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Abstract

To improve the reliability and efficiency of the distribution system, an important tool is re-

quired, named as Distribution automation (DA). It includes many applications such as distribu-

tion network reconfiguration, network optimization, state-estimation, reactive power management,

short-circuit analysis etc. In this thesis, one of the application of DA, namely, short-circuit anal-

ysis of distribution network, is explored. Short-circuit analysis is an important tool for analyzing

the system behavior (system voltage profile and currents) under the short-circuit conditions. Mod-

ernize distribution systems have some inherent features, such as radial as well as weakly meshed

configurations with several thousands of nodes, untransposed lines, multiphase line sections, un-

balanced loads, integrated various types of Distributed Generations (DGs) at any locations etc.

Therefore, it becomes necessary to develop the short-circuit analysis algorithm for the distribution

network which considers all these special features of the system in the short-circuit study.

The information provided by the short circuit studies can be used for real-time applications,

such as distribution adaptive relay coordination and settings when feeder reconfiguration is per-

formed automatically and identification of fault locations. The results of short-circuit studies can

also be used for the selection of ratings of the protective equipments. It can also be used for the

selection of appropriate size of the fault current limiters (required in the network to limit the fault

current to a safer value).

Nowadays, the distribution systems are changing from one source supplying structure into

multi-source supplying structure with participations of distributed generations (DGs). Both con-

ventional and renewable energy resources can energize the DG units. Technologies, based on

conventional energy resources, include internal-combustion engines, reciprocating engines, gas

turbines, fuel cells, micro-turbines and batteries, while renewable energy technologies included

photovoltaic energy conversion system (solar PVs), wind energy conversion systems, small hydro

systems, biomass systems, solar-thermal electric systems and geothermal systems. There are so

many advantages of the integration of DGs into the distribution network. DG provides an alter-

native for satisfying the increasing load demand in the network without the need of expansion

of distribution system. DG improves the system efficiency by enhancing the system voltage pro-

file and minimizing the number of required voltage regulators and capacitors and reducing feeder
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power losses.

However, the integration of a large number of DGs into the network introduces so many chal-

lenges. One of the problem mentioned in the literature is the violation of original settings of the

protective equipments during the short-circuit conditions because of the introduction of additional

DG fault current into the network. Generally, the protective devices are designed based on the fault

current analysis of the original system without DGs. When DGs are added to the system, they also

contribute to the fault current in addition to the grid current. Therefore, the fault current sensed by

the protective devices is greater than the original fault current from the grid. It might be possible

that the protective devices can get damaged due to this excessive fault current. Even if the increase

in fault current does not exceed the rating of installed devices, coordination of the primary and

secondary protective devices may be disturbed due to excessive DG fault currents. Therefore, the

appropriate short-circuit analysis algorithm is required for the analysis of unbalanced distribution

network considering DGs under the fault conditions.

In the literature, initially the classical symmetrical component based approach was used for the

short-circuit analysis of distribution system. In this approach the phase quantities of the voltage,

current and impedances in the distribution system are first converted into their respective positive,

negative and zero sequence components and then the short-circuit calculations are performed on

these components separately. This approach is advantageous only when all the three sequence

components are decoupled from each other. But in case of distribution system, this condition is not

true as the mutual impedances between the phases of distribution lines are not equal (since the dis-

tribution lines are untransposed). Therefore, the results obtained by this approach are erroneous.

To overcome this problem, the phase component based approach was introduced in the litera-

ture. In this approach, the short-circuit calculations are directly performed on phase components.

Some of the phase component based short-circuit analysis methods are based on the concepts of

Thevenin equivalent impedance and bus admittance matrices of the systems, while some are based

on [BIBC] (Bus injection to branch current) and [BCBV] (branch current to bus voltage) ma-

trices of the system. In most of these methods, it has been assumed that the load currents are

negligible as compared to the fault currents. Therefore, the load currents have been ignored in the

calculations of short-circuit currents.

Also, the short-circuit analysis methods for the unbalanced distribution system considering
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the effect of DGs are also available in the literature. In these methods, the contribution of DGs

into the fault current have been considered during the short-circuit calculations. Generally, the

inverter based DG models have been considered in these studies. The appropriate inverter control

strategies have been applied to the IBDGs during the faults. Most of these methods are based on

dq− 0 sequence component based approach and have carried out only the time domain simulation

studies for the analysis of short-circuit faults. However, sequence component based fault analysis

methods are not suitable for unbalanced distribution network with single and two phase lines and

for distribution lines with unequal mutual impedances. Also, the available short-circuit analysis

methods for the unbalanced distribution system with IBDGs have not considered the loads during

short-circuit calculations. Hence, the accurate and the efficient short-circuit analysis algorithm

is required for the unbalanced distribution system which also includes the effect of loads in the

short-circuit calculations.

Initially, the short-circuit analysis method, for the unbalanced radial as well weakly meshed

distribution system has been developed which considers the effect of loads during short-circuit

calculations. The proposed method is based on bus admittance matrix of the system. It is a single

iteration method and hence is a less time consuming. This method can also be applicable for

the analysis of multiple faults in the distribution system. To demonstrates the accuracy and the

effectiveness of the proposed method, it has been tested on modified IEEE 123-bus radial and

weakly meshed test distribution system. Subsequently, the proposed method has been extended for

the short-circuit analysis of unbalanced distribution system considering IBDGs. Since, with the

inclusions of IBDGs in the distribution system, the KCL equations of the network become non-

linear. Hence, to solve these set of non-linear equations, the Newton-Raphson based numerical

method has been applied. In this method, initially the current control strategy of the inverters

has been applied to the IBDGs and perform the short-circuit calculations to obtain the values of

bus voltages, branch currents and inverter currents under the fault conditions. Next, on the basis

of obtained values of inverter bus voltages magnitudes, appropriate voltage control strategy has

also been applied to the IBDGs and recalculate the voltages and currents under the short-circuit

conditions. To validate the proposed method, various short-circuit faults have been simulated on

modified IEEE 123-bus test system. Analysis of multiple faults has also been performed on the

same test system using the proposed method.
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Further, a novel load flow analysis method for the unbalanced distribution system considering

various three-phase transformer models and IBDGs is proposed in this work. The nodal admit-

tance matrix based transformer models (p.u.) have been considered in this approach. This method

is based on [BIBC] and [BCBV] matrices of the distribution network. Two modes of operation of

IBDGs, namely ”Constant active power mode” and ”Power and voltage control mode”, have been

considered in this approach. The proposed method is applicable for the radial as well as weakly

meshed distribution systems. The singularity problem for particular types of transformer connec-

tions such as, star-grounded/delta (Y g − ∆), star/delta (Y − ∆), delta/star (∆ − Y ), delta/delta

(∆ − ∆) connections etc., has also been addressed in this method. Next, the short-circuit anal-

ysis method has been developed for the distribution system considering three-phase transformer

models and IBDGs. It is also a Newton-Raphson based approach. The proposed method has been

tested on modified IEEE 123-bus test system and the obtained results have been compared with

the results obtained by the PSCAD/EMTDC simulink software. A case of multiple faults has also

been simulated on the same test system using the proposed method.

Furthermore, the method for the load flow analysis of unbalanced three-phase four wire multi-

grounded radial distribution system has been proposed in this thesis. This method is also based

on [BIBC] and [BCBV] matrices of the network. Separate [BIBC] and [BCBV] matrices have

been developed for phase, neutral and ground currents and bus voltages. Well established Car-

son’s formula has been used for the calculation of line impedances of three-phase four wire multi-

grounded distribution system. A case of isolated neutral has also been simulated using the proposed

method. The proposed method has been tested on two different systems, modified three-phase four

wire multigrounded IEEE 34-bus and IEEE 123-bus distribution systems. Subsequently, two dif-

ferent short-circuit analysis methods have been proposed for three-phase four wire multigrounded

distribution system. One of the proposed method is based on [BIBC] and [BCBV] matrices of

the system, while the other one is based on bus admittance matrix [Ybus] of the system. Both of

these methods have also considered the effect of loads during the short-circuit calculations. The

results obtained by these methods show their accuracy and effectiveness.

Finally, the load flow and short-circuit analysis methods have been developed for the three-

phase four wire multigrounded distribution system considering three-phase transformer models

and IBDGs. These methods have been developed separately for two different configurations of
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transformer models, first one is Delta/Star-grounded (∆-Yg) and the second one is Star-grounded/Star-

grounded (Yg-Yg). First, the load flow analysis method, based on [BIBC] and [BCBV] matrices,

has been developed for the two different transformer configurations. Next, two different short-

circuit analysis methods (one is [BIBC] and [BCBV] matrices based, while the other one is bus

admittance matrix [Ybus] based method) for both the transformer models have been developed.

Again, the current control mode of operation of IBDGs has been considered during the short-

circuit analysis. Both of the proposed short-circuit analysis methods uses the Newton-Raphson

based technique. The results obtained by the proposed methods have been compared with the re-

sults obtained by PSCAD/EMTDC simulink software which show the accuracy of the proposed

methods.
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Chapter 1

Introduction

Abstract

Short-circuit analysis is an important tool for analyzing the behavior of power system under the

fault conditions. The short-circuit studies provide the values of fault currents flowing in the system

which helps in specifying the short time ratings of the system components and the design of required

protective schemes. It is also used for estimating the size of fault current limiters, required in the

system to limit the short-circuit currents to a safer value.

1.1 Overview

DURING normal operating conditions, the currents through the elements of a power system

are well within their specified values. When a fault occurs in a system, the currents far

in excess of normal values usually start flowing through network elements. These excessively

high currents, if not interrupted or limited, can cause serious damage to the equipments [1]. The

occurrence of fault affects reliability, security, and energy quality of the system.

According to ANSI/IEEE Std. 100-1992 [2], a ”fault” may be defined as, ”A physical condition

that causes a device, a component, or an element to fail to perform in a required manner, for

example, a short circuit or a broken wire. A fault almost always involves a short circuit between

energized phase conductors or between phases and ground. A fault may be bolted connection or

may have some impedance in the fault connection”.

The term ”fault” is often used synonymously with the term ”short-circuit” defined as (according

to ANSI/IEEE Std. 100-1992 [2]), ”An abnormal connection (including an arc) of relatively low

impedance, whether made accidentally or intentionally, between two points of different potential”.

An electric power system consists of generators, transformers, transmission lines, distribution

lines, and consumer equipments (loads). The system must be protected against flow of heavy short-

circuit currents by disconnecting the faulty section of the system by means of protective relays and

1



circuit breakers. The short-circuit current will be many times greater than the normal circuit current

and if the circuit is not opened and the current is not interrupted quickly, then extensive damage

can occur. To protect the power system from adverse affects of short-circuits, it is important to

estimate or calculate the value of prospective current likely to occur under short circuit conditions

and ensure that the protective devices provided to interrupt that current are properly rated to with-

stand the fault current and interrupt it timely. The severity of the fault depends on the location of

short-circuit, the path taken by the fault current, fault impedance, system impedance and system

voltage level [3]. In order to maintain the continuity of power supply to all customers which is

the basic purpose of a power system, all faulted parts must be isolated from the system by the

protection schemes [2].

Power system faults can be categorized as [1] -:

1. Symmetrical or balanced faults (all the phases are equally affected by the fault):

a) Three phase short-circuit fault (LLL), b) Three-phase to ground short-circuit fault (LLLG),

2. Unsymmetrical or unbalanced faults (balanced state of the network is disturbed):

a) Shunt type faults -: (i) Single-line-to-ground (SLG) fault, (ii) Line-to-Line (LL) fault, (iii)

Double-line-to-ground (LLG) fault,

b) Series type faults -: (i) Open conductor fault.

Since, the distribution systems are unbalanced in nature (due to single and two phase lines, un-

balanced loads and untransposed feeders) in normal operating conditions, all the type of faults are

considered as unsymmetrical faults in case of distribution system.

The process of evaluating the system voltages and currents under different types of short-

circuits is called short-circuit analysis [1]. The information provided by short-circuit analysis study

can be used to specify the necessary safety measures and the design of the required protection sys-

tem. The short-circuit analysis helps in the selection of appropriate type and size of protective

equipments and coordinating their settings [2]. It can also be helpful in the estimation of the size

of the protective reactors or fault current limiters which may be required to be inserted in the sys-

tem to limit short-circuit currents to a safe value which is not beyond the withstand capability of

the installed circuit-breakers.

Integration of Distributed Generation (DG) to the grid improves the system efficiency (by im-

proving the system voltage profile) and reliability [4–21]. The DGs deliver electrical energy with
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low carbon emission and also help to reduce the feeder loading and system losses [22–24]. Gener-

ally, Inverter Based Distributed Generations (IBDGs) such as, fuel cell, wind power, solar photo-

voltaic (SPV), micro-turbines etc. [25–30] are used in the distribution system. However, integration

of a DG to a distribution system increases the fault level of the system as it contributes to the fault

current during a fault [31–36]. A single small DG unit may not contribute much to the fault current,

but the contributions of many small units may cause malfunctioning of protective devices due to

increased fault current [37]. Hence, with the integration of DG, short-circuit currents may change

from time to time due to the variation in generation of DG. Therefore, there is always a need for

a suitable fault analysis method that can take the DG integration into account for estimating the

short-circuit current.

1.2 Literature review

1.2.1 Short-circuit analysis of three-phase three wire distribution system

Two approaches are commonly used in the industry for analyzing short circuit faults in Distribution

systems [38]

1. Classical symmetrical component based approach,

2. Phase variable approach,

1. Classical symmetrical component based approach -:

In symmetrical component method, the elements in the distribution system are represented by

their positive, negative, and zero sequence equivalent circuits [39–41]. Fault analysis method us-

ing symmetrical components [39] uses a modeling approach for single and two phase lines in fault

calculation based on symmetrical components. In this approach, single and two phase lines are

presented as equivalent three phase lines by using dummy lines and dummy nodes for the pur-

pose of the fault calculation. The voltage drop across dummy line is zero as there is no coupling

between the dummy line and the other actual phases of the line, and the current injections at the

dummy node is neglected. An error analysis of the symmetrical components based fault analysis

methods has been performed for IEEE 13-bus, 34-bus, and 123-bus systems in [40]. Symmetrical

component method takes the assumption that the mutual impedances between all the phases are

equal. This assumption, which is not true in case of distribution system, introduces an error in the
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values of fault currents in distribution systems. In this paper, all major type of faults, symmetrical

and unsymmetrical, are considered at each bus and the results obtained from symmetrical compo-

nent and three phase model approaches are compared. The maximum error obtained in all types of

fault is 8.53%, which is substantial and cannot be neglected. It is also shown that these errors are

independent of the size of the system, but are dependent on the degree of unbalance present in the

system. A Fortescue short-circuit computation (SCC) method based on symmetrical components

transformation of three-phase, two-phase and single-phase system has been proposed in [41]. It is

based on Fortescue nodal admittance matrix of the network. The proposed method has resolved

the problems occurred in symmetrical component based method due to unbalanced nature of dis-

tribution system and untransposed lines. In this method, first, the equivalent Fortescue Thevenin

impedance matrix is obtained at the fault point (by deactivating all the active sources and injecting

a unity current, one at a time, at each of the phases of Fortescue node) and next, the fault current

is calculated with the help of current injection method. However, these methods [39–41] have not

considered the effect of loads during the short-circuit calculations.

2. Phase variable approach -:

In phase variable method, the elements in the distribution system are represented in the phase

domain by their corresponding three phase impedance or admittance matrices [42–56]. The method

of triangular factorization of [Ybus] matrix to simulate different faults is presented in [42]. Mod-

els of Co-generator (induction or synchronous generators) and three phase transformer are also

included in the test system. The method has been applied to balanced, unbalanced, radial and

meshed type distribution networks. A linear graph based network modeling approach to form the

admittance matrix (that relates the bus voltages to the injected bus currents) has been proposed

in [43]. In this approach, the fault analysis has been carried out in both time and frequency do-

main. A relatively smaller 16-bus meshed distribution system with one non-utility generator and

one large induction machine load model has been used to demonstrate the steps of the proposed

method. A hybrid compensation based short-circuit analysis method is proposed in [44]. In this

method two algorithms namely, Distribution power flow (DISFLO) and Distribution short circuit

analysis (DISCA) are utilized. DISFLO is used to solve the load flow for radial and weakly meshed

distribution system in phase domain. DISCA is then used to simulate various types of faults, single
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as well as simultaneous faults. Two different lateral and load equivalent compensation based ap-

proaches [45] have been proposed for the short circuit analysis of radial distribution networks. In

this work, Initial Condition Boundary Matching (ICBM) method is used for the analysis of short

circuit faults. The algorithm has been tested on two unbalanced (20-bus and 394-bus) distribution

system.

A method that generalizes both backward-forward and short circuit hybrid compensation proce-

dure for performing the short circuit analysis of four wire distribution network is proposed in [46].

It has been applied to a 29-bus real-life four-wire, three-phase LV (low-voltage) feeder and IEEE-

34 bus four-wire, three-phase MV (medium-voltage) feeder. The short circuit analysis methods,

based on two relationship matrices namely, [BIBC] and [BCBV], have been proposed for radial

and meshed distribution systems in [47] and [48], respectively. The [BIBC] matrix represents the

relationship between injected bus current and branch currents, while the [BCBV] matrix gives the

relationship between branch current and bus voltages. Various short-circuit fault cases have been

simulated on 11.4 kV test feeder of Taiwan Power Company using the proposed method. The short

circuit analysis approach [47] has been extended in [49] to include the effect of Distributed Gen-

eration (DG) in the radial distribution system network. The DG model used in this work is similar

to the synchronous generator model used in short-circuit studies [50]. The method has been exten-

sively tested on different systems under different fault conditions. The effect of fault impedance on

the unbalanced faulted distribution system has been described in the short-circuit analysis method

given in [51]. This method is based on bus impedance matrix [Zbus] of the network which includes

the effect of fault impedances in the short-circuit calculations. Various short-circuit studies have

been performed on IEEE 13-bus test feeder with different values of fault impedances to show its

effect on system voltages and currents.

A fault analysis with hybrid compensation method, based on relationship matrices [BI] (bus in-

jection ot branch current) and [ZV−BC ] (branch current to bus voltage), has been proposed in [52].

Different short-circuit and open conductor fault cases have been simulated using this method for

different test systems, with synchronous generator as DG model. A fault analysis algorithm, pro-

posed in [53], includes the effect of fault resistance in the calculation of fault currents for both

radial as well as weakly meshed distribution networks. In this method first the fault resistance is

calculated and then the modified bus impedance matrix is obtained which includes the effect of
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calculated fault resistance. A novel short-circuit analysis method has been presented in [54] to

analyze different types of faults in the unbalanced distribution system. It is a hybrid compensa-

tion based method which includes the effects of microturbine generation (MTG) as a distributed

generator (DG). In this paper, modeling of a MTG has been carried out in both islanded and grid-

connected modes of operation. A 8-bus MG distribution system feeder is used as a test system

which consists of a grid, a static switch, an MTG, a battery energy storage system (BESS), and

photovoltaic arrays. A model-based fault diagnosis scheme has been designed in [55], which is

capable of real time detection of all types of faults in the distribution network. In this paper a lin-

ear dynamical-fault dependent state space model of Single Machine Infinite BUS (SMIB) power

system has been derived which is capable of capturing the dynamics of the complete system over

full time scale and therefore is suitable for the fault studies of any kind of fault. A multiphase

short-circuit analysis method based on the concept of selected inversion algorithm called Sellnv

has been proposed in [56]. First, the Thevenin equivalent impedance has been obtained at the fault

point with the help of augmented nodal admittance matrix. Next, the short-circuit currents are

calculated with the help of obtained Thevenin equivalent impedance at fault bus.

However, most of these short-circuit analysis methods have not included the effect of loads

during the short-circuit calculations, which may give less accurate results.

1.2.2 Short-circuit analysis of three-phase three wire distribution system with inverter based

Distributed Generations (IBDGs) and three-phase transformer models

Integration of distributed generation (DG) to the grid improves the system efficiency and reliability.

However, the integration of DG to a distribution system increases the fault level of the system as

it contributes to the fault current during a fault. To overcome the above discussed problem, two

schemes have been proposed in the literature. The first scheme recommends the disconnection

of all the DGs present in the system during faults before the operation of protective devices [57],

while the second scheme proposes to restrict the fault current contribution from DGs to a safer

value, so that all the protective devices present in the system function properly [58–65]. This can

be achieved by incorporating a control strategy in the inverter of the IBDGs to limit its current

during fault conditions. First scheme has a drawback that for every sustained as well as temporary

fault, all DGs will be first disconnected from the grid and subsequently would be synchronized
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with the grid after fault clearance. Disconnection of DGs also causes a voltage dip in the system.

Hence, the second scheme [58–65] is preferred nowadays.

In [58–65], for considering the IBDGs in fault analysis, an IBDG has been modeled in sequence

component frame to represent the operation of the inverter in current control mode. The model

of the current controlled inverter is based on dq-0 control schemes. In this scheme, the phase

components of the inverter current from IBDG are first converted into dq-0 sequence components

and a control scheme is provided for controlling these dq-0 components. The effectiveness of these

control techniques have been demonstrated through time-domain simulation studies carried out on

MATLAB/SIMULINK environment [66]. In [67], an experimental setup for fault analysis with

dq-0 control scheme for inverter has been implemented. However, these dq-0 component based

fault analysis methods have only been carried out in the time domain simulation studies and been

tested only on the small size distribution systems.

In [68], a conventional fault analysis method, based on system admittance matrix, that also in-

cludes the inverter interfaced Distributed Generators (IIDGs), has been proposed. In this scheme,

it is assumed that the IIDG is operating in its voltage control mode during the faults. The contri-

bution of IIDGs during the sub transient and transient period of the fault has also been analyzed.

In [54, 69] a short-circuit analysis method with micro turbine generation (MTG) system has been

proposed, for both islanded and grid connected mode. This method is based on two matrices;

BIBC (Bus injection to branch current) and BCBV (Branch current to bus voltage) [70]. A

fault analysis method with multiple grid connected photovoltaic (PV) inverters has been developed

in [71] which utilizes symmetrical component of impedances. In [72], a short-circuit calcula-

tions (SCC) method, based on superposition theorem, is developed which can incorporate different

types of DG models (Synchronous DG, Induction DG, Double fed induction generator (DFIG) and

IBDG) during the fault current calculations.

However, these analytical and dq-0 component based short-circuit analysis algorithms with

DGs have also not considered the effect of loads during the calculations of fault current, branch

currents and bus voltages under the short-circuit conditions.

In [54, 58–65, 67, 69, 71, 72], the short-circuit analysis has been performed for the distribution

system with IBDGs only. While, in actual practice, the IBDGs are connected to the grid through a

step down transformer [73,74]. Therefore, it becomes necessary to incorporate various three-phase
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transformer models in load flow as well as short-circuit studies of distribution network [73, 74].

Different load flow analysis methods based on forward/backward sweep approach to incor-

porate three phase transformer models in the distribution network are available in the literature

[73, 75–79]. In [73], the three-phase power flow approach, for integrated three wire and four wire

multi-grounded LV distribution network with rooftop solar PV, has been developed. The proposed

method has incorporated Delta/Star configuration of the transformer in the load flow analysis of LV

distribution system. The method proposed in [75] has developed the models for various transformer

configurations in terms of voltage and current based equations. But the drawback of this method

is that for each transformer configuration of different vector group, separate current and voltage

equations are formed, which is a lengthy procedure. In [76], only the model of an ungrounded star-

delta transformer has been developed and incorporated in the proposed load flow analysis method.

It uses the current and voltage equation based model of transformer (the equations are presented in

a matrix form). Therefore, it also requires separate voltage and current equation based models for

different vector groups of transformers.

In [77] and [78], nodal admittance matrix based transformer models have been used in the load

flow analysis methods. Nodal admittance matrix models of various transformer configurations

with different vector groups are given in [80]. These methods also resolve the singularity prob-

lem, occurring in backward/forward sweep algorithm based load flow method, for particular types

of transformer connections such as, star-grounded/delta (Y g − ∆), star/delta (Y − ∆), delta/star

(∆ − Y ), delta/delta (∆ − ∆) connections etc. In [77] actual nodal admittance matrix model is

used, while in [78], the per unit nodal admittance matrix model is used. Modified augmented nodal

analysis (MANA) based approach has been developed in [79]. In this method, a single matrix is

formed which is used for both the backward and forward sweep operations. The BIBC/BCBV

matrix based approach has been developed in [81] for the load flow solution of balanced distribu-

tion system with phase-shifting transformer model. The PI-equivalent model of the tap changing

single-phase transformer has been used and incorporated in the load flow equations. But the draw-

back of this method is that it is only applicable to the balanced three-phase distribution systems.

Different short-circuit analysis methods of distribution system with transformer models are

available in the literature [76, 82, 83]. In [76], the ungrounded star-delta configuration of trans-

former is used in short-circuit analysis method. This method is based on Thevenin equivalent
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impedance matrix of the system. This method is only applicable to a particular type of trans-

former model. The short-circuit analysis method developed in [82] is based on admittance matrix

based approach. The current and voltage equation based transformer models are used in [82]. In

this method, first the connection matrices are formed for various transformer configurations and

then these matrices are incorporated in the admittance matrix model of the network for carrying

out short-circuit calculations. The admittance summation method, which is a sequence compo-

nent based approach, is used for the short-circuit calculations with three-winding and two winding

transformer models in [83]. Admittance summation matrix has been formed by the summation of

sequence component of transformer admittances, load admittances and fault admittance.

However, most of these available load flow and short-circuit analysis methods of unbalanced

distribution systems in the literature have not considered the IBDGs and three-phase transformer

models simultaneously.

1.2.3 Load flow and short-circuit analysis of three-phase four wire multigrounded distribu-

tion system

For three-phase three wire unbalanced distribution systems, various load flow [70, 75–79, 84–120]

and short-circuit analysis [39–49, 51–55, 58–65, 68, 76, 82, 83, 121–127] methods have been pro-

posed. Most of the distribution systems are unbalanced in nature and are located in high density

load areas, these systems can be highly meshed. Under these circumstances, the three-phase four

wire multigrounded configuration has been largely adopted, due to smaller installation costs and

better sensitivities for fault protection, when compared with three phase three wire configura-

tion [128, 129]. In the literature, various load flow analysis methods have been developed for the

three phase four wire multigrounded distribution systems [128–135].

A backward/forward technique based load flow analysis method for the three-phase four wire

radial distribution system network has been proposed in [128]. Two different cases have been dis-

cussed in this work, namely, i) isolated neutral and ii) without neutral. The method has been im-

plemented on two test systems; i) IEEE 34-bus MV (Medium Voltage) test feeder and ii) LV (Low

Voltage)-29 bus test feeder. In [129, 130], the four conductor current injection method (FCIM)

has been proposed for the load flow analysis of three-phase four wire distribution network. This

method is based on Newton-Raphson technique in rectangular form to solve the set of non-linear
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current injection equations. The proposed methodology has been tested on practical distribution

feeder in Brazil as well as on IEEE 4 and 34-bus test feeders. In [131], the time domain studies

have been performed for the analysis of multi-grounded three-phase four wire distribution system.

A full-scale model of a multi-grounded four-wire unbalanced distribution system was developed

using P-Spice. The effect of neutral and grounding has also been observed on the sample system

in this work.

In [132], a backward/forward technique based power flow algorithm has been developed for

the single wire and three wire distribution network with earth return (DNER). The method has

been tested on IEEE 34-bus test feeder, with different types of load models. In [133], the back-

ward/forward sweep approach based load flow analysis method for the three phase four wire dis-

tribution system with micro wind generation has been proposed. The modeled test network used

in this work consists of a section of LV (urban) distribution network (Ireland) incorporating 74 do-

mestic homes facilitated by 10 mini-pillar connections. In [134], the power flow method, based on

backward/forward approach, for three-phase four wire distribution system with protective multiple

earthing (PME), during an open neutral condition is developed. In addition to this, the return cur-

rent flow is also modeled with the help of nodal analysis of the network formed by the open neutral

wire, assumed earth wire and grounding electrodes. In [135], the asymmetrical three-phase (with

neutral) power flow problem, based on correction current injection methodology, has been devel-

oped for unbalanced multiple-grounded 4 wire distribution systems. The proposed method is based

on formulation of admittance matrix of the system. The proposed methodology has also incorpo-

rated voltage dependent load models and distributed generation models of micro wind generation

and solar PV generation systems.

Various short-circuit analysis methods are also available in the literature for the three-phase

four wire unbalanced distribution network [136, 137]. The current injection based short-circuit

analysis method has been developed in [136] for the mutliphase electrical distribution system. The

Newton-Raphson based technique has been used in the proposed method. A nodal admittance

matrix based transformer model has also been considered in the short-circuit calculations. The

proposed method has been tested on IEEE 4-bus, 13-bus and NEV (Neutral to earth voltages) test

systems to demonstrate its efficiency. In [137], the short-circuit analysis method, for the com-

putation of phase to earth currents for various short-circuit faults in unbalanced multi-wire radial
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distribution model, has been developed. The proposed method is based on the analysis of unbal-

anced multi-wire line model using Kirchhoffs laws and linear equation solving techniques. It uses

the tableau analysis technique to solve the set of linear KCL equations.

1.3 Motivation

In the literature, the loads are usually neglected in the calculation of fault currents, branch currents

and bus voltages under the fault conditions. However, in [82,83,138] it has been indicated that the

load model can be critical in short circuit analysis. To investigate the effect of loads on the short-

circuit behavior of a distribution system, two types of fault cases (SLG and LLG) for different test

systems have been simulated on PSCAD/EMTDC [139] platform. Table 1.1 shows the fault current

supplied by source considering loads (Iswl) and neglecting loads (Iswol). It can be observed that,

Iswl is always more than Iswol. Furthermore, the difference in the values increases with the system

size. In general, as the real distribution systems are quite large as compared to the test systems

considered, this difference can be quite substantial and influence the rating of the protective devices

installed at the substation. Hence, it is important to consider the effect of loads in the short-circuit

calculations.

Also in the literature, most of the fault analysis methods of distribution system with IBDGs are

based on dq-0 sequence component approach and on time domain simulation studies. However,

these methods have only considered the current control mode of operation of inverter under the

short-circuit conditions. Most of the analytical methods available in the literature for short-circuit

analysis of distribution system with IBDGs and three-phase transformer models (simultaneously)

have not considered the loads during short-circuit calculations.

In the literature, different load flow analysis methods for three phase four wire distribution

systems was developed. Most of the developed methods are based on backward/forward approach.

The developed algorithms in these methods are only applicable to the following distribution sys-

tems; i) three-phase four wire Distribution system with isolated neutral (without ground conduc-

tor), ii) three-phase four wire Distribution system with ground return (without neutral conduc-

tor), and iii) three-phase four wire Distribution system with zero neutral to ground or grounding

impedance (i.e. neutral at all the buses are short-circuited to their respective local ground). There-

fore, these developed methods have not considered all the cases of three-phase four wire multi-
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Table 1.1: Case study to observe the effect of load currents in fault analysis

System Fault type Fault at bus no. Faulty phase Iswl (kA) Iswol (kA) Error (%)

7-Bus [48]
SLG

5
a 1.9106 1.8657 2.35

LLG a and b 3.0552 3.0101 1.48

IEEE 13-Bus [140]
SLG

675
a 2.8126 2.6842 4.6

LLG a and b 4.3864 4.307 1.81

IEEE 37-Bus [140]
SLG

724
a 1.3045 1.2234 6.22

LLG a and b 1.4444 1.3687 5.24

IEEE 123-Bus [140]
SLG

95
a 1.7288 1.5537 10.12

LLG a and b 2.1468 1.9563 8.87

grounded distribution system. A case of three-phase four wire multigrounded distribution system

through grounding resistance has not been discussed in the literature.

The available short-circuit analysis methods for three-phase four wire multigrounded distribu-

tion systems have not considered the IBDGs. The synchronous generator based DG model has

only been used in the available short-circuit studies. Also, these methods have not considered the

effect of loads in the short-circuit analysis of three-phase four wire distribution system with ground

return.

1.4 Contribution of the author

Motivated by the above lacuna, the following studies have been carried out in this thesis,

• Development of a short-circuit analysis method for the unbalanced distribution system con-

sidering loads. The proposed method is based on admittance matrix [Ybus] of the system.

• Formulation of a short-circuit analysis algorithm for the unbalanced radial as well as weakly

meshed distribution network with inverter based Distributed Generation (IBDG) considering

loads. The current control and voltage control modes of operation of the inverter have been

considered during the short-circuit calculations.

• Development of load flow and short-circuit analysis methods for the unbalanced distribu-

tion network incorporating three-phase transformer models and IBDGs. First, the load flow

analysis method, based on [BIBC] and [BCBV] matrices of the system, has been proposed

which incorporates the three-phase transformer models and IBDGs. Next, the short-circuit
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analysis method based on Newton-Raphson technique has been developed for the unbalanced

distribution system with three-phase transformer models and IBDGs.

• Development of load flow and short-circuit analysis methods for the unbalanced three-phase

four wire multigrounded radial distribution system. First, the load flow analysis method,

based on [BIBC] and [BCBV] matrices of the system, has been developed. Next, two

different short-circuit analysis methods, one based on [BIBC] and [BCBV] matrices of the

system and the other one based on [Ybus] matrix of the system, have been proposed.

• Development of load flow method (based on [BIBC] and [BCBV] matrices) and two dif-

ferent short-circuit analysis methods (one based on [BIBC] and [BCBV] matrices and next

one based on [Ybus] matrix) for the unbalanced three-phase four wire multigrounded radial

distribution system which incorporate three-phase transformer models and IBDGs. Two dif-

ferent transformer configurations, namely Delta/Star-grounded (∆-Yg) and Star-grounded/Star-

grounded (Yg-Yg), have been considered in both load flow and short-circuit studies.

1.5 Thesis organization

Apart from this chapter, there are six more chapters in this thesis. Chapter 2, describes the short-

circuit analysis method for the unbalanced radial as well weakly meshed distribution system. In

Chapter 3, short-circuit analysis method for the unbalanced distribution system with inverter based

Distributed Generation (IBDG) is presented. Load flow and short-circuit analysis methods for

the unbalanced distribution system considering three-phase transformer models and IBDGs are

presented in Chapter 4. In Chapter 5, the load flow and short-circuit analysis methods for the un-

balanced three-phase four wire multigrounded radial distribution system are presented. In Chapter

6, load flow and short-circuit analysis methods for the three-phase four wire multigrounded distri-

bution system with two different three-phase transformer models (Delta/Star-grounded (∆-Yg) and

Star-grounded/Star-grounded (Yg-Yg)) and IBDGs are presented. Lastly, Chapter 7 lists the major

conclusions of this work as well as the future scope of work.

In this thesis all simulation studies have been carried out in PSCAD/EMTDC simulink software

[139] and MATLAB 12a [66].

In the next chapter, a procedure for the short-circuit analysis of unbalanced radial and weakly

meshed distribution system considering loads is described.
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Chapter 2

Short-circuit analysis of unbalanced Distribution

system considering loads

Abstract

This chapter proposes an efficient and accurate short-circuit fault analysis method for balanced

and unbalanced distribution system considering the effect of loads. The proposed method is based

on bus admittance matrix [Ybus] of the distribution system. This method is applicable to both

radial as well as meshed distribution system. The developed method is implemented on modi-

fied IEEE 123-bus radial as well as meshed distribution system. Comparison of the test results

obtained by the proposed method with those obtained by time-domain simulation studies using

PSCAD/EMTDC software establishes the accuracy of the proposed method.

2.1 Introduction

SHORT-circuit analysis is an essential tool for determining the short-circuit-current rating of

the protective devices and different substation equipments to be installed in a distribution

system as well as for co-ordination of the protective devices. Most of the available short-circuit

analysis methods [42–49,52,54,141–143] in the literature have assumed that the load currents are

negligible as compared to the fault currents. Therefore, it is assumed that only the fault current

is flowing in the system under the fault conditions, which is not the practical situation. However,

in [82, 83, 138] it is indicated that the load model can be critical in short circuit analysis. In this

chapter, a technique for short-circuit analysis is proposed which is based on bus admittance matrix

[Ybus] of the distribution network, considering the loads during short-circuit calculations.

This chapter is organized as follows. Section 2.2 describes the formulation of the proposed

short-circuit analysis method for unbalanced radial as well as meshed distribution system. The

main results of this chapter are presented in Section 2.3 and finally Section 2.4 highlights the main
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conclusions of this chapter.

2.2 Short-circuit analysis of unbalanced distribution system considering loads

2.2.1 System modeling

Let us consider a three phase, unbalanced radial distribution system having nb bus and mb lines, as

shown in Fig. 2.1. The system has (mb − 2) three phase lines, one two phase and one single phase

line. Distribution line between buses i and g is a two phase line, while that between buses g and h

is a single phase line. Bus 1 is the substation bus and V̄ a
s ,V̄ b

s , and V̄ c
s are the voltages of phase a, b

and c, respectively, of this bus. z̄aaij , z̄bbij , and z̄ccij are the self impedances of phases a, b and c of line

between buses i and j , respectively. z̄abij , z̄bcij , and z̄acij are the mutual impedances between phases a

and b, b and c, and a and c of line between buses i and j , respectively. The line impedance matrix

between buses i and j is given as,

z̄abc
ij =


z̄aaij z̄abij z̄acij

z̄baij z̄bbij z̄bcij

z̄caij z̄cbij z̄ccij

 (2.1)

where, z̄pqij = z̄qpij ; p, q = a, b, c; p 6= q. The line admittance matrix between buses i and j can be

calculated as,

ȳabc
ij =

[
z̄abc
ij

]−1
=


ȳaaij ȳabij ȳacij

ȳbaij ȳbbij ȳbcij

ȳcaij ȳcbij ȳccij

 (2.2)

The loads have been modelled as constant impedance obtained from pre-fault conditions. These

load models can be easily included in the [Ybus] matrix of the network. The load impedance and

load admittance are given as,

z̄pid =
V̄ p
i

Īpi
(2.3)

ȳpid =
1

z̄pid
(2.4)

In eqs. (2.3) and (2.4), z̄pid and ȳpid are the equivalent load impedance and load admittance of phase

p (p = a, b, c) of i th bus respectively, V̄ p
i and Īpi are the voltage and injected load current of phase
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p (p = a, b, c) at i th bus respectively, obtained from the load flow solution. The load admittance,

calculated in eq. (2.4), is subsequently included in the [Ybus] matrix of the distribution network

to consider the effect of loads on short-circuit calculations. The load admittance matrix at bus i is

given as,

ȳabc
id =


ȳaid 0 0

0 ȳbid 0

0 0 ȳcid

 (2.5)

Applying Kirchhoff’s Current Law (KCL) at bus 2 in Fig. 2.1, we get,

ȳabc
12 .(V̄abc

2 − V̄abc
s ) + ȳabc

23 .(V̄abc
2 − V̄abc

3 ) + ȳabc
2d .V̄abc

2 = 0

(ȳabc
12 + ȳabc

23 + ȳabc
2d ).V̄abc

2 − ȳabc
23 .V̄abc

3 = ȳabc
12 .V̄abc

s

Ȳabc
22 .V̄abc

2 + Ȳabc
23 .V̄abc

3 = ȳabc
12 .V̄abc

s (2.6)

where Ȳabc
22 = (ȳabc

12 + ȳabc
23 + ȳabc

2d ); Ȳabc
23 = −ȳabc

23 .

V̄abc
s =

[
V̄ a
s V̄ b

s V̄ c
s

]T
; V̄abc

r =
[
V̄ a
r V̄ b

r V̄ c
r

]T
; where, r = 2, 3.

Next, applying KCL at bus i , we get,

Ȳabc
i(i−1).V̄

abc
(i−1) + Ȳabc

ii .V̄abc
i + Ȳab

ig .V̄
ab
g + Ȳabc

ij .V̄abc
j = 0 (2.7)

where Ȳab
ig = −


ȳaaig ȳabig

ȳbaig ȳbaig

0 0

 =
[
Ȳab

gi

]T
, and V̄ab

g =
[
V̄ a
g V̄ b

g

]T
.

Similarly the KCL equations at bus g (two phase) and bus h (single phase) are given in eqs. (2.8)

and (2.9), respectively as,

Ȳab
gi .V̄

abc
i + Ȳab

gg .V̄
ab
g + Ȳa

gh.V̄
a
h = 0 (2.8)

Ȳa
hg.V̄

ab
g + Ȳa

hh.V̄
a
h = 0 (2.9)

where Ȳa
gh = −

ȳaagh
0

 =
[
Ȳa

hg

]T
, and V̄a

h =
[
V̄ a
h

]
.

Therefore, the KCL equations for an unbalanced distribution system (having u three phase, v two

phase and w single phase buses) can be expressed in the matrix form as,[
Ybus

]
.
[
V
]

=
[
I
]

(2.10)
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where

[Ybus] =



Ȳabc
22 · · · Ȳabc

2u Ȳ
pq
2(u+1)

· · · Ȳ
pq
2(u+v)

Ȳ
p
2(u+v+1)

· · · Ȳ
p
2(u+v+w)

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Ȳabc
u2 · · · Ȳabc

uu Ȳ
pq
u(u+1)

· · · Ȳ
pq
u(u+v)

Ȳ
p
u(u+v+1)

· · · Ȳ
p
u(u+v+w)

Ȳ
pq
(u+1)2

· · · Ȳ
pq
(u+1)u

Ȳ
pq
(u+1)(u+1)

· · · Ȳ
pq
(u+1)(u+v)

Ȳ
p
(u+1)(u+v+1)

· · · Ȳ
p
(u+1)(u+v+w)

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.

Ȳ
pq
(u+v)2

· · · Ȳ
pq
(u+v)u

Ȳ
pq
(u+v)(u+1)

· · · Ȳ
pq
(u+v)(u+v)

Ȳ
p
(u+v)(u+v+1)

· · · Ȳ
p
(u+v)(u+v+w)

Ȳ
p
(u+v+1)2

· · · Ȳ
p
(u+v+1)u

Ȳ
p
(u+v+1)(u+1)

· · · Ȳ
p
(u+v+1)(u+v)

Ȳ
p
(u+v+1)(u+v+1)

· · · Ȳ
p
(u+v+1)(u+v+w)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Ȳ
p
(u+v+w)2

· · · Ȳ
p
(u+v+w)u

Ȳ
p
(u+v+w)(u+1)

· · · Ȳ
p
(u+v+w)(u+v)

Ȳ
p
(u+v+w)(u+v+1)

· · · Ȳ
p
(u+v+w)(u+v+w)



.

[V] =
[
V̄abc

2 · · · V̄abc
u V̄pq

(u+1) · · · V̄pq
(u+v) V̄p

(u+v+1) · · · V̄p
(u+v+w)

]T
;

[I] =
[
ȳabc
12 .V̄abc

s 0 0 · · · 0 0 · · · 0 0
]T

The elements of the [Ybus] matrix for the unbalanced distribution system (having u three phase, v

two phase and w single phase buses) can be calculated as

Ȳ pp
ii = ȳppi1 + ȳppi2 + · · ·+ ȳppiu + ȳppi(u+1) + · · ·+ ȳppi(u+v) + ȳppi(u+v+1) + · · ·+ ȳppi(u+v+w) + ȳpid

Ȳ pq
ii = ȳpqi1 + ȳpqi2 + · · ·+ ȳpqiu + ȳpqi(u+1) + · · ·+ ȳpqi(u+v)

Ȳ pp
ij = −ȳppij

Ȳ pq
ij = −ȳpqij . (2.11)

where i=2, . . . , u; j=1, . . . , u; j 6= i ; p=a, b, c; q=a, b, c; p 6= q for u three phase buses,

i=(u+1), . . . , (u + v); j=(u+1), . . . , (u + v); j 6= i ; p=(a, b) or (b, c) or (c, a); q=(a, b) or

(b, c) or (c, a); p 6= q for v two phase buses,

i=(u + v+1), . . . , (u + v + w); j=(u + v+1), . . . , (u + v + w); j 6= i ; p and q = (a or b or c),

for w single phase buses.

Hence, the sizes of the [Ybus] matrix, [V] and [I] vectors for an unbalanced distribution system

having u three phase, v two phase and w single phase buses, are ((3u + 2v + w) − 3) × ((3u +

2v+w)− 3), ((3u+ 2v+w)− 3)× 1 and ((3u+ 2v+w)− 3)× 1, respectively. Once the [Ybus]

matrix is formed for the given distribution network, the phase voltages at all the buses can easily

be calculated by eq. (2.10). The branch current between bus i and j are then calculated using eq.

(2.12) as, [
B̄abc

ij

]
=
[
ȳabc
ij

]
.
[
V̄abc

i − V̄abc
j

]
(2.12)
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Now, most of the elements of [Ybus] matrix are zero as there are a maximum of two or three

connections at each bus. Hence the sparsity based technique has been used in this work for matrix

operations. With the above modelling approach in place, we are now ready to discuss the method

of short-circuit calculations for unsymmetrical faults.

2.2.2 Single line-to-ground fault (SLG)

Let us consider an SLG fault through fault impedance z̄f on phase a of bus i , as shown in Fig.

2.2(a) [144]. In this figure, Īaid, Ī
b
id and Īcid are the load currents of phases a, b, and c of bus i

respectively. The fault current in the faulted phase a is given as,

Īaif =
V̄ a
i

z̄f
= ȳf .V̄

a
i (2.13)

where ȳf= 1
z̄f

;

Applying KCL at phase a of bus i , we get

Ȳ aa
i2 .V̄

a
2 + Ȳ ab

i2 .V̄
b

2 + · · · · · ·+ Ȳ aa
ii .V̄

a
i + · · · · · ·+ Ȳ aa

i(u+v+w).V̄
a
i(u+v+w) + ȳf .V̄

a
i = 0

Ȳ aa
i2 .V̄

a
2 + Ȳ ab

i2 .V̄
b

2 + · · · · · ·+ (Ȳ aa
ii + ȳf ).V̄

a
i + · · · · · ·+ Ȳ aa

i(u+v+w).V̄
a
i(u+v+w) = 0 (2.14)

From eq. (2.14), it is evident that only the diagonal element of the ith row of phase a of [Ybus]

matrix is modified. Hence, the modified element of the [Ybus] matrix due to SLG fault is given as,

Ȳ aa
ii new = Ȳ aa

ii + ȳf (2.15)

Once the elements of the [Ybus] matrix are updated, the bus voltages for SLG fault are calculated

using eq. (2.10) with the updated [Ybus] matrix. The fault current and the branch currents under

the fault condition are then calculated using eqs. (2.13) and (2.12) respectively.

2.2.3 Double and three line-to-ground faults (LLG and LLLG)

If an LLG fault occurs between phases a and b of bus i through a fault impedance z̄f , as shown in

Fig. 2.2(b) [144], the fault currents in both the faulted phases are calculated as,

Īaif =
V̄ a
i

z̄f
= ȳf .V̄

a
i ; Ībif =

V̄ b
i

z̄f
= ȳf .V̄

b
i (2.16)

The total fault current is then calculated as,

Ī totalf = Īaif + Ībif (2.17)
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Figure 2.2: Unsymmetrical Short-circuit faults, (a) SLG fault, (b) LLG fault, (c)

LLLG fault, (d) LL fault

The KCL equations at phases a and b of bus i are given in eqs. (2.18) and (2.19) respectively,

Ȳ aa
i2 .V̄

a
2 + Ȳ ab

i2 .V̄
b

2 + · · · · · ·+ (Ȳ aa
ii + ȳf ).V̄

a
i + · · · · · ·+ Ȳ aa

i(u+v+w).V̄
a
i(u+v+w) = 0 (2.18)

Ȳ ba
i2 .V̄

a
2 + Ȳ bb

i2 .V̄
b

2 + · · · · · ·+ (Ȳ bb
ii + ȳf ).V̄

b
i + · · · · · ·+ Ȳ bp

i(u+v).V̄
p
i(u+v) = 0 (2.19)

Hence, the modified elements of [Ybus] matrix due to LLG fault are given as,

Ȳ aa
ii new = Ȳ aa

ii + ȳf (2.20a)

Ȳ bb
ii new = Ȳ bb

ii + ȳf (2.20b)
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Similarly if an LLLG fault occurs on bus i through a fault impedance z̄f (as shown in Fig. 2.2(c)

[144]), the fault currents are then calculated as,

Īaif =
V̄ a
i

z̄f
= ȳf .V̄

a
i ; Ībif =

V̄ b
i

z̄f
= ȳf .V̄

b
i ; Īcif =

V̄ c
i

z̄f
= ȳf .V̄

c
i (2.21)

The total fault current is therefore calculated as,

Ī totalf = Īaif + Ībif + Īcif (2.22)

The modified elements of [Ybus] matrix for LLLG fault are given as,

Ȳ aa
ii new = Ȳ aa

ii + ȳf (2.23a)

Ȳ bb
ii new = Ȳ bb

ii + ȳf (2.23b)

Ȳ cc
ii new = Ȳ cc

ii + ȳf (2.23c)

2.2.4 Line-to-line fault (LL)

When an LL fault occurs between phases a and b of bus i through a fault impedance z̄f (as shown

in Fig. 2.2(d) [144]), the fault currents in both the faulted phases are calculated as,

Īaif =
(V̄ a

i − V̄ b
i )

z̄f
= ȳf .(V̄

a
i − V̄ b

i ) = −Ībif (2.24)

The KCL equations at phases a and b of bus i are given in eqs. (2.25) and (2.26) respectively,

Ȳ aa
i2 .V̄

a
2 + Ȳ ab

i2 .V̄
b

2 + · · · · · ·+ (Ȳ aa
ii + ȳf ).V̄

a
i + (Ȳ ab

ii − ȳf ).V̄ b
i + · · · · · ·+ Ȳ aa

i(u+v+w).V̄
a
i(u+v+w) = 0

(2.25)

Ȳ ba
i2 .V̄

a
2 + Ȳ bb

i2 .V̄
b

2 + · · · · · ·+(Ȳ ba
ii − ȳf ).V̄ a

i +(Ȳ bb
ii + ȳf ).V̄

b
i + · · · · · ·+ Ȳ bp

i(u+v).V̄
p
i(u+v) = 0 (2.26)

Due to the LL fault, the following elements of the [Ybus] matrix will be updated as,

Ȳ aa
ii new = Ȳ aa

ii + ȳf (2.27a)

Ȳ ab
ii new = Ȳ ab

ii − ȳf (2.27b)

Ȳ ba
ii new = Ȳ ba

ii − ȳf (2.27c)

Ȳ bb
ii new = Ȳ bb

ii + ȳf (2.27d)

The bus voltages for LL fault are calculated first using eq. (2.10) with the above modifications

in [Ybus] matrix, and then the fault currents and branch currents under the fault condition are

calculated using eqs. (2.24) and (2.12), respectively.
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Since the proposed method is based on bus admittance matrix [Ybus] formulation, hence it can

be easily applied to meshed distribution system also.

The following are the steps of the proposed method for simulating any type of fault:

1. Run base case load flow.

2. Calculate the equivalent load impedances at each bus using the load flow solutions.

3. Formulate the bus admittance matrix for the given network including the load impedances.

4. Modify the elements of bus admittance matrix corresponding to the type of fault occurring

in the system as discussed above.

5. Calculate the fault currents, bus voltages and feeder currents under the fault condition for the

given type of fault.

2.3 Test results and discussions

The IEEE 123-bus (modified) radial system, as shown in Fig. 2.3, has been used to validate the

proposed short-circuit analysis method. In the original system, four buses have been used for

connecting switches. These four switch buses have been omitted in the modified system. The

proposed method has been implemented in MATLAB environment and the results have also been

compared with those obtained by [BIBC] matrix based method [48] and time domain simulation

studies carried out using PSCAD/EMTDC. The shunt capacitances in this system have also been

neglected.

2.3.1 Results of IEEE 123-bus (modified) system (radial system)

The following cases have been simulated on the IEEE 123-bus (modified) system to demonstrate

the validity of the proposed method:

Case 1. A single line-to-ground fault in phase a of bus 98 with a fault impedance z̄f = 0.1 + 0.0i

p.u.

Case 2. A double line-to-ground fault between phases a and b of bus 98 with a fault impedance

z̄f = 0.1 + 0.0i p.u.

Case 3. A three line-to-ground fault at bus 98 with a fault impedance z̄f = 0.1 + 0.0i p.u.
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Figure 2.3: The IEEE 123-bus (modified) system

Case 4. A line-to-line fault between phases a and b of bus 98 with a fault impedance z̄f = 0.1+0.0i

p.u.

Fig. 2.4 shows the source current (Is) of phase a for various type of faults at bus 98 obtained

from PSCAD/EMTDC simulation study, proposed technique and [BIBC] matrix based technique

[48]. It shows that the values of source current corresponding to the proposed method and PSCAD

simulation are very close to each other, while the source current corresponding to [BIBC] matrix

based technique are appreciably lower than these two values. Detailed results of all the above cases

using proposed technique and PSCAD simulations are shown in Table 2.1. The results obtained

using [BIBC] matrix based method have also been included in Table 2.1 for comparison with

PSCAD/EMTDC simulation results. [BIBC] matrix based technique, however assumes that the

load currents are negligible as compared to the fault current and can be neglected during short-

circuit analysis. Further, the % error in the calculated values obtained by the proposed method and

the [BIBC] matrix based method (with respect to the results obtained from PSCAD/EMTDC taken

as benchmark) are also shown in Table 2.1. As can be seen in Table 2.1, maximum % error in both
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Figure 2.4: Source current during various type of faults for IEEE 123-bus (mod-

ified) radial system using PSCAD/EMTDC, proposed technique and [BIBC]

matrix based technique

source and fault current calculation occurs in SLG fault, which is the type of fault most frequently

occurring in distribution systems. In Table 2.1, the maximum error in the fault current (If ) at fault

point is 1.814% and 0.0036% in the [BIBC] matrix based technique and in proposed technique

respectively, while the maximum error in source current (Is) calculation during fault is 10.12% and

0.0035% in the [BIBC] matrix technique and in proposed technique respectively. Also for LLG,

LLLG and L-L faults, the error present in the source current (Is) is greater than 5% in the [BIBC]

matrix based technique, as shown in Table 2.1. This is due to non-considerations of loads during

short-circuit calculations. The maximum error is highest in the fault current calculations of phase

a as compared to other two phases for all kinds of faults. This can be attributed to the fact that

phase a of the system is loaded more as compared to the other two phases. Table 2.1 thus shows

that the proposed method gives much more accurate estimate of currents during fault than [BIBC]

matrix based method which does not consider loads during faults.

Fig. 2.5 shows that for z̄f = 0.001 + 0.000i p.u., the maximum difference in the branch fault

current magnitude between the loaded and unloaded condition
(
max|[B̄load

f −B̄noload
f ]|

)
increases

as the fault location shifts away from the supply point towards the far end for SLG (a − g) fault.

This is due to the increase in the number of connected loads in the fault path when the fault location

moves towards the far end from the substation. For example, when an SLG (a − g) fault occurs

at bus 8 (which is near to the substation as shown in Fig. 2.3) with z̄f = 0.001 + 0.000i p.u., the
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Table 2.1: Error Analysis of proposed technique and [BIBC] matrix based

technique with respect to PSCAD/EMTDC simulation study for IEEE 123-bus

(modified) radial system

case Fault type phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

PSCAD Proposed [BIBC] Proposed [BIBC] PSCAD Proposed [BIBC] Proposed [BIBC]

simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(kA) (kA) [48](kA) (%) [48](%) (kA) (kA) [48](kA) (%) [48](%)

1 SLG (a-g) a 1.58245 1.58251 1.55374 0.00327 1.81423 1.72870 1.72871 1.55372 0.0032 10.1206

2 LLG (ab-g)
a 1.98333 1.98339 1.95631 0.00298 1.36218 2.14671 2.14680 1.95630 0.0029 8.8719

b 2.2231 2.22316 2.21379 0.00327 0.41822 2.31211 2.31220 2.21370 0.0032 4.2542

3 LLLG (abc-g)

a 2.34810 2.34814 2.32713 0.00313 0.89145 2.50340 2.50350 2.32710 0.0031 7.0445

b 2.33890 2.33892 2.32467 0.00308 0.60631 2.43850 2.43860 2.32460 0.0030 4.6703

c 2.43336 2.43344 2.42075 0.00306 0.51846 2.56380 2.56390 2.42070 0.0030 5.5821

4 L-L (a-b)
a 2.26815 2.26824 2.24762 0.00326 0.90548 2.44250 2.44251 2.24760 0.0032 7.9791

b 2.26815 2.26824 2.24762 0.0036 0.90514 2.31300 2.31310 2.24760 0.0035 2.8298

voltages (line to ground) at all the buses which are downstream to the bus 8 are almost equal to

zero, as shown in Fig. 2.6(a). On the other hand, when an SLG (a − g) fault occurs at bus 118

(which is at the far end of the system as shown in Fig. 2.3) with the same fault impedance, the

voltages at all the buses which are upstream to bus 118 have considerable values (as shown in Fig.

2.6(a)), which will cause some load currents to flow at these buses. Because of these load currents,

the maximum difference in the branch currents between the loaded and unloaded condition is more

for far end faults as compared to near end faults, as shown in Fig. 2.5. The branch currents in all

the lines for both the cases for z̄f = 0.001 + 0.000i p.u. are shown in Fig. 2.7(a).

With a z̄f = 0.1 + 0.0i p.u., the maximum error in branch currents occurs when the fault is at

bus 8 instead of bus 118. It can be explained with the help of Fig. 2.6(b), which gives the voltage

profiles for SLG (a − g) fault occurring at bus 8 and bus 118 under the loaded condition, with

z̄f = 0.1 + 0.0i p.u. For an SLG (a − g) fault at bus 8, due to high fault impedance the voltages

at all the buses downstream to the bus 8 are approximately fixed at 1.86 kV (line to ground), while

for the fault at bus 118, the voltages are decreasing from the substation end to the fault point as

shown in Fig. 2.6(b). For near end faults, a higher voltage (equal to the voltage at the faulted bus)

is maintained over the entire system downstream to the faulted bus (as shown in Fig. 2.6(b)). As a

result higher load currents flow in the system even under faulted condition. This causes larger error

in the branch current estimation for near end fault as compared to the far end fault. The branch

currents for both the cases are shown in Fig. 2.7(b) with z̄f = 0.1 + 0.0i p.u.
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Figure 2.5: Maximum difference in branch current (between loaded and un-

loaded condition) at different fault locations in IEEE 123-bus (modified) radial

system for SLG (a− g) fault

Table 2.2: List of loop branches added in IEEE 123-bus (modified) radial system

From Bus To Bus Length (ft.) type
Line impedance

configuration

33 54 675 3-φ 1

37 69 700 3-φ 2

Fig. 2.8 shows the variation of the difference in branch currents between the loaded and un-

loaded condition with the load increment factor for different fault impedances for an SLG (a− g)

fault at bus 8. The difference in branch currents between the loaded and unloaded condition in-

creases with the increase in loading conditions as shown in Fig. 2.8. Therefore, as the load grows

in the future, the difference in branch currents between the loaded and unloaded condition will also

increase, which may necessitate enhancing the rating of the components and protective equipments

installed in the branches.

2.3.2 Results of IEEE 123-bus (modified) system (meshed system)

The IEEE 123-bus system shown in Fig. 2.3 has been modified to a meshed system by adding

two loop branches in it. The details of these branches are given in Table 2.2 [140]. The four

cases, as described in Subsection 2.3.1, have also been simulated on the modified meshed system
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Figure 2.6: Voltage profiles of IEEE 123-bus (modified) radial system under

loaded condition, (a) z̄f = 0.001 + 0.000i p.u., (b) z̄f = 0.1 + 0.0i p.u.

to demonstrate the validity of the proposed method for meshed network. In Fig. 2.9, the source

current (Is) of phase a during various type of faults at bus 98 using PSCAD/EMTDC simulation,

proposed technique and [BIBC] matrix based technique are shown. Similar to the observations

in radial system, the values of source current corresponding to the proposed method and PSCAD

simulation are very close to each other, while the source current corresponding to [BIBC] matrix

based technique are appreciably lower than these two values.

The results for PSCAD simulation and proposed technique are given in Table 2.3. The results

obtained using [BIBC] matrix based technique have also been included in Table 2.3 for compari-

son with PSCAD/EMTDC simulation results. The maximum error in fault current (If ) and source
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Figure 2.7: Branch currents of IEEE 123-bus (modified) radial system under

loaded condition, (a) z̄f = 0.001 + 0.000i p.u., (b) z̄f = 0.1 + 0.0i p.u.

current (Is) calculation using the proposed technique is 0.0034%, and 0.0037% respectively while

those obtained using [BIBC] matrix based technique are 1.531% and 9.422% respectively. This

shows the accuracy of the proposed method for meshed distribution network also.

Fig. 2.10 shows the variation of the difference in branch currents between the loaded and

unloaded condition versus the fault locations, for SLG (a−g) fault with different fault impedances.

Similar to the radial system, this difference increases with the increase in fault distance from the

source end for z̄f = 0.001+0.000i p.u.. On the other hand, for z̄f = 0.1+0.0i p.u., the maximum
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Figure 2.8: Maximum difference in branch current (between loaded and un-

loaded condition) in IEEE 123-bus (modified) radial system with load increment

factor for SLG (a− g) fault at bus 8
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Figure 2.9: Source current during various type of faults for IEEE 123-bus (mod-

ified) meshed system using PSCAD/EMTDC, proposed technique and [BIBC]

matrix based technique

difference in branch current (between the loaded and unloaded condition) was observed for the

fault occurring near the substation end, which can be explained with the help of Fig. 2.11(a) and

2.11(b) (which show voltage profiles for SLG (a− g) fault, with z̄f = 0.001 + 0.000i p.u., at bus

8 and bus 118 under loaded condition), in the similar way as described in the previous subsection

for the radial system.
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Table 2.3: Error Analysis of proposed technique and [BIBC] matrix based

technique with respect to PSCAD/EMTDC simulation study for IEEE 123-bus

(modified) meshed system

case Fault type phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

PSCAD Proposed [BIBC] Proposed [BIBC] PSCAD Proposed [BIBC] Proposed [BIBC]

simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(kA) (kA) [48](kA) (%) [48](%) (kA) (kA) [48](kA) (%) [48](%)

1 SLG (a-g) a 1.71263 1.71268 1.68640 0.00335 1.53148 1.86182 1.86188 1.68640 0.00307 9.42221

2 LLG (ab-g)
a 2.11558 2.11565 2.09099 0.00298 1.16260 2.27984 2.27990 2.09099 0.00279 8.28357

b 2.38578 2.38585 2.37736 0.00312 0.35279 2.47873 2.47882 2.37736 0.00347 4.08965

3 LLLG (abc-g)

a 2.51549 2.51557 2.49636 0.00306 0.76084 2.67420 2.67428 2.49636 0.00289 6.65032

b 2.50127 2.50135 2.48911 0.00293 0.48606 2.60365 2.60373 2.48911 0.00328 4.39900

c 2.58187 2.58194 2.57152 0.00274 0.40087 2.71661 2.71671 2.57152 0.00347 5.34103

4 L-L (a-b)
a 2.4606 2.46067 2.44163 0.00318 0.77082 2.63352 2.63360 2.44163 0.00303 7.28632

b 2.46059 2.46067 2.44163 0.00348 0.77053 2.51049 2.51059 2.44163 0.00375 2.74310
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Figure 2.10: Maximum difference in branch current (between loaded and un-

loaded condition) at different fault locations in IEEE 123-bus (modified) meshed

system for SLG (a− g) fault

The branch currents for two different cases ((a) z̄f = 0.001+0.000i p.u., and (b) z̄f = 0.1+0.0i

p.u.) for SLG fault (a − g) at bus 8 and bus 118 under loaded condition are shown in Figs.

2.12(a) and 2.12(b) respectively. In Fig. 2.13, the maximum difference in the branch fault current

magnitude between the loaded and unloaded condition
(
max|[B̄load

f − B̄noload
f ]|

)
has been plotted

against load increment factor for SLG (a− g) fault at bus 8 with different fault impedances. This

shows that the error increases with increase in the loading conditions.

The proposed method has also been tested for simultaneous faults in the system. Two simul-
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Figure 2.11: Voltage profiles of IEEE 123-bus (modified) meshed system under

loaded condition, (a) z̄f = 0.001 + 0.000i p.u., (b) z̄f = 0.1 + 0.0i p.u.

taneous faults, namely, SLG (a − g) and LLG (ab − g) have been applied to the IEEE 123-bus

(modified) system at bus 98 and bus 119 respectively. Simulation results using PSCAD/EMTDC,

proposed method and [BIBC] matrix based technique are shown in Table 2.4. The maximum

error present in the fault current (If ) using proposed technique and [BIBC] matrix based tech-

nique with respect to PSCAD/EMTDC results are 0.00843% and 2.56546% respectively for radial

system, and are 0.00849% and 2.21657% respectively for meshed system. Similarly, the maxi-

mum error in source current (Is) are 0.00495% and 6.81383% for radial system, and 0.00491%

and 5.26910% for meshed system.

The above results show the effectiveness of the proposed fault analysis method. The results

presented show that for better accuracy in the results, the load currents should be considered dur-
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Figure 2.12: Branch currents of IEEE 123-bus (modified) meshed system under

loaded condition, (a) z̄f = 0.001 + 0.000i p.u., (b) z̄f = 0.1 + 0.0i p.u.

ing short-circuit calculations. The maximum error present in the proposed technique for both radial

as well as meshed system is less than the 0.004% for single faults and 0.0085% for multiple simul-

taneous faults (benchmarked against the PSCAD results). Thus, the given fault analysis technique

is suitable for both radial as well as meshed distribution system.

2.4 Conclusion

In this chapter, an efficient and accurate short-circuit analysis method has been proposed for un-

balanced radial and weakly meshed distribution systems. This method is also applicable for the

analysis of multiple faults (simultaneous occurrence of more than one type of fault) in the distri-

bution system. The proposed method has been tested on modified IEEE 123-bus radial as well as
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Figure 2.13: Maximum difference in branch current (between loaded and un-

loaded condition) in IEEE 123-bus (modified) meshed system with load incre-

ment factor for SLG (a− g) fault at bus 8

Table 2.4: Error Analysis of proposed technique and [BIBC] matrix based tech-

nique with respect to PSCAD/EMTDC simulation study for multiple faults for

IEEE 123-bus system

Topology Phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

Fault Fault PSCAD Proposed [BIBC] Proposed [BIBC] PSCAD Proposed [BIBC] Proposed [BIBC]

type bus simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(kA) (kA) [48](kA) (%) [48](%) (kA) (kA) [48](kA) (%) [48](%)

Radial
SLG (a-g) 98 a 1.15336 1.15337 1.12377 0.00127 2.56546

2.77414 2.77427 2.58511 0.00495 6.81383
LLG (ab-g) 119 a 1.55736 1.55749 1.53028 0.00843 1.73898

Meshed
SLG (a-g) 98 a 1.27526 1.27527 1.24699 0.00139 2.21657

3.04142 3.04143 2.85545 0.00491 5.26910
LLG (ab-g) 119 a 1.70904 1.70918 1.68256 0.00849 1.54927

meshed distribution test system. Test results of the proposed method have also been compared with

the [BIBC] matrix based technique and PSCAD/EMTDC software results. Small values of errors

show the accuracy and effectiveness of the proposed method. Further, the results of this work

show that, with increase in the loading condition of the system, it may be necessary to upgrade the

ratings of the components and protective equipments installed in the branches.

In the next chapter, an algorithm for the short-circuit analysis of unbalanced distribution sys-

tem with Inverter based distribution generation (IBDG) is described considering different types of

loads.
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Chapter 3

Short-circuit analysis of unbalanced radial and

meshed distribution system with inverter based

Distributed Generation (IBDG)

Abstract

The fault current contribution of inverter based DGs (IBDGs) may affect the operation of protective

devices present in the system. Hence, it is necessary to consider the presence of IBDGs in short-

circuit analysis of distribution system. A short-circuit analysis method for unbalanced distribution

system with IBDG, incorporating different voltage dependent control modes, is proposed in this

chapter. The proposed method has been implemented on modified IEEE 123-bus radial as well as

meshed distribution network and the obtained results have been compared with the results obtained

by the time domain simulation studies carried out using PSCAD/EMTDC software. Comparison

of the results shows the accuracy of the proposed technique.

3.1 Introduction

INITIALLY the distribution system were designed in such a way that power would always flow

from the grid substation to the load end [145]. But the integration of distributed generation

(DG) into the grid has changed this scenario. Nowadays, DGs are used in the distribution system

to improve the system voltage profile and to reduce feeder loading [146]. Generally, the DGs used

in the system are inverter based DGs. However, the integration of DG increases the fault level

of the system as it contributes to the fault current during a fault. This may cause maloperation

of protective equipments. Therefore, it becomes necessary to analyze the system with DG under

the fault conditions. Different short-circuit analysis methods for distribution system with IBDGs

are available in the literature [58–65]. These methods are based on the current control strategy of

the inverter during short-circuit conditions. In this chapter, an analytical approach for the short-
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circuit analysis of distribution system with IBDGs is proposed which also incorporates the inverter

control strategy. In this control mode, the IBDGs operate at zero power factor (leading) under

fault conditions to deliver reactive power to the system for supporting the bus voltages under fault

conditions.

This chapter is organized as follows. Section 3.2 describes the formulation of the proposed

short-circuit analysis method for unbalanced radial as well as meshed distribution system incorpo-

rating IBDGs during short-circuit calculations. The main results of this chapter are presented in

Section 3.3 and finally Section 3.4 highlights the main conclusions of this chapter.

3.2 Short-circuit analysis of unbalanced distribution system with IBDG

3.2.1 System modeling with IBDG

In this work, it is assumed that the IBDGs are operating at unity power factor under normal oper-

ating conditions. Further, it is also assumed that the IBDGs operate in zero power factor (leading)

under fault conditions [63,65] to deliver reactive power to the system (to improve the system volt-

age profile during the fault). The short-circuit current contribution by the IBDG is limited to the

short-circuit current capacity of the switching devices (I invsc ), by operating the inverter in a constant

current mode [63,65]. A three phase inverter, with separate control scheme for each phase, is used

to integrate the DG with the grid through a step down transformer.

Let us consider an unbalanced distribution system with an IBDG connected to the n th bus of the

system through a step down transformer, as shown in Fig 3.1. The distribution system is assumed

to have u three phase, v two phase and w single phase buses. It is assumed that the total no. of

loads (balanced as well as unbalanced) connected to the system is nld . Two different types of loads

have been considered in this work: constant power and voltage dependent loads. The polynomial

voltage dependent load model (ZIP model) [147] is described by eqs. (3.1a) and (3.1b) as,

P (V )

Po
= FZ

(
V

Vo

)2

+ FI

(
V

Vo

)
+ FP (3.1a)

Q(V )

Qo

= F
′

Z

(
V

Vo

)2

+ F
′

I

(
V

Vo

)
+ F

′

P (3.1b)

where P and Q are the active and reactive load power, respectively, and V is the magnitude of

the terminal voltage. Vo, Po and Qo are the nominal values of voltage, active and reactive power,

respectively. F and F ′ are the fractional constants, and the subscripts ’Z’, ’I’ and ’P ’ represent
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Figure 3.1: An unbalanced distribution system with inverter based DG (IBDG)

constant impedance, constant current and constant power loads, respectively. The pre-fault bus

voltages of the unbalanced distribution network (shown in Fig 3.1) are calculated using distribution

system load flow (DSLF) [70]. In DSLF, IBDG is considered to inject a complex power Spdg at each

phase p (p = a, b, c) of the inverter bus under normal operating conditions where Spdg = P p
dg+j0.0;

P p
dg denoting the real power injected by IBDG at phase p. In each iteration of DSLF, the load power

consumed by the voltage dependent loads is updated using eq. (3.1). The pre-fault inverter current

is then calculated using the values of bus voltages obtained from DSLF as,

Īabcinv =
[
z̄abc
t

]−1
(V̄abc

inv,st − V̄abc
n ) (3.2)

where Īabcinv =
[
Īainv Ībinv Īcinv

]T
;
[
z̄abc
t

]
=


z̄aat z̄abt z̄act

z̄bat z̄bbt z̄bct

z̄cat z̄cbt z̄cct

 is the transformer impedance matrix.

V̄abc
inv,st and V̄abc

n are the three phase voltage vectors of the inverter bus and nth bus, obtained from

the load flow solutions, respectively. Next, all the loads are converted to constant impedance loads

using pre-fault DSLF solution. Now, KCL equations are written for all the buses of the system

except IBDG bus and substation bus. These KCL equations can then be expressed in the matrix

form as, [
Ybus

] [
V
]

=
[
I
]

(3.3)

The details of the bus admittance matrix [Ybus], bus voltage vector [V] and current injection vector

[I] are given in eq. (2.10) of Subsection 2.2.1 of Chapter 2. The sizes of the [Ybus] matrix, [V]
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and [I] vectors for an unbalanced distribution system having u three phase, v two phase and w

single phase buses, are ((3u+ 2v +w)− 3)× ((3u+ 2v +w)− 3), ((3u+ 2v +w)− 3)× 1 and

((3u+ 2v + w)− 3)× 1, respectively (as described in Subsection 2.2.1 of Chapter 2). Now, if an

IBDG is connected at n th bus of the system, only the elements of [Ybus] matrix corresponding to

bus n (location of IBDG) will be modified as,

Ȳabc
nn = Ȳabc

nn + ȳabc
t (3.4)

where, ȳabc
t (transformer admittance matrix) =

[
z̄abc
t

]−1

and Ȳabc
nn is the (3× 3) sub-matrix (cor-

responding to bus n) of the [Ybus] matrix. The vector [I] will also be modified to [Im] (comprising

of both the substation injected current and the current injected by the IBDGs) and is given as,

[Im] =
[
ȳabc
12 V̄abc

s · · · ȳabc
t V̄abc

inv,st 0 · · · 0 0
]T

(3.5)

In eq. (3.5), it is to be noted that the term (ȳabc
t V̄abc

inv,st) occupies the position (3(n − 1) + 1) to

(3(n − 1) + 3) in vector [Im], corresponding to the IBDG location (nth bus) in the distribution

system. Also in eq. (3.5), V̄abc
s =

[
V̄ a
s V̄ b

s V̄ c
s

]T
is the three phase sub-station bus voltage

vector and ȳabc
12 is the line admittance matrix between substation bus and bus 2 (which is directly

connected to substation bus through a line impedance z̄abc
12 ).

3.2.2 Short-circuit calculations

For the initial estimation of short-circuit currents, the fault analysis method, as discussed in Section

2.2 of Chapter 2, is used. In this method, the elements of the [Ybus] matrix is modified correspond-

ing to the type of fault occurring in the system. The details of the modified elements of the [Ybus]

matrix for different type of unsymmetrical faults in the distribution system are given in Subsections

2.2.2 to 2.2.4 of Chapter 2. The bus voltages under the fault conditions are then calculated using

eq. (3.6) as, [
Ybus m

] [
V
]

=
[
Im

]
(3.6)

where [Ybus m] is the modified bus admittance matrix which incorporates eq. (3.4) and modified

elements of [Ybus] matrix corresponding to the type of fault occurring in the system, and [Im] is

the modified source current injection vector given in eq. (3.5). It is to be noted that initially during

fault analysis, the inverter is represented as a constant three phase voltage source
(
having a voltage
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of V̄abc
inv,st behind a transformer impedance matrix [z̄abc

t ]
)
. Subsequently, the initial estimate of

inverter current under the fault condition is calculated as,

Īabcinv,f ,est =
[
z̄abc
t

]−1
(V̄abc

inv,st − V̄abc
n,f ) (3.7)

where V̄abc
n,f is the three phase voltage vector of the n th bus under the fault condition. Depending

upon the magnitude of Īabcinv,f ,est, there can be two possible cases of inverter operation during fault

as discussed below:

Case 1: If |Īpinv,f,est| ≤ I invsc ; (p = a,b,c)

If the magnitude of estimated inverter current |Īpinv,f,est| under the fault condition for each phase

(p = a, b, c), calculated using eq. (3.7), is less than the short-circuit capacity of the inverter (I invsc ),

then the bus voltages calculated using eq. (3.6) are the final values of the bus voltages of the

system under the fault condition. Once the bus voltages are obtained, the fault currents and branch

currents under the fault conditions are calculated using the fault analysis method given in Section

2.2 of Chapter 2.

Case 2: If |Īpinv,f,est| > I invsc ; (p=a, or b, or c)

In this case, the estimated inverter current magnitude of the inverter under the fault condition

is restricted to its short-circuit capacity (I invsc ), by operating the inverter in constant current control

mode [63, 65]. Hence the inverter current under the fault condition is given as,

Īpinv,f = |Īpinv,f |∠Ψp
inv,f = I invsc ∠Ψp

inv,f ; p = a, b, c (3.8)

where Ψp
inv,f is the unknown inverter current angle corresponding to phase p under the fault con-

dition. To solve for these unknown angles, it is assumed that, Ψabc
inv,f = π

2
+ θabcn,f [63, 65], where

θabcn,f =
[
θan,f θbn,f θcn,f

]T
is the three phase voltage angle vector of the nth bus under the fault

condition (where the IBDG is connected) and Ψabc
inv,f =

[
Ψa
inv,f Ψb

inv,f Ψc
inv,f

]T
.

The bus voltages along with the unknown current angles under the fault condition can be cal-

culated by solving the KCL equations of the system (written at all buses and for all phases of the

system, except the substation bus and inverter bus of IBDG).

Consider any bus k at which no IBDG is connected. Assume that the set of three phase buses

directly connected to bus k is ”Thk”, set of two phase buses directly connected to phase h of bus

k is ”Twk” (two phase buses would always be connected to phase h and another phase r) and the
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set of single phase buses directly connected to bus k and phase h is ”Spk”. Hence, the real and

imaginary parts of the KCL equation corresponding to phase h of bus k can be written as,

Real part

∑
p

|Ȳ hp
kk ||V̄

p
k |cos(θ

p
k + φhpkk) +

∑
bεThk

∑
p

(|Ȳ hp
kb ||V̄

p
b |cos(θ

p
b + φhpkb ))

+
∑
bεTwk

∑
r

|Ȳ hr
kb ||V̄ r

b |cos(θrb + φhrkb) +
∑
bεSpk

|Ȳ hh
kb ||V̄ h

b |cos(θhb + φhhkb )

−
∑
p

|ȳhpks ||V̄
p
s |cos(θps + φhpks) = 0 = fh(k−1),re(V, θ) (3.9a)

Imaginary part

∑
p

|Ȳ hp
kk ||V̄

p
k |sin(θpk + φhpkk) +

∑
bεThk

∑
p

(|Ȳ hp
kb ||V̄

p
b |sin(θpb + φhpkb ))

+
∑
bεTwk

∑
r

|Ȳ hr
kb ||V̄ r

b |sin(θrb + φhrkb) +
∑
bεSpk

|Ȳ hh
kb ||V̄ h

b |sin(θhb + φhhkb )

−
∑
p

|ȳhpks ||V̄
p
s |sin(θps + φhpks) = 0 = fh(k−1),im(V, θ) (3.9b)

where k = 2, · · · , · · · , nb, (nb is the number of buses), k 6= n; h = (a, b, c) for three phase buses;

h = (a and b), or (b and c), or (c and a) for two phase buses; h = (a or b or c) for single phase

buses; p = (a, b, c); and r = (a and b), or (b and c), or (c and a). ȳhpks is the element of line

admittance matrix between bus k and substation bus s between phase h and p, and φhpks is the angle

of ȳhpks .

Similarly, consider bus n at which an IBDG is connected through a transformer. Assume that

the set of three phase buses directly connected to bus n is ”Thn”, set of two phase buses directly

connected to phase h of bus n is ”Twn” (two phase buses would always be connected to phase h

and another phase r) and the set of single phase buses directly connected to bus n and phase h is

”Spn”. Hence, the real and imaginary parts of the KCL equation corresponding to phase h of bus

n can be written as,
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Real part

∑
p

|Ȳ hp
nn ||V̄ p

n |cos(θpn + φhpnn) +
∑
bεThn

∑
p

(|Ȳ hp
nb ||V̄

p
b |cos(θ

p
b + φhpnb))

+
∑
bεTwn

∑
r

|Ȳ hr
nb ||V̄ r

b |cos(θrb + φhrnb) +
∑
bεSpn

|Ȳ hh
nb ||V̄ h

b |cos(θhb + φhhnb )

−
∑
p

|ȳhpns ||V̄ p
s |cos(θps + φhpns)− I invsc cos(90o + θhn) = 0 = fh(n−1),re(V, θ) (3.10a)

Imaginary part

∑
p

|Ȳ hp
nn ||V̄ p

n |sin(θpn + φhpnn) +
∑
bεThn

∑
p

(|Ȳ hp
nb ||V̄

p
b |sin(θpb + φhpnb))

+
∑
bεTwn

∑
r

|Ȳ hr
nb ||V̄ r

b |sin(θrb + φhrnb) +
∑
bεSpn

|Ȳ hh
nb ||V̄ h

b |sin(θhb + φhhnb )

−
∑
p

|ȳhpns ||V̄ p
s |sin(θps + φhpns)− I invsc sin(90o + θhn) = 0 = fh(n−1),im(V, θ) (3.10b)

Hence, for an unbalanced distribution system having u three phase, v two phase and w single phase

buses, there is a total of 2(3u+2v+w−3) non-linear equations. These equations are given in polar

form. It is to be noted that the rectangluar form of these equations are also non-linear. To solve

these non-linear equations, numerical method such as Gauss-Siedel or Newton-Raphson method,

can be used. In this work, Newton-Raphson method has been used as Gauss-Siedel method [59]

requires large execution time as shown later. The set of non-linear equations is given as,

fa1,re(V
a

2 , V
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where nb = u + v + w and ` = a, or b, or c. The above set of equations are solved using

Newton-Raphson method as, ∆V

∆θ

 =

J1 J2

J3 J4

−1

.

∆freal

∆fimag

 (3.12)

where ∆V and ∆θ are the correction vectors calculated at tth iteration and hence given as,

∆V =
[
∆V

a(t)
2 ,∆V

b(t)
2 , · · · , · · · ,∆V `(t)

nb

]T
;

∆θ =
[
∆θ

a(t)
2 ,∆θ

b(t)
2 , · · · , · · · ,∆θ`(t)nb

]T
.

∆freal and ∆fimag are the mismatch vectors calculated at tth iteration and are given as,

∆freal =
[
−fa(t)

1,re ,−f
b(t)
1,re, · · · , · · · ,−f
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;
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(nb−1),im

]T
.

J1, J2, J3 and J4 are the sub-matrices of the Jacobian matrix [J], and are given as,
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Elements of Jacobian matrix [J] (with no IBDG connected in the system) are calculated as,

∂f pi,re
∂V q

j

= Y pq
(i+1)jcos(θ

q
j + φpq(i+1)j) (3.13a)

∂f pi,re
∂θqj

= −Y pq
(i+1)jV

q
j sin(θqj + φpq(i+1)j) (3.13b)

∂f pi,im
∂V q

j

= Y pq
(i+1)jsin(θqj + φpq(i+1)j) (3.13c)

∂f pi,im
∂θqj

= −Y pq
(i+1)jV

q
j cos(θ

q
j + φpq(i+1)j) (3.13d)

where i = 1, 2, ..., (nb− 1); j = 2, 3, ..., nb; p, q = a, or b or c. If an IBDG is connected at nth bus

of the distribution system, the following elements of the Jacobian matrix [J] will be modified as,

∂f p(n−1),re

∂θqn

∣∣∣∣
new

=
∂f p(n−1),re

∂θqn
+ I invsc sin(90o + θqn) (3.14a)

∂f p(n−1),im

∂θqn

∣∣∣∣
new

=
∂f p(n−1),im

∂θqn
− I invsc cos(90o + θqn) (3.14b)

where p, q = a, b, c.

In eq. (3.12), the dimension of all the four sub-matrices (J1, J2, J3, J4) for an unbalanced

distribution system (having u three phase, v two phase and w single phase buses) is (3u + 2v +

w−3)×(3u+2v+w−3) and that of the Jacobian matrix [J] is 2(3u+2v+w−3)×2(3u+2v+w−3).

The elements of [Ybus m] in eq. (3.6), corresponding to the voltage dependent load buses,

are also modified at each iteration. The load admittances of the voltage dependent load buses

are replaced with their new calculated values in each iteration. Hence, the modified elements of

[Ybus m], corresponding to the voltage dependent load buses, at tth iteration are given as,

Ȳ
pp(t)
vd,vd = Ȳ

pp(t)
vd,vd + ȳ

p(t)
vd − ȳ

p(t−1)
vd ; t > 1, p = a, b, c. (3.15)

where vd is the voltage dependent load bus. ȳp(t)vd is the load admittance of phase p of vdth bus

calculated at tth iteration, and is given as,

ȳ
p(t)
vd =

Ī
p(t)
vd

V̄
p(t−1)
vd

; Ī
p(t)
vd =

(
P̄
p(t)
vd + jQ̄p(t)

vd

V̄
p(t−1)
vd

)∗
(3.16)

where P̄ p(t)
vd and Q̄p(t)

vd are the active and reactive load power calculated at phase p of vdth bus using

eq. (3.1) at tth iteration, respectively and (∗) stands for complex conjugate. Īp(t)vd is the injected

load current of phase p of vdth bus, calculated at tth iteration.
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Initial guess for solving eq. (3.11) is taken as the solution of fault analysis method as obtained

by solving eq. (3.6) with the inverter bus voltage set at V̄abc
inv,st. Once the bus voltages under the

fault condition are calculated by solving eq. (3.11), the fault current and branch currents under

the fault condition are recalculated by the fault analysis method given in Section 2.2 of Chapter 2.

Hence, the inverter bus voltage under the fault condition is calculated as,

V̄abc
inv,f = V̄abc

n,f + Īabcinv,f z̄
abc
t (3.17)

Similarly, if there are nd -no. of IBDGs with their short-circuit switching capacities as I invsc,1,

I invsc,2, ..., I invsc,nd, and connected at different buses (DGbus,1, DGbus,2, ..., DGbus,nd) of the system, the

following elements of the Jacobian matrix [J] will be modified as,

∂f p(dg−1),re

∂θqdg

∣∣∣∣
new

=
∂f p(dg−1),re

∂θqdg
+ I invsc,iisin(90o + θqdg) (3.18a)

∂f p(dg−1),im

∂θqdg

∣∣∣∣
new

=
∂f p(dg−1),im

∂θqdg
− I invsc,iicos(90o + θqdg) (3.18b)

where dg = (DGbus,1, DGbus,2, ..., DGbus,nd); ii = 1, 2, ..., nd; p = a, b, c and q = p.

3.2.2.1 Steps of algorithm for proposed short circuit analysis method of a distribution system

with IBDG

In the literature, depending upon the terminal voltage, the IBDG is operated under different control

modes [148, 149]. The steps for the proposed method for different control modes of inverter are

given as,

1. Run base case DSLF with IBDG connected in the system and obtain pre-fault inverter bus

voltage, V̄abc
inv,st.

2. Convert all types of loads (constant PQ and voltage dependent loads) into constant impedance

loads and form the [Ybus] matrix of the system.

3. Modify the bus admittance matrix [Ybus] to include the effect of transformer as in eq. (3.4)

and further modify it corresponding to the type of fault occurring in the system (as given in

Subsections 2.2.2 to 2.2.4 of Chapter 2) to obtain [Ybus m] matrix. Also, the current injection

vector [I] is modified to [Im] using eq. (3.5).
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4. Find the initial estimate of bus voltages under the fault condition by solving eq. (3.6) and

estimate the inverter currents Īpinv,f,est, (p = a, b, c) of all nd-no. of IBDGs present in the

network from eq. (3.7).

5. Check whether |Īpinv,f,est| ≤ Ī invsc , (p = a, b, c) for all IBDGs in the system. The three possible

cases are:

Case (A): If |Īpinv,f,est| ≤ Ī invsc , (p = a, b, c) for all nd-no. of IBDGs, then go to step 6, else

Case (B): If |Īpinv,f,est|, (p = a, b, c) of all nd-no. of IBDGs are greater than their correspond-

ing short-circuit current capacities, then solve the set of non-linear equations (eq. (3.11))

with Īpinv,f = I invsc ∠(π
2

+ θpdg,f ), (p = a, b, c) for all IBDGs (Boost mode operation) using the

proposed method and obtain the final values of bus voltages under the fault condition and go

to step 6, else

Case (C): If out of nd-no. of IBDGs, for kd-no. of IBDGs |Īpinv,f,est| ≤ I invsc , (p = a, b, c) and

for the remaining (nd − kd)-no. of IBDGs |Īpinv,f,est| > I invsc , (p = a, b, c), then set Īpinv,f =

I invsc ∠(π
2

+ θpdg,f ), (p = a, b, c), for (nd − kd)-no. of IBDGs, while for kd-no. of IBDGs

set Īabcinv,f = Īabcinv,f ,est, and carry out one iteration of solution of eq. (3.11), and obtain the

bus voltages under the fault condition. Compute the mismatch = max[|∆freal|, |∆fimag|].

If mismatch < ε (tolerance), go to step 6, else estimate the inverter current Īpinv,f,est, (p =

a, b, c) using eq. (3.7) with new calculated bus voltages under the fault condition, for all

IBDGs, and check the condition |Īpinv,f,est| ≤ I invsc , (p = a, b, c) for these IBDGs and go to

appropriate case of step 5.

6. Using the above obtained bus voltages under the fault condition, calculate the inverter bus

voltages under the fault condition using eq. (3.17). Initialize the iteration count k = 0.

7. k = k + 1.

8. Depending upon the terminal voltage, the IBDG is operated under different modes as follows

[148, 149]:

(a) If (min(|Vabc
inv,f |) < 0.45 p.u.) or (max(|Vabc

inv,f |) > 1.2 p.u.), then IBDG will be dis-

connected (”Cut-off mode”) and hence, the inverter current of IBDG is set as, Īabcinv,f =
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0.0 + j0.0.

(b) If (0.45 ≤min(|Vabc
inv,f |) < 0.88 p.u.) and (max(|Vabc

inv,f |) ≤ 1.0 p.u.), then IBDG will

operate in ”Boost mode”, and hence the inverter current of IBDG is set as, Īpinv,f =

I invsc ∠(θpdg,f + π
2
), (p = a, b, c).

(c) If (min(|Vabc
inv,f |) ≥ 0.45 p.u.) and (max(|Vabc

inv,f |) > 1.1 p.u.), then IBDG will op-

erate in ”Absorb mode”, and hence the inverter current of IBDG is set as, Īpinv,f =

I invsc ∠(θpdg,f − π
2
), (p = a, b, c).

(d) If (0.45 ≤ min(|Vabc
inv,f |) < 0.88 p.u.) and (1.0 < max(|Vabc

inv,f |) ≤ 1.1 p.u.), then

IBDG will continue to operate in the same control mode as in the previous iteration.

This hysteresis band is provided to prevent the IBDG from toggling frequently between

”boost mode” and ”absorb mode”.

(e) If (min(|Vabc
inv,f |)≥ 0.88 p.u.) and (max(|Vabc

inv,f |)≤ 1.1 p.u.), then IBDG will operate

in ”Active-power injection mode” and hence, the inverter current of IBDG is set as,

Īpinv,f =
P p
dg(

V̄
p(k−1)
inv,f

)∗ ; (p = a, b, c), where V̄ p(k−1)
inv,f is the inverter bus voltage of pth phase

of IBDG, calculated in (k − 1)th iteration.

9. Solve the set of non-linear equations (eq. (3.11)) with the above discussed voltage control

strategies for all IBDGs for kth iteration using the proposed method and obtain the bus

voltages under the fault condition. Also compute the mismatch.

10. Ifmismatch < ε (tolerance), go to the next step, else calculate the new inverter bus voltages

for all IBDGs under the fault condition using eq. (3.17) and go to step 7.

11. Using the above obtained bus voltages, calculate the fault current and branch currents under

the fault condition following the procedure given in Section 2.2 of Chapter 2. Also calculate

the inverter bus voltages under the fault condition using eq. (3.17).

The overall flow-chart of the proposed fault analysis method is shown in Fig 3.2.

3.3 Test results and discussions

The effectiveness of the developed method has been investigated on the modified IEEE 123-bus un-

balanced distribution system in radial as well as weakly meshed configuration (as given in Section
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Figure 3.2: Flow-chart of the proposed fault analysis method
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Table 3.1: Details of the IBDGs installed in the modified IEEE 123-bus unbal-

anced distribution system

IBDG No.
IBDG location IBDG installed capacity, Pdg Short-circuit capacity, I invsc

(Bus No.) (per phase) (kW) (per phase) (Amp)

1. 20 140 29.062

2. 25 105 21.796

3. 75 140 29.062

4. 98 175 36.327

5. 104 140 29.062

2.3 of Chapter 2). In this system, five different sized inverter based DGs have been assumed to be

connected at different buses through three phase transformers (Y g-Y g), having an equivalent reac-

tance of 0.2042 Ω/phase. The total installed capacity of IBDGs is taken as 20% of the total system

load (active power load). Short-circuit current capacity of these inverter based DGs are assumed to

be 150% of the rated inverter current. Detailed informations of these IBDGs are given in Table 3.1.

The proposed method has been implemented in MATLAB environment [66] with a tolerance limit

(ε) of 1.0 × 10−12. For validating the developed method, the time-domain simulation study of the

entire system has also been carried out using PSCAD/EMTDC software [139]. For verifying the

correctness of the calculated values of inverter currents of IBDGs by the proposed method, these

calculated currents have been represented as constant current sources in time domain simulation

study.

3.3.1 Results of modified IEEE 123-bus unbalanced radial distribution system

In this work, two different scenarios have been considered as described below:

Scenario 1: For this scenario, it is assumed that the IBDG control scheme is not dependent

on the terminal voltage (i.e. the algorithm terminates after Step-6). An SLG fault in phase a of

bus 105, with a fault impedance z̄f = 0.001+0.000i p.u. (the minimum value of fault impedance

permissible in PSCAD/EMTDC software, used for comparison purpose), has been assumed in

this case. In the first step, the inverter currents
(̄
Iabcinv,f ,est

)
of all the five IBDGs have been calcu-

lated by assuming that the post fault inverter bus voltages (V̄abc
inv,f ) of all IBDGs are maintained at

their pre-fault values (V̄abc
inv,st). The calculated currents are given in Table 3.2. The table shows
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Table 3.2: Results for SLG(a-g) fault in modified IEEE 123-bus radial distribu-

tion system with IBDGs for scenario 1

DG No.
Initial estimate of inverter current, Īpinv,f ,est, (Amp) final value of inverter current, (Amp) final value of injected DG power

when V̄abc
inv,f = V̄abc

inv,st Īabcinv,f = I invsc ∠(π
2

+ θabcdg,f ) ,(̄Ipinv,f ) (capacitive reactive power) (kVAR)

Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

1. 625.900∠-68.56o 10.513∠-74.47o 63.256∠121.46o 29.062∠89.38o 29.062∠-36.65o 29.062∠214.26o 144.865 227.206 222.112

2. 427.844∠-60.68o 42.868∠108.97o 106.964∠117.64o 21.796∠89.33o 21.796∠-36.65o 21.796∠214.22o 108.618 170.403 166.466

3. 4570.48∠-79.15o 521.317∠-70.35o 528.456∠-69.55o 29.062∠88.10o 29.062∠-45.12o 29.062∠222.40o 28.396 257.107 249.672

4. 1424.11∠-62.99o 140.687∠103.40o 272.567∠111.54o 36.327∠88.16o 36.327∠-45.40o 36.327∠222.21o 36.657 321.819 313.583

5. 2835.95∠-71.83o 36.012∠9.06o 60.464∠64.58o 29.062∠85.69o 29.062∠-45.95o 29.062∠223.32o 15.066 261.312 253.703

that, the magnitude of inverter currents
(
|̄Iabcinv,f ,est|

)
of all the IBDGs are greater than their short-

circuit current capacities, given in Table 3.1. Hence, according to [63, 65], the magnitudes of

inverter currents of all the phases are to be maintained at their short-circuit current capacities(
|Ipinv,f |= I invsc , p = a, b, c

)
and their angles are maintained in such a way that all IBDGs will de-

liver reactive power to the system during the short-circuit condition (Ψp
inv,f = π

2
+θpdg,f , p = a, b, c).

With this strategy (Case (B) of Step-5), the bus voltages, branch currents, fault current and all the

inverter currents under the fault conditions are recalculated using the proposed short-circuit anal-

ysis method. The calculated values of inverter currents (Iabcinv,f ) and injected powers by all IBDGs

under the fault condition are given in Table 3.2. The fault current (If ) and source current (Is) in

phase a for this case using the proposed method and PSCAD/EMTDC simulation are given in Table

3.3. The rms values of If and Is are measured with the help of ”RMS Meter” in PSCAD/EMTDC

software. The % error in the calculated values of If and Is with respect to the values obtained

by PSCAD/EMTDC simulation are 0.00369% and 0.00375%, respectively, as shown in Table 3.3.

The above results show that the values of If and Is calculated by the proposed method are very

close to the values obtained by the PSCAD/EMTDC software, thereby validating the proposed

method.

Different fault cases namely, LLG (ab-g), LLLG (abc-g), and LL (a-b) fault with z̄f = 0.001+0.000i

p.u., have also been simulated at bus 105 in the same system, using the proposed technique and

PSCAD/EMTDC software. Detailed results of these cases are given in Table 3.3. The % error in If

and Is for all the fault cases, obtained by the proposed technique with respect to PSCAD/EMTDC

simulation study are also given in Table 3.3. The maximum % error in the calculated fault current

and the source current are 0.00496% and 0.00381%, respectively. These results again demonstrate
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Table 3.3: Error analysis of proposed technique (scenario 1) with respect to

PSCAD/EMTDC simulations

Fault type phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 2.86046 2.86057 0.00369 2.80928 2.80939 0.00375

LLG (ab-g) a 4.16862 4.16882 0.00496 4.15497 4.15499 0.00039

b 4.30873 4.30889 0.00367 4.20519 4.20535 0.00369

LLLG (abc-g) a 4.55136 4.55153 0.00367 4.49842 4.49859 0.00371

b 4.84518 4.84536 0.00364 4.77608 4.77626 0.00368

c 4.84245 4.84263 0.00368 4.77293 4.77311 0.00373

L-L (a-b) a 4.06311 4.06325 0.00359 4.20943 4.20958 0.00363

b 4.06311 4.06325 0.00359 3.95193 3.95208 0.00381

the accuracy of the proposed method. Table 3.3 also shows that, the fault current (If ) is always

greater than the current drawn from the supply (Is) for all types of faults, except for the LL fault.

This is due to the current contributions from the IBDGs to the fault current. For LL (a-b) fault, the

source current is more than the fault current, as the voltage profile of faulty phase for LL fault is

much better than the profile for other types of faults, as shown in Fig 3.3. Hence, the load currents

are more in case of LL fault and therefore the current drawn from the source is higher as compared

to the other fault cases. The voltage profiles for phase a, obtained by the proposed short-circuit

analysis method and PSCAD/EMTDC simulation studies, for SLG and LL faults at bus-105 are

shown in Fig 3.4. From this figure, it is observed that the voltage profiles obtained by these two

methods are very close to each other which further validates the accuracy of the proposed method.

The above fault cases have also been simulated with voltage dependent loads. The polynomial

load model (ZIP model) is used as voltage dependent load model, as given in eq. (3.1). It

is assumed that the loads at bus 49 and 50 are ’residential ZIP load model’, at bus 51 and 68

are ’commercial ZIP load model’, and the load at bus 79 is ’industrial ZIP load model’. The

fractional constants in eq. (3.1) for various load compositions are given in [147]. The rms values

of If and Is for various fault cases using the proposed method and PSCAD/EMTDC simulation

are shown in Fig 3.5. A good agreement between the two results again establishes the accuracy of

the proposed method.

Table 3.4 gives the comparison between the performance of Gauss-seidel (GS) [59] and the pro-
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Figure 3.3: Voltage profile for different unsymmetrical short-circuit faults in

scenario 1

Table 3.4: Comparison between Gauss-Seidel and Proposed method

Method
SLG (a-g) Fault analysis

If (Amp) Is (Amp) Iteration Execution time (sec)

Gauss-Siedel [59] 2860.58 2809.51 4769 37671.859

Proposed 2860.57 2809.39 6 1.253

posed Newton-Raphson (NR) method for analyzing an SLG-fault (a-g fault, with z̄f = 0.001+0.000i

p.u.) at bus 105, with the tolerance limit of 1.0 × 10−8. From Table 3.4, it can be observed that

the number of iterations and execution time taken by the GS method are much higher than those

of proposed NR method. It is to be noted that in this study, the effect of terminal voltages on

the IBDG control scheme has not been considered as the primary focus here is to compare the

convergence rate of GS and NR methods.

Scenario 2: In all the above case studies, the voltage dependency of the IBDG control schemes
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Figure 3.4: Voltage profile for SLG and LL faults using proposed method (sce-

nario 1) and PSCAD/EMTDC simulation
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Figure 3.5: (a) Fault current (If ) (b) Source current (Is) for different fault cases

in modified IEEE 123 bus radial distribution system with IBDGs and with volt-

age dependent loads using proposed method (scenario 1) and PSCAD/EMTDC

simulation

has been neglected. For this scenario, it is now assumed that the control of IBDG is dependent on

the terminal voltages (i.e. the algorithm (given in Subsection 3.2.2.1) follows all the 11 steps).

An SLG fault in phase a of bus 105, with a fault impedance z̄f = 0.001+0.000i p.u. has been
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Table 3.5: Intermediate and final post-fault inverter bus voltages and injected

power by IBDGs for SLG(a-g) fault at bus 105, with z̄f = 0.001+0.000i p.u., in

scenario 2

IBDG Location
Intermediate post-fault inverter Intermediate post- Final post-fault inverter Control mode Final post-fault

bus voltage magnitude (p.u.) fault injected power bus voltage magnitude (p.u.) of operation injected power

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG by IBDG (kVA)

20 0.69181 1.08503 1.06071 0.0 + j 594.2 0.69148 1.07990 1.05196 Boost 0.0 + j 591.2

25 0.69161 1.08503 1.05995 0.0 + j 445.5 0.69128 1.07989 1.05121 Boost 0.0 + j 443.3

75 0.13561 1.22783 1.19232 0.0 + j 535.2 - Cut-off 0.0 + j 0.0

98 0.14005 1.22949 1.19802 0.0 + j 672.1 - Cut-off 0.0 + j 0.0

104 0.07195 1.24791 1.21157 0.0 + j 530.1 - Cut-off 0.0 + j 0.0

assumed. The intermediate inverter bus voltage magnitude (obtained after Step 6 of the algorithm)

for all IBDGs under the fault condition are shown in columns 2-4 of Table 3.5. The intermediate

power injected by the IBDGs (again obtained after Step 6 of the algorithm) are shown in column

5 of Table 3.5. Following steps 8-10 of the algorithm, IBDGs at bus no. 20 and 25 are operated

in ”boost mode”, while the remaining three IBDGs have been disconnected from the system. The

final terminal voltages of the IBDGs and the reactive power exchanged by the IBDGs under the

fault condition are shown in columns 6-8 and column 10 of Table 3.5, respectively. The final

inverter bus voltages under the fault condition, corresponding to the IBDGs located at bus No. 75,

98 and 104, are not shown in columns 6-8 of Table 3.5, since, under fault condition, these IBDGs

have been disconnected from the system.

Different fault cases at bus 105 with the fault impedance of z̄f = 0.001+0.000i p.u., have

also been simulated using the proposed method considering voltage dependency of IBDG control

scheme (i.e. the algorithm follows all 11 steps). The values of If and Is for various fault cases

using the proposed method and PSCAD/EMTDC simulations are shown in Table 3.6. It can be

observed from the table that the results obtained by proposed method match very well with the

results obtained by the PSCAD/EMTDC simulation studies. Also, the control mode operation of

the IBDGs for various fault cases are shown in column 5 of Table 3.6.

To further investigate the performance of the proposed method, another SLG fault at phase a of

bus 27 has been considered with a fault impedance of z̄f = 0.5+0.0 i p.u. The intermediate inverter

bus voltages and reactive power supplied by IBDGs (obtained after Step 6) are shown in columns
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Table 3.6: Results for different unsymmetrical short-circuit faults at bus 105,

with z̄f = 0.001+0.000i p.u., using proposed technique (scenario 2) and

PSCAD/EMTDC simulation

Fault type phase

Fault current at faulty point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 2.82626 2.82636
Boost-: IBDG No. 1,2

2.85887 2.85897
Cut-off-: IBDG No. 3,4,5

LLG (ab-g)
a 4.10159 4.10173 Boost-: IBDG No. 1,2 4.15671 4.15687

b 4.24456 4.24472 Cut-off-: IBDG No. 3,4,5 4.23236 4.23252

LLLG (abc-g)

a 4.47645 4.47662 Boost-: IBDG No. 1,2 4.50819 4.50835

b 4.77868 4.77886 Cut-off-: IBDG No. 3,4,5 4.78431 4.78448

c 4.76778 4.76795 4.78114 4.78132

L-L (a-b)
a 4.06311 4.06325

Boost-: All IBDGs
4.20943 4.20958

b 4.06311 4.06325 3.95193 3.95208

2-5 of Table 3.7. On following steps 8-10 of the proposed algorithm, it is observed that none of the

IBDGs gets disconnected and all of them operate in different control modes, as depicted in column

9 of this table. The final inverter bus voltages and the complex power injection of the IBDGs are

shown in columns 6-8 and column 10 of Table 3.7, respectively.

Other types of faults (SLG, LLG, LLLG and LL) at bus 27, with z̄f = 0.5+0.0 i p.u. have

also been considered for the validation of proposed method with voltage dependency of the IBDG

control scheme (follow all 11 steps of the algorithm). The values of If and Is for various fault cases

obtained from the proposed method and PSCAD/EMTDC simulations are given in Table 3.8. The

results show the accuracy of proposed method. The control mode operation of IBDGs in various

fault cases are also given in column 5 of Table 3.8.

3.3.2 Results of modified IEEE 123-bus unbalanced weakly meshed distribution system

The proposed technique has also been applied to a modified IEEE 123-bus unbalanced meshed

distribution system to validate its performance further. Two loop branches have been added in

the modified IEEE 123-bus radial distribution system to convert it into a weakly meshed network.

Details of these loop branches are given in Table 3.9 (as given in Table 2.2 of Chapter 2). For this

case also, two scenarios, as described in Subsection 3.3.1, have been considered.
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Table 3.7: Intermediate and final post-fault inverter bus voltages and injected

power by IBDGs for SLG(a-g) fault at bus 27, with z̄f = 0.5+0.0i p.u., in sce-

nario 2

IBDG Location
Intermediate post-fault inverter Intermediate post- Final post-fault inverter Control mode Final post-fault

bus voltage magnitude (p.u.) fault injected power bus voltage magnitude (p.u.) of operation injected power

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG by IBDG (kVA)

20 0.87261 1.09702 0.97237 0.0 + j 616.1 0.86910 1.08685 0.96325 Boost 0.0 + j 611.3

25 0.84564 1.11967 0.96230 0.0 + j 459.8 0.83767 1.10417 0.94826 Absorb 0.0 - j 453.9

75 0.91893 1.06472 0.98882 0.0 + j 622.4 0.90758 1.04623 0.97192 Active-Power 420.0 + j 0.0

98 0.92196 1.06762 0.99364 0.0 + j 780.9 0.90728 1.04522 0.97375 Active-Power 525.0 + j 0.0

104 0.92139 1.06737 0.99081 0.0 + j 623.9 0.90861 1.04726 0.97247 Active-Power 420.0 + j 0.0

Table 3.8: Results for different unsymmetrical short-circuit faults at bus 27, with

z̄f = 0.5+0.0i p.u., using proposed technique (scenario 2) and PSCAD/EMTDC

simulation

Fault type phase

Fault current at faulty point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 1.14819 1.14821

Boost-: IBDG No. 1

1.27429 1.27431Absorb-: IBDG No. 2

Active Power-: IBDG No. 3,4,5

LLG (ab-g)
a 1.09574 1.09576 Boost-: IBDG No. 1,2 1.21054 1.21057

b 1.30304 1.30306 Active Power-: IBDG No. 3,4,5 1.36701 1.36684

LLLG (abc-g)

a 1.22991 1.22993

Active Power-: All IBDGs

1.32318 1.32321

b 1.25960 1.25962 1.28658 1.28660

c 1.22359 1.22361 1.28351 1.28354

L-L (a-b)
a 1.91324 1.91328 Boost-: IBDG No. 1,2 2.01891 2.01895

b 1.91324 1.91328 Active Power-: IBDG No. 3,4,5 1.95163 1.95167

Scenario 1: An SLG fault in phase a of bus 105, with a fault impedance z̄f = 0.001+0.000i

p.u., has been simulated in this weakly meshed distribution network. In this case, the effect of the

terminal voltages on the IBDG control scheme has been neglected. The values of inverter currents(̄
Iabcinv,f ,est

)
for all IBDGs, with V̄abc

inv,f = V̄abc
inv,st, are given in Table 3.10. As can be seen from this

table, the magnitude of inverter current of all IBDGs are greater than their respective short-circuit

current capacities. Therefore, magnitudes of currents of all IBDGs for all phases are maintained

at their short-circuit current capacities, i.e. |Īpinv,f |= I invsc , p = a, b, c and Ψp
inv,f = π

2
+ θpdg,f ,
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Table 3.9: List of loop branches in IEEE 123 bus (modified) meshed distribution

system

From Bus To Bus Length (ft.) type
Line impedance

configuration

33 54 675 3-φ 1

37 69 700 3-φ 2

Table 3.10: Results for SLG(a-g) fault in modified IEEE 123 bus meshed dis-

tribution system with IBDGs for scenario 1

DG No.
Initial estimate of inverter current, Īpinv,f ,est, (Amp) final value of inverter current, (Amp) final value of injected DG power

when V̄abc
inv,f = V̄abc

inv,st Īabcinv,f = I invsc ∠(π
2

+ θabcdg,f ) ,(̄Ipinv,f ) (capacitive reactive power) (kVAR)

Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

1 1059.297∠-61.35o 20.004∠-37.62o 39.650∠84.11o 29.062∠85.29o 29.062∠-38.30o 29.062∠217.14o 118.319 237.120 225.328

2 770.959∠-54.52o 72.738∠109.67o 126.082∠110.66o 21.796∠85.10o 21.796∠-38.36o 21.796∠217.17o 88.129 177.951 168.937

3 4367.750∠-80.14o 532.475∠-70.09o 525.664∠-70.78o 29.062∠90.81o 29.062∠-44.70o 29.062∠222.07o 33.081 255.829 248.381

4 1357.327∠-63.98o 126.706∠99.34o 256.673∠110.70o 36.327∠90.89o 36.327∠-44.98o 36.327∠221.88o 42.546 320.200 311.984

5 2784.754∠-72.24o 52.202∠-10.26o 53.185∠49.30o 29.062∠88.60o 29.062∠-45.62o 29.062∠223.19o 17.454 260.773 252.748

Table 3.11: Error analysis of proposed technique (scenario 1) with respect to

PSCAD/EMTDC simulations for different unsymmetrical short-circuit faults at

bus 105 in modified IEEE 123 bus meshed distribution system

Fault type phase

Fault current at faulty point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 3.34325 3.34321 0.00117 3.29116 3.29109 0.00207

LLG (ab-g) a 4.85853 4.85863 0.00197 4.84181 4.84187 0.00141

b 5.04491 5.04518 0.00529 4.94486 4.94509 0.00474

LLLG (abc-g) a 5.30347 5.30368 0.00400 5.25076 5.25095 0.00356

b 5.66491 5.66514 0.00404 5.59847 5.59866 0.00341

c 5.56995 5.57020 0.00463 5.50492 5.50510 0.00335

L-L (a-b) a 4.76031 4.76051 0.00418 4.90908 4.90921 0.00254

b 4.76031 4.76051 0.00418 4.64714 4.64737 0.00496

p = a, b, c, during short-circuit calculations. The inverter current and DG injected power of all

IBDGs under the fault condition are given in Table 3.10.

Different fault cases, as discussed in Subsection 3.3.1, have also been simulated on the modified
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Figure 3.6: Voltage profile of phase a for modified IEEE 123-bus meshed dis-

tribution system for different unsymmetrical short-circuit faults in scenario 1

weakly meshed distribution network. Detailed results of theses cases obtained by the proposed

technique and PSCAD/EMTDC simulation study are given in Table 3.11. The maximum % error

obtained in calculated values of If and Is are 0.00529% and 0.00496%, respectively, as shown

in Table 3.11 in boldface. Except for the LL fault, the fault current at the fault point in all other

fault cases are higher than the current drawn from the source due to the contribution of IBDGs to

the fault current, as shown in Table 3.11. On the other hand, for LL fault, the voltage profile of

faulty phase of the meshed distribution system is much better than the profile for the other fault

cases, as shown in Fig 3.6. As a result, the load currents and hence the source current are larger,

in case of LL fault, as compared to other fault cases. Fig 3.7 shows the voltage profile of phase a

of the network for SLG(a-g) and LL(a-b) faults at bus 105 obtained by the proposed method and

PSCAD/EMTDC simulation study.

To further validate the accuracy of the proposed method, various fault cases have also been

simulated with voltage dependent loads. The results of If and Is for these fault cases using the
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Figure 3.7: Voltage profile of phase a for modified IEEE 123 bus meshed distri-

bution system for SLG and LL fault using proposed technique (scenario 1) and

PSCAD/EMTDC simulation

proposed method and PSCAD/EMTDC simulation are given in Fig 3.8, which shows that the

values of If and Is for different faults calculated by the proposed method are very close to the

values obtained by the PSCAD/EMTDC software.

Scenario 2: An SLG fault, with a fault impedance of z̄f = 0.5+0.0 i p.u., at phase a of bus

27 has been assumed for the analysis of meshed distribution system as a representative case. The

intermediate inverter bus voltages and reactive power supplied by IBDGs (obtained after Step 6)

are shown in columns 2-5 of Table 3.12. Following steps 8-10 of the proposed algorithm, it is

observed that none of the IBDGs gets disconnected and all of them operate in different control

modes, as shown in column 9 of this table. The final inverter bus voltages and the complex power

injections of the IBDGs are shown in columns 6-8 and column 10 of Table 3.12, respectively. Other

types of short-circuit faults at bus 27, with z̄f = 0.5+0.0 i p.u. have also been considered in this

scenario and their results are shown in Table 3.13. Table 3.13 shows the values of If and Is for

various fault cases obtained from the proposed method (following all the 11 steps of the algorithm)

and PSCAD/EMTDC simulations. The obtained results reaffirm the accuracy of proposed method.

The control mode operation of IBDGs in various fault cases are also given in column 5 of Table

3.13.
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Figure 3.8: (a) Fault current (If ) (b) Source current (Is) for different fault

cases in modified IEEE 123 bus meshed distribution system with IBDGs

and with voltage dependent loads using proposed method (scenario 1) and

PSCAD/EMTDC simulation

Table 3.12: Intermediate and final post fault inverter bus voltages and injected

power by IBDGs for SLG(a-g) fault at bus 27, with z̄f = 0.5+0.0i p.u., in sce-

nario 2 in modified IEEE 123-bus meshed distribution system

IBDG Location
Intermediate post-fault inverter Intermediate post- Final post-fault inverter Control mode Final post-fault

bus voltage magnitude (p.u.) fault injected power bus voltage magnitude (p.u.) of operation injected power

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG by IBDG (kVA)

20 0.87901 1.09321 0.97496 0.0 + j 617.1 0.87519 1.08180 0.96503 Boost 0.0 + j 611.9

25 0.85633 1.11200 0.96599 0.0 + j 460.8 0.84806 1.09543 0.95124 Absorb 0.0 - j 454.6

75 0.91009 1.07760 0.97976 0.0 + j 621.4 0.90151 1.06050 0.96442 Active-Power 420.0 + j 0.0

98 0.91300 1.08058 0.98461 0.0 + j 779.5 0.90124 1.05942 0.96627 Active-Power 525.0 + j 0.0

104 0.91252 1.08033 0.98173 0.0 + j 622.9 0.90258 1.06153 0.96493 Active-Power 420.0 + j 0.0

3.3.3 Results of multiple fault analysis of modified IEEE 123-bus unbalanced distribution

system

The proposed short-circuit analysis method is also applicable for the study of multiple faults in

distribution systems. To illustrate this, two simultaneous faults− SLG (a-g) and LLG (bc-g) with

a fault impedance of z̄f = 0.001+0.000i p.u., have been considered in the modified IEEE-123 bus
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Table 3.13: Results for different unsymmetrical short-circuit faults at bus

27, with z̄f = 0.5+0.0i p.u., using proposed technique (scenario 2) and

PSCAD/EMTDC simulation in modified IEEE 123-bus meshed distribution

system

Fault type phase

Fault current at faulty point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 1.16509 1.16514

Boost-: IBDG No. 1

1.28696 1.28686Absorb-: IBDG No. 2

Active Power-: IBDG No. 3,4,5

LLG (ab-g)
a 1.11402 1.11406 Boost-: IBDG No. 1,2 1.22401 1.22391

b 1.31017 1.31024 Active Power-: IBDG No. 3,4,5 1.37229 1.37217

LLLG (abc-g)

a 1.23525 1.23531

Active Power-: All IBDGs

1.32606 1.32592

b 1.26726 1.26732 1.29159 1.29146

c 1.23834 1.23844 1.29534 1.29521

L-L (a-b)
a 1.95338 1.95348

Boost-: All IBDGs
2.15022 2.15020

b 1.95338 1.95348 1.98269 1.98261

Table 3.14: Error analysis of Proposed technique (scenario 1) with respect to

PSCAD/EMTDC simulations for multiple faults in modified IEEE 123-bus dis-

tribution system

Topology Fault type Fault Bus phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

Radial

SLG (a-g) 42 a 4.56902 4.56873 0.00638 4.54249 4.54221 0.00630

LLG (bc-g) 105
b 4.47217 4.47231 0.00630 4.45261 4.45275 0.00306

c 4.55042 4.55058 0.00348 4.44856 4.44871 0.00346

Meshed

SLG (a-g) 42 a 5.62519 5.62492 0.00480 5.58930 5.58891 0.00689

LLG (bc-g) 105
b 5.40171 5.40187 0.00285 5.38270 5.38281 0.00196

c 5.24333 5.24355 0.00427 5.15016 5.15031 0.00303

radial as well as weakly meshed distribution system at bus 42 and bus 105 respectively and the

obtained results are shown in Table 3.14. Again, in these cases, the voltage dependency of the

IBDG control scheme has not been considered (scenario 1). The maximum % error in If and Is,

with respect to the values obtained by the PSCAD/EMTDC simulation study for this case (multiple

fault) are 0.00638% and 0.00630% respectively for radial distribution system and 0.00480% and

0.00689% respectively, for meshed distribution system, as given in Table 3.14. Further, the above
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Table 3.15: Error analysis of Proposed technique (scenario 2) with respect to

PSCAD/EMTDC simulations for multiple faults in modified IEEE 123-bus dis-

tribution system

Topology Fault type Fault Bus phase

Fault current at faulty point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

Radial

SLG (a-g) 42 a 1.19156 1.19155 0.00083 1.33830 1.33831 0.00075

LLG (bc-g) 105
b 1.09616 1.09618 0.00182 1.18194 1.18195 0.00085

c 1.23046 1.23048 0.00163 1.35074 1.35076 0.00148

Meshed

SLG (a-g) 42 a 1.21777 1.21779 0.00164 1.36772 1.36767 0.00366

LLG (bc-g) 105
b 1.15233 1.15236 0.00260 1.23818 1.23811 0.00565

c 1.22933 1.22936 0.00244 1.34925 1.34912 0.00963

given multiple fault cases, with a fault impedance of z̄f = 0.5+0.0i p.u., have also been simulated

using the proposed method with voltage dependency of IBDG control scheme (scenario 2) and the

results are shown in Table 3.15. In this control scheme, two IBDGs (located at bus 20 and 25)

operate in ”active-power mode”, while the remaining three IBDGs (located at bus 75, 98 and 104)

operate in ”boost mode” in both radial and meshed distribution systems. The maximum % error

in If and Is, with respect to the values obtained by the PSCAD/EMTDC simulation study for this

case are 0.00182% and 0.00260% respectively for radial distribution system and 0.00148% and

0.00963% respectively, for meshed distribution system, as shown in Table 3.15. These results also

establish the accuracy of the proposed short-circuit analysis method for radial and weakly meshed

distribution system in the presence of IBDGs.

3.3.4 General discussion of the results

From Tables 3.1, 3.2, 3.5, 3.7, 3.10 and 3.12, it is observed that the total three phase injected

power supplied by ith DG (S3phase
DGi

, i = 1, 2, · · · , 5) is more than its three phase power rating

(SDGi
, i = 1, 2, · · · , 5) but less than k×SDGi

, where k is the factor at which the fault current from

the inverter is limited, e.g. k = 1.5 in this work. Also, according to amended IEEE Standard 1547,

the maximum fault clearing time in a distribution system can be up to 21 sec. [148]. Accordingly,

from the intermediate post fault and final post fault injected power values (shown in Tables 3.1,

3.2, 3.5, 3.7, 3.10 and 3.12), it can be concluded that the inverters need to have a short-time rating

of at least k times the normal steady state rating for a period of at least 21 sec.

Before concluding this chapter, it is worthwhile to note the importance of including IBDGs in
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Table 3.16: Maximum % deviation, with respect to ’no IBDG’ case

IBDGs penetration level

Fault 20% of total load power 40% of total load power

bus Maximum % deviation in If Maximum % deviation in Is Maximum % deviation in If Maximum % deviation in Is

20 0.56 (LLLG) 1.60 (SLG) 1.10 (LLLG) 3.19 (SLG)

44 1.03 (LLLG) 2.55 (SLG) 2.27 (LLLG) 5.06 (SLG)

54 1.14 (LLLG) 4.33 (SLG) 2.28 (LLLG) 8.56 (SLG)

98 1.41 (LLG) 4.97 (SLG) 2.80 (LLG) 9.87 (SLG)

118 1.51 (SLG) 5.30 (SLG) 2.98 (SLG) 10.28 (SLG)

the short-circuit calculation. It is already mentioned in the literature that the presence of IBDGs

in the system may cause malfunctioning of protective devices due to the contribution of IBDGs to

the fault current [37].

The maximum percentage deviation in If and Is, with respect to the case of ’no IBDGs’ in

the system, for different fault cases with different penetration level of IBDGs in modified IEEE

123-bus unbalanced radial distribution system for scenario 1, are shown in Table 3.16. From the

table, it is observed that, as the penetration level of IBDGs increase, the percentage deviation in If

and Is also increases. Thus, it becomes necessary to include IBDGs in short-circuit calculation to

ensure proper co-ordination of protective equipments.

Apart from protective device co-ordination, the values of steady state fault currents on each

bus of the distribution system network are also required for probabilistic fault analysis and for

optimum placement of fault current limiters. For these studies, repeated simulations are required

by changing the fault locations. In PSCAD/EMTDC software, it takes a significant amount of time

for carrying out repeated time domain simulation studies by changing the fault locations. Further,

the fault studies of the large distribution system can not be performed using PSCAD/EMTDC

software due to the node limitations in this software. However, in the proposed approach, such

studies can be performed much more quickly.

3.4 Conclusion

An efficient and accurate analytical short-circuit analysis method for radial and meshed distribution

system with IBDG, has been introduced in this chapter. Based on the detailed studies carried out

in this work, following conclusions can be drawn:
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• The developed methodology is general enough to consider any type of load including ZIP

loads and is also quite accurate. It is also capable of including voltage dependent control

modes of IBDGs.

• With increasing penetration of IBDG, the deviation in the source current and fault current

increases, which may require recoordination of the existing protective schemes.

In the next chapter, the algorithms for the load flow and short-circuit analysis of unbalanced

radial as well as meshed distribution system with various three phase transformer models and

Inverter based distribution generations (IBDGs) are discussed.
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Chapter 4

Load flow and short-circuit analysis of unbalanced

distribution system with three phase transformer

models and inverter based Distributed Generations

Abstract

Chapter 4 proposes a load flow and short-circuit analysis method for unbalanced distribution

system incorporating three-phase transformer models and inverter based distributed generation

(IBDG). Initially the load flow method of an unbalanced distribution system is developed which

incorporates the mathematical model of a three phase transformer of any vector group and differ-

ent modes of operation of IBDG. The fault analysis method with transformer models and IBDGs

is also developed subsequently in this chapter. The results obtained from the proposed method

have been compared with the time domain simulation studies carried out using PSCAD/EMTDC

software to verify the accuracy of the proposed method.

4.1 Introduction

TRANSFORMERS are generally used in the distribution system to step down the voltage of

the distribution system to the customer utility voltage level [75]. They are also used for

connecting the inverter based distributed generations (IBDGs) to the grid [73]. Hence, it becomes

necessary to incorporate various three phase distribution transformer models in the load flow and

short-circuit studies of distribution system. Different load flow analysis methods based on for-

ward/backward sweep approach to incorporate three phase transformer models in the distribution

network are available in the literature [75–79]. In this chapter, a direct method of load flow analysis

of distribution system [70] has been extended to incorporate three phase transformer models and

different modes of operation of IBDGs. The singularity problem (in transformer nodal admittance

matrix) encountered in certain transformer configurations has also been addressed in this chapter.
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Subsequently, a method for short-circuit analysis of distribution system, considering three phase

transformer models and IBDGs, has also been developed in this chapter.

This chapter is organized as follows. Section 4.2 describes the formulation of the proposed

load-flow analysis method for unbalanced radial as well as meshed distribution system incorpo-

rating three phase transformer models and IBDGs. Section 4.3 describes the formulation of the

proposed short-circuit analysis method for unbalanced radial as well as meshed distribution sys-

tem incorporating IBDGs. The main results of this chapter are presented in Section 4.4 and finally

Section 4.5 highlights the main conclusions of this chapter.

4.2 Load flow analysis of an unbalanced distribution system with transformer model and

IBDG

In the proposed work, three-phase transformer model has been incorporated in the direct approach

for the distribution system load flow analysis [70]. The phase component based nodal admittance

matrix model (p.u.) for different distribution transformer configurations have been considered. The

nodal admittance matrix based three phase distribution transformer model (p.u.) is given as [78],Ip

Is

 =

Ypp Yps

Ysp Yss

 .
Vp

Vs

 =
[
YT

]Vp

Vs

 (4.1)

where Ypp, Yps, Ysp and Yss are the sub-matrices, of size (3× 3) each, of the transformer nodal

admittance matrix YT. Vp and Vs are the three-phase line to neutral voltage vectors, whereas

Ip and Is are the three-phase injection current vectors at the primary and secondary sides of the

transformer, respectively. The direct approach for distribution system load flow analysis, with

different models of transformer configurations, for radial as well as meshed distribution systems

are given in the following sub-sections.

4.2.1 Radial distribution system

Let us consider an unbalanced radial distribution system, as shown in Fig 4.1. Let us assume that,

two step down transformers T1 and T2, are connected between buses i and j, and buses k and l of

the distribution network of Fig. 4.1, respectively.

The nodal equations for the transformers are given asIabcT1,p

IabcT1,s

 =
[
YT1

]
.

Vabc
i

Vabc
j

 =

Yabc
pp,T1

Yabc
ps,T1

Yabc
sp,T1

Yabc
ss,T1

 .
Vabc

i

Vabc
j

 (4.2)
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IabcT2,p

IabcT2,s

 =
[
YT2

]
.

Vabc
k

Vabc
l

 =

Yabc
pp,T2

Yabc
ps,T2

Yabc
sp,T2

Yabc
ss,T2

 .
Vabc

k

Vabc
l

 (4.3)

where, IabcT1,p
and IabcT1,s

are the three phase line current vectors on primary and secondary side of

transformer T1, respectively, whereas IabcT2,p
and IabcT2,s

are the three phase line current vectors on

primary and secondary side of transformer T2, respectively. YT1 and YT2 are the admittance ma-

trices (corresponding to the type of the transformer connection) of size (6× 6) of the transformers

T1 and T2, respectively. Yabc
pp,T1

, Yabc
ps,T1

, Yabc
sp,T1

and Yabc
ss,T1

are the sub-matrices of size (3 × 3)

of the admittance matrix YT1 of transformer T1. Similarly, Yabc
pp,T2

, Yabc
ps,T2

, Yabc
sp,T2

and Yabc
ss,T2

are the sub-matrices of size (3× 3) of the admittance matrix YT2 of transformer T2. Vabc
i , Vabc

j ,

Vabc
k and Vabc

l are the three-phase voltage vectors of the buses i, j, k and l, respectively.

Now, the branch current vectors Babc
1 , Babc

2 , Babc
i−1 and Babc

k−1 of the system shown in Fig. 4.1

can be expressed in terms of equivalent bus injection current vectors as,

Babc
1 = Iabc2d + Iabc3d + · · ·+ Iabcid + IabcT1,p

+ · · ·+ Iabckd + IabcT2,p

Babc
2 = Iabc3d + · · ·+ Iabcid + IabcT1,p

+ · · ·+ Iabckd + IabcT2,p

Babc
i−1 = Iabcid + IabcT1,p

Babc
k−1 = Iabckd + IabcT2,p

(4.4)

where Iabc2d , Iabc3d , Iabcid and Iabckd are the three phase equivalent bus injection current vectors at buses

2, 3, i and k, respectively. The equivalent bus injection current at any phase q (q = a or b or c) of

ith bus
(
Īqid
)

is calculated as [70],

Īqid =

(
S̄qid
V̄ q
i

)∗
=

(
P̄ q
id + jQ̄q

id

V̄ q
i

)∗
(4.5)

where, S̄qid is the complex load power at phase q of ith bus, P̄ q
id and Q̄q

id are the active and reactive

load power at phase q of ith bus, respectively, V̄ q
i is the voltage at phase q of ith bus and symbol

(∗) stands for complex conjugate operator.

Similarly, the currents in the secondary side of transformers T1 and T2 (IabcT1,s
and IabcT2,s

), can be
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expressed in terms of equivalent bus injection current vectors as,

IabcT1,s
= −Iabcjd ; where Iabcjd = −Iabcinv (4.6a)

IabcT2,s
=


ĪaT2,s

ĪbT2,s

ĪcT2,s

 = −


Īald

Ībld

Īcld

−

Īamd

Ībmd

0

−

Īand

0

0

 (4.6b)

where Iqjd, I
q
ld, I

q
md and Iqnd are the equivalent bus injection currents at phase q (q = a or b or c)

of buses j (inverter bus), l, m and n, respectively; Iabcinv is the three phase inverter current vector

injected by the IBDG. Therefore, the branch current vectors of the system, shown in Fig. 4.1, can

be expressed in terms of equivalent bus injection current vectors in the matrix form as,[
B
]

=
[
BIBCSm

] [
IL

]
+
[
TIBCTm

] [
ITp

]
(4.7)

where,

[
BIBCSm

]
=



I3×3 I3×3 · · · I3×3 03×3 · · · I3×3 03×3 03×2 03×1

03×3 I3×3 · · · I3×3 03×3 · · · I3×3 03×3 03×2 03×1
...

... . . . ...
...

...
...

...
...

...

03×3 03×3 · · · I3×3 03×3 · · · 03×3 03×3 03×2 03×1

03×3 03×3 · · · 03×3 −I3×3 · · · 03×3 03×3 03×2 03×1
...

...
...

...
... . . . ...

...
...

...

03×3 03×3 · · · 03×3 03×3 · · · I3×3 03×3 03×2 03×1

03×3 03×3 · · · 03×3 03×3 · · · 03×3 −I3×3 −I3×2 −I3×1

02×3 02×3 · · · 02×3 02×3 · · · 02×3 02×3 I2×2 I2×1

01×3 01×3 · · · 01×3 01×3 · · · 01×3 01×3 01×2 I1×1


[
TIBCTm

]
=

I3×3 I3×3 · · · I3×3 03×3 · · · 03×3 03×3 03×2 03×1

I3×3 I3×3 · · · 03×3 03×3 · · · I3×3 03×3 03×2 03×1

T
[
B
]

=
[
Babc

1 Babc
2 · · · Babc

i−1 IabcT1,s
· · · Babc

k−1 IabcT2,s
Bab

l Ba
m

]T
[
IL

]
=

[
Iabc2d Iabc3d · · · Iabcid Iabcjd · · · Iabckd Iabcld Iabmd Iand

]T
[
ITp

]
=

[
IabcT1,p

IabcT2,p

]T
where, Inr×nc denotes (nr × nc) identity matrix and 0nr×nc denotes (nr × nc) null matrix. Here,

nr = 3 for 3-φ kth branch current vector (Babc
k ), nr = 2 for 2-φ kth branch current vector (Bab

k
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or Bbc
k or Bac

k ), nr = 1 for 1-φ kth branch current vector (Ba
k or Bb

k or Bc
k). The value of nc

will depend on the number of phases of the branch connected at the receiving end of kth branch.

nc = 3, if a three-phase branch is connected, nc = 2, if a two-phase branch is connected and

nc = 1, if a single-phase branch is connected.
[
BIBCSm

]
is the ”Bus injection to Branch current

system matrix” and
[
TIBCTm

]
is the ”Transformer inclusion to Branch current matrix”.

[
IL

]
is the equivalent bus injection current vector.

[
ITp

]
is the primary side current vector of all the

transformers present in the system. Further, [ITp ] in eq. (4.7), can be expressed in terms of bus

voltages using eqs. (4.2) and (4.3) as,[
ITp

]
=
[
Ytrans

] [
Vbus

]
(4.8)

where,[
Ytrans

]
=

03×3 03×3 · · · Yabc
pp,T1

Yabc
ps,T1

· · · 03×3 03×3 03×2 03×1

03×3 03×3 · · · 03×3 03×3 · · · Yabc
pp,T2

Yabc
ps,T2

03×2 03×1


[
Vbus

]
=

[
Vabc

2 Vabc
3 · · · Vabc

i Vabc
j · · · Vabc

k Vabc
l Vab

m Va
n

]T
Therefore, eq. (4.7) can be rewritten using eq. (4.8) as,[

B
]

=
[
BIBCSm

] [
IL

]
+
[
TIBC

′

Tm

] [
Vbus

]
(4.9)

where, [
TIBC

′

Tm

]
=

[
TIBCTm

] [
Ytrans

]
Further, it is assumed that the generalized unbalanced radial distribution system considered has u

three-phase, v two-phase, w single-phase buses and nt number of transformers. This generalized

system will be considered throughout this chapter. The sizes of [BIBCSm], [TIBCTm], [Ytrans]

and [TIBC
′
Tm] matrices for this system will be (3u + 2v + w − 3) × (3u + 2v + w − 3), (3u +

2v + w − 3) × (3nt), (3nt) × (3u + 2v + w − 3) and (3u + 2v + w − 3) × (3u + 2v + w − 3),

respectively.

The voltages at 3rd, ith and kth buses can be described in terms of branch currents as,

Vabc
3 = Vabc

1 − zabc
12 Babc

1 − zabc
23 Babc

2 (4.10)

Vabc
i = Vabc

1 − zabc
12 Babc

1 − zabc
23 Babc

2 − · · · − zabc
(i−1)iB

abc
i−1 (4.11)

Vabc
k = Vabc

1 − zabc
12 Babc

1 − zabc
23 Babc

2 − · · · − zabc
(k−1)kB

abc
k−1 (4.12)
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where,Vabc
1 is the three-phase voltage vector of the sub-station bus and zabc

12 , z
abc
23 , z

abc
(i−1)i and

zabc
(k−1)k are the line impedance matrices of the lines between buses 1 and 2, buses 2 and 3, buses

(i− 1) and i, and buses (k − 1) and k, respectively.

Similarly, the voltages at buses j and l (where the secondary windings of the transformers T1 and

T2 are connected) can be obtained from eqs. (4.2) and (4.3) as,

Vabc
j = Yabc

ss,T1

−1
(IabcT1,s

−Yabc
sp,T1

Vabc
i ) (4.13a)

Vabc
l = Yabc

ss,T2

−1
(IabcT2,s

−Yabc
sp,T2

Vabc
k ) (4.13b)

Therefore, the bus voltages of the system, shown in Fig. 4.1, can be expressed in terms of branch

currents in the matrix form as,[
Vbus

]
=
[
C
] [

Vs

]
+
[
BCBVTm

] [
B
]

(4.14)

where,[
BCBVTm

]
=

−zabc12 03×3 · · · 03×3 03×3 · · · 03×3 03×3 03×2 03×1

−zabc12 −zabc23 · · · 03×3 03×3 · · · 03×3 03×3 03×2 03×1
...

...
. . .

...
...

...
...

...
...

...

−zabc12 −zabc23 · · · −zabc(i−1)i 03×3 · · · 03×3 03×3 03×2 03×1

−A1zabc12 −A1zabc23 · · · −A1zabc(i−1)i Yabc
ss,T1

−1 · · · 03×3 03×3 03×2 03×1
...

...
...

...
...

. . .
...

...
...

...

−zabc12 −zabc23 · · · 03×3 03×3 · · · −zabc(k−1)k 03×3 03×2 03×1

−A2zabc12 −A2zabc23 · · · 03×3 03×3 · · · −A2zabc(k−1)k Yabc
ss,T2

−1
03×2 03×1

−A3zab12 −A3zab23 · · · 03×3 03×3 · · · −A3zab(k−1)k Yab
ss,T2

−1 −zablm 03×1

−A4za12 −A4za23 · · · 03×3 03×3 · · · −A4za(k−1)k Ya
ss,T2

−1 −zablm −zamn


where,

A1 = −Yabc
ss,T1

−1
Yabc

sp,T1
;

A2 = −Yabc
ss,T2

−1
Yabc

sp,T2
;

A3 = −Yab
ss,T2

−1
Yab

sp,T2
;

A4 = −Ya
ss,T2

−1Ya
sp,T2

.
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[
C
]

=



I3×3

I3×3
...

I3×3

−Yabc
ss,T1

−1
Yabc

sp,T1

...

I3×3

−Yabc
ss,T2

−1
Yabc

sp,T2

−Yab
ss,T2

−1
Yab

sp,T2

−Ya
ss,T2

−1Ya
sp,T2



;
[
Vs

]
= [Vabc

1 ] =


V a

1

V b
1

V c
1

 ;

The size of [BCBVTm] (”Branch current to bus voltage matrix with transformer”) and [C] matri-

ces for the considered system will be (3u+2v+w−3)×(3u+2v+w−3) and (3u+2v+w−3)×(3),

respectively.

Further, eq. (4.14) can be rewritten using eq. (4.9) as,

[
Vbus

]
=
[
C
′
] [

Vs

]
+
[
DLF

] [
IL

]
(4.15)

where,

[
C
′
]

=

[
I−

[
BCBVTm

] [
TIBC

′
Tm

] ]−1 [
C
]

;[
DLF

]
=

{[
I−

[
BCBVTm

] [
TIBC

′
Tm

] ]−1[ [
BCBVTm

]
.
[
BIBCSm

] ]}

where,
[
I
]

is an identity matrix of size (3u+ 2v + w − 3)× (3u+ 2v + w − 3).

In Fig. 4.1, zqid is the equivalent load impedance of phase q (q = a or b or c) at bus i (i =

1, 2, ..., n), calculated using the results of the above discussed DSLF.

4.2.1.1 Algorithm for generation of [BIBCSm] and [TIBCTm] matrices for radial distribu-

tion system

Step 1. Initialize the [BIBCSm] and [TIBCTm] matrices as null matrices of size (3u+ 2v+w−

3)× (3u+ 2v + w − 3) and (3u+ 2v + w − 3)× (3nt), respectively.
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Step 2. If kth line section (Lp
k), having p phases, is connected between buses i and j, then

(i).
[
BIBCSm(ls, j)

]
(p×p)

=
[
BIBCSm(ls, i)

]
(p×p)

;

(ii).
[
BIBCSm(k, j)

]
(p×p)

=
[
I
]

(p×p)

where ls = 1, 2, · · · , (k − 1);
[
I
]

is an identity matrix of size (p× p) and p = 3 for 3-φ, p = 2 for

2-φ, p = 1 for 1-φ line section.

Step 3. If a three-phase transformer ′t′ is connected at the kth line section between buses i and j,

then

(i).
[
TIBCTm(ls, t)

]
(3×3)

=
[
BIBCSm(ls, i)

]
(3×3)

;

(ii).
[
BIBCSm(k, j)

]
(3×3)

=
[
I
]

(3×3)

where, ls = 1, 2, · · · , (k− 1), t = 1 or 2 or · · · nt, depending on the transformer number, and
[
I
]

is an identity matrix of size (3× 3).

Step 4. Repeat Steps 2 and 3 until all line sections and the transformers are included in [BIBCSm]

and [TIBCTm] matrices.

4.2.1.2 Algorithm for generation of [BCBVTm] and [C] matrices for radial distribution sys-

tem

Step 1. Initialize [BCBVTm] matrix as a null matrix of size (3u+2v+w−3)×(3u+2v+w−3).

Initialize [C] matrix as follows: (a) for three-phase bus,
[
Ci

]abc
(3×3)

=


1 0 0

0 1 0

0 0 1

; (b) for two

phase bus,
[
Ci

]pq
(2×3)

=

1 0 0

0 1 0

, where pq = (a, b) or (b, c) or (c, a); (c) for single phase bus,[
Ci

]p
(1×3)

=
[
1 0 0

]
, where p = (a or b or c); i = bus number. The size of [C] matrix is

(3u+ 2v + w − 3)× 3.

Step 2. If kth line section (Lp
k), having p phases, is connected between buses i and j, then

(i).
[
BCBVTm(j, ls)

]
(p×p)

=
[
BCBVTm(i, ls)

]
(p×p)

;

(ii).
[
BCBVTm(j, k)

]
(p×p)

=
[
zabc
ij

]
(p×p)

;

(iii).
[
C(j, ls)

]
(p×p)

=
[
C(i, ls)

]
(p×p)
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where ls = 1, 2, · · · , (k − 1); p = 3 and
[
zabc
ij

]
(3×3)

=


z̄aaij z̄abij z̄acij

z̄baij z̄bbij z̄bcij

z̄caij z̄cbij z̄ccij

 for 3-φ; p = 2 and

[
zabc
ij

]
(2×2)

=

z̄qqij z̄qrij

z̄rqij z̄rrij

, where (q, r) = (a, b) or (b, c) or (c, a), for 2-φ; p = 1 and
[
zabc
ij

]
(1×1)

=[
z̄qqij

]
, where q = a or b or c, for 1-φ line section.

Step 3. If a three-phase transformer ′t′ is connected at the kth line section between buses i and j,

then

(i).
[
BCBVTm(j, ls)

]
(3×3)

= −
[
Yabc

ss,t
−1
.Yabc

sp,t

]
∗
[
BCBVTm(i, ls)

]
(3×3)

;

(ii).
[
BCBVTm(j, k)

]
(3×3)

=
[
Yabc

ss,t

]−1

(3×3)
;

(iii).
[
C(j, ls)

]
(3×3)

= −
[
Yabc

ss,t
−1
.Yabc

sp,t

]
∗
[
C(i, ls)

]
(3×3)

where ls = 1, 2, · · · , (k − 1); t = 1 or 2 or · · · nt depending on the transformer number.

Step 4. Repeat Steps 2 and 3 until all line sections and the transformers are included in [BCBVTm]

and [C] matrices.

4.2.2 Meshed distribution system

Let us consider a meshed distribution system with switch ’S’ in close position in Fig. 4.1. A new

branch is thus added between buses 2 and l and its branch current is denoted as Babc
new. The matrices[

BIBCSm

]
and

[
TIBCTm

]
in eq. (4.7) will be modified with the addition of new mesh current

Babc
new [70] in the network. Hence, eq. (4.7) can be modified for the meshed distribution network

as,  B

Babc
new

 =
[
BIBCmesh

Sm

] IL

Babc
new

+
[
TIBCmesh

Tm

] [
ITp

]
(4.16)

where,

[
TIBCmesh

Tm

]
=

I3×3 I3×3 · · · I3×3 03×3 · · · 03×3 03×3 03×2 03×1 03×3

I3×3 I3×3 · · · 03×3 03×3 · · · I3×3 03×3 I3×2 03×1 03×3

T
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[
BIBCmesh

Sm

]
=

I3×3 I3×3 · · · I3×3 03×3 · · · I3×3 03×3 03×2 03×1 I3×3

03×3 I3×3 · · · I3×3 03×3 · · · I3×3 03×3 03×2 03×1 03×3
...

... . . . ...
...

...
...

...
...

...
...

03×3 03×3 · · · I3×3 03×3 · · · 03×3 03×3 03×2 03×1 03×3

03×3 03×3 · · · 03×3 −I3×3 · · · 03×3 03×3 03×2 03×1 03×3
...

...
...

...
... . . . ...

...
...

...
...

03×3 03×3 · · · 03×3 03×3 · · · I3×3 03×3 03×2 03×1 03×3

03×3 03×3 · · · 03×3 03×3 · · · 03×3 −I3×3 −I3×2 −I3×1 I3×3

02×3 02×3 · · · 02×3 02×3 · · · 02×3 02×3 I2×2 I2×1 02×3

01×3 01×3 · · · 01×3 01×3 · · · 01×3 01×3 01×2 I1×1 01×3

03×3 03×3 · · · 03×3 03×3 · · · 03×3 03×3 03×3 03×3 I3×3


Similarly, eq. (4.9) can also be modified for the meshed distribution network as, B

Babc
new

 =
[
BIBCmesh

Sm

] IL

Babc
new

+
[
TIBC

′mesh

Tm

]Vbus

0

 (4.17)

Now, applying KVL equation for the loop (with switch ’S’ closed in Fig. 4.1), we have,

Babc
2 Zabc

23 + · · ·+ Babc
(k−1)Z

abc
(k−1)k + Vabc

k −Vabc
l −Babc

newZabc
2l = 0 (4.18)

Hence, eq. (4.14) can be modified for the meshed distribution system with the inclusion of eq.

(4.18) as, Vbus

0

 =

 C

Cmesh

[Vs

]
+
[
BCBVmesh

Tm

] B

Babc
new

 (4.19)

where,[
BCBVmesh

Tm

]
=

−zabc
12 03×3 · · · 03×3 03×3 · · · 03×3 03×3 03×2 03×1 03×3

−zabc
12 −zabc

23 · · · 03×3 03×3 · · · 03×3 03×3 03×2 03×1 03×3

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

−zabc
12 −zabc

23 · · · −zabc
(i−1)i 0n · · · 03×3 03×3 03×2 03×1 03×3

−A1zabc
12 −A1zabc

23 · · · −A1zabc
(i−1)i Yabc

ss,T1

−1 · · · 03×3 03×3 03×2 03×1 03×3

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

−zabc
12 −zabc

23 · · · 03×3 03×3 · · · −zabc
(k−1)k 03×3 03×2 03×1 03×3

−A2zabc
12 −A2zabc

23 · · · 03×3 03×3 · · · −A2zabc
(k−1)k Yabc

ss,T2

−1
03×2 03×1 03×3

−A3zab12 −A3zab23 · · · 02×3 02×3 · · · −A3zab(k−1)k Yab
ss,T2

−1 −zablm 02×1 02×3

−A4za12 −A4za23 · · · 01×3 01×3 · · · −A4za(k−1)k Ya
ss,T2

−1 −zablm −zamn 01×3

−A5zabc
12 −A5zabc

23 · · · 03×3 03×3 · · · −A5zabc
(k−1)k −Yabc

ss,T2

−1
03×2 03×1 −zabc

2l


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 C

Cmesh

 =



I3×3

I3×3
...

I3×3

−Yabc
ss,T1

−1
Yabc

sp,T1

...

I3×3

−Yabc
ss,T2

−1
Yabc

sp,T2

−Yab
ss,T2

−1
Yab

sp,T2

−Ya
ss,T2

−1Ya
sp,T2

1 + Yabc
ss,T2

−1
Yabc

sp,T2



=
[
Cmesh

new

]
;

where, A5 = (1 + Yabc
ss,T2

−1
Yabc

sp,T2
).

Similarly, eq. (4.15) can also be modified for the meshed distribution network as,Vbus

0

 =

 C
′

C
′mesh

[Vs

]
+
[
DLFmesh

] IL

Babc
new

 (4.20)

where, C
′

C
′mesh

 =

[
I−

[
BCBVmesh

Tm

] [
TIBC

′mesh
Tm

] ]−1  C

Cmesh


[
DLFmesh

]
=

{[
I−

[
BCBVmesh

Tm

] [
TIBC

′mesh

Tm

] ]−1[ [
BCBVmesh

Tm

]
.
[
BIBCmesh

Sm

] ]}
Now, equation (4.20) can be further rewritten as,Vbus

0

 =

 C
′

C
′mesh

[Vs

]
+

M1 M2
T

M2 M3

 IL

Babc
new

 (4.21)

Equation (4.21) can be further solved by Kron’s reduction method to obtain the bus voltages of the

meshed distribution network as,[
Vbus

]
=

[
C
′ −M2

TM−1
3 C

′mesh
] [

Vs

]
+
[
M1 −M2

TM−1
3 M2

] [
IL

]
[
Vbus

]
=

[
C
′
new

] [
Vs

]
+
[
DLFnew

] [
IL

]
(4.22)

where [C
′
new] =

[
C
′ −M2

TM−1
3 C

′mesh
]

and [DLFnew] =
[
M1 −M2

TM−1
3 M2

]
.
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The sizes of [BIBCmesh
Sm ], [TIBCmesh

Tm ], [BCBVmesh
Tm ] and [Cmesh

new ] matrices for the consid-

ered system with ms no. of meshes will be (3u+ 2v+w− 3 + 3ms)× (3u+ 2v+w− 3 + 3ms),

(3u + 2v + w − 3 + 3ms) × (3nt), (3u + 2v + w − 3 + 3ms) × (3u + 2v + w − 3 + 3ms) and

(3u+ 2v + w − 3 + 3ms)× (3), respectively.

4.2.2.1 Algorithm for generation of [BIBCmesh
Sm ] and [TIBCmesh

Tm ] matrices for meshed distri-

bution system

Step 1. Initialize the [BIBCmesh
Sm ] and [TIBCmesh

Tm ] matrices as null matrices of size (3u + 2v +

w − 3 + 3ms)× (3u+ 2v + w − 3 + 3ms) and (3u+ 2v + w − 3 + 3ms)× (3nt), respectively.

Step 2. If kth line section (Lp
k), having p phases, is connected between buses i and j, then

(i).
[
BIBCmesh

Sm (ls, j)
]

(p×p)
=

[
BIBCmesh

Sm (ls, i)
]

(p×p)
;

(ii).
[
BIBCmesh

Sm (k, j)
]

(p×p)
=

[
I
]

(p×p)

where ls = 1, 2, · · · , (k − 1);
[
I
]

is an identity matrix of size (p× p) and p = 3 for 3-φ, p = 2 for

2-φ, p = 1 for 1-φ line section.

Step 3. If a three-phase transformer ′t′ is connected at the kth line section between buses i and j,

then

(i).
[
TIBCmesh

Tm (ls, t)
]

(3×3)
=

[
BIBCmesh

Sm (ls, i)
]

(3×3)
;

(ii).
[
BIBCmesh

Sm (k, j)
]

(3×3)
=

[
I
]

(3×3)

where, ls = 1, 2, · · · , (k− 1), t = 1 or 2 or · · · nt, depending on the transformer number, and
[
I
]

is an identity matrix of size (3× 3).

Step 4. If a three-phase branch Labc
k , connected between buses i and j generates a mesh in the

system, then

(i).
[
BIBCmesh

Sm (ls, k)
]

(3×3)
=

[
BIBCmesh

Sm (ls, i)
]

(3×3)
−
[
BIBCmesh

Sm (ls, j)
]

(3×3)

(ii).
[
BIBCmesh

Sm (k, k)
]

(3×3)
=

[
I
]

(3×3)

where ls = 1, 2, · · · , (k − 1).

Step 5. Repeat Steps 2, 3 and 4 until all the line sections and the transformers are included in

[BIBCmesh
Sm ] and [TIBCmesh

Tm ] matrices of the meshed distribution system.
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4.2.2.2 Algorithm for generation of [BCBVmesh
Tm ] and [Cmesh

new ] matrices for meshed distribu-

tion system

Step 1. Initialize [BCBVmesh
Tm ] matrix as a null matrix of size (3u+ 2v +w − 3 + 3ms)× (3u+

2v +w− 3 + 3ms). Initialize [Cmesh
new ] matrix as follows: (a) for three-phase bus,

[
Cmesh

newi

]abc
(3×3)

=
1 0 0

0 1 0

0 0 1

; (b) for two phase bus,
[
Cmesh

newi

]pq
(2×3)

=

1 0 0

0 1 0

, where pq = (a, b) or (b, c) or (c, a);

(c) for single phase bus,
[
Cmesh

newi

]p
(1×3)

=
[
1 0 0

]
, where p = (a or b or c); i = bus number; (d)

for ms no. of meshes present in the system,
[
Cmesh

new,ms

]abc
(3×3)

=


1 0 0

0 1 0

0 0 1

. The size of
[
Cmesh

new

]
matrix is (3u+ 2v + w − 3 + 3ms)× 3.

Step 2. If kth line section (Lp
k), having p phases, is connected between buses i and j, then

(i).
[
BCBVmesh

Tm (j, ls)
]

(p×p)
=

[
BCBVmesh

Tm (i, ls)
]

(p×p)
;

(ii).
[
BCBVmesh

Tm (j, k)
]

(p×p)
=

[
zabc
ij

]
(p×p)

;

(iii).
[
Cmesh

new (j, ls)
]

(p×p)
=

[
Cmesh

new (i, ls)
]

(p×p)

where ls = 1, 2, · · · , (k − 1); p = 3 and
[
zabc
ij

]
(3×3)

=


z̄aaij z̄abij z̄acij

z̄baij z̄bbij z̄bcij

z̄caij z̄cbij z̄ccij

 for 3-φ; p = 2 and

[
zabc
ij

]
(2×2)

=

z̄qqij z̄qrij

z̄rqij z̄rrij

, where (q, r) = (a, b) or (b, c) or (c, a), for 2-φ; p = 1 and
[
zabc
ij

]
(1×1)

=[
z̄qqij

]
, where q = a or b or c, for 1-φ line section.

Step 3. If a three-phase transformer ′t′ is connected at the kth line section between buses i and j,

then

(i).
[
BCBVmesh

Tm (j, ls)
]

(3×3)
= −

[
Yabc

ss,t
−1
.Yabc

sp,t

]
∗
[
BCBVmesh

Tm (i, ls)
]

(3×3)
;

(ii).
[
BCBVmesh

Tm (j, k)
]

(3×3)
=

[
Yabc

ss,t

]−1

(3×3)
;

(iii).
[
Cmesh

new (j, ls)
]

(3×3)
= −

[
Yabc

ss,t
−1
.Yabc

sp,t

]
∗
[
Cmesh

new (i, ls)
]

(3×3)
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where ls = 1, 2, · · · , (k − 1); t = 1 or 2 or · · · nt depending on the transformer number.

Step 4. If a three-phase branch Labc
k , connected between buses i and j generates a mesh in the

system, then

(i).
[
BCBVmesh

Tm (k, ls)
]

(3×3)
=

[
BCBVmesh

Tm (i, ls)
]

(3×3)
−
[
BCBVmesh

Tm (j, ls)
]

(3×3)
;

(ii).
[
BCBVmesh

Tm (k, k)
]

(3×3)
= −

[
zabc
k

]
(3×3)

;

(iii).
[
Cmesh

new (k, ls)
]

(3×3)
=

[
Cmesh

new (i, ls)
]

(3×3)
−
[
Cmesh

new (j, ls)
]

(3×3)

Step 5. Repeat Steps 2, 3 and 4 until all line sections and transformers are included in [BCBVmesh
Tm ]

and [Cmesh
new ] matrices of the meshed distribution system.

4.2.3 Singularity problem and its solution

Let us assume that the transformer T1, in Fig. 4.1, is a star grounded/delta (YgD-1) transformer.

The nodal admittance matrix (p.u.) of this transformer is given as,

YT = yt



1 0 0 − 1√
3

1√
3

0

0 1 0 0 − 1√
3

1√
3

0 0 1 1√
3

0 − 1√
3

− 1√
3

0 1√
3

2
3

−1
3
−1

3

1√
3
− 1√

3
0 −1

3
2
3

−1
3

0 1√
3
− 1√

3
−1

3
−1

3
2
3


=

Yabc
pp,T Yabc

ps,T

Yabc
sp,T Yabc

ss,T

 (4.23)

where yt is the per unit transformer leakage admittance. Now, to calculate transformer secondary

side bus voltage Vabc
j , using eq. (4.13), the inversion of sub-matrix Yabc

ss,T is required. Eq. (4.23)

shows that the sub-matrix Yabc
ss,T, for a (YgD-1) transformer, is a singular matrix. To overcome

this singularity problem, the method given in [78] is followed. Initially, the sequence component

voltage of transformer secondary side bus j (V′abc
j ), that contains only the positive and negative

sequence components, is calculated as,

V
′abc
j = Vabc

j −V0abc
j (4.24)
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where Vabc
j and V0abc

j are the actual jth bus voltage and zero sequence component of jth bus

voltage vector, respectively. Therefore, eq. (4.13) for the jth bus voltage can be rewritten (using

eq. (4.24)) as,

Yabc
ss,T1

(V
′abc
j + V0abc

j ) = (IabcT1,s
−Yabc

sp,T1
Vabc

i ) (4.25)

Since, V0abc
j .Yabc

ss,T1
= 0 [78], (for all transformers having singular Yabc

ss,T matrix), eq. (4.25) can

be rewritten as,

Yabc
ss,T1

V
′abc
j = (IabcT1,s

−Yabc
sp,T1

Vabc
i ) (4.26)

Since V
′abc
j does not contain any zero sequence component,[

1 1 1
]

V
′abc
j = 0 (4.27)

Combined eqs. (4.26) and (4.27), we get,

Y
′abc
ss,T1

V
′abc
j = (I

′abc
T1,s
−Y

′abc
sp,T1

Vabc
i ) (4.28)

where,

Y
′abc
ss,T1

= yt
3


2 −1 −1

−1 2 −1

1 1 1

 ; Y
′abc
sp,T1

= yt√
3


−1 0 1

1 −1 0

0 0 0

 and I
′abc
T1,s

=
[
ĪaT1,s ĪbT1,s 0

]T
.

Hence the sum of positive and negative sequence components of jth bus voltage (V′abc
j ) is

calculated using eq. (4.28). The zero sequence component of the jth bus voltage (V0abc
j ) can

be neglected [78], as in common practice, the single-phase to ground loads are connected to the

ungrounded side of transformer in the distribution utility system [78] and therefore the zero se-

quence currents in transformer are very small as compared to the load currents. Hence, the actual

voltage of transformer secondary side bus j (Vabc
j ) is obtained as the sum of positive and negative

sequence component voltages at jth bus.

4.2.4 IBDG model for the load flow

In general, the IBDGs are connected to the distribution system through a step-up distribution trans-

former. Hence, let us consider an IBDG is connected to bus j of the distribution system shown in

Fig. 4.1. Two different modes of IBDG have been considered in the proposed distribution system

load flow, as,
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1. Constant active power mode- In this mode, IBDG operates in the constant active power

injection mode (unity power factor mode). In this case, the IBDG directly feeds power

to the grid irrespective of the voltage magnitude at its terminal. Hence the total injected

complex power by the IBDG at inverter bus is, Sabc
dg = Pabc

dg + jQabc
dg ; where Pabc

dg =[
P a
dg P b

dg P c
dg

]T
, Qabc

dg =
[
Qa
dg Qb

dg Qc
dg

]T
. P q

dg and Qq
dg (q = a or b or c) are the active

and reactive power generated by the IBDG at phase q of inverter bus, respectively. In this

mode, only the active power is injected by the IBDG, i.e. Qabc
dg =

[
0 0 0

]T
. Also, the

inverter current in qth phase (Īqinv) in this mode is calculated as,

Īqinv =

(
S̄qdg
V̄ q
inv

)∗
=

(
P̄ q
dg + jQ̄q

dg

V̄ q
inv

)∗
=

(
P̄ q
dg + j0.0

V̄ q
inv

)∗
; (q = a, b, c) (4.29)

where, V̄ q
inv is the qth phase voltage of inverter bus.

2. Power and voltage control (PV) mode- In this mode, the inverter bus (where an IBDG is

connected) is treated as a PV-bus. In this case, the IBDG also injects the required reactive

power to the utility grid to maintain the inverter bus voltage magnitude at its pre-specified

value. The calculation of required reactive power is performed by using the PV node sensitiv-

ity matrix based method, given in [90]. Hence the total complex power injected by the IBDG,

at inverter bus, in this mode is, Sabc
dg = Pabc

dg + jQabc
dg ; where Qabc

dg =
[
Qa
dg Qb

dg Qc
dg

]T
.

Qq
dg (q = a or b or c) is the required reactive power injection by the IBDG at phase q to

maintain the voltage magnitude of the qth phase of inverter bus at its pre-specified value. In

each iteration, Qabc
dg is calculated for all IBDGs and the condition Qmin

dg < Qq
dg < Qmax

dg

(q = a, b, c) is checked, where Qmin
dg and Qmax

dg are the minimum and maximum reactive

power generation limits of the IBDG. For any IBDG, if Qq
dg < Qmin

dg at any iteration , then

Qq
dg (q = a, b, c) will be fixed at Qmin

dg , and if Qq
dg > Qmax

dg , then Qq
dg (q = a, b, c) will be

fixed at Qmax
dg , and in both cases IBDG bus will be treated as a PQ bus in that particular

iteration. Otherwise, if the condition Qmin
dg < Qq

dg < Qmax
dg (q = a, b, c) is true, then the

IBDG will continue to operate in PV bus mode in the next iteration. The inverter current in

qth phase (Īqinv) in this mode is calculated as,

Īqinv =

(
S̄qdg
V̄ q
inv

)∗
=

(
P̄ q
dg + jQ̄q

dg

V̄ q
inv

)∗
; (q = a, b, c) (4.30)
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4.3 Short-circuit analysis of an unbalanced distribution system with transformer modeling

With the help of the proposed DSLF, the injected load currents and the voltages at each bus of the

distribution system are calculated. Subsequently, the equivalent load impedances at each bus can

be calculated. For example, the equivalent load impedance at any phase q (q = a, b, c) of bus i of

the system, shown in Fig. 4.1, can be calculated as

z̄qid =

(
V̄ q
i

Īqid

)
; q = (a, b, c) (4.31)

where, V̄ q
i and Īqid are the voltage and equivalent injection current at phase q of ith bus, obtained

from DSLF, respectively. Also, the inverter current of the IBDG, as shown in Fig. 4.1, is calculated

using eq. (4.32) as

Iabcinv = IabcT1,s
= (Yabc

sp,T1
Vabc

i + Yabc
ss,T1

Vabc
j ) (4.32)

Now, the KCL equations for all the buses of the system, except the inverter bus (j) (used for the

connection of IBDG) and the substation bus, are written in the matrix form as (from eq. (2.10) of

Subsection 2.2.1 of Chapter 2), [
Ybus

] [
V
]

=
[
I
]

(4.33)

Details of the [Ybus], [V] and [I] are given in eq. (2.10) of Subsection 2.2.1 of Chapter 2. If a

transformer ′T ′2, with its nodal admittance matrix model of eq. (4.3), is connected between bus k

and bus l of the distribution system, as shown in Fig. 4.1, then the following elements of the [Ybus]

matrix will be modified as,

Yabc
kk,new = Yabc

kk + Yabc
pp,T2

(4.34a)

Yabc
kl,new = Yabc

kl + Yabc
ps,T2

(4.34b)

Yabc
lk,new = Yabc

lk + Yabc
sp,T2

(4.34c)

Yabc
ll,new = Yabc

ll + Yabc
ss,T2

(4.34d)

Similarly, if an IBDG transformer ’T1’ (used for the connection of IBDG to the grid) is connected

between bus i and j (inverter bus) of the distribution system, as shown in Fig. 4.1, the following

elements of the [Ybus] matrix will be modified as,

Yabc
ii = Yabc

ii + Yabc
pp,T1

(4.35)
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Also, due to the connection of IBDG, the current vector [I] will be modified to [Im] as explained

in eq. (3.5) of Subsection 3.2.1 of Chapter 3, and is given as,

[Im] =
[
yabc
12 Vabc

s · · · Yabc
ps,T1

Vabc
inv,st 0 · · · 0 0

]T
(4.36)

where Vabc
inv,st is the three-phase inverter bus voltage vector, obtained from the DSLF. In Fig 4.1,

jth bus of the system is treated as an inverter bus and hence Vabc
inv,st = Vabc

j,st ; Vabc
j,st is the jth bus

voltage vector, obtained from DSLF.

Now, for the short-circuit calculations, the [Ybus] matrix is further modified to [Ybus m], cor-

responding to the type of fault occurring in the system (as described in eq. (3.6) of Subsection

3.2.2 of Chapter 3). Hence, the initial estimate of the bus voltages under the fault conditions are

calculated as (as given in eq. (3.6) of Subsection 3.2.2 of Chapter 3),[
Ybus m

] [
V
]

=
[
Im

]
(4.37)

Also, the initial estimate of inverter current under the fault condition is calculated as,

Iabcinv,f ,est = IabcT1f
,s = (Yabc

sp,T1
Vabc

i,f + Yabc
ss,T1

Vabc
inv,st) (4.38)

where, Vabc
i,f is the estimated ith bus three phase voltage vector and IabcT1f

,s is the estimated sec-

ondary side three phase current vector of transformer T1 under the fault conditions.

Next compare the magnitude of estimated inverter current with its short-circuit capacity (I invsc ),

and

(i) If |Īqinv,f,est| ≤ I invsc ; (q = a, b, c), then the bus voltages calculated using eq. (4.37) are the final

values of the bus voltages under the fault conditions (as discussed in Subsection 3.2.2 of Chapter

3),

(ii) If |Īqinv,f,est| > I invsc ; (q = a, or b, or c), then the inverter will operate in constant current mode

(|Īqinv,f,est| = I invsc ; (q = a, b, c)) and the fault currents, bus voltages and branch currents under

the fault conditions will be obtained using the fault analysis method given in Subsection 3.2.2 of

Chapter 3.

4.4 Test results and discussions

To validate the proposed load flow and short-circuit analysis methods, the IEEE 123-bus modified

test system [146] has been used. Five different sized IBDGs have been considered in this system.

83



The detailed information of these IBDGs is given in Table 4.1. These IBDGs are connected at

different buses of the test system, as shown in column 2 of Table 4.1. The total installed capacity

of IBDGs is considered as 25% of the total active power load in the system. The short-circuit

capacity of each IBDG is assumed to be 150% of the rated inverter current of individual IBDGs.

The injected reactive power limits of the IBDGs are shown in column 5 of Table 4.1. In this study,

it is assumed that all IBDGs are operating at unity power factor when they operate in the ”constant

power mode” and at 0.85 power factor leading when they operate in ”PV bus mode”, in the pre-

fault conditions. These IBDGs are connected to the system grid through three-phase step down

transformers, named as IBDG transformers, with their turns ratio assumed as 4.16/0.480 kV. It is

also assumed that the primary side windings of the transformer are connected to the three phase bus

of the grid, while the secondary side windings are connected to the IBDG. These transformers can

be of different vector groups. In this study, Delta/Star-grounded (∆− Yg) and Star-grounded/Star-

grounded (Yg − Yg) types of step down transformers have been assumed [150, 151]. The nodal

admittance matrix model (p.u.) of the ∆Yg-1 and YgYg-0 transformers are given as [80],

YT(∆Yg1) = yt



2
3 −1

3 −1
3 − 1√

3
1√
3

0

−1
3

2
3 −1

3 0 − 1√
3

1√
3

−1
3 −1

3
2
3

1√
3

0 − 1√
3

− 1√
3

0 1√
3

1 0 0

1√
3
− 1√

3
0 0 1 0

0 1√
3
− 1√

3
0 0 1


(4.39)

YT(YgYg0) = yt



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


(4.40)

where yt is an equivalent transformer leakage admittance in p.u.. In this paper, the value of yt is

assumed as (0.000− j16.952) p.u. [146]. MATLAB environment has been used to implement the

proposed method with a tolerance limit (ε) of 1.0 × 10−12. Further for checking the accuracy of

the proposed method, the obtained results have been compared to the results obtained from time
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Table 4.1: Details of the IBDGs installed in the IEEE 123-bus modified test

system

IBDG No. IBDG location

IBDG installed Short-circuit IBDG Reactive

capacity, Pdg current capacity, I invsc power limits

(Bus No.) (per phase) (kW) (per phase) (Amp) (per phase) (kVAR)

1. 20 140 251.87 -86.52 ≤ Qdg,1 ≤ 86.52

2. 25 105 188.90 -64.89 ≤ Qdg,2 ≤ 64.89

3. 75 140 251.87 -86.52 ≤ Qdg,3 ≤ 86.52

4. 98 175 314.84 -108.15 ≤ Qdg,4 ≤ 108.15

5. 104 280 503.74 -173.03 ≤ Qdg,5 ≤ 173.03

domain simulation studies carried out using PSCAD/EMTDC software [139]. All the IBDGs have

been represented as a constant current source in the time domain simulation study using the current

values calculated by the proposed method.

4.4.1 Results for radial test distribution system

In this study, following two cases have been simulated using the proposed load flow method :

Case 1: Delta/Star-grounded (∆Yg-1) transformers are used with all five IBDGs (as given in Table

4.1)

Case 2: Star-grounded/Star-grounded (YgYg-0) transformers are used with all five IBDGs (as given

in Table 4.1)

4.4.1.1 Results of load flow studies

Two modes of operation of IBDG has been considered in the above two given cases. In Mode 1,

IBDG is operating in ”Constant active power mode”, while in Mode 2, IBDG is operating in ”PV

mode”. The phase a calculated complex power injected by the IBDGs corresponding to Mode 1

and Mode 2 operations for both cases are shown in columns 2-3 and 6-7 of Table 4.2, respectively.

This table shows that, in Mode-1 operation, only active power is injected by the IBDGs to the grid.

On the other hand, in Mode-2 operation, to improve the system voltage profile, required amount

of reactive power has also been injected (along with active power) by the IBDGs to the grid. The

calculated inverter currents of all IBDGs (phase a) in Mode 1 and Mode 2 operations for both

the cases are shown in columns 4-5 and 8-9 of Table 4.2, respectively. The magnitude of inverter
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Table 4.2: Injected power by the IBDGs and Inverter currents of phase a in

Mode 1 and Mode 2 operation of IBDGs, for case 1 and case 2, of radial test

distribution system under normal operating conditions

IBDG No.

∆Yg1- IBDG transformer configuration YgYg0- IBDG transformer configuration

Injected Power (kVA) Inverter Current (Amp) Injected Power (kVA) Inverter Current (Amp)

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

1 140.00-j00.00 140.00-j86.52 169.40∠-30.00o 198.16∠-61.93o 140.00-j00.00 140.00-j86.52 170.05∠-0.17o 198.97∠-32.11o

2 105.00-j00.00 105.00-j64.89 127.08∠-30.02o 148.66∠-61.96o 105.00-j00.00 105.00-j64.89 127.56∠-0.21o 149.25∠-32.15o

3 140.00-j00.00 140.00-j86.52 170.18∠-29.89o 198.31∠-61.91o 140.00-j00.00 140.00-j86.52 170.83∠-0.07o 199.10∠-32.11o

4 175.00-j00.00 175.00-j104.83 212.63∠-29.77o 245.25∠-61.03o 175.00-j00.00 175.00-j104.76 213.67∠0.11o 246.39∠-31.17o

5 280.00-j00.00 280.00-j79.81 339.88∠-29.58o 349.88∠-45.78o 280.00-j00.00 280.00-j79.34 341.04∠0.26o 350.96∠-15.89o

currents in Mode 2 is greater than in Mode 1, due to the extra capacitive reactive power injection

in Mode 2.

The voltage profiles of phase a of the test distribution system, obtained by the proposed load

flow method for Mode 1 and Mode 2 operation of IBDGs, for the two given cases are shown in

Figs. 4.2(a) and (b), respectively. These figures show that, as expected, the voltage profiles in

Mode 2 operation of IBDGs are much better than in Mode 1 operation for both the cases, due to

the injection of capacitive reactive power.

The voltage profiles of phase a in Mode 1 operation of the IBDGs for the two cases have

also been obtained by the PSCAD/EMTDC simulation studies and are shown in Figs. 4.3(a) and

(b), respectively, along with the voltage profiles obtained by the proposed method. These figures

show that, the voltage profiles obtained by the proposed method in both the cases are very close

to the voltage profiles obtained from the PSCAD/EMTDC simulation studies, which validates the

accuracy of the proposed load flow method.

4.4.1.2 Results of short-circuit studies

In this work, again two different scenarios have been considered (as described in Subsection 3.3.1

of Chapter 3),

Scenario 1: In this scenario, it is assumed that the IBDG control scheme is not dependent on the

inverter bus terminal voltage,

Scenario 2: In this scenario, it is assumed that the IBDG control scheme is dependent on the

inverter bus terminal voltage.
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Figure 4.2: Voltage profile of phase a for radial test system with (a) ∆Yg-1

(Case 1) and (b) YgYg-0 (Case 2) IBDG transformers under normal operating

conditions
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Figure 4.3: Voltage profile of phase a for radial test system with (a) ∆Yg-1

(Case 1) and (b) YgYg-0 (Case 2) IBDG transformers, using proposed technique

and PSCAD/EMTDC simulation under normal operating conditions

An SLG fault in phase a of bus 105, with a fault impedance z̄f = 0.001+0.000i p.u. has been

assumed for the two given cases (Case 1 and 2). In the first step, the inverter currents
(
Iabcinv,f ,est

)
of
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Table 4.3: Results for SLG(a-g) fault in modified IEEE 123-bus radial distribu-

tion system with IBDGs and ∆Yg-1 IBDG transformers (Case 1) for scenario

1

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 1.504∠-60.52o 1.134∠122.15o 0.374∠111.43o 0.252∠-124.64o 0.252∠122.93o 0.252∠-1.78o 188.760 192.886 212.189

25 1.169∠-54.38o 0.879∠128.78o 0.294∠116.24o 0.189∠-124.67o 0.189∠122.91o 0.189∠-1.82o 141.493 144.626 159.121

75 7.424∠-75.12o 7.184∠104.73o 0.238∠109.06o 0.252∠-133.84o 0.252∠130.99o 0.252∠-2.47o 155.730 160.992 213.515

98 3.165∠-58.10o 2.804∠122.97o 0.363∠113.66o 0.315∠-133.98o 0.315∠130.73o 0.315∠-2.64o 195.703 202.120 267.824

104 5.345∠-66.42o 4.942∠114.47o 0.407∠102.72o 0.504∠-135.16o 0.504∠132.00o 0.504∠-2.58o 307.352 317.670 430.224

all the five IBDGs have been estimated (for scenario 1) by assuming that the inverter bus voltages

under the fault condition (Vabc
inv,f ) of all IBDGs are maintained at their pre-fault values (Vabc

inv,st).

The calculated currents for the two cases are given in Tables 4.3 and 4.4, respectively. Both the

tables show that, the magnitude of inverter currents
(
|Iabcinv,f ,est|

)
of all the IBDGs are greater than

their short-circuit current capacities, given in Table 4.1. Hence, according to the inverter control

strategy (as discussed in Case 2 of Subsection 3.2.2 of Chapter 3), the magnitudes of inverter

currents of all the phases are to be limited to their short-circuit current capacities
(
|Ipinv,f |= I invsc , p =

a, b, c
)

and their angles are maintained in such a way that all IBDGs will deliver reactive power to

the system during the short-circuit condition (Ψp
inv,f = π

2
+ θpdg,f , p = a, b, c). With this strategy,

the inverter currents (Iabcinv,f ) and the injected powers by all IBDGs under the fault conditions for

both the cases are recalculated using the short-circuit analysis method (as given in Subsection 3.2.2

of Chapter 3) and their values for the two cases (for scenario 1) are given in Tables 4.3 and 4.4,

respectively.

The results for SLG fault in phase a of bus 105, with a fault impedance z̄f = 0.001+0.000i p.u.,

for the two given cases (for the scenarios 1 and 2) are shown in Tables 4.5 and 4.6, respectively.

The intermediate inverter bus voltage magnitude, obtained in scenario 1, for all IBDGs under the

fault condition for the two cases are shown in columns 2-4 of Tables 4.5 and 4.6, respectively.

The intermediate power injected by the IBDGs, obtained in scenario 1, for the two cases are also

shown in column 5 of Tables 4.5 and 4.6, respectively. Following the steps 7-11 of the algorithm

described in Subsection 3.2.2.1 of Chapter 3, for case 1, the IBDGs at bus no. 20 and 25 are
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Table 4.4: Results for SLG(a-g) fault in modified IEEE 123-bus radial distribu-

tion system with IBDGs and YgYg-0 IBDG transformers (Case 2) for scenario

1

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 5.435∠-68.35o 0.091∠-74.26o 0.548∠121.63o 0.252∠-90.64o 0.252∠143.24o 0.252∠34.25o 144.87 227.54 222.69

25 3.715∠-60.47o 0.372∠109.18o 0.928∠117.82o 0.189∠-90.69o 0.189∠143.23o 0.189∠34.21o 108.623 170.653 166.899

75 39.687∠-78.94o 4.526∠-70.13o 4.589∠-69.33o 0.252∠-91.99o 0.252∠134.62o 0.252∠42.35o 28.438 258.278 251.257

98 12.366∠-62.78o 1.222∠103.59o 2.366∠111.74o 0.315∠-91.93o 0.315∠134.34o 0.315∠42.16o 36.710 323.282 315.566

104 24.678∠-71.24o 0.246∠-22.85o 0.635∠77.57o 0.504∠-95.45o 0.504∠133.67o 0.504∠43.23o 32.137 527.681 513.274

Table 4.5: Intermediate (after scenario 1) and final (after scenario 2) inverter

bus voltages and injected power by IBDGs for SLG(a-g) fault at bus 105, with

z̄f = 0.001+0.000i p.u., for Case 1

IBDG Location
Intermediate inverter bus Intermediate Final inverter bus Control mode Final injected

voltage magnitude (p.u.) injected power voltage magnitude (p.u.) of operation power by IBDG

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG (kVA)

20 0.90143 0.92114 1.01332 0.0 + j 593.8 0.89609 0.91586 1.00702 Active-power 420.0 + j 0.0

25 0.90094 0.92089 1.01319 0.0 + j 445.3 0.89590 0.91583 1.00706 Active-power 315.0 + j 0.0

75 0.74370 0.76883 1.01966 0.0 + j 530.2 0.74220 0.76757 1.01741 Boost 0.0 + j 529.2

98 0.74767 0.77219 1.02321 0.0 + j 665.6 0.74617 0.77094 1.02096 Boost 0.0 + j 664.3

104 0.73389 0.75853 1.02728 0.0 + j 1055.2 0.73242 0.75728 1.02503 Boost 0.0 + j 1053.2

operated in ”active power mode” in scenario 2, while the remaining three IBDGs are operated in

”boost mode” (as shown in column 9 of Table 4.5). However, in case 2, the IBDGs at bus no. 20

and 25 are operated in ”boost mode”, while the remaining three IBDGs have been disconnected

from the system (as shown in column 9 of Table 4.6). The final terminal voltages of the IBDGs

and the reactive power exchanged by the IBDGs under the fault condition (in scenario 2) for the

two given cases are shown in columns 6-8 and column 10 of Tables 4.5 and 4.6, respectively. The

final inverter bus voltages under the fault condition in case 2, corresponding to the IBDGs located

at bus No. 75, 98 and 104, are not shown in columns 6-8 of Table 4.6, since these IBDGs have

been disconnected from the system.

Various short-circuit studies for two different scenarios have also been performed using the
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Table 4.6: Intermediate (after scenario 1) and final (after scenario 2) inverter

bus voltages and injected power by IBDGs for SLG(a-g) fault at bus 105, with

z̄f = 0.001+0.000i p.u., for Case 2

IBDG Location
Intermediate inverter bus Intermediate Final inverter bus Control mode Final injected

voltage magnitude (p.u.) injected power voltage magnitude (p.u.) of operation power by IBDG

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG (kVA)

20 0.69185 1.08663 1.06347 0.0 + j 595.1 0.69150 1.07993 1.05198 Boost 0.0 + j 591.2

25 0.69165 1.08662 1.06272 0.0 + j 446.2 0.69130 1.07992 1.05123 Boost 0.0 + j 443.3

75 0.13581 1.23342 1.19989 0.0 + j 537.9 - Cut-off 0.0 + j 0.0

98 0.14025 1.23508 1.20560 0.0 + j 675.6 - Cut-off 0.0 + j 0.0

104 0.07674 1.25999 1.22558 0.0 + j 1073.1 - Cut-off 0.0 + j 0.0

proposed short-circuit analysis method. The following unsymmetrical short-circuit faults have

been simulated on the study system for the two given cases:

1. A single line-to-ground (SLG) fault in phase a of bus 105 with a fault impedance zf =

0.001 + 0.000i p.u.

2. A double line-to-ground (LLG) fault between phases a and b of bus 105 with a fault impedance

zf = 0.001 + 0.000i p.u.

3. A three line-to-ground (LLLG) fault at bus 105 with a fault impedance zf = 0.001 + 0.000i

p.u.

4. A line-to-line (LL) fault between phases a and b of bus 105 with a fault impedance zf =

0.001 + 0.000i

The results for the above mentioned short-circuit studies in scenario 1 have been tabulated in

Tables 4.7 and 4.8. The fault current (If ) and the source current (Is) values for various short-

circuit faults obtained from the proposed method for case 1 are given in columns 4 and 7 of Table

4.7, respectively. The above fault cases have also been simulated using PSCAD/EMTDC time

domain simulation software and the obtained fault current and the source current values are given

in columns 3 and 6 of Table 4.7, respectively. The % error in calculated If and Is by the proposed

method with respect to the PSCAD/EMTDC results are given in columns 5 and 8 of Table 4.7,

respectively. The maximum % errors in calculated If and Is values are 0.00393% and 0.00370%,
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Table 4.7: Error analysis of proposed method with respect to PSCAD/EMTDC

simulation studies for various short-circuit faults at bus 105 (in scenario 1) in

radial test system with ∆Yg-1 IBDG transformers (Case 1)

Fault type phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 2.86610 2.86621 0.00393 2.82871 2.82881 0.00356

LLG (ab-g) a 4.14499 4.14515 0.00379 4.16210 4.16225 0.00364

b 4.29691 4.29707 0.00386 4.20435 4.20450 0.00369

LLLG (abc-g) a 4.55015 4.55033 0.00387 4.49900 4.49916 0.00362

b 4.85051 4.85069 0.00382 4.77458 4.77475 0.00359

c 4.83822 4.83840 0.00387 4.77407 4.77424 0.00366

L-L (a-b) a 4.09535 4.09550 0.00383 4.18227 4.18242 0.00370

b 4.09535 4.09550 0.00383 3.96802 3.96816 0.00356

Table 4.8: Error analysis of proposed method with respect to PSCAD/EMTDC

simulation studies for various short-circuit faults at bus 105 (in scenario 1) in

radial test system with YgYg-0 IBDG transformers (Case 2)

Fault type phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 2.86046 2.86057 0.00387 2.80929 2.80939 0.00344

LLG (ab-g) a 4.16867 4.16882 0.00381 4.15484 4.15499 0.00358

b 4.30872 4.30889 0.00396 4.20520 4.20533 0.00363

LLLG (abc-g) a 4.55135 4.55150 0.00389 4.49843 4.49853 0.00362

b 4.84517 4.84532 0.00382 4.77608 4.77622 0.00361

c 4.84244 4.84260 0.00391 4.77294 4.77318 0.00366

L-L (a-b) a 4.06310 4.06321 0.00366 4.20942 4.20950 0.00372

b 4.06310 4.06321 0.00366 3.95194 3.95203 0.00359

respectively. Similarly, the values of If and Is for various short-circuit studies obtained by the

proposed method and the PSCAD/EMTDC simulation study for case 2, are shown in Table 4.8.

The maximum % errors in the estimated values of If and Is, obtained from the proposed method,

with respect to PSCAD/EMTDC software results are 0.00396% and 0.00372%, as shown in Table

4.8, respectively. These small values of errors establish that the proposed short circuit analysis

method is quite accurate.

91



Table 4.9: Results for different short-circuit faults at bus 105, with z̄f =

0.001+0.000i p.u., using proposed technique (scenario 2) and PSCAD/EMTDC

simulation for Case 1

Fault type phase

Fault current at fault point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 2.86197 2.86208
Active power-: IBDG No. 1,2

2.85252 2.85264
Boost-: IBDG No. 3,4,5

LLG (ab-g)
a 4.10039 4.10055 Boost-: IBDG No. 1,2 4.15976 4.15992

b 4.24428 4.24445 Cut-off-: IBDG No. 3,4,5 4.23276 4.23292

LLLG (abc-g)

a 4.47628 4.47645 Boost-: IBDG No. 1,2 4.50857 4.50874

b 4.77909 4.77928 Cut-off-: IBDG No. 3,4,5 4.78340 4.78358

c 4.76754 4.76773 4.78172 4.78190

L-L (a-b)
a 4.04999 4.05014 Boost-: IBDG No. 1,2 4.16139 4.16155

b 4.04999 4.05014 Cut-off-: IBDG No. 3,4,5 4.00209 4.00224

The above mentioned short-circuit studies have also been simulated for the two given cases in

scenario 2 using the proposed method. The results for the two cases are shown in Tables 4.9 and

4.10, respectively. The results of the above short-circuit studies in scenario 2 for both the cases

have also been obtained from the PSCAD/EMTDC simulation studies and are given in Tables 4.9

and 4.10, respectively. It can be observed from the tables, that the results obtained by proposed

method match very well with the results obtained by the PSCAD/EMTDC simulation studies.

Also, the control mode operation of the IBDGs for various fault studies for both the cases are

shown in column 5 of Tables 4.9 and 4.10, respectively.

4.4.2 Results for weakly meshed test distribution system

To validate the performance of the proposed method for the meshed networks, the IEEE 123-bus

modified meshed distribution system has been used [146]. In this work, again the following two

cases have been considered :

Case 1: Delta/Star-grounded (∆Yg-1) transformers used with all five IBDGs

Case 2: Star-grounded/Star-grounded (YgYg-0) transformers used with all five IBDGs.
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Table 4.10: Results for different short-circuit faults at bus 105, with z̄f =

0.001+0.000i p.u., using proposed technique (scenario 2) and PSCAD/EMTDC

simulation for Case 2

Fault type phase

Fault current at fault point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 2.82625 2.82636
Boost-: IBDG No. 1,2

2.85886 2.85897
Cut-off-: IBDG No. 3,4,5

LLG (ab-g)
a 4.10157 4.10173 Boost-: IBDG No. 1,2 4.15670 4.15686

b 4.24454 4.24471 Cut-off-: IBDG No. 3,4,5 4.23235 4.23251

LLLG (abc-g)

a 4.47644 4.47661 Boost-: IBDG No. 1,2 4.50819 4.50835

b 4.77867 4.77886 Cut-off-: IBDG No. 3,4,5 4.78430 4.78448

c 4.76778 4.76795 4.78114 4.78132

L-L (a-b)
a 4.04969 4.04984

Boost-: All IBDGs
4.16413 4.16428

b 4.04969 4.04984 4.00094 4.00108

4.4.2.1 Results of load flow studies

Two modes of operation of IBDG, as discussed in previous subsection, have also been considered

in this study. The results of load flow for Mode 1 and Mode 2 operations of IBDGs for the two

cases are shown in Table 4.11. In Mode 2 operation of IBDGs, the required capacitive reactive

power is also injected (in conjunction with the active power) by the IBDGs, as shown in columns

3 and 7 of Table 4.11. This results in a higher magnitude of inverter currents in Mode 2 operation

of IBDGs as compared to Mode 1 operation of IBDGs, as shown in columns 4-5 and 8-9 of Table

4.11.

The voltage profiles for phase a of the meshed distribution network, corresponding to Mode

1 and Mode 2 operation of IBDGs for the two given cases, are shown in Figs. 4.4(a) and (b),

respectively. These figures show that the voltage profiles in Mode 2 operation are better than in

Mode 1 operation of IBDGs. This is due to the injection of capacitive reactive power by the IBDG

to the grid.

To validate the accuracy of the proposed method for the meshed network, the voltage profiles

for phase a of the test system obtained by the proposed method in Mode 1 operation of IBDGs for

both the cases have been plotted along with the voltage profiles obtained from the PSCAD/EMTDC
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Table 4.11: Injected power by the IBDGs and Inverter currents of phase a in

Mode 1 and Mode 2 operation of IBDGs, for case 1 and case 2, of weakly

meshed test distribution system

IBDG No.

∆Yg1- IBDG transformer configuration YgYg0- IBDG transformer configuration

Injected Power (kVA) Inverter Current (Amp) Injected Power (kVA) Inverter Current (Amp)

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

1 140.00-j00.00 140.00-j86.52 169.56 ∠-29.99o 198.27∠-61.92o 140.00-j00.00 140.00-j86.52 170.13∠-0.17o 199.00∠-32.10o

2 105.00-j00.00 105.00-j64.89 127.24∠-30.02o 148.78∠-61.95o 105.00-j00.00 105.00-j64.89 127.66∠-0.22o 149.32∠-32.15o

3 140.00-j00.00 140.00-j86.51 169.76∠-29.90o 198.23∠-61.91o 140.00-j00.00 140.00-j86.52 170.61∠-0.08o 199.19∠-32.09o

4 175.00-j00.00 175.00-j91.80 212.11∠-29.78o 237.53∠-57.77o 175.00-j00.00 175.00-j91.78 213.40∠0.01o 238.89∠-27.91o

5 280.00-j00.00 280.00-j71.18 339.04∠-29.59o 347.10∠-44.13o 280.00-j00.00 280.00-j70.36 340.60∠0.25o 348.39∠-14.15o

Mode−1

Mode−2
Mode−1

Mode−2

0 20 40 60 80 100 120
Bus No.

0 20 40 60 80 100 120
Bus No.

(a) (b)

Figure 4.4: Voltage profile of phase a for meshed test system with (a) ∆Yg-1

(Case 1) and (b) YgYg-0 (Case 2) IBDG transformers under normal operating

conditions

simulation studies, as shown in Figs. 4.5(a) and (b), respectively. These figures show that the

voltage profiles obtained from the proposed method and PSCAD/EMTDC simulation study are

very close to each other.

4.4.2.2 Results of short-circuit studies

Again, for the meshed distribution test system, an SLG fault in phase a of bus 105, with a fault

impedance z̄f = 0.001+0.000i p.u. has been assumed. The SLG fault has been simulated using the
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Figure 4.5: Voltage profile of phase a for meshed test system with (a) ∆Yg-1

(Case 1) and (b) YgYg-0 (Case 2) IBDG transformers, using proposed technique

and PSCAD/EMTDC simulation under normal operating conditions

proposed short-circuit analysis method for the two given cases (Case 1 and 2). In the first step, the

initial estimate of inverter currents
(
Iabcinv,f ,est

)
of all the five IBDGs has been obtained under the

fault condition. The estimated values of inverter currents for the two cases are given in Tables 4.12

and 4.13, respectively. Both the tables show that, the magnitude of inverter currents
(
|Iabcinv,f ,est|

)
of

all the IBDGs are greater than their short-circuit current capacities, given in Table 4.1. Hence, the

inverter control strategy, as discussed in Case 2 of Subsection 3.2.2 of Chapter 3, has been applied

and the inverter currents (Iabcinv,f ) and the injected powers by all IBDGs under the fault conditions

for both the cases are recalculated using the proposed short-circuit analysis method. The obtained

values of inverter currents and the injected powers by the IBDGs for the two cases are given in

Tables 4.12 and 4.13, respectively.

The results for SLG fault in phase a of bus 105, with a fault impedance z̄f = 0.001+0.000i p.u.,

in two different scenarios for the two given cases are shown in Tables 4.14 and 4.15, respectively.

The intermediate inverter bus voltage magnitude, obtained in scenario 1, for all IBDGs under the

fault condition for the two cases are shown in columns 2-4 of Tables 4.14 and 4.15, respectively.

The intermediate power injected by the IBDGs, obtained in scenario 1, for the two cases are also

shown in column 5 of Tables 4.14 and 4.15, respectively. For case 1, all the IBDGs are operated in
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Table 4.12: Results for SLG(a-g) fault in modified IEEE 123-bus meshed distri-

bution system with IBDGs and ∆Yg-1 IBDG transformers (Case 1) for scenario

1

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 2.450∠-56.21o 2.132∠126.24o 0.332∠107.94o 0.252∠-126.93o 0.252∠123.85o 0.252∠-1.85 o 182.668 184.058 212.316

25 1.986∠-50.43o 1.726∠131.76o 0.268∠115.39o 0.189∠-127.04o 0.189∠123.85o 0.189∠-1.89o 136.768 137.767 159.170

75 7.824∠-75.39o 7.564∠104.46o 0.259∠109.22o 0.252∠-133.17o 0.252∠130.89o 0.252∠-2.40o 156.337 162.640 213.442

98 3.328∠-58.40o 2.950∠122.53o 0.381∠114.50o 0.315∠-133.31o 0.315∠130.64o 0.315∠-2.57o 196.462 204.184 267.733

104 5.761∠-66.35o 5.349∠114.48o 0.417∠103.03o 0.504∠-134.75o 0.504∠132.03o 0.504∠-2.50o 307.648 319.341 430.020

Table 4.13: Results for SLG(a-g) fault in modified IEEE 123-bus meshed distri-

bution system with IBDGs and YgYg-0 IBDG transformers (Case 2) for scenario

1

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 9.189∠-61.17o 0.183∠-36.87o 0.324∠84.88o 0.252∠-94.73o 0.252∠141.59o 0.252∠37.14o 118.323 237.577 226.032

25 6.678∠-54.31o 0.626∠108.27o 1.076∠111.57o 0.189∠-94.92o 0.189∠141.52o 0.189∠37.17o 88.133 178.298 169.469

75 37.943∠-79.96o 4.614∠-70.04o 4.547∠-70.42o 0.252∠-89.27o 0.252∠135.08o 0.252∠42.01o 33.123 256.743 249.701

98 11.794∠-63.81o 1.101∠99.76o 2.236∠110.77o 0.315∠-89.18o 0.315∠134.80o 0.315∠41.82o 42.600 321.342 313.635

104 24.242∠-71.68o 0.423∠-32.17o 0.551∠67.00o 0.504∠-92.26o 0.504∠134.03o 0.504∠43.09o 36.948 526.037 510.840

”boost mode” (as shown in column 9 of Table 4.14). However, in case 2, the IBDGs at bus no. 20

and 25 are operated in ”absorb mode”, while the remaining three IBDGs have been disconnected

from the system (as shown in column 9 of Table 4.15). The final terminal voltages of the IBDGs

and the reactive power exchanged by the IBDGs under the fault condition (in scenario 2) for the

two given cases are shown in columns 6-8 and column 10 of Tables 4.14 and 4.15, respectively.

The final inverter bus voltages under the fault condition in case 2, corresponding to the IBDGs

located at bus No. 75, 98 and 104, are not shown in columns 6-8 of Table 4.15, since these IBDGs

have been disconnected from the system.

Various short-circuit studies, as given in the Subsection 4.4.1, have also been performed on

meshed distribution network in scenario 1 using the proposed short-circuit analysis method. The

results obtained in these studies for the two given cases are shown in Tables 4.16 and 4.17, respec-
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Table 4.14: Intermediate (after scenario 1) and final (after scenario 2) inverter

bus voltages and injected power by IBDGs for SLG(a-g) fault at bus 105, with

z̄f = 0.001+0.000i p.u., for Case 1 of meshed system

IBDG Location
Intermediate inverter bus Intermediate Final inverter bus Control mode Final injected

voltage magnitude (p.u.) injected power voltage magnitude (p.u.) of operation power by IBDG

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG (kVA)

20 0.87234 0.87898 1.01393 0.0 + j 579.0 0.87234 0.87898 1.01393 Boost 0.0 + j 579.0

25 0.87085 0.87722 1.01350 0.0 + j 433.7 0.87085 0.87722 1.01350 Boost 0.0 + j 433.7

75 0.74659 0.77670 1.01930 0.0 + j 532.4 0.74659 0.77670 1.01930 Boost 0.0 + j 532.4

98 0.75057 0.78007 1.02286 0.0 + j 668.4 0.75057 0.78007 1.02286 Boost 0.0 + j 668.4

104 0.73459 0.76251 1.02679 0.0 + j 1057.0 0.73459 0.76251 1.02679 Boost 0.0 + j 1057.0

Table 4.15: Intermediate (after scenario 1) and final (after scenario 2) inverter

bus voltages and injected power by IBDGs for SLG(a-g) fault at bus 105, with

z̄f = 0.001+0.000i p.u., for Case 2 of meshed system

IBDG Location
Intermediate inverter bus Intermediate Final inverter bus Control mode Final injected

voltage magnitude (p.u.) injected power voltage magnitude (p.u.) of operation power by IBDG

(bus No.) Phase-a Phase-b Phase-c by IBDG (kVA) Phase-a Phase-b Phase-c of IBDG (kVA)

20 0.56506 1.13456 1.07943 0.0 + j 581.9 0.55484 1.11034 1.04878 Absorb 0.0 - j 568.3

25 0.56118 1.13529 1.07908 0.0 + j 435.9 0.55143 1.11103 1.04845 Absorb 0.0 - j 425.7

75 0.15818 1.22609 1.19246 0.0 + j 539.6 - Cut-off 0.0 + j 0.0

98 0.16275 1.22767 1.19822 0.0 + j 677.6 - Cut-off 0.0 + j 0.0

104 0.08822 1.25606 1.21977 0.0 + j 1073.8 - Cut-off 0.0 + j 0.0

tively. The results for these studies have also been obtained from the PSCAD/EMTDC simulation

studies and are given in Tables 4.16 and 4.17. The maximum % errors in calculated values of If

and Is with respect to PSCAD/EMTDC results for case 1 are 0.00381% and 0.00365%, respec-

tively, as shown in Table 4.16. Similarly, for case 2, the maximum % errors in calculated values

of If and Is with respect to PSCAD/EMTDC results are 0.00380% and 0.00361%, respectively, as

shown in Table 4.17. These results again demonstrate the accuracy of the proposed method for the

meshed distribution network.

The above mentioned short-circuit studies, as given in Subsection 4.4.1, have also been simu-

lated for the two given cases in scenario 2 using the proposed method. The results for the two cases

are shown in Tables 4.18 and 4.19, respectively. The results of the above short-circuit studies in
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Table 4.16: Error analysis of proposed method with respect to PSCAD/EMTDC

simulations for various short-circuit faults at bus 105 (in scenario 1) in meshed

test system with ∆Yg-1 IBDG transformers (Case 1)

Fault type phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 3.34798 3.34811 0.00381 3.31014 3.31026 0.00351

LLG (ab-g) a 4.83345 4.83363 0.00368 4.84971 4.84988 0.00357

b 5.03444 5.03462 0.00372 4.94387 4.94404 0.00350

LLLG (abc-g) a 5.30245 5.30265 0.00375 5.25127 5.25145 0.00354

b 5.67069 5.67090 0.00372 5.59680 5.59700 0.00352

c 5.56508 5.56529 0.00378 5.50631 5.50651 0.00359

L-L (a-b) a 4.79106 4.79124 0.00378 4.87704 4.87722 0.00365

b 4.79106 4.79124 0.00378 4.66616 4.66632 0.00348

Table 4.17: Error analysis of proposed method with respect to PSCAD/EMTDC

simulations for various short-circuit faults at bus 105 (in scenario 1) in meshed

test system with YgYg-0 IBDG transformers (Case 2)

Fault type phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

SLG (a-g) a 3.34304 3.34317 0.00380 3.29092 3.29103 0.00341

LLG (ab-g) a 4.85843 4.85861 0.00371 4.84168 4.84185 0.00349

b 5.04501 5.04520 0.00380 4.94493 4.94510 0.00353

LLLG (abc-g) a 5.30349 5.30369 0.00377 5.25076 5.25094 0.00352

b 5.66494 5.66515 0.00371 5.59846 5.59866 0.00353

c 5.57001 5.57022 0.00380 5.50490 5.50510 0.00358

L-L (a-b) a 4.76035 4.76052 0.00358 4.90901 4.90919 0.00361

b 4.76035 4.76052 0.00358 4.64722 4.64739 0.00354

scenario 2 for both the cases are also obtained from the PSCAD/EMTDC simulation studies and are

given in Tables 4.18 and 4.19, respectively. It can be observed from the tables, that the results ob-

tained by the proposed method match very well with the results obtained by the PSCAD/EMTDC

simulation studies. Also, the control mode operation of the IBDGs for various fault studies for

both the cases are shown in column 5 of Tables 4.18 and 4.19, respectively.

The proposed short-circuit analysis method is also suitable for the analysis of multiple faults in
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Table 4.18: Results for different unsymmetrical short-circuit faults at bus

105, with z̄f = 0.001+0.000i p.u., using proposed technique (scenario 2) and

PSCAD/EMTDC simulation for Case 1 of meshed system

Fault type phase

Fault current at fault point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 3.34798 3.34811 Boost-: IBDG No. 1-5 3.31013 3.31025

LLG (ab-g)
a 4.79077 4.79095 Boost-: IBDG No. 1,2 4.84791 4.84809

b 4.98211 4.98229 Cut-off-: IBDG No. 3,4,5 4.97458 4.97476

LLLG (abc-g)

a 5.23038 5.23058 Boost-: IBDG No. 1,2 5.26281 5.26301

b 5.60069 5.60090 Cut-off-: IBDG No. 3,4,5 5.60762 5.60782

c 5.49611 5.49632 5.51536 5.51557

L-L (a-b)
a 4.74673 4.74691 Boost-: IBDG No. 1,2 4.85591 4.85609

b 4.74673 4.74691 Cut-off-: IBDG No. 3,4,5 4.70357 4.70375

Table 4.19: Results for different unsymmetrical short-circuit faults at bus

105, with z̄f = 0.001+0.000i p.u., using proposed technique (scenario 2) and

PSCAD/EMTDC simulation for Case 2 of meshed system

Fault type phase

Fault current at fault point (If ) Control mode Current drawn from the supply (Is)

PSCAD Proposed operation of PSCAD Proposed

simulation (kA) technique (kA) IBDG simulation (kA) technique (kA)

SLG (a-g) a 3.28923 3.28936
Absorb-: IBDG No. 1,2

3.40710 3.40723
Cut-off-: IBDG No. 3,4,5

LLG (ab-g)
a 4.76009 4.76027 Absorb-: IBDG No. 1,2 4.88073 4.88091

b 4.94979 4.94998 Cut-off-: IBDG No. 3,4,5 5.03674 5.03693

LLLG (abc-g)

a 5.23054 5.23073 Boost-: IBDG No. 1,2 5.26246 5.26266

b 5.59998 5.60018 Cut-off-: IBDG No. 3,4,5 5.60855 5.60876

c 5.49665 5.49686 5.51467 5.51488

L-L (a-b)
a 4.74585 4.74602

Boost-: All IBDGs
4.86168 4.86185

b 4.74585 4.74602 4.70011 4.70028

radial as well as meshed distribution system. Two simultaneous faults, SLG (a-g) and LLG (bc-g)

with a fault impedance zf = 0.001 + 0.000i p.u. have been simulated at bus 105 and 86, in radial

as well as weakly meshed IEEE 123-bus distribution network for scenario 1, respectively. The

results obtained from the proposed method and PSCAD/EMTDC simulation studies, are presented
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Table 4.20: Error analysis of proposed technique with respect to

PSCAD/EMTDC simulations for multiple faults (in scenario 1) in test distri-

bution system with IBDGs and ∆Yg-1 IBDG transformer

Topology Fault type Fault Bus phase

Fault current at fault point (If )

% Error in If

Current drawn from the supply (Is)

% Error in IsPSCAD Proposed PSCAD Proposed

simulation (kA) technique (kA) simulation (kA) technique (kA)

Radial

SLG (a-g) 105 a 3.67374 3.67388 0.00381 3.63104 3.63117 0.00358

LLG (bc-g) 86
b 3.07239 3.07251 0.00390 3.03567 3.03578 0.00362

c 3.10273 3.10285 0.00386 3.04584 3.04595 0.00361

Meshed

SLG (a-g) 105 a 4.19367 4.19382 0.00357 4.15080 4.15094 0.00337

LLG (bc-g) 86
b 3.37286 3.37299 0.00385 3.34201 3.34213 0.00359

c 3.39329 3.39342 0.00383 3.33861 3.33872 0.00329

in Table 4.20. In this case, ∆Yg-1 transformers have been used with all the IBDGs. The maximum

% errors in the value of If for radial and meshed distribution system are 0.00390% and 0.00385%,

respectively, as shown in Table 4.20. Further, the maximum % errors in the value of Is for radial

and meshed distribution system are 0.00361% and 0.00359%, respectively, as shown in Table 4.20.

Again, these small values of errors establish the accuracy of the proposed short-circuit analysis

method.

4.5 Conclusion

In this chapter, accurate and efficient distribution system load flow and short-circuit analysis meth-

ods have been developed. The proposed methods are capable of incorporating various transformer

models of different vector groups. These methods are also applicable to the analysis of multiple

faults in radial as well as meshed distribution systems. The obtained results have been compared

with the results of time domain simulation studies obtained using PSCAD/EMTDC simulation

software. A good agreement in the results of the two methods establishes the accuracy of the

proposed methods.

In the next chapter, the algorithms for the load flow and short-circuit analysis of the three phase

four wire unbalanced radial distribution system with ground return are discussed.
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Chapter 5

Load flow and short-circuit analysis of unbalanced

three phase four wire multigrounded radial

distribution system

Abstract

In this chapter, a new method for load flow and short-circuit analysis of an unbalanced three phase

four wire multigrounded distribution system is proposed. Initially, a load flow method, based on

[BIBC] (”Bus injection to branch current”) and [BCBV] (”Branch current to bus voltage”)

matrices of the system is proposed. Later on, in this chapter, two different short-circuit analysis

methods, one based on
[
BIBC

]
and

[
BCBV

]
matrices of the system and the other one based

on
[
Ybus

]
matrix, are discussed. The proposed load flow and short-circuit methods have been

tested on two test systems; i) modified unbalanced three phase four wire multigrounded IEEE

34-bus test system and ii) unbalanced three phase four wire multigrounded IEEE 123-bus test

system. To validate the effectiveness of proposed methods, the results of modified IEEE 34-bus test

system have been compared with the results of time domain simulation studies carried out using

the PSCAD/EMTDC software.

5.1 Introduction

THE three phase four wire distribution networks are commonly used in power distribution

systems. It has been observed that a three phase four wire distribution system has more

sensitivity towards the protection of various ground faults than a three phase three wire system

[128]. The return current in neutral wire, under normal operating conditions, is mainly due to the

unbalanced loads and unbalanced structure of distribution system. Sometimes, the neutral currents

may be higher than the phase currents due to large unbalance in loads [128]. Also, the neutral in

the distribution network plays an important role in safety and power quality problems [152–156]. It

101



is also a common practice to ground the neutral points directly or through a grounding impedance

[128, 153, 157]. Hence, to calculate the neutral and ground currents in the system under normal

operating conditions, load flow analysis of three phase four wire multigrounded distribution system

is required. In the literature, most of the load flow analysis methods of three phase four wire

multigrounded system are based on backward/forward approach [90, 128]. In this chapter, the

direct approach of the load flow analysis of three phase three wire system has been modified for

the analysis of three phase four wire multigrounded system. Further, in this chapter, two different

short-circuit analysis methods for three phase four wire multigrounded distribution system are

described.

This chapter is organized as follows. Section 5.2 describes the formulation of the proposed

load flow analysis method for three phase four wire multigrounded distribution system. Section

5.3 describes the formulation of two proposed short-circuit analysis methods for three phase four

wire multigrounded distribution system. The main results of this chapter are presented in Section

5.4 and finally Section 5.5 highlights the main conclusions of this chapter.

5.2 Load flow analysis of unbalanced three phase four wire multigrounded radial distribution

system

Let us consider an unbalanced three phase four wire multigrounded radial distribution system

having nb bus and mb lines, as shown in Fig. 5.1. The system has (mb − 2) three-phase lines,

one two-phase line and one single-phase line. Each line section has its own neutral and fictitious

ground (representing ground return) wires. The line section between buses l and m has two phases

(phases a and b) while the line section between buses m and nb has only one phase (phase a). Bus

1 represents the substation bus having its voltages as V̄ a
s , V̄ b

s and V̄ c
s corresponding to the phases

a, b and c, respectively. The impedance matrix of the three phase five wire line section between

buses i and j
[
z̄abcng
ij

]
, is given as,

[
z̄abcng
ij

]
=



z̄aaij z̄abij z̄acij z̄anij z̄agij

z̄baij z̄bbij z̄bcij z̄bnij z̄bgij

z̄caij z̄cbij z̄ccij z̄cnij z̄cgij

z̄naij z̄nbij z̄ncij z̄nnij z̄ngij

z̄gaij z̄gbij z̄gcij z̄gnij z̄ggij


; (5.1)
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where z̄pqij = z̄qpij ; p, q = a, b, c, n, g; p 6= q; z̄aaij , z̄bbij and z̄ccij are the self impedances of phases a,

b and c of the line section between buses i and j; z̄nnij and z̄ggij are the self impedances of neutral

wire and ground wire of the line section between buses i and j, respectively. Similarly, z̄abij , z̄bcij

and z̄acij are the mutual impedances between phases a and b, b and c, and a and c of the line

section between buses i and j, respectively. Also, z̄pnij is the mutual impedance between phase p

(p = a, b, c) and neutral wire of the line section between buses i and j; z̄pgij is the mutual impedance

between phase p (p = a, b, c) and ground wire of the line section between buses i and j; z̄ngij is the

mutual impedances between neutral wire and ground wire of the line section between buses i and

j. Similarly, the line impedance matrices of two phase line (having phases a and b)
[
z̄abng
lm

]
and

single phase line (having phase a only)
[
z̄ang
mnb

]
are given as,

[
z̄abng
lm

]
=



z̄aalm z̄ablm z̄anlm z̄aglm

z̄balm z̄bblm z̄bnlm z̄bglm

z̄nalm z̄nblm z̄nnlm z̄nglm

z̄galm z̄gblm z̄gnlm z̄gglm


;
[
z̄ang
mnb

]
=


z̄aamnb

z̄anmnb
z̄agmnb

z̄namnb
z̄nnmnb

z̄ngmnb

z̄gamnb
z̄gnmnb

z̄ggmnb

 (5.2)

The complex injected load power Spid at any phase p of bus i (assuming that the load is connected

between phase p (p = a, b, c) and neutral bus ni at ith bus location) is given as, S̄pid = P̄ p
id + jQ̄p

id.

P̄ p
id and Q̄p

id are the real and reactive load power injections at pth phase of bus i. Therefore, the

equivalent bus injection current Īpid at any phase p of bus i is calculated as,

Īpid =

(
S̄pid

V̄ p
i − V̄ n

i

)∗
=

(
P̄ p
id + jQ̄p

id

V̄ p
i − V̄ n

i

)∗
; (p = a or b or c) (5.3)

where, V̄ p
i and V̄ n

i are the voltages of phase p and neutral bus ni at ith bus location, respectively.

The symbol (∗) denotes the complex conjugate operator. In Fig. 5.1, Z̄ngr
i is the neutral to ground

impedance between neutral bus ni and ground bus gi (neutral grounding impedance) at ith bus

location and Īngi is the neutral to ground current at ith bus location.

The proposed load flow analysis method is based on [BIBC] (bus injection to branch current)

and [BCBV] (branch current to bus voltage) matrices of the system [70]. [BIBC] matrix gives

the relationship between branch currents and the equivalent bus injection currents of the system,

while [BCBV] matrix gives the relationship between branch currents and the bus voltages of the
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system. The formulation of theses matrices for the load flow solution of a three phase four wire

multigrounded distribution system (Fig. 5.1), is carried out in the following subsections.

5.2.1 Formulation of [BIBC] matrix

The [BIBC] matrix has been developed separately for the phase currents, neutral currents and

ground currents of the system shown in Fig. 5.1. The detailed formulation of [BIBC] matrix for

each current is as follows :

5.2.1.1 Formulation of [BIBC] matrix for phase currents
[
Bp

]
The phase branch currents of the distribution system can be obtained in terms of equivalent bus

injection currents
[
IL
]
, by applying KCL equations at each phase (a, b, c) of all the buses in the

system, except the substation bus. The branch currents of phases a, b and c of all the line sections

in Fig. 5.1 can be expressed in terms of equivalent injection currents as,

B̄a
1 = Īa2d + Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

B̄b
1 = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd

B̄c
1 = Īc2d + Īc3d + · · ·+ Īcid + Īcjd + · · ·+ Īckd + Īcld

B̄a
2 = Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

B̄b
2 = Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd

B̄c
2 = Īc3d + · · ·+ Īcid + Īcjd + · · ·+ Īckd + Īcld

B̄a
i = Īajd

B̄b
i = Ībjd

B̄c
i = Īcjd

B̄a
k = Īald + Īamd + Īanbd

B̄b
k = Ībld + Ībmd

B̄c
k = Īcld

B̄a
l = Īamd + Īanbd

B̄b
l = Ībmd

B̄a
m = Īanbd

(5.4)
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Therefore, the phase branch currents can be expressed in the matrix form as,[
Bp

]
=
[
BIBCp

] [
IL

]
(5.5)

where [
Bp

]
=
[
B̄a

1 B̄b
1 B̄c

1 · · · B̄a
i B̄b

i B̄c
i · · · B̄a

k B̄b
k B̄c

k B̄a
l B̄b

l B̄a
m

]T
;[

IL

]
=
[
Īa2d Īb2d Īc2d · · · Īajd Ībjd Īcjd · · · Īald Ībld Īcld Īamd Ībmd Īanbd

]T
;

[
BIBCp

]
=



2a 2b 2c ··· ja jb jc ··· la lb lc ma mb nb
a

1a 1 0 0 · · · 1 0 0 · · · 1 0 0 1 0 1

1b 0 1 0 · · · 0 1 0 · · · 0 1 0 0 1 0

1c 0 0 1 · · · 0 0 1 · · · 0 0 1 0 0 0
...

...
...

... . . . ...
...

... · · · ...
...

...
...

...
...

ia 0 0 0 · · · 1 0 0 · · · 0 0 0 0 0 0

ib 0 0 0 · · · 0 1 0 · · · 0 0 0 0 0 0

ic 0 0 0 · · · 0 0 1 · · · 0 0 0 0 0 0
...

...
...

... · · · ...
...

... . . . ...
...

...
...

...
...

ka 0 0 0 · · · 0 0 0 · · · 1 0 0 1 0 1

kb 0 0 0 · · · 0 0 0 · · · 0 1 0 0 1 0

kc 0 0 0 · · · 0 0 0 · · · 0 0 1 0 0 0

la 0 0 0 · · · 0 0 0 · · · 0 0 0 1 0 1

lb 0 0 0 · · · 0 0 0 · · · 0 0 0 0 1 0

ma 0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 1


where [Bp] is the phase branch current vector, [IL] is the equivalent bus injection current vector and

[BIBCp] is the bus injection to phase branch current matrix. In [BIBCp] matrix, the row num-

bers 1a, 1b, · · · ,ma correspond to the phase branches, while the column numbers 2a, 2b, · · · , nba

correspond to the phase buses of the system. Further, it is assumed that the considered four

wire multigrounded radial distribution system has u three-phase, v two-phase, w single-phase,

(u + v + w) neutral and (u + v + w) ground buses. This generalized system will be con-

sidered throughout this chapter. The size of [BIBCp] matrix for this system will therefore be
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(3u + 2v + w − 3) × (3u + 2v + w − 3). Eq. (5.5) shows that, the [BIBCp] matrix is an upper

triangular matrix which contains zeros and ones only.

Development of algorithm for generation of [BIBCp] matrix :

Step 1. Consider an unbalanced three phase four wire multigrounded distribution system, having u

three-phase, v two phase and w single phase buses. Initialize the [BIBCp] matrix as a null matrix

of size (3u+ 2v + w − 3)× (3u+ 2v + w − 3).

Step 2. If a line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BIBCp(ls, j)

]
(p×p)

=
[
BIBCp(ls, i)

]
(p×p)

;

(ii).
[
BIBCp(k, j)

]
(p×p)

=
[
I
]

(p×p)

where ls = 1, 2, · · · , (k − 1);
[
I
]

is an identity matrix of size (p× p) and p = 3 for 3-φ, p = 2 for

2-φ, p = 1 for 1-φ line section.

Step 3. Repeat Step 2 until all the line sections are included in [BIBCp] matrix.

5.2.1.2 Formulation of [BIBC] matrix for neutral currents
[
Bn

]
The neutral currents of the three phase four wire multigrounded distribution system can be ex-

pressed in terms of equivalent injection currents and the neutral to ground currents of the system,

by applying KCL equations at all the neutral buses in the system, except the neutral bus at the

substation location. For example, the neutral currents B̄n
1 , B̄n

2 , B̄n
i , B̄n

k , B̄n
l and B̄n

m of the system

shown in Fig. 5.1 can be written as,

B̄n
1 = −Īa2d − Īb2d − Īc2d − Īa3d − Īb3d − Īc3d − · · · − Īaid − Ībid − Īcid − Īajd − Ībjd − Īcjd

− · · · − Īakd − Ībkd − Īckd − Īald − Ībld − Īcld − Īamd − Ībmd − Īanbd
+ Īng2 + Īng3 + · · ·

+ Īngi + Īngj + · · ·+ Īngk + Īngl + Īngm + Īngnb

B̄n
2 = −Īa3d − Īb3d − Īc3d − · · · − Īaid − Ībid − Īcid − Īajd − Ībjd − Īcjd − · · · − Īakd − Ībkd

− Īckd − Īald − Ībld − Īcld − Īamd − Ībmd − Īanbd
+ Īng3 + · · ·+ Īngi + Īngj + · · ·+ Īngk

+ Īngl + Īngm + Īngnb

B̄n
i = −Īajd − Ībjd − Īcjd + Īngj (5.6)
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B̄n
k = −Īald − Ībld − Īcld − Īamd − Ībmd − Īanbd

+ Īngl + Īngm + Īngnb

B̄n
l = −Īamd − Ībmd − Īanbd

+ Īngm + Īngnb

B̄n
m = −Īanbd

+ Īngnb
(5.7)

Therefore, the neutral currents of the system can be expressed in the matrix form as,[
Bn

]
= −

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]
(5.8)

where [
Bn

]
=

[
B̄n

1 B̄n
2 · · · B̄n

i · · · B̄n
k B̄n

l B̄n
m

]T
[
Ing

]
=

[
Īng2 Īng3 · · · Īngj · · · Īngl Īngm Īngnb

]T

[
BIBCpn

]
=



2a 2b 2c ··· ja jb jc ··· la lb lc ma mb nb
a

1n −1 −1 −1 · · · −1 −1 −1 · · · −1 −1 −1 −1 −1 −1

2n 0 0 0 · · · −1 −1 −1 · · · −1 −1 −1 −1 −1 −1
...

...
...

... · · · ...
...

... · · · ...
...

...
...

...
...

in 0 0 0 · · · −1 −1 −1 · · · 0 0 0 0 0 0
...

...
...

... · · · ...
...

... · · · ...
...

...
...

...
...

kn 0 0 0 · · · 0 0 0 · · · −1 −1 −1 −1 −1 −1

ln 0 0 0 · · · 0 0 0 · · · 0 0 0 −1 −1 −1

mn 0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 −1



[
BIBCg

]
=



2ng 3ng ··· jng ··· lng mng nb
ng

1n 1 1 · · · 1 · · · 1 1 1

2n 0 1 · · · 1 · · · 1 1 1
...

...
... . . . ... · · · ...

...
...

B̄n
i 0 0 · · · 1 · · · 0 0 0
...

...
... · · · ... . . . ...

...
...

kn 0 0 · · · 0 · · · 1 1 1

ln 0 0 · · · 0 · · · 0 1 1

mn 0 0 · · · 0 · · · 0 0 1


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Here [Bn] is the neutral current vector and [Ing] is the neutral to ground current vector. The

[BIBCpn] matrix gives the relationship between neutral currents and the equivalent bus injec-

tion currents of the system. In [BIBCpn] matrix, the row numbers 1n, 2n, · · · ,mn correspond

to the neutral branches, while the column numbers 2a, 2b, · · · , nba correspond to the phase buses

of the system. The [BIBCg] matrix gives the relationship between neutral currents and neutral

to ground currents of the system. In [BIBCg] matrix, the row numbers 1n, 2n, · · · ,mn corre-

spond to the neutral branches, while the column numbers 2ng, 3ng, · · · , nbng correspond to the

neutral to ground branches of the system. Hence, for the radial distribution system considered, the

sizes of [BIBCpn] and [BIBCg] matrices will be (u + v + w − 1) × (3u + 2v + w − 3) and

(u+ v + w − 1)× (u+ v + w − 1), respectively.

Development of Algorithms for generation of [BIBCpn] and [BIBCg] matrices:

Step 1. Initialize the [BIBCpn] and [BIBCg] matrices as null matrices of the sizes (u+ v +w−

1)× (3u+ 2v + w − 3) and (u+ v + w − 1)× (u+ v + w − 1), respectively.

Step 2. (a). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between

buses i and j, then

(i).
[
BIBCpn(ls, j)

]
(1×p)

=
[
BIBCpn(ls, i)

]
(1×p)

;

(ii).
[
BIBCpn(k, j)

]
(1×p)

=
[
I
]

(1×p)

where ls = 1, 2, · · · , (k − 1);
[
I
]

is an identity matrix of size (1× p) and p = 3 for 3-φ, p = 2 for

2-φ, p = 1 for 1-φ line section.

(b). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BIBCg(ls, j)

]
=

[
BIBCg(ls, i)

]
;

(ii).
[
BIBCg(k, j)

]
= 1

where ls = 1, 2, · · · , (k − 1).

Step 3. Repeat Step 2 until all the line sections are included in [BIBCpn] and [BIBCg] matrices.
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5.2.1.3 Formulation of [BIBC] matrix for ground currents
[
Bg

]
The ground currents of the three phase four wire multigrounded distribution system can be obtained

in terms of neutral to ground currents (Īngi , i = 1, · · · , nb), by applying KCL equations at all the

ground buses of the system, except the ground bus at the substation location. For example, the

ground currents B̄g
1 , B̄g

2 , B̄g
i , B̄g

k , B̄g
l and B̄g

m of the system shown in Fig. 5.1 can be expressed as,

B̄g
1 = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

B̄g
2 = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

B̄g
i = −Īngj

B̄g
k = −Īngl − Ī

ng
m − Īngnb

; B̄g
l = −Īngm − Īngnb

; B̄g
m = −Īngnb

(5.9)

Hence, the ground currents of the system can be written in the matrix form as,[
Bg

]
= −

[
BIBCg

] [
Ing

]
(5.10)

5.2.2 Formulation of [BCBV] matrix

The [BCBV] matrix needs to be developed separately for the voltages of phase buses, neutral

buses and ground buses of the distribution system shown in Fig. 5.1. The detailed formulations of

these matrices are given as follows :

5.2.2.1 Formulation of [BCBV] matrices for the voltages of phase buses
[
Vp

]
The voltages of phase buses can be described in terms of phase branch currents, neutral currents

and ground currents of the system, by applying KVL equations in the given system as,

V̄ a
2 = V̄ a

s − B̄a
1 z̄

aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12

V̄ b
2 = V̄ b

s − B̄a
1 z̄

ba
12 − B̄b

1z̄
bb
12 − B̄c

1z̄
bc
12 − B̄n

1 z̄
bn
12 − B̄

g
1 z̄

bg
12

V̄ c
2 = V̄ c

s − B̄a
1 z̄

ca
12 − B̄b

1z̄
cb
12 − B̄c

1z̄
cc
12 − B̄n

1 z̄
cn
12 − B̄

g
1 z̄

cg
12

V̄ a
3 = V̄ a

s − B̄a
1 z̄

aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12 − B̄a

2 z̄
aa
23 − B̄b

2z̄
ab
23 − B̄c

2z̄
ac
23

−B̄n
2 z̄

an
23 − B̄

g
2 z̄

ag
23

V̄ b
3 = V̄ b

s − B̄a
1 z̄

ba
12 − B̄b

1z̄
bb
12 − B̄c

1z̄
bc
12 − B̄n

1 z̄
bn
12 − B̄

g
1 z̄

bg
12 − B̄a

2 z̄
ba
23 − B̄b

2z̄
bb
23 − B̄c

2z̄
bc
23

−B̄n
2 z̄

bn
23 − B̄

g
2 z̄

bg
23

(5.11)
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V̄ c
3 = V̄ c

s − B̄a
1 z̄

ca
12 − B̄b

1z̄
cb
12 − B̄c

1z̄
cc
12 − B̄n

1 z̄
cn
12 − B̄

g
1 z̄

cg
12 − B̄a

2 z̄
ca
23 − B̄b

2z̄
cb
23 − B̄c

2z̄
cc
23

−B̄n
2 z̄

cn
23 − B̄

g
2 z̄

cg
23

V̄ a
j = V̄ a

s − B̄a
1 z̄

aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12 − B̄a

2 z̄
aa
23 − B̄b

2z̄
ab
23 − B̄c

2z̄
ac
23

−B̄n
2 z̄

an
23 − B̄

g
2 z̄

ag
23 − · · · − B̄a

i z̄
aa
ij − B̄b

i z̄
ab
ij − B̄c

i z̄
ac
ij − B̄n

i z̄
an
ij − B̄

g
i z̄

ag
ij

V̄ b
j = V̄ b

s − B̄a
1 z̄

ba
12 − B̄b

1z̄
bb
12 − B̄c

1z̄
bc
12 − B̄n

1 z̄
bn
12 − B̄

g
1 z̄

bg
12 − B̄a

2 z̄
ba
23 − B̄b

2z̄
bb
23 − B̄c

2z̄
bc
23

−B̄n
2 z̄

bn
23 − B̄

g
2 z̄

bg
23 − · · · − B̄a

i z̄
ba
ij − B̄b

i z̄
bb
ij − B̄c

i z̄
bc
ij − B̄n

i z̄
bn
ij − B̄

g
i z̄

bg
ij

V̄ c
j = V̄ c

s − B̄a
1 z̄

ca
12 − B̄b

1z̄
cb
12 − B̄c

1z̄
cc
12 − B̄n

1 z̄
cn
12 − B̄

g
1 z̄

cg
12 − B̄a

2 z̄
ca
23 − B̄b

2z̄
cb
23 − B̄c

2z̄
cc
23

−B̄n
2 z̄

cn
23 − B̄

g
2 z̄

cg
23 − · · · − B̄a

i z̄
ca
ij − B̄b

i z̄
cb
ij − B̄c

i z̄
cc
ij − B̄n

i z̄
cn
ij − B̄

g
i z̄

cg
ij

V̄ a
l = V̄ a

s − B̄a
1 z̄

aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12 − B̄a

2 z̄
aa
23 − B̄b

2z̄
ab
23 − B̄c

2z̄
ac
23

−B̄n
2 z̄

an
23 − B̄

g
2 z̄

ag
23 − · · · − B̄a

k z̄
aa
kl − B̄b

kz̄
ab
kl − B̄c

kz̄
ac
kl − B̄n

k z̄
an
kl − B̄

g
k z̄

ag
kl

V̄ b
l = V̄ b

s − B̄a
1 z̄

ba
12 − B̄b

1z̄
bb
12 − B̄c

1z̄
bc
12 − B̄n

1 z̄
bn
12 − B̄

g
1 z̄

bg
12 − B̄a

2 z̄
ba
23 − B̄b

2z̄
bb
23 − B̄c

2z̄
bc
23

−B̄n
2 z̄

bn
23 − B̄

g
2 z̄

bg
23 − · · · − B̄a

k z̄
ba
kl − B̄b

kz̄
bb
kl − B̄c

kz̄
bc
kl − B̄n

k z̄
bn
kl − B̄

g
k z̄

bg
kl

V̄ c
l = V̄ c

s − B̄a
1 z̄

ca
12 − B̄b

1z̄
cb
12 − B̄c

1z̄
cc
12 − B̄n

1 z̄
cn
12 − B̄

g
1 z̄

cg
12 − B̄a

2 z̄
ca
23 − B̄b

2z̄
cb
23 − B̄c

2z̄
cc
23

−B̄n
2 z̄

cn
23 − B̄

g
2 z̄

cg
23 − · · · − B̄a

k z̄
ca
kl − B̄b

kz̄
cb
kl − B̄c

kz̄
cc
kl − B̄n

k z̄
cn
kl − B̄

g
k z̄

cg
kl

V̄ a
m = V̄ a

s − B̄a
1 z̄

aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12 − B̄a

2 z̄
aa
23 − B̄b

2z̄
ab
23 − B̄c

2z̄
ac
23

−B̄n
2 z̄

an
23 − B̄

g
2 z̄

ag
23 − · · · − B̄a

k z̄
aa
kl − B̄b

kz̄
ab
kl − B̄c

kz̄
ac
kl − B̄n

k z̄
an
kl − B̄

g
k z̄

ag
kl

−B̄a
l z̄

aa
lm − B̄b

l z̄
ab
lm − B̄n

l z̄
an
lm − B̄

g
l z̄

ag
lm

V̄ b
m = V̄ b

s − B̄a
1 z̄

ba
12 − B̄b

1z̄
bb
12 − B̄c

1z̄
bc
12 − B̄n

1 z̄
bn
12 − B̄

g
1 z̄

bg
12 − B̄a

2 z̄
ba
23 − B̄b

2z̄
bb
23 − B̄c

2z̄
bc
23

−B̄n
2 z̄

bn
23 − B̄

g
2 z̄

bg
23 − · · · − B̄a

k z̄
ba
kl − B̄b

kz̄
bb
kl − B̄c

kz̄
bc
kl − B̄n

k z̄
bn
kl − B̄

g
k z̄

bg
kl

−B̄a
l z̄

ba
lm − B̄b

l z̄
bb
lm − B̄n

l z̄
bn
lm − B̄

g
l z̄

bg
lm

V̄ a
nb

= V̄ a
s − B̄a

1 z̄
aa
12 − B̄b

1z̄
ab
12 − B̄c

1z̄
ac
12 − B̄n

1 z̄
an
12 − B̄

g
1 z̄

ag
12 − B̄a

2 z̄
aa
23 − B̄b

2z̄
ab
23 − B̄c

2z̄
ac
23

−B̄n
2 z̄

an
23 − B̄

g
2 z̄

ag
23 − · · · − B̄a

k z̄
aa
kl − B̄b

kz̄
ab
kl − B̄c

kz̄
ac
kl − B̄n

k z̄
an
kl − B̄

g
k z̄

ag
kl

−B̄a
l z̄

aa
lm − B̄b

l z̄
ab
lm − B̄n

l z̄
an
lm − B̄

g
l z̄

ag
lm − B̄

a
mz̄

aa
mnb
− B̄n

mz̄
an
mnb
− B̄g

mz̄
ag
mnb

(5.12)

Therefore, the voltages of phase buses of the distribution system can be expressed in the matrix

form as,[
Vp

]
=
[
Vss

]
−
[
BCBVp

] [
Bp

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg

]
(5.13)
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where,

[
BCBVpn

]
=



z̄an12 0 · · · 0 · · · 0 0 0

z̄bn12 0 · · · 0 · · · 0 0 0

z̄cn12 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...

z̄an12 z̄an23 · · · z̄anij · · · 0 0 0

z̄bn12 z̄bn23 · · · z̄bnij · · · 0 0 0

z̄cn12 z̄cn23 · · · z̄cnij · · · 0 0 0
...

... · · · ... · · · ...
...

...

z̄an12 z̄an23 · · · 0 · · · z̄ankl 0 0

z̄bn12 z̄bn23 · · · 0 · · · z̄bnkl 0 0

z̄cn12 z̄cn23 · · · 0 · · · z̄cnkl 0 0

z̄an12 z̄an23 · · · 0 · · · z̄ankl z̄anlm 0

z̄bn12 z̄bn23 · · · 0 · · · z̄bnkl z̄bnlm 0

z̄an12 z̄an23 · · · 0 · · · z̄ankl z̄anlm z̄anmnb



[
BCBVpg

]
=



z̄ag12 0 · · · 0 · · · 0 0 0

z̄bg12 0 · · · 0 · · · 0 0 0

z̄cg12 0 · · · 0 · · · 0 0 0
...

... · · · ... · · · ...
...

...

z̄ag12 z̄ag23 · · · z̄agij · · · 0 0 0

z̄bg12 z̄bg23 · · · z̄bgij · · · 0 0 0

z̄cg12 z̄cg23 · · · z̄cgij · · · 0 0 0
...

... · · · ... · · · ...
...

...

z̄ag12 z̄ag23 · · · 0 · · · z̄agkl 0 0

z̄bg12 z̄bg23 · · · 0 · · · z̄bgkl 0 0

z̄cg12 z̄cg23 · · · 0 · · · z̄cgkl 0 0

z̄ag12 z̄ag23 · · · 0 · · · z̄agkl z̄aglm 0

z̄bg12 z̄bg23 · · · 0 · · · z̄bgkl z̄bglm 0

z̄ag12 z̄ag23 · · · 0 · · · z̄agkl z̄aglm z̄agmnb


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[
BCBVp

]
=



z̄aa12 z̄ab12 z̄ac12 · · · 0 0 0 · · · 0 0 0 0 0 0

z̄ba12 z̄bb12 z̄bc12 · · · 0 0 0 · · · 0 0 0 0 0 0

z̄ca12 z̄cb12 z̄cc12 · · · 0 0 0 · · · 0 0 0 0 0 0
...

...
... . . . ...

...
... · · · ...

...
...

...
...

...

z̄aa12 z̄ab12 z̄ac12 · · · z̄aaij z̄abij z̄acij · · · 0 0 0 0 0 0

z̄ba12 z̄bb12 z̄bc12 · · · z̄baij z̄bbij z̄bcij · · · 0 0 0 0 0 0

z̄ca12 z̄cb12 z̄cc12 · · · z̄caij z̄cbij z̄ccij · · · 0 0 0 0 0 0
...

...
... · · · ...

...
... . . . ...

...
...

...
...

...

z̄aa12 z̄ab12 z̄ac12 · · · 0 0 0 · · · z̄aakl z̄abkl z̄ackl 0 0 0

z̄ba12 z̄bb12 z̄bc12 · · · 0 0 0 · · · z̄bakl z̄bbkl z̄bckl 0 0 0

z̄ca12 z̄cb12 z̄cc12 · · · 0 0 0 · · · z̄cakl z̄cbkl z̄cckl 0 0 0

z̄aa12 z̄ab12 z̄ac12 · · · 0 0 0 · · · z̄aakl z̄abkl z̄ackl z̄aalm z̄ablm 0

z̄ba12 z̄bb12 z̄bc12 · · · 0 0 0 · · · z̄bakl z̄bbkl z̄bckl z̄balm z̄bblm 0

z̄aa12 z̄ab12 z̄ac12 · · · 0 0 0 · · · z̄aakl z̄abkl z̄ackl z̄aalm z̄ablm z̄aamnb



[Vp] =
[
V̄ a

2 V̄ b
2 V̄ c

2 · · · V̄ a
j V̄ b

j V̄ c
j · · · V̄ a

l V̄ b
l V̄ c

l V̄ a
m V̄ b

m V̄ a
nb

]T
;

[Vss] =
[
V̄ a
s V̄ b

s V̄ c
s · · · V̄ a

s V̄ b
s V̄ c

s · · · V̄ a
s V̄ b

s V̄ c
s V̄ a

s V̄ b
s V̄ a

s

]T
;

In the above, [Vp] is the voltage vector of phase buses and [Vss] is the voltage vector of the substa-

tion bus. The substation phase voltages V̄ a
s , V̄ b

s and V̄ c
s are assumed to be balanced. The [BCBVp]

matrix gives the relationship between the voltages of phase buses and the phase branch currents of

the system, [BCBVpn] matrix gives the relationship between the voltages of phase buses and neu-

tral currents of the system while [BCBVpg] matrix gives the relationship between the voltages of

phase buses and ground currents of the system. Hence, for the considered unbalanced three phase

four wire multigrounded radial distribution system, the sizes of the [BCBVp], [BCBVpn] and

[BCBVpg] matrices will be (3u+2v+w−3)×(3u+2v+w−3), (3u+2v+w−3)×(u+v+w−1)

and (3u+ 2v + w − 3)× (u+ v + w − 1), respectively.
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Development of algorithms for generation of [BCBVp], [BCBVpn] and [BCBVpg] matri-

ces:

Step 1. Initialize the [BCBVp], [BCBVpn] and [BCBVpg] matrices as null matrices of the

sizes (3u + 2v + w − 3) × (3u + 2v + w − 3), (3u + 2v + w − 3) × (u + v + w − 1) and

(3u+ 2v + w − 3)× (u+ v + w − 1), respectively.

Step 2. (a). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between

buses i and j, then

(i).
[
BCBVp(j, ls)

]
(p×p)

=
[
BCBVp(i, ls)

]
(p×p)

;

(ii).
[
BCBVp(j, k)

]
(p×p)

=
[
zabc
ij

]
(p×p)

where ls = 1, 2, · · · , (k−1); p = 3 and
[
zabc
ij

]
3×3

=


z̄aaij z̄abij z̄acij

z̄baij z̄bbij z̄bcij

z̄caij z̄cbij z̄ccij

 for 3-φ; p = 2 and
[
zabc
ij

]
2×2

=

z̄qqij z̄qrij

z̄rqij z̄rrij

, where, (q, r) = (a, b) or (b, c) or (c, a) for 2-φ; p = 1 and
[
zabc
ij

]
1×1

=
[
z̄qqij

]
, where,

q = (a or b or c) for 1-φ line section.

(b). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BCBVpn(j, ls)

]
(p×1)

=
[
BCBVpn(i, ls)

]
(p×1)

;

(ii).
[
BCBVpn(j, k)

]
(p×1)

=
[
zqn
ij

]
(p×1)

where ls = 1, 2, · · · , (k − 1); p = 3 and
[
zqn
ij

]
3×1

=


z̄anij

z̄bnij

z̄cnij

 for 3-φ; p = 2 and
[
zqn
ij

]
2×2

=

z̄anij
z̄bnij



or

z̄bnij
z̄cnij

 or

z̄anij
z̄cnij

 for 2-φ; p = 1 and
[
zqn
ij

]
1×1

=
[
z̄anij

]
or
[
z̄bnij

]
or
[
z̄cnij

]
for 1-φ line section.

(c). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between
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buses i and j, then

(i).
[
BCBVpg(j, ls)

]
(p×1)

=
[
BCBVpg(i, ls)

]
(p×1)

;

(ii).
[
BCBVpg(j, k)

]
(p×1)

=
[
zqg
ij

]
(p×1)

where ls = 1, 2, · · · , (k − 1); p = 3 and
[
zqg
ij

]
3×1

=


z̄agij

z̄bgij

z̄cgij

 for 3-φ; p = 2 and
[
zqg
ij

]
2×2

=

z̄agij
z̄bgij



or

z̄bgij
z̄cgij

 or

z̄agij
z̄cgij

 for 2-φ; p = 1 and
[
zqg
ij

]
1×1

=
[
z̄agij

]
or
[
z̄bgij

]
or
[
z̄cgij

]
for 1-φ line section.

Step 3. Repeat Step 2 until all the line sections are included in the [BCBVp], [BCBVpn] and

[BCBVpg] matrices.

5.2.2.2 Formulation of [BCBV] matrices for neutral bus voltages
[
Vn

]
The neutral bus voltages V̄ n

2 , V̄ n
3 , V̄ n

j , V̄ n
l , V̄ n

m and V̄ n
nb

of the system, shown in Fig. 5.1, can be

obtained by applying KVL equations at the neutral branches of the system and are given as,

V̄ n
2 = V̄ n

s − B̄a
1 z̄

na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12

V̄ n
3 = V̄ n

s − B̄a
1 z̄

na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12 − B̄a

2 z̄
na
23 − B̄b

2z̄
nb
23 − B̄c

2z̄
nc
23

−B̄n
2 z̄

nn
23 − B̄

g
2 z̄

ng
23

V̄ n
j = V̄ n

s − B̄a
1 z̄

na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12 − B̄a

2 z̄
na
23 − B̄b

2z̄
nb
23 − B̄c

2z̄
nc
23

−B̄n
2 z̄

nn
23 − B̄

g
2 z̄

ng
23 − · · · − B̄a

i z̄
na
ij − B̄b

i z̄
nb
ij − B̄c

i z̄
nc
ij − B̄n

i z̄
nn
ij − B̄

g
i z̄

ng
ij

V̄ n
l = V̄ n

s − B̄a
1 z̄

na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12 − B̄a

2 z̄
na
23 − B̄b

2z̄
nb
23 − B̄c

2z̄
nc
23

−B̄n
2 z̄

nn
23 − B̄

g
2 z̄

ng
23 − · · · − B̄a

k z̄
na
kl − B̄b

kz̄
nb
kl − B̄c

kz̄
nc
kl − B̄n

k z̄
nn
kl − B̄

g
k z̄

ng
kl

V̄ n
m = V̄ n

s − B̄a
1 z̄

na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12 − B̄a

2 z̄
na
23 − B̄b

2z̄
nb
23 − B̄c

2z̄
nc
23

−B̄n
2 z̄

nn
23 − B̄

g
2 z̄

ng
23 − · · · − B̄a

k z̄
na
kl − B̄b

kz̄
nb
kl − B̄c

kz̄
nc
kl − B̄n

k z̄
nn
kl − B̄

g
k z̄

ng
kl − B̄

a
l z̄

na
lm

−B̄b
l z̄
nb
lm − B̄n

l z̄
nn
lm − B̄

g
l z̄

ng
lm
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V̄ n
nb

= V̄ n
s − B̄a

1 z̄
na
12 − B̄b

1z̄
nb
12 − B̄c

1z̄
nc
12 − B̄n

1 z̄
nn
12 − B̄

g
1 z̄

ng
12 − B̄a

2 z̄
na
23 − B̄b

2z̄
nb
23 − B̄c

2z̄
nc
23

−B̄n
2 z̄

nn
23 − B̄

g
2 z̄

ng
23 − · · · − B̄a

k z̄
na
kl − B̄b

kz̄
nb
kl − B̄c

kz̄
nc
kl − B̄n

k z̄
nn
kl − B̄

g
k z̄

ng
kl − B̄

a
l z̄

na
lm

−B̄b
l z̄
nb
lm − B̄n

l z̄
nn
lm − B̄

g
l z̄

ng
lm − B̄

a
mz̄

na
mnb
− B̄n

mz̄
nn
mnb
− B̄g

mz̄
ng
mnb

(5.14)

Hence, the neutral bus voltages of the distribution system can be expressed in the matrix form as,[
Vn

]
=
[
Vsn

]
−
[
BCBVnp

] [
Bp

]
−
[
BCBVn

] [
Bn

]
−
[
BCBVng

] [
Bg

]
(5.15)

where,[
BCBVnp

]
=

z̄na12 z̄nb12 z̄nc12 0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 0

z̄na12 z̄nb12 z̄nc12 z̄na23 z̄nb23 z̄nc23 · · · 0 0 0 · · · 0 0 0 0 0 0
...

...
...

...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

z̄na12 z̄nb12 z̄nc12 z̄na23 z̄nb23 z̄nc23 · · · z̄naij z̄nbij z̄ncij · · · 0 0 0 0 0 0
...

...
...

...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

z̄na12 z̄nb12 z̄nc12 z̄na23 z̄nb23 z̄nc23 · · · 0 0 0 · · · z̄nakl z̄nbkl z̄nckl 0 0 0

z̄na12 z̄nb12 z̄nc12 z̄na23 z̄nb23 z̄nc23 · · · 0 0 0 · · · z̄nakl z̄nbkl z̄nckl z̄nalm z̄nblm 0

z̄na12 z̄nb12 z̄nc12 z̄na23 z̄nb23 z̄nc23 · · · 0 0 0 · · · z̄nakl z̄nbkl z̄nckl z̄nalm z̄nblm z̄namnb


[
BCBVn

]
=

[
BCBVng

]
=

z̄nn12 0 · · · 0 · · · 0 0 0

z̄nn12 z̄nn23 · · · 0 · · · 0 0 0
...

...
. . .

... · · ·
...

...
...

z̄nn12 z̄nn23 · · · z̄nnij · · · 0 0 0
...

... · · ·
...

. . .
...

...
...

z̄nn12 z̄nn23 · · · 0 · · · z̄nnkl 0 0

z̄nn12 z̄nn23 · · · 0 · · · z̄nnkl z̄nnlm 0

z̄nn12 z̄nn23 · · · 0 · · · z̄nnkl z̄nnlm z̄nnmnb



;



z̄ng12 0 · · · 0 · · · 0 0 0

z̄ng12 z̄ng23 · · · 0 · · · 0 0 0
...

...
. . .

... · · ·
...

...
...

z̄ng12 z̄ng23 · · · z̄ngij · · · 0 0 0
...

... · · ·
...

. . .
...

...
...

z̄ng12 z̄ng23 · · · 0 · · · z̄ngkl 0 0

z̄ng12 z̄ng23 · · · 0 · · · z̄ngkl z̄nglm 0

z̄ng12 z̄ng23 · · · 0 · · · z̄ngkl z̄nglm z̄ngmnb


[Vn] =

[
V̄ n

2 V̄ n
3 · · · V̄ n

j · · · V̄ n
l V̄ n

m V̄ n
nb

]T
;

[Vsn] =
[
V̄ n
s V̄ n

s · · · V̄ n
s · · · V̄ n

s V̄ n
s V̄ n

s

]T
.
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[Vn] is the neutral bus voltage vector and [Vsn] is a column vector that contains only the value of

neutral bus voltage (V̄ n
s ) at the location of grid substation. In general, it is assumed that the neutral

bus at substation end is perfectly grounded. Therefore, the value of V̄ n
s is assumed to be zero. The

[BCBVnp] matrix gives the relationship between neutral bus voltages and phase branch currents,

[BCBVn] matrix gives the relationship between neutral bus voltages and neutral currents, and

[BCBVng] matrix gives the relationship between neutral bus voltages and ground currents of the

system. For the considered unbalanced three phase four wire multigrounded radial distribution

system, the sizes of the [BCBVnp], [BCBVn] and [BCBVng] matrices will be (u + v + w −

1)× (3u+ 2v+w− 3), (u+ v+w− 1)× (u+ v+w− 1) and (u+ v+w− 1)× (u+ v+w− 1),

respectively.

Development of algorithms for generation of [BCBVnp], [BCBVn] and [BCBVng] matrices:

Step 1. Consider an unbalanced three phase four wire multigrounded distribution system, having

u three-phase, v two-phase, w single-phase, (u + v + w) neutral and (u + v + w) ground buses.

Initialize the [BCBVnp], [BCBVn] and [BCBVng] matrices as null matrices of the sizes (u +

v+w−1)×(3u+2v+w−3), (u+v+w−1)×(u+v+w−1) and (u+v+w−1)×(u+v+w−1),

respectively.

Step 2. (a). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between

buses i and j, then

(i).
[
BCBVnp(j, ls)

]
(1×p)

=
[
BCBVnp(i, ls)

]
(1×p)

;

(ii).
[
BCBVnp(j, k)

]
(1×p)

=
[
znq
ij

]
(1×p)

where, ls = 1, 2, · · · , (k− 1); p = 3 and
[
znq
ij

]
1×3

=
[
z̄naij z̄nbij z̄ncij

]
for 3-φ; p = 2 and

[
znq
ij

]
1×2

=
[
z̄naij z̄nbij

]
or
[
z̄nbij z̄ncij

]
or
[
z̄naij z̄ncij

]
for 2-φ; p = 1 and

[
znq
ij

]
1×1

=
[
z̄naij

]
or
[
z̄nbij

]
or
[
z̄ncij

]
for 1-φ line section.

(b). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BCBVn(j, ls)

]
=

[
BCBVn(i, ls)

]
;

(ii).
[
BCBVn(j, k)

]
= z̄nnij
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where ls = 1, 2, · · · , (k − 1);

(c). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BCBVng(j, ls)

]
=

[
BCBVng(i, ls)

]
;

(ii).
[
BCBVng(j, k)

]
= z̄ngij

where ls = 1, 2, · · · , (k − 1);

Step 3. Repeat Step 2 until all the line sections are included in the [BCBVnp],[BCBVn] and

[BCBVng] matrices.

5.2.2.3 Formulation of [BCBV] matrices for ground bus voltages
[
Vg

]
The ground bus voltages V̄ g

2 , V̄ g
3 , V̄ g

j , V̄ g
l , V̄ g

m and V̄ g
nb

of the system shown in Fig. 5.1 can be

obtained by applying KVL equations at the fictitious ground branches of the system and are given

as,

V̄ g
2 = V̄ g

s − B̄a
1 z̄

ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12

V̄ g
3 = V̄ g

s − B̄a
1 z̄

ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12 − B̄a

2 z̄
ga
23 − B̄b

2z̄
gb
23 − B̄c

2z̄
gc
23 − B̄n

2 z̄
gn
23

−B̄g
2 z̄

gg
23

V̄ g
j = V̄ g

s − B̄a
1 z̄

ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12 − B̄a

2 z̄
ga
23 − B̄b

2z̄
gb
23 − B̄c

2z̄
gc
23 − B̄n

2 z̄
gn
23

−B̄g
2 z̄

gg
23 − · · · − B̄a

i z̄
ga
ij − B̄b

i z̄
gb
ij − B̄c

i z̄
gc
ij − B̄n

i z̄
gn
ij − B̄

g
i z̄

gg
ij

V̄ g
l = V̄ g

s − B̄a
1 z̄

ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12 − B̄a

2 z̄
ga
23 − B̄b

2z̄
gb
23 − B̄c

2z̄
gc
23 − B̄n

2 z̄
gn
23

−B̄g
2 z̄

gg
23 − · · · − B̄a

k z̄
ga
kl − B̄

b
kz̄

gb
kl − B̄

c
kz̄

gc
kl − B̄

n
k z̄

gn
kl − B̄

g
k z̄

gg
kl

V̄ g
m = V̄ g

s − B̄a
1 z̄

ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12 − B̄a

2 z̄
ga
23 − B̄b

2z̄
gb
23 − B̄c

2z̄
gc
23 − B̄n

2 z̄
gn
23

−B̄g
2 z̄

gg
23 − · · · − B̄a

k z̄
ga
kl − B̄

b
kz̄

gb
kl − B̄

c
kz̄

gc
kl − B̄

n
k z̄

gn
kl − B̄

g
k z̄

gg
kl − B̄

a
l z̄

ga
lm − B̄

b
l z̄
gb
lm

−B̄n
l z̄

gn
lm − B̄

g
l z̄

gg
lm

V̄ g
nb

= V̄ g
s − B̄a

1 z̄
ga
12 − B̄b

1z̄
gb
12 − B̄c

1z̄
gc
12 − B̄n

1 z̄
gn
12 − B̄

g
1 z̄

gg
12 − B̄a

2 z̄
ga
23 − B̄b

2z̄
gb
23 − B̄c

2z̄
gc
23 − B̄n

2 z̄
gn
23

−B̄g
2 z̄

gg
23 − · · · − B̄a

k z̄
ga
kl − B̄

b
kz̄

gb
kl − B̄

c
kz̄

gc
kl − B̄

n
k z̄

gn
kl − B̄

g
k z̄

gg
kl − B̄

a
l z̄

ga
lm − B̄

b
l z̄
gb
lm

−B̄n
l z̄

gn
lm − B̄

g
l z̄

gg
lm − B̄

a
mz̄

ga
mnb
− B̄n

mz̄
gn
mnb
− B̄g

mz̄
gg
mnb

(5.16)
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Hence, the neutral bus voltages of the distribution system can be expressed in the matrix form as,[
Vg

]
=
[
Vsg

]
−
[
BCBVgp

] [
Bp

]
−
[
BCBVgn

] [
Bn

]
−
[
BCBVg

] [
Bg

]
(5.17)

where,[
BCBVgp

]
=

z̄ga12 z̄gb12 z̄gc12 0 0 0 · · · 0 0 0 · · · 0 0 0 0 0 0

z̄ga12 z̄gb12 z̄gc12 z̄ga23 z̄gb23 z̄gc23 · · · 0 0 0 · · · 0 0 0 0 0 0
...

...
...

...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

z̄ga12 z̄gb12 z̄gc12 z̄ga23 z̄gb23 z̄gc23 · · · z̄gaij z̄gbij z̄gcij · · · 0 0 0 0 0 0
...

...
...

...
...

... · · ·
...

...
... · · ·

...
...

...
...

...
...

z̄ga12 z̄gb12 z̄gc12 z̄ga23 z̄gb23 z̄gc23 · · · 0 0 0 · · · z̄gakl z̄gbkl z̄gckl 0 0 0

z̄ga12 z̄gb12 z̄gc12 z̄na23 z̄gb23 z̄gc23 · · · 0 0 0 · · · z̄gakl z̄gbkl z̄gckl z̄galm z̄gblm 0

z̄ga12 z̄gb12 z̄gc12 z̄ga23 z̄gb23 z̄gc23 · · · 0 0 0 · · · z̄gakl z̄gbkl z̄gckl z̄galm z̄gblm z̄gamnb


[
BCBVgn

]
=

[
BCBVg

]
=

z̄gn12 0 · · · 0 · · · 0 0 0

z̄gn12 z̄gn23 · · · 0 · · · 0 0 0
...

...
. . .

... · · ·
...

...
...

z̄gn12 z̄gn23 · · · z̄gnij · · · 0 0 0
...

... · · ·
...

. . .
...

...
...

z̄gn12 z̄gn23 · · · 0 · · · z̄gnkl 0 0

z̄gn12 z̄gn23 · · · 0 · · · z̄gnkl z̄gnlm 0

z̄gn12 z̄gn23 · · · 0 · · · z̄gnkl z̄gnlm z̄gnmnb



;



z̄gg12 0 · · · 0 · · · 0 0 0

z̄gg12 z̄gg23 · · · 0 · · · 0 0 0
...

...
. . .

... · · ·
...

...
...

z̄gg12 z̄gg23 · · · z̄ggij · · · 0 0 0
...

... · · ·
...

. . .
...

...
...

z̄gg12 z̄gg23 · · · 0 · · · z̄ggkl 0 0

z̄gg12 z̄gg23 · · · 0 · · · z̄ggkl z̄gglm 0

z̄gg12 z̄gg23 · · · 0 · · · z̄ggkl z̄gglm z̄ggmnb



[Vg] =
[
V̄ g

2 V̄ g
3 · · · V̄ g

j · · · V̄ g
l V̄ g

m V̄ g
nb

]T
;

[Vsg] =
[
V̄ g
s V̄ g

s · · · V̄ g
s · · · V̄ g

s V̄ g
s V̄ g

s

]T
.

Here, [Vg] is the ground bus voltage vector and [Vsg] is a column vector that contains only the

value of ground bus voltage (V̄ g
s ) at the location of grid substation. In general, it is assumed that
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the potential of ground bus at substation end is zero. The [BCBVgp] matrix gives the relation-

ship between ground bus voltages and phase branch currents, [BCBVgn] gives the relationship

between ground bus voltages and neutral currents and [BCBVg] matrix gives the relationship

between ground bus voltages and ground currents of the system. For the considered three phase

four wire multigrounded radial distribution system, the sizes of the [BCBVgp], [BCBVgn] and

[BCBVg] matrices will be (u+v+w−1)× (3u+2v+w−3), (u+v+w−1)× (u+v+w−1)

and (u+ v + w − 1)× (u+ v + w − 1), respectively.

Development of Algorithms for generation of [BCBVgp], [BCBVgn] and [BCBVg] matri-

ces:

Step 1. Initialize the [BCBVgp], [BCBVgn] and [BCBVg] matrices as null matrices of the sizes

(u+v+w−1)×(3u+2v+w−3), (u+v+w−1)×(u+v+w−1) and (u+v+w−1)×(u+v+w−1),

respectively.

Step 2. (a). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between

buses i and j, then

(i).
[
BCBVgp(j, ls)

]
(1×p)

=
[
BCBVgp(i, ls)

]
(1×p)

;

(ii).
[
BCBVgp(j, k)

]
(1×p)

=
[
zgq
ij

]
(1×p)

where, ls = 1, 2, · · · , (k − 1); p = 3 and
[
zgq
ij

]
1×3

=
[
z̄gaij z̄gbij z̄gcij

]
for 3-φ; p = 2 and

[
zgq
ij

]
1×2

=
[
z̄gaij z̄gbij

]
or
[
z̄gbij z̄gcij

]
or
[
z̄gaij z̄gcij

]
for 2-φ; p = 1 and

[
zgq
ij

]
1×1

=
[
z̄gaij

]
or
[
z̄gbij

]
or
[
z̄gcij

]
for

1-φ line section.

(b). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses

i and j, then

(i).
[
BCBVgn(j, ls)

]
=

[
BCBVgn(i, ls)

]
;

(ii).
[
BCBVgn(j, k)

]
= z̄gnij

where ls = 1, 2, · · · , (k − 1);

(c). If kth line section Lpng
k , having p phases, neutral n and ground g, is connected between buses
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i and j, then

(i).
[
BCBVg(j, ls)

]
=

[
BCBVg(i, ls)

]
;

(ii).
[
BCBVg(j, k)

]
= z̄ggij

where ls = 1, 2, · · · , (k − 1);

Step 3. Repeat Step 2 until all the line sections are included in the [BCBVgp],[BCBVgn] and

[BCBVg] matrices.

The branch currents and the bus voltages of various phases, neutral and ground of the system

can now be summarized as, [
Bp

]
=
[
BIBCp

] [
IL

]
(5.18)[

Bn

]
= −

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]
(5.19)[

Bg

]
= −

[
BIBCg

] [
Ing

]
(5.20)[

Vp

]
=
[
Vss

]
−
[
BCBVp

] [
Bp

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg

]
(5.21)[

Vn

]
=
[
Vsn

]
−
[
BCBVnp

] [
Bp

]
−
[
BCBVn

] [
Bn

]
−
[
BCBVng

] [
Bg

]
(5.22)[

Vg

]
=
[
Vsg

]
−
[
BCBVgp

] [
Bp

]
−
[
BCBVgn

] [
Bn

]
−
[
BCBVg

] [
Bg

]
(5.23)

The voltages of phase buses of the three phase four wire multigrounded radial distribution

system can be rewritten using eqs. (5.18)-(5.21) as,[
Vp

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
(5.24)

where, [
DLF1

]
=
[
BCBVp

] [
BIBCp

]
−
[
BCBVpn

] [
BIBCpn

]
[
DLF2

]
=

{[
BCBVpn

]
−
[
BCBVpg

]} [
BIBCg

]
Similarly, the neutral bus voltages of a three phase four wire multigrounded radial distribution

system can be rewritten using eqs. (5.18)-(5.20) and (5.22) as,[
Vn

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
(5.25)
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where, [
DLF3

]
=
[
BCBVnp

] [
BIBCp

]
−
[
BCBVn

] [
BIBCpn

]
[
DLF4

]
=

{[
BCBVn

]
−
[
BCBVng

]} [
BIBCg

]
Next, the ground bus voltages of a three phase four wire multigrounded radial distribution

system can be rewritten using eqs. (5.18)-(5.20) and (5.23) as,

[
Vg

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
(5.26)

where, [
DLF5

]
=
[
BCBVgp

] [
BIBCp

]
−
[
BCBVgn

] [
BIBCpn

]
[
DLF6

]
=

{[
BCBVgn

]
−
[
BCBVg

]} [
BIBCg

]
Now, the voltage drop between neutral bus voltages and ground bus voltages of the system can

be expressed as,

Z̄ngr
2 Īng2 = V̄ n

2 − V̄
g

2

Z̄ngr
3 Īng3 = V̄ n

3 − V̄
g

3

Z̄ngr
j Īngj = V̄ n

j − V̄
g
j

Z̄ngr
l Īngl = V̄ n

l − V̄
g
l

Z̄ngr
m Īngm = V̄ n

m − V̄ g
m

Z̄ngr
nb
Īngnb

= V̄ n
nb
− V̄ g

nb
(5.27)

The voltage drops between neutral bus and ground bus can be written in the matrix form as,

[
Zngr

] [
Ing

]
=
[
Vn

]
−
[
Vg

]
(5.28)

where, [Zngr] is a diagonal neutral to ground impedance matrix and is given as,
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[Zngr] =



Z̄ngr
2 0 · · · 0 · · · 0 0 0

0 Z̄ngr
3 · · · 0 · · · 0 0 0

...
... . . . ... · · · ...

...
...

0 0 · · · Z̄ngr
j · · · 0 0 0

...
... · · · ... . . . ...

...
...

0 0 · · · 0 · · · Z̄ngr
l 0 0

0 0 · · · 0 · · · 0 Z̄ngr
m 0

0 0 · · · 0 · · · 0 0 Z̄ngr
nb


The size of [Zngr], for the system considered, will be (u+ v + w − 1)× (u+ v + w − 1).

Now, from eqs. (5.25), (5.26) and (5.28),[
Zngr

] [
Ing

]
=

{[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]}
−
{[

Vsg

]
−
[
DLF5

] [
IL

]
−

[
DLF6

] [
Ing

]}
[
Ing

]
=
[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]}
(5.29)

where, [
ZFNG

]
=
[
Zngr

]
+
[
DLF4

]
−
[
DLF6

]
Next, eliminating the neutral to ground currents

[
Ing

]
from the expression of the voltages of

phase bus (eq. (5.24)) by using eq. (5.29), we obtain,[
Vp

]
=

[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

]{ [
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−

[
DLF3

] ] [
IL

]}}
[
Vp

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
(5.30)

where, [
F1ng

]
=
[
DLF2

] [
ZFNG

]−1

[
F1PLD

]
=
[
DLF1

]
+

{[
DLF2

] [
ZFNG

]−1
[ [

DLF5

]
−
[
DLF3

] ]}
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Also, eliminate the neutral to ground currents from the expression of neutral bus voltages (eq.

(5.25)) by using eq. (5.29) as,[
Vn

]
=

[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

]{ [
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−

[
DLF3

] ] [
IL

]}}
[
Vn

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
(5.31)

where, [
F2nn

]
=
[
I
]
−
[
DLF4

] [
ZFNG

]−1

[
F2gg

]
= −

[
DLF4

] [
ZFNG

]−1

[
F2PLD

]
=
[
DLF3

]
+

{[
DLF4

] [
ZFNG

]−1
[ [

DLF5

]
−
[
DLF3

] ]}
where,

[
I
]

is an identity matrix of the size (u + v + w − 1) × (u + v + w − 1) for the system

considered.

Next, eliminating the neutral to ground currents from the expression of ground bus voltages

(eq. (5.26)) by using eq. (5.29), we obtain,[
Vg

]
=

[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

]{ [
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−

[
DLF3

] ] [
IL

]}}
[
Vg

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
(5.32)

where, [
F3gg

]
=
[
I
]

+
[
DLF6

] [
ZFNG

]−1

[
F3nn

]
= −

[
DLF6

] [
ZFNG

]−1

[
F3PLD

]
=
[
DLF5

]
+

{[
DLF6

] [
ZFNG

]−1
[ [

DLF5

]
−
[
DLF3

] ]}
where,

[
I
]

is an identity matrix of the size (u + v + w − 1) × (u + v + w − 1) for the system

considered.

The sizes of various [BIBC] and [BCBV] matrices developed for the considered three phase

four wire multigrounded radial distribution system are summarized in Table 5.1.
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Table 5.1: Sizes of various [BIBC] and [BCBV] matrices of the unbalanced

three-phase four wire multigrounded distribution system

Matrix Size Matrix Size

[BIBCp] (3u+ 2v + w − 3)×(3u+ 2v + w − 3) [BIBCpn] (u+ v + w − 1)×(3u+ 2v + w − 3)

[BIBCg] (u+ v + w − 1)×(3u+ 2v + w − 3) [BCBVp] (u+ v + w − 1)×(u+ v + w − 1)

[BCBVpn] (u+ v + w − 1)×(u+ v + w − 1) [BCBVpg] (u+ v + w − 1)×(u+ v + w − 1)

[BCBVnp] (3u+ 2v + w − 3)×(3u+ 2v + w − 3) [BCBVn] (u+ v + w − 1)×(3u+ 2v + w − 3)

[BCBVng] (3u+ 2v + w − 3)×(u+ v + w − 1) [BCBVgp] (u+ v + w − 1)×(u+ v + w − 1)

[BCBVgn] (3u+ 2v + w − 3)×(u+ v + w − 1) [BCBVg] (u+ v + w − 1)×(u+ v + w − 1)

Steps of algorithm for the load flow analysis of unbalanced three phase four wire multigrounded

radial distribution system

1. Initialize the
[
BIBCp

]
,
[
BIBCpn

]
,
[
BIBCg

]
,
[
BCBVp

]
,
[
BCBVpn

]
,
[
BCBVpg

]
,[

BCBVnp

]
,
[
BCBVn

]
,
[
BCBVng

]
,
[
BCBVgp

]
,
[
BCBVgn

]
and

[
BCBVg

]
matrices

of the three phase four wire multigrounded distribution system as null matrices. The sizes of

various matrices for the distribution system considered have been tabulated in Table 5.1.

2. Generate all these matrices as described in Subsections 5.2.1 and 5.2.2.

3. Set the iteration counter k = 0. Also, set the initial values of all phase a bus voltages at

1.0 0o p.u., phase b bus voltages at 1.0 −120o p.u., phase c bus voltages at 1.0 120o p.u. and

all neutral and ground bus voltages at (0.0 + j0.0) p.u. throughout the system.

4. Calculate the equivalent bus injection currents
[
IL
]k at all the phase buses of the system

using eq. (5.3).

5. k = k + 1.

6. Calculate the voltages of phase bus, neutral bus and ground bus
(
[Vp]k, [Vn]k and [Vg]k

)
of

the system using eqs. (5.30)-(5.32).
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7. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp]k − [Vp]k−1

∣∣∣∣, ∣∣∣∣[Vn]k − [Vn]k−1

∣∣∣∣, ∣∣∣∣[Vg]k − [Vg]k−1

∣∣∣∣)
8. If ε ≥ tolerance(1.0× 10−12), go to step 4, else go to the next step.

9. The obtained values of the voltages [Vp], [Vn] and [Vg] are the final values.

5.3 Short-circuit analysis of unbalanced three phase four wire multigrounded radial distri-

bution system

In this work, two different methods are proposed for the short-circuit analysis of an unbalanced

three phase four wire multigrounded distribution system. Relevant expressions have been derived

for calculating the fault currents for various short-circuit faults, such as SLG, LLG, LLLG and LL.

One of the proposed method is based on
[
BIBC

]
and

[
BCBV

]
matrices of the system, while the

other one is based on
[
Ybus

]
matrix of the system. Both the methods are discussed in details in

the following sub-sections.

5.3.1 Method 1:
[
BIBC

]
matrix based short-circuit analysis method

Initially, the load flow analysis of the unbalanced three phase four wire multigrounded distribution

system with ground return is performed, using the proposed load flow method to obtain the voltage

and the equivalent bus injection current at each phase bus of the system. Next, all the loads are

converted into equivalent load impedances using the pre-fault load flow results. For example, the

equivalent load impedance at pth phase of ith bus can be calculated as,

z̄pid =
(V̄ p

i − V̄ n
i )

Īpid
; p = (a, b, c) (5.33)

where, V̄ p
i and V̄ n

i are the pth phase voltage and neutral bus voltage at ith bus location obtained

from the pre-fault load flow results, respectively. Īpid is the equivalent injection current at pth phase

of ith bus, estimated from the pre-fault load flow solution. Now, consider the different short-circuit

faults as follows :

(a) Single line-to-ground (SLG) fault

Let us assume that an SLG fault occurs between phase a and the local ground gj at jth bus

through a fault impedance z̄f , as shown in Fig. 5.2(a) [158], and the fault current Īaf is flowing
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(a) (b)

(c) (d)

Figure 5.2: Unsymmetrical short-circuit faults, (a) SLG fault, (b) LLG fault, (c)

LLLG fault, (d) LL fault
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from phase a to the ground gj . Therefore, only the phase and the ground currents of the system

will get modified due to the SLG fault. The modified phase branch currents (only of the faulted

phase i.e., phase a) can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄a
i,f = Īajd + Īaf

B̄a
k,f = Īald + Īamd + Īanbd

B̄a
l,f = Īamd + Īanbd

B̄a
m,f = Īanbd

(5.34)

Hence, the modified phase branch currents due to SLG fault can be expressed in the matrix form

as, [
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
BIBCfp

] [
If

]
(5.35)

where,

[
BIBCfp

]
=
[
BIBCp(:, f qb )

]
=
[
1 0 0 · · · 1 0 0 · · · 0 0 0 0 0 0

]T
;
[
If

]
= Īaf

Here,
[
BIBCfp

]
matrix for an SLG fault is a column vector of

[
BIBCp

]
matrix corresponding

to the faulted phase q (here, q = a) of the faulted bus fb (here, fb = j) and
[
If

]
is a fault current

vector. The size of
[
BIBCfp

]
matrix for SLG fault, for an unbalanced three phase four wire

multigrounded distribution system considered, will be (3u+ 2v + w − 3)× 1.

Similarly, the modified ground currents due to SLG fault can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf

B̄g
i,f = −Īngj − Īaf

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(5.36)
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Hence, the modified ground currents can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(5.37)

where, [
BIBCfg

]
=
[
BIBCg(:, fngb )

]
=
[
1 1 · · · 1 · · · 0 0 0

]T
Here,

[
BIBCfg

]
matrix for an SLG fault is a column vector of

[
BIBCg

]
matrix corresponding

to the neutral to ground connection (ng) of faulted bus (fb). For a fault at jth bus (fb = j),[
BIBCfg

]
=
[
BIBCfg(:, jng)

]
as obtained from the definition of

[
BIBCg

]
given in eq. (5.8).

The size of
[
BIBCfg

]
matrix will be (u+ v + w − 1)× 1.

Rewriting the eqs. (5.21)-(5.23) for the voltages of phase buses, neutral buses and ground buses

under the fault conditions (due to SLG fault), we obtain[
Vp,f

]
=
[
Vss

]
−
[
BCBVp

] [
Bp,f

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg,f

]
(5.38)[

Vn,f

]
=
[
Vsn

]
−
[
BCBVnp

] [
Bp,f

]
−
[
BCBVn

] [
Bn

]
−
[
BCBVng

] [
Bg,f

]
(5.39)[

Vg,f

]
=
[
Vsg

]
−
[
BCBVgp

] [
Bp,f

]
−
[
BCBVgn

] [
Bn

]
−
[
BCBVg

] [
Bg,f

]
(5.40)

Therefore, the expressions for voltages of phase buses, neutral buses and ground buses can be

rewritten using eqs. (5.35), (5.37) and (5.38)-(5.40) as,[
Vp,f

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DFF1

] [
If

]
(5.41)[

Vn,f

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DFF2

] [
If

]
(5.42)[

Vg,f

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DFF3

] [
If

]
(5.43)

where, [
DFF1

]
=

[
BCBVp

] [
BIBCfp

]
−
[
BCBVpg

] [
BIBCfg

]
[
DFF2

]
=

[
BCBVnp

] [
BIBCfp

]
−
[
BCBVng

] [
BIBCfg

]
[
DFF3

]
=

[
BCBVgp

] [
BIBCfp

]
−
[
BCBVg

] [
BIBCfg

]
The neutral to ground currents under the fault conditions are then calculated using the neutral and

ground bus voltages under fault conditions with the help of eqs. (5.28), (5.42) and (5.43) as,[
Zngr

] [
Ing

]
=

{[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DFF2

] [
If

]}
−

{[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DFF3

] [
If

]}
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[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+

[ [
DFF3

]
−
[
DFF2

] ] [
If

]}
(5.44)

where, [
ZFNG

]
=
[
Zngr

]
+
[
DLF4

]
−
[
DLF6

]
Again, the voltages of phase buses, neutral buses and ground buses are recalculated using eqs.

(5.41)-(5.44) as,[
Vp,f

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
DFF1n

] [
If

]
(5.45)[

Vn,f

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
DFF2n

] [
If

]
(5.46)[

Vg,f

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
DFF3n

] [
If

]
(5.47)

where, matrices
[
F1ng

]
,
[
F1PLD

]
,
[
F2nn

]
,
[
F2gg

]
,
[
F2PLD

]
,
[
F3gg

]
,
[
F3nn

]
and

[
F3PLD

]
have already been defined in eqs. (5.30)-(5.32) and[

DFF1n

]
=
[
DFF1

]
+
[
DLF2

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}
[
DFF2n

]
=
[
DFF2

]
+
[
DLF4

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}
[
DFF3n

]
=
[
DFF3

]
+
[
DLF6

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}
For an SLG fault at phase a of jth bus with a fault impedance z̄f , as shown in Fig. 5.2(a), the

voltage equation at fault bus can be written as,

z̄f Ī
a
f = V̄ a

j,f − V̄
g
j,f (5.48)

where, V̄ a
j,f and V̄ g

j,f are the voltages of phase a and ground gj at fault bus j under the fault con-

ditions, respectively. Substituting the values of V̄ a
j,f and V̄ g

j,f from eqs. (5.45) and (5.47) into eq.

(5.48), with an assumption that the neutral and ground buses at the substation end are perfectly

grounded (i.e. at zero potential; V̄ n
s = 0, V̄ g

s = 0), and writing the resultant equation in a matrix

form, we obtain[
Zf

] [
If

]
= V̄ a

s −
[
F1PLD(f qb , :)

] [
IL

]
−
[
DFF1n(f qb , 1)

] [
If

]
+
[
F3PLD(gfb , :)

] [
IL

]
+

[
DFF3n(gfb , 1)

] [
If

]
(5.49)
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where, for SLG fault (at phase a of jth bus),
[
Zf

]
= z̄f ;

[
F1PLD(f qb , :)

]
represents the row vector

of matrix
[
F1PLD

]
corresponding to the faulty phase q (here, q = a) of fault bus fb (here, fb = j);[

DFF1n(f qb , 1)
]

represents the row vector of matrix
[
DFF1n

]
corresponding to the faulty phase

q of fault bus fb;
[
F3PLD(gfb , :)

]
represents the row vector of matrix

[
F3PLD

]
corresponding to

the ground gfb at the location of fault bus fb;
[
DFF3n(gfb , 1)

]
represents the row vector of matrix[

DFF3n

]
corresponding to the ground gfb at the location of fault bus fb.

Hence, the fault current
[
If

]
is obtained from eq. (5.49) as,[

If

]
=
[
ZF1

]−1

V̄ a
s −

[
Fflt

13PLD

] [
IL

]
(5.50)

where, [
ZF1

]
=

[
Zf

]
+
[
DFF1n(f qb , 1)

]
−
[
DFF3n(gfb , 1)

]
[
Fflt

13PLD

]
=

[
ZF1

]−1
{[

F1PLD(f qb , :)
]
−
[
F3PLD(gfb , :)

]}
(b) Double line-to-ground (LLG) fault

Let us consider an LLG fault between phases a and b, and the local ground gj at jth bus location

through a fault impedance z̄f , as shown in Fig. 5.2(b) [158]. The two fault currents Īaf and Ībf are

flowing from phases a and b to the ground gj at jth bus, respectively. The modified phase branch

currents (of faulty phases a and b) due to LLG fault in Fig. 5.2(b), can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄a
i,f = Īajd + Īaf

B̄b
i,f = Ībjd + Ībf

B̄a
k,f = Īald + Īamd + Īanbd

B̄b
k,f = Ībld + Ībmd

B̄a
l,f = Īamd + Īanbd

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(5.51)
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The phase branch currents under fault conditions can be written in a matrix form as,

[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
BIBCfp

] [
If

]
(5.52)

where,

[
BIBCfp

]
=

BIBCp(:, f q1b )

BIBCp(:, f q2b )

T =

1 0 0 · · · 1 0 0 · · · 0 0 0 0 0 0

0 1 0 · · · 0 1 0 · · · 0 0 0 0 0 0

T ;

[
If

]
=

[
Īaf Ībf

]T
.

Here,
[
BIBCfp

]
matrix for a LLG fault contains column vectors of

[
BIBCp

]
matrix correspond-

ing to the faulty phases q1 and q2 (here, q1 = a, q2 = b) of the fault bus fb (here, fb = j). The size

of
[
BIBCfp

]
matrix for LLG fault will be (3u+ 2v + w − 3)× 2.

The modified ground currents due to LLG fault, as shown in Fig. 5.2(b), can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf

B̄g
i,f = −Īngj − Īaf − Ībf

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

; B̄g
l,f = −Īngm − Īngnb

; B̄g
m,f = −Īngnb

(5.53)

Hence, the ground currents due to LLG fault can be expressed in a matrix form as,

[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(5.54)

where, [
BIBCfg

]
=

BIBCg(:, gfb)

BIBCg(:, gfb)

T =

1 1 · · · 1 · · · 0 0 0

1 1 · · · 1 · · · 0 0 0

T

Here,
[
BIBCfg

]
is a sub-matrix of

[
BIBCg

]
matrix and contains two identical column vectors

(due to LLG fault) corresponding to the ground bus gfb of fault bus fb (here, fb = j). The size of[
BIBCfg

]
matrix for LLG fault will be (u+v+w−1)×2. Once, the

[
BIBCfp

]
and

[
BIBCfg

]
matrices are formed for LLG fault, the voltages of phase buses, neutral buses and ground buses

under the fault conditions are then calculated by using eqs. (5.45)-(5.47).
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For an LLG fault at phases a and b of jth bus through a fault impedance z̄f , as shown in Fig.

5.2(b), the voltage equations at the fault bus can be written as,

z̄f Ī
a
f = V̄ a

j,f − V̄
g
j,f

z̄f Ī
b
f = V̄ b

j,f − V̄
g
j,f (5.55)

where, V̄ a
j,f and V̄ b

j,f are the voltages of phase a and b of fault bus j under fault conditions, respec-

tively; V̄ g
j,f is the ground bus voltage under fault conditions at fault location (bus j). Substituting

the values of V̄ a
j,f , V̄ b

j,f and V̄ g
j,f from eqs. (5.45) and (5.47) into eq. (5.55), with an assumption that

the neutral and ground buses at the substation end are perfectly grounded (i.e. at zero potential;

V̄ n
s = 0, V̄ g

s = 0), and writing it in the matrix form, we obtain,

[
Zf

] [
If

]
=

V̄ a
s

V̄ b
s

−
F1PLD(f q1b , :)

F1PLD(f q2b , :)

[IL]−
DFF1n(f q1b , :)

DFF1n(f q2b , :)

[If]

+

F3PLD(gfb , :)

F3PLD(gfb , :)

[IL]+

DFF3n(gfb , :)

DFF3n(gfb , :)

[If] (5.56)

where, for an LLG fault (at phases a and b of jth bus),
[
Zf

]
=

z̄f 0

0 z̄f

;
[
F1PLD(f q1b , :)

]
and[

F1PLD(f q2b , :)
]

are the row vectors of matrix
[
F1PLD

]
corresponding to the faulty phases q1

and q2 (here, q1 = a, q2 = b) of faulted bus fb (here, fb = j), respectively;
[
DFF1n(f q1b , :)

]
and

[
DFF1n(f q2b , :)

]
are the row vectors of matrix

[
DFF1n

]
corresponding to the faulty phases

q1 and q2 of faulted bus fb, respectively;
[
F3PLD(gfb , :)

]
is the row vector of matrix

[
F3PLD

]
corresponding to the ground gfb at the location of faulted bus fb;

[
DFF3n(gfb , :)

]
is the row vector

of matrix
[
DFF3n

]
corresponding to the ground gfb at the location of faulted bus fb. Hence, the

fault current
[
If

]
for an LLG fault is obtained from eq. (5.56) as,

[
If

]
=
[
ZF1

]−1

V̄ a
s

V̄ b
s

− [Fflt
13PLD

] [
IL

]
(5.57)

where,

[
ZF1

]
=

[
Zf

]
+

DFF1n(f q1b , :)

DFF1n(f q2b , :)

−
DFF3n(gfb , :)

DFF3n(gfb , :)


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[
Fflt

13PLD

]
=

[
ZF1

]−1


F1PLD(f q1b , :)

F1PLD(f q2b , :)

−
F3PLD(gfb , :)

F3PLD(gfb , :)


(c) Triple line-to-ground (LLLG) fault

Let us now consider an LLLG fault between all the phases a, b and c, and the local ground gj

at jth bus location through a fault impedance z̄f , as shown in Fig. 5.2(c) [158]. The fault currents

Īaf , Ībf and Īcf are flowing from phases a, b and c to the ground gj at jth bus, respectively. The phase

branch currents (of faulty phases a, b and c) due to LLLG fault in Fig. 5.2(c), can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄c
1,f = Īc2d + Īc3d + · · ·+ Īcid + Īcjd + · · ·+ Īckd + Īcld + Īcf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄c
2,f = Īc3d + · · ·+ Īcid + Īcjd + · · ·+ Īckd + Īcld + Īcf

B̄a
i,f = Īajd + Īaf

B̄b
i,f = Ībjd + Ībf

B̄c
i,f = Īcjd + Īcf

B̄a
k,f = Īald + Īamd + Īanbd

B̄b
k,f = Ībld + Ībmd

B̄c
k,f = Īcld

B̄a
l,f = Īamd + Īanbd

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(5.58)

The phase branch currents due to LLLG fault can be written in a matrix form as,

[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
BIBCfp

] [
If

]
(5.59)
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where,

[
BIBCfp

]
=


BIBCp(:, f q1b )

BIBCp(:, f q2b )

BIBCp(:, f q3b )


T

=


1 0 0 · · · 1 0 0 · · · 0 0 0 0 0 0

0 1 0 · · · 0 1 0 · · · 0 0 0 0 0 0

0 0 1 · · · 0 0 1 · · · 0 0 0 0 0 0


T

;

[
If

]
=

[
Īaf Ībf Īcf

]T
.

Here,
[
BIBCfp

]
matrix for an LLLG fault contains column vectors of

[
BIBCp

]
matrix corre-

sponding to the faulty phases q1, q2 and q3 (here, q1 = a, q2 = b, q3 = c) of the faulted bus fb (here,

fb = j). The size of the
[
BIBCfp

]
matrix for a LLLG fault, will be (3u+ 2v + w − 3)× 3.

The ground currents due to LLLG fault, as shown in Fig. 5.2(c), can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf − Īcf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf − Īcf

B̄g
i,f = −Īngj − Īaf − Ībf − Īcf

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(5.60)

Hence, the modified ground currents due to LLLG fault can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(5.61)

where,

[
BIBCfg

]
=


BIBCg(:, gfb)

BIBCg(:, gfb)

BIBCg(:, gfb)


T

=


1 1 · · · 1 · · · 0 0 0

1 1 · · · 1 · · · 0 0 0

1 1 · · · 1 · · · 0 0 0


T

Here,
[
BIBCfg

]
is a sub-matrix of

[
BIBCg

]
matrix and contains three identical column vectors

(due to LLLG fault) corresponding to the ground bus gfb of faulted bus fb (here, fb = j). The

size of
[
BIBCfg

]
matrix for an LLLG fault, will be (u + v + w − 1) × 3. Once, the

[
BIBCfp

]
and

[
BIBCfg

]
matrices are formed for LLLG fault, the voltages of phase buses, neutral buses and

ground buses under the fault conditions are then calculated using eqs. (5.45)-(5.47).
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For an LLLG fault at jth bus through a fault impedance z̄f , as shown in Fig. 5.2(c), the voltage

equations at fault bus can be written as,

z̄f Ī
a
f = V̄ a

j,f − V̄
g
j,f

z̄f Ī
b
f = V̄ b

j,f − V̄
g
j,f

z̄f Ī
c
f = V̄ c

j,f − V̄
g
j,f (5.62)

where, V̄ a
j,f , V̄ b

j,f and V̄ c
j,f are the voltages of phases a, b and c of fault bus j under the fault condi-

tions, respectively. V̄ g
j,f is the ground bus voltage at the fault location (bus j) under fault conditions.

Substituting the values of V̄ a
j,f , V̄ b

j,f , V̄ c
j,f and V̄ g

j,f from eqs. (5.45) and (5.47) into eq. (5.62), with

an assumption that the neutral and ground buses at the substation end are perfectly grounded (i.e at

zero potential; V̄ n
s = 0, V̄ g

s = 0), and writing the resultant equation in the matrix form, we obtain,

[
Zf

] [
If

]
=


V̄ a
s

V̄ b
s

V̄ c
s

−


F1PLD(f q1b , :)

F1PLD(f q2b , :)

F1PLD(f q3b , :)

[IL]−


DFF1n(f q1b , :)

DFF1n(f q2b , :)

DFF1n(f q3b , :)

[If]

+


F3PLD(gfb , :)

F3PLD(gfb , :)

F3PLD(gfb , :)

[IL]+


DFF3n(gfb , :)

DFF3n(gfb , :)

DFF3n(gfb , :)

[If] (5.63)

where, for an LLLG fault (at jth bus),
[
Zf

]
=


z̄f 0 0

0 z̄f 0

0 0 z̄f

;
[
F1PLD(f q1b , :)

]
,
[
F1PLD(f q2b , :)

]

and
[
F1PLD(f q3b , :)

]
are the row vectors of matrix

[
F1PLD

]
corresponding to the faulty phases

q1, q2 and q3 (here, q1 = a, q2 = b, q2 = c) of faulted bus fb (here, fb = j), respectively;[
DFF1n(f q1b , :)

]
,
[
DFF1n(f q2b , :)

]
and

[
DFF1n(f q3b , :)

]
are the row vectors of matrix

[
DFF1n

]
corresponding to the faulty phases q1, q2 and q3 of faulted bus fb, respectively;

[
F3PLD(gfb , :)

]
is

the row vector of matrix
[
F3PLD

]
corresponding to the ground gfb at the location of faulted bus

fb;
[
DFF3n(gfb , :)

]
is the row vector of matrix

[
DFF3n

]
corresponding to the ground gfb at the

location of faulted bus fb. Hence, the fault current
[
If

]
for LLLG fault is obtained from eq. (5.63)
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as,

[
If

]
=
[
ZF1

]−1


V̄ a
s

V̄ b
s

V̄ c
s

− [Fflt
13PLD

] [
IL

]
(5.64)

where,

[
ZF1

]
=

[
Zf

]
+


DFF1n(f q1b , :)

DFF1n(f q2b , :)

DFF1n(f q3b , :)

−


DFF3n(gfb , :)

DFF3n(gfb , :)

DFF3n(gfb , :)


[
Fflt

13PLD

]
=

[
ZF1

]−1




F1PLD(fp1b , :)

F1PLD(fp2b , :)

F1PLD(fp3b , :)

−


F3PLD(gfb , :)

F3PLD(gfb , :)

F3PLD(gfb , :)




(d) Line-to-line (LL) fault

Let us consider an LL fault occurred between phases a and b of jth bus through a fault

impedance z̄f , as shown in Fig. 5.2(d) [158]. The fault current Īaf is flowing from phase a to

b at jth bus. Hence, only the phase branch currents will be modified due to LL fault. The phase

branch currents (of faulty phase a and b) due to LL fault, as shown in Fig. 5.2(d), can be written

as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd − Īaf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + · · ·+ Ībkd + Ībld + Ībmd − Īaf

B̄a
i,f = Īajd + Īaf

B̄b
i,f = Ībjd − Īaf

B̄a
k,f = Īald + Īamd + Īanbd

B̄b
k,f = Ībld + Ībmd

B̄a
l,f = Īamd + Īanbd

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(5.65)
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The phase branch currents due to LL fault can be written in the matrix form as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
BIBCfp

] [
If

]
(5.66)

where, [
BIBCfp

]
=

[
1 −1 0 · · · 1 −1 0 · · · 0 0 0 0 0 0

]T
;

=
[
BIBCp(:, f q1b )−BIBCp(:, f q2b )

]
[
If

]
=

[
Īaf

]
.

The size of
[
BIBCfp

]
matrix for LL fault will be (3u+ 2v + w − 3)× 1.

Rewriting the eqs. (5.21)-(5.23) for the voltages of phase buses, neutral buses and ground buses

under the fault conditions (due to LL fault) as,[
Vp,f

]
=
[
Vss

]
−
[
BCBVp

] [
Bp,f

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg

]
(5.67)[

Vn,f

]
=
[
Vsn

]
−
[
BCBVnp

] [
Bp,f

]
−
[
BCBVn

] [
Bn

]
−
[
BCBVng

] [
Bg

]
(5.68)[

Vg,f

]
=
[
Vsg

]
−
[
BCBVgp

] [
Bp,f

]
−
[
BCBVgn

] [
Bn

]
−
[
BCBVg

] [
Bg

]
(5.69)

Substituting the values of
[
Bn

]
,
[
Bg

]
and

[
Bp,f

]
from eqs. (5.19), (5.20) and (5.66) into eqs.

(5.67)-(5.69) and rewriting the expressions for the voltages of phase buses, neutral buses and

ground buses under the fault conditions, we obtain,[
Vp,f

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DFF

′
1

] [
If

]
(5.70)[

Vn,f

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DFF

′
2

] [
If

]
(5.71)[

Vg,f

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DFF

′
3

] [
If

]
(5.72)

where, [
DFF

′
1

]
=

[
BCBVp

] [
BIBCfp

]
[
DFF

′
2

]
=

[
BCBVnp

] [
BIBCfp

]
[
DFF

′
3

]
=

[
BCBVgp

] [
BIBCfp

]
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Now, the neutral to ground currents are calculated with the help of neutral and ground bus voltages

under the fault conditions using eqs. (5.28), (5.71) and (5.72) as,

[
Zngr

] [
Ing

]
=

{[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DFF

′
2

] [
If

]}
−

{[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DFF

′
3

] [
If

]}

[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+

[ [
DFF

′
3

]
−
[
DFF

′
2

] ] [
If

]}
(5.73)

Now, substituting the value of
[
Ing

]
from eq. (5.73) to the eqs. (5.70)-(5.72) for recalculating the

voltages of phase buses, neutral buses and ground buses under fault conditions, we obtain,

[
Vp,f

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
DFF

′
1n

] [
If

]
(5.74)

[
Vn,f

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
DFF

′
2n

] [
If

]
(5.75)[

Vg,f

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
DFF

′
3n

] [
If

]
(5.76)

where, [
DFF

′
1n

]
=
[
DFF

′
1

]
+
[
DLF2

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
[
DFF

′
2n

]
=
[
DFF

′
2

]
+
[
DLF4

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
[
DFF

′
3n

]
=
[
DFF

′
3

]
+
[
DLF6

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
For an LL fault at phases a and b of jth bus through a fault impedance z̄f , as shown in Fig.

5.2(d), the voltage equation at fault bus can be written as,

z̄f Ī
a
f = V̄ a

j,f − V̄ b
j,f (5.77)

where, V̄ a
j,f and V̄ b

j,f are the voltages of phase a and b at fault bus j under the fault conditions,

respectively. Substituting the values of V̄ a
j,f and V̄ b

j,f from eq. (5.74) into eq. (5.77), with an
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assumption that the neutral and ground buses at the substation end are perfectly grounded (i.e. at

zero potential; V̄ n
s = 0, V̄ g

s = 0), and writing the resultant equation in the matrix form, we obtain,[
Zf

] [
If

]
= V̄ a

s −
[
F1PLD(f q1b , :)

] [
IL

]
−
[
DFF

′
1n(f q1b , 1)

] [
If

]
− V̄ b

s

+
[
F1PLD(f q2b , :)

] [
IL

]
+
[
DFF

′
1n(f q2b , 1)

] [
If

]
(5.78)

where, for LL fault (at phase a and b of jth bus),
[
Zf

]
= z̄f ;

[
F1PLD(f q1b , :)

]
and

[
F1PLD(f q2b , :)

]
are the row vectors of matrix

[
F1PLD

]
corresponding to the faulty phases q1 and q2 (here, q1 = a,

q2 = b) of faulted bus fb (here, fb = j), respectively;
[
DFF

′
1n(f q1b , 1)

]
and

[
DFF

′
1n(f q2b , 1)

]
are

the row vectors of matrix
[
DFF

′
1n

]
corresponding to the faulty phases q1 and q2 of faulted bus fb,

respectively. Hence, the fault current
[
If

]
is obtained from eq. (5.78) as,[

If

]
=
[
ZF1

]−1

(V̄ a
s − V̄ b

s )−
[
Fflt

11PLD

] [
IL

]
(5.79)

where, [
ZF1

]
=

[
Zf

]
+
[
DFF

′
1n(f q1b , 1)

]
−
[
DFF

′
1n(f q2b , 1)

]
[
Fflt

11PLD

]
=

[
ZF1

]−1
{[

F1PLD(f q1b , :)
]
−
[
F1PLD(f q2b , :)

]}

Steps of algorithm for
[
BIBC

]
matrix based short-circuit analysis method for an unbalanced

three phase four wire multigrounded radial distribution system

1. Run the base case power flow of three phase four wire multigrounded system using the

proposed load flow method as discussed in Section 5.2 of this chapter.

2. Convert all PQ-loads into constant impedance loads using the obtained load flow solution.

3. If a ground fault (SLG, LLG, LLLG) occurs in the system, then formulate
[
BIBCfp

]
,[

BIBCfg

]
and

[
Zf

]
matrices corresponding to the type of fault occurring in the system.

If the fault is a line to line (LL) fault, then formulate only
[
BIBCfp

]
and

[
Zf

]
matrices.

4. Set iteration counter k = 0. Also, set the values of voltages of phase buses, neutral buses

and ground buses, and equivalent bus injection currents equal to the values obtained from

pre-fault load flow solution.
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5. Calculate the fault current
[
If

]k
using eq. (5.50) for SLG fault, eq. (5.57) for LLG fault, eq.

(5.64) for LLLG fault and eq. (5.79) for LL fault.

6. k = k + 1.

7. Calculate the voltages of phase buses, neutral buses and ground buses
(
[Vp,f ]

k, [Vn,f ]
k and

[Vg,f ]
k
)

of the system under the fault conditions, using eqs. (5.45)-(5.47) for ground faults

(SLG, LLG, LLLG) and using eqs. (5.74)-(5.76) for LL fault, respectively.

8. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp,f ]
k − [Vp,f ]

k−1

∣∣∣∣, ∣∣∣∣[Vn,f ]
k − [Vn,f ]

k−1

∣∣∣∣, ∣∣∣∣[Vg,f ]
k − [Vg,f ]

k−1

∣∣∣∣)

9. If ε ≥ tolerance(1.0× 10−12), go to the next step, else go to step 11.

10. Calculate the values of equivalent bus injection currents at all the phase buses of the system.

The equivalent bus injection current at any phase p of ith bus at kth iteration under the fault

condition (Īp
k

id,f ) is calculated as,

Īp
k

id,f =

(
V̄ pk

i,f − V̄ nk

i,f

z̄pid

)
; (p = a or b or c)

where, V̄ p
i,f and V̄ n

i,f are the voltages at phase p and neutral ni of ith bus under fault conditions,

respectively. z̄pid is an equivalent load impedance at phase p of ith bus. Now, go to step 5.

11. The obtained values of [Vp,f ], [Vn,f ], [Vg,f ] and [If ] are the final values of voltages under

the fault conditions and fault current, respectively.

The overall flow-chart of the proposed [BIBC] matrix based short-circuit analysis method is

shown in Fig. 5.3.

5.3.2 Method 2:
[
Ybus

]
matrix based short-circuit analysis method

In this method, first the loads at all the phase buses of the three phase four wire multigrounded

distribution system are converted into equivalent load impedances (as given in eq. (5.33)) with the

help of proposed DSLF solution. Next, to form the bus admittance matrix
[
Ybus

]
of the system,
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Figure 5.3: Flow-chart of the proposed [BIBC] matrix based short-circuit anal-

ysis method

the equivalent load admittances are then calculated at all the buses. For example, equivalent load
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admittance at any phase p of bus i is calculated as,

ȳpid =
1

z̄pid
=

Īpid
(V̄ p

i − V̄ n
i )

; (p = a, b, c) (5.80)

where, z̄pid is an equivalent load impedance of pth phase of ith bus, V̄ p
i and V̄ n

i are the pth phase

and neutral bus voltage at ith bus location, Īpid is the equivalent injection current at pth phase of ith

bus, obtained from the DSLF solution. Now, the line admittance matrix of the line section between

buses i and j is calculated as,

ȳabcng
ij =

[
z̄abcng
ij

]−1
=



ȳaaij ȳabij ȳacij ȳanij ȳagij

ȳbaij ȳbbij ȳbcij ȳbnij ȳbgij

ȳcaij ȳcbij ȳccij ȳcnij ȳcgij

ȳnaij ȳnbij ȳncij ȳnnij ȳngij

ȳgaij ȳgbij ȳgcij ȳgnij ȳggij


(5.81)

where, ȳpqij = ȳqpij ; p, q = a, b, c, n, g; p 6= q.

To obtain the
[
Ybus

]
matrix of the unbalanced three phase four wire multigrounded distribu-

tion system, as shown in Fig. 5.1, Kirchhoff’s Current Law (KCL) equations are required at all the

phase, neutral and ground buses of the system. Let us consider the KCL equation at phase a of bus

2 of the system shown in Fig. 5.1, with an assumption that V̄ n
s = 0 and V̄ g

s = 0 as,

ȳaa12 (V̄ a
2 − V̄ a

s ) + ȳab12(V̄ b
2 − V̄ b

s ) + ȳac12(V̄ c
2 − V̄ c

s ) + ȳan12 V̄
n

2 + ȳag12 V̄
g

2 + ȳa2d(V̄
a

2 − V̄ n
2 )

+ȳaa23 (V̄ a
2 − V̄ a

3 ) + ȳab23(V̄ b
2 − V̄ b

3 ) + ȳac23(V̄ c
2 − V̄ c

3 ) + ȳan23 (V̄ n
2 − V̄ n

3 ) + ȳag23(V̄ g
2 − V̄

g
3 )

= 0

(ȳaa12 + ȳaa23 + ȳa2d)V̄
a

2 + (ȳab12 + ȳab23)V̄ b
2 + (ȳac12 + ȳac23)V̄ c

2 + (ȳan12 + ȳan23 − ȳa2d)V̄ n
2 + (ȳag12

+ȳag23)V̄ g
2 − ȳaa23 V̄

a
3 − ȳab23V̄

b
3 − ȳac23V̄

c
3 − ȳan23 V̄

n
3 − ȳ

ag
23 V̄

g
3 = ȳaa12 V̄

a
s + ȳab12V̄

b
s + ȳac12V̄

c
s (5.82)

Similarly, the KCL equations at phases b and c of 2nd bus are given in eqs. (5.83) and (5.84),

respectively as,

(ȳba12 + ȳba23)V̄ a
2 + (ȳbb12 + ȳbb23 + ȳbn2 )V̄ b

2 + (ȳbc12 + ȳbc23)V̄ c
2 + (ȳbn12 + ȳbn23 − ȳbn2 )V̄ n

2 + (ȳbg12

+ȳbg23)V̄ g
2 − ȳba23V̄

a
3 − ȳbb23V̄

b
3 − ȳbc23V̄

c
3 − ȳbn23 V̄

n
3 − ȳ

bg
23V̄

g
3 = ȳba12V̄

a
s + ȳbb12V̄

b
s + ȳbc12V̄

c
s (5.83)
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(ȳca12 + ȳca23)V̄ a
2 + (ȳcb12 + ȳcb23)V̄ b

2 + (ȳcc12 + ȳcc23 + ȳcn2 )V̄ c
2 + (ȳcn12 + ȳcn23 − ȳcn2 )V̄ n

2 + (ȳcg12

+ȳcg23)V̄ g
2 − ȳca23V̄

a
3 − ȳcb23V̄

b
3 − ȳcc23V̄

c
3 − ȳcn23 V̄

n
3 − ȳ

cg
23V̄

g
3 = ȳca12V̄

a
s + ȳcb12V̄

b
s + ȳcc12V̄

c
s (5.84)

Also, the KCL equations at neutral n2 and ground g2 at the location of 2nd bus are expressed in

eqs. (5.85) and (5.86), respectively as,

(ȳna12 + ȳna23 − ȳa2d)V̄ a
2 + (ȳnb12 + ȳnb23 − ȳb2d)V̄ b

2 + (ȳnc12 + ȳnc23 − ȳc2d)V̄ c
2 + (ȳnn12 + ȳnn23 + ȳa2d + ȳb2d

+ȳc2d + ȳngr2 )V̄ n
2 + (ȳng12 + ȳng23 − ȳ

ngr
2 )V̄ g

2 − ȳna23 V̄
a

3 − ȳnb23 V̄
b

3 − ȳnc23 V̄
c

3 − ȳnn23 V̄
n

3 − ȳ
ng
23 V̄

g
3 =

ȳna12 V̄
a
s + ȳnb12 V̄

b
s + ȳnc12 V̄

c
s (5.85)

(ȳga12 + ȳga23)V̄ a
2 + (ȳgb12 + ȳgb23)V̄ b

2 + (ȳgc12 + ȳgc23)V̄ c
2 + (ȳgn12 + ȳgn23 − ȳ

ngr
2 )V̄ n

2 + (ȳgg12 + ȳgg23

+ȳngr2 )V̄ g
2 − ȳ

ga
23 V̄

a
3 − ȳ

gb
23V̄

b
3 − ȳ

gc
23V̄

c
3 − ȳ

gn
23 V̄

n
3 − ȳ

gg
23 V̄

g
3 = ȳga12 V̄

a
s + ȳgb12V̄

b
s + ȳgc12V̄

c
s (5.86)

where, ȳngr2 = 1
Z̄ngr
2

, Z̄ngr
2 is the neutral to ground impedance between neutral n2 and ground g2 at

the location of 2nd bus of the system shown in Fig. 5.1. Therefore, the KCL equations at bus 2 can

be expressed in the matrix form using eqs. (5.82)-(5.86) as,

Yabcng
22 Vabcng

2 + Yabcng
23 Vabcng

3 = Yabcng
s Vabc

s (5.87)

where,

Yabcng
22 =

(ȳaa12 + ȳaa23 + ȳa2d) (ȳab12 + ȳab23) (ȳac12 + ȳac23) (ȳan12 + ȳan23 − ȳa2d) (ȳag12 + ȳag23)

(ȳba12 + ȳba23) (ȳbb12 + ȳbb23 + ȳb2d) (ȳbc12 + ȳbc23) (ȳbn12 + ȳbn23 − ȳb2d) (ȳbg12 + ȳbg23)

(ȳca12 + ȳca23) (ȳcb12 + ȳcb23) (ȳcc12 + ȳcc23 + ȳc2d) (ȳcn12 + ȳcn23 − ȳc2d) (ȳcg12 + ȳcg23)

(ȳna12 + ȳna23 − ȳa2d) (ȳnb12 + ȳnb23 − ȳb2d) (ȳnc12 + ȳnc23 − ȳc2d) (ȳnn12 + ȳnn23 + ȳa2d (ȳng12 + ȳng23

+ȳb2d + ȳc2d + ȳngr2 ) −ȳngr2 )

(ȳga12 + ȳga23) (ȳgb12 + ȳgb23) (ȳgc12 + ȳgc23) (ȳgn12 + ȳgn23 − ȳ
ngr
2 ) (ȳgg12 + ȳgg23

+ȳngr2 )



Yabcng
23 = −ȳabcng

23 ; Yabcng
s =


ȳaa12 ȳba12 ȳca12 ȳna12 ȳga12

ȳab12 ȳbb12 ȳcb12 ȳnb12 ȳgb12

ȳac12 ȳbc12 ȳcc12 ȳnc12 ȳgc12


T

; Vabc
s =

[
V̄ a
s V̄ b

s V̄ c
s

]T
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Vabcng
2 =

[
V̄ a

2 V̄ b
2 V̄ c

2 V̄ n
2 V̄ g

2

]T
; Vabcng

3 =
[
V̄ a

3 V̄ b
3 V̄ c

3 V̄ n
3 V̄ g

3

]T
Similarly, the KCL equations at three-phase bus j, two-phase bus m and single-phase bus nb are

given in eqs. (5.88), (5.89) and (5.90), respectively, as,

Yabcng
ji Vabcng

i + Yabcng
jj Vabcng

j = 0 (5.88)

Yabng
ml Vabcng

l + Yabng
mm Vabng

m + Yang
mnb

Vang
nb

= 0 (5.89)

Yang
nbm

Vabng
m + Yang

nbnb
Vang

nb
= 0 (5.90)

where, Yabcng
ji = −ȳabcng

ji ;

Yabcng
jj =



(ȳaaji + ȳajd) ȳabji ȳacji (ȳanji − ȳajd) ȳagji

ȳbaji (ȳbbji + ȳbjd) ȳbcji (ȳbnji − ȳbjd) ȳbgji

ȳcaji ȳcbji (ȳccji + ȳcjd) (ȳcnji − ȳcjd) ȳcgji

(ȳnaji − ȳajd) (ȳnbji − ȳbjd) (ȳncji − ȳcjd) (ȳnnji + ȳajd + ȳbjd + ȳcjd + ȳngrj ) (ȳngji − ȳ
ngr
j )

ȳgaji ȳgbji ȳgcji (ȳgnji − ȳ
ngr
j ) (ȳggji + ȳngrj )



Yabng
mm =



(ȳaaml + ȳaamnb
+ ȳamd) ȳabml (ȳanml + ȳanmnb

− ȳamd) (ȳagml + ȳagmnb
)

ȳbaml (ȳbbml + ȳbmd) (ȳbnml − ȳbmd) ȳbgml

(ȳnaml + ȳnamnb
− ȳamd) (ȳnbml − ȳbmd) (ȳnnml + ȳnnmnb

+ ȳamd (ȳngml + ȳngmnb
− ȳngrm )

+ȳbmd + ȳcmd + ȳngrm )

(ȳgaml + ȳgamnb
) ȳgbml (ȳgnml + ȳgnmnb

− ȳngrm ) (ȳggml + ȳggmnb
+ ȳngrm )



Yang
nbnb

=


(ȳaanbm

+ ȳanbd
) (ȳannbm

− ȳanbd
) ȳagnbm

(ȳnanbm
− ȳanbd

) (ȳnnnbm
+ ȳanbd

+ ȳngrnb
) (ȳngnbm

− ȳngrnb
)

ȳganbm
(ȳgnnbm

− ȳngrnb
) (ȳggnbm

+ ȳngrnb
)



Yabng
ml = −


ȳaaml ȳabml ȳanml ȳagml 0

ȳbaml ȳbbml ȳbnml ȳbgml 0

ȳnaml ȳnbml ȳnnml ȳngml 0

ȳgaml ȳgbml ȳgnml ȳggml 0

 ; Yang
mnb

= −


ȳaamnb

ȳanmnb
ȳagmnb

ȳnamnb
ȳnnmnb

ȳngmnb

ȳgamnb
ȳgnmnb

ȳggmnb

0 0 0

 =
[
Yang

nbm

]T
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Vabcng
i =

[
V̄ a
i V̄ b

i V̄ c
i V̄ n

i V̄ g
i

]T
; Vabcng

j =
[
V̄ a
j V̄ b

j V̄ c
j V̄ n

j V̄ g
j

]T
Vabcng

l =
[
V̄ a
l V̄ b

l V̄ c
l V̄ n

l V̄ g
l

]T
; Vabng

m =
[
V̄ a
m V̄ b

m V̄ n
m V̄ g

m

]T
; Vang

nb
=
[
V̄ a
nb

V̄ n
nb

V̄ g
nb

]T
Hence, the generalized KCL equations for the unbalanced three phase four wire multigrounded

distribution system, having u three-phase, v two-phase, w single-phase, (u + v + w) neutral and

(u+ v + w) ground buses, can be expressed in the matrix form as,[
Ybus

]
.
[
V
]

=
[
I
]

(5.91)

where,

[Ybus] =



Y
abcng
22 · · · Y

abcng
2u Y

pqng
2(u+1)

· · · Y
pqng
2(u+v)

Y
png
2(u+v+1)
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Y
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Y
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· · · Y
png
(u+v+1)u

Y
png
(u+v+1)(u+1)

· · · Y
png
(u+v+1)(u+v)

Y
png
(u+v+1)(u+v+1)

· · · Y
png
(u+v+1)(u+v+w)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Y
png
(u+v+l)2

· · · Y
png
(u+v+l)u

Y
png
(u+v+l)(u+1)

· · · Y
png
(u+v+l)(u+v)

Y
png
(u+v+l)(u+v+1)

· · · Y
png
(u+v+l)(u+v+w)


[
V
]

=
[
Vabcng

2 · · · Vabcng
u · · · Vpqng

(u+1) · · · Vpqng
(u+v) · · · Vpng

(u+v+1) · · · Vpng
(u+v+w)

]T
[
I
]

=
[
(Yabcng

s .Vabc
s ) 0 0 · · · 0 · · · 0 · · · 0 · · · 0

]T
.

The elements of the
[
Ybus

]
matrix are calculated as,

Ȳ pp
ii = ȳppi1 + ȳppi2 + · · ·+ ȳppiu + ȳppi(u+1) + · · ·+ ȳppi(u+v) + ȳppi(u+v+1) + · · ·+ ȳppi(u+v+w) + ȳpid

Ȳ nn
ii = ȳnni1 + ȳnni2 + · · ·+ ȳnniu + ȳnni(u+1) + · · ·+ ȳnni(u+v) + ȳnni(u+v+1) + · · ·+ ȳnni(u+v+w) + ȳngri

+
∑
pl

ȳplid

Ȳ gg
ii = ȳggi1 + ȳggi2 + · · ·+ ȳggiu + ȳggi(u+1) + · · ·+ ȳggi(u+v) + ȳggi(u+v+1) + · · ·+ ȳggi(u+v+w) + ȳngri

Ȳ pq
ii = ȳpqi1 + ȳpqi2 + · · ·+ ȳpqiu + ȳpqi(u+1) + · · ·+ ȳpqi(u+v)

Ȳ pn
ii = ȳpni1 + ȳpni2 + · · ·+ ȳpniu + ȳpni(u+1) + · · ·+ ȳpni(u+v) + ȳpni(u+v+1) + · · ·+ ȳpni(u+v+w) − ȳ

p
id

= Ȳ np
ii

Ȳ pg
ii = ȳpgi1 + ȳpgi2 + · · ·+ ȳpgiu + ȳpgi(u+1) + · · ·+ ȳpgi(u+v) + ȳpgi(u+v+1) + · · ·+ ȳpgi(u+v+w) = Ȳ gp

ii
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Ȳ ng
ii = ȳngi1 + ȳngi2 + · · ·+ ȳngiu + ȳngi(u+1) + · · ·+ ȳngi(u+v) + ȳngi(u+v+1) + · · ·+ ȳngi(u+v+w) − ȳ

ngr
i

= Ȳ gn
ii

Ȳ pp
ij = −ȳppij ; Ȳ nn

ij = −ȳnnij ; Ȳ gg
ij = −ȳggij ;

Ȳ pq
ij = −ȳpqij ; Ȳ pn

ij = −ȳpnij = Ȳ np
ij ; Ȳ pg

ij = −ȳpgij = Ȳ gp
ij ; Ȳ ng

ij = −ȳngij = Ȳ gn
ij

(5.92)

where i=2, . . . , u; j=1, . . . , u; j 6= i ; pl and p = a, b, c; q = a, b, c; p 6= q for u three phase

buses,

i=(u+1), . . . , (u + v); j=(u+1), . . . , (u + v); j 6= i ; pl and p = (a, b) or (b, c) or (c, a); q =

(a, b) or (b, c) or (c, a); p 6= q for v two phase buses,

i=(u + v+1), . . . , (u + v + w); j=(u + v+1), . . . , (u + v + w); j 6= i ; pl , p and q = a or b or

c, for w single phase buses. n and g stand for neutral and ground.

Therefore, the size of
[
Ybus

]
matrix for an unbalanced three phase four wire multigrounded

distribution system considered, is (5u + 4v + 3w − 5) × (5u + 4v + 3w − 5). Once the
[
Ybus

]
matrix of an unbalanced three phase four wire multigrounded distribution system is formed, various

unsymmetrical short-circuit faults can be analyzed as follows :

(a) Single line-to-ground (SLG) fault

Let us consider an SLG fault between phase a and the local ground gj at jth bus location

through a fault impedance z̄f , as shown in Fig. 5.2(a) [158]. The fault current Īaf is flowing from

phase a to the ground gj at jth bus and is calculated as,

Īaf =
(V̄ a

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

a
j,f − V̄

g
j,f ) (5.93)

where, ȳf = 1
z̄f

; V̄ a
j,f and V̄ g

j,f are the voltages of phase a and ground gj of jth bus under the

fault conditions, respectively. The KCL equation at faulty phase a of faulted bus j, under the fault

condition can be written as,

Ȳ aa
j2 .V̄

a
2,f + · · ·+ Ȳ ag

j2 .V̄
g

2,f + · · ·+ Ȳ aa
jj .V̄

a
j,f + · · ·+ Ȳ ag

jj .V̄
g
j,f + · · ·+ Ȳ aa

j(u+v+w).V̄
a

(u+v+w),f

+ · · ·+ Ȳ ag
j(u+v+w).V̄

g
(u+v+w),f + ȳf .(V̄

a
j,f − V̄

g
j,f ) = 0

Ȳ aa
j2 .V̄

a
2,f + · · ·+ Ȳ ag

j2 .V̄
g

2,f + · · ·+ (Ȳ aa
jj + ȳf ).V̄

a
j,f + · · ·+ (Ȳ ag

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ aa
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ ag

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.94)
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Similarly, the KCL equation at ground gj of faulted bus j, under the fault condition, is written as,

Ȳ ga
j2 .V̄

a
2,f + · · ·+ Ȳ gg

j2 .V̄
g

2,f + · · ·+ Ȳ ga
jj .V̄

a
j,f + · · ·+ Ȳ gg

jj .V̄
g
j,f + · · ·+ Ȳ ga

j(u+v+w).V̄
a

(u+v+w),f

+ · · ·+ Ȳ gg
j(u+v+w).V̄

g
(u+v+w),f − ȳf .(V̄

a
j,f − V̄

g
j,f ) = 0

Ȳ ga
j2 .V̄

a
2,f + · · ·+ Ȳ gg

j2 .V̄
g

2,f + · · ·+ (Ȳ ga
jj − ȳf ).V̄ a

j,f + · · ·+ (Ȳ gg
jj + ȳf ).V̄

g
j,f + · · ·

· · ·+ Ȳ ga
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ gg

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.95)

Hence, the following elements of the
[
Ybus

]
matrix will be modified due to SLG fault :

Ȳ aa
jj new = Ȳ aa

jj + ȳf ; Ȳ
ag
jj new = Ȳ ag

jj − ȳf

Ȳ ga
jj new = Ȳ ga

jj − ȳf ; Ȳ
gg
jj new = Ȳ gg

jj + ȳf (5.96)

The bus voltages are then calculated, under the fault condition, using eq. (5.91) with the help of

modified bus admittance matrix. Also, the branch current of any three-phase line section between

buses i and j under fault conditions is calculated as,[
Babcng

ij,f

]
=
[
yabcng
ij

] [
Vabcng

i,f −Vabcng
j,f

]
(5.97)

where, Vabcng
i,f and Vabcng

j,f are the voltage vectors of the buses i and j under the fault conditions,

respectively.

(b) Double line-to-ground (LLG) fault

Let us assume that an LLG fault occurs between phases a and b, and the local ground gj at jth

bus location through a fault impedance z̄f , as shown in Fig. 5.2(b) [158]. The fault currents Īaf and

Ībf are flowing from phases a and b to the ground gj at jth bus, respectively and are calculated as,

Īaf =
(V̄ a

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

a
j,f − V̄

g
j,f )

Ībf =
(V̄ b

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

b
j,f − V̄

g
j,f ) (5.98)

where, V̄ a
j,f , V̄ b

j,f and V̄ g
j,f are the voltages of phases a and b, and ground gj of jth bus under the

fault conditions, respectively. The KCL equations at phases a and b, and ground gj of faulted bus

j, under the fault condition, are given in eqs. (5.99)-(5.101), respectively, as,

Ȳ aa
j2 .V̄

a
2,f + · · ·+ Ȳ ag

j2 .V̄
g

2,f + · · ·+ (Ȳ aa
jj + ȳf ).V̄

a
j,f + · · ·+ (Ȳ ag

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ aa
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ ag

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.99)
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Ȳ ba
j2 .V̄

a
2,f + · · ·+ Ȳ bg

j2 .V̄
g

2,f + · · ·+ (Ȳ bb
jj + ȳf ).V̄

b
j,f + · · ·+ (Ȳ bg

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ ba
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ bg

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.100)

Ȳ ga
j2 .V̄

a
2,f + · · ·+ Ȳ gg

j2 .V̄
g

2,f + · · ·+ (Ȳ ga
jj − ȳf ).V̄ a

j,f + (Ȳ gb
jj − ȳf ).V̄ b

j,f + · · ·+ (Ȳ gg
jj

+2ȳf ).V̄
g
j,f · · ·+ Ȳ ga

j(u+v+w).V̄
a

(u+v+w),f + · · ·+ Ȳ gg
j(u+v+w).V̄

g
(u+v+w),f = 0 (5.101)

Therefore, the following elements of the
[
Ybus

]
matrix will be modified due to LLG fault :

Ȳ aa
jj new = Ȳ aa

jj + ȳf ; Ȳ
bb
jj new = Ȳ bb

jj + ȳf

Ȳ ag
jj new = Ȳ ag

jj − ȳf ; Ȳ
bg
jj new = Ȳ bg

jj − ȳf

Ȳ ga
jj new = Ȳ ga

jj − ȳf ; Ȳ
gb
jj new = Ȳ gb

jj − ȳf

Ȳ gg
jj new = Ȳ gg

jj + 2ȳf (5.102)

(c) Triple line-to-ground (LLLG) fault

Let us consider an LLLG fault between all the phases a, b and c, and the local ground gj at

jth bus location through a fault impedance z̄f , as shown in Fig. 5.2(c) [158]. The fault currents

Īaf , Ībf and Īcf are flowing from phases a, b and c to the ground gj at jth bus, respectively and are

calculated as,

Īaf =
(V̄ a

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

a
j,f − V̄

g
j,f )

Ībf =
(V̄ b

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

b
j,f − V̄

g
j,f )

Īcf =
(V̄ c

j,f − V̄
g
j,f )

z̄f
= ȳf (V̄

c
j,f − V̄

g
j,f ) (5.103)

where, V̄ a
j,f , V̄ b

j,f , V̄ c
j,f and V̄ g

j,f are the voltages of phases a, b and c, and ground gj of jth bus under

the fault conditions, respectively. The KCL equations at phases a, b and c, and ground gj of faulted

bus j, under the fault condition, are given in eqs. (5.104)-(5.107), respectively, as,

Ȳ aa
j2 .V̄

a
2,f + · · ·+ Ȳ ag

j2 .V̄
g

2,f + · · ·+ (Ȳ aa
jj + ȳf ).V̄

a
j,f + · · ·+ (Ȳ ag

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ aa
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ ag

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.104)

Ȳ ba
j2 .V̄

a
2,f + · · ·+ Ȳ bg

j2 .V̄
g

2,f + · · ·+ (Ȳ bb
jj + ȳf ).V̄

b
j,f + · · ·+ (Ȳ bg

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ ba
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ bg

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.105)
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Ȳ ca
j2 .V̄

a
2,f + · · ·+ Ȳ cg

j2 .V̄
g

2,f + · · ·+ (Ȳ cc
jj + ȳf ).V̄

c
j,f + · · ·+ (Ȳ cg

jj − ȳf ).V̄
g
j,f + · · ·

· · ·+ Ȳ ca
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ cg

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.106)

Ȳ ga
j2 .V̄

a
2,f + · · ·+ Ȳ gg

j2 .V̄
g

2,f + · · ·+ (Ȳ ga
jj − ȳf ).V̄ a

j,f + (Ȳ gb
jj − ȳf ).V̄ b

j,f + (Ȳ gc
jj

−ȳf ).V̄ c
j,f + · · ·+ (Ȳ gg

jj + 3ȳf ).V̄
g
j,f · · ·+ Ȳ ga

j(u+v+w).V̄
a

(u+v+w),f + · · · · · ·

+Ȳ gg
j(u+v+w)V̄

g
(u+v+w),f = 0 (5.107)

Therefore, the following elements of the
[
Ybus

]
matrix will be modified due to LLLG fault :

Ȳ aa
jj new = Ȳ aa

jj + ȳf ; Ȳ
bb
jj new = Ȳ bb

jj + ȳf ; Ȳ
cc
jj new = Ȳ cc

jj + ȳf

Ȳ ag
jj new = Ȳ ag

jj − ȳf ; Ȳ
bg
jj new = Ȳ bg

jj − ȳf ; Ȳ
cg
jj new = Ȳ cg

jj − ȳf

Ȳ ga
jj new = Ȳ ga

jj − ȳf ; Ȳ
gb
jj new = Ȳ gb

jj − ȳf ; Ȳ
gc
jj new = Ȳ gc

jj − ȳf

Ȳ gg
jj new = Ȳ gg

jj + 3ȳf (5.108)

(d) Line-to-line (LL) fault

Let us assume that an LL fault occurs between phases a and b of jth bus through a fault

impedance z̄f , as shown in Fig. 5.2(d) [158]. The fault current Īaf is flowing from phase a to

b at jth bus and are calculated as,

Īaf =
(V̄ a

j,f − V̄ b
j,f )

z̄f
= ȳf (V̄

a
j,f − V̄ b

j,f ) (5.109)

where, V̄ a
j,f and V̄ b

j,f are the voltages of phases a and b of jth bus under the fault conditions, respec-

tively. The KCL equations at phases a and b of faulted bus j, under the fault condition, are given

in eqs. (5.110), and (5.111), respectively, as,

Ȳ aa
j2 .V̄

a
2,f + · · ·+ Ȳ ag

j2 .V̄
g

2,f + · · ·+ (Ȳ aa
jj + ȳf ).V̄

a
j,f + (Ȳ ab

jj − ȳf ).V̄ b
j,f + · · ·+ Ȳ ag

jj .V̄
g
j,f

+ · · · · · ·+ Ȳ aa
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ ag

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.110)

Ȳ ba
j2 .V̄

a
2,f + · · ·+ Ȳ bg

j2 .V̄
g

2,f + · · ·+ (Ȳ ba
jj − ȳf ).V̄ a

j,f + (Ȳ bb
jj + ȳf ).V̄

b
j,f + · · ·+ Ȳ bg

jj .V̄
g
j,f

+ · · · · · ·+ Ȳ ba
j(u+v+w).V̄

a
(u+v+w),f + · · ·+ Ȳ bg

j(u+v+w).V̄
g

(u+v+w),f = 0 (5.111)

Therefore, the following elements of the
[
Ybus

]
matrix will be modified due to LL fault :

Ȳ aa
jj new = Ȳ aa

jj + ȳf ; Ȳ
ab
jj new = Ȳ ab

jj − ȳf

Ȳ ba
jj new = Ȳ ba

jj − ȳf ; Ȳ bb
jj new = Ȳ bb

jj + ȳf (5.112)
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First, the bus voltages for an LL fault are calculated using eq. (5.91) with the above modification

in
[
Ybus

]
matrix. Next, the branch currents under the fault conditions and fault current are then

calculated using eqs. (5.97) and (5.109), respectively.

Steps of algorithm for
[
Ybus

]
matrix based short-circuit analysis method for an unbalanced

three phase four wire multigrounded radial distribution system

1. Run the base case power flow of an unbalanced three phase four wire multigrounded dis-

tribution system using the proposed load flow method as discussed in Section 5.2 of this

chapter.

2. Convert all PQ-loads into constant impedance loads using the obtained pre-fault load flow

solution.

3. Formulate the
[
Ybus

]
matrix of the distribution system using the above discussed formula-

tion.

4. Modify
[
Ybus

]
matrix corresponding to the type of fault occurring in the system, using eq.

(5.96) for SLG fault, eq. (5.102) for LLG fault, eq. (5.108) for LLLG fault and eq. (5.112)

for LL fault.

5. Calculate the bus voltages of the distribution system under the fault condition using eq.

(5.91) with the modified
[
Ybus

]
matrix.

6. Calculate fault currents using eq. (5.93) for SLG, eq. (5.98) for LLG, eq. (5.103) for LLLG

and eq. (5.109) for LL fault. Also calculate post fault branch currents using the eq. (5.97).

5.4 Test results and discussions

To investigate the accuracy of the proposed load flow and short-circuit analysis methods, two

different three phase four wire multigrounded test systems have been used in this study. The first

system is IEEE 34-bus node test feeder located in Arizona and the second one is IEEE 123-bus

node test feeder. Details of these test feeders are given in [159]. To calculate the primitive self and

mutual line impedances of these test systems, Carson’s formula [160] has been used in this study.
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The primitive self impedances of the three phase four wire multigrounded system are calculated

as,

z̄aa = (ra + rd) + jwk ln
De

Dsa

Ω/mile (5.113)

z̄bb = (rb + rd) + jwk ln
De

Dsb

Ω/mile (5.114)

z̄cc = (rc + rd) + jwk ln
De

Dsc

Ω/mile (5.115)

z̄nn = (rn + rd) + jwk ln
De

Dsn

Ω/mile (5.116)

where, ra, rb, rc and rn are the resistances in Ω/mile of the phase conductors a, b, c and neutral

conductor n, respectively. rd is the earth resistance and is calculated as rd = 1.588 × 10−3f

Ω/mile [160], where f is the frequency in Hz. According to the Carson’s line model, the quantity

De is calculated as, De = 2160×
√
ρ/f ft, where ρ is the ground resistivity. ωk is the inductance

multiplying constant and its value for 60 Hz frequency system is 0.12134 mile [160]. Dsa, Dsb,

Dsc and Dsn are the Geometric Mean Radii (GMR) of the phase conductors a, b, c and neutral

conductor n, in feet, respectively. Similarly, the primitive line to line mutual impedances of the

three phase four wire multigrounded system are calculated as,

z̄ab = rd + jwk ln
De

Dab

Ω/mile (5.117)

z̄bc = rd + jwk ln
De

Dbc

Ω/mile (5.118)

z̄ac = rd + jwk ln
De

Dac

Ω/mile (5.119)

z̄pn = rd + jwk ln
De

Dpn

Ω/mile, (p = a, b, c) (5.120)

where, Dab, Dbc and Dac are the distances between the centers of the conductors a and b, b and

c and a and c, in feet, respectively. Dpn is the distance between the center of phase conductor

p (p = a, b, c) and neutral conductor n, also in feet. Now, the primitive self and mutual ground

impedances are calculated as [128],

z̄gg = (π2 × 10−4f)− j(0.0386× 8π × 10−4f) + j

(
4π × 10−4f × ln

2

5.6198× 10−3

)
Ω/km

(5.121)

z̄pg = j

(
2π × 10−4f × lnDpg√

ρ
f

)
Ω/km, (p = a, b, c) (5.122)
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z̄ng = j

(
2π × 10−4f × lnDng√

ρ
f

)
Ω/km (5.123)

where, z̄gg is the self ground impedance. z̄pg is the mutual phase to ground impedance between

phase conductor p (p = a, b, c) and ground g; z̄ng is the mutual neutral to ground impedance be-

tween neutral conductor n and ground g. Dpg is the distances between the centers of the phase

conductor p (p = a, b, c) and ground g; Dng is the distances between the centers of neutral con-

ductor n and ground g. The shunt capacitances, voltage regulators and transformers in both test

systems have not been considered in this study. The proposed load flow and short-circuit analysis

methods have been implemented in MATLAB environment with a tolerance limit (ε) of 1.0×10−12.

5.4.1 Results of modified three phase four wire multigrounded IEEE 34-bus test system

5.4.1.1 Results of load flow studies

The bus numbers of the original IEEE 34-bus test system have been renumbered for this work and

the details of renumbering are given in Appendix A. The neutral to ground impedance in this test

system is assumed as 0.2 Ω [128]. The line impedances of the test system are calculated using the

Carson’s formula [160]. For example, consider a line section-3 of length 32230 feet between buses

3 and 4. According to the line-data information given in [159], the phase and neutral conductors

used for the line section-3 are of type ”ACSR, 1/0 with spacing ID-500”. Hence, for this line

configuration [161],

ra = rb = rc = rn = 1.12Ω/mile; Dsa = Dsb = Dsc = Dsn = 0.00446 ft

f = 60Hz, ρ = 100 Ω-m, rd = 0.09528 Ω/mile,De = 2788.55 ft

Dab = 2.50 ft,Dbc = 4.50 ft,Dac = 7.0 ft

Dan = 5.66 ft,Dbn = 4.27 ft,Dcn = 5.0 ft

Dag = Dbg = Dcg = 28.0 ft,Dng = 24.0 ft

Therefore, the calculated line impedance matrix of line section-3 is given as

zabcng
34 =



7.42 + j9.89 0.58 + j5.20 0.58 + j4.43 0.58 + j4.59 0.00 + j0.70

0.58 + j5.20 7.42 + j9.89 0.58 + j4.76 0.58 + j4.80 0.00 + j0.70

0.58 + j4.43 0.58 + j4.76 7.42 + 9.89 0.58 + 4.68 0.00 + j0.70

0.58 + j4.59 0.58 + j4.80 0.58 + 4.68 7.42 + j9.88 0.00 + j0.64

0.00 + j0.70 0.00 + j0.70 0.00 + j0.70 0.00 + j0.64 0.58 + j4.35


Ω

(5.124)

153



Similarly, the line impedance matrices of all other line sections of the modified IEEE 34-bus test

system have been obtained by using Carson’s formula. The base voltage and base volt-amperes of

the modified IEEE 34-bus test system are assumed as 24.9 kV and 2500 MVA, respectively.

In this study, the load flow analysis of the test system has been performed by using the pro-

posed method and the results have been compared with those obtained by
[
Ybus

]
matrix based

method [135] and the time domain simulation studies carried out using PSCAD/EMTDC soft-

ware. In
[
Ybus

]
matrix based method [135], the bus admittance matrix for the three-phase four

wire distribution system with ground return has been developed in the same manner as that of the

three-phase three wire system. In each iteration of this method, the load admittances at all the

buses will be recalculated by using the updated values of bus voltages.

The bar graph for the bus voltage of phase a, of modified IEEE 34-bus test system, has been

obtained by the proposed method and plotted along with the bus voltage values obtained by the[
Ybus

]
matrix based method and PSCAD/EMTDC simulation studies, as shown in Fig. 5.4. The

figure shows that the results obtained by the proposed method are very close to the results of

the
[
Ybus

]
matrix method and PSCAD/EMTDC studies, which establishes the accuracy of the

proposed method. Similarly, the bar graphs of the neutral bus and ground bus voltages obtained by

the proposed method,
[
Ybus

]
matrix method and PSCAD/EMTDC simulation are also shown in

Figs. 5.5 and 5.6, respectively. A good match between the results obtained by these three methods

demonstrates the correctness of the proposed approach.

The current in phase a, neutral wire and ground for the modified IEEE 34-bus test system

calculated by the proposed load flow method are plotted in Figs. 5.7-5.9, respectively. The

values of these three currents have also been obtained by the
[
Ybus

]
matrix based method and

PSCAD/EMTDC simulation studies, and are plotted along with the results of proposed method in

Figs. 5.7-5.9. A close matching of the current values as observed in these figures validates the

accuracy of the proposed method. Also, from Figs. 5.8 and 5.9, it is observed that the neutral and

ground sections of branches 9 and 10 carry highest values of neutral and ground currents, respec-

tively. This can be explained with the help of Fig. 5.10. The bus nos. 10, 11 and 12 of the IEEE

34-bus test system are single phase buses (having phase a only) and are heavily loaded. Due to

this, the load bus currents Īa10d, Ī
a
11d and Īa12d injected into the neutral buses n10, n11 and n12 have

high values. As a result, the neutral currents (B̄n
9 , B̄n

10, B̄n
11), neutral to ground currents (Īng10 , Īng11 ,
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Figure 5.5: Voltage profile of neutral bus of modified IEEE 34-bus test system

using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC

simulation under normal operating conditions

Īng12 ) and ground currents (B̄g
9 , B̄g

10, B̄g
11) are also carrying high values, as shown in Fig. 5.10. As a

result, the voltages of neutral buses (n11 and n12) and ground buses (g11 and g12) of the system are

also very high, as shown in Figs. 5.5 and 5.6.
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Figure 5.7: Branch current of phase a of modified IEEE 34-bus test system

using proposed
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Ybus
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technique and PSCAD/EMTDC

simulation under normal operating conditions

A case of isolated neutral has also been simulated on modified three phase four wire multi-

grounded IEEE 34-bus test system using the proposed method. In this case, there is no physical

connection between the neutral buses and the ground buses in the system, that is, the neutral to

ground impedance at all the buses is very high (ideally infinite). Also, the fifth row and fifth
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Figure 5.9: Ground current of modified IEEE 34-bus test system using proposed[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under

normal operating conditions

column of three-phase line impedance matrix, fourth row and fourth column of two-phase line

impedance matrix and third row and third column of single phase line impedance matrix contain

all zero elements. The neutral bus voltage profiles of the test system for ”isolated neutral” (without

ground return) and ”grounded neutral” (with ground return) cases are shown in Fig. 5.11(a). The

figure shows that the values of neutral voltages at all the buses in ”isolated neutral” case are higher
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Figure 5.11: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 34-bus test system in ”isolated neutral” and ”grounded neutral” cases un-

der normal operating conditions

than the ”grounded neutral” case. This is due to the fact that, the return path for load currents in

”isolated neutral case” is only through the neutral wire, whereas in ”grounded neutral” case the

injected load currents are divided in two paths, one part flowing through the neutral wire and the

other through the ground wire. Therefore, the values of neutral currents in ”isolated neutral” case

are higher than in ”grounded neutral” case, as shown in Fig. 5.11(b), and hence, the values of

neutral bus voltages in ”isolated neutral” case are higher.

The value of maximum ground bus voltage and maximum ground current in modified IEEE
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Figure 5.12: (a) Maximum ground bus voltage, (b) Maximum ground current,

in modified IEEE 34-bus test system for various grounding resistance under

normal operating condition

34-bus test system under normal operating condition, for various grounding resistance are plotted

in Fig. 5.12(a) and (b). The figure shows that, with the increase in grounding resistance, the value

of maximum ground bus voltage as well as maximum ground current in the system decreases (as

shown in Fig. 5.12(a)). This is due to the fact that, with the increase in grounding resistance, the

value of neutral to ground current in the system decreases and as a result the value of ground wire

currents and hence the ground bus voltages of the system decreases (as shown in Fig. 5.12(b)).

5.4.1.2 Results of short-circuit studies

For investigating the efficacy of the proposed short-circuit analysis methods
([

BIBC
]

matrix

based method and [Ybus] matrix based method
)
, following short-circuit faults have been simu-

lated on modified three phase four wire multigrounded IEEE 34-bus test system.

Case 1. A single line-to-ground fault in phase a of bus 28 with a fault impedance z̄f = 0.001+0.000i

p.u.

Case 2. A double line-to-ground fault between phases a and b of bus 28 with a fault impedance z̄f

= 0.001+0.000i p.u.

Case 3. A three line-to-ground fault at bus 28 with a fault impedance z̄f = 0.001+0.000i p.u.

Case 4. A line-to-line fault between phases a and b of bus 28 with a fault impedance z̄f =

0.001+0.000i p.u.

Detailed results of these fault studies, by using the proposed methods and time domain simula-
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Table 5.2: Error Analysis of proposed [BIBC] matrix based technique and

[Ybus] matrix based technique with respect to PSCAD/EMTDC simulation

study for modified three phase four wire multigrounded IEEE 34-bus radial test

system

case Fault type phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

PSCAD [BIBC] [Ybus] [BIBC] [Ybus] PSCAD [BIBC] [Ybus] [BIBC] [Ybus]

simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(Amp) (Amp) (Amp) (%) (%) (Amp) (Amp) (Amp) (%) (%)

1 SLG (a-g) a 151.382 151.392 151.392 0.00698 0.00698 154.425 154.434 154.434 0.00611 0.00611

2 LLG (ab-g)
a 196.795 196.790 196.790 0.00237 0.00237 200.059 200.053 200.053 0.00250 0.00250

b 247.393 247.411 247.411 0.00730 0.00730 249.824 249.851 249.851 0.00888 0.00888

3 LLLG (abc-g)

a 235.769 235.779 235.779 0.00439 0.00439 239.174 239.184 239.184 0.00434 0.00434

b 255.303 255.320 255.320 0.00651 0.00651 257.922 257.939 257.939 0.00645 0.00645

c 247.310 247.325 247.325 0.00583 0.00583 249.089 249.103 249.103 0.00582 0.00582

4 L-L (a-b)
a 217.701 217.702 217.702 0.00037 0.00037 220.540 220.542 220.542 0.00024 0.00024

b 217.701 217.702 217.702 0.00037 0.00037 220.333 220.359 220.359 0.00712 0.00712

tion studies carried out using the PSCAD/EMTDC software, are given in Table 5.2. The calculated

values of fault currents (If ) and source currents (Is) for all types of faults obtained by the proposed

[BIBC] matrix based method and [Ybus] matrix based method are identical, validating the cor-

rectness of the proposed methods. The maximum % errors in the calculated values of (If ) and (Is),

obtained from the proposed short-circuit analysis methods, with respect to the PSCAD/EMTDC

simulation results are 0.00730% and 0.00888%, respectively, as shown in Table 5.2. These ex-

tremely small values of errors establish that the proposed methods are sufficiently accurate.

The phase a bus voltage, neutral bus voltage and ground bus voltage, for an SLG fault at phase

a of bus 28 with fault impedance of z̄f = 0.001+0.000i p.u., obtained by the proposed short-circuit

analysis methods
(
[BIBC] matrix based and [Ybus] matrix based methods

)
, are shown in the bar

graphs of Figs. 5.13-5.15, respectively. The values of these voltages are also obtained by the time

domain simulation studies carried out using the PSCAD/EMTDC software and are plotted along

with the results of proposed methods, as shown in Figs. 5.13-5.15, respectively. A comparison

of these plots shows that the values of bus voltages obtained by the proposed methods are very

close to the values obtained by the PSCAD/EMTDC simulation studies, which again validates the

accuracy of the proposed short-circuit analysis methods.

In Fig. 5.16(a), the ground bus voltage profile is plotted for various ground faults (SLG, LLG

and LLLG) at bus 28 with a fault impedance of z̄f = 0.001+0.000i p.u.. The plot shows that the
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Figure 5.14: Voltage profile of neutral bus, for an SLG fault (a-g) at bus 28, of

modified IEEE 34-bus test system using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation

highest ground bus voltages occur for SLG fault followed by LLG fault while the lowest values

are observed for LLLG fault. This is due to the fact that the fault current injected into the fault

point at ground bus is the phasor sum of the three phase fault current and its value (Īaf + Ībf + Īcf =

−0.34 + j5.83 Amp = 5.839 93.31o Amp) is smallest for LLLG fault, followed by the injected
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Figure 5.15: Voltage profile of ground bus, for an SLG fault (a-g) at bus 28, of

modified IEEE 34-bus test system using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation

fault current corresponding to LLG fault (Īaf + Ībf = −50.20− j92.94 Amp = 105.634 −118.37o

Amp) with SLG fault injecting highest current (Īaf = 98.21 − j115.21 Amp = 151.392 −49.55o

Amp) into the ground at the fault bus location. Therefore, the currents flowing through ground

from fault point to the substation ground are highest for SLG fault followed by LLG fault and

smallest for LLLG fault, as shown in 5.16(b). As a result, the ground bus voltages are highest for

SLG fault with LLLG fault resulting in lowest ground bus voltages. From Fig. 5.16(b), it is also

observed that the value of ground current at certain branches of the test system (such as branch nos.

4, 9−11, 13, 17, 20, 22, 28−32) are nearly equal to zero. It is due to the fact that these branches are

not present in the path of fault current returning through ground from fault point to the substation

ground, as shown in Fig. 5.17.

Under fault conditions (for SLG, LLG and LLLG fault), as the neutral to ground resistance

increases, the ground current as well as the ground bus voltage at the fault point increases, as can

be observed in Figs. 5.18(a)-(f ). This is due to the fact that as neutral to ground resistance is

increased, fault current flowing through the ground wire increases and the current in the neutral

wire decreases.
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Figure 5.16: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 28, of modified IEEE 34-bus test system

5.4.2 Results of modified three phase four wire multigrounded IEEE 123-bus test system

5.4.2.1 Results of load flow studies

The bus numbers of IEEE 123-bus system have also been renumbered in this study and the details

of the modified test system are given in Appendix B. The value of ground resistivity (ρ) and

grounding resistance in this study has been considered as 100 Ω-m and 0.2 Ω [128], respectively.
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Figure 5.17: Path of the fault current for an SLG fault (a− g) at bus 28 in IEEE

34-bus test system

The base voltage and base volt-amperes of this test system are assumed as 4.16 kV and 5.0 MVA,

respectively. The line impedance matrices of this system have also been calculated using the

Carson’s formula [160]. For example, the line impedance matrix of the line section-7 (phase

conductor is of type ”ACSR, 336.4, 26/7” and neutral conductor is of type ”ACSR, 4/0, 6/1” with

spacing ID-500) between buses 2 and 8 of modified IEEE 123-bus test system is given as,

zabcng27 =



0.023 + j0.080 0.005 + j0.049 0.005 + j0.041 0.005 + j0.043 0.000 + j0.007

0.005 + j0.049 0.023 + j0.080 0.005 + j0.044 0.005 + j0.045 0.000 + j0.007

0.005 + j0.041 0.005 + j0.044 0.023 + j0.080 0.005 + j0.044 0.000 + j0.007

0.005 + j0.043 0.005 + j0.045 0.005 + j0.044 0.040 + j0.088 0.000 + j0.006

0.000 + j0.007 0.000 + j0.007 0.000 + j0.007 0.000 + j0.006 0.005 + j0.041


Ω

(5.125)

The load flow analysis of this test system has been performed by using the proposed method and the results

have been compared with those obtained by
[
Ybus

]
matrix based method. The time domain simulation

study of this system could not be performed with the available version of PSCAD/EMTDC software due to

the node limitations.

The voltage profile of phase a of modified IEEE 123-bus test system has been obtained by the proposed

method and is plotted along with the voltage profile obtained by the
[
Ybus

]
matrix based method, as shown

in Fig. 5.19. The voltage profiles of neutral bus and ground bus of the test system have also been obtained

by the proposed load flow method and are plotted along with the profiles obtained by the
[
Ybus

]
matrix

based method, as shown in Figs. 5.20-5.21, respectively. These figures show that the results obtained by

the proposed method are very close to the results of the
[
Ybus

]
matrix method and this demonstrates the

correctness of the proposed method.

The values of phase branch, neutral and ground currents of the modified IEEE 123-bus test system
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Figure 5.18: Maximum ground bus voltage and Maximum ground current in

modified IEEE 34-bus test system for various grounding resistance under SLG

fault ((a) and (b)), LLG fault ((c) and (d)) and LLLG fault ((e) and (f ))
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Figure 5.19: Voltage profile of phase a of modified IEEE 123-bus test system

using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal oper-

ating conditions
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Figure 5.20: Voltage profile of neutral bus of modified IEEE 123-bus test sys-

tem using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal

operating conditions

calculated by the proposed load flow method are plotted along with the values calculated by the
[
Ybus

]
matrix method, as shown in Figs. 5.22-5.24, respectively. The values of currents as obtained by the two

methods exactly match which further validate the accuracy of the proposed methods.

The case of isolated neutral in modified three phase four wire IEEE 123-bus test system has also been

simulated using the proposed load flow method. The neutral voltage profiles of the test system for ”isolated
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Figure 5.21: Voltage profile of ground bus of modified IEEE 123-bus test sys-

tem using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal

operating conditions
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Figure 5.22: Branch current of phase a of modified IEEE 123-bus test system

using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal oper-

ating conditions

neutral” (without ground return) and ”grounded neutral” (with ground return) case are shown in Fig. 5.25(a).

The values of neutral voltages at all the buses in ”isolated neutral” case are higher than the ”grounded

neutral” case, as shown in Fig. 5.25(a) for the same reasons as explained for IEEE 34-bus system earlier.
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Figure 5.23: Neutral current of modified IEEE 123-bus test system using pro-

posed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating con-

ditions
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Figure 5.24: Ground current of modified IEEE 123 bus-test system using pro-

posed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating con-

ditions

5.4.2.2 Results of short-circuit studies

To demonstrate the effectiveness of the proposed short-circuit analysis methods
([

BIBC
]

matrix based

method and [Ybus] matrix based method
)
, various short-circuit faults have been simulated on this test

system, as given below
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Figure 5.25: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 123-bus test system in ”isolated neutral” and ”grounded neutral” cases

under the normal operating conditions

Case 1. A single line-to-ground fault in phase a of bus 105 with a fault impedance z̄f = 0.001+0.000i p.u.

Case 2. A double line-to-ground fault between phases a and b of bus 105 with a fault impedance z̄f =

0.001+0.000i p.u.

Case 3. A three line-to-ground fault at bus 105 with a fault impedance z̄f = 0.001+0.000i p.u.

Case 4. A line-to-line fault between phases a and b of bus 105 with a fault impedance z̄f = 0.001+0.000i

p.u.
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Table 5.3: Results of the proposed short-circuit analysis methods for modified

three phase four wire multigrounded IEEE 123-bus radial test system

case Fault type phase

Fault current at fault point (If ) Current drawn from the supply (Is)

[BIBC] [Ybus] [BIBC] [Ybus]

Technique Technique Technique Technique

(kA) (kA) (kA) (kA)

1 SLG (a-g) a 2.43464 2.43464 2.51994 2.51994

2 LLG (ab-g)
a 4.34788 4.34788 4.44839 4.44839

b 4.56175 4.56175 4.59517 4.59517

3 LLLG (abc-g)

a 4.48914 4.48914 4.57605 4.57605

b 5.16022 5.16022 5.20549 5.20549

c 4.44568 4.44568 4.50437 4.50437

4 L-L (a-b)
a 4.39293 4.39293 4.52483 4.52483

b 4.39293 4.39293 4.39725 4.39725

The results for the above given fault cases obtained by the proposed short-circuit methods are given in

Table 5.3. The calculated values of fault currents (If ) and source currents (Is) for all type of faults obtained

by the proposed [BIBC] method are exactly equal to the values obtained by [Ybus] method, as shown in

Table 5.3, which establishes the accuracy of the proposed methods.

The voltage profiles of phase a bus voltage, neutral bus voltage and ground bus voltage of this test

system, for an SLG fault at phase a of bus 105 with fault impedance of z̄f = 0.001+0.000i p.u., obtained by

the proposed short-circuit analysis methods, are shown in Figs. 5.26-5.28, respectively. These figures again

demonstrate the correctness of the proposed short-circuit methods.

In Fig. 5.29(a), the ground bus voltage profile is plotted for various ground faults (SLG, LLG and

LLLG) at bus-105 with a fault impedance of z̄f = 0.001+0.000i p.u.. The plot shows that the highest ground

bus voltages occur for SLG fault followed by LLG fault whereas, the lowest values are observed for LLLG

fault. This is due to the fact that the fault current injected into the fault point at ground bus is the phasor sum

of the three phase fault current and its value (Īaf + Ībf + Īcf = −0.04 + j0.13 kA = 0.138 77.28o Amp) is

smallest for LLLG fault, followed by the injected fault current of LLG fault (Īaf + Ībf = −1.05− j1.33 kA

= 1.694 −128.26o kA) with SLG fault injecting highest current (Īaf = 1.01− j2.21 kA = 2.435 −65.40o

kA) into the ground at the fault bus location. Therefore, the currents flowing through ground from fault point

to the substation ground are highest for SLG fault followed by LLG fault and smallest for LLLG fault, as

shown in 5.29(b). As a result, the ground bus voltages are highest for SLG fault with LLLG fault resulting
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Figure 5.26: Voltage profile of phase a, for an SLG fault (a-g) at bus 105,

of modified IEEE 123-bus test system using proposed
[
BIBC

]
technique and[

Ybus

]
technique
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Figure 5.27: Voltage profile of neutral bus, for an SLG fault (a-g) at bus 105,

of modified IEEE 123-bus test system using proposed
[
BIBC

]
technique and[

Ybus

]
technique

in lowest ground bus voltages. From Fig. 5.29(b), it is also observed that the value of ground current at

certain branches (such as branch nos. 2 − 5, 9 − 13, 17 − 53, 81 − 97 and 106 − 118) of the test system

are nearly equal to zero. It is due to the fact that these branches are not present in the path of fault current
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of modified IEEE 123-bus test system using proposed
[
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]
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returning through ground from fault point to the substation ground.

5.5 Conclusion

In this chapter, initially, a method for carrying out load flow analysis of an unbalanced three phase four wire

multigrounded radial distribution system has been developed. The proposed load flow method is based on[
BIBC

]
and

[
BCBV

]
matrices of the system. Separate

[
BIBC

]
matrix has been developed for phase

branch, neutral and ground currents while, individual
[
BCBV

]
matrix has been developed for the voltages

of phase buses, neutral buses and ground buses of the system. The results of the proposed load flow method

have been compared with those obtained by
[
Ybus

]
matrix based method and time domain simulation

studies carried out using PSCAD/EMTDC software for a modified three phase four wire multigrounded

IEEE 34-bus test system. A close match of the results of the three methods establishes the accuracy of the

developed methods. However, the results of large system (modified three phase four wire multigrounded

IEEE 123-bus test system) obtained by the proposed load flow method have only been compared with the

results of
[
Ybus

]
matrix based method, due to the node limitations in PSCAD/EMTDC software.

Subsequently, short-circuit analysis methods of unbalanced three phase four wire multigrounded radial

distribution system have also been developed. Two different short-circuit methods have been developed, one

is based on
[
BIBC

]
and

[
BCBV

]
matrices of the system, while the other one is based on

[
Ybus

]
matrix

of the system. The results of short-circuit analysis of modified three phase four wire multigrounded IEEE

34-bus test system obtained by using the proposed methods
([

BIBC
]

matrix based and
[
Ybus

]
matrix
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Figure 5.29: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 105, of modified IEEE 123-bus test system

based
)

have also been compared with the results obtained by the PSCAD/EMTDC software. Again, for the

large test system, the results of proposed
[
BIBC

]
matrix based short-circuit analysis method have been

only compared with the results of
[
Ybus

]
matrix based method due to the limited capability of the available

PSCAD/EMTDC software. A good match between the obtained results demonstrate the effectiveness and

accuracy of the proposed methods.

In the next chapter, algorithms for the load flow and short-circuit analysis methods for the unbalanced

three phase four wire multigrounded distribution system incorporating IBDGs and various IBDG transform-

ers have been developed.
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Chapter 6

Load flow and short-circuit analysis of unbalanced

three phase four wire multigrounded radial

distribution system incorporating IBDG and

transformer models

Abstract

In this chapter, load flow and short-circuit analysis methods have been developed for the unbalanced three

phase four wire multigrounded distribution system for two different cases as. These cases are: (i) with

IBDG and ∆-Yg IBDG transformer, and (ii) with IBDG and Yg-Yg IBDG transformer. The load flow anal-

ysis method in both the cases is based on [BIBC]/[BCBV] matrices of the system. The short-circuit

analysis methods for the two cases are based on [BIBC]/[BCBV] matrices and [Ybus] matrix of the

system. The proposed load flow and short-circuit analysis methods have been implemented on two test sys-

tems, namely, modified IEEE 34-bus test system and modified IEEE 123-bus test system. The results of the

modified IEEE 34-bus test system obtained by the proposed methods have been compared with the results

of PSCAD/EMTDC software to validate the accuracy of the developed methods. For the larger test system

(modified IEEE 123-bus system), the results obtained by the proposed [BIBC]/[BCBV] matrices based

method have only been compared with the results obtained by [Ybus] matrix based method, due to limited

capability of the available PSCAD/EMTDC software.

6.1 Introduction

INTEGRATION of distributed generation (DG) to grid improves the system efficiency and reliabil-

ity [146]. The most commonly used DGs are inverter based distributed generations (IBDGs) in dis-

tribution system. It has been observed from the literature that, mostly the analysis of distribution network

in the presence of IBDGs is on three phase system [37, 58–65, 68]. But nowadays, three phase four wire

multigrounded distribution networks are commonly used in the power distribution system [128]. Therefore,
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it becomes necessary to analyze the three phase four wire multigrounded distribution networks with IBDGs

present in the network. In this chapter, the direct approach of the load flow analysis of three phase four wire

system, as discussed in Chapter 5, has been extended for the analysis of three phase four wire multigrounded

distribution networks with IBDGs and IBDG transformers (used to connect the IBDG to the grid). Further,

in this chapter, two different short-circuit analysis methods have been developed for three phase four wire

multigrounded distribution networks in the presence of IBDGs and IBDG transformers. Two different vec-

tor group of IBDG transformers have been considered in the proposed load flow and short-circuit analysis

methods, namely : i) ∆-Yg IBDG transformer, ii) Y g-Yg IBDG transformer.

This chapter is organized as follows. Section 6.2 describes the formulations of proposed load flow and

short-circuit analysis methods for three phase four wire multigrounded distribution system in the presence

of IBDG and ∆-Yg IBDG transformer. Section 6.3 describes the formulations of proposed load flow and

short-circuit analysis methods for three phase four wire multigrounded distribution system in the presence

of IBDG and Yg-Yg IBDG transformer. The main results of this chapter are presented in Section 6.4 and

finally Section 6.5 highlights the main conclusions of this chapter.

6.2 Three phase four wire multigrounded radial distribution system in the presence of IBDG

and ∆-Yg IBDG transformer

Let us consider an unbalanced three phase four wire multigrounded distribution system with IBDG, as

shown in Fig. 6.1. The IBDG is connected at jth bus through a step-down ∆-Yg IBDG transformer. It is

assumed that the primary side (high voltage side) winding of the transformer is delta connected, while the

secondary side winding is star connected with ground return [150, 151]. It is assumed that the star point

of the transformer secondary is solidly grounded. Therefore, the secondary currents of the transformer are

circulating between the IBDG and the transformer secondary windings. The phase component based nodal

admittance matrix model (p.u.) of the transformer is used in this work and is given as

IabcT,p

IabcT,s

 =

Yabc
pp,T Yabc

ps,T

Yabc
sp,T Yabc

ss,T

 .
Vabc

T,p

Vabc
T,s

 =
[
Yabc

T

]Vabc
T,p

Vabc
T,s

 =
[
Yabc

T

]Vabc
j

Vabc
inv

 (6.1)

where Yabc
pp,T, Yabc

ps,T, Yabc
sp,T and Yabc

ss,T are the sub-matrices, of size (3× 3) each, of the transformer nodal

admittance matrix Yabc
T . Vabc

T,p and Vabc
T,s are the three phase voltage vectors of the primary and secondary

sides of the transformers, respectively. Vabc
j and Vabc

inv are the three phase voltage vectors at jth bus and

inverter bus (inv), respectively. IabcT,p and IabcT,s are the three phase injection current vectors at the primary

and secondary sides of the transformer, respectively.
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6.2.1 Load flow analysis with Delta/Star-grounded (∆-Yg) IBDG transformer for the connec-

tion of IBDG

The proposed load flow analysis method of unbalanced three phase four wire multigrounded radial distri-

bution system with IBDG is based on
[
BIBC

]
and

[
BCBV

]
matrices of the system. In this method, it is

assumed that the IBDG is operating in ”Constant active power mode” (by operating at unity power factor)

under steady state conditions. The IBDG is connected to the grid through a step-down transformer (namely

”IBDG transformer”). In this section, Delta/Star-grounded (∆-Yg) configuration of IBDG transformer has

been considered. The formulation of
[
BIBC

]
and

[
BCBV

]
matrices for the proposed load flow method

is given in the following subsections.

6.2.1.1 Formulation of [BIBC] matrix

By applying KCL equation at each phase bus (excluding substation bus and inverter bus) of the distribution

system shown in Fig. 6.1, the currents in the phase branches of the distribution system can be obtained in

terms of equivalent bus injection currents. The branch currents of phases a, b and c of all line sections in

Fig. 6.1 can be expressed in terms of equivalent bus injection currents as,

B̄a
1 = Īa2d + Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

B̄b
1 = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd

B̄c
1 = Īc2d + Īc3d + · · ·+ Īcid + Īcjd + ĪcT,p + · · ·+ Īckd + Īcld

B̄a
2 = Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

B̄b
2 = Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd

B̄c
2 = Īc3d + · · ·+ Īcid + Īcjd + ĪcT,p + · · ·+ Īckd + Īcld

B̄a
i = Īajd + ĪaT,p

B̄b
i = Ībjd + ĪbT,p

B̄c
i = Īcjd + ĪcT,p

B̄a
k = Īald + Īamd + Īanbd

B̄b
k = Ībld + Ībmd

B̄c
k = Īcld

B̄a
l = Īamd + Īanbd

B̄b
l = Ībmd; B̄a

m = Īanbd
(6.2)
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Therefore, the currents of the phase branches can be expressed in the matrix form as,

[
Bp

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
(6.3)

where, details of
[
BIBCp

]
matrix have already been discussed in eq. (5.5) of Subsection 5.2.1.1 of Chapter

5 and

[
TIBCTm

]
=


BIBCp(:, Tba)

BIBCp(:, Tbb)

BIBCp(:, Tbc)


T

=


1 0 0 · · · 1 0 0 · · · 0 0 0 0 0 0

0 1 0 · · · 0 1 0 · · · 0 0 0 0 0 0

0 0 1 · · · 0 0 1 · · · 0 0 0 0 0 0


T

;

[
IT,p

]
=

[
ĪaT,p ĪbT,p ĪcT,p

]T
.

The
[
TIBCTm

]
matrix contains column vectors of

[
BIBCp

]
matrix corresponding to the phases a, b and

c of the transformer bus Tb (where the three phase primary windings of the transformer are connected and

in Fig. 6.1 Tb = j). Further, it is assumed that the system considered has u three-phase, v two-phase, w

single-phase, (u + v + w) neutral and (u + v + w) ground buses with nt number of IBDG transformers.

This generalized system will be considered throughout this chapter. The size of
[
TIBCTm

]
matrix for this

system will therefore be (3u+ 2v + w − 3)× 3nt.

Now, there is no physical connection between the neutral as well as ground buses of the system and

IBDG transformer and the inverter current is confined only to the secondary winding of IBDG transformer.

Therefore, the neutral and ground currents for the distribution system shown in Fig. 6.1 (with IBDG and

∆-Yg IBDG transformer) are exactly same as the neutral and ground currents of system shown in Fig.

5.1 (without IBDG and IBDG transformer) and are given as (from eqs. (5.8) and (5.10) of Chapter 5,

respectively),

[
Bn

]
= −

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]
(6.4)

[
Bg

]
= −

[
BIBCg

] [
Ing

]
(6.5)

The matrices
[
BIBCpn

]
and

[
BIBCg

]
have already been defined in eq. (5.8) of Subsection 5.2.1.2 of

Chapter 5.
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6.2.1.2 Formulation of [BCBV] matrix

The voltages of the phase buses (except inverter bus), neutral buses and ground buses of the distribution

system shown in Fig. 6.1 can be calculated using eqs. (5.21)-(5.23) of Chapter 5, respectively, as,[
Vp

]
=

[
Vss

]
−
[
BCBVp

] [
Bp

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg

]
(6.6)[

Vn

]
=

[
Vsn

]
−
[
BCBVnp

] [
Bp

]
−
[
BCBVn

] [
Bn

]
−
[
BCBVng

] [
Bg

]
(6.7)[

Vg

]
=

[
Vsg

]
−
[
BCBVgp

] [
Bp

]
−
[
BCBVgn

] [
Bn

]
−
[
BCBVg

] [
Bg

]
(6.8)

The details of
[
BCBVp

]
,
[
BCBVpn

]
,
[
BCBVpg

]
,
[
BCBVnp

]
,
[
BCBVn

]
,
[
BCBVng

]
,
[
BCBVgp

]
,[

BCBVgn

]
and

[
BCBVg

]
matrices have already been described in eqs. (5.12)-(5.17) of subsections

5.2.2.1-5.2.2.3 of Chapter 5. Also, the inverter bus voltage of the system considered, is calculated using eq.

(6.1) as,

Vabc
inv = Yabc

ss,T
−1(

IabcT,s −Yabc
sp,TVabc

j

)
(6.9)

From Fig. 6.1, IabcT,s = Iabcinv , where Iabcinv is the three-phase inverter current vector.

The voltages of the phase buses of the distribution system can be recalculated using eqs. (6.3)-(6.6) as,[
Vp

]
=

[
Vss

]
−
[
BCBVp

]{ [
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]}
−
[
BCBVpn

]{
−

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]}
−
[
BCBVpg

]{
−
[
BIBCg

] [
Ing

]}
[
Vp

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
(6.10)

where,
[
DLF1

]
and

[
DLF2

]
matrices have already been described in eq. (5.24) of Chapter 5 and[

DLFTmp

]
=
[
BCBVp

] [
TIBCTm

]
Similarly, the neutral bus voltages can be recalculated using eqs. (6.3)-(6.5) and (6.7) as,[

Vn

]
=

[
Vsn

]
−
[
BCBVnp

]{ [
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]}
−
[
BCBVn

]{
−

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]}
−
[
BCBVng

]{
−
[
BIBCg

] [
Ing

]}
[
Vn

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
(6.11)

where,
[
DLF3

]
and

[
DLF4

]
matrices have already been defined in (eq. 5.25) of Chapter 5 and[

DLFTmn

]
=
[
BCBVnp

] [
TIBCTm

]
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Also, the ground bus voltages of the system considered, can be recalculated using eqs. (6.3)-(6.5) and (6.8)

as, [
Vg

]
=

[
Vsg

]
−
[
BCBVgp

]{ [
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]}
−
[
BCBVgn

]{
−

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]}
−
[
BCBVg

]{
−
[
BIBCg

] [
Ing

]}
[
Vg

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
(6.12)

where,
[
DLF5

]
and

[
DLF6

]
matrices have already defined in eq. (5.26) of Chapter 5 and[

DLFTmg

]
=
[
BCBVgp

] [
TIBCTm

]
Now, the voltage drops between neutral buses and ground buses are calculated using eq. (5.28) of Chapter 5

as, [
Zngr

] [
Ing

]
=
[
Vn

]
−
[
Vg

]
(6.13)

Now, from eqs. (6.10), (6.11) and (6.13), the neutral to ground current
[
Ing

]
is calculated as,

[
Ing

]
=
[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]}
(6.14)

where,
[
ZFNG

]
matrix has already been defined in eq. (5.29) of Chapter 5 and[

DLFTmgn

]
=
[
DLFTmg

]
−
[
DLFTmn

]
Therefore, the voltages of the phase buses (except inverter bus), neutral buses and ground buses can be

obtained using eqs. (6.10)-(6.12) and (6.14) as,[
Vp

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
(6.15)

[
Vn

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
(6.16)[

Vg

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
(6.17)

where, [
F1Tm

]
=
[
DLF2

] [
ZFNG

]−1 [
DLFTmgn

]
+
[
DLFTmp

]
[
F2Tm

]
=
[
DLF4

] [
ZFNG

]−1 [
DLFTmgn

]
+
[
DLFTmn

]
[
F3Tm

]
=
[
DLF6

] [
ZFNG

]−1 [
DLFTmgn

]
+
[
DLFTmg

]
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Steps of algorithm for the load flow analysis of unbalanced three phase four wire multigrounded radial

distribution system in the presence of IBDG and ∆-Yg IBDG transformer

1. Initialize and then generate the
[
BIBC

]
matrices for the phase, neutral and ground currents, and[

BCBV
]

matrices for the voltages of phase buses, neutral buses and ground buses.

2. Set the iteration counter k = 0. Also, set the values of all phase a bus voltages at (1.0 + j0.0) p.u.,

phase b bus voltages at (−0.500− j0.866) p.u., phase c bus voltages at (−0.500 + j0.866) p.u. and

all neutral and ground bus voltages at (0.0 + j0.0) p.u. throughout the system.

3. Calculate the equivalent bus injection currents
[
IL
]k at all the phase buses of the system using eq.

(5.3) of Chapter 5. Also, calculate the inverter current of the IBDG as,

Īpinv = ĪpT,s =

(
S̄pdg
V̄ p
inv

)∗
=

(
P pdg + jQpdg

V̄ p
inv

)∗
; (p = a, b, c)

where, S̄pdg is the complex power injected by the IBDG at phase p of inverter bus; P pdg and Qpdg are

the active and reactive power generated by the IBDG at phase p of inverter bus, respectively; V̄ p
inv is

the pth phase voltage of inverter bus.

4. Calculate the primary winding currents
[
IabcT,p

]k
of the IBDG transformer by using eq. (6.1).

5. k = k + 1.

6. Calculate the voltages of phase buses, neutral buses and ground buses
(
[Vp]k, [Vn]k and [Vg]k

)
of

the system using eqs. (6.15)-(6.17). Also, calculate the inverter bus voltage
[
Vabc

inv

]k
of the IBDG by

using eq. (6.9).

7. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp]k − [Vp]k−1

∣∣∣∣, ∣∣∣∣[Vn]k − [Vn]k−1

∣∣∣∣, ∣∣∣∣[Vg]k − [Vg]k−1

∣∣∣∣)

8. If ε ≥ tolerance(1.0× 10−12), then go to step 3, else go to the next step.

9. The obtained values of the voltages [Vp], [Vn] and [Vg] are the final values of load flow solution and

stop the simulation.
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6.2.2 Short-circuit analysis of unbalanced three phase four wire multigrounded radial distri-

bution system in the presence of IBDG and ∆-Yg IBDG transformer

In this chapter, two different short-circuit analysis methods have been proposed. One of the proposed method

is based on
[
BIBC

]
and

[
BCBV

]
matrices, while the other one is a

[
Ybus

]
matrix based approach. Both

these methods are discussed in details in the following sub-sections.

6.2.2.1 Method 1:
[
BIBC

]
matrix based method

From the load flow analysis of the distribution system (using the proposed load flow method), the equivalent

load impedances are calculated at all phase buses (except inverter bus) of the system using eq. (5.33) of

Chapter 5. Now, different short-circuit faults are discussed as follows,

(a) Single line-to-ground (SLG) fault

Let us assume that an SLG fault occurs between the phase a and the local ground gl at lth bus location

through a fault impedance z̄f , as shown in Fig. 6.2(a), and the fault current Īaf is flowing from phase a to the

ground gl at lth bus. Therefore, only the phase and the ground currents of the system will get modified due

to the SLG fault. The modified phase branch currents (only of phase a) due to SLG fault, can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄a
i,f = Īajd + ĪaT,p

B̄a
k,f = Īald + Īamd + Īanbd

+ Īaf

B̄a
l,f = Īamd + Īanbd

B̄a
m,f = Īanbd

(6.18)

Hence, the modified phase branch currents due to SLG fault can be expressed in the matrix form as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.19)

where,[
BIBCfp

]
=
[
BIBCp(:, f qb )

]
=
[
1 0 0 · · · 0 0 0 · · · 1 0 0 0 0 0

]T
;
[
If

]
= Īaf

Definition of
[
BIBCfp

]
matrix for an SLG fault (faulted bus fb = l, and faulted phase q = a) is given in

eq. (5.35) of Chapter 5.
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(a) (b)

(c) (d)

Figure 6.2: Unsymmetrical short-circuit faults, (a) SLG fault, (b) LLG fault, (c)

LLLG fault, (d) LL fault

184



Similarly, the modified ground currents due to SLG fault can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf

B̄g
i,f = −Īngj

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

− Īaf

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(6.20)

Hence, the modified ground currents due to SLG fault can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(6.21)

where, [
BIBCfg

]
=
[
BIBCg(:, gfb)

]
=
[
1 1 · · · 0 · · · 1 0 0

]T
[
BIBCfg

]
matrix for an SLG fault has already been defined in eq. (5.37) of Chapter 5.

Therefore, the voltages of phase buses under the fault conditions are calculated using the modified phase

branch and ground currents (using eq. (6.6)) as,[
Vp,f

]
=
[
Vss

]
−
[
BCBVp

] [
Bp,f

]
−
[
BCBVpn

] [
Bn

]
−
[
BCBVpg

] [
Bg,f

]
(6.22)

The phase bus voltages under the fault conditions are recalculated using eqs. (6.4), (6.19), (6.21) and (6.22)

as, [
Vp,f

]
=

[
Vss

]
−
[
BCBVp

]{ [
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]}
−

[
BCBVpn

]{
−
[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]}
−
[
BCBVpg

]{
−

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]}
[
Vp,f

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
−
[
DFF1

] [
If

]
(6.23)

where, [
DFF1

]
=
[
BCBVp

] [
BIBCfp

]
−
[
BCBVpg

] [
BIBCfg

]
Similarly, the neutral bus and ground bus voltages under the fault conditions are calculated using eqs.

(6.4), (6.7), (6.8), (6.19) and (6.21) as,[
Vn,f

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DFF2

] [
If

]
(6.24)
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[
Vg,f

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DFF3

] [
If

]
(6.25)

where, [
DFF2

]
=
[
BCBVnp

] [
BIBCfp

]
−
[
BCBVng

] [
BIBCfg

]
[
DFF3

]
=
[
BCBVgp

] [
BIBCfp

]
−
[
BCBVg

] [
BIBCfg

]
Now, the neutral to ground currents under the fault conditions are calculated using the voltages of neutral

buses and ground buses (using eqs. (6.13), (6.24) and (6.25)) as,[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]
+

[ [
DFF3

]
−
[
DFF2

] ] [
If

]}
(6.26)

Therefore, the voltages of phase buses, neutral buses and ground buses under the fault conditions are ob-

tained using eqs. (6.23)-(6.26) as,[
Vp,f

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
−
[
DFF1n

] [
If

]
(6.27)[

Vn,f

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
−
[
DFF2n

] [
If

]
(6.28)[

Vg,f

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
−
[
DFF3n

] [
If

]
(6.29)

where, [
DFF1n

]
=
[
DFF1

]
+
[
DLF2

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}
[
DFF2n

]
=
[
DFF2

]
+
[
DLF4

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}
[
DFF3n

]
=
[
DFF3

]
+
[
DLF6

] [
ZFNG

]−1
{[

DFF3

]
−
[
DFF2

]}

Now, the voltage equation at fault bus is written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f (6.30)

where, V̄ a
l,f and V̄ g

l,f are the voltages of phase a and ground g at fault bus l, respectively. Substitute the

values of V̄ a
l,f and V̄ g

l,f from eqs. (6.27) and (6.29) into eq. (6.30), with an assumption that the neutral and

ground buses at the substation end are perfectly grounded (i.e. at zero potential; V̄ n
s = 0, V̄ g

s = 0), and

express it in the matrix form as,[
Zf

] [
If

]
= V̄ a

s −
[
F1PLD(f qb , :)

] [
IL

]
−
[
F1Tm(f qb , :)

] [
IT,p

]
−
[
DFF1n(f qb , 1)

] [
If

]
+

[
F3PLD(gfb , :)

] [
IL

]
+
[
F3Tm(gfb , :)

] [
IT,p

]
+
[
DFF3n(gfb , 1)

] [
If

]
(6.31)
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where, for SLG fault (at phase a of lth bus),
[
Zf

]
= z̄f ;

[
F1PLD(f qb , :)

]
represents the row vector of matrix[

F1PLD

]
corresponding to the faulty phase p (here, q = a) of faulted bus fb (here, fb = l);

[
F1Tm(f qb , :)

]
represents the row vector of matrix

[
F1Tm

]
corresponding to the faulty phase q (here, q = a) of faulted

bus fb;
[
DFF1n(f qb , 1)

]
represents the row vector of matrix

[
DFF1n

]
corresponding to the faulty phase

p of faulted bus fb;
[
F3PLD(gfb , :)

]
represents the row vector of matrix

[
F3PLD

]
corresponding to the

ground gfb at the location of faulted bus fb;
[
F3Tm(gfb , :)

]
represents the row vector of matrix

[
F3Tm

]
corresponding to the ground gfb at the location of faulted bus fb;

[
DFF3n(gfb , 1)

]
represents the row vector

of matrix
[
DFF3n

]
corresponding to the ground gfb at the location of faulted bus fb.

Hence, the fault current
[
If

]
is obtained from eq. (6.31) as,[

If

]
=
[
ZF1

]−1
V̄ a
s −

[
Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
(6.32)

where, [
ZF1

]
=

[
Zf

]
+
[
DFF1n(f qb , 1)

]
−
[
DFF3n(gfb , 1)

]
[
Fflt
13PLD

]
=

[
ZF1

]−1
{[

F1PLD(f qb , :)
]
−
[
F3PLD(gfb , :)

]}
[
Fflt
13Tm

]
=

[
ZF1

]−1
{[

F1Tm(f qb , :)
]
−
[
F3Tm(gfb , :)

]}
Once the value of fault current

[
If

]
is obtained, the initial estimates of voltages of phase buses (except

inverter bus), neutral buses and ground buses under the fault condition are obtained using eqs. (6.27)-(6.29).

Also, the initial estimate of inverter current for an SLG fault (at phase a of lth bus in the system) is obtained

with the help of calculated bus voltages and eq. (6.1) as,

Iabcinv,f ,est = Yabc
sp,TVabc

j,f + Yabc
ss,TVabc

inv,st (6.33)

where, Vabc
j,f is the estimated three-phase voltage vector of jth bus (where an IBDG is connected through

a step-down ∆-Yg IBDG transformer) under the fault conditions; Vabc
inv,st is the three-phase inverter bus

voltage vector obtained from the steady state load flow solution.

Now, depending upon the magnitude of Iabcinv,f ,est, there can be two possible cases of inverter operation

during fault as discussed in Subsection 3.2.2 of Chapter 3,

Case 1: If |Īpinv,f,est| ≤ I
inv
sc (short-circuit current capacity of the inverter); (p = a, b, c)

If the magnitude of inverter current |Īpinv,f,est| for each phase, calculated using eq. (6.33), is less than

the short-circuit capacity of the inverter (Iinvsc ), then the voltages of phase buses, neutral buses and ground

buses calculated using eqs. (6.27)-(6.29) are the final values of the voltages of the system under the fault

conditions.
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Case 2: If |Īpinv,f,est| > Iinvsc ; (p = a, or b, or c)

In this case, the magnitude of the inverter current is restricted to its short-circuit capacity (Iinvsc ), by

operating the inverter in constant current control mode (as discussed in Subsection 3.2.2 of Chapter 3).

Hence the inverter current under the fault conditions is given as,

Īpinv,f = |Īpinv,f |∠Ψp
inv,f = Iinvsc ∠Ψp

inv,f ; (p = a, b, c) (6.34)

where Ψp
inv,f is the unknown inverter current angle corresponding to phase p under the fault conditions. To

solve for these unknown angles, it is assumed that, Ψabc
inv,f = π

2 + θabcinv,f (as discussed in Subsection 3.2.2 of

Chapter 3), where θabcinv,f is the three phase voltage angle vector of the inverter bus under the fault conditions,

Ψabc
inv,f =

[
Ψa
inv,f Ψb

inv,f Ψc
inv,f

]T
, θabcinv,f =

[
θainv,f θbinv,f θcinv,f

]T
. This is done so as to ensure that

the inverter injects reactive power only during fault conditions.

Hence with this inverter control strategy, the inverter bus voltage along with the unknown current angles

under the fault conditions can be calculated by solving eq. (6.33). Rewriting eq. (6.33) for phase a as,

Iinvsc ∠Ψa
inv,f = Iinvsc (π2 + θainv,f ) = Ȳ aa

sp,T V̄
a
j,f + Ȳ ab

sp,T V̄
b
j,f + Ȳ ac

sp,T V̄
c
j,f + Ȳ aa

ss,T V̄
a
inv,f + Ȳ ab

ss,T V̄
b
inv,f

+Ȳ ac
ss,T V̄

c
inv,f

|Ȳ aa
sp,T ||V̄ a

j,f | (θaasp,T + θaj,f ) + |Ȳ ab
sp,T ||V̄ b

j,f | (θabsp,T + θbj,f ) + |Ȳ ac
sp,T ||V̄ c

j,f | (θacsp,T + θcj,f ) +

|Ȳ aa
ss,T ||V̄ a

inv,f | (θaass,T + θainv,f ) + |Ȳ ab
ss,T ||V̄ b

inv,f | (θabss,T + θbinv,f ) + |Ȳ ac
ss,T ||V̄ c

inv,f | (θacss,T + θcinv,f )

−Iinvsc (π2 + θainv,f ) = 0 (6.35)

The real and imaginary part of eq. (6.35) for phase a can be written as,

Real Part

|Ȳ aa
sp,T ||V̄ a

j,f |cos(θaasp,T + θaj,f ) + |Ȳ ab
sp,T ||V̄ b

j,f |cos(θabsp,T + θbj,f ) + |Ȳ ac
sp,T ||V̄ c

j,f |cos(θacsp,T + θcj,f ) +

|Ȳ aa
ss,T ||V̄ a

inv,f |cos(θaass,T + θainv,f ) + |Ȳ ab
ss,T ||V̄ b

inv,f |cos(θabss,T + θbinv,f ) +

|Ȳ ac
ss,T ||V̄ c

inv,f |cos(θacss,T + θcinv,f )− Iinvsc cos

(
π

2
+ θainv,f

)
= 0

= fare(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.36)

Imaginary Part

|Ȳ aa
sp,T ||V̄ a

j,f |sin(θaasp,T + θaj,f ) + |Ȳ ab
sp,T ||V̄ b

j,f |sin(θabsp,T + θbj,f ) + |Ȳ ac
sp,T ||V̄ c

j,f |sin(θacsp,T + θcj,f ) +

|Ȳ aa
ss,T ||V̄ a

inv,f |sin(θaass,T + θainv,f ) + |Ȳ ab
ss,T ||V̄ b

inv,f |sin(θabss,T + θbinv,f ) +

|Ȳ ac
ss,T ||V̄ c

inv,f |sin(θacss,T + θcinv,f )− Iinvsc sin

(
π

2
+ θainv,f

)
= 0

= faim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.37)
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Similarly, the real and imaginary parts of eq. (6.35) for phase b are given as,

Real Part

|Ȳ ba
sp,T ||V̄ a

j,f |cos(θbasp,T + θaj,f ) + |Ȳ bb
sp,T ||V̄ b

j,f |cos(θbbsp,T + θbj,f ) + |Ȳ bc
sp,T ||V̄ c

j,f |cos(θbcsp,T + θcj,f ) +

|Ȳ ba
ss,T ||V̄ a

inv,f |cos(θbass,T + θainv,f ) + |Ȳ bb
ss,T ||V̄ b

inv,f |cos(θbbss,T + θbinv,f ) +

|Ȳ bc
ss,T ||V̄ c

inv,f |cos(θbcss,T + θcinv,f )− Iinvsc cos

(
π

2
+ θbinv,f

)
= 0

= f bre(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.38)

Imaginary Part

|Ȳ ba
sp,T ||V̄ a

j,f |sin(θbasp,T + θaj,f ) + |Ȳ bb
sp,T ||V̄ b

j,f |sin(θbbsp,T + θbj,f ) + |Ȳ bc
sp,T ||V̄ c

j,f |sin(θbcsp,T + θcj,f ) +

|Ȳ ba
ss,T ||V̄ a

inv,f |sin(θbass,T + θainv,f ) + |Ȳ bb
ss,T ||V̄ b

inv,f |sin(θbbss,T + θbinv,f ) +

|Ȳ bc
ss,T ||V̄ c

inv,f |sin(θbcss,T + θcinv,f )− Iinvsc sin

(
π

2
+ θbinv,f

)
= 0

= f bim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.39)

Also, the real and imaginary part of eq. (6.35) for phase c are given as,

Real Part

|Ȳ ca
sp,T ||V̄ a

j,f |cos(θcasp,T + θaj,f ) + |Ȳ cb
sp,T ||V̄ b

j,f |cos(θcbsp,T + θbj,f ) + |Ȳ cc
sp,T ||V̄ c

j,f |cos(θccsp,T + θcj,f ) +

|Ȳ ca
ss,T ||V̄ a

inv,f |cos(θcass,T + θainv,f ) + |Ȳ cb
ss,T ||V̄ b

inv,f |cos(θcbss,T + θbinv,f ) +

|Ȳ cc
ss,T ||V̄ c

inv,f |cos(θccss,T + θcinv,f )− Iinvsc cos

(
π

2
+ θcinv,f

)
= 0

= f cre(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.40)

Imaginary Part

|Ȳ ca
sp,T ||V̄ a

j,f |sin(θcasp,T + θaj,f ) + |Ȳ cb
sp,T ||V̄ b

j,f |sin(θcbsp,T + θbj,f ) + |Ȳ cc
sp,T ||V̄ c

j,f |sin(θccsp,T + θcj,f ) +

|Ȳ ca
ss,T ||V̄ a

inv,f |sin(θcass,T + θainv,f ) + |Ȳ cb
ss,T ||V̄ b

inv,f |sin(θcbss,T + θbinv,f ) +

|Ȳ cc
ss,T ||V̄ c

inv,f |sin(θccss,T + θcinv,f )− Iinvsc sin

(
π

2
+ θcinv,f

)
= 0

= f cim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) (6.41)

Hence, for the unbalanced three-phase four wire multigrounded radial distribution system having nt

number of ∆-Yg IBDG transformers, there is a total of 6nt non-linear equations. To solve these non-linear

equations, Newton-Raphson method has been used in this work. The set of non-linear equations for the
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system shown in Fig. 6.1 with one ∆-Yg IBDG transformer is given as,

fare(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0

faim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0

f bre(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0

f bim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0

f cre(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0

f cim(|V̄ a
inv,f |, |V̄ b

inv,f |, |V̄ c
inv,f |, θainv,f , θbinv,f , θcinv,f ) = 0 (6.42)

The above set of non-linear equations, for calculating the unknown inverter bus voltage magnitudes and their

respective phase angles, are solved using Newton-Raphson method as,

∆Vinv,f

∆θinv,f

 =

J1 J2

J3 J4

−1

.

∆freal

∆fimag

 (6.43)

where ∆Vinv,f and ∆θinv,f are the correction vectors calculated at tth iteration. Hence,

∆Vinv,f =
[
∆V

a(t)
inv,f ,∆V

b(t)
inv,f ,∆V

c(t)
inv,f

]T
;

∆θinv,f =
[
∆θ

a(t)
inv,f ,∆θ

b(t)
inv,f ,∆θ

c(t)
inv,f

]T
.

∆freal and ∆fimag are the mismatch vectors calculated at tth iteration and are given as

∆freal =
[
−fa(t)

re ,−f b(t)re ,−f c(t)re

]T
;

∆fimag =
[
−fa(t)

im ,−f b(t)im ,−f c(t)im

]T
.

J1, J2, J3 and J4 are the sub-matrices of the Jacobian matrix [J], and are given as,

J1 =
∂freal
∂Vinv,f

=


∂fare

∂|V̄ a
inv,f |

∂fare
∂|V̄ b

inv,f |
∂fare

∂|V̄ c
inv,f |

∂fbre
∂|V̄ a

inv,f |
∂fbre

∂|V̄ b
inv,f |

∂fbre
∂|V̄ c

inv,f |
∂fcre

∂|V̄ a
inv,f |

∂fcre
∂|V̄ b

inv,f |
∂fcre

∂|V̄ c
inv,f |

 ; J2 =
∂freal
∂θinv,f

=


∂fare
∂θainv,f

∂fare
∂θbinv,f

∂fare
∂θcinv,f

∂fbre
∂θainv,f

∂fbre
∂θbinv,f

∂fbre
∂θcinv,f

∂fcre
∂θainv,f

∂fcre
∂θbinv,f

∂fcre
∂θcinv,f



J3 =
∂fimag

∂Vinv,f
=


∂faim

∂|V̄ a
inv,f |

∂faim
∂|V̄ b

inv,f |
∂faim

∂|V̄ c
inv,f |

∂fbim
∂|V̄ a

inv,f |
∂fbim

∂|V̄ b
inv,f |

∂fbim
∂|V̄ c

inv,f |
∂fcim

∂|V̄ a
inv,f |

∂fcim
∂|V̄ b

inv,f |
∂fcim

∂|V̄ c
inv,f |

 ; J4 =
∂fimag

∂θinv,f
=


∂faim
∂θainv,f

∂faim
∂θbinv,f

∂faim
∂θcinv,f

∂fbim
∂θainv,f

∂fbim
∂θbinv,f

∂fbim
∂θcinv,f

∂fcim
∂θainv,f

∂fcim
∂θbinv,f

∂fcim
∂θcinv,f


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Elements of Jacobian matrix [J] are calculated as,

∂fpre

∂|V̄ q
inv,f |

= |Ȳ pq
ss,T |cos(θ

pq
ss,T + θqinv,f )

∂fpre
∂θqinv,f

∣∣∣∣
p6=q

= −|Ȳ pq
ss,T ||V̄

q
inv,f |sin(θpqss,T + θqinv,f )

∂fpre
∂θpinv,f

= −|Ȳ pp
ss,T ||V̄

p
inv,f |sin(θppss,T + θpinv,f ) + Iinvsc sin

(
π

2
+ θpinv,f

)
∂fpim

∂|V̄ q
inv,f |

= |Ȳ pq
ss,T |sin(θpqss,T + θqinv,f )

∂fpim
∂θqinv,f

∣∣∣∣
p6=q

= |Ȳ pq
ss,T ||V̄

q
inv,f |cos(θ

pq
ss,T + θqinv,f )

∂fpim
∂θpinv,f

= |Ȳ pp
ss,T ||V̄

p
inv,f |cos(θ

pp
ss,T + θpinv,f )− Iinvsc cos

(
π

2
+ θpinv,f

)

where p, q = a, b, c. The size of Jacobian matrix
[
J
]

is (6 × 6) and its all four sub-matrices (J1, J2, J3

and J4) is (3 × 3) for one ∆-Yg IBDG transformer. Hence, for nt number of IBDG transformers in the

system, there is total nt number of Jacobian matrices
[
J
]

which will be required to calculate the values of

their inverter bus voltages under the fault conditions. With the help of calculated inverter bus voltages, the

primary winding currents of IBDG transformer under the fault conditions are calculated by using eq. (6.1).

Therefore, the new value of fault current is calculated by eq. (6.32). Similarly, new values of voltages of

phase buses, neutral buses and ground buses under the fault conditions are also calculated (with the help of

obtained new values of fault current and primary winding currents of IBDG transformer) by eqs. (6.27)-

(6.29).

(b) Double line-to-ground (LLG) fault

Let us consider an LLG fault between phases a and b, and the local ground gl at lth bus location through

a fault impedance z̄f , as shown in Fig. 6.2(b). The two fault currents Īaf and Ībf are flowing from phases a

and b to the ground gl at lth bus, respectively. The modified phase branch currents (of phases a and b) due

to LLG fault in Fig. 6.2(b), can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd + Ībf
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B̄a
i,f = Īajd + ĪaT,p

B̄b
i,f = Ībjd + ĪbT,p

B̄a
k,f = Īald + Īamd + Īanbd

+ Īaf

B̄b
k,f = Ībld + Ībmd + Ībf

B̄a
l,f = Īamd + Īanbd

;

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(6.44)

The above equations can be put in the matrix form as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.45)

where,

[
BIBCfp

]
=

BIBCp(:, f q1b )

BIBCp(:, f q2b )

T =

1 0 0 · · · 0 0 0 · · · 1 0 0 0 0 0

0 1 0 · · · 0 0 0 · · · 0 1 0 0 0 0

T ;

[
If

]
=

[
Īaf Ībf

]T
.

Definition of
[
BIBCfp

]
matrix for LLG fault (faulted bus fb = l, and faulted phases q1 = a and q2 = b) is

given in eq. (5.52) of Chapter 5.

The modified ground currents due to LLG fault, as shown in Fig. 6.2(b), can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf

B̄g
i,f = −Īngj − Ī

a
f − Ībf

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(6.46)

Hence, the modified ground currents due to LLG fault can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(6.47)

where, [
BIBCfg

]
=

BIBCg(:, gfb)

BIBCg(:, gfb)

T =

1 1 · · · 0 · · · 1 0 0

1 1 · · · 0 · · · 1 0 0

T
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[
BIBCfg

]
matrix for LLG fault has already been defined in eq. (5.54) of Chapter 5. The voltage equations

for the phase buses, neutral buses and ground buses for LLG fault will remain same as given in case of SLG

fault (eqs. (6.27)-(6.29)) .

For an LLG fault at phases a and b of lth bus through a fault impedance z̄f , as shown in Fig. 6.2(b), the

voltage equations at faulted bus can be written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f

z̄f Ī
b
f = V̄ b

l,f − V̄
g
l,f (6.48)

where, V̄ a
l,f and V̄ b

l,f are the voltages of phases a and b of fault bus l under the fault conditions, respectively;

V̄ g
j,f is the ground bus voltage under the fault conditions at fault location. Substitute the values of V̄ a

j,f , V̄ b
j,f

and V̄ g
j,f from eqs. (6.27) and (6.29) into eq. (6.48), with an assumption that the neutral and ground buses at

the substation end are perfectly grounded (i.e. at zero potential; V̄ n
s = 0, V̄ g

s = 0), and expressing it in the

matrix form as,[
Zf

] [
If

]
=

V̄ a
s

V̄ b
s

−
F1PLD(f q1b , :)

F1PLD(f q2b , :)

[IL]−
F1Tm(f q1b , :)

F1Tm(f q2b , :)

[IT,p]−
DFF1n(f q1b , :)

DFF1n(f q2b , :)

[If]

+

F3PLD(gfb , :)

F3PLD(gfb , :)

[IL]+

F3Tm(gfb , :)

F3Tm(gfb , :)

[IT,p]+

DFF3n(gfb , :)

DFF3n(gfb , :)

[If] (6.49)

where, for an LLG fault (at phases a and b of lth bus),
[
Zf

]
=

z̄f 0

0 z̄f

;
[
F1Tm(f q1b , :)

]
and

[
F1Tm(f q2b , :)

]
are the row vectors of matrix

[
F1Tm

]
corresponding to the faulty phases q1 and q2 (here, q1 = a, q2 =

b) of faulted bus fb (here, fb = l), respectively;
[
F3Tm(gfb , :)

]
represents the row vector of matrix[

F3Tm

]
corresponding to the ground gfb at the location of faulted bus fb. The matrices

[
F1PLD(f q1b , :)

]
,[

F1PLD(f q1b , :)
]
,
[
DFF1n(f q1b , :)

]
,
[
DFF1n(f q2b , :)

]
,
[
F3PLD(gfb , :)

]
,
[
F3PLD(gfb , :)

]
,
[
DFF3n(gfb , :)

]
,[

DFF3n(gfb , :)
]

for LLG fault have already been defined in eq. (5.56) of Chapter 5. Hence, the fault cur-

rent
[
If

]
for an LLG fault is obtained from eq. (6.49) as,

[
If

]
=
[
ZF1

]−1

V̄ a
s

V̄ b
s

− [Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
(6.50)

where,
[
ZF1

]
and

[
Fflt
13PLD

]
matrices for LLG fault have already been defined in eq. (5.57) of Chapter 5

and [
Fflt
13Tm

]
=

[
ZF1

]−1


F1Tm(f q1b , :)

F1Tm(f q2b , :)

−
F3Tm(gfb , :)

F3Tm(gfb , :)


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The initial estimate of fault currents for LLG fault is obtained from the eq. (6.50) (with the help of pre-fault

load flow solution). Once, the value of fault current is obtained, the initial estimate of voltages of phase bus,

neutral bus and ground bus of the system under the fault conditions would be obtained by eqs. (6.27)-(6.29).

The initial estimate of inverter current under the fault conditions is then obtained by eq. (6.33). Depending

upon the magnitude of estimated inverter current, appropriate inverter control strategy will be applied to

obtain the final solution under the fault conditions, as discussed previously for the SLG fault.

(c) Triple line-to-ground (LLLG) fault

Let us consider an LLLG fault between all the phases a, b and c, and the local ground gl at lth bus

location through a fault impedance z̄f , as shown in Fig. 6.2(c). The fault currents Īaf , Ībf and Īcf are flowing

from phases a, b and c to the ground gl at lth bus, respectively. The modified phase branch currents (of

phases a, b and c) due to LLLG fault in Fig. 6.2(c), can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄c
1,f = Īc2d + Īc3d + · · ·+ Īcid + Īcjd + ĪcT,p + · · ·+ Īckd + Īcld + Īcf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd + Ībf

B̄c
2,f = Īc3d + · · ·+ Īcid + Īcjd + ĪcT,p + · · ·+ Īckd + Īcld + Īcf

B̄a
i,f = Īajd + ĪaT,p

B̄b
i,f = Ībjd + ĪbT,p

B̄c
i,f = Īcjd + ĪcT,p

B̄a
k,f = Īald + Īamd + Īanbd

+ Īaf

B̄b
k,f = Ībld + Ībmd + Ībf

B̄c
k,f = Īcld + Īcf

B̄a
l,f = Īamd + Īanbd

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(6.51)

The above mentioned equations can be put in the matrix form as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.52)

194



where,

[
BIBCfp

]
=


BIBCp(:, f q1b )

BIBCp(:, f q2b )

BIBCp(:, f q3b )


T

=


1 0 0 · · · 0 0 0 · · · 1 0 0 0 0 0

0 1 0 · · · 0 0 0 · · · 0 1 0 0 0 0

0 0 1 · · · 0 0 0 · · · 0 0 1 0 0 0


T

;

[
If

]
=

[
Īaf Ībf Īcf

]T
.

The
[
BIBCfp

]
matrix for a LLLG fault has already been described in eq. (5.59) of Chapter 5.

The modified ground currents due to LLLG fault, as shown in Fig. 6.2(c), can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf − Īcf

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− Īaf − Ībf − Īcf

B̄g
i,f = −Īngj − Ī

a
f − Ībf − Īcf

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(6.53)

Hence, the modified ground currents due to LLLG fault can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCfg

] [
If

]
(6.54)

where,

[
BIBCfg

]
=


BIBCg(:, gfb)

BIBCg(:, gfb)

BIBCg(:, gfb)


T

=


1 1 · · · 0 · · · 1 0 0

1 1 · · · 0 · · · 1 0 0

1 1 · · · 0 · · · 1 0 0


T

Definition of
[
BIBCfg

]
matrix for LLLG fault has already been given in eq. (5.61) of Chapter 5. The

voltage equations for the phase buses, neutral buses and ground buses for LLLG fault will be same as given

in case of SLG fault (eqs. (6.27-(6.29)) .

The voltage equations at fault bus can be written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f

z̄f Ī
b
f = V̄ b

l,f − V̄
g
l,f

z̄f Ī
c
f = V̄ c

l,f − V̄
g
l,f (6.55)

where, V̄ a
l,f , V̄ b

l,f and V̄ c
l,f are the voltages of phases a, b and c of fault bus l under the fault conditions,

respectively. V̄ g
l,f is the ground bus voltage at the fault location under the fault conditions. Substituting
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the values of V̄ a
l,f , V̄ b

l,f , V̄ c
l,f and V̄ g

l,f from eqs. (6.27) and (6.29) into eq. (6.55), with an assumption that

the neutral and ground buses at the substation end are perfectly grounded (i.e. at zero potential; V̄ n
s = 0,

V̄ g
s = 0), and writing it in the matrix form, we obtain,

[
Zf

] [
If

]
=


V̄ a
s

V̄ b
s

V̄ c
s

−


F1PLD(f q1b , :)

F1PLD(f q2b , :)

F1PLD(f q3b , :)

[IL]−


F1Tm(f q1b , :)

F1Tm(f q2b , :)

F1Tm(f q3b , :)

[IT,p]−


DFF1n(f q1b , :)

DFF1n(f q2b , :)

DFF1n(f q3b , :)

[If]

+


F3PLD(gfb , :)

F3PLD(gfb , :)

F3PLD(gfb , :)

[IL]+


F3Tm(gfb , :)

F3Tm(gfb , :)

F3Tm(gfb , :)

[IT,p]+


DFF3n(gfb , :)

DFF3n(gfb , :)

DFF3n(gfb , :)

[If] (6.56)

where, for an LLLG fault (at jth bus),
[
Zf

]
=


z̄f 0 0

0 z̄f 0

0 0 z̄f

;
[
F1Tm(f q1b , :)

]
,
[
F1Tm(f q2b , :)

]
and

[
F1Tm(f q3b , :)

]
are the row vectors of matrix

[
F1Tm

]
corresponding to the faulty phases q1, q2 and

q3 (here, q1 = a, q2 = b, q3 = c) of faulted bus fb (here, fb = l), respectively;
[
F3Tm(gfb , :)

]
is the row vector of matrix

[
F3Tm

]
corresponding to the ground gfb at the location of faulted bus fb;

The matrices
[
F1PLD(f q1b , :)

]
,
[
F1PLD(f q2b , :)

]
,
[
F1PLD(f q3b , :)

]
,
[
DFF1n(f q1b , :)

]
,
[
DFF1n(f q2b , :)

]
,[

DFF1n(f q3b , :)
]
,
[
F3PLD(gfb , :)

]
and

[
DFF3n(gfb , :)

]
for LLLG fault have already been described in

eq. (5.63) of Chapter 5.

Hence, the fault current
[
If

]
for LLLG fault is obtained from eq. (6.56) as,

[
If

]
=
[
ZF1

]−1


V̄ a
s

V̄ b
s

V̄ c
s

− [Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
(6.57)

where,
[
ZF1

]
and

[
Fflt
13PLD

]
matrices for LLLG fault have already been defined in eq. (5.64) of Chapter 5

and

[
Fflt
13Tm

]
=

[
ZF1

]−1




F1Tm(f q1b , :)

F1Tm(f q2b , :)

F1Tm(f q3b , :)

−


F3Tm(gfb , :)

F3Tm(gfb , :)

F3Tm(gfb , :)




The initial estimate of fault currents for LLLG fault is then obtained from the eq. (6.57) (with the help of

pre-fault load flow solution). Once, the value of fault current is obtained, the initial estimate of voltages

under the fault conditions are calculated by eqs. (6.27)-(6.29). The initial estimate of inverter current under
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the fault conditions is calculated next using eq. (6.33). The appropriate inverter control strategy is then

applied, depending upon the magnitude of estimated inverter current, to obtain the final solution under the

fault conditions (as discussed in SLG fault).

(d) Line-to-line (LL) fault

Let us consider an LL fault between phases a and b of lth bus through a fault impedance z̄f , as shown

in Fig. 6.2(d). The fault current Īaf is flowing from phase a to b at lth bus. Hence, only the phase branch

currents will be modified due to LL fault. The modified phase branch currents (of phase a and b) due to LL

fault in Fig. 6.2(d), can be written as,

B̄a
1,f = Īa2d + Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
1,f = Īb2d + Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd − Īaf

B̄a
2,f = Īa3d + · · ·+ Īaid + Īajd + ĪaT,p + · · ·+ Īakd + Īald + Īamd + Īanbd

+ Īaf

B̄b
2,f = Īb3d + · · ·+ Ībid + Ībjd + ĪbT,p + · · ·+ Ībkd + Ībld + Ībmd − Īaf

B̄a
i,f = Īajd + ĪaT,p

B̄b
i,f = Ībjd + ĪbT,p

B̄a
k,f = Īald + Īamd + Īanbd

+ Īaf

B̄b
k,f = Ībld + Ībmd − Īaf

B̄a
l,f = Īamd + Īanbd

B̄b
l,f = Ībmd

B̄a
m,f = Īanbd

(6.58)

The above mentioned equations can be put in the matrix form as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.59)

where, [
BIBCfp

]
=

[
1 −1 0 · · · 0 0 0 · · · 1 −1 0 0 0 0

]T
;

=
[
BIBCp(:, f q1b )−BIBCp(:, f q2b )

]
[
If

]
=

[
Īaf

]
.

The
[
BIBCfp

]
matrix for an LL fault has already been defined in eq. (5.66) of Chapter 5.
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Now, the voltages of phase bus, neutral bus and ground bus under the fault conditions (using eqs. (6.6)-

(6.8)) are calculated using the modified phase branch currents as obtained in eq. (6.59) as,[
Vp,f

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
−
[
DFF

′
1

] [
If

]
(6.60)[

Vn,f

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DFF

′
2

] [
If

]
(6.61)[

Vg,f

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DFF

′
3

] [
If

]
(6.62)

where, [
DFF

′
1

]
=

[
BCBVp

] [
BIBCfp

]
[
DFF

′
2

]
=

[
BCBVnp

] [
BIBCfp

]
[
DFF

′
3

]
=

[
BCBVgp

] [
BIBCfp

]
Now, the neutral to ground currents under the fault conditions are calculated with the help of neutral and

ground bus voltages under the fault conditions using eqs. (6.13), (6.61) and (6.62) as,[
Zngr

] [
Ing

]
=

{[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DFF

′
2

] [
If

]}
−

{[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DFF

′
3

] [
If

]}
[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]
+

[ [
DFF

′
3

]
−
[
DFF

′
2

] ] [
If

]}
(6.63)

Now, substituting the value of
[
Ing

]
from eq. (6.63) to eqs. (6.60)- (6.62) to recalculate the voltages of

phase, neutral and ground buses under the fault conditions as,[
Vp,f

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
−
[
DFF

′
1n

] [
If

]
(6.64)[

Vn,f

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
−
[
DFF

′
2n

] [
If

]
(6.65)[

Vg,f

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
−
[
DFF

′
3n

] [
If

]
(6.66)

where, [
DFF

′
1n

]
=
[
DFF

′
1

]
+
[
DLF2

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
[
DFF

′
2n

]
=
[
DFF

′
2

]
+
[
DLF4

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
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[
DFF

′
3n

]
=
[
DFF

′
3

]
+
[
DLF6

] [
ZFNG

]−1
{[

DFF
′
3

]
−
[
DFF

′
2

]}
The voltage equation at fault bus is written as,

z̄f Ī
a
f = V̄ a

l,f − V̄ b
l,f (6.67)

where, V̄ a
l,f and V̄ b

l,f are the voltages of phase a and b at fault bus l, respectively. Substituting the values of

V̄ a
l,f and V̄ b

l,f from eq. (6.64) into eq. (6.67), with an assumption that the neutral and ground buses at the

substation end are perfectly grounded (i.e. V̄ n
s = 0, V̄ g

s = 0), and write it in the matrix form as,[
Zf

] [
If

]
= V̄ a

s −
[
F1PLD(f q1b , :)

] [
IL

]
−
[
F1Tm(f q1b , :)

] [
IT,p

]
−
[
DFF

′
1n(f q1b , 1)

] [
If

]
− V̄ b

s +
[
F1PLD(f q2b , :)

] [
IL

]
+
[
F1Tm(f q2b , :)

] [
IT,p

]
+
[
DFF

′
1n(f q2b , 1)

] [
If

]
(6.68)

where, for LL fault (at phase a and b of lth bus),
[
Zf

]
= z̄f ;

[
F1PLD(f q1b , :)

]
and

[
F1PLD(f q2b , :)

]
are

the row vectors of matrix
[
F1PLD

]
corresponding to the faulty phases q1 and q2 (here, q1 = a, q2 = b) of

faulted bus fb (here, fb = j), respectively;
[
F1Tm(f q1b , :)

]
and

[
F1Tm(f q2b , :)

]
are the row vectors of matrix[

F1Tm

]
corresponding to the faulty phases q1 and q2 of faulted bus fb, respectively;

[
DFF

′
1n(f q1b , 1)

]
and[

DFF
′
1n(f q2b , 1)

]
are the row vectors of matrix

[
DFF

′
1n

]
corresponding to the faulty phases q1 and q2 of

faulted bus fb, respectively. Hence, the fault current
[
If

]
is obtained from eq. (6.68) as,

[
If

]
=
[
ZF1

]−1
(V̄ a
s − V̄ b

s )−
[
Fflt
11PLD

] [
IL

]
−
[
Fflt
11Tm

] [
IT,p

]
(6.69)

where, [
ZF1

]
=

[
Zf

]
+
[
DFF

′
1n(f q1b , 1)

]
−
[
DFF

′
1n(f q2b , 1)

]
[
Fflt
11PLD

]
=

[
ZF1

]−1
{[

F1PLD(f q1b , :)
]
−
[
F1PLD(f q2b , :)

]}
[
Fflt
11Tm

]
=

[
ZF1

]−1
{[

F1Tm(f q1b , :)
]
−
[
F1Tm(f q2b , :)

]}
Once, the initial estimate of fault current is made by using eq. (6.69) (with the help of pre-fault load flow

solution), the bus voltages and inverter current under the fault conditions are then estimated by using eqs.

(6.64)-(6.66) and (6.33), respectively. Again, depending upon the magnitude of estimated inverter current,

appropriate control strategy of inverter will be applied to obtain the final solution for an LL fault (as dis-

cussed in SLG fault).
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Steps of algorithm for
[
BIBC

]
matrix based short-circuit analysis method for an unbalanced three phase

four wire multigrounded radial distribution system in the presence of IBDG and ∆-Yg IBDG transformer

1. Run the base case power flow of three phase four wire multigrounded system in the presence of IBDG

and ∆-Yg IBDG transformer using the proposed load flow method as discussed in Section 6.2.1 of

this chapter.

2. Convert all PQ-loads into constant impedance loads using the obtained load flow solution.

3. If a ground fault (SLG, LLG, LLLG) occurs in the system, then formulate
[
BIBCfp

]
,
[
BIBCfg

]
and[

Zf

]
matrices corresponding to the type of fault occurring in the system using the proposed

[
BIBC

]
matrix based short-circuit analysis method. If a line to line (LL) fault occurs, then formulate only[
BIBCfp

]
and

[
Zf

]
matrices.

4. Set iteration counter k = 0. Also, set the values of voltages of phase bus, neutral bus and ground bus,

equivalent injection currents
[
IL

]k
and transformer primary winding currents

[
IT,p

]k
equal to the

values obtained from the pre-fault load flow solutions.

5. Calculate the fault current
[
If

]k
using eq. (6.32) for SLG fault, eq. (6.50) for LLG fault, eq. (6.57)

for LLLG fault and eq. (6.69) for LL fault.

6. Increment the iteration counter by one, k = k + 1. Calculate the voltages of phase buses, neutral

buses and ground buses
(
[Vp,f ]

k, [Vn,f ]
k and [Vg,f ]

k
)

of the system under the fault conditions, using

eqs. (6.27)-(6.29), for ground faults and using eqs. (6.64)-(6.66), for LL fault, respectively.

7. Calculate the inverter current Iabcinv,f ,est of the IBDG under fault conditions using the transformer

nodal admittance matrix based current equation as given in eq. (6.1) (with the new values of voltages

under the fault conditions as obtained in previous step).

8. Check the condition, whether |Īpinv,f,est| ≤ Iinvsc ; (p = a, b, c) for all IBDGs in the system. The three

possible cases are:

Case (A): If |Īpinv,f,est| ≤ I
inv
sc , (p = a, b, c) for all nd - no. of IBDGs, then go to step 12, else

Case (B): If |Īpinv,f,est|, (p = a, b, c) of all nd - no. of IBDGs are greater than their corresponding

short-circuit current capacities, then operate the inverter of all the IBDGs in constant current mode

with, Īpinv,f = Iinvsc
π
2 + θpinv,f , (p = a, b, c) and calculate the inverter bus voltages under the fault
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conditions (Vabc
inv,f ) using the Newton-Raphson method as discussed in Subsection 6.2.2.1(a) and go

to step 9, else

Case (C): If out of nd - no. of IBDGs, for kd - no. of IBDGs |Īpinv,f,est| ≤ Iinvsc , (p = a, b, c)

and for the remaining (nd − kd) - no. of IBDGs |Īpinv,f,est| > Iinvsc , (p = a, b, c), then set Īabcinv,f =

Iinvsc ∠(π2 + θpinv,f ), (p = a, b, c) for (nd − kd) - no. of IBDGs, while for kd - no. of IBDGs set

Iabcinv,f = Iabcinv,f ,est and calculate the inverter bus voltages under the fault conditions (Vabc
inv,f ), for

(nd − kd) - no. of IBDGs, using the Newton-Raphson method as discussed in Subsection 6.2.2.1(a)

and go to step 9.

9. Calculate the transformer primary winding currents and equivalent injection currents at all the phase

buses under the fault conditions as,

IabcT,p,f = Yabc
pp,TVabc

T,p,f + Yabc
ps,TVabc

inv,f

Īpid =

(
V̄ p
i,f − V̄

n
i,f

z̄pid

)
; (p = a, or b, or c); (i = 2, · · · , nb)

where, V̄ p
i,f and V̄ n

i,f are the voltages at phase p and neutral n of ith bus under fault conditions,

respectively. z̄pid is an equivalent load impedance at phase p of ith bus.

10. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp,f

]k − [Vp,f

]k−1
∣∣∣∣, ∣∣∣∣[Vn,f

]k − [Vn,f

]k−1
∣∣∣∣, ∣∣∣∣[Vg,f

]k − [Vg,f

]k−1
∣∣∣∣)

11. If ε < tolerance(1.0× 10−12), then go to the next step, else go to step 5.

12. The obtained values of voltages [Vp,f ], [Vn,f ] and [Vg,f ] are the final post-fault values of the voltages

and stop the simulation..

The overall flow-chart of the proposed
[
BIBC

]
matrix based short-circuit analysis method with IBDG and

∆-Yg IBDG transformer is shown in Fig 6.3.

6.2.2.2 Method 2:
[
Ybus

]
matrix based method

The proposed short-circuit analysis method is based on the
[
Ybus

]
matrix of the distribution system. To

obtain the
[
Ybus

]
matrix of the system, KCL equations are required at all the phase (except inverter bus),

neutral and ground buses of the system. The details of KCL equations at all the buses (except at inverter

bus) of the unbalanced three phase four wire multigrounded distribution system have already been described

in eqs. (5.82)-(5.92) of Subsection 5.3.2 of Chapter 5. With the addition of IBDG at jth bus of the system,
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Figure 6.3: Flow-chart of the proposed
[
BIBC

]
matrix based short-circuit

analysis method in the presence of IBDG and ∆-Yg IBDG transformer

through a ∆-Yg IBDG transformer, the KCL equation at jth bus of the system shown in Fig. 6.1 will be

modified as,

Yabcng
ji Vabcng

i + Yabcng
jj new

Vabcng
j = −Yabcng

ps,T(∆−Yg)
Vabcng

inv,st (6.70)

where, Yabcng
jj new

= Yabcng
jj + Yabcng

pp,T(∆−Yg)
,
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Yabcng
pp,T(∆−Yg)

=



Ȳ aa
pp,T Ȳ ab

pp,T Ȳ ac
pp,T 0 0

Ȳ ba
pp,T Ȳ bb

pp,T Ȳ bc
pp,T 0 0

Ȳ ca
pp,T Ȳ cb

pp,T Ȳ cc
pp,T 0 0

0 0 0 0 0

0 0 0 0 0


; Yabcng

ps,T(∆−Yg)
=



Ȳ aa
ps,T Ȳ ab

ps,T Ȳ ac
ps,T 0 0

Ȳ ba
ps,T Ȳ bb

ps,T Ȳ bc
ps,T 0 0

Ȳ ca
ps,T Ȳ cb

ps,T Ȳ cc
ps,T 0 0

0 0 0 0 0

0 0 0 0 0


;

Vabcng
inv,st =

[
V̄ a
inv,st V̄ b

inv,st V̄ c
inv,st 0 0

]T
is the inverter bus voltage vector, obtained from pre-fault

steady state load flow solution. As mutual coupling has been considered only between primary and sec-

ondary phases of IBDG transformer, the rows and columns of matrices Yabcng
pp,T(∆−Yg)

and Yabcng
ps,T(∆−Yg)

,

corresponding to neutral and ground buses, are zero. Also, the neutral point of the IBDG is solidly grounded

(as shown in Fig. 6.1), therefore, the elements of the inverter bus voltage vector Vabcng
inv,st , corresponding to

the neutral and ground buses, are zero. The KCL equations of the system (except at the inverter bus) shown

in Fig. 6.1 can then be written in the matrix form as,[
Ybus Tm

]
.
[
V
]

=
[
I
]

(6.71)

The size of
[
Ybus Tm

]
matrix for the unbalanced three-phase four wire multigrounded distribution system

with IBDG is exactly same as for the system without IBDG. Once, the
[
Ybus Tm

]
matrix of the system

is formed, the elements of this matrix will be modified corresponding to the type of fault occurring in the

system. The procedure of modifying the elements of
[
Ybus Tm

]
matrix, for different type of unsymmetrical

faults is similar to the procedure given in the Subsections 5.3.2(a)-(d) of Chapter 5. Therefore, the initial

value of bus voltages under the fault conditions are then calculated by using eq. (6.71) with the modified

bus admittance matrix. The initial estimate of inverter current under the fault conditions is then made as,

Iabcinv,f ,est = Yabc
sp,TVabc

j,f + Yabc
ss,TVabc

inv,st (6.72)

Now, depending upon the magnitude of Iabcinv,f ,est, there can be two possible cases of inverter operation

during fault as discussed in Subsection 3.2.2 of Chapter 3,

Case 1: If |Īpinv,f,est| ≤ I
inv
sc (short-circuit current capacity of the inverter); (p = a,b,c)

If the magnitude of estimated inverter current |Īpinv,f,est| for each phase (p = a, b, c), calculated using

eq. (6.72), is less than the short-circuit capacity of the inverter (Iinvsc ), then the estimated voltages of phase

buses, neutral buses and ground buses are the final values of the voltages of the system under the fault

conditions.
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Case 2: If |Īpinv,f,est| > Iinvsc ; (p=a, or b, or c)

In this case, the estimated inverter current magnitude of the inverter is restricted to its short-circuit

capacity (Iinvsc ), by operating the inverter in constant current control mode (as discussed in Subsection 3.2.2

of Chapter 3). Hence the post fault inverter current is given as,

Īpinv,f = | ¯Ipinv,f |∠Ψp
inv,f = Iinvsc ∠Ψp

inv,f ; (p = a, b, c) (6.73)

where Ψp
inv,f is the unknown inverter current angle corresponding to phase ’p’ under the fault conditions.

To solve these unknown angles, it is assumed that, Ψabc
inv,f = π

2 + θabcinv,f , where θabcinv,f is the three phase

voltage angle vector of the inverter bus under the fault conditions. With the unknown inverter current angles

(Ψabc
inv,f ), the set of KCL equations of the distribution system (eq. (6.71)) become non-linear equations.

To solve these set of non-linear equations to obtain the values of bus voltages under the fault conditions,

numerical method (Newton Raphson method) is been used in this work. The details of the Newton-Raphson

method for the unbalanced three-phase distribution system with IBDG is given in Subsection 3.2.2 of Chap-

ter 3. This method can also be applicable to the unbalanced three-phase four wire multigrounded distribution

system with IBDG. Hence, the voltages of phase buses, neutral buses and ground buses of the unbalanced

distribution system under the fault conditions, with the above given inverter control strategy, have been ob-

tained by the method proposed in Subsection 3.2.2 of Chapter 3.

Steps of algorithm for
[
Ybus

]
matrix based short-circuit analysis method for the unbalanced three phase

four wire multigrounded radial distribution system in the presence of IBDG and ∆-Yg IBDG transformer

1. Run the base case power flow of the unbalanced three phase four wire multigrounded distribution

system with IBDG and ∆-Yg IBDG transformer, using the proposed load flow method as discussed

in Section 6.2.1 of this chapter.

2. Convert all PQ-loads into constant impedance loads using the obtained pre-fault load flow solution.

3. Formulate the
[
Ybus Tm

]
matrix of the unbalanced three phase four wire multigrounded system with

IBDG and ∆-Yg IBDG transformer, using the formulation discussed in Subsection 6.2.2.2.

4. Modify
[
Ybus Tm

]
matrix corresponding to the type of fault occurring in the system, using eq. (5.96)

for SLG fault, eq. (5.102) for LLG fault, eq. (5.108) for LLLG fault and eq. (5.112) for LL fault

given in Chapter 5.

5. Calculate the values of bus voltages under the fault conditions using eq. (6.71) with the modified[
Ybus Tm

]
matrix.
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6. Calculate the inverter current Iabcinv,f ,est of the IBDG under fault conditions using eq. (6.72).

7. Check the condition, whether |Īpinv,f,est| ≤ Iinvsc ; (p = a, b, c), for all IBDGs. The three possible

cases are:

Case (A): If |Īpinv,f,est| ≤ Ī
inv
sc , (p = a, b, c) for all nd - no. of IBDGs, then go to step 6, else

Case (B): If |Īpinv,f,est|, (p = a, b, c) of all nd - no. of IBDGs are greater than their corresponding

short-circuit current capacities, then operate the inverter in constant current mode with Īpinv,f =

Iinvsc (π2 + θpinv,f ), (p = a, b, c) for all IBDGs and recalculate the bus voltages of the system under

the fault conditions using the Newton-Raphson method given in Subsection 3.2.2 of Chapter 3 and

go to step 8, else

Case (C): If out of nd - no. of IBDGs, for kd - no. of IBDGs |Īpinv,f,est| ≤ Iinvsc , (p = a, b, c)

and for the remaining (nd − kd) - no. of IBDGs |Īpinv,f,est| > Iinvsc , (p = a, b, c), then set Īpinv,f =

Iinvsc ∠(π2 + θpinv,f ), (p = a, b, c) for (nd − kd) - no. of IBDGs, while for kd - no. of IBDGs set

Īabcinv,f = Īabcinv,f ,est and recalculate the bus voltages of the system under the fault conditions using the

Newton-Raphson method given in subsection 3.2.2 of Chapter 3 and go to step 8

8. Calculate fault currents using eq. (5.93) for SLG, eq. (5.98) for LLG, eq. (5.103) for LLLG and eq.

(5.109) for LL fault of Chapter 5. Also calculate branch currents under the fault conditions using eq.

(5.97) of Chapter 5.

6.3 Three phase four wire multigrounded radial distribution system with IBDG and Yg-Yg

IBDG transformer

The unbalanced three-phase four wire multigrounded distribution system with IBDG and Yg-Yg IBDG trans-

former is shown in Fig. 6.4. In this system, an IBDG is connected at jth bus of the system through a step-

down Y g-Y g IBDG transformer. The primary as well as secondary windings of IBDG transformer are star

connected with ground return (through local ground) [151]. The neutral point on the primary side of the

IBDG transformer is connected to the local ground gj at jth bus (where primary windings of the the IBDG

transformer are connected) through an impedance Z̄gtp (grounding impedance on primary side of the IBDG

transformer). Again, it is assumed that the star point of the IBDG is solidly grounded, the inverter current

of the IBDG is confined only to the secondary winding of the IBDG transformer. The grounding impedance

on the secondary side of the IBDG transformer is Z̄gts (connected between the neutral and ground on the

secondary side of the IBDG transformer, as shown in Fig. 6.4). Hence, the neutral to ground currents on the
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primary and secondary side of the IBDG transformer are given as,

ĪgT,p = ĪaT,p + ĪbT,p + ĪcT,p

ĪgT,s = ĪaT,s + ĪbT,s + ĪcT,s = Īainv + Ībinv + Īcinv (6.74)

The nodal admittance matrix based model of the transformer, given in eq. (6.1), is only applicable to the

case where the neutral point on the primary and secondary side of the transformer is perfectly grounded, and

is at zero potential. But in this case, the voltage at the neutral point on primary as well as secondary side of

the transformer is calculated as,

V̄ n
T,p = Z̄gtpĪ

g
T,p + V̄ g

j = Z̄gtp(Ī
a
T,p + ĪbT,p + ĪcT,p) + V̄ g

j

V̄ n
T,s = Z̄gtsĪ

g
T,s = Z̄gts(Ī

a
inv + Ībinv + Īcinv) (6.75)

Therefore, the nodal admittance matrix of Yg-Yg transformer, connected to an unbalanced three-phase four

wire multigrounded distribution system, will be modified as discussed next.

Let us consider the Yg-Yg-0 configuration of the IBDG transformer, as shown in Fig. 6.4. The currents in

the primary and secondary windings of the Yg-Yg-0 transformer can be written as,

Primary winding currents

ĪaT,p = yt[(V̄
a
T,p − V̄ n

T,p)− (V̄ a
T,s − V̄ n

T,s)]

ĪbT,p = yt[(V̄
b
T,p − V̄ n

T,p)− (V̄ b
T,s − V̄ n

T,s)]

ĪcT,p = yt[(V̄
c
T,p − V̄ n

T,p)− (V̄ c
T,s − V̄ n

T,s)] (6.76)

Secondary winding currents

ĪaT,s = −ĪaT,p = −yt[(V̄ a
T,p − V̄ n

T,p)− (V̄ a
T,s − V̄ n

T,s)]

ĪbT,s = −ĪbT,p = −yt[(V̄ b
T,p − V̄ n

T,p)− (V̄ b
T,s − V̄ n

T,s)]

ĪcT,s = −ĪcT,p = −yt[(V̄ c
T,p − V̄ n

T,p)− (V̄ c
T,s − V̄ n

T,s)] (6.77)

The eqs. (6.76) and (6.77) combined can be put in the matrix form as,

ĪaT,p

ĪbT,p

ĪcT,p

ĪaT,s

ĪbT,s

ĪcT,s


= yt



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1





V̄ a
T,p

V̄ b
T,p

V̄ c
T,p

V̄ a
T,s

V̄ b
T,s

V̄ c
T,s


+ yt



−1 1

−1 1

−1 1

1 −1

1 −1

1 −1



V̄ n
T,p

V̄ n
T,s

 (6.78)
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IabcT,p

IabcT,s

 =

Yabc
pp,T Yabc

ps,T

Yabc
sp,T Yabc

ss,T

Vabc
T,p

Vabc
T,s

+

Yn
pp,T Yn

ps,T

Yn
sp,T Yn

ss,T

Vn
T,p

Vn
T,s

 (6.79)

Therefore, the modified nodal admittance matrix based current equation of Yg-Yg IBDG transformer, shown

in Fig. 6.4, can be written as,

IabcT,p

Iabcinv

 =

Yabc
pp,T Yabc

ps,T

Yabc
sp,T Yabc

ss,T

Vabc
j

Vabc
inv

+

Yn
pp,T Yn

ps,T

Yn
sp,T Yn

ss,T

Vn
T,p

Vn
T,s

 (6.80)

6.3.1 Load flow analysis with Star-grounded/Star-grounded (Yg-Yg) IBDG transformer for

the connection of IBDG

The proposed load flow method for the unbalanced three-phase four wire multigrounded distribution system

in the presence of IBDG and Yg-Yg IBDG transformer is also based on [BIBC] and [BCBV] matrices of

the system, as discussed in the previous section.

6.3.1.1 Formulation of [BIBC] matrices

The currents of the phase branches of the distribution system can be obtained in terms of equivalent injection

currents, by applying KCL equation at each phase bus (excluding substation bus and inverter bus) of the

distribution system shown in Fig. 6.4. The currents of the phase branches can be written as (similar to the

current equations given in eq. (6.2) for the case of ∆-Yg IBDG transformer),

[
Bp

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
(6.81)

As there is no physical connection between the neutral bus of the system (at the location of jth bus)

and of the IBDG transformer, the neutral currents for the distribution system shown in Fig. 6.4 (with IBDG

and Yg-Yg IBDG transformer) are exactly same as the neutral currents of system shown in Fig. 5.1 (without

IBDG and IBDG transformer) and are given as (from eq. (5.8) of Chapter 5),

[
Bn

]
= −

[
BIBCpn

] [
IL

]
+
[
BIBCg

] [
Ing

]
(6.82)

From Fig. 6.4, it is observed that the neutral point at the primary side of the IBDG transformer is connected

to the ground bus gj at jth bus through an impedance of Z̄gtp. Therefore, the modification in ground currents
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of the system are given as,

B̄g
1 = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− ĪgT,p

B̄g
2 = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− ĪgT,p

B̄g
i = −Īngj − Ī

g
T,p

B̄g
k = −Īngl − Ī

ng
m − Īngnb

B̄g
l = −Īngm − Īngnb

B̄g
m = −Īngnb

(6.83)[
Bg

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCgT

] [
IgT

]
(6.84)

where,
[
BIBCg

]
matrix has already been described in eq. (5.8) of Subsections 5.2.1.3 of Chapter 5 and

[
BIBCgT

]
=

[
BIBCg(:, Tbg)

]
=
[
1 1 · · · 1 · · · 0 0 0

]T
[
IgT

]
= ĪgT,p = ĪaT,p + ĪbT,p + ĪcT,p

The
[
BIBCgT

]
matrix contains column vector of

[
BIBCg

]
matrix corresponding to the ground g at the

location of transformer bus Tb (in Fig. 6.4, Tb = j). The size of
[
BIBCgT

]
matrix for an unbalanced

three phase four wire multigrounded distribution system, having u three-phase, v two-phase, w single-

phase, (u + v + w) neutral and (u + v + w) ground buses with nt number of IBDG transformers, will be

(u+ v + w − 1)× nt.

Now, the voltage equations of the phase buses, neutral buses and ground buses are similar to the case of

∆-Yg IBDG transformer is used in the distribution system, as given in Subsection 6.2.1.2 (eqs. (6.6)-(6.8)).

Therefore, the voltages of phase buses, neutral buses and ground buses are calculated with the help of eqs.

(6.6)-(6.8), (6.81), (6.82) and (6.84) as,[
Vp

]
=
[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
−
[
DLFGTp

] [
IgT

]
(6.85)[

Vn

]
=
[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DLFGTn

] [
IgT

]
(6.86)[

Vg

]
=
[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DLFGTg

] [
IgT

]
(6.87)

where, [
DLFGTp

]
= −

[
BCBVpg

] [
BIBCgT

]
[
DLFGTn

]
= −

[
BCBVpn

] [
BIBCgT

]
[
DLFGTg

]
= −

[
BCBVg

] [
BIBCgT

]
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The neutral to ground current
[
Ing

]
is then calculated using eqs. (6.13), (6.86) and (6.87)

[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]
+

[
DLFGTgn

] [
IgT

]}
(6.88)

where, [
DLFGTgn

]
=
[
DLFGTg

]
−
[
DLFGTn

]
Therefore, the voltages of the phase buses (except inverter bus), neutral buses and ground buses can be

obtained using eqs. (6.85)-(6.88) as,[
Vp

]
=
[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
−
[
F1GT

] [
IgT

]
(6.89)[

Vn

]
=
[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
−
[
F2GT

] [
IgT

]
(6.90)[

Vg

]
=
[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
−
[
F3GT

] [
IgT

]
(6.91)

where, [
F1GT

]
=
[
DLF2

] [
ZFNG

]−1 [
DLFGTgn

]
+
[
DLFGTp

]
[
F2GT

]
=
[
DLF4

] [
ZFNG

]−1 [
DLFGTgn

]
+
[
DLFGTn

]
[
F3GT

]
=
[
DLF6

] [
ZFNG

]−1 [
DLFGTgn

]
+
[
DLFGTg

]
The inverter bus voltage of the system shown in Fig. 6.4 is calculated using eq. (6.80) as,

Vabc
inv = Yabc

ss,T
−1(

Iabcinv −Yabc
sp,TVabc

j −Yn
sp,TVn

T,p −Yn
ss,TVn

T,s

)
(6.92)

Steps of algorithm for the load flow analysis of unbalanced three phase four wire multigrounded radial

distribution system in the presence of IBDG and Yg-Yg IBDG transformer

1. Initialize and then generate the
[
BIBC

]
matrices for the phase branch, neutral and ground cur-

rents, and
[
BCBV

]
matrices for the voltages of phase buses, neutral buses and ground buses of the

unbalanced three-phase four wire multigrounded distribution system with IBDG and Yg-Yg IBDG

transformer.

2. Set the iteration counter k = 0. Also, set the values of all phase a bus voltages at (1.0 + j0.0) p.u.,

phase b bus voltages at (−0.500− j0.866) p.u., phase c bus voltages at (−0.500 + j0.866) p.u. and

all neutral and ground bus voltages at (0.0 + j0.0) p.u. throughout the system.
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3. Calculate the equivalent bus injection currents
[
IL
]k at all the phase buses of the system using eq.

(5.3) of Chapter 5. Also, calculate the inverter current of the IBDG as,

Īpinv = ĪpT,s =

(
S̄pdg

V̄ p
inv − V̄ n

T,s

)∗
=

(
P pdg + jQpdg
V̄ p
inv − V̄ n

T,s

)∗
; (p = a, b, c)

where, S̄pdg is the complex power injected by the IBDG at phase p of inverter bus; P pdg andQpdg are the

active and reactive power generated by the IBDG at phase p of inverter bus, respectively; V̄ p
inv is the

pth phase voltage of inverter bus; V̄ n
T,s is the neutral bus voltage on the secondary side of the IBDG

transformer.

4. Calculate the primary winding currents
[
IabcT,p

]k
of the Yg-Yg IBDG transformer by using eq. (6.80).

5. k = k + 1.

6. Calculate the voltages of phase buses, neutral buses and ground buses
(
[Vp]k, [Vn]k and [Vg]k

)
of the system using eqs. (6.89)-(6.91). Also, calculate the neutral bus voltages on the primary and

secondary side of the transformer (V̄ n
T,p and V̄ n

T,s) using eq. (6.75). The inverter bus voltage
[
Vabc

inv

]k
of the IBDG is then calculated by using eq. (6.92).

7. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp

]k − [Vp

]k−1
∣∣∣∣, ∣∣∣∣[Vn

]k − [Vn

]k−1
∣∣∣∣, ∣∣∣∣[Vg

]k − [Vg

]k−1
∣∣∣∣)

8. If ε ≥ tolerance(1.0× 10−12), then go to step 3, else go to the next step.

9. The obtained values of the voltages
[
Vp

]
,
[
Vn

]
and

[
Vg

]
are the final values of the load flow

solution.

6.3.2 Short-circuit analysis of unbalanced three phase four wire multigrounded radial distri-

bution system with IBDG and Yg-Yg IBDG transformer

Two different short-circuit analysis methods have been proposed for the unbalanced three phase four wire

multigrounded distribution system with IBDG and Yg-Yg IBDG transformer. One of the proposed method

is based on
[
BIBC

]
and

[
BCBV

]
matrices of the system, while the other one is based on

[
Ybus

]
matrix

of the system. Both the methods are discussed in details in the following sub-sections.
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6.3.2.1 Method 1:
[
BIBC

]
matrix based method

Different short-circuit faults are discussed in the following subsections.

(a) Single line-to-ground (SLG) fault

Let us assume that an SLG fault occurs between the phase a and the local ground gl at lth bus location

through a fault impedance z̄f , as shown in Fig. 6.2(a) [158], and the fault current Īaf is flowing from phase

a to the ground gl at lth bus. Therefore, the phase branch current due to SLG fault can be calculated as

(similar to the case discussed in Subsection 6.2.2.1(a) for ∆-Yg IBDG transformer)[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.93)

where, definition of
[
BIBCfp

]
matrix for an SLG fault has already been given in eq. (6.19) of Subsection

6.2.2.1(a). Now, the modified ground currents due to SLG fault at phase a of the lth bus of the system, as

shown in Fig. 6.4, can be written as,

B̄g
1,f = −Īng2 − Ī

ng
3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− ĪgT,p − Ī
a
f

B̄g
2,f = −Īng3 − · · · − Ī

ng
i − Ī

ng
j − · · · − Ī

ng
k − Ī

ng
l − Ī

ng
m − Īngnb

− ĪgT,p − Ī
a
f

B̄g
i,f = −Īngj − Ī

g
T,p

B̄g
k,f = −Īngl − Ī

ng
m − Īngnb

− Īaf

B̄g
l,f = −Īngm − Īngnb

B̄g
m,f = −Īngnb

(6.94)

Hence, the modified ground currents due to SLG fault can be expressed in the matrix form as,[
Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCgT

] [
IgT

]
−
[
BIBCfg

] [
If

]
(6.95)

where, definition of
[
BIBCfg

]
matrix for an SLG fault has already been given in eq. (6.21) of Subsection

6.2.2.1(a).

Therefore, the voltages of phase buses, neutral buses and ground buses under the fault conditions are

calculated using the modified phase and ground currents (using eqs. (6.4),(6.6)-(6.8), (6.93) and (6.95)) as,[
Vp,f

]
=

[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
−
[
DLFGTp

] [
IgT

]
−

[
DFF1

] [
If

]
(6.96)

[
Vn,f

]
=

[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DLFGTn

] [
IgT

]
−

[
DFF2

] [
If

]
(6.97)
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[
Vg,f

]
=

[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DLFGTg

] [
IgT

]
−

[
DFF3

] [
If

]
(6.98)

where,
[
DFF1

]
,
[
DFF2

]
and

[
DFF3

]
matrices for an SLG fault have already been defined in eqs. (6.23)-

(6.25).

Now, the neutral to ground currents are calculated using the voltages of neutral buses and ground buses

under the fault condition (using eqs. (6.13), (6.97) and (6.98)) as,[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]
+

[
DLFGTgn

] [
IgT

]
+

[ [
DFF3

]
−
[
DFF2

] ] [
If

]}
(6.99)

Therefore, the voltages of phase buses, neutral buses and ground buses under the fault conditions are ob-

tained using eqs. (6.96)-(6.99) as,[
Vp,f

]
=

[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
−
[
F1GT

] [
IgT

]
−

[
DFF1n

] [
If

]
(6.100)

[
Vn,f

]
=

[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
−
[
F2GT

] [
IgT

]
−

[
DFF2n

] [
If

]
(6.101)

[
Vg,f

]
=

[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
−
[
F3GT

] [
IgT

]
−

[
DFF3n

] [
If

]
(6.102)

where, matrices
[
DFF1n

]
,
[
DFF2n

]
and

[
DFF3n

]
for an SLG fault have already been defined in eqs.

(6.27)-(6.29).

Now, the voltage equation at fault bus is written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f (6.103)

where, V̄ a
l,f and V̄ g

l,f are the voltages of phase a and ground g at fault bus l, respectively. Substituting the

values of V̄ a
l,f and V̄ g

l,f from eqs. (6.100) and (6.102) into eq. (6.103), with an assumption that the neutral

and ground buses at the substation end are perfectly grounded (i.e. at zero potential; V̄ n
s = 0, V̄ g

s = 0), and

writing it in the matrix form as,[
Zf

] [
If

]
= V̄ a

s −
[
F1PLD(f qb , :)

] [
IL

]
−
[
F1Tm(f qb , :)

] [
IT,p

]
−
[
F1GT(f qb , :)

] [
IgT

]
−

[
DFF1n(f qb , 1)

] [
If

]
+
[
F3PLD(gfb , :)

] [
IL

]
+
[
F3Tm(gfb , :)

] [
IT,p

]
+

[
F3GT(gfb , :)

] [
IgT

]
+
[
DFF3n(gfb , 1)

] [
If

]
(6.104)
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where, for SLG fault (at phase a of lth bus),
[
F1GT(f qb , :)

]
represents the row vector of matrix

[
F1GT

]
corresponding to the faulty phase q (here, q = a) of faulted bus fb (here, fb = l);

[
F3GT(gfb , :)

]
represents

the row vector of matrix
[
F3GT

]
corresponding to the ground gfb at the location of faulted bus fb; rest of

the matrices for an SLG fault have already been defined in Subsection 6.2.2.1(a).

Hence, the fault current
[
If

]
is obtained from eq. (6.104) as,

[
If

]
=
[
ZF1

]−1
V̄ a
s −

[
Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
−
[
Fflt
13GT

] [
IgT

]
(6.105)

where,
[
ZF1

]
,
[
Fflt
13PLD

]
and

[
Fflt
13Tm

]
matrices for an SLG fault have already been described in eq.

(6.32) of subsection 6.2.2.1(a) and[
Fflt
13GT

]
=

[
ZF1

]−1
{[

F1GT(f qb , :)
]
−
[
F3GT(gfb , :)

]}

Once the value of fault current
[
If

]
is estimated from eq. (6.105) (with the help of pre-fault load flow

solution), the initial values of voltages of phase buses (except inverter bus), neutral buses and ground buses

under the fault conditions are calculated using eqs. (6.100)-(6.102). Also, the initial estimate of inverter

current for an SLG fault (at phase a of lth bus in the system shown in Fig. 6.4) is obtained with the help of

calculated bus voltages and eq. (6.80) as,

Iabcinv,f ,est = Yabc
sp,TVabc

j,f + Yabc
ss,TVabc

inv,st + Yn
sp,TVn

T,p,f + Yn
ss,TVn

T,s,st (6.106)

where, Vabc
j,f is the estimated three phase voltage vector of jth bus (where an IBDG is connected through

a step-down Yg-Yg IBDG transformer) under the fault conditions; Vn
T,p,f is the estimated voltage vector of

neutral bus at the primary side of IBDG transformer under the fault conditions; Vabc
inv,st is the inverter bus

voltage vector obtained from the steady state load flow solution; Vn
T,s,st is the neutral bus voltage vector on

the secondary side of IBDG transformer obtained from the steady state load flow solution.

Now, depending upon the magnitude of Iabcinv,f ,est, there can be two possible cases of inverter operation

during fault as discussed in Subsection 6.2.2.1(a),

Case 1: If |Īpinv,f,est| ≤ I
inv
sc ; (p = a,b,c)

If the magnitude of estimated inverter current |Īpinv,f,est| for each phase, calculated using eq. (6.106), is

less than the short-circuit capacity of the inverter (Iinvsc ), then the voltages of phase buses, neutral buses and

ground buses calculated using eqs. (6.100)-(6.102) are the final values of the voltages of the system under

the fault conditions.

Case 2: If |Īpinv,f,est| > Iinvsc ; (p=a, or b, or c)
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In this case, the magnitude of inverter current is restricted to its short-circuit capacity (Iinvsc ), by oper-

ating the inverter in constant current control mode (similar to the case discussed in Subsection 6.2.2.1(a)).

Hence the inverter current under the fault conditions is given as,

Īpinv,f = |Īpinv,f |∠Ψp
inv,f = Iinvsc ∠Ψp

inv,f ; (p = a, b, c) (6.107)

where Ψp
inv,f is the unknown inverter current angle corresponding to phase ’p’ under the fault conditions.

To solve for these unknown angles, it is assumed that, Ψabc
inv,f = π

2 + θabcinv,f , where θabcinv,f is the three phase

voltage angle vector of the inverter bus under the fault conditions. Therefore,

Īpinv,f = Iinvsc
π
2 + θpinv,f ; (p = a, b, c) (6.108)

Hence with this inverter control strategy (eq. (6.108)), the inverter bus voltage along with the unknown

current angles under the fault conditions can be calculated by solving the eq. (6.106). To solve the non-linear

equation (eq. (6.106)), Newton Raphson method, as discussed in Subsection 6.2.2.1(a), has also been used

here. Once, the inverter bus voltages under the fault conditions are obtained, the primary winding currents

of the IBDG transformer under the fault conditions would be calculated using eq. (6.80). Also, the neutral

to ground currents on primary and secondary side of the IBDG transformer would be calculated using eq.

(6.74). Therefore, the final solution of bus voltages under the fault conditions are then calculated using the

eqs. (6.100)-(6.102).

(b) Double line-to-ground (LLG) fault

Let us assume that an LLG fault occurs between phases a and b, and the local ground gl at the location

of lth bus through a fault impedance z̄f , as shown in Fig. 6.2(b) [158]. The fault currents Īaf and Ībf are

flowing from phases a and b to the ground gl at lth bus, respectively. Therefore, the modified phase branch

currents and ground currents of the system due to LLG fault are given as,[
Bp,f

]
=

[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.109)[

Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCgT

] [
IgT

]
−
[
BIBCfg

] [
If

]
(6.110)

where, definitions of
[
BIBCfp

]
and

[
BIBCfg

]
matrices for an LLG fault have already been given in eqs.

(6.45) and (6.47) of Subsection 6.2.2.1(b), respectively. The bus voltages for LLG fault are then estimated

by eqs. (6.100)-(6.102). Now, the voltage equations for an LLG fault at fault bus can be written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f

z̄f Ī
b
f = V̄ b

l,f − V̄
g
l,f (6.111)
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Hence, the fault current
[
If

]
for an LLG fault can be obtained from eqs. (6.100), (6.102) and (6.111) as,

[
If

]
=
[
ZF1

]−1

V̄ a
s

V̄ b
s

− [Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
−
[
Fflt
13GT

] [
IgT

]
(6.112)

where,
[
ZF1

]
,
[
Fflt
13PLD

]
and

[
Fflt
13Tm

]
matrices for LLG fault have already been defined in eq. (6.50) of

Subsection 6.2.2.1(b) and

[
Fflt
13GT

]
=

[
ZF1

]−1


F1GT(f q1b , :)

F1GT(f q2b , :)

−
F3GT(gfb , :)

F3GT(gfb , :)


Hence, the initial estimate of fault currents for an LLG fault is obtained from the eq. (6.112) (with the help

of pre-fault load flow solution) and rest of the procedure to obtain the final solution for an LLG fault is

similar to the procedure described in Subsection 6.3.2.1(a) for SLG fault.

(c) Triple line-to-ground (LLLG) fault

Let us consider an LLLG fault between all the a, b and c phases, and the local ground gl at lth bus

through a fault impedance z̄f , as shown in Fig. 6.2(c) [158]. The fault currents Īaf , Ībf and Īcf are flowing

from phases a, b and c to the ground gl at lth bus, respectively. Therefore, the modified phase branch currents

and ground currents of the system due to LLLG fault can be written as,[
Bp,f

]
=

[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.113)[

Bg,f

]
= −

[
BIBCg

] [
Ing

]
−
[
BIBCgT

] [
IgT

]
−
[
BIBCfg

] [
If

]
(6.114)

where, definitions of
[
BIBCfp

]
and

[
BIBCfg

]
matrices for an LLLG fault have already been given in eqs.

(6.52) and (6.54) of Subsection 6.2.2.1(c), respectively. The bus voltages for LLLG fault are then estimated

by eqs. (6.100)-(6.102). The voltage equations for an LLLG fault at fault bus can be written as,

z̄f Ī
a
f = V̄ a

l,f − V̄
g
l,f

z̄f Ī
b
f = V̄ b

l,f − V̄
g
l,f

z̄f Ī
c
f = V̄ c

l,f − V̄
g
l,f (6.115)

Hence, the fault current
[
If

]
for an LLLG fault is obtained from eqs. (6.100), (6.102) and (6.115) as,

[
If

]
=
[
ZF1

]−1


V̄ a
s

V̄ b
s

V̄ c
s

− [Fflt
13PLD

] [
IL

]
−
[
Fflt
13Tm

] [
IT,p

]
−
[
Fflt
13GT

] [
IgT

]
(6.116)
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where,
[
ZF1

]
,
[
Fflt
13PLD

]
and

[
Fflt
13Tm

]
matrices for LLLG fault have already been defined in eq. (6.57)

of Subsection 6.2.2.1(c) and

[
Fflt
13GT

]
=

[
ZF1

]−1




F1GT(f q1b , :)

F1GT(f q2b , :)

F1GT(f q3b , :)

−


F3GT(gfb , :)

F3GT(gfb , :)

F3GT(gfb , :)




Hence, the initial estimate of fault currents for LLLG fault is obtained from the eq. (6.116) (with the help of

pre-fault load flow solution) and rest of the procedure to obtain the final solution for LLLG fault is same as

described in Subsection 6.3.2.1(a) for SLG fault.

(d) Line-to-line (LL) fault

Let us consider an LL fault occurs between phases a and b of lth bus through a fault impedance z̄f , as

shown in Fig. 6.2(d) [158]. The fault current Īaf is flowing from phase a to b at lth bus. Hence, only the

phase branch currents will modify due to LL fault and can be written as,[
Bp,f

]
=
[
BIBCp

] [
IL

]
+
[
TIBCTm

] [
IT,p

]
+
[
BIBCfp

] [
If

]
(6.117)

where, definition of
[
BIBCfp

]
matrix for an LL fault has already been given in eq. (6.59) of Subsection

6.2.2.1(d), respectively.

The voltages of phase bus, neutral bus and ground bus under the fault conditions are calculated using

the modified phase branch currents as obtained in eq. (6.117) as,[
Vp,f

]
=

[
Vss

]
−
[
DLF1

] [
IL

]
−
[
DLF2

] [
Ing

]
−
[
DLFTmp

] [
IT,p

]
−
[
DLFGTp

] [
IgT

]
−

[
DFF

′
1

] [
If

]
(6.118)

[
Vn,f

]
=

[
Vsn

]
−
[
DLF3

] [
IL

]
−
[
DLF4

] [
Ing

]
−
[
DLFTmn

] [
IT,p

]
−
[
DLFGTn

] [
IgT

]
−

[
DFF

′
2

] [
If

]
(6.119)

[
Vg,f

]
=

[
Vsg

]
−
[
DLF5

] [
IL

]
−
[
DLF6

] [
Ing

]
−
[
DLFTmg

] [
IT,p

]
−
[
DLFGTg

] [
IgT

]
−

[
DFF

′
3

] [
If

]
(6.120)

where,
[
DFF

′
1

]
,
[
DFF

′
2

]
and

[
DFF

′
3

]
matrices for an LL fault have already been defined in eqs. (6.60)-

(6.62).
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The neutral to ground current under the fault conditions is then calculated by using eqs. (6.13), (6.119) and

(6.120) as,[
Ing

]
=

[
ZFNG

]−1{[
Vsn

]
−
[
Vsg

]
+

[ [
DLF5

]
−
[
DLF3

] ] [
IL

]
+
[
DLFTmgn

] [
IT,p

]
+

[
DLFGTgn

] [
IgT

]
+

[ [
DFF

′
3

]
−
[
DFF

′
2

] ] [
If

]}
(6.121)

Therefore, the voltages of phase, neutral and ground buses under the fault conditions are then recalculated

using eqs. (6.118)-(6.121) as,[
Vp,f

]
=

[
Vss

]
−
[
F1ng

]{ [
Vsn

]
−
[
Vsg

]}
−
[
F1PLD

] [
IL

]
−
[
F1Tm

] [
IT,p

]
−

[
F1GT

] [
IgT

]
−
[
DFF

′
1n

] [
If

]
(6.122)

[
Vn,f

]
=

[
F2nn

] [
Vsn

]
−
[
F2gg

] [
Vsg

]
−
[
F2PLD

] [
IL

]
−
[
F2Tm

] [
IT,p

]
−

[
F2GT

] [
IgT

]
−
[
DFF

′
2n

] [
If

]
(6.123)

[
Vg,f

]
=

[
F3gg

] [
Vsg

]
−
[
F3nn

] [
Vsn

]
−
[
F3PLD

] [
IL

]
−
[
F3Tm

] [
IT,p

]
−

[
F3GT

] [
IgT

]
−
[
DFF

′
3n

] [
If

]
(6.124)

where,
[
DFF

′
1n

]
,
[
DFF

′
2n

]
and

[
DFF

′
3n

]
matrices for an LL fault have already been defined in eqs.

(6.64)-(6.66).

The voltage equation for an LL fault at fault bus can be written as,

z̄f Ī
a
f = V̄ a

l,f − V̄ b
l,f (6.125)

Therefore, the fault current
[
If

]
for an LL fault is calculated using eqs. (6.122) and (6.125) as,

[
If

]
=
[
ZF1

]−1
(V̄ a
s − V̄ b

s )−
[
Fflt
11PLD

] [
IL

]
−
[
Fflt
11Tm

] [
IT,p

]
−
[
Fflt
11GT

] [
IT,p

]
(6.126)

where,
[
ZF1

]
,
[
Fflt
11PLD

]
and

[
Fflt
11Tm

]
matrices for an LL fault have already been defined in eq. (6.69)

and [
Fflt
11GT

]
=

[
ZF1

]−1
{[

F1GT(f q1b , :)
]
−
[
F1GT(f q2b , :)

]}

The matrices
[
F1GT(f q1b , :)

]
and

[
F1GT(f q2b , :)

]
are the row vectors of matrix

[
F1GT

]
corresponding to

the faulty phases q1 and p2 of faulted bus fb (here, fb = l, q1 = a, q2 = b), respectively. Therefore, the initial
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estimate of fault current is calculated by using eq. (6.126) (with the help of pre-fault load flow solution) and

rest of the procedure, to obtain the final solution under the LL fault, is similar to the procedure discussed in

Subsection 6.3.2.1(a) for SLG fault.

Steps of algorithm for
[
BIBC

]
matrix based short-circuit analysis method for the unbalanced three

phase four wire multigrounded radial distribution system in the presence of IBDG and Yg-Yg IBDG

transformer

1. Run the base case power flow of three phase four wire multigrounded system in the presence of IBDG

and Yg-Yg IBDG transformer using the proposed load flow method as discussed in Subsection 6.3.1

of this chapter.

2. Convert all PQ-loads into constant impedance loads using the obtained load flow solution.

3. If a ground fault (SLG, LLG, LLLG) occurs in the system, then formulate
[
BIBCfp

]
,
[
BIBCfg

]
and

[
Zf

]
matrices corresponding to the type of fault occurring in the system using the proposed[

BIBC
]

and
[
BCBV

]
matrices based short-circuit analysis method. If a line to line (LL) fault

occurs, then formulate only
[
BIBCfp

]
and

[
Zf

]
matrices.

4. Set iteration counter k = 0. Also, set the values of voltages of phase bus, neutral bus and ground bus,

equivalent injection currents
[
IL

]k
and transformer primary winding currents

[
IT,p

]k
equal to the

values obtained from the pre-fault load flow solutions.

5. Calculate the fault current
[
If

]k
using eq. (6.105) for SLG fault, eq. (6.112) for LLG fault, eq.

(6.116) for LLLG fault and eq. (6.126) for LL fault.

6. Increment the iteration counter by one, k = k+1. Calculate the voltages of phase buses, neutral buses

and ground buses
([

Vp,f

]k,
[
Vn,f

]k and
[
Vg,f

]k) of the system under the fault conditions, using

eqs. (6.100)-(6.102), for ground faults and using eqs. (6.122)-(6.124), for LL fault, respectively.

7. Calculate the inverter current Iabcinv,f of the IBDG under fault conditions using the transformer nodal

admittance matrix based current equation as given in eq. (6.80) (with the new values of bus voltages

under the fault conditions as obtained in previous step).

8. Check the condition, whether |Īpinv,f,est| ≤ Iinvsc ; (p = a, b, c) for all IBDGs in the system. The three

possible cases are:

Case (A): If |Īpinv,f,est| ≤ I
inv
sc , (p = a, b, c) for all nd - no. of IBDGs, then go to step 12, else
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Case (B): If |Īpinv,f,est|, (p = a, b, c) of all nd - no. of IBDGs are greater than their corresponding

short-circuit current capacities, then operate the inverter of all the IBDGs in constant current mode

with, Īpinv,f = Iinvsc
π
2 + θpinv,f , (p = a, b, c) and calculate the inverter bus voltages under the fault

conditions (Vabc
inv,f ) using the Newton-Raphson method as discussed in Subsection 6.2.2.1(a). Also,

calculate the neutral bus voltages (V̄ n
T,p and V̄ n

T,s) on primary as well as secondary side of the IBDG

transformers using eq. (6.75) and go to step 9, else

Case (C): If out of nd - no. of IBDGs, for kd - no. of IBDGs |Īpinv,f,est| ≤ Iinvsc , (p = a, b, c)

and for the remaining (nd − kd) - no. of IBDGs |Īpinv,f,est| > Iinvsc , (p = a, b, c), then set Īpinv,f =

Iinvsc ∠(π2 + θpinv,f ), (p = a, b, c) for (nd − kd) - no. of IBDGs, while for kd - no. of IBDGs set

Iabcinv,f = Iabcinv,f ,est and calculate the inverter bus voltages under the fault conditions (Vabc
inv,f ), for

(nd− kd) - no. of IBDGs, using the Newton-Raphson method as discussed in Subsection 6.2.2.1(a).

Also, calculate the neutral bus voltages (V̄ n
T,p and V̄ n

T,s) on primary as well as secondary side of the

IBDG transformers using eq. (6.75) and go to step 9.

9. Calculate the transformer primary winding currents and equivalent bus injection currents at all the

phase buses under the fault conditions as,

IabcT,p,f = Yabc
pp,TVabc

T,p,f + Yabc
ps,TVabc

inv,f + Yn
pp,TVn

T,p + Yn
ps,TVn

T,s

Īpid =

(
V̄ p
i,f − V̄

n
i,f

z̄pid

)
; (p = a, or b, or c); (i = 2, · · · , nb)

where, V̄ p
i,f and V̄ n

i,f are the voltages at phase p and neutral n of ith bus under fault conditions,

respectively. z̄pid is an equivalent load impedance at phase p of ith bus.

10. Calculate the error (ε),

ε = max

(∣∣∣∣[Vp,f

]k − [Vp,f

]k−1
∣∣∣∣, ∣∣∣∣[Vn,f

]k − [Vn,f

]k−1
∣∣∣∣, ∣∣∣∣[Vg,f

]k − [Vg,f

]k−1
∣∣∣∣)

11. If ε < tolerance(1.0× 10−12), then go to the next step, else go to step 5.

12. The obtained values of voltages
[
Vp,f

]
,
[
Vn,f

]
and

[
Vg,f

]
are the final values of the voltages under

the fault condition and stop the simulation..

The overall flow-chart of the proposed
[
BIBC

]
matrix based short-circuit analysis method with IBDG and

Yg-Yg IBDG transformer is shown in Fig 6.5.
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Figure 6.5: Flow-chart of the proposed
[
BIBC

]
matrix based short-circuit

analysis method with IBDG and Yg-Yg IBDG transformer

6.3.2.2 Method 2:
[
Ybus

]
matrix based method

The details of KCL equations at all the buses (except at inverter bus) of unbalanced three-phase four wire

multigrounded distribution system have already been described in eqs. (5.82)-(5.92) of Subsection 5.3.2 of
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Chapter 5. With the addition of IBDG at jth bus of the system, through a Yg-Yg IBDG transformer, the KCL

equation at jth bus of the system shown in Fig. 6.4 will be modified as,

Yabcng
ji Vabcng

i + Yabcng
jj new

Vabcng
j + Yn

pp,Tmd
Vn

T,p = −Yabcng
ps,T(Yg−Yg)

Vabcng
inv,st −Yn

ps,Tmd
Vn

T,s,st

(6.127)

where, Yabcng
jj new

= Yabcng
jj + Yabcng

pp,T(Yg−Yg)
,

Yabcng
pp,T(Yg−Yg)

=



Ȳ aa
pp,T Ȳ ab

pp,T Ȳ ac
pp,T 0 0

Ȳ ba
pp,T Ȳ bb

pp,T Ȳ bc
pp,T 0 0

Ȳ ca
pp,T Ȳ cb

pp,T Ȳ cc
pp,T 0 0

0 0 0 0 0

0 0 0 0 Ȳgtp


; Yabcng

ps,T(Yg−Yg)
=



Ȳ aa
ps,T Ȳ ab

ps,T Ȳ ac
ps,T 0 0

Ȳ ba
ps,T Ȳ bb

ps,T Ȳ bc
ps,T 0 0

Ȳ ca
ps,T Ȳ cb

ps,T Ȳ cc
ps,T 0 0

0 0 0 0 0

0 0 0 0 0


;

Yn
pp,Tmd

=
[
−yt −yt −yt 0 −Ȳgtp

]T
; Yn

ps,Tmd
=
[
yt yt yt 0 Ȳgts

]T
Ȳgtp = 1

Z̄gtp
; Ȳgts = 1

Z̄gts
; Vabcng

inv,st =
[
V̄ a
inv,st V̄ b

inv,st V̄ c
inv,st 0 0

]T
is an inverter bus voltage vector

and Vn
T,s,st = V̄ n

T,s,st is neutral bus voltage on the secondary side of the transformer, obtained from pre-

fault steady state load flow solution. As mutual coupling has been considered only between primary and

secondary phases of IBDG transformer, the entries of mutual admittances between phases and neutral, and

between phases and ground in matrices Yabcng
pp,T(Yg−Yg)

and Yabcng
ps,T(Yg−Yg)

, are zero. Also, the neutral point

of the IBDG is solidly grounded (as shown in Fig. 6.4), therefore, the elements of the inverter bus voltage

vector Vabcng
inv,st , corresponding to the neutral and ground buses, are zero. A new neutral bus on primary

side of the IBDG transformer has also been introduced in the system (due to connection of neutral bus on

primary side of (Yg-Yg) IBDG transformer to the ground bus at the location of jth system bus), the KCL

equation is also applied on this bus as,

Ȳgtp(V̄
n
T,p − V̄

g
j ) = ĪgT,p = ĪaT,p + ĪbT,p + ĪcT,p (6.128)

Now, the eq. (6.128) can be rewritten using eq. (6.77) as,

Ȳgtp(V̄
n
T,p − V̄

g
j ) = ytV̄

a
j + ytV̄

b
j + ytV̄

c
j − ytV̄ a

inv − ytV̄ b
inv − ytV̄ c

invj − 3ytV̄
n
T,p + 3ytV̄

n
T,s

− ytV̄ a
j − ytV̄ b

j − ytV̄ c
j − ȲgtpV̄

g
j + (Ȳgtp + 3yt)V̄

n
T,p = −ytV̄ a

inv − ytV̄ b
inv − ytV̄ c

invj + 3ytV̄
n
T,s (6.129)

Therefore, the KCL equations (combined eqs. (5.82)-(5.92), (6.127) and (6.129)) of the system (except at

the inverter bus) can then be written in the matrix form as,[
Ybus Tm

]
.
[
V
]

=
[
I
]

(6.130)
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The size of
[
Ybus Tm

]
matrix for the unbalanced distribution system considered is (5u+ 4v + 3w + nt−

5) × (5u + 4v + 3w + nt − 5). Once, the
[
Ybus Tm

]
matrix of the system has been formed, rest of the

formulation for various short-circuit faults is exactly similar to the formulation given in Subsection 6.2.2.2

for the case with ∆-Yg IBDG transformer.

6.4 Test results and discussions

To investigate the accuracy of the proposed load flow and short-circuit analysis method, two different three

phase four wire multigrounded test systems, with IBDGs and IBDG transformers have been used in this

study. The first test system is modified IEEE 34-bus test feeder and the second one is modified IEEE 123-

bus test feeder. Details of these systems are given in Section 5.4 of Chapter 5. The proposed load flow and

short-circuit analysis methods have been implemented in MATLAB environment with a tolerance limit (ε)

of 1.0× 10−12.

6.4.1 Results of test systems with IBDGs and ∆-Yg IBDG transformers

In this subsection, ∆-Yg type of IBDG transformer has been used for the connection of IBDG to the grid.

The ∆Yg-1 IBDG transformer is used in this work and its nodal admittance matrix model (p.u.) is given

as [80],

YT(∆Yg−1) = yt



2
3 −1

3 −1
3 − 1√

3
1√
3

0

−1
3

2
3 −1

3 0 − 1√
3

1√
3

−1
3 −1

3
2
3

1√
3

0 − 1√
3

− 1√
3

0 1√
3

1 0 0

1√
3
− 1√

3
0 0 1 0

0 1√
3
− 1√

3
0 0 1


(6.131)

where, yt is an equivalent transformer leakage admittance in p.u. and its value is assumed as (0.000−16.92i)

p.u. [146]. It is a step down transformer with its turns ratio assumed as 24.9/0.480 kV for the modified IEEE

34-bus test system and as 4.16/0.480 kV for the modified IEEE 123-bus test system..

6.4.1.1 Results of modified three phase four wire multigrounded IEEE 34-bus test system in

the presence of IBDGs and ∆-Yg IBDG transformers

(a). Results of load flow studies

Three different sized IBDGs have been considered in this system and their detailed informations are

given in Table 6.1. These IBDGs are connected at different buses of the system, as shown in column 2 of

Table 6.1. The total installed capacity of IBDGs is considered as 20% of total active power load [146] in
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Table 6.1: Details of the IBDGs installed in the modified IEEE 34-bus test sys-

tem

IBDG No. IBDG location

IBDG installed Short-circuit

capacity, Pdg current capacity, I invsc

(Bus No.) (per phase) (kW) (per phase) (Amp)

1. 16 53 95.26

2. 25 53 95.26

3. 30 71 127.02

the system and is given in column 3 of Table 6.1. The short-circuit current capacity (Iinvsc ) of each IBDG is

assumed as 150% of the rated inverter current [146]. The value of Iinvsc for various IBDGs is given in column

4 of Table 6.1. It is also assumed that all IBDGs are operating at unity power factor under normal operating

condition. The load flow analysis of the test system has been performed by using the proposed method (as

discussed in subsection 6.2.1 for ∆-Yg IBDG transformer). The results obtained by the proposed method

have been compared with those obtained by the [Ybus] matrix based method [135], which also incorporates

the nodal admittance matrix of the transformer in system admittance matrix, and the time domain simulation

studies carried out using PSCAD/EMTDC software.

The bar graph for the bus voltage of phase a of the test system with IBDGs, has been obtained by the

proposed method and plotted along with the bus voltage values obtained by the
[
Ybus

]
matrix based method

and PSCAD/EMTDC simulation studies, as shown in Fig. 6.6. The figure shows that the results obtained

by the proposed method are very close to the results of the
[
Ybus

]
matrix method and PSCAD/EMTDC

studies, which establishes the accuracy of the proposed method. Similarly, the bar graphs of the neutral bus

and ground bus voltages obtained by the proposed method,
[
Ybus

]
matrix method and PSCAD/EMTDC

simulation are also shown in Figs. 6.7 and 6.8, respectively. A good match between the results obtained by

these three methods demonstrates the correctness of the proposed approach.

The current in the phase a, neutral wire and ground for the given test system calculated by the proposed

load flow method are plotted in Figs. 6.9-6.11, respectively. The values of these three currents have also

been obtained by the
[
Ybus

]
matrix based method and PSCAD/EMTDC simulation studies, and are plotted

along with the results of proposed method in Figs. 6.9-6.11. A close matching of the current values, as

observed in these figures, again validates the accuracy of the proposed method. It can also be observed form

Figs. 6.10 and 6.11, that the neutral and ground sections of branches 9 and 10 carry highest value of neutral
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Figure 6.6: Voltage profile of phase a of modified IEEE 34-bus test system in

the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions
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Figure 6.7: Voltage profile of neutral bus of modified IEEE 34-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions

and ground currents, respectively. The reason for this has already been explained in Subsection 5.4.1 of

Chapter 5.

The inverter currents (Iabcinv ) and the inverter bus voltages (Vabc
inv ) calculated by the proposed [BIBC]

225



0.00

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

BIBC

Ybus

PSCAD

Bus No.

G
ro
un
d
bu
s
vo
lt
ag
e
(k
V
)

Figure 6.8: Voltage profile of ground bus of modified IEEE 34-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions
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Figure 6.9: Branch current of phase a of modified IEEE 34-bus test system in

the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions

matrix based method and the [Ybus] matrix based method are shown in Tables 6.2 and 6.3, respectively. The

values of (Iabcinv ) and (Vabc
inv ) of all IBDGs obtained by the proposed method are exactly equal to the values
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Figure 6.10: Neutral current of modified IEEE 34-bus test system in the pres-

ence of IBDG and ∆-Yg IBDG transformer using proposed
[
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tech-

nique,
[
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technique and PSCAD/EMTDC simulation under normal op-

erating conditions

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

BIBC

Ybus

PSCAD

G
ro
u
n
d
cu
rr
en
t
(A
m
p
)

Figure 6.11: Ground current of modified IEEE 34-bus test system in the pres-

ence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
tech-

nique,
[
Ybus

]
technique and PSCAD/EMTDC simulation under normal op-

erating conditions

obtained by the [Ybus] matrix based method, which again establish the accuracy of the proposed method.

Since, all IBDGs are operating at unity power factor under the normal operating conditions, the phase angles

of inverter currents and the inverter bus voltages are same, as shown in Tables 6.2 and 6.3.
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Table 6.2: Inverter currents of modified IEEE 34-bus test system in the presence

of IBDGs and ∆-Yg IBDG transformers under normal operating conditions

IBDG Inverter current, Iabcinv (Amp)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

16 65.71∠-29.73o 65.57∠-149.58o 65.48∠90.23o 65.71∠-29.73o 65.57∠-149.58o 65.48∠90.23o

25 66.54∠-29.51o 66.31∠-149.41o 66.32∠90.37o 66.54∠-29.51o 66.31∠-149.41o 66.32∠90.37o

30 88.72∠-29.47o 88.41∠-149.37o 88.43∠90.40o 88.72∠-29.47o 88.41∠-149.37o 88.43∠90.40o

Table 6.3: Inverter bus voltages of modified IEEE 34-bus test system in the

presence of IBDGs and ∆-Yg IBDG transformers under normal operating con-

ditions

IBDG Inverter bus voltage, Vabc
inv (kV)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

16 0.2678∠-29.73o 0.2684∠-149.58o 0.2688∠90.23o 0.2678∠-29.73o 0.2684∠-149.58o 0.2688∠90.23o

25 0.2645∠-29.51o 0.2654∠-149.41o 0.2654∠90.37o 0.2645∠-29.51o 0.2654∠-149.41o 0.2654∠90.37o

30 0.2645∠-29.47o 0.2654∠-149.37o 0.2654∠90.40o 0.2645∠-29.47o 0.2654∠-149.37o 0.2654∠90.40o

A case of isolated neutral has also been simulated on the given test system with IBDGs using the pro-

posed method. The neutral bus voltage profiles of the test system for ”isolated neutral” and ”grounded

neutral” cases are shown in Fig. 6.12(a). The values of neutral voltages at all the buses in ”isolated neutral”

case are higher than the ”grounded neutral” case. This is due to the fact that, the return path for load currents

in ”isolated neutral case” is only through the neutral wire, whereas in ”grounded neutral” case the injected

load currents are divided in two paths, one through the neutral wire and the other through the ground wire.

Therefore, the values of neutral currents in ”isolated neutral” case are higher than in ”grounded neutral”

case, as shown in Fig. 6.12(b), and hence, the values of neutral bus voltages in ”isolated neutral” case are

higher.

The value of maximum ground bus voltage and maximum ground current in the test system under

normal operating condition, for various grounding resistance are plotted in Fig. 6.13(a) and (b). The figure

shows that, with the increase in grounding resistance, the value of maximum ground bus voltage as well as

maximum ground current in the system decreases (as shown in Fig. 6.13(a)). This is due to the fact that,

with the increase in grounding resistance, the value of neutral to ground current in the system decreases and
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Figure 6.12: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 34-bus test system in the presence of IBDG and ∆-Yg IBDG transformer

in ”isolated neutral” and ”grounded neutral” cases under normal operating con-

ditions

as a result the value of ground wire currents and hence the ground bus voltages of the system decreases (as

shown in Fig. 6.13(b)).

(b). Results of short-circuit studies

For investigating the efficacy of the proposed short-circuit analysis methods (
[
BIBC

]
and

[
BCBV

]
matrices based method and [Ybus] matrix based method) for the case with ∆-Yg IBDG transformer, an SLG
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Figure 6.13: (a) Maximum ground bus voltage, (b) Maximum ground current,

in modified IEEE 34-bus test system in the presence of IBDG and ∆-Yg IBDG

transformer for various grounding resistance under normal operating condition

fault in phase a of bus 28, with a fault impedance z̄f = 0.001 + 0.000i p.u. has been simulated. In the

first step, the inverter currents (Iabcinv,f ,est) of all the three IBDGs have been calculated by assuming that the

inverter bus voltages of all IBDGs under the fault conditions are maintained at their pre-fault values i.e.,

Vabc
inv,f = Vabc

inv,f ,st. The calculated values of the inverter currents obtained by both proposed methods are

given in columns 2-4 of Tables 6.4 and 6.5, respectively. These tables show that the magnitude of inverter

currents of all IBDGs are greater than their short-circuit current capacities (Iinvsc ). Hence, according to the

proposed methods, the magnitudes of inverter currents of all the phases are to be maintained at their short-

circuit current capacities
(
|Ipinv,f |= I

inv
sc , p = a, b, c

)
and their angles are maintained in such a way that all

IBDGs will deliver reactive power to the system during the short-circuit condition i.e., Ψp
inv,f = π

2 + θpinv,f ,

p = a, b, c. With this strategy, the fault current, the bus voltages and the inverter currents of all IBDGs under

the fault conditions are recalculated using the proposed short-circuit analysis methods. The final values of

inverter currents and injected powers (capacitive reactive power) by all IBDGs, obtained by the two proposed

methods, are shown in columns 5-10 of Tables 6.4 and 6.5, respectively. It is also observed from these tables

that the final values of inverter currents and injected powers by the IBDGs obtained by the two proposed

methods are identical, which again validates the accuracy of the proposed methods. The fault current (If )

and source current (Is) in phase a for this case using the proposed methods and PSCAD/EMTDC simulation

studies are given in Table 6.6. The % error in the calculated values of If and Is with respect to the values

obtained by PSCAD/EMTDC simulation study are 0.00693% and 0.00580%, respectively, as shown in Table
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Table 6.4: Results for SLG(a-g) fault at bus 28 in modified three phase four

wire multigrounded IEEE 34-bus radial test system in the presence of IBDGs

and ∆-Yg IBDG transformers using proposed [BIBC] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

16 11.363∠-107.36o 10.789∠68.57o 0.974∠124.51o 0.0953∠-125.76o 0.0953∠130.62o 0.0953∠-1.82o 59.205 66.553 77.932

25 16.365∠-109.74o 15.651∠66.35o 1.303∠125.06o 0.0953∠-128.23o 0.0953∠137.28o 0.0953∠-2.37o 50.230 62.837 77.267

30 16.340∠-109.65o 15.604∠66.40o 1.319∠124.52o 0.1270∠-128.23o 0.1270∠137.22o 0.1270∠-2.38o 67.102 83.855 103.079

Table 6.5: Results for SLG(a-g) fault at bus 28 in modified three phase four

wire multigrounded IEEE 34-bus radial test system in the presence of IBDGs

and ∆-Yg IBDG transformers using proposed [Ybus] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

16 1.308∠-42.46o 1.254∠139.18o 0.0648∠103.76o 0.0953∠-125.76o 0.0953∠130.62o 0.0953∠-1.82o 59.205 66.553 77.932

25 2.931∠-71.68o 2.818∠107.19o 0.1260∠134.24o 0.0953∠-128.23o 0.0953∠137.28o 0.0953∠-2.37o 50.230 62.837 77.267

30 2.775∠-65.52o 2.661∠113.74o 0.1189∠130.80o 0.1270∠-128.23o 0.1270∠137.22o 0.1270∠-2.38o 67.102 83.855 103.079

6.6. The above results show that the values of If and Is calculated by both the proposed methods are very

close to the values obtained by the PSCAD/EMTDC software, thereby validating the proposed methods.

Different fault cases namely, LLG (ab-g), LLLG (abc-g), and LL (a-b) fault with z̄f = 0.001+0.000i p.u.,

have also been simulated at bus 28 in the same system using the proposed methods and PSCAD/EMTDC

software. The calculated values of fault currents (If ) and source currents (Is) for all type of faults obtained

by the proposed methods and PSCAD/EMTDC simulation study are given in Table 6.6. The maximum %

errors in the calculated values of (If ) and (Is), obtained from the proposed short-circuit analysis methods,

with respect to the PSCAD/EMTDC simulation results are 0.00737% and 0.00716%, respectively. These

extremely small values of errors establish that the proposed methods are sufficiently accurate.

The phase a bus voltage, neutral bus voltage and ground bus voltage of the test system with IBDGs and

∆-Yg IBDG transformers, for an SLG fault at phase a of bus 28 with fault impedance of z̄f = 0.001+0.000i

p.u., obtained by using the proposed short-circuit analysis methods
(
[BIBC] matrix based and [Ybus] ma-

trix based methods
)
, are shown in the bar graphs of Figs. 6.14-6.16, respectively. The values of these

voltages are also obtained by the time domain simulation studies carried out using the PSCAD/EMTDC

software and are plotted along with the results of proposed methods, as shown in Figs. 6.14-6.16, respec-
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Table 6.6: Error Analysis of proposed [BIBC] matrix based technique and

[Ybus] matrix based technique with respect to PSCAD/EMTDC simulation

study for modified three phase four wire multigrounded IEEE 34-bus radial test

system in the presence of IBDGs and ∆-Yg IBDG transformers

case Fault type phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

PSCAD [BIBC] [Ybus] [BIBC] [Ybus] PSCAD [BIBC] [Ybus] [BIBC] [Ybus]

simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(Amp) (Amp) (Amp) (%) (%) (Amp) (Amp) (Amp) (%) (%)

1 SLG (a-g) a 152.924 152.935 152.935 0.00693 0.00693 151.643 151.652 151.652 0.00580 0.00580

2 LLG (ab-g)
a 197.496 197.491 197.491 0.00258 0.00258 200.957 200.952 200.952 0.00241 0.00241

b 249.527 249.545 249.545 0.00737 0.00737 247.833 247.841 247.841 0.00327 0.00327

3 LLLG (abc-g)

a 237.856 237.866 237.866 0.00423 0.00423 238.910 238.921 238.921 0.00438 0.00438

b 257.485 257.501 257.501 0.00634 0.00634 257.661 257.678 257.678 0.00647 0.00647

c 249.728 249.743 249.743 0.00578 0.00578 248.803 248.818 248.818 0.00577 0.00577

4 L-L (a-b)
a 219.068 219.069 219.069 0.00038 0.00038 223.237 223.238 223.238 0.00062 0.00062

b 219.068 219.069 219.069 0.00038 0.00038 217.150 217.165 217.165 0.00716 0.00716
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Figure 6.14: Voltage profile of phase a, for an SLG fault (a-g) at bus 28,

of modified IEEE 34-bus test system in the presence of IBDG and ∆-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation

tively. A comparison of these plots shows that the values of bus voltages obtained by proposed methods

are very close to the values obtained by the PSCAD/EMTDC simulation studies, which again validates the

accuracy of the proposed short-circuit analysis methods.

In Fig. 6.17(a), the ground bus voltage profile is plotted for various ground faults (SLG, LLG and
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Figure 6.15: Voltage profile of neutral bus, for an SLG fault (a-g) at bus

28, of modified IEEE 34-bus test system in the presence of IBDG and ∆-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation
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Figure 6.16: Voltage profile of ground bus, for an SLG fault (a-g) at bus

28, of modified IEEE 34-bus test system in the presence of IBDG and ∆-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation

LLLG) at bus 28 with a fault impedance of z̄f = 0.001+0.000i p.u.. The plot shows that the highest ground

bus voltages occur for SLG fault followed by LLG fault while the lowest values are observed for LLLG

fault. This is due to the fact that the fault current injected into the fault point at ground bus is the phasor sum
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Table 6.7: Details of the IBDGs installed in the modified IEEE 123-bus distri-

bution system

IBDG No.
IBDG location IBDG installed capacity, Pdg Short-circuit capacity, I invsc

(Bus No.) (per phase) (kW) (per phase) (Amp)

1. 20 140 251.87

2. 25 105 188.90

3. 75 140 251.87

4. 98 175 314.84

5. 104 140 251.87

of the three phase fault currents and its value (Īaf + Ībf + Īcf = −0.32 + j5.82 Amp = 5.831 93.19o Amp)

is smallest for LLLG fault, followed by the injected fault current of LLG fault (Īaf + Ībf = −52.99− j93.10

Amp = 107.126 −119.64o Amp) with SLG fault injecting highest current (Īaf = 97.08 − j118.17 Amp

= 152.935 −50.59o Amp) into the ground at the fault bus location. Therefore, the currents flowing through

ground from fault point to the substation ground are highest for SLG fault followed by LLG fault and

smallest for LLLG fault, as shown in 6.17(b). As a result, the ground bus voltages are highest for SLG fault

with LLLG fault resulting in lowest ground bus voltages. From Fig. 6.17(b), it is also observed that the value

of ground current at certain branches of the test system (like branch nos. 4, 9− 11, 13, 17, 20, 22, 28− 32)

are nearly equal to zero. It is due the fact, that these branches are not present in the path of fault current

returning through ground from fault point to the substation ground.

Under fault conditions (for SLG, LLG and LLLG fault), as the neutral to ground resistance increases,

the ground current as well as the ground bus voltage at the fault point increases, as can be observed in Figs.

6.18(a)-(f ). This is due to the fact that as neutral to ground resistance is increased, fault current flowing

through the ground wire increases and the current in the neutral wire decreases.

6.4.1.2 Results of modified three phase four wire multigrounded IEEE 123-bus test system in

the presence of IBDGs and ∆-Yg IBDG transformers

(a). Results of load flow studies

Five different sized IBDGs have been considered in this test system and their detailed informations are

given in Table 6.7. These IBDGs are connected at different buses of the system, as shown in column 2 of

Table 6.7. The total installed capacity and the short-circuit current capacity (Iinvsc ) of IBDGs are shown in

column 3-4 of Table 6.7, respectively.

The load flow analysis of the given test system with IBDGs has been performed by using the proposed
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Figure 6.17: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 28, of modified IEEE 34-bus test system in the presence of

IBDG and ∆-Yg IBDG transformer

method. The results obtained by the proposed load flow analysis method have been compared with those

obtained by the [Ybus] matrix based method.

The voltage profile of phase a, neutral bus and ground bus of the test system obtained by the proposed

load flow method and
[
Ybus

]
matrix based method are shown in Figs. 6.19-6.21, respectively. A good

match between the results obtained by these two methods again demonstrates the perfectness of the proposed

approach.

The current in the phase a, neutral wire and ground for the given test system calculated by the proposed
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Figure 6.18: Ground bus voltage and ground current at fault point in modified

IEEE 34-bus test system in the presence of IBDG and ∆-Yg IBDG transformer

for various grounding resistance under SLG fault (a) and (b), LLG fault (c) and

(d) and LLLG fault (e) and (f )

load flow method and
[
Ybus

]
matrix based method are plotted in Figs. 6.22-6.24, respectively. A close

matching of the current values, obtained by the two methods, as observed in these figures again validates

the accuracy of the proposed method.
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Figure 6.19: Voltage profile of phase a of modified IEEE 123-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
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]
technique under normal operating conditions
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Figure 6.20: Voltage profile of neutral bus of modified IEEE 123-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating conditions

The inverter currents (Iabcinv ) and the inverter bus voltages (Vabc
inv ) calculated by the proposed [BIBC]

matrix based method and the [Ybus] matrix based method are shown in Tables 6.8 and 6.9, respectively. The

values of (Iabcinv ) and (Vabc
inv ) of all IBDGs obtained by the proposed method are exactly equal to the values

obtained by the [Ybus] matrix based method, which again establish the accuracy of the proposed method.

The phase angles of inverter currents and the inverter bus voltages are same (as shown in Tables 6.8 and
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Figure 6.21: Voltage profile of ground bus of modified IEEE 123-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
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]
technique under normal operating conditions
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Figure 6.22: Branch current of phase a of modified IEEE 123-bus test system

in the presence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating conditions

6.9) it is due to the fact that all the IBDGs are operating at unity power factor under the normal operating

conditions.

A case of isolated neutral has also been simulated on the considered test system using the proposed

load flow method. The neutral bus voltage profiles and the neutral wire currents of the test system for
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Figure 6.23: Neutral current of modified IEEE 123-bus test system in the pres-

ence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique

and
[
Ybus

]
technique under normal operating conditions
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Figure 6.24: Ground current of modified IEEE 123 bus-test system in the pres-

ence of IBDG and ∆-Yg IBDG transformer using proposed
[
BIBC

]
technique

and
[
Ybus

]
technique under normal operating conditions

”isolated neutral” and ”grounded neutral” cases are shown in Figs. 6.25(a) and (b), respectively. The values

of voltages at all the neutral buses in ”isolated neutral” case are higher than the ”grounded neutral” case (as

shown in Fig. 6.25(a)) for the same reasons as explained for modified IEEE 34-bus test system earlier.

(b). Results of short-circuit studies

To further investigate the effectiveness of the two proposed short-circuit analysis methods
([

BIBC
]
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Table 6.8: Inverter currents of modified IEEE 123-bus test system in the pres-

ence of IBDGs and ∆-Yg IBDG transformers under normal operating conditions

IBDG Inverter current, Iabcinv (Amp)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

20 169.54∠-30.09o 169.48∠-149.85o 168.90∠90.01o 169.54∠-30.09o 169.48∠-149.85o 168.90∠90.01o

25 127.19∠-30.11o 127.12∠-149.86o 126.67∠89.99o 127.19∠-30.11o 127.12∠-149.86o 126.67∠89.99o

75 170.52∠-30.07o 170.23∠-149.77o 169.61∠89.99o 170.52∠-30.07o 170.23∠-149.77o 169.61∠89.99o

98 213.04∠-29.92o 212.75∠-149.66o 212.07∠90.14o 213.04∠-29.92o 212.75∠-149.66o 212.07∠90.14o

104 170.36∠-29.97o 170.06∠-149.69o 169.49∠90.08o 170.36∠-29.97o 170.06∠-149.69o 169.49∠90.08o

Table 6.9: Inverter bus voltages of modified IEEE 123-bus test system in the

presence of IBDGs and ∆-Yg IBDG transformers under normal operating con-

ditions

IBDG Inverter bus voltage, Vabc
inv (kV)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

20 0.2745∠-30.09o 0.2746∠-149.85o 0.2755∠90.01o 0.2745∠-30.09o 0.2746∠-149.85o 0.2755∠90.01o

25 0.2744∠-30.11o 0.2745∠-149.86o 0.2755∠89.99o 0.2744∠-30.11o 0.2745∠-149.86o 0.2755∠89.99o

75 0.2729∠-30.07o 0.2734∠-149.77o 0.2744∠89.99o 0.2729∠-30.07o 0.2734∠-149.77o 0.2744∠89.99o

98 0.2730∠-29.92o 0.2734∠-149.66o 0.2743∠90.14o 0.2730∠-29.92o 0.2734∠-149.66o 0.2743∠90.14o

104 0.2731∠-29.97o 0.2736∠-149.69o 0.2745∠90.08o 0.2731∠-29.97o 0.2736∠-149.69o 0.2745∠90.08o

matrix based method and [Ybus] matrix based method
)
, an SLG fault in phase a of bus 105, with a fault

impedance z̄f = 0.001 + 0.000i p.u. has been simulated. In the initial step, the inverter currents (Iabcinv,f ,est)

of all the five IBDGs have been calculated by assuming that the inverter bus voltages of all IBDGs under

the fault conditions are maintained at their pre-fault values i.e., Vabc
inv,f = Vabc

inv,f ,st. The calculated values

of the inverter currents obtained by both proposed methods are given in columns 2-4 of Tables 6.10 and

6.11, respectively. These values show that the magnitude of inverter currents of all IBDGs are greater than

their short-circuit current capacities (Iinvsc ). Therefore, the fault current, the bus voltages and the inverter

currents of all IBDGs under the fault conditions are recalculated with the appropriate inverter current control

strategy as discussed in the proposed short-circuit analysis methods. The final values of inverter currents

and injected powers (capacitive reactive power) by all IBDGs, obtained by the two proposed methods, are
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Figure 6.25: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 123-bus test system in the presence of IBDG and ∆-Yg IBDG transformer

in ”isolated neutral” and ”grounded neutral” cases under normal operating con-

ditions

shown in columns 5-10 of Tables 6.10 and 6.11, respectively. It can also be observed from these tables that

the final values of inverter currents and injected powers by the IBDGs obtained by both the methods are

identical, which again validates the accuracy of the proposed methods. The fault current (If ) and source

current (Is) in phase a for this case using the proposed methods are given in Table 6.12. The above results

show that the values of If and Is calculated by both the proposed methods are identical, thereby validating

the proposed short-circuit analysis methods.
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Table 6.10: Results for SLG(a-g) fault at bus 105 in modified three phase four

wire multigrounded IEEE 123-bus radial test system in the presence of IBDGs

and ∆-Yg IBDG transformers using proposed [BIBC] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 10.075∠-89.01o 8.524∠87.27o 1.661∠110.37o 0.2519∠-124.12o 0.2519∠122.37o 0.2519∠-1.56o 191.492 194.504 211.608

25 10.053∠-89.22o 8.548∠87.03o 1.621∠110.89o 0.1889∠-124.17o 0.1889∠122.34o 0.1889∠-1.59o 143.554 145.819 158.686

75 28.172∠-89.55o 24.126∠86.65o 4.397∠111.73o 0.2519∠-132.60o 0.2519∠128.51o 0.2519∠-3.58o 161.352 168.936 214.695

98 28.200∠-89.47o 24.118∠86.74o 4.427∠111.55o 0.3148∠-132.78o 0.3148∠128.28o 0.3148∠-3.71o 202.830 211.821 269.323

104 30.249∠-89.57o 25.913∠86.62o 4.714∠111.77o 0.2519∠-133.78o 0.2519∠129.31o 0.2519∠-3.80o 158.618 166.493 215.550

Table 6.11: Results for SLG(a-g) fault at bus 105 in modified three phase four

wire multigrounded IEEE 123-bus radial test system in the presence of IBDGs

and ∆-Yg IBDG transformers using proposed [Ybus] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 1.105∠-59.28o 0.934∠125.42o 0.190∠97.10o 0.2519∠-124.12o 0.2519∠122.37o 0.2519∠-1.56o 191.492 194.504 211.608

25 0.828∠-53.54o 0.726∠131.88o 0.125∠93.31o 0.1889∠-124.17o 0.1889∠122.34o 0.1889∠-1.59o 143.554 145.819 158.686

75 6.391∠-72.75o 5.742∠105.77o 0.665∠120.02o 0.2519∠-132.60o 0.2519∠128.51o 0.2519∠-3.58o 161.352 168.936 214.695

98 2.635∠-56.46o 2.465∠125.59o 0.191∠95.99o 0.3148∠-132.78o 0.3148∠128.28o 0.3148∠-3.71o 202.830 211.821 269.323

104 4.539∠-65.04o 4.191∠114.55o 0.348∠119.70o 0.2519∠-133.78o 0.2519∠129.31o 0.2519∠-3.80o 158.618 166.493 215.550

Different fault cases namely, LLG (ab-g), LLLG (abc-g), and LL (a-b) fault with z̄f = 0.001+0.000i

p.u., have also been simulated at bus 105 of the same system using the proposed methods. The calculated

values of fault currents (If ) and source currents (Is) for all types of faults obtained by the proposed methods

are given in Table 6.12. It can be observed from the table that the values obtained by the proposed [BIBC]

method are exactly equal to the values obtained by the [Ybus] method, which again establishes the accuracy

of the proposed methods.

The voltage profiles of phase a bus voltage, neutral bus voltage and ground bus voltage of the modified

IEEE 123-bus test system, for an SLG fault at phase a of bus 105 with fault impedance of z̄f = 0.001+0.000i

p.u., obtained by using the proposed short-circuit analysis methods, are shown in Figs. 6.26-6.28, respec-

tively. It can be observed, from these figures, that the results obtained from these two methods are identical

and this again demonstrates the correctness of the proposed short-circuit methods.

In Fig. 6.29(a), the ground bus voltage profile is plotted for various ground faults (SLG, LLG and
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Table 6.12: Results of the proposed short-circuit analysis methods for modified

three phase four wire multigrounded IEEE 123-bus radial test system in the

presence of IBDGs and ∆-Yg IBDG transformers

case Fault type phase

Fault current at fault point (If ) Current drawn from the supply (Is)

[BIBC] [Ybus] [BIBC] [Ybus]

Technique Technique Technique Technique

(kA) (kA) (kA) (kA)

1 SLG (a-g) a 2.47555 2.47555 2.44377 2.44377

2 LLG (ab-g)
a 4.40065 4.40065 4.43822 4.43822

b 4.62304 4.62304 4.52799 4.52799

3 LLLG (abc-g)

a 4.56943 4.56943 4.53893 4.53893

b 5.24708 5.24708 5.16524 5.16524

c 4.53549 4.53549 4.46304 4.46304

4 L-L (a-b)
a 4.44763 4.44763 4.53721 4.53721

b 4.44763 4.44763 4.32394 4.32394
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Figure 6.26: Voltage profile of phase a, for an SLG fault (a-g) at bus 105, of

modified IEEE 123-bus test system in the presence of IBDG and ∆-Yg IBDG

transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique

LLLG) at bus 105 with a fault impedance of z̄f = 0.001+0.000i p.u.. The plot shows that the highest ground

bus voltages occur for SLG fault followed by LLG fault while the lowest values are observed for LLLG

fault. This is due to the fact that the fault current injected into the fault point at ground bus is the phasor
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Figure 6.27: Voltage profile of neutral bus, for an SLG fault (a-g) at bus 105, of

modified IEEE 123-bus test system in the presence of IBDG and ∆-Yg IBDG

transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique
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Figure 6.28: Voltage profile of ground bus, for an SLG fault (a-g) at bus 105, of

modified IEEE 123-bus test system in the presence of IBDG and ∆-Yg IBDG

transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique

sum of the three phase fault currents and its value (Īaf + Ībf + Īcf = 0.03 + j0.14 kA = 0.138 77.17o kA) is

smallest for LLLG fault, followed by the injected fault current of LLG fault (Īaf + Ībf = −1.09− j1.35 kA

= 1.736 −128.87o kA) with SLG fault injecting highest current (Īaf = 1.00− j2.26 kA = 2.476 −66.08o

kA) into the ground at the fault bus location. Therefore, the currents flowing through ground from fault point
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to the substation ground are highest for SLG fault followed by LLG fault and smallest for LLLG fault, as

shown in 6.29(b). As a result, the ground bus voltages are highest for SLG fault with LLLG fault resulting in

lowest ground bus voltages. From Fig. 6.29(b), it is also observed that the value of ground current at certain

branches of the test system (like branch nos. 2−5, 9−13, 17−53, 81−97 and 106−118) are nearly equal

to zero. It is due to the fact, that these branches are not present in the path of fault current returning through

ground from fault point to the substation ground.

6.4.2 Results of test systems with IBDGs and Yg-Yg IBDG transformers

In this subsection, YgYg-0 type of IBDG transformer is used for the connection of IBDG to the grid and its

nodal admittance matrix model (p.u.) is given as [80],

YT(YgYg0) = yt



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


(6.132)

where, the value of yt is assumed as (0.000 − 16.92i) p.u. It is a step down transformer with its turns ratio

assumed as 24.9/0.480 kV for the modified IEEE 34-bus test system and as 4.16/0.480 kV for the modified

IEEE 123-bus test system. The value of grounding impedances on primary and secondary side of the IBDG

transformer (Z̄gtp and Z̄gts) is assumed as 0.2 Ω, equal to the value of neutral to ground impedance of the

test system .

6.4.2.1 Results of modified three phase four wire multigrounded IEEE 34-bus test system in

the presence of IBDGs and Yg-Yg IBDGs transformers

(a). Results of load flow studies

Three different sized IBDGs have also been considered in this test system and their detailed informations

are given in Table 6.1. It is assumed that all IBDGs are operating at unity power factor under normal

operating condition. The load flow analysis of this test system has been performed by using the proposed

method (as discussed in Subsection 6.3.1 for Yg-Yg IBDG transformer). The results obtained by the proposed

method have been compared with those obtained by the [Ybus] matrix based method and the time domain

simulation studies carried out using PSCAD/EMTDC software.

The bar graph for the phase a bus voltages, neutral bus voltages and ground bus voltages of the test sys-

tem with IBDGs, have been obtained by the proposed method,
[
Ybus

]
matrix method and PSCAD/EMTDC
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Figure 6.29: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 105, of modified IEEE 123-bus test system in the presence

of IBDG and ∆-Yg IBDG transformer

simulation studies, and are shown in Figs. 6.30-6.32. These figures show that the results obtained by the

proposed method are very close to the results of the
[
Ybus

]
matrix method and PSCAD/EMTDC simulation

studies, which demonstrates the correctness of the proposed approach.

The currents in the phase a, neutral wire and ground for the considered test system calculated by the

proposed load flow method are plotted in Figs. 6.33-6.35, respectively. The values of these three currents

have also been obtained by the
[
Ybus

]
matrix based method and PSCAD/EMTDC simulation studies, and
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[
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Figure 6.31: Voltage profile of neutral bus of modified IEEE 34-bus test system

in the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions

are plotted along with the results of proposed method in Figs. 6.33-6.35. A close matching of the current

values, obtained by the three methods, as observed in these figures again validates the accuracy of the

proposed method.
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Figure 6.32: Voltage profile of ground bus of modified IEEE 34-bus test system

in the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions
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Figure 6.33: Branch current of phase a of modified IEEE 34-bus test system in

the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and PSCAD/EMTDC simulation under normal

operating conditions

The inverter currents (Iabcinv ) and the inverter bus voltages (Vabc
inv ) calculated by the proposed [BIBC]

matrix based method and the [Ybus] matrix based method are shown in Tables 6.13 and 6.14, respectively.
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Figure 6.34: Neutral current of modified IEEE 34-bus test system in the pres-

ence of IBDG and Yg-Yg IBDG transformer using proposed
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nique,
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technique and PSCAD/EMTDC simulation under normal op-

erating conditions
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Figure 6.35: Ground current of modified IEEE 34-bus test system in the pres-

ence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
tech-

nique,
[
Ybus

]
technique and PSCAD/EMTDC simulation under normal op-

erating conditions

The values of (Iabcinv ) and (Vabc
inv ) of all IBDGs obtained by the proposed method are exactly equal to the

values obtained by the [Ybus] matrix based method, which again establishes the accuracy of the proposed

method. Also, the phase angles of inverter currents and the inverter bus voltages are same, since all IBDGs
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Table 6.13: Inverter currents of modified IEEE 34-bus test system in the pres-

ence of IBDG and Yg-Yg IBDG transformers under normal operating conditions

IBDG Inverter current, Iabcinv (Amp)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

16 65.81∠0.2765o 65.30∠-119.69o 65.65∠120.33o 65.81∠0.2765o 65.30∠-119.69o 65.65∠120.33o

25 66.42∠0.5403o 66.20∠-119.46o 66.55∠120.38o 66.42∠0.5403o 66.20∠-119.46o 66.55∠120.38o

30 88.55∠0.5740o 88.28∠ -119.43o 88.74∠120.41o 88.55∠0.5740o 88.28∠-119.43o 88.74∠120.41o

Table 6.14: Inverter bus voltages of modified IEEE 34-bus test system in the

presence of IBDG and Yg-Yg IBDG transformers under normal operating con-

ditions

IBDG Inverter bus voltage, Vabc
inv (Amp)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

16 0.2674∠0.2765o 0.2695∠-119.69o 0.2681∠120.33o 0.2674∠0.2765o 0.2695∠-119.69o 0.2681∠120.33o

25 0.2650∠0.5403o 0.2659∠-119.46o 0.2645∠120.38o 0.2650∠0.5403o 0.2659∠-119.46o 0.2645∠120.38o

30 0.2650∠0.5740o 0.2658∠-119.43o 0.2645∠120.41o 0.2650∠0.5740o 0.2658∠-119.43o 0.2645∠120.41o

are operating at unity power factor under the normal operating conditions.

A case of isolated neutral has also been simulated on the considered test system with IBDGs and Yg-

Yg IBDG transformers, using the proposed method. The neutral bus voltage profiles and neutral currents

of the test system for ”isolated neutral” and ”grounded neutral” cases are shown in Figs. 6.36(a) and (b),

respectively. The values of neutral voltages at all the buses in ”isolated neutral” case are higher than the

”grounded neutral” case for the same reasons as explained for modified IEEE 34-bus test system with ∆-Yg

IBDG transformer case earlier.

The value of maximum ground bus voltage and maximum ground current in the test system under

normal operating condition, for various grounding resistance are plotted in Fig. 6.37(a) and (b). The figure

shows that, with the increase in grounding resistance, the value of maximum ground bus voltage as well as

maximum ground current in the system decreases (as shown in Fig. 6.37(a)). This is due to the fact that,

with the increase in grounding resistance, the value of neutral to ground current in the system decreases and

as a result the value of ground wire currents and hence the ground bus voltages of the system decreases (as

shown in Fig. 6.37(b)).
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Figure 6.36: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 34-bus test system in the presence of IBDG and Yg-Yg IBDG transformer

in ”isolated neutral” and ”grounded neutral” cases under normal operating con-

ditions

(b). Results of short-circuit studies

For investigating the efficacy of the proposed short-circuit analysis methods
([

BIBC
]

matrix based

method and [Ybus] matrix based method
)

for the case with Yg-Yg IBDG transformer, an SLG fault in phase

a of bus 28, with a fault impedance z̄f = 0.001 + 0.000i p.u. has been simulated. The initial values of the

inverter currents (Iabcinv,f ,est) of all the IBDGs, under the fault conditions, have been calculated by assuming

that the inverter bus voltages of all IBDGs are maintained at their pre-fault values i.e., Vabc
inv,f = Vabc

inv,f ,st.
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Figure 6.37: (a) Maximum ground bus voltage, (b) Maximum ground current,

in modified IEEE 34-bus test system in the presence of IBDG and Yg-Yg IBDG

transformer for various grounding resistance under normal operating condition

The calculated values of the inverter currents obtained by two proposed methods are given in columns 2-

4 of Tables 6.15 and 6.16, respectively. These tables show that the magnitude of inverter currents of all

IBDGs are greater than their short-circuit current capacities. Hence, according to the proposed methods, the

magnitudes of inverter currents of all the phases are to be maintained at their short-circuit current capacities(
|Ipinv,f |= Iinvsc , p = a, b, c

)
and their angles are maintained in such a way that all IBDGs will deliver

reactive power to the system during the short-circuit condition i.e., Ψp
inv,f = π

2 + θpinv,f , p = a, b, c.

With this strategy, the fault current, the bus voltages and the inverter currents of all IBDGs under the fault

conditions are recalculated using the proposed short-circuit analysis methods.

The final values of inverter currents and injected powers by all IBDGs, obtained by both the proposed

methods, are shown in columns 5-10 of Tables 6.15 and 6.16, respectively. From both the tables, it can be

observed that the final values of inverter currents and injected powers by the IBDGs obtained by both the

methods are identical, which again validates the accuracy of the proposed methods. The fault current (If )

and source current (Is) in phase a for this case using the proposed methods and PSCAD/EMTDC simulation

studies are given in Table 6.17. The % error in the calculated values of If and Is with respect to the values

obtained by PSCAD/EMTDC simulation studies are 0.00665% and 0.00817%, respectively, as shown in

Table 6.17. The above results show that the values of If and Is calculated by both the proposed methods

are very close to the values obtained by the PSCAD/EMTDC software, thereby validating the proposed

methods.

Different fault cases namely, LLG (ab-g), LLLG (abc-g), and LL (a-b) fault with z̄f = 0.001+0.000i p.u.,

have also been simulated at bus 28 in the same system using the proposed methods and PSCAD/EMTDC
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Table 6.15: Results for SLG(a-g) fault at bus 28 in modified three phase four

wire multigrounded IEEE 34-bus radial test system in the presence of IBDGs

and Yg-Yg IBDG transformers using proposed [BIBC] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

16 26.912∠-92.81o 10.966∠-59.87o 9.285∠-60.67o 0.0953∠-94.69o 0.0953∠140.45o 0.0953∠45.64o 24.64 99.15 83.16

25 37.833∠-95.14o 14.867∠-59.80o 12.620∠-60.67o 0.0953∠-95.25o 0.0953∠138.08o 0.0953∠50.99o 2.85 106.69 85.69

30 37.767∠-95.10o 14.856∠-59.87o 12.579∠-60.67o 0.1270∠-95.01o 0.1270∠138.08o 0.1270∠50.93o 4.05 142.20 114.29

Table 6.16: Results for SLG(a-g) fault at bus 28 in modified three phase four

wire multigrounded IEEE 34-bus radial test system in the presence of IBDGs

and Yg-Yg IBDG transformers using proposed [Ybus] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

16 11.089∠-55.39o 2.459∠169.31o 2.241∠170.07o 0.0953∠-94.69o 0.0953∠140.45o 0.0953∠45.64o 24.64 99.15 83.16

25 29.901∠-81.41o 1.918∠-141.61o 2.052∠-150.52o 0.0953∠-95.25o 0.0953∠138.08o 0.0953∠50.99o 2.85 106.69 85.69

30 26.567∠-76.12o 2.083∠173.53o 2.263∠173.97o 0.1270∠-95.01o 0.1270∠138.08o 0.1270∠50.93o 4.05 142.20 114.29

software. The calculated values of fault currents (If ) and source currents (Is) for all type of faults obtained

by the proposed methods and PSCAD/EMTDC simulation studies are given in Table 6.17. The maximum %

errors in the calculated values of (If ) and (Is), obtained from the proposed short-circuit analysis methods,

with respect to the PSCAD/EMTDC simulation results are 0.00741% and 0.00817%, respectively. These

extremely small values of errors establish that the proposed methods are sufficiently accurate.

The phase a bus voltage, neutral bus voltage and ground bus voltage of the considered test system,

for an SLG fault at phase a of bus 28 with fault impedance of z̄f = 0.001+0.000i p.u., obtained by using

the proposed short-circuit analysis methods
(
[BIBC] matrix based and [Ybus] matrix based methods

)
, are

shown in the bar graphs of Figs. 6.38-6.40, respectively. The values of these voltages are also obtained by

the time domain simulation studies carried out using the PSCAD/EMTDC software and are plotted along

with the results of proposed methods, as shown in Figs. 6.38-6.40, respectively. A comparison of these plots

shows that the values of bus voltages obtained by proposed methods are very close to the values obtained

by the PSCAD/EMTDC simulation studies, which again validates the accuracy of the proposed short-circuit

analysis methods.

In Fig. 6.41(a), the ground bus voltage profile is plotted for various ground faults (SLG, LLG and
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Table 6.17: Error Analysis of proposed [BIBC] matrix based technique and

[Ybus] matrix based technique with respect to PSCAD/EMTDC simulation

study for modified three phase four wire multigrounded IEEE 34-bus radial test

system in the presence of IBDGs and Yg-Yg IBDG transformers

case Fault type phase

Fault current at fault point (If ) % Error in (If ) Current drawn from the supply (Is) % Error in (Is)

PSCAD [BIBC] [Ybus] [BIBC] [Ybus] PSCAD [BIBC] [Ybus] [BIBC] [Ybus]

simulation Technique Technique Technique Technique simulation Technique Technique Technique Technique

(Amp) (Amp) (Amp) (%) (%) (Amp) (Amp) (Amp) (%) (%)

1 SLG (a-g) a 151.627 151.637 151.637 0.00665 0.00665 150.284 150.296 150.296 0.00817 0.00817

2 LLG (ab-g)
a 198.477 198.466 198.466 0.00537 0.00537 200.698 200.695 200.695 0.00136 0.00136

b 249.579 249.598 249.598 0.00741 0.00741 248.082 248.101 248.101 0.00702 0.00702

3 LLLG (abc-g)

a 237.883 237.891 237.891 0.00333 0.00333 238.906 238.918 238.918 0.00519 0.00519

b 257.463 257.481 257.481 0.00663 0.00663 257.664 257.680 257.680 0.00623 0.00623

c 249.725 249.738 249.738 0.00545 0.00545 248.802 248.817 248.817 0.00593 0.00593

4 L-L (a-b)
a 218.132 218.133 218.133 0.00010 0.00010 225.227 225.231 225.231 0.00157 0.00157

b 218.132 218.133 218.133 0.00010 0.00010 215.224 215.239 215.239 0.00666 0.00666
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Figure 6.38: Voltage profile of phase a, for an SLG fault (a-g) at bus 28,

of modified IEEE 34-bus test system in the presence of IBDG and Yg-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation

LLLG) at bus 28 with a fault impedance of z̄f = 0.001+0.000i p.u.. From this plot, again it can be observed

that the highest ground bus voltages occurs for SLG fault followed by LLG fault while the lowest values

are observed for LLLG fault. This is due to the fact that the fault current injected into the fault point at

ground bus is the phasor sum of the three phase fault currents and its value (Īaf + Ībf + Īcf = −0.27 + j5.79
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Figure 6.39: Voltage profile of neutral bus, for an SLG fault (a-g) at bus

28, of modified IEEE 34-bus test system in the presence of IBDG and Yg-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation
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Figure 6.40: Voltage profile of ground bus, for an SLG fault (a-g) at bus

28, of modified IEEE 34-bus test system in the presence of IBDG and Yg-Yg

IBDG transformer using proposed
[
BIBC

]
technique,

[
Ybus

]
technique and

PSCAD/EMTDC simulation

Amp = 5.794 92.66o Amp) is smallest for LLLG fault, followed by the injected fault current of LLG fault

(Īaf + Ībf = −52.58 − j92.17 Amp = 106.108 −119.70o Amp) with SLG fault injecting highest current

(Īaf = 95.66−j117.66 Amp = 151.637 −50.89o Amp) into the ground at the fault bus location. Therefore,
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Figure 6.41: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 28, of modified IEEE 34-bus test system in the presence of

IBDG and Yg-Yg IBDG transformer

the currents flowing through ground from fault point to the substation ground are highest for SLG fault

followed by LLG fault and smallest for LLLG fault, as shown in 6.41(b). As a result, the ground bus

voltages are highest for SLG fault with LLLG fault resulting in lowest ground bus voltages.

6.4.2.2 Results of modified three phase four wire multigrounded IEEE 123-bus test system in

the presence of IBDGs and Yg-Yg IBDG transformers

(a). Results of load flow studies

Five different sized IBDGs have also been considered in this test system with IBDGs and Yg-Yg IBDG

transformers and their detailed informations are given in Table 6.7.
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Figure 6.42: Voltage profile of phase a of modified IEEE 123-bus test system in

the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating conditions

The load flow analysis of the given test system has been performed by using the proposed method. The

results obtained by the proposed load flow analysis method have been compared with those obtained by the

[Ybus] matrix based method.

The voltage profile of phase a, neutral bus and ground bus of the test system with IBDGs and Yg-Yg

IBDG transformers obtained by the proposed load flow method and
[
Ybus

]
matrix method are shown in

Figs. 6.42-6.44, respectively. A good match between the results obtained by these two methods again

demonstrates the accuracy of the proposed approach.

Also, the current in the phase a, neutral and ground branches of the test system with Yg-Yg IBDG

transformers, calculated by the proposed load flow method and
[
Ybus

]
matrix based method are plotted

in Figs. 6.45-6.47, respectively. A close match of the current values, obtained from the two methods, as

observed in these figures again validates the accuracy of the proposed method.

The inverter currents (Iabcinv ) and the inverter bus voltages (Vabc
inv ) calculated by the proposed [BIBC]

matrix based method and the [Ybus] matrix based method are shown in Tables 6.18 and 6.19, respectively.

The values of (Iabcinv ) and (Vabc
inv ) of all IBDGs obtained by the proposed method are exactly equal to the

values obtained by the [Ybus] matrix based method, which again establishes the accuracy of the proposed

method. The phase angles of inverter currents and the inverter bus voltages are same (as shown in Tables

6.18 and 6.19) due to the fact that all the IBDGs are operating at unity power factor under the normal

operating conditions.
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Figure 6.43: Voltage profile of neutral bus of modified IEEE 123-bus test system

in the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
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]
technique and

[
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technique under normal operating conditions
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Figure 6.44: Voltage profile of ground bus of modified IEEE 123-bus test system

in the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique and

[
Ybus

]
technique under normal operating conditions

A case of isolated neutral has also been simulated on the given test system using the proposed load flow

method. The neutral bus voltage profiles and the neutral wire currents of the test system for ”isolated neutral”

and ”grounded neutral” cases are shown in Figs. 6.48(a) and (b), respectively. The values of voltages at all

the neutral buses in ”isolated neutral” case are higher than the ”grounded neutral” case (as shown in Fig.

6.48(a)) for the same reasons as explained for modified IEEE 34-bus test system earlier.
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Figure 6.45: Branch current of phase a of modified IEEE 123-bus test system in

the presence of IBDG and Yg-Yg IBDG transformer using proposed
[
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0

5

10

15

20

25

30

35

40

45

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

BIBC

Ybus

Branch No.

N
eu
tr
al
cu
rr
en
t(
A
m
p)

Figure 6.46: Neutral current of modified IEEE 123-bus test system in the pres-

ence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique

and
[
Ybus

]
technique under normal operating conditions

(b). Results of short-circuit studies

To carry out investigation to verify the effectiveness of the proposed short-circuit analysis methods([
BIBC

]
and

[
BCBV

]
matrices based method and [Ybus] matrix based method

)
, an SLG fault in phase

a of bus 105, with a fault impedance z̄f = 0.001 + 0.000i p.u. has been simulated. In the initial step,
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Figure 6.47: Ground current of modified IEEE 123 bus-test system in the pres-

ence of IBDG and Yg-Yg IBDG transformer using proposed
[
BIBC

]
technique

and
[
Ybus

]
technique under normal operating conditions

Table 6.18: Inverter currents of modified IEEE 123-bus test system in the pres-

ence of IBDGs and Yg-Yg IBDG transformers under normal operating condi-

tions

IBDG Inverter current, Iabcinv (Amp)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

20 170.30∠-0.26o 168.05∠-119.90o 169.60∠120.22o 170.30∠-0.26o 168.05∠-119.90o 169.60∠120.22o

25 127.76∠-0.30o 125.98∠-119.89o 127.27∠120.21o 127.76∠-0.30o 125.98∠-119.89o 127.27∠120.21o

75 171.29∠-0.26o 168.46∠-119.85o 170.65∠120.25o 171.29∠-0.26o 168.46∠-119.85o 170.65∠120.25o

98 214.14∠-0.08o 210.72∠-119.79o 213.05∠120.43o 214.14∠-0.08o 210.72∠-119.79o 213.05∠120.43o

104 171.09∠-0.18o 168.32∠-119.76o 170.54∠120.35o 171.09∠-0.18o 168.32∠-119.76o 170.54∠120.35o

the inverter currents (Iabcinv,f ,est) of all the five IBDGs have been calculated by assuming that the inverter

bus voltages of all IBDGs under the fault conditions are maintained at their pre-fault values i.e., Vabc
inv,f

= Vabc
inv,f ,st. The calculated values of the inverter currents obtained by two proposed methods are given in

columns 2-4 of Tables 6.20 and 6.21, respectively. These values show that the magnitude of inverter currents

of all IBDGs are greater than their short-circuit current capacities (Iinvsc ). Therefore, the fault current, the

bus voltages and the inverter currents of all IBDGs under the fault conditions are recalculated with the

appropriate inverter current control strategy, as discussed in the proposed short-circuit analysis methods.
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Table 6.19: Inverter bus voltages of modified IEEE 123-bus test system in the

presence of IBDGs and Yg-Yg IBDG transformers under normal operating con-

ditions

IBDG Inverter bus voltage, Vabc
inv (kV)

location [BIBC] Technique [Ybus] Technique

(Bus No.) Phase a Phase b Phase c Phase a Phase b Phase c

20 0.2732∠-0.26o 0.2769∠-119.90o 0.2744∠120.22o 0.2732∠-0.26o 0.2769∠-119.90o 0.2744∠120.22o

25 0.2732∠-0.30o 0.2770∠-119.89o 0.2742∠120.21o 0.2732∠-0.30o 0.2770∠-119.89o 0.2742∠120.21o

75 0.2717∠-0.26o 0.2762∠-119.85o 0.2727∠120.25o 0.2717∠-0.26o 0.2762∠-119.85o 0.2727∠120.25o

98 0.2716∠-0.08o 0.2760∠-119.79o 0.2730∠120.43o 0.2716∠-0.08o 0.2760∠-119.79o 0.2730∠120.43o

104 0.2720∠-0.18o 0.2765∠-119.76o 0.2729∠120.35o 0.2720∠-0.18o 0.2765∠-119.76o 0.2729∠120.35o

Table 6.20: Results for SLG(a-g) fault at bus 105 in modified three phase four

wire multigrounded IEEE 123-bus radial test system in the presence of IBDGs

and Yg-Yg IBDG transformers using proposed [BIBC] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 23.307∠-90.44o 8.568∠-86.52o 5.875∠-94.72o 0.2519∠-89.83o 0.2519∠142.49o 0.2519∠34.47o 148.13 226.26 225.00

25 23.299∠-90.54o 8.525∠-86.34o 5.902∠-94.47o 0.1889∠-90.00o 0.1889∠142.56o 0.1889∠34.44o 111.06 169.68 168.63

75 66.133∠-90.66o 24.460∠-86.08o 17.366∠-93.80o 0.2519∠-82.08o 0.2519∠131.77o 0.2519∠42.05o 34.49 264.96 257.98

98 65.608∠-90.67o 23.941∠-86.18o 16.800∠-94.19o 0.3148∠-80.42o 0.3148∠131.64o 0.3148∠41.28o 47.12 328.86 322.64

104 71.254∠-90.70o 26.491∠-86.19o 18.893∠-93.86o 0.2519∠-72.61o 0.2519∠130.47o 0.2519∠42.77o 20.50 271.14 263.72

The final values of inverter currents and injected powers by all IBDGs, obtained by both the proposed

methods, are shown in columns 5-10 of Tables 6.20 and 6.21, respectively. From both the tables, again it

can be observed that the final values of inverter currents and injected powers by the IBDGs obtained by both

the methods are identical, which again validates the accuracy of the proposed methods. The fault current

(If ) and source current (Is) in phase a for this case using the proposed methods are given in Table 6.22.

The above results show that the values of If and Is calculated by both the proposed methods are identical,

thereby validating the proposed short-circuit analysis methods.

Different fault cases namely, LLG (ab-g), LLLG (abc-g), and LL (a-b) fault with z̄f = 0.001+0.000i

p.u., have also been simulated at bus 105 in the same system using the proposed methods. The calculated

values of fault currents (If ) and source currents (Is) for all type of faults obtained by the proposed methods

are given in Table 6.22. It can be observed from the table that the values obtained by the proposed [BIBC]
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Figure 6.48: (a) Neutral bus voltage profile, (b) Neutral current of modified

IEEE 123-bus test system in the presence of IBDG and Yg-Yg IBDG transformer

in ”isolated neutral” and ”grounded neutral” cases under normal operating con-

ditions

method are exactly equal to the values obtained by the [Ybus] method, which again establishes the accuracy

of the proposed methods.

The voltage profiles of phase a bus voltage, neutral bus voltage and ground bus voltage of the consid-

ered test system with IBDGs and Yg-Yg IBDG transformers, for an SLG fault at phase a of bus 105 with

fault impedance of z̄f = 0.001+0.000i p.u., obtained by using the proposed short-circuit analysis methods(
[BIBC] matrix based and [Ybus] matrix based methods

)
, are shown in Figs. 6.49-6.51, respectively.

These figures again demonstrate the correctness of the proposed short-circuit methods.
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Table 6.21: Results for SLG(a-g) fault at bus 105 in modified three phase four

wire multigrounded IEEE 123-bus radial test system in the presence of IBDGs

and Yg-Yg IBDG transformers using proposed [Ybus] method

IBDG Initial estimate of inverter current, Iabcinv,f ,est, (kA) final value of inverter current, (kA) final value of injected

location when Vabc
inv,f = Vabc

inv,st Iabcinv,f = I invsc ∠(π
2

+ θabcinv,f ) IBDG power (kVAR)

(bus No.) Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c Phase-a Phase-b Phase-c

20 17.329∠-81.24o 15.450∠-84.69o 15.131∠-84.77o 0.2519∠-89.83o 0.2519∠142.49o 0.2519∠34.47o 148.13 226.26 225.00

25 16.910∠-80.61o 15.540∠-83.80o 15.347∠-83.78o 0.1889∠-90.00o 0.1889∠142.56o 0.1889∠34.44o 111.06 169.68 168.63

75 54.652∠-84.82o 42.011∠-88.55o 40.898∠-89.50o 0.2519∠-82.08o 0.2519∠131.77o 0.2519∠42.05o 34.49 264.96 257.98

98 44.492∠-84.78o 39.810∠-88.90o 39.569∠-88.86o 0.3148∠-80.42o 0.3148∠131.64o 0.3148∠41.28o 47.12 328.86 322.64

104 52.772∠-85.08o 44.010∠-89.53o 43.537∠-89.91o 0.2519∠-72.61o 0.2519∠130.47o 0.2519∠42.77o 20.50 271.14 263.72

Table 6.22: Results of proposed short-circuit analysis methods for modified

three phase four wire multigrounded IEEE 123-bus radial test system in the

presence of IBDGs and Yg-Yg IBDG transformers

case Fault type phase

Fault current at fault point (If ) Current drawn from the supply (Is)

[BIBC] [Ybus] [BIBC] [Ybus]

Technique Technique Technique Technique

(kA) (kA) (kA) (kA)

1 SLG (a-g) a 2.47361 2.47361 2.42218 2.42218

2 LLG (ab-g)
a 4.40322 4.40322 4.43376 4.43376

b 4.63930 4.63930 4.52809 4.52809

3 LLLG (abc-g)

a 4.56958 4.56958 4.53906 4.53906

b 5.24557 5.24557 5.16540 5.16540

c 4.53662 4.53662 4.46277 4.46277

4 L-L (a-b)
a 4.41444 4.41444 4.57222 4.57222

b 4.41444 4.41444 4.29969 4.29969

The ground bus voltage profile for various ground faults (SLG, LLG and LLLG) at bus 105 with a fault

impedance of z̄f = 0.001+0.000i p.u. is plotted in Fig. 6.52(a). It shows that the highest ground bus voltages

occurs for SLG fault followed by LLG fault while the lowest values are observed for LLLG fault. This is

due to the fact that the fault current injected into the fault point at ground bus is the phasor sum of the three

phase fault currents and its value (Īaf + Ībf + Īcf = 0.03+j0.14 kA = 0.142 77.28o kA) is smallest for LLLG

fault, followed by the injected fault current of LLG fault (Īaf + Ībf = −1.11− j1.36 kA = 1.757 −129.30o

kA) with SLG fault injecting highest current (Īaf = 1.02− j2.25 kA = 2.474 −65.48o kA) into the ground
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Figure 6.50: Voltage profile of neutral bus, for an SLG fault (a-g) at bus 105, of
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at the fault bus location. Therefore, the currents flowing through ground from fault point to the substation

ground are highest for SLG fault followed by LLG fault and smallest for LLLG fault, as shown in 6.52(b).

As a result, the ground bus voltages are highest for SLG fault with LLLG fault resulting in lowest ground

bus voltages. From Fig. 6.52(b), it is also observed that the value of ground current at certain branches of

the test system (such as branch nos. 2− 5, 9− 13, 17− 53, 81− 97 and 106− 118) are nearly equal to zero.
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It is due to the fact, that these branches are not present in the path of fault current returning through ground

from fault point to the substation ground.

6.5 Conclusion

In this chapter, the efficient and accurate load flow and short-circuit analysis methods for an unbalanced

three phase four wire multigrounded radial distribution system with IBDGs and IBDG transformers have

been developed. Two different vector groups of the transformer models have been considered in this work,

namely, Delta/star-grounded (∆-Yg) and star-grounded/star-grounded (Yg-Yg) transformer. The nodal ad-

mittance matrix based model of both the transformers has been considered in this work [80]. The proposed

load flow method is based on [BIBC] and [BCBV] matrices of the system. The results of the proposed

load flow analysis method have been compared with the [Ybus] matrix based method and time domain

simulation studies carried out using PSCAD/EMTDC software for a modified three phase four wire multi-

grounded IEEE 34-bus test system with IBDGs and IBDG transformers. The results of these three methods

show the accuracy of the developed method. The proposed load flow method has also been implemented

on large system (modified three phase four wire multigrounded IEEE 123-bus test system) with IBDGs and

IBDG transformers and the results have only been compared with the results of [Ybus] matrix based method,

due to the node limitations in available PSCAD/EMTDC software.

Two different short-circuit analysis methods for an unbalanced three phase four wire multigrounded

radial distribution system with IBDGs and IBDG transformers (one is [BIBC] matrix based method and
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Figure 6.52: (a) Voltage profile of ground bus, (b) Ground current, for various

ground faults at bus 105, of modified IEEE 123-bus test system in the presence

of IBDG and Yg-Yg IBDG transformer

next one is [Ybus] matrix based method) with appropriate inverter control strategy of the IBDGs have also

been developed in this chapter. The results of short-circuit analysis of modified IEEE 34-bus test system

obtained by using proposed methods have been compared with the results obtained by the PSCAD/EMTDC

software. However, for the large system, the results of proposed [BIBC] matrix based method have only

been compared with the results of proposed [Ybus] matrix based method. A very close matching of the

obtained results establishes the accuracy of the proposed methods.

In the next chapter, the main conclusions of the thesis and suggestions for extending this work are

presented.
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Chapter 7

Conclusions and scope of further works

This chapter summarizes the major findings of the work presented in this thesis and suggests directions for

further investigations in the short-circuit analysis of the three-phase three wire and three-phase four wire

unbalanced distribution systems.

7.1 Conclusions

Based on the work reported in this thesis, the following conclusions are drawn:

• The algorithm developed for the short-circuit analysis of unbalanced radial as well weakly meshed

distribution system considering loads is based on admittance matrix of the network. The obtained

results show that the method is quite accurate and effective. It is also applicable for the analysis of

multiple faults in the network.

• The method proposed for the short-circuit analysis of distribution system with IBDGs is considered

the current controlled mode of operation of IBDGs during the short-circuit calculations. The method

is based on Newton-Raphson based technique to solve the non-linear KCL equations of the system.

It is also capable of including voltage dependent control modes of IBDGs under the short-circuit

conditions. This method is also capable of incorporating the voltage dependent load models (ZIP -

loads) in the fault calculations.

• The efficient and accurate load flow analysis method is developed in this work for the unbalanced

distribution system which incorporates three-phase transformer models (of any vector group) and

IBDGs simultaneously. Two modes of operation have been considered for the IBDGs, namely, i).

Constant active power mode, ii). Power and Voltage control (PV) mode. Singularity problem for

particular type of transformer configurations has also been addressed in the proposed method.

• The short-circuit analysis method for the unbalanced distribution system with three-phase transformer

models and IBDGs is also developed in this thesis. The results obtained by the proposed method have

been compared with the results of time domain simulation studies carried out using PSCAD/EMTDC

simulink software. These results establish the accuracy of the proposed method.
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• The load flow analysis method, based on [BIBC] and [BCBV] matrices of the system, has been

developed for the three-phase four wire unbalanced radial distribution system with ground return.

Separate [BCBV] and [BIBC] matrices have been developed for the phase, neutral and ground bus

voltages and currents. Two different short-circuit analysis methods, one is based on [BIBC] and

[BCBV] matrices of the system and the other one is based on [Ybus] matrix of the system, have

also been developed for the three-phase four wire distribution system with ground return. The results

obtained by these methods demonstrate their accuracy and effectiveness.

• The load flow (based on [BIBC] and [BCBV] matrices of the system) and short-circuit analysis

methods (one is based on [BIBC] and [BCBV] matrices of the system and the other one is based on

[Ybus] matrix of the system) for the three-phase four wire distribution system with ground return with

IBDGs and three-phase transformer models have been developed in this work. Two different config-

urations of the transformer models have been considered in this work, one is Delta/star-grounded (∆-

Yg) and next one is star-grounded/star-grounded (Yg-Yg) transformer model. Separate load flow and

short-circuit analysis methods have been developed for both the transformer models. The proposed

methods have been tested on two different test systems, first is modified IEEE 34-bus three-phase four

wire distribution system with ground return, and second one is modified IEEE 123-bus three-phase

four wire distribution system with ground return. The obtained results establish the effectiveness and

correctness of the proposed methods.

7.2 Scope of further Works

• The proposed load flow and short-circuit analysis methods for the three-phase four wire distribution

system with ground return have been developed only for the radial systems. The proposed method-

ologies can also be modified for the weakly meshed distribution networks.

• The load flow and short-circuit methodologies have been developed only for the three-phase four

wire radial distribution system with ground return with IBDGs and IBDG transformers. It can also

be extended for a three-phase four wire weakly meshed distribution network.

• The three-phase transformer models have only been used with the IBDGs in the proposed method-

ologies of the three-phase four wire radial distribution system with ground return, i.e. the transformer

models used in the system have only been connected at the end nodes of the network. The proposed

methodologies can be modified for the transformers connected anywhere in the network.

• The short-circuit algorithms for three-phase four wire systems considers constant power load models
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only. These methodologies can also be extended to include non-linear load models like, ZIP loads

(voltage dependent load models).
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Appendix A

Modified IEEE 34-Bus three-phase four wire multigrounded

Distribution System

Table A.1: Line Data

From Bus To Bus

Line configuration Length (ft)Actual Modified Actual Modified

Bus No. Bus No. Bus No. Bus No.

800 1 802 2 300 2580

802 2 806 3 300 1730

806 3 808 4 300 32230

808 4 810 5 303 5804

808 4 812 6 300 37500

812 6 814 7 300 29730

814 7 850 8 301 10

850 8 816 9 301 310

816 9 818 10 302 1710

818 10 820 11 302 48150

820 11 820 12 302 13740

816 9 824 13 301 10210

824 13 826 14 303 3030

824 13 828 15 301 840

828 15 830 16 301 20440

830 16 854 17 301 520

854 17 856 18 303 23330

854 17 852 19 301 36830

852 19 832 20 301 10

888 20 890 21 300 10560

832 20 858 22 301 4900

858 22 864 23 302 1620

858 22 834 24 301 5830

834 24 842 25 301 280

842 25 844 26 301 1350

844 26 846 27 301 3640

846 27 848 28 301 530

834 24 860 29 301 2020

860 29 836 30 301 2680

834 30 842 31 301 280

862 31 838 32 304 4860

836 30 840 33 301 860
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Table A.2: Load Data

Bus No.
Pa Qa Pb Qb Pc Qc

(kW) (kVAR) (kW) (kVAR) (kW) (kVAR)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 15.5 7.5 12.5 7.0

3 0.0 0.0 15.5 7.5 12.5 7.0

4 0.0 0.0 8.0 4.0 0.0 0.0

5 0.0 0.0 8.0 4.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 2.5 1.0 0.0 0.0

10 17.0 8.5 0.0 0.0 0.0 0.0

11 84.5 43.5 0.0 0.0 0.0 0.0

12 67.5 35.0 0.0 0.0 0.0 0.0

13 0.0 0.0 22.5 11.0 2.0 1.0

14 0.0 0.0 20.0 10.0 0.0 0.0

15 3.5 1.5 0.0 0.0 2.0 1.0

16 13.5 6.5 12.0 6.0 25.0 10.0

17 0.0 0.0 2.0 1.0 0.0 0.0

18 0.0 0.0 0.0 0.0 0.0 0.0

19 0.0 0.0 0.0 0.0 0.0 0.0

20 3.5 1.5 1.0 0.5 3.0 1.5

21 150.0 75.0 150.0 75.0 150.0 75.0

22 6.5 3.0 8.5 4.5 9.5 5.0

23 1.0 0.5 0.0 0.0 0.0 0.0

24 10.0 5.0 17.5 9.0 61.5 31.0

25 4.5 2.5 0.0 0.0 0.0 0.0

26 139.5 107.5 147.5 111.0 145.0 110.5

27 0.0 0.0 24.0 11.5 0.0 0.0

28 20.0 16.0 31.5 21.5 20.0 16.0

29 43.0 27.5 35.0 24.0 96.0 54.5

30 24.0 12.0 16.0 8.5 21.0 11.0

31 0.0 0.0 14.0 7.0 0.0 0.0

32 0.0 0.0 14.0 7.0 0.0 0.0

33 18.0 11.5 20.0 12.5 9.0 7.0

Table A.3: Overhead Line Configurations

Configuration Phasing
Phase Conductor Neutral Conductor

Spacing ID
(ACSR) (ACSR)

300 A B C N 1/0 1/0 500

301 A B C N #2 6/1 #2 6/1 500

302 A N #4 6/1 #4 6/1 510

303 B N #4 6/1 #4 6/1 510

304 B N #2 6/1 #2 6/1 510
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Appendix B

Modified IEEE 123-Bus three-phase four wire multigrounded

Distribution System

Table B.1: Line Data

From Bus To Bus

Line configuration Length (ft)Actual Modified Actual Modified

Bus No. Bus No. Bus No. Bus No.

149 1 1 2 1 400

1 2 2 3 10 175

1 2 3 4 11 250

3 4 4 5 11 200

3 4 5 6 11 325

5 6 6 7 11 250

1 2 7 8 1 300

7 8 8 9 1 200

8 9 9 10 9 225

9 10 14 11 9 425

14 11 11 12 9 250

14 11 10 13 9 250

8 9 12 14 10 225

8 9 13 15 1 300

13 15 34 16 11 150

34 16 15 17 11 100

15 17 17 18 11 350

15 17 16 19 11 375

13 15 18 20 2 825

18 20 19 21 9 250

19 21 20 22 9 325

18 20 21 23 2 300

21 23 22 24 10 525

21 23 23 25 2 250

23 25 24 26 11 550

23 25 25 27 2 275

25 27 26 28 7 350

26 28 27 29 7 275

25 27 28 30 2 200

28 30 29 31 2 300

29 31 30 32 2 350
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From Bus To Bus

Line configuration Length (ft)Actual Modified Actual Modified

Bus No. Bus No. Bus No. Bus No.

30 32 250 33 2 200

26 28 31 34 11 225

31 34 32 35 11 300

27 29 33 36 9 500

135 20 35 37 4 375

35 37 36 38 8 650

36 38 37 39 9 300

36 38 38 40 10 250

38 40 39 41 10 325

35 37 40 42 1 250

40 42 41 43 11 325

40 42 42 44 1 250

42 44 43 45 10 500

42 44 44 46 1 200

44 46 45 47 9 200

45 47 46 48 9 300

44 46 47 49 1 250

47 49 48 50 4 150

47 49 49 51 4 250

49 51 50 52 4 250

50 52 51 53 4 250

51 53 151 54 4 500

152 15 52 55 1 400

52 55 53 56 1 200

53 56 54 57 1 125

54 57 55 58 1 275

55 58 56 59 1 275

54 57 57 60 3 350

57 60 58 61 10 250

58 61 59 62 10 250

57 60 60 63 3 750

60 63 61 64 5 550

60 63 62 65 12 250

62 65 63 66 12 175

63 66 64 67 12 350

64 67 65 68 12 425

65 68 66 69 12 325

160 63 67 70 6 350

67 70 68 71 9 200

68 71 69 72 9 275

69 72 70 73 9 325

70 73 71 74 9 275

67 70 72 75 3 275

292



From Bus To Bus

Line configuration Length (ft)Actual Modified Actual Modified

Bus No. Bus No. Bus No. Bus No.

72 75 73 76 11 275

73 76 74 77 11 350

74 77 75 78 11 400

72 75 76 79 3 200

76 79 77 80 6 400

77 80 78 81 6 100

78 81 79 82 6 225

78 81 80 83 6 475

80 83 81 84 6 475

81 84 82 85 6 250

82 85 83 86 6 250

81 84 84 87 11 675

84 87 85 88 11 475

76 79 86 89 3 700

86 89 87 90 6 450

87 90 88 91 9 175

87 90 89 92 6 275

89 92 90 93 10 225

89 92 91 94 6 225

91 94 92 95 11 300

91 94 93 96 6 225

93 96 94 97 9 275

93 96 95 98 6 300

95 98 96 99 10 200

67 70 97 100 3 250

97 100 98 101 3 275

98 101 99 102 3 550

99 102 100 103 3 300

100 103 450 104 3 800

197 100 101 105 3 250

101 105 102 106 11 225

102 106 103 107 11 325

103 107 104 108 11 700

101 105 105 109 3 275

105 109 106 110 10 225

106 110 107 111 10 575

105 109 108 112 3 325

108 112 109 113 9 450

109 113 110 114 9 300

110 114 111 115 9 575

110 114 112 116 9 125

112 116 113 117 9 525

113 117 114 118 9 325

108 112 300 119 3 1000
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Table B.2: Load Data

Bus No.
Pa Qa Pb Qb Pc Qc

(kW) (kVAR) (kW) (kVAR) (kW) (kVAR)

1 0 0 0 0 0 0

2 40 20 0 0 0 0

3 0 0 20 10 0 0

4 0 0 0 0 0 0

5 0 0 0 0 40 20

6 0 0 0 0 20 10

7 0 0 0 0 40 20

8 20 10 0 0 0 0

9 0 0 0 0 0 0

10 40 20 0 0 0 0

11 0 0 0 0 0 0

12 40 20 0 0 0 0

13 20 10 0 0 0 0

14 0 0 20 10 0 0

15 0 0 0 0 0 0

16 0 0 0 0 40 20

17 0 0 0 0 0 0

18 0 0 0 0 20 10

19 0 0 0 0 40 20

20 0 0 0 0 0 0

21 40 20 0 0 0 0

22 40 20 0 0 0 0

23 0 0 0 0 0 0

24 0 0 40 20 0 0

25 0 0 0 0 0 0

26 0 0 0 0 40 20

27 0 0 0 0 0 0

28 0 0 0 0 0 0

29 0 0 0 0 0 0

30 40 20 0 0 0 0

31 40 20 0 0 0 0

32 0 0 0 0 40 20

33 0 0 0 0 0 0

34 0 0 0 0 20 10

35 0 0 0 0 20 10

36 40 20 0 0 0 0

37 40 20 0 0 0 0

38 0 0 0 0 0 0

39 40 20 0 0 0 0

40 0 0 20 10 0 0

41 0 0 20 10 0 0

42 0 0 0 0 0 0

43 0 0 0 0 20 10

44 20 10 0 0 0 0

45 0 0 40 20 0 0
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Bus No.
Pa Qa Pb Qb Pc Qc

(kW) (kVAR) (kW) (kVAR) (kW) (kVAR)

46 0 0 0 0 0 0

47 20 10 0 0 0 0

48 20 10 0 0 0 0

49 35 25 35 25 35 25

50 70 50 70 50 70 50

51 35 25 70 50 35 20

52 0 0 0 0 40 20

53 20 10 0 0 0 0

54 0 0 0 0 0 0

55 40 20 0 0 0 0

56 40 20 0 0 0 0

57 0 0 0 0 0 0

58 20 10 0 0 0 0

59 0 0 20 10 0 0

60 0 0 0 0 0 0

61 0 0 20 10 0 0

62 0 0 20 10 0 0

63 20 10 0 0 0 0

64 0 0 0 0 0 0

65 0 0 0 0 40 20

66 40 20 0 0 0 0

67 0 0 75 35 0 0

68 35 25 35 25 70 50

69 0 0 0 0 75 35

70 0 0 0 0 0 0

71 20 10 0 0 0 0

72 40 20 0 0 0 0

73 20 10 0 0 0 0

74 40 20 0 0 0 0

75 0 0 0 0 0 0

76 0 0 0 0 40 20

77 0 0 0 0 40 20

78 0 0 0 0 40 20

79 105 80 70 50 70 50

80 0 0 40 20 0 0

81 0 0 0 0 0 0

82 40 20 0 0 0 0

83 0 0 40 20 0 0

84 0 0 0 0 0 0

85 40 20 0 0 0 0

86 0 0 0 0 20 10

87 0 0 0 0 20 10

88 0 0 0 0 40 20

89 0 0 20 10 0 0

90 0 0 40 20 0 0
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Bus No.
Pa Qa Pb Qb Pc Qc

(kW) (kVAR) (kW) (kVAR) (kW) (kVAR)

91 40 20 0 0 0 0

92 0 0 0 0 0 0

93 0 0 40 20 0 0

94 0 0 0 0 0 0

95 0 0 0 0 40 20

96 0 0 0 0 0 0

97 40 20 0 0 0 0

98 0 0 20 10 0 0

99 0 0 20 10 0 0

100 0 0 0 0 0 0

101 40 20 0 0 0 0

102 0 0 40 20 0 0

103 0 0 0 0 40 20

104 0 0 0 0 0 0

105 0 0 0 0 0 0

106 0 0 0 0 20 10

107 0 0 0 0 40 20

108 0 0 0 0 40 20

109 0 0 0 0 0 0

110 0 0 40 20 0 0

111 0 0 40 20 0 0

112 0 0 0 0 0 0

113 40 20 0 0 0 0

114 0 0 0 0 0 0

115 20 10 0 0 0 0

116 20 10 0 0 0 0

117 40 20 0 0 0 0

118 20 10 0 0 0 0

119 0 0 0 0 0 0

Table B.3: Overhead Line Configurations

Configuration Phasing
Phase Conductor Neutral Conductor

Spacing ID
(ACSR) (ACSR)

1 A B C N 336, 400 26/7 4/0 6/1 500

2 A B C N 336, 400 26/7 4/0 6/1 500

3 A B C N 336, 400 26/7 4/0 6/1 500

4 A B C N 336, 400 26/7 4/0 6/1 500

5 A B C N 336, 400 26/7 4/0 6/1 500

6 A B C N 336, 400 26/7 4/0 6/1 500

7 A C N 336, 400 26/7 4/0 6/1 505

8 A B N 336, 400 26/7 4/0 6/1 505

9 A N 1/0 1/0 510

10 B N 1/0 1/0 510

11 C N 1/0 1/0 510
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