Then some examples
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are given to testify the effectiveness of the proposed theory.

Chapter 4 is concerned with the stability analysis of a class of fractional-order bimodal

piecewise nonlinear system of the form

CDα
t x =

 A1x(t) + f(t, x(t)) if cTx(t) ≥ 0

A2x(t) + f(t, x(t)) if cTx(t) ≤ 0
(1.3.1)

with the initial state x(0) = x0, where x ∈ Rn is the state, f : R× Rn → Rn is a nonlinear

vector function and all other vectors/matrices are of appropriate dimensions.

In literature only stability of linear bimodal systems have been considered so far. In

this chapter we consider the stability properties of fractional semilinear bimodal system.

The existence and uniqueness of solution for the system (1.3.1) is established by assuming

continuity condition involving a state variable x and Lipschitz continuity of the nonlinear

function f with respect to x. Then suitable sufficient conditions for the asymptotic stability

of (1.3.1) has been proposed. Finally, three examples with some numerical simulations are

given to testify the proposed stability conditions.

In Chapter 5, we consider a class of nonlinear fractional-order 0 < α < 1 one-

dimensional delayed control system of the form (1.1.3) with the nonlinear function F ≡

f(t, x(t − τ)). By assuming that the nonlinear function f is Lipschitz continuous with re-

spect to the state variable, the existence and uniqueness of solution and the explicit form

of the control function are shown in terms of Mittag-Leffer functions using method of steps.

Then by using Gronwall’s inequality the sensitivity of the state and control with respect

to small perturbation of the history function φ and small perturbation of the nonlinear

function f are shown. The analytical results are substantiated by numerical examples.

Chapter 6, deals with the development of synchronization and anti-synchronization of

fractional-order delay financial system with market confidence by using an active control

approach. The assumed system is a four-dimensional system of the form (1.1.3) with A ≡ 0

and B ≡ 0. Firstly, a Gauss-Seidel like predictor-corrector scheme is proposed to solve

fractional-order delay systems. Then numerical comparisons of this scheme with the existing

two schemes are shown via an example. Furthermore, numerical simulations are given to
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show that the financial system has chaotic behaviours for different values of time-delay and

fractional-order. Finally a suitable active control for synchronization/anti-synchronization

of the system has been proposed. The effectiveness and validity of the proposed theory

are shown with the help of two numerical simulations for different fractional-orders and

time-delays.

In Chapter 7, a class of fractional-order α ∈ (1, 2] semilinear delay control system of

the form (1.1.3) with F ≡ f(t, x(t − τ)) in Banach space setting is considered. Sufficient

condition for exact controllability have been established by assuming suitable conditions on

operators A, B and f . The controllability results are proved using Sadovskii’s fixed point

theorem and the theory of strongly continuous α-order cosine family. An example is given

to illustrate the result.

In Chapter 8, a class of fractional-order α ∈ (1, 2] delay systems of the form (1.1.3)

with a nonlinear term B(t, u(t)) in place of Bu(t) is considered. Firstly, the existence and

uniqueness of solution of the system is proved under suitable conditions on the nonlinear

term involving state variable. Then the trajectory controllability of this class of systems

is studied using Mittag-Leffler functions and Gronwall-Bellman inequality. The trajectory

controllability results are proved in two cases. In case (i), we assume the system to be of

dimension one in which the nonlinear control term B(t, u(t)) = b(t)u(t) and the operator A

is a simple real scalar a. In this case, the trajectory controllability is proved by assuming the

function b(t) is continuous and non-vanishing on the given interval [0, T ] and the nonlinear

term f is Lipschitz continuous. In case (ii), we considered n-dimensional system with a

nonlinear control term B(t, u(t)). In this case, the trajectory controllability is proved by

assuming that B(t, u(t)) satisfies monotonicity and coercivity conditions and f is Lipschitz

continuous. Then two examples are given to illustrate the proposed theory.

Finally, the conclusion of the thesis and possible directions of future work are given in

Chapter 9.
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Chapter 2

Basic concepts

In this chapter, basic definitions and preliminaries are given in three sections. In Section

2.1, basic concepts of control theory in finite dimensional setting are given. Some basic

definitions of fractional calculus with the preliminary concepts related to controllability,

stability and stabilization of fractional-order systems are given in Section 2.2. In Section

2.3, preliminary concepts of infinite dimensional system theory are given. Finally, some

basics tools of functional analysis are given in Section 2.4.

2.1 Basic concepts of control theory

The general mathematical formulation of finite dimensional first-order linear control system

is of the form

ẋ(t) = A(t)x(t) +B(t)u(t), t0 ≤ t ≤ T

x(t0) = x0,

 (2.1.1)

where the state x(t) ∈ Rn and the control u(t) ∈ Rm for each t ∈ [t0, T ]. Here A(t) and

B(t) are n× n and n×m matrices, respectively with piecewise continuous elements.

Let x(·) and u(·) belongs to the function spaces L2([t0, T ];Rn) and L2([t0, T ];Rm), re-

spectively. The solution of the control system (2.1.1) is given by (using variation of param-

17
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eters method)

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)B(s)u(s)ds, (2.1.2)

where Φ(t, t0) is an n × n matrix, called the state transition matrix of the homogeneous

system ẋ = A(t)x(t). The state transition matrix satisfies the Volterra integral equation

Φ(t, t0) = I +

∫ t

t0

A(s)Φ(s, t0)ds,

where I is the identity matrix of order n × n. By means of the Picard iteration method

this leads to Peano-Baker series,

Φ(t, t0) = I +

∫ t

t0

A(s)ds+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)ds2ds1 + · · · . (2.1.3)

If A is independent of time then the series (2.1.3) reduces to eA(t−t0). In general, the state

transition matrix satisfies the following properties [15]:

(i) Φ(t, τ)Φ(τ, t0) = Φ(t, t0),

(ii) Φ(t, t) = I,

(iii) Φ−1(t, t0) = Φ(t0, t), and

(iv)
d

dt
Φ(τ, t0) = AΦ(τ, t0).

Definition 2.1.1 (Controllability). The system (2.1.1) is said to be controllable on [t0, T ],

if for every pair of vectors x0, xT ∈ Rn, there exists a control u(·) ∈ L2([t0, T ];Rm) such

that the solution x(·) of (2.1.1) satisfies x(T ) = xT .

Define the matrix G : L2([t0, T ];Rm)→ Rn by

Gu =

∫ T

t0

Φ(t0, s)B(s)u(s)ds. (2.1.4)

The adjoint (conjugate transpose) matrix G∗ : Rn → L2([t0, T ];Rm) is defined as

(G∗v)(t) = B∗(t)Φ∗(t0, t)v,
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where B∗ and Φ∗ are the conjugate transpose of the matrices B and Φ, respectively. The

matrix G is called controllability matrix. Using the matrices G and G∗, the controllability

Grammian (n× n) matrix for the system (2.1.1) is defined as

W (t0, T ) = GG∗ =

∫ T

t0

Φ(t0, s)B(s)B∗(s)Φ∗(t0, s)ds.

Theorem 2.1.1. [8, 112] The system (2.1.1) is controllable if and only if the symmetric

controllability Grammian matrix W (t0, T ) is nonsingular. In this case the control

u(t) = −B∗(t)Φ∗(t0, t)W−1(t0, T )[x0 − Φ(t0, T )xT ],

defined on t0 ≤ t ≤ T , drives the system (2.1.1) from x(t0) = x0 to x(T ) = xT .

Theorem 2.1.2 (Kalman’s Rank condition [8, 112]). If the matrices A and B are time

independent then the linear control system (2.1.1) is controllable if and only if the rank of

the matrix [ B AB A2B · · · An−1B ] = n.

Consider the nonlinear system

ẋ(t) = f(t, x(t)), x(t0) = x0, (2.1.5)

where x ∈ Rn is the state vector and f : R× Rn → Rn is a nonlinear vector function such

that f(t, 0) = 0.

Definition 2.1.2 (Stability [8]). For the system (2.1.5), the trivial solution x(t) = 0 is

said to be:

• stable if for any t0 > 0 and for any given ε > 0 there exists a δ > 0 such that

‖x0‖ < δ implies ‖x(t)‖ < ε, t ≥ t0.

• asymptotically stable if it is stable and limt→∞ x(t) = 0.

• unstable if it is not stable.

Note that, throughout this section ‖ · ‖ denotes the Euclidean norm.
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Consider the following linear time invariant system

ẋ = Ax, x(t0) = x0, (2.1.6)

where x ∈ Rn is the state vector and A is a nonsingular constant n×n matrix. Then origin

x = 0 is the equilibrium point of (2.1.6).

Theorem 2.1.3. [8, 20] The system (2.1.6) is asymptotically stable if and only if all

the eigenvalues of A have negative real parts; (2.1.6) is unstable for at least one of the

eigenvalues of A have positive real part(s); and completely unstable if all the eigenvalues of

A have positive real parts.

Instead of constant matrix A in (2.1.6), if we consider time varying matrix A(t), then

the Theorem 2.1.3 may not hold good. However, if A(t) satisfies the condition

lim
t→∞

A(t) = A1,

where A1 is a constant n× n matrix, then the following theorem holds.

Theorem 2.1.4. [8] If the origin as an asymptotically stable equilibrium point for the

system ẋ(t) = A1x(t), then it also is for ẋ(t) = (A1 +B(t))x(t) provided limt→∞ ‖B(t)‖ = 0

and B(t) is continuous in [0,∞).

Suppose in the system (2.1.5) the nonlinear function is f(x(t)) then we study stability

of the system using Lyapunov function. The Lyapunov function V (x) is defined as follows:

(i) V (x) and all of its partial derivatives are continuous,

(ii) V (0) = 0 and V (x) > 0 for x 6= 0 (positive definite) in some neighbourhood ‖x‖ ≤ k

of the origin,

(iii) V̇ (0) = 0, and V̇ (x) ≤ 0 (negative semi-definite) for x 6= 0 in some neighbourhood

‖x‖ ≤ k, where V̇ (x) =
dV

dt
(x(t)).
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Theorem 2.1.5. The zero solution of the system is

(i) stable if there exist a Lyapunov function defined as above,

(ii) asymptotically stable if there exits a Lyapunov function whose derivative V̇ < 0

(negative definite).

Consider the following linear time invariant control system

ẋ = Ax+Bu, x(t0) = x0 (2.1.7)

where x ∈ Rn is the state vector, u ∈ Rm is the control, A is a constant n× n matrix and

B is a constant n×m matrix.

Theorem 2.1.6. [63] Let S be an arbitrary set of n complex numbers which is symmet-

ric with respect to real axis. Let A and B are the matrices of order n × n and n × m

respectively. Then there exists a constant matrix K such that the spectrum (set of all

eigenvalues) of the matrix (A + BK) is the set S if and only if the rank of the matrix

[ B AB A2B · · · An−1B ] = n.

Definition 2.1.3 (Stabilizability [8,63]). The control system (2.1.7) is said to be stabilizable

if there exists a constant feedback matrix K such that the spectrum of (A + BK) entirely

lies in the left-hand side of the complex plane.

Note: From Theorem 2.1.6, it is clear that the system (2.1.7) is stabilizable if the rank

of [ B AB A2B · · · An−1B ] = n, i.e., if the system (2.1.7) is controllable.

2.1.1 Stability of time-delay system

Consider the time-delay system

ẋ(t) = Ax(t) + h(t, x(t), x(t− τ)), t > 0

x(t) = φ(t), t ∈ [−τ, 0],

 (2.1.8)
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where x ∈ Rn is the state vector, A is a constant n × n matrix, h : R × Rn × Rn → Rn

is a nonlinear vector function such that h(t, 0, 0) = 0, τ > 0 is a real constant, φ is the

continuous vector valued history function and ‖φ‖ = supt∈[−τ,0] ‖φ(t)‖.

Definition 2.1.4 (Stability [44]). For the system (2.1.8), the trivial solution x(t) = 0 is

said to be:

• stable if for any t0 > 0 and for any given ε > 0 there exists a δ > 0 such that ‖φ‖ < δ

implies ‖x(t)‖ < ε, t ≥ t0.

• asymptotically stable if it is stable and limt→∞ x(t) = 0.

• unstable if it is not stable.

Note that, the stability definition for delay system is same as stability definition for

systems without delay, except for the assumption about the initial condition.

Let φ ∈ C = C([−r, 0]→ Rn), (the notation C denotes the set of all continuous functions

from [−r, 0] → Rn, r > 0) with the norm ‖φ‖C = sup−r≤θ≤0 ‖φ(θ)‖, where ‖ · ‖ is the

Euclidean norm on Rn.

If x is a function defined on [t−r, t]→ Rn then we define a new function xt : [−r, 0]→ Rn

by xt(θ) = x(t+ θ), −r ≤ θ ≤ 0.

Consider the following differential equation

ẋ = f(t, xt), x(t0 + θ) = φ(θ), −r ≤ θ ≤ 0 (2.1.9)

where x(t) ∈ Rn, the nonlinear function f : R × C → Rn and t0 ≥ 0. Note that (2.1.9)

includes the cases: (i) when r = 0 the function f(t, xt) is equal to f(t, x(t)) and (ii) the

function with discrete delay terms f(t, xt) = f(t, x(t− τ1), x(t− τ2), . . . , x(t− τm)), where

τi > 0 are constants and r = max1≤i≤m τi.

Theorem 2.1.7 (Razumikhin Theorem [44]). Suppose f takes the values from R ×

( bounded sets of C) → ( bounded sets of Rn), vj(j = 1, 2, 3) : R → R are continuous

nondecreasing functions, vj(t) are positive for t > 0 and v1(0) = v2(0) = 0, v2 are strictly



23 2.2 Fractional system theory

increasing. If there exists a continuously differentiable function V : R × Rn → R and

continuous nondecreasing function p(s) > s for s > 0 such that

v1(‖x‖) ≤ V (t, x(t)) ≤ v2(‖x‖), t ∈ R and x ∈ Rn,

and

V̇ (t, x(t)) ≤ −v3(‖x‖), whenever V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))),

for θ ∈ [−r, 0], then the system (2.1.9) is uniformly asymptotically stable.

2.2 Fractional system theory

2.2.1 Basics of fractional calculus

Definition 2.2.1. [61][Riemann-Liouville fractional integral] Let x ∈ C[t0,∞) be the

set of all continuous function defined on [t0,∞). For x ∈ C[t0,∞) and t ∈ [t0,∞), the

Riemann-Liouville fractional integral of order α, Iαt x(t) is defined by

Iαt x(t) =
1

Γ(α)

t∫
t0

(t− s)α−1x(s)ds,

where α > 0, Γ(.) is the gamma function, defined as Γ(α) =
∞∫
0

e−ttα−1dt.

Definition 2.2.2. [61][Riemann-Liouville fractional derivative] Let x ∈ C[t0,∞). For

t ∈ [t0,∞), the Riemann-Liouville fractional derivative Dα
t x(t) of order α is defined by

Dα
t x(t) = DnIn−αt x(t)

=
1

Γ(n− α)

dn

dtn

t∫
t0

(t− s)n−α−1x(s)ds,

where n is the positive integer such that n− 1 ≤ α < n.
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Definition 2.2.3. [61][Caputo fractional derivative] Let x ∈ C[t0,∞). For t ∈ [t0,∞),

the Caputo fractional derivative CDα
t x(t) of order α is defined by

CDα
t x(t) =



In−αt Dnx(t)

=
1

Γ(n− α)

t∫
t0

(t− s)n−α−1

[
dn

dsn
x(s)

]
ds, if n− 1 < α < n,

dn

dtn
x(t), if α = n,

if the integral on the right hand side exists. Here n is a positive integer.

For any functions x, y ∈ C[t0,∞), constants a, b ∈ R and n − 1 < α ≤ n, (n ∈ N) the

following properties hold:

(i) CDα
t [ax(t) + by(t)] = aCDα

t x(t) + bCDα
t y(t).

(ii) CDα
t x(t) = Dα

t x(t)−
n−1∑
k=0

x(k)(t0)

Γ(k − α + 1)
(x− t0)k−α.

(iii) Iαt
CDα

t x(t) = x(t)− x(0), 0 < α ≤ 1.

(iv) CDα
t
CDβ

t x(t) 6=C Dβ
t
CDα

t x(t), 0 < α, β ≤ 1 and α 6= β.

(v) If α = β, then the property (iv) becomes CDα
t
CDβ

t x(t) =C Dα+β
t x(t) =C Dβ

t
CDα

t x(t).

In general, CDlα
t x(t) =C Dα

t
CD

(l−1)α
t , l = 2, 3, . . ..

Definition 2.2.4 (Mittag-Leffler function). The Mittag-Leffler function with two parame-

ters is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)

where z, β ∈ C,<(α) > 0. When β = 1, one has Eα,1(z) = Eα(z), furthermore, E1,1(z) =

ez.

Consider the following semilinear fractional-order system

CDα
t x(t) = Ax(t) + f(t, x(t)), m− 1 < α ≤ m, (2.2.1)
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with the initial condition x(i)(t0) = xi, (i = 0, 1, 2, . . .m − 1), where A is n × n constant

matrix and f : R× Rn → Rn is a nonlinear function which satisfies Lipschitz condition,

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖

for some constant L > 0.

The solution of (2.2.1) is given by [61]

x(t) =
m−1∑
i=0

(t− t0)iEα,i+1[A(t− t0)α]xi +

t∫
t0

(t− s)α−1Eα,α[A(t− s)α]f(s, x(s))ds,

for i = 0, 1, 2, . . . ,m− 1.

2.2.2 Controllability of finite dimensional fractional-order

systems

Consider the fractional-order linear time invariant control system

CDα
t x(t) = Ax(t) +Bu(t), t0 ≤ t ≤ T <∞ (2.2.2)

with x(t0) = x0 and x′(t0) = x1, where α ∈ (0, 2], x ∈ Rn, u ∈ Rm, A and B are constant

matrices of order n× n and n×m, respectively.

Definition 2.2.5 (Controllability). The system (2.2.1) with 0 < α ≤ 2 is controllable if

for any t0, any initial state x(t0) = x0 : 0 < α ≤ 1, (x(t0) = x0 and x′(0) = x1 : 1 < α ≤ 2)

and any final state xT there exist a finite time T > t0 and a control u(t), t0 ≤ t ≤ T , such

that x(T ) = xT .

Theorem 2.2.1. [88, 95] The system (2.2.2) is controllable if and only if the n× n sym-

metric controllability Gramian matrix

U(t0, T ) =

T∫
t0

S(T − t)BBTST (T − t)(T − t)2(1−α)dt,
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where S(t) = tα−1Eα,α[Atα], is nonsingular.

In this case the control

u(t) =


−(T − t)2(1−α)BTST (T − t)U−1(t0, T ) [−xT + Eα,1[A(T − t0)α]x0] , 0 < α ≤ 1, −(T − t)2(1−α)BTST (T − t)U−1(t0, T )

[
− xT + Eα,1[A(T − t0)α]x0

+(T − t0)Eα,2[A(T − t0)α]x1

]
,

1 < α ≤ 2,

defined on t0 ≤ t ≤ T , transfers the system (2.2.2) from initial state at t = t0 to final state

x(T ) = xT .

Theorem 2.2.2. [91] The system (2.2.2) is controllable if and only if the n× nm matrix

U = [B,AB,A2B, . . . , An−1B]

has rank n.

2.2.3 Stability of finite dimensional fractional-order systems

Consider the following nonlinear system

CDα
t x(t) = f(t, x(t)), 0 < α ≤ 1, (2.2.3)

with the initial condition x(0) = x0 and f(t, 0) = 0 for all t.

Definition 2.2.6. The trivial solution x(t) = 0 of (2.2.3) is said to be:

• stable if for any given ε > 0 there exists a δ > 0 such that ‖x(0)‖ < δ implies

‖x(t)‖ < ε, t ≥ 0.

• asymptotically stable if it is stable and limt→∞ x(t) = 0.

• unstable if it is not stable.

Consider the semilinear system given in (2.2.1) with fractional-order 0 < α ≤ 1.
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Theorem 2.2.3. [126] If | arg(spec(A))| > απ
2

, α‖A‖ > 1 and f(t, x(t)) satisfies

lim
x(t)→0

‖f(t, x(t))‖
‖x(t)‖

= 0, then the system (2.2.1) is asymptotically stable. Here spec(A) de-

notes set of all eigenvalues of the matrix A.

2.2.4 Stabilization of fractional-order semilinear system

Consider the following controlled fractional-order nonlinear system:

CDα
t x(t) = Ax(t) +Bu(t) + f(t, x(t)) (2.2.4)

where u(t) is the control input, B ∈ Rn×m and the remaining terms are same as in (2.2.1).

Suppose that we apply linear feedback control input u(t) = Kx(t) in (2.2.4), then the

resulting closed loop system is

CDα
t x(t) = (A+BK)x(t) + f(t, x(t))

= Ãx(t) + f(t, x(t)) (2.2.5)

where Ã = A+BK and feedback gain K ∈ Rm×n needs to be determined.

Theorem 2.2.4. [126] If feedback gain K is chosen such that | arg(spec(Ã))| > απ
2

,

α‖Ã‖ > 1 and f(t, x(t)) satisfies lim
x(t)→0

‖f(t, x(t))‖
‖x(t)‖

= 0, then controlled system (2.2.5)

is asymptotically stable.

2.3 Infinite dimensional fractional-order systems

Let X be a Banach space with the norm ‖ · ‖. We denote the space

Lp([0, T ];X) :=
{
g : [0, T ]→ X

∣∣ g is Bochner p-integrable on [0, T ]
}
,

with the norm

‖g‖Lp([0,T ];X) =

(∫ T

0

‖g(t)‖pdt
)1/p

,
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where 1 ≤ p <∞.

The Hölder space Cγ, 0 < γ < 1, is defined by

Cγ([0, T ];X) := {g ∈ C([0, T ];X)| sup
s,t∈[0,T ]

‖g(t)− g(s)‖X
|t− s|γ

<∞}

with

‖g‖Cγ := sup
t∈[0,T ]

‖g(t)‖X + sup
s,t∈[0,T ]

‖g(t)− g(s)‖X
|t− s|γ

.

If λ > 1 we define Cλ([0, T ];X) as the space of all functions satisfying g ∈ Cm([0, T ];X)

and g(m) ∈ Cγ([0, T ];X), where γ = λ −m,m = bλc and bλc denotes greatest integer less

than or equal to λ. It is endowed with the norm

‖g‖Cλ = ‖g‖Cm + ‖g(m)‖Cγ .

Fractional-order α ∈ (0, 1]:

Consider the linear fractional-order system

CDα
t x(t) = Ax(t), (2.3.1)

with x(0) = η, α ∈ (0, 1], where A : D(A) ⊂ X → X is densely defined and closed linear

operator on the Banach space X.

The system (2.3.1) can be rewritten as

x(t) = η +
1

Γ(α)

∫ t

0

(t− s)α−1Ax(s)ds. (2.3.2)

Definition 2.3.1. [6] A strongly continuous α-order semigroup {T 1
α(t)} ⊂ B is said to

generate an operator A if it satisfies the following conditions:

(i) T 1
α(t) is strongly continuous and T 1

α(0) = I;

(ii) if η ∈ D(A) then T 1
α(t)η ∈ D(A) and AT 1

α(t)η = T 1
α(t)Aη, t ≥ 0;
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(iii) for every η ∈ D(A), T 1
α(t)η is a solution of (2.3.2).

Definition 2.3.2. The mild solution of (2.3.1) is given by

x(t) = T 1
α(t)η, (2.3.3)

where

T 1
α(t) =

∫ ∞
0

ξα(θ)T1(tαθ)dθ,

ξα(θ) =
1

α
θ−1− 1

αωα

(
θ−

1
α

)
≥ 0,

ωα(θ) =
1

π

∞∑
n=0

(−1)n−1θ−αn−1 Γ(nα + 1)

n!
sin (nαπ).

Here, ξα is a probability density function defined on (0,∞). According to [86],

∫ ∞
0

θξα(θ)dθ =

∫ ∞
0

1

θα
ωα(θ)dθ =

1

Γ(1 + α)
.

Now, consider the semilinear fractional-order system

CDα
t x(t) = Ax(t) + f(t, x(t)), 0 < t ≤ T, 0 < α ≤ 1 (2.3.4)

with x(0) = x0. The state x(t) belongs to the Banach spaces X for each t.

The operator A and f are defined as follows: A generates a strongly continuous α-order

semigroup {T 1
α(t)}t≥0 on X, and the map f : [0, T ] ×X → X is a nonlinear operator and

the positive constant T <∞.

Definition 2.3.3. [6] A function x(t) ∈ C([0, T ];X) is said to be the mild solution of

(2.2.2) if it satisfies

x(t) = T 1
α(t)x0 +

∫ t

0

(t− s)α−1T 2
α(t− s)f(s, x(s))ds, (2.3.5)
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where

T 2
α(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ, θ ∈ (0,∞).

Fractional-order α ∈ (1, 2]:

Consider the linear fractional system

CDα
t x(t) = Ax(t), (2.3.6)

with x(0) = η, x′(0) = 0, α ∈ (1, 2], where A : D(A) ⊂ X → X is densely defined and

closed linear operator on the Banach space X.

Definition 2.3.4. [6, 110] A strongly continuous cosine family of order-α, {Cα(t)}t≥0 ⊂

B(X) (the set of all bounded linear operator from X to X) is said to generate an operator

A if it satisfies the following conditions:

(i) for t ≥ 0, Cα(t) is strongly continuous and Cα(0) = I;

(ii) if η ∈ D(A) then Cα(t)η ∈ D(A) and ACα(t)η = Cα(t)Aη, t ≥ 0;

(iii) for every η ∈ D(A), Cα(t)η is a solution of (2.3.6).

Definition 2.3.5. [60] The sine family of order α, Sα : [0,∞)→ B(X) related with Cα is

defined by

Sα(t) =

∫ t

0

Cα(ξ)dξ, t ≥ 0.

If (2.3.6) has an α-order cosine family Cα(t), then the problem

CDαx(t) = Ax(t), x(0) = η, x′(0) = y0, α ∈ (1, 2],

is uniquely solvable with solution

x(t) = Cα(t)η + Sα(t)x0,
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provided η, x0 ∈ D(A).

Definition 2.3.6. [60] The Riemann-Liouville family of order α, Pα : [0,∞) → B(X)

related with Cα is defined by

Pα(t) = Iα−1
t Cα(t),

where Iα−1
t denotes the Riemann-Liouville fractional integral of order α− 1.

Definition 2.3.7. [60] Cα(t) is called exponentially bounded if

‖Cα(t)‖ ≤Meρt, t ≥ 0. (2.3.7)

for some constants M ≥ 1 and ρ ≥ 0.

If the problem (2.3.6) has a strongly continuous α-order cosine family Cα(t) satisfying

(2.3.7), then A is said to belong to Cα(X;M,ρ). Denote Cα(ρ) :=
⋃
{Cα(X;M,ρ);M ≥

1}, Cα :=
⋃
{Cα(ρ); ρ ≥ 0}. In these notations C1 and C2 are the sets of all infinitesimal

generators of C0-semigroups and cosine operator families, respectively.

Lemma 2.3.1. [6] Let 0 < α < β ≤ 2, γ = α/β, ρ ≥ 0. If A ∈ Cβ(ρ) then A ∈ Cα(ρ1/γ)

and

Cα(t) :=

∫ ∞
0

ϕt,γ(s)Cβ(s)ds, t > 0, (2.3.8)

where ϕt,γ(s) := t−γ
∞∑
n=0

(−st−γ)n

n!Γ(−γn+ 1− γ)
, 0 < γ < 1; (2.3.8) holds in the strong sense.

Consider the fractional semilinear control system (2.3.4) with x(0) = x0, x
′(0) = x1

and 1 < α ≤ 2. The operator A generates a strongly continuous α-order cosine family

{Cα(t)}t≥0 on X and the operator f is same as in the system (2.3.4).

Definition 2.3.8. [60][1 < α ≤ 2] A function x ∈ C([0, T ];X) is called a mild solution

for (2.3.4) if it satisfies the integral equation

x(t) = Cα(t)φ(0) + Sα(t)x0 +

∫ t

0

Pα(t− s)f(s, x(s))ds, t ∈ [0, T ].



Chapter 2: Basic concepts 32

2.4 Basics of functional analysis

Definition 2.4.1 (Completely continuous operator [25]). If X1 and X2 are Banach spaces

and Φ : X1 → X2 is a bounded linear operator, then Φ is said to be completely continuous

if for every weakly convergent sequence (xn) in X1, the sequence (Φxn) is norm-convergent

in X2.

Remark 2.4.1. If Φ is a compact operator, then Φ is completely continuous. If X1 is

reflexive and Φ is completely continuous, then Φ is compact.

Remark 2.4.2. If Φ : X1 → X2 is a constant operator then Φ is completely continuous.

Definition 2.4.2 (Contraction operator). Let X be a Banach space. The operator Φ :

X → X is called contraction if ‖Φ(y)− Φ(z)‖ ≤ k‖y − z‖, 0 < k < 1, for all y, z ∈ X.

Note: [108] Sum of a completely continuous operator and a contraction operator is called

a condensing operator.

Theorem 2.4.1 (Sadovskii fixed point theorem [108]). If Φ is a condensing operator from

a convex closed and bounded set M of a Banach space X into itself, then it has at least one

fixed point in M .

Definition 2.4.3. [53] Let X be a reflexive real Banach space. A mapping F : X → X∗

is said to be of type (M) if the following conditions hold:

(a) If a sequence {xn} ∈ X converges weakly to x ∈ X and {Fxn} converges weakly to

y ∈ X∗ and lim
n

sup(Fxn, xn) ≤ (y, x), then Fx = y.

(b) F is continuous from finite dimensional subspaces of X into X∗ endowed with weak*

topology.

Lemma 2.4.1. [53] Let X be a real Banach space and F : X → X∗ be a mapping of type

(M). If F is coercive then the range of F is all of X∗.

Lemma 2.4.2. [26][Gronwall-Bellman lemma] If

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, t ∈ [t0, T )
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where k(t) is nonnegative and all the functions involved are continuous on [t0, T ), T ≤ +∞,

then x(t) satisfies

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s) exp

[∫ t

s

k(s1)ds1

]
ds, t ∈ [t0, T ).
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Chapter 3

Asymptotic stability and

stabilizability of nonlinear systems

with delay

This Chapter deals with asymptotic stability and stabilizability of a class of nonlinear dy-

namical systems with fixed delay in state variable. New sufficient conditions are established

in terms of the system parameters such as the eigenvalues of the linear operator, delay pa-

rameter and bounds on nonlinear parts. Finally, three examples are given to validate the

efficiency of the proposed theory.

[The content of this chapter was published in ISA Transactions, 65: 19–26, 2016]

3.1 Introduction

In general, Lyapunov–Krasovskii stability theory and Razumikhin stability theory are the

common approaches to study stability of nonlinear delay systems. Suppose the Lyapunov

candidates are simple quadratic functionals, one can easily check negativity of the deriva-

tive of Lyapunov candidates using linear matrix inequalities. Constructions of Lyapunov

functionals which give stability conditions is very difficult for systems having complicated

nonlinear functions [100]. To overcome these difficulties, in this study, we use Gronwall-

Bellman lemma 2.4.2 and some inequalities to obtain sufficient conditions for the delay

35
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dependent asymptotic stability and stabilization of some systems. The stability conditions

given in this chapter are new and improves some results available in literature for certain

class of nonlinearity.

3.2 Main results

3.2.1 Stability of nonlinear delay systems

Consider the following nonlinear delay system

ẋ(t) = Ax(t) + f(x(t− τ)) + g(x(t)), t > 0

x(t) = φ(t), t ∈ [−τ, 0],

 (3.2.1)

where x(t) ∈ Rn is the state vector, A is a constant n × n matrix, f, g : Rn → Rn

are the nonlinear vector functions, τ > 0 is a real constant, φ ∈ C is the continuous

vector valued history function and ‖φ‖C = supt∈[−τ,0] ‖φ(t)‖. Here C = {φ : [−τ, 0] →

Rn | φ is continuous} and ‖ · ‖ denotes the Euclidean norm.

The solution of (3.2.1) is written as

x(t) = eAtφ(0) +

∫ t

0

eA(t−s)[f(x(s− τ)) + g(x(s))]ds. (3.2.2)

We assume the following conditions to show the asymptotic stability of system (3.2.1) with

‖φ‖C.

(1) The eigenvalues of A have negative real parts,

(2) the nonlinear functions f(x(t−τ)) and g(x(t)) satisfy the conditions limx(t)→0(‖g(x(t))‖/‖x(t)‖) =

0 and ‖f(x(t− τ))‖ ≤ e−λτ‖x(t− τ)‖,

(3) −λ+ e−λτ < 0 and −λ+ C1 < 0 (C1 > 0 is a constant given in (3.2.3)),

where λ = min{λi, i = 1, 2, . . . , n}, −λi’s (λi > 0) are the real parts of the eigenvalues of

A.
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By the condition (2), there exist a constat C1 > 0 such that

‖g(x(t))‖ ≤ C1‖x(t)‖ when ‖x(t)‖ < δ, (3.2.3)

for sufficiently small δ > 0. Using the conditions (1) and (2) and (3.2.3), in the solution

(3.2.2) we get

‖x(t)‖ ≤ e−λt
[
|φ(0)|+ e−λτ

∫ t

0

eλs‖x(s− τ)‖ds+ C1

∫ t

0

eλs‖x(s)‖ds
]
. (3.2.4)

When t ∈ [0, τ ], x(t− τ) = φ(t− τ), hence (3.2.4) becomes

‖x(t)‖ ≤ e−λt
[
|φ(0)|+ e−λτ

∫ t

0

eλs‖φ(s− τ)‖ds+ C1

∫ t

0

eλs‖x(s)‖ds
]
.

This implies

eλt‖x(t)‖ ≤ ‖φ‖C
(

1 + e−λτ
(
eλt − 1

λ

))
+ C1

∫ t

0

eλs‖x(s)‖ds. (3.2.5)

By using Gronwall’s inequality given in Lemma 2.4.2, (3.2.5) becomes

eλt‖x(t)‖ ≤ ‖φ‖C
(
λ− e−λτ

λ
+

(
e−λτ

λ

)
eλt
)

+C1‖φ‖C
∫ t

0

(
λ− e−λτ

λ
+

(
e−λτ

λ

)
eλs
)
eC1(t−s)ds

≤ ‖φ‖C
(
λ− e−λτ

λ
+

(
e−λτ

λ

)
eλt
)

+ ‖φ‖C
(
−λ+ e−λτ

λ

)(
1− eC1t

)
+
‖φ‖CC1e

−λτ

λ(λ− C1)

(
eλt − eC1t

)
. (3.2.6)

By condition (3), inequality (3.2.6) becomes

‖x(t)‖ ≤ ‖φ‖C
((

λ− e−λτ

λ

)
e−λt +

(
e−λτ

λ

))
− ‖φ‖C

(
−λ+ e−λτ

λ

)
e(−λ+C1)t

+
‖φ‖CC1e

−λτ

λ(λ− C1)
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= ‖φ‖C
[
e−λτ

λ

(
1 +

C1

λ− C1

)
+

(
λ− e−λτ

λ

)
e−λt +

(
λ− e−λτ

λ

)
e(−λ+C1)t

]
≤ ‖φ‖C

[
e−λτ

λ− C1

+

(
λ− e−λτ

λ

)
e−λt +

(
λ− e−λτ

λ

)
e(−λ+C1)t

]
. (3.2.7)

Differentiating the right side of (3.2.7) with respect to t, we get

‖φ‖C[(−λ+ e−λτ )e−λt +
1

λ
(−λ+ C1)(λ− e−λτ )e(−λ+C1)t].

Under the condition (3) it is negative. Therefore, in the interval [0, τ ] the solution of (3.2.1)

is bounded by a decreasing function.

When t ∈ [τ, 2τ ], (3.2.4) becomes

‖x(t)‖ ≤ e−λt
[
|φ(0)|+ e−λτ

∫ τ

0

eλs‖φ(s− τ)‖ds+ e−λτ
∫ t

τ

eλs‖x(s− τ)‖ds

+C1

∫ τ

0

eλs‖x(s)‖ds+ C1

∫ t

τ

eλs‖x(s)‖ds
]
. (3.2.8)

Substituting (3.2.7) in the third and fourth term of right side of the inequality (3.2.8), we

get

‖x(t)‖ ≤ ‖φ‖Ce−λt
[
1 + e−λτ

(eλτ − 1)

λ
+ e−λτ

e−λτ

λ(λ− C1)

(
eλt − eλτ

)
+

(
λ− e−λτ

λ

)
(t− τ) +

(
λ− e−λτ

λC1

)
e−C1τ

(
eC1t − eC1τ

)
+

C1e
−λτ

λ(λ− C1)
(eλτ − 1) +

C1τ

λ
(λ− e−λτ ) +

(λ− e−λτ )
λ

(eC1τ − 1)

]
+C1e

−λt
∫ t

τ

eλs‖x(s)‖ds.

Using condition (3), we get

eλt‖x(t)‖ ≤ ‖φ‖C
[

(λ− e−λτ )
λ

+
1

λ
+
τ

λ
(λ− e−λτ )

+
C1e

−λτ

λ(λ− C1)
(eλτ − 1) +

C1τ

λ
(λ− e−λτ ) +

(λ− e−λτ )
λ

(eC1τ − 1)

+
e−2λτ

λ(λ− C1)
eλt +

(λ− e−λτ )
λC1

e−C1τeC1t

]
+ C1

∫ t

τ

eλs‖x(s)‖ds. (3.2.9)
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By Lemma 2.4.2, (3.2.9) becomes

eλt‖x(t)‖ ≤ ‖φ‖C
[
M +

e−2λτ

λ(λ− C1)
eλt +

(λ− e−λτ )
λC1

e−C1τeC1t

]
+C1‖φ‖

∫ t

τ

[
M +

e−2λτ

λ(λ− C1)
eλs +

(λ− e−λτ )
λC1

e−C1τeC1s

]
eC1(t−s)ds

≤ ‖φ‖C
[
M +

e−2λτ

λ(λ− C1)
eλt +

(λ− e−λτ )
λC1

e−C1τeC1t −MeC1t
(
e−C1t − e−C1τ

)
+
C1e

C1te−2λτ

λ(λ− C1)2

(
e(λ−C1)t − e(λ−C1)τ

)
+

2τ

λ
(λ− e−λτ )e−C1τeC1t

]
.

This implies

‖x(t)‖ ≤ ‖φ‖C
[
Me−λt +

e−2λτ

λ(λ− C1)
+

(λ− e−λτ )
λC1

e−C1τe(−λ+C1)t +Me−C1τe(−λ+C1)t

+
C1e

−2λτ

λ(λ− C1)2
+

2τ

λ
(λ− e−λτ )e−C1τe(−λ+C1)t

]
, (3.2.10)

where M =
(λ− e−λτ )

λ
+

1

λ
+
τ

λ
(λ−e−λτ )+

C1

λ(λ− C1)
+
C1τ

λ
(λ−e−λτ )+

(λ− e−λτ )
λ

eC1τ > 0.

The differentiation of right side of the inequality (3.2.10) with respect to t is given by

‖φ‖C
[
− λMe−λt +

(−λ+ C1)

λC1

(λ− e−λτ )e−C1τe(−λ+C1)t + (−λ+ C1)Me−C1τe(−λ+C1)t

+
2τ

λ
(−λ+ C1)(λ− e−λτ )e−C1τe(−λ+C1)t

]
.

Under condition (3) it is negative. This implies that the solution of (3.2.1) in the interval

[τ, 2τ ] is bounded by a decreasing function.

Proceeding in this way the solution of (3.2.1) in the successive intervals [iτ, (i−1)τ ], i =

2, 3, 4, . . . are bounded by the decreasing functions.

To show asymptotic stability, we use the induction method. When t ∈ [0, τ ], (3.2.7)

becomes

‖x(t)‖ ≤ ‖φ‖C
[
L1e

−λt +M1e
(−λ+C1)t

]
, (3.2.11)

where L1 = (λ− e−λτ )/λ and M1 = e−C1τ/(λ− C1) + L1 are positive constants.
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When t ∈ [τ, 2τ ], by using (3.2.11), the inequality (3.2.8) becomes

eλt‖x(t)‖ ≤ ‖φ‖C
[
L1 +

1

λ
+ τL1 +

M1

C1

e−C1τ (eC1t − eC1τ )

+C1

(
τL1 +

M1

C1

(eC1τ − 1)

)]
+ C1

∫ t

τ

eλs‖x(s)‖ds

≤ ‖φ‖C
[
L2 + M̃2e

C1t
]

+ C1

∫ t

τ

eλs‖x(s)‖ds, (3.2.12)

where L2 = L1 (1 + τ(1 + C1)) + (1/λ) + M1e
C1τ and M̃2 = (M1/C1)e−C1τ are positive

constants.

By Lemma 2.4.2, (3.2.12) becomes

eλt‖x(t)‖ ≤ ‖φ‖C
[
L2 + M̃2e

C1t
]

+ C1‖φ‖C
∫ t

τ

[
L2 + M̃2e

C1s
]
eC1(t−s)ds. (3.2.13)

From (3.2.13),

‖x(t)‖ ≤ ‖φ‖C
[
L2e

−λt +M2e
(−λ+C1)t

]
,

where M2 = L2e
−C1τ + (1 + C1τ)M̃2 is a positive constant.

Assume when t ∈ [(k − 1)τ, kτ ],

‖x(t)‖ ≤ ‖φ‖C
[
Lke

−λt +Mke
(−λ+C1)t

]
,

where Lk and Mk are suitable positive constants which depends on τ , λ and C1.

Now, in the interval t ∈ [kτ, (k + 1)τ ],

‖x(t)‖ ≤ e−λt
[
|φ(0)|+ e−λτ

∫ τ

0

eλs‖φ(s− τ)‖ds+ e−λτ
k∑
i=2

∫ iτ

(i−1)τ

eλs‖x(s− τ)‖ds

+e−λτ
∫ t

kτ

eλs‖x(s− τ)‖ds+ C1

k∑
i=1

∫ iτ

(i−1)τ

eλs‖x(s)‖ds+ C1

∫ t

kτ

eλs‖x(s)‖ds
]
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≤ e−λt‖φ‖C
[
1 + e−λτ

(
eλτ − 1

λ

)
+

k∑
i=2

(
τLi−1 +

Mi−1

C1

e−C1τ
(
eiτC1 − e(i−1)τC1

))

+

(
τLk +

Mk

C1

e−C1τ
(
eC1t − ekτC1

))
+

k∑
i=1

(
τC1Li +Mi

(
eiτC1 − e(i−1)τC1

)) ]
+C1e

−λt
∫ t

kτ

eλs‖x(s)‖ds.

This implies

eλt‖x(t)‖ ≤ ‖φ‖C
[
Lk+1 + M̃k+1e

C1t
]

+ C1

∫ t

kτ

eλs‖x(s)‖ds, (3.2.14)

where

Lk+1 = L1+(1/λ)+
∑k

i=2

(
τLi−1 + (Mi−1/C1)e(i−1)τC1

)
+τLk+

∑k
i=1

(
τC1Li +Mie

iτC1
)
,

M̃k+1 = (Mk/C1)e−C1τ and the remaining constants Li,Mi (i = 3, 4, . . . , k − 1) depend on

τ , λ and C1.

By Lemma 2.4.2, (3.2.14) becomes

eλt‖x(t)‖ ≤ ‖φ‖C
[
Lk+1 + M̃k+1e

C1t
]

+C1‖φ‖C
∫ t

kτ

[
Lk+1 + M̃k+1e

C1s
]
eC1(t−s)ds,

which implies,

‖x(t)‖ ≤ ‖φ‖C
[
Lk+1e

−λt +Mk+1e
(−λ+C1)t

]
,

< δ
[
Lk+1e

−λt +Mk+1e
(−λ+C1)t

]
, (3.2.15)

where Mk+1 = Lk+1e
−C1kτ + (1 + C1τ)M̃k+1 is a positive constant.

Now, from (3.2.15) x(t) tends to zero as t→∞. Hence the zero solution of the system

(3.2.1) is asymptotically stable.
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3.2.2 Stabilization of nonlinear delay systems

In the previous subsection we considered stability of the nonlinear delay dynamical system.

Now we consider the nonlinear control system with delay given by

ẋ(t) = Ax(t) +Bu(t) + f(x(t− τ)) + g(x(t)), t > 0

x(t) = φ(t), t ∈ [−τ, 0],

 (3.2.16)

where u(t) ∈ Rm is the control input, B is a constant n ×m matrix (in practice m ≤ n)

and the remaining terms are same as defined in (3.2.1).

Definition 3.2.1. The system (3.2.16) is stabilizable if we can find a control function u(t)

such that the solution of (3.2.16) corresponding to the control is asymptotically stable. In

other words ‖x(t)‖ → 0 as t→∞.

Let us consider the linear feedback control u(t) = Kx(t), then (3.2.16) becomes

ẋ(t) = Ãx(t) + f(x(t− τ)) + g(x(t)), t > 0

x(t) = φ(t), t ∈ [−τ, 0],

 (3.2.17)

where Ã = A + BK and K is the feedback gain matrix of order m × n which needs to be

determined.

If the feedback gain matrix K is chosen such that

1. the eigenvalues of Ã entirely lies in the left-hand side of the complex plane,

2. the nonlinear functions f and g satisfy the conditions ‖f(x(t− τ))‖ ≤ e−λτ‖x(t− τ)‖

and

limx(t)→0 ‖g(x(t))‖/‖x(t)‖ = 0,

3. −λ + e−λτ < 0 and −λ + C1 < 0 (where λ = min{λi, i = 1, 2, . . . , n}, −λi’s (λi > 0)

are the real parts of the eigenvalues of the matrix Ã),

then the zero solution of the controlled system (3.2.17) is asymptotically stable. The proof

is same as that of the proof of asymptotic stability of the system (3.2.1) in Section 3.2.1,

by replacing A with Ã.
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3.3 Examples

In this section we plot all the graphs using Matlab with the algorithm given in [11].

Example 3.3.1. Consider the following system of nonlinear delay differential equations

dx1(t)

dt
= −6x1(t) + x2(t) + e−0.2τ sin (x2(t− τ)) + x2

1(t) + x2
2(t)

dx2(t)

dt
= −17x1(t) + 2x2(t) + x3(t) + e−0.2τ tan−1 (x3(t− τ)) + x2

2(t) + x2
3(t)

dx3(t)

dt
= −0.2x3(t) + e−0.2τx1(t− τ) +

√
2x2

1(t)x2
3(t)− x4

2(t)

(3.3.1)

with the initial conditions

x1(t) = 0.03

x2(t) = 0.04

x3(t) = −0.02

 for t ∈ [−τ, 0].

The system (3.3.1) can be rewritten in the form of (3.2.1) with

A =


−6 1 0

−17 2 1

0 0 −0.2

 , f(x(t− τ)) =


e−0.2τ sin (x2(t− τ))

e−0.2τ tan−1 (x3(t− τ))

e−0.2τx1(t− τ)

 ,

g(x(t)) =


x2

1(t) + x2
2(t)

x2
2(t) + x2

3(t)√
2x2

1(t)x2
3(t)− x4

2(t)

 , x(t) =


x1(t)

x2(t)

x3(t)

 , and φ(t) =


0.03

0.04

−0.02

 .

The eigenvalues of A are −2 ± i and −0.2. This gives λ = min{2, 0.2} = 0.2. Now,

‖f(x(t− τ))‖ ≤ e−0.2τ‖x(t− τ)‖ and

lim
x(t)→0

‖g(x(t)‖
‖x(t)‖

= lim
x(t)→0

√
(x2

1(t) + x2
2(t))2 + (x2

2(t) + x2
3(t))2 + 2x2

1(t)x2
3(t)− x4

2(t)√
x2

1(t) + x2
2(t) + x2

3(t)

= lim
x(t)→0

x2
1(t) + x2

2(t) + x2
3(t)√

x2
1(t) + x2

2(t) + x2
3(t)

= lim
x(t)→0

‖x(t)‖ = 0.

If we choose δ < 0.1, then by (3.2.3), C1 = 0.0539 because ‖g(x(t))‖ = ‖x(t)‖2 =
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0.0539‖x(t)‖. This implies −λ+ C1 = −0.2 + 0.0539 = −0.1461 < 0. Hence all the condi-

tions given in Section 3.2.1 are satisfied for this example except the condition −λ+e−λτ < 0

(or) τ > −(lnλ)/λ. If we choose τ > −(lnλ)/λ = −(ln 0.2)/0.2 = 8.0472, then the system

(3.3.1) becomes asymptotically stable. For instance, Figures 3.1(a) and 3.2(a) shows the

solution of the system (3.3.1) corresponding to τ = 8.1 and τ = 20 respectively. Figures

3.1(b) and 3.2(b) shows the attractor graphs of the system (3.3.1) corresponding to τ = 8.1

and τ = 20 respectively. By observing Figures 3.1 and 3.2, it is clear that the zero solution

of the system (3.3.1) is asymptotically stable.

Example 3.3.2. Consider the following system of nonlinear delay differential equations

dx1(t)

dt
= −0.5x1(t) + e−0.5τx3(t− τ) + x2

3(t)

dx2(t)

dt
= −0.5x2(t) + e−0.5τx1(t− τ) + x2(t)x3(t)

dx3(t)

dt
= −0.5x3(t) + e−0.5τx2(t− τ) + x1(t)x3(t)

 (3.3.2)

with the initial conditions

x1(t) = 0.05

x2(t) = −0.07

x3(t) = 0.04

 for t ∈ [−τ, 0].

The system (3.3.2) can be rewritten in the form of (3.2.1) with

A =


−0.5 0 0

0 −0.5 0

0 0 −0.5

 , f(x(t− τ)) =


e−0.5τx3(t− τ)

e−0.5τx1(t− τ)

e−0.5τx2(t− τ)

 ,

g(x(t)) =


x2

3(t)

x2(t)x3(t)

x1(t)x3(t)

 , x(t) =


x1(t)

x2(t)

x3(t)

 , and φ(t) =


0.05

−0.07

0.04

 .

The eigenvalues of A are −0.5,−0.5 and −0.5. This gives λ = 0.5. Now, ‖f(x(t− τ))‖ ≤
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(a) solution graph
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Figure 3.1: Solution and attractor graphs of the system (3.3.1) at τ = 8.1.
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(a) solution graph
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Figure 3.2: Solution and attractor graphs of the system (3.3.1) at τ = 20.
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e−0.5τ‖x(t− τ)‖ and

lim
x(t)→0

‖g(x(t)‖
‖x(t)‖

= lim
x(t)→0

|x3(t)|
√
x2

3(t) + x2
2(t) + x2

1(t)√
x2

1(t) + x2
2(t) + x2

3(t)
= 0.

If we choose δ < 0.1, then by (3.2.3), C1 = 0.04 because ‖g(x(t))‖ = |x3(t)|‖x(t)‖ =

0.04‖x(t)‖. This implies −λ + C1 = −0.5 + 0.04 = −0.46 < 0. Hence all the conditions

given in Section 3.2.1 are satisfied for this example except the condition −λ + e−λτ < 0

(or) τ > −(lnλ)/λ. If we choose τ > −(lnλ)/λ = −(ln 0.5)/0.5 = 1.3863 then the system

(3.3.2) becomes asymptotically stable. Here, Figures 3.3(a), 3.4(a) and 3.5(a) shows the

solution of the system (3.3.2) corresponding to τ = 1.6, 3 and 1.3 respectively. Figures

3.3(b),3.4(b) and 3.5(b)shows the attractor graphs of the system (3.3.2) corresponding to

τ = 1.6, 3 and 1.3 respectively. By observing Figures 3.3 and 3.4, it is clear that the zero

solution of the system (3.3.2) is asymptotically stable.

Figure 3.5 shows the system (3.3.2) is unstable at τ = 1.3 (i.e. when τ < 1.3863).

Example 3.3.3. Consider the following control system

ẋ1(t) = x1(t) + x2(t) + x3(t) + u1(t) + e−2τx1(t− τ) + x2
1(t) + x2

2(t)

ẋ2(t) = 2x1(t) + x2(t)− x3(t) + e−2τ sin (x3(t− τ)) + (x1(t)− x2(t))x3(t)

ẋ3(t) = −2x1(t) + x2(t)− 2x3(t) + u3(t) + e−2τx2(t− τ) +
√

2x1(t)x2(t) x3(t)

(3.3.3)

with the initial conditions

x1(t) = 0.1

x2(t) = −0.1

x3(t) = 0.1

 for t ∈ [−τ, 0].
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Figure 3.3: Solution and attractor graphs of the system (3.3.2) at τ = 1.6.
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Figure 3.4: Solution and attractor graphs of the system (3.3.2) at τ = 3.
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Figure 3.5: Solution and attractor graphs of the system (3.3.2) at τ = 1.3.
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The system (3.3.3) can be rewritten in the form of (3.2.16) with

A =


1 1 1

2 1 −1

−2 1 −2

 , f(x(t− τ)) =


e−2τx1(t− τ)

e−2τ sin (x3(t− τ))

e−2τx2(t− τ)

 ,

g(x(t)) =


x2

1(t) + x2
2(t)

(x1(t)− x2(t))x3(t)√
2x1(t)x2(t) x3(t)

 , x(t) =


x1(t)

x2(t)

x3(t)

 , φ(t) =


0.1

−0.1

0.1

 ,

B =


1

0

1

 and u(t) =


u1(t)

u2(t)

u3(t)

 .

Note that the matrices A and B satisfy the rank condition in Theorem 2.1.6.

Let us consider the linear feedback control u(t) = Kx(t). Suppose we choose the feedback

gain matrix K = 0.5
[
−19 −14 1

]
such that the matrix Ã = A + BK has eigenvalues

−2,−3 and −4. Then the system (3.3.3) becomes the controlled system of the form (3.2.17)

with Ã =


−8.5 −6 1.5

2 1 −1

−11.5 −6 −1.5

. From this, λ = min{2, 3, 4} = 2. Now, ‖f(x(t − τ))‖ ≤

e−2τ‖x(t− τ)‖ and

lim
x(t)→0

‖g(x(t)‖
‖x(t)‖

= lim
x(t)→0

√
x2

1(t) + x2
2(t) = 0.

If we choose δ < 0.2, then by (3.2.3), C1 = 0.1414 because ‖g(x(t))‖ =
√

(x2
1(t) + x2

2(t))‖x(t)‖ =

0.1414‖x(t)‖. This implies −λ + C1 = −1.8586 < 0. Hence all the conditions given

in Section 3.2.2 are satisfied for this example except the condition −λ + e−λτ < 0 (or)

τ > −(lnλ)/λ. By the condition −λ + e−λτ < 0, τ is greater than −(ln 2)/2 = −0.3466.

Therefore, for any value of τ > 0 the zero solution of the controlled system of (3.3.3) be-

comes asymptotically stable. For instance, the Figures 3.6 and 3.7 shows the asymptotic

stability of the controlled system of (3.3.3). Here, Figures 3.6(a) and 3.7(a) shows the so-

lutions of the controlled system of (3.3.3) corresponding to τ = 0.1 and τ = 2 respectively.
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Figure 3.6: Solution and attractor graphs of the system (3.3.3) at τ = 0.1.
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Figure 3.7: Solution and attractor graphs of the system (3.3.3) at τ = 2.
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Figures 3.6(b) and 3.7(b) shows the attractor graphs of the controlled system of (3.3.3)

corresponding to τ = 0.1 and τ = 2 respectively.

To compare our proposed theory with the Razumikhin stability theory (see, Theorem

2.1.7), we consider the Lyapunov-Razumikhin function V = xTx. This implies V̇ (t, x(t)) =

ẋT (t)x(t) + xT (t)ẋ(t). From (3.2.1), we obtain

V̇ = xT (t)ATx(t) + fT (x(t− τ))x(t) + gT (x(t))x(t) + xT (t)Ax(t) + xT (t)f(x(t− τ))

+xT (t)g(x(t)).

Taking norm on left hand side of the above equation and using the assumptions in Section

3.2, we get

V̇ (t, x(t)) ≤ 2

(
− λ‖x(t)‖2 + e−λτ‖x(t− τ)‖‖x(t)‖+ C1‖x(t)‖2

)
. (3.3.4)

Since ‖x(t− τ)‖ ≤ supt−τ≤t∗≤t ‖x(t∗)‖, (3.3.4) becomes

V̇ (t, x(t)) ≤ 2
(
− λ+ e−λτ + C1

)
‖x(t)‖2, t > τ. (3.3.5)

By Theorem 2.1.7, the expression −λ+ e−λτ +C1 in (3.3.5) should be less than zero. This

implies τ > (1/λ)(ln(λ−C1)). For the asymptotic stability of the systems given in examples

3.3.1-3.3.3, the minimum value of τ are given in Table 3.1 using Razumikhin technique and

our method.

Table 3.1: Comparison results.

τ minimum τ minimum
using Razumikhin technique through our result

Example 3.3.1 9.4856 8.0472
Example 3.3.2 1.5531 1.3863
Example 3.3.3 0 0
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3.4 Conclusion

In this chapter, the asymptotic stability and stabilizability of a class of nonlinear systems

with fixed delay in the state variable has been studied. A set of sufficient conditions was

developed by assuming conditions on the system parameters such as eigenvalues of the linear

operator, delay parameter and bound on the nonlinear part. Then, three examples were

given to testify the effectiveness of the proposed theory. The Table 3.1 shows the minimum

value of τ for these three examples using Razumikhin technique with function V = xTx

and our proposed theory, respectively. The system given in Example 3.3.1 is asymptotically

stable when τ = 8.1 which can be predicted by our method. But Razumikhin method

predicts stability only for τ > 9.4856. In Example 3.3.2, the system is unstable for τ = 1.3

which is close to the minimum value of delay i.e., 1.3863, whereas by Lyapunov method

minimum value of τ is 1.5531. Hence, Lyapunov method predicts stability at τ = 1.3 which

is not true.
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Chapter 4

Stability of a class of fractional order

bimodal piecewise nonlinear system

This chapter is concerned with the stability analysis of a class of fractional-order bimodal

piecewise nonlinear systems. Firstly, the existence and uniqueness of solutions of this class

of systems is established by assuming continuity of the state variable and Lipschitz conti-

nuity of the nonlinear function with respect to the state variable. Then suitable sufficient

conditions for the asymptotic stability of fractional-order bimodal piecewise nonlinear sys-

tems have been proposed. Finally, two examples with numerical simulations are given to

empirically testify the proposed stability conditions.

4.1 Introduction

In the existing literature, there are many works related to bimodal piecewise linear systems

of the form

ẋ =

 A1x(t) if cTx(t) ≥ 0

A2x(t) if cTx(t) ≤ 0
(4.1.1)

with the initial state x(0) = x0, where x(t) ∈ Rn is the state at time t, A1, A2 are n × n

matrices with real entries and the vector c ∈ Rn.

In this chapter, we consider the following fractional-order bimodal piecewise nonlinear

57
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systems (FOBPNLS),

CDα
t x =

 A1x(t) + f(t, x(t)) if cTx(t) ≥ 0

A2x(t) + f(t, x(t)) if cTx(t) ≤ 0
(4.1.2)

with the initial state x(0) = x0, where x(t) ∈ Rn is the state at time t, f : R × Rn → Rn

is a nonlinear vector function, A1, A2 are n × n matrices with real entries and the vector

c ∈ Rn.

Motivated by the work related to the linear model on oscillatory processes with or

without fractional damping in [5, 14, 42], we consider the following nonlinear mechanical

system with fractional damping to illustrate the application of FOBPNLS (4.1.2).

Figure 4.1: Nonlinear mechanical system with fractional damping

In the mechanical system shown in Fig. 4.1, m1,m2 denote the masses of the left and

right carts respectively. The left end of the cart m1 is connected to a non-linear spring

with the forcing displacement relation k1x1(t) + k2x1(t)3 and a damper with coefficient d1,

respectively. A linear spring with stiffness k3 and a damper with coefficient d2 are connected

between the carts m1 and m2. A one-sided linear spring with stiffness k4 is also connected

with the left end of the cart m2. Let x1(t) and x2(t) be the displacements of the carts m1
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and m2, respectively, from the tip of the leftmost spring. If the force F is applied to the

card m2, then the equations of motion for this system is given by

m1ẍ1 + k1x1 + k2x
3
1 + d1

CD
3
2
t x1 − k3(x2 − x1)− d2

(
CD

3
2
t x2 −C D

3
2
t x1

)
= 0,

m2ẍ2 + k3(x2 − x1) + d2

(
CD

3
2
t x2 −C D

3
2
t x1

)
− k4 max(−x2, 0) = F

or

m1ẍ1 + (d1 + d2) CD
3
2
t x1 − d2

CD
3
2
t x2 + (k1 + k3)x1 − k3x2 = −k2x

3
1

m2ẍ2 − d2
CD

3
2
t x1 + d2

CD
3
2
t x2 − k3x1 + k3x2 − k4 max(−x2, 0) = F

 , (4.1.3)

with the initial conditions x1(0) = x2(0) = ẋ1(0) = ẋ2(0) = 0.

Note that x1 and x2 are differentiable and by considering ẍ1 =C D
4( 1

2)
t x1, ẍ2 =C D

4( 1
2)

t x2

then the pair of fractional differential equations (4.1.3) reduces to the following pair of

sequential fractional differential equations

m1
CD4α

t x1 + (d1 + d2) CD3α
t x1 − d2

CD3α
t x2

+(k1 + k3)x1 − k3x2 = −k2x
3
1

m2
CD4α

t x2 − d2
CD3α

t x1 + d2
CD3α

t x2

−k3x1 + k3x2 − k4 max(−x2, 0) = F


, (4.1.4)

where α = 1
2
, the sequential fractional derivatives CDα

t =C Dα
t and CDlα

t =C Dα
t
CD

(l−1)α
t (l =

2, 3, . . .) (see, fractional derivative properties in Chapter 2).

Taking CDiα
t x1 = zi+1 and CDiα

t x2 = zi+1 (i = 0, 1, 2, 3), equation (4.1.4) can be written
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in the form (4.1.2), where A1 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

− (k1+k3)
m1

0 0 − (d1+d2)
m1

k3
m1

0 0 d2
m1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

k3
m2

0 0 d2
m2

− k3
m2

0 0 − d2
m2



,

A2 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

− (k1+k3)
m1

0 0 − (d1+d2)
m1

k3
m1

0 0 d2
m1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

k3
m2

0 0 d2
m2

− (k3+k4)
m2

0 0 − d2
m2



, f(t, x(t)) =



0

0

0

−k2z
3
1

0

0

0

F



,

c =



0

0

0

0

1

0

0

0



and x =



z1

z2

z3

z4

z1

z2

z3

z4



. The initial conditions x1(0) = x2(0) = ẋ1(0) = ẋ2(0) =

0 implies that x1(t) and x2(t) must be differentiable in [0, t]. Therefore CDiα
t x1(0) =

zi+1(0) =C Diα
t x2(0) = zi+1(0) = 0, (i = 0, 1, 2, 3). This implies x(0) = 0.

We refer [13,90] to know more about sequential fractional differential equations and how

to reduce higher order sequential fractional differential equations with constant coefficients

to system of fractional differential equations with constant coefficients.
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We state the following stability definition for the system (4.1.2) by assuming the system

is well-posed i.e., the system (4.1.2) has a unique solution for the given initial state.

Definition 4.1.1. For the system (4.1.2) with f(t, 0) = 0, the trivial solution x(t) = 0 is

said to be:

• stable if for any given ε > 0 there exists a δ > 0 such that ‖x(0)‖ < δ implies

‖x(t)‖ < ε, t ≥ 0.

• asymptotically stable if it is stable and limt→∞ x(t) = 0.

• unstable if it is not stable.

Here ‖ · ‖ denotes the Euclidean-norm.

4.2 Existence and uniqueness of solution

In this section, we assume without loss of generality the initial state lies in the region

cTx ≥ 0 and then investigate the existence and uniqueness of solution.

We assume the following conditions on the matrices A1 and A2 and the nonlinear func-

tion f .

(A) The right hand side of (4.1.2) is continuous along the hyperplane {x | cTx = 0}, i.e.

cTx = 0 ⇒ A1x = A2x,

(B) f : [0,∞) × Rn → Rn is continuous in the first variable and Lipschitz continuous in

the second variable. That is,

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2|,

where L > 0 is the Lipschitz constant.

Further, throughout this chapter we assumed t0 = 0 as the initial time, t1, t3, t5, . . . are

the time instances when the solution of the system switches from the region cTx ≥ 0 to
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the region cTx ≤ 0 and t2, t4, t6, . . . are the time instances when the solution of the system

switches from the region cTx ≤ 0 to the region cTx ≥ 0 (For instance, see Figure 4.2 for

two-dimensional system. In that the notation x(tj) ≡ (x1(tj), x2(tj)) , j = 0, 1, 2, 3, . . .).

Figure 4.2: Bimodal system

When t ∈ [0, t1] the solution of (4.1.2) is given by (see, [61])

x(t) = Eα,1[A1t
α]x(0) +

∫ t

0

(t− s)α−1Eα,α[A1(t− s)α]f(s, x(s))ds (4.2.1)

When t ∈ [t1, t2] the solution of (4.1.2) is given by

x(t) = Eα,1[A2(t− t1)α]x(t1) +

∫ t

t1

(t− s)α−1Eα,α[A2(t− s)α]f(s, x(s))ds.



63 4.2 Existence and uniqueness of solution

Substituting x(t1) from (4.2.1), we obtain

x(t) = Eα,1[A2(t− t1)α]Eα,1[A1t
α
1 ]x(0)

+Eα,1[A2(t− t1)α]

∫ t1

0

(t1 − s)α−1Eα,α[A1(t1 − s)α]f(s, x(s))ds

+

∫ t

t1

(t− s)α−1Eα,α[A2(t− s)α]f(s, x(s))ds. (4.2.2)

Proceeding in a similar way for the succeeding intervals [ti, ti+1], i = 2, 3, . . ., we can easily

prove the following theorem:

Theorem 4.2.1. For each x0 ∈ Rn with the conditions (A) and (B) there exists a unique

absolutely continuous solution on the interval [0, t2p], (p = 1, 2, 3, . . .) for the system (4.1.2)

given by

x(t) =



z1(t), t ∈ [0, t1], cTx ≥ 0,

z2(t), t ∈ [t1, t2], cTx ≤ 0,

z2i−1(t), t ∈ [t2i−2, t2i−1], cTx ≥ 0,

z2i(t), t ∈ [t2i−1, t2i], cTx ≤ 0,

(4.2.3)

where

z1(t) = Eα,1[A1t
α]x(0) +

∫ t

0

(t− s)α−1Eα,α[A1(t− s)α]f(s, x(s))ds,

z2(t) = Eα,1[A2(t− t1)α]Eα,1[A1t
α
1 ]x(0)

+Eα,1[A2(t− t1)α]

∫ t1

0

(t1 − s)α−1Eα,α[A1(t1 − s)α]f(s, x(s))ds

+

∫ t

t1

(t− s)α−1Eα,α[A2(t− s)α]f(s, x(s))ds,
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z2i−1(t) = Eα,1[A1(t− t2i−2)α]Eα,1[A2(t2i−2 − t2i−3)α] . . . Eα,1[A2(t2 − t1)α]Eα,1[A1t
α
1 ]x(0)

+Eα,1[A1(t− t2i−2)α]Eα,1[A2(t2i−2 − t2i−3)α] . . . Eα,1[A2(t2 − t1)α]

×
∫ t1

0

(t1 − s)α−1Eα,α[A1(t1 − s)α]f(s, x(s))ds

+Eα,1[A1(t− t2i−2)α]Eα,1[A2(t2i−2 − t2i−3)α] . . . Eα,1[A1(t3 − t2)α]

×
∫ t2

t1

(t2 − s)α−1Eα,α[A2(t2 − s)α]f(s, x(s))ds+ · · ·

+Eα,1[A1(t− t2i−2)α]

∫ t2i−2

t2i−3

(t2i−2 − s)α−1Eα,α[A2(t2i−2 − s)α]f(s, x(s))ds

+

∫ t

t2i−2

(t− s)α−1Eα,α[A1(t− s)α]f(s, x(s))ds,

and

z2i(t) = Eα,1[A2(t− t2i−1)α]Eα,1[A1(t2i−1 − t2i−2)α] . . . Eα,1[A2(t2 − t1)α]Eα,1[A1t
α
1 ]x(0)

+Eα,1[A2(t− t2i−1)α]Eα,1[A1(t2i−1 − t2i−2)α] . . . Eα,1[A2(t2 − t1)α]

×
∫ t1

0

(t1 − s)α−1Eα,α[A1(t1 − s)α]f(s, x(s))ds

+Eα,1[A2(t− t2i−1)α]Eα,1[A1(t2i−1 − t2i−2)α] . . . Eα,1[A1(t3 − t2)α]

×
∫ t2

t1

(t2 − s)α−1Eα,α[A2(t2 − s)α]f(s, x(s))ds

+ · · ·+ Eα,1[A2(t− t2i−1)α]

∫ t2i−1

t2i−2

(t2i−1 − s)α−1Eα,α[A1(t2i−1 − s)α]f(s, x(s))ds

+

∫ t

t2i−1

(t− s)α−1Eα,α[A2(t− s)α]f(s, x(s))ds,

for all i = 2, 3, . . ..

4.3 Stability of FOBPNLS

The Theorem (2.2.3) gives sufficient condition for the asymptotic stability of usual

fractional-order system (2.2.1) with 0 < α ≤ 1. In this section, we propose the follow-

ing conditions for the asymptotic stability for system (4.1.2):

Suppose that the assumption (A) and (B) hold and ‖x(0)‖ < δ (δ > 0 is sufficiently

small). Furthermore,
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1. | arg (λi(A1))| > απ/2 and | arg (λ̃i(A2))| > απ/2, where λi, λ̃i(i = 1, 2, . . . , n) denotes

the eigenvalues of matrices A1 and A2 respectively,

2. αm > 1, where m = min{‖A1‖, ‖A2‖},

3. the nonlinear function f satisfies the condition limx(t)→0 (‖f(t, x(t))‖/‖x(t)‖) = 0.

Then, the zero solution of the nonlinear system (4.1.2) is asymptotically stable.

In the following section, we empirically validate the efficiency of the above conditions.

A rigourous proof is open for research.

4.4 Numerical results

In this section, we plot all the figures using Matlab with the predictor-corrector method [33].

Example 4.4.1. 2-dimensional FOBPNLS:

Consider the FOBPNLS (4.1.2) with x(t) =

 x1(t)

x2(t)

, c =

 −1

1

 and f(t, x(t)) =

 x1(t)x2(t)

x2
2(t)

. Here, the nonlinear function f(t, x(t)) satisfies the condition

lim
x(t)→0

(
‖f(t, x(t))‖
‖x(t)‖

)
= lim

x1(t),x2(t)→0

(
|x2(t)|

√
x1(t)2 + x2(t)2√

x1(t)2 + x2(t)2

)
= 0.

In the following we give four pair of matrices A1 and A2 and different fractional-orders

α to test the validity of the stability conditions given in Section 4.3:

(i) A1 =

 −3 2

−1 −2

, A2 =

 −1 0

1 −4

 and α = 0.7,

(ii) A1 =

 −3 2

−1 −2

, A2 =

 −1 0

1 −4

 and α = 0.15,

(iii) A1 =

 10 −6

2 −1

, A2 =

 −1 5

5 −4

 and α = 0.95,
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(iv) A1 =

 −4 5

−1 −2

, A2 =

 −3 4

1 −4

 and α = 0.85.
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Table 4.1: Efficiency of stability conditions.

(i) (ii) (iii) (iv)

eigenvalues of A1 −2.5± 1.3229i −2.5± 1.3229i 8.772, 0.228 −3± 2i

eigenvalues of A2 −4,−1 −4,−1 −7.7202, 2.7202 −1.4384,−5.5616

| arg(λ1(A1))|, | arg(λ2(A1))| 2.6549 > 1.1 2.6549 > 0.3926 0 6> 1.4922 2.5536 > 1.3352

| arg(λ1(A2))|, | arg(λ2(A2))| π > 1.1 π > 0.3926 0 6> 1.4922, π > 1.4922 π > 1.3352

m = min{‖A1‖, ‖A2‖} 3.6226 3.6226 7.7202 6.3574

αm 2.5358 > 1 0.5433 6> 1 7.3341 > 1 5.4038 > 1

nature of stability stable not stable not stable stable
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It can be seen that the conditions (A) and (B) given in Section 4.2 and conditions 1-3

given in Section 4.3 are satisfied.

Figures 4.3–4.6 show the solution and attractor graphs for the systems (i)–(iv) respec-

tively with initial condition

 0.04

0.06

 and establish that the zero solution of the systems (i)

and (iv) are asymptotically stable and the zero solution of the systems (ii) and (iii) are

unstable.

Example 4.4.2. Consider the system (4.1.3) with masses m1 = m2 = 1 Kg, the spring

constants k1 = k4 = 2 N/m, k2 = 0.1 N/m, k3 = 3 N/m, the damping co-efficients d1 = 1

N-s/m, d2 = 2 N-s/m and the force F = 0 N then (4.1.4) becomes

CD4α
t x1 + 3 CD3α

t x1 − 2 CD3α
t x2 + 5x1 − 3x2 = −0.1x3

1

CD4α
t x2 − 2 CD3α

t x1 + 2 CD3α
t x2 − 3x1 + 3x2 − 2 max(−x2, 0) = 0

 , (4.4.1)

where α = 1
2
. Now, (4.4.1) can be written in the form of (4.1.2) with the initial condition

x(0) = 0, where

A1 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−5 0 0 −3 3 0 0 2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3 0 0 2 −3 0 0 −2



, A2 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−5 0 0 −3 3 0 0 2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3 0 0 2 −5 0 0 −2



,
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Figure 4.3: Solution and attractor graphs for (i).
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Figure 4.4: Solution and attractor graphs for (ii).
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Figure 4.5: Solution and attractor graphs for (iii).
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Figure 4.6: Solution and attractor graphs for (iv).
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c =



0

0

0

0

1

0

0

0



, x =



z1

z2

z3

z4

z1

z2

z3

z4



and f(t, x(t)) =



0

0

0

−0.1z3
1

0

0

0

0



. The eigenvalues of A1 are

{−4.4821,−1.2976,−0.8005 ± 0.6603i, 0.6121 ± 0.9256i, 0.5782 ± 0.6661i} and the eigen-

values of A2 are {−4.4732,−1.3424,−0.9693± 0.8316i, 0.6484± 0.9363i, 0.7287± 0.8535i}.

Now,

| arg(−4.4821)| = 3.1416 > α
π

2
= 0.7854

| arg(−1.2976)| = 3.1416 > α
π

2
= 0.7854

| arg(−0.8005± 0.6603i)| = 2.4519 > 0.7854

| arg(0.6121± 0.9256i)| = 0.9865 > 0.7854

| arg(0.5782± 0.6661i)| = 0.8559 > 0.7854

| arg(−4.4732)| = 3.1416 > 0.7854

| arg(−1.3424)| = 3.1416 > 0.7854

| arg(−0.9693± 0.8316i)| = 2.4325 > 0.7854

| arg(0.6484± 0.9363i)| = 0.9651 > 0.7854

| arg(0.7287± 0.8535i)| = 0.8641 > 0.7854

and m = min{‖A1‖, ‖A2‖} = min{8.5074, 9.2100} = 8.5074 > 1. Here, the function

f(t, x(t)) satisfies the condition

lim
x(t)→0

0.1z3
1√

4∑
i=1

(z2
i + z2

1)

= 0.
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Therefore, using stability conditions given in Section 4.3 the non-linear system (4.4.1) is

asymptotically stable.

4.5 Conclusion

In this chapter, a class of fractional-order bimodal piecewise nonlinear systems is consid-

ered. Firstly, the existence and uniqueness of solution for this class of systems has been

established by assuming continuity of the state variable and Lipschitz continuity of the

nonlinear function with respect to the state variable. Furthermore, a set of sufficient con-

ditions for the stability of the systems has been proposed. Then numerically validate the

efficiency of these conditions through some examples.



Chapter 5

Sensitivity analysis of nonlinear

fractional order control systems with

delay

In this chapter, we consider a class of nonlinear fractional order control system with delay

in state variable. Existence and uniqueness of solution is shown by using method of steps.

The sensitivity of the state and control with respect to the parameters of the system is

shown. Finally, analytical results are substantiated by numerical examples.

[The content of this chapter was published in International Journal of Computer Math-

ematics 93(1): 160–178, 2016]

5.1 Introduction

In [92], Morgado et al. studied the existence and uniqueness of solution of a linear fractional

order differential equation with delay by using method of steps and also studied dependence

of the solution on the parameters of the equation. To the best of our knowledge sensitivity

analysis of solution of nonlinear fractional order control system with delay in state variable

is not available in the literature so far.

In this chapter, we extend the analysis and numerical methods of linear fractional order

differential equations with delay presented in [92] to a class of nonlinear fractional order

75
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control system. For that, we consider the following nonlinear fractional order control system

with finite delay τ > 0:

CDαy(t) = ay(t) + bu(t) + f(t, y(t− τ)) ; 0 < t ≤ T (5.1.1)

y(t) = φ(t), t ∈ [−τ, 0] and y(T ) = yT (5.1.2)

where a and b are scalar constants, f : [0, T ] × R → R is a nonlinear function which

is Lipschitz continuous in second variable, the initial function φ is continuous on [−τ, 0],

u(t), 0 ≤ t ≤ T is the control variable which drives given system from φ(0) to yT and CDα

is the Caputo derivative of order α, 0 < α < 1.

5.2 Existence and uniqueness of solution

In what follows we assume the following condition on the nonlinear function f .

(A) f : [0, T ]× R→ R is continuous in the first variable and Lipschitz continuous in the

second variable. That is,

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|,

where L is the Lipschitz constant.

Our aim is to prove the existence and uniqueness of solution of (5.1.1)-(5.1.2) and find

a control u(t) suitably. Let y1, y2, . . . , yk be arbitrary real numbers, T ∈ [kτ, (k + 1)τ ];

y(iτ) = yi, i = 1, 2, . . . , k.

First consider the interval 0 ≤ t ≤ τ . Let us assume y(τ) = y1. Here, since y(t − τ) =

φ(t− τ), (5.1.1) becomes

CDαy(t) = ay(t) + bu1(t) + gτ (t, y(t− τ)), 0 < t ≤ τ,

where gτ (t, y(t − τ)) = f(t, φ(t − τ)). Since f is Lipschitz continuous, gτ is continuous

function of t, for a given control function u1(t) there exists a unique solution for (5.1.1) in
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the interval [0, τ ]. Its solution is of the form [21,61],

yτ (t) = Eα(atα)φ(0) +

t∫
0

(t− s)α−1Eα,α(a(t− s)α)[bu1(s) + f(s, φ(s− τ))]ds. (5.2.1)

Now, if we take the control

u1(t) = −(τ − t)1−αbEα,α[a(τ − t)α]Q−1
τ

[
− y1 + Eα[aτα]φ(0) +

τ∫
0

(τ − s)α−1

×Eα,α[a(τ − s)α]f(s, φ(s− τ))ds

]
, (5.2.2)

where Qτ = b2
τ∫
0

[
Eα,α[a(τ − s)α]

]2
ds, then the system is drives from φ(0) to y1.

Hence in the interval [0, τ ], the solution of (5.1.1)-(5.1.2) exists and is unique.

Now, in the interval [0, 2τ ], let us assume y(2τ) = y2. The equation (5.1.1) may be

written as

CDαy(t) = ay(t) + bu2τ (t) + g2τ (t, y(t− τ)), 0 < t ≤ 2τ,

where

g2τ (t, y(t− τ)) =

 f(t, φ(t− τ)), 0 < t ≤ τ

f(t, yτ (t− τ)), τ < t ≤ 2τ

and the control

u2τ (t) =

 u1(t), 0 ≤ t ≤ τ

u2(t), τ ≤ t ≤ 2τ
.

Then, the solution of (5.1.1) in the interval [0, 2τ ] is given by

y(t) =

 yτ (t), 0 ≤ t ≤ τ

y2τ (t), τ ≤ t ≤ 2τ
(5.2.3)

where y2τ (t) = Eα[a(t− τ)α]y1 +
t∫
τ

(t− s)α−1Eα,α(a(t− s)α)[bu2(s) +f(s, yτ (s− τ))]ds, τ ≤

t ≤ 2τ and yτ (t) is given by (5.2.1).
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If we take

u2(t) = −(2τ − t)1−αbEα,α[a(2τ − t)α]Q−1
2τ

[
− y2 + Eα[aτα]y1 +

2τ∫
τ

(2τ − s)α−1

×Eα,α[a(2τ − s)α]f(s, yτ (s− τ))ds

]
, (5.2.4)

where Q2τ = b2
2τ∫
τ

[
Eα,α[a(2τ − s)α]

]2
ds and u1(t) is as given in (5.2.2), then the system

reaches the point y2 at t = 2τ . Thus the control u2τ (t) drives the given system from φ(0)

to y2.

Proceeding in a similar way we can easily prove the following theorem:

Theorem 5.2.1. Let y0τ (t) = φ(t) and let k be the greatest positive integer such that kτ ≤ T

and let

gkτ (t, y(t− τ)) =



f(t, y0τ (t− τ)), 0 < t ≤ τ

f(t, yτ (t− τ)), τ < t ≤ 2τ
...

f(t, y(k−1)τ (t− τ)), (k − 1)τ < t ≤ kτ

(5.2.5)

be continuous.

Then, there exists a unique solution on the interval [0, T ] for the control system (5.1.1)-

(5.1.2) with y(iτ) = yi given by

y(t) =

 yiτ (t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . k,

yT (t), t ∈ [kτ, T ]

where

yiτ (t) = Eα[a(t− (i− 1)τ)α]yi−1 +

t∫
(i−1)τ

(t− s)α−1Eα,α(a(t− s)α)[bui(s)

+giτ (s, y(s− τ))]ds, t ∈ [(i− 1)τ, iτ ],

yT (t) = Eα[a(t− kτ)α]yk +

t∫
kτ

(t− s)α−1Eα,α(a(t− s)α)[buT (s) + f(s, yk(s− τ))]ds, t ∈ [kτ, T ]
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and the control function is given by

ui(t) = −(iτ − t)1−αbEα,α[a(iτ − t)α]Q−1
iτ

[
− yi + Eα[aτα]yi−1 +

iτ∫
(i−1)τ

(iτ − s)α−1

×Eα,α[a(iτ − s)α]f(s, y(i−1)τ (s− τ))ds

]
, i = 1, 2, . . . , k,

uT (t) = −(T − t)1−αbEα,α[a(T − t)α]Q−1
T

[
− yT + Eα[a(T − kτ)α]yk +

T∫
kτ

(T − s)α−1

×Eα,α[a(T − s)α]f(s, ykτ (s− τ))ds

]
,

where the modified controllability Grammian are defined by Qiτ = b2
iτ∫

(i−1)τ

[
Eα,α[a(iτ −

s)α]
]2

ds and QT = b2
T∫
kτ

[
Eα,α[a(T − s)α]

]2
ds,

for all i = 1, 2, . . . , k.

5.3 Sensitivity of the solution

5.3.1 Dependence of solution on small perturbation of φ

Let y(t) be the unique solution of the control system (5.1.1)-(5.1.2) and z(t) be the solution

of

CDαz(t) = az(t) + bũ(t) + f(t, z(t− τ)), 0 < t ≤ T (5.3.1)

z(t) = φ̃(t), t ∈ [−τ, 0], z(T ) = yT (5.3.2)

where φ̃ is also continuous on [−τ, 0]. Assume that

‖φ− φ̃‖ = max
−τ≤t≤0

|φ(t)− φ̃(t)| ≤ ε, (5.3.3)

for some ε > 0.

Now the dependence of |y(t)− z(t)| on ‖φ− φ̃‖ is stated in the following theorem.
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Theorem 5.3.1. Let us assume that there exists a unique solution y(t) and z(t) for the

systems (5.1.1)-(5.1.2) and (5.3.1)-(5.3.2), respectively on the interval [0, T ]. Assume that

(5.3.3) holds. Then, we have

|y(t)− z(t)| ≤ εAkEα[|a|(kτ)α], t ∈ [(k − 1)τ, kτ ], (5.3.4)

and

|y(t)− z(t)| ≤ εHEα[|a|Tα], t ∈ [kτ, T ], (5.3.5)

where A0 = 1,

Ak = 1 +
1

Γ(α + 1)

k−1∑
j=0

{
[(k − j)τ ]α

[
|b|2Pj+1 + LAjEα[|a|(jτ)α]

]}
, (5.3.6)

Pm = (mτ)1−αEα,α[|a|(mτ)α]Q−1
mτAm−1Eα[|a|((m− 1)τ)α]L

×
mτ∫

(m−1)τ

(mτ − s1)α−1Eα,α[|a|(mτ − s1)α]ds1 (5.3.7)

and

H = 1 +
1

Γ(α + 1)

k∑
j=1

Tα
{
|b|2Pj + LAj−1Eα[|a|((j − 1)τ)α]

}
+
TαLAkEα[|a|(kτ)α]

Γ(α + 1)

×
[
|b|2T 1−αEα,α[|a|Tα]Q−1

T

T∫
kτ

(T − s1)α−1Eα,α[|a|(T − s1)α]ds1 + 1

]
(5.3.8)

for all k = 1, 2, 3, . . ., and m = 1, 2, 3, . . . , k.

Proof. Taking fractional integral Iαt on both sides of (5.1.1) and (5.3.1), we get

y(t)− z(t) = φ(0)− φ̃(0) +
a

Γ(α)

t∫
0

(t− s)α−1(y(s)− z(s))ds+
b

Γ(α)

t∫
0

(t− s)α−1

×[u(s)− ũ(s)]ds+
1

Γ(α)

t∫
0

(t− s)α−1[f(s, y(s− τ))− f(s, z(s− τ))]ds,
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|y(t)− z(t)| ≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|

Γ(α)

t∫
0

(t− s)α−1

×|u(s)− ũ(s)|ds+
1

Γ(α)

t∫
0

(t− s)α−1 [L|y(s− τ)− z(s− τ)|] ds,(5.3.9)

where L is a Lipschitz constant as in assumption (A).

We use induction on k to prove this theorem.

Let k = 1 and t ∈ [0, τ ]. From Theorem 5.2.1, the control for the system (5.3.1)-(5.3.2)

is given by

ũ1(t) = −(τ − t)1−αbEα,α[a(τ − t)α]Q−1
τ

[
− y1 + Eα[aτα]φ̃(0)

+

τ∫
0

(τ − s)α−1Eα,α[a(τ − s)α]f(s, φ̃(s− τ))ds

]
,

where Qτ = b2
τ∫
0

[
Eα,α[a(τ − s)α]

]2
ds. Now,

|u1(t)− ũ1(t)| ≤ τ 1−α|b|Eα,α[|a|τα]Q−1
τ

[
Eα[|a|τα]ε

+Lε

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds

]
= ε|b|P1,

where

P1 = τ 1−αEα,α[|a|τα]Q−1
τ

[
Eα[|a|τα] + L

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds

]
.
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Then from (5.3.9), we have

|y(t)− z(t)| ≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|

Γ(α)

t∫
0

(t− s)α−1

×|u1(s)− ũ1(s)|ds+
1

Γ(α)

t∫
0

(s− τ)α−1
[
L|φ(s− τ)− φ̃(s− τ)|

]
ds

≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|2

Γ(α)
εP1

t∫
0

(t− s)α−1ds

+
L

Γ(α)
max
s∈[0,t]

|φ(s− τ)− φ̃(s− τ)|
∫ t

0

(t− s)α−1ds

≤ ‖φ− φ̃‖+
|b|2

Γ(α)
εP1

tα

α
+

L

Γ(α)
‖φ− φ̃‖t

α

α
+
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds

≤ εA1 +
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds.

By Gronwall inequality for fractional integral [34], we get

|y(t)− z(t)| ≤ A1Eα[|a|τα]ε, t ∈ [0, τ ],

where A1 = 1 +
|b|2P1τ

α

Γ(α + 1)
+

Lτα

Γ(α + 1)
. Therefore, (5.3.4) holds for k = 1.

Now we assume that (5.3.4) holds for (k − 1). So if t ∈ [(k − 2)τ, (k − 1)τ ], then the

following inequality is satisfied:

|y(t)− z(t)| ≤ εAk−1Eα[|a|((k − 1)τ)α], (5.3.10)
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with Ak−1 = 1 +
1

Γ(α + 1)

k−2∑
j=0

{
((k − 1− j)τ)α

[
|b|2Pj+1 + LAjEα[|a|(jτ)α]

]}
, where

Pj+1 = ((j + 1)τ)1−αEα,α[|a|((j + 1)τ)α]Q−1
(j+1)τAjEα[|a|(jτ)α]L

(j+1)τ∫
jτ

((j + 1)τ − s1)α−1

×Eα,α[|a|((j + 1)τ − s1)α]ds1.

Now, we prove that it will also be valid for k.

When t ∈ [(k − 1)τ, kτ ], k ≥ 2, the control for the system (5.3.1)-(5.3.2) is

ũk(t) = −(kτ − t)1−αbEα,α[a(kτ − t)α]Q−1
kτ

[
− yk + Eα[aτα]yk−1 +

kτ∫
(k−1)τ

(kτ − s)α−1

×Eα,α[a(kτ − s)α]f(s, yk−1(s− τ))ds

]
,

where Qkτ = b2
kτ∫

(k−1)τ

[
Eα,α[a(kτ − s)α]

]2
ds. Now,

|uk(t)− ũk(t)| ≤ (kτ)1−α|b|Eα,α[|a|(kτ)α]Q−1
kτ LεAk−1Eα[|a|((k − 1)τ)α]

×
kτ∫

(k−1)τ

(kτ − s)α−1Eα,α[|a|(kτ − s)α]ds

= ε|b|Pk,

where Pk is given in (5.3.7) when m = k.
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From (5.3.9), we have

|y(t)− z(t)| ≤ |φ(0)− φ̃(0)|+ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds

+
|b|

Γ(α)

k−1∑
j=1

jτ∫
(j−1)τ

(t− s)α−1|uj(s)− ũj(s)|ds

+
|b|

Γ(α)

t∫
(k−1)τ

(t− s)α−1|uk(s)− ũk(s)|ds

+
L

Γ(α)

k−1∑
j=1

jτ∫
(j−1)τ

(t− s)α−1|y(s− τ)− z(s− τ)|ds

+
L

Γ(α)

t∫
(k−1)τ

(t− s)α−1|y(s− τ)− z(s− τ)|ds.

Therefore,

|y(t)− z(t)| ≤ ε+
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds

+
|b|2ε
Γ(α)

k−1∑
j=1

{
(jτ)1−αEα,α[a(jτ)α]Q−1

jτ LAj−1Eα[|a|((j − 1)τ)α]

×
jτ∫

(j−1)τ

(jτ − s1)α−1Eα,α[|a|(jτ − s1)α]ds1

jτ∫
(j−1)τ

(t− s)α−1ds

}

+
|b|2ε
Γ(α)

(kτ)1−αEα,α[|a|(kτ)α]Q−1
kτ LAk−1Eα[|a|((k − 1)τ)α]

×
kτ∫

(k−1)τ

(kτ − s1)α−1Eα,α[|a|(kτ − s1)α]ds1

t∫
(k−1)τ

(t− s)α−1ds

+
L

Γ(α)

k−1∑
j=1

max
s∈[(j−1)τ,jτ ]

|y(s− τ)− z(s− τ)|
jτ∫

(j−1)τ

(t− s)α−1ds

+
L

Γ(α)
max

s∈[(k−1)τ,kτ ]
|y(s− τ)− z(s− τ)|

t∫
(k−1)τ

(t− s)α−1ds.
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Now, using (5.3.10),

|y(t)− z(t)| ≤ ε

{
1 +

|b|2

Γ(α + 1)

k−2∑
i=0

[
((i+ 1)τ)1−αEα,α[a((i+ 1)τ)α]Q−1

(i+1)τLAiEα[|a|(iτ)α]

×
(i+1)τ∫
iτ

((i+ 1)τ − s1)α−1Eα,α[|a|((i+ 1)τ − s1)α]ds1[(k − i)τ ]α
]

+
|b|2

Γ(α + 1)

×(kτ)1−αEα,α[|a|(kτ)α]Q−1
kτ LAk−1Eα[|a|((k − 1)τ)α]

kτ∫
(k−1)τ

(kτ − s1)α−1

×Eα,α[|a|(kτ − s1)α]ds1τ
α +

L

Γ(α + 1)

k−2∑
i=0

AiEα[|a|(iτ)α]((k − i)τ)α

+
L

Γ(α + 1)
Ak−1Eα[|a|((k − 1)τ)α]τα

}
+
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds.

Thus,

|y(t)− z(t)| ≤ ε

{
1 +

1

Γ(α + 1)

k−1∑
j=0

[
|b|2Pj+1 + LAjEα[|a|(jτ)α][(k − j)τ ]α

]}

+
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds

= εAk +
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds.

From this, (5.3.4) follows by a Gronwall inequality [34].

Now, whenever t ∈ [kτ, T ] the control for the system (5.3.1)-(5.3.2) is

ũT (t) = −(T − t)1−αbEα,α[a(T − t)α]Q−1
T

[
− yT + Eα[a(T − kτ)α]yk +

T∫
(k)τ

(T − s)α−1

×Eα,α[a(T − s)α]f(s, yk(s− τ))ds

]
,



Chapter 5: Sensitivity analysis of nonlinear fractional order control systems with delay 86

where QT = b2
T∫
kτ

[
Eα,α[a(T − s)α]

]2
ds. Now,

|uT (t)− ũT (t)| ≤ T 1−α|b|Eα,α[|a|Tα]Q−1
T LεAkEα[|a|(kτ)α]

×
T∫

kτ

(T − s)α−1Eα,α[|a|(T − s)α]ds.

From (5.3.9) and the steps similar to the above we obtain

|y(t)− z(t)| ≤ εH +
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds,

where H is given by (5.3.8) and the result follows by the Gronwall inequality.

5.3.2 Dependence of solution on small perturbation of f

Let us consider the function f on the right-hand side of (5.1.1) has small perturbation.

Assume that y(t) is the solution of the problem (5.1.1)-(5.1.2) and z(t) is the solution of

problem

CDαz(t) = az(t) + b
≈
u (t) + f̃(t, z(t− τ)), 0 < t ≤ T (5.3.11)

z(t) = φ(t), t ∈ [−τ, 0]. (5.3.12)

Let the functions f and f̃ satisfy a Lipschitz condition (assumption (A)) and the assump-

tion:

(B) ‖f(t, z(t− τ))− f̃(t, z(t− τ)‖ = max
t∈[0,T ]

|f(t, z(t− τ))− f̃(t, z(t− τ)| ≤ ε1,

where ε1 > 0 is very small.

From (5.1.1)-(5.1.2) and (5.3.11)-(5.3.12)

CDα[y(t)− z(t)] = a[y(t)− z(t)] + b[u(t)− ≈u (t)] + f(t, y(t− τ))− f̃(t, z(t− τ)).(5.3.13)



87 5.3 Sensitivity of the solution

Taking Riemann-Liouville’s fractional integral of order α on both sides of (5.3.13), we get

[see for example, proof of Theorem 3.4 in [33]],

|y(t)− z(t)| =

∣∣∣∣ a

Γ(α)

t∫
0

(t− s)α−1[y(s)− z(s)]ds+
b

Γ(α)

t∫
0

(t− s)α−1[u(s)− ≈u (s)]ds

+
1

Γ(α)

t∫
0

(t− s)α−1
[
f(s, y(s− τ))− f(s, z(s− τ))

+f(s, z(s− τ))− f̃(s, z(s− τ))
]
ds

∣∣∣∣
≤ |a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|

Γ(α)

t∫
0

(t− s)α−1|u(s)− ≈u (s)|ds

+
1

Γ(α)

t∫
0

(t− s)α−1|f(s, y(s− τ))− f(s, z(s− τ))|ds

+
1

Γ(α)

t∫
0

(t− s)α−1|f(t, z(t− τ))− f̃(t, z(t− τ))|ds. (5.3.14)

When t ∈ [0, τ ], the control for the system (5.3.11)-(5.3.12) is

≈
u1 (t) = −(τ − t)1−αbEα,α[a(τ − t)α]Q−1

τ

[
− y1 + Eα[aτα]φ(0) +

τ∫
0

(τ − s)α−1

×Eα,α[a(τ − s)α]f̃(s, φ(s− τ))ds

]
,

where Qτ = b2
τ∫
0

[
Eα,α[a(τ − s)α]

]2
ds. Now,

|u1(t)− ≈u1 (t)| ≤ ε1τ
1−α|b|Eα,α[|a|τα]Q−1

τ

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds.(5.3.15)
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From (5.3.14), we have

|y(t)− z(t)| ≤ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|

Γ(α)

t∫
0

(t− s)α−1|u1(s)− ≈u1 (s)|ds

+
L

Γ(α)

t∫
0

(t− s)α−1|φ(s− τ)− φ(s− τ)|ds+
ε1τ

α

Γ(α + 1)

≤ ε1τ
α

Γ(α + 1)

[
1 + |b|2τ 1−αEα,α[|a|τα]Q−1

τ

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds

]

+
|a|

Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds.

Using Gronwall inequality for fractional integral [34], we have

|y(t)− z(t)| ≤ ε1M1Eα [|a|τα] , (5.3.16)

where M1 = τα

Γ(α+1)

[
1 + |b|2τ 1−αEα,α[|a|τα]Q−1

τ

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds

]
.

When t ∈ [τ, 2τ ], from Theorem 5.2.1 the control for the system (5.3.11)-(5.3.12) is

≈
u2 (t) = −(2τ − t)1−αbEα,α[a(2τ − t)α]Q−1

2τ

[
− y2 + Eα[aτα]y1 +

2τ∫
τ

(2τ − s)α−1

×Eα,α[a(2τ − s)α]f̃(s, y(s− τ))ds

]
,

where Q2τ = b2
2τ∫
τ

[
Eα,α[a(2τ − s)α]

]2
ds. Now,

|u2(t)− ≈u2 (t)| ≤ ε1(2τ)1−α|b|Eα,α[|a|(2τ)α]Q−1
2τ

[
LM1Eα[|a|τα] + 1

]
×

2τ∫
τ

(2τ − s)α−1Eα,α[|a|(2τ − s)α]ds. (5.3.17)
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From (5.3.14), we have

|y(t)− z(t)| ≤ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|

Γ(α)

{ τ∫
0

(t− s)α−1|u1(s)− ≈u1 (s)|ds

+

t∫
τ

(t− s)α−1|u2(s)− ≈u2 (s)|ds
}

+
L

Γ(α)

{ τ∫
0

(t− s)α−1|φ(s− τ)− φ(s− τ)|ds

+

t∫
τ

(t− s)α−1|y(s− τ)− z(s− τ)|ds
}

+
ε1

Γ(α)

t∫
0

(t− s)α−1ds. (5.3.18)

Substituting (5.3.16), (5.3.15) and (5.3.17) in (5.3.18), we get

|y(t)− z(t)| ≤ |a|
Γ(α)

t∫
0

(t− s)α−1|y(s)− z(s)|ds+
|b|2ε1

Γ(α + 1)

{
τ 1−αEα,α[aτα]Q−1

τ

×
τ∫

0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds× (2τ)α + (2τ)1−αEα,α[|a|(2τ)α]Q−1
2τ

×
[
1 + LM1Eα[|a|τα]

] 2τ∫
τ

(2τ − s)α−1Eα,α[|a|(2τ − s)α]ds× τα
}

+
L

Γ(α + 1)
ε1τ

αM1Eα[|a|τα] +
ε1(2τ)α

Γ(α + 1)
.

Using Gronwall inequality for fractional integral, we get

|y(t)− z(t)| ≤ ε1M2Eα[|a|(2τ)α],
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where

M2 =
|b|2

Γ(α + 1)

{
2ατEα,α[aτα]Q−1

τ

τ∫
0

(τ − s)α−1Eα,α[|a|(τ − s)α]ds+ 21−ατEα,α[|a|(2τ)α]

×Q−1
2τ

[
1 + LM1Eα[|a|τα]

] 2τ∫
τ

(2τ − s)α−1Eα,α[|a|(2τ − s)α]ds

}

+
L

Γ(α + 1)
ταM1Eα[|a|τα] +

(2τ)α

Γ(α + 1)
.

Similarly using (5.3.14), one can conclude the following theorem in the successive inter-

vals [iτ, (i+ 1)τ ], i = 2, 3, . . ..

Theorem 5.3.2. Assume that y(t) is the solution of problem (5.1.1)-(5.1.2) and z(t) is the

solution of the problem (5.3.11)-(5.3.12) on the interval [0, T ]. Let f and f̃ satisfy Lipschitz

condition in the second variable. Then, on each intervals [(k − 1)τ, kτ ] and [kτ, T ], k =

1, 2, 3, . . ., both solutions exist and

‖y − z‖[(k−1)τ,kτ ] ≤ ε1K1Eα[|a|((k − 1)τ)α],

‖y − z‖[kτ,T ] ≤ ε1K2Eα[|a|(kτ)α],

where K1 and K2 are suitable constants which dependents on L, k and α.

5.4 Numerical results

In this section, we plot all the figures using Microcal Origin 6.0 and for computing Mittag-

Leffler function Podlubny’s MATLAB algorithm has been used.

Example. Consider the fractional order delay differential control system

CD0.85y(t) =
2y(t− 2)

1 + y(t− 2)9.65
− y(t) + u(t), (5.4.1)

y(t) = 0.5, t ∈ [−2, 0] and y(2) = 1. (5.4.2)
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Using (5.2.1), the analytical solution of (5.4.1)-(5.4.2) in the interval t ∈ [0, 2] is

y(t) =
1

2
E0.85[−t0.85] +

t∫
0

(t− s)−0.15E0.85,0.85[−(t− s)0.85]

[
u(s) +

1

1 + (0.5)9.65

]
ds,(5.4.3)

where the control

u(t) = −(2− t)0.15E0.85,0.85[−(2− t)0.85]Q−1
2

[
− 1 + 0.5E0.85[−20.85]

+
1

1 + (0.5)9.65

2∫
0

(2− s)−0.15E0.85,0.85[−(2− s)0.85]ds

]
(5.4.4)

and Q2 =
2∫
0

[
E0.85,0.85[−(2− s)0.85]

]2

ds.

Let y(t) be the solution of the control system (5.4.1)-(5.4.2) in the interval [0, 2] and

z(t) be the solution of the control system

CD0.85z(t) =
2z(t− 2)

1 + z(t− 2)9.65
− z(t) + ũ(t), (5.4.5)

z(t) = 0.5(1 + ε), t ∈ [−2, 0] and z(2) = 1. (5.4.6)

Using (5.2.1), the analytical solution of (5.4.5)-(5.4.6) in the interval [0, 2] is

z(t) =
(1 + ε)

2
E0.85[−t0.85] +

t∫
0

(t− s)−0.15E0.85,0.85[−(t− s)0.85]

×
[
ũ(s) +

(1 + ε)

1 + (0.5(1 + ε))9.65

]
ds, (5.4.7)
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where the control

ũ(t) = −(2− t)0.15E0.85,0.85[−(2− t)0.85]Q−1
2

[
− 1 +

(1 + ε)

2
E0.85[−20.85]

+
(1 + ε)

1 + (0.5(1 + ε))9.65

2∫
0

(2− s)−0.15E0.85,0.85[−(2− s)0.85]ds

]

= −3.17581

[
− 1 + 0.202714

(
1 + ε

2

)
+

0.797286(1 + ε)

1 + (0.5(1 + ε))9.65

]
×(2− t)0.15E0.85,0.85[−(2− t)0.85] (5.4.8)

and Q2 =
2∫
0

[
E0.85,0.85[−(2 − s)0.85]

]2

ds = 0.31488. Here the numerical solution of ũ(t)

is computed using MATLAB. In Table 5.1 the numerical values of the control ũ(t) in the

interval [0, 2] for different values of ε in (5.4.8) is given with step size h = 0.1. In Figure

5.1(a), the control ũ(t) in the interval [0, 2] for different values of ε in (5.4.5)-(5.4.6) are

given. In Figure 5.1(b), the error between control of (5.4.1)-(5.4.2) (given in (5.4.4)) and

the control of (5.4.5)-(5.4.6) (given in (5.4.8)) for different values of ε are presented.

Using MATLAB with the algorithm in Appendix A, we compute the numerical solution

z(t) in (5.4.7) in the interval [0, 2] for different values of ε with step size h = 0.1 (see Table

5.2). Figure 5.2(a) shows the solution z(t) of (5.4.5)-(5.4.6) in [0, 2] for different values of

ε. Figure 5.2(b) shows error between solution of (5.4.1)-(5.4.2) and the solution of (5.4.5)-

(5.4.6) for different values of ε. To verify results of Theorem 5.3.1, in Table 5.3 we give the

maximum absolute error between solutions of problems (5.4.1)-(5.4.2) and (5.4.5)-(5.4.6) in

the interval [0, 2] for different values of ε.

Now, let z(t) be the solution of the control system

CD0.85z(t) =
2(1 + ζ)z(t− 2)

1 + z(t− 2)9.65
− z(t)+

≈
u (t), (5.4.9)

z(t) = 0.5, t ∈ [−2, 0] and z(2) = 1. (5.4.10)

Using (5.2.1), the analytical solution of (5.4.9)-(5.4.10) in the interval [0, 2] is

z(t) =
1

2
E0.85[−t0.85] +

t∫
0

(t− s)−0.15E0.85,0.85[−(t− s)0.85]

[
≈
u (s) +

(1 + ζ)

1 + (0.5)9.65

]
ds,(5.4.11)
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Table 5.1: Numerical values of control ũ(t) in the interval [0, 2] for different values of ε in
(5.4.8).

h = 0.1 ε = 0 ε = 0.1 ε = 0.2 ε = 0.3
0 0.043973 0.006111 −0.030721 −0.065418
0.1 0.047079 0.006542 −0.032891 −0.070039
0.2 0.050459 0.007012 −0.035252 −0.075067
0.3 0.05414 0.007524 −0.037824 −0.080544
0.4 0.058153 0.008081 −0.040628 −0.086514
0.5 0.062532 0.00869 −0.043687 −0.093028
0.6 0.067314 0.009354 −0.047028 −0.100142
0.7 0.07254 0.01008 −0.050678 −0.107916
0.8 0.078254 0.010874 −0.054671 −0.116417
0.9 0.084505 0.011743 −0.059038 −0.125717
1 0.091344 0.012693 −0.063816 −0.135891
1.1 0.098824 0.013733 −0.069042 −0.147019
1.2 0.106998 0.014869 −0.074752 −0.159179
1.3 0.115908 0.016107 −0.080977 −0.172434
1.4 0.12558 0.017451 −0.087734 −0.186823
1.5 0.135992 0.018898 −0.095009 −0.202313
1.6 0.147021 0.020431 −0.102714 −0.21872
1.7 0.158286 0.021996 −0.110584 −0.23548
1.8 0.168683 0.023441 −0.117847 −0.250947
1.9 0.174197 0.024207 −0.121699 −0.259149
2 0 0 0 0
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(a) Control ũ(t) of the system (5.4.5)-(5.4.6).

(b) Error between control of (5.4.1)-(5.4.2) and the control of (5.4.5)-(5.4.6) for different
values of ε.

Figure 5.1: Control and error graphs for different values of ε in (5.4.5)-(5.4.6).
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Table 5.2: Numerical values of z(t) in the interval [0, 2] for different values of ε in (5.4.7).

h = 0.1 ε = 0 ε = 0.1 ε = 0.2 ε = 0.3
0 0.5 0.55 0.6 0.65
0.1 0.574713 0.625876 0.676772 0.727118
0.2 0.626532 0.678118 0.729265 0.779504
0.3 0.669 0.72056 0.771551 0.821364
0.4 0.705208 0.756363 0.80685 0.855954
0.5 0.73677 0.787176 0.83684 0.884968
0.6 0.764717 0.814046 0.862581 0.909469
0.7 0.789775 0.837707 0.88481 0.930196
0.8 0.812492 0.858704 0.90407 0.947684
0.9 0.833294 0.877458 0.920776 0.962339
1 0.85253 0.894307 0.935251 0.97447
1.1 0.870487 0.909521 0.947751 0.984318
1.2 0.887411 0.923328 0.958486 0.992071
1.3 0.903509 0.935916 0.967622 0.997876
1.4 0.918962 0.947444 0.975297 1.001851
1.5 0.933924 0.958047 0.981631 1.004098
1.6 0.948514 0.967841 0.986731 1.004718
1.7 0.962802 0.976918 0.990714 1.003848
1.8 0.976749 0.985347 0.993751 1.001755
1.9 0.989973 0.993136 0.996233 0.999192
2 1 1 1 1

Table 5.3: Maximum absolute error between solutions of (5.4.1)-(5.4.2) and (5.4.5)-(5.4.6).

ε ‖y − z‖
0.1 5.16× 10−2

0.2 1.03× 10−1

0.3 1.53× 10−1
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(a) Solution z(t) of the system (5.4.5)-(5.4.6).

(b) Error between solution of (5.4.1)-(5.4.2) and the solution of (5.4.5)-(5.4.6) for different
values of ε.

Figure 5.2: Solution and error graphs for different values of ε in (5.4.5)-(5.4.6).
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where the control

≈
u (t) = −(2− t)0.15E0.85,0.85[−(2− t)0.85]Q−1

2

[
− 1 +

1

2
E0.85[−20.85]

+
(1 + ζ)

1 + (0.5)9.65

2∫
0

(2− s)−0.15E0.85,0.85[−(2− s)0.85]ds

]
= −3.17581[−0.898643 + 0.796295(1 + ζ)](2− t)0.15E0.85,0.85[−(2− t)0.85](5.4.12)

and Q2 =
2∫
0

[
E0.85,0.85[−(2 − s)0.85]

]2

ds = 0.31488. Here the numerical solution of
≈
u (t)

is computed using MATLAB. In Table 5.4 the numerical values of the control
≈
u (t) in the

interval [0, 2] for different values of ζ in (5.4.12) is given with step size h = 0.1. In Figure

5.3(a), the control of
≈
u (t) in [0, 2] for different values of ζ in (5.4.9)-(5.4.10) are given.

Figure 5.3(b), shows the error between control of (5.4.1)-(5.4.2) (given in (5.4.4)) and the

control of (5.4.9)-(5.4.10) (given in (5.4.12)) for different values of ζ.

Using MATLAB with the algorithm in Appendix A, we compute the numerical solution

z(t) in (5.4.11) in the interval [0, 2] for different values of ζ with step size h = 0.1 (see

Table 5.5). Figure 5.4(a) shows the solution z(t) in [0, 2] for different values of ζ in (5.4.9)-

(5.4.10). In Figure 5.4(b), error between solution of (5.4.1)-(5.4.2) and the solution of

(5.4.9)-(5.4.10) for different values of ζ are given. To verify results of Theorem 5.3.2, in

Table 5.6 we give the maximum absolute error between solutions of problems (5.4.1)-(5.4.2)

and (5.4.9)-(5.4.10) in the interval [0, 2] for different values of the parameter ζ.

5.5 Conclusion

In this chapter, a class of finite dimensional fractional order semilinear control systems

with delay has been considered. Firstly, existence and uniqueness of the solution has been

derived using method of steps. Then sensitivity of the state has been shown with respect

to the initial condition and the perturbed nonlinear function of the system. Finally, some

examples were given to show to illustrate the analytical results.
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Table 5.4: Numerical values of control
≈
u (t) in the interval [0, 2] for different values of ζ in

(5.4.12).

h = 0.1 ζ = 0 ζ = 0.1 ζ = 0.2 ζ = 0.3
0 0.043973 0.009761 −0.024452 −0.058664
0.1 0.047079 0.01045 −0.026179 −0.062808
0.2 0.050459 0.011201 −0.028058 −0.067317
0.3 0.05414 0.012018 −0.030105 −0.072228
0.4 0.058153 0.012908 −0.032336 −0.077581
0.5 0.062532 0.01388 −0.034771 −0.083423
0.6 0.067314 0.014942 −0.03743 −0.089802
0.7 0.07254 0.016102 −0.040336 −0.096773
0.8 0.078254 0.01737 −0.043513 −0.104397
0.9 0.084505 0.018758 −0.046989 −0.112736
1 0.091344 0.020276 −0.050792 −0.12186
1.1 0.098824 0.021936 −0.054952 −0.13184
1.2 0.106998 0.023751 −0.059496 −0.142743
1.3 0.115908 0.025728 −0.064451 −0.15463
1.4 0.12558 0.027875 −0.069829 −0.167533
1.5 0.135992 0.030187 −0.075619 −0.181425
1.6 0.147021 0.032635 −0.081751 −0.196138
1.7 0.158286 0.035135 −0.088016 −0.211167
1.8 0.168683 0.037443 −0.093797 −0.225036
1.9 0.174197 0.038667 −0.096863 −0.232392
2 0 0 0 0
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(a) Control
≈
u (t) of the system (5.4.9)-(5.4.10).

(b) Error between control of (5.4.1)-(5.4.2) and the control of (5.4.9)-(5.4.10) for different
values of ζ.

Figure 5.3: Control and error graphs for different values of ζ in (5.4.9)-(5.4.10).
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Table 5.5: Numerical values of z(t) in the interval [0, 2] for different values of ε in (5.4.11).

h = 0.1 ζ = 0 ζ = 0.1 ζ = 0.2 ζ = 0.3
0 0.5 0.5 0.5 0.5
0.1 0.574713 0.58354 0.592366 0.601193
0.2 0.626532 0.641089 0.655646 0.670203
0.3 0.669 0.687872 0.706743 0.725615
0.4 0.705208 0.727367 0.749527 0.771686
0.5 0.73677 0.76139 0.786011 0.810631
0.6 0.764717 0.791094 0.817471 0.843847
0.7 0.789775 0.817285 0.844795 0.872305
0.8 0.812492 0.840566 0.86864 0.896714
0.9 0.833294 0.861402 0.889509 0.917616
1 0.85253 0.880163 0.907796 0.935429
1.1 0.870487 0.897152 0.923817 0.950482
1.2 0.887411 0.91262 0.937829 0.963038
1.3 0.903509 0.926775 0.950041 0.973307
1.4 0.918962 0.939795 0.960628 0.98146
1.5 0.933924 0.951831 0.969738 0.987645
1.6 0.948513 0.963009 0.977504 0.991999
1.7 0.962802 0.97343 0.984059 0.994688
1.8 0.976749 0.983162 0.989574 0.995986
1.9 0.989973 0.992182 0.994391 0.996599
2 1 1 1 1

Table 5.6: Maximum absolute error between solutions of (5.4.1)-(5.4.2) and (5.4.9)-(5.4.10).

ζ ‖y − z‖
0.1 2.81× 10−2

0.2 5.62× 10−2

0.3 8.43× 10−2
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(a) Solution z(t) of the system (5.4.9)-(5.4.10).

(b) Error between solution of (5.4.1)-(5.4.2) and the solution of (5.4.9)-(5.4.10) for different
values of ζ.

Figure 5.4: Solution and error graphs for different values of ζ in (5.4.9)-(5.4.10).
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Chapter 6

Synchronization and

anti-synchronization of a chaotic

fractional order financial delay system

This chapter deals with the development of synchronization and anti-synchronization of

fractional-order delay financial system. Firstly, a Gauss-Seidel like predictor-corrector

scheme is introduced to solve fractional-order delay systems. Then, an example is given to

show that the proposed numerical scheme is better than the existing numerical schemes.

Furthermore, numerical simulations are given to show that the financial system has chaotic

behaviours for different values of time-delay and fractional-order. Then a suitable active

control for synchronization/anti-synchronization of the system has been proposed. Finally,

two examples with numerical simulations are given to validate the effectiveness of the pro-

posed theory for different fractional-orders and time-delays.

[The content of this chapter is communicated to Nonlinear Dynamics ]

6.1 Introduction

Synchronization (anti-synchronization) of two systems means that the trajectories of one

of the systems will converge to the same values (same values but opposite signs) as the

other and they will remain in step with each other in due course [102]. In this chapter,

103
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we assume that the fractional-order time-delay financial system dynamics contains the

following variables (state) namely, the interest rate, investment demand, price index and

market confidence. Our aim is to study the chaotic behaviors, synchronization and anti-

synchronization of the assumed system. For that, we introduce Gauss-Seidel like predictor-

corrector method to solve fractional-order systems with delay.

6.2 Dynamics and chaos in a financial system

Consider the fractional-order financial delay system

CDα
t x(t) = z(t) + (y(t− τ)− a)x(t) +m1w(t),

CDα
t y(t) = 1− by(t)− x2(t− τ) +m2w(t),

CDα
t z(t) = −x(t− τ)− cz(t) +m3w(t),

CDα
t w(t) = −x(t)y(t− τ)z(t),


(6.2.1)

where the fractional-order α ∈ (0, 1), x denotes the interest rate, y denotes the investment

demand, z denotes the price index, w denotes the market confidence, a ≥ 0 is the saving

amount, b ≥ 0 is the cost per investment, c ≥ 0 is the demand elasticity of commercial

markets, the three constants m1,m2,m3 are the impact factors and τ > 0 is the time delay.

Note: If we choose the control w(t) as the state dependent feedback (linear or nonlinear)

control then the system (6.2.1) becomes

CDα
t x(t) = A0x(t) + A1x(t− τ) + f(t, x(t), x(t− τ)), t > T, T <∞

x(t) = φ(t), t ∈ [−τ, 0],


with 0 < α < 1, the state x(t) ∈ R4, the history function φ(t) ∈ R4 for each t ∈ [−τ, 0],

the nonlinear function f : [0, T ]× R4 × R4 → R4, A0 and A1 are the real matrices of order

4 × 4 and τ is a positive constant. The existence and uniqueness of solution to this class

of systems is given in [124] under the assumption that the nonlinear function is Lipschitz

continuous with respect to the state variable.
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6.2.1 Numerical method

In this subsection, we introduce Gauss-Seidel like method to solve fractional-order delay

systems. For that, we consider the following fractional-order delayed system

CDα
t x(t) = f1(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ)),

CDα
t y(t) = f2(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ)),

CDα
t z(t) = f3(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ)),

CDα
t w(t) = f4(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ)),


,(6.2.2)

for t > 0, with the history function x(t) = φ1(t), y(t) = φ2(t), z(t) = φ3(t), w(t) = φ4(t)

for all t ∈ [−τ, 0], where 0 < α ≤ 1, state variables x, y, z, w ∈ R, the nonlinear functions

fi : R × R × R → R, (i = 1, 2, 3, 4), the history function φi(t) ∈ R, (i = 1, 2, 3, 4),

φ ∈ C[−τ, 0] and the time delay τ > 0.

The system (6.2.2) can written as

CDα
t X(t) = F (t,X(t), X(t− τ)), t > 0

X(t) = Φ(t), t ∈ [−τ, 0],

 (6.2.3)

where X(t) =


x(t)

y(t)

z(t)

w(t)


, Φ(t) =


φ1(t)

φ2(t)

φ3(t)

φ4(t)


and

F (t,X(t), X(t− τ)) =


f1(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ))

f2(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ))

f3(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ))

f4(t, x(t), y(t), z(t), w(t), x(t− τ), y(t− τ), z(t− τ), w(t− τ))


.

Taking Riemann-Liouville fractional integral on both sides of (6.2.3), we get

X(t) = Φ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1F (s,X(s), X(s− τ))ds, (6.2.4)

Now to solve (6.2.4) we propose the following method.
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Consider the uniform grid {tn = nh : n = −l,−l + 1, . . . ,−1, 0, 1, . . . , N} where l and

N are positive integers such that h = T/N = τ/l, (T is suitably chosen). Let

Xh(tj) = Φ(tj), j = −l,−l + 1, . . . ,−1, 0

and

Xh(tj − τ) = Xh(jh− lh) = Xh(tj−l), j = 0, 1, 2, . . . , N.

Suppose Xh(tj) ≈ X(tj), (j = −l,−l + 1, . . . ,−1, 0, 1, . . . , n) are known and we wish to

calculate Xh(tn+1) using

X(tn+1) = Φ(0) +
1

Γ(α)

∫ tn+1

0

(tn+1 − s)α−1F (s,X(s), X(s− τ))ds. (6.2.5)

To replace the integral in (6.2.5), we use product trapezoidal quadrature formula, where the

nodes tj (j = 0, 1, 2, . . . , n+ 1) are taken with respect to the weight function (tn+1− s)α−1.

Thus

X(tn+1) = Φ(0) +
hα

Γ(α + 2)

n∑
j=0

dj,n+1F (tj, Xj, X(tj − τ))

+
hα

Γ(α + 2)
F (tn+1, Xn+1, X(tn+1 − τ)), (6.2.6)

where

dj,n+1 =

 nα+1 − (n− α)(n+ 1)α, if j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, if 1 ≤ j ≤ n.

To solve the nonlinear functional system (6.2.6), a two-step predictor-corrector formula was

given by Gejji et al. in [40]. Now we give a Gauss-Seidel like two-step predictor-corrector

formula to solve the system (6.2.6).
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The predictors are

xpn+1 = φ1(0)

+
hα

Γ(α + 2)

n∑
j=0

dj,n+1f1(tj, x
p
j , y

p
j , z

p
j , w

p
j , x(tj − τ), y(tj − τ), z(tj − τ), w(tj − τ)),

ypn+1 = φ2(0)

+
hα

Γ(α + 2)

n∑
j=0

dj,n+1f2(tj, x
p
j , y

p
j , z

p
j , w

p
j , x(tj − τ), y(tj − τ), z(tj − τ), w(tj − τ)),

zpn+1 = φ3(0)

+
hα

Γ(α + 2)

n∑
j=0

dj,n+1f3(tj, x
p
j , y

p
j , z

p
j , w

p
j , x(tj − τ), y(tj − τ), z(tj − τ), w(tj − τ)),

wpn+1 = φ4(0)

+
hα

Γ(α + 2)

n∑
j=0

dj,n+1f4(tj, x
p
j , y

p
j , z

p
j , w

p
j , x(tj − τ), y(tj − τ), z(tj − τ), w(tj − τ)),

and

x̄pn+1 =
hα

Γ(α + 2)
f1(tn+1, x

p
n+1, y

p
n+1, z

p
n+1, w

p
n+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)),

ȳpn+1 =
hα

Γ(α + 2)
f2(tn+1, x

p
n+1, y

p
n+1, z

p
n+1, w

p
n+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)),

z̄pn+1 =
hα

Γ(α + 2)
f3(tn+1, x

p
n+1, y

p
n+1, z

p
n+1, w

p
n+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)),

w̄pn+1 =
hα

Γ(α + 2)
f4(tn+1, x

p
n+1, y

p
n+1, z

p
n+1, w

p
n+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)),
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where (xp0, y
p
0, z

p
0 , w

p
0) = (φ1(0), φ2(0), φ3(0), φ4(0)). The corrector is

xcn+1 = xpn+1 +
hα

Γ(α + 2)
f1

(
tn+1, x

p
n+1 + x̄pn+1, y

p
n+1 + ȳpn+1, z

p
n+1 + z̄pn+1, w

p
n+1 + w̄pn+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)
)
,

ycn+1 = ypn+1 +
hα

Γ(α + 2)
f2

(
tn+1, x

c
n+1, y

p
n+1 + ȳpn+1, z

p
n+1 + z̄pn+1, w

p
n+1 + w̄pn+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)
)
,

zcn+1 = zpn+1 +
hα

Γ(α + 2)
f3

(
tn+1, x

c
n+1, y

c
n+1, z

p
n+1 + z̄pn+1, w

p
n+1 + w̄pn+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)
)
,

wcn+1 = wpn+1 +
hα

Γ(α + 2)
f4

(
tn+1, x

c
n+1, y

c
n+1, z

c
n+1, w

p
n+1 + w̄pn+1,

x(tn+1 − τ), y(tn+1 − τ), z(tn+1 − τ), w(tn+1 − τ)
)
.

Note that for this method we considered four fractional-order delay differential equations,

but one can easily extend it for r number of equations, where r is any positive integer.

In the following example, we compare this scheme with existing numerical schemes to

solve fractional-order delay differential systems.

Example 6.2.1. Consider the following system

CD
1/2
t x(t) = x(t)y(t)− 3x(t) + 4y(t)− x(t− 1)y(t− 1)

−y(t− 1)− 2 +
Γ(3)

Γ (5/2)
t3/2

CD
1/2
t y(t) = −x(t− 1)− y(t− 1) + x(t)− y(t) +

2

Γ (1/2)
t1/2


, t > 0, (6.2.7)

with the history function x(t) = t2 and y(t) = t for t ∈ [−1, 0].

The analytical solution for the system (6.2.7) is x(t) = t2 and y(t) = t for all t ≥ 0. If

(xM(t), yM(t)) is the numerical solution of (6.2.7) in the interval t ∈ [0, 2] using a method

M , then the errors ‖ExM‖ and ‖EyM‖ are defined by the infinity norms as

‖ExM‖ = max
k

∣∣x(tk)− xM(tk)
∣∣ and

‖EyM‖ = max
k

∣∣y(tk)− yM(tk)
∣∣ ,
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where k denote the partition points of the interval [0, 2].

Table 6.1: Infinity norm of the absolute errors between analytical solution of (6.2.7) and
numerical solutions of (6.2.7) (using M1,M2,M3).

h
M1 M2 M3

‖ExM1 ‖ ‖EyM1 ‖ ‖ExM2 ‖ ‖EyM2 ‖ ‖ExM3 ‖ ‖EyM3 ‖
0.01 1.15× 10−1 4.21× 10−2 2.95× 10−2 1.03× 10−2 2.49× 10−2 8.19× 10−3

0.005 5.76× 10−2 2.12× 10−2 1.09× 10−2 3.81× 10−3 8.11× 10−3 2.64× 10−3

0.0025 3.80× 10−2 1.07× 10−2 3.93× 10−3 1.38× 10−3 2.67× 10−3 8.62× 10−4

Figure 6.1 shows that the numerical solution of (6.2.7) in the interval [0, 2] using meth-

ods (i) modified Adams-Bashforth predictor-corrector method (M1) given in [11], (ii) the

predictor-corrector method (M2) given in [40] and (iii) our proposed Gauss-Seidel like

method (M3), are very close to the analytical solution of (6.2.7). Figure 6.2 shows er-

ror graphs using these three methods and it indicates that error graphs using the proposed

Gauss-Seidel like method (M3) are close to zero as compared to other two methods. Infinity

norm of the absolute errors ‖ExMi‖ and ‖EyMi‖, i = 1, 2, 3 of the system (6.2.7) in the

interval [0, 2] using the three methods M1,M2 and M3, respectively for different values of

step size h are given in Table 6.1.

Using Gauss-Seidel like method it has been observed that the fractional-order financial

delayed system (6.2.1) is chaotic for different values of time-delays and fractional-orders (see,

Figure 6.3 for τ = 0.05, α = 0.95 and Figure 6.4 for τ = 0.09, α = 0.8) with a = 2.1, b = 0.3,

c = 2.6, m1 = 8.4, m2 = 6.4, m3 = 2.2 and history function [ x(t) y(t) z(t) w(t) ]T =

[ 1 4 5 3 ]T for all t ∈ [−τ, 0].
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Figure 6.1: Solution of the system (6.2.7).
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Figure 6.2: Error of the system (6.2.7).
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Figure 6.3: Chaotic attractors of the system (6.2.1) with α = 0.95 and τ = 0.05.
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Figure 6.4: Chaotic attractors of the system (6.2.1) with α = 0.8 and τ = 0.09.
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6.3 Synchronization and anti-synchronization with

delay

6.3.1 Synchronization between two identical fractional-order

financial systems

We define drive and response systems as in the following:

CDαx1(t) = z1(t) + (y1(t− τ)− a)x1(t) +m1w1(t),

CDα
t y1(t) = 1− by1(t)− x2

1(t− τ) +m2w1(t),

CDα
t z1(t) = −x1(t− τ)− cz1(t) +m3w1(t),

CDα
t w1(t) = −x1(t)y1(t− τ)z1(t),


(6.3.1)

CDα
t x2(t) = z2(t) + (y2(t− τ)− a)x2(t) +m1w2(t) + u1(t),

CDα
t y2(t) = 1− by2(t)− x2

2(t− τ) +m2w2(t) + u2(t),

CDα
t z2(t) = −x2(t− τ)− cz2(t) +m3w2(t) + u3(t),

CDα
t w2(t) = −x2(t)y2(t− τ)z2(t) + u4(t),


(6.3.2)

where the unknowns ui(t), i = 1, 2, 3, 4 are active control functions for the responding

system. Now by taking the error functions as e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1,

e4 = w2 − w1, we obtain the error system from (6.3.2) and (6.3.1) as

CDα
t e1(t) = e3(t)− ae1(t) + y2(t− τ)x2(t)− y1(t− τ)x1(t) +m1e4(t) + u1(t),

CDα
t e2(t) = −be2(t)− x2

2(t− τ) + x2
1(t− τ) +m2e4(t) + u2(t),

CDα
t e3(t) = −e1(t− τ)− ce3(t) +m3e4(t) + u3(t),

CDα
t e4(t) = −x2(t)y2(t− τ)z2(t) + x1(t)y1(t− τ)z1(t) + u4(t).


(6.3.3)
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The active control ui(t) can be chosen as

u1(t) = µ1(t)− y2(t− τ)x2(t) + y1(t− τ)x1(t),

u2(t) = µ2(t) + x2
2(t− τ)− x2

1(t− τ),

u3(t) = µ3(t) + e1(t− τ),

u4(t) = µ4(t) + e1(t) + e3(t) + x2(t)y2(t− τ)z2(t)− x1(t)y1(t− τ)z1(t),


(6.3.4)

where the terms µi(t), i = 1, 2, 3, 4 are some linear functions of ei(t), i = 1, 2, 3, 4. Then the

error system (6.3.3) becomes

CDα
t e1(t) = e3(t)− ae1(t) +m1e4(t) + µ1(t),

CDα
t e2(t) = −be2(t) +m2e4(t) + µ2(t),

CDα
t e3(t) = −ce3(t) +m3e4(t) + µ3(t),

CDα
t e4(t) = e1(t) + e3(t) + µ4(t).

The above system can be written as

CDα
t E(t) = AE(t) +M(t), (6.3.5)

where

A =


−a 0 1 m1

0 −b 0 m2

0 0 −c m3

1 0 1 0


, E(t) =


e1(t)

e2(t)

e3(t)

e4(t)


, and M(t) =


µ1(t)

µ2(t)

µ3(t)

µ4(t)


.

Here, we have to choose the input function M(t) in such a way that the system (6.3.5) is

asymptotically stable. For that we chosen the feedback control M(t) = KE(t), such that

| arg λi(A+K)| > απ/2, (0 < α < 1), where K ∈ R4 is gain matrix and λi, (i = 1, 2, 3, 4)

are the eigenvalues of the matrix A + K [see, Theorem 2.2.4]. In particular, if we choose
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the matrix

K =


0 0 0 0

0 0 0 0

0 0 0 0

−1 0 −1 −1


then the eigenvalues of the matrix A + K becomes −a,−b,−c and −1 (a, b, c are positive

constants), which satisfies | arg λi(A+K)| > απ/2, (0 < α < 1 and i = 1, 2, 3, 4). Thus

the error system (6.3.3) converges to zero as t→∞. This implies that the synchronization

between the drive system (6.3.2) and response system (6.3.3) is achieved.

6.3.2 Anti-synchronization between two identical fractional-order

financial systems

For the anti-synchronization, we consider system (6.3.1) as the drive system and the fol-

lowing systems as the response system

CDα
t x2(t) = z2(t) + (y2(t− τ)− a)x2(t) +m1w2(t) + v1(t),

CDα
t y2(t) = 1− by2(t)− x2

2(t− τ) +m2w2(t) + v2(t),

CDα
t z2(t) = −x2(t− τ)− cz2(t) +m3w2(t) + v3(t),

CDα
t w2(t) = −x2(t)y2(t− τ)z2(t) + v4(t),


(6.3.6)

Now by taking the error functions as

e1 = x2 + x1, e2 = y2 + y1, e3 = z2 + z1, e4 = w2 + w1,
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we obtain the error system from (6.3.6) and (6.3.1) as

CDα
t e1(t) = e3(t)− ae1(t) +m1e4(t) + y2(t− τ)x2(t) + y1(t− τ)x1(t) + v1(t),

CDα
t e2(t) = −be2(t) +m2e4(t) + 2− x2

2(t− τ)− x2
1(t− τ) + v2(t),

CDα
t e3(t) = −ce3(t) +m3e4(t)− e1(t− τ) + v3(t),

CDα
t e4(t) = −x2(t)y2(t− τ)z2(t)− x1(t)y1(t− τ)z1(t) + v4(t).


(6.3.7)

We choose the active control vi(t) as

v1(t) = ξ1(t)− y2(t− τ)x2(t)− y1(t− τ)x1(t),

v2(t) = ξ2(t)− 2 + x2
2(t− τ) + x2

1(t− τ),

v3(t) = ξ3(t) + e1(t− τ),

v4(t) = ξ4(t) + e2(t) + e4(t) + x2(t)y2(t− τ)z2(t) + x1(t)y1(t− τ)z1(t),


(6.3.8)

where the terms ξi(t), i = 1, 2, 3, 4 are the linear functions of ei(t), i = 1, 2, 3, 4. Then the

error system (6.3.7) becomes

CDα
t e1(t) = e3(t)− ae1(t) +m1e4(t) + ξ1(t),

CDα
t e2(t) = −be2(t) +m2e4(t) + ξ2(t),

CDα
t e3(t) = −ce3(t) +m3e4(t) + ξ3(t),

CDα
t e4(t) = e2(t) + e4(t) + ξ4(t),

Now, the above system can be written in the form of system (6.3.5) with

A =


−a 0 1 m1

0 −b 0 m2

0 0 −c m3

0 1 0 1


and M(t) =


ξ1(t)

ξ2(t)

ξ3(t)

ξ4(t)


.

Similar to Section 6.3.1, it is easy to show that the anti-synchronization between the drive

system (6.3.2) and response system (6.3.6) is achieved.



Chapter 6: Synchronization and anti-synchronization of a chaotic fractional order
financial delay system 118

6.4 Simulation results

In this section, we give two examples to testify the proposed theory in Section 6.3. Through-

out this section, we use Matlab software with the numerical scheme given in Section 6.2.1

to solve fractional-order delay systems.

Example 6.4.1. Consider the parameter values a = 2.1, b = 0.3, c = 2.6, m1 = 8.4, m2 =

6.4, m3 = 2.2 with fractional-order α = 0.95 and time-delay τ = 0.05 of the drive system

(6.3.1) and response system (6.3.2). The history functions for the drive system (6.3.1) and

response system (6.3.2) are chosen as [ x1(t) y1(t) z1(t) w1(t) ] = [ 1 4 5 3 ] and

[ x2(t) y2(t) z2(t) w2(t) ] = [ 3 −1 2 −4 ], respectively for all t ∈ [−0.05, 0]. The

synchronization between two systems (6.3.1) and (6.3.2) are depicted in Figure 6.5 and the

anti-synchronization between two systems (6.3.1) and (6.3.6) are depicted in Figure 6.6.

The solution of the error systems (6.3.3) and (6.3.7) are shown in Figure 6.7(a) and Figure

6.7(b), respectively. Figures 6.8 shows that the error systems (6.3.3) and (6.3.7) converges

fastly when the fractional-order α approaches 1.

Example 6.4.2. Consider the parameter values a = 3.0, b = 0.1, c = 1.0, m1 = 5.3, m2 =

8.7, m3 = 2.4 with fractional-order α = 0.92 and time-delay τ = 0.07 of the drive system

(6.3.1) and response system (6.3.2). The history functions for the drive system (6.3.1) and

response system (6.3.2) are chosen as [ x1(t) y1(t) z1(t) w1(t) ] = [ 1 −1.5 2 −0.5 ]

and [ x2(t) y2(t) z2(t) w2(t) ] = [ −1 2 1 1.5 ], respectively for all t ∈ [−0.07, 0].

The synchronization of the drive system (6.3.1) and response system (6.3.2) are depicted

in Figure 6.9 and the anti-synchronization of the drive system (6.3.1) and response system

(6.3.6) are depicted in Figure 6.10. The solution of the error systems (6.3.3) and (6.3.7)

are shown in Figure 6.11(a) and Figure 6.11(b), respectively. Figures 6.12 shows that the

error systems (6.3.3) and (6.3.7) converges fastly when the fractional-order α approaches

1.
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Figure 6.5: Synchronization of drive system (6.3.1) (black color dotted lines) and response
system (6.3.2) (red color lines).
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Figure 6.6: Anti-synchronization of drive system (6.3.1) (black color dotted lines) and
response system (6.3.6) (red color lines).
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Figure 6.7: Error systems (6.3.3) and (6.3.7) with α = 0.95 and τ = 0.05.



Chapter 6: Synchronization and anti-synchronization of a chaotic fractional order
financial delay system 122

0 5 10 15 20
0

1

2

3

t

e 1

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 10 20 30 40
0

2

4

6

t

e 2

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 2 4 6
0

1

2

3

t

e 3

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 5 10
0

0.5

1

t

e 4

 

 

 α = 0.95
 α = 0.92
 α = 0.89

(a) Error system (6.3.3)

0 1 2 3
−2

0

2

4

t

e 1

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 2 4 6
−1

0

1

2

3

t

e 2

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 1 2 3
0

2

4

6

8

t

e 3

 

 

 α = 0.95
 α = 0.92
 α = 0.89

0 2 4 6
−1

−0.5

0

t

e 4

 

 

 α = 0.95
 α = 0.92
 α = 0.89

(b) Error system (6.3.7)

Figure 6.8: Error systems (6.3.3) and (6.3.7) for different fractional-orders.



123 6.4 Simulation results

−20
0

20

−50
0

50
−2

0

2

x
1
, x

2
y

1
, y

2

z 1, z
2

−20
0

20

−50
0

50
−5

0

5

x
1
, x

2
y

1
, y

2

w
1, w

2

−20
0

20

−2
0

2
−5

0

5

x
1
, x

2
z

1
, z

2

w
1, w

2

−50
0

50

−2
0

2
−5

0

5

y
1
, y

2
z

1
, z

2

w
1, w

2

(a)

−5 0 5 10 15
−50

0

50

x
1
, x

2

y 1, y
2

−5 0 5 10 15
−2

0

2

x
1
, x

2

z 1, z
2

−5 0 5 10 15
−5

0

5

x
1
, x

2

w
1, w

2

−40 −20 0 20
−2

0

2

y
1
, y

2

z 1, z
2

−40 −20 0 20
−5

0

5

y
1
, y

2

w
1, w

2

−2 −1 0 1 2
−5

0

5

z
1
, z

2

w
1, w

2

(b)

Figure 6.9: Synchronization of drive system (6.3.1) (black color dotted lines) and response
system (6.3.2) (red color lines).
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Figure 6.10: Anti-synchronization of drive system (6.3.1) (black color dotted lines) and
response system (6.3.6) (red color lines).
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Figure 6.11: Error systems (6.3.3) and (6.3.7) with α = 0.9 and τ = 0.07.
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Figure 6.12: Error systems (6.3.3) and (6.3.7) for different fractional-orders.
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6.5 Conclusion

In this chapter, we consider a time-delayed fractional-order financial chaotic system. Firstly,

the chaotic behaviours of the system are shown via numerical simulations using proposed

Gauss-Seidel like predictor-corrector method. Then an active control has been proposed to

achieve synchronization/anti-synchronization of the system. Finally, two examples are given

to validate and to test the efficiency of the proposed theory. Using numerical simulations it

has been observed that synchronization/anti-synchronization of the system are more faster

when the fractional-order α of the system approaches 1.
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Chapter 7

Controllability of fractional order

α ∈ (1, 2] systems with delay

In this Chapter, a class of fractional-order systems of order α ∈ (1, 2] with delay in Banach

spaces is considered. For the exact controllability of this class of systems a set of sufficient

condition has been established by using Sadovskii’s fixed point theorem and the theory of

strongly continuous α-order cosine family. An example is given to illustrate the result.

[The content of this chapter is published in Proceedings of the 35th Chinese Control

Conference, July 27-29, 2016, Chengdu, China, 10516–10520 (Available on IEEE Xplore

Digital Library)]

7.1 Introduction

Consider the following semilinear delay fractional system:

CDα
t y(t) = Ay(t) +Bu(t) + f(t, y(t− τ)); 0 < t ≤ T,

y(t) = φ(t); −τ ≤ t ≤ 0,

y′(0) = y0,

 (7.1.1)

where the state y(t) and the control u(t) belongs to the Banach spaces Y and U respectively,

for each t. Here, the positive constant T <∞ and CDα
t is the Caputo fractional derivative

of order α ∈ (1, 2].

129
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The operators A,B and f are defined as follows: A generates a strongly continuous

cosine family {Cα(t)}t≥0 of order α on Y (see, [6]), the operator B from U to Y is linear

and bounded, and the map f : [0, T ] × Y → Y is a nonlinear operator. We denote by

C = C([−τ, 0];Y ) the Banach space which contains continuous functions from [−τ, 0] to Y

with the norm

‖φ‖C = sup{|φ(t)|,−τ ≤ t ≤ 0},

and τ > 0 is the delay time.

In this chapter, we investigate the exact controllability of (7.1.1). To the best of our

knowledge exact controllability of semilinear systems of fractional-order α ∈ (1, 2] with

state delay using Sadovskii’s fixed point theorem have not been proved by any author so

far.

Definition 7.1.1. The system (7.1.1) is said to be exactly controllable on [0, T ], if for

every φ ∈ C([−τ, 0];Y ) with φ(0), y0 ∈ D(A) and yT ∈ Y , there exists a control u(·) ∈

L2([0, T ];U) such that the mild solution y(·) of (7.1.1) satisfies y(T ) = yT .

7.2 Main result

In what follows, we assume the following hypotheses to prove the main results:

(H1) A generates an α-order cosine family Cα(t) on the Banach space Y and there exists

a constant M0 ≥ 1 such that

‖Cα(t)‖ ≤M0.

(H2) The linear operator W : L2([0, T ], U)→ Y defined by

Wu =

∫ T

0

Pα(T − s)Bu(s)ds

has an induced inverse W−1 which takes its values in L2([0, T ];U)/kerW , and there



131 7.2 Main result

exists constants M1 > 0 and M2 > 0 such that

‖B‖ ≤M1, ‖W−1‖ ≤M2.

(H3) The function f(t, y) is continuous in the second variable for a.e. t ∈ [0, T ] and

measurable in the first variable for all y ∈ Y .

(H4) There exists a function Lf (t) ∈ L1([0, T ],R+) such that the nonlinear function f(t, y)

satisfies the condition

‖f(t, y)− f(t, z)‖ ≤ Lf (t)‖y − z‖,

for all y, z ∈ Y, 0 ≤ t ≤ T .

Theorem 7.2.1. Suppose (H1)–(H4) are satisfied. Then, the system (7.1.1) is controllable

on [0, T ] provided that

[
1 +

M0M1M2T
α

Γ(α)

]
M0T

α−1

Γ(α)
‖Lf‖L1 < 1. (7.2.1)

Proof: Using (H2), for any y(·) ∈ C([−τ, T ];Y ), define the control

u(t) = W−1

{
y1 − Cα(T )φ(0)− Sα(T )y0

−
∫ T

0

Pα(T − s)f(s, y(s− τ))ds

}
(t), (7.2.2)

for t ∈ [0, T ].

We shall show that, using the control (7.2.2), the operator Φ defined by

(Φy)(t) =


Cα(t)φ(0) + Sα(t)y0 +

t∫
0

Pα(t− s)[Bu(s) + f(s, y(s− τ))]ds, t ∈ [0, T ],

φ(t), t ∈ [−τ, 0].

has a fixed point y(·).
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For δ > 0, we define a ball

Bδ = {y ∈ C([−τ, T ];Y ) : ‖y‖ ≤ δ}.

Then, for each δ, Bδ is a convex, closed and bounded set in C([−τ, T ];Y ). To apply Sadovskii

fixed point theorem 2.4.1, first we show that there exist δ > 0 such that Φ(Bδ) ⊂ Bδ. If it

is not true then for each δ > 0, there exists a function yδ(·) ∈ Bδ, but Φ(yδ) 6∈ Bδ, that is,

‖(Φyδ(t)‖ > δ for some t ∈ [−τ, T ]. From (H1), (H2), (H4) and for t ∈ [0, T ], we have

δ < ‖(Φyδ)(t)‖

≤ M0|φ(0)|+M0T‖y0‖+
M0M1M2T

α

Γ(α)

[
‖y1‖+M0|φ(0)|+M0T‖y0‖

+
M0T

α−1

Γ(α)

∫ T

0

‖f(s, yδ(s− τ))‖ds
]

+
M0T

α−1

Γ(α)

∫ T

0

‖f(s, yδ(s− τ))‖ds

≤ M0M1M2T
α‖y1‖

Γ(α)
+

[
1 +

M0M1M2T
α

Γ(α)

][
M0|φ(0)|+M0T‖y0‖

+
M0T

α−1

Γ(α)

∫ T

0

[
Lf (s)‖yδ(s− τ)‖+ ‖f(s, 0)‖

]
ds

]
. (7.2.3)

Since ‖yδ‖ ≤ δ, (7.2.3) becomes

δ < ‖(Φyδ)(t)‖

≤ M0M1M2T
α‖y1‖

Γ(α)
+

[
1 +

M0M1M2T
α

Γ(α)

][
M0|φ(0)|+M0T‖y0‖

+
M0T

α−1

Γ(α)

∫ T

0

‖f(s, 0)‖ds
]

+

[
1 +

M0M1M2T
α

Γ(α)

]
M0T

α−1

Γ(α)
δ‖Lf‖L1 .

Dividing both sides by δ and taking limit as δ →∞, we get

[
1 +

M0M1M2T
α

Γ(α)

]
M0T

α−1

Γ(α)
‖Lf‖L1 ≥ 1.

This contradicts condition (7.2.1). When t ∈ [−τ, 0],

δ < ‖(Φyδ)(t)‖ = ‖φ(t)‖ or 1 < ‖φ(t)‖/δ.
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Taking limit as δ →∞, we get 1 < 0. This is impossible.

Therefore, for some δ > 0, Φ(Bδ) ⊂ Bδ.

Now, we define operators Φ1 and Φ2 so that Φ1 + Φ2 = Φ, as follows

(Φ1y)(t) =

 Cα(t)φ(0) + Sα(t)y0, t ∈ [0, T ],

φ(t), t ∈ [−τ, 0]

(Φ2y)(t) =


∫ t

0
Pα(t− s)

[
Bu(s) + f(s, y(s− τ))

]
ds, t ∈ [0, T ],

0, t ∈ [−τ, 0].

Here, Φ1 is completely continuous in C([−τ, T ];Y ), because for every weakly convergent

sequences (yn) in Bδ ⊂ Y their images (Φ1yn) is a constant function in C([−τ, T ];Y ).

Next, we prove that Φ2 is a contraction operator. Let y, z ∈ Bδ, then for each t ∈ [0, T ]

we have

‖(Φ2y)(t)− (Φ2z)(t)‖ ≤
∫ t

0

‖Pα(t− s)‖‖B‖‖W−1‖

×
∥∥∥∥− ∫ T

0

Pα(T − s)[f(s, y(s− τ))− f(s, z(s− τ))]ds

∥∥∥∥ds

+

∫ t

0

‖Pα(t− s)‖‖f(s, y(s− τ))− f(s, z(s− τ))‖ds

≤ M0M1M2T
α

Γ(α)

∫ T

0

M0T
α−1

Γ(α)
Lf (s)‖y − z‖ds

+
M0T

α−1

Γ(α)

∫ T

0

Lf (s)‖y − z‖ds

≤
[
1 +

M0M1M2T
α

Γ(α)

]
M0T

α−1

Γ(α)
‖Lf‖L1‖y − z‖. (7.2.4)

From (7.2.1) and (7.2.4), it is clear that Φ2 is a contraction operator.

Thus by Φ = Φ1 + Φ2 is a condensing operator on Bδ. Hence, from the Sadovskii’s fixed

point theorem, Φ has a fixed point y(·) on Bδ which is the mild solution of (7.1.1). Now, it

is easy to prove that the mild solution of (7.1.1) satisfies y(T ) = yT . This proves the exact

controllability of system (7.1.1).
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7.3 Example

Let us consider the following system with fractional-order α ∈ (1, 2],

CDα
t v(t, z) =

∂2v

∂z2
(t, z) + σ(t, v(t− τ, z)) +Bµ(t, z), z ∈ (0, π), t ∈ (0, T ],

v(t, 0) = v(t, π) = 0, t ∈ (0, T ],

v(t, z) = φ(t, z), t ∈ [−τ, 0], z ∈ (0, π),

∂v

∂t
(0, z) = y0(z), z ∈ (0, π).


(7.3.1)

Case (i) for α = 2:

Let Y = L2(0, π) and A = d2

dz2
with

D(A) =

{
v ∈ Y : v,

dv

dz
are absolutely continuous,

d2v

dz2
∈ Y and v(0) = v(π) = 0

}
.

Let φn(z) =
√

2
π

sinnz, 0 ≤ z ≤ π, n = 1, 2, 3, . . .. Here, φn is the eigenfunction

corresponding to the eigenvalue −n2 of the operator A and {φn} ia an orthonormal base

for Y . Then

ζ =
∞∑
n=1

(ζ, φn)φn and

Aζ = −
∞∑
n=1

n2(ζ, φn)φn, ζ ∈ D(A).

It is easy to show that (see, [70]) A is an infinitesimal generator of a strongly continuous

cosine family C(t) and

C(t)ζ =
∞∑
n=1

cosnt(ζ, φn)φn, ζ ∈ Y, t ∈ R. (7.3.2)

Let V : [0, T ]→ Y be defined as

[V (t)](z) = v(t, z); z ∈ (0, π) (7.3.3)
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and f : [0, T ]× Y → Y be defined as

f(t, V (t− τ))(z) = σ(t, v(t− τ, z)), (7.3.4)

for z ∈ (0, π).

Let U = L2(0, π) and u : [0, T ]→ U be defined as

(u(t))(z) = µ(t, z), z ∈ (0, π), (7.3.5)

where µ : [0, T ]× (0, π)→ L2([0, T ];U) is continuous in t.

Now, for α = 2, (7.3.1) can be represented in the form (7.1.1) as

CDα
t V (t) = AV (t) +Bu(t) + f(t, V (t− τ)); 0 < t ≤ T,

V (t) = φ(t); −τ ≤ t ≤ 0,

V ′(0) = y0.


Hence for α = 2 by Theorem 7.2.1, the system (7.3.1) is controllable, provided f satisfies

the conditions (H3) and (H4).

Case (ii) for α ∈ (1, 2):

As A is the generator of the cosine family C(t), from Lemma 2.3.1, we infer that for

α ∈ (1, 2) A generates a continuous α-order cosine family Cα(t) which is exponentially

bounded and

Cα(t) :=

∫ ∞
0

ϕt,α/2(ξ)C(ξ)dξ, t > 0,

where C(ξ) is given in (7.3.2), ϕt,α/2(ξ) = t−α/2Ψα/2(ξt−α/2) and Ψγ(s) =
∑∞

m=0
(−s)m

m!Γ(−γm+1−γ)
,

0 < γ < 1 (see [6] for details). Now, the system (7.3.1) with (7.3.3), (7.3.4) and (7.3.5)

can be formulated as (7.1.1) in Banach space Y . Therefore by Theorem 7.2.1, the system

(7.3.1) is controllable.
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7.4 Conclusion

In this chapter, a class of fractional-order α ∈ (1, 2] semilinear control systems with delay

in Banach spaces is considered. Based on suitable assumptions on the system operators A,

B and f and using Sadovskii’s fixed point theorem with the theory of strongly continuous

α-order cosine family, the exact controllability of the system has been studied. An example

has been given to illustrate the result.



Chapter 8

Trajectory controllability of fractional

order α ∈ (1, 2] systems with delay

This chapter is concerned with trajectory controllability of a class of fractional-order sys-

tems of order α ∈ (1, 2] with delay in state variable and with a nonlinear control term.

Firstly, the existence and uniqueness of solution of the system is proved under suitable con-

ditions on the nonlinear term involving state variable. Then the trajectory controllability is

studied using Mittag-Leffler functions and Gronwall-Bellman inequality. Finally, examples

are given to illustrate the proposed theory.

[The content of this chapter is to be published in Journal of Applied Nonlinear Dynam-

ics ]

8.1 Introduction

A system is said to be trajectory controllable if and only if it is possible, by means of

an input, to transfer the system from any initial state to any other desired state along a

prescribed trajectory. Recently, the authors in [43] studied the trajectory controllability of

fractional–order α ∈ (0; 1] systems. In this chapter we prove the trajectory controllability
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of the following fractional-order system with delay:

CDα
t x(t) = Ax(t) +B(t, u(t)) + f(t, x(t− τ), x(t)), 0 < t ≤ T <∞

x(t) = φ(t), t ∈ [−τ, 0] x′(0) = x̃0

 , (8.1.1)

where α ∈ (1, 2], A ∈ Rn×n is a constant matrix, the state x(t) and the control u(t) takes

their values in Rn and Rm respectively for each t. The operators B and f are defined as

follows: B : [0, T ]×Rm → Rn and the nonlinear function f : R×Rn×Rn → Rn. Here, the

initial function φ is continuous on [−τ, 0] (τ is a positive constant).

8.2 Existence and uniqueness of solution

In this section we prove the existence and uniqueness of solution of (8.1.1) by using method

of steps.

In what follows we assume the following conditions on the nonlinear functions B and f .

(A1) B(t, u(t)) is measurable with respect to t for all u(t) ∈ Rm for each t and continuous

with respect to u for almost all t ∈ [0, T ] and it satisfies the growth condition

‖B(t, u(t))‖Rn ≤ b0(t) + b1‖u(t)‖Rm , ∀ u(t) ∈ Rm, t ∈ [0, T ].

(A2) f(t, r, s) is measurable with respect to t for all r, s ∈ Rn and continuous with respect

to r and s respectively for almost all t ∈ [0, T ] and it satisfies the growth condition

‖f(t, r, s)‖Rn ≤ f0(t) + C1‖r‖Rn + C2‖s‖Rn , ∀ r, s ∈ Rn, t ∈ [0, T ],

where C1 > 0, C2 > 0 and f0(t) is continuous in the interval [0, T ].

(A3) f : [0, T ]×Rn×Rn → Rn is continuous in the first variable and Lipschitz continuous

in the second and third variables. That is,

‖f(t, r1, s1)− f(t, r2, s2)‖ ≤ L1‖r1 − r2‖+ L2‖s1 − s2‖,
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where L1 > 0 and L2 > 0 are Lipschitz constants.

First consider the interval 0 ≤ t ≤ τ . Here, since y(t− τ) = φ(t− τ), (8.1.1) becomes

CDαx(t) = Ax(t) +B(t, u(t)) + gτ (t, x(t)), 0 < t ≤ τ,

where gτ (t, x(t)) = f(t, φ(t−τ), x(t)). Assumption (A3) implies that gτ is Lipschitz contin-

uous in x and continuous function of t. Hence for each control function u(t) there exists a

unique solution for (8.1.1) in the interval [0, τ ]. Its solution in [0, τ ] is of the form (see, [61])

xτ (t) = Eα,1[Atα]φ(0) + tEα,2[Atα]x′(0)

+

t∫
0

(t− s)α−1Eα,α[A(t− s)α][B(s, u(s)) + f(s, φ(s− τ), x(s))]ds. (8.2.1)

Hence in the interval [0, τ ] the solution of (8.1.1) exists and is unique.

Now, in the interval [0, 2τ ], the system (8.1.1) may be written as

CDαx(t) = Ax(t) +B(t, u(t)) + g2τ (t, x(t)), 0 < t ≤ τ,

where g2τ (t, x(t)) =

 f(t, φ(t− τ), x(t)), 0 < t ≤ τ

f(t, xτ (t− τ), x(t)), τ < t ≤ 2τ
. Then the solution of (8.1.1) in

the interval [0, 2τ ] for each u is given by

x(t) =

 xτ (t), 0 ≤ t ≤ τ

x2τ (t), τ ≤ t ≤ 2τ
(8.2.2)

where x2τ (t) = Eα,1[A(t − τ)α]x(τ) + (t − τ)Eα,2[A(t − τ)α]x′(τ) +
t∫
τ

(t − s)α−1Eα,α[A(t −

s)α][B(s, u(s)) + f(s, xτ (s− τ), xτ (s))]ds, τ ≤ t ≤ 2τ and xτ (t) is given by (8.2.1).

Proceeding in a similar way we can easily prove the following theorem:

Theorem 8.2.1. Let x0τ (t) = φ(t), x′0τ (t) = x̃0 and let k be the greatest positive integer
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such that kτ ≤ T and let

gkτ (t, x(t)) =



f(t, x0τ (t− τ), x(t)), 0 < t ≤ τ

f(t, xτ (t− τ), x(t)), τ < t ≤ 2τ
...

f(t, x(k−1)τ (t− τ), x(t)), (k − 1)τ < t ≤ kτ

(8.2.3)

be continuous and satisfy a Lipschitz condition of the form (A3). Then there exists a unique

solution on the interval [0, T ] for the system (8.1.1) for each u and it is given by

x(t) =

 xiτ (t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . k,

xT (t), t ∈ [kτ, T ]

where

xiτ (t) = Eα,1[A(t− (i− 1)τ)α]x((i− 1)τ) + (t− (i− 1)τ)Eα,2[A(t− (i− 1)τ)α]x′((i− 1)τ)

+

t∫
(i−1)τ

(t− s)α−1Eα,α[A(t− s)α][B(s, u(s)) + giτ (s, x(s))]ds, t ∈ [(i− 1)τ, iτ ],

xT (t) = Eα,1[A(t− kτ)α]x(kτ) + (t− tk)Eα,2[A(t− kτ)α]x′(kτ)

+

t∫
kτ

(t− s)α−1Eα,α[A(t− s)α][B(s, u(s)) + f(s, xk(s− τ), x(s))]ds, t ∈ [kτ, T ].

Definition 8.2.1. The system (8.1.1) is said to be controllable on [0, T ], if for every φ ∈

C([−τ, 0];Rn) with φ(0), x̃0 ∈ Rn and xT ∈ Rn, there exists a control u(t) ∈ Rm, 0 ≤ t ≤ T

such that the solution x(·) of (8.1.1) satisfies x(T ) = xT .

Let Z be the set of all functions z(·) defined on [0, T ] such that z(0) = φ(0), z′(0) = x̃0

and z(T ) = xT and let the fractional derivative CDα
t z, 1 < α ≤ 2 exist almost everywhere.

We call Z, the set of all trajectories of (8.1.1).

Definition 8.2.2 (Trajectory controllability). The system (8.1.1) is said to be trajectory

controllable if for any z ∈ Z, there exists a control u(t) ∈ Rm, 0 ≤ t ≤ T such that the

corresponding solution x(·) of (8.1.1) satisfies x(t) = z(t) almost everywhere.
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8.3 Trajectory controllability

8.3.1 One dimensional system with linear control term

Consider the following simple system

CDα
t x(t) = ax(t) + b(t)u(t) + f(t, x(t− τ), x(t)), 0 < t ≤ T <∞

x(t) = φ(t), t ∈ [−τ, 0] x′(0) = x̃0

 , (8.3.1)

where α ∈ (1, 2], a ∈ R is a constant, the state x(t) and the control u(t) takes their values

in R respectively for each t. The nonlinear function f : R × R × R → R. Here, the initial

function φ is continuous on [−τ, 0] and b : [0, T ]→ R is continuous.

Here we assume the following conditions to prove the trajectory controllability of (8.3.1):

(i) The function b(t) is continuous on [0, T ] and b(t) 6= 0 for all t ∈ [0, T ],

(ii) f is Lipschitz continuous with respect to the second and third argument, i.e., there

exist positive real numbers l1 and l2 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ l1‖x1 − x2‖+ l2‖y1 − y2‖,

for all x1, x2, y1, y2 ∈ R, t ∈ [0, T ].

Theorem 8.3.1. If the assumptions (i) and (ii) hold, then the system (8.3.1) is trajectory

controllable on [0, T ].

Proof. Let z be a given trajectory in Z. We define a control u(t) by

u(t) =
1

b(t)

[
CDα

t z(t)− az(t)− f (t, z(t− τ), z(t))
]
. (8.3.2)

Substituting (8.3.2) in (8.3.1), we get

CDα
t w(t) = aw(t) + f (t, x(t− τ), x(t))− f (t, z(t− τ), z(t)) , (8.3.3)

where w(t) = x(t)− z(t) and w(0) = 0 and w′(0) = 0.
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The solution of (8.3.3) in the interval t ∈ [0, τ ] is

w(t) =
1

Γ(α)

∫ t

0

(t− s)α−1Eα,α[a(t− s)α] [f (s, x(s− τ), x(s))− f (s, z(s− τ), z(s))] ds.

This implies

|w(t)| ≤ 1

Γ(α)

∫ t

0

(t− s)α−1|Eα,α[a(t− s)α]|[l1|φ(s− τ)− φ(s− τ)|+ l2|w(s)|]ds

=
l2

Γ(α)

∫ t

0

(t− s)α−1|Eα,α[a(t− s)α]||w(s)|ds.

Hence by Gronwall’s inequality for fractional integral (see, [34]) it follows that

|x(t)− z(t)| = 0.

or, x(t) = z(t) for t ∈ [0, τ ]. Now, assume that x(t) = z(t) for t ∈ [(k − 2)τ, (k − 1)τ ].

Then the solution of (8.3.3) in the interval t ∈ [(k − 1)τ, kτ ] is

w(t) =
1

Γ(α)

∫ t

(k−1)τ

(t− s)α−1Eα,α[a(t− s)α] [f (s, x(s− τ), x(s))− f (s, z(s− τ), z(s))] ds.

This implies

|w(t)| ≤ 1

Γ(α)

∫ t

(k−1)τ

(t− s)α−1|Eα,α[a(t− s)α]|[l1|x(s− τ)− z(s− τ)|+ l2|w(s)|]ds

Since x(t) = z(t) in the interval t ∈ [(k − 2)τ, (k − 1)τ ], it follows that

|w(t)| ≤ l2
Γ(α)

∫ t

(k−1)τ

(t− s)α−1|Eα,α[a(t− s)α]||w(s)|ds.

Hence by Gronwall’s inequality it follows that

|x(t)− z(t)| = 0.

or, x(t) = z(t) for t ∈ [(k − 1)τ , kτ ].
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Similarly, we find that x(t) = z(t) in the interval [kτ, T ].

Hence, the system (8.3.1) is trajectory controllable on [0, T ].

Example 8.3.1. Consider the following system

CDα
t x(t) = x(t) + u(t) + sin (x(t− τ) + x(t)), t ∈ [0, 1],

x(t) =
π

2
, t ∈ [−0.5, 0], x′(0) = 0.

This system satisfy all the assumption in the above theorem. Hence the system is trajectory

controllable.

8.3.2 n-dimensional system with nonlinear control term

Theorem 8.3.2. Suppose that the assumptions (A1)–(A3) hold and

(A4) B(t, v) satisfies monotonicity and coercivity conditions. That is

< B(t, v1)−B(t, v2), v1 − v2 >≥ 0, ∀ v1, v2 ∈ Rm, t ∈ [0, T ]

and

lim
‖v‖→∞

< B(t, v), v >

‖v‖
=∞.

Then the system (8.1.1) is trajectory controllable on [0, T ].

Proof. Let z be a given trajectory in Z. We wish to find a control

u(t) =

 ui(t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . k,

uT (t), t ∈ [kτ, T ]

satisfying

z(t) =

 ziτ (t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . k,

zT (t), t ∈ [kτ, T ]
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where

ziτ (t) = Eα,1[A(t− (i− 1)τ)α]z((i− 1)τ) + (t− (i− 1)τ)Eα,2[A(t− (i− 1)τ)α]z′((i− 1)τ)

+

t∫
(i−1)τ

(t− s)α−1Eα,α[A(t− s)α][B(s, ui(s))

+giτ (s, z(s− τ), z(s))]ds, t ∈ [(i− 1)τ, iτ ],

zT (t) = Eα,1[A(t− kτ)α]z(kτ) + (t− kτ)Eα,2[A(t− kτ)α]z′(kτ)

+

t∫
kτ

(t− s)α−1Eα,α[A(t− s)α][B(s, uT (s)) + f(s, zk(s− τ), z(s))]ds, t ∈ [kτ, T ],

(k is the greatest positive integer such that kτ ≤ T ).

To find u(t):

The solution of (8.1.1) in the interval t ∈ [0, τ ] is

zτ (t) = Eα,1[Atα]φ(0) + tEα,2[Atα]x̃0

+

t∫
0

(t− s)α−1Eα,α[A(t− s)α][B(s, u1(s)) + f(s, φ(s− τ), zτ (s))]ds.(8.3.4)

Taking Caputo’s fractional derivative of order α ∈ (1, 2] on both sides of (8.3.4), we obtain

CDα
t zτ (t) = AEα,1[Atα]φ(0) + tAEα,2[Atα]x̃0 +C Dα

t (I2 + I1), (8.3.5)

where

I1 =

∫ t

0

(t− s)α−1Eα,α[A(t− s)α]f(s, φ(s− τ), zτ (s))ds (8.3.6)

and

I2 =

∫ t

0

(t− s)α−1Eα,α[A(t− s)α]B(s, u1(s))ds. (8.3.7)

The term tEα,α[Atα], 1 < α ≤ 2 is bounded for all t ∈ [0, T ] and the function z ∈ Z is also

bounded for all t ∈ [0, T ]. Then with assumption (A2) the integrand of integral (8.3.6) is
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bounded. Therefore the integral

I1 =

∫ t

0

(t− s)α−1Eα,α[A(t− s)α]f(s, φ(s− τ), zτ (s))ds

=

∫ t

0

∞∑
k=0

Ak(t− s)αk+α−1

Γ(αk + α)
f(s, φ(s− τ), zτ (s))ds

is follows by applying integration by parts

I1 =
∞∑
k=0

Aktαk+α

Γ(αk + α + 1)
f(0, φ(−τ), zτ (0))

+

∫ t

0

∞∑
k=0

Ak(t− s)αk+α

Γ(αk + α + 1)

d

ds
f(s, φ(s− τ), zτ (s))ds. (8.3.8)

Taking Caputo fractional derivative of order α : 1 < α ≤ 2 on both sides (8.3.8), we get

CDα
t I1 = I1a + I1b, (8.3.9)

where

I1a =
1

Γ(2− α)

∫ t

0

(t− s)1−α

× d2

ds2

( ∞∑
k=0

Aksαk+α

Γ(αk + α + 1)

)
f(0, φ(−τ), φ(0))ds, (8.3.10)

and

I1b =
1

Γ(2− α)

∫ t

0

(t− s)1−α d
2

ds2

(∫ s

0

∞∑
k=0

Ak(s− s1)αk+α

Γ(αk + α + 1)

× d

ds1

f(s1, φ(s1 − τ), zτ (s1))ds1

)
ds. (8.3.11)

From (8.3.10), we get

I1a = Eα,1[Atα]f(0, φ(−τ), φ(0)). (8.3.12)
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Using integration by parts to inner integral of (8.3.11), we get

I1b =
1

Γ(2− α)

∫ t

0

(t− s)1−α d
2

ds2

(
−
∞∑
k=0

Aksαk+α

Γ(αk + α + 1)
f(0, φ(−τ), φ(0))

+

∫ s

0

∞∑
k=0

Ak(s− s1)αk+α−1

Γ(αk + α)
f(s1, φ(s1 − τ), zτ (s1))ds1

)
ds

It follows from the Leibniz integral rule that

I1b = − 1

Γ(2− α)

∫ t

0

(t− s)1−α
∞∑
k=0

Aksαk+α−2

Γ(αk + α− 1)
f(0, φ(−τ), φ(0))ds

+
1

Γ(2− α)

∫ t

0

(t− s)1−α

× d

ds

(∫ s

0

∞∑
k=0

Ak(s− s1)αk+α−2

Γ(αk + α− 1)
f(s1, φ(s1 − τ), zτ (s1))ds1

)
ds. (8.3.13)

Using integration by parts to inner integral of the second term of (8.3.13) then applying

Leibniz integral rule to resulting (8.3.13), we find that

I1b =
1

Γ(2− α)

∫ t

0

(t− s)1−α
∫ s

0

∞∑
k=0

Ak(s− s1)αk+α−2

Γ(αk + α− 1)

d

ds1

f(s1, φ(s1 − τ), zτ (s1))ds1ds

=
1

Γ(2− α)

∫ t

0

∫ t

s1

(t− s)1−α
∞∑
k=0

Ak(s− s1)αk+α−2

Γ(αk + α− 1)

d

ds1

f(s1, φ(s1 − τ), zτ (s1))dsds1

=

∫ t

0

∞∑
k=0

Ak(t− τ)αk

Γ(αk)

d

ds1

f(s1, φ(s1 − τ), zτ (s1))ds1

= f(t, φ(t− τ), zτ (t))− Eα,1[Atα]f(0, φ(−τ), φ(0))

+A

∫ t

0

(t− s1)α−1Eα,α[A(t− s1)α]f(s1, φ(s1 − τ), zτ (s1))ds1. (8.3.14)

Substituting (8.3.14) and (8.3.12) in (8.3.9), we get

CDα
t I1 = f(t, φ(t− τ), zτ (t))

+A

∫ t

0

(t− s1)α−1Eα,α[A(t− s1)α]f(s1, φ(s1 − τ), zτ (s1))ds1. (8.3.15)
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Similarly

CDα
t I2 = B(t, u1(t)) + A

∫ t

0

(t− s1)α−1Eα,α[A(t− s1)α]B(s1, u1(s1))ds1. (8.3.16)

Substituting (8.3.15) and (8.3.16) in (8.3.5), we obtain that

CDα
t zτ (t) = AEα,1[Atα]φ(0) + tAEα,2[Atα]x̃0 +B(t, u1(t))

+A

∫ t

0

(t− s1)α−1Eα,α[A(t− s1)α]B(s1, u1(s1))ds1 + f(t, φ(t− τ), zτ (t))

+A

∫ t

0

(t− s1)α−1Eα,α[A(t− s1)α]f(s1, φ(s1 − τ), zτ (s1))ds1

= Azτ (t) +B(t, u1(t)) + f(t, φ(t− τ), zτ (t)) (8.3.17)

This implies

B(t, u1(t)) = y1(t), (8.3.18)

where y1(t) = CDα
t zτ (t)− Azτ (t)− f(t, φ(t− τ), zτ (t)).

Similarly, when t ∈ [(i− 1)τ, iτ ], i = 2, 3, . . . , k we obtain

B(t, ui(t)) = yi(t), (8.3.19)

where yi(t) = CDα
t ziτ (t)− Aziτ (t)− f(t, z(i−1)τ (t− τ), ziτ (t)).

Now, when t ∈ [kτ, T ], we obtain that

B(t, uT (t)) = yT (t), (8.3.20)

where yT (t) = CDα
t zT (t)− Aziτ (t)− f(t, zkτ (t− τ), zT (t)).

Now, the trajectory controllability follows if we can extract

u(t) =

 ui(t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . , k

uT (t), t ∈ [kτ, T ],
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from the relation

B(t, u(t)) = y(t), (8.3.21)

where,

y(t) =

 yi(t), t ∈ [(i− 1)τ, iτ ], i = 1, 2, . . . , k

yT (t), t ∈ [kτ, T ],

yi, (i = 1, 2, . . . , k) and yT are given in (8.3.18), (8.3.19) and (8.3.20).

To see this, define an operator N : Rn → Rn by

(Nu)(t) = B(t, u(t)).

Assumptions (A1) and (A2) imply that N is well defined, continuous and bounded operator.

Assumption (A4) shows that N is monotone and coercive. A hemi-continuous monotone

mapping is of type (M) (see Definition 2.4.3). Therefore, by Lemma 2.4.1, the nonlinear

map N is onto. Hence there exists a control u(t) satisfying (8.3.21). The measurability of

u(t) follows as u(t) is in Rm for each t ∈ [0, T ]. This proves the trajectory controllability of

the system (8.1.1).

Example 8.3.2. Consider the following system

CD
3/2
t

 x1(t)

x2(t)

 =

 −1 1

0 1

 x1(t)

x2(t)

+ 3

 u3
1(t)

u3
2(t)


+

 − sin(x1(t− 1) + x2(t))

cos(x2(t− 1) + x1(t))

 , t ∈ [0, 1]

 x1(t)

x2(t)

 =

 1

1

 , t ∈ [−1, 0].

It can be easily verified that the above system satisfies the hypotheses (A1)–(A3) and
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3

 u3
1(t)

u3
2(t)

 is monotone and coercive. Hence by Theorem 8.3.2 it is trajectory control-

lable on [0, 1].

8.4 Application

Motivated by the work related to the oscillatory processes [28, 42, 48, 89], we give the fol-

lowing nonlinear mechanical system:

Figure 8.1: Nonlinear spring-mass system.

In the mechanical system shown in Fig. 8.1, m1,m2 denote the masses of the left and

right carts respectively. The left end of the cart m1 is connected to a non-linear spring with

the forcing displacement relation k1(x1(t) + sin(x1(t− τ))). A linear spring with stiffness k2

is connected between the carts m1 and m2. A non-linear spring is connected to the left end

of the cart m2 with forcing displacement relation k3 sin(x2(t − τ)). Let x1(t) and x2(t) be

the displacements of the carts m1 and m2, respectively, from the tip of the leftmost spring.

If the forces u1 and u2 are applied to the card m1 and m2, respectively, then the equations
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of motion for this system is given by

m1
CDα

t x1 + k1(x1 + sin(x1(t− τ)))− k2(x2 − x1) = u3
1,

m2
CDα

t x2 + k2(x2 − x1) + k3 sin(x2(t− τ)) = u3
2

 , t ∈ [0, 1], (8.4.1)

with the state history x1(t − 1) = 0.05 and x2(t) = 0.02 for t ∈ [−1, 0], x′1(0) = 0 and

x′2(0) = 0 and 1 < α ≤ 2.

This can be rewritten in the form of (8.1.1) with A =

 − (k1+k2)
m1

k2
m1

k2
m2

− k2
m2

, B(t, u(t)) =

 u3
1(t)

u3
2(t)

, x(t) =

 x1(t)

x2(t)

 and f(t, x(t−1), x(t)) =

 − k1
m1

sin(x1(t− τ))

− k3
m2

sin(x2(t− τ))

. If the masses

m1 = m2 = 1 Kg, the spring constants k1 = k3 = 1 N/m, and k2 = 2 N/m then it can be

easily verified that the operators B(t, u(t)) and f(t, x(t − 1), x(t)) satisfy the assumptions

(A1) – (A4). Hence, by Section 8.3 the system (8.4.1) is trajectory controllable on [0, 1].

8.5 Conclusion

In this chapter, trajectory controllability of a class of fractional systems of order α ∈ (1, 2]

systems with delay was discussed. The existence and uniqueness of the system has been

proved using growth condition on the nonlinear control term and growth and Lipschitz

conditions on the nonlinear term involving state variable. Then sufficient conditions for the

trajectory controllability of this class of systems has been proved. Two examples were given

to validate the proposed theory. For the application an undamped spring-mass system was

discussed to illustrate the theory.



Chapter 9

Conclusion and future scope

9.1 Conclusions

In the following the main conclusions of the thesis are presented chapter wise.

In Chapter 3, the asymptotic stability and stabilizability of a class of nonlinear systems

with fixed delay in the state variable has been studied. A set of sufficient conditions was

developed by assuming conditions on the system parameters such as eigenvalues of the

linear operator, delay parameter and bound on the nonlinear part. Then, three examples

were given to testify the effectiveness of the proposed theory. It has been observed that

the minimum value of τ is smaller than the value obtained by using Razumikhin technique

with the Lyapunov function V = xTx. Thus our method can establish asymptotic stability

when history function is defined on smaller intervals where Razumikhin method may not.

In Chapter 4, the stability analysis of a class of FOBPNLS was proposed by using

Gronwall’s lemma and some bounds on the system parameters. Firstly, we addressed the

existence and uniqueness of solution of the continuous FOBPNLS. Then a set of sufficient

conditions was proposed to guarantee the asymptotic stability of the continuous FOBPNLS.

Finally, two example with numerical simulations were given to demonstrate the merits of

our proposed stability conditions.

A class of nonlinear fractional–order control system with state delay is considered in

Chapter 5. Firstly, using method of steps, the existence and uniqueness of solution has been

proposed. Then sensitivity of the state and control with respect to small perturbations of

151
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history function and small perturbations of the nonlinear function was studied. Numerical

examples were given to test the efficiency of obtained analytical results.

In Chapter 6, the market confidence was introduced to the time-delayed fractional–

order financial chaotic system. Firstly, the chaotic behaviours of the system are shown via

numerical simulations using proposed Gauss-Seidel like predictor-corrector method. Then

an active control has been proposed to achieve synchronization/anti-synchronization of the

system. Finally, two examples are given to validate and to test the efficiency of the pro-

posed theory. Using numerical simulations it has been observed that synchronization/anti-

synchronization of the system are more faster when the fractional-order α of the system

approaches 1.

In Chapter 7, the exact controllability of fractional–order α ∈ (1, 2] delayed semilinear

control system (7.1.1) is proved. The controllability results are obtained using theory of

α-order cosine family and Sadovskii’s fixed point theorem. The semilinear control system

has been taken as a perturbed system of the corresponding linear system which preserves

the exact controllability. The use of developed theory has been demonstrated by controlled

wave equation.

Trajectory controllability is a strong notion than controllability. In Chapter 8, trajectory

controllability of a class of fractional-order α ∈ (1, 2] systems with delay is considered. The

existence and uniqueness of solution of the system has been proved under suitable conditions

on the nonlinear term involving state variable. Then sufficient conditions for the trajectory

controllability of this class of systems has been proposed.

9.2 Future scope

There is numerous scope for further research on the controllability and stability of fractional-

order dynamical systems. Our future work will focus on sensitivity analysis of fractional

higher order delayed control systems with respect to small perturbations in the fractional-

order, history function and the nonlinear function of the system. Asymptotic stability and

stabilization of semilinear fractional-order delayed systems can be studied using system

parameters such as eigenvalues of the linear operator, delay parameter and bounds on non-
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linear functions. The controllability, stability and stabilization of a class of fractional-order

switching systems with or without delay is also the subject of our future research. Through-

out the thesis, we consider fixed time delay of various dynamical systems to analyse their

qualitative properties. In future one can investigate controllability, stability, stabilizability

and synchronization/anti-synchronization of various dynamical systems with different types

of delays such as variable time delay and mixed time delay etc with suitable modifications

in the procedure adopted in this thesis.
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Appendix A

Algorithm

To solve the integral equation of the form

y(t) = Eα(atα)φ(0) +

t∫
0

(t− s)α−1Eα,α(a(t− s)α)[bu(s) + f(s, y(s− τ))]ds,

we give the following algorithm which is modified predictor-corrector algorithm of [11,33].

Consider the uniform grid {tn = nh : n = −l,−l + 1, . . . ,−1, 0, 1, . . . , N} where l and

N are integers such that h = T/N and h = τ/l. Let

yh(tj) = φ(tj), j = −l,−l + 1, . . . ,−1, 0

and

yh(tj − τ) = yh(jh− lh) = yh(tj−l), j = 0, 1, 2, . . . , N.

Suppose yh(tj) ≈ y(tj), (j = −l,−l + 1, . . . ,−1, 0, 1, . . . , n) and we wish to calculate

yh(tn+1) using

y(tn+1) = Eα(atαn+1)φ(0) +

tn+1∫
0

(tn+1 − s)α−1Eα,α(a(tn+1 − s)α)

×[bu(s) + f(s, y(s− τ))]ds. (A.0.1)
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To replace the integral in (A.0.1), we use product trapezoidal quadrature formula, where

the nodes tj (j = 0, 1, 2, . . . , n + 1) are taken with respect to the weight function (tn+1 −

·)α−1Eα,α[a(tn+1 − ·)α]. Thus the corrector formula is

yh(tn+1) = Eα,1[a(tj)
α]y0 + hαEα,α+2[ahα][bu(tn+1) + f(tn+1, y

P
h (tn+1))]

+hα
n∑
j=0

cj,n+1[bu(tj) + f(tj, yh(tj))],

where

cj,n+1 =



(n+ 1)αEα,α+1[a((n+ 1)h)α] + nα+1Eα,α+2[a(nh)α]

−(n+ 1)α+1Eα,α+2[a((n+ 1)h)α]

 , if j = 0,

(n− j)α+1Eα,α+2[a((n− j)h)α]

−2(n+ 1− j)α+1Eα,α+2[a((n+ 1− j)h)α]

+(n+ 2− j)α+1Eα,α+2[a((n+ 2− j)h)α]

 , if 1 ≤ j ≤ n,

Eα,α+2[ahα], if j = n+ 1

and the predictor formula for (A.0.1) using product rectangle rule is

yPh (tn+1) = Eα,1[a(tj)
α]y0 + hα

n∑
j=0

dj,n+1[bu(tj) + f(tj, y(tj))],

where

dj,n+1 = (n+ 1− j)αEα,α+1[a((n+ 1− j)h)α]− (n− j)αEα,α+1[a((n− j)h)α].

In the following we state the above algorithm in a pseudo-code type notation.

Input variables:

F - real valued function of three real variables that defines the right hand side of the

differential equation

α - fractional order (0 < α ≤ 1) of the differential equation

y0 - the history function φ(t), t ∈ [−τ, 0]

τ - time delay ( a positive real number)
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T - the upper bound of the integral ( a positive real number)

N - the number of time step that the algorithm used to take ( a positive integer)

l - is a positive integer such that τ ∈ [−l, 0]

Output variable:

y - an array of N + 1 real numbers that contains the approximate solutions y(jT/N),

j = 0, 1, 2, . . . , N .

Internal variables:

h - the step size of the algorithm (a positive real number)

j, k - integer variables used as indices

y0 - the history function

yp - the predicted value (a real variable)

c, d - arrays of N + 1 real number that contains the weights of corrector and predictor,

respectively.

m - is a real number such that m− l ≤ 0

Body of the procedure:

h := T/N ;

h := τ/l;

FOR k = 1 to N

c(k) = kαEα,α+1[a(kh)α]− (k − 1)αEα,α+1[a((k − 1)h)α];

d(k) = (k + 1)α+1Eα,α+2[a((k + 1)h)α]− 2kα+1Eα,α+2[a(kh)α]

+(k − 1)α+1Eα,α+2[a((k − 1)h)α];

END

IF m− l <= 0

y0 := φ((m− l)h)

END
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FOR j = 1 to N

yp = Eα,1[a(jh)α]y0 + hα
j−1∑
k=0

d[j − k]F (kh, y(k), y(k − l));

y(j) = Eα,1[a(jh)α]y0

+hα
(
Eα,α+2[ahα]F (jh, yp, y(j − l))

+
(
jαEα,α+1[a(jh)α] + (j − 1)α+1Eα,α+2[a((j − 1)h)α]

−jα+1Eα,α+2[a(jh)α]
)
F (0, φ(0), φ(0))

+

j−1∑
k=1

c[j − k]F (kh, y(k), y(k − l))
)

;

END
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