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Abstract

In the thesis, we study approximation properties of some well known operators and their
g-analogues. We divide the thesis into eight chapters. The chapter O includes the literature
survey, basic definitions and some basic notations of approximation methods which will
be used throughout the thesis.

In the first chapter, we discussed the Schurer type ¢g-Bernstein Kantorovich operator which
was introduced by Lin. We obtain a local approximation theorem and the statistical con-
vergence of these operators. We also study the rate of convergence by means of the first
order modulus of continuity, Lipschitz class function, the modulus of continuity of the

first order derivative and the Voronovskaja type theorem.

The second chapter is concerned with the Stancu-Kantorovich operators based on
Pélya-Eggenberger distribution. We obtain some direct results for these operators by
means of the Lipschitz class function, the modulus of continuity and the weighted space.
Also, we study an approximation theorem with the aid of the unified Ditzian-Totik modu-
lus of smoothness wy-(f;t), 0 <7 < 1 and the rate of convergence of the operators for

the functions having a derivative which is locally of bounded variation on [0, c0).

In the third chapter, we introduce the Szasz-Durrmeyer type operators based on Boas-
Buck type polynomials which include Brenke-type polynomials, Sheffer polynomials and
Appell polynomials. We establish the moments of the operator and a Voronvskaja type
asymptotic theorem and then proceed to study the convergence of the operators with the
help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a di-
rect approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness.
Furthermore, we study the approximation of functions whose derivatives are locally of

bounded variation.



In the fourth chapter, we obtain the rate of approximation of the bivariate Bernstein-
Schurer-Stancu type operators based on g-integers by means of the moduli of continuity
and Lipschitz class. We also estimate the degree of approximation by means of Lipschitz
class function and the rate of convergence with the help of mixed modulus of smooth-
ness for the GBS operator of ¢g-Bernstein-Schurer-Stancu type. Furthermore, we show the
comparisons by some illustrative graphics in Maple for the convergence of the operators

to some functions.

In the fifth chapter we study the approximation properties of the bivariate extension of
q-Bernstein-Schurer-Durrmeyer operators and obtained the rate of convergence of the
operators with the aid of the Lipschitz class function and the modulus of continuity.
Here, we estimate the rate of convergence of these operators by means of Peetre’s K-
functional. Then, the associated GBS (Generalized Boolean Sum) operator of the ¢-
Bernstein-Schurer-Durrmeyer type is defined and discussed. Furthermore, we illustrate
the convergence rate of the bivariate Durrmeyer type operators and the associate GBS

operators to certain functions by numerical examples and graphs using Maple algorithm.

In the sixth chapter, We discuss the mixed summation integral type two dimensional g-
Lupas-Phillips-Bernstein operators which was first introduced by Honey Sharma in 2015.
We establish a Voronovskaja type theorem and introduce the associated GBS case (Gener-
alized Boolean Sum) of these operators and we study the rate of convergence by utilizing
the Lipschitz class and the mixed modulus of smoothness. Furthermore, we show the rate
of convergence of the bivariate operators and the corresponding GBS operators by illus-

trative graphics and numerical examples using Maple algorithms.

In the seventh chapter, we obtain the degree of approximation for the Kantorovich-type
g-Bernstein-Schurer operators in terms of the partial moduli of continuity and the Pee-
tre’s K-functional. Finally, we construct the GBS (Generalized Boolean Sum) operators
of bivariate g-Bernstein-Schurer-Kantorovich type and estimate the rate of convergence

for these operators with the help of mixed modulus of smoothness.

In the last chapter, we establish the approximation properties of the bivariate operators

which are the combination of Bernstein-Chlodowsky operators and the Szdsz operators

il



involving Appell polynomials. We investigate the degree of approximation of the opera-
tors with the help of complete modulus of continuity and the partial moduli of continuity.
In the last section of the paper, we introduce the Generalized Boolean Sum (GBS) of
these bivariate Chlodowsky-Szasz-Appell type operators and examine the order of ap-
proximation in the Bogel space of continuous functions by means of mixed modulus of

smoothness.
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Introduction

0.1 General Introduction

The field of approximation theory has become so vast that it intersects with every other
branch of mathematics territory. Approximation theory has both pragmatic side which is
concerned largely with computational practicalities, precise estimations of errors, and so
on and also a theoretical side, which is more often concerned with existence and unique-
ness questions and application to other theoretical issues. The primary aim of a general
approximation is to represent non-arithmetic quantities by arithmetic quantities so that
accuracy can be ascertained to a desired degree. For instance, when we try to expand a
function in a power series, we are trying to represent the function in terms of polynomials
namely, the partial sum of the power series.

The first significant result in Approximation theory is Weierstrass approximation theorem
which assumes a key part in the advancement of general estimation hypothesis. In 1885,
Weierstrass proved the density of algebraic polynomials in the class of continuous real
valued functions on a compact interval, and the density of trigonometric polynomials in
the class of 27 periodic continuous real valued functions. It states that, if f is a continuous
real valued function defined on [a, b] then there exists an algebraic polynomial p(z) such

that

|f(z) —p(x)| <€ V€& la,b where e > 0.

Over the next so many years, the alternative proofs of this result were given by the best
analyst of the period. The impact of the theorem in mathematics was immediate. Later,
there were proofs by famous mathematicians such as Runge (1885), Picards (1891), Lerch
(1892 and 1903), Volterra (1897), Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900),
Landau (1908), de 1a Valleé Poussin (1908), Jackson (1911)

1



0.1: General Introduction

In 1912, a Russian mathematician S. N. Bernstein formulated a sequence of polynomials

to prove Weierstarss theorem, as follows:

If f is a real valued bounded function on [0, 1], then

sty =Yt (5) =20 (5) (1) - o

is called the Bernstein polynomial of order n of the function f(x). Here the kernel
b, () are the binomial or Newton probabilities which is very well known in the theory
of probability. Bernstein [44] proved that for f € C[0, 1], the sequence {B,,(f;x)} con-
verges uniformly to f(x) on [0, 1]. Because of shape preserving property, Bernstein poly-
nomials have a practical applications. In 1962, Schurer [[121] generalized the Bernstein
polynomials by extending its domain from [0, 1] to [0, 1 4 p], where p is a non-negative

integer.

In [54], Davis proved that for any convex function, the classical Bernstein polynomial
is also convex and the sequence of Bernstein polynomials is monotonically decreasing.
The same author also proved that if the k-th ordinary differences of a function are non-
negative on [0, 1] then the k-th derivative of the classical Bernstein polynomial is non-
negative. Stancu [126] proposed the positive linear operators B* : C[0,1] — C|0, 1]

as:
n

B(fi0) = Y boal)f (555

k=0 n+p

where «, 3 satisfy the condition 0 < o < p. If @« = [ = 0, the above sequence of
operators include the Bernstein polynomials. Kantorovich [94] introduced an integral
modification of Bernstein polynomials to approximate Lebesgue integrable functions in
[0,1]. Durrmeyer [65] proposed another modification of Bernstein polynomials to ap-

proximate functions in L, [0, 1],p > 1.

Abel et al. [1] established an estimate of the rate of convergence for functions of
bounded variations by the beta operators using the decomposition technique. The com-
plete asymptotic expansion of the sequence of operators for smooth functions, as n tends

to infinity, was also obtained. Karsli [95] discussed the rate of pointwise convergence

2



0.1: General Introduction

of a new type of Gamma operators for functions with derivatives of bounded variations.
Gupta and Beniwal [[75] established the rate of convergence in simultaneous approxima-
tion by Durrmeyer-Schurer type operators. Wafi and Khatoon [138]] obtained the rate of
convergence and Voronovskaja type theorems for the first order derivatives of the gener-
alized Baskakov operators for functions of one and two variables in polynomial weighted
spaces. Govil et al. [73] obtained an estimate of the rate of convergence for function
of bounded variation by a Durrmeyer type modification of the operators introduced by
Jain and Pethe. Deo et al.[53] studied the simultaneous approximation for the general-
ized Bernstein-Durrmeyer operators. Deo and Singh [57] proposed Baskakov-Durrmeyer
operators and studied their rate of convergence in simultaneous approximation. Gupta
et al. [82] introduced a certain family of mixed summation integral type operators hav-
ing different weight functions and obtained some local direct theorems in ordinary and
simultaneous approximation. Gupta et al. [76l] discussed the rate of convergence of the
Szasz-Mirakyan-Durrmeyer for functions with derivatives of bounded variations. Wafi
and Khatoon [137/]] obtained the rate of convergence, asymptotic formula, direct and in-
verse theorems for the generalized Baskakov operators introduced by Mihesan [101]]. Bi-
variate extension of these operators was also discussed by the authors in [[137].

For other related literature we refer to (cf. [2l], [72], [ZZ], [Z8]], [83]], [106], [135], [L36]],
([L15)], [116], [117] ).

Quantum calculus is the generalized name for the investigation of calculus without lim-
its. g-calculus appeared as a connection between physics and mathematics, it has a lot of
applications in different mathematical areas such as hypergeometric functions, combina-
torics, orthogonal polynomials and in other sciences such as quantum theory, mechanics,
theory of relativity etc. In the last decade, the application of g-calculus in the area of
approximation theory has attracted a lot of interest.

Lupas was the first person who pioneered work on g-analogue of the Bernstein polyno-
mials. In 1987, he introduced a g-analogue of the Bernstein operator and investigated its

approximation properties.

Let g > 0 and f € C[0, 1]. The linear operator



0.1: General Introduction

where

, ( x) [n qk(k_l)/2$k(1 _ l.)n—k
kG = g (1-—2+4gqx)..(1—x+q¢g 1)

is called the Lupas g-analogue of the Bernstein operator.
Clearly, if ¢ = 1, then the operator L,, , reduce to the classical Bernstein polynomials.
In the case ¢ # 1, operator L, , are rational functions rather than polynomial. The Limit
q-Lupas operator comes out naturally as a limit for a sequence of the Lupas g-analogues
of the Bernstein operator.
Later in 1996, Phillips [110] generalized the Bernstein polynomials using g-binomial co-

efficients which is defined as

n

Bug(fiz) =) m

k=0 q

k
(1 — :c)g_kf (&) , for each positive integer n.

(],
(0.1.1)

We see that the g-Bernstein polynomials defined in (0.1.1]) interpolates f at both end
points of [0, 1] and it is a linear operator that maps functions defined on [0,1] to the set of
polynomials of degree at most n, and for 0 < ¢ < 1, it is monotone operator.

In 1997, Phillips also proved that the ¢g-Bernstein polynomials may be expressed in terms

of the ¢-difference as

k

k=0

Bg(fiz) = m (A% fo) o, (0.1.2)

where Al f; =AM fi —F AR B> T with A) f; = f; = f (%) .

The expression (0.1.2) of B, ,(f;2) in terms of ¢-difference shows its worthiness as
a true g-analogue of the classical Bernstein operators. He evaluated the approximation
properties of a function at the interval which are in the form of geometric progression. In
[1O8], Orug et al. extended the results given in [54]] to the generalized Bernstein polyno-
mials.
Muraru [[102] introduced the g-Bernstein-Schurer operators and obtained the Korovkin-
type approximation theorem and the rate of convergence of the operators in terms of the

first order modulus of continuity. Durrmeyer [65] introduced the integral modification of

4



0.1: General Introduction

the Bernstein polynomials and in 2005, Derriennic [39] generalized the modified Bern-
stein polynomials for Jacobi weights using the g-Bernstein basis proposed by Phillips. She
extended the various properties of modified Bernstein polynomials to their g-analogues.
Adell and Cal [[14] considered the Durrmeyer type modification of Bernstein, Szdsz and
Baskakov operators and solved the two different kinds of problems. In this paper, authors
used a probabilistic approach to obtain the result concerning the preservation of shape
properties, Lipschitz constant and global smoothness as well as convexity.

Dalmanglu [53] defined the g-analogue of the Bernstein-Kantorovich operators and ex-
amined the order of approximation of the operators by means of modulus of continuity.
Subsequently, Radu [114] investigated the statistical convergence results of these opera-
tors. Agratini [[L5)] studied the limit of iterates of g-analogue of the Bernstein polynomials
introduced by Lupas and also proposed a new class of g-Bernstein operators depending
on a parameter which fix certain polynomials of second degree. Govil and Gupta (/1]
introduced a new type of g-Meyer-Konig-Zeller-Durrmeyer operators and established
some approximation properties. Gupta and Heping [80] introduced certain g-analogue
of Bernstein-Durrmeyer operators for 0 < ¢ < 1 and investigated the rate of conver-
gence of the operators by using modulus of continuity. After this, in the continuation of
Durrmeyer modification of Bernstein operators, Aral and Gupta [29]] introduced Szész-
Durrmeyer operators based on g-integer on the space of continuous functions on positive
semi-axis and studied their approximation properties and established an asymptotic be-
havior of these operators with respect to weighted norm. In [27], Aral and Gupta con-
sidered certain g-Baskakov operators and studied some of their approximation properties.
Aral and Gupta [28] represented the g-Baskakov operators in terms of divided differences
to discuss the g-derivatives and shape preserving properties. Gupta and Karsli [81] studied
some approximation properties of the Szasz-Mirakyan-Baskakov-Stancu operators based
on g-integers. Mursaleen and Khan [[105] studied the statistical approximation properties
of Bernstein-Schurer operators based on g-integers. Muraru and Acu [103]] proposed a
Durrmeyer variant of g-Schurer operators and established a Korovkin-type approxima-
tion theorem and the rate of approximation. Ruchi et al. [S0] introduced the bivariate
case of Stancu type Kantorovich modification of the operators proposed by Ren and Zeng
[L18]].

Karsli et al. [97] introduced the g-analogue of the general Gamma type operators and



0.2: Bivariate extensions of the linear positive operators

studied the rate of convergence, weighted approximation and A-statistical convergence of
these operators. Recently, Acu [11] introduced a g-analogue of Stancu-Schurer-Kantorovich
operators and studied its rate of convergence and the statistical approximation properties.
Subsequently, Agrawal et al.[[17] constructed a bivariate generalization of a new kind of
Kantorovich type ¢- Bernstein Schurer operators and studied the rate of convergence, the
degree of approximation by means of the Lipschitz type class and a Voronovskaja type
theorem. Ruchi et al. [120] introduced the Kantorovich variant of Bernstein-Széasz op-
erators based on g¢-integers for functions of one and two variables and also studied the
associated GBS operators. For more details about the work on linear positive operators

based on g-integers we refer the reader to [30]].

0.2 Bivariate extensions of the linear positive operators

In 1951, Kingsley [98] first introduced the bivariate extension of Bernstein polynomials
for the functions belonging to the class C®), where C'®), is the class of all the functions
whose derivatives of order 1,2, ..., k exist and are continuous. The Bernstein polynomial

associated with the function f(z,y) is defined as

mn f x y Z mek1 nk2( )f(%?%)

k1=0 ko=0

where b,, , (x) and b,, 1, (y) are the Bernstein basis.

The main purpose of his research was to show the uniform convergence of these poly-
nomials in S(S : 0 < x,y < 1). Butzer in [47] gave a more direct proof of Kingsley
theorem and prove that if all the partial derivatives of a function f(x,y) of order at most

k exist and are continuous in S, then

8’“ oF

uniformly in S. Wigert [140] and S. N. Bernstein proved the same result for one variable.

In [100], Martinez replaced each coefficient of these polynomials by their integral parts
and proved their convergence in both the uniform and L, norms. Stancu [125]] introduced
another bivariate extension of the Bernstein polynomials on the isosceles right triangle
A:={(z,y) :z+y <1,z >0, y > 0} and indicated a simple method for extending the

Bernstein polynomials. After this, Stancu [[127] defined another linear positive operators

6



0.3: Linear operators based on orthogonal polynomials

in two or several variables.
Barbosu [38]] extended the g-Bernstein polynomial in two variables by using the paramet-
ric extensions. Let /2 = [0, 1] x [0, 1] be the unit square then for any function f : I* — R,

the parametric extension of the operator (0.1.1)) can be defined as

B, = i {"1}% (1 — ) f<[ 1o ) 0.2.1)

=k [n1]g,

and

_ S ko no—ks [k2lgs
B, e = ;O L@LQ Yy (1—y)g ™ f ([m]q) 0.2.2)
where q1,q, > 0. Clearly, for ¢ = 1,¢2 = 1 these parametric extensions reduce to
the parametric extension of classical Bernstein polynomials.
After these modifications many researchers also studied the bivariate and multivariate

case of the linear positive operators (cf. [12]], [17], [S1], [SS]]).

0.3 Linear operators based on orthogonal polynomials

Appell [25]], introduced a sequence of polynomials P,(z) of degree n which satisfies the

differential equation
d

@7
known as Appell polynomials. These polynomials have been studied widely because of

D P,(x) =nP,4(x), D=

their remarkable applications not only in mathematics [33] but also in physics and in
chemistry. In [124]], Sheffer extended the class of Appell polynomials and called these
polynomials as zero type polynomials. Using Appell polynomials, Jakimovski and Levi-

atan [89] introduced a generalization of the Favard-Szdsz operators as
P.(f Z pr(n ( ) 0.3.1)

where, g(u Z pr(z)u” is the generating function for the Appell polynomials

pr(z) > 0, with g(z Zan |zl < R, R> 1and g(1) # 0.



0.3: Linear operators based on orthogonal polynomials

Subsequently, the Stancu type generalization of the operators (0.3.1)) was introduced by
Atakut and Biiyiikyazici [32]], wherein the authors established some approximation prop-

erties. These generalization of the operators given by (0.3.1]) is defined as

. e—bnx o0 k
Pi(fix) = > pilbaz) f (—) , (0.3.2)

Cn

where (b,,), (¢,,) denote the unbounded and increasing sequences of positive real numbers
b

such thatb, > 1, ¢, > 1, andnli_g)loci =0, C—" =140 Ci ,as n — oo. In the special
case g(z) = 1, these operators reducg to the nfodiﬁed Szész%perators studied by Walczak
[139]. Also, for b, = n = c,, these operators coincide with the operators (0.3.1).

Ismail [85] generalized Szész operators by means of the Sheffer polynomials. Varma and
Tasdelen [133]] defined Sz4sz type operators involving Charlier polynomials. In this same
paper, the authors also introduced the Kantorovich type generalization of these operators.
Kajla and Agrawal [92] proposed the Szasz-Durrmeyer type operators based on Charlier
polynomials. Varma et al. [[132]] introduced Szész type operators involving Brenke-type
polynomials. Mursaleen and Ansari [[104] studied Chlodowsky type generalization of
Szasz type operators by involving Brenke type polynomials. Tasdelen et al. [[131] pro-
posed a Kantorovich variant of the Szasz operators involving Brenke type polynomials.
Garg et al. [[/0] investigated the order of convergence of these operators and the degree of
approximation for continuous functions in a weighted space.

Agrawal and Ispir [19] introduced bivariate operators by a combination of Bernstein-

Chlodowsky polynomials and the Szasz type operators based on Charlier polynomials.

For some other related papers one can refer to (cf. [23], [[16], etc.,).

0.3.1 Definitions for single variable case

Definition 1. Modulus of continuity: For f(z) € C|a, b, the modulus of continuity is
defined as

w(f;90) =sup{|f(xe) — f(z1)| : whenever |zo—z1| <6, 0 >0}.

Then w(d) is continuous, increases as J increases and it tends to 0, as 6 — 0. The same
definition holds for f(z) € Cy,, and the greatest value of w(d) is w(7).

Properties of modulus of continuity:
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e If n is positive integer then w(f;n d) < nw(f;J).
o Ifk >0, w(f;kd) <(k+1)w(f;0).
e If w(d) = 0 for some § > 0, then f(x) is a constant.

Definition 2. First order modulus of continuity: The first modulus of continuity of
f € C(I) for § > 0 is given by

w(f,0) = max [f(x+h)— f(z)]

0<|h|<d,z,x+heT

We observe that for all f € C'(I), we have

lim w(f,d) =0,

6—0t
and for any 0 > 0,

On the closed interval [0, b], the usual modulus of continuity of f is defined by

wy(f,0)= sup sup |f(u) = f(z)], §>0.

0<|u—z|<d z,u€l0,b]

Definition 3. Lipschitz continuity:

The definition of Lipschitz continuity is due to German mathematician Rudolph Lipschitz
who used his concept of continuity to prove existence of solutions to some important
differential equations. Quantifying continuous behavior in terms of Lipschitz continuity
simplifies many aspects of mathematical analysis and the use of Lipschitz continuity has
become ubiquitous in engineering and applied mathematics.

A function f is said to be Lipschitz continuous on an interval [ if there is a constant
M > 0 such that

‘f(l’l)—f(ib'g)l §M!x1—x2\ \ xy, .1’261.

Definition 4. Lipschitz type space:
The Lipschitz type space [[130] was considered by Otto Szasz to establish the uniform
convergence of the Szdsz operators for functions in this space.

For0 < ¢ <1, z €(0,00), u € [0,00) we define

_ rl€
Lipy(§) := {f € Cl0,00) : |f(u) — f(x)] < Mf|u—x|§; where M
(u+z):2

is a constant which depends on f }
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Definition 5. Second order moduli of smoothness:
To measure the degree of approximation of positive linear operators, the second order

modulus of smoothness is used. For f € C(/) and § > 0, we have

wa(f;9) :sup{]f(x—l—h)—2f(x)+f(x—h)|:x,x:l:hel, 0<h§5},

or we can write it as

wa(f;6) = sup sup|f(z+h)—2f(x)+ f(z — h)|.
0<h<d§ =z€l
Let C2(I) := {f € C(I) : fuws fays fyws fuu € C(I)}.

The norm on the space C?(I) is defined as

’L

az‘
oy

MWW%W”ZQ ‘ )

Definition 6. Peetre’s K-functional: For f € C(I), let us consider the following K-

functional:

Ky (f.0) = inf{|lf = gll + dllgllc=qr) : g € C*(I)},

where § > 0.

By [61]], there exists an absolute constant C' > 0 such that
KQ(f7 6) < sz(f’ \/5)

Definition 7. Ditzian-Totik modulus of smoothness: Guo et al. [/4]] studied the direct,
inverse and equivalence approximation theorems by means of the unified modulus. The
definitions of the Ditzian-Totik modulus of smoothness and the Peetre’s K -functional
are given as: Let ¢*(z) = z(1 + x) and f € Cp[0, 00), the space of all bounded and

continuous functions on [0, c0). The moduli wy-(f,u), 0 < 7 <1, is defined as

o) = mp s ’ / (H WW) _¢ (m ) hest(x))

0Sh<u gy hoT(e) e 2 2

Y

and the appropriate K -functional is given by
Ko (f,u) = inf {||f —gll +ullodII},
geEW-

10
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where W, = {g : g € ACj,[0,00), ||¢7¢'|] < oo}, ACi,e denotes the space of locally
absolutely continuous functions on [0, co).

From [63]] there exists a constant M > 0 such that

M wgr (fu) < Kgr (f,u) < Mwge (f,u). (0.3.3)

0.4 Weighted Approximation
For v > 0, let

C,[0,00) :={f € C[0,00) : | f(u)] < M(1+u”), forsome M >0}

endowed with the norm || f[|, = sup,¢( o) %, then
’ u
[0, 00) := im O its and s fini
C5]0,00) := < f € (5[0, 00); lim 152 exists and is finite ;.
T—00 €T

We study the approximation of functions in the subspace C9[0, 00) of C5[0, o). Such
type of function spaces have been considered by several researchers (cf. [26l], [79] ).
It is well known that the classical modulus of continuity of first order w(f;¢),d > 0 does
not tend to zero, as 0 — 0, on an infinite interval. A weighted modulus of continuity
Q(f; ) was defined in [141] which tends to zero as & — 0 on [0, 00). For f € C9[0, 00),
the weighted modulus of continuity defined by Yiiksel and Ispir [[141] is given as follows:

8 [f(z +h) — f(z)]
f30) = xe[o,fol)l,lg<h§6 L+ (z+h)2

0.4.1)

Some properties of Q(f; ) are collected in the following lemma:
Lemma 0.4.1. [I4])] Let f € C9[0, 00). Then the following results hold:

1. Q(f;0) is monotonically increasing function of 0.

2. limg_o+ Q(f;0) = 0.

3. Foreachm € N, Q(f;méd) < m(f;9).

4. Foreach X € (0,00),Q(f; M) < (1 + N)Q(f;9).

11
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0.4.1 Definitions for bivariate case

Definition 8. Modulus of continuity for functions of two variables: Let [ and J be the
two compact intervals on the real line and a function f : I x J — R, then the modulus of

continuity w(f;d,d2) : [0,00) X [0, 00) — R is defined by
w(f;61,02) = sup {|f(5171,y1)—f(352,?/2)| . whenever |71 —y1| < 01, |v2— 1| < 52},

where (z1,y1), (x2,y2) € I X J.

Definition 9. Complete modulus of continuity for bivariate case: For f € C(I), the

complete modulus of continuity for the bivariate case is defined as follows:

(I)(f, 61752) = sup {|f(u,v) - f($7y)| : (U7U)7 (xay) € land |U - $| < 517 |U - y| < 52}7
where w( f, 01, d2) satisfies the following properties:

1. (Ij(f, (51,52) — 0, 1f51 — 0 and 52 — O,

2. |f(u,v) — f(z,y)| gw(f,él,éz)(1+ %) (1+ ’va_;jl)'

For more details we refer the reader to [24].

Definition 10. Partial modulus of continuity for bivariate case: Further, the partial

moduli of continuity with respect to x and y is given by

WAﬁﬁzwm{U@hw—f@mwkyelamﬂm—Wﬂ§5}
and

wxﬁazwm{uwwo—fmwﬂwxefamﬂm—yﬂsa}

It is clear that they satisfy the properties of the usual modulus of continuity.

Definition 11. Lipschitz class: For0 < ¢ < 1land 0 < v < 1, for f € C(I) we define

the Lipschitz class Lipy, (&, ) for the bivariate case as follows:
[f(u,0) = fz,9)] < Mlu —z[*]o —y[.

Definition 12. Peetre’s K-functional and second order complete modulus of continu-
ity
The Peetre’s K -functional of the function f € C'( x J) is defined by

K(f;6) = inf ){||f — 9lleaxay +0llglleaxa 6 > 0.

geC?(IxJ

12
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where C*(I x J) = {f e C(I x J): fu.. fu . fu. fr, € C( x J)} endowed with

zx) Jx,yr Jyz)

the norm || f||cxy = sup |f(x,y)].
(z,y)eIxJ

Also, from ([48]], pp.192) it is known that

K(1:6) < at{@ul1: V) + min1, 0|l 042)

holds for all 6 > 0 . The constant M in the above inequality is independent of ¢ and f

and wo(f; Vo ) is the second order modulus of continuity which is defined as

@o(f; V) = sup {

[h|<6,|k|<6

2

S (-1t vy ) ). (a4 20420 € T

v=0

0.4.2 Definitions of ¢-calculus

1. The g-integer and g¢-factorial: For any fixed real number ¢ > 0 satisfying the

condition 0 < ¢ < 1, the g-integer [n],, for n € N and g¢-factorial [n],! are defined

as
(1-q") .
, ifg#1
nj,=¢ (1—9q)
n, ifg=1,
and
)l = nlgn—1],...1, ifn>1
! 1, ifn =0,
respectively.

2. g-binomial coefficient: For any integers n, k satisfying 0 < k& < n, the g-binomial

coefficient is given by

3. The Gauss binomial or g-binomial formula: The Gauss binomial or ¢-binomial

formula is defined as:

- n
(-T+a);l _ |: :| qk(k—l)/Qakxn—k'
q
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4. g-derivative of a function: The g-derivative of a function f is given by

f(x) = flqz)
(I—q)z

and (D, f)(0) = f'(0) provided f'(0) exists. For n € N, we have

(Dqgf)(x) = z #0,

Dy(1+2)" = [n]y(1 +g2)"™" and  Dy(1+x);" = —[n], (1 +z); "D,

5. g-Riemann integral: The Riemann type ¢-integral is defined as
d b
/ / flun)diudiv = (1—q)(1—a@)(b—a)c—d)
Z Z fla+®—a)a',ct(c—d)g’) a'e’.

j=0 i=0

provided the series on the right hand side converge.

6. g-Jackson Integral Let 0 < a < b, 0 < ¢ < 1 and f be real-valued function. The
g-Jackson integral of f over the intervals [0, b] and [a, b] are defined by

| 1= -ap 3 e

/abf(u)dqu:/Obf(u)dqu—/oaf(u)dqu_

For further details one can refer to [90].

and

0.5 Generalized boolean sum operators

In [45] and [46]], Bogel introduced the concepts of B-continuity and B-differentiability.
Dobrescu and Matei [64] established an approximation theorem involving these kind of
functions in which they showed that the bivariate generalization of Bernstein polynomials
can be uniformly approximated by the associated GBS (generalized boolean sum) op-
erators using the definitions of B-continuity and B-differentiability. Badea et al. [33]
established a Korovkin type theorem (known as Test Function Theorem) on the approx-
imation of B-continuous functions and obtained some sequences of uniformly approxi-

mating pseudo polynomials. Badea and Cottin [37]] obtained Korovkin type theorems for

14



0.5: Generalized boolean sum operators

generalized boolean sum operators. Barbosu et al. [39] introduced the GBS operators
of Durrmeyer-Stancu type based on ¢ integers and obtained the rate of approximation
with the aid of the Lipschitz class of B-continuous functions and the mixed modulus of
smoothness. Agrawal et al. [20] defined GBS operators of Lupas-Durrmeyer type based
on Pdlya distribution and discussed the degree of approximation by means of the mixed
modulus of smoothnes. Ispir [[87] constructed the GBS operators associated with a com-
bination of Chlodowsky and modified Szasz operators and studied the rate of convergence
for the Bogel continuous and Bogel differentiable functions. For some important contri-
butions in this direction we refer to [cf. [52], [41], [42], [1L12], [67], [68]], [66], [L11],
[113], [40], [60] and etc.]. Now we give some basic definitions and notions regarding

Bogel space:

0.5.1 Basic definitions related to Bogel space

Definition 13. Bogel continuity and Mixed difference
Let I, J be compact sub intervals of real axis then the function f on I x J is called a

B-continuous (Bogel continuous) function if for every (zo,y9) € I x J we have

lim Afl(zo,90); (2, y)] =0,

(@,y)=(20,y0)

where A f[(xo, yo); (z,y)] denotes the mixed difference defined by

AfoL'O,yo); (‘Tay)] = f(l',y) - f(fL‘,y()> - f(l‘o,y) + f(manU)’

Definition 14. Bogel boundedness
The function f : [ x J — R is said to be B-bounded on I x .J iff there exists M > 0
such that

1A fl(z0,50); (z, )]l < M

for any (xo,v0); (z,y) € I x J. Let By (I x J), denote the space of all B-bounded func-

tions on I x J — R, equipped with the norm

1A= sup  [Af[(zo,90); (z, y)]]-

(2,y),(z0,y0)EIXJT

15
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We denote by C;, (I x J) , the space of all B-continuous functionson I x.J. B (I x J),C (I x J)
denote the space of all bounded functions and the space of all continuous (in the usual

sense) functions on / x J endowed with the sup-norm ||.||_ respectively. It is known that
C(IxJ)cCCy(IxJ)([35], page 52).

Definition 15. Bogel differentiability
A function f : [ x J — R is called a B-differentiable (Bogel differentiable) function at
(x0,y0) € I x J if the limit

lim Af[(l’m yo); (337 y)]
(@,y)—(x0,y0) (517 - xo)(y - yo)
exists and is finite.

The limit is said to be the B-differential of f at the point (z, ) and is denoted by
Dg(f; zo,y0) and the space of all B-differentiable functions is denoted by Dy(I x J).

Definition 16. Lipschitz class for Bogel space: For f € C, (I x J), the Lipschitz class
Lipy (€,7) with &,y € (0, 1] is defined as

Lipas (6.7) = {f € Cy (1 x 7)< |AF [(woo): ()| < Mo — 2 lyo — "

for(:L'OvyO) ) (x,y) €lx J}

Definition 17. Mixed modulus of smoothness

The mixed modulus of smoothness of f € Cj, (I x J) is defined as

Wmized (fa 517 52) ‘= sup { |Af [(x07y0); (l’,y)” : |ZE - 1'0| < 51a |y - y0| < 62}7
for all (z,y), (z0,y0) € I x J and for any (d;,02) € (0,00) x (0, 00) with
Wmized © |0,00) X [0,00) — R.
The basic properties of w,,;..q Were obtained by Badea et al. in [36] and [34] which

are similar to the properties of the usual modulus of continuity.

LetR™* = {f: I x J — R}and L : R’*/ — RI*/ be a bivariate linear positive
operators. If f € R’/ and (z,y) € I x J then the GBS (generalized boolean sum

)operator associated to L is defined as
U(f;z,y) = L((f(x,9) + f(z,0) = f(*,0));7,9) .

16
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Badea and Badea [34]] gave a Korovkin-type theorem for B-continuous functions

which is given as

Theorem 0.1. Let (L,,,,) be the sequence of positive linear operators such that L,, ,, :
R — R for e; ;(u,v) = u' v7 (i, j non-negative integers such that 0 < i+j < 2),

we have

(i) Lo n(€o0;2,y) = L(L2,y) = 1,

(i) Lyn(ero;z,y) = Llusz,y) = ¢+ umn(z,y),

(iii) Liyn(eor;x,y) = L(v;z,y) =y + vmn(z, y),

(V) Linn(eos +e20;2,y) = L(u® +v*12,y) = y* + 2% + W n(2,y),

(V) hmm,n—ﬂ)o Um,n (JZ, y) - limm,n—mo Um,n(JJ) y) - limm,n—>oo Wm,n (Ia y) =0 uniformly

onl x J

then the sequence {U,, [} converges to f uniformly on I x .J for any f € Cy(I x J).

Later, Badea et al. proved Shisha Mond theorem for B-continuous functions using

GBS operators which is given as follows:

Theorem 0.2. Let L(f;x,y) : Cy(I x J) — Cy(I x J) be the bivariate positive linear
operators and U(f;x,y) be the associated GBS operator then for f € C,(I x J) and
(x,y) € I x J, we have

|f(e,y) =U(fs2,9)] < |f(,y)| 11— L(L;2,9)| + {L(1; 2,y)
VI 2By + VI )

1

5,09

SR/ (R e Y (o ooy y)} et 361, 62).

where 01,05 > 0.
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0.7 Contents of the Thesis

Chapter 1. In the first chapter, we discuss the Schurer type ¢-Bernstein Kantorovich
operators introduced by Lin [99] and obtain a local approximation theorem and the statis-
tical convergence of these operators. In this chapter we also study the rate of convergence
by means of the first order modulus of continuity, Lipschitz class function, the modulus

of continuity of the first order derivative and the Voronovskaja type theorem.
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The results in this chapter are published in Proceedings of Mathematical Analysis and

its Applications (Springer publications).

Chapter 2. The second chapter is concerned with the Stancu-Kantorovich operators
based on Pdlya-Eggenberger distribution. We obtain some direct results for these opera-
tors by means of the Lipschitz class function, the modulus of continuity and the weighted
space. Also, we study an approximation theorem with the aid of the unified Ditzian-Totik
modulus of smoothness wy-(f;t), 0 < 7 < 1 and the rate of convergence of the opera-
tors for functions having a derivative of bounded variation on every finite subinterval of

[0, 00).

The results in this chapter are communicated in RACSAM (Revista de la Real Academia
de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas) (Springer Publica-

tions).

Chapter 3. In this chapter, we introduce the Szdsz-Durrmeyer type operators based on
Boas-Buck type polynomials which include Brenke-type polynomials, Sheffer polynomi-
als and Appell polynomials. We establish the moments of the operator and a Voronvskaja
type asymptotic theorem and then proceed to study the convergence of the operators with
the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a
direct approximation theorem with the aid of unified Ditzian-Totik modulus of smooth-
ness. Furthermore, we study the approximation of functions whose derivatives are locally

of bounded variation.

The results in this chapter are published in Journal of Inequalities and Applications

(Springer Publications).

Chapter 4. In the fourth chapter, we obtain the rate of approximation of the bivariate
Bernstein-Schurer-Stancu type operators based on g-integers by means of the moduli of
continuity and Lipschitz class. We also estimate the degree of approximation by means
of Lipschitz class function and the rate of convergence with the help of mixed modulus of
smoothness for the GBS operator of g-Bernstein-Schurer-Stancu type. Furthermore, we
show the comparisons by some illustrative graphics in Matlab for the convergence of the

operators to some functions.
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The results in this chapter are published in Turkish Journal of Mathematics ( Scientific
and Technological Research Council of Turkey (TUBITAK) publications).

Chapter 5. In this chapter, we study the approximation properties of the bivariate ex-
tension of g-Bernstein-Schurer-Durrmeyer operators and obtain the rate of convergence
of the operators with the aid of the Lipschitz class function and the modulus of continu-
ity. Here, we estimate the rate of convergence of these operators by means of Peetre’s
K -functional. Then, the associated GBS operator of the ¢g-Bernstein-Schurer-Durrmeyer
type is defined and discussed. The smoothness properties of these operators are improved
with the help of mixed K -functional. Furthermore, we show the convergence of the bi-
variate Durrmeyer type operators and the associated GBS operators to certain functions

by illustrative graphics using Matlab algorithm.

The results in this chapter are published in Mathematical Methods in the Applied Sci-

ences (Wiley Online Library Publications).

Chapter 6. In sixth chapter, we study the mixed summation integral type two dimen-
sional ¢g-Lupas-Phillips-Bernstein operators introduced by Sharma in 2015. We establish
a Voronovskaja type theorem and introduce the associated GBS case of these operators
and study its properties. Furthermore, we illustrate the rate of convergence of the opera-

tors introduced by Sharma and the corresponding GBS operators by numerical examples.

The results in this chapter are accepted in Numerical Functional Analysis and Opti-

mization (Taylor and Francis Publications).

Chapter 7. In the seventh chapter, we deal with the approximation properties of the
Kantorovich-type ¢-Bernstein-Schurer operators by means of the partial moduli of conti-
nuity and the Peetre’s K-functional. Finally, we construct the GBS operators of bivariate
q-Bernstein-Schurer-Kantorovich type and estimate the rate of convergence for these op-

erators with the help of mixed modulus of smoothness.

The results in this chapter are published Applied Mathematics and Computation (El-

sevier Publications).
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Chapter 8. In this chapter, we establish the approximation properties of the bivariate
operators which are the combination of Bernstein-Chlodowsky operators and the Szasz
operators involving Appell polynomials. We investigate the degree of approximation of
the operators with the help of complete modulus of continuity and the partial moduli of
continuity. In the last section of the chapter, we introduce the GBS case of the bivariate
operators and study the order of approximation in the Bogel space of continuous func-

tions.

The results in this chapter are published Annals of Functional Analysis (Duke Univer-

sity Press Publications).
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Chapter 1

Rate of convergence of modified
Schurer type ¢-Bernstein Kantorovich

operators

1.1 Introduction

Muraru [[102] introduced Bernstein-Schurer polynomials based on ¢-integers and estab-
lished the rate of convergence in terms of modulus of the continuity. Agrawal et. al [[18]]
considered the Stancu variant of these operators and discussed some local and global di-
rect results. Later, Agrawal et. al [21] proposed Durrmeyer type modification of these
operators and discussed some local direct results and studied the rate of convergence of
modified limit g-Bernstein-Schurer type operators.

Recently, Lin [99]] introduced a new kind of modified Schurer type ¢-Bernstein-Kantorovich
operators as follows:

Let p € N%the set of non negative integers) be arbitrary but fixed and «, 3 be integers
satisfying 0 < a < 3. For f € C[0,1 + p|

n+1+p], +1+p

n+p 1
Kr(f(}ﬁ)(f;x) = Zﬁn,k(Q; x)/o f([ - + alk + oz]q] )dqu,x € [0,1],
k=0 q
(1.1.1)
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n+p

where p, x(q; ) = [ k: 2" H (1 — ¢°z). Itis clear that K% (f; ) is a linear

s=0
positive operator. It is remarked that when o« = 8 = 0, it reduces to the operator discussed

in [[134].

In the present chapter, we continue the work done by Lin by discussing the rate of con-

:| n+p+k—1
q

vergence in terms of the modulus of continuity, elements of Lipschitz-type space and

Voronovskaja type theorem.

1.2 Preliminaries

In this section, we give some basic results which will be used in the sequel.
Lemma 1.2.1. [99]. For KT(L?ZB) (u™; ), m =0,1,2, we have
(i) Kiy” (L) = 1,

.. (@B) (0. N\ n+pl, . ; L
) K 0i0) = e e (g o)

-1 2
n *F[?f]j—[qf T_ZP ]qq2a+3x2+% <_qa+1+q2+a(2[a]q+

2,
a 1 1 2q[a], 20,2
“)”[nﬂwg(mq* 2, 7 L)'

Remark 1.2.1. For the modified Schurer type q- Bernstein-Kantorovich operators, we

(iii) K (u?x) =

have

—<a+1)4,

(@) Jim [l (KL (= ) = |52

(i)l )y, (5 (0 = 2)%52) = 2(1 — ),

1.3 Main results

1.3.1 Rate of convergence

In our next theorem, we will find the rate of convergence of the operator (T.1.1)) using first

order modulus of continuity.
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1.3: Main results

From the definition of the first order modulus of continuity, we have

o) - Sl < wlr.0) (5724 1). (131)

we will use this inequality in our result.
Theorem 1.3.1. For f € C[0,1 + p|, we have
KEi) = ) < 20 £:0/057),
where w(f,.) is the modulus of continuity of f and 5= K% B)((u —x)% 1),
Proof. Using the linearity and positivity of the operator, in view of (I.3.1)) we get

K32 (fr) = f(x)]

nzﬂ)p"k (@ / (f([n+ 1u+ a, " [anliaé]q) N f(m))dqu

n+p
u qlk + o,
= Zp”kq’ <[n+1+5]q+[n+1+ﬁ]q>_f(x) ot
N u qlk + al, —:1:‘
< S pslgn) [ | I 2T Ly ar.0) dyu
k=0 0
n+p n+p 1 u
w(f,0 Dn, ;T - T - -
< wh) Sputan) + 252 Spnte) [ |

qlk + o],
[n+1+ 8],

—x dqu>.

On applying the Cauchy-Schwarz inequality, we have

/01 [n—l—f—i-ﬁ]q [nqgl—f;rf]g]q
= {/ <[n+ T, [nng jf]ﬁq]q ‘x)qu“}m

= afwakﬁ) ().

—x|dqu
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1.3: Main results

Hence,

n+p

(K2 (Fra) = fa)] < w(f, Y,

Again applying the Cauchy-Schwarz inequality, we get
K (f50) = f(@)]

¢; ).

n+p n+p 1/2
< w(f, 6 {wa Pok(q;x } {ank ¢ }
k=0
w(f,0) [ <X 1 u qlk + o]
=« s {k 0 ([n+1+ﬁ]q+[n+1+ﬁ
f 1/2
= w(f, { 0‘5) u—$2x)} :

Choosing 6 := 0147 (z) = K% ((u — 2)?; ), we have

KED(fia) - ﬂ@|sm(ﬁ %W@Q.

Hence, we get the desired result.

Corollary 1.3.2. Let f € Lip},(§) for 0 < £ < 1,then

£/2
KeD(fr2) - ﬂMSZMG%W@),

where 57(311”8) (x) = Kfq’ﬁ)((u — )% ).

Proof. Since f € Lip},(£), we have w(f,d) < Mé%, forany § > 0.

Hence the result follows from Theorem 1.

Theorem 1.3.3. If f(x) has a continuous derivative f'(x) and w(f’,

continuity of f'(x) on [0, 1 + p|, then

2 1/2
T — x) dqu}
Ja

]

d) is the modulus of

KD (fa) - <N<MMWHMf@Q+WMWQ,

where M is a positive constant such that | f'(x)| < M and

) (x) = (m — x)x + [; (ﬁ - q[a]q). (1.3.2)

[n+1+ 6] n+14p
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1.3: Main results

Proof. On applying the mean value theorem, we get

u qlk + al, _ U qlk + o], )7
f<[n+1+mq+[n+1+mq)‘f(x) - ([n+1+mq+[n+1+mq )f@

(z)

B u [k + a] .
- ([n+1+mq+[n+1+mq )f
U Q[k+a]q
([ 114, *[n+1+mq‘“’)
7€) — ()

qlk
where, ¢ lies between ([ n f—l— B I+ :_f 8 ) and x.

Hence, we get |K,(f‘q’6)(f r) — f(z)]

ey ! n+p+k—1
U q[k+a]q n .
SIY)Z/ (n+1+ﬁ +[n+1+5]q_$){kll’k H (1—q¢°x)dgu

+§+j/ (n+1+5 e ~2) (19 - @) [Z]x’f
H 0 g

n—+p

@)K (u |+Z/

<AF(©) ) m T -

s=0

IN

qlk + ol —x‘
n+1+6 m+1+ﬂq

. u gk + o], —
— n+1+8 n+1+p
M|u£fi,p|+2/ (f',9) . R

IN

ntptk—1

U Q[k‘i_@]q n k s
1+, n+i+s, Mf H) (1= qa)dgu
<X qlk + o n
a k
< M]unqp\+wf52/ n+1+ﬁ [n+1+ﬁ]q—az{ka
n+p+k—1 . w f’, n+p u q[k:—l—a]q 2
H (= a)dgu+ =5 Z/ ([n+1+mq+[n+1+mq“”)

n n+p+k—1
X [k] qu H (1 —¢°x)dyu,

s=0
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1.3: Main results

where ,u% ¢,p 1s given in (|1.3.2)).

Now, applying Cauchy-Schwarz inequality in second term of the right side of the in-
equality and using Lemma[I.2.1 we have

|KD (fr2) — f(2)]

n+p 1 2
(a,8) / u gk +aly )
= Mm”’q’pr(f’é)(,;/o ([n+1+ﬁ]q+[n+1+ﬁ]q ’
n n+p+k—1 1/2
X[k] " H (l—qsx)dqu)
q s=0
w(f/>5>n+p ' u qlk + o, — Q{R} k
T Z/ (i e o) i .
n+p+k—1
X H (1 —¢°x)d,u
s=0
< M u| +w(f6 \/K“B) —z)% ) +w(J;’5)Kr(L?‘q’B)((u—:c)2;x).

Choosing 6 := 015" (z) = K% (v — )?; 2) ,we have

(KD (fia) - f)] < MIp@D] + w(f, 0P ()1 + /o ().

n,q

Hence, we get the desired result. L]

1.3.2 Asymptotic Result

Theorem 1.34. Let f € C[0,1+p], 0 < ¢, < 1 be a sequence such that q,, — 1 and

— 0, as n — oo. Suppose that f"(x) exist at a point x € [0, 1], then we have

[1]q,

14 2«

lim ]y, (K9 (i) — f(a >>=(

n—oo

(0t Da) ) + 5o =)o)
Proof. By Taylor’s formula we have
fu) = f(x)+ (u—2a)f'(x) + %f”(x)(u — ) 4+ 7r(u— )2, (1.3.3)

where 7(u, z) is the Peano form of the remainder and lim r(u, z) = 0.
uU—T
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1.3: Main results

Applying K,(fq’f )(., x) on both sides of equation (1 , we get

KGP(fi0) — fo) = FKS <<u—w>;w>+gf”<x>f<£f‘q*£><<u—w>2;x>
+ K& ((u—2)’r(u,2);2).

n,q
Now taking the limit as n — oo, on both sides of the above equation, we get

Tim [l (K5 (F:) = £(@)

00 n,qn el 9 (Kw(lfxzif)((u - ZL‘)Q,[L‘)

+ lim [n],, KX ((u — 2)%r(u, 2); x).

n7q

i [y, £ (@) (KD (= 2);2) + Tim [, L
(

n—oo

From the Remark [1.2.1] we have

lim [n],, (K9 (v — z);2) = —(a+ Dz, (1.3.5)

n
n—00 qn

uniformly in [0,1], and

lim [n],, (K2 ((u — 2)%;2) = 2(1 — z) , uniformly in [0, 1]. (1.3.6)

n
n—00 4qn

Hence in order to prove the result, it is sufficient to show that

[n]q, K% ((u — )% (u, z);2) — 0, as n — oo , uniformly in [0, 1].

n,qn

By using the Cauchy-Schwarz inequality, we have

KA (- o)2r(u,2)s2) < | KGD (2(w,2)s )y KD (0 — 0) ).

(1.3.7)
We observe that r%(z, ) = 0, and from Theorem [1.3.1] we have

lim K% (1 (u,2);2) = r*(z,z) = 0. (1.3.8)

n—o0

Hence, from (1.3.7) and (T.3.8)), we get

lim [n],, K% ((w — 2)?r(u, 2); x) = 0 , uniformly in [0, 1], (1.3.9)

n—o0

in view of the fact that

K@D ((y—2)%2) =0 (i) , uniformly in [0, 1].

n,4n n?

Now, combining (T.3.4)-(T.3.6) and (1.3.9), we get the required result.
This completes the proof of the theorem. 0
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1.3: Main results

We observe that due to the presence of = in the denominator on the right side we get
only pointwise approximation. In the case of Szdsz operators [130], this = gets cancelled

leading to the uniform convergence.

Theorem 1.3.5. Let f € Lip;,(r),r € (0,1]. Then Vx € (0,1), we have

X

(o,8) r/2
KD (i) — f(a)] < M(é—”) ,

where 5,(5(1’6) (x) = Kf;ijﬂ)((u —x)% ).

Proof. First, we prove the result for r = 1.

)~ ) < Spuetan) [ [r( i+ )
na WIS L PR |1 gl gl
N u qlk + o, ‘
nr-p 1
< MY pao) / m+1+86, [+1+7], du
k=0 0 U X qlk + al, g
n+1+08], [n+1+70],
Since
1 < i
u N [k + a] e
n+1+08], [n+1+p0],
applying the Cauchy-Schwarz inequality, we obtain
n-+p 1
0)( 1 u glk+al,
K o) = @) < Zp"’“ /g pria 8, rirg,

M
= 75 K (u—cha)
o ()

T

= M

Hence, the result is true for r = 1.

Now, we prove the result for € (0, 1). Applying the Holder’s inequality for summation

1 1
withp:—andqzl—,weget
r —r
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1.3: Main results

dyu

n+1+p], [Rn+1+75],
TL+P 1 1/rN 7
< {3 <q;x>( dqu> }
{,; o |

u qlk + «
. . N . . . . . 1 1
Again applying Holder’s inequality for integration with p = — and ¢ = T we get
r —r

n+1+p], [n+1+7],

KD (fr2) — fla)]

n-+p
{ an kg5 T

Since f € Lip},(r), we have

Q u 4_q[km]q)_f(x)

n+1+p], [Rn+1+p],

1/r r
dqu} .

r

u qlk + o, ‘
n+p 1
o n+1+p n+1+p
K ) — @) € MY sty [0 DEIEPL ,,
k=0 0 \/[n+1+ff]q t n+148], Tz
n+p 1 r
u qlk + o, }
< —x|d,u
- {;: o[n+1+mq [n+1+ 5], !
< ( x))r

Thus, applying Cauchy-Schwarz inequality

(@8) )\ /2
K ()~ ) < ar(M )

- x

Hence, we get the desired result. [
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Chapter 2

Stancu-Kantorovich type operators
based on Polya-Eggenberger

Distribution

2.1 Introduction

Based on Polya-Eggenberger distribution, Stancu [[128] introduced a generalization of the

Baskakov operators for a real valued function which is bounded on [0, c0) as

N = k 2 (n+k—1\ 1malglk=al k
Vn[ ](f,l') = ;Umk(z,a)f <E> = Z ( L )(1 _i_x)[nJrk’,a}f (E) )

k=0

[k,—1]
I
— Zk_ f<—>, (2.1.1)

1+l’ [n —a] 142 [k,—1]
(o)
(6%

where a = a(n) > 0 and ul™" = u(u — h)(u —2h)...(u —n — 1h), ul®" = 1. If a = 0,
then the operator (2.1.1)) reduces to the Baskakov operators [43]:

= /n+k— xk k
vn(f;:c>—2( o 1>Wf(5>. (2.12)

k=0

For the class of bounded and Lebesgue integrable functions on [0, o0), Deo et al. [56]

33



2.2: Basic results

defined the Kantorovich variant of the operators (2.1.1) as follows:

n[kv—l] <£)[k7_1] ’k+1
o

(1+x )[’“"” ke
— +n
o

Alternatively, we may write the operator (2.1.3) as

" L) I |
Kr[z }(f;x) = (n - 1)<1 —I—(If)[n’fa] ZE
k=0

B (x Ly )
> k1 q TR T e
Kil(fiz) = (n—1) (” * ) X s (1)
; k B (E’ l) /0 [nfl’n—l]
_ / " L9 () f (),
" (2.1.4)

where, LI (2, u) = (n—1) Z <n+]/;: a 1) b (ﬁB-i‘(/Z, i; ") X[ k) (u), X[k, k] (u)

=0 n—1'"n—1
ko k+1
n—1n-—1

a’

is the characteristic function of { } and B(m,n) is the Beta function.

The authors [56] examined the uniform convergence, Voronovskaja type asymptotic
result and the weighted approximation properties for functions in C5[0, 00). In this chap-
ter, we examine the approximation behavior of the operators given by (2.1.4) for functions
in a weighted space and a direct approximation theorem by means of wy-(f,u), 0 <7 <
1, which unifies the classical modulus of smoothness w( f, u) for 7 = 0, and the Ditzian-
Totik modulus of smoothness wy( f, u), for 7 = 1. Furthermore, the rate of approximation
of the functions with derivatives of bounded variation by these operators is also estab-
lished.

Throughout this chapter, C' denotes a constant not necessarily the same at each occur-

rence.

2.2 Basic results

Lemma 2.2.1. [I56] For the Stancu-Baskakov operators (2.1.1), there hold the equalities:

(i) Vil (eg; ) = 1;
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2.2: Basic results

(ii) Vil(er;x) = T

1 1 !
(lll) Vn[a](€2;x) _ (1 — a)<1 — 2a) iIZ'2 + IL’(.%T;F ) + CY(l — 5)33:| .

Lemma 2.2.2. [56] Let ¢;(u) = u' i = 0, 1,2, 3,4, then for the Stancu-Kantorovich op-
erators (2.1.3), the following equalities hold:

(i) K (eg:w) =1;

ne 1

ii V[La]el;x: X
(i) Kn'(eni) = o=y 0=y T am =1

nn+1) z(x+a) N 2nx N I
n—121-a)(1-2a) (n—-12%1-a) 3(n-1)%

(iii) K\ (ey;2) =

1
4(n —1)3(1 — a)(1 — 2a)(1 —
+62(a + ) (5a — 22 — 3)n? — 22(7 — 26a + 42” + 23a* — 150z + 92)n

+a—1)2a—1)Ba—1)};

(iv) KT[LO‘](e;;;x) =—

%) {—4z(a + 2)(2a + z)n?

1
5(n — 1)'(1 — a)(1 — 20)(1 — 3a)(1 — 4a) {5$(3O‘ +2)2a+z)
(o + 2)n' — 102(=32 — 4 + 70)(2a + @)(a + z)n” + 5a(a + 2)(54a” — 57a —

Alax + 112* + 15 + 242)n® — 5 (—62" + 39 + 560° — 83a® — 152 + 57ax — 6 —

1
5(n—1)%

v) K ey ) = —

162 + 287 — 54a2x)n} +

Proof. The identities (i)-(iii) are proved in ([S6], Lemma 2.2), so we give the proof of the

identity (iv). The identity (v) can be proved in a similar manner. By the definition of the
operator (2.1.3)), we have

1
(n—1p

2 1
K eyt ) OV ess) + 3 Vi) + i) + VI )|

(2.2.1)

Since the values of Vr[a}(ei; x),i = 0,1,2 are known from Lemma , we need to

compute only
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2.2: Basic results

[k;v_l}
o0 [k7_1} z
1[n,—a] n (a) k3
(1 + a)lmel & (1 T )[k,—u n3

— +n
«

1 & 3 5
n? kzz()vn’k<m’ k(k = 1)k = 2) + ~V, % (eai 2) = V3% (ex; 7).

(2.2.2)

Using hypergeometric series we may write

L = > vpp(za)k(k — 1)(k - 2)
k=0

o plktsl (E)““”’"”

e L o
n,—a k+3,—
(1+ )t ]k;zok!(l—i-x )[+3 4
+n
o

=

1ln.—a] n(n+1)(n+2) <§) (E + 1) (2 + 2)

«

1 n—a] /1 1 1
(1+x) ( +x+n)( +x+n+1)( +x+n+2)
8} (8} 0]

[k‘v*l]
o (n + 3)k—1] (E 4 3>
67

1 [k’fl]
k=0 ( +x +n+ 3)
«

1.~ n(n+1)(n+2) <§) <§ + 1) (g + 2)

[n—a] /1 1 1
(1+2) ( +$+n>( +x+n+1> (—+x+n+2>
(6% (6% (8%
1
2F1((n+3),<£+3>,( +$+n+3>;1).
(0% (8%

By the representation of hypergeometric series in terms of Gamma function

[(e)T'(c—a—10)

2fi(a b6 l) = Fe = e =0y

we have

7 - nn+1)(n+2)z(x + a)(z + 2a)
' 1-a)(l-20)(1—3a)

36



2.2: Basic results

Hence,

Thus
K (e3; ) — ! A —4z(a+ 2)(2a 4 2)n°
o 4n—1)3(1 — a)(1 — 2a)(1 — 3a)
+6x(a + 7)(5a — 27 — 3)n* — 22(7 — 26a + 42* + 230* — 150z + 9z)n
+a—=1)2a—1)(3a—1)}.
Similarly we can obtain K" (ey; z). O

Let us denote the m-th order central moment of the operators lb by u,[ff ]m(:v) =
K,[f‘]((u — x)™; x). From Lemma , by simple calculations we have the following

result:

Lemma 2.2.3. [56|] For the functions ,uv[ff ln(x), there hold the equalities:

n

1
=D —a) ”)“ 2 —1)

(i) () (z) = (

.. (o] _ .2 n(n_l_l) 2n
(ii) ppp(z) =2 ((n— 12(1—a)(1-2a) (m-1)(1-a) i 1>
+x( ot TR L —— >+ 1
TPz " - 1F a=1) -1y

Lemma 2.2.4. Assuming that a(n) — 0 and na(n) — [, as n — 0o, | € R, we have
R o] 1
(i) tim gl (@) = (L+ Do + o
n—oo ? 2
(i) lim ngyy(x) = a(e + 1)(1 + 1);
(iii) lim n?u () = 3(1 + 1)%2%(x + 1)
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2.3: Main Results

Proof. By simple calculations we obtain the proof of (i) and (ii) hence we discuss the

proof of (iii). Using Lemma[2.2.2] we have
lim nZME?L(:L‘) = lim n? (KT[{I}(&;; z) — 4z K (eg; ) 4 62° K (ey; ) — 40P K[ (ey; ) + z?)
n—00 ’ n—00

= 32%(z + 1)*(1 + 1)

2.3 Main Results

In the following result we obtain a direct approximation theorem for functions in the

Lipschitz type space:
Theorem 2.3.1. Let f € Lip},(r) and r € (0, 1]. Then, for all x € (0, 00), we have

uLff]z(x))W

KO (fr0) — f(o)] < M(

x
: .. . . . . . 2 2
Proof. Applying the Holder’s inequality for integration with p = — and ¢ = g we
r -
have
> =1
KEfi) = S < 38k [ 1) - fo)ldu
k=0 n—1
[e ] k+1 % kil 257‘
[Oc] n—1 2 n—1
< - =
< an,k(x) (/k |f(u) — f(x)] du) (/k 1du>

sZ(%(@ [ |f<u>—f<x>rfdu> (bESL(:c) / “wu) .

Again applying Holder’s inequality for summation with p = — and ¢ = , and
r
Lemma [2.2.2] we have

(K (fr2) = f(2)] <

[~
>
ST
2
—
&
o
A
=
E
|
=
=
TS
QU
= I
~_
(St
N
3
<>
SR
2
8
3=
1
—_
QU
N
~_—

IA
]
A
3=
R
(]
o>
S
e
)
S~—
P
L
=
|
=
[\&]
QU
I~
~
[Nl
I
]
£
g
[N}
P
=
S
L
~—
&
~
[l
Il
VR
=
g [L2
=




2.3: Main Results

Hence, we reach the desired result. O

2.3.1 Weighted approximation
Our following result is a Voronovskaja type theorem for the operators given by (2.1.3):

Theorem 2.3.2. Let f € (5]0,00), & = a(n) — 0, as n — oo and lim na(n) =1 € R.

n—oo
If  admits a derivative of second order at x € [0, ), then we have

2(z + 1) +1)
2

lim KL (fr0) — f(a)] = 2T DT HL

Jim )+ #(x).

Proof. By the Taylor’s theorem, we may write

fu) = flx) + f(x)(u—x) + %f”(m)(u —2)? +e(u, ) (u — )2, (2.3.1)
where ¢(u, ) € C5[0, 00) and lim e(u,z) = 0.

Applying the operator K. [a]( ) on both sides of (2 | we have

fim n [KI(fi2) — f(@)] = lim 0 ) (@) () + lim () 00

n—oo n—oo ’ 2

+ lim n K (e(u, z)(u — )% z).
n—oo
(2.3.2)

Using the Cauchy-Schwarz inequality in the last term of the right side of (2.3.2)), we get

nK (e(u, z)(u — 2)% \/K[]€2u33 )\/ u[,ﬂ()

In view of ([56]], Theorem 3.2), lim K (c?(u,z);z) = e*(x,x) = 0, since £(u, z) — 0
n—oo

as u — x, and by using Lemma[2.2.4] we get

lim nK® (e(u, z)(u — x)%x) = 0.

n—oo

Now, from (2.3.2) and Lemma [2.2.4] we have the required result.

Theorem 2.3.3. For f € (5[0, 00), we have the following inequality

K5 2) = f(2)] < AMy(1+ 2l (@) + 2w (f a2 >) (233
where wy(f;9) is the modulus of continuity of f on [0,b].
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Proof. From [84]], for = € [0, b] and all u > 0, we have

d

0 = @ < tgu = a1+ )+ (14255 wnir0),
for any 0 > 0. Hence by Cauchy-Schwarz inequality

KEI(fi) = P <400+ )R = 0) + (1) (14 5040

Choosing 0 = ugﬁ ]2(:):), we get the desired result.

[
Theorem 2.3.4. Let f € C9]0,00) and o = a(n) — 0, as n — oo. Then, we have the
following result:
lim [[K7(f) = fll2 = 0.
n—oo

Proof. From [69], in order to prove this result it is sufficient to show that

lim [|K9(u™ z) — 2™, =0, m=0,1,2. (2.3.4)

n—oo

From Lemma K (1;z) = 1, therefore the condition 1i holds for m = 0.
Using Lemma [2.2.2] we have

A (uyz) — x|, = su ! = ! -z
1) =all: = s s D —a) T 2= 1)
_ 1 z(1+a(n—1)) 1
B mz%(1+932)((n—1)(1—04) +2<n—1>)
l+a(n—1) 1

dn—1D(l—a) 2m=1)

Hence, lim ||K!(u;z) — z||, = 0.
n—oo

Now
o (2 1) — 22 = su 1 nn+1) z(z+a) 2nx
1 2
+3(n —1)2 v

B n(n+1) B 1 n(n+1)a
= ((n “ 1201 —a)(1 = 2a) 1) T3 ((n “ 1201 —a)(1 = 2a)
(n—1)2(1-«) 3(n—1)%

Therefore, lim || K (u?; x) — 22||, = 0. This completes the proof of the theorem.  []
n—oo
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2.3: Main Results

Example 1. The convergence of the operators KT[LO‘]( f;x) is illustrated in Figure 1,
where f(x) = —22%¢74", a = 1/n, n = 10 and n = 20, respectively. We can see that
when the values of n are increasing, the graphs of operators K o] (f;x) are going to the

graph of the function f.

-0.02 4V
-0.03 4

-0.04 A

_K1|n1u|[f;x:| ..... Kzln;—nhﬁx:l S =R

The convergence of K (f; ) to f(z)

In Table |1} we have computed the error of approximation for K1) at certain points,

for n = 10 and n = 20, respectively.

Table 1. Error of approximation for K. ,[La]
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2.3: Main Results

v | K (f ) - K5 > (f ) —

0.4 | 0.019565407970 0.012368435090
0.6 | 0.022150921080 0.014168200500
0.8 | 0.014892362830 0.009011449298
1.0 | 0.006013519940 0.002842511327
1.4 | 0.004823881541 0.004095282537
1.6 | 0.006630626569 0.004928260795
1.8 | 0.006993133290 0.004797156210
2.0 | 0.006563403422 0.004200434530
2.2 1 0.005780754788 0.003454436427
2.4 | 0.004903691508 0.002729426270
2.6 | 0.004066205408 0.002100415754
2.8 | 0.003326488994 0.001588409028
3.0 | 0.002700935903 0.001187735798

Theorem 2.3.5. Let f € C9]0,00), a« = a(n) — 0, asn — oo and a > 0. Then

K () = ()]
(1 + x2)1+a

=0 2€10,00)

lim sup

Proof. Let zy € [0, 00) be an arbitrary but fixed point. Then

KE(f50) = fa)

sup
z€[0,00)

(1 + JI2>1+0‘

KB ()~ f@)

sup
<z

(1 + I2)1+a

+ sup

xT>x0

KB ()~ ()
(1 + x2)1+a

o K1+ 2 z)
KL Fi2) = F@lona + 11l sup 2o B0
|f ()]

IN

+5‘ch 1+ a2)i+e’
(2.3.5)
Since |f(z)] < || f]|2(1 + x?), we have
o @I 1ifl 036

z>10 (1 —I—ZEQ)H_G - (]_ +ZL’3)G'
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Let € > 0, be arbitrary. We choose z to be so large that

Il e

Tiay <71 (23.7)

KLQ] 1 2.
Since lim sup (1+u%z) = 1, it follows that
n—0o0 xr>x0 1 + xz
(o] 2. 2\a
sup Kx (1+z24 ) < (1+z5) co
S 1fllz 4

for sufficiently large n. Therefore,

|1 £]]2
(1+22)
(2.3.8)

KT[LO‘] 1+u?x
11l sup 2t ) n

Il KR )
>0 (1+x2)a+1 >~

€
< su —
— (14 a3) x>:£)0 (14 22) 4

Applying Theorem [2.3.4], we can find for sufficiently large n

KL (fr2) — £(@)|| o) < (2.3.9)

=~ m

Combining (2.3.5)-(2.3.9]), we obtain

K (fa) — ()
sup

z€[0,00) (1 =+ $2)1+a

< €.

This proves the required result. 0

Theorem 2.3.6. Let f € C9[0,00). If« = a(n) — 0 asn — oo and lim na(n) =1 €

n—oo

R. Then for sufficiently large n, we have

KE (fso) = f@)| I
sup <f, ) , (2.3.10)

velooo) (1 +22)%?2
where C(1) is a positive constant depending on .
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Proof. For z € (0,00) and § > 0, using (0.4.1) and Lemma|0.4.1} we have

[f(w) = f@)] < (L4 (@ + ]z —ul)*) Qf; [u — zl)

|u — =]

§2(1+m2)(1+(u—x)2)(1+ 5 )Q(f;é).

Applying K)(-; z) both sides, we can write
K fia) = f@)] < 200+ a)00s0) (14 KL - o)%s2)

R ((1 (=2t ; 2l, x) )

2.3.11)
From Lemma [2.2.4] for sufficiently large n, it follows
nugy(x) < C)(1 +2?) and n?uly(z) < C(1)(1 + 2?)?, (2.3.12)

where C'(1) is a positive constant depending on .

Now, applying the Cauchy-Schwarz inequality in the last term of (2.3.11)), we obtain

[a] _ oy [u — | <1 [a] 1/2 1/ Y2 0 ) 1/2
K (o o) 5 ) < 5 (k) 4 () (o)) ™

(2.3.13)
Combining the estimates (2.3.11)-(2.3.13)) and taking
~ 1
C(l) =2 (1 +/C) + 20(1)) and§ = ——,
vn
we reach the required result.
O

2.3.2 Unified modulus theorem

In this section, we shall investigate a direct theorem with the aid of the unified Ditzian-

Totik modulus of smoothness wy-(f,t), 0 <7 < 1.

Theorem 2.3.7. Let f € Cg[0,00), then for sufficiently large n

K (f:2) — f(z)] < Cwyr (f; ¢1:/Tﬁ(x)) ; (2.3.14)

where C' is independent of f and n.
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Proof. By the definition of K- (f,t), for a fixed n, x, 7 we can choose g = ¢, ., € W-
such that

I = all+ “ oy < 2 (122,

We can write

KR (fi2) = f@)] < K = i)l + K (g:2) = g(@)] + lg(a) — f ()
<2/ f — gl + |KF (g; z) — g()]. (2.3.15)

Since g € W, we have

and so

KL (g: ) — g(2)] < K (

/x " g ()dv

[ &m

<lg7g'll lu—=[""

;x) . (2.3.16)

By applying Holder’s inequality, we get

/: g (v)dv

<l¢7g'l|

T

Y

[ &

we can write

[ &

| [ A=)
<2|u—x| 1 1 .
=T E (m*m)

Hence

u 27’ T/ _ 1 1 T
[ o] < l¢7g/|| u :c|( . )
- x7/? Vi+z Vi+u

27[lo7g'|| [u — =| 1 1
< 2.3.17
T A2 axar) @D

on applying the inequality

la+0b]" <lal"+1b]", 0<r <1,
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Thus, from (2.3.16) and (2.3.17) and using Cauchy-Schwarz inequality, we obtain

27j¢79| 1 1
@ ) 2 NY I Al _ .
K)o < = (Ju =l e + i )

27 ¢7’ ! 1 - - - .
< ‘:Lf/zg | ((1 + )7/2 \/ML]Q(‘T) + \/,ML]Q(:B)\/KT[L ] (1 +u) T;x)>

< 2l b @+ KD (oo
(2.3.18)
Therefore, using ([S6l], Theorem 3.2) for sufficiently large n, we have
K[a] . . <2 o7d'|lC ¢2('I) —T —7/2 1 —7/2
1K g3 2) — g(2)] < 27|07 GO — =4 @77 (2) + 2777 (1 + 2) :
(2.3.19)
for sufficiently large n.
Thus, combining (2.3.13)) and (2.3.19), we find
o T T C¢1_T z
K - 1@ < 2 - gl + 2 g S
¢ ()
< C - 4
< c{iir-al+ e
¢ (z) ¢ (z)
< OK T N < C T N .
< b <f T ) SO f; Tn
This completes the proof of the theorem. [

2.3.3 Rate of Convergence of Stancu-Kantorovich type operators based

on Polya-Eggenberger Distribution

This section is devoted to the discussion of approximation of functions having derivatives
of bounded variation. For papers related to the study in this direction we refer the reader
to (cf. [Ol, [62], [[75]], [86], [911]], [96], [107] and [109] etc.). Let

DBV[0,00) := {f € (5[0,00) : " is of bounded variation in [a, b] C [0, oo)}
A function f € DBV[0, 00) can be represented as
@) = [ atudut )
where g € BV[a, b], the space of bounded variation function on [a, b].
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Lemma 2.3.1. Let o = a(n) — 0, as n — oo and lim na(n) =1 € R. For every x > 0

n—o0

and sufficiently large n,

u 2
(i) &La](x,u):/ Ll?](x,v)dvg ) (+27) 0<u<u,

0 (x—uw)?2 n

o] 2
(ii)) 1 —&n (:v u) = / LIz, v)do < ) (1+27) r <u < oo,

“(wu—x)2 n

where C(1) > 0 is constant and depends on .

Proof. Using Lemmal[2.2.2]and (2.3.12)), we have

u u o 2
ol u) = / LIz, v)dv < / <x U) LIz, v)dv
0 0 r—u

1 C(l) 1+ a?
< Klel((u—2)?%:2) <
when n is large enough. Similarly, we can prove (ii). [

Theorem 2.3.8. Let f € DBV[0,00),a« = a(n) — 0, as n — oo and lim na(n) =1 €

n—oo
R. Then, for every x € (0, 00) and sufficiently large n, we have

|KP(fi2) — f(2)] < K(n — 1;1 o) 1) T 2(n1— 1)]

fa+) + f'(@-) ‘

2
/o’ ff"? flat) 5 f/(x_)' T (\/ 1l )
(1)
1+ 22 1+x

@)l ) | (22) = f(x) = xf'(a+)|

(\/f)+c f(\/f)

Where \/Z f is the total variation of f on [a,b] and f. is given by

+C()

f(u) = fl(z—), 0<u<uw
fo(u) = 0, u =, (2.3.20)
f(u) — fl(x+) = <wu<oo.
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Proof. For any f € DBV |0, 00), from (2.3.20), we may write

FO) = 5 (P t) + @)+ foo) + 5 (F(e4) - Fa-)) sgn(v — )
+.0 (£0) = 5 )+ ) @321
where
1, v==x
%(v) = { 0, v#ux.

Since Kila](eo; x) = 1, using (2.3.21) for every x € (0, 00), we get

KE(fi) = ) = [ Hwa0 - sy = [ 2w ([ rew)

= —/Ox (/u f’(v)dv) L,[f‘](x,u)dqu/:o </u f’(v)dv) LIz, u)du.

(2.3.22)

Let [, := /0 ([f’(v)dv) LIz u)du, I := /;O (/:f’(v)dv) LI (2, u)du.

Since/ d.(v)dv = 0, using (2.3.22) we have

n= [ Guens e n

3 () = o) sl = o) ) do b )
_ %(f’($+)+f/(x—))/0$(x—u) (@ udu+/ (/ e dv) 19 (2, )
- 50D - e [ - oLk
(2.3.23)
Similarly, we have
n= [ (Guen s ren s iw
3 (a) = ) sento = ) o |20
= %(f’(;m—)+f’(g;—))/:o(u—:v)L[a x,u du+/ (/ fe(v dv)
3 Fa) = ) [ = oL wde
(2.3.24)
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Combining the relation (2.3.22))-(2.3.24), we get
K (i) = f(2)

2

/Ooo|u—x!L[ (xudU—/ (/f dv)L[a( W
! /:O (/u fﬂ?(”)d“) L @, u)du.
Hence,

K (fi2) - f(2)]
flla+) + f(x

= SR+ ) [ ot e s 3 (16 - o)

lu — af;2)

/(/f dv) (2, u)du|.

(2.3.25)

\uda _wia)|+

2
(/ fi(v dv> LIz, u)du| +

Now, assume that

fla+) - f’( —)‘

el = [ ( [ f;<v>dv) L, u)d,
0 u
Dl = [ ( [ f;<v>dv) L) (2, u)du.

Now the problem is reduced to estimate Ci(f2, ) and DI (f, ).

and

Using the definition of f,[la} (z,u) given in Lemma and applying the integration by

parts, we can write
- [ ([ 0w) - [ it
Thus,
CEfa) = [ 1Rwle )
< [T s [l i

S
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Since f/(z) = 0 and & (z,u) < 1,

[ e wi= [*1gw - pwleeads [

v vn

4l

. . T
Using Lemma|2.3.1} and assuming v = x — —, we have
v

S
VR
e <a
.l
N—
Q
IS

T

[T s wdu < o [T 1)

0 (z —u)?

1+:p /m x 7 du
0 v e (z —u)?

du

Therefore,

T e LEsa ol AV BN RV
W (fo )| = T+ == .
A — ) vn '

Using integration by parts in D ]( x) and applying Lemma- we have

sl s | [7(f o) gro e | [7 ([ o) s
2z 2z
< | [ neae- )+ [ IRl - i
H [0 = fe) L] + 17| [ = 2L 0.
We have

[ 1zl - g 0

T+ = 2w

= [ IRl - gl [ 170 - 6w w)d
T x+%

- J1+J2.

(2.3.26)
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Since f/(x) =0and 1 — lo ](x u) <1,

T+ = T
] = / 1) = @0 - i S V1

Using Lemma|2.3.1|and assuming © = = + E, we obtain
v

neoW =t [ i - pe s e [ s (\/
x Vo x

x—i-ﬁ
o+ Vil k1 [T
1+ 22 1+ 22 ,
=C()— / \/ £ | dv<C() — Z/k \/ £ | dv
T k=1 T

[Vl [ot5

< o) 1“2 V£

Putting the values of J; and J; in (2.3.26), we have

x—i—k

2z m+% 2[”
/m I = € < = VAR Lt |V

Therefore, applying Cauchy-Schwarz inequality and Lemma [2.3.1] we get

Dl M h Ll d d
DIl < My [ DL adut @) [ L
2
P /ot +c<>1” F(22) — f(z) — of (2+)]
2 >+t 7m 1+ 2[ n] [ati
+— |V £ |+cO Z \/f . (2.3.27)

Since u > 2x, we have
My [ )L+ @) [ 2w
2x 2x

o0

< (My+|f(z )|)/OOL (, u)du+4Mf/ (u—a:)zL%O‘](a:,u)du

2z

< My + |f |/ z)2 L1 (x u)du+4Mf/ (u—2)* Ly (2, w)du
0
1/ (@)l 1+a°
< .
< <4Mf+ ) ew—
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Using the above inequality, we have

M+ | f(@)]

T2

DL < (4 Je S 4y co)

1+ 22 , T ,
FOW =z 1 (20) = fl@) —afat) + = \/ f;
1 i Vn] x-‘rk
+C(1) v’ Z \/ 7] (2.3.28)
Now from (2.3.23)), (2.3.27) and (2.3.28)), we reach the required result. N

Example 2. Let us consider the following function

1
x?sin —, x # 0,
f:10,1] > R, f(z)= )
0, z=0.
The function f is differentiable and of bounded variation on [0, 1]. For n = 50 and

a = 1/n, the convergence of K, 5[%)/ 50l (f;x) to f(x) is illustrated in Figure 2.

The convergence of K| g)/ 50l (f;z)to f(x)

2.4 Better Approximation

In 2011, Céardenas-Morales et al. [49] considered the sequence of linear Bernstein-type
operators defined for f € C[0,1] by B,(f o 77!) o 7, 7 being any function that is con-
tinuously differentiable oo times on [0, 1], such that 7(0) = 0, 7(1) = 1 and 7/(z) > 0
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for z € [0,1]. A Durrmeyer type generalization of B, (f o 77!) o 7 was also studied in
[8]. Recently, Aral et al. [31] introduced similar modifications of the Szdsz-Mirakyan
operators and the Durrmeyer modifications of these operators were introduced in [[10].

Assume that p is any function satisfying the conditions:

p1) p is a continously differentiable function;

p2) p(0) =0, Lanf plx) = L.

So, using the technique proposed in [49], we modify the operators defined in (2.1.4)

as follows:

—

k+

R =300 [ o) 0a
k=0 w1

n—1

where l_)f}k(x) =(n—-1) (n * : B 1) 7 <?<j’—(7‘j: i;— n> :

Example 3. We compare the convergence of Kantorovich variant of Stancu operators

based on Polya-Eggenberger distribution K defined in 1} with the modified oper-
]

|

. We have considered the function f(x) = 2?71 and p(x) = 2* + . For

[]

n

ators Ff

z €[0,3],n=20,a= L the convergence of the operators K,[f‘] and K to the function

20°
f is illustrated in Figure 3. Note that the approximation by ff }is better then using the

operators K.

0.03
0.02

0.01

[«]

n

Approximation process by K and K
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Chapter 3

Szasz-Durrmeyer operators involving

Boas-Buck polynomials of blending type

3.1 Introduction

In [129]], Sucu et al. introduced the Szdsz operators involving Boas-Buck type polynomi-

als as follows:

Bo(f;2) == yTENE an Zpk nx) () x>0, neN, (3.1.1)

where generating function of the Boas-Buck type polynomials is given by

A(w)G(zH(u) = pilx)ut, (3.1.2)

and A(u),G(u) and H(u) are analytic functions described as

[e.9]

A(u) :Zakuk, (ap #0), G(u ngu (gr 0, V k),
k=0
thu (hy # 0).

Motlvated by the above work, in the present chapter we define Szasz-Durrmeyer type

operators based on Boas-Buck type polynomials as follows:
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For a function f € C, [0, c0), we define

1 = pe(na) /°° uk~1
Mo(fz) = Y fw)d
) = G H () ; Blont1) ), (gl @i
a,()b()
A(l)G(an(l))f<0)’
(3.1.3)
where B(k,n + 1) is the beta function and z > 0, n € N.
Alternatively, we may write the operator (3.1.3)) as
M,(f;z) = / W(n,x,u)f(u)du, (3.1.4)
0
where
._ 1 pr(nz) ut! aobo
Win,.v) = I G i) 2 Blhont D) 00 T AW G

k=1

and J(u) being the Dirac-delta function.

First we show the uniform convergence of the operators (3.1.3) by means of the
Bohman Korovkin theorem on compact subsets of [0, co) for functions in C., [0, c0). Then
a Voronovskaja type asymptotic theorem and the rate of convergence by means of the
weighted modulus of continuity are established. Further, by means of the unified Ditzian-
Totik modulus of smoothness, we obtain a direct approximation theorem. The approxi-

mation of functions with derivatives of bounded variation is also studied.

3.2 Preliminaries

In this section, we study the approximation properties of the operators M, for functions

belonging to different function spaces.
Lemma 3.2.1. [I129] For the operators B,,, one has

(i) Ba(Liz) =1,

Gl(an(l))m N

(i) Bulsie) = o mmy) T naq)
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G"(nzH(1)) , A1)+ (1+H"(1)A1)) G (nzH(1)) A"(1)+ A(1)

(1) Buls™0) = Gy © F nA(l) GlneH(D) " n2A()

(iv) Bp(s%z) = G"(nzH(1 )) 3 (BA(1) +3A'(1) + 3A(1)H"(1)) G"(nzH(1)) ,

GlnzH(1)) © nA(1) GlnzH(L))
L (6A(1) + A(1) + BAWH" (1) +34"(1) + BA(WH"(1) + AW H"(1)) G'(nzH(1)
n?A(1) G(nzH(1))

A"(1) + 3A"(1) + A'(1)
n3A(1) ’

(v) Bp(s*z) =

Gi”(an(l))m4 <4A’(1) +6A(1)H"(1) + 6A(1)> G”’(an(l))x3
G(nzH(1)) nA(1) G(nzH(1))
6A”(1) + 124" (1)H" (1) + 4A(1)H™ (1) + 3A(1)(H"(1))* + TA(1) + 18A4’(1)

( n2A(1)

18A(1)H”(1)) G”(an(l)) 2 (4A”’(1) +6A"(1)H" (1) +4A'(1)H" (1)

n?A(1) G(nzH(1 )) n3A(1)
n +A(1)H™(1)36A'(1) + A1) + TA(1)H"(1) + 18A”(1) + 18A’(1)H"(1)
n3A(1)
N GA(L)H" (1) — 22A/(1)) G'(nzH(1 )) (13A”(1) + A'(1) + A"”)
n3A(1) G(nzH(1 )) A(1)

Proof. Since the identities (i)-(iii) are proved in [129], we give below the proof of only
(iv): The identity (v) follows similarly.

It is easily seen that

i Epe(nz) = (4A"(1)+ A'(1))G(nxH(1)) + (6A'(1) + A(1) +3A(1)H"(1) + 3A"(1)
+3A(1)H" (1) + A(l)H”’(l)) G'(nxH(1))nw + (3A(1) +3A'(1)
+3A(1)H”(1)> G"(nxH(1))n*z* + A(1)G" (nzH(1))n’z?,
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and

i E'pp(nr) = A1)G™(nzH(1))n*z* + (4A’(1) +6A(1)H"(1) + 6A(1))
xG" (nwH(1))n3z® + <6A”(1) + 124 (1)H" (1) + 4A(1)H" (1)
F3A(1)(H"(1))? + TA(1) + 18A'(1) + 18A(1)H”(1)>G”(an(l))n2x2
+ <4A’”(1) +6A"(1)H"(1) +4A (1)H" (1) + A(1)H™(1) + 36 A'(1)
+A(1) + TA(1)H"(1) + 18A" (1) + 18A'(1)H" (1) + 6 A(1)H"' (1)
—22A’(1)> G'(nzH(1))nz + (13A"(1) + A'(1) + A™(1))G(nzH(1)).

O

Now, by simple calculations we obtain the identity (iii) and (iv). Hence the details are
omitted.

In the following lemma we obtain the moments for the operators defined by (3.1.3), uti
lizing Lemma [3.2.T}
Lemma 3.2.2. For the operators M, there hold the equalities:

(i) My(L;z) = 1;

G'(nxH(1)) A1)\
(ii) M (u;z) =~ (mm A(l)) !

L [@eH) (A G (neH (1))
W”MW“”‘nm—n[<mHm> *(%MJ+H““”>mmﬂu»”+

A1) | A(1)]
2Aa>+fuw}

: 5.y _ 1 G"(nzH(1)) 4 5 A'(1) "

(iv) M,(u’;x) = o gy e )[G(an(l)) n’x” + (SA(l) +6+3H (1))
XGH(an( )) 2m2 & " & " " Gl(an(l))nfL“
A—”((”)xH(ljg() +<12A(1) +H (1)+3A(1)H (H)+H (1)+4)—G(n93H(1)) +
o S |

v u4'x — 1 Gw(an<1))n4x4 Al(l) "
() M) = T — 9 (n >[G@wﬂa» +<4Aa>+6H(”+

12) —%(gxﬁ(ll)))) n3a3+ (6 A”((l)) 12 (( )) H"(1)+21 i((f)) +3 i((f)) FAH"(1)+
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H"(1) +

" "2 G'(nzH(1)) 5 A" A
18H"(1) + 3(H"(1))* + 21 GO H () + <4A(1) +6A(1)

i”él)) ’ig; + 4‘3/((151{’”(1) + 36%(11)) + H™(1) + 12H"(1) +
" G'(nzH(1)) Ar@) - AT AL
36H (1)—1—24)an+ a0 %I B

Hence as a consequence of Lemma[3.2.2] we find:

36 H"(1) + 42

+11),

Lemma 3.2.3. For the operator (3.1.3)), we have the following results:

. . (G'(nzH(1)) A'(1)
() Mn((v = 2);2) = <m ) 1) FThany

. 5 n G'(nzH(1)) _G'(nxH(1)) 9 1 A'(1)
(if) My((u=2)%2) = n—1GnzH(Q)) ~GnzH(1)

)
) GlnaH(1) 2 A'(1) 1 A1) )
D) Goram) 0 A )'” ot (2 A ) !

. n? Gi(naH(1)  dn®  G"(nxH(1))
(iif) Mn((u=2)%z) = {(n “D(n—2)(n—3) GlnzH(1) _(n “D(n—2) GlnzH(L))
)

)(n )
6n  G"(nzH(1))  G'(nzH (1)) G"(nxH(1))
=1 CluzH(D)  GlnaH (1) } {(n -1 (n 2)( 3) G(nxH(1))

A'(1) " 4n G"(nxH(1 A'(1) ”
4 H(1)+12) — H"(
< A(1) +6HT(1)+ > (n—1)(n—2) GnxH(1 3 A(1) +3 )

6 G'(nzH(1)) [ A(1) " 44 .
N (n—1) G(nxH(1) (2 /é(”( +}i ); +j) n A(l (}
(= 1)(n—2)(n—3) ClnaH(1)) (6 am t 127 A1)
A H()
A(1) A(1)
4 G'(nzH (1))
"= D(n—2) Gz H(1) (12
1 G'(nzH(
" {<n— 1){n—2)(n —3) G(nzH(
) ()
A(1) A(1)
)(n

1

4
H"(1) +24) —
36H"(1) + ) D=1

H”(l)

+

+21 +3 +4H" (1) + 18H"(1) + 3(H"(1))? +21)

+H"(1) i/((lliH”(l)jLH”(l)—i—él)}xQ

(1)
A

) (40 A0
)

A1) A1)

((11 (1) + 36i'<(11)) - HY(1) + 12H"(1) +
/ Al(l)

(7 o)
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3.2: Preliminaries

1 A1) A1) A1)
e 1><n—2><n—3>< A Tam TP an *”)'

Now, in order to study the approximation properties of the considered operators (3.1.3)),
we make the following assumptions on the analytic functions A(u), H(u) and G (u). It is
to be noted that the following assumptions are valid pointwise. These assumptions will be
needed to prove the Theorems [3.3.3] [3.3.6] and [3.3.8] of this chapter which are pointwise

results.

[0 GeH() GeH)

Jm {n—l GinaH(L)  ~GlneH(D) “} L (@),

L n? G"(nzH(1)) [ A'(1) "

M S =20 = 3) GlnaH() (4A(1) +oH (1>+12>

_ 4n G"(nxH(1)) [, A(1) )
(n—1)(n—2) G(nxH(1)) <3 A(1) +3H"(1)+6

6 G'(nzH(1)) (QA'(<1) R +2) B éA’(l)} = I(x),

T D) GeE () \"A(D) n A

lim n2{ n? G"(nzH(1)) 4n? G"(nzH(1)) 6n  G"(nzH(1))

n—éo/o( H(g); 1)(n—=2)(n—-3) GnzH(1)) (n—1)(n—2) GnxeH(1)) (n—1) G(nzH(1))
—G(an(l)) + 1} = ly(z).

As a result of the above assumptions and applying Lemma[3.2.3] we reach the follow-

ing important result:

Lemma 3.2.4. For the operator (3.1.3) we have

A'(1)
A1)

(i) h_)m nM,((u—x);x) =l (z)x +

(ii) ILm nM,((u — 2)% 2) = ly(x)2® + z(H"(1) + 2) = n(z), (say)

i im0 = 259) = e+ o)+ () g ) )

14H"(1) + 3(H"(1))* + 5> = v(z), (say).
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3.3 Main Results

Throughout the chapter, we assume d,, (x) = M, ((u—2)?; ). In the following theorem we
show that the operators defined by (3 are an approximation process for f € C. [0, c0),

using the Bohman-Korovkin theorem.

Theorem 3.3.1. Let f € C,[0,00). Then,
lim M, (f;z) = f(z),

n—oo

holds uniformly in x € [0, al, a > 0.

Proof. From Lemma[3.2.2] it follows that
lim M, (u";z) = 2" i=0,1,2
n—oo

uniformly in z € [0, a]. Hence by Bohman-Korovkin theorem, the required result is im-

mediate. ]

In the following theorem we find the rate of convergence of the operators M, for func-

tions in Lip},(§).

Theorem 3.3.2. Let f € Lip}, (&) and & € (0, 1]. Then, for all z € (0, 00), we have

¢
On(z)\2
M) - s < ()

Proof. By the linearity and positivity of the operators M,,, from (3.1.4) we obtain

M, (52) < [ Wl - felde

Applying the Holder’s inequality with p = — and ¢ = and Lemma [3.2.2] we

5 2—5

(/ W (n,z,u)|f(u x)|Edt ) (/OmW(n,x,u)du)Q?
< (/ W (n, 2, )| f(u) >

< il [ Wiz >)du)

(e

have

| Mo (f; ) — ()]

IN

m\w
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3.3: Main Results

Thus, we reach the desired result. ]
In our next result, we establish a Voronovskaja type approximation theorem.

Theorem 3.3.3. Let f € C,[0,00), admitting a derivative of second order at a point
x € [0, 00), then there holds

lim n(M,(f;z) — f(z)) = {ll(a;)gg + 1;11’((11; } F(x) + {Z2<I)x2 + z(H"(1) + 2)} f’/éx).

n—oo

If f" is continuous on [0, 00) then the limit in holds uniformly in x € [0,a] C
[0,00),a > 0.

Proof. By the Taylor’s theorem
fu) = f(x)+ f(x)(u—2)+ %f”(x)(u — )+ e(u, ) (u — )2, (3.3.1)

where, e(u, z) € C,[0, 00) and lim,,_,, e(u, z) = 0.

Applying the operator M, (., z) on both sides of (3.3.1)), we have

i 0 (U 0) = F0) =l 2520 6) + i (2 L
+ 1m0 M (e(u, 2) (u — 2)% 7).
(3.3.2)

Using Cauchy-Schwarz inequality in the last term of the right side of (3.3.2)), we get

nM,(e(u, ) (u — z)*x) < \/Mn(c”?(u, x); a:)\/nQMn((u — )% x).

Since ¢(u,x) — 0, as u — x, applying Theorem (3.3.1] for every = € [0,00) we ob-
tain lim,, oo M, (e%(u, z);x) = e*(x,x) = 0.

Next applying Lemma for sufficiently large n and every = € [0, 00)

n*M,((u — z)*z) = O(1).

Hence,
lim nM,(e(u, z)(u — )% x) = 0. (3.3.3)
n—oo

Now, from (3.3.2), (3.3.3) and Lemma[3.2.4] the required result follows. O
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The uniformity assertion follows from the uniform continuity of f” on [0, a| and the

fact that all the other estimates hold uniformly in z € [0, a.

In our next theorem, we obtain the degree of approximation of the M, operators for

functions in the space C5[0, 00) in terms of the classical modulus of continuity.
Theorem 3.3.4. For f € (5[0, 00), we have the following inequality

M, (f;2) — f(2)] < AM(1 + 22)5, () + 2wy (f; \/m) . (3.3.4)
where, w(f;0,(x)) is the modulus of continuity of f on [0,b+1].

Proof. From [84], for u € [0, 00) and x € [0, b], we obtain

lu —z

0

)= f0 < Ayl aP 12+ (14 5 wa(r0), 550

Hence, by applying Cauchy-Schwarz inequality
[Mo(fi2) = f(z)] < AMp(1+2%)Mo((u — )% 2) + wpia (£, 9)
(14 000 - o52)”)
= M1+ 2*)6,(2) + wpr (f, ) (1 + %\/571(@) :

Choosing ¢ = /0, (z), we get the desired result.
O

The next section is devoted to the weighted approximation properties of the operators

M,,.

3.3.1 Weighted approximation

Firstly, we establish the following basic approximation theorem for functions in the weighted

space of continuous functions C9[0, 0o) by the operators M,,:

Theorem 3.3.5. For f € C9]0,0), and a > 0, we have

i Malfi0) = @)

n—00 x€[0,00) (1 + :L‘2)1+a

=0.

63



3.3: Main Results

Proof. Let xy € [0, 00) be an arbitrary but fixed point. Then

Ma(fiz) = f@)] [ Mal(f32) — f(2)] | M (f;2) — ()]

sup + su

x€[0,00) (14 z2)tta  z<ao (14 22)tta T>x0 (1 + 22)tta
M, (1 + u?;z)
< Mn ;‘ - X T . _oN14.
< Mu(f;-) = fllew + ||f||2§;1£ (11 22y
|/ ()]
+§B£) (]_ + x?)l—i—a'
(3.3.5)
Since |f(x)] < || f]|2(1 + 2?), we have
flx fll2
p L Wl
Tr>x0 (1+$ ) (1+$0)
Let € > 0, be arbitrary. We choose z to be so large that
Ifll2 e |/ () €
———— < — so that —_— < - 3.3.6
(+ady <6 MO Ty < (30
From Theorem [3.3.1] there exists n; € N such that
M,(1 4 v?; x) [/ 1l2 ( 2, € )
RGN Nl R/ LA IS IS . Vn>n
W = Gy 37T 1
Ifll €
< m—i—g, ‘v’n>n1 and T > Xg.
Hence,
M,(1+u*z) €
— 2 < — Yn>n. 3.3.7
Applying Theorem 3.3.4, we can find n, € N such that
€
HMn(f7 ) — fHC[O,xo} < § ,Vn > No. (338)
Let ng = max(ny, ny). Combining (3.3.5)-(3.3.8|), we obtain
| Mn(f; %) — f(2)]
su <€, Vn > nyg.
xe[ogo) (14 22)te "
Hence the required result is obtained. ]

In our next theorem, we determine the order of approximation for functions in a

weighted space of continuous functions on [0, 00) by M,, operators:
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Theorem 3.3.6. Let f € CY]0, 00). Then for sufficiently large n, we have

Mo(f:2) - f(2)] < C@)2 <f; %) , (3.39)

where C(x) = 2(1 + 2?) (1 + Cy n(2)| + VT [n(2)[? (14 V/Cs |v(z)|V?) ), Ch, Cy

are constants independent of x and n and n(x),v(x) are as given in Lemma

Proof. For z € (0,00) and § > 0, using (0.4.1) and Lemma (0.4.1])

|u — =]

0 = @ < 200+ )1+ (=) (1425 ario),

Applying M,,(-; z) both sides, we can write

M, (fy2) = f(2)] < 201+ 2)Q(f;0) (1 + My((u — 2)%; 2)
+M, ((1+(u—m)2)’u;x|;x)).

(3.3.10)
From Lemma [3.2.4] for sufficiently large n, it follows

nM,((u — z)* ) < Oy [n(x)| and n* M, ((u — z)*; ) < Cy |v(2)],
(3.3.11)

Now, applying the Cauchy-Schwarz inequality in the last term of (3.3.10), we obtain

— 1 1
My (0 (=25 ) < 5 (0= a50) 7 4 5 (0 (0 - 152
(Mn((u — )% x))l/Q )
(3.3.12)
Combining the estimates (3.3.10)-(3.3.12) and taking
1
5=
i
we reach the required result. [
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3.3.2 Unified modulus theorem

Theorem 3.3.7. Let f € Cg[0,00), then for sufficiently large n

M) - ) < Cun (£,

where C' is independent of f and n.

Proof. By the definition of K- (f,u), for a fixed n,z, 7 we can choose g = ¢,,,. € W-
such that

If —gll + s \/Tﬁ(x) 1¢7g'|| < 2Ky (f; ¢ \/Tﬁ(‘r)> . (3.3.13)

We may write

|Mo(f;2) = f(2)] < [Mu(f = g5 0)| + [Mn(g; 2) — g(2)] + [9(x) — f(2)|

< 2f = gll + [ My (g;2) — g(@)].
(3.3.14)
Since g € W, we have .
o) = g(a) + [ g/0)ae
and so
|M,(g;2) —g(z)] < M, ( /u g (v)dv ;x) ) (3.3.15)

By applying Holder’s inequality, we get

/x ' g'(v)dv

< [lo7dl

| 5

T - 1-71 Y odv !
< Jorglu—a | [ S
we may write
[l o[ L)
x ¢(’U) x \/E \/1+ZL’ \/1+U ’
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Hence, on using the inequality |a + b|" < |a|” + |b]", 0 <r < 1.

/x " g ()

IN

27||¢7d'|| Iu—ﬂfl( 1 n 1 )T
x7/? Vi+z V14w
2 |l¢7g/|| [u — <] ( 1 1 )

237/2 (1 _'_:L-)T/Z + (1 +u)7/2

IN

(3.3.16)

Thus, from (3.3.73), (3.3.16),Cauchy-Schwarz inequality and using Theorem 3.3.1,

we obtain
27[|o7d'|| 1 1 _
x7/? M | Ju— ] (1+x)7/2 * (1+u)™/? &

QTH(ng/H ( 1 \/Mn((u . 33)2;1')

xT/? (1 + LU)T/2

L= DL (L) x>)

| Mn(g; ) — g(2)]

IN

IN

IN

271679/ |/ ((a — 2 a:){as—T(x) T NI u>—T;x>}

2l 12 o) + o1 422,
il 116 (@)
\/ﬁ Y

IN

(3.3.17)

for sufficiently large n.

Hence, combining (3.3.13)-(3.3.15) and (3.3.17), we find

1—71

| Mo (f; ) = fl2)] < 2||f—g||+2T+1(3||¢Tg’||\/ﬁ

1-7
< C{I|f—gll+¢ (”chfg'u}

.
¢1‘T(fc)>
NG

This completes the proof of the theorem. [

IN
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3.3.3 Rate of Convergence of Szasz-Durrmeyer operators based on

Boas Buck polynomials

In this section, we discuss the approximation of functions with a derivative of bounded
variation. We show that the points x where f'(z+) and f’(x—) exist, the operators

M, (f;x) converge to the function f(z), as n — oc.

Lemma 3.3.1. Let o« = a(n) — 0, as n — oo and lim na(n) =1 € R. For every x > 0

n—oo
and sufficiently large n, we have

Cy In(x)|

(z—u?

)

() o) = | Wz, uw)do < S
0

(i) 1 =&, (x,u) = /OO W(n,z,u)dv < u ’_77%)2‘,

where 1)(x) is as given in Lemma 3.2.4}
Proof. Using Lemma/[3.2.2]and (3.3.11)), we have
v v — o\’
En(x,u) = / W(n,z,u)dv < / ( ) W(n,z,u)(z,v)dv
0 0

r—u

1 Ci In(x)|
< M, ((u—2)*%2) < ——=5,
~ (x—u)? (w—2)%5e) < (x — u)?
when n is large enough.
Similarly, we can prove (ii). ]

Theorem 3.3.8. Let f € DBV|[0,00). Then, for every x > 0 and sufficiently large n

M, (f52) - f(2)] < K%‘Q“AXM

f(a:+)2 (z—) ‘ 01\77 ’Z(m\_/f>

T \/ R ]

7 ol/E T + S 20) = (0) = af (24)
c TF O o |77 m

+%< \x/ fx) Z( y fw)’
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where C' is a positive constant and \/Z f denotes the total variation of f on |a,b| and f.
is defined by

f(u) = fl(z—), 0<u<uw
fou) = 0, u =, (3.3.18)
f(u) — fllx+) = <wu<oo.

Proof. Forany f € DBV [0, c0), from (3.3.18), we may write
) = 5 () + fe)) + Fw) + 5 () = Fe-))senlo - )

+l0) (10 = (@) + 7))
(3.3.19)

1, v==x
0, v#ux.
Since M, (eo; ) = 1, using (3.3.19) for every x € (0, 00), we get

M, (f:i2) — fz) = / W(n, o 6)(f(u) — f(x du—/ Wna:u(/f dv>
_ /(/f dv) (n, 2, u)du
/ (/f dv> (n, 2, u)du

where  d,(v) = {

(3.3.20)
Let

:/Ox(/:f’(v)dv>W(n,xu u, /(/f dv) (n, ,u)du

Since/ 0. (v)dv = 0, and using (3.3.19), we have

n= [ Guensrens Lo
3 o) = fa)) sento - ) o b (n, .

(f’(:t+)+f’(x—))/0$(x—u)Wn:17udu+/ (/ fr(v dv) (n,z,u)du
(f'(z+) = f'(z=)) /Ox(g; —uw)W(n, z,u)du.

N — N~

(3.3.21)
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Similarly, we have

n= [ Guensrens o

3 () = o) oo = ) o W o, )

_ %(f’(x—i—)—l—f’(x—))/:o(u—x)Wnx udu+/ </ (v dv) (n, 2, u)du
+ 3 0en =) [ oW
(3.3.22)
Combining the relation (3:3.20)-(3:3.22), we get
My(fi) = @) = 3 (a4 o) [ Wl adu s () a)

/‘u_mmdu_/(/f ) Wi
([ ) W

E\ZZ? z) — f(z)|
< | )+f’ ‘|M )+ flat) - f’( )Mn(l ~alia)
n (/ fi(v dv) (n, 2, u)du| + / (/ Fi(v dv) (n, 2, u)du).

(3.3.23)

Now, assume that

o= [ ([ 0300) Wios
o= [ ([ 0 W v

Now the problem is reduced to estimate C,,(f., ) and D, (f.,x).

and

Using the definition of &, (x,u) given in Lemma and applying the integration by

= [ ([ o) Ee - [ e

70
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Thus,

Calfh )| = / 1w, w)du

S/Ox—ﬁ rf;(u)\fn(x,u)dw/: | /2 (u) €0 (2, w) .

Vn

Since fI(z) = 0and &,(z,u) < 1, we get

/_ | 00) [ 0) s = /_ 1) — S (s w)du < /_ (\/ f;> du

(a4

r— L

S

§

. ) x
Using Lemma [3.3.1} and assuming v = x — —, we have
v

T

[T @i < ) / o %du

Therefore,

Using integration by parts in D,,(f., z) and applying Lemma|3.3.1} we have

;x (/ fé(“ﬂv) (1~ e, u))d
i /Oo (/ fé“’)d”) W (n, &, u)du

11— 64, 20)] + / 1)1 = &l w))du

[Dn(f2: )] <

IA

(v)dv

+

/2 T(F () = F@)W (2, u)du

+f (a+)]

/Oo(u — )W (n,z,u)(x, u)dul.

2x

71



3.3: Main Results

We have

2x

T+ =
[fe(@)|(1 = &z, w))du = / TR = G u)d (324

S~

2z
wt [ @I = &) )
x-i—%
- J1+J2.
(3.3.25)

Since fI(x) =0and 1 — &,(z,u) < 1, we have

- otz (“TVE T
n= [ TR - 2@l - G awdus [ ( \ fé) du=— ( V fé) -

Using Lemma|3.3.1|and assuming © = = + E, we obtain
v

J2 < Gy Inte r/ )~ A< O )] [ (\/f;>du

il r/ (\/ ) ’Z()’kl ( )

[vn] [zt
S 1)

k=1

Putting the values of J; and J; in (3.3.24), we have

/Ilf;(U)K €n(xudu<—(\/f) Cl'" Z(\/f)

Therefore, applying Cauchy-Schwarz inequality and Lemma [3.3.1] we get

[e.o]

(u? + V)W (n, z,u)du + | f ()] /00 W(n,x,u)du
Cy |77( )

Du(fLa) < M /

xT

+Hf (@) [V Cy ()] + |!f( 2z) — f(x) — xf'(x+)|
L xv A |77 Z m\+/k f (3.3.26)
\/ﬁ x ’ x
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Since u > 2x, we have

Mf/ (u? + V)W (n,z,u)du + | f ()] W(n,z,u)du
2z 2z

< (Ms+|f(x)]) W(n x u)du+4Mf/2 (u — 2)*W (n, z,u)du
Mf + |f |/ W(n,z,u)du+ 4M; /Ooo(u —2)*W(n, z,u)du
< <4Mf + %Z—Lf()') C1 In(z)].

Using the above inequality, we have

Dutrol < (avy+ 2Ly o)+ 171 vETiED

|+ ) er%
+C ——|f(22) — f () — 2 (z+)] + — (\/ f;)

nx? NG v
[Vn] [zt
Ch |n(x
k=1 T
(3.3.27)
Now from (3.3.23)), (3.3.26) and (3.3.27)), we reach the required result. O
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Chapter 4

Approximation by ¢-GBS
Bernstein-Schurer-Stancu type

operators in a Bogel space

4.1 Introduction

Very Recently Barbosu and Muraru [40] defined the g-Bernstein-Schurer-Stancu opera-
tors for the bivariate case as follows:

Let py, p» be non-negative integers, I = [0, 1 + py] x [0,1 4 po] and J = [0, 1] x [0, 1].
Let {¢,,} and {g,} be sequences in (0, 1) such that ¢,, — 1, ¢ — a(0 < a < 1), as
m — ocoand q, — 1,¢" — b(0 < b < 1),asn — oo. Further, let 0 < ay < 51, 0 <
ay < [y and Sﬁﬁiggﬁ’gj’ﬁz) : C(I) — C(J) then for any f € C(I) we have,

m-+p1—k1—1

m+p1 n+p2 m+p n-+p
(@1,B1,02,82) ( £. _ 1 2 s
Smj%pllvpi 2 (fa dm Qn, x>y) = Z Z |: ey :| |: ks :| H (1 qma:)
k1=0 ko=0 dm qn s=0
n+p2—ko—1
X H (1 - q;y> xkl yk2fk17k27
r=0

4.1.1)

where fk1,k’2 = f ([kl]qm o [kQ]Qn i a2) .

[mlg,, + b1 ’ [n]g, + B2
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4.2 Moments

Lemma 4.2.1. [40] Let e; ; : I — I,e;;(z,y) = 2'y?(0 < i+ j < 2,4, j(integers)) be
the test functions. Then the following equalities hold for the operators given by (#.1.1):

(l) 87(5}1«75711:%3”32) (6070; dm;Qdn, T, y) = 60,0(1’7 y)a

[m + p1]g. T + a1

.. ai,B1,a2,02)
(ii) Sk ,
[m]qm + B

m,n,p1,p2 (61,0§ qm, qn, T, 3/) =

[n+ p2]qny + Q2

(iii) SEEE02P) (001 gy qn, 7, y) =

[n]qn + B
(iv) Shenns2™ (€201 Gms Gns 2, y) = ;2 ([m+pl]§ml’2+[m+p1]qu(1—w)
([m]qm + B1)

+ 200 [m + pilg,, T + af) ,

(a1,B1,02,82) 1 2 92
v) Smn €0.2; Gms Qn> T, Y) = ———5 | [N + + n+ Syl —
(v) Smapips (€02} @ms Gn> T, Y) (CEAE ([ pali Yy’ + [+ pal,y(1 —y)

+ 2a[n + polg,y + a%) )

Lemma 4.2.2. For (x,y) € J, we have

. « a2, 1 m
(i) Sf(nﬁgll:p; /82)((114 - x)Q; 4m; qn, T, y) = ([ 2{((Qm [pl]Qm - ﬂl)l‘ + a1>2 +

m + Bl]qm)
[m+ pilg, (1 —2)},

. ai,B1,a2,62 1 n
(ii) 57(7%715717132 ’ )((U _y)27 Qm, 4n, T, y) = ([ )2{(((]71 [pQ]Qn _ﬁQ)y_'_OQ)Z + [n+

n+ Balq,
Polay(1 —y)}.
Lemma 4.2.3. For (x,y) € J, we have
(i) Tim [mlg, S0 (4 = 2); gms Gy 2, y) = 01 = Br,
(1) Tim [ng, Sy 352 ™ (0 = 9); Gms 6o, 7, y) = 02 = Py,
(iii)  Tim [m]g,, SIS ((u = 2)%; G, oy 2, y) = (1 = ),
(iv) 1im [nlg, S0 02" (0 = 1) Gy s 2 y) = y(1 = ).
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Similarly, it can be shown that

1
Slenbi02:52) (u — 2)*; gy Gu, 2, y) = O ([m]3m> , as m — oo, uniformly in z € [0, 1],
4.2.1)
and
Sf,?;;ﬁll’;’;g”@?)((v — ) Gy Gy T, y) = O ([ E ) , as n — oo, uniformly in y € [0, 1].
dn
4.2.2)

4.3 Main results

Let ¢,,, and ¢,, be defined as

5m = MaTze0,1 {Smalplﬁl ((u - ZC>2' dm, T )}1/2
B 2
- T—E:1?ivunmx&mu<«%nWA — Bz + )2+ [m + pilg,),
and 0, = mOLIyeo1]{5)&6}2262 (v=1)% Gn, y}"

= VMo (@, — A2+ 02 + 0+ pal)

Theorem 4.3.1. Let f € C(I). Then we have the inequality
IS LB 0B (F o sy ) = [l < 2(wi(f:0m) + w2l f360))-

Proof. By the definition of partial moduli of continuity, Lemma.2.1| and using Cauchy-

Schwarz inequality we may write
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|SSL L2 B2) (f; G, g 2, y) — [, 9)]

< Sienbres B (| f(u,v) — f(2,9)]; Gm, Gns 2, )
< Sienbres B (| f(u, v) = f(u,Y)]; Gy Gns 2, )

+SS s P (| f (u,y) = F(2,9)]; Gms G 7, 9)
< Sl Ben ) (wo (£ 10 = Y1); s s T, )

FSe1B10282) () (F2 |1 — 2); Gy Gy T, 1)

™m,n,p1,p2
1

wa(f;0,) {1 + 5 Ssiin ([0 =yl s 4, y)]

IN

1 « e
+w1(f; 0m) [1 + =Sy (1w = 2l; G, s 2, y)]

1 1/2
wa(f3 6n) {1 + = (Sé?,;;,ia’,;‘;;"ﬁ)((v ~ )5 G s y)) }

n

IN

1 1/2
+wi(f50m) {1 + 5 (Sﬁi;;,ia’z;ﬂz’((u SEORT D y)) ]

wa(f;6n) (1 + %m\/‘lmﬁlxz}e[o,l] (((gn[p2lg. — B2)y + 2)? + [n +p2]qn)>

IN

+w1(f; 5m) (1 + 5i

m

m\/‘lmahe[o,u (g lprlg,, — Br)x + a1)? + [m +p1]qm)).

Hence, we reach the desired result. O]

Theorem 4.3.2. Let f € C(I) and 0 < ¢y, q, < 1. Then for all (x,y) € J, we have
1S5y o™ (fs Qs s ) = I S A@(S, 81, 6).

Proof. We have

Sl o) (fea gn ) — fa,y)]

< Sz (| f(u,v) = f(2,9)s Gms s 75 Y)

1
< w(f;0m,6n) (Sﬁﬁ;’f”(fo; Gy ) + — ST (|u — 2] g, w))

6m m,p1

1
X (Sfl‘f‘ﬁfz)(fo; G, y) + —SE25) (jo — yl; qn,y))-

57’1, n,p2

Applying Cauchy-Schwarz inequality, we have
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4.3: Main results

|SSL L2 B) (£ G, g 2, y) — [, 9)]

1 (a1,81) .
,5n){ (1 + a\/sm,pl (1 — 2)2% gon, x))

[ 0m

1 2,02
(14 VS5 = ) |
< A w(f;0m,0n).

< &
X

This completes the proof. U

Example 1. Forn, m =10, p1, po =2, 01 =3, f1 =4, ag =5, Bo =7, q1, @2 =
0.5, q1, g2 = 0.7 and g, go = 0.9 the convergence of the operators ngﬁb%’?g(f; 5,.5,x,y)
(vellow), S{50s5(f:-7..7, 2, y) (pink), SG1555(f3.9,.9, 2,y) (blue) to
f(zy) =z (x— %) (y— 2) (red) is illustrated by Figure 1.

Example 2. For m, n = 10, ay, a0 = 1, 1,82 = 2, p1,p2 = 1, the comparison of
the convergence of ¢ -Bernstein-Schurer-Stancu (blue) given by S,(ﬁi L0 2) (f5qm» Gn, T, Y)
and the operators bivariate g-Bernstein-Schurer (green), ¢-Bernstein-Stancu (red), to
[ (z,y) = 2z cos (mz) y*(yellow) with g, = m/(m + 1),q, = 1 — 1/4/n are illustrated
in the Figure 2.

e 2 S L en

Figure 1 Figure 2

4.3.1 Degree of approximation

Now, we estimate the degree of approximation for the bivariate operators (#.1.T)) by means

of the Lipschitz class.
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Theorem 4.3.3. Let f € Lipy(§,y). Then, we have

‘|S(a1,51,a2»32)(f; Qs Gy - ) — f|| < M(anég

m,n,p1,p2
Proof. By our hypothesis, we may write

S B0 B2) (fr Gy Gy, y) — f(,y)] < SELELO28)(| £, 0) — f(2,Y)|; dms Gns T, Y)

< MSerPenB) (ly — 28 v — Y17 G g, 7, Y)

= MSEP) (ju — 2|5 g, )SC2P) (| — y|7; G, ).

N

m,p1 n,p2
. 14 . . 2 2 2
Now, using the Holder’s inequality withu; = —, v; = and us = —and vy = ——,
§ 2-¢ gl 2—n
we have
et o a £ Ao 2-¢
S (s Gy, y) = fla, )] < MSTEI (w0 = 2)% g, ) 2SS (fo3 Gy ) 2
2
X SL282) (v — ), g, y) 2 S22 (fo3 g y) T
< M&ES.
Hence, the proof is completed. [

Theorem 4.3.4. Let f € C(I) and (x,y) € J. Then, we have
S22 (f: Gy gy 2, y) — (@, 9)] < 1 fallom + 11y l16n-
Proof. Let (x,y) € J be a fixed point. Then, we can write
fluo) = o) = [ fitod+ [ fios)ds
x Y

Now applying Sfﬁf Z’fﬁ’%i’ﬁ 2)(.; Um» n, T, y) on both sides, we have

|S7(’r(7,)f}1,53117;§762)(f;Qm7qnaxay) - f(xvy” S 57(7(51175711723752) (/ ft(t7v)dqt; qm,qn,x,y>
+Spaieae) (/ fs(,9)dgS; Qs G y) :
y

Since
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< [|fzlllu — 2| and

/x "Rt o)dt

< |14, lllv — g1, we have

/ " s)dys

| Sl brea ) (f1 g, gy 2, y) — Fla,y)] < 1 FISES) (Ju — ;g 7)

HI £, 185252 (Jo — yl; gn, ).

Now, applying the Cauchy-Schwarz inequality, we get

ST (F: Gy s 2,y) — f(2,9)]

< N Fll S ((w — @)% g, ) 2SS fo; G, )
H £ 18C252) (0 — y)2; gy ) V2SE252) (fo; g, y) /2
< [ fallom 4 [ fy 1l 0n-

Hence the theorem is proved. [

Theorem 4.3.5. If f € C(I), we obtain

|SLe1B02B2) (£ Gy s, y) — f(2,y)| < M{wz(f; \/Cm,w+mm{1,cm,n}||f||c<m}
+w(f; Ymn)s

where

) Mt Pt \° (W+mhﬂ+%__>?
VYmn = \/ Max (zy)eJ { ( [m],,, + 51 x) * [nlg., + B2 ’ ’

Om,n - 572)1 + 5r2z + 1/)fn,n

and the constant M > 0, is independent of f and C,,, ,,.

Proof. We introduce the auxiliary operators as follows:
S (F s G 2, y) = SRS (f: s s 2, y)
N f([m + g + a1 [0+ poly,y + s
(Mg, + 61 [n]q, + B

)+ fla),

then using Lemma 4.2.1, we have

Siiins” ™ (= 2); gy Gy 7, y) = 0 and SR> (0 = )5 Gy s ,y) = 0,
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Let g € C*(I) and u,v € I. Using the Taylor’s theorem, we may write

g(u,v) =gz, y) = g(u,y) —g(z,y) + g(u,v) — g(u,y)
_ 9g(z,y) (u—x)+/ (u_t>8 9t.y) .,

Oz ot?
dg(r,y), / N (C)
+ o (v—y)+ i (v—1s) 542 ds.

Applying the operator Sy %1025 (00 2 y) on both sides, we get

(ou1,B1,22,82

Sm,n,pl,pg )(f7 dm; Qn, T, y) - f(.T, y) = S”S’nl,l’flfz’)z%ﬁﬁ </ (u t) atz dt 5Ams Qn, T, Y
*(a a ! 62
et ([0 =988 s g )
Y

a1 B0 ! Pg(t,y
= s zﬁazps’ﬂ?)( [ =07t g
[m+p1]lgmz+a
ez m+p1 T a0l y)

+S£,?zﬁﬁ’z§ﬂ”( / g st y)

n+ lgny+o
p2qn+1;32 2 [n P2 qny + Qo 629(x, S)d
— — S | —————as.
n]q, + B2 0s2

dt

Hence

Slerboafa)(fr g quz,y) — f(2,y)]

82
[ =i )

[m lgmz+o
T D?g(t,y)
g

/|v—ﬂ82 sl

[+ palgy + a2 S‘ ‘ 9?g(x, s)
[n]Qn + 62 882

82

m »1,P1,P2

< 041»/317062752 <

[m+p1] T+ o

!

_t‘

m,n,p1,p2

+S (ou1,B1,02,62) <

[n+polgnytas
[nlgy +B2

:

ds‘
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(a1,61,02,82) 2. [m + pl}qu + Qg ?
S Sm,n,p1,p2 ((U—:L‘) aqmaQnaxvy)+ — T ||g||cz(1)

[m]Qm+5l
2
n 4+ palg,y + o
S181028) (4 — )20 g ) [ an B
+{ S22 (0 = Y); Gy Gy 5 ) + il -+ B y ) ¢llglleza

< (00 +0n + v llglle2ay
= Cuallglle2y
4.3.1)

Also, using Lemma 4.2.1

* a b 7a b . a 76 7a 7ﬁ .
|SilonBon®)(fr g g,z y)| < |SEIL0R)(fq g, 3, y)]
[m + prlg. @ + a1 [0+ p2lg,y + as
f( n? T : 1/ w)
[m]q"L + /61 [n] Adn + ﬂQ
< 3| fllew- (4.3.2)

_|_

Hence in view of (.3.1) and (#.3.2)), we get

| SS9 (£ o, s 2, y) — f(2,9)]

*a 7ﬁ 7a 7/3 .
S’n’lanl,plprQ 2)(f7 Qma Qna ZI/‘) y) - f(x7 y)

f<[m+p1]qma:+a1 [n—i—pz]qny—l—ag) —f(:v,y)‘

[m]g,, + B ’ [n]g, + B2
< |G B (F — g: Gy G 2, y) |+ 1S5 (g5 gy G, 7, ) — (2, 9))|
f([m + p1]g.® + 01 [0+ pagy + ag) S y)‘
[mlg,, + B ’ (n]q, + B2 7

+lg(@,y) — flz,y)| +

< Af = gllem + 1SLB028) (g g g, 2, y) — g(z,y)]

[+ prlg, + 0 [n+p2]qny+az> _ ‘
*‘f ( [l + B [l + B )

< (4||f ~ gllow + om,n||g||caa>) w0 Fi )
< 4K (f; Conn) + w(f; Ymn)
<

M{WQ(fa \V/ Cm,n) + mm{l, Cm,n}||f||0([)} + w(fv ¢m,n)

Hence, we get the desired result.
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4.3.2 Voronovskaja type theorem

In this section, we obtain a Voronovskaja type asymptotic theorem for the bivariate oper-

a b 1a 9
ators S,Sl,zf,ll o P2)

Theorem 4.3.6. Let f € C?(I). Then, we have

lim [n]g, (S\oiee ™ (f; an, 2, y) — f(2,9))

n—oo

foz(2,9)
2

z(l—x) + My(l - ),

= (a1—ﬁlx)fx(a:,y)—I—(ag—ﬁzy)fy(x,y)—i— 9

uniformly on J.

Proof. Let (x,y) € J. By the Taylor’s theorem, we have

SLotBas ) (fu,v); gu, 2, y) = fl2,y) + fol@,y) S ((u = 2); gn, )
+ £y (2, 9) S5 (0 = y); n, )
oLl ) S (= 2% 40, )
+2 oy (2, ) S0P (= ) (0 = y); g, 7, y)
+fyy (@, 9) S5 (0 = 1) 6n, )}
8000202 (e (u, v; 2, y)V/ (u — )+ (U = Y) gy 2, ).

n,1,P1,P2

Applying Lemma 4.2.3, where ¢(u, v; x,y) € C(I) and e(u, v;z,y) — 0 as (u,v) —

(z,y).
T [n], (S0 ™) (f1 g, y) — f(2,9)
= (o= B)fowy) + (02 — By (o) + T py gy o Tl By

+ lim [n] S(O‘l’ﬁl’%ﬁ?)(e(u, v; T, y)\/(u —z)t+ (v =) qn, T, Y)-

n—00 4n~'n,n,p1,p2

Now, applying Holder inequality, we have

S e C NN N Cer AT RU)
< {Slapiee ) (2 (u, v; 2, y) o, 7, y) [{Sﬁl,ﬁfl{};’ﬁz)((u — )" g, 7, y) }
1/2}

+{ S (v = )" s 2, y) }
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Since, %(u, v;z,y) — 0as (u,v) — (z,y), applying Theorem 4.3.1, we get

lim S e1,f1,02, 52)(5 (u,v;x,y),x,y) = 0.

n,m
n—00 sP1,P2

Further, in view of {.2.1)) and (@.2.2),

1/2
[n]qn{Sﬁﬁ‘;;B”((u — )Y qn, ) + S22 (v = y)*s gn, y)}

= 0O(1), as n — oo, uniformly in (z,y) € J.

Hence
Tim [n],, SI RS2 (e (u, v, 9)V/ (w0 = 2)F + (0 = )t gu, 2, y) = 0,
uniformly in (x,y) € J. This completes the proof. O

4.4 Construction of g-GBS-Bernstein-Schurer-Stancu op-

erator

For any (x,y) € J, the -GBS operator of Bernstein-Schurer-Stancu type

Ulenirene) . o (1 — Cy(J), associated to S 79272) is defined as:
s (f (0, 0); Gy g2 y) = SEnioe™ (f(u,y) + f(x,0) = (1, 0); G G, 7, 9)

m-+p1 n+p2 m—+p1—k1—1
m —+ p1 n + pa
= 1—¢a°
>y H N Ln T -

k1=0 ko=0
n+pa—ko—1

X H (1 - qzy)xklykg{flﬂ + ka - fk1,k2}>

e go) = p(Bhetn )y, Bl )

(k1]
[m]
([[kll%qm + oy [kalg, + a2>

Jrr ke
o mlg,, + B [nlg, + B2
Next theorem gives the degree of approximation for the operators U al01:02%2) by

means of the Lipschitz class of Bogel continuous functions.
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4.4: Construction of g-GBS-Bernstein-Schurer-Stancu operator

Theorem 4.4.1. Let f € Lipys (€, ) then we have

(UCEE 25 (f; G, g 2, 9) = [ (2, 9)] < MOE267/2.

m,n,p1,p2
for M >0,& v € (0,1].

Uy Bes®) (fq g, x,y) and by linearity of

the operator St 7 52") given by (4.1.1), we can write

Proof. By the definition of the operator

Uerbnosl) (fig. qoz,y) = f(z,y) SEam025) (g g, go, 2, )

_5’7(7(111757117:;;752) (A(m,y)f [U, U; ZL‘, y] ) Qma qn7 $’, y) .

By the hypothesis, we get

Uleabont) (g qo,z.y) — f (2,y)|

< SlenBuoaf) (|G f [, v 2, 9|5 G, @os 7, Y)
at,P1,a2,5 £ .
< MSEE) (Ju =l o=yl g g 7.y)

_ MS(al,,B1,a2,ﬁz) (|u _ $|£ G, [L’) S(oc1,ﬁ1,0427/32) (|U _ y|’7 S n, y) .

m,n,p1,p2 m,n,p1,p2

Now, using the Holder’s inequality with t; = 2/&, 51 = 2/(2—&) and t5 = 2/v, 89 =
2/ (2 —7), we have

a 75 7a 7/8 .
Ulerrasfa) (frq. g, x,y) — f (2,y)]

M (Slenree i)y — g)2 g, 2)*? lenBros ) (g g 0yE=0/2
(

m,n,pi,p2 m,n,p1,p2
(2=7)/2

« « . /2 a1,P1,02, .
xSy ™ (= 9)% )" S (e 4n, )

Considering Lemma.2.T] we obtain the degree of local approximation for B-continuous

functions belonging to Lipys (€,7) - O

Theorem 4.4.2. Let the function f € Dy(I) with Dgf € B(I). Then, for each (z,y) € J,

we have

Ulentent)(frg. q. @, y) — f(z,y)]

C
< W{HDBfHooermmd(DBf[ ml- 1/2[n]q_n1/2)}.
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4.4: Construction of q-GBS-Bernstein-Schurer-Stancu operator

Proof. By our hypothesis
Agyflu,viz,yl = (u—x)(v —y)Dpf(&n), withx <& <t; y<n<s.
It is clear that
Dpf(&n) = AwyDpf(&n) + Dpf(&y) + Dpf(x,n) — Dpf(z,y).
Since Dpf € B(I), by above relations, we can write
| (a1,81,02,82)

Sm,n,pl,pg (A(x,y)f[uyv,w7y]a QmaQna:L‘yy)l

= [SlenBieaB2)((y — 2)(v — y) D f(EN); Gms Gn, 2, )|

< SienBreeBs) (ju — a|lv — yl| Ay D f(E )] Gms Gns 2,9)
+ P02 (ju — x|o — yl(|Dpf (€, y)|
+|Dpf(z,n)|+ [Daf(z,y)]); dm: Gn: 2, )
< Slenbrana)(jy — g||v — ylwmiced(Difi 1€ = 2|, 11 = Y1) Gms Gos 2. y)
+3 (1 Dp fllos Sz (lu—zllv = yl; s G- 2, y).
We have

wmixed(DBf; |§ - $|7 |77 - y|) S wmimed(DBf; |U - ZE|, |U - y|)
< (140 fu =21+ 07 v = y]) Wnised( D f5 0m, 6n)-

Substituting in the above inequality, using the linearity of Sf,'i }{f}l’z;”g 2) and applying the

Cauchy-Schwarz inequality we obtain

|U75’Loj7117,16711322”82)(f; Am, qn, T, y) - f(xv y)|

= [SlenBroaBIN o Flu, v; 2, Y] G, Gn, 2, Y]

311D Flloo ) SSHES2 (u — £)2(0 — 1) Gos G 7, )

a 75 7a 75 .
+ (an,%,pi,pi 2 (Ju — z|[v = y|; Gms Gn, T, Y)

IN

+5715(a1’ﬁ17a2ﬂ2)((u - I’>2|U - y|7 qm;4n, T, y)

m m,n,p1,p2

+0, Sz ([u — @[ (v = 9)% Gy Gns 2, )

m,n,p1,p2

+6,,1 6, 1Sl b0 52) (4 — 2)2 (v — )% Gy G, T, y))wmized(DBf; Oy O )
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4.4: Construction of g-GBS-Bernstein-Schurer-Stancu operator

< 311D Flloo /SRS (1 — )20 — 1) s, 7, )

; (¢ S B2 (04 _ 221 — 1) g s 1 9)

0SS (= ) (0 = )% s 2. )
07 SRS (4= 2P0 — 1) g, 9)
+5;¢161:151(7?,}"55)117z§762)((u — x)Q(U — y)2; 4m,A4n, T, y)) Wmized(DBf; 5m7 5”)

It is observed that for (z,y), (u,v) € J and j, k € {1,2}

S(ahﬁl,az,ﬂz)((u

m,n,p1,p2

— )% (v = Y)*; Gy G, T, Y)

= Spenl ((u— ) g, ,y) S (0 = 9)*5 gn, 2, y).

m,p1 n,p2

1 1
— 7 Op = —17 and using Lemma 4.2.3| we get the required
[ ]‘Jm [n]Qn
result. O

Hence choosing 6,, =

Example 3. In Figures 3 and 4, respectively, for m,n = 10, ay, a0 = 1, 85, B2 = 2,

p1,p2 = 1 and for m,n = 5, a7 = 04, B1 = 0.7, ay = 0.5, B = 0.9, p1,py =

2, the comparison of convergence of the operators S,(,ff }{5}1’23’6 2)( I3 @m, @, x,y) (green)

US e B2 (f2 40 gy, y) (PInK) to f (2,y) = wsin (1) y;

(yellow) with g, = m/(m + 1),q, = 1 — 1/y/n is illustrated. It is clearly seen that the

U#ff o020 2) gives a better approximation than the operator

and its GBS type operators

S(Oq ,B1,02,32)

operator m,n,p1,p2

A a o= o N oW

<2
“:‘ngo’ﬁ S
:3*32230 o505
gt Y

Figure 3 Figure 4
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Chapter 5

Blending type approximation by
g-Generalized Boolean Sum of

Durrmeyer type

5.1 Introduction

Ren and Zeng [[119] introduced a new kind of g-Bernstein-Schurer operators. Acu et al.
[13] defined the g-Durrmeyer modification of these operators and investigated the statisti-
cal convergence in terms of modulus of continuity and a Lipschitz class function and the
asymptotic result. Recently, Kajla et al. [93] investigated some local and global results for
these operators and also studied the rate of convergence for the bivariate generalization of
these operators. Recently, significant contributions have been made to study the approx-
imation properties of some other operators defined for Lebesgue integrable functions in
the literature (cf. 3], [4]], [5], [6] and [[7]).

In this chapter, we investigate the approximation properties of the bivariate g-Bernstein-

Schurer-Durrmeyer type operators and also define the Generalized boolean sum operators.

89



5.2: Basic results

5.2 Basic results

In [93]], Kajla et al. constructed a bivariate extension of the ¢g-Bernstein-Schurer-Durrmeyer
operators introduced by Acu et al.[13] as follows:

For p1,p2 € NU{0},¢q1,¢2 € (0,1) and f € Ly(I; x L), ; = [0,1 + p;] and
I, = [0,1 4 py], the space of bounded and Lebesgue integrable functions on [; X I,

the bivariate extension of the g-Bernstein-Schurer-Durrmeyer operators is defined as:

[nl +p1+ 1](11 [nl]fh [nQ +p2 + 1]Q2 [n2]QQ
[nl + pl]fh [n2 + p2]¢12

n1+p1 n2+p2

X Z Z E”lykl (Qva)i)anm(QLy)Q;qu;kQ

Dnl,m,pl,pz (fu 41,492, 7, y)

k1=0 ko=0
[n1+rilqy [n2+p2lgy
[n1] (n2] ~ ~
X " b f(u7 U)bm,]ﬁ ((ha qlu) bnz,kz (qQ7 QQU> dQ1u d(hvv
0 0
(5.2.1)
5 n n+p n+p—k
where, b, x(q, ) = % [n —|—p] zk (M — x) , (x,y) € J*, J being
[n + plg k q (], q

0,1].
Lemma 5.2.1. [93] Let ¢;;(x,y) = 2'y?, i,j € N, 2,y € R be the two dimensional
test functions. The bivariate q-Bernstein-Schurer-Durrmeyer type operators defined by
(5:2.1) satisfy the equalities:

1. Dnl,ng,phpz (6070; q1,42,, y) = 1a

[n1+ pi]g,
2. Dy, €1,05q1, 42, T, Y) = L4+ qiw[nq, );
1, 27101,;02( 1,0 41, 42 ) [nl + +2]q1[n1]q1( 1 [ 1]111)
(12 + p2lgo
3. Dt noprpe (€015 015 G2, @, ) = L4 qay[nalg, );
1,n2,p1 pz( 0,1, 41, 42 y) [n2 + Do +2]q2[n2]q2< 2 [ 2]l12)
[ny + pil?
qilm + pilg [+ pr— g 2° + (hT(ﬂ(fh +1)%x
4- Dnl,nz,p1,p2 (62,0; q1,42, 7, y) = o +

[Tll +p1 + 3]q1 [n1 +p1 + 2}(11

[n1 +p1]21(1 +q1) _
(]2, [0 +p1+3]g [ + 1+ 2]g,
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5.2: Basic results

[ + lefm

[nZ]QQ
(g + p2 + 3]g,[ne + P2 + 2],

G3[n2 + palg[n2 + p2 — 1]0,9° + @2 (2 +1)%y

5. Dnl,n2,p1,p2(60,2;QIaQ2axay> - -+

[n2 + pa]s, (1 + 2)
[n2]2, [n2 + p2 + 3]y, [n2 + p2 +2]g,

Lemma 5.2.2. [93] The bivariate q-Bernstein-Schurer-Durrmeyer type operators satisfy

the equalities:

[ +pile . [+ pilg
et

1. Dn n —7;41,492, T, - 5
e e +2, al +p1+ 2,

(2 +pole, [n2 + P2,
i

2- Dn n —Y; 9 y = ,
Lnzprpe (V= Y5 Q1 G2, T, Y) <Q2 T et + 2,

o+l o= o, Tt pi
[n1 + p1+ 2] [+ p1+ 3y [n1 4+ p1+ 2]

3 Dnl,ng,pl,ln((u_x)Q;ql?q%x’y) = (q%

1) x?
ny + ny + 2
+ —[ 1 F Pila (Q1(Q1 +1)? 1+ Pl — )x +
(1] (1 + p1+ 2]g [0+ p1+ 3]g, (1 +p1+1]g

(1 + pal2, (@ +1) ,
(]2, [+ p1+ 2] [ +p1+ 3,

Ny + palg, (N2 + p2 — 1] [n2 + po]
4' Dn n v— 2; ’ . T, — 4 [ q2 q2 _2 q2
1, 27p17p2(( y) di; 42 y) (q2 [n2 + Py + 2](12 [77/2 + Py + 3]q2 q2 [n2 + Py + 2]

1)y?
[n2 + P2, ( 2 [n2 + P2g. 2 )
+ e +1 - T+
e W et et B Tt t Tl
na + P2y, (g2 +1)

n2]2,  [n2 4+ p2 4 2]g[n2 + P2+ 3lg,

Consequently, for every (x,y) € J*

1
Dm,m,pl,pz((u - SL’)2; Q17QQ7x7y) =0 < ) ’

1
Dm,ng,m,m((v - y>2§Q1,Q2,ZE,y) =0 ( ) ,
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and

1
Dm,nmpl,pz((u - $)4§ Q1,Q27$,y) =0 < ) ,

1
Doy s p1,p (0 — 9)4;Q1,QQ,x,y) =0 ( 5 ) ,

as ni, ng — OQ.

5.3 Main Results

5.3.1 Local Approximation Theorem

In what follows, let

6n1 = 6n1 (I‘) = Dnl,ng,pl,pg((u - ‘r)Qa q1,492, %, y)

and

5712 - 5n2(y) = Dn17n27p17p2((v - y)Qa q1, 92, I7y)

Theorem 5.3.1. For the function f € C(I; x I3), we have the following inequality
‘Dm,nz,pl,m(f; 41,42, %, Z/) - f(x> y)'

< M{ f \/A;Llll’r)l; qlaq2ax y))+mln{1 AZ;;L;(QMQanay)}HfHC(I)}
< (( ny +p1]q1(1 +q1x[n1]q1) . x)Q
nl +p1+ 2]th

()

(5.3.1)

where

ny + I+ gz 2
A (g1, 40, 0,y) = {621+6i2+([1 P4 012] ﬂ”—x)

(1 +p1+ 2]

+([n2 + Pl (1 + gaylnaly,) y)z}

[ +p2 + 2]y,
== {52 + (52 nl,ng,pl,pg (u - x? ql? qQ? x? y))2

+(Dn1,n27p1,p2 (U — Y 41,42, 7, y)>2}7

and the constant M > 0, is independent of f and AT "% (qq, g2, x,y).

P1,p2
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5.3: Main Results

Remark 1. Taking ¢; = ¢u,, ¢2 = ¢n, in Theorem [5.3.1, where {g,,} and {g,,} are
sequences such that ¢,, — 1, ¢;7 — 0, as n; — oo, ¢ = 1,2, it follows that the right

hand side of the inequality (5.3.1) tends to zero as n; — oo, i = 1,2.

Proof. To prove this, let us define:

1+ pilg, (14 qu[nalg,)
1+ p1+ 2]y

[ng + palg, (1 + g2y (naly,)
[n2 + p2 + 2], ) + f@)

9

D;kll,n2,p1,p2(f; (h,QQ,iE,y) = Dm,nz,pl,pz(f;ChaQQw'an) - f(

then using Lemma 5.2.1, we have
D’:kll,’fm ,P1 pg(l; di1,42, 2, y) - 1

D} o ((W—=2);q1,¢2,2,y) =0and D}, (0 = y);q1, 42, 2, y) = 0.
Let g € C*(I; x I) and u,v € I; x I5. By the Taylor’s theorem, we may write

g(u,v) —g(z,y) = g(u,y) — gz, y) + g(u,v) — g(u,y)

_ 89(;;y)(u—x)+/:(u—t)—a KD g

—1——89(82 v) (v—y)+ /yv(v — s)—a ga(;’ S)ds.

Applying the operator D}, . (.,q1,G2,7,y) to both sides of the above equality, we
get

ot?

*g(z,

+D;, 8 5

ni,n2,p1,p2

. ty)
Dnl,n27p1 pz(g; (h,QQ,iU,y) —g(:U,y) n1,n2,p1,p2( ( dt q1,492, %, y)
< dS q1,492, 7, y)

u 82 (
= Dnl,nz,m,m (u t) 12 dt 41,92, 1, Y

[n1+p1lgy Atarzlnyley)
_ [n1}!-p1+2]q1 1 ([nl + pl](h (1 + qlx[nl]ql) _ t) a2g(t, y) dt
[nl + P1 + 2]!]1 ot?

° 0%g(x, s)
Dy na.p1 p2 (v—s8)—F5— D52 — 5 A8 q1,G2, T,y
Y

[no+p2lgy (1+a2y[n2lgy)

_ 2 tp2 ey [n2 + P2le (1 + @2y([no]g,) 5 Pg(z, S)ds
y [n2 + p2 + 2], 9s2

Hence
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5.3: Main Results

D5 o1 (95 €1, @2, T,Y) — g(2, )]

S Dnl,ng,pl,pg <

[ -t

[n1+p1]lgy (A+a12[nylqy)

Pg(t,y)
—o0r dt|; z, Z/)

n [n1+p1+2]gq [m + pl]ql(l + ql$[n1]q1) ¢ 829(t, y) dt
x [n1 +p1 + 2], ot?
v 82
g9(z,s)
+Kpyn ,p( / v — s||—=——|ds ;x,y)
1,12 y 882
[no+p2lgy (14+92y[n2lgy)
N Tt | g + P2l (1 + qey[nalg,) ’ 0%g(z, s) ds’
” [ng + p2 + 2]4, 0s2
< LDl — P gy + (P2t azbul) N,
>~ n1,N2,P1,P2 s 41, ¢2, 4y [n1+p1+2]q1 C2(I1 x1I2)
2
n2 + Pale, (1 + q2y[nalg,)
Dn n - 2; ) 425 [ Z £ —
+{ 1, 271017;02((1} y) 41,42, % y) + ( [n2 1 ps +2]q2 Yy ||g||02(11><12)
(5.3.2)
+ pilg (1 + quzfma]y,) ’
< 12 [ a o)
N { m T ( n1 +p1+ 2y ! 9lle=xr
2
Ny + palg, (1 + q2y[nalg,)
52 [ q2 92/
+{ no + ( [77/2 +p2 +2]q2 Yy Hg||02(11><12)
2
_ {521 —1—(522 + ([n1 + pijo (1 + [y, ) _ a:)
[n1 + p1 + 2],
[n2 + palg, (1 4 goy[noly,) ?
+ —
= Azll:gj(qhqanvy)HgHCQ(lelg)‘
(5.3.3)
Also, using Lemma[5.2.1]

|D:L1,n2,p1,p2(f; q1,492, 2, y)|

IN

|Dn1,N2,’p17p2(f; q1,42, 7, y)|

(71 + pilg, (1 + quzna]g,) [n2 + pale, (1 + qoy(naly,)
+‘f< [n1 + p1 + 2]y, 7 [ng + pa + 2] >‘

+f(z, y)|
3HfHC(Il><I2)'
(5.3.4)

Hence, in view of (5.3.3)-(5.3.4) for every g € C*(I; x I,), we get
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5.4: Construction of GBS operators of ¢q-Bernstein-Schurer-Durmeyer type

‘Dm,nmpl,pz(f; qi1, 42, x>y) - f($a y)’

= 'Dim,pl,m(f;ql,qg,x,y) — f(z,y)

(1 + Pl (1 + quznalg,)  [n2 + palg, (1 + qaylnaly,)
+f< [n1 + p1+ 2], 7 [ng + pa + 2], ) I y)‘

< D e = G501, G2, 0, )|+ 1D 1 (95015 G252, y) — g(2,9)]
1+ pilg (1 + @azngg) [ne + p2le (1 + eynely,)
ota— fop ¢ [r (LR i) 1otk gl
(1 4+ p1 + 2]g (N2 + p2 + 2],

S 4||f - g||C(Il><IQ) + |D;kll,n2,p1,p2 (97 41,42, 7, y) - g(ﬂf, y)|

+‘f([n1 +pil (1 + @zfm]g) [n2 +pale (1 + qu[m]q2)> . y)‘

[n1 +p1+ 2], 7 [ng + pa + 2], 7

< (4||f — gllew) + A2 (Gny s @, x,y)||g||c2(zlxz2)>

N1+ p1 + 2]y (g + p2 + 2],

" ( . \/ ([m il (1+ aalmly,) ) ) ([n2 + Pl (1 alaliy) y) )

Using (0.4.2), we have

|Dn1,n2,p1,p2(f§ qi1, 42, 5(7,9) - f(% y)l

n+ pilg (1 + qizfnag) w>2

< AR(f A (a1 6o, 7)) + w(ﬁ { ([ [+ p1 + 2]
q1

+ ( [n2 + p2)g (1 + q2y[naly,) - y)2}1/2)

(12 + pa + 2]g,

Hence, we reach the desired result.

5.4 Construction of GBS operators of ¢g-Bernstein-Schurer-
Durmeyer type

For f € C(I; x I5), the parametric extensions of the univariate operator introduced by

Acu et al. [13] are the operators D? DY . C(I; x I) — C(I; x I5), defined for

ni,p1’ n2,p2
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5.4: Construction of GBS operators of q-Bernstein-Schurer-Durmeyer type

each positive integers nq, no as follows

n+p1 ["EH]H]LU

npl (fiqu,z,y) Z by (q1, T / f(%y)bn,kl(thw)dqua
k1=0
n+pa [nEH]DZ]%

np2 fa q2,7%, y Z bn ko Q2> / f(xvv)bn,k2(QQaQQv)dQ2v'
ko=0

For any (x,y) € J?, the GBS operator of g-Bernstein-Schurer-Durrmeyer type

Uninaprps : Co(lh X I) = C(J?), associated to Dy, n, py ps 1S defined as:

Un17n271717132(f; q1,42, %, y)

n1+p1 n2+p2
[0+ p1+ g [, [n2 + P2 + g, [n2]g, 'S I
bn q y L )Ony, q2,Y)q 1q 2
[n1+p1]q1 [712 —i—pg q2 klzo ]QZ 1,k \41 2k2( 2 y) 1 4o
[n[1+1]71]q1 [n[2+€;2]q2
"1lq n2lq _ R
. 1 2 [f(l’, U) + f(u’ y) o f(u’ U)]bnhkl (q1> Q1u)bn2,k’2 (QZ7 QQU)dmudtpU.
0 0
(5.4.1)

It can be easily observed that the GBS g-Durrmeyer operators is the boolean sum of

v
parametric extensions Dy, , D} . i.e

Un17n2,p17p2 D &DY =D +DY —D

,p1 n,p2 n,p1 n,p2 n1,12,P1,P2
Our next theorem gives the degree of approximation for the operators U, 5., p, p, DY

means of the Lipschitz class of Bogel continuous functions.

Theorem 5.4.1. Let f € Lipys (€, ) then we have

|Un17n27p17p2 (f7 q1,92, T, ?J) (ZL‘ y)| < M5§/257/2

ngy
for M >0,& v € (0,1].
Proof. We may write
Uni n2,p1,02 (fiqi,q,,y) = Dy o p1 0o (f (z,s) + f(u>y) — f(u,v);q1,¢2, 2, y)
- Dnhnz,pl,pz (f (:v,y) - A.f [(U,U); ($, y)] yd1,492,7, y)

= f (ZE, y) Dn17n2,p1,p2 (600; d1,492, 7, y)
_Dn17n27p17p2 (Af [(U, ?J), (‘I’ y)] 41,92, 7, y) .

96



5.4: Construction of GBS operators of ¢q-Bernstein-Schurer-Durmeyer type

Since f € Lipp (&, ), we have

IN

|Un1,n27p17p2 (f’ 6117(]271779) - f (x7y>| Dn1,n2,p1,p2 (|Af [(U,U), (xvy)” ;q1aq17x7y>

IN

M Dny iy p1 2 <|u - $|£ lv—yl";q1, ¢, 7, y)
= MD,,,, <|u —z:q, x) Doy ([0 =47 502, ) -
Now, using the Holder’s inequality with t; = 2/&, 51 = 2/(2—&) and t5 = 2/v, 59 =
2/ (2 —), we have
Uninzpnwe (3 @15 @2, 2, 9) — f (2, 9)]
< M (D (1 = 2)%01,2)) " (D (07 0, )) >

X (D (0 = 9)%02,9)) ™" (D (0302, )) 72

Now, considering Lemma [5.2.1] we obtain the degree of local approximation for B-

continuous functions belonging to Lipys (£,7) . [l

In the following theorem we estimate the rate of convergence by the operators Uy, n, p; po

for Bogel differentiable functions.

Theorem 5.4.2. Let the function [ € Dy(1; x Is) with Dy f € B(I; X I3). Then, for each
(x,y) € J, we have

‘Un17n2,p1,P2<f;q17Qan7y)_f(x7y)‘ S 1/2—
[nl]lh [77‘2]%

+wmiwed<DBf; [nl];ll/z [n2]q;1/2> }

C
{15

Proof. Since f € Dy(I; x I,), we have the identity
Afl(u,v); (z,9)] = (u—2)(v = y)Dpf(&n), withe <& <u; y<n<v.
It is clear that

Dpf(&,n) = ADgf(&,n) + Dpf(&,y) + Dpf(x,n) — Dpf(x,y).

Since Dp f € B(I; x I3), by above relations, we can write
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5.4: Construction of GBS operators of q-Bernstein-Schurer-Durmeyer type

‘Dn1,n2,p1,p2(Af[<ta 5); (l’, y)], q1,492, 2, y)‘

= [ Dy ngprpe (0 — ) (0 = y) D f(§, ) 01, 42, 7, Y) |
< Dy ng i o (|0 — zl|v — y[|ADE f(&:0)|: ¢1: g2: 7, y)
+ Diy oy o ([ = @[ = y[(| DB f(§, 9)| + [Dp f (2, m)|
+ D f(z,9)]); a1, ¢2, 7, y)
< Dy g o ([t = 2| = Yl|wmizea(Dp f5 € — 2], In — y|); a1, @2, 7, y)
+ 3 [DBflloc Dninzprpe(lu—zllv —yls a1, 42, 2, ).
(5.4.2)

Since the mixed modulus of smoothness w4 1S non-decreasing, we have

IN

wmixed(DBf; |U - (L’|, |U - y‘)
(1467 u = 2)(1+ 65 v — y]) Winizea( D f; 01, 82).
(5.4.3)

Wmized(DBf; |§ - ‘T‘a |7] - y|)

IN

Combining (5.4.2)-(5.4.3)), and proceeding along the lines of the proof of Theorem4.4.2]
1

. G2 =
ol [nz)s”

on taking §; =

and using Lemma [5.2.2] we obtain the required

result.

Some graphs on GBS operators of bivariate g-Bernstein-Schurer-Durrmeyer type

Example 1. Let p; = p, = 2. For ny,ne, = 15,q; = .20,q, = .25 (yellow) and
ny,ne = 25,q1 = .35, q2 = .40 (pink), the convergence of the operators
Unynaprime (F301,02,2,9) to f(x,y) = cos (mz?) + y? (blue) is illustrated in Figure 1.
In Figure 2, for ny,ny = 35,q1 = .45,¢2 = .55 (grey) and nqy,no = 35,q1 = ¢ = 1
(pink), the convergence of the operators Uy, n, o1 o (f5 @1, @2, , y) to the same function is

shown. It is observed that, as the values of n;,ns and ¢;, ¢» increase, the convergence of
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and ¢; = .50, ¢» = .60, the convergence of the operators D, ., ».». (f; q1, ¢z, x, y) (grey)

25, o

3and f (z,y) = = + sin(3y). For ny

2;]72 =

Example 2. Let p,

given by (5.2.1) and its GBS operators U,,, 1, p,.p. (f3 1, G2, , y) (yellow) to f (z,y) (blue)

is given in Figure 3. It is observed that the convergence of U, n, p1.p.(f;¢1, G2, %, y) tO

f(z,y) is at least as good as that of D, 1, p1 00 (f5q1, 2, 2, y).
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Chapter 6

Quantitative Estimates of Generalized

Boolean Sum operators of Blending type

6.1 Introduction

In [123]], Sharma and Aujla introduced a mixed summation-integral-type Lupas-Phillips-
Bernstein operator wherein they proved the statistical convergence of these operators and
estimated the rate of convergence by using modulus of continuity. Later on, Sharma [[122]]
introduced the bivariate case of these operators and determined the rate of convergence by
means of the complete and the partial modulii of continuity and the Peetre’s /K -functional.
In this chapter, we extend the work done by these researchers by introducing the GBS
operator of g-Lupas-Phillips-Bernstein type and obtain the degree of approximation by
means of the mixed modulus of smoothness.

In [122], the two dimensional mixed summation-integral type ¢-Lupas-Phillips-Bernstein
operators is defined as follows: Let (¢, )x, (¢ )m be sequences of real numbers such that
0 < ¢n,qm < 1, forall n,m and lim,,_, ¢, = 1,1imy, 400 ¢n = 1, and q; — a,q), —
b (0 <a,b<1),asn,m — oco.For (z,y) € O, where O = [0, 1] x [0, 1], and for any

f € Lg(0O), the space of bounded and Lebesgue integrable functions in O, we have

DEen (frayy) = 4 Ugm+ g, D> g, ¢, @im (2, y)

k=0 j=0

/ / Y00 (g, ) f (0, 0) g 0y, 0,
u=0 Jv=0
6.1.1)
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where, Diim (¢, 5) = by (£)by;(s) and Wi (¢, 5) = py (8)pjyr; (). Further, b , (), py 1. (%)
are the Lupas and Phillips-Bernstein bases respectively, given by

gy = Wgd O
- [I5 (1~ +go)

and
n

Py () = M q:c’“(l — )ik,

For any f € Cy(0), the space of Bogel continuous function on the O, the GBS oper-
ator of the operators given by is defined as follows:

T (fiz,y) = [+ Uglm+ 1, S0 g g 015 (2, y) / / Y99 (g, o)
u=0 Jv=0

k=0 j=0
x (f(z,u) + f(v,y) = f(w,v)) dg,udg,v, (z,y) €0
(6.1.2)

Now, we present a lemma which will be used in the sequel.

Lemma 6.1.1. [[22] Let (z,y) € O, m,n € N. For the operator 1537;,3m there holds the

equalities:

(i) Dinim(1;2,y) = 1;

~ 1
(i) Dy (i) = g o
qn qn
~ 1
(iii) D (v; 2, y) = %%y AT
qm qm
o~ [n]: z(l—2) 2*(1—=2)(1—g)
nsdm 2. dn _
(iv) Divim(u* x,y) = [0+ 2], [n + 3, {I + n]g, (1 -2+ zq,)

1 [n]g., 1 |
(1= 5) | e e+ V4 g g e

_ m] y(i-y) v’ =y~ am)
ns4Ym 2' = qm 3 -
) B (5e) = g e+ - S
1

1 Mg,
<1 N [m]qm) }+ [m + Q]Q'm [m + 3]‘1771 Om(2m TL)y+ [m + 2]Q’m [m + 3]qm (Gnt-1).

2
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Remark 6.1.1. For the operator ﬁg%m, we have

(i) lim [n],, D0 ((u — x);2) = (a — 1)z,

(ii) lim [n]y, D39 ((u — z)%; 2) = 2° — 322 + 22 + ax®(1 — ).
n—00 ’

(iii) lim [n],, DT ((u — 2)" 2) = =122 + 5622 — 24az(1 — x).

n—0o0

6.2 Main Results

In what follows, let §,, = Eg%fm ((u — )% x,y) and 6,, = ﬁfm‘fm (v—y)%z,y).

6.2.1 Asymptotic Result

For the operators defined by (6.1.1)), to prove the Voronovskaja type asymptotic result, let

us take n = m.

Theorem 6.2.1. For f € C*(0), we have

lim ], { D, (f32.9) = f(,9) }

— Lo Dot flene= D+ 3 fulon) (6 - 30 4 20+ 00’1 - o)
() (v° = 3y + 2y + ay®(1 - y)) }
uniformly in (x,y) € O,
Proof. By our hypothesis
Dl (f(u,v)iw,y) = floy) + folw,y) Dl (u = 2)i2) + £, (@, 9) Dl (v = v);w)
34 Falo) D0 = 02) 4 24y, 9) P (0 = i)
Do = ) + ) D)0 = 050)

+D8 (du, vy, y){(u — 2)* + (v —y)*}i 2, 9) -
(6.2.1)
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Where lim,, ) (z,y) ¢(u, v; 2, y) = 0.
Now, using Remark [6.1.1] we may write

lim [n]qn{ﬁg%(f(ua U); T, y) - f(l’, y)}

= fo(z,y)(@ =Dz + fy(z,y)(a - 1)y

+%{fm(x, y) (2* = 32® + 22 4 az”*(1 — z))

+fou(@, ) (v° — 3y + 2y + ay®(1 — y)) }

+ lim [n]g, D2, (¢(u, v; 2, y){(u — 2)* + (v — y)*}; 2,y) ,

n—o0

(6.2.2)
uniformly in (z,y) € O.

Applying the Holder’s inequality, we have
1D, (¢(u, v32,y) {(u—2)* + (v —1y)*}s2,) |

< {Dr@vapan}” ({0t} B -0t} .

By the Korovkin-type theorem ([[122]], Theorem 1. page.754), we have

lim D (¢*(u,v; 2, y); ,y) = ¢*(u, v;2,y) =0,

n—oo

uniformly in (z,y) € O.
Again using Remark 6.1.2,

Di(u )’ = O ) and D (0= i) =0 (15 ),

dn dn

hence

lim [n]g, D&%, (6(u,v;2,y) {(uw—2)° + (v —y)’};2,9) =0, (6.2.3)

n—o0

uniformly for all (z,y) € O.
By combining (6.2.2) and (6.2.3), we reach the desired result. O

Theorem 6.2.2. For f € C,(0) and each (z,y) € O, there holds the following inequality
‘Tg%qm(fa xz, y) - f(.T, y)| S 4wmixed(f; 5na 5m)
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Proof. Since
Wmimed(f; )\167“ )\26m) S (1 + )\1)(1 + >\2) wmixed(f; 5n7 5m)7 )\17 )\2 > 07

we have,

’A(m,y)f(uv /U)‘

IN

wmixed(f' |U — 33", "U — y|)
(1 + |U5— $|) (1 + | 5_ y|> wmixed(f; 5717 6m>7 (6.2.4)

forevery (z,y), (u,v) € O and for any d,, §,, > 0. Further, by the definition of A, ,) f (u, v),

IN

we get

f@,0) + fu,y) = f(u,0) = f(2,9) = Ay [ (u,0).

Hence

T (fro,y) = fla,y) Dinim (1 x,y) — DI (Mg f(u,0); 2, 7).

Note that, 5%77;;1’”(1; x,y) = 1, hence using (6.2.4) and the Cauchy-Schwarz inequality

we obtain,

Tt (fra,y) — fl,y)] < DI (| A, flu,0)];2,y)

< (Egygm(l; z,y) + 6;1\/5%%3’"(@ — )% 7,y)

+4 \/anqm )2 x,y) + 0, 1(5 \/anqm (u—1x)%2,Y)

</ Bl (v — )i y>) et (550, 5)
S 4 Wmixed(f; 5n7 5m)7

which gives us the desired result.

O

In our next result, the degree of approximation for the GBS operators ng;#m is ob-
tained by using the Lipschitz class Lipy(a, £),0 < a, < 1 for Bogel continuous

function.
Theorem 6.2.3. For f € Lipy (o, ) , we have

Tt (fro,y) = f (2,y)| < ME2602,
where M is a certain positive constant.
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Proof. Since

Towan (fix,y) = Dind(f (z,0) + f (u,y) — f (u,0);2,9)
= DI (f(z,y) — Ay f (u,0);2,)
= f(z,y) DI (12, y) — DI (A f (u,0) 5 7,y)

by our hypothesis, we find

IN

DI (| Ay f (u,v)

<MD (lu—al* o —yl;2.y)

Tt (fr2,y) — f (2,y)

7, )

M D (|u — x|* 5 2, y) Dinir (!v —y”;a, y) -

Now, applying the Holder’s inequality withp; = 2/a, ¢ = 2/ (2 — ) and ps = 2/, q2 =
2/ (2 — B), we obtain

a/2

Toie (Fiay) = f @) < M (Dige(u—a)fay) " D (L)

x Dt ((v = y)% 2,y) " Dy (152,4) /2.

Using Lemma [6.1.1] we reach the desired result. O

Theorem 6.2.4. If f € D,(0) and Dpf € B(O), then for each (z,y) € O, we get

7 M
T (fe,y) = fe,y)] < —7

W <HDBfHoo + Winized(DB f; [n];nl/z, [m]qim)) '

Proof. By our hypothesis
Agyf(u,v) = (u—z)(v—y)Dpf(&,n), with <& <u;y<n<s.
Clearly,

Dpf(&,n) = Ay Dpf(&n) + Dsf(&y) + Daf(x,n) — Dpf(z,y).
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Since Dp f € B(O), from the above equalities, we have

| Dgnt (A gy flu,0);2,9)| = | DIt (u — 2)(v — y) D f(E,n); 2,y)]
< DIt (ju — xl|v — y|| Ay Def(En)]; 2, 9)

+537;zm(|u—x||v (D8 f(E )]

D f (e m)| + D (,9)); x,y)

IN

DT ([ — 2|[v — ylwmizea(Dpf; |€ — 2|, |0 — y]); 2, y)
+3 | Dpfllse DI (Ju — [|v — yl;2,).
(6.2.5)

By the properties of mixed modulus of smoothness w;,;zeq, W€ can write

IN

wmixed(DBf; |U - (L’|, |U - yD
(146, fu = 2)(1+ 6, v = yl) Winizea( DB f; 0ns Om)-
(6.2.6)

Wmized(DBf; |€ - ‘T‘a |7] - y|)

IA

Combining (6.2.3), (6.2.6)and using the Cauchy-Schwarz inequality we find
(T (f:2,9) = f(a.y)]
= | D A f (u, 0); 2,y
< 3||DBf||oo\/5%7ﬁgm((u —x)*(v—y)%zy) + (5Z7£m(!u —|lv —yliz,y)
+8, 1 Dirin (u — 2)2|s — yls 2, y) + 0, DL (|u — z|(v — )% 2, y)

+5;15r;152%3m((u — )’ (v —y)*%a, y))wmiwed(DBf§ O )

< 31D llooy) D" (1 — 2)2(0 — )% 2, ) + (ﬁw«u 22— y)%ay)

+5;1\/l~?%’7r’é”"((u —a)'(v—y)hwy) + 0, \/5%%3’"(@ — )’ (v —y)hz,y)

+551572153’,%3’"((u —)*(v —y)%w, y))wmixed(DBf; Ons Om)-
(6.2.7)

We note that for (z,y), (¢,s) € Dand i, j € {1,2}
Dzt ((u = 2)* (v = y)¥s0,y) = Dy ((w = )5 ) Dl (0 = 9)¥39). - (628)
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From Remark [6.1.1] for sufficiently large n

Dyr((u—a)*0) < =\ Dir((v —y)*sy) < 6:29)
[n]Qn [m]Qm
~ M, ~ My
D?Ln((u_x)47x) < > Dfnm((v—y)4,y) = T 799 > (6210)
]z, )G,
where M; > 0, fori=1,2,3,4
1
Letd, = ——, and §,, = ——.
nlg.” [l
Then, combining (6.2.7)-(6.2.10) lead us to
~(In qm 1 1
Tt (fi,y) = f,y)l = 3lDslleO( —7 )O| —37
/ /
[n}qn [m]Qm
1 1 _ _
o ( 1/2 ) “ < 1/2 ) wmizea(Dp f3 ], 172, [m], /),
[]gn [m]a,
from which the required result is immediate.
]

Now, we examine the rate of convergence of the operators D9 and 7)7%:¢™ by some

illustrations and numerical examples.

Example 1. For n = m = 5 (green) and n = m = 10 (orange) with ¢, = (n — 1)/n
and ¢, = m/(m+1), the convergence of the operator E?ﬂ;‘{m givenby (6.1.1)to f (x,y) =
cos (mx?) 3y® (yellow) is shown in Figure 1. In Figure 2, for n = m = 5 and the same
Gn»> Qm, We compare the rate of convergence of the operator Bgﬁ,ﬁm (green) and its GBS
operator fg%‘lm (grey) to the same function f (yellow). It is observed that the rate of

convergence of 1)1 appears to be as good as D ™.
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Figure 1 : For n = m = 5 (green), Figure 2 : For n = m = 5, the convergence
n = m = 10 (orange) the convergence of ﬁ;{%m (green) and its GBS operator
of 53;,;‘{’” to function f Tg%qM(grey)

Example 2. Let ¢, = (n — 1)/n and ¢,,, = m/(m + 1). Forn = m = 5 (grey) and
n = m = 15 (pink), the convergence of T,‘{j;;fm (f;z,y) to f(z,y) = cos(mx?) /(1 +
y) (yellow) is illustrated in Figures 3 and 4, respectively. It is clear that the degree of

approximation becomes better on increasing the values of n, m.

s —
A AR s,
S ‘\\\\\“
I Sas
it
A0

SO

02

Figure 3 : For n = m = 5, the convergence of =~ Figure 4 : For n = m = 15, the convergence of

T (fiz,y) (grey) to f (z,y) (yellow) o (f;2,y) (pink) to f (z,y) (yellow)
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Example 3. In Figure 5, forn = m = 5 and ¢, = .10,¢, = .20 and n = m = 15 and
qn = .90, ¢, = .95, the convergence of ﬁ‘{j;;ﬁm (f;x,y) (respectively, green and grey) to
f(z,y) = xy? + 2%y (yellow) is shown.

It is observed that, on increasing the values of n, m and the corresponding ¢,, ¢, the

convergence of Tvg%qm (f;x,y) to f (x,y) becomes better.

Figure 5 : Forn = m = 5, ¢, = .10, ¢, = .20 (green)
andn =m = 15,¢q, = .90, ¢,, = .95 (grey),

convergence of i‘f%q’” to f (z,y)

Example 4. For n = 5000 and the different values of ¢,, ¢,,, the error of the ap-
proximation of ng;;gm (f;x,y) to f(x,y) = zy* + 2%y, by using the mixed modulus of

continuity of f is listed in the following table:
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Qn Gm error bound

75 .85 3.785685010
.80 .85 3.349448117
.885 | .889 | 2.111541166
890 | .975 | 0.941783434
905 | .989 | 0.570639803
975 | 998 | 0.118876832
987 | 9989 | 0.062860082
2995 | 9987 | 0.041912622
995 | .9989 | 0.038577083
9975 | .9989 | 0.027140508
9995 | .9997 | 0.007416630
1 1 0.003226274

Table: the degree of

approximation of i({j;fm (f;x,y) to f(x,y) interms of Wyizeq
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Chapter 7

Generalized boolean sum operators of

g-Bernstein-Schurer-Kantorovich type

7.1 Introduction

In [102], Muraru constructed the g-Bernstein-Schurer operators defined by

n+p [k]
By, (f; ) wak g (M ) , wed, (7.1.1)
q

where b, .1 (q; 7) = (n Zp) 2*(1— x)’q”p*k and J = [0, 1] and established a Korovkin
type approximation theorem anqd the rate of convergence in terms of the first order modu-
lus of continuity.

Recently, Agrawal et al.[[1'/] constructed a bivariate case of a new kind of Kantorovich
type generalization of the operators B, , as follows:

Let I = [0,1+ p|],I? = I x I, and C(I?) be the space of all real valued continuous

functions on I? endowed with the norm || f|| = sup |f(x,v)|.
(z,y)€l?

For f € C(I?) and 0 < q,,, gn, < 1, the bivariate generalization of Kantorovich type

g-Bernstein-Schurer operators is defined by
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ni+p na2+p

. o qnq,qng —k1 ,—ko
Knl,nmp(fa qn1 ) qn27 L, y) - [nl + 1]Qn1 Y + QnQ E E : bn1+p,n2+p,k1,k2( ) y)qnl qng
k1=0 k2=

[k2+1]€1n2 /[n2+1}4n2 [k1+1]Qn1 /[n1+1]11n1 R
x /[ /[ Flu0)df (w)d® (v),

kZ}an /[n2+1]Qn2 kl]in /[nl-ﬁ_”?ﬂl

(7.1.2)

ng +p k1, ko ni1+p—=ky na+p—ka
( ko )qn o (1—517)%1 (1_9)%2

2

n1+p,n2+p,k1,k2 kl

Whel’e b‘]np‘]ng ( 7y) _ (nl +p)
qn

1
and z,y € J?, J being [0, 1].

and studied some of their approximation properties. In the present chapter we continue
the work done by Agrawal et al.[17] by discussing the rate of convergence in terms of the
partial moduli of continuity and the Peetre’s K-functional. In the last section of the paper,
we construct the GBS (Generalized Boolean Sum) operators of the g-Bernstein-Schurer-
Kantorovich type defined by (7.1.2) and obtain the order of approximation in terms of the

mixed modulus of smoothness.

7.2 Preliminaries

Now, we present a lemma which will be used in the sequel. In what follows, fori = 1,2,
let (gn;) be a sequence in (0, 1) satisfying ¢,, — 1 and ¢;i — a;,(0 < a; < 1) as

n; — oQ.
Lemma 7.2.1. [I7] Let e;; = 'y, (i, j) € N®x N with i+j < 2 be the two dimensional
test functions. Then the following equalities hold for the operators given by (7.1.2)):

(l) Knl,ng,p(€00; qny5Y9nyy T y) = 17

[nl + p]fInl 2qn1 1
T+ ;
[n1 + 1]‘1711 [2](1711 [2]Qn1 [n1 + 1]qn1

(”) Knl,nz,p(el[); Qny 5> Y9nyy T, y) =

[nQ + p]Qn2 2Qn2 1
[n2 + 1], [2] 214, [n2 +1]

(iii) Km,mm(eOl; s Gz T Y) =

dno QnQ
. 1 Qn, (3 +5¢n, + 4Qn ) [nl + p]qn
(lV) Kn ,n2, (620; dny5 9n ?x7y) = ' T
nep v [n1 + 1]§n1 [3}%1 [Q]qnl [B]in [n1 + 1]11%1
+ Qil(l +qn1 +4qg1) [nl +p]Qn1 [nl _l_p_ ]‘]in x2

[2]%1 [3]%1 [n1 + 1]!1%1 ’
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1 Gny (3 + B4y +4q2,) [n2 + g,
(V) K, nsp(€025 Gnys Gnas T, Y) = 2 2y
P [n2 +1]3, [3lq., 2] 40, [3lgn, [no + 17
qig(]‘ + an + 4(]7%2) [n2 + p]QnQ [77/2 + p—= ]‘]an y2

7.3 Main results

In what follows, let

1/2
b = 00) = (Kl 0= 0P )
and
1/2
5n2 = 6712 (Z/) = (Knlmz,p((U - y>2; Any) Qnyy X5 y)) :

First, we obtain an estimate of the rate of convergence of the bivariate operators in

terms of the partial moduli of continuity.

Theorem 7.3.1. For f € C(I?), there holds

|Kn17n27p(f; Qn17Qn2ax7y) - f(x,y)| S 2(w1(f;5n1) +w2(f; 5n2))7

Proof. By the definition of partial moduli of continuity, Lemma [7.2.T] and using Cauchy-

Schwarz inequality we may write

|Kn1,n2,p(f; Qny 5 Gna x?y) - f(x,y)l

IN

Koy o ([ f(w,0) = f(2,9)]; @ny Gng> 5 )

IN

Knl,n2,p(|f(u7v> - f(vvy)‘;QTluqnz?ny) + Knl,nz,P<|f(u7 y) - f(‘ray)|;Q7L17qn27xay)

IN

Ko p(@2(f5 10 = y])i @nys @no s @, y) + Koy o p(wr1 (f3 |w — 20); G0y G 5 Y)

1
w2<f; 6”2) |:1 + 5_Kn1,n2,p<|v - y’; QnisGnyy T, y):|
ng

IN

1
+w1<f; 5“1) |:1 + 5_Kn17n2,P<|u - $C|; Qny5Y9nyy T, y)}
ni

1 1/2
wa(f;0ny) [1 t5 <Kn1,n2,p((v — )% Gns Gy T y)) }

IN

1 1/2
+w1<f; 5n1) |:1 + 5_ <Kn1,n2,p((u - 5{})2, QTL17 qn2>x7 y)) 1 .

ni
In [17], it is shown that d,,,, d,,, — 0 as ny, ny — oo.

Hence, we reach the desired result. OJ
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Theorem 7.3.2. If f € C(I?), Then we obtain

‘Knhnz,p(f; Qny s 9na x?l/) - f(l',y)|

< M{('J2(f7 \/Anl,n2,p(qn17 Qnyy s y)) + mzn{l, Anlﬂz,p(%ﬂa‘]ﬂzu z, y)}”f”C(Iz)}

- (f. ([”1+P]qn12qn1$+1_ )2+([n2+p]qn22qn2y+1_ )2)
NV T T B, ot U Pl ) )

where

[n1 + plga, 2¢n 2 + 1 i
Aoy Qo 7). = 02, 467 E
15 mp(q 1 Qnas & y) { ™ + " * ( [nl + 1]%1 [Z]Q’ﬂl

()

Iny

and the constant M > 0, is independent of f and Ay, 1y p(Qny s Gngs T, Y)-

Proof. Let us define the auxiliary operators

Koo (5 s G 2, 9)

[ +p]qn12qﬂ1$ +1 [no+ p]qn2 2,y + 1)

[+ 1g,, g,

:Kn,n, f;Qn y Qngs L, Y _.f(
1o 13 4no ) - [n2—|—1]qn2 [2]%2

+f(z,y),
then using Lemma(7.2.1] we have

*

Knl,nQ,p((u - x)? Q’fH? qnzv x? y) = 0 and K’;;hng,p((v - y)? ina ana x? y) = O

Let g € C*(I?) and u, v € I. Using the Taylor’s theorem, we may write

g(u,v) —g(z,y) = g(u,y) —g(x,y) + g(u,v) — g(u,y)

_ @%%QW—IW+AQU—ﬂQ%%@ﬁ

+—8g(axy, v) (v—y)+ /yv(v — 3)—8 g;;’ S)ds.
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Applying the operator K* (., @nys Gny, T, y) on both sides, we get

ni,n2,p

*g(t,y)
at2

*g(x, 5)

a —5 5 ds; qm,qm,x,y)

Ky oG5 s Gng> 05 y) — g2, Ky o, — 5 A Gy s Gy, T, Y

n17n27p
Y

8152
ny +pqn 2qu+1 )a2g<t7y

[n1+p]qn1 2‘177.1 z+1
/ 71+ 10gn, Plan,
x

n17n27p

)dt

ot?

[ny + 1] qn1 ]qnl

S
a<2 )d ;qm,qm,:v,y)

([
([
Ky in, ( “lty )dt nys Gnos T, Y
S
([

[n2+Plgny 2angy+1

/[nwlq@%ng <[nz + Plgn, 2¢n, + 1 ) g(x, 5) 4
_ — S S.
Yy [n2 + ]‘]QnQ [Q]Qng 882

Hence

*

K} o (95 Qs g, 2, Y) — g(, )|

" ,Y)
< Km,nz,p< / _t|‘ 8152 dt
[n14+plgn, 2anq z+1
) /mu 1+ Py, 20 + 1 Ha gty M
x [n1 + 1a,, [2]g., or?
v 0?g(x, s)
+Kn1,n27p</ v — s 2 ds|;z,y
Yy
[no+plgn, 2qno y+1
) /M [ + Plgn, 20n,y + 1 ‘029(3375) d‘
— S _— S
Yy [nz + 1]Q7LQ [2]Qn2 882
[n1 + Pl 2¢mx + 1 2
< Kn n - 2) n1y Yngy 4 = -
< { Kool 250120+ (CE S ) gl

[n2 + p]an 2,y +1 2
- H9||02(12)

{ 1, 2,17(( y> tna> ne y) [nQ + 1]%2 [2]%2
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IA

2
2 [nl +p]Qn1 2%111: +1 o 2
{677‘1 + ( [nl + 1](1711 [2]Qn1 ! ||g||C2(I2) + 5n2

4 [72 + Plan, 24y + 1 : 9|
- 2 2
o+ g 2, 7)) Jl9Ne

2
_ {52 +82 + ([nl 2T x)
" " [nl + 1]Qn1 [2]‘1711

+<[n2 + Plga, 20,y + 1 y)2}||g|| .
- C?(I

[ng + 1]qn2 mqnl o
= Anl,”z,p(inaanyxay)HgHC’z(IQ)-

(7.3.1)

Also, using Lemma [7.2.]

1 (3 s Gy 2, )|

[n1 + p]qn12Qn1x +1 [ng "‘p]qngz%zy + 1> '

< KTL n 7 niy dng Y ’
> | 1, 2,P<f Qnys Qnos T y>| T ‘f< [m + 1]%1 [2]%1 [TLQ + 1]Qn2 [2]

+f(z,y)] <3| fllcu2)-

qnq

(7.3.2)

Hence in view of (7.3.1), (7.3.2) and using the relation (0.4.2), we get
‘Knl,ng,p(f; qn1 ) ana Z, y) - f(za y)’

\ (71 + Plgn, 2¢m, @ + 1 [n2 + plg,, 2Gn,y + 1
= 'Knlm,p(f;qm,qm,x,y)—f(:v,y)+f< e el 2

[n1 + 1]qn1 [2]qn1 T [na+ 1]qn2 [2]%1
—f(:c,y)‘
< K o = G50y Gy 2, )| 1 0 0(95 s Qg 5 9) — g2, 9)| 4+ 19(2,y) — flo,y)]
N1+ Dlg, 2¢n,x+ 1 [ng + plgn. 2¢n,y + 1
e i e e e AN
[n1 + ]in[ ]qm [ + ]qng[ ]an
< AYIf = gllea) + 1K, 1y p(95 Gy @nay T, 9) — g(2, )
N1+ Plg. 2Gn,x + 1 [n2 + plg,. 2Gn,y + 1
(T T B T2
[n1 + ]in[ ]in [ng + ]qnz[ ]qn2
<

(MV—Mbmrﬂ%mw@m@mxmewmo

; [nl + p]qnl 2¢m T +1 ? [nQ + p]qng 2gn,y +1 2
" (f7 \/( 71+ U, (2o, - l‘) i ( [n2 + 1., [2lg., - y) )
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IA

[nl + p]Qm 2qp, v + 1 . x)Q
[nl + ]']in [2](1711

AK(f; Am,nz,p@ma nys T,Y)) +w (fa { (

5y 1/2
N ([nz + Plgny 20y +1 y) )
[n2 + g, [2lg.,
M{QZ (f7 \/An1,n2,p(QH17 Qnyy T,y y)) + mln{lv Anl,ng,p(QHU Qnoy T, y)}||f| |C(12)}

7 [nl + 1]‘]711 [2]%7,1 [TLQ + ]‘]an [2](]712

Thus, we get the desired result.

IN

7.4 GBS operator of ¢-Bernstein-Schurer-Kantorovich
type

We define the GBS operator of the operator K, ,,, , given by (7.1.2), for any f € Cj, (I?)
and m,n € N, by

Tn1,”2,10(f<u7 U)’ qn17qn27 x7 y) = KTLLTLQ,P (f (u7 y) —"_ f ('T7 U) - f <u7 /U) ;qn17 qTL27 ‘TJ y) )

for all (z,y) € J*.
More precisely for any f € Cy(I?), the GBS operator of g-Bernstein-Schurer-Kantorovich
type is given by

Tnl,ng,p(f; qnl ) qn27 '1.7 y)

ni+pnz2+p

= [nl + 1]q"1 [nQ + 1]‘7"2 Z Z biﬁiiﬁiz%—p,khb (.CE, y)qglqu;;w
k1=0 ko=0

[k2+1}(1n2/[n2+1}Qn2 [k1+1]4n1/[n1+”4n1 R R
x / /[ [, ) + Fl) — Fl, )R () (v)

[kQ]QnQ /[n2+1]lIn2 kl}in /[n1+1}¢Zn1

(7.4.1)
G ny+p Ng +p ni+p— n —
where b0 (x,y) = < " ) < b ) xk1ykz(1—$)q;jp k1(1—y)qjjp ks
any dng

Here the operator 7T},, ., , is a linear positive operator and is well defined from the space
Cy(I?) into C'(J?).
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Theorem 7.4.1. For every f € Cy(I?), at each point (x,y) € J? the operator (7.4.1)
verifies the following inequality

’Tnl,'fla,p(f; 4nyyQng, T, y) - f('rﬂ y)| S 4wmixed<f; 5”17 6”2)

Proof. We may write

Tovnap(f3nys @nas ,y) = F(2,9) Ky o p(€005 Gy s Qg s T, Y)

- Km,nz,p (A(m,y)f[ua v, y]; QnisGngyy T, y)

Since Ky, ny.p(€005 @nys @ngs @, y) = 1, considering the inequality (6.2.4) and applying the

Cauchy-Schwarz inequality we obtain,

|Tn1,n27p(f; Anys Gnoy Ty y) - f($7 y)’

IN

Koy map (1A flUs 032, Y]] @ny s g, ., Y)

S (Knl,ng,p(eOO;QTL17QVL27$>y)

+57:11 \/Kn1,”2,[’((u - x)27 qnlv QTL27 I? ?J)
+57:21 \/Knlvn%P((U - y)Z; 4nysQny, T, y)
+57:1157:21 \/Knhnz,p((u - QE)Q; Gn1y Gnay T, ?J)

x \/K"17n2,1’((v - y)Q; 4ny5qnay T, y)) wmifﬂed(f; 5”17 5712))
S 4 Wmized(f; 67117 5112)7

from which the desired result is immediate.

O

Next theorem gives the degree of approximation for the operators 7,,, ,,, , by means

of the Lipschitz class of functions in Cj,(1?).
Theorem 7.4.2. Let f € Lipys (o, 5) then we have
|Tn1,n2,p (f; 4nysQ9ny, T, y) - f (.’L’, y)| S M5S1/25£2/2

for M >0, a,8 € (0,1].
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7.4: GBS operator of q-Bernstein-Schurer-Kantorovich type

Proof. By the same reasoning as in Theorem[6.2.3] we have

IN

|Tn1,n2,p (f) QH17 ana x? y) - f (:B7 y)| Kn1,n2,p (‘A(z,y)f [u7 U; x7 y]l ;’I’ y)
Moy (Ju = 21" o = ol s, )

MK, g (’u - x|a ; x) Koy nap (‘U - y’6 ; y) .

IN

Now, using the Holder’s inequality with p; = 2/, q; = 2/ (2 — ) and py = 2/83,q2 =
2/ (2 — /), we have
a/2 o
‘Tm,m,p (f7 dny s 9na» x,y) —f <x7@/)‘ < M (Km,m,p(u — x)z; Qf) / Km:"Q,p (60; :L')(2 )/2
B/2 ~
% Koy (0= 9)%9)" Koy (e059) 772

Considering Lemma([7.2.1] we obtain the degree of local approximation for B-continuous
functions belonging to Lipys («, ) . ]

Theorem 7.4.3. Let the function f € Dy(I%) with Dgf € B(I?). Then, if (z,y) € J?,
there holds:

M
|Tn1,n2,p<f; %117 qnz’ ZIZ', y) - f(l', y)l S ﬂ <‘ ‘DBf‘ |OO
[nl](bq [nZ]Q’HQ
+wmi$ed<DBf; [nl];nll/Q’ [nQ]q_nlz/Q)) '

Proof. Since f € D,(I?), we have the identity
Ay fluviz,yl = (u—2)(v —y)Dpf(§,n), withz <& <u; y<n<w.

It is clear that

Dpf(&n) = Ay Dsf(&,n) + Dpf(&,y) + Dpf(x,n) — Dpf(z,y).

Since Dpf € B(I?), by above relations, we can write
| Koy iz p (Do) f [t 03 2, Y15 s o> 2, Y|
= | Knnap((w = 2) (v =) DB f (& 0); Gna s Gna» 7, 1)
< Koymap(lu = zllv = y[|Awy Def (& 0|7, y)
Ky p(Ju = zlfo = yl(| DB (€, y)]
+Dpf (@, 0|+ [Dpf (@, y)]): dny Gna» 7, 9)
Koy nop(lu = ][0 = Ylwmizea( D f 1§ — [, In — yl); 2, y)
+3 [P flloc Knymop(lt = 2l|v =yl ny s Gng» 2, 9)- (74.2)

IN
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Since the mixed modulus of smoothness w;,;;cq 1S Non-decreasing, we have

wmixed(DBf;‘f_m‘a‘n_yD S wmixed(DBf;’u_x‘>’U_yD
< (1+(5;11|U—1E|)(1+(5;21|’U—y’) wmixed(DBf;(snladng)-

It is known from ([[1'/]], Theorem. 4.5) that

M M.
Koy p((u — 55)2; Gny> ) < : y Koy p((v — y)25 Gnyy Y) < = (7.4.3)
[nl]in [nQ]qn2
KnhP((u o $)4; qn17:c> < M22 ) an,P<<U - Z/)4; Qny» y) < ;1 (7.4.4)
[nl]qnl [nQ]qn2

for some constants M; > 0, fori = 1,2, 3, 4.

Hence applying the Cauchy-Schwarz inequality and using (7.4.3)-(7.4.4) in (7.4.2)), on

— 7 and ¢,, = —73
n1 qnq [ 2]Qn2

we obtain the required result.

choosing ¢, =

7.5 Applications

1. The Stancu variant of the operator K, ,, , defined by (7.1.2) is given by

Knl,ng,p(f; GnysQngy Ty y)O@UﬁW

ni+p n2+p
= [+ B+ 1, 2ty +1g, DD Ut (@) g
k1=0 ko=0

[k2+o+1]gn, /In2+v+1]gn, [k1+at1]gn, /[n1+B+1]gn, R R
« /[ /[ F(u, 0)d2 (w)d® (v),

k2+U}Qn2 /[n2+"/+1]Q’n2 kl +04(1n1 /[nl +5+1]Qn1

where bi11-&-qp,7212+p,k1,k2($7y) = ( kl ) ( kz ) T 1y 2(1 _ m)qijp 1(1 o
dn dn

2

Ytk g <a<Band0 <o <.

dngy

For B-continuous functions, the GBS operator of Stancu type K, 1, »(f; Gnys Gnoy T, Y) a8,
is defined by
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7.5: Applications

Tn1,n2,p(f(u7 'U); Gnyy Gnay T, y)a,a,ﬁ,'y

n1+p na2+p
- [nl + ﬁ + 1]Qn1 [n2 ++ 1]%2 Z Z Zti;"7212+p7k1’k2( y)qglqu;f?
k1=0 k2=0
[k’2+‘7+1]qn2 [k1+a+1](1n1
[no+v+1lgy, [n1+B8+1lgn
(k2 +0olgn, 2 [k1+elgn, 1 (f(l',?]) T f(u7 y) N f(u’ U>>di ( )d‘iQ( )
na+v+1lgn, [n1+8+1]gpn,

which is the Stancu variant of the operator T, 1, »(f @ny» Gn,, %, y) given by (7.4.1).

Theorems 7.4.1 - 7.4.3 can similarly be obtained for the operator

Ty nop (5 0y Qo> T3 Y) oy With f € Cp(1?) and all (z,y) € J2

. Agrawal et al. [22]], introduced the Stancu type generalization of modified Schurer

operators based on g-integers as
n—+p ]_—‘,—p
+p+1] _ [n],u + o
S(aﬂ) .G, T) = [n—q b T k/ = 7 e wd u
n,p (f q ) (1 +p)2n+2p+1 kZ:O n+p,k( )q 0 f [ ] + ﬁ n+p,k(q ) q

n—+p

V z € [0,1+ p] where f € C(I) and b}, ,, = ( "

0<a<p.

) a*(1+p— )" and
q

We define bivariate case of this operator

Sn1,n2,p(f7 QHU QTL27 JJ, y)(0117042”31752)
+pni+
_ [nl +p+ 1]qnl [n2 +p +1 qn2 nlzpnlzp dnyqngo (x y)q—k1q—k2
- 2n1+2p+1 2 +2p+1 n1+p,n2+p,k1,k2 ’ n1 ing
(14 p)2mt2rtt (1 p)2nat2etl e oet

e U+ oy [ngg,, v+ as
in qno b g d ud "
/ / ( [11] amy T B’ [nz]qn2 + [ ) n1+pn2+pkikz (G, s Gy 0)dg, w dgy 0,

ny+p Ng +p N
where b7 vk, (T,Y) = ( " ) ( k;2 ) k(1 4p— ) 1+p Fyke (14
q

dng
D— y)gj;pikz, and 0 <oy < By, 0<ap < By, 3 €R, i =1,2.
The GBS operator of Stancu type Sy, ny p(f, Gnys Gnas T, Y) (a1.,00,81,8.) 15 defined by

T’nl,ng,p(f(u7 U), Gnyy Gnay T, y)(al,az,ﬂhﬂz)

- Snl,ng,p(fy GnisGngs T, y)(a1,a2,,81,,32)(f(ua y) + f(l‘y 'U) - f(ua U)a qnis Gnas T, y)
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7.5: Applications

V (z,y) € J?. The approximation behavior these operators will considered elsewhere.
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Chapter 8

Chlodowsky-Szasz-Appell type

operators for functions of two variables

8.1 Introduction

On the interval [0, a,,| with a,, — 00, as n — oo, the Bernstein-Chlodowsky polynomials

Bo(f;z) = Y (Z) (%)k (1—@%)an (k%) 8.1.1)

k=0

are defined by

where z € [0, a,,] and lim I _ 0.
n—,oo N,

By combining the Bernstein-Chlodowsky operators (8.1.1)) and the operators (0.3.2),

we introduce the bivariate operators as follows:

k n—k __bny .
x e Qn ]
ZZ w) gy (R
(8.1.2)
foralln,m € N, f € C(A),, with A,, = {(z,y) : 0 <z < an,O <y < oo}, and

C(A,,) :={f : A,, — R is continuous}. Note that the operator (8 is the tensorial
product of B, and , P, i.e., T}, ,, = B, o, P}, where

men=3 (i) () (-2) (),
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8.2: Preliminaries

and

_bm
WP (fimy) = yZpk (bmy) ( k)

The purpose of the present chapter is to establish the degree of approximation for the
bivariate operators (8.1.2)) by means of the moduli of continuity and the Lipschitz class.
The rate of convergence of these operators for a weighted space is studied with the aid
of modulus of continuity defined in [88]]. Subsequently, the GBS case of these operators
(8-1.2) is introduced and the approximation degree for the GBS operators is obtained by

means of the mixed modulus of smoothness.

8.2 Preliminaries
To examine the approximation properties of the operators (8.1.2)), we give some basic
results using the test functions e; ; = u'v? (i,7 = 0,1, 2, 3,4) as follows:
Lemma 8.2.1. For the operators T,, ,,, there holds the identities:
(i) Thm(eoo;z,y) =1,

(”) Tn,m(el,o; x, y) =T

b 1 g'(1)
i) T (015 2,) = 2y + — 2
(iii) Tpm(€o1;2,y) Cmy + Y

X
(iv) Tpm(eso;x,y) = 2% + ~(an — ),

b2 bm /1 1 //1 /1
(v) Tom(eop;a,y) = 5y° + = (QZ( )+1>y+07 (g ( )+g( )),

2 2
Co Con

(Vl) Tnm(GSva y) —ZL’ +

3 2 " /
Tnm 7 m m 3 1
(vii) (035 7,y)= 13% 3 (39 1) ) +c§n (3 g(1) +89(1) )Y

1 (8,80 )
+cs(g(l) <> <1>)

(viii) Tym(€s0;x,y) = x? —i—

r?an(a, —x)(n —1)

)

n3
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8.2: Preliminaries

(ix) Tn,m(em;x,y):%y4+i%y3(4zl((11;+10> ;: ( 11>)+14)+
b (0"() . g"1) o g(1) (1) g’”(l)
cay<4 T 0 B ) ( O RS

g"() g1
LRRPTES IRy

Proof. By simple calculations, we can easily prove the above results. Hence the details

are omitted. O
As a consequence of Lemma[8.2.1] we obtain:
Lemma 8.2.2. For the operator (8.1.2)), we have the following results:

(i) Tam((ero = 2% 2,) =
2 / ,
(i}) Ton((e01 — y)%2.) = (b—’” - 1) v+ (2b—mg b_2d40), b—m) y

1 /g0 ')
e (g<1> - g<1>)’

_ 3

(iii) Tom((ero—2)%2,y) = (% — E) S ) 2)x3+ai <i—1> 22+ Z"
bm ! b ‘(1 b (- q'(1

(iv) Tom((eoq—y) sz y) = — 1) 4+{_m(4g( )+10) +6CT<2~Z]( ) 11

Yy
b (29D N\ 4 g 5, Jbh(.9"1) g, b (9" (1)
e (3g<1>+4) o g(1) }“{c;(6g<>+3° o ) 4@(39(1)
g'(1) 6 (g"(1) g\ 2 Jbu(,d"Q) ,.g"1) .g1)
g<1>“>+ zn(gu) +g<1>>}y +{c¢n RTORERrTE) +28g<1>“)
g"(1)  ¢g"(1) ¢
+g

_i (1) i 94(1) g///(l) g”(l) g/(l)
1 (G 5+ ) b (5 0% 95w )

Lemma 8.2.3. Tuking into account the conditions on (ay,), (b,), (c,) and using Lemma

[8:2.1)and Lemma[8.2.2) we may write

+8

o

m

(i) Tm((e10— )% 2,y) = < ) 2* +2), asn — oo,
(ii) Tpm((eor — y)%2,y) < ”(” PI (2 4 y+1),

(iii) Tpm((e10—2)2,9) =0 <%) (' +2° + 2* +2), asn — oo,
n
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8.3: Main results

(iv) Tpm((eoq — v)2,y) < #(y4 +yP+y+y+1),

m

where 1(g) and 11(g) are certain constants depending on g.

8.3 Main results

In this section, we establish the degree of approximation of the operators given by (8.1.2)

in the space of continuous functions on compact set I, := [0, a] x [0,b] C A,,.

Theorem 8.3.1. For all (x,y) € I, and f € C(1.p), we have the following inequality:

T (f52,y) — f(2,9)] < 20w(f;5 0nm),

where 0, = (O (a_n> (z° + ) + M(y + 1)2) v :

n m

Proof. Using the Cauchy-Schwarz inequality and Lemma([8.2.3] we have

|Tn7m(f;xay) - f(xvy”

1
5n7m

[ 1
< w(fi0nm) |1+ — {Tum((ero — )% 2,9) + Tom((e01 — y)*; 2, y)}m}

On,m
oo )]

< w(fioum) 14 {Tmm((el,o—x)?ﬂeo,l—y>2;x7y>}”2}

< w(f;0nm) |1+

6n,m

Cm

from which the desired result is immediate.
O]

In the following theorem, we obtain the rate of convergence of the operators defined

by (8.1.2) in terms of the partial moduli of continuity.

Theorem 8.3.2. For [ € C(l,) and all (x,y) € I, the following result holds:

T (f52,y) — fz,y)] < 2(wi(f;0n) + wa(f;0m))

2 ’ /
2 _ 2% _ 2 _ b_m_ 2 b_mg(l) 241 | bn
where 6, = —(a, — x) and 6, = . 1) y (QCfn 9(1)  eng(l) e, vt

1 (g(1)  ¢"(1)
2, (E " W) '

3
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Proof. Using the definition of partial moduli of continuity, Lemma[8.2.2]and the Cauchy-

Schwarz inequality, we have

n

T (fr2,y) = f(@,y)] < Tl f(u,0) = f(z,0)[;2,9) + T f(2,0) — flz,9)];2,9)
< T (wi(f; Ju = z]); 2, y) + Togm (w2 f5 [0 = wl); 2, 9)
< wf:0) 1+ Tl = sl
Fea(f00) |14 5Tl = o)
S Wl(f; (5n) |:1 + 5i (Tn,m((el,O - x)za z, y))1/2:|

+W2<f; 5m) |:1 + 5i (Tn,m<<60,l - ?J)Q; xz, y))1/2:| )

b 2 bng' (1)  24g(1) b
choosingéiz%(an—x)andéi: (—m—l) y2+(2—mg() il )+ m) -

- 2 g(l)  cmg(l) &
1 / 1 ! 1
— (g 1) + g'( )) , we obtain the required result. H
e \9(1)  g(1)

Now, we establish the degree of approximation for the bivariate operators (8.1.2) with

the aid of Lipschitz class.
Theorem 8.3.3. Let f € Lipyi(y1,72)- Then
T (f52,9) = f(2,9)] < M6 6.7,
where §,, and 9,,, are the same as in Theorem@and 0<v,7 <1

Proof. Since f € Lipp(71,72), we may write

T (f52,9) = f(2,9)| < T (M|u— x| o — y%; 2, 5)
<M By, (Ju—z|";z,y) 4P (lv—y["2zy).

2 2 2 2

Considering the Holder’s inequality with (py, ¢1) = (—, 5 ) and (p2, o) = (—, 5 )
T 44— Y2 4= 72

and Lemma [8.2.1] we have

2 —
‘Tn,m<f7 x7y) - f(l', y)’ S M :CBH ((61,0 - :U)Qv ZL’,?/)%/ xBn (6070; x’y)@ 71)/2
* 2 * —
me ((60,1 - y)27 Z, y)72y/ me (6070; x, y)(2 72)/2
= M§n§2.

This proves the theorem. 0

129



8.3: Main results

Now, we estimate the degree of approximation of the bivariate operators (8.1.2) in a
weighted space. Let B, be the space of all functions f defined on Rj x Rf, R = [0, 00)
having the property |f(x,y)| < M/ p(x,y), where My > 0 is a constant which depends

on f and p(x,y) = 1+ 2 + y? is a weight function. Let C,, be the subspace of B, of all
continuous functions with the norm || f||, = sup /@yl and let C') be the subspace of
x7yeR3> p(l‘7ly)

all functions f € C, such that lim [f(z.y)]
L 200 p(,y)
modulus of continuity is defined by

exists finitely. For all f € C7, the weighted

wo(fi00,0) = sup  sup L@ HALyThe) = flzy)

(8.3.1)
z,y€RT |h1|<01,lh2| <62 p<x7y)p(h1> h2)

Theorem 8.3.4. If f € C’S, then for sufficiently large n, m, the following inequality holds:

sup |Tn,m(f§1‘ay) — f(z,y)]

o yeR} p(z,y)3

< Cwp(f30n,0m),

12 1/2
where 6, = <%> , O = <@> , 0(g) = max{n(g),u(g)} and C is a constant

n Cm
depending on n, m.

Proof. From ([88]], pp.577), we may write

[f(uv) = f2,9)] < 8(1+ 27 + ), (f: 0n, Om) (1 + —|u5_ x|) (1 L= y!.>

x (L+ (u—2)")(1+ (v —y)).

Thus,

|Tn,m<f§ z,y) — f(z,y)]

n k n—=k
1. a
< 8(1 2 2 . n x l—i 1+ —|k— —
< 8( +x +y )wp(fvdnv(sm) - <k> (an (7% * 571 n x‘

oo 1+ ) ()

X <1 + (k%” — x>2> i eg(b:)ypj(bmy) <1 + %

Jj=0

Applying the Cauchy-Schwarz inequality
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S 8(1+$2+y2)wp(f; (Sna (Sm) |:1+Tn,m((€1,0 \/Tnm 61 0_ ;L y)

1
% =/ Tum((€r0 = 2% 2,9) Tam((e10 = 2)'52,)

1
X [1 + Tom((eoq = y)%,y) + 5—\/Tn,m((eo,1 —y)%7,y)

1
X 5—\/Tn,m((eo,1 —y)%2,y) Tom((eon — y)h 2, y)] :
Using Lemma [8.2.3] we have

|Tn,m<f;x7y) - f(l',y>|

< 8(1+ 2%+ y))w,(f: 0, 0m) [1 +0 (a) (2% + ) + 5i\/o (“—) (22 + 1)

n n n

Qnp

—\/ x2+x) (—) (:c4+x3+:c2+:c)1

n

[ M D g L [ e

1/2
Taking ¢,, = (—)
n

desired result.

T
I
/_\

) with o(g) = max{n(g), 1(g)}, we reach the

Cm

8.4 Construction of GBS operators of Chlodowsky-Szsz-
Appell type

In this section, we introduce the GBS case of the operators defined in (8.1.2).
For every f € C,(A,, ), the GBS operator associated with the operator T;, ,,,(f; z, y)

is defined as follows:
k z n—=k e_bmy
ntrinn = SO () (1)
,;; an g9(1) i (bry)

) o2) o (.2)]
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8.4: Construction of GBS operators of Chlodowsky-Szasz- Appell type

Let I.q :=[0,¢] x [0,d] C A,,.

Theorem 8.4.1. For every f € Cy(I.q) and ¥V (z,y) € I.4, we have the following in-
equality for the operator defined in

|Un,m(fa X, y) - f(xa y)| S 4wmixed(f; 6717 5771)’

a 12 p(9)\"”
(S + c)) y Om = 0m(g) = (—> and p(g) is a constant depend-
Cm

where §,, = (

ing on g.

n

Proof. We may write
Unm(f52,y) = (2, ) Tom(eo0; 2, y) = Tom (D) f(u,v);2,y).
Since T}, (€0,0; ,y) = 1, using[6.2.4]and applying the Cauchy-Schwarz inequality
Unn(f32,9) = f(2,9)]
< Ton ([A @ f(u, 0)]; 2, y)

< <Tn,m(60,0; £.9) + 85, Tum(ero — 2)%2,9) + 8,1 Tom((e0n — 9)%2,9)

+ 5;1577_11 \/Tn,m((el,o - 17)27 x, y) \/Tn,m((e(],l - 9)27 z, y)) wmixed(f; 5717 5m)

(84.2)
By Lemma and for all (z,y) € I.4,
z(a, —x
Tom((er0 — )% 2,y) = %
an , o an ,
< —(z"412) < —(c" +0). (8.4.3)
n n
Similarly
Tonl(eor )% e.) < W22 1y 1 1)
<19 gi1y= 29 (8.4.4)
Cm Cm

where p(g) is a constant depending on g.
1/2
Combining (8.4.2)-(8.4.4) and choosing §,, = (a—n(02 + c)) and 6, 1= 0(g) =
n

Cm

p(9)\"?
(—) , we get the required result. [
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Theorem 8.4.2. For f € Lipy (£§1,&2),0 < &1,& < and (x,y) € 1.4, we have
Unin (f32,9) = [ (@, y)| < MOG26530%,

where 6, = ||, Bn((u — )% )|lcu, O0m = |yPh((v —y)? )., and M is a certain

positive constant.

Proof. We may write

Un,m(f;xvy) ( (l’,y) A(m,y)f<u7v) ;SC,y)
= f (*1' y) Tn m (60 0, y) Tn,m (A(m,y)f (u, U) 3y T, y) .

By our hypothesis, we get

|Un,m <f7flf,y) - f (xay)| S Tn,m (’A(z,y)f (uv U)| 7xay)
< My (Ju—af® o —yl%;2.y)

= MTn,m (|U - x‘ﬁl ?:U7y) Tn,m <‘U - y|§2 ,«T,y> .

Now, applying the Holder’s inequality with (p;,q1) = (2/&1,2/ (2 — &1)) and (p2, g2) =
(2/£,2/ (2 = &)) , we obtain

Unm(fr2,) = f@,)] < MoBy ((u—2)%2)"" LBy (e9;2) )02
XyP;I ((U — y) ;y)&/ yP;l (60; y)(2752)/2 .

Taking 0, = |[oBn (v — 2)*;-) ||ec and 8, = ||, Py, ((v — 4)?; ) [|oo, We get the desired
result. H

Theorem 8.4.3. If f € Dy(I.q) and Dy f € B(1.q), then for each (x,y) € 1.4, we get

|Un,m(f; &Z, y) - f(xay” S O{?)HDBfHoo + 2wmized(f; 5717 5m)\/x2 + CC\/y2 + ) + 1}6715771

+ {wmmd(f; Ony Om) <5m\/x4 +a3+at+ a2 +y+ 1

+5n\/y4+y3+y2+y+1\/x2+x)},

where §,, = | [ Om = 0(9), o(g) = max{n(g), u(g)} and C' is a constant depend-
n

ing on n, m only.
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8.4: Construction of GBS operators of Chlodowsky-Szasz- Appell type

Proof. By our hypothesis
A(;p,y)f(uw) = (U - Z’)(U - y)DBf(OZ,5>, with v < a < u; Yy < 5 <w.
Clearly,

DBf(a>B) = A(z,y)DBf(aaB) + DBf(a7y> + DBf(x7B) - DBf(xay)

Since Dpf € B(I.q4), from the above equalities, we have

T (A f(u,0); 2,y)| = [T ((w — ) (v — y) Dp f(e, B); 2, y)|
< Tom(Ju = f|v — y[|Awy D f(a, B)]; 2, y)
+ Tom(|u = zllv = y|[(|Dp f(e, y)| + |Dp f (2, B)]
+Dpf(z,y));z,y)
< Tom(Ju — 2[|v = ylwmizea( D f; | — 2|, |8 — yl); 2,y)
+3[1Dpflloc Tam(lu—z|lv —yl;2,y). (8.4.5)

Hence using (6.2.4)), applying Cauchy-Schwarz inequality and Lemma [8.2.3] on taking
Oy = %, Om = a(g)’ we reach the required result.
V' n

Cm

8.4.1 Numerical Examples

In this section we give some numerical results regarding the approximation properties of
Chlodowsky-Szasz-Appell operators defined in (8.1.2).

Example 1. Let us consider the function f(z,y) = e ¥ cos(rz), g(u) = v and a,, = \/n,
b, =mn,c¢, =n+ Ln Forn = m = 5 and n = m = 40, the convergence of T, ,,,(f; z, y)

to f(x,y) is illustrated in Figure 1.
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8.4: Construction of GBS operators of Chlodowsky-Szasz- Appell type

The convergence of T, ,,,(f; z,y) to f(z,y) (red f, blue Ty 49, yellow T5 5)
Figure 1

Example 2. Let us consider the function f(x,y) = e Ysin(7x) , g(u) = w and
an, = /N, b, =n,c, =n+e ™ Forn =m = 5and n = m = 40 the convergence of

Tom(f:x,y) to f(x,y) is illustrated in Figure 2.

The convergence of T, ,,,(f; x,y) to f(x,y) (red f, blue Ty 49, yellow T 5)Figure 2

We notice from the above examples that for n = m = 40, the approximation of the

operator 7, ,,, to the function f is better than n = m = 5.
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8.4: Construction of GBS operators of Chlodowsky-Szasz- Appell type

Example 3. If f € C(l,), then

where 4,, and d,, are defined in Theorem [8.3.2]

In Table [I| we compute the error of approximation of f(z,y) = zye ¥ by using the
above relation for /,, = [0,4] x [0, 4].

Tom(f52,y) — f(@,9)] < 2(w0i(f;0n) + wa(f;6m))
< 2 ([1F oo+ [1F O losOrm)

Table 1. Error of approximation for T,, ,,

n=m an:\/ﬁ,bn:n,cn:n—i-\% an =+/n,b,=n,c,=n+e"
20 3.9062769320 3.9678794400
50 2.6253029800 2.6362709420
100 1.9595674840 1.9624455190
500 0.9975826189 0.9977048873
1000 0.7505644223 0.7505954100
1500 0.6370476284 0.6370614836
2000 0.5677575415 0.5677653628
2500 0.5196173630 0.5196223806
3000 0.4835609538 0.4835644444

136




Conclusion

The present thesis is an investigation of the approximation properties of the Kantorovich
and Durrmeyer variants of the Bernstein-Schurer and Szész type operators. The corresp-
onding bivariate operators and the bivariate operators defined by combining Bernstein
-Chlodowsky Szész type operators involving Appell polynomials have been introduced
and their approximation behavior for functions of two variables has been investigated.
The associated GBS operators have also been considered and their degree of
approximation for functions in a Bogel space has been obtained by means of the
Lipschitz class modulus of smoothness. The rate of convergence of the considered
operators has and mixed been examined by numerical examples and illustrations

using Matlab algorithms.
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