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ABSTRACT

The valvular heart disease (VHD) is one of the major cause of morbidity and mortality

throughout the world. It affects any of the four valves of the heart (the aortic and mitral valves

on the left and the pulmonary and tricuspid valves on the right). The valvular abnormality can

be of two types (i) regurgitation and (ii) stenosis. A thorough understanding of the valvular

abnormalities are very important to aid in the management of patients with valvular abnor-

mality. Valvular regurgitation is defined as the backward or retrograde flow of blood from the

valves into the cardiac chambers when the leaflets do not close completely. This backward

flow is referred as “regurgitant flow”. In valvular stenosis, the valvular leaflet becomes stiffer

which narrows the valve opening and reduces the blood flow through it. Each of the four

valves of the heart may exhibit these abnormalities. The presented research work carried out

with an aim to enhance the diagnostic potential of conventional B-mode ultrasound imaging

modality for the diagnosis and severity analysis of mitral regurgitation (MR). The MR is the

most common valvular disorder in modern clinical practice. It is known as the reverse blood

flow from the left ventricle (LV) into the left atrium (LA) during the systole process. The ul-

trasound of the heart is known as echocardiography and is most commonly used in the assess-

ment of cardiac chamber and valvular abnormalities. The aetiologies and the consequences

of valvular abnormalities are diagnosed using transthoracic echocardiographic (TTE) images

acquired in apical two chamber (A2C), apical four chamber (A4C) and parasternal long axis

(PLAX) views. The ultrasound imaging modalities such as conventional B-Mode (bright-

ness mode), M-Mode (motion mode), continuous wave Doppler (CWD), and color Doppler

echocardiography are used hand-in-hand to detect the prevalence of regurgitation, a better

understanding of the mechanism of regurgitation and quantification of severity along with its

repercussions.

A fine-grained textural pattern known as speckle noise is observed in B-mode TTE images

which reduce the contrast resolution and masks the texture details. It often makes quantitative

measurements and the automatic analysis of ultrasound images difficult. The contemporary

research demonstrate the importance and superiority of despeckling techniques. Individ-

ual techniques have their merits and demerits. The performance of the despeckling filter is
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measured utilizing different performance parameters and visual quality parameters. The au-

tomatic estimation of cardiac structures and shape and size become very difficult because of

the speckle noise. The speckle noise also affects location of edge features, therefore it is

very important to preserve the edges in medical images while doing despeckling. In order

to address this issue, as a first objective of this work, a comparative study of despeckling

filters of five categories (i) local adaptive, (ii) synthetic aperture radar (SAR), (iii) anisotropic

diffusion, (iv) non-local mean, and (v) fuzzy filters have been implemented on test images

and TTE images. The despeckling capabilities of these filters have been evaluated in terms

of traditional image quality metrics as well as blind image quality metrics. A hybrid homo-

morphic fuzzy (HHF) filter, combining the advantages of NLM and fuzzy filters, has been

proposed here. The denoising performance parameters of the HHF filter are compared with

despeckling techniques in the homomorphic and non-homomorphic domain. The HFF filter

performed better in terms of edge preservation compared to other fuzzy filters.

The commonly used methods for the quantification of MR still has many limitations,

such as the uncertainties in orifice location, multiple jets, and a hemispheric convergence

assumption that often results in over or underestimation of flow rate and regurgitation orifice

area. These techniques are operator-dependent and often significant training is required to

acquire good quality and correct data. It is difficult to analyze manually the acquired data

due to the poor quality of echocardiographic images during the diagnosis at various stages.

It is quite challenging to derive the necessary information from the acquired data by the

technicians. Also, the manual analysis is a subjective methodology; it compromises on the

accuracy of diagnosis and severity estimation. It is very difficult to reproduce quantitative

measurements, manually. To overcome the issues associated with the severity analysis of

MR, machine vision technology has been employed.

Keeping the above facts in view, the second objective of this work has been planned as

to develop the texture feature extraction techniques to acquire substantial information from

echocardiographic images and to improve the classification accuracy of the computer-aided

diagnosis (CAD) system for the severity analysis of MR. In this approach, two steps have

been involved. The first step has been to extract the features of the echocardiographic images

and in the second step the relevant features among the above extracted features on the basis
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of certain criteria have been considered as input to the various classifier techniques. An

optimized classifier has been selected on the basis of experimentation.

Here, the texture analysis of the MR images has been accomplished through proposed

three approaches.

In first approach, eight texture features, (i) first order statistics (FOS), (ii) spatial gray level

dependence matrices (SGLDM), (iii) gray level difference statistics (GLDS), (iv) neighbor-

hood gray tone difference matrix (NGTDM), (v)statistical feature matrix (SFM), (vi) Laws

textures energy measure (Laws TEM), (vii) fractal dimension texture analysis (FDTA), and

(viii) Fourier power spectrum (FPS) have been extracted from the MR image database in three

views with four color spaces. The minimum Redundancy Maximum Relevance (mRMR) fea-

ture selection techniques have been chosen to eliminate the less relevant features. Finally, two

supervised classifiers support vector machine (SVM) with three kernel (linear, polynomial,

radial basis function (RBF)) and random forest (RF) has been used along with 10-fold and

leave-one-out cross validation technique to reduce biasness. The classification accuracy of

the proposed CAD system in red green blue (RGB) color space has been found slightly bet-

ter than gray-scale color space, however the computational time of the scheme was thrice

compared to gray-scale model. Subsequently, the performance of the CAD system has been

evaluated in terms of the classification accuracy, severity, and specificity.

In the second approach, the multiresolution based texture feature extraction techniques

have been utilized in proposed CAD system. The images are decomposed at several levels of

different resolution, where each of the sub-images contain varied and valuable information

about the original image. In order to enrich the quality of the texture feature extraction tech-

nique the Gaussian pyramid has been used because of less computational requirement. More-

over, to extract the texture features from the decomposed images, variants of the local binary

pattern (LBP) such as uniform local binary pattern (LBPu2), rotation invariant local binary

pattern (LBPri), rotation invariant uniform local binary pattern (LBPriu2), center-symmetric

local binary pattern (CSLBP), local binary pattern histogram Fourier features (LBP-HF), and

completed local binary pattern (CLBP) have been applied. Furthermore, the performance of

the extracted features has been evaluated using SVM and random forest (RF) classifier with

10-fold cross validation. The Gaussian pyramid based completed local binary pattern (GP-
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CLBP) technique was found to be produced the best classification accuracy amongst the all

proposed features.

In the third approach, the discriminatory capability of Daubechies wavelet-based texture

modeling has been assessed for the severity analysis of MR. The transform domain techniques

have been opted due to their multiresolution capability for analyzing images at different fre-

quencies of several levels of resolutions. The different frequency sub-band images provide

substantial information about the various objects of the images compared to the information

obtained in spatial domain grayscale images. In the present work, discrete wavelet transform

(DWT) technique has been utilized to get transformed domain features as it has the prop-

erty to emphasize the directional information of the images. The Daubechies wavelet family

has been utilized for the image decomposition because of its approximate shift invariance

property. This multiresolution based texture feature extraction techniques produces a large

number of complex features and many of the features may not be significant. Keeping this

aspect in mind, PCA has been used as feature reduction technique in order to reduce the

dimension of feature vector. Additionally, the mRMR has been chosen as feature selection

techniques to eliminate the less relevant features. At the end, both the utilized techniques,

improve the classification performance of the CAD system and reduce the computational

time. The db4 offered best characteristics among the Daubechies wavelet family considered

for precise severity investigation of the MR images.

The significant contribution of this thesis work can be summed up as the development of

a CAD system for severity analysis of mitral regurgitation using echocardiographic images.

The CAD system developed for the severity analysis of MR is capable to classify the different

categories of the MR stages with reasonable accuracy. The achieved classification accuracy of

the proposed CAD systems helped to enhance the productivity of clinicians while supporting

them with some useful information.
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CHAPTER 1

INTRODUCTION

This chapter presents an introduction to the proposed research work carried out. Firstly,

the components of a computer aided classification system are briefly discussed to provide a

background of medical image analysis. Secondly, the importance of the feature extraction in

classification. At last, literature regarding each task is discussed separately. The objectives

of current research work have also been outlined.

1.1 Motivation

The heart is the vital organ of the human body that pumps blood throughout the body and

supply nutrients to the tissues along with oxygen and removing carbon dioxide and other

wastes from the body. Nowadays, the number of cardiovascular diseases such as valvular

heart disease is on the rise throughout the world [1]. Valvular heart disease is the disease that

affects the four valves of the heart (the aortic and mitral valves on the left and the pulmonary

and tricuspid valves on the right). The improper diagnosis of the diseases due to the absence

of symptoms until the disease has reached its advanced stage has also made the situation

worse. However, if the disease is diagnosed in the early phase, the patients can survive longer.

Nevertheless, the symptoms may change from patient to patient. Medical imaging modalities

permit a physician to make analyses and treatment more exact. Furthermore, it helps in

acquiring logical information of different diseases. Therefore their effect on other anatomical

structures to oversee appropriate treatment, intra-agent route, and surgical planning can be

observed [2–4].

Conventionally, several imaging modalities such as X-ray, computed tomography (CT),

ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET),

single photon emission computed tomography (SPECT) and functional magnetic resonance

imaging (fMRI) have been utilized for taking the medical images of internal body parts of

patients for the diagnosis of different diseases. These are accessible for procuring the re-

markable views of different organs in various perspectives [2,5,6]. Among the above medical

imaging modalities, the images obtained from the ultrasound B-scans are broadly utilized in
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diagnosis because of its cost viability, transportability, acceptability, and safety it offers. The

ultrasound of the heart is known as echocardiography.

Many images are obtained for better reconstruction but it lengthens the time of acqui-

sition and introduces motion artifacts [7, 8]. It is operator-dependent and often significant

training is required to acquire good quality and correct data. Further, it is difficult to analyze

manually the acquired data due to the poor quality of images and drawbacks of the imaging

modalities, during the diagnosis at various stages. It is also challenging to extract or infer the

necessary information from the acquired data by the technicians. Also, the manual analysis is

a subjective methodology; it compromises on the accuracy of diagnosis and severity estima-

tion [9–16]. It is very difficult to reproduce quantitative measurements. This triggers the need

for a reliable computer-aided diagnosis (CAD) system based on software-based techniques

for automatic analysis of the medical images. The current thesis in above perspective aims

to enhance the diagnostic potential of conventional B-mode ultrasound imaging modality for

the diagnosis and severity analysis of mitral regurgitation (MR).

1.2 Overview of Computer-aided Diagnosis (CAD) System

The aim of a CAD system is to reduce the interobserver and intraobserver error by classify-

ing sensed object into predefined classes. In our case, the sensed objects are the echocardio-

graphic image dataset in three views which need to be classified into three classes of mitral

regurgitation as mild, moderate, and severe. The components of typical classification system

are depicted in the following block diagram of Fig. 1.1.

Echocardiographic 
Image Dataset

Preprocessing 
Feature 

Extraction

Pattern 
Classification

Decision
Severity 
Analysis

System 
Database

Fig. 1.1: Block diagram of classification system

The function of each blocks shown in Fig. 1.1 are described as follow:
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• Echocardiographic Image Dataset: The processing starts with procuring the echocar-

diographic image dataset which contains the images of patients suffering from MR in

three views in three classes (mild, moderate, and severe).

• Preprocessing: Here the data is recorded in video mode, hence it has to convert into

frames. For better classification results, the images are preprocessed to reduce the

effects of illumination. The selection of color space may also affect the performance

of classification system.

• Feature Extraction: It acquires relevant data representation to extract discriminative in-

formation. Templates created from extracted features are stored in the system database

during the training phase for the purpose of matching when the test sample is presented

during classification phase.

• Pattern Classification: Classification involves comparison of features extracted from

the test sample with templates stored in the system database. Based on scores obtained

from the comparison, the output of the pattern classification block indicates the esti-

mated class of the input test image.

• Severity Analysis: In the last step, after getting the decision from the individual view,

the multi-voting is used to get the final decision.

1.3 Characteristics of Textural Information in Biomedical Images

The texture analysis is broadly investigated in numerous area of image processing such as

computer vision, pattern recognition, and medical image analysis. The design of CAD system

based on texture analysis for medical images has pulled in consistently developing consider-

ation over the most recent couple of years. Among various processing stages shown in Fig.

1.1, feature extraction stage is the most critical stage. In order to perform classification, it is

essential to represent the available data appropriately. If the features are not discriminative

enough, even the best classifier cannot provide decent classification performance. The fea-

ture extraction algorithms should be able to have the capacity to catch between class varieties

and in the meantime, limit the impact of between class variety. Moreover, the approaches to

texture analysis are categorized as [17]:
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• Statistical methods: The statistical approaches represent the texture by the non- deter-

ministic properties. In these methods the texture can be mathematically represented by

a set of first or second order statistics. The first order statistics relate to the probabil-

ity of individual pixels having particular intensity values. The second-order statistics

identify with the joint probability of two arbitrary pixels in the picture having particular

sets of intensity values.

• Model-based methods: This approach utilized fractal and stochastic models for the tex-

ture analysis. These approaches attempt to interpret an image by use of, respectively,

generative image model and stochastic model. The extracted parameters of the models

are used for image analysis. The fractal parameters can be viewed as a measure of ir-

regularity or heterogeneity of spatial arrangements. The main issue with the stochastic

model parameters is the computational complexity in the estimation of model parame-

ters.

• Transform-based methods: These methods such as Fourier (DFT, DCT), Gabor, and

wavelet, transform the image into a different space, with the aim of highlighting tex-

ture properties (such as frequency or size) and maximize the geometrical separability

of different types of textures. The Fourier based approach is generally renowned for

suffering from lack of spatial localization. Gabor filter gives better spatial localization

while wavelet transforms features have several advantages as there is a wide range of

wavelet functions.

1.4 Literature Review

Medical images give the information about the internal anatomy of human body. Generally,

these images are analyzed by the radiologist for clinical analysis and medical intervention.

However, manual examination of these images is a time-consuming process that also has the

high probability of human error. To this end, the importance of computer-aided diagnosis

(CAD) system has been widely acknowledged by the practitioners and researchers [18–25].

The ultrasound-based echocardiography turns into the first line image modality in the analysis

and appraisal of valvular disease [19, 23, 25].
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A limited study has been reported in literature delivering technical information on texture

analysis of echocardiographic images with respect to valvular insufficiency such as regurgi-

tation and stenosis. The overall research has been done in the area of quantitative analysis

of valvular insufficiency, boundary detection of heart chambers, and very less information

related to segmentation of mosaic patterned regurgitant jet against the colored background.

The majority of the studies on echocardiography focuses on clinical aspects of the regurgitant

jet and the vena contracta width assessment.

This section presents a review of published literature on quantification of valvular regurgi-

tation specifically mitral regurgitation, the despeckling techniques for echocardiographic im-

ages, and the available texture analysis methods for various diseases such as carotid plaque,

breast cancer, liver lesions, etc.

1.4.1 Overview on Quantification of Mitral Regurgitation

The accurate assessment of the degree of valvular regurgitation is a challenging issue for the

practitioners such as cardiologists. A fast and accurate method is desirable for the evaluation

of mitral regurgitation (MR). In spite of the fact that few methods have been hypothesized to

evaluate MR, each method has its own advantages and shortcomings.

The vena contracta (VC) is portrayed as the narrowest central flow area of the regurgitant

jet that occurs at, or just downstream to, the orifice of the regurgitant valve [26, 27]. It is

somewhat smaller than the mitral orifice because of boundary impacts, hence, the effective

regurgitant orifice area (EROA) can be measured by the VC [28]. Numerous studies demon-

strated that the VC width measured by utilizing color Doppler echocardiography is broadly

utilized for the evaluation valvular regurgitation [29–39]. In case of MR, the VC diameter

can vary over time [40]. The diameter of VC should be measured at the season of its max-

imal width for MR. A modified parasternal long-axis view is best to image the VC with the

transducer along the side deciphered, if necessary, to allow complete visualization of the MR

jet [41].

The proximal isovelocity surface area (PISA) [42] method become a most popular method

for the estimation of the volume flow rate in valvular regurgitation [43,44]. Min Pu et al. [45]

exhibited a competent method to evaluate MR known as proximal flow convergence, which
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may overestimate the flow when the flow field is stressed. Mutlu et al. [46] compared the color

Doppler methods for analysis of MR utilized TTE and TEE images. Here, two parameters

have been calculated named effective orifice area (EOA) and MR volume. Bhachu et al.

[47] utilized a control volume strategy to investigate the hypothetically exact and safe MRI

procedure to measure mitral regurgitation. In spite of the fact that reviews from in-vitro flow

have indicated incredible outcomes as far as accuracy, the testing of this procedure in-vivo

has not yet been portrayed by any reviews. Baspinar et al. [48] reported that the PISA method

is sufficient to predict rheumatic MR accurately. Little et al. [49] analyzed the exactness of

continuous 3-D color Doppler VC region and also 2-D VC diameter in their vitro model to

assess MR seriousness.

Marsan et al. [50] proposed the possibility and exactness of real-time 3-dimensional (3D)

echocardiography for the estimation of MR, with velocity-encoded cardiac magnetic reso-

nance (VE-CMR). Biner et al. [51] performed a quantitative assessment of MR based on

color flow Doppler jet area to assess the inter-observer agreement of PISA and VC for dif-

ferentiating severe from nonsevere MR. They have felt that color Doppler-based quantitative

estimations for evaluating MR as intense or non-intense relying upon inter-observer analogy.

Quader et al. [52] concluded that 3D echocardiography can overcome some of the limitations

of 2D multiplane transesophageal echocardiography (TEE). It is decisive in the evaluation of

patients who are going through mitral valve surgery. As 3D echo is complementary to 2D,

multiple TEE should be utilized as part of the mitral valve preoperative assessment. Lee et

al. [53] introduced a simple-to-use echocardiographic parameter, left ventricular early inflow-

outflow index (LVEIO). This study demonstrates that the LVEIO correlates with severe MR

independently, whereas MR jet area, vena contracta width, and effective regurgitant orifice

area measured by the PISA method correlate with MR in combination.

At present, available echocardiographic techniques for quantifying valvular regurgitation

are confined by various factors, including uncertainties in orifice location and a hemispheric

convergence assumption that often results in over/under estimation of flow rate and regurgi-

tation orifice area [54–56]. However, Grayburn and Bhella [57] reported 60 % variation in

all the parameters computed by various clinicians. Various studies have been reported on the

MR based cases of mitral valve repair or replacement. Further, Ge et al. [58] suggested that
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transcatheter mitral valve repair (TMVR) is safe and effective for the patients with severe

MR. Kaneko et al. [59] conducted an observational panel study to clarify the prevalence and

prognosis of functional MR (FMR) and left ventricular systolic dysfunction (LVSD). Kron

et al. [60] analyze the prediction of recurrent MR after mitral valve repair. This model used

logistic regression to estimate the probability of recurrence or death.

Many researchers have discussed the measurements related to left atrium and left ventri-

cle [61–65]. In [66], double thresholding strategy is utilized for left ventricle endocardium

recognition. A snake-based algorithm is used for endocardial boundary detection in [67].

Active contour model was first proposed in [68]. There are many research papers which

depend on deformable models or active contour model [63, 69–72]. An energy minimizing

deformable spline influenced by constraint and image forces that pull it toward object con-

tours is called active contour. Snakes are largely used in applications like boundary detection,

object tracking, shape recognition, segmentation, edge detection, stereo matching.

1.4.2 Overview on Despeckling of Echocardiographic Images

The ultrasound-based echocardiographic images experienced the interference of the impedance

invited because of the fluctuating backscattered echoes of the arbitrarily appropriated dissi-

pates, acknowledged as speckle. Speckle noise is multiplicative in nature which makes the

visual analysis of ultrasound images very difficult [73,74]. It occurs in all imaging modalities

utilizing coherent waves for illumination such as synthetic aperture radar, and optical coher-

ent tomography. The speckle noise is omnipresent in all cross-sectional views in echocardio-

graphy [75] and it is more effective compared to the additive noise [76]. The principal delin-

eation of speckle in the literature is based on the characterization of laser speckle by Good-

man [77]. The granular rebound is not a consequence of any blood structure yet rather de-

velops as a result of instability diffusing from the self-assertively appropriated platelets [78].

The dot design does not depend on upon the properties of the disseminating medium [79].

The synthetic aperture radar (SAR) images also suffered from speckle [80]. The most

prominently utilized despeckling filters in SAR community in the statistical category include

Lee [81,82], Frost [83,84], and Kuan [85,86]. The strategy for homomorphic filtering [87,88]

resembles the logarithmic point operations utilized as a part of histogram improvement, in
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which dominant bright pixels are de-emphasized. The median filter is a nonlinear filter and

a specific case of an order statistic filter, which applies to all the pixels whether they are

corrupted or not. The weighted median filter has an advantage compared to median filter that

it preserves the edges [89]. The other arrangement of filters depended on the neighborhood

statistical parameters, for example, the mean, maximum, minimum, and the average values.

The Wiener filter, proximity-based filter [90] and statistic filters were likewise tried for noise

reduction in the images. These filters can preserve the edges but do not enhance them as

required in most of the medical ultrasound based applications. They have also been analyzed

for speckle noise reduction in the ultrasound images of kidney, liver, carotid artery and heart

[7, 91–95].

Perona and Malik [96] proposed an approach based on the nonlinear anisotropic diffusion

(AD) methods, where the anisotropic diffusion equations provide the approach for selective

image smoothing. In diffusion filtering, noise at the edges cannot be successfully eliminated.

To overcome this problem, the concept of coherence-enhancing diffusion based on diffusion

tensors models was proposed in [97]. The nonlinear coherent diffusion (NCD) method of [98]

was a tensor-valued AD scheme for the removal of speckle noise. The noise suppression and

edge enhancement based on the instantaneous coefficient of variation was advocated by Yu

and Acton [7]. This technique was based on modifications of AD filter and was known

as speckle reducing anisotropic diffusion (SRAD) filter. This method makes fine details to

be more visible in the image but has a limitation in preserving subtle features because of

blurring of the edges. Giloba et al. [99] proposed nonlinear complex diffusion filter (NCDF)

used for image enhancement. Various modifications were suggested by various authors to

improve the performance of the SRAD filter [100]. A detail preserving anisotropic diffusion

(DPAD) technique was proposed in [101] to evaluate the comparability between the threshold

controlling the level of diffusion and variation in noise coefficient by consolidating different

alterations to the SRAD filter. An oriented speckle reducing anisotropic diffusion (OSRAD)

was proposed in [102] for enhancing the capability of varying diffusion with direction to

speckle adaptive diffusion filtering. Liu and Liu [103] proposed a different approach for

the construction of diffusion tensor using a four directional derivative based AD for noise

reduction in the standard test image of Lena and a synthetic test image. A modified nonlinear
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complex diffusion filter was proposed by Saini et al. [104] proposed a despeckle filter by

modifying the diffusion coefficient and time step size for ultrasound images of MR.

The nonlocal filters do not make any assumption on the location of pixels in the image

during denoising a particular pixel. The distance between the present pixel and the neighbor

pixel does not affect the weight assigned to the pixel during the restoration process. The

nonlocal mean (NLM) algorithm, estimates every pixel value as a weighted normal of other

comparative noisy pixels. However, the center issue with NLM is that it can’t exploit the

smoothness of the edge contour that can isolate the white from black areas [105]. Buades et

al. [106] proposed an approach utilizing image patches for the reduction of additive noise.

Coupe et al. [105] extended the Bayesian system to determine an NLM filter for reduction of

speckle noise in the ultrasound images. Deledalle et al. [107] extended the NLM filter. The

noise reduction process appeared to be the “weighted maximum likelihood estimation” issue.

The weights were determined to utilize a data-driven process. This probabilistic patch based

channel was supported for speckle noise reduction in the SAR images. Guo et al. [94] joined

the maximum likelihood estimation and NLM in their proposed modified nonlocal (MNL)

filter for speckle noise reduction in the echocardiographic images.

Numerous researchers have looked at the despeckling methods for different sorts of im-

ages. The performance of the despeckling filter is measured utilizing different performance

parameter, for example, edge enhancing index (EEI), speckle suppression index (SSI), im-

age detail preserving coefficient (IDPC), feature preserving index (FPI) and speckle image

analysis, image quality metrics (IQM), texture feature analysis, visual quality assessment,

mean square error (MSE), signal to noise ratio (SNR), peak signal to noise ratio (PSNR), β,

normalized MSE (NMSE), speckle index (SI), effective number of looks (ENL), ρ, structural

similarity index (SSIM) and execution time, despeckling assessment index, figure of merit

(FoM), and edge region MSE, along with the visual quality [8, 108–115]. As these ultra-

sound images suffered from speckle, the experts with adequate experience get confused for

making a conclusion in the analysis of the image. Speckle noise restrains the application of

image processing and analysis algorithms such as edge detection and segmentation.
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1.4.3 Overview on Characteristic Features of Echocardiographic Images

The characteristic feature extraction step is the most important and critical step. If the fea-

tures are not discriminative enough, even the best classifier cannot provide good classification

accuracy. The feature extraction techniques should be able to capture inter-class variations

and at the same time, minimize the effect of the intra-class variations. Thus the effective

feature extraction is an active area of research. Several studies have been reported in liter-

ature utilizing statistical texture descriptors such as first-order statistics (FOS) [116], gray

level difference matrix (GLDM) [117], gray level difference statistics (GLDS) [118], neigh-

borhood gray tone difference matrix (NGTDM) [119], statistical feature matrix (SFM) [120]

and Laws textures energy measure (Laws TEM) [121] are extracted for classification of mi-

tral regurgitation. Various CAD systems have been proposed using these statistical texture

features [19, 122–125].

Ojala et al. [126] introduced a local texture descriptor named as the local binary pattern

(LBP) that is resistive to lighting changes with low computational complexity. The uniform

local binary pattern (LBPu2), rotation invariant local binary pattern (LBPri) and rotation in-

variant uniform local binary pattern (LBPriu2) are the extension of original LBP, where the

dimension of the feature vector is reduced [127]. LBP has been widely used in classifica-

tion problems and has given superior performances in various pattern recognition application

such as face recognition and biometrics [126, 128–131]. In medical domain, LBP has been

utilized to identify malignant breast cells [132], to find relevant slices in brain magnetic reso-

nance volumes [133,134] and as a texture feature extracted from thyroid slices [135]. Various

variants of LBP have been proposed in last few years such as local directional pattern, local

ternary pattern [136, 137].

Transform domain feature extraction techniques such as discrete cosine transform (DCT)

[138], discrete wavelet transform (DWT) [139], Gabor transform [140, 141] are utilized in

the classification framework. The multiresolution image analysis is the most popular tool

to extract significant texture features from an image [142, 143]. Gaussian pyramid (GP)

[144, 145] and Laplacian pyramid (LP) [146, 147] have been widely used as multiresolution

schemes for texture analysis of images. Image pyramid consists of the sequence of various

images of different resolution which changes in regular steps [148].
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1.4.4 Overview on Feature Dimension Reduction and Feature Selection

Feature extraction methods often generate a large number of features which increase the

computational cost of the CAD system. In order to enhance the performance of CAD system

in terms of computational cost, dimension reduction techniques such as principal component

analysis (PCA), minimal redundancy maximum relevance (mRMR) are commonly used tech-

niques. These techniques transform a high dimensional data into lower dimensional subspace

by retaining the most meaningful features to facilitate the classification task.

The PCA has found application in many different areas such as image texture feature

reduction [149–153]. The major advantage of PCA includes less memory requirement for

creating training set and low noise sensitivity as it retains high variance components and

discards small variations, while the main disadvantage of PCA is the dependency on linear

data [154]. To overcome this, Buchala et al. [155] proposed a nonlinear projection method

known as curvilinear component analysis (CCA), which outperforms PCA with much lesser

components. Zhang et al. [156] utilized a DWT technique to extract features and thereby

dimension of features were reduced by applying PCA. Khan et al. [157] proposed a CAD

system for classifying cancers to specific diagnostic categories based on their gene expres-

sion signatures using artificial neural networks (ANNs) after using PCA as feature reduction

technique.

The minimal redundancy maximum relevance (mRMR) has been used by several re-

searchers for feature selection as per their discriminative properties [158, 159]. Niaf et

al. [160] proposed a CAD system for prostate cancer based on magnetic resonance (MR)

imaging using support vector machine (SVM), linear discriminant analysis, k-nearest neigh-

bors and naive Bayes classifiers. Furthermore, feature selection methods were compared

based on t-test, mutual information, and mRMR criterion. Ding et al. [161] proposed a CAD

system for thyroid histograms using the statistical and textural features and then the most ef-

fective and reliable features among them were selected by using an mRMR algorithm. Gomez

et al. [162] investigated the co-occurrence statistics combined with six gray-scale quantiza-

tion levels to classify breast lesions using ultrasound images. To reduce feature space di-

mensionality, the feature space was ranked using mutual information technique with mRMR

criterion.
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1.4.5 Overview of Classification based on Features

The final stage of every CAD system is the design of a classifier which aims to acquire knowl-

edge of the extracted features in order to assign the severity label to the given test samples.

Jain et al. [163] outlined that the selection of a classifier is a difficult task and it depends on

either availability or the knowledge of the end user. Hence, researchers have used various

classifiers such as support vector machine (SVM), neural network (NN), AdaBoost, k-means

classification and random forest (RF) [164–169]. These systems have demonstrated capac-

ity of performing the task with reasonable performance parameters such as classification

accuracy, sensitivity, specificity, and computation time using texture features. The diverse

strategies proposed for the different sicknesses have considered the US, X-beam, CT-scan

and other methodology to acquire the data set.

Christodoulou et. al. [19] proposed an approach for the characterization carotid plaque

into two categories, symptomatic and asymptomatic, utilizing ten different texture features

sets named FOS, SGLDM, GLDS, NGTDM, SFM, Laws TEM, FDTA, FPS and shape pa-

rameters along with two classifiers i.e. modular neural network composed of self-organizing

map (SOM) and k nearest neighbors (KNN). Boukerroui et al. [170] presented an approach

for breast lesion segmentation utilizing DWT and gray level co-occurrence matrix (GLCM).

Chen et. al. [20] proposed a CAD system for the breast cancer using texture feature, mor-

phological feature, model-based feature, of the ultrasound images using the artificial neural

network (ANN) and backpropagation neural network (BP-NN).

Obayya et al. [164] proposed a classification system using multilayer feed-forward neural

network to measure the heart rate variability signals in order to discriminate between nor-

mal subjects and patients suffering from congestive heart failure (CHF). Hanbay et al. [22]

proposed an expert system based on least squares support vector machines (LS-SVM) for

diagnosis of valvular heart disease (VHD). Wavelet packet decomposition (WPD) and fast-

Fourier transform (FFT) methods are used for feature extraction from Doppler signals. LS-

SVM is used in the classification stage. Threefold cross-validation method is used to evaluate

the proposed expert system performance. Maglogiannis et al. [165] proposed a CAD frame-

work for heart valve diseases using heart sounds. This system identifies a heart sound as

healthy or having a heart valve disease using the support vectors machine-based machine
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learning technique. Tang et al. [171] presented a review of CAD procedures for breast can-

cer, identification of calcifications, masses, architectural distortion, and bilateral asymmetry.

Chuan et. al. [122] used gray level co-occurrence matrix, statistical feature matrix, gray level

run-length matrix, Laws texture energy measures, neighboring gray level dependence ma-

trix, wavelet features, Fourier feature based on local Fourier coefficients features along with

support vector machines(SVM) to select significant textural features to classify the nodular

lesions of a thyroid.

Biner et al. [51] recently reported poor agreement among expert observers for grading MR

severity based on jet area, VCW, and PISA. This underlines the need for the development of

more accurate, reproducible, and perhaps automated analysis. Nikolaos et. al. [172] pro-

posed a classification approach utilizing multiresolution features for carotid atherosclerosis

from the B-Mode ultrasound. Discrete wavelet transform, the stationary wavelet transform,

wavelet packets (WP), and Gabor transform (GT), as well as several basis functions, have

been compared in this paper and found that WP based features outperformed than others.

The classification of the images was done using two classifiers, i.e., SVM and probabilis-

tic neural networks. Virmani et. al. [173] proposed a scheme using multiresolution wavelet

packet texture descriptors with mean, standard deviation and energy for characterization of

liver ultrasound images. In this paper a comparison is given between Haar, Daubechies (db4

and db6), biorthogonal (bior3.1, bior3.3 and bior4.4), symlets (sym3 and sym5) and coiflets

(coif1 and coif2). Gao et. al. [23] presented a CAD system for ultrasound liver images.

The gray level gradient co-occurrence matrix (GLGCM) and gray level co-occurrence matrix

(GLCM) features were extracted and seven most powerful features were selected for classifi-

cation using back propagation neural network (BP-NN). Zhou et al. [174] proposed a texture

feature descriptors based on shearlet transform to characterize breast tumors in ultrasound

images using two classifiers SVM and AdaBoost.

Mandeep et. al. [123] presented a classification method for liver ultrasound images uti-

lizing statistical texture features such as spatial gray level co-occurrence matrix, gray level

difference statistics, first order statistics, Fourier power spectrum, statistical feature matrix,

Laws texture energy measures and fractal features. Sun et al. [175] proposed a moving win-

dowed Hilbert transform (MWHT), to extract the diagnostic features named as the center of
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gravity and the frequency width of the frequency distribution [FG, FW] and gives boundary

curve models for the diagnostic features [T12, T11] to diagnose ventricular septal defects

(VSD). To evaluate the detection ability of the proposed diagnostic features, a classification

boundary method based on the SVM technique is proposed to determine the classifiers to di-

agnose the VSD sounds. Hedeshi et al. [24] proposed the use of particle swarm optimization

(PSO) algorithm with a boosting approach to extract rules for recognizing the presence of

coronary artery disease in a patient.

Sudarshan et. al. [124] discussed various components used to develop a CAD system with

respect to myocardial infarction (MI) utilizing first-order statistics, gray-level co-occurrence

matrix (GLCM), Laws texture energy (LTE), and local binary pattern (LBP) with two clas-

sifiers SVM and KNN. Gharehbaghi et al. [176] proposed a framework for binary classifica-

tion of the time series with cyclic characteristics. The framework presents an iterative algo-

rithm for learning the cyclic characteristics by introducing the discriminative frequency bands

(DFBs) using the discriminant analysis along with k-means clustering method. Moghaddasi

et al. [177] proposed novel feature i.e., extensive local binary pattern (ELBP) and extensive

volume local binary pattern (EVLBP) to detect micro-patterns of echocardiography images in

order to determine the severity of MR. Moreover, SVM, linear discriminant analysis (LDA)

and template matching techniques are used as classifiers to determine the severity of MR

based on textural descriptors. Balodi et al. [178] investigates the possibility to recognize the

severity of MR, in a classification system utilizing statistical texture features of the regurgi-

tant region. Liu et al. [179] proposed a CAD system for the diagnosis of cirrhosis using a

deep convolutional neural network (CNN) model to extract features in order to classify using

SVM into normal or abnormal cases. Sharma et al. [180] proposed a decision support sys-

tem for renal disease using GLCM based statistical features and SVM classifier into normal

and MRD images. Abdel et al. [181] presented a CAD system for breast cancer to detect and

further classify tumors into benign and malignant ones utilizing random forest (RF) classifier.

1.5 Research Objectives

The principal objective of the present research work is to improve the diagnostic capability

of conventional B-Mode ultrasound for the diagnosis of valvular diseases specifically mitral
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regurgitation. This objective is planned to be obtained through following steps:

1. The collection of a comprehensive and representative image database: Keeping in

mind the end goal to create proficient and robust classifier plans, it is important to

train the classifiers with an exhaustive image database with representative images from

every subclass. Accordingly, the gathering of a thorough image database with delegate

cases from each class, including (i) mild, (ii) moderate, and (iii) severe, is taken up as

the first objective of the present research work.

2. Despeckling of echocardiographic images: A comparative study is required on the

above-discussed despeckling filters on MR TTE images. Despeckling applications of

total variation, bilateral and fuzzy concepts filters will be tested and effort would be

made to improve the performance of the hybrid fuzzy filter. The despeckling tech-

niques would be tested using image quality metrics such as the figure of merit (FOM),

structural similarity (SSIM) index, and beta metric (β) along with traditional parame-

ters.

3. Feature extraction: The efficiency and effectiveness of the CAD system rely on upon

the nature of the texture features extracted from the MR images. Along with these

lines, the accentuation in this work has been to propose feature extraction techniques

for the severity analysis of MR images which are listed below:

• Spatial domain texture feature extraction technique

• Gaussian image pyramid based texture feature extraction technique

• Discrete wavelet transform (DWT) based texture feature extraction technique

4. Feature selection: Mitral regurgitation shows unique mosaic pattern at different levels

of severity. The texture patterns of TTE images would be useful in the categorization of

systole further into the mild, moderate and severe classification. The proposed texture

feature extraction techniques produce large complex features, and among them, several

features may not be significant for discrimination of the severity of MR. Along with

these lines, to diminish the feature vector data and enhance the MR severity classifi-

cation accuracy a feature selection technique, minimal redundancy maximal relevance
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(mRMR) and feature dimensionality reduction technique, principal component analy-

sis (PCA) have been investigated.

5. Classification: The selection of classifier further enhances the efficiency of the system.

Therefore, two supervised classifiers SVM (linear SVM, polynomial SVM, radial basis

function (RBF) kernel SVM) and random forest RF classifier have been investigated to

get the optimum classification accuracy from the CAD system.

6. Clinical validation: Clinical validation of the final results is one of the most challenging

tasks in medical image analysis applications. Results are usually compared with the

visual perception evaluation by specialists. It is true that such comparisons are often

affected with the experience of the expert. However, it is relatively safe to consider

automated methods as second opinions intended to aid the user. This practice has been

shown to be useful in many CAD applications.

1.6 Organization of Thesis

The thesis is organized in seven chapters, that introduce the topic and states the objectives.

The rest of the thesis report is organized as follows:

Chapter 2 presents the overview of the heart valve functions and the diseases. In addition,

it also describes the imaging modalities employed for the assessment of valvular abnormali-

ties. The details of the dataset sources and datasets used for the study also discussed.

Chapter 3 presents a comparative analysis of despeckling filters for the B-mode images

The despeckling filters are compared using image quality metrics such as the figure of merit

(FOM), structural similarity (SSIM) index, and beta metric (β) along with traditional param-

eters. A new improved hybrid filter is proposed and analyzed.

Chapter 4 presents the spatial domain texture analysis of MR. The performance of the

texture feature extraction technique is evaluated utilizing two supervised classifiers SVM, RF

and the effect of the feature reduction technique are investigated.

Chapter 5 presents the concise description of the Gaussian pyramid (GP) approach for

the image decomposition. The GP-based texture feature extraction techniques are presented

to get the significant features for grayscale images of MR. Finally, the efficiency of these

techniques for the severity analysis of MR is presented.
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Chapter 6 presents the description of the discrete wavelet transform (DWT) based tex-

ture feature extraction techniques for grayscale images of MR. The effectiveness of these

techniques is evaluated in this chapter.

Chapter 7 summarizes the conclusions drawn from the exhaustive experimentation carried

out in the present research work on “Analysis of mitral regurgitation using echocardiographic

images. This chapter also presents the limitations of the present work and emphasizing the

scope for future work in this field.
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CHAPTER 2

GENESIS OF HEART FUNCTION AND DISEASES

This chapter presents the overview of the heart valve functions and the related diseases. In

addition, it also describes the imaging modalities employed for the assessment of valvular

abnormalities. The advantages and disadvantages of echocardiographic imaging along with

the importance of acquiring images in multiple views using various acoustic windows are

also discussed.

2.1 Heart Structure and Function

The heart is a muscular organ in humans and other animals, which pumps blood through

the blood vessels of the circulatory system. The size of an average adult heart is about 14

cm in length and 9 cm wide. The heart has a mass of 200 to 425 grams. A normal heart

beats 100,000 times in a day and pumps more than 4,300 gallons of blood throughout the

body. The pericardium encompasses the heart and it is a twofold layered structure. The

heart’s significant veins are secured by the external layer of the pericardium. These veins are

associated with different structures of the body. The pericardium’s internal layer is associated

with the heart muscles. A fluid covering segregates the layers of membrane and allows the

dynamic movement of the heart [3, 182]. The blood flow through the chambers and valves

of the heart is shown in Fig. 2.1. The heart structure contains four chambers and four valves

working synchronously. The upper two chambers are known as left atrium (LA) and right

atrium (RA) while the lower one is named as left and right ventricles. Left and right chambers

are detached by a mass of muscle called septum. The region of the septum that partitions the

atria is called inter-atrial septum and the area that separates the ventricles is called the inter-

ventricular septum. The four valves of heart synchronously work to maintain the regular flow

of oxygenated and de-oxygenated blood. Tricuspid valve (TV) is located between the right

atrium and right ventricle. It controls the flow of blood between the right atrium and the right

ventricle to pass through the pulmonary valve (PV) and thereby manages blood spill out of

the right ventricle (RV) into the pulmonary arteries which carry forward blood to the lungs to

get oxygen. The mitral valve (MV) located in between the left atrium and left ventricle. It is
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Fig. 2.1: Structure of the heart and heart valves. [3]

also known as the bicuspid valve because it has two cusps, an anterior and a posterior cusp.

The blood flows through MV during diastole and systole in between LA and LV. Aortic valve

(AV) is at the entrance of aorta. During ventricular relaxation, it prevents blood from moving

from the aorta into the left ventricle. It permits the oxygenated blood from the left ventricle

(LV) into the aorta, where from oxygenated blood is passed to the rest of the body [3, 182].

2.2 Mitral Valve Physiology

The mitral valve (MV) connects the left atrium (LA) and the left ventricle (LV) as shown in

Fig. 2.2. The mitral valve opens during diastole to allow the blood flow from the LA to the

LV. During ventricular systole, the mitral valve closes and prevents backflow to the LA. The

MV leaflet tissues are organized in three layers: fibrosa, spongioa, and ventricularis. Table

2.1 describes location, composition, and function of these layers [3]. The normal function of

the MV depends on its 6 components, which are (i) the left atrial wall, (ii) the annulus, (iii)
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the leaflets, (iv) the chordae tendineae, (v) the papillary muscles, and (vii) the left ventricular

wall. All the valvular apparatus such as the annulus, leaflets, and sub-valvular apparatus work

in a complex manner for the proper functioning of the valve.

The pressure in the LV increases during the systole or the contraction of the LV. This

increased pressure leads to the closing of MV and restricts the flow of blood from leaking

into the LA. At this time, the blood flows through the aortic valve to the aorta and to the

body. All the valvular apparatus such as the annulus, leaflets, and sub-valvular apparatus

work in a complex manner for the proper functioning of the valve.

(a) (b)

Fig. 2.2: (a) Mitral valve (b) Mitral valve leaflets [3]

2.3 Mitral Valve Diseases

The heart diseases are the abnormalities which are related to the heart valves, valve func-

tions, and the function of heart’s electric conduction system, the heart muscles itself, and the

coronary arteries malfunctions. Some common heart diseases are rheumatic heart disease,

hypertensive heart disease, ischemic heart disease, cerebrovascular disease, and inflamma-

tory heart disease [3, 183]. Mitral valve diseases are divided into three types:

1. Mitral Stenosis (MS): Narrowing of the MV orifice impeding the diastolic flow of blood
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Table 2.1: Layers of valve tissues

Layer Location Composition Function

Fibrosa Faces the LV High concentration of colla-

gen, thickest layer

Bears most of the load during

coaptation

Spongiosa Middle layer High concentration of gly-

cosaminoglycans (GAG) and

proteoglycans (PG)

Provides shear between outer

support layers and diffuses

gasses and nutrients

Atrials (Ventricularies

for semilunar valves

Faces the LA High concentration of colla-

gen, and elastin thinnest layer

Elastin allows for strain when,

valve is open

from the LA to LV.

2. Mitral Regurgitation (MR): The backward flow of blood from LV to LA during systole.

3. Mitral valve prolapse: This is the common condition affecting up to 5 % of the popula-

tion. Posterior displacement or the anterior-posterior or both mitral valve leaflets bent

towards the LA.

2.4 Mitral Regurgitation

Mitral regurgitation (MR) is the most common heart valve disorder, which affects 2% of the

population [184]. It is known as the reverse blood flow from the left ventricle (LV) into the left

atrium (LA) during the systole process. If MR is not progressive then the backward leakage of

blood has no significant consequences. But, as this leakage increases then the LV has to work

hard to fulfill the oxygenated blood demand of the body. To fulfill this increased demand, the

heart muscles (myocardium and circulatory system) undergo a sequence of changes. These

type of changes take a long period of time which depends on the severity of the regurgitation.

Weak apparatuses are the sources of a sudden heart attack. The heart compensates for this

and tries to pump harder that results in heart failure [185].

2.4.1 Causes of Mitral Regurgitation

The MR is classified as primary and secondary. The primary MR is caused by an abnormality

in the mitral valve. Whereas, secondary MR is caused by an abnormality in the left ventricle
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of the heart. It may increase from mild to moderate to severe due to the various cardiac

diseases or other heart valve abnormalities. The possible causes of MR include:

Mitral valve prolapse: The mitral prolapse may range from mild to severe due to the

abnormal size or damage to the mitral valve tissues.

Infective endocarditis: Infective endocarditis is a bacterial infection of the inner lining

of the heart muscle (endocardium). This inner lining also covers the heart valves, and it is

these valves which are primarily affected by infective endocarditis. If the infection remains

untreated, multiplying bacteria may eventually destroy the valves and result in heart failure.

Rheumatic fever: Rheumatic fever occurs due to the throat infection which further de-

velops body illness. Inflammation of the heart valves and some more valvular complications

occur because of the rheumatic fever.

Congenital heart abnormality: MR may occur in the patients having child-born abnor-

malities in the heart.

Trauma: When the valve chords are broken then there is a sudden displacement of the

leaflets and leaflets are not able to withstand their normal position. These flailed leaflets are

not able to join and allow the valvular leakage which is severe.

Other types of heart disease: Heart attacks, and muscle injuries and abnormalities may

lead to MR.

2.4.2 Mitral Regurgitation Signs and Symptoms

In many cases, patients show up no symptoms of MR, Signs and indications of MR, which

rely on upon its severity and how rapidly the condition creates, can include, blood flowing

turbulently through the heart (heart murmur), shortness of breath (dyspnea), exhaustion, heart

palpations, fluttering heartbeat, swollen feet. MR is often mild and advances gradually. There

might be no manifestations for a considerable length of time and be unconscious of this

condition, and it might not advance.

2.4.3 Mitral Regurgitation Diagnosis

MR may be diagnosed if a heart murmur is heard by the clinician with a stethoscope. This

change in sound is due to backflow of blood through the mitral valve. Common tests to diag-

nose mitral valve regurgitation include an echocardiogram, electrocardiogram (ECG), chest
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X-ray, cardiac MRI, exercise tests or stress tests, cardiac catheterization, and CT angiogram.

An electrocardiogram and the chest radiography demonstrate left atrial enlargement or car-

diomegaly. Transthoracic echocardiography is indicated for all patients with suspected MR to

confirm its presence, assess etiology (e.g., the presence of mitral valve disease and leaflet pro-

lapse, or evidence of underlying dilated cardiomyopathy), and determine its severity [186].

Evaluation of MR severity by echo requires an integrated assessment of several parameters,

including etiology (primary vs. secondary), regurgitant jet size by color Doppler, regurgitant

jet density by continuous wave Doppler, pulmonary vein and mitral valve inflow by pulse

wave Doppler, as well as EROA (the area through which the valve leaks in systole) and re-

gurgitant volume. Transesophageal echocardiography is indicated for patients who are not

adequately imaged by transthoracic echocardiography and before surgery to assess feasibil-

ity of repair. Cardiac magnetic resonance imaging is also indicated in patients with chronic

primary MR to assess LV and RV volumes, function, or MR severity and when these issues

are not satisfactorily addressed by transthoracic echocardiography.

Echocardiography and Doppler have their own utility in the evaluation of extent of MR,

however they exhibit their own advantage and disadvantages and limitations. Echo-Doppler

is an extremely used tool for the diagnosis of MR. The mild MR can be seen in 20-40 %

of the patients with structurally normal hearts. A careful inspection of the leaflet and sub-

valvular anatomy, along with morphology and function of the left ventricle and papillary

muscles, is required for the analysis of MR. The American College of Cardiology (ACC)

and the American Heart Association (AHA) have jointly given the guidelines in the area of

cardiovascular diseases [186]. Table 2.2 describe these characteristics along with the use of

Doppler parameters in evaluating MR severity. Doppler parameters and grading severity of

MR are presented in Table 2.3. These quantitative parameters help clinicians to sub-classify

the moderate regurgitation group into mild to moderate and moderate to severe.
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Table 2.2: Qualitative and quantitative parameters for grading the MR severity

Parameters Mild Moderate Severe

Qualitative

MV morphology Normal/abnormal Normal/abnormal Flail leaflet/ruptured PMs

Color flow MR jet Small, central Intermediate Very large central jet or eccen-

tric jet adhering, swirling and

reaching the posterior wall of

the LA

Flow convergence zonea No, small Intermediate Large

CW signal of MR jet faint/parabolic Dense/parabolic Dense/triangular

Semi-quantitative

VC width (mm) <3 Intermediate ≥7 (>8 for biplane)b

Pulmonary vein flow Systolic dominance Systolic blunting Systolic flow reversalc

Mitral inflow A wave dominantd Variable E-wave dominant (>1.5 m/s)e

TVI mit/ TVI Ao <1 Intermediate >1.4

Quantitative

EROA (mm2) < 20 20-29; 30-39g ≥ 40

R Vol (mL) < 30 30-44; 45-59g ≥ 60

LV and LA size and the systolic pulmonary arterial pressuref

CW, continuous wave; LA, left atrium; EROA, effective regurgitant orifice area; LV, left ventricle; MR,

mitral regurgitation; R Vol, regurgitant volume; VC, vena contracta.
a At a Nyquist limit of 50 - 60 cm/s.
b For average between apical four- and two-chamber views.
c Unless other reasons of systolic blunting (atrial fibrillation, elevated LA pressure).
d Usually after 50 years of age.
e In the absence of other causes of elevated LA pressure and of mitral stenosis.
f Unless for other reasons, the LA and LV size and the pulmonary pressure are usually normal in patients

with mild MR. In acute severe MR, the pulmonary pressures are usually elevated while the LV size is

still often normal. In chronic severe MR, the LV is classically dilated. Accepted cut-off values for non-

significant left-sided chambers enlargement: LA volume, 36 mL/m2, LV end-diastolic diameter,56 mm,LV

end-diastolic volume,82 mL/m2, LV end-systolic diameter,40 mm,LV end-systolic volume,30 mL/m2,LA

diameter,39 mm, LA volume ,29 mL/m2.
g Grading of severity of organic MR classifies regurgitation as mild, moderate, or severe, and sub classifies

the moderate regurgitation group into mild-to-moderate (EROA of 20 to 29 mm or a R Vol of 30 to 44

mL) and moderate-to-severe (EROA of 3039 mm2 or a R Vol of 4559 mL) [187].
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Table 2.3: Echocardiographic and Doppler parameters used in the evaluation of mitral

regurgitation severity: Utility, Advantages and Limitations

Parameters Usefulness/advantages Limitations

LV and LA size Enlargement sensitive for chronic signifi-

cant MR, important for outcomes. Normal

size virtually excludes significant chronic

MR.

Enlargement seen in other conditions.

May be normal in acute significant MR

MV leaflet/support apparatus Flail valve and ruptured papillary muscle

specific for significant MR

Other anormalities do not imply signifi-

cant MR

Doppler parameters

Jet area-color low Simple, quick screen for mild or severe

central MR; evaluates spatial orientation

of jet

Subject to technical, hemodynamic varia-

tion; significantly underestimates severity

in wall-impinging jets

VC width Simple, quantitative, good at identifying

mild or severe MR

Not useful for multiple MR jets; interme-

diate values require confirmation. Small

values; thus small error leads tolarge % er-

ror

PISA method Quantitative; Presence of flow conver-

gence at Nyquist limit of 5060 cm/s alerts

to significant MR. Provides both, lesion

severity EROA) and volume overload (R

Vol)

Less accurate in eccentric jets; not valid

in multiple jets. provides peak flow and

maximal EROA.

Flow quantaization PW Quantitative, valid in multiple jets and ec-

centric jets. Provides both lesion severity

(EROA, RF) and volume overload (R Vol)

Measurement of flow at MV annulus less

reliable in calcific MV and/or annulus.

Not valid with concomitant significantAR

unless pulmonic site is used.

Jet profileCW Simple, readily available Affected by LV compliance, blood pres-

sure, acuity

Peak E velocity in MR or TR Simple, readily available, A-wave domi-

nance

Influenced by LA pressure, LV relaxation,

MV area, and atrial fibrillation. Comple-

mentary data only, does not quantify MR

severity

Pulmonary vein flow Simple, Systolic flow reversal is specific

for severe MR

Influenced by LA pressure, atrial fibrilla-

tion. Not accurate if MR jet directed into

the sampled vein

LV: Left ventricle, LA: Left atrium, CW, continuous wave, EROA: Effective regurgitant orifice area, MR: Mitral regurgi-

tation, PISA: Proximal isovelocity surface area, PM: Papillary muscle, PR: Pulmonary regurgitation, RA: Right atrium;

R Vol: Regurgitant volume [187]
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2.5 Echocardiography

Echocardiograph has emerged as the essential apparatus for noninvasive evaluation of the

cardiovascular system. The fundamental principles of echocardiography, including the me-

chanical elements of echocardiographic equipment, are the same as indicative ultrasound all

in all. Nevertheless, there are parts of echocardiography that set it apart from general ultra-

sonography. Since the heart is a dynamic organ, and in light of the fact that echocardiography

should moreover capture that movement, the comprehension of echocardiography requires an

apprehension of both cardiovascular life systems and physiology.

The sound signal is characterized by two factors i.e., amplitude and frequency. The sound

of a frequency higher than 20 kHz (f > 20 kHz) can not be perceived by the human ear and

is known as ultrasound [3]. The ultrasound signal of 1.5 MHz to 7.5 MHz is used in clin-

ical imaging. The velocity of the sound signal varies with the nature of the propagating

medium. The acoustic impedance demonstrates the measure of resistance offered to the voy-

aging sound wave through the medium [188]. The acoustic impedance values and attenuation

effects for different biological materials are given in Table 2.4. The shorter the wavelength,

the higher is the resolution while the smaller the wavelength of the ultrasound signal, the less

is its penetration power.

Table 2.4: Propagation speed through various tissues

Material
Propagation speed

(c) ms−1

Impedance (Z)

106 kgm−2s−1

Attenuation coefficients (α)

at 1 MHz (dB cms−1)

Air 330 0.0004 1.2

Blood 1570 1.61 0.2

Brain 1540 1.58 0.9

Fat 1450 1.38 0.6

Liver 1550 1.65 0.9

Muscles 1590 1.7 1.5 to 3.5

Bone 4000 7.8 13

Soft tissue 1540 1.63 0.6

Water 1480 1.48 0.002
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Ultrasound results from the property of certain crystals to transform electrical oscillations

into mechanical oscillations known as piezoelectric effect. In ultrasound imaging system,

the ultrasound signal is transmitted into the body by properly locating a medical ultrasound

probe, these sound waves are reflected back and the machine deciphers the reflected echo by

translating its strength and timing. The amplitude of the signal is the quality of the sound

wave transmitted and received back. The extent of the reflected ultrasound signal decides

the brightness and the intensity displayed on the computer screen forming an image of the

body tissue known as ultrasonography [188–190]. In order to get proper acoustic contact, a

jelly is placed between the skin and the transducer. The signals that return to the transducer

give evidence of depth and intensity of reflection. These are transformed electronically into

grayscale images on the ultrasound machine’s screen or printed on paper. Here, high and low

echo reflections are white and gray, respectively while no reflection is black.

2.5.1 Modes of Echocardiography

Echocardiography used in clinical areas can be classified into three modes: Two-dimensional

(2-D, B-mode or real time), Motion or M-mode, and Doppler echocardiography (continuous

wave, pulsed wave, and color flow). These different modes of echocardiography are used

during each of the echocardiographic examination. One type of echocardiographic examina-

tion creates a complimentary finding from the other modes of the examination. Therefore,

the different modes are performed simultaneously.

Two-dimensional Echocardiography

The 2D echocardiography plays a major role in the diagnosis of valvular abnormalities and

cardiac structure-based studies. The 2D echo provides a snapshot in time of a cross-section

of tissues. The continuous display of these snapshots displayed on TV screen shows ‘real

time imaging’ of the heart chambers, valves and blood vessels. The ultrasound beam is swept

across the area of interest and the probe rotates the beam at certain angles to scan the area.

The reflected ultrasound produces an electrical signal, which produces a dot on the TV screen

to build up a moving image from the desired area. Some of the important applications of the

2D echocardiography are: (i) study of the heart anatomy and structural relationships, (ii)

study of valvular and cardiac chamber abnormalities, (iii) study of dynamics of heart in real
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Fig. 2.3: Two-dimensional echocardiographic image of mitral valve [3]

time in different acoustic windows, (iv) computing the stroke volume, cardiac output, volume

and ejection fraction, (v) study of valvular architecture like number of leaflets, size of orifice,

size of leaflets, (vi) proper positioning of the M-Mode image and Doppler echo, (vii) assist

in image-guided interventions and (viii) diagnosis of intracardiac masses, and pericardial

diseases. Fig. 2.3 shows a 2D echocardiographic image of the mitral valve.

M-mode Echocardiography

The M-mode was the preferred imaging modality in the early days of ultrasound. M-mode

is defined as a time-motion display of the ultrasound wave along a chosen ultrasound line.

It provides a mono-dimensional view of the heart. All of the reflectors along this line are

displayed along the time axis. The advantage of the M-mode is its very high sampling rate,

which results in a high time resolution so that even very rapid motions can be recorded,

displayed, and measured. The disadvantage is that the ultrasound line is fixed to the tip

of the ultrasound sector. It is difficult to align the M-mode perpendicular to the structures

which are displayed (i.e. the septum), thus leading to false measurements. Anatomical M-

mode circumvents this limitation by reconstructing the M-mode from the 2D image (post-

processing). The anatomical M-mode permits free positioning of the cursor line. However,
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Fig. 2.4: M-mode display of the mitral valve [3]

the time resolution is significantly less than that of the conventional M-mode. There is the

mitral valve, the left ventricle wall (at the level of the chordae tendineae), and the aortic root

(aorta/ left atrial appendage) views that are included through the standard M-mode view as

shown in Fig. 2.4.

Doppler Echocardiography

The Doppler images are used by the clinicians in routine clinical diagnosis, not as a substitute

but as a complementary task. The concept of Doppler effect is employed in the estimation

of blood flow velocity where the change in reflected frequency occurs due to the motion of

blood cells or tissue of the cardiac structure. A shift in the frequency occurs due to the relative

motion of the source, reflected and the received sound waves where the transducer used is the

source and also the receiver with the red blood cells acting as the reflector. It is observed that

maximum velocity information can be obtained when the ultrasound beam is aligned parallel

to the direction of flow of blood. An accurate measurement of blood flow velocity is possible

if the direction of blood flow is parallel to the direction of the ultrasound beam. The results

are highly dependent on the transducer angle angle θ.

Fd =
2f0

c
V cosθ (2.1)

30



Fig. 2.5: The Doppler effect

The equation 2.1 describes the relationship that determines the blood flow velocity, where,

Fd is the Doppler frequency, f0 is the original frequency, V is the blood flow velocity, and c

is the velocity of light.

Clinically, three types of Doppler echocardiography are employed (i) continuous wave

(CW) Doppler, (ii) pulsed wave (PW) and Doppler and (iii) Color Flow Doppler as shown in

Fig. 2.6 and color flow mapping Fig. 2.7.

In CW Doppler, dual crystals are used in order to send and receive the ultrasound waves at

the same time continuously. It is useful for measuring high velocities as there is no maximum

measurable velocity (Nyquist limit). A CW Doppler only offers information about the blood

flow. There is no anatomic information available.

In PW Doppler, the transducer alternately transmits and receives the ultrasound data to

a sample volume. It allows measuring blood velocities at a single point, or within a small

window of space. It requires the ultrasound probe to send out a pulse signal to a certain depth

(chosen by the operator) and then stay quiet and just listen for the reflected frequency shift

from that particular depth. The computer then calculates the velocity of flow at the chosen
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Fig. 2.6: The pulse wave and continuous wave Doppler

point. Because the machine has a waiting time to listen for a return, there is a limit to how

fast it can accurately measure the velocity of blood flow. When the blood moves too fast, it

cannot accurately give the velocity based on Doppler shift and a phenomenon called aliasing

occurs.

Color flow Doppler echocardiography is a combination of M-mode and 2-D modalities

with blood flow imaging and a type of PW Doppler echocardiography. Multiple scans can be

carried out taking the multiple samples along the scan line with color flow Doppler. A color

coding such as BART (blue away and red towards the transducer) is employed to differentiate

the sample volumes for mean velocity and directions. The blood flow is displayed on the 2-D

echocardiographic image during the MR into the left atrium at the time of systole as shown

in Fig. 2.7. The colors (red and blue) in color flow imaging, represent the direction of a given

color jet and the different velocities that can be represented by the hues from dull to bright.

A turbulent jet shows a mosaic of many colors. A two-dimensional display of flow is shown

according to the size, direction, and velocity. There is useful information in the flow map of

an image. According to the direction, the red color is assigned to the flow which is towards

the transducers and blue for the flow away from the transducers.
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Fig. 2.7: The color flow Doppler echocardiography: Mild central MR, Severe central MR,

Severe eccentric MR [3]

2.5.2 Echocardiographic Windows and Views

In transthoracic echocardiography (TTE), positions of transducer probe placed on the pa-

tient’s anterior chest wall is known as echo window. This allows good penetration of the

ultrasound signals without much absorption and attenuation by lung or ribs. The subject usu-

ally lies in the left lateral position and ultrasound jelly is placed on the transducer to ensure

good images. There are three major echocardiographic windows, which are used in the vi-

sualization of cardiac structure, namely: parasternal window, apical window, and subcostal

window. The major windows are pictorially shown in Fig. 2.8 to better understand the pro-

cess of image acquisition. In the parasternal window, the images can be acquired either by

Fig. 2.8: The echo windows [3]
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using long axis or short axis. In the parasternal window, the images can be acquired either

using long axis or in short axis. In the short axis the image can be acquired at four levels

namely: base of the cardiac structure (level of AV), the level of MV, left ventricular papillary

muscles and left ventricular apex. In the apical window, the images are acquired in apical 2

chamber (A2C) view and apical 4 chamber (A4C) view.

Parasternal Long Axis (PLAX) View

The parasternal long axis (PLAX) view is used to measure the size and contractility of the

right and the left ventricle. This is used to analyze the functioning of an aortic and mitral

valve and to further assess the morphological and structural changes. It can also be used

to observe the regurgitation mechanism and assess the severity through the color Doppler

echocardiography. While acquiring the images in PLAX view, the notch on the probe should

be directed towards the sternum, at 9-10 o’clock position. The transducer is used to obtain

images of the heart in long axis, with slices from the base of the heart to the apex as illus-

trated in Fig. 2.9. The structure seen in this view include inter-ventricular septum (IVS) and

posterior wall (PW), right ventricle (RV), left ventricle (LV), mitral valve (MV), aortic valve

(AV), aortic root (AoR), left atrium (LA), descending aorta, and pericardium.

(a) (b)

Fig. 2.9: (a) Parasternal long axis (PLAX) view (b) Mitral valve leaflets [3]
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Apical Window

The images acquired using the apical window in two chamber and in four chamber view

shown in Fig. 2.10. The structures seen in A4C include left and right ventricle, left and right

atrium, mitral valve, tricuspid valve, interventricular (IV) and interatrial (IA) septum, LV

apex, lateral wall LV, and free wall RV. In A2C view, the component that we can see include

left ventricle (LV): the anterior wall, the apex and the inferior wall, mitral valve (MV): the

posterior leaflet is on the left of the screen, the anterior leaflet is on the right of the screen

(connected to the anterior wall of the LV) and left atrium (LA).

(a) (b)

(c) (d)

Fig. 2.10: (a) Apical 2 chamber (A2C), (b) Mitral valve leaflets (c) Apical 4 chamber

(A4C) view (d) Mitral valve leaflets [3]

35



2.5.3 Advantages and Disadvantages of Echocardiographic Imaging

The echocardiography, a ultrasound imaging technique is a real-time, safe, secure, powerful,

non-invasive and portable, painless, no ionizing radiation, economical, concurrent, needing

no special environment and is clinically readily accessible technique, widely used in diag-

nosis of valvular diseases such as aortic stenosis and insufficiency because of its continuing

improvements in the image quality [3].

Echocardiography is an operator-dependent technique and thus the usefulness of imaging

depends on the operating skills of the technician or cardiologist trying to visualize the con-

dition of the patient’s heart. Therefore echocardiographic imaging requires rigorous training

and experience. Even well-trained experts may have a high inter-observer and intra-observer

variations during the diagnosis as even till date manual racing are necessary to compute the

physical size of the chambers and valves [191].

2.6 Acquisition of Echocardiographic Data

In order to start the research work for the analysis of MR, the very first step is the acquisition

of echocardiographic image data set. The dataset acquisition for the research work is carried

out under the memorandum of understanding (MoU) between the Indian Institute of Tech-

nology Roorkee (IITR), Roorkee, India and Swami Rama Himalayan University (SRHU),

Dehradun, India. SRHU ethical committee consent, cooperation, time involvement and dis-

cussion with echo experts and the researchers have helped in the problem formulation, data

collection, and verification of results. This research work has been carried out by taking

proper stringent measures of maintaining the level of dignity and confidence about the pa-

tients’ personal details. The data collection is one of the major constraints as it depends upon

the frequency of the patients visiting SRHU Dehradun, for diagnosis of valvular heart dis-

ease. Due to this, data collection takes a large span of time. In addition, the medical ethics

and ethical clearance have to be followed for acquiring the data to carry out the research

work.

2.6.1 Medical Ethics and Ethical Clearance

The medical ethics are fundamentally the moral qualities which must be taken after amid clin-

ical practice and medical imaging research. Ethical guidelines show the coupling standards
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on scientists, radiologists and also the patients/subjects required in the exploration movement.

The presented research work is identified with human healthcare and the collection of a com-

prehensive database of B-Mode MR, ultrasound images of various subclasses and views from

different patients is absolutely important. The medical ethics committee of SRHU Dehradun

approved the research proposal after examining the research problem, and following ethics

has been taken in care during the research.

1. The researcher has restricted himself to the approved topic/protocol of the research and

strictly adhere to the rules and regulations of the university.

2. The researcher has maintained strict confidentiality on the data information. No indi-

vidual name in this process have been mentioned. Only pool results have been docu-

mented in the results.

3. The researcher has not involved in any procedure which infringe or interfere with the

medical ethics.

4. The researcher has not given any input to the participating radiologists, as it may bias

their opinion regarding the medical management.

5. The data collected by the researcher has been used for academic purposes only.

2.6.2 Image Dataset

The image dataset used in this study has been collected from the patients (men, women,

and children) who underwent a medical examination at the Department of Cardiology, for

the diagnosis of MR, during the period of August 2014 to March 2015 at SRHU, Dehradun

with the help of two domain experts. The Philips ultrasound machine used in the department

of cardiology at SRHU Dehradun, shown in Fig. 2.11, with transducers of 2-5 MHz range

has been utilized for acquiring the data. The mitral valve can be visualized in three views,

namely, apical 2 chamber (A2C), apical 4 chamber (A4C) and parasternal long axis (PLAX)

as discussed in Section 2.5.2.

The A2C view shows the anterior and inferior walls of the LV. The A4C view demon-

strates all four chambers (left/right ventricle and left/right atrium) of the heart. It is the best
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Fig. 2.11: Ultrasound system by Philips

view to visualize the apex of the left ventricle and to study the mitral inflow (diastolic func-

tion and mitral stenosis). The PLAX view is useful for the measurement of the size of the

right and left ventricle and for interpretation of valvular function. It permits us to understand

the morphology and motion of the interventricular septum.

A total data of 115 patients has been accumulated utilizing transthoracic echocardiogra-

phy (TEE) in the video mode for each patient in three views, namely, A2C, A4C, and PLAX.

Further, these captured videos have been converted into frames. Now from each video, three
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Fig. 2.12: MR severity in three views: A2C, A4C and PLAX

images from 3 cardiac cycles (systole-diastole) per patient have been taken in consultation

with practicing clinicians. A total of 1035 (115× 3× 3) images in the three views has been

thus accumulated. The size of ultrasound images used for the analysis of MR is 800 × 600

pixels. The information of data collected in different views for the purpose of the study is

given in the Table 2.5. A rectangular window has been selected through an arbitrary criterion

which embraces the mosaic jet regurgitant area of every image in the data in a particular view

for the analysis. The severity analysis has been done by tracing this mosaic pattern manually

by the clinician. This mannual tracing may cause inter and intra observer error.
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Table 2.5: Data collected in different windows

Views Mild Moderate Severe Total

A2C 135 140 55 330

A4C 160 115 70 345

PLAX 155 105 85 345

2.6.3 Image Assessment Protocols

The grading of the acquired images has been done by well-qualified experts independently in

three classes, i.e. mild, moderate and severe as per the latest American College of Cardiol-

ogy/American Heart Association (ACC/AHA) guidelines for valvular heart disease (VHD).

The radiologists with good experience ensured that all the images are of diagnostic quality

(free from artifacts), and confined the representativeness of each image class, such as mild,

moderate and severe. The images are graded with according to the severity of MR.

2.7 Summary

This chapter presents the physiology of the heart and valves. The valvular insufficiency

related to mitral valve also discussed in detail in this chapter. It is also discussed the echocar-

diography imaging modality, advantages and disadvantages of echocardiography, the quan-

titative and qualitative parameters used for the analysis of MR. This chapter gives the detail

about the data set used in this work for the severity analysis of MR.
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CHAPTER 3

DESPECKLING OF ECHOCARDIOGRAPHIC IMAGES

This chapter describes the despeckling filters used for speckle noise reduction in B-mode

transthoracic echocardiographic (TTE) images. The chapter begins with the phenomenon of

speckle formation in the ultrasound imaging, followed by noise modeling and image qual-

ity metrics (IQM). This chapter also proposed a hybrid fuzzy filter for the edge preserving

despeckling filters for the TTE images and evaluated in terms of the IQM, visual quality

assessment with clinical validation.

3.1 Genesis of Speckle Noise

An ultrasound based echocardiography is the first choice in the diagnosis and analysis of

abnormalities related to the heart. Speckle is a granular noise that inherently exists in and

degrades the quality of the active radar, synthetic aperture radar (SAR) [73,77,192], medical

ultrasound [8,9,75,193,194] and optical coherence tomography (OCT) [92,195] images. Its

impact is much more noteworthy than additive noise sources, for example, sensor noise [194].

The speckle noise reduces the contrast resolution and masks the texture details which confines

the exact interpretation and advancement of CAD systems for different diseases [8, 89, 100,

196–198]. The speckle noise reduction without decimating the image features to enhance

the TTE images for precise location, diagnosis, boundary characterization and interpretation

of valvular abnormality precisely in real time. A considerable amount of research has been

reported in literature targeting both qualitative and quantitative despeckling techniques [8,

110, 111, 199, 200]. Individual techniques have their merits and demerits [73]. The most of

the despeckling techniques have certain counter effects summarized as follows:

1. The performance of despeckling filters is sensitive to the size of kernel window. The

smoothing of the output images increased with the window size. However, if the window size

is small the smoothing effect is reduced but the speckle noise remains same.

2. A few despeckling techniques utilized the thresholding which is picked tentatively.

The unseemly decision of the threshold may incite normal filtering and noisy boundaries,

thusly leaving the sharp components unfiltered.
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3. Generally, the despeckle channels do not improve the edges, they just restrain smooth-

ing close to the edges.

3.2 Model of the Speckle Noise

Speckle is the fine-grained textural design determined in B-mode TTE images procured uti-

lizing different acoustic windows and views. In order to analyze the despeckling techniques

it is very important to have a mathematical model of speckle noise. The nature of the speckle

noise is multiplicative. The output of the ultrasound imaging is given in Eq. 3.1.

f(i, j) = g(i, j) · n(i, j) + a(i, j) (3.1)

where, g(i, j), f(i, j), n(i, j), and a(i, j) signifies noise free image, noisy image, multiplica-

tive noise, and additive noise, respectively, and i, j are the spatial coordinates in the two-

dimensional space [95, 111, 112]. The speckle noise is caused by the random scattering phe-

nomenon in imaging resolution cell while the additive noise caused by the sensors which is

very small compared to the multiplicative noise, hence, the additive noise a(i, j) generally

eliminated.

f(i, j) = g(i, j) · n(i, j) (3.2)

A logarithmic operation convert this multiplicative noise into additive noise and the filters

used for additive noise has been tested on the logarithm transformed images [112] as given

in Eq. 3.3.

log[f(i, j)] = log[g(i, j)] + log[n(i, j)] (3.3)

fij = gi,j + ni,j (3.4)

where, fij = log[f(i, j)], gi,j = log[g(i, j)], and nij = log[n(i, j)]. The speckle noise n(i, j)

is modeled by Rayleigh distribution initially but after the log transformation it is estimated

as the Gaussian noise. The output is obtained by taking exponential of the filtered image and

the formula is given in Eq. 3.5.

ĝ(i, j) = exp (Filter (log (f(i, j)))) (3.5)

where, “Filter” represents filter technique used for despeckling.
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3.3 Despeckle Filters for Ultrasound Images

In this section, the despeckling filters are described in five categories: local adaptive filter or

synthetic aperture radar (SAR) filters, local statistics filtering, anisotropic diffusion, nonlocal

mean, and fuzzy filters.

3.3.1 Local Adaptive Filter

Adaptive filters work in the spatial domain to remove the speckle noise. They do not make

any presumption related to signal and noise models. These filters have the smoothing property

naturally and smoothen the edge information as well. The speckle noise is reduced by varying

the size of the filter kernel window.

Lee filter [81] proposes an adaptive filter utilizing the minimum mean square error filter-

ing criterion for the despeckling purpose. The output of this filter is visually enhanced and

image structure is well preserved, but it induced blocky effect and removed sharp features.

Since it does not require any transformation, it has very high efficiency.

Forst filter [84] is based on the local statistics similar to Lee filter for the removal of

speckle noise in SAR images. It uses adaptive least squares estimation criterion and the

denoised image is the convolution of the noisy image with a defined mask. The main disad-

vantage of this filter is the significant loss in image details and blurred boundaries.

Kuan filter [86] based on the different weighting function. The advantage of this filter

is that it preserved the image structure. The drawbacks of this filter are over-smoothing,

blurring of edges.

3.3.2 Local Statistics Filtering

In these filters the local statistics such as mean, variance, skewness, kurtosis etc. from a small

fixed window around a pixel of interest to estimate the non-degraded value at that point for

speckle noise reduction. The size of the local window may vary from 3 × 3 up to 15 × 15.

Linear despeckle filter (Lsmv)

These filter utilizes first order statistics such as variance and mean of the neighborhood. The

algorithms of this category are based on the following equation

fi,j = g + ki,j(gi,j − g) (3.6)
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where, fi,j , is the modified pixel, gi,j , is the noisy pixel, g, is the mean value of image size

(N1×N2) region surrounding and including pixel gi,j . The weighting factor ki,j is a function

of the local statistics given in Eq. 3.7.

ki,j =
1− g2σ2

σ2 + σ2
n

(3.7)

where σ and σn represents the variances in the moving window and the entire image respec-

tively. A window of 5× 5 size was considered for the filtering operation. The filter decreases

the variance of speckle noise in the output image and improves the overall image quality by

enhancing edges [81].

Wiener Despeckle Filter (Wiener)

Wiener filter employs a pixel wise adaptive method [84, 91, 110] executed as provided in Eq.

3.6. The weighting factor ki,j , is given in 3.8.

ki,j =
σ2 − σ2

n

σ2
(3.8)

The moving window size for the wiener despeckle filter in this study was 5 × 5 and the

number of iterations set to one. The Wiener filter increases the optical perception, of the

ultrasound image, but it doesn’t preserve edges when compared with the lsmv filter.

Median Filter (median) despeckle Filters

The median filter [91, 110] is a nonlinear operator where the middle pixel in the window is

replaced with the median value of its neighbors. Three different windows (normal window,

x-shape window and cross shape window) have been utilized here and the center pixel is

replaced by calculating the median of these windows. Here, the size of the window has

been taken 5 × 5, and the number of iterations to each image was two. The median filter is

effectively suited for enhancing the optical cognition, but repeated application destroys the

image boundaries.

Non-linear Filter (Kuwahara)

This filter searches for the most homogeneous neighborhood around each pixel [201]. The

center pixel of the 1 × 5 neighborhood is replaced by the median gray value of the 1 × 5

mask. The number of iterations is selected by the user. In this field, the number of iterations

44



selected for the despeckle filter Kuwahara was set to two [110]. The Kuwahara filter is able

to apply smoothing on the image while preserving the edges.

Geometric Despeckle Filter (Geometric)

The geometric filter uses a nonlinear noise reduction technique. It compares the intensity of

the central pixel of 3 × 3 in the neighborhood based on their comparative values [202]. The

intensity of the pixel located at the center of 5× 5 window is compared with eight neighbors.

Depending on the intensity values of neighborhood pixels, the value is either incremented or

decreased so that the values stand out compared to others. The size of moving the window

in this study is set to 5× 5 with a number of iteration being equal to 2. The visual quality of

the image improves on using the geometric filter but at the same time, the image is smoothed

considerably also with some noisy edge retained. Some of the edges and finer details are

mostly lost.

3.3.3 Non Local Mean Filter

Nonlocal means (NLM) filter was proposed by Buades [106]. In basic NLM filter the inten-

sity value of the pixels can be related to the pixel intensity of complete image. The expression

for restored intensity of a pixel is given in Eq. 3.9.

NL(u)(Yi) =
∑

yj∈Ωdim

w(yi, yj).u(yj) (3.9)

where, w(yi, yj) represents the weight given to u(yj) in order to reinstate the pixel yi. The

w(yi, yj) estimates the similarity between (yi and yj) with constraints such as w(yi, yj) ∈

[0, 1],
∑

yj∈Ωdim w(yi, yj) = 1. These weights are calculated as given in Eq. 3.10.

w(yi, yj) =
1

Zi
e−

∥∥∥∥∥∥u(Ni)− u(Nj)

∥∥∥∥∥∥
2

2,a

h2 (3.10)

where, Ni and Nj are intensities of local neighborhood centers on pixels yi and yj , Zi rep-

resents the normalization constant and h is degree of filtering which controls the decay of

the exponential function. The NLM algorithm is computational complex. To address this

issue, an optimized implementation of the NLM filter, block wise NLM (BNLM) was pro-

posed [105]. Further, probabilistic early termination (PET) based Fast NLM [203] was intro-

duced to reduce the computational complexity.
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3.3.4 Anisotropic Diffusion Filter (AD)

Perona and Malik [96] presented the anisotropic dispersion (AD) method for additive noise.

This filter reduced the limitations of spatial filtering by significantly reducing the speckle

noise and improves the image quality. This method stimulates diffusion in the homogeneous

region and bound at edges. The advantage of this method is intra-region smoothing, edge

conservation. But it degrades image contrast and blur edges. It uses the concept of heat

diffusion and the mathematical model is taken up from the second order partial differential

heat equation can be expressed as given in Eq. 3.11.

∂s(x, y; t)

∂t
= div(g ‖∇s(x, y; t)‖)·∇s(x, y; t) (3.11)

where, div is the divergence operator and g(.) is the diffusion parameter. The coefficient

(g ‖∇s(x, y; t)‖) varying normally in the range of [0, 1] allows the controlling of the diffusion

regularization process more accurately. If g is a constant parameter, i.e. independent of image

position (x, y) or time t, it leads to a linear diffusion equation as written in Eq. 3.12.

∂s

∂t
= div(g·∇s(x, y; t)) = g∇2s(x, y; t) (3.12)

To preserve the edges, Perona and Malik also suggested two diffusion parameters that can be

expressed as in Eq. 3.13.

g(‖∇s(x, y; t)‖) =
1

1 +
(‖∇s(x,y;t)‖

K

)2 (3.13)

g(‖∇s(x, y; t)‖) = exp

(
−
[
‖∇s(x, y; t)‖

K

])2

(3.14)

where, K is the edge magnitude parameter which is responsible for the response of AD filter.

if ‖∇s(x, y; t)‖ � K, then the diffusion coefficient becomes zero (g(‖∇s(x, y; t)‖) → 0)

and we achieve all pass filter. On the other hand, if ‖∇s(x, y; t)‖ � K, then the diffusion

coefficient becomes one (g(‖∇s(x, y; t)‖)→ 1) and becomes isotropic diffusion.

Speckle Reducing Anisotropic Diffusion Filter (SRAD)

The isotropic diffusion filter enhance the speckle noise rather to reduce it. Yu et. al. [7]

proposed an adaptive method based on partial differential equation named as speckle reducing
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anisotropic diffusion (SRAD). It is outlined by first representing the discrete form of the

AD equation by replacing the diffusion coefficient g
(
(∇s(x, y; t))p

)
with the instantaneous

coefficient of variation (ICOV) and it can be written as in Eq. 3.15.

s(x, y; t+ ∆t) = s(x, y; t) +
∆t

|ηi,j|
∑
p∈ηi,j

g
(
(ICOV (x, y; t))p

)
·
(
(Os(x, y; t))p

)
(3.15)

and,

g(ICOV ) =
1

1 +
(
ICOV 2−ICOV 2

0

ICOV 2
0 +ICOV 4

0

) (3.16)

g(ICOV ) = exp

[
−
(
ICOV 2 − ICOV 2

0

ICOV 2
0 + ICOV 4

0

)2]
(3.17)

where, |ηi,j| is the total number of the pixels in the spatial neighborhood of the pixel ηi,j and

δt is the time step parameter. The ICOV0 is speckle scale function that effectively controls

the amount of smoothing applied to an images by SRAD. The ICOV estimated in terms of

the approximations to the derivatives of s in the given 3× 3 template can be written as in Eq.

3.18

ICOV =

√√√√(1
2

)(‖∇s‖
s

)2 −
(

1
4

)2(∇2s
s

)2

1 +
(

1
4

)2(∇2s
s

)2 (3.18)

This ICOV combines a normalized gradient magnitude operator and a normalized Laplacian

operator to act like an edge detector for a noisy image. The speckle scale function is also

estimated by Eq. 3.19:

ICOV0 =
1.4826×MAD(∇I)√

2
(3.19)

where, MAD stands for the median absolute deviation. The divergence can be iteratively

calculated as follows with the time step size of δt and sufficiently small spatial step size of

d = 1 in x and y direction within a template having size of 3 × 3 at iteration t.

f(x, y; t) =
1

d2


g(x+ 1, y; t)(s(x− 1, y; t)− s(x, y; t))

+g(x− 1, y; t)(s(x+ 1, y; t)− s(x, y; t))

+g(x, y + 1; t)(s(x, y + 1; t)− s(x, y; t))

+g(x, y − 1; t)(s(x, y − 1; t)− s(x, y; t))

 (3.20)

The final SRAD update function results is given in Eq. 3.21

s(x, y; t+ 1) = s(x, y; t) +
∆t

4
f(x, y; t) (3.21)
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3.3.5 Fuzzy Filter

In the fuzzy filter, the center of the filtered image is the normalized sum of the weighted

input pixels of the moving window. These filters are based on different membership function

[204, 205]. These filters are analyzed in the logarithmic domain. The output of fuzzy filters

for the input f(i, j) is estimated using the Eq. 3.22

y(i, j) =

∑
(r,s)∈A F [f(i+ r, j + s)].f(i+ r, j + s)∑

(r,s)∈A F [f(i+ r, j + s)]
(3.22)

where, F [f(i, j)] is the window function defined in terms of fuzzy membership functions and

“A” is the area. Based on the different window functions, fuzzy filters can be triangular func-

tion with median center (TMED) and moving average (TMAV). Similarly, with asymmetrical

triangular function with median (ATMED) center and moving average (ATMAV) center. The

fuzzy filter with a triangular function and median value within a window as the center value

is given in Eq. 3.23

F [f(i+ r, j + s)] =


1−

∣∣∣∣∣f(i+ r, j + s)− fmed(i, j)
∣∣∣∣∣

fmm(i,j)

for
∣∣∣f(i+ r, j + s)− fmed(i, j)

∣∣∣ 6 fmm(i, j)

1 for fmm = 0

(3.23)

fmm(i, j) = max[fmax(i, j)− fmed(i, j), fmed(i, j)− fmin(i, j)] (3.24)

where, fmax(i, j), fmin(i, j), and fmed(i, j) represent the maximum, minimum, and median

values, respectively, with s, r ∈ A, the window at indices (i, j).

The fuzzy filter with a triangular function and moving average value within a window as

the center value is given in Eq. 3.25

.F [f(i+ r, j + s)] =


1−

∣∣∣∣∣f(i+ r, j + s)− fmav(i, j)
∣∣∣∣∣

fmm(i,j)

for
∣∣∣f(i+ r, j + s)− fmav(i, j)

∣∣∣ 6 fmv(i, j)

1 for fmv = 0

(3.25)

fmv(i, j) = max[fmax(i, j)− fmav(i, j), fmav(i, j)− fmin(i, j)] (3.26)
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where, fmax(i, j), fmin(i, j), and fmav(i, j) represent the maximum, minimum, and moving

average values, respectively, with s, r ∈ A, the window at indices (i, j).

The median filtering using fizzy asymmetrical triangulation membership function with

median center (ATMED) is given in Eq. 3.27.

F [f(i+ r, j + s)] =



1−

∣∣∣∣∣fmed(i, j)− f(i+ r, j + s)

∣∣∣∣∣
fmm(i,j)

− fmin(i, j)

if fmin(i, j) 6 f(i+ r, j + s) 6 fmed(i, j)

1−

∣∣∣∣∣f(i+ r, j + s)− fmed(i, j)
∣∣∣∣∣

fmax(i,j)−fmed(i,j)
− fmin(i, j)

if fmed(i, j) 6 f(i+ r, j + s) 6 fmax(i, j)

1 if
fmed(i,j) − fmin(i, j) = 0 or

fmax(i, j)− fmed(i, j) = 0

(3.27)

3.4 Proposed Hybrid Fuzzy Filter

In the proposed work, a new despeckling approach is proposed by embedding the NLM filter

with homomorphic fuzzy (HF) filter and tested on ultrasound images of MR. The fuzzy filters

are acceptable in the logarithmic domain but the edges are not preserved. The NLM filters

are very good in term of edge preservation when used for speckle noise reduction. Therefore

the edge preservation capability of NLM is integrated with the fuzzy filters. The proposed

technique is termed as a hybrid fuzzy filter (HFF). The proposed technique is depicted in Fig.

3.1.

The steps incorporated in the proposed approach are step-wise described below:

Step 1: Consider standard noise free image, resize the image to 512 × 512, convert it to

gray scale and embed each of the images with synthetic speckle noise.

Step 2: Project the noisy image into the logarithmic space according to Eq. 3.3. The

output is of the form f = log(double(f) + 1); where f is the noisy image.

Step 3: Fuzzy filters (TMED, TMAV, and ATMED) have been applied to the noisy image

in logarithmic space.

Step 4: The output of the fuzzy filter is projected back to the nonlogarithmic domain

using Eq. 3.4. It is represented by g = exp(y)− 1, where y is the output of the fuzzy filter.

Step 5: The output image at step 4 is given as input to NLM filter.
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Fig. 3.1: Flow diagram of proposed methodology

Step 6: Finally, the output of the last step is the denoised image and the performance

parameter and visual quality assessment have to perform.

3.5 Image Quality Metrics for Performance Evaluation

A large number of the researchers have utilized standard full reference-based measurements

for assessing the execution of the despeckling filters. These parameters required the reference

image or noise free image. These parameters includes signal to noise ratio (SNR) [73], peak

signal to noise ratio (PSNR) [112], mean square error (MSE) [8, 112], normalized mean

square error (NMSE), structural similarity index (SSIM) [8, 111, 115, 206], and root mean

square error (RMSE). The ultrasound images inherently suffered from speckle noise, so noise

free ultrasound images are not available for reference. These traditional parameters may not

reflect the true performance in case of the clinical images.

The possible solution to this problem would be to use parameters such as speckle sup-

pression index (SSI) [94, 207], speckle suppression and mean preservation index (SMPI),

correlation coefficient (ρ), normalized correlation coefficient (NCC), Laplacian mean square

error (LMSE), and normalized error summation (Err3, Err4) [8, 111]. The edge preservation

is estimated by calculating the Prats figure of merit (FoM) [8], beta metric (β) and image

quality index (IQI). These parameters do not require noise-free image as a reference for com-

puting the performance. The SNR indicates the amount of reduction in noise after denoising,
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while PSNR measures the difference between original and despeckled image. The SNR eval-

uates the level of speckle as the proportion of mean to the standard deviation of the amplitude

values. The FoM measure the displacement of edge details between original and denoised

image. The structural similarity between the two images is given by SSIM and it ranges be-

tween 0-1, where, unity represent the identical images. The beta (β) lattices had utilized for

assessing edge preservation, the SSI, and SMPI for speckle suppression and EPI for evalu-

ating edge preservation. The MSE measures the change in average intensity after filtering.

The NCC is the measure of arrangement prior and then afterward despeckling. The details of

these parameters are available in [8, 94, 109, 111, 112, 115, 207, 208].

PSNR(fden, forg) = 20× log10

[
255√

MSE(fden, forg)

]
(3.28)

MSE(fden, forg) =
1

MN

M∑
i=1

N∑
j=1

(fden − forg)2 (3.29)

FoM(fden, fref ) =
1

max(Nden, Nref )

Nden∑
j=1

1

1 + γd2
j

(3.30)

β =
D(∆fden −∆fden,∆forg −∆forg)√

D(∆fden −∆fden, (∆fden −∆fden).D(∆forg −∆forg, (∆forg −∆forg)
(3.31)

SSIM(forg, fden) =
1

M

∑ (2µorgµden + C1)(2σorgσden + C2)

(µ2
org + µ2

den + C1)(σ2
org + σ2

den + C2)
(3.32)

SSI =

√
V AR(fden)

Mean(fden)

Mean(forg)√
V AR(forg)

(3.33)

SMPI = Q

√
V AR(fden)√
V AR(forg)

(3.34)

with,

Q = K + |Mean(fden)−Mean(forg)|

K =
max(Mean(fden))−min(Mean(fden)

Mean(forg)
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SNR = 10 log10

∑M
i=1

∑N
j=1(f 2

den(i, j) + f 2
org(i, j)∑M

i=1

∑N
j=1(fden(i, j) − forg(i, j))2

(3.35)

where, γ is the penalization factor and have fixed value 1/9, nd and nr are the number of pixels

in original and processed images respectively, dj is the Euclidean distance, ∆fden and ∆forg

represent the filtered version of original and processed images, pixel mean intensities in the

region ∆fden, ∆forg are represented by ∆fden and ∆forg respectively, c1 and c2 are con-

stants, σforg, σfden and 2µforg, µfden are the standard deviations and means of TTE images

compared, σforgfden represents the covariance, c1, c2 ≤ 1 are the constants, Nden and Nref

are the number of pixels in original and processed images respectively. C1 = (K1L)2, C2 =

(K2L)2, where L is the dynamic range of pixel intensities (255, for 8 bits gray-scale images),

K1, K2 � 1.

3.6 Experimental Results and Discussions

The despeckling filters has been evaluated utilizing standard test images and clinical echocar-

diographic images. These filters are investigated by utilizing image quality measurements and

furthermore the visual quality of the despeckled images are confirmed by the experts. The

MATLAB in-built function “imnoise” is utilized to add speckle noise with variance 0.01-

0.1 to the test images, whereas, echocardiographic images are inherently noisy. The filter

parameters being utilized in the implementation of filters are tabulated in Table 3.1.

The image quality metrics discussed in Section 3.5 are tabulated in Table 3.2, for two test

images one is standard test image and second is synthetic image using homomorphic fuzzy

(HF) filters (TMED, TMAV, and ATMED), along with NLM filter.

As it can be observed from the Table 3.2 that the performance of the fuzzy filters and NLM

filter degraded with the increase in noise variance for the two test images. The outcomes

demonstrate that the NLM filter is better than the other three filters followed by HF filter based

on ATMED regarding traditional performance parameters such as PSNR, MSE, and SNR. It

is additionally observed that SSIM and FoM for TMAV filter are better than other three filters

while as far as beta (β) and NCC, the NLM filter performs extraordinary contrasted with rest

channels. The higher the estimations of SSIM and FoM show lesser distortion and higher

edge preservation in the denoised image. Comparative examinations are carried on TTE
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Table 3.1: Parameters used in implementation of despeckling filters

Category Filter Name Abbreviation Parameters

Local Adaptive Local statistics mean variance Lsmv Window size = 5×5,

iterations = 2

Wiener Wiener Window size = 5×5,

iterations = 1

Median Median Window size = 5×5,

iterations = 2

Kuwahara Kuwahara Window size = 5×5

Geometric despeckle filter Geometric Window size = 3×3

Synthetic aperture

radar (SAR)

Lee Lee Window size = 5×5

Forst Forst Window size = 5×5

Kuan Kuan Window size = 5×5

Anisotropic diffusion Anisotropic diffusion filter PMAD Diffusion constant =

30, rate of diffusion =

0.25, iteration = 20

Speckle reducing anisotropic diffusion

filter

SRAD Diffusion constant =

30, time step = 0.02, ρ

= 1

Non local mean Non local mean NLM

Fast non local mean FNLM

Fuzzy Triangular function with median center TMED Window size = 3×3

Triangular moving average center filter TMAV Window size = 3×3

Asymmetrical triangular function with

a median filter

ATMED Window size = 3×3

Proposed Hybrid fuzzy filter (TMAV + NLM) HFF1

Hybrid fuzzy filter (TMED + NLM) HFF2

Hybrid fuzzy filter (ATMED + NLM) HFF3

images without adding speckle noise and it is observed that the outcomes are like those cited

above for standard test images.

In the local statistics based filters, the denoised image goes blurry as the window size
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Fig. 3.2: Comparison for performance parameters for TTE images (a) PSNR (b) SSIM (c)

FoM (d) SSI (e) Beta (β) (f) NCC
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Fig. 3.3: Visual quality comparison of denoised Lena image for noise level equal to 0.01

using different filters
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Fig. 3.4: Visual quality comparison of denoised Synthetic image for noise level equal to

0.01 using different filters
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Fig. 3.5: Visual quality comparison of denoised A2C image for noise level equal to 0.01

using different filters
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Fig. 3.6: Visual quality comparison of denoised A4C image for noise level equal to 0.01

using different filters
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Fig. 3.7: Visual quality comparison of denoised PLAX image for noise level equal to 0.01

using different filters
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Table 3.2: Comparison of image quality metrics for test images with noise variance vary-

ing from 0.01 to 0.1 using TMED, TMAV, ATMED, and NLM filter

TMED TMAV ATMED NLM TMED TMAV ATMED NLM TMED TMAV ATMED NLM

Image Noise PSNR SSIM FoM

Lena 0.01 32.25 35.36 35.80 36.63 0.7620 0.8828 0.8050 0.8908 0.8492 0.8797 0.7487 0.7944

0.03 29.10 32.35 30.70 32.97 0.6070 0.7767 0.6444 0.7100 0.5095 0.7157 0.4638 0.7794

0.05 26.68 29.96 28.60 29.02 0.5212 0.7033 0.5574 0.5522 0.4434 0.5636 0.4283 0.5961

0.10 22.44 25.55 26.57 22.87 0.3935 0.5705 0.4392 0.3676 0.3749 0.4319 0.3807 0.4243

Synthetic 0.01 30.95 34.22 36.78 40.83 0.8829 0.9430 0.9038 0.9606 0.4339 0.4781 0.4356 0.6063

0.03 28.86 32.02 32.82 34.31 0.8101 0.8917 0.8333 0.8596 0.4082 0.4368 0.4036 0.4409

0.05 26.95 30.17 30.70 30.39 0.7705 0.8588 0.7945 0.8003 0.3771 0.4226 0.3630 0.3591

0.10 23.51 26.55 27.61 25.56 0.6999 0.7960 0.7340 0.7504 0.3487 0.3887 0.3516 0.3325

SSI Beta NCC

Lena 0.01 0.9623 0.9576 0.9627 0.9523 0.1173 0.3326 0.3796 0.5356 0.9822 0.9859 0.9936 0.9958

0.03 0.9058 0.8975 0.9124 0.9071 0.1089 0.2577 0.2293 0.1817 0.9566 0.9681 0.9865 0.9922

0.05 0.8600 0.8496 0.8714 0.8832 0.0935 0.2178 0.1758 0.1073 0.9275 0.9475 0.9775 0.9894

0.10 0.7869 0.7638 0.7980 0.8666 0.0719 0.1562 0.1226 0.0600 0.8516 0.8927 0.9552 0.9820

Synthetic 0.01 0.9860 0.9869 0.9878 0.9900 0.2103 0.4846 0.5280 0.7039 0.9492 0.9631 0.9825 0.9934

0.03 0.9703 0.9716 0.9742 0.9783 0.1678 0.3729 0.3618 0.2871 0.9206 0.9422 0.9683 0.9869

0.05 0.9539 0.9571 0.9624 0.9717 0.1471 0.3187 0.2863 0.1759 0.8845 0.9178 0.9533 0.9813

0.10 0.9234 0.9271 0.9369 0.9634 0.1082 0.2358 0.2079 0.0938 0.8027 0.8582 0.9188 0.9640

MSE IQI SNR

Lena 0.01 75.61 37.00 42.06 27.60 0.5703 0.6937 0.6078 0.6264 26.62 29.74 29.21 31.05

0.03 156.20 74.01 108.11 80.66 0.4590 0.5778 0.4851 0.4842 23.37 26.65 25.09 26.39

0.05 273.05 128.30 175.51 200.26 0.3997 0.5162 0.4268 0.4001 20.82 24.18 22.96 22.44

0.10 723.65 353.79 352.29 656.51 0.3087 0.4197 0.3481 0.2973 16.29 19.54 19.85 17.31

Synthetic 0.01 104.42 49.22 27.28 10.75 0.3808 0.4884 0.4219 0.3371 22.40 25.72 28.36 32.45

0.03 168.98 81.70 67.88 48.22 0.3016 0.3972 0.3316 0.3166 20.19 23.43 24.35 25.91

0.05 262.26 125.20 110.62 118.91 0.2671 0.3523 0.2932 0.3041 18.14 21.47 22.17 21.98

0.10 579.14 287.56 225.40 361.11 0.2162 0.2859 0.2500 0.2731 14.37 17.61 18.95 17.14

increases which causes the loss of the image texture. It can be observed from the Fig. 4

(c)- 4 (g), that there is smoothing at the output of Lmsc filter. The geometric filter is known

for edge preservation when employed for speckle noise reduction but retains noisy edges

in the denoised image. The noise is effectively removed in Wiener filter and the edges are

well preserved. The outcome of geometric filter preserves the texture as it has good edge

preservation index beta (β) but contain small speckle noise. The outcome of Lee and Kuan

filter incites visual artifacts as observed in Fig. 4 (h)-4 (j), while Frost filter brings about the
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Table 3.3: Comparison of edge preserving parameters for ultrasound images in three views

A2C A4C PLAX A2C A4C PLAX A2C A4C PLAX

Methods PSNR (dB) SSIM FOM

Lsmv 37.50 38.77 37.44 0.9342 0.9472 0.9475 0.8683 0.8729 0.8880

Wiener 41.17 41.72 41.98 0.9263 0.9399 0.9393 0.8323 0.8542 0.8880

Median 38.74 40.23 38.29 0.9416 0.9528 0.9554 0.8804 0.8981 0.9029

Kuwahara 36.43 37.59 37.53 0.9510 0.9586 0.9531 0.9488 0.9362 0.9332

Geometric 40.17 40.98 40.25 0.9729 0.9772 0.9796 0.9119 0.8663 0.9162

Lee 40.08 41.29 39.42 0.9619 0.9689 0.9633 0.9537 0.9606 0.9601

Frost 41.86 43.10 42.13 0.9543 0.9609 0.9638 0.9661 0.9709 0.9712

Kuan 37.78 39.08 37.84 0.9583 0.9648 0.9609 0.8748 0.8406 0.8618

PMAD 37.35 38.67 38.13 0.9288 0.9389 0.9382 0.7798 0.7152 0.7607

SRAD 36.47 39.36 39.41 0.9491 0.9608 0.9673 0.7711 0.9064 0.9148

NLM 39.68 40.76 40.58 0.9353 0.9430 0.9488 0.7035 0.7279 0.7081

FNLM 42.12 43.09 42.93 0.9637 0.9674 0.9709 0.8472 0.7922 0.8398

TMED 37.91 38.78 37.40 0.9666 0.9658 0.9724 0.9107 0.9136 0.9123

TMAV 40.81 41.77 40.05 0.9882 0.9898 0.9878 0.9363 0.9396 0.9388

ATMED 42.62 42.96 41.80 0.9913 0.9925 0.9911 0.9529 0.9639 0.9599

HFF1 39.49 40.62 39.68 0.9583 0.9626 0.9583 0.9674 0.9259 0.9595

HFF2 40.54 41.61 40.71 0.9786 0.9812 0.9776 0.9599 0.9217 0.9461

HFF3 42.65 43.88 43.11 0.9899 0.9916 0.9896 0.9720 0.9978 0.9813

SSI Beta NCC

Lsmv 0.9510 0.9586 0.9531 0.5107 0.4886 0.3565 0.9841 0.9730 0.9704

Wiener 0.9729 0.9772 0.9796 0.8686 0.9134 0.9134 0.9951 0.9934 0.9937

Median 0.9619 0.9689 0.9633 0.4398 0.4791 0.3858 0.9866 0.9752 0.9716

Kuwahara 0.9543 0.9609 0.9638 0.3214 0.3408 0.3408 0.9955 0.9874 0.9861

Geometric 0.9666 0.9658 0.9724 0.8280 0.8071 0.8551 0.9975 0.9970 0.9971

Lee 0.9882 0.9898 0.9878 0.7854 0.7829 0.7475 0.9938 0.9896 0.9879

Frost 0.9913 0.9925 0.9911 0.7869 0.7839 0.7560 0.9962 0.9933 0.9917

Kuan 0.9583 0.9648 0.9609 0.6081 0.5931 0.5496 0.9843 0.9734 0.9711

PMAD 0.9288 0.9389 0.9382 0.5011 0.4773 0.5043 0.9828 0.9704 0.9714

SRAD 0.9874 0.9948 0.9939 0.3292 0.3334 0.4792 0.9962 0.9990 0.9962

NLM 0.9353 0.9430 0.9488 0.7532 0.7394 0.7611 0.9891 0.9782 0.9798

FNLM 0.9637 0.9674 0.9709 0.7637 0.7448 0.7786 0.9837 0.9882 0.9889

TMED 0.9442 0.9572 0.9575 0.1781 0.1299 0.1225 0.9613 0.9502 0.9478

TMAV 0.9363 0.9499 0.9393 0.5457 0.5110 0.4602 0.9645 0.9536 0.9487

ATMED 0.9516 0.9628 0.9654 0.7422 0.7557 0.6959 0.9812 0.9650 0.9643

HFF1 0.9583 0.9626 0.9583 0.7231 0.7094 0.7407 0.9750 0.9596 0.9545

HFF2 0.9786 0.9812 0.9776 0.7276 0.7818 0.7592 0.9818 0.9704 0.9660

HFF3 0.9899 0.9916 0.9896 0.7696 0.7668 0.7602 0.9916 0.9854 0.9831
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Table 3.4: Comparison of traditional parameters for ultrasound images in three views

A2C A4C PLAX A2C A4C PLAX A2C A4C PLAX

Methods MSE SMPI SNR (dB)

Lsmv 22.07 16.35 22.38 3.0956 2.7293 3.6485 24.75 22.50 21.14

Wiener 4.74 3.30 3.13 3.1486 2.8358 3.7839 31.46 29.53 29.75

Median 16.56 11.67 18.40 3.3318 2.9591 3.8902 26.00 23.97 21.99

Kuwahara 28.23 21.41 21.89 3.5294 3.1612 4.0536 23.73 21.40 21.30

Geometric 4.75 3.91 3.70 3.5344 3.1532 4.0357 31.47 28.80 29.04

Lee 4.85 3.64 5.65 3.1074 2.7690 3.7129 31.36 29.08 27.17

Frost 3.22 2.40 3.80 3.1836 2.8425 3.7757 33.15 30.91 28.90

Kuan 20.70 15.20 20.41 3.1522 2.7605 3.6741 25.03 22.82 21.54

PMAD 22.81 16.72 19.07 3.0859 2.6992 3.6386 24.60 22.39 21.83

SRAD 27.92 14.24 14.19 3.2912 2.8592 3.8334 23.78 23.21 23.22

NLM 13.36 10.31 10.85 3.2407 2.8686 3.8082 26.94 24.52 24.30

FNLM 7.61 6.03 6.31 3.1923 2.8383 3.7795 29.40 26.88 26.69

TMED 27.85 21.29 26.61 3.6631 3.2226 4.1339 23.68 21.26 20.29

TMAV 34.61 26.88 33.33 3.5416 3.1331 4.0628 22.71 20.21 19.27

ATMED 21.32 15.93 19.15 3.2849 2.9191 3.8682 24.88 22.58 21.78

HFF1 20.08 16.28 22.57 3.6406 3.1823 4.0808 25.12 22.46 21.03

HFF2 10.30 8.18 12.26 3.7660 3.2685 4.1456 28.04 25.49 23.71

HFF3 4.28 3.12 5.17 3.3842 2.9752 3.9002 31.89 29.73 27.53

Err3 Err4 LMSE

Lsmv 7.68 6.87 8.55 11.31 10.34 13.41 0.7700 0.7890 0.8811

Wiener 3.06 2.60 2.63 3.84 3.30 3.39 0.2517 0.2497 0.1709

Median 7.47 6.60 8.84 11.95 10.82 14.78 0.8931 0.8416 0.9176

Kuwahara 8.63 7.75 8.27 12.08 10.99 12.24 6.1957 6.1100 3.9853

Geometric 3.07 2.84 2.88 3.80 3.56 3.67 0.3205 0.3536 0.2687

Lee 3.78 3.26 4.33 6.03 4.97 6.72 0.4275 0.4332 0.4981

Frost 3.08 2.63 3.54 4.94 4.02 5.48 0.3990 0.4030 0.4544

Kuan 7.87 7.67 9.16 12.18 13.97 16.55 0.6679 0.6797 0.7456

PMAD 6.96 6.16 6.74 9.00 8.16 8.93 0.7629 0.7924 0.7553

SRAD 7.70 6.18 6.37 9.89 8.45 8.82 5.1155 6.4074 2.9236

NLM 5.03 4.56 4.91 6.27 5.79 6.39 0.4538 0.4775 0.4483

FNLM 3.97 3.64 3.94 5.31 4.99 5.57 0.4187 0.4476 0.3949

TMED 8.11 7.36 8.89 11.49 10.58 13.43 1.7854 1.9269 1.8130

TMAV 9.18 8.44 10.10 12.98 12.24 15.33 0.7183 0.7664 0.8174

ATMED 7.00 6.21 7.32 10.02 8.88 10.90 0.4496 0.4301 0.5139

HFF1 7.47 6.92 8.66 10.96 10.17 13.29 0.6647 0.6768 0.7418

HFF2 5.49 4.98 6.60 8.42 7.54 10.50 0.7442 0.7788 0.8713

HFF3 4.02 3.41 4.70 7.05 5.73 7.93 0.5952 0.5979 0.6253
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loss of texture.

The Lee and Frost filters have similar values for SSIM metric. The Frost and Kuan filter

likewise protect the edge information. Average edge pixel distortion because of filtering is

minimal in SAR filters as observed by the high FoM. In general, the SAR filters are computa-

tionally effective and have some speckle reduction but the output frequently seems obscured.

The nonlocal mean filters (NLM, FNLM) have strong speckle reduction that can be observed

from the Figs. 4 (k) and 4 (l) while having high computational complexity. From the image

quality metrics, it is observed that the value of FoM and SSIM are high for NLM filters which

show its effectiveness for preserving edges.

Figs. 4 (m) and 4 (n) show the output of AD based despeckling filters (PMAD, SRAD).

These filters remove speckle noise but have smoothing at edges. Furthermore, the fuzzy

filters such as TMED, TMAV, ATMED filter hold noise in the processed image. In view of

the outcomes, it is observed that the texture is partially preserved using fuzzy ATMED filter.

Tables 3.2 and 3.3 compare the performance of the proposed hybrid filter (HFF) in terms

of edge-preserving parameters and traditional parameters, respectively. The outcomes are

being tabulated for each kind of filter to compare the performance of each filter. Strong

speckle suppression is observed in proposed hybrid filter HFF3, followed by FNLM in terms

of PSNR. The PSNR of the HFF3 filter (42.65 dB) has been improved compared to HF

(42.62 dB) and NLM filter (39.68 dB). MSE is less for HFF when compared to many of the

filters. Also the traditional parameters (PSNR, MSE, SNR, and NCC) for the proposed hybrid

filter HFF3 are superior in comparison to HF filter, AD filters, and NLM filters. Results

obtained using proposed HF filters are compared with other filters in terms of image quality

metrics shown in Fig. 3.2. The performances of the HFF3 filters are superior in terms of SSI.

SMPI values are superior compared to SAR filters. FoM is greater than one indicating better

denoising performance. The fuzzy filters perform well in terms of IQI, FoM, and SSI with

fractionally higher SMPI but have a poor beta metric.

The performances of the wiener, Frost, FNLM, and ATMED filters are similar in terms of

PSNR. The beta value of the proposed filters increased when compared to hybrid filters and

NLM filter. The correlation coefficient value is also improved in the HFF filters. All the edge

preserving parameters (PSNR, SSIM, FoM, SSI, Beta (β) and NCC (ρ)) are having improved
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values in contrast with fuzzy filters and NLM filter. Further, denoising quality of HFF filter

is being compared with fifteen despeckling filters and visual results are depicted in Fig. 3.3 -

3.7 and it is observed that the HFF3 filters outperformed all thus.

3.7 Summary

The despeckling applications of fifteen types of despeckling filters along with three proposed

hybrid filters have been analyzed in this work in terms of blind and full-reference parameters.

The traditional parameters often fail to reflect the true performance of the filters in the absence

of a noise-free reference image. The parameters such as speckle suppression index, and beta

metric are used to study the speckle suppression and edge preservation capability of each

filter. The image quality and structural preservation are analyzed using SMPI, FoM, IQI, and

SSI. Various types of benchmark filters are available and it would be very difficult to choose

the best clinically acceptable filter. It is also necessary to remove speckle noise but with the

edges preserved. The major contributions of this work are (i) it helps in selecting the best

filters suitable for clinical TTE images among all types of filters and their constituents, (ii) it

studies and evaluates the performance in terms of blind and full-reference based parameters,

and evaluations of filters based image quality metrics are validated by practicing clinicians.

Based on the quantitative evaluation and clinical validation, it is concluded that the proposed

hybrid filter (HFF3) performed best compared to other in terms of edge preservation and

denoising of speckle noise.
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CHAPTER 4

SPATIAL DOMAIN TEXTURE BASED ANALYSIS OF

MITRAL REGURGITATION

This chapter analyzes the performance of spatial domain texture extraction techniques for

the severity analysis of mitral regurgitation (MR). This chapter also investigates the aspects

of statistical features i.e. color spaces followed by the performance evaluation of these tech-

niques by different classifiers.

4.1 Spatial Domain Texture Features

Texture can be characterized as a component of the spatial variation in pixel intensities. The

texture may be constructed as including color, motion, flicker rate or even stereo disparity.

Most researchers have confined the definition to mean a spatial arrangement of neighborhood

intensity attributes which are correlated within the areas of the visual scene and correspond-

ing to surface regions. Texture features play a critical role in the classification of image

database. The three main methodologies utilized in image processing to portray the texture

of a region are statistical, structural, and spectral. Statistical domain approaches manage the

portrayal of textures as smooth, coarse, and grainy. Similarly, structural techniques manage

the arrangement of image primitive, such as the description of the texture based on regularly

spaced parallel lines. Spectral techniques depend on properties of the Fourier spectrum and

utilized principally to distinguish global periodicity in an image by identifying high-energy,

narrow peaks in the spectrum. The texture gives exceptionally noteworthy information for

the diagnosis of the diseases when used as an input to a CAD system.

Table 4.1 summarizes various CAD systems proposed by several researchers for the char-

acterization and classification of different diseases. These CAD systems have shown their

ability with reasonable accuracy based on the texture features, extracted from the images of

various medical image data sets in the combination with different classifiers.
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Table 4.1: Existing CAD studies using statistical texture feature

Authors Modality, Classification

technique

Diagnosis Features used

Christodoulou,

2003 [19]

Ultrasound, KNN Carotid plaques FOS, SGLDM, GLDS,

NGTDM, SFM, TEM,

FDTA, FPS

Chen, 2005 [20] Ultrasound, K-mean

classification

Breast cancer Fractal feature

Chang, 2010 [209] Ultrasound, ANN, BP-

NN, linear classifier

Breast cancer Texture feature, Morpho-

logical feature, Model

based feature, Descriptor

features

Chuan, 2010 [122] Ultrasound, SVM Thyroid nodules GLCM, SFM, GLRLM,

Laws feature, NGLDM,

WF, FF

Nikolaos, 2011 [172] Ultrasound, SVM, PNN Carotid atheroscle-

rosis

DWT, GT

Mandeep, 2013 [123] Ultrasound, LDA Liver images SGLCM, GLDS, FOS,

FPS, SFM, LAWs fea-

ture, Fractal feature

Sudarshan, 2013 [124] Ultrasound, SVM, KNN FOS, GLCM, LTE, LBP

Virmani, 2013 [173] Ultrasound, SVM Liver images GLCM, GLRLM, FPS,

LAWs texture feature

Gao, 2014 [23] Ultrasound, NN Liver images GLGCM, GLCM

KNN: K-nearest neighbors, ANN: Artificial neural network BP-NN: Back-Propagation Neural Networks,

PNN: Probabilistic neural network, FOS: First order statistics, SGLDM: Spatial gray level difference ma-

trix, GLDS: Gray-level difference statistics, NGTDM: Neighborhood gray tone difference matrix, SFM:

Statistical feature matrix, LTE: Law’s texture energy, FDTA: Fractal dimension texture analysis, FPS:

Fourier power spectrum, GLCM: Gray level co-occurrence matrix, GLRLM: Gray level run length ma-

trix, NGLDM: Neighboring gray level dependence matrix, DWT: Discrete wavelet transform, GT: Gabor

transform, SGLCM: Spatial gray-level co-occurrence matrices, LBP: Local binary pattern, GLGCM: Gray

level-gradient co-occurrence matrix.
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4.2 Aspects of Spatial Domain Features (Image Color Models)

A color model or space is a method by which we are able to specify, produce and visualize

color. A color image provides more information about the image as compared to a single

intensity image. A color texture may be defined as the distribution of colors over a surface,

while grayscale textures consider only luminance [210]. The RGB color space is mostly

accepted in image processing areas but most of the CAD systems have been developed for

grayscale images. It is an important aspect to select the optimum color space out of the

existing color spaces for a specific application. This chapter compares four color spaces i.e.

RGB, L*A*B*, YCbCr and CMY in terms of their effectiveness in color texture analysis.

4.2.1 RGB (Red Green Blue)

The RGB color space is the most accepted format by the image processing community. Red,

green and blue are the three primary colors are added together to form the desired color. In

this space, each color is represented as a triplet of red, green and blue (R, G, B) outputs from a

color camera. This color scheme is device-dependent. RGB space is transformed into various

other color spaces to improve the visibility of the image.

4.2.2 YCbCr (Luminance - Chrominance)

This is a digital color the system used for coding of TV pictures [211]. The YCbCr color

space can be achieved by transforming RGB values using the following equation:
Y

Cb

Cr

 =


16

128

128

+


65.481 128.553 24.966

−37.797 −74.203 112

112 −93.786 −18.214



R

G

B

 (4.1)

4.2.3 CMY (Cyan Magenta Yellow)

This is a subtractive color space and mainly used in color printing. The conversions are gen-

erally done through color management systems where CMY components are just the compli-

ments of the RGB components [212].

Cyan = 255− red

Magenta = 255−Green

Y ellow = 255−Blue

 (4.2)
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4.2.4 L*A*B*

The L*A*B* color space is very close to human perception of color because it has a uniform

distribution of colors. It is a non-linear color model and the conversions are reversible. The

luminance L* scales from 0 to 100, while parameters A* (from green to red) and B* (from

blue to yellow) in the range from -120 to 120 are the two chromatic components. It is derived

from RGB as follows [213]:
X

Y

Z

 =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950228



R

G

B

 (4.3)

L∗ = 116× f (Y/Yn)− 16

A∗ = 500× (f (X/Xn)− f (Y/Yn))

B∗ = 200× (f (Y/Yn)− f (Z/Zn))

 (4.4)

where, f(q) in Eq. 4.4

f(q) =

 q 0.333 if q > 0.008856

7.787 q + 0.137931 otherwise

The X , Y , and Z are the CIE tristimulus values and Xn, Yn, and Zn are the tristimulus values

for the illuminant.

4.2.5 Gray Scale

A gray scale image gives the information about the intensity of the pixels. A color image is

converted into gray scale by the formula:

Y = 0.212671 R + 0.715160 G+ 0.072169 B (4.5)

4.3 Methodology for Spatial Domain Texture Feature based MR Classifica-
tion

The procedural steps involved in present work used for the severity classification of echocar-

diographic images of MR is represented in the form of block schematic and is shown in Fig.

4.1. The steps of the complete classification process explained as follows:
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Severity Classification

Mild Moderate Severe

Feature Extraction 
FOS (05), SGLDM (26), GLDS (04),
NGTDM (05), SFM (04), LTEM (06)

FDTA (4), FPS (2)
and

Feature Selection (mRMR)

Feature Normalization

Echocardiographic Image Dataset

Color Space Conversion
(RGB, YCbCr, CMY, L*A*B*, and Grayscale)

A2C View A4C View PLAX View

Decision Making (Multi Voting)

Fig. 4.1: Schematic for classification of MR using spatial texture feature extraction tech-

niques.

Step 1: To compare the color spaces for the texture analysis of MR images. The color

images are converted to other color space as explained in Section 4.2. Further, a subjective

rectangular window is then chosen which incorporates the regurgitant jet area of each image

for picking the region of interest.

Step 2: Here, spatial domain six texture descriptors namely first-order statistics (FOS),

spatial gray level difference matrix (SGLDM), gray level difference statistics (GLDS), neigh-

borhood gray tone difference matrix (NGTDM), statistical feature matrix (SFM), and Laws

textures energy measure (LTEM) have been used to extract the texture feature.

Step 3: The extracted features contain the different range of numeral values which are
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normalized in the range of 0 to 1 before applying it to classifier utilizing the Eq. 4.6.

n(xi) =
(xi − mi)

σi
(4.6)

where, x is an original value n(xi) is the normalized value, mi and σi represent the mean and

standard deviation of the feature i.

Step 4: In step 4, supervised classifiers i.e. support vector machine (SVM) with three ker-

nel functions i.e. linear, polynomial and radial basis function (RBF) and random forest (RF)

has been used with 10-fold and leave-one-out cross-validation scheme. The characterization

performance of the approach has been assessed by its classification accuracy, sensitivity, and

specificity. Based on the classification accuracy the best texture features can be identified.

4.4 Texture Feature Extraction

An image texture gives the information about the intensities of an image in the spatial domain.

It is an important characteristic for image analysis and plays a significant role in research

areas such as image processing, remote sensing, and medical imaging, etc. The extracted

texture feature of the images is used for texture discrimination, object shape determination,

and the texture classification. In the following section texture feature descriptors are briefly

explained which are used in present experiments:

4.4.1 First Order Statistics (FOS)

The basic information of images can be explored through statistical analysis of single pixels.

The histograms represent the intensity distribution of pixel images [214]. For a given image

statistical analysis of the distribution of pixel intensities are known as FOS [116]. In FOS, the

main features that are taken into consideration are mean, median, standard deviation (SD),

skewness and kurtosis. Mean of a gray-scale image is a measure of the average intensity of

pixels, while SD is a measure of contrast. Skewness is a measure of the symmetry (it deal

with the degree of histogram asymmetry around the mean) and kurtosis is the descriptor of

the shape of the probability distribution. The formula for each of the FOS feature descriptors

are given as:

Mean = x̄ =
1

MN

M∑
i=1

N∑
j=1

I (i, j) (4.7)
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Standard Deviation = σ =

√√√√ 1

MN − 1

M∑
i=1

N∑
j=1

(I (i, j)− x̄)2 (4.8)

Skewness =
1

MN

M∑
i=1

N∑
j=1

(
I (i, j)− x̄

σ

)3

(4.9)

Kurtosis =
1

MN

M∑
i=1

N∑
j=1

(
I (i, j)− x̄

σ

)4

(4.10)

4.4.2 Spatial Gray Level Dependence Matrices (SGLDM)

The SGLDM [117] is a statistical method in which co-occurrence matrices reflect the spatial

distribution of gray levels in the ROI. SGLDM is computed by using the second-order joint

conditional probability density functions (pdf) that consider two pixels (k, l) and (m, n) with

the relative distance d and their relative orientation θ. A total 13 texture measures such as

angular second moment, contrast, entropy, variance, correlation, inverse difference moment,

sum variance, sum average, sum entropy, difference variance, difference entropy and infor-

mation measures of correlation were computed. In this work, d = 1 and angles θ = 0◦, 45◦

, 90◦ and 135◦ were used for the computation of texture measures. The mean and standard

deviation for the rows and columns of the matrix are expressed as:

µx =

Ng∑
i=1

Ng∑
j=1

ip (i, j) (4.11)

µy =

Ng∑
i=1

Ng∑
j=1

jp (i, j) (4.12)

σx =

Ng∑
i=1

Ng∑
j=1

(i− µx)2 p (i, j) (4.13)

σy =

Ng∑
i=1

Ng∑
j=1

(j − µy)2 p (i, j) (4.14)

where µx and µy are the means of px and py respectively; σx and σy are the standard

deviation of px and py respectively; and Ng is the number of gray levels.
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Probabilities of px+y and px−y that are related to specified intensity sums or differences,

are defined as follows:

px+y (k) =

Ng∑
i=1

Ng∑
j=1,i+j=k

p (i, j) , k = 2, 3, .....2Ng (4.15)

px−y (k) =

Ng∑
i=1

Ng∑
j=1,|i−j|=k

p (i, j) , k = 0, 1, 2, ..... (Ng − 1) (4.16)

Following features used in the present work are defined as follows:

Angular Second Moment =

Ng∑
i=1

Ng∑
j=1

{p (i, j)}2 (4.17)

Contrast =

Ng−1∑
n=0

n2


Ng∑
n=1

Ng∑
j=1,|i−j|=n

p (i, j)

 (4.18)

Entropy = −
Ng−1∑
i=0

Ng−1∑
j=0

p (i, j) log (p (i, j)) (4.19)

V ariance =

Ng∑
i=1

Ng∑
j=1

(i−m)2p (i, j) (4.20)

Correlation =

Ng−1∑
i=0

Ng−1∑
j=0

(i− µx) (j − µy)
σxσy

p (i, j) (4.21)

Inverse Difference Moment =

Ng−1∑
i=0

Ng−1∑
j=0

1

1 + (i− j)2p (i, j) (4.22)

Sum of Squares / V ariance =

Ng∑
i=1

Ng∑
j=1

(i− µ)2 p (i, j) (4.23)

Sum Average =

2Ng∑
i=2

i px+y (i) (4.24)

Sum Entropy = −
2Ng∑
i=2

px+y (i) log {px+y (i)} (4.25)
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Difference V ariance = V ariance of px−y (4.26)

Difference Entropy = −
Ng−1∑
i=0

px−y (i) log {px−y (i)} (4.27)

Information Measure of Correlation (IMC)

IMC1 =
HXY −HXY 1

max {HX,HY }
(4.28)

IMC2 = (1− exp [−2.0 (HXY 2−HXY )])
1
2 (4.29)

where,

HXY = −
∑
i

∑
j

p (i, j) log (p (i, j)) (4.30)

HXY 1 = −
∑
i

∑
j

p (i, j) log {px (i) py (j)} (4.31)

HXY 2 = −
∑
i

∑
j

px (i) py (j) log {px (i) py (j)} (4.32)

4.4.3 Gray Level Difference Statistics (GLDS)

The GLDS approach [118] is based on the assumption that useful texture information can

be extracted using first order statistics of an image. The algorithm is based on the estima-

tion of the probability density pδ of image pixel pairs at a given distance δ = (4x, 4y),

having a certain absolute gray level difference value. For any given displacement δ, let

fδ(x, y) = |f(x, y)− f(x+ δx, y + δy)|. Let pδ be the probability density of fδ(x, y). If

there are m gray levels, this has the form of an m-dimensional vector whose ith component

is the probability that fδ(x, y) will have value (i). Features were estimated for the following

distances: δ = (0, 1), (1, 1), (1, 0), (1, -1). Some of the features that were computed are: 1)

Mean, 2) Entropy, 3) Contrast, and 4) Energy.
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4.4.4 Neighborhood Gray Tone Difference Matrix (NGTDM)

The textural features, NGTDM introduced by Amadasun and King [119] provide the visual

properties of texture. In this work, a neighborhood size of 3 × 3, has been used for the

extraction of the feature. An NGTDM is a column vector containing G elements. Its entires

are computed which is based on measuring the difference between the intensity level of a

pixel and the average intensity computed over a square, sliding window centered at the pixel.

Suppose the image intensity level f(x, y) at location (x, y) is i, i = 0, 1, ...G−1. The average

intensity over a window centered at (x, y) is

f̄i = f̄(x, y) =
1

W − 1

K∑
m=−K

K∑
n=−K

f(x+m, y + n) (4.33)

where K specifies the window size and W = (2K + 1)2. The ith entry of the gray-tone

difference matrix is

si =
M−1∑
x=0

N−1∑
y=0

∣∣i− f̄i∣∣ (4.34)

for all pixels having the intensity level i. Otherwise, si = 0. Here, contrast, coarseness,

busyness, complexity, and strength were calculated as:

Coarseness =

(
ε+

G−1∑
i=0

pisi

)−1

(4.35)

where ε is a small number to prevent the coarseness coefficient becoming infinite and pi is

the estimated probability of the occurrence of the intensity level i.

pi = Ni/n (4.36)

with Ni denoting the number of pixels that have the level i, and n = (N −K)(M −K).

Contrast =

[
1

Nt(Nt − 1)

G−1∑
i=0

G−1∑
j=0

pi pj(i− j)2

][
1

n

G∑
i=0

s(i)

]
(4.37)

Buyness =

∑G
i=0 pis(i)∑G−1

i=0

∑G−1
j=0 |ipi − jpj|

, pi 6= 0, pj 6= 0 (4.38)

Complexity =
G−1∑
i=0

G−1∑
j=0

|i− j|
n(pi + pj)

[pis(i) + pjs(j)] , pi 6= 0, pj 6= 0 (4.39)

Strength =

∑G−1
i=0

∑G−1
j=0 (pi + pj)(i− j)2

ε+
∑G−1

i=0 si
(4.40)
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4.4.5 Statistical Feature Matrix (SFM)

In SFM, the statistical features were used for the analysis where properties of pixel pairs were

measured at several distances within an image [120]. Based on the SFM, the texture features

namely contrast, coarseness, roughness and periodicity were computed. For the maximum

inter-sample spacing distance, the numeric value of constants Lr, Lc were set to 4.

4.4.6 Laws Textures Energy Measure (Laws TEM)

Laws developed a technique based on texture-energy that measure the amount of variation

within a fixed size window. The vectors of length seven (l = 7) were used for the extraction of

the laws TEM [121]. In this work, local averaging L = (1, 6, 15, 20, 15, 6, 1), edge detector E

= (-1, -4, -5, 0, 5, 4, 1) and spot detector S = (-1, -2, 1, 4, 1, -2, -1) were used. The vectors are

convoluted with each other or themselves. The features calculated from Laws texture energy

measures are: 1) LL-texture energy from LL kernel; 2) EE-texture energy from EE kernel; 3)

SS-texture energy from SS kernel; 4) LE-average texture energy from LE and EL kernels; 5)

ES-average texture energy from ES and SE kernels, and 6) LS-average texture energy from

LS and SL kernels.

4.4.7 Fractal Dimension Texture Analysis (FDTA)

The fractional Brownian motion model was introduced by Mandelbrot [215] in order to de-

scribe the roughness of natural surfaces. The Hurst coefficient H(k) was computed for image

resolutions k = 1, 2, 3, 4. A large value of H is considered as a smooth surface, whereas a

small value of H indicates rough surface.

4.4.8 Fourier Power Spectrum (FPS)

The radial sum and the angular sum of the discrete Fourier transform [118] were computed

in order to describe the texture.

4.5 Feature Selection

Feature selection is essential in pattern recognition applications in order to improve the ac-

curacy and efficiency of classification [216]. The aim of feature selection is to find the opti-

mal subset consisting of m features chosen from the total n features. The feature selection

technique facilitates in reducing the effect of the curse of dimensionality, giving a better in-
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sight of data, and improving the performance of classifier by using a subset of features as

input [159, 217]. These techniques are categorized into the filter, wrapper and embedded

methods in the context of classification [218]. Here, minimum redundancy maximum rele-

vance (mRMR) technique has been used which reduces the number of features by ranking

and then selecting the top-ranked features by wrapper based approaches [219].

4.6 Classification

The objective of classification is to develop a computationally efficient way of learning good

separating hyperplanes in a high dimensional feature space. In this work the SVM with

three kernel functions namely linear, polynomial, RBF [220, 221] and random forest (RF)

classifier [222] have been used for the classification of the severity of MR. The feature sets

described in Section 4.4 has been used as input to a classifier.

4.6.1 Support Vector Machine (SVM)

The SVM is an efficient and supervised classifier which is widely applied to several pattern

recognition problems in signal and image processing due to their precise accuracy, the ability

to deal with high-dimensional and large datasets [173, 223–225]. Initially it was proposed as

binary classifier [220, 226]. Linear classifier works directly on the given data vector and is

considered to be efficient in terms of faster training and testing procedure [227,228]. In many

applications, a nonlinear classifier provides better accuracy, whereas linear classifier has the

advantage of having simple training algorithms [229]. The binary class SVM has extended for

multiclass classification using approaches such as, “one against one”, “one against all”, and

“directed acyclic graph” [230]. Further, a multiclass SVM classifier is proposed by Crammer

and Singer [231] by solving the single optimization problem.

In linear classifier, the training dataset consist of a set of l samples {xi, yi}li=1 where xi ∈

Rn, yi ∈ {−1, 1}. Given a training set of instance-label pairs the SVM requires the solution

of the following optimization problem:

min
w, b, ξ

1

2
wTw + C

l∑
i= 1

ξi, (4.41)

subject to yi(wTxi + b) ≥ 1 − ξi,ξi≥0. where ξ is a loss function and C (non-negative) is

a penalty parameter (cost factor). A linear classifier is based on a linear discriminant function

of the form the discriminant function f(x) assigns a “score” for the input x, and is used to
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decide how to classify it. The vector w is known as the weight vector, and the scalar b is

called the bias. However, for the complex dataset, researchers introduced nonlinear function

in equation 4.41.

min
w, b, ξ

1

2
wTw + C

l∑
i= 1

ξi (4.42)

subject to yi(wTφ(xi) ≥ 1 − ξi,ξi≥0. The training vectors xi are mapped into a higher

Table 4.2: Kernel functions

Kernel Function

Linear K(xi, xj) = xTi xj

Polynomial K(xi, xj) = (γxTi xj + r)d, γ > 0

Radial basis function (RBF) K(xi, xj) = exp(−γ ‖xi − xj‖2 γ > 0

where γ, r and d are kernel parameters

dimensional space by using the kernel function (φ). The SVM finds a linear separating hyper

plane with the maximum margin in this higher dimensional space. (xi, xj) = φ(xi)
Tφ(xj)

is called the kernel function [221]. In this experimental work three kernels have been used

which are listed in Table 4.2. For median-sized problems, the grid search approach has

been used to find the best value of regularization parameter (penalty parameter C and kernel

parameter γ [221]. The optimum value of C and γ has been obtained by using grid search

method in the range (2−4 , 23. . . .215), and (2−12 , 2−11. . . .24) respectively, using 10-fold cross

validation approach for training data.

4.6.2 Random Forest (RF)

The RF classifier [222] consists of many individual classification trees, where each tree is a

classifier by itself that is given a certain weight for its classification output. The classification

outputs from all trees is used to determine the overall classification output which is done

by choosing the mode (the output with most votes) of all trees classification output. This

classifier has been used for various medical image classification problems [232, 233]. To

generate the prediction model in RF classifier, the number of trees (nTree) and a number of
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arbitrarily chosen features (mTry) has to optimize. Typically, 500-2,000 trees are developed

and the outcomes are accumulated by averaging [234]. In this work, the nTree values have

been varied in the range of 100 to 1000 and it was found that expansion of a number of

trees beyond 450-500 was not having a significant change in the classification accuracy for

our dataset [234]. The nTree = 500 [235–237] and mTry = floor(
√
numberoffeatures)

[237, 238] have been chosen all through for the diagnostic work.

4.6.3 Cross Validation

Cross-validation is a technique to evaluate predictive models by partitioning the original sam-

ple into a training set to train the model, and a test set to evaluate it. An N -fold cross vali-

dation technique was used for experiments to ensure the un-biases in the results. The N -fold

cross-validation technique divides the whole dataset into N uniform folds. Out of which,

N − 1 folds were used for training and the remaining 1 fold was used for the purpose of test-

ing. In 10-fold cross-validation technique [239], the whole feature dataset is divided into ten

uniform folds. The main purpose of doing 10-fold cross validation is to make sure that results

remain unbiased. Out of ten folds, nine are used as training data and rest as testing data. This

process is repeated ten times so that every sampled data is trained and tested. The average of

the all 10 results is the final classification accuracy of the classification. The leave-one-out

cross-validation (LOO-CV) approach is used wherever a number of instances for a category

are small [240].

4.6.4 Diagnostic Test Evaluation

Many clinical tests are used to confirm the presence of a disease or further the diagnostic

process. Ideally, such tests correctly identify all patients with the disease, and similarly

correctly identify all patients who are disease free. The following terms are fundamental to

understanding the utility of clinical tests:

• True positive: the patient has the disease and the test is positive.

• False positive: the patient does not have the disease but the test is positive.

• True negative: the patient does not have the disease and the test is negative

• False negative: the patient has the disease but the test is negative.
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To assess the performance of the classifier we need to calculate sensitivity and specificity

[241]. These terms are defined as follows:

1. Sensitivity: It is a measure of the ability of a prediction model to select instances of a

certain class from a data set. It is the ratio of true positive decisions to the number of

actually positive cases.

Sensitivity =
TP

TP + FN
(4.43)

where, TP: True positive, FN: False negative.

2. Specificity: It is a measure that commonly used in two class problems where one is

more interested in a particular class. It is the ratio of true negative decisions to the

number of actually negative cases.

Specificity =
TN

FP + TN
(4.44)

where, TN: True negative, FP: False positive.

4.7 Experimental Results and Discussions

The experimental work presented in this section investigates the effectiveness of the texture

feature extraction techniques in four color spaces for the classification of severity of MR

images in three classes with the help of classifier. The extracted features have been used for

the training and testing purpose for SVM classifier with three kernel, i.e. linear, polynomial

and radial basis function (RBF) along with RF classifier.

4.7.1 Performance Evaluation of Texture Feature Extraction Techniques

The performance of the texture features has been computed using SVM classifier on the basis

of their general performance for pattern recognition and classification task. The classification

accuracy has been computed under two categories viz., full feature vector data and mRMR

feature selection based reduced feature vector data. To compute the performance of feature

extraction techniques two approaches viz., N -fold cross-validation and leave-one-out cross-

validation has been adapted.

In the present study total of 1035 (345 × 3) ultrasound images of MR patients in three

views i.e., A2C, A4C, and PLAX were analyzed. Eight different texture feature sets were
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extracted from the regurgitant area of the ultrasound images as explained in Section 4.4. A

total of 56 texture features were extracted from 1035 (345 × 3) echocardiographic images.

The MATLAB implementation of LIBSVM has been used for the classification task [221].

The statistical analysis for the 15 best textures in A2C, A4C, and PLAX view corresponding

to the highest classification accuracy is shown in Tables 4.3 - 4.5.

For each feature, the value of mean and SD has been computed. The p value of the sta-

tistical data set has been determined as 3.42× 10−9, which is less than 0.05. This indicates

that the features are statistically different from each other [242]. Table 4.6 provides the clas-

sification accuracies with spread (SD) obtained by the texture feature extraction techniques

using the individual features and the combination of all features, for MR severity. Here, the

highest accuracy scores in the RBF kernel SVM are indicated by boldface.

Table 4.3: Statistical analysis of the 15 best texture features in A2C view

Rank Texture Feature Mean (µ) SD (σ) FO

1 H1 (FDTA) 0.3648 0.0258 51

2 Difference variance (SGLDM mean) 393.5013 63.6242 15

3 Difference variance (SGLDM range) 283.2213 59.8823 28

4 Variance (SGLDM range) 9.2708 5.5133 22

5 Standard deviation (FOS) 60.305 13.6740 3

6 H2 (FDTA) 0.3232 0.0265 52

7 Complexity (SFM) 228056.8 34233.89 39

8 Inverse difference moment (SGLDM range) 0.1126 0.0152 23

9 Sum average (SGLDM range) 0.2736 0.1255 24

10 LS - average texture energy from LS and SL kernels 5624.533 783.1418 50

11 H4 (FDTA) 0.3377 0.0355 54

12 Roughness (SFM) 2.4045 0.0415 44

13 Entropy (SGLDM range) 0.6031 0.0834 27

14 H3 (FDTA) 0.3268 0.0289 53

15 LE - average texture energy from LE and EL kernels 16016.24 2963.57 48

SD: Standard Deviation (σ), FO: Feature Order
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Table 4.4: Statistical analysis of the 15 best texture features in A4C view

Rank Texture Feature Mean (µ) SD (σ) FO

1 Difference variance GLDS 259.6625 69.8727 28

2 FDTA H4 0.3356 0.0340 54

3 H1 0.3621 0.0253 51

4 Inverse difference moment GLDS 0.1039 0.0148 23

5 Sum of squares: variance GLDS 7.4275 4.0996 22

6 Sum entropy GLDS 0.0667 0.0305 26

7 LS - average texture energy from LS and SL kernels 5322.5975 740.4434 50

8 Sum average 0.2036 0.1059 24

9 H2 0.3246 0.0231 52

10 Difference variance 401.9450 63.0305 15

11 Information measures of Corellation 1 SGLDM -0.2798 0.0223 17

12 Correlation GLDS 0.0742 0.0183 21

13 EE - texture energy from EE kernel 2407.4479 449.0571 46

14 Periodicity 0.6411 0.0232 43

15 H3 0.3251 0.0263 53

SD: Standard Deviation (σ), FO: Feature Order

In A2C view, the achieved classification accuracies for the severity of the MR are 89.89±

1.86 and 90.43 ± 1.58 using 10-fold and leave-one-out cross-validation, respectively, based

on SGLDM texture feature, while the use of FPS texture feature produced the least classi-

fication accuracy i.e., 57.69 ± 2.55 and 56.81 ± 2.67 among all texture features using the

RBF kernel. The combination of all the classes of texture features produced higher accu-

racy instead of using one class of texture features alone and they are 95.08 ± 1.43 and 95.65

± 1.09 using 10-fold and leave-one-out cross-validation, respectively. The achieved clas-

sification accuracy using RF classifier is 92.49 ± 1.65 and 93.33 ± 1.34 with 10-fold and

leave-one-out cross-validation, respectively. The performance of the individual features with

RF classifier is good compared to the SVM classifier, however, the overall performance of

the combination of the features is better in SVM as compared to than RF classifier.

In A4C view, the achieved classification accuracies for the severity of the MR are 90.41±
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Table 4.5: Statistical analysis of the 15 best texture features in PLAX view

Rank Texture Feature Mean (µ) SD (σ) FO

1 Sum variance GLDS 434.7543 107.2111 25

2 Sum of squares: variance GLDS 8.5981 4.2737 22

3 H2 FDTA 0.3285 0.0249 52

4 Sum entropy GLDS 0.0568 0.0322 26

5 Periodicity SFM 0.6915 0.0276 43

6 H4 0.3436 0.0375 54

7 Difference variance 272.3842 60.4850 28

8 Information measures 0.1361 0.0083 30

9 H1 0.3691 0.0258 51

10 Information measures of Corellation 1 SGLDM -0.2866 0.0189 17

11 Correlation SGLDM 0.9242 0.0401 8

12 Inverse difference moment GLDS 0.1178 0.0136 23

13 Difference variance SGLDM 383.1504 65.9721 15

14 EE - texture energy from EE kernel 2356.0515 369.3956 46

15 Sum average 0.2380 0.1277 24

SD: Standard Deviation (σ), FO: Feature Order

1.63 and 91.01± 1.54 using 10-fold and leave-one-out cross-validation respectively, based on

SGLDM texture feature while the use of FPS texture feature produced the least classification

accuracy, i.e., 50.54 ± 1.95 and 51.59 ± 2.69 among all texture features using the RBF

kernel. The combination of all texture features produced higher accuracy than that obtained

using the individual class features and they are 94.49 ± 1.46 and 95.65 ± 1.09 using 10-fold

and leave-one-out cross-validation, respectively. Here, the achieved classification accuracy

using RF classifier is 86.67 ± 1.62 and 89.27 ± 1.66 with 10-fold and leave-one-out cross-

validation, respectively. The individual performance of features is also same like in A2C

view.

In PLAX view, the achieved classification accuracies for the severity of the MR are 90.70

± 1.28 and 91.01± 1.54 using 10-fold and leave-one-out cross-validation, respectively, based

on SGLDM texture feature while the use of FPS texture feature produced the least classifica-
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Table 4.6: Comparison of classification accuracy achieved by texture feature extraction

techniques in A2C, A4C, PLAX view.

10-Fold CV LOO-CV

Linear Polynomial RBF RF Linear Polynomial RBF RF

NoFa % CA ± SD % CA ± SD % CA ± SD % CA ± SD % CA ± SD % CA ± SD % CA ± SD % CA ± SD

A2C View

ALL 56 84.67±1.80 90.13±1.51 95.08±1.43 92.49±1.65 83.47±1.99 91.01±1.54 95.65±1.09 93.33±1.34

FOS 5 53.91±3.13 54.51±2.77 67.57±1.84 70.19±2.13 54.20±2.68 54.78±2.68 66.37±2.54 70.43±2.46

SGLDM 26 71.90±1.90 88.42±1.60 89.89±1.86 91.62±1.31 73.04±2.39 88.69±1.70 90.43±1.58 91.30±1.51

GLDS 4 52.54±2.75 53.11±1.99 66.98±2.23 68.68±2.78 51.88±2.69 52.17±2.69 65.79±2.55 71.01±2.44

NGTDM 5 55.08±2.22 68.16±2.50 72.76±2.81 82.29±1.29 54.20±2.68 68.69±2.50 74.20±2.35 82.31±2.05

SFM 4 58.60±3.16 69.05±2.27 77.99±2.62 77.10±2.41 57.68±2.66 68.69±2.50 78.55±2.21 77.68±2.24

Laws TEM 6 66.36±2.35 69.61±3.83 80.28±2.13 79.46±1.59 66.08±2.55 69.85±2.47 75.65±2.31 78.84±2.20

FDTA 4 59.48±3.52 61.25±3.32 69.61±2.82 75.11±2.91 56.23±2.67 62.31±2.61 69.27±2.48 72.46±2.40

FPS 2 42.61±2.21 44.95±1.86 57.69±2.55 62.03±2.59 42.31±2.66 45.50±2.68 56.81±2.67 60.28±2.63

A4C View

ALL 56 80.78±2.76 85.50±1.79 94.49±1.46 86.67±1.62 78.55±2.20 87.24±1.79 95.65±1.09 89.27±1.66

FOS 5 53.99±2.06 57.10±1.66 67.23±2.27 60.71±2.62 54.78±2.68 55.94±2.67 68.98±2.49 63.76±2.59

SGLDM 26 71.84±2.39 83.12±2.49 90.41±1.63 85.50±1.62 70.72±2.45 85.21±1.91 91.01±1.54 86.66±1.66

GLDS 4 55.67±1.91 59.38±1.99 64.38±3.00 57.15±2.50 56.23±2.67 60.00±2.64 63.18±2.60 55.97±2.66

NGTDM 5 54.75±1.85 60.02±1.68 76.54±2.19 66.49±2.52 53.33±2.68 60.57±2.63 66.66±2.54 66.08±2.55

SFM 4 58.28±2.01 64.68±2.09 71.88±2.76 72.13±2.31 57.97±2.66 64.63±2.57 73.62±2.37 73.91±2.36

Laws TEM 6 63.18±3.02 63.47±1.36 72.98±2.22 69.26±2.01 64.05±2.58 64.05±2.58 74.49±2.35 69.85±2.47

FDTA 4 57.65±1.57 59.97±1.94 66.99±2.56 62.65±2.16 56.81±2.67 57.97±2.66 65.79±2.55 64.05±2.58

FPS 2 50.44±1.70 48.71±1.58 50.54±1.95 55.64±2.51 50.14±2.69 48.69±2.69 51.59±2.69 55.07±2.68

PLAX View

ALL 56 81.11±2.11 90.43±1.28 95.63±1.00 87.85±1.16 80.86±2.12 90.43±1.58 95.36±1.13 87.82±1.76

FOS 5 58.83±1.21 59.97±1.56 68.19±2.46 67.58±2.48 60.28±2.63 60.86±2.63 68.11±2.51 70.43±2.46

SGLDM 26 77.64±1.95 84.63±1.68 90.70±1.28 84.64±1.41 76.52±2.28 85.21±1.01 91.01±1.54 85.21±1.91

GLDS 4 50.47±3.11 55.34±1.56 67.84±1.66 71.31±1.20 49.56±2.69 53.91±2.68 68.11±2.51 71.59±2.43

NGTDM 5 50.71±1.23 69.26±2.41 74.19±2.07 76.54±1.67 48.69±2.69 71.01±2.44 73.91±2.36 77.97±2.23

SFM 4 61.76±2.61 61.44±1.45 74.19±1.66 75.33±1.87 59.42±2.64 60.86±2.63 73.33±2.38 74.78±2.34

Laws TEM 6 63.47±2.30 65.78±1.56 76.22±1.49 70.69±1.93 61.44±2.62 66.95±2.53 78.26±2.22 72.17±2.41

FDTA 4 55.96±1.51 59.99±1.28 63.75±2.41 64.07±1.75 55.65±2.67 60.00±2.64 66.37±2.54 64.34±2.58

FPS 2 44.91±0.26 47.80±1.04 51.30±2.49 55.67±2.32 44.92±2.68 47.82±2.69 54.20±2.68 53.04±2.69

NoF: Number of features, CA: Classification accuracy, SD: Standard deviation, RF: Random forest

tion accuracy, i.e., 51.30 ± 2.49 and 54.20 ± 2.68 among all texture features using the RBF

kernel. Here again, the combination of all texture features produced higher efficiency than

the one obtained by employing SGLDM only, and the values are 95.63 ± 1.00 and 95.36 ±

1.13 in 10-fold and leave-one-out cross-validation, respectively. The achieved classification
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accuracy using RF classifier is 87.85± 1.16 and 87.82± 1.76 with 10-fold and leave-one-out

cross-validation, respectively.

The RBF kernel SVM classifier gave better performance compared to RF classifier as

observed in A2C and A4C views. The results indicate that the FPS texture feature gives

the least classification accuracy while SGLDM (mean + range values) feature used in the

experiments are a powerful feature for the assessment of the severity of regurgitation in all

the three views. Among all the views, the highest percent accuracy of 95.65 with the SD of

1.09 is achieved in A2C and PLAX view. A feature selection technique based on minimum

redundancy maximum relevance (mRMR) has been used for feature selection and ranking.

Fig. 4.2 shows the classification accuracy for the severity in all three views, 96.82 ± 2.85,

95.08 ± 3.01 and 95.63 ± 3.73 in A2C, A4C, and PLAX view, respectively can be achieved

by using top 30 features. It reduced the computation time for the classification.
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Fig. 4.2: Classification accuracy for the severity of MR after the mRMR feature selection

method

4.7.2 Performance Evaluation of Color Spaces

The classification accuracy of the different color components and the combination of all three

with individual color space is shown in Table 4.7. The highest accuracy of 97.10 ± 1.06 us-

ing YCbCr color space in A2C view, 96.21 ± 0.88 and 96.87 ± 0.91 using RGB color space

has been achieved in A4C and PLAX view, respectively. The comparison of the classifica-
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Table 4.7: Performance comparison of color spaces in three view

Views

Color Spaces A2C A4C PLAX

R 94.79 ± 1.26 94.49 ± 1.46 95.63 ± 1.00

G 94.79 ± 1.26 96.51 ± 0.73 95.33 ± 1.25

B 95.37 ± 1.06 96.52 ± 0.71 93.89 ± 1.12

RGB 95.66 ± 1.58 96.21 ± 0.88 96.87 ± 0.91

L 96.51 ± 1.28 96.50 ± 0.73 95.63 ± 0.79

A 85.23 ± 2.13 72.15 ± 1.28 74.22 ± 1.86

B 83.73 ± 1.06 75.05 ± 2.25 69.00 ± 2.95

LAB 96.51 ± 1.28 94.13 ± 1.06 92.17 ± 1.29

Y 97.11 ± 1.06 96.85 ± 1.14 94.75 ± 0.86

Cb 82.27 ± 1.86 72.47 ± 1.98 69.00 ± 2.45

Cr 82.34 ± 1.92 69.26 ± 3.20 72.47 ± 2.05

YCbCr 97.10 ± 1.06 93.93 ± 1.23 92.73 ± 1.08

C 94.80 ± 0.82 95.62 ± 1.40 91.61 ± 1.44

Y 92.46 ± 1.43 95.07 ± 0.85 94.18 ± 0.98

M 94.78 ± 1.11 97.09 ± 0.75 93.60 ± 1.63

CYM 94.80 ± 0.82 95.62 ± 1.40 95.94 ± 0.47

GRAY 95.65 ± 2.85 95.65 ± 3.01 95.36 ± 3.73

RGB LAB YCbCr CYM GRAY
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Fig. 4.3: Performance comparison of color spaces in three views

tion accuracy achieved with various color spaces and the classification accuracy obtained by

converting the color images into other color spaces is shown in Fig. 4.3. The classification
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accuracy obtained using RGB color space has been found higher than the accuracy obtained

by using other color spaces. However, the time required for the texture feature extraction us-

ing color spaces is triple to the time required for grayscale image data set. Hence, the further

analysis of the texture feature extraction techniques has been done using grayscale images

only.

4.7.3 Diagnostic Test Evaluation of Proposed CAD System

The classification performance of the proposed texture features in A2C, A4C and PLAX

views are shown in Table 4.6. The performance of a CAD system is evaluated in terms of the

sensitivity and specificity. Here, the CAD system is presented for the severity classification

Table 4.8: Performance of one-versus-rest SVM classifier in three views.

Confusion matrix Statistical parameters

Predicted
Sensitivity Specificity

Actual Mild Moderate Severe

A2C View

Mild 10 1 0 90.91 86.36

Moderate 3 13 0 81.25 94.11

Severe 0 0 6 100.00 100.00

A4C View

Mild 14 2 0 87.50 77.77

Moderate 3 8 0 72.73 86.96

Severe 1 1 5 71.43 100.00

PLAX View

Mild 15 0 0 100.00 94.11

Moderate 1 10 0 90.91 91.30

Severe 0 2 6 75.00 100.00

of MR images in three classes. The highest classification accuracy has been achieved using

the RBF kernel SVM with LOO-CV approach. Therefore, the statistical parameters, namely,

sensitivity and specificity have been calculated as discussed in Section 4.6.4. The confusion
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matrix of order 3 × 3 has been created because it is a 3 class classification. The performance

of one-versus-rest SVM classifier for the combination of all texture features in A2C, A4C and

PLAX views, respectively, have been shown in Table 4.8. The results indicate that in A2C

view, the highest sensitivity (100 %) for severe class and specificity (100 %) for the mild

and moderate class has been achieved. Similarly, in A4C view, the highest sensitivity (87.50

%) and specificity (100 %) has been achieved in mild and severe class, respectively. Finally,

in PLAX view, the highest sensitivity (100 %) and specificity (100 %) has been achieved in

mild and severe class, respectively.

4.8 Summary

A CAD system has been proposed here for the classification of the severity of MR images

based on the multiple spatial domain texture features and supervised classifiers SVM with

different kernel functions and RF classifier. The obtained results revealed that there was

no single texture feature which could accurately determine the severity of MR. However,

the combination of the different texture features improves the classification accuracy. A

total 56 texture features were extracted directly from the color Doppler ultrasound images

of MR patients, in four color spaces and fed as input to classifiers. It was observed that

the classification performance of the CAD system was slightly above when images have

been used in RGB color space compared to the gray level color space at the cost of much

more computational time. Hence , the further processing and analysis have been done using

the grayscale space images. The proposed CAD tool is robust as it has been developed

using k-fold cross-validation and LOO-CV technique. The performance of the proposed

CAD system is approximately same in both the cross-validation techniques. The LOO-CV

method gives slightly higher classification accuracy as compared to 10-fold cross-validation

technique, however, the computation time is relatively high in this case. It has been observed

that RBF kernel SVM perform better than the RF classifier. So the performance parameters

have been calculated for SVM classifier. The 100 % sensitivity and specificity have been

achieved in mild and severe class, in PLAX view. The experimental results after using the

mRMR feature reduction method exhibited that the top 30 texture features are sufficient to

classify the three classes of MR images with the reduced computation time. The obtained
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results show that the proposed classification method may effectively assist the radiologist

in diagnosing patients suffering from MR with better emphasis while reducing the inter-

observer variability.
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CHAPTER 5

GAUSSIAN PYRAMID BASED TEXTURE ANALYSIS OF

MITRAL REGURGITATION

This chapter examines the effectiveness of Gaussian Pyramid (GP) based texture feature ex-

traction techniques for the severity analysis of mitral regurgitation. This chapter presents

the description of the GP, and the proposed texture feature extraction techniques and their

effectiveness using different classifiers.

5.1 Gaussian Pyramid

The computer vision, image processing, and signal processing communities developed a

multi-scale signal representation popularly known as pyramid representation in which a sig-

nal or an image is subjected to repeat smoothing and subsampling. The multiresolution analy-

sis of images using pyramid data structures has become a very popular tool in numerous areas

of image processing and has been used for texture analysis [142]. Image pyramid is useful

for illustrating images at several resolution [146, 148] and has been used for texture analy-

sis [243] due to local averages at various scales [244]. Gaussian Pyramid (GP) [144,145] and

Laplacian image pyramid [146, 147] have been widely used as multiresolution schemes for

texture analysis of images.

Here, the most known hierarchical structure Gaussian Pyramid (GP) model has been cho-

sen out of several multiresolution techniques as it is computationally economical. The de-

composed image at each and every level has a considerable amount of information about the

original image. It consists of the sequence of various images of different resolutions which

change in regular steps [148]. In a Gaussian pyramid, subsequent images are weighted down

using a Gaussian average (Gaussian blur) and scaled down. Each pixel containing a local

average that corresponds to a pixel neighborhood on a lower level of the pyramid. This tech-

nique is used especially in texture synthesis. The resolution is high at the bottom of the

pyramid while it is low at the top. In image pyramid, the succeeding level image (G1), is

achieved by sub-sampling the resultant of the convolution of the original image (G0) and
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Gaussian kernel function (low pass filter). Similarly, the next level image is generating by

sub-sampling of the convolution of the output image of the previous level with the Gaussian

kernel. The GP for an image f(x, y) is given by:

G0(x, y) = f(x, y) (5.1)

G0(x, y) =
2∑

m=−2

2∑
n=−2

w(m,n) Gl−1 (2x+m, 2y + n), 0 ≤ 1 ≤ N (5.2)

where, w(m,n) represents the weighting function which remains same at all levels called as

generating kernel and approximates the Gaussian function [245]. An example of is the 5-tap

filter 1
16

[1 4 6 4 1]. The decomposed images are shown at G0 to G6 levels as shown in Fig.

5.1 for a test image. In Eq. 5.1, G0(x, y) is the first level image (viz., base image) produced

Fig. 5.1: Gaussian pyramid, G0 to G6 levels presented from left to right.

by Gaussian Pyramid. In Eq. 5.2Gl(x, y) is the lth level image produced by GP, and w(m,n)

is a weighting function (generating kernels). The generating kernel w(m,n) approximates a

Gaussian function. These kernels are identical at all levels, symmetric and separable. GP are

used for multi-scale edge estimation, efficient to compute coarse scale images. Only 5-tap

1D filter kernels are used, highly redundant, coarse scales provide much of the information

in the finer scales.
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Table 5.1: Summary of the various studies for classification of heart diseases

Researchers, Year Classification technique Diagnosis

Obayya et al., 2008 [164] Multi-layer FF-NN CHF and MI diseases

Hanbay et al., 2009 [22] LS-SVM Heart valve disease (DHS)

Maglogiannis et al., 2009 [165] SVM Heart valve disease (DHS)

Sun et al., 2014 [175] SVM VSD

Hedeshi et al., 2014 [24] Fuzzy-PSO Coronary artery disease

Gharehbaghi et al., 2015 [176] HMM-SVM Cyclic time series

Moghaddasi et al., 2016 [177] SVM Mitral regurgitation

Balodi et al., 2016 [178] SVM Mitral regurgitation

FF-NN: Feed forward neural network, LS-SVM: Least square support vector machine,

SVM: Support vector machine, fuzzy-PSO: Fuzzy-particle swarm optimization, GTSVM:

Growing time support vector machine, HMM-SVM: Hybrid hidden Markov model and

support vector machine CHF: Congestive heart failure, MI: Myocardial infarction, DHS:

Doppler heart sounds, VSD: Ventricular septal defect.

Table 5.1 summarizes the various proposed CAD systems given by several researchers for

the characterization and classification of different heart diseases based on statistical texture

features. These CAD systems have shown their ability with reasonable accuracy based on the

texture features extracted from the images of various medical image data sets in combination

with different classifiers.

5.2 Methodology for Gaussian Pyramid based Texture Analysis of MR

The procedural steps involved in present work used for the severity classification of echocar-

diographic images of MR is represented in the form of block schematic and is shown in Fig.

5.2. The complete classification process is explained as follow:

Step 1: In pre-processing, microscopic images are converted to grayscale model from

RGB model using Eq. 4.5.

Step 2: In the second stage, these images are transformed to multiresolution images by

means of GP. The GP model at G0 to G6 levels has been achieved by convolving grayscale
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Echocardiographic Image Dataset

Severity Classification

Mild Moderate Severe

Texture Feature Extraction 
Combination of GP and LBP variants

GPLBP, GPLBPu2, GPLBPri, GPLBPriu2, 
GPCSLBP, GPLBP-HF, GPCLBP

Feature Normalization

RGB to Grayscale Conversion

Gaussian pyramid (GP) Image Decomposition
(G0 to G6 levels)

A2C View A4C View PLAX View

Decision Making (Multi Voting)

Fig. 5.2: Schematic for classification of MR using Gaussian image pyramid based texture

feature extraction techniques.

images with the Gaussian kernel (low pass filter). From each GP decomposed images, tex-

ture features are extracted using different texture descriptors like LBP. The texture features

produced by these feature extraction techniques produces a wide range of numerical values.

Step 3: A normalization process is thus considered necessary to make the feature vec-

tor data suitable for directly applying it to the classifier. The feature vector data has been

normalized in the range of 0 to 1 using Eq. 4.6.

Step 4: Each and every level of the multiresolution image has significantly distinctive

information about the original image. The normalized texture feature vectors are combined
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cumulatively to form level 1 to level 7 feature vectors as given by Eq. 5.3.

FL =
l=L∑
l=1

Gl (5.3)

Step 5: In the final step, classifiers have been employed to classify the MR images into three

categories using GP based texture feature vector data. Consequently, the best combination of

texture feature technique with a classifier is obtained to classify the MR decided on the basis

of the best classification accuracy. Thus, on the basis of a combination of GP with different

variants of texture feature descriptors, following texture feature extraction techniques are

proposed here, and they are listed as below with their notations and variations in Table 5.2.

Table 5.2: Proposed texture features and their notations

Notation Texture feature full name

GPLBP Gaussian pyramid based local binary pattern

GPLBPu2 Gaussian pyramid based uniform local binary pattern

GPLBPri Gaussian pyramid based rotation invariant local binary pattern

GPLBPriu2 Gaussian pyramid based rotation invariant uniform local binary pattern

GPCSLBP Gaussian pyramid based center-symmetric local binary pattern

GPLBP-HF Gaussian pyramid based local binary pattern histogram Fourier features

GPCLBP Gaussian pyramid based completed local binary pattern

5.3 Texture Feature Extraction

In the following section, texture feature descriptors as discussed above are briefly explained:

5.3.1 Local Binary Pattern (LBP)

Ojala et al. [126] have proposed a first-order circular derivative of patterns that are generated

by concatenating the binary gradient directions. This texture operator labels every pixel by

the relative gray levels of its neighboring pixels. The LBP has shown its potential in the

areas such as face recognition, object identification, image classification, etc. It is computa-

tional efficient [246–248]. A circular neighborhood of variable size was proposed by Ojala

et al., [249] to overcome the inadequacy of original LBP operator of 3×3 neighborhood size
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that cannot capture the dominant texture features in large-scale structures. A center pixel

coordinate (x, y) of an image is represented as LBP label given by Eq. 5.4.

LBPP ,R (x, y) =

p−1∑
p=0

s(gp − gc)2p (5.4)

s(x) =

 1, x ≥ 0

0, otherwise

where, gc corresponds to the gray level of the central pixel and gp corresponds to the gray

levels of the pth neighborhood of the central pixel. In LBPP ,R operator, P represents the

number of pixels in the neighborhood, and R is the radius. The histogram of these binary

numbers is then used to describe the texture of the image.

Fig. 5.3: The LBP computation process (a) 3×3 local window image, (b) thresholding,

(c) weight and (d) new center pixel value = 0 + 0 + 4 + 8 + 16 + 0 + 64 + 128 = 218

5.3.2 Uniform Local Binary Pattern (LBPu2)

The LBP patterns are said to be uniform if at most 2-bitwise transition are reported (1 to 0 or 0

to 1) is reported in the circular binary pattern of LBP [126]. The LBPu2 histogram comprises

separate bin for uniform patterns and the only single bin is assigned to all the non-uniform

patterns. For a given pattern of P bits, P (P −1) + 3 outputs bin are produced. The reduction

in non-uniform patterns is due to the fact that in natural images the LBP patterns are mostly

uniform. Further, uniform patterns of texture images account for about 90 % of the entire

pattern with (8, 1) neighborhood and close to 70 % for (16, 2) neighborhood [127, 250]. The

LBPu2 produces 59-dimensional texture descriptors.
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5.3.3 Rotation Invariant Local Binary Pattern (LBPri)

The rotation of an image results into diverse LBP codes. To address the issue of the image

rotation effect, LBPri has been proposed in [126,127,251]. Thus, to make all the versions of

binary codes the same, the LBP codes are rotated back to reference pixel position to nullify

the consequence of translation of a pixel location. The LBPriP,R is generated by circularly

rotating the basic LBP code and considering the pattern which has a minimum value as given

by [126, 127, 251]:

LBP ri
P,R = min{ROR(LBPP,R, i)|i = 0, 1, ..., p− 1} (5.5)

where, the superscript ri stands for “roration invariant”. The function ROR(x, i) circularly

shifts the P bit binary number x, i times to the right (|i| < P ). The LBPriP,R descriptor

produces overall 36-bin histograms for each image due to 36 diverse, 8 bit rotation invariant

codes [127, 251].

5.3.4 Rotation Invariant Uniform Local Binary Pattern (LBPriu2)

To overcome the disadvantages associated with LBP riu2
P,R (poor performance because of crude

quantization of angular space at 45◦) LBP riu2
P,R was proposed in [127]. If a pattern has uni-

formity value U ≤ 2, it is known as “uniform” pattern, U(x), which is as given by Eq. 5.6.

U(x) =
P−1∑
p=0

Fb(x⊕ROR(x, 1), p) (5.6)

where, b stands for binary numbers. Given a binary number x, the circularly consecutive

binary bits b are obtained by [127]:

Fb(x, i) = ROR(x, i) · (2b − 1) (5.7)

The bitwise logical operators “XOR” and “AND” are denoted by ‘⊕’ and · (dot) operator,

respectively and for a given bit sequence, i signifies the index of least significant bit (LSB).

The rotation of uniform codes towards their minimum value generates (P + 1) patterns.

Merely counting the number of one’s in the “uniform” patterns, binary number generates

LBPriu2
P,R pattern code. The other patterns are marked “miscellaneous” and grouped into a
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single value as given by:

LBP riu2
P,R =


∑P−1

p=0 s(gp − gc), U(Gp) ≤ 2

P + 1, otherwise
(5.8)

The LBPriu2
P,R produces 10-bin histograms.

5.3.5 Center-symmetric Local Binary Pattern (CSLBP)

Heikkilä et al. [252] have proposed a texture feature CSLBP, it combines the strength of

LBP and scale-invariant feature transform (SIFT). Here, center-symmetric pairs of pixels are

compared instead of comparing each pixel with the center pixel. This halves the number of

comparison for the same number of neighbors. The new center pixel value in CSLBP (en-

compassing the advantageous characteristics of texture and gradient-based features [253]) is

produced by comparing center symmetric pixels, contrary to comparing each of the neighbor-

hood pixels with center pixels in LBP. The schematic representation for CSLBP descriptor

is given in Fig. 5.4. For 8 neighborhood total 24 (16) binary pattern is produced by CSLBP

whereas LBP produces 28 (256) binary patterns.

Fig. 5.4: CSLBP features (considering neighbohood size of 8 pixels)

CSLBP8,1 =
[
s(|g0 − g4|)20 + s(|g1 − g5|)21 + s(|g2 − g6|)22 + s(|g3 − g7|)23

]
(5.9)

Mathematically, CSLBP is expressed as [252]:

CSLBPR,N ,T (x, y) =

N/2−1∑
p=0

s(gp − gp+(N/2))2
p (5.10)

s(x) =

 1, x > T

0, otherwise
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where, ni and ni+(N/2)are the gray values of center-symmetric pairs of pixels of N equally

spaced pixels in a circle of radius R and s(x) represents the thresholding function. For N

neighborhood CSLBP resulting in 2N/2 different pattern. For 8 neighborhood CSLBP pro-

duces 16 different binary patterns.

5.3.6 Local Binary Pattern Histogram Fourier Features (LBP-HF)

Ahonen et al. [254] have proposed a rotation invariant image descriptor computed from dis-

crete Fourier transforms (DFT) of LBP histograms. LBP-HF features hold the extremely

discriminative nature of LBP histograms. To get the LBP-HF descriptor first to calculate a

non-invariant LBP histogram over the whole region then constructing rotationally invariant

features from the histogram. In this, the rotation invariance is earned globally, and therefore

the features are invariant to rotations [255]. To construct the features the DFT is given by:

H(n, u) =
P−1∑
r=0

hl(UP (n, r)) e−jπur/P (5.11)

where, H(n, u) corresponds to DFT of the nth row of LBPu2 histogram hl(UP (n, r)). It

produces 38-bin histogram for a given image.

5.3.7 Completed Local Binary Pattern (CLBP)

Guo et al. [256] have proposed CLBP so as to enhance the texture feature ability of LBP. A

neighborhood region is represented by its center pixel and a local difference sign-magnitude

transform (LDSMT). The structure of CLBP is depicted in Fig. 5.5. Fig. 5.6 shows 3×3

blocks of an image having center pixel value 28. The local difference, sign component, and

magnitude components are illustrated in Fig. 5.6.

Fig. 5.5: CLBP structure
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Fig. 5.6: The CLBP computation process (a) 3×3 local window image, (b) local difference

(gp − gc), (c) sign component, and (d) magnitude component

The LDSMT is given as [256]:

dp = gp − gc = sp ∗mp, and

 sp = sign(dp)

mp = |dp|
(5.12)

sp =

 1, dp ≥ 0

−1, dp < 0

where, mp and sp represents the magnitude and sign of dp, respectively.

The center pixels represent the image gray level and they are regenerated into a code,

specifically CLBP-Center (CLBP C), by global thresholding [130]. The LDSMT decom-

poses the image into two complementary components i.e. signs and magnitudes based on the

image local differences, namely CLBP-Sign (CLBP S) and CLBP-Magnitude (CLBP M).

5.4 Classification

In the present work, the performance of the proposed CAD system using the proposed texture

feature extraction techniques have been evaluated using two supervised classifiers i.e. support

vector machine (SVM) [220, 221] and random forest (RF) classifier [222]. The details and

tuning parameters of SVM and RF classifier have been discussed in Section 4.6.1 and 4.6.2.

To maintain unbiasness 10-fold cross-validation has been used. The detail of cross-validation

has been given in Section 4.6.3. The diagnostic performance of a CAD system is evaluated

using sensitivity and specificity, as explained in Section 4.6.4.
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5.5 Experimental Results and Discussion

The applicability of the proposed GP based texture features for the classification of the sever-

ity of MR has been evaluated here. Two supervised classifiers i.e. SVM and RF have been

used for the classification task. Here, two type of the experiments have been performed using

texture features based on LBP variants and GP based multiresolution with with LBP variants.

The results in each case are presented below:

5.5.1 Classification Performance of LBP Variants

In the first experiment, the performance of the existing variants of LBP features such as

LBPu2, LBPri LBPriu2, CSLBP, LBP-HF, and CLBP have been evaluated. All the texture

features are extracted using P=8 and R=1, for each decomposition level. The classification

accuracy of the existing LBP variants is shown in Table 5.3. The highest classification accu-

racies are obtained using the CLBP technique with RBF kernel SVM classifier and values are

90.17 ± 1.84, 88.72 ± 1.89 and 87.24 ± 2.00 in A2C, A4C, and PLAX view, respectively.

The second best classification accuracies of 84.37 ± 1.75, 80.63 ± 2.61 and 83.50 ± 2.09 in

A2C, A4C, and PLAX view, respectively have been achieved for LBPu2. RF classifier did not

perform well as compared to SVM classifier. The highest classification accuracy achieved us-

ing RF classifier are 86.43 ± 2.15, 80.00 ± 2.04, and 78.57 ± 1.46 in A2C, A4C, and PLAX

views respectively. The results in Table 5.3 portray that the RBF kernel performs better than

RF classifier.

Table 5.3: Classification performance of existing texture feature extraction techniques

Feature extrac-

tion technique

No. of

feature

SVM Classifier RF Classifier

A2C A4C PLAX A2C A4C PLAX

LBP 256 76.84±5.30 78.85±2.59 71.89±2.11 75.37±2.63 68.94±3.10 74.47±1.49

LBPu2 59 84.37±1.75 80.63±2.61 83.50±2.09 80.62±2.65 71.01±1.86 74.49±2.12

LBPri 36 62.79±2.93 67.53±2.87 60.53±2.38 71.64±2.44 68.97±1.80 71.88±1.96

LBPriu2 10 74.51±2.03 69.59±2.14 71.60±2.23 76.26±2.86 72.46±1.63 69.00±1.90

CSLBP 16 83.50±2.62 79.97±2.12 76.20±2.40 78.54±1.86 77.09±2.06 76.26±1.43

LBP-HF 76 78.56±1.61 71.26±2.42 75.50±2.44 80.03±3.57 77.34±2.30 74.17±1.63

CLBP 118 90.17±1.84 88.72±1.89 87.24±2.00 86.43±2.15 80.00±2.04 78.57±1.46
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5.5.2 Classification Performance of GP Based LBP Variants

In the second experiment, the multiresolution analysis with LBP variants has been evaluated.

Here, the images are decomposed to six levels using GP structure as explained in the Section

5.1. The image size is reduced to each level of decomposition therefore after sixth level

image decomposition, feature extraction is not possible. Further, the texture features of these

decomposed images have been extracted by employing LBP variants as explained in Section

5.3 at different levels. For all the variants of LBP, the value of P=8 and R=1 is fixed for

each level of image decomposition. These features are then concatenated to generate feature

vector used for the training and testing of the classifier.

Tables 5.4, 5.5, and 5.6 show the classification performance of the proposed hybrid tex-

ture feature increases with the extent of image decomposition level in all three views. The

progressive variation might vary for proposed features within the varied level of the image

decomposition. The highest classification accuracies are achieved using the proposed feature

GPCLBP at the sixth level in all three views. The achieved classification accuracies are 95.66

± 0.98, 94.47 ± 1.91 and 94.21 ± 1.31 followed by the GPLBPu2 for which the classifica-

tion accuracies have been 91.89 ± 1.11, 95.92 ± 1.24 and 92.46 ± 0.87 at the fifth level

of decomposition of A2C and A4C view and at the sixth level of PLAX view, respectively

using the RBF kernel based SVM classifier. The classification performance of the existing

LBP variants have been improved significantly and this can be verified by the experimental

results.

The performance of the RF classifier is also reported in Tables 5.4, 5.5, and 5.6. It is

observed that the highest classification accuracy achieved using RF classifier are 86.73 ±

2.47, 82.03 ± 1.82, and 78.59 ± 1.55. The response of the extracted features has been

reported better in RBF kernel based SVM classifier compared to other two kernel of SVM

i.e., linear, polynomial and the RF classifier.

The proposed GPCLBP feature performed the best among all followed by GPLBPu2,

whereas GPLBPri has shown the lowest performance in all three views. It also confirmed

that the proposed features have improved the ability of the LBP variants for the severity clas-

sification of MR significantly in all three views. Fig. 5.7 gives the performance comparison

of the three kernel of SVM classifier using GPCLBP texture feature.
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Table 5.4: Classification accuracy of GP based texture features in A2C view

Fearure IDL NoF SVM Classifier RF Classifier

Linear Poly RBF

GPLBP Level 1 512 65.52±2.79 67.82±2.43 80.32±3.29 78.30±3.37

Level 2 768 63.49±3.04 67.82±2.55 75.10±2.88 78.00±3.29

Level 3 1024 62.08±2.60 64.61±1.45 71.32±1.78 79.48±3.54

Level 4 1280 79.78±2.21 67.23±2.20 80.32±1.71 91.33±1.80

Level 5 1536 79.77±2.23 67.80±2.84 80.93±2.77 80.62±3.15

Level 6 1792 80.05±2.27 68.36±2.62 80.92±2.49 79.74±2.34

GPLBPu2 Level 1 118 62.92±2.29 82.41±3.08 87.60±2.35 82.05±2.91

Level 2 177 60.62±2.73 84.97±3.48 88.45±1.75 81.47±2.84

Level 3 236 65.26±3.00 86.69±2.75 89.86±1.56 81.47±3.23

Level 4 295 72.50±1.48 87.85±1.91 91.29±1.94 83.51±2.51

Level 5 354 74.80±1.34 87.83±1.48 91.90±1.11 80.09±2.47

Level 6 413 74.81±1.63 86.96±1.79 91.61±1.00 84.09±2.33

GPLBPri Level 1 72 58.55±2.54 62.67±3.26 68.11±2.76 72.78±2.64

Level 2 108 56.24±2.71 59.76±2.78 65.83±1.86 70.75±3.23

Level 3 144 58.53±2.89 60.59±2.08 67.21±2.89 70.78±3.17

Level 4 180 60.89±1.61 61.76±2.59 69.84±2.06 71.34±3.14

Level 5 216 62.65±2.36 67.29±1.86 75.39±1.86 72.79±2.70

Level 6 252 66.11±1.50 69.31±1.83 75.95±2.06 73.63±3.14

GPLBPriu2 Level 1 20 53.95±2.58 66.10±2.14 80.03±1.28 78.05±2.68

Level 2 30 53.95±2.78 66.68±2.10 77.43±2.56 77.17±2.21

Level 3 40 54.27±4.34 66.40±3.21 75.98±2.31 78.03±2.53

Level 4 50 53.12±3.49 65.82±1.72 72.48±2.63 76.29±2.23

Level 5 60 56.87±3.85 67.55±2.19 76.24±1.90 75.71±2.65

Level 6 70 59.13±2.75 71.03±2.85 80.00±2.19 75.68±1.99

GPCSLBP Level 1 32 57.12±2.31 79.69±1.69 86.11±2.33 83.47±1.57

Level 2 48 60.31±2.29 84.64±2.69 86.08±1.77 84.63±1.63

Level 3 64 60.00±1.93 84.62±2.55 90.18±1.59 84.95±1.51

Level 4 80 65.83±1.51 84.03±2.14 88.71±1.44 85.51±1.43

Level 5 96 65.83±2.53 84.61±2.64 91.03±1.07 87.26±2.06

Level 6 112 72.80±1.72 84.07±2.92 90.76±1.57 89.86±2.08

GPLBP-HF Level 1 152 67.00±2.91 75.38±2.04 82.36±1.81 82.63±2.21

Level 2 228 64.67±1.90 76.82±2.66 83.20±1.65 84.07±2.13

Level 3 304 63.27±2.45 83.78±2.46 84.36±1.65 82.60±2.51

Level 4 380 67.02±2.68 84.97±2.19 87.24±1.09 80.27±2.20

Level 5 456 67.55±1.78 82.05±2.08 85.81±2.13 80.29±2.26

Level 6 532 70.13±2.97 84.92±2.02 86.08±1.54 79.42±2.12

GPCLBP Level 1 236 76.58±1.66 87.55±1.62 91.32±1.43 85.27±2.30

Level 2 354 71.05±1.77 88.73±2.23 92.50±1.35 85.84±2.56

Level 3 472 71.35±2.29 89.00±1.58 91.63±1.22 86.44±2.43

Level 4 590 82.34±1.78 88.41±1.49 94.22±0.86 86.73±2.47

Level 5 708 82.34±1.78 88.41±1.49 94.22±0.86 85.00±2.76

Level 6 826 88.47±1.88 86.10±1.48 95.66±0.99 86.43±2.15
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Table 5.5: Classification accuracy of GP based texture features in A4C view

Fearure IDL NoF SVM Classifier RF Classifier

Linear Poly RBF

GPLBP Level 1 512 66.67±2.57 60.56±1.62 76.79±2.44 71.56±2.92

Level 2 768 68.70±2.94 57.96±1.89 74.47±2.33 71.55±2.36

Level 3 1024 75.65±2.15 55.34±1.94 75.08±2.37 72.74±2.28

Level 4 1280 79.71±1.86 51.60±1.34 75.95±2.15 71.26±2.49

Level 5 1536 82.90±2.06 50.75±1.46 79.44±1.79 74.75±2.19

Level 6 1792 83.19±2.21 49.87±0.93 80.28±2.09 72.43±1.87

GPLBPu2 Level 1 118 58.23±2.06 84.34±2.30 92.16±1.61 79.15±2.88

Level 2 177 69.32±1.46 86.40±1.47 90.47±2.66 77.13±2.69

Level 3 236 75.93±2.74 86.38±1.49 91.87±1.54 77.41±2.35

Level 4 295 75.67±3.12 86.07±1.15 94.17±1.58 78.57±2.03

Level 5 354 78.82±1.80 85.76±1.72 95.92±1.24 80.59±1.93

Level 6 413 82.64±1.68 86.92±1.48 94.49±0.92 79.13±2.25

GPLBPri Level 1 72 56.79±2.91 58.25±2.87 66.13±2.63 70.40±1.67

Level 2 108 54.79±2.33 55.91±2.62 67.53±2.53 70.44±2.23

Level 3 144 57.37±2.72 56.21±2.71 71.54±2.56 66.68±1.64

Level 4 180 56.21±2.60 56.24±2.09 70.72±2.09 68.66±1.28

Level 5 216 62.29±2.39 57.08±2.28 70.43±2.82 68.96±1.60

Level 6 252 65.23±2.36 56.53±2.47 73.07±2.59 68.69±1.77

GPLBPriu2 Level 1 20 60.05±2.46 65.32±3.33 74.49±1.53 74.77±2.09

Level 2 30 62.65±2.14 61.24±3.08 71.87±3.07 73.92±1.68

Level 3 40 63.79±1.64 64.98±2.13 71.92±1.59 70.72±2.03

Level 4 50 66.71±2.92 65.28±2.77 77.73±2.55 70.72±1.85

Level 5 60 61.76±1.45 75.07±1.81 80.60±1.48 72.17±1.50

Level 6 70 66.70±2.47 78.03±2.63 81.20±1.94 72.47±1.65

GPCSLBP Level 1 32 60.87±2.37 79.98±1.34 85.51±2.39 75.66±3.13

Level 2 48 55.65±2.83 78.82±2.31 84.65±2.13 77.67±2.77

Level 3 64 59.41±2.55 82.29±1.99 86.13±1.89 77.97±2.62

Level 4 80 63.17±3.07 85.76±1.79 87.55±1.36 80.83±2.14

Level 5 96 62.31±2.04 85.23±1.64 87.27±1.62 82.57±2.23

Level 6 112 66.37±1.32 86.70±1.88 88.71±1.64 83.16±1.94

GPLBP-HF Level 1 152 56.84±1.48 68.92±2.74 77.08±2.03 76.15±2.47

Level 2 228 66.11±1.90 71.29±2.36 79.41±1.65 74.72±2.14

Level 3 304 61.46±2.21 70.69±2.75 77.39±2.89 72.41±2.01

Level 4 380 63.45±2.90 71.54±2.14 79.70±2.80 73.59±1.68

Level 5 456 67.58±3.34 71.85±1.99 82.60±2.45 74.16±1.51

Level 6 532 70.47±2.79 75.34±2.07 82.63±2.68 72.43±2.43

GPCLBP Level 1 236 68.43±2.85 86.66±2.15 91.31±2.04 82.02±2.67

Level 2 354 73.40±2.78 85.76±1.93 91.29±2.13 80.58±2.38

Level 3 472 77.97±2.81 83.74±1.59 90.43±1.84 81.44±2.24

Level 4 590 81.45±2.04 82.28±2.04 91.85±1.85 80.29±2.10

Level 5 708 82.58±2.66 77.66±2.25 93.59±1.94 82.03±1.82

Level 6 826 84.63±2.18 74.17±2.44 94.48±1.91 80.00±2.04
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Table 5.6: Classification accuracy of GP based texture features in PLAX view

Fearure IDL NoF SVM Classifier RF Classifier

Linear Poly RBF

GPLBP Level 1 512 60.60±2.87 57.71±1.84 71.92±1.36 72.74±1.94

Level 2 768 64.09±1.97 53.32±1.13 70.15±1.71 71.89±1.34

Level 3 1024 68.97±2.05 52.46±1.05 72.18±1.41 70.45±1.61

Level 4 1280 76.51±1.54 52.75±0.87 75.08±1.71 73.05±1.53

Level 5 1536 80.32±1.98 52.75±0.87 78.55±0.96 72.51±1.85

Level 6 1792 81.17±1.44 52.46±0.96 81.16±1.38 71.31±1.06

GPLBPu2 Level 1 118 58.56±2.01 79.76±1.36 83.8±2.53 78.26±1.87

Level 2 177 56.56±2.17 82.96±1.89 80.61±2.01 78.55±0.97

Level 3 236 62.90±1.74 84.42±2.39 84.92±0.94 78.86±1.32

Level 4 295 74.51±1.37 86.71±1.47 89.57±0.87 79.12±1.35

Level 5 354 75.07±1.56 89.87±0.86 91.63±1.61 79.41±1.46

Level 6 413 79.45±1.86 91.90±1.46 92.46±0.88 79.44±1.59

GPLBPri Level 1 72 53.06±2.55 55.12±3.54 65.78±2.58 68.68±2.00

Level 2 108 54.17±2.74 54.48±2.24 58.25±1.54 69.55±2.17

Level 3 144 53.08±3.60 53.06±1.42 60.58±2.83 67.49±2.10

Level 4 180 53.90±3.49 55.34±1.61 61.16±2.89 69.55±2.25

Level 5 216 57.13±2.77 54.47±1.43 65.77±3.69 69.87±1.68

Level 6 252 56.24±2.62 56.20±1.81 68.65±2.59 69.55±1.62

GPLBPriu2 Level 1 20 60.00±1.98 65.57±2.52 78.56±1.86 73.61±1.94

Level 2 30 57.99±2.44 65.03±3.45 76.87±2.89 72.77±2.02

Level 3 40 59.17±2.58 63.61±3.61 77.11±2.69 73.06±1.97

Level 4 50 58.04±2.55 68.73±1.95 77.12±3.01 76.52±1.69

Level 5 60 59.18±2.10 73.39±2.38 82.00±2.52 72.78±2.01

Level 6 70 60.62±3.04 78.85±1.83 82.85±2.52 74.52±1.54

GPCSLBP Level 1 32 59.78±3.31 74.57±2.86 80.00±1.68 79.40±1.77

Level 2 48 57.72±2.16 78.32±2.06 82.09±2.25 78.84±1.67

Level 3 64 61.48±2.45 82.95±2.01 86.99±1.33 78.28±1.13

Level 4 80 62.02±2.16 86.96±0.89 87.55±1.22 77.42±1.51

Level 5 96 65.82±3.06 88.97±1.21 89.85±0.66 76.60±1.74

Level 6 112 72.52±3.06 92.44±1.39 92.15±1.08 78.65±2.15

GPLBP-HF Level 1 152 56.81±2.41 68.71±3.00 73.34±1.28 75.37±1.53

Level 2 228 60.30±2.61 70.16±2.49 75.09±1.71 74.19±1.35

Level 3 304 65.27±2.98 74.21±2.15 76.34±1.91 72.73±1.73

Level 4 380 63.45±1.67 77.69±2.20 81.45±1.67 75.08±1.83

Level 5 456 66.40±1.89 77.13±1.77 83.78±1.92 71.85±1.42

Level 6 532 68.41±2.26 77.11±1.43 84.34±1.38 73.60±2.14

GPCLBP Level 1 236 68.10±3.01 85.23±1.56 89.86±1.17 77.97±0.87

Level 2 354 69.86±1.62 83.80±1.96 89.55±1.24 77.40±1.33

Level 3 472 75.70±2.51 80.29±1.36 90.15±1.31 78.29±1.58

Level 4 590 82.04±2.04 79.71±1.58 91.33±1.60 78.59±1.55

Level 5 708 85.23±2.08 77.42±1.95 91.61±0.90 78.57±1.46

Level 6 826 88.71±2.32 75.39±2.06 94.21±1.14 78.57±1.46
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Fig. 5.7: Comparison of three kernel of SVM classifier in three views (a) A2C view (b)

A4C view (c) PLAX view
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Table 5.7: Performance of one-versus-rest SVM classifier in three views.

Confusion matrix Statistical parameters

Predicted
Sensitivity Specificity

Actual Mild Moderate Severe

A2C View

Mild 133 7 0 95.00 99.02

Moderate 2 137 1 97.85 94.14

Severe 0 5 60 92.30 99.64

A4C View

Mild 158 2 0 98.75 92.43

Moderate 13 101 1 87.82 98.26

Severe 1 2 67 95.71 99.63

PLAX View

Mild 153 2 0 98.70 92.63

Moderate 9 94 2 89.52 98.33

Severe 5 2 78 91.76 99.23

5.5.3 Diagnostic Test Evaluation of Proposed CAD System

The performance of a classification tool or CAD system can be analyzed by two statistical pa-

rameters, i.e., sensitivity and specificity. Here, the severity of MR has been classified within

the stages i.e. mild, moderate and severe. Hence, the confusion matrix of the order of 3 × 3

has been obtained. The GPCLBP texture features outperformed in all three views. Therefore

the statistical parameters of one-versus-all have been calculated and shown in Table 5.7. It

has been observed from Table 5.7 that in the A2C view, seven three and five misclassification

cases were reported in mild, moderate and severe class. Further, in A4C view, two, fourteen

and three cases were misclassified. Subsequently, in PLAX view, two cases in mild, eleven

cases in moderate, and seven cases in the severe class were reported in the wrong class. The

highest sensitivity of 97.85 %, 98.75 %, and 98.70 % similarly, the highest specificity 99.64

%, 99.63 %, and 99.23 % have been achieved for A2C, A4C and PLAX views, respectively

for the different class.
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5.6 Summary

In this chapter, a CAD system (for the severity analysis of MR) using the hybrid texture

features based on GP and LBP variants has been presented. The proposed methodology

consists of three basic steps. In the first step, the images are converted to a grayscale image

and a region of interest is selected through an arbitrary method. In the second step, the

GP structure is used as a multiresolution scheme to decompose images up to six different

levels, and then the texture features are extracted using LBP variants. The extracted features

obtained from the decomposed images have distinct information of the echocardiographic

image. The length of significant feature vector increases with the level of decomposition. The

cumulative texture features of different levels were normalized before employing them for

training and testing of the classifier. In the final step, classification task has been performed

using SVM and RF classifier and the performance of the CAD system is evaluated in terms of

the sensitivity and specificity. The proposed CAD system is expected to assist the radiologist

in improving their diagnostic performance for patients suffering from MR.
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CHAPTER 6

DISCRETE WAVELET TRANSFORM BASED TEXTURE

ANALYSIS OF MITRAL REGURGITATION

This chapter explores the effectiveness of discrete wavelet transform (DWT) based statistical

texture features extraction techniques for the severity analysis of MR. The chapter sequen-

tially present the concise description of the DWT, proposed DWT based texture feature ex-

traction techniques for characterization of MR and subsequently assesses the discriminatory

capability of Daubechies wavelet-based texture modeling using different classifiers.

6.1 The Discrete Wavelet Transform

The Fourier transform is an important tool to identify the frequency components of the signals

by decomposing them into sine and cosine components. It can only provide spectral infor-

mation about stationary signals i.e., signals whose frequency contents do not change with

time. In many real-world applications, the signals are non-stationary. For non-stationary

signals, the time-frequency techniques such as short-time Fourier transform (STFT), wavelet

transform (WT) etc., are mostly utilized for extracting transient features of the signals. STFT

utilizes a sliding window to discover spectrogram, which gives the information of both time

and frequency. In STFT the length of the window limits the resolution in frequency. The

wavelet transform is the solution to this issue since it depends on little wavelets with con-

strained length. The STFT gives a constant resolution at all frequencies, the wavelet trans-

form uses the multi-resolution technique by which different frequencies are analyzed with

different resolutions.

Transformation of signals helps in identifying distinct information which might other-

wise be hidden in the original signal. Depending upon the application, the transformation

technique is chosen, and each technique has its unique advantages and disadvantages. The

output of the transformation represents the image in the Fourier or frequency domain, while

the input image is the spatial domain equivalent. In the Fourier domain image, each point

represents a particular frequency contained in the spatial domain image. Several studies
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focused on transform domain feature extraction techniques. The discrete cosine transform

(DCT) [138], discrete wavelet transform (DWT) [139], Gabor transform [140, 141] are uti-

lized in the classification framework. The DWT has been used here due to its multiresolution

capability for analyzing images at different frequencies for several levels of resolutions [139].

The most standard wavelet decomposition utilized for image filtering is the discrete wavelet

change (DWT) introduced by Mallat [139]. Wavelets are mathematical functions that de-

compose a signal into various frequency components, and after that concentrate on every part

with a resolution coordinated to its scale. It is equivalent to bandpass filtering with a bank

of constant-Q filters. The DWT has been efficiently utilized in various application of image

processing tasks such as object recognition, denoising, segmentation, compression, feature

extraction and image indexing [257–270].

Fig. 6.1: 2D representation of the wavelet decomposition.

To perform a 2D DWT, first, a one-level, 1-D DWT is applied along the rows of the image.

Second, a one-level, 1-D DWT is applied along the columns of the transformed image from

the first step. The result of these two sets of operations is a transformed image with four

distinct bands: (i) LL, (ii) LH, (iii) HL and (iv) HH. Here, L stands for low-pass filtering,

and H stands for high-pass filtering. The LL band corresponds roughly to a down-sampled

(by a factor of two) version of the original image. The LH band tends to preserve localized
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horizontal features, while the HL band tends to preserve localized vertical features in the

original image. Finally, the HH band tends to isolate localized high-frequency point features

in the image. Additional levels of decomposition can extract lower frequency features in the

image; these additional levels are applied only to the LL band of the transformed image at

the previous level. A one-level, 2D-DWT decomposition is depicted in Fig. 6.1.

The 2D-DWT represents an image in terms of a set of shifted and dilated wavelet func-

tions, ΨLH , ΨHL, ΨHH and scaling functions ΦLL. A P-scale DWT of an image f(x, y) of

size N ×N is decomposed as:

f(x, y) =

Np−1∑
q,r=0

uP,q,rφ
LL
P,q,r(x, y) +

∑
B∈ß

P∑
p=1

Np−1∑
p=1

wBp,q,rψ
B
p,q,r(x, y) (6.1)

where, φLLP,q,r(x, y) ≡ 2−pφ(2−px − q, 2−py − r), ψBP,q,r(x, y) ≡ 2−pφ(2−px − q, 2−py − r),

B ∈ ß, ß = {LH,HL,HH}, and Np = N/2p. LH,HL, and HH are called DWT subbands.

uP,q,r =
∫ ∫

f(x, y)φp0,q,rdxdy is scaling coefficient, and wp,q,r =
∫ ∫

f(x, y)ψBp,q,rdxdy

denotes the (q, r)th wavelet coefficient in scale p and subband B [271]. The set of wavelet

coefficients w =
{
wBp,q,r | p = 1, ..., P ;B ∈ ß; q, r = 0, ..., Np − 1

}
is usually considered to

contain the most important features of an image.

A compactly supported orthogonal wavelet having a pre-assigned degree of smoothness

was proposed by Ingrid Daubechies [272]. It has been utilized in several image processing

applications [273–276]. Psychovisual studies indicate that the human visual system processes

images in a multiscale way [277]. This multiscale processing, which humans obviously apply

successfully to texture perception, is a strong motivation for texture analysis methods to start

from the same ideas [277–279]. Multiresolution techniques intend to transform images into

a representation in which both spatial and frequency information is present. To accomplish

this, a lot of related techniques were developed, including Gabor, Haar, Walsh-Hadamard

expansions, Gaussian and Laplacian pyramids, subband filtering, scale space.

The multiresolution analysis capability of DWT is helpful in detecting features at a unique

resolution. Daubechies wavelet family is characterized by time invariance, produces real

number coefficients, and has a sharp filter transition band that is useful in minimizing the

edge effects between the frequency bands. The fractal like self-symmetry property facilitates

fast wavelet transform in computation, also for a given support it offers the highest number
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of vanishing moments [280]. Fig. 6.2 shows the Daubechies wavelet family members .

A visual illustration of the test images in A2C, A4C and PLAX views are shown in Fig.

6.3, 6.4 and 6.5.

6.2 Methodology for MR Classification using DWT based Texture Features

The procedural steps involved in present work used for the severity classification of echocar-

diographic images of MR is represented in the form of block schematic and is shown in Fig.

6.6. The complete classification process is explained as follow:

Step 1: In the initial step, as in the previous approach the acquired color (RGB) images

are converted to grayscale image utilizing Eq. 4.5. A subjective rectangular window is then

chosen which incorporates the regurgitant jet area of each picture for picking the region of

interest.

Step 2: Further, the grayscale images have been decomposed to four levels (L1 to L4)

utilizing the Daubechies wavelet family (db2, db4, db6, db8, and db10) as decomposition

filters in the second step. The transformation of images gets significant features at a dif-

ferent resolution. In the present work seven texture descriptors namely first-order statistics

(FOS), spatial gray level difference matrix (SGLDM), gray level difference statistics (GLDS),

neighborhood gray tone difference matrix (NGTDM), statistical feature matrix (SFM), Laws

textures energy measure (LTEM), and Fourier power spectrum (FPS) are used to extract the

texture feature. Table 6.1 lists the proposed texture features by combining DWT with these

descriptors:

Table 6.1: Proposed texture features and their notation

DWT-FOS Discrete wavelet transform-first order statistics

DWT-SGLDM Discrete wavelet transform spatial gray level difference matrix

DWT-GLDS Discrete wavelet transform-gray level difference statistics

DWT-NGTDM Discrete wavelet transform-neighborhood gray tone difference matrix

DWT-SFM Discrete wavelet transform-statistical feature matrix

DWT-LTEM Discrete wavelet transform-Laws textures energy measure

DWT-FPS Discrete wavelet transform-Fourier power spectrum
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 6.2: Scaling and wavelet function of Daubechies wavelet family: db2, db4, db6, db8,

and db10
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(a) (b)

Fig. 6.3: (a) The test image in A2C view (b) 2nd level of image decomposition

(a) (b)

Fig. 6.4: (a) The test image in A4C view (b) 2nd level of image decomposition

Step 3: As in the previous approach, here also the extracted features contain the different

range of numeral values which are normalized similarly in the range of 0 to 1 before applying
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(a) (b)

Fig. 6.5: (a) The test image in PLAX view (b) 2nd level of image decomposition

to classifier utilizing Eq. 6.2.

n(xi) =
(xi − mi)

σi
(6.2)

where mi and σi represent the mean and standard deviation of the feature i.

Step 4: In step 4, the extracted features are utilized for training and testing of the clas-

sifier. Here, again the RBF kernel based, SVM classifier has been utilized with 10-fold

cross-validation scheme. The classification performance of the approach has been evaluated

in the same manner by its classification accuracy, sensitivity, and specificity.

Step 5: The PCA and mRMR techniques are employed to reduce the dimensions of fea-

ture vector data.

Step 6: Finally, the severity classification has been done in three views, further the multi-

voting examination is performed to get an ultimate choice.

6.3 DWT based Texture Feature Extraction

The texture is laid out as local neighborhood properties of the gray levels of an image. Mul-

tiresolution methods expect to rebuild images into a representation where spatial and fre-

quency information is available at the same time. In the present work seven texture feature

descriptors, named as, FOS, SGLDM, GLDS, NGTDM, SFM, TEM, and FPS have been uti-

113



Echocardiographic Image Dataset

Severity Classification

Mild Moderate Severe

Texture Feature Extraction 
Combination of Wavelet and Statistical Feature

DWT-FOS, DWT-SGLDM, DWT-NGTDM,
DWT-SFM, DWT-LTEM, DWT-FPS 

Feature Normalization

RGB to Grayscale Conversion

Daubechies Wavelet Based Image Decomposition
(D1 to D4 Levels)

A2C View A4C View PLAX View

Decision Making (Multi Voting)

Fig. 6.6: Schematic representation of proposed CAD system

lized after the decomposition of the image up to various levels. The detail of these texture

feature extraction techniques are already given in Section 4.4. The computational requirement

of the classifier increases with the dimension of the features and the classification accuracy

may not be improved due to high dimension features. The purpose of feature reduction is to

retain the best subset of all features. Two methods have been compared here for the reduction

of feature vector dimension, one is principal component analysis (PCA) [151] and second, is

minimal redundancy maximum relevance (mRMR) [159].
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6.4 Classification

In the present work, the performance of the proposed CAD system using the proposed texture

feature extraction techniques have been evaluated using a supervised classifiers i.e. support

vector machine (SVM) [220, 221]. The details and tuning parameters of SVM classifier

have been discussed in Section 4.6.1. To maintain unbiasness 10-fold cross-validation has

been used. The detail of cross-validation has been given in Section 4.6.3. The diagnostic

performance of a CAD system is evaluated using sensitivity and specificity, as explained in

Section 4.6.4.

6.5 Experimental Results and Discussions

This experimentation was performed with an objective to investigate the performance of

DWT based statistical texture features, (for example, FOS, SGLDM, GLDS, NGTDM, SFM,

TEM, and FPS) for the severity analysis of MR in three views i.e. A2C, A4C, and PLAX.

In this work, Daubechies family members to be specific, db2, db4, db6, db8, db10 have been

employed to decompose the MR images up to four level. The RBF kernel SVM classifiers

have been examined by using MATLAB implementation of LIBSVM [221]. A few trials have

been directed for feature efficacy analysis on MR image dataset. The 10-fold cross-validation

approach has been utilized to diminish the biasness. To complete the above-mentioned task,

all the experiments are performed on the computer having Intel (R) Core (TM), i7-2600

CPU@3.40 GHz processor and 16 GB RAM. The percentage classification accuracy com-

puted by these features are presented in Tables 6.2, 6.3, and 6.4 for A2C, A4C, and PLAX

views, respectively.

6.5.1 Performance Evaluation of DWT based Texture Features in A2C Views

The classification accuracies computed by DWT based texture features on MR images in A2C

views are shown in Table 6.2. Among all, the DWT-SGLDM provides the highest accuracy of

96.98±0.84 at the second level of image decomposition using db8 with texture feature vector

dimension of 208. In addition, the second best classification accuracy of 96.82±1.10 (32

features) has been achieved at the second level of image decomposition using db6 for DWT-

SFM features, while features computed from DWT-FPS provides least classification accuracy

of 84.96± 1.08 (16 features) at the second level of image decomposition using db10. In order
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Table 6.2: The classification accuracies obtained using DWT based texture features in

A2C view with RBF kernel SVM classifier

Features IDL NoF db2 db4 db6 db8 db10

DWT-FOS

1 20 90.41± 1.17 95.08± 0.86 93.36± 1.28 95.66± 1.16 92.20± 1.13

2 40 94.22± 1.28 93.06± 0.76 91.06± 1.72 96.24± 1.05 94.52± 1.16

3 60 89.60± 1.82 90.46± 1.03 90.19± 2.61 93.35± 1.04 94.79± 1.34

4 80 86.43± 1.68 88.42± 1.55 88.14± 1.22 91.02± 1.25 93.04± 1.07

DWT-SGLDM

1 104 95.97± 1.37 95.96± 1.62 95.69± 1.66 95.96± 1.06 96.25± 1.13

2 208 95.94± 0.98 96.26± 1.05 95.67± 1.30 96.98± 0.84 96.25± 0.75

3 312 94.80± 1.41 95.66± 0.65 94.81± 1.35 97.68± 0.85 95.66± 1.30

4 416 92.48± 1.88 93.07± 0.86 93.65± 1.18 97.11± 0.74 94.24± 1.47

DWT-GLDS

1 16 82.31± 1.86 87.26± 1.31 87.29± 1.95 89.28± 1.13 83.20± 1.41

2 32 89.00± 0.92 92.45± 1.17 87.23± 1.91 90.44± 1.23 90.72± 1.13

3 48 86.13± 2.16 89.87± 1.99 82.61± 2.02 86.67± 1.99 87.57± 1.94

4 64 82.12± 2.44 86.42± 1.93 84.41± 2.81 83.80± 1.42 87.25± 1.67

DWT-NGTDM

1 20 91.59± 1.33 92.78± 1.31 91.28± 1.57 92.47± 1.38 87.88± 2.29

2 40 93.06± 0.76 94.51± 0.79 93.65± 1.53 96.52± 0.84 93.65± 0.93

3 60 93.91± 0.92 93.36± 1.20 91.06± 2.07 94.49± 1.11 94.53± 1.56

4 100 89.29± 1.81 91.92± 1.64 91.91± 1.39 94.52± 0.78 93.65± 1.11

DWT-SFM

1 16 90.50± 2.62 93.36± 1.59 93.05± 1.31 94.81± 1.02 91.91± 1.11

2 32 94.23± 1.05 96.82± 0.81 96.82± 1.10 95.95± 0.88 96.80± 0.82

3 48 91.92± 1.26 93.92± 1.31 91.33± 1.04 95.65± 0.49 94.81± 0.82

4 64 93.08± 1.62 93.66± 0.92 92.21± 1.53 94.20± 0.75 95.09± 0.95

DWT-TEM

1 24 92.21± 1.70 95.66± 0.98 93.64± 0.82 93.92± 1.81 94.23± 1.28

2 48 95.65± 1.17 94.80± 0.71 93.64± 0.71 94.78± 1.14 93.33± 1.38

3 72 92.77± 1.51 92.48± 1.07 91.92± 1.75 88.12± 1.24 92.74± 1.45

4 96 92.21± 1.67 89.87± 1.57 91.05± 1.15 91.06± 1.49 90.74± 1.53

DWT-FPS

1 8 74.50± 2.43 74.50± 2.84 74.53± 1.82 70.75± 1.26 73.39± 2.09

2 16 84.64± 1.83 79.42± 1.99 77.72± 1.49 79.75± 2.39 84.96± 1.08

3 24 81.44± 2.09 77.93± 2.37 79.45± 1.70 83.51± 2.14 81.15± 1.01

4 32 77.68± 1.05 74.17± 2.97 76.30± 1.92 78.85± 2.43 79.99± 1.42

ALL

1 208 98.84± 0.47 98.55± 0.48 96.54± 2.71 97.98± 0.74 97.13± 0.95

2 416 99.12± 0.44 97.41± 0.66 97.69± 0.83 97.96± 0.87 97.99± 0.61

3 624 95.94± 1.32 97.40± 0.51 96.54± 0.93 97.97± 0.75 97.11± 0.95

4 832 95.37± 0.97 96.55± 1.19 95.10± 1.13 97.98± 0.61 96.84± 1.08

IDL: Image decomposition level, NoF: Number of features
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Table 6.3: The classification accuracies obtained using DWT based texture features in

A4C view with RBF kernel SVM classifier

Features IDL NoF db2 db4 db6 db8 db10

DWT-FOS

1 20 91.29± 1.72 91.87± 1.37 87.25± 1.62 92.75± 1.16 87.55± 1.91

2 40 95.66± 0.98 95.66± 1.16 94.20± 0.98 95.63± 1.46 94.82± 1.19

3 60 91.61± 1.58 93.08± 1.21 90.16± 2.02 87.24± 2.14 89.61± 1.66

4 80 86.95± 1.84 91.05± 1.15 87.85± 2.29 84.66± 2.08 88.73± 1.22

DWT-SGLDM

1 104 97.37± 0.69 94.50± 1.01 94.50± 1.01 97.10± 0.75 92.18± 1.45

2 208 98.86± 0.63 98.56± 0.77 95.66± 1.31 98.00± 1.21 98.28± 0.63

3 312 97.98± 0.75 96.55± 0.94 94.82± 1.33 94.81± 1.20 95.36± 1.00

4 416 95.94± 1.36 94.22± 1.74 91.89± 1.13 91.90± 1.20 95.37± 0.78

DWT-GLDS

1 16 88.42± 2.34 86.98± 1.42 87.53± 1.75 88.10± 2.12 83.45± 1.27

2 32 94.17± 1.31 92.18± 1.35 89.88± 1.56 91.91± 1.85 91.61± 1.59

3 48 88.40± 1.43 87.85± 2.43 86.99± 2.45 90.16± 1.58 84.94± 1.72

4 64 82.07± 1.36 87.27± 1.68 83.50± 1.85 84.91± 2.26 82.61± 1.63

DWT-NGTDM

1 20 91.01± 1.26 88.10± 1.61 90.15± 2.04 90.99± 1.73 84.06± 1.52

2 40 95.64± 1.25 94.48± 1.33 92.74± 1.58 96.22± 1.24 94.49± 1.26

3 60 92.43± 1.71 93.07± 1.48 91.34± 1.76 91.29± 2.02 91.87± 1.51

4 100 89.87± 1.30 90.16± 1.62 91.92± 1.90 88.70± 1.84 92.18± 1.58

DWT-SFM

1 16 92.45± 1.32 91.55± 1.67 90.97± 2.04 92.70± 1.88 88.97± 2.56

2 32 94.22± 2.02 94.78± 1.42 93.06± 2.45 96.82± 1.01 95.65± 1.17

3 48 91.30± 1.69 90.75± 0.92 93.34± 1.50 95.11± 1.05 94.47± 1.48

4 64 88.70± 2.05 93.66± 1.34 94.25± 1.70 92.20± 1.28 93.61± 1.36

DWT-TEM

1 24 90.73± 1.35 89.61± 2.45 88.40± 1.49 91.60± 1.10 90.72± 1.49

2 48 93.90± 1.02 91.31± 1.54 92.48± 2.51 95.68± 1.29 93.08± 2.14

3 72 89.58± 1.29 88.16± 2.06 89.30± 1.41 91.31± 1.68 91.33± 1.88

4 96 88.15± 2.20 84.39± 2.42 88.13± 2.07 88.12± 1.53 90.72± 2.16

DWT-FPS

1 8 79.71± 1.30 70.76± 1.57 69.85± 2.17 71.91± 2.55 71.92± 2.54

2 16 88.15± 1.82 89.89± 2.13 83.78± 2.82 82.91± 1.67 82.34± 1.88

3 24 87.85± 1.58 86.95± 1.39 82.31± 2.45 77.41± 2.44 79.41± 1.19

4 32 81.71± 2.40 83.45± 2.15 81.13± 2.92 77.70± 2.54 79.74± 1.68

ALL

1 208 98.26± 0.63 98.25± 0.47 98.84± 0.47 99.41± 0.39 98.84± 0.63

2 416 99.13± 0.44 99.70± 0.29 98.84± 0.63 99.70± 0.29 99.42± 0.38

3 624 97.96± 0.97 98.55± 0.77 98.84± 0.64 98.84± 0.63 97.68± 1.12

4 832 95.93± 1.32 97.98± 0.61 96.24± 0.95 96.51± 0.95 97.68± 1.12

IDL: Image decomposition level, NoF: Number of features
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Table 6.4: The classification accuracies obtained using DWT based texture features in

PLAX view with RBF kernel SVM classifier

Features IDL NoF db2 db4 db6 db8 db10

DWT-FOS

1 20 81.45± 1.79 86.97± 1.45 80.56± 1.46 82.90± 1.76 80.88± 2.11

2 40 86.97± 1.93 86.10± 1.64 84.92± 1.88 87.55± 1.60 87.28± 2.10

3 60 82.61± 2.54 83.80± 1.40 85.83± 1.94 79.17± 1.61 86.41± 2.17

4 80 80.26± 1.57 80.59 ± 1.6 80.04± 1.90 76.82± 2.20 82.04± 1.52

DWT-SGLDM

1 104 89.27± 1.64 94.79± 0.84 93.05± 1.64 92.17± 1.44 90.75± 1.60

2 208 92.15± 0.78 93.64± 1.28 92.78± 0.97 90.48± 2.43 92.75± 1.32

3 312 86.96± 1.49 87.82± 1.43 88.41± 1.56 87.58± 2.29 89.27± 0.99

4 416 85.76± 1.49 84.37± 1.88 88.08± 1.29 89.03± 2.12 92.44± 1.18

DWT-GLDS

1 16 82.88± 2.21 87.86± 1.52 86.38± 1.62 86.65± 1.40 83.76± 1.51

2 32 82.29 ± 2.3 85.27± 1.95 83.76± 1.51 83.51± 1.90 83.17± 2.00

3 48 77.35± 2.33 84.64± 1.50 79.14± 1.41 80.03± 2.59 81.15± 1.60

4 64 74.41± 2.79 79.43± 1.84 76.50± 1.61 77.37± 2.04 82.31± 1.01

DWT-NGTDM

1 20 87.83± 2.00 91.29± 0.88 86.68± 1.30 83.51± 2.11 80.34± 1.85

2 40 89.24± 1.76 90.71± 1.98 88.13± 1.24 88.13± 1.94 86.67± 1.69

3 60 84.94± 1.85 86.96± 2.71 84.08± 1.94 87.56± 1.86 86.39± 1.20

4 100 85.22± 2.23 83.74± 2.97 82.59± 1.58 86.42± 1.79 86.13± 1.62

DWT-SFM

1 16 90.48± 2.04 87.54± 2.16 88.12± 2.52 89.85± 0.99 89.86± 1.24

2 32 88.39± 1.07 93.64± 1.41 91.02± 1.45 92.19± 2.06 94.24± 1.27

3 48 86.66± 1.68 92.76± 1.30 89.27± 1.94 91.03± 1.52 92.48± 1.49

4 64 86.32± 2.12 91.60± 1.46 90.16± 1.13 90.72± 1.93 92.78± 1.43

DWT-TEM

1 24 88.11± 1.02 89.85± 1.32 90.43± 0.87 89.24± 1.52 88.42± 2.41

2 48 91.89± 1.12 89.26± 1.16 89.84± 1.52 90.41± 1.63 88.39± 1.85

3 72 86.41± 1.46 84.90± 1.38 86.64± 1.27 87.77± 1.53 85.25± 2.09

4 96 83.74± 1.89 80.28± 1.45 85.52± 1.35 85.18± 1.82 85.55± 1.89

DWT-FPS

1 8 70.68± 2.15 68.14± 1.82 64.12± 1.65 71.29± 2.97 68.39± 1.19

2 16 74.16± 2.52 71.59 ± 2.4 69.04± 2.05 71.34± 2.48 73.66± 1.62

3 24 71.83± 2.58 71.97± 2.77 67.83± 2.94 69.30± 2.33 75.13± 2.02

4 32 70.65± 3.09 68.40± 1.59 70.50± 2.99 68.16± 2.87 71.91± 2.04

ALL

1 208 93.59± 1.49 97.68± 1.04 96.82± 1.00 96.82± 1.24 95.35± 0.98

2 416 95.36± 0.64 96.24± 0.97 95.95± 0.76 95.38± 1.77 97.10± 0.86

3 624 91.29± 1.15 92.46± 1.58 92.75± 1.52 92.76± 1.55 93.89± 1.19

4 832 89.23± 1.51 90.17± 1.61 92.4 3± 1.24 90.74± 1.68 94.21± 0.95

IDL: Image decomposition level, NoF: Number of features
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to improve the accuracy of the classification system, combination of all features at different

decomposition level has been investigated, and significant improvement in classification ac-

curacy has been found. The classification accuracy of 99.12±0.44 has been achieved at the

second level of image decomposition using db2 with a total feature vector dimension of 416.

6.5.2 Performance Evaluation of DWT based Texture Features in A4C Views

In a similar fashion, the performance of texture features in A4C views has been represented

in Table 6.3. Among all, DWT-SGLDM provides the highest accuracy of 98.86±0.63 at the

second level of image decomposition using db2 with a feature vector length of 208. The sec-

ond best classification accuracy of 96.82±1.01 has been achieved at the second level of image

decomposition using db8 (32 features) for DWT-SFM features, while features computed from

DWT-FPS provides least classification accuracy of 89.89±2.13 at the second level of image

decomposition using db4 (16 features). Further, to improve the accuracy of system individual

features are combined and considered for analysis. Hence, it is found that all texture feature

have produced the noticeable improvement in classification accuracy of 99.70±0.29 using a

feature vector length of 416 at the second level of image decomposition using db4 and db8

instead of using texture features of one class individually.

6.5.3 Performance Evaluation of DWT based Texture Features in PLAX Views

In this section, the classification accuracies for PLAX view has been investigated by tex-

ture features as mentioned in Section 6.3. The percentage of classification accuracy ob-

tained using texture features in PLAX views are presented in Table 6.4. In this case, also

texture feature computed from DWT-SGLDM produced the best accuracy having a value of

94.79±0.84 at first level of image decomposition using db4 with feature vector length of 104,

and least classification accuracy was computed from DWT-FPS features having the value of

75.13±2.02 at the third level of image decomposition using db10 with 24 features. In a sim-

ilar manner, the analysis is continued and all texture features are concatenated to investigate

the classification accuracy of the system. In this case, also all texture features achieved the

remarkable classification accuracy having a value of 97.68±1.04 at first level of image de-

composition using db4 with a feature vector length of 204 compared to using texture features

of one class individually.
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6.5.4 Performance Evaluation of CAD System after Feature Reduction and Selection

In order to improve the performance of the CAD system the PCA has been used for feature

reduction and mRMR scheme has been utilized for feature selection. From the Tables 6.2 -

6.4, it has been found that highest classification accuracy of 99.12±0.44 has been achieved

at the second level of image decomposition using db2 in the A2C view using a total of 416

features. In A4C view, the highest classification accuracy of 99.70±0.29 has been achieved at

the second level of image decomposition using db4 and db8 using a total of 416 features while

the classification accuracy having a value of 97.68±1.04 at the first level of image decom-

position using db4 has been achieved in PLAX view using 208 features. The classification

performance with reduced features is given in Table 6.5.

Table 6.5: Classification accuracy using feature reduction and selection

A2C A4C PLAX

NoF PCA mRMR PCA mRMR PCA mRMR

10 82.30±1.91 85.82±1.97 74.45±1.28 90.11±1.59 84.92±1.82 80.93±2.92

20 84.33±1.73 92.76±1.22 78.83±1.31 96.52±1.03 90.71±1.49 91.01±1.00

50 95.36±1.15 96.25±1.21 94.75±1.50 97.39±0.51 95.65±1.07 95.64±1.34

75 97.10±0.74 97.38±0.81 99.12±0.62 98.55±0.48 97.39±0.91 96.53±1.26

100 98.26±0.63 97.39±0.67 99.70±0.29 98.84±0.47 97.68±0.72 96.52±1.20

125 98.84±0.47 99.12±0.44 99.70±0.29 98.56±0.64 97.97±0.75 96.80±1.33

150 98.84±0.47 98.84±0.47 99.42±0.38 98.56±0.64 97.97±0.75 97.39±1.00

175 98.84±0.47 98.84±0.47 99.42±0.38 98.56±0.64 97.68±0.83 97.96±0.75

200 98.84±0.47 98.84±0.47 99.42±0.38 98.56±0.64 97.68±1.04 97.68±1.04

The mRMR technique gives the highest classification accuracy of 99.12±0.44 by using

125 best features compared to PCA reduction technique which gave this accuracy at 225

features in A2C view. After this as the number of features increases the variation in the

classification accuracy didn’t improve significantly. In A4C view, the PCA reduced feature

vector data has attained the highest accuracy of 99.70±0.29 using 100 best features compared

to mRMR feature reduction and selection method where the classification accuracy having

value 98.84±0.47. Similarly, in PLAX view 97.97±0.75 accuracies has been achieved us-
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ing PCA reduced feature vector of length 125 while mRMR feature selection method gave

97.96±0.75 with 175 best features. It is seen that the mRMR technique gives better results

for feature dimensionality reduction compared to PCA technique.

Table 6.6: Performance of one-versus-rest SVMs classifier in three views.

Confusion matrix Statistical parameters

Predicted
Sensitivity Specificity

Actual Mild Moderate Severe

A2C View

Mild 139 1 0 99.28 99.02

Moderate 1 139 0 99.28 99.51

Severe 1 0 64 98.46 100.00

A4C View

Mild 158 1 1 98.75 100.00

Moderate 0 115 0 100.00 99.13

Severe 0 1 69 98.57 99.63

PLAX View

Mild 152 3 0 98.60 97.89

Moderate 2 102 1 97.14 98.75

Severe 2 0 83 97.75 99.61

6.5.5 Diagnostic Test Evaluation of Proposed CAD System

The diagnostic ability of classification system is evaluated in terms of sensitivity and speci-

ficity. The confusion matrix of the order of 3 × 3 is created and the performance parameter

sensitivity and specificity has been calculated in all three views. Table 6.6 shows the classifi-

cation performance of the CAD system. In A2C view, the confusion matrix shows that there

is only one misclassification in all three classes. The highest sensitivity calculated is 99.28

% in the mild and moderate class and highest specificity is 100 % for severe class. In A4C

view, two misclassifications are reported in mild and one in severe class while for a moderate
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class there was no misclassification. The sensitivity and specificity of 100 % calculated in

moderate and mild class respectively. Similarly, in PLAX view, three misclassifications were

reported in mild and moderate class and two in severe class. The highest sensitivity achieved

has 98.6 % in mild and specificity of 99.61 % has been achieved in the severe category.

6.6 Summary

In this chapter, a CAD system has been presented for the severity classification of MR using

the DWT based statistical texture features. Here, Daubechies wavelet family has been uti-

lized for the image decomposition. The texture features have been extracted up to four level

image decomposition. The resultant DWT sub-images coefficients obtained using proposed

approach are distinct at each level and contain valuable information. Extracting the features

from all levels (L1-L4) have increased the number of significant features. Combining these

extracted features generate significant feature vector useful in severity analysis of MR. Seven

statistical features have been extracted from DWT subbands and these features are used for

the training and testing of the SVM classifiers.

The analysis of the results obtained with 10-fold cross-validation approach revealed that

the proposed approach generates the most discriminative texture features. The best classi-

fication accuracy of 99.12±0.44, 99.70±0.29 and 97.68±1.04 has been achieved in A2C,

A4C, and PLAX views respectively. The db2 and db4 wavelet performed well among all the

family members. Furthermore, incorporating the feature reduction method, PCA, and feature

selection method, mRMR, it has been seen that the reduced feature vector set provides the

equivalent classification accuracy at reduced feature vector size. This reduces the compu-

tational cost of the proposed scheme. The experimental results indicate that the proposed

texture methods can successfully classify the three classes of MR, namely, mild, moderate

and severe. The proposed approach for the severity classification of MR has been validated

with the accuracy, sensitivity, and the specificity of the CAD system.
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CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

7.1 Conclusions

This research work has been carried out to analyze mitral regurgitation (MR) using echocar-

diographic images. The emphasis has been given to the design and development of some

suitable texture feature extraction techniques for the classification of MR images into three

categories. The effectiveness of the proposed techniques has been investigated on the MR

image database collected from the Department of Cardiology, Swami Rama Himalayan Uni-

versity, Dehradun, India. This database has 1035 ultrasound images in three views i.e. A2C,

A4C, and PLAX.

A comparative study of despeckling filters of five categories such as local adaptive, syn-

thetic aperture radar (SAR), anisotropic diffusion, non-local mean, and fuzzy filters have been

performed on test images and TTE images. A novel speckle reduction technique based on

the linear combination of homomorphic fuzzy (HF) filter with NLM filter has been proposed

and analyzed for TTE images of MR.

To accomplish the classification task efficiently, various texture feature extraction tech-

niques have been employed to build the simple and computationally efficient texture features.

Furthermore, these feature vector data has been normalized in the range 0 to 1, to give equal

weight to all the features, before applying them as input to the classifiers.

The feature extraction techniques have produced a large number of complex features that

affect the classification accuracy and computational time. To overcome this limitation, a

feature selection technique minimum redundancy maximum relevance (mRMR) and feature

dimensionality reduction technique i.e., principal component analysis (PCA) have been em-

ployed to reduce the feature vector data dimension. Further, to enhance the classification

accuracy, two widely used classification algorithms SVM with three kernels (linear, poly-

nomial, and RBF), and RF classifiers have been employed. In order to remove biasing in

the classification, 10-fold and leave-one-out cross-validation technique have been adopted.

The best combination of the multiresolution feature extraction technique and classification
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algorithm has been selected based upon the maximum classification accuracy achieved by

them.

Based upon the experimental outcomes, based on the above work background distinct

conclusions have been drawn from the present work, which are summarized in the following

subsections:

7.1.1 Performance of Hybrid Fuzzy Filter for Speckle Noise Reduction

A comparative study of despeckling filters of five categories such as local adaptive, synthetic

aperture radar (SAR), anisotropic diffusion, non-local mean, and fuzzy filters have been im-

plemented on test images and TTE images. The despeckling capabilities of these filters have

been evaluated in terms of traditional image quality metrics as well as blind image quality

metrics such as peak signal to noise ratio (PSNR), mean square error (MSE), speckle sup-

pression and mean preservation index (SMPI), structural content (SC), normalized error sum-

mation (Err3, Err4), Laplacian mean square error (LMSE), normalized correlation coefficient

(NCC), figure of merit (FoM), beta metric (β), speckle suppression index (SSI), image quality

index (IQI), structural similarity index (SSIM), and signal to noise ratio (SNR). It is observed

that the performance of nonlocal mean filter (NLM) filter is superior in terms of edge preser-

vation compared to speckle reduction anisotropic diffusion (SRAD) filter, while the fuzzy

filters have a better FoM in comparison to anisotropic diffusion filters. Hence, a hybrid fuzzy

filter (HFF), combining the advantages of NLM and fuzzy filters, has been proposed in the

presented work. The denoising performance parameters of the hybrid fuzzy filter have been

compared with despeckling techniques in the homomorphic and non-homomorphic domain.

The proposed hybrid fuzzy filter performed better in terms of edge preservation compared to

other fuzzy filters.

7.1.2 Performance of Spatial Domain Texture Feature Extraction Techniques

A CAD system has been proposed for the classification of the severity of MR images based

on the texture features of the regurgitant area and two classifiers SVM with different kernel

functions and RF. A comparative study has been done to evaluate the effect of the color space

in the classification system. The RGB space color Doppler images are converted to differ-

ent color spaces such as YCbCr (Luminance-Chrominance), CMY (Cyan Magenta Yellow),
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L*A*B*, Grayscale. A total of 56 texture features have been extracted from the ultrasound

images of MR patients and fed as input to the classifiers. The individual classification accu-

racy of each component of color spaces have been compared and it has been observed that

the classification accuracy obtained using RGB color space has been found higher than the

accuracy obtained by using grayscale images. The average deviation calculated is less than

0.5 between two classification accuracies using RGB color and grayscale images. However,

the time required for the texture feature extraction using color spaces is triple to the time

required for grayscale image data set. Hence, in order to reduce the computation time fur-

ther analysis of the CAD system is done utilizing grayscale images throughout in this work.

The RBF kernel-based SVM classifier performed best with all the extracted texture features

compared to others.

Further, to improve the performance of CAD system the features have been ranked by

their correlation to the target vector. The mRMR feature reduction method exhibited that

the top 30 texture features are sufficient to classify the three classes of MR images. The

classification accuracies of 95.65 %, 95.65 %, and 95.36 % has been achieved in A2C, A4C

and PLAX views, respectively utilizing all features. The 100 % sensitivity and specificity

have been achieved in mild and severe class, in PLAX view.

7.1.3 Performance of GP Based Texture Feature Extraction Techniques

Here the multiresolution capability of Gaussian pyramid structure has been used. The pro-

posed methodology consists of three basic steps. In the first step, the images are converted to

a grayscale image and a region of interest is selected through an arbitrary method. In the sec-

ond step, the GP structure is used as a multiresolution scheme to decompose images up to six

different levels, and then the texture features are extracted using LBP variants. The proposed

texture features are named as GPLBPu2, GPLBPri, GPLBPriu2, GPCSLBP, GPLBP-HF, and

GPCLBP . The extracted features obtained from the decomposed images have distinct in-

formation affiliated to the original image. The length of significant feature vector increases

with the level of decomposition. The cumulative texture features of different levels have then

been normalized before applying them for training and testing the classifier. In the final step,

classification task has been performed using SVM and RF classifier and the performance of

125



the CAD system has been evaluated in terms of the sensitivity and specificity.

The highest classification accuracies have been achieved using the proposed GPCLBP

feature at the sixth level in all three views. The achieved classification accuracies are 95.66

± 0.98, 94.47 ± 1.91 and 94.21 ± 1.31 at the fifth level of decomposition of A2C and A4C

view and at the sixth level of PLAX view, respectively using the RBF kernel SVM classifier.

Here also the performance of RBF kernel was better than other two. It has been verified by

the experimental results that the classification performance of the existing LBP variants has

been improved significantly by the proposed scheme.

7.1.4 Performance of DWT Based Texture Feature Extraction Techniques

Here, the effectiveness of DWT based statistical texture feature extraction techniques have

been evaluated for the severity analysis of MR and subsequently the discriminatory capability

of Daubechies wavelet-based texture modeling using different classifiers have been assessed.

This has been accomplished using DWT based statistical features extracted from MR image

dataset in three views with SVM classifiers. The proposed features are named as DWT-FOS,

DWT-SGLDM, DWT-GLDS, DWT-NGTDM, DWT-SFM, DWT-TEM, DWT-FPS. Combin-

ing many features is a preferred technique usually utilized for improving the classification

performance of a CAD system. Thus, the combination of all extracted features has been

used as the final feature vector. Furthermore, it has been observed that incorporating the fea-

ture reduction method, PCA, and feature selection method, mRMR, provide the equivalent

classification accuracy at a reduced number of features. These two approaches reduce the

computational cost of the proposed scheme.

The best classification accuracy of 99.12±0.44, 99.70±0.29 and 97.68±1.04 has been

achieved in A2C, A4C, and PLAX views, respectively, using the DWT based texture features.

The db2 and db4 wavelet performed better among all the family members. From the results,

it can be concluded that the proposed approach generates the most discriminative texture

features. The proposed approach for the severity classification of MR has been evaluated

with the accuracy, sensitivity and the specificity of the system.
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7.2 Scope for Future Work

Even though comprehensive experimental work has been done here, to improve the classifica-

tion accuracy of CAD system, the following are some of the suggestions for implementation

in future research work in this field:

1. The limitation of this work is that the data used for this work has been taken from the

single source, therefore, a future step is to evaluate the proposed methods using MR

data from several other sources to remove the chance of biasness ib image data.

2. The multiscale despeckling algorithms were not studied in this work. A work can be

extended for the improvement of multiscale despeckling algorithms.

3. Further, to get the multiresolution images, the GP and DWT have been employed.

Several other multiresolution techniques, namely, fractional wavelet transform (FRWT)

and dual-tree complex wavelet transform (DTCWT) may be investigated to produce

significant texture features.

4. The proposed approach has used Daubechies wavelets to decompose the images by

DWT. Several other mother wavelets may be investigated to see their effect on the

feature extraction and classification of MR images.

5. In this study, the PCA (dimensionality reduction) and mRMR (features selection) tech-

niques have been used to reduce the dimension of feature vector data. Some other

techniques such as Kernel PCA (dimensionality reduction), genetic algorithm, and

correlation-based feature selection may be investigated to reduce the feature vector

data.

6. After compiling the ideas proposed in the present work, an expert system can also be

designed and developed to assist the cardiologist in characterizing the MR images.
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